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MODELOS DE APRENDIZADO DE MÁQUINA E MODELOS NEURAIS
PROFUNDOS PARA AVALIAÇÃO DE QUALIDADE PARA IMAGENS DE
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Imagens em alta faixa dinâmica precisam ser processadas por operadores de tone
mapping (TMOs) para serem mostradas adequadamente em displays convencionais.
Há duas pequenas bases de dados para a tarefa de avaliação da qualidade de imagens
tone-mapped (AQITM), chamadas ESPL-LIVE e TMID. Apresentamos, neste tra-
balho, uma nova base de dados para AQITM, chamada PBTDB. Ela contém cerca
de 175000 amostras, cada uma rotulada por quatro métricas objetivas para AQITM.
Conduzimos, também, testes subjetivos para avaliar a qualidade de 3009 amostras
desta base. Métricas não-referenciadas (NR) para AQITM de estado-da-arte, que
são o foco deste estudo, são incapazes de avaliar de forma confiável a qualidade de
imagens tone-mapped que não pertencem a bases de dados específicas. Investigamos
duas abordagens para obter novas métricas NR de AQITM mais gerais. Na primeira,
usamos amostras da base ESPL-LIVE para treinar modelos de regressão que combi-
nam notas de diversas métricas de AQITM em uma única nota. As notas do melhor
modelo apresentam baixa correlação com as notas subjetivas da base de teste TMID
(PLCC de 0,65, e SRCC de 0,55). Na segunda, treinamos modelos de aprendizado
profundo com amostras da base PBTDB, e usamos as bases ESPL-LIVE e TMID
para testá-los. Alguns modelos alcançam desempenho moderado na base TMID,
mas todos apresentam baixo desempenho na base ESPL-LIVE (melhores desempen-
hos: PLCC de 0,48 e SRCC de 0,43 na base ESPL-LIVE, e PLCC de 0,79 e SRCC
de 0,72 na base TMID). O tipo da nota de qualidade (subjetivo ou objetivo) usada
para treinar os modelos influencia fortemente nesses desempenhos.
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High dynamic range (HDR) images are increasingly more common in today con-
sumer applications. Such images need to be processed by so-called tone-mapping
operators (TMOs), in order to be properly exhibited on standard display devices.
Objective tone-mapped image quality assessment (TMIQA) metrics are desirable to
aid selecting the best TMO for an HDR image. Only few relatively small benchmark
databases exist for TMIQA task, namely ESPL-LIVE and TMID. We present a new
database for TMIQA, called PBTDB, which contains approximately 175000 sam-
ples. Sample quality is labeled by four TMIQA metrics. We also conduct subjective
experiments to assess quality of 3009 PBTDB samples. Current state-of-the-art no-
reference (NR) IQA metrics, which are the focus of our study, are unable to reliably
assess the quality of tone-mapped images that do not come from specific databases.
We design cross-dataset experiments to investigate two approaches for developing
new generic NR TMIQA metrics. In the first one, we use ESPL-LIVE samples to
train machine-learning based regression models that combine scores from multiple
IQA metrics into a single quality score. The best performing model outputs qual-
ity scores that correlate relatively poorly with TMID sample mean opinion scores
(PLCC of 0.65 and SRCC of 0.55). In the second one, we use PBTDB samples
to train deep learning architectures, and ESPL-LIVE and TMID samples to test
them. Models can achieve moderate performance in TMID, but all perform poorly
in ESPL-LIVE (best performances: PLCC of 0.48 and SRCC of 0.43 in ESPL-LIVE,
and PLCC of 0.79 and SRCC of 0.72 in TMID). Performance is heavily influenced by
quality score types (subjective versus objective) used as targets to train the models.
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Chapter 1

Introduction

Real-world scenes may simultaneously contain areas that are very bright and areas
that are very dark. These scenes contain luminance values that can span a range
of up to eight orders of magnitude. Their content has a large number of details.
Such scenes are commonly referred to as High Dynamic Range1 (HDR) scenes. The
human eye has complex light adaptation mechanisms that allow us to discern fine
details in bright areas and dark areas, simultaneously. Exhibiting HDR scenes in
conventional display media is challenging. These devices are unable to represent all
the luminance values from HDR scenes. Typically, they use eight bits to quantize
luminance values as pixel values. With this number of bits, pixel values can vary in
approximately two orders of magnitude, at most. Therefore, they are not sufficient
to represent all information that is present in the HDR scene [1]. This limitation
inevitably leads to loss of details in the displayed scene, as compared to the original
scene.

Tone mapping refers to a set of techniques that are designed to solve this problem.
These techniques apply specific functions that map input HDR pixel values into
lower dynamic ranges, aiming at mitigating the content loss in the displayed scene.
Algorithms that perform this operation are called Tone-Mapping Operators (TMOs),
and images resulting from this operation are called tone-mapped images. Figure
1.1 illustrates the importance of TMOs for displaying HDR images in conventional
display devices.

A large number of TMOs have been proposed in the literature [2]. TMOs are
developed to achieve particular goals [3], such as generating aesthetically pleasing
images, enhancing visibility of details in some scene regions, or even recreating
the exact same visual experience a user would have when observing the real scene.
In the last case, the TMO has the goal of simulating visual effects like glare and
chromatic adaptation. Depending on the TMO purpose, mapping functions may

1Dynamic range is generally defined as the ratio between the maximum and minimum values
defining an interval.
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Figure 1.1: Original HDR image displayed without prior application of tone mapping
(left), and resulting tone-mapped image (right). Many scene details are lost if no
tone mapping is performed before displaying the HDR scene in a conventional display
device.

simply clamp pixel values that lie outside a predefined range [4, 5], or apply non-
linear transformations that emulate complex aspects of human vision [6, 7]. Tone-
mapped image quality assessment (TMIQA) is then an important task specially for
applications that aim at providing the best user experience. TMIQA can aid such
applications in selecting, for a given HDR scene, the tone-mapped image with “best”
quality.

Many works compare digital TMOs using other different performance metrics
[3, 8], as there are no universal criteria that establish what constitutes a “good” tone
mapping, nor standard frameworks defining how TMOs should be evaluated. No
TMO is acknowledged as being the “best one” for all HDR scenes. Furthermore,
TMOs usually have several parameters [2] that must be tuned for each HDR image.
Such parameters change the tone-mapping curve and, thus, impact directly on the
quality of generated tone-mapped images. Figure 1.2 illustrates four tone-mapped
images generated by the same TMO [9], with different parameter values. In this
figure, the top and bottom rows, respectively, depict tone-mapped versions of the
“Hill” and “BMW” HDR scenes. Figure 1.2(a) shows the tone-mapped image ob-
tained after tuning the TMO parameters with the “best” values for the “Hill” scene.
Figure 1.2(b) shows the same HDR scene tone-mapped with the same TMO, but
with parameters adjusted for the “BMW” scene. In this case, haloing artifacts are
observed (i.e. the white contour along the hill borders), and leaves are less visible
in the scene bottom right part. In Figure 1.2(c), the “BMW” scene is tone-mapped
with the TMO parameters calibrated to the “Hill” scene. In this case, details inside
the building are lost. A tone-mapped version of the “BMW” scene, using TMO pa-
rameters tuned for this scene, is shown in Figure 1.2(d). In this case, more details
are visible. TMIQA is an interesting task because it can help to select high quality
tone-mapped versions of an HDR scene. TMIQA is also challenging because the
definition of “best” quality – or even “good” tone mapping – is not clear.

There are relatively few TMIQA metrics available in the literature as compared
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(a) (b)

(c) (d)

Figure 1.2: Tone-mapped versions of the “Hill” (top row), and “BMW” (bottom row)
HDR scenes. For both scenes, the same TMO [13] is used, with different parameter
values. In (a), TMO parameters are actually calibrated for the “Hill” scene. In
(b), the “Hill” scene is tone-mapped with TMO parameters adjusted for the “BMW”
scene. In (c), the “BMW” scene is tone-mapped with TMO parameters tuned for the
“Hill” scene. Finally, in (d), the tone-mapped version of “BMW” scene is obtained
with TMO parameters calibrated for the “BMW” scene.

to the number of objective image quality assessment (IQA) metrics that are not
dedicated to evaluate tone-mapping quality [10]. This leaves the TMIQA field open
for new research ideas and improvement. Objective TMIQA metrics available in
the literature extract features by performing explicit computations on pixel values
in some domain (e.g. space or frequency domain). Traditionally, these features
are combined into a single score representing the image quality using either one of
the two following approaches. The first approach consists in explicitly weighing the
relative contribution of each feature to the overall quality. The second approach
uses regression models trained with conventional machine learning methods that
map the image representation in feature space into a quality score. TMIQA metrics
that adopt the second approach are considered in Chapter 2.

1.1 Research Goals and Work Contributions

Objective IQA metrics are usually classified into one of three groups, depending on
how the processed image (also referred to as the test image) quality is evaluated
[11]: full-reference (FR), reduced-reference (RR), or no-reference (NR). FR metrics
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require a reference image (i.e. the distortion-free, original image) with which the test
image is compared in order to yield a quality score. RR metrics use a limited set of
parameters extracted from the original image, rather than the entire original image.
The output quality scores from RR metrics depend on the comparison between
the reference parameter values and the corresponding parameter values obtained
from the test image. Finally, NR metrics assess the image quality based solely on
information obtained from the test image, that is to say, they do not require a
reference image nor any information from it.

This work is dedicated to the study of NR IQA metrics in the context of
tone-mapped images. One problem observed in currently available state-of-the-
art TMIQA metrics is that they provide reliable quality scores only for a limited
set of tone-mapped images, that is, their quality scores do not summarize well the
overall quality impression of any tone-mapped image. The feature design process
performed by state-of-the-art TMIQA metrics demands extensive domain knowl-
edge about tone-mapping aspects. Proposing new features that capture important
quality aspects in any tone-mapped image is a difficult task. Deep learning models
are able to automatically learn relevant features for the TMIQA task by analyzing
a wide variety of tone-mapping examples.

This work has two main goals. The first one is to propose a new NR TMIQA
metric that is based on deep learning models. To the best of our knowledge, no
work has been proposed yet in which the TMIQA task is fully performed by a
deep learning model, in an end-to-end fashion (i.e. a deep learning model that
receives a tone-mapped image and yields a quality score for it). The second goal is
to present our tone-mapped image database. The database is divided in two parts.
For the first part, we build a new extensive tone-mapped image database, containing
approximately 175000 samples. All samples have quality scores given by objective
state-of-the-art TMIQA metrics. For the second part, a subset of 3009 samples has
quality scores obtained from human evaluators through subjective tests. A good
insight of the TMIQA problem is first needed to guide the selection of the most
suitable deep learning architecture for the TMIQA task. More specifically, our main
goals can be subdivided into three partial goals:

1) To understand in more detail how certain image attributes impact on overall
tone-mapping quality. This involves analyzing a variety of tone-mapped im-
ages, and searching for common properties that are usually associated with
“good” and “bad” quality (e.g. high contrast, vivid colors, low brightness, and
so on).

2) To examine to what extent tone-mapping quality assessment is similar to other
IQA-related tasks (contrast distortion assessment or aesthetic quality assess-
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ment, for instance). This involves applying general purpose IQA metrics (i.e.
metrics that are not dedicated to assess tone-mapping quality) to tone-mapped
images, and identifying in which cases, if any, the scores from such metrics re-
liably represent the subjective quality impression of tone-mapped images.

3) To investigate whether deep learning models are able to overcome the general-
ization limitation observed in state-of-the-art TMIQA metrics. This involves
using a very large number of images representing, as best as possible, “fine-
grained grades” of tone-mapping quality (e.g. “very bad”, “moderately bad”,
“average”, “moderately good”, “very good”, and so on) to train the deep learning
models. Their performances are then evaluated in benchmark tone-mapped
image databases, in which state-of-the-art TMIQA metric performance values
are reported.

Our work main contributions are summarized in three points:

1) Introduction of a new extensive tone-mapped image database designed for the
TMIQA task. The database contains approximately 175000 samples that rep-
resent a rich diversity of scenes. Each sample has quality scores given by four
state-of-the-art TMIQA metrics, namely the Tone-Mapped image Quality In-
dex (TMQI) [12], the Blind Tone-Mapped Quality Index [13] (BTMQI), and
two versions of the HDR Image GRADient Evaluator (HIGRADE) metric [14].
We also perform subjective experiments to assess the quality of 3009 repre-
sentative samples from this database. Besides objective quality scores, such
samples also contain subjective quality scores obtained from human evalua-
tors. We show that the subjective scores are consistent and reliable quality
indicators for samples in this database. This subjectively evaluated sample
subset is larger than the largest benchmark database designed for the TMIQA
task currently available in the literature (which contains 1811 samples).

2) Presentation of a performance comparison between deep learning architec-
tures that are trained for the TMIQA task, using different quality scores.
More specifically, we present a study that investigates how model generaliza-
tion capability changes according to the score used as reference to represent
tone-mapped sample quality. We consider quality scores obtained from mul-
tiple TMIQA metrics, as well as from human evaluators. We show that deep
learning model performance greatly varies across different TMIQA databases
depending on which objective TMIQA metric is used as target quality score
during training. Models trained with subjective quality scores seem to gener-
alize better their quality predictions than those trained with objective quality
scores. However, lack of more samples whose qualities are subjectively labeled
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poses a challenge for improving deep learning model performances. We also
compare model performances when trained with subjective quality scores ob-
tained from two different subject groups. The first group contains fewer, but
more reliable subjects, whereas the second group contains many, but more
unreliable subjects. Models trained with subjective scores from the first group
have better generalization capability than the ones trained with subjective
scores from the second group.

3) Investigation of ways to improve TMIQA reliability using currently available
NR IQA metrics. Most state-of-the-art NR IQA metrics are not specifically
designed to assess tone-mapping distortions. The ones that are designed for
this purpose have limited performance when evaluating the quality of tone-
mapped images that do not belong to specific datasets, as we show in this
work. We study different approaches of combining pieces of information from
available NR IQA metrics in order to obtain new TMIQA metrics that possibly
overcome such generalization limitation. We consider two main approaches.
In the first one, we use regression and classification models based on different
traditional machine learning algorithms to combine quality scores provided
by multiple state-of-the-art NR IQA metrics into a single quality score. In
the second one, we use the handcrafted features extracted by three TMIQA
metrics to train these models. They learn how to map values from this feature
space into a quality score.
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Chapter 2

TMIQA Related Work

In this chapter, we review a previous work [15] in which we compared the quality of
tone-mapped images produced by different TMOs. Such work served as inspiration
and basis for the present work. Then, we review the current state of TMIQA field.
We list some state-of-the-art NR metrics available in the literature, and identify
the ones designed for assessing tone-mapping distortions specifically. We present
two benchmark tone-mapped image datasets commonly used for the TMIQA task
and indicate some of their differences. Finally, we show baseline results from several
state-of-the-art NR IQA metrics applied to tone-mapped images that come from the
benchmark datasets.

2.1 TMO Performance Comparison

During the present research, we published an article in Elsevier Signal Processing:
Image Communication journal [15], which helped us to better understand general
aspects of tone mapping, such as the different ways in which the operators work, and
which distortions are typically caused by TMOs. It has also served as basis for the
current research, as we studied more details about the currently available state-of-
the-art TMIQA metrics, and the image aspects these metrics usually consider when
assessing tone-mapping quality. In that work, we performed a systematic compar-
ison between several TMOs in terms of image quality and processing speed. In
particular, we investigated potential performance differences between TMOs devel-
oped to run as software, in digital domain (called “digital TMOs”, or DTMOs), and
one TMO proposed to be implemented in hardware, at the camera focal plane (called
“focal-plane TMO”, or FPTMO). In the considered FPTMO, the tone-mapping op-
eration takes place inside each pixel simultaneously, and concurrently with the image
capture. The idea was to verify whether design restrictions imposed by hardware
limitations cause the FPTMO to yield images with worse quality than the quality
of those produced by DTMOs, which do not suffer from such restrictions. For the
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Figure 2.1: Errorbar plots illustrating different TMO performance values considering
scores from different quality metrics: (a) TMQI, (b) BTMQI (normalized), and (c)
colorfulness. Red indicates software implementations that represent the FPTMOs.
In all plots, higher scores indicate better quality.

comparison, the FPTMO was described by software models which take into account
focal-plane restrictions for simulating the in-pixel operations. Each software model
also considers different implementation decisions.

Each TMO was applied to M = 25 different HDR scenes, and the resulting
tone-mapped images were evaluated by objective quality assessment metrics. When
searching for such metrics, we mostly found metrics that are not specifically de-
signed for tone-mapped images, as they do not focus on tone-mapping distortions,
but rather on distortion types normally caused by other operations commonly ap-
plied to images in general (this is further discussed in Chapter 2). Only a few
metrics dedicated to TMIQA were found. Two TMIQA metrics with publicly avail-
able implementations were chosen: BTMQI, which is an NR metric, and TMQI,
which is an FR metric. These metrics assess overall tone-mapped image quality by
considering aspects usually affected by TMOs, like amount of detail (represented
as entropy values), structure artifacts and image naturalness. Neither TMQI nor
BTMQI take into account image color appearance when assessing quality. After
experimenting with several objective metrics, a third metric was chosen to analyze
only color appearance by measuring image colorfulness [16]. Unlike TMQI and BT-
MQI, the colorfulness metric is designed for any kind of image, and not only for
tone-mapped images. Figure 2.1 shows the TMO errorbar plots, considering each
quality metric. Red bars identify the software implementations that represent the
FPTMOs.

We applied statistical hypothesis tests to further verify whether the differences
observed between TMO performance values are statistically significant. In these
tests, TMOs are pairwise compared using their corresponding quality scores from
one objective metric. Results from these tests indicate whether both TMOs have
equal performance, or, if not, which TMO has superior performance [15]. For each
TMO pair, tests are conducted three times. At each time, the corresponding qual-
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Figure 2.2: Framework for comparing TMO performance in terms of image quality.
xi denotes the vector containing M = 25 quality scores from one objective metric,
considering the images generated by the i-th TMO.

ity scores from a different metric (BTMQI, TMQI, or colorfulness) are considered.
The framework adopted to compare TMO performance regarding image quality is
summarized in Figure 2.2. Hypothesis test results reported in [15] indicate that,
considering the three metrics, the FPTMO models have performance values simi-
lar to the best-performing DTMOs, regarding image quality. These results suggest
that focal-plane hardware limitations do not particularly compromise overall im-
age quality. The FPTMOs have the advantage of running significantly faster than
the best-performing DTMOs, as demonstrated by the execution time comparison
conducted in [15].

2.2 Deep Learning in TMIQA

Deep learning models have not been much explored for the TMIQA task. These
models have been successfully applied to other image processing tasks, including
general IQA [17–19] tasks. Some initial works that use deep learning models as
feature extractors have been proposed [20, 21]. In [20], a tone-mapped image is
fed into a ResNet architecture [22], and corresponding feature maps from several
internal layers are extracted. In [21], an U-net architecture [23] is trained to predict
distortion maps from an input tone-mapped image. The reference distortion maps,
which the deep learning model learns to predict, are computed by an external algo-
rithm [24] that requires both the reference HDR image and a tone-mapped version
of it. In these works, the features obtained from the deep learning models (i.e. the
feature maps in [20], and the distortion maps in [21]) are then used to train regres-
sion models, based on conventional machine learning algorithms. These regression
models learn to predict the overall quality of an input tone-mapped image, which
is represented by a single quality score. To the best of our knowledge, no work has
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been reported in the literature yet in which the TMIQA task is carried out entirely
by a deep learning model, without requiring a separate model to perform quality
score prediction. In the present work, we explore the application of some deep learn-
ing architectures available in the literature to the TMIQA task, in an end-to-end
fashion. In other words, the deep learning model receives a tone-mapped image and
outputs a quality score for it.

2.3 State-of-the-art NR IQA Metrics

Few NR IQA metrics are dedicated to assessing tone-mapped images [10]. State-
of-the-art NR TMIQA metrics adopt a common framework. They extract features
from tone-mapped images and use such features to train regression models based
on conventional machine learning algorithms. Usually, the chosen regression model
is the Support Vector Regression (SVR) machine [25]. The SVR model maps the
feature vector into a score that represents the overall image quality impression.

The main difference between NR TMIQA metrics lies in the feature set each
one of them extracts. The type of features and how they are obtained have been
the research focus in this field. These features are “handcrafted”, that is to say,
they are calculated by applying carefully designed transformations to image pixels.
For instance, the HIGRADE metric computes features that are associated with
artifacts caused by TMOs in the so-called “image gradient domain”1. The BTMQI
metric collects features related to three tone-mapped image aspects: (i) amount of
detail, which is represented by entropy values; (ii) naturalness, which corresponds
to statistical measures from the pixel value distribution; and (iii) structure, which is
based on information from image edge maps2. Yue’s CNS (Colorfulness, Naturalness,
and Structure) metric [26] considers image colorfulness features that are obtained
from image pixels represented in an opponent color space3, as well as structure
and naturalness features, which are both similar to the corresponding ones from
the BTMQI metric. BIO-BLIND metric [27] applies several biologically inspired
transformations to the input tone-mapped image, in order to extract features related
to contrast and texture. The BLInd QUality Evaluator for Tone-Mapped Images
(BLIQUE-TMI) [28] extracts local features based on image sparse representations,

1Gradient domain refers to images obtained by calculating the gradients around each pixel of
an input image.

2Edge maps are binary images obtained from edge detector algorithms, which mark pixels
representing object boundaries in the image.

3In opponent color space, pixel values are represented by a tuple (rg, yb). rg represents the
difference between the red and green color channels. yb corresponds to the difference between a
combination of the red and green color channels and the blue color channel. This combination
is computed by averaging, at each pixel, the corresponding red and green channel values. This
representation is claimed in [26] to be more similar to how the human visual system captures color
information.
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which are inspired on the human visual system perceptual behavior, as well as global
features based on statistical measurements from image luminance and chromatic
components. This metric uses an “Extreme Learning Machine” [29], rather than an
SVR machine, to map the feature vector into a quality score.

In this work, we consider two NR TMIQA metrics, namely the HIGRADE and
BTMQI metrics. Besides them, we gathered other NR IQA metrics reported in the
literature that are not originally dedicated to analyzing tone-mapped images, and
applied each one of them to tone-mapped image quality evaluation. Most of these
IQA metrics predict quality based on the intensity of specific distortions that might
be present in the test image, like blur and white noise. These distortions are normally
caused by other operations commonly applied to images, such as data compression,
instead of the tone-mapping operation itself. In this work, these distortions are
referred to as “generic distortions”, as they are not directly related to tone mapping.
Some IQA metrics, namely Neural Image Assessment (NIMA) and Personalized
Aesthetic Model (PAM) metrics, consider aesthetic elements, rather than distortions,
to yield quality scores. Using metrics that analyze generic-distortion features, as
well as metrics that consider aesthetic-related features, for evaluating tone-mapped
images allows one to verify if these types of features are somehow relevant for tone-
mapping quality assessment.

Table 2.1 presents a brief summary of all IQA metrics used in the present work.
In this table, the second column categorizes the IQA metrics based on how their qual-
ity assessment learning process4 is conducted: either “Opinion-Aware” or “Opinion-
Unaware” [30]. “Opinion-Aware” refers to metrics that require images labeled with
actual subjective quality scores, in order to learn to predict image quality. “Opinion-
Unaware” denotes metrics that learn to assess image quality without using scores
given by human observers. Instead, other information is used to represent image
quality, such as distortion indicators for instance. In the third column of Table 2.1,
we indicate what the features extracted by each IQA metric represent: (i) generic
distortions (i.e. distortions not necessarily related to tone mapping); (ii) tone-
mapping distortions; and (iii) aesthetic elements. Finally, the last column provides
an overview of the IQA metric. The dagger symbol within Table 2.1 indicates the
IQA metrics that are based on deep learning models, namely RankIQA, NIMA and
PAM. Deep learning models automatically learn, from a very large set of images,
relevant features for the task at hand. In other approaches, features are handcrafted
from fewer image examples.

4In this case, the “learning process” term has a loose meaning. The term refers to different
strategies which make use of distinct premises and pieces of information, in order to learn how to
perform the quality assessment task. It does not necessarily refer to training-based approaches,
such as machine learning algorithms or deep learning models.
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Table 2.1: IQA metrics considered in the present work for the TMIQA task. The
dagger (†) symbol marks IQA metrics based on deep learning models.

IQA Metric Learning Feature Type DescriptionProcess

BIQI [31] Opinion-Aware Generic Distortions Uses statistics from wavelet-domain coefficients
to estimate quality in a two-step framework.

BLIINDS-2 [32] Opinion-Aware Generic Distortions
Features are parameters from the

statistical distribution of the image discrete
cosine transform (DCT) coefficients.

BPADA [33] Opinion-Aware Generic Distortions
Trains an AdaBoosting back-propagated
neural network using features computed

from image gradient domain.

BRISQUE [34] Opinion-Aware Generic Distortions
Uses luminance-related features in spatial

domain that correspond to parameters
from natural scene statistic model.

BTMQI [13] Opinion-Aware Tone-mapping Trains an SVR model using entropy-related, naturalness
Distortions and structure features from tone-mapped images

CDIIVINE [35] Opinion-Aware Generic Distortions Complex-domain extension of DIIVINE algorithm to
account for phase information of wavelet coefficients.

CORNIA [36] Opinion-Aware Generic Distortions
Features correspond to similarities between

local image descriptors and visual codebooks
that were learned previously, in unsupervised fashion.

DESIQUE [37] Opinion-Aware Generic Distortions Computes features based on image log-derivative
statistics in both space domain and frequency domain.

DIIVINE [38] Opinion-Aware Generic Distortions
Similar to BIQI, but uses a larger feature set
calculated from wavelet coefficients that are

obtained from a steerable pyramid decomposition.

ENIQA [39] Opinion-Aware Generic Distortions Uses entropy-based features that take
into account image color information.

FRIQUEE [40] Opinion-Aware Generic Distortions
Computes statistical values from

feature maps that are obtained from
different color spaces and transform domains.

GM-LOG [41] Opinion-Aware Generic Distortions
Features are joint statistics of local contrast

measures obtained from image gradient
magnitudes and laplacian of gaussian response.

HIGRADE [14] Opinion-Aware Tone-mapping Calculates gradient-based features that capture
Distortions processing artifacts in tone-mapped images.

ILNIQE [42] Opinion-Unaware Generic Distortions
Similar to NIQE, but uses a larger feature
set, and averages local quality scores from

patches to obtain the final image quality score.

NFERM [43] Opinion-Aware Generic Distortions Uses models inspired in the human
visual system to calculate features.

NIMA† [18] Opinion-Aware Aesthetic Elements
Uses a deep learning model to predict, for
a given image, a score distribution, and

uses its mean value to represent image quality.

NIQE [44] Opinion-Unaware Generic Distortions
Yields quality scores by comparing statistics from

several test image patches with corresponding
statistics that represent distortion-free natural images.

NIQMC [45] Opinion-Unaware Generic Distortions Combines both local and global
entropy-based features to yield quality scores.

NJQA [46] Opinion-Unaware Generic Distortions
Estimates quality of JPEG compressed
images by using quality relevance maps

and counting zero-valued DCT coefficients.

PAM† [19] Opinion-Aware Aesthetic Elements
Uses a residual-based learning strategy to

train a model that predicts image quality scores
according to personal aesthetics preferences.

RANKIQA† [17, 47] Opinion-Aware Generic Distortions
Predicts image quality by using a model that is
first trained to learn to rank images from pairs
based on distortion intensities present on them.

SISBLIM [48] Opinion-Unaware Generic Distortions
Considers intensities of single distortion
types as well as mutual effects between

distortions to output image quality.

SSEQ [49] Opinion-Aware Generic Distortions Uses spatial and spectral (in DCT domain)
entropy-based features to compute image quality.
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2.4 TMIQA Datasets

As mentioned in the first paragraph of Section 2.3, the extracted features are mapped
into quality scores by SVR machines. In order to learn how to perform such mapping,
the SVR machines must be trained using datasets that contain images labeled with
quality scores obtained from subjective tests. In these tests, several subjects are
asked to rate image quality within a previously defined score range. Each image is
then labeled with its average quality score value computed from the individual scores
given by the subjects. These labels are called “Mean Opinion Score” (MOS)5. Only
a couple of such datasets for tone-mapped images exist. In this work, we consider
the two tone-mapped image datasets that are used as benchmark in many related
works. Details regarding each dataset are provided next.

• ESPL-LIVE Dataset

The ESPL-LIVE dataset [50] contains 1811 tone-mapped images depicting a
variety of indoor and outdoor scenes under different lighting conditions (i.e.
daytime and nighttime). This dataset is further subdivided into three groups,
which classify how tone mapping is performed. The three groups are: (i)
TMO, which refers to operators that realize tone mapping by receiving as in-
put only one HDR scene captured with a fixed exposure time (747 samples);
(ii) MEF (“Multiple-Exposure Fusion”), which denotes operators that combine
several captures of the same HDR scene, each one with a different exposure
time, in order to generate the final tone-mapped image (710 samples); and
(iii) PP (“Post-Processing”), which corresponds to operators that introduce
artificial elements mostly for artistic purposes, such as over-saturated colors
and contrast effects (354 samples). Subjective tests were performed via on-
line crowdsourcing, using more than 5000 human observers to rate the quality
of images from the dataset. On average, each image was evaluated by 110
observers. Subjective MOS values correspond to the average score value cal-
culated from scores given by the observers. MOS values roughly vary from
15 (worst quality) to 70 (best quality). To the best of our knowledge, this is
the largest tone-mapped dataset labeled with subjective MOS reported in the
literature.

• TMID Dataset

5In this work, we use the term “subjective MOS” to denote quality scores obtained from sub-
jective tests, and “predicted MOS” to refer to quality scores obtained from objective IQA metrics.
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The TMID dataset was proposed to test the TMQI metric, which is a state-
of-the-art FR TMIQA metric. In this dataset, 15 different HDR scenes are
tone-mapped by eight different TMOs, thus yielding 120 tone-mapped images.
Then, for each HDR scene, 20 subjects are asked to rank the eight tone-mapped
images, with rank “1” denoting the best quality, and rank “8” denoting the
worst quality. The subjective MOS for each tone-mapped scene corresponds
to the average ranking label from the subjects.

Figure 2.3 shows the MOS distributions from each dataset. In TMID dataset,
MOS values are more evenly distributed, whereas, in ESPL-LIVE dataset, MOS val-
ues are concentrated around MOS value of 55. Figure 2.4 shows images containing
examples of different distortions normally caused by TMOs. Tone-mapping opera-
tion has an impact on the overall image contrast, and it may introduce some degra-
dation, such as haloing artifacts, over-exposure of bright areas, or under-exposure of
dark areas. Tone mapping may also affect the image color appearance by exceedingly
increasing or decreasing saturation of colors, or even generating unrealistic colors.
Such distortions are highly noted in “bad” tone-mapping examples. In general, the
idea of “good” tone mapping involves images with natural-looking colors and with
clear visibility of details in bright regions and in dark regions, simultaneously. Fig-
ure 2.5 illustrates examples of “good” tone mapping. Observing samples from both
datasets and their respective subjective MOS values, a general idea of “good” and
“bad” tone-mapping quality can be established.

We note that, in TMID dataset, “bad” tone mapping (i.e. samples with scores
closer to 8) is mostly represented by images with excessively large areas having
either saturated pixels or very dark pixels. In ESPL-LIVE dataset, “bad” tone-
mapping quality (i.e. samples with scores closer to 15) also includes this type
of distortion. However, in this dataset, other tone-mapping distortions, such as
pronounced haloing artifacts and very saturated colors, are dominant among the
examples of “bad tone-mapped image quality”. Figure 2.6 illustrates “bad quality’
examples most commonly observed in each dataset.

2.5 IQA Metric Performance Values for TMIQA

We analyze the suitability of each IQA metric for the TMIQA task by comparing
their output quality scores with subjective MOS values of samples in ESPL-LIVE
and TMID datasets. Three performance metrics are used: Pearson Linear Cor-
relation Coefficient (PLCC), Spearman Rank Correlation Coefficient (SRCC), and
Root-Mean-Squared Error (RMSE). Each metric evaluates performance under a
different aspect [51]. PLCC measures the IQA metric ability to correctly predict
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(a) (b)

Figure 2.3: MOS distributions in (a) ESPL-LIVE, and (b) TMID datasets. Higher
image quality is associated with higher MOS values in ESPL-LIVE dataset, and
lower MOS values in TMID dataset.

(a) (b) (c)

(d) (e)

Figure 2.4: Examples of tone-mapping distortions: (a) under-exposed areas, (b)
over-exposed areas, (c) highly saturated colors, (d) unnatural-looking colors, and
(e) haloing artifacts.

subjective MOS values. SRCC indicates prediction monotonicity, that is to say, the
degree of agreement between relative magnitudes (or rankings) of predicted scores
and of subjective MOS values. Finally, RMSE measures the IQA metric prediction
consistency (or robustness) over a set of images (e.g. similarly distorted images
should yield similar scores). The best possible performance values correspond to
PLCC and SRCC equal to 1, and RMSE equal to 0.

We follow the recommendations from [51, 52], for reporting objective IQA metric
performance. This is the standard protocol adopted by similar works in IQA field
[13, 14, 27, 30]. For each IQA metric, the output quality scores are used, along with
the subjective MOS values, to fit a non-linear function, which converts the output
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(a) (b) (c)

Figure 2.5: Examples of good tone mapping. MOS values and respective datasets of
each image are: (a) 2.3 (TMID), (b) 65.6 (ESPL-LIVE), and (c) 65.2 (ESPL-LIVE).
In TMID, MOS values range from 1 (best quality) to 8 (worst quality). In ESPL-
LIVE, MOS values range from 15 (worst quality) to 70 (best quality). Good quality
is often associated with aspects such as natural-looking colors, and rich number
of details in bright regions (e.g. clouds in the sky in (a) and (c), and chandelier
ornaments in (b)), and in dark regions (e.g. leaves on the floor in (a), first floor
seats in (b), and canyon cracks in (c)) at the same time.

(a) (b)

(c) (d)

Figure 2.6: Examples of “bad” tone-mapped image quality most commonly found
in TMID dataset (top row), and ESPL-LIVE dataset (bottom row). In the TMID
dataset, MOS values range from 1 (best quality) to 8 (worst quality). In the ESPL-
LIVE dataset, MOS values range from 15 (worst quality) to 70 (best quality). MOS
values for each image are: (a) 5.7; (b) 7.6; (c) 25.9; and (d) 31.8.

quality scores into predicted MOS values for a given dataset. The fit function aims at
removing compression-like non-linearities, caused by the subjective rating process,
that may arise at both extremes of the score range [53]. These predicted MOS
values and the corresponding subjective MOS values are then used to calculate the
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performance metric values. We choose the four-parameter logistic function as the
non-linear fitting function [52]:

y = β1 +
β2

1 + e−β3(x−β4)
, (2.1)

where x is the output quality score from an IQA metric, y is the resulting predicted
MOS value, and {β1, β2, β3, β4} are the parameters tuned via regression, so as
to provide the best fit in a least-squares sense. Unless otherwise stated, in all
experiments reported in this work, performance metric values are obtained following
this protocol.

The HIGRADE and BTMQI metric implementations that are publicly available
have their training [13, 14] based on the entire ESPL-LIVE and TMID datasets,
respectively. To avoid overestimating their performance values in these datasets, we
retrain the HIGRADE metric in the ESPL-LIVE dataset, and the BTMQI metric
in the TMID dataset. In each case, the corresponding dataset is randomly split
into a training subset (comprising 80% of the total number of samples), and a
test subset (containing the remaining 20% of samples). These metrics are trained
and tested 1000 times, using different training and test sets each time, in order to
remove performance biases potentially caused by one specific split. The other IQA
metrics are not retrained. For each one of the 1000 trials, the corresponding IQA
metric performance values (PLCC, SRCC, and RMSE) are calculated in the test
subset. Following similar works in the literature that adopt such testing procedure,
we report, for each IQA metric, the median performance values obtained from the
1000 trials. Arguably, the median value is a more reliable estimate for performance
than the mean value, as it is less sensitive to extreme performance values that may
be achieved with some training/test subset pairs.

Table 2.2 shows the IQA metric performance values. The scatter plots between
the subjective and predicted MOS of each IQA metric can be found in Appendix A.
HIGRADE metric is subdivided into two versions: HIGRADE-1 and HIGRADE-
2. For each version, the SVR model is trained with a different feature set. More
specifically, what distinguishes the feature sets is how features in the image gradient
domain are calculated. The same reasoning applies to the SISBLIM metric, which
is subdivided into four versions. Each version uses a different technique to estimate
features that are associated with image noise level.

In ESPL-LIVE dataset, apart from HIGRADE metrics, all IQA metrics have
poor performance values, including the BTMQI metric, which is dedicated to
TMIQA. Besides the HIGRADE metrics, the BTMQI metric is also outperformed by
NIQMC, which is not a metric developed for tone-mapping distortions specifically.
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Table 2.2: IQA metric performance values in the ESPL-LIVE and TMID datasets.
In each column, the reported result is the median value from the 1000 performance
metric values that are calculated using the test sets of the corresponding trials. Bold-
face text indicates the best result for each performance metric in the corresponding
dataset.

IQA Metric ESPL-LIVE Dataset TMID Dataset
PLCC SRCC RMSE PLCC SRCC RMSE

BIQI 0.173 0.166 9.873 0.357 0.301 1.809
BLIINDS-2 0.065 0.052 9.997 0.521 0.447 1.662

BPADA 0.217 0.171 9.772 0.652 0.587 1.462
BRISQUE 0.101 0.103 9.968 0.560 0.497 1.603
BTMQI 0.399 0.403 9.183 0.829 0.725 1.054

CDIIVINE 0.148 0.165 9.915 0.473 0.245 1.691
CORNIA 0.269 0.253 9.787 0.200 0.184 1.894
DESIQUE 0.147 0.134 9.920 0.559 0.438 1.601
DIIVINE 0.102 0.103 9.979 0.379 0.303 1.784
ENIQA 0.296 0.301 9.578 0.188 0.146 1.899

FRIQUEE 0.348 0.336 9.393 0.363 0.288 1.800
GM-LOG 0.014 0.002 10.017 0.141 0.142 1.915

HIGRADE-1 0.800 0.766 6.139 0.439 0.409 1.740
HIGRADE-2 0.788 0.746 6.325 0.539 0.351 1.623

ILNIQE 0.216 0.226 9.822 0.322 0.249 1.833
NFERM 0.178 0.154 9.858 0.326 0.244 1.822
NIMA 0.206 0.160 9.797 0.323 0.300 1.825
NIQE 0.094 0.091 9.976 0.571 0.488 1.593

NIQMC 0.466 0.452 8.869 0.610 0.533 1.531
NJQA 0.124 -0.088 9.948 0.512 0.464 1.653
PAM 0.241 0.162 9.729 0.320 0.228 1.831

RANKIQA 0.252 0.235 9.712 0.108 0.137 1.922
SISBLIM-SFB 0.169 0.164 9.883 0.321 0.245 1.833
SISBLIM-SM 0.240 0.203 9.739 0.205 0.171 1.890

SISBLIM-WFB 0.155 0.151 9.906 0.332 0.265 1.828
SISBLIM-WM 0.213 0.186 9.796 0.162 0.188 1.912

SSEQ 0.137 0.135 9.982 0.622 0.527 1.521

In TMID dataset, performance values are more discrepant6. In this case, BTMQI
is the best-performing metric, whereas the HIGRADE metrics present rather poor
performance values, and they are also outperformed by other IQA metrics. This
suggests that the quality predictions from TMIQA metrics do not generalize well
for any kind of tone-mapped image. They are highly dependent on the dataset from
which the test sample come.

6Such high performance discrepancies probably occur because performance statistics are cal-
culated over a smaller score set, as the TMID dataset has fewer samples than the ESPL-LIVE
dataset.
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2.6 Chapter Summary

In this chapter, we briefly reviewed the work in [15] that motivated and served
as basis for the present work. In [15], TMOs are compared in terms of output
image quality using two state-of-the-art TMIQA metrics: TMQI and BTMQI. Both
of these metrics, along with the HIGRADE metric, are the three TMIQA metrics
considered in the present work. We listed other state-of-the-art NR IQA metrics and
highlighted the features that are used by each one of them. We presented the two
publicly available datasets used as benchmark in the TMIQA task, namely ESPL-
LIVE and TMID. We pointed out some differences between these datasets, such as
their MOS distributions and the tone-mapping distortions that are mostly found in
each dataset.

Finally, we applied the IQA metrics indicated in Table 2.2 to evaluate the quality
of tone-mapped samples from each dataset. Based on the performance values from
each metric, we concluded that none of the considered metrics can reliably predict
tone-mapped image quality in both datasets. The best-performing metric in TMID
dataset (BTMQI) performs poorly in ESPL-LIVE, whereas the best one in ESPL-
LIVE (HIGRADE-1) performs poorly in TMID.

In the next chapter, we investigate possibilities for obtaining better correlation
coefficients between predicted quality scores and MOS values in both datasets. More
specifically, we present experiments in which we train regression and classification
models, based on conventional machine learning algorithms, that combine quality
predictions from multiple IQA metrics into a single quality score. We also consider
using all features extracted by both HIGRADE versions and BTMQI to train such
models.
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Chapter 3

TMIQA Experiments with
Regression and Classification Models
Based on Machine Learning

We design four experiments to investigate whether the IQA metrics presented in
Chapter 2 can be combined in order to yield quality scores that have high corre-
lations with subjective MOS of tone-mapped images from different datasets. The
premise is that subjective MOS values should have higher correlations with quality
scores obtained from a “committee” of IQA metrics than with those obtained from
any single IQA metric considered in this work. In the first experiment, we train
different regression models, using the quality scores predicted by IQA metrics as
features for such models. In the second experiment, we directly use the handcrafted
features extracted by TMIQA metrics (namely HIGRADE-1, HIGRADE-2, and BT-
MQI metrics) to train regression models. In the third experiment, we group each
tone-mapped image into one of three categories (“good”, “average”, or “bad”) that
represent the image quality, and train classification models to predict the category
to which a tone-mapped image belongs. In these three experiments, we use the
ESPL-LIVE dataset to train and validate the regression/classification models, and
the TMID dataset to test the trained models. In the fourth experiment, we combine
samples from ESPL-LIVE and TMID datasets, in order to build mixed training and
testing datasets. Then, we repeat the methodology defined in the first and sec-
ond experiments, but using the mixed datasets to obtain the regression models and
evaluate their performance.

For the first, second and fourth experiments, we train four different regression
models: K-Nearest Neighbors (KNN) [54], Support Vector Regression (SVR) ma-
chine, Random Forest [54], and Gradient Tree Boosting (GTB) [54]. For the third
experiment, we train three different classification models: KNN, Support Vector
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Table 3.1: Summary of experiments presented in this chapter. We point out the
main aspects of each experiments: the training and test databases for the machine
learning models; whether the TMIQA task is treated as a regression or classification
problem; and the model training features considered.

Experiment Experiment Training Test Task Model SectionIdentifier Part Database Database Type Features

1 - ESPL-LIVE TMID Regression Selected IQA 3.1metric scores

2 - ESPL-LIVE TMID Regression TMIQA metric 3.2“raw” features

3
1 ESPL-LIVE TMID Classification Selected IQA 3.3metric scores

2 ESPL-LIVE TMID Classification TMIQA metric 3.3“raw” features

4
1 ESPL-LIVE ESPL-LIVE Regression Selected IQA 3.4+ TMID + TMID metric scores

2 ESPL-LIVE ESPL-LIVE Regression TMIQA metric 3.4+ TMID + TMID “raw” features

Machine (SVM) [54], and Random Forest. Both SVR and SVM models use radial
basis functions as their kernel functions. The experiments are further explained in
Sections 3.1 to 3.4. Table 3.1 summarizes the experiments presented in this chapter.

3.1 Experiment 1: IQA Metric Scores as Features

for Regression Models

The first experiment is inspired by the works of [55] and [56], which use objective
quality scores as features to train regression models for the HDR IQA task. Figure
3.1 depicts how quality assessment is performed in this experiment. The regression
models considered in the present work use the ESPL-LIVE and TMID datasets for
training and testing, respectively. As explained in Chapter 2, previous SVR ma-
chines [13, 14] from TMIQA metrics (i.e. HIGRADE-1, HIGRADE-2, and BTMQI
metrics) were trained in these datasets. In order to avoid overestimating the training
and test performance values of the regression models that use these TMIQA metric
scores as features, we retrain the SVR machines from such metrics. All TMIQA
metrics are now retrained in the same dataset, namely ESPL-LIVE, using 80% of
its samples (1449 samples). The retrained TMIQA metrics and the other IQA met-
rics are applied to the remaining 20% samples (363 samples), thus yielding quality
scores. These quality scores are then used as features to train the regression models.
The entire TMID dataset (120 samples) is used to test the trained regression models.
Figure 3.2 summarizes the dataset partition for training and testing the regression
models, and for training the TMIQA metrics.

The regression models are trained following a procedure similar to the one defined
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Figure 3.1: Schematic of how quality assessment is performed in the first experiment.
Quality scores from selected IQA metrics are used as input for a regression model,
which maps these scores into a single quality score. The IQA metrics that are
considered depend on the regression model used (KNN, SVR, Random Forest or
GTB). The IQA metrics are selected through a procedure called Sequential Forward
Selection, which is explained in Section 3.1.

Figure 3.2: Dataset partition for retraining the SVR machine from the TMIQA
metrics, and for training and testing the considered regression models.

in [55]. This procedure uses a technique called Sequential Forward Selection (SFS)
[57], which selects the subset of IQA metrics that yields the best regression model
performance. The procedure is outlined next. The regression model training is
divided into consecutive rounds. In the first round, several models are trained, each
one using the quality score from a different IQA metric as a feature. The IQA
metric that yields the best model performance in terms of SRCC1 is saved for the
next rounds, and the corresponding metric is removed from the metric pool. In
each subsequent round, models are trained using as features the quality scores from
different IQA metric combinations. Each combination comprises the IQA metrics
selected in previous rounds, plus one new IQA metric from the remaining metrics
in the pool. At the end of every round, the SRCC values are calculated for every
trained model, and the best SRCC performance is evaluated. If it improves the
best SRCC performance computed in the previous round by at least a minimum
threshold, then the corresponding IQA metric combination is carried over into the
next round, and the metric pool is updated. This training process is repeated until

1We choose SRCC, because this performance metric is less sensitive to the non-linear regression
function applied to the model original scores.
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the minimum SRCC improvement over the previous round is not achieved, or all
IQA metrics are incorporated into the regression model feature set.

For every model that is trained in a round using a specific IQA metric combina-
tion, the corresponding hyperparameter set is tuned through a grid search strategy.
For each point in the grid (consisting of one set of hyperparameter values), the model
performance is evaluated using the k-fold cross-validation [58] (with k = 10), which
is described next. The training dataset is divided into ten subsets. Each subset
contains roughly the same number of samples. Then, a model is trained using nine
subsets, and tested using the remaining subset. This process is repeated ten times,
using different subsets to train and test a model each time, such that all samples are
used at least once for training and testing. In the end of this process, ten models
are trained. For each one of the ten models, performance metric values (PLCC,
SRCC, and RMSE) are calculated using the corresponding test subset. The model
performance with the given set of hyperparameter values is then represented by the
median value of each performance metric. The hyperparameter values that yield the
highest median SRCC performance are saved, and used to train the final regression
model in the entire ESPL-LIVE dataset. Table 3.2 exemplifies the value range of
some hyperparameters considered in the grid search, for each model. Model imple-
mentations are the ones from the scikit-learn [59] Python package (version 0.24.2).
The package documentation defines, for each model, other hyperparameters (not
listed in Table 3.2) that are associated with the package implementation decisions.
Hyperparameters not listed in Table 3.2 are set to their default values defined by the
package. Such hyperparameters and their default values can be found in Appendix
B.

Table 3.3 reports the training results from each regression model using the best
hyperparameter set, along with the associated IQA metric combination whose qual-
ity scores integrate the model feature set. Each performance metric column shows
the median value from the corresponding set of values obtained from each test fold in
cross-validation. Table 3.4 shows the corresponding regression model performance
values when applied to the TMID dataset (i.e. the test dataset). In both tables,
the best value for each performance metric is highlighted in boldface text. Although
training results indicate a minor SRCC performance improvement of the regression
models over the best-performing metric in the ESPL-LIVE dataset (HIGRADE-1,
as shown in Table 2.2, with SRCC of 0.766), such improvements are not observed
when these models are applied to the images from the TMID dataset. In fact, the
regression model performance values are worse than some individual IQA metrics in
the TMID dataset.

Figure 3.3 illustrates the scatter plots between subjective MOS and predicted
MOS from each regression model evaluated in the TMID dataset. The highly dis-
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Table 3.2: Hyperparameters and corresponding value ranges adopted in the grid
search, for each regression model. The value ranges are defined empirically. Nmetrics

refers to the total number IQA metrics in the metric pool (in our case, 27, according
to Table 2.2).

Hyperparameter Value Range

KNN Number of 1 to 30Neighbors

SVR Regularization
2i, i = −4,−3, . . . , 15Strength

Random
Number of

2i, i = 0, 1, . . . , 9

Forest
Trees
Max Nmetrics to 1,

Features in steps of -5

GTB

Number of
2i, i = 1, 2, . . . , 10Boosting Stages

Boosting Stage
10i, i = −1,−2, . . . ,−5Learning Rate

Max Tree 1 to 8Depth Level
Max Nmetrics to 1,

Features in steps of -5

Table 3.3: Regression model training performance values in the ESPL-LIVE dataset,
in the first experiment. The “Selected IQA Metrics” column presents the IQA metrics
that are selected via SFS method and whose quality scores are used as features
for training each considered model. Each performance metric column shows the
median of the values obtained from the ten cross-validation test subsets. Boldface
text indicates the best results for each performance metric.

Regression Selected IQA Metrics PLCC SRCC RMSEModel

SVR ‘HIGRADE-1’, ‘BTMQI’, ‘PAM’, ‘NIMA,’ 0.790 0.831 6.586‘NIQE’, ‘NJQA’, ‘GM-LOG’, ‘CDIIVINE’

KNN ‘HIGRADE-1’, ‘BTMQI’,
0.798 0.819 6.414‘PAM’, ‘NIQMC’, ‘CORNIA’

Random Forest
‘HIGRADE-1’, ‘BTMQI’, ‘PAM’,

0.791 0.820 6.314‘SISBLIM-WM’, ‘RANKIQA’, ‘CDIIVINE’,
‘NFERM’, ‘BPADA’, ‘NIQMC’, ‘SSEQ’

GTB
‘HIGRADE-1’, ‘BTMQI’, ‘PAM’,

0.788 0.829 6.592‘GM-LOG’, ‘ENIQA’, ‘NIMA’,
‘SISBLIM-SFB’, ‘BLIINDS-2’

persed nature of the scatter plots may cause the non-linear fit function from Equation
(2.1) to suffer abrupt transitions and to have discontinuities. This is the case for the
SVR model in Figure 3.3(b). In extreme cases, the fit function may map all predicted
MOS values into a single value that corresponds to the center of mass of the data
points. Examples of such cases are the BLIINDS-2 scores in ESPL-LIVE dataset,
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Table 3.4: Regression model performance values in the TMID dataset, in the first
experiment.

Regression PLCC SRCC RMSEModel
SVR 0.456 0.432 1.712
KNN 0.416 0.296 1.750

Random Forest 0.442 0.367 1.726
GTB 0.437 0.352 1.730

Table 3.5: Regression model performance values in the TMID dataset, in the first
experiment, without applying the non-linear fit function (Equation (2.1)) to the
predicted MOS values from each model. Optimal performance values correspond to
PLCC and SRCC values equal to -1. Boldface text indicates the best results for
each performance metric.

Regression PLCC SRCCModel
KNN -0.321 -0.296
SVR -0.321 -0.350

Random Forest −0.397 −0.367
GTB -0.396 -0.352

and NJQA scores in TMID dataset, as shown in their scatter plots in Appendix A.
Despite the better SVR performance reported in Table 3.4 in comparison to the per-
formance of other models (especially in terms of SRCC), the scatter plots actually
show that the SVR model has similar performance to other models (or, arguably,
even worse performance than the others). Using non-smooth fit functions to map
the predicted MOS values into the MOS value range of the test dataset affects all
performance metric values, including the SRCC metric. As stated in the beginning
of Section 3.1, SRCC should be insensitive to non-linear score mappings performed
by the fit function, as long as the fit function is smooth. Table 3.5 shows the per-
formance values considering the predicted MOS values from each model, without
applying the non-linear fit function to map these values. In this table, all models
have similar performance values, and these results are in more agreement with the
scatter plots observed in Figure 3.3.

The higher SVR performance values reported in Table 3.4 most likely occur by
chance because of the scores that are mapped by the non-linear fit function from
Equation (2.1). The fit function parameters are obtained from the least-squares
optimization. Samples with predicted MOS values less than approximately 47 are
mapped into the same value. Most samples from this set also have high subjective
MOS values (i.e. they represent “bad quality” tone mapping). These subjective
MOS values are closer to the value into which the fit function maps the model
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predictions. A similar effect is observed for samples with predicted MOS values
greater than 47. This justifies the higher performance values calculated for the SVR
model. Although the application of the non-linear fit function to the predicted MOS
values may influence the calculated performance values, such procedure is commonly
adopted by similar works in the field to report the IQA metric performance. This
fit aims at correcting possible non-linear aspects, caused by the subjective testing
procedure, of the subjective MOS values from a dataset, as pointed out in Section
2.5.

It is likely that the regression model poor performance values are caused by
disagreements between predictions from the considered IQA metrics regarding the
quality of tone-mapped images in this dataset. Combining multiple IQA metrics that
yield highly discrepant scores for the same image may result into a noisy effect, which
degrades the regression model performance. To illustrate this, Figure 3.4 shows
images from TMID dataset with different scores given by HIGRADE-1, BTMQI,
and PAM metrics (which are the IQA metrics selected by all regression models,
according to Table 3.3). Each metric score (obtained after the non-linear fitting,
as discussed in Section 2.5) ranges from 1 (best quality) to 8 (worst quality). This
prediction-disagreement assumption is strengthened by the highly dispersed scatter
plots of most individual IQA metrics, which are shown in Appendix A.

Another possibility is that TMID images and ESPL-LIVE images have different
properties that are particularly important for identifying specific tone-mapping dis-
tortions. As pointed out in Section 2.4, from a subjective perspective, “bad” tone-
mapping quality’2 is mostly represented by different tone-mapping distortions in
each dataset. In TMID dataset, over-exposed and under-exposed images dominate
the “bad” tone-mapped image group. In ESPL-LIVE dataset, the most common
tone-mapping distortions observed in “bad” tone-mapped images are pronounced
haloing artifacts and very saturated colors. Apart from that, no other evidence that
might distinguish samples of one dataset from another was found. From a statistical
perspective, subjective MOS is more evenly distributed in the TMID dataset than
in the ESPL-LIVE dataset, as shown in Figure 2.3.

3.2 Experiment 2: TMIQA Metric Features for Re-

gression Models

In the second experiment, we feed the handcrafted features extracted by IQA met-
rics directly into the regression models, instead of using IQA metric quality scores

2In Section 3.3, it is stated that samples are classified as “bad quality” if their subjective MOS
values are less than 43 in ESPL-LIVE dataset, and greater than 5.3 in TMID dataset.
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(a) (b)

(c) (d)

Figure 3.3: Scatter plots of the subjective MOS versus predicted MOS from each
regression model, considering the samples from the TMID dataset, in the first ex-
periment: (a) KNN, (b) SVR, (c) Random Forest, and (d) GTB. The black line
shows the non-linear function (Equation (2.1)) fit to the data.

as features for such models. This is shown in Figure 3.5. Henceforth, we refer to the
extracted handcrafted features as “raw” features. For this experiment, we use the
entire ESPL-LIVE dataset to train the regression models, and the TMID dataset
to test them. Because the total number of raw features obtained from the IQA
metrics (38178 features) largely exceeds the number of samples available to train
the regression models (1811 samples), we consider only the raw features from the
TMIQA metrics, that is, HIGRADE-1, HIGRADE-2, and BTMQI metrics. Also,
TMIQA raw features are designed specifically for evaluating distortions related to
tone mapping, unlike raw features from other IQA metrics. The three TMIQA met-
rics extract 345 raw features (216 from HIGRADE-1, 120 from HIGRADE-2, and
9 from BTMQI), and all of them are used to train the regression models3. Hyper-
parameter tuning is performed for each regression model using the same strategy
outlined in the first experiment (grid search and 10-fold cross-validation). Table
3.6 shows the regression model training results. Values reported in this table corre-

3We experimented with feature space dimensionality reduction using PCA with different num-
bers of principal components, but results were worse than using all features.
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(a) (b) (c)

Figure 3.4: Images from TMID dataset with different scores obtained from individual
IQA metrics (after the non-linear fitting described in Section 2.5). For all scores,
the range is from 1 (best quality) to 8 (worst quality): (a) MOS: 1.5, HIGRADE-1:
4.1, BTMQI: 2.3, PAM: 5.0; (b) MOS: 2.6, HIGRADE-1: 6.2, BTMQI: 2.3, PAM:
3.6; (c) MOS: 1.1, HIGRADE-1: 4.1, BTMQI: 2.0, PAM: 4.9.
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Figure 3.5: Schematic of how quality assessment is performed in the second experi-
ment. All features extracted by each considered TMIQA metric (denoted as “raw”
features) are directly fed into a regression model. This model maps these feature
values into a single score, representing the image overall quality.

spond to the median performance values obtained from the 10 performance metric
values calculated across the cross-validation folds. The best model (GTB) does not
outperform the best individual IQA metric performance in this dataset (which is
the HIGRADE-1 metric, as reported in Table 2.2).

Table 3.7 shows the performance values of each regression model in the TMID
dataset. The regression model performance values are also not better than the best
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Table 3.6: Regression model training performance values in the ESPL-LIVE dataset,
in the second experiment. Each performance metric column shows the median of the
values obtained from the ten cross-validation test subsets. Boldface text indicates
the best results for each performance metric.

Regression PLCC SRCC RMSEModel
SVR 0.732 0.735 6.715
KNN 0.640 0.641 7.801

Random Forest 0.736 0.734 6.770
GTB 0.748 0.753 6.634

individual IQA metric performance in the TMID dataset (BTMQI), although the
regression models use raw features from such metric. This suggests that the TMIQA
raw features are tailored for specific datasets. For example, the BTMQI raw features
are adequate for the TMID dataset, which explains the regression model performance
gain in this dataset when compared to the respective performance values reported in
Section 3.1 for the first experiment. The HIGRADE-1 and HIGRADE-2 raw features
may not be as appropriate for this dataset as the BTMQI raw features, such that,
in this case, the raw features from both HIGRADE metrics act more as noisy inputs
for the regression models. This causes the trained regression models, which use raw
features from all TMIQA metrics, to perform worse than the BTMQI metric. The
same reasoning applies to the regression model training results presented in Table
3.6. In the ESPL-LIVE dataset, HIGRADE raw features seem to be more suitable
than BTMQI raw features.

Figure 3.6 shows the corresponding scatter plots considering the TMID dataset.
The regression models achieve better performance values as compared to their coun-
terparts in the first experiment, reported in Section 3.1. For the Random Forest and
GTB models, the corresponding scatter plots are now a little less dispersed and show
a general decreasing trend, that is, higher predicted MOS (better quality) are more
associated with lower subjective MOS (better quality). Ideally, points in the scatter
plots would be arranged along on a line with slope analogous to -1, thus representing
perfect correlations between subjective and predicted MOS.

The regression models trained in this experiment distinguish between general
“good quality” and “bad quality” examples, and the models are particularly able to
recognize extreme “bad quality” examples. To illustrate this, Figure 3.7 shows the
three best and worst images predicted by the Random Forest model in the TMID
dataset.
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Table 3.7: Regression model performance values in the TMID dataset, in the second
experiment.

Regression PLCC SRCC RMSEModel
SVR 0.597 0.465 1.543
KNN 0.631 0.548 1.493

Random Forest 0.650 0.550 1.462
GTB 0.611 0.512 1.522

(a) (b)

(c) (d)

Figure 3.6: Scatter plots of the subjective MOS versus predicted MOS from each
regression model considering the samples from the TMID dataset, in the second
experiment. (a) KNN, (b) SVR, (c) Random Forest, and (d) GTB. The black line
shows the non-linear function fit to data.

3.3 Experiment 3: IQA Metric Scores as Features

for Classification Models

The third experiment consists in transforming the regression problem into a classi-
fication problem. The motivation for this experiment is based on the observation
that regression models trained in the second experiment are apparently capable of
distinguishing between overall good and bad tone-mapping examples. In this third
experiment, we repeat exactly the two previous experiments, but replacing MOS
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Three images with the best quality (top row) and three images with the
worst quality (bottom row) predicted by the Random Forest model in the TMID
dataset. Scores range from 1 (best quality) to 8 (worst quality). For each image, the
predicted MOS value is reported, along with the subjective MOS value, in parenthe-
sis: (a) 3.56 (3.90); (b) 3.56 (2.90); (c) 3.56 (3.15); and (d), (e) and (f) 7.22 (8.00).

values by labels. We use three labels to categorize the corresponding image quality
as “bad” (label “0”), “average” (label “1”), or “good” (label “2”). Classification models
are then trained to predict such labels. MOS categorization is performed as follows.
Considering all MOS values from a dataset, we calculate the MOS values that cor-
respond to the 33th and 66th percentiles (p33 and p66, respectively), and use such
values as thresholds to divide the MOS distribution into three regions. This ensures
that each region contains roughly the same number of samples. Labels are assigned
to each sample according to the region into which the associated MOS value falls.
Figure 3.8 depicts the MOS distributions of each dataset divided into three regions.

For this experiment, we use accuracy as the performance metric to evaluate
the classification models. Before training the models, we analyze how well the
individual IQA metrics perform in the classification task. For each IQA metric, we
transform the corresponding scores into labels using the same procedure described
in the previous paragraph for the MOS values, and then calculate the respective
metric accuracy. As pointed out in Chapter 2, to report the accuracy of TMIQA
metrics in their original datasets (i.e. HIGRADE metrics in ESPL-LIVE dataset,
and BTMQI metric in TMID dataset), part of the respective dataset is used to
retrain the metric, and the other part is used to test it. Scores from the test part
are then labeled, and accuracy is calculated. The corresponding TMIQA metric
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(a) (b)

Figure 3.8: MOS distributions divided into three quality regions: (a) ESPL-LIVE
(p33 = 43.9 and p66 = 54.0), and (b) TMID (p33 = 3.2 and p66 = 5.3) datasets.

is retrained 1000 times, using a different training/test split each time. Table 3.8
reports the median accuracy of each IQA metric obtained from the 1000 test sets.
These results serve as baseline comparison for the classification model results.

The third experiment results are presented in two parts. In the first part, clas-
sification models are trained using IQA metric scores as features, and model design
follows the same procedure outlined for the regression models reported in Section
3.1 (that is, retraining TMIQA metrics in a part of ESPL-LIVE dataset, selecting
IQA metrics with SFS method, and tuning hyperparameters using grid search and
10-fold cross-validation). For cross-validation, the different labels are represented by
the same number of samples in each subset, thus preserving the label distribution
observed in the entire dataset. In the second part, classification models are trained
using the TMIQA raw features.

Table 3.9 shows the results from the classification models in the TMID dataset,
along with the IQA metrics that are selected as features during training for each
model. The corresponding confusion matrices are reported in Figure 3.10. Regarding
overall accuracy, training classification models that use scores from multiple IQA
metrics as features does not provide performance improvement over the BTMQI
metric performance, which is the best one among individual IQA metrics in TMID
dataset (with median accuracy of 0.667, as reported in Table 3.8). All classification
models have similar accuracy values in TMID dataset. The Random Forest model
is the one with the highest median accuracy value of 0.450. For discriminating
between overall “good” and “bad” tone-mapped image quality, these classification
models have moderate performance. In general, half of the samples from the “good
quality” and “bad quality” groups are correctly classified. For the “bad quality”
group in particular, classification models tend to overlook the negative impact that
over-exposed areas have on image quality, as long details are visible in other parts
of the scene. Figure 3.9 illustrates these misclassifications.
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Table 3.8: IQA metric performance values in the ESPL-LIVE and TMID datasets, in
the classification task. Each column shows the median accuracy (ACC) calculated
from the 1000 accuracy values in the test sets. Boldface text indicates the best
accuracy in the corresponding dataset.

IQA ACC ACC
Metric (ESPL-LIVE) (TMID)
BIQI 0.374 0.261

BLIINDS-2 0.332 0.478
BPADA 0.393 0.522

BRISQUE 0.363 0.565
BTMQI 0.468 0.667

CDIIVINE 0.380 0.391
CORNIA 0.416 0.348
DESIQUE 0.366 0.522
DIIVINE 0.357 0.391
ENIQA 0.427 0.348

FRIQUEE 0.233 0.261
GM-LOG 0.319 0.304

HIGRADE-1 0.588 0.435
HIGRADE-2 0.580 0.435

ILNIQE 0.393 0.391
NFERM 0.374 0.435
NIMA 0.360 0.478
NIQE 0.371 0.565

NIQMC 0.479 0.522
NJQA 0.327 0.565
PAM 0.381 0.348

RANKIQA 0.413 0.304
SISBLIM-SM 0.380 0.304
SISBLIM-SFB 0.258 0.435
SISBLIM-WM 0.382 0.261
SISBLIM-WFB 0.269 0.391

SSEQ 0.368 0.522

Table 3.9: Classification model performance values in the TMID dataset, along with
the selected IQA metrics for each model. Boldface text indicates the best result.

Classification Selected IQA Metrics ACCModel

KNN ‘HIGRADE-2’, ‘NIQMC’, ‘BTMQI’, 0.442‘ENIQA’, ‘DESIQUE’

SVM ‘HIGRADE-2’, ‘BTMQI’, 0.425‘ENIQA’, ‘SISBLIM-WFB’

Random Forest ‘HIGRADE-1’, ‘BTMQI’, ‘ENIQA’ 0.450
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(a) (b)

Figure 3.9: “Bad quality” tone-mapping examples incorrectly classified as “good
quality” by the models. The models seem to neglect the negative impact of over-
exposed areas in image quality (e.g. sky and grassland in (a), and outdoors in (b)),
as long as details are visible in other regions (e.g. tree trunk and leaves in (a), and
the plants inside the room and the ceiling in (b)).

(a) (b) (c)

Figure 3.10: Confusion matrices from each classification model (using IQA metric
scores as features) in the TMID dataset: (a) KNN, (b) SVM, and (c) Random
Forest.

Table 3.10 shows the performance values of classification models trained with the
TMIQA raw features, and Figure 3.11 shows the corresponding confusion matrices.
As observed with the regression models, classification models trained directly with
TMIQA raw features achieve overall performance values that are slightly better
than their counterparts that use IQA scores as features. The best performance
value achieved in this experiment (Random Forest model, with median accuracy of
0.517) is still not better than the median accuracy value of the BTMQI metric in
the TMID dataset. Also, performance values are similar among the classification
models. Particularly, these models tend to predict more samples as “good” tone
mapping. This causes their performance to improve in the “good quality” group, at
the cost of mistakenly classifying more samples from the “average quality” group.
Considering the three quality groups, classification models trained with either IQA
scores or TMIQA raw features tend to have the worst performance values when
categorizing samples from the “average quality” group.
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Table 3.10: Performance values, in the TMID dataset, of classification models that
use TMIQA raw features.

Classification ACCModel
KNN 0.508
SVM 0.492

Random Forest 0.517

(a) (b) (c)

Figure 3.11: Confusion matrices from each classification model (using TMIQA raw
features) in the TMID dataset: (a) KNN, (b) SVM, and (c) Random Forest.

3.4 Experiment 4: Regression Models for TMIQA

Trained in Mixed Datasets

In the previous experiments, regression and classification models are trained in
ESPL-LIVE dataset only, and then tested in TMID dataset. Poor test performance
values suggest that ESPL-LIVE and TMID samples may have different features that
are important for quality assessment. In this fourth experiment, we create training
and test datasets that contain, each one, samples from both ESPL-LIVE and TMID
datasets. This is in contrast with previous experiments, in which samples from a
single dataset are used for training, and samples from another different dataset are
used for testing. We follow the same procedure from experiments one and two,
but now perform regression model training and testing in the corresponding mixed
datasets. First, IQA metric scores are considered as regression model features. Af-
terwards, TMIQA metric features as used as regression model features. Next, we
explain how ESPL-LIVE and TMID datasets are mixed.

As shown in Figure 3.2, the original regression model dataset partitions con-
sidered 362 ESPL-LIVE samples for training, and 120 TMID samples for testing.
We preserve the same number of samples in training and testing datasets, except
that now we swap 60 TMID samples for 60 ESPL-LIVE samples between datasets.
Figure 3.12 illustrates the new regression model training and testing sets. We take
care to ensure that the entire quality range defined in TMID dataset is represented
in TMID samples used for training, as well as in TMID samples used for testing.
This avoids selecting only samples from one quality range (“good”, for instance) for
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ESPL-LIVE TMID TMIDESPL-LIVE

1449 302 60 6060

HIGRADE/BTMQI
Training Dataset

Regression Model
Training Dataset

Regression Model
Test Dataset

Figure 3.12: Dataset partition for training and testing the regression models, now
considering that TMID and ESPL-LIVE samples are mixed.

training and only samples from another quality range (“bad”, for instance) for test-
ing. Same care is taken when considering ESPL-LIVE samples that are used for
training and testing.

To aid the selection of swapping samples, we follow a procedure similar to the one
adopted in the third experiment presented in the previous section. We categorize
sample quality into three groups: “Good”, “Average”, and “Bad”. Unlike the previous
experiment, we perform such classification according to our own subjective quality
impressions. The idea here is that sample subjective selection yields a better repre-
sentation of different quality groups, as opposed to using “hard” numeric threshold
values that organize samples into such quality groups (such as the ones defined in
Figure 3.8). Our quality criteria are mainly based in two aspects. The first one
is scene detail visibility, that is, whether visual content is perceived in dark and
bright regions simultaneously. The second one is whether scene colors look natural.
The categorization is performed to the 362 ESPL-LIVE samples and the 120 TMID
samples.

Next, we illustrate some few cases where the classification based on our subjective
criteria differs from sample quality categorized strictly according to MOS values.
Figure 3.13 shows examples in ESPL-LIVE dataset where our subjective quality
impressions do not agree with the MOS values. In 3.13(a), the sample has low MOS
value (“Bad” quality), but we classified it as “Good” quality. We believe that the
scene has a low MOS value because colors are a little over-saturated, which make
them seem artificial. We do not consider such colors unnatural and classified this
scene as “Good” quality because its content is entirely visible with no noticeable
distortions. In 3.13(b), the sample has high MOS value (“Good” quality), but we
classified it as “Bad” quality. We justify our choice because the scene contains
perceivable halo artifacts (for instance, outside the windows and along the edges
of walls behind the central sculpture) and over-exposed regions in which details
are not seen (such as outside the windows and part of the floor behind the central
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(a) (b)

Figure 3.13: Examples of ESPL-LIVE samples in which our subjective criteria do
not agree with MOS values. In (a), MOS value is 30.2 (“Bad” quality), but we
classified it as “Good” quality. In (b), MOS value is 57.3 (“Good” quality), but we
classified it as “Bad” quality. Explanations of quality assessment disagreements for
such cases are provided in text.

sculpture). We hypothesize that the image has a high MOS value because the
aforementioned distortions are not present in the scene main content, which are the
sculptures. Therefore, for many viewers, such distortions may go unnoticed or not
really bother.

Figure 3.14 shows the MOS distributions of samples from each quality group,
after classifying them according to our quality impressions. We see that in ESPL-
LIVE dataset, generally, we assign to “Good” quality group samples with higher
MOS values (which, indeed, denote better quality), and to “Bad” quality group
samples with lower MOS values (which denote worse quality). Samples assigned
to “Average” quality group contain average MOS values, with slightly more samples
having higher scores than lower scores. Similar conclusions can be drawn for samples
from TMID dataset, in which higher scores represent worse quality, and lower scores
represent better quality. Overall, our subjective separation is consistent with sample
MOS values from each dataset.

When selecting the 60 ESPL-LIVE and 60 TMID samples that are swapped be-
tween each other, we aim at preserving, in each subset, the same sample quality
proportion (according to our subjective categorization) observed in the original re-
gression model training and testing datasets, respectively. Table 3.11 summarizes
the sample quality proportions and the associated number of samples in the original
datasets and in the respective new subsets. After creating the mixed training and
test datasets, we map the TMID MOS value range (1 - best quality to 8 - worst
quality) into the ESPL-LIVE MOS value range (70 - best quality to 15 - worst qual-
ity). This ensures that all samples in the mixed datasets have MOS values in the
same value range. We use a linear mapping4 for this purpose, expressed as follows:

4We also tried a more sophisticated algorithm that maps MOS values from different subjective
experiments into a common score scale, called Iterated Nested Least-Squares Algorithm (INSLA)
[60]. Such mapping did not lead to better regression model training nor test performance.
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Figure 3.14: Sample MOS distribution from (a) ESPL-LIVE and (b) TMID datasets,
after grouping samples according to subjective impression. Green bars denote sam-
ples subjectively classified as “Good”, red bars denote samples subjectively classified
as “Average”, and blue bars denote samples subjectively classified as “Bad”. In ESPL-
LIVE, higher scores correspond to better quality, whereas, in TMID, lower scores
correspond to worse quality. Subjective division is consistent with sample MOS val-
ues in both datasets.

Table 3.11: Sample quality proportions observed in original regression model train-
ing and test datasets, and in sample subsets that comprise the new regression model
mixed training and test datasets.

Dataset/Subset Number of “Good” “Avg” “Bad”
Samples Quality Quality Quality

ESPL-LIVE 362 148 (41%) 103 (28%) 111 (31%)(Original Training Dataset)
ESPL-LIVE 302 123 (41%) 87 (29%) 92 (30%)Training Subset
ESPL-LIVE 60 25 (42%) 16 (27%) 19 (31%)Test Subset

TMID 120 44 (36%) 33 (28%) 43 (36%)(Original Test Dataset)
TMID 60 21 (35%) 18 (30%) 21 (35%)Training Subset
TMID 60 23 (38%) 15 (25%) 22 (37%)Test Subset

̂TMIDMOS =
1

7
× (−55× TMIDMOS + 545). (3.1)

In Equation 3.1, ̂TMIDMOS denotes the TMID sample MOS value in the common
score range (i.e. the one from ESPL-LIVE), and TMIDMOS corresponds to the
original TMID sample MOS value. We then train and test four types of regression
models in the corresponding mixed datasets, namely KNN, SVR, Random Forest and
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Table 3.12: Regression model performance values in the mixed training dataset,
considering selected IQA metric scores as training features. Each performance metric
column shows the median of the values obtained from the ten cross-validation test
subsets. Boldface text indicates the best results for each performance metric.

Regression Selected IQA Metrics PLCC SRCC RMSEModel

SVR ‘HIGRADE-1’, ‘BTMQI’ 0.735 0.758 7.755‘NJQA’, ‘RANKIQA’

KNN ‘HIGRADE-1’, ‘BTMQI’, 0.745 0.765 7.740‘NJQA’, ‘BRISQUE’

Random Forest ‘HIGRADE-1’, ‘BTMQI’, ‘NJQA’,
0.767 0.776 7.379‘NFERM’, ‘NIQE’, ‘BIQI’, ‘CORNIA’

GTB ‘HIGRADE-1’, ‘BTMQI’, ‘NJQA’, 0.734 0.761 10.725‘BPADA’, ‘SISBLIM-WFB

GTB. First, we use quality scores from some IQA metrics (selected via SFS method)
as model features, similarly as the first experiment presented in this chapter.

Table 3.12 shows the regression model training performance values, along with
the corresponding IQA metric scores that are selected as features in each model.
These performance values correspond to median values computed from test sets
of a 10-fold cross-validation. Comparing Table 3.12 with Table 3.3, we note that
regression models trained in the mixed dataset have different (and smaller) feature
sets than their counterparts trained in ESPL-LIVE only. This indicates an influence
of TMID samples in training, and suggests that TMID and ESPL-LIVE samples
have different attributes that are relevant for quality assessment. These results also
show that only few IQA metrics are suited for evaluating quality of samples from
both datasets, as observed by the smaller feature sets. All regression models present
similar performance values.

Table 3.13 shows the regression model performance values in the mixed test
dataset, and Figure 3.15 shows the associated scatter plots. As comparison baselines,
we train the TMIQA metrics (HIGRADE-1, HIGRADE-2 and BTMQI) in the same
mixed training dataset used for the regression models. We also present in Table
3.13 their performance in the mixed test dataset. We point out that these retrained
versions are different from the ones trained in the 1449 ESPL-LIVE samples (Figure
3.12). The ones trained in ESPL-LIVE only are applied to mixed training dataset
samples, and their corresponding quality scores serve as potential features (in case
they are selected via SFS method) for the regression models, as shown in Table 3.12.

From Table 3.13, we observe that none of the regression models outperform the
retrained HIGRADE-1 metric. Apart from the Random Forest model, all other
regression models have worse performance values than any other retrained individ-
ual TMIQA metric considered. This indicates that using IQA scores as features is
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Table 3.13: Regression model performance values in the mixed test dataset, consid-
ering selected IQA metric scores as features. TMIQA metrics presented in this table
(HIGRADE-1, HIGRADE-2 and BTMQI) are trained in the same mixed training
dataset used for the regression models.

Regression PLCC SRCC RMSEModel
HIGRADE-1 0.714 0.680 8.847
HIGRADE-2 0.671 0.607 9.370

BTMQI 0.678 0.628 9.289
GTB 0.641 0.595 9.701
KNN 0.573 0.532 10.358

Random Forest 0.684 0.641 9.217
SVR 0.640 0.600 9.712

less reliable to assess any generic tone-mapped image quality than using features
extracted by TMIQA metrics from image attributes. Limited generalization capa-
bility from IQA scores likely reflects the observation that most IQA metrics, either
used individually or collectively as a “commitee”, are not reliable quality predictors
for tone-mapped images.

The second experiment involving the mixed datasets consists in training the same
regression models as the previous experiment, except that features extracted from
each TMIQA metric (“raw” features) are now directly used to train the regression
models. Table 3.14 shows the training median performance values of each regression
model, considering performance values computed from the ten cross-validation test
subsets. We observe that the SVR presents slightly better performance values than
the Random Forest model, and the KNN model has the worst performance Even
though the GTB model also presents better correlation values than the Random
Forest model, from Figure 3.15(d) we note its predictions are actually not reliable
in this experiment. Its quality scores span a very small range and they barely vary,
as the same score values are given to lots of different samples. This indicates some
problem occurred during this model training. Further investigation is required to
pinpoint the causes of this problem, so that it can be corrected.

Table 3.15 shows the performance values of the same regression models in the
mixed test dataset. Figure 3.16 shows the corresponding scatter plots consider-
ing sample scores from the mixed test dataset. Comparing Table 3.15 with Table
3.13, we observe that, apart from the Random Forest model, all regression models
have improved their performance values over the ones from their counterparts in
the previous experiment. Comparing Figure 3.16 with Figure 3.15, we note that
corresponding model scatter plots are slightly less dispersed when “raw” features are
used to train the models. This reinforces the idea that such “raw” features are more
generic and reliable features for TMIQA than IQA scores.
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(a) (b)

(c) (d)

Figure 3.15: Scatter plots of the subjective MOS versus predicted MOS from each
regression model considering the samples from the mixed test dataset and selected
IQA metric scores as the regression model features. (a) KNN, (b) SVR, (c) Random
Forest, and (d) GTB. The black line shows the non-linear function fit to data.

Table 3.14: Regression model performance values in the mixed training dataset,
considering “raw” TMIQA features as training features. Each performance metric
column shows the median of the values obtained from the ten cross-validation test
subsets. Boldface text indicates the best results for each performance metric.

Regression PLCC SRCC RMSEModel
SVR 0.673 0.671 8.465
KNN 0.518 0.556 9.838

Random Forest 0.630 0.641 8.394
GTB 0.696 0.682 8.259

In particular, the SVR model presents the highest performance improvement, and
is now the best-performing metric. The HIGRADE-1, HIGRADE-2, and BTMQI
metrics also use an SVR model that is trained with their own respective “raw”
features. The SVR model we train in this experiment combines the “raw” features
from the three aforementioned TMIQA metrics. Such combination is probably the
cause of the slight performance improvement from this SVR over the SVR model
from individual TMIQA metrics, as shown in Table 3.15.
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Table 3.15: Regression model performance values in the mixed test dataset, con-
sidering “raw” TMIQA features as model features. TMIQA metrics presented in
this table (HIGRADE-1, HIGRADE-2 and BTMQI) are trained in the same mixed
training dataset used for the regression models.

Regression PLCC SRCC RMSEModel
HIGRADE-1 0.714 0.680 8.847
HIGRADE-2 0.671 0.607 9.370

BTMQI 0.678 0.628 9.289
GTB 0.695 0.658 9.084
KNN 0.622 0.462 9.891

Random Forest 0.683 0.636 9.235
SVR 0.741 0.705 8.484

(a) (b)

(c) (d)

Figure 3.16: Scatter plots of the subjective MOS versus predicted MOS from each
regression model considering the samples from the mixed test dataset and “raw”
TMIQA features as the regression model features. (a) KNN, (b) SVR, (c) Random
Forest, and (d) GTB. The black line shows the non-linear function fit to data.

3.5 Chapter Summary

In this chapter, we presented four experiments in which we used regression and
classification models based on machine learning algorithms to assess quality of tone-
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mapped images. In the first one, regression models were trained in ESPL-LIVE
dataset, using quality scores from different IQA metric combinations as features,
and tested in TMID dataset. In the second experiment, regression models were
trained in ESPL-LIVE using the features extracted by the TMIQA metrics (“raw”
features), namely HIGRADE-1, HIGRADE-2 and BTMQI. They were then tested in
TMID. In the third experiment, we changed the regression problem to a classification
problem, and trained classification models using the same methodology defined in
the first and second experiments (i.e. combination of IQA metric quality scores as
training features, and “raw” TMIQA features as training features). In the fourth
experiment, we repeated the first and second experiments, but trained and tested
regression models using a mix of samples from ESPL-LIVE and TMID datasets.

Based on this chapter results, two main conclusions can be drawn. First, mod-
els trained with “raw” TMIQA features perform better than models trained with
quality scores from multiple IQA metrics as features. Combining quality scores
from different IQA metrics yields poor performance values probably because most
of the considered metrics output contradicting quality predictions for the same tone-
mapped image. The second conclusion is that mixing samples from ESPL-LIVE and
TMID datasets for training and testing the models leads to better quality predictions
than using only one dataset (ESPL-LIVE) for training, and only another dataset
(TMID) for testing. This indicates that TMID and ESPL-LIVE samples contain dif-
ferent features that are relevant for TMIQA. This also suggests that none of these
datasets should be used alone to train the regression models, as some tone-mapping
distortions may not be present in any of their samples at all. Even combining
both datasets, it is also possible that other tone-mapping distortions are missing, or
present in only a few samples from these datasets. This most likely affects model
capability of providing reliable quality predictions for samples that do not come
from these datasets.

To overcome this limitation, in the next chapter, we introduce a new database
that we assembled for the TMIQA application. This database contains approxi-
mately 175000 samples with their qualities labeled, and can be used to train models
based on either machine learning or deep learning approaches. The samples com-
prise HDR scenes, depicting different scenarios, that are mapped by different TMOs.
We aim at capturing as many tone-mapping distortions as possible, so that models
trained in this dataset provide more reliable quality predictions to generic tone-
mapped images (i.e. images that do not belong to specific datasets).

43



Chapter 4

Patch-Based Tone-Mapped Image
Database

The results in Chapter 2 indicate that individual IQA metric performance values
vary according to the test dataset. The results in Chapter 3 suggest that the trained
regression model performance depends on the dataset from which the test samples
originate. This limitation is probably because the raw features used by TMIQA
metrics are tailored for sample images from one specific dataset. These features are
handcrafted, and they may not capture all aspects that are important for assessing
the quality of tone-mapped images in general. Deep learning models should be able
to overcome such limitation, as they are able to automatically learn, from a large
pool of samples, features that are relevant for the task they are trained to solve (in
this case, TMIQA).

Although deep learning models have not yet been used for assessing the quality
of tone-mapped images directly, they have been proposed in the literature for other
IQA tasks. For example, three metrics used in this work are based on deep learning
models that were trained originally for different IQA purposes: RankIQA (designed
for quality assessment of images impaired by particular distortions, such as blur and
white noise), NIMA, and PAM (both of which are designed for aesthetic quality
assessment). These metric quality scores, which are used to achieve the results
reported in Chapters 2 and 3, are obtained by applying the metrics to tone-mapped
images directly. The deep learning models for RankIQA, NIMA, and PAM are not
previously trained for the TMIQA task.

The lack of sufficiently large tone-mapped image datasets in which samples are
labeled with subjective quality scores poses a challenge for training deep learning
models for such task. In this chapter, we introduce a new tone-mapped image dataset
that we assembled for this purpose. This dataset contains approximately 175000
samples, and is henceforth referred to as PBTDB (“Patch-Based Tone-mapped image
DataBase”). Each sample is labeled by quality scores obtained from four TMIQA

44



Table 4.1: Summary of subjective experiments performed in a subset of 3009 PBTDB
samples. Data in columns “Subject Group”, “Number of Sessions” and “Samples per
Sessions” are presented in Section 4.2.1. The average number of labels per sample,
shown in the fourth column, for the private experiment is defined in Section 4.2.1.
For the crowd experiment, this number is defined in Section 4.2.2, after removing
some subjects by the “Gold Standard Questions” approach.

Subject Number of Samples Avg. Labels Gold Standard
Group Sessions per Session per Sample Questions?
Private 12 250 or 251 16 No
Crowd 10 300 or 301 51 Yes

metrics: BTMQI, HIGRADE-1, HIGRADE-2, and TMQI. TMQI is an FR metric,
unlike the other three metrics, which are NR metrics.

We also present in this chapter two subjective experiments that are performed
in a subset of 3009 representative PBTDB samples, in order to assess image qual-
ity. Samples from such subset thus contain human subject scores besides TMIQA
metric objective scores. Both experiments are performed remotely on an online plat-
form (Section 4.2.1), and each one considers different groups of subjects. Table 4.1
summarizes the experiment setups. We detail the procedure used to verify whether
subjective experiments performed in remote fashion are consistent and thus ensure
that resulting labels are reliable. We conclude this chapter showing that one of the
experiments is fully consistent, and observing similarities between subjective scores
and objective TMIQA scores.

4.1 PBTDB Assembly

First, we collect HDR images from multiple sources publicly available in the internet.
The HDR images correspond to different scene types, such as landscapes, urban
scenarios, daytime and others. The HDR datasets are listed in Table 4.2. Overall,
789 HDR images are collected. Then, the combined HDR dataset is augmented by
extracting a certain number of patches from each HDR image. Figure 4.1 illustrates
the patch extraction procedure for a single HDR image, and how these patches are
processed. More patches can be extracted from the HDR images if smaller patch
sizes are used. However, with smaller patches it is also more difficult to ensure
that they contain HDR luminance values. We tried three resolutions for extracting
patches: 128×128, 256×256, and 512×512. We choose patch sizes of 256 × 256
because we obtain a fairly high number of HDR patches per HDR image. Also,
this patch size is close to VGG-16 model[61] input image size, which is 224 × 224.
The VGG-16 model is a well known deep learning architecture used for many image
processing tasks, and is one of the deep learning models considered in this work, as
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Figure 4.1: Patch extraction procedure and processing operations that are executed
in order to assemble PBTDB. For clarity purpose, we depict the patch extraction
procedure for a single HDR image, and the patch processing procedure for a single
extracted HDR patch. N denotes the maximum number of extracted patches from
a single HDR scene, and it varies according to the HDR scene (it can be, at most,
15).

discussed in Chapter 5.
Each patch is extracted from a random position in the image. In order to ensure

that the extracted patch is an HDR patch, we use the following empirical criterion
for determining the patch dynamic range DR1:

DR = log10
max(I)

prctile(I∗, 1)
. (4.1)

In Equation (4.1), I denotes the set of pixel values from the input patch, max(.)
is the function that returns the maximum value from the input set (in this case, the
brightest pixel from the patch), and prctile(., j) is the function that returns the value
that corresponds to the j-th percentile from the set of input values (in this case, the

1We use samples from Ward dataset to validate the empirical criterion, since this dataset reports
each sample dynamic range.
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Table 4.2: HDR image datasets from which HDR samples are taken and later tone-
mapped, in order to generate the PBTDB samples.

Dataset Samples
HDR Eye [63] 47
HDR Stanford [64] 88
Ward [65] 18
Funt HDR [66] 107
HDRI Haven [67] 341
HDR Photographic Survey [68] 105
sIBL [69] 52
EMPA HDR Dataset [70] 31
Total 789

1st percentile value from the non-zero patch pixel value set I∗). The 1st percentile
value is used, rather than the minimum non-zero pixel value, because it is a more
reliable estimate of the minimum visible scene content, as observed empirically. Very
low pixel values usually represent the camera sensor noise floor and, hence, do not
constitute actual scene content [62]. The extracted patch is considered HDR if its
dynamic range DR is higher than log10 256. This threshold value corresponds to the
dynamic range covered by 8 bits. If the extracted patch is not an HDR patch, it is
discarded, and a new patch is randomly selected and analyzed. The entire process is
repeated until 15 HDR patches are chosen, or 100 consecutive extracted patches are
not HDR patches. Patches that are too close to each other are not selected, in order
to avoid extraction of very similar patches from the same region in the image. In the
end of this process, 10171 patches are extracted, and they constitute the augmented
HDR dataset.

Next, we apply 19 different TMOs from Banterle’s HDR MATLAB Toolbox
[71] to each sample from the augmented HDR dataset, thus yielding 193249 tone-
mapped samples. In this work, we refer as “scene” to the content depicted in an
original HDR patch prior to application of any tone-mapping algorithm, and as
“sample” to a tone-mapped version of any scene. Each sample is labeled with the
quality score given by four TMIQA metrics: HIGRADE-1, HIGRADE-2, BTMQI,
and TMQI. After examining the quality score distribution from each metric, an
anomaly was detected in the corresponding “low quality” score range parts. This
anomaly, illustrated in Figure 4.2 for the HIGRADE-1 score distribution, is caused
by outlier samples. These samples are not representative of “bad tone-mapping
quality”. They were generated for two reasons related to the methodology adopted
for assembling the dataset. First, the patch extraction procedure may sometimes
select patches that pass the HDR test defined in Equation (4.1), but present little
visual content (e.g. very dark image areas with nearly no contrast variation, and
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Figure 4.2: HIGRADE-1 score distribution in PBTDB, with outlier samples mostly
represented by the tall bin (2102 samples) in the lower score range. This effect is
also observed in the other metric score distributions.

(a) (b) (c) (d)

Figure 4.3: Examples of outlier samples removed from PBTDB. Very dark regions
with nearly no contrast, and with small bright regions are observed in (a), (b), and
(c). An example of over-saturated image is shown in (d).

with small bright regions that do not contain any details). Second, parameters of
each TMO were set to their respective default values defined by the HDR Toolbox.
This causes TMOs to generate some images with very little visual content (e.g. over-
saturated or very dark images) because parameters are not calibrated for each image
individually. Such samples are removed from the tone-mapped dataset. Figure 4.3
shows some removed samples. After removing the outlier samples, the final PBTDB
dataset is obtained, with 175919 tone-mapped images. Figure 4.4 illustrates some
samples from the dataset.

Figure 4.5 shows the score distributions from each metric in PBTDB. The BT-
MQI score histogram is more dispersed than the histograms of other metrics, and it
has a higher concentration around higher scores, which represent “bad” tone-mapping
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Figure 4.4: Examples of samples within PBTDB. Different types of scenes are con-
tained within PBTDB: (a) Indoors; (b) and (c) Landscapes; and (d) Urban Scenario.

quality. The TMQI and both HIGRADE metrics have more similar distributions,
which are more concentrated around an average value (0.8 for TMQI, and 0 for both
HIGRADE metrics). Also, it is noted empirically, both in this work and in [15], that
TMQI scores normally do not span the entire [0, 1] score range. They are rather
distributed in the [0.6, 1] range. In this case, values around the TMQI histogram
peak value of 0.8 observed in Figure 4.5 normally represent “average” tone-mapped
image quality. For the HIGRADE metrics, the “average” quality is represented by
values around 0.

Figure 4.6 shows the scatter plots between quality scores from each metric pair.
Overall, the scatter plots show low correlation between the metric scores, except for
the HIGRADE-1 and HIGRADE-2 metric pair, and BTMQI and TMQI metric pair.
Particularly low correlations are observed between BTMQI and HIGRADE-1 quality
scores, and between BTMQI and HIGRADE-2 quality scores. This strengthens the
point that such metrics do not provide consistent quality predictions for images that
do not originate from TMID dataset (for BTMQI metric), and ESPL-LIVE dataset
(for both HIGRADE metrics). TMQI scores have higher correlation with BTMQI
scores, than with HIGRADE-1 and HIGRADE-2 scores. This is probably because
TMQI and BTMQI metrics analyze features that are somewhat related, although
they are not the same. As reported in [12], TMQI scores achieve high correlations
with subjective MOS from the TMID dataset2, and this is also the case for BTMQI
scores (see Table 2.2).

4.2 PBTDB Subjective Tests

The low correlation between objective TMIQA scores (Section 4.1) makes it dif-
ficult to define which one is a more reliable quality indicator. Furthermore, the

2In [12], the TMID dataset is used to test the TMQI metric performance only. TMQI has sensi-
tivity parameters that define the relative importance of extracted features, before combining these
features into a final quality score. According to [12], such parameters were optimized previously,
using another tone-mapped dataset that is not considered in this work.
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Figure 4.5: Quality score distributions from each TMIQA metric in PBTDB: (a)
TMQI, (b) BTMQI, (c) HIGRADE-1, and (d) HIGRADE-2. For TMQI, HIGRADE-
1, and HIGRADE-2 metrics, higher scores correspond to better quality, whereas for
BTMQI metric, lower scores represent better quality.

available databases with subjective MOS, i.e. ESPL-LIVE and TMID, contain a
small number of samples each. To assess overall tone-mapping quality and create
a larger database, we perform subjective tests in a smaller subset of 3009 samples
from PBTDB. Overall, 164 different scenes are represented by such subset samples.
Up to 19 samples originate from one scene, each sample corresponding to a distinct
tone-mapping operator. Images for this subset are chosen as representative samples
from PBTDB. The term “representative” means the smaller subset mostly preserves
each TMIQA score distribution from the entire PBTDB. Figure 4.7 shows each score
distribution in the 3009 sample subset.

During sample selection, care is taken to ensure scene content variety in the sub-
set. Scene content is categorized into one of three types: “Indoors” (enclosed areas,
such as interior of buildings), “Landscape” (outdoor natural scenery only, such as
mountains and forests) and “Urban” (outdoor scenes containing any buildings or
objects made by humans, such as city streets and plazas). We aim at keeping an
overall balance between the three scene types inside the subset. Figure 4.8 shows
each scene type proportion in the subset. Besides type categorization, we check

50



(a) (b) (c)

(d) (e) (f)

Figure 4.6: Scatter plots between quality scores from each metric pair in PBTDB.
For HIGRADE-1, HIGRADE-2 and TMQI metrics, higher scores correspond to
better quality, whereas for BTMQI metric, lower scores represent better quality.
The PLCC values for each metric pair are: (a) -0.61, (b) 0.25, (c) 0.35, (d) 0.73, (e)
-0.19, (f) -0.24

content diversity using three image attributes: colorfulness [16], spatial information
[72], and image key [73]. Colorfulness indicates color diversity and intensity within
a scene. Higher values indicate more vivid and different colors. We use the same
colorfulness metric we adopted in our previous work [15]. Spatial information mea-
sures image complexity by computing the average energy from the image edge map.
The image edge map is obtained from the application of the Sobel edge operator.
Higher spatial information values indicate more edges and, thus, more structures
and details in the scene. Image key corresponds to the average scene brightness,
whose values range from 0 to 1. Higher values indicate brighter scenes. Figure 4.9
shows the scatter plots between each metric pair. We observe that the scatter plots
are highly spread, which highlights the sample content diversity contained in the
subset.

4.2.1 Subjective Experiment Setup

Subjective tests are conducted to label image qualities from the 3009 PBTDB sample
subset. Because of COVID-19 pandemic restrictions, tests are performed remotely
only. To manage the remote subjective tests, we use a service from Amazon Web
Services (AWS), called “SageMaker Ground Truth”. This service offers functional-
ities that facilitate the preparation and execution of labeling tasks. The service is
integrated with Amazon Mechanical Turk (AMT) platform, which allows perform-
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(a) (b)

(c) (d)

Figure 4.7: Quality score distributions from each TMIQA metric in the 3009 sample
subset from PBTDB: (a) TMQI, (b) BTMQI, (c) HIGRADE-1, and (d) HIGRADE-
2. Each distribution is similar to its corresponding one shown in Figure 4.5.

ing such tasks using crowdsourcing. Crowdsourcing refers to tasks that demand
some sort of input from a large number of people [74], as opposed to smaller scale
tests usually performed in controlled environments, such as laboratories. In AMT
and similar purpose platforms, a dedicated and large workforce is allocated to par-
ticipate in labeling tasks, in exchange for financial compensation. Crowdsourcing
labeling has been used in the literature for quality of experience (QoE) evaluation
and IQA-related tasks [75], including tone mapping [50].

In this work, samples are labeled by two different groups independently. In the
first one, subjects are known by the authors, and are able to contact the authors
about the tests. We denote this group as “private” group. The second group com-
prises subjects that are registered in the AMT platform, also called “AMT workers”.
No interaction exists between AMT workers and the authors. We denote this group
as “crowd” group. To reduce test duration and mitigate subject fatigue effects, we
divide the 3009 samples into smaller sets [76]. Each set is called a test session. Sam-
ples are randomly assigned to each test session, and we ensure that scene content
variety (defined in terms of scene type proportions and TMIQA score distributions)
within each session is roughly the same observed when considering all 3009 samples
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Figure 4.8: Pie chart showing each scene type proportion inside the 3009 sample
subset. Overall balance between the three scene types is achieved.

(Figures 4.7 and 4.8).
We follow the Absolute Category Rating (ACR) method [77] to obtain the quality

labels. The test interface contains a single sample that is displayed in its original
resolution (256× 256) in the center of the screen. Below the sample, a rating scale
containing five adjectives is shown: “Excellent”, “Good”, “Fair”, “Poor”, and “Bad”.
Subjects must choose the one adjective that better describes their sample quality
impression. The sample remains on screen until an option is selected and submitted,
so subjects may take as much time as they need to perform their assessment. Once
the “Submit” button is clicked, scores for such sample can not be changed. After
submission, a new sample is loaded on screen, and the test is repeated until all
samples have been evaluated. Sample presentation order is randomized for each test
session and subject.

Subjects can access test instructions at any time during the tests. We instruct
subjects to perform their assessment based on image naturalness (i.e. if any degra-
dation or artificial element is observed in the scene) and detail visibility, rather than
scene content itself. We ask subjects not to zoom in or zoom out, as it can affect
sample quality impression. Subjects may use different display devices for performing
the test sessions, but we suggest using display devices on which test images can be
evaluated in their native resolution (256× 256) without zoom tools3.

3How much screen area is occupied by the test image gives an idea whether the image can be
properly evaluated in its native resolution. For instance: in full HD display devices (1920 x 1080),
the test image occupies about 3% of total screen area. In comparison, the same test image appears
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(a) (b)

(c)

Figure 4.9: Scatter plots showing the colorfulness, spatial information and image
key metric values for each sample in the 3009 PBTDB subset: (a) Colorfulness vs.
Image Key; (b) Colorfulness vs. Spatial Information; and (c) Spatial Information
vs. Image Key.

Because of AWS Ground Truth limitations, we do not create a separate session
for training the subjects before the actual assessment task. Instead, subject training
is performed at the beginning of the test session, and quality labels from “training”
samples are discarded. Such training aims at familiarizing subjects with the test in-
terface and with sample qualities they may find during the test. Each launched test
session incurs in financial costs that are proportional to the number of evaluated sam-
ples. We want to use as few training samples as possible, in order to make the best
use of financial resources. We consider that five samples are enough for training the
subjects to reliably evaluate the quality of remaining test samples. In the instruction
screen, we inform subjects that their first five sample quality assessments are not
taken into account. We also present, in the instruction screen, some exemplary sam-
ples containing distortions that should be considered when evaluating quality, and
distortion-free samples. Distortions include over-exposure, under-exposure, color
degradation, and halo artifacts (Figure 4.10).

Subjects are allowed to take breaks during test sessions, as recommended in [77]

smaller on 4k display devices (3840 x 2160), as it occupies about 0.7% of total screen area.
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(a) (b) (c) (d)

Figure 4.10: Exemplary samples shown in the test instruction screen of each distor-
tion type: (a) Over-exposure; (b) Under-exposure; (c) Color degradation; and (d)
Halo artifacts.

(a) (b)

Figure 4.11: Test interfaces used for the (a) private group, and (b) crowd group.

for large experiments. They can interrupt a test session at any time, saving their
progress, and resume it later. We recommend subjects that break periods should
not last more than 20 minutes. Examples of test interfaces used for the private and
crowd groups are shown in Figure 4.11. Next, we detail some differences in test
design for private and crowd groups.

Private Group Test Design

Subjects were invited to participate in up to three test sessions, which must be
performed on different days. Each subject received written instructions on how to
access the test platform and on how the test interface worked, prior to their first
session. Subjects could access these instructions at any time, for subsequent sessions,
if desired. We created 12 test sessions, each one containing 250 or 251 samples, and
allocated subjects in order to roughly obtain the same number of labels per samples
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Figure 4.12: Private group subject allocation for test sessions, assuming all subjects
perform the three sessions. “TS” stands for “Test Session”, and “N” is the total
number of subjects in the private group (66). “Extra” subjects (i.e. if the remainder
of N/4 is not zero) are assigned to different private groups. On average, 16 subjects
participated per test session.

(a) (b) (c)

Figure 4.13: Private group subject demographics: (a) Age; (b) Previous experience
with image processing tasks; and (c) Gender

in each test session, as depicted in Figure 4.12. Overall, 66 subjects participated
in at least one test session (62 in three sessions, one in two sessions, and three in
one session). On average, samples in each test session were labeled by 16 subjects.
Figure 4.13 summarizes demographic data regarding the private group subjects.
From the 66 subjects, 53 are men and 13 are women. Subject ages range from 19
to 72 years, with the majority (58) under 44 years old. Over half of the subjects
(42) are familiar with image processing tasks and concepts, such as color saturation,
brightness, among others. All subjects have normal or corrected-to-normal visual
acuity. Two subjects have colorblindness, and the remaining subjects have normal
color perception. We do not remove colorblind subjects from the experiments. We
argue that, in our work, color distortions introduced by tone mapping are related
to changes in color saturation rather than in hue. Then, colorblindness should not
have a relevant impact on quality assessment of samples that may contain such color
distortions.

Crowd Group Test Design

We created 10 test sessions, denoted as HITs (“Human-Intelligence Tasks”) in AWS
Ground Truth, each containing 300 or 301 samples. We requested 75 labels per
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sample. Once an HIT is accepted, AMT workers have the option to abandon it at
any time, even without completing it (that is, labeling all the samples in the test
session). In this case, the worker releases the unfinished task in AMT platform,
so that other workers can accept it and assess the remaining unlabeled samples.
The HIT remains available for AMT workers until the desired number of labels
per sample is achieved. On average, 266 AMT workers participated per HIT. Each
worker is paid $0.012 per sample that they label. AWS Ground Truth does not
provide demographic information regarding test session participants.

Because of the nature of crowdsourcing tasks (uncontrolled environments, sub-
jects unknown to the authors, among others), additional steps must be taken when
designing the tests for the “crowd” group, in order to ensure that subject labels are
trustworthy [78]. These steps often include strategies that seek to increase subject
attention to the task at hand, such as giving extra financial compensation if some
subject performance value is achieved [78], or adding some entertainment value to
the task [79]. Some strategies also aim at discouraging “cheating” behaviors from
subjects, like monitoring subject activities during tests and making them aware of it
[78, 80]. A “cheating” behavior usually occurs when subjects try to maximize finan-
cial gains by examining large numbers of samples in shorter times. In such cases,
subjects give any label to the sample, without actually assessing its quality. In [81],
authors categorize different “cheating” behavior patterns, and propose strategies to
deal with them.

A simple strategy to rule out workers that carelessly assess sample quality con-
sists in adding to the test questions whose answers are known to test designers and
are also easy to determine by subjects that are truly engaged in the task. These ques-
tions are called Gold Standard Questions (GSQ), and are recommended in [76, 81].
We follow this strategy when designing the test interface for the crowd group, as
shown in Figure 4.11(b). Besides image quality, we ask subjects to inform whether
the current sample corresponds to an outdoor or an indoor scene. Most samples in
the test clearly contain elements, such as open skies or walls and ceilings, that make
subjects easily infer if the scene depicts an open-air (outdoor) or closed (indoor)
environment.

4.2.2 Subjective Tests Consistency Analysis

After collecting the assessment labels, we discard the first five labels from each
subject, as we treat these as “training” samples for the subjects. For the “crowd”
group, two extra actions are taken before converting sample labels to MOS values.
First, we remove all labels from workers that evaluated less than ten samples in total
(after discarding their initial five samples). We argue that, in such cases, subjects
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may not have been fully familiarized yet with the task and the sample quality range
to be expected, thus providing less reliable assessments. Also, a minimum number
of evaluated samples is required so that the statistics representing worker GSQ
performance are meaningful.

Next, for each worker, we count in how many samples the corresponding worker
GSQ answer matches the expected GSQ answer. We calculate the percentage of
correct GSQ answers, and denote it as GSQ correctness rate. Workers with GSQ
correctness rates below a minimum threshold value are removed from the tests. We
empirically set this threshold value to be 72%. To obtain this threshold value, we
analyzed the outdoor sample percentage in each one of the ten test sessions for the
crowd group experiment. We choose outdoor sample percentage, as there are more
outdoor samples than indoor samples. The maximum outdoor sample percentage
value, considering the ten sessions, is 69.4%. The chosen threshold value of 72% is
slightly above this maximum value because it filters out workers that marked the
same GSQ answer for all samples, or randomly marked any GSQ answer, without
actually examining the samples. Such workers most likely did not perform the test
carefully but wanted to optimize financial rewards by assessing more samples in
shorter times [81]. Figure 4.14 illustrates the GSQ correctness rate of workers from
one test session. After removing workers by the aforementioned actions, each sample
is labeled by 51 subjects from the crowd group, on average.

Many unknown external factors may influence subject assessments, especially
when tests are performed in uncontrolled environments. We follow the methodology
proposed in [82] to check whether the private and crowd group subjective tests are
consistent, and their corresponding labels are reliable. The idea is briefly explained
next. The consistency analysis involves categorizing the label distribution from each
sample as typical or atypical. Different patterns of label distributions are commonly
observed in subjective tests [82]. Such distributions comprise the “typical” category.
A statistical model that discriminates between both categories is required (that is,
a model that fits typical distributions well, and fits any other distribution poorly).
The statistical distribution used as model for this purpose is the Generalized Score
Distribution (GSD) [83]. This model is described by two parameters: ψ, which
denotes the sample “true”4 label, and θ, which denotes the answer spread for the
current sample.

The consistency analysis procedure is summarized in Figure 4.15. For each sam-
ple, we fit a GSD model to the observed distribution (i.e. estimate the ψ and θ

parameters that better approximate the GSD model to the observed distribution).
Next, we verify how well the fit GSD model actually represents the observed dis-
tribution. This is performed using a goodness-of-fit (GoF) test. The chosen GoF

4“True” as in the expected label according to the fit distribution.
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Figure 4.14: Bubble plot showing GSQ correctness rate for workers that participated
in test session #5. In total, 156 participated in this session. Top plot shows perfor-
mance from the first 100 workers, and bottom plot shows performance from 101th
to 156th worker. Larger bubbles indicate that the corresponding worker evaluated
more samples. Numbers inside the bubbles show the GSQ correctness rate from
each worker. The dashed black line marks the minimum threshold of 72%.

Observed
Sample 

Label
Distribution

GSD  
Fit

Expected
Sample
Label

Distribution

G-test
Goodness-of-

Fit
-value

Figure 4.15: Consistency test methodology proposed in [81]. Empirical label distri-
butions are fit using a GSD model, thereby creating expected label distributions.
Then, the G-test Goodness-of-Fit is performed and yields a p-value that indicates
how well the GSD model fits the empirical label distribution. p-values vary from 0
to 1. Low p-values indicate poor fits.

test is called G-test [84]. The test yields a number, called p-value, which ranges
between 0 and 1. Higher p-values indicate that the model provides a good fit for
the subjective data.

A single sample is treated as consistent if its label distribution can be well repre-
sented by the GSD model. Conclusions regarding consistency can also be extended
to the subjective experiment as a whole by taking into account all the samples from
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the labeled dataset in this analysis. More specifically, the subjective test is consid-
ered consistent if the observed proportion of inconsistent samples, considering all
samples in the dataset, is below a theoretical threshold. This threshold defines the
maximum proportion of inconsistent samples that is expected for a given p-value
used as reference. We denote the current p-value used as reference as α, and the
inconsistent sample proportion, for the given α, as α̂. If we consider all possible
p-values and calculate the corresponding theoretical thresholds, we obtain a thresh-
old curve. Interested reader can find more details on how the theoretical threshold
curve is determined in [82].

Subjective experiment consistency information can be graphically summarized
by a plot called P-P plot [82]. In this plot, we show points whose coordinates are
defined by α (i.e. the p-value being considered as reference) and the corresponding
α̂ associated with it. Along with these plots is the theoretical threshold curve.
Points that are above the threshold curve represent inconsistencies in the experiment.
These cases correspond to an observed inconsistent sample proportion that exceeds
the maximum expected inconsistent proportion for the current α. The difference
between the observed and maximum expected inconsistent proportions (assuming
the observed is higher than expected one) indicates how critical the inconsistency
is. In order to draw conclusions regarding experiment consistency, we need to check
how often inconsistencies occur, and how strong they are.

Figure 4.16 shows the P-P plots for the private and crowd subjective tests. The
theoretical threshold curve is represented by the solid black line. Although α ranges
between 0 and 1, the maximum considered α value is limited to 0.2 when analyzing
the P-P plot, as suggested in [82]. This range comprises samples whose label distri-
butions are poorly fit by the GSD model. Because such distributions are classified
as atypical, they correspond to experiment inconsistencies that need to be carefully
addressed and treated. Samples with greater p-values do not critically impact on
experiment consistency. For these samples, the GSD model provides a good fit for
their empirical label distributions, and the distributions are classified as typical. If
the observed inconsistent proportion exceeds the maximum expected one, for a given
range that includes greater p-values, then it is mainly caused by the low p-value sam-
ples contained within this range, rather than the higher p-value ones. Therefore, the
α value range from 0 to 0.2 is more critical to consider than the entire range from
0 to 1 in order to draw conclusions regarding experiment consistency.

From Figure 4.16, we observe that the crowd group experiment is more inconsis-
tent than the private group one, since more points fall above the black line. However,
because α̂ values also oscillate around the theoretical thresholds, neither experiment
can be considered entirely consistent or inconsistent. In such cases, samples with
low p-values must be analyzed individually. This is to gain insight into the causes

60



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
p-value threshold ( )

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ob

se
rv

ed
 in

co
ns

ist
en

t s
am

pl
e 

pr
op

or
tio

n 
(

)

(a)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
p-value threshold ( )

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ob
se

rv
ed

 in
co

ns
ist

en
t s

am
pl

e 
pr

op
or

tio
n 

(
)

(b)

Figure 4.16: p-value P-P plots of the subjective tests, before taking any actions:
(a) private group; and (b) crowd group. Black line corresponds to the theoretical
threshold. Points above the black line indicate inconsistencies. Neither experiment
is entirely consistent or inconsistent, as points oscillate around the black line.

of inconsistency, and then potentially take actions that may resolve them. For each
experiment, we examine all samples whose p-values are lesser than or equal to the
α value of the first right-most point above the black line in the corresponding P-P
plot. In total, 438 and 724 samples are examined for the private and crowd group
experiments, respectively.

We define three possible actions to be taken for each examined sample: (i)
remove the sample from the experiment; (ii) remove some labels from the sample
distribution; and (iii) do nothing. First action is chosen when subject assessments
are highly contradicting (for instance, a similar number of “Bad” and “Excellent”
assessments for the current sample). Possible explanations for this situation include
personal preference for some scene contents, test instruction misunderstanding, or
even “difficult” scenes to evaluate (that is, scenes that do not present much content
to assess). Figure 4.17 illustrates some removed samples, along with their label
distributions. Second action is normally taken when samples present few labels
that deviate from the most voted groups. Usually such labels are unacceptable, as
they either ignore the strong presence of distortions that should be considered in
the assessment or negatively qualifies samples that have no visible distortions. We
hypothesize that such cases may also happen because subjects use different display
devices and configurations, which affect how the sample is displayed on screen.
Also, viewing conditions (e.g. distance from screen, room illumination conditions)
may vary across subjects, which impact on quality evaluation. We do not specify
recommended test environment setups because tests are performed remotely and,
thus, we are unable to ensure that such recommendations are met by subjects.
These labels are considered outliers. Examples of samples that have at least a score
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Figure 4.17: Examples of samples removed during private group experiment consis-
tency analysis. Both samples present two groups of subjects that vote for opposing
quality labels.

removed are shown in Figure 4.18. Finally, in many cases, we consider all opinions to
be valid for the current sample, and reasons for the inconsistency are unclear. Then,
we decide for the third action, which is to keep the sample and preserve its subjective
label distribution. Figure 4.19 shows some examples of unchanged samples.

Table 4.3 summarizes the actions that are adopted to treat the examined low
p-value samples, and how many samples are affected by them in each subjective
experiment. This table also shows the final number of samples obtained after sub-
tracting the number of inconsistent samples presented in “Removed Entirely” column
from the original 3009 sample subset in each experiment. Although the original 3009
sample subset is the same for both groups, inconsistent samples are not necessarily
the same for each group. Even for samples that are inconsistent in both subjective
experiments, we point out that not necessarily the same action is taken for these
samples in each experiment. The action depends on the sample label distribution,
which may differ between each group. We note that proportionally more samples
are discarded when considering the crowd group experiment. This is expected, as
this experiment is more inconsistent than the private group one.

After taking such actions, we repeat the aforementioned consistency analysis,
and observe the corresponding P-P plots from each subjective experiment. These
plots are shown in Figure 4.20. In the private group experiment, all points now
fall below the theoretical threshold line. Thus, this experiment is now regarded as
consistent. In the crowd group experiment, the points slightly exceed the theoretical
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Figure 4.18: Examples of samples that had at least one label removed from the
original distribution during consistency analysis, as they are considered outliers. In
top row, the single “Poor” label is removed, because no distortions are visible in the
image. In the bottom row, the single “Excellent” label is removed, because a strong
distortion (halo artifact) is perceived in the image.

Figure 4.19: Examples of samples that were preserved during consistency analysis.
There are no clear indications of what caused the inconsistency. All labels are
considered valid opinions for these samples.

threshold line, but are generally closer to this line than they were before taking
actions (Figure 4.16(b)). Although some inconsistencies are still present in the
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Table 4.3: Table summarizing the actions taken to treat samples with low p-values
and the number of samples affected by them in each subjective experiment. Per-
centages refer to the sample proportion relative to the total number of inconsistent
samples in each case (shown in “Total Examined Samples” column). Last column
shows the final number of samples after subtracting the respective numbers defined
in the “Removed Entirely” column from the original 3009 sample subset.

Experiment

Action Total Final
Remove Remove Leave Examined Subset
Entirely At Least Unchanged Samples SizeOne Label

Private Group 9 (2.1%) 124 (28.3%) 305 (69.3%) 438 3000 samples
Crowd Group 65 (9%) 126 (17.4%) 533 (73.6%) 724 2944 samples
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Figure 4.20: p-value P-P plots of the subjective tests, after taking the specified
actions: (a) private group; and (b) crowd group. Black line corresponds to the
theoretical threshold. Now, the private group experiment is consistent, as all points
fall below the black line. The crowd group experiment is still not entirely consistent,
but inconsistencies are now less critical, as points are closer to the black line.

crowd group experiment, they are less critical than previously. We also point out
that the GSQ approach alone may be effective when dealing with subjects that
quickly and randomly mark any answer and quality label for samples. However, this
is not the case when dealing with other types of “cheating” behaviors [81]. As such,
other unreliable workers may not have been removed, and their labels contribute to
experiment inconsistency.

To summarize, we have almost the same PBTDB sample subset (apart from
some removed samples in each experiment) subjectively labeled by two groups: the
private group, with 3000 samples, and the crowd group, with 2944 samples. Finally,
for each sample, we use its label distribution to obtain the corresponding MOS value,
which is a single numeric value that represents the overall sample quality score. We
assign the following scores to each label: 100 to “Excellent”, 75 to “Good”, 50 to
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(a) (b)

Figure 4.21: MOS distributions considering the scores obtained from different sub-
jective labeling: (a) private group labeling; and (b) crowd group labeling.

“Fair”, 25 to “Poor”, and 0 to “Bad”. Then, the sample MOS value is calculated
by summing all its scores and dividing the result by the number of labels for that
sample. Such score mapping rule ensures that MOS values are within the [0, 100]
range, and higher scores correspond to better sample qualities, which is the same
convention used in [50].

Figure 4.21 shows the MOS distributions obtained from the private and crowd
group scores. In this work, we denote the sample subset that uses private group
MOS values as “private-PBTDB”, and the sample subset that uses crowd group MOS
values as “crowd-PBTDB”. We note that the private-PBTDB MOS distribution is
slightly skewed towards the lower score range (and, hence, lower quality samples).
Comparing with Figure 4.7, we observe that this pattern is similar to the BTMQI
score distribution, in which higher scores correspond to lower quality samples. The
crowd-PBTDB MOS distribution is almost centered in the middle of the score range.
Such pattern is also similar to objective TMIQA score distributions, namely TMQI
and HIGRADE (Figure 4.7). This suggests that the MOS values obtained from each
subjective experiment that we performed are somewhat related to objective TMIQA
metrics from the literature.

4.3 Chapter Summary

In this chapter, we presented the new tone-mapped image database for TMIQA,
which is called PBTDB. It contains about 175000 samples, whose quality is labeled
by TMQI, BTMQI, HIGRADE-1 and HIGRADE-2 metrics. We also performed two
remote subjective tests on a subset of 3009 representative samples from PBTDB.
These experiments are denoted as private group (small-scale experiment) and crowd
group (large-scale experiment) tests. Subjects in private group are known to the
authors and were personally invited to the tests, whereas subjects in crowd group
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are unknown to the authors and hired from AWS Ground Truth online service.
We detailed how the subjective tests were performed. For instance, how the

test interface in each experiment looks like, what aspects should be considered in
evaluating sample quality, how many test sessions were performed, among others.
We removed unreliable subjects based on how many samples they evaluated, and
in how many samples they answered the GSQ correctly. We used the methodology
proposed in [82] to identify and treat samples with atypical label distributions (which
are also referred to as inconsistent samples) in each experiment.

After treating inconsistent samples in each experiment, we obtained the final
subjectively labeled subsets: the private group subset (private-PBTDB), containing
3000 samples, and the crowd group subset (crowd-PBTDB), containing 2944 sam-
ples. Consistency analysis on the final subsets showed that all samples in private-
PBTDB are consistent, whereas crowd-PBTDB still presented some inconsistent
samples. We conjecture that inconsistent samples from crowd-PBTDB occurred be-
cause subjects did not really assess sample quality as we requested. This suggests
that additional mechanisms that capture attention of the subjects, and engage them
in the task they are performing, need to be considered. The only such mechanism
adopted in this work is the GSQ approach. Such approach alone is not sufficient to
ensure that subjects from the crowd group are performing the test carefully and are
following test instructions correctly.

In the next chapter, we present the experiments in which we train deep learning
models using PBTDB, and test them in different datasets, namely ESPL-LIVE and
TMID. The idea of the deep learning experiments is to verify how generic are the
features learned from PBTDB samples for the TMIQA task. We consider different
objective quality scores (from entire PBTDB), as well as subjective quality scores
(from private-PBTDB and crowd-PBTDB), for training the deep learning models
and compare their performance values.
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Chapter 5

TMIQA Experiments using
Regression Models Based on Deep
Learning

The present chapter describes three experiments. In the first experiment, we fine-
tune the RankIQA model for the TMIQA task. In the second experiment, we train
deep learning models that are based on three well-known architectures, namely
VGG-16, ResNet50 [22], and Inception [85]. Such architectures were trained origi-
nally for the image classification task in the ImageNet dataset [86], and are now used
for a variety of image processing tasks. In both experiments, deep learning mod-
els are fine-tuned/trained using the PBTDB dataset, and tested in the TMID and
ESPL-LIVE datasets. In the third experiment, we use the PBTDB sample subset
described in Chapter 4 to train a deep learning model based on the VGG-16 archi-
tecture. Quality labels from this subset correspond to MOS values obtained from
private group and crowd group subjective experiments. We compare how different
subjective labeling affect model performance. These experiments are summarized
in Table 5.1, and their results are presented in the Sections 5.1, 5.2 and 5.3.

Table 5.1: Summary of experiments presented in this chapter. In columns “Training
Databases” and “Test Databases”, numbers in parenthesis denote the sample quantity
in the respective databases. We point out the main aspects of each experiments:
the training and test databases for the deep learning models; the quality labels used
for PBTDB samples; and the model architectures considered.

Experiment Experiment Training Quality Test Model SectionIdentifier Part Databases Labels Databases Architecture

1 - PBTDB (175000) Multiple TMIQA ESPL-LIVE RankIQA 5.1metric scores + TMID

2 - PBTDB (175000) TMQI ESPL-LIVE Base CNN feature extraction 5.2scores + TMID + one fully-connected layer

3

1 Private-PBTDB (2700)/ Subjective Private-PBTDB (300)/ Base CNN feature extraction 5.3Crowd-PBTDB (2650) MOS values Crowd-PBTDB (294) + one fully-connected layer

2 Private-PBTDB (3000)/ Subjective ESPL-LIVE Base CNN feature extraction 5.3Crowd-PBTDB (2944) MOS values + TMID + one fully-connected layer+ TMQI scores
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5.1 Experiment 1: RankIQA Fine-Tuning

RankIQA model learns how to predict quality scores by first learning to rank image
quality. In [17, 47], this model is trained in two stages, as summarized in Figure
5.1. In the first stage, a Siamese architecture [87], which consists of two identical
networks that are jointly trained and share weights, is trained to correctly rank
images from an input pair, based on their corresponding distortion levels. Both
images from the pair are impaired by only one specific distortion, but in different
levels for each image. Several distortion types are considered, such as blur, white
noise, JPEG blocking artifacts and others. In the second stage, one network from
the Siamese architecture is fine-tuned using datasets that contain images impaired
by the same considered distortions, but each image is labeled with a subjective MOS.
In the end, the network learns to predict a quality score for the input image based
on the intensity of such distortions that may be present. The described architecture
is the publicly available version of the RankIQA model, which has been used so far
in this work. In this section, we refer to this version as the “base RankIQA model”.
Learning from ranking is a potentially useful idea for determining tone-mapped
image quality. We hypothesize that ranking the image quality can be regarded
as an indirect way of assessing how complex tone-mapping distortions, which are
difficult to directly quantify, impact on the overall quality perception.

We fine-tune the base RankIQA model for the TMIQA task, using the PBTDB
dataset. We use 90% of the samples for training (158327 samples), and 10% of the
samples for validation (17592 samples). The following L2 loss function is used for
training:

L =
1

B

B∑
i=1

(yi − ŷi)
2 , (5.1)

where B denotes the mini-batch size (in this case, B = 30 images), yi is the labeled
quality score of the i-th image, and ŷi is the quality score predicted by the model for
the i-th image. We test two optimization algorithms for minimizing the loss function
from Equation (5.1): the SGD (with momentum) algorithm [88], and the Adam
algorithm [89]. For the SGD optimizer, the momentum parameter is set to 0.9, and
the base learning rate is set to 10−6. Weight decay regularization is also used [90],
with decay factor equal to 5 ×10−4. For the Adam optimizer, a base learning rate is
set to 10−6, and no regularization is performed. For both optimization algorithms,
learning rate is divided by half every 5000 iterations (the model weights and biases
are updated at each iteration). Models trained with the Adam optimizer achieve
better performance values, and these are ones reported in this section. For models
trained with the Adam optimizer, we experiment with a step size of 2500 iterations
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Figure 5.1: RankIQA training stages: (a)
first stage; and (b) second stage. In the first stage, the model learns to rank

images based on some distortion type. In the second stage, the model is fine-tuned
to learn how to predict quality scores for the task at hand. Red arrows show the

gradient loss value, with respect to network parameters, that is back-propagated to
train the networks. Interested reader can find the pairwise ranking loss function

definition in [17, 47]. The L2 loss function is defined in Equation (5.1).

for reducing the base learning rate in half, but better results are achieved with the
5000 iterations step size. We train the models for 30000, 40000 and 52780 iterations
(which corresponds to, approximately, 5.5, 7.6 and 10 epochs, respectively). No
performance improvement is observed after 10 epochs. Therefore, training lasts for
10 epochs, for all models.

Several RankIQA models are considered. Each model corresponds to fine-tuning
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Table 5.2: RankIQA models trained with different quality scores as labels for the
images in PBTDB.

Model PBTDB Sample Label
RankIQA2 TMQI scores
RankIQA3 HIGRADE-2 scores
RankIQA4 (TMQI scores + HIGRADE-2 scores)/2
RankIQA5 Converted MOS from TMQI scores in TMID dataset
RankIQA6 Converted MOS from BTMQI scores in TMID dataset

the base RankIQA model using a different quality score as sample label ŷi in Equa-
tion (5.1). We analyze how labels given by different TMIQA metrics influence the
model performance in different test datasets. Table 5.2 lists the trained RankIQA
models, along with the corresponding quality scores used as labels. The models are
enumerated from “RankIQA2” to “RankIQA6”. The first “RankIQA” corresponds to
the base RankIQA model that is not fine-tuned.

We use the TMQI scores as the “official” labels for the PBTDB samples, and train
RankIQA2. TMQI metric is commonly used in the literature both to objectively
assess tone-mapped image quality [91, 92], and as baseline for comparison with other
TMIQA metrics, [93, 94]. Also, we hypothesize that, since TMQI is an FR metric, its
quality predictions are more reliable for “generic” tone-mapped images (i.e. tone-
mapped images from any source) than quality predictions from HIGRADE and
BTMQI metrics. In TMID dataset, TMQI scores reliably represent image quality,
but it is unknown whether this is also the case in ESPL-LIVE dataset1. HIGRADE-
2 scores represent well the image quality of samples in ESPL-LIVE dataset, and we
train RankIQA3 using such scores as labels for PBTDB samples. For RankIQA4,
we combine TMQI and HIGRADE-2 scores to create an average quality score, which
serves as label. We map HIGRADE-2 scores into the same range as TMQI scores,
before taking the average. For RankIQA5 and RankIQA6, labels correspond to MOS
values converted from TMQI and BTMQI scores, respectively. These “converted
MOS” values are obtained by applying functions that map TMQI and BTMQI scores
into subjective MOS values in the TMID dataset. These functions are fit via non-
linear regression. They are shown in Figure 5.2.

Training and validation loss curves for each model are shown in Figure 5.3. Ta-
ble 5.3 presents the performance values of each trained model when applied in the
ESPL-LIVE and TMID datasets, along with the base RankIQA model performance
in both datasets. Scatter plots between subjective MOS and predicted MOS from
each trained model, considering both datasets, can be found in Appendix A. In
ESPL-LIVE dataset, all models perform poorly, whereas, in TMID dataset, per-

1TMQI performance can not be measured in ESPL-LIVE dataset because this dataset does not
provide the original HDR images.

70



(a) (b)

Figure 5.2: Scatter plots between subjective MOS values and (a) TMQI, and (b)
BTMQI. The red line indicates the mapping function that is fit.

formance varies for each model. RankIQA2 achieves particularly low performance
values in ESPL-LIVE dataset, which suggests that TMQI scores may not be ade-
quate to represent overall quality of images from this dataset. In TMID dataset,
where TMQI scores are well correlated with subjective MOS, RankIQA2 performs
better. Considering all fine-tuned RankIQA models, RankIQA3, which is trained
with HIGRADE-2 scores as labels, achieves the best performance in the ESPL-
LIVE dataset, but the worst in TMID dataset. RankIQA4, whose training labels
are the average of TMQI and HIGRADE-2 scores, performs a little better than
RankIQA2 and RankIQA3 models in ESPL-LIVE and in TMID datasets, respec-
tively. RankIQA5 and RankIQA6 present the best performance values in the TMID
dataset, thus indicating that subjective quality impression is more closely related to
converted MOS values than to TMQI (and, potentially, to BTMQI) scores. Such
converted MOS values, however, are not good representations for quality of any
tone-mapped image, as they do not seem appropriate, for instance, for the samples
from ESPL-LIVE dataset (both models perform poorly in this dataset).

This experiment confirms that deep learning model performance highly depends
on which TMIQA metric score is used as label to represent the image quality. It
also reinforces the idea that state-of-the-art TMIQA metrics provide unreliable tone-
mapping quality estimates for most tone-mapped images (that is, images that do
not belong to any particular dataset).

5.2 Experiment 2: Architecture Exploration

From the previous experiment, it is unclear whether the specific RankIQA architec-
ture is suited for the TMIQA task (and, hence, if the architecture has an important
impact in the performance values observed). In this second experiment, we train
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Figure 5.3: Training and validation loss curves of each RankIQA model in PBTDB:
(a) RankIQA2, (b) RankIQA3, (c) RankIQA4, (d) RankIQA5, and (e) RankIQA6.
For better visualization, log scale is used in y axis.

models with different architectures using the TMQI quality score as label for the
PBTDB samples. The considered architectures are VGG-16, ResNet50, and Incep-
tion. These architectures are composed by two parts: the feature extraction part,
composed by convolutional layers, and the classification part, composed by fully-
connected layers. We maintain the feature extraction part (which we refer to as
“Base CNN model”), and replace the original classification part of these models by
one fully-connected (FC) layer, and one output layer, containing one neuron that
yields the model prediction. Figure 5.4 depicts the overall model structure used in
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Table 5.3: RankIQA model performance values in the ESPL-LIVE and TMID
datasets. “RankIQA” denotes the base RankIQA model, that is not fine-tuned.
Boldface text marks the best result for each performance metric in the correspond-
ing dataset.

Model ESPL-LIVE Dataset TMID Dataset
PLCC SRCC RMSE PLCC SRCC RMSE

RankIQA 0.252 0.235 9.712 0.108 0.137 1.922
RankIQA2 0.209 0.176 9.789 0.694 0.583 1.399
RankIQA3 0.482 0.432 8.778 0.430 0.370 1.751
RankIQA4 0.326 0.275 9.463 0.553 0.487 1.605
RankIQA5 0.260 0.245 9.668 0.786 0.723 1.196
RankIQA6 0.344 0.339 9.398 0.816 0.716 1.136

Base CNN Model 
(VGG-16,
ResNet50,
Inception)

Tone-
Mapped
Image

FC  
Layer

Extracted
Features

Quality
score

Output
Neuron

Figure 5.4: Overall model architecture trained to predict tone-mapped image quality.
The models are trained using TMQI scores of PBTDB samples as target quality
values.

this experiment. The VGG-16 architecture version that is used in the present work
includes batch normalization layers [95] after every convolutional layer in the feature
extraction part.

The training setup for each model is summarized in Table 5.4. We only train
the newly introduced FC and output layers. The weights and biases of the feature
extraction part are frozen. These frozen weights and biases are the ones learned
from the ImageNet dataset for the image classification task. As in the previous
experiment, 90%/10% of the PBTDB samples are used for training/validation. This
corresponds to 158327 samples for training, and 17592 samples for validation. For
each model, we vary the number of neurons in the FC layer along a sequence of
powers of two, from 2 to 214, and choose the architecture that provides a good
trade-off between number of neurons in this layer and validation loss. Activation
functions for FC layer neurons are leaky rectified linear units (LeakyReLUs) [96],
with negative slope set to 0.01. The L2 loss function from Equation (5.1) is used in
this experiment to train the models. We choose Adam as the loss function optimizer,
with learning rate lr initially set to 10−3. This learning rate decays exponentially
every epoch according to: lr = lr(0.9)n, where n is the current epoch number,
and 0.9 is the learning rate decay rate. For VGG-16 and ResNet50 models, input
images (that have original resolution of 256 × 256 pixels) are resized to 224 × 224

pixels, whereas for Inception model, they are resized to 299×299 pixels. All resizing
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Table 5.4: Training setup for deep learning models in this experiment.

Model
Input Mini-Batch Optimizer

Learning FC Activation EpochsImage Size Rate Layer UnitsSize Scheduler Neurons

VGG-16 224× 224 32 Adam (lr = 10−3) lr = lr(0.9)n 64 LeakyReLU 40(negative slope = 0.01)

ResNet50 224× 224 32 Adam (lr = 10−3) lr = lr(0.9)n 4096 LeakyReLU 40(negative slope = 0.01)

Inception 299× 299 32 Adam (lr = 10−3) lr = lr(0.9)n 512 LeakyReLU 40(negative slope = 0.01)

Table 5.5: Performance values of each considered CNN architecture in ESPL-LIVE
and TMID datasets. Boldface text marks the best performance values in each
dataset. The “CNN-VGG16-FT” model denotes the fine-tuned version of the “CNN-
VGG16” model.

Model ESPL-LIVE Dataset TMID Dataset
PLCC SRCC RMSE PLCC SRCC RMSE

CNN-INCEPTION 0.146 0.136 9.923 0.234 0.201 1.870
CNN-RESNET50 0.368 0.367 9.327 0.763 0.728 1.243

CNN-VGG16 0.243 0.233 9.729 0.610 0.397 1.525
CNN-VGG16-FT 0.314 0.314 9.523 0.681 0.624 1.409

operations use bilinear interpolation. These are the respective image sizes that were
used to train the original models in the ImageNet dataset. At first, we trained
models for 120 epochs. However, model validation loss value does not improve after
40 epochs. Then, for the experiments presented in this section, we set model training
duration to 40 epochs, unless otherwise stated.

Figure 5.5 shows the training and validation curves for the chosen models, and
Table 5.5 shows their performance metric values in TMID and ESPL-LIVE datasets.
Corresponding scatter plots of each model in both datasets are found in Appendix
A. All models achieve better performance values in TMID dataset than in ESPL-
LIVE dataset. This is probably a consequence of using TMQI scores as labels,
which is also observed in the previous experiment, specially for RankIQA2 and
RankIQA5 models. The Inception architecture presents the worst performance in
both datasets, with particularly low performance values. ResNet50 outperforms the
VGG-16 architecture in both datasets. It also outperforms the RankIQA2 model
from the experiment reported in Section 5.1. Similarly with respect to the models
considered in this experiment, the RankIQA2 model was trained using TMQI scores
as labels for image quality. These results suggest that, for the desired task, the
architecture choice may have a significant impact on performance.

We fine-tune the entire VGG-16 and ResNet50 models2 (that is, parameters from
the respective feature extraction parts are now unfrozen and fine-tuned as well) from

2We did not fine-tune the Inception model as it performs very poorly in both test datasets, and
it performs worse than the other considered models, as shown in Table 5.5.
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Figure 5.5: Training and validation loss curves of each model in PBTDB dataset:
(a) Inception, (b) ResNet50, and (c) VGG-16

the previous training using the PBTDB dataset. The models are initialized with
weight and bias values learned from the previous training. Fine-tuning lasts for
120 epochs, using Adam optimizer with a learning rate set to 10−6, which remains
unchanged. Table 5.5 shows the results from the fine-tuned VGG-16 model. We
do not show the results for the fine-tuned ResNet50 model because, in both test
datasets, its performance values are similar to the ones from the previous ResNet50
model that is not fine-tuned (and is shown in Table 5.5). Minor performance gains
over the “CNN-VGG16” model performance are observed, but the fine-tuned model
still presents low performance values in ESPL-LIVE dataset. Also, the fine-tuned
VGG-16 model performance is not better than the performance of the ResNet50
model. This indicates that the label choice that represents the image quality (in
this case, TMQI scores) is likely limiting the model performance.

5.3 Experiment 3: VGG-16 Model Training in Sub-

jectively Labeled PBTDB Subset

In the experiments presented so far in this chapter, we train deep learning models
using objective TMIQA metric scores as target quality scores for PBTDB samples.
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Figure 5.6: Overall model architecture that uses VGG-16 model as feature extractor.
Only the FC layer is trained (using subjective MOS values from private-PBTDB
and crowd-PBTDB samples as target quality values). Weights and biases from the
feature extraction part are kept frozen.

In this section, models are trained using the PBTDB subsets presented in Chapter
4, in which subjective experiments were performed. They are tested in ESPL-LIVE
and TMID datasets. Target quality scores correspond to subjective MOS values
instead of objective metric scores. We use VGG-16 model as feature extractor, as
shown in Figure 5.6, keeping its weights and biases frozen. We replace the original
VGG-16 FC layer by a new one, and train this layer only. We also considered the
ResNet50 model as feature extractor. ResNet50 model results in ESPL-LIVE and
TMID datasets are similar to the ones obtained from the VGG-16 model. To avoid
redundant result presentation, in this section, we show VGG-16 results only, as tests
were performed with this model initially.

First, the model is trained and tested in the same corresponding PBTDB subsets
(private-PBTDB and crowd-PBTDB). In both subsets, we divide samples into three
disjoint sets that are used for training, validating and testing the model. We fix the
following sample proportions for each set: 80% for training, 10% for validation, and
10% for test. Such division corresponds to 2400 training samples, 300 validation
samples and 300 test samples in private-PBTDB, and to 2356 training samples, 294
validation samples and 294 test samples in crowd-PBTDB. Because several PBTDB
samples represent repeated scenes mapped by different tone-mapping operators, we
make sure all tone-mapped versions of the same scene integrate one set only (either
training, validation or test). This avoids overestimating model performance caused
by scene contents previously shown to the model during training. Hyperparameter
values are the same ones shown in Table 5.4, except for FC layer number of neurons,
which we vary from 2 to 2048 in powers of two. Figure 5.7 shows training and
validation curves for each model in private-PBTDB and crowd-PBTDB. In both
datasets, lowest validation loss is achieved by the model with 16 neurons in the FC
layer (yellow dashed line in both plots). We use this configuration in the following
experiments of this section.

We train HIGRADE and BTMQI metrics in each PBTDB subset, and compare
their performance values with the VGG-16 proposed model. Table 5.6 reports the
performance values in the test sets. In private-PBTDB, the proposed VGG-16 model
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Figure 5.7: Training and validation curves for the models in (a) private-PBTDB
and (b) crowd-PBTDB. Solid lines indicate training performance, whereas dashed
lines indicate validation performance.

outperforms the best state-of-the-art TMIQA metric (HIGRADE-2) by roughly 4%,
considering the SRCC metric. Analyzing the proposed model validation curve from
Figure 5.7, we believe its performance can likely be improved by introducing regu-
larization techniques, such as dropout, during training. Nevertheless, these results
suggest that VGG-16 features are not well suited for the TMIQA task. This is
because simpler TMIQA metrics, which extract features designed for tone mapping
quality assessment, are able to achieve similar performance values to the ones from
a more complex deep CNN model, which uses the VGG-16 features.

In crowd-PBTDB, the best metric is the HIGRADE-1, outperforming the pro-
posed model by approximately 2% in SRCC metric. Besides the proposed model,
this metric also outperforms HIGRADE-2 by a rather large margin (roughly 8% in
SRCC). Such behavior is not observed in private-PBTDB, whose samples are al-
most the same as crowd-PBTDB, but with different MOS values. This result might
be caused by experiment inconsistencies, as shown in Figure 4.20(b). We observe
that, in crowd-PBTDB, the VGG-16 model improves all its performance values by
approximately 4%, as compared with its counterpart in private-PBTDB. This sug-
gests that having more quality labels per sample (on average, 51 labels per sample
versus 16 labels per sample in private-PBTDB), which influence sample MOS calcu-
lation, leads to a better training process. More labels provide more different MOS
values and thus smoother distributions.

Next, we train the chosen VGG-16 model using subjective MOS values from
each PBTDB subset, and test it in different databases, namely ESPL-LIVE and
TMID. In this experiment, we investigate how generic are the subjective MOS values.
Comparatively, we train the same VGG-16 model, in each PBTDB subset, but using
corresponding sample TMQI scores as target quality scores, instead of subjective
MOS values. We examine the impacts on model generalization capabilities when
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Table 5.6: Performance values of TMIQA models in the private-PBTDB and crowd-
PBTDB datasets. The VGG-16 model is identified as “CNN-VGG16-16N” because
it contains 16 neurons in the FC layer. Boldface text marks the best result for each
performance metric in the corresponding dataset.

Model Private-PBTDB Crowd-PBTDB
PLCC SRCC RMSE PLCC SRCC RMSE

CNN-VGG16-16N 0.691 0.728 13.324 0.734 0.768 9.8747
HIGRADE-1 0.663 0.671 13.322 0.797 0.782 8.667
HIGRADE-2 0.691 0.684 12.860 0.746 0.707 9.322

BTMQI 0.627 0.631 13.860 0.719 0.703 9.732

different target quality scores are used (i.e. subjective scores versus objective scores).
Table 5.7 shows the trained model performance values in each test database. We

did not apply the non-linear fit function to the model predicted scores. Therefore,
RMSE metric is not shown, as TMQI and subjective MOS values have different
score ranges. The models present poor performance values in both databases, in-
dicating that quality prediction of generic tone-mapped images is still unreliable.
However, we observe that models trained with subjective MOS labels perform bet-
ter than their counterparts trained with TMQI scores, in each respective database
(private-PBTDB and crowd-PBTDB). Particularly, training with MOS values from
the private group increases model performance values by about 6% in ESPL-LIVE
and 11% in TMID in comparison with using TMQI scores as target values for train-
ing. This shows that subjective MOS values are more reliable quality labels than
TMQI scores (and, potentially, other objective TMIQA metric scores). We hypoth-
esize that a reason for poor performance, in this case, is likely the lack of more
subjectively labeled samples, and not the sample quality score nature.

The VGG-16 model trained with subjective MOS values from crowd-PBTDB
performs worse than the model trained with subjective MOS values from private-
PBTDB in predicting quality of ESPL-LIVE and TMID samples. Considering
the crowd-PBTDB and private-PBTDB VGG model tests in their own respective
datasets (Table 5.6), we observed that crowd-PBTDB VGG model achieved better
results. Despite these results, such model has weaker generalization power than
the model from private-PBTDB. This strengthens the idea that MOS values from
crowd group experiment are less reliable for predicting generic tone-mapped image
quality than the ones from private group experiment. Crowd MOS unreliability is
arguably caused by inconsistencies still present in such experiment, as opposed to
private MOS values, which come from an entirely consistent experiment.

Finally, we investigate the addition of one extra FC layer to the deep learning
model. The idea is to verify if manipulating VGG features leads to a feature space
that facilitates the regression task. The model regression part is now represented
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Table 5.7: Performance values of VGG-16 models trained in PBTDB subsets, and
tested in ESPL and TMID datasets. Quality scores used to train VGG-16 models
can correspond to subjective MOS values or TMQI score values. Predicted scores
are not adjusted by a non-linear fit function, so better performance values are close
to 1 in ESPL-LIVE dataset, and -1 in TMID dataset. Boldface text marks the best
result for each performance metric in the corresponding dataset.

Model
ESPL-LIVE TMID

Dataset Dataset
PLCC SRCC PLCC SRCC

CNN-VGG16-16N-private-MOS 0.203 0.195 -0.336 -0.318
CNN-VGG16-16N-private-TMQI 0.141 0.129 -0.228 -0.201
CNN-VGG16-16N-crowd-MOS 0.191 0.179 -0.298 -0.244
CNN-VGG16-16N-crowd-TMQI 0.023 0.020 -0.222 -0.197
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Figure 5.8: Overall model architecture that uses VGG-16 model as feature extractor,
and two FC layers as the regression part. Only the two FC layers are trained (using
private-PBTDB subjective MOS values as target quality values). Weights and biases
from the feature extraction part are kept frozen.

by two FC layers, as shown in Figure 5.8. We fix 16 neurons in the first FC layer,
and vary the number of neurons in the second FC layer from 2 to 128 in powers of
two. All models are trained in the private-PBTDB, using subjective MOS values as
target scores. Only model FC layers are trained (the feature extraction part is kept
frozen). Other training hyperparameters values are the ones shown in Table 5.4.
Figure 5.9 shows the training and validation curves for different number of neurons
in the second FC layer. The chosen model for this experiment is the one with 128
neurons in the second FC layer, as it achieves the lowest validation error after 40
epochs (brown dashed line).

Table 5.8 shows the performance values in the test subset of private-PBTDB,
and in ESPL-LIVE and TMID databases. Comparing these results with the ones
reported in Tables 5.6 and 5.7, we note that, in all considered databases, the model
with two FC layers performs similarly as the model with one FC layer only. This
reinforces the previous observation that VGG features are not suited for TMIQA,
and they limit model performance.
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Figure 5.9: Training and validation curves for the 2-FC layer models in private-
PBTDB. Each curve corresponds to a different number of neurons in the second FC
layer, varying from 2 to 128 in powers of two (all models have 16 neurons in the first
FC layer). Solid lines indicate training performance, whereas dashed lines indicate
validation performance.

Table 5.8: Test performance values of the VGG-16 model that has two FC layers in
its regression part. The FC layer contains 16 neurons, and the second FC layer has
128 neurons. Predicted scores are not adjusted by a non-linear fit function when
model is tested in ESPL-LIVE and TMID datasets. Therefore, better performance
values are close to 1 in ESPL-LIVE dataset, and -1 in TMID dataset.

Database PLCC SRCC
Private-PBTDB 0.700 0.730

ESPL-LIVE 0.226 0.218
TMID -0.365 -0.325

5.4 Chapter Summary

In this chapter, we presented three experiments in which PBTDB was used to train
several deep learning architectures. In the first experiment, we fine-tuned different
versions of the RankIQA model. Each version considered scores from a different
TMIQA metric as target quality values. In the second experiment, we trained
networks based on traditional deep CNN architectures (namely VGG-16, Resnet50
and Inception) for the TMIQA task. We used TMQI scores as target quality values.
We removed the original FC layers from such models, and trained a newly introduced
FC layer for the task at hand. In the third experiment, we trained deep learning
models based on VGG-16 using subjective MOS values from private-PBTDB and
crowd-PBTDB subsets as target quality values.

We draw three conclusions from the results presented in this chapter. The first
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one is that the objective quality score used to train the deep learning model impacts
on its performance. Performance values from the deep learning models are not better
than the performance values from the respective individual TMIQA metric whose
scores are used as target quality values in model training. In fact, deep learning
model performance values reflect the limitations from the considered TMIQA metrics
in each case. The network architecture may also have an impact on its performance,
as shown in Table 5.5.

The second conclusion is that the lack of more subjectively labeled samples limits
performance of deep learning models that are trained with subjective MOS values
as target quality scores. This is most likely the main cause for the overall poor per-
formance values in TMID and ESPL-LIVE datasets, rather than limitations intrin-
sic to MOS values from private-PBTDB and crowd-PBTDB subsets. Nevertheless,
models trained with subjective MOS values from private-PBTDB achieve better per-
formance values, when evaluating the quality of ESPL-LIVE and TMID samples,
than models trained with subjective MOS values from crowd-PBTDB (Table 5.7).
This suggests that private-PBTDB subjective MOS values are better tone-mapping
quality indicators than crowd-PBTDB subjective MOS values. Arguably, this is
because all samples in private-PBTDB are consistent (i.e. have typical label distri-
butions), as opposed to crowd-PBTDB, which contains some inconsistent samples.
Using private-PBTDB MOS values as target quality values in training, instead of
crowd-PBTDB MOS values, leads to models with better generalization capabilities.

The last conclusion is that VGG-16 features (and, possibly, features from other
traditional CNN architectures, such as ResNet50) do not seem suited for the TMIQA
task. New architectures should be explored specifically for TMIQA, so that more
adequate features to this task can be discovered and learned by the models.
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Chapter 6

Conclusions and Future Work

Currently available state-of-the-art TMIQA metrics yield reliable quality scores for
many tone-mapped image categories, but there is significant room for improvement.
In particular, for tone-mapped images that do not belong to specific databases, the
TMIQA metrics do not yield suitable quality labels. Only two benchmark databases
designed for TMIQA are available in the literature (ESPL-LIVE and TMID), and
they contain a relatively small number of samples. This likely causes the poor
generalization capabilities of state-of-the-art TMIQA metrics, which are trained in
such databases. Other IQA metrics, designed for evaluating generic distortions or
aesthetics, do not perform well in the TMIQA task either.

We presented experiments in which regression and classification models are
trained using quality scores from several selected IQA metrics as features to as-
sess image quality. The assumption was that a “commitee” of IQA metrics can
provide a more reliable quality assessment than any individual metric. We showed
that models achieve reasonable performance values when they are trained and tested
with tone-mapped images that come from the same database (in this case, ESPL-
LIVE). However, these models perform poorly when trained with samples from one
database (ESPL-LIVE) and tested with samples from another one (TMID). Such
limitation is also observed in individual IQA metrics, and the IQA metric “commi-
tee” we considered is also unable to overcome it. Slightly better performance values
in cross-database experiments presented in this work are achieved when regression
models combine quality features extracted from different TMIQA metrics. Still, best
performance values in TMID database come from a single TMIQA metric (BTMQI),
and this metric greatly outperforms these regression models.

We repeated the regression model experiments, but now considering that corre-
sponding training and test databases contain samples from both ESPL-LIVE and
TMID databases. We observed that regression models trained with a mixed database
achieve better test performance values than their counterparts that are trained using
ESPL-LIVE samples only, and tested in TMID samples only. This indicates that
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samples from each database contain different properties that are relevant for assess-
ing their quality, and likely explains the model generalization power improvement
when mixed training and test databases are considered. However, such regression
models achieve performance values that are similar to or inferior than the ones from
individual TMIQA metrics that are trained and tested in the same respective mixed
databases. These results do not support the claim that using more complex regres-
sion models in replacement of a single (and simpler) TMIQA metric leads to more
reliable tone-mapping quality evaluations.

We introduced a new tone-mapped database for TMIQA, called “PBTDB”, which
contains approximately 175000 samples. Each sample has four quality scores ob-
tained from different state-of-the-art TMIQA metrics (HIGRADE-1, HIGRADE-2,
BTMQI and TMQI). We showed that PBTDB contains a wide scene type diversity,
which is measured both objectively (in terms of brightness, colorfulness and scene
complexity attributes) and subjectively (in terms of TMIQA metric score distri-
butions). We selected 3009 representative samples from PBTDB, and performed
remote subjective tests to assess their quality. Two subject groups were considered:
a smaller “private” group, in which participants are directly invited by authors, and
a larger “crowd” group, in which participants are recruited from an AWS online
“crowdsourcing” platform. We followed the procedure in [82] to check if the sub-
jective experiments are consistent, and thus ensure that labels from both subject
groups are trustworthy. Inconsistency is defined by a case when, for a given p-value
threshold, the observed proportion of samples with atypical label distributions ex-
ceed the maximum expected proportion of such samples for that threshold value.
Each detected inconsistent sample was treated individually by taking one out of three
pre-defined actions. After performing such actions, we showed that labels from the
private group are entirely consistent, whereas labels from the crowd group still pre-
sented some minor inconsistencies. We conclude that additional mechanisms that
raise subject attention to the task at hand, other than the simple GSQ approach
adopted in this work, may be required when designing large-scale crowdsourcing
subjective experiments.

Finally, we conducted three experiments that involve training deep learning mod-
els for TMIQA using PBTDB. In the first experiment, we fine-tuned several versions
of the base architecture defined in the RankIQA metric for the TMIQA task. Each
version was fine-tuned with PBTDB samples using a different TMIQA metric scores
to represent sample target quality value. All versions were then tested in ESPL-LIVE
and TMID databases. None of the models was able to achieve good performance
values in both databases simultaneously. In fact, their performances highly corre-
late with the performances from individual TMIQA metrics whose scores are used
to fine-tune the respective RankIQA models. Therefore, generalization capability
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of RankIQA models is probably limited by the nature of the scores that represent
sample quality. In each database, the corresponding best RankIQA versions are still
outperformed by a single TMIQA metric (HIGRADE-2 in ESPL-LIVE, and BTMQI
in TMID).

In the second deep learning experiment, we replaced the FC layers of traditional
deep CNN models (VGG-16, ResNet50, and Inception) by one new FC layer. We
kept convolutional layers frozen, and trained the FC layer only for the TMIQA task,
using PBTDB samples. TMQI scores were chosen as sample target quality values.
We noted that all models achieved better results in TMID than in ESPL-LIVE.
This reinforces the idea that model performance relies heavily on the metric used to
represent sample quality, as TMQI metric scores are highly correlated with TMID
MOS values. Also, in both databases, ResNet50 model performed consistently better
than other models, whereas Inception model performed particularly poorly. This
suggests that model architecture may significantly influence performance.

In the last deep learning experiment, we followed the same training procedure
from the second experiment, but considered as training databases the PBTDB sub-
sets in which subjective experiments were performed. We considered the VGG-16
model as the base feature extractor architecture. We showed that using subjective
MOS values either from crowd group or from private group as sample quality scores
to train the models led to better performance values in test databases (ESPL-LIVE
and TMID) than using TMQI scores as quality indicators. However, performance
values are very poor in both databases. We believe that, in this case, lack of more
subjectively labeled samples is compromising model performance. Moreover, models
trained with private group MOS values performed better than models trained with
crowd group MOS values in both test databases. MOS values computed from fewer
but more consistent quality labels (private group case) are more reliable quality
indicators for generic tone-mapped samples than MOS values obtained from many
but less consistent quality labels (crowd group case). This indicates that large-scale
subjective experiments design should primarily focus on strict mechanisms that dis-
courage “cheating” behaviors (thereby ensuring more consistent participants), rather
than recruiting a large number of subjects while using no such mechanisms or very
simple ones.

As future work directions, one possibility is to explore autolabeling techniques,
such as the one proposed in [97], to increase the number of PBTDB samples labeled
with more reliable quality scores. Private-PBTDB subset can be used as a starting
point for training models that learn to predict their subjective MOS values. Then,
an iterative training process would take place as follows. Samples that have their
quality reliably predicted by the best trained model from the current iteration are
integrated in the training database that contains the private-PBTDB samples. The
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resulting database is used to train regression models in the next iteration.
Another possibility is to change the methodology for treating inconsistent sam-

ples in the crowd experiment. In particular, because private and crowd groups
evaluated the same sample set, we can assign private group MOS values as the ex-
pected sample quality values. Then, samples with crowd MOS values that strongly
deviate from the expected ones are filtered out. Such procedure is similar to the one
adopted in [50] to identify and remove outlier samples. Such approach may lead to
an entirely consistent crowd group experiment, which arguably provides more accu-
rate sample MOS values. This is because the MOS values from the crowd group are
computed over more quality labels (that are now consistent) than the MOS values
from the private group. Models trained with consistent crowd MOS values might
achieve better results in test databases.

Other direction is to investigate new architectures that are not necessarily based
on traditional deep CNN models, as VGG features (and, potentially, ResNet50 fea-
tures) do not seem suited for TMIQA. Ranking tone-mapped samples according to
their quality may be a promising training approach. Samples in the private-PBTDB
and crowd-PBTDB subsets can be ranked according to their subjective MOS val-
ues. In this training approach, a “sample” actually corresponds to a pair of images.
Therefore, an effective large training database can be obtained, if we consider all
possible image pairs from the aforementioned PBTDB subset. Architectures that
are adapted to this training method, such as the Siamese networks from RankIQA,
can be explored.
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Appendix A

Scatter Plots of Individual IQA
Metrics

In this appendix, we show the scatter plots between the subjective MOS and pre-
dicted MOS from each individual IQA metric in the ESPL-LIVE and TMID datasets.
We also show the scatter plots between subjective MOS and predicted MOS from
the fine-tuned RankIQA models, and from the different CNN architectures, in both
datasets. The black line shown in each plot corresponds to the non-linear function
fit to data in each case. Table A.1 identifies the metric according to their position
in the 7× 5 scatter plot grid that is shown in Figures A.1 and A.2.

Table A.1: Identification of each metric in the scatter plot grid from Figures A.1
and A.2.

Column 1 Column 2 Column 3 Column 4 Column 5
Row 1 BIQI BLIINDS-2 BPADA BRISQUE BTMQI
Row 2 C-DIIVINE CORNIA DESIQUE DIIVINE ENIQA
Row 3 FRIQUEE GM-LOG HIGRADE-1 HIGRADE-2 ILNIQE
Row 4 CNN-INCEPTION CNN-RESNET50 CNN-VGG16 NFERM NIMA
Row 5 NIQE NIQMC NJQA PAM RANKIQA
Row 6 RANKIQA2 RANKIQA3 RANKIQA4 RANKIQA5 RANKIQA6
Row 7 SISBLIM-SFB SISBLIM-SM SISBLIM-WFB SISBLIM-WM SSEQ
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Figure A.1: Scatter plots showing subjective MOS versus predicted MOS from each
IQA metric in the ESPL-LIVE dataset. The black line corresponds to the non-linear
function fit to data.
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Figure A.2: Scatter plots showing subjective MOS versus predicted MOS from each
IQA metric in the TMID dataset. The black line corresponds to the non-linear
function fit to data.
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Appendix B

Model Hyperparameters in
Scikit-Learn Package

In this appendix, we list all hyperparameters that are defined in regression model
implementations from the Python scikit-learn package [59]. Default values shown
for each hyperparameter are the ones set in version 0.24.2 of this package.

• K-Nearest Neighbors (KNN)

Figure B.1: Hyperparameters and corresponding default values defined in version
0.24.2 of scikit-learn Python package for the KNN regression model. Picture taken
from the package official website: https://scikit-learn.org/0.24/. Last accessed: Au-
gust 17th, 2022.

• Support Vector Regression Machine (SVR)

Figure B.2: Hyperparameters and corresponding default values defined in version
0.24.2 of scikit-learn Python package for the SVR regression model. Picture taken
from the package official website: https://scikit-learn.org/0.24/. Last accessed: Au-
gust 17th, 2022.
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• Random Forest

Figure B.3: Hyperparameters and corresponding default values defined in version
0.24.2 of scikit-learn Python package for the Random Forest regression model. Pic-
ture taken from the package official website: https://scikit-learn.org/0.24/. Last
accessed: August 17th, 2022.

• Gradient Tree Boosting (GTB)

Figure B.4: Hyperparameters and corresponding default values defined in version
0.24.2 of scikit-learn Python package for the GTB regression model. Picture taken
from the package official website: https://scikit-learn.org/0.24/. Last accessed: Au-
gust 17th, 2022.
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