
ON DATA-SELECTIVE LEARNING

Hamed Yazdanpanah

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários

à obtenção do t́ıtulo de Doutor em Engenharia

Elétrica.

Orientadores: Paulo Sergio Ramirez Diniz

Markus Vinicius Santos Lima

Rio de Janeiro

Março de 2018

ON DATA-SELECTIVE LEARNING

Hamed Yazdanpanah

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. Paulo Sergio Ramirez Diniz, Ph.D.

Prof. Markus Vinicius Santos Lima, D.Sc.

Prof. Marcello Luiz Rodrigues de Campos, Ph.D.

Prof. José Antonio Apolinário Jr., D.Sc.

Prof. Mário Sarcinelli Filho, D.Sc.

Prof. Cássio Guimarães Lopes, Ph.D.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2018

Yazdanpanah, Hamed

On Data-Selective Learning/Hamed Yazdanpanah. –

Rio de Janeiro: UFRJ/COPPE, 2018.

XXVI, 149 p.: il.; 29, 7cm.

Orientadores: Paulo Sergio Ramirez Diniz

Markus Vinicius Santos Lima

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2018.

Referências Bibliográficas: p. 136 – 149.

1. Adaptive filtering. 2. Data-selective adaptive

filtering. 3. Set-membership filtering. 4. Robustness.

5. Quaternion. 6. Trinion. 7. Partial-update. 8.

Sparsity. 9. Feature LMS algorithm. 10. Computational

complexity. I. Diniz, Paulo Sergio Ramirez et al.

II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. T́ıtulo.

iii

To my parents, Mohammad and Mina, and Ana Clara

for their love, attention, and support.

iv

Acknowledgments

I would like to express my sincere gratitude to my advisor, Professor Paulo S. R. Diniz,

for the continuous support, guidance, patience, motivation, and immense knowledge.

Specially, I would like to thank him for his generous support and patience during

my illness that lasted for about one year. Also, his extreme competence and friendly

comprehension inspire me to be a better professional and friend. In fact, he is a

remarkable example of a Brazilian. I could not have imagined having a better advisor

for my Ph.D. study.

Also, I would like to thank Professor Markus V. S. Lima, my other advisor. He

helped me for all details of my thesis. In fact, I am grateful for having his guidance

during my study. He was always keen to know what I was doing and how I was

proceeding. He always inspired me to be a serious and diligent researcher. I thank

him for being not only my advisor, but also a friend.

Beside my advisors, I would like to thank my thesis committee: Prof. Marcello L.

R. de Campos, Prof. José A. Apolinário Jr., Prof. Mário S. Filho, and Prof. Cássio

G. Lopes for their encouragement, insightful comments and suggestions. My thesis

benefited from their valuable comments. Moreover, I would like to express my sincere

gratitude to Prof. José A. Apolinário Jr. for his invaluable comments on Chapter 7 of

the text.

My sincere thanks also goes to Prof. Sergio L. Netto and Prof. Eduardo A. B. da

Silva for offering me a research project in their group. I have learned a lot from them

during the project.

I would like to thank the professors of the Programa de Engenharia Elétrica (PEE)

who have contributed to my education. In particular, I am grateful to Prof. Wallace

A. Martins for the courses he taught.

Also, I would like to thank the staff of the SMT Lab. I am particularly grateful to

Michelle Nogueira for her support and assistance during my Ph.D. study. Moreover,

I thank the university staff, in particular, Daniele C. O. da Silva and Mauricio de

v

Carvalho Machado for their help.

My sincere thanks also goes to Camila Gussen and all friends of the SMT Lab.

They make the SMT Lab a pleasant and collaborative workplace. Also, I would like

to thank Prof. Tadeu Ferreira for his special attention and help.

A very special gratitude goes out to Coordenação de Aperfeiçoamento de Pessoal

de Ńıvel Superior (CAPES), Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-

nológico (CNPq), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro

(FAPERJ) for the financial support.

I am really grateful to my lovely girlfriend, Ana Clara, and her family for all their

love, patience, and help. Her love motivates me to continue my studies in Brazil and to

choose this beautiful country as my home. Her continuous encouragement, unfailing

emotional support, and permanent attention played fundamental roles throughout my

years of study.

I am deeply grateful to my parents for giving birth to me at the first place and sup-

porting me spiritually throughout my life. I can never pay them back the sacrifice they

made for me. My father, Mohammad Yazdanpanah, and my mother, Mina Alizadeh,

have provided me through moral and emotional support during my education. Finally,

I must express my very profound gratitude to my brother and my sister for providing

me with support and continuous encouragement through the process of researching

and writing this thesis. This accomplishment would not have been possible without

my family. Thank you.

vi

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

APRENDIZADO SOB SELEÇÃO DE DADOS

Hamed Yazdanpanah

Março/2018

Orientadores: Paulo Sergio Ramirez Diniz

Markus Vinicius Santos Lima

Programa: Engenharia Elétrica

Filtros adaptativos são aplicados em diversos aparelhos eletrônicos e de comu-

nicação, como smartphones, fone de ouvido avançados, DSP chips, antenas inteligentes

e sistemas de teleconferência. Eles também têm aplicação em várias áreas como iden-

tificação de sistemas, equalização de canal, cancelamento de eco, cancelamento de

interferência, previsão de sinal e mercado de ações. Desse modo, reduzir o consumo

de energia de algoritmos adaptativos tem importância significativa, especialmente em

tecnologias verdes e aparelhos que usam bateria.

Nesta tese, filtros adaptativos com seleção de dados, em particular filtros adap-

tativos da famı́lia set-membership (SM), são apresentados para cumprir essa missão.

No presente trabalho objetivamos apresentar novos algoritmos, baseados nos clássicos,

a fim de aperfeiçoar seus desempenhos e, ao mesmo tempo, reduzir o número de

operações aritméticas exigidas. Dessa forma, primeiro analisamos a robustez dos fil-

tros adaptativos SM clássicos. Segundo, estendemos o SM aos números trinions e

quaternions. Terceiro, foram utilizadas também duas famı́lias de algoritmos, SM fil-

tering e partial-updating, de uma maneira elegante, visando reduzir energia ao máximo

posśıvel e obter um desempenho competitivo em termos de estabilidade. Quarto, a

tese propõe novos filtros adaptativos baseado em algoritmos least-mean-square (LMS)

e mı́nimos quadrados recursivos com complexidade computacional baixa para espaços

esparsos. Finalmente, derivamos alguns algoritmos feature LMS para explorar a es-

parsidade escondida nos parâmetros.

vii

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

ON DATA-SELECTIVE LEARNING

Hamed Yazdanpanah

March/2018

Advisors: Paulo Sergio Ramirez Diniz

Markus Vinicius Santos Lima

Department: Electrical Engineering

Adaptive filters are applied in several electronic and communication devices like

smartphones, advanced headphones, DSP chips, smart antenna, and teleconference

systems. Also, they have application in many areas such as system identification,

channel equalization, noise reduction, echo cancellation, interference cancellation, sig-

nal prediction, and stock market. Therefore, reducing the energy consumption of the

adaptive filtering algorithms has great importance, particularly in green technologies

and in devices using battery.

In this thesis, data-selective adaptive filters, in particular the set-membership (SM)

adaptive filters, are the tools to reach the goal. There are well known SM adaptive

filters in literature. This work introduces new algorithms based on the classical ones

in order to improve their performances and reduce the number of required arithmetic

operations at the same time. Therefore, firstly, we analyze the robustness of the

classical SM adaptive filtering algorithms. Secondly, we extend the SM technique

to trinion and quaternion systems. Thirdly, by combining SM filtering and partial-

updating, we introduce a new improved set-membership affine projection algorithm

with constrained step size to improve its stability behavior. Fourthly, we propose

some new least-mean-square (LMS) based and recursive least-squares based adaptive

filtering algorithms with low computational complexity for sparse systems. Finally, we

derive some feature LMS algorithms to exploit the hidden sparsity in the parameters.

viii

Contents

List of Figures xiii

List of Tables xvi

List of Symblos xviii

List of Abreviations xxiii

1 Introduction 1

1.1 Motivations . 2

1.2 Targets . 3

1.3 Thesis Contributions . 4

1.4 Notation . 6

2 Conventional and Set-Membership Adaptive Filtering Algorithms 7

2.1 Point Estimation Adaptive Filtering

Algorithms . 8

2.1.1 Least-mean-square algorithm 8

2.1.2 Normalized LMS algorithm . 9

2.1.3 Affine projection algorithm . 9

2.1.4 Recursive least-squares algorithm 9

2.2 Set-Membership Adaptive Filtering

Algorithms . 10

2.2.1 Set-membership filtering . 10

2.2.2 Set-membership normalized LMS algorithm 12

2.2.3 Set-membership affine projection algorithm 14

2.3 Estimating γ in the Set-Membership

Algorithm for Big Data Application . 16

ix

2.4 Conclusions . 18

3 On the Robustness of the Set-Membership Algorithms 19

3.1 Robustness Criterion . 20

3.2 The Set-Membership Algorithms . 21

3.2.1 The SM-NLMS Algorithm . 21

3.2.2 The SM-AP Algorithm . 22

3.3 Robustness of the SM-NLMS Algorithm 22

3.3.1 Robustness of the SM-NLMS algorithm 22

3.3.2 Convergence of {‖w̃(k)‖2} with unknown noise bound 27

3.3.3 Convergence of {‖w̃(k)‖2} with known noise bound 28

3.3.4 Time-varying γ(k) . 29

3.4 Robustness of the SM-AP Algorithm 30

3.4.1 Robustness of the SM-AP algorithm 31

3.4.2 The SM-AP algorithm does not diverge 35

3.5 Simulations . 36

3.5.1 Confirming the results for the SM-NLMS algorithm 37

3.5.2 Confirming the results for the SM-AP algorithm 39

3.6 Conclusion . 44

4 Trinion and Quaternion Set-Membership Affine Projection Algo-

rithms 46

4.1 Quaternions . 48

4.2 Trinions . 52

4.3 Set-Membership Filtering (SMF) in T and H 53

4.4 SMTAP Algorithm . 54

4.5 SMQAP Algorithm . 59

4.6 Application of quaternion-valued adaptive

algorithms to adaptive beamforming 62

4.7 Simulations . 64

4.7.1 Scenario 1 . 64

4.7.2 Scenario 2 . 67

4.8 Conclusions . 68

x

5 Improved Set-Membership Partial-Update Affine Projection Algo-

rithm 70

5.1 Set-Membership Partial-Update Affine Projection Algorithm 72

5.2 Improved Set-membership Partial-Update Affine Projection Algorithm 74

5.3 Simulations . 77

5.3.1 Scenario 1 . 77

5.3.2 Scenario 2 . 79

5.4 Conclusions . 79

6 Adaptive Filtering Algorithms for Sparse System Modeling 81

6.1 Sparsity-Aware SM-AP Algorithm . 83

6.2 Set-Membership Proportionate AP Algorithm 85

6.3 A Simple Set-Membership Affine Projection Algorithm 87

6.3.1 Derivation of the S-SM-AP algorithm 87

6.3.2 Discussion of the S-SM-AP algorithm 89

6.3.3 The Improved S-SM-AP (IS-SM-AP) algorithm 92

6.3.4 The S-AP and the IS-AP algorithms 92

6.4 Some issues of the S-SM-AP and the

IS-SM-AP Algorithms . 93

6.5 Recursive Least-Squares Algorithm Exploiting Sparsity 94

6.5.1 Derivation of the S-RLS algorithm 95

6.5.2 Discussion of the S-RLS algorithm 98

6.5.3 DS-S-RLS algorithm . 98

6.6 l0 Norm Recursive Least-Squares Algorithm 99

6.6.1 DS-l0-RLS algorithm . 101

6.7 Simulations . 103

6.7.1 Simulation results of the LMS-based algorithms 103

6.7.2 Simulation results of the RLS-based algorithms 108

6.8 Conclusions . 112

7 Feature LMS algorithms 113

7.1 The Feature LMS algorithms . 114

7.2 Examples of F-LMS algorithms . 115

7.2.1 The F-LMS algorithm for lowpass systems 115

7.2.2 The F-LMS algorithm for highpass systems 117

xi

7.3 Low-complexity F-LMS Algorithms . 118

7.4 Alternative LCF-LMS Algorithm . 122

7.5 Matrix Representation of the Feature Function 123

7.6 Simulations . 126

7.6.1 Scenario 1 . 126

7.6.2 Scenario 2 . 129

7.7 Conclusions . 132

8 Conclusions, and Future Works 133

8.1 Contributions . 133

8.2 Future Works . 134

Bibliography 136

xii

List of Figures

2.1 SMF geometrical interpretation in the parameter space ψ(1) (redrawn

from [1]). 12

2.2 Coefficient vector updating for the SM-NLMS algorithm (redrawn from

[2]). 13

2.3 Coefficient vector updating for the SM-AP algorithm (redrawn from [2]). 15

3.1 Values of g1(k) and g2(k) over the iterations for the SM-NLMS algorithm

corroborating Theorem 1. 37

3.2 ‖w̃(k)‖2 , ‖wo −w(k)‖2 for the NLMS and the SM-NLMS algorithms. 39

3.3 Values of g1(k) and g2(k) over the iterations for the SM-AP algorithm

with γ(k) as the general CV, where g1(k) and g2(k) are the numera-

tor and denominator of (3.40) in Theorem 3, when an update occurs;

otherwise, g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2. 40

3.4 Values of g1(k) and g2(k) over the iterations for the SM-AP algorithm

with γ(k) as the SC-CV, where g1(k) and g2(k) are the numerator and

denominator of (3.40) in Theorem 3, when an update occurs; otherwise,

g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2. 41

3.5 Values of g1(k) and g2(k) over the iterations for the SM-AP algorithm

with γ(k) = n(k), where g1(k) and g2(k) are the numerator and de-

nominator of (3.40) in Theorem 3, when an update occurs; otherwise,

g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2. 42

3.6 Values of g1(k) and g2(k) over the iterations for the SM-AP algorithm

with γ(k) as the SC-CV when the noise bound is known, where g1(k)

and g2(k) are the numerator and denominator of (3.40) in Theorem 3,

when an update occurs; otherwise, g1(k) = ‖w̃(k + 1)‖2 and g2(k) =

‖w̃(k)‖2. 43

3.7 ‖w̃(k)‖2 , ‖w(k)−wo‖2 for the AP and the SM-AP algorithms. . . . 44

xiii

3.8 Learning curves for the AP and SM-AP algorithm using different con-

straint vectors. 45

4.1 The numerical complexity of the TAP and the QAP algorithms for two

cases: (a) N = 15, variable L; (b) L = 3, variable N 61

4.2 A ULA with crossed-dipole [3]. 63

4.3 Predicted results from the trinion based algorithms. 65

4.4 Predicted results from the quaternion based algorithms. 65

4.5 Learning curves of (a) the TNLMS and the SMTNLMS algorithms; (b)

the TAP and the SMTAP algorithms. 66

4.6 Learning curves of (a) the TNLMS and the QNLMS algorithms; (b) the

TAP and the QAP algorithms. 66

4.7 Learning curves of the QLMS, the QNLMS, the QAP, the SMQNLMS,

and the SMQAP algorithms. 68

4.8 Beam patterns of the QLMS, the QNLMS, the QAP, the SMQNLMS,

and the SMQAP algorithms when DOA of desired signal is (θ, φ) = (0, π
2
). 69

5.1 Update in SM-PUAP algorithm in R3 for L = 0. 74

5.2 Update in I-SM-PUAP algorithm in R3 for L = 0. 75

5.3 Learning curves of the I-SM-PUAP and the SM-PUAP algorithms ap-

plied on system identification problem. 78

5.4 (a) Learning curves of the I-SM-PUAP and the SM-PUAP algorithms

performing the equalization of a channel; (b) convolution results. . . . 80

6.1 Univariate functions Gβ(w), with w ∈ [−1, 1] and β = 5: (a) LF; (b)

GMF. 84

6.2 Discard function fǫ(w) for ǫ = 10−4. 88

6.3 The numerical complexity of the SM-PAPA, the SSM-AP, and the IS-

SM-AP algorithms for two cases: (a) N = 15, variable L; (b) L = 3,

variable N . 91

6.4 The learning curves of the SM-PAPA, the SSM-AP, the IS-SM-AP, and

the NLMS algorithms applied on: (a) wo; (b) w
′
o; (c) w

′′
o 105

6.5 The learning curves of the SM-PAPA, the SSM-AP, the IS-SM-AP, and

the NLMS algorithms applied on wo using AR input signal. 106

6.6 The learning curves of the AP and the IS-AP algorithms applied on:

(a) wo; (b) w
′
o; (c) w

′′
o . 107

xiv

6.7 The learning curves of the AP and the IS-AP algorithms applied on wo

using AR input signal. 108

6.8 The learning curves of the RLS, the S-RLS, the l0-RLS, and the ASVB-L

algorithms applied to identify: (a) wo; (b) w
′
o; (c) w

′′′
o 109

6.9 The learning curves of the DS-S-RLS, the DS-l0-RLS, and the DS-

ASVB-L algorithms applied to identify: (a) wo; (b) w
′
o; (c) w

′′′
o 110

6.10 The learning curves of the S-RLS, the AS-RLS, the l0-RLS, and the

A-l0-RLS algorithms applied to identify: (a) wo; (b) w
′
o. 111

7.1 The impulse response of (a) w(k); (b) ws(k) = Fǫ(w(k)) for ǫ = 0.02. . 120

7.2 MSE learning curves of the LMS and F-LMS algorithms considering

wo,l: (a) both algorithms with the same step size: µ = 0.03; (b) LMS

and F-LMS with step sizes equal to 0.01 and 0.03, respectively. 127

7.3 MSE learning curves of the LMS and F-LMS algorithms considering

wo,h: (a) both algorithms with the same step size: µ = 0.03; (b) LMS

and F-LMS with step sizes equal to 0.01 and 0.03, respectively. 127

7.4 MSE learning curves of the LMS and F-LMS algorithms, both with step

size µ = 0.03, considering the unknown systems: (a) w′
o,l and (b) w′

o,h. 128

7.5 MSE learning curves of the LMS and F-LMS algorithms, both with step

size µ = 0.03, considering the unknown systems: (a) w′′
o,l and (b) w′′

o,h. 129

7.6 MSE learning curves of the LMS, the LCF-LMS, and the ALCF-LMS

algorithms considering the unknown systems: (a) wo,l and (b) w′′′
o,l. . . 130

7.7 MSE learning curves of the LMS, the I-LCF-LMS, and the AI-LCF-LMS

algorithms considering the unknown systems: (a) wo,l and (b) w′′′
o,l. . . 131

xv

List of Tables

4.1 COMPUTATIONAL COMPLEXITY PER UPDATE OF THE

WEIGHT VECTOR . 61

4.2 The Average of implementation times and the number of updates for

the trinion and the quaternion based algorithms using MATLAB software 65

4.3 The OSDR and the OSIR for the quaternion algorithms 68

5.1 Improved Set-Membership Partial-Update Affine Projection(I-SM-

PUAP) Algorithm . 77

6.1 Simple set-membership affine projection algorithm (S-SM-AP) 90

6.2 Number of operations for SM-PAPA, SSM-AP, and S-SM-AP algo-

rithms . 91

6.3 Improved simple set-membership affine projection algorithm (IS-SM-AP) 93

6.4 Discard set-membership affine projection algorithm (D-SM-AP) 94

6.5 Recursive least-squares algorithm for sparse systems (S-RLS) 97

6.6 Alternative recursive least-squares algorithm for sparse systems 98

6.7 Data-selective recursive least-squares algorithm for sparse systems (DS-

S-RLS) . 99

6.8 l0 norm recursive least-squares algorithm for sparse systems (l0-RLS) . 100

6.9 Alternative l0 norm recursive least-squares algorithm for sparse systems 102

6.10 Data-selective l0 norm recursive least-squares algorithm for sparse sys-

tems (DS-l0-RLS) . 102

6.11 Number of operations for AS-RLS, l0-RLS, and ASVB-L algorithms . . 103

6.12 The coefficients of unknown systems wo, w
′
o, and w′′

o 104

6.13 The average number of updates implemented by the IS-SM-AP, the

SM-PAPA, and the SSM-AP algorithms 107

xvi

6.14 The average number of updates implemented by the DS-S-RLS, the

DS-l0-RLS, and the DS-ASVB-L algorithms 111

7.1 Low-complexity feature LMS algorithm 121

7.2 Improved low-complexity feature LMS algorithm 122

xvii

List of Symblos

(·)∗ Conjugation operator, p. 48

(·)H Hermitian transposition of (·), p. 6

(·)T Transposition of (·), p. 6

B(θ) The beam pattern of a beamformer, p. 67

Gβ Continuous and almost everywhere differentiable function that

approximates the l0 norm; β controls the quality of the approxi-

mation, p. 83

L Data reuse factor, p. 14

N Order of the FIR adaptive filter, p. 14

S(k) The hypersphere in RN+1 centered at w(k) with the radius µ(k),

p. 75

A(k) Auxiliary matrix A(k) , (XT (k)X(k))−1, p. 15

CIM (k) The diagonal matrix that identifies the coefficients to be updated

at instant time k, if an update is required, p. 73

F(k) Feature matrix, p. 113

Fǫ(w) The Jacobian matrix of fǫ(w), p. 88

Fh Feature matrix for systems with highpass narrowband spectrum,

p. 117

Fl Feature matrix for systems with lowpass narrowband spectrum,

p. 116

xviii

I Identity matrix, p. 6

P(k) The auxiliary matrix P(k) , (XT (k)CIM (k)X(k) + δI)−1, p. 73

R Correlation matrix, p. 8

RD(k) Deterministic correlation matrix of the input signal, p. 10

RD,ǫ(k) The deterministic correlation matrix of the input signal involved

Fǫ(w(k)), p. 96

ℜ(·) The real part of (·), p. 52

SD(k) The inverse of RD(k), p. 10

SD,ǫ(k) The inverse of RD,ǫ(k), p. 96

Θ Feasibility set, p. 11

X(k) Input signal matrix, p. 14

ı̄ The first orthogonal unit imaginary axis vector in trinion num-

bers, p. 52

̄ The second orthogonal unit imaginary axis vector in trinion num-

bers, p. 52

d(k) Desired signal vector, p. 14

δ Regularization factor, p. 9

e(k) Error signal vector, p. 14

ẽ(k) Noiseless error signal vector, p. 31

∅ Empty set, p. 25

ẽ(k) Noiseless error signal, p. 16

fǫ(·) Discard vector function, p. 87

γ Upper bound for the magnitude of the error signal, p. 11

γ(k) Time-varying error bound, p. 30

xix

γ(k) Constraint vector, p. 14

gβ(w) Gradient of Gβ(w) with respect to w, p. 84

ı The first orthogonal unit imaginary axis vector in quaternion

numbers, p. 48

 The second orthogonal unit imaginary axis vector in quaternion

numbers, p. 48

κ The third orthogonal unit imaginary axis vector in quaternion

numbers, p. 48

C Set of complex numbers, p. 6

E Expected value operator, p. 6

Fa
ǫ Alternative feature function, p. 122

Fǫ Feature function, p. 119

H Set of quaternion numbers, p. 6

N Set of natural numbers, p. 6

P Probability operator, p. 6

R Set of real numbers, p. 6

R+ Set of nonnegative real numbers, p. 6

T Set of trinion numbers, p. 6

Z Set of integer numbers, p. 6

µ Convergence factor, p. 8

n(k) Additive noise signal vector, p. 14

p(k) Gradient of P (F(k)w(k)), p. 115

pD(k) Deterministic cross-correlation vector between the input and the

desired signals, p. 10

xx

pD,ǫ(k) The deterministic cross-correlation vector between the input and

the desired signals involved Fǫ(w(k)), p. 96

ψ(k) Exact membership set, p. 11

ψL+1(k) The intersection of the L+ 1 last constraint sets, p. 54

sc(θ, φ) The spatial steering vector for a far-field incident signal in adap-

tive beamforming, p. 62

σ2
e Variance of the error signal, p. 18

σ2
n Variance of the noise signal, p. 17

, Definition, p. 6

ε(k) A posteriori error signal, p. 10

w(k) Coefficient vector, p. 8

wo Impulse response of the unknown system, p. 14

w̃(k) Auxiliary vector w̃(k) , wo −w(k), p. 23

x(k) Input signal vector, p. 8

y(k) Output signal vector, p. 14

d(k) Desired signal, p. 8

e(k) Error signal, p. 8

fǫ(·) Discard function; ǫ defines what is considered as close to zero, p.

87

k Iteration counter, p. 8

n(k) Noise signal, p. 16

qa The real component of a quaternion q, p. 48

qb The first imaginary component of a quaternion q, p. 48

qc The second imaginary component of a quaternion q, p. 48

xxi

qd The third imaginary component of a quaternion q, p. 48

va The real component of a trinion v, p. 52

vb The first imaginary component of a trinion v, p. 52

vc The third imaginary component of a trinion v, p. 52

y(k) Output signal, p. 8

0 Zero vector or zero matrix, p. 6

H(k) Constraint set at iteration k, p. 11

IM(k) The set of M coefficients to be updated at time instant k, p. 72

Kup Set containing the iteration indexes in which w(k) is updated, p.

25

P(·) Sparsity-promoting penalty function, p. 114

S Set comprised of all possible pairs (x, d), p. 11

Var Variance operator, p. 17

diag(x) Diagonal matrix with x on its diagonal, p. 6

erfc(·) The complementary error function, p. 28

sgn(·) The sign function, p. 85

tr(·) Trace of matrix, p. 6

xxii

List of Abreviations

l0-RLS l0 Norm RLS, p. 5, 82, 83, 99–101, 108–112

A-l0-RLS Alternative l0-RLS, p. 101, 108

AI-LCF-LMS Alternative I-LCF-LMS, p. 123

ALCF-LMS Alternative Low-Complexity Feature LMS, p. 122, 123

AP Affine Projection, p. 8, 9, 15, 18, 19, 41–43, 45, 58, 59, 71, 81,

92, 93, 103, 106

AR Autoregressive, p. 104, 106

AS-RLS Alternative S-RLS, p. 96, 98, 100, 108

ASVB-L Adaptive Sparse Variational Bayes Iterative Scheme Based on

Laplace Prior, p. 103, 108, 110–112

BPSK Binary Phase-Shift Keying, p. 77, 103, 106

CV Constraint Vector, p. 14, 20, 35, 36, 39–43, 45

D-SM-AP Discard SM-AP, p. 94

DOA Direction of Arrival, p. 62, 67

DS-l0-RLS Data-Selective l0-RLS, p. 82, 101, 108–110

DS-ASVB-L Data-Selective ASVB-L, p. 108, 110, 111

DS-S-RLS Data-Selective S-RLS, p. 82, 94, 98, 108, 110, 111

EMSE Excess of the Steady-State Mean-Square Error, p. 17

F-LMS Feature LMS, p. 5, 6, 113–118, 126–128, 132

xxiii

GMF Geman-McClure Function, p. 84, 104, 109

I-LCF-LMS Improved LCF-LMS, p. 121

I-SM-PUAP Improved SM-PUAP, p. 5, 71, 74, 75, 77–80

IS-AP Improved S-AP, p. 82, 87, 92, 106

IS-SM-AP Improved S-SM-AP, p. 5, 82, 92–94, 103–105, 112

LCF-LMS Low-Complexity Feature LMS, p. 118, 120, 122, 123

LF Laplace Function, p. 84

LHS Left-Hand Side, p. 34, 37

LMS Least-Mean-Square, p. 5, 8–10, 18, 54, 59, 81, 93, 113–116, 126–

128, 132

MSE Mean-Squared Error, p. 19, 42, 43, 79, 108, 114, 126–128, 132

NLMS Normalized LMS, p. 8, 9, 12, 13, 18–20, 27, 38, 39, 44, 47, 54,

59, 71, 81, 86, 103, 104

OSDR Output Signal to Desired Plus Noise Ratio, p. 67

OSIR Output Signal to Interference Plus Noise Ratio, p. 67

PAPA Proportionate Affine Projection Algorithm, p. 86

PASTd Projection Approximation Subspace Tracking with Deflation, p.

88, 100

PNLMS Proportionate Normalized LMS, p. 86

PU Partial-Update, p. 70, 71

QAP Quaternion-Valued Affine Projection, p. 47, 60, 61, 64, 67

QLMS Quaternion-Valued LMS, p. 47, 64, 67

QNLMS Quaternion-Valued Normalized LMS, p. 60, 64, 67

RHS Right-Hand Side, p. 31, 35, 37

xxiv

RLS Recursive Least-Squares, p. 5, 8–10, 18, 81–83, 94, 96, 98, 102,

103, 108, 110–112

S-AP Simple AP, p. 82, 87, 92

S-RLS RLS Algorithm for Sparse System, p. 5, 82, 83, 94–96, 98, 99,

108, 110–112

S-SM-AP Simple SM-AP, p. 5, 82, 83, 87–94, 103, 112

SC-CV Simple Choice CV, p. 35, 39–43

SIR Signal-to-Interference Ratio, p. 67

SM-AP Set-Membership Affine Projection, p. 4, 5, 10, 12, 14–16, 18–22,

30, 31, 33–36, 39–45, 54, 59, 71, 74, 79, 89–91

SM-NLMS Set-Membership Normalized LMS, p. 4, 10, 12, 13, 16, 18–29,

34–36, 38, 39, 41, 44, 45, 59, 71

SM-PAPA Set-Membership Proportionate AP Algorithm, p. 83, 86, 90,

104–106, 112

SM-PUAP Set-Membership Partial-Update AP, p. 5, 71–75, 77–80

SMF Set-Membership Filtering, p. 1, 2, 4, 7, 8, 10, 11, 18, 47, 53, 70,

71, 82, 87, 108, 112

SMQAP Set-Membership Quaternion-Valued AP, p. 4, 47, 48, 59, 60, 67

SMQNLMS Set-Membership Quaternion-Valued NLMS, p. 4, 47, 59, 60, 67

SMTAP Set-Membership Trinion-Valued AP, p. 4, 47, 48, 54, 57, 64

SMTNLMS Set-Membership Trinion-Valued NLMS, p. 4, 47, 58, 59, 64

SM Set-Membership, p. 16, 19

SNR Signal-to-Noise Ratio, p. 36, 67, 77, 103, 109, 126

SSM-AP Sparsity-Aware SM-AP, p. 83, 85, 90, 104–106

TAP Trinion-Valued Affine Projection, p. 58, 61, 64

xxv

TLMS Trinion-Valued LMS, p. 47, 64

TNLMS Trinion-Valued Normalized LMS, p. 59, 64

ULA Uniform Linear Array, p. 62

xxvi

Chapter 1

Introduction

In the last decades, the volume of data to be processed and kept for storage has

been proliferated, mainly due to the increased availability of low-cost sensors and

storage devices. As examples, we can mention the usage of multiple antennas in

multiple-input and multiple-output wireless communication systems, the application

of multiple audio devices in speech enhancement and audio signal processing, and the

employment of echo cancellers in small or handheld communication devices. Moreover,

these technological features are continuously spreading.

Our world is overwhelmed by data and to benefit from them in our daily life, we

need to process the data correctly. A significant amount of data, however, brings about

no new information in order that only part of it is particularly useful [4, 5]. Therefore,

we are compelled to improve our ability to evaluate the importance of the received

data. This capability is called data selection. It enables the derivation of data-selective

adaptive filters, which can neglect undesired data in a smart way. These filters are

designed to reject the redundant data and perform their modeling tasks utilizing a

small fraction of the available data.

Data-selective adaptive filters evaluate, select, and process data at each iteration of

their learning process. These filters assess the data and choose only the ones bringing

about some innovation. This property of the data-selective adaptive filters distin-

guishes them from the family of classical adaptive filters, which consider all data. In

particular, these data-selective adaptive filters improve the accuracy of the estimator

and decrease the computational complexity at the same time [6–8].

In this thesis, to apply the data selection, we employ the set-membership filtering

(SMF) approach [2, 9]. The set-membership (SM) adaptive filtering algorithm aims at

estimating the system such that the magnitude of the estimation output error is upper

1

bounded by a predetermined positive constant called the threshold. The threshold is

usually chosen based on a priori information about the sources of uncertainty. A

comparison between traditional and SM adaptive filters was performed in [1, 2], where

the results had shown that the algorithms employing the SMF strategy require lower

computational resources as compared to the conventional adaptive filters. The SMF

algorithms, however, are not so widely used since there is some lack of analysis tools,

and there is a limited number of set-membership adaptive filtering algorithms available.

This thesis introduces new algorithms employing the SMF approach and provides some

analysis tools.

This chapter is organized as follows. Section 1.1 contains the main motivations.

The targets of this thesis are given in Section 1.2. Section 1.3 describes the contribu-

tions of this thesis. Finally, the notation is explained in Section 1.4.

1.1 Motivations

The area of Digital Signal Processing takes part in our daily lives for decades now, since

it is at the core of virtually all electronic gadget we have been utilizing, ranging from

medical equipment to mobile phones. If we have full information about the signals,

we can apply the most suitable algorithm (a digital filter for instance) to process the

signals. However, if we do not know the statistical properties of the signals, a possible

solution is to utilize an adaptive filter that automatically modifies its characteristics

to match the behavior of the observed data.

Adaptive filters [2, 10, 11] are utilized in several electronic and communication

devices, such as smartphones, advanced headphones, DSP chips, smart antennas, and

microphone arrays for teleconference systems. Also, they have application in many

areas such as system identification [12], channel equalization [13], noise reduction [14],

echo cancellation [15], interference cancellation [16], signal prediction [17], acoustic

images [18], stock market [19], etc. Due to the diversity of applications of adaptive

signal processing, traditional adaptive filters cannot meet the needs of every applica-

tion. An ideal adaptive filter would have low processing time, high accuracy in the

learning process, low energy consumption, low memory usage, etc. These properties,

however, conflict with each other.

An adaptive filter uses an algorithm to adjust its coefficients. An algorithm is a

procedure to modify the coefficients in order to minimize a prescribed criterion. The

algorithm is characterized by defining the search method, the objective function, and

2

the error signal nature. The traditional algorithms in adaptive filtering implement

coefficient updates at each iteration. However, when the adaptive filter learns from

the observed data and reaches its steady state, it is desirable that the adaptive filter

has the ability to reduce its energy consumption since there is less information to

be learned. Here appears the importance of data-selective adaptive filters since they

assess the input data, then according to the innovation they decide to perform an

update or not.

After defining the set-membership adaptive filtering algorithms as a subset of the

data-selective adaptive filters, many works have shown how effective these algorithms

are in reducing the energy consumption. In some environments they can decrease the

number of updates by 80% [1, 2]. This thesis, however, shows that there is room

for improvements regarding the reduction in the number of arithmetic operations and

energy consumption, as discussed in Chapters 5 and 6.

1.2 Targets

The targets of this thesis are:

• To analyze the performance of some existing set-membership adaptive filtering

algorithms to confirm their competitive performance as compared to the classical

adaptive filtering approaches;

• To develop data-selective adaptive filtering algorithms beyond the real and com-

plex numbers, and examine the advantage of the set-membership technique in

different mathematical number systems;

• To improve some existing set-membership adaptive filtering algorithms to bring

about improvements in performance and computational complexity;

• To introduce some new sparsity-aware set-membership adaptive filtering algo-

rithms with low computational burden;

• To exploit the hidden sparsity in the linear combination of parameters of adaptive

filters.

In a nutshell, in this thesis, we improve and analyze data-selective adaptive filtering

algorithms.

3

1.3 Thesis Contributions

In this thesis, we analyze the robustness of classical set-membership adaptive filtering

algorithms and extend these conventional algorithms for the trinion and the quaternion

systems. In addition, we introduce an improved version of a set-membership adaptive

filtering algorithm along with the partial updating strategy. Moreover, we develop

some algorithms for sparse systems utilizing the SMF technique. Finally, we try to

exploit the hidden sparsity in systems with lowpass and highpass frequencies. To

address such topics, the text is hereinafter organized as follows.

Chapter 2 introduces some conventional adaptive filtering algorithms, such as the

least-mean-square (LMS), the normalized LMS (NLMS), the affine projection (AP),

and the recursive least-squares (RLS) ones. Then, we review the set estimation theory

in adaptive signal processing and presents the set-membership filtering (SMF) strategy.

Also, we describe a short review of the set-membership normalized least-mean-square

(SM-NLMS) and the set-membership affine projection (SM-AP) algorithms.

In Chapter 3, we address the robustness, in the sense of l2-stability, of the SM-

NLMS and the SM-AP algorithms. For the SM-NLMS algorithm, we demonstrate that

it is robust regardless the choice of its parameters and that the SM-NLMS enhances

the parameter estimation in most of the iterations in which an update occurs, two

advantages over the classical NLMS algorithm. Moreover, we also prove that if the

noise bound is known, then we can set the SM-NLMS so that it never degrades the

estimate. As for the SM-AP algorithm, we demonstrate that its robustness depends

on a judicious choice of one of its parameters: the constraint vector (CV). We prove

the existence of CVs satisfying the robustness condition, but practical choices remain

unknown. We also demonstrate that both the SM-AP and the SM-NLMS algorithms

do not diverge, even when their parameters are selected naively, provided the additional

noise is bounded. Furthermore, numerical results that corroborate our analyses are

presented.

In Chapter 4, we introduce new data-selective adaptive filtering algorithms for trin-

ion and quaternion systems T and H. The work advances the set-membership trinion-

and quaternion-valued normalized least-mean-square (SMTNLMS and SMQNLMS)

and the set-membership trinion- and quaternion-valued affine projection (SMTAP and

SMQAP) algorithms. Also, as special cases, we obtain trinion- and quaternion-valued

algorithms not employing the set-membership strategy. Prediction simulations based

on recorded wind data are provided, showing the improved performance of the pro-

4

posed algorithms regarding reduced computational load. Moreover, we study the ap-

plication of quaternion-valued adaptive filtering algorithms to adaptive beamforming.

Usually, set-membership algorithms implement updates more regularly during the

early iterations in stationary environments. Therefore, if these updates exhibit high

computational complexity, an alternative solution is needed. A possible approach

to partly control the computational complexity is to apply partial update technique,

where only a subset of the adaptive filter coefficients is updated at each iteration. In

Chapter 5, we present an improved set-membership partial-update affine projection

(I-SM-PUAP) algorithm, aiming at accelerating the convergence rate, and decreasing

the update rate of the set-membership partial-update affine projection (SM-PUAP)

algorithm. To meet these targets, we constrain the weight vector perturbation to be

bounded by a hypersphere instead of the threshold hyperplanes as in the standard

algorithm. We use the distance between the present weight vector and the expected

update in the standard SM-AP algorithm to construct the hypersphere. Through this

strategy, the new algorithm shows better behavior in the early iterations. Simula-

tion results verify the excellent performance of the proposed algorithm related to the

convergence rate and the required number of updates.

In Chapter 6, we derive two LMS-based algorithms, namely the simple set-

membership affine projection (S-SM-AP) and the improved S-SM-AP (IS-SM-AP),

in order to exploit the sparsity of an unknown system while focusing on having low

computational cost. To achieve this goal, the proposed algorithms apply a discard

function on the weight vector to disregard the coefficients close to zero during the

update process. In addition, the IS-SM-AP algorithm reduces the overall number

of computations required by the adaptive filter even further by replacing small co-

efficients with zero. Moreover, we introduce the l0 norm RLS (l0-RLS) and the RLS

algorithm for sparse models (S-RLS). Also, we derive the data-selective version of these

RLS-based algorithms. Simulation results show similar performance when comparing

the proposed algorithms with some existing state-of-the-art sparsity-aware algorithms

while the proposed algorithms require lower computational complexity.

When our target is to detect and exploit sparsity in the model parameters, in

many situations, the sparsity is hidden in the relations among these coefficients so

that some suitable tools are required to reveal the potential sparsity. Chapter 7 pro-

poses a set of least-mean-square (LMS) type algorithms, collectively called feature

LMS (F-LMS) algorithms, setting forth a hidden feature of the unknown parameters,

which ultimately would improve convergence speed and steady-state mean-squared

5

error. The fundamental idea is to apply linear transformations, by means of the so-

called feature matrices, to reveal the sparsity hidden in the coefficient vector, followed

by a sparsity-promoting penalty function to exploit such sparsity. Some F-LMS algo-

rithms for lowpass and highpass systems are also introduced by using simple feature

matrices that require only trivial operations. Simulation results demonstrate that the

proposed F-LMS algorithms bring about several performance improvements whenever

the hidden sparsity of the parameters is exposed.

Finally, chapter 8 highlights the conclusions of the work, and gives some clues for

future works regarding the topics addressed in the thesis.

1.4 Notation

In this section, we introduce most of the usual notation utilized in this thesis. However,

in order to avoid confusing the reader, we evade presenting here the definition of the

rare notation in this text, and we introduce them only at the vital moments.

Equalities are shown by =, and when they refer to a definition, we use ,. The

real, nonnegative real, nature, integer, complex, trinion, and quaternion numbers are

denoted by R, R+, N, Z, C, T, and H, respectively.

Moreover, scalars are represented by lowercase letters (e.g., x), vectors by lowercase

boldface letters (e.g., x), and matrices by uppercase boldface letters (e.g., X). The

symbols (·)T and (·)H stand for the transposition and Hermitian operators, respec-

tively. Also, all vectors are column vectors in order that the inner product between

two vectors x and y is defined as xTy or xHy.

We represent the trace operator by tr(·). The identity matrix and zero vector

(matrix) are denoted by I and 0, respectively. Also, diag(x) stands for a diagonal

matrix with vector x on its diagonal and zero outside it. Furthermore, P[·] and E[·]
denote the probability and the expected value operators, respectively. Also, ‖ · ‖
denotes the l2 norm (when the norm is not defined explicitly, we are referring to the

l2 norm).

6

Chapter 2

Conventional and Set-Membership

Adaptive Filtering Algorithms

The point estimation theory [20] utilizes a sample data for computing a single solution

as the best estimate of an unknown parameter. For decades, machine learning and

adaptive filtering have been grounded in the point estimation theory [2, 10, 11, 21, 22].

Nowadays, the benefit of the set estimation approach, however, is becoming clearer by

disclosing its advantages [23–25].

In contrast with the world of theoretical models, in the real-world we live with

uncertainties originate from measurement noise, quantization, interference, modeling

errors, etc. Therefore, searching the solution utilizing point estimation theory some-

times results in a waste of energy and time. An alternative is to address the problem

from the set estimation theory [23] point of view. In fact, in this approach, we search

for a set of acceptable solutions instead of a unique point as a solution.

The adaptive filtering algorithms presented in [10, 11] exhibit a trade-off between

convergence rate and misadjustment after transient, particularly in stationary envi-

ronments. In general, fast converging algorithms lead to high variance estimators

after convergence. To tackle this problem, we can apply set-membership filtering

(SMF) [1, 2] which is a representative of the set estimation theory. The SMF technique

prevents unnecessary updates and reduces the computational complexity by updating

the filter coefficients only when the estimation error is greater than a predetermined

upper bound [9, 26, 27].

In set-membership adaptive filters, we try to find a feasibility set such that any

member in this set has the output estimation error limited by a predetermined upper

bound. For this purpose, the objective function of the algorithm is related to a bounded

7

error constraint on the filter output, such that the updates are contained in a set of

acceptable solutions. The inclusion of a priori information, such as the noise bound,

into the objective function leads to some noticeable advantages. As compared with

the normalized least-mean-square (NLMS) and the affine projection (AP) algorithms,

their set-membership counterparts have lower computational cost, better accuracy,

data selection, and robustness against noise [6, 7, 9, 28–31].

This chapter presents a brief review of some adaptive filtering algorithms. An

interested reader should refer to [2] for more details. Section 2.1 describes the point

estimation adaptive filtering algorithms. Section 2.2 reviews the SMF approach and

the main set-membership algorithms. The estimation of the threshold parameter for

big data applications is discussed in Section 2.3. Finally, Section 2.4 contains the

conclusions.

2.1 Point Estimation Adaptive Filtering

Algorithms

In this section, we introduce some LMS-based adaptive filtering algorithms and the

recursive least-squares (RLS) algorithm.

2.1.1 Least-mean-square algorithm

The update equation of the least-mean-square (LMS) algorithm is given by [2]

w(k + 1) = w(k) + 2µe(k)x(k), (2.1)

where x(k) = [x0(k) x1(k) · · · xN (k)]T and w(k) = [w0(k) w1(k) · · · wN(k)]
T are

the input signal vector and the the weight vector, respectively. The output signal is

defined by y(k) , wT (k)x(k) = xT (k)w(k), and e(k) , d(k)− y(k) denotes the error

signal, where d(k) is the desired signal. The convergence factor µ should be chosen in

the range 0 < µ < 1
tr[R]

to guarantee the convergence, where R , E[x(k)xT (k)] is the

correlation matrix.

8

2.1.2 Normalized LMS algorithm

To increase the convergence rate of the LMS algorithm without using matrixR, we can

utilize the NLMS algorithm. The recursion rule of the NLMS algorithm is described

by [2]

w(k + 1) = w(k) +
µn

xT (k)x(k) + δ
e(k)x(k), (2.2)

where δ is a small regularization factor, and the step size µn should be selected in the

range 0 < µn < 2.

2.1.3 Affine projection algorithm

When the input signal is correlated, it is possible to use old data signal to improve

the convergence speed of the algorithm. For this purpose, let us utilize the last L+ 1

input signal vector and form matrix X(k) as

X(k) = [x(k) x(k − 1) · · · x(k − L)] ∈ R
(N+1)×(L+1). (2.3)

Also, let us define the desired signal vector d(k), the output signal vector y(k), and

the error signal vector e(k) as follows

d(k) = [d(k) d(k − 1) · · · d(k − L)]T ,

y(k) , wT (k)X(k) = XT (k)w(k),

e(k) , d(k)− y(k). (2.4)

Then, the update rule of the affine projection (AP) algorithm is described by [2]

w(k + 1) = w(k) + µX(k)[XT (k)X(k)]−1e(k), (2.5)

where µ is the convergence factor.

2.1.4 Recursive least-squares algorithm

Here, we review the RLS algorithm. The goal of this algorithm is to match the output

signal to the desired signal as much as possible.

9

The objective function of the RLS algorithm is given by

ζ(k) =

k∑

i=0

λk−iε2(i) =

k∑

i=0

λk−i[d(i)− xT (i)w(k)]2, (2.6)

where λ is a forgetting factor which should be adopted in the range 0 ≪ λ ≤ 1, and

ε(i) is called the a posteriori error. Note that in the elaboration of the LMS-based

algorithms we use the a priori error, whereas for the RLS algorithm we utilize the a

posteriori error.

If we differentiate ζ(k) with respect to w(k) and equate the result to zero, we get

the optimal coefficient vector w(k) [2]

w(k) =
[k∑

i=0

λk−ix(i)xT (i)
]−1

k∑

i=0

λk−ix(i)d(i) = R−1
D (k)pD(k), (2.7)

where RD(k) and pD(k) are named the deterministic correlation matrix of the input

signal and the deterministic cross-correlation vector between the input and the desired

signals, respectively. By using the matrix inversion lemma [32], the inverse of RD(k)

can be given by

SD(k) = R−1
D (k) =

1

λ

[
SD(k − 1)− SD(k − 1)x(k)xT (k)SD(k − 1)

λ+ xT (k)SD(k − 1)x(k)

]
. (2.8)

2.2 Set-Membership Adaptive Filtering

Algorithms

In this section, we firstly introduce the set-membership filtering (SMF) approach. Sec-

ondly, we present the SM-NLMS algorithm. Finally, we review the SM-AP algorithm.

2.2.1 Set-membership filtering

The SMF approach proposed in [9] is suitable for adaptive filtering problems that are

linear in parameters. Thus, for a given input signal vector x(k) ∈ RN+1 at iteration k

and the filter coefficients w ∈ RN+1, the output signal of the filter is obtained by

y(k) = wTx(k), (2.9)

10

where x(k) = [x0(k) x1(k) · · · xN(k)]T and w = [w0 w1 · · · wN]
T . For a desired signal

sequence d(k), the estimation error sequence e(k) is computed as

e(k) = d(k)− y(k). (2.10)

The SMF criterion aims at estimating the parameter w such that the magnitude of

the estimation output error is upper bounded by a constant γ ∈ R+, for all possible

pairs (x, d). If the value of γ is suitably selected, there are various valid estimates for

w. The threshold is usually chosen based on a priori information about the sources of

uncertainty. Note that any w leading to an output estimation error with magnitude

smaller than γ is an acceptable solution. Hence, we obtain a set of filters rather than

a single estimate.

Let us denote by S the set comprised of all possible pairs (x, d). We want to find

w such that |e| = |d−wTx| ≤ γ for all (x, d) ∈ S. Therefore, the feasibility set Θ will

be defined as

Θ ,
⋂

(x,d)∈S

{w ∈ R
N+1 : |d−wTx| ≤ γ}, (2.11)

so that the SMF criterion can be stated as finding w ∈ Θ.

In the case of online applications, we do not have access to all members

of S. Thus, we consider the practical case in which only measured data are

available and develop iterative techniques. Suppose that a set of data pairs

{(x(0), d(0)), (x(1), d(1)), · · · , (x(k), d(k))} is available, and define the constraint set

H(k) at time instant k as

H(k) , {w ∈ R
N+1 : |d(k)−wTx(k)| ≤ γ}. (2.12)

Also, define the exact membership set ψ(k) as the intersection of the constraint sets

from the beginning, i.e. the first iteration, to iteration k, or

ψ(k) ,
k⋂

i=0

H(i). (2.13)

Then, Θ can be iteratively estimated via the exact membership set since

limk→∞ ψ(k) = Θ.

Figure 2.1 shows the geometrical interpretation of the SMF principle. The bound-

11

d(1)−w
T
x(1) = γ̄

d(1)−w
T
x(1) = −γ̄

d(0)−w
T
x(0) = γ̄

d(0)−w
T
x(0) = −γ̄

H(1)

H(0)

Θ

 (1)

Figure 2.1: SMF geometrical interpretation in the parameter space ψ(1) (redrawn
from [1]).

aries of the constraint sets are hyperplanes, and H(k) corresponds to region between

the parallel hyperplanes in the parameter space. The exact membership set represents

a polytope in the parameter space. The volume of ψ(k) decreases for each k in which

the pairs (x(k), d(k)) bring about some innovation. Note that Θ ⊂ ψ(k) for all k, since

Θ is the intersection of all possible constraint sets.

The target of set-membership adaptive filtering is to obtain adaptively an estimate

that belongs to the feasibility set. The simplest method is to calculate a point estimate

using, for example, the information provided by H(k) similar to the set-membership

NLMS algorithm described in the following subsection, or several previous H(k) like

in the SM-AP algorithm discussed in Subsection 2.2.3.

2.2.2 Set-membership normalized LMS algorithm

The set-membership NLMS algorithm, first proposed in [9], implements a test to

check if the previous estimate w(k) lies outside the constraint set H(k). If |d(k) −
wT (k)x(k)| > γ, then w(k + 1) will be updated to the closest boundary of H(k) at

a minimum distance. Figure 2.2 depicts the updating procedure of the SM-NLMS

algorithm.

12

d(k)−w
T
x(k) = γ̄

d(k)−w
T
x(k) = −γ̄

w(k)

w(k + 1)

H(k)

Figure 2.2: Coefficient vector updating for the SM-NLMS algorithm (redrawn from
[2]).

The SM-NLMS algorithm has the updating rule

w(k + 1) = w(k) +
µ(k)

xT (k)x(k) + δ
e(k)x(k), (2.14)

where the variable step size µ(k) is given by

µ(k) =

{
1− γ

|e(k)|
if |e(k)| > γ,

0 otherwise,
(2.15)

and δ is a small regularization factor. As a rule of thumb, the value of γ is selected

about
√
τσ2

n, where σ
2
n is the variance of the additional noise [9, 33], and 1 ≤ τ ≤ 5.

Note that we can introduce the NLMS algorithm through the SM-NLMS algorithm.

Indeed, the NLMS algorithm with unit step size is a particular case of the SM-NLMS

algorithm by adopting γ = 0.

13

2.2.3 Set-membership affine projection algorithm

The exact membership set ψ(k) suggests the use of more constraint sets in the up-

date [31]. Moreover, it is widely known that data-reusing algorithms can increase

convergence speed significantly for correlated-input signals [2, 11, 34]. This section

introduces the SM-AP algorithm whose updates belong to the last L + 1 constraint

sets. For this purpose, let us define the input signal matrix X(k), the output signal

vector y(k), the error signal vector e(k), the desired signal vector d(k), the additive

noise signal vector n(k), and the constraint vector (CV) γ(k) as

X(k) = [x(k) x(k − 1) · · · x(k − L)] ∈ R
(N+1)×(L+1),

x(k) = [x(k) x(k − 1) · · · x(k −N)]T ∈ R
N+1,

y(k) = [y(k) y(k − 1) · · · y(k − L)]T ∈ R
L+1,

e(k) = [e(k) ǫ(k − 1) · · · ǫ(k − L)]T ∈ R
L+1,

d(k) = [d(k) d(k − 1) · · · d(k − L)]T ∈ R
L+1,

n(k) = [n(k) n(k − 1) · · · n(k − L)]T ∈ R
L+1,

γ(k) = [γ0(k) γ1(k) · · · γL(k)]T ∈ R
L+1,

(2.16)

where N is the order of the adaptive filter, and L is the data-reusing factor, i.e.,

L previous data are used together with the data from the current iteration k. The

output signal vector is defined as y(k) , wT (k)X(k) = XT (k)w(k), the desired signal

vector is given by d(k) , wT
o X(k)+n(k), where wo is the optimal solution (unknown

system), and the error signal vector is given by e(k) , d(k) − y(k). The entries of

the constraint vector should satisfy |γi(k)| ≤ γ, for i = 0, . . . , L, where γ ∈ R+ is the

upper bound for the magnitude of the error signal e(k).

The objective function to be minimized in the SM-AP algorithm can be stated as

follows: a coefficient update is implemented whenever w(k) 6∈ ψL+1(k) in such a way

that

min
1

2
‖w(k + 1)−w(k)‖2

subject to:

d(k)−XT (k)w(k + 1) = γ(k), (2.17)

where ψL+1(k) is the intersection of the L+ 1 last constraint sets.

Figure 2.3 shows a usual coefficient update related to the SM-AP algorithm in R2,

14

w(k)

w(k + 1)

d(k)−w
T
x(k) = γ̄

d(k)−w
T
x(k) = −γ̄

d(k)−w
T
x(k) = γ(k)

d(k − 1)−w
T
x(k − 1) = γ̄

d(k − 1)−w
T
x(k − 1) = −γ̄

d(k − 1)−w
T
x(k − 1) = γ(k − 1)

H(k)

H(k − 1)

Figure 2.3: Coefficient vector updating for the SM-AP algorithm (redrawn from [2]).

L = 1 and |γi(k)| ≤ γ such that w(k + 1) is not placed at the border of H(k).

By using the method of Lagrange multipliers, after some manipulations, the recur-

sion rule of the SM-AP algorithm will be described as

w(k + 1) =

{
w(k) +X(k)A(k)(e(k)− γ(k)) if |e(k)| > γ,

w(k) otherwise,
(2.18)

where we assume that A(k) , (XT (k)X(k))−1 ∈ RL+1×L+1 exists, i.e., XT (k)X(k) is

a full-rank matrix. Otherwise, we could add a regularization parameter as explained

in [2].

Note that we can propose the AP algorithm through the SM-AP algorithm. In

other words, the AP algorithm with unity step-size, aiming at improving the con-

vergence speed of stochastic gradient algorithms, is a particular case of the SM-AP

algorithm by selecting γ = 0.

It is worthwhile to mention that when L = 0 and γ0(k) = γe(k)
|e(k)|

, the SM-AP

algorithm has the SM-NLMS algorithm as special case.

15

2.3 Estimating γ in the Set-Membership

Algorithm for Big Data Application

In big data applications, initially, it could be practical to prescribe a percentage of

the amount of data we intend to utilize to achieve the desired performance. This per-

centage will be defined in accordance with our ability to analyze the data, taking into

consideration the constraints on energy, computational time, and memory restrictions.

After adopting a percentage of the update, our goal is to select the most informative

data to be part of the corresponding selected percentage. Here, by taking the proba-

bility of updating into consideration, we will estimate the threshold in the SM-NLMS

and the SM-AP algorithms, which is responsible for censoring the data in accordance

with the adopted percentage of the update. The content of this section is published

in [35].

We want to obtain γ such that the algorithm considers the desired percentage of

data to update its recursion rule. In fact, if the magnitude of the output estimation

error is greater than γ, the set-membership (SM) algorithm will update since the

current input and the desired signals carry enough innovation.

In general, for the desired update rate, p, we require computing γ such that

P[|e(k)| > γ] = p, (2.19)

where P[·] denotes the probability operator. Note that p represents the update rate

of the algorithm, i.e., the percentage of the data which we consider most informative

data.

Given the probability density function of the error signal, then it is possible to

compute γ. Note that the error signal is the difference between the desired and the

output signals, i.e.,

e(k) , d(k)− y(k) , wT
o x(k) + n(k)−wT (k)x(k)

= [wo −w(k)]Tx(k) + n(k) = ẽ(k) + n(k), (2.20)

where ẽ(k) is the noiseless error signal, and n(k) is the noise signal. In the steady-

state environment ‖E[wo−w(k)]‖22 <∞ [7], where E[·] is the expected value operator

and, in general, E[wo − w(k)] ≈ 0. Therefore, if you have sufficient order for the

adaptive system, then in the steady-state environment the distribution of the error

16

signal and the additive noise signal are the same. Thus, we can use the distribution

of the additive noise signal in Equation (2.19) to calculate the desired value of γ.

Assuming the distribution of the noise signal is Gaussian with zero mean and

variance σ2
n, an important case, we can provide a solution for the threshold for this

special case. If the noiseless error signal is uncorrelated with the additional noise

signal, by Equation (2.20), we have E[e(k)] = E[ẽ(k)] + E[n(k)] = 0 and Var[e(k)] =

E[ẽ2(k)] + σ2
n, where Var[·] is the variance operator. E[ẽ2(k)] is the excess of the

steady-state mean-square error (EMSE) that in the steady-state environment is given

by [36, 37]

E[ẽ2(k)] =
(L+ 1)[σ2

n + γ2 − 2γσ2
nρ0(k)]p

[(2− p)− 2(1− p)γρo(k)]

(1− a

1− aL+1

)
, (2.21)

where

ρ0(k) =

√
2

π(2σ2
n +

1
L+1

γ2)
, (2.22)

a =[1− p+ 2pγρ0(k)](1− p). (2.23)

To calculate E[ẽ2(k)] in Equation (2.21), we require the value of γ, while esti-

mating γ is our purpose. To address this problem, the natural approach is estimate

it using numerical integration or Monte-Carlo methods. However, aiming at gaining

some insight, at the first moment we can assume that in the steady-state environment

E[ẽ2(k)] = 0, and the distribution of e(k) is the same as n(k), in order to calculate

the estimation of γ using Equation (2.19). Then, we substitute the obtained value of

γ in Equation (2.21) to compute E[ẽ2(k)]. Finally, by obtaining E[ẽ2(k)], we can have

a better estimation for the distribution of e(k).

Therefore, since the distribution of e(k) is the same as the distribution of n(k), for

the first estimation of γ we have

P[|e(k)| > γ] = P[|n(k)| > γ] = P[n(k) < −γ] + P[n(k) > γ] = p. (2.24)

Then because of the symmetry in Gaussian distribution we have P[n(k) > γ] = p
2
.

Since n(k) has Gaussian distribution, we need to obtain γ from

∫ ∞

γ

1√
2πσ2

n

exp(− r2

2σ2
n

)dr =
p

2
. (2.25)

17

Hence, given an update rate 0 ≤ p ≤ 1, we may use the standard normal distribution

table and find the desired γ. As the second step, for getting a better estimation of

γ, we substitute γ in Equations (2.21)-(2.23) to obtain E[ẽ2(k)]. We can now use the

zero mean Gaussian distribution with variance σ2
e = E[ẽ2(k)] + σ2

n as the distribution

of the error signal. Applying this distribution to Equation (2.19), we can obtain a

better estimation for γ through the equation

∫ ∞

γ

1√
2πσ2

e

exp(− r2

2σ2
e

)dr =
p

2
. (2.26)

By using the standard normal distribution table, from where we can find the new

estimation of γ. It is worth mentioning that the chosen desired update rate determines

a loose relative importance of the innovation brought about by the new incoming data

set.

2.4 Conclusions

In this chapter, we have reviewed some adaptive filtering algorithms which play an

essential role in the following chapters. First, we have introduced the LMS, the NLMS,

the AP, and the RLS algorithms. Then, we have described the SMF approach. By

incorporating this strategy into the conventional algorithms, we implement an update

when the magnitude of the output estimation error is greater than the predetermined

positive constant. For this purpose, we have defined some of the involved sets such as

the feasibility set, the constraint set, and the exact membership set. Then, we have

described the SM-NLMS and the SM-AP algorithms. Finally, for the SM-NLMS and

the SM-AP algorithms, we have discussed how to estimate the threshold parameter in

big data applications to obtain the desired update rate.

18

Chapter 3

On the Robustness of the

Set-Membership Algorithms

Online learning algorithms are a substantial part of Adaptive Signal Processing, thus

the efficiency of the algorithms has to be assessed. The classical adaptive filtering

algorithms are iterative estimation methods based on the point estimation theory [20].

This theory focuses on searching for a unique solution that minimizes (or maximizes)

some objective function. Two widely used classical algorithms are the normalized least-

mean-square (NLMS) and the affine projection (AP) algorithms. These algorithms

present a trade-off between convergence rate and steady-state misadjustment, and

their properties have been extensively studied [2, 10].

Two important set-membership (SM) algorithms are the set-membership NLMS

(SM-NLMS) and the set-membership AP (SM-AP) algorithms, proposed in [9, 31],

respectively. These algorithms keep the advantages of their classical counterparts, but

they are more accurate, more robust against noise, and also reduce the computational

complexities due to the data selection strategy previously explained [2, 37–39]. Various

applications of SM algorithms and their advantages over the classical algorithms have

been discussed in the literature [28, 29, 40–45].

Despite the recognized advantages of the SM algorithms, they are not broadly

used, probably due to the limited analysis of the properties of these algorithms. The

steady-state mean-squared error (MSE) analysis of the SM-NLMS algorithm has been

discussed in [46, 47]. Also, the steady-state MSE performance of the SM-AP algorithm

has been analyzed in [36, 37, 48].

The content of this chapter was published in [6, 7]. In this chapter, the robustness of

the SM-NLMS and the SM-AP algorithms are discussed in the sense of l2 stability [10,

19

49]. For the SM-NLMS algorithm, we demonstrate that it is robust regardless the

choice of its parameters and that the SM-NLMS enhances the parameter estimation

in most of the iterations in which an update occurs, two advantages over the classical

NLMS algorithm. Moreover, we also prove that if the noise bound is known, then

we can set the SM-NLMS so that it never degrades the estimate. As for the SM-

AP algorithm, we demonstrate that its robustness depends on a judicious choice of

one of its parameters: the constraint vector (CV). We prove the existence of CVs

satisfying the robustness condition, but practical choices remain unknown. We also

demonstrate that both the SM-AP and the SM-NLMS algorithms do not diverge,

even when their parameters are selected naively, provided that the additional noise

is bounded. Section 3.1 describes the robustness criterion. Section 3.2 presents the

algorithms discussed in this chapter. The robustness of the SM-NLMS algorithm is

studied in Section 3.3, where we also discuss the cases in which the noise bound is

assumed known and unknown. Section 3.4 presents the local and the global robustness

properties of the SM-AP algorithm. Section 3.5 contains the simulations and numerical

results. Finally, concluding remarks are drawn in Section 3.6.

3.1 Robustness Criterion

At every iteration k, assume that the desired signal d(k) is related to the unknown

system wo by

d(k) , wT
o x(k)︸ ︷︷ ︸
,yo(k)

+n(k), (3.1)

where n(k) denotes the unknown noise and accounts for both measurement noise and

modeling uncertainties or errors. Also, we assume that the unknown noise sequence

{n(k)} has finite energy [10], i.e.,

j∑

k=0

|n(k)|2 <∞, for all j. (3.2)

Suppose that we have a sequence of desired signals {d(k)} and we intend to estimate

yo(k) = wT
o x(k). For this purpose, assume that ŷk|k is an estimate of yo(k) and it is

only dependent on d(j) for j = 0, · · · , k. For a given positive number η, we aim at

calculating the following estimates ŷk|k ∈ {ŷ0|0, ŷ1|1, · · · , ŷM |M}, such that for any n(k)

20

satisfying (3.2) and any wo, the following criterion is satisfied:

j∑
k=0

‖ŷk|k − yo(k)‖2

w̃T (0)w̃(0) +
∑j

k=0 |n(k)|2
< η2, for all j = 0, · · · ,M (3.3)

where w̃(0) , wo − w(0) and w(0) is our initial guess about wo. Note that the nu-

merator is a measure of estimation-error energy up to iteration j and the denominator

includes the energy of disturbance up to iteration j and the energy of the error w̃(0)

that is due to the initial guess.

So, the criterion given in (3.3) requires that we adjust estimates {ŷk|k} such that

the ratio of the estimation-error energy (numerator) to the energy of the uncertain-

ties (denominator) does not exceed η2. When this criterion is satisfied, we say that

bounded disturbance energies induce bounded estimation-error energies and, therefore,

the obtained estimates are robust. The smaller value of η results in the more robust

solution, but the value of η cannot be decreased freely. The interested reader can refer

to [10], pages 719 and 720, for more details about this robustness criterion.

3.2 The Set-Membership Algorithms

In this section, we remind the SM-NLMS and the SM-AP algorithms, and in the

following sections we deal with their robustness.

3.2.1 The SM-NLMS Algorithm

The SM-NLMS algorithm is characterized by the updating rule [2]

w(k + 1) = w(k) +
µ(k)

‖x(k)‖2 + δ
e(k)x(k), (3.4)

where

µ(k) ,

{
1− γ

|e(k)|
if |e(k)| > γ,

0 otherwise,
(3.5)

and γ ∈ R+ is the upper bound for the magnitude of the error signal that is acceptable

and it is usually chosen as a multiple of the noise standard deviation σn [2, 37]. The

parameter δ ∈ R+ is a regularization factor, usually chosen as a small constant, used

21

to avoid singularity (divisions by 0).

3.2.2 The SM-AP Algorithm

The SM-AP algorithm is described by the recursion [31]

w(k + 1) =

{
w(k) +X(k)A(k)(e(k)− γ(k)) if |e(k)| > γ,

w(k) otherwise,
(3.6)

where we assume that A(k) , (XT (k)X(k))−1 ∈ R(L+1)×(L+1) exists, i.e., XT (k)X(k)

is a full-rank matrix. Otherwise, we could add a regularization parameter as explained

in [2].

3.3 Robustness of the SM-NLMS Algorithm

In this section, we discuss the robustness of the set-membership NLMS (SM-NLMS)

algorithm. In Subsection 3.3.1, we present some robustness properties. We address

the robustness of the SM-NLMS algorithm for the cases of unknown noise bound

and known noise bound in Subsections 3.3.2 and 3.3.3, respectively. Then, in Subsec-

tion 3.3.4, we introduce a time-varying error bound aiming at achieving simultaneously

fast convergence, low computational burden, and efficient use of the input data.

3.3.1 Robustness of the SM-NLMS algorithm

Let us consider a system identification scenario in which the unknown system is de-

noted by wo ∈ RN+1 and the desired (reference) signal d(k) is defined as

d(k) , wT
o x(k) + n(k), (3.7)

where n(k) ∈ R represents the additive measurement noise.

One of the main difficulties of analyzing the SM-NLMS algorithm is its conditional

statement in (3.5). We can overcome such difficulty by defining

µ(k) , 1− γ

|e(k)| , (3.8)

22

and the indicator function f : R× R+ → {0, 1} as

f(e(k), γ) ,

{
1 if |e(k)| > γ,

0 otherwise.
(3.9)

In this way, the SM-NLMS updating rule can be rewritten as

w(k + 1) = w(k) +
µ(k)

α(k)
e(k)x(k)f(e(k), γ), (3.10)

where

α(k) , ‖x(k)‖2 + δ. (3.11)

Since we are interested in robustness properties, it is useful to define w̃(k) ∈ RN+1

as

w̃(k) , wo −w(k), (3.12)

i.e., w̃(k) is a vector representing the discrepancy between the quantity we aim to

estimate wo and our current estimate w(k). Thus, the error signal can be rewritten

as

e(k) = d(k)−wT (k)x(k) = wT
o x(k) + n(k)−wT (k)x(k)

= w̃T (k)x(k)︸ ︷︷ ︸
,ẽ(k)

+n(k), (3.13)

where ẽ(k) denotes the noiseless error, i.e., the error due to a mismatch between w(k)

and wo.

By using (3.12) in (3.10) we obtain

w̃(k + 1) = w̃(k)− µ(k)

α(k)
e(k)x(k)f(e(k), γ), (3.14)

which can be further expanded by decomposing e(k) as in Equation (3.13) yielding

w̃(k + 1) = w̃(k)− µ(k)

α(k)
ẽ(k)x(k)f(e(k), γ)− µ(k)

α(k)
n(k)x(k)f(e(k), γ). (3.15)

By computing the energy of (3.15), the robustness property given in Theorem 1

23

can be derived after some mathematical manipulations.

Theorem 1 (Local Robustness of SM-NLMS). For the SM-NLMS algorithm, it always

holds that

‖w̃(k + 1)‖2 = ‖w̃(k)‖2, if f(e(k), γ) = 0 (3.16)

or

‖w̃(k + 1)‖2 + µ(k)

α(k)
ẽ2(k) < ‖w̃(k)‖2 + µ(k)

α(k)
n2(k) , (3.17)

if f(e(k), γ) = 1.

Proof. We start by repeating Equation (3.15), but to simplify the notation we will

omit both the index k and the arguments of function f that appear on the right-hand

side of that equation to obtain

w̃(k + 1) = w̃ − µ

α
ẽxf − µ

α
nxf. (3.18)

By computing the Euclidean norm of the above equation we get

‖w̃(k + 1)‖2 =w̃T w̃ − µ

α
ẽw̃Txf − µ

α
nw̃Txf − µ

α
ẽxT w̃f +

µ2

α2
ẽ2xTxf 2

+
µ2

α2
ẽnxTxf 2 − µ

α
nxT w̃f +

µ2

α2
nẽxTxf 2 +

µ2

α2
n2xTxf 2

=‖w̃‖2 − µ

α
ẽ2f − µ

α
nẽf − µ

α
ẽ2f +

µ2

α2
ẽ2‖x‖2f 2 +

µ2

α2
ẽn‖x‖2f 2

− µ

α
nẽf +

µ2

α2
nẽ‖x‖2f 2 +

µ2

α2
n2‖x‖2f 2

=‖w̃‖2 − 2
µ

α
ẽ2f − 2

µ

α
nẽf + (ẽ + n)2

µ2

α2
‖x‖2f 2

=‖w̃‖2 + (ẽ + n)2
µ2

α2
‖x‖2f 2 − 2

µ

α
ẽ2f − 2

µ

α
nẽf − µ

α
n2f +

µ

α
n2f

=‖w̃‖2 + (ẽ + n)2
µ2

α2
‖x‖2f 2 +

µ

α
n2f − (ẽ+ n)2

µ

α
f − µ

α
ẽ2f, (3.19)

where the second equality is due to the relation ẽ = w̃Tx = xT w̃, as given in Equa-

tion (3.13). Rearranging the terms in (3.19) yields

‖w̃(k + 1)‖2 + µf

α
ẽ2 = ‖w̃‖2 + µf

α
n2 + c1c2, (3.20)

24

where

c1 ,
µf

α
(ẽ + n)2, c2 ,

µf

α
‖x‖2 − 1. (3.21)

From (3.20), we observe that when f = 0 we have

‖w̃(k + 1)‖2 = ‖w̃(k)‖2 (3.22)

as expected, since f = 0 means that no update was performed. However, when

f = 1 we have 0 < µ < 1 and (ẽ + n)2 = e2 > γ2 > 0. In addition, observe that

0 ≤ ‖x‖2/α < 1 due to Equation (3.11) and the fact that δ > 0. Combining these

inequalities leads to c2 < 0 and c1 > 0. Thus, when f = 1 the product c1c2 < 0, which

leads to the inequality

‖w̃(k + 1)‖2 + µ

α
ẽ2 < ‖w̃‖2 + µ

α
n2. (3.23)

Returning with the omitted index k, for f(e(k), γ) = 1 we have

‖w̃(k + 1)‖2 + µ(k)

α(k)
ẽ2(k) < ‖w̃(k)‖2 + µ(k)

α(k)
n2(k). (3.24)

Theorem 1 presents local bounds for the energy of the coefficient deviation when

running from an iteration to the next one. Indeed, (3.16) states that the coeffi-

cient deviation does not change when no coefficient update is actually implemented,

whereas (3.17) provides a bound for ‖w̃(k+ 1)‖2 based on ‖w̃(k)‖2, ẽ2(k), and n2(k),

when an update occurs. In addition, the global robustness result in Corollary 1 can

readily be derived from Theorem 1.

Corollary 1 (Global Robustness of SM-NLMS). Consider the SM-NLMS algorithm

running from iteration 0 (initialization) to a given iteration K. The relation

‖w̃(K)‖2 + ∑
k∈Kup

µ(k)
α(k)

ẽ2(k)

‖w̃(0)‖2 + ∑
k∈Kup

µ(k)
α(k)

n2(k)
< 1 (3.25)

holds, where Kup 6= ∅ is the set containing the iteration indexes k in which w(k) is

indeed updated. If Kup = ∅, then ‖w̃(K)‖2 = ‖w̃(0)‖2 due to (3.16), but this case is

25

not of practical interest since Kup = ∅ means that no update is performed at all.

Proof. Define the set of all iterations under analysis K , {0, 1, 2, . . . , K − 1}. Denote

as Kup the subset of K comprised only of the iterations in which an update occurs,

whereas Kc
up , K \ Kup contains the iteration indexes in which the filter coefficients

are not updated.

From Theorem 1, (3.17) holds when w(k) is updated. By summing such inequality

for all k ∈ Kup we obtain

∑

k∈Kup

(
‖w̃(k + 1)‖2 + µ(k)

α(k)
ẽ2(k)

)
<

∑

k∈Kup

(
‖w̃(k)‖2 + µ(k)

α(k)
n2(k)

)
. (3.26)

Similarly, we can use (3.16) to write, for all k ∈ Kc
up, the equality

∑

k∈Kc
up

‖w(k + 1)‖2 =
∑

k∈Kc
up

‖w(k)‖2. (3.27)

Combining (3.26) and (3.27) leads to

∑

k∈K

‖w̃(k + 1)‖2 +
∑

k∈Kup

µ(k)

α(k)
ẽ2(k) <

∑

k∈K

‖w̃(k)‖2 +
∑

k∈Kup

µ(k)

α(k)
n2(k). (3.28)

But since several of the terms ‖w̃(k)‖2 get canceled from both sides of the inequality

(3.28), we find that it simplifies to

‖w̃(K)‖2 +
∑

k∈Kup

µ(k)

α(k)
ẽ2(k) < ‖w̃(0)‖2 +

∑

k∈Kup

µ(k)

α(k)
n2(k) (3.29)

or, assuming a nonzero denominator,

‖w̃(K)‖2 + ∑
k∈Kup

µ(k)
α(k)

ẽ2(k)

‖w̃(0)‖2 + ∑
k∈Kup

µ(k)
α(k)

n2(k)
< 1. (3.30)

This relation holds for all K. The only assumption used in the derivation is that Kup is

a nonempty set. Otherwise, we would have ‖w̃(K)‖2 = ‖w̃(0)‖2, which would happen

only if w(k) is never updated, which has no practical interest.

Corollary 1 shows that, for the SM-NLMS algorithm, l2-stability from its uncer-

tainties {w̃(0), {n(k)}0≤k≤K} to its errors {w̃(K), {ẽ(k)}0≤k≤K} is always guaranteed.

26

Unlike the NLMS algorithm, in which the step-size parameter must be chosen ap-

propriately to guarantee such l2-stability, for the SM-NLMS algorithm it is taken for

granted (i.e., no restriction is imposed on γ).

3.3.2 Convergence of {‖w̃(k)‖2} with unknown noise bound

The robustness results mentioned in Subsection 3.3.1 provide bounds for the evolution

of {‖w̃(k)‖2} in terms of other variables. However, we have experimentally observed

that the SM-NLMS algorithm presents a well-behaved convergence of the sequence

{‖w̃(k)‖2}, i.e., for most iterations we have ‖w̃(k+1)‖2 ≤ ‖w̃(k)‖2. Therefore, in this

subsection, we investigate under which conditions the sequence {‖w̃(k)‖2} is (and is

not) decreasing.

Corollary 2. When an update occurs (i.e., f(e(k), γ) = 1), ẽ2(k) ≥ n2(k) implies

‖w̃(k + 1)‖2 < ‖w̃(k)‖2.

Proof. By rearranging the terms in (3.17) we obtain

‖w̃(k + 1)‖2 + µ(k)

α(k)

(
ẽ2(k)− n2(k)

)
< ‖w̃(k)‖2, (3.31)

which is valid for f(e(k), γ) = 1. Observe that µ(k)
α(k)

> 0 since α(k) ∈ R+ and µ(k) ∈
(0, 1) when f(e(k), γ) = 1. Thus µ(k)

α(k)
(ẽ2(k)− n2(k)) ≥ 0 when f(e(k), γ) = 1 and

ẽ2(k) ≥ n2(k). Therefore, when an update occurs, ẽ2(k) ≥ n2(k) ⇒ ‖w̃(k + 1)‖2 <
‖w̃(k)‖2.

In words, Corollary 2 states that the SM-NLMS algorithm improves its estimate

w(k + 1) every time an update is required and the energy of the error signal e2(k) is

dominated by ẽ2(k), the component of the error which is due to the mismatch between

w(k) and wo.

Corollary 2 also explains why the SM-NLMS algorithm usually presents a mono-

tonic decreasing sequence {‖w̃(k)‖2} during its transient period. Indeed, in the early

iterations, the absolute value of the error is generally large, thus |e(k)| > γ and

ẽ2(k) > n2(k), implying that ‖w̃(k + 1)‖2 < ‖w̃(k)‖2. In addition, there are a few

iterations during the transient period in which the input data do not bring enough in-

novation so that no update is performed, which means that ‖w̃(k+1)‖2 = ‖w̃(k)‖2 for
these few iterations. As a conclusion, it is very likely to have ‖w̃(k + 1)‖2 ≤ ‖w̃(k)‖2
for all iterations k belonging to the transient period.

27

After the transient period, however, the SM-NLMS algorithm may yield ‖w̃(k +

1)‖2 > ‖w̃(k)‖2 in a few iterations. Although it is hard to compute how often such

an event occurs, we can provide an upper bound for the probability of this event as

follows:

P[‖w̃(k + 1)‖2 > ‖w̃(k)‖2] ≤ P[{|e(k)| > γ} ∩ {ẽ2(k) < n2(k)}]

< P[|e(k)| > γ] = erfc

(√
τ

2

)
, (3.32)

where P[·] and erfc(·) are the probability operator and the complementary error func-

tion [50], respectively. The first inequality follows from the fact that we do not know

exactly what will happen with ‖w̃(k+1)‖2 when an update occurs and ẽ2(k) < n2(k)

at the same time1 and, therefore, it corresponds to a pessimistic bound. The second

inequality is trivial and the subsequent equality follows from [33] by parameterizing γ

as γ =
√
τσ2

n, where τ ∈ R+ (typically τ = 5) and by modeling the error e(k) as a

zero-mean Gaussian random variable with variance σ2
n.

From (3.32), one can observe that the probability of obtaining ‖w̃(k + 1)‖2 >

‖w̃(k)‖2 is small. For instance, for 2 ≤ τ ≤ 9 we have 0.0027 ≤ erfc
(√

τ
2

)
≤ 0.1579,

and for the usual choice τ = 5 we have erfc
(√

τ
2

)
= 0.0253.

The results in this subsection show that ‖w̃(k+1)‖2 ≤ ‖w̃(k)‖2 for most iterations

of the SM-NLMS algorithm, meaning that the SM-NLMS algorithm uses the input

data efficiently. Indeed, having ‖w̃(k+1)‖2 > ‖w̃(k)‖2 means that the input data was

used to obtain an estimate w(k + 1) which is further away from the quantity we aim

to estimate wo, which is a waste of computational resources (it would be better not to

update at all). Here, we showed that this rarely happens for the SM-NLMS algorithm,

a property not shared by the classical algorithms, as it will be verified experimentally

in Section 3.5.

3.3.3 Convergence of {‖w̃(k)‖2} with known noise bound

In this subsection, we demonstrate that if the noise bound is known, then it is possible

to set the threshold parameter γ of the SM-NLMS algorithm so that {‖w̃(k)‖2} is a

monotonic decreasing sequence. Theorem 2 and Corollary 3 address this issue.

1This is because Corollary 2 provides a sufficient, but not necessary, condition for ‖w̃(k + 1)‖2 <
‖w̃(k)‖2.

28

Theorem 2 (Strong Local Robustness of SM-NLMS). Assume the noise is bounded

by a known constant B ∈ R+, i.e., |n(k)| ≤ B, ∀k. If one chooses γ ≥ 2B, then

{‖w̃(k)‖2} is a monotonic decreasing sequence, i.e., ‖w̃(k + 1)‖2 ≤ ‖w̃(k)‖2, ∀k.

Proof. If f(e(k), γ) = 1, then |e(k)| = |ẽ(k) + n(k)| > γ, which means that:

(i) ẽ(k) > γ − n(k) for the positive values of ẽ(k) or (ii) ẽ(k) < −γ − n(k) for the

negative values of ẽ(k). Recalling that n(k) ∈ [−B,B] and γ ∈ [2B,∞), now we can

find the bound for ẽ(k) by finding the minimum of (i) and the maximum of (ii) as

follows:

(i) ẽ(k) > γ − n(k) ⇒ ẽmin > γ − B ≥ B;

(ii) ẽ(k) < −γ − n(k) ⇒ ẽmax < −γ +B ≤ −B.

Results (i) and (ii) above state that if γ ≥ 2B, then |ẽ(k)| > B, which means that

|ẽ(k)| > |n(k)|, ∀k. Consequently, by using Corollary 2 it follows that ‖w̃(k + 1)‖2 <
‖w̃(k)‖2, ∀k in which f(e(k), γ) = 1. In addition, if f(e(k), γ) = 0 we have

‖w̃(k + 1)‖2 = ‖w̃(k)‖2. Therefore, we can conclude that γ ≥ 2B ⇒ ‖w̃(k + 1)‖2 ≤
‖w̃(k)‖2, ∀k.

Corollary 3 (Strong Global Robustness of SM-NLMS). Consider the SM-NLMS algo-

rithm running from iteration 0 (initialization) to a given iteration K. If γ ≥ 2B, then

‖w̃(K)‖2 ≤ ‖w̃(0)‖2, in which the equality holds only when no update is performed

along all the iterations.

The proof of Corollary 3 is omitted because it is a straightforward consequence of

Theorem 2.

3.3.4 Time-varying γ(k)

After reading Subsections 3.3.2 and 3.3.3, one might be tempted to set γ as a high

value since it reduces the number of updates, thus saving computational resources

and also leading to a well-behaved sequence {‖w̃(k)‖2} that has high probability of

being monotonously decreasing. However, a high value of γ leads to slow convergence,

because the updates during the learning stage (transient period) are less frequent

and the step-size µ(k) is reduced as well. Hence, γ represents a compromise between

convergence speed and efficiency and, therefore, should be chosen carefully according

to the specific characteristics of the application.

An alternative approach is to allow a time-varying error bound γ(k) generally

29

defined as γ(k) ,
√
τ(k)σ2

n, where

τ(k) ,




Low value (e.g., τ(k) ∈ [1, 5]), if k ∈ transient period,

High value (e.g., τ(k) ∈ [5, 9]), if k ∈ steady-state.
(3.33)

By using such a γ(k), one obtains the best features of the high and low values of γ

discussed in the first paragraph of this subsection. In addition, if the noise bound B is

known, then one should set γ(k) ≥ 2B for all k during the steady-state, as explained

in Subsection 3.3.3. It is worth mentioning that (3.33) provides a general expression

for τ(k) that allows it to vary smoothly along the iterations even within a single period

(i.e., transient period or steady-state).

In order to apply the γ(k) defined above, the algorithm should be able to monitor

the environment to determine when there is a transition between transient and steady-

state periods. An intuitive way to do this is to monitor the values of |e(k)|. In this

case, one should form a window with the E ∈ N most recent values of the error,

compute the average of these |e(k)| within the window, and compare it against a

threshold parameter to make the decision. An even more intuitive and efficient way

to monitor the iterations relies on how often the algorithm is updating. In this case,

one should form a window of length E containing Boolean variables (flags, i.e., 1-bit

information) indicating the iterations in which an update was performed considering

the E most recent iterations. If many updates were performed within the window,

then the algorithm must be in the transient period; otherwise, the algorithm is likely

to be in steady-state.

3.4 Robustness of the SM-AP Algorithm

In this section, we address the robustness of the set-membership affine projection

(SM-AP) algorithm. We study its robustness properties in Subsection 3.4.1, whereas

in Subsection 3.4.2, we demonstrate that the SM-AP algorithm does not diverge.

30

3.4.1 Robustness of the SM-AP algorithm

Suppose that in a system identification problem the unknown system is denoted by

wo ∈ RN+1 and the desired (reference) vector is given by

d(k) , XT (k)wo + n(k). (3.34)

By defining the coefficient mismatch w̃(k) , wo−w(k), the error vector can be written

as

e(k) = XT (k)wo + n(k)−XT (k)w(k) = XT (k)w̃(k)︸ ︷︷ ︸
,ẽ(k)

+n(k) , (3.35)

where ẽ(k) denotes the noiseless error vector (i.e., the error due to a nonzero w̃(k)).

By defining the indicator function f : R×R+ → {0, 1} as in (3.9) and using it in (3.6),

the update rule of the SM-AP algorithm can be written as follows:

w(k + 1) = w(k) +X(k)A(k)(e(k)− γ(k))f(e(k), γ), (3.36)

where A(k) = [XT (k)X(k)]−1. After subtracting wo from both sides of (3.36), we

obtain

w̃(k + 1) = w̃(k)−X(k)A(k)(e(k)− γ(k))f(e(k), γ). (3.37)

Notice that A(k) is a symmetric positive definite matrix. To simplify our notation, we

will omit the index k and the arguments of function f that appear on the right-hand

side (RHS) of the previous equation, then by decomposing e(k) as in (3.35) we obtain

w̃(k + 1) = w̃ −XAẽf −XAnf +XAγf, (3.38)

from which Theorem 3 can be derived.

Theorem 3 (Local Robustness of SM-AP). For the SM-AP algorithm, at every iter-

ation we have

‖w̃(k + 1)‖2 = ‖w̃(k)‖2, if f(e(k), γ) = 0 (3.39)

31

otherwise





‖w̃(k+1)‖2+ẽ
T
Aẽ

‖w̃(k)‖2+nTAn
< 1, if γTAγ < 2γTAn,

‖w̃(k+1)‖2+ẽTAẽ

‖w̃(k)‖2+nTAn
= 1, if γTAγ = 2γTAn,

‖w̃(k+1)‖2+ẽ
T
Aẽ

‖w̃(k)‖2+nTAn
> 1, if γTAγ > 2γTAn,

(3.40)

where the iteration index k has been dropped for the sake of clarity, and we assume

that ‖w̃(k)‖2 + nTAn 6= 0 just to allow us to write the theorem in a compact form.

Proof. By computing the Euclidean norm of Equation (3.38) and rearranging the terms

we get

‖w̃(k + 1)‖2 =w̃T w̃− w̃TXAẽf − w̃TXAnf + w̃TXAγf − ẽTATXT w̃f

+ ẽTATA−1Aẽf 2 + ẽTATA−1Anf 2 − ẽTATA−1Aγf 2

− nTATXT w̃f + nTATA−1Aẽf 2 + nTATA−1Anf 2

− nTATA−1Aγf 2 + γTATXT w̃f − γTATA−1Aẽf 2

− γTATA−1Anf 2 + γTATA−1Aγf 2

=‖w̃‖2 − ẽTAẽf − ẽTAnf + ẽTAγf − ẽTAẽf + ẽTAẽf 2

+ ẽTAnf 2 − ẽTAγf 2 − nTAẽf + nTAẽf 2 + nTAnf 2

− nTAγf 2 + γTAẽf − γTAẽf 2 − γTAnf 2 + γTAγf 2 , (3.41)

where it was used that A−1 = XT (k)X(k) and ẽ(k) = XT (k)w̃(k). From the above

equation we observe that when f = 0 we have

‖w̃(k + 1)‖2 = ‖w̃(k)‖2 (3.42)

as expected, since f = 0 means that the algorithm does not update its coefficients.

However, when f = 1 the following equality is achieved from (3.41):

‖w̃(k + 1)‖2 = ‖w̃‖2 − ẽTAẽ+ nTAn− 2γTAn+ γTAγ . (3.43)

After rearranging the terms of the previous equation we obtain

‖w̃(k + 1)‖2 + ẽTAẽ = ‖w̃‖2 + nTAn− 2γTAn+ γTAγ . (3.44)

Therefore, ‖w̃(k + 1)‖2 + ẽTAẽ < ‖w̃‖2 + nTAn if γTAγ < 2γTAn, ‖w̃(k + 1)‖2 +

32

ẽTAẽ = ‖w̃‖2+nTAn if γTAγ = 2γTAn, and ‖w̃(k+1)‖2+ ẽTAẽ > ‖w̃‖2 +nTAn

if γTAγ > 2γTAn.

Assuming ‖w̃‖2+nTAn 6= 0 we can summarize the discussion above in a compact

form as follows:





‖w̃(k+1)‖2+ẽTAẽ

‖w̃(k)‖2+nTAn
< 1, if γTAγ < 2γTAn,

‖w̃(k+1)‖2+ẽ
T
Aẽ

‖w̃(k)‖2+nTAn
= 1, if γTAγ = 2γTAn,

‖w̃(k+1)‖2+ẽTAẽ

‖w̃(k)‖2+nTAn
> 1, if γTAγ > 2γTAn.

(3.45)

The combination of the first two inequalities in (3.40), which corresponds to the

case γTAγ ≤ 2γTAn, has an interesting interpretation. It describes that for any

constraint vector γ satisfying this condition we have

‖w̃(k + 1)‖2 + ẽTAẽ ≤ ‖w̃(k)‖2 + nTAn, (3.46)

no matter what the noise vector n(k) is. In this way, we can derive the global robust-

ness property of the SM-AP algorithm.

Corollary 4 (Global Robustness of SM-AP). Suppose that the SM-AP algorithm run-

ning from 0 (initialization) to a given iteration K employs a constraint vector γ sat-

isfying γTAγ ≤ 2γTAn at every iteration in which an update occurs. Then, it always

holds that

‖w̃(K)‖2 + ∑
k∈Kup

ẽTAẽ

‖w̃(0)‖2 + ∑
k∈Kup

nTAn
≤ 1, (3.47)

where Kup 6= ∅ is the set comprised of the iteration indexes k in which w(k) is indeed

updated and the equality holds when γTAγ = 2γTAn for every k ∈ Kup. If Kup = ∅,
then ‖w̃(K)‖2 = ‖w̃(0)‖2, a case that has no practical interest since no update is

performed.

Proof. Denote by K , {0, 1, 2, . . . , K−1} the set of all iterations. Let Kup ⊆ K be the

subset containing only the iterations in which an update occurs, whereas Kc
up , K\Kup

is comprised of the iterations in which the filter coefficients are not updated.

As a consequence of Theorem 3, when an update occurs the inequality given

in (3.46) is valid provided γ is chosen such that γTAγ ≤ 2γTAn is respected. In

33

this way, by summing such inequality for all k ∈ Kup we obtain

∑

k∈Kup

(
‖w̃(k + 1)‖2 + ẽTAẽ

)
≤

∑

k∈Kup

(
‖w̃(k)‖2 + nTAn

)
. (3.48)

Observe that γ, ẽ, n, and A all depend on the independent variable k, which we have

omitted for the sake of simplification. In addition, for the iterations without coefficient

update, we have (3.39), which can be summed for all k ∈ Kc
up leading to

∑

k∈Kc
up

‖w̃(k + 1)‖2 =
∑

k∈Kc
up

‖w̃(k)‖2. (3.49)

Summing (3.48) and (3.49) yields

∑

k∈K

‖w̃(k + 1)‖2 +
∑

k∈Kup

ẽTAẽ ≤
∑

k∈K

‖w̃(k)‖2 +
∑

k∈Kup

nTAn. (3.50)

Then, we can cancel several of the terms ‖w̃(k)‖2 from both sides of the above in-

equality simplifying it as follows

‖w̃(K)‖2 +
∑

k∈Kup

ẽTAẽ ≤ ‖w̃(0)‖2 +
∑

k∈Kup

nTAn. (3.51)

Assuming a nonzero denominator, we can write the previous inequality in a compact

form

‖w̃(K)‖2 + ∑
k∈Kup

ẽTAẽ

‖w̃(0)‖2 + ∑
k∈Kup

nTAn
≤ 1. (3.52)

This relation holds for all K, provided γTAγ ≤ 2γTAn is satisfied for every iteration

in which an update occurs, i.e., for every k ∈ Kup. The only assumption used in the

derivation is that Kup 6= ∅. Otherwise, we would have ‖w̃(K)‖2 = ‖w̃(0)‖2, which
would occur only if w(k) is never updated, which is not of practical interest.

Observe that, unlike the SM-NLMS algorithm, the SM-AP algorithm requires the

condition γTAγ ≤ 2γTAn to be satisfied in order to guarantee l2-stability from

its uncertainties {w̃(0), {n(k)}0≤k≤K} to its errors {w̃(K), {ẽ(k)}0≤k≤K}. The next

question is: are there constraint vectors γ satisfying such a condition? This is a very

interesting point because the left-hand side (LHS) of the condition is always positive,

34

whereas the RHS is not. Corollary 5 answers this question and shows an example of

such a constraint vector.

Corollary 5. Suppose the CV is chosen as γ(k) = cn(k) in the SM-AP algorithm,

where n(k) is the noise vector defined in (3.34). If 0 ≤ c ≤ 2, then the condition

γTAγ ≤ 2γTAn always holds, implying that the SM-AP algorithm is globally robust

by Corollary 4.

Proof. Substituting γ(k) = cn(k) in γTAγ ≤ 2γTAn leads to the following condition

(c2−2c)nT (k)A(k)n(k) ≤ 0, which is satisfied for c2−2c ≤ 0 ⇒ 0 ≤ c ≤ 2 since A(k)

is positive definite. Hence, due to Corollary 4 the proposed γ(k) leads to a globally

robust SM-AP algorithm.

It is worth mentioning that the constraint vector γ(k) in Corollary 5 is not prac-

tical because n(k) is not observable. Therefore, Corollary 5 is actually related to the

existence of γ(k) satisfying γTAγ < 2γTAn.

Unlike the SM-NLMS algorithm, the l2-stability of the SM-AP algorithm is not

guaranteed. Indeed, as demonstrated in Theorem 3 and Corollary 4, a judicious choice

of the CV is required for the SM-AP algorithm to be l2-stable. It is worth mentioning

that practical choices of γ(k) satisfying the robustness condition γTAγ ≤ 2γTAn for

every iteration k are not known yet! Even widely used CVs, like the simple choice

CV (SC-CV) [51], sometimes violate this condition as will be shown in Section 3.5.

However, this does not mean that the SM-AP algorithm diverges. In fact, it does not

diverge regardless the choice of γ(k), as demonstrated in the next subsection.

3.4.2 The SM-AP algorithm does not diverge

When the SM-AP algorithm updates (i.e., when |e(k)| > γ), it generates w(k + 1) as

the solution to the following optimization problem [2, 31]:

minimize ‖w(k + 1)−w(k)‖2

subject to d(k)−XT (k)w(k + 1) = γ(k). (3.53)

The constraint essentially states that the a posteriori errors ǫ(k−l) , d(k−l)−xT (k−
l)w(k + 1) are equal to their respective γl(k), which in turn are bounded by γ. This

35

leads to the following derivation:

|ǫ(k − l)| = |d(k − l)− xT (k − l)w(k + 1)| ≤ γ,

|xT (k − l)w̃(k + 1) + n(k − l)| ≤ γ, (3.54)

which should be valid for all iterations and suitable values of the involved variables.

Therefore, we have

−γ − n(k − l) ≤ xT (k − l)w̃(k + 1) ≤ γ − n(k − l). (3.55)

Since the noise sequence is bounded and γ <∞, we have

−∞ <

N∑

i=0

xi(k − l)w̃i(k + 1) <∞, (3.56)

where xi(k−l), w̃i(k+1) ∈ R denote the ith entry of vectors x(k−l), w̃(k+1) ∈ RN+1,

respectively. As a result, |w̃i(k+1)| is also bounded implying ‖w̃(k+1)‖2 <∞, which

means that the SM-AP algorithm does not diverge even when its CV is not properly

chosen. In Section 3.5 we verify this fact experimentally by using a general CV, i.e.,

a CV whose entries are randomly chosen but satisfying |γi(k)| ≤ γ. Such general CV

leads to poor performance, in comparison to the SM-AP algorithm using adequate

CVs, but the algorithm does not diverge.

The same reasoning could be applied to demonstrate that the SM-NLMS algorithm

does not diverge as well. However, from Corollary 1 it is straightforward to verify that

‖w̃(K)‖2 <∞ for every K, as the denominator in (3.25) is finite.

3.5 Simulations

In this section, we provide simulation results for the SM-NLMS and SM-AP algorithms

in order to verify their robustness properties addressed in the previous sections. These

results are obtained by applying the aforementioned algorithms to a system identifi-

cation problem. The unknown system wo is comprised of 10 coefficients drawn from a

standard Gaussian distribution. The noise n(k) is a zero-mean white Gaussian noise

with variance σ2
n = 0.01 yielding a signal-to-noise ratio (SNR) equal to 20 dB. The

regularization factor and the initialization for the adaptive filtering coefficient vector

are δ = 10−12 and w(0) = [0 · · · 0]T ∈ R10, respectively. The error bound parameter

36

Number of iterations, k
0 500 1000 1500

g
1
(k

)
an

d
g

2
(k

)
[d

B
]

-25

-20

-15

-10

-5

0

5

10

15

g
1
(k)

g
2
(k)

1050 1100 1150 1200

-18

-17

-16

-15

Figure 3.1: Values of g1(k) and g2(k) over the iterations for the SM-NLMS algorithm
corroborating Theorem 1.

is usually set as γ =
√
5σ2

n = 0.2236, unless otherwise stated.

3.5.1 Confirming the results for the SM-NLMS algorithm

Here, the input signal x(k) is a zero-mean white Gaussian noise with variance equal

to 1. Fig. 3.1 aims at verifying Theorem 1. Thus, for the iterations k with coefficient

update, let us denote the left-hand side (LHS) and the right-hand side (RHS) of (3.17)

as g1(k) and g2(k), respectively. In addition, to simultaneously account for (3.16), we

define g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2 for the iterations without coefficient

update. Fig. 3.1 depicts g1(k) and g2(k) considering the system identification scenario

described in the beginning of Section 3.5. In this figure, we can observe that g1(k) ≤
g2(k) for all k. Indeed, we verified that g1(k) = g2(k) (i.e., curves are overlaid) only in

the iterations without update, i.e., w(k + 1) = w(k). In the remaining iterations we

have g1(k) < g2(k), corroborating Theorem 1.

37

Fig. 3.2 depicts the sequence {‖w̃(k)‖2} for the SM-NLMS algorithm and its clas-

sical counterpart, the NLMS algorithm. For the SM-NLMS algorithm, we consider

three cases: fixed γ with unknown noise bound (blue solid line), fixed γ with known

noise bound B = 0.11 (cyan solid line), and time-varying γ(k), defined as
√
5σ2

n during

the transient period and
√

9σ2
n during the steady-state, with unknown noise bound

(green solid line). For the results using the time-varying γ(k), the window length is

E = 20, and when the number of updates in the window is less than 4, we assume

the algorithm is in the steady-state period. For the NLMS algorithm, two different

step-sizes are used: µ = 0.9, which leads to fast convergence but high misadjustment,

and µ = 0.05, which leads to slow convergence but low misadjustment.

In Fig. 3.2, the blue curve confirms the discussion in Subsection 3.3.2. Indeed, we

can observe that the sequence {‖w̃(k)‖2} represented by this blue curve increases only

30 times along the 2500 iterations, meaning that the SM-NLMS algorithm did not

improve its estimate w(k+ 1) only in 30 iterations. Thus, in this experiment we have

P[‖w̃(k+1)‖2 > ‖w̃(k)‖2] = 0.012, whose value is lower than its corresponding upper

bound given by erfc(
√
2.5) = 0.0253, as explained in Subsection 3.3.2. Also, we can

observe that the event ‖w̃(k + 1)‖2 > ‖w̃(k)‖2 did not occur in the early iterations

because in these iterations ẽ2(k) is usually large due to a significant mismatch between

w(k) and wo, i.e., the condition specified in Corollary 2 is frequently satisfied.

Also in Fig. 3.2, the cyan curve shows that when the noise bound is known we can

obtain a monotonic decreasing sequence {‖w̃(k)‖2} by selecting γ ≥ 2B, corroborating

Theorem 2 and Corollary 3. The sequence {‖w̃(k)‖2} represented by the green curve in

Fig. 3.2 increases only 3 times, thus confirming the advantage of using a time-varying

γ(k) when the noise bound is unknown, as explained in Subsection 3.3.4. As compared

to the SM-NLMS algorithm, the behavior of the sequence {‖w̃(k)‖2} for the NLMS

algorithm is very irregular. Indeed, for the NLMS algorithm there are many iterations

in which ‖w̃(k + 1)‖2 > ‖w̃(k)‖2, even when using a small step-size µ. Hence, the

NLMS algorithm does not use the input data as efficiently as the SM-NLMS algorithm

does, given that the NLMS performs many “useless updates”.

In conclusion, an interesting advantage of the SM-NLMS algorithm over the NLMS

algorithm is that the former can achieve fast convergence and has a well-behaved se-

quence {‖w̃(k)‖2} (which rarely increases) at the same time. In addition, the SM-

NLMS algorithm also saves computational resources by not updating the filter coef-

ficients at every iteration. In Fig. 3.2, the update rates of the blue, cyan, and green

curves are 4.6%, 1.5%, and 1.9%, respectively. They confirm that the computational

38

Number of iterations, k
0 500 1000 1500 2000 2500 3000

‖w̃
(k
)‖

2
[d
B
]

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

NLMS: µ = 0.9

NLMS: µ = 0.05

SM-NLMS: unknown noise bound

SM-NLMS: known noise bound

SM-NLMS: unknown noise bound, γ̄(k)

Figure 3.2: ‖w̃(k)‖2 , ‖wo −w(k)‖2 for the NLMS and the SM-NLMS algorithms.

cost of the SM-NLMS algorithm is significantly lower than that of the NLMS algo-

rithm.2

3.5.2 Confirming the results for the SM-AP algorithm

For the case of the SM-AP algorithm, the input is a first-order autoregressive signal

generated as x(k) = 0.95x(k−1)+n(k−1). We test the SM-AP algorithm employing

L = 2 (i.e., reuse of two previous input data) and three different constraint vectors

(CVs) γ(k): a general CV, the SC-CV, and the noise vector CV. The general CV γ(k),

in which the entries are set as γl(k) = γ for 0 ≤ l ≤ L, illustrates a case where the CV

is not properly chosen [24, 51]. The SC-CV [24, 51] is defined as γ0(k) = γ e(k)
|e(k)|

and

γl(k) = ǫ(k − l) for 1 ≤ l ≤ L. The noise vector CV is given by γ(k) = n(k).

2In comparison to the NLMS algorithm, whenever the SM-NLMS algorithm updates it performs
two additional operations: One division and one subtraction due to the computation of µ(k). However,
for most of the iterations the SM-NLMS algorithm requires fewer operations because it does not
update often.

39

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

g
1
(k

)
an

d
g

2
(k

)
[d

B
]

-15

-10

-5

0

5

10

g
1
(k)

g
2
(k)

600 610 620 630 640 650 660

-4.2

-4

-3.8

-3.6

-3.4

Figure 3.3: Values of g1(k) and g2(k) over the iterations for the SM-AP algorithm with
γ(k) as the general CV, where g1(k) and g2(k) are the numerator and denominator
of (3.40) in Theorem 3, when an update occurs; otherwise, g1(k) = ‖w̃(k + 1)‖2 and
g2(k) = ‖w̃(k)‖2.

The results depicted in Figs. 3.3, 3.4, 3.5, and 3.6 aim at verifying Theorem 3

and Corollary 5. We define g1(k) and g2(k) as the numerator and the denominator

of (3.40) in Theorem 3, respectively, when an update occurs; otherwise, we define

g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2.
The results depicted in Fig. 3.3 illustrate that, for the general CV, there are many

iterations in which g1(k) > g2(k) (about 293 out of 1000 iterations). This is an

expected behavior since the general CV does not take into account (directly or indi-

rectly) the value of n(k) and, therefore, it does not consider the robustness condition

γT (k)A(k)γ(k) ≤ 2γT (k)A(k)n(k).

For the SM-AP algorithm employing the SC-CV, however, there are very few iter-

ations in which g1(k) > g2(k) (only 19 out of 1000 iterations), as shown in Fig. 3.4.

This means that even the widely used SC-CV does not lead to global robustness.

40

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

g
1
(k

)
an

d
g

2
(k

)
[d

B
]

-20

-15

-10

-5

0
g

1
(k)

g
2
(k)

435 440 445 450 455 460 465
-17.2

-17

-16.8

-16.6

-16.4

Figure 3.4: Values of g1(k) and g2(k) over the iterations for the SM-AP algorithm
with γ(k) as the SC-CV, where g1(k) and g2(k) are the numerator and denominator
of (3.40) in Theorem 3, when an update occurs; otherwise, g1(k) = ‖w̃(k + 1)‖2 and
g2(k) = ‖w̃(k)‖2.

Fig. 3.5 depicts the results for the SM-AP algorithm with γ(k) = n(k). In this

case, we can observe that g1(k) ≤ g2(k) for all k, corroborating Corollary 5. In other

words, this CV guarantees the global robustness of the SM-AP algorithm.

Fig. 3.6 illustrates g1(k) and g2(k) for the SM-AP algorithm with SC-CV when the

noise bound is known and 10 times smaller than γ. In contrast with the SM-NLMS

algorithm, for the SM-AP algorithm even when the noise bound is known and much

smaller than γ, we cannot guarantee that g1(k) ≤ g2(k) for all k. In Fig. 3.6, for

example, we observe g1(k) > g2(k) in 15 iterations.

Fig. 3.7 depicts the sequence {‖w̃(k)‖2} for the AP and the SM-AP algorithms.

For the AP algorithm, the step-size µ is set as 0.9 and 0.05, whereas for the SM-AP

algorithm the three previously defined CVs are tested. For the AP algorithm, we can

observe an irregular behavior of {‖w̃(k)‖2}, i.e., this sequence increases and decreases

41

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

g
1
(k

)
an

d
g

2
(k

)
[d

B
]

-40

-35

-30

-25

-20

-15

-10

-5

0

g
1
(k)

g
2
(k)

750 760 770 780

-30.5

-30

-29.5

Figure 3.5: Values of g1(k) and g2(k) over the iterations for the SM-AP algorithm
with γ(k) = n(k), where g1(k) and g2(k) are the numerator and denominator of (3.40)
in Theorem 3, when an update occurs; otherwise, g1(k) = ‖w̃(k + 1)‖2 and g2(k) =
‖w̃(k)‖2.

very often. Even when a low value of µ is applied we still observe many iterations in

which ‖w̃(k + 1)‖2 > ‖w̃(k)‖2 (425 out of 1000 iterations). The SM-AP algorithm

using the general CV performs similar to the AP algorithm with high µ. But when

the CV is properly chosen, like the SC-CV for example, we observe that the number

of iterations in which ‖w̃(k + 1)‖2 > ‖w̃(k)‖2 is dramatically reduced (26 out of 1000

iterations), which means that the SM-AP with an adequate CV performs fewer “useless

updates” than the AP algorithm. Another interesting, although not practical, choice

of CV is γ(k) = n(k), which leads to a monotonic decreasing sequence {‖w̃(k)‖2}.
The MSE learning curves for the AP and the SM-AP algorithms are depicted in

Fig. 3.8. These results were computed by averaging the squared error over 1000 trials

for each curve. Observing the results of the AP algorithm, the trade-off between

convergence rate and steady-state MSE is evident. Indeed, excluding the SM-AP with

42

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

g
1
(k

)
an

d
g

2
(k

)
[d

B
]

-14

-12

-10

-8

-6

-4

-2

0

2

g
1
(k)

g
2
(k)

865 870 875 880

-12

-11

-10

Figure 3.6: Values of g1(k) and g2(k) over the iterations for the SM-AP algorithm with
γ(k) as the SC-CV when the noise bound is known, where g1(k) and g2(k) are the
numerator and denominator of (3.40) in Theorem 3, when an update occurs; otherwise,
g1(k) = ‖w̃(k + 1)‖2 and g2(k) = ‖w̃(k)‖2.

general CV (which is not an adequate choice for the CV), the AP algorithm could not

achieve fast convergence and low MSE simultaneously, as the SM-AP algorithm did.

In addition, observe that γ(k) = n(k) leads to the best results in terms of convergence

rate and steady-state MSE, but the performance of the SM-AP with SC-CV is quite

close. The average number of updates required by the SM-AP algorithm using the

general CV, the SC-CV, and the noise CV are 35%, 9.7%, and 3.6%, respectively,

implying that the last two CVs also have lower computational cost. It is worth noticing

that even when using the general CV, the SM-AP algorithm still converges although

it presents poor performance, as explained in Subsection 3.4.2.

43

Number of iterations, k
0 200 400 600 800 1000 1200

‖w̃
(k
)‖

2
[d
B
]

-50

-40

-30

-20

-10

0

10

AP: µ = 0.9

AP: µ = 0.05

SM-AP: general CV

SM-AP: simple choice CV

SM-AP: noise as CV

Figure 3.7: ‖w̃(k)‖2 , ‖w(k)−wo‖2 for the AP and the SM-AP algorithms.

3.6 Conclusion

In this chapter, we addressed the robustness (in the sense of l2-stability) of the SM-

NLMS and the SM-AP algorithms. In addition to the already known advantages of the

SM-NLMS algorithm over the NLMS algorithm, regarding accuracy and computational

cost, in this chapter we demonstrated that: (i) the SM-NLMS algorithm is robust

regardless the choice of its parameters and (ii) the SM-NLMS algorithm uses the

input data very efficiently, i.e., it rarely produces a worse estimate w(k+1) during its

update process. For the case where the noise bound is known, we explained how to

set appropriately the parameter γ so that the SM-NLMS algorithm never generates

a worse estimate, i.e., the sequence {‖w̃(k)‖2} (the squared Euclidean norm of the

parameters deviation) becomes monotonously decreasing. For the case where the

noise bound is unknown, we designed a time-varying parameter γ(k) that achieves

simultaneously fast convergence and efficient use of the input data.

Unlike the SM-NLMS algorithm, we demonstrated that there exists a condition to

44

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

M
S

E
 [d

B
]

-25

-20

-15

-10

-5

0

AP: µ=0.9
AP: µ=0.05
SM-AP: general CV
SM-AP: simple choice CV
SM-AP: noise as CV

Figure 3.8: Learning curves for the AP and SM-AP algorithm using different constraint
vectors.

guarantee the l2-stability of the SM-AP algorithm. This robustness condition depends

on a parameter known as the constraint vector (CV) γ(k). We proved the existence

of vectors γ(k) satisfying such a condition, but practical choices remain unknown. In

addition, it was shown that the SM-AP with an adequate CV uses the input data more

efficiently than the AP algorithm.

We also demonstrated that both the SM-AP and SM-NLMS algorithms do not

diverge, even when their parameters are not properly selected, provided the noise is

bounded. Finally, numerical results that corroborate our study were presented.

45

Chapter 4

Trinion and Quaternion

Set-Membership Affine Projection

Algorithms

The quaternions are a number system that extends the complex numbers. They were

introduced by William Rowan Hamilton in 1843 for the first time [52]. Quaternions

have several applications in multivariate signal processing problems, such as color im-

age processing [53, 54], wind profile prediction [55–57], and adaptive beamforming [58].

A wide family of quaternion based algorithms have been introduced in adaptive filter-

ing literatures [59–62].

As a generalization of the complex domain, the quaternion domain provides a

useful way to process 3- and 4-dimensional signals. Recently, several quaternion based

adaptive filtering algorithms have appeared and they take benefit from the fact that the

quaternion domain is a division algebra and it has a suitable data representation [63–

65]. Therefore, the quaternion algorithms allow a coupling between the components of

3- and 4-dimensional processes. Also, the quaternion-valued algorithm results in better

performance compared to the real-valued algorithms, since it accounts for the coupling

of the wind measurements and can be developed to exploit the augmented quaternion

statistics [55]. As a by-product, in comparison with the real-valued algorithms in R
3

and R4, they show enhanced stability and more degrees of freedom in the control of

the adaptation mechanism.

However, when the signals involved in the adaptation process have only three di-

mensions, i.e., one real and two imaginary components, we can apply the trinion based

46

algorithms. Using a data set for wind profile prediction, the trinion-valued least mean

square (TLMS) algorithm is proposed [66] and its learning speed is compared with the

quaternion least mean square (QLMS) algorithm [56]. In the TLMS algorithm, the

computational complexity is lower than QLMS algorithm, since the implementation

of a full quaternion-valued multiplication requires 16 and 12 real-valued multiplica-

tions and additions, respectively. In the trinion case, to multiply two 3-D numbers we

only need 9 and 6 real-valued multiplications and additions, respectively. The quater-

nion affine projection (QAP) algorithm [67] has been applied to predict noncircular

real-world 4-D wind, but it can also be used to 3-D profile wind prediction.

Here we consider a powerful approach to decrease the computational complexity

of an adaptive filter by employing set-membership filtering (SMF) approach [2, 9].

For real numbers, the set-membership NLMS [2, 9] and AP [2, 30, 31] algorithms

were reviewed in Chapter 2. This chapter aims to generalize these algorithms to

operate with trinion and quaternion numbers. The trinion number system is not a

mathematical field since there are elements which are not invertible. Therefore, to

address this drawback, we replace the non-invertible element with an invertible one.

In the quaternion number system, each nonzero element has inverse while the product

operation is not commutative. The proposed algorithms get around these drawbacks.

Finally, we apply the trinion based algorithms to predicting the wind profile and

compare their competitive performance with the quaternion based algorithms. How-

ever, the quaternion algorithms require remarkably higher computational complexity

compared to their trinion counterparts. Also, we study the quaternion adaptive beam-

forming as an application of the quaternion-valued algorithms. In this manner, we will

reduce the number of involved sensors in the adaptation mechanism. As a result, we

can decrease the computational complexity and the energy consumption of the system.

Part of the content of this chapter was published in [17]. This chapter introduces

new data selective adaptive filtering algorithms for trinion and quaternion number sys-

tems T and H. The work advances the set-membership trinion and quaternion-valued

normalized least mean square (SMTNLMS and SMQNLMS) and the set-membership

trinion and quaternion-valued affine projection (SMTAP and SMQAP) algorithms.

Also, as individual cases, we obtain trinion and quaternion algorithms not employing

the set-membership strategy.

This chapter is organized as follows. Short introductions to quaternions and trin-

ions are provided in Sections 4.1 and 4.2, respectively. Section 4.3 briefly reviews

the concept of SMF but instead of real numbers we use trinions and quaternions.

47

The new trinion based SMTAP algorithm is derived in Section 4.4. Section 4.5 intro-

duces the quaternion based SMQAP algorithm. Section 4.6 reviews the application

of quaternion-valued adaptive algorithms to adaptive beamforming. Simulations are

presented in Section 4.7 and Section 4.8 contains the conclusions.

4.1 Quaternions

The quaternion number system is a non-commutative extension of complex numbers,

denoted by H. A quaternion q ∈ H is defined as [52]

q = qa + qbı+ qc+ qdκ, (4.1)

where qa, qb, qc, and qd are in R. qa is the real component, while qb, qc, and qd are the

three imaginary components. The orthogonal unit imaginary axis vectors ı, , and κ

obey the following rules

ı = κ κ = ı κı = ,

ı2 = 2 = κ2 = ıκ = −1. (4.2)

Note that due to non-commutativity of the quaternion multiplication, we have ı =

−κ 6= ı for example. The element 1 is the identity element of H, i.e., multiplication

by 1 does nothing. The conjugate of a quaternion, denoted by q∗, is defined as

q∗ = qa − qbı− qc− qdκ, (4.3)

and the norm |q| is given by

|q| = √
qq∗ =

√
q2a + q2b + q2c + q2d. (4.4)

The inverse of q is introduced as

q−1 =
q∗

|q|2 . (4.5)

48

Observe that q can be reformulated into the Cayley-Dickson [58] form as

q = (qa + qc)︸ ︷︷ ︸
z1

+ı (qb + qd)︸ ︷︷ ︸
z2

, (4.6)

where z1 and z2 are complex numbers.

The quaternion involutions are defined as follows [68, 69]

qı =− ıqı = qa + qbı− qc− qdκ,

q =− q = qa − qbı+ qc− qdκ,

qκ =− κqκ = qa − qbı− qc+ qdκ. (4.7)

Therefore, we can present the four real components of a quaternion q by the convolu-

tions of q

qa =
1

4
(q + qı + q + qκ),

qb =
1

4ı
(q + qı − q − qκ),

qc =
1

4
(q − qı + q − qκ),

qd =
1

4κ
(q − qı − q + qκ). (4.8)

These expressions allow us presenting any quadrivariate or quaternion-valued function

f(q) as [68]

f(q) = f(qa, qb, qc, qd) = f(q, qı, q, qκ). (4.9)

We know that the quaternion ring and R
4 are isomorphic. Hence, by the same

argument in the CR calculus [70], to introduce the duality between the derivatives

of f(q) ∈ H and the derivatives of the corresponding quadrivariate real function

g(qa, qb, qc, qd) ∈ R4, we begin with [69]

f(q) = fa(qa, qb, qc, qd)+fb(qa, qb, qc, qd)ı+ fc(qa, qb, qc, qd)

+fd(qa, qb, qc, qd)κ = g(qa, qb, qc, qd). (4.10)

49

The real variable function g(qa, qb, qc, qd) has the following differential

dg =
∂g

∂qa
dqa +

∂g

∂qb
dqb +

∂g

∂qc
dqc +

∂g

∂qd
dqd

=
∂f(q)

∂qa
dqa +

∂f(q)

∂qb
dqbı+

∂f(q)

∂qc
dqc+

∂f(q)

∂qd
dqdκ. (4.11)

By using the relations in (4.8), the derivatives of the components of a quaternion q

are given by

dqa =
1

4
(dq + dqı + dq + dqκ),

dqb =
−ı
4
(dq + dqı − dq − dqκ),

dqc =
−
4
(dq − dqı + dq − dqκ),

dqd =
−κ
4

(dq − dqı − dq + dqκ). (4.12)

Also, using (4.9) we obtain

df(q) =
∂f(q, qı, q, qκ)

∂q
dq +

∂f(q, qı, q, qκ)

∂qı
dqı

+
∂f(q, qı, q, qκ)

∂q
dq +

∂f(q, qı, q, qκ)

∂qκ
dqκ. (4.13)

Therefore, by replacing the components of dq from (4.12) in Equation (4.11), and

solving for the coefficients of dq, dqı, dq, dqκ from (4.11) and (4.13), we will obtain

the HR-derivatives identities as follows




∂f(q,qı,q,qκ)
∂q

∂f(q,qı,q,qκ)
∂qı

∂f(q,qı,q,qκ)
∂q

∂f(q,qı,q,qκ)
∂qκ



=

1

4




1 −ı − −κ
1 −ı  κ

1 ı − κ

1 ı  −κ







∂f
∂qa
∂f
∂qb
∂f
∂qc
∂f
∂qd



. (4.14)

Our interest is in the derivative ∂f(q,qı,q,qκ)
∂q

, thus the gradient of f(q) with respect to

q is given by [69]

∇qf =
1

4
(
∂f

∂qa
− ∂f

∂qb
ı− ∂f

∂qc
− ∂f

∂qd
κ) =

1

4
(∇qaf −∇qbfı−∇qcf−∇qdfκ). (4.15)

The real values elements qa, qb, qc, qd of a quaternion q can be presented in terms

50

of q∗, qı
∗

, q
∗

, qκ
∗

as follows [69]

qa =
1

4
(q∗ + qı

∗

+ q
∗

+ qκ
∗

),

qb =
1

4ı
(−q − qı

∗

+ q
∗

+ qκ
∗

),

qc =
1

4
(−q + qı

∗ − q
∗

+ qκ
∗

),

qd =
1

4κ
(−q∗ + qı

∗

+ q
∗ − qκ

∗

). (4.16)

Then the derivative of the function f(q) = f(q∗, qı
∗

, q
∗

, qκ
∗

) can be expressed as

df(q) =
∂f(q∗, qı

∗

, q
∗

, qκ
∗

)

∂q∗
dq∗ +

∂f(q∗, qı
∗

, q
∗

, qκ
∗

)

∂qı∗
dqı

∗

+
∂f(q∗, qı

∗

, q
∗

, qκ
∗

)

∂q∗
dq

∗

+
∂f(q∗, qı

∗

, q
∗

, qκ
∗

)

∂qκ∗
dqκ

∗

. (4.17)

Also, the derivative of the quadrivariate g(qa, qb, qc, qd) is given by

dg(qa, qb, qc, qd) = Adq∗ +Bdqı
∗

+ Cdq
∗

+Ddqκ
∗

. (4.18)

By the same argument above, if we solve for the coefficients of dq∗, dqı
∗

, dq
∗

, dqκ
∗

then we will obtain the HR∗-derivatives identities,




∂f(q∗,qı
∗

,q
∗

,qκ
∗

)
∂q∗

∂f(q∗,qı
∗

,q
∗

,qκ
∗

)

∂qı∗

∂f(q∗,qı
∗

,q
∗

,qκ
∗

)

∂q∗

∂f(q∗,qı
∗

,q
∗

,qκ
∗

)

∂qκ∗



=

1

4




1 ı  κ

1 ı − −κ
1 −ı  −κ
1 −ı − κ







∂f
∂qa
∂f
∂qb
∂f
∂qc
∂f
∂qd



. (4.19)

The derivative ∂f(q∗,qı
∗

,q
∗

,qκ
∗

)
∂q∗

is of particular interest, thus the gradient of f(q) with

respect to q∗ is given by [69]

∇q∗f =
1

4
(
∂f

∂qa
+
∂f

∂qb
ı+

∂f

∂qc
+

∂f

∂qd
κ) =

1

4
(∇qaf +∇qbfı+∇qcf+∇qdfκ). (4.20)

51

4.2 Trinions

As a group, the trinion number system T is isomorphic to R3. A number v in T is

composed of one real part, va, and two imaginary parts, vb and vc,

v = va + vbı̄ + vc̄. (4.21)

The number system T has three operations: addition, scalar multiplication, and trinion

multiplication. The sum of two elements of T is defined to be their sum as elements

of R3. Similarly the product of an element of T by a real number is defined to be the

same as the product by a scalar in R3. To make a commutative algebraic group of the

basis elements 1, ı̄, and ̄ the following rules apply [71]

ı̄2 = ̄, ı̄̄ = ̄̄ı = −1, ̄2 = −ı̄. (4.22)

Trinions with these rules set a commutative mathematical ring, i.e., vw = wv for v, w ∈
T. The basis element 1 will be the identity element of T, meaning that multiplication

by 1 does nothing. The conjugate of v is given by [66]

v∗ = va − vb̄− vcı̄, (4.23)

and the norm by [66]

|v| =
√

ℜ(vv∗) =
√
v2a + v2b + v2c . (4.24)

The inverse of v, if exists, is w = (wa +wbı̄+wc̄) ∈ T such that vw = wv = 1. To

solve this equation we consider v = [va vb vc]
T and w = [wa wb wc]

T then we get





vawa − vcwb − vbwc = 1,

vbwa + vawb − vcwc = 0,

vcwa + vbwb + vawc = 0,

(4.25)

or in the matrix form Aw = [1 0 0]T where A is given by

A =




va −vc −vb
vb va −vc
vc vb va


 , (4.26)

52

thus w = A−1[1 0 0]T . When the determinant of A is zero, the inverse of v does not

exist. In order to get around this problem when the determinant of A is zero, we

define A = δI where δ is a small positive constant and I is a 3 × 3 identity matrix.

Note that A is replaced by the identity matrix multiplied by a small constant in order

to avoid numerical problems in the matrix inversion. This strategy avoids division by

zero in the trinion-valued algorithms. We will now define v−1 = A−1[1 0 0]T .

In the field of complex numbers, a variable z and its conjugate z∗ can be considered

as two independent variables, so that the complex-valued gradient can be defined [72].

As far as we know, the trinion involutions, v ı̄ and v̄, are not available in general. In

this chapter, we use the following formulas for the gradients of a function f(v) with

respect to the trinion-valued variable v and its conjugate [66]

∇vf =
1

3
(∇vaf −∇vbf ̄−∇vcf ı̄),

∇v∗f =
1

3
(∇vaf +∇vbf ı̄+∇vcf ̄),

(4.27)

where v = va + vbı̄ + vc̄.

4.3 Set-Membership Filtering (SMF) in T and H

The target of the SMF is to design w such that the magnitude of the estimation error

is upper bounded by a predetermined parameter γ. The value of γ can change with

the specific application. If the value of γ is suitably selected, there are many valid

estimates for w. Suppose that S denotes the set of all possible input-desired data

pairs (x, d) of interest and define Θ as the set of all vectors w whose magnitudes of

their estimation errors are upper bounded by γ whenever (x, d) ∈ S. The set Θ is

named feasibility set and is given by

Θ ,
⋂

(x,d)∈S

{w ∈ F
N+1 : |d−wHx| ≤ γ}, (4.28)

where F is T or H. Let’s define the constraint set H(k) consisting of all vectors w such

that their estimation errors at time instant k are upper bounded in magnitude by γ,

H(k) , {w ∈ F
N+1 : |d(k)−wHx(k)| ≤ γ}. (4.29)

53

The membership set ψ(k) defined as

ψ(k) ,
k⋂

i=0

H(i) (4.30)

will include Θ and will coincide with Θ if all data pairs in S are traversed up to time

instant k. Owing to difficulties to compute ψ(k), adaptive approaches are required [9].

The easiest route is to compute a point estimate using, for example, the information

provided by the constraint set H(k) like in the set-membership NLMS algorithm [9],

or several previous constraint sets as is done in the set-membership affine projection

algorithm [31].

4.4 SMTAP Algorithm

In this section, we propose the SMTAP algorithm. This trinion-valued algorithm is the

counterpart of the real-valued SM-AP algorithm. Then we derive the update equations

for the simpler algorithms related to the normalized LMS algorithm.

The membership set ψ(k) defined in (4.30) encourages the use of more constraint

sets in the update. Therefore, we elaborate an algorithm whose updates belong to a

set composed of L+ 1 constraint sets.

For this purpose, we express ψ(k) as

ψ(k) =

k−L−1⋂

i=0

H(i)

k⋂

j=k−L

H(j) = ψk−L−1(k)
⋂

ψL+1(k), (4.31)

where ψL+1(k) indicates the intersection of the L+1 last constraint sets, and ψk−L−1(k)

represents the intersection of the first k − L constraint sets. Our goal is to formulate

an algorithm whose coefficient update belongs to the last L + 1 constraint sets, i.e.,

w(k + 1) ∈ ψL+1(k).

Assume that S(k− i) denotes the set which includes all vectors w such that d(k−
i) − wHx(k − i) = γi(k), for i = 0, · · · , L. All choices for γi(k) satisfying the bound

constraint are valid. That is, if all γi(k) are selected such that |γi(k)| ≤ γ, then

S(k − i) ∈ H(k − i), for i = 0, · · · , L.
The objective function which we ought to minimize can now be stated. A coefficient

54

update is implemented whenever w(k) 6∈ ψL+1(k) as follows

min
1

2
‖w(k + 1)−w(k)‖2

subject to:

d(k)− (wH(k + 1)X(k))T = γ(k), (4.32)

where
d(k) ∈ T(L+1)×1 contains the desired output from the L+ 1 last

time instants;

γ(k) ∈ T(L+1)×1 specifies the point in ψL+1(k);

X(k) ∈ T(N+1)×(L+1) contains the corresponding input vectors, i.e.,

d(k) = [d(k) d(k − 1) · · · d(k − L)]T ,

γ(k) = [γ0(k) γ1(k) · · · γL(k)]T ,
X(k) = [x(k) x(k − 1) · · · x(k − L)],

(4.33)

with x(k) being the input-signal vector

x(k) = [x(k) x(k − 1) · · · x(k −N)]T . (4.34)

If we use the method of Lagrange multipliers to transform a constrained minimization

into an unconstrained one, then we have to minimize

F [w(k + 1)] =
1

2
‖w(k + 1)−w(k)‖2

+ ℜ{λT (k)[d(k)− (wH(k + 1)X(k))T − γ(k)]}, (4.35)

where λ(k) ∈ T(L+1)×1 is a vector of Lagrange multipliers. To find the minimum

solution, we must calculate the following gradient

∇w∗(k+1)F [w(k + 1)] =
1

3

[
∇wa(k+1)F [w(k + 1)] +∇wb(k+1)F [w(k + 1)]̄ı

+∇wc(k+1)F [w(k + 1)]̄
]
. (4.36)

In order to find the above gradient, we ought to calculate the cost function F [w(k+1)]

55

as a function of real-valued variables. As a result we have,

‖w(k + 1)−w(k)‖2 =‖wa(k + 1)−wa(k)‖2 + ‖wb(k + 1)−wb(k)‖2

+ ‖wc(k + 1)−wc(k)‖2. (4.37)

We drop the time index ’k’ for the sake of compact notation. In order to find the

second term in (4.35) as a real-valued term we perform the following calculations,

ℜ{λT [d−XTw∗(k + 1)− γ]} = ℜ{(λT
a + λT

b ı̄+ λT
c ̄)[(da + db ı̄+ dc̄)

− (XT
a +XT

b ı̄ +XT
c ̄)(wa(k + 1)−wb(k + 1)̄−wc(k + 1)̄ı)− (γa + γbı̄ + γc̄)]}

=ℜ{(λT
a + λT

b ı̄+ λT
c ̄)[(da −XT

awa(k + 1)−XT
b wb(k + 1)−XT

c wc(k + 1)− γa)

+ (db −XT
b wa(k + 1) +XT

awc(k + 1)−XT
c wb(k + 1)− γb)̄ı

+ (dc −XT
c wa(k + 1) +XT

awb(k + 1) +XT
b wc(k + 1)− γc)̄]}

=λT
a (da −XT

awa(k + 1)−XT
b wb(k + 1)−XT

c wc(k + 1)− γa)

− λT
b (dc −XT

c wa(k + 1) +XT
awb(k + 1) +XT

b wc(k + 1)− γc)

− λT
c (db −XT

b wa(k + 1) +XT
awc(k + 1)−XT

c wb(k + 1)− γb). (4.38)

Therefore, by (4.35), (4.37), and (4.38) we obtain

F [w(k + 1)] =
1

2
Eq.(4.37) + Eq.(4.38). (4.39)

Thus, the three component-wise gradients can be attained as

∇wa(k+1)F [w(k + 1)] =(wa(k + 1)−wa(k))− λT
aX

T
a + λT

b X
T
c + λT

c X
T
b , (4.40)

∇wb(k+1)F [w(k + 1)] =(wb(k + 1)−wb(k))− λT
aX

T
b − λT

b X
T
a + λT

c X
T
c , (4.41)

∇wc(k+1)F [w(k + 1)] =(wc(k + 1)−wc(k))− λT
aX

T
c − λT

b X
T
b − λT

c X
T
a . (4.42)

On the other hand, we have

Xλ =(Xa +Xbı̄+Xc̄)(λa + λbı̄+ λc̄)

=(Xaλa −Xbλc −Xcλb) + (Xaλb +Xbλa −Xcλc)̄ı

+ (Xaλc +Xcλa +Xbλb)̄. (4.43)

Overall, by employing Equations (4.36) and (4.40)-(4.43), we get,

56

∇w∗(k+1)F [w(k + 1)] =
1

3
{[(wa(k + 1)−wa(k))− (X(k)λ(k))a]

+ [(wb(k + 1)−wb(k))− (X(k)λ(k))b]̄ı

+ [(wc(k + 1)−wc(k))− (X(k)λ(k))c]̄}

=
1

3
[w(k + 1)−w(k)−X(k)λ(k)]. (4.44)

After setting the above equation equal to zero, we obtain

w(k + 1) = w(k) +X(k)λ(k). (4.45)

If we substitute (4.45) in the constraint relation (4.32) the following expression results,

XT (k)X∗(k)λ∗(k) = d(k)−XT (k)w∗(k)− γ(k) = (e(k)− γ(k)). (4.46)

From the above equation we get λ(k) as

λ(k) = (XH(k)X(k))−1(e(k)− γ(k))∗, (4.47)

where

e(k) = [e(k) ǫ(k − 1) · · · ǫ(k − L)]T , (4.48)

with e(k) = d(k)−wH(k)x(k), and ǫ(k−i) = d(k−i)−wH(k)x(k−i) for i = 1, · · · , L.
We can now conclude the SMTAP algorithm by starting from (4.45) with λ(k) being

given by (4.47), i.e.,

w(k + 1) =

{
w(k) + pap(k) if |e(k)| > γ,

w(k) otherwise,
(4.49)

where

pap(k) = X(k)(XH(k)X(k))−1(e(k)− γ(k))∗. (4.50)

Remark 1: In order to check if an update w(k + 1) is required, we only have to

test if w(k) 6∈ H(k) since in the previous updates w(k) ∈ H(k − i+ 1) is guaranteed

57

for i = 2, · · · , L+ 1.

Remark 2: For the initial time instants k < L + 1, i.e., during initialization, only

the knowledge of H(i) for i = 0, 1, · · · , k is available. As a consequence, if an update is

required for k < L+1, the algorithm is implemented with the available k+1 accessible

constraint sets.

Remark 3: By adopting the bound γ = 0, the algorithm will convert to the trinion

affine projection (TAP) algorithm with unity step size which is the generalization of

the conventional real-valued AP algorithm in T. Therefore, the TAP algorithm can

be described as

w(k + 1) = w(k) + µp′
ap(k), (4.51)

where µ is the convergence factor and

p′
ap(k) = X(k)(XH(k)X(k))−1e∗(k). (4.52)

Note that we can utilize (4.49) and derive the update equation of the SMTNLMS

algorithm. In this case we have to evade data-reusing in (4.49), L = 0, so that the

updating equation becomes,

w(k + 1) =

{
w(k) + p(k) if |e(k)| > γ,

w(k) otherwise,
(4.53)

where

p(k) = x(k)(xH(k)x(k))−1(e(k)− γ(k))∗, (4.54)

e(k) = d(k)−wH(k)x(k). (4.55)

We will now choose γ(k) = γe(k)
|e(k)|

, hence from (4.53) we attain the SMTNLMS update

equation as

w(k + 1) = w(k) + µ(k)x(k)(xH(k)x(k))−1e∗(k), (4.56)

where

µ(k) =

{
1− γ

|e(k)|
if |e(k)| > γ,

0 otherwise.
(4.57)

58

Recalling that the normalized LMS algorithm can be derived as a particular case of

AP algorithm for L = 0.

Remark 4: By choosing the bound γ = 0 in (4.56), the algorithm will reduce to

the TNLMS algorithm with unity step size which is the generalization of the popular

real-valued NLMS algorithm in T. As a result, TNLMS algorithm can be described as

w(k + 1) = w(k) + µx(k)(xH(k)x(k))−1e∗(k), (4.58)

where µ is the convergence factor.

4.5 SMQAP Algorithm

This section outlines the derivation of the SMQAP algorithm. Then we obtain an

update equation for the SMQNLMS algorithm that follows the same steps as the

derivation of the SMTNLMS algorithm. The SMQAP and the SMQNLMS algorithms

are the quaternion versions of the real-valued SM-AP and SM-NLMS algorithms, re-

spectively.

The membership set ψ(k) introduced in (4.30) suggests the use of more constraint

sets in the update. Let us express ψ(k) as in (4.31), our purpose is to derive an

algorithm whose coefficient update belongs to the last L+1 constraint set, i.e., w(k+

1) ∈ ψL+1(k). Suppose that S(k − i) describes the set which contains all vectors w

such that d(k−i)−wHx(k−i) = γi(k), for i = 0, · · · , L. All choices for γi(k) satisfying
the bound constraint are valid. That is, if all γi(k) are chosen such that |γi(k)| ≤ γ,

then S(k − i) ∈ H(k − i), for i = 0, · · · , L.
The objective function to be minimized in case of the SMQAP algorithm can

be stated as follows: perform a coefficient update whenever w(k) 6∈ ψL+1(k) as in

Equation (4.32). Note that d(k),γ(k) ∈ H(L+1)×1, X(k) ∈ H(N+1)×(L+1), and x(k) are

defined as in (4.33) and (4.34).

By employing the method of Lagrange multipliers, the unconstrained function to

be minimized becomes as in Equation (4.35), where λ(k) ∈ H(L+1)×1 is a vector of

Lagrange multipliers. After setting the gradient of F [w(k+1)] with respect tow∗(k+1)

equal to zero, we will get the equation

w(k + 1) = w(k) +X(k)λ(k). (4.59)

59

Then, by invoking the constraints in (4.32), the expression of λ(k) is as

λ(k) = (XH(k)X(k))−1(e(k)− γ(k))∗, (4.60)

where e(k) is defined as in (4.48). Finally, the update equation for the SMQAP

algorithm is given by

w(k + 1) =

{
w(k) + qap(k) if |e(k)| > γ,

w(k) otherwise,
(4.61)

where

qap(k) = X(k)(XH(k)X(k))−1(e(k)− γ(k))∗. (4.62)

Note that the Remarks 1 and 2 of Subsection 4.4 also apply to the SMQAP algo-

rithm.

Remark 5: We can quickly verify that adopting the bound γ = 0, the algorithm

will reduce to QAP algorithm [67] with unity step size. Therefore, the QAP algorithm

cab be expressed as

w(k + 1) = w(k) + µX(k)(XH(k)X(k))−1e∗(k), (4.63)

where µ is the convergence factor.

Note that we can use the SMQAP algorithm to derive the update equation of the

SMQNLMS algorithm. In fact, the SMQNLMS does not require data-reusing as the

SMQAP algorithm [9], thus by taking L = 0 and γ(k) = γe(k)
|e(k)|

we obtain the update

equation of the SMQNLMS algorithm as

w(k + 1) = w(k) + µ(k)‖x(k)‖−2x(k)e∗(k), (4.64)

where e(k) and µ(k) are defined as in (4.55) and (4.57), respectively.

Remark 6: By adopting the bound γ = 0 in (4.64), the algorithm will reduce to

the QNLMS algorithm with unity step size. Therefore, the QNLMS algorithm can be

described as

w(k + 1) = w(k) + µ‖x(k)‖−2x(k)e∗(k), (4.65)

60

Table 4.1: COMPUTATIONAL COMPLEXITY PER UPDATE OF THE WEIGHT
VECTOR

Algorithm Real Multiplications Real additions
QNLMS 20N + 4 20N − 1
QAP 32L3 + 16NL2 + 16L2 32L3 + 16NL2 + 4L2

+19NL+ 26L +16NL+ 8L
TNLMS 12N + 3 12N − 1
TAP 18L3 + 9NL2 + 9L2 18L3 + 9NL2

+11NL+ 50L +9NL+ 39L

Variable L
0 2 4 6 8 10 12 14 16 18 20

#
T

o
ta

l
re

a
l
m

u
lt
ip

lic
a
ti
o
n
s
 a

n
d
 a

d
d
it
io

n
s

×105

0

1

2

3

4

5

6

7

8

TAP
QAP

(a)

Variable N
0 10 20 30 40 50 60 70 80 90 100

#
T

o
ta

l
re

a
l
m

u
lt
ip

lic
a
ti
o
n
s
 a

n
d
 a

d
d
it
io

n
s

×104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TAP
QAP

(b)

Figure 4.1: The numerical complexity of the TAP and the QAP algorithms for two
cases: (a) N = 15, variable L; (b) L = 3, variable N .

where µ is the convergence factor.

The computational complexity for each update of the weight vector of the trinion

based and quaternion based adaptive filtering algorithms are listed in Table 4.1. The

filter length and the memory length are N and L, respectively. Also, Figures 4.1(a)

and 4.1(b) show a comparison between the total number of real multiplications and

additions required by the TAP and the QAP algorithms for two cases: N = 15, variable

L and L = 3, variable N . As can be seen, the trinion model can efficiently decrease

the computational complexity in comparison with the quaternion model, whenever the

problem at hand suits both the quaternion and trinion solutions.

61

4.6 Application of quaternion-valued adaptive

algorithms to adaptive beamforming

As an illustration for the use of quaternions, we can study its application to adaptive

beamforming. By utilizing the crossed-dipole array and quaternions, we can decrease

the number of engaged sensors in the adaptive beamforming process. Therefore, the

computational complexity and the energy consumption of the system will reduce with-

out losing the quality of the performance [3, 73–75].

A uniform linear array (ULA) is illustrated in Figure 4.2 [3, 57]. It contains M

crossed-dipole pairs, they are placed on y-axis and the distance between neighboring

antennas is d. At each position, the two crossed components are parallel to x-axis

and y-axis, respectively. The direction of arrival (DOA) of a far-field incident signal is

defined by the angles θ and φ. Assume that this signal impinges upon the array from

the y-z plane. Thus, φ = π
2
or −π

2
, and 0 ≤ θ ≤ π

2
. As a consequence, the spatial

steering vector for this far-field incident signal is given by

sc(θ, φ) = [1, e−2πd sin θ sinφ/λ, · · · , e−2π(M−1)d sin θ sinφ/λ]T , (4.66)

where λ stands for the wavelength of the incident signal. For a crossed-dipole the

spatial-polarization coherent vector can be expressed by [76, 77]

sp(θ, φ, γ, η) =

{
[− cos γ, cos θ sin γeη] for φ = π

2
,

[cos γ,− cos θ sin γeη] for φ = −π
2
,

(4.67)

where γ ∈ [0, π
2
] and η ∈ [−π, π] are the auxiliary polarization angle and the polariza-

tion phase difference, respectively.

We can divide the array structure into two sub-arrays so that one of them is parallel

to the x-axis and the other one is parallel to the y-axis. Then the complex-valued

steering vector parallel to the x-axis is presented as

sx(θ, φ, γ, η) =

{
− cos γsc(θ, φ) for φ = π

2
,

cos γsc(θ, φ) for φ = −π
2
,

(4.68)

62

z

y

x

θ

φ
d

Figure 4.2: A ULA with crossed-dipole [3].

and the one parallel to the y-axis is given by

sy(θ, φ, γ, η) =

{
cos θ sin γeηsc(θ, φ) for φ = π

2
,

− cos θ sin γeηsc(θ, φ) for φ = −π
2
.

(4.69)

Using the Cayley-Dickson formula (4.6), we can combine sx(θ, φ, γ, η) and

sy(θ, φ, γ, η) together, we obtain a quaternion-valued steering vector as follows

sq(θ, φ, γ, η) = sx(θ, φ, γ, η) + ısy(θ, φ, γ, η). (4.70)

The response of the array for the quaternion-valued weight vector w is given as below

r(θ, φ, γ, η) = wHsq(θ, φ, γ, η). (4.71)

In the case of reference signal based quaternion-valued adaptive beamforming, the

reference signal d(k) is available. Therefore, the response of the array is the quaternion-

valued beamformer output and it is defined as y(k) = wH(k)x(k), where x(k) is the

received quaternion-valued vector sensor signals and w(k) is the quaternion-valued

weigh vector. Also, the quaternion-valued error signal can be defined as e(k) = d(k)−
y(k).

63

4.7 Simulations

In this section, we apply the proposed algorithms to two scenarios. Scenario 1 verifies

the performance of the trinion based and the quaternion based algorithms when they

are used to wind profile prediction. In Scenario 2, we implement quaternionic adaptive

beamforming by quaternion-valued algorithms.

4.7.1 Scenario 1

In this scenario, all the proposed algorithms in this chapter are applied to anemometer

readings provided by Google’s RE<C Initiative [78]. The wind speed recorded on May

25, 2011, is utilized for the algorithms comparisons. The step size, µ, is selected to

be 10−8 for the TLMS and the QLMS algorithms and 0.9 for the TNLMS, the TAP,

the QNLMS, and the QAP algorithms, and γ is set to be 5. Also, the threshold

bound vector γ(k) is selected as simple choice constraint vector [8] which is defined

as γ0(k) = γe(k)
|e(k)|

and γi(k) = d(k − i) − wT (k)x(k − i), for i = 1, · · · , L. The filter

length is 8, the memory length, L, and the prediction step are chosen equal to 1. All

algorithms are initialized with zeros.

The predicted results provided by trinion and quaternion based algorithms are

shown in Figures 4.3 and 4.4, respectively. The learning curves using the TNLMS,

the SMTNLMS, the TAP, and the SMTAP algorithms are shown in Figures 4.5(a)

and 4.5(b). Also, for comparison between the trinion and the quaternion based algo-

rithms, the learning curves related to the TNLMS, the QNLMS, the TAP, and the

QAP algorithms are depicted in Figures 4.6(a) and 4.6(b).

The average of implementation times and the number of updates performed by

the trinion and the quaternion based algorithms are presented in Table 4.2. From the

results, we can observe that all algorithms can track the wind data efficiently; however,

the trinion based algorithms need a shorter time for implementation compared to

their corresponding quaternion based algorithms. Also, we can observe that the set-

membership based versions of the TNLMS, the QNLMS, the TAP, and the QAP

algorithms have a low number of updates. Therefore, the set-membership algorithms

can save energy effectively.

Moreover, we implemented the same scenario using a real-valued algorithm. Indeed,

we used three affine projection (AP) algorithms whose parameters are chosen similar

to the TAP algorithm to compare the tracking results between the AP and the TAP

64

Table 4.2: The Average of implementation times and the number of updates for the
trinion and the quaternion based algorithms using MATLAB software

Algorithm Time Update Algorithm Time Update
(second) rate (second) rate

TLMS 2.45 100% QLMS 7.2 100%
TNLMS 8 100% QNLMS 9.4 100%
TAP 67 100% QAP 142 100%

SMTNLMS 3.8 17.92% SMQNLMS 9.2 17.87%
SMTAP 13 6.52% SMQAP 20.1 6.34%

Figure 4.3: Predicted results from the trinion based algorithms.

Figure 4.4: Predicted results from the quaternion based algorithms.

65

(a) (b)

Figure 4.5: Learning curves of (a) the TNLMS and the SMTNLMS algorithms; (b)
the TAP and the SMTAP algorithms.

(a) (b)

Figure 4.6: Learning curves of (a) the TNLMS and the QNLMS algorithms; (b) the
TAP and the QAP algorithms.

algorithms. We did not notify a significant difference between the tracking results

of the AP and the TAP algorithms, thus we avoid presenting an additional figure

since the results were similar to Figure 4.3(b). However, in wind profile prediction, It

would be preferable to employ trinion-valued algorithms since there is some structure

between the three components of data.

66

4.7.2 Scenario 2

In this scenario, we simulate the quaternionic adaptive beamforming [57] using the

QLMS, the QNLMS, the SMQNLMS, the QAP, and the SMQAP algorithms. We

assume a sensor array with 10 crossed-dipoles and half-wavelength spacing. The step

size, µ, for the QLMS, the QNLMS, and the QAP algorithms are 4× 10−5, 0.009, and

0.005, respectively. For the QAP and the SMQAP algorithms, the memory length, L,

is set to 1. A desired signal with 20 dB SNR (σ2
n = 0.01) impinges from broadside,

θ = 0 and φ = π
2
, and two interfering signals with signal-to-interference ratio (SIR) of

-10 dB arrive from (θ, φ) = (π
9
, π
2
) and (θ, φ) = (π

6
,−π

2
), respectively. All the signals

have the same polarization of (γ, η) = (0, 0). γ is set to be
√
2σ2

n, and the vector γ(k)

is selected as simple choice constraint vector defined in Scenario 1.

The learning curves of quaternion algorithms over 100 trials are shown in Figure 4.7.

The average number of updates performed by the SMQNLMS and the SMQAP algo-

rithms are 1408 and 1815 in a total of 10000 iterations (about 14.08% and 18.15%),

respectively. As can be seen, the set-membership quaternion algorithms converge

faster while having a lower number of updates. Also, the convergence rate of the QAP

algorithm is higher than the SMQNLMS algorithm.

The response of a beamformer to the impinging signals as a function of θ is called

beam pattern and is defined as B(θ) = wHs(θ), where s(θ) is the steering vector. The

magnitude of beam pattern explains the variation of a beamformer concerning the

signal arriving from different DOA angles. Figure 4.8 illustrates the magnitude of beam

pattern of the quaternion algorithms with θ = 0. In this figure, the positive values

of θ show the value range θ ∈ [0, π
2
] for φ = π

2
and the negative values, θ ∈ [−π

2
, 0],

indicate the same range of θ ∈ [0, π
2
] but φ = −π

2
. We can observe that all the

quaternion algorithms attained an acceptable beamforming result since the two nulls

at the directions of the interfering signals are clearly visible.

The output signal to desired plus noise ratio (OSDR) and the output signal to

interference plus noise ratio (OSIR) for the quaternion algorithms are presented in

Table 4.3. The OSDR is achieved by calculating the power of the output signal and

the total power of desired plus one-third of the noise signal, then we compute the ratio

between these two values. Also, the OSIR is obtained by computing the power of the

output signal and the total power of interference plus one-third of the noise signal,

then we find the ratio between the two. As can be seen, the best results are obtained

by the SMQNLMS and the SMQAP algorithms.

67

Iterations
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
S

E
 [d

B
]

-25

-20

-15

-10

-5

0

5

QLMS
QAP
QNLMS
SMQAP
SMQNLMS

Figure 4.7: Learning curves of the QLMS, the QNLMS, the QAP, the SMQNLMS,
and the SMQAP algorithms.

Table 4.3: The OSDR and the OSIR for the quaternion algorithms

Algorithms QLMS QNLMS QAP SMQNLMS SMQAP
OSDR (dB) -1.645 -1.502 -0.647 -0.024 0.004
OSIR (dB) -11.699 -11.557 -10.701 -10.079 -10.050

4.8 Conclusions

In this chapter, we have generalized the set-membership model for the trinion and the

quaternion number systems. First, we have reviewed some properties of the quaternion

and the trinion systems. Then we have derived the set-membership trinion based algo-

rithms and, by the same argument, the quaternion based adaptive filtering algorithms

have been introduced. Also, we have presented the counterparts of the proposed algo-

rithms without employing the set-membership approach. Moreover, we have reviewed

68

θ

-100 -80 -60 -40 -20 0 20 40 60 80 100

T
he

 b
ea

m
 p

at
te

rn
 o

f a
rr

ay

0

0.2

0.4

0.6

0.8

1

1.2

QLMS
QNLMS
QAP
SMQNLMS
SMQAP

Figure 4.8: Beam patterns of the QLMS, the QNLMS, the QAP, the SMQNLMS, and
the SMQAP algorithms when DOA of desired signal is (θ, φ) = (0, π

2
).

the application of quaternion algorithms to adaptive beamforming. Numerical simu-

lations for the recorded wind data and the adaptive beamforming have proven that

the set-membership based algorithms have significantly lower update rates, while the

penalty to be paid for that is not noteworthy. Also, we have observed that the trinion

based algorithms have comparable performance to the quaternion based ones, however

with striking lower computational complexity.

69

Chapter 5

Improved Set-Membership

Partial-Update Affine Projection

Algorithm

Adaptive filters have applications in a wide range of areas such as noise cancellation,

signal prediction, echo cancellation, communications, radar, and speech processing.

In several applications, a large number of coefficients to be updated leads to high

computational complexity, turning the adaptation of the filter coefficients prohibitive

regarding hardware requirements. In some cases, like acoustic echo cancellation, the

adaptive filter might use a few thousand coefficients in order to model the underlying

physical system with sufficient accuracy. In these applications, the convergence would

entail a large number of iterations, calling for a more sophisticated updating rule

which is inherently more computationally intensive. For a given adaptive filter, the

computational complexity can be reduced by updating only part of the filter coefficients

at each iteration, forming a family of algorithms called partial-update (PU) algorithms.

In the literature, several variants of adaptive filtering algorithms with partial-update

have been proposed [2, 79–91].

Another powerful approach to decrease the computational complexity of an adap-

tive filter is to employ set-membership filtering (SMF) approach [2, 9]. Algorithms

developed from the SMF framework employ a deterministic objective function related

to a bounded error constraint on the filter output, such that the updates belong to a

set of feasible solutions. Implementation of SMF algorithms involves two main steps:

1) information evaluation, 2) parameter update. As compared with the standard

70

normalized least mean square (NLMS) and affine projection (AP) algorithms, the set-

membership normalized least mean square (SM-NLMS) and the set-membership affine

projection (SM-AP) algorithms lead to reduced computational complexity chiefly due

to data-selective updates [9, 30, 31, 43, 47, 92–94].

The use of PU strategy decreases the computational complexity while reducing

convergence speed. We employ SMF technique to reduce further the computational

load due to a lower number of updates. However applying the SMF and PU strategies

together might result in slow convergence speed. One approach to accelerate the

convergence speed is choosing a smaller error estimation bound, but it might increase

the number of updates. Also, if we adopt a higher error estimation threshold to reduce

the number of updates, the convergence rate will decrease. Therefore, convergence

speed and computational complexity are conflicting requirements.

In this chapter, we introduce an interesting algorithm which can accelerate the

convergence speed and simultaneously reduce the number of updates (and as a result

decrease the computational complexity) in the set-membership partial-update affine

projection (SM-PUAP) algorithm. In the SM-PUAP algorithm, some updates move

too far from their SM-AP update; especially when the angle between the updating

direction and the threshold hyperplane is small. In this case, we might have a sig-

nificant disturbance in the coefficient update while attempting to reach the feasibility

set. Therefore, to limit the distance between two consecutive updates, first, we will

construct a hypersphere centered at the present weight vector whose radius equals

the distance between the current weight vector and the weight vector that would

be obtained with the SM-AP algorithm. This radius is an upper bound on the Eu-

clidean norm of the coefficient disturbance that is allowed in the proposed improved

set-membership partial-update affine projection (I-SM-PUAP) algorithm.

The content of this chapter was published in [95]. In this chapter, first of all, we

review the SM-PUAP algorithm in Section 5.1. Then, in Section 5.2, we derive the

I-SM-PUAP algorithm. Section 5.3 presents simulations of the algorithms. Finally,

Section 5.4 contains the conclusions.

71

5.1 Set-Membership Partial-Update Affine Projec-

tion Algorithm

In this section, we present the SM-PUAP algorithm [2]. The main objective of the

partial-update adaptation is to perform updates in M out of N + 1 adaptive filter

coefficients, where N is the order of the adaptive filter. The M coefficients to be

updated at time instant k are specified by an index set IM(k) = {i0(k), · · · , iM−1(k)}
with {ij(k)}M−1

j=0 chosen from the set {0, · · · , N}. The subset of coefficients with indices

in IM(k) plays an essential role in the performance and the effectiveness of the partial-

update strategy. Note that IM(k) varies with the time instant k. As a result, the M

coefficients to be updated can change according to the time instant. The choice of

which M coefficients should be updated is related to the optimization criterion chosen

for algorithm derivation. The SM-PUAP algorithm [2] takes the update vectorw(k+1)

as the vector minimizing the Euclidean distance ‖w(k + 1) − w(k)‖2 subject to the

constraint w(k + 1) ∈ H(k) in such a way that only M coefficients are updated.

The optimization criterion in the SM-PUAP algorithm is described as follows. Let

ψL+1(k) indicate the intersection of the last L+1 constraint sets. A coefficient update

is implemented whenever w(k) 6∈ ψL+1(k) as follows

min ‖w(k + 1)−w(k)‖2

subject to :

d(k)−XT (k)w(k + 1) = γ(k)

C̃IM (k)[w(k + 1)−w(k)] = 0

(5.1)

where
d(k) ∈ R

(L+1)×1 contains the desired output from the

L+ 1 last time instants;

γ(k) ∈ R
(L+1)×1 specifies the point in ψL+1(k);

X(k) ∈ R(N+1)×(L+1) contains the corresponding input vectors, i.e.,

d(k) = [d(k) d(k − 1) · · · d(k − L)]T ,

γ(k) = [γ0(k) γ1(k) · · · γL(k)]T ,
X(k) = [x(k) x(k − 1) · · · x(k − L)],

(5.2)

72

with x(k) being the input-signal vector

x(k) = [x(k) x(k − 1) · · · x(k −N)]T . (5.3)

Moreover, the matrix C̃IM (k) = I − CIM (k) is a complementary matrix that gives

C̃IM (k)w(k + 1) = C̃IM (k)w(k), which means that only M coefficients are updated.

The threshold vector elements are such that |γi(k)| ≤ γ, for i = 0, · · · , L. The matrix

CIM (k) is a diagonal matrix that identifies the coefficients to be updated at instant k,

if an update is required. This matrix has M nonzero elements equal to one located at

positions declared by IM(k).

Using the method of Lagrange multipliers we obtain the following updating rule

w(k + 1) = w(k) +CIM (k)X(k)[XT (k)CIM (k)X(k)]−1[e(k)− γ(k)] (5.4)

The updating equation of the SM-PUAP algorithm is given by

w(k + 1) =

{
w(k) +CIM (k)X(k)P(k)(e(k)− γ(k)) if |e(k)| > γ

w(k) otherwise
, (5.5)

where

P(k) = (XT (k)CIM (k)X(k) + δI)−1, (5.6)

e(k) = [e(k) ǫ(k − 1) · · · ǫ(k − L)]T , (5.7)

with e(k) = d(k)−wT (k)x(k), and ǫ(k−i) = d(k−i)−wT (k)x(k−i) for i = 1, · · · , L.
In the Equation (5.6), δ and I are a small positive constant and an (L+ 1)× (L+ 1)

identity matrix, respectively. The diagonal matrix δI is added to the matrix to be

inverted in order to avoid numerical problems in the inversion operation in the cases

XT (k)CIM (k)X(k) is ill conditioned.

A natural choice for the M nonzero diagonal elements of CIM (k) is those corre-

sponding to the coefficients of w(k) with the most significant norms. In fact, by this

selection, the M coefficients with the largest norms will be updated, and the rest of

the parameters will remain unchanged.

Figure 5.1 illustrates a possible update in SM-PUAP algorithm in R3 for L = 0.

As can be seen, w(k+1) is far from the wSM−AP(k), and it will reduce the convergence

rate of the SM-PUAP algorithm. In the next section, we will address this issue by

73

Figure 5.1: Update in SM-PUAP algorithm in R3 for L = 0.

presenting the I-SM-PUAP algorithm.

5.2 Improved Set-membership Partial-Update

Affine Projection Algorithm

In this section, we propose the I-SM-PUAP algorithm aiming at accelerating the con-

vergence speed of SM-PUAP algorithm and decreasing the number of updates.

Since the partial update strategy deviates the updating direction from the one de-

termined by the input signal vector x(k) utilized by the SM-PUAP algorithm, it is

natural that the size of the step for a partial update algorithm should be smaller than

the corresponding algorithm that updates all coefficients. A solution to this prob-

lem is to constrain the Euclidean norm of the coefficient disturbance of the partial

update algorithm to the disturbance implemented by the originating nonpartial up-

dating algorithm, in our case the SM-AP algorithm. For that, we build hypersphere,

S(k), whose radius is the distance between w(k) and the SM-AP update. The SM-AP

update takes a step towards the hyperplanes d(k) − wTx(k) = ±γ with the mini-

mum disturbance, i.e., when the step in the direction x(k) touches the hyperplane

perpendicularly. Therefore, the radius of the hypersphere S(k) is given by

µ(k) = min
(|wT (k)x(k)− d(k)± γ|

‖x(k)‖2

)
, (5.8)

where ‖ · ‖2 is the Euclidean norm in RN+1. The equation describing the hypersphere

74

Figure 5.2: Update in I-SM-PUAP algorithm in R3 for L = 0.

S(k) with the radius µ(k) and centered at w(k) is as follows

(w0 − w0(k))
2 + · · ·+ (wN − wN(k))

2 = µ2(k). (5.9)

As can be observed in Figure 5.1, w(k+1) is the point where, starting from w(k),

the vector representing the w(k+1) direction touches the hyperplane d(k)−wTx(k) =

γ. Unlike the SM-PUAP algorithm, in the I-SM-PUAP algorithm w(k+1) is the point

where, starting from w(k), the vector representing the partial direction touches the

defined N dimensional hypersphere S(k) and points at a sparse version of x(k). A

visual interpretation of the I-SM-PUAP algorithm is described in Figure 5.2.

Define ŵ(k) as the update result of Equation (5.5) with γ(k) = [0 · · · 0]T . In

order to find the update of w(k) to the boundary of hypersphere S(k) such that

C̃IM (k)w(k + 1) = C̃IM (k)w(k) we have to find the intersection of the hypersphere

S(k) with the line l(k) passing through w(k) and ŵ(k). This line is parallel to the

vector u(k) = a(k)
‖a(k)‖2

, where a(k) = [ŵ0(k)− w0(k) · · · ŵN(k)− wN(k)]
T . Hence, the

equation of the line l(k) is given as follows

{
w0−w0(k)

u0(k)
= · · · = wi−wi(k)

ui(k)
= · · · = wN−wN (k)

uN (k)
, for i ∈ IM(k),

wi = wi(k), for i 6∈ IM(k).
(5.10)

In order to find the intersection of the line l(k) with the hypersphere S(k), we

should replace Equation (5.10) in Equation (5.9). Thus, we will attain wi = wi(k) for

75

i 6∈ IM (k), and for i ∈ IM(k) we have

u20(k)

u2i (k)
(wi − wi(k))

2 + · · ·+ (wi − wi(k))
2 + · · ·+ u2N(k)

u2i (k)
(wi − wi(k))

2 = µ2(k).

(5.11)

Then,

(wi − wi(k))
2 = u2i (k)µ

2(k), (5.12)

where we obtained the last equality owing to ‖u(k)‖2 = 1. Therefore, the intersections

of the line l(k) and the hypersphere S(k) are given by

wi = wi(k)± ui(k)µ(k). (5.13)

We will choose the positive sign in Equation (5.13) since the direction of the vector

a(k) is from w(k) to ŵ(k). As a result, vector w(k + 1) becomes as below

w(k + 1) = w(k) + µ(k)u(k). (5.14)

Also, as an alternative method, we can get w(k+1) through an elegant geometrical

view. Denotew(k+1) in Equation (5.5) as ŵ(k) while taking γ(k) = [0 · · · 0]T . Define

a(k) as

a(k) = ŵ(k)−w(k) = CIM (k)X(k)P(k)e(k). (5.15)

If we take the step size equal to ‖a(k)‖2 and do the update in the direction of a(k)
‖a(k)‖2

,

then the parameters will reach ŵ(k). However, our objective is to reach the boundary

of hypersphere S(k) centered at w(k) with radius µ(k) in the direction of a(k)
‖a(k)‖2

, thus

the step size must be equal to the radius of S(k) so that the update equation becomes

w(k + 1) = w(k) + µ(k)
a(k)

‖a(k)‖2
= w(k) + µ(k)u(k). (5.16)

Table 5.1 summarizes the I-SM-PUAP algorithm.

76

Table 5.1: Improved Set-Membership Partial-Update Affine Projection(I-SM-PUAP)
Algorithm

I-SM-PUAP Algorithm

Initialization
x(−1) = w(0) = [0 · · · 0]T

δ = small positive constant
choose γ
Do for k ≥ 0
e(k) = d(k)−XT (k)w(k)
if |e(k)| > γ

µ(k) = min
(

|−e(k)±γ|
‖x(k)‖2

)

a(k) = CIM (k)X(k)[XT (k)CIM (k)X(k) + δI]−1e(k)

w(k + 1) = w(k) + µ(k)
‖a(k)‖2

a(k)

else
w(k + 1) = w(k)
end

end

5.3 Simulations

5.3.1 Scenario 1

In this section, the SM-PUAP algorithm [2] and the proposed I-SM-PUAP algorithm

are applied to a system identification problem. The unknown system has order N = 79

and its coefficients are random scalars drawn from the standard normal distribution.

The input signal is a binary phase-shift keying (BPSK) signal with σ2
x = 1. The

signal-to-noise ratio (SNR) is set to 20 dB, i.e., σ2
n = 0.01. The bound on the output

estimation error is chosen as γ =
√

25σ2
n. Also, we adopt the threshold bound vector

γ(k) as γ0(k) =
γe(k)
|e(k)|

and γi(k) = d(k − i) − wT (k)x(k − i), for i = 1, · · · , L [2, 24].

The regularization constant, δ, is 10−12 and w(0) = [1 · · · 1]T which is not close to

the unknown system. All learning curves averaged over 200 trials. We are updating

50 percent of the components randomly chosen of the filter to illustrate the partial

updating, i.e., half of the elements of IM(k) are nonzero at each time instant k.

Figure 5.3 shows the learning curves for the I-SM-PUAP algorithm with L = 1, 4,

and it illustrates the learning curves for the SM-PUAP algorithm with L = 64 and

69. Also, in Figure 5.3 a blue curve is depicted using correlated inputs and L = 1. In

77

Number of iterations, k
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
S

E
 [d

B
]

-20

-10

0

10

20

30

40

SM-PUAP: L=64

SM-PUAP: L=69

I-SM-PUAP: L=4

I-SM-PUAP: L=1

I-SM-PUAP: L=1,
Correlated inputs

Figure 5.3: Learning curves of the I-SM-PUAP and the SM-PUAP algorithms applied
on system identification problem.

fact, for the blue curve all of the specifications of the system are the same as explained

above and the only difference is the input signal. The correlated input signal is chosen

as x(k) = 0.95x(k− 1) + 0.19x(k− 2) + 0.09x(k− 3)− 0.5x(k− 1) +m(k − 4), where

m(k) is a zero-mean Gaussian noise with unit variance.

The average number of updates performed by the I-SM-PUAP algorithm are 8.3%

and 6.5% for L = 1 and 4, respectively, and 20% in the case of the correlated input

signal. The average number of updates implemented by the SM-PUAP algorithm

are 14% and 25% for L = 69 and 64, respectively. Note that in both algorithms

we have to find the inverse of an (L + 1) × (L + 1) matrix, thus large L implies

high computational complexity. Therefore, the I-SM-PUAP algorithm requires lower

implementation time since it presents fast convergence even for a small value of L.

Also, it is worth mentioning that for L < 64 the SM-PUAP algorithm does not reach

its steady-state in 10000 iterations. From the results, we can observe that the proposed

78

algorithm, I-SM-PUAP, has faster convergence speed and lower number of updates as

compared to the SM-PUAP algorithm.

5.3.2 Scenario 2

In this section, we perform the equalization of a channel with the following impulse

response

h = [1 2 3 4 4 3 2 1]T . (5.17)

We use a known training signal that consists of independent binary samples (−1, 1)

and an additional Gaussian white noise with variance 0.01 is present at the channel

output. The I-SM-PUAP and the SM-PUAP algorithms are applied to find the impulse

response of an equalizer of order 80. The delay in the reference signal is selected as

45. The parameters γ and γ(k) are chosen as
√

25σ2
n and the simple choice constraint

vector is utilized as Scenario 1, respectively. The regularization constant, δ, is 10−12

and w(0) = [1 · · · 1]T . All learning curves are averaged over 100 trials. At each

iteration, half of the elements of IM(k) are set nonzero randomly. The memory-length,

L, is 3.

Figure 5.4(a) shows the learning curves for the I-SM-PUAP and the SM-PUAP

algorithms. The convolution of the equalizer impulse response at a given iteration after

convergence with the channel impulse response is shown in Figure 5.4(b). The average

number of updates implemented by the I-SM-PUAP and the SM-PUAP algorithms

are 61% and 82%, respectively. As can be seen, the I-SM-PUAP algorithm has lower

MSE and lower number of updates compared to the SM-PUAP algorithm.

5.4 Conclusions

In this chapter, we have introduced the improved set-membership partial-update affine

projection (I-SM-PUAP) algorithm aiming at accelerating the convergence rate of the

set-membership partial-update affine projection (SM-PUAP) algorithm, with lower

computational complexity and reduced number of updates. To achieve this goal, we

use the distance between the present weight vector and the one obtained with the

SM-AP update, in order to provide a hypersphere that upper bounds the coefficient

disturbance. Numerical simulations for the system identification and the channel

79

Number of iterations, k
0 500 1000 1500 2000 2500 3000

M
S

E
 [
d
B

]

-30

-20

-10

0

10

20

30

40

50
Learning Curve for MSE

SM-PUAP
I-SM-PUAP

(a)

Sample
0 10 20 30 40 50 60 70 80 90

A
m

p
lit

u
d
e

-0.2

0

0.2

0.4

0.6

0.8

1

SM-PUAP
I-SM-PUAP

(b)

Figure 5.4: (a) Learning curves of the I-SM-PUAP and the SM-PUAP algorithms
performing the equalization of a channel; (b) convolution results.

equalization problems have confirmed that the I-SM-PUAP algorithm has not only

faster convergence rate, but also it requires a lower number of updates as compared

to the SM-PUAP algorithm.

80

Chapter 6

Adaptive Filtering Algorithms for

Sparse System Modeling

Adaptive filtering applied to signals originating from time-varying systems find appli-

cations in a wide diversity of areas such as communications, control, radar, acoustics,

and speech processing. Nowadays, it is well known that many types of signal or system

parameters admit sparse representation in a certain domain. However, classical adap-

tive algorithms such as the least-mean-square (LMS), the normalized LMS (NLMS),

the affine projection (AP), and the recursive least-squares (RLS) do not take into

consideration the sparsity in the signal or system models.

Recently, it has been understood that by exploiting appropriately signal spar-

sity, significant improvement in convergence rate and steady-state performance can be

achieved. As a consequence, many extensions of the classical algorithms were proposed

aiming at exploiting sparsity. One of the most widely used approaches consists in up-

dating each filter coefficient using a step-size proportional to its magnitude in order to

speed up the convergence rate of the coefficients with large magnitudes. This approach

led to the development of a family of algorithms known as proportionate [41, 96–99].

Another interesting approach to exploit sparsity is to include a sparsity-promoting

penalty (sometimes called regularization) function into the original optimization prob-

lem of classical algorithms [1]. Within this approach, most algorithms employ the

l1 norm as the sparsity-promoting penalty [100–103], but recently an approximation

to the l0 norm has shown some advantages [8, 104–106]. In addition, these two ap-

proaches were combined and tested in [107, 108] yielding interesting results. Observe

that in all of the aforementioned approaches something is being included/added to the

classical algorithms, thus entailing an increase in their computational complexity.

81

In this chapter, we use a different strategy to exploit sparsity. Instead of including

additional features in the algorithm, as the techniques described in the previous para-

graph, we actually discard some coefficients, thus reducing the computational burden.

This idea is motivated by the existence of some uncertainty in the coefficients in prac-

tical applications. Indeed, a measured sparse impulse response of a system presents

a few coefficients concentrating most of the energy, whereas the other coefficients are

close to zero, but not precisely equal to zero [8] 1. Thus, if we have some prior informa-

tion about the uncertainty in those parameters, then we can replace the parameters

which are “lower than” this uncertainty with zero (i.e., discard the coefficients) in

order to save computational resources.

In addition to this new way of exploiting sparsity, we also employ the set-

membership filtering (SMF) approach [2, 9] in order to generate the Simple Set-

Membership Affine Projection (S-SM-AP) algorithm, which is mostly the combination

of the set-membership affine projection algorithm [31] with our strategy to exploit

sparsity. The SMF approach is used just to reduce the computational burden even

further since the filter coefficients are updated only when the estimation error is greater

than a predetermined threshold.

Moreover, we derive the improved S-SM-AP (IS-SM-AP) algorithm to reduce the

overall number of computations required by the S-SM-AP algorithm even further by

replacing small coefficients with zero. Also, we obtain the simple affine projection

(S-AP) and the improved S-AP (IS-AP) algorithms as special cases of the S-SM-AP

and the IS-SM-AP algorithms, respectively. The S-AP and the IS-AP algorithms do

not resort to the SMF concept and can be regarded as affine projection algorithms for

sparse systems.

Finally, we introduce some sparsity-aware RLS algorithms employing the discard

function and the l0 norm approximation. The first proposed algorithm, the RLS for

sparse systems (S-RLS), sets low weights to the coefficients close to zero and exploits

system sparsity with low computational complexity. On the other hand, the sec-

ond algorithm, the l0 norm RLS (l0-RLS), has higher computational complexity in

comparison with the S-RLS algorithm. For both algorithms, in order to reduce the

computational load further, we apply a data-selective strategy [9] leading to the data-

selective S-RLS (DS-S-RLS) and the data-selective l0-RLS (DS-l0-RLS) algorithms.

That is, the proposed algorithms update the weight vector if the output estimation

1A system whose impulse response presents this characteristic is formally known as a compressible

system [1].

82

error is larger than a prescribed value. By applying the data-selective strategy, both

algorithms attain lower computational complexity compared to the RLS algorithm.

The content of this chapter was published in [109, 110]. In Sections 6.1 and 6.2, we

review the sparsity-aware SM-AP (SSM-AP) algorithm and the set-membership pro-

portionate AP algorithm (SM-PAPA), respectively. The proposed S-SM-AP algorithm

is derived in Section 6.3. Sections 6.5 and 6.6 propose the S-RLS and the l0-RLS algo-

rithms, respectively. Simulations are presented in Section 6.7 and Section 6.8 contains

the conclusions.

6.1 Sparsity-Aware SM-AP Algorithm

In literature, a method to deal with the sparsity has been obtained by adding a penalty

function to the original objective function [1, 8, 100, 104, 105]. This penalty function

is generally related to the l0 or l1 norms. Utilizing l0 norm has some difficulties

since it leads to an NP-hard problem. Therefore, we must try to approximate the l0

norm by almost everywhere differentiable functions, for then we can apply stochastic

gradient methods to solve the optimization problem. In other words, the l0 norm

can be estimated by a continuous function Gβ : RN+1 → R+, where β ∈ R+ is a

parameter responsible for controlling the agreement between quality of the estimation

and smoothness of Gβ. This function must satisfy the following condition [1, 8]

lim
β→∞

Gβ(w) = ‖w‖0, (6.1)

where ‖ · ‖0 denotes the l0 norm which, for w ∈ RN+1, is defined as ‖w‖0 , #{i ∈
N : wi 6= 0}, in which # stands for the cardinality of a finite set. Here we present

83

w
-1 -0.5 0 0.5 1

G
β
(w

)

0

0.2

0.4

0.6

0.8

1

(a)

w
-1 -0.5 0 0.5 1

G
β
(w

)

0

0.2

0.4

0.6

0.8

1

(b)

Figure 6.1: Univariate functions Gβ(w), with w ∈ [−1, 1] and β = 5: (a) LF; (b)
GMF.

four examples of function Gβ [1, 8]

LF : Gβ(w) =

N∑

i=0

(1− e−β|wi|), (6.2a)

MLF : Gβ(w) =
N∑

i=0

(1− e−0.5β2w2
i), (6.2b)

GMF : Gβ(w) =

N∑

i=0

(1− 1

1 + β|wi|
), (6.2c)

MGMF : Gβ(w) =
N∑

i=0

(1− 1

1 + β2w2
i

). (6.2d)

The functions expressed in Equations (6.2a) and (6.2c) are called the multivariate

Laplace function (LF) and the multivariate Geman-McClure function (GMF), respec-

tively. Equations (6.2b) and (6.2d) are modifications of the LF and the GMF, respec-

tively, so that they have continuous derivatives too. Figure 6.1 shows the univariate

Laplace and Geman-McClure functions for β = 5.

The gradient of Gβ is defined as follows

∇Gβ(w) , gβ(w) , [gβ(w0) · · · gβ(wN)]
T , (6.3)

84

where gβ(wi) =
∂Gβ(w)

∂wi
. Note that (6.2a) and (6.2c) are not differentiable at the

origin, thus we define their derivatives at the origin equal to zero. The derivatives

corresponding to (6.2a)-(6.2d) are, respectively,

gβ(wi) = βsgn(wi)e
−β|wi|, (6.4a)

gβ(wi) = β2wie
−0.5β2w2

i , (6.4b)

gβ(wi) =
βsgn(wi)

(1 + β|wi|)2
, (6.4c)

gβ(wi) =
2β2wi

(1 + β2w2
i)

2
, (6.4d)

where sgn(·) denotes the sign function. The interested reader can find the details of

approximating the l0 norm in [8].

The SSM-AP algorithm performs an update whenever |e(k)| = |d(k) −
wT (k)x(k)| > γ, following an update recursion that is an approximation of the solution

to the optimization problem [8]

min ‖w(k + 1)−w(k)‖22 + α‖w(k + 1)‖0
subject to

d(k)−XT (k)w(k + 1) = γ(k), (6.5)

where α ∈ R+ denotes the weight given to the l0 norm.

After replacing the l0 norm with its approximation Gβ, and using the method of

Lagrange multipliers, the updating equation of the SSM-AP algorithm is reached as

follows [8]

w(k + 1) =





w(k) +X(k)A(k)[e(k)− γ(k)]

+α
2
[X(k)A(k)XT (k)− I]gβ(w(k)) if |e(k)| > γ,

w(k) otherwise,

(6.6)

where A(k) = (XT (k)X(k))−1.

6.2 Set-Membership Proportionate AP Algorithm

The sparsity of the signals in some applications motivates us to update each coefficient

of the model independently of the others. Therefore, in adaptive filtering, one of the

85

most widely used methods to exploit sparsity is by implementing coefficient updates

that are proportional to the magnitude of the related coefficients. Thus, the coeffi-

cients with large magnitude will update with higher convergence rate and, as a result,

we have faster overall convergence speed [97]. This approach leads to a well known

family of algorithms called proportionate. A noticeable number of algorithms utilizing

the proportionate approach have been already introduced in the literature. Some of

them are the proportionate NLMS (PNLMS) [96], the proportionate AP algorithm

(PAPA) [99], and their set-membership counterparts [41]. In this section, we review

the set-membership PAPA (SM-PAPA). The optimization criterion of the SM-PAPA

when it implements an update (i.e., when |e(k)| > γ) is given by

min ‖w(k + 1)−w(k)‖2
M−1(k)

subject to

d(k)−XT (k)w(k + 1) = γ(k). (6.7)

The norm in this optimization criterion is defined as ‖w‖2
M

, wTMw and matrix

M(k) is a diagonal weighting matrix of the form

M(k) , diag[m0(k) · · · mN(k)], (6.8)

where

mi(k) ,
1− rµ(k)

N
+
rµ(k)|wi(k)|
‖w(k)‖1

, (6.9)

with

µ(k) =

{
1− γ

|e(k)|
if |e(k)| > γ,

0 otherwise,
(6.10)

and r ∈ [0, 1]. Also, ‖ · ‖1 stands for the l1 norm and for w ∈ RN+1 it is defined as

‖w‖1 =
∑N

i=0 |wi|. Utilizing the method of Lagrange multipliers to solve (6.7), the

update equation of the SM-PAPA is obtained as follows [41]

w(k + 1) =
{

w(k) +M(k)X(k)[XT (k)M(k)X(k)]−1[e(k)− γ(k)] if |e(k)| > γ,

w(k) otherwise.
(6.11)

86

6.3 A Simple Set-Membership Affine Projection

Algorithm

In the previous sections, we have observed that to exploit sparsity, we require a higher

number of arithmetic operations compared to the SM-AP algorithm, which cannot

exploit sparsity. Here we introduce a new algorithm to exploit sparsity with low

computational complexity. In this algorithm, instead of including/adding something

to the classical algorithms, we discard the coefficients close to zero.

In Subsection 6.3.1, we propose a Simple Set-Membership Affine Projection (S-SM-

AP) algorithm that exploits the sparsity of the involved system with low computational

complexity. For this purpose, the strategy consists in not updating the coefficients of

the sparse filter which are close to zero. Then, in Subsection 6.3.2, we include a

discussion of some characteristics of the proposed algorithm. In Subsection 6.3.3,

we introduce an improved version of the proposed algorithm aiming at reducing the

computational burden even further. Finally, in Subsection 6.3.4, we derive the S-AP

and IS-AP algorithms by not employing the SMF technique.

6.3.1 Derivation of the S-SM-AP algorithm

Let us define the discard function fǫ : R → R for the positive constant ǫ as follows

fǫ(w) =

{
w if |w| > ǫ,

0 if |w| ≤ ǫ.
(6.12)

That is, function fǫ discards the values of w which are close to zero. The parameter ǫ

defines what is considered as close to zero and, therefore, should be chosen based on

some a priori information about the relative importance of a coefficient to the sparse

system. Figure 6.2 depicts the function fǫ(w) for ǫ = 10−4. Note that the function

fǫ(w) is not differentiable at±ǫ, however, we need to differentiate this function in order

to derive the S-SM-AP algorithm. To address this issue, we define the derivative of

fǫ(w) at +ǫ and−ǫ as equal to the left and the right derivatives, respectively. Thus, the

derivative of fǫ(w) at ±ǫ is zero. Define the discard vector function fǫ : R
N+1 → RN+1

as

fǫ(w) = [fǫ(w0) · · · fǫ(wN)]
T . (6.13)

87

−1 −0.5 0 0.5 1

x 10
−3

−1

−0.5

0

0.5

1
x 10

−3

w

f ε(w
)

Figure 6.2: Discard function fǫ(w) for ǫ = 10−4.

The S-SM-AP algorithm updates the coefficients whose absolute values are larger

than ǫ whenever the error is such that |e(k)| = |d(k)−wT (k)x(k)| > γ. Let ψL+1(k)

denote the intersection of the last L + 1 constraint sets and state the following opti-

mization criterion for the vector update whenever w(k) 6∈ ψL+1(k)

min
1

2
‖fǫ(w(k + 1))−w(k)‖2

subject to

d(k)−XT (k)w(k + 1) = γ(k). (6.14)

In order to solve this optimization problem, we construct the Lagrangian L as

L =
1

2
‖fǫ(w(k + 1))−w(k)‖2 + λT (k)[d(k)−XT (k)w(k + 1)− γ(k)], (6.15)

where λ(k) ∈ RL+1 is a vector of Lagrange multipliers. After differentiating the above

equation with respect to w(k + 1) and setting the result equal to zero, we obtain

fǫ(w(k + 1)) = w(k) + F−1
ǫ (w(k + 1))X(k)λ(k), (6.16)

where Fǫ(w(k+1)) is the Jacobian matrix of fǫ(w(k+1)). In Equation (6.16), by em-

ploying a similar strategy as the PASTd (projection approximation subspace tracking

with deflation) [111], we replace fǫ(w(k + 1)) and F−1
ǫ (w(k + 1)) with w(k + 1) and

F−1
ǫ (w(k)), respectively, in order to form the recursion, then we obtain

w(k + 1) = w(k) + F−1
ǫ (w(k))X(k)λ(k). (6.17)

88

If we substitute the above equation in the constraint relation (6.14), then we will find

λ(k) as follows

λ(k) = (XT (k)F−1
ǫ (w(k))X(k))−1(e(k)− γ(k)). (6.18)

Replacing (6.18) into (6.17) leads to the following updating equation

w(k + 1) = w(k)

+ F−1
ǫ (w(k))X(k)(XT (k)F−1

ǫ (w(k))X(k))−1(e(k)− γ(k)). (6.19)

Note that Fǫ(w(k)) is not an invertible matrix and, therefore, we apply the Moore-

Penrose pseudoinverse (generalization of the inverse matrix) instead of the standard

inverse. However, Fǫ(w(k)) is a diagonal matrix with diagonal entries equal to zero or

one. Indeed, for the components of w(k) whose absolute values are larger than ǫ, their

corresponding entries on the diagonal matrix Fǫ(w(k)) are equal to one, whereas the

remaining entries are zero. Hence, the pseudoinverse of Fǫ(w(k)) is again Fǫ(w(k)).

As a result, the update equation of the S-SM-AP algorithm is as follows

w(k + 1) =

{
w(k) + q(k) if |e(k)| > γ,

w(k) otherwise,
(6.20)

where

q(k) = Fǫ(w(k))X(k)[XT (k)Fǫ(w(k))X(k) + δI]−1(e(k)− γ(k)). (6.21)

Note that, we applied a regularization factor δI in (6.21) in order to avoid numerical

problems in the matrix inversion. The S-SM-AP algorithm is described in Table 6.1.

6.3.2 Discussion of the S-SM-AP algorithm

Computational Complexity

The update equation of the S-SM-AP algorithm is similar to the update equation of

the SM-AP algorithm, but the former one updates only the subset of coefficients of

w(k) whose absolute values are larger than ǫ. As a result, the role of matrix Fǫ(w(k))

is to discard some coefficients of w(k), thus reducing the computational complexity

when compared to the SM-AP algorithm.

89

Table 6.1: Simple set-membership affine projection algorithm (S-SM-AP)

S-SM-AP Algorithm

Initialization
w(0) = [1 1 · · · 1]T

choose γ around
√
5σ2

n and small constant δ > 0
Do for k > 0

e(k) = d(k)−XT (k)w(k)
if |e(k)| > γ

q(k) = Fǫ(w(k))X(k)[XT (k)Fǫ(w(k))X(k) + δI]−1(e(k)− γ(k))
w(k + 1) = w(k) + q(k)
else
w(k + 1) = w(k)
end

end

The computational complexity for each update of the weight vector of the SM-

PAPA [41], the SSM-AP [8], and the proposed S-SM-AP algorithms are listed in

Table 6.2. The filter order and the memory length factors are N and L, respectively.

It should be noted that the number of operations in Table 6.2 is presented for the full

update of all coefficients. In other words, for the S-SM-AP algorithm we have presented

the worst case scenario which is equivalent to setting ǫ = 0,2 while in practice we are

updating only the coefficients with absolute values larger than a predetermined positive

constant. Also, it is notable that the number of divisions in the S-SM-AP algorithm is

less than the SM-PAPA and SSM-AP algorithms. This is quite significant, as divisions

are more complex than other operations. Figures 6.3(a) and 6.3(b) show a comparison

of the total number of arithmetic operations required by the SM-PAPA, the SSM-AP,

and the S-SM-AP algorithms for two cases: N = 15, variable L and L = 3, variable

N . As can be seen, the S-SM-AP algorithm is much less complex than the other two

algorithms, especially for high values of N and L.

Initialization

Unlike classical algorithms in which the initialization of the weight vector is often

chosen as w(0) = 0, this same procedure cannot be applied to the proposed algorithm.

If the initial coefficients have absolute values lower than ǫ, then the matrix Fǫ is equal to

2In this case, the complexity of the S-SM-AP and SM-AP algorithms are the same.

90

Variable L
0 2 4 6 8 10 12 14 16 18 20

#
T

o
ta

l
a
ri
th

m
e
ti
c
 o

p
e
ra

ti
o
n
s

×104

0

1

2

3

4

5

6

SM-PAPA
SSM-AP
S-SM-AP

(a)

Variable N
0 10 20 30 40 50 60 70 80 90 100

#
T

o
ta

l
a
ri
th

m
e
ti
c
 o

p
e
ra

ti
o
n
s

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

SM-PAPA
SSM-AP
S-SM-AP

(b)

Figure 6.3: The numerical complexity of the SM-PAPA, the SSM-AP, and the IS-
SM-AP algorithms for two cases: (a) N = 15, variable L; (b) L = 3, variable N .

Table 6.2: Number of operations for SM-PAPA, SSM-AP, and S-SM-AP algorithms

Algorithm Addition & Subtraction Multiplication Division

SM-PAPA
N2 + (L2 + 4L+ 5)N+ (L2 + 5L+ 7)N+ 2N+
(2L3 + 5L2 + 7L+ 5) (2L3 + 6L2 + 9L+ 8) (2L2 + 4L+ 4)

SSM-AP
(L2 + 6L+ 7)N+ (L2 + 6L+ 9)N+ N+

(2L3 + 6L2 + 9L+ 7) (2L3 + 7L2 + 12L+ 11) (2L2 + 4L+ 3)

S-SM-AP
1
2
(L2 + 5L+ 6)N 1

2
(L2 + 5L+ 6)N

L2
1
2
(L3 + 4L2 + 11L+ 8) 1

2
(L3 + 6L2 + 11L+ 8)

the zero matrix, and it does not allow any update. Indeed, for the S-SM-AP algorithm,

each of the coefficients should be initialized as |wi(0)| > ǫ for i = 0, 1, · · · , N .

Relation with other algorithms

The similarities and differences between the proposed algorithm and the SM-AP algo-

rithm were already addressed when we discussed the complexity of these algorithms.

Now, one should observe that the update equation of the S-SM-AP algorithm is sim-

ilar to the one of the set-membership partial update affine projection (SM-PUAP)

algorithm [2], in which our matrix Fǫ(w(k)) is replaced by a diagonal matrix C also

with entries equal to 1 or 0, but there is no specific form to set/select C. Therefore,

91

the proposed algorithm can be considered as a particular case of the SM-PUAP in

which there is a mathematically defined way (based on the sparsity of the unknown

system) to select the coefficients that are relevant and the ones that will be discarded.

Regarding the memory requirements of the proposed algorithm, they are the same as

in the AP algorithm, i.e., determined by the data-reuse factor L.

6.3.3 The Improved S-SM-AP (IS-SM-AP) algorithm

As we can observe in the update equation of the S-SM-AP algorithm, if a coefficient

of the weight vector falls inside the interval [−ǫ,+ǫ], then in the next update this

coefficient does not update since it is eliminated by the discard function. On the

other hand, the coefficients wi(k) inside the interval [−ǫ,+ǫ] are close to zero, and

the best intuitive approximation for them is zero (the center of the interval). Besides,

making these coefficients wi(k) equal to zero implies in a reduction of computational

complexity, because it reduces the number of operations required to compute the

output of the adaptive filter y(k) = xT (k)w(k).3 For this purpose, we multiply w(k)

by Fǫ(w(k)), and obtain the Improved S-SM-AP (IS-SM-AP) algorithm as follows

w(k + 1) =

{
Fǫ(w(k))w(k) + q(k) if |e(k)| > γ,

w(k) otherwise.
(6.22)

Table 6.3 illustrates the IS-SM-AP algorithm.

6.3.4 The S-AP and the IS-AP algorithms

By adopting the bound γ = 0, the S-SM-AP algorithm will convert to the S-AP

algorithm with unity step size. Therefore, the S-AP algorithm can be described as

follows

w(k + 1) = w(k) + µFǫ(w(k))X(k)[XT (k)Fǫ(w(k))X(k) + δI]−1e(k) (6.23)

where µ is the convergence factor.

By the same argument, we can obtain the update equation of the IS-AP algorithm

3This additional reduction in the number of operations becomes more important as the filter order
increases. For instance, in acoustic echo cancellation systems, in which the adaptive filter has a few
thousands of coefficients [112, 113], this simple strategy implies in significant computational savings.

92

Table 6.3: Improved simple set-membership affine projection algorithm (IS-SM-AP)

IS-SM-AP Algorithm

Initialization
w(0) = [1 1 · · · 1]T

choose γ around
√
5σ2

n and small constant δ > 0
Do for k > 0

e(k) = d(k)−XT (k)w(k)
if |e(k)| > γ

q(k) = Fǫ(w(k))X(k)[XT (k)Fǫ(w(k))X(k) + δI]−1(e(k)− γ(k))
w(k + 1) = Fǫ(w(k))w(k) + q(k)
else
w(k + 1) = w(k)
end

end

as below

w(k + 1) =Fǫ(w(k))w(k)

+ µFǫ(w(k))X(k)[XT (k)Fǫ(w(k))X(k) + δI]−1e(k) (6.24)

where µ is the convergence factor. These algorithms are counterparts of the AP algo-

rithm, however they can exploit the sparsity in systems.

Remark: In the previous sections, we have focused on the AP algorithms. However,

the NLMS and the binormalized data-reusing LMS algorithms can be derived as special

cases of the AP algorithms. Indeed, by choosing L = 0 and 1, the AP algorithms will be

reduced to the NLMS and the binormalized data-reusing LMS algorithms, respectively.

6.4 Some issues of the S-SM-AP and the

IS-SM-AP Algorithms

As we discussed in Subsection 6.3.2, the proposed S-SM-AP and the IS-SM-AP algo-

rithms are sensitive to the initialization. In fact, the absolute value of parameters of

w(0) have to be greater than ǫ and wi(0)woi > 0 for i = 0, · · · , N , i.e., wi(0) and woi

must have the same sign, where woi is the i-th component of the unknown system.

Moreover, when the system is time-varying, these algorithms cannot track the system.

93

Table 6.4: Discard set-membership affine projection algorithm (D-SM-AP)

D-SM-AP Algorithm

Initialization
w(0) = 0 and m(0) = 0

choose γ around
√
5σ2

n and small constant δ > 0
Do for k > 0

e(k) = d(k)−XT (k)w(k)

m(k + 1) =

{
m(k) +X(k)[XT (k)X(k) + δI]−1(e(k)− γ(k)) if |e(k)| > γ

m(k) otherwise
w(k + 1) = Fǫ(m(k + 1))m(k + 1)

end

In other words, if a coefficient falls inside [−ǫ, ǫ], then it cannot go out. Thus, in

the case of time-varying systems, it means that the algorithm is unable to track the

system.

To address this issue, we can use an auxiliary weight vector m(k) as in [114].

Through this technique, the discard function applies only to the auxiliary weight vec-

tor, and we can propose the discard SM-AP (D-SM-AP) algorithm. The D-SM-AP

algorithm is presented in Table 6.4. Note that the computational burden of the D-SM-

AP algorithm is higher than the IS-SM-AP and the S-SM-AP algorithms. However,

it can be utilized in time-varying systems, and we can adopt any initialization w(0).

6.5 Recursive Least-Squares Algorithm Exploiting

Sparsity

In this section, we utilize the discard function to introduce an RLS algorithm for sparse

systems. In Subsection 6.5.1, we derive the S-RLS algorithm that exploits the sparsity

of the estimated parameters by giving low weight to the small coefficients. For this

purpose, the strategy consists in multiplying the coefficients of the sparse filter which

are close to zero by a small constant. Then, in Subsection 6.5.2, we include a discussion

of some characteristics of the proposed algorithm. Subsection 6.5.3 briefly describes

the DS-S-RLS algorithm, the data-selective version of the S-RLS algorithm.

94

6.5.1 Derivation of the S-RLS algorithm

We utilize the discard vector function defined in Equation (6.13) in order to introduce

the objective function of the S-RLS algorithm as follows

min ξd(k) =

k∑

i=0

λk−i[d(i)− xT (i)fǫ(w(k))]2, (6.25)

where the parameter λ is an exponential weighting factor that should be selected in

the range 0 ≪ λ ≤ 1.

By differentiating ξd(k) with respect to w(k), we obtain

∂ξd(k)

∂w(k)
= −2

k∑

i=0

λk−iFǫ(w(k))x(i)[d(i)− xT (i)fǫ(w(k))], (6.26)

where Fǫ(w(k)) is the Jacobian matrix of fǫ(w(k)) (see (6.13)). By equating the above

equation to zero, we find the optimal vector w(k) that solves the least-square problem,

as follows

−
k∑

i=0

λk−iFǫ(w(k))x(i)xT (i)fǫ(w(k)) +

k∑

i=0

λk−iFǫ(w(k))x(i)d(i) =




0
...

0


 . (6.27)

Therefore,

fǫ(w(k)) =
[k∑

i=0

λk−iFǫ(w(k))x(i)xT (i)
]−1

×
k∑

i=0

λk−iFǫ(w(k))x(i)d(i). (6.28)

Note that Fǫ(w(k)) is a diagonal matrix with diagonal entries equal to zero or one.

Indeed, for the components of w(k) whose absolute values are larger than ǫ, their

corresponding entries on the diagonal matrix Fǫ(w(k)) are one, whereas the remaining

entries are zero. Hence,

Fǫ(w(k))x(i)xT (i) = F2
ǫ(w(k))x(i)xT (i) = Fǫ(w(k))(xT (i)Fǫ(w(k)))TxT (i)

= Fǫ(w(k))x(i)xT (i)Fǫ(w(k)). (6.29)

95

By utilizing (6.29) in (6.28) and replacing fǫ(w(k)) by w(k + 1), we get

w(k + 1) =
[k∑

i=0

λk−iFǫ(w(k))x(i)xT (i)Fǫ(w(k))
]−1

×
k∑

i=0

λk−iFǫ(w(k))x(i)d(i)

= R−1
D,ǫ(k)pD,ǫ(k), (6.30)

where RD,ǫ(k) and pD,ǫ(k) are called the deterministic correlation matrix of the input

signal and the deterministic cross-correlation vector between the input and the desired

signals, respectively. Whenever the i-th diagonal entry of matrix Fǫ(w(k)) is zero, it

is replaced by a small power-of-two (e.g., 2−5) multiplied by the sign of the component

wi(k) in order to avoid that matrix RD,ǫ(k) becomes ill conditioned.

If we apply the direct method to calculate the inverse of RD,ǫ(k), then the resulting

algorithm has computational complexity of O[N3]. Generally, in the traditional RLS

algorithm, the inverse matrix is computed through the matrix inversion lemma [32].

In matrix inversion lemma, we have

[A+BCD]−1 = A−1 −A−1B[DA−1B+C−1]−1DA−1, (6.31)

where A, B, C, and D are matrices of appropriate dimensions, and A and C are

invertible. If we choose A = λRD,ǫ(k − 1), B = DT = Fǫ(w(k))x(k), and C = 1

then by using the matrix inversion lemma, the inverse of the deterministic correlation

matrix can be calculated in the form

SD,ǫ(k) =R−1
D,ǫ(k)

=
1

λ

[
SD,ǫ(k − 1)− SD,ǫ(k − 1)Fǫ(w(k))x(k)xT (k)Fǫ(w(k))SD,ǫ(k − 1)

λ+ xT (k)Fǫ(w(k))SD,ǫ(k − 1)Fǫ(w(k))x(k)

]
.

(6.32)

The resulting equation to compute R−1
D,ǫ(k) has computational complexity of O[N2],

whereas the computational resources for the direct inversion is of order N3. Finally,

w(k + 1) = SD,ǫ(k)pD,ǫ(k). (6.33)

Table 6.5 describes the S-RLS algorithm.

We can introduce the alternative S-RLS (AS-RLS) algorithm in order to decrease

the computational load of the S-RLS. Assuming Fǫ(w(k)) ≈ Fǫ(w(k − 1)), we can

96

Table 6.5: Recursive least-squares algorithm for sparse systems (S-RLS)

S-RLS Algorithm

Initialization
SD,ǫ(−1) = δI

where δ can be the inverse of the input signal power estimate
pD,ǫ(−1) = [0 0 · · · 0]T

w(0) = [1 1 · · · 1]T

Do for k ≥ 0
compute SD,ǫ(k) through Equation (6.32)
pD,ǫ(k) = λpD,ǫ(k − 1) + Fǫ(w(k))x(k)d(k)
w(k + 1) = SD,ǫ(k)pD,ǫ(k)

end

rewrite Equation (6.30) as

[k∑

i=0

λk−iFǫ(w(k))x(i)xT (i)Fǫ(w(k))
]
w(k + 1) =

k∑

i=0

λk−iFǫ(w(k))x(i)d(i)

= λ
[k−1∑

i=0

λk−i−1Fǫ(w(k))x(i)d(i)
]
+ Fǫ(w(k))x(k)d(k)

≈ λ
[k−1∑

i=0

λk−i−1Fǫ(w(k − 1))x(i)d(i)
]
+ Fǫ(w(k))x(k)d(k)

= λpD,ǫ(k − 1) + Fǫ(w(k))x(k)d(k) (6.34)

By considering that RD,ǫ(k − 1)w(k) = pD,ǫ(k − 1), we obtain

[k∑

i=0

λk−iFǫ(w(k))x(i)xT (i)Fǫ(w(k))
]
w(k + 1)

≈ λRD,ǫ(k − 1)w(k) + Fǫ(w(k))x(k)d(k)

=
[k−1∑

i=0

λk−iFǫ(w(k − 1))x(i)xT (i)Fǫ(w(k − 1))
]
w(k) + Fǫ(w(k))x(k)d(k)

≈
[k∑

i=0

λk−iFǫ(w(k))x(i)xT (i)Fǫ(w(k))− Fǫ(w(k))x(k)xT (k)Fǫ(w(k))
]
w(k)

+ Fǫ(w(k))x(k)d(k). (6.35)

97

Table 6.6: Alternative recursive least-squares algorithm for sparse systems

AS-RLS Algorithm

Initialization
SD,ǫ(−1) = δI

where δ can be inverse of the input signal power estimate
w(0) = [1 1 · · · 1]T

Do for k ≥ 0
e(k) = d(k) − xT (k)w(k)
ψ(k) = SD,ǫ(k − 1)Fǫ(w(k))x(k)

SD,ǫ(k) =
1
λ

[
SD,ǫ(k − 1)− ψ(k)ψT (k)

λ+ψT (k)Fǫ(w(k))x(k)

]

w(k + 1) = w(k) + e(k)SD,ǫ(k)Fǫ(w(k))x(k)
end

Then, by using Equation (6.29) and a few manipulations, we get

w(k + 1) ≈ w(k) + e(k)SD,ǫ(k)Fǫ(w(k))x(k), (6.36)

where e(k) = d(k)− xT (k)w(k). Table 6.6 illustrates the AS-RLS algorithm.

6.5.2 Discussion of the S-RLS algorithm

The update equation of the S-RLS algorithm is similar to the update equation of

the RLS algorithm, but the former gives importance only to the subset of coefficients

of w(k) whose absolute values are larger than ǫ. The matrix Fǫ(w(k)) defines the

important coefficients of w(k).

6.5.3 DS-S-RLS algorithm

In this subsection, our goal is to reduce the update rate of the S-RLS algorithm. In fact,

when the current weight vector is acceptable, i.e., the output estimation error is small,

we can save computational resources by avoiding the new update. The data selective

S-RLS (DS-S-RLS) algorithm updates whenever the output estimation error is larger

than a prescribed value γ, i.e., when |e(k)| = |d(k) − wT (k)x(k)| > γ. Therefore,

the DS-S-RLS algorithm reduces the computational complexity by avoiding updates

whenever the estimate is acceptable. Table 6.7 describes the DS-S-RLS algorithm.

98

Table 6.7: Data-selective recursive least-squares algorithm for sparse systems (DS-S-
RLS)

DS-S-RLS Algorithm

Initialization
SD,ǫ(−1) = δI

where δ can be the inverse of the input signal power estimate

choose γ around
√
5σ2

n

pD,ǫ(−1) = [0 0 · · · 0]T

w(0) = [1 1 · · · 1]T

Do for k ≥ 0
e(k) = d(k)−wT (k)x(k)
if |e(k)| > γ

compute SD,ǫ(k) through Equation (6.32)
pD,ǫ(k) = λpD,ǫ(k − 1) + Fǫ(w(k))x(k)d(k)
w(k + 1) = SD,ǫ(k)pD,ǫ(k)
else
w(k + 1) = w(k)
end

end

6.6 l0 Norm Recursive Least-Squares Algorithm

In the previous section, we have introduced the S-RLS algorithm for sparse systems

utilizing the discard function. Another interesting approach to exploit the system

sparsity can be derived by using the l0 norm [8] leading to the l0-RLS algorithm.

However, as mentioned earlier, the resulting optimization problem of l0 norm has

difficulties due to the discontinuity of the l0 norm. Thus, we use Equations (6.2a)-

(6.2d) to approximate the l0 norm.

Therefore, the objective function of the l0-RLS algorithm is given by

min

k∑

i=0

λk−i[d(i)− xT (i)w(k)]2 + α‖w(k)‖0, (6.37)

where α ∈ R+ is the weight given to the l0 norm penalty. Replacing ‖w(k)‖0 by its

approximation, we obtain

min
k∑

i=0

λk−i[d(i)− xT (i)w(k)]2 + αGβ(w(k)). (6.38)

99

Table 6.8: l0 norm recursive least-squares algorithm for sparse systems (l0-RLS)

l0-RLS Algorithm

Initialization
SD(−1) = δI

where δ can be inverse of the input signal power estimate
pD(−1) = [0 0 · · · 0]T

w(−1) = [1 1 · · · 1]T

Do for k ≥ 0
SD(k) as in Equation (6.42)
pD(k) = λpD(k − 1) + d(k)x(k)

w(k) = SD(k)
(
pD(k)− α

2 gβ(w(k − 1))
)

end

By differentiating the above equation with respect to w(k), and equating the result to

zero, we get

w(k) =
[k∑

i=0

λk−ix(i)xT (i)
]−1

×
(
(

k∑

i=0

λk−ix(i)d(i))− α

2
gβ(w(k))

)

=R−1
D (k)

(
pD(k)−

α

2
gβ(w(k))

)
. (6.39)

If we adopt A = λRD(k − 1), B = DT = x(k), and C = 1 then by using the matrix

inversion lemma, the update equation of the l0-RLS algorithm is given as follows

w(k) = SD(k)
(
pD(k)−

α

2
gβ(w(k − 1))

)
, (6.40)

where the same strategy as the PASTd (projection approximation subspace tracking

with deflation) [111] is employed and gβ(w(k)) is replaced by gβ(w(k − 1)) in order

to form the recursion. Also, pD(k) and SD(k) are given as follows

pD(k) =λpD(k − 1) + d(k)x(k), (6.41)

SD(k) =
1

λ

[
SD(k − 1)− SD(k − 1)x(k)xT (k)SD(k − 1)

λ+ xT (k)SD(k − 1)x(k)

]
. (6.42)

Table 6.8 presents the l0-RLS algorithm.

Similarly to the AS-RLS algorithm, we can derive the alternative l0-RLS (A-l0-

100

RLS) algorithm. We can rewrite Equation (6.40) as

RD(k)w(k) = pD(k)−
α

2
gβ(w(k − 1)) = λpD(k − 1) + x(k)d(k)− α

2
gβ(w(k − 1)).

(6.43)

By Equation (6.39), we have RD(k − 1)w(k − 1) = pD(k − 1) − α
2
gβ(w(k − 1)),

then we get

RD(k)w(k) =λRD(k − 1)w(k − 1) +
λα

2
gβ(w(k − 1))

− α

2
gβ(w(k − 1)) + x(k)d(k)

=
[k∑

j=0

λk−ix(i)xT (i)− x(k)xT (k)
]
w(k − 1)

+
(λ− 1)α

2
gβ(w(k − 1)) + x(k)d(k). (6.44)

If we define the a priori error as

e(k) = d(k)− xT (k)w(k − 1), (6.45)

we obtain

RD(k)w(k) = RD(k)w(k − 1) + e(k)x(k) +
(λ− 1)α

2
gβ(w(k − 1)). (6.46)

Therefore, the update equation of the A-l0-RLS algorithm is given by

w(k) = w(k − 1) + SD(k)[e(k)x(k) +
(λ− 1)α

2
gβ(w(k − 1))]. (6.47)

Table 6.9 presents the A-l0-RLS algorithm.

6.6.1 DS-l0-RLS algorithm

In this subsection, we propose the DS-l0-RLS algorithm to decrease the update rate of

the l0-RLS algorithm. Similarly to the discussion in Subsection 6.5.3, the DS-l0-RLS

algorithm for sparse systems can be derived by implementing an update in the l0-RLS

algorithm whenever the output estimation error is larger than a predetermined value γ,

i.e., when |e(k)| = |d(k)−wT (k)x(k)| > γ. Hence, the computational resources of the

DS-l0-RLS algorithm is lower than the l0-RLS algorithm since it prevents unnecessary

101

Table 6.9: Alternative l0 norm recursive least-squares algorithm for sparse systems

A-l0-RLS Algorithm

Initialization
SD(−1) = δI

where δ can be inverse of the input signal power estimate
w(−1) = [1 1 · · · 1]T

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k − 1)
ψ(k) = SD(k − 1)x(k)

SD(k) =
1
λ

[
SD(k − 1)− ψ(k)ψT (k)

λ+ψT (k)x(k)

]

w(k) = w(k − 1) + SD(k)[e(k)x(k) +
(λ−1)α

2 gβ(w(k − 1))]
end

Table 6.10: Data-selective l0 norm recursive least-squares algorithm for sparse systems
(DS-l0-RLS)

DS-l0-RLS Algorithm

Initialization
SD(−1) = δI

where δ can be inverse of the input signal power estimate

choose γ around
√
5σ2

n

pD(−1) = [0 0 · · · 0]T

w(−1) = [1 1 · · · 1]T

Do for k ≥ 0
e(k) = d(k) −wT (k − 1)x(k)
if |e(k)| > γ

SD(k) as in Equation (6.42)
pD(k) = λpD(k − 1) + d(k)x(k)

w(k) = SD(k)
(
pD(k)− α

2 gβ(w(k − 1))
)

else
w(k) = w(k − 1)
end

end

updates. The DS-l0-RLS algorithm is described in Table 6.10.

In Subsection 6.7.2, we compare the simulation results of the RLS-based algorithms

with the Adaptive Sparse Variational Bayes iterative scheme based on Laplace prior

102

Table 6.11: Number of operations for AS-RLS, l0-RLS, and ASVB-L algorithms

Algorithm Addition & Subtraction Multiplication Division
AS-RLS N2 + 3N N2 + 5N + 1 1
A-l0-RLS N2 + 5N N2 + 9N + 1 N + 1
ASVB-L N2 + 7N + 6 2N2 + 10N + 3 6N + 2

(ASVB-L) algorithm [115–117]. Therefore, it is worthwhile to compare the computa-

tional complexity of these algorithms. Table 6.11 shows the number of real multiplica-

tions, real additions, and real divisions must be performed at each iteration by these

algorithms.

6.7 Simulations

In this section, we present some numerical simulations for the proposed algorithms. In

all scenarios, we deal with the system identification problem. In Subsection 6.7.1, we

apply the LMS-based algorithms. The numerical results of the RLS-based algorithms

are illustrated in Subsection 6.7.2.

6.7.1 Simulation results of the LMS-based algorithms

Here, we have applied the algorithms described in this chapter, the NLMS, and the

AP algorithms to identify three unknown sparse systems of order 14.4 The first one

is an arbitrary sparse system wo, the second one is a block sparse system w′
o, and

the third one is a symmetric-block sparse system w′′
o . The coefficients of these three

systems are presented in Table 6.12. The input is a binary phase-shift keying (BPSK)

signal with variance σ2
x = 1. The signal-to-noise ratio (SNR) is set to be 20 dB,

i.e., the noise variance is σ2
n = 0.01. The data-reuse factor is L = 1, the bound on

the estimation error is set to be γ =
√

5σ2
n, and the threshold bound vector γ(k) is

selected as the simple-choice constraint vector [8] which is defined as γ0(k) = γe(k)
|e(k)|

and γi(k) = d(k − i) − wT (k)x(k − i), for i = 1, · · · , L. The initial vector w(0) and

the regularization factor are 10−3 × [1, · · · , 1]T and 10−12, respectively. The learning

curves are the results of averaging of the outcomes of 500 trials.

4The results for the S-SM-AP algorithm are not shown here because they are almost identical to the
results of the IS-SM-AP algorithm, but the latter has the advantage of requiring fewer computations.

103

Table 6.12: The coefficients of unknown systems wo, w
′
o, and w′′

o .

wo w′
o w′′

o

24e-2 2e-7 2e-8
2e-8 -21e-10 -1e-9

-23e-2 17e-8 1e-7
-3e-7 21e-8 -3e-7
5e-1 -3e-7 -64e-3
-1e-9 24e-2 2e-1
2e-1 7e-1 5e-1
1e-7 2e-1 2e-1
-5e-8 33e-2 -64e-3
12e-6 -6e-1 -5e-5
1e-8 -5e-7 12e-6
-5e-6 18e-9 1e-8
4e-6 -5e-7 -5e-6
-1e-7 21e-8 4e-6
-2e-1 -11e-8 -1e-5

Scenario 1

In this scenario, we have implemented the IS-SM-AP, the SSM-AP, the SM-PAPA,

and the NLMS algorithms to identify the three unknown sparse systems in Table 6.12.

The convergence factor of the NLMS algorithm is µ = 0.9. The constant ǫ in the

IS-SM-AP algorithm is chosen as 2× 10−4; that is, on average, 5 out of 15 coefficients

(boldface coefficients in wo, w′
o, and w′′

o) are updated at each iteration. We have

selected α = 5 × 10−3, β = 5, and ε = 100 for the SM-PAPA and the SSM-AP

algorithms. In the SSM-AP algorithm, we have used the GMF as the approximation

of the l0 norm.

Figures 6.4(a), 6.4(b), and 6.4(c) depict the learning curves for the IS-SM-AP, the

SM-PAPA, the SSM-AP, and the NLMS algorithms to identify the unknown systems

wo, w
′
o, and w′′

o , respectively. The average number of updates implemented by the

IS-SM-AP, the SM-PAPA, and the SSM-AP algorithms are given in columns 2 to 4 of

Table 6.13.

In addition, we have applied all the aforementioned algorithms in this scenario,

using the parameters that were already defined in the previous paragraph, but changing

the input signal model to an autoregressive (AR) process in order to identify the

unknown system wo. The new input signal is generated as a first-order AR process

104

0 500 1000 1500
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

Number of iterations, k

M
S

E
 [
d

B
]

NLMS
SSM−AP
SM−PAPA
IS−SM−AP

(a)

0 500 1000 1500
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

Number of iterations, k

M
S

E
 [
d

B
]

NLMS
SSM−AP
SM−PAPA
IS−SM−AP

(b)

0 500 1000 1500
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

Number of iterations, k

M
S

E
 [
d

B
]

NLMS
SSM−AP
SM−PAPA
IS−SM−AP

(c)

Figure 6.4: The learning curves of the SM-PAPA, the SSM-AP, the IS-SM-AP, and
the NLMS algorithms applied on: (a) wo; (b) w

′
o; (c) w

′′
o .

defined as x(k) = 0.95x(k−1)+n(k). In this case, the learning curves of the algorithms

are shown in Figure 6.5, and the average number of updates performed by the IS-SM-

AP, the SM-PAPA, and the SSM-AP algorithms are presented in the fifth column of

Table 6.13. Also, the number of arithmetic operations required by the IS-SM-AP, the

SM-PAPA, and the SSM-AP algorithms in whole iterations are 41635, 110835, and

84396, respectively.

Observe that, in every scenario we tested, the IS-SM-AP algorithm performed as

well as the other state-of-the-art sparsity-aware algorithms, but this algorithm has the

105

0 500 1000 1500
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Number of iterations, k

M
S

E
 [d

B
]

NLMS
SSM−AP
SM−PAPA
IS−SM−AP

Figure 6.5: The learning curves of the SM-PAPA, the SSM-AP, the IS-SM-AP, and
the NLMS algorithms applied on wo using AR input signal.

advantage of requiring fewer computations since at each iteration in which an update

occurs only a subset (on average, one third) of the coefficients is updated. Another

interesting observation is that the SM-PAPA algorithm works better with BPSK input

signal, whereas the SSM-AP algorithm is slightly better when a correlated input signal

is used.

Scenario 2

In this scenario, we have applied the AP and the IS-AP algorithms to identify the

three unknown sparse systems in Table 6.12. To identify wo and w′
o we choose the

convergence factor µ = 0.6 and to identify w′′
o we adopt µ = 0.1. Figures 6.6(a),

6.6(b), and 6.6(c) show the learning curves for the AP and the IS-AP algorithms to

identify the unknown systems wo, w
′
o, and w′′

o , respectively.

Moreover, we have applied the AP and the IS-AP algorithms in this scenario, with

same parameters, but changing the input signal model to an autoregressive (AR) as

106

Table 6.13: The average number of updates implemented by the IS-SM-AP, the SM-
PAPA, and the SSM-AP algorithms

Algorithm wo BPSK input w′
o BPSK input w′′

o BPSK input w′′
o AR input

IS-SM-AP 6.3% 6.3% 7.6% 8.4%
SM-PAPA 5.3% 5.3% 5.9% 7.7%
SSM-AP 8.9% 8.9% 20.5% 5.6%

Number of iterations, k
0 500 1000 1500

M
S

E
 [
d
B

]

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

AP
IS-AP

(a)

Number of iterations, k
0 500 1000 1500

M
S

E
 [
d
B

]

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

AP
IS-AP

(b)

Number of iterations, k
0 500 1000 1500

M
S

E
 [
d
B

]

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

AP
IS-AP

(c)

Figure 6.6: The learning curves of the AP and the IS-AP algorithms applied on: (a)
wo; (b) w

′
o; (c) w

′′
o .

107

Number of iterations, k
0 500 1000 1500

M
S

E
 [d

B
]

-22

-20

-18

-16

-14

-12

-10

-8

-6

AP
IS-AP

Figure 6.7: The learning curves of the AP and the IS-AP algorithms applied on wo

using AR input signal.

Scenario 1 to identify the unknown system wo. The convergence factor µ is equal to

0.6. Their learning curves are shown in Figure 6.7. By comparing Figures 6.5 and

6.7 we can observe the value of set-membership filtering. In fact, by utilizing the

SMF approach not only we have a lower number of arithmetic operations, but also we

improve the steady state performance. Note that, we have obtained better MSE in all

figures of Scenario 1 compared to their corresponding figures in Scenario 2.

6.7.2 Simulation results of the RLS-based algorithms

Here, the RLS, the S-RLS, the AS-RLS, the l0-RLS, the A-l0-RLS, the ASVB-L [115–

117], the DS-S-RLS, the DS-l0-RLS, and the data-selective ASVB-L (DS-ASVB-L)

algorithms are tested to identify three unknown sparse systems of order 14. The first

model is an arbitrary sparse system wo, the second model is a block sparse system w′
o,

and the third model, w′′′
o , is a sparse system which its coefficients changes at 500th and

108

Number of iterations, k
0 50 100 150 200 250 300 350 400 450 500

M
S

E
 [
d
B

]

-20

-18

-16

-14

-12

-10

-8

RLS
S-RLS

l
0
-RLS

ASVB-L

(a)

Number of iterations, k
0 50 100 150 200 250 300 350 400 450 500

M
S

E
 [
d
B

]

-20

-18

-16

-14

-12

-10

-8

RLS
S-RLS

l
0
-RLS

ASVB-L

(b)

Number of iterations, k
0 500 1000 1500

M
S

E
 [
d
B

]

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

RLS
S-RLS

l
0
-RLS

ASVB-L

(c)

Figure 6.8: The learning curves of the RLS, the S-RLS, the l0-RLS, and the ASVB-L
algorithms applied to identify: (a) wo; (b) w

′
o; (c) w

′′′
o .

1000th iterations. The coefficients of wo and w′
o are listed in Table 6.12. The input

is an autoregressive signal generated by x(k) = 0.95x(k − 1) + n(k − 1). The signal-

to-noise ratio (SNR) is set to be 20 dB, meaning that the noise variance is σ2
n = 0.01.

The bound on the estimation error is set to be γ =
√

5σ2
n. The initial vector w(0)

and λ are [1, · · · , 1]T and 0.97, respectively. The parameter δ is 0.2 and the constant

ǫ is chosen as 0.015. For the DS-l0-RLS and the l0-RLS algorithms, the parameters

α and β are chosen as 0.005 and 5, respectively. We have chosen the GMF as the

approximation of the l0 norm. The depicted learning curves represent the results of

109

Number of iterations, k
0 50 100 150 200 250 300 350 400 450 500

M
S

E
 [
d
B

]

-20

-18

-16

-14

-12

-10

-8 DS-S-RLS
DS-l

0
-RLS

DS-ASVB-L

(a)

Number of iterations, k
0 50 100 150 200 250 300 350 400 450 500

M
S

E
 [
d
B

]

-20

-18

-16

-14

-12

-10

-8 DS-S-RLS
DS-l

0
-RLS

DS-ASVB-L

(b)

Number of iterations, k
0 500 1000 1500

M
S

E
 [
d
B

]

-20

-15

-10

-5

DS-S-RLS
DS-l

0
-RLS

DS-ASVB-L

(c)

Figure 6.9: The learning curves of the DS-S-RLS, the DS-l0-RLS, and the DS-ASVB-L
algorithms applied to identify: (a) wo; (b) w

′
o; (c) w

′′′
o .

averaging of the outcomes of 500 trials.

Figures 6.8(a), 6.8(b), and 6.8(c) show the learning curves for the RLS, the S-

RLS, the l0-RLS, and the ASVB-L algorithms to identify the unknown systems wo,

w′
o, and w′′′

o , respectively. Figures 6.9(a), 6.9(b), and 6.9(c) illustrate the learning

curves for the DS-S-RLS, the DS-l0-RLS, and the DS-ASVB-L algorithms to identify

the unknown systems wo, w
′
o, and w′′′

o , respectively. The average number of updates

implemented by the DS-S-RLS, the DS-l0-RLS, and the DS-ASVB-L algorithms are

presented in columns 2 to 4 of Table 6.14.

110

Table 6.14: The average number of updates implemented by the DS-S-RLS, the DS-
l0-RLS, and the DS-ASVB-L algorithms

Algorithm wo w′
o w′′′

o

DS-S-RLS 11.95% 14.13% 19.40%
DS-l0-RLS 8.72% 10.90% 17.74%
DS-ASVB-L 9.18% 10.53% 19.69%

Number of iterations, k
0 50 100 150 200 250 300 350 400 450 500

M
S

E
 [
d
B

]

-20

-18

-16

-14

-12

-10

-8

S-RLS
AS-RLS

l
0
-RLS

A-l
0
-RLS

(a)

Number of iterations, k
0 50 100 150 200 250 300 350 400 450 500

M
S

E
 [
d
B

]

-20

-18

-16

-14

-12

-10

-8

S-RLS
AS-RLS

l
0
-RLS

A-l
0
-RLS

(b)

Figure 6.10: The learning curves of the S-RLS, the AS-RLS, the l0-RLS, and the
A-l0-RLS algorithms applied to identify: (a) wo; (b) w

′
o.

Observe that, in every scenario we tested, the S-RLS and the l0-RLS algorithms per-

formed as well as the RLS algorithm. The S-RLS algorithm has lower computational

complexity compared to the l0-RLS algorithm. As can be seen, the performances of

the S-RLS and the DS-S-RLS algorithms are close to the ASVB-L and the DS-ASVB-L

algorithms, respectively, while the former ones require lower computational resources.

Finally, Figures 6.10(a) and 6.10(b) depict the learning curves of the S-RLS, the

AS-RLS, the l0-RLS, and the A-l0-RLS algorithms, when they are applied to identify

the unknown systems wo and w′
o, respectively. As can be seen, the performances of

the AS-RLS and the A-l0-RLS algorithms are similar to the S-RLS and the l0-RLS

algorithms, respectively.

111

6.8 Conclusions

In this chapter, we have proposed the S-SM-AP and the IS-SM-AP algorithms to take

advantage of sparsity in the signal models while attaining low computational complex-

ity. To reach this target, we have derived a simple update equation which only updates

the filter coefficients whose magnitudes are greater than a predetermined value. Also,

this method is jointly applied with the well-known set-membership approach aiming

at obtaining even lower computational complexity and better convergence rate. The

simulation results have shown the excellent performance of the algorithm and lower

computational complexity as compared to some other sparsity-aware data-selective

adaptive filters. Indeed, the IS-SM-AP algorithm performed as well as the SM-PAPA

algorithm while requiring fewer arithmetic operations (for the scenarios in Section 6.7,

it entailed about 38% of the operations spent by the SM-PAPA). Also, the numeri-

cal results in Section 6.7 confirm the importance of SMF technique for the proposed

algorithm.

Moreover, we have used the discard function and the l0 norm in order to propose the

S-RLS and the l0-RLS algorithms, respectively, to exploit the sparsity in the involved

signal models. Also, we have employed the data-selective strategy to implement an

update when the output estimation error is greater than a pre-described positive value

leading to reduced update rate and lower computational complexity. The simulation

results have shown the excellent performance of the proposed algorithms as compared

to the standard RLS algorithm being competitive with the new proposed state-of-

the-art ASVB-L algorithm which requires much more computations. It is worthy to

mention that there are many RLS-based algorithms to exploit sparsity in signal and

system models [118–120]; however, their update equation is entirely different from the

algorithms proposed in this chapter. Therefore, we avoid comparing the RLS-based

algorithms proposed here with other RLS-based algorithms in the literature.

112

Chapter 7

Feature LMS algorithms

Among the adaptive filtering algorithms, the popular least-mean-square (LMS) algo-

rithm, first introduced in 1960 [121, 122], has been widely considered as the most used

in the field. Elaborate studies of the LMS algorithm were presented in [2, 123]. Also,

the LMS and its variants solve real problems including active noise control [124], dig-

ital equalization [125], continuous-time filter tuning [126], system identification [127],

among others.

In the previous chapter, some adaptive filtering algorithms exploiting the sparsity in

the system parameters were proposed. Also, a number of adaptive filtering algorithms

exploiting the sparsity in the model coefficients has been introduced by imposing some

constraints in the cost function [8, 100, 128, 129]. This strategy relies on the attraction

of some coefficient values to zero enabling the detection of nonrelevant parameters of

the model.

In this chapter, we introduce the feature LMS (F-LMS) family of algorithms induc-

ing simple sparsity properties hidden in the parameters. The type of feature to seek

determines the structure of the feature matrix F(k) to be applied in the constraints

of the F-LMS algorithm. In fact, a plethora of featured algorithms is possible to be

defined by applying smart combinations of feature matrices to the coefficient vector.

In this work, some simple cases are discussed whereas many more advanced solutions

will be exploited in future publications. Moreover, by introducing feature function,

we propose the low-complexity F-LMS (LCF-LMS) algorithm to reduce the compu-

tational complexity of the F-LMS algorithms. The LCF-LMS algorithm implements

less multiplication in calculating the output signal.

The content of this chapter was partially published in [130]. This chapter is orga-

nized as follows. Section 7.1 proposes the F-LMS family of algorithms. Some examples

113

of F-LMS algorithms for systems with lowpass and highpass spectrum are introduced

in Section 7.2. The LCF-LMS and the alternative LCF-LMS (ALCF-LMS) algorithms

are derived in Sections 7.3 and 7.4, respectively. The matrix representation of the fea-

ture function is explained in Section 7.5. Simulation results are presented in Section 7.6

and the conclusions are drawn in Section 7.7.

7.1 The Feature LMS algorithms

Feature LMS (F-LMS) refers to a family of LMS-type algorithms capable of exploiting

the features inherent to the unknown systems to be identified. These algorithms

minimize the general objective function

ξF-LMS(k) =
1

2
|e(k)|2

︸ ︷︷ ︸
standard LMS term

+ αP (F(k)w(k))︸ ︷︷ ︸
feature-inducing term

, (7.1)

where α ∈ R+ stands for the weight given to the sparsity-promoting penalty function

P, which maps a vector to the nonnegative reals R+, and F(k) is the so-called feature

matrix responsible for revealing the hidden sparsity, i.e., the result of applying F(k) to

w(k) should be a sparse vector (in the sense that most entries of the vector F(k)w(k)

should be close or equal to zero).

The penalty function P can be any sparsity-promoting penalty function that is al-

most everywhere differentiable in order to allow for gradient-based methods. Examples

of suitable functions are: (i) vector norms, especially the widely used l1 norm [100, 128];

(ii) vector norms combined with shrinking strategies [109]; (iii) a function that approx-

imates the l0 norm [8, 105].

The feature matrix F(k) can vary at each iteration and it represents any linear

combination that when applied to w(k) results in a sparse vector. In practice, F(k)

should be chosen based on some previous knowledge about the unknown system wo.

For instance, wo can represent a lowpass or a highpass filter, it can have linear phase,

it can be an upsampled or downsampled signal, etc. All these features can be exploited

by the F-LMS algorithm in order to accelerate convergence and/or achieve lower mean-

squared error (MSE).

The resulting gradient-based algorithms using the objective function given in (7.1)

114

are known as F-LMS algorithms, and their recursions have the general form

w(k + 1) = w(k) + µe(k)x(k)− µαp(k), (7.2)

where µ ∈ R+ is the step size, which should be small enough to ensure convergence [2],

and p(k) ∈ RN+1 is the gradient of function P (F(k)w(k)).

7.2 Examples of F-LMS algorithms

From Section 7.1, it is clear that the F-LMS family contains infinitely many algorithms.

So, in this section we introduce some of these algorithms in order to illustrate how some

specific features of the unknown system can be exploited. For the sake of clarity, we

focus on simple algorithms and, therefore, we choose function P to be the l1 norm and

the feature matrix to be time-invariant F so that the cost function in (7.1) simplifies

to

ξF-LMS(k) =
1

2
|e(k)|2 + α‖Fw(k)‖1, (7.3)

where ‖ · ‖1 denotes the l1-norm and for a vector w ∈ R
N+1 it is given by ‖w‖1 =

∑N
i=0 |wi|. As a consequence, the reader will notice that the computational complexity

of the algorithms proposed in this section is only slightly superior to the complexity of

the LMS algorithm, as the computation of p(k) required in (7.2) is very simple (does

not involve multiplication or division).

7.2.1 The F-LMS algorithm for lowpass systems

Most systems found in practice have their energy concentrated mainly in the low fre-

quencies. If the unknown system has lowpass narrowband spectrum, then its impulse

response wo is smooth, meaning that the difference between adjacent coefficients is

small (probably close to zero).

The adaptive filtering algorithm can take advantage of this feature present in the

unknown system by selecting the feature matrix properly. Indeed, by selecting F as

115

Fl, where Fl is a N ×N + 1 matrix defined as

Fl =




1 −1 0 · · · 0

0 1 −1 · · · 0
...

. . .
. . .

0 0 · · · 1 −1



, (7.4)

and ‖Flw(k)‖1 =
∑N−1

i=0 |wi(k) − wi+1(k)|, the optimization problem in (7.3) can be

interpreted as: we seek for w(k) that minimizes both the squared error (LMS term)

and the distances between adjacent coefficients of w(k). In other words, the F-LMS

algorithm for lowpass systems acts like the LMS algorithm, but enforcing w(k) to be

a lowpass system. It is worth mentioning that if wo is indeed a lowpass system, then

matrix Fl yields a sparse vector Flw(k).1

Thus, the F-LMS algorithm for lowpass systems is defined by the recursion given

in (7.2), but replacing vector p(k) with pl(k) defined as





pl,i(k) = sgn(w0(k)− w1(k)) if i = 0,

pl,i(k) = −sgn(wi−1(k)− wi(k)) + sgn(wi(k)− wi+1(k)) if i = 1, · · · , N − 1,

pl,i(k) = −sgn(wN−1(k)− wN(k)) if i = N,

(7.5)

where sgn(·) denotes the sign function.

As previously explained, the F-LMS algorithm above tries to reduce the distances

between consecutive coefficients of w(k), i.e., matrix Fl can be understood as the

process of windowing w(k) with a window of length 2 (i.e., two coefficients are con-

sidered at a time). We can increase the window length, in order to make a smoothing

considering more coefficients simultaneously, by nesting linear combinations as follows

FM−nested
l =

M∏

m=1

F
(m)
l Fl, (7.6)

where F
(m)
l has the same structure given in (7.4), but losing m rows and m columns

in relation to the dimensions of Fl.

In addition to the previous examples, suppose that the unknown system is the

1A matrix similar to the Fl in (7.4) is already known by the statisticians working on a field called
trend filtering [131].

116

result of upsampling a lowpass system by a factor of L. In this case, we should use

matrix F∗
l , whose rows have L− 1 zeros between the ±1 entries, in (7.3). For L = 2,

we have the following matrix

F∗
l =




1 0 −1 0 · · · 0

0 1 0 −1 · · · 0
...

. . .
. . .

. . .

0 0 · · · 1 0 −1



, (7.7)

and ‖F∗
lw(k)‖1 =

∑N−2
i=0 |wi(k)− wi+2(k)|.

Next the F-LMS algorithm using such F∗
l has the update rule given in (7.2), but

replacing p(k) with p∗
l (k) defined as






p∗l,i(k) = sgn(wi(k)− wi+2(k)) if i = 0, 1,

p∗l,i(k) = −sgn(wi−2(k)− wi(k)) + sgn(wi(k)− wi+2(k)) if i = 2, · · · , N − 2,

p∗l,i(k) = −sgn(wi−2(k)− wi(k)) if i = N − 1, N.

(7.8)

7.2.2 The F-LMS algorithm for highpass systems

If the unknown system wo has a highpass narrowband spectrum, then adjacent coef-

ficients tend to have similar absolute values, but with opposite signs. Therefore, the

sum of two consecutive coefficients is close to zero and we can exploit this feature in

the learning process by minimizing the sum of adjacent coefficients of w(k). This can

be accomplished by selecting F as Fh, where Fh is an N×N+1 feature matrix defined

as

Fh =




1 1 0 · · · 0

0 1 1 · · · 0
...

. . .
. . .

0 0 · · · 1 1



, (7.9)

such that ‖Fhw(k)‖1 =
∑N−1

i=0 |wi(k) + wi+1(k)|.
The F-LMS algorithm for highpass systems is characterized by the recursion given

117

in (7.2), but replacing p(k) with ph(k), which is defined as





ph,i(k) = sgn(w0(k) + w1(k)) if i = 0,

ph,i(k) = sgn(wi−1(k) + wi(k)) + sgn(wi(k) + wi+1(k)) if i = 1, · · · , N − 1,

ph,i(k) = sgn(wN−1(k) + wN(k)) if i = N.

(7.10)

Similar to the lowpass case, let us consider that the unknown system is the result

of interpolating a highpass system by a factor L = 2. The set of interpolated highpass

systems leads to a notch filter with zeros at z = ±. In this case, we can utilize F∗
h in

the objective function (7.3), where F∗
h is described by

F∗
h =




1 0 1 0 · · · 0

0 1 0 1 · · · 0
...

. . .
. . .

. . .

0 0 · · · 1 0 1



, (7.11)

and ‖F∗
hw(k)‖1 =

∑N−2
i=0 |wi(k) + wi+2(k)|.

Using F∗
h, the F-LMS recursion in (7.2) should substitute p(k) by p∗

h(k) defined as





p∗h,i(k) = sgn(wi(k) + wi+2(k)) if i = 0, 1,

p∗h,i(k) = sgn(wi−2(k) + wi(k)) + sgn(wi(k) + wi+2(k)) if i = 2, · · · , N − 2,

p∗h,i(k) = sgn(wi−2(k) + wi(k)) if i = N − 1, N.

(7.12)

7.3 Low-complexity F-LMS Algorithms

In this section, we derive the low-complexity feature LMS (LCF-LMS) algorithm to

exploit sparsity in the linear combination of the parameters, as the F-LMS algorithms

do, while also reducing the computational cost of calculating the output signal.

Here, the idea is to reduce the number of multiplications required for computing

the output signal when there is a strong relation between neighboring coefficients.

In systems with lowpass frequency content, for example, neighboring coefficients vary

smoothly. Therefore, when the input signal is highly correlated, we can fix the value of

the neighboring coefficients where the distances (the absolute value of their differences)

between any two consecutive coefficients are less than a small constant ǫ > 0. As a

118

result, we reduce the number of multiplications in the calculation of y(k) , wT (k)x(k).

For instance, if for nonnegative integers m and j, where m, j < N , the discrepancies

between the coefficients with indexesm tom+j are less than ǫ, then we can use themth

coefficient as a reference. Mathematically, if the value of |wm+i+1(k)−wm+i(k)| ≤ ǫ for

i = 0, 1, 2, · · · , j− 1, then in the calculation of the output signal instead of computing

y(k) = wm(k)xm(k) + · · ·+ wm+j(k)xm+j(k), (7.13)

we can approximate y(k) as

ŷ(k) , wm(k)xm(k) + · · ·+ wm(k)xm(k)︸ ︷︷ ︸
(j+1)−times

. (7.14)

As a result, we decrease the number of multiplications from j + 1 to one. Hence, for

a block of coefficients in which the distance between any two consecutive coefficients

is less than ǫ, we can use the first parameter of the block as the reference parameter.

As soon as the distance between two consecutive coefficients becomes greater than ǫ,

we will use the new one as a reference for the new block of coefficients.

To this end, for each block of coefficients in which the distance of any two consec-

utive coefficients is less than ǫ, we have to preserve the first coefficient of the block,

and the rest of them will be replaced by zero. Furthermore, when the absolute value

of a coefficient is less than ǫ, we can replace it with zero to avoid additional multipli-

cation [109, 110]. Therefore, two subsets of parameters will be replaced by zero: (I)

the coefficients whose absolute values are less than ǫ, and (II) the coefficients whose

distances from their antecessor are less than ǫ.

The above reasoning can be implemented by means of the feature function, Fǫ :

RN+1 → RN+1, applied to the weigh vector of the adaptive filter. The ith element of

the feature function, for i = 0, 1, · · · , N , is defined as

Fǫ,i(w(k)) ,





fǫ(w0(k)) if i = 0,

fǫ(wi(k)) if |wi(k)− wi−1(k)| > ǫ & i 6= 0,

0 if |wi(k)− wi−1(k)| ≤ ǫ & i 6= 0,

(7.15)

where fǫ is the discard function defined in (6.12). As can be observed, the feature

function replaces the subsets (I) and (II) of the coefficients of w(k) with zero. Let

us define ws(k) , Fǫ(w(k)). Figure 7.1 shows an example for the impulse response

119

0 5 10 15
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(a)

0 5 10 15
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

Figure 7.1: The impulse response of (a) w(k); (b) ws(k) = Fǫ(w(k)) for ǫ = 0.02.

of w(k) and ws(k) when ǫ = 0.02. As can be observed, w(k) has fifteen nonzero

coefficients, and after using the feature function twelve of them are replaced by zero.

Our goal is to utilize ws(k) = Fǫ(w(k)) in the calculation of the output signal.

However, we must determine from which subset of coefficients ofw(k) the zero elements

of ws(k) came, i.e., subsets (I) or (II). In fact, for some i, wsi(k) is zero if and only

if wi(k) belongs to the subsets (I) or (II). If wi(k) belongs to the subset (I), then we

can directly apply wsi(k) to calculate the output signal, i.e., we use wsi(k)xi(k) = 0.

However, if wi(k) belongs to the subset (II), then we must apply the last nonzero

coefficient of ws(k) before the ith index to compute the output signal. Assume that

this nonzero coefficient has index m, then we use wsm(k) instead of wi(k) since their

values are close to each other. Hence, in the calculation of the output signal, we use

wsm(k)xm(k) instead of wsi(k)xi(k).

In order to determine the background of the zero coefficients in ws(k), we define

a binary vector b(k) ∈ {0, 1}N+1 as b(k) = fǫ(w(k)), where fǫ is the discard vector

function. Then, for some i, if wsi(k) and bi(k) are zero, we infer that wi(k) belongs

to the subset (I). However, if wsi(k) = 0 and bi(k) = 1, then we conclude that wi(k)

belongs to the subset (II).

Finally, we can present the LCF-LMS algorithm in Table 7.1. This algorithm

implements less multiplication as compared to the LMS algorithm.

As mentioned earlier, for proposing the LCF-LMS algorithm, we assumed that the

input signal is highly correlated. This assumption restricts the use of the LCF-LMS

120

Table 7.1: Low-complexity feature LMS algorithm

LCF-LMS Algorithm

Initialization
ws(0) = b(0) = w(0) = [0 · · · 0]T

choose µ in the range 0 < µ≪ 1
choose small constant ǫ > 0
Do for k ≥ 0
temp = 0, y(k) = 0
for i = 0 to N
if wsi(k) 6= 0
temp = wsi(k)xi(k)
y(k) = y(k) + temp
else
y(k) = y(k) + (temp× bi(k))
end
end
e(k) = d(k)− y(k)
w(k + 1) = w(k) + µe(k)x(k)
ws(k + 1) = Fǫ(w(k + 1))
b(k + 1) = fǫ(w(k + 1))

end

algorithm. To avoid this assumption, instead of approximating y(k) by (7.14), we can

approximate y(k) as

ŷ(k) , wm(k)(xm(k) + xm+1(k) + · · ·+ xm+j(k)). (7.16)

In other words, when wm(k) represents a block of coefficients of length j+1, the LCF-

LMS algorithm sums j + 1 copies of wm(k)xm(k); however, in Equation (7.16), we

multiply wm(k) by the sum of the input signal components corresponding to the coef-

ficients represented by wm(k). Note that the number of required arithmetic operations

in (7.16) and (7.14) are identical; i.e., both equations implement one multiplication

and j additions. The algorithm using Equation (7.16) in calculating output signal

is called the improved LCF-LMS (I-LCF-LMS) algorithm, and its application is not

limited to cases with correlated input signals. The I-LCF-LMS algorithm is presented

in Table 7.2.

121

Table 7.2: Improved low-complexity feature LMS algorithm

I-LCF-LMS Algorithm

Initialization
ws(0) = b(0) = w(0) = [0 · · · 0]T

choose µ in the range 0 < µ≪ 1
choose small constant ǫ > 0
Do for k ≥ 0
tempx = 0, tempw = 0, y(k) = 0
for i = 0 to N
if wsi(k) 6= 0
y(k) = y(k) + (tempw × tempx)
tempw = wsi(k)
tempx = xi(k)
else
tempx = tempx + (xi(k)× bi(k))
end
end
y(k) = y(k) + (tempw × tempx)
e(k) = d(k)− y(k)
w(k + 1) = w(k) + µe(k)x(k)
ws(k + 1) = Fǫ(w(k + 1))
b(k + 1) = fǫ(w(k + 1))

end

7.4 Alternative LCF-LMS Algorithm

In the LCF-LMS algorithm, when w(k) contains a long sequence of coefficients with

almost similar absolute values, then ws(k) contains a long block of zeros. Therefore,

when calculating the output signal, all parameters of this block are represented by the

first element of the block. As a result, since we are using a fixed coefficient to represent

many ones, we could have an accumulated error. In this section, we introduce the

alternative LCF-LMS (ALCF-LMS) algorithm to address this problem.

To avoid accumulated error because of many adjacent zeros in ws(k), for some

natural number p < N , we can force the feature function to keep every p coefficients

of w(k) in ws(k) if the absolute value of the coefficient is greater than ǫ. In other

words, no parameter can represent a block of coefficients with more than p elements.

The only exception is the case when the parameters of the block have absolute values

smaller than ǫ (i.e., they are really close to zero; therefore, they must be replaced by

zero). Let us denote by Fa
ǫ : RN+1 → RN+1 the new feature function, and it is called

122

the alternative feature function. The ith element of Fa
ǫ , for i = 0, 1, · · · , N , is defined

by

F
a
ǫ,i(w(k)) ,





fǫ(wi(k)) if mod(i, p) = 0,

fǫ(wi(k)) if |wi(k)− wi−1(k)| > ǫ & mod(i, p) 6= 0,

0 if |wi(k)− wi−1(k)| ≤ ǫ & mod(i, p) 6= 0,

(7.17)

where mod(i, p) stands for the remainder of i
p
. Therefore, the ALCF-LMS algorithm

is similar to the LCF-LMS one in Table 7.1, but the feature function is replaced by

the alternative feature function (i.e., ws(k + 1) = F
a
ǫ (w(k + 1))).

By using the same argument, we can propose the alternative I-LCF-LMS (AI-

LCF-LMS) algorithm. Indeed, if we replace the feature function in Table 7.2 with the

alternative feature function, then we obtain the AI-LCF-LMS algorithm.

7.5 Matrix Representation of the Feature Function

In this section, we show how to generate ws(k) through matrix operations. Indeed,

presenting ws(k) through matrix operations is helpful for future mathematical analysis.

To generate ws(k), we use quantization matrices Qt(k) for t = 1, 2, 3, and two

feature matrices F1 and F2(k), all matrices belong to R(N+1)×(N+1). The matrices

F1 and F2(k) are responsible for exploiting the sparsity in the linear combination

of the parameters and reconstructing the weight vector after exploiting the sparsity,

respectively. Therefore, to exploit the hidden sparsity in the parameters of w(k) and

their linear combinations, we introduce ws(k) as follows

ws(k) , Q3(k)F2(k)Q2(k)F1Q1(k)w(k). (7.18)

In the following, we describe the matrices and justify their actions. We define the

quantization matrix Q1(k) as the Jacobian matrix of fǫ(w(k)). Therefore, Q1(k) is a

diagonal matrix whose entries are zero or one. For the coefficients of w(k) where their

absolute values are less than ǫ, the corresponding entries on the diagonal of Q1(k) are

zero, otherwise they are one. Similarly, the matricesQ2(k) andQ3(k) are defined as the

Jacobian matrices of fǫ(F1Q1(k)w(k)) and fǫ(F2(k)Q2(k)F1Q1(k)w(k)), respectively.

Thus Q2(k) is a diagonal matrix with zero and one. Its diagonal entries are zero (one)

for the corresponding elements of F1Q1(k)w(k) with the absolute value lower (greater)

123

than ǫ. Also, Q3(k) is a diagonal matrix similar to Q2(k); however, it is derived from

the vector F2(k)Q2(k)F1Q1(k)w(k). The diagonal entries of Q3(k) are one for the

corresponding elements of F2(k)Q2(k)F1Q1(k)w(k) with absolute value greater than

ǫ, and zero for the others.

The feature matrix F1 has to find the difference between the coefficients of the

vector Q1(k)w(k). In fact, it keeps the first parameter unchanged, and for other

coefficients replaces them with the differences between them and the previous one.

Thus, it can be represented as

F1 ,




1 0 0 0 · · · 0

−1 1 0 0 · · · 0

0 −1 1 0 · · · 0
... 0

. . .
. . . 0

...

0 · · · 0 −1 1 0

0 0 · · · 0 −1 1




. (7.19)

The function of the feature matrix F2(k) is to reconstruct the weight vector from

the vector r(k) , Q2(k)F1Q1(k)w(k). The structure of F2(k) is a little complicated.

In the following steps, we explain how to construct F2(k):

1. Assume that the first nonzero element of r(k) is ri1(k), thus all rows of F2(k)

before the i1th row are zero vectors.

2. For i1th row, the element corresponding to the ri1(k) is one, and other entries of

this row are zero.

3. If the next element of r(k) is nonzero, then the next row of F2(k) contains one

more nonzero entry equal to one corresponding to these nonzero coefficients of

r(k). We repeat this step as far as a zero element appears in r(k).

4. As soon as a zero element appears in r(k), we look for the next nonzero element,

and assume that it is ri2(k). Then the next row of F2(k) is similar to the previous

row, but the element corresponding to ri2(k) must be equal to one.

5. Suppose that the first nonzero element of r(k) after ri2(k) is ri3(k). Then next

rows of F2(k) until the (i3 − 1)th row are identical to the last constructed row.

Note that if it does not exist some nonzero element as ri3(k), the remaining rows

of F2(k) are identical to the last constructed row.

124

6. The i3th row of F2(k) contains only one nonzero element equal to one, and it

must be placed on column i3. This row is similar to the i1th row (step 2);

however, the position of one is different. Now, we go back to the step 3 and

repeat the same process to construct the next rows of F2(k).

In Equation (7.18), the matrix Q1(k) replaces the coefficients of w(k) which has

absolute value lower than ǫ with zero. Then matrix F1 keeps the first coefficient

unchanged. For the other components, this matrix subtracts the previous component

from each of them. Hence, for the resulting vector, the matrix Q2(k) changes the

elements with an absolute value lower than ǫ to zero. Afterwards, the matrix F2(k)

reconstructs the weight vector and, in some sense, it inverts the effect of F1. Finally,

for the resulting vector, the matrix Q3(k) replaces the coefficients inside [−ǫ, ǫ] with
zero. The final result is identical to Fǫ(w(k)).

To clarify the process above, we describe the details for w(k) =

[0 0.5 0.51 0.01 0.6 0.7 0.8 0.81 0 − 0.01]T , as an example, when ǫ = 0.02. Q1(k)

is a diagonal matrix, where its diagonal is [0 1 1 0 1 1 1 1 0 0]T . Therefore,

Q1(k)w(k) = [0 0.5 0.51 0 0.6 0.7 0.8 0.81 0 0]T . Then F1Q1(k)w(k) = [0 0.5 0.01 −
0.51 0.6 0.1 0.1 0.01 − 0.81 0]T . The diagonal of Q2(k) is [0 1 0 1 1 1 1 0 1 0]T , and

Q2(k)F1Q1(k)w(k) = [0 0.5 0 −0.51 0.6 0.1 0.1 0 −0.81 0]T . Following the procedure

explained to construct F2(k), we obtain the matrix F2(k) as follows

F2(k) =




0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 1 0 0 0

0 0 0 0 1 1 1 0 1 0

0 0 0 0 1 1 1 0 1 0

0 0 0 0 1 1 1 0 1 0




. (7.20)

Then F2(k)Q2(k)F1Q1(k)w(k) = [0 0.5 − 0.01 − 0.01 0.6 0.7 0.8 − 0.01 −
0.01 − 0.01]T . The diagonal of Q3(k) is [0 1 0 0 1 1 1 0 0 0]T . Hence,

ws(k) = Q3(k)F2(k)Q2(k)F1Q1(k)w(k) = [0 0.5 0 0 0.6 0.7 0.8 0 0 0]T . Also, if

we use the feature function with ǫ = 0.02, then we obtain ws(k) = Fǫ(w(k)) =

125

[0 0.5 0 0 0.6 0.7 0.8 0 0 0]T .

7.6 Simulations

In this section, we apply the LMS, the F-LMS, the LCF-LMS, and the ALCF-LMS

algorithms to system identification problems. In scenario 1, we utilize the LMS and

the F-LMS algorithms. Then, in scenario 2, we use the LMS, the LCF-LMS, and the

ALCF-LMS algorithms.

In both scenarios, the order of all the unknown systems is 39, i.e., they have 40

coefficients. The signal-to-noise ratio (SNR) is chosen as 20 dB. For all algorithms,

the initial vector is w(0) = [0 · · · 0]T , and the MSE learning curves are computed by

averaging the outcomes of 200 independent trials.

7.6.1 Scenario 1

In this scenario, we apply the LMS and the F-LMS algorithms to identify some

unknown lowpass and highpass systems. The first example considers predomi-

nantly lowpass and highpass systems defined as wo,l = [0.4, · · · , 0.4]T and wo,h =

[0.4,−0.4, 0.4, · · · ,−0.4]T , respectively. The second example uses the interpolated

models w′
o,l = [0.4, 0, 0.4, · · · , 0, 0.4, 0]T and w′

o,h = [0.4, 0,−0.4, 0, 0.4, · · · , 0]T . The

third example uses block-sparse lowpass and block-sparse highpass models, w′′
o,l and

w′′
o,h, whose entries are defined in (7.21) and (7.22), respectively.

w′′
o,li

=





0 if 0 ≤ i ≤ 9,

0.05(i− 9) if 10 ≤ i ≤ 14,

0.3 if 15 ≤ i ≤ 24,

0.3− 0.05(i− 24) if 25 ≤ i ≤ 29,

0 if 30 ≤ i ≤ 39,

(7.21)

w′′
o,hi

= (−1)i+1w′′
o,li
. (7.22)

The input signal is a zero-mean white Gaussian noise with unit variance. The

value of α for the F-LMS algorithm is chosen as 0.05. The values of the step size µ

are informed later for each simulated scenario. The MSE learning curves of the LMS

and the F-LMS algorithms are depicted in Figures 7.2 to 7.5.

Figure 7.2 depicts the MSE learning curves of the LMS and the F-LMS algorithms

126

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

10

LMS
F-LMS

(a)

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

10

LMS
F-LMS

(b)

Figure 7.2: MSE learning curves of the LMS and F-LMS algorithms considering wo,l:
(a) both algorithms with the same step size: µ = 0.03; (b) LMS and F-LMS with step
sizes equal to 0.01 and 0.03, respectively.

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

10

LMS
F-LMS

(a)

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

10

LMS
F-LMS

(b)

Figure 7.3: MSE learning curves of the LMS and F-LMS algorithms considering wo,h:
(a) both algorithms with the same step size: µ = 0.03; (b) LMS and F-LMS with step
sizes equal to 0.01 and 0.03, respectively.

considering the lowpass system wo,l. In Figure 7.2(a), both algorithms use the same

step size µ = 0.03 so that they exhibit similar convergence speeds. In this figure, we

can observe that the F-LMS algorithm achieved a steady-state MSE which is more

than 3 dB lower than the MSE results of the LMS algorithm. In Figure 7.2(b), the

127

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

LMS
F-LMS

(a)

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

LMS
F-LMS

(b)

Figure 7.4: MSE learning curves of the LMS and F-LMS algorithms, both with step
size µ = 0.03, considering the unknown systems: (a) w′

o,l and (b) w′
o,h.

steady-state MSE of the algorithms are fixed in order to compare their convergence

speeds. Thus, we set the step sizes of the LMS and the F-LMS algorithms as 0.01 and

0.03, respectively. We can observe, in this figure, that the F-LMS algorithm converged

much faster than the LMS algorithm.

In Figure 7.3, we present results equivalent to the ones presented in Figure 7.2,

but considering the highpass system wo,h. Once again, when the step sizes of both

algorithms are the same (µ = 0.03), refer to Figure 7.3(a), the F-LMS algorithm

achieved lower steady-state MSE; whereas the F-LMS algorithm (with µ = 0.03)

converged much faster than the LMS algorithm (with µ = 0.01) when their steady-

state MSEs are fixed, as illustrated in Figure 7.3(b).

Figures 7.4(a) and 7.4(b) depict the MSE learning curves of the LMS and the F-

LMS algorithms, both using µ = 0.03, considering the interpolated systems w′
o,l and

w′
o,h, respectively. Notice, in both figures, that the F-LMS algorithm achieved lower

steady-state MSE, thus outperforming the LMS algorithm.

Figures 7.5(a) and 7.5(b) depict the MSE learning curves of the LMS and the F-

LMS algorithms, both using µ = 0.03, considering the block-sparse systems w′′
o,l and

w′′
o,h, respectively. In both cases, the F-LMS algorithm achieved lower steady-state

MSE, thus outperforming the LMS algorithm.

128

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

LMS
F-LMS

(a)

Number of iterations, k
0 100 200 300 400 500 600 700 800 900 1000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

LMS
F-LMS

(b)

Figure 7.5: MSE learning curves of the LMS and F-LMS algorithms, both with step
size µ = 0.03, considering the unknown systems: (a) w′′

o,l and (b) w′′
o,h.

7.6.2 Scenario 2

In this scenario, we apply the LMS, the LCF-LMS, the ALCF-LMS, the I-LCF-LMS,

and the AI-LCF-LMS algorithms to identify two unknown systems. The first unknown

system is the predominantly lowpass system wo,l. The second unknown model is a

block-sparse model, w′′′
o,l, defined as follows

w′′′
o,li

=






0 if 0 ≤ i ≤ 9,

0.04 + 0.01(i− 9) if 10 ≤ i ≤ 17,

0.5 if 18 ≤ i ≤ 21,

0.13− 0.01(i− 21) if 22 ≤ i ≤ 29,

0 if 30 ≤ i ≤ 39.

(7.23)

In the case of the LCF-LMS and the ALCF-LMS algorithms, the input signal is an

autoregressive signal generated by x(k) = 0.99x(k − 1) + n(k − 1). However, we do

not have any restrictions on the input signal when utilizing the I-LCF-LMS and the

AI-LCF-LMS algorithms. Thus, we use a zero-mean white Gaussian noise with unit

variance as the input signal when implementing the I-LCF-LMS and the AI-LCF-LMS

algorithms. The step size µ for the all algorithms is 0.003. Also, we adopt ǫ equal to

0.02.

Figures 7.6(a) and 7.6(b) show the MSE learning curves of the LMS, the LCF-LMS,

129

Number of iterations, k
0 1000 2000 3000 4000 5000 6000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

10

15

LMS
A-LCF-LMS:p=3
A-LCF-LMS:p=7
LCF-LMS

(a)

Number of iterations, k
0 1000 2000 3000 4000 5000 6000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

10

LMS
A-LCF-LMS:p=5
LCF-LMS

(b)

Figure 7.6: MSE learning curves of the LMS, the LCF-LMS, and the ALCF-LMS
algorithms considering the unknown systems: (a) wo,l and (b) w′′′

o,l.

and the ALCF-LMS algorithms. Furthermore, the MSE learning curves of the LMS,

the I-LCF-LMS, and the AI-LCF-LMS algorithms are illustrated in Figures 7.7(a)

and 7.7(b).

Figure 7.6(a) shows the learning curves of the mentioned algorithms when they are

applied to identify the predominantly lowpass unknown system wo,l. We can observe

that the LCF-LMS algorithm, the blue curve, has high MSE but it has the lowest

computational complexity. In the steady-state environment, it implements only one

multiplication to calculate the error signal. However, the LMS algorithms, the black

curve, requires forty multiplication to compute the error signal, and it has the highest

computational burden. The ALCF-LMS algorithms have acceptable performances

and, using p = 3 and 7, they need thirteen and six multiplication to calculate the

error signal, respectively.

Figure 7.6(b) depicts the learning curves of the algorithms, when they are ap-

plied to identify the block-sparse lowpass unknown model w′′′
o,l. As can be seen, the

LCF-LMS algorithm, the blue curve, has the highest MSE but it executes only three

multiplication to compute the error signal. The red curve illustrates the remarkable

performance of the ALCF-LMS algorithm. Indeed, its learning curve is extremely close

to the learning curve of the LMS algorithm. However, in the steady-state environment,

it implements only six multiplication to calculate the error signal.

Figure 7.7(a) illustrates the learning curves of the LMS, the I-LCF-LMS, and the

130

Number of iterations, k
0 1000 2000 3000 4000 5000 6000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

10

LMS
AI-LCF-LMS: p=5
I-LCF-LMS

(a)

Number of iterations, k
0 1000 2000 3000 4000 5000 6000

M
S

E
 [
d
B

]

-25

-20

-15

-10

-5

0

5

LMS
AI-LCF-LMS: p=5
I-LCF-LMS

(b)

Figure 7.7: MSE learning curves of the LMS, the I-LCF-LMS, and the AI-LCF-LMS
algorithms considering the unknown systems: (a) wo,l and (b) w′′′

o,l.

AI-LCF-LMS algorithms when they are utilized in the identification of the predomi-

nantly lowpass unknown system wo,l. The three algorithms have the same convergence

rate; however, the LMS algorithm has the best MSE, followed by the AI-LCF-LMS

and the I-LCF-LMS algorithms. As can be seen, the superiority of the MSE of the

LMS algorithm to the MSE of the other two algorithms is not remarkable but the LMS

algorithm has higher computational load. In the steady-state environment, for the cal-

culation of the error signal, the LMS algorithm implements 40 multiplication, whereas

the I-LCF-LMS and the AI-LCF-LMS algorithms execute one and eight multiplication,

respectively.

The MSE learning curves of the LMS, the I-LCF-LMS, and the AI-LCF-LMS

algorithms, when they are applied to identify the block-sparse unknown system w′′′
o,l,

are presented in Figure 7.7(b). The curves shown in this figure indicate that the LMS

algorithm has the best misadjustment, followed by the AI-LCF-LMS and the I-LCF-

LMS algorithms. Moreover, we can observe that the three algorithms have similar

convergence speed. We must note that the computational complexity of the LMS

algorithm is higher than that of the I-LCF-LMS and of the AI-LCF-LMS algorithms.

In other words, to compute the error signal in the steady-state environment, the LMS

algorithm requires 40 multiplication; however, the I-LCF-LMS and the AI-LCF-LMS

algorithms need three and six multiplication, respectively.

As can be seen, in Scenario 1, the learning curves of the F-LMS algorithm are

131

lower than that of the LMS algorithm. However, in Scenario 2, the learning curves of

the LCF-LMS, the ALCF-LMS, the I-LCF-LMS, and the AI-LCF-LMS algorithms are

higher than that of the LMS algorithm. It is worthwhile to mention that the compu-

tational complexity of the F-LMS algorithm is higher than that of the LMS algorithm,

whereas the LCF-LMS, the ALCF-LMS, the I-LCF-LMS, and the AI-LCF-LMS al-

gorithms require lower computational resources as compared to the LMS algorithm.

Therefore, higher MSE in the performance of the low-complexity F-LMS algorithms

is compensated by their lower computational complexity.

7.7 Conclusions

In this chapter, we have proposed a family of algorithms called Feature LMS (F-

LMS). The F-LMS algorithms are capable of exploiting specific features of the un-

known system to be identified in order to accelerate convergence speed and/or reduce

steady-state MSE, obtaining a more accurate estimate. The main idea is to apply a

sparsity-promoting function to a linear combination of the parameters, in which this

linear combination should reveal the sparsity hidden in the parameters, i.e., the linear

combination exploits the specific structure/feature in order to generate a sparse vec-

tor. Some examples of the F-LMS algorithms having low computational complexity

and exploiting the lowpass and highpass characteristics of unknown systems were intro-

duced. Simulation results confirmed the superior performance of the F-LMS algorithm

in comparison with the LMS algorithm.

Furthermore, we have introduced the low-complexity F-LMS (LCF-LMS) and the

alternative LCF-LMS (ALCF-LMS) algorithms in order to exploit hidden sparsity

in the parameter with low computational cost. For this purpose, we have defined the

feature function. The proposed algorithms have lower computational burden compared

to the LMS algorithm; however, they have competitive performance. Also, we have

introduced the improved versions of the LCF-LMS and the ALCF-LMS algorithms.

Numerical results showed the competitive performance of the AI-LCF-LMS algorithm

while requiring less multiplication to compute the error signal.

In future works, we intend to investigate other choices for the sparsity-promoting

penalty function and the feature matrix. Also, we want to analyze the stability and

MSE of the F-LMS and the LCF-LMS algorithms.

132

Chapter 8

Conclusions, and Future Works

In this thesis, we have investigated a number of data-selective adaptive filtering algo-

rithms. It is generally accepted that data selection is an effective strategy to reduce

the computational resources of the adaptive algorithms. To benefit from data selection

in adaptive filtering algorithms, we have utilized the set-membership filtering (SMF)

approach.

In set-membership (SM) adaptive filtering algorithms, the inclusion of a priori in-

formation, such as the noise bound, into the objective function leads to some noticeable

advantages. The SM adaptive algorithms evaluate, choose, and process data at each

iteration of their learning process. These algorithms have the potential to outperform

the conventional adaptive filtering algorithms. Indeed, they retain the advantages of

their traditional counterparts; however, they are more accurate, more robust against

noise, and have lower computational load.

Moreover, we incorporate some sparsity-aware techniques into the SM adaptive

algorithms. Thus, we introduced some sparsity-aware set-membership adaptive fil-

tering algorithms. In order to exploit the sparsity in system models, we utilized the

l0 norm approximation, the discard function, and the feature matrices. The l0 norm

approximation and the discard function exploit the sparsity in coefficients close to

zero; however, the feature matrices exploit the sparsity in linear combination of the

parameters.

8.1 Contributions

The thesis started by reviewing the classical adaptive filtering algorithms. Also, we

have introduced the SM normalized least-mean-square (SM-NLMS) and the SM affine

133

projection (SM-AP) algorithms briefly. Then we have analyzed the robustness (in the

sense of l2 stability) of the SM-NLMS and the SM-AP algorithms. One of the major

drawbacks of adopting the conventional algorithms is that one cannot guarantee the

convergence of the algorithm independent of the choice of the parameters. However,

when the additional noise is bounded, we have proved that the SM algorithms never

diverge.

Moreover, the SMF approach has been generalized to trinion and quaternion num-

bers. Whenever the problem at hand suits both the quaternion and trinion solutions,

the trinion algorithms clearly have an advantage over the quaternion ones in terms of

computational burden. Furthermore, we have derived a new set-membership partial-

update affine projection algorithm. This algorithm can improve the convergence rate

significantly, particularly in a nonstationary environment.

In addition, some data-selective adaptive filtering algorithms have been proposed

in order to exploit sparsity in systems with low computational cost. The key idea is

to apply the discard function and the l0 norm approximation. In particular, the use

of discard function can effectively decrease the computational complexity. Finally, we

have derived some feature least-mean-square (F-LMS) algorithms to exploit hidden

sparsity in models when adjacent coefficients have a strong relation. To this end, the

feature matrices and the feature function play fundamental roles.

8.2 Future Works

In this section, we list our future works. Indeed, research into studying and analyzing

the F-LMS and the low-complexity (LCF-LMS) algorithms is already in progress. We

are investigating some mathematical properties, such as the stability and MSE, of

the F-LMS and the LCF-LMS algorithms. Also, we are currently in the process of

investigating other choices for the sparsity-promoting penalty function and the feature

matrix.

A possible topic for research is to employ distinct feature matrices in an online

basis aiming at verifying the best one for a given iteration. It is also possible to derive

a multitude for feature matrices inspired by previous knowledge of the spectral content

of the unknown system model.

Another future work will concentrate on proposing some set-membership

quaternion-valued adaptive filtering algorithms to exploit sparsity in system models.

Also, further works need to be performed in order to analyze the performance of the

134

proposed trinion- and quaternion-valued and partial-update adaptive algorithms.

135

Bibliography

[1] LIMA, M. V. S. Energy-efficient adaptive filters. D.Sc. Thesis, COPPE/UFRJ,

Rio de Janeiro, RJ, Brasil, December 2013.

[2] DINIZ, P. S. R. Adaptive Filtering: Algorithms and Practical Implementation. 4th

ed. New York, USA, Springer, 2013.

[3] JIANG, M. Quaternion-valued adaptive signal processing and its application to

adaptive beamforming and wind profile prediction. D.Sc. Thesis, University

of Sheffield, 2016.

[4] BERBERIDIS, D., KEKATOS, V., GIANNAKIS, G. B. “Online censoring for

large-scale regressions with application to streaming big data”, IEEE Trans-

actions on Signal Processing, v. 64, n. 15, pp. 3854–3867, August 2016.

[5] WANG, G., BERBERIDIS, D., KEKATOS, V., et al. “Online reconstruction from

big data via compressive censoring”. In: IEEE Global Conference on Signal

and Information Processing (GlobalSIP 2014), pp. 326–330, Atlanta, GA,

USA, December 2014.

[6] YAZDANPANAH, H., LIMA, M. V. S., DINIZ, P. S. R. “On the robustness of the

set-membership NLMS algorithm”. In: 9th IEEE Sensor Array and Multi-

channel Signal Processing Workshop (SAM 2016), pp. 1–5, Rio de Janeiro,

Brazil, July 2016.

[7] YAZDANPANAH, H., LIMA, M. V. S., DINIZ, P. S. R. “On the robustness of set-

membership adaptive filtering algorithms”, EURASIP Journal on Advances

in Signal Processing, v. 72, December 2017.

[8] LIMA, M. V. S., FERREIRA, T. N., MARTINS, W. A., et al. “Sparsity-aware

data-selective adaptive filters”, IEEE Transactions on Signal Processing,

v. 62, n. 17, pp. 4557–4572, September 2014.

136

[9] GOLLAMUDI, S., NAGARAJ, S., KAPOOR, S., et al. “Set-membership filtering

and a set-membership normalized LMS algorithm with an adaptive step

size”, IEEE Signal Processing Letters, v. 5, n. 5, pp. 111–114, May 1998.

[10] SAYED, A. H. Adaptive Filters. New York, USA, Wiley-IEEE, 2008.

[11] HAYKIN, S. Adaptive Filter Theory. 4th ed. Englewood Cliffs, NJ, Prentice Hall,

2002.

[12] CLASER, R., NASCIMENTO, V. H., ZAKHAROV, Y. V. “A low-complexity

RLS-DCD algorithm for volterra system identification”. In: 24th European

Signal Processing Conference (EUSIPCO 2016), pp. 6–10, Budapest, Hun-

gary, September 2016.

[13] DINIZ, P. S. R., LIMA, M. V. S., MARTINS, W. A. “Semi-blind data-selective

algorithms for channel equalization”. In: IEEE International Symposium

on Circuits and Systems (ISCAS 2008), pp. 53–56, Seattle, WA, USA, May

2008.

[14] ANDERSEN, K. T., MOONEN, M. “Adaptive time-frequency analysis for noise

reduction in an audio filter bank with low delay”, IEEE/ACM Transactions

on Audio, Speech, and Language Processing, v. 24, n. 4, pp. 784–795, April

2016.

[15] AZPICUETA-RUIZ, L. A., ARENAS-GARCÍA, J., NASCIMENTO, V. H., et al.

“Reduced-cost combination of adaptive filters for acoustic echo cancella-

tion”. In: International Telecommunications Symposium (ITS 2014), pp.

1–5, São Paulo, Brazil, August 2014.

[16] DE LAMARE, R. C. “Adaptive and iterative multi-branch MMSE decision feed-

back detection algorithms for multi-antenna systems”, IEEE Transactions

on Wireless Communications, v. 12, n. 10, pp. 5294–5308, October 2013.

[17] YAZDANPANAH, H., DINIZ, P. S. R. “New trinion and quaternion set-

membership affine projection algorithms”, IEEE Transactions on Circuits

and Systems II: Express Briefs, v. 64, n. 2, pp. 216–220, February 2017.

[18] EHRENFRIED, K., KOOP, L. “Comparison of iterative deconvolution algorithms

for the mapping of acoustic sources”, AIAA Journal, v. 45(7), pp. 1584–

1595, July 2007.

137

[19] ZHENG, X., CHEN, B. M. “Identification of market forces in the financial system

adaptation framework”. In: IEEE International Conference on Control and

Automation (ICCA 2010), pp. 103–108, Xiamen, China, June 2010.

[20] LEHMANN, E. L., CASELLA, G. Theory of Point Estimation. 2nd ed. New

York, USA, Springer, 2003.

[21] THEODORIDIS, S., KOUTROUMBAS, K. Pattern Recognition. 4th ed. , Aca-

demic Press, 2008.

[22] BISHOP, C. M. Pattern Recognition and Machine Learning. 2nd ed. , Springer,

2011.

[23] COMBETTES, P. L. “The foundations of set theoretic estimation”, Proceedings

of the IEEE, v. 81, n. 2, pp. 182–208, February 1993.

[24] LIMA, M. V. S., DINIZ, P. S. R. “Fast learning set theoretic estimation”. In: 21st

European Signal Processing Conference (EUSIPCO 2013), pp. 1–5, Mar-

rakech, Moroccol, September 2013.

[25] COMBETTES, P. L., TRUSSELL, H. J. “The use of noise properties in set

theoretic estimation”, IEEE Transactions on Signal Processing, v. 39, n. 7,

pp. 1630–1641, July 1991.

[26] FOGEL, E., HUANG, Y.-F. “On the value of information in system

identification–bounded noise case”, Automatica, v. 18, n. 2, pp. 229–238,

March 1982.

[27] DELLER, J. R. “Set-membership identification in digital signal processing”,

IEEE ASSP Magazine, v. 6, n. 4, pp. 4–20, October 1989.

[28] GOLLAMUDI, S., KAPOOR, S., NAGARAJ, S., et al. “Set-membership adap-

tive equalization and updator-shared implementation for multiple channel

communications systems”, IEEE Transactions on Signal Processing, v. 46,

n. 9, pp. 2372–2385, September 1998.

[29] NAGARAJ, S., GOLLAMUDI, S., KAPOOR, S., et al. “BEACON: an adaptive

set-membership filtering technique with sparse updates”, IEEE Transactions

on Signal Processing, v. 47, n. 11, pp. 2928–2941, November 1999.

138

[30] DINIZ, P. S. R., WERNER, S. “Set-membership binormalized data reusing LMS

algorithms”, IEEE Transactions on Signal Processing, v. 51, n. 1, pp. 124–

134, January 2003.

[31] WERNER, S., DINIZ, P. S. R. “Set-membership affine projection algorithm”,

IEEE Signal Processing Letters, v. 8, n. 8, pp. 231–235, August 2001.

[32] GOODWIN, G. C., PAYNE, R. L. Dynamic System Identification: Experiment

Design and Data Analysis. New York, USA, Academic, 1977.

[33] GALDINO, J. F., APOLINÁRIO, JR., J. A., DE CAMPOS, M. L. R. “A set-

membership NLMS algorithm with time-varying error bound”. In: IEEE

International Symposium on Circuits and Systems (ISCAS 2006), pp. 277–

280, Island of Kos, Greece, May 2006.

[34] OZEKI, K., UMEDA, T. “An adaptive filtering algorithm using an orthogonal

projection to an affine subspace and its properties”, Electronics and Com-

munications in Japan, v. 67-A, n. 5, pp. 19–27, 1984.

[35] DINIZ, P. S. R., YAZDANPANAH, H. “Data censoring with set-membership

algorithms”. In: IEEE Global Conference on Signal and Information Pro-

cessing (GlobalSIP 2017), Montreal, Canada, November 2017.

[36] LIMA, M. V. S., DINIZ, P. S. R. “Steady-state analysis of the set-membership

affine projection algorithm”. In: IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP 2010), pp. 3802–3805, Dallas,

USA, March 2010.

[37] LIMA, M. V. S., DINIZ, P. S. R. “Steady-state MSE performance of the set-

membership affine projection algorithm”, Circuits, Systems, and Signal Pro-

cessing, v. 32, n. 4, pp. 1811–1837, January 2013.

[38] ARABLOUEI, R., DOǦANÇAY, K. “Tracking performance analysis of the set-

membership NLMS adaptive filtering algorithm”. In: Signal & Informa-

tion Processing Association Annual Summit and Conference (APSIPA ASC

2012), pp. 1–6, Hollywood, CA, USA, December 2012.

[39] CARINI, A., SICURANZA, G. L. “Analysis of a multichannel filtered-x set-

membership affine projection algorithm”. In: IEEE International Confer-

ence on Acoustics, Speech and Signal Processing Proceedings, Toulouse,

France, May 2006.

139

[40] GUO, L., HUANG, Y.-F. “Frequency-domain set-membership filtering and its

applications”, IEEE Transactions on Signal Processing, v. 55, n. 4, pp. 1326–

1338, April 2007.

[41] WERNER, S., APOLINÁRIO, JR., J. A., DINIZ, P. S. R. “Set-membership

proportionate affine projection algorithms”, EURASIP Journal on Audio,

Speech, and Music Processing, v. 2007, n. 1, pp. 1–10, January 2007.

[42] MARTINS, W. A., LIMA, M. V. S., DINIZ, P. S. R. “Semi-blind data-selective

equalizers for QAM”. In: IEEE 9th Workshop on Signal Processing Advances

in Wireless Communications (SPAWC 2008), pp. 501–505, Recife, Brazil,

July 2008.

[43] BHOTTO, M. Z. A., ANTONIOU, A. “Robust set-membership affine-projection

adaptive-filtering algorithm”, IEEE Transactions on Signal Processing,

v. 60, n. 1, pp. 73–81, January 2012.

[44] ZHANG, S., ZHANG, J. “Set-membership NLMS algorithm with robust error

bound”, IEEE Transactions on Circuits and Systems II: Express Briefs,

v. 61, n. 7, pp. 536–540, July 2014.

[45] MAO, W. L. “Robust set-membership filtering techniques on GPS sensor jamming

mitigation”, IEEE Sensors Journal, v. 17, n. 6, pp. 1810–1818, March 2017.

[46] LIMA, M. V. S., DINIZ, P. S. R. “On the steady-state MSE performance of

the set-membership NLMS algorithm”. In: 7th International Symposium on

Wireless Communication Systems (ISWCS 2010), pp. 389–393, York, UK,

September 2010.

[47] TAKAHASHI, N., YAMADA, I. “Steady-state mean-square performance analysis

of a relaxed set-membership NLMS algorithm by the energy conservation

argument”, IEEE Transactions on Signal Processing, v. 57, n. 9, pp. 3361–

3372, September 2009.

[48] DINIZ, P. S. R. “Convergence performance of the simplified set-membership affine

projection algorithm”, Circuits, Systems, and Signal Processing, v. 30, n. 2,

pp. 439–462, April 2011.

[49] RUPP, M. “Pseudo affine projection algorithms revisited: robustness and stability

analysis”, IEEE Transactions on Signal Processing, v. 59, n. 5, pp. 2017–

2023, May 2011.

140

[50] PROAKIS, J. G. Digital Communications. USA, McGraw-Hill, 1995.

[51] MARTINS, W. A., LIMA, M. V. S., DINIZ, P. S. R., et al. “Optimal constraint

vectors for set-membership affine projection algorithms”, Signal Processing,

v. 134, pp. 285–294, May 2017.

[52] HAMILTON, W. R. “On quaternions, or a new system of imaginaries in algebra”,

Philosophical Magazine, v. 25, n. 3, pp. 489–495, 1844.

[53] PEI, S. C., CHANG, J. H., DING, J. J. “Commutative reduced biquaternions

and their Fourier transform for signal and image processing applications”,

IEEE Transactions on Signal Processing, v. 52, n. 7, pp. 2012–2031, July

2004.

[54] GUO, L. Q., ZHU, M., GE, X. H. “Reduced biquaternion canonical transform,

convolution and correlation”, Signal Processing, v. 91, n. 8, pp. 2147–2153,

August 2011.

[55] TOOK, C. C., STRBAC, G., AIHARA, K., et al. “Quaternion-valued short term

joint forecasting of three-dimensional wind and atmospheric parameters”,

Renewable Energy, v. 36, n. 6, pp. 1754–1760, June 2011.

[56] BARTHÉLEMY, Q., LARUE, A., MARS, J. I. “About QLMS derivations”, IEEE

Signal Processing Letters, v. 21, n. 2, pp. 240–243, February 2014.

[57] JIANG, M. D., LIU, W., LI, Y. “A general quaternion-valued gradient operator

and its applications to computational fluid dynamics and adaptive beam-

forming”. In: International Conference on Digital Signal Processing (DSP

2014), pp. 821–826, Hong Kong, China, August 2014.

[58] ZHANG, X. R., LIU, W., XU, Y. G., et al. “Quaternion-valued robust adap-

tive beamformer for electromagnetic vector-sensor arrays with worst-case

constraint”, Signal Processing, v. 104, pp. 274–283, November 2014.

[59] UJANG, B. C., TOOK, C. C., MANDIC, D. P. “Quaternion-valued nonlinear

adaptive filtering”, IEEE Transactions on Neural Networks, v. 22, n. 8,

pp. 1193–1206, August 2011.

[60] TOOK, C. C., MANDIC, D. P. “The quaternion LMS algorithm for adaptive fil-

tering of hypercomplex processes”, IEEE Transactions on Signal Processing,

v. 57, n. 4, pp. 1316–1327, April 2009.

141

[61] TOOK, C. C., MANDIC, D., BENESTY, J. “Study of the quaternion LMS

and four-channel LMS algorithms”. In: IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP 2009), pp. 3109–3112,

Taipei, Taiwan, April 2009.

[62] NETO, F. G. A., NASCIMENTO, V. H. “A novel reduced-complexity widely

linear QLMS algorithm”. In: IEEE Statistical Signal Processing Workshop

(SSP 2011), pp. 81–84, Nice, France, June 2011.

[63] PEI, S.-C., CHENG, C.-M. “Color image processing by using binary quaternion-

moment-preserving thresholding technique”, IEEE Transactions on Image

Processing, v. 8, n. 5, pp. 614–628, May 1999.

[64] BIHAN, N. L., SANGWINE, S. J. “Quaternion principal component analysis

of color images”. In: International Conference on Image Processing (ICIP

2003), pp. I–809–12 vol. 1, Barcelona, Spain, Spain, September 2003.

[65] CAMPA, R., CAMARILLO, K., ARIAS, L. “Kinematic modeling and control of

robot manipulators via unit quaternions: application to a spherical wrist”.

In: IEEE Conference on Decision and Control, pp. 6474–6479, San Diego,

CA, USA, December 2006.

[66] GUO, X., LIU, Z., LIU, W., et al. “Three-dimensional wind profile prediction

with trinion-valued adaptive algorithms”. In: International Conference on

Digital Signal Processing (DSP 2015), pp. 566–569, Singapore, July 2015.

[67] JAHANCHAHI, C., TOOK, C. C., MANDIC, D. P. “A class of quaternion valued

affine projection algorithms”, Signal Processing, v. 93, pp. 1712–1723, 2013.

[68] ELL, T. A., SANGWINE, S. J. “Quaternion involutions and anti-involutions”,

Computers & Mathematics with Applications, v. 53, n. 1, pp. 137–143, 2007.

[69] MANDIC, D. P., JAHANCHAHI, C., TOOK, C. C. “A quaternion gradient

operator and its applications”, Signal Processing Letters, v. 18, n. 1, pp. 47–

50, 2011.

[70] BRANDWOOD, D. H. “A complex gradient operator and its application in

adaptive array theory”. In: IEE Proceedings F - Communications, Radar

and Signal Processing, pp. 11–16, February 1983.

142

[71] ASSEFA, D., MANSINHA, L., TIAMPO, K. F., et al. “The trinion Fourier

transform of color images”, Signal Processing, v. 91, n. 8, pp. 1887–1900,

August 2011.

[72] VAN DEN BOS, A. “Complex gradient and Hessian”, IEE Proceedings Vision

Image Signal Process, v. 141, n. 6, pp. 380–383, December 1994.

[73] GOU, X., XU, Y., LIU, Z., et al. “Quaternion-capon beamformer using crossed-

dipole arrays”. In: IEEE 4th International Symposium on Microwave, An-

tenna, Propagation, and EMC Technologies for Wireless Communications

(MAPE 2011), pp. 34–37, Beijing, China, November 2011.

[74] TAO, J. W., CHANG, W. X. “A novel combined beamformer based on hypercom-

plex processes”, IEEE Transactions on Aerospace and Electronic Systems,

v. 49, n. 2, pp. 1276–1289, April 2013.

[75] TAO, J. W., CHANG, W. X. “Adaptive beamforming based on complex quater-

nion processes”, Mathematical Problems in Engineering, v. 2014, 2014.

[76] COMPTON, R. “On the performance of a polarization sensitive adaptive array”,

IEEE Transactions on Antennas and Propagation, v. 29, n. 5, pp. 718–725,

September 1981.

[77] LI, J., COMPTON, R. T. “Angle and polarization estimation using ESPRIT

with a polarization sensitive array”, IEEE Transactions on Antennas and

Propagation, v. 39, n. 9, pp. 1376–1383, September 1991.

[78] GOOGLE. “RE<C: surface level wind data collection”, Google Code 2011, [On-

line]. Available: http://code.google.com/p/google-rec-csp/ .

[79] DOǦANÇAY, K. Partial-Update Adaptive Signal Processing: Design, Analysis

and Implementation. Academic Press, Elsevier, 2008.

[80] DOUGLAS, S. C. “Adaptive filters employing partial updates”, IEEE Trans-

actions on Circuits and Systems II: Analog and Digital Signal Processing,

v. 44, n. 3, pp. 209–216, March 1997.

[81] ABOULNASR, T., MAYYAS, K. “Complexity reduction of the NLMS algorithm

via selective coefficient updating”, IEEE Transactions on Signal Processing,

v. 47, n. 5, pp. 1421–1427, May 1999.

143

[82] DOǦANÇAY, K., TANRIKULU, O. “Adaptive filtering algorithms with selective

partial updates”, IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, v. 48, n. 8, pp. 762–769, August 2001.

[83] WERNER, S., DE CAMPOS, M. L. R., DINIZ, P. S. R. “Mean-squared analy-

sis of the partial-update NLMS algorithm”, Brazilian Telecommunications

Journal - SBrT, v. 18, pp. 77–85, June 2003.

[84] WERNER, S., DE CAMPOS, M. L. R., DINIZ, P. S. R. “Partial-update NLMS

algorithms with data-selective updating”, IEEE Transactions on Signal Pro-

cessing, v. 52, n. 4, pp. 938–949, April 2004.

[85] GODAVARTI, M., III, A. O. H. “Partial update LMS algorithms”, IEEE Trans-

actions on Signal Processing, v. 53, n. 7, pp. 2384–2399, July 2005.

[86] GRIRA, M., CHAMBERS, J. A. “Adaptive partial update channel shortening in

impulsive noise environments”. In: 15th International Conference on Digital

Signal Processing, pp. 555–558, Cardiff, July 2007.

[87] ARABLOUEI, R., DOǦANÇAY, K., PERREAU, S. “Partial-update adaptive

decision-feedback equalization”. In: 19th European Signal Processing Con-

ference, pp. 2205–2209, Barcelona, Spain, August 2011.

[88] DINIZ, P. S. R., PINTO, G. O., HJORUNGNES, A. “Data selective partial-

update affine projection algorithm”. In: IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP 2008), pp. 3833–3836, Las

Vegas, USA, April 2008.

[89] TANDON, A., SWAMY, M. N. S., AHMAD, M. O. “Partial-update L∞-norm

based algorithms”, IEEE Transactions on Circuits and Systems I: Regular

Papers, v. 54, n. 2, pp. 411–419, February 2007.

[90] BHOTTO, M. Z. A., ANTONIOU, A. “A new partial-update NLMS adaptive-

filtering algorithm”. In: IEEE 27th Canadian Conference on Electrical and

Computer Engineering (CCECE 2014), pp. 1–5, Toronto, Canada, May

2014.

[91] DENG, G. “Partial update and sparse adaptive filters”, IET Signal Processing,

v. 1, n. 1, pp. 9–17, March 2007.

144

[92] ARABLOUEI, R., DOǦANÇAY, K. “Set-membership recursive least-squares

adaptive filtering algorithm”. In: IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP 2012), pp. 3765–3768, Kyoto,

Japan, March 2012.

[93] BHOTTO, M. Z. A., ANTONIOU, A. “A robust constrained set-membership

affine-projection adaptive-filtering algorithm”. In: 5th International Sympo-

sium on Communications, Control and Signal Processing (ISCCSP 2012),

pp. 1–4, Rome, Italy, May 2012.

[94] ABADI, M. S. E., HUSOY, J. H. “Set-membership subband adaptive filters”.

In: 3rd International Symposium on Communications, Control and Signal

Processing (ISCCSP 2008), pp. 193–196, St. Julian’s, Malta, March 2008.

[95] DINIZ, P. S. R., YAZDANPANAH, H. “Improved set-membership partial-update

affine projection algorithm”. In: IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP 2016), pp. 4174–4178, Shang-

hai, China, March 2016.

[96] DUTTWEILER, D. L. “Proportionate normalized least-mean-squares adaptation

in echo cancelers”, IEEE Transactions on Speech and Audio Processing, v. 8,

n. 5, pp. 508–518, September 2000.

[97] BENESTY, J., GAY, S. L. “An improved PNLMS algorithm”. In: IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP

2002), pp. 1881–1884, Dallas, USA, May 2002.

[98] GAY, S. L. “An efficient, fast converging adaptive filter for network echo cancel-

lation”. In: Thirty-Second Asilomar Conference on Signals, Systems amp,

Computers (ACSSC 1998), pp. 394–398, Pacific Grove, CA, USA, November

1998.

[99] PALEOLOGU, C., CIOCHINA, S., BENESTY, J. “An efficient proportionate

affine projection algorithm for echo cancellation”, IEEE Signal Processing

Letters, v. 17, n. 2, pp. 165–168, February 2010.

[100] MENG, R., DE LAMARE, R. C., NASCIMENTO, V. H. “Sparsity-aware affine

projection adaptive algorithms for system identification”. In: Sensor Signal

Processing for Defence (SSPD 2011), pp. 1–5, London, U.K., September

2011.

145

[101] KOPSINIS, Y., SLAVAKIS, K., THEODORIDIS, S. “Online sparse system

identification and signal reconstruction using projections onto weighted l1

balls”, IEEE Transactions on Signal Processing, v. 59, n. 3, pp. 936–952,

March 2011.

[102] CHEN, Y., GU, Y., HERO, A. O. “Sparse LMS for system identification”. In:

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2009), pp. 3125–3128, Taipei, Taiwan, April 2009.

[103] BABADI, B., KALOUPTSIDIS, N., TAROKH, V. “SPARLS: the sparse RLS

algorithm”, IEEE Transactions on Signal Processing, v. 58, n. 8, pp. 4013–

4025, August 2010.

[104] LIMA, M. V. S., SOBRON, I., MARTINS, W. A., et al. “Stability and MSE

analyses of affine projection algorithms for sparse system identification”. In:

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2014), pp. 6399–6403, Florence, Italy, May 2014.

[105] LIMA, M. V. S., MARTINS, W. A., DINIZ, P. S. R. “Affine projection algo-

rithms for sparse system identification”. In: IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP 2013), pp. 5666–5670,

Vancouver, Canada, May 2013.

[106] GU, Y., JIN, J., MEI, S. “l0 norm constraint LMS algorithm for sparse system

identification”, IEEE Signal Processing Letters, v. 16, n. 9, pp. 774–777,

September 2009.

[107] PELEKANAKIS, K., CHITRE, M. “New sparse adaptive algorithms based on

the natural gradient and the l0-norm”, IEEE Journal of Oceanic Engineeer-

ing, v. 38, n. 2, pp. 323–332, April 2013.

[108] FERREIRA, T. N., LIMA, M. V. S., DINIZ, P. S. R., et al. “Low-complexity

proportionate algorithms with sparsity-promoting penalties”. In: IEEE In-

ternational Symposium on Circuits and Systems (ISCAS 2016), Canada,

May 2016.

[109] YAZDANPANAH, H., DINIZ, P. S. R., LIMA, M. V. S. “A simple set-

membership affine projection algorithm for sparse system modeling”. In:

24th European Signal Processing Conference (EUSIPCO 2016), pp. 1798–

1802, Budapest, Hungary, September 2016.

146

[110] YAZDANPANAH, H., DINIZ, P. S. R. “Recursive least-squares algorithms for

sparse system modeling”. In: IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP 2017), pp. 3879–3883, New Orleans,

LA, USA, March 2017.

[111] WANG, X., POOR, H. V. Wireless Communication Systems: Advanced Tech-

niques for Signal Reception. Upper Saddle River, NJ, Prentice Hall, 2004.

[112] HANSLER, E., SCHMIDT, G. Acoustic Echo and Noise Control: A Practical

Approach. Hoboken, NJ, USA, Wiley, 2004.

[113] BENESTY, J., GANSLER, T., MORGAN, D. R., et al. Advances in Network

and Acoustic Echo Cancellation. Berlin Heidelberg, Germany, Springer,

2010.

[114] HU, T., CHKLOVSKII, D. B. “Sparse LMS via online linearized Bregman

iteration”. In: IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP 2014), pp. 7213–7217, Florence, Italy, May 2014.

[115] THEMELIS, K. E., RONTOGIANNIS, A. A., KOUTROUMBAS, K. D. “A

variational Bayes framework for sparse adaptive estimation”, IEEE Trans-

actions on Signal Processing, v. 62, n. 18, pp. 4723–4736, September 2014.

[116] GIAMPOURAS, P. V., RONTOGIANNINS, A. A., THEMELIS, K. E., et al.

“Online Bayesian low-rank subspace learning from partial observations”. In:

European Signal Processing Conference (EUSIPCO 2015), pp. 2526–2530,

Nice, France, September 2015.

[117] THEMELIS, K. E., RONTOGIANNINS, A. A., KOUTROUMBAS, K. D. “On-

line Bayesian group sparse parameter estimation using a generalized inverse

Gaussian Markov chain”. In: European Signal Processing Conference (EU-

SIPCO 2015), pp. 1686–1690, Nice, France, September 2015.

[118] ANGELOSANTE, D., BAZERQUE, J. A., GIANNAKIS, G. B. “Online adap-

tive estimation of sparse signals: where RLS meets the l1-norm”, IEEE

Transactions on Signal Processing, v. 58, n. 7, pp. 3436–3447, March 2010.

[119] ANGELOSANTE, D., GIANNAKIS, G. B. “RLS-weighted Lasso for adaptive

estimation of sparse signals”. In: IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP 2009), pp. 3245–3248, Taipei,

Taiwan, April 2009.

147

[120] VALDMAN, C., DE CAMPOS, M. L. R., APOLINÁRIO, JR., J. A. “RLS

sparse system identification using LAR-based situational awareness”. In:

22nd European Signal Processing Conference (EUSIPCO 2014), pp. 726–

730, Lisbon, Portugal, September 2014.

[121] WIDROW, B., HOFF, M. E. “Adaptive switching circuits”, IRE WESCON

Convention Record, v. 4, pp. 96–104, 1960.

[122] DINIZ, P. S. R., WIDROW, B. “The History of Adaptive Filters”. In: Maloberti,

F., Davies, A. C. (Eds.), A Short History of Circuits and Systems, River

Publishers, cap. 5, pp. 85–90, Denmark, 2016. ISBN: 978-87-93379-71-8.

[123] WIDROW, B., STEARNS, S. D. Adaptive Signal Processing. Englewood Cliffs,

NJ, Prentice Hall, 1985.

[124] RUPP, M., HAUSBERG, F. “LMS algorithmic variants in active noise and vibra-

tion control”. In: 22th European Signal Processing Conference (EUSIPCO

2014), pp. 691–695, Lisbon, Portugal, September 2014.

[125] REBHI, S., BARRAK, R., MENIF, M. “LMS-based digital pre-equalizer for

cognitive RoF system”. In: 18th International Conference on Transparent

Optical Networks (ICTON 2016), pp. 1–4, Trento, Italy, July 2016.

[126] WESTWICK, D. T., MAUNDY, B., SALMEH, R. “Approximate LMS tuning

of continuous time filters: convergence and sensitivity analysis”, IEE Pro-

ceedings - Circuits, Devices and Systems, v. 152, n. 1, pp. 1–6, February

2005.

[127] CIOCHINǍ, S., PALEOLOGU, C., BENESTY, J., et al. “A family of opti-

mized LMS-based algorithms for system identification”. In: 24th European

Signal Processing Conference (EUSIPCO 2016), pp. 1803–1807, Budapest,

Hungary, September 2016.

[128] CANDES, E. J., WAKIN, M. B., BOYD, S. P. “Enhancing sparsity by

reweighted l1 minimization”, Journal of Fourier Analysis and Applications,

v. 14, n. 5, pp. 877–905, December 2008.

[129] GASSO, G., RAKOTOMAMONJY, A., CANU, S. “Recovering sparse signals

with a certain family of nonconvex penalties and DC programming”, IEEE

Transactions on Signal Processing, v. 57, n. 12, pp. 4686–4698, December

2009.

148

[130] DINIZ, P. S. R., YAZDANPANAH, H., LIMA, M. V. S. “Feature LMS algo-

rithms”. In: IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP 2018), Calgary, Alberta, Canada, April 2018.

[131] WANG, Y.-X., SHARPNACK, J., SMOLA, A., et al. “Trend filtering on

graphs”, Journal of Machine Learning Research, v. 17, pp. 1–41, April 2016.

149

	List of Figures
	List of Tables
	List of Symblos
	List of Abreviations
	Introduction
	Motivations
	Targets
	Thesis Contributions
	Notation

	Conventional and Set-Membership Adaptive Filtering Algorithms
	Point Estimation Adaptive Filtering Algorithms
	Least-mean-square algorithm
	Normalized LMS algorithm
	Affine projection algorithm
	Recursive least-squares algorithm

	Set-Membership Adaptive Filtering Algorithms
	Set-membership filtering
	Set-membership normalized LMS algorithm
	Set-membership affine projection algorithm

	Estimating in the Set-Membership Algorithm for Big Data Application
	Conclusions

	On the Robustness of the Set-Membership Algorithms
	Robustness Criterion
	The Set-Membership Algorithms
	The SM-NLMS Algorithm
	The SM-AP Algorithm

	Robustness of the SM-NLMS Algorithm
	Robustness of the SM-NLMS algorithm
	Convergence of {"026B30D w"0365w(k)"026B30D 2} with unknown noise bound
	Convergence of {"026B30D w"0365w(k)"026B30D 2} with known noise bound
	Time-varying (k)

	Robustness of the SM-AP Algorithm
	Robustness of the SM-AP algorithm
	The SM-AP algorithm does not diverge

	Simulations
	Confirming the results for the SM-NLMS algorithm
	Confirming the results for the SM-AP algorithm

	Conclusion

	Trinion and Quaternion Set-Membership Affine Projection Algorithms
	Quaternions
	Trinions
	Set-Membership Filtering (SMF) in T and H
	SMTAP Algorithm
	SMQAP Algorithm
	Application of quaternion-valued adaptive algorithms to adaptive beamforming
	Simulations
	Scenario 1
	Scenario 2

	Conclusions

	Improved Set-Membership Partial-Update Affine Projection Algorithm
	Set-Membership Partial-Update Affine Projection Algorithm
	Improved Set-membership Partial-Update Affine Projection Algorithm
	Simulations
	Scenario 1
	Scenario 2

	Conclusions

	Adaptive Filtering Algorithms for Sparse System Modeling
	Sparsity-Aware SM-AP Algorithm
	Set-Membership Proportionate AP Algorithm
	A Simple Set-Membership Affine Projection Algorithm
	Derivation of the S-SM-AP algorithm
	Discussion of the S-SM-AP algorithm
	The Improved S-SM-AP (IS-SM-AP) algorithm
	The S-AP and the IS-AP algorithms

	Some issues of the S-SM-AP and the IS-SM-AP Algorithms
	Recursive Least-Squares Algorithm Exploiting Sparsity
	Derivation of the S-RLS algorithm
	Discussion of the S-RLS algorithm
	DS-S-RLS algorithm

	l0 Norm Recursive Least-Squares Algorithm
	DS-l0-RLS algorithm

	Simulations
	Simulation results of the LMS-based algorithms
	Simulation results of the RLS-based algorithms

	Conclusions

	Feature LMS algorithms
	The Feature LMS algorithms
	Examples of F-LMS algorithms
	The F-LMS algorithm for lowpass systems
	The F-LMS algorithm for highpass systems

	Low-complexity F-LMS Algorithms
	Alternative LCF-LMS Algorithm
	Matrix Representation of the Feature Function
	Simulations
	Scenario 1
	Scenario 2

	Conclusions

	Conclusions, and Future Works
	Contributions
	Future Works

	Bibliography

