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nológico (CNPq) e à Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior

(CAPES) pelo suporte financeiro durante o doutorado.

vi
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ALGORITMOS GREEDY E APRENDIZADO DE MÁQUINA PARA

COMUNICAÇÕES

Marcele Oliveira Kuhfuss de Mendonça

Outubro/2022

Orientador: Paulo Sergio Ramirez Diniz

Programa: Engenharia Elétrica

A estrada para o 6G é repleta de desafios. Com a proliferação de serviços wireless,

a demanda por espectro dispońıvel também cresce. Com o potencial do aprendizado

de máquina, prevê-se que o 6G revolucione as comunicações sem fio conectando

inteligência em vez de apenas coisas. No entanto, a utilização de técnicas de apren-

dizado de máquina tem limitações, como exigir muitos dados de treinamento e ser

suscet́ıvel a perturbações deliberadas conhecidas como amostras adversárias. Aqui,

descrevemos um método de seleção de dados para reduzir o tempo de treinamento de

redes neurais, levando em consideração as amostras de dados mais relevantes. Além

disso, tecnologias-chave conhecidas como massive MIMO e OFDM são posśıveis

soluções para lidar com a demanda por mais recursos para cobrir um número cres-

cente de usuários, pois essas tecnologias podem aliviar a esperada escassez espectral.

No entanto, massive MIMO e OFDM possuem suas próprias desvantagens, como o

custo da construção da estação base, desperd́ıcio de espectro e distorções não lin-

eares. Para reduzir o custo da estação base, este trabalho propõe três estratégias

de seleção de antenas de baixa complexidade para o downlink de um sistema mas-

sive MIMO, visando reduzir o potência de transmissão. A estratégia proposta para

selecionar as antenas é inspirada na técnica de matching pursuit. Para lidar com o

desperd́ıcio de espectro em sistemas OFDM sem fio, também propomos duas redes

neurais para melhorar a recepção e reduzir a quantidade de redundância necessária.

Como o canal de comunicação sem fio é aberto e exposto, propomos uma estrutura

de treinamento com amostras adversárias para lidar com ataques do tipo jamming.
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To pave the road to 6G, many challenges should be surpassed. As wireless ser-

vices proliferate, the demand for available spectrum also grows. With the potential

of machine learning, 6G is predicted to transform wireless communications by con-

necting intelligence rather than just things. However, utilizing machine learning

techniques has limitations, such as requiring a lot of training data and being suscep-

tible to deliberate perturbations known as adversarial samples. Here, we describe a

data selection method for reducing the training time of neural networks by consid-

ering the most relevant data samples. Moreover, key technologies known as massive

MIMO and OFDM are possible solutions to deal with the demand for more resources

to cover a growing number of users. These technologies may alleviate the expected

spectral shortage. Massive MIMO and OFDM, however, have disadvantages, such as

the cost of base station construction, spectrum waste, and nonlinear distortions. To

reduce the base station cost, this work proposes three low complexity antenna selec-

tion strategies for the downlink of a massive MIMO system, aiming at reducing the

transmission power. The matching pursuit technique inspires the proposed strategy

to select the antennas. To address spectrum waste in wireless OFDM systems, we

propose two neural networks to enhance the reception while reducing the required

redundancy. Finally, as the wireless communication channel is open and exposed,

we propose an adversarial training framework to deal with jamming attacks.
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Chapter 1

Introduction

Over the past few years, wireless communications systems have experienced signifi-

cant advancement. Based on analog technology with FM modulation, the first gen-

eration (1G) analog cellular networks introduced mobile voice-calling services in the

1980s. Around 1990, the second generation (2G) digital cellular networks replaced

the 1G analog systems using time-division or frequency-division techniques. Among

the proposed systems, the Global System for Mobile Communications (GSM) offered

transparent communication due to its open standard. The third generation (3G)

systems represented by WCDMA, CDMA2000, and TD-SCDMA were created in

2001 to support high-speed data ranging from 144 kbps to 2 Mbps. These systems

exploit the code-division multiple access (CDMA). In 2009, the fourth generation

(4G) or Long Term Evolution (LTE) started to provide more support to broad-

band data by combining multiple-input multiple-output (MIMO) and orthogonal

frequency division multiple access (OFDMA).

Instead of simply enhancing network capacities as in previous generations, the

fifth generation (5G) systems extend mobile communication services to connect not

only people but also things. As a result, various applications like virtual reality

(VR), Internet of Things (IoT), automobiles, smart cities, and wereable devices are

currently available. Though 5G is still in the process of being deployed globally, as

mobile traffic grows and new users swiftly join, it will inevitably run into technical

issues. Therefore, researchers are already investigating solutions to meet the future

demands for data rates in 2030, moving towards the next generation of wireless

technology, the sixth-generation (6G).

It is expected that 6G will revolutionize wireless communications by connecting

intelligence rather than connecting things [6] with the power of machine learning

(ML). Traditional ML-based frameworks, however, suffer from serious privacy issues

as training is performed in a central server. On the other hand, decentralized ML

solutions which maintains all personal information for training devices locally are

becoming more suitable for 6G. Federated Learning (FL), for instance, is a poten-
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tial decentralized ML technique approach where cooperating devices jointly train

a shared model using their own personal data, and only transmit model updates

instead of raw data to the central server [7]. Although we do not consider a de-

centralized architecture in this work, it can be easily applied in the ML solutions

proposed in Chapter 5. We discuss it further in Chapter 7 when pointing future

research directions.

Widely used in 5G communication systems, massive MIMO and OFDM may be

viable solutions for future-generation wireless systems like beyond 5G and 6G [8, 9].

With an extensive array of antenna elements, massive MIMO systems can sub-

stantially increase spectral efficiency using simple linear processing. As the number

of antennas is enormous compared to the number of served users in the cell, we

can benefit from channel hardening where all small-scale effects vanish due to the

favorable action of the law of large numbers [10]. Simple linear processing is allowed

due to the quasi-orthogonal channels between each base station (BS) and the set

of active users. Nonetheless, implementing massive MIMO systems in practice is a

challenging task.

One of the challenges of realizing massive MIMO is the BS fabrication cost. Since

radio frequency (RF) elements are required for each antenna, growing the number

of antennas increases these elements and the BS cost. Motivated by this issue, we

aim to select the most effective BS antenna signals to achieve a certain performance

level at the receivers, leading to power savings. The number of required RF chains

can also be reduced from M to S by using a network of RF switches to connect

the RF chains with the subset of selected antennas. Hence, we can alleviate the

BS cost and benefit from significant diversity gain. On the other hand, solving the

problem of selecting S out of M available antennas by verifying all possible choices

is quite a challenge. This problem can be solved via convex optimization, as shown

in [3, 5], but this solution leads to high computational costs. Therefore, we propose

an efficient way to solve the antenna selection problem by using a greedy algorithm

called matching pursuit [11, 12], in which the computational cost is substantially

reduced.

OFDM is a suitable modulation waveform for sixth-generation (6G) networks

as it can be merged with other technologies [13]. OFDM offers many benefits,

including the ability to combat the interference imposed by a multipath fading

environment. By adding L redundant elements to the OFDM symbol, OFDM can

mitigate the inter-symbol interference (ISI) and inter-block interference (IBI) caused

by the multiple delayed versions of the transmitted signal [14]. The value of L

depends on the maximum delay spread of the channel [15]. However, OFDM has

significant challenges, such as spectrum waste due to overhead of the redundancy

length and nonlinear distortion caused by techniques to reduce the peak-to-average
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power ratio (PAPR). In addition, when the channel order is not known in some

practical cases, choosing the suitable amount of redundancy is also tricky. New

solutions based on ML and deep learning (DL) techniques are then envisioned to

address these challenges, unveiling promising possibilities for OFDM in the next

communication generation [16].

Nevertheless, using machine learning techniques has drawbacks, such as needing

a large amount of training data and being vulnerable to malicious perturbations

known as adversarial examples. Adversarial examples are quasi-imperceptible per-

turbed versions of the original samples designed to trick neural networks. These

perturbations of the network input can lead to disastrous implications in critical

areas where wrong decisions can directly affect human lives. Adversarial training

is the most efficient solution to defend the network against these malicious attacks.

However, adversarial trained networks generally come with lower clean accuracy and

higher computational complexity. Therefore, designing robust machine learning so-

lutions while reducing computational costs is essential. In this work, we present

a data selection (DS) strategy to consider the most relevant data samples during

the training of a standard neural network while reducing its training time. The DS

technique is also applied during the training of an adversarial neural network in an

attempt to increase the accuracy to unseen adversarial examples while not reducing

the accuracy to unseen clean samples.

Regarding the main drawbacks in OFDM systems, we propose two neural net-

works to enhance the OFDM reception in the presence of transmitter nonlinearity

and insufficient redundancy. The first neural network is responsible for improving

the least square (LS) channel estimation, whereas the second one refines symbol de-

tection. We also propose a reinforcement learning approach to choose the amount of

redundancy based on the available mean squared error (MSE) between the estimated

channel and the true channel.

Due to the open and exposed nature of the wireless communication channel,

wireless OFDM systems are also susceptible to jamming attacks. These harmful

attacks have the potential to impair communication seriously. As transmitting pi-

lot symbols plays a significant role in channel estimation and equalization, pilot

jamming is often used to degrade the system performance. Although neural net-

works (NNs) can be used to improve channel estimation, they are also vulnerable

to adversarial examples. Therefore, applying machine learning-based approaches

in communications systems raises the risk. Adversarial examples are extensively

explored in classification problems where the NN output prediction is flipped. How-

ever, provided the requirements are sufficiently described, adversarial examples can

also be considered in regression tasks like channel estimation. We then introduce

an adversarial training framework adapted to OFDM systems to provide robust and
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reliable NN solutions.

1.1 Organization

The structure of this work is as follows. In Chapter 2, we study the antenna selection

problem in the downlink of a massive MIMO system. We propose three low com-

plexity selection schemes performed whenever a symbol is ready for transmission

[17]. In Chapter 3, we investigate machine learning methods to improve wireless

OFDM reception, focusing on supervised and semi-supervised learning approaches.

We also discuss adversarial training to develop robust ML-based solutions. Chap-

ter 4 presents a data selection strategy we can apply during standard [18, 19] and

adversarial training [20]. The machine learning-based solutions for practical prob-

lems in wireless OFDM systems are proposed in Chapter 5. The solutions comprise

choosing the proper amount of redundancy and improving the performance when

insufficient redundancy is employed [21–23]. We also propose designing systems ro-

bust to jamming attacks in Chapter 6. Some concluding remarks are included in

Chapter 7, along with possible future work.

1.2 List of Publications

This work is based on the following research publications.

• [17]: MENDONÇA, M. O. K., DINIZ, P. S. R., FERREIRA, T. N., LOVI-

SOLO, L. Antenna selection in massive MIMO based on greedy algorithms.

IEEE Transactions on Wireless Communications, v. 19, n. 3, p. 1868-1881,

2019 (Chapter 2).

• [24]: MENDONÇA, M. O. K., NETTO, S. L., DINIZ, P. S. R., THEODOR-

IDIS, S., Machine Learning, Chapter 13, on Signal Processing and Machine

Learning Theory edited by DINIZ, P. S. R. Academic Press, Cambridge, UK,

2022. (Chapter 3).

• [18]: MENDONÇA, M. O. K; FERREIRA, J. O.; DINIZ, P. S. R. Data Selec-

tive Deep Neural Networks for Image Classification. In: 2021 29th European

Signal Processing Conference (EUSIPCO). IEEE, 2021. p. 1376-1380 (Chap-

ter 4).

• [19]: FERREIRA, J. O.; MENDONÇA, M. O. K.; DINIZ, P. S. R. Data

selection in neural networks. IEEE Open Journal of Signal Processing, v. 2,

p. 522-534, 2021 (Chapter 4).
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• [20]: MENDONÇA, M. O. K., DINIZ, P. S. R., MAROTO, J., FROSSARD, P.

Adversarial training with informed data selection, accepted to the European

Signal Processing Conference (EUSIPCO), 2022 (Chapter 4).

• [21]: MENDONÇA, M. O. K., DINIZ, P. OFDM receiver using deep learning:

Redundancy issues. In: 2020 28th European Signal Processing Conference

(EUSIPCO), pp. 1687–1691. IEEE, 2021 (Chapter 5).

• [22]: DINIZ, P. S. R., MENDONÇA, M. O. Zero-Padding OFDM Receiver Us-

ing Machine Learning. In: 2021 IEEE Statistical Signal Processing Workshop

(SSP), pp. 26–30. IEEE, 2021 (Chapter 5).

• [23]: MENDONÇA, M. O. K., DINIZ, P. S. R., FERREIRA, T. N. Machine

learning-based channel estimation for insufficient redundancy OFDM receivers

using comb-type pilot arrangement, accepted to Latin-American Conference

on Communications (LATINCOM), 2022 (Chapter 5).

1.3 Notation

Vectors and matrices are represented by characters in bold type in which lower-case

letters are used for vectors and upper-case letters for matrices, whereas non-bold

letters are scalar variables. We consider column vectors, and am represents the mth

component of vector a. In a similar way, the entries of a matrix A are of the form

amk in which m represents the row and k the column of A. In order to identify a

column of a matrix, we represent it as a column vector ak where k is the column

index. For example, an M ×K matrix A can be written as

A =


a11 a12 . . . a1K
...

...
. . .

...

aM1 aM2 . . . aMK

 =
[
a1 a2 . . . aK

]
. (1.1)

When the elements of a vector are random variables, we represent the vector

by a character in bold italic type, i.e., a. The statement a ∼ N (0, R) means

that the random vector a is distributed as a real Gaussian random variable with

zero mean and covariance matrix R = E(aaT). The distribution in the statement

a ∼ CN (0, R) is known as circularly simmetric complex Gaussian, which means

that ejϕa ∼ CN (0, R) for any given ϕ. E[·] and Var[·] denote the expected value

and variance of a random variable, respectively.

In general, we use subscripts in vectors and matrices just to represent the vari-

able’s name. However, subscripts in parentheses refer to the size of a square matrix.

For example, I(K) is the identity matrix with size K ×K.
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The real, complex, natural, and integer sets are represented by the following

symbols R, C, N and Z. For example, we can establish that matrix A ∈ RM×K and

aK ∈ RM×1 in equation (1.1).

The operators used throughout the text are organized in Table 1.1.

Table 1.1: Operators used throughout this work

Operator Input Output

(·)T vector or matrix input vector or matrix with transposed elements

(·)H vector or matrix
input vector or matrix with

transposed and conjugated elements

(·)∗ vector or matrix
vector or matrix of the complex conjugate elements

of the input vector or matrix

(·)−1 matrix inverse of input matrix

∥x∥p vector p-norm,
(∑M

m=1 |xm|p
)1/p

∥·∥0 vector number of non-zero entries of input vector

diag (·) vector
diagonal matrix where the diagonal

entries are the elements of the input vector

det(·) square matrix determinant of the input matrix

tr(·) square matrix
trace of the matrix, that is, the sum of the

diagonal elements of the input matrix

⟨·,·⟩ two vectors inner product between two input vectors

vec(·) matrix
column vector which is obtained by transposing

the rows of the input matrix and stacking them up

rem(·) matrix
matrix with zero columns

removed
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Chapter 2

Antenna selection in massive

MIMO based on greedy algorithms

2.1 Introduction

Massive MIMO is one of the most promising technologies for the future-generation

wireless systems for improving power and spectral efficiency and, hence, meet the

users’ demands for higher data rates [25–30]. In such a scenario, the BS is equipped

with a large number of antennas M to serve a set of K terminals or users’ equipment

sharing the same time-frequency resource. Since multiple data streams are simul-

taneously transmitted, precoding techniques are well motivated to reduce multiuser

interference [31]. In massive MIMO, one considers that M ≫ K, which brings about

the favorable action of the law of large numbers [10]. This effect is known as channel

hardening, in which the small-scale fading effects vanish as the number of antennas

increases. Moreover, simple linear processing is possible due to the quasi-orthogonal

nature of the channels between each BS and the set of active users [29, 32].

Each MIMO system antenna typically has its dedicated chain of radio frequency

(RF) elements. As a result, adding more antennas results in more RF chains. Since

each RF chain contains costly components, such as high-resolution digital-to-analog

converters (DAC) and amplifiers, allocating a dedicated RF chain to each antenna

is practically infeasible. One way to reduce the number of RF chains is to employ a

network of RF switches that connect the RF chains with the most effective subset

of S-selected BS antennas [33, 34].

Basically, antenna selection can be performed before the precoding stage or both

procedures can work as a unit. To distinguish these approaches, we refer to the first

one as an antenna selection and the latter as a precoding-antenna selection.

Precoding consists of modifying the stream of symbols before transmission in

order to minimize the effects of channel distortion, noise, and multiuser interfer-
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ence [35]. Prior knowledge regarding the channel-state-information (CSI) and/or

the symbols is used to compute the new vector to be transmitted, and it is also

common to classify the precoder as either channel/block-level or symbol–level [36].

A channel–level precoder is only dependent on the channel estimates, whereas a

symbol–level precoder is dependent on both the channel estimates and the symbols.

Similarly, the antenna selection method can also be classified as channel–level or

symbol–level. A channel–level antenna selector chooses a new subset of activated

antennas when CSI is available at BS, whereas a symbol–level antenna selector

chooses such a subset whenever a stream of symbols is available for transmission.

Solving the problem of selecting S out of M available antennas by verifying all

possible choices becomes prohibitive as M increases. In the channel–level context,

one of the criteria used to select the antennas is maximizing the downlink capacity

[3, 37–39] considering fixed user power allocation. In [3], the binary constraints,

which determine if an antenna is active or not, are replaced by convex constraints

that enable a convex relaxed optimization problem. Such an optimization problem

can be solved by using interior-point methods [40, 41], and the subset of selected

antennas is obtained using a rounding step. In [42], the authors obtain a subset of

antennas by finding a channel submatrix with the largest minimum singular value.

The sum rate is another common criterion employed to select the active antennas

[43–46]. Moreover, the user scheduling problem can be jointly addressed as proposed

in [44, 46]. In the symbol–level context, recent methods exploit the sparse recovery

problem in the precoding stage so that antenna selection and precoding procedures

are jointly performed [5, 33].

The antenna selection problem can be solved via convex optimization, as shown

in [3] and [5], but the solution involves high computational costs at the BS. As

a consequence, low complexity antenna selection approaches have been developed

in order to minimize resource usage. For example, random antenna selection and

power/SNR (signal-to-noise ratio) based antenna selection are simple channel–level

methods that achieve reasonable performance.

In this chapter, we develop antenna selection methods based on a greedy al-

gorithm called matching pursuit (MP) [11], in which the computational costs are

substantially reduced. First, we describe the considered massive MIMO system and

the antenna selection problem in Section 2.2. Then, in Section 2.3, we formulate

the antenna selection using the MP framework and introduce the matching pur-

suit generalized bit planes (MPGBP) algorithm [47] and propose a complex version.

Moreover, we propose a novel residue rate of decay to cope with the antenna selec-

tion and summarize the three groups of antenna selectors considered in this work.

We advance a channel–level algorithm suitable for selecting the antennas in slowly-

varying fading channels in Section 2.4. When CSI is available, the channel responses

8



for the BS to all the terminals in the cell are utilized to perform the antenna se-

lection. In this case, we describe an alternative description of the approximation

problem to allow the use of the MP formulation. Although the performance of the

presented channel–level algorithm is not justified by its complexity, its derivation

was a starting point for the proposed algorithms. Then, in order to handle scenarios

with short coherence times, we propose three symbol-level techniques in Sections 2.5

and 2.6. In this design, the channel responses and the transmitted message are con-

sidered to create the subset of active antennas. The symbol–level algorithms require

restraining the residue energy decay rate so that enough antennas are selected – i.e.,

one must balance sparsity (MP) and diversity (MIMO). Two of the symbol–level

methods consider precoding while selecting the antennas so that both operations

are jointly performed, reducing the computational complexity since no matrix in-

version is required. Moreover, one of the latter algorithms is based on the matching

pursuit generalized bit planes (MPGBP), which obtains a quantized-element mes-

sage, alleviating the amplifier linearity demands and further reducing the BS cost.

In Section 2.7, we provide the complexity of each proposed algorithm. Section 2.8

evaluates the MP-based methods in several scenarios. Finally, we end the chapter

with some concluding remarks in Section 2.9.

2.2 System model

We consider a downlink massive MIMO system in a single cell as illustrated in

Figure 2.1. The base station is equipped with M antennas and simultaneously

serves K single antenna terminals.

terminal 1

M -antenna BS

terminal 2

terminal K

S selected antennas

Figure 2.1: Downlink massive MIMO with only S selected BS-antennas.

When all the M antennas are active, the BS transmits the signal x ∈ CM×1 to

the terminals in the cell. In order to mitigate the user interference, a precoding

technique can be employed so that vector x is a precoded version of the vector

q ∈ CK×1 containing the symbols intended for each terminal. If a linear precoding

9



scheme is applied, the transmitted vector can be written as

x = Pdiag (PTη)
1/2 q, (2.1)

where P ∈ CM×K is the precoding matrix, and diag (PTη)
1/2 is the diagonal matrix

with elements
√
PTη1,

√
PTη2, . . . ,

√
PTηK . The power allocated for each terminal is

represented by PTηk and
K∑
k=1

PTηk = PT , (2.2)

where PT is the transmission power and ηk is the power control coefficient for ter-

minal k. Therefore the received signal vector y ∈ CK×1 of all the terminals is

y = GTx+w, (2.3)

in which G ∈ CM×K is the matrix comprising the channel responses for the BS to

all the terminals in the cell. Each element wk of vector w ∈ CK×1 is a realization of

a circularly symmetric complex Gaussian distribution CN (0, σ2
w) random variable

representing noise.

Terminal k receives the scaled symbol of interest qk plus additive interference

and noise

yk = gT
k x+ wk

= gT
k pk

√
ηkqk

︸ ︷︷ ︸
Desired signal

+gT
k

K∑
k′=1
k′ ̸=k

pk′
√
ηk′qk′

︸ ︷︷ ︸
User-interference

+ wk

︸︷︷︸
Noise

, (2.4)

where gk and pk ∈ CM×1 are the k-th column of G and P, respectively [48].

Zero-forcing (ZF) [49] and maximum ratio (MR) [50] are examples of linear

precoding in which the precoding matrix is P = G∗(GTG∗)−1 for ZF and P =

G∗ for MR. Assuming channel reciprocity, the BS obtains CSI in the uplink and

hence computes the correspondent precoding matrix. We consider two possible

propagation environments. In the first one, the system operates in a rich scattering

environment with non-line-of-sight (NLOS) propagation so that the signal arrives

at BS through many independent identically distributed (i.i.d.) paths. Hence, the

uncorrelated Rayleigh fading [48] model can be used to model gk as a realization of

the random variable

gk ∼ CN (0(M), βkI(M)). (2.5)
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Consequently, gmk can be modeled as

gmk =
√

βkhmk (2.6)

where βk is a large-scale coefficient dependent only on k and hmk is the realization of

a random variable distributed as CN (0, 1), which represents the effect of small-scale

fading. In the second case, the BS receives the signal only through a small number of

significant paths N , whereas space-selective fading is observed [51]. For example, we

consider the case that the BS is a uniform linear array (ULA) with antenna spacing

dH , and the terminals are located at fixed locations in the far field of the array.

Then, each of the multipath components results in a plane wave that reaches the

antenna from a particular angle θkn and gives an array response or steering vector

skn ∈ CM×1

skn = hkn

[
1 e2πjdHsin(θkn) . . . e2πjdH(M−1)sin(θkn)

]T
(2.7)

where hkn ∈ C accounts for the gain and phase-rotation for this path. Considering

channel reciprocity between the transmitter and receiver, the channel response for

terminal k is the superposition

gk =
N∑

n=1

skn (2.8)

of the array responses of the N -path components. In this way, the BS obtains the

CSI of the k-th terminal to the BS.

2.2.1 Antenna selection

To reduce the number of RF chains, we select S out of M BS antennas, leading

to exploitation of redundancy in the spatial diversity while saving power as fewer

antennas are activated. In this way, the BS transmits the reduced message

xS ∈ CM×1, ∥x∥0 = S, (2.9)

where the subscript S indicates that x has S non-zero elements. The simpler ap-

proach is to obtain the reduced message xS by employing a linear precoding scheme

in which the precoding matrix is computed considering a selection rule. In fact, the

antenna selection algorithm produces the selection vector

z = [z1 z2 . . . zM ]T ∈ {0,1}M (2.10)

which must satisfy 1Tz = S. After the selection is performed, the S-selected channel

matrix

GS = diag (z)G, (2.11)
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is computed, and an external precoding scheme should be employed to produce x.

If a linear precoding is chosen, the vector to be transmitted can be computed as

xS = PSdiag (PTη)
1/2 q, (2.12)

where PS is the precoding matrix. For example, the choice can be PS =

G∗
S(G

T
SG

∗
S)

−1 with S ≥ K for ZF precoding or PS = G∗
S for MR precoding. In this

case, the antenna selection algorithm only points out the antennas that should be

active, and a precoding technique should be subsequently employed.

Alternatively, the antenna selection algorithm could jointly select the antenna

and the correspondent precoding by solving the problem of finding the vector x that

best represents the symbol vector q depending on the channel matrix. Hence, x is

directly obtained. Finally, we present algorithms to perform antenna selection and

precoding using dictionary based approximations, which will be further explained

in the next section.

2.3 Matching pursuit antenna selection

Matching pursuit (MP) is a greedy algorithm employed to represent a signal using

a redundant dictionary [11, 12, 52]. Iteratively, the MP aims to solve

minimize
a∈CM×1

∥Da− b∥22

subject to ∥a∥0 ≤ S
(2.13)

by approximating the target vector b ∈ CK×1 using the dictionary matrix D ∈
CK×M and a sparse vector a ∈ CM×1. The columns of the dictionary D =

[c1, c2, . . . cM ] are called codewords, and they are used to represent the target vector

b.

Originally, the MP method aimed at finding the sparsest vector a, and there

is no constraint regarding selecting a codeword more than once. However, in the

antenna selection problem, we are interested in selecting a fixed number of antennas,

S. Then it is more convenient to impose that a codeword is chosen only once, as

the solution of the following optimization problem

minimize
a∈CM×1

∥Da− b∥22

subject to ∥a∥0 = S.
(2.14)

Instead of approximating the l0-norm constrained problem and applying a so-

phisticated optimization method or starting an exhaustive search over all possible
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combinations, the MP algorithm tries to find the best solution at each iteration. As

a matter of fact, it searches for the codeword cm,m = 1, · · ·M which is closest to the

current approximation residue. The inner product between two vectors x,y ∈ CN

⟨x,y⟩ =
N∑
i=1

x∗
i yi = xHy (2.15)

is used to measure how close the residue is to the codewords. In this way, the code-

word with the largest inner product is selected at iteration i, and it is represented

by cmi
.

In the first iteration, the residue is the target vector, whereas in the remaining

iterations it is composed by

ri = ri−1 − γ⟨ri−1, cmi
⟩cmi

, (2.16)

that is, the last residue ri−1 subtracted from the selected codeword cmi
scaled by

its correlation with the residue ⟨ri−1, cmi
⟩ and a scale factor γ. In this way, as the

number of iterations of the MP algorithm increases, the residue norm decreases.

The approximate version of b

b̂I =
I∑

i=1

⟨ri,cmi
⟩cmi

(2.17)

is composed of the sum of the projections of the current residue ri on the selected

codeword cmi
, and I = S is the total number of iterations, selecting one antenna

per iteration.

2.3.1 Matching pursuit with generalized bit planes

It is desirable in practical applications that ⟨ri,cim⟩ in equation (2.17) be quantized.

The version of MP called matching pursuit with generalized bit planes (MPGBP)

[12] imposes the approximation

̂⟨ri,cmi
⟩ = αµi , µi ∈ Z, α < 1, i ∈ [1,S] (2.18)

where

µi =

⌈
logα

(
2⟨ri,cmi

⟩
1 + α

)⌉
, i ∈ [1,S], (2.19)

in which ⌈z⌉ is the smallest integer larger than or equal to z. At iteration i, the

current residue is approximated to a quantized level represented by αµi . Then, the

approximated vector is formed by a weighted linear combination of the matched

codewords where the weights are the quantized levels.
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2.3.2 Complex matching pursuit generalized bit planes

In the MPGBP algorithm [12], the approximation b̂ of b is written in quantized

form as

b̂ =
I∑

i=1

αµicmi
, (2.20)

where α < 1. To obtain the approximation αµi ≈ ⟨ri,cmi
⟩, µi is defined as

µi =

⌈
logα

(
2⟨ri,cmi

⟩
1 + α

)⌉
. (2.21)

However, in the case that ⟨ri,cmi
⟩ ∈ C, using different bit planes for the real and

imaginary parts of the inner product is preferred. Therefore, the calculation of µi

introduced in [12] is split in

µi1 =

⌈
log2

(
3

Re{⟨ri,cmi
⟩}

)⌉
(2.22)

and

µi2 =

⌈
log2

(
3

Im{⟨ri,cmi
⟩}

)⌉
, (2.23)

in which Re{z} and Im{z} take the real and imaginary part of z, respectively and

α = 1/2.

The resulting quantized form of ⟨ri,cmi
⟩ is

αµi =
Re{⟨ri,cmi

⟩}
||Re{⟨ri,cmi

⟩}||
αRe{µi1

} +
Im{⟨ri,cmi

⟩}
||Im{⟨ri,cmi

⟩}||
jαRe{µi2

}. (2.24)

2.3.3 Dictionary normalization and residue rate of decay

In the MP, the columns of the dictionary matrix D are normalized. The residue is

updated following the rule in equation (2.16),

ri = ri−1 − γ⟨ri−1, cmi
⟩cmi

, (2.25)

in which cmi
is the codeword with maximum inner product and γ is originally equal

to one. Since ⟨ri−1, cmi
⟩ = rHi−1cmi

, by computing rHi ri, one obtains the residue

energy

||ri||2 = rHi ri = rHi−1ri−1 − γ(rHi−1cmi
)2 − γ(rHi−1cmi

)∗(cHmi
ri−1)

+ γ2(rHi−1cmi
)∗(rHi−1cmi

)cHmi
cmi

= ||ri−1||2 − γ{(rHi−1cmi
)2 + [(rHi−1cmi

)∗]2}+ γ2(rHi−1cmi
)∗(rHi−1cmi

)||cmi
||2.
(2.26)
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Considering normalized codewords, ||cmi
||2 = 1, we have

||ri||2 = ||ri−1||2 − γ{[2Re(⟨ri−1, cmi
⟩)]2 − [2Im(⟨ri−1, cmi

⟩)]2}+ γ2|⟨ri−1, cmi
⟩|2||cmi

||2

=

(
1− 2γ

{[Re(⟨ri−1, cmi
⟩)]2 − [Im(⟨ri−1, cmi

⟩)]2}
||ri−1||2

+ γ2 |⟨ri−1, cmi
⟩|2

||ri−1||2

)
||ri−1||2.

(2.27)

As |⟨ri−1, cmi
⟩|2 = [Re(⟨ri−1, cmi

⟩)]2 + [Im(⟨ri−1, cmi
⟩)]2 then

[Re(⟨ri−1, cmi
⟩)]2 − [Im(⟨ri−1, cmi

⟩)]2 < |⟨ri−1, cmi
⟩|2, (2.28)

and hence equation (2.27) becomes

||ri||2 <
(
1− (2γ − γ2)

|⟨ri−1, cmi
⟩|2

||ri−1||2

)
||ri−1||2

<
(
1− (2γ − γ2)δ(D,ri−1)

)
||ri−1||2,

(2.29)

where δ(D,ri−1) is the squared correlation ratio [52] or decay factor [53] at iteration

i. Let δ(D) = inf
ri−1, i

δ(D,ri−1) [52–54], equation (2.29) becomes

||ri||2 <
(
1− (2γ − γ2)δ(D)

)
||ri−1||2, (2.30)

so that we can obtain a bound for the residue energy in a non-recursive form as

||ri||2 <
(
1− (2γ − γ2)δ(D)

)i ||b||2, (2.31)

where r1 = b, that is, the initial residue is the target vector itself.

One can observe in equation (2.31) that if γ = 1 and the correlation ratio of

signal b and the dictionary are high, the residue norm decreases quickly, and hence

a sparse vector a is found. In the antenna selection problem, at each iteration i, an

antenna with index mi is selected. Thus, if we want to select S among M antennas,

and the residue norm decays quickly, as illustrated in Figure 2.2 for M = 400,

S = 100, K = 12 and γ = 1, one will actually select fewer antennas than desired.

On the other hand, if the correlation ratio is low, the residue norm decreases slowly

and it means that the information of signal b spreads across the selected codewords

[52]. Therefore, one selects a sub-optimal factor γ, 0 < γ ≤ 1 [52], so that at

iteration i = S, the energy of signal b is diluted across S codewords. In this case,

the residue energy is bounded by

||rS||2 <
(
1− (2γ − γ2)δ(D)

)S ||b||2. (2.32)
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This is illustrated in the curve for γ ≈ 0.04 in Figure 2.2.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Figure 2.2: Decay of the energy of the residue for an MP problem with D ∈ CK×M ,
a ∈ CM×1, b ∈ CK×1, M = 400, S = 100, and K = 12.

In the following proposed antenna selection methods, the dictionary matrix has

unit-norm columns. The MP residue is updated using the rule in equation (2.25).

This update rule slows down the residue norm decrease rates; nevertheless, more

significant terms are included in the decomposition. In this way, the MP greediness

is sacrificed to allow the selection of S antennas.

The sub-optimal factor is defined as

γ =
K

S

(
K

K + T

)
, (2.33)

if S > K, whereas in the case that S ≤ K, no adjustment needs to be made. It is

worth mentioning that when performing precoding where S ≤ K, the ZF solution

does not exist. As it will be seen in the simulation results, the proposed methods

with precoding obtain lower BER levels when compared with the methods that

implement ZF precoding. In the experiments presented in Section 2.8, T = 20 is a

suitable choice for the scenarios comprising perfect and partial CSI, rich and poor

scattering, 4-QAM and 16 QAM, and ZF and MR precoding. This sub-optimal

factor leads to good experimental results, and it is a reasonable choice since γ is

proportional to the ratio of the codeword length and the desired quantity of antennas

which are both parameters of the antenna selection problem.

The sub-optimality factor γ is inversely proportional to the desired quantity of

antennas. Indeed, more antennas to select means that the residue rate of decay

should be lower. Although T is chosen experimentally, its value does not severely

impact the BER, as shown in Figure 2.3 for the Symbol–Level Matching Pursuit

Precoding Antenna Selection (SL-MPPAS) algorithm, which will be properly intro-

duced in Subsection 2.6.1.
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(a) S = 12.
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(b) S = 40.
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(c) S = 100.
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(d) S = 200.

Figure 2.3: Average BER per user for the proposed Symbol–Level Matching Pursuit
Precoding Antenna Selection (SL-MPPAS) algorithm when parameter T is varied
for S ∈ {12, 440, 100, 200} selected antennas. In this experiment, a base station
with M = 400 antennas transmits 4-QAM symbols (precoded using ZF) to K = 12
terminals using only S antennas active. The massive MIMO system has perfect CSI
knowledge and the channel is modelled considering a rich scattering environment.
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2.3.4 Antenna selection problems

In this subsection, we summarize the antenna selection variants which will be further

discussed in the following sections. We consider channel–level, symbol–level, and

symbol–level precoding antenna selection schemes as illustrated in Figure 2.4.

Base
Station

channel estimate, G
precoding

precoding
channel estimate, G

symbol to be sent, q

channel estimate, G

symbol to be sent, q

antenna selection

channel-level

antenna selection

symbol-level

antenna selection

symbol-level precoding

message to be sent, x

message to be sent, x

message to be sent, x

GS

GS

Figure 2.4: Illustration of the considered antenna selection schemes.

2.3.4.1 Channel–level antenna selection

By replacing a with the selection vector z in equation (2.14) and changing the

constraint accordingly, we obtain the resulting optimization problem

minimize
z∈{0,1}M

∥Dz− b∥22

subject to ∥z∥0 = S,
(2.34)

which, for a given choice of D and b, the solution fits in the antenna selection ap-

proach that only provides the subset of selected antennas. Antenna selection meth-

ods operating at the channel–level obtain the subset of selected antennas whenever

a new channel estimate is available. Hence, both the target vector b and dictionary

matrix D are dependent only on the current channel estimate, that is, b and D

are computed using the channel matrix G. After solving the problem in (2.34), the

selection vector z is used to obtain the S-selected channel matrix GS = diag(z)G.

As shown in Figure 2.4, only the channel matrix G is used as input for channel–level

antenna selectors, and then a precoding technique is utilized to obtain the message

xS, ∥xS∥0 = S. The proposed choice of D and b can be found in Algorithm 1.

2.3.4.2 Symbol–level antenna selection

The antenna selection approach operates at the symbol-level whenever a new symbol

is available for transmission. In this case, the target vector b and the dictionary
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matrixD in equation (2.34) are the current symbol vector q and the channel estimate

GT, respectively. After solving the problem in 2.34, the selection vector z is used

to obtain the S-selected channel matrix GS = diag(z)G. Then, GS is used by the

precoding method to finally obtain the message to be transmitted x. As depicted in

Figure 2.4, the S-selected channel matrix is computed considering both the channel

estimate G and the symbol to be transmitted q.

2.3.4.3 Symbol–level precoding antenna selection

By setting a = x in equation (2.14) we end up with the optimization problem

minimize
x∈CM×1

∥Dx− b∥22

subject to ∥x∥0 = S,
(2.35)

in which both precoding and antenna selection are performed since the values of x

are not constrained to be zero and one entries. Figure 2.4 demonstrates how the

antenna selector directly obtains the message x to be broadcast.

2.4 Channel–level antenna selection

In this section, we discuss one channel–level antenna selection algorithm inspired by

the MP technique. We are interested in the indices of the non-zero entries of the

selected vector z in equation (2.34), which are equivalent to the indices of the chosen

codewords in the matching pursuit approach. The following algorithm is named zero

forcing greedy antenna selection (ZF-GAS), which was first proposed in [55] with

some minor differences.

2.4.1 Zero forcing greedy antenna selection (ZF-GAS)

To apply the MP algorithm for solving the channel–level antenna selection in 2.34,

we need to obtain the corresponding target vector b and dictionary matrix D based

on the current channel estimate. We then seek an expression that captures how alike

two matrices are in the sense of providing analogous reception behavior. Therefore,

we start by observing the signal received at a certain terminal. When all the BS

antennas are active, the received signal at terminal k is

yk = gT
k x+ wk = gT

kPdiag (PTη)
1/2 q+ wk, (2.36)
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where P is the precoding matrix, and vector η contains the terminal power alloca-

tion. In contrast, when only S antennas are active, the terminal k receives

y′k = gS
T
k xS + wk = gT

k diag (z)PSdiag (PTη)
1/2 q+ wk, (2.37)

where PS is the precoding matrix for S active antennas, and gSk is the k-th column

of matrixGS in equation (2.11). For ZF precoding, if PS is alike to P1, then yk ≃ y′k,

which means that the obtained vector z leads to the minimum reception absolute

error, ∥yk − y′k∥2. For ZF precoding, the sum rate is defined as in [43]

K∑
k=1

log2 (1 + ηkρdl) , (2.38)

where

ρdl = 10 log10

(
PT

σ2
w

)
(2.39)

is the downlink SNR. Equation (2.38) can be rewritten as

K∑
k=1

log2
(
1 + ηk|gT

k pk|2
)
, (2.40)

and can also be maximized by making PS ≃ P (the contribution of the reduced

precoding matrix PS is the closest one to the full precoding matrix P contribution

in terms of leading to analogous reception results, following a similarity criterion).

This can be verified by noting that gT
k pk is the k-th diagonal element of GTPS,

and gT
k pk is maximized if PS = P since GTP = IK . For the ZF precoding, whose

solution is P = PZF = G∗(GTG∗)−1, the approximation PS ≃ P can be rewritten

as

diag (z)G∗(GTdiag (z)G∗)−1 ≃ G∗(GTG∗)−1. (2.41)

Zero-forcing (ZF) precoding is a simple method that decouples the multiuser channel

into multiple independent sub-channels and reduces the design to a power allocation

problem. Indeed, ZF takes the inter-user interference into account, but neglects the

effect of noise. Thus, it performs very well in the high SNR regime, but it is not as

efficient under noise-limited scenarios [49].

Instead of finding the optimal z for equation (2.41), we propose computing sub-

optimal z for

(GTdiag (z)G∗)−1 ≃ (GTG∗)−1, (2.42)

using a greedy strategy. Since PH
SPS = (GTdiag (z)G∗)−1 and PHP = (GTG∗)−1,

1We consider that two matrices are alike if the distance between them is short. For example,
the distance can be measured by the Frobenius norm of the difference between the matrices [56].
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the approximation in equation (2.42) can also be obtained by

PH
SPS ≃ PHP, (2.43)

in which (·)H is the conjugate transpose of (·).
It is convenient to write

PH =
[
p̃1 p̃2 . . . p̃M

]
, (2.44)

where PH ∈ CK×M and hence p̃m ∈ CK×1, so that matrix PHP ∈ CK×K can be

understood as the summation of rank-one matrices,

PHP =
M∑

m=1

p̃mp̃
H
m. (2.45)

We can define P̂H
S = PHdiag(z) so that

P̂H
S P̂S =

M∑
m=1

zmp̃mp̃
H
m =

[
p̃1p̃

H
1 p̃2p̃

H
2 . . . p̃M p̃H

M

]

z1IK

z2IK
...

zmIK

 ≃
M∑

m=1

p̃mp̃
H
m

(2.46)

is a surrogate to equation (2.43), which is more convenient for MP purposes.

Although the approximation in equation (2.46) is between two matrices and not

between two vectors, we can get around this issue by the following manipulations.

Consider the auxiliary block matrix

Daux =
[
C1 C2 . . .CM

]
(2.47)

in which Cm = p̃mp̃
H
m, for m ∈ {1, · · · ,M}. Also, let R1 = PHP so that we can try

to find the best match for R1 in Daux by computing

⟨R1,Cm⟩ = tr(RH
1 Cm) (2.48)

for m ∈ {1, · · · ,M}. Since R1 ∈ CK×K and Cm ∈ CK×K , the trace of the product

can be rewritten as

tr(RH
1 Cm) =

K∑
i=1

(
RH

1 Cm

)
i,i
=

K∑
i=1

K∑
j=1

(RH
1 )i,j(Cm)j,i, (2.49)
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in which (·)i,j is the element of a matrix placed at the i-th row and j-th column.

The last summation in equation (2.49) is the sum of entry-wise products of elements

and thus can be rewritten as the vector inner product

K∑
i=1

K∑
j=1

(RH
1 )i,j(Cm)j,i = vec(R1)

H vec(Cm) = rH1 cm, (2.50)

using the vectorization operator: the vec(·) operator takes a matrix as input and

outputs a column vector which is obtained by transposing the rows of the input

matrix and stacking them. Hence, by using b = vec(PHP) as target vector, and

DZF =
[
vec(p̃1p̃

H
1 ) vec(p̃2p̃

H
2 ) . . . vec(p̃M p̃H

M)
]

(2.51)

as dictionary matrix, we obtain the zero forcing greedy antenna selection (ZF-GAS)

detailed in Algorithm 1. This name comes from the fact that the zero-forcing scheme

is considered in equation (2.41), and the active antennas are chosen in a greedy

fashion inspired by matching pursuit. The columns of DZF represent the codewords,

for example c1 = vec(C1) = vec(p̃1p̃
H
1 ).

Algorithm 1 : Zero forcing greedy antenna selection (ZF-GAS)

1) Input: b = vec(PHP), I = {1, . . . ,M}, 0 < γ ≤ 1,
DZF = [c1 . . . cM ], where cm = vec(p̃kp̃

H
k ) and p̃k is the k-th column of

matrix PH = (G∗(GTG∗)−1)H.
2) Initialization: i = 1, r1 = b, z = 0M .
3) Repeat until i = S:

a) Find the closest codeword, i.e., find mi ∈ I such that
⟨ri,cmi

⟩ = maxmi∈I {|⟨ri,cmi⟩|}.
b) Choose zmi

= 1.
c) Set fi = γ⟨ri,cmi

⟩
d) Let ri+1 = ri − ficmi

.
e) I = I − {mi}.
f) Increment i.

4) Compute the S-selected channel matrix GS = diag (z)G.
5) Output: GS.

With the output of algorithm 1, a precoding scheme can be applied, and thus a

precoded message xS is produced. For linear precoding, the vector to be transmitted

can be computed as

xS = PSdiag (η)
1/2 q. (2.52)

Moreover, the transmitted signal can be scaled by a desired average transmission

power PT , yielding

x̃S =

√
PT√

E[|xS|2]
xS, (2.53)
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where E[|xS|2] is the expected value of |xS|2.

2.5 Symbol–level antenna selection

In the downlink of a massive MIMO system, the BS aims to transmit vectors of the

form q ∈ C(K×1) containing the symbols intended to each terminal k ∈ {1, · · · , K}.
In fact, the BS generates a block of L message vectors [q1 . . .qL]. First, the BS

performs precoding so that the transmitted signal is x = Pdiag (η)1/2 q when all

the transmit antennas are active. The precoding matrix P can be the same for all

ql in the block as for the ZF-GAS algorithm, in which one computes matrix P only

once. In contrast, matrix P can be computed for every ql in the block, giving rise

to a symbol–level precoding.

In this section, we propose one algorithm for symbol–level antenna selection.

For this symbol–level method, a precoding technique must be applied after selec-

tion. This algorithm was first introduced in [55] with some minor differences as the

dictionary normalization and the residue rate of decay.

2.5.1 Zero forcing symbol–level matching pursuit antenna

selection (ZFSL-MPAS)

Consider the message transmitted by the M BS antennas

Pdiag (PTη)
1/2 q = x (2.54)

and by left-multiplying both sides of equation (2.54) by GT, and replacing matrix

P by the zero-forcing precoding matrix PZF = G∗(GTG∗)−1, we obtain

diag (PTη)
1/2 q = GTx. (2.55)

Fortunately, we can bring it to the MP point of view as: b = diag (η)1/2 q and

D = GT and consider x as the selection vector z. That is, we need to build z

that reflects the most informative elements of x. The resulting problem can be

formulated as

minimize
z∈{0,1}M

∥∥∥GTz− diag (η)1/2 q
∥∥∥2
2

subject to ∥z∥0 = S.

(2.56)

Since PT is fixed, we only need to inform the portions ηk in the problem (2.56).

Therefore, we obtain Algorithm 2, named zero forcing symbol–level matching pursuit

antenna selection (ZFSL-MPAS). This name comes from the ZF precoding scheme

in equation (2.55); the resulting algorithm is a symbol–level, and a greedy method
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is employed to choose the active antennas. The vector to be transmitted xS can be

computed as in equation (2.52) and scaled as in equation (2.53) to account for the

transmission power employed.

Algorithm 2 : Zero forcing symbol–level matching pursuit antenna selection
(ZFSL-MPAS)

1) Input: b = diag (η)1/2 q, I = {1, . . . ,M}, 0 < γ ≤ 1,
D = [c1 . . . cM ], where ck is the k-th column of matrix GT.

2) Initialization: i = 1, r1 = b, z = 0M .
3) Repeat until i = S:

a) Find the closest codeword, i.e., find mi ∈ I such that
⟨ri,cmi

⟩ = maxmi∈I {|⟨ri,cmi⟩|}.
b) Choose zmi

= 1.
c) Set fi = γ⟨ri,cmi

⟩.
d) Let ri+1 = ri − ficmi

.
e) I = I − {mi}.
f) Increment i.

4) Compute the S-selected channel matrix GS = diag (z)G.
5) Output: GS.

2.6 Symbol–level precoding antenna selection

Essentially, the matching pursuit technique relies on representing a target vector by

using a combination of the codewords of a redundant dictionary that best matches

the target vector. If the target vector is the scaled vector of symbols diag (η)1/2 q

and the dictionary matrix is the transposed channel matrix GT, the resulting sparse

vector that contains the inner products could be an approximation of the message

to be transmitted x. Consequently, another symbol–level antenna selector can be

obtained in which message x is directly obtained.

In this section, we propose two symbol–level algorithms that perform both an-

tenna selection and precoding.

2.6.1 Symbol–level matching pursuit precoding antenna

selection (SL-MPPAS)

Similarly to the approach in the ZFSL-MPAS, ZF precoding is aimed to solve the

optimization problem

minimize
x∈CM×1

∥∥∥GTx− diag (η)1/2 q
∥∥∥2
2

subject to ∥x∥0 = S,

(2.57)
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without the constraint on the values of x. In equation (2.57), vector x is a precoded

version of the symbol vector q using only S active antennas. Hence, the sparse vector

in the MP problem is the message we desire to transmit. The resulting algorithm

is called symbol-level matching pursuit precoding antenna selection (SL-MPPAS)

which is described in Algorithm 3. This name comes from the fact that the result-

ing algorithm is a symbol–level, and it not only chooses the active antennas but

also produces the precoded signal x using the matching pursuit technique. Observe

that the non-zero elements of vector x are the inner products between the selected

codewords and the residues. The vector to be transmitted xS is the output of Algo-

rithm 3, but xS can be scaled as in equation (2.53) to account for the transmission

power employed.

2.6.2 Symbol–level matching pursuit with generalized bit

planes precoding antenna selection (SL-MPGBPPAS)

Alternatively, we can impose that the non-zero elements of x are quantized by using

the MPGBP approach, as described in Algorithm 4, named symbol–level matching

pursuit with generalized bit planes precoding antenna selection (SL-MPGBPPAS).

This name comes from the fact that the resulting algorithm is a symbol–level, and it

not only chooses the active antennas but also produces the precoded signal x using

the matching pursuit generalized bit planes technique. Here, the non-zero elements

of vector x are the quantized inner products between the selected codewords and

the residues. The vector to be transmitted xS is the output of Algorithm 4, but xS

can be scaled as in equation (2.53) to determine the transmission power employed.

Algorithm 3 : Symbol–level matching pursuit precoding antenna selection (SL-
MPPAS)

1) Input: b = diag (η)1/2 q , I = {1, . . . ,M}, 0 < γ ≤ 1,
D = [c1 . . . cM ], where ck is the k-th column of matrix GT.

2) Initialization: i = 1, r1 = b, x = 0M .
3) Repeat until i = S:

a) Find the closest codeword, i.e., find mi ∈ I such that
⟨ri,cmi

⟩ = maxmi∈I {|⟨ri,cmi⟩|}.
b) Set fi = γ⟨ri,cmi

⟩.
c) xmi

= fi.
d) Let ri+1 = ri − ficmi

.
e) I = I − {mi}.
f) Increment i.

4) Output: x.

The main advantage of the precoder antenna selectors algorithms, here named

SL-MPPAS and SL-MPGBPPAS, is that their outputs are already the message to be
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Algorithm 4 : Symbol–level matching pursuit with generalized bit planes precoding
antenna selection (SL-MPGBPPAS)

1) Input: b = diag (η)1/2 q, I = {1, . . . ,M}, 0 < γ ≤ 1,
D = [c1 . . . cM ], where ck is the k-th column of matrix GT.

2) Initialization: i = 1, r1 = b, x = 0M .
3) Repeat until i = S:

a) Find the closest codeword, i.e., find mi ∈ I such that
⟨ri,cmi

⟩ = maxmi∈I {|⟨ri,cmi⟩|}.
b) Set fi = γ⟨ri,cmi

⟩.
c) Choose µi1 = ⌈log2

(
3

Re{fi}

)
⌉ and µi2 = ⌈log2

(
3

Im{fi}

)
⌉.

d) Let αµi = Re{fi}
||Re{fi}||(

1
2
)Re{µi1

} + Im{fi}
||Im{fi}||j(

1
2
)Re{µi2

}.

e) xmi
= αµi .

f) Let ri+1 = ri − αµicmi
.

g) I = I − {mi}.
h) Increment i.

4) Output: x.

transmitted x using a subset of S active antennas, which reduces the complexities of

the algorithms. The previous algorithms, which are only antenna selectors, output

the reduced channel matrix GS and need to perform an external precoding scheme

to generate the message to be transmitted. Since the SL-MPGBPPAS algorithm

provides a message formed by quantized elements, the requirements on the amplifier

linearity at the BS is reduced, further reducing the BS cost.

2.7 Computational complexity

In this section, we quantify the complexity of the presented algorithms by counting

the required number of flops to compute a block with L message vectors x. We

consider that during the coherence time τ , i.e., the time in which the impulse re-

sponse of the channel can be considered invariant, we can transmit an L-symbol

transmission block. A flop is a real floating-point operation [57]. Real addition and

subtraction are counted as one flop. Likewise, real multiplication, division, and ex-

ponential are also counted as one flop. Therefore, we consider all real operations as

one flop, including division and exponential. On the other hand, complex addition

and multiplication have two and six flops, respectively [58]. The complexity (in

flops) of each proposed antenna selection algorithm is summarized in Table 2.1.

The initial residue used in ZF-GAS is b = vec((GTG∗)−1) and requires 28K3/3−
3K2+8M2K flops, considering that the QR decomposition was employed to perform

the matrix inversion operation. The initial residue b = q employed in ZFSL-MPAS,

SL-MPPAS and SL-MPGBPPAS requires zero flops.
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Table 2.1: Number of flops required to compute a block of L message vectors by the
proposed antenna selection algorithms; M is the number of BS antennas, S is the
number of selected antennas, K is the number of terminals and L is the length of
the transmitted block

Algorithm Initial residue Main Loop Block of L messages Total number of flops
and dictionary

ZF-GAS 28
3

K3 − 3K2+ 4 + 2SK2 + (2MS− ZF: [ 28
3

K3 + 8SK2− ZF: 28
3

K3(1 + L) + 8M2K + 8MSK2+

8M2K + 6MK2 (S2 − S))4K2 3K2 + 8MK + 8MK2]L MK2(6 + 8L) + SK2(6 + 8L)−
4S2K2 − 3K2(1 + L) + 8MKL + 5

MR: 28
3

K3 + 8M2K − 3K2 + 8MSK2+

MR: [8MK + 8MK2]L MK2(6 + 8L) + 6SK2 + 8MKL + 4

ZFSL- 0 [4 + 2SK + (2MS− ZF: [ 28
3

K3 + 8SK2− ZF:( 28
3

K3 + 8MK2 + 8MK + 8MSK−
MPAS (S2 − S))4K]L 3K2 + 8MK + 8MK2]L 3K2 + 8SK2 − 4S2K + 6SK + 5)L

MR: ( 28
3

K3 + 8M2K + 16MK2+

MR: [8MK + 8MK2]L 8MSK + 6SK − 3K2 − 4S2K
+8MK + 5)L

SL-MPPAS 0 [4 + 6SK + 8MSK− 0 (4 + 6SK + 8MSK − 4S2K)L

4S2K]L

SL - 0 [4 + 6SK + 8MSK− 0 [4 + 6SK + 8MSK − 4S2K

MPGBPPAS 4S2K + 3(S + 1)]L +3(S + 1)]L

To generate the dictionary matrix for ZF-GAS, we need to compute M outer-

products that require 6MK2 flops in total. The ZFSL-MPAS, SL-MPPAS and

SL-MPGBPPAS algorithms use GT as dictionary matrix which does not require

extra computation.

The main loop of ZF-GAS, ZFSL-MPAS, and SL-MPPAS consists of S vector

additions and MS− (S2−S)/2 inner products. It requires 2SK2+4MSK2− (S2−
S)4K2 flops in total for ZF-GAS and 6SK+8MKS−4KS2 for ZFSL-MPAS and SL-

MPPAS. The main loop of SL-MPGBPPAS is almost the same as the SL-MPPAS.

The difference is that the SL-MPGBPPAS requires (S+1) additional multiplications

and hence 3(S + 1) additional flops.

Moreover, ZF-GAS, ZFSL-MPAS, SL-MPPAS, and SL-MPGBPPAS algorithms

compute the sub-optimal factor 0 < γ ≤ 1 once. For γ = K
S

(
K

K+20

)
, it is required

one real addition and three real multiplications, amounting to four flops.

The last stage consists of computing the S-selected message vector xS. Algo-

rithms ZF-GAS and ZFSL-MPAS are only antenna selectors and thus require a

precoding scheme to obtain the message vector xS = PSdiag (η)
1/2 q. For ZF pre-

coding, PS = (Gdiag (z))∗(GT
SG

∗
S)

−1 and then it requires 28K3/3− 3K2 + 8SK2 +

8MSK + 8SK flops to compute x. For MR precoding, 8MSK + 8SK flops are

required to compute x.

As shown in Table 2.1, the ZF-based methods have almost the same complexity

in flops due to the matrix inversion operation. On the other hand, SL-MPPAS and

SL-MPGBPPAS are the fastest algorithms since their complexity is concentrated on

the main loop where no matrix inversion is needed.

We consider the approximate version of the maximum capacity antenna selection

(MCAS) algorithm [3] by using one iteration of the log-barrier method [59]. Using

this strategy, the inequality constraints are implicit in the objective function and
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hence the optimization problem can be solved via Newton Method [40]. Therefore,

the complexity of the MCAS algorithm is concentrated on the Newton step compu-

tation. The Newton step depends on the gradient vector and the Hessian matrix of

the objective function.

The expressions of the gradient and the Hessian matrix are the same as the ones

shown in [59], as well as the Newton step. To compute the gradient vector,M(28
3
K3+

8M + 6MK2 + 13K2 + 16) flops are required, since M matrix inversion operations

are performed using QR decomposition. The Hessian matrix costs 8M2K2+6M2+

8MK2 + 11M + 1 flops, and its inverse requires 28
3
M3 − 3M2 additional flops.

The total number of flops required to compute the transmission block is shown

in Table 2.2, in which U is the number of iterations required to achieve convergence.

Typically, U < 10, as reported in [59].

To produce the selection vector z, the power-based antenna selection (PBAS)

algorithm [2, 60, 61] requires 8MK2 flops since M inner-products are computed,

whereas the RAS algorithm [1] requires zero flops since additions and multiplications

are not performed. The number of flops required to compute the transmission block

using both ZF and MR precoding schemes are also exposed in Table 2.2.

Table 2.2: Number of flops required to compute a block of L message vectors by
existing antenna selection algorithms; M is the number of BS antennas, S is the
number of selected antennas, K is the number of terminals, L is the length of the
transmitted block and U is the number of iterations required to achieve convergence
in MCAS

Algorithm Main Block of L messages Total number of flops

MCAS [3] UL( 28
3

M3 + 43M2+ ZF: ( 28
3

K3 + 8SK2− ZF:[U( 28
3

M3 + 43M2 + 28
3

K3M + 14M2K2 + 21MK2

28
3

K3M + 14M2K2+ 3K2 + 8MK + 8MK2)L +35M + 3) + 28
3

K3 + 8SK2 − 3K2 + 8MK + 8MK2]L

21MK2 + 35M + 3) MR: (8MK + 8MK2)L MR: [U( 28
3

M3 + 43M2 + 28
3

K3M+

14M2K2 + 21MK2 + 35M + 3) + 8MK + 8MK2]L

PBAS [2] 8LMK2 ZF: ( 28
3

K3 + 8SK2− ZF:( 28
3

K3 + 8SK2 − 3K2 + 8MK + 16MK2)L

3K2 + 8MK + 8MK2)L

MR: (8MK + 8MK2)L MR: (8MK + 16MK2)L

RAS [1] 0 ZF: ( 28
3

K3 + 8SK2− ZF:( 28
3

K3 + 8SK2 − 3K2 + 8MK + 8MK2)L

3K2 + 8MK + 8MK2)L

MR: (8MK + 8MK2)L MR: (8MK + 8MK2)L

The algorithm complexities are illustrated in Figures 2.5 and 2.6 for a fixed

number of BS antennas M = 400. Since the complexity of SL-MPPAS is almost

the same as the SL-MPGBPPAS complexity, we only show it in Figures 2.5 and 2.6

since it has the highest complexity.

In Figure 2.5, we consider a long coherence time; hence, the transmission block

size is L = 100, whereas, in Figure 2.6, L = 25 represents a short coherence time.

Even with only one iteration U = 1 considered, MCAS is the most complex among

the tested algorithms. When we have a long coherence time, i.e., L = 100, channel–

level antenna selection is preferred. In contrast, when we have a short coherence

time, i.e., L = 25, symbol–level antenna selection is a good choice. Moreover,

a symbol–level like SL-MPPAS has almost the same complexity as channel–level
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Figure 2.5: Number of flops as a function of S and K. In this case, M = 400,
L = 100.

PBAS, with the advantage of achieving better performances in terms of bit error

rate (BER) and mean squared error (MSE), as will be seen in the simulations.

2.8 Simulation results

In this section, we present simulation results to verify the performance of the pro-

posed antenna selection approaches. Our experiments are carried out in a single-cell

system where K = 12 single-antenna terminals are served by a BS equipped with

M = 400 antennas. On average, M ≥ 100 BS antennas is required to observe the

channel hardening effect.

As in [3], we assume equal power allocation among the terminals when choosing

the subset of active antennas. The power allocation can be treated as a side problem

that can be solved using water-filling algorithms [40, 62] or an approximation [43].

We consider both rich and poor scattering environments where the downlink chan-

nels are modeled using uncorrelated and correlated Rayleigh fading. To simplify, we

consider the large-scale coefficient βk = 1.

In the uplink phase, BPSK pilot symbols are transmitted by the terminals and

used to estimate the channel matrix using minimum mean square error (MMSE)

estimator, which assumes the knowledge of the channel noise variance. The pilot

matrix Φ ∈ Cτp×K is generated as a Walsh-Hadamard matrix, in which τp = K is
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Figure 2.6: Number of flops as a function of S and K. In this case, M = 400,
L = 25. We use a different scale for MCAS since the order of magnitude of MCAS
complexity is two times greater than the other methods.

the pilot duration [48] and hence the complete set of pilot signals transmitted by

the terminals is given by Xp =
√
τpΦ

H. The BS can estimate the channel matrix

by right-multiplying the received signal Yp =
√
τpGΦH + W by the pilot matrix.

The noise represented by W is generated so that the uplink SNR is ρul = 3 dB.

The MMSE estimator [48] is then applied in the columns y′
k of the noisy estimate

Y′
p =

√
τpG+W, obtaining the estimate of the channel response for each terminal

k,

ĝk =

√
τpβk

1 + τpβk

y′
k. (2.58)

The simulation scenarios with the true channel are referred to as perfect CSI. In

this case, no channel estimation is performed, and the only impairment is the noise

effect. We have also verified how the performances of the antenna selection methods

are affected when CSI is not perfect. In this case, we perform channel estimation,

and we refer to such a scenario as partial CSI.

In the downlink phase, the BS generates a block of 50 message vectors [q1 . . .q50],

where each vector q ∈ CK×1 contains a stream of 4-QAM or QPSK samples. In par-

ticular, a stream of 16-QAM samples is used in simulated scenario 5 to verify if

the proposed methods support higher-order modulations. The BS applies the an-

tenna selection algorithms listed in Table 2.3, where the proposed antenna selection

algorithms are highlighted in boldface. The proposed algorithms utilize γ as in
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equation (2.33), with T = 20. For comparison, we consider the algorithms closely

related to our methods. Moreover, we consider in the simulations the case in which

all the antennas are active, referred as “Full”.

Table 2.3: Antenna selection algorithms evaluated in the BER simulations.

Algorithm Source Description Type

ZF-GAS Proposed Zero forcing Greedy channel–level
Antenna Selection

RAS [1] Random Antenna Selection channel–level
MCAS [3] Maximum Capacity channel–level

Antenna Selection
PBAS [2] Power based channel–level

Antenna selection
ZFSL-MPAS Proposed Zero forcing Symbol–Level symbol–level

Greedy Antenna Selection
SL-MPPAS Proposed Symbol–Level Matching Pursuit symbol–level

Precoding Antenna Selection
SL-MPGBPPAS Proposed Symbol–Level Matching Pursuit symbol–level

with Generalized Bit Planes
Precoding Antenna Selection

LASSO [4, 5] Least Absolute Shrinkage symbol–level
and Selection Operator

With only S out of M active BS antennas, the signal to be transmitted is pro-

duced. Considering an AWGN with fixed variance σ2
w = 0.9, the transmission signal

power PT is varied in order to obtain a downlink SNR ρdl ∈ {−12,12} dB. The

downlink SNR is obtained using equation (2.39) and it is repeated as follows for the

reader’s convenience

ρdl = 10 log10

(
PT

σ2
w

)
. (2.59)

Since the noise level is fixed, comparing the SNR is the same as comparing the

transmission power required to deal with a certain level of noise. The received sym-

bols are detected following the element-wise minimum Euclidean distance criterion

as in [63]. The received symbols are scaled so that the constellation has unit average

power to be fairly compared with the reference constellation.

The averaged BER and MSE are presented as a function of the SNR. We show

the simulation results in several distinct scenarios in which the channel model and

CSI knowledge are explored. All the simulation results are obtained by averaging

100 Monte Carlo runs. The simulations are performed using MATLAB software,

and the convex optimization problems are solved using CVX [64].

In scenario 1, we consider a rich scattering environment where the channel is

modeled using uncorrelated Rayleigh fading. We also consider that the BS has

perfect CSI knowledge, that is, no channel estimation is performed. Moreover,
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the ZF precoding scheme is used in the antenna selection methods that need to

perform external precoding after selection. A variation of scenario 1 called scenario

2 uses MR as the external precoding rather than ZF. Scenario 3 addresses the

case in which the BS has partial CSI knowledge. Scenario 3 also provides the

comparison between a channel model for rich and poor scattering environments for

S = 100 selected antennas. In scenario 4, a comparison between the proposed

methods and their pair counterparts based on convex optimization is provided for

S = 40 selected antennas, considering perfect CSI knowledge at the BS in a rich

scattering environment. Scenario 5 is a version of scenario 1 in which 16-QAM

symbols are used

2.8.1 Scenario 1: perfect CSI knowledge, 4-QAM, rich scat-

tering and ZF precoding

Figure 2.7 depicts the average BER per user for scenario 1 when S = 12, 40, 100

and 200 and 4-QAM samples are transmitted. For a fixed transmission power value,

the proposed ZFSL-MPAS, SL-MPPAS, and SL-MPGBPPAS methods obtained the

lowest BER among all selection approaches in the configurations tested. As can be

seen in Figure 2.7a, this benefit is more pronounced when only a few antennas are

active. Additionally, ZFSL-MPAS, SL-MPPAS, and SL-MPGBPPAS require less

transmission power to achieve a given BER than the other approaches. The proposed

channel–level algorithms performed quite similarly to each other. When compared

to symbol–level algorithms, channel–level algorithms perform worse since they solely

use information about channel estimates. However, symbol-level approaches can

be less advantageous as they need to obtain a subset of selected antennas each time

a symbol is transmitted. As a result, they must pick antennas more frequently than

channel-level methods, increasing the overall computational complexity in this case.

2.8.2 Scenario 2: perfect CSI knowledge, 4-QAM, rich scat-

tering and MR precoding

In scenario 2, the message vector x is computed using MR precoding to examine the

effects of the precoding scheme employed following antenna selection. The results

are shown in Figure 2.8.

The SL-MPPAS and SL-MPGBPPAS methods that already perform precoding

when building the message vector are not reevaluated in this scenario. We conclude

that MR precoding is poorer in terms of BER by comparing the findings obtained

in Figure 2.7 for ZF precoding and Figure 2.8 for MR precoding. For S = 12,
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Figure 2.7: Scenario 1: average BER per user for a massive MIMO system with
perfect CSI knowledge. The channel is modelled considering a rich scattering en-
vironment. In this experiment, a base station with M = 400 antennas transmits
4-QAM symbols (precoded using ZF precoding scheme) to K = 12 terminals using
only S antennas active. In this simulation, we consider methods: ZF-GAS (Algo-
rithm 1), ZFSL-MPAS (Algorithm 2), SL-MPPAS (Algorithm 3), SL-MPGBPPAS
(Algorithm 4), RAS [1], and PBAS [2].)

ZFSL-MPAS with MR precoding performs better in terms of BER when compared

with the case in which ZF precoding is used. Since S ≪ M , in this case, matrix

GS has high sparsity, and hence it is difficult to compute its pseudo-inverse with ZF

precoding.

Moreover, depending on the application, MR precoding may be preferable than

ZF because it requires less computing effort.

Among the methods evaluated in scenario 2, ZFSL-MPAS achieved the best

results.
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Figure 2.8: Scenario 2: average BER per user for a massive MIMO system with
perfect CSI knowledge. The channel is modelled considering a rich scattering en-
vironment. In this experiment, a base station with M = 400 antennas transmits
4-QAM symbols (precoded using MR precoding scheme) to K = 12 terminals using
only S antennas active. In this simulation, we consider methods: ZF-GAS (Algo-
rithm 1), ZFSL-MPAS (Algorithm 2), RAS [1], and PBAS [2].

2.8.3 Scenario 3: partial CSI knowledge, 4-QAM, and ZF

precoding

In scenario 3, we address the case where the BS has partial CSI knowledge, so that

the uplink SNR is ρul = 3 dB. Figure 2.9 depicts the Average BER per user for

scenario 3. As in scenarios 1 and 2, we consider a rich scattering environment in

Figure 2.9a. We also consider a poor scattering environment [65] in Figure 2.9b, in

which only two paths reach the receivers, which is equivalent to using a correlated

Rayleigh fading model with N = 2 in equation (2.8). As expected, the overall

performance illustrated in Figures 2.9a and 2.9b is less favorable when compared
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with the case where perfect CSI knowledge is available, as in Figure 2.7c. However,

we can observe that even when the channel estimate is not very accurate, the antenna

selection algorithms perform reasonably well.
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-10 -5 0 5 10
10

-6

10
-4

10
-2

10
0

ZF-GAS

RAS

PBAS

ZFSL-MPAS

SL-MPGBPPAS

SL-MPPAS

Full

(b) Poor scattering.

Figure 2.9: Scenario 3: average BER per user for a massive MIMO system with
partial CSI knowledge. The channel is modelled considering a rich (a) and poor (b)
scattering environment. In this experiment, a base station with M = 400 antennas
transmits 4-QAM symbols (precoded using ZF precoding scheme) to K = 12 termi-
nals using only S = 100 antennas active. In this simulation, we consider methods:
ZF-GAS (Algorithm 1), ZFSL-MPAS (Algorithm 2), SL-MPPAS (Algorithm 3), SL-
MPGBPPAS (Algorithm 4), RAS [1], and PBAS [2].

2.8.4 Scenario 4: perfect CSI knowledge, 4-QAM, rich scat-

tering and ZF precoding: Comparison with other

methods

In scenario 4, we compare the proposed antenna selection methods with their coun-

terparts based on convex optimization approaches. We refer to the channel–level

method presented in [3] as maximum capacity antenna selection (MCAS). It is worth

mentioning that MCAS is also related to the sensor selection approach introduced

in [59], as both methods have similar objective functions. Likewise, our proposed

symbol–level methods, the least absolute shrinkage, and selection operator (LASSO)

proposed in [4] and used in antenna selection in [5] are based on sparse recovery.

Nevertheless, LASSO is more related to the SL-MPGBPPAS and SL-MPPAS meth-

ods since both generate the precoded signal x directly. As one can see in Figure 2.10,

the proposed antenna selection methods are very close in performance to the algo-

rithms based on convex optimization, with the benefit of being less computationally

intense.

35



-10 -5 0 5 10

10
-6

10
-4

10
-2

10
0

ZF-GAS

RAS

MCAS

PBAS

ZFSL-MPAS

SL-MPGBPPAS

LASSO

SL-MPPAS

Full

(a) S = 40.

-10 -5 0 5 10

10
-6

10
-4

10
-2

10
0

ZF-GAS

RAS

MCAS

PBAS

ZFSL-MPAS

SL-MPGBPPAS

LASSO

SL-MPPAS

Full

(b) S = 100.

Figure 2.10: Scenario 4: average BER per user for a massive MIMO systems with
perfect CSI knowledge. The proposed massive MIMO system is compared with its
counterparts in terms of BER. The channel is modelled considering a rich scattering
environment. In this experiment, a base station with M = 400 antennas transmits
4-QAM symbols (precoded using ZF precoding scheme) to K = 12 terminals using
only S antennas active. In this simulation we consider methods: ZF-GAS (Algo-
rithm 1), ZFSL-MPAS (Algorithm 2), SL-MPPAS (Algorithm 3), SL-MPGBPPAS
(Algorithm 4), RAS [1], PBAS [2], MCAS [3], and LASSO [4, 5].

Since the proposed antenna selection methods are developed aiming at minimiz-

ing the MSE between the obtained symbol vector the original symbol vector q, we

also present in Figure 2.11 the observed MSE between the obtained symbol vector

the original symbol vector plotted against the transmission power for S ∈ {40,100}.
Moreover, Figure 2.12a depicts the average sum rate, defined in equation (2.38).

The downlink SNR is calculated at the terminal using equation (2.39). Figures 2.11

and 2.12a show the advantages of ZFSL-MPAS, SL-MPPAS and SL-MPGBPPAS

in terms of MSE and sum rate, respectively.

For comparison, Figure 2.12b provides the processing time [66] spent by LASSO,

MCAS and the proposed antenna selection algorithm to transmit a block of L = 25

messages. A machine with an Intel Core i7-7500U CPU 2.70GHz x4 processor

and 7.7 GB of memory was employed. The proposed antenna selection algorithms

are less computationally intensive than LASSO, especially the symbol–level ones.

Moreover, we verify that the symbol–level algorithms require less computation than

a channel-level algorithm such as MCAS.

2.8.5 Scenario 5: perfect CSI knowledge, 16-QAM, rich

scattering and ZF precoding.

The average BER per user for scenario 5 is shown in Figure 2.13 for perfect CSI
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Figure 2.11: Scenario 4: MSE for massive MIMO systems with perfect CSI knowl-
edge. The proposed massive MIMO system is compared with its counterparts in
terms of MSE. The channel is modelled considering a rich scattering environment.
In this experiment, a base station withM = 400 antennas transmits 4-QAM symbols
(precoded using ZF precoding scheme) to K = 12 terminals using only S antennas
active. In this experiment, a base station with M = 400 antennas transmits 4-
QAM symbols (precoded using ZF precoding scheme) to K = 12 terminals using
only S antennas active. In this simulation we consider methods: ZF-GAS (Algo-
rithm 1), ZFSL-MPAS (Algorithm 2), SL-MPPAS (Algorithm 3), SL-MPGBPPAS
(Algorithm 4), RAS [1], PBAS [2], MCAS [3], and LASSO [4, 5].

condition. As can be verified, the proposed antenna selection methods can also

support higher modulations schemes.

2.9 Conclusions

In this chapter, we proposed an aggregation of antenna selection methods based

on matching pursuit and matching pursuit with generalized bit plane techniques.

The proposed methods were categorized as a channel–level and symbol–level an-

tenna selection. Although the complexity of the ZF-GAS channel-level method does

not justify its performance, its derivation served as a foundation for the symbol-level

algorithms. Among the symbol–level methods, ZFSL-MPAS obtains lower BER lev-

els, especially when the SNR is high compared to SL-MPPAS and SL-MPGBPPAS.

However, SL-MPPAS and SL-MPGBPPAS do not need to perform external precod-

ing schemes after selection, reducing the computational complexity.

The computational complexity of the proposed antenna selection algorithms was

quantified by the number of flops required to compute the transmitted block com-

posed of 25 messages, x ∈ CM×1. We do this to be fair with the channel–level

methods. Moreover, it is worth mentioning that both LASSO and MCAS solutions
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Figure 2.12: Scenario 4: Sum rate and computational times for massive MIMO sys-
tems with perfect CSI knowledge. The proposed massive MIMO system is compared
with its counterparts in terms of sum rate (a) and computational times (b). The
channel is modelled considering a rich scattering environment. In this experiment, a
base station with M = 400 antennas transmits 4-QAM symbols (precoded using ZF
precoding scheme) to K = 12 terminals using only S antennas active. In this exper-
iment, a base station with M = 400 antennas transmits 4-QAM symbols (precoded
using ZF precoding scheme) to K = 12 terminals using only S antennas active.
In this simulation we consider methods: ZF-GAS (Algorithm 1), ZFSL-MPAS (Al-
gorithm 2), SL-MPPAS (Algorithm 3), SL-MPGBPPAS (Algorithm 4), RAS [1],
PBAS [2], MCAS [3], and LASSO [4, 5].

methods are generated with CVX-MATLAB, which can be slow when the number

of optimization variables is large.

The proposed algorithms based on the matching pursuit technique were evalu-

ated and compared against the state-of-the-art via bit error rate and MSE as the

transmission power was varied. Furthermore, the antenna selection algorithms were

tested in different scenarios, comprising rich and poor scattering environments, 4-

QAM and 16-QAM modulations, ZF and MR precoders, and perfect and partial CSI

knowledge at the BS. The results show that channel–level algorithms are preferred

when the coherence time is long, whereas using symbol–level algorithms becomes

interesting for short coherence time. The channel–level ZF-GAS algorithm outper-

forms its counterparts MCAS and PBAS in terms of BER; however, ZF-GAS is more

complex than PBAS. In the symbol–level context, the proposed SL-MPPAS and SL-

MPGBPPAS algorithms outperform LASSO in terms of BER, with the benefit of

requiring fewer computations than LASSO. Furthermore, since the SL-MPGBPPAS

algorithm is based on the MPGBP, which obtains a message with quantized ele-

ments, it also decreases the demands on amplifier linearity and the BS costs even

more.
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Figure 2.13: Scenario 5: average BER per user for a massive MIMO system with
perfect CSI knowledge. The channel is modelled considering a rich scattering en-
vironment. In this experiment, a base station with M = 400 antennas transmits
16-QAM symbols (precoded using ZF precoding scheme) to K = 12 terminals using
only S antennas active. In this simulation, we consider methods: ZF-GAS (Algo-
rithm 1), ZFSL-MPAS (Algorithm 2), SL-MPPAS (Algorithm 3), SL-MPGBPPAS
(Algorithm 4), RAS [1], and PBAS [2].

In the next chapter, we will shift gears and quickly review the machine learn-

ing techniques required to develop the solutions for wireless OFDM systems in the

remaining chapters. The considered machine learning tools can be grouped as super-

vised and semi-supervised learning approaches. First, we will consider feedforward

neural networks trained in standard and robust modes from supervised machine

learning. Robust neural networks are trained using adversarial examples or per-

turbed versions of clean data samples. From semi-supervised learning, we consider

a deep Q neural network to address problems in OFDM in which the training data

consists of both labeled and unlabeled observations.
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Chapter 3

Machine learning tools

3.1 Introduction

In the previous chapter, we presented greedy algorithms to select a subset of ac-

tive antennas in a massive MIMO system, aiming at reducing the base station cost.

Moreover, the algorithms’ greedy nature enabled the optimization problem that de-

fines the antenna selection task to be solved with reduced computational complexity.

Before switching from antenna selection solutions for massive MIMO to machine

learning (ML) solutions for challenges in OFDM systems, we make a pause to re-

view the ML techniques required to understand better Chapters 5 and 6. Therefore,

this chapter briefly discusses the leading machine learning tools considered when

developing solutions for wireless OFDM systems. More details can be found in our

book chapter [24].

ML is a branch of artificial intelligence (AI) designed to solve complex tasks by

learning from available data automatically. ML algorithms are often categorized

as supervised, unsupervised, and semi-supervised. Supervised ML models require a

dataset with observations or inputs and corresponding labels or outputs. By learn-

ing from this labeled dataset, they can predict the output from unseen input data.

On the other hand, unsupervised ML models only need the observations. Unsu-

pervised learning aims to find hidden patterns in unlabeled input data that could

be used to classify unseen input data. Semi-supervised learning lies between super-

vised and unsupervised learning, using both labeled and unlabeled training data.

Semi-supervised models use unlabeled data to re-prioritize hypotheses obtained from

labeled data.

In this work, we consider artificial neural networks (ANNs) operating in super-

vised learning mode and a semi-supervised learning regime via deep reinforcement

learning to solve practical problems in wireless OFDM systems. First, in Section 3.2,

we present the main structure of the considered neural networks operating in su-
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pervised mode. We also describe how to achieve more robust ML-based solutions

with adversarial training. Then, in Section 3.3, we describe the deep reinforcement

learning algorithm from semi-supervised learning. Finally, we end the chapter with

concluding remarks regarding the different ML techniques discussed in Section 3.4.

3.2 Supervised learning in feedforward artificial

neural networks

Supervised learning is based on teaching a model how to obtain the desired output

given a training labeled dataset. Among the several algorithms used in supervised

learning processes, we can mention artificial neural networks or just neural networks.

Neural networks are interconnected nodes organized in layers that mimic the

human brain. The nodes can represent the input, a bias, activation function, or

the output, and the connections between nodes are the NN’s weights. As input

data is fed into the NN, it adjusts its weights by comparing the input with its label

using the error backpropagation algorithm. The training process of neural networks

is summarized in Subsection 3.2.1. Although neural networks are great at solving

challenging tasks in many fields, they are highly vulnerable to adversarial examples.

In computer vision, for instance, adversarial examples are perturbed versions of the

original samples imperceptible to the human eyes but powerful enough to make the

model misclassify the sample with high confidence. In Subsection 3.2.2, we briefly

describe adversarial attacks and how to defend against them via adversarial training

to obtain reliable models.

3.2.1 Neural networks system Model

The NN is composed of layers l = 0, 1, 2, · · · , L, where l = 0 is the input layer, l = L

is the output layer, and hidden layers when 0 < l < L, as illustrated in Figure 3.1.

The NN is characterized by its weights or parameters Θ = [θ(1) · · ·θ(L)], where the

weight matrix θ(l) connects layers l − 1 and l. When training our model, we want

to learn a function fΘ(·) that approximates an unknown process f(·) that maps a

data space X to an output space Y . Due to practical issues, we only have access to

a limited dataset composed of input-output pairs

D = {(x(1),y(1)),(x(2),y(2)), · · · , (x(M),y(M))}, (3.1)

where x(m) ∈ RN×1 for m = 1, · · ·M .

In regression problems, the output is a single value ŷ = fΘ(x) ∈ R to be com-

pared with the true value y ∈ R. In classification problems with C classes, the
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Figure 3.1: Graphical representation of a neural network with 4 layers (L = 3).

desired signal y(m) ∈ RC×1 is one-hot-encoded, meaning that if c is the correct

class, yc(m) = 1 and yi(m) = 0 for i ̸= c. In this case, using the softmax activation

function at the output layer is useful since the output signal ŷ = fΘ(x) will return a

probability distribution on the classes, that is, ŷi(m) = P (c = i) and the class with

greater probability is chosen.

The NN’s goal is to find the weights that minimize the loss function L(fΘ(x),y)
as defined in the following optimization problem

minΘ
1

|D|
∑
x,y∈D

L(fΘ(x),y). (3.2)

To do so, we can employ the gradient descent (GD) algorithm with mini-batches.

At each iteration i = 1, 2, · · · I of the mini-batch training, b examples are randomly

selected from D to form batches B assembled as X(t,i) = [x(1),x(2), · · · ,x(b)] and
Y(t,i) = [y(1),y(2), · · · ,y(b)] until completing an epoch t. In the forward pass, the

input signals in X(t,i) flow forward through the network and produce the estimates

in Ŷ(t,i) to be compared with the truth labels Y(t,i). In the backward pass, the

objective function is minimized with respect to the weights Θ. By using the GD

algorithm, the weights are iteratively updated

Θk+1 = Θk − µ
1

b

∑
x,y∈B

∇ΘL(fΘ(x),y), (3.3)

where µ is the step size and b is the mini-batch size. We consider the GD algorithm in

this work, but lately, more flexible optimizers have been developed, such as Adagrad,

Adam, RMSProp, among others [41, 67–70]. Some of these methods use adaptive

step sizes that usually achieve better and smoother convergence.

The feedforward process consists of the repetition of two steps in each hidden
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layer. The first one is the sum of the weighted outputs of the previous layer,

a(l) = θ(l)Th(l−1), (3.4)

where a(l) is the input of layer l. The second step consists of applying an activation

function at layer l to obtain the output vector,

h(l) =

[
1

f(al)

]
, for 1 < l < L− 1, h(L) =

[
fL(a

L)
]

(3.5)

where f(a(l)) is a vector whose components are f(a
(l)
j ) with a

(l)
j =

∑d(l−1)

i=0 θ
(l)
ij h

(l−1)
i ,

for j = 1, · · · , d(l). The input layer is initialized by h(0) = [1;x]T and the feedforward

process follows

x = h0 θ(1)

−−→ a(1) f−→ h(1) θ(2)

−−→ a(2) f−→ y(2) · · ·
θ(L)

−−→ a(L) fL−→ h(L) = ŷ.
(3.6)

In the backward step, the objective function is minimized with respect to the

weights Θ = [θ(1) · · ·θ(L)]. By using the gradient descent algorithm, the weights are

iteratively updated following the negative gradient direction,

θ(l)(k + 1) = θ(l)(k)− µ

b

∂L(Θ)

∂θ(l)

∣∣∣
θ(k)

, (3.7)

where µ is the step size and b is the amount of selected data. Here, the objective

function is the sum of the point-wise square error related to each training sample,

L(Θ) =
1

M

M∑
m=1

Lm(Θ) =
1

M

M∑
m=1

d(L)∑
n=1

Ln
m(Θ), (3.8)

where Ln
m is the objective function related to the output node n for the sample x(m).

The derivatives in (3.7) are computed recursively in a backward fashion. The chain

rule is applied so that the partial derivative is partitioned into two new expressions,

∂Lm

∂θ(l)
=

∂a(l)

∂θ(l)

∂Lm

∂a(l)
= h(l−1)δ(l)T (3.9)

where the first term is computed using equation (3.5) and the second term is obtained

from the back-propagation process. Vector δ(l) is known as the sensitivity vector for

the layer l, which represents the gradient of the cost Lm with respect to input a(l).

Once the sensitivity vector δ(l+1) is obtained, it is multiplied by the weight matrix
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θ(l+1) and the bias component is discarded, resulting in

ϵ(l) = [θ(l+1)δ(l+1)]d
(l)

1 . (3.10)

In the following, the sensitivity vector for layer l is

δ(l) = f ′(a(l))⊗ ϵ(l), (3.11)

where f ′(a(l)) is the derivative of the activation function f in a(l) and ⊗ represents

element-wise multiplication. The whole procedure is detailed as

δ(L)
×θ(L)

∣∣d(L−1)

1−−−−−−−−→ ϵ(L−1) ⊗f ′(a(L−1))−−−−−−−→ δ(L−1)

×θ(L−1)
∣∣d(L−2)

1−−−−−−−−−→ · · ·
×θ(2)

∣∣d(1)
1−−−−−−→ ϵ(1)

⊗f ′(a(1))−−−−−→ δ(1),

(3.12)

where “
∣∣d(l)
1

” means that only the components 1, 2, · · · , d(l) of the vector θ(l+1)δ(l+1)

are selected.

3.2.2 Robust neural networks via adversarial training

State-of-the-art DNNs are known to be highly vulnerable to adversarial examples

[71, 72]. Adversarial examples are perturbed versions of clean samples that can

make, for example, the model misclassifies a panda as an indri with high confidence,

as illustrated in Figure 3.2. The added perturbation, however, is imperceptible for

us humans.

=+ ǫ×

Original image Adversarial imagePerturbation

P = 0.84283555
Class = panda

ǫ = 1/255
(scaled ×103)

P = 0.9597738
Class = indri

Figure 3.2: Example of adversarial image generation.

Since adversarial attacks might lead to disastrous implications in areas like

healthcare [73], climate [74] and finance [75], defending against them is critical.

So far, adversarial training is the most effective approach to mitigate the effect

of strong attacks like the Projected Gradient Descent (PGD) attack [76], DeepFool

[77], and AutoAttack [78]. Training the DNN with perturbed versions of the original
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samples makes it possible to improve the accuracy on unseen adversarial examples,

also known as robustness accuracy [79].

Adversarial training continually creates and incorporates adversarial examples

into the training process of a neural network classifier

fΘ(x) : RN → {1 · · ·C}, (3.13)

with Θ as weights. The NN maps an input image x to a label y from a dataset D,

defined in equation (3.1), with C possible classes. Adversarial training attempts to

solve the min-max optimization problem

minΘ
1

|D|
∑
x,y∈D

maxη L(fΘ(x+ η),y)

s.t ||η||p ≤ ϵ,

(3.14)

where L(fΘ(x+η),y) is the loss function on the adversarial sample and η is a small

perturbation constrained by ϵ.

Creating adversarial samples involves solving the inner maximization problem in

equation (3.14), in which the loss function L is maximized in an effort to change the

prediction, that is, fΘ(x+η) ̸= fΘ(x). The optimization constraints ensure that the

distance between the adversarial and original example should be less than ϵ under a

particular norm, ||η||p ≤ ϵ. The norms aim to quantify how imperceptible to humans

an adversarial example is. Some examples of norms are the l0 norm, l2 norm, and l∞.

We then briefly review the most popular methods to create adversarial examples.

Introduced by [72], the Fast Gradient Sign Method (FGSM) attack generates

adversarial examples by modifying the input towards the direction where the loss L
increases

x′ = x+ η

= x+ ϵsign(∇xL(Θx,y)),
(3.15)

with sign(·) the sign function, and ∇xL(Θ,x,y) the loss gradient with respect to

x. One of the strongest l∞-bounded attacks, the PGD attack [76] tries to solve the

inner maximization problem in equation (3.14) following an iterative procedure. At

each step i, the adversarial example is updated as

x′
i = clipx+ϵ(xi−1 + η)

= clipx+ϵ(xi−1 + αsign(∇xL(Θ,x,y))),
(3.16)

in which function clipx+ϵ(·) clips the input at the positions around the predefined

perturbation range. In the context of l2-bounded attacks, Deepfool [77] is an iterative
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attack optimized for the l2-norm based on a linear approximation of the classifier.

Using geometry concepts, DeepFool searches within the region of the space that

describes the classifier’s output (polyhedron) for the minimal perturbation that can

change the classifier’s decision. Among black-box attacks, a one-pixel attack [80]

is an l0-bounded attack that employs differential evolution to create adversarial

examples without knowing the network gradients and their parameters. Finally, the

AutoAttack [78] method consists of an ensemble of four attacks: two versions of the

PGD attack, the targeted version of the Fast Adaptive Boundary (FAB) attack [81]

and the black-box Square Attack [82]. Currently, AutoAttack and PGD attacks are

the most popular methods to test adversarial robustness. Since the PGD attack is

less computationally intense than AutoAttack, we consider the PGD attack in this

work. However, other attacks can be used with the proposed data selection.

With the inner maximization problem addressed, the outer minimization problem

in equation (3.14) is then solved to find the model parameters that minimize the loss

on the generated adversarial examples. The original dataset D is split into small

batches B and the GD algorithm is employed to update the model parameters

Θk+1 = Θk − µ
1

|B|
∑
x,y∈B

∇ΘL(fΘ(x+ η∗),y), (3.17)

where the gradient is evaluated at the maximum point η∗ found in the inner maxi-

mization problem, thanks to Danskin’s theorem [83].

3.3 Semi-supervised deep reinforcement learning

Reinforcement learning (RL) is a machine learning algorithm in which an AI agent

learns from an environment by interacting with it. The agent acts on the environ-

ment. As feedback, it receives the environment’s reward and state, as illustrated in

Figure 3.3. The agent aims to find the action that maximizes its total reward.

In Q-learning, the Q-value or total reward Qt(s,a) represents how good is to

choose action a for a particular state s at time t. As training progresses, the al-

gorithm stores the current Q-values for all possible combinations of s and a in the

Q-table. The best action is then chosen based on the maximum Q-value for a given

state. The Q-learning algorithm updates the Q-value Qt(s,a) as follows

Qt+1(s,a) = (1− α)Qt(s,a) + α(r + γmaxa′Qt(s
′,a′)), (3.18)

where s′ is the state reached from state s when acting a, r is the immediate reward

received when moving from s to s′, α is the learning rate, and γ is the discount

factor. The maximum Q-value maxa′Qt(s
′,a′) in the next state, considering all the
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environment

agent

action

state
reward

Figure 3.3: Illustration of reinforcement learning.

available actions that lead to the next state, is computed using the Q-table. After

some iterations, the Q-table becomes a helpful tool to obtain the best action for a

given state.

Nevertheless, the Q-table might become too large, exceeding the computer mem-

ory. A deep Q network (DQN) can be used to approximate Qt(s,a), avoiding the use

of a Q-table to remember the solutions. Instead of storing all the Q-values in the

Q-table, a neural network is trained to produce different Q-values for each action.

The action related to the maximum Q-value is then chosen.

The neural network is trained by minimizing the loss function

L = (r + γmaxa′Q̂(s′,a′)−Q(s,a))2, (3.19)

where maxa′Q̂(s′,a′) is the prediction using the current model on the next state s′.

The RL procedure is illustrated in Figure 3.4, in which the ϵ-greedy policy dic-

tates how to learn the problem. In the beginning, the exploration rate ϵ employed

by the ϵ-greedy policy is high, so we uniformly select possible actions. The actions

and associated states are stored in the memory replay, which is then used to train

the neural network. As the training progresses, the exploration rate ϵ decays, and

the action is chosen using the neural network more often.

3.4 Conclusions

In this chapter, we summarized the main machine learning techniques used for de-

veloping the OFDM solutions proposed in this work. From supervised learning, we

consider both standard and robust feedforward neural networks. Robust here stands

for neural networks trained with adversarial examples. Adversarial training is the

most popular solution to mitigate the effect of malicious attacks on neural networks.
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ǫ-greedy

policy

state, s

with probability ǫ:

with probability 1− ǫ:

pick random action

state, s Q1(s, a)

Q2(s, a)

Q3(s, a)

predicted action

Memory
Replay

training data

Figure 3.4: Illustration of ϵ-greedy policy.

Although adversarial training can improve the robustness accuracy, it usually sac-

rifices standard accuracy. The following chapters will discuss a tradeoff regarding

standard or adversarial training. From a semi-supervised learning framework, we

consider a deep reinforcement learning algorithm to deal with the case in which the

training data has both labeled and unlabeled observations. As it will be seen in the

following chapters, it is an excellent technique when we need to deliver an adaptive

solution for a time-varying system.

By introducing data selection techniques to enhance the performance in regres-

sion and classification issues, we narrow down the field of neural networks, which is

discussed in this chapter in the following chapter. Furthermore, the proposed data

selection strategy helps improving accuracy performance when the neural network is

trained in both traditional and robust approaches, as illustrated in the next chapter.
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Chapter 4

Data selection and machine

learning

4.1 Introduction

The feedforward neural networks (NN) were detailed in the previous chapter to

familiarize the reader with the main methods used to create the solutions for wireless

OFDM systems in Chapters 5 and 6. In this chapter, we dig into NN training

and present data selection strategies to improve their performance. We apply the

data selection technique in standard and robust trained neural networks considering

different tasks such as temperature prediction and image classification.

The data selection approach was first conceived for linear adaptive filtering and

kernel adaptive filtering areas [84–87]. The approach considers the data’s relevance

during the learning process at each iteration of the parameter update. Inspired by

this data-dependency exploitation in adaptive filters, we proposed to select the most

informative data samples to compose the batches used for training neural networks

[18, 19].

First, we detail the standard training with data selection strategy in Section 4.2,

and it mainly comprises the works in [18, 19]. As claimed in [20], such a proper

batch composition is also important in the adversarial training domain to alleviate

the robustness-accuracy tradeoff. The data selection strategy is then discussed for

adversarial training in Section 4.3, and it consists of the contributions in [20]. Fi-

nally, we include some concluding remarks regarding the benefits of data selection

strategy in Section 4.4.
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4.2 Data selection in neural networks

The quantity of information generated worldwide is soaring, raising the question of

whether all data stored is useful. Furthermore, the current trend of creating data at

an increasing rate is overwhelming the capacity to store, analyze, and make proper

use of learning algorithms. In part, this phenomenon originates from the prolifera-

tion of sensors, human-computer interactions, internet of things, medical data, and

machine-to-machine and mobile communications are a few data generators. Train-

ing the Neural Network (NN) algorithms [88–90] requires a large amount of data,

leading to high computational costs and unprecedented storage demands for learning

machines. Therefore, enormous success in performance is obtained at the expense

of increased computational complexity and storage demand, as the amount of data

has been growing exponentially. Although modern GPUs have accelerated compu-

tation, deep learning is still challenging for limited resource devices and real-time

applications.

On the processing side, it is crucial to employ new strategies to alleviate the

training burden and increase the success of a learning machine. For example, one

way to reduce network complexity is to explore parameter redundancy in the neural

network by pruning a portion of the network units. The neurons to be pruned can be

randomly selected as in the well-known dropout method [91], or more sophisticated

criteria can be employed [92–94].

As DNNs retain a considerable amount of data, another way to manage the

excess of network resources is to study data redundancy, i.e., search for data that do

not bring relevant information to the training process. For example, data selection

is explored in semi-supervised strategies to obtain a subset of unlabeled data based

on estimated confidence measures derived from the few available labeled data [95].

This procedure is essential due to the increasing amount of irrelevant information

available for processing.

In this sense, we can access the quality of the data being acquired or available to

avoid the hurdle brought about by data considered less informative and outliers by

all means. There are several challenges to consider in the data selection: What is the

performance degradation if bad data is utilized for training a highly complex learning

machine? In this case, outlying the data samples considered non-informative (or

bad) is a crucial asset to generating a successful machine learning solution. Then,

we should go one step further and ask ourselves: Are all data relevant? In most

cases, they are not!!! So what is the sub-set of data samples that are just less

informative? By extending the data selection method designed for adaptive filtering

and kernel adaptive filtering [84–86], we designed a data selection strategy applied

at each mini-batch iteration in [19]. The method considers the relevance of the data
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utilized in the learning process at each iteration related to the parameter update.

In this section, a data selection method in NN is proposed for regression and

classification problems [96–98]. The considered decision criterion to update the co-

efficients is directly related to the objective function. In the neural network frame-

work, each output neuron produces an estimate compared to the target signal and

hence generates an error measure defined according to the objective function. As

a rule, the closer to zero the error e(k) is, the less informative or relevant will be

the contribution of the pair (x(k),y(k)) to the parameter update at iteration k.

Considering all the output neurons, the error vector for the data pair (x,y) is

e(ŷ,y) = [e(ŷ1,y1), e(ŷ2,y2), · · · , e(ŷd(L) ,yd(L))], (4.1)

where y = [y1, y2, · · · , yd(L) ] is the target signal and ŷ = [ŷ1, ŷ2, · · · , ŷd(L) ] is the signal

estimated by the neural network. The total sum of this error is then expressed as

E(ŷ,y) =
d(L)∑
n=1

e(ŷn,yn). (4.2)

Figure 4.1 illustrates the data selection strategy applied in regression and clas-

sification of NN problems. At each iteration per epoch, a mini-batch set composed

of b data samples illustrated in yellow is used in the forward propagation of the

data information. We apply the data selection using equation (4.2) to eliminate

the non-informative data represented by the white color. We then proceed with the

remainder data in blue in the backpropagation to update the weight vector.

input data used in forward

input data used in back

input data ignored in back

forward propagation

backpropagation

1

2

3

4

b

Figure 4.1: Data selection neural network diagram.

We formulate the data selection method for regression and classification prob-

lems in the following. The common choice of the output activation function and

the objective function is essential in both. In addition to simplifying the computa-
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tions in updating weights, we can also improve algorithm performance. In regression

problems, the output activation function is commonly linear, and the objective func-

tion is the mean squared error. In contrast, for multi-class classification problems,

softmax

Softmax(x) =
exp(x)∑N

j=1 exp(xj)
, for x ∈ RN×1, (4.3)

and ReLU

RelU(x) = max{0,x} (4.4)

are used as output activation functions, and cross entropy is used as an objective

function.

4.2.1 Regression

The chosen objective function is the mean squared error (MSE),

L(Θ, ŷ,y) =
1

M

M∑
m=1

[
1

2
(ŷ(m)− y(m))2

]
, (4.5)

where the output activation function is linear. Since the output has only one di-

mension in regression problems, equation (4.2) can be rewritten as

E(ŷ, y) = e(ŷ, y) = y − ŷ, (4.6)

where y is the desired value, and ŷ is the estimated value.

At each epoch t, we assume that the error signal has Gaussian distribution,

e ∼ N (0, (σt
e)

2), (4.7)

where (σt
e)

2 is the error variance. By normalizing this error distribution, we obtain

e

σt
e

∼ N (0, 1). (4.8)

The error variance is calculated using all the training samples in the batch cor-

responding to the iteration. As in the adaptive filter data selection case [84, 85],

the decision criterion to update the coefficients Θ at iteration i of epoch t can be

incorporated into the objective function (4.5)

L1
i (Θ, ŷ,y) =

1
2
(e(ŷ, y))2, if

√
τ ≤ |e(ŷ,y)|

σt
e

0, otherwise,
(4.9)

where
√
τ is the error threshold. Therefore, the objective function is only relevant
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if the normalized error is above this threshold. Relevant here means that the data

sample results in an error signal greater enough to contribute to the learning process.

The data selection method proposes to detect the non-informative values at each

iteration after the feedforward propagation process, eliminating the irrelevant data

before the backpropagation process, thus reducing the computational cost in the NN

algorithm. The prescribed portion of samples considered in the backpropagation

process is defined as Pup, and it can be computed as

Pup = P

{
|e|
σt
e

>
√
τ

}
= 2Qe(

√
τ), (4.10)

where Qe(·) is the complementary Gaussian cumulative distribution function [99],

given by

Qe(x) =
1√
2π

∫ ∞

x

exp(−t2/2)dt. (4.11)

In this way, the threshold
√
τ associated with a prescribed Pup can be obtained

from equation (4.10) as
√
τ = Q−1

e

(
Pup

2

)
, (4.12)

where Q−1
e (·) is the inverse of the Qe(·) function.

During the mini-batch of b samples, we obtain the selected set

R →

 k /∈ R, if |e(ŷ(k),ȳ(k))|
(σt

e(i))
≤

√
τ

k ∈ R, otherwise
, (4.13)

for k = 1, · · · , b and it is composed of the indexes of the selected data R =

[k1, k2 · · · , kp].
Since we are selecting an estimated portion P̂up from the training dataset with

a mini-batch of b samples, the weight update equation is modified to

θ(l)(k + 1) = θ(l)(k)− µ

bP̂up

h
(l−1)
R δ

(l)T

R , (4.14)

where R is the selected set to update the weights at iteration i, P̂up = |R|
b
, h

(l−1)
R is

the output of layer l − 1, and δ
(l)T

R is the sensitivity vector of layer l.

At iteration i of epoch t, the estimated error variance is calculated by

(σt
e(i))

2 = (1− λe)σ
2
e + (λe)(σ

t
e(i− 1))2, (4.15)

where σ2
e is the error variance related to the data in the i-th iteration, and λe is a

forgetting factor. At the start of epoch t, the estimated error variance depends on

the last error variance (σt−1
e (b))2 from the previous epoch, thus the equation for this
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dependence is established by

(σt
e(0))

2 = Pup(σ
t−1
e (b))2. (4.16)

The main goal of the data selection in NN is to reduce the computational cost,

with the possibility of improving algorithm performance. The data selection NN

algorithm for a regression problem is outlined in Algorithm 5. For each iteration i

in the algorithm, it is considered only a subset of data of size b known as mini-batch

to adapt the NN. As shown in Algorithm 5, at each epoch, one can compute the

objective function for the training dataset Jtrain and also for the validation dataset

Jval, if this set is previously defined.

4.2.2 Classification

For classification problems, we consider the cross entropy as the objective function

L(Θ, ŷ,y) = − 1

M

M∑
m=1

d(L)∑
n=1

yn(m)log(ŷn(m)), (4.17)

where d(L) is the number of classes. By considering a classification problem with

only two classes, equation (4.17) becomes

L(Θ, ŷ,y) =
1

M

M∑
m=1

[−y0(m)log(ŷ0(m))− (1− y1(m))log(1− ŷ1(m))] . (4.18)

For multi-class problems, the labels are one-hot encoded. Therefore, by excluding

the summing elements that are zero due to target labels, and considering the softmax

activation function in equation (4.3), equation (4.17) becomes

L(Θ, ŷ,y) = − 1

M

M∑
m=1

log

(
exp(yc(m))∑d(L)

j=1 exp(ŷc(m))

)
, (4.19)

where c is the index of the target class. Since log(u/v) = log(u) − log(v), equa-

tion (4.19) can be rewritten as

L(Θ, ŷ,y) =
1

M

M∑
m=1

log

(
d∑

c=1

(L)exp(ŷc(m))

)
− yc(m), (4.20)

where d(L) is the number of classes.

The error e(ŷn, yn) in equation (4.1) is defined for the mean squared error and
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Algorithm 5 Data selection (DS) feedForward multilayer neural network (NN)
algorithm in a regression problem

1: Initialize dataset: {(x(1),y(1)), (x(2),y(2)), · · · , (x(M),y(M))}, and weights:
Θ = {θ(1),θ(2), · · · ,θ(L)} (random matrices)

2: Select step size µ > 0, number of epochs nep, mini-batch size b, number of layers
L, number of nodes (d(1), · · · , d(L)), activation function f , output function fL,
and forgetting factor λe

3: Define objective function: L = Mean squared error, number of iterations: I =
M/b, and initial error variance: σ0

e(b) = 0

4: Prescribe desired probability of update: Pup and threshold:
√
τ = Q−1

e

(
Pup

2

)
5: for t = 1 : nep (for each epoch) do
6: (σt

e(0))
2 = Pup(σ

t−1
e (b))2

7: for i = 1 : I (for each iteration) do
8: Randomly select b samples in the training dataset
9: X(t,i) = [x̄(1), x̄(2), · · · , x̄(b)], Y(t,i) = [ȳ(1), ȳ(2), · · · , ȳ(b)]
10: Forward propagation:
11: H(0) = [h(0)(1),h(0)(2), · · · , h(0)(b)] = [ones(1, b);
12: X(t,i)] (ones(1, b) is the bias term)
13: for l = 1 : L− 1 do
14: A(l) = θ(l)TH(l−1)

15: H(l) = [ones(1,b); f(A(l))]
16: end for
17: A(L) = (θ(L))TH(L−1)

18: Ŷ(t,i) = [ŷ(1), ŷ(2), · · · , ŷ(b)] = H(L) = fL(A
(L))

19: Data selection:

20: e(ŷn(k), ȳn(k)) =

{
(ŷn(k)− ȳn(k))

2, if MSE

−ȳn(k) ln(ŷn(k))− (1− ȳn(k)) ln(1− ŷn(k)), if CE

21: for k = 1, · · · , b and n = 1, · · · , d(L)
22: En = [e(ŷn(1), ȳn(1)), · · · , e(ŷn(b), ȳn(b))], for n = 1, · · · , d(L)

23: E =
[∑d(L)

n=1 e(ŷn(1), ȳn(1)), · · · ,
∑d(L)

n=1 e(ŷn(b), ȳn(b))
]

24: tbin ∼ Bin(n,p),
25: C = [k1, k2 · · · , ktbin ]
26: P̂up = |C|/b where C is the index set related to the tbin largest values in

vector E
27: YC = [ȳ(k1), · · · , ȳ(tbin)], ŶC = [ŷ(k1), · · · , ŷ(tbin)]
28: Backpropagation:
29: ∆

(L)
R = [δ(L)(k1),δ

(L)(k2), · · · , δ(L)(kp)] = f ′
L(A

(L)
R )⊗ (ŶR −YR)

30: for l = L− 1 : −1 : 1 do
31: ∆

(l)
C = f ′(A

(l)
C )⊗ [W(l+1)∆

(l+1)
C ]d

(l)

1

32: end for
33: Updating the weights:
34: for l = 1 : L do
35: θ(l) = θ(l) − µ

bP̂up
H

(l−1)
C (∆

(l)
C )T

36: end for
37: end for
38: Ltrain(Θ, ŷ,y) = 1

M

∑M
m=1

∑d(L)

n=1 Ln
m(Θ, ŷ,y)(and Lval if previously defined)

39: end for
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binary cross entropy, respectively, as

eMSE(ŷn, yn) = (ŷn − yn)
2, and

eCE(ŷn, yn) = −yn ln(ŷn)− (1− yn) ln(1− ŷn),
(4.21)

where ŷn is the estimated output for the n-th class and yn is the n-th desired value

for the output y.

In classification problems, the last layer has multiple outputs corresponding to

multiple classes, so it is difficult to infer a distribution for the error signal, as in the

regression problem. Hence, the error distribution is not normalized by its variance,

and we directly use equation (4.2).

Also, due to the difficulty in obtaining this probabilistic function, we propose

another procedure with a similar idea to obtain the threshold. In classification

problems, the data selection aims to detect the error values in equation (4.2) smaller

than a given threshold, such that the related errors are disregarded in the process of

updating the coefficients. This proposal requires selecting a threshold for each mini-

batch per iteration, chosen from a binomial distribution with n = b and p = Pup,

tbin ∼ Bin(n,p). (4.22)

The data associated with measures smaller than the tbin-th largest components of

E(ŷ,y) in equation (4.2) are eliminated before the backpropagation process. Defin-

ing C as the set of indexes k of the components of E(ŷ,y) greater or equal to the

tbin-th largest value of E(ŷ,y), we obtain

C = [k1, k2, · · · , ktbin ]. (4.23)

These tbin data samples are the subset considered in backpropagation. We also

define the set of size b − tbin containing the indexes of data examples that lead to

the smallest error signals in E(ŷ,y),

B = [k1, k2, · · · , kb−tbin ]. (4.24)

The data examples whose indexes are in set B are eliminated before the backprop-

agation process.

We also consider a fine adjustment factor 0 < α ≤ 1 to randomly select α×100%

of the examples in set B to be definitely eliminated. The remaining (1− α)× 100%

of the examples in set B are temporarily included in set C. Then, we randomly

select tbin samples to keep in set C. This fine adjustment factor α can be useful

when the dataset is too complex, so eliminating the smallest errors can impair the
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final results.

As in the regression problem, this data selection method aims at identifying the

non-informative values after the feedforward propagation process at each iteration,

eliminating some of the data before the backpropagation process. As we are selecting

an estimated portion P̂up of data in each iteration, the update equation is rewritten

as

θ(l)(k + 1) = θ(l)(k)− µ

bP̂up

h
(l−1)
C δ

(l)T

C , (4.25)

where P̂up = |C|
b
.

The complete procedure for Data Selection FeedForward Multilayer Neural Net-

work is described in Algorithm 6. For each iteration i in Algorithm 6, it is considered

only a subset of data of size b known as mini-batch to adapt the NN. As in the re-

gression problem, at each epoch, one can compute the objective function for the

training dataset Ltrain, and also for the validation dataset Lval, if this set is previ-

ously defined.

4.2.3 Computational complexity

In this subsection, we quantify the complexity of the data selection method by

counting the required number of flops in the forward and backward steps of a NN

with four layers (two hidden layers). Consider i as the number of nodes of the input

layer, j the number of nodes in the second layer, k the number of nodes in the third

layer, and l the number of nodes in the output layer. The parameters are denoted

as nep (epoch), b (mini-batch size), I (number of iterations), Pup (probability of

update).

As previously defined in Section 2.7 of Chapter 2, a flop is a floating-point

operation [100]. Real addition, subtraction, multiplication, division, and exponential

are counted as one flop.

At each iteration for a particular epoch, we have b training samples. In the

forward process, the following operations are performed from the current layer to

the next layer

A(l) = (W(l))TH(l−1),

H(l) = [ones(1, b); f(A(l))].
(4.26)

From the first layer to the second layer, the first operation is the product be-

tween two matrices W(1) ∈ Ri×j and H(0) ∈ Ri×b, which consist of jb inner products

between vectors of size i. This inner product involves i− 1 additions and i multipli-

cations. Then, the resulting number of flops is (2i − 1)jb. The activation function

(ReLU) applied in the second equation has 0 flops. Then, we have (2i− 1)jb flops.
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Algorithm 6 Data selection (DS) feedForward multilayer neural network algorithm
in a classification problem

1: Initialize dataset: {(x(1),y(1)), (x(2),y(2)), · · · , (x(M),y(M))}, and weights:
Θ = {θ(1),θ(2), · · · ,θ(L)} (random matrices)

2: Select step size µ > 0, number of epochs nep, mini-batch size b, number of layers
L, number of nodes (d(1), · · · , d(L)), activation function f , output function fL,
and forgetting factor λe

3: Define objective function:
4: Option 1: Objective function L = Mean squared error (MSE), and output func-

tion fL = Linear or Hyperbolic tangent;
5: Option 2: Objective function L = cross entropy (CE), and output function fL

= Softmax;
6: Prescribe desired probability of update: Pup

7: for t = 1 : nep (for each epoch) do
8: (σt

e(0))
2 = Pup(σ

t−1
e (b))2

9: for i = 1 : I (for each iteration) do
10: Randomly select b samples in the training dataset
11: X(t,i) = [x̄(1), x̄(2), · · · , x̄(b)], Y(t,i) = [ȳ(1), ȳ(2), · · · , ȳ(b)]
12: Forward propagation:
13: H(0) = [h(0)(1),h(0)(2), · · · , h(0)(b)] = [ones(1, b);
14: X(t,i)] (ones(1, b) is the bias term)
15: for l = 1 : L− 1 do
16: A(l) = θ(l)TH(l−1)

17: H(l) = [ones(1,b); f(A(l))]
18: end for
19: A(L) = (θ(L))TH(L−1)

20: Ŷ(t,i) = [ŷ(1), ŷ(2), · · · , ŷ(b)] = H(L) = fL(A
(L))

21: Data selection:
22: e(ŷ(k), ȳ(k)) = (ŷ(k)− ȳ(k)), for k = 1, · · · , b
23: E = [e(ŷ(1), ȳ(1)), · · · , e(ŷ(b), ȳ(b))] = Ŷ(t,i) −Y(t,i)

24: σ2
e = Var(E)

25: (σt
e(i))

2 = (1− λe)σ
2
e + (λe)(σ

t
e(i− 1))2

26: R →

{
k /∈ R, if |e(ŷ(k),ȳ(k))|

(σt
e(i))

≤
√
τ

k ∈ R, otherwise
, for k = 1, · · · , b

27: R = [k1, k2 · · · , kp], P̂up = |R|/b
28: YR = [ȳ(k1), · · · , ȳ(kp)], ŶR = [ŷ(k1), · · · , ŷ(kp)]
29: Backpropagation:
30: ∆

(L)
R = [δ(L)(k1),δ

(L)(k2), · · · , δ(L)(kp)] = f ′
L(A

(L)
R )⊗ (ŶR −YR)

31: for l = L− 1 : −1 : 1 do
32: ∆

(l)
R = f ′(A

(l)
R )⊗ [θ(l+1)∆

(l+1)
R ]d

(l)

1

33: end for
34: Updating the weights:
35: for l = 1 : L do
36: θ(l) = θ(l) − µ

bP̂up
H

(l−1)
R (∆

(l)
R )T

37: end for
38: end for
39: Ltrain(Θ, ŷ,y) = 1

M

∑M
m=1 L1

m(Θ, ŷ,y) (and Lval if this set is previously de-
fined)

40: end for
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By using the same strategy, the total number of flops in the propagation from the

second layer to the third layer is (2j−1)kb flops, and from the third layer to the last

layer, the matrix multiplication results in (2k−1)lb flops. In the last part, we obtain

the estimated signal in NN. In regression problems, the output activation function

is linear, resulting in 0 flops. In classification problems, the softmax function has

l − 1 additions, 1 division, and l + 1 exponential for b training examples, resulting

in a total of (2l + 1)b flops.

Therefore, the total number of flops for feedforward propagation depends on the

problem. For regression problems, it is (2ij + 2jk + 2kl − j − k − l)b flops, and for

classification problems, it is (2ij + 2jk + 2kl + l + 1)b flops.

In backpropagation, the data selection is taken in to account when counting the

flops. We compute the sensitivity vector in the fourth layer from the last layer to

the third layer. To obtain ∆(3) = Ŷ(t,i) −H(L), it is required l(Pupb) flops. In the

remaining layers, we compute the sensitivity weights from the vectors previously

obtained. For example, from the third layer to the second layer, we have ∆(2) =

f ′(A(2)) ⊗ [W(3)∆(3)]d
(2)

1 . The number of flops in the derivative of the activation

function is zero. The multiplication matrix θ(3)∆(3) results in k(Pupb) inner products

that involve l − 1 additions and l multiplications. The element-wise operation has

k(Pupb) flops. Then, the resulting number of flops is 2lk(Pupb) in this propagation.

Finally, we have the same procedure from the second to the first layer, and the

number of flops required is 2kj(Pupb).

The last step is the weight updating, for example, from the fourth to the third

layer, we have the update θ(3) = θ(3) − µ
b
H(2)(∆(3))T . The multiplication matrix

results in a total of (2(Pupb) − 1)kl flops, and the sum of the matrices requires kl

flops. By summing the multiplications and additions, we end up with 2(Pupb)kl

flops. The same process is performed in the third to the second layer, 2(Pupb)jk,

and the second to the first layer, 2(Pupb)ij. Then, the total number of flops in

backpropagation is

(Pupb)(2ij + 2jk + 2kl + 2kj + 2kl + l). (4.27)

In backpropagation, the number of flops is a function of the probability of update,

reducing the computational cost. Therefore, the total number of flops is organized

in Table 4.1.

4.2.4 Simulation results

This section verifies the data selection method’s performance in the neural network

under different datasets. The proposed method is evaluated, considering regression

and classification problems. All algorithms were implemented in MATLAB and are
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Table 4.1: Total number of flops in a NN with four layers. The number of nodes of
the input layer is i, j is the number of nodes in the second layer, k is the number
of nodes in the third layer and l is the number of nodes in the output layer. The
number of epochs is nep (epoch), the number of samples in the mini-batch is b, I is
the number of iterations, and Pup is the probability of update.

Regression (2ij + 2jk + 2kl − j − k − l)b+
(Pupb)(2ij + 2jk + 2kl + 2kj + 2kl + l)

Classification (2ij + 2jk + 2kl + l + 1)b+
(Pupb)(2ij + 2jk + 2kl + 2kj + 2kl + l)

available online on GitHub [101]. The simulations were performed on a computer

with an Intel Core i7-7500U CPU 2.70GHz x4 processor and 15.5 GB of memory.

As previously mentioned, the algorithm was tested in two combinations of the

objective function and the output function: 1) cross entropy error and softmax

function for classification problems; 2) mean square error and linear function for

regression problems. The activation function chosen for both problems was the

ReLU function. The number of layers and units per layer in the hidden layers varies

according to the problem. The parameters in this section were established from the

leading neural network references followed by this text [88, 89, 102].

The datasets are first preprocessed using the following techniques. The one-hot

encoding1 is used for categorical variables. When selecting the features, a primary

criterion adopted is to eliminate a portion of the attributes which are not correlated

enough to the output. The last step in data preprocessing consists of normalizing

the attributes within the range [0,1], also known as the min-max normalization.

The reduction in the computational cost is the main benefit of the decrease in

update probability. The prescribed probability of update Pup ∈ {0.1, 0.3, 0.5, 0.7} is

compared with the case where the data is always updated Pup = 1.

In the following simulations, the data selection method is applied to the neural

network to verify its performance in the testing set and save on computational

costs. We solve both regression and classification problems using shallow neural

networks in Subsections 4.2.4.1 and 4.2.4.2. In Subsection 4.2.4.3, we consider deep

neural networks to tackle regression and classification problems. We also quantify

the proposed algorithms’ computational complexity by counting the number of flops

required to perform the NN, as shown in Subsection 4.2.3, and by the elapsed

real-time.

1One-hot encoding is a process by which categorical variables are converted into a format so
that machine learning algorithms can do better when predicting the classes. For example, suppose
the values in a categorical variable range from 0 to N − 1. We replace this column with other
N columns and apply the following rule: 1 indicates the occurrence of the related category and 0
otherwise [102].
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4.2.4.1 Regression Problems

The parameters for the regression simulations are shown in Table 4.2. In the follow-

ing, we give a brief description of each considered dataset.

Table 4.2: Simulation parameters for the regression problems in shallow NN.

Problems 1 and 2 Problems 3 and 4
Step size, µ 0.01 0.01
Mini-batch size, b 256 256
Number of epochs, E 200 200
Number of hidden layers 2 2
Number of nodes 128 128
Forgetting factor, λe 0.9 0.99

Problem 1: superconductivity dataset

The superconducting material dataset is provided by the University of California at

Irvine (UCI) Machine Learning Repository [103, 104]. By using a neural network,

a model for the superconducting critical temperature is formulated from features

extracted based on thermal conductivity, atomic radius, valence, electron affinity,

and atomic mass. A total of 89 preprocessed features are used as input for the

neural network. The training and testing sets contain 18,000 and 3,000 samples,

respectively.

Table 4.3: Mean squared error obtained in Test (Validation) phase for Problems
1-4 and the average elapsed real time taken to complete one mini-batch iteration
for each probability of update Pup. Blue represents the best result, whereas red
represents the worst result for each problem.

Problem 1 Problem 2 Problem 3 Problem 4 Time (sec)

Pup = 1 0.0086±2.79e-5 6.12e-04±7.52e-6 0.0031±1.06e-5 0.0021±3.91e-5 0.0035

Pup = 0.7 0.0082±3.02e-5 4.41e-4±5.89e-6 0.0027±1.8e-4 0.0014±2.74e-5 0.0031

Pup = 0.5 0.0079±5.76.e-5 4.12e-04±5.38e-6 0.0029±1.07e-5 0.0012±2.93e-5 0.0028

Pup = 0.3 0.0079 ±9.96.e-5 3.20e-4±8.72e-6 0.0024±8.49e-6 0.0010±1.41e-4 0.0025

Pup = 0.1 0.0088±3.18e-4 3.56e-04±1.50e-4 0.0023±1.43e-5 0.0009± 2.74e-4 0.0023
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Problem 2: online news popularity dataset

The online news popularity dataset comprises 39,644 articles published by Mash-

able website [105] in two years, and the UCI provides this repository [106]. We es-

timate a model to predict the popularity of online news by using a neural network.

A total of 50 preprocessed features are used as input for the NN. The training and

testing sets contain 35,000 and 4,644 samples, respectively.

Problem 3: Facebook comment volume dataset

The UCI machine learning repository provides the Facebook comment volume

dataset [107]. We present a neural network model to predict how many comments the

Facebook post will receive. This dataset contains 50 preprocessed features extracted

from Facebook posts, such as page likes, page category, and publication day. The

training and test sets contain 40,988 and 10,120 samples, respectively.

Problem 4: FIFA 19 complete player dataset

The FIFA 19 Complete Player dataset is provided by the Kaggle website [108],

which contains all statistics and playing attributes of all players in the version of

FIFA 19. A total of 73 preprocessed features are used as input. The training and

test sets contain 12,000 and 2,743 samples, respectively.

The test mean squared error (MSE) curves are presented as a function of the

probability of update Pup in Figure 4.2 for Problems 1-4. We may notice an improve-

ment in two-layer NN performance as Pup is decreased. Moreover, our data selection

outperforms the random selection for all considered probabilities of update.

The average MSE over the last ten epochs is presented in Table 4.3 for regression

problems. As shown in Table 4.3, we can achieve optimal results with Pup = 0.1

in problems 3 and 4, whereas problems 1 and 2 require Pup = 0.5 and Pup = 0.3,

respectively.

As shown in Figure 4.3, the estimated probability of update P̂up is quite close to

the prescribed probability of update Pup for Problems 1-4.

The number of flops required by each regression problem is shown in Table 4.4.

Furthermore, to illustrate the complexity reduction, the averaged elapsed real time

required to perform one mini-batch iteration is shown in Figure 4.4 when the prob-

ability of update is varied.

The probability distribution of the error signal is illustrated in Figure 4.5 for

the considered regression problems after 100 epochs. We can note that the error

distribution is almost normal, reinforcing our hypothesis in equation (4.7).
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Figure 4.2: Test MSE curves comparing the case when the algorithm is always up-
dated Pup = 1 with the probability of update Pup ∈ {0.1, 0.3, 0.5, 0.7}, for problems
1-4.

Table 4.4: Approximate number of flops in one epoch varying the probability of
update Pup for Problems 1-4.

Problem 1 Problem 2 Problem 3 Problem 4

Pup = 1 2599× 106 43549× 106 50999× 106 16349× 106

Pup = 0.7 2119× 106 35269× 106 41309× 106 13299× 106

Pup = 0.5 1799× 106 2974× 106 3483× 106 1125× 106

Pup = 0.3 1479× 106 2422× 106 2837× 106 922× 106

Pup = 0.1 1159× 106 1870× 106 2190× 106 719× 106

4.2.4.2 Classification problems

The parameters for the classification simulations are shown in Table 4.5. The

datasets considered for classification problems are briefly described as follows.

Problem 5: MNIST Handwritten Digit Recognition Dataset

The Modified National Institute of Standards and Technology (MNIST) [109]

database is a large data set containing digits handwritten by students and em-
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Figure 4.3: Comparison between the desired Pup and achieved P̂up for problems 1-4.

0.1 0.3 0.5 0.7 1

2.4

2.6

2.8

3

3.2

3.4

10
-3

Figure 4.4: Averaged elapsed real time taken to complete one mini-batch iteration
as a function of the probability of update Pup.

ployees of the United States Census Bureau. The training and testing sets contain

60,000 and 10,000 samples, respectively. This set’s input is a 28× 28 matrix, where

each value represents a pixel of the image. The input signal is normalized in the

range 0 to 1. The output labels consist of integer values between 0 and 9.
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Figure 4.5: Probability distribution for the samples in the 100-th epoch for problems
1-4.

Table 4.5: Simulation parameters for the classification problems in shallow NN.

Problems 5, 6 and 7
Step size, µ 0.01
Mini-batch size, b 256
Number of epochs, E 100
Number of hidden layers 2
Number of nodes 1024
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Problem 6: EMNIST letters dataset

The EMNIST letter dataset is provided by the National Institute of Standards

and Technology (NIST) [110]. This dataset consists of the 26 letters of the alphabet.

The training and testing sets contain 120,000 and 25,000 samples, respectively. The

examples have been normalized between 0 and 1. The input is a 28 × 28 matrix,

where each input represents a pixel in the image.

Problem 7: Fashion MNIST dataset

The Fashion-MNIST dataset consists of a training set of 60,000 examples and

a test set of 10,000 examples of images of 10 types of clothing, such as shoes, t-

shirts, dresses, and more. It is proposed in [111] as a more challenging classification

problem than the MNIST. The input of this set is also a matrix 28× 28, where each

value represents a pixel of the image. The input signal is normalized in the range 0

to 1.

The main results for Problems 5 and 6 are shown in Figure 4.6. Figures 4.6a

and 4.6b depict the results when cross entropy is the objective function and softmax

is the output activation function. Again, the data selection method achieves a good

performance in the NN, showing that when we decrease the number of updates per

epoch, it improves two-layer NN performance (b = 256). As in the regression prob-

lems, the proposed data selection outperforms the random selection in classification

problems. Figure 4.7 illustrates the case in which 2% of the training samples have

random labels. Compared with Figure 4.6, we can observe that the overall perfor-

mance degrades. However, using the data selection method with Pup ∈ {0.1, 0.3},
we can obtain low classification error levels.

Figure 4.8 depicts the comparison between the proposed data selection and some

related methods. We can observe that the proposed data selection outperforms

the online batch selection (OBS) introduced in [112] and the active bias (AB) in

[113]. As shown in [114], the OBS method performs slightly worse than the uniform

sampling, represented by Pup = 1. Instead of selecting a portion of the samples

in the minibatch as our method, the OBS method selects the samples to compose

the mini-batches. We can also note in Figure 4.8 that our method performs exactly

like the online hard example mining method (OHEM) [115] when Pup = 0.25. The

selection employed in OHEM is the same used in the proposed data selection without

the adjusting factor α. The OHEM is designed for a completely different application,

as it selects a portion of the examples in the minibatch to create the set of object

proposal regions of interest (RoIs).

Table 4.6 presents the averaged MSE for the classification problem’s data selec-
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Figure 4.6: Test classification error (%) comparing Pup = 1 with Pup ∈
{0.1, 0.3, 0.5, 0.7}, when the output activation function is softmax and objective
function is cross entropy error.
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Figure 4.7: Test classification error (%) comparing Pup = 1 with Pup ∈
{0.1, 0.3, 0.5, 0.7}, when 2% of the training samples have random labels.
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Figure 4.8: Test classification error (%) comparing Pup = 1 with Pup ∈
{0.1, 0.3, 0.5, 0.7}, and related methods.

tion method over the last ten epochs. In all cases, the method achieves a better

result for Pup = 0.1, showing that the data selection approach is also suitable for

classification problems. Finally, in Table 4.7, we conclude that the data selection

reduces the computational cost.

In problem 7, we consider the case where α = 0.9; that is, 90% of the elements

in set B are kept for discarding. The remaining 10% are temporarily included in the
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Table 4.6: Classification error obtained in Test (validation) phase for Problems 5
and 6. The probability of update Pup is varied and compared with no selection case
(Pup = 1). Blue represents the best result, whereas red represents the worst result
for each problem.

Problem 5 Problem 6

Pup = 1 1.87±0.023 9.99±0.069

Pup = 0.7 1.78±0.020 9.88±0.056

Pup = 0.5 1.72±0.021 9.72±0.059

Pup = 0.3 1.69±0.05 9.48±0.042

Pup = 0.1 1.50±0.014 9.19±0.034

Table 4.7: Approximate number of flops in one epoch varying the probability of
update Pup for Problems 5 and 6.

Problem 5 Problem 6

Pup = 1 566× 109 1145× 109

Pup = 0.7 462× 109 935× 109

Pup = 0.5 393× 109 794× 109

Pup = 0.3 324× 109 654× 109

Pup = 0.1 254× 109 514× 109

set C. Then, tbin samples are randomly selected to be in set C. Using an adequate

adjustment factor α < 1, we can protect the small errors, which are still informative

for more complex datasets such as the Fashion MNIST. As illustrated in Figure 4.9,

by using Pup = 0.3 with α = 0.9, we can improve the performance even further.

We can also observe that random selection impairs the performance more severely

when the dataset is complex, strengthening the use of the proposed data selection

strategy.

50 100 150

9

10

11

12

Figure 4.9: Fashion MNIST Dataset. Test MSE curves comparing the case when
the algorithm is always updated Pup = 1 with the probability of update Pup ∈ {0.3}.

68



50 100 150 200

-2.8

-2.6

-2.4

-2.2

Figure 4.10: Deep neural network simulation: transcoding time dataset. Test MSE
curves comparing the case when the algorithm is always updated Pup = 1 with the
probability of update Pup ∈ {0.1, 0.3, 0.5, 0.7}.

4.2.4.3 Deep Neural Network simulations

This subsection proposes deep neural network models for regression and classification

problems. In the regression simulation, we consider the transcoding time data set,

whereas, in the classification simulation, we revisit the MNIST dataset (detailed in

Problem 5).

The transcoding time dataset is provided by the UCI Machine Learning Repos-

itory [116], and the features include bit rate, frame rate, resolution, and codec,

among others. The training and testing sets contain 55,000 and 13,378 samples,

respectively. The number of hidden layers is 4, and the number of nodes in each

layer is 128. The parameters chosen in this subsection are µ = 0.01, b = 256 and

T = 200. The forgetting factor in the error variance is λe = 0.995.

The test MSE curves are illustrated in Figure 4.10 for different probabilities of

update Pup. We may notice an improvement in the deep neural network performance

when 0.1 ≤ Pup < 1. Figure 4.11a shows the probability distribution for all the

mini-batches in the 100-th epoch. Again, the distribution is similar to the normal

distribution, reinforcing our hypothesis in equation (4.7). Figure 4.11b presents the

comparison between the estimated probability P̂up and the prescribed probability of

update Pup. We can conclude that the estimated probability is close to the prescribed

probability of update.

The next deep learning example verifies the performance of the data selection

method in a classification problem. In this case, we consider the MNIST dataset,

which was previously detailed in Problem 5. The framework parameters are defined

as: the number of hidden layers equals 3, and the number of nodes in each layer is

1024. And the other parameters are chosen as µ = 0.1, b = 128 and E = 100. The

results of this deep learning example are illustrated in Figure 4.12.

To corroborate the suitability of the proposed data-selection method to be ap-

plied to alternative architectures, Figure 4.13 shows the performance of a convolu-

tional neural network (CNN) in a classification problem. The curves show the clas-
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Figure 4.11: Deep neural network simulation: transcoding time dataset.
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Figure 4.12: Deep neural network simulation: MNIST handwritten digit recognition
dataset. Test classification error (%) comparing the case when the algorithm is
always updated Pup = 1 with the probability of update Pup ∈ {0.1, 0.3, 0.5, 0.7}.

Table 4.8: Approximate number of flops in one epoch for MNIST dataset and
transcoding time dataset problems.The probability of update Pup is varied Pup ∈
{0.1,0.3,0.5,0.7,1}.

MNIST dataset Transcoding time dataset

Pup = 1 944× 109 16966× 106

Pup = 0.7 764× 109 13604× 106

Pup = 0.5 645× 109 11362× 106

Pup = 0.3 525× 109 9120× 106

Pup = 0.1 405× 109 6879× 106

sification error versus the epochs for the CIFAR10 dataset employing the Resnet18

network model. When compared with the case that all samples are selected (

Pup = 1), we can achieve a lower classification error with Pup = 0.5 in the last

epochs.
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Figure 4.13: Test classification error (%) comparing Pup = 1 with Pup ∈
{0.4, 0.5, 0.7} for Resnet18 model and CIFAR10 dataset.

4.3 Adversarial training with informed data

selection

Generating adversarial examples during training can be highly computationally in-

tense since each sample is usually built with several steps in the direction of the

gradient as the model is trained. Moreover, adversarial training generally decreases

the standard accuracy, that is, the accuracy on clean samples [117]. This robustness-

accuracy tradeoff is reported to be highly data-dependent, especially regarding the

data distribution [118] and its quality [119]. Furthermore, we only have access to

a training dataset that does not necessarily represent the problem we aim to learn.

In this case, we could avoid using the entire training data. Since the dataset is

reduced, we can save several computations during backpropagation and speed-up

training. This hypothesis was already investigated for standard training in [18, 19].

In this work, we extend the work in [18, 19] and apply it to the adversarial train-

ing case. The proposed data selection algorithm selects the most relevant samples

based on the cross entropy loss from each mini-batch composed of both clean and

adversarial samples. Since only the selected samples are used to update the model

parameters in the backpropagation, the training time is reduced. The selection also

balances the necessary amount of clean and adversarial samples to yield satisfactory

robustness and standard accuracy.

When performing adversarial training, we are interested in learning a process

or function f(·) that maps a data space X into an output space Y . However, we

do not have direct access to samples from X to train the model according to the

adversarial objective. Instead, we only have access to a subset D which is split into

batches used to update the model parameters in equation (6.22). However, there is

no guarantee that this available subset or its batches consist of a good representation

of the process f(·). Therefore, we propose a sampling strategy to select the most

relevant samples to compose the batches in adversarial training.
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4.3.1 Data selection procedure

We first consider the entire original dataset D of input-output pairs in equation

(3.1). Then, at each mini-batch iteration, b′ clean samples are selected from the

whole dataset to form the batch set B′. By using PGD, b′ adversarial examples

are generated from the samples in the set B′ using equation (3.16). The resulting

mini-batch B is then composed of b = 2b′ samples. The samples in the mini-batch

flow through the network, the gradients are computed, and we obtain the network

output as a one-hot-encoded vector y, as shown in Figure 4.14. In order to quantify

the relevance of the samples in the mini-batch, we define the error signal

E(ŷ,y) =
C∑
c=1

e(ŷc,yc), (4.28)

based on the cross entropy loss defined in equation (4.20), in which C = d(L) is the

number of classes.

As a rule, the closer to zero the error signal is, the less informative or relevant

will be the contribution of the correspondent data pair to the parameter update in

equation (3.3) of Chapter 3, and it is repeated as follows for the reader convenience

Θk+1 = Θk − µ
1

b

∑
x,y∈B

∇ΘL(fΘ(x),y), (4.29)

where µ is the step size and b is the mini-batch size.

We then propose to select a portion Pup of the samples in B based on the higher

error values in equation (4.28), forming a selection set S. After the forward propaga-

tion is completed, only the samples in S are used in the backpropagation to update

the network parameters Θ, as depicted in Figure 4.15. Since only a portion Pup of

the samples are used to update the parameters, we can save some computations and

alleviate the training burden.

One question remains about choosing an adequate Pup for our problem. As

Pup → 0, fewer samples are selected, and we save more computations in the back-

propagation. In this case, however, the selected samples might be insufficient to learn

the problem. For standard training, the most favorable Pup choice mainly depends

on the dataset complexity [19]. Simpler datasets like MINIST require Pup = 0.3,

whereas for more complex datasets such as CIFAR10, Pup = 0.5 is a better choice.

Thus, one option is to set a fixed Pup for the whole training process. This way,

we can set the number of saved computations from the beginning. Nevertheless,

in cases where the dataset complexity is unknown and it is difficult to prescribe a

Pup for all the epochs, an automatic Pup can be advantageous. In this way, we can

obtain the Pup for each epoch in an adaptive manner as the training is performed.
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Figure 4.14: Forward propagation and error signal computation.
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Figure 4.15: Selected samples being used in the backpropagation.

The adaptive procedure considers the accuracy

λacc =
Nc

2b
, (4.30)

at each epoch as a criterion, in which Nc is the number of correctly predicted samples

and 2b is the total number of data points in the batch. Hence, we can estimate the

number of selected samples Pup at each epoch t.

P (t)
up = (1− λ(t−1)

acc )P (t−1)
up (4.31)

where P
(0)
up = 1 and λ

(t−1)
acc is the last available accuracy. We need more samples in

the mini-batch to improve learning when the accuracy is low, whereas fewer samples

are required to continue learning when accuracy increases.
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As it will be shown in the simulations, updating the Pup using equation (9)

accelerates the convergence for P
(0)
up = 1 because, in this case, it selects more samples

in the first epochs. Our motivation was to provide more samples to the model at the

beginning to improve and accelerate its learning. Therefore, early stopping methods

[120] can be employed to reduce the training time. Since we do not consider the

early stopping approach in the simulations, we propose using a fixed prescribed Pup

in this work. The main proposed algorithm is detailed in Algorithm 7.

Algorithm 7 Proposed data selection for adversarial training

1: Given dataset D, mini-batch size b′, and prescribed Pup

2: for epoch = 1 · · ·T do
3: for mini-batch B ⊂ D do
4: Create adversarial examples {x′

1, · · ·x′
b′} from clean samples {x1, · · ·xb′}

5: using the current state of the network and obtaining
6: B′ = {x′

1, · · ·x′
b′ , x1, · · ·xb′};

7: Forward propagation with samples in B′;
8: Compute the error signal for each sample in B′ using equation (4.28);
9: Select the Pup× 100% of the samples in B′ with the greatest error values;

10: Update model parameters by backpropagation using only the data
11: samples in S;
12: end for
13: end for

4.3.2 Simulation results

In this subsection, we assess the performance of the proposed data selection method

in the CIFAR10 dataset [121] using the Resnet18 model [122]. To build the adver-

sarial examples, we consider the PGD attack with ϵ = 8/255, α = 0.01, and 20

iterations. We consider the following methods in the simulations. The standard

method trains only with clean samples with a mini-batch B of size b = 256. Also,

the robust method trains only with adversarial samples with a mini-batch B of size

b = 256. The DS robust method is trained with the selection set S of size b = 256,

which is composed of both clean and adversarial samples, and it is obtained using

our selection strategy with Pup fixed or varying. The random robust method is

trained with a mini-batch of size b = 256, composed of clean and adversarial sam-

ples selected randomly. We also consider the selection method proposed in [119],

in which the samples are selected based on their learning stability. In this case, we

used 50% of the samples with high quality to perform a fair comparison in terms of

the number of samples used.

In order to determine the impact on the standard and robustness accuracy at

the last epoch, we first vary the proportion of the selected samples in Figure 4.16.

We slightly outperform the method that takes into account all samples by utilizing
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Pup = 0.5, with the advantage of only requiring 50% of the batch’s samples. When it

comes to robustness, techniques with 0.5 ≤ Pup < 1 perform very similarly to those

with Pup = 1. Further reducing Pup does not result in a performance improvement.

In such a scenario, the model would need either more samples or more epochs to

understand the problem.

Figure 4.16: Evolution of the standard and robustness accuracy as the portion of
selected samples Pup is varied.

We then evaluate the proposed DS robust method with varying Pup and compare

it with the fixed Pup = 0.5, the standard and robust methods in terms of standard

and robust accuracy in Figures 4.17 and 4.18. Standard accuracy is the accuracy

on clean samples, whereas robust accuracy is the accuracy on unseen adversarial

examples. We show in Figure 4.19 the obtained Pup for each epoch following equation

(4.31). By using both a varying Pup and Pup = 0.5, we observe an improvement in

terms of standard accuracy when compared with the standard and robust methods.

Moreover, reducing the number of samples in the mini-batch does not affect the

robust accuracy, as shown in Figure 4.18.

This improvement in robustness-accuracy tradeoff is reasonable since our method

includes the most potentially relevant clean and adversarial samples in the mini-

batch. Some claim that such a tradeoff exists because the standard and robust

objectives conflict [123, 124]. We can then observe in Figure 4.20 that the model

trained with Pup = 0.5 starts by selecting more adversarial samples than clean

samples. However, after a few epochs, this behavior changes, and the number of

selected clean samples increases. This feature potentially suggests that the model

tries to learn the adversarial problem first. When done, the DS method attempts to

improve the clean accuracy. Moreover, the number of selected minimum adversarial

examples increases as the model is trained, as depicted in Figure 4.21. The minimum

75



0 25 50 75 100 125 150 175 200
Number of epochs, t

0

20

40

60

80

100

St
an

da
rd

 a
cc

ur
ac

y 
(%

)

Standard
Robust
DS robust (Pup = 1)
DS robust (varying Pup)
DS robust (Pup = 0.5)

Figure 4.17: Standard accuracy as a function of the number of epochs.
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Figure 4.18: Robust accuracy as a function of the number of epochs.

adversarial examples are generated by slowly increasing the perturbation constraint

ϵ until the prediction changes.

Finally, our methods are compared with other selection methods in terms of

standard and robust accuracy in Figures 4.22 and 4.23, respectively. The DS ap-

proach outperforms both the random and selection methods with 50% of high quality

samples from [119], especially in terms of standard accuracy.

The benefits of the proposed methods in terms of performance are followed by a

reduction in computational complexity. Since only Pup samples in the mini-batch are

backpropagated through the network to update its parameters, we can save some

computations. For example, we present the total training time after 200 epochs

in Table 4.9. The simulations were performed on a computer with two GTX-1080
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Figure 4.19: Portion of selected samples Pup obtained for each epoch following equa-
tion (4.31).

Figure 4.20: Averaged amount of selected clean and adversarial samples at each
epoch for Pup = 0.5.

GPUs. With Pup = 0.5, the training time is reduced when compared with Pup = 1

and varying Pup. However, if we stop the training by the 150th epoch, the training

time for the varying Pup can be reduced to 15261.29s. Therefore, the varying Pup

strategy can be applied if an early stopping method is employed. We also outperform

the method introduced in [119] in total training time as their method needs a pre-

training to rank the samples by the learning stability values.
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Figure 4.21: Averaged amount of selected minimum adversarial examples at each
epoch for Pup = 0.5.
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Figure 4.22: Comparing the proposed method with other selection methods in terms
of standard accuracy.

Table 4.9: Total training time after 200 epochs.

Method Time (s)

Selection approach from [119] with 50% of samples removed 39970.71

Robust with Pup = 1 20200.33

DS Robust with Pup = 0.5 19770.51

DS Robust with Pup varying as in equation (4.31) 20161.29
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Figure 4.23: Comparing the proposed method with other selection methods in terms
of robust accuracy.
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4.4 Conclusions

This chapter presented a data selection strategy applied to both standard and ad-

versarial training.

The standard training approaches for neural and deep neural networks do not

perform data selection, even if data does not bring a novelty to the learning process.

The proposed method was applied in several datasets for classification and regression

problems. In all simulations, the data selection achieves excellent performance in

terms of MSE and classification error even when only 30% of the data is utilized,

proving an excellent tool to improve the training process. Therefore, data selection

in NN is a helpful tool, mainly with the advantage of requiring a lower computational

cost than standard methods. Besides, it enables the prescription of how often to

update the weights of the neural network.

Adversarial training is the most popular solution to mitigate the effect of mali-

cious attacks on deep neural networks. However, although adversarial training can

improve the robustness accuracy, it usually sacrifices standard accuracy. Motivated

by this drawback and seeking to reduce the computational complexity during train-

ing, we proposed a data selection strategy to include the data samples that bring

novelty to the learning process. The simulation results with CIFAR10 using the

Resnet18 model indicate that the method is beneficial in improving the robustness-

accuracy tradeoff and reducing the computational complexity of the training.

In the following chapter, we return to the core of this work and describe the

considered OFDM systems, their challenges, and our proposed ML solutions.
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Chapter 5

Machine learning for wireless

OFDM systems

5.1 Introduction

The machine learning techniques were presented in Chapter 3, and a data selection

strategy was detailed in Chapter 4. In this chapter, we employ the ML techniques

presented in Chapter 3 to solve tasks regarding practical problems in wireless OFDM

systems. The method for selecting data from Chapter 4 is not used in the experi-

ments of this chapter, but it is simple to use them in future research.

In broadband communications, the available spectrum should be utilized to max-

imize the data transmission while reducing the amount of information needed to

deal with channel distortions. The most widely used solution to address multipath

fading in the wireless communications field is the orthogonal frequency-division mul-

tiplexing (OFDM) modulation technique due to its simplicity and effectiveness while

requiring some extra bandwidth. OFDM systems combat inter-symbol interference

(ISI) and inter-block interference (IBI) caused by the multiple delayed versions of

the transmitted signal [14], utilizing L redundant elements as prefix or sufix. L de-

pends on the maximum delay spread of the channel [15], and the crucial role of the

redundant elements is to avoid IBI. The redundancy consists of a cyclic prefix (CP)

or zero padding (ZP) as sufix, giving rise to distinct types of OFDM transceivers

as well as single carrier solutions with frequency-domain equalization; see [15] for

details.

In many applications, the loss in spectrum efficiency might be an issue, so OFDM

systems with reduced or free of redundancy become attractive alternatives [125],

as long as the additional complexity related to the transceiver implementation is

viable. A particular case is ZP-OFDM, allowing a zero-forcing solution requiring

the minimum amount of redundancy of L/2 for even L [126, 127]. Unfortunately
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this solution is prone to face numerical difficulties. In contrast, a single redundant

element is necessary if some specific types of time-varying transceivers are designed

[128]. This work discusses alternative solutions to devise block transceivers, starting

from free to full-length prefix.

Many machine learning tools are currently being utilized in many distinct ap-

plications. In particular, machine learning algorithms have disrupted the fields of

natural language processing and computer vision. This enormous success of ML has

sparkled the interest in investigating the application of deep neural networks (DNNs)

in wireless communications [125, 129–132]. The choice of deep models represents the

belief that the communication system we want to learn can be represented through

a composition of several simpler systems [133]. Indeed, the receiver of an OFDM

system consists of several blocks, which can be modeled by DNNs [129]. Moreover,

in some related works, it is conjectured that more control can be obtained by exploit-

ing the expert knowledge in wireless communications and breaking, for example, a

single DNN in two [125, 130].

Currently available communications systems solutions are mature because it is

possible to design the most appropriate transmission and reception solution for many

well-understood and mathematically modeled physical layer environments. The de-

sign entails choosing, for instance, the appropriate components such as symbol con-

stellation, modulation method, the family of typical channel models, environment

noise properties, amount and format of the training signals, etc. For most stan-

dardized communications services, components are well defined, and the deployed

systems work well as long as the pre-established assumptions related to the physical

layer are met, e.g., the channel model is linear, or the environment noise is additive

white Gaussian noise (AWGN). In these cases, the available transceiver solutions

meet high-performance standards that are not necessarily surpassed by replacing

them with machine learning (ML) based solutions. However, in environments where

assumptions depart from reality or no available solutions are using well-established

communications tools, the solutions incorporating ML might bring about tremen-

dous benefits. Whenever there is a gap between the available theoretical models and

those faced in practice, ML-based solutions are expected to provide better answers.

In recent years, many works have investigated strategies for applying the con-

cept of ML to solve problems related to performance, robustness, and detection

in communication systems, particularly those aspects related to the physical layer

[134–137]. Although many tasks in the physical layer of communication systems

are already optimally solved, significant practical problems still require acceptable

solutions [138].

We start, in Section 5.2, by describing the OFDM system models considered in

this work. Then, the basic simulation setup utilized in this chapter and the next one
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is presented in Section 5.3. Among the practical problems in OFDM systems, we can

mention the spectrum waste and nonlinear distortion caused by techniques to reduce

the peak-to-average power ratio (PAPR). For this problem, we propose a two-block

ML-based OFDM reception operating with insufficient redundancy in Section 5.4.

Our work answers how to perform a solution lying between a prefix-free and full

prefix OFDM. The first block is responsible for inverting an unknown function: the

channel and the nonlinear distortion. The second one aims to detect the transmitted

OFDM symbol corrupted by ISI and IBI. We consider both CP-transceivers and

ZP-transceivers such as ZP-OFDM-OLA (zero padding-OFDM-overlap and add)

and ZPZJ (zero padding zero jamming) OFDM [15]. This solution comprises our

contributions in [21, 22]. The proposed approach is also suitable for OFDM systems

with the comb-type pilot arrangement, where fewer pilots can be transmitted than

in the block-type case. Furthermore, the comb-type pilot arrangement is more

favorable for fast-fading channel scenarios [139, 140]. This solution is proposed

in Subsection 5.4.3 and consists of our submitted work [23].

As the communication environment is constantly changing, adaptive mechanisms

for switching to a reinforcement learning mechanism [141] to better manage the

system resources are highly desirable. For such online tasks, we propose a deep

reinforcement learning approach to choose the amount of redundancy the transmitter

should employ to satisfy an MSE target performance in Section 5.5.

Finally, we end the chapter with some concluding remarks in Section 5.6.

5.2 OFDM system model

Consider the OFDM transmitter illustrated in Figure 5.1. The orange blocks rep-

resent the ML methods attached to the main OFDM system. We propose standard

trained neural networks in this chapter, whereas the robust version is presented

in the next chapter. The incoming data streams are modulated by using the M -

ary quadrature amplitude modulation (M -QAM), resulting in the data symbols

xT
D ∈ C1×ND . In the subcarrier allocation block, the pilot symbols xT

P ∈ C1×NP

are inserted to form the symbols x ∈ CN×1. We consider the pilot arrangements

depicted in Figure 5.2. For the block-type arrangement, shown in Figure 5.2a, the

symbols are defined as

xT = xT
P or xT

D, (5.1)
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so that all subcarriers either contain pilots or data. Besides, in the comb-type

arrangement, shown in Figure 5.2b, the symbols are defined as

x(n) =

xP (n), for n ∈ BP

xD(n), for n ∈ BD,
(5.2)

where sets BP and BD contain the indices of the subcarriers allocated to carry NP

pilots and ND data symbols, respectively. The subcarriers can carry pilot and data

symbols in the comb-type pilot arrangement.

AddIFFTS/P
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Figure 5.1: Proposed OFDM transceivers.

The symbols are then converted to a parallel data stream x ∈ CN×1. The N -

point inverse fast Fourier transform (IFFT) is employed to convert the signal from

the frequency domain x to the time domain x. The K-length redundancy is added,

resulting in the OFDM signal

u = AWH
Nx = Ax, (5.3)

where WN is the unitary N ×N discrete Fourier transform (DFT) matrix. Matrix

A ∈ CS×N adds redundancy in which

A =

AZP =
[

IN
0K×N

]
, for zero-padding

ACP =
[
0K×(N−K) IK

IN

]
, for cyclic-prefix.

(5.4)

One of the drawbacks of OFDM systems is the high peak-to-average power ratio

(PAPR) due to the addition of the many subcarrier components via IDFT operation.

The main problem is that the gain of the transmitter power amplifier will saturate at
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high input power. Therefore, the power amplifier would have to operate in a back-

off regime, but it requires an excess large saturation power for the power amplifier.

The clipping technique is a simple approach to reduce PAPR at the transmitter side

and avoid operating the amplifiers in their linear region. Nevertheless, clipping is

a nonlinear process that might degrade the bit-error-rate performance [142]. The

clipped version of u is expressed as

uc =

u, if |u| < (CRσu).

u
|u|(CRσu), otherwise,

(5.5)

where CR is the clipping ratio, and σu is the root mean square (RMS) value of the

OFDM signal [142]. Low clipping ratio CR leads to more severe nonlinear distortion,

whereas CR → ∞ represents the absence of clipping noise. Then N subcarriers are

used to transmit the OFDM symbol uc ∈ CS, with S = N +K.

As in [125, 130], we assume that the channel remains approximately constant

over the transmission of an OFDM frame. We also consider that only neighbor-

hood blocks interfere with each other. In the block-type arrangement depicted in

Figure 5.2a, the pilot signal is transmitted to obtain an estimate for the channel

impulse response, ĥ at each subcarrier. This configuration is also considered in

[125, 130] to simplify the simulations.
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u
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(b) Comb-type

Figure 5.2: Pilot arrangements.

The data signal is then transmitted using all the N subcarriers, and the pre-

viously obtained channel estimate is used to estimate the transmitted symbols via

equalization.

The comb-type arrangement shown in Figure 5.2b allows the subcarriers to carry

both pilot and data symbols. In this case, the channel estimate is obtained at

the pilot subcarriers. The channel estimate at the data subcarriers for comb-type

pilot arrangement is obtained via interpolation. Some examples of interpolation

methods are linear interpolation, second-order polynomial interpolation, and cubic

spline interpolation. The transmitted data symbols are then estimated after channel

equalization.

85



5.2.1 Channel estimation

The channel model between transmitter and receiver has the impulse response h =

[h(0) h(1) · · · h(L)]T. In the z-domain, the pseudo-circulant channel matrix is

H(z) =



h(0) 0 0 · · · 0

h(1) h(0) 0 · · · 0
...

...
...

...
...

h(L) h(L− 1)
. . . · · · 0

0 h(L) · · · · · · 0
...

...
...

...
...

0 0 h(L) · · · h(0)


S×S

+ z−1



0 · · · 0 h(L) · · · h(1)

0 0 · · · 0
. . .

...
...

...
...

...
... h(L)

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 0 0


S×S

= HISI + z−1HIBI,

(5.6)

in whichHISI andHIBI represent ISI and IBI effects produced by the wireless channel

[15]. This model is valid when the transmitted OFDM symbol’s length exceeds the

channel order, that is when S > L.

By using equation (5.6), the received signal in the time domain is

y(k) = HISIu(k) +HIBIu(k − 1) + v(k), (5.7)

where v(k) is an additive Gaussian noise vector with zero mean and covariance

matrix σ2
vIS. The receiver removes the redundancy by multiplying y(k) by R ∈

CN×S, where

R =

RZP =

[
IK

IN
0(N−K)×K

]
, for zero-padding,

RCP = [ 0N×K IN ] , for cyclic-prefix.

(5.8)

In the absence of noise, equation (5.7) becomes

y(k) = RHISIAx(k) +RHIBIAx(k − 1). (5.9)
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If sufficient redundancy is inserted K ≥ L, then

RHIBIA = Hr = 0N , (5.10)

which means that IBI is eliminated for both ZP-OFDM-OLA (zero padding-OFDM-

overlap and add) and CP-OFDM (cyclic prefix-OFDM). Moreover,

Hc = RHISIA (5.11)

is a circulant matrix. Hence, equation (6.4) becomes

y(k) = Hcx(k) = hN ⊛ x(k), (5.12)

in which hN is the first column of Hc and ⊛ is the circular convolution operator. By

using the circular convolution theorem, we can employ the FFT to transform the

circular convolution into component-wise multiplication. Hence, the least squares

(LS) channel estimate ĥLS ∈ CNP×1 can be written for each subcarrier x

ĥLS(n) =
yP (n)

xP (n)
for n ∈ BP , (5.13)

where xP ∈ CNP×1 and yP ∈ CNP×1 are the transmitted and received pilot signals

in the frequency domain.

To obtain channel state information (CSI), we can also employ the linear mini-

mum mean-squared error (LMMSE) estimator

ĥLMMSE = WLMMSEĥLS, (5.14)

where WLMMSE is the LMMSE weight matrix defines as follows

WLMMSE = RhN ĥLS

(
RhNhN

+
σ2
v

E[||x||2]
IN

)−1

, (5.15)

in which RhN ĥLS
is the cross-correlation matrix between the true channel vector and

channel estimate vector in the frequency domain. The auto-correlation matrix of

hN is RhNhN
. The energy of the transmitted symbol is E[||x||2], and hN is hN in

the frequency domain. This solution has some practical forms of implementation,

see [143].

Since NP = ND = N for block-type pilot arrangement, ĥ ∈ CN×1. For comb-

type pilot arrangement, N = NP+ND, and hence we need to interpolate the channel

estimate ĥ ∈ CNP×1 to obtain the whole channel estimation ĥ ∈ CN×1.
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5.2.2 Equalization

After channel estimation, ĥ ∈ CN×1 is used to perform equalization and recover the

transmitted data signals, as also shown in Figure 5.1.

For ZP-OFDM-OLA and CP-OFDM, the received data signal y(k) is multiplied

by the receiver matrix in equation (5.8). After performing the FFT, the estimated

signal is

y′(k) = EWNHcW
H
Nx(k) + EWNRv(k), (5.16)

in which E = (WNHcW
H
N)

−1 is the basic frequency domain equalization (BFDE)

matrix. If K ≥ L, Hc is a circulant matrix, and it can be diagonalized by using the

DFT and IDFT matrices. Therefore, E = Λ−1, where Λ is a diagonal matrix with

the FFT of hN = [h 0(N−L−1)×1]
T as diagonal [15]. Hence, equation (5.16) can be

written for each subcarrier as

y′(n) =
y(n)

ĥLS(n)
for n = 1, · · ·N, (5.17)

in which y = WNHcW
H
Nx +WNRv(k). After equalization, the resulting symbols

y′ can be demodulated and the received bits estimated.

For ZPZJ-OFDM, the receiver matrix is defined as

RZPZJ = [ 0N×(L−K) G ] ∈ CN×S, (5.18)

where G ∈ CN×(N+2K−L) is the equalization matrix. As in the ZP-OFDM-OLA,

if K ≥ L, RZPZJHIBIAZP = 0N , and the IBI is eliminated. However, the matrix

product

RZPZJHISIAZP = H ∈ C(N+2K−L)×N (5.19)

results in a rectangular Toeplitz matrix which is not easily diagonalized as in the

ZP-OFDM-OLA and CP-OFDM cases. For the ZPZJ-OFDM, the equalizer can be

defined as in [15],

G =

{
(H

H
H)−1H

H
, for ZF equalization,

(H
H
H+

σ2
v

σ2
x
IN )−1H

H
, for MMSE equalization.

(5.20)

Another possible equalizer is

G = (H
H
H+ λIN)

−1H
H
, (5.21)

in which λ is a constant regularization factor. After equalization, we perform the

FFT. Then, the resulting symbols y′ can be demodulated, and the received bits

estimated.
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5.3 Basic simulation setup

When not mentioned, the following parameters and models are used.

• The OFDM system has N = 64 subcarriers;

• The input symbols are 16-QAM samples;

• The block-type and comb-type pilot arrangements are considered in the ex-

periments of Subsections 5.4.2.3 and 5.4.3.1, respectively;

• The ITU Pedestrian A channel [144] is generated with Matlab’s stdchan using

the channel model itur3GPAx with a carrier frequency fc = 2 GHz, 4 km/h

as velocity, Ts = 200 ns and order L = 10;

• The NNs are trained for each signal-to-noise ratio (SNR);

• The bit error rate (BER) is presented as a function of the SNR by averaging

2000 independent runs;

• The MSE is also presented as a function of the SNR by averaging 2000 inde-

pendent runs.

5.4 OFDM systems with insufficient redundancy

using NNs

The use of redundancy in OFDM with K ≥ L not only prevents the IBI but also

transforms the linear convolutions into circular convolutions, leading to multiplica-

tion in the frequency domain [145]. If the OFDM system operates with insufficient

redundancy K < L, Hr ̸= 0N in equation (5.10) and Hc in equation (5.11) is no

longer circulant. The ZF solution is then impossible for time-invariant transceivers,

with the exception of ZPZJ. Our goal here is to deliver ML-based solutions to cope

with the case in which the transmitter adds insufficient redundancy to the OFDM

symbol.

In this section, we start by using the channel estimator (CE) subnet proposed

in [125, 130] to obtain a refined channel estimate. Then, we propose an improved

channel estimator (ICE) subnet in an attempt to cope with nonlinear distortions,

and the insufficient redundancy. We also propose a subnet to improve the symbol

detection, which we call a symbol detector minimum redundancy (SDMR) subnet.
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5.4.1 ‘CE + SDMR’ solution for block-type pilot

arrangement in CP-OFDM systems

We started by defining the minimum redundancy (MR) OFDM receiver allowing

the ZF solution to have a total redundancy length equal to L/2. The proposed MR

OFDM receiver is composed of two subnets. The first subnet is the same used in

[125, 130]. The CE subnet is responsible for obtaining a refined channel estimate.

The second one is the SDMR subnet, that aims to detect the received symbols. The

solution ‘CE + SDMR’ is proposed in our previous work for CP-OFDM [21].

5.4.1.1 CE subnet

The CE subnet is first proposed in [130]. Inspired by equation (5.14), the CE subnet

utilizes a two-layer neural network to obtain a refined channel estimation [130], as

depicted in Figure 5.3. The LS estimate described in equation (5.13) is converted

into a real-valued block

h̃LS =

[
Re{ĥLS}
Im{ĥLS}

]
(5.22)

and used as input of the CE subnet. The real-valued block version of a vector a is

defined as

ã =

[
Re{a}
Im{a}

]
. (5.23)

To accelerate the convergence speed, the CE subnet is initialized by the real-valued

LMMSE weight matrix

W̃LMMSE =

[
Re{WLMMSE} −Im{WLMMSE}
Im{WLMMSE} Re{WLMMSE}

]
, (5.24)

in which WLMMSE is defined in equation (5.15). As in [130], we follow the method

in [142] to compute the LMMSE matrix WLMMSE defined in equation (5.14).

W

Figure 5.3: CE subnet.
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The CE subnet is trained by minimizing the mean squared error (MSE) between

a noisy version of the actual channel in the frequency domain hN and the prediction

ĥCE by using the adaptive moment estimator (Adam) optimizer. Since obtaining the

true channel response is difficult in practice, these training labels are more suitable

than the ones used in [125, 130]. We define hN = hN + v, where hN is the FFT of

the true channel impulse response, and v is an additive Gaussian noise vector with

zero mean and covariance matrix σ2
vIN . The learning rate is set to µ = 0.001. The

training and testing sets contain 3000 and 1000 samples, respectively. The batch

size and epochs are set to 50 and 200, respectively.

5.4.1.2 SDMR subnet

The proposed symbol detection subnetwork is a neural network with three hidden

layers, as illustrated in Figure 5.4.

Figure 5.4: Proposed SDMR subnet.

The hidden layers have as activation function the hyperbolic tangent. In ad-

dition, the SDMR subnet utilizes a linear activation function at the output layer.

Unlike [129, 130] works concerning bits estimation in a classification problem formu-

lation, the SDMR subnet output layer has been chosen as a linear activation function

since it provides a better estimation for the symbols as a regression problem.

We first obtain the frequency domain equalizer solution,

y′D(n) =
yD(n)

ĥCE(n)
for n = 1, · · ·N, (5.25)

in which ĥCE is the channel estimate obtained in the CE subnet. Then, the real-

valued block version of y′
D is used as input in the SDMR subnet. The real-valued

block version of a vector is defined in equation (5.23). The output x̂ is then converted

to a complex vector and demodulated to obtain the estimated bits.

A basic FDE or BFDE provides a simple technique to mitigate the distortion due

to a frequency selective channel. For the linear channel model, the use of a cyclic

prefix in OFDM with K ≥ L not only prevents the IBI but also transforms the linear
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Figure 5.5: Illustration of matrices Hc and Hr for S = 64, L = 18 when K is varied.
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Figure 5.6: Illustration of matrices Hc and Hr for S = 64, L = 4 when K is varied.

convolutions into circular convolutions, which are equivalent to multiplication in the

frequency domain [145]. Consider now using CP with K = L/2. In this case, Hc

in equation (5.11) is no longer circulant, Hr ̸= 0N , and hence the BFDE does not

provide the ZF solution, with the exception of ZPZJ. Figures 5.5 and 5.6 illustrate

the impact on matrices Hc and Hr when K is reduced. However, the performance is

improved as we employ a DNN after the BFDE to detect the symbols. We can then

use a reduced CP length and save some of the subcarriers to transmit information

data.

The SDMR subnet is also trained by minimizing the mean squared error (MSE)

between the transmitted symbol x and the prediction x̂ by using the Adam opti-

mizer. The learning rate is set to µ = 0.0001. The training and testing sets contain

3000 and 1000 samples, respectively. The batch size and epochs are set to 50 and

600, respectively.
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5.4.1.3 Simulation results considering the ‘CE+SDMR’ solution

In this section, we consider the basic simulation setup in Section 5.3, with some ex-

ceptions mentioned as follows. The input symbols are 16-QAM or 64-QAM samples.

As in [125, 129, 130], the channel is modeled by the wireless world initiative for new

radio (WINNER II) [146] under urban scenarios. We also consider a scenario in

which a nonlinearity, modeled by the hyperbolic tangent function, is present at the

transmitter output. Furthermore, we analyze the case where the channel order is

small compared to the transmit block size. All the simulation results are obtained

by averaging T = 500 independent runs.

The considered methods are presented in more detail in Table 5.1, as well as

the main OFDM system. Unfortunately, the methods proposed in [125, 130] were

not evaluated in the simulations since the information needed to perform a fair

comparison is not available. However, it should be mentioned that we explore our

proposal in more encompassing situations. The nonlinearity is not known to the

‘Exact wCP’ method when it is present in the transmitter. In this case, the ‘Exact -

wCP’ method ignores the nonlinearity and considers the exact linear-channel model.

Figure 5.7 depicts the average BER for a CP-OFDM receiver with a 16-QAM

under the linear scenario. The performance of the proposed MR-net with reduced

CP is closer to the lower bound, Exact CP. Moreover, MR-net outperforms the

conventional OFDM receiver (LMMSE wCP). By comparing the proposed method

with reduced CP and its CP-free version, we can observe a considerable gain in

performance. This unveils the possibility of applying the minimum redundancy

technique with other DNN-based receivers in OFDM.

The proposed method performs reasonably well under higher modulations

schemes like 64-QAM, as illustrated in Figure 5.8.

Table 5.1: Methods evaluated in the simulations considering ‘CE+SDMR’ configu-
ration and CP-OFDM systems.

Method CP length
Channel
estimation

Equalization

MR-net wCP red K = L/2 CE subnet ZF+SDMR
LS wCP red K = L/2 LS ZF
LMMSE wCP K = L LMMSE ZF
Exact wCP K = L Exact ZF

CE + ZF nCP K = 0 CE subnet ZF
MR-net nCP K = 0 CE subnet ZF+SDMR

LS nCP K = 0 LS ZF

Figure 5.9 depicts the average BER for a CP-OFDM system operating with a 16-

QAM modulation scheme when simple nonlinearity (hyperbolic tangent) is present.

In this case, the conventional method LMMSE wCP achieves worse BER levels as

the nonlinearity is unknown. On the other hand, the performance achieved by the

proposed method MR-net remains closer to the lower bound.
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Figure 5.10 depicts the BER results when the channel order is reduced to L = 4

and, as in the scenario considered in Figure 5.8, a nonlinearity is present in the

transmitter. In this case, the proposed methods outperform the competing methods,

whereas the Exact wCP shows resilience to the nonlinearity effect applied to the

transmitted symbols.
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LS_wCP_red

Figure 5.7: Average BER for a minimum redundancy CP-OFDM receiver with 64
subcarriers. 16-QAM symbols are transmitted through a channel modeled using
WINNER II under urban scenarios in which the channel order is L = 18. The
scenario is linear, that is, no nonlinear distortion is presented in the transmitter.
K = 18 for methods with ‘wCP’, K = 9 for methods with ‘wCP red’, and K = 0
for methods with ‘nCP’.

5.4.2 ‘ICE + SDMR’ solution for the block-type pilot

arrangement in CP and ZP-OFDM systems

In this section, we extended the work in [21] by proposing the improved channel esti-

mator (ICE) subnet in [22]. The ICE aims to undo the nonlinear clipping distortion

while dealing with insufficient redundancy.

5.4.2.1 ICE subnet

The ICE subnet is inspired by the CE subnet, which utilizes a two-layer neural

network to obtain a refined channel estimation [130]. As illustrated in Figure 5.11,

the ICE subnet has one hidden layer with a hyperbolic tangent as the activation

function.

The real-valued block version of the complex LS channel estimate ĥLS ∈ CN×1

is the input of the ICE subnet. The real-valued block version of a vector is defined
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Figure 5.8: Average BER for a minimum redundancy CP-OFDM receiver with 64
subcarriers. 64-QAM symbols are transmitted through a channel modeled using
WINNER II under urban scenarios in which the channel order is L = 18. The
scenario is linear, that is, no nonlinear distortion is present in the transmitter.
K = 18 for methods with ‘wCP’, K = 9 for methods with ‘wCP red’, and K = 0
for methods with ‘nCP’.
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Figure 5.9: Average BER for a minimum redundancy CP-OFDM receiver with 64
subcarriers. 16-QAM symbols are transmitted through a channel modeled using
WINNER II under urban scenarios in which the channel order is L = 18. The
scenario is nonlinear, that is, a nonlinear distortion (hyperbolic tangent) is present
in the transmitter. K = 18 for methods with ‘wCP’, K = 9 for methods with
‘wCP red’, and K = 0 for methods with ‘nCP’.

in equation (5.23).

The ICE subnet is trained by minimizing the mean squared error (MSE) between

a noisy version of the actual channel in the frequency domain hN and the prediction
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Figure 5.10: Average BER for a minimum redundancy CP-OFDM receiver with 64
subcarriers. 16-QAM symbols are transmitted through a channel modeled using
WINNER II under urban scenarios in which the channel order is reduced to L =
4.The scenario is nonlinear, that is, a nonlinear distortion (hyperbolic tangent) is
present in the transmitter. K = 4 for methods with ‘wCP’, K = 2 for methods with
‘wCP red’, and K = 0 for methods with ‘nCP’.

Figure 5.11: Proposed ICE subnet.

ĥCE by using the adaptive moment estimator (Adam) optimizer with learning rate

µ = 0.001. Since obtaining the true channel response is difficult in practice, the

noisy channel training labels are more suitable than the true channel response labels

used in [125, 130]. The true channel response labels consist of the real-valued block

version of hN . We then define the labels as the real-valued block version of

hN = hN + v, (5.26)

where v is an additive Gaussian noise vector with zero mean and covariance matrix

σ2
vIN . The real-valued block version of a vector is defined in equation (5.23). The

training set contains 3000 samples. The mini-batch size comprises 50 samples, and

200 epochs are required to train the ICE subnet. At each epoch, 60 iterations are

required to explore the entire dataset. As we generate the training data set, we
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produce enough data samples to learn the problem. Moreover, to deliver a certain

performance when using the model, we run Monte Carlo simulations.

With the channel estimate produced by the ICE subnet ĥICE, we can obtain the

frequency domain equalizer solution,

y′D(n) =
yD(n)

ĥICE(n)
for n ∈ BD, (5.27)

for the data subcarriers.

5.4.2.2 SDMR subnet

As we are dealing with insufficient redundancy, we propose the second block com-

posed of the SDMR subnet, introduced in Subsection 5.4. The only difference is

that the SDMR is trained considering the channel estimate obtained with the ICE

subnet. Therefore, we suggest employing the second block in Figure 5.12 when the

prefix length is too short and severely degrades the BER performance.

Convert to
complex

ICE
subnet

Interpolation
Re{·}

Im{·}
Convert to

BFDE

complex

Re{·}

Im{·}
SDMR
subnet

LS
estimator

QAM
decision

(ICE + BFDE)

(ICE + SDMR)

Figure 5.12: Proposed OFDM receivers.

After the BFDE, the real-valued block version of y′
D is used as input for the

SDMR subnet illustrated in Figure 5.4. The real-valued block version of a vector is

defined in equation (5.23). The output ŷD is then converted to a complex vector,

processed using the QAM demodulator to obtain the estimated symbols x̂D.

As shown in [147, 148], a ZF solution is achievable in ZPZJ-OFDM if H in

equation (5.19) is full-rank, then inequality

N ≤ min{(N + 2K − L),N} (5.28)

must be satisfied, which implies that

N ≤ N + 2K − L → K ≥ L/2. (5.29)

Although efficient processing of the inverse ofH is demonstrated in [126, 127], ifH is

ill-conditioned, its inverse is still difficult to compute. Consider now using K = L/2
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in ZP-OFDM-OLA. In this case, Hc is no longer circulant, Hr ̸= 0N , and hence the

BFDE does not provide the ZF solution. However, as we employ a NN after the

BFDE to detect the symbols, the performance is improved. This allows the use of

a reduced ZP length, alleviating the necessity of knowing the channel order exactly.

Furthermore, some of the subcarriers are saved for transmitting information data.

The learning curves for the SDMR subnet are shown in Figure 5.13 forK = 0 and

K = L/2 = 5, for example. The loss is defined as the MSE between the transmitted

symbol x and the prediction x̂. Observe that the generalization gap between train

and validation curves is more significant when K = 5. It might indicate that the

training dataset does not provide the necessary information to learn the problem

when sufficient redundancy is added at the transmitter. That is when redundancy

length is long enough; the SDMR subnet is unnecessary.
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Figure 5.13: Learning curves for SDMR subnet.

5.4.2.3 Simulation results considering the ‘ICE+SDMR’ solution

In this section, we consider the basic simulation setup in Section 5.3. The

tested methods consist of one channel estimator and one equalizer. For example,

‘LS+BFDE’ represents the LS channel estimator in equation (5.13) and the BFDE

in equation (5.17). ‘Exact’ means that the receiver has perfect CSI. ‘LMMSE’

represents the LMMSE channel estimator in equation (5.14), where Perfect CSI is

assumed to compute the correlation matrices. We consider the LMMSE solution

as a standard comparison method. ‘ICE’ is our proposed channel estimator, and

‘SDMR’ consists of our proposed equalizer/symbol detector. Moreover, ‘ZP’ stands

for ZP-OFDM-OLA receiver, whereas ‘ZPZJ’ denotes ZPZJ-OFDM receiver. Re-

garding the ZPZJ-OFDM, the equalizer ‘MMSE’ is used when K = L, and ‘reg’ is

used when K = L/2. ‘MMSE is defined in equation (5.20), and ‘reg’ in equation

(5.21) with λ = 10−3.
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In the nonlinear scenario, we include the nonlinear clipping distortion with clip-

ping ratio CR = 1.3 at the transmitter side. The nonlinear clipping distortion is not

known to the ‘Exact’ method. Therefore, the ‘Exact’ method ignores the nonlin-

earity and considers the exact linear-channel model. Besides, the linear scenario is

defined by using CR → ∞.

Figure 5.14a depicts the average BER for CP-OFDM receivers with a block-type

pilot arrangement under the linear scenario, that is, when CR → ∞. When the

CP length is equal to the channel order L = 10, the proposed ‘ICE+BFDE’ out-

performs the conventional OFDM receiver ‘LMMSE’. Moreover, the ‘ICE+BFDE’

performance remains quite close to the lower bound ‘Exact + BFDE’. By reducing

the CP length to L/2 = 5, the proposed ‘ICE+BFDE’ outperforms the ‘LMMSE’

receiver for SNR < 25 dB with the benefit of requiring fewer redundancy elements.

When redundancy is not employed, the proposed ‘ICE+BFDE’ performance is im-

proved by the SDMR subnet, resulting in the proposed ‘ICE+SDMR’.

Since the nonlinear clipping distortion is present at the transmitter side, the

‘Exact’ channel estimator does not know this nonlinearity. As shown in Figure 5.14b,

the proposed ICE subnet handles the nonlinear distortion. It even outperforms the

‘Exact’ channel estimator with only K = 5 redundant elements when K = L = 10

for the considered CP-OFDM receivers with the block-type pilot arrangement.

Figure 5.15 compares the MSE between the true channel and the estimated

channel using ICE, CE, and LS channel estimators for CP-OFDM receivers with

the block-type pilot arrangement. The ICE subnet outperforms the CE subnet,

especially for the nonlinear scenario in Figure 5.15b. In terms of BER, as shown in

Figure 5.16, the ICE subnet performs quite close to the CE subnet when CR → ∞,

whereas the ICE subnet significantly outperforms the CE subnet for CR = 1.3.

Figure 5.17 depicts the BER curves for the linear scenario, that is, when the

transmitter is free from nonlinear distortions, for the considered ZP-OFDM receivers

with the block-type pilot arrangement. We consider the channel model described

in the basic setup in Section 5.3 and the WINNER II channel model tested in

Subsection 5.4.1.

For both ITU Pedestrian A and WINNER II, the combination of ‘ICE+SDMR’

provides an improvement only for ZP-OFDM-OLA when K = 0. When K = L/2,

the ICE subnet is adequate to make both ZPZJ-OFDM and ZP-OFDM-OLA outper-

form the LMMSE channel estimator for SNR < 25dB with the benefit of requiring

less redundant elements, as shown in Figure 5.17a. As depicted in Figure 5.17b for

the WINNER II channel, H can be ill-conditioned when ZPZJ is operating with

K = L/2, and the BER performance degrades. By using the ICE subnet with

K = L, ZPZJ-OFDM and ZP-OFDM-OLA approximate or even outperform the

ZP-OFDM-OLA with perfect CSI.
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(a) Linear scenario

10 20 30 40
SNR(dB)

10 3

10 2

10 1

100

B
E

R

LS+BFDE (K=0)
LS+BFDE (K=5)
LMMSE+BFDE (K=10)
Exact+BFDE (K=10)

ICE+BFDE (K=0)
ICE+SDMR (K=0)
ICE+BFDE (K=5)
ICE+BFDE (K=10)

(b) Nonlinear scenario

Figure 5.14: Average BER for a CP-OFDM receiver with 64 subcarriers operating
with block-type pilot arrangement. 16-QAM symbols are transmitted through a
channel modeled using a pedestrian model in which the channel order is L = 10.
The scenario is linear in (a), that is, no clipping distortion is presented in the
transmitter. The scenario is nonlinear in (b), that is, a clipping distortion with
CR = 1.3 is present in the transmitter.

The BER curves for the nonlinear scenario are shown in Figure 5.18 for the

ITU Pedestrian A channel. All the BER curves are degraded due to the nonlinear

distortion. Since this distortion is present at the transmitter side, the ‘Exact’ channel

estimator does not know it. One can observe that ‘ZP ICE+BFDE’ with K = L/2

outperforms ‘Exact+BFDE’ using less redundancy. It unveils that the ICE subnet

can handle the nonlinear distortion caused by the clipping process. In Figure 5.18b,

we investigate how the resulting BER is affected when β = 10 data OFDM signals
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Figure 5.15: MSE between the true channel and the estimated channel for CP-
OFDM with a block-type pilot arrangement and 64 subcarriers. 16-QAM symbols
are transmitted through a channel modeled using a pedestrian model in which the
channel order is L = 10. The scenario is linear in (a), that is, no clipping distortion
is presented in the transmitter. The scenario is nonlinear in (b), that is, a clipping
distortion with CR = 1.3 is present in the transmitter.

are sequentially transmitted at a slowly-varying channel, in which β represents the

number of transmitted data blocks. The overall performance is degraded, but the

impact is less severe when SNR exceeds 20 dB.

5.4.3 ‘ICE’ solution for the comb-type pilot arrangement in

CP-OFDM systems

In this section, we propose an ML-based OFDM receiver operating with insufficient

redundancy, which means that the cyclic prefix length is shorter than the channel

length K < L. We consider a comb-type arrangement for the transmitted pilots.

The receiver is composed of the proposed improved channel estimator (ICE) network

and the BFDE in equation (5.17), as depicted in Figure 5.11.

The ICE network aims to mitigate the nonlinear clipping distortion and obtain a

better estimate for the data carriers, whereas the channel effects are inverted using
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(b) Nonlinear scenario

Figure 5.16: Comparison between ICE (proposed) and CE channel estimators for
CP-OFDM with 64 subcarriers and a block-type pilot arrangement in terms of av-
erage BER. 16-QAM symbols are transmitted through a channel modeled using a
pedestrian model in which the channel order is L = 10. The scenario is linear in
(a), that is, no clipping distortion is presented in the transmitter. The scenario
is nonlinear in (b), that is, a clipping distortion with CR = 1.3 is present in the
transmitter.

the BFDE. The simulations show that a simple network like ICE can perform well

in transceiver configurations and environmental conditions. We extended the work

of [130] and applied it to various situations, indicating that the approach is efficient

with little additional complexity.

The real-valued block version of the complex LS channel estimate ĥLS ∈ CN×1

is the input of the ICE network. The real-valued block version of a vector is defined
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(a) ITU Pedestrian A channel, L = 10
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(b) WINNER II channel, L = 18

Figure 5.17: Average BER for a ZP-OFDM receivers with 64 subcarriers operating
with block-type pilot arrangement. 16-QAM symbols are transmitted through a
channel modeled using a pedestrian model in which the channel order is L = 10 in
(a), and the WINNER II channel model is used in (b). The scenario is linear, that
is, no clipping distortion is presented in the transmitter.

in equation (5.23). In the comb-type pilot arrangement, one needs to obtain CSI at

the pilot subcarriers and use it to estimate the channel at the data subcarriers via

interpolation. We use linear interpolation. With the channel estimate produced by

the ICE subnet ĥICE, we can obtain a frequency-domain equalizer solution,

y′D(n) =
yD(n)

ĥICE(n)
for n ∈ BD, (5.30)

for the data subcarriers.

5.4.3.1 Simulation results considering ‘ICE’ solution

In this section, we consider the basic simulation setup in Section 5.3.
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Figure 5.18: Average BER for a ZP-OFDM receivers with 64 subcarriers operating
with block-type pilot arrangement. 16-QAM symbols are transmitted through a
channel modeled using a pedestrian model in which the channel order is L = 10.
The scenario is nonlinear, that is, the clipping ratio is CR = 1.3.

The tested methods employ a channel estimator followed by the BFDE equalizer

in equation (5.17). For example, the name ‘LS’ represents the LS channel estimator

in equation (5.13). ‘Exact’ means that the receiver has a perfect CSI. ‘LMMSE’

represents the LMMSE channel estimator in equation (5.14), where Perfect CSI is

assumed to compute the correlation matrices. We consider the LMMSE solution as

a standard method for comparison. ‘ICE’ is our proposed channel estimator. We

use linear interpolation to estimate the channel at the data subcarriers. We save

Np = 32 subcarries to transmit the pilot symbols.

Figure 5.19 shows the MSE between the true and estimated channels using ICE,

CE and LS channel estimators when L = 10. The ICE network outperforms the CE

subnet, especially for the nonlinear scenario in Figure 5.19b.

The average BER for a CP-OFDM with the comb-type pilot arrangement is
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Figure 5.19: MSE between the true channel and the estimated channel for CP-
OFDM with 64 subcarriers operating with comb-type pilot arrangement. 16-QAM
symbols are transmitted through a channel modeled using a pedestrian model in
which the channel order is L = 10.

shown in Figure 5.20a for L = 10. The ‘Exact’ CP-OFDM receiver has perfect CSI

only at the pilot tones, whereas the channel estimate at the data tones is obtained

via interpolation. On the other hand, the ICE subnet has learned to estimate the

channel at both the pilot and data tones. Therefore, when K = L = 10, the

proposed ‘ICE’ outperforms the ‘Exact’ CP-OFDM receiver. When K = L/2 = 5,

the proposed ‘ICE’ performance is quite close to the ‘Exact’ and ‘LMMSE’ receivers.

The nonlinear clipping distortion with CR = 3.5 is considered in Figure 5.20b.

One can note that the overall reception quality is reduced due to the unknown

nonlinear distortion. In this case, the proposed ‘ICE’ with K = L = 10 performs

quite close to the ‘Exact’ CP-OFDM receiver. When K = L/2 = 5, the proposed

‘ICE’ outperforms the ‘LMMSE’ CP-OFDM receiver for SNR < 30 dB.

Since the channel delay spread might vary in practice based on the propaga-

tion environment, we consider pedestrian channels with maximum delay spread
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Figure 5.20: Average BER for a CP-OFDM receiver with 64 subcarriers operating
with comb-type pilot arrangement. 16-QAM symbols are transmitted through a
channel modeled using a pedestrian model in which the channel order is L = 10.

L ∈ {5, 10, 15} during training in the following experiment. The example includes

clipping in the training data with clipping ratio CR = 3.5 in Figure 5.21. To simplify

the evaluation, we only consider methods operating with CP length K = 10. As one

can observe, the performance is similar to the case where a fixed maximum delay

spread L is considered in Figure 5.20b. We then assume that the neural network

addressed the issue.
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Figure 5.21: Average BER for a ZP-OFDM receivers with 64 subcarriers operating
with comb-type pilot arrangement. 16-QAM symbols are transmitted through a
channel modeled using a pedestrian model in which the channel order is varied so
that L ∈ {5, 10, 15}.

5.5 Redundancy length choice using deep

reinforcement learning (RL)

In the previous section, we proposed two neural networks to be used when the

employed redundancy is insufficient, and there is some sort of unknown nonlinear-

ity at the transmitter side. Nevertheless, the redundancy length is prescribed at

the beginning of the transmission and is constant during the whole communica-

tion. Therefore, motivated by the minimum redundancy analysis for ZPZJ-OFDM

systems, we chose K = L/2.

Consider now an OFDM system where the transmitter should choose the CP

length for each transmission so that the receiver can estimate the wireless commu-

nication channel with a particular target performance. This scenario reflects the

problem of selecting the redundancy length when the channel order is unknown.

We can formulate this problem using the reinforcement learning framework. As il-

lustrated in Figure 5.22, the agent is the transmitter, the action is related to the

CP length, the environment comprises the channel and the receiver, the state is the

MSE between the estimated channel and the true channel, and the reward is related

to the MSE.

Since the DQN usually considers discrete actions, we propose three actions. In

the first one, the CP length does not change, the second action increases the CP

length by one, and the third one decreases the CP length by one.

The reward function is a mechanism defined to specify how favorable the state
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Figure 5.22: Reinforcement Learning applied to the considered OFDM system.

is in terms of a score. We utilize the reward function

r = 1− (ν/νmax)
0.4, (5.31)

which utilizes a power of 0.4 to offer agents a smooth gradient of rewards as the

MSE ν is getting closer to the maximum allowed MSE νmax.

5.5.1 Simulation results

In this section, we consider the basic simulation setup in Section 5.3. To estimate

the channel, we use the LS method defined in equation (5.13).

The MSE evolution between the channel estimate and the true channel during

the online training is shown in Figure 5.23 when the SNR = 40 dB. We can observe

that the algorithm converges in around 400 iterations to an MSE floor of 10−4, and

the correspondent obtained CP length is K = 12, as depicted in Figure 5.24. The

rewards are aligned with the achieved MSE during training, as shown in Figure 5.25,

in the sense that when the state, in this case, the MSE, is not desirable, the reward is

low. As expected and shown in Figure 5.26, the exploration rate decreases as the RL

algorithm is trained. This indicates that the RL algorithm explores the environment

more at the beginning of training and exploits it more after 400 iterations, which is

when the algorithm achieves convergence.

Considering that the channel order is L = 10, the obtained CP length in the last

iteration is slightly higher than L. However, its value is close to L = 10. Therefore,

the proposed DQN could be used in cases where the channel order is unknown or

difficult to obtain.
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Figure 5.23: Evolution of the states during the deep RL online training. The state
is the MSE between the channel estimate and the true channel.
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Figure 5.24: Evolution of the actions during the deep RL online training. The action
is the chosen CP length for transmission.
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Figure 5.25: Evolution of the rewards during the deep RL online training. The
reward function is defined in equation (5.31).
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Figure 5.26: Evolution of the exploration rate during the deep RL online training.

110



5.6 Conclusions

In crucial applications where the spectrum efficiency is at stake in CP-OFDM and

ZP-OFDM systems, the use of ML learning solutions, as preliminary discussed in

this chapter, consists of a viable solution. It is shown that reduced BER performance

can be achieved by utilizing OFDM transceivers using two-block NNs and employing

insufficient redundancy. The first block is responsible for undoing the channel and

nonlinear distortions. In contrast, the second block refines the received OFDM

symbol contaminated by ISI and IBI due to insufficient redundancy. The simulations

show that with linear channels and nonlinear power amplifiers at the transmitter,

with insufficient redundancy, the ML-based solution provides performance benefits.

Moreover, when the channel order is unknown, choosing the redundancy length

can be challenging. We then proposed a deep reinforcement learning framework to

determine the amount of redundancy in a CP-OFDM system. The results show that

the target MSE can be reached with the redundancy length that was automatically

selected.

This chapter discussed issues with wireless OFDM systems related to channel

order uncertainty, message distortions, and spectrum efficiency. Since the wireless

OFDM system is open and vulnerable to malicious attacks, we address such a prob-

lem in the next chapter and propose a solution based on adversarial training.
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Chapter 6

Robust machine learning for

wireless OFDM systems

6.1 Introduction

The previous chapter addressed problems in wireless OFDM systems regarding spec-

trum efficiency, nonlinear distortions presented in the transmitted message, and

channel order uncertainty by proposing machine learning-based solutions. However,

as wireless OFDM systems are open, they can be targeted by jamming attacks. Since

neural networks are known to be sensitive to adversarial attacks, this vulnerability

grows when they are utilized to boost system performance. Therefore, this chapter

proposes an adversarial training approach to cope with jamming attacks in wireless

CP-OFDM systems.

As detailed in Chapter 5, OFDM is an efficient technique used in broadband

wireless communications to combat multipath fading [14]. Pilot symbols are used

in OFDM to obtain channel state information (CSI), which is often done using

techniques like least squares (LS) and minimum mean square (MMSE). Accurate

CSI is vital to ensure the receiver can perform channel equalization and properly

detect the data symbols.

Due to the success of deep learning (DL) in many fields, DL-based channel esti-

mation strategies have recently been presented to increase the accuracy of channel

estimation [149]. For example, two neural networks were designed to refine the

CSI accuracy and improve data detection in [130]. Convolutional neural networks

(CNNs) are also commonly used to obtain CSI [150]. Nevertheless, a simple NN

is sufficient to improve the LS channel estimates when insufficient redundancy is

employed and nonlinear clipping distortion is present, as shown in Chapter 5.

As the wireless communication channel is open and exposed, the OFDM sys-

tems are prone to jamming attacks [151]. In wireless communications, jamming is
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defined as an intentional interfering signal hindering the transmission or distorting

the legitimate signal. These harmful attacks have the potential to impair communi-

cations seriously. The risk increases when utilizing machine learning-based methods

in wireless communications systems, as neural networks are known to be vulnerable

to adversarial examples. As discussed in Chapter 3, adversarial examples are small

and intended perturbations designed to fool neural networks. In this chapter, we ex-

plore pilot jamming attacks in wireless OFDM systems, as illustrated in Figure 6.1.

The pilot tones are corrupted by an intentional interfering signal that aims to im-

pair the channel estimation. Since we use a neural network to estimate the channel,

the jamming attacks can be divided into two categories: conventional and smart.

In this sense, the conventional jamming attack disregards the NN vulnerability to

adversarial examples, whereas the smart jamming attack explores this vulnerability.

The OFDM system was previously detailed in Section 5.2 of Chapter 5; however,

in Section 6.2, we provide a summary of the system for the reader convenience. We

then formalize three different attacks, including conventional and smart jamming

attacks in Section 6.3. In Section 6.4, we propose an adversarial training framework

adapted to CSI acquisition in OFDM systems as a defense to pilot jamming attacks.

We show some experimental results in terms of MSE to evaluate the robust OFDM

receiver proposed in Section 6.5. The experimental results indicate that the proposed

defense enhances CSI even in the absence of attacks. Section 6.6 includes some

concluding remarks.

Attacker

jamming

Base Station

User

channel
estimation

Figure 6.1: Illustration of jamming attack during the channel estimation of a wireless
OFDM system.
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6.2 ML-based OFDM channel estimation

In this section, we revisit the OFDM system presented in Chapter 5. As detailed

in Section 5.2 of Chapter 5, the incoming data streams are modulated by using the

M -ary quadrature amplitude modulation (M -QAM), resulting in the symbols xT
P ∈

C1×N . We consider a block-type arrangement where all subcarriers either contain

pilots or data. This configuration is also considered in [125, 130] to simplify the

simulations. The symbols are then converted to a parallel data stream xP ∈ CN×1.

The N -point inverse fast Fourier transform (IFFT) is employed to convert the signal

from the frequency domain x to the time domain xP = WH
NxP , in which WN is the

unitary N×N discrete Fourier transform (DFT) matrix. After adding the K-length

redundancy and performing the clipping operation, the OFDM signal

uc =

AxP , if |AxP | < (CRσu).

AxP

|AxP |(CRσu), otherwise,
(6.1)

is transmitted using N subcarriers. Low clipping ratio CR leads to more severe

nonlinear distortion, whereas CR → ∞ represents an absence of clipping noise.

Matrix A ∈ CS×N adds redundancy,

A =
[
0K×(N−K) IK

IN

]
, (6.2)

and σu is the root mean square (RMS) value of the OFDM signal [142].

The channel model between transmitter and receiver has the impulse response

h = [h(0) h(1) · · · h(L)]T. In the z-domain, the pseudo-circulant channel matrix is

H(z) = HISI + z−1HIBI =

h(0) 0 · · · 0

h(1) h(0) · · · 0
...

...
...

...

h(L) h(L− 1) · · · 0

0 h(L) · · · 0
...

...
...

...

0 0 · · · h(0)


+ z−1



0 h(L) · · · h(1)

0 · · ·
. . .

...
...

...
... h(L)

0 · · · 0 0

0 · · · 0 0
...

...
...

...

0 · · · 0 0


,

(6.3)

in which HISI and HIBI respectively represent ISI and IBI effects produced by the

wireless channel [15]. As in [125, 130], we assume that the channel remains approx-

imately constant over the transmission of an OFDM frame. We also consider that

only neighborhood blocks interfere with each other.
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In the absence of noise, the received signal in the time-domain is

y(k) = RHISIAx(k) +RHIBIAx(k − 1), (6.4)

where the redundancy is removed by

R = [ 0N×K IN ] . (6.5)

If sufficient redundancy is inserted K ≥ L, then

y(k) = Hcx(k) = hN ⊛ x(k), (6.6)

in which hN is the first column of Hc and ⊛ is the circular convolution operator.

We can employ the FFT to transform the circular convolution into component-

wise multiplication using the circular convolution theorem. Hence, the LS channel

estimate ĥLS ∈ CN×1 can be written for each subcarrier x

ĥLS(n) =
yP (n)

xP (n)
for n = 1, · · ·N, (6.7)

where xP ∈ CN×1 and yP ∈ CN×1 are the transmitted and received pilot signals in

the frequency domain.

To obtain CSI, we can also employ the MMSE estimator with some practical

implementation forms in [143].

If the OFDM system operates with insufficient redundancy K < L, a ZF so-

lution is not possible for time-invariant transceivers. Aiming to undo the nonlin-

ear clipping distortion while operating with insufficient redundancy, we utilize the

improved channel estimator (ICE) net. The ICE net was described in details in

Subsection 5.4.2.

6.3 Pilot jamming attacks in OFDM systems

Due to its exposed wireless nature, OFDM systems are vulnerable to jamming at-

tacks. Interfering on pilot symbols used for channel estimation leads to noisy CSI,

and hence performance degradation [152]. The vulnerability to pilot jamming in-

creases when using a neural network to improve the channel estimation as NNs are

susceptible to adversarial examples [153]. This section introduces three jamming at-

tacks to perturb the OFDM channel estimation by increasing the MSE between the

channel estimate and the actual channel. The first disregards the NN vulnerability

to adversarial examples, whereas the remaining attacks explore it smartly.
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6.3.0.1 Random jamming attack

We consider a conventional jamming attack in which the jamming signal is AWGN

with variance σ2
n [154]. In this case, the jammer can be located anywhere between

the transmitter and the receiver. The random jamming attack does not intend to

fool the NN specifically. Instead, it aims to increase the MSE between the channel

estimate and the true channel for both channel estimators.

6.3.0.2 Worst-case scenario jamming attack

We can characterize a worst-case scenario by assuming that the signal processing

chain has been compromised [155]. In this case, the attacker is located inside the re-

ceiver, and it can directly perturb the LS channel estimate by adding a perturbation

η, resulting in the adversarial example

hadv = ĥLS + η. (6.8)

The worst-case scenario jamming attack intends to fool only the NN by increasing

the MSE between the channel estimate and the true channel. It has access to the

model weights to craft η so that the MSE between the channel estimate and the

actual channel is maximally increased without amplifying η.

6.3.0.3 Eavesdropping-assisted jamming attack

Looking for a smart attack that could be used in practice, we propose the

eavesdropping-assisted jamming attack. In this attack, the jammer is located near

the transmitter, and the jamming signal is based on the adversarial example defined

in equation (6.8). Nevertheless, the jammer must know the channel estimate to

build the adversarial perturbation to generate the jamming signal. To do so, a pair

of eavesdrop sensors can be employed to estimate the channel and send this infor-

mation to the actual jammer, as illustrated in Figure 6.2. This situation is plausible

in internet of things (IoT) environments.

Since the jammer needs to transmit a signal sJ so that it can be characterized

as an attack, we can rewrite equation (6.8) for each subcarrier n

hadv(n) =
yP (n)

xP (n)
+ η(n), (6.9)

and find a perturbation η(n) dependent on sJ(n). To do so, let us express the overall

received signal at the receiver as

yov(k) = yP (k) + yJ(k) (6.10)
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Figure 6.2: Illustration of jamming attack based on adversarial samples.

which is composed of the original message yP and the jamming signal yJ during the

pilot phase. In the time domain, the received original signal can be described as

yP (k) = HISIu(k) +HIBIu(k − 1) + v(k), (6.11)

whereas the received jamming signal is

yJ(k) = HISIuJ(k) +HIBIuJ(k − 1) + v′(k). (6.12)

In the absence of noise and after removing the redundancy, we obtain

yov(k) = RHISIAx(k) +RHIBIAx(k − 1)

+RHISIAsJ(k) +RHIBIAsJ(k − 1),
(6.13)

where A is the matrix that includes the redundancy, defined in equation (6.2).

If the redundancy length is adequate, the IBI is eliminated RHIBIA = 0 and

RHISIA = Hc is a circulant matrix. Therefore, the matrix multiplication is equiva-

lent to a circular convolution,

yov(k) = Hcx(k) +HcsJ(k) = hN ⊛ [x(k) + sJ(k)]. (6.14)

In the frequency domain, we can then use the LS method to estimate the channel

at each subcarrier n

ĥ′
LS(n) =

yov(n)

xP (n)
=

yP (n)

xP (n)
+

hN(n)sJ(n)

xP (n)

=
yP (n)

xP (n)
+ η(n).

(6.15)

Observe that equation (6.15) is equivalent to the adversarial examples built in equa-
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tion (6.9). From equation (6.15), the jamming signal can then be expressed as

sJ(n) = η(n)
xP (n)

hN(n)
. (6.16)

We can then obtain an approximate expression for the jamming signal

s′J(n) =
η(n)

||η(n)||
E

[(
η(n)

xP (n)

hN(n)

)2
]
= η′(n)σ2, (6.17)

so that the signal has the adversarial perturbation η(n) waveform, and its power is

greater than σ2.

The adversarial perturbation η can be computed using the Fast Gradient Sign

Method (FGSM) introduced in equation (3.15), and it is repeated as follows for the

reader convenience

η = ϵsign(∇hLS
L(Θ,hLS,hN)), (6.18)

in which sign(·) is the sign function, and ∇hLS
L(Θ,hLS,hN) is the loss gradient with

respect to hLS.

6.4 Robust OFDM channel estimation

In this section, we consider that the OFDM receiver is under attack by a jam-

ming signal. The jamming signal aims at perturbing the channel estimation at the

receiver. Our proposed defense consists of training the ICE net with adversarial

examples to cope with the possible jamming attacks.

We aim at finding the perturbation η which increases the MSE between the

channel estimate obtained by the ICE net and the target channel L(fθ(ĥLS+η),hN),

but also keeps the MSE between the channel estimate obtained with the LS method

and the target channel L(ĥLS+η,hN) barely affected. To meet these requirements,

we propose the following modified optimization problem

minθ
1

|D|
∑

ĥLS,hN∈D

maxη (L(fθ(ĥLS + η),hN)

−λL(ĥLS + η,hN))

s.t. ||η||p ≤ ϵ0(1− r)
SNR

5
−1,

(6.19)

in which λ is a scaling factor that balances the importance of the two requirements.

The initial perturbation constraint is ϵ0, and r is the decay factor that controls how

the perturbation decreases. Since less perturbation is required to increase the overall

loss function for high SNR values, the constraint in the perturbation vector η is now
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dependent on the SNR, decaying with a rate r.

By setting λ = 0 and r = 0 in equation (6.19), we end up with the original

optimization problem for classification problems. In this case, the inner maximiza-

tion problem is responsible for finding the perturbation η that increases the loss

L(fθ(ĥLS + η),hN) in an attempt to change the predicted class. In our case, since

the channel estimation is a regression problem; we are only interested in increasing

the loss function, which is the MSE between the channel estimate obtained with the

NN and the target channel.

Nevertheless, the adversarial perturbation should also guarantee the similarity

between the adversarial sample and the original sample. In this regard, the opti-

mization constraints ensure that the distance between the adversarial and original

examples is less than ϵ under a particular norm, ||η||p ≤ ϵ. The norms aim to

quantify how imperceptible an adversarial example is to humans for computer vi-

sion tasks. Some examples of norms are the l0 norm, l2 norm, and l∞. Since we

estimate the channel with the LS method before using the obtained estimate as in-

put for the ICE net, in our case, the LS estimator plays the role of the human eyes.

Therefore, we aim to produce adversarial examples that fool only the NN, whereas

the LS method is not deceived and will barely notice the attack. Here, deceiving

or fooling means increasing the MSE between the channel estimate and the target

channel. In this way, we can account for the similarity between the adversarial and

clean samples.

6.4.1 Fast Gradient Sign Method (FGSM) to solve the inner

maximization problem

The inner maximization problem is then solved by considering the Fast Gradient Sign

Method (FGSM) attack [72]. FGSM generates adversarial examples by modifying

the input towards the direction where the overall loss

Lo(θ, ĥLS,hN) = L(fθ(ĥLS),hN)−λL(ĥLS,hN)) (6.20)

increases. For the original optimization problem, λ = 1 in equation (6.20). As a

result, the adversarial example is

hadv = ĥLS + ϵsign(∇ĥLS
Lo(θ, ĥLS,hN)), (6.21)

where ϵ = ϵ0(1− r)
SNR

5
−1 for the modified optimization problem, sign(·) is the sign

function, and ∇ĥLS
Lo(θ, ĥLS,hN) is the loss gradient with respect to the input ĥLS.
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6.4.2 Outer minimization problem

With the inner maximization problem addressed, the outer minimization problem in

equation (6.19) is then solved to find the model parameters that minimize the loss

on the generated adversarial examples. The original dataset D is split into small

batches B and stochastic gradient descent (SGD) is employed to update the model

parameters

θt = θt−1 + µ
1

|B|
∑

ĥLS,hN∈B

∇θLo(θ, ĥLS + η∗,hN), (6.22)

where the gradient is evaluated at the maximum point η∗ found in the inner maxi-

mization problem, thanks to Danskin’s theorem [83].

6.5 Simulation results

In this section, we evaluate the proposed defense based on adversarial training via

some simulation results, following the setup described in Subsection 6.5.1. In Sub-

section 6.5.2, we consider the original optimization problem when performing the

defense and adversarial attacks, whereas Subsection 6.5.3 provides the results when

the proposed optimization problem is employed to perform the defense and the

adversarial attacks.

6.5.1 Simulation Setup

In this section, we consider the basic simulation setup in Section 5.3. The ICE net

is trained for each signal-to-noise ratio (SNR) with K = 5. The CP-OFDM system

has 64 subcarriers operating in a block-type pilot arrangement. 16-QAM symbols

are transmitted through a channel modeled using a pedestrian model with L = 10.

6.5.2 Scenario 1: original optimization problem

We first consider the optimization problem in equation (6.19) with λ = 0 and r =

0 to perform the defense and to craft the adversarial attacks. The mean square

error (MSE) between the channel estimate and the actual channel is presented as

a function of the SNR for random, worst-case and eavesdropping-assisted jamming

attacks in Figures 6.3, 6.4 and 6.5, respectively. The dashed lines represent a system

free of attacks, whereas the solid lines indicate the system is under attack. NN

standard is the ICE net trained only with clean samples, NN robust stands for the

ICE net trained with adversarial examples, and LS is the basic method for estimating

the channel without a neural network.
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Figure 6.3: MSE results when the OFDM receiver is under the random jamming
attack. The defense is based on the optimization problem in equation (6.19) with
λ = 0 and r = 0. The CP-OFDM system has 64 subcarriers and operates with a
block-type pilot arrangement. 16-QAM symbols are transmitted through a channel
modeled using a pedestrian model in which the channel order is L = 10. The
CP lenght is K = 5. The scenario is nonlinear, that is, a clipping distortion with
CR = 1.3 is present in the transmitter.

Figure 6.4: MSE results when the OFDM receiver is under the worst-case jamming
attack. The defense is based on the optimization problem in equation (6.19) with
λ = 0 and r = 0. The CP-OFDM system has 64 subcarriers and operates with a
block-type pilot arrangement. 16-QAM symbols are transmitted through a channel
modeled using a pedestrian model in which the channel order is L = 10. The
CP lenght is K = 5. The scenario is nonlinear, that is, a clipping distortion with
CR = 1.3 is present in the transmitter.

When the original optimization problem is considered, the impairment caused by

the worst-case jamming attack in the standard trained network is the most severe

among the considered attacks. This can be noticed by the gap between the solid and

dashed blue curves in Figure 6.4. Although the worst-case jamming attack impairs

the LS method less than the other attacks, there is still a significant gap between the
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Figure 6.5: MSE results when the OFDM receiver is under the eavesdropping-
assisted jamming attack. The defense is based on the optimization problem in
equation (6.19) with λ = 0 and r = 0. The CP-OFDM system has 64 subcarriers
and operates with a block-type pilot arrangement. 16-QAM symbols are transmit-
ted through a channel modeled using a pedestrian model in which the channel order
is L = 10. The CP lenght is K = 5. The scenario is nonlinear, that is, a clipping
distortion with CR = 1.3 is present in the transmitter.

solid and dashed red curves in Figure 6.4. This is reasonable since the loss function

does not consider the similarity constraints between the adversarial example and the

original sample. Therefore, the LS performance is affected in this case. As shown

in Figures 6.3 and 6.5, both the random and the eavesdropping-assisted jamming

attacks yield similar results. This unveils that we are possibly adding an overpowered

adversarial perturbation; that is, the adversarial perturbation is so high that it

damages not only the NN results but also the LS results significantly as in the

random case.

6.5.3 Scenario 2: proposed optimization problem

Finally, we consider the optimization problem proposed in equation (6.19) with

λ = 0.2 and r = 0.2 to perform the defense and to craft the random, worst-case and

eavesdropping-assisted jamming attacks in Figures 6.6, 6.7 and 6.8, respectively. In

this case, the NN robust outperforms or performs quite similarly to the NN standard

for clean samples (dashed lines). This shows that we can benefit from adversarial

training even when the system is free of jamming attacks. As shown in Figure 6.7,

the impairment caused by the worst-case jamming attack in the standard trained

network is no longer the most severe among the attacks. Now we are not only

interested in increasing the MSE when using the NN but also in minimally affecting

the MSE when using the LS method. To perform a fair comparison, we varied the

power of the jamming signal as in equation (6.19) when performing the random
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attack in Figure 6.6. Even though the impact on the MSE is more severe for the

random attack, the gap between the solid and dashed red curves is larger if we

compare it with the worst-case and the eavesdropping-assisted jamming attacks.

Unlike the previous scenario, the eavesdropping-assisted jamming attack is more

similar to the worst-case jamming attack. This encourages using the eavesdropping-

assisted scheme to craft jamming attacks that try to fool the NN without impacting

the LS method too much in practice, as the random attack does.

Figure 6.6: MSE results when the OFDM receiver is under the random jamming
attack. The defense is based on the optimization problem in equation (6.19) with
λ = 0.2 and r = 0.2. The CP-OFDM system has 64 subcarriers and operates
with a block-type pilot arrangement. 16-QAM symbols are transmitted through a
channel modeled using a pedestrian model in which the channel order is L = 10.
The CP lenght is K = 5. The scenario is nonlinear, that is, a clipping distortion
with CR = 1.3 is present in the transmitter.
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Figure 6.7: MSE results when the OFDM receiver is under the worst-case jamming
attack. The defense is based on the optimization problem in equation (6.19) with
λ = 0.2 and r = 0.2. The CP-OFDM system has 64 subcarriers and operates
with a block-type pilot arrangement. 16-QAM symbols are transmitted through a
channel modeled using a pedestrian model in which the channel order is L = 10.
The CP lenght is K = 5. The scenario is nonlinear, that is, a clipping distortion
with CR = 1.3 is present in the transmitter.

Figure 6.8: MSE results when the OFDM receiver is under the eavesdropping-
assisted jamming attack. The defense is based on the optimization problem in
equation (6.19) with λ = 0.2 and r = 0.2. The CP-OFDM system has 64 subcarriers
and operates with a block-type pilot arrangement. 16-QAM symbols are transmit-
ted through a channel modeled using a pedestrian model in which the channel order
is L = 10. The CP lenght is K = 5. The scenario is nonlinear, that is, a clipping
distortion with CR = 1.3 is present in the transmitter.
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6.6 Conclusions

In this chapter, we proposed a defense based on adversarial training to cope with

jamming attacks during the channel estimation of a wireless CP-OFDM system.

We considered three types of attacks to evaluate the proposed defense method. The

simulations show that adversarial training can enhance the performance of ML-based

channel estimators in CP-OFDM systems even when no jamming attack is present.
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Chapter 7

Conclusions

7.1 Final remarks

Wireless communications technology has advanced significantly during the past few

years. First, the wireless networks transitioned from analog to digital and began to

provide basic web applications, and subsequently, new applications were available,

demanding higher data rates. As wireless technologies evolve into 6G systems, the

demand for higher data rates keeps growing. The possible leading solutions for

beyond 5G and 6G communication systems include massive MIMO and OFDM.

However, despite their advantages, massive MIMO and OFDM face implementation

challenges. Through this work, we proposed solutions based on greedy algorithms

and ML techniques to both techniques’ implementation issues.

Due to the high cost of BS fabrication, massive MIMO systems are challenging to

implement. Since selecting a subset of the transmitting antennas is an alternative to

cope with the high cost of the BS, we proposed three low-complexity antenna selec-

tion algorithms based on the matching pursuit technique. We started by formulating

a channel–level antenna selection algorithm in which we obtain the subset of anten-

nas based only on the current channel estimate. We then proposed three symbol–

level antenna selection algorithms: ZFSL-MPAS, SL-MPPAS, and SL-MPGBPPAS.

ZFSL-MPAS uses the channel estimate and the messages to be transmitted to select

the antennas as a symbol– level algorithm. Still, ZFSL-MPAS applies ZP precoding

after obtaining the subset of antennas. Besides, SL-MPPAS and SL-MPGBPPAS do

not require performing an external precoding scheme after selecting the antennas.

SL-MPPAS and SL-MPGBPPAS consider precoding while selecting the antennas,

merging the two operations, and lowering the computational complexity because no

matrix inversion is required. Furthermore, since SL-MPGBPPAS generates a mes-

sage with quantized components, it can alleviate the amplifier linearity demands

and further reduce the BS fabrication cost. The proposed algorithms were evalu-
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ated and compared to the state-of-the-art using the BER and MSE. The simulation

results indicate that short coherence times make symbol-level algorithms appealing

in practice.

OFDM is another promising technique for 6G systems. Nevertheless, OFDM has

some drawbacks, including spectrum waste brought by the overhead of the redun-

dancy length and nonlinear distortion generated by methods to mitigate the peak-

to-average power ratio (PAPR). Additionally, selecting the appropriate amount of

redundancy can be challenging when the channel order is unknown. We, therefore,

presented ML-based strategies to address these problems. First, we proposed ICE

and SDMR neural networks to improve the OFDM system performance when non-

linearity from PAPR reduction techniques is present at the transmitter, and the

OFDM symbol has insufficient redundancy. ICE net aims to refine the LS channel

estimate, whereas SDMR is in charge of enhancing the detected symbol. Next, we

applied the introduced NNs in OFDM systems with cyclic and zero-prefix under the

block and comb-type pilot arrangements. The simulations show that the proposed

OFDM receivers can improve the BER performance in the considered scenarios.

We then proposed a deep reinforcement learning framework to select the amount of

redundancy in a CP-OFDM system based on the current MSE between the actual

and the estimated channel response. The automatically chosen redundancy length

is sufficient to yield the MSE target previously prescribed.

The considered OFDM systems are sensitive to jamming attacks such as the

pilot jamming that aims to harm the channel estimation. Even though NNs can

be employed to enhance channel estimates, the risk is increased because NNs can

be deceived by adversarial examples. Finally, we proposed an adversarial training

approach to improve the channel estimation. The simulations demonstrate that,

even in the absence of a jamming attack, adversarial training can improve the per-

formance of ML-based channel estimators in CP-OFDM systems.

7.2 Future work

In this work, we proposed a DS approach in which the data samples are selected at

the batch level in order to improve the classification accuracy. We also used the DS

strategy to improve adversarial training’s robust-accuracy tradeoff. We believe that

the NNs utilized to address the wireless communications issues in our study can

also benefit from this performance enhancement. Therefore, future work concerns

applying the proposed DS strategy to the training process of the NNs used to improve

the channel estimation (ICE net) and the detected symbol (SDMR net). To balance

the proportion of clean and adversarial samples and to gain a deeper understanding

of robustness in the context of wireless networks, the DS approach can also be used
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when training the ICE net with adversarial examples.

The adversarial training framework introduced in this work can also be extended

to the context of federated learning. In federated learning, some sensors train locally

and send the model’s variation to the server. Hence, we can use adversarial train-

ing to prevent malicious attacks from interfering with this communication between

sensors and server. Low complexity neural networks like the ones proposed in this

work could also be used in the federated learning approach. Moreover, we believe

that others standard building blocks in established communication set up could be

replaced by those low complexity neural networks. In this way, the solutions com-

bining ML might result in significant advantages in situations when the assumptions

diverge from reality.

Furthermore, we plan to investigate ML-based solutions for massive MIMO

sytems. For example, a reinforcement learning scheme can be designed to obtain

the set of selected antennas. In this case, the actions might comprise the antennas

indices. And instead of choosing just one action as the one with maximum probabil-

ity, we could select S actions, that is, the ones with highest probabilities. Another

possibility is to employ a neural network to estimate the MIMO channel.
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//dl.acm.org/citation.cfm?id=2627435.2670313>.

[92] YU, D., SEIDE, F., LI, G., DENG, L. “Exploiting sparseness in deep neural

networks for large vocabulary speech recognition”. In: IEEE International

Conference on Acoustics, Speech and Signal processing (ICASSP), pp.

4409–4412, Kyoto, 2012.

[93] LIU, C., ZHANG, Z., WANG, D. “Pruning deep neural networks by opti-

mal brain damage”. In: Fifteenth Annual Conference of the International

Speech Communication Association (ISCA), Singapore, 2014.

[94] LUO, J.-H., WU, J., LIN, W. “Thinet: A filter level pruning method for deep

neural network compression”. In: Proceedings of the IEEE International

Conference on Computer Vision, pp. 5058–5066, Oct 2017.
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