
SIMILARITY-BASED METHODS FOR MACHINE DIAGNOSIS

Felipe Moreira Lopes Ribeiro

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários

à obtenção do t́ıtulo de Doutor em Engenharia

Elétrica.

Orientadores: Eduardo Antônio Barros da

Silva

Sergio Lima Netto

Rio de Janeiro

Agosto de 2018

SIMILARITY-BASED METHODS FOR MACHINE DIAGNOSIS

Felipe Moreira Lopes Ribeiro

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. Eduardo Antônio Barros da Silva, Ph.D.

Prof. Sergio Lima Netto, Ph.D.

Prof. Diego Barreto Haddad, D.Sc.

Prof. João Baptista de Oliveira e Souza Filho, D.Sc.

Dr. Mario Cesar Mello Massa de Campos, Ph.D.

RIO DE JANEIRO, RJ – BRASIL

AGOSTO DE 2018

Ribeiro, Felipe Moreira Lopes

Similarity-based methods for machine diagnosis/Felipe

Moreira Lopes Ribeiro. – Rio de Janeiro: UFRJ/COPPE,

2018.

XVII, 132 p.: il.; 29, 7cm.

Orientadores: Eduardo Antônio Barros da Silva

Sergio Lima Netto

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2018.

Referências Bibliográficas: p. 105 – 112.

1. Diagnosis. 2. Machinery Fault Detection. 3.

Machine Learning. I. Silva, Eduardo Antônio Barros da

et al. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. T́ıtulo.

iii

To my family and friends

iv

Acknowledgments

This is my first time writing my acknowledgments in English. English is not my first

language by birth, but my first language by choice. And while I really would like to

write something grandiloquent to appease future readers, there is little inspiration

in this text, but a mix of tension, like a stage fright, some satisfaction, just a little,

and a lot of gratitude.

Tension and worries when I look at the future, and during this writing. There

are many examples of theses and dissertations everywhere where someone can find

his ‘inspiration’. There is a lot of doubt about the best way to proceed, what to

write and how to start. But at the end, the best choice is to take your time, delve

into the text, and hope for the best.

There is satisfaction for another step made. Baby step, surely, but a step forward,

nevertheless. Not all that was in my mind made to this text? True. “Time is the

master and time can be a disaster!”. Many problems, mistakes, and less successful

approaches were left behind. But maybe tomorrow, or some day in the future,

maybe they will have their time to shine. But for now, there is this small stream of

satisfaction of completing another stage to a (hopefully) better future.

Lastly, gratitude. Without a little (or a lot of) help of my friends and family,

this text would not be there, neither the ideas that made this work possible. So

first, I would like to thank my family, my parents Tania and Sebastião, my first and

foremost examples, who gave me the love and necessary support to be here. My

relatives, who shared good and bad moments, side by side. My sweetheart Bruna.

And my extended family, who I hope to share with her someday.

Then, my friends. First, the ones from early. Bruno, Euler e Rodrigo. May

the Force be with you. My friends from undergrad: Claudio, Danilo, Jaque, Simão,

Vitor, Zheng. Live long and prosper. My friends from the SMT. Starting from

the first generation: Amaro, Anderson, Andreas, Gabriel, Markus, Prego, Tadeu,

Wallace, and Zé. The second: Allan, Aninha, Camila, Lucas, Luiz, Luis Lucas,

Jonathan, and Renam. And the third: Barbosa, Cinelli, Igor, Matheus, Rafael,

Roberto, and Wesley. My friends, you bow to no one. For the next generation to

come, good night and good luck.

Also, to my colleagues from OLX who, like J. Fernandes Pinto from the poem

v

“Quadrilha”, were not in the story, but became part of my life in the last year.

This was an eventful year, with a lot of learning and some fun. Thanks for the

opportunity of working with great people.

Lastly, but no least, my advisors, Eduardo and Sergio, thanks for the helping

hand, ideas, advices, and patience. Thank for believing in my potential. And for

the examiners, thanks for your help and the paid attention. Hopefully, this work

should contribute with some ideas. And for the future readers, thanks for reading

even the acknowledgments.

vi

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

MÉTODOS BASEADOS EM SIMILARIDADE PARA DIAGNÓSTICO DE

MÁQUINAS

Felipe Moreira Lopes Ribeiro

Agosto/2018

Orientadores: Eduardo Antônio Barros da Silva

Sergio Lima Netto

Programa: Engenharia Elétrica

Este trabalho apresenta um sistema de manutenção preditiva para diagnóstico

automático de falhas em máquinas. O sistema proposto, baseado em uma técnica de-

nominada similarity-based modeling (SBM), provê informações sobre o estado atual

do equipamento (grau de anomalia), e retorna um conjunto de amostras representa-

tivas que pode ser utilizado para descrever o estado atual de forma esparsa, permi-

tindo a um operador avaliar a melhor decisão a ser tomada. O sistema é modular

e agnóstico aos dados, permitindo que seja utilizado em variados equipamentos e

dados com pequenas modificações. As principais contribuições deste trabalho são: o

estudo abrangente da proposta do classificador SBM multi-classe e o seu uso em dife-

rentes bases de dados, seja como um classificador ou auxiliando outros classificadores

comumente usados; novos métodos para a seleção de amostras representativas para

os modelos SBM; o uso de novas funções de similaridade; e um serviço de detecção

de falhas pronto para ser utilizado em produção. Essas contribuições atingiram o

objetivo de melhorar o desempenho dos modelos SBM em cenários de classificação

de falhas e reduziram sua complexidade computacional. O sistema proposto foi

avaliado em três bases de dados, atingindo desempenho igual ou superior ao desem-

penho de trabalhos anteriores nas mesmas bases. Comparações com outros métodos

são apresentadas para a recém desenvolvida Machinery Fault Database (MaFaulDa)

e para a base de dados da Case Western Reserve University (CWRU). As técnicas

propostas melhoraram a capacidade de generalização dos modelos de similaridade e

do classificador final, atingindo acurácias de 98.5% na MaFaulDa e 98.9% na base

de dados CWRU. Esses resultados apontam que a abordagem proposta baseada na

técnica SBM tem potencial para ser investigada em mais profundidade.

vii

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

SIMILARITY-BASED METHODS FOR MACHINE DIAGNOSIS

Felipe Moreira Lopes Ribeiro

August/2018

Advisors: Eduardo Antônio Barros da Silva

Sergio Lima Netto

Department: Electrical Engineering

This work presents a data-driven condition-based maintenance system based on

similarity-based modeling (SBM) for automatic machinery fault diagnosis. The pro-

posed system provides information about the equipment current state (degree of

anomaly), and returns a set of exemplars that can be employed to describe the cur-

rent state in a sparse fashion, which can be examined by the operator to assess a

decision to be made. The system is modular and data-agnostic, enabling its use in

different equipment and data sources with small modifications. The main contribu-

tions of this work are: the extensive study of the proposition and use of multiclass

SBM on different databases, either as a stand-alone classification method or in com-

bination with an off-the-shelf classifier; novel methods for selecting prototypes for

the SBM models; the use of new similarity functions; and a new production-ready

fault detection service. These contributions achieved the goal of increasing the SBM

models performance in a fault classification scenario while reducing its computa-

tional complexity. The proposed system was evaluated in three different databases,

achieving higher or similar performance when compared with previous works on

the same database. Comparisons with other methods are shown for the recently

developed Machinery Fault Database (MaFaulDa) and for the Case Western Re-

serve University (CWRU) bearing database. The proposed techniques increase the

generalization power of the similarity model and of the associated classifier, having

accuracies of 98.5% on MaFaulDa and 98.9% on CWRU database. These results

indicate that the proposed approach based on SBM is worth further investigation.

viii

Contents

List of Figures xii

List of Tables xiv

List of Algorithms xv

Glossary xvi

1 Introduction 1

1.1 Outline and contributions . 2

1.2 Publications . 3

2 Condition-based maintenance 5

2.1 Introduction . 5

2.2 Learning from data . 7

2.3 Proposed system architecture . 9

2.3.1 Data preprocessing . 10

2.3.2 State monitoring . 10

2.3.3 Fault detection . 11

2.3.4 Fault diagnosis . 11

2.4 Assessment methodology . 12

2.4.1 Evaluation metrics . 12

2.4.2 Model selection and assessment 17

2.5 Implementation details . 18

2.5.1 Prognosis library . 19

2.5.2 Study cases . 19

2.6 Conclusion . 21

3 Similarity-based methods 22

3.1 Introduction . 22

3.2 Similarity functions . 23

3.3 Similarity-based modeling . 25

ix

3.3.1 Original SBM training phase 28

3.4 Proposed SBM enhancements . 29

3.4.1 Multiclass similarity-based modeling 29

3.4.2 Proposed offline training procedure 30

3.5 Conclusion . 34

4 Rotating-machines fault diagnosis 36

4.1 Introduction . 36

4.2 Databases . 38

4.2.1 MaFaulDa . 38

4.2.2 CWRU bearing database . 40

4.3 Experimental methodology . 40

4.3.1 Feature extraction . 42

4.4 Experimental results and discussion 44

4.4.1 Validation results . 45

4.4.2 Results on the testing sets . 48

4.4.3 Comparison with other prototype selection methods 50

4.4.4 CWRU results and discussion 51

4.4.5 Comparison with previous works 52

4.5 Conclusion . 53

5 Failure detection in an oil-platform pump system 54

5.1 Introduction . 54

5.2 Database . 55

5.3 Methodology . 56

5.3.1 Data preprocessing . 57

5.3.2 Exploratory data analysis . 59

5.3.3 Cross-validation procedure . 66

5.4 Results and discussion . 67

5.4.1 Cross-validation results . 67

5.4.2 Results on the testing set . 76

5.5 Conclusion . 78

6 Fault detection system 80

6.1 Introduction . 80

6.2 User interface . 81

6.2.1 Similarity score window . 81

6.2.2 Event window . 84

6.2.3 Prototype window . 85

6.2.4 Signal window . 87

x

6.2.5 Web interface framework . 90

6.3 Data layer . 92

6.3.1 Similarity function learning 92

6.3.2 Online SBM . 94

6.3.3 Data access endpoints . 96

6.3.4 Data processing and storage flow 99

6.4 Conclusion . 101

7 Conclusion 102

7.1 Discussion . 102

7.2 Future work . 103

Bibliography 105

A Conditional Maintenance System Manual 113

A.1 Introduction . 113

A.2 Similarity score window . 115

A.2.1 Similarity score chart . 116

A.2.2 Similarity score computation 116

A.3 Event window . 118

A.3.1 Event occurrence . 118

A.3.2 Selecting an event . 121

A.3.3 Editing an event . 121

A.4 Prototype window . 122

A.4.1 New prototype detection . 122

A.4.2 Selecting a prototype . 125

A.4.3 Editing a prototype . 125

A.4.4 Removing an prototype . 126

A.4.5 Prototype radar chart . 127

A.5 Signal window . 127

A.5.1 Registered signal table . 127

A.5.2 Signals importance chart . 128

xi

List of Figures

2.1 Block diagram of the proposed system. 9

2.2 K-fold example with K = 10. 18

3.1 SBM sample evaluation procedure. 28

4.1 Experimental setup used to produce the MaFaulDa database. 38

4.2 Block diagram of the proposed system. 41

5.1 Block diagram of the proposed system for fault detection. 56

5.2 State labels generation procedure. 58

5.3 Correlation matrices for the three states. 61

5.4 Partial correlation graphs for the three states. 63

5.5 Hierarchical clustering dendrograms for the three states. 65

5.6 Temporal K-fold with K = 9. 66

5.7 Accuracy box plot for the employed prototype selection methods. . . 68

5.8 Box plot of the number of prototypes per prototype selection methods. 69

5.9 Accuracy box plot for the employed similarity functions. 71

5.10 Accuracy box plot for the employed distance norms. 72

5.11 Accuracy box plot for different kernel width γ values. 73

5.12 Accuracy box plot for interval of τ . 74

5.13 Accuracy box plot for the decimation factor (s). 75

5.14 Time-series for the test set similarities scores. 78

6.1 Similarity score window. 82

6.2 Event window. 83

6.3 Events’ information and edition dialogs. 84

6.4 Similarity scores for a chosen event. 85

6.5 Prototype window. 86

6.6 Prototypes’ dialogs. 87

6.7 Prototype radar chart. 88

6.8 Signal window. 89

6.9 Registered signal table. 90

xii

6.10 Signal importance pie chart. 91

6.11 Web application data processing event flow. 100

A.1 Similarity score window. 114

A.2 Application navigation menu with a brief description of each window. 115

A.3 Similarity score chart with each known class similarity score. 116

A.4 Event window. 119

A.5 Events info dialog. 120

A.6 Event selection. Current selected event has id 1. 121

A.7 Event edition procedure. 122

A.8 Prototype window. 123

A.9 Prototypes description dialog. 124

A.10 Prototype selection. Current selected event has id 7. 125

A.11 Prototype edition procedure. 126

A.12 Deletion procedure. 127

A.13 Radar chart with mouse over the OutputPressure point. 128

A.14 Signal window. 129

A.15 Registered signal table. 130

A.16 Table number of rows selector. 131

A.17 Page selector with number of signals in current page. 131

A.18 Signal importance pie chart. 132

xiii

List of Tables

2.1 Pros and cons of each maintenance strategy. 6

2.2 Confusion matrix example. 13

4.1 Statistical features taken from time and spectral domain data. 43

4.2 Experiment 1 cross-validation accuracy (%). 45

4.3 Experiment 2 cross-validation accuracy (%). 46

4.4 Experiment 3 cross-validation accuracy (%). 47

4.5 Experiment 4 cross-validation accuracy (%). 47

4.6 Average number of prototypes for each configuration and class. 48

4.7 Confusion matrices in test dataset. 49

4.8 Accuracy results for the 10-class identification problem on MaFaulDa. 50

4.9 Accuracy comparison between knn prototype selection methods. . . . 51

4.10 Accuracy (%) results of SBM-based classifiers on the CWRU database. 52

5.1 Cross-validation accuracy (%) for the 10 best SBM configurations. . . 76

5.2 Number of prototypes for the 10 best SBM configurations. 76

5.3 Confusion matrix for the test dataset. 77

A.1 Paths (url) for each window in the application. 113

xiv

List of Algorithms

3.1 Similarity threshold selection algorithm. 32

3.2 Interpretable prototype selection algorithm. 34

3.3 Bootstrapping interpretable prototype selection algorithm. 35

5.1 Hierarchical agglomerative clustering algorithm pseudo-code. 64

6.1 Online similarity function and prototype selection SBM. 96

xv

Glossary

AAKR auto-associative kernel regression.

ABVT alignment-balance-vibration trainer.

ACC accuracy.

ANN artificial neural network.

CBM condition-based maintenance.

CWRU Case Western Reserve University.

DFT discrete Fourier transform.

EVR explained variance regression.

HTTP Hypertext Transfer Protocol.

IQR inter-quartile range.

JSON JavaScript Object Notation.

knn k-nearest neighbors.

MAE mean absolute error.

MaFaulDa machinery fault database.

MFS machinery fault simulator.

MSE mean Squared error.

PPV positive predictive value.

R2 coefficient of determination.

REST Representational State Transfer.

xvi

RF random forest.

RUL remaining useful life.

SBM similarity-based modeling.

SI Système international.

SVM support vector machine.

TPR true positive rate.

xvii

Chapter 1

Introduction

Nowadays, machine learning methods and techniques permeate our daily lives. De-

tecting far away stars in astronomy, learning our shopping behaviors, identifying

suspects, finding the best route to home, or even finding a date, machine learn-

ing is everywhere. Similarly to what happened during the industrial revolution,

as data-driven systems become ubiquitous, they are changing the ways of how we

interact with home appliances, work tools, or even with one another, with positive

and negative impacts.

The microelectronics revolution that provided the means for the machine learn-

ing popularization also made multiple sensors, storage, computational power, and

communication means accessible for cheaper applications. This made available a

considerable volume of data and the computational means for learning algorithms

for different purposes.

Equipment faults and failures are other common occurrences in our daily lives.

As time passes by, an equipment can suffer damage from usage, misusage, rust,

impact, severe weather, among other causes, which can compromise its normal op-

eration. To recover the equipment or even reduce these occurrences, maintenance

is necessary. However, while maintenance is necessary, it is not always a desirable

process, as during maintenance an equipment would be unavailable and it can re-

quire spare parts or a specialist support. These options increase costs and reduce

the user overall satisfaction and confidence in the equipment. As equipment are

gradually becoming more complex and requiring high availability, monitoring their

health with multiple sensors and data analytics can reduce unneeded maintenance

stops and overall maintenance costs, increasing user satisfaction.

Given this context, the objective of this work is to produce a data-driven method

based on machine learning to detect, identify, and, hopefully, predict possible faults

in any equipment. This method should be flexible and operate with multiple equip-

ment and data of distinct sources. This predictive maintenance, also known as

condition-based maintenance [1, 2], has the task of helping any operator in planing

1

and executing maintenance only when it is necessary, reducing maintenance cost

and increasing equipment life time.

Such a system should provide information about the current degree of the

anomaly, and should be easily interpretable by an operator. To satisfy these require-

ments, in this work we employed a methodology presented in [3] named similarity-

based modeling. Roughly, in this methodology a sample is evaluated by its similarity

with sets of selected exemplars. The new sample state1 is assumed to be shared by

the most similar set, and the degree of similarity denotes the confidence in this as-

sumption. Also, the sets of exemplars can also be used to describe the state in a

sparse fashion and can be examined by the operator to assess if corrected decision

was taken [4], thus satisfying the proposed requirements.

1.1 Outline and contributions

In this document we propose a data-driven condition-based maintenance system

based on similarity for diagnosis of machinery faults. This system should be agnostic,

in a sense that the data sources or the current equipment being evaluated should

be transparent for the system. This requirement implies some flexibility into the

system, which we tried to accomplish by following a modular approach similar to the

ones presented in [1] and [2]. The present document has the following contributions:

• Extensions to the original similarity-based modeling methodology, including

new similarity metrics/functions, novel methods for selecting the exemplar

samples, and a multiclass extension for the original binary methodology;

• A qualitative and quantitative study of the methodology when applied to the

case of rotating machine databases [5, 6];

• A study of the deployment of the current system over an industrial application,

which was done step-by-step, from the data acquisition to the analysis of

results;

• Creation of a web application for detecting, analyzing, and monitoring possible

anomalous events in a given equipment, supporting operational decisions.

The presented discussion is organized as follows. Chapter 2 introduces the data-

driven methodology for condition-based maintenance. This chapter introduces the

methodology used in this work, including the proposed system components, concepts

1In this work a state is a functional condition of a system that can be discriminated from other
conditions given its measured sample state, the set of known sensors and measurements. The
concepts of sample state and state are sometimes used as synonymous during this work.

2

of machine learning, metrics used to evaluated the generated models, and a brief

discussion of the implemented framework and the datasets used during this work.

Chapter 3 introduces the similarity models used for detecting and identifying

faults and failures in the monitored equipment. It also presents the main contribu-

tions of this work: the new similarity functions; the new methods for selecting the

representative set of samples; and the multiclass extension for the original classifier.

A study case using the proposed methodology on rotating-machinery databases

is presented in Chapter 4. This study includes multiple experiments evaluating

alternative versions of the similarity-based modeling approach, the effect of different

features on the system, the use of the model as a feature generator for another

classifier, and the influence of the different parameters on the system performance.

It also compares the proposed framework with previous works on the same databases.

Another empirical study in a real application over data from an oil and gas in-

dustry equipment is presented in Chapter 5. This chapter presents all steps of a

data-driven problem: data acquisition, data preprocessing, exploratory data analy-

sis, model training, and, lastly, the obtained conclusions.

Chapter 6 presents the proposed techniques implemented as part of a web service

for anomalous event detection and monitoring, and the implemented framework,

including its components, user cases, and functionalities.

Chapter 7 closes this document presenting the conclusions and the future direc-

tions of this work.

1.2 Publications

The following publications are directly related with this work

• MARINS, M. A., RIBEIRO, F. M. L., NETTO, S. L., da SILVA, E. A. B.,

“Improved similarity-based modeling for the classification of rotating-machine

failures,” Journal of the Franklin Institute, v. 355, n. 4, pp. 1913–1930, July

2018.

• RIBEIRO, F. M. L., MARINS, M. A., NETTO, S. L., da SILVA, E. A. B.,

“Rotating machinery fault diagnosis using similarity-based models,” In: Proc.

Simpósio Brasileiro de Telecomunicações e Processamento de Sinais, Septem-

ber 2017.

And following were concluded during the D.Sc. interval

• RIBEIRO, F. M. L., de OLIVEIRA, J. F. L., CIANCIO, A. G., da SILVA,

E. A. B., ESTRADA, C. R. D., TAVARES, L. G. C., GOIS, J. N., SAID, A.,

MARTELOTTE, M. C., “Quality of Experience in a Stereoscopic Multiview

3

Environment,” in IEEE Transactions on Multimedia, vol. 20, no. 1, pp. 1–14,

January 2018.

• ARAUJO, G. M., RIBEIRO, F. M. L., JÚNIOR, W. S. S., da SILVA, E. A. B.,

GOLDENSTEIN, S. K. , “Weak Classifier for Density Estimation in Eye Lo-

calization and Tracking,” in IEEE Transactions on Image Processing, vol. 26,

no. 7, pp. 3410–3424, July 2017.

4

Chapter 2

Condition-based maintenance

2.1 Introduction

Failure is the lack of ability of a system to perform its intended function as designed.

Failure may be the result of one or many faults. A fault is an abnormal condition

or defect at a system which may lead to failure [7].

The process of performing actions to keep a system in working order, avoiding

possible faults or restoring it to a functional state is named maintenance. Mainte-

nance is an expensive process: a maintenance team must be mobilized; equipment

can become unavailable during maintenance; spare parts can be needed or con-

sumed; or it can arouse new faults. As such, maintenances should ideally occur to

keep equipment and process at their best conditions, to suit security and operational

specifications, and to reduce costs [2].

One of the principal causes of concern in the energy and oil industry is the

maintenance of critical equipment to ensure high levels of reliability, availability, and

performance [8]. To meet this aim, numerous maintenance strategies were devised,

which can be categorized in three main groups [1, 2]:

1. Corrective maintenance;

2. Preventive maintenance; and

3. Predictive maintenance.

Corrective maintenance is a reactive type of maintenance in which the system is

assumed to be in its appropriate condition until proven otherwise. Maintenance is

performed only when a failure occurs. This strategy eliminates unnecessary mainte-

nances cost at the price of high risk of collateral damage, high production downtime,

and high cost of spare parts, as it ensures that the system will fail [1, 2].

Conversely, at the preventive or periodic maintenance an optimum breakdown

window is computed, based on the system operational conditions and maintenance

5

and operational costs, and routine maintenances activities are scheduled to prevent

failure from occurring, assuming that failure will occur otherwise [1, 2]. While these

activities may minimize operating costs, as they reduce the number of unnecessary

stops and the number of failures, and produce greater control over the performed

maintenance, they typically involve the highest maintenance costs and there will

still be unpredicted failures. Currently, this is the most popular strategy, actively

being employed by manufacturers and operators in industry [2].

Predictive maintenance, also known as condition-based maintenance (CBM), lies

between these two extremes, wherein maintenance actions are performed as needed,

based on the system condition [1]. Ideally, in this strategy, maintenance occurs after

a fault but before a failure to reduce any unnecessary maintenance or unplanned

downtime1. To achieve this objective, this strategy employs predictive analytics

over real-time data collected from the system’s sensors that detects variation in

functional parameters and anomalies that can potentially lead to breakdown [2].

Thus, this strategy can reduce the occurrence of unexpected failures, reduce the

machine downtime, reduce maintenance costs, and maximize the equipment life

time.

Table 2.1: Pros and cons of each maintenance strategy [2].

Strategy Advantages Disadvantages

Corrective
No over-maintenance, overhead of
monitoring or planning costs.

High risk of collateral damage and
secondary failure and high produc-
tion downtime, with overtime labor
and high cost of spare parts.

Preventive

Maintenance is performed in a con-
trolled manner, with a rough esti-
mate of costs and greater control
over spare-parts and inventory. In-
curs into fewer catastrophic failures
and lesser collateral damage.

Machines are repaired when there
are no faults. There will still be un-
scheduled breakdowns.

Predicted

Equipment life is maximized as un-
expected breakdown is reduced or
even completely eliminated. Parts
are ordered when needed and main-
tenance performed when convenient.

Can demand higher investment
costs. Additional skills might be re-
quired.

Table 2.1 summarizes the pros and cons of each maintenance strategy. As sensors

and data storage becomes cheaper and more reliable, and equipment are gradually

turning to be more complex and requiring higher reliability, the CBM approach

becomes increasingly more interesting, as it reduces maintenance costs and increases

system availability [9].

1While a failure could occur without a clear fault, in this work it is assumed that the system
behavior changes before a failure and these changes can be observed by the equipment sensors.

6

This work has the objective of proposing a data-driven general, agnostic CBM

system. The data-driven approach was chosen to make the system deployment ef-

ficient and as problem-independent as possible, as any analytical model would rely

on the problem domain knowledge with most faults and failures modes lacking ana-

lytical models. Considering the inherent difficulties found to produce an analytical

model and the current availability of data, an empirical approach where a model

would be learned was preferred. Also, given the multiplicity of possible problems

where such system could be employed, the proposed system was decomposed into

smaller and interchangeable modules, giving it more flexibility and a greater range

of possible uses.

This chapter presents the proposed CBM system, including its architecture and

modules. Section 2.2 presents the concept of learning a model from data. The pro-

posed system architecture and modules are described in Section 2.3. Section 2.4

describes the methodology to assess the system and modules performance under

the tasks of detecting and identifying possible faults or failure events. Implementa-

tion and computational details are discussed on Section 2.5. Section 2.6 concludes

this chapter with a brief summary of its content and introduces the next chapter

discussion.

2.2 Learning from data

Consider the problem of describing a phenomenon which lacks an analytic model,

but a set of example cases or objects from the phenomenon universe Ω are available.

This universe is composed of an input space X and an output space Y , with each

case or object being a pair (x,y). By the definition, both the input and the output

spaces are assumed to contain all possible input vectors and all possible output

values [10], respectively. Thus, our problem becomes finding an optimal empirical

model h which maps the inputs to the outputs approximating the target function

f (x) = y [10, 11]. This requires a cost function L (y, h (x)) for measuring the errors

in this approximation. Thus, by using the loss function as optimization criterion,

one can select the optimal model h∗ (x). For example, selecting the mean square

error as losses produces as criterion [12]

E {L (y, h (x))} = E
{

(y − h (x))2
}

= EXEY |X
{

[y − h (x)]2 |x
}

(2.1)

which is equivalent of solving pointwise for a given xn:

h∗ (x) = arg min
h(x)

EY |X
{

[y − h (xn)]2 |x = xn
}

(2.2)

7

and the solution reduces to

h∗ (xn) = E (y|x = xn) , (2.3)

the conditional expectation. As such, finding the best estimator for the target func-

tion f (x) = y is equivalent to find the best estimator for the underlying distribution

P (y|x).

A learning algorithm is a powerful way of modeling a phenomenon

when no analytic model is available. Let us define a dataset D =

{(x1,y1) , (x2,y2) , . . . , (xN ,yN)} as the subset of N independent and identically

distributed (i.i.d.) sample cases from Ω which we have access. A learning algorithm

L is a procedure which, given a criterion, a dataset D, and a set of possible can-

didates models (the hypothesis set H), chooses the best model as h∗ [11]. As an

example, H could be the set of all linear models from which the algorithm would

choose the best linear fit to the data.

As such, the chosen model depends of the hypothesis set, the learning algorithm,

the dataset, and the nature of the inputs and outputs. The input vectors x =

[x1, x2, . . . , xm], also known as samples or instances, are m-dimensional vectors,

where each variable xi ∈ Xi, also known as attribute or feature, can be ordered or

categorical [10]:

• xi ∈ Xi is ordered if Xi is a totally ordered set. In particular, Xi is said to be

numerical if Xi ∈ R;

• xi ∈ Xi is categorical if Xi is a finite set of values, without any natural order.

An output or target y ∈ Y can be a scalar or a vector, ordered or categorical.

The nature and knowledge of the output y defines the learning problem [10]:

• In a supervised learning problem, the training data D is composed of pairwise

samples cases (x,y).

– A classification problem is a supervised learning problem where Y is a

finite set of classes (or labels) denoted c1, c2, . . . , cJ . In this case, the

function g : X → Y is known as classifier or a classification rule;

– Else, if Y ⊆ R, g : X → Y is a regressor and this problem is known as a

regression problem;

• In an unsupervised learning problem, no output information is provided [11],

only the input examples. In that case, we are interested in modeling the

underlying structure of the problem;

8

• Lastly, in a reinforcement learning problem, only some y are known, but there

is a teacher which grades the system output decisions. This occurs mostly

when the system (or agent) outputs are a sequence of actions where the re-

sulting outcome is only known at the very end of the sequence, such as chess

moves or moving through a room.

A CBM problem is a great candidate for the learning approach, since most of

the current equipment in industry lack an analytic model. Also, due the evolution

in microelectronics, most of these equipment are being monitored by a consider-

able number of sensors, producing very large datasets. This means many learning

datasets are available to be used. As such, during this work we followed a data-

driven approach for generating the CBM system. The next section describes the

proposed system and each of its components.

2.3 Proposed system architecture

A CBM system can be organized in many forms. In this work we used a modular

architecture with four blocks, similar to the ones described in [1, 2], as presented in

Figure 2.1:

Data
x̃n

Data preprocessing
xn = p (x̃n)

State monitoring
x̂n = s (xn)

Fault detection
sn = f (xn, x̂n)

Action
{xn, x̂n, sn, cn}

Fault diagnosis
cn = g (xn, x̂n, sn)

Figure 2.1: Block diagram of the proposed system.

1. Data preprocessing : receives and processes the acquired original data to a more

representative format given the application;

2. State monitoring : returns the best estimate state of an instance, assuming

that the underlying system is at a given behavior. Thus, deviation between

the measured and the estimate values can indicate if the system is deviating

from a target state;

3. Fault detection: evaluates the current instance and detects possible anomalies;

4. Fault diagnosis : detects and identifies possible faulty states and locates the

corresponding cause;

9

In short, the proposed system acquires the relevant data. This data is processed

(e.g. by moving average, filtering, or linear transformation) and the processed data is

transmitted to the monitoring module. This modules estimates the current instance

and outputs the residue or similarity between the estimate and the instance. The

result is appended to the data, which is evaluated by the detection module. If

there is a detection, this information and the current data are used by the diagnosis

module which establishes, identifies, and locates possible faults.

The information produced by this system is used to plan and execute mainte-

nance action before the upcoming failure. An example of possible action plan is

shown in [2]:

1. Cause analysis given the data;

2. Corrective action planning given the causes;

3. Resource organization given the corrective action;

4. Corrective action implementation.

The next section presents each module in details, including examples and appli-

cations.

2.3.1 Data preprocessing

The preprocessing module extracts relevant features from the data to the next mod-

ules. This module is context dependent, conditioned by the nature of the data,

equipment, failure, and domain knowledge. As an example, frequency domain fea-

tures can convey more information than the original time series for a rotating ma-

chine. In a noise corrupted process, a moving average can be more discriminative

than the instantaneous data. Careless data acquisition can pollute the data with

redundant or corrupted signals, requiring data cleaning, dimensionality reduction,

or attribute selection. The correct preprocessing procedure can improve the system

performance as a whole.

2.3.2 State monitoring

This module produces an estimate of the current state considering a possible system

condition. This estimate x̂n is defined as

x̂n = s (n,x0:n,vn,wn) , (2.4)

where x0:n = {x0, . . . ,xn} is the measured state trajectory from the initial state

x0 to the state xn at instant n; vn is the observation noise; and wn is the process

10

noise2. The monitoring function s(·) can be any physical, empirical, or statistical

model which represents the target behavior of the modeled system. Ideally, we would

have x̂n = xn for the target mode of operation. As such, the residual or deviation

from this behavior can be defined as

rn = x̂n − xn. (2.5)

The relationship between the estimate and the current state can be transformed

into a similarity score rn by extracting some norm of the residue rn. A similarity

score is the output of a similarity function which maps the distance between two

states into a score rn ∈ [rmin, rmax], where an rmin score means no similarity and rmax

means identical states. All the similarity functions used in this work are bounded

to the interval [0, 1].

2.3.3 Fault detection

This module is a binary classifier which indicates when a possible anomalous event

occurs given the current knowledge of the system. A binary classifier is a classifier

whose target output has only two classes. This module can be described as

sn = f (n,x0:n, r0:n,vn,wn) , sn ∈ {0, 1} . (2.6)

The detection module can be employed as a fast event indicator, triggering the

diagnosis module when a positive detection case occurs, or to detect possible novel

conditions, which would not be detected by the fault diagnosis module alone. A fault

detection module can be useful when the diagnosis procedure is costly or complex,

mobilizing the diagnosis block only when its strictly necessary. As with the moni-

toring block, the employed fault detection models are also presented in Chapter 3.

2.3.4 Fault diagnosis

Machine fault diagnosis is the process of classifying features in fault or failure cat-

egories. Diagnostics deals with fault detection, isolation, and identification when it

occurs [9]. The diagnosis modules is one of the main parts of a CBM system. Not

only it supplies information about the fault nature, it also permits to choose the

best prognosis model for the given fault [1] and, when the system is already under

a failure, to establish the failure causes.

2 Process noise is the inherent noise in the underlying observed process, caused either by changes
in the system behavior or our limited modeling, while observation or measurement noise is the
noise found in the sensors output.

11

Given the architecture of the CBM system, in the next section we define the

methodology to assess and choose the system components.

2.4 Assessment methodology

Considering the modular composition of the proposed system, different models using

distinct learning algorithms could be applied for the same purpose. The choice of

a model is determined by many factors, including the restrictions in computational

cost or complexity; the desired degree of interpretability on the model’s decisions;

the nature of the features, such as if they are categorical or numerical; the nature

of the approached problem; but, between all the possible models for a task, the

most important characteristic is the capacity of generalizing to new samples. This

generalization performance is largely dependent of the specific nature of the problem

at hand. Therefore, the assessment is important as it produces the means of selecting

the most suitable model and evaluate its quality [12, 13]. This evaluation is not

only useful to select the best model h from multiple sets Hi or multiple learning

algorithms Lj, but also to find the best set of parameters for a given pair (Hi,Lj)
and reducing the risk of overfitting the design, leading to inadequate generalization

levels [11, 13].

This section presents the assessment methodology used during this work. The

modules to be evaluated are the monitoring, fault detection, and state diagnosis

modules. The remaining modules are assessed based on their influence on the sys-

tem performance. To assess the modules performance, first we need some perfor-

mance metrics. These metrics measures the performance of a model given its task.

Section 2.4.1 presents some evaluation metrics used for different tasks, such as clas-

sification and regression metrics. Then, Section 2.4.2 presents the procedures used

to tune the model parameters, to assess the models, and to select the best model

for each task.

2.4.1 Evaluation metrics

Returning to the discussion present in Section 2.2, a learning algorithm is a proce-

dure which given a criterion, a dataset D, and the hypothesis set H, chooses the

best model as h∗. An evaluation metric is a measure of the empirical risk Iemp [h]

over a set of samples given a cost function L (yn, h (xn)) [14, 15]:

Iemp [h] =
∑
i

L (yi, h (xi)) . (2.7)

Thus, we can define the learning algorithm L as the procedure which, based on

12

an evaluation metric, finds the solution h∗ which

h∗ = arg min
h∈H

{[∑
i

L (yi, h (xi))

]
+ λr [h]

}
, (2.8)

where r (h) is a term which penalizes the complexity of the solution h. As such,

the learning algorithm finds a different solution as the evaluation metric changes.

For each task, such as classification, regression, or clustering, different metrics are

employed. This section presents the metrics used to compare and select models or

model parameters for the relevant tasks.

Classification metrics

This section presents some of the possible metrics that can be used to select or assess

models for a classification task.

• Confusion matrix: also known as contingency table [16], it is not a classifica-

tion metric per se, but many metrics are derived from it. Each of its columns

represent instances in a predicted class while each of its rows represent the

instances in an actual class. Thus, the numbers on the diagonal are the num-

ber of corrected classified instances for each class. An example of confusion

matrix is presented in Table 2.2, where we have three classes of impairment in

a rotation machine, ‘normal’ (without fault), ‘imbalance’, and ‘misalignment’.

Each class has 100 instances. Given the confusion matrix C, we can see that

the system classifies correctly almost all the ‘misalignment’ and ‘imbalance’

fault instances. However, the system fails in discriminating ‘normal’ samples

from other classes. This matrix makes the system shortcomings clear, as it is

easy to visually inspect the table for errors, represented by values outside its

main diagonal.

Table 2.2: Confusion matrix example.

Predicted
Normal Imbalance Misalignment

Real class
Normal 25 50 25
Imbalance 00 91 09
Misalignment 00 04 96

• Accuracy: or ACC [16, 17], is the proportion of correct guessed instances.

Given the confusion matrix C, the accuracy is computed as

ACC =

∑
i cii∑

j

∑
k cjk

, (2.9)

13

where cjk represents the entry of the j-th row and the k-th column of the

confusion matrix.

For the previous example in Table 2.2, we have ACC = 0.7067, which is rea-

sonable, given the misclassified instances in the normal class. However, this

metric can produce misleading results in an unbalanced dataset. Returning

to the previous example, if there are only 12 instances of the ‘normal’ class,

respecting the same error proportions, we would have 3 correctly classified

samples and 9 misclassified samples (3 with ‘misalignment’ and 6 with ‘imbal-

ance’) leading to ACC = 0.9005. These results suggest that this metric is not

sensible to unbalanced datasets.

• Recall: or true positive rate (TPR) [16], refers to the ability of correctly

classifying instances of a given class. For a class i, the TPR is defined as:

TPRi =
cii∑
j cij

. (2.10)

A high recall implies low false-negative errors. The maximum recall occurs

when all elements of the target class are correctly classified. This metric alone

is not enough to evaluate a system, as classifying all instances as the target

class would achieve maximum recall.

While the accuracy is a global measure, the recall is a binary classification

metric which measures the ratio of correctly retrieved instances from a target

class label against all the instances with the same label. Thus, one can compute

a recall measure for each class, which makes this metric more robust than

accuracy against unbalanced datasets.

• Precision: or positive predictive value (PPV) [16], measures the number of

correctly classified instances from all samples classified as the target class. For

the target class i, the precision is defined as:

PPVi =
cii∑
j cji

. (2.11)

Precision can be interpreted as the probability that a randomly selected sample

predicted as belonging to a target class is a true positive. As such, a high

precision implies low false-positive errors. Also a binary classification metric,

this metric is often used with the recall metric.

• F-score: or F1 score [16], measures the test accuracy considering both the

precision and the recall. The traditional F-score is the harmonic mean of the

14

precision and recall:

F i
1 = 2

TPRi · PPVi

TPRi + PPVi

, (2.12)

where an F1 score achieves its best value at 1 and worst at 0.

The diagnosis and evaluation modules are evaluated given these metrics. Also,

given the dual nature of the monitoring module, in some cases it can be used as a

classifier. In such cases, the module is also assessed by these metrics.

Regression metrics

This section presents some of the possible metrics that can be used to evaluate

models for a regression task.

• The mean absolute error (MAE) measures how close predictions are from

the observed outcome. Given the target outcome y and the predicted value ŷ,

the mean absolute error is given by

MAE =
1

n

n∑
i=1

|yi − ŷi| . (2.13)

Its low complexity, its relationship to the Minkoski distance metrics [13], and

the characteristic of penalizing all errors equally [18] make this metric regularly

employed for different problems.

• The mean squared error (MSE) is the most famous Minkoski metric [12, 18],

being used as a standard metric to measure model performance in multiple

areas. Defined as

MSE =
1

n

n∑
i=1

‖yi − ŷi‖2 , (2.14)

the MSE gives more weight to errors with larger absolute values. Minimiz-

ing the MSE produces the optimal estimator when the error distribution is

Gaussian [18].

Lastly, considering a deterministic problem where we have a realization of

the training set D, the expected MSE for this problem, independently of any

15

particular realization of the data set, is [11, 12]

MSE = ED
{
‖yi − ŷi‖2

}
= ED

{
y2i + ŷ2i − 2yiŷi

}
= y2i − 2ED {ŷi} yi + ED

{
ŷ2i
}

= y2i − 2ED {ŷi} yi + ED {ŷi}2 − ED {ŷi}2 + ED
{
ŷ2i
}

= (yi − ED {ŷi})2 + ED
{

(ŷi − ED {ŷi})2
}

= bias2 (ŷi) + var (ŷi) . (2.15)

We decomposed the MSE in two components: squared bias and variance. The

first term measures how much our learning model is biased away from the tar-

get function and is only limited by the learning model itself [11]. The second

term measures the ‘instability’ in the learning problem produced by the varia-

tions of the training data, resulting in vastly different learning hypotheses [11].

More powerful models can reduce the bias, as they are free to explore a larger

hypothesis set H for the target function f . However, this comes at the price

of possible higher variance, as they have more freedom to learn the idiosyn-

crasies of the data set, which could reduce their capacity of generalization,

leading to overfitting. Conversely, simpler models can reduce the variance at

the expense of a small increase in bias. Some training strategies, such as vali-

dation, bagging, and regularization, can be used to mitigate the effects of this

bias-variance trade-off [11, 12].

• The coefficient of determination or R2 score measures the proportion

of variance in the dependent variable y that is linearly predictable from the

independent variables x = {x1, x2, . . . , xm} [19]. It is computed as

R2 = 1−
∑n

i (yi − ŷi)2∑n
i (yi − µy)2

, (2.16)

where

µy =
1

n

n∑
i=1

yi (2.17)

is the dependent variable y mean.

The R2 score is limited between [−∞, 1], where 1 means that the dependent

variable is completely predicted from the independent variables, whereas a

value of R2 equal or less than 0 means that no prediction is possible with the

chosen model or with the current set of independent variables, since this would

mean that the results produced by the model are worse than using the mean

16

value of the dependent variable µy as predicted value for all instances.

This measure can also be expressed as

R2 = 1− MSE

σ2
y

, (2.18)

which makes this metric a powerful relative measure of the explanation power

of the chosen model, as it permits to compare multiple models on different

datasets with distinct degrees of “difficulty” (variance).

• The explained variance regression (EVR) score is very similar with the R2

score, as it measures the explanation power of the model given the dispersion

of a given dataset. It is defined as

EVR = 1−
E
{

(ei − µe)2
}

E
{

(y − µy)2
} (2.19)

where ei = yi − ŷi and

µe =
1

n

n∑
i=1

ei (2.20)

is the expected value of the error e. When µe = 0, the EVR and the R2 score

are equivalent.

2.4.2 Model selection and assessment

The generalization performance of a learning method relates to its prediction capa-

bility on independent data [12]. As such, an accurate estimate of this performance

is necessary as a measure of how well the system is expected to perform when de-

ployed [11, 12].

However, finding this estimate is no simple task. One can use the training

samples for evaluation, but this strategy disguises the phenomenon of overfitting,

producing an overoptimistic result [12, 13]. An alternative approach is to estimate

the generalization performance by using a test set, a dataset sampled from the same

distribution that was not involved in the training process.

While we are very interested in finding the model with the best generalization

performance, typically each model will have parameters that need some tuning. If

we use a test set to make this tuning, it is no longer a test set [11]. A validation set

is a subset of the dataset which will not be directly used for training, but is used to

make certain choices during the learning process.

Summarizing, we have two main goals during the assessment [12]: model selec-

tion, where we estimate the performance of different models and parameters in order

17

to choose the best one; and model assessment, where, having chosen a final model,

we estimate its generalization error on new data. To achieve this goal we would

randomly divide the dataset in three parts: a training set, a validation set, and a

test set.

While there are multiple methods to achieve these objectives, the simplest and

most widely used method for estimating a model performance is cross-validation [12].

Among the cross-validation strategies, during this work was employed the one named

as K-fold, where the training dataset is divided in K roughly equal-sized subsets [12,

13]. The kth subset is used as a validation set and the remaining K − 1 subsets are

used to fit the model. This procedure is repeated K times for k = {1, . . . , K}. The

cross-validation estimate of the model performance is measure by the mean value

of the chosen performance metric between folds. This procedure is illustrated in

Figure 2.2 for K = 10.

Legend

Validation

Training

Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9Set 1 Set 2 Set 10

Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9Set 2Set 1 Set 10

Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10Set 1 Set 2

Figure 2.2: K-fold example with K = 10.

Typically K = 5 or 10, with the case K = N − 1, where N is the number of

samples, is known as leave-one-out cross-validation [12]. This procedure is used

to select the best set of models or parameters for a given training set. After all

decisions are made, all the training set is used to fit the final model. Then this

model is assessed using the test set, thus achieving both of the previous goals.

2.5 Implementation details

This section presents the implementation decisions during this work, including con-

tributions such as the prognosis library, which was produced to cope with the lack of

known methodologies for monitoring and detecting faults, and the study cases and

18

their respective datasets, which were chosen considering their relevant characteristic

to assess the proposed system.

2.5.1 Prognosis library

During this work many algorithms and models where implemented and evaluated.

Most of them were deployed in a library named prognosis, one of the contributions of

this work. The models contained on this library were based on the models founded

on API of the Scikit-Learn machine learning library [20].

Most of the implemented algorithms used the Scikit-Learn library and the nu-

meric and scientific packages Numpy [21] and Scipy [22].

Currently, the library is composed of 7 main modules: cbm, detector, diagnosis,

monitor, process, prognosis, and utils. The process module contains some of the

common preprocessing method employed during this work. The monitor and detec-

tor modules include the models used at the monitoring and detection system blocks,

respectively, which are described in Chapter 3. These models follow the estimators

from the Scikit-Learn library, inheriting from its base estimators.

In the first step of this work, similarity methods were used in the diagnosis

module, in a stand-alone manner or as an auxiliary module for machine learning

models from the Scikit-Learn library. The models used for diagnosis are presented

during each implementation along the text. The prognosis module is discussed in

Chapter 7 as a possible future work.

Lastly, the utils module contains auxiliary methods and functions, while the cbm

module contains a container-like class which aggregates all the models as the CBM

system depicted in Figure 2.1.

2.5.2 Study cases

This section briefly introduces the study cases and the respective datasets used dur-

ing this work. Four datasets were employed in this work, ordered in increasing com-

plexity. Each dataset was acquired from distinct sources, with different attributes

and characteristics. The first set is an artificial dataset produced to assess the mon-

itoring and diagnosis techniques in a controlled environment. The second and third

set are rotating machine datasets, and are used to assess the fault diagnosis system

when employed in a static environment, where the system is either healthy or in a

faulty state. The last dataset, which contains data from an oil platform injection

system, is composed of real equipment data acquired from multiple sensors. As such,

most of the problems which can occur during deployment are assessed in this set,

such as missing or invalid data, unscheduled shutdowns, redundant attributes, and

others.

19

The next sections describe each dataset excluding the artificial dataset, which

was used only for fast evaluation of implementation hypotheses. While each section

just introduces each remaining dataset, a detailed description of each set is presented

during the course of this work.

Rotating machines datasets

Rotating machines are among one of the main equipment found in the industry,

being a key element in a variety of contexts and applications [23, 24]. Two databases

were selected to evaluate the system performance. The first one is the machinery

fault database (MaFaulDa) [5, 25, 26]. This database includes multiple types and

degrees of fault under different conditions. The second database is the Case Western

Reserve University bearing dataset [6], a reference dataset in bearing faults, allowing

comparison with previous works [27, 28]. These databases are used to assess the

proposed system performance and are discussed in the study case presented on

Chapter 4.

Oil platform pumps system dataset

This database is related with one of the main aims of this work. A real data prob-

lem, it consists of multivariate time-series with attributes of different nature taken

from four injections pumps of an oil platform. This dataset collection and prepro-

cessing represent challenges in themselves. First, the sheer size of the database, with

each multivariate time-series from each pump sampled minutely during a interval of

more than a year. Then, the dataset cleaning procedure, as instances could contain

outliers, missing or invalid values. After, the data selection procedure, as many at-

tributes are irrelevant or redundant. Lastly, the weak labels, as there was not a clear

indicator of fault or failure, made the data preparation and collection a challenge in

itself.

However, this database permits to assess a full system, as it has not only the

dynamic which leads to a fault or a failure, but also multiple interactions with the

system, such as shutdowns and maintenance stops, and components with distinct

behavior, as some pumps where selected as backup and performed only when a

primary pump was inoperative. These characteristics make this dataset a “fertile

ground” for studying the proposed CBM system. Chapter 5 presents this study

case.

20

2.6 Conclusion

As described in this chapter, condition-based maintenance uses predictive analysis

over real-time data to detect possible failure states before their occurrence. As a

predictive maintenance approach, it is halfway between corrective and preventive

maintenance in maintenance and operating cost.

In this work we propose a modular CBM architecture, based on [1, 2], composed

of four modules:

1. Data preprocessing, which receives and transforms the original data to a more

representative format;

2. State monitoring, which estimates the current state given the received data

and assuming it comes from a system under normal behavior;

3. Fault detection, which detects possible faulty states and returns an indicator;

4. State diagnosis, which diagnosis the current or future system state.

To produce an agnostic system which could be deployed at different diagnosis and

prediction problems, a methodology based on machine learning was chosen. This

methodology permits producing empirical models from pertinent data, such as sen-

sors. Different learning algorithms are evaluated for each module task over distinct

study cases dataset, to ensure that the implemented system is the one which achieves

best performance. As such, this chapter also presents the methodologies and metrics

to measure each component and the system performance.

During the initial exploration of the CBM, we choose to approach this methodol-

ogy employing similarity-based methods. Chapter 3 discusses the motivation behind

this decision and introduces the employed methods.

21

Chapter 3

Similarity-based methods

3.1 Introduction

The most natural way of classifying an instance is by similarity. Given a set of

examples sharing features and known class labels, we can infer that a new instance

shares the same class as the most similar or nearest example. The notion of distance

or similarity is measured by a distance or similarity metric, as a representation of

‘how far’ or ‘different’ two elements are from each other.

This classifier, which returns as the predicted label of a test instance the label of

the nearest or most similar instance, is known as the nearest neighbor classifier. Its

extension, the k-nearest neighbors (knn) classifier, where the test sample is classified

by the most frequent label taken from its k nearest neighbors, is one of the most

used and known techniques for performing recognition tasks and one of the most

interesting algorithms in the data mining field in spite of its simplicity [29]. This

approach is so important that in artificial intelligence it is referred to as the instance

based learning, memory based learning, or case based learning [30].

However, this approach suffers of some drawbacks [31]. The naive implemen-

tation uses all the training samples in order to classify new samples [29, 32]. As

the number of samples increases, high storage requirements are necessary, and the

computation of similarity between the training and test samples becomes inefficient.

Finally, it presents low tolerance to noise as it uses all data as relevant, including

noise and invalid data [29, 32].

To tackle some of the drawbacks found on instance learning method, multiple

strategies were devised aiming to select a subset of representative or prototype sam-

ples from a large dataset. These approaches are interesting in certain settings were a

small number of samples from a large dataset may be of greater interpretative value

than generating a model [4]. A subset of these learning methods are the similarity-

based methods, where a similarity metric is used to compare the new sample against

22

the training prototype set.

As introduced in the previous chapter, the state monitoring module produces an

estimate for each known condition of the equipment and compares with the current

state, producing two types of information: a residual state, the pointwise difference

between the current state and a estimate; and a similarity score, which measures

the compatibility between the current state and a given estimate. As an estimate

can be computed from the prototype samples, and the similarity score is a natural

by-product of the classification procedure, similarity-based methods are a natural

choice for this module.

The fault detection module is classifier, or a set of classifiers, which receives

the original features and the information produced by the state monitoring module,

and returns an indicator of a possible fault or failure system. This module also

adds temporal consistency to the monitoring information, as it takes into account

the trajectory of the inputs during its decision process. As instance based learning

methods are natural classifiers, they can be used as auxiliary modules or they can

also act on the detection role.

This chapter presents the proposed approach for the monitoring, detection, and

diagnosis systems. Before we can dwell on the secrets of a each of these modules,

Section 3.2 describes the similarity functions, which are functions that map the

distance between two states into a similarity score, the main output of the state

monitoring module and the main input of the fault detection module. Each function

is presented and a small discussion of their properties follows.

Section 3.3 presents the similarity-based modeling (SBM), the main methodology

used in this work and the proposed approaches and modifications over the original

method, which are the main contributions of this work. Originally used only in

the monitoring module, the proposed modifications transformed the SBM into a

multiclass classifier, making feasible its usage in the fault diagnosis module as well.

Section 3.4 introduces the proposed modifications to the standard SBM technique

that allow the detection and classification of different states in an efficient and robust

manner.

Lastly, Section 3.5 presents a summary of the main points of this chapter and

introduces the next chapter.

3.2 Similarity functions

A similarity function or similarity metric is a function that maps the distance be-

tween any two vectors, xi and xj, to a similarity score sij ∈ [0, 1], such that non-

23

similar vectors yield s ≈ 0 and very similar vectors correspond to s ≈ 11. A similarity

function can be represented as s (xi,xj), xi ◦ xj, or s (dij), where dij is the distance

between any pair of samples (xi,xj) defined by a distance metric.

A distance metric is a function which maps a pair of elements in a set on non-

negative real numbers, the distance between them, and satisfies a set of condi-

tions [33]:

d (xi, xj) ≥ 0; (3.1)

d (xi, xj) = 0 ⇐⇒ xi = xj; (3.2)

d (xi, xj) = d (xj, xi) ; (3.3)

d (xi, xk) ≤ d (xi, xj) + d (xj, xk) . (3.4)

A famous example of distance metric is the family of the p-distance metrics [33],

defined as

dij = ‖xi − xj‖p =

(
m∑
k=1

|xik − xjk|p
) 1

p

, (3.5)

typically used with p = 2, known as `2-norm or Euclidean distance, or p = 1, the

`1-norm or Manhattan distance. Another example is the Mahalanobis distance, an

extension of the Euclidean distance which takes into account the linear relationships

between the variables, defined as

dij = ‖xi − xj‖M =

√
[xi − xj]

T Σ−1X [xi − xj], (3.6)

where Σ−1X is the dataset covariance matrix. While there are many examples of

metrics, during this work we are going to be limited to the p-norms, with p ∈ {1, 2},
and the Mahalanobis distance.

In this work, five distinct similarity functions are employed, which can be sep-

arated in two main families: the multiquadric set and the exponential set. The

multiquadric set include three of the studied functions which are based on the in-

verse multiquadric function, defined as [34]

f (dij) =
1(

r2 + d2ij
)α . (3.7)

The first similarity function is a direct application of this function. By taking

1This definition was chosen given that a bounded interval is easier to compare and interpret. In
general, any function that returns a real-valued scalar and monotonically quantifies the similarity
between two objects is a similarity function. But, since any real-valued function can be mapped
in the [0, 1] interval, these definitions are equivalent.

24

α = 1/2, r2 = 1/γ2 and sIMK (dij) = f (dij) /γ, we have

sIMK (dij) =
1√

1 + γ2d2ij

, (3.8)

which is the inverse multiquadric kernel (IMK) similarity function.

The second similarity function, the Cauchy kernel [35], is a direct variation of

the inverse multiquadric kernel similarity function, and can be defined as

sCCK (dij) = s2IMK (dij) =
1

1 + γ2d2ij
. (3.9)

The last similarity from the multiquadric set is the original similarity function

was presented in [36] and used in the original SBM framework, to be discussed on

the next section. The Wegerich similarity function is defined as

sWSF (dij) =
1

1 + γdij
. (3.10)

The last two functions are representative of the exponential set. The exponential

or Laplacian kernel [37] is defined as

sEXP (dij) = e−γdij , (3.11)

and the radial basis function (RBF) kernel [37] as

sRBF (dij) = e−γd
2
ij . (3.12)

While originally most of these functions where based on the Euclidean distance,

during this work multiple distance metrics are employed to the detection and clas-

sification task. The next section introduces state monitoring methodologies and the

method which makes use of these functions, the SBM.

3.3 Similarity-based modeling

Similarity-based modeling is a nonparametric modeling technique that uses the sim-

ilarity of a query vector with exemplar vectors to infer the model’s response [38].

This technique was proposed in [3] to monitor and detect faults on a variety of indus-

trial applications. Some of these applications include: fault diagnosis in a machinery

fault simulator (MFS) [36, 39]; modeling airplanes flight paths [40]; and anomaly

detection in power plants [41]. In the present work the SBM technique was used

to monitor the system state and improve the detection and diagnosis procedures

25

performance.

In the original SBM framework, a system state at an instant n can be represented

by a vector xn = [xn(1), xn(2), . . . , xn(m)]T comprising m measures or features from

multiple sources, such as system sensors or signals. Given a set of l representative

states, selected from a larger set of historical data covering, with minimal redun-

dancy, all the representatives normal states, we can arrange them in a l×m process

“memory” matrix D as [3]

D =
[
x1 x2 . . . xl

]T
. (3.13)

Given a state xn, we can estimate this state as a linear combination of the

selected representative states contained on D. To do so, first we define the error

between the state xn and its estimate x̂n as the squared error

en = ‖xn − x̂n‖22 , (3.14)

where

x̂n = DTwn, (3.15)

with wn being the optimal linear estimator for a given (xn,D) pairs. Then, we can

find the optimal linear estimate of xn by minimizing en

min
wn

{en} = min
wn

{[
xn −DTwn

]T [
xn −DTwn

]}
. (3.16)

Since en is differentiable, we have

∂en
∂wn

= 2DDTwn − 2Dxn = 0 (3.17)

which produces

wn =
[
DDT

]−1
Dxn

= Ĝ−1ân,
(3.18)

and

x̂n = DT
[
DDT

]−1
Dxn, (3.19)

where Ĝ =
[
DDT

]
and ân = Dxn. However, in [3], the authors argue that this result

has numerous limitations, such as the requirement that G must be nonsingular,

inability to accommodate random uncertainties and non-random defects, and the

need of a very large l. Yet, the relationship between the current measure, its estimate

and the system history found on the linear approach has very useful features, such

as its simplicity or easy insertion of new data in D.

The SBM was proposed as an alternative approach that copes with these issues

26

and could be used in non-linear systems [3] by substituting the dot product by a

similarity function. Following the linear approach, in the SBM framework we can

estimate as xn
2

x̂n = DT wn

‖wn‖1
, (3.20)

with

wn =
[
D ◦DT

]−1
[D ◦ xn] = G−1an, (3.21)

that is, G = D ◦ DT and an = D ◦ xn. The vector an evaluates the similarity

between the current state and the representative states on matrix D, whereas matrix

G transforms the similarity vector an in a set of weights for each state in D. When

G = I, the model is called auto-associative kernel regression (AAKR) [42], which

works as follows:

• First, compute the distance between the test sample and each prototype;

• This distance is transformed into a similarity score by means of a similarity

function;

• These scores are used as weights to compute a weighted mean of the prototypes;

• This weighted mean is the estimated x̂n.

Thus, the AAKR model can be considered a particular case of the SBM assuming

no similarity between the samples within D.

The operator ◦ represents a similarity operation having two parameters: a simi-

larity function and a distance metric. It can be represented as

xi ◦ xj = sF
(
‖xi − xj‖K

)
, (3.22)

where sF can be any similarity function, such as the ones described in Section 3.2.

The residual rn between the input state and the estimated state, computed as

rn = xn − x̂n, (3.23)

can be used to evaluate and identify the current condition. The residual can be used

directly as an auxiliary input for a classifier or the diagnosis system, or it can be

employed to compute the similarity score sn, defined as

sn = sF (‖rn‖K) . (3.24)

2While normalizing by wn is not required, it is the approach followed in the original SBM
formulation. Also, since each term of wn is a similarity measured transformed by a semi-positive
matrix G, its always positive or null, making this combination convex.

27

The similarity score sn can be interpreted as a confidence score in the target state

being modeled by the SBM framework. The process of computing the residual rn is

described in Figure 3.1.

Sample xn
Compute

a = D ◦ xn

Compute
w = G−1a

Compute
rn = xn − x̂n

Compute
x̂n = Dŵn

Compute
ŵn = wn/ ‖wn‖1

Output rn

Figure 3.1: SBM sample evaluation procedure.

3.3.1 Original SBM training phase

A key aspect within the SBM formulation is the strategy for composing ma-

trix D. Using all l historical samples for the normal behavior would incur in high

computational expenses and redundant data.

High computation expenses as naively computing similarity against each histor-

ical sample would incur in O (lm) complexity; and very redundant data as some

states would be overrepresented, making the weights wn biases to the most frequent

instances and hindering the classification process. However, choosing an inadequate

vector set when opting for a smaller l leads to performance impairments. The best

possible set, therefore, would have the minimal number of vectors still yielding the

same performance level as the complete set. This is always possible since, given a

training set D, there is at least one minimal prototype set P ⊆ D with the best

performance. In [43], a strategy is proposed for selecting a proper reduced set of

historical samples. It comprises two selection steps:

1. One chooses as representatives the samples with index in the set I =

{i1, i2, . . . , ik}, k ≤ 2m, built such that

i ∈ I if ∃j : xij = min
n
{xnj} (3.25)

or

i ∈ I if ∃j : xij = max
n
{xnj}. (3.26)

28

2. The remaining samples are selected as prototypes by the following procedure

(a) First, each sample receives an index, which is sorted by the sample `2

norm value in decreasing order;

(b) Then, starting from the first index 0, which represents the sample with

the greatest `2 norm, only the samples with index multiple of t, the dec-

imation factor, are selected to complemented the representative sample

set. The remaining samples are discarded.

The first step inserts in D all vector states which present the minimum and

maximum value of each attribute, which could introduce outliers as representative

prototypes. The second step decimates the remaining vectors using the `2 norm as

ordering criterion. This second step may also lead to sub-optimal choices, because

vectors with similar (even identical) norm values can be completely different [44].

Also, given a small decimation factor t and the number of samples l, the number

of chosen prototypes is l̄ = k + b(l − k)/tc, which may be not much lower than l.

Additional strategies for composing the matrix D are proposed in Section 3.4.1 in

an attempt to overcome these issues.

3.4 Proposed SBM enhancements

This section presents the proposed enhancements to the SBM formulation, which in-

clude: a generalization of the SBM framework that allows it to operate in a multiclass

(more than two classes) scenario; introduction of alternative similarity operations;

and the development of new strategies to compose the matrix D.

3.4.1 Multiclass similarity-based modeling

The SBM was originally devised to detect abnormal operating conditions, which are

associated with a low similarity level between a current state vector xn and its SBM

estimate x̂n given in Eq. (3.20).

Such framework can be extended, however, to detect and classify several types

of system operational modes by defining a distinct model-matrix Dc for each opera-

tional class c. In the proposed multiclass SBM formulation, given a new input state

x, a different estimate can be determined for each class

x̂n,c = DT
c

wn,c

‖wn,c‖1
, (3.27)

where

wn,c =
(
Dc ◦DT

c

)−1
(Dc ◦ xn,c) = G−1c an,c. (3.28)

29

The current state x is then associated to the class c∗ which maximizes the similarity

score that is,

c∗ = arg max
c
{sn,c} = arg max

c
sF
(
‖xn − x̂n,c‖K

)
, (3.29)

where K ∈ {1, 2,M}.

3.4.2 Proposed offline training procedure

As discussed in Section 3.3.1, training an SBM model implies choosing a prototype

set P from the training data. Choosing the wrong set P can produce performance

impairments. But using all instances as prototypes would incur in high computa-

tional expenses, redundant data, and possible overfit. Therefore, the best set would

be the smallest set without significantly affecting the model performance.

To meet this aim, many approaches were devised. In [36], for instance, the

authors cite a proprietary process which selects the representatives in a one step

procedure. Yet, at a previous work ([43]), a two-step algorithm is presented. This

procedure consists of two-steps and is described in Section 3.3.1.

However, [44] notices that can exist observations with similar Euclidean norm

representing distinct states which would be discarded by this procedure. As

such, [44] proposes substituting the second step of the approach proposed in [43] by

another approach which divides the feature space in evenly separated bins, adding

a new sample if there at least one feature where this sample is near a bin center and

its Euclidean distance from any previous selected samples is greater than a given

threshold.

Approaches to select prototype instances for classification tasks are very common

in the literature of knn classifiers [29, 45]. These methods can be divided into

two main approaches: prototype generation and prototype selection [29]. Prototype

generation methods are the ones based on populating the original instance set with

optimal representative instances [29]. Most of these methods rely on clustering

algorithms to generate the prototype set, such as k-means, k-medoids, hierarchical

clustering, among others [29, 45].

Prototype selection methods aim to select the best instances from the dataset

which represents or describe the set. This group can divided in three main cate-

gories: edition or noise filter methods, condensation methods and hybrid or search

methods [29, 46]. Edition methods remove noisy instances to increase the classi-

fier accuracy. Mostly, these points are border points that do not agree with their

neighbors. On the other hand, edition methods have the objective of improving the

generalization accuracy by producing smoother decision boundaries. In practice,

however, these improvements are marginal [29].

30

Condensation methods start from the whole set, removing redundant samples

that do not affect the classifier performance. These methods leave mostly border

samples [45, 47]. Some approaches sequentially remove training samples and eval-

uate the remaining system accuracy. If the accuracy drops below a user-defined

threshold, the removed sample is placed on the reference set; otherwise it is elimi-

nated [32].

Hybrid or search methods search for a small subset that simultaneously achieves

the removal of both noisy and redundant instances while maintaining or even im-

proving the generalization accuracy [29]. A example of hybrid method is described

in [4], where the authors propose a prototype selection method for classification

that aims to produce an interpretable set. This method was employed in two of our

proposed training procedures and is discussed in this work.

In the present work, alternative approaches were proposed and studied in an

attempt to reach the best compromise between the associated computational com-

plexity and the resulting model performance. Three methods were proposed: the

similarity threshold method, the interpretable prototype selection method and the

bootstrapping prototype selection method.

Similarity threshold method

In this approach, one selects the state vectors xn,c to form a model-matrix Dc

iteratively. In each iteration a new vector is added to Dc taking into account the

similarity between the currently selected state vectors and the remaining vectors

available for class c. More specifically, given a vector set Xc, the iterative procedure

starts by selecting its geometric median vc:

vc = arg min
z∈Xc

∑
xi∈Xc

‖xi − z‖2 (3.30)

as the first representative state to the prototype set Pc which consists of vectors of

Dc. Since there is no closed form to compute this median, it increases in complexity

as the number of samples in Xc increase. In order to reduce the overall complexity,

in this work we approximated the median vector by using the algorithm described

in [48]. The subsequent states that will compose Dc are selected according to the

following strategy: each new sample xn,c is compared against the current selected

elements in Pc. If the similarity between the xn,c and any element of Pc is below a

threshold τ , this sample is selected and added to Pc as an element of Dc, otherwise

the sample is discarded. More formally, xn,c is included in Pc if

xn,c ◦ xi < τ, ∀xi ∈ Pc. (3.31)

31

This procedure is described in Algorithm 3.1.

Algorithm 3.1 Similarity threshold selection algorithm.

function Threshold Selection(Xc, τ),
Compute the geometric median vc = arg minz∈Xc

∑
i ‖xi − z‖2

Initialize Pc ← {vc}
for xn,c ∈ Xc do

if xn,c ◦ xi < τ , ∀xi ∈ Pc then
Updates Pc ← Pc ∪ {xi}

end if
end for

end function

Interpretable prototype selection method

This method is based of the prototype selection methods for interpretable classifica-

tion presented in [4]. As previously described, selecting samples for Dc is equivalent

to select a set of prototypes Pc ⊆ X . Consider the set of balls with radius ε centered

in each point xi ∈ Pc. The best set of prototypes Pc is a set of balls having the

following properties [4]:

Property 1: It should cover as many points from class c as possible;

Property 2: It should cover as few points as possible from other classes;

Property 3: It is sparse. Using as few prototype as possible for a given ε;

This problem can be translated as a set cover problem. Given the set of points

X , the set cover problems seeks the smallest subcover of X from the collection of

sets that forms a cover of X . If we take B (x) = {x′ ∈ Rm : d (x′,x) < ε}, which

denotes the ball with radius ε > 0 centered in x with distance d from x′. The goal

is to find the smallest subset P ⊆ X , P =
⋃
Pc, ∀c, such that {B (xi) : xi ∈ P}

covers X .

We can indicate when a instance belongs to the prototype set P by introducing

variables αj, such

αj =

1 if xj ∈ P ;

0 otherwise.
(3.32)

This problem can be described as [4, 49]

min
n∑
j=1

αj s.t
∑

j:xi∈B(xj)

αj ≥ 1 ∀xi ∈ X , (3.33)

where αj ∈ {0, 1}, ∀xj ∈ X .

32

While Equation (3.33) represents the first property, it does not address the re-

maining properties. Property 1 states that in certain cases some point from class c

should be left uncovered as they would add points with label y 6= c. Following [4],

we adopt a prize-collection set cover framework, assigning a cost to each covering

set, penalties for each uncovered or incorrectly covered point, and then find the

minimum-cost partial cover [50]. This problem is now described as

min
α
(c)
j ,ξi,ηi

∑
i

ξi +
∑
i

ηi + λ
∑
j,c

α
(c)
j

s.t.



∑
j:x∈B(xj)

α
(yi)
j ≥ 1− ξi, ∀xi ∈ X ,∑

j:x∈B(xj)
c6=yi

α
(c)
j ≤ ηi, ∀xi ∈ X ,

α
(c)
j ∈ {0, 1} ∀j, i ξi, ηi ≥ 0 ∀i, (3.34)

where α
(c)
j ∈ {0, 1} indicates if xj belongs to Pc; ξi is a slack variable for the Property

1. Thus, ξi indicates whether xi does not fall within ε of any prototype of class yi [4].

If a training point from class c is not covered, ξi = 1; likewise, ηi counts the number

of instances with c 6= yi that are within ε of xi; finally, λ ≥ 0 is a parameter

specifying the cost of adding a prototype [4]. This last parameter is generally set

to λ = 1/ |X | and used only as a “tie-breaker” between among solutions that do

equally well in others properties.

In [4] are presented two approaches for approximately solving this problem: one

based on linear programming relaxation with randomized rounding, and the other

is a greedy approach. Here we presented the latter, which is used in our proto-

type selection method, as this also was the preferred solution in [4]. The original

implementation is in R, but we reimplemented it in Python.

Problem (3.34) intends to minimize the sum of the number of uncovered points,

the number of incorrectly covered points, and the number of prototypes. We can

then define a greedy algorithm which finds, at each step, the point xj ∈ X and class

c for which adding xj to Pc produces the maximum cost reduction. The incremental

cost reduction can be denoted by

∆L (xj, c) = ∆ξ (xj, c)−∆η (xj, c)− λ (3.35)

where

∆ξ (xj, c) =

∣∣∣∣∣∣Xc
⋂B (xj) \

⋃
x′j∈Pc

B
(
x′j
)∣∣∣∣∣∣ ,

∆η (xj, c) =
∣∣∣B (xj)

⋂
(X \ Xc)

∣∣∣ ,
(3.36)

33

such that adding a prototype must add a number of correctly covered samples,

∆ξ (xj, c), greater than wrong covered samples, ∆η (xj, c), and the cost of a new

prototype λ. This procedure is described in Algorithm 3.2, based on [4]

Algorithm 3.2 Interpretable prototype selection algorithm.

function Prototype Selection(X , P ′, τ),
if P ′ = ∅ then
P ′ = X

end if
Start with Pc = ∅ for each class c;
while ∆ξ (x, c) > 0 do

Find (x∗, c∗) = arg max(xj ,c)
∆L (xj, c) , xj ∈ P ′

Let Pc∗ ← Pc∗ ∪ {x∗}
end while

end function

Bootstrapping interpretable prototype selection method

Algorithm 3.2 needs a dissimilarity (or distance) matrix as input. If we take a set of

N samples as a possible prototype set, the training matrix would be N ×N . As N

increases, the computational costs become prohibitive. However, if we have a set of

prototypes candidates P ′, with P ′ = |P ′| candidates, were P ′ � N , we can compute

only a N × P ′ distance matrix, reducing the algorithm computational cost.

To reduce the computational burden we propose a two-step algorithm using

bootstrapping to select an initial set of prototypes P ′. First, starting with the training

set D, we produce K sets D′k with N/t samples by sampling D with replacement,

where t is the decimation factor, the same found in the original SBM procedure

(Section 3.3.1). Then, we compute Algorithm 3.2 for each set D′k, producing the

prototypes sets P ′k ∈ {1, . . . , K}. The prototype candidates set P ′ =
⋃
P ′k is then

used as initial set for Algorithm 3.2 to select the final prototype set over all the

remaining training instances. This procedure is described in Algorithm 3.3.

3.5 Conclusion

This chapter presented the similarity-based methods used in this work for the

monitoring, detecting and diagnosis system, including the SBM framework. It also

presented some contributions of this work, including new similarity functions, a

multiclass extension for the SBM, and new training/prototype selection methods.

The next chapter presents an extension of the SBM framework where the pro-

totypes and their respective classes could be learned on an online setting, which is

34

Algorithm 3.3 Bootstrapping interpretable prototype selection algorithm.

function Bootstrapping Selection(X , τ , t)
P ′ ← ∅
for k = {1, . . . , K} do
X ′k = Bootstrapping(X , N/t)
P ′k = Prototype Selection(X ′k, τ)
P ′ = P ′ ∪ P ′k

end for
P = Prototype Selection(X , P ′, τ)

end function
function Bootstrapping(X , NB)

N ← |X |
XB ← ∅
for k = {1, . . . , NB} do

r ∼ u [1, N]
XB ← XB

⋃
{xr}

end for
return XB

end function

useful for real-time applications with an operator giving feedback about the frame-

work decisions.

35

Chapter 4

Rotating-machines fault diagnosis

4.1 Introduction

Maintenance of critical equipment to ensure high levels of reliability, availability,

and performance is one of the major concerns on today’s industrial sector [8]. Unex-

pected failures can lead to substantial losses, either from the maintenance procedure

itself or from the resulting production halts [1].

To achieve an effective and cost-efficient procedure, new maintenance strate-

gies are being devised based on real-time and continuous monitoring, allowing one

to detect and classify operational anomalies at an early stage, thus limiting addi-

tional degradation [1]. Applications of such techniques include, for instance, flight

paths [40], natural gas and nuclear power plants [3, 41–43], wind turbines [44], and

bearing or rotating-machine faults [5, 24, 26, 36, 38, 39]. Among these equipment,

rotating machines are some of the most important, being a key element used in a

variety of applications, including airplanes, automobiles, power turbines, oil and gas

refineries, and so on [23, 24].

There are many approaches for detecting faults in rotating machines. Most

of them consist of extracting features from the vibration signal to assess the ma-

chine current condition, in a supervised or automatic manner. Different features

are needed to extract useful information relevant to detect faults from the original

sources over multiple conditions. These features can be classified considering their

domain (time, spatial, time-frequency, frequency) or its computation method (e.g.

transform coefficients or aggregated statistics) [27, 51–53].

An illustrative example is the approach in Yang et al. [54]. There, a system is

presented which uses an adaptive resonance theory Kohonen neural network (ART-

KNN) for fault diagnosis, having as inputs features derived from the discrete Wavelet

transform coefficients. Unfortunately, the fault database used is not publicly avail-

able, making its comparison with other approaches impractical.

36

The authors of [55] focus on the feature extraction procedure proposing a novel

feature extraction scheme which utilizes the generalized S transform and 2D non-

negative matrix factorization to detect possible faults. Three classifiers were used

to assess the system: k-nearest neighbors (knn), naive Bayes, and support vector

machine (SVM), all achieving good results. A similar approach is presented in [56]

using multiscale permutation entropy for feature extraction and a SVM classifier

for fault diagnosis. The work of Rauber et. al. [53] also studies the effect of the

features in the system performance. It tests multiple features of different types,

such as complex envelope spectrum, statistical time- and frequency-domain param-

eters, as well as wavelet packet analysis, together with a feature selection algorithm.

A fault classification database was used as testbed, and three different classifiers

(knn, feedforward artificial neural network (ANN), and SVM) were used during the

assessment, achieving accuracy above 94%.

This work proposes an automatic fault detector and classifier that uses similarity-

based modeling (SBM) to identify rotating-machine failures such as imbalanced load,

(horizontal or vertical) shaft misalignment, and bearing defects (in rolling elements

or inner/outer tracks). The similarity model can be used either as an auxiliary model

to generate features for the classifier (a random forest classifier in this case) or as

a standalone classifier. In this context, new approaches for training the similarity

model and new similarity metrics are investigated. Two databases were employed to

evaluate the performance of the proposed techniques. The first one is the machinery

fault database (MaFaulDa) [25], a relatively new, large database of problematic

scenarios of rotating-machine operations [5, 26]. Performance evaluation on this

database included continuous monitoring of six vibration sensors, one microphone,

and one tachometer [5]. The second database is the Case Western Reserve University

(CWRU) bearing database [6]. This database has become a standard reference in

the bearing diagnostics field [27, 28] and is used as testbed for comparison between

the proposed methodology against other algorithms [53, 55–57].

This chapter is organized as follows. First, Section 4.2 details the machinery

fault database (MaFaulDa) database, used to design and evaluate the system’s per-

formance and the Case Western Reserve University (CWRU) bearing database, used

for comparison. Section 4.3 describes the adopted experimental methodology. This

section also describes the designed system, including the preprocessing and valida-

tion procedures. Section 4.4 discusses the experimental results obtained during the

processes of training and selection of the best model, as well the assessment results.

Comparisons to other works are also included in this section. Finally, conclusions

and discussions emphasizing the main contributions of this work are provided in

Section 4.5.

37

4.2 Databases

Two databases were used to evaluate the contributions of this work. The first one,

named machinery fault database (MaFaulDa) [5, 25] is a comprehensive database

including multiple types of faults covering different severities and rotation frequen-

cies. This database was extensively used to validate the proposed approach and to

select the best models and the best set of parameters based on their performance.

The second database is the Case Western Reserve University bearing database [6],

the standard reference in bearing faults [27, 28]. It is used to assess the proposed

approach against other ones found in the literature. A brief description of each

database is presented below.

4.2.1 MaFaulDa

This database is composed of multivariate time-series acquired by sensors on a Spec-

traQuest’s machinery fault simulator (MFS) alignment-balance-vibration trainer

(ABVT) [58]. This equipment emulates the dynamic of motors with two shaft-

supporting bearings and allows the study of multiple faults, such as imbalanced

mass, axis misalignment, and bearing problems. The experimental setup used in

this work is illustrated in Figure 4.1.

Figure 4.1: Experimental setup used to produce the MaFaulDa database.

The system was monitored by two distinct sets (one for each bearing) of three

accelerometers (on the axial, radial, and tangential directions), a tachometer (for

measuring the system rotation frequency), and a microphone (for capturing the

sound during the system operation). During the signal acquisition procedure, a

variety of faults were imposed on the MFS. These faults are described below:

38

• Normal operation: this class represents the system operating under normal

condition without any fault. It includes a set of 49 distinct scenarios, each

with a fixed rotating speed within the range from 737 rpm to 3686 rpm with

steps of approximately 60 rpm.

• Imbalance: To simulate different degrees of imbalanced operation, distinct

load values of 6 g, 10 g, 15 g, 20 g, 25 g, 30 g, and 35 g were coupled to

the rotor. For each load value below 30 g, the rotation frequency assumed in

the same 49 values employed in the normal-operation case. For loads equal

to or above 30 g, however, the resulting vibration makes impracticable for the

system to achieve rotation frequencies above 3300 rpm, limiting the number of

distinct rotation frequencies to only 44 in these cases. As such, the database

includes a total of 333 different imbalance-operation scenarios.

• Horizontal Parallel Misalignment: This type of fault was induced into

the MFS by shifting the motor shaft horizontally of 0.5 mm, 1.0 mm, 1.5 mm,

and 2.0 mm. Using the same range for the rotation frequency as in the nor-

mal operation for each horizontal shift, a total of 197 different scenarios were

considered for this class.

• Vertical Parallel Misalignment: This fault was induced into the MFS by

shifting the motor shaft vertically of 0.51 mm, 0.63 mm, 1.27 mm, 1.4 mm,

1.78 mm, and 1.9 mm. Using the same range for the rotation frequency as in

the normal operation for each vertical shift, a total of 301 different scenarios

were considered for this fault class.

• Bearing faults: As one of the most complex elements of the machine, the

rolling bearings are the most susceptible elements to fault occurrence. The

ABVT manufacturer provided three defective bearings, each one with a dis-

tinct defective element (outer track, rolling elements, and inner track), that

were placed one at a time in two different positions in the MFS experimen-

tal stand: between the rotor and the motor (underhang position), or in the

external position, having the rotor between the bearing and the motor (over-

hang position). Bearing faults are practically imperceptible when there is no

imbalance. So, the three masses of 6 g, 10 g, and 20 g were added to induce

a detectable effect, with different rotation frequencies as before, leading to a

total of 558 underhang scenarios and 513 overhang scenarios.

Considering all operating conditions described above, the MaFaulDa database

comprises a total of 1951 different scenarios, each one described by 8 signals acquired

at 50 kHz over a time interval of 5 s. The whole database is available for download

at [25].

39

4.2.2 CWRU bearing database

The data from this database was acquired from the bearing center of the Case

Western Reserve University (CWRU) [6]. It consists of 161 scenarios grouped in

four categories, as described in [28]. Each scenario can be composed of acceleration

signals in three directions: on the drive-end bearing, which occurs in all scenarios;

on the fan-end bearing housing, which occurs in most of the scenarios; and on the

motor supporting base plate, which occurs in some scenarios. The sample rates used

were 12 kHz for some scenarios and 48 kHz for others. The vibration signals were

obtained from different states of the bearings: normal condition, inner race fault,

ball fault, and outer race fault. A more complete description of this database is

found in [6].

The Case Western Reserve University (CWRU) bearing database was selected

for two main reasons. The first one is its public availability. The second one is

its wide use in the literature for reporting results of automatic bearing fault de-

tection methods, which allows comparison of the performance of proposed method

against other works. In this thesis only scenarios containing both the fan-bearing

and the drive-end signals were used, reducing the total number of valid scenarios to

153. These scenarios were selected in order to compare against other works in the

literature.

4.3 Experimental methodology

This section describes the experimental methodology employed to evaluate the mod-

ified SBM performance in detecting and classifying the ABVT’s faulty scenarios

within the databases described in Section 4.2.

The proposed system follows a modular architecture similar to the ones described

in [1, 2] for a condition-based maintenance system. It comprises three blocks (see

Figure 4.2): the preprocessing module converts the original data to a feature space

which is more descriptive for the given application; the SBM model acts as a state-

monitoring module, returning the similarity between the current input data and

the previously modeled conditions; and the classifier or diagnostic module uses

the information from previous blocks to identify the current input among the pre-

specified set of classes. In such a framework the SBM can act in a stand alone manner

or can be combined to a specific classifier (random forest [10, 59], for instance, as

employed here). In this chapter, both strategies are considered.

The preprocessing block has the objective of reducing the original data to a set of

more informative, relevant, and less redundant set of values. This is often important

for reducing the system burden of learning and generalizing on the original data [11].

40

Random Forest
classifier

SBM modelsPreprocessingx̃n

xn (rn, sn, ŷn)

yn

Figure 4.2: Block diagram of the proposed system, composed by a preprocessing
module, followed by the SBM and, possibly, by a classifier.

Given the distinct nature of each of the databases employed in this work, the

preprocessing block should be different for each database, although its purpose is

the same for both. The two preprocessing blocks are described as follows:

(i) MaFaulDa: three types of features were extracted from the original multivari-

ate time-series: the rotation frequency, 21 additional spectral features, and 24

other statistical features.

The rotation frequency fr was determined directly from the discrete Fourier

transform (DFT) of the tachometer signal, as detailed in [23, 26].

The other spectral features correspond to the magnitudes of the spectrum of

the signals other than the tachometer at frequencies fr, 2fr, and 3fr.

The additional statistical features include, for each of the eight measured sig-

nals in each operational scenario, the statistical mean, the entropy, and the

kurtosis. The variance feature is not employed as the signals are normalized

to unit variance to reduce the effect of energy variations caused by changes in

the acquisition setup.

(ii) CWRU : The statistical features presented in [53], together with the mean,

variance and entropy1 were extracted from each signal, totaling 36 features.

The extracted features are described in Section 4.3.1 The extracted features are

then input to the subsequent stages in order to perform fault detection and classi-

fication. The two databases are treated independently for performance assessment

of the proposed methods. The whole MaFaulDa database was randomly separated

in two disjoint training and test sets, comprising respectively 90% and 10% of the

given scenarios. The random choice of each set was constrained so that both pre-

sented the same fault proportion as the whole database. The best set of parameters

was chosen using a k-fold cross-validation procedure on the training samples, with

k = 10. Then, the performance of the best models are evaluated on the test set,

producing the final results shown in Section 4.4.

As for the CWRU database, a process similar to cross dataset validation is

applied. The best setups found for the MaFaulDa are directly used on the CWRU

1 The entropy was computed based on a frequency histogram with a thousand bins.

41

database. As such, this database is used to assess the generalization power of the

classifiers obtained using the proposed methodology. Results have been obtained

using k-folds with k = 10.

4.3.1 Feature extraction

This section describes the feature extraction procedure for the two databases. In

this work three types of features were extracted from the original multivariate time-

series: the rotation frequency, estimated from the tachometer signal; spectral fea-

tures, extracted from the remaining signals; and statistical features, derived from all

the sensors signals. These features were based on previous works [5, 26, 53].

Rotation frequency feature

This feature is estimated as described in [26] by computing the N -point discrete

Fourier transform (DFT) St (k) from the tachometer signal st (n), where N is the

sequence length in samples. During normal operation, the rotation frequency would

be the coefficient with highest energy. However, fault states can introduce spectral

peaks with higher energy. To cope with this problem, we followed the two-step

estimation algorithm described in [26].

In the first step, an initial frequency estimate is determined as

fi =
kaFs
N

, i ∈ {1, 2, 3, 4} (4.1)

where Fs is the sampling frequency and ka is

ka = arg max
k

|St (k)| . (4.2)

After the detection, all frequency coefficients in the range [ka − 3, ka + 3] are masked.

This procedure is repeated 4 times, generating 4 candidates f1 to f4. The final

rotating-frequency is given by

fr = min {f1, f2, f3, f4} . (4.3)

Spectral features

These features follows from the rotation frequency, as the machines faults are heavily

dependent on the rotation frequency. An N -point DFT is computed for each signal,

excluding the tachometer. The features consists of the magnitude of the spectrum

at the frequencies fr, 2fr and 3fr.

42

Since we have 3 features per signal, and 7 signals, excluding the tachometer, this

process produces a 21-dimensional feature vector.

Statistical features

These are statistical features computed over the multivariate time-domain series or

its spectral transformed version. Some of them were used in previous works on the

MaFaulDa database [5, 26], while others were found in [53]. Table 4.1 presents the

features, where xi is the i-th time-domain signal sample, and Xi is the i-th spectral

domain coefficient.

Table 4.1: Statistical features taken from time (xi) and spectral domain data (Xi)
from each signal [5, 26, 53].

Time domain

µx = 1
N

∑N
i xi σ2

x = 1
N

∑N
i (xi − µx)2

Hx = −
∑N

i P (xi) logP (xi) κx = 1
N

∑N
i

(
xi−µx
σx

)4
γx = 1

N

∑N
i

(
xi−µx
σx

)3
xrms =

(
1
N

∑N
i x

2
i

) 1
2

xsra =
(

1
N

√
|xi|
)2

xppv = maxi (xi)−mini (xi)

xcf = maxi(|xi|)
xrms

xif = maxi(|xi|)
1
N

∑N
i |xi|

xmf = maxi(|xi|)
xsra

xkf = κx
x4rms

Spectral domain

µX = 1
N

∑N
i Xi Xrms =

(
1
N

∑N
i X

2
i

) 1
2

σ2
X = 1

N

∑N
i (Xi − µX)2

The feature set from Table 4.1 is divided on 12 time domain statistical features

and 3 spectral domain statistical features. The time domain are mean value ux,

variance σx, entropy Hx, kurtosis κx, skewness γx, root mean square value xrms,

square root of amplitude xsra, peak-to-peak value xppv, crest factor xcf , impulse

factor xif , margin factor xmf , and kurtosis factor xkf . The spectral domain features

are mean value µX , root mean square value Xrms, and variance σ2
X . All of these

features are used on the CWRU dataset, while some of them, such as time domain

mean value, entropy, and kurtosis are used to extended the original feature set

described in [5, 26] for the MaFaulDa database.

43

4.4 Experimental results and discussion

This section describes the experiments made during the validation procedure to

select the best model for the proposed task considering all the following system

variations:

• Feature types: only spectral features, only statistical features, or both families

of features, as discussed in Section 4.3;

• Use of full SBM formulation (as given in Eq. (3.21)) or the AAKR scheme,

which considers G = I in this same equation;

• Choice of similarity function, as presented in Section 3.2, with distinct values

of γ ∈ {0.01, 0.1, 0.5, 1, 10} and different `p norms (p ∈ {1, 2});

• Classification procedure either solely based on the stand-alone SBM or com-

bining it to a specific classifier algorithm (e.g. random forest);

• SBM strategy for building model-matrix D: full matrix with all training fea-

ture vectors, standard method [43] (see Chapter 3) for decimation factors

s ∈ {2, 3, 5, 7, 11}, or proposed threshold-based method (see Section 3.4) for

threshold values τ ∈ {0.05, 0.1, . . . , 0.95}.

Clearly the full combination of the options described above leads to a pro-

hibitively large number of possible system configurations. Therefore, in this work

we significantly reduce this number by presenting the validation results following a

sequential order of decisions, where each new decision seeks an improvement on the

resulting performance. These decisions can be grouped in four main experiments:

• Experiment 1 evaluates the influence of used feature types;

• Experiment 2 compares the standard SBM model against the AAKR particu-

larization;

• Experiment 3 evaluates the different classification strategies, investigating

whether one should use the stand-alone SBM to accomplish this function or

the SBM output should be fed to a classification algorithm. In latter case, we

also investigate the type of feature (similarity value or estimation error vector

(Eq. (3.14)) that the SBM module should deliver to the subsequent classifier;

• Experiment 4 selects the set of the remaining parameters (including proce-

dure for building the model-matrix D and choice of similarity function) that

produces the best SBM model overall.

44

4.4.1 Validation results

This subsection presents the validation results using cross-validation for each exper-

iment. The experiments are presented in the aforementioned order, where the best

configurations found in one experiment are carried out to the next one.

Experiment 1

This experiment assesses the influence of the feature types in the resulting validation

performance of the classification system. To reduce the influence of other parameters

during this evaluation, a very simple system was used, which employed the SBM

as a classifier using the AAKR particularization, and the RBF similarity function

with `2 norm. The kernel width γ assumed all values within the set {0.1, 0.5, 1.0}.
All methods for choosing the SBM prototype matrix D were assessed, with the

decimation parameter fixed at t = 5, and the threshold parameter fixed at τ = 0.6.

Table 4.2 presents the obtained cross-validation results for each parameter com-

bination in Experiment 1. From this table, one can readily notice the superior per-

formance achieved by the use of all combined (spectral and statistical) 46 features,

which is carried on to all configurations considered in the subsequent experiments.

Table 4.2: Experiment 1 cross-validation accuracy (%), using the AAKR particu-
larization as a classifier with an `2-norm RBF similarity function. fr is the rotation
frequency.

Prototype
selection method

γ
fr + spectral

features
fr + statistical

features
All

features
0.1 40.36± 3.28 68.27± 3.96 71.61± 3.72
0.5 50.76± 3.18 76.55± 3.36 81.00± 3.07Full D
1.0 57.75± 3.18 77.0± 3.40 81.91± 2.77
0.1 37.20± 2.10 63.64± 3.55 67.53± 5.04
0.5 46.60± 2.48 66.19± 4.56 72.45± 4.69

Original [43]
(t = 5)

1.0 49.01± 3.21 63.97± 3.88 69.50± 4.15
0.1 41.02± 2.68 61.38± 2.78 67.08± 3.02
0.5 50.36± 2.55 76.01± 3.28 80.81± 2.47

Proposed
(τ = 0.6)

1.0 56.70± 2.24 77.08± 3.69 81.55± 3.08

Experiment 2

This experiment compares the AAKR particularization with the standard SBM

model by using the same set of parameters as of Experiment 1. Results from this

experiment are summarized in Table 4.3.

From this table, one notices that the standard SBM outperformed its AAKR

particularization in all configurations considered here. Given these results, the stan-

45

Table 4.3: Experiment 2 cross-validation accuracy (%), comparing the SBM and
AAKR.

Prototype
selection method

γ SBM AAKR

0.1 84.80± 2.81 71.61± 3.72
0.5 83.66± 2.45 81.00± 3.07Full D
1.0 82.50± 2.39 81.91± 2.77
0.1 78.75± 3.39 67.53± 5.04
0.5 72.80± 3.26 72.45± 4.69

Original [43]
(t = 5)

1.0 70.29± 3.46 69.50± 4.15
0.1 74.00± 2.28 67.08± 3.02
0.5 82.77± 2.20 80.81± 2.47

Proposed
(τ = 0.6)

1.0 83.01± 2.40 81.55± 3.08

dard SBM approach was selected as the best performing option to be considered in

the experiments that follow.

Experiment 3

This experiment evaluates the SBM method either as a stand-alone classifier or as

an auxiliary input to an off-the-shelf random forest (RF) classifier (see Figure 4.2).

To this end, we have evaluated four different system configurations: (i) stand-alone

SBM classifier; (ii) stand-alone random forest (RF) classifier; (iii) combined SBM-

RF classifier using the SBM similarities to each class as a complementary feature;

(iv) combined SBM-RF classifier using the SBM estimation error vector defined in

Eq. (2.5) as a complementary feature. In this experiment, the SBM model used the

best configurations found in the previous experiments, which include all 46 features

previously considered and its standard SBM formulation. The RF model used was

the one implemented in the scikit-learn module [20]. The number of trees estimators

was set to 100 and all the remaining parameters were used on their defaults values.

Table 4.4 presents the cross-validation results for all tested SBM-based configu-

rations. As a basis for comparison, note that in our simulations the stand-alone RF

configuration achieved an accuracy score of 92.70%.

These results show that the combined SBM-RF schemes are more discriminative

than the stand-alone SBM or RF models. We can see that the case where the

original features are extended by the similarities to each class estimated by the

SBM produces consistently good results. However, the best results were obtained

by extending the original features with the SBM estimation error vector (Eq. (2.5))

instead of similarities.

Table 4.4 also indicates that, when one uses the combined SBM-RF configura-

tion with the additional SBM estimation error features, the full model-matrix D is

46

Table 4.4: Experiment 3 cross-validation accuracy (%), comparing different SBM-
based classifier configurations.

Classifier
Prototype

selection method
γ SBM

RF + SBM
estimation error

RF + SBM
similarities

0.1 84.80± 2.81 44.19± 4.38 96.32± 1.66
0.5 83.66± 2.45 39.66± 3.31 93.88± 1.88Full D
1.0 82.50± 2.39 41.97± 3.50 93.24± 1.39
0.1 78.75± 3.39 98.20± 1.11 96.43± 0.89
0.5 72.80± 3.26 97.66± 0.91 94.98± 1.25

Original [43]
(t = 5)

1.0 70.29± 3.46 97.44± 0.96 94.77± 1.21
0.1 74.00± 2.28 94.66± 1.19 96.59± 1.70
0.5 82.77± 2.20 93.87± 0.88 94.64± 1.87

Proposed
(τ = 0.6)

1.0 83.01± 2.40 85.92± 2.56 94.02± 1.28

greatly outperformed by the ones built using the other two methods. Therefore, in

Experiment 4, we consider only the original [43] and proposed methods for building

D.

Experiment 4

This last experiment performs a fine tuning of the SBM method by selecting the

best possible procedure for selecting the prototype matrix D together with the best

similarity function, including all their parameters.

Table 4.5 presents the 10 best configurations for this experiment, where the

‘Parameters’ column shows the chosen parameters for each of these scenarios. The

similarity functions used are WSF (Eq. (3.10)), RBF (Eq. (3.12)), IMK (Eq. (3.8)),

CCK (Eq. (3.9)), and EXP (Eq. (3.11)).

Table 4.5: Experiment 4 cross-validation accuracy (%) for the best 10 SBM config-
urations. The parameter of the last column is t for the original method for building
the model-matrix and τ for the proposed method.

ParametersPrototype
selection method

Similarity
function

Accuracy(%)
Norm γ t or τ

WSF 98.91± 0.58 1 0.01 7
RBF 98.02± 0.82 2 0.1 11
IMK 98.62± 0.90 2 0.1 5
CCK 98.56± 0.79 1 1 7

Original [43]

EXP 98.57± 0.93 1 0.1 11
WSF 98.68± 0.89 1 0.01 0.9
RBF 96.66± 1.17 2 0.01 0.55
IMK 98.56± 1.37 2 0.1 0.8
CCK 98.72± 0.78 2 0.1 0.5

Proposed

EXP 98.33± 1.14 1 0.1 0.5

47

All the 10 models discriminated in Table 4.5 present superior performance than

the one found in previous works using the same database [5, 26], attesting the SBM

capability to successfully solve the fault-classification problem in rotating machines.

The analysis of the validation results in Table 4.5 leads us to choose three models

as the best ones. They are:

1. Original: Similarity function WSF, γ = 0.01, `1 norm. Using the original

method for building D [43], with t = 7.

2. Proposed A: Similarity function WSF, γ = 0.01, `1 norm. Using the proposed

method for building D, with τ = 0.9.

3. Proposed B: Similarity function CCK, γ = 0.1, `2 norm. Using the proposed

method for building D, with τ = 0.5.

The complexity of a given SBM model is given by its number of representative

prototypes. Therefore, in order to analyze the model complexities when using the

three above models, we present in Table 4.6 the average number of representative

prototypes, over the 10 validation folds, for each combination of selected model

and class (imbalanced I, horizontal misalignment HM , vertical misalignment VM ,

underhang faulty bearing UB, overhang faulty bearing OB).

Table 4.6: Average number of prototypes for each combination of prototype selection
method and class (imbalanced I, horizontal misalignment HM , vertical misalignment
VM , underhang faulty bearing UB, overhang faulty bearing OB).

Configuration N I HM VM UB OB

Original 33.1 87.6 65.7 80.1 131.2 118.2
Proposed A 5.8 73.8 8 8 94.8 29.8
Proposed B 5 73.5 4.9 5 74.5 6

From this table, one can readily draw two conclusions regarding the average

number of representatives in each case: first, considering each prototype selection

scheme, the table shows, as expected, that the proposed threshold method is more

selective than the original method. This is an important result, as the proposed

method requires less storage space and processing time, making it well suited for

deployment in a real-time application. Second, analyzing the size of the model-

matrices for each failure, we observe that the imbalance failure and the underhang

bearing fault require larger number of states, and are thus difficult to discriminate.

4.4.2 Results on the testing sets

In this subsection the performance of the proposed system on the testing set is

analyzed. For this study, the three models chosen in Section 4.4.1 will be considered:

48

Original, Proposed A and Proposed B. It is important to notice that the original

scheme leads to a simpler prototype selection stage but to a larger matrix which

results in a more complex classification procedure, as observed in Table 4.6.

As mentioned on Section 4.3, the test dataset is composed by 10% of the available

MaFaulDa scenarios. Using the test dataset, the Original and Proposed A models

achieved an accuracy of 98.49% and the Proposed B configuration achieved and

accuracy of 97.47%, indicating that all three models are capable of generalizing well

for other samples. The confusion matrices for the first two models are shown in

Tables 4.7a and 4.7b.

Table 4.7: Confusion matrices in test dataset.

(a) Original.

Class N I HM VM UB OB

N 4 0 1 0 0 0
I 0 34 0 0 0 0

HM 0 0 20 0 0 0
VM 0 0 0 31 0 0
UB 0 1 0 0 55 0
OB 0 1 0 0 0 51

(b) Proposed A.

Class N I HM VM UB OB

N 5 0 0 0 0 0
I 0 34 0 0 0 0

HM 0 0 19 1 0 0
VM 0 0 0 31 0 0
UB 0 1 0 0 54 1
OB 0 0 0 0 0 52

Results in these tables are consistent with some already discussed aspects of

the MaFaulDa database. As stated in Section 4.2, there are much less scenarios

when the machinery operates on normal conditions then there are faulty cases.

This discrepancy makes the prototype selection more difficult for the normal class

(N). Still analyzing the confusion matrices, it is possible to observe that sometimes

bearing faults are misclassified as imbalance faults. We argue that this is somewhat

expected, since the system needs to be unbalanced in order for bearing faults to be

observed.

Also in Section 4.2, when the bearing faults are described, it was mentioned that

each one of the bearings (underhang and overhang) where substituted by one out of

three defective bearings provided by the manufacturer. Taking this into considera-

tion, the three best configurations, the Original, Proposed A, and Proposed B, were

also used to classify the signals in 10 classes. These classes were derived by further

subdividing each bearing fault in 3 classes according to the defective element (outer

race, inner race, or rolling ball) employed. The results are presented in Table 4.8,

where the good accuracy figures indicate that the proposed system is also robust

when applied to more complex fault classification problems.

49

Table 4.8: Accuracy results for the 10-class identification problem on MaFaulDa.

Model-matrix Similarity γ t or τ p Acc. (%)
building method function

Original WSF 0.01 7 2 98.48
Proposed A WSF 0.01 0.9 1 98.48
Proposed B CCK 0.1 0.5 2 97.48

4.4.3 Comparison with other prototype selection methods

This subsection presents a comparison of the proposed methods, including the inter-

pretable prototype selection method, described in Section 3.4.2, against some tradi-

tional prototype selection methods used on knn-based classifiers: the condensation

method [60] and the edition method [61]. Since in this section we are interested

only in comparing different prototype selection strategies, we did not use the RF

classifier as an auxiliary classifier for this comparison.

The condensed nearest neighbor rule [60] is based on the on the concept of a

consistent subset of a dataset. As a lazy learning algorithm, knn imposes high

storage cost, as a new sample is classified based on all original samples on a dataset.

A consistent subset is a set of samples that correctly classifies all remaining points in

the dataset. The condensation nearest neighbor algorithm tries to find the minimal

consistent subset of a dataset according to the following steps

1. Store the first sample x1. Set i = 2;

2. The ith sample xi is classified using the 1-nn rule, using the current stored

samples. If xi is correctly classified, store this sample. Move to the next

sample;

3. Repeat step 2 until either conditions occurs: all samples are in storage or we

passed through all samples not in the storage;

4. Repeat step 3 in the set of samples not in the storage until all samples are in

storage or the storage did not change;

5. The stored content is the selected prototype set.

This procedure is very similar with the proposed threshold selection method

described in Section 3.4.2, except that the threshold method discards similar samples

in the same class, ignoring its effect in classification during its selection procedure.

In another direction, the edited nearest neighbor rule [61] starts by storing all

samples from the dataset, and then each instance is removed if it is misclassified by

its k neighbors (usually with k = 3). This procedures removes noise instances and

border cases, leaving smoother decision boundaries. The remaining samples are the

50

selected prototype set. As opposed to the condensation algorithm, it also retains

internal points, keeping it from reducing storage requirements.

Table 4.9 presents the results of this comparison on the MaFaulDa database.

To this comparison, we also used the condensation and edition procedures in the

SBM framework as prototype selection methods. As shown, using these prototype

selection degrades the performance of knn and SBM algorithms. However, this

degradation is more noticeable when using the condensed rule than its edited coun-

terpart.

The interpretable prototype selection method, described in Section 3.4.2,

achieves similar accuracy performance as edition. This is very interesting, as these

methods differs greatly, with the former selecting internal and boundaries instances

and the latter smoothing boundaries by removing boundaries instances. However,

their performance are still bellow the proposed heuristics.

Another interesting observation is the degradation in performance of the Pro-

posed B without the auxiliary RF classifier. This difference shows that prototype

selection methods could be very sensitive against parameters selection given an ap-

plication. These observations could be a subject of study of future work.

Table 4.9: Accuracy comparison between knn prototype selection methods against
the proposed methods on MaFaulDa.

Model Accuracy [%]
kNN 92.15± 1.45
CNN [60] 74.02± 2.47
ENN [61] 90.05± 1.24
SBM (Condensation) 90.66± 2.00
SBM (Editing) 94.71± 1.11
SBM (Interpretable) 94.21± 1.77
SBM (Original) 96.87± 1.08
SBM (Proposed A) 97.95± 0.56
SBM (Proposed B) 76.10± 3.12

4.4.4 CWRU results and discussion

This subsection presents the results on the CWRU bearing dataset. As described

in Section 4.3, this dataset is used for assessing the performance of the three best

models selected on the MaFaulDa dataset, namely the Original, Proposed A, and

Proposed B schemes (see Section 4.4.1).

Using the same methodology as [53], each CWRU signal was divided into 15

segments, and the extended dataset was subdivided into the training and testing

sets following a 9/1 ratio. The results presented in Table 4.10 are accuracy averages

over 10 folds chosen randomly. For each fold configuration, the model-matrix D

51

is computed using the data in 9 folds and the accuracy result is measured in the

remaining fold. From this table, one can observe that the SBM-based classifier has

good generalization capability for all three configurations considered here.

Table 4.10: Accuracy (%) results of SBM-based classifiers on the CWRU database.

Model Accuracy
Original 98.95± 0.72

Proposed A 98.91± 0.75
Proposed B 98.91± 0.95

4.4.5 Comparison with previous works

As mentioned in Section 4.1, several other works in the literature addressed the

same problem that we have addressed in this work, that is, the automatic detection

and classification of faults in rotating machines. Some of these works have used

the MaFaulDa database. In [5] the faults in the MaFaulDa database have been

classified using perceptron neural networks with multiple layers, considering several

subsets of the features investigated here. Six classes have been considered: normal,

overhang and underhang faults, imbalance, horizontal and vertical misalignment.

The accuracy obtained was 95.8%, inferior to the ones obtained with the proposed

use of SBM and described in Table 4.8, that reach, for one configuration, the average

figure of 98.48%.

For the CWRU database, even though there are many works using such

dataset [28], it is very difficult to make a direct comparison, as most works do

not present their results in a quantitative manner, but only in a qualitative manner.

As such, the comparison is restricted to a small set of works. In [55] the knn, naive

Bayes, and SVM classifiers achieved accuracies of 98.83%, 98%, and 98.97%, respec-

tively. The SVM classifier found in [56] obtained accuracies above 98% for different

rotation frequencies. The SVM and ELM classifiers using the procedure described

in [57] achieved accuracies of 82.4% and 97.5%, respectively. Lastly, the knn, SVM,

and ANN classifiers using the feature selection method proposed in [53] obtained

accuracies between 93% and 100%. From the above results and Table 4.10, one

can conclude that the proposed SBM-based fault classifier achieves, for the CWRU

database, competitive results to those found in the literature. It is important to

point out that, as demonstrated by the results over the MaFaulDa database, the

proposed system is able to detect and classify, with high accuracy, a wide range of

machine faults, including misalignment and unbalanced faults.

52

4.5 Conclusion

This chapter addressed the automatic fault diagnosis in rotating machines. The

use of similarity based modeling (SBM) was investigated, either as a stand-alone

classification method or in combination with an off-the-shelf classifier, in this case

a random forest classifier. The system is evaluated in two databases. One of them

is a comprehensive database with multiple faults referred to as MaFaulDa [25]. The

other is the CWRU bearing database [6], that is the current standard database for

bearing fault diagnosis.

One of the main contributions of this work was the extensive study of the use

of multiclass SBM on the MaFaulDa database. Other contributions regard a novel

method for building the SBM model-matrix and the use of new similarity metrics.

These contributions achieved the goal of increasing the SBM performance in a fault

classification scenario while reducing its computational complexity. The usage of

SBM either as a stand-alone classifier or as a feature generator for off-the-shelf

classifiers has also been investigated. Our results have shown that the use of the

proposed enhancements to the SBM consistently increased the accuracy of a random

forest classifier.

The proposed system showed to be robust, reaching an accuracy of around 98.5%

in the MaFaulDa database, higher than previous works along the same base. For

the CWRU dataset the proposed system yielded an accuracy level of 98.9%, which

is as good as previous results reported in the literature. It is worth emphasizing that

the proposed class of methods is able to detect and classify, with high accuracy, a

wide range of faults, which indicates that the proposed approach based on SBM is

worth further investigation.

53

Chapter 5

Failure detection in an

oil-platform pump system

5.1 Introduction

The optimal maintenance strategy is one which ensures high levels of reliability,

availability, and performance [8]. In the oil and gas industry, where the correct

performance is crucial and failure could cost millions of dollars [62], the condition-

based maintenance approach is highly interesting, even considering the higher costs

and required additional skills [2, 9].

This chapter presents a real-life application of the proposed framework, where

it is applied to multivariate time-series from an oil platform pumps set. This study

case presents all the aspects of a data-driven problem, from data acquisition to

training and deploying the final model. This chapter deals with the solution of a

real problem in the industry. The current oil platforms have a myriad of sensors

measuring relevant characteristics of the equipment. These sensors are evaluated

by a human operator which assesses the equipment current state. However, the

increasing number of sensors and the current acquisition frequencies produce an

amount of information that is too large to be evaluated by a human in real-time.

To cope with this problem, the operator relies on ad-hoc metrics used to identify

critical events. This approach demands domain-knowledge and produces reactive

actions, limiting the possible maintenance strategy.

The proposed system is a possible solution to this problem. It consists of a

system capable of detecting possible failure trajectories to a possible critical event,

using only historical information from the sensors. Using a minimum of domain-

knowledge, the system should be data-agnostic, permitting its use with multiple

equipment and processes, assisting the decision of an operator by generating inter-

pretable warnings.

54

This chapter is organized as follows. Section 5.2 presents the acquired database

which was used during this work, including the different attributes of the multi-

variate time-series. The adopted methodology, including the preprocessing steps

and the employed analyses are presented in Section 5.3. This section also includes

a small study of the underlying structure of the database, with the objective of

extracting knowledge from the data to be used in the detection procedure. The

obtained results using the proposed framework for failure detection are presented in

Section 5.4. Lastly, Section 5.5 concludes this chapter.

5.2 Database

With the aim of creating empirical models for diagnostic and validate future

procedures, a training and evaluation database was necessary. As such, we used

a database composed of multivariate time series corresponding to a set of sensors

of four injection pumps, numbered 1 to 4. Each sensor is identified with a single

tag, which is common across distinct pumps. As such, each pump can be evaluated

independently or as realizations of an archetypal pump model.

The multivariate time series comprises the interval between August 01, 2014, and

November 01, 2015, being composed of 41 attributes. Each attribute has distinct

characteristics, including: measured values, such as temperature, pressure and vi-

bration sensors, or computed values; continuous or discrete values; and numerical or

categorical values. Each attribute was acquired with a one minute sampling period

and could contain outliers, missing or invalid values. Given these characteristics, the

attributes were discriminated in two main groups to be preprocessed and evaluated:

• Numerical data: A total of 36 attributes, divided in two groups: measured and

computed. Four computed series were ignored, as they could be derived from

the remaining series. The remaining 32 measured series were preprocessed and

used as input for the system;

• Categorical data: Each of the 5 categorical series corresponds to a state sensor.

Therefore, the categorical series were treated as state labels indicating possible

faults and failures and separated from the numerical series.

Before these series could be of any use they had to be preprocessed. The outliers,

missing and invalid values on the series must be treated. Also, since the categorical

data hints possible anomalous states, this information must be treated and aggre-

gated. Section 5.3 describes the employed preprocessing procedure.

55

5.3 Methodology

This section describes the methodology adopted to evaluate the proposed framework

for detecting faults or failures on the oil injection equipment database described in

Section 5.2.

ClassifierSBM modelsPreprocessingx̃n

xn (rn, sn, ŷn)

yn

Figure 5.1: Block diagram of the proposed system for fault detection, composed by
a preprocessing module, followed by the SBM and, possibly, by a classifier.

The system employed in this problem is very similar to the one presented in

Fig. 4.2, reproduced as Fig. 5.1, with the difference that in the current problem we

choose to not use any auxiliary classifier in the diagnosis procedure, using the SBM as

monitoring, detection and diagnosis method. This decision was made: a) to evaluate

the performance of the proposed SBM modifications; b) to reduce the computational

burden during the training procedure; and, c) motivated by an implementation issue,

as the deployment environment could not accept models generated from the scikit-

learn package [20], given that the models were trained on 64-bit Windows but the

deployment version was 32-bit.

The preprocessing block in this case has another objective that was not dis-

cussed in Chapter 4. In an industrial environment with multiple sensors, problems

can compromise the reliability of the data, polluting it with redundant or corrupt

signals. These “dirty” signals can impair a fault detection system performance.

Also, some signals can be presented in formats which are not ready to be used by

the proposed system. They need to be converted to a more accessible format first.

In this case, the employed preprocessing block must also perform data cleaning and

data transformation on the input signals.

In a data-driven problem, sometimes we have limited or no access to a specialist.

In these cases, one must extract all the necessary knowledge to solve the problem at

hand directly from the data. Exploratory data analysis is a methodology to examine

a dataset and obtain knowledge about its underlying structure. This knowledge can

reduce the need for a specialist, directing the queries to the relationships found,

and to aid the trained models. To assess the findings and the trained models, the

database was separated in two sets: equipment 1, 2 and 4 were selected as training

set, as equipment 1 had a defect in one of the sensors, and equipment 4 was used

as backup, changing its behavior from the expected “normality”. Equipment 3 was

employed as test set. Since the data from each equipment has the same number of

samples, this procedure is equivalent to selecting 75% and 25% of the samples as

56

training and test sets, respectively. This also reduces the chances of data leakage [11].

5.3.1 Data preprocessing

Numerical data series

As previously stated, the numerical attributes were divided in measured and com-

puted attributes. The computed attributes were discarded, as they carried redun-

dant information and would not contribute to the understanding of the system

operation modes.

The remaining measured numerical attributes were treated as follows. First,

the outliers and invalid values were replaced by missing values indicators. Then,

the missing values were filled using linear interpolation. Given a missing value xnm

corresponding to the mth attribute of the nth sample in an interval of length r− l,
where l and r are the indices of the nearest samples with valid values from the left

and the right, respectively, we have

xnm = αxrm − (1− α)xlm,

α =
tn − tl
tr − tl

,
(5.1)

where tn, tr, and tl are, respectively, the time instants of the sample values xnm,

xrm, xlm. The interpolated data was used as a input for the next stages.

Categorical data series

Given that the employed methodology treats the diagnostic problem as a supervised

learning problem, labels indicating the state of the system for each sample are nec-

essary. Consequently, the categorical attributes were considered as labels indicating

the current state. However, it was observed that these attributes were very volatile

and redundant. Therefore, without the opinion of a specialist, any conclusion taken

on this data would be questionable.

Considering the above, other options were evaluated. The best solution found

consists of integrating the information given by the categorical attributes with in-

formation extracted from daily reports. These documents contained the daily con-

ditions of a oil platform’s section and a succinct report of relevant events. Each

equipment state from the given section is recorded and classified in three classes:

operating, on standby, and inoperative, with possible overlap between states (e.g.

operating and on standby), as the equipment state could suffer many changes dur-

ing daily operation. This report is schedule to be produced daily at three different

time intervals. However, the studied section had only reports produced between

57

12:00 a.m. and 07:00 a.m. As such, the information contained in each report con-

sists mostly of the previous day events.

Daily
reports

Text
analysis

Temporal series
conversion

Categorical
data

Series aggregation Label data

Figure 5.2: State labels generation procedure.

Information concerning the injection pumps was extracted from reports to gen-

erate the state labels, following the procedure illustrated in Figure 5.2. The first

step was obtaining the daily reports and extracting the status of each pump over

time. Almost 459 days of reports, encompassing the interval of 31 July, 2014, and 01

November, 2015, excluding some missing reports, were acquired, read, and manually

converted. Each pump state for each day, including overlaps and related events, were

annotated. The next step consisted of converting the report events and states to

time series with the same period and length as other categorical attributes. As nei-

ther the interval which the event occurred nor its start or end are clearly informed,

we assumed that the occurrence of the event lasted the length of the report day;

as such each minute received the same label. The new categorical series referred as

{sn}, is aggregated to form the label series. This process is detailed below:

1. Given the report states series {sn}, with three possible states (operating, on

standby and inoperative), we can define a new binary series where:

bn =

1, if sn = operating;

−1, otherwise.
(5.2)

2. Then, each categorical attributes series,
{
ckn
}

, k ∈ {1, 2, 3, 4, 5}, is aggregated

with the binary series {bn} as follow:

ŷn =

bn, if ckn = normal, ∀k;

−1, otherwise.
(5.3)

3. Lastly, two numerical attributes,
{
akn
}

, k ∈ {1, 2}, measuring the pump ro-

58

tation speed and discharge pressure, were used as indicators of the equipment

shutdown. A shutdown state is assumed when any of these series goes to 0

yn =

ŷn, if akn 6= 0, ∀k;

0, otherwise.
(5.4)

4. At the end of this process, we have a ternary time series including all normal

states yn = 1, shutdown states yn = 0, and unidentified or anomalous states

yn = −1.

This procedure was repeated for each day, except when no report was found.

This exception occurred six times. In these days the reports were considered as

anomalous and the corresponding samples discarded. In the future, information

from other sources could be used to define these states.

5.3.2 Exploratory data analysis

Exploratory data analysis is a methodology to examine a dataset which employs a

diversity of techniques, most of them visual methods, to summarize their statisti-

cal characteristics, identify important variables, find its underlying structure, and

evaluate hypotheses [63].

Exploring the dataset trying to identify possible relationships and behaviors, as

well as extracting knowledge, can reduce the demand of domain specialists, limiting

their analyses to assess and discard detected insights.

This section presents the analyses used as an attempt to identify the underlying

structure which governs the relationships between the different attributes during

distinct states of the equipment. To achieve this, we used the training data from

different pumps as realizations of the same underlying process, aggregating the sam-

ples in a single set. This procedure was done to populate the training set and to

produce general assumptions, reducing the danger of just modeling the behavior of

a specific piece of equipment.

A way to measure the relationships between the attributes is the correlation

matrix. The correlation matrix represents the linear dependency between pairs of

variables [64]. Before we define the correlation matrix, first we need to define the

covariance matrix. It is defined by

Σx =
1

N

N∑
n=1

[xn − µx] [xn − µx]
T , (5.5)

and describes the linear relationship between the attributes [64]. However, it is not

a normalized measure of this relationship, preventing comparisons. A correlation

59

matrix can convey this relationship in a normalized fashion. It can be generated

from the covariance matrix as

Rx = diag (Σx)−
1
2 Σx diag (Σx)−

1
2 . (5.6)

Elements of this matrix can assume values at the interval [−1, 1], where the

value 1 represents direct increasing linear relationship (correlation), −1 direct inverse

relationship, and 0 indicates no linear relationship. As such, the value of an element

rij from matrix Rx denotes the degree of linear relationship between the ith and jth

variables. Since this is a linear relationship, rij = rji, and for the special case where

i = j, rii = 1.

Figures 5.3a, 5.3b, and 5.3c present, respectively, the correlation matrix of the

injection pumps attributes under normal, shutdown, and anomalous states. Since

correlation matrices are symmetric, only the main diagonal and the lower triangular

coefficients are show.

As expected, there are many differences in the relationship between the attributes

during the different states. During the shutdown and anomalous states (Figures 5.3b

and 5.3c, respectively) most of the attributes are positively correlated, with very

strong correlation coefficients. However, a completely distinct pattern is found dur-

ing the normal state. A greater variety of correlation values occurs, with strong

positive or negative correlations occurring in a lesser extent. This behavior indicates

that the changes in the relationship between some variables could be indicators of

changes in the system state from a normal state to an anomalous or shutdown state.

Still, the correlation matrices of the shutdown and anomalous states are very similar.

Some possible causes for this behavior are: the shutdown and anomalous states are

not linearly separable, projecting into similar correlation matrices; considering that

anomalous states could lead to shutdown, there is a natural overlap; or the proposed

labels do not correctly describe these states.

With the objective of visualizing and assessing the relationships between the

variables, another approach is used for further exploring the correlation matrices.

This approach is based on observing the relationships found in the partial correlation

matrix. The partial correlation matrix is the inverse of the correlation matrix and

is computed as

Px = R−1x , (5.7)

it measures the degree of association between two variables, its entry (i, j) is the

correlation between variables i and j if all others are kept constants [65]. Consid-

ering a normal distribution, each zero entry coefficients found on Px indicates the

conditional independence between pairs of variables. As such, we can learn a graph

structure which represents the relationships between the variables from a sparse

60

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●
●

●
●

●

●

●
●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●
●
●

●

●
●

●

●
●

●
●

●

●
●
●

●

●
●
●
●

●

●

●

●

●

●
●

●
●
●
●

●
●
●

●

●
●

●

●

●
●
●

●
●
●

●
●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●
●
●

●

●

●

●

●

●
●

●
●
●
●

●
●
●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●
●

●
●

●

●
●

●
●
●
●
●
●

●

●

●
●

●

●
●
●
●
●
●

●
●

●

●
●

●
●
●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●
●

●
●
●
●
●
●
●
●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●

●

●

●
●

●

●

●
●
●

●
●

●
●
●
●
●
●

●

●

●
●
●

●
●
●

●

●
●
●
●

●

●

●
●
●
●

●

●
●
●

●

●
●

●

●
●●

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

V
01

V
02

V
03

V
04

V
05

V
06

V
07

V
08

V
09

V
10

V
11

V
12

V
13

V
14

V
15

V
16

V
17

V
18

V
19

V
20

V
21

V
22

V
23

V
24

V
25

V
26

V
27

V
28

V
29

V
30

V
31

V
32

V01
V02
V03
V04
V05
V06
V07
V08
V09
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
V32

(a) Normal state correlation matrix.

●
●
●

●

●

●
●

●
●

●
●
●

●

●
●
●
●
●

●

●
●

●

●
●
●
●

●
●
●
●

●

●

●
●

●

●

●
●

●
●

●
●
●

●

●
●
●
●
●

●

●
●

●

●
●
●
●

●
●
●
●
●

●

●
●

●

●
●

●
●

●
●
●

●

●
●
●
●
●

●

●
●

●

●
●
●
●

●
●
●
●
●

●

●
●
●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●

●

●
●
●
●
●
●

●
●

●

●
●
●
●

●
●
●
●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●
●
●
●

●

●
●

●

●
●
●
●

●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●

●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●

●

●

●
●
●
●

●
●
●

●
●
●
●
●
●
●
●

●

●

●
●
●

●
●
●

●
●
●
●
●
●
●
●

●

●

●
●

●
●
●

●
●
●
●
●
●
●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●
●

●

●

●
●
●
●
●
●

●

●

●
●
●
●
●

●

●

●
●
●
●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●
●●

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

V
01

V
02

V
03

V
04

V
05

V
06

V
07

V
08

V
09

V
10

V
11

V
12

V
13

V
14

V
15

V
16

V
17

V
18

V
19

V
20

V
21

V
22

V
23

V
24

V
25

V
26

V
27

V
28

V
29

V
30

V
31

V
32

V01
V02
V03
V04
V05
V06
V07
V08
V09
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
V32

(b) Shutdown state correlation matrix.

●
●
●
●

●

●
●

●
●

●
●

●

●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●
●

●

●
●

●
●

●
●

●

●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●

●

●
●

●
●

●
●
●

●

●
●
●
●
●

●

●
●

●
●
●
●
●
●
●
●
●
●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●
●
●
●

●
●

●

●
●
●
●
●
●
●
●
●

●

●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●
●
●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●
●

●

●
●

●

●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●

●

●
●
●
●
●
●

●

●
●
●
●
●

●

●
●
●
●

●

●
●
●

●

●
●

●

●
●●

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

V
01

V
02

V
03

V
04

V
05

V
06

V
07

V
08

V
09

V
10

V
11

V
12

V
13

V
14

V
15

V
16

V
17

V
18

V
19

V
20

V
21

V
22

V
23

V
24

V
25

V
26

V
27

V
28

V
29

V
30

V
31

V
32

V01
V02
V03
V04
V05
V06
V07
V08
V09
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
V32

(c) Anomalous state correlation matrix.

Figure 5.3: Correlation matrices for the three states: normal, shutdown, and anoma-
lous. The color intensity and the circle size represents the coefficient absolute value.
A red circle indicates negative correlation; a blue circle indicates positive correlation.

61

partial correlation matrix. For this aim we followed the approach of [65], where,

given a set of attributes {x1, . . . , xm}, we can produce an estimator θi,λ for a given

xi and λ, such that

θi,λ = arg min
θi:θi=0

(
1

N

∥∥Xi −Xθi
∥∥2
2

+ λ
∥∥θi∥∥

1

)
, (5.8)

where X is the matrix composed by stacking samples xn as

X =
[
x1 x2 . . . xN

]T
and Xi is 1×N feature vector produced by the i-th column of X.

The set of variables xj such that θi,λj 6= 0 is the neighborhood of xi, with xi being

conditionally independent linearly from the remaining variables given its neighbor-

hood. The neighborhood size is penalized by the parameter λ, as increasing λ

increases the sparsity of the coefficients. The parameter λ is chosen empirically

to produce almost the same degree of sparsity given different equipments. Fig-

ures 5.4a, 5.4b, and 5.4c shows the resulting graphs. The selected λ and the gener-

ated graphs were computed following the procedure described in [65].

The relationships found in the graphs from Figure 5.4 corroborate with the pre-

vious hypothesis that the differences on behavior found on different states could

be used to assess the current state. Also, while there are relationships that persist

between the distinct states, the number and the neighborhoods found were quite

different between them. As an example, while the pair of variables V 19 and V 20

produces a neighborhood during the normal state, the same cannot be said during

the anomalous state, where V 19 is linearly independent from any variable and V 20 is

included on the largest neighborhood, which is a different behavior. This difference

is also found in the shutdown state, where V 19 and V 20 are still in the same neigh-

borhood, but not the same neighborhood found during anomalous states. These

and other relationships are not clearly visualized when examining the correlation

matrices in Figure 5.3.

Lastly, a hierarchical clustering algorithm was applied to the correlation matrices.

Clustering is an unsupervised learning problem where the samples, or attributes, are

grouped based on their similarity [66]. Since correlation measures linear dependency

between the attributes, correlation can be considered a similarity metric and can be

used to group the attributes.

However, in order to use a clustering algorithm, a dissimilarity measure is nec-

essary. As such, the correlation matrices were converted to Pearson correlation

62

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

V01

V02

V03

V04

V05

V06

V07

V08

V09

V10

V11

V12

V13

V14

V15

V16

V17
V18

V19

V20

V21

V22

V23 V24

V25

V26

V27

V28

V29
V30

V31

V32

lambda = 0.773903

(a) Normal state partial correlation graph.

●
● ●

●

●●

●

●

●

●

●● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

V01
V02 V03

V04

V05V06

V07

V08

V09
V10

V11V12 V13

V14
V15

V16
V17 V18

V19

V20

V21

V22

V23

V24

V25

V26

V27V28

V29

V30

V31

V32

lambda = 0.774197

(b) Shutdown state partial correlation graph.

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

V01

V02

V03

V04
V05

V06

V07

V08

V09

V10
V11

V12

V13

V14

V15

V16

V17

V18
V19

V20

V21

V22

V23

V24

V25

V26

V27

V28

V29

V30

V31
V32

lambda = 0.774060

(c) Anomalous state partial correlation
graph.

Figure 5.4: Partial correlation graphs for the three states: normal, shutdown, and
anomalous.

63

distance matrices [67] as follow

Cx (i, j) =
√

2 [1−Rx (i, j)] (5.9)

such that each entry Cx (i, j) of matrix Cx represents the dissimilarity between

the pair of variables i and j. This matrix as then used as input for a hierarchical

clustering algorithm.

Hierarchical clustering is a process which aggregates data samples or attributes

in multiple clusters (groups) in a structured fashion, which can be represented by a

tree-like structure named dendrogram. This representation allows to observe how the

different elements are organized at different levels. The pseudo-code of the employed

algorithm is described in Algorithm 5.1.

Algorithm 5.1 Hierarchical agglomerative clustering algorithm pseudo-code.

1. Starting with each element as an independent cluster Ck = {xk}. In the first
iteration, C0 = K, where K is the number of elements and C0 is the number
of clusters;

2. Compute the dissimilarity between each cluster. This computation can be
made using many methods [66, 68]. During this work the Ward’s method was
used [69];

3. At iteration n, find the most similar pair of clusters (Ci, Cj). This pair will
be aggregated in a single cluster Ck = Ci

⋃
Cj, decrementing the number of

clusters (Cn = Cn−1 − 1);

4. Repeat steps 2 and 3 until there is only one cluster containing all K elements.

The resulting dendrograms obtained for the normal, shutdown, and anomalous

states are presented in Figures 5.5a, 5.5b, and 5.5c, respectively. Comparing the

structure found on the dendrograms and the graphs found on Figure 5.4, we observe

that the groups that occurred in the partial correlation analysis also occurred in the

dendrogram, for the same states. Also, the changes in behavior between the different

states also appears in the dendrogram. Lastly, while the differences between the two

main groups are clear for the anomalous state (Figure 5.5c), they are weaker in the

normal state (Figure 5.5a), producing almost uniforms clusters, while the shutdown

groups behavior (Figure 5.5b) are in-between the normal and anomalous groups.

While the results of the exploratory analysis are only qualitative, these results

clearly suggest the possibility of detecting changes in the equipment behavior by

observing changes in the relationship between distinct attributes. This corroborates

with the possibility of describing the underlying process only using data-driven mod-

els. In the next section we present the cross-validation procedure to assess and select

64

V01
V02

V03

V04

V05

V06

V07

V08
V09

V10
V11

V12
V13

V14

V15

V16
V17
V18

V19
V20

V21

V22

V23

V24

V25
V26

V27

V28
V29

V30

V31
V32

(a) Normal state hierarchical clustering den-
drogram.

V01
V02

V03

V04
V05

V06

V07

V08

V09

V10
V11

V12

V13

V14
V15

V16
V17
V18

V19
V20

V21

V22

V23

V24

V25

V26

V27

V28

V29

V30

V31
V32

(b) Shutdown state hierarchical clustering
dendrogram.

V01
V02

V03

V04
V05

V06

V07

V08

V09

V10
V11

V12

V13

V14

V15

V16
V17
V18

V19

V20

V21

V22
V23

V24

V25
V26

V27

V28

V29

V30

V31
V32

(c) Anomalous states hierarchical clustering
dendrogram.

Figure 5.5: Hierarchical clustering dendrograms for the three states: normal, shut-
down, and anomalous. The height of each line is proportional to the dissimilarity
between daughters nodes.

65

Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9Set 2Set 1 Set 10

Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10Set 1

Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9Set 1 Set 10Set 2

Set 2

Time

Legend

Validation

Training

Not used

Figure 5.6: Temporal K-fold with K = 9.

the best models employed to achieve this aim.

5.3.3 Cross-validation procedure

This section presents the cross-validation procedure used to evaluated the proposed

system. As previously discussed, first we divided the dataset in two disjoint sets:

the test set, consisting of data from equipment 3, and the training set, consisting of

the remaining equipment data.

To select the best set of parameters for the SBM model, we followed a grid search

procedure using K-fold cross-validation to evaluate each model. However, given the

temporal nature of the dataset, the normal K-fold method could produce biased

results, as temporal series can have trends, cyclical, seasonal components, or other

relationship between neighbor samples [70]. A traditional K-fold approach assumes

independently and identically distributed (i.i.d.) samples to produce a reliable es-

timate of the model performance. Temporal series can violate the independence

assumption, producing overoptimistic estimates of the model performance [71]. To

cope with this problem, we followed a modified K-fold approach: considering that

time-series samples are indexed in increasing time order, we divide the series in

K + 1 time ordered groups, were the kth group is succeed by its futures values.

Then, the k model is trained with the previous k partition and validated with the

next k+1 partitions in a forward chaining manner [71]. This procedure is illustrated

in Figure 5.6 for K = 9.

Given the extension of the database, this procedure was used with K = 3, with

the training set decimated by 30. As each equipment from the training set has a

66

total of 657.961 samples, this decimation is necessary to make the training procedure

feasible, and did not affect the performance of the models. Also, considering that

we have multiple equipment in the training set, samples from the same time-interval

were taken from each fold and concatenated to produce the training and test sets.

The best model obtained from the grid search procedure was then evaluated in the

test set, producing the system final performance.

5.4 Results and discussion

This section presents the results obtained during the validation and test procedures.

To select the best model to the proposed task we considered all the following system

variations:

• We used only the full SBM formulation (Eq. (3.21)) as AAKR models achieved

similar or inferior performance during preliminary tests;

• Choice of similarity function, as presented in Section 3.2, with distinct values

of γ ∈ {0.01, 0.1, 1} and multiple norms: `p norm with p ∈ {1, 2}, and the

Mahalanobis distance;

• Classification solely based on the SBM model;

• SBM strategy for selecting the prototypes: standard method [43] with dec-

imation factor s ∈ {1440, 2160, 2880}; the proposed threshold-method for

threshold values τ ∈ {0.05, 0.25, 0.495}; and the booststraping prototype

selection method (see Section 3.4) with τ ∈ {0.05, 0.25, 0.495} and s ∈
{1440, 2160, 2880};

While the full combination of the above parameters leads to a large number of

possible configurations, in this section we present results using all combinations.

The method based in [4] and presented in Section 3.4 was not employed in this

chapter since it requires the distance matrix to compute the best set of prototypes.

Given the number of samples in the training set, the necessary memory to produce

this matrix would make this method infeasible. As such, we used the proposed

booststraping version of the model also presented in Section 3.4.

5.4.1 Cross-validation results

This section presents the results obtained using the cross-validation procedure. Be-

fore we present the best model or set of models, first we discuss the influence of the

parameters on the model performance and complexity. Six parameters were studied:

the prototype selection method; the chosen similarity function; the distance metric

67

employed; the kernel width parameter γ; and two parameters related with specific

prototype selection methods, the threshold factor τ and the decimation factor s.

Prototype selection methods

●

●
●

●●
●

●

●

●

●

0

25

50

75

100

Original Threshold Bootstrap
Method

A
cc

ur
ac

y
[%

]

Figure 5.7: Accuracy box plot for the employed prototype selection methods.

Figure 5.7 presents the accuracy box plots for the employed prototype selection

methods. A box plot is a standardized way of displaying the distribution of a sample,

indicating its degree of dispersion and skewness, as well as possible outliers [63]. The

box bottom and top are the first and third quartiles, and the band inside the box is

the median. The upper whisker, in this case, extends from the third quartile to the

highest value within 1.5 of the inter-quartile range (IQR), while the lower whisker

extends from the first quartile to the lowest value within 1.5 of the IQR. The inter-

quartile range is the distance between the first and third quartiles, and measures the

68

statistic dispersion. Values outside this range are considered outliers and plotted as

small dots [63]. Each factor is represented by a different box. In Figure 5.7, each

prototype selection method is a factor.

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

1000

Original Threshold Bootstrap
Method

N
um

be
r

of
 p

ro
to

ty
pe

s

State
Normal
Shutdown
Anomalous

Figure 5.8: Box plot of the number of prototypes for the employed prototype selec-
tion methods. The number of prototypes axis is in logarithmic scale.

As illustrated in Figure 5.7, the different methods are almost equivalent in clas-

sification accuracy, with the threshold method achieving the best results in a more

consistent manner, followed by the original method and by the bootstrap method,

less consistent but producing the best model given its upper whisker. While the

difference in accuracy is small, the difference in complexity is clear, as shown in

Figure 5.8, with the original method achieving the highest complexity in number

of prototypes. This result is due to the selection procedure, which is proportional

to the number of samples in the training set. The median number of prototypes

for each class in the original method is almost 10 times greater than the one of

69

the bootstrap method and almost 100 greater higher than the one of the threshold

method. These results demonstrate the efficacy of the proposed methods in reducing

the computational complexity without losing accuracy.

Still, the results presented in Figure 5.8 also allow some important observations.

While the original method produces more prototypes, the number of prototypes is

almost deterministic, with a very small dispersion, mostly likely caused by changes

in the decimation parameter s. As for the other two methods, they can produce

a greater variability in number of prototypes and, in some cases, achieving values

higher than ones of the original method, where the threshold method produces

a number of prototypes 10 times greater than the ones of the original method.

Although these occurrences are uncommon, they should be treated with caution, as

an excessive number of prototypes could impair the system performance, increasing

its computational complexity.

Lastly, looking at the dispersion considering each class, while there is some differ-

ence in the number of prototypes for the threshold method, their distribution shows

little variation. This indicates that, while the classes can be clearly separated, the

difficulty in describing each class is almost the same.

Similarity functions

Figure 5.9 shows the accuracy box plot for each similarity function. The original

SBM similarity function described in [36] was the one that achieved the best accuracy

in the most consistent manner. However, there is an overlap between most of the

similarity functions. These results imply that, while it should exist an optimal

similarity function for this application, the correct choice is not critical, as the

model is robust against sub-optimal decisions.

Distance metric

Figure 5.10 presents the accuracy box plots for each distance metric. While there

is no statistical difference in performance, these results demonstrate that the `2

norm was the most consistent, followed by the Mahalanobis distance. These results

are very similar for different metrics. As such, for this application, the choice the

optimal norm parameter is not as critical as one of the other parameters, such as

the training method. In such case, the decision then falls into selecting the least

computationally intensive metric. Considering this restriction, an `p norm would be

the best option, as computing these distances does require computing cross-attribute

terms.

70

●

0

25

50

75

100

CCK EXP WSF IMK RBF
Kernel

A
cc

ur
ac

y
[%

]

Figure 5.9: Accuracy box plot for the employed similarity functions.

Kernel width γ

The influence of the kernel width γ in the model accuracy is shown in Figure 5.11.

As with the distance metric, these results are inconclusive. While there is a small

increase in the accuracy for greater γ values, as the value increases, it reduces the

radius where the similarity values are significant, increasing the number of proto-

types necessary to describe the dataset. As γ → ∞, each sample only describes

itself, achieving a model with maximum accuracy in the training set, but without

generalization power and with the largest complexity, producing overfitting. The

inverse is also true. As γ tends toward zero, the radius of similarity increases, re-

ducing the necessary number of prototypes. In the limit, only one sample would

be selected for each class as prototype, most likely, the geometric median vector of

each class, the point which minimizes the sum of distance to all other points.

71

●

0

25

50

75

100

1 2 Mahalanobis
Norm

A
cc

ur
ac

y
[%

]

Figure 5.10: Accuracy box plot for the employed distance norms.

Threshold factor τ

The threshold factor parameter τ is shared by the threshold and the bootstrap

methods. Figure 5.12 presents the accuracy box plot for this parameter for the

threshold method. While this parameter does not produce great variation in the

model performance over the chosen range, as with the γ parameter, when τ → 1

all the samples are selected as prototypes, reducing generalization power of the

model. For τ → 0, only a small set of prototypes (often just one) would be selected,

producing a sparse representation of the training set. This behavior is very similar to

the effect produced by the γ parameter, and these parameters can be used together

to mitigate the influence one another during training.

72

●
●

0

25

50

75

100

0.001 0.01 0.1 1
γ

A
cc

ur
ac

y
[%

]

Figure 5.11: Accuracy box plot for different kernel width γ values.

Decimation factor s

The decimation factor s is shared by the original and bootstrap methods. As shown

in Figure 5.13, the decimation factor produces inconclusive results, as there a subtle

increase followed by a small decreasing in accuracy while the decimation values in-

creases. A possible explanation for this behavior is that it is reasonable to consider

as time-series samples in the same neighborhood are very similar. The decimation

factor would then discard samples that represent the same phenomenon and do not

add any new information. The remaining set is less similar and more informative,

producing a more discriminative set of prototypes. However, as the decimation

factor keeps increasing and reducing the number of samples, there would be an op-

timal point where accuracy would stop increasing and start to fall, as the remaining

samples would stop describing the underlying distribution.

73

0

25

50

75

100

0.05 0.2725 0.495
τ

A
cc

ur
ac

y
[%

]

Figure 5.12: Accuracy box plot for interval of τ .

Model selection

This section presents the selected model given the results of the cross-validation

experiments. Table 5.1 presents the 10 best models in descending order considering

the obtained accuracy. The similarity functions used are WSF (Eq. (3.10)), RBF

(Eq. (3.12)), IMK (Eq. (3.8)), CCK (Eq. (3.9)), and EXP (Eq. (3.11)). Surprisingly,

the 12 best obtained results were from bootstrap method.

While the analysis of the validation results presented in Table 5.1 made some

decisions clear, such as the prototype selection method as the booststrap method and

the kernel width γ = 0.1, as the 10 best models are almost statistically equivalent,

decisions pertaining to the remaining parameters are still indefinite.

The complexity of a given SBM is given by its number of prototypes. There-

fore, to help defining the remaining parameters, we evaluated the complexity of the

74

●

●
●

●

●

0

25

50

75

100

1440 2160 2880
s

A
cc

ur
ac

y
[%

]

Figure 5.13: Accuracy box plot for the decimation factor (s).

models during the cross-validation procedure. Table 5.2 presents the number of pro-

totypes for the 10 best models ordered in descending order considering the obtained

accuracy. The number of prototypes is given for each class.

As shown in Table 5.2, while the models achieved almost the same accuracy,

the number of prototypes employed for each model to describe the target classes

changed a great deal for some classes. These results can be explained by changes

on the similarity function, distance metric, or the similarity threshold τ . The most

influential factor is the similarity threshold τ , as increasing τ is equivalent to in-

creasing the radius ε in the bootstrap method. This produces prototypes covering a

greater number of samples, demanding less prototypes without affecting the model

accuracy. Also, considering the number of prototypes per class, one can observe

that the normal state requires a larger number of samples, implying that this class

is harder to describe. This can be due distinct operation modes being represented

75

Table 5.1: Cross-validation accuracy (%) for the 10 best SBM configurations.

Prototype
selection method

Similarity
Function

Distance
Metric

γ τ t Accuracy (%)

Bootstrap EXP `1 0.1 0.0500 1440 82.5± 3.6
Bootstrap WSF `1 0.1 0.0500 1440 82.4± 5.8
Bootstrap RBF `2 0.1 0.0500 1440 82.4± 3.8
Bootstrap EXP `1 0.1 0.2725 1440 82.3± 3.1
Bootstrap EXP `1 0.1 0.0500 2160 81.8± 2.4
Bootstrap WSF `1 0.1 0.0500 2160 81.8± 3.4
Bootstrap EXP `1 0.1 0.2725 2160 81.5± 2.2
Bootstrap WSF `1 0.1 0.0500 2880 81.4± 3.1
Bootstrap EXP `2 0.1 0.0500 1440 81.3± 2.9
Bootstrap WSF `1 0.1 0.2725 1440 81.3± 6.8

by the same label, with heterogeneous samples.

The analysis of the validation results presented in Tables 5.1 and 5.2 leads us

to choose the configuration consisting of using the bootstrap method as prototype

selection method, similarity function EXP, γ = 0.1, τ = 0.2725, t = 1440, and `1

norm, as it produces the smallest set of prototypes with equivalent accuracy.

Table 5.2: Number of prototypes for the 10 best SBM configurations. Bootstrap
prototype selection method with γ = 0.1. Nr – Normal state; Sd – Shutdown state;
An – Anomalous state.

Number of
Prototypes

Similarity
Function

Distance
Metric

τ t Nr Sd An

EXP `1 0.0500 1440 125± 54 67± 25 24± 8
WSF `1 0.0500 1440 125± 54 67± 25 24± 8
RBF `2 0.0500 1440 64± 34 49± 16 18± 7
EXP `1 0.2725 1440 43± 23 34± 8 15± 6
EXP `1 0.0500 2160 87± 37 44± 14 19± 4
WSF `1 0.0500 2160 87± 37 44± 14 19± 4
EXP `1 0.2725 2160 37± 18 28± 8 12± 3
WSF `1 0.0500 2880 67± 30 31± 12 15± 3
EXP `2 0.0500 1440 88± 46 57± 21 18± 5
WSF `1 0.2725 1440 34± 18 28± 8 15± 6

5.4.2 Results on the testing set

In this section we analyze the performance of the proposed system on the test set.

For this study the model considered in the previous section was chosen, consisting of

an SBM model using the bootstrap method as prototype selection method, similarity

function EXP, γ = 0.1, τ = 0.2725, t = 1440, and `1 norm.

76

As mentioned in Section 5.3, the test set consists of the remaining equipment,

equipment number 3, which contains 25% of the samples total. Using the test set the

proposed system achieved an accuracy of 91.38%. The confusion matrix is shown in

Table 5.3.

Table 5.3: Confusion matrix for the test dataset. Nr – Normal state; Sd – Shutdown
state; An – Anomalous state.

Class Nr Sd An
Nr 535100 58 0
Sd 5193 66125 6262
An 30844 14372 7

These results correspond to what was expected. While the normal state is cor-

rectly described, achieving a precision of almost 100%, misclassifying only a small

set of samples, the performance over the anomalous states had very poor accuracy,

below 1%. Considering that the set of anomalous states is heterogeneous, with mul-

tiple different states under the same label, while the normal and shutdown events

are mostly homogeneous, its reasonable that anomalous states are harder to clas-

sify. This characteristic is more critical when we consider that the test set consist of

another equipment and, while the normal and shutdown and test states are shared

between different pieces of equipment, anomalous states could appear in distinct

formats in different pieces of equipment.

Also, the proposed models do not use any temporal information to produce a

decision. As such, transitions between states are not treated as such, producing

ambiguous labels which would reduce the system performance. This effect can be

visualized in Figure 5.14, where the time series with unnormalized similarity scores

are presented. One can see that the proposed SBM model produces very noisy

similarity series. Besides, there is a decreasing trend in the similarity scores as

time progress. This behavior can be a drift caused by some non-stationarities of

the equipment, or it could be a hint of equipment degradation. In the former case,

this drift could be mitigated by an adaptive model with memory, discarding older

prototypes and adding new prototype samples during reliable periods.

Another possible cause of the low accuracy in detecting anomalous states can be

the unbalanced nature of the used data set. Considering that training and test sets

share the same class distribution, this means that anomalous samples are less than

7% of the training samples. Thus, this class could be underrepresented, requiring a

higher number of samples to be correctly described.

However, these results indicates that the proposed system is capable of general-

ization, even achieving a test performance in a different equipment higher than the

cross-validation performance (91.4% against 82.3%).

77

Figure 5.14: Time-series for the test set similarities scores.

5.5 Conclusion

This chapter addressed automatic fault diagnosis in oil platform equipment. The

use of the similarity-based modeling was investigated as a diagnosis and monitor-

ing model. The system was evaluated using cross-validation and tested using a

procedure similar to cross-dataset validation. The employed database consist of

multivariate time-series from four injection pumps of the same injection system on

an oil platform, with samples taken minutely during the interval between August

01, 2014, and November 01, 2015, each pump producing 657961 samples, total-

ing 2631844 samples in the dataset. These multivariate series are composed of 41

attributes, from numerical to categorical attributes.

The proposed system was cross-validated using three pumps and assessed against

the remaining pump, with the best model accuracy of 82.3% in the cross-validation

78

procedure and 91.4% during the test procedure. While these results demonstrate

the generalization power of the proposed method, there still room for improvement,

as the model missed most of the anomalous events, indicating the need of (a) less

ambiguous labels both during transitions and for the anomalous events and (b) the

use of a temporal consistency model or temporal information to reduce the noise in

the decision process and explore the temporal characteristics of the input series.

79

Chapter 6

Fault detection system

6.1 Introduction

This chapter presents an application based on the SBM framework: a fault detection

system which receives signals from a given equipment and automatically checks its

health. It learns prototypes, classes, and the similarity function with the operator’s

help. It is a complete application, composed of three different elements:

• a relational database, where all received and generated data is saved;

• a data access and processing layer, which receives the input measurements and

computes their respective output;

• and a data presentation layer, a user graphical interface in a dashboard format

presenting the current state of the equipment.

The proposed system permits monitoring and detecting novelties in real-time

with the operator assistance. However, operator assistance is only needed when

assessing detected faults or when introducing new prototypes or fault types. Thus,

the proposed system frees operators to use their expertise to more challenging prob-

lems while also highlighting anomalous events or faults that could pass unnoticed

otherwise.

To produce an informative system, the proposed system was devised considering

that a user should be able to visualize prototypes, sensor importances, and sensor

failures, and also edit or correct detected events or prototypes, in case of incorrect

detections.

The proposed system is presented in the next sections. Section 6.2 details the

user interface, including its usage. The data access layer, including the relational

database and the learning algorithm, is described in Section 6.3. Lastly, Section 6.4

concludes this chapter.

80

6.2 User interface

As described before, the user interface must satisfy the following requirements: be

informative, enabling an operator to visualize any anomalous or fault event; allow

editing or deleting incorrectly classified or false positive detections; give contextual

information, such as different signals importance and historical behavior; and, lastly,

be user friendly. To met these requirements, we designed the user interface as a web

interface divided in four windows:

1. Similarity scores: Presents the historical similarity score data for currently

known event types, such as distinct faulty or healthy states;

2. Events: Presents detected event historical data, including the similarity score

behavior during each event;

3. Prototypes: Gives information about the current set of prototypes and new

prototypes to be added;

4. Signals: Exhibits signal importance and response.

Each window is described in their respective sessions as follows: Section 6.2.1

introduces the similarity score window; the event window and its functionalities are

presented at Section 6.2.2; Section 6.2.3 briefly describes the prototype window and

its functionalities; lastly, the signal window is discussed at Section 6.2.4.

6.2.1 Similarity score window

Depicted in Figure 6.1, it is the first window of the application. It is composed of two

elements: a navigation menu, in the left, and a plot presenting the similarity scores

over time for each class. The menu in the left allows a user to move between the

different windows and appears in each window. It also presents a brief description

of each window purpose.

The plot is the main element of this window. It presents historical data of

the scores of each class, depicted in different colors, therefore allowing a user to

understand when a fault occurred or when the equipment behavior changes.

Figure 6.1 also presents the special case when a new class is detected, labeled

as Unknown. Following the procedure to be presented in Section 6.3.2, the first

received sample is selected as a representative state of the Default condition. After

that, new prototypes which are not identified as belonging to any class are classified

as Unknown.

In these cases, the system produces an alarm and requires operator action to

identify the new prototype as either a new class or as an existent class. However,

the application continues to work while waiting for the operator action.

81

F
ig

u
re

6.
1:

S
im

il
ar

it
y

sc
or

e
w

in
d
ow

.
It

p
re

se
n
ts

,
at

ea
ch

in
st

an
t,

ea
ch

k
n
ow

n
co

n
d
it

io
n

sc
or

e
gi

ve
n

b
y

th
e

d
et

ec
ti

on
sy

st
em

.

82

F
ig

u
re

6.
2:

E
ve

n
t

w
in

d
ow

.
It

al
lo

w
s

a
u
se

r
to

se
le

ct
a

d
et

ec
te

d
ev

en
t,

ed
it

,
an

d
re

v
ie

w
it

s
h
is

to
ri

ca
l

d
at

a.

83

6.2.2 Event window

The event window, shown in Figure 6.2, is composed of three elements: the com-

mon menu, in the left; the event info dialog, in the middle; and the selected event

similarity score data, in the right.

(a) Events info dialog. (b) Events type edition dialog.

Figure 6.3: Events’ information and edition dialogs. It allows a user to review or
edit a detected event.

The info dialog, detailed in Figure 6.3a, allows an operator to select a historical

event, identified by a unique event id, and retrieve information about the selected

event, such as: the detected event type, the timestamp where this event was first

detected, when this event ended, and the event type description.

It also allows an operator to edit an event, as pressing the edit button opens

the event edition dialog, shown in Figure 6.3b, where the operator can change the

detected type to another predefined type, or define a new type of event. When the

New option is selected, it opens another dialog where a user can input the new event

and select its type. There are four possible types:

• normal : one of the healthy states;

• shutdown: all states where the equipment was turned off;

• fault : faulty states;

84

• unknown: not-yet-labeled detected anomalous states.

Figure 6.4: Similarity scores for a chosen event. This chart permits visualizing
historical similarity score behavior during an event.

Lastly, Figure 6.4 presents the similarity scores during a chosen event, which

permits a fast visualization of how the event occurred and developed.

6.2.3 Prototype window

Figure 6.5 presents the prototype window, composed of three elements: the common

menu, the prototype dialog, and the selected prototype radar chart [72].

The info dialog (Figure 6.6a) presents the characteristics of a given prototype,

including when it was added, its identification, type, and type description. Also,

it can be used to edit or delete the selected prototype, as shown in Figures 6.6b

and 6.6c, respectively.

The edition procedure is very similar to the one described above for events.

However, changing a prototype does not affect past decision as in the event cases,

only future decisions. Also, deletion is irreversible, as deleting removes a prototype

permanently. Like the edition procedure for prototypes, deleting a prototype does

not affect historical data, only the system response after the deletion.

Lastly, the selected prototype radar chart, presented in Figure 6.7, helps an

operator to visualize all features from a prototype in a single chart. This is useful

for visual inspection and comparison between prototypes.

85

F
ig

u
re

6.
5:

P
ro

to
ty

p
e

w
in

d
ow

.
It

al
lo

w
s

to
se

le
ct

a
p
ro

to
ty

p
e

fo
r

v
is

u
al

iz
at

io
n
,

d
is

p
la

y
in

g
re

le
va

n
t

in
fo

rm
at

io
n
,

an
d

fo
r

ed
it

io
n

or
d
el

et
io

n
.

86

(a) Prototypes description dialog.

(b) Prototypes type edition dialog.

(c) Prototypes deletion dialog.

Figure 6.6: Prototypes’ dialogs. It displays a prototype description and allows
changing its type or removing it.

6.2.4 Signal window

The fourth and last window, the signal window, shows the current registered equip-

ment sensors or measurements and can be used to add, remove or edit registered

signals or their descriptions. Depicted in Figure 6.8, it is composed of three ele-

ments: the common navigation menu, the registered signal table, and the signals

importance pie chart.

The registered signal table (Figure 6.9) presents the current registered signals,

including their id, automatically generated during registration, their name or tag,

unit, and a brief description. This component allows listing 5, 10 or 25 signals at the

same time, with pagination. In the future it should also allow deleting or registering

new signals, but currently these operations are enabled only in the backend, to be

described in Section 6.3.

The last component, shown in Figure 6.10, is the signal importance pie chart. It

represents the relative importance of each signal for the current detection, making

this chart useful to detect possible problems in the sensors, as a defective sensor

would either gain importance or become irrelevant. The procedure to compute the

signal importance is described at Section 6.3.

87

Figure 6.7: Prototype radar chart. It allows visualizing all normalized signals values
for a single prototype instance.

88

F
ig

u
re

6.
8:

S
ig

n
al

w
in

d
ow

.
T

h
is

w
in

d
ow

s
sh

ow
s

th
e

li
st

of
re

gi
st

er
ed

si
gn

al
s

an
d

th
ei

r
cu

rr
en

t
re

la
ti

ve
im

p
or

ta
n
ce

as
a

p
ie

ch
ar

t.

89

Figure 6.9: Registered signal table. It presents a list of the current registered signals.

6.2.5 Web interface framework

This section briefly describes some technical details about how the web interface

operates. The proposed system follows a web server approach, with a browser-based

user interface as frontend which receives data from the data layer backend. The

web server approach was chosen given its flexibility and interoperability between

multiple operational systems and devices, making it accessible by desktop or mobile

users.

As discussed above, while for an operator or a user the web server is composed of

four distinct windows, in truth, it is a single window application which dynamically

renders components given a different route. These components and the windows

were made in JavaScript language, chosen by its popularity and the possibility of

enabling dynamical elements [73, 74].

However, there are many framework and libraries to design and implement appli-

cations in JavaScript. In this work we used the React library [75] with Redux state

container system [76]. These were selected given their current community support,

extensive documentation, and the author familiarity with them.

To provide a consistent feeling along the user interface we used the Material UI

library [77] to generate the common components (buttons, menus, text, etc.) and

90

Figure 6.10: Signal importance pie chart. It shows the relative importance of each
registered signal given the equipment current condition.

91

the Recharts library [78] to produce charts and plots for data exploration.

Lastly, to fetch data from the backend data layer, we implemented a pooling

procedure which updates components by periodically querying the data layer for

new data. While this approach is less than ideal, since it makes unnecessary requests

when there is no change or event between two requests, given the limit time and

expertise in designing such systems, it achieves the proposed objectives.

6.3 Data layer

This section presents the service data layer and backend, the proposed system pow-

erhouse. The data layer is composed of the following:

• the online detection algorithm, divided into the similarity function learning

algorithm and the online SBM algorithm;

• the data access endpoints, entry points of the service, where the communica-

tion between the data layer and external services, including the web interface,

occurs;

• the data processing block, which process the incoming events and returns rel-

evant information, including applying the online detection algorithm, saving

events in the database, and generating auxiliary information;

• and the relational database, where all incoming and produced data are saved.

We start by describing the online detection algorithm, responsible for detecting

possible outliers or faults during real-time events. This algorithm was proposed to

work in the context of direct supervision of an operator and to cope with real-time

sensors and equipment failures. However, we did not find any dataset with these

characteristics, neither we could devise one given this work time limitations. Thus,

the proposed online detection algorithm was not quantitatively assessed.

Also, while the described algorithm is used by the proposed service, any algo-

rithm with the same properties (online learning, outliers detection, and features

importance) could be used by the proposed system.

6.3.1 Similarity function learning

Learning a good distance metric is important to many applications, such as content-

based image retrieval and classification in computer vision, text analysis, and oth-

ers [79, 80]. As an example, knn classifiers achieve a significant accuracy increase

with appropriately-designed distance metric, comparing with standard Euclidean

distance [80].

92

As discussed in Chapter 3, since the SBM framework comes from the same

learning algorithms as the knn classifier, it could also benefit from learning a custom

distance metric directly from the relevant data.

To develop an algorithm to learn a custom metric, first we assume a binary

classification problem with a dataset D composed of N samples cases (xi,xj, yij),

where xi,xj ∈ Rm are pair of points to be compared and

yij =

+1 if the pair xi,xj are in the same set;

−1 otherwise.
(6.1)

Defining the distance metric matrix as A ∈ Rm×m, and the distance between any

two points as

d2A (xi,xj) = ‖xi − xj‖2A = (xi − xj)
T A (xi − xj) , (6.2)

then, with a logistic regression model, we can compute the similarity as the proba-

bility of any two points belonging in the same set as

sij =
1

1 + eyij[d
2
A(xi,xj)−µ]

, (6.3)

where parameter µ represents the distance threshold that indicates if points are in

the same set.

Taking the negative log-likelihood as the loss function, we have

Iemp[A, µ] = −
∑

log
{

1 + eyij[d
2
A(xi,xj)−µ]

}
, (6.4)

thus, we can cast the distance metric learning problem as the optimization problem

of minimizing Eq. (6.4). However, since the SBM framework starts from solving an

one class classification problem [81, 82], parameters A and µ could be unbounded.

As such, a regularization factor is added to restrict the possible set of solutions. The

regularized version of the loss function is given by

Iemp[A, µ] = −
∑

log
{

1 + eyij[d
2
A(xi,xj)−µ]

}
+ γ ‖A‖2F , (6.5)

where ‖A‖2F = tr
(
AAT

)
is the Frobenius norm and γ ∈ [0, 1) is a regularization

parameter.

While Eq. (6.5) could be solved as a positive semi-definite optimization prob-

lem [79, 80]

min
A,µ

= Iemp[A, µ]

s.t. A � 0, µ ≥ 0,
(6.6)

93

in this work a stochastic gradient approach was followed to allow parameters A and

µ to be updated in an online fashion. We can define their gradients as

∂Iemp[A, µ]

∂A
=
∑

yij (sij − 1) (xi − xj) (xi − xj)
T + γ2A, (6.7)

and
∂Iemp[A, µ]

∂µ
= −

∑
yij (sij − 1) , (6.8)

where sij is the similarity function described in Eq. (6.3). Then, we can update each

parameter as

µn+1 = µn − η
∂Iemp[A, µ]

∂µ
, (6.9)

An+1 = An − η
∂Iemp[A, µ]

∂A
, (6.10)

where η is the learning rate parameter. As initial conditions we start with

A0 =

[
1

N

∑
(xi − xj) (xi − xj)

T

]−1
,

which is the estimated precision matrix [83], and µ0 = 0. This initial condition

is equivalent to using the Mahalanobis distance [33, 79, 80] followed by a logistic

regression. The next section introduces how this distance metric is integrated in the

proposed online SBM framework.

6.3.2 Online SBM

In Chapter 3 the SBM framework was described as a supervised learning algorithm,

where the possible states are known a priori and the training algorithm tries to

find the best prototype set for each class. However, these conditions are not always

possible during deployment, as there are differences in production environment, new

unknown faulty or production conditions, and interaction with new factors, such as

new equipment, processes and personnel.

To cope with these issues, the proposed system should be flexible, for possible

changes in the production environment; adaptable to the different conditions of an

equipment; and robust against possible perturbations. This section describes the

proposed approach to add these characteristics to the original SBM framework, by

devising an online version of the original algorithm, such that, with manual input,

it could correctly learn and adapt for new and different operational conditions.

The proposed online algorithm is very similar to one of its offline training coun-

terparts, the similarity threshold method, proposed in Section 3.4.2. The online

94

learning algorithm can be divided in 5 steps:

1. Initialization: since the online algorithm works almost in an unsupervised

fashion, it assumes that the first sample comes from a healthy state to initialize

P0 ← {x0} . (6.11)

Therefore, when this assumption fails the operator should correct the system

with the correct class;

2. Prediction error : Given a set of prototypes Pn at instant n, during the pre-

diction step the error between the current sample xn and each prototype is

computed as

enp =
[
|xn1 − xp1| |xn2 − xp2| . . . |xnm − xpm|

]T
, p ∈ Pn; (6.12)

3. Instance similarity : the prediction error enp for each prototype is used as input

for the similarity function fn (•). In this case, the one described in Eq. (6.3)

snp = fn(enp); (6.13)

4. Predicted similarity and class : computed in a similar fashion as its offline

counterpart described in Section 3.4.1

gnc =
∏
p

snp, p ∈ Pc (6.14)

c∗ = arg max
c
{gnc}. (6.15)

5. Update: Lastly, the update strategy first tries to add a new prototype when

necessary, then it updates the similarity function as described in Section 6.3.1.

Given the global similarity for the selected class

gn = max
c
{gnc}, (6.16)

the prototype insertion is made using the following heuristic:

Pn ← Pn−1 ∪ {xn} if


Pn−1 < Pmax

∧ gn ≤ τ

∧ gn−1 > gn.

(6.17)

where Pn = |Pn| and Pmax are the current number of prototypes and maximum

95

allowed number of prototypes, respectively. The threshold τ is the minimum

similarity and in this work is empirically set as τ = 0.7.

The similarity function Ac and µc parameters are updated by computing their

gradients assuming that the chosen label c∗ is the correct class, thus

ynpc =

+1 if c = c∗,

−1 otherwise.
(6.18)

All these steps and some intermediate steps are depicted in Algorithm 6.1.

Algorithm 6.1 Online similarity function and prototype selection SBM.

function Online SBM(X , γ, P)
Initialize P0 ← {x0}, f0
while n < |N | do

Prototypes deviation e′np = xn − xp, p ∈ P
Element-wise absolute deviation enp = (|enpi|)
Instance similarity snp = fn (enp)
Class similarity gnc =

∏
p snp, p ∈ Pc

while |Pn| ≤ P do
Pn ← Prototype Insertion(Pn, xn)
fn ← Update Similarity(fn, xn)

end while
end while

end function

6.3.3 Data access endpoints

Endpoints are the entry points of the service. In our case, they are channels where

the sensor data is received and the information produced by the system can be

consulted. However, while accessible, the information provided at each endpoint

is not presented in an easy or even intelligible way. Thus, the necessity of a user

interface, such as the one described in Section 6.2.

To make the proposed system compatible with other services, it follows the

Representational State Transfer (REST) architectural style [84], accepting requests

operations such as GET, POST and DELETE 1. Since the author learned about

REST interfaces during the creation of this thesis, this work does not make any

claim that the application is completely REST compliant. A brief description of

each endpoint follows.

1These request operations follow the Hypertext Transfer Protocol (HTTP) methods. The GET
method lists a collection or retrieves an element given an endpoint, the POST request creates a
new entry in a collection, and the DELETE method removes an element or collection. Their usage
is described as each endpoint is presented.

96

Signals

The signal endpoint “/signals” returns or receives information in two formats.

When accessed directly from the main endpoint by a GET operation, it returns the

list of signals. This is used by the web interface to present the registered signals

list (Figure 6.9). When the request is a POST, it registers the incoming data as a

new signal. The system requires that the first requests are POST requests to this

endpoint, to register the equipment sensors.

The second format, “/signals/id number” returns a single signal with the id

id number when the request is a GET, or removes a registered signal when the

request is a DELETE.

Values

This endpoint receives and returns the equipment sensor values at each instant. It

is the main endpoint of the system and, with the signal endpoint, the only two

endpoints that receive incoming data.

It behaves in a similar fashion as the signal endpoint. The “/values” endpoint

accept GET requests, returning the list of historical values, or POST, appending

a new value to the list. This operation has a restriction that only registered sensors

are saved. A POST request with unregistered sensors will be ignored or result in

error. A GET request to “/values/id number” returns the sensors at a single

instant given the id number. DELETE requests are not accepted, as these values

are historical data and do not allow overwritten operations.

Events

The first endpoint that returns generated data. It represents registered events, such

as normal, faulty, and anomalous events, and always starts with two valid events:

the default event, based on the equipment state when the fault detection system is

initialized; and the unknown event, which represents any detected event that was

not identified. The remaining events are supplied by the operator using the web

interface (Figure 6.3).

As with the previous endpoint, it can be accessed in two formats. The

“/events” returns a list of events (GET) or creates a new event type (POST).

POST requests should only be made by the web interface, not directly by an oper-

ator or any external systems.

The second format, “/events/id number”, returns the event type with its

id number when a GET request is received. Remaining request types are ignored.

97

Prototypes

This endpoint lists the current set of prototypes, including their values and event

type. The “/prototypes” format lists (GET) the prototypes. POST requests

are not accepted, as the only way of generating a new prototype is internal, as a

byproduct of Algorithm 6.1.

The second format, “/prototypes/id number”, returns a single prototype

given their id number with a GET, deletes a prototype with a DELETE, or

modifies a prototype type with a PUT. These operations should not be used directly,

only by means of the web interface edition and deleting menus (Figure 6.6).

Health scores

The endpoint “/health-scores” returns Algorithm 6.1 global scores output for

each class at each instant. It is computed when a new value arrives at the “/values”

endpoint. This endpoint only accepts GET requests, either retuning the list of

health scores at each instant (/health-scores) or the scores of a single instant

(/health-scores/id number). An example of usage of this endpoint is the health

scores component shown in Figure 6.1.

Importance

As with the health scores, this endpoint values are computed when new data arrives

at the “/values” endpoint. It returns importance scores for each sensor given the

input values.

In this work we chose an approach similar to the permutation importance used

in random forests [59]: given the current sample xn, we produce, for each prototype

xp and error enp, a perturbed version where a single measurement at m is permuted

from its original value with random Gaussian noise σm, producing a new error

êmnp = enp + 1mσm, (6.19)

where 1m denotes the vector with a 1 in the m-th coordinate and 0’s elsewhere.

Then, for each measurement m, we can compute the deviation between the original

gnc and the perturbed gmnc as

împmc = |gnc − gmnc| , (6.20)

and the signal relative importance as

impmc =
împmc∑
kc împkc

. (6.21)

98

As with the health score, the “/importance” only accepts GET requests, re-

turning a list or the importance scores at a given instant (/importance/id num-

ber). The importance component, shown in Figure 6.10, feeds from this endpoint

to obtain information.

Detected events

The events detected by the proposed system are exposed by this endpoint. It returns

the event start and end times, its type, and id. Like the previous elements, it only

accepts GET requests. This endpoint generates event data used in the event dialog

(Figure6.3).

Health status

This a special endpoint which returns a single value, the current health score com-

puted as the mean score considering all distinct normal events. The health-status

only receives GET requests. Its main usage is to generate alarms when an anoma-

lous or faulty condition occurs.

Detected event scores

The detected-event-score/id number complements the detected events end-

point, returning only health score data during the interval of a chosen event. This

data is used to generate the events charts.

6.3.4 Data processing and storage flow

This section presents how the data processing and storage occurs in the proposed

framework.

Figure 6.11 is a succinct description of the event flow when a new signal set

comes from the equipment. All processes start when a new set of signals is received

at the signal endpoint. If this set is the first sample set and there is no predefined

prototype, this first sample becomes a prototype with normal state. Otherwise, it

passes through the normal detection steps following Algorithm 6.1. First, the system

computes their deviation against the current set of prototypes. Deviation values are

then used to compute the global similarity and instance similarity. These values

are also used to compute the marginal importance, which is the importance of each

sensor or signal, as described in Section 6.3.3.

The input data and the output of these tasks are saved in the relational database

to be available for future use, analysis, or audition. These are then used to update

the detector and, if necessary, to add a new prototype or flag an anomalous event.

99

Data
xn

Has
prototypes?

e′np, ∀p ∈ Pn

Pn+1 ← Pn ∪ xn
Compute
snp, gn

Marginal
importance

Insert
prototype?

Update
Event

detected?
Generate

event

Yes

No

Yes

Yes

Figure 6.11: Web application data processing event flow.

The relational database is where all the relevant received or produced data are

saved. The database server is a PostgreSQL [85] database management system,

chosen given its robustness, flexibility, and ease of use. To simulate a deployment

environment, the database and the remaining service components, the web interface

and the data layer, were “containerized” 2, allowing a fast deployment and isolating

the development environment from the application.

The database can be decomposed in the following models: signals, signal values,

events, prototypes, detected events, health scores, health scores per prototype, simi-

larity function coefficients, and the signal marginal importance. All models have four

common fields: created, updated, which hold the creation and update time stamps,

respectively; an etag, for cache generation; and a unique identification number. The

other fields of each model are:

• signals : sensor model, it represents the registered sensors. Composed of fields

name, unit (SI units), description, and if it is active signal (not deleted);

• signal values : signal values are JavaScript Object Notation (JSON) stored

fields in a key-value fashion. Each entry is saved with its respective timestamp;

• events : saved event type with their names, description, and base type (healthy,

shutdown, faulty, and unknown);

• prototypes : represents the selected prototypes, with JSON field values, its

timestamp, and its relationship with an event type being represented by an

2An application is containerized when its running in an isolated virtual container environment,
similar to a virtual machine but with less overhead. In this work we chose Docker [86] as our con-
tainer implementation as Docker containers are becoming the “standard” containerization solution
currently.

100

event id ;

• detected events : represents a detected event, include its event type id, its start

and end timestamp;

• health score: represents the computed health score for each known class at a

given timestamp, with their scores and event types as JSON maps;

• prototype scores : scores per prototype, with fields timestamp and scores, a

JSON map with the prototypes ids as keys;

• signals marginal importance: the computed signal importance values are

stored as a JSON field, and their timestamp;

• coefficients : computed coefficients values for each event id, saved as JSON.

These models are used by the service to store, retrieve, and provide the infor-

mation for each endpoint. While this information should not be accessed directly,

a user could access and query the production database to query the service data.

The models and the backend were made with Flask [87], an extremely popular web

framework written in Python [88], language which the author has familiarity.

6.4 Conclusion

This chapter presents some small contributions to this work, including:

• It extends the original SBM framework with an online alternative, with the

ability of learning the best similarity function and heuristics to define new

events, classes, and prototypes;

• It presents a web application based on the SBM framework, to enable an

operator to detect and monitor anomalous states of an equipment in real-time

by providing relevant information, automating decisions, or helping with the

operators decision process;

• It presents a data processing framework, which feeds the web application and

processes the incoming signals. In this work this framework was used with the

SBM technique, but it is flexible enough to be used by other outlier or fault

detection approaches.

While there is still room for improvement, we hope that the current approach

could be used in production environment without any or with minimal changes. The

next chapter concludes this work and presents future directions for this framework.

101

Chapter 7

Conclusion

7.1 Discussion

In this work we proposed a data-driven condition-based maintenance (CBM) system

based on similarity-based modeling (SBM) for automatic machinery fault diagnosis.

The proposed system provides information about the current state, degree of the

anomaly, and returns sets of exemplars that can be employed to describe the machine

state in a sparse fashion, which can be examined by the operator to assess the

decision. The system is modular and data-agnostic, enabling its use in different

equipment and data sources with small modifications. The system was evaluated

using three databases: a comprehensive rotating-machinery database with multiple

faults referred to as MaFaulDa [25]; the CWRU [6] bearing database, the current

standard database for bearing fault diagnosis; and an oil-platform injection pump

system dataset, consisting of multivariate time-series from oil-platform equipment.

One of the main contributions of this work was the extensive study of the use of

multiclass SBM on different databases. Other contributions regard novel methods

for selecting prototypes for the SBM models and the use of new similarity metrics.

These contributions achieved the goal of increasing the SBM performance in a fault

classification scenario while reducing its computational complexity. The usage of

SBM either as a stand-alone classifier or as a feature generator for off-the-shelf clas-

sifiers has also been investigated. We also compared the proposed approach against

more traditional prototype selection methods, such as the methods used in knn clas-

sifier, condensation and edition [29], in the SBM framework. This procedure not

only gave us some insight about the desired characteristics of a prototype detec-

tion method, but also asserted the robustness of the proposed approaches, which

achieved better or equivalent results in each comparison.

The extensive analysis of different approaches and parameters of the SBM sys-

tem, and the obtained results in the MaFaulDa and CWRU databases show that

102

the proposed modifications produced a new multiclass classifier that can be used as

a standalone classifier, with acceptable to good performance, or as a feature gener-

ator for a downstream classifier, achieving state of the art results in each dataset,

while reducing its original formulation computational complexity. These results,

presented in Chapters 4, indicate that the proposed approach based on SBM is

robust and worth further investigation.

Chapter 5 presents a real environment application of the proposed framework in

a temporal series, including an exploratory analysis, data description, and the usage

of the SBM as a fault detector. The results demonstrated that, while the proposed

approach is robust in a great range of parameters, corroborating with the previous

findings, it suffers from the lack of temporal consistency between each decision. This

indicates that the method could benefit from some temporal consistency.

Lastly, Chapter 6 presents a production ready version of the proposed frame-

work, including a graphical interface, its underlying web server, and an adaptation

of the SBM framework for real-time detection, with online prototypes and metric

learning. While online metric learning and prototype selection could not be ex-

plored in depth, missing qualitative and quantitative results, they present another

new research area in similarity-based modeling still unexplored, and could solve the

temporal consistency shortcomings found in the offline SBM.

7.2 Future work

There are at least three paths in the future investigation. The first path compre-

hends further investigation of similarity methods. This work is still in development

and, while the proposed contributions produced clear performance gains when com-

pared with the original SBM model, there is still room for improvement, within

the SBM and other similarity approaches. Some topics aligned with this path in-

clude: to study other methods for prototype selection for similarity methods; to

propose new distance metrics and similarity functions to improve the performance

of similarity models [67]; and to study and compare the SBM methodology with

other prototype-based and similarity-based methodologies. As an example, using

denoising autoencoders as monitor models, following the approach presented in [89].

As part of this first approach, assuming that real failure and fault states live in a

low-dimension manifold, a metric that selects the best set of features to explore this

space would have tremendous advantage against heuristic-based metrics [79, 80].

Learning similarity functions could provide an important tool to produce discrimi-

native models and produce interesting insights of the nature of the data, including

feature selection and importance measurements [90]. While in this work we made

some small progress in this direction, there still a lot to explore, including producing

103

qualitative and quantitative results with this approach in different datasets.

The second path consists of adding another block in the proposed system, the

prognosis block. As described in [2], the CBM system final result is an estimate of

when a failure will occur. This estimate of the remaining useful life (RUL) must

precede the failure with time for the prescribed maintenance action, eliminating

unexpected breakdowns and maximizing the equipment life time [2]. However, the

current approach does not exploit the natural consistency of a time series, evaluating

each state as episodic. As such, other approaches, which can use the temporal

information, can be sought to be used along SBM models or as a substitute, if

deemed necessary.

Lastly, the third step explores the original usage of the SBM framework as a

novelty/outlier detector. The current models do not provide the necessary discrim-

inative power for some high precision tasks nor learn the best similarity metric for

a functional condition state. This previous remark about the discriminative power

of the current models invites two questions: “is it really possible to increase the dis-

criminative power of SBM models?” and, given that the previous question answer

is “yes”, “how can we achieve the necessary discriminative power?”. The study of

the original one-class formulation of SBM models, and their usage as novelty or

outlier detectors [82] should provide the necessary answers to these questions. As

such, another possible area for future work includes applying what we learned about

the SBM as multiclass classifier back into the original formulation and compare it

against other outliers and novelty detectors, such as the ones discussed in [82], under

different databases [91, 92].

104

Bibliography

[1] COBLE, J. B. Merging Data Sources to Predict Remaining Useful Life – an

Automated Method to Identify Prognostic Parameters. Ph.D. Thesis, Uni-

versity of Tennessee, 2010.

[2] PALEM, G. “Condition-based Maintenance Using Sensor Arrays and Telemat-

ics”, International Journal of Mobile Network Communications & Telem-

atics, v. 3, n. 3, pp. 19–28, 2013.

[3] SINGER, R. M., GROSS, K. C., HERZOG, J. P., et al. “Model-based Nuclear

Power Plant Monitoring and Fault Detection: Theoretical Foundations”.

In: Proc. International Conference on Intelligent Systems Applications to

Power Systems, July 1997.

[4] BIEN, J., TIBSHIRANI, R. “Prototype Selection for Interpretable Classifica-

tion”, The Annals of Applied Statistics, v. 5, n. 4, pp. 2403–2424, 2011.

[5] PESTANA-VIANA, D., ZAMBRANO-LÓPEZ, R., DE LIMA, A. A., et al. “The

Influence of Feature Vector on the Classification of Mechanical Faults Us-

ing Neural Networks”. In: Proc. Latin American Symposium on Circuits

and Systems, 2016.

[6] LOPARO, K. A. “Bearings Vibration Data Set, Case Western Reserve Univer-

sity”. http://csegroups.case.edu/bearingdatacenter/home, 2003.

accessed November 25, 2016.

[7] ISO 10303-226:2014(E). Automation Systems and Integration – Product Data

Representation and Exchange. Standard, International Organization for

Standardization, Geneva, CH, March 2014.

[8] HERZOG, J. P., GANDHI, D., NIEMAN, B. Making Decisions About the Best

Technology to Implement. Technical report, Smartsignal/GE Intelligent

Platforms, 2011.

[9] JARDINE, A. K. S., LIN, D., BANJEVIC, D. “A Review on Machinery Di-

agnostics and Prognostics Implementing Condition-based Maintenance”,

105

http://csegroups.case.edu/bearingdatacenter/home

Mechanical Systems and Signal Processing, v. 20, n. 7, pp. 1483–1510,

2006.

[10] LOUPPE, G. Understanding Random Forests: From Theory to Practice. Ph.D.

Thesis, University of Liege, Belgium, 2014.

[11] ABU-MOSTAFA, Y. S., MAGDON-ISMAIL, M., LIN, H.-T. Learning from

Data. US, AMLBook, 2012.

[12] HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J. The Elements of Statistical

Learning. New York, NY, USA, Springer New York, 2001.

[13] VAN DER HEIJDEN, F., DUIN, R. P. W., DE RIDDER, D., et al. Classifi-

cation, Parameter Estimation and State Estimation. UK, John Wiley &

Sons, 2005.

[14] RIFKIN, R., YEO, G., POGGIO, T. “Regularized Least Squares Classifica-

tion”. In: Suykens, Horvath, Basu, et al. (Eds.), Advances in Learning

Theory: Methods, Model and Applications, v. 190, NATO Science Series

III: Computer and Systems Sciences, VIOS Press, chap. 7, pp. 131–154,

2003.

[15] SCHÖLKOPF, B., HERBRICH, R., SMOLA, A. J. “A Generalized Representer

Theorem”. In: Proc. 14th Annual Conference on Computational Learning

Theory and 5th European Conference on Computational Learning Theory,

pp. 416–426. Springer-Verlag, 2001.

[16] POWERS, D. M. W. Evaluation: from Precision, Recall and F-factor to ROC,

Informedness, Markedness and Correlation. Technical report, Flinders

University, Adelaide, Australia, 2007.

[17] LANDGREBE, T. C. W., DUIN, R. P. W. “Efficient Multiclass ROC Approx-

imation by Decomposition via Confusion Matrix Perturbation Analysis”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 30,

n. 5, pp. 810–822, 2008.

[18] CHAI, T., DRAXLER, R. R. “Root Mean Square Error (RMSE) or Mean

Absolute Error (MAE)? – Arguments Against Avoiding RMSE in the

Literature”, Geoscientific Model Development, v. 7, n. 3, pp. 1247–1250,

2014.

[19] KUTNER, M., NACHTSHEIM, C., NETER, J. Applied Linear Regression

Models. Chicago, IL, McGraw-Hill Higher Education, 2003.

106

[20] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., et al. “Scikit-learn:

Machine Learning in Python”, Journal of Machine Learning Research,

v. 12, pp. 2825–2830, 2011.

[21] OLIPHANT, T. E. “Python for Scientific Computing”, Computing in Science

and Engineering, v. 9, n. 3, pp. 10–20, 2007.

[22] VAN DER WALT, S., COLBERT, S. C., VAROQUAUX, G. “The NumPy

Array: A Structure for Efficient Numerical Computation”, Computing in

Science Engineering, v. 13, n. 2, pp. 22–30, 2011.

[23] LI, P., KONG, F., HE, Q., et al. “Multiscale Slope Feature Extraction For Ro-

tating Machinery Fault Diagnosis Using Wavelet Analysis”, Measurement,

v. 46, n. 19, pp. 497–505, 2013.

[24] LIU, J., WANG, W., GOLNARAGHI, F. “An Enhanced Diagnostic Scheme for

Bearing Condition Monitoring”, IEEE Transactions on Instrumentation

and Measurement, v. 59, n. 2, pp. 309–321, 2010.

[25] “MaFaulDa - Machinery Fault Database”. http://www02.smt.ufrj.br/

~offshore/mfs/, 2016. accessed November 22, 2016.

[26] DE LIMA, A. A., PREGO, T. M., NETTO, S. L., et al. “On Fault Classifi-

cation in Rotating Machines Using Fourier Domain Features and Neural

Networks”. In: Proc. Latin American Symposium on Circuits and Sys-

tems, 2013.

[27] BOUDIAF, A., MOUSSAOUI, A., DAHANE, A., et al. “A Comparative Study

of Various Methods of Bearing Faults Diagnosis Using the Case Western

Reserve University Data”, Journal of Failure Analysis and Prevention,

v. 16, n. 2, pp. 271–284, 2016.

[28] SMITH, W. A., RANDALL, R. B. “Rolling Element Bearing Diagnostics Us-

ing the Case Western Reserve University Data: A Benchmark Study”,

Mechanical Systems and Signal Processing, v. 64-65, pp. 100–131, 2015.

[29] GARCIA, S., DERRAC, J., CANO, J., et al. “Prototype Selection for Nearest

Neighbor Classification: Taxonomy and Empirical Study”, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, v. 34, n. 3, pp. 417–

435, 2012.

[30] MITCHELL, T. M. Machine Learning. New York, NY, USA, McGraw-Hill,

Inc., 1997.

107

http://www02.smt.ufrj.br/~offshore/mfs/
http://www02.smt.ufrj.br/~offshore/mfs/

[31] KONONENKO, I., KUKAR, M. Machine Learning and Data Mining. Chich-

ester, UK, Horwood Publishing, 2007.

[32] GRUDZIŃSKI, K., DUCH, W. “SBL-PM: A Simple Algorithm for Selection of

Reference Instances in Similarity Based Methods”. In: Proc. Intelligent

Information Systems, 2000.

[33] GOLUB, G. H., LOAN, C. F. V. Matrix Computations. 3rd ed. Baltimore,

MD, USA, Johns Hopkins University Press, 1996.

[34] MICCHELLI, C. A. “Interpolation of Scattered Data: Distance matrices and

Conditionally Positive Definite Functions”, Constructive Approximation,

v. 2, n. 1, pp. 11–22, 1986.

[35] BASAK, J. “A Least Square Kernel Machine with Box Constraints”. In: Proc.

International Conference on Pattern Recognition, December 2008.

[36] WEGERICH, S. W., WILKS, A. D., PIPKE, R. M. “Nonparametric Modeling

of Vibration Signal Features for Equipment Health Monitoring”. In: Proc.

IEEE Aerospace Conference, v. 7, 2003.

[37] GENTON, M. G. “Classes of Kernels for Machine Learning: a Statistics Per-

spective”, Journal of Machine Learning Research, v. 2, pp. 299–312, 2002.

[38] WEGERICH, S. W. “Similarity-based Modeling of Time Synchronous Aver-

aged Vibration Signals for Machinery Health Monitoring”. In: Proc. IEEE

Aerospace Conference, v. 6, 2004.

[39] WEGERICH, S. W. “Similarity Based Modeling of Vibration Features for Fault

Detection and Identification”, Sensor Review, v. 25, n. 2, pp. 114–122,

2005.

[40] MOTT, J., PIPKE, M. “Similarity-based Modeling of Aircraft Flight Paths”.

In: Proc. IEEE Aerospace Conference, v. 3, 2004.

[41] TOBAR, F. A., YACHER, L., PAREDES, R., et al. “Anomaly Detection in

Power Generation Plants Using Similarity-based Modeling and Multivari-

ate Analysis”. In: Proc. American Control Conference, v. 3, 2011.

[42] GARVEY, J., GARVEY, D., SEIBERT, R., et al. “Validation of On-line Moni-

toring Techniques to Nuclear Plant Data”, Nuclear Engineering and Tech-

nology, v. 39, n. 2, pp. 133–142, 2006.

108

[43] HERZOG, J. P., WEGERICH, S. W., GROSS, K. C., et al. “MSET Modeling of

Crystal River-3 Venturi Flow Meters”. In: Proc. International Conference

on Nuclear Engineering, 1998.

[44] GUO, P., BAI, N. “Wind Turbine Gearbox Condition Monitoring with AAKR

and Moving Window Statistic Methods”, Energies, v. 4, n. 11, pp. 2077–

2093, 2011.

[45] DUCH, W. “Similarity-based Methods: a General Framework for Classification,

Approximation and Association”, Control and Cybernetics, v. 29, n. 4,

pp. 1–30, 2000.

[46] JANKOWSKI, N., GROCHOWSKI, M. “Comparison of Instances Selection

Algorithms I. Algorithms Survey”. In: Proc. International Conference Ar-

tificial Intelligence and Soft Computing, pp. 598–603, Berlin, Heidelberg,

Springer Berlin Heidelberg, 2004.

[47] DEVIJVER, P. A., KITTLER, J. Pattern Recognition: A Statistical Approach.

London, UK, Prentice-Hall, 1982.

[48] CARDOT, H., CÉNAC, P., ZITT, P.-A. “Efficient and Fast Estimation of

the Geometric Median in Hilbert Spaces with an Averaged Stochastic

Gradient Algorithm”, Bernoulli, v. 19, n. 1, pp. 18–43, 2013.

[49] MARCHETTE, D. “Class Cover Catch Digraphs”, WIREs Comput. Stat., v. 2,

n. 2, pp. 171–177, 2010.

[50] KÖNEMANN, J., PAREKH, O., SEGEV, D. “A Unified Approach to Approxi-

mating Partial Covering Problems”, Algorithmica, v. 59, n. 4, pp. 489–509,

2011.

[51] RANDALL, R. B., ANTONI, J. “Rolling Element Bearing Diagnostics – A

Tutorial”, Mechanical Systems and Signal Processing, v. 25, n. 2, pp. 485–

520, 2011.

[52] ZHOU, J. H., WEE, L., ZHONG, Z. W. “A Knowledge Base System for Rotary

Equipment Fault Detection and Diagnosis”. In: Proc. Control Automation

Robotics Vision, 2010.

[53] RAUBER, T. W., BOLDT, F. D., VAREJÃO, F. M. “Heterogeneous Fea-

ture Models and Feature Selection Applied to Bearing Fault Diagnosis”,

Mechanical Systems and Signal Processing, v. 62, n. 1, pp. 637–646, 2015.

109

[54] YANG, B., HAN, T., AN, J. “ART–KOHONEN Neural Network for Fault

Diagnosis of Rotating Machinery”, Mechanical Systems and Signal Pro-

cessing, v. 18, n. 3, pp. 645–657, 2004.

[55] LI, B., ZHANG, P., LIU, D., et al. “Feature Extraction for Rolling Element

Bearing Fault Diagnosis Utilizing Generalized S Transform and Two-

dimensional Non-negative Matrix Factorization”, Journal of Sound and

Vibration, v. 330, n. 10, pp. 2388–2399, 2011.

[56] WU, S.-D., WU, P.-H., WU, C.-W., et al. “Bearing Fault Diagnosis Based on

Multiscale Permutation Entropy and Support Vector Machine”, Entropy,

v. 14, n. 8, pp. 1343–1356, 2012.

[57] LI, Y., WANG, X., WU, J. “Fault Diagnosis of Rolling Bearing Based on

Permutation Entropy and Extreme Learning Machine”. In: Proc. Chinese

Control and Decision Conference, 2016.

[58] “SpectraQuest, Inc.” http://www.http://spectraquest.com/, 2016. ac-

cessed November 27, 2016.

[59] BREIMAN, L. “Random Forests”, Machine Learning, v. 45, n. 1, pp. 5–32,

2001.

[60] HART, P. E. “The Condensed Nearest Neighbor Rule”, IEEE Transactions on

Information Theory, v. 14, n. 3, pp. 515–516, 1968.

[61] WILSON, D. L. “Asymptotic Properties of Nearest Neighbor Rules Using

Edited Data”, IEEE Transactions on Systems, Man, and Cybernetics,

v. 2, n. 3, pp. 408–421, 1972.

[62] VINNEM, J.-E. “Lessons from Macondo Accident”. In: Offshore Risk Assess-

ment vol 1.: Principles, Modelling and Applications of QRA Studies, pp.

165–177, London, UK, Springer London, 2014.

[63] TUKEY, J. W. Exploratory Data Analysis. Reading, MA, Addison-Wesley,

1977.

[64] CASELLA, G., BERGER, R. Statistical Inference. 2nd ed. Pacific Grove, CA,

USA, Duxbury Press, 2001.

[65] MEINSHAUSEN, N., BÜHLMANN, P. “High Dimensional Graphs and Vari-

able Selection with the Lasso”, The Annals of Statistics, v. 34, n. 3,

pp. 1436–1462, 2006.

110

http://www.http://spectraquest.com/

[66] BECKER, H. A Survey of Correlation Clustering. Technical report, Columbia

University, 2005.

[67] DEZA, M. M., DEZA, E. Encyclopedia of Distances. Berlin, Heidelberg,

Springer Berlin Heidelberg, 2009.

[68] ZIMEK, A. Correlation Clustering. D.Sc. Thesis, Ludwig-Maximilians-

Universität München, 2008.

[69] MURTAGH, F., LEGENDRE, P. “Ward’s Hierarchical Agglomerative Cluster-

ing Method: Which Algorithms Implement Ward’s Criterion?” Journal

of Classification, v. 31, n. 3, pp. 274–295, 2014.

[70] ENDERS, W. Applied Econometric Time Series. New York, NY, USA, Wiley,

1995.

[71] BERGMEIR, C., BENÍTEZ, J. M. “On the Use of Cross-validation for Time

Series Predictor Evaluation”, Information Sciences, v. 191, pp. 192–213,

2012.

[72] KOLENCE, K. W. “The Software Empiricist”, ACM SIGMETRICS Perfor-

mance Evaluation Review, v. 2, n. 2, pp. 31–36, 1973.

[73] SEVERANCE, C. “JavaScript: Designing a Language in 10 Days”, Computer,

v. 45, pp. 7–8, 2011.

[74] FLANAGAN, D. JavaScript: The Definitive Guide. 6th ed. , O’Reilly Media,

Inc., 2011.

[75] “React”. https://reactjs.org/, 2018. accessed May 13, 2018.

[76] “Redux”. https://redux.js.org/, 2018. accessed May 13, 2018.

[77] “Material-UI”. https://github.com/mui-org/material-ui/, 2018. accessed

May 13, 2018.

[78] “Recharts”. https://github.com/recharts/recharts/, 2018. accessed May

13, 2018.

[79] KULIS, B. “Metric Learning: A Survey”, Foundations and Trends in Machine

Learning, v. 5, n. 4, pp. 287–364, 2013.

[80] YANG, L., JIN, R. Distance Metric Learning: A Comprehensive Survey. Tech-

nical report, Michigan State Universiy, 2006.

111

https://reactjs.org/
https://redux.js.org/
https://github.com/mui-org/material-ui/
https://github.com/recharts/recharts/

[81] TAX, D. M. J. One-Class Classifications: Concept Learning in the Absence of

Counter-examples. Ph.D. Thesis, Technische Universiteit Delft, Nether-

lands, 2001.

[82] PIMENTEL, M. A., CLIFTON, D. A., CLIFTON, L., et al. “A Review of

Novelty Detection”, Signal Processing, v. 99, pp. 215–249, 2014.

[83] DODGE, Y. The Oxford Dictionary of Statistical Terms. 6th ed. Oxford, UK,

Oxford University Press, 2006.

[84] FIELDING, R. T. Architectural Styles and the Design of Network-based Soft-

ware Architectures. Ph.D. Thesis, University of California, Irvine, 2000.

[85] STONEBRAKER, M., ROWE, L. A. “The Design of POSTGRES”. In: Proc.

ACM SIGMOD International Conference on Management of Data, June

1986.

[86] “Docker”. https://www.docker.com/, 2018. accessed May 13, 2018.

[87] “Flask”. http://flask.pocoo.org/, 2018. accessed May 19, 2018.

[88] ROSSUM, G. V. “Python for Unix/C Programmers”. In: Proc. of the NLUUG

najaarsconferentie. Dutch UNIX users group, 1993.

[89] TAGAWA, T., TADOKORO, Y., YAIRI, T. “Structured Denoising Autoen-

coder for Fault Detection and Analysis”. In: Proc. Asian Conference on

Machine Learning, v. 39, 2014.

[90] BELLET, A., HABRARD, A., SEBBAN, M. “A Survey on Metric Learning for

Feature Vectors and Structured Data”, CoRR, v. abs/1306.6709, pp. 287–

364, 2013.

[91] CAMPOS, G. O., ZIMEK, A., SANDER, J., et al. “On the Evaluation of

Unsupervised Outlier Detection: Measures, Datasets, and an Empirical

Study”, Data Mining and Knowledge Discovery, v. 30, n. 4, pp. 891–927,

2016.

[92] POZZOLO, A. D., CAELEN, O., JOHNSON, R. A., et al. “Calibrating Proba-

bility with Undersampling for Unbalanced Classification”. In: Proc. Sym-

posium Series on Computational Intelligence, 2015.

112

https://www.docker.com/
http://flask.pocoo.org/

Appendix A

Conditional Maintenance System

Manual

A.1 Introduction

This is a user manual for the web service. It should be a reference for the current

system, allowing a fast understanding of the interface and its functionalities. The

application, name “SBM Conditional Maintenance System” or “SBM Learner” is a

web-application made in Flask [87] and React [75], running at ports 8000 (backend)

and 3000 (web frontend) of the host machine. These values are configurable and, if

you are using Docker [86], you can also launch the service in your local host.

This manual is divided by sections where each section introduces a window and

its functionality, in a step-by-step manner. Currently, the proposed system has four

windows: the similarity score window, presenting historical scores for each type of

event; the event window, where each detected event can be reviewed and managed;

the prototype window, which allows visualizing, editing, and deleting prototypes;

and the signal window, describing the registered signals and their importance. Each

window has it own path in the application path (http://<host-address>:3000/ 1),

as described in Table A.1.

Table A.1: Paths (url) for each window in the application.

Window Path
Similarity scores http://<host-address>:3000/

Events http://<host-address>:3000/events

Prototypes http://<host-address>:3000/prototypes

Signals http://<host-address>:3000/signals

1“<host-address>” is a placeholder for the host machine address. For example, if testing the
application using Docker, it should be the local host address http://localhost:3000/.

113

http://<host-address>:3000/
http://<host-address>:3000/
http://<host-address>:3000/events
http://<host-address>:3000/prototypes
http://<host-address>:3000/signals
http://localhost:3000/

F
ig

u
re

A
.1

:
S
im

il
ar

it
y

sc
or

e
w

in
d
ow

.
It

p
re

se
n
ts

,
at

ea
ch

in
st

an
t,

ea
ch

k
n
ow

n
co

n
d
it

io
n

sc
or

e
gi

ve
n

b
y

th
e

d
et

ec
ti

on
sy

st
em

.

114

Following Table A.1, Section A.2 presents the similarity window, its components

and how the similarity scores are computed. Section A.3 describes the event win-

dow, its components and functionalities, selecting and editing components. In a

similar manner, the prototype window components and functionalities, selecting,

visualizing, editing, and deleting prototypes, are discussed in Section A.4. Lastly,

Section A.5 presents the signal window and its components.

A.2 Similarity score window

The first window of the application. As depicted in Figure A.1, it is composed of

two elements: a navigation menu, at the left size of Figure A.1, and show in detail

in Figure A.2; and a chart presenting the similarities scores over time for each class.

Figure A.2: Application navigation menu with a brief description of each window.

The navigation menu, depicted in Figure A.2, is always visible during the ap-

plication execution, allowing a user to move between different windows anytime.

It also shows a brief description of each window function below the window name,

which serves as a small guide of the functionalities. Each entry in the menu is a

link to the respective window. Thus to change between windows the user only has

to click at the chosen window entry in the menu.

115

A.2.1 Similarity score chart

The second component of the similarity score window, the similarity score chart

allows visualizing historical scores data for each known class. Depicted in Figure A.3,

the similarity score chart shows, for each known class, its similarity score along

time. The chart is composed of a legend, a list of known classes and their graphical

representation in the chart; two axis, the similarity score axis, always between 0 and

1, and the timestamp axis, in minutes; and the scores values for each class. This

chart enables the user to visualize possible changes in the equipment behavior along

time.

Figure A.3: Similarity score chart with each known class similarity score.

Also, as shown in Figure A.3, if the user hovers the mouse over the chart, it

presents details about its data points, including the nearest data point timestamp

and similarity score values.

A.2.2 Similarity score computation

The similarity scores computation follows an online learning SBM algorithm that

can be divided in 5 steps:

1. Initialization: since the online algorithm works almost in an unsupervised

116

fashion, it assumes that the first sample comes from a healthy state to initialize

P0 ← {x0} . (A.1)

Therefore, when this assumption fails the operator should correct the system

with the correct class;

2. Prediction error : Given a set of prototypes Pn at instant n, during the pre-

diction step the error between the current sample xn and each prototype is

computed as follows

enp =
[
|xn1 − xp1| |xn2 − xp2| . . . |xnm − xpm|

]T
, p ∈ P ; (A.2)

3. Instance similarity : the prediction error enp for each prototype is used as input

for the similarity function fn (•), which follows a logistic regression model that

computes the similarity as the probability of any two points to belong in the

same set as

snpc =
{

1 + e[d2Ac
(xn,xp)−µc]

}−1
, (A.3)

where parameter µc represents the distance threshold separating if points are

in the same set, parameter Ac ∈ Rm×m is the distance metric matrix, and

d2Ac
(xi,xj) is

d2Ac
(xi,xj) = (xi − xj)

T Ac (xi − xj) . (A.4)

4. Predicted similarity and class : computed as

gnc = fn (|xn − x̂nc|) , (A.5)

c∗ = arg max
c
{gnc}. (A.6)

The gnc are the scores plotted in the similarity scores plot for each class c.

5. Update: Lastly, the update strategy first tries to add a new prototypes when

necessary, then updates the similarity function. The prototype insertion is

made using the following heuristic:

Pn ← Pn−1 ∪ {xn} if


Pn−1 < Pmax;

∧ gn ≤ τ ;

∧ gn−1 > gn.

(A.7)

where Pn = |Pn| and Pmax are the current number of prototypes and maxi-

mum allowed number of prototypes, respectively, and gn = maxc{gnc}. The

117

threshold τ is the minimum similarity and in this work is empirically set as

τ = 0.7.

Then the similarity function Ac and µc parameters are updated by computing

their gradients assuming that the chosen label c∗ is the correct class, with

ynpc =

+1 if c = c∗;

−1 otherwise.
(A.8)

and

µn+1
c = µnc +

∑
ynpc (snpc − 1) , (A.9)

An+1
c = An

c −
∑

ynpc (snpc − 1) (xn − xp) (xn − xp)
T − γ2An

c . (A.10)

A.3 Event window

The event window, shown in Figure A.4, has the objective of allowing a user to

select, review, and edit detected events. It is composed of an event info dialog,

which presents information about the chosen event and allows its selection and

edition; and the similarity scores charts, which allows visualizing how the event

developed by presenting the similarity scores during the event occurrence. The next

sections describes what happens when a new event is detected and possible actions

of an operator in this case: selecting, review, and editing the occurrence.

A.3.1 Event occurrence

An event occurs if:

• a new prototype is detected. In this case it is considered a new anomalous

event; or

• a non-healthy event achieves the greatest score. In this case the fault is iden-

tified as the event with the greatest score.

Non-healthy events include fault, shutdown, or unknown events. Fault events are

the ones identified by an operator as fault or failure states. Shutdown events are

those events where the equipment was turned off or is in stand-by but the sensors

and the detection system where not turned off.

Lastly, unknown events are the ones which produced a new prototype but were

not reviewed by a human operator, thus were not identified as belonging to any of the

other types. These events should be identified and edited when detected. otherwise,

118

F
ig

u
re

A
.4

:
E

ve
n
t

w
in

d
ow

.
It

al
lo

w
s

a
u
se

r
to

se
le

ct
ed

a
d
et

ec
te

d
ev

en
t,

ed
it

,
an

d
re

v
ie

w
it

s
h
is

to
ri

ca
l

d
at

a.

119

Figure A.5: Events info dialog. It shows event description and allows event selection
and edition.

they could produce erratic system behavior, as each following new prototype could

be assigned to the same event type.

After an event is detected, it is registered with an id for future review and edition.

An event can be inspected by means of the event info dialog, depicted in Figure A.5.

This dialog presents the following fields:

• Event id : current selected event id, an unique integer identifying the event.

This a selection field that can be used to chose between any detected event;

• Event type: selected event type. This field is not selectable, but changes with

the selected event. Only four options are allowed in this field: healthy, repre-

senting a healthy state; shutdown, representing any state where the equipment

was not working; faulty, representing a faulty equipment condition; and un-

known, where the condition needs to be identified by an operator.

• Event start : timestamp where the selected event occurrence was first detected

by the system;

• Event end : timestamp where the selected event stopped being detected by the

system;

• Type description: the event type description.

120

Figure A.6: Event selection. Current selected event has id 1.

At the bottom of the event dialog is the edit button which opens the event type

edition dialog, allowing a user to change the selected event type to other known

type. This action is discussed at the next section.

A.3.2 Selecting an event

To select an event just click on the current event id number. This action opens a

drop-down menu presenting all the current detected events represented by their id

numbers, as shown in Figure A.6. The user should either click on the desired id

number or move between the numbers using the keyboard arrows (↑ to go up and ↓
to go down).

A.3.3 Editing an event

The process of editing an event is depicted in Figure A.7. First, the user must

select the event which should be edited by following the selection procedure shown

in Figure A.6.

After that, the user should click on the edit button (Figure A.7a). This action

opens the type edition dialog, illustrated by Figure A.7b. There the user can select

any previously known state or select the New state and confirm or cancel this action

by clicking in Yes or No, respectively. If the selection is confirmed and a previously

known event state is selected, then no further action is required and the event is

edited to the new event type.

However, if the New event option is selected, then a new dialog, depicted in

Figure A.7c opens. This dialog has a text input field where the user can write the

new event name and radio buttons with the four event types. After writing the

event name and the type, the user can either confirm this edition (clicking on Yes)

or cancel the action (clicking on No). If the action is confirmed, the new event class

is submitted and the event is edited to this class.

121

(a) Click on the
edit button.

(b) Select the correct event class. (c) If New event is selected, one
most submit the new event name
and type.

Figure A.7: Event edition procedure. Each step is detailed in text.

A.4 Prototype window

The prototype window enables the user to review, visualize, edit or even delete

a prototype. A prototype is a representative sample from the observed samples

stored by the system given its quality into assisting detecting similar samples. Since

the prototype occurred during a given state of the equipment, similar samples are

assumed to belong to the same condition.

Hence, the system has at least one prototype for each known condition. Since the

prototypes are representative of the condition, an experienced operator could use

information from the prototype to correct the system decision, to assert the current

condition, and to delete wrong prototypes. The prototype windows, depicted in

Figure A.8, facilitates these tasks.

As with the event window, the prototype window is composed of two elements:

the prototype description, which presents information about a chosen prototype;

and a radar chat of the prototype attributes.

A.4.1 New prototype detection

A new prototype is detected when:

• if the maximum number of prototypes was not reached;

122

F
ig

u
re

A
.8

:
P

ro
to

ty
p

e
w

in
d
ow

.
It

al
lo

w
s

to
se

le
ct

a
p
ro

to
ty

p
e

fo
r

v
is

u
al

iz
at

io
n
,
d
is

p
la

y
in

g
re

le
va

n
t

in
fo

rm
at

io
n
,
an

d
fo

r
ed

it
io

n
or

d
el

et
io

n
.

123

• the maximum similarity between all current classes is below a given threshold;

• and its smaller than the previous maximum similarity, indicating a consistent

reduction in similarity.

If all these conditions are satisfied, then it is assumed that the current state is

not being correctly represented by any of the prototypes and should be its own

representative.

Since this occurrence also means that no event is sufficiently similar to the current

condition of the equipment, a new event is triggered and labeled as Unknown. In case

of a false positive, the operator should ignore this event and delete the prototype.

Otherwise, the operator should edit the event and the prototype to their correct

condition.

Figure A.9: Prototypes description dialog. It shows prototype description and allows
prototype selection, edition and deletion.

A detected prototype can be reviewed, edited, and deleted using the prototype

description dialog, shown in Figure A.9. This dialog presents the following fields:

• Prototype id : current selected prototype unique integer id. Can be used to

select a prototype;

• Prototype event type: Event type related with the selected prototype. Nor-

mally the condition that occurred when the prototype was identified;

124

• Detection timestamp: Moment when the selected prototype was detected;

• Prototype event description: Description of the event associated with the se-

lected prototype.

At the bottom of this dialog there are two buttons: the edit button, which allows

editing the event related with the selected prototype; and the deletion button, which

allows deleting a prototype, mostly likely a false positive. The procedures related

with each button are described in the next sections.

A.4.2 Selecting a prototype

This procedure is very similar the event selection procedure. Just click on the current

prototype id number. This action opens a drop-down menu with all prototype ids,

as illustrated by Figure A.10. The user should either click on the desired id number

or move between the numbers using the keyboard arrows (↑ to go up and ↓ to go

down).

Figure A.10: Prototype selection. Current selected event has id 7.

A.4.3 Editing a prototype

Editing a prototype follows almost the same logic of editing an event, with each

step described in Figure A.11. First, the user selects the target prototype. Then,

the user should click on the edit button (Figure A.11a). After this step the user can

125

select the correct event class using the drop-down menu, as shown in Figure A.11b.

After choosing between any of the known event classes or New, the user can either

confirm the decision by clicking on Yes, or canceling the edition by clicking in No.

If the edition is confirmed and New is not selected, no further action is required.

Otherwise, the new event dialog opens, as shown in Figure A.11c.

This new event dialog requires the same actions as it counterpart presented in

the event edition procedure and produces the same results. It has a text input field

for the new event name and radio buttons with the event type to be selected. After

the form is completely filled, the user can either confirm this new event by clicking

on Yes or cancel the action by clicking on No. If the edition is confirmed, the new

event class is submitted and the selected prototype becomes associated with this

new class.

(a) Click on the
edit button.

(b) Select the correct prototype class. (c) If New event is selected, one
most submit the new event name
and type.

Figure A.11: Prototype edition procedure. Each step is detailed in text.

A.4.4 Removing an prototype

The steps to delete a prototype are shown in Figure A.12. This procedure is very

straightforward. First the user clicks on the delete button (Figure A.12a). This

opens the deletion dialog (Figure A.12b), warning the user about the consequences

of a deletion, which is an irreversible act, and asking for confirmation. If the user

126

clicks on Yes the prototype is permanent deleted. Otherwise, the action is canceled

and nothing happens.

(a) Click on the delete
button.

(b) Confirm or cancel the deletion.

Figure A.12: Deletion procedure. This procedure is irreversible and should be made
with caution.

A.4.5 Prototype radar chart

The prototype radar chart, depicted in Figure A.13, presents each attribute of a

single prototype at the same chart, allowing a fast visualization, leading to a fast

identification of problems, anomalous characteristics, and incorrectly identified pro-

totype. Extra information about each attribute can be visualized by hovering the

mouse over the chart.

A.5 Signal window

The application’s fourth and last window, this window enables the user to review the

registered signals and to visualized the measured signal importance. In the future, it

should have options to add, remove, or edit registered signals or their descriptions.

However, these functionalities were only implemented in the backend and will be

implemented in the future. Depicted in Figure A.14, it is composed of a table of

registered signals and the signal importance pie chart.

A.5.1 Registered signal table

The registered signals table, shown in Figure A.15, presents the list of current reg-

istered signals, including their internal id, name, SI unit, and description. It allows

selecting the size of the viewable list without between 5, 10 and 25 rows using the

selector presented in Figure A.16. The remaining signals can be viewed by pagi-

nating the list using the page selector show in Figure A.17. This component shows

the total number of signals and allows moving between pages. In the future, these

component should also allow sorting and selecting components from the table.

127

Figure A.13: Radar chart with mouse over the OutputPressure point.

A.5.2 Signals importance chart

The signals import pie chart, shown in Figure A.18, is the represents the current

relative importance of each signal in the current detection, making it useful for

detecting possible problems in the sensors, as a defective sensor would either gain a

higher importance or become irrelevant.

The importance value are computed using an approach similar to the permutation

importance used in random forests [59]: given the current sample xn, we produce,

for each prototype xp and error enp, a perturbed version where a single measurement

at m is permuted by its original value with random Gaussian noise σm, producing

a new error

êmnp = enp + 1mσm, (A.11)

where 1m denotes the vector with a 1 in the m-th coordinate and 0’s elsewhere.

Then, for each measurement m we can compute the deviation between the original

gnc and the perturbed gmnc as

împmc = |gnc − gmnc| , (A.12)

128

F
ig

u
re

A
.1

4:
S
ig

n
al

w
in

d
ow

.
T

h
is

w
in

d
ow

s
sh

ow
s

th
e

li
st

of
re

gi
st

er
ed

si
gn

al
s

an
d

th
ei

r
cu

rr
en

t
re

la
ti

ve
im

p
or

ta
n
ce

as
a

p
ie

ch
ar

t.

129

Figure A.15: Registered signal table. It presents a list of the current registered
signals.

130

Figure A.16: Table number of rows selector. It allows selecting between 5, 10 and
25 signals per page.

Figure A.17: Page selector with number of signals in current page. Can be used to
visualize all the list by paginating.

and the signal relative importance as

impmc =
împmc∑
kc împkc

. (A.13)

Since the sum of relative importances is equal to 1, we can convert each signal

importance into a percentage by multiplying each impmc by 100 before plotting in

the signal importance pie chart (Figure A.18). Only the importance give the current

detected class is plotted.

131

Figure A.18: Signal importance pie chart. It shows the relative importance of each
registered signal given the equipment current condition.

132

	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Introduction
	Outline and contributions
	Publications

	Condition-based maintenance
	Introduction
	Learning from data
	Proposed system architecture
	Data preprocessing
	State monitoring
	Fault detection
	Fault diagnosis

	Assessment methodology
	Evaluation metrics
	Model selection and assessment

	Implementation details
	Prognosis library
	Study cases

	Conclusion

	Similarity-based methods
	Introduction
	Similarity functions
	Similarity-based modeling
	Original SBM training phase

	Proposed SBM enhancements
	Multiclass similarity-based modeling
	Proposed offline training procedure

	Conclusion

	Rotating-machines fault diagnosis
	Introduction
	Databases
	MaFaulDa
	CWRU bearing database

	Experimental methodology
	Feature extraction

	Experimental results and discussion
	Validation results
	Results on the testing sets
	Comparison with other prototype selection methods
	CWRU results and discussion
	Comparison with previous works

	Conclusion

	Failure detection in an oil-platform pump system
	Introduction
	Database
	Methodology
	Data preprocessing
	Exploratory data analysis
	Cross-validation procedure

	Results and discussion
	Cross-validation results
	Results on the testing set

	Conclusion

	Fault detection system
	Introduction
	User interface
	Similarity score window
	Event window
	Prototype window
	Signal window
	Web interface framework

	Data layer
	Similarity function learning
	Online SBM
	Data access endpoints
	Data processing and storage flow

	Conclusion

	Conclusion
	Discussion
	Future work

	Bibliography
	Conditional Maintenance System Manual
	Introduction
	Similarity score window
	Similarity score chart
	Similarity score computation

	Event window
	Event occurrence
	Selecting an event
	Editing an event

	Prototype window
	New prototype detection
	Selecting a prototype
	Editing a prototype
	Removing an prototype
	Prototype radar chart

	Signal window
	Registered signal table
	Signals importance chart

