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et al. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. T́ıtulo.

iii



For the readers

iv



Acknowledgments

I am very thankful to my supervisors prof. Eduardo Silva and prof. Fernando Pereira

for their guidance, support, patience, and encouragement. It has been an edifying ex-

perience to work with such motivated, engaged and outstanding researchers. Thank

you for the technical discussions; for providing ideas, suggestions, and feedbacks that

made possible the development of this research; for your dedication in reviewing my

work; for leading by example. I will be always in debt to you.

Also, I would like to thank the professors, colleagues and staff from the Signal,

Multimedia and Telecommunications Laboratory (SMT) of Universidade Federal do

Rio de Janeiro for providing me the technical education, friendship and the facilities

for carrying out my graduate studies. I also would like to express gratitude to the

professors and colleagues from the Multimedia Signal Processing (MSP) Group from

Instituto de Telecomunicações (IT) for receiving me as visiting student.

I also thank the Fundação de Amparo à Pesquisa do Estado do Amazonas (FA-
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Em modernas aplicações de v́ıdeo, o papel do v́ıdeo decodificado é muito mais

que simplesmente preencher uma tela para visualização. Para oferecer aplicações

mais poderosas por meio de sinais de v́ıdeo, é cada vez mais cŕıtico não apenas

considerar a qualidade do conteúdo objetivando sua visualização, mas também pos-

sibilitar meios de realizar busca por conteúdos semelhantes. Requisitos de visua-

lização e de busca são considerados, por exemplo, em modernas aplicações de v́ıdeo

vigilância e comunicações pessoais. No entanto, as atuais soluções de codificação

de v́ıdeo são fortemente voltadas aos requisitos de visualização. Nesse contexto, o

objetivo deste trabalho é propor uma solução de codificação de v́ıdeo de propósito

duplo, objetivando tanto requisitos de visualização quanto de busca. Para isso, é

proposto um arcabouço de codificação em que a abordagem usual de codificação de

ṕıxeis é combinada com uma nova abordagem de codificação baseada em features

visuais. Nessa solução, alguns quadros são codificados usando um conjunto de pares

de keypoints casados, possibilitando não apenas visualização, mas também provendo

ao decodificador valiosas informações de features visuais, extráıdas no codificador

a partir do conteúdo original, que são instrumentais em aplicações de busca. A

solução proposta emprega um esquema flex́ıvel de otimização Lagrangiana onde

o processamento baseado em ṕıxel é combinado com o processamento baseado em

features visuais objetivando encontrar um compromisso adequado entre os desempe-

nhos de visualização e de busca. Os resultados experimentais mostram a flexibilidade

da solução proposta em alcançar diferentes compromissos de otimização, nomeada-

mente desempenho competitivo em relação ao padrão HEVC tanto em termos de

visualização quanto de busca.
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In modern video applications, the role of the decoded video is much more than

filling a screen for visualization. To offer powerful video-enabled applications, it

is increasingly critical not only to visualize the decoded video but also to provide

efficient searching capabilities for similar content. Video surveillance and personal

communication applications are critical examples of these dual visualization and

searching requirements. However, current video coding solutions are strongly biased

towards the visualization needs. In this context, the goal of this work is to propose a

dual-purpose video coding solution targeting both visualization and searching needs

by adopting a hybrid coding framework where the usual pixel-based coding approach

is combined with a novel feature-based coding approach. In this novel dual-purpose

video coding solution, some frames are coded using a set of keypoint matches, which

not only allow decoding for visualization, but also provide the decoder valuable

feature-related information, extracted at the encoder from the original frames, in-

strumental for efficient searching. The proposed solution is based on a flexible joint

Lagrangian optimization framework where pixel-based and feature-based process-

ing are combined to find the most appropriate trade-off between the visualization

and searching performances. Extensive experimental results for the assessment of

the proposed dual-purpose video coding solution under meaningful test conditions

are presented. The results show the flexibility of the proposed coding solution to

achieve different optimization trade-offs, notably competitive performance regard-

ing the state-of-the-art HEVC standard both in terms of visualization and searching

performance.
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Chapter 1

Introduction

This chapter presents the motivation and context within which this research work

has been developed, its objectives and main contributions. Also, it outlines the

topics addressed in the upcoming chapters.

1.1 Context and motivation

Since the prehistoric period, humans realized the importance of visual information,

in particular, its power and effectiveness to communicate. Take for instance the

cave paintings made by the early humans. Tens of thousands of years later that

rudimentary effort, a sophisticated set of technology has emerged to acquire, process,

store, manipulate, share and deliver visual information.

Nowadays visual information is popularly consumed in the form of digital im-

ages and videos. Its applications range from medicine to entertainment, education,

video surveillance, industrial inspection systems, scientific research, TV broadcast-

ing and Internet-based streaming services. Such pervasive use creates heterogeneous

requirements and constraints in the processing pipeline designed to handle visual

data. Since resources are scarce, the need for efficient representation at a desired

quality is commonly required for storage and transmission over bandwidth restricted

networks.

The problem of minimizing the amount of bits to meet a target reconstruction

quality is addressed in the image and video coding research. From a general point

of view, image and video signals can be coded in a lossless or lossy manner. In

lossless coding the compressed signal fully preserves the data of the original signal

at the penalty of achieving only modest compression factors [1, 2]. Higher com-

pression factors can be achieved by carefully allowing some loss of fidelity in the

reconstructed signal. For instance, in transform coding, the energy compaction

property facilitates discarding negligible information for the human visual system

by a suitable quantization strategy, usually allowing higher distortion in the higher

1



frequency range. This work focus on lossy video coding. Image and video coding

becomes even more challenging when considering other application requirements,

e.g., low computational cost, rate and quality scalability.

For decades the research community has been working on the design of efficient

coding algorithms to handle the increasing amount of data in the form of image and

video signals. Successive generations of video coding standards have been developed

with increasing compression efficiency. The state-of-the-art in video coding technol-

ogy is the High Efficiency Video Coding (HEVC) standard [3, 4], a product of the

joint effort between ITU-T Video Coding Experts Group (VCEG) and ISO/IEC

Moving Picture Expert Group (MPEG). It adopts the block-based prediction and

transform coding framework successfully employed in previous standards. HEVC

was designed aiming to provide 50% of bit rate savings compared with the previous

standard H.264/AVC [5] for the same perceptual quality. This is achieved with a

set of rather flexible coding tools which are able to adapt to the content character-

istics in order to obtain a very compact representation of the input signal. It offers

highly efficient video coding solutions for a wide variety of applications, from video

surveillance and personal communications to UHD television and streaming. HEVC

and all the previous video coding standards adopt a pure pixel-based video coding

approach, which essentially targets visualization capabilities and thus visual qual-

ity. However, with the increasing amount and omnipresence of digital video, users

are increasingly not just visualizing the decoded video but also using it for other

purposes, notably searching for similar visual content. This is happening in many

application domains where the decoded video is often used for searching in very

rich, available databases. Naturally, besides good visual quality, it is also critical to

provide good searching performance.

Developments in computer vision have led to the emergence of new forms of

visual information representation which are better suited for visual analysis tasks

than just pixels. Local visual features are a powerful type of such representations,

and have been playing a central role in modern digital image and video applications

such as mobile visual search [6], object recognition [7, 8], and scene classification [9].

Such local features describe image characteristics that are distinctive, representative

and informative. They are usually obtained by first performing keypoint detection

to identify salient image regions and then extracting a descriptor to capture the local

characteristics. The Scale Invariant Feature Transform (SIFT) [7, 8] and Speeded-

Up Robust Features (SURF) [10, 11] are two major description tools in this context.

Following this recent trend, distributed visual analysis systems, for instance, may

aggregate a huge amount of data captured from multiple and distributed visual

sensors and perform complex visual analysis, targeting to provide services such as

augmented reality in sport events, behavior analysis in security systems and mobile

2



visual search [6, 12, 13]. The latter is a rather mature and increasingly popular

application that uses local visual features to retrieve, from a remote server, relevant

information for a query image or video. In this context, three main approaches have

been considered to meet different constraints when performing feature-based anal-

ysis in scenarios involving remote searching. These are the Compress-then-Analyze

(CTA), the Analyze-then-Compress (ATC) and the Hybrid-Analyze-Then-Compress

(HATC) approaches [14–16]. In the CTA approach, the remote analysis is carried

out using visual features extracted from compressed, transmitted and decompressed

video content, thus enabling also visualization. However, the compression usually

has a detrimental effect in the decoder-extracted visual features which in turn im-

pairs the visual analysis performance. Some works have tried to modify existing

standard image and video coding solutions to better preserve the features of inter-

est [17–19]. On the other hand, in the ATC approach, the visual analysis performed

at the remote server has to solely rely on a set of compressed visual features ex-

tracted and transmitted by the sender. Naturally, such approach has the drawback

of not enabling visualization at the server side, which limits the range of applica-

tions [20]. For this approach, a significant amount of work has been done with

several authors proposing coding schemes to efficiently compress state-of-the-art lo-

cal visual features such as SIFT and SURF both for images and videos [14, 21, 22].

Also, new visual feature descriptors have been carefully designed, targeting lower

bit rate representations [23] such as the so-called binary descriptors [24]. Still in the

ATC domain, the recently issued MPEG-CDVS (Compact Descriptors for Visual

Search) standard [12, 13] provides description tools to enable interoperability in the

context of image searching.

Finally, the HATC approach aims at overcoming the limitations of the two pre-

vious paradigms by combining pixel-based and feature-based coding. Considering

that visualization and searching are becoming very popular together, the HATC

approach has recently attracted attention. In [25, 26], an image coding solution

based on SIFT descriptors is proposed already inspired by the technique reported

in [27, 28]. SIFT descriptors are extracted from the original image and differen-

tially coded with respect to SIFT descriptors extracted from a poor quality, down

sampled and low rate version of the image, that is first conveyed to the decoder.

This first image is used to guide the target quality reconstruction, since it should

carry enough information about the edges, colors and objects. The decoded de-

scriptors are used to retrieve highly correlated images available in the cloud which

shall provide image patches to enable a higher quality image reconstruction. In

the context of scene classification and pedestrian detection, a two-part predictive

coding architecture is proposed in [9], targeting both the signal (image) and feature

fidelities. Related systems are proposed in the contexts of Visual Sensor Networks
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(VSN) [16] and augmented reality applications [29]. In [30], a video coding solution

is proposed where keypoint information detected on the uncompressed video frames

is coded in parallel with regularly coded video, thus not exploiting their synergies.

It was experimentally demonstrated that keypoints detected on uncompressed video

are effective in reducing the detrimental effects of compression on feature match-

ing performance even if the descriptors themselves are extracted from lossy decoded

video [30, 31]; this highlights the importance of using keypoint information extracted

from uncompressed data for efficient searching.

In these previous HATC works, pixel and feature-based representations are essen-

tially designed and used independently from each other, meaning that the feature-

level data, targeting searching is not exploited to aid the pixel-level coding, targeting

visualization, and vice-versa. But this scenario is starting to change. In [20], a hybrid

framework for jointly coding the feature descriptors and visual content is proposed,

exploiting their interaction. While the feature descriptors are efficiently represented

by taking advantage of the structure and motion information in the compressed

video stream, the already compressed descriptors can be used to further improve

the video compression efficiency by applying feature matching based affine motion

compensation.

1.2 Objective and contributions

In modern video applications, the role of the decoded video is much more than filling

a screen for visualization. To offer more powerful video enabled applications, it is

increasingly more critical not only to visualize the decoded video but also to provide

efficient searching capabilities for similar content. Video surveillance and personal

communication applications are critical examples of these dual visualization and

searching requirements. However, current video coding solutions are strongly biased

towards the visualization needs.

In this context, the goal of this research work is to design a novel dual-purpose

video coding approach that is more adjusted to the current role of digital video in

modern applications targeting both visualization and searching needs by adopting a

hybrid coding framework where the usual pixel-based coding approach is combined

with a novel feature-based coding approach.

The main contributions resulting from the pursuit of this objective are:

◦ Study on the coding performance of video features

A comprehensive study has been conducted in order to set up a firm ground

for further research on coding visual features extracted from video sequences.

This study, published in the conference paper C.1, presents a visual feature
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coding framework with various coding modes, including intra-frame and inter-

frame, with and without decorrelating transforms.

◦ Hybrid coding approach based on pixels and visual features

This work proposes a video coding architecture that employs a hybrid ap-

proach where pixel-based and feature-based coding are jointly used. The peri-

odic k-frames are coded using a standard pixel-based notably HEVC approach

and used as reference frames to code the f-frames using a feature-based en-

coder. Once the k-frames are decoded, frame rate-up conversion is performed

to obtain a first coarse estimation of the f-frames. The basic idea to code

the f-frames is to refine this coarse estimation by migrating appropriate image

patches from the decoded reference frames. This is achieved by establish-

ing correspondences between features/patches in the original f-frames and the

already available decoded reference frames. In this way, the quality of the f-

frames may be gradually improved by reusing appropriate image patches from

the reference frames guided by keypoints extracted from the original data,

relying on the fact that video sequences usually exhibit significant tempo-

ral redundancy. In addition, since keypoint positions extracted from original

uncompressed video data are available for the f-frames at the encoder, the

visual searching performance may be boosted compared with the one of de-

coder extracted keypoints based on lossy decoded video. This is a conceptually

refreshing coding approach which tries to conciliate some degree of backward

compatibility with HEVC, the most recent video coding standard (through the

k-frames) with a new video coding approach targeted at boosting the search-

ing performance (through the f-frames). A preliminary version of this video

coding approach based on pixels and visual features resulted in a conference

paper C.2 and an extended version J.1 has been submitted as journal paper.

◦ Joint visualization-searching optimization framework

A flexible joint Lagrangian optimization framework is proposed where pixel-

based and feature-based processing are combined to find the most appropriate

trade-off between the visualization and searching performances. It allows to

adjust the balance between the visualization and searching performance up

to the extreme cases where one of them is totally dominating, depending on

the specific application scenario requirements. This framework offers a syn-

ergetic video coding approach between two key user capabilities. This joint

optimization strategy constitutes an important part of the submitted journal

paper J.1.

◦ Iterative descriptor matching estimation
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Measuring the visual quality distortion is straightforward because of the avail-

ability of the original at the encoder side. However, the situation is very

different for the searching capability, as the descriptor matching performance

cannot be precisely measured at the encoder as only the decoder has access to

the target content database. It is proposed to estimate the descriptor match-

ing performance at the encoder side by mimicking in the best possible way the

descriptor matching steps that are performed at the decoder. Such descriptor

matching performance estimation enables to formulate a joint Lagrangian op-

timization to trade-off the rate against the joint visual quality and descriptor

matching distortion. This descriptor matching estimation also constitutes an

important part of the submitted journal paper J.1.

1.3 Outline of the thesis

After this introductory chapter in which the motivation and context within which

this work has been carried out as well as its objective and contributions are pre-

sented, the remaining content of this thesis is organized as outlined below.

Chapter 2 briefly reviews basic concepts related to digital video signals, their

representation and characterization. It also summarizes the main coding tools of

the block-based prediction and transform video coding paradigm as well the HEVC

coding standard. Furthermore, common full-reference evaluation metrics and some

performance results for HEVC are presented and discussed.

Chapter 3 presents a short review of local feature detection and description

tools. A coding framework for visual features extracted from video sequences is

briefly described, including intra- and inter-frame coding modes.

The objective of the first three chapters is to lay down the ground for the dual-

purpose video coding solution presented in the Chapter 4, which starts by describing

the walkthrough of the proposed solution and presenting the designed architecture.

Afterwards, it describes more in-depth the most novel and technically original coding

modules.

Chapter 5 presents extensive experimental results for the assessment of the pro-

posed solution under meaningful test conditions, notably considering not only the

joint optimization objectives but also the special cases where the operational points

are selected to provide the best performance towards visualization or searching. Fi-

nally, Chapter 6 presents the conclusions of this research work and indicates possible

directions for further investigations on video coding solutions that aim at address

joint visualization and searching needs.
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Chapter 2

Digital video coding: an overview

This chapter presents a brief review of digital video signals and their representa-

tion. It also includes an outline of the block-based prediction and transform coding

paradigm employed in the state-of-the-art video coding technology, its main building

blocks consisting of intra- and inter-frame prediction, transformation, quantization

and entropy coding. The High Efficiency Video Coding (HEVC) standard is pre-

sented as the prominent representative of the aforementioned coding framework.

Furthermore, common full-reference evaluation metrics used to drive coding deci-

sions, to assess the quality of the reconstructed signals and to compare different

coding solutions are briefly reviewed. Some results obtained by coding a few video

sequences using an HEVC encoder are presented and discussed.

2.1 Digital image and video signals

The vast application domains of digital still image and video signals have been

producing an ever growing diversity and quantity of data. Although digital image

and video signals are not limited to the outcomes of imaging systems that sense the

interaction of the visible light with objects of a given scene, this work focus on such

types of signals. For example, those produced by digital cameras.

A thorough description of the acquisition process of image and video signals is

beyond the scope of this work, but in brief an imaging system aims to sense a con-

tinuous 3-D scene, at a fixed instant of time, so that it can be displayed as a matrix

I(x, y) of discrete picture elements well-known as pixels [32, 33]. In turn, each pixel

is composed of three component samples. In this representation, (x, y) are discrete

spatial coordinates in the image plane. A Charge-Coupled Device (CCD) imaging

sensor, for example, is constituted as an array of collection sites [34] that collect

photoelectrons produced as a result of the incident light. In order to produce color

images, CCD imaging sensors use an array of red, blue and green filters with a

spatial distribution inspired in the Human Visual System (HVS) [33]. The output
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of these spatial filters is somehow combined to produce the Red, Green and Blue

(RGB) color components of each pixel in an image. These RGB color components

represent the amount of the primary colors at each pixel position. This color rep-

resentation scheme is based on the HVS tri-stimulus model, a linear combination of

RGB components is expected to be able to represent any visible color [35].

Although the RGB color space is often used in the acquisition and displaying

stages [5] of the processing pipeline for handling visual information, it is common

the use of the YCbCr (or YUV) color space during compression stage as it decou-

ples the most important information for HVS, notably the luminance or luma (Y)

component, from the chroma components Cb and Cr. This color representation

scheme in combination with an uneven spatial sub-sampling pattern of luma and

chroma components results in bandwidth savings with negligible perceptual loss for

the HVS. Aspects of conversion between RGB and YCbCr color spaces, quantization

and sampling patterns can be found in [36]. Typical sub-sampling formats include

the 4:2:2 and 4:2:0 formats [5]. In the 4:2:2 case, for each 4 samples of luma com-

ponent, there are two samples for each chroma component Cb and Cr. The chroma

components having the same vertical resolution as the luma component, and in the

horizontal direction half the resolution. In the 4:2:0 format, for every four samples

of luma, there is one sample for each of the chroma components. The horizontal and

vertical resolutions of the chroma components are half the one of the luma compo-

nent. The average number of bits per pixel assuming 8 bits per component would

be 12 in the case of 4:2:0 format and 16 for 4:2:2.

Digital video signals are constituted by a sequence of images (or frames) sampled

at an adequate frequency along the temporal dimension to give the impression of

continuous transitions when reproduced. The sampling frequency strongly depends

on type of content captured. Television signals, for example, are typically acquired

at 25 and 30 frames per second (fps)[5]. Rapid changing scenes might require higher

sampling frequency. A large number of image and video signals are produced from

natural scenes as the result of an interest in retaining a particular kind of visual

information, or to provide more natural communication experiences with the aid

of visual information. Therefore, natural image and video signals usually exhibit

different textures and well defined structures of the real world. Another class of

image and video signals, for example, are those synthetically generated as the ones

from special effects in movies and electronic games. Despite the diversity of sources,

image and video signals usually exhibit a considerable amount of both spatial and

temporal redundancy. Notably, within a frame of a video sequence, the amplitude

of the signal often changes smoothly. This is also the case from frame to frame,

where the exhibited visual content changes smoothly. Most compression solutions

strive to take advantage precisely of these characteristics of image and video signals
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in combination with the characteristics of HVS to provide compression efficiency by

employing coding tools to reduce both redundancy and irrelevancy.

2.2 Block-based prediction and transform video

coding framework

From a broad perspective, video compression can be addressed in a lossy or loss-

less manner. Lossless compression is suited for applications that impose a perfect

reconstruction requirement for the input signal, examples include medical images

used to aid diagnose diseases and at production stage in the multimedia and enter-

tainment industry. Nevertheless, as the majority of applications have more relaxed

constraints in terms of quality and more strict constraints in terms of bit rate, those

applications call for lossy video coding.

Rate-Distortion (RD) theory provides the theoretical foundation for lossy video

coding as it describes the trade-off of minimizing the rate for a given acceptable

distortion [1, 2, 37]. This problem was first comprehensively addressed by Shannon

in the context of representing a continuous random variable with a finite number of

bits [38, 39]. The Rate-Distortion function R(D) describes the theoretical bound on

the compression efficiency according to an acceptable distortion [37, 40]. Unfortu-

nately, R(D) functions are known only for simple statistical sources [1], although it

is useful to keep them in mind when deriving lossy video compression techniques.

Among video coding paradigms, the block-based prediction followed by transform

coding is the most successful coding framework, and it is the base of largely deployed

video coding standards such as H.264/AVC [5, 41]. It resorts to a set of flexible

coding tools matured during decades of research to come up with a very efficient

(compressed) description of the input signals. The decision process involved in the

course of obtaining this compressed description is a fundamental aspect of image

and video encoders. To this end, the employed coding tools are used in the best

possible way to achieve the desired RD trade-off.

In the block-based prediction and transform video coding paradigm, the input

video frames are usually partitioned into non-overlapping blocks. For each block, a

prediction is computed, which can be derived from samples of neighboring decoded

blocks of the same frame (intra-frame prediction) or from a list of decoded reference

frames (inter-frame prediction). To enable this prediction scheme based on decoded

samples, the decoder is embedded in the encoder. It is worth to mention that while

the encoder plays an active role in deriving an RD-driven prediction by performing

intra-frame estimation as well as motion estimation, the decoder merely follows what

is decided in the encoder by carrying out intra- and inter-frame prediction. The
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prediction block is subtracted from the current block to form a prediction residue

block. Then, the prediction residue block is subjected to a transform step aiming

to compact energy and making it more suited for quantization. The quantized

transform coefficients along with the prediction mode and motion vectors are entropy

coded and transmitted to the decoder so it may follow the decisions made at the

encoder side and reconstruct the signal. Figure 2.1 depicts schematically the block-

based prediction and transform video coding framework.

The above description has omitted a number of important details, but highlights

the main coding tools employed in the mentioned paradigm: intra-frame and motion

estimation, intra- and inter-frame prediction, transform, quantization and entropy

coding. Below, some of the building block coding tools used in the state-of-the-art

video coding technology are briefly described.

Transform Quantization

Intra-frame
prediction

Inter-frame
prediction

Inverse
quantization

Inverse
transform

Entropy
coding

Loop filter

Motion
estimation

Decoded
frames buffer

Input
frame

−
+

+

bitstream

decoded
frame

Intra-frame
estimation

Figure 2.1: Block-based prediction and transform video coding framework. Gray
blocks represents the embedded decoder1.

2.2.1 Prediction

Video sequences usually exhibit a large degree of both spatial and temporal redun-

dancy with fairly structured arrangements of sample values resulting from the well

defined structures and texture patterns of natural scenes. Therefore, coding directly

the original signal samples without exploiting its redundancy and structure would be

inefficient. In this context, using a predictive scheme to remove redundancy and take

advantage of the structured nature of image and video signals would be beneficial

1Based on the diagram block of standardized video codecs [42].

10



as the prediction error signal may exhibit less energy and cost less bits to be coded.

The prediction error for each image block is derived by subtracting the predicted

sample value from each raw sample within the current block. This predicted sample

value is derived based on the already coded and decoded samples. The prediction

is carried out both at the encoder and decoder, with the encoder playing an active

role in deriving an RD-driven prediction and coding the side information required

for reproducing the same prediction at the decoder. After that, only the prediction

error, that is, the information not present at the receiver side, is conveyed by the

encoder to the decoder.

Intra-frame prediction

The signal amplitude within an image or a frame of a video sequence often changes

smoothly, that is, a particular sample value tends to be close to the values of its

near neighbor samples. Naturally, exceptions occur, for example, in object edges

and abrupt changes in high frequency regions. Despite that, smooth spatial transi-

tion is a good assumption used in intra-frame prediction techniques. The block-by-

block coding enables the encoder to use decoded samples from neighboring blocks

to predict the samples of the current block to be coded. In the popular JPEG stan-

dard [43], for instance, neighboring blocks in the DCT domain are likely to have

close DC coefficient values. In view of this, a predictive scheme is used to code

the DC coefficients so that only the difference with respect to the DC coefficient

of the previous block is coded for each DCT block. Modern intra-frame prediction

techniques are quite efficient at taking advantage of pixel correlation to produce a

residual signal with much less energy and distribution peaked around zero. Figures

2.2b and 2.2c show, respectively, the intra-predicted frame and the frame difference

between the original frame and the intra-predicted frame. This exemplifies the effi-

ciency of current state-of-the-art intra-frame prediction schemes. A good review of

intra prediction schemes can be found in [44, 45]. Intra-frame prediction schemes are

quite useful in video coding as well, notably for coding the so-called I-frames, which

are frames coded without referencing any other frame in the sequence and intend to

provide random access and also to offer some resilience to transmission errors. To

increase the chance to succeed in obtaining a good prediction for each sample block

and to deal with different local sample structures, the intra-frame prediction scheme

in use in state-of-the-art video coding solutions such as HEVC [42] can select from

various prediction modes available and is able to perform prediction for blocks of

different sizes (to some extent). Naturally, as the selected prediction mode must

be coded in the bitstream so that the decoder may replicate the prediction, the

selected prediction mode must be coded in an efficient way. [46]. Figure 2.3 shows

the histograms of the sample amplitude and the residue amplitude for the video
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frames shown in Figure 2.2. Details of the used video sequences can be found in the

Appendix B.

(a) Original frame. (b) Intra-predicted frame. (c) Frame difference between
the original and the intra-
predicted frame.

(d) Inter-predicted frame. (e) Frame difference between
the original and the inter-
predicted frame.

Figure 2.2: Results of the block-based prediction schemes used in the HEVC for the
second frame of the sequence Foreman.

Inter-frame prediction

A good assumption often valid in video signals is that the content changes smoothly

from frame to frame, resulting in a great amount of temporal redundancy. The goal

of inter-frame prediction is to remove as much as possible this temporal redundancy,

in order to more efficiently compress the input signal. To this end, a predictive cod-

ing scheme is usually employed and instead of coding the frame content directly, one

codes just the prediction residue, that is, the novelty of the current frame regard-

ing one or more reference frames. A simple approach would be coding the frame

difference without any prior processing. However, to more effectively decorrelate

the prediction residue at the cost of an affordable computational complexity, one

performs motion-compensated prediction. The current frame to be coded is usually

partitioned into sample blocks to better cope with different motions of the objects

within the video frames. The prediction residue is computed for each block after

performing motion estimation and motion compensation [45, 47–49]. In the motion
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(b) Histogram of the residue amplitude.

Figure 2.3: The prediction process produces a residual signal with concentrated
distribution making it suited for entropy coding.

estimation, a motion vector is estimated by searching for a matching block in a set

of reference decoded frames. A rate-constrained motion estimation is often adopted

for obtaining RD profit. Translational motion models are commonly used in this

motion estimation process as it is found to be a good balance between the rate to

code the motion parameters and the accuracy of motion estimation [50]. In the mo-

tion compensation, the matching block in the reference frame is displaced according

to the motion vector to generate the motion-compensated prediction. The residue

block is obtained computing the difference regarding this motion-compensated pre-

diction. The residue block is supposed to have much less energy and to carry only

the novelty that will be added to the prediction block to reconstruct the signal at the

decoder side. As the motion vector must be coded in the bitstream so the decoder

may replicate the same motion compensation, a great deal of effort must be taken

to efficiently signal the motion vectors.

Modern inter-frame prediction algorithms in use in video coding solutions are

highly optimized, as they can estimate motion with sub-pixel accuracy and use

more than one decoded frame as reference. Also, they are quite flexible, being

able to generate motion-compensated prediction for blocks of various sizes in an

adaptive fashion. Figures 2.2d and 2.2e show, respectively, the predicted frame

derived by motion compensation generated by the HEVC Test Model [51] and the

frame difference between the original and the predicted frame.

2.2.2 Transform and quantization

The prediction residue might contain spatial correlation not handled by the pre-

diction step. In view of that, the transform step aims to further decorrelate the
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prediction residue. In lossy video coding, the transform coefficients are quantized,

therefore the transform should also provide a better representation suited for quan-

tization.

Decorrelating transforms have been the matter of many research works. In the

context of block-based video coding, the Discrete Cosine Transform (DCT) plays

a fundamental role. It is used in various image and video coding standards such

as JPEG [43], H.264/AVC [5, 52] and HEVC [53]2. The DCT belongs to the class

of unitary and separable transforms derived as an approximation to the Karhunen-

Loève (KL) transform and has near optimal properties in terms of decorrelation and

energy compaction. From a mathematical viewpoint, the transform step decomposes

the image block into a set of basis images and associated weights [54]. Due to

the energy compaction property of the transform, its coefficients associated to the

low frequency base images tend to carry the most significant information, while

the high frequency ones tend to be close to zero. It is worthwhile noting that

the transformation is reversible, no loss of information occurs. The original image

block can be entirely recovered. Next, the transform coefficients are quantized, and

depending on the quantization step size, most high frequency coefficients are set

to zero since they generally carry only a small amount of the energy of the block

content. It is important to notice that there may be some perceptual reasons to

quantize more heavily certain frequencies thus increasing the number of zeros and

reducing the number of quantization levels and consequently the rate. Most zero

valued coefficients are grouped together and only a subset of non-zero coefficients are

entropy coded. The decoder is able to reconstruct an approximation of the image

block by summing the basis images weighted by the quantized transform coefficients.

The quantization introduces irreversible losses as it maps values that have a wide

dynamic range to a narrower one, hence a many-to-one mapping. The quantization

aims to reduce the amount of bits to represent the DCT coefficients. However,

the higher the quantization step size used, the higher the information loss. The

quantization step size control allows the encoder to vary the bit rate expenditure

and the quality of the reconstructed signal to accommodate different trade-offs.

The use of the DCT in image compression was originally proposed in [55, 56].

In the predictive video coding paradigm, prediction residues (i.e image differences)

are actually coded. Despite that, the DCT is also widely used for coding prediction

residues [57]. An extensive characterization of both intra-frame and inter-frame

prediction is found in [45] as well as transforms for coding prediction residues.

Modern video coding standards actually use variable block size transforms that

are integer approximations of the DCT to reduce computational complexity [3, 58].

Other discrete transforms are also used in video coding standards. H.264/AVC[5], for

2Actually, H.264/AVC and HEVC use integer approximations of the DCT.
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example, uses the Hadamard or DCT transforms depending on the type of residual

data to be coded. In addition to variable size DCT, HEVC [3] also uses a Discrete

Sine Transform (DST).

Figure 2.4 shows the absolute values of the DCT coefficients in logarithm scale for

an image block of size 64× 64 from the video sequence Foreman. Figure 2.5a shows

the image block over which it is applied the DCT. Details on the video sequences

used throughout this work can be found in the Appendix B. Notice the concentration

of the largest coefficient values in the top-left corner of coefficient map as a result

of the energy compaction property. Figure 2.5 shows different reconstructions for

the block, where the inverse transform is computed considering only a few DCT

coefficients, precisely those with the largest absolute values and setting the other

coefficients to zero.
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Figure 2.4: Absolute values of the DCT coefficients in logarithm scale.

2.2.3 Entropy coding

The objective of entropy coding is to assign a code for each symbol or sequence of

symbols coming from a data source. A quite fundamental and reasonable strategy

for achieving compression is to assign shorter codes (codeword) for frequent sym-

bols and longer codes for less frequent symbols, so that the average code length is

minimized [59]. For this purpose, a good probabilistic characterization of the sym-

bols from a data source is critical. In addition to minimum average length, it is

required to have non-singular codes both for individual symbols and for a sequence

of symbols, that is, each symbol (or sequence of symbols) should have a distinctive

codeword. Finally, it is desirable that symbols are instantaneously decoded without

the need to wait for the end of message. These requirements drove the early devel-

opments in entropy coding algorithms. Nowadays, it is also often required efficient

context modeling for better prediction of symbol probabilities, adaptive probability

models, low memory consumption and parallelism [60, 61].

In video coding applications, the symbols to be coded are the syntax elements

describing the video signal. For the block-based prediction and transform video
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(a) Original frame. (b) Reconstruction with
the 50 largest absolute
values of the DCT coef-
ficients.

(c) Reconstruction with
the 100 largest absolute
values of the DCT coef-
ficients.

(d) Reconstruction with
the 500 largest absolute
values of the DCT coef-
ficients.

(e) Reconstruction with
the 2.000 largest absolute
values of the DCT coeffi-
cients.

(f) Reconstruction with
the 4.000 largest absolute
values of the DCT coeffi-
cients.

Figure 2.5: Different reconstruction qualities for a 64×64 samples (luminance) block
of the first frame of video sequence Foreman resulted by keeping the largest absolute
values of the DCT coefficients and setting the others to zero.

coding framework, the syntax elements include block partitioning flags, prediction

types, prediction modes, motion vectors and transform coefficients, just to name a

few; so that the decoder is able to reconstruct an approximation of the input signal

by decoding the bitstream of syntax elements generated by the encoder.

Huffman and Arithmetic Coding (AC) are widely used in image and video cod-

ing [59, 62, 63]. Modern video coding solutions such as HEVC [42] use the so-called

Context-Adaptive Binary Arithmetic Coding (CABAC) which comprises a binary

version of AC with a sophisticated and efficient context modeling in order to achieve

high compression ratios [64].

2.3 The HEVC standard

The High Efficiency Video Coding (HEVC) [3, 4, 42] standard jointly developed

by ISO/IEC MPEG and ITU-T SG16 VCEG is the state-of-the-art on video cod-

ing technology today. It adopts the block-based prediction and transform cod-
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Figure 2.6: Block diagram of a typical encoder for generating an HEVC compliant
bitstream. The gray blocks are the embedded decoder blocks3.

ing paradigm summarized above. HEVC consists of a set of mature coding tools

successfully adopted in previous video coding standards and continuously refined

during decades of research. Similarly to the previous video coding standard

H.264/AVC [5, 41], HEVC was designed to provide efficient video compression so-

lutions for application scenarios ranging from video broadcasting to video storage,

internet streaming and video-chat services [53], only to name a few. Moreover, the

need to address the increasing resolution in video content and to take advantage of

parallel processing architectures have urged the development of a more efficient video

compression solution. Following the same approach as previous standards, HEVC

standardizes only the bitstream structure, the syntax elements and the decoding

process, this way providing interoperability between non-normative encoder and

normative decoder implementations. In this context, interoperability is provided

solely if an encoder, although non-normative, generates a bitstream in conformance

with the standard. Figure 2.6 shows the block diagram of a typical HEVC encoder,

for a more in-depth presentation of all coding tools refer to [3]. The several optimiza-

tion and processing steps made in the course of generating a compliant bitstream

3Inspired in the typical HEVC video encoder presented in [3].
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are entirely up to the encoder design, this is notably to allow different compromises

between compression performance and implementation complexity. The HEVC stan-

dard defines a flexible framework by employing nested quadtree structures [65] for

better partitioning, prediction and transform coding of the basic processing units

defined in the standard. Such approach gives HEVC a high degree of flexibility for

adapting its coding tools according to local signal characteristics to obtain a very

compact video representation. The coding tools include an intra-frame prediction

scheme with 35 prediction modes, inter-frame prediction with sub-pixel accuracy,

flexible transform block sizes and efficient Context-Based Binary Arithmetic Cod-

ing (CABAC) for entropy coding.

The coding process in HEVC splits each input video frame into non-overlapping

square-shaped image blocks. Each one of these image blocks is processed using

the basic processing unit defined in the standard, the so-called Coding Tree Unit

(CTU). For handling the three color components within the image blocks, the HEVC

standard employs a coding structure called Coding Tree Block (CTB) for each color

component, thefore a CTU consists of one luma CTB, two chroma CTBs and related

syntax elements. The CTB size is configured by the encoder in luma samples and

can be of sizes 16 × 16, 32 × 32 or 64 × 64. The corresponding chroma CTBs size

obeys the chroma sub-sampling format, for instance, in the common 4:2:0 format,

the chroma CTBs size is half the luma CTB in each dimension [3]. By employing

a quadtree partitioning structure, the CTB can be coded using multiple Coding

blocks (CB) or directly as a single CB [3]. One luma CB and two chroma CBs

together form a Coding Unit (CU). Each CU can be classified regarding the employed

prediction mode as skipped CU, intra-coded CU and inter-coded CU [65]. Each CB

resulting from CTB partitioning can be further split for prediction purposes. In

this context, one, two or four Prediction Blocks (PBs) can be derived depending on

the prediction mode and CB size, with the allowed PB size ranging from 4 × 4 to

64 × 64. The resulting prediction residue associated to the CB is coded resorting

to a transform tree, also referred to as Residual Quadtree (RQT). The leafs of

this transform tree are the so-called Transform Blocks (TBs). Each CB residual

resulting from prediction may be further split for coding purposes into smaller TBs

or directly coded as a single TB. The permitted TB sizes are 4 × 4, 8 × 8, 16 × 16

and 32×32. All prediction-related syntax elements, including block partitioning and

applied prediction mode, are kept together for the three components in a Prediction

Unit (PU). Similarly, all transform-related syntax elements are kept together in a

Transform Unit (TU). In turn, the PU and TU form a CU. HEVC also defines

high-level syntax concepts, notably for allowing the configuration of parameters and

coding features. For example, a slice is a set of consecutive CTUs which can be

decoded independently from other slices of the same frame. Three different types of
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slices are defined according to the prediction type allowed, namely I-slices, P-slices

and B-slices. In I-slices, only intra-frame prediction is allowed to be used, whereas

P-slices and B-slices may also be coded resorting to inter-frame prediction. Both

uni- and bi-prediction are permitted for inter-frame prediction of B-slices, while for

P-slices only uni-prediction is allowed.

In the sequel, the main features of the coding tools adopted in HEVC are high-

lighted and briefly discussed. One should note that this does not intent to give a

thorough description of the HEVC standard. For this purpose the reader can find

comprehensive treatments in [3, 53, 65].

2.3.1 Prediction tools

As previously pointed out, predictive techniques play a central role in video coding

solutions as they are devised to generate decorrelated residual signals and to provide

compression efficiency. To this end, the HEVC standard employs fundamentally two

predictive scheme types, notably intra-frame and inter-frame prediction. The deci-

sion between intra and inter mode is made at CU level. As for the prediction modes

applied for the CBs constituting a CU and resulting from the CTB partitioning, a

brief explanation is given in the sequel for intra- and inter-predicted CU.

Intra-frame schemes

The intra-frame prediction in HEVC includes 35 prediction modes, which were de-

vised to propagate decoded reference samples from neighboring TBs into the area

covered by a prediction block. The available prediction modes are the DC mode,

the Planar mode and 33 Angular modes. Each prediction mode defines a particular

propagation rule, thereby enabling approximation of various spatial image structures

including near constant, gradient and directional structures [66].

In the sequel, the main aspects for generating the prediction for an intra-

predicted CU are summarized.

◦ Partitioning rules: each CB of size M×M resulting from the CTB partition-

ing may be predicted using one or four Prediction Blocks (PBs) as schemati-

cally depicted in Figure 2.7. The partition into four PBs of M/2×M/2 is per-

mitted only when the CB size has reached its minimum allowed size. Therefore,

the PB can be of size N ×N in units of luma samples, with N = {4, 8, 16, 32}.
Although the PB size is generally defined by the CB size, for intra-predicted

CB, the prediction is actually carried out obeying the TB size within the

CB [3, 42].
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Figure 2.7: Options for CB partitioning into PBs (intra-predicted CU).

◦ Reference samples: the samples located in the neighboring TBs are used

for deriving the prediction block. The used TB reference samples may be from

the current CB and from neighboring available CBs. A total of 4N+1 samples

around the block to be predicted can be used as reference. Figure 2.8 shows the

case when N = 32. The samples actually used for generating the prediction

block depend on the prediction mode. In order to avoid introducing artificial

edges [66], before being used for prediction, the luma reference samples may

go through a low pass filtering step. The decision whether or not to apply

the filtering depends on the block size and the prediction mode. For the DC,

horizontal and vertical modes, the filtering is not applied as well as for blocks

with N = 4.

◦ Prediction modes: the prediction block for the DC mode is obtained as-

signing the average of the horizontal and vertical reference samples. A special

treatment is given to the predicted luma samples near the reference samples as

those predicted samples are smoothed. The prediction for the Planar mode is

generated for each sample within the prediction block by computing a weighted

average using four reference samples. The prediction using Angular modes is

more elaborated, the complicating factor is to determine the reference samples

to be used for computing the predicted sample. In view of this, HEVC maps

the reference samples into an 1-D array, each Angular mode defining a differ-

ent mapping. Once the 1-D array is available, the prediction for each sample

within the prediction block is computed interpolating two reference samples

of this 1-D array. The interpolation is carried out with 1/32 sample accuracy.

The Angular modes are schematically depicted in Figure 2.8 for the case where

N = 32.

◦ Prediction mode signaling: two alternative options are available in HEVC

for signaling the chosen prediction mode for each PB. The first option is to

code an index indicating one of the three prediction modes available in a list

of Most Probable Modes (MPM). Alternatively, a fixed 4-bit code is coded

to indicate one of the 33 modes not included in the MPM. The MPM list is

derived for each block to be predicted and it is conditioned to the availability
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of neighboring blocks and its prediction modes. The two alternatives are coded

using CABAC in bypass mode.

N = 32
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Figure 2.8: Angular prediction using decoded reference samples from neighboring
TBs. The horizontal and vertical little grey blocks represent reference samples. The
highlighted area in red represents the sample block to be predicted.

Inter-frame schemes

The underpinning idea for inter-frame prediction in HEVC is to derive a residual

signal carrying only the novelty of the frame to be coded regarding sample blocks

of decoded reference frames. This is deemed to be a fundamental idea for efficient

representation of video signals. HEVC is equipped to generate a ‘mosaic’ of motion-

compensated PBs by exploiting for prediction two lists of reference frames, the

so-called list 0 and list 1, which are constructed from the Decoded Picture Buffer

(DPB). To better exploit the reference lists, in addition to variable size PBs, HEVC

may be given the choice between uni- and bi-prediction modes (depending on the

slice type). To obtain a prediction for the sample block within the domain of a

PB, an encoder may perform motion estimation by searching for a block match in

the list of reference frames so that an RD criterion is minimized. The resulting

motion vectors (vertical and horizontal displacement values) as well as references to

frames in the reference lists are coded and sent to the decoder so it can replicate

the motion-compensated prediction.

In the sequel, the main aspects for generating the prediction for an inter-predicted

CU are summarized.

◦ Partitioning rules: in order to generate a prediction, each CB of size M×M
resulting from the CTB partitioning may be further partitioned into one, two
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or four PBs. The allowed shapes for partitioning a CB into PBs are shown

in Figure 2.9. The partition option M/2 × M/2 is only allowed when the

CB has reached its minimum size. The partition shapes in the second row of

Figure 2.9 are named Asymmetric Motion Partitions (AMP) and are included

in the design as they may provide an efficient representation when a foreground

object partially overlaps the background within the domain of a CB [42].

M × M M
2 × M M × M

2
M
2 × M

2

M
4 × M (left) M

4 × M (right) M × M
4 (up) M × M

4 (down)

Figure 2.9: Options for CB partitioning into PBs (inter-predicted CU).

◦ Sample interpolation: for improved motion-compensated prediction, the

reference sample block used for prediction may be displaced with non-integer

sample accuracy. In this case, additional fractional samples must be interpo-

lated between samples in the integer sampling grid. The interpolated fractional

samples can be generated with accuracy of one quarter of sample for luma com-

ponent. As for the chroma components, the accuracy depends on the sampling

format. For the common 4:2:0 format, the interpolation is carried out with

accuracy of one eighth of a sample. Two filters are defined for interpolating

the luma samples at fractional sample positions, the fractional samples at half-

sample positions are obtained with an 8-tap filter, whereas fractional samples

at quarter-sample position are obtained with a 7-tap filter. For chroma frac-

tional sample interpolation, a set of 4-tap filters are defined for the usual 4:2:0

sub-sampling format. The prediction samples may go through scaling and

offsetting operations in case of weighted prediction as well as rounding, bit-

shifting and clipping operations in order to keep the prediction samples in the

original bit-depth. To this end, HEVC provides a simplified design resulting

in a greater flexibility and decreased rounding errors regarding the previous

standard H.264/AVC. Further details on this subject can be found in [3, 42].

◦ Inter-frame prediction modes: the motion-compensated prediction can be

derived resorting to one or a combination of two reference blocks, these modes
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are named uni- and bi-prediction schemes, respectively. The allowed modes

depend on the slice type. For B-slices, both uni- and bi-prediction are allowed.

In this case, the two reference lists may be used for generating the prediction

block. On the other hand, only uni-prediction is allowed for P-slices, in which

case only reference list 0 is used. For improved prediction performance, a

weighting factor and a scale offset may be applied to the predicted samples.

This weighted prediction is defined for both uni- and bi-prediction schemes.

Notably, for the bi-prediction case, weighted prediction is used to combine two

reference blocks.

◦ Motion vector information representation: two efficient representations

of motion information are defined in the HEVC standard, notably the merge

mode and a predictive motion vector coding scheme named Advanced Motion

Vector Prediction (AMVP). Rather than explicitly signaling the applicable

motion vectors and related information (notably, reference frames indices and

used reference lists), in the merge mode, the motion information used for

obtaining the motion-compensated prediction is indicated by an index which

identifies one out of several candidate motion vectors in a list. The list of

candidate motion vectors is built in an adaptive fashion from both spatially

and temporally neighboring blocks. The skip mode is regarded as a particular

case of the merge mode. A predictive scheme is employed when the merge mode

is not chosen for representing the motion information. A candidate list of two

predictors is built from spatially and temporally neighboring blocks, similarly

as for the merge mode, and only the motion vector difference regarding one

of the reference predictor needs to be indicated. The reason to maintain a

reduced list of candidates in the predictive motion vector coding scheme is

to keep an affordable computational complexity for motion estimation in the

encoder [42, 67].

2.3.2 Residual coding

Before entropy coding, the most common approach in HEVC for processing the resid-

ual blocks resulting from the prediction step is to apply a decorrelating transform

and a quantization process for reducing the number of bits required to represent the

selected transform coefficients. Alternatively, it is also possible to skip the trans-

form and quantization steps. Because of the energy compaction property of the

transform and the quantization applied, the non-zero coefficients tend to cluster to-

gether. To exploit this fact, HEVC defines scanning patterns for efficient coding of

the transform coefficients.
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Used transforms

The HEVC standard defines two transforms for decorrelating the residual blocks,

notably the DCT and the DST. To achieve compression efficiency, HEVC employs

a Residual Quadtree (RQT) structure for coding each CB resulting from the CTB

partitioning process. The leafs of this RQT structure are the so-called Transform

Blocks (TBs). As the roof of this transform tree is the CB, in the case of inter-

predicted CU, the transform blocks are allowed to encompass more then one PB if

it is found to be beneficial for compression efficiency. The actual transforms defined

in the HEVC standard are finite precision approximations for both the DCT and

DST. Because the defined transforms are separable, the 2-D transform is computed

by applying a 1-D transform along one direction and then repeating in the other

direction.

◦ DCT: in its design, the DCT integer approximation has taken into account

precision, closeness to orthogonality and control of the dynamic range in the

transform computation. The allowed TB sizes are {4×4, 8×8, 16×16, 32×32}.
For simplicity, a single matrix of size 32 × 32 is defined and the matrices for

other TB sizes are obtained by sub-sampling the 32× 32 defined matrix.

◦ DST: the 4 × 4 luma residual blocks obtained resorting to intra-frame pre-

diction are treated differently. For this case, an integer approximation of the

DST is applied instead of the DCT. This special treatment provides roughly

1% of bit rate savings in intra-frame prediction coding [3, 68].

Quantization

The HEVC standard allows 52 step sizes for uniform quantization of the transform

coefficients. These quantization step sizes are indexed by the Quantization Param-

eter (QP), which can assume values from 0 to 51. The quantization step size and

the QP are related by Qstep(QP) = 2
QP−4

6 . Therefore, the quantization step size is

defined within the interval 0.630 <= Qstep <= 228.1. In this context, the higher

the QP, the higher the quantization step size and the information loss incurred in

the quantization. For the integer implementation of the procedure to obtain the

quantization level for a given coefficient value (quantization) and the coefficient

value for a given quantization level (de-quantization), several scaling, bit-shifting

and rounding operations are performed. For further details on these topics, refer

to [69]. In addition to an even quantization scheme, HEVC also allows for the use

of a weight matrix for adapting the quantization step size depending on the coef-

ficient frequency. Both predefined and custom matrices are allowed. The use of
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a weight matrix may be particularly useful for the design of quantization schemes

which consider HVS characteristics.

Scanning patterns

For exploiting the sparsity of the transform coefficients due to the adopted decor-

relating tools and quantization process, also targeting compression efficiency, the

HEVC standard defines an elaborated representation for the transform coefficients.

Three scanning patterns are first defined for 4 × 4 TBs, notably the diagonal, the

vertical and horizontal patterns, as schematically shown in Figure 2.10. For larger

blocks sizes, the TBs are split into non-overlapping 4 × 4 TB sub-blocks and the

same pattern applied for scanning the coefficients within the 4 × 4 sub-blocks is

also applied for scanning the sub-blocks. For inter-predicted TBs, only the diagonal

scanning is allowed for all TB sizes. On the other hand, all three scanning patterns

are permitted for intra-predicted TBs of sizes 4× 4 and 8× 8. The applicable scan-

ning depends on the prediction direction used. For blocks 16× 16 and 32× 32, only

the diagonal is allowed.

Figure 2.10: Transform coefficients scanning patterns.

In order to generate all syntax elements for coding the quantized transform coeffi-

cients within the transform block, the chosen scanning pattern is repeatedly applied.

In each scanning, a particular piece of information is generated, namely significance

map, level greater than 1, level greater than 2, coefficient sign and remaining absolute

level. Before sending those pieces of information, the position of the last significant

coefficient relative to the DC coefficient position (top-left corner of the block) is

coded. Also, for each 4× 4 TB sub-blocks, a flag is coded to indicate the presence

of non-zero coefficients.

2.3.3 Context-adaptive binary arithmetic coding

The Context-Adaptive Binary Arithmetic Coding (CABAC) is the adopted en-

tropy coding technique in the HEVC standard [64]. It was first introduced in the

H.264/AVC standard [61]. Since then, it has received improvements mainly to re-

duce data dependencies due to the large number of contexts and to increase its
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throughput by means of parallel-processing [64]. The several syntax elements re-

sulting from describing the input video signal using the defined coding tools are all

coded with CABAC. From a schematic point of view, the processing steps for gen-

erating the coded bitstream from the syntax elements are depicted in Figure 2.11

and briefly discussed in the sequel.

Context
modeling

Regular
coding

Bypass
coding

Binarization

binary
syntax element

non-binary
syntax element

bin-by-bin
processing

bitstream∪

context update

Binary arithmetic
coding

Figure 2.11: Main processing steps for entropy coding the syntax elements using
CABAC.

◦ Binarization: all non-binary syntax elements are binarized using one of the

defined binarization methods, which includes unary, truncated unary, Exp-

Golomb and fixed length. The applied method mainly depends on the syntax

elements but may also depend on the value of previously processed elements

and slice parameters. Each element of the resulting binary string is called a

bin. The adopted binarization methods assure the binary string is prefix-free

for each syntax element.

◦ Regular and bypass coding modes: a fixed uniform probability model is

assumed for the bins in the bypass coding mode, thereby no context modeling

is applied. The more extensive usage of the bypass mode has contributed

for the higher throughput of HEVC regarding H.264/AVC [3]. In the regular

coding mode, the use of sophisticated context modeling provides improved

compression efficiency. For each bin, a probability model associated to the

selected context model is used for (binary) arithmetic coding. After each

coding and decoding run, the probability models may be updated to better fit

the probability of the occurring symbols. Several parameters are considered for

context modeling, including the syntax element type, bin position, partitioning

depth of the coding tree and neighboring information, only to name a few.
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2.3.4 In-loop filtering

The block-based processing adopted in HEVC has the drawback of introducing vis-

ible blocking artifacts. This unpleasant characteristic originates from discontinu-

ities introduced by operating prediction and transform on a block basis [70]. As

in H.264/AVC, HEVC defines the operation of a deblocking filter over the recon-

structed signal for reducing blocking structures. Another filtering operation first

introduced in HEVC is intended to reduce undesirable artifacts that could became

noticeable because of the use of large transform blocks and longer interpolation fil-

ters [71], the so-called Sample Adaptive Offset (SAO) filtering. The two filtering

steps are applied over the reconstructed signal, SAO after the deblocking filtering.

The filtered frame is stored in the decoded picture buffer for displaying and possibly

to be used for inter-frame prediction.

◦ Deblocking filter: the filtering operation is applied only to the samples at

the boundary of the prediction blocks and transform blocks, with the minimum

block size restricted to 8× 8. The filtering operation is an adaptive process in

which several parameters are considered in order to decide whether or not the

filtering is to be applied as well as to decide the filtering strength. In summary,

two thresholds are derived from the QP values of neighboring blocks and the

filtering strength bs decided at encoder. The local decision to apply the filtering

is drawn by thresholding derivative measures over the boundary samples.

◦ Sample adaptive offset (SAO): the operation mode for applying the SAO

filtering is decided by the encoder on a CTB basis among edge offset mode,

band offset mode and not applying it. The SAO filtering operation condition-

ally modifies the decoded samples based on offset values sent by the encoder.

In the edge offset mode, the filtering operation depends on the relation of a

sample with its neighborhood, whereas the band offset mode solely considers

the sample intensity. An interesting aspect of SAO filtering is that in order to

determine offset values and applicable offset mode, an RD optimization may

be carried out at the encoder side.

2.4 Full-reference video quality objective metrics

Objective metrics to evaluate the quality of reconstructed image and video signals

are of prime importance in lossy image and video compression, mainly for driving

encoder decisions in the RD optimization, but also for ranking competing compres-

sion algorithms in comparative evaluations. Given the original image or video and

the decoded image or video, one may want to measure how ‘distant’ the decoded
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signal is from the original reference signal. In particular, for the usual displaying

applications such quality metric should agree with human perception.

Peak signal-to-noise ratio

Among the visual evaluation metrics used in the context of image and video compres-

sion, the peak signal-to-noise ratio (PSNR) is widely adopted due to its appealing

simplicity [72]. It is based on the distortion measure Mean Squared Error (MSE),

which accounts the average difference between the samples of the decoded signal

and those of the original signal. More precisely, it is given by:

MSE =
1

WH

W∑
i=1

H∑
j=1

(I(xi, yj)− Î(xi, yj))
2 (2.1)

W denotes the width and H the height in number of samples. I denotes the original

video frame and Î the reconstructed video frame

The PSNR aims at measuring the resemblance between the samples of the de-

coded signal and those of the given reference original signal. Therefore, in principle,

the bigger the better. Putting aside the discussion about the suitability of PSNR for

assessing the visual quality in the context of image and video compression [72, 73],

the PSNR is adopted in this work. In precise terms, the PSNR is defined as follows:

PSNR = 10 log10

(
2b − 1

MSE

)
(2.2)

where b is the bit depth, which for the video sequences used in this work is equal to

8. The PSNR is often averaged over all frames to provide a single PSNR value for

the whole video sequence.

Regarding the RD optimization process, in addition to the common MSE, an en-

coder may also use other difference measures such as the Sum of Squared Differences

(SSD) and the Sum of Absolute Differences (SAD).

Structural similarity measurement

The Structural Similarity Measurement (SSIM) index is an alternative complemen-

tary metric to the PSNR [74]. Relying on the assumption that human vision is

adapted to extract structural information from the viewed scene, the SSIM is pro-

posed as an objective metric to predict the perceived visual quality based on the

deformation of the structural information, luminance and contrast measures [74].

The SSIM index is computed locally on a block basis with the overall SSIM index

being obtained by averaging over all blocks within a frame. Let b be the vector-

ized samples of an image block for which one want to computed the SSIM index
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regarding the original vector a of original samples.

In the general case, the SSIM index is given by:

SSIM(a,b) =

(
2µaµb + C1

µ2
a + µ2

b + C1

)α(
2σaσb + C2

σ2
a + σ2

b + C2

)β (
σab + C3

σaσb + C3

)γ
(2.3)

where α, β and γ are parameters for adjusting the contribution of the components

and C1, C2 and C3 are constants included to avoid instability. µa and µb are the

mean intensity of a and b, respectively. Accordingly, σa and σb are the standard

deviations and σxy is the correlation coefficient. In the particular case for which

α = β = γ = 1 and C3 = C2/2, the SSIM is given by:

SSIM(a,b) =
(2µaµb + C1) (2σab + C2)

(µ2
a + µ2

b + C1) (σ2
a + σ2

b + C2)
(2.4)

Bjontegaard Deltas

The Bjontegaard Deltas [75], namely the Bjontegaard Delta PSNR (BD-PSNR) and

the Bjontegaard Delta Rate (BD-Rate), are quite useful measures for comparing

different image and video coding solutions. Given two sets of (Rate,PSNR) points

corresponding to RD operational points of two competing video coding solutions,

the BD-PSNR accounts the average PSNR difference (in dB) at the same bit rate

between two coding solutions, whereas the BD-Rate accounts the average bit rate

difference for the same quality (in percentage). As an example, suppose the BD-

Rate between two RD curves resulted from the video coding solutions A and B
is −3%, with coding solution A playing the role of the benchmark. This means

that the solution B delivers the same reconstruction quality (PSNR) while saving

on average 3% of the bit rate. In the case of BD-PSNR, if the BD-PSNR between

coding solutions A and B is +0.5 dB, this means that on average the coding solution

B delivers 0.5 dB more quality than B at same bit rate. The Bjontegaard deltas

are used in this work for performing comparative evaluation of the proposed coding

solution regarding state-of-the-art benchmarks.

2.5 HEVC compression performance

Since HEVC will be the main reference for benchmarking the proposed video cod-

ing solution, this section presents a set of experimental results aiming to show the

compression performance of the HEVC, notably in comparison with its predeces-

sor H.264/AVC under various coding setups. For this purpose, the HEVC Test

Model (HM) [51] version 16.3 and the H.264/AVC reference software JM [76] ver-
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sion 19.0 are used. Although the HEVC tools were designed focusing on high spatial

resolution video signals such as 4K, the video signals and test conditions used in

this chapter and throughout this work reflect the video coding scenario addressed

in this research work. For instance, video-based surveillance systems often require

low-delay processing and deal with low spatial resolution video signals.

The test conditions and materials used for this experiment are as follows.

• Three video sequences were used, namely Hall, Container and Paris. All

sequences are in CIF spatial resolution at 30 Hz and 10 seconds long (300

frames). More information on the used video sequences can be found in the

Appendix B. Only the first half of the sequences is compressed.

• HEVC Main profile with four prediction structures were experimented: All

Intra, IBI, IBBBI and IBBBBBBBI, where (IB...I) means that in each Group

Of Pictures (GOP) the first and last frames are I-frames and the intermediate

frames are B-frames in a hierarchical coding structure. The prediction struc-

tures and parameter settings for the H.264/AVC were set accordingly as those

of HEVC whenever possible. The High Profile was used for H.264/AVC.

• For both HEVC and H.264/AVC, the experimented QP values for the I-frames

were 25, 30, 34, 37, 40 and 45. To implement some cascading, the QP values

used for B-frames were incremented by 1 regarding the QP values of I-frames.

Figures 2.12, 2.13 and 2.14 show the RD performance using the adopted setups.

The charts show the PSNR of the luminance component averaged over all frames

as a function of the bit rate. As could be expected, HEVC consistently outper-

forms H.264/AVC in all coding setups, this is mainly due to its flexible coding tools

discussed previously. Notably, the use of a larger basic processing unit than that

of H.264/AVC in combination with the nested quadtree structures for better parti-

tioning, prediction and transform coding. Table 2.1 presents the Bjontegaard deltas

for HEVC with regard to H.264/AVC. One might notice that the bit rate savings

provided by HEVC regarding H.264/AVC are well below the 50% usually provided

by the HEVC standard. This is so because of the low spatial resolution video signals

used in those experiments, for which, unlike in the case of high spatial resolution

video sequences, the Coding Block (CB) size of H.264 (this means 16 × 16) seems

to be quite adequate.

Regarding the coding setups, both HEVC and H.264/AVC behave in the same

way. Naturally, All Intra coding setup requires much higher bit rate for achieving

the same quality level of those coding setups exploiting inter-frame redundancy.

This is because in the All Intra coding setup, all frames are coded independently,

only intra-frame redundancy is exploited. Although it is not a good approach for
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compression efficiency, it still might find application in scenarios requiring random

access. For instance, at editing stage in video production industry. In the case

of the coding setups exploiting inter-frame redundancy, the encoder is able to rep-

resent more efficiently the video content by resorting to decoded reference frames

for deriving motion-compensated prediction, this way only the novelty needs to be

coded. This approach provides significant bit rate savings, especially for the static

background areas present in the tested video sequences. One can notice that as the

number of frames coded exploiting inter-frame redundancy increases, the compres-

sion performance also increases, although with smaller incremental gains. The use

of larger GOP increases the relative distance between (some) frames to be coded and

the reference frames used for deriving their prediction, what in turn, may impair

the prediction efficiency, despite the use of a hierarchical prediction structure.

HEVC Complexity

According to available studies on complexity analysis of the HEVC [4, 77], an HEVC

encoder is expected to have a significantly higher complexity relative to its prede-

cessor H.264/AVC. This is due to the increased coding flexibility in HEVC adopting

large block sizes, nested quadtree structures for segmentation, prediction and trans-

form coding for the input video signal. This set of flexible coding tools implies

that an encoder has to assess various coding strategies and parameter settings in

the course of generating a compliant bitstream for leveraging the full compression

efficiency of the HEVC standard. Although not intended to be an optimized imple-

mentation, the HEVC Test Model is put under scrutiny in [4]. The executing time

of several coding tools is presented revealing that the most time consuming func-

tions are those related to RD optimization and prediction steps. Regarding decoder

complexity, the authors argue that it does not appear to be significantly higher than

that of H.264/AVC [4].
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Figure 2.12: HEVC and H.264/AVC compression performance for Hall.
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Figure 2.13: HEVC and H.264/AVC compression performance for Container.
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Figure 2.14: HEVC and H.264/AVC compression performance for Paris.

32



Table 2.1: HEVC Bjontegaard deltas regarding H.264/AVC for the four tested se-
tups.

All Intra IBI IBBBI IBBBBBBBI
BD-PSNR 1.41 1.26 1.18 1.12

Hall
BD-RATE -19.89% -20.41% -21.85% -23.93%

BD-PSNR 0.98 1.00 1.03 1.10
Container

BD-RATE -16.03% -16.26% -16.71% -18.41%

BD-PSNR 1.32 1.38 1.50 1.66
Paris

BD-RATE -16.88% -18.13% -20.62% -24.41%

2.6 Final remarks

This chapter has briefly reviewed the digital video signals and their representation as

well as the main coding tools employed in the state-of-the-art block-based prediction

and transform video coding paradigm. Furthermore, it has reviewed the HEVC

standard over which the dual-purpose video coding solution proposed in Chapter 4

relies on for pixel-based coding approach. The next chapter briefly reviews local

feature representation for visual content and coding schemes devised to code visual

features extracted from video sequences, the objective is to lay down the ground for

the feature-based coding approach as presented in Chapter 4.
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Chapter 3

Local feature representation for

visual content

This chapter starts with a brief introduction to local visual features. In particular, it

reviews the two main steps for obtaining a set of local visual features, notably feature

detection and feature descriptor extraction. Before going any further, the features of

interest in this work are localized image features, also referred to in the literature as

salient points, interest points or keypoints. Each feature is described by a descriptor

vector which is extracted from a local neighborhood around the keypoint location.

The seminal Scale-Invariant Feature Transform (SIFT) will be used in this work to

characterize the input video frames in terms of local visual features, therefore, this

chapter gives an overview of its feature detection and descriptor extraction steps.

Moreover, this chapter also presents a review of coding schemes devised to code

visual features extracted from video sequences. The purpose of this introduction to

visual features is to lay down the ground for the video coding solution proposed in

Chapter 4 which relies on visual features.

3.1 Introduction

Developments in the field of computer vision have led to the emergence of visual in-

formation representations which are better suited for visual analysis tasks than just

pixels. Local visual features are a powerful type of such representations which are

able to efficiently perform a number of tasks including, but not limited to, image and

video search and retrieval [6, 13], object recognition [7, 11], scene classification [9, 78]

and automatic panoramic image stitching [79]. Local feature detectors are designed

to produce stable and repeatable responses at image patterns which differ from their

nearby neighborhood [80]. The objective is to describe image characteristics that

are distinctive, informative and ultimately good for establishing feature correspon-
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dences. As a matter of fact, the ability to identify stable image locations and to

establish correspondences between them is the starting point for several interesting

applications as those listed above.

The review given in what follows does not intent to be exhaustive, even because

there is a whole body of research dedicated to images features with decades of

developments. A rather extensive survey on local feature detectors can be found

in [80, 81]

3.2 Local feature detection

A common issue in many computer vision problems is to establish correspondences

between regions of two or more images of the same scene or object [35]. For this pur-

pose, one may need first to identify repeatable and stable image locations for features

representation. In this regard, the most desired property for local visual features is

repeatability. More precisely, this is the ability for the same features to be repeatedly

detected on two or more images depicting a common content, although acquired or

processed differently. Local visual feature detectors are often designed to give rise to

repeatable local features, invariant to image changes such as rotation, scaling and

affine. Additionally, they should have properties such as distinctiveness, that is,

they should show enough variation so that they can be properly distinguished and

matched; locality to cope with occlusions and to allow simple modeling of geometric

and photometric deformations; quantity, meaning that the spatial distribution and

quantity of local features should reflect the information content within a given image

so that a reasonable number of interest region correspondences may be produced

at the descriptor matching step; and efficiency to fulfill time and computational

constraints [80].

A considerable number of local feature detectors have been proposed in the

literature, notably for detecting image structures such as junctions, corners [82],

blobs [11] and edges, naturally, fulfilling different requirements of the target appli-

cation scenarios [8, 11, 13, 83] and having different motivating ideas. To name a

few, the Harris corner and edge detector was proposed aiming to represent natu-

ral images containing roads, buildings, trees and buses [82]. The Harris detector

has inspired many works on features detection, notably towards scale and affine

invariance such as the Harris-Laplace and the Harris-Affine detectors [81, 84]. The

Scale-Invariant Feature Transform (SIFT) has considered in its design invariance

to rotation and scale changes as well as robustness to viewpoint and illumination

changes. It has shown its strengths in object recognition [7, 8]. In addition to ro-

tation and scale invariance, the Speeded-Up Robust Features (SURF) detector has

targeted fast detection and shown excellent results for camera calibration and object
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recognition [10, 11]. Targeting real-time applications, the Features From Acceler-

ated Segment Test (FAST) detects corners by evaluating the sample amplitude of a

candidate position on the image plane with respect to samples of a circular pattern

around it. A similar underlying idea has been used in the Binary Robust Invariant

Scalable Keypoints (BRISK) feature detector [85, 86].

In general, keypoints are detected searching for maxima or minima in some in-

termediate representation of the image. For instance, the Harris [82] corner and

edge detector is based on the analysis of the eigenvalues λ1, λ2 of the second mo-

ment matrix M ∈ IR2×2, which in turn is derived from the weighted sum of squared

difference surface (or autocorrelation function) by using a first-order Taylor approx-

imation [35]. The second moment matrix (also known as structure tensor) is given

by:

M(x, y) =

[
w ∗ I2

x(x, y) w ∗ Ix(x, y)Iy(x, y)

w ∗ Ix(x, y)Iy(x, y) w ∗ I2
y (x, y)

]
(3.1)

where Ix(x, y) = ∂I(x, y)/∂x is the image derivative in the x direction, Iy =

∂I(x, y)/∂y is the image derivative in the y direction, w is a Gaussian window and

∗ is the convolution operation. The second moment matrix describes the gradient

information around a neighborhood of a point (x, y) and provides a way to detect

corners and edges in a rotationally invariant manner.

Harris has stated that the eigenvalues of M(x, y) will be proportional to the

principal curvatures of the local autocorrelation function [82]. An analysis of the

eigenvalues λ1 and λ2 allows to infer on the shape of the autocorrelation function

and on the characteristics of the underlying windowed image, notably: a) if both

eigenvalues are small, the autocorrelation function is flat, what in turn indicates a

near constant region; b) if one eigenvalue is large and other is small, the autocorre-

lation function has a ridge shape, thus indicating the presence of an edge; and c) if

both eigenvalues are large, then the autocorrelation has a clear peak, that indicates

the presence of a corner.

Figure 3.1 exemplifies the three cases listed above, namely a corner (indicated

by 1), a near constant region (indicated by 2) and an edge (indicated by 3). The

second-moment matrix for each case is given in Equation 3.2 below:

M1 =

[
243.59 98.97

98.97 201.43

]
;M2 =

[
8.14 4.63

4.63 16.30

]
;M3 =

[
881.34 13.36

13.36 2.00

]
(3.2)

where the eigenvalues for M1 are 121.31 and 323.71; for M2 are 6.04 and 18.40;

and for M3 are 1.80 and 881.54. In fact, one can notice the agreement with the

description above.
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Figure 3.1: Examples of corner, edge and near constant regions. A Gaussian window
of unitary standard deviation was used for computing the components of the second
moment matrix.

Harris has also proposed a measure of corner and edge quality (strength) based

on the trace and determinant of the second-moment matrix:

C = Det(M)− k · Tr2(M) (3.3)

where k is typically set to 0.04 [80]. The value of C will be negative in the presence

of an edge, small for near constant regions and positive for corners.

The Harris corner and edge detector has inspired several improvements and new

works, notably towards scale-invariance with the aid of scale-space theory [87, 88]

and affine-invariance [80, 81, 89]. Complementary to corners, blob-like1features are

quite popular in the feature detection literature. Popular algorithms such as SIFT,

SURF, Hessian-Laplace and Hessian-Affine produce responses at blob-like image

structures [80]. Such detectors also share the very basic premise for feature detection,

as they somehow rely on the entries of the Hessian matrix for feature detection:

H =

[
Ixx(x, y;σD) Ixy(x, y;σD)

Ixx(x, y;σD) Iyy(x, y;σD)

]
(3.4)

where Ixx(x, y;σD) is the second-order Gaussian smoothed derivative in the x direc-

tion. Iyy(x, y;σD) and Ixy(x, y;σD) are defined similarly.

The SURF feature detector relies on the determinant of the Hessian matrix for

feature detection and scale selection [10, 11]. In SIFT, the Difference of Gaussians

(DoG) function approximates the trace of the Hessian matrix, that is, the Laplacian

of Gaussian (LoG) [80].

In the sequel, the SIFT detection process is briefly presented. The objective is

to provide some more background on SIFT as it will be used in Chapter 4 to obtain

a set of visual features.

1Smooth image regions which are brighter or darker than the background and stand out from
their neighborhood [90, 91]
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3.2.1 SIFT detector

A remarkable work in feature detection and description has been reported in [7, 8]

which proposes a method to transform an image into a large collection of stable

local features. Those features are invariant to image scaling, translation, rotation

and robust to illumination and 3D viewpoint change.

The feature detection process in SIFT builds upon important developments and

findings in the field of scale-space theory [88, 92]. The fact that objects in the world

appear differently depending on the scale of observation and the need to cope with

size variations resulting from projecting those objects in the image plane have led to

the development of frameworks for describing image structures at different scales.

In particular, the scale-space representation of an image is defined as a function

L(x, y, σ) constructed convolving the input image with Gaussian kernels of various

scales σ:

L(x, y;σ) = g(x, y, σ) ∗ I(x, y) (3.5)

where g(x, y, σ) = 1
2πσ2 e

−(x2+y2)

2σ2 .

A scale selection mechanism is proposed in [92] by introducing the concept of

scale-normalized derivatives. The author pointed out that in the absence of other

evidence, the scale level at which some combination of normalized derivatives of the

scale-space function assumes a local maximum over scales can be treated as express-

ing a characteristic length of a corresponding structure. Using those normalized

derivatives the author has shown that the response of the differential operators used

for features extraction could be made invariant to scale changes. In particular, for

a blob-like feature detector based on the trace of the Hessian matrix corresponding

to the scale-space function L(x, y, σ), such normalization leads to:

Tr(Hnorm) = σ2 [Lxx(x, y, σ) + Lyy(x, y, σ)]

= σ2

{
∂2

∂x2
[g(x, y, σ) ∗ I(x, y)] +

∂2

∂y2
[g(x, y, σ) ∗ I(x, y)]

}
= σ2

{
∂2g(x, y, σ)

∂x2
∗ I(x, y) +

∂2g(x, y, σ)

∂y2
∗ I(x, y)

}
=
[
σ2O2g(x, y, σ)

]
∗ I(x, y)

(3.6)

The term within square brackets is the so-called Laplacian of Gaussian (LoG). In

order to provide computation efficiency, it has been show in [7, 8], resorting to the

diffusion equation, that the LoG function could be approximated by the Difference-

of-Gaussians (DoG) function :
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g(x, y, kσ)− g(x, y, σ) ≈ (k − 1)σ2O2g(x, y, σ) (3.7)

The author has argued that the DoG functions having scales differing by a con-

stant factor already take into account the normalization factor σ2 required for scale

invariance and the constant term (k − 1) does not influence extrema detection.

Consequently, one may approximate Equation 3.6 by:

D(x, y, σ) = [g(x, y, kσ)− g(x, y, σ)] ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)
(3.8)

The SIFT detector searches for extremum (maximum or minimum) points in

the DoG images D(x, y, σ) as given in Equation 3.8. A pyramid structure of DoG

images is constructed to localize stable features in space and scale. Figure 3.2

depicts schematically the pyramid construction. The input image is convolved with

Gaussian kernels of increasing scale values. These scale values are set in a particular

fashion to produce smoothed images separated by a constant factor k. The smoothed

images are grouped in octaves. The input image is smoothed until doubling the scale

σ; once this happens, the smoothed image is down-sampled to reduce computation

and a new octave is created. The number of scales per octave as well as a pre-

smoothing step applied prior to octave construction has been determined after a set

of experiments. Adjacent smoothed images within each octave are subtracted to

produce the DoG images (as shown on the left side of Figure 3.2).

Scale
(first octave)

Scale
( next octave)

g(x, y, σ) ∗ I(x, y)

D(x, y, σ) = L(x, y, kσ)−L(x, y, σ)

Figure 3.2: SIFT detection based on scale-space function2.

2Based on a figure from [8].
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Once the DoG image pyramid is constructed, keypoints are detected following

the steps briefly described below:

◦ Scale-space extrema detection: in order to detect stable features both on

space and scale, the amplitude of each sample point of a DoG image D(x, y, σ)

in the pyramid is compared with the one of its local neighboring samples. The

comparison is made regarding the samples of the same DoG image as well as

with those of adjacent DoG images as schematically shown in Figure 3.3. The

red cross indicates the sample being tested and the green blocks its neighboring

samples. If the sample amplitude at the 3-D coordinate (x, y, σ) is found to be

smaller or larger than those of its neighborhood, this point (x, y, σ) is selected

as a candidate keypoint location and is subjected to further analysis.

Scale

Figure 3.3: Sample amplitude comparisons for scale-space extrema detection.

◦ Scale and location refinement: the candidate 3-D coordinates (x, y, σ)

detected in the previous step as local extrema are refined by fitting a quadratic

function to the local sample points. To this end, D(x, y, σ) is expanded using

the Taylor series up to the quadratic terms. The Taylor expansion is shifted

so that the origin is located at the sample point (x, y, σ). Taking the partial

derivative with respect to x = (x, y, σ) and setting to zero leads to the extreme

location x̂:

x̂ = − [H(D)]−1 · ∇T (D) (3.9)

where the Hessian matrix H(D) and gradient vector ∇(D) of the DoG image

at the 3-D coordinate (x, y, σ) are approximated using differences of neighbor-

ing sample points. Keypoints for which the absolute amplitude value |D(x̂)|,
evaluated at the extremum x̂, is less than a threshold, are discarded.

◦ Edge response discard: due to the strong response of D(x, y, σ) along edges,

the local curvature is checked to discard poor keypoint locations. A criterion

based on the ratio of the principal curvatures is used for this purpose. The

keypoint is kept only if:
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Tr(H)2

Det(H)
<

(r + 1)2

r
(3.10)

where, the Hessian matrix H is computed at the detected scale and is given

by:

H =

[
Dxx Dxy

Dxy Dyy

]
(3.11)

◦ Orientation assignment: the final step is to assign one or more dominant

orientations to each keypoint. To provide scale-invariance, this orientation

assignment procedure uses the Gaussian smoothed image L closest to the

detected scale. The objective is mainly to make the descriptor vectors ro-

tationally invariant by representing them relative to those assigned dominant

orientations. To this end, a histogram of gradient orientations is created for

each keypoint by accumulating the gradient data of a local neighborhood. The

histogram has 36 orientation bins, sampling the range of 360 degrees. Each

sample added to the histogram is weighted by the gradient magnitude and by

a weighting factor given by a Gaussian window. All orientation peaks within

80% of the highest peak produce a different keypoint differing by the orienta-

tion. A final fitting step is carried out in order to improve the peak orientation

accuracy.

SIFT produces a set of keypoints following the computation steps briefly de-

scribed above. Each one of those keypoints has a position (x, y), a scale (σ) and

an angle (or orientation) (θ). To simplify the notation, each keypoint will be rep-

resented by p =
[
x y σ θ

]
. Figure 3.4 exhibits the set of detected keypoints

superimposed on three example frames. The radii of the circles reflect the scale of

the keypoints and the lines within the circles their orientations. One can notice that

the number of detected keypoints and their spatial distribution somehow reflect the

content within the frame.
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Figure 3.4: Keypoints detected with SIFT detector3.

3.2.2 Feature detection assessment

As previously pointed out, the most desired property for local visual features is

repeatability, that is, the ability to be repeatedly detected on two or more images

depicting a common content, although differently acquired or processed. In this

context, in order to assess the quality of the detected local features, the computation

of a repeatability score has been proposed [80]. One starts from two images, let us

say image A and image B, related by a homography H as schematically shown in

Figure 3.5. A keypoint pA,i in A and a keypoint pB,j in B are said to correspond if

the overlap error is less than a threshold ε, that is,

1− A(µA,i ∩ (HTµB,jH))

A(µA,i ∪ (HTµB,jH))
< ε (3.12)

where µA,i is a conic (ellipse or circle) defined as a function of the keypoint pA,i

in image A; (HTµB,jH) is a conic µB,j defined as a function of keypoint pB,j in

image B and mapped on image A; and A(·) the area. The areas of the intersection

3The Vlfeat [93] implementation has been used for detecting the superimposed keypoints.
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Figure 3.5: Independent keypoint detection on two images related by a homography.

µA,i∩(HTµB,jH) and of the union µA,i∪(HTµB,jH) are computed numerically. The

threshold ε is commonly set to 0.4 [83].

The repeatability score r is computed as the ratio between the number of key-

point correspondences and the smallest number of detected keypoints in the two

images. More precisely:

r =
|R(pA,pB)|

min(|pA|, |pB|)
(3.13)

where |R(pA,pB)| is the number of keypoint correspondences fulfilling the criterion

defined in Equation 3.12, |pA| is the number of keypoints detected in image A, |pB|
is the number of keypoints detected in image B and min(·, ·) returns the smallest of

two numbers.

There are several papers in the literature for evaluating feature detectors, notably

considering various test conditions and targeting applications as well as different

feature detectors. The repeatability score is commonly assessed under image changes

such as scaling, rotation, blur, illumination and compression. The image set used in

those assessments usually consists of planar scenes or is acquired by cameras having

the same center. This is so because one must provide a homography H relating the

reference image and the transformed image.

Table 3.1 provides a qualitative summary of a few feature detectors, notably the

type of underlying image structure detected, and the invariances to typical image

changes. The strengths of the listed detectors regarding repeatability, localization

accuracy, robustness and computational efficiency are also given. This table is a

simplified version of the one provided in [80]. It is worthy noticing that the detectors

aiming at fast computation such as SIFT and SURF provide a balance between
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Table 3.1: Characteristics and strengths of a few feature detectors

Feature detector Corner Blob
Rotation
invariant

Scale
invariant

Affine
invariant

Repeatability
Localization

accuracy
Robustness Efficiency

Harris X X +++ +++ +++ ++
Hessian X X ++ ++ ++ +

Harris-Laplace X (X) X X +++ +++ ++ +
Hessian-Laplace (X) X X X +++ +++ +++ +
DoG (SIFT) (X) X X X ++ ++ ++ ++

SURF (X) X X X ++ ++ ++ +++
Harris-Affine X (X) X X X +++ +++ ++ ++

Hessian-Affine (X) X X X X +++ +++ +++ ++

invariance, repeatability and computational efficiency. Exhaustive assessments on

feature detectors can be found in [81, 83, 94–96].

3.3 Local features description

The feature detection step outputs a set of repeatable image locations, detected in

a rotation and scale invariant manner. Each one of those image locations has been

assigned a location, a characteristic scale and a dominant orientation. The avail-

ability of distinctive and repeatable image locations which are likely to be detected

on other images of the same scene or object, provides the very basic element to look

for image region correspondences. In this context, the most common approach is

to construct first a feature descriptor of the local image appearance based on some

image property and to perform after descriptor vector matching.

A large number of local feature descriptors have been proposed in literature,

naturally adopting different approaches for feature description, for instance, image

derivatives and histogram-based descriptors [97, 98]. In particular, the description

methods based on the histogram of the gradient data of an image area around a

given keypoint present the best performance in matching tasks [8, 11, 98]. This

approach, that first appeared in SIFT [7, 8], has been inspired in the response of

neurons in the visual cortex. Since then, several other histogram-based description

tools have been proposed in the literature such as PCA-SIFT [99], Gradient Location

and Orientation Histogram (GLOH) [98], SURF [10, 11], Compressed Histogram of

Gradient Orientation (CHoG) [23], only to name a few. As the ultimate goal is to

produce correct descriptor matches, feature description tools are designed aiming

at distinctive descriptor vectors at the same time having rotation-invariance, scale-

invariance and robustness to local image deformations. In addition, one may also

need to take into account the computational complexity; both the one for extracting

the descriptor vector and the complexity incurred at the matching step as a result

of adopting high-dimensional vectors.

Lately, binary descriptors have been a trend in local feature descriptors [86].

They target scenarios of low computational power and low memory consumption, as
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well as simple and fast matching. Such description tools adopt as descriptor vectors

binary strings resulting from simple intensity difference tests carried out on a sam-

pling pattern around the keypoints. Remarkable works on binary feature descriptors

include the Binary Robust Independent Elementary Features (BRIEF) [100], Bi-

nary Robust Invariant Scalable Keypoints (BRISK) [85] and Fast Retina Keypoint

(FREAK) [101].

3.3.1 SIFT descriptor

This section gives a summary of the SIFT descriptor, mainly because it is still ranked

among the best performing descriptors in matching tasks [98] and is the one adopted

in Chapter 4 for feature detection and description.

The SIFT descriptor describes the visual features through an 128-D vector.

These vectors capture the gradient information in a local square neighborhood

around the keypoints, and are designed to be scale invariant, rotation invariant,

and robust to illumination changes and positional shifts. The main aspects for

obtaining the descriptor vector for each keypoint are briefly described in the sequel:

◦ Gradient orientation and magnitude computation: the gradient mag-

nitude and orientation of the samples around the detected interest point are

computed using the appropriate Gaussian smoothed image L(x, y, σ) of the

scale pyramid. Aiming rotation invariance, the gradient orientation is com-

puted relative to the dominant orientation assigned to the keypoint (see Sec-

tion 3.2.1). The gradient magnitude is weighted by a Gaussian function with

the objective of assigning less weight to the samples far from the detected po-

sition. The left side of Figure 3.6 schematically shows the gradient data for the

image region around the detected keypoint. The magnitude and orientation

of the gradient for each sample are denoted by the length and orientation of

the arrows.

◦ Descriptor vector construction: the square region around the keypoint is

divided into 4×4 subregions (highlighted in red in Figure 3.6). For each subre-

gion, a histogram with 8 bins is constructed, each bin corresponding to one of

eight gradient orientations as schematically shown on the right of Figure 3.6.

The gradient orientation of the samples in each subregion is quantized into one

of those orientations and the weighted gradient magnitudes are accumulated.

In order to cope with variations in sample location and gradient orientation,

each gradient magnitude is distributed into adjacent histogram bins by per-

forming trilinear interpolation [8, 35]. The descriptor vector is constructed by

concatenating these 4 × 4 histograms, resulting in an 128-D vector for each

detected keypoint.
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◦ Normalization and large gradient thresholding: in order to reduce the

effect of affine illumination changes on the descriptor vector, the constructed

vector is normalized to unit length. After that, large descriptor vector com-

ponents are clipped to a certain threshold with the objective to reduce the

influence of large gradients resulting from non-linear illumination changes.

Gaussian

weighting

8 bins histogram of
gradient

orientation

Figure 3.6: SIFT descriptor extraction.

Figure 3.7 shows a few local image regions from which descriptor vectors are

extracted for three example frames. A graphical representation of the computed

histogram is superimposed where the sizes of the square regions denote the scale of

the keypoint. At the end of the detection and description steps, SIFT outputs a set

of repeatable and distinctive visual descriptors. Each feature has a position (x, y), a

scale σ, an orientation θ and a descriptor vector d ∈ IR128 consisting of a histogram

of gradient orientations.
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(c) Sequence Mobile, Frame 1.

Figure 3.7: SIFT descriptor extraction from squared regions around the keypoints4.
Only 20 keypoints are shown for each image.

3.3.2 Pairwise descriptor matching

Once one has the means to detect keypoints within an image and to describe the lo-

cal appearance of each one of those keypoints by a descriptor vector, the groundwork

for establishing correspondences between two images depicting a common scene or

object has been set. Let us consider a working example, with DA being the set

of local features detected and extracted from an image A, each one composed of a

keypoint pA,i and the associated descriptor vector dA,i. Similarly, let DB be the set

of features for an image B, each one composed of pB,i and dB,j. The objective is to

establish correspondences between the two images by matching their descriptors in a

pairwise manner. A descriptor dB,j from image B is deemed to match the descriptor

dA,i from image A if it minimizes a distance measure [8, 98, 102]. Several distance

measures have been used for matching descriptor vectors. Besides simplicity, the

adopted distance measure depends on the sort of information captured in the de-

4The Vlfeat [93] implementation has been used for detection and extraction.
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scriptor vector. Differential-invariant and moment-invariant based descriptors, for

instance, are matched using the Mahalanobis distance as dissimilarity measure [98],

whereas binary descriptors use Hamming distance [85, 100]. As for histogram-based

descriptors, common dissimilarity measures include L2-norm [8], χ2 distance and

Earth Mover’s Distance (EMD) [102]. From a broad view, distance measures for

descriptors matching can be categorized into bin-to-bin distances and cross-bin dis-

tances [102, 103]. For SIFT descriptors [7, 8], because of its simplicity, it is common

the use of the L2-norm of the error. Therefore, a simple matching criterion consists

of minimizing this norm as follows:

j∗ = arg min
j

‖ dA,i − dB,j ‖2 (3.14)

Such simple matching criterion is likely to produce many false descriptor

matches [8]. A simple measure has been proposed for SIFT aiming to discard those

false matches [8, 104]. It consists of comparing the distance of the closest descriptor

in the image B, denoted by dB,j∗ and the distance of the second-closest one, denoted

dB,j′ as schematically show in Figure 3.8.

Closest
Second-closest

‖ dA,i − dB,j∗ ‖2
‖ dA,i − dB,j′ ‖2

Figure 3.8: Ratio test criterion for discarding false matches.

The matches for which the ratio between the distance of the closest descriptor

and the distance of the second-closest descriptor is greater than a 0.8 are discarded.

More precisely:

‖ dA,i − dB,j∗ ‖2

‖ dA,i − dB,j′ ‖2

> 0.8 (3.15)

The threshold 0.8 has been determined experimentally in the context of an object

recognition task [8]. In order to further reduce the number of false matches, one may

also perform pairwise descriptor matching from image B to image A and assume

as correct matches those descriptor matches that occur in both directions (cross-

matching or 2-way matching) [105]. Figure 3.9 illustrates schematically the cross-

matching criterion for the 2-D matching case.
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Figure 3.9: 2-D cross matching criterion.

In some more geometrically constrained applications such as matching images

of planar objects, in addition to the ratio test above, a geometric consistency check

may be carried out [11, 14, 22, 106]. To this end, a homography is estimated by

means of robust estimation methods such as RANSAC. The pairwise matches that

do not agree with the homography are discarded.

Figure 3.10 shows the pairwise matches resulting from adopting the matching

criteria described above.
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(a) Original image pair.

(b) All pairwise matches obtained by using L2-norm as distance mea-
sure.

(c) Pairwise matches after applying the ratio criterion.

(d) Pairwise matches after applying the cross-matching criterion.

Figure 3.10: Pairwise matches resulting from adopting different matching criteria.
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3.4 Local visual feature coding

The problem of compacting visual features extracted from images has been tackled

by researchers in several ways: through dimensionality reduction [99], specially de-

signed compressed feature descriptors such as the Compressed Histogram of Gradient

(CHoG) [23], transform coding [21, 22] and binary descriptors [24, 101]. Naturally,

the result should preserve the desirable properties of the descriptors, and yet being

computationally easy to obtain. More recently, the attention has turned to coding

visual features extracted from video sequences. In [14], the authors have proposed

a feature coding framework with various coding modes, including intra-frame and

inter-frame, with and without decorrelating transforms.

This section presents a brief review of coding schemes for visual features extracted

from video sequences as well as the rate-distortion performance of various coding

setups. This description is mostly based on the works reported in [14, 21, 22]. A

detailed treatment can be found in [107]. To settle any doubt, it is worth reiterating

that a visual feature includes the keypoint and the descriptor vector as reviewed in

Sections 3.2 and 3.3, respectively. The coding schemes described can be classified

as intra-frame coding schemes and inter-frame coding schemes. Usually, the best

coding scheme from the Rate-Distortion (RD) optimization point of view is typically

one appropriately combining the intra- and inter-frame coding schemes. In intra-

frame coding schemes, the set of visual features Dn extracted from the n-th frame

of a video sequence is coded independently from those of other frames. On the

other hand, in inter-frame coding schemes, the redundancy between descriptors of

neighboring frames can be exploited to save bit rate. These schemes are inspired in

the predictive coding tools employed in traditional video encoders.

3.4.1 Intra-frame coding schemes

In intra-frame coding schemes, the set of features Dn of each frame is coded inde-

pendently. Nevertheless, the correlation between the various components within a

descriptor vector may be exploited. Each feature has two components, namely the

descriptor vector dn,i describing the image patch centered at the detected keypoint

and the keypoint itself pn,i =
[
x y σ θ

]
consisting of location (x, y), scale σ and

the dominant orientation θ. Both the keypoint pn,i and the descriptor vector dn,i

should be coded. Each element of the keypoint is quantized with a quarter unit

precision and entropy coded. The descriptor vector part dn,i ∈ Dn of each feature

is scalar quantized and entropy coded after an orthonormal transformation. Figure

3.11 illustrates the general idea of intra-frame coding schemes. Each step is briefly

described in the sequel:
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Figure 3.11: Intra coding scheme.

◦ Transform: the simplest coding approach is simply to quantize and entropy

code the descriptor vector, that is, skip the transform step. An alternative op-

tion is to use the Karhunen-Loève (KL) transform, which is known to achieve

maximal energy compaction, suitable for compression; and has been success-

fully employed in descriptor coding as reported in [14, 21, 22]. A collection

of descriptors extracted from training video sequences is used to estimate the

covariance matrix Σd in order to calculate the KL transform. Since the de-

scriptor vector used has dimensionality 128, KLintra is an 128 × 128 matrix.

After the transform, one generates cINTRA
n,i = Tdn,i, where T ∈ {I,KLintra} (the

identity I is only to simplify the notation). Notice that the transform step is

not mandatory, the descriptor vector may go directly through to scalar quan-

tization and entropy coding. That is, when T = I implies that cINTRA
n,i = dn,i

◦ Quantization: a straightforward scalar quantization is used [14, 21, 22]. Each

transform coefficient (or each descriptor component, in case of not applying

the transformation) is quantized as:

c̃n,i,j = round

(
cn,i,j
QS

)
QS (3.16)

where cn,i,j is j-th component of cINTRA
n,i (the vector of transform coefficients)

and QS is the quantization step size. The function round(x) rounds x to the

nearest integer.

◦ Entropy coding: an arithmetic coding is employed in order to entropy code

the quantized transform coefficients resulting from applying the transform and

quantization steps to the descriptor vector, as well as the keypoint parameters

position, scale and orientation. An initial statistical model is set up to the

quantized transform coefficients, and during the coding process the statistical

model is adaptively updated. Training sequences are coded to generate the

statistics for each transform coefficient. This is also the case when the trans-

form step is skipped. The keypoint location, scale and orientation are coded
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using a uniform probability model.

In summary, as described briefly above, the descriptor vector can be coded in

two ways, namely Intra and Intra-KLT. The transform applied to the descriptor

vector is the main difference between the two coding modes.

3.4.2 Inter-frame coding schemes

The inter-frame coding schemes are inspired in traditional video encoders such as

H.264/AVC and HEVC. A predictive scheme is used to take advantage of the re-

peatability property of robust local image features as those detected by SIFT [8]

and SURF [11] in addition to the smooth change of the captured scene. The set of

descriptors coded from last frame D̂n−1 can be used as a prediction to current frame

descriptors Dn. First, a matching for each descriptor vector dn,i is found for the

encoder to take the prediction residue between the current descriptor dn,i and the

matching descriptor vector dn−1,k∗ . The prediction residue is transformed, followed

by quantization and entropy coding. A predictive scheme is also adopted to code the

position, scale and orientation. Figure 3.12 shows a block diagram of the inter-frame

coding schemes. Each step is described in the sequel:

Transform Quantizationdn,i

pn,i

Initial statistic

Descriptor
matching

D̃n−1

dn,i − d̃n−1,k∗

pn,i − p̃n−1,k∗

Entropy
encoder

Keypoint
parameters
quantization

Figure 3.12: Inter-frames coding.

◦ Descriptor matching: the encoder performs a search for a matching de-

scriptor vector decoded from the reference set D̃n−1. The nearest descriptor

d̃n−1,k∗ is found using the distance metric:

d̃n−1,k∗ = arg min
d̃n−1,k

1√
P
‖dn,i − d̃n−1,k‖2 (3.17)

subject to

{
xn,i − x̃n−1,k ≤ wx; yn,i − ỹn−1,k ≤ wy

σn,i − σ̃n−1,k∗ ≤ ws
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where d̃n−1,k ∈ D̃n−1, P is the vector dimensionality, whereas wx, wy and ws

are the search windows and ‖ · ‖2 refers to the L2-norm.

Interest points in a scene have high probability to be detected repeatedly in

a frame sequence with smooth changes in position. Therefore, the matching

step is constrained to reduce computational complexity. The matching search

is usually performed within a spatial window of wx = wy = 30 pixels in the

horizontal and vertical directions and scale window of ws = 5.

With regard to location, scale and orientation, only the prediction errors and

the prediction reference are coded. In other words, the differences of position

(xn,i − x̃n−1,k∗ ; yn,i − ỹn−1,k∗), scale σn,i − σ̃n−1,k∗ and orientation θn,i − θ̃n−1,k∗

are quantized and entropy coded. The coding order of the feature descriptors

Dn of the current frame is set with regard to the coding order of the match-

ing reference descriptors D̃n−1, and a differential scheme is used to code the

prediction reference, more details can be found [14].

◦ Transform: the simplest approach for coding the descriptor vector residue

rn,i = dn,i− d̃n−1,k∗ is simply to quantize and entropy code the descriptor vec-

tor residue, that is, skip the transform step. Alternatively, the encoder may

apply a KL transform before the quantization and entropy coding steps. The

procedure to obtain the KLinter is similar to that used to obtain KLintra as

described above. However, is this case, a set of prediction residues should be

collected in order to obtain the covariance matrix. Only prediction residues

which satisfy ‖dn,i − dn−1,k∗‖2 < ‖dn,i‖2 are collected for the purpose of ob-

taining the transform. This procedure is done using a training sequence. The

vector of transform coefficients resulting from applying the transform to the

descriptor vector residue cINTER
n,i = T(dn,i − d̃n−1,k∗) is then scalar quantized

and entropy coded.

◦ Descriptor residue quantization: similar to the intra-frame coding

schemes, a scalar quantizer is used for inter-frame schemes [14]. However, in

this case the transformed descriptor vector residue cINTER
n,i = T(dn,i − d̃n−1,k∗)

is quantized, where as described before T ∈ {I,KLinter}. The quantization is

performed as defined in Equation 3.18.

c̃n,i,j = round

(
cn,i,j
QS

)
QS (3.18)

where cn,i,j is j-th component of cINTER
n,i and QS is the quantization step size.

The position, scale and orientation prediction errors are quantized and entropy

coded.
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◦ Entropy coding: arithmetic coding is used to entropy code the quantized

transform coefficients resulting from applying the transform to the descriptor

vector prediction residue as well as for coding the position, scale and orien-

tation prediction errors. A training step is conducted in order to collect an

initial statistical model for the transform coefficients. An initial probability

is assigned to the transform coefficients as well as to the position, scale and

orientation prediction errors. The encoder can update the probability during

execution. This is also the case when the transform step is skipped.

In summary, as briefly described above, the descriptor vector residue can be

coded in two ways, namely Inter mode and the Inter-KLT mode, either using or

not a KL transform step.

3.4.3 Rate-distortion optimization

While Sections 3.4.1 and 3.4.2 have described the intra-frame and inter-frame coding

schemes, respectively, the best coding solution is obtained by appropriately combin-

ing these coding schemes to better exploit the specific correlations associated to each

descriptor vector.

Transform Quantization

dn,i

pn,i

Initial statistic

Keypoint
parameters
quantization

Descriptor
matching

D̃n−1

dn,i − d̃n−1,k∗

pn,i − p̃n−1,k∗

Entropy
encoder

RD based
mode selection dn,i

pn,i

Figure 3.13: Rate-distortion optimization based encoder.

The encoder performs an RD optimization aiming to reach high fidelity with the

smallest possible rate cost. Among the enabled coding modes the encoder chooses

the coding mode which gives the minimum Lagrangian cost (see Figure 3.13). The

cost function for intra coding mode is defined as:

JINTRA =
1√
P
‖dn,i − d̃n,i‖2 + λ(RpINTRA

n,i +RdINTRA
n,i ) (3.19)

where RpINTRA
n,i is the cost to code the keypoint parameters position, scale and ori-

entation, and RdINTRA
n,i is the cost to code the description vector. Note that in case
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of using the KL transform, the rate RdINTRA
n,i is the rate spent to code the vector of

transform coefficients. The cost function for the inter coding mode is defined as:

JINTER =
1√
P
‖dn,i − d̃n,i‖2 + λ(RpINTER

n,i +RdINTER
n,i ) (3.20)

where RpINTER
n,i is the cost to code the position, scale, orientation prediction errors

as well as the prediction reference, and RdINTER
n,i is the cost to code the descriptor

vector with respect to the matched reference descriptor vector. Again, the rate to

code the descriptor depends on which transform was chosen.

The Lagrange multiplier λ controls the rate-distortion trade-off. Experiments

were conducted in [14], inspired by [2], to obtain the optimal λ value. A rule of

thumb adopted was λ(QS) = 1.8 ·10−4QS2 + 0.1, where QS is the quantization step

size.

Besides the rate necessary to code the descriptor vector and associated infor-

mation such as position, scale and orientation, it is necessary to code the selected

coding mode in the rate-distortion optimization. Moreover, to know the number of

descriptors used for each frame, the encoder also needs to send a end-of-frame flag.

3.4.4 Results and discussion

The performance of coding schemes for descriptor vectors should be evaluated taking

into consideration how much an encoded descriptor vector is effective in typical

matching tasks. In this sense, RD results tend to have little meaning. In spite of

this, it has been reported in the literature that there is a strong correlation between a

descriptor’s performance in typical matching tasks and its RD results. In fact, it was

pointed out in [21] that at 15 dB of SNR the descriptor’s rate-accuracy performance

saturates. Similarly, in [14] it is also stated that the matching score saturation is

achieved at 15 dB of SNR. Moreover, it was shown in [22] that MSE is good a

predictor for both image and descriptor matching error, and that the SURF and

SIFT descriptors achieve near-perfect image matching and retrieval below 2 bits per

descriptor component. Therefore, the coding schemes are evaluated below from the

RD perspective.

The previous sections have briefly described a framework to code descriptors and

keypoints extracted from a video sequence. The framework includes intra- and inter-

frame coding schemes, and in the RD optimization mode the encoder can decide the

best coding strategy for each descriptor. A complete description and rate-distortion

evaluation of those coding schemes can be found in [14, 107].

The rate-distortion performance of a particular implementation of the framework

is presented below. The following coding setups were tested:
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• Intra: all descriptor vectors are coded with intra coding mode, T = I.

• Intra-KLT : all descriptor vectors are coded with intra coding mode, T =

KLintra.

• Inter : the descriptor vectors are coded with inter coding mode, T = I. Ex-

ceptions are the descriptor vectors for which the matching step was not able

to find any reference in the search window, including those descriptor vectors

of the first frame. In this case, the descriptor vectors are coded using Intra

mode.

• Inter-KLT : same as the Inter coding mode above but T = KLinter.

• Intra-Inter : the encoder performs rate-distortion optimization with the Intra

and Inter modes and chooses the mode with lowest cost.

• 4-modes : the encoder performs rate-distortion optimization with the Intra,

Intra-KLT, Inter and Inter-KLT modes and chooses the mode with lowest

Lagrangian cost.

Figures 3.14 and 3.15 show the encoder performance for SIFT and SURF descrip-

tors, respectively. As expected, when all coding modes are available, the encoder

can choose the best coding strategy for each descriptor resulting in better overall

performance.

For SIFT descriptors, the Intra-KLT mode achieves higher coding efficiency

than Intra only in low bit rates. Similar behavior is observed when comparing inter-

frame encoding modes, Inter-KLT outperforms Inter only in low bit rates. This

corroborates the results reported in [22], and is a consequence of the non-Gaussianity

of individual descriptor components.

In case of SURF descriptors, the Intra-KLT mode outperforms the Intra coding

mode in almost all bit rates. On the other hand, the performance of Inter-KLT is

worse than the one of Inter, that is, applying KL transform to descriptor residues

is detrimental to coding performance.

Using adaptively the various coding modes give better results than intra or inter

schemes individually for both feature descriptors.
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Figure 3.14: Comparative performance for SIFT descriptor coding.
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Figure 3.15: Comparative performance for SURF descriptor coding.

3.5 Final remarks

This chapter has reviewed the detection and descriptor extraction processes followed

for characterizing visual content in terms of local visual features. In particular, it

has examined in more detail the SIFT detection and descriptor extraction steps. A

coding framework has been described for coding the descriptors and the associated

keypoints extracted from video sequences. In this coding framework, an RD opti-

mized coding scheme adopting both intra- and inter-coding modes has been shown

to perform the best according to the experiments.

The objective of this chapter was to provide the groundwork for the dual-purpose

video coding solution proposed in Chapter 4, in which, an unified pixel-based and

feature-based video coding solution is proposed targeting scenarios where visualiza-

tion and searching needs are required to be addressed. This is motivated by the
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current role of digital video signals in enabling more powerful applications.
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Chapter 4

Dual-purpose video coding

framework

This chapter presents the proposed Dual-Purpose Video Coding (DPVC) solution,

and starts by briefly restating the context and motivations discussed in Chapter 1 un-

derpinning this work. After that, the architecture and walkthrough of the proposed

video coding solution are presented in Section 4.2, whereas Section 4.3 presents the

most novel and technically original coding modules. The performance assessment of

the proposed DPVC is carried out in Chapter 5 under meaningful test conditions,

moreover, DPVC is compared to the state-of-the-art HEVC standard.

4.1 Introduction

As discussed in Chapter 1, applications that consider visualization and searching

needs are becoming very popular together. In this context, the HATC approach has

recently attracted attention because it attempts to overcome the limitations of the

CTA and ATC [14–16]. In the former, despite allowing visualization, the compres-

sion process has a detrimental effect on the extracted visual features, which in turn

impairs the visual analysis performance. The latter limits the range of applications

by not enabling visualization. In previous HATC works, pixel and feature-based

representations are essentially designed and used independently from each other,

meaning that the feature-level data (targeting searching) is not exploited to aid the

pixel-level coding (targeting visualization) and vice-versa. But this scenario is start-

ing to change. In [20], a hybrid framework for jointly coding the feature descriptors

and visual content is proposed, exploiting their interaction. While the feature de-

scriptors are efficiently represented by taking advantage of the structure and motion

information in the compressed video stream, the already compressed descriptors

can be used to further improve the video compression efficiency by applying feature
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matching based affine motion compensation. The novel video coding solution pro-

posed in this chapter also adopts the HATC approach; however, differently from [20],

the proposed solution explicitly codes just the keypoint data detected at the encoder

as the descriptors themselves are extracted at the decoder using the keypoint-based

reconstructed f-frames.

The proposed DPVC employs a hybrid approach where pixel-based and feature-

based coding are combined to provide efficient video coding solution targeting both

visualization and searching needs. The pixel-based processing is built upon the

state-of-the-art HEVC, reviewed in Chapter 2, to code the so-called k-frames and

to code the residue for the f-frames in the enhancement layer. As for the feature-

based processing used for coding the f-frames in the base layer, the SIFT features,

discussed in Chapter 3, are used for characterization in terms of local features. The

coding scheme to code keypoint matches selected as being beneficial in the joint

optimization routine is inspired in the keypoint coding part of the feature coding

framework described in Section 3.4. The descriptors are extracted at the decoder

using the keypoint-based reconstructed f-frames as they are less harmed by coding

artifacts [15, 31]. The proposed solution is based on a flexible joint Lagrangian

optimization framework where pixel-based and feature-based processing are com-

bined to find the most appropriate trade-off between the visualization and searching

performances. Moreover, the proposed solution provides quality scalability for the

f-frames and some degree of compatibility with the latest video coding standard

HEVC with the k-frames.

4.2 Architecture and walkthrough

This section presents the architecture and walkthrough of the proposed Dual-

Purpose Video Coding (DPVC) solution, which combines pixel-based and feature-

based coding to provide a powerful and efficient coding framework towards both

visualization and searching. While the pixel-based component provides backward

compatibility with the most efficient visualization-targeted video coding standard,

the feature-based component boosts the searching performance by providing precise

keypoint locations, extracted from the original, uncompressed video content. By

targeting simultaneously two key functionalities, the dual-purpose coding process

has to consider both a visual quality distortion, DV , and a descriptor matching

distortion, DM , which assess the visualization and searching performances, respec-

tively. The proposed dual-purpose coding architecture is presented in Figure 4.1

and its processing walkthrough is explained in the sequel:
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Figure 4.1: Block diagram of the proposed Dual-Purpose Video Coding (DPVC)
solution.

4.2.1 Encoder

◦ Frame splitting: the original video frames are split in two sets, namely the

so-called k-frames and f-frames. While the k-frames are coded using a conven-

tional video coding solution, thus providing some backward compatibility, the

f-frames are coded using a feature-based approach, explicitly making the over-

all coding framework searching friendly. The frames are arranged in a Group

Of Pictures (GOP) structure where a k-frame is periodically inserted among

the f-frames. A GOP includes a k-frame and the set of f-frames preceding the

next k-frame; for GOP of size 2, the k-frames and f-frames alternate.

◦ (k-frames) Conventional video coding and decoding: after frame split-

ting, the k-frames are Intra coded and decoded using a standard video codec;

in this case, the state-of-the-art HEVC standard is used [3]. The k-frames

may also be coded using some conventional Inter coding solution, e.g. some

HEVC profile, eventually providing a different trade-off between compression

efficiency, random access, error resilience and coding complexity. The decoded

k-frames play a central role in the proposed dual-purpose coding solution since

they not only provide some backward compatibility but they also provide the

references for the efficient coding of the f-frames.

◦ f-frame interpolation: to restore the original frame rate and effectively

estimate regions with smoother spatial and temporal evolutions, an initial

estimate of the f-frames is obtained by interpolating them from the neigh-

boring decoded reference frames, typically k-frames. This is performed both

at encoder and decoder using a block-based motion compensated frame in-
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terpolation algorithm using as references the closest past and future available

decoded reference frames. To this end, the algorithm proposed in [108] has

been adopted. For GOP sizes longer than 2 (typically powers of 2 sizes), a hi-

erarchical interpolation structure is used, making previously decoded f-frames

the reference frames for other f-frames. In the simplest case, that is, GOP of

size 2, only k-frames can play the role of references frames. In the following,

for simplicity, the explanation is restricted to the more intuitive GOP of size

2 case but the extension to longer GOP sizes is straightforward.

◦ Reference frames buffer: the reference frames buffer includes the so-called

reference frames, which provide texture patches to improve the initially esti-

mated f-frames. The decoded k-frames are naturally the most common refer-

ence frames (usually one or more past k-frames and eventually a single future

k-frame to limit the delay).

◦ Keypoint detection and descriptor extraction: to determine the best

patches from the reference frames to improve the interpolated f-frames, the

original f-frames and the decoded reference frames feed a keypoint detection

module which identifies the most distinctive positions inside a frame in terms

of feature-based characterization, and thus searching performance. For each

keypoint, a descriptor is extracted to capture the local image patch. The

objective is that only a parsimoniously selected number of keypoint matches

are conveyed to the decoder as there is an associated rate cost. Their aim is

twofold: First, they indicate the areas in the approximation of the f-frames

estimated by interpolation that may have its quality more improved for vi-

sualization using decoder-available patches. Second, they indicate distinctive

f-frame areas likely to be correctly matched to a visual content database avail-

able at the receiver side as this improves the searching performance. In this

work, SIFT [7, 8] is used for keypoint detection and descriptor extraction.

◦ Descriptor matching: to be able to improve the f-frames estimates with

patches from the reference frames, the f-frames descriptors are matched to the

reference frames descriptors using the Euclidean distance as matching metric.

The intuition is that the matching descriptor pairs represent regions with

similar visual content in the f-frames and reference frames.

◦ Adaptive patch stitching: to increase the overall f-frames quality, some in-

terpolated f-frame regions may be improved with appropriate matching patches

from the reference frames by performing patch stitching using the Poisson

stitching technique proposed in [109]. To determine the best visual quality

improvement impact associated to each keypoint match, a scale parameter
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factor may be used, and thus its best value has to be adaptively selected de-

pending on the specific content. This selection is made by assessing the Mean

Squared Error (MSE) reduction considering the image patch centered at a cer-

tain reference frame keypoint location seamlessly stitched to the corresponding

matching f-frame keypoint location and the corresponding original f-frame re-

gion. Before patch stitching, the reference frame patch is conveniently rotated,

scaled and translated to better fit the target location using the information ob-

tained from the previously extracted key points. The adaptive patch stitching

process is presented in Section 4.3.1.

◦ Keypoint matches sorting: the order by which the matching keypoints

are considered in the RDVDM optimization process, which selects the best

keypoint matches, is critical for the final performance, both in terms of vi-

sualization and searching. Thus, the keypoint matches are sorted according

to their MSE reduction potential before proceeding to the keypoint matches

selection. The matching keypoints sorting process is presented in detail in

Section 4.3.2.

◦ Joint RDVDM optimization keypoint matches selection: the most crit-

ical step in the proposed video coding solution is the parsimonious selection

of the set of keypoint matches that will be most beneficial for the given objec-

tive in terms of visualization (visual quality performance, DV ) and searching

(descriptor matching performance, DM). Due the dual-purpose nature of the

proposed coding solution, ideally the selected keypoint matches should offer a

performance trade-off both in terms of reducing the visual quality distortion as

well as the descriptor matching distortion. This is so because giving privilege

to one distortion may likely penalize the other. In the designed framework,

the balance between the two functionalities may be adjusted depending on the

application scenarios requirements, notably to the extreme cases where the vi-

sualization or searching capabilities have total predominance. In Section 4.3.3,

the matching keypoint selection problem is tackled in detail using a general

framework where the rate, visual quality distortion and descriptor matching

distortion may be jointly optimized by appropriately weighting the relevance

of the two distortions.

◦ Selected keypoint matches coding: for efficiency, the parameters of the

selected keypoints, notably position (x, y), scale σ and angle θ, are differen-

tially coded with respect to the corresponding matching key points from the

reference frames. Before entropy coding, the residue for each keypoint parame-

ter above is scalar quantized to reduce its coding rate. An adaptive arithmetic

encoder is used to entropy code the various syntactic elements.
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◦ Base layer coding: with the selection of the optimal keypoint matches

following the defined visualization-searching performance trade-off, the base

layer coding process is completed. In summary, the base layer output bit-

stream comprises the k-frames coding bitstream, generated using a standard

video codec, and the f-frames coding bitstream, corresponding to the set of

selected keypoint matches. These selected keypoint matches should provide

frame correspondences, which may be both efficient in terms of visualization

by improving the interpolated f-frame visual quality and in terms of searching

by increasing the number of descriptor matches.

◦ Enhancement layer residue coding: although the base layer solution might

be the appropriate fit for networks with very strict bandwidth constraints, it

may be desirable for other application scenarios to be able to further improve

the reconstructed f-frames quality. In fact, as the Base Layer (BL) does not

code any texture residue for the f-frames, its quality is limited by the novelty

that can migrate from the decoded reference frames, typically preventing it

to achieve very high quality. In this context, by coding the residue between

the original f-frame and the corresponding reconstructed BL f-frame, the En-

hancement Layer (EL) is able to add detail and quality to the BL, naturally

at the cost of some additional rate. The residue is coded by applying a con-

ventional transform-quantization scheme, in this case an HEVC-like coding

solution. A straightforward adaptation of the HEVC reference software (HM,

version 16.3) was made for residue coding. This enhancement layer makes

the proposed coding framework quality scalable for the f-frames, which is a

functionality not provided by the HEVC standard.

◦ Visualization and matching: the proposed dual-purpose coding framework

aims at delivering both efficient visualization and searching experiences. In

this context, the decoding process offers not only a pixel-based reconstruction

for visualization but also a set of searching efficient f-frame keypoint positions,

extracted from the original video frames (which naturally are not available at

the decoder). These (original) keypoint positions may drive now the descriptor

extraction process, and consequently the following descriptor matching pro-

cess, targeting the best matching performance and thus searching experience.

Conventional video coding solutions like HEVC have to extract the keypoints

from the lossy decoded video, thus obtaining less reliable positions.
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4.2.2 Decoder

Since the decoder is mostly embedded in the encoder, decoding proceeds essentially

as already described for the encoder. The exception is the decoding of the matching

keypoint pairs. In summary, the decoder processes first the k-frames and interpolates

the appropriate number of f-frames depending on the GOP size. Then, the f-frames

are improved by patch stitching using the reference frames patches defined after

decoding the selected keypoint matches whose location is differentially coded relative

to the keypoints detected in the reference frames.

As usual, the most critical coding tool in the proposed framework is the one

that decides how the rate is spent, in this case the ‘clever’ encoder selection of the

keypoint matches to code. In this type of dual-purpose codec, this selection process

is more complex than usual because the visualization and searching performances

may have to be jointly optimized depending on the relevant application scenario

constraints.

4.3 Coding tools

This section targets the detailed presentation of the most novel and most critical

modules in the proposed dual-purpose video coding framework. In this context, be-

fore going any further, let us restate the notation. Each visual feature is represented

by the pair {pn,i; dn,i} where pn,i denotes the vector with the keypoint position

(x, y), scale σ and angle θ of the i-th feature in frame n and dn,i the associated

descriptor vector, e.g. SIFT coefficients.

4.3.1 Adaptive patch stitching

The patch stitching process targets to improve the f-frames quality with appropriate

patches extracted from the already available (decoded) reference frames. In the

stitching process, the image patch I
(k)
m |Ω(k)

m,j
defined over the region Ω

(k)
m,j centered at

a selected keypoint location (xm,j, ym,j)
(k) from a reference frame I

(k)
m is extracted and

seamlessly stitched over the region Ω
(f)
n,i centered at the matching keypoint location

(x̂n,i, ŷn,i)
(f) in the relevant f-frame I

(f)
n , thus generating the stitched f-frame I ′(f)

n .

The superscripts (k) and (f) refer to the k-frames and f-frames, respectively. In the

variables above, the subscripts m and n indicate the m-th and n-th frames, whereas

j and i indicate the j-th and i-th keypoints; the hat ˆ over a variable indicates

quantization. For simplicity, circularly-shaped patches are used in this work. The

diameters of the image areas involved in the stitching process depend on the scale

parameters σ
(k)
m,j and σ̂

(f)
n,i of the matching key points. The reference frame patch

diameter is msσ
(k)
m,j and the f-frame destination region diameter is msσ̂

(f)
n,i , where
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ms is a scale parameter factor that is adaptively determined for each patch at the

encoder as explained in the sequel, and is coded in the bitstream to be used at the

decoder.

The stitching process aims to keep unchanged the pixel values both over and

outside the boundary ∂Ω of Ω
(f)
n,i , while blending inside the pixel values of the patch

I
(k)
m |Ω(k)

m,j
(from the reference frame) seamlessly with those from the f-frame I

(f)
n . A

comprehensive formulation of this problem is given in [27, 109]. In this work, the core

patch stitching process is performed using the Poisson stitching technique proposed

in [109]. Appendix C provides a fairly straightforward review of the Poisson stitch-

ing technique. The patch stitching process is carried out using the non-quantized

keypoint parameters of the decoded reference frame and the quantized keypoint

parameters of the original f-frame as the second will have to be quantized when

coding.

Given the matching keypoints p̂n,i and pm,j, the first one in the current f-frame

(reconstructed up to this point) and the second in the most similar frame found

in the reference buffer together with the corresponding frames I
(f)
n and I

(k)
m , the

stitching process proceeds as follows (the index n refers to the f-frame, the index m

to the reference frame and a hat over a variable indicates quantization):

1. Initialization: set the current visual quality minimum distortion DV,cur equal

to the distortion between the current f-frame and the corresponding original

f-frame. The MSE is used here as visual quality distortion.

2. Support size adaptation: for each ms value in the selected range do:

Let I
(k)
m |Ω(k)

m,j
be the image patch defined over a circularly-shaped domain

Ω
(k)
m,j defined by its diameter msσ

(k)
m,j and centered at the keypoint location

(xm,j, ym,j)
(k) and Ω

(f)
n,i the destination region in the f-frame centered at the

keypoint location (x̂n,i, ŷn,i)
(f) with diameter msσ̂

(f)
n,i .

a. Geometric transform:

i. Rotate the reference patch by ϕ = θ̂
(f)
n,i −θ(k)

m,j and scale it by s =
σ̂
(f)
n,i

σ
(k)
m,j

around the point (xm,j, ym,j)
(k) applying the transformation:

A =

[
α β (1− α)x

(k)
m,j − βy(k)

m,j

−β α βx
(k)
m,j + (1− α)y

(k)
m,j

]
(4.1)

where α = s · cosϕ and β = s · sinϕ
ii. Translate the reference patch to the appropriate f-frame position by

applying:

T =

[
1 0 x̂

(f)
n,i − x(k)

m,j

0 1 ŷ
(f)
n,i − y(k)

m,j

]
(4.2)

68



b. Poisson stitching: carry out the stitching process as described in [109].

Appendix C reviews the Poisson stitching technique used in this work.

c. Visual quality assessment: compute the visual quality distortion be-

tween the resulting stitched f-frame and the original f-frame for each

successive ms value. If the visual quality distortion is reduced regarding

DV,cur, DV,cur is updated with the new distortion value and the new best

scale parameter factor ms is adopted.

This process returns the stitched f-frame I ′(f)
n with the support size msσ̂

(f)
n,i pro-

viding the largest visual quality gain. At the decoder, the patch stitching process

does not have to be adaptive as the appropriate ms value is transmitted by the

encoder as side information.

Regarding the Poisson stitching technique used in step b above, it is worth to

notice that it comes down to solve a system of linear equations of the form Kx = b.

Since the matrix K is symmetric and positive-definite [109], the iterative method

Conjugate Gradient [110–113] has been used for solving the resulting linear sys-

tems. The mathematical formulation of the Conjugate Gradient method guarantees

convergence in at most n steps [110, 111], in the particular case of the seamless

stitching above, n is the number of samples within the stitching region Ω
(f)
n,i of the

f-frame. Further discussion on Poisson stitching can be found on Appendix C and

for a detailed treatment on the convergence analysis of the Conjugate Gradient refer

to [111].

4.3.2 Keypoint matches sorting

The order by which the keypoint matches are considered in the joint RDVDM op-

timization process has a significant impact on the final performance, both in terms

of visual quality as well as searching performance; therefore, it is essential to previ-

ously and appropriately sort the keypoint matches using some appropriate criterion

as performing an exhaustive search over all possible keypoint matches arrangements

is simply impractical due to the prohibitive computational cost. A reasonable so-

lution is to evaluate each candidate keypoint match independently and sort them

using a criterion which is able to express its effectiveness in contributing to reduce

the visual quality distortion and the descriptor matching distortion (thus ultimately

increasing the number of descriptor matches). Naturally, the quality of the descrip-

tors extracted at the decoder to be used for the matching process strongly depends

on the quality of the reconstructed frames. Thus, it is considered here that an appro-

priate criterion to perform the sorting before proceeding to the next joint RDVDM

optimization process is the MSE reduction relative to the original f-frame caused
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by the refinement of an interpolated f-frame using the image patch associated to a

specific keypoint match.

To avoid using in this sorting process the complex Poisson stitching process pre-

sented before, the potential MSE reduction for each keypoint match is assessed by

simply copying the image patch centered at the keypoint location in the reference

frame over the matching keypoint location in the f-frame and computing the differ-

ence to the original f-frame. This is a low complexity stitching process which avoids

solving the involved Poisson equation [27, 109] at the penalty of obtaining only

an estimation of the MSE reduction; this is, however, enough for sorting purposes.

Moreover, for complexity reasons, this process is performed for every keypoint match

independently, implying that the cumulative effect of the keypoint matches is not

considered. At the end, the list will include all the keypoint matches ordered by

their MSE reduction potential.

4.3.3 Joint RDVDM optimization keypoint matches selection

The proposed dual-purpose video coding framework aims at delivering optimal vi-

sual quality for visualization and original keypoint information for searching. As

previously outlined, to accomplish such objectives, the proposed coding framework

combines the pixel-based and feature-based approaches to represent the k-frames

and f-frames arranged in a GOP structure. The periodic k-frames are coded using

a standard video codec and are also reused as source of image patches to improve

the f-frames. In turn, each f-frame is coded using a feature-based approach on top

of a first estimation obtained by motion interpolation using the available reference

frames, mostly k-frames.

More specifically, the f-frames are coded resorting to a set Mkp of keypoint

matches, p̂
(f)
n,i 7→ p

(k)
m,j, where p̂

(f)
n,i (the hat over indicates quantization) belongs to

the current f-frame and p
(k)
m,j to a reference buffer frame, always a k-frame for GOP

of size 2.

Such dual-purpose coding framework creates the challenge of allocating the bit

budget to those keypoint matches which provide the best trade-off between reducing

the visual quality distortion (visualization performance) and increasing the number

of correct descriptor matches for the images in a given decoder content database

(searching performance).

Measuring the visual quality distortion is straightforward as the availability of

the original and decoded f-frames at the encoder facilitates the measurement of the

distortion reduction associated to a specific keypoint match. However, the situation

is very different for the searching capability, as the descriptor matching performance

cannot be precisely measured at the encoder as only the decoder has access to the
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target content database. In the sequel, the joint optimization framework and joint

keypoint matches selection process will be presented.

(1) Joint Lagrangian optimization framework

The optimization goal is to select a set of keypoints matches,Mkp, which minimize

the following Lagrangian cost function:

arg min
M∗kp

J = (DV + γDM) + λR(Mkp) (4.3)

where DV is the visual quality distortion, DM is descriptor matching distortion and

R(Mkp) is the total rate for coding the set of selected keypoint matches. The pa-

rameter γ weights the importance given to the searching performance regarding the

visualization performance, while λ weights the overall rate regarding the combined

distortion. It is worth to notice that the visual quality distortion and the descriptor

matching distortion are assumed to be additive in the joint Lagrangian cost function

(Equation 4.3). For the purpose of this work, this is a good enough supposition as

suggested by experimental results presented in Chapter 5.

An iterative procedure to be presented in the sequel is adopted to determine the

best set of keypoint matches Mkp which minimize the cost function as defined in

Equation 4.3. At each iteration, the benefit (cost function reduction) is evaluated

in terms of rate, visual quality distortion and descriptor matching distortion.

Rate metric

The rate for coding each candidate keypoint match p̂
(f)
n,i 7→ p

(k)
m,j is computed as

follows:

R = R(rk) +R(rm) +R(ms) +R(p
(f)
n,i − p

(k)
m,j) (4.4)

where R(rk) is the rate to code the reference frame index (this serves to signal which

of the (two for GOP 2) reference frames in the buffer is used for patch stitching);

R(rm) is the rate to code the keypoint match index in the reference frame (following

the known order provided by the extractor); R(ms) is the rate to code the selected

scale parameter factor, and R(p
(f)
n,i −p

(k)
m,j) is the rate to perform lossy coding of the

residuals of the keypoint match parameters.

To reduce the computational complexity associated to the joint optimization

step, the total rate is estimated by computing the self-information of each syntactic

element according to the probability models as described in Section 4.3.4.
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Visual quality distortion metric

The MSE is adopted for visual quality distortion in this work. In order to decide

whether or not to select a particular candidate keypoint match for coding, the

encoder computes the MSE between the original f-frame and resulting frame after

performing the adaptive patch stitching. More precisely,

MSE =
1

WH

W∑
i=1

H∑
j=1

(I
(f)
O (i, j)− I ′(f)

(i, j))2 (4.5)

where W denotes the width and H the height of the frame in number of samples.

I
(f)
O denotes the original f-frame and I ′(f) the just resulting stitched f-frame.

Descriptor matching distortion estimation metric

The descriptor matching distortion DM should provide an objective way to assess the

contribution of each candidate keypoint match to the searching performance. In this

context, the encoder should ideally only spend rate on those keypoint matches likely

to produce correct descriptor matches at the decoder side. As only the decoder has

access to the target content database, the descriptor matching performance cannot

be accurately measured at the encoder. Thus, it is proposed here to estimate this

performance at the encoder by mimicking in the best possible way the descriptor

matching steps that are performed at the decoder. Such descriptor matching perfor-

mance estimation enables to formulate a joint Lagrangian optimization [1, 2, 114]

framework as defined in Equation 4.3 to trade-off the rate against the joint visual

quality and descriptor matching distortion.

More precisely, it is proposed to estimate the searching performance based on

the number of matches between the descriptors extracted from the reconstructed

f-frames (at keypoint positions to be selected) and those extracted from the original

f-frames (at keypoint positions detected at original f-frame), somehow assuming that

the database includes a frame rather similar to the original f-frame. For a reliable

searching distortion estimation, each candidate descriptor match should satisfy both

the ratio test [7, 8] and the symmetric match criterion as it is reasonable to adopt

at the encoder the same criterion usually adopted for performing the searching at

the decoder. As discussed in Section 3.3.2, the ratio test criterion discards matches

whose the ratio between the distance of the closest descriptor and the distance of

the second-closest descriptor is greater than a 0.8, whereas the symmetric match

(cross matching) criterion assume as correct matches those descriptor matches that

occur in both directions (see Section 3.3.2).

The proposed estimator for the descriptor matching distortion is simply defined

in terms of the difference between the number of extracted descriptors (256 being
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the maximum in our framework as this has been considered enough) and the number

of correctly matched descriptors. Figure 4.2 presents the procedure associated to

the encoder estimation of the descriptor matching distortion.

Keypoint
detection

Keypoint
quantization

Descriptor
extraction

Keypoint
detection

Descriptor
extraction

Descriptor
extraction

Descriptor
matching

Interpolated
f-frame

Current
reconstructed

f-frame

Original
f-frame

DM (DSR,DSO)
estimation

DSI

d̂
(f)
n,i

DSR DSO∪

p̂
(f)
n,1, p̂

(f)
n,2, ...

Figure 4.2: Encoder estimation of the descriptor matching distortion. The dashed
arrows indicate the iterative steps.

In detail, the descriptor matching distortion estimation proceeds as follows:

1. Initial descriptor matching estimation: at the beginning of the joint op-

timization process, the reconstructed f-frame, I
(f)
R , is equal to the interpolated

f-frame, I
(f)
I , and thus an initial descriptor matching distortion estimation may

be performed using only the set of descriptors extracted from the interpolated

f-frame, here labeled as DSI (in this case DSR = DSI as the reconstructed

f-frame is the interpolated f-frame). As at this stage there are still no key-

point matches selected, the initial descriptor matching distortion estimation

proceeds as follows (extreme left and right branches in Figure 4.2):

a. Original f-frame keypoint detection and descriptor extraction:

let d
(f)
n,i = Ψ(p

(f)
n,i |I(f)

O ) be a descriptor extracted at keypoint p
(f)
n,i detected

in the original f-frame I
(f)
O and DSO the set of such descriptors.

b. Interpolated f-frame keypoint detection and descriptor extrac-

tion: let d̄
(f)
k,i = Ψ(p̄

(f)
k,i |I

(f)
I ) descriptor extracted at the keypoint p̄

(f)
k,i

detected in the interpolated f-frame I
(f)
I and DSI the set of such descrip-

tors.

c. Descriptor matching for original versus interpolated f-frames:

perform descriptor matching between the original f-frame descriptor set,
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DSO, and the interpolated f-frame descriptor set, as DSR = DSI .
d. Descriptor matching distortion estimation: estimate the descrip-

tor matching distortion between the original and interpolated f-frames

descriptor sets according to:

DM(DSR,DSO) = 1−
∑|DSR|

i=1

∑|DSO|
j=1 MDSR→DSO(d̂i,dj)MDSO→DSR(dj, d̂i)

|DSR|
(4.6)

where MX→Y is defined as:

MX→Y(d̂i,dj) =1, if ∀k 6= j 6= j′ ⇒ ‖d̂i − dj‖2 < ‖d̂i − dj′‖2 < ‖d̂i − dk‖2 and
‖d̂i − dj‖2

‖d̂i − dj′‖2

< 0.8

0, otherwise

where | · | means cardinality and ‖ · ‖2 is the Euclidean distance. Equation 4.6

measures the fraction of descriptors extracted from the interpolated f-frame not

finding a proper descriptor match at the original f-frame descriptor set. It is therefore

a descriptor matching distortion. This fraction counts the proportion of descriptors

not meeting the ratio test and symmetric matching criteria as expressed by the

product MX→Y(d̂i,dj)MY→X (dj, d̂i).

2. Iterative descriptor matching estimation within the joint Lagrangian

optimization: as the joint optimization process iterates over the sorted key-

point matches, each candidate keypoint match is evaluated regarding the de-

scriptor matching distortion, DM . Naturally, at this stage, the reconstructed

f-frame is no longer the interpolated f-frame but rather its improved version

with the successively selected patches associated to the successively selected

keypoint matches. The iterative descriptor matching distortion estimation

proceeds as follows (central and right branches in Figure 4.2):

a. Keypoint parameters quantization: let p̂
(f)
n,i 7→ p

(k)
m,j be the specific

candidate keypoint match under consideration in the Lagrangian opti-

mization; the quantized version of all keypoint parameters is considered

as the decoder receives p̂
(f)
n,i after quantization of all the residues com-

puted for the keypoint parameters relative to the matching keypoint in

the relevant reference frame (see Section 4.3.4).
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b. Descriptor extraction at the quantized keypoint: let d̂
(f)
n,i =

Ψ(p̂
(f)
n,i |I(f)

R ) be the descriptor extracted in the current reconstructed

f-frame (already improved with all the previously selected keypoint

matches) at the quantized keypoint position.

c. Descriptor matching for original versus current reconstructed

f-frames: add the just extracted descriptor d̂
(f)
n,i to the set DSR and

match DSR to the descriptor set DSO already extracted from the original

f-frame.

d. Descriptor matching distortion estimation: estimate the descriptor

matching distortion between DSR and DSO as defined in Equation 4.6.

Here the descriptors to be matched comprise DSI together with those

in DSR, corresponding to the keypoints selected for coding so far. This

descriptor matching distortion measures the fraction of used descriptors

which did not result into a positive match.

The descriptor matching distortion estimation is performed for each candidate

keypoint match, and feeds the joint Lagrangian optimization process that selects

the keypoint match based also on the visual quality distortion and the rate, as

described in the next section. Figure 4.3 shows the scatter plot of the DM estimate

computed at the encoder side (horizontal axis) and the actual DM (vertical axis)

computed at the decoder side using the target content database. One may notice

that the proposed estimation is quite correlated with the actual descriptor matching

distortion.
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Figure 4.3: Scatter plot of the DM estimate computed at the encoder side and the
actual DM computed at the decoder side.
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(2) Joint Lagrangian optimization process

At this point, with the joint optimization framework and metrics properly defined,

it is time to design the joint RDVDM optimization process to select the optimal

keypoint matches.

To determine the final set of keypoint matches to be coded, Mkp, an iterative

procedure considering all the available keypoint matches is adopted as follows:

1. Initialization: given the selected values for γ and λ, setMkp = {∅} and ini-

tialize the minimum Lagrangian cost function as Jmin = (DV,ini + γDM,ini) +

λR(Mkp). Here DV,ini, the initial visual quality distortion, is defined as the

MSE between the initially interpolated f-frame and the original f-frame, as at

the beginning the reconstructed f-frame is equal to the interpolated f-frame.

Also here, DM,ini, the initial descriptor matching distortion, is defined as the

descriptor matching distortion between the descriptors extracted from the in-

terpolated f-frame, DSI , and from the original f-frame, DSO, since at this

point DSR = DSI . Lastly, since Mkp = {∅}, the rate is naturally zero.

2. Iterative joint Lagrangian cost reduction: for each candidate keypoint

match in the available sorted list, temporarily add it to the set of selected key-

point matches,Mkp, and evaluate its effectiveness in reducing the Lagrangian

cost computed up to the current point. To do so it is needed:

a. Rate computation: compute the accumulated rate for the current set

of keypoint matches in the set Mkp as detailed in Equation 4.4.

b. Visual quality performance impact assessment: to check the vi-

sual quality benefit of additionally selecting the current keypoint match,

and thus its associated patch, perform the adaptive patch stitching as

described in Section 4.3.1 over the current reconstructed f-frame. Then

compute the visual quality distortion DV between the resulting stitched

f-frame and the original f-frame.

c. Descriptor matching performance impact assessment: to check

the benefit of additionally selecting the current keypoint match, tem-

porarily add the corresponding candidate descriptor to the selected de-

scriptor set DSR of the reconstructed f-frame and estimate the descriptor

matching distortion DM using Equation 4.6, notably after matching the

descriptor set of current reconstructed f-frame to those of the original

f-frame.

d. Lagrangian cost computation: using the rate, visual quality and de-

scriptor matching distortions computed in a, b and c above, compute
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the Lagrangian cost J = (DV + γDM) + λR(Mkp). If the Lagrangian

cost is reduced relative to the current minimum Lagrangian cost, keep

this candidate keypoint match in Mkp (and thus also its stitched patch

in the updated reconstructed f-frame), keep its descriptor in DSR, and

update the Lagrangian cost function minimum with this new minimum

cost value. Otherwise, discard the keypoint match and its associated

descriptor and process the next keypoint in the sorted list.

The above described keypoint matches selection procedure is able to consistently

and jointly optimize the visualization and searching performances. The trade-off

between visualization and searching distortions minimization depends on the specific

application scenario, and can be set by appropriately tuning the Lagrangian cost

parameters, λ and γ.

(3) Lagrangian cost parameters selection

Naturally, the optimization control parameters γ and λ play a central role in the

definition of the optimal configurations using the proposed video coding solution

as different trade-offs between the optimization goals can be reached by adjusting

them. In addition to γ and λ, another key control parameter is the Quantization Pa-

rameter (QP) value used to code the k-frames. In order to properly select the trio of

parameters (QP, γ, λ) corresponding to various optimal operational points, extensive

experiments have been performed as described next. In brief, the joint Lagrangian

optimization process presented above was performed for multiple combinations of the

parameters (QP, γ, λ), thus obtaining a dense cloud of RDVDM functional points.

Those (QP, γ, λ) parameter sets corresponding to RDVDM points lying on the con-

vex hull of this dense cloud are selected as providing the best parameter choices.

More specifically, this parameter selection process proceeds as follows:

1. RDVDM space filling: run the coding solution for multiple combinations

of the parameter set (QP, γ, λ) in some adopted dynamic range for each pa-

rameter. Let configw = (R,DV , DM ,QP, γ, λ)w be each individual config-

uration vector including the resulting rate, visual quality distortion and de-

scriptor matching distortion for a particular choice of the input parameter set

(QP, γ, λ)w and the parameter set itself. Let CONFIG be the full set of such

configw configuration vectors.

2. RDVDM convex hull creation: to find the set of RDVDM points from

CONFIG lying on the convex hull, the widely used convex hull algorithm

Quickhull [115] has been used. It gives as output the facets of the convex

envelope, that is, the smallest convex set of RDVDM points involving the
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input set of points. As the objective is here to find the parameter choices

(QP, γ, λ) which give the optimal RDVDM trade-offs, only the lowest facets

are kept, this means, those facets which do not have any point below them.

Figure 4.4 shows an example with the full cloud of RDVDM points (red) and the

Delaunay triangulation for the RDVDM points lying on the convex hull (blue) for

the video sequence Paris. In summary, this process where the RDVDM points on

the convex hull are defined, allows to identify the (QP, γ, λ) combinations providing

the optimal visualization-searching performances trade-offs. In fact, a whole convex

surface of optimal trade-offs can be found. Figure 4.4 shows an example of this

convex surface obtained by performing Delaunay triangulation of the convex hull

points.
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Figure 4.4: Left) Example of the full cloud of RDVDM points (red) with the convex
hull RDVDM points highlighted (blue); right) the corresponding convex surface for
the sequence Paris.

In order to find these convex surfaces that pass through the RDVDM points

on the convex hull and therefore finding the appropriate choices for the parame-

ters (QP, γ, λ), one needs to perform exhaustive experiments for several parameter

combinations. Naturally, this approach guarantees the optimal performance, but

it is time-consuming and content-dependent. An analytical relation for the param-

eters (QP, γ, λ) has been searched for by fitting a curve to a set of experimental

results with the objective of reducing drastically the computation time at the cost

of some performance loss. The procedure described above has been carried out for

a few training sequences in order to find the appropriate choice for the parameters

(QP, γ, λ) and the resulting parameter choices (corresponding to those RDVDM

points on the convex hull) were used as training data to fit a function. However, the

first results arrived at a function which is still content-dependent, therefore, more

work is needed on this.
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4.3.4 Selected keypoint matches coding

In the proposed Dual-Purpose Video Coding solution, a set of keypoint matches is

selected to code each f-frame at the encoder side. In terms of visualization, these

selected keypoint matches indicate texture patches from reference frames which are

worthwhile to be reused to improve regions in the interpolated f-frame most needing

quality improvement. In terms of searching, the selected keypoint matches indicate

image positions within the f-frame worth extracting feature descriptors as they are

highly expressive is terms of searching.

In this context, to replicate the encoder patch stitching process and to indicate

where to extract the descriptors at the decoder side, for each selected keypoint

match, the following syntactic elements are coded: a) index of the reference frame

in the reference frames buffer, rk, e.g. previous or next for GOP size 2; b) index rm of

the matching keypoint in the reference frame available at the decoder considering the

order given by the keypoint detector itself; c) encoder selected multiplicative scale

factor, ms; d) quantization of the residue p
(f)
n,i − p

(k)
m,j for each keypoint parameter

set, notably the residues for the keypoint parameters position, angle and scale. Note

that these are residually coded using as reference the corresponding elements in the

matching reference frame keypoint in order to exploit their inter-frame redundancy.

In addition, to further reduce the rate, these residues are scalar quantized. This is

detailed in the sequel.

(1) Position residue and angle residue quantization

Both the position residue and the angle residue are quantized applying the same

quantization scheme. For instance, the angle parameter residue for each matching

keypoints pair, cθ = θ
(f)
n,i − θ(k)

m,j, is quantized as:

round

(
θ

(f)
n,i − θ(k)

m,j

QS

)
QS (4.7)

where θ
(f)
n,i is the angle parameter of the i-th keypoint in the n-th f-frame, similarly

θ
(k)
m,j for the matching keypoint in the k-frame, QS is the quantization step. Thus,

the f-frame decoded keypoint angle parameter is given by:

θ̂
(f)
n,i = θ

(k)
m,j + round

(
θ

(f)
n,i − θ(k)

m,j

QS

)
QS (4.8)

where θ
(k)
m,j for the keypoint in the reference frame is not quantized as it is extracted

at the decoder.

The same procedure is carried out for the position residue quantization. In this
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work, the quantization is carried out using a common quantization step, QS = 0.25,

which has been validated with exhaustive experimentation.

(2) Scale residue quantization

As for the scale quantization, there is one more step as the scale parameter depends

on the integer parameters octave (o) and layer (l) according to:

σ = σ0 · 2(o+ l
3

+∆σ) (4.9)

where σ0 = 1.6 and ∆σ is the scale offset, which resulted from the SIFT scale

refinement [7, 8]. Such parameters are also required for proper descriptor extraction

at the decoder side. A differential scheme is used to code the octave and layer with

respect to the octave and layer of the matching keypoint in the reference frame. No

quantization is applied to the octave and layer residues in order to enable a proper

descriptor extraction at the decoder side. Then, the scale residue between the ‘true’

scale value and its approximation computed using the octave and layer values is

quantized as follows:

round

σ0

(
2(o+ l

3
+∆σ) − 2(o+ l

3
)
)

QS

QS (4.10)

The same QS = 0.25 as above is used for scale residue quantization.

(3) Entropy coding

For better compression efficiency, the syntactic elements rk, rm and ms are coded

using arithmetic coding [63] with adaptive probability models, initialized with uni-

form probabilities. On the other hand, the keypoint parameter residues are coded

using adaptive arithmetic coding with an initial statistical model set up for each

parameter. The initial statistical models are obtained from a set of training se-

quences different from the set of test sequences. One can roughly estimate the rate

associated to each syntactic element by considering a coding set up using 2 refer-

ence frames, a maximum of 256 keypoints per frame, 16 multiplicative scale factor

values, CIF resolution and a maximum scale residue value of 80. In the worst case,

using a uniform probability model for each syntactic element, the coding of each

keypoint match would require 1 bit for rk, 8 bits for rm, 4 bits for ms, 23 bits for the

position residue, 12 bits for the angle parameter residue, 9 bits for the scale param-

eter residue, and 5 bits for the octave and layer, in a total of 62 bits per keypoint

match. As it is proposed to use entropy coding with adaptive probability models,
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this rate can be reduced 1.6 times approximately. Figure 4.5 shows the average rate

expenditure for coding each syntax element of the keypoint match selected by the

joint Lagrangian optimization process.
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Figure 4.5: Average rate expenditure for each syntax element.

4.3.5 Enhancement layer residue coding

To improve the quality of the Base Layer (BL) reconstructed f-frames with its own

novelty (and not only that migrating from the reference frames), a residue is com-

puted between the original f-frame and the corresponding reconstructed BL f-frame.

This residue is coded with an HEVC-like coding solution where the reconstructed

BL f-frame plays the role of the HEVC prediction and the HEVC transform and

quantization and entropy coding tools are used to code the Enhancement Layer

(EL) residue. The adopted HEVC-like solution was built upon the HEVC reference

software (HM version 16.3) [3, 4, 65].

Conceptually, this HEVC-like residue coding process consists in substituting the

HEVC prediction module with the proposed BL decoder, which creates its prediction

by using the keypoint matches (which behave like motion estimation) and patch

stitching on top of an initially interpolated f-frame. The EL residue coding process

includes the following steps:

1. Enhancement layer prediction: in the HEVC encoder, the residue for each

Coding Unit (CU) is obtained after defining one or more Prediction Units

(PUs) and subtracting the (Intra or Inter) predicted blocks from the original

block. Similarly, in the proposed HEVC-like EL residue coding, the residue for
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each CU is obtained by subtracting the reconstructed BL output block from

the original block.

2. Base layer rate allocation map creation: in this context, the rate asso-

ciated to the prediction creation is here the rate used to code all the syntac-

tic elements associated to the coding of the f-frame BL using the matching

keypoint pairs. To perform the HEVC-like residue coding at CU level, it is

necessary to compute its corresponding rate, in this case its rate share of the

f-frame BL. To compute this rate, the BL produces a rate allocation map with

an estimation of the BL rate expenditure for each area of the f-frame, notably

depending on how the stitching process is distributed within the f-frame. More

precisely, the number of bits spent for coding each keypoint match is divided

by the number of pixels in the corresponding stitched area. Figure 4.6a shows

an example of such rate allocation map where the whiter the area, the higher

the rate estimation.

3. Coding unit rate estimation: the rate allocation map is used by the HEVC-

like residue coding module to estimate the rate already used in the BL pre-

diction. This is so because each CU should consider the rate previously spent

by the BL in the corresponding area. Otherwise, the residue coding would

be done without taking into account the BL rate. The rate for each CU is

estimated by accounting the rate previously spent for the corresponding area

by BL rate allocation map as shown in Figure 4.6b. In practice, for each

CU, the proposed HEVC-like coding takes as prediction creation rate the rate

corresponding to the stitching process parameters for the BL.

4. Residue coding: after the prediction and rate estimation steps, the residual

block coding occurs as in the HEVC encoder, notably involving the transform,

quantization and entropy coding steps. The QP for f-frame residue coding is

equal to the QP for k-frames incremented by 1 to implement some amount of

quantization cascading.
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Frame: 73

(a) Rate allocation map for the f-frame BL for
frame 73 of the test sequence Foreman.
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CTUCTU CTUCTU CTU

msσ̂n,i

CU

(b) Overlapping example between a Coding
Unit (CU) and a stitched BL region (grey area).

4.4 Final remarks

This chapter has described the proposed Dual-Purpose Video Coding Solution,

which was designed to address applications that consider visualization and searching

needs. The proposed solution is based on a flexible joint Lagrangian optimization

framework which combine pixel-based and feature-based processing and is able to

appropriately trade-off visualization and searching performances. The Chapter 5

hereafter presents the performance assessment of the proposed video coding solu-

tion both in terms of visualization and searching, and compares its performances

regarding the state-of-the-art HEVC standard.
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Chapter 5

Performance assessment

This chapter presents experimental results for the assessment of the proposed DPVC

solution under meaningful test conditions. The results show the flexibility of the

proposed coding solution to achieve different optimization trade-offs, notably when

allocating the bitrate budget while jointly targeting visualization and searching capa-

bilities. The state-of-the-art HEVC standard will be used as the natural benchmark

to compare the obtained performance, considering not only joint optimization ob-

jectives but also special cases where the optimization is biased towards visualization

or searching.

5.1 Test material and conditions

To appropriately assess the proposed DPVC solution in terms of visualization

and searching performances, the following materials and test conditions have been

adopted:

◦ Four surveillance and personal communications video sequences have been se-

lected, notably Hall, Container, Paris and Akiyo. All sequences are in CIF

spatial resolution at 30Hz and 10 seconds long (300 frames). Appendix B

presents the set of used video sequences. The choice of low spatial resolution

sequences reflects the video coding scenarios addressed in this research work;

this choice does not imply any disadvantage for the adopted benchmark solu-

tion. In addition, the proposed solution can readily be run in sequences of high

spatial resolution (High Definition (HD), 1280× 720). A thorough analysis of

the HD case will be the subject of a different publication.

◦ To measure both the visualization and searching performances in a reliable

way, each test sequence has been divided in two halves. To assess the visual-

ization performance, the first half was used for coding. To assess the searching

performance, the original version of the last frame of the second half (thus
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minimizing the correlation with the coded frames from the first half) was used

to build the target content database at the decoder side; these frames play the

role of target content for the queries based on decoded video frames.

◦ The selected QP values for k-frames coding were 45, 40, 37, 34, 30 and 25.

The γ values were set in the range 0 and 1000 and the λ values in the range

0 and 1 to accommodate the different distortion scales (see Equation 4.3).

◦ A maximum number of 256 SIFT descriptors [8] was extracted per frame; for

each keypoint, the residue of the parameters position and scale are quantized

with a precision of one quarter of pixel while the angle is quantized with a

precision of one quarter of degree.

◦ A GOP size of 2 frames was selected. The reference frames buffer always

includes two reference frames (one past and one future); for GOP size 2, these

reference frames are the past and future k-frames for each f-frame.

5.2 Benchmarks and metrics

The natural benchmark for the proposed coding solution is the state-of-the-art

HEVC standard, notably its reference software HM, version 16.3 [51]. The Main

profile has been selected while using two prediction structures: All Intra and IBI.

It is important to stress that this is a very tough benchmark as it represents the

best result of the video coding technology evolution designed by the related research

community over the past few decades. Comparing a new, naturally less mature, cod-

ing solution with such a mature benchmark is by itself a challenge. To perform a

solid, wide and meaningful evaluation, the following performance metrics have been

adopted:

◦ Keypoint extraction performance: the repeatability score [14] between

the keypoints detected in the original f-frames and those extracted from the

decoded f-frames is used to evaluate the impact of compression on the quality

of the keypoints positioning. This is so because this later impacts the extracted

descriptors. The repeatability score is defined as the ratio between the number

of keypoint correspondences (see Section 3.2.2) in the two images and the

smallest number of detected keypoints in the two images and is averaged over

all f-frames.

◦ Visual quality distortion: the usual MSE is adopted as the visual quality

distortion metric to evaluate the performance regarding visualization. Also,

the Bjontegaard-Delta metrics [75], notably the BD-Rate is used to compare
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alternative coding solutions in terms of RD performance, that is, rate reduc-

tion for equivalent quality. The visual quality distortion assessment considers

all coded frames, both f-frames and k-frames, as these frames types are not

independent from each other.

◦ Descriptor matching distortion: the searching performance is evaluated

by the average, computed over all decoded frames, of the fraction of descriptors

extracted from the decoded video (query descriptors) which positively match

the descriptors extracted for each image in the target content database. These

positive descriptor matches must satisfy both the ratio test and the symmetric

matching criteria to be declared proper, positive matches. The descriptor

matching distortion is the complementary fraction of the descriptor matching

performance as defined in Equation 4.6. Notice that here the ‘true’ descriptor

matching performance is computed (and not an estimation), which may only be

assessed at the decoder side with access to the (original) content database. The

descriptor matching distortion assessment considers only the f-frames (against

the HEVC B frames) as there are no keypoints coded for the k-frames.

5.3 Keypoint repeatability performance

Repeatability is a fundamental property for visual features. Matching performance

based on visual features relies on the property of detecting the same distinguishing

locations on images depicting the same scene content, although acquired or pro-

cessed differently. Notably, image and video compression have a detrimental effect

on keypoint detection, mainly at lower bitrates where a large quantization step and

blocking artifacts may create spurious keypoint responses and erase valuable ones.

This in turn would imply extracting descriptors at image locations unlikely to be

correctly matched with descriptors extracted from original images. The first main

advantage of the proposed DPVC solution is the availability at the decoder of orig-

inally extracted keypoint locations what is not possible for the alternative HEVC

solution. Fig. 5.1 shows the repeatability score averaged over all f-frames for DPVC

and over all B-frames for an HEVC IBI configuration. The proposed DPVC consis-

tently achieves a repeatability score of 100%, meaning that the keypoint locations

are essentially the same as obtained from original frames (despite the quantization

applied to the keypoint parameter residues). This is essentially different from the

HEVC repeatability behavior as the compression process has a significant detri-

mental effect on the keypoint locations, especially at the lower bitrates where the

repeatability score drops significantly. It is worth to reiterate that a high repeatabil-

ity score is fundamental for matching-based applications as one requires repeatable
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image locations from where one may extract descriptors likely to produce correct

image region correspondences by performing descriptor matching.
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Figure 5.1: Repeatability score averaged over all f-frames/B-frames for the tested
sequences.

5.4 Trading-off visualization and searching per-

formances

To show the flexibility of the proposed DPVC solution in trading-off visualization

(visual quality distortion) and searching performances (descriptor matching distor-

tion) while offering comparable performances regarding HEVC, this section presents

and compares RDV curves for a fixed descriptor matching distortion (DM). These

(level) curves are obtained from the convex surface fitted to the convex hull points as

described in Section 4.3.3. While HEVC offers a fixed descriptor matching distortion

DM for a specific RDV pair, the DPVC solution may offer the same DM performance
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for all the RDV pairs lying along a curve implying that it is possible to trade-off rate

with visual quality without ‘touching’ the descriptor matching performance. This

is a powerful capability that results from the proposed joint optimization strategy

and, to our knowledge, only the proposed coding solution can offer.

In Fig. 5.2 and 5.3, the RDV performance for the proposed DPVC solution is

presented for four video sequences at two specific DM values. As shown, from an

RDV performance perspective, the proposed DPVC solution performs rather simi-

larly to HEVC IBI at the fixed descriptor matching distortion values while offering

at the same time many other RDV combinations for the same matching distortion.

The key issue here is that the DPVC solution offers a large set of RDV operational

points for each matching distortion, what is impossible with HEVC. For example,

DPVC is able to offer a reasonable increase or reduction in the visual quality dis-

tortion by reducing or increasing the bitrate expenditure while keeping fixed the

descriptor matching distortion. This behavior evidences that the jointly selected

and coded keypoints are effective in holding the descriptor matching distortion at a

certain level while trading-off the visual quality distortion. Appendix D.1 presents

more extensive results for this RDV trade-off capability of the proposed solution,

notably for additional fixed DM values.
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Figure 5.2: RDV performance for two fixed descriptor matching performances for
sequences: top) Hall ; and bottom) Paris.
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Figure 5.3: RDV performance for two fixed descriptor matching performances for
sequences: top) Akiyo and bottom) Container.

91



5.5 Best searching performance

Among the optimization trade-offs achievable with the proposed DPVC solution is

the special case where the operational points are selected to provide the best search-

ing performance. In this jointly optimized video coding framework, this situation is

associated to the convex hull points which yield the best trade-off between searching

performance and rate. Fig. 5.4 shows RDM curves expressing the best descriptor

matching distortion from the RDVDM points on the convex hull. The DPVC solu-

tion consistently outperforms the HEVC RDM performance as it achieves a lower

descriptor matching distortion than HEVC for the same bitrate, meaning that the

fraction of descriptors not finding a proper match in the target image of the content

database is lower for the DPVC. This follows from the fact that, in the proposed

DPVC, only a set of keypoints, carefully selected in the joint Lagrangian optimiza-

tion routine, is conveyed to the decoder so it may extract descriptors at image

locations likely to produce correct matches. This again validates the importance

of providing reliable keypoint location and consequently descriptor information for

improved searching performance. Figure 5.5 shows a sample frame of the coded

sequence Hall and its target image in the database, for which is superimposed the

feature matches produced for three parameters settings. Appendix D.2 provides

more details for these operational points selected to provide the best searching per-

formance, notably the actual number of matches as function of the bitrate as well

as additional sample frames and the produced feature matches.
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Figure 5.4: Best operational points in terms of RDM performance obtained from
the convex hull points for the tested sequences.
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(a) Frame 43, QP = 45, λ = 2−5 and γ = 50.

(b) Frame 43, QP = 45, λ = 2−10 and γ = 50.

(c) Frame 43, QP = 45, λ = 2−20 and γ = 50.

Figure 5.5: Feature matches between a frame of the sequence Hall and its reference
image in the database, k-frames coded with QP=45.
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5.6 Best visualization performance

Another case of special relevance is when the optimization goal is to achieve the best

visualization performance; this allows to assess to what extent the proposed coding

solution is competitive with the best standard coding solution available in terms

of the most commonly used RDV performance. To this end, the best operational

points regarding visualization performance are selected from the convex hull points

for the proposed DPVC.

Table 5.1 presents BD-Rate for the proposed DPVC solution regarding HEVC,

using the PSNR as visual distortion quality metric instead of DV . The BD-Rate

regarding the HEVC IBI and HEVC All Intra is provided for the for DPVC-BL and

DPVC-EL, which correspond to the DPVC base and enhancement layers, and also

for the so-called Motion Compensated Frame Interpolation (MCFI) solution where

f-frames only result from frame interpolation at no rate cost.

This set of results allows concluding that DPVC-EL performs rather close to

HEVC IBI and easily outperforms HEVC All Intra, showing that the use of keypoint

matches, which behave like motion vectors, in combination with patch stitching and

residue coding do not introduce significant coding performance losses regarding the

video coding state-of-the-art as represented by HEVC. In exchange, the proposed

solution offers, in a unified fashion, an explicit and flexible coding framework where

visualization and searching can be jointly optimized, while still offering good per-

formance for the cases where one optimization target dominates the other. It is

important to stress that the obtained BD-Rate loss is typically below 2.5% while

offering some amount of quality scalability. When scalability is offered, it is common

to accept a BD-Rate penalty up to 10% regarding a meaningful non-scalable solu-

tion [116], which is here HEVC as it does not offer any quality scalability. Table 5.1

shows that the penalty is much lower here.
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Table 5.1: BD-Rate for DPVC regarding HEVC.

HEVC All Intra HEVC IBI

DPVC-MCFI -42.406% 8.871%
Hall DPVC-BL -42.584% 8.578%

DPVC-EL -46.957% 1.600%

DPVC-MCFI -40.843% 15.630%
Paris DPVC-BL -41.031% 15.243%

DPVC-EL -47.599% 2.416%

DPVC-MCFI -50.971% 0.948%
Akiyo DPVC-BL -51.070% 0.723%

DPVC-EL -50.946% 0.840%

DPVC-MCFI -51.769% 1.160%
Container DPVC-BL -51.860% 0.965%

DPVC-EL -51.951% 0.709%

5.7 Final remarks

This chapter has presented the experimental results for the performance assessment

of the proposed DPVC described in Chapter 4. After introducing the used test

material and conditions as well as the benchmarks and metrics, the repeatability

performance was assessed in Section 5.3, which revealed that the encoder-extracted

coded keypoints provided by the DPVC achieve a repeatability score of 100% and

that the compression process of the HEVC, mainly at lower bitrates, has a detri-

mental effect on the repeatability score. As discussed in Section 3.2.2, having at

disposal repeatable image locations is fundamental to look for image region corre-

spondences by performing descriptor matching. Section 5.4 has shown the flexibility

of the DPVC solution to trade-off rate with visual quality while keeping unaltered

the descriptor matching performance. For instance, this implies that the DPVC en-

ables to provide bitrate savings at the cost of a higher visualization distortion while

still delivering the same descriptor matching performance. Section 5.5 has presented

the best performance in terms of searching needs. For this purpose, the operational

points providing the best RDM performance were selected from the convex hull. The

proposed DPVC consistently achieves a lower descriptor matching distortion than

HEVC for the same bitrate, meaning that the fraction of descriptors not finding a

proper match in the target image of the content database is lower in the DPVC.

This is so because only a set of keypoints extracted at the original f-frames, care-

fully selected in the joint Lagrangian optimization routine, is coded (relative to its

matching keypoint in the reference frame) and conveyed to the decoder so it may

extract descriptors at image locations likely to produce correct matches. Finally,

Section 5.6 has presented and compared the best performance in terms of visualiza-
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tion needs, which allow to assess to what extent the DPVC is competitive with the

state-of-the-art coding solution in terms RDV performance, for this purpose the op-

erational points providing the best RDV performance were selected from the convex

hull. The set of results has shown that the proposed pixel-based and feature-based

video coding solution does not introduce significant performance losses when com-

pared to HEVC in terms of BD-Rate. In fact, its performance loss is well bellow the

10% limit commonly accepted for scalable solutions [116].

Although not presented in this work, the use of larger GOP sizes increase the

relative distance between the f-frames and their reference frames used as source of

image patches for improving the interpolated f-frames. As consequence, this likely

implies less correlation between f-frames and the reference frames. This tends to

impair the coding performance of the base layer which relies on the texture that can

be reused from the reference frames. A hierarchical GOP structure can be used to

mitigate this performance loss in the base layer, similarly to the hierarchical coding

structures for B-frames in the HEVC.

The Chapter 6 hereafter presents the thesis’s conclusions and possible further

investigations.
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Chapter 6

Conclusion and future work

In modern video applications, the role of the decoded video is much more than filling

a screen for visualization. Among the emerging required user capabilities, searching

plays a key role. In this context, this work proposes a novel Dual-Purpose Video

Coding solution that targets not only the usual visualization capabilities but it also

potentiates simpler and better searching capabilities by combining the pixel- and

feature-based coding approaches. To this end, in order to pave the way for the

proposed joint dual-purpose solution, Chapter 2 has presented a review of the main

video coding tools underpinning state-of-the-art visualization-driven video coding

solutions and also it has reviewed the HEVC standard over which the proposed

solution relies on for pixel-based coding approach. Furthermore, Chapter 3 has

presented a review of local visual representation for visual content and a study on

coding schemes devised to code visual features extracted from video sequences. The

objective was to lay down the ground for the feature-based coding approach.

Chapter 4 has presented the proposed video coding architecture that employs a

hybrid approach where pixel-based and feature-based coding are jointly used. To

this end, the so-called k-frames are coded using pixel-based processing by means of

the HEVC and used as reference frames to code the f-frames using the feature-based

coding approach. A first estimate of the f-frames is obtained by interpolating them

from the neighboring decoded reference frames. Subsequently, the f-frames are first

refined by migrating appropriate image patches from the decoded reference frames

provided by the selected keypoint matches and then by the HEVC-like residue cod-

ing in the enhancement layer. In order to operate this pixel-based and feature-based

coding framework considering the dual-purpose objective, a flexible and unified La-

grangian optimization framework has been designed, which explicitly takes into ac-

count the rate and the visual quality and descriptor matching distortions. To allow

this joint Lagrangian optimization framework, the descriptor matching performance

is estimated at encoder side by matching the descriptors extracted at the recon-

structed f-frame using the candidate keypoint matches data to those of the original
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content. The idea is simply to check if despite coding artifacts the extracted de-

scriptor maintains its distinctiveness and can still be properly matched to its original

version. The experimental results show that the proposed solution allows to reach

multiple trade-off points in terms of visualization and searching performances with

no or only a negligible RD performance penalty. Results show that the proposed

DPVC solution is able to perform better or very close to the state-of-the-art HEVC

IBI solution, if required, while offering increased operational flexibility.

As discussed in chapter 1, a very few research works have been done in the HATC

domain to exploit the interaction of the feature-level data, targeting searching, and

the pixel-level, targeting visualization. Although this work has made an effort to

address this dual-purpose coding video coding scenario, there is still room for differ-

ent approaches and topics to be considered. For instance, one may investigate a way

to relate the parameters λ, γ and QP in order to save computation time without

significantly impairing the visualization and searching performance. Future work

may also consider the design of a video coding framework where the f-frames are ef-

ficiently coded using the descriptors themselves and not only the key point matches.

This should allow performing searching not only using original data extracted key

points but also using original data extracted descriptors.

Advances in image sensors and comprehensive image modeling by means of the

plenoptic function have been pushing forward towards richer representations of the

visual information [117, 118], opening up a new range of interesting applications and

functionalities. For instance, light field imaging offers functionalities such as change

of focus, relighting, change of viewing position and enhanced analysis [117]. In

this context, one may say that richer content representations only benefit emerging

video-enabled visual analysis tasks (such as visual search). The new video coding

solution addressed in this work fits well within this scope.
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Appendix A

Published and submitted papers

This appendix presents the list of published and submitted papers resulted from the

research work.

A.1 Published papers

C.1 Silva, R. C, Pereira, F., Silva, E. A. B. ”Studying the Compression Perfor-

mance of Video Descriptors”. In: Simpósio Brasileiro de Telecomunicações

(SBrt), Juiz de Fora, Brazil, September 2015. Recipient of the Best Paper

Award of the Symposium.

C.2 Silva, R. C, Pereira, F., Silva, E. A. B. ”Feature-based Video Coding: De-

signing an RD Efficient and Search Friendly Framework”. In: Picture Coding

Symposium (PCS), Nuremberg, Germany, December 2016.

A.2 Submitted papers

J.1 Silva, R. C, Pereira, F., Silva, E. A. B. ”Towards Visualization and Searching:

a Dual-Purpose Video Coding Approach”, IEEE Transactions on Multimedia.
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Appendix B

List of used video sequences

All sequences are in CIF resolution at 30 Hz, they are 10 seconds long. Six frames

of each video sequence are depicted in the sequel. Although the color versions are

shown bellow, only the luma component is coded.
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(a) Frame 1 (b) Frame 31

(c) Frame 61 (d) Frame 91

(e) Frame 121 (f) Frame 300

Figure B.1: Frames from the video sequence: Akiyo
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(a) Frame 1 (b) Frame 31

(c) Frame 61 (d) Frame 91

(e) Frame 121 (f) Frame 300

Figure B.2: Frames from the video sequence: Container
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(a) Frame 1 (b) Frame 31

(c) Frame 61 (d) Frame 91

(e) Frame 121 (f) Frame 300

Figure B.3: Frames from the video sequence: Hall
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(a) Frame 1 (b) Frame 31

(c) Frame 61 (d) Frame 91

(e) Frame 121 (f) Frame 300

Figure B.4: Frames from the video sequence: Paris
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Appendix C

Seamless image stitching with

Poisson equation

This Appendix briefly describes the seamless patch stitching technique used in the

this thesis. The objective is to keep the text somewhat more self-contained. Refer

to [109] for more in-depth treatment.

C.1 Problem statement

Let t, the scalar target function that one wants to interpolate, be defined over S

minus the interior of Ω (for short S\Ω); let v be a guidance vector field defined

over the interior of Ω and f the unknown interpolating function defined over the

interior Ω. Only the values of f over the domain Ω must be determined as the

target function t should be kept unchanged over S\Ω. Figure C.1 summarizes the

definitions given above.

∂Ω

S

Ω

f

vt

Figure C.1: Poisson editing: problem statement.

The objective is to find a function f whose gradient is as close as possible to the

guidance vector field v subject to the condition that f equals t in the boundary ∂Ω

of Ω.

The mathematical formulation for this problem is described in [109, 120, 121] as

follows:
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min
f

∫
Ω

|∇f − v|2, with f |∂Ω = t|∂Ω (C.1)

The above solution is also the solution to the Poisson partial differential equation

with Dirichlet boundary conditions:

∆f = divv, with f |∂Ω = t|∂Ω (C.2)

where ∆f = ∂2f
∂x2

+ ∂2f
∂y2

is Laplacian of f and divv is the divergence of the guidance

vector field.

In the usual case for seamless stitching, the guidance field is chosen to be the

gradient of the source function g, then:

∆f = ∆g, with f |∂Ω = t|∂Ω (C.3)

It turns out that the discrete solution for such problem amounts to solve the

linear system:

|Np|fp −
∑

q∈Np∩Ω

fq =
∑

q∈Np∩∂Ω

tq +
∑
q∈Np

vpq, with q 6= p (C.4)

where p is a sample position in S, Np the set of 4-connected neighbors to p, q is

a sample position in Np, |Np| the number of available samples in the 4-connected

neighbors set and vpq is the gradient of the source image g approximated by vpq =

gp − gq.
Let us consider the working example schematically depicted in Figure C.2
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Figure C.2: Discrete seamless image stitching.

Considering Equation C.4, let us write down the equations for a few samples

within Ω.
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For f24, it follows:

4f24 − f34 = t14 + t23 + t25 + [(g24 − g14) + (g24 − g23) + (g24 − g25) + (g24 − g34)]

4f24 − f34 = t14 + t23 + t25 + (4g24 − g14 − g23 − g25 − g34) (C.5)

For f33, it follows:

4f33 − f34 − f43 = t23 + t32 + (4g33 − g23 − g32 − g34 − g43) (C.6)

For f34, it follows:

4f34 − f24 − f33 − f35 − f44 = (4g34 − g24 − g33 − g35 − g44) (C.7)

Continuing on this, one gets:

Ax = b (C.8)

where A =



4 0 −1 0 0 0 0 0 0

0 4 −1 0 0 −1 0 0 0

−1 −1 4 −1 0 0 −1 0 0

0 0 −1 4 0 0 0 0 0

0 0 0 0 4 −1 0 −1 0

0 −1 0 0 −1 4 −1 0 −1

0 0 −1 0 0 −1 4 0 0

0 0 0 0 −1 0 0 4 −1

0 0 0 0 0 −1 0 −1 4


; x =



f24

f33

f34

f35

f42

f43

f44

f52

f53



and b =



t14 + t23 + t25 + (4g24 − g14 − g23 − g25 − g34)

t23 + t32 + (4g33 − g23 − g32 − g34 − g43)

4g34 − g24 − g33 − g35 − g44

t25 + t36 + t45 + (4g35 − g25 − g34 − g36 − g45)

t32 + t41 + (4g42 − g32 − g41 − g43 − g52)

4g43 − g33 − g42 − g44 − g53

t45 + t54 + (4g44 − g34 − g43 − g45 − g54)

t51 + t62 + (4g52 − g42 − g51 − g53 − g62)

t54 + t63 + (4g53 − g43 − g52 − g54 − g63)


The matrix A is symmetric and positive-definite [109], therefore the conjugate

gradient method [110, 112, 113] has been adopted for solving the linear system

Ax = b.

Regarding the time-complexity, let us consider the example depicted in Fig-
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ure C.3. In this example, the number of luma samples to be stitched is 29928. The

conjugate gradient method reaches the solution in 0.15 seconds. Figure C.3 shows

the results for 10, 50 and 100 iterations. One can notice that after 50 iterations the

seam has already disappeared.

(a) Source image. (b) Destination image.

(c) 10 iterations. (d) 50 iterations. (e) 100 iterations.

Figure C.3: Discrete seamless image stitching.
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Appendix D

Additional results

D.1 Trading-off visualization and searching per-

formances

Figures D.1, D.2, D.3 and D.4 show additional results to the ones presented in

Section 5.4. One may notice that these results also confirm the remarks discussed

in Section 5.4.
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Figure D.1: RDV performance for fixed descriptor matching performances DM :
sequence Hall.
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Figure D.2: RDV performance for fixed descriptor matching performances DM :
sequence Paris.
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Figure D.3: RDV performance for fixed descriptor matching performances DM :
sequence Akiyo.
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Figure D.4: RDV performance for fixed descriptor matching performances DM :
sequence Container.
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D.2 Best searching performance

Figure D.5 shows the number of matches as function of the bitrate for the operational

points selected to provide the best RDM performance as presented in Section 5.5.

Whereas Figures D.6, D.7, D.8, D.9, D.10, D.11 and D.12 depict feature matches

between sample frames from the used sequences and their reference image in the

database.
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Figure D.5: Best operational points in terms of Rate-#Matches performance ob-
tained from the convex hull points RDM for sequences Hall, Paris, Akiyo and Con-
tainer.
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(a) Frame 43, QP = 37, λ = 2−5 and γ = 50

(b) Frame 43, QP = 37, λ = 2−10 and γ = 50

(c) Frame 43, QP = 37, λ = 2−20 and γ = 50

Figure D.6: Feature matches between a frame of the sequence Hall and its reference
image in the database, k-frames coded with QP=37.
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(a) Frame 63, QP = 45, λ = 2−5 and γ = 50

(b) Frame 63, QP = 45, λ = 2−10 and γ = 50

(c) Frame 63, QP = 45, λ = 2−20 and γ = 50

Figure D.7: Feature matches between a frame of the sequence Paris and its reference
image in the database, k-frames coded with QP=45.
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(a) Frame 63, QP = 37, λ = 2−5 and γ = 50

(b) Frame 63, QP = 37, λ = 2−10 and γ = 50

(c) Frame 63, QP = 37, λ = 2−20 and γ = 50

Figure D.8: Feature matches between a frame of the sequence Paris and its reference
image in the database, k-frames coded with QP=37.
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(a) Frame 21, QP = 45, λ = 2−5 and γ = 50

(b) Frame 21, QP = 45, λ = 2−10 and γ = 50

(c) Frame 21, QP = 45, λ = 2−20 and γ = 50

Figure D.9: Feature matches between a frame of the sequence Akiyo and its reference
image in the database, k-frames coded with QP=45.
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(a) Frame 21, QP = 37, λ = 2−5 and γ = 50

(b) Frame 21, QP = 37, λ = 2−10 and γ = 50

(c) Frame 21, QP = 37, λ = 2−20 and γ = 50

Figure D.10: Feature matches between a frame of the sequence Akiyo and its refer-
ence image in the database, k-frames coded with QP=37.
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(a) Frame 95, QP = 45, λ = 2−5 and γ = 50

(b) Frame 95, QP = 45, λ = 2−10 and γ = 50

(c) Frame 95, QP = 45, λ = 2−20 and γ = 50

Figure D.11: Feature matches between a frame of the sequence Container and its
reference image in the database, k-frames coded with QP=45.
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(a) Frame 95, QP = 37, λ = 2−5 and γ = 50

(b) Frame 95, QP = 37, λ = 2−10 and γ = 50

(c) Frame 95, QP = 37, λ = 2−20 and γ = 50

Figure D.12: Feature matches between a frame of the sequence Container and its
reference image in the database, k-frames coded with QP=37.
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