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à obtenção do t́ıtulo de Doutor em Engenharia

Elétrica.

Orientadores: Wallace Alves Martins

Ediz Cetin
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sou grato por você ser uma pessoa da noite. Obrigado, Marcelo Spelta e Marcelo

Castro por serem bons amigos, apesar do gosto horŕıvel para times de futebol e
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

CONTRIBUIÇÕES PARA MIMO MASSIVO: ALOCAÇÃO DE POTÊNCIA,

SELEÇÃO DE USUÁRIOS E COMUNICAÇÕES CELL-FREE

Rafael da Silva Chaves

Agosto/2022

Orientadores: Wallace Alves Martins

Ediz Cetin

Markus Vińıcius Santos Lima

Programa: Engenharia Elétrica

Essa tese apresenta novas contribuições para MIMO massivo (do inglês, massive

multiple-input multiple-output), cobrindo alocação de potência, seleção de usuários

e sistemas sem célula. Para alocação de potência, nós propomos um novo esquema

de inicialização para o algoritmo max-min usado em sistemas MIMO massivo com

visada direta. O esquema proposto garante convergência para o ponto ótimo. Além

disso, propomos o teste dos estremos, um procedimento mais eficiente para ini-

cializar o intervalo de busca. Para seleção de usuários, revisamos os algoritmos de

seleção de usuários para sistemas MIMO massivo com visada direta, destacando

o papel da propagação favorável e o projeto dos pré-codificadores lineares. Nós

também propomos dois novos algoritmos. O primeiro, chamado ICIBS (do inglês,

inter-channel interference-based selection), considera a interferência global do sis-

tema, enquanto o segundo, chamado FRBS (do inglês, fading-ratio-based selection),

considera a interferência global e o desvanecimento de grande escala. Os algorit-

mos apresentam vantagens em relação aos algoritmos da literatura, superando-os

em alguns cenários como os aglomerados e superlotados. Para os sistemas MIMO

massivo sem célula, avaliamos o desempenho em uplink dos sistemas MIMO mas-

sivo sem célula quando corrompidos por rúıdo de quantização e operando em canais

com desvanecimento Rician correlacionado. Nós derivamos a eficiência espectral

para qualquer pré-codificador linear, o estimador MMSE (do inglês, minimum mean

squared error) de canal ótimo e um sub-ótimo combinador escalável.

vi



Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

CONTRIBUTIONS TO MASSIVE MIMO: POWER ALLOCATION, USER

SELECTION, AND CELL-FREE COMMUNICATIONS

Rafael da Silva Chaves

August/2022

Advisors: Wallace Alves Martins

Ediz Cetin
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This thesis presents new contributions to the massive MIMO field, covering as-

pects related to power allocation, user selection, and cell-free systems. Regarding

power allocation, we propose a new initialization scheme for the max-min fairness

power allocation algorithm used in massive MIMO systems under line-of-sight (LoS)

propagation. The proposed scheme guarantees convergence to the optimal point.

Additionally, we propose the bound test procedure as an even more efficient way of

initializing the search interval. As for the user selection, we review the user selection

algorithms for massive MIMO systems under LoS propagation, highlighting the role

of the favorable propagation condition in this scenario and the design of standard

linear precoders. Moreover, we propose two new algorithms. The first one, cal-

led inter-channel interference-based selection (ICIBS), takes the global interference

in the system into account, whereas the second one, namely fading-ratio-based se-

lection (FRBS), considers both the global interference and the large-scale fading.

These proposed algorithms present advantages over the algorithms in the literature,

outperforming them in some scenarios, such as clustered and crowded scenarios. For

the cell-free massive MIMO systems, we evaluate the uplink performance of cell-free

massive MIMO systems corrupted by quantization noise under correlated Rician fa-

ding channels. We derive the uplink spectral efficiency for any linear combiner, the

optimal minimum mean squared error channel estimator, and a suboptimal scalable

combiner.
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Chapter 1

Introduction

1.1 Massive MIMO

1.1.1 Cellular Massive MIMO Systems

Massive multiple-input multiple-output (MIMO) emerged as a disruptive technology

that promised to deliver very high spectral efficiency (SE) and reduced inter-cell

interference by using spatial multiplexing and simple linear processing [1]. Mas-

sive MIMO systems can be implemented in both centralized (or collocated) [1] and

distributed [2] manners — see Figure 1.1 for an illustration of these systems. The

centralized version has been the main focus of massive MIMO related works since the

initial proposal in [1]. Centralized massive MIMO systems employ a large number

of antennas at the base station (BS), serving users within the same time-frequency

radio resource. By using a large number of antennas, the small-scale fading effect

can be eliminated through the so-called channel hardening, yielding a deterministic

scalar channel [3]. Moreover, one of the unique and attractive advantages provided

by the massive MIMO systems is the effective and computationally tractable power-

control policy, which is essential to guarantee a good throughput performance for

all users [4]. Furthermore, the mutually orthogonal channel vectors provided by the

favorable propagation (FP) condition enable the use of simple linear processing to

achieve very high throughput for massive MIMO systems [5]. These benefits make

centralized massive MIMO very attractive for wireless communication systems.

One of the most critical aspects for the realization of massive MIMO systems

is meeting the FP condition, which requires the channel vectors to be mutually or-

thogonal. However, this condition is rarely met in real propagation environments.

Fortunately, the asymptotically favorable propagation (AFP) condition is sufficient

to guarantee high throughput by using simple linear processing [5]. This condition

is achieved by non line-of-sight (NLoS) environments with rich scattering, which

can be modeled by an i.i.d. Rayleigh fading channel [6]. The i.i.d. Rayleigh channel
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Figure 1.1: Example of cellular centralized and distributed massive MIMO systems.

has the advantage of yielding tractable analytical expressions for the achievable rate

of massive MIMO systems [7]. However, in practical applications, the propagation

channel is composed of NLoS and line-of-sight (LoS) components. Studying the ex-

treme cases, i.e., NLoS and LoS, is important to have performance bounds since, in

practice, we will have a case lying in-between the LoS and NLoS cases. Therefore,

although massive MIMO systems are frequently studied under the assumption of

i.i.d. Rayleigh channel models, the LoS channels are also important [8–11]. In fact,

the massive MIMO technology is a potential candidate for use in millimeter-wave

(mmWave) bands, where LoS is the main form of propagation due to the high atten-

uation and low penetration of the electromagnetic waves at these frequencies [12–15].

In the LoS propagation environment, the array geometry and the angle of arrival

(AoA) corresponding to each user determines the channel [16]. This is an example

of real propagation environment in which the FP condition may be met, albeit in

several cases this condition does not hold [17]. For instance, both the FP and AFP

conditions are violated when users are close to each other, i.e., when they have

similar AoAs [8, 9, 18–20]. The probability of having close users tends to increase as

the number of users served by a given BS grows. This proximity of users has major

impact on the SE of massive MIMO systems, degrading it severely when users have

similar AoAs [8]. This scenario is recurrent in sports and cultural events, where the

number of users in a given region is very high. Dealing with such crowded scenarios

is also important for the internet of things (IoT) since a large number of devices

may be connected to the wireless network [21]. Additionally, although high, the

finite number of antennas at the BS limits the number of transmit beams that can

be formed, thus constraining the number of users that can be served simultaneously.

Therefore, performing user scheduling, which includes user selection in its core, is

of paramount importance for the proper operation of massive MIMO systems.
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1.1.2 Cell-free Massive MIMO Systems

Combined with massive MIMO, one way to further improve the SE is by deploying

even smaller cells [22]. However, by increasing the density of the cells more and

more, the inter-cell interference becomes a bottleneck for the performance of wire-

less communication systems, which is not different for centralized massive MIMO

systems [23].

Distributed massive MIMO systems represent an alternative to the conventional

collocated massive MIMO systems [2]. Unlike collocated massive MIMO systems

that employ large number of antennas at the BS, distributed massive MIMO sys-

tems “break” the antenna array into single-antenna elements, called access points

(APs), and spread them across the cell. This distributed version of massive MIMO

can provide uniformly good service for all users and a very high probability of cover-

age by exploiting macro-diversity and differences in the path-loss [24]. The general

concept of distributed massive MIMO has different implementations in the litera-

ture and includes interesting ideas, such as the so-called network MIMO [25], the

coordinated multipoint (CoMP) scheme [26], and the distributed antenna systems

(DAS) [27]. The distributed massive MIMO concept has huge potential, at least

theoretically, albeit it suffers from some practical limitations. Distributed massive

MIMO systems require low-latency and high-rate fronthaul links since all the pro-

cessing is performed by the BSs [24]. Moreover, if the BSs cooperate to cope with the

inter-cell interference, the distributed systems also require network synchronization

and a high-rate backhaul link [28].

In [29], the so-called cell-free (CF) massive MIMO was proposed as a possible

implementation of the distributed massive MIMO concept. CF massive MIMO sys-

tems rely on the time-division duplex (TDD), like the centralized massive MIMO

systems, and large number of geographically distributed APs serving a small num-

ber of users with the aid of a central processing unit (CPU) operating in the same

time-frequency resource, as illustrated in Figure 1.2. The concept of cell bound-

ary disappears in CF massive MIMO, and the APs simultaneously serve all users.

Without the concept of cell boundary, we also do not have BSs anymore, eliminat-

ing the necessity of BS synchronization, one significant drawback of the network

MIMO systems. Furthermore, CF massive MIMO systems use distributed signal

processing, i.e., most of the processing is performed in the APs. During the uplink

training phase, each AP estimates its own channel state information (CSI), and in

the downlink (DL) payload transmission, they precode the signal to be transmitted.

This distributed signal processing reduces the burden on the fronthaul links since the

APs only need to transmit the large-scale fading information to the CPU in order

to perform the power allocation. Additionally, CF massive MIMO systems can also
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be a solution for applications with high connectivity demand, such as IoT [30, 31].

The main benefits of CF massive MIMO systems are listed below.

CPU

Figure 1.2: Example of cell-free massive MIMO system.

Improved Energy Efficiency

The energy efficiency (EE) is a key performance metric in the design of future wire-

less communication systems [32]. Centralized massive MIMO systems can achieve

high EE since the radiated power by each antenna is significantly reduced when a

large number of antennas are employed in the array. In CF massive MIMO systems,

the improved EE is one of the main benefits. At first glance, it is expected that the

power consumption of fronthaul links connecting the APs to the CPU reduces the

overall EE of the system when the number of APs increases significantly. However,

this issue can be circumvented by employing AP selection and proper power alloca-

tion. Recent works show that with proper power allocation, the CF massive MIMO

systems can double the EE of cellular massive MIMO ones [33]. Furthermore, by

performing AP selection, the EE can be improved tenfold [34].

Flexible and Cost-effective Deployment

Another advantage of CF massive MIMO systems is their flexible and cost-effective

deployment. In centralized massive MIMO systems, the number of antennas at the

BS is limited by the physical space available at the BS. For instance, at a carrier

frequency of 3 GHz, the wavelength is 10 cm, and a 100-antenna uniform planar

array has a dimension of 0.5 m × 0.5 m. Hence, a BS of a centralized massive
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MIMO system equipped with this array cannot be employed in environments with

limited space. On the other hand, this issue does not occur in CF massive MIMO

systems since the AP is comprised of a much smaller antenna array, typically ranging

from 1 to 4 antennas [35]. Therefore, in CF massive MIMO systems, it is possible

to place the APs in space-constrained environments, availing the full potential of

massive MIMO since the number of antennas is not constrained by the physical

space of the BSs.

Uniform Quality of Service

In a CF massive MIMO system, it is expected that a considerable amount of APs

surround each user. Additionally, it is also expected that the average distance be-

tween the closest APs and an arbitrary user is substantially reduced when compared

with a centralized massive MIMOs system and a small-cell system. Based on this,

an intuitive conclusion is that the CF massive MIMO system provides more uniform

service than the collocated ones, which is indeed true. In [29], the authors show that

by performing conjugated beamforming along with max-min power allocation based

solely on the large scale fading, a CF massive MIMO system yields nearly a five-

fold increase in 95%-probability throughput (95PT) over small-cell systems when the

shadow fading is uncorrelated and a tenfold increase for a correlated shadow fading.

1.1.3 Massive MIMO in Practical Systems

Massive MIMO is currently being used in the initial deployment stage of 5G networks

in products and solutions developed by Ericsson and Nokia. In 2018, Ericsson and

the Russian service provider MTS teamed up in order to provide a superior mobile

broadband experience for the costumers during the 2018 FIFA World Cup. This

setup was deployed in seven of the eleven tournament cities, including stadiums,

fan zones, selected transportation hot spots, and some of the most famous Russian

landmarks. Moreover, in 2019, Ericsson and service provider Claro presented the

first 5G stadium in Brazil, during the Led Zeppelin in Concert show at Allianz Park.

The use of massive MIMO in 5G networks is already reality, but still under

development even when we consider 5G-based networks. In 2019, 3rd Generation

Partnership Project (3GPP) released the first full set of 5G standards, covering

standalone 5G, with a new radio system complemented by a next-generation core

network [36]. For 5G phase 2, 3GPP aims to cover topics as diverse as multimedia

priority service, vehicle-to-everything application layer services, 5G satellite access,

local area network support in 5G, wireless and wireline convergence for 5G, ter-

minal positioning and location, communications in vertical domains and network

automation, and novel radio techniques [37]. Based on these facts, this Ph.D. work
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contributes to the area, focusing on power allocation, user selection, and cell-free

massive MIMO systems.

1.2 Problem Statements

1.2.1 Power Allocation

The power-control policy is essential to guarantee a good throughput performance

for all users. A common power-control policy is the maximization of the sum-

throughput within the cell [38, 39]. This approach does not consider each users’

performance, only the “global” performance in the cell. A widely used power-

control policy in massive MIMO systems is the max-min fairness power allocation

(MMFPA) [9, 40–42], which guarantees egalitarian performance for each user in a

given cell. The MMFPA aims to maximize the worst performance among all users in

the cell by maximizing the minimum signal-to-interference-plus-noise-ratio (SINR).

The MMFPA algorithm proposed in [9] uses a bisection search, solving a set of linear

equations at each iteration. However, this implementation is susceptible to the choice

of the initial search interval of the bisection method, which may fail to converge to

the optimal point. The difficulty of analyzing this issue is further compounded by

the fact that it is not always observable given its dependence on random variables

such as the large-scale fading coefficients. The algorithm may converge to the opti-

mal point even when the initial search interval is not chosen properly. Hence, it is

not simple to find an initial search interval that provides the optimal point. In [9],

the authors provide a heuristically-defined search interval, which can eventually be

replaced by one obtained via an exhaustive search whenever the heuristic interval

fails. While the heuristic search interval often leads to convergence to a wrong point

(not the optimal point), as confirmed by the simulation results for a massive MIMO

setup, the exhaustive search may take too long to find a proper initialization of

the search interval. In Chapter 3, we present solution to this problem, proposing

two new initialization approaches that guarantee the convergence of the algorithm

proposed in [9].

1.2.2 User Selection

The SE of massive MIMO systems is directly related to the SINR associated with

each user. Intuitively, users that cause strong interference among each other should

not be transmitting simultaneously in order to maximize the overall SINR during a

time slot. The general user selection formulation is coupled with power allocation,

given its impact on the SE, thus entailing a joint optimization problem. How-

ever, as the resulting joint optimization problem is computationally hard to solve,
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it is common to split it into a user selection followed by a power allocation prob-

lem [9, 43, 44]. Still, selecting users whose transmissions have the highest SINRs is

computationally complex, requiring an exhaustive search (ES) across many possible

combinations of users. For conventional multi-user multiple-input multiple-output

(MU-MIMO) systems, the most popular user selection algorithms are the greedy

zero-forcing dirty-paper algorithm [45], greedy scheduler with equal power alloca-

tion [46], and semi-orthogonal selection (SOS) [43]. While the former ones perform

user selection by maximizing directly the DL SE of the system, the latter selects

users in order to yield a subset comprised of the “most orthogonal” channel vectors.

The greedy zero-forcing dirty-paper and greedy scheduler with equal power alloca-

tion algorithms are based on the dirty paper coding (DPC) [47], which achieves the

capacity of DL MIMO systems with Gaussian channels [48]. However, the implemen-

tation of DPC is problematic in practical situations due to the high computational

burden, particularly for a large number of antennas and users [43].

The SOS algorithm, on the other hand, does not suffer from the aforementioned

problems and, therefore, has been widely employed for user selection in massive

MIMO systems. In [49], the SOS algorithm is used along with an antenna selection

algorithm to solve a joint antenna and user selection problem. In [50], the SOS

algorithm is used for user scheduling in a scenario where the number of antennas

is slightly larger than the number of users. Moreover, a new version of the SOS

algorithm, called massive MIMO pair-wise SOS algorithm is proposed, in which the

SOS is initialized with the full set of users instead of an empty set, which may lead

to reduced complexity when the system has more antennas than users. In [51], the

SOS algorithm is used to select users in a crowded environment, simulating an IoT

application. Additionally, a new version of the SOS algorithm, called modified semi-

orthogonal selection (M-SOS) is proposed in which the SOS operation is no longer

limited by the number of antennas, but by a given number of users to be selected.

Unlike the SOS algorithm, there exist several user selection solutions aimed

directly at the massive MIMO case, such as the random selection (RS) [52, 53],

the delete the minimum lambda (DML) [54], and the correlation-based selection

(CBS) [9, 44, 55] approaches. The RS approach is a näıve way to perform user

selection without optimizing any performance criterion. The DML is a decremental

user selection algorithm based on zero-forcing (ZF) precoding and, consequently, it

can only be used in cases where the number of users is smaller than the number

of antennas, not being suitable for applications involving crowded scenarios. The

CBS algorithm, on the other hand, selects users based on the correlation between

pairs of users’ channels, iteratively removing those users that strongly interfere with

one another. Hence, the CBS aims to maximize the SINR gain of a particular user

and does not guarantee the best achievable overall SINR gain for the whole system.
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Other classes of algorithms that can be used to perform user selection in massive

MIMO are the user grouping algorithms [10, 56, 57] and recently proposed ma-

chine learning-based selection algorithms [58]. These algorithms separate users into

clusters, serving a reduced number of users per cluster in the same time-frequency

resource in order to decrease the interference between users within the same cluster.

However, user grouping algorithms are more focused on the precoder design than

on the selection of the users inside the clusters.

In summary, most of the aforementioned user selection algorithms depend on

particular precoding and/or power allocation schemes, not being suitable to a wide

range of applications involving massive MIMO systems. Therefore, in this thesis,

we focus on the SOS and CBS algorithms as they require only CSI and are not

constrained to a single precoding scheme. Moreover, the user selection algorithms

can be categorized into two distinct classes: large-scale fading aware (LSFA) and

small-scale fading aware (SSFA) algorithms. The LSFA algorithms are usually good

solutions for massive MIMO systems under NLoS propagation since the small-scale

fading does not affect the system performance under this type of propagation [59].

For the LoS case, due to the characteristics of the channel, the small-scale fading

is not averaged out like in the NLoS propagation and it impacts the system per-

formance, requiring the use of SSFA algorithms. Although the small-scale fading

has a significant impact on the performance of massive MIMO systems under LoS

propagation, the large-scale fading also plays a significant role in the SE of massive

MIMO systems operating in this environment. Disregarding the large-scale fading,

even in an LoS propagation environment, is equivalent to assuming that all users

are equidistant from the base station and experience the same level of shadowing,

which is not a reasonable approximation in practical applications. To the best of our

knowledge, no such algorithms that can exploit both types of fading are reported in

the literature.

In Chapter 4, we propose a new user selection approach based on inter-channel

interference (ICI), namely inter-channel interference-based selection (ICIBS), that

accounts for the ICI in a global manner, differently from other user selection algo-

rithms. Morever, we propose another new user selection algorithm which relies on a

metric that jointly considers the small- and large-scale fading effects, called fading-

ratio-based selection (FRBS). The proposal is a generalization of the ICIBS, having

improved maximum throughput and similar computational complexity. FRBS uses

a ratio composed by the ICI and the square root of the large-scale fading. The idea

behind this heuristic approach is to exploit the impact of the small- and large-scale

fading effects for a given user. In Chapter 5, simulation results show that when

compared to the competing algorithms, the proposed ICIBS approach provides an

improvement of at least 10.9% in the maximum throughput and 7.7% in the 95PT
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when half of the users were selected. Furthermore, in Chapter 6, simulation re-

sults show that the use of FRBS with ZF precoder results in 26.28% improvement

in the maximum throughput when compared with SSFA algorithms, and 35.39%

improvement when compared with LSFA.

1.2.3 Cell-free Massive MIMO

Although the benefits of CF massive MIMO are well articulated in the literature,

there are still open research questions regarding the best appropriate network ar-

chitecture to deploy these systems. CF massive MIMO systems can be deployed

in three different ways: centralized, distributed, and semi-distributed [60]. In the

centralized implementation, the APs simply work as relays, forwarding the received

signals to the CPU that processes and detects the signal. This implementation al-

lows the use of more powerful signal processing algorithms at the CPU that yields

better SE, albeit results in increased fronthaul traffic since it requires exchange of

CSI [61, 62]. In the distributed case, the APs are responsible for the major part

of the signal processing, whereas the CPU is only responsible for the detection. In

this implementation the fronthaul traffic is minimized, but the SE performance is

degraded due to the distributed signal processing since the APs only have access to

their signal information. The semi-distributed operation lies in between the other

two where the signal processing is split among the APs and the CPU. This deploy-

ment guarantees a good trade-off between SE performance and fronthaul traffic.

However, some of the assumptions made while studying the performance of the CF

massive MIMO systems considering these network deployment architectures, such

as all APs serving all user equipments (UEs) [29, 63] and perfect hardware compo-

nents [35, 64], are not realistic in practical systems.

The assumption that all APs serve all UEs is energy inefficient when realized in

practical systems [34]. This inefficiency is due to the fact that APs may excessively

waste energy by serving distant UEs. This assumption also makes the network un-

scalable, i.e., the complexity of the signal processing algorithms increases with the

number of UEs, hindering their use in scenarios with large number of UEs [35]. The

original algorithms proposed for CF massive MIMO systems fail in providing proper

scalability, mainly regarding power allocation. This issue needs to be addressed

when new algorithms are proposed for CF massive MIMO systems in order to make

these systems viable for practical deployment [23, 35, 65]. Moreover, the main

contributions in CF massive MIMO rely on ideal hardware [29, 35, 64], for exam-

ple, infinite-resolution analog-to-digital (AD) and digital-to-analog (DA) converters.

The ideal hardware assumption is unrealistic since the hardware cost dramatically

increases with the number of APs, which may be a bottleneck for the practical
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implementations of CF massive MIMO systems, calling for low-quality hardware.

In practice, the hardware may induce signal distortion that affects the SE and the

EE of the CF massive MIMO systems [66]. In [66], the authors studied the effect

of general hardware impairment in the APs and UEs on the performance of CF

massive MIMO systems. Additionally, practical hardware components in the CPU

yield finite-capacity fronthaul links, which hinders the use of some signal processing

algorithms that demand a high-rate communication between the CPU and APs.

One of the critical components in the CPU are the AD converters that introduce

nonlinearities due to the quantization process. The effect of this impairment has

already been studied in some works [67–71].

In Chapter 7, we present a semi-distributed version of a CF massive MIMO

network, where both the CPU and the APs suffer from the effects caused by the AD

converters. We evaluate the performance of such network operating over a Rician

fading channel. In order to evaluate the uplink (UL) performance of this network, we

derive the minimum mean squared error (MMSE) channel estimator and its scalable

version that limits the interference from the other users. Moreover, we derive the

general expression of the UL SINR for any given linear combiner. This expression

is useful because it allows us to analyze the performance of different combiners

with different levels of distortions affecting the network. Additionally, we present

the suboptimal local partial minimum mean squared error (LP-MMSE) combiner

taking into account the effect of the AD converters. This combiner is a scalable

version of the of the MMSE, which uses only the information from the UEs that are

being served by the AP that is processing the signal. Furthermore, we derive the

optimum large-scale fading decoding (LSFD) vector for this scenario as well as its

nearly optimum scalable version.

1.3 Contributions

The specific contributions of this thesis are:

1. Study of massive MIMO under LoS propagation: This thesis provides a

comprehensive study of massive MIMO systems under LoS propagation, cov-

ering some of the most fundamental aspects of massive MIMO systems, such

as the FP and the SE. Additionally, the thesis shows the main differences

between NLoS and LoS propagation models in terms of FP and extends pre-

vious results from the literature. Furthermore, an extensive set of simulation

results considering several user selection algorithms, different linear precoders,

various setups covering low and high interference levels, and also the effect of

imperfect CSI are provided. To the best of our knowledge, there is no other
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work providing such a detailed review and study of massive MIMO systems

under LoS propagation model. This contribution is presented in Chapter 2.

2. Power allocation: We use the Perron-Frobenius theory [72] to explain why

the bisection search algorithm may fail to converge to an optimal point, de-

pending on the choice of the initial search interval. In addition, we use the

Perron-Frobenius theory to derive an initial search interval for the algorithm

in [9] that guarantees optimality by providing a power allocation vector for a

massive MIMO system with maximum ratio transmitter (MRT) at each itera-

tion of the bisection search. Moreover, we propose a simple procedure, herein

called bound test (BT), which leads to reduced computational complexity. The

BT procedure is a consequence of the Gershgorin circle theorem [72] that al-

lows us to avoid the eigenvalue decomposition in some cases, decreasing the

computational complexity. Furthermore, BT still reduces the computational

load by providing a tight search interval when the eigenvalue decomposition is

indeed required. Simulation results show that the proposed initial search inter-

val leads to reduced computational complexity. This contribution is presented

in Chapter 3.

3. Literature review on user selection: This thesis provides a comprehensive

literature review of user selection algorithms for massive MIMO focusing on

two important techniques, namely, the SOS and CBS algorithms. These algo-

rithms work quite well in the massive MIMO scenario and require only CSI,

thus they are not constrained to some specific precoding and power allocation

schemes. These two techniques are covered in detail and a thorough analysis

of their computational complexity is provided. This contribution is presented

in Chapter 4.

4. ICIBS algorithm: This thesis proposes a new user selection algorithm based

on ICI, called ICIBS, which has the same flexibility of SOS and CBS algo-

rithms. However, unlike SOS and CBS, the ICIBS is designed to address

those situations in which there are many users interfering with each other,

which yields higher interference levels. In these cases, a significant advantage

of ICIBS over the other algorithms can be observed. On the other hand, when

dealing with lower interference levels, e.g., when the users were spread over

the cell, the ICIBS performed as good as the other algorithms. Further, the

computational complexity of ICIBS is much lower than that of SOS, and only

slightly higher than that of CBS. This contribution is presented in Chapters 4

and 5.
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5. FRBS algorithm: In this thesis, we also propose another user selection algo-

rithm which relies on a metric that jointly considers the small- and large-scale

fading effects, called FRBS. The proposal is a generalization of the ICIBS,

having improved maximum throughput and similar computational complexity.

FRBS uses a ratio composed by the ICI and the square root of the large-scale

fading. The idea behind this heuristic approach is to exploit the impact of the

small- and large-scale fading effects for a given user. Moreover, we present re-

sults for the SOS algorithm using the large-scale fading information, which to

the best of our knowledge has not been done before. Results show that FRBS

yields an SE close to the one obtained via the ES approach and outperforms

the competing algorithms in terms of cost-benefit relation, i.e., FRBS achieves

similar throughput with significantly lower computational complexity. Addi-

tionally, FRBS improves the maximum throughput of SSFA and LSFA user

selection algorithms by at least 25.17% when combined with the ZF precoder.

This contribution is presented in Chapters 4 and 6.

6. Effects of quantization in CF massive MIMO: We evaluate the UL per-

formance of CF massive MIMO systems where the quantization effects are

taken into consideration in both the CPU and the APs. This model closely

represents a practical implementation of CF massive MIMO, which is the ra-

dio stripe system [23]. We use a semi-distributed implementation where, by

reducing the fronthaul traffic, we aim to minimize the quantization effects on

the performance of the system. An expression for the UL SE of a scalable

semi-distributed CF massive MIMO system under correlated Rician fading is

derived based on the channel statistics, taking into account the effect of the

channel estimation errors due to pilot contamination and quantization distor-

tion of practical hardware. Moreover, we derive the MMSE estimate for the Ri-

cian fading channel taking into account the quantization effects. Additionally,

we derive the optimal LSFD vector for the semi-distributed implementation.

Further, we present scalable version for both the MMSE channel estimate and

the LSFD vector.

1.4 Publications

The contributions of Chapter 3 were published in the IEEE Communications Let-

ters [J1]. The contributions of Chapter 2, part of Chapter 4 regarding the literature

review and the ICIBS algorithm, and Chapter 5 were published in URSI GASS

2021 [C1] and in IEEE Open Journal of the Communications Society [J2]. Part of

Chapter 4 regarding the FRBS algorithm and Chapter 6 were accepted for publica-
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tion in the Wireless Networks [J3].

1.5 Notation

Throughout this work, vectors and matrices are represented in bold face with lower-

case and uppercase letters, respectively. The symbols C, R, R+, Z, and N denote the

sets of complex, real, non-negative real, integer, and natural numbers, respectively.

The set of CM×K denotes all M ×K matrices comprised of complex-valued entries.

The notation |X | stands for the cardinality of the X . The symbol IM denotes an

M ×M identity matrix and 0M×K denotes an M ×K zero matrix.

The vector x ∈ CM×1 can be represented as

x =
[
x1 x2 · · · xM

]T
,

and the matrix X ∈ CM×K can be represented as

X =


[X]11 [X]12 · · · [X]1K

[X]21 [X]22 · · · [X]2K
...

...
. . .

...

[X]M1 [X]M2 · · · [X]MK

 ,
or

X =
[
x1 x2 · · · xK

]
.

The notation XT, X∗, XH, and X−1 stand for transpose, conjugate, conjugate trans-

pose, and inverse operations on X, respectively. Diag (x) is a diagonal matrix with

x on its main diagonal, and span {x1, · · · ,xK} is the set of all linear combinations

of the vectors x1, · · · ,xK . The matrix XX ∈ C|X |×|X | is a matrix whose rows and

columns are selected from X ∈ CM×K by the elements of X . abs (X) is a matrix

given by

abs (X) =


|x11| |x12| · · · |x1K |
|x21| |x22| · · · |x2K |
...

...
. . .

...

|xM1| |xM2| · · · |xMK |

 .
The symbol ⊗ stands for the Kronecker product. The symbols CN (m,C) and

U(a, b) respectively denote a circularly symmetric Gaussian distribution with mean

m and covariance matrix C and a uniform distribution between a and b. The nota-

tions E {x} and Var {x} stand for the expected value and variance of x, respectively.

The notations Cov {x} and Cov {x,y} stand for the covariance matrix of x and

the cross-covariance of x and y, respectively. The notation x
p−→ y means that x

13



converges to y in probability.
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Part I

Cellular Massive MIMO Systems
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Chapter 2

Massive MIMO: A Brief Overview

2.1 Introduction

Massive MIMO, also called large-scale antenna wireless communication system, was

first proposed by Marzetta in [1]. As mentioned in Chapter 1, massive MIMO

systems arose as a disruptive technology, with very promising results in terms of

sum-rate capacity and spectral efficiency [2, 5, 73–75]. The main concept of massive

MIMO is equipping the BS with a large number of antennas and serving multiple

terminals using the same time-frequency resource [4], which is the main difference

between massive MIMO systems and conventional MU-MIMO systems. By using

very large arrays at the BS, massive MIMO systems can achieve nearly optimal

capacity with simple linear processing techniques. Conventional MU-MIMO can

only achieve the same capacity levels by using expensive nonlinear signal processing

techniques. This chapter presents the basic concepts of massive MIMO systems

under LoS propagation, highlighting the main differences among massive MIMO

systems under NLoS propagation.

2.2 Massive MIMO Channel

The massive MIMO channel can be written as [1]

G = HDiag (β)1/2 , (2.1)

where H ∈ CM×K is the small-scale fading matrix and β ∈ RK×1
+ is the large-scale

fading vector. For massive MIMO systems, the most common models for the small-

scale fading are the i.i.d. Rayleigh fading and the uniformly random line-of-sight

(UR-LoS). These two types of channels model extreme propagation scenarios; for

example, the UR-LoS models an LoS scenario whereas the i.i.d. Rayleigh models a

NLoS scenario. The former is more suitable for short-range communications, and
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Figure 2.1: Line-of-sight channel between the kth user and the M -antenna ULA.

the latter is more suited for long-range communications. In practice, the actual

propagation channel is likely to lie in-between these two extreme cases [4].

The UR-LoS channel vector with the M -antenna standard uniform linear array

(ULA) illustrated in Fig. 2.1 is given by1

gk =
√
βkhk, ∀ k ∈ K, (2.2)

where βk ∈ R+ is the large-scale coefficient for the kth user, hk ∈ CM×1 is the

small-scale fading vector for the kth user denoted by [76]

hk = ejϕk
[
1 e−jπ sin(θk) · · · e−j(M−1)π sin(θk)

]T
, (2.3)

ϕk ∼ U(−π, π) is the phase shift associated with the array and the kth user,

θk ∼ U(−π, π) is the AoA for the kth user, and K = {1, 2, · · · , K} is the set of all

user indices.

Another popular array used in massive MIMO system is the uniform rectangular

array (URA). This type of array, in addition to the azimuth angle, can also steer a

beam in the elevation angle. Further, the use of URA enables the placement of the

same number of antennas of ULA in a smaller area, allowing its use in space-limited

scenarios. The small-scale fading vector for this array is given by [9]

hk = ejϕkh
(1)
k ⊗ h

(2)
k ∈ CM1M2×1, (2.4)

1A standard ULA is an array in which the distance between adjacent antennas d is equal to
half of the signal wavelength λ [76].
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where

h
(1)
k =

[
1 e−jπ

√
1−ν2k cos(ψk) · · · e−j(M1−1)π

√
1−ν2k cos(ψk)

]T
,

h
(2)
k =

[
1 e−jπ

√
1−ν2k sin(ψk) · · · e−j(M2−1)π

√
1−ν2k sin(ψk)

]T
,

M1 ∈ N and M2 ∈ N are the number of antennas in x- and y-axes, ψk ∼ U(−π, π)
is the elevation angle for the kth user, and νk = sin(θk).

This thesis adopts the ULA as standard for the derivations due to its math-

ematical tractability. In practice, however, the use of ULAs may be limited for

some frequency ranges due to the physical space required to deploy a ULA with

so many antennas. On the other hand, the ULA yields better SE than other ar-

rays such as the URA and the uniform circular array (UCA) in practical scenarios,

with and without LoS [17, 77–79]. Moreover, the ULA simplifies the inter-channel

interference model, which plays a fundamental role in user selection algorithms.

Remark 2.1 . One of the main differences between the i.i.d. Rayleigh channel and

the UR-LoS channel is the ℓ2-norm of their small-scale fading vectors. For the UR-

LoS channel, ∥hk∥22 = M , for any value of M . However, for the i.i.d. Rayleigh

channel, ∥hk∥22
p−→ M , as M −→ ∞, which is the so-called channel hardening

property [3].

2.2.1 Favorable Propagation

Intuitively, to maximize the performance of a wireless communication system from

an information-theoretic perspective, the massive MIMO channel vectors should

be as different as possible, according to some appropriate metric. This appropriate

metric is the so-called favorable propagation offered by the channel [4, 8, 80], defined

as

hH
k hk′ = 0, ∀ k, k′ ∈ K, with k ̸= k′, (2.5)

meaning that FP requires the massive MIMO channel vectors corresponding to dif-

ferent users to be pair-wise orthogonal. Since there are many cases that violate the

FP condition, as it will be discussed later, it is interesting to measure how close two

channel vectors are from being orthogonal. To do so, we define

rkk′ =
|hH
k hk′|

∥hk∥2 ∥hk′∥2
, (2.6)

i.e., rkk′ is the magnitude of the channel correlation coefficient. For the UR-LoS

channel, rkk′ is given in Theorem 2.1.
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Theorem 2.1

The magnitude of the channel correlation coefficient of a UR-LoS massive MIMO

channel is given by [8]

rkk′ =
1

M

∣∣∣∣∣∣
sin
(
M
π

2
(sin θk′ − sin θk)

)
sin
(π
2
(sin θk′ − sin θk)

)
∣∣∣∣∣∣ . (2.7)

From Theorem 2.1, the UR-LoS channel offers FP when (2.7) is equal to zero for

all k, k′ ∈ K, with k ̸= k′. Thus, the numerator of (2.7) must be equal to zero and

the denominator of (2.7) must be nonzero. The condition for which FP holds in an

LoS channel is given in the following corollary of Theorem 2.1.

Corollary 2.1

The UR-LoS channel offers favorable propagation iff for all k′ ∈ K \ {k}, ∃ nk′ ∈
{±1,±2, · · · ,±(M − 1)} such that

θk′ = arcsin

(
sin θk +

2nk′

M

)
, (2.8)

and all of the following three conditions are satisfied:

1. θk′ ̸= θk, ∀k, k′ ∈ K, with k ̸= k′;

2. θk′ ̸= π − θk, ∀k, k′ ∈ K, with k ̸= k′;

3. If θk = ±π/2 for some k ∈ K, then θk′ ̸= ∓π/2 ∀k′ ∈ K \ {k}.

Proof. An LoS environment offers FP when (2.7) is equal to zero for all k, k′ ∈ K,

with k ̸= k′. First, we show the condition that guarantees orthogonality between

two users. Then, we expand this result to guarantee orthogonality for all users. The

kth user and the k′th user are orthogonal when (2.7) is equal to zero, iff

sin
(
M
π

2
(sin θk′ − sin θk)

)
= 0, (2.9)

and

sin
(π
2
(sin θk′ − sin θk)

)
̸= 0. (2.10)

Equation (2.9) is zero if there exists an integer nk′ such that

sin θk′ − sin θk =
2nk′

M
, (2.11)
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where nk′ ∈ {0,±1, · · · ,±M}, as the left-hand side of the previous equation lies in

the interval [−2, 2]. Solving this equation for θk′ , yields

θk′ = arcsin

(
sin θk +

2nk′

M

)
, (2.12)

for some nk′ ∈ {0,±1, · · · ,±M}. Moreover, to guarantee (2.10), we must satisfy

sin θk′ − sin θk ̸∈ {−2, 0, 2}, (2.13)

which results in θk′ ̸= θk and θk′ ̸= π − θk for the case sin θk′ − sin θk ̸= 0, and if

θk = ±π/2, then θk′ ̸= ∓π/2 for the cases sin θk′ − sin θk ̸= ±2, respectively. To

satisfy (2.11), (2.13) and (2.14) simultaneously. Therefore,

rkk′ = 0 ⇐⇒ θk′ = arcsin

(
sin θk +

2nk′

M

)
, (2.14)

for some nk′ ∈ {±1, · · · ,±(M − 1)}.
Given that (2.12) does not depend on a specific pair of users, to have rkk′ = 0

for all k, k′ ∈ K, with k ̸= k′, the users need to satisfy (2.14) for all k, k′ ∈ K, with

k ̸= k′.

Corollary 2.1 is a more general version of the result provided in [8], in that we

state the exact user positions that lead to favorable propagation.

Fig. 2.2 depicts the magnitude of the correlation coefficient with varying positions

for two users, K = 2, for BS with M = 50 and 100 antennas. As can be observed,

the massive MIMO channel offers favorable propagation or a moderately favorable

propagation for different values of θ1 and θ2. However, due to the geometry of

the array the users have high correlation when they have the same AoA, or when

θ1 = ±π/2 with θ2 = ∓π/2, or when θ2 = −θ1 ± π. In these regions, the users

have high mutual interference, degrading the SE performance of the massive MIMO

system.

Remark 2.2 . In order to validate Corollary 2.1 , consider two users, k1 and k2,

whose channels are orthogonal to the kth user, then

θk1 = arcsin

(
sin θk +

2nk1
M

)
, (2.15)

θk2 = arcsin

(
sin θk +

2nk2
M

)
, (2.16)

for some nk1 , nk2 ∈ {±1, · · · ,±(M−1)}. The magnitude of the correlation coefficient
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(a) M = 50 (b) M = 100

Figure 2.2: Magnitude of the correlation coefficient for K = 2 and M ∈ {50, 100}.

between these two users can be written as

rk1k2 =
1

M

∣∣∣∣∣∣
sin
(
M
π

2
(sin θk2 − sin θk1)

)
sin
(π
2
(sin θk2 − sin θk1)

)
∣∣∣∣∣∣ , (2.17)

as long as the denominator is nonzero, which boils down to the condition

sin θk2 − sin θk1 ̸∈ {−2, 0, 2}. That means θk2 ̸= θk1 , θk2 ̸= π − θk1 , and if

θk1 = ±π/2, then θk2 ̸= ∓π/2. Note that, based on (2.15) and (2.16), the sine

function in the numerator of the correlation coefficient in (2.17) can be rewritten

as sin (π(nk2 − nk1)), which is always zero. This result shows that if two different

users are orthogonal to a third one, then they will themselves be orthogonal to

one another if they satisfy Corollary 2.1 . It is worth highlighting that although

the set of possible values for nk′ is comprised of 2(M − 1) integers, as stated in

Corollary 2.1 , only M − 1 of these values generate a valid solution. By a valid

solution, we mean choices of nk′ that, simultaneously, yield sin θk +2nk′/M lying in

[−1, 1] and θk′ satisfying the conditions stated in Corollary 2.1 .

Remark 2.3 . Another important difference between the i.i.d. Rayleigh and UR-

LoS channels lies in the asymptotically favorable propagation property. The i.i.d.

Rayleigh channel does not offer favorable propagation, only asymptotically favorable

propagation, which is defined as [81]

1

M
hH
k hk′

p−→ 0, ∀ k, k′ ∈ K, with k ̸= k′, (2.18)

and K ≪ M −→ ∞. The asymptotically favorable propagation is one of the key

factors to enable massive MIMO systems with linear precoding [81]. In general,

UR-LoS channels can provide more favorable propagation condition than the i.i.d.
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Figure 2.3: Massive MIMO system with anM -antenna BS serving K single-antenna
users.

Rayleigh channel. However, the UR-LoS channel model can also provide non

favorable channels with a non negligible probability, especially when users are very

close to each other in the cell. In these cases, employing a user selection algorithm

is of paramount importance for the SE of the massive MIMO system.

Remark 2.4 . For the URAs, there is an extra degree of freedom in addition to the

azimuth angle, which is the elevation angle. This means that URAs can distinguish

users (through their channel vectors exhibiting low correlation coefficient rkk′) in

both azimuth and elevation, whereas ULAs have only the azimuth, thus cannot

distinguish users that have the same azimuth but different elevations. For a ULA

and a URA with the same number of antennas, the ULA presents higher resolution in

the azimuth coordinate and no resolution in the elevation coordinate. In comparison

with the ULA, one can think that the URA trades resolution in the azimuth for

resolution in the elevation coordinate/angle.

2.3 Downlink Transmission

Consider a single-cell massive MIMO system equipped with an M -antenna base

station that serves K single-antenna users as illustrated in Fig. 2.3. For a DL trans-

mission operating in TDD mode, the received signal by the users can be expressed

as

y =
√
ρGTx+ n, (2.19)
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where vector y ∈ CK×1 contains the signals received by the K users, ρ ∈ R+ is the

DL signal-to-noise ratio (SNR), G ∈ CM×K is the massive MIMO channel matrix,

x ∈ CM×1 is the precoded signal transmitted by the BS, and n ∼ CN (0K×1, IK) is

the additive noise.

The transmitted signal is digitally precoded (i.e., the number of radio-frequency

chains is equal to the number of antennas) before the transmission in order to miti-

gate the effects of the channel. In massive MIMO, linear precoding is asymptotically

optimal in terms of achievable spectral efficiency. The linear-precoded signal can be

written as

x = WDiag (η)1/2 s, (2.20)

where W ∈ CM×K is the precoding matrix, whose columns wk are normalized (i.e.,

∥wk∥2 = 1), η ∈ RK×1
+ is the power allocation vector, and s ∼ CN (0K×1, IK) is

the vector of transmitted symbols. Due to power limitations, the precoded signal is

constrained by

E
{
xHx

}
≤ 1, (2.21)

yielding the following constraint for the power allocation coefficients∑
k∈K

ηk ≤ 1, (2.22)

where ηk ∈ R+ is the power allocation coefficient for the kth user.

2.4 Spectral Efficiency

Having CSI in the BS is critical for the proper operation of massive MIMO systems.

The BS estimates the channel through an uplink pilot transmission by receiving K

signals related to orthogonal pilot signals of length (in samples) τp ∈ N sent by the

users. Mathematically, the kth user transmits a pilot signal φk ∈ Cτp×1, which is

the kth column of a matrix Φ ∈ Cτp×K that satisfies ΦHΦ = IK . Then, the signal

transmitted by the kth user is given by

xp,k =
√
τpφ

H
k , (2.23)
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where τc ≥ τp ≥ K, with τc ∈ N being the coherence time in samples. Therefore,

the signal received by the BS is given by

Yp =
√
ρp GXp +Np

=
√
ρpτp HDiag (β)1/2ΦH +Np, (2.24)

where Xp =
√
τpΦ

H, ρp ∈ R+ is the pilot transmission SNR, and the entries of

Np ∈ CM×τp are i.i.d. circularly symmetric Gaussian distributed with zero mean

and unitary variance. In order to estimate the channel of the kth user, the BS

processes the received signal Yp as follows:

y′
p,k = Ypφk

=
√
ρpτp HDiag (β)1/2ΦHφk +Npφk

=
√
ρpτpβk hk + n′

p,k, (2.25)

where n′
p,k ∼ CN (0M×1, IM) since ∥φk∥2 = 1. Finally, assuming the knowledge of

the large-scale fading, the channel estimate for the kth user is obtained from y′
p,k

and is given by

ĥk = hk +
n′
p,k√

ρpτpβk

= hk + εk, ∀k ∈ K, (2.26)

where εk ∼ CN (0M×1, σ
2
εIM) is the channel estimation error and σ2

ε = 1/ρpτpβk

represents the “quality” of the channel estimation. Moreover, this estimate is nor-

malized to guarantee that
∥∥∥ĥk∥∥∥

2
=

√
M .

Under an LoS propagation scenario, the AoA is constant for few coherence time

intervals. Thus, one can assume that the effective channel is known by the users.

The SE for a massive MIMO UR-LoS channel is given in the following theorem.

Theorem 2.2

The spectral efficiency of a massive MIMO system under LoS propagation with linear

precoding and channel estimate as (2.26) is lower bounded by

Rsum ≥ 1

2

(
1− τp

τc

)∑
k∈K

log2 (1 + γk) , (2.27)

where γk ∈ R+ is the DL SINR for the kth user given by

γk =
ρβkηk|ĥT

kwk|2

1 + ρβk
∑

k′∈K\{k}
ηk′|ĥT

k ŵk′|2 + ρβkσ2
ε

∑
k′∈K

ηk′
, ∀k ∈ K. (2.28)
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Additionally, the equality holds when σ2
ε = 0.

Proof. The signal received by the kth user yk in (2.19) can be expanded in

yk =
√
ρβkηkĥ

T
kwksk +

∑
k′∈K\{k}

√
ρβkηk′ĥ

T
kwk′sk′ −

∑
k′∈K

√
ρβkηk′ε

T
kwk′sk′ + nk.

(2.29)

The first term in the RHS of (2.29) corresponds to the signal of interest, the second

one to the interference caused from the other users, the third one to the interference

caused by the uncertainty in the channel estimation, and the last one represents the

additive noise.

Equation (2.29) is a point-to-point channel with deterministic channel ĥT
kwk

and additive non-Gaussian noise. Therefore, assuming that the kth user knows

the equivalent channel hT
kwk for decoding the received signal, the DL SE is given

by [4, 82]

Rsum ≥ 1

2

(
1− τp

τc

)∑
k∈K

log2 (1 + γk) , (2.30)

where τp ∈ N is the pilot time in samples, τc ∈ N is the coherence time in samples,

and γk ∈ R+ is the DL SINR related to the kth user. In this case, due to the

independence of the random variables, the SINR for the kth user is given by

γk =
ps

pn + pi + pu
, (2.31)

where

ps = Var
{√

ρβkηkĥ
T
kwksk

}
, (2.32)

pn = Var {nk} = 1, (2.33)

pi = Var

 ∑
k′∈K\{k}

√
ρβkηk′ĥ

T
kwk′sk′

 , (2.34)

pu = Var

{∑
k′∈K

√
ρβkηk′ε

T
kwk′sk′

}
. (2.35)

Then, yielding (2.28).

When σ2
ε = 0, i.e., the BS has perfect CSI knowledge, (2.29) is reduced to

yk =
√
ρβkηkĥ

T
kwksk +

∑
k′∈K\{k}

√
ρβkηk′ĥ

T
kwk′sk′ + nk, (2.36)

which corresponds to a point-to-point channel with deterministic channel ĥT
kwk and

25



additive Gaussian noise. Therefore, assuming that the kth user knows the equivalent

channel hT
kwk for decoding the received signal, the DL SE is given by [4, 82]

Rsum =
1

2

(
1− τp

τc

)∑
k∈K

log2 (1 + γk) , (2.37)

where γk is given by (2.28) with σ2
ε = 0.

Another figure of merit commonly used to evaluate the performance of DL mas-

sive MIMO systems is the min-SE, which is given by

Rmin = 0.5

(
1− τp

τc

)
log2

(
1 + min

k∈K
γk

)
. (2.38)

Equation (2.27) evaluates the performance of the network as whole. On the other

hand, equation (2.38) evaluates the performance of the user with the worst SE.

The min-SE is really useful for the design of practical systems since each user has

a quality of service (QoS) to be attained in practical networks, such as a minimum

throughput to be attained. Furthermore, the min-SE is the cost function used in

the MMFPA-based algorithms.

Remark 2.5 . The LoS propagation is expected to occur within the context

of short-range communications, while inter-cell interference is expected to be

i.i.d. Rayleigh distributed [9, 15]. Thus, in a multi-cell model, the interference

from different cells, i.e., pilot contamination, can be incorporated in the channel

estimation error since the multi-cell interference is i.i.d. Rayleigh distributed.

However, the single-cell scenario is frequently adopted since it can easily isolate the

effect of the LoS channel [9, 10, 83].

Remark 2.6 . Although in this section we used uplink pilot transmission to es-

timate MK complex-valued coefficients, it is possible to use different estimation

approaches since we are dealing with LoS propagation. Under LoS propagation, it

is possible to estimate only the real-valued AoAs and the complex gain for each

user. This approach is usually less computationally expensive and demands less pi-

lot signals, which leads to a better usage of the communication resources in general.

However, it is important to highlight that such approach would provide a different

model to (2.26), (2.27), and (2.28).
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2.5 Precoding Schemes

Precoding is a crucial step for the DL operation of massive MIMO systems that

is employed to mitigate multi-user interference. Linear precoding schemes are par-

ticularly useful for massive MIMO systems, achieving the same performance of the

dirty paper code in the asymptotic case [5]. By definition, the precoding vectors

have ∥wk∥22 = 1, and hence, every linear precoding vector can be written as

wk =
vk

∥vk∥2
. (2.39)

2.5.1 Maximum Ratio Transmitter

The maximum ratio transmitter aims to amplify the signal of interest for each user,

disregarding the impact of this amplification on other users. In the multiple-input

single-output (MISO) case, the MRT is the precoding scheme that yields the highest

capacity for this type of system by maximizing the SNR of the desired user. For the

massive MIMO case, the MRT precoding technique can deliver high throughput in

the asymptotic case [1]. The MRT precoding vector is given by [4]

wMRT
k =

ĥ∗
k√
M
, ∀ k ∈ K. (2.40)

The DL SE of a massive MIMO UR-LoS channel with MRT can be easily derived

from (2.27), by replacing wk with wMRT
k . Therefore, the SE is bounded by

RMRT
sum ≥ 1

2

(
1− τp

τc

)∑
k∈K

log2
(
1 + γMRT

k

)
, (2.41)

where γMRT
k ∈ R+ is denoted by

γMRT
k =

ρMβkηk
1 + ρβkM

∑
k′∈K\{k}

ηk′r2kk′ + ρβkσ2
ε

∑
k′∈K

ηk′
. (2.42)

It is worth highlighting the dependence of the small-scale fading in (2.41). The

magnitude of the channel correlation can be used as a measure of favorable propaga-

tion for the massive MIMO channel. In this case, a non-favorable channel can have

a significant impact on the system performance. For the i.i.d. Rayleigh channel, the

favorable propagation condition is basically impacted by the number of antennas

M . However, for the UR-LoS channel, even with a very large number of anten-

nas, the system is still susceptible to have a non-favorable channel as explained in

Subsection 2.2.1.
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2.5.2 Zero-forcing

In the zero-forcing precoder, the precoding vectors wk are selected in order to satisfy

the zero-interference condition hT
kwk′ = 0 ∀ k′ ∈ K \ {k}. The zero-interference

condition can be achieved by using the Moore-Penrose inverse of the channel matrix

as the precoding matrix. In the case of full CSI knowledge, the ZF precoding can

perfectly eliminate the interference among the users. The ZF precoding vector is

given by [4]

wZF
k =

Ĥ∗rk∥∥∥Ĥ∗rk

∥∥∥
2

, ∀ k ∈ K, (2.43)

where rk is the kth column of R = (ĤTĤ∗)−1. Note that the Moore-Penrose inverse

computation is only possible if M ≥ K and ĤT is a full-row rank matrix.

Corollary 2.2

The DL SE of a massive MIMO UR-LoS channel with ZF precoding is lower bounded

by

RZF−1
sum ≥ 1

2

(
1− τp

τc

)∑
k∈K

log2
(
1 + γZF−1

k

)
, (2.44)

where γZF−1
k ∈ R+ is denoted by

γZF−1
k =

ρβkηk

[(ĤTĤ∗)−1]kk

(
1 + ρβkσ2

ε

∑
k′∈K

ηk′

) . (2.45)

Proof. Using (2.43) in (2.28), we have

γZF-1k =

ρβkηk

∣∣∣∣∣∣ ĥ
T
k Ĥ

∗rk∥∥∥Ĥ∗rk

∥∥∥
2

∣∣∣∣∣∣
2

1 + ρβk
∑

k′∈K\{k}
ηk′

∣∣∣∣∣∣ ĥ
T
k Ĥ

∗rk′∥∥∥Ĥ∗rk′
∥∥∥
2

∣∣∣∣∣∣
2

+ ρβkσ2
ε

∑
k′∈K

ηk′

. (2.46)

The vector rk can be written as

rk = (ĤTĤ∗)−1ek, (2.47)
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where ek is the kth column of IK . Using (2.47) in (2.46), γZF-1k can be rewritten as

γZF-1k = ρβkηk
|eTk ek|2∥∥∥Ĥ∗rk

∥∥∥2
2

1 + ρβk
∑

k′∈K\{k}

ηk′
|eTk ek′ |2∥∥∥Ĥ∗rk′

∥∥∥2
2

+ ρβkσ
2
ε

∑
k′∈K

ηk′


−1

=
ρβkηk∥∥∥Ĥ∗rk

∥∥∥2
2

(
1 + ρβkσ2

ε

∑
k′∈K

ηk′

)
=

ρβkηk

[(ĤTĤ∗)−1]kk

(
1 + ρβkσ2

ε

∑
k′∈K

ηk′

) . (2.48)

Like in (2.41), (2.44) also depends on the small-scale fading, albeit this

dependence is less evident in comparison with the MRT case. If ĤT is a full-row

rank matrix, then all users are geographically separated, i.e., have different

AoAs. However, even in this case, if they have similar AoAs, then ĤT becomes

ill-conditioned leading to performance degradation.

Remark 2.7 . Instead of normalizing the precoding vector w, one can normalize

the precoded vector x as explained below. Let the ZF-precoded signal x be

x =
√
c Ĥ∗(ĤTĤ∗)−1Diag (η)1/2 s, (2.49)

where c ∈ R+ is the normalization constant. The power of x is given by

E
{
xHx

}
= cE

{
sHDiag (η)1/2 (ĤHĤ)−1Diag (η)1/2 s

}
. (2.50)

Using the equality in (2.21) and (2.50), one gets [9]

c =
1∑

k∈K
[(ĤHĤ)−1]kkηk

. (2.51)

Therefore, the new SE expression is bounded by

RZF-2
sum ≥ 1

2

(
1− τp

τc

)∑
k∈K

log2
(
1 + γZF-2k

)
, (2.52)
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where γZF-2k ∈ R+ is denoted by

γZF-2k =
ρβkηk(

1 + ρβkσ2
ε

∑
k′∈K

ηk′

) ∑
k′∈K

[(ĤHĤ)−1]k′k′ηk′

. (2.53)
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Chapter 3

Power Allocation Algorithms

3.1 Introduction

In the previous chapter, the basic principles of the massive MIMO systems under

LoS propagation were discussed, including propagation characteristics and precod-

ing design. However, the ultimate performance of massive MIMO networks can

only be achieved through power allocation. The power allocation is necessary due

to power constraint as stated in (2.22) and, possibly, to guarantee some QoS, such

as uniform performance among the users in the cell. Massive MIMO systems can

achieve uniformly good performance for each user in the cell by implementing sim-

ple power control policy. This chapter presents the most popular power allocation

algorithms along with a new technique proposed to overcome initialization issues

faced by the proposal in [9].

3.2 Preliminaries

For massive MIMO systems, the optimum power allocation coefficients that max-

imizes (2.27) are found trough computationally expensive optimization problem,

given by

maximize
η

Rsum(η)

subject to ∥η∥1 ≤ 1, η ⪰ 0.
(P-1)

Due to the high computational cost for solving P-1, power allocation techniques

for massive MIMO systems usually are based on heuristic approaches, such as the

equal power allocation (EPA), which guarantees equal power to all users, and the

MMFPA, which guarantees the same throughput to all users.
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3.3 Equal Power Allocation

The simplest power allocation algorithm for massive MIMO systems is the EPA,

which allocates the same amount of power to all users. However, this algorithm

does not guarantee any kind of fairness among the performance of the users and, in

fact, it can be considered as if no power allocation were implemented [4]. For the

EPA, the power allocation coefficients are given by

ηEPAk = 1/K, ∀k ∈ K. (3.1)

Although this power control policy is not useful to practical networks, it is still

useful in theoretical analyses and in the simulation of some aspects of massive MIMO

systems. For instance, by substituting ηEPAk in (2.42), (2.45), or (2.46), theoretical

analyses are extremely simplified.

3.4 Max-Min Fairness Power Allocation

The most commonly used power control policy in massive MIMO is the max-min

fairness power allocation, which aims to maximize the worst SINR among all users

in the cell. The original MMFPA problem can be mathematically written as the

following optimization problem [4]:

maximize
γ, η

γ

subject to 0 ≤ γ ≤ γk, ∀k ∈ K,

∥η∥1 ≤ 1, η ⪰ 0,

(P-2)

where γ is the max-min SINR and x ⪰ 0 means that all entries of x are greater or

equal to zero. One characteristic of the MMFPA problem is yielding the same SINR

for each user, i.e., γk = γ, ∀k ∈ K [4].

3.4.1 Maximum Ratio Transmitter

In order to derive the MMFPA coefficients for the MRT precoding, firstly, con-

sider (2.42) with perfect CSI knowledge, i.e., σ2
ε = 0. For the kth user, the power

allocation vector can be written as[
1

γ
−r212 · · · −r2kK

]
η =

1

ρβkM
. (3.2)

32



Since all users have the same SINR due to the property of the MMFPA problem,

the SINR constraints in (P-2) can be rewritten as a matrix equation given by [9]

(IK/γ −R)η = b/ρ, (3.3)

where IK stands for the identity matrix, whereas the K ×K nonnegative matrix R

and the vector b ≻ 0 are defined as

R =


0 r212 · · · r21K
r221 0 · · · r22K
...

...
. . .

...

r2K1 r2K2 · · · 0

 and b =


(β1M)−1

(β2M)−1

...

(βKM)−1

 .

In order to tackle the problem in (P-2), we can use Algorithm 1, proposed in [9],

which uses a bisection search, solving (3.3) at each iteration. Other approaches to

solve (P-2) can be found in [4].

Algorithm 1 MMFPA-based algorithm

Input: R, b, ρ, γl, γr, and ε
1: while γr − γl > ε do
2: γ = (γr + γl)/2
3: Solve (3.3) using γ
4: if ∥η∥1 ≤ 1 then
5: γl = γ
6: else
7: γr = γ
8: end if
9: end while

Return: γo = γ and ηo = η

A critical aspect of this algorithm is the initial search interval [γl, γr], which is

related to complexity and convergence matters. The initial search interval must

be chosen so that γ⋆ ∈ [γl, γr], where γ
⋆ is the optimal max-min SINR obtained

from the solution of the MMFPA problem in (P-2). A common choice for the left

endpoint is γl = 0, since the SINR is positive, and γr = Mρmaxk∈K βk, which is

an upper bound for γk in (2.42). However, such choice of initial search interval

may lead to a wrong point, which is any output point γo of Algorithm 1 such that

|γo − γ⋆| > ε. Sometimes, such wrong point γo corresponds to ηo ∈ RK×1
+ ; in these

cases, we call γo a suboptimal point. However, in most cases, a wrong point γo is

associated with a meaningless ηo comprised of negative entries. In this last case,

although such problem can be easily verified, it is not straightforward to solve it.

In [9], as an alternative to γr = Mρmaxk∈K βk, the authors propose an exhaustive

search to determine a suitable right endpoint γr to initialize the search interval. Such
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procedure is indeed effective to eliminate these meaningless solutions, but it may

take too long to find a proper γr for the initial search interval and suboptimal points

can still be attained. In Section 3.5, we use the Perron-Frobenius theory not only to

explain this behavior but also to provide search intervals that guarantee convergence

to the solution of the problem in (P-2), i.e., guaranteeing that |γo − γ⋆| ≤ ε.

3.4.2 Zero-forcing

For the ZF precoder, the power allocation coefficients of the MMFPA algorithm are

given by

ηk =
γ[(HTH∗)−1]kk

ρβk
, ∀k ∈ K. (3.4)

Note that [(HTH∗)−1]kk is equal for all k ∈ K due to the characteristics of the

UR-LoS channel, and so as γ due to the property of the MMFPA algorithm. Thus,

equation (3.4) can be rewritten as

ηk =
ξ

βk
, ∀k ∈ K, (3.5)

where ξ ∈ R+ is a constant that is chosen in order to satisfy (2.22), yielding

ξ ≤

(∑
k′∈K

1

βk′

)−1

. (3.6)

Since the MMFPA policy requires (2.22) to be satisfied with equality [4], then the

MMFPA coefficients and the max-min SINR are given by

ηZF-MMFPA
k =

(∑
k′∈K

βk
βk′

)−1

, ∀k ∈ K, (3.7)

γZF-MMFPA =
ρ

[(HTH∗)−1]kk
(∑

k′∈K β
−1
k′

) . (3.8)

Differently from the MRT precoder, the MMFPA for ZF precoder has an analytical

solution for the power allocation coefficients.

3.5 Perron-Frobenius Right Endpoints

3.5.1 Perron-Frobenius Eigenvalue

For every 1/γ ∈ R+ \ L, where L denotes the set containing all eigenvalues of R,

matrix (I/γ −R) has full rank, implying that (3.3) has a single solution η ∈ RK×1.

However, the power allocation vector η must have nonnegative entries and this con-
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dition cannot be guaranteed for every 1/γ ∈ R+ \L. Nonnegative solutions of linear
system of equations like (3.3) are closely related to the Perron-Frobenius eigenvalue

(PFE) λmax, which is the maximum eigenvalue of a nonnegative irreducible matrix,1

in our case, the maximum eigenvalue of R.2 In order to derive a new right endpoint

for Algorithm 1, we first have to state the following theorem [72]:

Theorem 3.1

A necessary and sufficient condition for a solution η ⪰ 0 and η ̸= 0 to the linear

system of equations

(sI−R)η = b (3.9)

to exist for any b ⪰ 0 and b ̸= 0 is that s > λmax. In this case, there is only one

solution η, which is strictly positive and given by

η = (sI−R)−1 b.

Proof. A detailed proof is available in [72].

Due to Theorem 3.1, we know that 1/γ > λmax to have a positive solution of

(3.3), yielding γ < 1/λmax. Therefore, in order to guarantee that Algorithm 1 always

converges to the optimal point γ⋆, 1/λmax must be used as the right endpoint of the

search interval.

While using γr = Mρmaxk∈K βk as the right endpoint does not guarantee con-

vergence to the optimal point, there might be times when Algorithm 1 does converge

to the optimal point. For instance, consider the case in which γl = 0 and the two

possible right endpoints

γ(1)r =Mρmax
k∈K

βk, (3.10)

γ(2)r =
1

λmax

. (3.11)

For γ
(1)
r < γ

(2)
r , Algorithm 1 converges to the optimal point with possibly fewer

iterations when employing γ
(1)
r as the right endpoint. However, for γ

(1)
r > γ

(2)
r , Al-

gorithm 1, employing γ
(1)
r , may fail to attain the MMFPA solution. In order to

explain this issue, we use the toy examples depicted in Figure 3.1 to illustrate the

iterative process of the algorithm for l iterations. In this figure, the thick line rep-

resents the guaranteed convergence region [0, γ
(2)
r ], whereas the blue line represents

the search interval [γ
(1)
l (l), γ

(1)
r (l)], and the red line represents the region out of the

1A nonnegative matrix R is said to be irreducible if for every pair (m, k), there exist a positive
integer n such that [Rn]mk > 0.

2The maximum eigenvalue of a matrix is usually called the spectral radius of the matrix, but
for nonnegative matrices, it is also called the Perron-Frobenius eigenvalue.
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search interval. Figure 3.1a and Figure 3.1b describe a case of convergence to the

optimal and wrong points, respectively. Consider that, at the first iteration, for

both examples, we have ∥η(1)∥1 > 1, yielding [0, γ
(1)
r (1)] as the new search inter-

val. At the second iteration, we have ∥η(2)∥1 > 1 for Figure 3.1a and ∥η(2)∥1 ≤ 1

for Figure 3.1b, yielding [0, γ
(1)
r (2)] and [γ

(1)
r (2), γ

(1)
r (1)] as the new search intervals

for each case, respectively. At the third iteration, in Figure 3.1a, ∥η(3)∥1 > 1 and

γ
(1)
r (3) ∈ [0, γ

(2)
r ]; therefore, from now on, η(l) will always be nonnegative, guarantee-

ing the convergence to the optimal point. However, in Figure 3.1b, γ
(1)
r (3) /∈ [0, γ

(2)
r ]

and consequently, γ⋆ /∈ [γ
(1)
r (2), γ

(1)
r (1)]. It is worth mentioning that at the first

two iterations of the example depicted in Figure 3.1a, η had nonpositive entries,

but luckily the bisection search was still able to converge to the optimal point. We

used the word “luckily” here for it could also have converged to a wrong point, as

illustrated in Figure 3.1b.

γ
(2)
r γ

(1)
r (0)γ

(1)
r (1)

γ
(1)
r (2)

0

γ
(1)
r (3)

l = 1

l = 2

l = 3

(a) Correct convergence

γ
(2)
r γ

(1)
r (0)γ

(1)
r (1)

γ
(1)
r (2)

0

γ
(1)
r (3)

l = 1

l = 2

l = 3

(b) Wrong convergence

Figure 3.1: Example of convergence to the optimal and wrong points using γ
(1)
r .

3.5.2 Bound Test

An alternative to γ
(2)
r can be found by using the Gershgorin circle theorem, which

for the case of a nonnegative matrix can be written as [72, Corollary 1]

λmax ≤ max
k∈K

∑
k′∈K\{k}

r2kk′ , (3.12)

yielding a new right endpoint given by

γ(3)r =
1

max
k∈K

∑
k′∈K\{k}

r2kk′
. (3.13)
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Observe that γ
(3)
r ≤ γ

(2)
r and, therefore, we might have a case where

γ(3)r < γ⋆ < γ(2)r . (3.14)

In this case, γ
(3)
r should be used as the left endpoint, whereas γ

(2)
r should be used as

the right endpoint. On the other hand, the resulting interval is usually very tight,

meaning that the bisection search converges in a few iterations. Furthermore, (3.14)

can be used in a beneficial way by incorporating a test to check whether γ
(3)
r is the

left or the right endpoint. This BT can be performed by solving (3.3) with γ
(3)
r and

checking the resulting η for:γ
(3)
r < γ⋆, if ∥η∥1 ≤ 1

γ
(3)
r > γ⋆, if ∥η∥1 > 1

. (3.15)

Therefore, Algorithm 1 can use either the initial search interval [0, γ
(3)
r ] or [γ

(3)
r , γ

(2)
r ],

depending on (3.15). The proposed BT procedure is described in Algorithm 2.

Algorithm 2 Bound test

Input: R, b, and ρ
1: Solve (3.3) using γ

(3)
r

2: if ∥η∥1 ≤ 1 then

3: γl = γ
(3)
r

4: γr = γ
(2)
r

5: else
6: γl = 0
7: γr = γ

(3)
r

8: end if
Return: γl and γr

3.6 Computational Complexity Analysis

Algorithm 1 is based on the bisection search, and the core of this search involves

solving a K × K linear system of equations, which can be solved with complexity

O(K3).3 The number of iterations Algorithm 1 takes to converge is

L(γr, γl, ε) =

⌈
log2

(
γr − γl
ε

)⌉
, (3.16)

3A theoretical measure of the execution of an algorithm, usually the time or memory needed,
given the problem size n, which is usually the number of items [84]. Informally, saying some
equation f(n) = O(g(n)) means it is less than some constant multiple of g(n).
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where ε ∈ R+ is a given accuracy and ⌈·⌉ is the ceil function. Hence, the general

complexity of Algorithm 1 for a given interval [γl, γr] is O(LK3), where L, given in

(3.16), is related to the length of the search interval.

One of the main differences between the method in [9] and our approach is the

search interval used to initialize Algorithm 1. For [9] and PFE, (3.16) can be used

to calculate the number of iterations taken by Algorithm 1, whereas with the BT

method, the number of iterations is given by

L(γ(2)r , γ(3)r , ε) =


⌈
log2

(
γ
(2)
r −γ(3)r

ε

)⌉
, if γ

(3)
r < γ⋆⌈

log2

(
γ
(3)
r

ε

)⌉
, if γ

(3)
r > γ⋆

, (3.17)

which can be smaller than (3.16) depending on the γ
(2)
r and γ

(3)
r values.

It is not possible to draw any conclusions about the length of the search intervals

provided by each scheme since all the right endpoints studied are random variables.

In [9], γ
(1)
r is related to the large-scale fading, which is related to the user position.

Moreover, γ
(2)
r and BT are related to the eigenvalue decomposition of a random

matrix and the sum of the entries in the row of a random matrix, respectively.

Therefore, it is not possible to carry out classical complexity analysis. However,

based on the simulations in Section 3.7, on average, [9] provides a loose search

interval that may not converge to the optimal point, while PFE and BT provide

tight search intervals and guaranteed convergence to the optimal point.

Another important aspect is the complexity associated with finding the right

endpoints. The approach in [9] requires a linear search in a K-dimensional vector

with complexity O(K), whereas the PFE requires eigenvalue decomposition with

complexity O(K3), and the BT requires eigenvalue decomposition in the worst case

and linear search in the best case.

3.7 Simulation Results

The performance of Algorithm 1 is assessed via numerical simulations in terms of

the probability of failure and number of iterations, considering ε = 10−6. An R-m

radius hexagonal single-cell massive MIMO system with M ∈ {64, 128, 256, 512},
K ∈ {8, 16, 32, 64}, and R ∈ {100, 500, 1000, 2000} m are used in the simulations.

The users are randomly distributed within the hexagonal cell centered at the BS. A

UR-LoS channel with a ULA models the small-scale fading [4], whereas the large-

scale coefficient is defined using the COST231 propagation model [85] for the path

loss and a log-normal distribution for the shadow fading with zero mean and 8 dB

standard deviation. The radiated power at the BS is P ∈ {1, 10} W, the BS and

user antenna gain is 0 dBi, and the noise figure for the users is 9 dB. The performance

38



10 20 30 40 50 60

Number of users

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y
 o

f 
fa

il
u
re

(a) R = 100 m

10 20 30 40 50 60

Number of users

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y
 o

f 
fa

il
u
re

(b) R = 500 m
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(c) R = 1000 m
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(d) R = 2000 m

Figure 3.2: Probability of failure. (– P = 1 W and – – P = 10 W)

of the algorithms is evaluated using 1000 realizations of the channel.

Figure 3.2 depicts the probability of failure of Algorithm 1 when γ
(1)
r is used

as right endpoint. A failure occurs when Algorithm 1 converges to a wrong point,

as defined in Section 3.4. As can be observed in Figure 3.2a, the algorithm has a

high probability of failure for small R, but it drops significantly when R increases.

However, even for R = 2000 m, the algorithm still has 11% of probability of failure,

as illustrated in Figure 3.2d. Moreover, the number of antennas and BS power are

also related to the failures of Algorithm 1, wherein an increase in M or P yields an

increase in the probability of failure. This behavior implies that γ
(1)
r is not a suitable

choice for massive MIMO scenarios. Furthermore, it is worth highlighting that in

Figure 3.2d and 3.2c (only for P = 1), all points γo yield power allocation vectors ηo

with nonnegative entries, so they can be considered acceptable suboptimal points,

differently from the other cases, where the wrong points frequently yield power

allocation vectors with negative entries.

Figure 3.3 illustrates the Pr{γ(3)r < γ⋆} for M = 512. From Section 3.5, we know

that the initial search interval provided by the BT depends on whether γ
(3)
r < γ⋆

or γ
(3)
r > γ⋆. Hence, the Pr{γ(3)r < γ⋆} is important to quantify, in probability,
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Figure 3.3: Pr{γ(3)r < γ⋆} for M = 512.

when γ
(3)
r is a left or right endpoint, where high values of Pr{γ(3)r < γ⋆} means

that we have high probability of using a tight search interval, whereas low values

of Pr{γ(3)r < γ⋆} means that we have high probability of avoiding the eigenvalue

decomposition. As can be observed in this figure, Pr{γ(3)r < γ⋆} significantly drops

as the cell-size increases, reaching 0% for R = 2000 m, whereas it increases with

P and K. Although not depicted here, the same conclusions for Pr{γ(3)r < γ⋆},
regarding R and P , can be drawn for M ∈ {64, 128, 256}. However, when it comes

to K, the pattern changes, decreasing with K for R = 1000 m.

Figure 3.4 shows the average number of iterations the bisection search needs

to converge when using γ
(1)
r and γ

(2)
r as the right endpoint, as well as the BT for

P = 1 W. As can be observed in Figure 3.4, Algorithm 1 takes fewer iterations

by using the BT than by using γ
(1)
r and γ

(2)
r as right endpoints. Additionally, the

number of iterations is invariant with R when γ
(2)
r is used. This happens because

R is affected only by how close the users are and not by the cell size. The same

is not true for the BT, which yields a small increase in the number of iterations

when R increases. This behavior is due to the fact that Pr{γ(3)r < γ⋆} is high for a

small cell, but it decreases when R increases, as depicted in Figure 3.3. Therefore,
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Figure 3.4: Number of iterations for P = 1 W. (– γ
(1)
r , – – γ

(2)
r , and ·· BT)

for R = 100 m, the BT provides a tighter interval than γ
(2)
r , and for large R, they

provide initial search intervals that yield the same number of iterations. Note that

the number of iterations with γ
(1)
r decreases with R. This happens because the

large-scale fading decreases when R increases and, therefore, γ
(1)
r yields a tighter

initial search interval when R increases.

Another important conclusion that can be drawn from Figure 3.4 is the behavior

of the number of iterations with K. Both proposed γ
(2)
r and the BT yield a reduced

number of iterations whenK increases. This occurs because λmax tends to increase as

K increases. Indeed, with largeK, the probability of having users close to each other

in the cell is higher, increasing the condition number of matrix R, resulting in high

values of λmax and shorter initial search intervals. On the other hand, the number of

iterations when γ
(1)
r is used increases with K. This behavior happens because with a

larger K, the probability of having users close to the BS increases, yielding a higher

large-scale fading, consequently increasing the search interval. Furthermore, based

on the decreased number of iterations, we can empirically conclude that the initial

search intervals provided by γ
(2)
r and the BT are tighter than the one provided by

γ
(1)
r . The only case in which γ

(1)
r provides a tighter search interval is whenM = 512,
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K = 8, and R = 2000 m.

3.8 Concluding Remarks

In this chapter, we used the Perron-Frobenius theory to show how an implementation

of the max-min fairness power allocation algorithm is affected by the initialization

of the search interval. Moreover, we also used the Perron-Frobenius theory to derive

a new search interval for this algorithm, which guarantees the convergence to the

max-min fairness solution. Additionally, we used the Gershgorin circle theorem to

create a bound test that guarantees convergence and reduces the computational load.

Simulation results showed that this algorithm, when using the search interval known

in the literature, frequently converges to wrong points. Furthermore, the proposed

search interval and the bound test guarantee convergence with fewer iterations.
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Chapter 4

User Selection Algorithms

4.1 Introduction

As discussed in Chapter 2, the small-scale fading plays an important role in the SE

of massive MIMO systems under LoS propagation, degrading the performance in

non-favorable propagation conditions. Additionally, the number of users can also

be a critical aspect when the ZF precoder is used and K > M . One way to cope

with these issues is by performing user selection. The user selection problem has not

received much attention in the massive MIMO research for several reasons. Firstly,

massive MIMO systems rely on the favorable propagation and channel hardening

properties, which consider that the number of antennas at the BS is much larger than

the number of users (M ≫ K). Secondly, i.i.d. Rayleigh channel model is usually

assumed, which is not severely affected by the position of the users [8]. However,

these assumptions may not fully hold in practical scenarios; for example, there may

be situations where the number of users is very close to the number of BS antennas

or even larger. The MRT precoding algorithm used in massive MIMO does not have

a restriction on the number of users, but the ZF precoding requires the number of

users to be smaller or equal to the number of BS antennas. One critical issue here

is how to select the best set of users in order to yield the highest spectral efficiency

to the network and the remaining users.

4.2 The User Selection Problem

Consider a case where K is large enough to degrade the massive MIMO system

performance, yielding a non-favorable propagation environment or simply a situa-

tion where K > M . In this scenario, the BS should choose L out of K users to

transmit and receive data in a given time slot in order to guarantee that the number

of antennas is greater or equal to the number of selected users so that favorable
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propagation is achieved. Mathematically, let S ⊂ K be the set of selected users in

a given time slot. The user selection problem consists of the optimization problem

to find η ∈ R|S|×1
+ and S, with |S|= L, that maximize the SE,1 i.e.,

maximize
η,S

1

2

(
1− τp

τc

)∑
k∈S

log2 (1 + γk(η,S))

subject to η ⪰ 0, ∥η∥1 ≤ 1,

|S| = L,S ⊂ K.

(P-3)

The user selection problem in (P-3) is not only non-convex, but also involves com-

binatorial optimization. One alternative approach is to define a simpler surrogate

problem that separates the user selection and the power allocation into two differ-

ent problems, where the user selection is performed before power allocation [9, 43].

However, the solution for the user selection problem can only be found through an

ES for a given η, which is impractical due to the high-dimensional search space in

massive MIMO systems. For EPA, the optimal user set can be found through an

ES with ηk = 1/L, ∀k ∈ S. On the other hand, for MMFPA, the solution is slightly

different since for this scheme, the power allocation cannot be dissociated from the

user selection due to the dependence on the large-scale fading. Thus, the MMFPA

is computed for each set of users.

To overcome the limitations of the ES solutions, the user selection problem is

tackled by using suboptimal greedy solutions [9, 43, 44]. The main advantage of

these solutions is that they do not depend on specific precoding and power allo-

cation algorithms, but simply rely on the CSI. The user selection algorithms can

be categorized into two distinct classes: LSFA and SSFA algorithms. The LSFA

algorithms are usually good solutions for massive MIMO systems under NLoS prop-

agation since the small-scale fading does not affect the system performance under

this type of propagation [59]. The most popular algorithms that belong to this class

are the large-scale fading ratio selection (LSFRS) [4] and SOS [43]. For the LoS

case, the small-scale fading has a great impact on the system performance [8, 9].

Due to the characteristics of the channel, the small-scale fading is not averaged out

like in the NLoS propagation and it impacts the system performance, requiring the

use of SSFA algorithms. The most popular approaches that belong to this class are

the SOS [43], CBS [9], and ICIBS.

Although the small-scale fading has a significant impact on the performance of

massive MIMO systems under LoS propagation, the large-scale fading also plays

a significant role in the SE of massive MIMO systems operating in this environ-

1An alternative criterion is used in [9], but the maximization of the SE is the most widely
used [43, 45, 46, 49–54].
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ment. Disregarding the large-scale fading, even in an LoS propagation environment,

is equivalent to assuming that all users are equidistant from the base station and

experience the same level of shadowing, which is not a reasonable approximation in

practical applications. Indeed, taking the large-scale fading into account is interest-

ing because users that experience less path loss/shadowing can be served with lower

transmission power, thus reducing the interference level to the remaining users. Fur-

thermore, user selection algorithms that use both fading information can leverage

the popular power allocation algorithm, namely, MMFPA [40–42]. MMFPA aims to

maximize the SINR improvement for the user with the worst channel conditions. If

this user is affected by severe path loss/shadowing, the network throughput is com-

promised. As mentioned in the Introduction, to the best of our knowledge, no such

algorithms that can cope with both types of fading are reported in the literature.

However, the SOS is an algorithm that can be adapted to deal with this issue, albeit

its high computational complexity can be a hindrance in some applications. The

recently proposed machine learning-based selection [58] can also deal with this issue

if it is properly trained. Besides those two algorithms, another algorithm that can

jointly considers the small- and large-scale fading effects to perform the selection is

the FRBS algorithm, which is a generalization of the ICIBS. Table 4.1 summarizes

the main characteristics of the user selection algorithms.

Table 4.1: Main Characteristic of User Selection Algorithms

SSFA LSFA Complexity
LSFRS No Yes Very Low
SOS Yes Yes Very High
CBS Yes No Low
ICIBS Yes No Low
FRBS Yes Yes Low

Remark 4.1 . Despite not providing performance improvements to massive MIMO

systems under i.i.d. Rayleigh fading channels, user selection algorithms can bring

advantages under Rician fading channels. In [86], the authors show that in the

asymptotic case (M −→ ∞) the SE of a massive MIMO system under Rician fad-

ing is maximized when the channel is dominated by LoS propagation, and the LoS

channel components corresponding to different users are orthogonal to one another.

The orthogonality among these LoS components can be guaranteed by some user

selection algorithms. Furthermore, the user selection may help the statistical beam-

forming approach proposed in [86] in dealing with some of the limitations due to the

finite number of antennas and the scheduling process. Also, the user selection algo-

rithms could be adapted to take advantage of the statistical CSI when dealing with

Rician channels like in [86]. That is, under the statistical CSI hypothesis, the BS
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Algorithm 3 LSFRS algorithm

Input: L and β
Return: S0 = K
1: for l = 1 to K − L do
2: k⋆ = argmin

k∈Sl−1

βSl−1

3: Sl = Sl−1 \ {k⋆}
4: end for
5: return S = SL

knows not only the LoS component but also other parameters of the Rician κ-factor

model [63]; therefore, when dealing with these channel models, it would be interest-

ing to add this additional piece of information into the user selection algorithms. In

the Rician fading scenario, using only the LoS components is not enough to perform

a good user selection since the Rician κ-factor is also relevant to maximize the SE

of massive MIMO systems under Rician fading channels.

4.3 Large-scale Fading Ratio Selection

For massive MIMO systems under NLoS propagation, the large-scale fading is more

relevant for the SE performance since the small-scale fading is averaged out due to

the channel hardening property [81]. For this scenario, LSFA algorithms like the

LSFRS can be used. The large-scale fading ratio (LSFR) is defined as [4]

LSFRck =
βcck∑
c′∈C β

c′
ck

, (4.1)

where βc
′

ck ∈ R+ is the large-scale fading of the kth user in c cell with the BS in the

c′th cell and C ⊂ N is the set with the cell indices. The metric in (4.1) is handy

since the kth user does not need to know any information from any other user.

The LSFRS heuristic strategy was proposed for dropping users in a multi-cell

scenario, but it can also be used in a single-cell scenario by keeping the users with the

highest large-scale fading coefficients.2 Although this strategy does not guarantee

any kind of fairness among the users, it is the most intuitive way for selecting users if

the goal is to maximize the network throughput. Similar approaches have been used

for cell-free massive MIMO systems [65, 68]. The LSFRS algorithm is summarized

in Algorithm 3.

2This approach does not use the LSFR in (4.1). However, the same algorithm name was kept
due to the similarity with the algorithm in the literature.
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Algorithm 4 SOS algorithm

Input: L and H
Return: T0 = K and S0 = ∅
1: for l = 1 to L do
2: if l = 1 then
3: h⊥

k = hk, ∀ k ∈ Tl−1

4: else
5: Pl−1 = IM −Ql−1Q

H
l−1

6: h⊥
k = Pl−1hk, ∀ k ∈ Tl−1

7: end if
8: k⋆ = argmax

k∈Tl−1

∥∥h⊥
k

∥∥
2

9: ql = h⊥
k⋆/
∥∥h⊥

k

∥∥
2

10: Tl = Tl−1 \ {k⋆}
11: Sl = Sl−1 ∪ {k⋆}
12: Ql =

[
q1 q2 · · · ql

]
13: end for
14: return S = SL

4.4 Semi-orthogonal Selection

The semi-orthogonal selection is a user selection algorithm that is asymptoti-

cally optimum when K −→ ∞ in a MIMO system under i.i.d. Rayleigh fading

channel [43]. This algorithm aims to select the set of users that yields the most

orthogonal effective small-scale fading channel matrix. This selection is made in

an iterative manner by choosing the user with the most orthogonal small-scale fad-

ing channel with respect to the previously selected users. At the lth iteration,

the algorithm first calculates the orthogonal complement of hk to the subspace

span {q1, · · · ,ql−1} for all the K − l + 1 remaining users in Tl−1. The orthogonal

component h⊥
k is given by

h⊥
k = Pl−1hk, ∀ k ∈ Tl−1, (4.2)

where Pl−1 ∈ CM×M is the orthogonal projection matrix denoted by

Pl−1 = IM −Ql−1Q
H
l−1, (4.3)

and Ql−1 ∈ CM×l is denoted by

Ql−1 =
[
q1 q2 · · · ql−1

]
. (4.4)

The users are then selected based on the orthogonal complement with the largest
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ℓ2-norm as follows:

k⋆ = argmax
k∈Tl−1

∥∥h⊥
k

∥∥
2
. (4.5)

Finally, vector ql, sets Tl, and Sl are updated as

ql =
h⊥
k⋆∥∥h⊥
k

∥∥
2

, (4.6)

Tl = Tl−1 \ {k⋆}, (4.7)

Sl = Sl−1 ∪ {k⋆}. (4.8)

This process is repeated until l = L. The SOS algorithm is summarized in Algo-

rithm 4. Note that the first selected user is randomly chosen since for the UR-LoS

fading channel, ∥hk∥2 =
√
M, ∀k ∈ K. It is worth highlighting that the original

SOS algorithm proposed in [43] was created to deal with small-scale fading only.

However, by using the matrix G instead of H as an input of the algorithm, SOS can

perfectly deal with both small- and large-scale fading effects. That is why the SOS

algorithm belongs to both classes of user selection algorithms.

Remark 4.2 . The classical version of the SOS has a last step that forces the

semi-orthogonality of the non-selected users at a given iteration. In the classical

algorithm, Tl is updated as follows:

Tl =
{
k ∈ Tl−1, k ̸= k⋆

∣∣∣∣ |hH
k ql|

∥hk∥2 ∥ql∥2
< δ

}
, (4.9)

where δ ∈ R+ is the level of semi-orthogonality. This step speeds up the selection

by eliminating the users with poor levels of orthogonality. This last step is useful

for MIMO systems since the user selection is only performed in cases where K > M

and terminated when L = M . However, this is not necessarily the case for massive

MIMO systems and by using this criteria, the algorithm may select less users than

the initially desired L.

The Algorithm 4 can be optimized if a recursive approach is used to compute

the orthogonal projection matrix [87]. Equation (4.3) can be re-written as

Pl = IM −QlQ
H
l

= IM −
[
Ql−1 ql

] [QH
l−1

qH
l

]
= IM −Ql−1Q

H
l−1 − qlq

H
l

= Pl−1 − qlq
H
l . (4.10)
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Algorithm 5 S-SOS algorithm

Input: L and H
Return: P0 = IM , T0 = K, and S0 = ∅
1: for l = 1 to L do
2: h⊥

k = Pl−1hk, ∀ k ∈ Tl−1

3: k⋆ = argmax
k∈Tl−1

∥∥h⊥
k

∥∥
2

4: ql = h⊥
k⋆/
∥∥h⊥

k

∥∥
2

5: Pl = Pl−1 − qlq
H
l

6: Tl = Tl−1 \ {k⋆}
7: Sl = Sl−1 ∪ {k⋆}
8: end for
9: return S = SL

By using (4.10), we have the new SOS algorithm, named simplified semi-orthogonal

selection (S-SOS), summarized in Algorithm 5.

4.5 Correlation-based Selection

The correlation-based selection algorithm is an alternative to the SOS algorithm.

The CBS algorithm is a greedy method that searches for a pair of users (k, k′) with

the highest rkk′ and removes the one with the highest magnitude of the correlation

coefficient with the remaining users. From the SINR perspective, the CBS aims to

maximize the SINR of one specific user, disregarding the SINR of the remaining

users. It must be noted, however, that in some cases removing a user might inad-

vertently result in increased SINR of the remaining users. For example, the user

with the highest correlation coefficient may have a high correlation with only one

user and a small correlation with the others, and another user may have a moderate

correlation with all other users. In this case, dropping the second user may lead to

better improvement in SE than dropping the first one. The CBS algorithm is sum-

marized in Algorithm 6. Differently from the SOS algorithm, the CBS algorithm

cannot take the large-scale fading into account. The use of gk instead of hk will not

yield different results since the magnitude of the correlation coefficient defined in

(2.6) normalize the vectors, which would remove the effect of the large-scale fading

effect. That is why the CBS belongs to the class of SSFA algorithms.

4.6 Inter-channel Interference-based Selection

The proposed inter-channel interference-based selection algorithm can be seen as a

generalization of the CBS algorithm. Unlike CBS, which takes into account local
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Algorithm 6 CBS algorithm

Input: L and G
Return: S0 = K
1: for l = 1 to K − L do

2: rkk′ =
|hH

k h
k′ |

∥hk∥2∥hk′∥2
∀ (k, k′) ∈ Sl−1 × Sl−1 | k ̸= k′

3: (i, j) = argmax
(k,k′)∈Sl−1×Sl−1|k ̸=k′

rkk′

4: if max
k′∈Sl−1\{i,j}

rik′ > max
k′∈Sl−1\{i,j}

rjk′ then

5: k⋆ = i
6: else if max

k′∈Sl−1\{i,j}
rik′ < max

k′∈Sl−1\{i,j}
rjk′ then

7: k⋆ = j
8: end if
9: Sl = Sl−1 \ {k⋆}

10: end for
11: return S = SK−L

(pair-wise) interference information, ICIBS considers the global interference.3 That

is, at each iteration it finds the user whose removal will lead to the highest overall

SINR gain for the remaining/selected users. Thus, starting with set S0 = K, it

iteratively generates Sl ⊂ Sl−1, l ∈ N, by removing the user that maximizes the ICI

defined as

ψ
(l)
k =

1

|Sl−1| − 1

∑
k′∈Sl−1\{k}

rkk′ , ∀ k ∈ Sl−1. (4.11)

The algorithm stops at iteration K − L since |SK−L| = L. It is worth highlighting

the intuitive connection between the ICI and the SE. For example, by dropping the

user with the highest ICI, we indirectly reduce the interference on the remaining

users, increasing the SINR and consequently increasing the SE. Additionally, when

the MRT precoder is used, the ICI has a more straightforward connection with the

SE since the SE when MRT is used is upper and lower bounded by functions of the

ICI. The ICIBS method is summarized in Algorithm 7.

ICIBS can be improved by computing step 2 in an efficient manner through the

following recursion

ψ
(l)
k =

(|Sl−2| − 1)ψ
(l−1)
k − rkk⋆

|Sl−1| − 1
∀ k ∈ Sl−1, (4.12)

where k∗ is the user index that is removed from iteration l − 1 to l. Hence, the

summation in step 2 is computed just once at the first iteration, to obtain ψ
(1)
k . The

new version of the ICIBS, aptly named simplified inter-channel interference-based

3The term interference is being used loosely since the transmission powers are not taken into
account. In fact, it is a potential interference. Further, we perform power allocation after user
selection as in [9, 43, 49–51, 53, 54, 88].
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Algorithm 7 ICIBS algorithm

Input: L and H
Return: S0 = K
1: for l = 1 to K − L do
2: ψ

(l)
k = 1

|Sl−1|−1

∑
k′∈Sl−1\{k} rkk′ , ∀ k ∈ Sl−1

3: k⋆ = argmax
k∈Sl−1

ψ
(l)
k

4: Sl = Sl−1 \ {k⋆}
5: end for
6: return S = SK−L

Algorithm 8 S-ICIBS algorithm

Input: L and G
Return: S0 = K
1: for l = 1 to K − L do
2: if l = 1 then
3: ψ

(1)
k = 1

|S0|−1

∑
k′∈S0\{k} rkk′ , ∀ k ∈ S0

4: else

5: ψ
(l)
k =

(|Sl−2|−1)ψ
(l−1)
k −rkk∗

|Sl−1|−1

6: end if
7: k⋆ = argmax

k∈Sl−1

ψ
(l)
k

8: Sl = Sl−1 \ {k⋆}
9: end for

10: return S = SK−L

selection (S-ICIBS), is summarized in Algorithm 8.

4.6.1 ICIBS with MRT Precoder

The proposed ICIBS algorithm is independent of precoders used, however, for the

MRT, we can show that the SE is upper and lower bounded by functions of the ICI.

The following theorem addresses the DL SE, assuming that all users’ channels have

the same large-scale fading.

Theorem 4.1

For a massive MIMO system with an M-antenna base station serving L users with

the same large-scale coefficient β, the DL SE is bounded as follows:

α
∑
k∈S

log2 (1 + γ̆k) ≤ Rsum ≤ α
∑
k∈S

log2 (1 + γ̃k) , (4.13)

where

γ̆k =
ρβM

|S|+ ρβM(|S| − 1)2max
k∈S

ψ2
k

, (4.14)
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and

γ̃k =
ρβM

|S|+ ρβM(|S| − 1)ψ2
k

. (4.15)

Proof. The expressions for the ICI in (4.11) and DL SINR in (2.42) can be rewritten,

respectively, as

ψk =
1

|S| − 1
∥rk∥1 , (4.16)

and

γk =
ρβM

|S|+ ρβM ∥rk∥22
, ∀k ∈ S, (4.17)

where rk ∈ R(|S|−1)×1
+ collects all correlations rkk′ , but rkk.

Since 1
|S|−1

∥rk∥21 ≤ ∥rk∥22 ≤ ∥rk∥21 holds [89], then it follows from (4.16) that

(|S| − 1)ψ2
k ≤ ∥rk∥22 ≤ (|S| − 1)2ψ2

k ≤ (|S| − 1)2max
k∈S

ψ2
k. (4.18)

Given (4.14) and (4.15), one therefore has γ̆k ≤ γk ≤ γ̃k, from which the bounds for

the DL SE in (4.13) follow.

The inequalities in (4.13) show a direct relation between the ICI and the DL SE

with MRT precoder. Therefore, by minimizing the maximum ICI, it is possible to

improve the SE of the massive MIMO system, which is the main idea of the ICIBS

approach.

4.7 Fading-ratio-based Selection

Although the ICIBS approach yields improvement in SE compared to the case where

all the users are kept, it does not take the large-scale fading into account, which is

a valuable information for selecting users. In (2.28), one can observe that the large-

scale fading has also an impact on the SINR, which sometimes can be more relevant

for the SINR improvement than the ICI. For instance, consider two users to be

served in a massive MIMO system. If user 1 has a slightly higher ICI than user 2,

but much higher large-scale fading, then it would be better for the SE of the network

to drop user 2 and keep user 1 than the opposite. To deal with this issue, we propose

the FRBS as a generalization of the ICIBS. The FRBS, summarized in Algorithm 9,

drops the users that maximize the fading ratio (FR) defined as

δk =
ψk√
βk

∀ k ∈ S. (4.19)

This metric takes into account both small- and large-scale fading effects. This new

algorithm yields performance improvements when compared to ICIBS in some cases,

as it will be discussed in Section 6. It is worth highlighting two important points
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Algorithm 9 FRBS algorithm

Input: L and H
Return: S0 = K
1: for l = 1 to K − L do
2: ψ

(l)
k = 1

|Sl−1|−1

∑
k′∈Sl−1\{k} rkk′ , ∀ k ∈ Sl−1

3: δ
(l)
k =

ψ
(l)
k√
βk
, ∀ k ∈ Sl−1

4: k⋆ = argmax
k∈Sl−1

δ
(l)
k

5: Sl = Sl−1 \ {k⋆}
6: end for
7: return S = SK−L

regarding the heuristic criteria in (4.19) used to select users. Firstly, the large-scale

fading considered in this work is composed by the path loss and the shadow fading,

which is the most usual formulation in the massive MIMO literature [63, 90]. Usually

in the massive MIMO literature, other impairments such as hardware distortions are

incorporated in the small-scale fading vector, necessitating channel estimation and

leading to scenarios with imperfect CSI knowledge [52, 91]. In Chapter 5, simulation

results have shown that the relative performance of user selection algorithms are not

affected by the imperfect CSI scenarios. Secondly, the user selection algorithms are

not responsible for controlling the network traffic to ensure all users are served. This

task is the responsibility of the user scheduling/assignment algorithms [10, 57]. The

user selection is a part of the scheduling that selects the best users to be served in

a given time slot.

Fig. 4.1 illustrates the user selection performed by ICIBS and FRBS. As can be

observed from the figure, when ICIBS is used the selected users were spread across

the cell since the ICIBS does not take the large-scale fading into consideration, only

considering the users that minimize the ICI. In the case of FRBS, as can be observed

in Fig. 4.1b, some of the selected users were “clustered” in a region close to the BS

since, in this case, the large-scale fading was more relevant to the minimization of the

global interference. The FRBS, therefore, tends to select users that have a better

link to the BS, leaving to the user-scheduling algorithm the task of guaranteeing

fairness in the coverage.

4.8 Computational Complexity

This section discusses and summarizes the computational complexities of the user

selection approaches previously detailed in this chapter. Table 4.2 details the number

of additions, multiplications, divisions, and square root operations that are required

by each algorithm. Table 4.3 captures the number of linear searches per iteration
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Figure 4.1: ICIBS and FRBS with M = 50, K = 25, L = 5, and R = 500 m. (▽
BS, ⃝ selected user, and ⃝ dropped user)

required by the various user selection algorithms. In the following, we discuss the

computational complexities of the SOS, S-SOS, CBS, ICIBS, S-ICIBS, and FRBS,

respectively.

4.8.1 Semi-orthogonal Selection

The complexity of SOS presented in Algorithm 4 is measured in terms of the number

of operations used to select the best set of users. The most expensive operations

are in (4.2), (4.3), (4.5), and (4.6). At the lth iteration, Algorithm 4 requires

2(M3+M2−M)(K−l+1) additions and 4M3(K−l+1) multiplications to compute

(4.2). Moreover, it requires 4M2(l− 1) additions and 4M2(l− 1) multiplications to

compute (4.3). Additionally, Algorithm 4 requires 2M divisions, (K− l+1) ℓ2-norm

calculations, and one linear search in a (K − l + 1)- dimensional space to compute

(4.5) and (4.6). However, in order to compute ∥x∥2, where x ∈ CM×1, 2M − 1

additions, 2M multiplications, and 1 square root operation are needed. Therefore,

the number of additions ASOS
l , multiplications MSOS

l , divisions DSOS
l , and square

root SSOS
l computations required by Algorithm 4 per iteration are given by

ASOS
l =2(M3 +M2 −M)(K − l + 1)+

+ (2M − 1)(K − l + 1)4M2(l − 1),

MSOS
l =4M3(K − l + 1) + 4M2(l − 1)

+ 2M(K − l + 1),

DSOS
l =2M,

SSOS
l =K − l + 1,
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Table 4.3: Number of Linear Searches per Iteration

Linear Search
SOS 1 search in (K − l + 1) elements

Fast-SOS 1 search in (K − l + 1) elements

CBS
1 search in ((K − l + 1)(K − L)/2) elements

and 2 searches in (K − l − 1) elements
ICIBS 1 search in (K − l + 1) elements

Fast-ICIBS 1 search in (K − l + 1) elements

respectively. By summing these quantities across L iterations the total number of a

given operation can be obtained as summarized in Table 4.2. It is worth highlighting

that the additions and multiplications are only computed from the second iteration

onward.

One characteristic of the SOS algorithm is its incremental approach for selecting

users, i.e., it starts with an empty set of selected users. This behavior can be seen in

Table 4.2 with the number of operations necessary to compute the algorithm increas-

ing with L. This incremental characteristic leads to low computational complexity

when the number of selected users is very small.

4.8.2 Simplified Semi-orthogonal Selection

For the S-SOS the most expensive operations are equations (4.2), (4.5), (4.6), and

(4.10). The only difference between S-SOS and SOS is in (4.3) that is replaced with

(4.10), which leads to the following required number of additions AS-SOS
l , multipli-

cations MS-SOS
l , divisions DS-SOS

l , and square root SS-SOS
l computations per iteration

are given by

AS-SOS
l =2(M3 +M2 −M)(K − l + 1) + 4M2

+ (2M − 1)(K − l + 1),

MS-SOS
l =4M3(K − l + 1) + 4M2 + 2M(K − l + 1),

DS-SOS
l =2M,

SS-SOS
l =K − l + 1,

respectively. One can observe that the second term of AS-SOS
l and MS-SOS

l is not

linear with index l, differently from ASOS
l andMSOS

l . This difference yields a reduced

computational burden for S-SOS. The total number of operations required for S-SOS

is summarized in Table 4.2.
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4.8.3 Correlation-based Selection

The complexity of the CBS algorithm is mostly concentrated in the computation of

the magnitude of the correlation coefficient rkk′ . In order to help in the calculation

of rkk′ , we define the matrix Υ ∈ RK×K
+ as

Υ =


0 r12 · · · r1K

r21 0 · · · r2K
...

...
. . .

...

rK1 rK2 · · · 0

 . (4.20)

Note that matrix Υ is not exactly a correlation matrix because it is a hollow matrix

and does not have the rkk information. Another definition for Υ is given by

Υ = abs
(
IK − H̄HH̄

)
, (4.21)

where H̄ ∈ CM×K is the normalized small-scale fading channel matrix of the users.

In order to build Υ it is necessary to carry out 4K2M additions, 4K2M multipli-

cations, and K(K − 1)/2 absolute value operations, which requires one addition,

two multiplications, and one square root operation. Note that it is only necessary

to do K(K − 1)/2 absolute value operations because Υ is a symmetric hollow ma-

trix. Another important step is the ℓ2-norm calculations and divisions to build the

matrix H̄. However, since ∥hk∥2 =
√
M ∀k ∈ K, it is just necessary to undertake

2KM divisions. The total number of operations required by CBS is summarized in

Table 4.2.

After calculating Υ, three linear searches are carried out to find the user to be

dropped at that iteration. Therefore, at the lth iteration, the CBS first searches

in (K − l + 1)(K − l)/2 elements in order to find the pair (k, k′) with the highest

rkk′ . Then, it performs two searches in (K − l− 1)-dimensional space to find which

user has the second highest magnitude of the correlation coefficient. These three

searches have computational complexities of O((K− l+1)(K− l)/2), O(K− l− 1),

and O(K − l − 1), respectively.

There are no arithmetic calculations inside the loop of CBS, which is a big

advantage compared to SOS and S-SOS. However, it requires 3 searches that depend

on K, which can be a real bottleneck depending on the size of the massive MIMO

system.

4.8.4 Inter-channel Interference-based Selection

The computational burden of ICIBS is very similar to that of CBS, with one of the

main differences being the additional step required by ICIBS to compute the ICI.
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Equation (4.11) can be rewritten as matrix equation given by

ψ(l) =
1

|Sl−1| − 1
ΥSl−1

1|Sl−1|×1. (4.22)

This additional step requires (K − l + 1)(K − l) additions and K − l + 1 divisions

per iteration since |Sl−1| = K − l + 1. The total number of operations required by

ICIBS is summarized in Table 4.2. Additionally, ICIBS performs one linear search

in a (K − l − 1)-dimensional space in order to find the user with the highest ICI.

Compared to CBS, ICIBS performs additional arithmetic operations inside its

loop, which increases the computational burden. However, ICIBS also performs

fewer searches in order to find the user to be dropped from the transmission, which

is an advantage compared to CBS. Besides that, ICIBS, like CBS, is a decremental

user selection approach, which, differently from SOS and S-SOS, leads to reduced

computational burden when the number of selected users L is close to the actual

number of users K.

4.8.5 Simplified Inter-channel Interference-based Selection

The complexity of the S-ICIBS is concentrated in the computation of (4.12), which

requires (K − l) additions, (K − l) multiplications, and (K − l) divisions. The

total number of operations is summarized in Table 4.2. At first glance, the S-ICIBS

does not seem to yield an improvement because it performs extra multiplications

compared to ICIBS. However, the computational advantages of (4.12) become more

evident as K increases.

4.8.6 Fading-ratio Based Selection

The computational burden of FRBS is very similar to that of ICIBS, with the

addition of one new step to compute the FR. At each iteration l, FRBS computes

(4.11) and (4.19), which can be rewritten as a matrix equation given by

δ(l) =
1

|Sl−1| − 1
Diag

(
βSl−1

)−1/2

ΥSl−1
1|Sl−1|×1. (4.23)

This step requires (K− l+1)(K− l) additions, 2(K− l+1) divisions, and K− l+1

square root computations per iteration since |Sl−1| = K− l+1. Additionally, FRBS

performs one linear search in a (K − l − 1)-dimensional space to find the user with

the highest FR. The computational complexity of FRBS is summarized in Table 4.4.
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Table 4.4: FRBS’ Computational Complexity

Number of Operations
Additions 4K2M +K(K − 1)(2K + 5)/6− L(L+ 1)(L− 1)/3
Multiplications 4K2M +K2 −K
Division K2 +K(K + 1)− L(L+ 1)
Square Root K(K − 1)− L(L+ 1)/2

4.9 Concluding Remarks

In this chapter a comprehensive review of the user selection algorithms for massive

MIMO systems has been provided, including a thorough analysis of the computa-

tional complexity of the user selection algorithms. Moreover, it is shown that there

are practical cases in which the LoS propagation model may lead to significant levels

of interference among users within a cell and such cases are not satisfactorily ad-

dressed by the existing user selection algorithms. To this end, a new user selection

algorithm based on ICI, called ICIBS, was proposed. Unlike other techniques, the

ICIBS accounts for the ICI in a global manner, thus yielding better results than

the other algorithms especially in cases where there are many users interfering with

one another and similar results in scenarios having low-interference levels. Further-

more, another novel algorithm to perform user selection in massive MIMO systems

based on the average interference among all users taking into account the small-

and large-scale fading, called FRBS, was proposed. Additionally, although the the-

sis has focused on LoS propagation, all algorithms can also be applied to different

channel models, such as the Rician fading model. From our experience, however,

the benefits in SE due to the use of user selection algorithms are more prominent

as the Rician fading model tends to the LoS model, whereas they become negligible

for i.i.d. Rayleigh fading. In the next two chapters, simulation results regarding the

performance of the ICIBS and FRBS will be presented and discussed.
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Chapter 5

Performance Evaluation of the

ICIBS Algorithm

5.1 Overview

In this chapter, the proposed ICIBS algorithm is compared to SOS [43] and

CBS [9] algorithms. These algorithms were combined with MRT, ZF, and the

MMSE [16] precoders. Equal power allocation was used since the aim is to eval-

uate the impact of user selection. The performance is assessed via numerical sim-

ulations by analyzing the effect of the number of selected users on the system’s

throughput and computational complexity.1 All codes used in this work are avail-

able on GitHub through the following link: https://github.com/rafaelschaves/

user-selection-for-massive-mimo-under-los-propagation. The user selec-

tion algorithms were evaluated under three different scenarios:

• Perfect CSI: to evaluate the improvement afforded by the user selection

algorithms when complete and perfect knowledge of the channel is available.

• Imperfect CSI: to evaluate the performance of the user selection algorithms

when only imperfect knowledge of the channel is available.

• Ultra Clustered-crowded environment: to evaluate the improvement

provided by the user selection algorithms when all the users are clustered

in a small section of the cell. This scenario is really challenging for user selec-

tion algorithms due to the proximity of the users, i.e., the AoAs corresponding

to these users are very similar, thus increasing the inter-channel interference

level.

1The throughput is given by
µ = BRsum [bps], (5.1)

where B ∈ R+ is the bandwidth in Hz.
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Table 5.1: Simulation Parameters for the ICIBS

Parameters
Number of Antennas M ∈ {50, 100}
Number of Users K ∈ {10, 25, 50, 100, 150}
Cell Radius R = 500 m
Bandwidth B = 20 MHz
Large-scale Fading βk = −148− 37.6 log10(dk × 10−3) dB
BS Power 10 W
BS Antenna Gain 0 dBi
User Antenna Gain 0 dBi
Monte-Carlo Ensemble 5, 000
Precoding Algorithms MRT, ZF, and MMSE
User Selection Algorithms SOS, CBS, and ICIBS

5.2 System Parameters

The simulation set-up was strongly inspired by that of [9]. For the simulations,

a 500-m radius hexagonal single-cell massive MIMO system with M ∈ {50, 100}
and K ∈ {10, 50, 75, 100, 150} was used. The UR-LoS channel with a ULA, carrier

frequency of 2 GHz, and bandwidth B = 20 MHz were used in the simulations. The

large-scale coefficient was known by the BS and is defined as [59]

βk = −148− 37.6 log10

(
dk

1 km

)
[dB], (5.2)

where dk ∈ R+ is the distance between the kth user and the BS. Further, we con-

sidered the worst possible scenario in the cell, where all users were at the cell edge,

yielding β = −137 dB for each user. Although this assumption seems restrictive at

first glance, it makes it possible to highlight the impact of small-scale fading on the

system performance and how it can be compensated through user selection. The

radiated power at the BS was 10 W, the BS and user antenna gain was 0 dBi, and

the noise figure for the users was 9 dB. Hence, the DL SNR was 132 dB, yield-

ing an effective SNR ρ̄ of −5 dB. Moreover, the throughput was calculated using

2, 000 realizations of the UR-LoS fading channel. The simulations parameters are

summarized in Table 5.1.

5.3 Perfect CSI

In this section, the throughput of massive MIMO systems was analyzed considering

perfect CSI at the BS. This setup deliberately aimed to avoid the effect of errors in

the precoders in order to highlight the improvement brought about by user selection

to the throughput. For this case, two different scenarios were simulated: first one
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with M = 50 and K ∈ {10, 50, 75}, and the second one with M = 100 and K ∈
{10, 100, 150}.

Fig. 5.1 illustrates the average throughput versus the number of users for

M ∈ {50, 100} and K ∈ {10, 25, 50, 75, 100, 150} when the MRT, ZF, and MMSE

precoders are used. As can be observed, the performance of ZF and MMSE pre-

coders degrade with increasing number of users until to the point where they both

stop working since K > M . This degraded throughput when the ZF and MMSE

precoders are used is expected since for a fixed M , increasing K results in higher

probability of having close users, consequently leading to an ill-conditioned channel

matrix. For the case where the MRT precoder is used, as can be observed, it is

possible to serve much more users than the number of antennas. However, for the

case of large K, increasing the number of users further does not yield a significant

increase in the throughput. In fact, the throughput is limited by the number of

antennas and the SNR [16]. In this case, the limitation of the maximum through-

put means that individual users are penalized due to the addition of new users to

the network. Once the network maximum throughput is achieved, in order to have

a new user accessing the network, the remaining users will have their throughput

decreased. Thus, even when the MRT precoder is used the number of users impact

the performance of the massive MIMO system. The aforementioned problems can

be solved by performing user selection at the BS.
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Figure 5.1: Average throughput versus the number of users for M ∈ {50, 100}. (–
MRT, – – ZF, and · · MMSE)

Fig. 5.2 depicts the average throughput versus the number of selected users L

for M ∈ {50, 100} and different number of users K ∈ {10, 50, 75, 100, 150}, wherein
L = K corresponds to keeping all users (i.e., no user selection). The figure shows

that there was a number of selected users that maximizes the throughput and this

number varied depending on the particular user selection algorithm. The concavity

of the curves shows that the user selection benefited the system throughput, even
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whenM ≫ K. In the worst case, which happened when the user selection algorithms

were used with the ZF precoder, the user selection improved the throughput by at

least 16.88% and 4.52% for M = 50 and M = 100, respectively, considering the

maximum achieved throughput. Figs. 5.2a–5.2c illustrate user selection for M =

50 and K ∈ {10, 50, 75}. In this case, all the algorithms achieved a very close

maximum performance. Indeed, in the best case, ICIBS was only 0.56% and 1.29%

better than SOS and CBS, respectively. For M = 100, the achieved maximum

throughput performances were still very similar with ICIBS being 0.47% and 1.23%

better than SOS and CBS, as depicted in Figs. 5.2d–5.2f. It is worth highlighting

that in Fig. 5.2c and 5.2f, the user selection enabled the use of ZF and MMSE

precoders since they can only be used when K ≤M , which is already an advantage

by itself.

Fig. 5.3 shows the cumulative distribution function (CDF) of the throughput for

M ∈ {50, 100}, L = ⌈K/2⌉, and varying the number of users K. As can be observed

in this figure, the performance of the user selection algorithms varied with K and

the precoder used. For M = 50, the ICIBS algorithm outperformed the others for

all values of K, except for K = 75, as shown in Figs. 5.3a–5.3c. For K = 75,

the SOS provided the best performance with ZF, ICIBS with MMSE, and CBS

performing slightly better with MRT. Moreover, with this number of selected users,

the precoding algorithms had a significant impact on the performance; the ZF and

MMSE performing better with small K and MRT yielding a better performance for

large K. In Figs. 5.3d–5.3f, for M = 100, the same pattern of curves was observed

as in Figs. 5.3a–5.3c, with the only difference being the achieved throughput, which

was higher due to the higher multiplexing gain provided by the larger array.
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5.4 Computational Complexity

This section analyzes the computational burden behavior of the user selection algo-

rithms with the number of selected users L and the number of antennasM . For this

analysis, we used a scenario with K = 100 and M ∈ {50, 100}. The computational

burden of the user selection algorithms was compared in terms of the floating point

operations (flops) count. We consider that a division and a square root operation

are equivalent to one flop, similar to that of an addition and a multiplication.
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Figure 5.4: Giga flops count versus the number of selected users for K = 100 and
M ∈ {50, 100}.

Fig. 5.4 depicts the flops count versus the number of selected users L. As can be

observed in this figure, the computational burden of SOS and S-SOS grows rapidly

with L due to the incremental nature of this type of algorithm. Additionally, the

simplified version does present a significant decrease of the computational burden

in this case. Moreover, the computational burden of SOS and S-SOS is signifi-

cantly higher than that of CBS, ICIBS, and ICIBS, requiring at least 109 more

operations. Furthermore, S-ICIBS reduces the computational burden compared to

ICIBS, achieving a similar one to CBS without requiring expensive linear searches

like CBS. In conclusion, SOS and S-SOS can be prohibitive for massive MIMO sys-

tems, depending on the system parameters. ICIBS is very appealing to massive

MIMO networks due to its low complexity and very good performance.

5.5 Imperfect CSI

This section analyzes the robustness of the user selection algorithms to a possible

error, which leads to the imperfect CSI scenario. This scenario is closer to what

happens in practical massive MIMO systems, wherein channel estimation errors

stem from several sources, such as inherent inaccuracies of the channel estimation

algorithm, and/or from the pilot contamination from different cells in a multi-cell
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scenario, as explained in Section 2.4. For this analysis, we considered the channel

estimate as in (2.26) with σ2
ε ∈ {0, 10−3, 10−2, 10−1, 100}.
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Figure 5.5: Average throughput versus the number of selected users L with imperfect
CSI knowledge for the ICIBS algorithm, considering M = 50, K = 75, different
precoding algorithms, and different σ2

ε .

Fig. 5.5 shows the average throughput versus the number of selected users L with

imperfect CSI knowledge for the ICIBS algorithm, considering M = 50, K = 75,

different precoding algorithms, and different σ2
ε . For the sake of simplicity, we only

show the results for the ICIBS algorithms since the other user selection algorithms

have similar performances. As it can be observed from this figure, the performance

of ICIBS has the same pattern as in Fig. 5.2 with variations in the throughput due

to the errors in the channel estimation. For small σ2
ε , the performance of ICIBS is

close to the case when perfect CSI is available for all precoders. For large σ2
ε , the

ICIBS has a significant performance gap when compared to the case with perfect CSI

knowledge. Furthermore, it is worth highlighting that, in the case with σ2
ε = 1, the

throughput as a function of the number of selected users when the MRT precoder

is used is monotonically increasing, unlike in the other cases. This phenomenon

happens due to the fact that the channel estimate for this case with high channel

estimation error is more like an i.i.d. Rayleigh than an LoS channel, which explains
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the monotonic behavior.

Fig. 5.6 depicts the performance comparison between ICIBS and the other user

selection algorithms in terms of the maximum achieved throughput and the opti-

mum number of selected user L⋆, i.e., the number of selected users that leads to

the maximum achieved throughput. As it can be observed in Figs. 5.6a–5.6c, the

maximum achieved throughput is very similar for all of the user selection algorithms

considering all precoding algorithms. On the other hand, the optimum number of

selected users varies for different user selection algorithms operating under different

levels of channel estimation error as can be observed in Figs. 5.6d–5.6f. It is desir-

able to serve as many users as possible. The major difference in the amount of users

served by the algorithms happens when the MRT precoder is used in a scenario

with σ2
ε = 10−1. In this case, the CBS is able to serve two more users than SOS and

ICIBS. In general, ICIBS and CBS serve more users than SOS in scenarios with low

levels of channel estimation errors (σ2
ε ≤ 10−2), whereas for high levels of channel

estimation error, the optimum number of selected users depends on the precoder

besides the user selection algorithm.

5.6 Ultra Clustered-crowded Scenario

In this section, we analyze the performance of the user selection algorithms in an

ultra clustered-crowded scenario, meaning thatK > M and all the users are clustered

in the same section of the cell, as depicted in Fig. 5.7. For the simulations in this case,

we considered M = 50, K = 75, θ0 ∈ {0◦, 45◦}, and ∆θ ∈ {1◦, 1.5◦, · · · , 4.5◦, 5◦}.
Fig. 5.8 illustrates the average per-user throughput versus the size of the sector

where the users are distributed. As can be observed in Fig. 5.8a, ICIBS performs

better than SOS and CBS for some values of ∆θ, yielding slightly increased through-

put. This improvement is more evident for MRT and MMSE precoders since the

performance of all user selection algorithms can be considered equal for the ZF pre-

coder. It is worth highlighting the drop in the ICIBS performance around ∆θ = 3.6◦,

which seems consistent for all precoding algorithms. This drop in the performance

can be explained by the fact that for a ULA with M = 50 antennas, the directivity

of the array is π/M , thus for ∆θ around π/M , it is already possible to have small

correlation between some users, which may be a problem for ICIBS since it takes

advantage from situations where the correlation among the users is very high and its

global usage of the interference among the users leverages the selection. In Fig. 5.8b,

we can observe the same pattern of Fig. 5.8a, with the performance drop around

∆θ = 5◦, which may be due to the fact that the array is steered to 45◦.

Fig. 5.9 depicts the average throughput versus the number of selected users L for

∆θ = 1.5◦. Like in the case presented in Section 5.3, the user selection also improved
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θ0

Figure 5.7: Example of an ultra clustered-crowded scenario used in the simulations,
where θ0 is the direction of the sector of the cell and ∆θ is the aperture angle.
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Figure 5.8: Average per-user throughput versus ∆θ for M = 50 and K = 75. The
line style (solid, dashed or dotted line) determines the precoder, whereas the colors
specify the user selection algorithm. The yellow solid line, e.g., represents the results
achieved by the ICIBS scheme considering an MRT precoder.

the system throughput, achieving maximum throughput for all algorithms when

L⋆ = 2 users are served with both ZF and MMSE, and L⋆ = 1 user is served with

MRT. In this case, both CBS and ICIBS achieved the same maximum performance,

and, at their peaks, they were 19.98% and 23.03% better than SOS for ZF and

MMSE, respectively. Moreover, the performance of SOS and CBS decreased faster

with L than that of ICIBS, which is an advantage if it is necessary to work with

L > L⋆. For example, for L = 38, ICIBS achieved a throughput of 19.09 Mbps

and 14.02 Mbps with MRT and MMSE, which were still 10.94% and 21.91% better

than SOS and CBS with the same precoders. The performance of the user selection

algorithms with ZF precoder was impaired in this scenario due to the proximity

of the users, which lead to an ill-conditioned channel matrix, and even the user
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selection could not help in this case.
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Figure 5.9: Average throughput versus the number of selected users L for M = 50,
K = 75, ∆θ = 1.5◦, and θ0 = 0◦. The line style (solid, dashed or dotted line)
determines the precoder, whereas the colors specify the user selection algorithm.
The yellow solid line, e.g., represents the results achieved by the ICIBS scheme
considering an MRT precoder.

Fig. 5.10 shows the CDF of the throughput for ∆θ = 1.5◦ and L = 38. The ben-

efit that ICIBS provided in this type of scenario is clearly evident from this figure.

For both MRT and MMSE precoders, ICIBS yielded a significant gain in the 95PT

over the other user selection algorithms. ICIBS achieved a 95PT of 18.27 Mbps

and 11.57 Mbps with MRT and MMSE precoders, resulting in improved perfor-

mance of at least 7.66% over the other user selection algorithms. Although the

ICIBS did not yield significant improvements in terms of system throughput in the

results presented in Section 5.3, the results due to ICIBS presented in this section

were significantly superior in comparison to the competing user selection algorithms.

The fundamental difference between the scenario simulated in this section from the

scenario in Section 5.3 lies in the inter-channel interference level. Indeed, in this sec-

tion, since the users are concentrated in a small portion of the cell, there are more

users interfering with each other simultaneously, thus the inter-channel interference

is more severe. This is why the ICIBS outperformed other competing approaches.

5.7 Practical Guidelines

This subsection discusses the suitability of the user selection algorithms in practical

scenarios, summarizing the main findings of massive MIMO systems under LoS

propagation, and explaining how to use the obtained results for aiding the design

of massive MIMO systems. Firstly, it is worth highlighting that the user selection

would not imply an additional cost to the BS since all the user selection algorithms

are implemented digitally and can share the BS’s digital signal processor (DSP)
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Figure 5.10: Cumulative distribution function of the throughput for M = 50, K =
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determines the precoder, whereas the colors specify the user selection algorithm.
The yellow solid line, e.g., represents the results achieved by the ICIBS scheme
considering an MRT precoder.

units. Therefore, user selection algorithms can be easily used in massive MIMO

systems.

As it can be observed from the results presented throughout this section, the

performance of all of the user selection algorithms are very sensitive to the param-

eters of the system. Thus, the most suitable algorithm depends on the application

and the scenario. For example, if the aim is to maximize the achieved throughput

without concerning with the number of served users, the most suitable algorithm

is the ICIBS with ZF and MMSE precoders, followed by CBS with MRT precoder.

However, if the system has a requirement to serve specific minimum number of users

L, then the most suitable algorithm is the one that yields the highest throughput

for that particular L. In general, for the case where K ≤ M and L ≤ ⌈K/2⌉, the
ICIBS outperforms the other user selection algorithms by a small amount for all

precoder types. On the other hand, when K ≤ M and L = ⌈K/2⌉, CBS yields

the highest throughput using the MRT precoder, SOS yields the highest throughput

using the ZF precoder, and ICIBS yields the highest throughput using the MMSE

precoder. Moreover, SOS generally tends to perform better than CBS and ICIBS

when ZF is used for K/2 < L ≤M . However, the performance with ZF precoder is

so degraded in LoS propagation for that range of L such that it is advisable to use

another precoder in this case.

Another important factor is the computational complexity, which can be a hin-

drance in practical applications. The computational burden of the SOS rapidly

grows with the number of antennas M and the number of selected users L, which is

not desirable since massive MIMO systems use very large M . The SOS should be

considered only in cases where one can have a significant gain in the throughput.
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Therefore, the high computational burden of the SOS is an impediment for its use

in massive MIMO systems.

The final point to consider in the design of massive MIMO systems with user

selection is the cell usage. In the simulations, we considered two possible scenarios

where the whole cell and only a section of the cell was used. The previous comments

are based on the case when the whole cell was used. However, when only a small

section of the cell is used, the ICIBS outperforms all of the other algorithms. Further,

the ultra clustered-crowded scenario used in the performance analysis represents

some real scenarios that are increasingly common nowadays, such as large scale

social, cultural, and sporting events, where a dedicated and efficient communication

system is necessary.

5.8 Concluding Remarks

In this chapter, simulation results regarding the performance of the ICIBS algorithm

were presented and discussed. The performance of the ICIBS was evaluated when

combined with different linear precoders for various system configurations consid-

ering perfect and imperfect CSI under the LoS propagation channel has been eval-

uated. It is worth highlighting the ultra clustered-crowded scenario, where all the

users are clustered in a small section of the cell. In this scenario, the proposed algo-

rithm significantly outperformed the competitors algorithms, showing the relevance

of ICIBS in a scenario that is increasingly common nowadays.
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Chapter 6

Performance Evaluation of the

FRBS Algorithm

6.1 Simulation Parameters

The performance of the proposed FRBS algorithm is evaluated and compared with

the exhaustive search with equal power allocation (ESEPA), exhaustive search with

max-min fairness power allocation (ESMMFPA), LSFRS [4], SOS [43], CBS [9], and

ICIBS approaches via numerical simulations, by analyzing the effect of the number of

selected users on the average sum-throughput and the min-throughput. Moreover,

EPA is used to evaluate the sum-throughput and MMFPA is used for evaluating

the min-throughput. Furthermore, the MRT and ZF precoders are used in the

simulations with a view to evaluate the performance for different precoders. All

codes used for generating the results presented in this section are available in https:

//github.com/rafaelschaves/user-selection-with-large-scale-fading.

The simulation scenario considers a massive MIMO system with M = 50 an-

tennas operating in 500-m radius hexagonal single-cell with a carrier frequency of

1.9 GHz, and bandwidth of 20 MHz. The large-scale fading is composed of the

path loss and the shadow fading. The path loss is modeled by the COST 231 Hata

propagation model [85], whereas the shadow fading is modeled by a log-normal dis-

tribution [1]. Moreover, the large-scale fading coefficients is assumed to be known

by the BS, the shadow fading is log-normally distributed with zero mean and 8 dB

standard deviation, the radiated power at the BS is 10 W, with BS and user antenna

gains of 0 dBi, and the noise figure for the users is 9 dB, leading to a DL SNR of

132 dB, such as the scenario in [9]. The simulations parameters are summarized in

Table 6.1.
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Table 6.1: Simulation Parameters for the FRBS

Parameters
Number of Antennas M = 50
Number of Users K ∈ {10, 25, 75}
Cell Radius R = 500 m
Carrier Frequency fc = 1.9 GHz
Bandwidth B = 20 MHz
Path Loss COST 231 Hata
Shadow Fading Lognormal(0, 8 dB)
BS Power 10 W
BS and User Antenna Gain 0 dBi
Precoding Algorithms MRT and ZF

User Selection Algorithms
ESEPA, ESMMFPA, LSFRS, SOS,

CBS, ICIBS, and FRBS

6.2 Performance of the FRBS

In this section, we compare the performance of the FRBS algorithm with that of

the ESEPA, ESMMFPA, and SOS algorithms. These algorithms are the only ones

capable of making use of both the small- and large-scale fading. Additionally, in the

simulations we consider K ∈ {10, 25}, and the throughput is calculated using 100

realizations of the UR-LoS fading channel. The number of realizations as well as K

are small to enable the use of ES solutions.
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Figure 6.1: Average sum-throughput versus the number of selected users with EPA,
considering different number of users.

Fig. 6.1 depicts the average sum-throughput versus the number of selected users

L with EPA, wherein L = K corresponds to keeping all users, i.e., the user selection

algorithms are turned off. The figure shows that there is a specific number of selected

users L⋆ that maximizes the sum-throughput and this number varies depending on
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Table 6.2: Optimum Values Achieved by the Algorithms for K = 10

MRT ZF
L⋆ Sum-throughput (Mbs) L⋆ Sum-throughput (Mbps)

ESEPA 7 345.04 8 442.59
ESMMFPA 7 342.58 8 441.00

SOS 8 320.92 8 439.12
FRBS 7 333.26 8 436.44

Table 6.3: Optimum Values Achieved by the Algorithms for K = 25

MRT ZF
L⋆ Sum-throughput (Mbs) L⋆ Sum-throughput (Mbps)

ESEPA 14 578.88 16 818.84
ESMMFPA 14 569.46 16 803.13

SOS 16 509.10 15 803.41
FRBS 12 525.91 14 775.13

the user selection algorithm used. The concavity of the curves shows that the user

selection improved the system throughput, i.e., the throughput at L⋆ was higher

than that at L = K. Considering Fig. 6.1a, the maximum performance of FRBS

and SOS were close to that of ESEPA, which was taken as the benchmark. Indeed,

in the worst case,1 the ESEPA was only 6.99% and 1.39% better than SOS and

FRBS, respectively. In this case, FRBS achieved a maximum sum-throughput of

333.26 Mbps with L⋆ = 7 and 436.44 Mbps with L⋆ = 8 when MRT and ZF were

used, respectively. The optimum values obtained by all the algorithms for K = 10

are summarized in Table 6.2. Additionally, with increased number of users K, the

maximum performance of FRBS and SOS were still close to that of ESEPA, albeit

with a slight increase in the gap among their peaks, as illustrated in Fig. 6.1b. In the

worst case, ESEPA was 12.05% and 5.34% better than SOS and FRBS, respectively,

with FRBS achieving a maximum sum-throughput of 525.91 Mbps with L⋆ = 12

and 775.13 Mbps with L⋆ = 14 when MRT and ZF were used, respectively. The

optimum values obtained by all the algorithms for K = 25 are summarized in

Table 6.3. As can be observed from Tables 6.2 and 6.3, for K = 10 and K = 25,

the optimum number of users obtained by the FRBS is very close to the optimum

obtained by ESEPA, meaning that FRBS achieved the best tradeoff in terms of

network throughput and user coverage.

Despite the fact that FRBS and SOS have similar performances, FRBS has

a huge advantage in terms of computational burden measured in flops count as

depicted in Fig. 6.2. The figure shows the computational burden versus the number

1By worst case, we mean the precoder whose performance yielded the largest gap between a
given algorithm (SOS or FRBS) and the benchmark curve (ESEPA). In this case, the precoder
that yielded the largest performance gaps was the MRT precoder.
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of selected users L. As can be observed, the computational burden of FRBS is

almost insensitive to L, whereas the computational burden of SOS increases rapidly

with L. The SOS required in the order of 103 more flops than FRBS, with these

additional flops increasing with K. Hence, FRBS is more scalable with varying

number of users K and selected users L.
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Figure 6.2: Computational burden versus the number of selected users measured in
flops count for SOS and FRBS.

Fig. 6.3 illustrates the average min-throughput versus the number of selected

users L with MMFPA. As can be seen in Fig. 6.3a, FRBS outperformed SOS when

MRT precoder was used, achieving results very close to that of ESMMFPA. On the

other hand, in Fig. 6.3b, the gap between FRBS and ESMMFPA increased with

the number of users K when the MRT and ZF precoders were used. However, the

FRBS min-throughput was higher than that of the SOS for L ≤ 15, and similar

to SOS for 15 ≤ L ≤ K when MRT was used. Additionally, when ZF was used,

FRBS and SOS had similar min-throughputs for L ≤ 10 and the gap between their

min-throughputs started increasing for 10 ≤ L ≤ K.

It is worth highlighting that the performance of FRBS and SOS are very de-

pendent on the system parameters, such as the number of antennas M , number of

users K, and the cell radius. However, from our practical experience with these

algorithms the following general conclusions can be drawn:

• Increasing the number of users K results in the same pattern of curves shown

in Figs. 6.1 and 6.3, but with higher throughputs since there are more users.

• Increasing the number of antennas M results in the same pattern of curves

shown in Figs. 6.1 and 6.3, but with higher throughputs due to the multiplexing

gain provided by the larger number of antennas.

• Increasing the cell radius results in lower average large-scale fading and con-

sequently lower average SNR. When operating in a large cell, both FRBS and
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Figure 6.3: Average min-throughput versus the number of selected users with
MMFPA, considering different number of users.

Table 6.4: Optimum Values Achieved by the SSFA Algorithms for K = 75

MRT ZF
L⋆ Sum-throughput (Mbs) L⋆ Sum-throughput (Mbps)

CBS 32 757.37 33 1, 085.37
ICIBS 31 788.67 33 1, 085.06
FRBS 24 777.45 22 1, 370.62

SOS serve less users at their sum-throughput peaks, i.e., the peaks presented

in Fig. 6.1 move to the left with increasing cell radius.

6.2.1 FRBS vs. SSFA Algorithms

In this subsection, we compare the performance of the FRBS with that of CBS and

ICIBS algorithms. Our goal is to evaluate the performance when the large-scale

fading is taken into account along with the small-scale fading and compare with the

performance when only the small-scale fading is considered. This analysis aims to

quantify the importance of the large-scale fading for user selection in massive MIMO

systems under LoS propagation. In the simulations, the throughput is calculated

using 1, 000 realizations of the UR-LoS fading channel and we consider K = 75 that

represents a crowded scenario. This type of scenario is of paramount importance

for massive MIMO systems since there are more users than antennas, representing

situations that are likely to happen in practical applications.

The results shown in Figs. 6.1 and 6.3 demonstrate the efficacy of the proposed

FRBS algorithm with its very low computational burden when compared to other

user selection algorithms. In terms of comparing FRBS with SSFA algorithms such

as CBS and ICIBS, Fig. 6.4 depicts the throughput versus the number of selected

users L with EPA for CBS, ICIBS, and FRBS with K = 75. Different from the
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Figure 6.4: Average sum-throughput versus the number of selected users with EPA
for CBS, ICIBS, and FRBS with M = 50 and K = 75.

scenario considered for Figs. 6.1 and 6.3, in this case we consider a crowded scenario

(K > M) where the user selection is mandatory, at least when ZF precoder is used.

As can be observed in Fig. 6.4, under such scenario FRBS achieved its maximum

throughput serving fewer users than CBS and ICIBS. When MRT precoder is used,

the maximum throughput achieved by the algorithms were very similar, as can be

seen in Table 6.4. FRBS outperformed CBS and ICIBS for L < 27 and was slightly

outperformed by them when L > 27. When ZF precoder is used, FRBS achieves

a maximum throughput of 1, 370.62 Mbps, improving the maximum throughput

obtained by CBS and ICIBS by 26.28%. Moreover, the throughput obtained by

FRBS exhibited a significant advantage over that of CBS and ICIBS for any L < 30.

For L > 30, CBS and ICIBS yielded a slightly improved throughput when compared

to FRBS. These results indicate that the large-scale fading is more relevant to the

throughput for small L, and ICI seems to be sufficient to achieve a reasonable

throughput for high L. The choice of the best user selection algorithm depends

on the choice of precoder to be used in the design of the network. If MRT is the

chosen precoder, SSFA algorithms are the best choice as they achieve the same

throughput levels as FRBS while serve more users, which is desirable from the

network perspective. On the other hand, if the ZF precoder is chosen, the FRBS is

the best possible algorithm since it achieves the best tradeoff in terms of network

throughput and user coverage.

6.2.2 FRBS versus LSFA Algorithms

In this subsection, we compare the performance of the FRBS with that of the LS-

FRS. Our goal is to evaluate the performance when the large-scale fading is taken

into account along with the small-scale fading and compare with the performance
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Table 6.5: Optimum Values Achieved by the LSFA Algorithms for K = 75

MRT ZF
L⋆ Sum-throughput (Mbs) L⋆ Sum-throughput (Mbps)

LSFRS 35 621.12 17 1, 012.37
FRBS 24 777.45 22 1, 370.62

when only the large-scale fading is considered. This analysis aims to quantify the

importance of the small-scale fading for selecting users in massive MIMO systems

under LoS propagation. This is one fundamental difference between massive MIMO

systems under LoS propagation and NLoS propagation. For the NLoS case, the

small-scale fading is averaged out and does not affect the SE of the system, which is

not the case for LoS propagation. In the simulations, the throughput is calculated

using 1, 000 realizations of the UR-LoS fading channel and as before we consider

K = 75.
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Figure 6.5: Average sum-throughput versus the number of selected users with EPA
for LSFRS and FRBS with M = 50 and K = 75.

Fig. 6.5 shows the throughput versus the number of selected users L with EPA

for LSFRS and FRBS for K = 75. As can be observed in Fig. 6.5, for both MRT

and ZF precoders, FRBS completely outperformed the LSFRS algorithm for almost

every L. Both algorithms had similar performance for L close toM . Considering the

maximum obtained throughput, FRBS was 25.17% and 35.39% better than LSFRS

when MRT and ZF precoders are used, respectively. These results indicate that the

small-scale fading is of paramount importance to the performance of massive MIMO

systems under LoS propagation and cannot be disregarded in the user selection

process.
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6.3 Concluding Remarks

In this chapter, simulation results regarding the performance of the FRBS algorithm

was presented and discussed. The performance of the FRBS was evaluated via sim-

ulations when combined with different linear precoders and power allocation algo-

rithms, and compared with other user selection algorithms. The results showed that

FRBS provided the best cost-effective solution in terms of average sum-throughput,

average min-throughput and the computational complexity when compared to the

other user-selection schemes.
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Part II

Cell-free Massive MIMO Systems
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Chapter 7

Nonlinearities of Cell-Free Massive

MIMO

7.1 Introduction

In this chapter, we evaluate the performance of an UL transmission of a semi-

distributed CF massive MIMO network considering the impact of hardware impair-

ments introduced by the analog-to-digital (AD) converters, e.g., quantization. To

model the nonlinear distortion caused by quantization, we use the Bussgang de-

composition [92], which allows us to decompose the output of a nonlinear function

representing the quantization process as a linear function. Some works evaluated the

impact of the quantization in the CPU, providing power allocation and UE assign-

ment algorithms [67–71]. In [66], the authors studied the impact of general hardware

impairments present in the APs and UEs on the performance of CF massive MIMO

networks. The difference between the analysis presented in this chapter and the

other works is that here we consider quantization effects in both the CPU and the

APs. Hence, we show that quantization generates additional nonlinear interference

effects to the signal processing performed in the CPU and the APs.

In addition to the quantization effects, we also consider that the CF massive

MIMO network operates over a Rician fading channel, and derive the MMSE channel

estimate taking into account the related quantization effects. We also provide the

suboptimal scalable version of the MMSE estimate that limits the interference from

other users. Moreover, we derive the UL SE for any given linear combiner used

in the APs and any LSFD used in the CPU. Furthermore, we present the scalable

version of the LP-MMSE combiner considering the quantization effects, and derive

the optimal and scalable nearly optimal (n-opt) LSFD vectors used in the semi-

distributed implementation of the network.
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Figure 7.1: A CF massive MIMO network operating in uplink withM APs equipped
wit an N -antenna array distributed over a coverage area serving K single-antenna
UEs.

7.2 Cell-free Massive MIMO

Consider a CF massive MIMO network operating in UL, consisting of M APs

equipped with an N -antenna array distributed over a coverage area servingK single-

antenna UEs, as illustrated in Fig. 7.1. The CF massive MIMO network is deployed

in a semi-distributed implementation, where the APs are responsible for the CSI

acquisition and coarse detection of the signal, and the CPU is responsible for the

UE assignment that happens during the initialization of the network and for the

fine detection of the signal. Both the CPU and APs have nonlinearities associated

with them caused by the AD converters in the antenna arrays and at the end of

the fronthaul links, as shown in Fig. 7.2. The AD converters perform a uniform

quantization with nonlinear function given by [67]

f(z) =


−2b−1

2
∆, for z < −

(
2b−1 − 1

)
∆(

l + 1
2

)
∆, for l∆ ≤ z < (l + 1)∆, ∀l ∈ L

2b−1
2

∆, for
(
2b−1 − 1

)
∆ ≤ z

, (7.1)

where ∆ ∈ R+ is the step size of the quantizer, b ∈ N is the number of quantization

bits, and L = {−2b−1 + 1, · · · , 2b−1 − 2}.
In order to achieve the scalability of the CF massive MIMO system, the APs only

transmit and decode signals from specific UEs, which are assigned in the initializa-
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Figure 7.2: Block diagram of the CPU and APs for the CF massive MIMO network.

tion of the system or when new users enter the coverage area. We define a matrix

E ∈ RM×K specifying the connection between the APs and UEs, where [E]mk = 1 if

the mth AP is allowed to communicate with the kth UE and [E]mk = 0 otherwise.

For the sake of simplicity we define the sets

Um = {k ∈ K | [E]mk = 1}, (7.2)

Ak = {m ∈ M | [E]mk = 1}, (7.3)

Sk = {k′ ∈ K | [E]mk[E]mk′ ̸= 0, ∀m ∈ M}, (7.4)

where K = {1, 2, · · · , K} is the set of all UE indices, M = {1, 2, · · · ,M} is the set

of all AP indices, Um is the index set of UEs served by the mth AP, Ak is the index

set of APs serving the kth UE, and Sk is the index set of the UEs that are served

partially by the same APs as the kth UE, including the kth UE.

The CF massive MIMO system operates in TDD mode, and the channel is es-

timated through a UL pilot transmission. The channel response of the system is

constant in a coherence time-frequency block of length τc ∈ N samples. In the UL,

τp ∈ N samples are reserved for the pilot transmission and τu = τc − τp samples

for the data transmission. Let hmk ∈ CN×1 denote the channel between the mth

AP and the kth UE, which is a random vector for every pair (m, k) ∈ M×K. We

consider a spatially correlated Rician fading channel given by [63, 93, 94]

hmk = hLoS
mk e

jϕmk + hNLoS
mk , (7.5)

where hLoS
mk ∈ CN×1 is the deterministic LoS component, ϕmk ∼ U(−π, π) is the

phase shift due to UE mobility and phase noise associated with the array of the mth

AP and the kth UE, and hNLoS
mk ∼ CN (0,Rmk) is the stochastic NLoS component

with spatial covariance matrix Rmk ∈ CN×N and βNLoS
mk = Tr (Rmk) /N is the large-
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scale fading coefficient of the NLoS component. The LoS component of (7.5) is

determined by the geometry of the APs’ array and the large-scale fading. In this

work, we consider that all the APs have the same ULA, and, therefore, the LoS

component between the mth AP and the kth UE is given by

hLoS
mk =

√
βLoS
mk

[
1 e−jπ sin(θmk) · · · e−j(N−1)π sin(θmk)

]T
, (7.6)

where βLoS
mk ∈ R+ is the large-scale fading coefficient of the LoS component, θmk ∼

U(−π, π) is the incidence angle of the kth UE, and the array of the mth AP.

7.3 The Bussgang Decomposition

Different from what is assumed in many theoretical developments, practical systems

are nonlinear in nature due to several impairments, such as the nonlinearity of prac-

tical power amplifiers or the finite resolution of the quantizers. A popular tool used

to analyze such systems is the so-called Bussgang decomposition, which is a straight-

forward consequence of the Bussgang theorem [92]. The Bussgang decomposition,

as the name suggests, decomposes the output of a memoryless nonlinear function as

z = f(x) = Ax+ q, (7.7)

where x ∈ CM×1 is the input of the nonlinear function, z ∈ CM×1 is the output of

the nonlinear function, f(·) denotes a memoryless nonlinear function, A ∈ CM×M is

the Bussgang gain, q ∈ CM×1 is the distortion; this additive distortion is modeled as

a zero-mean non-Gaussian random variable that is uncorrelated with input x. The

Bussgang gain is defined as

A = CzxC
−1
x , (7.8)

where Czx = Cov {z,x} and Cx = Cov {x}.

Remark 7.1 . The Bussgang decomposition can be viewed as the linear MMSE

estimate of z given x, with estimation error q [95]. Therefore, if the input x is

jointly Gaussian distributed with other random variables, the distortion q is also

uncorrelated with such random variable, which does not hold in the case of non-

Gaussian inputs.

The model in (7.7) has been widely used to analyze the performance of MIMO

systems with nonlinearities. In MIMO systems, x is the input of the antennas and q

is the distortion caused by the impairments, which is caused by the finite-resolution

AD converters in our case. Additionally, it is assumed that there is no crosstalk

among the branches of different antennas, as can be seen in Fig. 7.2. Thus, for

86



MIMO systems, equation (7.7) can be rewritten as

z = f(x) =


f1(x1)

f2(x2)
...

fM(xM)

 = Diag (a1, a2, · · · , aM)x+ q, (7.9)

or

zm = amxm + qm, ∀m ∈ M. (7.10)

With knowledge of the input x and the output z, we can use the Price theorem [96]

with (7.10) in order to independently compute the gains a1, a2, · · · , aM . However,

one disadvantage of (7.10) is the dependence of the variance of the quantizer input

in the computation of the Bussgang gain, which is a hindrance in the design of some

quantizer parameters. For example, the optimal step size of a uniform quantizer as in

(7.1) depends on the Bussgang gain alongside other parameters [67]. An alternative

to (7.10) is normalizing the input signal by its variance and amplifying the output

of the quantizer by the original input variance [67]. Hence, equation (7.10) can be

rewritten as

fm(xm) = σmfm

(
xm
σm

)
= ãmxm + σmq̃m, (7.11)

where σ2
m = Var {xm} is the variance of the input xm, ãm ∈ C is the Bussgang

gain for a normalized input and q̃m is the distortion noise for a normalized input

with variance σ2
q̃m . With this approach, we can use tabulated values for ãm and

σ2
q̃m , which do not depend on the input of the quantizer. In summary, by using

(7.11), we can avoid the computation of am and σ2
qm every time the input changes,

being the advantage of this strategy. The optimum step size of the quantizer and

corresponding ã and σ2
q̃m are summarized in Table 7.1 from [70].

It is worth highlighting that despite of A being a diagonal matrix in (7.9), it does

not imply that the entries of the distortion q is uncorrelated. Since the distortion

q is uncorrelated with x, its covariance matrix Cq = Cov {q} can be written as

Cq = Cz −ACxA
H. (7.12)

Then, we can see that the distortion is only uncorrelated if the output and the

input are both uncorrelated. In MIMO systems, the input of the quantizers are

correlated since each antenna receives a different linear combination of the trans-

mitted signals. The covariance matrix of the output signal and the Bussgang gain

87



Table 7.1: Bussang Parameters for the Quantizer in (7.1) with Normalized Input

b ã σ2
q̃ ∆⋆

1 0.6366 0.2313 1.596
2 0.88115 0.10472 0.9957
3 0.96256 0.036037 0.586
4 0.98845 0.011409 0.3352
5 0.996505 0.003482 0.1881
6 0.99896 0.0010389 0.1041
7 0.99969 0.0003042 0.0558
8 0.999912 0.0000876 0.0307
9 0.999975 0.0000249 0.0165
10 0.999993 6.99696× 10−6 0.0088
11 0.999998 1.94441× 10−6 0.004649
12 0.999999 5.35536× 10−7 0.0024484
13 0.9999998 1.46369× 10−7 0.001283
14 0.99999997 3.97394× 10−8 0.001283
15 1 1.0727× 10−8 0.000349

can be obtained by using the Price theorem [96]. For a uniform quantizer as the one

in [67], Cz and A depend on the number of quantization bits b and the step-size

of the quantizer ∆. The exact value of Cq was derived in [71] for the case of a

uniform quantizer along with conditions to the uncorrelated distortion assumption

be sufficiently good. For a conventional massive MIMO system, results in [97] have

shown that the distortion of one-bit AD converters can be considered uncorrelated

in some scenarios such as under low SNR regime and elevated number of users.

Moreover, even in different scenarios, the authors in [98] have shown that hardware

distortion correlation has negligible impact on the UL SE of massive MIMO systems.

On the other hand, results in [71] have shown that the off-diagonal elements of Cq

are sensitive to parameters of the CF massive MIMO network, such as the number

of APs, the number of antennas at the APs, and the number of UEs. For exam-

ple, in scenarios with M > K, the off-diagonal elements of Cq can be neglected,

being only relevant for cases when M ≤ K, which are not desired on CF massive

MIMO systems. Additionally, approximating Cq by a diagonal matrix does not

have significant impact in the uplink performance of CF massive MIMO systems

when M ≫ K [68, 71]. Furthermore, the distortion noise can also be approximately

considered uncorrelated in low SNR regime [97, 99]. Therefore, in this thesis, we

consider Cq = Diag (Var {q1} ,Var {q2} , · · · ,Var {qM}).
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7.4 Uplink Channel Estimation

The channel is estimated through τp mutually orthogonal pilot signals, which are

assigned to every UE when it accesses the network. The pilot signal of the kth UE

is denoted by φtk ∈ Cτp×1, where tk ∈ {1, · · · , τp} is the index of the pilot assigned

to the kth UE. By definition, we assume that |φtk1| = |φtk2| = · · · = |φtkτp| = 1,

yielding
∥∥φtk∥∥22 = τp. In CF massive MIMO systems, several UEs share the same

pilot due to the fact that K > τp, which is typical of massive access systems. We

denote

Pk = {k′ ∈ K|tk′ = tk} (7.13)

as the set of UEs that use the same pilot as the kth UE, including the kth UE itself.

The received signal at the mth AP during the pilot transmission Yp
m ∈ CN×τp is

given by

Yp
m =

∑
k∈K

√
ρulηkhmkφ

T
tk
+Nm, (7.14)

where ηk ∈ R+ is the pilot power allocation coefficient for the kth UE and Nm ∈
CN×τp is the receiver thermal noise, whose elements are i.i.d. with distribution

CN (0, 1). The signal in (7.14) is quantized by the AD converters at the APs, which,

for the sake of simplicity, use the same number of bits. This operation yields

fAP(Y
p
m) = ãAPY

p
m +Qp

m, (7.15)

where Qp
m ∈ CN×τp is the distortion matrix, whose elements are zero-mean non-

Gaussian random variables with variance given by

Var {[Qp
m]nt} =

(∑
k∈K

ηkVar {hmkn}+ 1

)
σ2
q̃ . (7.16)

Due to the construction of the covariance matrix of NLoS component, Rmk, we

can say that Var {hmkn} = βNLoS
mk ∀n ∈ {1, · · · , N}. Thus, equation (7.16) can be

rewritten as

Var {[Qp
m]nt} =

(∑
k∈K

ηkβ
NLoS
mk + 1

)
σ2
q̃ . (7.17)

The quantized version of the received signal Yp
m is the observation used to esti-

mate all the channels served by the mth AP. Note that the channel estimation can

be either carried out directly at the mth AP or delegated to the CPU. However,

the distributed fashion is preferred due to the fact that it is less sensitive to the

limitations in the fronthaul link. It is worth highlighting that the mth AP only

needs to estimate channels of UE that belong to Um. This process makes the CF

massive MIMO system scalable. In order to estimate the channel of the kth UE,
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the mth AP multiplies the received signal Yp
m with the normalized conjugate of the

associated pilot φtk . The processed signal is given by

yp
mtk

=
1

√
τp
f(Yp

m)φ
∗
tk

=
∑
k′∈K

ãAP

√
ρulηk′

τp
hmk′φ

T
tk′
φ∗
tk
+
ãAP√
τp
Nmφ

∗
tk
+

1
√
τp
Qp
mφ

∗
tk

= ãAP
√
ρulηkτphmk +

∑
k′∈Pk\{k}

ãAP
√
ρulηk′τphmk′ + ãAPnmtk + qp

mtk
, (7.18)

where the first term of the RHS is the desired channel, the second term is interference

caused by the same pilot being used by other users, the third term is the thermal

noise that is nmtk ∼ CN (0, IN) since
∥∥φtk∥∥22 = τp, and the fourth term is the effective

distortion produced by φ∗
tk
.

7.4.1 Phase-aware MMSE Estimator

Let us assume that hLoS
mk , ϕmk, and Rmk, ∀k ∈ Pk, are available for the mth AP.

Based on the processed received pilot in (7.18), the phase-aware MMSE estimate of

hmk is given by the following lemma.

Lemma 7.1

The phase-aware MMSE estimate of the channel between the mth AP and the kth

UE using the observation yp
mtk

is

ĥmk = hLoS
mk e

jϕmk + ã3AP

√
ρulηkτpRmkΨ

−1
mtk

(yp
mtk

− E
{
yp
mtk

}
), (7.19)

where

E
{
yp
mtk

}
= ãAP

∑
k′∈Pk

√
ρulηk′τph

LoS
mk′e

jϕmk′ , (7.20)

and Ψmtk is the covariance matrix of (7.18) given by

Ψmtk =
∑
k′∈Pk

ρulηk′τpRmk′ +

(
1 + ζAP + ζAP

∑
k′∈K

ηk′β
NLoS
mk′

)
IN , (7.21)

where ζAP = σ2
q̃/ã

2
AP.

The estimate ĥmk and estimation error h̃mk = hmk−ĥmk are independent vectors

given by

ĥmk = hLoS
mk e

jϕmk + ĥNLoS
mk , (7.22)

h̃mk ∼ CN (0,Cmk), (7.23)
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where ĥNLoS
mk ∼ CN (0,Bmk), and

Bmk = Cov
{
ĥmk

}
= ã6APτpηk′RmkΨ

−1
mtk

Rmk, (7.24)

Cmk = Cov
{
h̃mk

}
= Rmk −Bmk. (7.25)

Proof. The MMSE estimate of Gaussian random vector such as hmk is given by [59]1

ĥmk = E
{
hmk|yp

mtk

}
= E {hmk}+ Cov

{
hmk,y

p
mtk

}
Cov

{
yp
mtk

}−1
(yp

mtk
− E

{
yp
mtk

}
). (7.26)

Moreover, the covariance matrix Cov
{
ĥmk

}
is given by

Cov
{
ĥmk

}
= E

{(
ĥmk − E

{
ĥmk

})(
ĥmk − E

{
ĥmk

})H}
= Cov

{
hmk,y

p
mtk

}
Cov

{
yp
mtk

}−1
Cov

{
yp
mtk

}
Cov

{
yp
mtk

}−1
Cov

{
hmk,y

p
mtk

}
= Cov

{
hmk,y

p
mtk

}
Cov

{
yp
mtk

}−1
Cov

{
hmk,y

p
mtk

}
. (7.27)

From (7.5), we have that E {hmk} = hLoS
mk e

jϕmk , and since the thermal noise nmtk
and the distortion qp

mtk
are zero-mean random variables, we have

E
{
yp
mtk

}
= ãAP

∑
k′∈Pk

√
ρulηk′τph

LoS
mk′e

jϕmk′ . (7.28)

The cross-covariance matrix Cov
{
hmk,y

p
mtk

}
is given by

Cov
{
hmk,y

p
mtk

}
= ãAP

∑
k′∈Pk

√
ρulηk′τpE

{
hNLoS
mk

(
hNLoS
mk′

)H}
+ ãAPE

{
hNLoS
mk nH

mtk

}
+ E

{
hNLoS
mk (qp

mtk
)H
}
. (7.29)

The NLoS component hNLoS
mk is uncorrelated with the NLoS from other UEs and

with the thermal noise, and since it is part of the input of the quantizers, it is also

uncorrelated with the processed distortion qp
mtk

. Thus, (7.29) can be simplified to

Cov
{
hmk,y

p
mtk

}
= ãAP

√
ρulηkτpRmk. (7.30)

By using similar arguments used to compute (7.30), the covariance matrix

1Note that hmk is not a circularly symmetric Gaussian random vector, but it is still a Gaussian
random variable.
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Cov
{
yp
mtk

}
can be written as

Cov
{
yp
mtk

}
= ã2AP

∑
k′∈Pk

ρulηk′τpE
{
hNLoS
mk′

(
hNLoS
mk′

)H}
+ ã2APE

{
nmtkn

H
mtk

}
+ E

{
qp
mtk

(qp
mtk

)H
}

= ã2AP

∑
k′∈Pk

ρulηk′τpRmk′ +

(
ã2AP + σ2

q̃ + σ2
q̃

∑
k′∈K

ηk′β
NLoS
mk′

)
IN . (7.31)

Therefore, the MMSE estimate of hmk is given by

ĥmk = hLoS
mk e

jϕmk + ã3AP

√
ρulηkτpRmkΨ

−1
mtk

(yp
mtk

− E
{
yp
mtk

}
), (7.32)

where Ψmtk is given by (7.21). Furthermore, (7.22) and (7.23) resulted from the

properties of the MMSE estimator.

Note that (7.18) indicates that sharing pilot φtk among the UEs in Pk generates
mutual interference, and consequently degrades the system performance, which is

the so-called pilot contamination. Moreover, due to the APs’ AD converters, the

MMSE estimate needs the large-scale fading coefficients from all the users. Techni-

cally, this would make the channel estimation unscalable, but this is a deterministic

information that changes much slower than the small-scale information that would

only be transmitted to the APs once in a while. Thus, it would not be a bottleneck

to the channel estimation. However, a possible solution to make the estimation

scalable is using a suboptimal estimation with Ψ̄mtk given by

Ψ̄mtk =
∑
k′∈Pk

ρulηk′τpRmk′ +

(
1 + ζAP + ζAP

∑
k′∈Um

ηk′β
NLoS
mk′

)
IN . (7.33)

7.5 Uplink Data Transmission

During the uplink data transmission, the mth AP receives the signal ym ∈ CN×1

from all users given by

ym =
∑
k∈K

√
ρulηk hmksk + nm, (7.34)

where ρul ∈ R+ is the normalized uplink SNR, ηk ∈ R+ is the UL power allocation

coefficient, sk ∼ CN (0, 1) is the signal transmitted by the kth UE, and nm ∼
CN (0, IN) is the thermal noise at the mth AP. The signal in (7.34) is quantized

by the AD converters at the APs, which, for the sake of simplicity, use the same
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number of bits. This operation yields

fAP(ym) =
∑
k∈K

ãAP
√
ρulηk hmksk + ãAPnm + qAP

m , (7.35)

where qAP
m ∈ CN×1 is the distortion matrix, whose elements are zero-mean non-

Gaussian random variables with variance given by

Var
{
[qAP
m ]n

}
=

(∑
k∈K

ηkβ
NLoS
mk + 1

)
σ2
q̃AP . (7.36)

For the sake of simplicity, by using the arguments in Section 7.3 and (7.36), we

rewrite (7.35) as

fAP(ym) =
∑
k∈K

ãAP
√
ρulηk hmksk + ñm, (7.37)

where ñm = ãAPnm + qAP
m is the effective noise in the mth AP with

σ2
ñm

= ã2AP +

(∑
k∈K

ηkβ
NLoS
mk + 1

)
σ2
q̃AP , (7.38)

whereas the scalable version of the variance is given by

σ̄2
ñm

= ã2AP +

(∑
k∈Um

ηkβ
NLoS
mk + 1

)
σ2
q̃AP . (7.39)

For the CF massive MIMO deployment, as discussed before, in order to avoid

overloading in the CPU and minimize the quantization effects, a semi-distributed

implementation is adopted for the network. The APs are responsible for most of the

computational tasks, whereas the CPU is responsible for a low cost final estimation.

More specifically, besides the channel estimation, every AP preprocesses its signals

by computing local estimates of the received data and, then, broadcasts them to the

CPU for final decoding, which is the so-called LSFD. Although all APs can physically

receive the signal from all UEs, to guarantee the scalability of the network, only the

APs in the set Ak processes the signal sent by the kth UE due to the AP selection.

We denote by vmk ∈ CN×1 the combination vector selected by the mth AP for the

kth UE, ∀k ∈ Um. Thus, the local estimate of sk ∈ C ∀k ∈ Um is given by

zmk = vH
mkDmkfAP(ym),

= ãAP
√
ρulηk v

H
mkDmkhmksk + vH

mkDmk

∑
k′∈K\{k}

ãAP
√
ρulηk′ hmk′sk′ + vH

mkDmkñm.

(7.40)
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Any combining vector can be adopted in the above expression. The most common

ones are the maximum ratio combiner (MRC) [29] and the LP-MMSE combiner [65]

given by

vMRC
mk = ĥmk, (7.41)

vLP-MMSE
mk = ρulηkΩ

−1
m ĥmk, (7.42)

where

Ωm =
∑
k′∈Um

ρulηk′
(
ĥmk′ĥ

H
mk′ +Cmk′ + ζAPβ

NLoS
mk′ IN

)
+ (1 + ζAP) IN . (7.43)

Note that (7.42) is scalable since it does not take into consideration the informa-

tion from all the UEs, only the one served by the mth AP. Results in [60] show that

the SE achieved by the LP-MMSE combiner in a distributed implementation is very

close to the one of the MMSE in the same type of implementation. Then, the local

estimates are quantized and sent to the CPU, where they are linearly combined by

using the weights {αmk} to obtain

ŝk =
∑
m∈M

α∗
mkfCPU(zmk) =

∑
m∈M

α∗
mkfCPU(v

H
mkDmkym)

=
∑
m∈M

α∗
mkãCPUãAP

√
ρulηk v

H
mkDmkhmksk

+ α∗
mkãCPUv

H
mkDmk

∑
k′∈K\{k}

ãAP
√
ρulηk′ hmk′sk′ + α∗

mkn
′
mk, (7.44)

where

n′
mk = ãCPUv

H
mkDmkñm + qCPU

mk , (7.45)

Var {n′
mk} = ã2CPUE

{∥∥vH
mkDmk

∥∥2
2

}
σ2
ñ + Var

{
qCPU
mk

}
, (7.46)

Var
{
qCPU
mk

}
=
∑
k′∈K

ρulηk′E
{∥∥vH

mkDmkhmk′
∥∥2
2

}
σ2
q̃CPU + E

{∥∥vH
mkDmk

∥∥2
2

}
σ2
q̃CPU .

(7.47)
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Therefore, equation (7.44) is simplified by

ŝk = ãCPUãAP
√
ρulηk

(∑
m∈M

α∗
mkv

H
mkDmkhmk

)
sk

+
∑

k′∈K\{k}

ãCPUãAP
√
ρulηk′

(∑
m∈M

α∗
mkv

H
mkDmkhmk′

)
sk′ +

∑
m∈M

α∗
mkn

′
mk

= ãCPUãAP
√
ρulηkα

H
k γkksk +

∑
k′∈K\{k}

ãCPUãAP
√
ρulηk′ α

H
k γkk′sk′ +α

H
k n

′
k, (7.48)

where αk = [α1k α2k · · · αMk]
T is the LSFD weight vector, γkk′ ∈ CM×1 is the

effective CF massive MIMO channel given by

γkk′ =
[
vH
1kD1kh1k′ vH

2kD2kh2k′ · · · vH
MkDMkhMk′

]T
. (7.49)

The achievable SE for the CF massive MIMO system is obtained in the following

theorem.

Theorem 7.2

An achievable SE of the kth UE in the semi distributed operation is

SEul
k =

τu
τc

log2
(
1 + SINRul

k

)
[b/s/Hz], (7.50)

where the effective SINR is given by

SINRul
k =

ρulηk|αH
k E {γkk}|2

αH
k Γkαk

, (7.51)

and

Γk =
∑
k′∈K

ρulηk′(E
{
γkk′γ

H
kk′

}
+ Jkk′)− ρulηkE {γkk}E

{
γH
kk

}
+ Fk, (7.52)

Jkk′ =
ζCPU

ã2AP

Diag
(
E
{
[γkk′γ

H
kk′ ]11

}
,E
{
[γkk′γ

H
kk′ ]22

}
, · · · ,E

{
[γkk′γ

H
kk′ ]MM

})
,

(7.53)

Fk =
(σ2

ñ + ζCPU)

ã2AP

Diag
(
E
{∥∥vH

1kD1k

∥∥2
2

}
,E
{∥∥vH

2kD2k

∥∥2
2

}
, · · · ,E

{∥∥vH
MkDMk

∥∥2
2

})
.

(7.54)

Proof. Since the CPU does not have knowledge of the channel estimates, it treats

the average effective channel gain ãCPUãAP
√
ρulηkα

H
k E {γkk} as the true effective

channel. This assumption leads to a discrete memoryless interference channel with
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input sk and output ŝk given by

ŝk = DSk + BUk + IUIk + TNk︸ ︷︷ ︸
vk

, (7.55)

where

DSk = ãCPUãAP
√
ρulηkα

H
k E {γkk} sk, (7.56)

BUk = ãCPUãAP
√
ρulηk (α

H
k γkk −αH

k E {γkk})sk, (7.57)

IUIk =
∑

k′∈K\{k}

ãCPUãAP
√
ρulηk′ α

H
k γkk′sk′ , (7.58)

TNk = α
H
k n

′
k, (7.59)

denotes, for the kth user, the desired signal, the beamforming uncertainty, the inter-

user interference, and the total noise, respectively. Equation (7.55) is equivalent to

signal transmitted through a deterministic channel with additive zero-mean inter-

ference plus noise term vk. The term vk is uncorrelated with the signal term in

(7.55) since the distortion noise is uncorrelated with the quantizer input, and sig-

nals from different UEs are independent as well as the received noise at different

APs. Besides that, the terms that compose vk are mutually uncorrelated between

themselves. Therefore, using the result in [60], the channel capacity is given by

Ck ≥ log2

(
1 +

E {|DSk|2}
E {|BUk|2}+ E {|IUIk|2}+ E {|TNk|2}

)
, (7.60)

where

E
{
|DSk|2

}
= ã2CPUã

2
APρulηk |αH

k E {γkk}|2, (7.61)

E
{
|BUk|2

}
= ã2CPUã

2
APρulηk(ρulηkE

{
|αH

k γkk|2
}
− |αH

k E {γkk}|2), (7.62)

E
{
|IUIk|2

}
=

∑
k′∈K\{k}

ã2CPUã
2
APρulηk′E

{
|αH

k γkk′|2
}
, (7.63)

E
{
|TNk|2

}
= ã2CPUã

2
APα

H
k (Jkk′ + Fk)αk, (7.64)

where Jkk′ and Fk are given by (7.53) and (7.54), respectively. Therefore, substi-

tuting (7.61)–(7.64) into (7.60) yields

Ck ≥ log2

1 +
ρulηk |αH

k E {γkk}|2∑
k′∈K

ρulηk′E {|αH
k γkk′|2} − ρulηk|αH

k E {γkk}|2 +αH
k (Jkk′ + Fk)αk


≥ log2

(
1 +

ρulηk |αH
k E {γkk}|2

αH
k Γkαk

)
, (7.65)
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where Γk is given by (7.52).

The equality in (7.65) is an achievable SE for the kth user. As a last step, only

the fraction τu/τc of the samples is used for UL data transmission, which results in

the achievable SE stated in the theorem and measured in bit/s/Hz.

The achievable SE in (7.50) holds for any vector αk. However, the one that

maximizes the SE is the LSFD. Note that the effective SINR in (7.51) is a generalized

Rayleigh quotient with respect to αk. Thus the optimal LSFD vector is obtained in

the following corollary.

Corollary 7.1

The effective SINR in (7.51) for the kth UE is maximized by

α⋆k = ρulηkΓ
−1
k E {γkk} . (7.66)

This leads to the maximum value

SINR⋆ulk = ρulηkE {γkkH}Γ−1
k E {γkk} . (7.67)

Proof. The matrix square root Γ
1/2
k of Γk exists since Γk is a positive definite matrix,

thus we can define the new variable ᾱk = Γ
1/2
k αk and establish that

SINRul
k =

|ᾱkHΓ−1/2
k

√
ρulηkE {γkk}|2

ᾱH
k ᾱk

. (7.68)

Equation (7.68) is a Rayleigh quotient, which is maximized by ᾱ =

ρulηkΓ
−1/2
k E {γkk}. Therefore,

α⋆k =
√
ρulηkΓ

−1
k E {γkk} , (7.69)

and

SINR⋆ulk = ρulηkE {γkkH}Γ−1
k E {γkk} . (7.70)

The optimum LSFD vector α⋆k is not scalable since the matrix Γk depends on the

statistical matrix E
{
γkk′γ

H
kk′

}
for all UEs in the network. In fact, this is expected

because all UEs in the network produce interference at all APs, thereby the optimum

LSFD vector must take all interference into consideration in order to make the best

estimation. A possible scalable version of the LSFD is found by limiting how many

interfering UEs are considered in the computation of Γk. The common approach is

taking only the UEs that are served partially by the same APs as the kth UE into

consideration. Then, the optimal LSFD vector in (7.66) can be approximated by
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the n-opt LSFD given by [60]

αn-opt
k = ρulηkΓ̄

−1
k E {γkk} , (7.71)

where

Γ̄k =
∑
k′∈Sk

ρulηk′(E
{
γkk′γ

H
kk′

}
+ Jkk′)− ρulηkE {γkk}E

{
γH
kk

}
+ Fk. (7.72)

In the next section, we compare the performance of the MRC and the LP-MMSE

combiner through simulations, considering semi-distributed and distributed imple-

mentations, and the effect of the quantization.

7.6 Simulation Results

7.6.1 Simulation Parameters

For the simulations, a CF massive MIMO network with M = 100 APs and K = 40

UEs was used, where each AP was equipped with an N = 4 antenna ULA. The CF

massive MIMO network covered an area of 1 km × 1 km. A wrap-around topology

is used to mimic a large network deployment without edges, where all APs and UEs

are receiving interference from all directions. We assume that the APs and the UEs

are deployed uniformly at random in the coverage area.

The large-scale fading coefficient is modeled as [60]

βkm = −30.5− 36.7 log10 (dkm) + Fkm, (7.73)

where dkm ∈ R+ is the three-dimensional distance between the mth AP and the

kth UE in meters. The APs are deployed 10 m above the plane where the UEs are

located, which acts as the minimum distance. This model matches with the 3GPP

urban microcell model [85]. The shadow fading is Fkm ∼ N (0, σ2
sf) and the terms

from an AP to different UEs are correlated as [60]

E {FkmFij} =

σ2
sf2

− δki
9 m , m = j

0, otherwise
, (7.74)

where δki ∈ R+ is the distance between the kth UE and the ith UE in meters. The

large-scale fading coefficient model in (7.73) corresponds to a median channel gain

of −140.6 dB at 1 km, where the median is achieved by Fkm = 0 dB. Moreover, the

large-scale fading coefficient model in (7.73) has a pathloss exponent α = 3.67. The
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Rician κ-factor is modeled as [31, 63]

κmk = 101.3−0.003dmk , (7.75)

and the large-scale fading coefficients for LoS and NLoS components are

βLoS
mk =

κmk
κmk + 1

βmk, (7.76)

βNLoS
mk =

1

κmk + 1
βmk. (7.77)

The (i, j)th element of the spatial correlation matrix Rmk are generated using the

local scattering model given by [59, 60]

[Rmk]ij = βNLoS
mk

∫ ∫
ejπ(i−j) sin(φ̄) cos(θ̄)f(φ̄, θ̄)dφ̄dθ̄, (7.78)

where

f(φ̄, θ̄) =
1

2πσφσθ
e
− (φ̄−φ)2

2σ2
φ e

− (θ̄−θ)2

2σ2
θ , (7.79)

and φ and θ are the nominal azimuth and elevations angles, computed by drawing

a straight line between AP and UE. The standard deviations σφ = 15
◦
and σθ =

15
◦
are called the angular standard deviation (ASD). In this model, the multipath

components are Gaussian distributed around the nominal azimuth and elevation

angles.

The communication takes place over a 20-MHz bandwidth with a total receiver

noise power of −94 dBm, consisting of thermal noise and noise figure of 7 dB at

the receiver, at both the APs and UEs. The maximum uplink transmit power of

each UE is 100 mW. Each coherence block consists of τc = 200 samples. This value

matches well with a 2-ms coherence time and a 100-kHz coherence bandwidth, which

correspond to high mobility and large channel dispersion in sub-6-GHz bands. The

training time for each coherence block is τp = 10 samples. Each UE transmits the

pilot signal with full power ηk = 100 mW. In order to assign the pilots and generate

the dynamic cooperation clustering (DCC), we apply the access and the joint pilot

assignment and AP selection algorithm in [60, 65]. The simulation parameters are

summarized in Table 7.2.

7.6.2 Performance with Semi-distributed Implementation

In this section, we compared the performance of the LP-MMSE and MRC in a semi-

distributed implementation with their performance in a distributed implementation.

In this simulation, the APs and the CPU are both considered perfect hardware, i.e.,

there is no quantization effect. Therefore, the performance of the CF massive MIMO
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Table 7.2: Simulation Parameters for the CF massive MIMO Network

Parameters
Network Area 1 km × 1 km

Network Layout Random deployment with wrap-around
Number of APs M = 100

Number of Antennas per AP N = 4
Number of UEs K = 40

Bandwidth 20 MHz
Receiver Noise Power −94 dBm
UL Transmit Power 100 mW
Coherence Block τc = 200

Channel Gain (1 km) −104.6 dB
Pathloss Exponent α = 3.67

APs’ Height 10 m
Std. Dev. of Shadow Fading σsf = 4

Azimuth ASD σφ = 15
◦

Elevation ASD σθ = 15
◦

system is only evaluated over the spatial correlated Rician fading channel.
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Figure 7.3: Spectral efficiency of the CF massive MIMO system over spatial corre-
lated Rician fading channel with semi-distributed and distributed implementations.

Fig. 7.3 depicts the CDF of the SE of the CF massive MIMO system with different

combiners. As can be observed in this figure, the semi-distributed implementation

can significantly improve the performance of the CF massive MIMO system when

compared with a distributed implementation. Moreover, the LP-MMSE combiner

with LSFD outperformed the MRC with LSFD, improving the 95PT by 39.61%.
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7.6.3 Effects of the Quantization

In this section, we evaluate the impact of the quantization on the performance of a

CF massive MIMO system with semi-distributed and distributed implementations.

In this scenario, both the CPU and the APs have non-ideal AD converts. Therefore,

the performance of the CF massive MIMO system is evaluated over the spatial

correlated Rician fading channel combined with the quantization distortion.
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Figure 7.4: Spectral efficiency of the CF massive MIMO system over spatial corre-
lated Rician fading channel with semi-distributed and distributed implementations,
and 5-bit AD converters.

Fig. 7.3 depicts the CDF of the spectral efficiency of the CF massive MIMO

system with different combiners and 5-bit AD converters in both CPU and APs. The

figure shows that the semi-distributed implementation can significantly improve the

performance of the CF massive MIMO system when compared with a distributed

implementation. The LP-MMSE combiner with LSFD still outperformed the MRC

with LSFD. However, for the case with b = 5 bits, the gap between the 95PT

decreased due to the quantization effects, being 28.93% as opposed to 39.61% earlier

on right without considering AD converters.

7.7 Concluding Remarks

In this chapter, we derived the MMSE channel estimate for a Rician fading channel

and provided its scalable version taking into account the effects of quantization in

the APs. Moreover, we presented the scalable LP-MMSE as well as the optimum
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LSFD vector and its scalable version. It is worth highlighting that when quanti-

zation is considered in the analysis, it not only results in scaling of the signals by

the Bussgang gain and the variance of the quantization noise, but it also increases

the level of interference by adding the large-scale fading coefficient of all users in

the network. The impact of this additional level of interference on the system per-

formance has not been considered in theoretical analyses reported in the literature,

being a contribution of this work.
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Part III

Conclusion and Future Work
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Chapter 8

Conclusion

8.1 Closing Thoughts

In this thesis, we presented new contributions to the massive MIMO field, covering

conventional cellular and CF massive MIMO systems. More specifically, we explored

power allocation algorithm aspects and user selection for the cellular massive MIMO

systems and the impact of hardware nonlinearities on the performance of CF massive

MIMO systems. Solutions for the aforementioned issues have a practical appeal since

they are of real concern to the deployment of practical massive MIMO systems.

In the first part of the thesis, we presented a comprehensive review for massive

MIMO systems under LoS propagation, showing important results and highlighting

the main difference in the results when compared to massive MIMO systems under

NLoS propagation, which are represented by the i.i.d. Rayleigh fading channels.

Findings highlight the fact that unlike the well-studied case of i.i.d. Rayleigh fading

channel, for LoS channels both the favorable propagation and asymptotically favor-

able propagation conditions can be violated irrespective of the number of users and

antennas in the massive MIMO system, degrading the system performance. Addi-

tionally, we presented one of the main power allocation philosophy used in massive

MIMO networks and addressed an issue associated with the initialization of a pop-

ular algorithm. We used the Perron-Frobenius theory to explain this issue and to

derive a new search interval in order to guarantee the convergence of the algorithm.

We also used the Gershgorin circle theorem to create a bound test that guarantees

convergence and reduces the computational load of the algorithm.

In the first part of the thesis, we also presented a comprehensive review of the user

selection algorithms for massive MIMO systems, and evaluated their performance

when combined with different linear precoders for various system configurations con-

sidering perfect and imperfect CSI under the LoS propagation channel. In addition,

we provided a thorough analysis of the computational complexity of the user se-
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lection algorithms. Further, we showed that practical cases exist in which the LoS

propagation model may lead to significant levels of interference among users within

a cell and such cases are not satisfactorily addressed by the existing user selection

algorithms. To this end, we proposed a new user selection algorithm based on ICI,

called ICIBS and evaluated its performance. We have further extended the ICIBS

algorithm, generalizing it to take into account both the small- and large-scale fading,

which we referred to as FRBS algorithm. Unlike other techniques, the ICIBS and

FRBS accounts for the ICI in a global manner, thus yielding better results than the

other algorithms especially in cases where there are many users interfering with one

another and similar results in scenarios having low-interference levels. Although the

work mainly considered LoS propagation, all algorithms can also be applied to differ-

ent channel models, such as the Rician fading model. From our experience, however,

the benefits in SE due to the use of user selection algorithms are more prominent

as the Rician fading model tends to the LoS model, whereas they become negligible

and do not offer any visible benefits for i.i.d. Rayleigh fading.

In the second part of the thesis, we delved into the concept of CF massive MIMO

and analyzed the performance of CF massive MIMO networks corrupted by the im-

pairments caused by the AD converters. In order to evaluate the performance of

the CF networks, we first derived the MMSE channel estimate for a Rician fading

channel taking into consideration the effects caused by the quantization. We also de-

rived the suboptimal scalable version of the MMSE estimates since the quantization

makes it unscalable. In addition, we presented the scalable LP-MMSE considering

the quantization effects. Moreover, we also derived the UL SINR expression for

a generic linear combiner as well as the optimum LSFD vector. These contribu-

tions are important in analyzing the performance of practical CF massive MIMO

networks.

8.2 Future Research Directions

Possible future research directions include:

• The creation of automatic user selection algorithms: All the algorithms

presented in this thesis need the knowledge of the number of users to be

selected. However this information is not always available and it is desired to

select users based on some type of QoS. The difficulty here is to find the right

constraint for the criteria used for the most common user selection algorithms.

The algorithms presented in this thesis use heuristic criteria that are indirectly

related with the ultimate performance of the massive MIMO systems. For

example, the constraint on the ICI or the FR may not have a linear relation
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with the constraint on the throughput.

• The creation of a user selection algorithm for Rician fading channels:

In this thesis, we explained that LSFA user selection algorithms are suitable for

NLoS propagation and for the LoS propagation, however, we need algorithms

that are capable of dealing with both types of fading information. However,

since the Rician fading is a mix of the LoS and NLoS propagation, an adaptive

user selection algorithm can be used depending on the current propagation.

For example, if the NLoS components are stronger than the LoS components,

LSFA may be good enough to perform a proper selection. The challenge

here is to define an adaptive strategy to choose the algorithm to perform

the selection depending on the state of the channel. It is expected that this

adaptive strategy would depend on the Rician κ-factor, but further research

needs to be conducted.
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