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        Este trabalho desenvolve uma adaptação do modelo do synchronverter para ser 

adequado para operação sem fonte de energia elétrica conectada ao elo CC, como por 

exemplo, um STATCOM ou um filtro ativo. Além disso, desenvolve também um 

modelo dinâmico teórico para o projeto deste controlador caso o conversor seja aplicado 

em sistemas de potência, baseado na investigação para a origem das oscilações na 

frequência do sistema, concluindo sua aplicabilidade. Parte do sistema de potência do 

Brasil foi modelada no simulador PSCAD e o modelo adaptado do synchronverter foi 

inserido para operar como um STATCOM para testar a eficácia do modelo. Os 

resultados observados corroboram os resultados previstos analiticamente. 
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 This work presents an adapted model for the synchronverter to become suitable 

for operation without an electric energy source connected to the dc-link, like for 

example, a STATCOM or an active filter. In addition, a theoretical dynamic model for 

the project of the controller is presented, if the converter is applied to power systems, 

based on an investigation on the origins of the system-frequency oscillations. To verify 

the theories, part of the Brazilian National Grid (SIN) was modeled in the PSCAD 

simulator and the adapted synchronverter model was inserted to operate as a 

STATCOM. The results agree with those predicted analytically. 
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1 Background and motivation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter contains the motivation and objectives of the thesis 

“Synchronverter applied to power systems”. At the end of the section a description is 

given of the document structure. 
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1.1 Motivation 

 

An exponential increase of installed renewable technologies and connection of 

Microgrids to the Power System [1][2][3][4][5] in the last two decades [6] has led to a 

decrease of Power System stability. The instability is related to voltage stability [7], 

frequency stability [8], and rotor angle stability [9]. Although the object of analysis, a 

Static Synchronous Compensator (STATCOM), is equipped with voltage control, the 

research is related to frequency stability. 

In the last decade the Virtual Synchronous Machine concept (VSM) 

[10][11][12][13] has been developed to overcome problems with Phase Locked Loops 

(PLLs) for grid-connected inverters, load sharing [14][15][16][17][18] and the 

diminishing participation of rotational energy. Imitating a synchronous generator leads 

to the possibility of utilizing all the benefits of decades of experience with droop 

controllers, the natural behavior of the generator to maintain itself synchronized and 

creation of virtual inertia to stabilize the Power System. Besides, mimicking a 

synchronous generator makes it possible to utilize all available Power Stability 

Programs when parameters are kept constant as for a rotating synchronous generator. 

In [19] it is even shown with a 3-order model that no limit exists in the 

complexity of emulating a synchronous generator. Although, one may ask if this leads 

to more benefits, it shows that it is possible to replace all inverters by a synchronous 

generator model that facilitates the analysis of the system with a growing number of 

inverters. 

[20] has demonstrated that a frequency droop controller, which is part of a VSM 

or synchronverter [21], is intrinsically a PLL. The paper states further that the droop 

controller has a slow response in relation to an explicit PLL, which normally locks in 

two cycles with the input signal. It suggests recovering the integral effects hidden in the 

frequency and voltage paths to design a dynamic droop controller by replacing the 

integrator. 

A synchronverter operating as a Static VAR Compensator (SVC) or STATCOM 

is presented in [22][23]. Here, the synchronverter was tested to show its capability to 

mitigate electromechanical oscillations without focusing on the dc-capacitor voltage of 

the STATCOM. In other words, the voltages calculated by the control system of the 
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synchronverter were used as inputs of ideal voltage sources. Since the STATCOM is 

not supposed to deliver active power, the frequency droop loop was eliminated. Even 

without this loop the synchronverter has been shown to be stable within a simulation 

model with dynamic equivalents, in other words, without a fixed frequency. 

Nevertheless, the synchronverter without a frequency droop controller has been 

shown to be poorly damped. In a simplified power transmission model, the 

synchronverter in STATCOM operation has been shown to be unstable even for small 

virtual inertia values. Besides, oscillations of the synchronous frequency became 

apparent and in some cases even unstable. 

In [24], with participation of the author of [21], the idea of torque loop is 

abandoned for a STATCOM and the calculated frequency is based on the dc-capacitor 

voltage without any explanation for having discarded the original idea of mimicking a 

synchronous generator. As a consequence, the virtual mechanical inertia, the swing 

equation, has been directly replaced by electric energy contained on the dc-capacitor, 

distancing this way the direct utilization of already available stability calculation 

programs. Besides this alteration, a PD-controller was placed in series with the 

integrator to obtain the calculated phase, which results in a PI-controller, with the 

objective to speed up the dynamic response of the original integrator. As a rule of 

thumb, a relative value for the derivative time constant has been given. 

 

1.2 Objectives 

The objective of this thesis is the analysis of the viability of the application of 

Power Electronic Converters emulating Virtual Synchronous Generators (VSG), Static 

Synchronous Generator (SSG) with virtual mechanical swing equation, in the Brazilian 

National Interconnected Grid (SIN) with focus on the Dynamic Electromechanical 

behavior of the Static Synchronous Generator, operating as a STATCOM, in the SIN. 

The SIN was modeled in the Electro Mechanical Transient Program PSCAD for the 

simulations in the time-domain. 

This analysis contains virtual-generator parameter-variation, something 

impossible to do with real synchronous generators, to obtain better damping for 

electromechanical oscillations and transient response, hence, to obtain a more stable 

configuration. These studies were performed in the frequency domain with the program 

MATLAB/Simulink. Based on frequency domain analysis, besides determining 
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adequate parameter values, adaptations on the original controller [21] were proposed, 

were a proportional gain is added parallel to the virtual inertia. A comparison is made 

with a proposal for STATCOM operation without a virtual mechanical swing equation 

[24]. 

 

1.3 Document structure 

Chapter 2 describes the current state-of-the art in developing synchronverter 

controllers, alternative configurations, and the differences between them. 

Chapter 3 contains the proposals for controller adaptations with references to 

PSCAD simulation results of the Synchronverter in the appendix. Firstly a brief 

description of the classic controller for a non-generating synchronverter is presented. 

Then after, controller adaptations are proposed for non-generating synchronverters. 

Chapter 4 presents the results of both classic and proposed non-generating 

synchronverter controllers. These results are represented in both the frequency- and 

time-domain. 

Chapter 5 contains the conclusions and suggestions for future works, based on 

the presented analysis and results. 

 

1.4 Published and submitted contributions 

 

Non generating synchronverter: 

 

[22] E. L. van Emmerik, B. W. França and M. Aredes, "A synchronverter to damp 

electromechanical oscillations in the Brazilian transmission grid," in Industrial 

Electronics (ISIE), 2015 IEEE 24th International Symposium on, 3-5 June 2015. 

[23] E. L. van Emmerik, B. W. França, A. R. Castro, G. F. Gontijo, D. S. Oliveira 

and M. Aredes, "Synchronverter to damp multiple electromechanical 

oscillations," Proceedings of the 8th Asia-Pacific Power and Energy 

Engineering Conference, Suzhou, China, April 15-17, 2016, pp. 617-622, Mar 

2016. 
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To be submitted: 

 

 “Shunt Active Filter Operation as Synchronverter to Provide Frequency Support 
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2 Static Synchronous Generator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter describes the current state-of-the art in developing synchronverter 

controllers, alternative configurations, and the differences between them. 
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In 1997 proposed terms and definitions were given for the Flexible Alternating 

Current (ac) Transmission System (FACTS) by the FACTS Working Group [26]. The 

term Static Synchronous Generator is one of the 13 defined Shunt Connected 

Controllers by this group. It states: “A static, self-commutated switching power 

converter supplied from an appropriate electric energy source and operated to produce a 

set of adjustable multi-phase output voltages, which may be coupled to an ac power 

system for the purpose of exchanging independently controllable real and reactive 

power.”. 

A quick searching made on 18/3/2016 in the IEEE database gave 20 results for 

Synchronverter [10][19][21][22][27], 169 for VSG [6][8][9][12][13][28][29][30][31] 

[32][33][34], and 3 for Virtual Synchronous Machine with acronym VISMA [35] and 

acronym VSM [11][36]. Furthermore, the control concept of emulated inertia can be 

found in Voltage Source Converters (VSC) applied to High Voltage Direct Current 

(HVDC) [37][38]. To show the development of interest on the subject, the IEEE 

database was searched again on 12/1/2018 giving 53 results for Synchronverter, 412 for 

Virtual Synchronous Generator, 512 for Virtual Synchronous Machine, 4 with acronym 

VISMA. In other words, in less than two years, publications related to SSG with virtual 

inertia have more than doubled. 

Basically, VISMA and VSM have the same control configuration, as well is 

VSG which is a machine operating as a generator. All types use a similar kind of 

emulation of inertia through the swing equation [39]. The synchronverter has some 

particular differences in relation to the VSM and so a rough division between 

synchronverter and VSM is made in this chapter. The first section is dedicated to the 

synchronverter and the second to VSG- or VSM-like solutions. 

 

2.1 Synchronverter 

The synchronverter is one of the configurations to mimic a real synchronous 

generator and was first published in 2009 at the PSCE [40] with only simulation results 

to show the concept; one year after this idea was internationally filed for patent in [41]. 

This concept was published in a more didactic way and with experimental results in 

IEEE Transactions on Industrial Electronics in 2011 [21]. The synchronverter 

configuration and others [12][13] contain the same hardware, a basic voltage source 

inverter (VSI) with 6 Insulated Gate Bipolar Transistors (IGBTs) in 3 legs and a LCL-
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filter for the switching harmonics. A diagram [21] of this two-level inverter is found in 

Fig. 1. Although the fundamental behavior of the converter remains similar, for higher 

powers other hardware configurations are applied as, for example, cascaded multilevel 

inverters and Modular Multilevel Converter (MMC). Nevertheless, the hardware 

configuration is not object of study in this thesis. 

 

 

Fig. 1 Basic two-level voltage source inverter with 6 IGBTs in 3 legs and a LCL-filter 
[21] for illustrative purposes only. 

 

The control part of the synchronverter, as presented in [21], is shown in Fig. 2. 

 

Fig. 2  Synchronverter with active and reactive power control [21]. 
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To emphasize the control structure and to have a base for the proposed 

adaptation to this control structure, the diagram is redrawn in Fig. 3 without a physical 

interface or technical implementation. 

 

Fig. 3  Redrawn diagram as in Fig. 2 to emphasize the main active and reactive power 
channels (without technical interface blocks). 

 

In short follows the idea of emulating a synchronous generator with a Voltage 

Source Converter (VSC), as presented in [21]. The “Synchronverter mathematical 
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model” box, see Fig. 3, contains the three well known equations [39] of a synchronous 

generator and are repeated here [42]: 

 

௘ܶ ൌ ௙݅௙ܯ݌ ൥
ߠ݊݅ݏ

sinሺߠ െ 120°ሻ
sinሺߠ െ 240°ሻ

൩

்

∙ ൥
݅௔
݅௕
݅௖
൩ 		,

(2.1) 

 

 

݁௔,௕,௖ ൌ ൥
݁௔
݁௕
݁௖
൩ ൌ ௙݅௙ܯ߱ ൥

ߠ݊݅ݏ
ߠሺ	݊݅ݏ െ 120°ሻ
ߠሺ	݊݅ݏ െ 240°ሻ

൩			and	
(2.2) 

 

 

ܳ ൌ െ߱ܯ௙݅௙ ൥
ߠݏ݋ܿ

cosሺߠ െ 120°ሻ
cosሺߠ െ 240°ሻ

൩

்

∙ ൥
݅௔
݅௕
݅௖
൩ 		. (2.3) 

 

where the electrical torque, Te, relates with the pole pair, p, which is always considered 

1 in this thesis, the maximum mutual inductance between the field coil windings and 

each one of the stator coil windings, Mf, the excitation current, if, and the stator phase-

currents, ia, ib and ic. The back electromotive force (EMF), ea,b,c is linearly related to the 

angular velocity, ω, and the excitation current. Q is the generated reactive power and a 

result of the inner product of the quadrature of the EMF and the stator currents. 

The only directly measured signal that inputs the model box is the generator 

current i*. The reactive droop to the voltage Vrms
* of the voltage-controlled bus, QD, is 

zero, when Dq=0 and/or ΔV = Vref – Vrms = 0 and the additional signal for Power 

Oscillation Damper (POD), Pref = 0. Hence, in per unit (p.u.), equaling the value of MfIf 

to the value of the bus voltage at the moment of physical connection between the grid 

and the synchronverter, the synchronverter, through the integrator, will only stabilize 

when outputting zero reactive power. This means, according to equation (2.2), that the 

generated voltage amplitude, E, of the EMF only changes with the calculated angular 

velocity ω and at connection should be equal to the angular velocity of the grid, ωg. 

The last physical interconnection is through Tm, which is related to the capacitor 

dc-voltage. In case of an infinite dc-capacitor and without voltage control, the 

synchronverter maintains itself synchronized based only on the measured generator 

current. This is the basis for the proposal in this thesis, as described in item 3.3, where 

the similarity between a PLL [43] and the synchronverter is utilized. 
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The following should be noted from [21]. Since the parameters of the virtual 

generator at first can be chosen freely, the question is stated if small inertia is good for 

overall grid stability. In the next chapters this will be partially addressed. Further, [21] 

states that the energy-storage function of the synchronverter should be decoupled from 

the inertia (unlike [13]). Obviously this is only possible when the virtual mechanical 

energy is smaller than the real electric energy contained in the dc-link or that the virtual 

energy is considered for a limited time, as long as the capacitor voltage doesn’t drop 

below, or slides above, critical values. 

In [22][23] the synchronverter is applied as a STATCOM in the SIN to control 

bus voltage and to damp electromechanical oscillations based on classical POD [44] or 

Power System Stabilizer (PSS) [39] techniques. The basic structure of Fig. 3 was 

maintained, though, since a STATCOM doesn´t participate, in steady state, in active 

power to the grid, the active power droop loop was eliminated as shown in Fig. 4. 

 

Fig. 4  Diagram of original synchronverter controller for STATCOM without frequency 
droop controller as in [22]. 
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Beside the removal of the active droop loop, the signal for the virtual torque, Tm, 

was removed as well for the reported studies in [22][23]. In the next chapter the 

influence of this signal, representing variations of the dc-link capacitor voltage, is 

considered again. 

 

2.2 Virtual Synchronous Generator/Machine 

Around two and a half months before the international filing date of the 

synchronverter presented with the title SSG [41], a patent was internationally filed for 

“Control of a voltage source converter using synchronous machine emulation” [45]. 

Besides these two patents, three more patents were found. All three filed by the same 

inventors (for US only), or same company (for the rest of the world). These patents have 

7/9/2012 as international filing date and have sequential numbers, as if they have been 

filed at once. The first of them is titled “Synchronous power controller for a generating 

system based on static power converters” [46], defining a Power Loop Controller (PLC) 

with natural frequency and damping as input parameters. With small-signal modeling of 

the closed-loop transfer function of the power-locked loop (PWRLL), the Power Loop 

Controller, transfer function between ΔP and Δωref is designed as presented in [12] and 

the control diagram as presented in that paper is shown in Fig. 5. 

 

Fig. 5  Control diagram for active power synchronization with virtual admittance as 
presented in [12]. 
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In fact the first patent refers to the whole system as depicted in Fig. 5. The 

second patent is titled “Virtual Controller of electromechanical characteristics for static 

power converters” [47] and refers to the design of the PLC. 

The last patent is titled “Virtual admittance controller based on static power 

converters” [48]. While the current controller was normally based on virtual impedance, 

the authors made a breakthrough considering admittance, thus, eliminating the 

differential related to the inductance. Hence, practical problems with applying 

differentiators to measure currents were eliminated and substituted by applying a 

lagging pole {1/(Ls + R)} to the voltage difference to create the current reference. 

Further, in all three patents the idea is stated of a variety of virtual admittances 

for electrical resonances, and, a variety of virtual inertias and damping factors for 

electromechanical oscillation resonances. The implementation is based on band-pass 

filters. Publications were not found on this subject. 

In [28] the idea of [12] is repeated with the addition of a relation between the 

virtual kinetic energy and the electric energy contained in the dc-link. Further it 

contains a proposal for the decoupling of electric and kinetic energy, in case a storage 

system is present, e.g. a battery, by creating a variable capacitor through a dc/dc-

converter between the storage system and real filter capacitor. The general control 

diagram, which is a redrawn diagram of [12], is re-presented in Fig. 6 and in this case 

the virtual inertia, J, has been made explicit in the active power synchronization loop. 

Qref and Pref are determined by droop controllers with inputs, voltage deviation, 

Δv, and grid frequency deviation, Δω, respectively. Here, the first differences are found 

with the synchronverter. 
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Fig. 6  Control diagram for active power synchronization with virtual admittance. As 
presented in [28]. 

 

2.3 Differences between synchronverter and 

VSG/VSM. 

While the VSG [12][28][29][30][32][33][34] utilizes the measured voltage to 

determine the reactive and active power deviation, the synchronverter utilizes its own 

calculated voltage reference. In case of synchronverter based STATCOM in reactive 

power mode [24], ac-voltage measurement becomes obsolete. Anyway, the voltage 

measurement utilized to determine the deviation at the controlled bus for the 

synchronverter is far less critical then the one utilized by the VSG to determine the 

measured active and reactive powers. 

Another main difference between the VSG- or VSM-like SSG, and, 

synchronverter is that the first is current controlled, although some others omit the 

current controller [33][34]. The synchronverter does not need virtual impedance or 

admittance, unless one chooses to omit a PLL for grid connection [10] and in this case 

the virtual admittance is only utilized before physical connection with the grid. 

Therefore, in all cases the synchronverter is more naturally seen as a real synchronous 

generator then the VSG. This is especially seen in the difference of determining the 
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back electromotive force by the synchronverter and the other VSGs. The synchronverter 

adjusts the amplitude of the EMF, see Fig. 4, based on the machine equations, see (2.2) 

and (2.3). While the back electromotive force for the other VSGs is directly determined 

through a PI-controller with the reactive power difference as input, between an 

externally measured reactive power and a reference signal, without considering the 

internal virtual rotation ω. Anyway, the proposed synchronverter controller for 

STATCOM application operates also well with instantaneous reactive power calculation 

for the controlled bus as can been seen in the next chapters. 
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3 The non-generating synchronverter 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter describes the particularities of the synchronverter that doesn´t have 

an electric energy source to maintain its capacitor voltage regulated. Firstly, transfer 

functions are developed, with the aim to take into account system frequency resonance. 

Secondly, a classic solution is shortly presented. After that an adaption is proposed to 

the classic synchronverter controller to make it suitable for non-generating applications 

in power systems. 
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As mentioned before, and confirmed in [20][21][49], the frequency droop loop 

has a stabilizing effect on a generator. From Fig. 3 it is straightforward to determine the 

following small-signal transfer function: 

 

Δω/ΔT = (1/Dp)/(1 + Js/Dp),        (3. 1) 

 

with J = 2H (s), when the electrical- and mechanical-torque are given in p.u.. With (3.1) 

it can be understood that when [21] states that Dp contains the mechanical friction, it is 

the friction for small deviations around the operation point, ωref, since the part of the 

damping torque related to mechanical friction is linear with the angular velocity. With 

the linearization of the frequency droop loop of Fig. 3, the reference is eliminated, as 

can be seen in (3.1). Thus, in the small-signal equation, damping from the amortisseur 

or other damping circuits can be inserted in the damping coefficient, Dp, as well 

[50][51][52][53][54]. This statement cannot be sustained for the complete control 

diagram of Fig. 3, the large-signal model, where the frequency droop, Dp, only can 

stand for frequency droop as used in real generators, since the damping torque, TD, in 

this diagram, is related to deviations with respect to a reference for angular speed, ωref 

[21]. Whereas the damping of the amortisseur, which operates similarly as a squirrel 

cage in an induction machine, is related to the time derivation of the difference between 

the angular velocity of the rotor and the bus. Therefore, when controlling the converter 

as a synchronous machine, the torque originated from the amortisseur should be 

obtained with frequency measurement at the bus. This idea is running away of the 

original idea of utilizing a synchronverter to avoid the use of PLLs. At last, the part of 

the damping torque related to mechanical friction and windage is linear with the own 

angular velocity, thus in this case, referring to Fig. 3, ωref, should be zero. 

For all non-generating converters with synchronverter control, the frequency 

droop, Dp, has to be zero when related to ωref as given by secondary controllers or fixed 

preset values [42], since these converters can´t contribute in steady state with electrical 

power due to the lack of an energy source at the dc-side of the converter. Damping from 

amortisseurs is not considered either to avoid the need of PLLs as mentioned before. 

This leaves the mechanical damping, from the three damping factors mentioned 

above, to utilize as a damping factor, since, when Dp is equal to zero, (3.1) becomes 

purely integrative. Then, the main loop, responsible for synchronization with the grid, 
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from ΔT to Δθ, becomes a double integration leading to an undamped oscillation. 

Although for electrical machines this damping factor in p.u. is typically between 0.0 and 

0.05, where 0.0 means no frictional losses, for a static compensator this value at first 

can be chosen freely, since it is not related to a physical construction. 

Utilizing (3.1) as a controller, thus besides an equation to describe small signal 

deviations, does not seem a very effective way to control a static compensator. This 

controller is a linear first order low band pass filter with gain 1/Dp for steady state and 

for frequencies higher than J/Dp the controller becomes a pure integrator 1/(Js) again. 

Therefore, another solution will be investigated in item 3.3, where this solution is 

proposed to create virtual damping again to emulate damping effect. 

Before the “Classic” solution is described in item 3.2, and the proposed one in 

item 3.3, some particularities in relation to the power system will be derived in the next 

item. Though, the developed transfer functions are valid for any network fed by two 

voltage sources at the extremities of passive series electric network elements, see Fig. 7, 

these are especially important for low resistance (X/R > 10) power systems. 

 

 

Fig. 7 Passive network with a controlled voltage source at one extremity controlling the 
voltage amplitude at the voltage controlled bus and an infinite bus, representing the 
grid, at the other extremity. 

 

3.1 Power System 

The authors of [31] determined a transfer function for Δδ to ΔP, HPδ (s), 

considering the flux dynamics for a VSC connected to an infinite bus by impedance, Z. 

When the conventional equation for controller project is: 

 

H’୔ஔ 	ൌ
୉୙

ଡ଼
cosδ଴	,	 	 	 	 	 	 	 	 ሺ3.	2ሻ	
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where many authors even consider worst case with δ0 = 0, no resonance effects will be 

obtained. Though, considering the flux dynamics and applying Park transformation, it 

becomes clear that when s = -jωs, jX + sL becomes zero. Hence, the denominator of the 

complete transfer function HPδ will only have the term R for the system frequency. 

From here on in [31], a swing equation is added in series with HPδ, and then the 

complete transfer function for the VSG, Hvsg (s), is derived for the reference active 

power change, ΔP*, to the actual active power change, ΔP. The authors show the 

relation between the gain of the total system and the parameters, active droop, Dp, the 

virtual inertia, J, and, the resistance, R = Rc + Rg, of the impedance between the two 

voltage sources. 

The droop Dp is normally given by the operator, and, in case of STATCOM or 

active filter operation Dp is even equal to zero. So, the experiments were conducted with 

increased J and R. Increasing J is easy, since it is already a virtual parameter. Though, a 

controller is applied with virtual resistance, Rv, to avoid dissipating energy in a real 

inserted resistance. 

Now, this contribution is valid to determine the cause of the resonance. It is 

straightforward to see that this resonance only is relevant in case of fast 

controllers/converters acting in the range of the system frequency. And, since, for the 

system frequency the denominator of HPδ (s) is equal to the resistance value, the effect 

will be more relevant in relatively low resistance networks like power systems. 

Although, STATCOM and active filters do have a power control block diagram, 

since the dc-voltage has to be controlled, it is not the main function of these FACTS. 

Both mentioned above have the same main function, which is controlling the voltage on 

a bus, were the latter also compensates harmonics, which is out of the scope of this 

thesis. Therefore, the other three transfer functions, HδQ, for Δδ to ΔQ, HEQ, for ΔE to 

ΔQ, and HEP, for ΔE to ΔP, have to be derived with which a minimum time constant for 

the reactive power loop can be determined. 

Firstly, the transfer function for Δδ to ΔP, HδP, where in this thesis the more 

common annotation is adopted for transfer functions where the first symbol in the 

subscript indicates the input deviation, Δδ, and the second subscript the output 

deviation, ΔP, is repeated for facilitation: 

 

Hஔ୔ ൌ
∆୔

∆ஔ
ൌ ଷ

ଶ
∙ ୟಌౌୱ

మା	ୠಌౌୱାୡಌౌ
ሺୖାୱ୐ሻమାଡ଼మ

 ,      (3. 3) 
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where 

 

ܽஔ୔ ൌ
ா௅మ

ோమൊ௑మ
ሺെܺܧ ൅ ܷܴ sin ଴ߜ ൅ ܷܺ cos   ଴ሻߜ

ܾఋ௉ ൌ 2 ∙ ாோ௅

ோమൊ௑మ
ሺെܺܧ ൅ ܷܴ ݊݅ݏ ଴ߜ ൅ ܷܺ ݏ݋ܿ 		଴ሻߜ 	 	 	 ሺ3.	4ሻ	

ܿஔ୔ ൌ ܴܷܧ sin ଴ߜ ൅ ܷܺܧ cos  , ଴ߜ

 

where the subscript “0” indicates the equilibrium point where around the 

linearization has been performed. When neglecting R, R≈0, and for the low frequency 

range, s≈0, (3.3) becomes (3.2) again as expected. 

The transfer function for Δδ to ΔQ, HδQ, can be derived in a similar way as HδP 

has been derived in [31]. Therefore starting with the instantaneous reactive power of the 

VSG [55][56][57]: 

 

Q ൌ	 ଷ
ଶ
ሺe୯. iୢ െ eୢ. i୯ሻ		 	 	 	 	 	 	 ሺ3.	5ሻ	

 

For small deviation (3.5) becomes: 

 

∆Q ൌ 	 ଷ
ଶ
ሺ∆e୯. iୢ଴ ൅ e୯଴. ∆iୢ െ eୢ଴. ∆i୯ െ ∆eୢ. i୯଴ሻ		 	 	 	 ሺ3.	6ሻ	

 

Since the terms of (3.6) are all equal to those for the linearized equation for ΔP 

in [31] the algebraic manipulation leads to HδQ with the same denominator as HδP and 

with similar numerator terms as in (3.4): 

 

Hஔ୕ ൌ
∆୕

∆ஔ
ൌ ଷ

ଶ
∙
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ሺୖାୱ୐ሻమାଡ଼మ
	,	 	 	 	 	 	 ሺ3.	7ሻ	

 

where 

 

ܽஔ୕ ൌ
ா௅మ

ோమൊ௑మ
ሺܴܧ ൅ ܷܺ sin ଴ߜ െ ܷܴ cos   ଴ሻߜ

ܾఋொ ൌ 2 ∙ ாோ௅

ோమൊ௑మ
ሺܴܧ ൅ ܷܺ ݊݅ݏ ଴ߜ െ ܷܴ ݏ݋ܿ ଴ሻߜ െ 		ܮଶܧ 	 	 ሺ3.	8ሻ	

ܿఋொ ൌ ܷܺܧ ݊݅ݏ ଴ߜ െ ܴܷܧ ݏ݋ܿ 		଴ߜ
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Now, for small input deviation ΔE, →݁ and →݅ must be linearized with respect to 

∂E. Repeating the expressions of [31] given for →݁ separated in the d and q axes: 

 

edo = E cos δ଴ , eqo = E sinδ଴ ,      (3. 9) 

 

where the infinite bus voltage ݑ→ is positioned entirely in the d-axis. Then 

applying the partial derivation with respect to ∂E on (3.9) leads to the following 

linearization: 

 

∆݁ௗ ൌ
డ௘೏
డா

ܧ∆ ൌ 	 cos δ଴  

                     (3. 10) 

∆݁௤ ൌ
డ௘೜
డா
ܧ∆ ൌ 	 sin δ଴  

 

After linearizing →݅ from [31] with respect to ΔE the small deviation expressions 

utilizing (3.10) follow as: 

 

∆݅ௗ ൌ 	
ሺோା௦௅ሻ ୡ୭ୱஔబା௑ ୱ୧୬ஔబ

ሺோା௦௅ሻమା௑మ
  ܧ∆

                     (3. 11) 

∆݅௤ ൌ 	
ି௑ ୡ୭ୱஔబାሺோା௦௅ሻ ୱ୧୬ ஔబ

ሺோା௦௅ሻమା௑మ
  ܧ∆

 

With (3.9), (3.10), (3.11) and the steady state operating points for →݅ given in 

[31], the transfer function for ΔE to ΔQ is given by: 
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where 
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ܿாொ ൌ െܷܴ ݊݅ݏ ଴ߜ െ ܷܺ ݏ݋ܿ ଴ߜ ൅ ܺܧ2 ൌ ି௖ഃು
ா

൅ 		ܺܧ2

 

For the fourth and final transfer function from ΔE to ΔP, HEQ, the linearized 

equation of the instantaneous active power equation of [31] have to be used again as 

was used to determine (3.3). Only this time the derivations should be as in (3.10) and 

(3.11) as for the determination of HEQ, since the linearization is with respect to ΔE. 

Then HEQ follows as: 

 

H୉୔ ൌ
∆୔

∆୉
ൌ ଷ

ଶ
∙ ୟుౌୱ
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where 
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ா
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Although the complete expressions are utilized for numeric analysis in the next 

chapter, one approximation for visual analysis can be made for non-generating devices. 

Whereas, the load angle, δgb, between the infinite bus and the controlled voltage bus can 

be large, caused for example by loads on this voltage controlled bus, the load angle, δ, 

caused by loading the non-generating device in relation to the infinite bus is very small. 

In a linear network with respect to small deviations this load angle can be considered 

equal to zero. Equations (3.4), (3.8), (3.13) and (3.15) then become: 
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ܾ′ఋொ ൌ 2 ∙ ாோమ௅

ோమൊ௑మ
ሺܧ െ ܷሻ െ 		ܮଶܧ 	 	 	 	 											ሺ3.	17ሻ	

ܿ′ఋொ ൌ െܴܷܧ		

 

 

ܽ′୉୕ ൌ
௅మ௑

ோమൊ௑మ
ሺܧ െ ܷሻ ൌ ି௔ᇱಌౌ

ா
	  

ܾ′ாொ ൌ 2 ∙ ோ௅௑

ோమൊ௑మ
ሺܧ െ ܷሻ ൌ ି௕ᇱഃು

ா
		 		 	 	 	 											ሺ3.	18ሻ	

ܿ′ாொ ൌ ܷܺ ൅ ܺܧ2	 ൌ ି௖ᇱഃು
ா

൅  	ܺܧ2

 

 

ܽ′ா௉ ൌ
௅మோ

ோమൊ௑మ
ሺܧ െ ܷሻ ൌ

௔ᇱഃೂ
ா

  

ܾ′ா௉ ൌ 2 ∙ ோమ௅

ோమൊ௑మ
ሺܧ െ ܷሻ ൅ ܮܧ ൌ

௕ᇱഃೂ
ா
൅ 		ܮܧ2 	 	 											ሺ3.	19ሻ	

ܿ′ா௉ ൌ ܴሺ2ܧ െ ܷሻ ൌ 
௖ᇱഃೂ
ா
൅  ܴܧ2

 

The poles are given in [31] and for facilitation are repeated here: 
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With (3.17) the natural frequency, ωn, and the damping, ξ, can be calculated: 
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With (3.18) and (3.19) it is evident that in power systems, which have X/R > 10, 

the natural frequency of the system, for transfer from δ or E to either P or Q, is close to 

the system frequency. Besides, the system frequency resonance for those power systems 

are poorly damped with ξ < R/X < 0.1. 
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3.2 Classic solution 

Here the solution of Nguyen, Zhong, Blaabjerg and Guerrero [24] will shortly be 

presented and commented. This is the only paper found with respect to a STATCOM 

with synchronverter controller. After Zhong has repeated his classical synchronverter 

controller [21], the contribution in this paper related to the synchronverter is an option 

with two switches for choosing between reactive power control, voltage control and 

voltage-droop control. Then the feedback of the electrical torque is abandoned and the 

angular velocity is directly derived with a PI-controller from the dc-voltage difference. 

This concept is based on changing the load angle, δ, between the STATCOM terminals 

and the controlled bus to maintain the dc-link voltage constant, normally to cover 

switching losses and dissipation in the power circuit components of the STATCOM 

[58]. 

Only simulation results are presented in [24]. Two cases were simulated. Firstly, 

the STATCOM switches between reactive power control to voltage control and then 

droop control. Secondly, when the STATCOM enters in voltage control, 4% step-

changes on the angular velocity of the ideal source, representing an infinite bus, are 

applied. When simulated with values more typical of a transmission grid the 

performance seem to be poor because of higher X/R values. The gains were adjusted by 

PSCAD simulations, as shown in item 4.2, to the best. Compromise between oscillation 

of dc-voltage controller, needing higher loop gain, and synchronous frequency 

resonance [31], limiting the bandwidth because of resonance peak on system frequency. 

 

3.3 Proposed solution 

As mentioned before, a STATCOM without energy storage doesn’t have an 

active power droop controller, since its function is only to support with reactive power. 

A derivative operator on the frequency droop avoids contribution in steady state, though 

pure derivations applied in digital signal processing can lead to nasty spikes. This can 

be mitigated by adding a real pole to the pure derivation operator, as shown in Fig. 8, 

hence, leading to delays, which can be significant for applications where energy 

contributions are expected just for transients. Furthermore, while it might work for 

transient power contribution, because of the lagging derivation there is no indication 

that it can be effective for internal angular velocity damping. 
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Fig. 8 Diagram of original synchronverter controller [21] with a derivative droop in 
red. 

 

To avoid this problem, dynamics can be improved by utilizing a PI-controller 

instead of a pure integrator to calculate ω, as shown in Fig. 9. Hence, a PLL is found as 

in [43] and all of the experience gained with this PLL can be applied to dimension the 

PI-controller in the synchronverter. Later it was found that the concept of adding a 

proportional gain P in an indirect way in [32] was applied to VSG. Positive results in 

this control concept were obtained. 
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Fig. 9  Diagram of original synchronverter controller for STATCOM in black as in [22] 
with proposed proportional gain in red for stability purposes and speeding up 
transients. 

 

While in [22] and [23] the dc-capacitor was considered infinite and, thus the 

diagram of Fig. 4 was utilized to control the converter, in this thesis a dc-capacitor is 

considered. Therefore, the mechanical torque signal was introduced again as in the 

original synchronverter configuration as shown in Fig. 3. 



 27

 

Fig. 10 The proposed synchronverter controller with signal for virtual mechanical 
torque, Tm, to compensate for physical losses in the VSC. 

 

The last stage of the diagram is given in Fig. 11. Three differences with Fig. 10 

can be noted. Firstly, the diagram was converted from generator to motor convention 

and parameter name adaptations, since a STATCOM has no generator unit at its dc-side. 

Some papers can be found with generation configurations, though, to the author´s 

knowledge, in practice such an operative configuration is inexistent and not object of 

this thesis. Thus, a STATCOM, in steady state, only absorbs active power. 

Secondly, the mechanical torque signal is detailed by a simple proportional 

controller applied to a voltage difference on the capacitor. An integrator with high time 

constant, in relation to J = 2H (s), can be applied in parallel to the proportional gain 

when a zero steady state error is desired. This can be considered as a secondary 
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controller [42] when a dc-capacitor is seen as an equivalent of mechanical inertia of 

synchronous generators, which contains a kinetic energy in function of the angular 

velocity. The time constant of the integrator can be seen as an equivalent of the time 

constant of a secondary controller and the reference signal, Vdcref, has its equivalent in 

the frequency reference signal of synchronous generators. 

Finally, the reactive loop gained two additional parameters. A set-point for the 

reactive power, Qset, was added. And an own gain, DQ, for the difference between the 

reactive power with its set-point was included according to [24]. In Fig. 10, Qset was 

considered equal to zero and DQ equal to one. 

 

 

Fig. 11 The proposed synchronverter controller adapted to motor convention and 
parameter name adaptations, with input for dc-voltage control to compensate for 
physical losses in the VSC, and reactive power control. 
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The loop for small deviations in active power reference, ΔP*, to small deviations 

in output active power, can be closed with the synchronverter based controller for 

STATCOM, as given in Fig. 11, and the plant for the relation between small deviations 

in load angle, Δδ, and small deviations in active power, ΔP, transfer function HδP, as 

given in (3.3) and (3.4). The active power control block diagram is given in Fig. 12. 

With this diagram, root locus for different values of the proposed gain KPω and the 

inertia 2H can be obtained as well as for different X/R values. 

 

 

Fig. 12 Active power control block diagram with linearized plant HδP for controller 
project for STATCOM with proposed controller. 

 

The newly developed transfer function, HEQ, for small deviations in the generated 

amplitude of the converter voltage, ΔE, to small deviations in reactive power, ΔQ, as 

given in (3.12) and (3.13) was used to close the loop for reference signal for reactive 

power, ΔQ*, to actual reactive power, ΔQ. The reactive power control block diagram 

can be found in Fig. 13. Limit value for gain Dq.Kif can be obtained, giving thus the 

smallest possible time constant that can be applied. 

 

 

Fig. 13 Reactive power control block diagram with newly developed linearized plant 
HEQ for controller project for STATCOM. 

 

The block diagrams of Fig. 12 and Fig. 13 can be connected together utilizing the 

disturbance transfer functions from Δδ to ΔQ, HδQ, as in (3.7) and (3.8), and from ΔE to 

ΔP, HEP, as in (3.14) and (3.15). The obtained result is given in Fig. 14 and was 
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implemented in Simulink to verify the significance of these disturbances on the results 

of the isolated power control blocks of Fig. 12 and Fig. 13. 

 

 

Fig. 14 Active- and reactive-power control block diagram connected with the 
disturbance transfer functions between the active- and reactive-loops as modeled in 
Simulink. 
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4 Results and analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter gives the results of both classic and proposed non-generating 

synchronverter controllers. These results are represented in both the frequency- and 

time-domain and is accompanied by analyses and suggestions  



 32

4.1 Frequency domain 

 

In this item some results can be found for the proposed synchronverter, item 3.3, 

considering system frequency resonance, item 3.1, for the frequency domain. For the 

active- and reactive-power loops, root loci, and phase- and gain-margin plots were 

generated in function of the controller gain. The presented results serve as a base for the 

simulations of the Brazilian National Grid in item 4.2. The plots were made for the 

following parameters: J = 2H = 1 s, X/R = 50 at 60 Hz. This ratio is equal to the actual 

transformer at Bom Jesus de Lapa where nowadays a SVC is connected to the 500 kV 

grid. In the simulations the converter inductor was considered with the same X/R ratio. 

In Fig. 15 the root loci for the closed loop of ΔP/ΔPref can be found for different 

values of kpω. For zero value of this proposed gain the poles are located on the black 

crosses. While increasing the value, the path via the blue dots is heading to the red 

crosses. As expected, 2 pole pairs are found for each gain kpω. One pole pair is related to 

the system frequency resonance and has a value close to the system frequency of 377 

rad/s and starts on the stable side of the s-plane. Whereas, the pole pair related to the 

virtual inertia starts at the right half side of the s-plain. While increasing the proposed 

gain, kpω, the virtual inertia becomes a stable pole pair as well. Nevertheless, when 

increasing the gain too much, the system frequency resonance becomes unstable. As can 

be seen in the figure, indicated by the last sixteen blue dots before the red crosses, this 

will occur before the swing equation becomes overdamped. 

For every calculated root locus as a function of kpω the phase- and gain-margins 

were calculated as well. The results for open loop transfer function belonging to the 

roots of Fig. 15 can be found in Fig. 16. The system was found to be stable for 

0.00107 < Kpω < 0.0122. 
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Fig. 15 Pref to P. System frequency resonance pole pair starts (black cross) stable and 
goes with higher gain kpω towards (red cross) instability. Pole pair of synchronverter 
starts instable and goes with higher gain towards stability. R = 0.00686 Ω. 
L = 0.00091 H. J = 2H = 1 s. Kpω from 0 to 0.1. 
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Fig. 16 Pref to P. Phase and Gain Margin as a function of Kpω. R = 0.00686 Ω, 
L = 0.00091 H, J = 2H = 1 s. Stable for 0.00107 < Kpω < 0.0122. 

 

For the reactive power loop the root loci as a function of Kif, see Fig. 13, can be 

found in Fig. 17. The reactive loop only has one pole of the controller integrator and the 

pole pair of the system frequency resonance. Thus the pole starts in zero for zero gain. 

The pole pair for the transfer function related to the open loop transfer function is 

similar to the one for the active power, since the denominators are equal. Again the gain 

is limited by the pole pair related to the system frequency resonance. 
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Fig. 17 Qref to Q. System frequency resonance pole pair starts (black cross) stable and 
goes with higher gain Kif towards (red cross) instability. Pole of synchronverter starts 
in zero. R = 0.00686 Ω, L = 0.00091 H. Kif  from 0 to 10. 

 

The phase- and gain-margins were calculated for the reactive power loop as well 

in function of gain Kif as can be found in Fig. 18. For value of Kif < 4.37 the system 

frequency resonance is stable. This means that the time constant for the reactive control 

has to be greater than 230 ms for grids with X/R higher or equal to 50. 
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Fig. 18 Qref to Q. Phase and Gain Margin as a function of Kif. R = 0.00686 Ω, 
L = 0.00091 H. Stable for Kif < 4.37. 

 

4.2 Time domain 

 

Firstly, simulations of the proposal for STATCOM with synchronverter based 

control of Nguyen, Zhong, Blaabjerg and Guerrero [24] (see item 3.2) are compared 

with the proposal of this thesis (see item 3.3). No other references were found with 

synchronverter based controllers for STATCOM operation. After the comparison, the 

power system is simplified to examine rapidly the influence of parameters of the 

synchronverter/STATCOM. At last simulations are performed with a significant part of 

the Brazilian Power system with the synchronverter in STATCOM operation and power 

oscillation damping function based on [22] and [23]. 

 

For a fair comparison with [24], the model for the power system used in that 

paper was the base for the model used in PSCAD for the comparison between the 

classic solution and the proposed solution. [24] gives information on voltage levels, 

nominal active and reactive powers, transmission line length and feeder length. No 

information is given on the R and X values of the grid. 
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Therefore, the elements of the modeled Brazilian power system were utilized as 

a base for modeling the system of [24]. The real transformer at Bom Jesus de Lapa 

connecting nowadays a 250 MVA/17.5 kV SVC to a 500 kV bus, was base for the L and 

R values in the system (see Fig. 19). Therefore, all the elements have been scaled to 

500 kV, with exception of the STATCOM elements which were scaled to 17.5 kV (see 

Fig. 20). The impedances of the transmission line and feeder are based on the short-

circuit impedance, 0.178 H and 4.77 Ω, seen nowadays (2007) by the SVC. To obtain 

values for the grid angle, θg, on the voltage controlled bus in Bom Jesus de Lapa, 

comparable with the results in [24], this short circuit was doubled and 10% of the short-

circuit impedance was added to represent the feeder. Though, the X/R ratio was kept 

unaltered in 14.1. The simulations in [24] were performed with a STATCOM 

configuration with an apparent power, SSTATCOM CLASSIC, of 5 MVA. Since, in this thesis 

all the simulations were performed with a STATCOM with an apparent power, SSVC, of 

250 MVA, all the powers of the loads in the model of [24] were multiplied with 50. 

 

 

Fig. 19 Test bed based on [24]. Values of series elements were not given. Loads were 
scaled with Snom. 

 

All simulated variables in the simulation were utilized in their instantaneous 

form, with only one exception. Although the voltage at the 500 kV side at Bom Jesus de 

Lapa is also calculated and shown in its aggregated form, this cannot be used as a 

control signal for the synchronverter [21], since the ripples caused by unbalances on the 
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terminal voltages can imply instability. Therefore, the digital measurement function of 

the PSCAD meter was used (Fig. 20). This signal, an aggregate value of a moving 

average of the three line voltages, was transmitted to the “Ideal Statgen” module. 

 

 

Fig. 20 Inside of the module SVC_BJL of Fig. 19. Transformer data based on 
transformer in operation at Bom Jesus de Lapa (BH), connecting SVC to the 500 kV 
transmission grid. Signal V_rms, RMS value of the voltage at the high-voltage side, #1, 
of the transformer, measured at the AV-meter is sent to the module “Ideal Statgen”. 

 

The modeling of the hardware part inside this module is shown in Fig. 21. For 

not studying the switching behavior, also [24] used the IGBT models in average mode, 

a capacitor is omitted in the LCL-filter and the L-values were considered to be equal, 

which was found to be a common practice. The capacitor of an LCL-filter does not give 

significant reactive support at the system frequency. 

The generated voltages are considered to be independent of the voltage level on 

the dc-link. In other words, the switching strategy is based on a division of the 

amplitude modulation ratio by the capacitor voltage. Therefore, the generated voltages, 

Vref_A,B,C, are equal to ea,b,c, and only dependent of the variables as given in (2.2). The 

meter in Fig. 21 is only utilized for synchronization purposes and for analysis of the 

calculated load angle. The converter current is measured through the breaker, BRK. 

With exception of the Brazilian power system simulation, at all simulations the breaker 

closes at 0.9 s, and remains closed. 
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Fig. 21 Inside of the module Ideal Statgen of Fig. 20. Motor convention is adopted. 
Synchronverter current is measured at breaker BRK. 

 

Since, electronic switches, e.g. IGBTs, are not modeled, because harmonics are 

out of the scope of this thesis, a mathematical model of the dc-link capacitor was 

developed, as can be found in Fig. 22. The energy, Einv, entering the converter at the 

ideal voltage sources, is a result of integrating the instantaneous power, which is 

calculated by the inner product of the measured current in the breaker, BRK, and the 

reference voltages, Vref_A,B,C. The model is derived from the equation Etot=½CVdc
2. 

The total energy, Etot = Einv – Erdc, is equal to the energy entering the 

converter terminals less the energy dissipated in a resistor in parallel with the capacitor. 

The dissipated energy is equal to the integral of the dissipated power, Prdc, in the 

resistor, where Prdc= Vdc
2/R. The parallel resistor stands for an approximation of the 

switching losses and dissipation in all the elements of the converter and the power loss 

is only a function of the capacitor voltage. For studies with focus on the influence of the 

capacitor voltage on the system, the converter current should be considered as well. In 

the case of a STATCOM this current is practically linearly related to the reactive power 

generation and therefore a time constant in the order of seconds for power systems. 

Thus, the value of Rdc was assumed to be constant and equal to 316 Ω. This 

value gives a loss of 1.6% of the nominal apparent power of the converter at a nominal 

ABC

V
A

BRK
OPEN = 1

CLOSED = 0 @0.9 s

R=0
V

Vref_A

Vref_B

Vref_CBRK

R=0
V

R=0
V

breaker_statgen
Timed
Breaker
Logic

Open@t0

0.000455 [H]

Sbase          = 250 MVA
Vllrmsbase = 17,5 kV
Vfpicobase = 14,289 kV
Ifpicobase   = 11,664 kA
Vdcbase     = 35.8 kV



 40

dc-voltage, Vdcbase, of 35.8 kV. The capacitance C of the dc-link capacitor is assumed 

to be 10 mF, which corresponds to 2H = 50 ms, though the small signal behavior is not 

influenced by the capacitor value. These three values remain constant in these thesis. 

 

 

Fig. 22 Mathematical model to calculate the voltage difference, in p.u., on the dc-
capacitor, DVdc, based on the integrated active power entering the converter, Einv, and 
the integrated power consumption in a resistor parallel to the capacitor, Erdc, 
representing energy losses due to switching and thermal losses in all the components 
behind the converter terminal (motor convention). 

 

Comparison between [24] and thesis proposal 

 

For the first simulations on the comparison with the proposal of [24], the only 

found publication for synchronverter based controllers applied to STATCOM operation, 

the generator convention was adopted for better comparison with [24]. As mentioned 

before, two simulations were performed. The first simulation is on voltage control 

variations without mentioning when the converter connects. Thus, the converters, both 

classic as thesis proposal, are connected at t = 0.9 s, which was found to be early 

enough for the system entering in steady state at t = 1.5 s. Both simulation sessions in 

[24] show the results starting from this time. 

The STATCOM starts to control voltage at t = 2 s, firstly with Q-control with 

Qset from 0 to -150 Mvar. At t = 3 s, the control was switched to V-control to control Vg 

to 1 p.u. While at t = 4 s, the droop-control, both Q- and V-control, was actioned. 

Finally, the simulation stops at t = 4.5 s. 

The results with this thesis proposal are shown in Fig. 23 and the same format 

and order was maintained to facilitate comparison with [24]. As mentioned before, the 

grid values are different and scaling of the power has been applied. The time constant of 
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the Q- and V-control could not be made smaller with respect to the system frequency 

resonance (see item 4.1). 

 

 

Fig. 23 Results to compare with the first simulation set concerning the voltage 
regulation of Nguyen et al in paper [24]. Generator convention. 

 

Besides the variables as presented in Fig. 23, other variables more related to the 

synchronverter are presented in Fig. 24. The first window displays the electrical torque 

at the converter terminals, T_e, the generated power in p.u., Pinvpu, which is equal to 

ω.T_e, and, the mechanical torque, Tm. The last was determined not only by a gain 

applied to the dc-voltage difference, DVdc, see Fig. 11 and Fig. 22, but parallel to kpdc 
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was placed an integrator for better comparison with [24], where the dc-voltage also 

returns to the nominal value in steady state. The second window displays the calculated 

reactive power, Q, of the synchronverter, while the measured one at the breaker of the 

converter with a simple LP-filter (lagging real pole), Qinvpu. The instantaneous reactive 

power, Qgpu, was calculated going out of the controlled bus. At the third window a 

representation of the filtered voltage, V_{col}, at the controlled bus and the aggregated 

value, V_agg. Below that one, the aggregated voltage before the LCL filter, Vl_agg, and 

the virtual flux amplitude Mfif, M_fi_f. Since the angular velocity of the synchronverter, 

w_{eag}, is very close to 1 p.u., as shown in the last window, the voltage amplitude and 

Mfif are practically equal. With a standard PLL the frequency was measured too at the 

same place as Vl_agg, denominated as w_{grid}. The damped frequency oscillation on 

w_{eag} is according to item 3.1, and, therefore, the damping is determined by the grid 

elements and the value of ΔQref determines the initial amplitude of the frequency 

oscillation. In Fig. 24 this is the largest at t = 3 s, as can be seen as well for Qgpu. Those 

are present as well on the torque, but are hardly visible on the chosen scale. 

 

 

Fig. 24 Variables of the synchronverter during the simulation as in Fig. 23. Generator 
convention. 
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Thus, for a fairer comparison, the control strategy of [24] was implemented in 

PSCAD as well, to simulate it in the same grid. Their time constants and gains were 

used and scaled as a starting point. They were adjusted according to 4.1. See Fig. 25 for 

the active control loop as in [24]. As described in that paper, a PD-controller was put in 

series with the integrator for theta with a time constant 5 times the fundamental 

frequency (in [24] is equal to 50 Hz, but adapted in this thesis to 60 Hz). The given 

reason for this insertion is to speed up the simulation. For fair comparison this was tried 

for the thesis proposal as well. Though, since the proposal already has a proportional 

gain in parallel with the inertia (integrator), this gain had to be reduced to only 5.10-6. 

Even appearing an insignificant value, later in simulations it was found to be the cause 

of small damped system frequency oscillations at connection of the converter and was 

removed. The system frequency oscillation at connection was smaller though than the 

ones caused by reactive power changes. 

 

 

Fig. 25 The active control loop of [24] modeled in PSCAD for comparison with the 
thesis proposal. 

 

In Fig. 26 the results of the controller solution of [24] are shown. The results of 

the thesis proposal shown in Fig. 23 present an overdamped inertia, or in fact what can 

be seen is that no oscillation related to the virtual inertia is present on the capacitor 

voltage or Pinv. Besides this fast capacitor voltage control of the thesis proposal, the 

system frequency resonance is still damped with the high controller gain. While the 

poorly damped oscillation, leading to a high overshoot, on the capacitor voltage from 

the control without electrical torque feedback needs a higher controller gain, Fig. 26 

shows that this will lead to instability in the system frequency resonance with a high 

time constant. 

w_eag 1
sTBRK

A

B
Ctrl

Ctrl = 10.0 B
+

D +

theta_startup

w_eag theta

1.0
w_refB

+
D +

I

P

DVdc
p.u.

*
C

DV
dc

*
sqV

*
0.004

Kp was 100
Ki was 10000

B
+

F
+

Dw
_e

ag *
31.4159

10pi

Kp= 0.2
Ki = 20



 44

 

Fig. 26 Results from the controller of [24] applied to a system with high X/R values for 
the voltage control simulation. 
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The simulation from [24] related to frequency swings in the infinite voltage 

source are performed with the frequency profile, fg, as shown in Fig. 27. In a similar 

way as in that paper, the steps are 4% up and 4% down. The first step at t = 2 s occurs at 

the same moment as the habilitation of voltage control to 1 p.u. 

 

 

Fig. 27 Frequency variation on the infinite bus source. 
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The load angle in relation to the infinite bus based on a frequency of 60 Hz, θm, 

Thetam in Fig. 28, of the synchronverter follows very closely the load angle of the 

voltage controlled bus in relation to the infinite bus, θg, Thetag in Fig. 28. This can even 

better be seen in the last window of Fig. 28. The difference between these load angles, 

delta, only present the same damped system frequency resonance as in Pinv (second 

window), as expected. 

 

 

Fig. 28 Proposed controller of this thesis for the frequency track simulation in a system 
with high X/R. 
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The results for the frequency steps with the classic control are shown in Fig. 29. 

The oscillation of the PI-control to regulate the capacitor voltage remained the same as 

expected. Nevertheless, the frequency changes seem to cause even more instability to 

the system frequency resonance than the reactive power changes. 

 

 

Fig. 29 Results with the controller of [24] for the frequency track simulation in a system 
with high X/R.  

 

  

Statgen,Power,svcBJL,Main : Graphs

x 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 

34.0 

35.0 

36.0 

37.0 

38.0 

 (k
V)

Vdc

-300 
-200 
-100 

0 
100 
200 
300 

 (M
W

)

Pinv

-200 
-100 

0 
100 
200 

 (M
Va

r)

Qgm Qg

0.850 
0.900 
0.950 
1.000 
1.050 
1.100 

y 
(p

.u
.)

V_{col} V_agg

-200 

-100 

0 

100 

200 

 (d
eg

re
es

)

Thetag Thetam

-10.0 

-5.0 

0.0 

5.0 

10.0 

 (d
eg

re
es

)

delta



 48

In Fig. 30 the simulation results are shown for the same case, but this time some 

resistance was added to the breaker. Now, it is evident that the controller can work 

properly too. The system frequency resonance is damped for lower X/R and the PI-

controller can be applied with more gain to damp the capacitor voltage oscillation. 

 

 

Fig. 30 Results with the controller of [24] for the frequency track simulation in a system 
with lower X/R. 
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Simple system simulations 

 

Reactive control variations of STATCOM 

 

After the presented comparison between the thesis proposal and [24], and before 

the Brazilian power system simulation, the grid has been simplified to quickly analyze 

some parameter influences. This basic grid model has been based on Fig. 19 and is 

shown in Fig. 31. The following simulations were performed with this grid and the only 

affected variables were θg and θm (see Fig. 23). Because the shunt load, 100 MW and 

50 MVar as in Fig. 19, of the transmission line is omitted in the simplified grid model, 

these angles are about two degrees less negative. 

 

 

Fig. 31 Simplified model of Fig. 19. 
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The next step is to show the influence of the load on the bus. This load was 

reduced to only 10% of the active and reactive values to 26.5 MW and 6 MVar, 

respectively. The results are presented in Fig. 32 and Fig. 33. These are the only results 

with reduced load to verify if the linearized model as in Chapter 3 is correct in relation 

to omit the consideration of different load levels on the controlled bus. 

 

 

Fig. 32 Result of the first simulation case with only 10% of the load on the bus. To 
compare with Fig. 23 and Fig. 35. Generator convention. 
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Fig. 33 Synchronverter variables with only 10% of the load on the bus. To compare 
with Fig. 24. Generator Convention. 
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effect on any variable shown in the figures before. This is explained by the fact that the 

authors of aforementioned work use a pure integrator, as in the swing equation, while in 

this thesis the proportional gain is suggested parallel to the integrator, PI-control, to 

damp an oscillation mode related to its virtual inertia.  

Nevertheless, making the inertia 100,000 times smaller than the base case, does 

not lead to instability in this case, as can be seen in Fig. 34. 

 

 

Fig. 34 Result of the first simulation case with J= 2H = 10 μs. To compare with Fig. 23. 
Generator convention. 
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In fact, in this case, the only variable that is influenced is the dc-voltage, Vdc. As 

expected, it is more stable with smaller inertia values, since the electrical torque, Te, is 

following the virtual mechanical torque, Tm, much quicker. Three differences can be 

noted in relation to [31]. Firstly, the model here considers a variable voltage on the dc-

link, while in [31] the dc-voltage is considered to be constant. Secondly, the virtual flux 

is variable in this work while in the cited work, the virtual flux is considered constant in 

1.05 p.u. Finally, this thesis has proposed a proportional gain parallel to the virtual 

inertia to compensate the lack of the damp-effect of the active power droop controller. 
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To emulate virtual inertia, the controller should not be over-damped. Before 

testing the transient contribution of the synchronverter in relation to supporting the grid 

and testing the effect of the time constant of the virtual flux integrator, the simplified 

base case is presented in Fig. 35 and Fig. 36 for motor convention. 

 

 

Fig. 35 Results of the simple model base case. To compare with Fig. 23. 
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Fig. 36 Synchronverter variables of the simple model base case. To compare with Fig. 
24 
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In Fig. 37 e Fig. 38 the effect of more rapid voltage or reactive power control is 

shown. For this case Kif was doubled from 1 to 2, is equal to making the time constant 

two times smaller. 

 

 

Fig. 37 Kif increased from 1 to 2. To compare with Fig. 35. Resonance frequency 
oscillation has increased twice as well. 
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Fig. 38 Kif increased from 1 to 2. To compare with Fig. 36. Resonance frequency 
oscillation has increased twice as well. 
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Although the oscillation of the system frequency has doubled when doubling Kif, 

in all shown variables, the system is still stable. Nevertheless, when increasing Kif to 

5 s-1, the system becomes instable at connection, which represents a step in active 

power, and when Q- and D-control are activated. The results are shown in Fig. 39 and 

Fig. 40. Only when V-control is in operation, the system frequency resonance is 

damped. This means that the gain for the voltage loop is smaller than the one for the 

reactive power loop. 

 

 

Fig. 39 Kif increased to 5 s-1. System becomes unstable. 
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Fig. 40 Kif increased to 5 s-1. System becomes unstable. 
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Kpω has only influence on Te and thus Vdc and Pinv as can be observed in Fig. 41 

and Fig. 42. The system frequency resonance oscillation on the angular velocity, ω 

(w_{eag} in Fig. 42), stays unaltered in relation to variations of Kpω. As expected, since 

this oscillation is determined by (3.3) till (3.15), therefore by the impedance values and 

the voltage values of the sources. 

 

 

Fig. 41 Kpω from 100 to 2. Kiω = 1/(2H)= 20. Compare with Fig. 35. 

 

Statgen,Power,svcBJL,Main : Graphs

x 1.50 2.00 2.50 3.00 3.50 4.00 4.50 

35.6700 
35.6750 
35.6800 
35.6850 
35.6900 
35.6950 

 (k
V)

Vdc

3.00 

3.50 

4.00 

4.50 

5.00 

 (M
W

)

Pinv

-150 
-100 
-50 

0 
50 

100 
150 

 (M
Va

r)

Qg

0.850 

0.900 

0.950 

1.000 

y 
(p

.u
.)

V_{col} V_agg

-14.0 
-12.0 
-10.0 
-8.0 
-6.0 
-4.0 
-2.0 
0.0 

 (d
eg

re
es

)

Thetag thetac

-2.00 
-1.50 
-1.00 
-0.50 
0.00 
0.50 
1.00 

 (d
eg

re
es

)

deltacg



 61

 

Fig. 42 Kpω from 100 to 2. Kiω =1/(2H)=  20. Compare with Fig. 36. 
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Fig. 43 Kpdc from 100 to 10. To compare with Fig. 41. Kpωδ was removed and resulted in 
elimination of oscillation at connection. 
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Fig. 44 Kpdc from 100 to 10. To compare with Fig. 42. Kpωδ was removed and resulted in 
elimination of oscillation at connection. 
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Fig. 41, where kpdc = 100, shows that the voltage drop caused by the 1.6% 

resistive load is around 0.3% of the nominal value. With a 10 times smaller gain, this 

system part still behaves in a linear way as can be seen in Fig. 45, where the voltage 

drop is found to be 3%. Thus, the energy loss on the capacitor obeys still fairly the 

relation where ΔĒ=2ΔŪ. 

 

 

Fig. 45 Kpdc from 100 to 10. ΔVdc increased 10 times (from 0.3% to 3%). The liquid total 
energy, Etotpu = Einv –Erdc, energy that entered the inverter minus dissipated energy, 
is still practically double of the voltage loss on the dc-link, as predicted by the linear 
model. Kpωδ was removed and resulted in elimination of oscillation at connection. 

 

So, if the gain of the dc-link voltage control will decrease 10 times to gain 1, 

then the voltage loss is expected to be 30% in a linear case. Nevertheless, from Fig. 48 

can be found that the voltage only drops 20%.  
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Fig. 46 shows that with a gain 10 times smaller the capacitor voltage drop leads 

to a significant reduction of the modeled loss in the parallel resistor and Pinv reaches in 

equilibrium already at 2.6 MW. In this case, neither the small signal equation ΔĒ=2ΔŪ 

is valid anymore (see Fig. 48). 

 

 

Fig. 46 Kpdc from 10 to 1. Kpωδ was removed and resulted in elimination of oscillation at 
connection. 
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Fig. 47 Kpdc from 10 to 1. Kpωδ was removed and resulted in elimination of oscillation at 
connection. 

 

 

Fig. 48 Kpdc from 10 to 1. Kpωδ was removed and resulted in elimination of oscillation at 
connection. 
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Frequency variations in the grid 

 

After examining the influence of the controller parameters for the reactive 

control variation simulations, some examining will be done as well for the frequency 

track simulations as in [24] with the proposed controller of this thesis. 

The results of the first frequency track simulation are with the same parameters 

as the voltage control simulation for Fig. 43 and Fig. 44, Kpdc=10, Kpω=2, Kiω=20 

(2H = 0.05s), and are shown in Fig. 49 and Fig. 50. In relation to Fig. 28, results for the 

frequency track simulation to compare with [24], Kpdc and Kpω have reduced with a 

factor 10. With these smaller gains the contribution to oppose to frequency changes has 

increased. As mentioned for the voltage control simulations, the system frequency 

resonance doesn´t suffer a significant alteration. 
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Fig. 49 Kpdc = 10. Kpω = 2. Kiω = 20 (2H = 0.05 s). 
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Fig. 50 Kpdc = 10. Kpω = 2. Kiω = 20 (2H = 0.05 s). 

 

For every system frequency step, the angular velocity, w_{eag}, of the 

synchronverter has a system frequency resonance initiated, as was the case for reactive 

power step changes too. That it is really the system frequency resonance and not a 

60 Hz resonance, zooms were made on the time scale, just after t = 2 s, fg = 62.4 Hz 

(see Fig. 51) and just after t = 4 s (see Fig. 52). 
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Fig. 51 The frequency of the resonance oscillation, 62.4 Hz is equal to the system 
frequency (see Fig. 27), 1.04 p.u. times 60 Hz. 

 

 

Fig. 52 The frequency of the resonance oscillation, 57.6 Hz is equal to the system 
frequency (see Fig. 27), 0.96 p.u. times 60 Hz. 
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So, with Kpdc = 10, as a lower limit, since smaller values lead to a poor capacitor 

loading response, remains Kpω as a parameter to increase the inertia contribution as can 

be seen in Fig. 53 and Fig. 54. 

 

 

Fig. 53 Kpdc = 10. Kpω = 1. Kiω = 20 (2H = 0.05 s). 
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Fig. 54 Kpdc = 10. Kpω = 1. Kiω = 20 (2H = 0.05 s). 
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Though, Kpω cannot be reduced to zero as foreseen in item 4.1 and the result is 

shown in Fig. 55 and Fig. 56. Without a parallel gain to the virtual inertia, the natural 

oscillation related to the inertia is revealed, since it is unstable and around 22 Hz. 

 

 

Fig. 55 Kpdc = 10. Kpω = 0. Kiω = 20 (2H = 0.05 s). Unstable right after connection with 
grid. 
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Fig. 56 Kpdc = 10. Kpω = 0. Kiω = 20 (2H = 0.05 s). Unstable right after connection with 
grid. 
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Although, one might think that J doesn´t have an influence on the contribution 

to the system frequency, this observation can be caused by utilizing high proportional 

gains, leading to an over damped system. With a proportional gain 10 times smaller 

than the integral gain, the effect of J variations is clearly shown in Fig. 57 and Fig. 58.  

While with Kpdc the height of the peak contribution of Vdc was set as shown in 

Fig. 53, the parameter J has influence on the duration of the contribution as shown in 

Fig. 57. With this, the torques and active powers are influenced as well, as can be seen 

in Fig. 58. 

 

Fig. 57 Kpdc = 10. KPω = 2. KIω = 10 (2H = 0.1 s). 
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Fig. 58 Kpdc = 10. KPω = 2. KIω = 10 (2H = 0.1 s). 

 

THE BRAZILIAN POWER SYSTEM 

 

Final simulations are shown for testing the proposed controller at SIN in 

oscillation damping situation. The power oscillation damper as described in [23] was 

maintained. For this thesis, the mathematical capacitor was added as described in Fig. 

22. And, of course the proposed gain Kpω, to damp the oscillation related to the virtual 

inertia, without provoking system frequency resonance. 

The map of the part of the National Brazilian System that was modeled in 

PSCAD is given in Fig. 59. At three strategic points the system was cut and at these 

locations dynamic equivalents were inserted to represent the spinning generation in 

regions behind those points. These equivalents are placed in Serra da Mesa 

(South/South-East/Center-West), Xingó (North-East) and Marabá (North). In between 

Marabá and Serra da Mesa a fourth dynamic equivalent was placed to comply with the 

load flow. This equivalent is much smaller representing only the generation plant in 

Lajeado. The synchronverter is connected at Bom Jesus da Lapa with a 500 kV/17.5 kV 

transformer. 
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Fig. 59 Part of the National Interconnected System, configuration of January 2009, 
modeled in PSCAD – source: website of ONS (National System Operator). 

 

The model in PSCAD is given in Fig. 60. This is the main page, since the system 

was constructed in a modular way. In this case all the transmission lines were modeled 

as PI-sections and some of them mutually coupled PI-sections. This is sufficient for 

electromechanical oscillations. Some observations will be made on transient behavior, 

though they are worst case observations, since for electromagnetic transient studies the 

frequency dependent transmission line model should be used. These simulations not 

only need a smaller time step than for electromechanical simulations, more time is also 

spent in calculating the travelling waves. To initiate significant electromechanical 

oscillations, short-circuit with 0.1 Ω resistance value is applied at t = 5 s during 10 ms 

on the bus of Miracema (see Fig. 60 for approximate location). The synchronverter is 

electrically connected at t = 3.1 s. 
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Fig. 60 Overview of the simulated system with modular construction based on data of 
Fig. 59 [22]. 

 

The block diagram for the signal treatment of the active power flow in the 

transmission line S. Mesa – Gurupi, which was used to sense the electromechanical 

oscillations, is repeated in Fig. 61 for convenience. The treatment consists of a low-pass 

filter with a damped resonance peak in 0.82 Hz and a washout filter to avoid interfering 

in the load flow. Both active power flows on the two transmission lines from S. Mesa to 

Gurupi were added. The filters are reset 100 ms before the entrance of STATCOM. 

 

 

Fig. 61 Block diagram for the signal treatment of the active power flow in the 
transmission line S. Mesa – Gurupi. 
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This filtered signal was transmitted to the STATCOM location in Bom Jesus da 

Lapa where this signal passes through a delay stage to obtain the most effective 

damping for the electromechanical oscillations in this system. For four dynamic 

equivalents, besides the virtual inertia of the synchronverter, three electromechanical 

oscillations are expected. The one related to Lajeado has the highest frequency, about 

2 Hz, and, normally is self damped. Fig. 62 shows the delay stage. To show the 

effectiveness of the POD, it was only activated at t = 30s, 25 seconds after short-circuit. 

The entire simulation time is 60 s. The used time step was 5 μs, while the plot step was 

set on 200 μs. The generated damping signal Pref was added to the voltage control as 

shown in Fig. 11. 

 

Fig. 62 Block diagram to delay the signal Pmesawashed and output the additional 
control signal Pref (see Fig. 11). 

 

The following simulation results are in the same format as for the ones shown 

for the simple model simulations. Some minor alterations are made. In the simulation 

the reactive power, Q, utilized for voltage control is the internally calculated reactive 

power of the STATCOM. The reactive power, Qgpu, at the voltage controlled bus is 

shown in the same window of the figures for comparison only. The STATCOM is 

connected and at the same time the droop control became operative. The reactive droop 

is 3% as utilized for the SVC. The voltage reference was set on 1.04 p.u. The angular 

velocity of the equivalent in Serra de Mesa, ωSM (omega_sm in the figures), was added 

as a reference point for being the equivalent with the highest inertia.  
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The results for Kpω=0 are shown in Fig. 63 and Fig. 64. The STATCOM at 

connection is clearly unstable as predicted by the linear model in item 4.1. Therefore, 

the natural oscillation frequency of the virtual inertia J = 2H = 50 ms can be determined 

as approximately 22 Hz. 

 

 

Fig. 63  Electrical torque, T_e, reactive power (+), Q, of the synchronverter (motor 
convention), controlled bus voltage, V_{col}, in droop mode with Vref = 1.04 p.u., 
synchronverter terminal-voltage, V_{lv}, virtual flux, M_fi_f, synchronverter angular 
velocity, w_{eag}, angular velocity calculated by a PLL at the synchronverter 
terminals, w_{grid}, and the angular velocity, omega_{sm}, of the dynamic equivalent 
representing the generation of region South/South-east/Center-West. Kpω=0. 
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Fig. 64 Results when dc-capacitor is considered, in contrast with [22] and [23], which 
utilized Tm = 0. Kpω=0. 
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The angular velocities of the equivalents at Marabá and Serra de Mesa, ωmb and 

ωsm, respectively, are shown below in Fig. 65. Above, the total energy, Etot, is shown. 

This total is calculated as the energy entering the converter minus the energy dissipated 

in the parallel resistor at dc-side. Continuing with the motor convention, negative 

energy means energy contribution to the grid. This is verified in a decreasing capacitor 

voltage, Vdc, shown in Fig. 64, when the total energy, Etot, decreases and vice versa. 

 

 

Fig. 65 At t=5s occurs a short-circuit in the grid. Etot = Einv – Erdc. Kpω=0. 

 

The same results are shown for Kpω = 0.009 in Fig. 66 and Fig. 67. For this 

proportional gain, the system is stable and fairly damped. At t = 30 s, a damped system 

frequency resonance can be observed as caused by the application of the POD signal, 

Pref, and an oscillation of 0.3 Hz caused by the equivalents of Paulo Afonso e Serra de 

Mesa. After application of the POD signal, the 0.3 Hz oscillation is damped quickly and 

the 0.6 Hz oscillation of Marabá becomes visible. This one fades away as well. 

 

Statgen,EquivDinamico,EquivDinamico_2 : Graphs

sec 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 

-4.0 

-2.0 

0.0 

2.0 

4.0 

 (M
W

s)

Etot

0.99998 
1.00000 
1.00002 
1.00004 
1.00006 
1.00008 
1.00010 
1.00012 

y 
(p

.u
.)

\omega_{mb} \omega_{sm}



 83

 

Fig. 66 J = 2H = 50 ms and Kpω=0.009, system stable in contrast with Fig. 63. 

 

Fig. 67 J = 2H = 50 ms and Kpω=0.009, system stable in contrast with Fig. 64. 
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The effectiveness of the POD signal can even better been observed directly at 

the angular velocities of the dynamic equivalents as shown in Fig. 68. Clearly, the 

equivalents of Paulo Afonso and Serra de Mesa are oscillating one against the other. 

The equivalents of Marabá and Lajeado are oscillating against the system and thus three 

oscillating modes for four dynamic equivalents are identified. 

 

 

Fig. 68 Total active power flowing North (negative), P_{smesa}, measured at Serra de 
Mesa, the filtered active power, P_{smesator} (see Fig. 61), POD-signal, V_{Pref} (see 
Fig. 62), angular velocities, omega, of the 4 dynamic equivalents at Lajeado, {la}, 
Paulo Afonso, {pa}, Marabá, {mb} and Serra de Mesa,{sm}. Kpω=0.009. 
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While the virtual inertia was limited to 2H = 50 ms, based on the equivalent 

energy contained at the capacitor, no great contribution can be expected as shown in 

Fig. 69. Nevertheless, the oscillation with frequency of 22 Hz is practically damped in 

one second and no system frequency resonance is initiated. 

 

 

Fig. 69 Kpω=0.009, system stable in contrast with Fig. 65. Small energy contribution at 
short-circuit occurrence with 2H = 50 ms. 

 

That the virtual inertia J of the synchronverter is not limited given by the 

equivalence of the energy contained in a capacitor and the kinetic energy is shown in 

the next simulations. Reminding that the results on the bus of Bom Jesus de Lapa are 

more severe than when modeling transmission lines based on geometric data, which 

includes the damping of travelling waves on a distance of around 1,000 km, an inertia 

2H of 1 s was chosen. This inertia is 20 times bigger than the electrical energy inertia 

contained on the dc-capacitor. 
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Firstly, the proposed proportional gain, Kpω is made zero again. For being 

slightly unstable, as predicted by the linear model, the oscillation can be observed in 

Fig. 70. The oscillation frequency is the square root of 20 times smaller as observed for 

2H = 50 ms. Whereas the system is slightly unstable, the capacitor voltage did not drop 

at any time below half the reference value. 

 

 

Fig. 70 J = 2H = 1 s and Kpω=0. Capacitor voltage remains above half the reference 
value even with a virtual inertia 20 times bigger than the electric energy contained on 
the dc-capacitor. 
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While the slightly unstable system continued for 60 seconds, and so the internal 

angular velocity, ω, of the STATCOM continued to oscillate at a little less than 5 Hz, 

interference with the dynamic equivalent at Lajeado could be observed. This is shown 

in Fig. 71. 

 

 

Fig. 71 The instability of the virtual inertia with a natural frequency of a little less than 
5 Hz starts even to impact the dynamic equivalent of Lajeado with natural frequency of 
around 2 Hz. 
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Comparing Fig. 69, for the energy contribution with 2H = 50 ms, with Fig. 72, 

where 2H = 1 s, for the first 30 ms right after short-circuit a more than double 

contribution can be observed. 

 

 

Fig. 72 J = 2H = 1 s and Kpω=0. More energy contribution at short-circuit occurrence 
than for 2H = 50 ms as shown in Fig. 69. 

 

The results of the linear model as presented in item 4.1, gave the following 

results for Kpω for a stable system: 0.000107 < Kpω < 0.0122. This is for the case, the 

controlled bus is infinite. This is not true in this simulation case and since X/R of the 

short-circuit impedance is smaller than X/R of transformer and L filter with small 

resistance, the following results were performed with J = 1 s and Kpω = 0.012, expecting 

to still find a stable system. The results are shown in Fig. 73 and Fig. 74. The system 

frequency resonance is still fairly damped, as can be observed. 
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Fig. 73 J = 1 s and Kpω = 0.012. To compare with Fig. 66. 

 

Fig. 74 J = 1 s and Kpω = 0.012. To compare with Fig. 67. 
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With the virtual inertia of the STATCOM damped by the proposed proportional 

gain, the angular velocity of the equivalent at Lajeado is not affected anymore by the 

STATCOM. This can be seen in Fig. 75. 

 

 

Fig. 75 J = 1 s and Kpω = 0.012. No interference with the dynamic equivalent of 
Lajeado. 
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In Fig. 76 the energy contribution can be clearly observed for the first 30 ms 

after short-circuit to be similar as the undamped case as presented in Fig. 72. Further, as 

a difference is that with the proportional gain the STATCOM is significantly damped 

already for the first second after short-circuit. Thus, with a proportional gain Kpω the 

self oscillation can be fairly damped, while the energy contribution at the first moments 

after a big perturbation is not affected significantly. 

 

 

Fig. 76 J = 1 s and Kpω = 0.012. At the instant of the short-circuit, the synchronverter 
contributes more to the frequency than in the case with inertia 20 times smaller, as can 
be seen in Fig. 69. 
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5 Conclusions and suggestions 
 

Ongoing research in the world concerning the integration of distributed energy 

sources and Microgrids with the power system shows that two main streams of solutions 

can be detected. Although, nearly all the state-of-the-art research related to the 

integration of these sources include the adoption of inertia contribution, with or without 

swing equations to abandon the classic PLL, one is searching the solution in current 

controllers, while the other focuses on voltage controllers. 

Besides the great advantage of a voltage controller can form its own grid, also 

the integration with the existent power system seems more natural, since still the major 

part of this system is fed by voltage sources, namely synchronous generators. The 

creator of the name synchronverter is leading the philosophy that all connected 

converters should be equipped with this simple controller. Even a ventilator of a 

personal computer should temporarily contribute to oppose to system frequency 

deviations. At last, when the controller mimics a real synchronous generator, existent 

stability programs and knowledge can be used directly for converters. 

In this thesis the viability of the synchronverter concept applied to STATCOM 

was verified in the frequency and time domain. For the study in the frequency domain, 

three new transfer functions were developed besides the already published transfer 

function for the relation between small deviations of the load angle and active power, 

considering system frequency resonance. These relations seem of significant importance 

for the controller project of converters operating in high X/R grids. With these functions, 

feedback loops for active and reactive power were closed, considering the proposal to 

apply a proportional gain for non-generating converters operating as a synchronverter, 

compensating the lack of the active power droop loop. 

In the time domain a comparison has been made with an already published 

controller without swing equation and electrical torque feedback at one side and the 

thesis proposal. For high X/R grids the electrical torque feedback with swing equation 

has shown to be superior, since the stability margin for the classic controller becomes 

negative for higher X/R grids. The controller gain is limited by the system frequency 

resonance for both solutions, though, less limiting for a synchronverter solution with 

proportional gain parallel to the virtual inertia. 
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At last, an improvement was shown for the converter response in relation to 

earlier studies [22][23] with the synchronverter controller applied to STATCOM with 

electromechanical mode damping. Although the proposed proportional gain did not 

show any effect on the actual electromechanical mode damping, it was capable to damp 

significantly all its own variables and thus the ones in the close neighborhood. 

 

SUGGESTIONS 

 

 Close the active loop controller for STATCOM without electric torque feedback 

and swing equation as well, and perform parameter variation analysis to find 

stability boundaries. 

 Test in the frequency domain model other proposals than the proportional gain for 

torque difference to angular velocity, like transient active droop and proportional 

gain for virtual flux and their combination. 

 Verify the effect of various filters on the measured signals in the frequency model. 

 Analyze the stabilities margins for virtual resistance application. 

 



 94

References 
 

[1]  J. Hu, J. Zhu, D. G. Dorrell and J. M. Guerrero, "Virtual Flux Droop Method - A 
New Control Strategy of Inverters in Microgrids," IEEE Transactions on Power 
Electronics, vol. 29, pp. 4704-4711, Sept 2014.  

[2]  Q. C. Zhong and T. Hornik, "Cascaded Current-Voltage Control to Improve the 
Power Quality for a Grid-Connected Inverter With a Local Load," IEEE 
Transactions on Industrial Electronics, vol. 60, pp. 1344-1355, April 2013.  

[3]  Q. Shafiee, J. M. Guerrero and J. C. Vasquez, "Distributed Secondary Control for 
Islanded Microgrids-A Novel Approach," IEEE Transactions on Power 
Electronics, vol. 29, pp. 1018-1031, Feb 2014.  

[4]  M. A. Abusara, J. M. Guerrero and S. M. Sharkh, "Line-Interactive UPS for 
Microgrids," IEEE Transactions on Industrial Electronics, vol. 61, pp. 1292-1300, 
March 2014.  

[5]  C. H. E. N. Zhiyong, C. H. E. N. Yandong, J. M. GUERRERO, H. KUANG, Y. 
HUANG, Z. H. O. U. Leming and L. U. O. An, "Generalized coupling resonance 
modeling, analysis, and active damping of multi-parallel inverters in microgrid 
operating in grid-connected mode," Journal of Modern Power Systems and Clean 
Energy, vol. 4, pp. 63-75, Jan 2016.  

[6]  D. Remon, A. M. Cantarellas, J. D. Nieto, W. Zhang and P. Rodriguez, 
"Aggregated model of a distributed PV plant using the synchronous power 
controller," in 2015 IEEE 24th International Symposium on Industrial Electronics 
(ISIE), 2015.  

[7]  Y. Zhang, A. Allen and B. M. Hodge, "Impact of distribution-connected large-scale 
wind turbines on transmission system stability during large disturbances," in 2014 
IEEE PES General Meeting | Conference Exposition, 2014.  

[8]  A. Tzavellas, P. Nguyen, P. Ribeiro and W. Kling, "A game theory approach for 
coordinating multiple virtual synchronous generators," in 2013 IEEE Grenoble 
Conference, 2013.  

[9]  M. P. N. van Wesenbeeck, S. W. H. de Haan, P. Varela and K. Visscher, "Grid tied 
converter with virtual kinetic storage," in 2009 IEEE Bucharest PowerTech, 2009. 

[10] Q. C. Zhong, P. L. Nguyen, Z. Ma and W. Sheng, "Self-Synchronized 
Synchronverters: Inverters Without a Dedicated Synchronization Unit," IEEE 
Transactions on Power Electronics, vol. 29, pp. 617-630, Feb 2014.  

[11] C. Li, R. Burgos, I. Cvetkovic, D. Boroyevich, L. Mili and P. Rodriguez, "Analysis 
and design of virtual synchronous machine based STATCOM controller," in 2014 
IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), 
2014.  

[12] P. Rodriguez, I. Candela, C. Citro, J. Rocabert and A. Luna, "Control of grid-
connected power converters based on a virtual admittance control loop," in 2013 
15th European Conference on Power Electronics and Applications (EPE), 2013.  

[13] J. Driesen and K. Visscher, "Virtual synchronous generators," in Power and 
Energy Society General Meeting - Conversion and Delivery of Electrical Energy in 
the 21st Century, 2008 IEEE, 2008.  

[14] Q. C. Zhong, "Harmonic Droop Controller to Reduce the Voltage Harmonics of 
Inverters," IEEE Transactions on Industrial Electronics, vol. 60, pp. 936-945, 



 95

March 2013.  

[15] Q.-C. Zhong, "Robust Droop Controller for Accurate Proportional Load Sharing 
Among Inverters Operated in Parallel," Industrial Electronics, IEEE Transactions 
on, vol. 60, pp. 1281-1290, April 2013.  

[16] G. C. Konstantopoulos, Q. C. Zhong, B. Ren and M. Krstic, "Bounded droop 
controller for accurate load sharing among paralleled inverters," in 2014 American 
Control Conference, 2014.  

[17] H. J. Avelar, W. A. Parreira, J. B. Vieira, L. C. G. de Freitas and E. A. A. Coelho, 
"A State Equation Model of a Single-Phase Grid-Connected Inverter Using a 
Droop Control Scheme With Extra Phase Shift Control Action," IEEE 
Transactions on Industrial Electronics, vol. 59, pp. 1527-1537, March 2012.  

[18] C. Zhang, E. A. A. Coelho, J. M. Guerrero and J. C. Vasquez, "Modular Online 
Uninterruptible Power System PlugŉṔlay Control and Stability Analysis," IEEE 
Transactions on Industrial Electronics, vol. 63, pp. 3765-3776, June 2016.  

[19] C. hua Zhang, Q.-C. Zhong, J.-S. Meng, X. Chen, Q. Huang, S.-H. Chen and Z. 
peng Lv, "An improved synchronverter model and its dynamic behaviour 
comparison with synchronous generator," in Renewable Power Generation 
Conference (RPG 2013), 2nd IET, 2013.  

[20] Q.-C. Zhong and D. Boroyevich, "A droop controller is intrinsically a phase-locked 
loop," in Industrial Electronics Society, IECON 2013 - 39th Annual Conference of 
the IEEE, 2013.  

[21] Q.-C. Zhong and G. Weiss, "Synchronverters: Inverters That Mimic Synchronous 
Generators," Industrial Electronics, IEEE Transactions on, vol. 58, pp. 1259-1267, 
2011.  

[22] E. L. van Emmerik, B. W. França and M. Aredes, "A synchronverter to damp 
electromechanical oscillations in the Brazilian transmission grid," in Industrial 
Electronics (ISIE), 2015 IEEE 24th International Symposium on, 3-5 June 2015.  

[23] E. L. van Emmerik, B. W. França, A. R. Castro, G. F. Gontijo, D. S. Oliveira and 
M. Aredes, "Synchronverter to damp multiple electromechanical oscillations," 
Proceedings of the 8th Asia-Pacific Power and Energy Engineering Conference, 
Suzhou, China, April 15-17, 2016, pp. 617-622, Mar 2016.  

[24] P.-L. Nguyen, Q.-C. Zhong, F. Blaabjerg and J. M. Guerrero, "Synchronverter-
based operation of STATCOM to Mimic Synchronous Condensers," in Industrial 
Electronics and Applications (ICIEA), 2012 7th IEEE Conference on, 2012.  

[25] B. França, E. Emmerik, J. Caldeira e M. Aredes, “Sliding Droop Control For 
Distributed Generation In Microgrids,” Eletrônica de Potência, vol. 22, pp. 429-
439, 12 2017.  

[26] "Proposed terms and definitions for flexible AC transmission system (FACTS)," 
IEEE Transactions on Power Delivery, vol. 12, pp. 1848-1853, Oct 1997.  

[27] C. F. dos Santos, F. B. Grigoletto and M. Stefanello, "Power quality improvement 
in a grid connected voltage source inverter using the concept of virtual 
synchronous machine," in 2015 IEEE 13th Brazilian Power Electronics 
Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), 
2015.  

[28] D. Remon, A. M. Cantarellas, E. Rakhshani, I. Candela and P. Rodriguez, "An 
active power self-synchronizing controller for grid-connected converters emulating 
inertia," in Renewable Energy Research and Application (ICRERA), 2014 



 96

International Conference on, 19-22 Oct. 2014.  

[29] J. Alipoor, Y. Miura and T. Ise, "Distributed generation grid integration using 
virtual synchronous generator with adoptive virtual inertia," in Energy Conversion 
Congress and Exposition (ECCE), 2013 IEEE, 2013.  

[30] J. Alipoor, Y. Miura and T. Ise, "Power System Stabilization Using Virtual 
Synchronous Generator With Alternating Moment of Inertia," Emerging and 
Selected Topics in Power Electronics, IEEE Journal of, vol. 3, pp. 451-458, June 
2015.  

[31] J. Wang, Y. Wang, Y. Gu, W. Li and X. He, "Synchronous frequency resonance of 
virtual synchronous generators and damping control," in 2015 9th International 
Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015.  

[32] X. Haizhen, Z. Xing, L. Fang, M. Fubin, S. Rongliang and N. Hua, "An improved 
Virtual Synchronous Generator algorithm for system stability enhancement," in 
2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), 
2015.  

[33] T. Shintai, Y. Miura and T. Ise, "Oscillation Damping of a Distributed Generator 
Using a Virtual Synchronous Generator," IEEE Transactions on Power Delivery, 
vol. 29, pp. 668-676, April 2014.  

[34] J. Liu, Y. Miura and T. Ise, "Dynamic characteristics and stability comparisons 
between virtual synchronous generator and droop control in inverter-based 
distributed generators," in 2014 International Power Electronics Conference 
(IPEC-Hiroshima 2014 - ECCE ASIA), 2014.  

[35] H.-P. Beck and R. Hesse, "Virtual synchronous machine," in Electrical Power 
Quality and Utilisation, 2007. EPQU 2007. 9th International Conference on, 2007. 

[36] S. DÁrco, J. A. Suul and O. B. Fosso, "Small-signal modelling and parametric 
sensitivity of a Virtual Synchronous Machine," in 2014 Power Systems 
Computation Conference, 2014.  

[37] J. Zhu, J. M. Guerrero, W. Hung, C. D. Booth and G. P. Adam, "Generic inertia 
emulation controller for multi-terminal voltage-source-converter high voltage 
direct current systems," IET Renewable Power Generation, vol. 8, pp. 740-748, 
September 2014.  

[38] J. Zhu, C. D. Booth, G. P. Adam and A. J. Roscoe, "Inertia emulation control of 
VSC-HVDC transmission system," in 2011 International Conference on Advanced 
Power System Automation and Protection, 2011.  

[39] P. Kundur, Power System Stability and Control, McGraw-Hill Professional, 1994. 

[40] Q. C. Zhong e G. Weiss, “Static synchronous generators for distributed generation 
and renewable energy,” em 2009 IEEE/PES Power Systems Conference and 
Exposition, 2009.  

[41] "Static Synchronous Generators". Patent WO 2010/055322 A2, 2010. 

[42] B. França, Static Synchronous Generator with Sliding Droop Control for 
Distributed Generation in Microgrids, Ph.D. thesis, COPPE/UFRJ, Rio de Janeiro, 
RJ, Brasil, 2016. 

[43] L. G. B. Rolim, D. R. da CostaJr. and M. Aredes, "Analysis and Software 
Implementation of a Robust Synchronizing PLL Circuit Based on the pq Theory," 
IEEE Transactions on Industrial Electronics, vol. 53, pp. 1919-1926, Dec 2006.  

[44] T. M. L. Assis and G. N. Taranto, "Increase of Transfer Limit in the Large 
Interconnected Brazlian System Constrained by Small-Signal Stability," in CBA, 



 97

2008.  

[45] "Control of a Voltage Source Converter using Synchronous Machine Emulation". 
Patent WO 2010/022766, 2010. 

[46] "Synchronous Power Controller for a generating System based on Static Power 
Converters". Patent WO 2012/117131 A1, 2012. 

[47] "Virtual Controller of Electromechanical Characteristics for Static Power 
Converters". Patent WO 2012/117132 A1, 2012. 

[48] "Virtual Admittance Controller based on Static Power Converters". Patent WO 
2012/117133 A1, 2012. 

[49] J. William D. Stevenson, Elementos de análise de sistemas de potência, 4a edição 
americana, 2a edição em português ed., Mc Graw-Hill, 1986.  

[50] M. Beza and M. Bongiorno, "Power oscillation damping controller by static 
synchronous compensator with energy storage," in 2011 IEEE Energy Conversion 
Congress and Exposition, 2011.  

[51] H. Bevrani, M. Watanabe and Y. Mitani, "Oscillation Dynamics Analysis Based on 
Phasor Measurements," in Power System Monitoring and Control, Wiley-IEEE 
Press, 2014, pp. 288-. 

[52] H. Ghasemi and C. Canizares, "Damping torque estimation and oscillatory stability 
margin prediction," in 2006 IEEE Power Engineering Society General Meeting, 
2006.  

[53] H. Ghasemi and C. Canizares, "On-Line Damping Torque Estimation and 
Oscillatory Stability Margin Prediction," Power Systems, IEEE Transactions on, 
vol. 22, pp. 667-674, May 2007.  

[54] G. Cao, Z. Y. Dong, Y. Wang, P. Zhang and Y. T. Oh, "VSC based STATCOM 
controller for damping multi-mode oscillations," in 2008 IEEE Power and Energy 
Society General Meeting - Conversion and Delivery of Electrical Energy in the 
21st Century, 2008.  

[55] H. Akagi, Y. Kanazawa and A. Nabae, "Instantaneous Reactive Power 
Compensators Comprising Switching Devices without Energy Storage 
Components," IEEE Transactions on Industry Applications, Vols. IA-20, pp. 625-
630, May 1984.  

[56] E. H. Watanabe, R. M. Stephan and M. Aredes, "New concepts of instantaneous 
active and reactive powers in electrical systems with generic loads," IEEE 
Transactions on Power Delivery, vol. 8, pp. 697-703, Apr 1993.  

[57] E. H. Watanabe, M. Aredes, J. L. Afonso, J. G. Pinto, L. F. C. Monteiro and H. 
Akagi, "Instantaneous p-q power theory for control of compensators in micro-
grids," in 2010 International School on Nonsinusoidal Currents and 
Compensation, 2010.  

[58] B. Singh, R. Saha, A. Chandra e K. Al-Haddad, “Static synchronous compensators 
(STATCOM): a review,” IET Power Electronics, vol. 2, pp. 297-324, 7 2009.  

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 450
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 450
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


