
NEW APPROACHES TO FAULT PREDICTION AND OPACITY

ENFORCEMENT OF DISCRETE-EVENT SYSTEMS

Raphael Julio Barcelos

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários

à obtenção do título de Doutor em Engenharia

Elétrica.

Orientador: João Carlos dos Santos Basilio

Rio de Janeiro

Março de 2022

NEW APPROACHES TO FAULT PREDICTION AND OPACITY

ENFORCEMENT OF DISCRETE-EVENT SYSTEMS

Raphael Julio Barcelos

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientador: João Carlos dos Santos Basilio

Aprovada por: Prof. João Carlos dos Santos Basilio

Prof. Marcos Vicente de Brito Moreira

Prof. José Eduardo Ribeiro Cury

Profa. Patrícia Nascimento Pena

Prof. Antonio Eduardo Carrilho da Cunha

RIO DE JANEIRO, RJ � BRASIL

MARÇO DE 2022

Barcelos, Raphael Julio

New approaches to fault prediction and opacity

enforcement of discrete-event systems/Raphael Julio

Barcelos. � Rio de Janeiro: UFRJ/COPPE, 2022.

XIII, 128 p.: il.; 29, 7cm.

Orientador: João Carlos dos Santos Basilio

Tese (doutorado) � UFRJ/COPPE/Programa de

Engenharia Elétrica, 2022.

Referências Bibliográ�cas: p. 118 � 128.

1. Discrete event systems. 2. Opacity. 3. Opacity-

enforcement. 4. Utility. 5. Copredictability. 6.

Fault prediction. I. Basilio, João Carlos dos Santos.

II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. Título.

iii

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

NOVAS ABORDAGENS PARA PREDIÇÃO DE FALHAS E FORÇAMENTO

DE OPACIDADE EM SISTEMAS A EVENTOS DISCRETOS

Raphael Julio Barcelos

Março/2022

Orientador: João Carlos dos Santos Basilio

Programa: Engenharia Elétrica

Este trabalho se concentra no desenvolvimento de novas abordagens para proble-

mas relacionados a duas propriedades de sistemas a eventos discretos: opacidade e

preditibilidade. A opacidade requer que um comportamento secreto do sistema seja

escondido de um intruso, e, neste quesito, o primeiro problema abordado é como

tornar opaco um sistema que inerentemente não é (forçamento de opacidade). Para

esse �m, propõe-se uma estratégia capaz de manipular a estimação de estados do

intruso de forma que a ordem da observação dos eventos seja embaralhada, podendo

alguma dessas observações ser excluídas quando estritamente necessário. Investiga-

se também como mitigar o efeito negativo do forçamento de opacidade na capacidade

do receptor autêntico de estimar o estado atual do sistema com precisão. O segundo

problema abordado é relacionado à principal crítica às estratégias de forçamento

de opacidade, mais especi�camente o fato de que, ao ofuscar o comportamento

secreto do sistema ao intruso, algumas das informações transmitidas também são

escondidas do receptor autêntico. Neste respeito, introduz-se a noção de utilidade

(baseada em estados), a qual se refere a algum comportamento crucial do sistema que

deve estar sempre disponível para o receptor autêntico, mesmo quando a opacidade

estiver sendo forçada. O último problema abordado é a predição de falhas. Um

sistema é preditível se, para todo comportamento de falha, é possível previamente

ter certeza da ocorrência da falha. Na sequência, apresentam-se duas estratégias para

a veri�cação de preditibilidade disjuntiva de falhas (copreditibilidade de falhas): a

primeira baseada em autômatos teste e a segunda, em veri�cadores. São abordados

também a predição online de falhas e, para tanto, é apresentada uma estratégia para

o projeto de preditores locais de falha, e a K-copreditibilidade, que requer que todas

as falhas sejam preditas pelo menos K eventos antes de suas ocorrências.

iv

Abstract of Thesis presented to COPPE/UFRJ as a partial ful�llment of the

requirements for the degree of Doctor of Science (D.Sc.)

NEW APPROACHES TO FAULT PREDICTION AND OPACITY

ENFORCEMENT OF DISCRETE-EVENT SYSTEMS

Raphael Julio Barcelos

March/2022

Advisor: João Carlos dos Santos Basilio

Department: Electrical Engineering

In this work, we are concerned with developing new approaches to problems

related to two discrete-event system properties, namely, opacity and predictability.

Opacity is a property that ensures that a secret behavior of the system is kept

hidden from an intruder, and, in this regard, the �rst problem we address is how

to make opaque a system which inherently is not (opacity enforcement). To this

end, we propose a strategy which is capable of manipulating the state estimation of

the intruder by shu�ing event observations and also deleting some of them when

strictly necessary. We also investigate how it is possible to mitigate the negative

e�ect of opacity enforcement on the capability of the legitimate receiver to accurately

estimate the current state of the system. The second opacity problem addressed

in this work is related to the main criticism of the opacity enforcement strategies

existing in the literature, namely that in order to obfuscate the secret behavior of

the system from intruders, some transmitted information is also concealed from the

legitimate receiver. In this regard, we introduce the notion of (state-based) utility

to refer to some crucial behaviors that must always be available to the legitimate

receiver, even when opacity is being enforced. The last problem we address is fault

predictability, where a system is predictable with respect to the fault event if, for

every faulty behavior, we can be sure of the fault prior to its occurrence. We then

present two strategies for the veri�cation of disjunctive fault predictability (fault

copredictability), one that is based on a diagnoser-like test automaton, and the

second one that deploys veri�ers. We also consider online fault prediction, present a

strategy for designing local fault predictor systems, and address K-copredictability,

namely, if all fault occurrences can be predicted at least K events prior to their

occurrences.

v

Contents

List of Figures viii

List of Symbols x

List of Abbreviations xiii

1 Introduction 1

1.1 Opacity . 1

1.2 Fault prediction . 6

1.3 Thesis structure . 8

2 Theoretical background 10

2.1 Discrete-event systems theory . 10

2.2 Opacity and predictability of DES . 15

2.2.1 Opacity . 15

2.2.2 Predictability . 20

3 Opacity enforcement 26

3.1 Problem formulation . 26

3.2 Opacity enforcement through shu�e and deletions in event observations 28

3.3 Opacity-enforcement strategy . 32

3.4 Algorithms . 41

3.4.1 Algorithm for shu�ing event occurrences and observation re-

leases/deletions . 42

3.4.2 Algorithm for realization of the CSO enforcer 47

3.5 Example . 53

3.6 Mitigating the negative e�ect of opacity enforcement on the legitimate

receiver's state estimate capability . 57

3.7 Concluding remarks . 60

4 Ensuring utility while enforcing opacity 61

4.1 Problem formulation . 62

vi

4.2 Ensuring utility while enforcing opacity 63

4.3 Algorithms . 72

4.3.1 Computation of automaton GSD
a 72

4.3.2 Computation of automaton RUOE 74

4.4 Example . 81

4.5 Concluding remarks . 83

5 Fault prediction 85

5.1 Problem formulation . 85

5.2 Copredictability veri�cation . 90

5.2.1 Copredictability veri�cation using the diagnoser-like test au-

tomaton . 90

5.2.2 Copredictability veri�cation using veri�ers 96

5.3 A disjunctive fault predictor system 101

5.4 K-copredictability veri�cation . 107

5.5 Comparison between the veri�cation methods proposed here and by

KUMAR and TAKAI [85] . 111

5.6 Concluding remarks . 113

6 Conclusion and future works 115

6.1 Conclusion . 115

6.2 Future works . 116

References 118

vii

List of Figures

2.1 State transition diagram. 12

2.2 System related to Examples 2.3, 2.5 and 2.6. 17

2.3 System related to Example 2.4, taken from [32]. 17

2.4 Observer of the automaton depicted in Figure 2.2. 18

2.5 Transformations between CSO, IFO, and LBO 19

2.6 Automaton G. 20

2.7 Automaton A`. 21

2.8 Automaton G` from Example 2.8. 23

2.9 Observer automaton Gd = Obs(G`,Σo) from Example 2.8. 23

2.10 Automaton Gscc = Gd‖G` from Example 2.8. 24

2.11 Automaton Gscc,ac = Ac(Gscc) from Example 2.8. 24

3.1 The opacity enforcement architecture. 27

3.2 Opacity-enforceability. 30

3.3 Example for opacity-enforceability. 30

3.4 Part of the automaton that generates non regular language La. 35

3.5 Part of the automaton that generates a regular language LSDa bounded

by SD(k). 37

3.6 Automaton that generates a regular feasible language LOEa 41

3.7 Model of a not CSOE system. 46

3.8 Automaton G used to illustrate the CSO enforcement strategy. 54

3.9 Automaton D . 54

3.10 Part of V that shows undesirable states. 55

3.11 Part of V that shows decision con�icts. 56

3.12 Automaton ROE that realizes the opacity enforcement strategy. . . . 56

3.13 Automata Gest,R (a) and Greal,int (b) with the states capable of being

estimated by the legitimate receiver and the intruder, respectively. . . 58

3.14 Automaton Ge whose generated language corresponds to the actual

sequences to be executed by the plant. 59

3.15 Automaton Ge
est,R with the state estimations of the legitimate receiver. 60

viii

4.1 The opacity enforcement architecture. 62

4.2 Automaton G. 65

4.3 Automaton H. 67

4.4 Automaton H ′. 69

4.5 Automaton D. 75

4.6 Automaton Gint. 75

4.7 Automaton GSD
a = G‖D‖Gint. 76

4.8 Automaton V with colorized transitions that violate Step 2 of Algo-

rithm 4.1. 82

4.9 Automaton V after Step 3 of Algorithm 4.1. 82

4.10 Automaton RUOE, obtained in accordance with Algorithm 4.1. 83

5.1 Decentralized architecture. 86

5.2 Automaton H. 88

5.3 Automaton G. 88

5.4 Automaton G`. 94

5.5 Automaton GN . 94

5.6 Observer automata GN
1 and GN

2 . 95

5.7 Automaton Gf
` . 95

5.8 Relevant part of test automaton Gscc = GN
1 ‖GN

2 ‖Gf
` 95

5.9 Automaton Gf . 100

5.10 Automata GN,1 and GN,2. 100

5.11 Veri�er Gv. 101

5.12 Fault predictors. 106

5.13 Automaton GKtest
. 111

5.14 Automaton G of Example 1 of [85] (a) and its equivalent automaton

Geq (b). 112

5.15 Test automaton Gscc (a) and veri�er automaton Gv (b) for Example 1

of [85]. 112

ix

List of Symbols

Ac(G) Accessible part of automaton G, p. 13

CoAc(G) Coaccessible part of automaton G, p. 13

D Automaton which models changes in the order of event obser-

vations, p. 42

Dil(L) Dilation operation over languages, p. 30

G1 ×G2 Product between automata G1 and G2, p. 14

Gest,R Automaton that models the state estimation of the receiver, p.

57

Ge
est,R Automaton that models the improved state estimation of the

receiver, p. 59

Gest,int Automaton that models the state estimation of the intruder,

p. 57

Ge Automaton whose generated language corresponds to the ac-

tual sequences to be executed by the system G, p. 59

Gobs Observer automaton Obs(G,Σo), p. 14

L/s Post-language of L after a sequence s, p. 11

LPi i-th local predictor, p. 86

La Augmented language, p. 34

Lobs Language generated by the observer automaton Gobs, p. 14

Pa,b(s) Projection of sequence s ∈ Σa over Σ∗b , p. 11

P−1
a,b (s) Inverse projection of sequence s ∈ Σb over Σ∗a, p. 11

SD(k) Step delay bound set, p. 35

x

Sp Sequence permutation, p. 29

Trim(G) Trim automaton obtained from automaton G, p. 13

Xs Set of secret states with respect to automaton G, p. 16

Xs,obs Set of secret states with respect to automaton Gobs, p. 20

A(sa) Language augmentation function, p. 33

ϕd(s) Deletion function, p. 32

Gscc Test automaton, p. 91

Gv Veri�er automaton, p. 97

L(G) Language generated by automaton G, p. 12

LOEa Bounded delay augmented language that satis�es OEC1-

OEC2, p. 39

LSDa Bounded delay augmented language, p. 37

Lm(G) Language marked by automaton G, p. 12

Pa(sa) Projection of sequence sa ∈ Σa over Σ∗, p. 33

Pd(sa) Projection of sequence sa ∈ Σa over Σ∗d, p. 33

Pdil(s) Projection of sequence s ∈ Σdil over Σ∗, p. 30

Po(s) Projection of sequence s ∈ Σ over Σ∗o, p. 14

Po,i(s) Projection of sequence s ∈ Σ over Σ∗o,i, p. 87

Pr(sa) Projection of sequence sa ∈ Σa over Σ∗r, p. 33

Ψ(σ) Set composed of all sequences in L(G) whose last event is σ,

p. 20

ϕr(s) Release function, p. 32

ϕ−1
r (s) Inverse release function, p. 32

Ri(σ) Renaming function, p. 97

R−1
i Inverse renaming function, p. 97

ROE Automaton that realizes the Opacity-Enforcer, p. 51

xi

Σ Event set, p. 11

ΣD Set of observable events whose observations are allowed to be

deleted, p. 29

Σa Augmented event set, p. 32

Σd Set of deleted observations, p. 29

Σdil Set of events that can be dilated, p. 29

Σf Set of fault events, p. 21

Σ∗ Kleene-Closure of event set Σ, p. 11

Σo Set of observable events, p. 14

Σo,i Set of local observable events, p. 86

Σuo Set of unobservable events, p. 14

Xu Set of useful states, p. 62

χ(s) Rearrangement function, p. 45

pre(sa, σ
iσ) Pre�x of an augmented sequence sa ∈ Σ∗a whose last event is

the iσ-th occurrence of σ ∈ Σ, p. 36

N Non negative integers, p. 18

N (s, σ) Number of occurrences of event σ in sequence s, p. 32

Obs(G,Σa) Observer automaton of G with respect to event set Σa, p. 14

s Pre�x-closure of a sequence s, p. 11

εR(x) ε-reach, p. 14

ε Empty sequence, p. 11

cut(q) Cut function, p. 42

rep(q, i) Replacement function, p. 42

xii

List of Abbreviations

CSOE Current-state opaque enforceable, p. 30

CSO Current-state opacity, p. 16

DES Discrete-event systems, p. 1, 10

EU-CSO Ensured-utility current-state opaque, p. 70

EU Ensured-utility, p. 62

FSA Finite-state automaton, p. 10

IFO Initial-and-�nal-state opacity, p. 19

ISO Initial-state opacity, p. 17

LBO Language-based opacity, p. 15

SCC Strongly connected components, p. 22

xiii

Chapter 1

Introduction

Discrete-Event Systems (DES) are dynamic systems whose space state is a discrete

set and its evolution is ruled by the asynchronous occurrence of events over time

[1]. DES modeling formalisms have been proven to be a powerful tool to solve

several problems, such as sensor failures [2�6], state estimation [7, 8], supervisory

control [9�12] and cyber attacks [13�17], among many other topics. In order to

approach the problems that arise in the �eld of automation and control, the DES

community has been proposing and developing properties since then, for example:

fault diagnosis [18, 19] and fault prediction (also referred to as prognosis) [20, 21],

which are mostly concerned with identifying and foreseeing fault occurrences in the

system, respectively; opacity notions [22�24], which are focused in privacy problems,

where secret behaviors must be concealed from external agents; detectability [8, 25,

26], which is related to monitoring tasks, where the space states of the system

must eventually be determined; controllability [27], observability [28] and relative

observability [10, 11], which are developed in supervisory control theory [9], in the

sense that the supervisory controller must never disable uncontrollable events and

di�erent behaviors that are equally observed must have the same control decision,

respectively.

Among the problems the DES theory has been employed to solve, this work

addresses opacity enforcement and fault predictability veri�cation, and, as a con-

sequence, it focuses on the properties of opacity and fault prediction, respectively,

which will be reviewed in the two subsections as follows.

1.1 Opacity

Opacity is a property that ensures that a given secret behavior of the system is

kept hidden from external observers with malicious intentions, usually referred to

as Intruders, which are assumed to passively observe the information �ow. It has

emerged in the Discrete-Event Systems (DES) community [22] as a convenient way

1

to deal with a class of security problems.

Di�erent notions of opacity have been formulated based on how the secret behav-

ior of the system is de�ned [23, 24]. The most usual ones are: strong/weak opacity

[23], language-based opacity (LBO) [29, 30], current-state opacity (CSO) [31], initial-

state opacity (ISO) [32], K-step opacity [31], and in�nite-step opacity [33]. Another

notion is the initial-and-�nal-state opacity (IFO) [24], which generalizes both CSO

and ISO.

After these opacity notions having emerged, the �rst problem that the DES

community has been concerned with is opacity veri�cation, that is, given a system

and a secret behavior, check whether opacity holds true or not. Early results on

this topics have been presented by SABOORI and HADJICOSTIS [32, 33, 34, 35]

and DUBREIL et al. [36]. These works di�er from each other with respect to the

opacity notion which is being considered, the strategy used to verify the considered

notion, and also the computational cost to achieve the proposed veri�cation. Notice

however that the DES community still researches new strategies, for example: YIN

and LAFORTUNE [37] improve both in�nite-step and K-step opacity veri�cation

by using two-way observers, and; MA et al. [38] introduce the notion of strong

in�nite-step opacity and use state recognizers to verify this property and also strong

K-step opacity, earlier proposed by FALCONE and MARCHAND [39].

Opacity has also been studied in other DES formalisms such as, timed systems

[40, 41], stochastic automata [42�45], transition systems [46, 47], modular systems

[48], networked DES [49], fuzzy DES [50], Petri-nets [51, 52] and linear time-invariant

systems [53, 54]. Readers are referred to [55] and [56] for a more detailed overview

on opacity topics.

Since not every system is inherently opaque, it is necessary to develop mecha-

nisms to make the system opaque in accordance with some opacity notion of interest.

In this regard, two major methods have been explored in the literature, which work

as follows: (i) either they restrict the system so as its secret behavior is never in-

ferred, (ii) or they modify the observation of the system for external agents.

The �rst mechanism for opacity enforcement is typically approached with the

help of supervisory control theory (SCT), which is used to restrict the behavior of

the system so as its secrets are not leaked, being, therefore, a conservative approach.

In this regard, SABOORI and HADJICOSTIS [57], by using an Initial State Esti-

mator (ISE), propose a supervisor that limits the system within a pre-speci�ed legal

behavior while enforcing ISO and disabling the least possible number of controllable

events. SABOORI and HADJICOSTIS [58] improve the results of SABOORI and

HADJICOSTIS [57] and extend them to in�nite-step opacity. DUBREIL et al. [30]

provide a reduction of LBO enforcement through SCT of partially observed DES

to the same problem under full observation and then present a solution for the

2

computation of a supremal controller that enforces LBO. YIN and LAFORTUNE

[59] investigate CSO enforcement and propose the so-called All Enforcement Struc-

ture (AES), obtained by means of a game structure between the supervisor and the

system, and thus, it embeds all valid supervisors, which allows the synthesis of a lo-

cally maximal supervisor that enforces CSO. TONG et al. [60] also investigates CSO

enforcement by means of SCT for partially DES, but under incomparable observa-

tions, which means that no relation between the observation of the Intruder and the

Supervisor can be established. The scenario where the Intruder may disclose the

control policy and allow itself to recover the control decision made by the supervisor

(and thus being able to obtain a better state-estimate of the system), is addressed

by XIE et al. [61], who propose a non-deterministic supervisor that provides a set of

control decisions at each time instant, where the speci�c control decision is chosen

randomly.

Before presenting opacity enforcement strategies through modi�cations in the

observation of the system, it is worth highlighting that BRYANS et al. [46] introduce

three di�erent models for the observation of a system: (i) static observation, where

the event signals generated by the system that are observable by external agents

are �xed; (ii) dynamic observation, where the observability of these event signals

depends on prede�ned rules, for example, the already observed behavior, and; (iii)

Orwellian observation, where the observability of event signals depends not only on

the past behavior, but also on the future one.

With respect to static observation models for opacity enforcement, CASSEZ et al.

[62] propose a static mask, which computes a maximum subset of the observable

events (sensor selection) that makes the system opaque. FALCONE and MARC-

HAND [39] propose a strategy to enforce K-step opacity, where, depending on the al-

ready observed behavior, it may hold the incoming event signals for an exact amount

of steps such that the system becomes opaque. Recently, DULCE-GALINDO et al.

[63] extend the standard de�nitions of ISO and IFO to weak versions, and then,

propose an opacity enforcement by means of synchronizing automata. BARCELOS

and BASILIO [64] propose a CSO enforcement strategy that shu�es the order of

event observations with a view for the secret behavior of the system to becoming

indistinguishable from the non-secret one.

A di�erent strategy for opacity enforcement is the insertion function, which has

been proposed by WU and LAFORTUNE [65] to address CSO enforcement. The

idea behind insertion functions is to allow the system to run freely, but misleading

the Intruder to never infer that the secret behavior has occurred by inserting �cti-

tious event signals in the output of the system. The procedure to obtain insertion

functions has been improved by WU and LAFORTUNE [66], which also approach

the problem of quantifying the insertion of events and provides the synthesis of the

3

optimal insertion function. JI et al. [67] refer to the insertion function strategy

deployed in [65, 66] as private, since the Intruder is unaware of it, and then they ad-

dress the scenario where the Intruder may also know or discover the structure of the

insertion function, therefore providing a strategy that enforces opacity even when it

is publicly known, the so-called public-and-private opacity enforcement. In contrast

with the previous works concerning insertion functions, KEROGLOU and LAFOR-

TUNE [68] propose a new insertion function which is embedded into the system

and acts based on the real location of the system, being a more powerful strategy

than the previously related ones. JI et al. [69] address the problem of enforcing CSO

through insert functions into a system with energy level that can be consumed or in-

creased depending on the event occurrences and insertions. KEROGLOU et al. [70]

propose CSO enforcement through insertion functions enhanced with �nite memory,

where instead of immediately releasing the modi�ed behavior, it stores a prede�ned

number of consecutive events to only then output a modi�ed information.

Later, the insertion function has been extended to edit functions by WU et al.

[71], which allows not only the insertion of event observations but also its deletion.

In the sequel, JI and LAFORTUNE [72] improve the edit function so as to enforce

opacity even when the strategy is publicly known. JI et al. [73] improve the strate-

gies proposed in [67, 72] by considering opacity enforcement using nondeterministic

public known edit functions. WINTENBERG et al. [74] investigate K-step opacity

enforcement through edit functions. Recently, LI et al. [75] also extend the insertion

function, but, di�erently from edit functions, the extended insertion function allows

�ctitious event signals to be inserted not only before genuine event occurrences but

also after them.

With respect to opacity enforcement strategies with dynamic observation models,

CASSEZ et al. [62] extend the notion of CSO to dynamic observation and investigate

the problem of synthesizing a dynamic mask that makes the system opaque, since

it selects if an event is observable based on the previous behavior of the system.

ZHANG et al. [76] propose a controller that makes some events unobservable to

ensure weak/strong opacity, where the observation deletions are as least as possible

in order to release the maximum information. BEHINAEIN et al. [77] improve the

results obtained by ZHANG et al. [76] and also investigate the problem of making

the estimation of some states opaque and, at the same time, the estimation of other

states non-opaque. YIN and LI [78] address the dynamic masks synthesis problem

for in�nite-step opacity.

Finally, as far as the author of this work knows, opacity under Orwellian ob-

servation has only been investigated by HOU et al. [79], where a strategy for the

veri�cation of CSO is proposed.

4

Contribution of this work on opacity enforcement

We consider in this work the problem of CSO enforcement, where a system is said to

be current-state opaque if the Intruder is unable to ascertain if the current state of

the system is a secret one or not. In this regard, in order to deal with systems which

are not inherently current-state opaque, the enforcement strategy we propose here is

based on shu�ing the order of observations of the events that have occurred in the

system, and also observation deletions. The idea behind this strategy is to mislead

the Intruder to never be certain that the system is currently in a secret state by

making the Intruder always believes that the system is in a non-secret state. This

strategy is implemented by means of the so called Opacity-Enforcer, which is placed

between the plant and the legitimate receiver, before the point where information is

likely to leak, i.e., be observed by the Intruder.

The Opacity-Enforcer works as follows [80]: when it receives a signal associated

with an event occurrence, it chooses, based on preset rules, either to release it, re-

lease another stored signal, or hold all signals until the arrival of other events, with a

view to changing the order of the observation of the events. The Opacity-Enforcer is

also allowed to delete the observation of some held event, which is performed in order

for the sequence of released signals to be consistent with the behavior of the system.

The events released by the Opacity-Enforcer are transmitted to a legitimate receiver

through a network, which is assumed to be susceptible to leak information to Intrud-

ers. The Opacity-Enforcer proposed here is obtained by adapting the automaton

developed by NUNES et al. [6] and combining it with the system automaton, in order

for the shu�ed sequences to remain within the language generated by the system,

and with the automaton that models the allowed observation by the intruder. In

addition, in order to deal with observation deletion, the dilation operation proposed

by CARVALHO et al. [3] is used.

Since opacity enforcement strategy presented in this work is likely to also mislead

the state estimation of legitimate receivers, we present a protocol that is capable of

mitigating this negative e�ect on the capability of the legitimate receiver to accu-

rately estimate the current state of the system. This protocol leverages the legitimate

receiver's knowledge on the actions to be taken by the Opacity-Enforcer in order to

re�ne the estimation of the current state of the system.

We also address the main criticism of opacity enforcement strategies existing in

the literature, namely that in order to obfuscate the secret behavior of the system

from intruders, some transmitted information is also concealed from the legitimate

receiver. In this regard, we introduce a notion of (state-based) utility of the system

to refer to some crucial behavior that must always be available to the legitimate

receiver, even when opacity is being enforced.

5

It is worth remarking that the notion of utility within opacity enforcement strate-

gies has been presented �rstly in [71], where the authors synthesize obfuscation

policies through edit functions that ensure privacy and utility at the same time.

However, in their approach, the authors de�ne a value for each pair composed of

the current state of the plant and the state estimated by external observers, and

then, they impose that the utility of the system is preserved when these values never

exceed a prede�ned maximum value. Di�erently from the strategy proposed in [71],

in this work, the utility of the system is based on the visit of the so-called useful

states, and, in addition, we require that the event observations outputted by the

Opacity-Enforcer are such that, when some useful state is reached, it must be esti-

mated before a new state is reached, and also that whenever the receiver estimates

an useful state, the plant is currently in that state.

1.2 Fault prediction

Predictability, also referred to as prognosis, is a DES property whose widely adopted

de�nition has been presented in GENC and LAFORTUNE [20]. The predictability

aims to foresee an event occurrence in a system before its actual occurrence. It

di�ers from diagnosability in the sense that, whereas diagnosability ensures that the

occurrence of an unobservable event (usually referred to as fault) is always detected

within a �nite number of event observations after its occurrence, predictability means

that we can always ascertain that such an event will inevitably occur prior to its

actual occurrence.

The notion of predictability was introduced by JIANG and KUMAR [21] as

pre-diagnosability, and was based on state-traces. The widely adopted de�nition

of predictability was introduced later on by GENC and LAFORTUNE [20], and is

related to the possibility of being sure about future occurrences of the fault event

based on the observation of sequences that do not contain the fault event, i.e., before

its actual occurrence. Di�erently from JIANG and KUMAR [21], predictability is

de�ned in GENC and LAFORTUNE [20] based on event sequences.

After the aforementioned works, fault prectability has become a research topic

of wide interest in the discrete-event community. TAKAI [81] considers predictabil-

ity in the presence of deadlocks, and introduces the notion of robust predictability,

where a single predictor which is able to foresee the fault occurrence for all possible

models of observations is synthesized. More recently, BARCELOS et al. [82] discus

the problem of predictability veri�cation of discrete-event systems (DES) modeled

by �nite state automata in less restrictive scenarios, where the assumptions regard-

ing language liveness and absence of cycles of states connected by unobservable

events only are both dropped. XIAO and LIU [83] have approached the problem

6

of robust fault predictability against intermittent/permanent losses of observations.

WATANABE et al. [84] propose a veri�cation strategy for safe fault diagnosability

and predictability, which, in the case of predictability, requires that every fault is

predictable and a prede�ned illegal behavior is inhibited from occurring by disabling

some controllable event after the fault prediction.

As in fault diagnosis, predictability has also been addressed in decentralized ar-

chitectures, where local agents work in a cooperative way to predict fault occurrences

[85�89]. In KUMAR and TAKAI [85], predictability is approached in a decentralized

architecture and the de�nition proposed by GENC and LAFORTUNE [20] is referred

to as �uniformly bounded prognosability�, and later on, they introduce an weaker

version of coprognosability. KUMAR and TAKAI [85] also propose the notion of

reaction bound, which calculates the largest number of steps after the prognostic

decision in which the fault may occur, and propose a copredictability veri�cation

test for regular languages that is based on veri�ers and and on the so-called indica-

tor strings. TAKAI and KUMAR [86] consider a distributed architecture assuming

that the communication between the system and predictors are limited and subject

to delay. In KHOUMSI and CHAKIB [87], the decentralized architecture presented

in KUMAR and TAKAI [85] is referred to as disjunctive fault predictability, i.e.,

the predictor system is sure that the fault will occur if, at least, one of the local

predictors is sure. Then, the authors propose a conjunctive and a mixed architecture

that embeds both the disjunctive and conjunctive features. In YIN and LI [88], it

is evaluated how soon the fault can be predicted and, at the same time, it ensures

that the fault will occur in a bounded time after its prediction. YIN and LI [89]

address the loss of local predictability decisions in the communication between the

local predictors and coordinator.

Recently, YIN and LI [90] propose two new decentralized protocols for fault pre-

dictability veri�cation, namely, the positive state-estimate (PSE) based protocol,

where each local agent sends a state estimation, which is believed that a fault will

certainly occur in the future, and the negative state-estimate (NSE) based proto-

col, where the local agents provide estate-estimations which they believe that the

fault alarm should not be issued; notice that, in both cases, the verdict of the fault

occurrence is given by a coordinator that takes into account the decisions of the

local agents. ZHOU et al. [91] address the problem, in a decentralized architec-

ture, where any fault should be predicted K steps before its occurrence, and, once

the fault alarm is issued, the fault must de�nitely occur within M steps, and in-

troduce three notions of predictability ((M , K)-disjunctive-coprognosability, (M ,

K)-conjunctive-coprognosability and (M , K)-strongly-coprognosability) and estab-

lish algebraic structures to verify these notions.

It is worth noting that predictability has also been addressed in stochastic DES

7

[92�94], Petri-nets [95�98] and timed systems [99]. We refer the readers to WATAN-

ABE et al. [100] for an overview on fault prediction of DES.

Contribution of this work on fault predictability

This work addresses the problem of disjunctive predictability veri�cation and online

fault prediction of DES in less restrictive scenarios [101], i.e., without making the

usual assumptions of language liveness and absence of cycles of states connected

by unobservable events. To this end, we adapt the test automaton and the veri-

�er, proposed in VIANA and BASILIO [102] and VIANA et al. [103], respectively,

which are used to verify codiagnosability, in order to develop two new strategies

to verify disjunctive predictability, as follows: (i) the �rst one, based on the test

automaton[102], and; (ii) the second one, obtained by using veri�ers [104, 105].

Since the aforementioned methods embrace more general DES classes, the results

presented here supersede those presented in GENC and LAFORTUNE [20]. The

choice for a diagnoser-based strategy is backed up by [106], where it is claimed

that, based on a rigorous statistical analysis, the size of the states of diagnosers

and veri�ers are, respectively, Θ(n0.77 log k+0.63) and Θ(n2), on the average, where

k (resp. n) is the number of events (resp. states) of the plant automaton. This

means that, for systems with 60 events or less, the number of states of diagnosers

is likely to be smaller than that of the corresponding veri�er. Therefore, it is worth

developing veri�cation algorithms based not only on veri�ers but also on diagnoser-

based automata.

Another contribution of this work is the development of a strategy to design

local fault predictor systems, to be used in online fault prediction. As opposed to

the online fault prediction approached in KUMAR and TAKAI [85] and GENC and

LAFORTUNE [20], our method is neither based on indicator-string nor on indicator-

states but on �nding the smallest sequences that allow the local fault predictors to

foresee the fault occurrences. Leveraging the knowledge on these sequences, we

address the problem of �nding the minimum number of (either observable or unob-

servable) event occurrences after the fault is predicted by some local fault predictor

and prior to the actual fault occurrence, and formulate the K-copredictability prob-

lem, i.e., if the fault can be predicted at least K event occurrences prior to its actual

occurrence.

1.3 Thesis structure

We have structured this work as follows. In Chapter 2, we present a brief review

on DES, which includes basic concepts and the properties we discuss in the further

8

chapters. In Chapter 3, we address the problem of current-state opacity enforce-

ment, where we manipulate the state estimation of the Intruder by shu�ing event

observations and also deleting some of these event observations when strictly neces-

sary. Still in Chapter 3, we show that, by allowing the legitimate receiver to know

the operations that are being performed to make the system opaque, it is possible

to mitigate the damage caused to the state estimation of the legitimate receiver. In

Chapter 4, with a view to approaching the main criticism of opacity enforcement

strategies, we introduce the notion of utility, which is a behavior of the system that

the legitimate receiver must unambiguously infer from the system. In this regard,

we improve the strategy presented in Chapter 3 so as the Opacity-Enforcer has now

the task of concealing the secret behavior of the system from intruders and, at the

same time, ensure that the useful behavior of the system is available to the legiti-

mate receiver. In Chapter 5, we approach the problem of disjunctive predictability

veri�cation and online fault prediction of DES in less restrictive scenarios, where we

develop two algorithms to solve disjunctive predictability veri�cation and another

one to perform the online fault prediction. In addition, we also introduce the notion

of K-copredictability and propose an algorithm for its veri�cation. Finally, the con-

tributions we have made in this work with respect to opacity enforcement, utility

ensuring and fault copredictability are presented not only at the end of Chapters 3,

4 and 5, respectively, but also summarized in Chapter 6, where we also present

possible extensions of the topics developed in this work.

9

Chapter 2

Theoretical background

This chapter is intended to review some of the basic concepts to be used in this work,

mostly concerning �nite-state automaton (FSA), its operations and properties. To

this end, we have structured this chapter as follows. In Section 2.1, we present a

brief review on discrete-event systems theory, and; in Section 2.2, we present a few

properties of DESs.

2.1 Discrete-event systems theory

In contrast to the continuous variable systems, which are characterized by

continuous-states and time-driven transitions, discrete-event systems (DES) are

characterized by having as state space a discrete set, and the transitions between

states driven by the occurrence of events [1]. These events, for example, denote

speci�c actions that the system may take or are associated with occurrences of

spontaneous nature. The occurrence of events, generally, causes the system state

to change, and are assumed to be instantaneous. Events are typically denoted by

lowercase letters. For example, the symbols �a�, �b�, �σ�, �µ� often denote events.

We de�ne a discrete-event system as follows.

De�nition 2.1 (Discrete-event system) A Discrete-event system (DES) is a

discrete-state event-driven system, that is, its state space is formed with a discrete set

and its state evolution depends entirely on the occurrence of asynchronous discrete

events over time. 2

The collection of events is called the set of events (also referred to as �alphabet�),

that is �nite and is denoted as Σ, e.g., Σ = {a, b, c}. Since the occurrence of

successive events, which may or may not be di�erent, composes the behavior of

a DES, we de�ne �sequence� of events as the concatenation of events (also called

�word�, �string� or �trace� in the literature) and is denoted as s. For example,

10

s1 = abc, s2 = ca are possible sequences formed with the events of Σ = {a, b, c}.
The �length of a sequence� is the number of events that form it, denoted as ‖s‖, e.g.,
‖s1‖ = 3 and ‖s2‖ = 2. In addition, |A| denotes the cardinality of the set A, which is
the number of elements that form set A. The �empty trace�, which is denoted by ε, is

the sequence with no events, and thus, its length is zero, i.e., ‖ε‖ = 0. Transitions

that are labeled with event ε are referred to as �silent transitions�. Finally, the

behavior of a DES can be modeled by using �languages�, which is a set formed with

�nite-length (bounded) sequences and whose formal de�nition is as follows.

De�nition 2.2 A language L de�ned over an event set Σ is a set of �nite-length

sequences formed with events σ ∈ Σ, including the empty trace ε. 2

The Kleene-Closure of an event set Σ is denoted by Σ∗ and is a language com-

posed of all possible sequences with �nite length formed with the events of Σ, in-

cluding ε. It can be de�ned as Σ∗ = {ε} ∪ Σ ∪ ΣΣ ∪ Note that Σ∗ is discrete

but in�nitely countable.

Before moving on to the operations that can be performed with sequences, we

must �rst clarify some terminologies. Let s = tuv, where s, t, u, v ∈ Σ∗. We call t a

pre�x of s, u a substring of s and v a su�x of s.

We now present some useful operations on sequences used throughout the text:

• Pre�x-closure of a sequence s, de�ned as s = {u ∈ Σ∗ : (∃v ∈ Σ∗)[uv = s]}.

• Natural projection [9], or simply projection, of a larger event set Σa over a

smaller event set Σb, i.e., Σb ⊆ Σa, is de�ned as Pa,b : Σ∗a → Σ∗b , where

Pa,b(ε) = ε, Pa,b(σ) = σ if σ ∈ Σb, Pa,b(σ) = ε if σ ∈ Σa \ Σb and Pa,b(sσ) =

Pa,b(s)Pa,b(σ), where s ∈ Σ∗a, σ ∈ Σa.

• Inverse projection, de�ned as P−1
a,b : Σ∗b → 2Σ∗a , where P−1

a,b (t) = {s ∈ Σ∗a :

Pa,b(s) = t} and Σb ⊆ Σa.

The pre�x-closure, projection and inverse projection can be extended over a

language L by applying them to each sequence of L. Another useful operation on

languages used throughout the text is the post-language.

• Post-language of L after a sequence s is de�ned as L/s = {t ∈ Σ∗ : st ∈ L}.
Notice that, by de�nition, if s /∈ L, then L/s = ∅.

The formalism used here to model DES is the so-called (deterministic) �nite

state automaton, which is de�ned as follows.

11

x yσ1

σ2

Figure 2.1: State transition diagram.

De�nition 2.3 (Automaton [1]) An automaton, denoted by G, is a six-tuple G =

(X,Σ, f,Γ, x0, Xm), where X is the �nite set of states, Σ is the �nite set of events,

f : X×Σ→ X is the partial state transition function, Γ : X → 2Σ is the active event

set function, being de�ned as Γ(x) = {σ ∈ Σ : f(x, σ)!}, where f(x, σ)! denotes that

f(x, σ) is de�ned, i.e., ∃y ∈ X such that f(x, σ) = y, x0 ∈ X is the initial state and

Xm ⊆ X is the set of marked states. 2

It is worth remarking that, whenever there are no marked states (Xm = ∅), the
automaton can be represented as the �ve-tuple G = (X,Σ, f,Γ, x0). In order to

formally de�ne the languages generated and marked by an automaton, let us extend

the transition function to f : X × Σ∗ → X by the following recursion: f(x, ε) = x;

f(x, σs) = f
(
f(x, σ), s

)
; σ ∈ Σ, s ∈ Σ∗.

Automata are typically represented by directed graphs, also known as state

transition diagrams, whose nodes and labeled arcs represent states and the tran-

sitions between them, respectively. In addition, marked states are represented by

double circles whereas the initial state is represented by a circle with a single ar-

row pointing into it. Figure 2.1 shows the state transition diagram of automaton

G = (X,Σ, f,Γ, x0, Xm), whereX = {x, y}, Σ = {σ1, σ2}, f(x, σ1) = y, f(y, σ2) = y,

Γ(x) = {σ1}, Γ(y),= {σ2}, x0 = x and Xm = {y}.

De�nition 2.4 (Generated and marked languages) The language generated

by G is de�ned as L(G) = {s ∈ Σ∗ : f(x0, s)!}, and the marked language of G

is de�ned as Lm(G) = {s ∈ Σ∗ : f(x0, s) ∈ Xm}. 2

It is worth highlighting that the generated and marked languages are denoted as

L and Lm, respectively, where the context allows.

Notice that languages formed with �nite length sequences can be represented as

automata. In this regard, we present the following de�nition.

De�nition 2.5 (Regular Languages) A language L is said to be regular if it can

be marked by a �nite-state automaton.

Therefore, the automaton formalism is a practical tool for manipulating regular

languages. On the other hand, languages that either have in�nite length or are

12

formed with in�nite length sequences are called �non-regular � languages, and would

require in�nite states to be represented by automaton formalism.

We will now recall the main operations with automata. We start with the unary

operations accessible part, coaccessible part and trim.

The accessible part removes all states that cannot be reached from the initial

state and their associated transitions, being de�ned as:

Ac(G) = (XAc,Σ, fAc,ΓAc, x0, Xm,Ac),

where XAc = {x ∈ X : (∃s ∈ Σ∗)[f(x0, s) = x]}, fAc : XAc × Σ → XAc where

fAc(x, σ) = f(x, σ) if f(x, σ) ∈ XAc, or unde�ned, otherwise, andXm,Ac = Xm∩XAc.

States that have been removed when taking the accessible part of an automaton are

called �not accessible�.

The coaccessible part removes all states from which no marked state can be

reached and their associated transitions, being de�ned as:

CoAc(G) = (XCoAc,Σ, fCoAc,ΓCoAc, x0,CoAc, Xm),

where XCoAc = {x ∈ X : (∃s, y ∈ Σ∗ × Xm)[f(x, s) = y]}, fCoAc : XCoAc × Σ →
XCoAc where fCoAc(x, σ) = f(x, σ) if f(x, σ) ∈ XCoAc or unde�ned, otherwise, and

x0,CoAc = x0 if x0 ∈ XCoAc or empty, otherwise. States that have been removed when

the coaccessible part of an automaton is calculated are called �not coaccessible�.

The Trim operation results in an automaton that is both accessible and coacces-

sible, i.e.,

Trim(G) = CoAc(Ac(G)) = Ac(CoAc(G)).

As a consequence, the states of automaton Trim(G) are such that they are reached

by an initial state and can also reach some marked state.

Following the unary operations, we now present the composition operations of

automata, namely the parallel composition and the product composition.

The parallel composition of two automata results in a new one that synchronizes

their common behavior and allows their individual behaviors to happen without

constraints, being formally de�ned as:

G1||G2 = Ac(X1 ×X2,Σ1 ∪ Σ2, f1||2,Γ1||2, x0,1 × x0,2, Xm,1 ×Xm,2),

where f1||2((x1, x2), σ) = (f1(x1, σ), x2), if σ ∈ Γ1(x1) \ Σ2, f1||2((x1, x2), σ) =

(x1, f2(x2, σ)), if σ ∈ Γ2(x2) \ Σ1, f1||2((x1, x2), σ) = (f1(x1, σ), f2(x2, σ)) if σ ∈
Γ1(x1) ∩ Γ2(x2), or unde�ned, otherwise.

On the other hand, the product of two automata results in a new one that models

13

their synchronized behavior, being formally de�ned as:

G1 ×G2 = Ac(X1 ×X2,Σ1 ∪ Σ2, f1×2,Γ1×2, x0,1 × x0,2, Xm,1 ×Xm,2),

where f1×2((x1, x2), σ) = (f1(x1, σ), f2(x2, σ)) if σ ∈ Γ1(x1) ∩ Γ2(x2), or unde�ned,

otherwise.

Finally, an automaton Gnd = (X,Σnd, fnd,Γ, X0, Xm) is said to be nondetermin-

istic if at least one of the following conditions holds true: (i) automaton Gnd has

more than one initial state, i.e., |X0| > 1; (ii) there exist silent transitions de�ned

in Gnd, i.e., ∃y ∈ X such that fnd(x, ε) = y, or; (iii) the transition function is non-

deterministic, i.e., |fnd(x, σ)| > 1, where (x, σ) ∈ X × Σ. Notice that, in order for

conditions (ii) and (iii) to be satis�ed, Σnd may include event ε, i.e., Σnd = Σ∪{ε},
and fnd : X × Σ→ 2X .

The observer automaton associated with a nondeterministic automaton Gnd is a

language-equivalent deterministic automaton Obs(Gnd), for which L(Obs(Gnd)) =

PΣnd,Σ(L(Gnd)) = L(Gnd). In order to build the observer, let us present the ε-reach

of a state x ∈ X, εR(x), which is the set composed of all states that can be reached

from x by following transitions labeled with ε; by convention, x ∈ εR(x). It can

be extended over a state set Y ∈ 2X as follows: εR(Y) =
⋃
x∈Y εR(x). Then, the

observer of a nondeterministic automaton Gnd is de�ned as:

Obs(Gnd) = (Xobs,Σ, fobs,Γobs, x0,obs, Xm,obs),

where Xobs ⊆ 2X , fobs(xobs, σ) = εR({x′ ∈ X : (∃x ∈ xobs)[x
′ ∈ fnd(x, σ)]}),

Γobs(xobs) =
⋃
x∈xobs Γ(x), x0,obs = εR(X0), and Xm,obs = {xobs ∈ Xobs : xobs ∩Xm 6=

∅}.
The observer automaton can be extended to partially-observed DES modeled

by deterministic automata, which have �unobservable transitions� instead of silent

transitions. In this case, the observer automaton associated with a deterministic

automaton G and an event set Σ′ ⊆ Σ is denoted as Obs(G,Σ′). In order to compute

the observer of a partially-observed automaton, we replace all transitions labeled by

�unobservable events� σ ∈ Σ \ Σ′ with silent transitions (which makes automaton

G nondeterministic), and then, we proceed with the aforementioned procedure to

obtain Obs(G,Σ′). Notice that, the generated and marked languages by Obs(G,Σ′)

are L(Obs(G,Σ′)) = PΣ,Σ′(L(G)) and Lm(Obs(G,Σ′)) = PΣ,Σ′(Lm(G)), respectively,

where PΣ,Σ′ : Σ∗ → Σ′∗.

Let us assume that the event set Σ is partitioned into Σ = Σo∪̇Σuo, where Σo

and Σuo are the sets of observable and unobservable events, respectively. In this

case, we de�ne the projection Po : Σ∗ → Σ∗o, and denote Gobs = Obs(Gnd,Σo),

Lobs = L(Gobs) = Po(L) and Lm,obs = Lm(Gobs) = Po(Lm), where the context allows.

14

2.2 Opacity and predictability of DES

In the following subsections, we present two properties of interest in this work:

opacity and predictability.

2.2.1 Opacity

Opacity is a property which ensures that a given secret behavior of the system is

kept hidden from external observers with malicious intentions, usually referred to

as intruders, which are assumed to passively observe the information �ow.

In this subsection, we present the usual notions of opacity that have been ap-

proached with automata formalisms in the literature. These notions are typically

divided into language-based opacity and state-based opacity.

We start with the notion of language-based opacity (LBO), �rst presented by

BADOUEL et al. [29], and formally de�ned by DUBREIL et al. [30]. In words,

language-based opacity states that �given a secret language Ls ⊆ L and a set of

observable events Σo, then every secret sequence in the secret language s ∈ Ls must
have the same observation as some non-secret sequence t ∈ L \ Ls�. Formally,

language-based opacity is de�ned as follows.

De�nition 2.6 (Language-Based Opacity) Given a DES modeled by G =

(X,Σ, f,Γ, x0), projection Po : Σ∗ → Σ∗o, and a secret language Ls ⊆ L, we say

that G is language-based opaque with respect to Σo and Ls if ∀s ∈ Ls, there exists

t ∈ L \ Ls such that Po(s) = Po(t), i.e., Po(Ls) ⊆ Po(L \ Ls). 2

Example 2.1 Let us consider a system modeled by an automaton G, whose gen-

erated language is L = (abc+ cab), where Σo = {a, b} and Σuo = {c}. As-

sume now that the secret language is Ls = {abc}. As a consequence, L \ Ls =

{ε, a, ab, c, ca, cab}, which implies that G is language-based opaque, since cab ∈ L\Ls
and Po(abc) = Po(cab) = ab. 2

Alternatively, LIN [23] de�nes LBO between two sublanguages of the system and

introduces the notions of strong and weak opacities, depending on how much the

intruder is able to infer from the secret behavior of the system, as follows.

De�nition 2.7 (Strong and Weak Opacities) Given a system modeled by G =

(X,Σ, f,Γ, x0), whose generated language is L, a general mapping Θ : Σ∗a → Σ∗b ,

where Σa,Σb ⊆ Σ, and two languages L1, L2 ⊆ L, then:

• L1 is strongly opaque with respect to L2 and Θ if Θ(L1) ⊆ Θ(L2);

• L1 is weakly opaque with respect to L2 and Θ if Θ(L1) ∩Θ(L2) 6= ∅. 2

15

It is not di�cult to see from De�nition 2.7 that, whenever L1 6= ∅ and L2 6= ∅,
strong opacity implies weak opacity, but not conversely. We illustrate the de�nitions

of strong and weak opacities with the following example.

Example 2.2 Let L = (abc+ cab) and consider the following sublanguages of L:

L1 = {abc}, L2 = {a, ab, abc}, L3 = {cab}. In addition, let Σ = {a, b, c}, Σo =

{a, b}, Σuo = {c}, and Θ = Po : Σ∗ → Σ∗o. Notice that Po(L1) = {ab}, Po(L2) =

{a, ab}, and Po(L3) = {ab}. Thus, we can say that L1 is strongly opaque with respect

to L3 and Θ = Po, since Po(L1) ⊆ Po(L3), and that L2 is weakly opaque with respect

to L3 and Θ = Po, since Po(L2)∩Po(L3) = {ab} 6= ∅. Note, however, that L2 is not

strongly opaque with respect to L3 and Θ = Po, since a /∈ Po(L3). 2

It is worth recalling that LIN [23] de�nes opacity as a general property between

languages with a view to showing that other properties � anonymity, secrecy, ob-

servability, diagnosability and detectability � could be seen as special cases of opac-

ity upon properly de�ning languages L1 and L2. As a consequence, De�nition 2.7

does not require a secret behavior and the presence of some intruder.

Notice that, when comparing De�nitions 2.7 and 2.6, it is not di�cult to see that

language-based opacity is equivalent to strong opacity for the particular case where

L1 = Ls, L2 = L \ Ls and Θ = Po.

We will now consider the notions of state-based opacity. We start with the de�-

nition of current-state opacity (CSO), which has �rst been introduced by BRYANS

et al. [22] in the context of Petri Nets and has been presented as a property of �nite-

state automata by SABOORI and HADJICOSTIS [31]. Broadly speaking, a system

is current-state opaque when �the intruder never knows if the system is actually in

a secret state or not�. We recall the formal de�nition of CSO provided by WU and

LAFORTUNE [24], where the automaton G may have more than one initial state,

therefore x0 is replaced with X0 ∈ 2X and automaton G is nondeterministic.

De�nition 2.8 (Current State Opacity) Given a system modeled by G =

(X,Σ, f,Γ, X0), projection Po : Σ∗ → Σ∗o and a set of secret states Xs, then sys-

tem G is current state opaque if ∀x0 ∈ X0 and ∀s ∈ L satisfying f(x0, s) ∈ Xs,

∃x̃0 ∈ X0 and ∃s̃ ∈ L such that f(x̃0, s̃) ∈ X \Xs and Po(s) = Po(s̃). 2

Example 2.3 Let G be the automaton represented in Figure 2.2, Σ = {a, b, c},
Σo = {a, b}, Σuo = {c} and Xs = {3}. We can say that G is current-state opaque

because sequence �acb�, which reaches secret state 3, has the same projection as

sequence �cab�, that reaches state 7, i.e.,f(0, acb) = 3 = Xs, f(0, cab) = 7 ∈ X \Xs

and Po(acb) = Po(cab) = ab. Note that, if we set Σo = {a, c}, Σuo = {b} and

Xs = {4}, the system is no longer current-state opaque, since there does not exist a

sequence t ∈ L : f(x0, t) ∈ X \Xs, whose projection is Po(t) = Po(acba) = aca. 2

16

a
bc

a
c

b

0

1 2 3

5 6 7 b

4

8

a

a

a

Figure 2.2: System related to Examples 2.3, 2.5 and 2.6.

0 1

2 3

a

b

cc
a

b

Figure 2.3: System related to Example 2.4, taken from [32].

We present now the notion of initial-state opacity, that was initially proposed

in the context of Petri nets by BRYANS et al. [22] and brought to the �nite-state

automaton formalism by SABOORI and HADJICOSTIS [32]. A system is initial-

state opaque when �the intruder is never sure whether the initial state of the system

was a secret state or not�, being formally de�ned as follows.

De�nition 2.9 (Initial-State Opacity) Given a system modeled by G =

(X,Σ, f,Γ, X0), projection Po : Σ∗ → Σ∗o, and a set of secret initial states X0,s ⊆ X0,

G is initial-state opaque with respect to Σo and X0,s if ∀x0 ∈ X0,s and for all s ∈ L,
f(x0, s)!, there exists y0 ∈ X0 \X0,s and t ∈ L, f(y0, t)! such that Po(s) = Po(t). 2

Example 2.4 Let G be the automaton represented in Figure 2.3, taken from SA-

BOORI and HADJICOSTIS [32], where Σ = {a, b, c}, Σo = {a, b}, Σuo = {c},
X0 = X and X0,s = {2}. In this example, the intruder wants to discover if, among

all the possible initial states, the system has started from a secret state. Indeed the

system modeled by automaton G is initial-state opaque, since for every sequence s

starting from state 2, there exists another sequence t = cs starting from state 0 with

the same observation, i.e., Po(s) = Po(t). On the other hand, if the set of secret

initial states is X0,s = {0}, then the system is no longer initial-state opaque, since

when the sequence �aa� is observed, the intruder will track down the initial state 0.

2

The next notion we recall here is K-step opacity, proposed by SABOORI and

HADJICOSTIS [31]. It is a more general property that embeds the secrecy of states

17

{0, 5} {1, 2, 6} {3, 7} {4, 8}

{8}

{4}
aba

a
a

b
b

Figure 2.4: Observer of the automaton depicted in Figure 2.2.

from the last K steps executed by the system until the current moment. In words,

when �the intruder is never sure that the system is in a secret state or has visited one

in the last K steps�, the system is said to be K-step opaque. Its formal de�nition

is as follows.

De�nition 2.10 (K-Step Opacity) Given a system modeled by G = (X,Σ, f,Γ,

x0), projection Po : Σ∗ → Σ∗o, a set of secret states Xs ⊆ X, and an integer K ≥ 0 ∈
N, we say that G is K-step opaque with respect to Σo, Xs and K if for all s ∈ L,
and for all s′ ∈ s satisfying |Po(s)| − |Po(s′)| ≤ K and f(x0, s

′) ∈ Xs, there exists

t ∈ L and t′ ∈ t such that f(x0, t
′) ∈ X \Xs, Po(s) = Po(t) and Po(s

′) = Po(t
′). 2

Example 2.5 Assume that G is the automaton represented in Figure 2.2, and let

Σ = {a, b, c}, Σo = {a, b}, Σuo = {c} and Xs = {3}. Then, we can say that G

is 1-step opaque but not 2. In order to show that fact, let us consider the observer

automaton Obs(G,Σo) depicted in Figure 2.4. Note that, when the intruder observes

sequence �ab�, it estimates states {3, 7}. Then, the only possible next observable

sequence is �aba�, and now the intruder knows that the system is currently in {4, 8}
and was in {3, 7} one step back. Thus, the system is 1-step opaque. However, when

the intruder observes sequence �abaa�, it becomes sure that G is currently in state 4

and, by considering automaton G shown in Figure 2.2, we can see that the system

was also in state 4 one step back and in state 3 two steps back, which is a secret

state. Thus the system is not 2-step opaque. 2

Note that CSO can be understood as 0-Step opacity, since the only concern of

CSO is about the intruder being sure that the current state is a secret one, i.e., it

takes into account zero past steps.

The last state-based opacity notion we revisit in this work is the so-called in�nite-

step opacity, which has been introduced by SABOORI and HADJICOSTIS [33],

being an extension of K-step opacity. In this regard, a system is said to be in�nite-

step opaque if �the intruder is never sure whether the system has ever been in a

secret state or not�. Its formal de�nition is as follows.

18

LBO ISO

CSO IFO

Figure 2.5: Transformations between CSO, IFO, and LBO [24].

De�nition 2.11 (In�nite-Step Opacity) Given a system modeled by G =

(X,Σ, f,Γ, x0), projection Po : Σ∗ → Σ∗o, and a set of secret states Xs ⊆ X, G

is in�nite-step opaque if for all s ∈ L and for all s′ ∈ s satisfying f(x0, s
′) ∈ Xs,

there exists t ∈ L and t′ ∈ t such that f(x0, t
′) ∈ X \ Xs, Po(s) = Po(t) and

Po(s
′) = Po(t

′). 2

Example 2.6 We revisit the automaton G depicted in Figure 2.2, where Σ =

{a, b, c}, Σo = {a, b}, Σuo = {c} and Xs = {3}. Since the system is not 2-step

opaque, as explained in Example 2.5, it cannot be in�nite-step opaque. However, if

we replace the self-loop in state 8 with another self-loop labeled with event �a�, then

the system becomes in�nite-step opaque, since now the intruder can not ascertain if

the system has ever been solely in the secret state 3. 2

It is worth noting that WU and LAFORTUNE [24] proposed a new opacity

notion, namely initial-and-�nal-state opacity (IFO), which is a generalization of both

CSO and ISO, where the secret behavior of the system is modeled as pairs composed

of an initial and a marked state. Moreover, WU and LAFORTUNE [24] provided

transformations among CSO, IFO, and LBO, and, for pre�x-closed languages, also

between LBO and ISO. The computational complexity for performing any of these

transformations is of polynomial time [24]. Figure 2.5 presents a diagram with these

transformations between the opacity notions.

We emphasize that our main objective on this topic is to approach the problem of

current-state opacity enforcement. We recall that, in this notion, the secret behavior

is modeled as states, which cannot be accurately estimated by the intruder at the

current time instant. Therefore, in order for a system to be current-state opaque,

all sequences that reach a secret state from the initial state must, from the point of

view of the intruder, be indistinguishable from some other sequence that reaches a

non-secret state from the initial state.

In this regard, an easy and intuitive way to verify if a system G is CSO is to

build its observer automaton Gobs, since its states can be understood as current

19

a b c σf0 1 2 3 4

5 6
c

c

a

a

b

Figure 2.6: Automaton G.

state estimates, and verify if there is no state of Gobs formed with secret states

solely. Thus, the set of secret states of Gobs is computed by Xs,obs = Xobs ∩ 2Xs ,

since these states denote estimations composed of secret states only. The existence

of some state in Xs,obs means that the intruder is capable of inferring, at some time,

that the current state of the system certainly is a secret one. We then say that the

system is CSO if and only if Xs,obs = ∅, which means that the intruder is not able

to estimate a set of secret states only. In this case, the problem of CSO veri�cation

can be rephrased as �the intruder must never estimate a set of secret states only�.

2.2.2 Predictability

Predictability, also referred to as prognosability in the literature, is a property of

DESs that ensures that some speci�c events, usually the fault event, can always be

foreseen before its actual occurrence.

In order to present the formal de�nition of predictability, let Ψ(σ) denote the

set composed of all sequences in L = L(G) whose last event is σ, being de�ned as

Ψ(σ) = {sσ ∈ L : s ∈ Σ∗, σ ∈ Σ}. This function can be extended to an event set

Σ̃ ⊆ Σ as follows: Ψ(Σ̃) =
⋃
σ̃∈Σ̃ Ψ(σ̃). Given a sequence s ∈ L and a subset Σa ⊆ Σ,

we denote Σa ∈ s to mean that at least one event in Σa is necessary to form sequence

s, i.e., ∃σa ∈ Σa, s ∩ Ψ(σa) 6= ∅. For example, consider sequence s = bca ∈ L(G),

where G is the automaton depicted in Figure 2.6. Clearly s = {ε, b, bc, bca}, and
so, for Σ′ = {b, σf}, we have that Σ′ ∈ s, since, although Ψ(σf) = {abcσf} and
s ∩Ψ(σf) = ∅, Ψ(b) = {b, ab} and s ∩Ψ(b) = b 6= ∅.

The formal de�nition of predictability is as follows [20].

De�nition 2.12 (Predictability [20]) A pre�x-closed and live language L is pre-

dictable with respect to projection Po : Σ∗ → Σ∗o and event σp ∈ Σp if:(
∃z ∈ N

)(
∀s ∈ Ψ(σp)

)(
∃t ∈ s

)[
(σp /∈ t) ∧P

]
,

where the predictability condition P is:

(
∀u ∈ L

)(
∀v ∈ L/u

)(
(Po(u) = Po(t)) ∧ (σp /∈ u) ∧ (‖v‖ ≥ z)⇒ (σp ∈ v)

)
. 2

20

N F
σf

σf

Figure 2.7: Automaton A`.

Let Σf ⊆ Σuo be the set composed of fault events, which is assumed to be a

singleton for the sake of simplicity and without loss of generality [107], i.e., Σf =

{σf}. We will assume here that the fault event σf is the event to be predicted, i.e.,

σp = σf , and thus, Σp = {σf}. We call s a faulty sequence if Σf ∈ s; on the other

hand, a sequence s such that Σf /∈ s is said to be normal.

Example 2.7 Consider automaton G depicted in Figure 2.6, whose generated lan-

guage is L, its event set Σ = {a, b, c, σf}, and the fault event set Σf = {σf}. Assume
that Σo = {a, c} denote the set of observable events. Since, the projection Po of each
pre�x of sf = abcσf (Po(sf) = ac) is identical to the projection of some pre�x u1

of the arbitrarily long length normal sequence u1v1 ∈ aca∗ (Po(u1v1) ∈ aca∗), lan-
guage L is not predictable with respect to Po and Σf (we cannot determine an exact

moment from which we are certain that the fault will inevitably occur). However,

if we consider Σ′o = {a, b} as being the set of observable events, it is not di�cult

to see that L becomes predictable with respect to P ′o : Σ∗ → Σ′∗o and Σf , since, for

pre�x ab ∈ sf , there exists no pre�x u2 of the arbitrarily long length normal sequence

u2v2 ∈ (a + b)ca∗ such that P ′o(u2) = P ′o(ab) = ab, and thus, after sequence ab is

observed, any external observer can infer that the fault σf will inevitably occur. 2

Fault prediction veri�cation is similar to diagnosability veri�cation [18, 102, 104].

Whereas the latter is usually based on the search, after each fault occurrence, for

state estimates where we are certain that the fault has occurred, in the former,

we must search for a state estimate prior to the fault behavior such that the fault

occurrence is inevitable. Therefore, a system is said to be predictable if, for every

fault behavior, there exists a state estimation, prior the fault occurrence, such that

we are certain that the fault will inevitably occur.

Inspired by [102], a recent strategy for the veri�cation of fault predictability

has been proposed in [82], where the assumptions on language liveness and absence

of cycles of states connected by unobservable events have been dropped. In order

to build the fault predictor automaton proposed in [82], it is �rst necessary to

build the label automaton A` = (XA` , {σf}, fA` ,ΓA` , x0,A` , ∅), where XA` = {N,F},
fA`(N, σf) = fA`(F, σf) = F , x0,A` = N . Automaton A` has been depicted in

Figure 2.7. Then, we compute G` = G‖A` = (X`,Σ, f`,Γ`, x0,`, ∅) and also its

observer observer Gd = Obs(G`,Σo) = (Xd,Σo, fd,Γd, x0,d, ∅), which models the

fault predictor automaton.

21

Notice that the parallel composition G` = G‖A` results in a new automaton

where all of its states are labeled either with N , meaning that the fault has not

occurred yet, or with F , denoting that the state has been reached after some fault

has occurred. According to [18], a diagnoser state is said to be F -certain (resp.

normal) if all of its components are F -labeled (resp. N -labeled). If a state has both

N and F -labeled components, it is called uncertain. We then recall the de�nition

of predictor states, as follows.

De�nition 2.13 (Predictor states [82]) A state x ∈ Xd of the fault predictor

automaton Gd is a predictor state if it is uncertain and either x is the initial state

of Gd or there exists (x′, σo) ∈ Xd×Σo such that x′ is normal and fd(x
′, σo) = x. 2

Notice that predictor states are the �rst uncertain states of Gd reached from the

initial state x0,d, which may include x0,d itself, if it is an uncertain state. The set

formed with all predictor states of Gd is denoted as Xp. It is not di�cult to see that

if G has a fault event, then Gd has at least one uncertain state, which implies that

|Xp| ≥ 1.

The next step to perform the fault prediction is to mark all predictor states in

Gd, i.e., Xm,d = Xp, and also all states labeled with N in G`, i.e., Xm,` = {x ∈ X` :

x is labeled with N}. Then, we proceed as follows: (i) compute Gscc = Gd‖G` =

(Xscc,Σ, fscc,Γscc, X0,scc, Xm,scc); (ii) set their marked states as being initial states,

i.e., X0,scc = Xm,scc; (iii) unmark all states, i.e., Xm,scc = ∅; (iv) compute Gscc,ac =

Ac(Gscc), and; (v) �nd all non-trivial strongly connected components (SCC1) of

Gscc,ac. Notice that the initial states of Gscc,ac are such that their �rst components

are predictor states and their second are states labeled with N .

Finally, we recall the following necessary and su�cient conditions for predictabil-

ity veri�cation based on automaton Gscc,ac, presented in [82].

Theorem 2.1 (Fault predictability veri�cation [82]) A language L is pre-

dictable with respect to projection Po and failure event set Σf if, and only if, all

non-trivial strongly connected components of Gscc,ac are composed of states (xd, x`)

whose second component x` is F -labeled. 2

According to Theorem 2.1, if all non-trivial SCCs of Gscc,ac are formed with states

(xd, x`) whose second component x` is F -labeled, then all initial states of Gscc,ac,

which are pairs composed of a predictor state and a normal one, will eventually

lead Gscc,ac to states where the fault has occurred. This means that all faults will

eventually be predicted, and thus, L is predictable. We also recall that no fault

1A set of states B ⊆ 2X forms a nontrivial SCC of G if: (i) for each pair x, y ∈ B, x reaches y
and vice versa; (ii) the set B is maximal, i.e., there exists no state z which is not in B but satis�es
(i); (iii) if B = {x} (|B| = 1), then ∃σ ∈ Σ : f(x, σ) = x.

22

0N
6N

2N

5N

1N

3N 4F

a

c

b

a

c

b

c

σf

a

Figure 2.8: Automaton G` from Example 2.8.

{0N, 5N}

{6N}

{6N, 3N, 4F }{1N, 2N} {6N, 4F }

a

c

a

ac

a

Figure 2.9: Observer automaton Gd = Obs(G`,Σo) from Example 2.8.

occurrence is missed, since no fault behavior was removed throughout the procedure

to compute Gscc,ac.

Example 2.8 Let us consider again automaton G depicted in Figure 2.6, where

Σ = {a, b, c, σf}, Σf = {σf} and L(G) = L. Assume that the set of observable

events is Σo = {a, c}. We then compute automaton G` = G‖A` and its observer

Gd = Obs(G`,Σo), illustrated in Figures 2.8 and 2.9, respectively. Notice that states

{0N, 5N}, {6N} and {1N, 2N} of the observer automaton Gd are normal, whereas

states {3N, 6N, 4F} and {6N, 4F} are uncertain. Since {3N, 6N, 4F} is the unique
uncertain state that is preceded by a normal state, {3N, 6N, 4F} is the unique predic-
tor state of Gd. We then mark state {3N, 6N, 4F} in Gd and all states labeled with

N in G`, and compute Gscc = Gd‖G`, which is depicted in Figure 2.10 and whose set

of marked states is Xm,scc = {({3N, 6N, 4F}, 3N), ({3N, 6N, 4F}, 6N)}. The next

steps for the fault predictability veri�cation proposed in [82] are: set Xm,scc as initial

states of Gscc, unmark all of its states and compute Gscc,ac = Ac(Gscc). Notice that

automaton Gscc,ac has two non-trivial SCCs, both composed of one state only, as fol-

lows: ({6N, 4F}, 4F) and ({6N, 4F}, 6N). The existence of an initial state of Gscc,ac

(whose �rst component is a predictor state) that reaches a non-trivial SCC whose last

component is labeled with N means that there exists a sequence sN = ac that reaches

the marked state ({3N, 6N, 4F}, 6N) in Gscc, with an arbitrarily long-length nor-

mal continuation and whose observation is identical to the sequence s = abc, which

reaches state ({3N, 6N, 4F}, 3N), that immediately precedes the fault occurrence,

i.e., Po(ac) = Po(abc) = ac, meaning that the fault cannot be predicted. This result

concurs with that of Example 2.7 and is also in accordance with Theorem 2.1, since

the existence of a non-trivial SCC whose second component is labeled with N implies

that the language L is not predictable with respect to Po and Σf . If the reader carries

23

({5N, 0N}, 0N)

({3N, 6N, 4F}, 3N)

({3N, 6N, 4F}, 6N)

({2N, 1N}, 1N)

({2N, 1N}, 2N)

({6N, 4F}, 4F)

({5N, 0N}, 5N)

({6N, 4F}, 6N)

({3N, 6N, 4F}, 4F)

({6N}, 6N)

c b

c

a

c

σf

ba

a

a

a

a

Figure 2.10: Automaton Gscc = Gd‖G` from Example 2.8.

({4F, 3N, 6N}, 6N)

({4F, 3N, 6N}, 3N) ({6N, 4F}, 4F)({4F, 3N, 6N}, 4F)

({6N, 4F}, 6N)

σf

a

a

a

a

Figure 2.11: Automaton Gscc,ac = Ac(Gscc) from Example 2.8.

24

out the fault predictability veri�cation for Σ′o = {a, b}, then the resulting automaton

Gscc,ac will have only one non-trivial SCC, namely state ({4F}, 4F), which implies,

according to Theorem 2.1, that L is predictable with respect to P ′o : Σ∗ → Σ′∗o and

Σf . 2

In Chapter 4, we address two new strategies for fault copredictability veri�cation

[101]; one of them that is also based on test automaton Gscc and improves the results

presented in [82].

25

Chapter 3

Opacity enforcement

In this chapter, we approach the problem of enforcing current-state opacity by shuf-

�ing event observations and also deleting some of them when strictly necessary. The

idea behind this chapter is that, by manipulating the order of released observation

of events, we ensure that the intruder is never capable of estimating a set of secret

states only, whereas the harm caused by the opacity enforcement strategy to the

estimates of the legitimate receiver can be mitigated by allowing it to know about

the Opacity-Enforcer policies.

Throughout this chapter, Section 3.1 characterizes the problem to be solved, the

assumptions made on the model of the system, the capacity of the intruder over the

system and how the proposed Opacity-Enforcer works; Section 3.2 enlighten us with

the concepts behind the strategy for enforcing opacity through shu�e and deletions

in event observations whereas Section 3.3 formally presents such a strategy; Section

3.4 presents the algorithms developed to achieve the opacity enforcement strategy;

Section 3.5 show us a didactic example where the strategy proposed in this chapter

is applied. Section 3.6 presents a procedure to improve the accuracy of the state

estimation by the legitimate receiver, when it exists, by assuming that the receiver

knows, a priori, the operations that will be performed by the system. Finally,

Section 3.7 summarizes all of the contributions made in this chapter. A preliminary

version of the results obtained in this chapter are presented in [64] whereas its full

version has been presented in [80].

3.1 Problem formulation

The architecture considered in this chapter is shown in Figure 3.1, and is composed of

a plant, an Opacity-Enforcer and two players, a legitimate receiver and an intruder.

After an event occurrence being read by a sensor, it is transmitted to the Opacity-

Enforcer in the same order and immediately after their occurrences in the plant.

The observable events, that are released by the Opacity-Enforcer, are transmitted

26

Figure 3.1: The opacity enforcement architecture.

to the legitimate receiver through a non-secure network, being susceptible to leak

information to intruders. Although both legitimate receiver and intruder have the

same power of observation and have full knowledge of the model of the system,

only the legitimate receiver knows how the Opacity-Enforcer behaves to enforce the

desired opacity. The secrets of the system are represented as secret states, which

the intruder must never discover.

For security reasons, the intruder must never estimate that the system is in a se-

cret state, even when it is not; for example, if the intruder estimates that the system

is in a secret state but the system is not, the intruder can still take malicious actions

on the system. For this reason we introduce the following design speci�cation.

S1 The intruder can never estimate that the current state of the system is a secret

state regardless the current state of the system.

The Opacity-Enforcer we propose here works as follows. When it receives a

signal associated with an event occurrence, it makes one of the following decisions:

(i) it immediately releases the event; (ii) it holds the event until one or more events

occur; (iii) it holds the event and releases a previously held event, not necessarily

in the order of its occurrence, which may change the order of event observation;

(iv) or it deletes the event. In other words, the Opacity-Enforcer either delays the

event release by a certain number of steps, where step is understood here as any

new arrival of events at the Opacity-Enforcer, or deletes the event forever.

We make the following assumptions on the intruder's capacity:

I1. The intruder has a copy of the automaton that models the system, including

events, states, transition functions, and its initial state(s).

I2. The intruder has full access to the events transmitted from the Opacity-Enforcer

to the legitimate receiver, i.e., it observes all of the observable events.

I3. The intruder does not know about the existence of the Opacity-Enforcer, and

so, it does not know that the information might have been changed.

I4. The intruder always expects to estimate some state inside the model whenever

it observes an event.

27

Notice that, the current-state opacity enforcement strategy proposed in this work

is capable of misleading the Intruder to never estimate that the current state of the

system is a secret state even when the strategy is publicly known, i.e., assumption

I3 is dropped, as discussed later in Subsection 3.6.

3.2 Opacity enforcement through shu�e and dele-

tions in event observations

In this section, we propose an opacity enforcement strategy that leverages the

possibility of either delaying an event release or deleting its observation in or-

der to cause changes in the observed sequences, so as to create new sequences

whose projections satisfy the CSO requirement of De�nition 2.8. In this regard,

let Gp = (Xp,Σp, fp,Γp, X0,p) be the automaton that models the behavior of the

plant, Σ its observable event set and Xs,p the secret states of the plant. Notice

that, when we build its observer G = Obs(Gp,Σ) = (X,Σ, f,Γ, x0), the estimation

of some secret states in Xs,p may become indistinguishable from the estimation of

states in Xp\Xs,p, and therefore, the opacity enforcement strategy must manipulates

the observation of events so as the intruder becomes unable to estimate those states

that leak the secret, i.e., the secret states of the observer X ∩ 2Xs,p (to be denoted

as Xs for simplicity).

It is worth remarking that since the strategy for opacity enforcement presented

here modi�es the sequence of observations outputted by the plant, so as to mislead

external agents, it is only necessary to know the observed behavior of the plant, and

not its actual behavior, which includes both observable and unobservable event oc-

currences. Since we are concerned with manipulating the order of event observations

to obfuscate the estimation of secret states of the observer Xs, all of the operations

and functions hereafter de�ned will be performed over the language of the observer

L = L(G).

As consequence, the CSO enforcement strategy modi�es the order of observed

events to create new sequences that mislead the intruder's estimation of the current

state of the system so as it becomes unable to estimate any secret state of the ob-

server, which corresponds to the secret states of the plant that are not inherently

opaque. To this end, in order to build automaton ROE that models the behavior

of the Opacity-Enforcer, we must check if, for every sequence that reaches a secret

state and its continuations, it is possible, by shu�ing event observations and/or

deleting some of their observations, to create a new sequence that can be seen as

another possible one whose pre�xes and continuations lead only to non-secret states.

It is important to take into account which continuations the modi�ed sequence of

28

released events have when performing the opacity enforcement strategy, otherwise

the Opacity-Enforcer may release a sequence of events such that all of its continu-

ations lead to secret states and they cannot be modi�ed to sequences that lead the

system to a secret-free path of estimation.

The problem of opacity enforcement can be posed as follows [65]: given a system

modeled by an automaton G = (X,Σ, f,Γ, x0) that is not CSO, obtain another

automaton ROE that satis�es the following conditions:

OE1. ROE is CSO;

OE2. L(G) = L(Obs(ROE,Σ)).

Thus, the CSO enforcement strategy developed in this chapter is obtained by

building an automaton ROE from G that satis�es conditions OE1 and OE2. How-

ever, we must �rst verify if a system is current-state enforceable.

To this end, let us de�ne the following operation over the sequences of L.

De�nition 3.1 (Sequence permutation) Let s = σ1σ2 . . . σn ∈ Σ∗ and T (s) =

(σ1, σ2, . . . , σn) denote the n-tuple formed from it. The sequence permutation is a

mapping Sp : Σ∗ → 2Σ∗ where for each s = σ1σ2 . . . σn, it associates a set Sp :=

{sp ∈ Σ∗ : sp is a sequence that corresponds to a permutation of T (s)}. 2

Example 3.1 Let s = aba. The corresponding tuple of s is T (s) = (a, b, a). The

permutations de�ned from T (s) form the set P = {(a, b, a), (a, a, b), (b, a, a)} and

thus, the sequence permutation of s is Sp(s) = {aba, aab, baa}.

In order to model event deletion, we need to augment the language generated by

automaton G to include unobservable events. To this end, the �rst step is to dilate

the language L [3]. Let Σ = ΣD∪̇Σ¬D be a partition of Σ, where ΣD denotes the set

of observable events whose observation are allowed to be deleted and Σ¬D denotes

the set of observable events whose observation cannot be deleted; ΣD and Σ¬D will be

referred to as deletable and undeletable event sets. We emphasize that the choice of

which events are deletable is a design variable. In addition, let Σd = {σd : σ ∈ ΣD}
denote the set of deleted observations, and de�ne Σdil = Σ ∪ Σd.

De�nition 3.2 (Dilation) The dilation operation is the mapping Dil : Σ∗ → 2Σ∗dil,

de�ned as: Dil(ε) = {ε}; Dil(σ) = {σ}, if σ ∈ Σ \ ΣD; Dil(σ) = {σ, σd}, if

σ ∈ ΣD; and, Dil(sσ) = Dil(s)Dil(σ), where s ∈ Σ∗ and σ ∈ Σ. Its extension

over a language L is performed by applying it to each sequence in L, i.e., Dil(L) =⋃
s∈LDil(s). 2

29

x0 xss

t

u

v

t′

t′′
x1

x2

xi−1 xi• • •

Figure 3.2: Opacity-enforceability.

0

1 2 3

4 5

6

a
b b

b
a

b

a

a

a

Figure 3.3: Example for opacity-enforceability.

We say that a system is current-state opaque enforceable (CSOE) if, for all se-

quences s that reach a secret state, and for any of their continuations t, there always

exists a sequence u after st, so that there is a shu�ing v of stu, with possible event

deletions, such that all pre�xes w of v lead to non-secret states only, as illustrated

in Figure 3.2. Formally, opacity-enforceability is de�ned as follows.

De�nition 3.3 (CSO Enforceability) A system, whose observable behavior is

modeled by an automaton G = (X,Σ, f,Γ, x0), is CSOE with respect to ΣD, Xs and

Pdil : Σ∗dil → Σ∗ through changes and deletions in the order of event observations if

(∀s : f(x0, s) ∈ Xs)(∀t ∈ L/s)(∃u ∈ L/st ∧ ∃v ∈ Pdil(Dil(Sp(stu))) ∩ L)[f(x0, w) ∈
X \Xs,∀w ∈ v]. 2

According to De�nition 3.3, given an automaton G that is not CSO but is CSOE,

it is possible to build an automaton ROE such that for all sequences s ∈ L(G) that

lead to secret states, we can obtain, by changing the order of event observations

together with possible event deletion, at least one sequence whose projection with

respect to Σ is in the language generated by G (condition OE2), its pre�xes never

visit secret states, and it satis�es condition OE1.

Example 3.2 In order to illustrate the CSO enforceability concept, let us consider

a system whose observed behavior is modeled by the automaton shown in Figure 3.3.

Assume, initially, that the set of deletable events is ΣD = ∅, and that the set

of secret states is Xs = {3}. Notice that, Ls = abba∗ is the set of all sequences

30

that reach the secret state, and that for all of the continuations t ∈ a∗ of s ∈ Ls,

we may set u = ε (a �nite sequence). Notice that since Pdil(Dil(Sp(stu))) ∩ L =

Pdil(Dil(Sp(abba
∗))) ∩ L = abba∗ + bba∗, it is clear that v ∈ bbaa∗, and thus, for all

w ∈ v, f(0, w) ∈ {0, 4, 6} ⊂ X\Xs. Therefore, the system is CSOE through shu�es

of events in Σ and deletions of events in ΣD.

Assume, now, that ΣD = {b} and Xs = {3, 6}. In this case, Ls = abba∗ + bba∗.

Let us �rst consider sequences abba∗. In this case, we cannot shu�e sequence

abba∗ so that it becomes like bbaa∗, since f(0, bb) = {6} ∈ Xs. Notice that

Pdil(Dil(Sp(abba
∗)))∩L = abba∗+bba∗+ba∗, and since the observation of event b can

be deleted, we can see that for s ∈ abba∗ and for all t ∈ a∗, there exists a �nite u = ε,

and so, we may de�ne v ∈ baa∗ such that for all w ∈ v, f(0, w) ∈ {0, 4, 5} ⊂ X\Xs.

Let us now consider sequences s′ ∈ bba∗, which reach secret state 6. Notice that

Pdil(Dil(Sp(bba
∗)))∩L = abba∗+ bba∗+ ba∗. It is clear that t′ ∈ a∗ represent all pos-

sible continuations of s′, and so, there exists u′ = ε that allow us to de�ne v′ ∈ ba∗
such that for all w′ ∈ v′, f(0, w′) ∈ {0, 4, 5} ⊂ X\Xs. Thus, the system is, in this

case also, CSOE through shu�es and deletions of events. 2

Remark 3.1 In Example 3.2, when ΣD = {b}, Xs = {3, 6} and assuming sequence

s = bbaa is generated by the system, state 6 is reached. in this case, an immediate

solution would be to delete two occurrences of event b after bba is generated (leading

to the estimation of state 1). Thus, when the last event a is generated, sequence aa

will be transmitted to all external observers. However, such a sequence is not in the

behavior of the system, and so, would reveal to the intruder that some manipulation

of event transmissions has been carried out; therefore, thus violating Assumptions

I3 and I4. Thus, the challenge here is that the Opacity-Enforcer modi�es the ob-

servation of events wisely, by taking into account not only past event occurrences

but also future ones, in some way that these modi�cations never compromise future

estimations. 2

In order to de�ne an opacity enforcement strategy, the occurrence of an event

in the system must be distinguished from its observation by the intruder. To this

end, let Σr be a copy of Σ with all of its events labeled by a subscript �r�, i.e.,

Σr = {σr : σ ∈ Σ}. We recall that Σd, the set of deleted observations, is itself a

copy of ΣD, the set of deletable events. We de�ne the following functions.

De�nition 3.4 (Release and Deletion Functions)

• The release function is the mapping ϕr : Σ∗ → Σ∗r, where ϕr(ε) = ε, ϕr(σ) = σr

and ϕr(sσ) = ϕr(s)ϕr(σ), where σ ∈ Σ and s ∈ Σ∗.

• The inverse release function is the mapping ϕ−1
r : Σ∗r → Σ∗ where ϕ−1

r (ε) = ε,

ϕ−1
r (σr) = σ and ϕ−1

r (srσr) = ϕ−1
r (sr)ϕ

−1
r (σr);

31

• The deletion function is the mapping ϕd : Σ∗D → Σ∗d, where ϕd(ε) = ε, ϕd(σ) =

σd, and ϕd(sσ) = ϕd(s)ϕd(σ). 2

3.3 Opacity-enforcement strategy

According to Section 3.1, for every sequence that has occurred in the plant, the

Opacity-Enforcer must take one of the following actions after each event arrival:

OEA1. Release immediately its observation, or hold the event but releasing the

observation of another event that has been held (not necessarily in the same

order it occurred);

OEA2. Delete its observation (if the event is deletable), or hold it and delete the

observation of another deletable event that had been held;

OEA3. Take no action, i.e., hold the event that has arrived without releas-

ing/deleting any observation at all and then wait for the arrival of a new

event.

In order to implement this policy, we propose the following procedure: all se-

quences s generated by the system are sent to an augmentation function, which

enlarges those sequences with information of possible event releases and deletions,

such that, when the released information reaches the intruder, it will be misled to

never estimate a set of secret states only. With that in mind, we make the following

de�nitions:

• Augmented event set: Σa = Σ ∪ Σr ∪ Σd.

• Function N : Σ∗a × Σa → N, which, for a pair (s, σ), N (s, σ) returns the

number of occurrences of event σ in sequence s.

Notice that Σa denotes the event set of the automaton that models the behavior

of the Opacity-Enforcer and allows the CSO enforcement strategy through event

observation shu�ing/deletions, since the event set Σa is composed of: (i) the events

generated by the plants Σ; (ii) the release of their observations Σr, and; (iii) the

deletions of their observations Σd, if it is an deletable event. For example, sequence

sa = abbrarccda ∈ Σa denotes that event a and b have been generated by the plant

in this order, but event b had its observation released before that of event a (brar),

then event c has been generated by the plant, its observation has been deleted (cd)

and another event a has been generated by the plant in the sequel. Since event a

occurred two times in sa, we have that N
(
sa, a

)
= 2.

32

Since both release and deletion of observations are executed after their occur-

rences, the following constraint must be imposed:

N
(
sa, σ

)
≥ N

(
sa, ϕr(σ)

)
+N

(
sa, ϕd(σ)

)
. (3.1)

where sa ∈ Σ∗a and σ ∈ Σ. According to Inequality (3.1), the number of occurrences

of an event σ ∈ Σ in a sequence sa ∈ Σ∗a must be greater than or equal to the

sum of the observation releases and deletions of σ. Thus, for sa ∈ Σ∗a, the set of

allowed events to be released or deleted with respect to an augmented sequence can

be de�ned as:

ΣR∨D(sa) =
{
σ ∈ sa :

(
σ ∈ Σ

)
∧
(
N (sa, σ) > N (sa, ϕr(σ)) +N (sa, ϕd(σ))

)}
. (3.2)

In order to make the reading easier, we will de�ne the following projections to

be used throughout the text:

1) Pdil : Σ∗dil → Σ∗;

2) Pa : Σ∗a → Σ∗;

3) Pr : Σ∗a → Σ∗r;

4) Pd : Σ∗a → Σ∗d.

We now formally de�ne the language augmentation function.

De�nition 3.5 (Language augmentation function) The language augmenta-

tion function A : Σ∗a → 2Σr∪Σd of a system modeled by automaton G with respect to

secret states Xs, and event sets Σ, Σr and Σd is de�ned as:

A(sa) = Ar(sa) ∪ Ad(sa) (3.3)

where:

• Ar(sa) =
{
σr ∈ ϕr

(
ΣR∨D(sa)

)
: f
(
x0, ϕ

−1
r

(
Pr(saσr)

))
∈ X \Xs

}
;

• Ad(sa) = ϕd
(
ΣR∨D(sa) ∩ ΣD

)
. 2

The language augmentation function works as follows: for a given augmented

sequence sa ∈ Σ∗a, A(sa) returns a set of events composed of all allowed event releases

σr and event deletions σd. Notice that, Ar ensures that all released observations

make the intruder estimate only non-secret states of the observer, and, according

to the de�nition of Ad, every event of ΣR∨D that is allowed to be deleted can be

deleted at any time. If there is no allowed observation releases or deletions for a

given augmented sequence sa, then A(sa) = ∅, meaning that no action is to be taken

by the Opacity-Enforcer; so, it waits for the arrival of a new event generated by the

system.

33

Example 3.3 Let us consider a system whose observed behavior is modeled by au-

tomaton G shown in Figure 3.3, and assume that Σ = {a, b}, ΣD = {b} and

Xs = {3, 6}. Let us consider the sequence s = abbrb ∈ Σ∗a, which means that ab

has happened in the system, br was released and event b has just occurred. According

to De�nition 3.5, we have A(abbrb) = {ar, bd}, since: (i) ΣR∨D(abbrb) = {a, b}, (ii)
f
(
x0, ϕ

−1
r (brar)

)
= 5 and 5 ∈ X \Xs, and (iii) bd ∈ ϕd

(
ΣR∨D(abbrb) ∩ ΣD

)
. Notice

that br /∈ A(abbrb), since the release of event br would lead to the estimation of the

secret state 6. 2

In order to build a language La such that Pa(La) = L and ∀sa ∈ La,

f(x0, ϕ
−1
r (Pr(sa))) ∈ X\Xs, we will apply the language augmentation function to

the language L generated by the system, so as whenever an external observer receives

these released events, it always estimates non secret states of the model.

Language La is formally de�ned recursively as follows.

De�nition 3.6 (Augmented language) Given language L ∈ Σ∗ and an augmen-

tation function A : Σ∗a → 2Σr∪Σd, the augmented language La ∈ Σ∗a is recursively

de�ned as follows.

1) ε ∈ La;
2) (sa ∈ La) ∧

[(
(σ ∈ Σ) ∧ (Pa(saσ) ∈ L)

)
∨
(
σ ∈ A(sa)

)]
↔ saσ ∈ La. 2

It is clear, according to De�nition 3.6, that at least one new sequence (saσ) is

added to the augmented language every time an observable event σ occurs in G.

In addition, in order for the Opacity-Enforcer to release (resp. delete) an event

observation σr ∈ Σr (resp. σd ∈ Σd) after sa, then saσr (resp. saσd) must also be

added to La. It is worth noting that, by construction, Pa(La) = L. In addition, if at

a certain point the Opacity-Enforcer is no longer able to release any new observation,

then only sequences saσ must be added to La, after σ occurs in the system.

However, as the next example shows, for a given regular language L, the corre-

sponding augmented language La may have the following problems: (i) it can be

non regular, which prevents the implementation of the Opacity-Enforcer by using a

�nite state automaton; (ii) it may happen that for some sequence sa ∈ La and all

of its continuations s′a ∈ La with events σ ∈ Σ, both A(sa) = ∅ and A(s′a) = ∅.

Example 3.4 Let us revisit Example 3.3. According to De�nition 3.6, we set, ini-

tially, La = {ε}.
• For sa = ε, we have that {a, b} ⊂ La, since {Pa(a), Pa(b)} ⊂ L. Thus,

sequences a and b are added to La, which becomes La = {ε, a, b}.
• For s′a = a, we have that s′a1 = ab ∈ La, since Pa(s′a1) ∈ L, and s′a2 = aar ∈ La,
since ar ∈ A(s′a). Thus, sequences s′a1 and s′a2 are added to La, becoming

La = {ε, a, b, ab, aar}.

34

0 1 2 3
br b

a

b

5 4

bd

67b b b

aa

ar ar ar

8 9 10 11
b brar

a

12
b

a

Figure 3.4: Part of the automaton that generates non regular language La.

• For s′′a = b, we have that both s′′a1 = bb and s′′a2 = ba are in La, since

Pa(s
′′
a1

), Pa(s
′′
a2

) ∈ L, and also that both sequences s′′a3 = bbr and s′′a4 = bbd

must be in La, since br, bd ∈ A(s′′a). Therefore, sequences s
′′
a1
, s′′a2, s

′′
a3

and s′′a4
are added to La, which becomes La = {ε, a, b, ab, aar, bb, ba, bbr, bbd}.

Notice that, if we continue this process, the resulting augmented language La will

be non regular, since, as we can see in Figure 3.4, after sequence sa = bbrbbda ∈ La,
either event a occurs again or the observation of a is released (event ar), and this

pattern continues inde�nitely for all sequences bbrbbdaa
m, m ∈ N, which shows that

the automaton that generates La requires an in�nite number of states. In addition,

for sequence sa = aarbbrb, we have that A(sa) = ∅, since br cannot be released,

otherwise, it would make the intruder estimate a secret state. However, sequence sa

can still be augmented with event occurrences in the plant (event a, in this case),

since sequences sa = aarbbrba
m, m ∈ N, where A(sa) = ∅, are such that Pa(saa) ∈ L,

and so, sa ∈ La, as depicted in Figure 3.4. Notice that, in this case, events a and b

are being held inde�nitely after sequence aarbbrb is executed. 2

In order to avoid the problems arising from the de�nition of La, we will introduce

a restriction on the maximum number of occurrences of future events in the plant

for which an event observation can be held. To this end, let us de�ne the following

step delay bound set:

SD(k) = {(σ1, kσ1), (σ2, kσ2), . . . , (σn, kσn)}. (3.4)

where k = [kσ1 , kσ2 , . . . , kσn], kσi ∈ N, i = 1, 2, . . . , n, where n = |Σ|, is a vector

whose i -th component represents the maximum number of steps the observation

release of event σi can be delayed. Since event observation releases/deletions do not

delay the observation of other events, the step delays are accounted only when plant

events σ ∈ Σ occur. It is worth mentioning that the choice of the event step delay

bound is a project variable, where the greater each kσi is, the easier is to enforce

CSO, but, on the other hand, the more inaccurate the estimates of the legitimate

receiver become.

35

Let pre(sa, σiσ), iσ = 1, . . . ,N (sa, σ), denote the pre�x of an augmented se-

quence sa ∈ Σ∗a whose last event is the iσ-th occurrence of σ ∈ Σ, and let us de�ne

pre(sa, σ
iσ
`), where ` ∈ {r, d}, as the pre�x of sa whose last event is the iσ-th action

(observation release, σr, or deletion, σd) of the Opacity Enforcer over the observa-

tion of event σ when iσ ≤ N (sa, σr) + N (sa, σd), or; pre(sa, σ
iσ
`) = sa, otherwise.

We state the following result.

Fact 3.1 An augmented sequence sa ∈ Σ∗a satis�es a step delay bound SD(k), i.e.,

sa � SD(k)1, if, and only if, ∀σ ∈ Σ, ‖Pa(pre(sa, σiσ`))‖ − ‖Pa(pre(sa, σiσ))‖ ≤ kσ,

iσ = 1, . . . , N (sa, σ), and ` ∈ {r, d}. 2

In words, an augmented sequence satis�es the step delay bound if, and only if,

for all all events σ ∈ Σ, the number of plant events between the i-th occurrence of

event σ and its observation release/deletion is less than its step delay bound. For

example, let Σ = {a, b} and SD(k) = {(a, 1), (b, 0)}. Let us consider the following
sequences:

(i) sa,1 = abbra. In this case, ia = 1, . . . ,N (sa, a) = 1, 2. Notice that

sa,1 2 SD(k), since pre(sa,1, a1
`) = sa,1 = abbra and pre(sa,1, a1) = a, which im-

plies that ‖Pa(pre(sa,1, a1
`))‖ − ‖Pa(pre(sa,1, a1))‖ = ‖Pa(abbra)‖ − ‖Pa(a)‖ =

‖aba‖ − ‖a‖ = 2 > ka = 1.

(ii) sa,2 = abaraabarbr. In this case, ia = 1, 2, 3 and ‖Pa(pre(sa,2, a1
`))‖ −

‖Pa(pre(sa,2, a1))‖ = ‖Pa(abar)‖ − ‖Pa(a)‖ = ‖ab‖ − ‖a‖ = 1 ≤ ka = 1, but

‖Pa(pre(sa,2, a2
`))‖ − ‖Pa(pre(sa,2, a2))‖ = ‖Pa(abaraabar)‖ − ‖Pa(abara)‖ =

‖abaab‖ − ‖aba‖ = 2 > ka = 1; therefore, sa,2 2 SD(k).

It is worth remarking that if some sequence sa ∈ La does not satisfy SD(k), then

all of its continuations in La do not satisfy SD(k) either, i.e., sa 2 SD(k)→ (sata 2
SD(k),∀ta ∈ La/sa)). This implies that, given an augmented language La and a

step delay bound SD(k), the bounded delay augmented language LSDa ⊆ La is such

that LSDa = {sa ∈ La : sa � SD(k)}. With that in mind, we recursively de�ne LSDa
as follows:

De�nition 3.7 (Bounded delay augmented language) Given language L ∈
Σ∗, an augmentation function A : Σ∗a → 2Σr∪Σd and a step delay bound SD(k),

the bounded delay augmented language LSDa ∈ Σ∗a is recursively de�ned as follows:

(i) ε ∈ LSDa ;

(ii) (sa ∈ LSDa) ∧
{[

(σ ∈ Σ) ∧ (Pa(saσ) ∈ L) ∧ (saσ � SD(k))
]
∨
[
σ ∈ A(sa)

]}
↔

saσ ∈ LSDa .

1We use the symbol � as an abuse of notation, where a � b means that clause �a� literally
satis�es condition �b�.

36

0 1 2 3
br b

a
b

5 64
a

ar ar

a

bd

a
b b b

7 8 9a a
11 12

ar a

bd

10ar a
b

b b b

13 14 15
ar b

16 17
br b

b

26
ar

br

b b b

b b b

18
bd

19 20a a

bd
21 22

b

br

23
bd 24 25a a

Figure 3.5: Part of the automaton that generates a regular language LSDa bounded
by SD(k).

The construction of the bounded delay augmented language LSDa is similar to that

of the augmented language La. We start with the empty sequence ε and then, for

each sequence sa that is already in LSDa , we add saσ into LSDa if one of the following

two conditions holds true: (i) σ is an event generated by the plant (σ ∈ Σ), it can

occur in the plant after Pa(sa), i.e., Pa(saσ) ∈ L, and its occurrence, considering

the events being hold in sa, does not violate the step delay bound (saσ � SD(k)),

or; (ii) event σ denotes an observation release or deletion according to the language

augmentation function, i.e., σ ∈ A(sa).

Example 3.5 Consider again the automaton shown in Figure 3.3, where Σ =

{a, b}, ΣD = {b} and Xs = {3, 6}, and, assume that SD(k) = {(a, 1), (b, 0)}.
Thus, whenever event b occurs, its observation must be either released or deleted im-

mediately, whereas event a can have its observation released either immediately or

in one subsequent event occurrence, but not after that. We set, initially, LSDa = {ε}.

• For sa = ε, we have that {a, b} ⊂ LSDa , since {Pa(a), Pa(b)} ⊂ L and a, b �

SD(k). Thus, sequences a and b are added to LSDa , which becomes LSDa =

{ε, a, b}.

• For s′a = a, we have that s′a1 = ab ∈ LSDa , since Pa(s
′
a1

) ∈ L and s′a1 � SD(k),

and s′a2 = aar ∈ LSDa , since ar ∈ A(s′a) and s
′
a2

� SD(k). Thus, sequences s′a1
and s′a2 are added to LSDa , which becomes LSDa = {ε, a, b, ab, aar}.

• For s′′a = b, we have that both s′′a1 = bbr and s′′a2 = bbd are in LSDa , since

br, bd ∈ A(s′′a). Note that, sequences s′′a3 = bb and s′′a4 = ba cannot be in LSDa ,

since, even though Pa(s
′′
a3

), Pa(s
′′
a4

) ∈ L, both sequences, s′′a3 and s′′a4, imply

that the observation of event b is being held for one step, which violates SD(k)

37

(kb = 0), i.e., s′′a3 , s
′′
a4

2 SD(k). Therefore, only sequences s′′a1 and s′′a2 are

added to La, which becomes LSDa = {ε, a, b, ab, aar, bbr, bbd}.

The bounded delay augmented language LSDa is obtained by carrying out this

procedure until there exists no new sequence that can be added to LSDa . Notice that,

sequence sa = ba ∈ La but sa /∈ LSDa , even though Pa(sa) ∈ L, since it models

the case when the �rst occurrence of event b is being held for one step and such

a behavior is not allowed by SD(k), i.e., ‖Pa(pre(sa, b1
`))‖ − ‖Pa(pre(sa, b1))‖ =

‖Pa(ba)‖ − ‖Pa(b)‖ = ‖ba‖ − ‖b‖ = 1 > kb = 0, hence, sa 2 SD(k) which implies

that saΣ
∗
a ∩ LSDa = ∅.

Figure 3.5 depicts part of the automaton that generates LSDa . It is worth noticing

that the LSDa is regular whereas La is not. 2

It is worth remarking that the bounded delay augmented language LSDa may still

be undesirable, in the sense that, even though all sequences sa ∈ LSDa satisfy the

step delay bound SD, one of the following undesirable behaviors may occur:

UB1. The Opacity-Enforcer halts after a sequence sa ∈ LSDa , where for some event

σ ∈ sa, Inequality (3.1) holds with strict inequality relation (>). In this case,

the Opacity Enforcer holds inde�nitely the observation of non deletable events,

since, from the de�nition of LSDa , every new observation release would either

lead to the estimation of a secret state or to a sequence that is outside the

language generated by the system. This is illustrated in Figure 3.5, where,

after reaching state 12, no action can be taken by the Opacity Enforcer, since

neither another observation of event a can be held nor previous observations

of a can be released or deleted;

UB2. The immediate continuations of a sequence sa ∈ LSDa are con�icting, in the

sense that the Opacity-Enforcer is allowed not only to take some action (release

or deletion) but can also wait for another event occurrence, i.e., the Opacity

Enforcer action is not unique: it can execute either OEA1/OEA2 or OEA3.

This is illustrated in Figure 3.5, where, after reaching state 8, the Opacity-

Enforcer cannot decide if it releases the observation ar or waits for another

occurrence of a;

UB3. The immediate continuations of a sequence sa ∈ LSDa suggests that the

Opacity-Enforcer may take di�erent actions: observation release (OEA1) and

deletion (OEA2). This is illustrated in Figure 3.5, where, after reaching state

1, the Opacity-Enforcer has to decide between releasing and deleting events

observation, br and bd, respectively.

38

Thus, it is necessary to prune LSDa to obtain a pre�x-closed augmented language

LOEa , which does not have the aforementioned undesired behaviors. This can be

achieved by removing from LSDa all sequences sa and sata, for every ta ∈ LSDa /sa, in

such a way that Pa(LOEa) = L and all of the remaining sequences sa ∈ LOEa satisfy

simultaneously the following Opacity-Enforcer conditions:

OEC1. (∀sa ∈ LOEa)
(
(LOEa /sa = ∅) → (∀σ ∈ Σ,N (sa, ϕr(σ)) + N (sa, ϕd(σ)) =

N (sa, σ))
)
;

OEC2. (∀sa ∈ LOEa)
(
(∃σ ∈ Σ : Pa(sa)σ ∈ L) → (∃ta ∈ LOEa /sa : Pa(sata) =

Pa(sa)σ)
)
.

Opacity-Enforcer Condition OEC1 states that all augmented sequences sa ∈
LOEa that have no continuation ta ∈ Σ∗a must have all event observations either

released or deleted by the Opacity-Enforcer. Condition OEC2 states that if an

event σ can occur in the system after Pa(sa), then there must exist at least one

continuation ta of sequence sa that models this behavior.

It is worth noticing that Condition OEC1 ensures that no sequence in LOEa

satis�es undesirable behaviorUB1 and ConditionOEC2 ensures that Pa(LOEa) = L.

Together, Conditions OEC1 and OEC2 ensure that the language LOEa is CSO

with respect to Xs and SD, in the sense that the intruder is unable to estimate

secret states when observing the events released by the Opacity-Enforcer, i.e., events

σr ∈ Σr.

In order to ensure that the Opacity-Enforcer has unique actions over the aug-

mented sequences sa ∈ LOEa , we still need to continue the pruning process. With

a view to keeping the step delay bound of each event as low as possible, which

makes the legitimate receiver estimation more accurate, we proceed according to

the following rules: (i) the release (resp. deletion) of a event observation (OEA1

(resp. OEA2)) has the highest (resp. lowest) priority among other actions the

Opacity-Enforcer may take; (ii) if there is no observation to be released and no held

observation is being delayed for its maximum step delay bound, then the Opacity-

Enforcer must take no action (OEA3) and wait for an event occurrence, and; (iii)

the Opacity-Enforcer must either release exactly one observation σr, or delete ex-

actly one observation σd, or still perform no action (in this case, it waits for an

event σ to occur in the system). Such rules are formally described by the following

conditions:

UC1. (∀sa ∈ LOEa)
(
(∃σr ∈ Σr : saσr ∈ LOEa)→ sa(Σ ∪ Σd)Σ

∗
a ∩ LOEa = ∅

)
;

UC2. (∀sa ∈ LOEa)
(
(∃σ ∈ Σ : saσ ∈ LOEa)→ saΣdΣ

∗
a ∩ LOEa = ∅

)
;

UC3. (∀sa ∈ LOEa)
(
(|LOEa ∩ saΣr| ≤ 1) ∧ (|LOEa ∩ saΣd| ≤ 1)

)
.

39

Notice that, Conditions UC1 and UC2 ensure that UB2 is never satis�ed,

whereas Condition UC3 avoids the undesired behavior stated in UB3.

Example 3.6 Let us consider the bounded delay augmented language generated

by the automaton depicted in Figure 3.5, where it was assumed that SD(k) =

{(a, 1), (b, 0)}. In order to obtain the Opacity-Enforcer language, we �rst set

LOEa = LSDa , and then, we remove sequences from LOEa which either represent an

undesirable behavior or leave the Opacity-Enforcer with non unique actions.

Let us consider initially the pruning of LOEa so as the remaining language satisfy

Conditions OEC1 and OEC2. The used sequences are obtained from the automaton

in Figure 3.5.

• Sequence sa,1 = aarbbrbbdaa, which reaches state 20, violates Condition

OEC1, and must be removed, which implies that the transition from state

19 to 20 must be deleted. It follows that sequence sa,2 = aarbbrbbda no longer

satis�es Condition OEC1, and so must also be removed from LOEa .

• Sequence sa,3 = aarbbrbbd, which reaches state 18, violates Condition OEC2

and should be excluded, since Pa(sa,3) = abb can be continued with a in L,

but there is no continuation ta ∈ LOEa /sa such that Pa(sata) = abba. Now,

the remaining sequence sa,4 = aarbbrb (state 17) does not satisfy Condition

OEC1 and must be deleted. By carrying out this process, we have to remove

all sequences (aar + abar)Σ
∗
a from LOEa .

Once LOEa has only sequences that satisfy Conditions OEC1 and OEC2, we con-

tinue the pruning process with a view to satisfying Conditions UC1 � UC3. We

present two examples of this pruning procedure.

• Sequence sa,5 = bbrbbda, which reaches state 5, can be continued with both a

and ar, as illustrated in Figure 3.5, which means that the Opacity-Enforcer

has two options: to release an observation or wait for an event occurrence.

Such a lack of unicity violates Condition UC1, and, thus, since observation

release has the highest priority, we must remove all sequences bbrbbda(ara)∗a

from LOEa , i.e., state 6 is removed.

• Sequence sa,6 = b also requires the Opacity-Enforcer to choose between releas-

ing its observation (event br) or deleting it (event bd), which violates Condition

UC2. Thus, since observation deletions have the least priority, we must re-

move all sequences bbdΣ
∗
a from LOEa .

Figure 3.6 shows an automaton whose generated language is one of the possible

feasible augmented languages LOEa ⊆ La of the language generated by automaton

depicted in Figure 3.3. 2

40

0 1 2 3
br bb

54
a

ar
a

a

6 7

bd

ar

a

8 9 10
b br

11
ar

12
b

1413
a

ar

bd

Figure 3.6: Automaton that generates a regular feasible language LOEa .

Remark 3.2 Notice that Condition UC3 is not violated in Example 3.6. However,

when it is violated, i.e., two or more observations are allowed to be released (resp.

deleted), a wise solution is to keep in LOEa only the continuation that corresponds

to the action over the event occurrence that has �rst happened, and removing all

other continuations. For example, if sa ∈ LOEa can be continued with both σ1,r and

σ2,r but σ1 has started being held before σ2, i.e., ‖pre(sa, σk11)‖ < ‖pre(sa, σk22)‖,
ki = N (sa, σi,r) + N (sa, σi,d) + 1 for i = 1, 2, then we should let only sequence

saσ1,rΣ
∗
a be in L

OE
a . 2

Remark 3.3 As opposed to the works where edit functions are used to delete event

observations, we are also interested in distinguishing if the event observation has

been deleted or the observation release has been delayed, and so, dilation plays a key

role in the strategy proposed here. For example, assume that an event σ has occurred

in the plant but its observation has been deleted. Thus, if we remove event σd (that

accounts for the deletion of σ) in the corresponding augmented sequence sa, we will

not be able to know, when the number of event occurrences of σ in the plant is greater

than the number of occurrences of σr (that accounts for observation releases of σ), if

the exceeding occurrences of σ have either been deleted or no action regarding event

release has yet been taken by the Opacity-Enforcer. 2

3.4 Algorithms

We present two algorithms in this section. Algorithm 3.1 is an adaptation of the

algorithm proposed by [6], and generates all possible shu�es of the event occurrences

and observation releases/deletions. Algorithm 3.2 checks if the system is CSOE and

returns an automaton that realizes the Opacity-Enforcement strategy.

41

3.4.1 Algorithm for shu�ing event occurrences and observa-

tion releases/deletions

We propose an algorithm (Algorithm 3.1) to build an automaton (denoted as D),

whose states, as in [6], represent queues of events that were generated by the sys-

tem but have not been released/deleted yet. The symbol ν, that denotes �blank

space�, is also used in the labeling of the states of D to account for the observation

release/deletion of an event that is not the �rst of the queue. For example, assume

that we are building automaton D from the event set Σ = {a, b} and that only event
b is deletable. Thus, transitions labeled by events br and bd will represent the change

from the state labeled with aba to state aνa, and a transition labeled with event

ar will move automaton D from state aba to state ba. The blank space ν plays a

crucial role in the modeling process, since it allows the count of the number of steps

that event observations are being delayed. As a consequence, state ν is the initial

state of D, since no event has occurred yet.

The algorithm presented here can be considered a special case of that proposed

by [6] in the sense that there are no unobservable events to be considered here. The

structure of automaton D represents the evolution of a bu�er determined by SD(k)

regarding the occurrence of the events in Σ. The states of D represent the current

stored event queue and the transitions represent either event occurrences or actions

over event observations (release or deletion).

In order to label each state of automaton D, some operations over sequences

s ∈ (Σ ∪ {ν})∗ are required, as follows.

De�nition 3.8 Let Σν = Σ∪{ν} and let Q ⊆ Σ∗ν. We de�ne the following functions:

• Replacement function. It is the mapping rep : Q × (N \ {0}) → Q, such that

∀q = q1q2 . . . ql ∈ Q,

rep(q, i) =

{
q1q2 . . . qi−1νqi+1 . . . ql, if i ≤ l

unde�ned, otherwise.

• Cut function. It is the mapping cut : Q→ Q, where ∀q = q1q2 . . . ql ∈ Q,

cut(q) =


qiqi+1 . . . ql, if (∃i ≤ l)[(qi 6= ν)∧

(qk = ν,∀k ∈ {1, 2, . . . , i− 1})]
ν, if qk = ν, ∀k ∈ {1, 2, . . . , l}.

2

In order to illustrate functions rep and cut, let us consider a state q = ab ∈ Q.
We have that cut(rep(q, 1)) = cut(νb) = b, and cut(rep(q, 2)) = cut(aν) = aν.

Algorithm 3.1 computes automaton D, that generates all allowed shu�es of the

event occurrences and observation releases/deletions. The idea behind this algorithm

42

is to start from the initial state ν (empty queue), and, for a state xD = s, we

add to the right of s events σ that are allowed to occur according to SD(k), and

de�ne transitions labeled by σ connecting xD to a new state x′D = sσ. Regarding

the actions over the observation, if it is related to the �rst element of some state

x′′D = σs, both events σr and σd will be active in x′′D, de�ning transitions to state

xD = s; notice that event σ has been removed from queue σs. On the other hand,

if some event in the middle of the queue that forms state x′′′D = s1σ
1s2, where σ1 is

the �rst time event σ has happened in the queue that labels x′′′D, both events σr and

σd will lead the automaton to state x′′′′D = s1νs2; notice that, in this case, event σ is

replaced with ν.

Algorithm 3.1 Computation of automaton D

Input: Σ, ΣD, k
max = [kmaxσ1

, . . . , kmaxσn].

Output: D = (XD,Σa, fD,ΓD, x0,D).

1. x0,D ← ν and XD ← ∅.
2. Set Σr = ϕr(Σ), Σd = ϕd(ΣD), and Σa = Σ ∪ Σr ∪ Σd.

3. F ← x0,D, where F denotes a FIFO queue.

4. While F 6= ∅, do:
4.1. u← head[F]

4.2. If u = x0,D, then:

4.2.1. For each σ ∈ Σ:

Set fD(u, σ) = σ.

ΓD(u)← ΓD(u) ∪ {σ}.
Enqueue(F, σ)2.

4.2.2. XD ← XD ∪ {u}.
4.2.3. Dequeue(F).

4.3. Else:

4.3.1. Set ` = ‖u‖ and build I` = {1, 2, . . . , `}.
4.3.2. Denote u = σ1σ2 . . . σ` and create the set Iν = {y ∈ I` : (∃σy ∈

u)[σy = ν]}.
4.3.3. I`\ν ← I` \ Iν.
4.3.4. If ‖σyσy+1 . . . σ`‖ ≤ kmaxσy , for all y ∈ I`\ν, then:

For each σ ∈ Σ:

Set fD(u, σ) = uσ.

ΓD(u)← ΓD(u) ∪ {σ}.
Enqueue(F, uσ).

4.3.5. Set Σtemp = Σ.

2For those who are not familiar with queue manipulation, Enqueue (resp. Dequeue) is the
operation that inserts (resp. removes) an element in the last (resp. �rst) position of a queue.

43

4.3.6. For each y ∈ I`\ν:
If σy ∈ Σtemp.

Σtemp ← Σtemp \ {σy}.
σr ← ϕr(σ

y).

Set ũ = cut(rep(u, y)) and fD(u, σr) = ũ.

ΓD(u)← ΓD(u) ∪ {σr}.
If (ũ /∈ XD) ∧ (ũ /∈ F):

Enqueue(F, ũ).

If σy ∈ ΣD:

σd ← ϕd(σ
y).

Set fD(u, σd) = ũ.

ΓD(u)← ΓD(u) ∪ {σd}.
4.3.7. XD ← XD ∪ {u}.
4.3.8. Dequeue(F).

Algorithm 3.1 works as follows. It starts by creating the initial state x0,D in

Step 1, labeling it by ν, since no event has occurred yet and the set of states XD is

set as empty. Step 2 creates sets Σr (resp. Σd) by labeling each event of Σ (resp.

ΣD) with subscript r (resp. d) by means of the release (resp. deletion) function

ϕr(σ) (resp. ϕd(σ)), and then, builds the augmented event set Σa. Step 3 creates

a FIFO queue F and sets its �rst element as the initial state of D. Step 4 starts

a loop where all possible event occurrences and observation releases/deletions are

analyzed, which may require that new transitions and states be created in D. Notice

that Step 4 is repeated until F becomes empty, meaning that no new state needs to

be added. Step 4.1 chooses the �rst state u of queue F , and then, Step 4.2 checks

if it is the initial state. If so, then Algorithm 3.1 proceeds to Step 4.2.1, where

the transition function fD(ν, σ) = σ is de�ned for each event σ ∈ Σ, and the active

event set Γ(x0,D) of the initial state is updated; then, these states labeled with σ

are added to the queue F . After all states corresponding to the events of Σ have

been created, Step 4.2.2 adds state u to the set of states XD, and in the sequel,

Step 4.2.3 removes u from F . On the other hand, if the current state u is not the

initial state, Algorithm 3.1 skips to Step 4.3, where the length of u is measured,

i.e., ` = ‖u‖, and then, it creates a set whose elements are the positive integers

smaller or equal to `, i.e., I` = {1, 2, . . . , `}. Step 4.3.2 searches for the positions

of the blank spaces in the label of state u and then stores them in the integer set

Iν . Step 4.3.3 creates set I`\ν , which has the positions of all events that were not

released/deleted yet. Step 4.3.4 checks if every non released/deleted observation

can still be delayed, and, if so, it creates new transition functions fD(u, σ) = uσ for

every event σ ∈ Σ, updates the active event set Γ(u), and insert the created states

44

to queue F . In order to take into account observation releases, Step 4.3.5 creates

event set Σtemp that stores the events that can still be released from a given queue.

Step 4.3.6 works in the ascending order of y ∈ I`\ν , where for each σy ∈ Σtemp,

it removes σy from Σtemp, so that each event σ is analyzed only once, and then,

it sets the transition function by means of replacement and cut functions, updates

the active event set, and adds every new state created in this step to queue F ; in

addition, if σy is a deletable event, Step 4.3.6 also adds a transition labeled with

σd = ϕd(σ
y) representing the observation deletion of event σy. Step 4.3.7 adds u

to the set of states XD and, �nally, Step 4.3.8 removes u from the queue F .

We will now obtain the language generated by D, and to this end, let us �rst

introduce the following function .

De�nition 3.9 (Rearrangement function) Given an event set Σ =

{σ1, σ2, . . . , σn}, the rearrangement function χ : Σ∗ → 2Σ∗a is a mapping with

respect to SD(k) = {(σ1, kσ1), (σ2, kσ2), . . . , (σn, kσn)} and is de�ned as follows:

χ(s) = {sa ∈ P−1
a (s) : sa � (i) ∧ (ii)}

where, ∀σ ∈ Σ:

(i) N
(
sa, σ

)
≥ N

(
sa, ϕr(σ)

)
+N

(
sa, ϕd(σ)

)
;

(ii) ‖Pa(pre(sa, σiσ`))‖ − ‖Pa(pre(sa, σiσ))‖ ≤ kσ, where iσ = 1, . . . ,N (sa, σ) and

` ∈ {r, d}. 2

Condition (i) ensures that χ(s) always has at least the same number of event

occurrences as the sum of observation releases and deletions, and condition (ii)

ensures that SD(k) is not violated. Thus, rearrangement function χ returns all of

the possible order rearrangement of observation releases and deletions regarding the

step delay bound SD(k). The rearrangement function can be extended to languages

by applying it to each one of the sequences in the language, i.e., χ(L) =
⋃
s∈L χ(s).

For example, given Σ = {a, b}, SD(k) = {(a, 1), (b, 0)} and ΣD = ∅, for a

sequence s = bab, we have that χ(s) = {bbraarbbr, bbrabarbr, bbrabbr, bbrabbrar}.
With the help of χ(s), we can state the following result.

Lemma 3.1 The language generated by automaton D with respect to the event set

Σ and the step delay bound SD(k) is L(D) = χ(Σ∗) 2

Proof. The proof is omitted, since the algorithm for obtaining automaton D is a

special case of Algorithm 1 by [6].

45

Σ Σ
0 1

Figure 3.7: Model of a not CSOE system.

Let us now build automaton Gshf = (Xshf ,Σa, fshf ,Γshf , x0,shf) = G‖D, which

models the shu�e of event occurrences subject to observation releases and deletions

determined by SD(k). Notice that, with the help of Lemma 3.1, it is not di�cult

to see that L(Gshf) = P−1
a (L) ∩ χ(Σ∗) = χ(L).

It is not di�cult to see that the events released in a shu�ed sequence of Gshf may

lead the intruder to estimate a secret state or even conclude that some event occur-

rence is not allowed, thus violating Speci�cation S1 and Assumption I4, respectively.

This problem can be solved if automaton Gshf is synchronized with an automaton

Gint that models the allowed state estimations for the intruder, determined by Spec-

i�cation S1 and Assumption I4. Automaton Gint is formed by removing all secret

states from G and then adding subscript r to all events that label its transitions, i.e.,

Gint = Ac(Xint,Σr, fint,Γint, x0,int), where Xint = X \ Xs, fint(x, ϕr(σ)) = f(x, σ),

if f(x, σ) ∈ X \ Xs or unde�ned, otherwise, Γint(x) = {σr ∈ Σr : fint(x, σr)!}, and
x0,int = {x0}∩Xint. Notice that Lint = {ϕr(s) : (s ∈ L)∧(f(x0, t) ∈ X\Xs, ∀t ∈ s)}.

Finally, let us construct automaton GSD
a = (XSD

a ,Σa, fint,Γ
SD
a , xSD0,a) =

Gshf‖Gint, which gives us all shu�ed sequences so as the released observations nei-

ther lead the intruder to estimate secret states nor lie outside the modeled behavior.

Thus, we may conclude that L(GSD
a) = LSDa = χ(L) ∩ P−1

r (Lint).

We now present a necessary and su�cient condition for a regular language L to

be CSOE with respect to Σ, ΣD, SD(k) and Xs, expressed in terms of LSDa .

Lemma 3.2 A system, whose generated language and bounded delay augmented

language are L and LSDa , respectively, is CSOE with respect to SD(k), Xs and ΣD

if, and only if, Pa(L
SD
a) = L.

Proof. Since χ(L) = P−1
a (L)∩χ(Σ∗) and LSDa = χ(L)∩P−1

r (Lint), we may conclude

that LSDa ⊆ P−1
a (L), and thus Pa(LSDa) ⊆ Pa(P

−1
a (L)) = L. Let us now prove that

the system is CSOE if, and only if, L ⊆ Pa(L
SD
a).

(⇐) Assume that the system is not CSOE but that L ⊆ Pa(L
SD
a). Consider

the system depicted in Figure 3.7, where Σ = {σ1, σ2, . . . , σn} and whose generated

language is L = Σ∗, and assume that Xs = {1} (thus Lint = {ε}) and ΣD = ∅,
i.e., no event observation can be deleted. If we set SD(k) = {(σ1, 0), . . . , (σn, 0)},
then it is not di�cult to see that the system is not CSOE w.r.t. SD(k), Xs and

ΣD. However, since P−1
r (Lint) = (Σa \ Σr)

∗ = Σ∗ and χ(L) =
(⋃n

i=1 σiϕr(σi)
)∗
, we

may conclude that LSDa = {ε} ∪ Σ. Thus, Pa(LSDa) = LSDa , which contradicts the

assumption that L ⊆ Pa(L
SD
a).

46

(⇒) Assume that the system is CSOE but that L * Pa(L
SD
a). Thus, there exists

s ∈ L such that s /∈ Pa(LSDa), i.e., for all sa ∈ P−1
a (s), we have that sa /∈ LSDa . In

addition, since LSDa = χ(L) ∩ P−1
r (Lint), we may conclude that ∃s ∈ L such that

(sa /∈ χ(L)) ∧ (sa /∈ P−1
r (Lint)),∀sa ∈ P−1

a (s), which means that there exists some

sequence s ∈ L that can not be shu�ed and, at the same time, lies outside the

allowed state estimation for the intruder, which means that s reaches a secret state,

and also, there is no allowed shu�ing that makes s looks like a sequence in Gint,

implying that the system is not CSOE w.r.t. SD(k), Xs and ΣD, which contradicts

the initial assumption.

Remark 3.4 It is immediate from Lemma 3.2 that in order to verify if a given

system modeled by an automaton G is CSOE with respect to SD(k), Xs, Σ and

ΣD, we �rst compute Obs(G
SD
a ,Σ), mark all states of both Obs(GSD

a ,Σ) and G, and

then check if both Obs(GSD
a ,Σ)∩Comp(G) and Comp(Obs(GSD

a ,Σ))∩G have empty

marked language, where the Comp(·) is an operation that generates the complement

language regarding a marked language (the readers are referred to [1]). 2

3.4.2 Algorithm for realization of the CSO enforcer

Before we proceed to the computation of the automaton that implements the CSO

enforcer, we present another necessary and su�cient condition that guarantees the

CSO enforceability of a system through changes and deletions in the order of event

observations, this time, in terms of LOEa .

Lemma 3.3 A system modeled by automaton G = (X,Σ, f,Γ, x0), is CSOE with

respect to ΣD ⊆ Σ, Xs ⊆ X and SD(k) = {(σ1, kσ1), (σ2, kσ2), . . . , (σn, kσn)} through
changes and deletions in the order of event observations if, and only if, there exists a

non empty pre�x closed augmented language LOEa obtained from LSDa whose sequences

satisfy the Opacity-Enforcer Conditions, i.e., ∃LOEa ⊆ LSDa : LOEa 6= ∅. 2

Proof.

(⇒) If the system is CSOE w.r.t ΣD, Xs and SD(k), i.e. ∀s : f(x0, s) ∈ Xs, ∀t ∈
L/s, ∃u ∈ L/st and ∃v ∈ Pdil(Dil(Sp(stu)))∩L such that ∀w ∈ v, f(x0, w) ∈ X\Xs.

The proof is constructive and, for that, we will analyze two cases: (i) sequences

s that reach a secret state, i.e., s ∈ L : f(x0, s) ∈ Xs, and; (ii) sequences s whose

pre�xes never lead to a secret state and whose continuations will never lead to a

secret state either, i.e., s ∈ L : (f(x0, s) ∈ X \Xs) ∧ (f(x0, st) ∈ X \Xs, ∀t ∈ L/s).
Notice that, we do not consider sequences s ∈ L that have a continuation that leads

to a secret state, since, in this case, the CSOE requires the knowledge about future

event occurrences after s.

47

For case (i), according to De�nition 3.3, for all stu ∈ L, there exists an augmented

sequence sa ∈ Σ∗a : (Pa(sa) = stu) ∧ (sa � SD(k)) ∧ (N (sa, ϕr(σ)) +N (sa, ϕd(σ)) =

N (sa, σ),∀σ ∈ Σ) ∧ (f(x0, ϕ
−1
r (wr)) ∈ X \ Xs,∀wr ∈ Pr(sa)). consequently,

sa ∈ LSDa , sa � OEC1 (for the case where sa has no continuation in LSDa ,

the number of event occurrences is equal to the sum of released and deleted

observations), and, sa � OEC2 (since, if ∃σ ∈ Σ : Pa(sa)σ ∈ L, we can

set t′ = tuσ, and, according to De�nition 3.3, there must exists u′ ∈ L/st′

such that there exists s′a ∈ LSDa : s′a � SD(k) ∧ sa ∈ s′a, and thus, there

exists s′′a ∈ s′a : Pa(s
′′
a) = stuσ = Pa(sa)σ). In case (ii), for sequences

s ∈ L : (f(x0, s) ∈ X \ Xs) ∧ (f(x0, st) ∈ X \ Xs,∀t ∈ L/s), there exists

sa ∈ [
⋃
σ∈Σ σ(ϕr(σ) + ϕd(σ))]∗ ∩ LSDa such that Pa(Sa) = sa, sa � OEC1 (since

the observation of each event σ in sa is immediately released/deleted after its

occurrence) and sa � OEC2 (since, if ∃σ ∈ Σ : Pa(sa)σ ∈ L, we can set s′ = sσ

and �nd s′a : sa ∈ s′a and Pa(s
′
a) = s′). Therefore we can form a set L′a with

sequences of case (i) and (ii), and their pre�xes, where every sequence in L′a satis�es

simultaneously Conditions OEC1 and OEC2, and so, by setting LOEa = L′a, we

have that ∃LOEa ⊆ La : LOEa 6= ∅.

(⇐) Assume that the system is not CSOE w.r.t. ΣD, Xs and SD(k). Ac-

cording to De�nition 3.3, ∃s : f(x0, s) ∈ Xs, and ∃t ∈ L/s, ∀u ∈ L/st, and

∀v ∈ Pdil(Dil(Sp(stu))) ∩ L is such that ∃w ∈ v, f(x0, w) ∈ Xs. Consider

all sequences sa ∈ Σ∗a such that Pa(sa) = stu and ϕ−1
r (Pr(sa)) = v. Since

∃w ∈ v, f(x0, w) ∈ Xs, there exists wa ∈ sa such that ϕ−1
r (Pr(wa)) = w, and

therefore wa /∈ LSDa . Let wan , ‖wan‖ = n ∈ N be the longest pre�x of wa such that

wan ∈ LSDa . Assume that wan ∈ LOEa . Thus, wan cannot have a continuation in

LOEa since it does not have one in LSDa , i.e., LOEa /wan = {ε}. We will now prove

that LOEa = ∅ by showing that wprea /∈ LOEa ,∀wprea ∈ wan . If there exists σ ∈ Σ

such that N
(
wan , σ

)
> N

(
wan , ϕr(σ)

)
+ N

(
wan , ϕd(σ)

)
, then Condition OEC1

would be violated, and thus, w′an /∈ LOEa . Assume now that Condition OEC1

holds true. Since wan ∈ sa, we may conclude that Pa(wan) ∈ Pa(sa) = stu. If

Pa(wan) 6= stu, then ∃σ ∈ Σ : Pa(wan)σ ∈ L. On the other hand, if Pa(wan) = stu

and since Condition OEC1 holds true, all event observations of sequence stu were

either released or deleted, which is a contradiction, since in this case there would

exist wprea ∈ wan : f(x0, ϕ
−1
r (Pr(w

pre
a))) ∈ Xs, which implies that wan /∈ LSDa .

Since wan ∈ LOEa and ∃σ ∈ Σ : Pa(wan)σ ∈ L, according to OEC2, we have

that w′an ∈ LOEa :
(
wan ∈ w′an

)
∧
(
Pa(w

′
an) = Pa(wan)σ

)
, which is a contradic-

tion, since we assumed that LOEa /wan = {ε}, and thus, wan /∈ LOEa . Consider now

sequence wan−1 = wanσa whose length is n − 1 and σa ∈ Σ∗a. If σa ∈ Σr ∪ Σd,

then Pa(wan) = Pa(wan−1), and since ∃σ ∈ Σ : Pa(wan)σ ∈ L, we may con-

48

clude that ∃σ ∈ Σ : Pa(wan−1)σ ∈ L. On the other hand, if σa ∈ Σ, then

Pa(wan) = Pa(wan−1)σa, which implies that ∃σa ∈ Σ : Pa(wan−1)σa ∈ L . In both

cases, wan−1 have a continuation according to OEC2, which is a contradiction un-

less wan−1 /∈ LOEa . This procedure is carried out for all wprea ∈ wan . It is worth

remarking that ∀sa ∈ LOEa : ‖sa‖ = 1, we have that sa ∈ Σ, since the �rst event of

the augmented sequences must always be an occurrence in the system. In addition,

for wa0 = ε, there exists wa1 = σi ∈ Σ : Pa(wa0)σi = σi ∈ L but there does not exist

s′a ∈ LOEa such that Pa(s′a) = σi, since wa1 = σi and its continuations are not in

LOEa . Therefore, ε /∈ LOEa , and since this language is pre�x closed, we may conclude

that LOEa = ∅.
We now propose Algorithm 3.2, which computes the realization of the Opacity-

Enforcer automaton, to be denoted asROE = (XOE,Σa, fOE,ΓOE, x0,OE), whose gen-

erated language is LOEa . The idea behind Algorithm 3.2 is to prune the bounded de-

lay shu�ed language LSDa of GSD
a so as to simultaneously satisfy Conditions OEC1,

OEC2, UC1, UC2 and UC3. To this end, all sequences that do not satisfy those

conditions are recursively removed from the original augmented language LSDa . This

procedure is repeated until the remaining language satisfy the desired behavior of

the Opacity-Enforcer. We will assume with no harm that the input automaton GSD
a

is CSOE.

In addition, in order for the desired model of the Opacity-Enforcer to both never

inhibit plant occurrences and ensure OEC2, we must verify, for each state xOE =

{x, xD, xint} of automaton ROE, the existence of some sequence sa that satis�es

fOE(x0,OE, sa) = xOE and f(x0, Pa(sa)σ)!, for some σ ∈ Σ. If such a sequence sa
exists, then there must exist some ta ∈ (Σr ∪ Σd)

∗σ such that fOE(x0,OE, sata)!. To

this end, we �rst de�ne the Opacity-Enforcer action reach.

De�nition 3.10 (Opacity-Enforcer action reach) Given an automaton Ga =

(Xa,Σa, fa,Γa, x0,a), the Opacity-Enforcer action reach is a mapping OEAR : Xa →
2Xa that outputs all states x′a reached from xa through a sequence formed with events

associated with actions taken by the Opacity-Enforcer. It is formally de�ned as

follows.

OEAR(xa) = {x′a ∈ Xa : (∃sa ∈ (Σr ∪ Σd)
∗)[fa(xa, sa) = x′a]}. 2

Having calculated all the states x′a ∈ XOE reached from xa ∈ XOE through

actions taken by the Opacity-Enforcer, the next step is to compute among the active

event sets of the states in OEAR(xa) those events that are plant events. To this

end, we de�ne the following function.

De�nition 3.11 (Next) Given an automaton Ga = (Xa,Σa, fa,Γa, x0,a), the func-

tion next is a mapping NX : Xa → 2Σ as follows.

49

NX(xa) =
(⋃
x′a∈OEAR(xa)

Γa(x
′
a)
)
∩ Σ. 2

Finally, the recursion of Algorithm 3.2 is performed as follows: we start with

LOEa0 = LSDa , and, at each iteration, we create language LOEai+1
= LOEai \ LUBai , where

LUBai = {s ∈ LOEai : s � UB1 ∨ UB2 ∨ UB3}. It stops when LUBai = ∅.

Algorithm 3.2 Computation of automaton ROE

Input: GSD
a = (XSD

a ,Σa, fint,Γ
SD
a , xSD0,a).

Output: ROE = (XOE,Σa, fOE,ΓOE, x0,OE).

1. Set V = GSD
a = (XV ,Σa, fV ,ΓV , x0,V).

2. �ag ← true.

3. While �ag = true, do:

3.1. �ag ← false.

3.2. For each xV = (x, xD, xint) ∈ XV :

3.2.1. If (xD 6= ν and ΓV (xV) = ∅) ∨ ((Γ(x) ∩ ΓD(xD)) \ NX(xV) 6= ∅),
then XV ← XV \ {xV }, V ← Ac(V), �ag ← true.

4. For each xV = (x, xD, xint) ∈ XV :

4.1. If ΓV (xV) ∩ Σr 6= ∅, then set ΓV (xV) = ΓV (xV) ∩ Σr and V = Ac(V).

4.2. If ΓV (xV) ∩ Σ 6= ∅, then set ΓV (xV) = ΓV (xV) ∩ Σ and V = Ac(V).

4.3. If |ΓV (xV) ∩ (Σr ∪ Σd)| > 1, then:

4.3.1. Denote xD = q1 . . . q‖xD‖ and set i = 1.

4.3.2. While ({ϕr(qi), ϕd(qi)} ∩ ΓV (xV) = ∅) ∧ (i ≤ ‖xD‖), do i = i+ 1.

4.3.3. Set ΓV (xV) = ΓV (xV) ∩ {ϕr(qi), ϕd(qi)} and V = Ac(V).

5. Return ROE = V = (XOE,Σa, fOE,ΓOE, x0,OE).

We now explain Algorithm 3.2 in details. Step 1 creates a copy V of automaton

GSD
a . Step 2 sets a �ag equal to true, that will be used in the recursion of Step 3,

which removes all states xV from automaton V that satis�es at least one of the

following conditions: (i) ΓV ((x, xD, xint)) = ∅ and xD 6= ν, which means that some

event observation is being held forever; (ii) there is some event σ ∈ Σ allowed to

occur in x (σ ∈ Γ(x)) that does not violate SD(k) (σ ∈ ΓD(xD)) but not allowed

to occur in any of the states reached through actions taken by the Opacity-Enforcer

NX(OEAR(xV)), meaning that some event σ that can occur in G is being inhibited,

which is an action that the Opacity-Enforcer can not perform. Step 3 is repeated

until the �ag becomes false, which is only possible if no state in XV needs to be

deleted. Thus, Step 3 of Algorithm 3.2 enforce Conditions OEC1 and OEC2.

The strategy of shu�ing event occurrences with their observations is likely to

leave V with non-unique decision, i.e., a state of V may have events of Σ, Σr and

50

Σd simultaneously in its active event set. In this case, the Opacity-Enforcer must

either wait for the arrival of an event occurrence, release an event observation or

even delete it. Such non-unique decisions are removed in Step 4, where we im-

pose the following priority order for the Opacity-Enforcer actions. Firstly, release

an observation event σr ∈ Σr whenever it is possible (Step 4.1); secondly, wait

for some event occurrence in the plant σ ∈ Σ (Step 4.2), and; �nally, delete an

event observation σd ∈ Σd only as last resource, hence, the least prioritized decision.

In addition, Step 4.3 guarantees that the Opacity-Enforcer will either release or

delete exactly one observation at each state; thus, if there is a state that has two

or more allowed events to be released, Steps 4.3.1 and 4.3.2 �nd the event among

them that occurred �rst and removes the others, which is performed in Step 4.3.3.

Steps 4.1, 4.2 and 4.3 implement Unicity Conditions UC1, UC2 and UC3, re-

spectively. Finally, Step 5 computes the realization of Opacity-Enforcer automaton

ROE = V .

Remark 3.5 (Computational complexity of Algorithm 3.2) All of the steps

of Algorithm 3.2 are either constant or linear with respect to the number of states

of V , except Step 3, where at least one state of automaton V is removed each

time Step 3 is repeated; therefore, the �st time Step 3 is executed, |XV | states
are analyzed, the second time, |XV | − 1 states are analyzed, and as consequence, in

the worst case (1 + |XV |) × |XV |/2 states will be checked until V becomes empty,

which implies that the computational complexity of Algorithm 3.2 is O(|XV |2). In

addition, since (i) V = GSD
a = G‖D‖Gint, (ii) |Xint| ≤ |X| and (iii) XD = 1 +[∑k

j=0(|Σ|+ 1)j
]
× |Σ| ≤ c× |Σ|k+1 [6], where k = max(|kσ1|, . . . , |kσn|) and c is a

big enough natural number, we may conclude that V has at most c × |X|2 × |Σ|k+1

states, and then, we may conclude that Algorithm 3.2 is O(|X|4 × |Σ|2k+2). Notice

that, starting with the observed model requires a priori computation of the observer,

and so, |X| is O(2|Xp|), where |Xp| is the cardinality of the set of states of the plant.
Thus, with respect to the plant model, the worst case computational complexity of

our method becomes O(24|Xp| × |Σ|2k+2).

Theorem 3.1 A system whose observer automaton G = (X,Σ, f,Γ, x0) is CSOE

through changes and deletions in the order of event observations with respect to

ΣD ⊆ Σ, Xs ⊆ X and SD(k) = {(σ1, k1), (σ2, k2), . . . , (σn, kn)} if, and only if,

automaton ROE is such that L(Obs(ROE,Σ)) = L, i.e., Pa(L
OE
a) = L. 2

Proof. (⇒) Assume that the system is CSOE w.r.t. ΣD, Xs and SD(k). By

construction, LSDa = P−1
a (L)∩χ(L)∩P−1

r (Lint) and LOEa ⊆ LSDa , which implies that

LOEa ⊆ LSDa ⊆ P−1
a (L), and therefore, Pa(LOEa) ⊆ L.

We will now prove that L ⊆ Pa(L
OE
a) by induction on the length of sequences.

51

(i) s = ε ∈ L. According to Lemma 3.3, LOEa 6= ∅, which implies that ε ∈
Pa(L

OE
a).

(ii) Assume that for all sequence s = sk ∈ L such that ‖sk‖ ≤ k, there exists at

least one sequence sa,k ∈ LOEa such that Pa(sa,k) = sk.

(iii) Now, consider sequences sk+1 = skσ ∈ L. According to Lemma 3.2, L =

Pa(L
SD
a), and thus, there exists sequences sa,k+1 ∈ LSDa such that Pa(sa,k+1) =

sk+1. Notice that automaton ROE is obtained by pruning automaton V , which

is a copy of GSD
a , whose generate language is LSDa . Thus, if all sequences sa,k+1

are removed in Step 3 of Algorithm 3.2, then all sequences whose projections

have length k + 1 violate either Condition OEC1 or OEC2, which means

that LSDa is not CSOE, contradicting the initial assumption. Thus, at least one

sequence sa,k+1 : Pa(sa,k+1) = sk+1 remains in V after Step 3, and hence, there

exists at least one sequence sa,k+1 ∈ LOEa such that Pa(sa,k+1) = sk+1. Notice

that, if a sequence s′a,k+1 is removed from LSDa in Step 4 of Algorithm 3.2,

then there must exist another sequence s′′a,k+1 such that Pa(s′′a,k+1) = sk+1.

Thus, L ⊆ Pa(L
OE
a), which implies that L = Pa(L

OE
a).

(⇐) Assume that L = Pa(L
OE
a). Since L(ROE) ⊆ L(GSD

a), we have that

L(Obs(ROE,Σ)) ⊆ L(Obs(GSD
a ,Σ)), therefore, L ⊆ Pa(L

SD
a). By construction,

LSDa = P−1
a (L)∩χ(L)∩P−1

r (Lint), which implies that LSDa ⊆ P−1
a (L), and therefore,

Pa(L
SD
a) ⊆ L. Therefore, L ⊆ Pa(L

SD
a) ⊆ L, which implies that L = Pa(L

SD
a), and

so, according to Lemma 3.2, the system is CSOE w.r.t. ΣD, Xs and SD(k).

Remark 3.6 Given a system that is CSOE w.r.t. ΣD, Xs and SD(k), it is not

di�cult to see that, after the computation of automaton GSD
a and the execution of

Algorithm 3.2, the language LOEa generated by the resulting automaton ROE is such

that all of its sequences are in accordance with Conditions OEC1-OEC2 and UC1-

UC3. In addition, ROE is the realization of the Opacity-Enforcer, keeping track not

only of the events executed by the system but also of the release and deletion of their

observations. Notice that, if we input an automaton GSD
a whose generated language

is not CSOE, then Step 3 of Algorithm 3.2 will remove all sequences from V , and

thus, the obtained automaton ROE will be empty. This result is in accordance with

Lemma 3.3, since when a system is not CSOE, either LOEa = ∅ or there exists some
sequence sa ∈ LOEa that violates Conditions OEC1 or OEC2. The latter cannot

happen since Step 3 enforces Conditions OEC1 and OEC2. 2

According to Theorem 3.1, automaton ROE obtained according to Algorithm 3.2

satis�es condition OE2. In order to show that the realization of automaton ROE

solves the problem of opacity enforcement, we now must prove that ROE also satis�es

condition OE1. This result is presented in Proposition 3.1 as follows.

52

Proposition 3.1 Assume that the system modeled by G is not CSO with respect to

Xs and Σ and de�ne Xs,OE = {xOE = (x, xD, xint) ∈ XOE : x ∈ Xs} as the set of

secret states of automaton ROE. Then, automaton ROE obtained from G according

to Algorithm 3.2 is CSO with respect to Xs,OE and Σr.

Proof. All sequences sa ∈ LOEa that reaches secret states of Xs,OE, i.e.,

fOE(x0,OE, sa) ∈ Xs,OE, are such that f(x0, Pa(sa)) ∈ Xs, since its �rst component is

a secret state. In addition, according to De�nition 3.5 and 3.7, f
(
x0, ϕ

−1
r

(
Pr(sa)

))
∈

X \Xs, since its third component is not a secret state. Since sequence ϕ−1
r

(
Pr(sa)

)
reaches a non secret state, it will be, according to De�nition 3.5 and 3.7, aug-

mented so as its projections over Σ and Σr correspond to the same sequence, and

thus, there must exist a sequence s′a ∈ LOEa such that Pr(s′a) = Pr(sa) and that

Pa(s
′
a) = ϕ−1

r

(
Pr(sa)

)
, which implies that there exists a state x′ ∈ X \Xs such that

f(x0, Pa(s
′
a)) = x′, and, as a consequence, there exists a state x′OE = (x′, x′D, x

′
int) ∈

XOE \Xs,OE such that fOE(x0,OE, s
′
a) = x′OE. Consequently, automaton ROE is CSO

with respect to Xs,OE and Σr.

Remark 3.7 According to Algorithms 3.1 and 3.2, there are two trivial ways to

enforce CSO w.r.t. ΣD, Xs and SD(k). The �rst one is by setting kσi in�nite,

i = 1, . . . , |Σ|, and ΣD = ∅, i.e., all event observations can be held inde�nitely and

none of them is deletable. In this case, the resulting enforcer automaton will be

ROE = G, which implies that LOEa = L. Notice that, Pr(L
OE
a) = ε, meaning that the

Opacity-Enforcer releases no observation. The second trivial way to enforce CSO

is by setting each kσi = 0, i = 1, . . . , |Σ| and ΣD = Σ, i.e., no event observation

can be delayed but all of them are deletable. Thus, the language generated by the

resulting enforcer automaton ROE will be such that LOEa = {sa ∈
(⋃

σ∈Σ σϕd(σ)
)∗

:

Pa(sa) ∈ L}, meaning that every event observation is deleted immediately after its

occurrence. The corresponding Opacity-Enforcer automaton can be constructed as

follows. For each transition f(x, σ) = y, we �rst remove it, and then add state x′

and transitions f(x, σ) = x′ and f(x′, σd) = y. Notice that, in this case we also have

that Pr(L
OE
a) = ε. In both cases, the estimation of the intruder will cease at the

initial state, which we assumed to be a non secret state. 2

3.5 Example

In order to illustrate the CSO enforcing strategy proposed here, consider automaton

G shown in Figure 3.8, where the initial state is x0 = 0, the observable event set is

Σ = {a, b, c, d} and the set of secret states is Xs = {5}. Notice that the model for

state estimation of both, legitimate receiver and intruder, is given by G, since all of

its events are observable.

53

0

1 2

4 53

b, c
a

b

c

d

a

d a

d

Figure 3.8: Automaton G used to illustrate the CSO enforcement strategy.

a

ν

c d

aaac adab

aν

b

a b
d

dr, dd

dr, dd

cr br

br

ar

ar

d

c

cr

ar ararac b
ar

dd

db

da

dc

dν
dr, dd

dr, dd

dr, dd

dr, dd

d

a

b

c

cr

ar

br
dr, dd

Figure 3.9: Automaton D

Let us consider the following setup for CSO enforcement: observation release of

events a and d can be held for at most one step, whereas events b and c must be

released immediately after their occurrences. In addition, only event d is deletable.

Thus, we set SD(k) = {(a, 1), (b, 0), (c, 0), (d, 1)} and ΣD = {d}. According to

Theorem 3.2, in order to verify if the language generated by the system is CSOE

with respect to the current setup, we compute GSD
a and verify if Pa(LSDa) = L. To

this end, we build automaton D according to Algorithm 3.1, shown in Figure 3.9.

Then, we create automaton Gint as a copy of G, remove all secret states (in the

example, state 5 only), take its accessible part and add subscript r to all of its

events. Finally, we build automaton GSD
a = G‖D‖Gint. Proceeding according to

Remark 3.4, we may conclude that the system is CSOE w.r.t. ΣD, Xs and SD(k).

Due to its size, the state transition diagram of GSD
a has not been depicted.

Therefore, we can proceed to the construction of the Opacity-Enforcer automaton

ROE. Algorithm 3.2 starts by setting V = GSD
a and �ag = true in Steps 1 and 2,

respectively. Step 3 will keep deleting undesirable states of V until there is no state

xV = (x, xD, xint) that violates Conditions OEC1 or OEC2, which is performed in

Step 3.2.1. Figure 3.10 shows part of automaton V when Step 3.2.1 is executed

for the �rst time. Notice that, the red colored states violate Condition OEC1,

xD 6= ν ∧ ΓV (xV) = ∅, which means that these states have some observation being

54

{0}, ν, {2} {3}, d, {2}

{3}, ν, {2}

{4}, a, {2}

{1}, b, {2}

{1}, c, {2}

{2}, ac, {2}{5}, ab, {2}

d

dd

b

c

b
c

{0}, d, {2}
dd

{0}, aν, {1}

.

ar

. . .

. . .
. . .

. . .

. . .

a

a

{4}, da, {2}
dd

. . .

a

Figure 3.10: Part of V that shows undesirable states.

held inde�nitely, and, thus, they must be removed. When those states are removed,

the blue colored states become undesirable the second time Step 3.2.1 is executed,

since they violate Condition OEC2, (Γ(x) ∩ ΓD(xD)) \ ΓV (xV) 6= ∅, meaning that

some events σ ∈ Σ should be inhibited, which is an action that cannot be performed

by the Opacity-Enforcer, and so, these states must also be removed. It is worth

remarking that Algorithm 3.2 always sets V = Ac(V) at the end of Step 3.2.1.

When all the remaining sequences satisfy simultaneously Conditions OEC1 and

OEC2, Algorithm 3.2 skips to Step 4, where all transitions from automaton V

that violate Conditions UC1�UC3 are removed. Figure 3.11 shows red colored

transitions and states that must be removed due to the existence of possible non

unique actions. Notice that, state ({2}, a, {1}) has transitions labeled with ar and

d, and so, Step 4.1 will remove the transition labeled with d, in order for the

Opacity-Enforcer to release an observation as soon as possible (UC1). In state

({3}, d, {0}), the Opacity-Enforcer may either wait for the occurrence of a or delete

the observation of d; therefore, Step 4.2 will remove the transition labeled with

dd, since observation deletions must be performed only as the last resource (UC2).

Finally, state ({2}, ac, {0}) has two observation releases de�ned, and so, Step 4.3

will remove the transition labeled with cr, since event a happened before c (UC3).

Finally, Step 5 computes ROE = V , which is shown in Figure 3.12.

Notice that the components in state xOE = (x, xd, xint) of automaton ROE, shown

in Figure 3.12, provide the following information: component x shows the current

state of the system, xD shows the events that are being held by the Opacity-Enforcer,

and, xint is the intruder's state estimation. In addition, automaton ROE keeps track

of both the system dynamics and the observation released to the intruder. For

55

{3}, ν, {0}

{2}, aν, {1} {0}, ad, {1}

dd

d

ar

cr

ar

a

{0}, ν, {0}

{3}, d, {0}

{4}, a, {0}

{2}, ac, {0} {2}, c, {4} {2}, a, {1}

{2}, ν, {2}

{0}, d, {2}

ar

d

c
ar

cr

{4}, da, {0} a

dr

d

. . .

. . .

. . .
. . .

. . .

Figure 3.11: Part of V that shows decision con�icts.

{0}, ν, {0}

{1}, c, {0} {1}, b, {0} {3}, d, {0}

{1}, ν, {1} {4}, da, {0} {4}, a, {0}

{2}, ac, {0} {5}, ab, {0}
{2}, a, {1}

{2}, c, {4} {5}, aν, {1}

{2}, ν, {2} {5}, ν, {2}

{0}, d, {2}

c

b d

a

cr br
a

dd

c b

ar br

cr ar

dr

d d

ar

a

Figure 3.12: Automaton ROE that realizes the opacity enforcement strategy.

56

example, in automaton ROE depicted in Figure 3.12, when G generates sequence

s = dab, i.e., the system reaches the secret state 5, the corresponding augmented

sequence in ROE will be sa = daddbbrar, which determine the actions to be taken by

the Opacity-Enforcer and also their order. In this case, sequence sa denotes that the

Opacity-Enforcer will initially hold events d and a, and then delete the observation

of d (dd) and wait for event b to occur before releasing the observations of b and

a (brar). Since the sequence of released events is brar, the intruder estimates the

system as being in state 2. Finally, notice that all information is represented in the

state of automaton ROE reached by sequence sa, namely, state xOE = ({5}, ν, {2}),
which denotes that the current state of G is x = 5, there is no event being held

(xD = ν), and the intruder estimates state xint = 2.

3.6 Mitigating the negative e�ect of opacity en-

forcement on the legitimate receiver's state es-

timate capability

One of the criticisms to opacity theory is that, when the information is also intended

to be sent to some receiver that needs to be aware of the system evolution, both

the intruder and the legitimate receiver are misled when opacity is enforced. In this

section, we present a protocol that, when applied to the strategy proposed here, is

capable of mitigating the negative e�ect of opacity enforcement on the capability of

the legitimate receiver to accurately estimate the current state of the system. This

protocol leverages the legitimate receiver's knowledge on the actions to be taken by

the Opacity-Enforcer in order to re�ne the estimation of the current state of the

system.

We recall that the state estimation of the legitimate receiver and the intruder

may di�er since the legitimate receiver has complete knowledge on the opacity en-

forcement strategy applied to the system. The estimates of the legitimate receiver

are based on the �rst component of each state of automaton ROE, whereas the es-

timate of the intruder is based on its third component. In this regard, the model of

the state estimates of the legitimate receiver is obtained by computing the observer

automaton Gest,R = Obs(ROE,Σr, 1), where the index 1 is used to indicate that the

state estimations are computed with respect to the �rst component of the states

of ROE. On the other hand, the real state estimations of the intruder are given

by the observer automaton Greal,int = Obs(ROE,Σr, 3), which can be also obtained

by computing the accessible part of automaton G after all secret states have been

removed and its transitions labeled with subscript r.

57

{0, 1, 2, 3, 4, 5}

{1, 2, 5} {1, 2} {2}

{0, 2, 5} {0, 2}

br

ar

dr

cr ar

dr

ar cr

br, cr

ar

dr

ar

cr

{0}

{2}

{4}{1}

(a) (b)

Figure 3.13: Automata Gest,R (a) and Greal,int (b) with the states capable of being
estimated by the legitimate receiver and the intruder, respectively.

Example 3.7 Consider the plant modeled by automaton G, shown in Figure 3.8,

and whose Opacity-Enforcer automaton ROE is depicted in Figure 3.12. The le-

gitimate receiver's state estimates of the current state of the system after each

event release is given by automaton Gest,R = Obs(ROE,Σr, 1) shown in Fig-

ure 3.13(a), whereas the states the intruder estimates correspond to automaton

Greal,int = Obs(ROE,Σr, 3), depicted in Figure 3.13(b). Notice that, when event

a is released (occurrence of ar) the intruder estimates that the system is in state 4,

whereas the legitimate receiver is sure that the systems is in state 2, which is actually

correct, since, according to Figure 3.12, event a is only released after the occurrences

of either sequences ac or dac in the plant. In addition, when the Opacity-Enforcer re-

leases events br and ar, in this order, the intruder believes that the plant is in state 2,

whereas the legitimate receiver has a more accurate state estimate ({0, 2, 5}), which
means that the plant may have visited the secret state. 2

It is worth remarking that, if the existence of the Opacity-Enforcer becomes pub-

lic (Assumption I3, regarding the intruder being unaware of the Opacity-Enforcer,

is dropped), then the state estimation model used by the intruder becomes identical

to that of the legitimate receiver, since the intruder is now aware of the opacity-

enforcement strategy. Notice that, in this case, the intruder is still unable to accu-

rately infer secret states when the current state of the system corresponds to them,

and thus, the system is still current-state opaque from the point of view of the

intruder when the strategy for CSO enforcement is publicly known.

By dropping Assumption I1, which states that the intruder has complete knowl-

edge of the system, and then by assuming that the model of the system that is

publicly known may di�er from its real model, the legitimate receiver's estimation

can be further improved if the information regarding the real sequence that will be

executed by the plant is known a priori. To this end, let Ge be the automaton whose

generated language is formed with the real sequences that will be executed by the

58

0

2

4

5b

c
d

a

d

Figure 3.14: Automaton Ge whose generated language corresponds to the actual
sequences to be executed by the plant.

plant. Algorithm 3.3 presents the construction of automaton Ge
est,R with the state

estimation of the legitimate receiver, given that it is aware of Ge.

Algorithm 3.3 Computation of automaton Ge
est,R

Input: ROE and Ge.

Output: Ge
est,R.

1. Compute Re
OE = Ge‖ROE.

2. Compute Ge
est,R = Obs(Re

OE,Σr, 1).

3. Return Ge
est,R.

Notice that, in Step 1 of Algorithm 3.3, we remove from ROE all sequences

that will not be executed by the plant, which are the ones that make the legitimate

receiver's current state estimation less accurate. Next, in Step 2, we compute

automaton Ge
est,R as the observer of Re

OE with respect to its �rst component, thus

obtaining a re�ned state estimation.

Example 3.8 Let Ge, depicted in Figure 3.14, be the automaton which corresponds

to the real sequences to be executed by the plant modeled in Figure 3.8, whose Opacity-

Enforcer automaton ROE is shown in Figure 3.12. In addition, assume that the

legitimate receiver knows the model of Ge in advance. According to Algorithm 3.3,

we obtain automaton Ge
est,R, which gives all of the legitimate receiver's estimations,

as shown in Figure 3.15. Notice that the legitimate receiver has now a much more

accurate estimation of the current state of the plant. In particular, according to

Figure 3.15, whenever event br is released, the legitimate receiver is sure that the

system is in the secret state (5), whereas, according to Figure 3.13(b), the intruder

always estimates that the plant is in state 1. 2

The above discussion shows that the strategy proposed here has the potential

to be used to address opacity enforcement in order to avoid misleading the receiver

as well. In this regard, an Opacity-Enforcer could be designed to establish some

compromise between achieving opacity with respect to a malicious intruder and

accuracy of receiver's estimation.

59

{0, 2, 4, 5}

{5} {2}

{0, 5} {0, 2}

br

ar

dr

ar

dr

cr

Figure 3.15: Automaton Ge
est,R with the state estimations of the legitimate receiver.

3.7 Concluding remarks

In order for the intruder to be always misled to wrongly estimate non-secret states,

the CSO enforcement strategy proposed in this chapter leverages the possibility of

delaying and deleting some event observations.

The Opacity-Enforcer proposed in this chapter keeps track not only of the events

executed by the system but also release and deletion of their observation signals,

and has shown to have the potential to be used to enforce opacity and, at the same

time, not mislead the legitimate receiver as much as the intruder.

In addition, we have presented a protocol that, when applied to the strategy pro-

posed in this chapter, is capable of mitigating the negative e�ect of opacity enforce-

ment on the capability of the legitimate receiver to accurately estimate the current

state of the system. This protocol leverages the legitimate receiver's knowledge on

the actions to be taken by the Opacity-Enforcer in order to re�ne the estimation of

the current state of the system.

60

Chapter 4

Ensuring utility while enforcing

opacity

In this chapter, we approach the main criticism of opacity enforcement techniques

presented in the literature, namely the fact that in order to make the system behavior

opaque to the intruder, the observation of the legitimate receiver becomes obfuscated

as well. In most cases, the crucial information the legitimate receiver requires is not

necessarily the secret behavior of the system (which must be concealed from the

intruder in order for the system to be opaque). In this regard, we introduce the

notion of (state-based) utility to refer to such a crucial behavior, that is required to

always be available to the legitimate receiver, even when opacity is being enforced.

To this end, we propose an algorithm that, whenever possible, ensures the utility

of the system and, at the same time, enforces current-state opacity. Although the

algorithm we propose in this chapter relies on the same strategy as that presented

in Chapter 3, it is simpler.

This chapter is structured as follows. Section 4.1 presents the architecture of the

system considered in this chapter, the problem to be solved and introduces the notion

of utility; Section 4.2 recalls the strategy to augment languages through shu�es and

deletions of event observations presented earlier in Chapter 3. In addition, the

conditions required for the augmented language to model not only the behavior of

the system, but also the event observation release/deletion policy, so as to ensure

utility while enforcing opacity are also given in Section 4.2; Section 4.3 presents the

algorithm developed to achieve both utility and current-state opacity enforcement;

Section 4.4 illustrates the strategy proposed in the chapter with a toy example.

Finally, Section 4.5 summarizes all of the contributions of the chapter.

61

Figure 4.1: The opacity enforcement architecture.

4.1 Problem formulation

We consider here the same architecture as that assumed in Section 3.1 and depicted

again in Figure 4.1, which is composed of a plant, an Opacity-Enforcer and two play-

ers, a legitimate receiver and an intruder. The observable events generated by the

plant are transmitted in the same order as their actual occurrences to the Opacity-

Enforcer, which is now responsible for manipulating the order of event observation

releases/deletions in order for the following two tasks be simultaneously achieved:

(i) the intruder is misled to never infer that the secret behavior has been executed

(opacity enforcement), and; (ii) the legitimate receiver must always be aware of the

system useful behavior when it occurs (preserve utility).

Since the notion of utility approached in this chapter is state-based, we de�ne

the set of useful states Xu, which, when visited, characterizes the useful behavior of

the system. It is worth mentioning that, since we require that all useful states are

unambiguously observed by the legitimate receiver, any secret state is obfuscated

to the intruder and both legitimate receiver and intruder have the same access to

the events released by the Opacity-Enforcer, as a consequence, in order for the

Opacity-Enforcer to ensure the utility of the system and enforce CSO, a secret state

must never be useful, and vice-versa. We say that, if the visit to useful states is

unambiguously observed by external agents, i.e., when all external agents are sure

that the system is in those states, then the system is said to have ensured-utility

(EU). The formal de�nition is as follows.

De�nition 4.1 (Ensured-Utility Systems) Let a system be modeled by automa-

ton G = (X,Σ, f,Γ, x0), projection Po : Σ∗ → Σ∗o and let Xu be the set of useful

states. Then, system G has ensured-utility with respect to Po and Xu if

(∀xu ∈ Xu)(∀s ∈ L, f(x0, s) = xu)(∀x′ ∈ X \ {xu})(
∀s′ ∈ L, (f(x0, s

′) = x′)→ (Po(s) 6= Po(s
′))
)
2

According to De�nition 4.1, a system has ensured-utility with respect to Po and

62

Xu when it is possible, under the projection Po, to distinguish every useful state xu
in Xu from any other state X \ {xu} of the system, which includes the fact that

xu must be distinguished even from other useful states x′u ∈ Xu, x
′
u 6= xu. On the

other hand, if there exist states xu ∈ Xu and x′ ∈ X \ {xu} and sequences s, s′ ∈ L
such that f(x0, s) = xu, f(x0, s

′) = x′ and whose observations are identical, i.e.,

Po(s) = Po(s
′), then the legitimate receiver cannot distinguish the visit to the useful

state xu from another state x′ when sequence Po(s) is observed, therefore, according

to De�nition 4.1, the system does not have ensured-utility with respect to Po and

Xu.

Notice that the notions of utility and (weak) detectability1 [25, 26] may be alike,

in the sense that both of them require that the current state must be determined

in �nite time. However, they di�er in two aspects: (i) utility requires that we are

capable of determining the current state of the system only if it is a useful state in

Xu, as opposed to detectability, which is concerned with determining any current

state of X and also its subsequent states; (ii) every useful state must always be

distinguished from any other states, whereas detectability requires that every state

eventually becomes distinguishable from other states.

It is worth highlighting that both the design speci�cation S1 and all of the

assumptions made on the intruder's capacity I1�I4 are also assumed here (see Sec-

tion 3.1).

4.2 Ensuring utility while enforcing opacity

One of the drawbacks of enforcing opacity is that the legitimate receiver also be-

comes unable to distinguish some behaviors of the plant, where one of them may

even provide crucial information required by the legitimate receiver. With that in

mind, we introduce the notion of utility, which is the useful behavior of the system

that we require to always be available to the legitimate receiver. In this regard,

besides enforcing opacity, any Opacity-Enforcer to be designed has an additional

task, namely preserving the utility of the system, which is accomplished whenever

the following (utility) speci�cations hold true simultaneously.

US1. Whenever the plant visits an useful state, the legitimate receiver must esti-

mate it as soon as possible;

US2. Whenever the legitimate receiver estimates an useful state, the plant must

currently be in that state.

1A discrete event system is (weakly) detectable if we can determine the current state and the
subsequent states of the system after a �nite number of observations for some trajectories of the
system [25].

63

In order to enforce current-state opacity, the Opacity-Enforcer must mislead the

intruder's estimation of the current state of the system if it is currently in a secret

state and, to this end, it leverages the possibility of either delaying/deleting the

observation of events, as detailed in Section 3.3.

We recall that the strategy for ensuring utility while enforcing opacity presented

here modi�es the sequence of observations outputted by the plant but not its actual

behavior. Thus, given that Gp = (Xp,Σp, fp,Γp, x0,p) is the automaton that models

the behavior of the plant and Σ denotes its observable event set, we de�ne its

observer as G = Obs(Gp,Σ) = (X,Σ, f,Γ, x0), and so, all of the operations and

functions hereafter de�ned will be performed over the language L = L(G). We also

recall that Xs denotes the set of secret states of the observer.

We assume, without loss of generality, that the plant modeled by automaton Gp

has ensured-utility with respect to projection P : Σ∗p → Σ∗ and the set of useful

Xu; otherwise the task of ensuring the utility of a system that has useful states

that are not inherently indistinguishable is not possible. As a consequence of the

plant being an ensured-utility system, when we compute its observer automaton

G = Obs(Gp,Σ), the states x ∈ X of G are either composed of not useful states

x ∈ 2Xp\Xu or are composed of a unique useful state x ∈ Xu. Therefore, the useful

states of the observer are the same as the useful states of the plant, and will be

denoted as Xu as well.

Notice that the task of the Opacity-Enforcer can be viewed as an event obser-

vations release/deletion manipulation, and thus, the event set Σa of the automaton

that models the Opacity-Enforcer must be composed of: (i) the events generated by

the plant Σ; (ii) the release of their observations Σr, and; (iii) the deletion of their

observations Σd (if the event is deletable). Thus, we de�ne the augmented event set

as Σa = Σ∪̇Σr∪̇Σd. We also recall the following projections.

1) Pa : Σ∗a → Σ∗;

2) Pr : Σ∗a → Σ∗r.

Moreover, in order to model the policy of the Opacity-Enforcer regarding

event observation release/deletions (OEA1�OEA3) restricted to step delay bound

SD(k), we can augment the language L generated by G to the bounded delay aug-

mented language LSDa according to De�nition 3.7, which augments the sequences of

L by adding to them event observation releases and deletions (not necessarily in the

same order as they occurred) according to the restrictions of the step delay bound

SD(k) (which prevents LSDa from being a non regular language and from events

being inde�nitely held by the Opacity-Enforcer).

Example 4.1 Let G = (X,Σ, f,Γ, x0), depicted in Figure 4.2, be the automaton

that models the observed behavior of a plant, whose secret behavior is de�ned by the

64

0

1

2 3

4 5

6 7 8

a

b

b

c

c

b

c a

Figure 4.2: Automaton G.

visit to state 3, i.e., Xs = {3}. Notice that, by setting SD(k) = {(a, 0), (b, 1), (c, 0)}
and ΣD = ∅, it is possible for the sequence s = abc, which reaches the secret state

3, to be augmented to sequence sa = aarbccrbr, which means that the observation

of event b has been delayed for one step, and now, whenever sequence s occurs

in the system, all external agents observe ϕ−1
r (Pr(sa)) = ϕ−1

r (arcrbr) = acb, and

hence, they estimate state 5 instead of the secret state 3. However, if we de�ne

state 4 as an useful state (Xu = {4}), it is not possible to ensure utility while

enforcing opacity in the system, since as mentioned previously, when s = abc is

generated, ϕ−1
r (Pr(sa)) = acb is observed by external agents, whose pre�x ac lead

them to estimate the useful state 4 whereas the current state of the system does not

correspond to it, which violates speci�cation US2. On the other hand, if we now

set SD(k′) = {(a, 2), (b, 0), (c, 0)}, then sequence s = abc can now be augmented to

sequence s′a = abbrccrar, which is observed by external agents as ϕ−1
r (Pr(sa)) = bca.

In this case, utility has been ensured while opacity was being enforced, since none of

the pre�xes of ϕ−1
r (Pr(sa)) = bca mislead the legitimate receiver to wrongly estimate

the useful state 4 and the intruder estimates state 8 whereas the system is currently

in the secret state 3. 2

We recall from Section 3.3 (see page 38) that the Opacity-Enforcer must not hold

inde�nitely the observation of non deletable events (UB1), and thus, it is necessary

to prune LSDa to obtain a pre�x-closed augmented language LOEa . To this end, we

remove from LSDa sequences sa and sata, for every ta ∈ LSDa /sa, so that Pa(LOEa) = L

and all of the remaining sequences sa ∈ LOEa satisfy simultaneously the following

Opacity-Enforcer conditions:

OEC1. (∀sa ∈ LOEa)
(
(LOEa /sa = ∅) → (∀σ ∈ Σ,N (sa, ϕr(σ)) + N (sa, ϕd(σ)) =

N (sa, σ))
)
;

OEC2. (∀sa ∈ LOEa)
(
(∃σ ∈ Σ : Pa(sa)σ ∈ L) → (∃ta ∈ LOEa /sa : Pa(sata) =

Pa(sa)σ)
)
.

65

We also recall that Condition OEC1 ensures that no sequence in LOEa satis�es

undesirable behavior UB1 and Condition OEC2 ensures that Pa(LOEa) = L, which

guarantees that the language LOEa is CSO with respect to Xs and ΣD, in the sense

that the intruder is unable to estimate secret states when observing the events

σr ∈ Σr released by the Opacity-Enforcer.

In order for the Opacity-Enforcer to also ensure utility, the policy of event ob-

servation release/deletion must satisfy both speci�cations US1 and US2. To this

end, we must remove from LOEa all sequences sa and sata, for every ta ∈ LOEa /sa,

that violates either US1 or US2, resulting in a new pre�x-closed augmented lan-

guage LUOEa such that: (i) Pa(LUOEa) = L, and; (ii) all of sequences sa ∈ LUOEa

not only satisfy OEC1 and OEC2 simultaneously, but also the following additional

Opacity-Enforcer conditions:

OEC3. (∀sa ∈ LUOEa)
(
(∃xu ∈ Xu)[f(x0, Pa(sa)) = xu ∧ f(x0, ϕ

−1
r (Pr(sa))) 6= xu]→

(saΣΣ∗a ∩ LUOEa = ∅)
)
;

OEC4. (∀sa ∈ LUOEa)
(
(∃xu ∈ Xu)[f(x0, Pa(sa)) 6= xu ∧ f(x0, ϕ

−1
r (Pr(sa))) = xu]→

(sa ∩ Σ∗aΣr = ∅)
)
.

Notice that Condition OEC3 ensures that when the system is currently in some

useful state xu ∈ Xu but the legitimate receiver has not estimated it yet, then the

Opacity-Enforcer must release/delete event observations before the system evolves

(occurrence of some event σ ∈ Σ) with a view for the legitimate receiver to estimating

state xu as soon as possible. Condition OEC4 ensures that the Opacity-Enforcer

must not release any event observation σr ∈ Σr that makes the legitimate receiver

estimate some useful state xu ∈ Xu when the current state of the system is not

xu. Therefore, Conditions OEC3 and OEC4 guarantee that language LUOEa , which

models the behavior of the Opacity-Enforcer, satisfy speci�cations US1 and US2

simultaneously. It is worth noticing that, if the resulting language LUOEa is not empty

and satis�es both Conditions OEC1 and OEC2, then, with the help of Lemma 3.3,

the system modeled by automaton G is CSOE. Finally, we conclude that LUOEa is

capable of ensuring utility while opacity is being enforced.

Example 4.2 Consider again automaton G = (X,Σ, f,Γ, x0) shown in Figure 4.2,

where Xs = {3}, Xu = {4} and ΣD = ∅. In order to illustrate the Opacity-Enforcer

Conditions OEC3 and OEC4, we set SD(k) = {(a, 2), (b, 0), (c, 1)}. Let H, de-

picted in Figure 4.3, be an automaton whose generated language is L(H) = LOEa ,

which satis�es Conditions OEC1 and OEC2 simultaneously. Notice that each state

of automaton H has three components: (i) the �rst component denotes the current

state of the plant; (ii) the second component denotes the event observations that

are being held by the Opacity-Enforcer (which must release/delete them eventually),

66

(0, ν, 0)

(6, b, 0)
(4, c, 1)

(3, ν, 8)

(7, c, 6)

(5, acν, 6)

(7, ν, 7)

(8, a, 7)(8, ca, 6)

(5, ν, 5)(5, b, 4)

(4, ν, 4)

(3, aνν, 7)

(5, aνν, 7) (5, ν, 8)

(5, cb, 1)

(8, ν, 8)

(4, ac, 0)
(5, acb, 0)

(1, a, 0)

(2, aν, 6)

(6, ν, 6)

(3, aνc, 6)

(2, ab, 0)

br cr

b

cr

a

cr

a

arcr

b

a

br

b

ar

ar

cr

b

ar

br

ar

b

c

c

c

cr

br

Figure 4.3: Automaton H.

and; (iii) the third component denotes the state estimated by external observers (le-

gitimate receiver and intruder). It is not di�cult to see that some of the sequences

in L(H) violate either OEC3 or OEC4, for example:

• Sequence sa = ac reaches state (4, ac, 0), which means that the plant is

currently in useful state 4 but external observes are estimating state 0

(f(x0, Pa(ac)) = f(x0, ac) = 4 and f(x0, ϕ
−1
r (Pr(ac))) = f(x0, ε) = 0). How-

ever, some of its continuations are such that saΣΣ∗a ∩ L(H) = acb(brcrar +

arcrbr) 6= ∅, which means that the plant can evolve to state 5 through the oc-

currence of event b without the legitimate receiver estimating the useful state

4, and thus, these continuations must be removed so as the resulting language

satis�es Condition OEC3.

• Sequence sa = acar, which reaches state (4, c, 1), also violates Condition

OEC3, since it can be continued with event b, and thus, in order to sat-

isfy Condition OEC3, sequence acarb and all of their continuations must be

removed.

• Sequences acbarcr and acarbcr, which reach state (5, b, 4), violate Condition

OEC4, since they model the case when the system is currently at state 5 but the

legitimate receiver has just estimated useful state 4, since the last event of those

sequences represent an observation release, meaning that the Opacity-Enforcer

has just released an event observation that misled the legitimate receiver to

estimate an useful state while the plant is not currently at it. Then, we must

remove from L(H) those sequences and also their continuations, so as the

resulting language satis�es Condition OEC4.

Notice that, after the removal of those sequences that violate Conditions OEC3

and OEC4, it may be the case that the resulting language has sequences that now

67

violate Condition OEC1, which should also be removed. Therefore, the procedure

for obtaining an augmented language LUOEa that ensures utility while opacity is being

enforced is performed recursively. 2

Remark 4.1 To the best of our knowledge, the notion of utility withing opacity

enforcement strategies has been presented �rstly in [71], where the authors synthe-

size obfuscation policies through edit functions that ensure privacy and utility at the

same time. However, in their approach, the utility of the plant is ensured when the

�distance� between the current and the estimated state never exceeds a prede�ned

maximum value. Di�erently from the strategy proposed in [71], we require that the

event observations outputted by the Opacity-Enforcer are such that, whenever the

system visits an useful state, it must be estimated by the legitimate receiver before

a new state is reached, and also that whenever the legitimate receiver estimates an

useful state, the plant must currently be in that state. 2

It is not di�cult to see that, when the language generated by some plant is

augmented with event observation releases/deletions, the current state of the plant

may di�er from the state estimated by external observers, since for a given sa ∈ LSDa ,

it is possible that f(x0, Pa(sa)) 6= f(x0, ϕ
−1
r (Pr(sa))). Therefore, we extend the

notion of EU systems (see De�nition 4.1) to augmented systems, as follows.

De�nition 4.2 (Ensured-Utility Augmented Systems) Let a system, whose

observable behavior L is modeled by an automaton G = (X,Σ, f,Γ, x0), be aug-

mented to automaton Ga, where L(Ga) ⊆ LSDa , with respect to the set of deletable

events ΣD, secret states Xs and step delay bounds SD(k). Let Xu denote the set

of useful states. The augmented system modeled by automaton Ga is said to have

ensured-utility if the following two conditions hold true simultaneously:

(i) ∀sa ∈ Σ∗aΣ ∩ L(Ga) if f(x0, Pa(sa)) = xu ∈ Xu, then ∀ta ∈ L(Ga)/sa, ∃t′a ∈
(Σr ∪ Σd)

∗ such that f(x0, ϕ
−1
r (Pr(sat

′
a))) = xu and either ta ∈ t′a or t′a ∈ ta.

(ii) ∀sa ∈ Σ∗aΣr∩L(Ga), if f(x0, ϕ
−1
r (Pr(sa))) = xu ∈ Xu, then f(x0, Pa(sa)) = xu.

2

According to De�nition 4.2, an augmented system has ensured-utility when it

simultaneously satis�es two conditions: (i) if an augmented sequence sa ∈ L(Ga)

denotes that the system has just reached an useful state xu ∈ Xu, i.e., sa ∈ Σ∗aΣ and

f(x0, Pa(sa)) = xu, then each one of its continuations ta ∈ L(Ga)/sa must be such

that either the useful state xu will certainly be estimated before the current state

of the system changes, i.e., ∃t′a ∈ (Σr ∪ Σd)
∗ such that f(x0, ϕ

−1
r (Pr(sat

′
a))) = xu

and ta ∈ t′a, or the useful state xu was estimated before the current state of the

68

(0, ν, 0)

(7, c, 6)
(6, b, 0)

(8, ca, 6)

(1, a, 0) (4, ac, 0)

(3, aνc, 6)

(8, a, 7)

(5, b, 4)

(3, ν, 8)

(8, ν, 8)(7, ν, 7)(6, ν, 6)

(4, c, 1)

(2, aν, 6)

(4, ν, 4) (5, ν, 5)

(3, aνν, 7)
(2, ab, 0)

cr

a

br

cr

b

a

c

b

ar

cr

ar

br

ac

cr

c

b

ar

br

Figure 4.4: Automaton H ′.

system had changed, i.e., ∃t′a ∈ (Σr ∪ Σd)
∗ such that f(x0, ϕ

−1
r (Pr(sat

′
a))) = xu

and t′a ∈ ta, and; (ii) if an augmented sequence sa ∈ L(Ga) ends with an event

observation release, i.e., sa ∈ Σ∗aΣr and leas to the estimation of an useful state

f(x0, ϕ
−1
r (Pr(sa))) = xu ∈ Xu, then the current state of the system must be that

useful state as well, i.e., f(x0, Pa(sa)) = xu.

Example 4.3 Consider again automaton G = (X,Σ, f,Γ, x0), depicted in Fig-

ure 4.2, where Xs = {3}, Xu = {4}, ΣD = ∅ and SD(k) = {(a, 2), (b, 0), (c, 1)}. Let
H ′, illustrated in Figure 4.4, be the automaton that generates a language LUOEa that

satis�es Conditions OEC1�OEC4 with respect to L(G). Notice that automaton H ′

has only one sequence that models when the system has just visited an useful state,

namely sequence sa = ac, whose last event is a plant event and denotes that the cur-

rent state of the system is an useful state, i.e., f(x0, Pa(sa)) = f(x0, ac) = 4 ∈ Xu.

In addition, all of the continuations of sequence sa are such that: (i) either the

legitimate receiver will certainly estimate the useful state (when (4, ν, 4) is vis-

ited), namely continuations ta = ε and t′a = ar, or; (ii) the useful state was

visited before the current state of the system has changed, namely continuations

t′′a = arcr, t
′′′
a = arcrb and t′′′′a = arcrbbr. Therefore, the �rst condition of De�ni-

tion 4.2 is met. With respect to the second condition of De�nition 4.2, sequence

sa = acarcr is the unique sequence in L(H ′) whose last event is an observation re-

lease, i.e., sa ∈ Σ∗aΣr, and leads the legitimate receiver to estimate an useful state,

i.e., f(x0, ϕ
−1
r (Pr(sa))) = f(x0, ϕ

−1
r (arcr)) = f(x0, ac) = 4 ∈ Xu. Notice also that

sa = acarcr denotes that the current state of the system is that same useful state,

since f(x0, Pa(sa)) = f(x0, ac) = 4, which makes H ′ satisfy the second condition

of De�nition 4.2, and thus, the augmented system modeled by automaton H ′ has

ensured-utility. 2

We now extend De�nition 3.3 to our current problem, namely to ensure utility

while current-state opacity is being enforced in augmented systems, as follows.

De�nition 4.3 (EU-CSO Augmented Systems) Let a system, whose observ-

able behavior L is modeled by an automaton G = (X,Σ, f,Γ, x0), be augmented to

69

automaton Ga, where L(Ga) ⊆ LSDa , with respect to the set of deletable events ΣD,

secret states Xs and step delay bounds SD(k). Let Xu denote the set of useful states.

The augmented system modeled by automaton Ga is said to have ensured-utility

current-state opaque (EU-CSO) with respect to ΣD, Xs, Xu and SD(k) through

changes and deletions in the order of event observations if:

(i) Automaton Ga models an EU augmented system, and;

(ii) L(Ga) 6= ∅ and L(Ga) � (OEC1 ∧OEC2). 2

After an augmented language LUOEa that simultaneously satis�es Conditions

OEC1�OEC4 has been obtained, we present the following result.

Lemma 4.1 Let a system, whose observable behavior L is modeled by an automaton

G = (X,Σ, f,Γ, x0), be augmented to automaton Ga, where L(Ga) ⊆ LSDa , with

respect to the set of deletable events ΣD, secret states Xs and step delay bounds

SD(k). Let Xu denote the set of useful states. The augmented system modeled by

automaton Ga is said to have ensured-utility current-state opacity (EU-CSO) with

respect to ΣD, Xs, Xu and SD(k) through changes and deletions in the order of event

observations if, and only if, L(Ga) = LUOEa 6= ∅ and L(Ga) � (OEC1 ∧ OEC2 ∧
OEC3 ∧OEC4).

Proof.

(⇒) Assume that either L(Ga) = ∅ or L(Ga) 2 (OEC1 ∨ OEC2 ∨ OEC3 ∨
OEC4). It is clear that, if either L(Ga) = ∅, or L(Ga) 2 OEC1, or, still, L(Ga) 2
OEC2, then the second condition of De�nition 4.3 is violated, which implies that

automaton Ga does not model any EU-CSO augmented system.

If L(Ga) 2 OEC3, then, ∃sa ∈ L(Ga) such that f(x0, Pa(sa)) = xu ∈ Xu,

f(x0, ϕ
−1
r (Pr(sa))) 6= xu, and saΣΣ∗a ∩ L(Ga) 6= ∅, which means that sa can be

continued with some plant event σ ∈ Σ. If sa ends with some plant event (sa ∈ Σ∗aΣ),

then ∃ta = σ ∈ L(Ga)/sa where, ∀t′a ∈ (Σr∪Σd)
∗, ta /∈ t′a and only t′a = ε ∈ ta, which

implies that f(x0, ϕ
−1
r (Pr(sat

′
a))) = f(x0, ϕ

−1
r (Pr(sa))) 6= xu. As a consequence, the

�rst condition of De�nition 4.2 has been violated, and hence, Ga does not model

any EU augmented system. Therefore, according to De�nition 4.3, automaton Ga

does not model any EU-CSO augmented system.

If L(Ga) 2 OEC4, then, ∃sa ∈ L(Ga) such that f(x0, ϕ
−1
r (Pr(sa))) = xu ∈ Xu,

f(x0, Pa(sa)) 6= xu and sa ∩ Σ∗aΣr 6=, which means that the last event of sequence

sa is some σr ∈ Σr (sa ∈ Σ∗aΣr ∩ L(Ga)). It is clear that the second condition of

De�nition 4.2 has been violated, and so, Ga does not model any EU augmented

system. According to De�nition 4.3, automaton Ga does not model any EU-CSO

augmented system either.

70

(⇐) Assume that L(Ga) = LUOEa 6= ∅ and L(Ga) � (OEC1∧OEC2∧OEC3∧
OEC4). It is clear that the second condition of De�nition 4.3 holds true.

If L(Ga) = LUOEa � OEC3, then, ∀sa ∈ LUOEa such that f(x0, Pa(sa)) = xu ∈ Xu

but f(x0, ϕ
−1
r (Pr(sa))) 6= xu, sa cannot be continued with any plant event σ ∈ Σ,

and as a consequence, it is continued with sequences ta ∈ (Σr ∪ Σd)
∗ until

f(x0, ϕ
−1
r (Pr(sata))) = xu, which satis�es the �rst condition of De�nition 4.2.

If L(Ga) = LUOEa � OEC4, then, ∀sa ∈ LUOEa such that f(x0, ϕ
−1
r (Pr(sa))) =

xu ∈ Xu but f(x0, Pa(sa)) 6= xu, the last event in sa cannot be some σr ∈ Σr,

and hence, we can write sa = wava, where wa ∈ Σ∗aΣr and f(x0, ϕ
−1
r (Pr(wa))) = xu

and f(x0, Pa(wa)) = xu, which ensures the second condition of De�nition 4.2. Notice

that, if pre�x wa is such that f(x0, Pa(wa)) 6= xu, it would violate Condition OEC4,

since wa ∈ LUOEa and wa ∈ Σ∗aΣr, which contradicts our assumption. Therefore, Ga

models an EU augmented system, which, together with the fact that both L(Ga) =

LUOEa 6= ∅ and L(Ga) � (OEC1 ∧ OEC2), ultimately implies that Ga models an

EU-CSO augmented system.

After obtaining an augmented language LUOEa that satis�es Conditions OEC1�

OEC4 simultaneously, we also require that the actions taken by the Opacity-

Enforcer over augmented sequences sa ∈ LUOEa are unique, which prevents the un-

desired behaviors UB2 and UB3 from happening (con�icts of the Opacity-Enforcer

either between release/delete observations and waiting for events to occur or between

releasing and deleting event observations, respectively). To this end, we recall the

priority order between releasing observations, deleting observations and waiting for

events to occur, which was established in Section 3.3, as follows: (i) the release (resp.

deletion) of a event observation has the highest (resp. lowest) priority among other

actions; (ii) if there is no observation to be released and no held observation is being

delayed for its maximum step delay bound, then the Opacity-Enforcer must take no

action and wait for an event occurrence, and; (iii) the Opacity-Enforcer must either

release at most one observation σr at a time, or delete at most one observation σd at

a time. These priorities are formally expressed in the following unicity conditions:

UC1. (∀sa ∈ LUOEa)
(
(∃σr ∈ Σr : saσr ∈ LUOEa)→ sa(Σ ∪ Σd)Σ

∗
a ∩ LUOEa = ∅

)
;

UC2. (∀sa ∈ LUOEa)
(
(∃σ ∈ Σ : saσ ∈ LUOEa)→ saΣdΣ

∗
a ∩ LUOEa = ∅

)
;

UC3. (∀sa ∈ LUOEa)
(
(|LUOEa ∩ saΣr| ≤ 1) ∧ (|LUOEa ∩ saΣd| ≤ 1)

)
.

Example 4.4 Let us revisit automaton H ′, shown in Figure 4.4 and presented in

Example 4.3, where Xs = {3}, Xu = {4}, ΣD = ∅, SD(k) = {(a, 2), (b, 0), (c, 1)} and
whose generated language L(H ′) = LUOEa satis�es Conditions OEC1�OEC4. It is

worth noticing that automaton H ′ models the Opacity-Enforcer behavior. However,

after sequence sa = bbrc has occurred, the Opacity-Enforcer cannot decide between

71

waiting for the plant to generate event a and release cr. Such problem is solved

by Condition UC1, which prioritizes the observation release cr, and thus, sequence

bbrca and all of its continuations are removed from L(H ′). Notice that, Pa(L(H ′)) =

L is preserved after any sequence is removed due to Conditions UC1�UC3, once

these conditions typically choose an unicity solution between sequence continuations

whose projections model the same behavior of the plant. 2

4.3 Algorithms

In this section we propose an algorithm that computes automaton RUOE, which

models the desired Opacity-Enforcer behavior. Since the Opacity-Enforcer ensures

utility while enforcing current-state opacity, we further show that the language gen-

erated by RUOE is LUOEa .

The idea behind the algorithm is to �rst create an automaton GSD
a , whose gen-

erated language is LSDa , and then, we recursively remove from it all sequences that

violate some of the Opacity-Enforcer Conditions OEC1�OEC4, resulting in an au-

tomaton RUOE whose generated language is LUOEa that models the desired Opacity-

Enforcer behavior.

4.3.1 Computation of automaton GSD
a

It is worth noting that the procedure to obtain language LSDa is responsible for

synchronizing the plant behavior with the shu�ing of every event observation re-

lease/deletion allowed by SD(k). Thus, automaton GSD
a , whose generated language

is LSDa , is obtained by computing the parallel composition of the following three

automata: (i) automaton G, which models the observed behavior of the plant; (ii)

automaton D, which generates all possible shu�es of the event occurrences with

observation releases/deletions according to the restrictions of a given SD(k), and

whose states denote observations of plant events to be released/deleted; (iii) automa-

ton Gint, which models all event observation releases that the intruder is allowed to

receive so as the secret is not revealed.

With that in mind, automaton D = (XD,Σa, fD,ΓD, x0,D) is computed as shown

in Subsection 3.4.1. Automaton Gint = Ac(Xint,Σr, fint,Γint, x0,int) is obtained by

taking the accessible part of G after all of its secret states have been removed and

the subscript r has been added to all events that label its transitions, and thus,

we set Xint = X \ Xs, fint(x, ϕr(σ)) = f(x, σ), if f(x, σ) ∈ X \ Xs, or unde�ned,

otherwise, Γint(x) = {σr ∈ Σr : fint(x, σr)!}, and x0,int = {x0} ∩ Xint. Notice that

Lint = L(Gint) = {ϕr(s) : (s ∈ L) ∧ (∀t ∈ s, f(x0, t) ∈ X \Xs)}.
Notice that automata G, D, and Gint have no marked states initially, and so,

72

their set of marked states have been omitted from their de�nitions. However, in

order to simplify the algorithm proposed in Subsection 3.4.2, we must de�ne the set

of marked states Xm, Xm,D and Xm,int of automata G, D, and Gint, respectively, as

follows.

• Xm is formed with all states of G that form some non-trivial SCC and all

states that have no transition de�ned;

• Xm,D is formed with the initial state of D, and thus, Xm,D = x0,D;

• Xm,int is formed with reminiscent marked states in Xm ∩Xint, after the secret

states have been removed when computing Gint, that are accessible and either

still form some non-trivial SCC or that have no transition de�ned.

Remark 4.2 In order to avoid the case where there are states with no transitions

de�ned when computing the marked states of automata G and Gint, we can proceed

as follows. First, we de�ne a new unobservable event σuo and add it to the event set

Σ, and mark all states that form some non-trivial SCC of G. We then compute Gint

as a copy of G but with no marked sates, remove all secret states of Xs from Gint,

take its accessible part, add the subscript r to all events that label its transitions,

and, �nally, mark all states that form some non-trivial SCC of Gint. Since σuo is

not an event generated by the plant, after marking states in both automata G and

Gint, we remove σuo from their respective event set, and also all transitions labeled

with it. 2

The idea behind marking states in the non-trivial SCC of automata G and Gint

is that, since events are generated spontaneously, the plant will eventually reach

either a state that forms some non-trivial SCC or a state with no transition de�ned.

With respect to the set of marked states, it is worth noting that: (i) the set Xm

ensures that Lm(G) = Lm is formed with both, all arbitrarily long length sequences

of L and sequences with no continuations; (ii) by setting Xm,D = X0,D, Lm(D) is

composed of sequences sa such that N
(
sa, σ

)
= N

(
sa, ϕr(σ)

)
+ N

(
sa, ϕd(σ)

)
, for

all σ ∈ Σ, meaning that every event of sa in the marked language of D had its

observation either released or deleted; (iii) since we remove secret states from G

when computing Gint, some non-trivial SCCs (reached after the visit to some secret

state) may have ceased to exist and states that once would inevitably lead the system

to secret states are now not coaccessible, and thus, the set Xm,int guarantees that

Lm(Gint) is formed with observation release sequences with either arbitrarily long

length or no continuation that lead the intruder to a secret-free state estimation

path.

Finally, we build automaton GSD
a = G‖D‖Gint = (XSD

a ,Σa, fint,Γ
SD
a , xSD0,a , X

SD
m,a)

that, di�erently from that presented in Subsection 3.4.1, has marked states.

73

Example 4.5 Let us consider automaton G shown in Figure 4.2, where Xs = {3}
and Xu = {4}. Since there are no non-trivial SCCs, and the only states with

no transition de�ned are 3, 5, and 8, we have that Xm = {3, 5, 8}. Automaton

D = (XD,Σa, fD,ΓD, x0,D, Xm,D), which models the observation releases/deletions

in accordance with SD(k) = {(a, 2), (b, 0), (c, 1)} and ΣD = ∅, where Xm,D = {ν},
has been computed according to Algorithm 3.1 and is depicted in Figure 4.5. Au-

tomaton Gint = (Xint,Σr, fint,Γint, x0,int, Xm,int), illustrated in Figure 4.6, has only

two marked states, which form the set Xm,int = {5, 8}. Notice that state 3, that

once was marked in G, does not belong to Xm,int, since it was removed when com-

puting Gint. We emphasize that, it may happen that some state x, which once was

marked in G (x ∈ Xm), was not removed when computing Gint (x ∈ Xint) but it

ceased to form some non-trivial SCC, and therefore, it would not be marked in Gint

(x /∈ Xm,int). Finally, automaton G
SD
a = G‖D‖Gint is shown in Figure 4.7. 2

Remark 4.3 Not coaccessible states of automaton GSD
a are reached by sequences

sa in LSDa that satisfy at least one of the following conditions: (i) Pa(sa) has a

continuation with some event σ ∈ Σ in L whereas sa(Σr∪Σd)
∗σ /∈ LSDa , which means

that Condition OEC2 has been violated (the event observation release/deletion policy

of the Opacity-Enforcer is inhibiting the behavior of the plant); (ii) sa is such that

N
(
sa, σ

)
> N

(
sa, ϕr(σ)

)
+N

(
sa, ϕd(σ)

)
for some σ ∈ Σ but it has no continuation,

which means that the Opacity-Enforcer is inde�nitely holding the observation of some

non deletable event, and thus, Condition OEC1 has been violated; (iii) Pr(sa) has

a continuation with some event σr ∈ Σr in L(Gint) whereas sa(Σ ∪ Σd)
∗σr /∈ LSDa ,

which means that the intruder is inde�nitely waiting for some event that has been

inhibited by the Opacity-Enforcer, and as a consequence, the intruder may become

suspicious that the information released by the plant is being changed. 2

Finally, automaton GSD
a models all shu�ed sequences so as the released observa-

tions neither lead the intruder to estimate secret states nor lie outside the modeled

behavior. Additionally, the sequences in the marked language Lm(GSD
a) are such

that: (i) the plant sequences retrieved by the projection Pa(Lm(GSD
a)) denote that

the system behavior has not been constrained; (ii) every event σ ∈ Σ is certainly

having its observation either released or deleted, and (iii) the order of event obser-

vation releases σr ∈ Σr is such that the intruder is always misled to a secret-free

state estimation path.

4.3.2 Computation of automaton RUOE

We now present Algorithm 4.1, which computes automaton RUOE (whose generated

language is LUOEa) that models the desired behavior of the Opacity-Enforcer. Notice

74

ν

acb

aνa

aν

ac

aac

c

b

a

acc

aaν

aa

cc

aab

acν

aaa

ab

cν

aνb

aca

aνccb

aνν

ca

arbrcr

ar

a b c

ar

a b c

ar

cr

arcr

a

b c

cr

br

a

b c

ar

arcr

ar

a b c

ar

cr

ar br

arcr

ar

ar

br

cr

ar br

ar

cr

ar

cr brcr

ar

a

b

c

ar

cr

Figure 4.5: Automaton D.

0

8

51

2

4

6 7

ar

br

br

cr br

cr ar

Figure 4.6: Automaton Gint.

75

(0, ν, 0)

(8, ν, 8)

(3, ν, 8)

(5, ν, 5)

(5, ν, 8)

(3, c, 2)

(3, aνc, 6)

(7, ν, 7)

(5, cb, 1)

(1, ν, 1)

(4, ν, 4)

(5, cν, 2)

(2, ν, 2)

(8, ca, 6)

(3, aνν, 7)

(4, c, 1)

(5, aνν, 7)

(5, b, 4)

(2, ab, 0)

(6, ν, 6)

(5, acb, 0)

(7, c, 6)

(5, acν, 6)

(2, aν, 6)

(6, b, 0)

(8, a, 7)

(4, ac, 0)

(2, b, 1)
(1, a, 0)

cr

a

br

cr

b

c

b

c

cr

ar

b

cr

ar

br

br

ar

c

br

ar

a

cr

cr

a

b c

br

ar

b

ar

br

b

c

ar

Figure 4.7: Automaton GSD
a = G‖D‖Gint.

that, in order to obtain language LUOEa that ensures utility while current-state opac-

ity is being enforced, Algorithm 4.1 recursively removes from automaton GSD
a , which

generates language LSDa , states and transitions whose associated sequences violate

any Opacity-Enforcer Condition OEC1�OEC4. We recall functions OEAR(xa)

and NX(xa), presented in De�nitions 3.10 and 3.11 (see page 49), which outputs

the set of states reached from xa through events that denote the Opacity-Enforcer

actions and the active plant events of states reached through OEAR(xa), respec-

tively. Finally, with a view to guaranteeing the unicity of the actions taken by the

Opacity-Enforcer, Algorithm 4.1 also removes from GSD
a sequences that violate any

of the Unicity Conditions UC1 � UC3. We assume with no harm that the input

automaton GSD
a is CSOE.

Algorithm 4.1 Computation of automaton RUOE.

Input: GSD
a = (XSD

a ,Σa, fint,Γ
SD
a , xSD0,a , X

SD
m,a), Xu.

Output: RUOE = (XUOE,Σa, fUOE,ΓUOE, x0,UOE, Xm,UOE).

1. Set V = GSD
a = (XV ,Σa, fV ,ΓV , x0,V , Xm,V).

2. For each xV = (x, xD, xint) ∈ XV :

2.1. If x ∈ Xu, xint 6= x and ΓV (xV) ∩ Σ 6= ∅, then remove all fV (xV , σ) such

that σ ∈ ΓV (xV) ∩ Σ, and its associated transitions.

2.2. If xint ∈ Xu, x 6= xint and there exists (x′V , σr) ∈ XV × Σr such that

fV (x′V , σr) = xV , then remove fV (x′V , σr) and its associated transitions.

3. Set V = Trim(V).

4. �ag ← true.

5. While �ag = true, do:

5.1. �ag ← false.

5.2. For each xV = (x, xD, xint) ∈ XV :

76

5.2.1. If (Γ(x) ∩ ΓD(xD)) \ NX(xV) 6= ∅, then XV ← XV \ {xV },
V ← Trim(V), �ag ← true.

6. For each xV = (x, xD, xint) ∈ XV :

6.1. If ΓV (xV) ∩ Σr 6= ∅, then set ΓV (xV) = ΓV (xV) ∩ Σr and V = Ac(V).

6.2. If ΓV (xV) ∩ Σ 6= ∅, then set ΓV (xV) = ΓV (xV) ∩ Σ and V = Ac(V).

6.3. If |ΓV (xV) ∩ (Σr ∪ Σd)| > 1, then:

6.3.1. Denote xD = q1 . . . q‖xD‖ and set i = 1.

6.3.2. While ({ϕr(qi), ϕd(qi)} ∩ ΓV (xV) = ∅) ∧ (i ≤ ‖xD‖), do i = i+ 1.

6.3.3. Set ΓV (xV) = ΓV (xV) ∩ {ϕr(qi), ϕd(qi)} and V = Ac(V).

7. Return RUOE = V = (XUOE,Σa, fUOE,ΓUOE, x0,UOE, Xm,UOE).

Algorithm 4.1 work as follows. In Step 1, we create a copy V of automaton

GSD
a . In Step 2, we are concerned with ensuring the utility of the system, where

in Step 2.1, if the plant reaches an useful state x ∈ Xu but the legitimate receiver

has not estimated it yet (xint 6= x), then, with a view for the Opacity-Enforcer to

releasing observations so as state x is estimated as soon as possible, we temporarily

prevent the system to further evolve by removing transitions labeled with plant

events σ ∈ Σ from state xV . On the other hand, in Step 2.2, we remove from

the Opacity-Enforcer behavior all event observations releases σr ∈ Σr that lead the

legitimate receiver to estimate some useful state xint ∈ Xu while the current state

of the plant is not it, i.e., x 6= xint. Steps 2.1 and 2.2 of Algorithm 4.1 ensure

Conditions OEC3 and OEC4, respectively.

In Step 3 we make automaton V become trim and in Step 4 we de�ne a �ag

whose initial value is true, to be used in the recursion of Step 5, where we are

concerned with ensuring Conditions OEC1 and OEC2. In Step 5.2, if there exists

some event σ ∈ Σ allowed to occur in the plant (i.e., σ ∈ Γ(x)) that does not violate

SD(k) (i.e., σ ∈ ΓD(xD)) but it is not not allowed to occur in any of the states

reached through actions taken by the Opacity-Enforcer NX(xV), meaning that such

an event is being inhibited, which is an action that the Opacity-Enforcer cannot

perform, then state xV must be removed so as Condition OEC2 is ensured. In

addition, if states where xD 6= ν, which are not marked by construction, are not

coaccessible, then the operation Trim(G) performed in Step 5.2 removes them

from automaton V , which ensures that no event observation is being held forever

(Condition OEC1). Step 5 is repeated until the �ag becomes false, which is only

possible if no state in XV needs to be deleted.

In Step 6, we ensure the unicity of the actions taken by the Opacity-Enforcer as

follows. In Step 6.1, we ensure that an observation event is released σr ∈ Σr when-

ever it is possible; secondly, in Step 6.2, the Opacity-Enforcer waits for some event

occurrence in the plant σ ∈ Σ, and; �nally, it deletes an event observation σd ∈ Σd

77

only as last resource, hence, the least prioritized action. In addition, Step 6.3 guar-

antees that the Opacity-Enforcer will either release or delete at most one observation

at each state; thus, if there exists a state that has two or more allowed events to be

released, then Steps 6.3.1 and 6.3.2 �nd the event among them that occurred �rst

and remove the others, which is performed in Step 6.3.3. Steps 6.1�6.3 imple-

ment Unicity Conditions UC1�UC3. Finally, Step 7 computes the realization of

Opacity-Enforcer automaton RUOE = V that ensures utility while opacity is being

enforced.

Remark 4.4 (Computational complexity of Algorithm 4.1) The Steps 1,

4 and 7 of Algorithm 4.1 are constant with respect to the number of states of

V whereas Steps 2, 3 and 6 are linear. The computational burden of Algo-

rithm 4.1 lies in Step 5, where at least one state of automaton V is removed

each time Step 5 is repeated, and thus, |XV | states are analyzed in the �st time

Step 5 is executed, |XV | − 1 states are analyzed in the second time, and this pro-

cedure continues until either automaton V meets the requirement for breaking the

loop or it becomes empty. Therefore, in the worst case where V becomes empty,

(1 + |XV |)× |XV |/2 states are analyzed, which implies that the computational com-

plexity of Algorithm 4.1 is O(|XV |2). In addition, since (i) V = GSD
a = G‖D‖Gint,

(ii) |Xint| ≤ |X| and (iii) XD = 1 +
[∑k

j=0(|Σ|+ 1)j
]
× |Σ| ≤ c× |Σ|k+1 [6], where

k = max(|kσ1 |, . . . , |kσn|) and c is a big enough natural number, we may conclude

that V has at most c × |X|2 × |Σ|k+1 states, and then, we may conclude that Algo-

rithm 3.2 is O(|X|4×|Σ|2k+2). Notice that, starting with the observed model requires

a priori computation of the observer, and so, |X| is O(2|Xp|), where |Xp| is the car-
dinality of the set of states of the plant. Thus, with respect to the plant model, the

worst case computational complexity of our method becomes O(24|Xp| × |Σ|2k+2). 2

Since Steps 2�5 of Algorithm 4.1 are responsible for ensuring Conditions

OEC1�OEC4 while building automaton RUOE, we present the following result.

Lemma 4.2 Let G = (X,Σ, f,Γ, x0) be the automaton that models the observ-

able behavior of a system, Xu be the set of useful states, and let automaton

GSD
a = (XSD

a ,Σa, fint,Γ
SD
a , xSD0,a , X

SD
m,a) model the augmented system with respect to

the deletable events in ΣD, secret states in Xs and step delay bounds in SD(k).

Then, the language LUOEa generated by automaton RUOE, which is obtained in ac-

cordance with Algorithm 4.1, is either empty or satisfy Conditions OEC1�OEC4

simultaneously.

Proof.

We start by showing that Step 2 of Algorithm 4.1 ensures both OEC3

and OEC4. Assume that there exists some sequence sa ∈ LUOEa that violates

78

OEC3, which means that (f(x0, Pa(sa)) = xu ∈ Xu) ∧ (f(x0, ϕ
−1
r (Pr(sa))) 6=

xu) ∧ (saΣΣ∗a ∩ LUOEa 6= ∅). Let fV (x0,V , sa) = xV = (x, xD, xint), then: (i)

x = xu, since f(x0, Pa(sa)) = xu; (ii) xint 6= xu, since xint = fint(x0,int, Pr(sa)) =

f(x0, ϕ
−1
r (Pr(sa))) 6= xu, and; (iii) ΓV (xV) ∩Σ 6= ∅, since saΣΣ∗a ∩ LUOEa 6= ∅. Thus,

sequence sa meets the conditions of Step 2.1, which removes all of the transitions

associated with fV (xV , σ), σ ∈ ΓV (xV) ∩ Σ, which results in the same as removing

all continuations of sa that start with some plant event σ ∈ ΓV (xV) ∩ Σ. As a

consequence, Step 2.1 ensures Condition OEC3.

Assume now that there exists some sequence sa ∈ LUOEa that violates OEC4,

which means that (f(x0, ϕ
−1
r (Pr(sa))) = xu ∈ Xu) ∧ (f(x0, Pa(sa)) 6= xu) ∧ (sa ∩

Σ∗aΣr 6= ∅). Analogously, assume that fV (x0,V , sa) = xV = (x, xD, xint), which

implies that: (i) xint = xu, since xint = fint(x0,int, Pr(sa)) = f(x0, ϕ
−1
r (Pr(sa))) = xu;

(ii) x 6= xu, since f(x0, Pa(sa)) 6= xu, and; (iii) the last event of sa is an observation

release, since sa ∩ Σ∗aΣr 6= ∅, and so there exists s′a ∈ Σ∗a and σr ∈ Σr such that

sa = s′aσr, which implies that there exists a state x′V = fV (x0,v, s
′
a) in automaton V

and a transition associated with fV (x′V , σr) = xV . Since the conditions of Step 2.2

are met, the transitions associated with fV (x′V , σr) = xV are removed, which means

that sequences sa that violate Conditions OEC4 are removed from LUOEa .

Condition OEC1 is satis�ed when every sequence sa of LUOEa that has no con-

tinuation (LUOEa /sa = ∅) is such that the observation of each plant event σ ∈ Σ that

forms it is either released or deleted (N (sa, ϕr(σ)) +N (sa, ϕd(σ)) = N (sa, σ),∀σ ∈
Σ). We recall from Inequality (3.1) that the number of occurrences of an event σ ∈ Σ

in a sequence sa ∈ Σ∗a must always be greater than or equal to the sum of the ob-

servation releases and deletions of σ, which is guaranteed by construction according

to De�nitions 3.5 and 3.7. Assume that there exists a sequence sa ∈ LUOEa with no

continuation and formed with some plant events whose observation has neither been

released nor deleted. Let xV = (x, xD, xint) be the state of automaton V reached

by sequence sa, which implies that fV (x0,V , sa) = xV and ΓV (xV) = ∅. Since there
exist plant events σ ∈ Σ in sa such that N (sa, σ) > N (sa, ϕr(σ)) + N (sa, ϕd(σ)),

the second component of xV is not �blank �, i.e., xD 6= x0,D = ν, and as a conse-

quence, xV is not marked (Xm,V = Xm×{x0,D}×Xm,int). Finally, since ΓV (xV) = ∅
and xV /∈ Xm,V , state xV is not coaccessible, and therefore, it is removed by either

Step 3 or Step 5.2.1 when computing Trim(V), which results in sequence sa being

removed from LUOEa and Condition OEC1 being satis�ed.

Finally, assume that there exists some sequence sa ∈ LUOEa that violates OEC2,

which means that ∃σ ∈ Σ : Pa(sa)σ ∈ L but Pa(sata) 6= Pa(sa)σ,∀ta ∈ LOEa /sa.

Let xV = (x, xD, xint) be the state of automaton V reached by sequence sa. Thus,

OEAR(xV) is a set formed with all states reached from xV through sequences in

(Σr ∪ Σd)
∗, which implies that ∀x′V ∈ OEAR(xV), ∃s′a ∈ (Σr ∪ Σd)

∗ such that

79

fV (xV , s
′
a) = x′V . Notice that those states x

′
V ∈ OEAR(xV) are such that Pa(sas′a) =

Pa(sa), and, in addition, those sequences sas′a cannot be continued with that event

σ ∈ Σ, otherwise we would have ta = s′aσ ∈ LOEa /sa and Pa(sata) = Pa(sas
′
aσ) =

Pa(sa)σ, which contradicts our initial assumption. Therefore, σ /∈ NX(xV). On the

other hand, since Pa(sa)σ ∈ L and f(x0, Pa(sa)) = x, we conclude that σ ∈ Γ(x).

It remains for us to verify if σ ∈ ΓD(xD). On the one hand, if all plant events

that form xD have not reached their step delay bound, then σ ∈ ΓD(xD), which

means that σ ∈ Γ(x)∩ΓD(xD)\NX(xV) and, as a consequence, state xV is removed

from V by Step 5.2.1, which means that sequence sa is removed from LUOEa and

Condition OEC2 is satis�ed. On the other hand, if some plant event that form xD

has reached its step delay bound, then Σ∩ΓD(xD) = ∅, however, since sa � OEC1,

∃σr ∈ Σr : saσr ∈ LUOEa and then, we can de�ne ŝa = saσr and repeat this analysis

for ŝa, since Pa(ŝa)σ ∈ L but Pa(ŝat̂a) 6= Pa(ŝa)σ,∀t̂a ∈ LOEa /ŝa. Notice that, the

second component x̂D of state x̂V = (x̂, x̂D, x̂int) reached through sequence ŝa is such

that Σ ⊂ ΓD(x̂D), which lies in the aforementioned case where σ ∈ ΓD(x̂D), and

thus, state x̂V (which immediately follows xV through a transition labeled with event

σr) is removed by Step 5.2.1. It is worth highlighting that the state xV may become

not coaccessible after state x̂V has been removed. In this case, xV is also deleted

by Step 5.2.1 when it performs the trim operation. Therefore, Step 5.2.1 ensures

that every sequence sa that violates Condition OEC2 is removed from LUOEa .

Since Step 5 is a recursion, either all of the remaining sequences in LUOEa sat-

isfy Conditions OEC1�OEC4, allowing Algorithm 4.1 to proceed to Steps 6 and

7, which returns automaton RUOE whose generated language is LUOEa , or Step 5

removes all sequences from LUOEa , and thus, automaton RUOE becomes empty.

We then present the main result of this chapter, which provides necessary and

su�cient conditions to verify if the automaton RUOE, obtained according to Algo-

rithm 4.1, models an EU-CSO augmented system, as follows.

Theorem 4.1 Let G = (X,Σ, f,Γ, x0) be the automaton that models the ob-

servable behavior of a system, Xu be the set of useful states, and let automaton

GSD
a = (XSD

a ,Σa, fint,Γ
SD
a , xSD0,a , X

SD
m,a) model the augmented system with respect to

the deletable events in ΣD, secret states in Xs and step delay bounds in SD(k).

Consider automaton RUOE, which is obtained in accordance with Algorithm 4.1,

and whose generated language is LUOEa . Automaton RUOE models an EU-CSO aug-

mented system if, and only if, LUOEa 6= ∅.

Proof.

(⇒) Assume that automaton RUOE models an EU-CSO augmented system,

which, together with De�nition 4.3, implies that L(RUOE) = LUOEa 6= ∅.

80

(⇐) Assume that the language generated by automaton RUOE is not empty,

i.e., LUOEa 6= ∅. According to Lemma 4.2, since LUOEa 6= ∅, we have that LUOEa �

(OEC1∧OEC2∧OEC3∧OEC4). Finally, according to Lemma 4.1, the augmented

system modeled by automaton RUOE is EU-CSO.

4.4 Example

We revisit the system presented in Example 4.1, whose observed behavior has been

modeled by automaton G = (X,Σ, f,Γ, x0), depicted in Figure 4.2. Let Xs = {3}
and Xu = {4} denote the sets of secret and useful states, respectively, and let

SD(k) = {(a, 2), (b, 0), (c, 1)} denote the set formed with the step delay bounds for

each one of the events of Σ, where no event is deletable, i.e., ΣD = ∅.
In order to illustrate Algorithm 4.1, we must �rst build automaton GSD

a =

G‖D‖Gint = (XSD
a ,Σa, fint,Γ

SD
a , xSD0,a , X

SD
m,a). To this end, as detailed in Exam-

ple 4.5: (i) we mark states 3, 5 and 8 of automaton G; (ii) we compute automaton

D = (XD,Σa, fD,ΓD, x0,D, Xm,D) that models SD(k) = {(a, 2), (b, 0), (c, 1)} and

ΣD = ∅ in accordance with Algorithm 3.1 and mark its initial state, i.e.,Xm,D = {ν};
(iii) we build automaton Gint = (Xint,Σr, fint,Γint, x0,int, Xm,int) and mark states 5

and 8, i.e., Xm,int = {5, 8}. Figures 4.5 and 4.6 depict automata D and Gint, re-

spectively. Finally, we compute automaton GSD
a = G‖D‖Gint, shown in Figure 4.7.

We now start explaining Algorithm 4.1. After V has been computed as a copy

of automata GSD
a by Step 1, according to Step 2, we search for transitions that

violate either OEC3 or OEC4. In this regard, in Step 2.1, we remove the transi-

tion from state (4, ac, 0) to state (5, acb, 0) labeled with event b, and transition from

state (4, c, 1) to state (5, cb, 1) labeled with event b, since in both states (4, ac, 0)

and (4, c, 1), the plant is currently at the utility state 4 but these transitions labeled

with event b would make the system to further evolve without the legitimate receiver

estimating the useful state 4, which violates speci�cation US1 and, consequently,

OEC3. in Step 2.2, we remove only the transition from state (5, cb, 1) to state

(5, b, 4), which is labeled with event cr, since it means that the release of the obser-

vation of event c (namely event cr) has just made the legitimate receiver estimate

the useful state 4 while the current state of the plant is di�erent, which violates

speci�cation US2 and, consequently, OEC4. Notice that Steps 2.1 and 2.2 only

need to be performed once, since the removal of transitions do not make other states

to violate Conditions OEC3 or OEC4. Figure 4.8 shows automaton V throughout

Step 2, where the red (resp. blue) colorized transitions violate Condition OEC3

(resp. OEC4) and are removed from V by Step 2.1 (resp. Step 2.2).

In Step 3, states that have become either not accessible or not coaccessible, as

mentioned in 4.3, are removed from V when we compute Trim(V). For example,

81

(0, ν, 0)

(5, ν, 8)

(8, ν, 8)

(5, ν, 5)

(3, ν, 8)

(6, b, 0)

(3, c, 2)

(8, ca, 6)

(4, c, 1)

(2, ν, 2)

(5, cb, 1)

(5, acν, 6)

(1, a, 0)

(6, ν, 6)

(5, b, 4)

(3, aνc, 6)

(5, cν, 2)

(5, aνν, 7)

(5, acb, 0)

(3, aνν, 7)

(8, a, 7)

(4, ν, 4)

(7, ν, 7)

(1, ν, 1)

(7, c, 6)

(2, b, 1)(2, ab, 0)

(4, ac, 0)

(2, aν, 6)

br

cr

b

cr

c

br

cr

cr

b

c

ar

c

br

cr

ar

br

ar

ar

ar

b

a

b

c

a

cr

br

br

ar

b

ar

b

a

c

Figure 4.8: Automaton V with colorized transitions that violate Step 2 of Algo-
rithm 4.1.

(0, ν, 0)

(5, ν, 5)

(3, ν, 8)

(8, ν, 8)

(8, ca, 6)

(1, ν, 1)

(6, b, 0)

(4, ν, 4)

(6, ν, 6)

(4, ac, 0)

(3, aνc, 6)

(5, b, 4)

(2, aν, 6) (3, aνν, 7)(2, ab, 0)

(7, ν, 7)

(7, c, 6)

(4, c, 1)

(8, a, 7)

(1, a, 0)

b

a

cr

c

br

b

c

ar

cr

br

c arbr

acr

a

cr

ar

c

b

ar

Figure 4.9: Automaton V after Step 3 of Algorithm 4.1.

both states (5, cν, 2) and (3, c, 2) violate OEC1, since they have no continuation

but their second component means that event observations are being held (they are

di�erent from ν), and so, these states are not coaccessible, which implies that they

are removed from automaton V when Step 3 is performed by Algorithm 4.1. On

the other hand, state (5, ν, 8) is coaccessible but became not accessible, due to the

transitions removal performed in Step 2, and as a consequence, it will be removed

from V by Step 3. Those states and transitions that have been removed by Step 3

are shown in Figure 4.8, where they have been colorized with gray. The resulting

automaton V after Step 3 is illustrated in Figure 4.9.

In the �rst time Step 5 is performed by Algorithm 4.1, only state (1, ν, 1) meets

the conditions of Step 5, since b ∈ Γ(1), b ∈ ΓD(ν), but b /∈ NX({(1, ν, 1)}) = {c},
which means that the following behavior is not modeled in V : event a is generated

by the plant, the Opacity-Enforcer immediately releases its observation ar and event

b occurs in the plant. We recall that the Opacity-Enforcer must never inhibit plant

event occurrences. Therefore, all sequences that reach state (1, ν, 1), namely aar,

actually violate OEC2, and thus, should be removed. Next, we compute Trim(V),

and now no state violates the condition of Step 5.2.1, which sets the value of the

�ag as �false� and allows Algorithm 4.1 to proceed to Step 6.

82

(0, ν, 0)

(5, ν, 5)

(3, ν, 8)

(8, ν, 8)

(4, ac, 0)

(6, b, 0)
(6, ν, 6)

(4, c, 1)

(3, aνc, 6)

(7, c, 6)

(3, aνν, 7)

(1, a, 0)

(7, ν, 7)

(4, ν, 4)

(2, aν, 6)
(2, ab, 0)

(8, a, 7)

(5, b, 4)
ar

br
c

cr

cr

cr

ar

b

c

a

b

c
br

b

a

ar

br

Figure 4.10: Automaton RUOE, obtained in accordance with Algorithm 4.1.

In Step 6, we verify if unicity conditions UC1�UC3 are being violated. In

this regard, the unique state that violates some unicity condition is state (7, c, 6),

where the Opacity-Enforcer has to decide between releasing the event observation

cr and waiting for event a to occur. According to UC1, event observation releases

have the highest priority among the actions that the Opacity-Enforcer is allowed to

take. Therefore, in order to ensure UC1, we must remove the transition from state

(7, c, 6) to state (8, ca, 6) labeled with event a, which is performed in Step 6.1.

Finally, in Step 7, we compute automaton RUOE, which is the resulting automa-

ton after the states/transitions removals performed in Algorithm 4.1. Figure 4.10

depicts automaton RUOE, which models the desired behavior of an Opacity-Enforcer

that ensures the utility of the system and, at the same time, enforces current-state

opacity. It is worth highlighting that, the Opacity-Enforcer automaton RUOE does

not allow the intruder to estimate the secret states in Xs = {3}, since no state has

its third component being a secret state, and even when the current state of the sys-

tem is a secret one, e.g., states (3, aνc, 6) and (3, aνν, 7), the intruder cannot infer

it and estimates a non-secret state instead (states 6 and 7, respectively). Moreover,

when the system reaches, in this case, the unique useful state xu = 4, e.g., in state

(4, ac, 1), the Opacity-Enforcer automaton RUOE starts releasing/deleting event ob-

servations so as the legitimate receiver estimates it as soon as possible, which can

be noticed from Figure 4.10, where state (4, ac, 1) has a unique continuation with

sequence arcr, which leads the legitimate receiver to estimate the useful state in

(4, ν, 4). Notice also that, when the estimates of the legitimate receiver is updated

to a useful state, e.g., state (4, ν, 4), the current state of the system corresponds to

it (the �rst and third components of the state must be identical).

4.5 Concluding remarks

In this chapter, we have addressed the main criticism regarding opacity enforcement

strategies, namely that in order to obfuscate the secret behavior of the system from

intruders, some transmitted information must also be concealed from the legitimate

receiver. In this regard, we have introduced the notion of (state-based) utility of the

83

system, which di�ers from that approached in [71]. Moreover, we have presented

su�cient and necessary conditions that guarantee that the utility of the system is

preserved while current-state opacity is being enforced.

In addition, we have also improved the algorithm presented in Chapter 3 for

realizing the CSO enforcer. The new algorithm that we have presented in this

chapter realizes an Opacity-Enforcer that ensures the utility of the system and, at

the same time, enforces current-state opacity, whenever the behavior of the system

allows.

84

Chapter 5

Fault prediction

This chapter presents the second problem that has been solved by using state estima-

tions. This time, we investigate the problem of disjunctive predictability veri�cation

and online fault prediction of DES in less restrictive scenarios, i.e., without making

the usual assumptions of language liveness and absence of cycles of states connected

by unobservable events. To this end, we adapt the test automaton and the veri�er,

proposed in [102] and [103], respectively, which are used to verify codiagnosabil-

ity, in order to develop two new strategies to verify disjunctive predictability. The

�rst one is based on the test automaton proposed in [102], whereas the the second

one relies on the veri�er proposed in [104, 105]. We also introduce the notion of

K-copredictability and the problem of its veri�cation.

We have structured this chapter as follows. Section 5.1 presents the problem for-

mulation, recall the assumptions usually made on previous works on decentralized

architectures, the formal de�nition of disjunctive predictability (to be referred here

simply as copredictability), and some illustrative examples; Section 5.2 considers the

problem of copredictability veri�cation using a diagnoser-like test automaton and a

veri�er, respectively in Subsections 5.2.1 and 5.2.2; Section 5.3 presents the design

of fault predictor systems; Section 5.4 approaches the problem of K-copredictability,

presenting an algorithm for its veri�cation; �nally, Section 5.6 summarizes all con-

tributions of this chapter. Preliminary results of this chapter have been presented

in [101], whereas its full version has been accepted for publication in Automatica.

5.1 Problem formulation

We consider the decentralized architecture depicted in Figure 5.1, which is com-

posed of a plant modeled by automaton G, m Measurement Sites (MS), n Local

Predictors (LP), at most n ×m communication channels (ch), and a Coordinator.

Each measurement site MSj, j ∈ {1, . . . ,m} is responsible for recording the occur-

rence of events σ ∈ Σms,j, and each event is recorded by a speci�c measurement site,

85

Coordinator

chn,mchn,jch1,jch1,1

Plant G = (X,Σ, f,Γ, x0, Xm)

MS1 MSmMSj

LPnLP1

Figure 5.1: Decentralized architecture.

therefore, Σms,i ∩Σms,j = ∅,∀i 6= j. The communication channel chi,j is responsible

for transmitting the events recorded by measurement site MSj to local predictor

LPi; and therefore, the transmitted events form the set Σoi,j . If a channel chi,j does

not exist, then Σoi,j = ∅. The local predictors LPi, i ∈ {1, . . . , n} are responsible

for issuing a verdict if a fault event will inevitably occur in a �nite number of subse-

quent event occurrences, thus foreseeing the fault occurrence. The events observed

by a local predictor LPi form the event set Σo,i =
⋃m
j=1 Σoi,j . The Coordinator

manages the information received from the local predictors, in the sense that, it

issues a verdict that a fault will eventually happen if at least one local predictor

LPi foresees the fault occurrence. This is referred to as disjunctive predictability, or

simply copredictability.

We then assume that: (i) the measurement sites never miss event occurrences,

i.e., whenever an event is generated by the system, the corresponding measurement

site records its occurrence, and that (ii) there are neither packet loss nor delays in

the communication channels, i.e., each event generated by the system automaton

always reaches some local predictor with no changes in the observation order.

Notice that, events generated by the plant that are recorded by some measure-

ment site MSi, i ∈ {1, . . . ,m} are the so-called observable events, and thus, the set

of observable events is Σo =
⋃m
j=1 ΣMS,j =

⋃n
i=1 Σo,i. On the other hand, events that

are generated by the plant but not recorded by any measurement site are consid-

ered unobservable, thus forming set Σuo. Observable events that are not observable

by some local predictor are referred to as locally unobservable, being denoted by

Σuo,i = Σ \ Σo,i.

Finally, since we intend to approach more general classes of DES, the usual

assumptions on non existence of cycle of states connected by unobservable events

only and language liveness are not required here. The discarded old assumptions

86

are the following.

OA1. There is no cycle of states connected by unobservable events only.

OA2. The language generated by the system is live.

Remark 5.1 Notice that several techniques for predictability veri�cation in the lit-

erature fail to produce the correct veri�cation answer when Old Assumptions OA1

and OA2 are violated (see [82]) since they hide all cycles formed with unobservable

events only, the so called-hidden cycles [3, 108]. In addition, the removal of As-

sumption OA1 immediately releases Assumption OA2 since, from the observation

point of view, every non-live language can become live by adding self-loops labeled by

unobservable events to every state with unde�ned transition function. Thus, we will

keep the usual de�nitions of predictability assuming that the language is live.

Although all de�nitions are stated for live languages, if the language is not live, it

can be made live, from the observation point of view, by concatenating all sequences

that do not have continuations with σ∗uo, where σuo is an unobservable event.

The dynamic evolution of the architecture presented here is as follows: (i) the

system automaton generates events; (ii) the observable events are recorded by some

Measurement Site MSj; (iii) the Communication Channel chi,j transmits the obser-

vation to the corresponding Local Predictor LPi; (iv) based on its own observation

model, each Local Predictor LPi sends the information regarding the predictability

of some fault event to the Coordinator; (v) the Coordinator issues a verdict that a

fault will inevitably occur if at least one Local Predictor LPi has predicted it (dis-

junctive fault prediction). We recall that each Local Predictor LPi observes events

in Σo,i only.

De�nition 5.1 (Disjunctive Predictability/Copredictability) A pre�x-closed and

live language L is copredictable with respect to Po,i : Σ∗ → Σ∗o,i, i ∈ I = {1, 2, . . . , n},
and an event set Σf = {σf} if(

∃z ∈ N
)(
∀s ∈ Ψ(Σf)

)(
∃t ∈ s

)[
(Σf /∈ t) ∧P

]
where P :

(
∃i ∈ I

)(
∀ui ∈ L

)(
∀vi ∈ L/ui

)[
(Po,i(ui) = Po,i(t)) ∧ (Σf /∈ ui) ∧ (‖vi‖ ≥

z)⇒ (Σf ∈ vi)
]

2

It is clear that De�nition 2.12 is a particular case of De�nition 5.1 when I = {1}
and Σp = Σf = {σf}.

Example 5.1 Consider automaton H depicted in Figure 5.2, whose generated lan-

guage is L, its event set is Σ = {a, b, c, σf}, and fault event set is Σf = {σf}.

87

a b c σf0 1 2 3 4

5 6
c

c

a

a

b

Figure 5.2: Automaton H.

a

b b

c

c

a

σf

0 1

2 3 4 5

6
b a c

σf

7 8

910
a

Figure 5.3: Automaton G.

Let us check if L is copredictable with respect to Σo,1 = {b, c} and Σo,2 = {a, c}.
Since, the projection Po,1 of all pre�xes of sf = abcσf (Po,1(sf) = bc) is identical

to the projection of some pre�x of the arbitrarily long normal sequence u1v1 ∈ bca∗
(Po,1(u1v1) = bc), the language L is not predictable with respect to Po,1 and Σf . The

same conclusion can be drawn when we consider Po,2, since for all pre�xes tf ∈ sf ,
there is a sequence u2 ∈ aca∗ such that Po,2(tf) = Po,2(u2) ∈ ac. Therefore, language
L generated by the system is not copredictable with respect to Po,i, i = 1, 2, and Σf ,

since none of the local predictors can be sure that the fault will inevitably occur when

sequence sf = abcσf occurs in the system. 2

Remark 5.2 It is not di�cult to show that a non predictable language with respect

to Po and Σf will not be copredictable with respect to Po,i and Σf , ∀Σo,i ⊆ Σo. This

conclusion can be drawn from the fact that a non predictable language has at least

one fault sequence s ∈ Ψ(Σf) such that the single centralized predictor observing Σo

cannot predict its occurrence, therefore, no local predictor LPi that observes Σo,i ⊆
Σo will be able to predict the fault occurrence in s, hence, the language will be not

copredictable with respect to any Po,i, i = 1, 2, . . . , n and Σf . 2

Example 5.2 Consider automaton G depicted in Figure 5.3 where Σ = {a, b, c, σf},
Σf = {σf} and Σo = {a, b, c}. Let Lnl denote the language generated by G. Notice

that Lnl is not live, and so, as suggested in Remark 5.1, we may set Σ = Σ ∪
{σuo}, where σuo is an unobservable event, and then add transition f(8, σuo) = 8 to

automaton G, so as to obtain a language L that is live and its observed behavior is

88

the same as Lnl. It is not di�cult to check that language L is predictable with respect

to Po and Σf , i.e., it is possible to identify pre�xes of fault sequences s1 = aabcσf and

s2 = abcaσf whose observations are not identical to the observation of all pre�xes

of arbitrarily long normal sequences.

Assume that the system is part of a disjunctive decentralized architecture with

two local predictors, LP1 and LP2, which are able to observe the events of sets

Σo,1 = {a, c} and Σo,2 = {a, b}, respectively. It is clear that both predictors, LP1 and

LP2, when working alone, are unable to foresee all fault occurrences. In order to

prove this claim, let us consider sequence s1 = aabcσf . Notice that pre�xes t1 = aabc

and u = abac of s1 and of arbitrarily long normal sequence sN = abacσkuo, k ∈ N,
respectively, are such that Po,1(t1) = Po,1(u) = aac and Σf /∈ L/u = σkuo, which shows

that LP1 cannot predict the occurrence of fault sequence s1. Consider now sequence

s2 = abcaσf . It is not hard to see that its longest non-faulty pre�x t2 = abca is such

that Po,2(t2) = Po,2(u) = aba, where u ∈ sN , and as a consequence, there exists a

fault occurrence that LP2 cannot predict. However, when both LP1 and LP2 work

under a disjunctive coordination, every fault occurrence in the system is foreseen,

since when s1 (resp. s2) occurs in the system, although LP1 (resp. LP2) is not sure

about the future fault occurrence, local predictor LP2 (resp. LP1) is sure that it will

inevitably occur. Thus, language L is copredictable with respect to Po,i, i = 1, 2, and

Σf . 2

Lemma 5.1 Let Lnl be a not live language and L be a live language obtained from

Lnl by adding sσ∗uo into L for all sequences s ∈ Lnl that have no continuation, i.e.,

L = Lnl ∪ {sσ∗uo : s ∈ Lnl ∧ sΣ /∈ Lnl}. Then, L is copredictable with respect to

Po,i : Σ∗ → Σ∗o,i, i ∈ I = {1, 2, . . . , n}, and event set Σf = {σf} if, and only if, Lnl

is copredictable with respect to Po,i, i ∈ I = {1, 2, . . . , n}, and event set Σf = {σf}.

Proof.

(⇒) Assume that L is copredictable with respect to Po,i, i = 1, . . . , n, and Σf .

Then, for all fault sequences sf ∈ Ψ(σf), there exists a pre�x with no fault tf ∈
sf , σf /∈ tf such that, for a local i = 1, . . . , n, all sequences ui ∈ L, σf /∈ ui such that

Po,i(ui) = Po,i(tf) will certainly have all arbitrarily long length continuations with

fault, i.e., ∀vi ∈ L/ui, ‖vi‖ ≥ z ∈ N is such that σf ∈ vi. This means that, from the

observation perspective of local i, all pre�xes uN,i of arbitrarily long length normal

sequences sN,i cannot be confused with that pre�x tf , i.e., Po,i(tf) /∈ Po,i(sN,i).

Assume now that sequence sN,i have been made arbitrarily long by adding events

σuo to it. Then, we can write sN,i = s′N,iσ
∗
uo. However, it still holds true that

Po,i(tf) 6= Po,i(u
′
N,i), where u

′
N,i ∈ s′N,i, since Po,i(u′N,i) ∈ Po,i(s′N,i) = Po,i(s

′
N,iσ

∗
uo) =

Po,i(sN,i), event σuo is unobservable and Po,i(tf) /∈ Po,i(sN,i). This result means that

any sequence sf that can be predicted in L can also be predicted in Lnl, which

89

implies, according to our initial assumption, that Lnl is copredictable with respect

to Po,i, i = 1, . . . , n, and Σf

(⇐) Assume now that L is not copredictable with respect to Po,i, i = 1, . . . , n,

and Σf . Then, there exists a fault sequence sf ∈ Ψ(σf), whose all pre�xes with

no fault tf ∈ sf , σf /∈ tf are confused with some pre�x uN,i of arbitrarily long

length normal sequences sN,i, i.e., uN,i ∈ sN,i, from the perspective of any local

i = 1, . . . , n. Therefore, Po,i(tf) = Po,i(uN,i) ∈ Po,i(sN,i). If it is the case where

sequence sN,i has been made arbitrarily long by adding events σuo to it, then we can

write sN,i = s′N,iσ
∗
uo. Since event σuo is unobservable, then Po,i(sN,i) = Po,i(s

′
N,iσ

∗
uo) =

Po,i(s
′
N,i), which implies that Po,i(tf) ∈ Po,i(s′N,i), meaning that the fault in sequence

sf cannot be predicted in Lnl either. Thus, Lnl is not copredictable with respect to

Po,i, i = 1, . . . , n, and Σf .

5.2 Copredictability veri�cation

In this section, we address the problem of copredictability veri�cation for regular

languages and, to this end, we propose two di�erent veri�cation strategies: (i) the

�rst one that deploys the test automaton proposed by VIANA and BASILIO [102];

(ii) the second strategy that is based on the veri�er proposed by MOREIRA et al.

[104] (see also MOREIRA et al. [105]).

5.2.1 Copredictability veri�cation using the diagnoser-like

test automaton

The test automaton

As pointed out in Remark 5.1, the information about state cycles connected solely by

unobservable events is lost when diagnoser Gd,i is built, since Gd,i = Obs(G`,Σo,i).

The lack of such information makes Gd,i inappropriate for predictability veri�ca-

tion in the presence of hidden cycles [108]. Such a drawback does not exist in the

diagnoser-like test automaton (to be referred here to as test automaton) [102], since

it reveals the existence of state cycles connected by unobservable events only. The

test automaton has been proposed in [102] as a way to perform the veri�cation of

fault codiagnosability in DES, which, di�erently from that proposed in [18], does

not require the restrictive assumptions on language liveness and nonexistence of cy-

cles of states connected with unobservable events only (OA1 and OA2). Another

advantage of the veri�cation strategy proposed in [102] is that it is based on the

search for non-trivial SCCs, as opposed to the diagnoser proposed in [18], which

requires the search for cycles in both, the diagnoser and system automata.

90

The idea behind the test automaton is to synchronize the behavior observed by

the N local diagnosers and the actual behavior of the system. In this regard, in

order to build the test automaton, it is �rst necessary to build the label automaton

A` = (XA` , {σf}, fA` ,ΓA` , x0,A` , ∅) and compute G` = G‖A` = (X`,Σ, f`,Γ`, x0,`, ∅).
Then, for i = 1, . . . , n, we compute the observer automata Gd,i = Obs(G`,Σo,i) =

(Xd,i,Σo,i, fd,i,Γd,i, x0,d,i, ∅), which models the i-th local diagnoser automaton.

Finally, the test automaton is obtained as follows:

Gscc =
(
||ni=1Gd,i

)
‖G`.

Copredictability veri�cation using test automaton

Inspired by the test automaton proposed in [102], we propose a copredictability

veri�cation algorithm (Algorithm 5.1) that does not require the usual assumptions

on language liveness and absence of state cycles connected by unobservable events

only. The idea behind Algorithm 5.1 is to verify if for each sequence sf that ends

with fault event σf , there exists at least one local predictor LPi, i = 1, . . . , n, that

is able to distinguish some pre�x tf ∈ sf prior to the fault event (σf /∈ tf) from

all pre�xes of arbitrarily long length normal sequences sN . In this regard, given

a system modeled by some automaton G, Algorithm 5.1 checks if the language

generated by G is copredictable with respect to Po,i and Σf , returning either �Yes�,

when every fault occurrence can be predicted by at least one local predictor LPi, or

�No�, otherwise.

Algorithm 5.1 Copredictability veri�cation using test automaton

Input: Automaton G, event sets Σo,i, i = 1, . . . , n.

Output: Copredictability decision: Yes or No.

1. Build G` = (X`,Σ, f`,Γ`, x0,`, ∅) = G‖A`.
2. If ∃x` ∈ X` : Γ`(x`) = ∅,

(a) Set Σuo = Σuo ∪ {σuo}
(b) For all x ∈ X` : Γ`(x) = ∅, set f`(x, σuo) = x.

3. Find all nontrivial SCCs of G` whose states are labeled with N and form set

XN
SCC.

4. Create set Xm,N = {x` ∈ X` : (∃s ∈ Σ∗)[f`(x`, s) ∈ XN
SCC]}

5. Set GN = (X`,Σ, f`,Γ`, x0,`, Xm,N).

6. For i = 1, . . . , n, build GN
i = Obs(GN ,Σo,i) = (Xi,Σo,i, fi,Γi, x0,i, Xm,i).

7. Set Xm,f = {x` ∈ X` : (∃y` ∈ X`)[f`(y`, σf) = x`]}.
8. For every x ∈ X:

91

(a) if x ∈ Xm,f , set Γ`,f (x) = ∅;
(b) else set Γ`,f (x) = Γ`(x) and f`,f (x, σ) = f`(x, σ) for all σ ∈ Γ`(x).

9. Build Gf
` = Ac(X`,Σ, f`,f ,Γ`,f , x0,`, Xm,f).

10. Build Gscc =
(
‖ni=1G

N
i

)
‖Gf

` = (Xscc,Σ, fscc,Γscc, x0,scc, Xm,scc).

11. If Xm,scc = ∅, return �Yes�. Otherwise, return �No�.

Remark 5.3 A marked state xscc = (x1, . . . , xn, x`) of Gscc means that the system

has reached a faulty state without any local predictor being sure that the fault would

inevitably occur, since (i) a marked state x` of G
f
` means that a fault has just oc-

curred, and; (ii) a marked state xi, i = 1, . . . , n, of GN
i means that, from the point

of view of the local predictor LPi, there is at least one arbitrarily long length normal

sequence sN,i whose pre�x tN,i ∈ sN,i is such that fi(x0,i, Po,i(tN,i)) = xi. In this

regard, for a sequence such that fscc(x0,scc, sf) = xscc ∈ Xm,scc, then, since we know

that sf ∈ Ψ(σf) and, for i = 1, . . . , n, there exists some arbitrarily long length nor-

mal sequence sN,i whose pre�x tN,i ∈ sN,i is such that Po,i(tN,i) = Po,i(sf), we may

conclude that the fault has just occurred and yet, none of the local predictors LPi

was able to predict it. Thus, we may conclude that the presence of marked states in

Gscc implies that language L is not copredictable with respect to Po,i, i = 1, . . . , n

and Σf . 2

Based on Algorithm 5.1 and Remark 5.3, we present a necessary and su�cient

conditions for copredictability veri�cation by using the diagnoser-like test automa-

ton. We present the following fact �rst.

Fact 5.1 Let Σ = Σo∪̇Σuo, Po : Σ∗ → Σ∗o and assume that there exists two sequences

s1, s2 ∈ L ⊆ Σ∗ where Po(s1) = Po(s2). Then, for all t1 ∈ s1, there exists t2 ∈ s2

such that Po(t1) = Po(t2). 2

Fact 5.1 can be clari�ed as follows. Let us assume, without loss of generality, that

Po(s1) = Po(s2) = σ1σ2 . . . σn, σi ∈ Σo, i = 1, . . . , n. Then, there exist uj, wj ∈ Σ∗uo,

j = 1, . . . , n + 1 such that s1 = u1σ1u2σ2 . . . unσnun+1 and s2 = w1σ1w2σ2 . . . wnσn

wn+1. Thus, for any t1 ∈ s1, say t1 = u1σ1u2σ2 . . . ukσku, where u ∈ uk+1, we may

de�ne t2 ∈ s2 such that t2 = w1σ1w2σ2 . . . wkσkw, where w ∈ wk+1, which satisfy,

Po(t1) = Po(t2).

Theorem 5.1 A language L is copredictable with respect to projections Po,i : Σ∗ →
Σ∗o,i, i = 1, . . . , n, and fault event set Σf = {σf} if, and only if, the test automaton

Gscc, computed in accordance with Algorithm 5.1, has no marked states.

Proof.

(⇒) Assume that automaton Gscc has at least one marked state. Since Gscc =

92

(
‖ni=1G

N
i

)
‖Gf

` , it is clear that Lm(Gscc) = (
⋂n
i=1 P

−1
o,i (Lm(GN

i))) ∩ Lm(Gf
`). Thus,

there exists a sequence sf ∈ Lm(Gscc) such that: (i) sf ∈ Lm(Gf
`), which im-

plies that, according to Step 9 of Algorithm 5.1, sf ∈ Ψ(σf), and, (ii) sf ∈
P−1
o,i (Lm(GN

i)), i = 1, . . . , n. On the other hand, since GN
i = Obs(GN ,Σo,i), it

is not di�cult to see that Lm(GN
i) = Po,i(Lm(GN)), which implies that sf ∈

P−1
o,i (Po,i(Lm(GN))), or equivalently, Po,i(sf) ∈ Po,i(Lm(GN)). Let uN,i ∈ Lm(GN) be

a sequence such that Po,i(sf) = Po,i(uN,i). According to Steps 3�5, the marked lan-

guage of GN is composed of all pre�xes of arbitrarily long length normal sequences,

and so, there exist arbitrarily long length sequences sN,i ∈ Lm(GN), i = 1, . . . , n,

sN,i not necessarily di�erent from sN,j for i 6= j, such that uN,i ∈ sN,i. Accord-

ing to Fact 5.1, since Po,i(sf) = Po,i(uN,i), we can conclude that for all tf ∈ sf ,

there exists ui ∈ uN,i such that Po,i(tf) = Po,i(ui). Write sN,i = uivi, and, since

sN,i ∈ Lm(GN) ⊆ L(GN) = L(G`) = L`, we have that ui ∈ L` and vi ∈ L`/ui, which
implies that:

(
∀z ∈ N

)(
∃sf ∈ Ψ(σf)

)(
∀tf ∈ sf

)[
(σf ∈ tf) ∨ ¬P

]
where ¬P :

(
∀i ∈ I

)(
∃ui ∈ L`

)(
∃vi ∈ L`/ui

)[
Po,i(ui) = Po,i(tf)∧ (σf /∈ ui)∧ (‖vi‖ ≥

z) ∧ (σf /∈ vi)
]
, and so, L` is not copredictable with respect to Po,i and Σf . Notice

that, if L(G) = L is live, then L and L` coincides, i.e., L = L`, which implies that L

is not copredictable with respect to Po,i and Σf . On the other hand, if L is not live,

then L` has been obtained from L by adding sequences sσ∗uo into L` for all s ∈ L
with no continuation (Step 2), which implies, according to Lemma 5.1, that L is not

copredictable with respect to Po,i and Σf .

(⇐) Let L be a live language, otherwise we make it live by adding sequences

sσuo into L for all s ∈ L with no continuation. Assume now that the language

L is not copredictable with respect to Po,i and Σf . Thus there exist sequences

sf , sN,i ∈ L, such that, sf = sσf , where s ∈ Σ∗ and σf /∈ s without loss of generality
(as a consequence of language L being not copredictable, the �rst fault occurrence

in some fault sequence cannot be predicted by any local predictor), and sN,i =

uivi (σf /∈ sN,i) has arbitrarily long length and satis�es Po,i(ui) = Po,i(tf), i =

1, . . . , n, for all tf ∈ sf . As a consequence, Po,i(sf) ∈ Po,i(sN,i), or equivalently,

sf ∈ P−1
o,i (Po,i(sN,i)). In addition, sf ∈ Lm(Gf

`) since, according to Steps 7�9 of

Algorithm 5.1, any sequence that denotes the �rst fault occurrence leads to a marked

state, which is the case of sf . Since sN,i is unbounded and σf /∈ sN,i, it is clear

that, according to Steps 3�5, sN,i ⊆ Lm(GN). According to Step 6, Lm(GN
i) =

Po,i(Lm(GN)), and since by construction sN,i ⊆ Lm(GN), the following relationship

can be established: Po,i(sN,i) ⊆ Po,i(Lm(GN)) = Lm(GN
i). Thus P−1

o,i (Po,i(sN,i)) ⊆
P−1
o,i (Lm(GN

i)), which implies that, since sf ∈ P−1
o,i (Po,i(sN,i)), it is straightforward to

93

a

b

c

c

a

σf

0N 1N

2N 3N 4N 5F

6N
b a c

σf

7N 8N

9N10N
a

1F 6F
b a c

7F 8F

c

σuo

σuo

a

b c

σf

2F 3F 4F

b

a
9F 10F

σf

Figure 5.4: Automaton G`.

a

b

c

c

a

σf

0N 1N

2N 3N 4N 5F

6N
b a c

σf

7N 8N

9N10N
a

1F 6F
b a c

7F 8F

c

σuo

σuo

a

b c

σf

2F 3F 4F

b

a
9F 10F

σf

Figure 5.5: Automaton GN .

see that sf ∈ P−1
o,i (Lm(GN

i)), for all i = 1, . . . , n. Finally, since Gscc =
(
‖ni=1G

N
i

)
‖Gf

` ,

its marked language is Lm(Gscc) = (
⋂n
i=1 P

−1
o,i (Lm(GN

i))) ∩ Lm(Gf
`), which together

with the fact that sf ∈ P−1
o,i (Lm(GN

i)), for all i = 1, . . . , n, and sf ∈ Lm(Gf
`), we

may conclude that sf ∈ Lm(Gscc), which ultimately implies that Lm(Gscc) 6= ∅, and
thus, automaton Gscc has at least one marked state.

Example 5.3 We revisit the system presented in Example 5.2, whose behavior is

modeled in Figure 5.3. Recall that the observable event sets of the two local pre-

dictors LP1 and LP2 are Σo,1 = {a, c} and Σo,2 = {a, b}, respectively. Step 1 of

Algorithm 5.1 computes automaton G`, depicted in Figure 5.4, except for the self-loop

with unobservable event σuo, which is added to G` in Step 2. Step 3 computes all

SCCs of G` formed with normal states only, and so, it creates the set X
N
SCC = {8N}.

Step 4 computes set Xm,N as all states of G` that reach the states in XN
SCC through

some sequence s ∈ Σ∗, which results in Xm,N = {0N, 1N, 6N, 7N, 8N}. Then,

94

2N, 3N, 7N

4N, 5F, 8N

1N, 6N

9N

a c

ac

0N

a

1F, 6F, 10N

a

2F, 3F, 7F

9F

a

1F, 6F, 10F

c c

c

a

4F, 5F, 8F

(a) GN1 = Obs(GN ,Σo,1).

1N 2N

0N

a

2N, 4N, 5F

5F

b a

b

b

b

b

a

b

a

b

a

3F, 4F, 5Fa

a

6N, 9N

2F

1F, 7N, 8N, 10N

1F, 7F, 8F, 10F

6F, 9F

(b) GN2 = Obs(GN ,Σo,2).

Figure 5.6: Observer automata GN
1 and GN

2 .

a

b

c

c

a

σf

0N 1N

2N 3N 4N 5F

6N
b a c

σf

7N 8N

9N10N
a

1F

σuo

Figure 5.7: Automaton Gf
` .

ab {1N, 6N}, {1N}, {1N}

σf

c

b

{2N, 3N, 7N}, {2N}, {2N}

{2N, 3N, 7N}, {3N, 4N, 5F}, {3N}

{4N, 5F, 8N}, {3N, 4N, 5F}, {4N}

{4N, 5F, 8N}, {3N, 4N, 5F}, {5F}

σuo

c

{2N, 3N, 7N}, {1F, 7N, 8N, 10N}, {7N}

{4N, 5F, 8N}, {1F, 7N, 8N, 10N}, {8N}

a

c

a

σf

{1N, 6N}, {6N, 9N}, {6N}

{9N}, {6N, 9N}, {9N}

{1F, 6F, 10N}, {1F, 7N, 8N, 10N}, {10N}

{1F, 6F, 10N}, {1F, 7N, 8N, 10N}, {1F}

{0N}, {0N}, {0N}
a

Figure 5.8: Relevant part of test automaton Gscc = GN
1 ‖GN

2 ‖Gf
` .

95

Step 5 builds GN as a copy of automaton G` but with the following marked states

Xm,N = {0N, 1N, 6N, 7N, 8N}, as shown in Figure 5.5. Step 6 computes the

observer automata GN
1 and GN

2 with respect to the event sets Σo,1 = {a, c} and

Σo,2 = {a, b}, which are depicted in Figures 5.6a and 5.6b, respectively. Step 7

forms the set Xm,f with all states of G` that have been reached by a fault event,

i.e., Xm,f = {1F, 5F}, and then, Step 8 either sets f`,f (x, σ) as a copy of f`(x, σ)

when state x /∈ Xm,f , or equal to the empty set otherwise. Step 9 computes au-

tomaton Gf
` , depicted in Figure 5.7, as the accessible part of automaton G` after

marking states in Xm,f and removing all transitions that originate from these newly

marked states. Finally, Step 10 builds the test automaton Gscc = GN
1 ‖GN

2 ‖Gf
` ,

shown in Figure 5.8. Notice that automaton Gscc has no marked states, and thus,

Algorithm 5.1 returns �Yes� in Step 11, which means that language L generated by

automaton G is copredictable with respect to Po,i, i = 1, 2, and Σf , which concurs

with the results presented in Example 5.2. 2

Remark 5.4 Regarding the system presented in Example 5.1 and shown in Fig-

ure 5.2, its test automaton, built in accordance with Algorithm 5.1, has a marked

state, ({3N, 4F, 6N}, {3N, 4F, 6N}, {4F}), achieved by sequence abcσf , Thus, the

copredictability decision given by Algorithm 5.1 is �No�, which concurs with the re-

sults of Example 5.1. 2

Remark 5.5 (Computational complexity) The main computational burden of Algo-

rithm 5.1 is the construction of observer automata GN
i = Obs(GN ,Σo,i) in Step 6,

which, in the worst case scenario, has 2|X`| states, whereas the other steps are ei-

ther linear (Steps 1�5, 7�9 and 11) or polynomial (Step 10) in the number of

states. In addition, |X`| = 2|X|, since G` = G‖A`, and thus, Algorithm 5.1 is

O(22n|X| × |2X|) = O(22n|X| × |X|). It is worth remarking that this algorithm re-

lies on the search for SCCs, which is linear in the number of automaton transitions

[109, 110]. 2

5.2.2 Copredictability veri�cation using veri�ers

The veri�er automaton

Other strategies that are typically used in fault codiagnosability veri�cation deploy

the so-called veri�er automata [104, 111�113], that have, in the worst case, lower

computational complexity than that associated with the construction of diagnoser-

based automata. In this regard, we follow the approach proposed in [104], which is

based on the synchronization of the fault and normal behaviors of the system that

are identically observed by the local agents, and also require the least computational

complexity among other veri�cation algorithms [111�113].

96

To this end, as in the procedure for building the test automata, we �rstly com-

pute G`, which is used later on to build Gf , which models the fault behavior, and

GN,i, which models the normal behavior from the perspective of the i-th diagnoser,

i = 1, . . . , n. Automaton Gf is obtained by marking the states of G` that are labeled

with F and then taking its coaccessible part. Similarly, automaton GN is obtained

by marking the SCCs in G` that are labeled with N and then taking its coacces-

sible part. Notice that, by construction, GN has no fault event. Next, we recall

the renaming function [104], which adds subscripts Ri, i = 1, . . . , n, to all locally

unobservable events in Σ \ (Σo,i ∪ Σf), as follows.

De�nition 5.2 (Renaming function) Let ΣN = Σ \Σf , Σi = {σRi : σ ∈ ΣN \
Σo,i} and ΣRi = Σo,i ∪ Σi. The renaming function Ri : ΣN → ΣRi, i = 1, 2, . . . , n,

is a mapping, where

Ri(σ) =

{
σ, if σ ∈ Σo,i,

σRi , if σ ∈ ΣN \ Σo,i.

The inverse renaming function is the mapping R−1
i : ΣRi → ΣN , i = 1, 2, . . . , n,

where R−1
i (σRi) = σ, and R−1

i (σ) = σ. 2

Notice that, the renaming function (resp. inverse renaming function) can

be extended to sequences, as follows: Ri(sσ) = Ri(s)Ri(σ) (resp. R−1
i (sσ) =

R−1
i (s)R−1

i (σ)), where s ∈ Σ∗N and σ ∈ ΣN . We denote ΣRi = Ri(ΣN) the set

formed with both the locally observable events Σo,i and the locally unobservable

events in ΣN \ Σo,i that have been renamed.

Then, for every Σo,i ⊆ Σo, we compute GN,i by renaming all of the locally

unobservable events of GN with the renaming function Ri. Finally, the veri�er

automaton is computed as follows:

Gv =
(
||ni=1GN,i

)
‖Gf .

Copredictability veri�cation using veri�er

Similarly to the veri�er proposed in [104], the idea behind the veri�cation algorithm

for fault copredictability veri�cation of regular languages using veri�ers is to syn-

chronize only those sequences whose last event is faulty and those that are pre�xes

of arbitrarily long length normal sequences, which are identically observed by all

local predictors.

Therefore, the copredictability veri�cation of regular languages generated by

some automaton G, with respect to Po,i, i = 1, . . . , n, and Σf can be performed

according to Algorithm 5.2.

97

Algorithm 5.2 Copredictability Veri�cation using veri�er

Input: Automaton G, Event sets Σo,i, i = 1, . . . , n.

Output: Copredictability decision: Yes or No.

1. Build G` = (X`,Σ, f`,Γ`, x0,`, ∅) = G‖A`.
2. If ∃x` ∈ X` : Γ`(x`) = ∅,

(a) Set Σuo = Σuo ∪ {σuo}
(b) For all x ∈ X` : Γ`(x) = ∅, set f`(x, σuo) = x.

3. Set Xm,` = {x` ∈ X` : (∃y` ∈ X`)[f`(y`, σf) = x`]}.
4. For all (x, σ) ∈ Xm,` × Σ, set f`(x, σ) = ∅ and Γ`(x) = ∅.
5. Compute Gf = Ac(CoAc(G`)) and set Xm,f = ∅.
6. For all x` ∈ X`, set Γ`(x`) = Γ`(x`) \ {σf}.
7. Compute GN = (XN ,Σ, fN ,ΓN , x0,N , ∅) = Ac(G`).

8. Find and mark all states in the nontrivial SCCs of GN .

9. Compute GN = CoAc(GN) and set Xm,N = ∅.
10. For each Σo,i, i = 1, . . . , n, build GN,i = (XN,i,ΣRi , fN,i,ΓN,i, x0,N , ∅), where

XN,i = XN , ΣRi = Ri(ΣN), fN,i(x,Ri(σ)) = fN(x, σ) and ΓN,i(x) =

Ri(ΓN(x)).

11. Compute Gv =
(
‖ni=1GN,i

)
‖Gf = (Xv,Σ, fv,Γv, x0,v, Xm,v).

12. If Gv has no state xv = (xN,1, . . . , xN,n, xf) such that xf is labeled with F , then

return �Yes�. Otherwise, return �No�.

Let us de�ne the following projections:

(i) PΣ : (Σ ∪ ΣR1 ∪ ΣR2 ∪ · · · ∪ ΣRN)∗ → Σ∗

(ii) PΣRi
: (Σ ∪ ΣR1 ∪ ΣR2 ∪ · · · ∪ ΣRN)∗ → Σ∗Ri

A necessary and su�cient condition for copredictability veri�cation by means of

veri�ers, proposed on Algorithm 5.2, can be obtained in a more straightforward way

with the help of the following lemma [114, Lemma 1].

Lemma 5.2 Let Gv = (‖ni=1GN,i)‖Gf . Then, for every sv ∈ L(Gv), there exist

n sequences sN1 , sN2 , . . . , sNn ∈ L(GN), sNj not necessarily di�erent from sNk , for

j 6= k, and sf ∈ L(Gf), such that sf = PΣ(sv), sNi = R−1
i

(
PΣRi

(sv)
)
, and Po,i(sf) =

Po,i(sNi), i = 1, . . . , n, and conversely, if there exist n sequences sN1 , sN2 , . . ., sNn ∈
L(GN), sNj not necessarily di�erent from sNk , for j 6= k, and sf ∈ L(Gf), such that

Po,i(sf) = Po,i(sNi), i = 1, . . . , n, then there must exist a sequence sv ∈ L(Gv) such

that sf = PΣ(sv), sNi = R−1
i

(
PΣRi

(sv)
)
, i = 1, . . . , n. 2

98

We now present a necessary and su�cient condition for copredictability veri�ca-

tion by means of veri�ers.

Theorem 5.2 A language L is copredictable with respect to projections Po,i : Σ∗ →
Σ∗o,i, i = 1, . . . , n, and fault event set Σf = {σf} if, and only if, xf is labeled by N in

all states xv = (xN,1, . . . , xN,n, xf) of veri�er automaton Gv, obtained in accordance

with Algorithm 5.2.

Proof.

(⇒) Assume that there exists one state xv = (xN,1, . . . ,

xN,n, xf) of automaton Gv whose component xf is labeled by F , and let sv ∈ L(Gv)

denote the sequence that reaches state xv, i.e., fv(x0,v, sv) = xv. According to

Lemma 5.2, there must exist sequences sN,i ∈ L(GN), i = 1, . . . , n, and sf ∈ L(Gf),

such that Po,i(sf) = Po,i(sN,i). By construction of Gv, since xf is F -labeled, we

conclude that sf ∈ Ψ(σf). In addition, since sN,i ∈ L(GN), these sequences are

pre�xes of arbitrarily long length normal sequences s′N,i, i.e., sN,i ∈ s′N,i, where

‖s′N,i‖ ≥ z for all z ∈ N. According to Fact 5.1, since Po,i(sf) = Po,i(sN,i), for all

tf ∈ sf , we can �nd ui ∈ sN,i and vi such that Po,i(tf) = Po,i(ui) and sN,i = uivi.

It is worth remarking that L(GN) ⊆ L(G`) = L`, and thus, sN,i ∈ L` implies that

ui ∈ L` and vi ∈ L`/ui. We can, thus, conclude that

(
∀z ∈ N

)(
∃sf ∈ Ψ(σf)

)(
∀tf ∈ sf

)[
(σf ∈ tf) ∨ ¬P

]
where ¬P :

(
∀i ∈ I

)(
∃ui ∈ L`

)(
∃vi ∈ L`/ui

)[
Po,i(ui) = Po,i(tf)∧ (σf /∈ ui)∧ (‖vi‖ ≥

z) ∧ (σf /∈ vi)
]
, which implies that L` is not copredictable with respect to Po,i and

Σf . Notice that, if L(G) = L is live, then L and L` coincides, i.e., L = L`, which

implies that L is not copredictable with respect to Po,i and Σf . On the other hand,

if L is not live, then L` has been obtained from L by adding sequences sσ∗uo into L`
for all s ∈ L with no continuation (Step 2), which implies, according to Lemma 5.1,

that L is not copredictable with respect to Po,i and Σf .

(⇐) Let L be a live language, otherwise we make it live by adding sequences sσuo
into L for all s ∈ L with no continuation. Assume now that L is not copredictable

with respect to Po,i and Σf . Then, there exists a sequence sf = sσf , where s ∈ Σ∗

and, without loss of generality, σf /∈ s, such that for each i ∈ I = {1, . . . , n}, there
exist arbitrarily long length normal sequences sN,i, such that all pre�xes tf ∈ sf have
the same projection with respect to Σo,i as some pre�x ui ∈ sN,i, namely Po,i(ui) =

Po,i(tf) for all tf ∈ sf , and, in particular, for tf = sf . Thus, Po,i(sf) ∈ Po,i(sN,i).
Without loss of generality, let us choose uN,i ∈ sN,i as the sequence that satis�es

Po,i(uN,i) = Po,i(sf).

According to Steps 1�5 of Algorithm 5.2, sequence sf is generated by automaton

Gf (sf ∈ L(Gf)), which implies that there exists xf ∈ Xf such that xf is F -labeled.

99

a

b

c

c

a

σf

0N 1N

2N 3N 4N 5F

6N
b

σf

9N10N
a

1F

Figure 5.9: Automaton Gf .

a
0N 1N 6N

bR1 a c
7N 8N

σuo,R1

(a) Automaton GN,1.

a
0N 1N 6N

b a cR2
7N 8N

σuo,R2

(b) Automaton GN,2.

Figure 5.10: Automata GN,1 and GN,2.

According to Steps 6�9, all arbitrarily long length normal sequences sN,i remain in

GN , and thus, sN,i ⊆ L(GN). Therefore, every uN,i ∈ L(GN), i = 1, . . . , n.

Since uN,i ∈ L(GN), i = 1, . . . , n, sf ∈ L(Gf), and Po,i(sf) = Po,i(uN,i), we

conclude, according to Lemma 5.2, that there exists a sequence sv ∈ L(Gv), such

that: (i) PΣ(sv) = sf ∈ L(Gf); (ii) sf ∈ Ψ(σf), and; (iii) fv(x0,v, sv) = xv =

(xN,1, . . . , xN,n, xf), xf is F -labeled.

Example 5.4 Consider again the system modeled in Figure 5.3 and presented in

Example 5.2. After Algorithm 5.2 has built G` from G and marked their states,

Steps 3�5 construct automaton Gf , depicted in Figure 5.9. Next, Steps 6�9

compute automaton GN , and then, Step 10 builds automata GN,1 and GN,2, illus-

trated in Figures 5.10(a) and 5.10(b), respectively. Step 11 computes the veri�er

automaton Gv = GN,1‖GN,2‖Gf , shown in Figure 5.11. Since there is no state

xv = (xN,1, xN,2, xf) in Gv such that xf is labeled with F , Step 11 returns �Yes�,

meaning that the language generated by automaton G is copredictable with respect

to Po,i, i = 1, 2, and Σf . 2

Remark 5.6 (Computational complexity) Notice that Steps 1�10 and 12 require

operations that are linear in the size of the automaton state set. Thus, the worst case

complexity of Algorithm 5.2 is majored by Step 11, where the parallel composition

of Gf and GN,i, i = 1, 2, . . . , n is computed. Since, in the worst case scenario,

automata Gf and each GN,i have 2|X| states (they are obtained from G` = G‖A`,

100

1N, 1N, 1N

1N, 6N, 6N

6N, 1N, 1N

6N, 6N, 6N

b

b

bR1

bR1

0N, 0N, 0N
a

Figure 5.11: Veri�er Gv.

where G has |X| states and A` has two states), Gv has at most (2|X|)n+1 states.

Thus, Algorithm 5.2 is O(2n+1|X|n+1), which is polynomial on the number of the

states of the system and exponential on the number of local predictors. However,

since the number of local predictors cannot grow without limit (being, in general,

dictated by the spacial distribution of the physical system under investigation), the

number of states of the system dictates the computational complexity. Notice that the

veri�cation algorithm presented in [85], where the non-faulty behavior is represented

by an arbitrary closed sublanguage K ⊆ L and a �nite automaton R with L(R) =

K, also requires polynomial time for checking copredictability. The computational

complexity to build their veri�er is O(|X| × |XR|n+1), where X and XR are the

state sets of automata G and R, respectively. However, in the special case when

K = {s ∈ L|s ∈ (Σ \ Σf)
∗}, which is the case of the problem considered here, R

can be constructed as a subautomaton of G, and as a consequence, the veri�cation

method of [85] is reduced to O(|X|n+1), which is the same as the veri�er proposed

here, considering only the number of states for a �xed number of local predictors. 2

5.3 A disjunctive fault predictor system

In this section, we address the problem of designing local fault predictors LPi,

i = 1, . . . , n, for the decentralized structure depicted in Figure 5.1. We assume that

the language is copredictable, otherwise there is no need to build such a device. The

idea behind the design of local fault predictor systems is presented in the following

example.

Example 5.5 Consider the system whose behavior is modeled in Figure 5.3. As-

sume that the observable event sets of the local predictors LP1 and LP2 are

Σo,1 = {a, c} and Σo,2 = {a, b}, respectively. From Figure 5.3, it is clear that

Ψ(σf) = {aabcσf , abcaσf , abcaσfbcaσf , . . . }, and that there exists a �nite normal

sequence1 sN = abac. We consider only sequences sf,1 = aabcσf and sf,2 = abcaσf ,

since they are the only sequences that represent the �rst occurrence of the fault.

1This sequence could be made arbitrarily long length by creating a self-loop in state 8 labeled
by an unobservable event σuo.

101

Notice that LP1 can distinguish sequence sf,2 = abcaσf from sN before the occur-

rence of σf , since, for t2 = abc ∈ sf,2, Po,1(t2) = ac /∈ Po,1(sN) = aac. This

means that pre�x t2 ∈ sf,2 cannot be mistaken with any pre�x of normal sequences.

However, LP1 cannot distinguish between sequences sN and sf,1 = aabcσf , since

Po,1(sf,1) = {ε, a, aa, aac} ⊂ Po,1(sN), and therefore, LP1 is able to predict only the

fault that occurs in sf,2. Analogously, LP2 is able to predict the fault that occurs

in sf,1 = aabcσf , since, for t1 = aa, Po,2(t1) = aa /∈ Po,2(sN) = aba, but is not

able to predict the fault that occurs in sf,2. We conclude that the pre�x of the fault

sequence sf,1 (resp. sf,2) that leads LP2 (resp. LP1) to predict the fault occurrence

is t1 = aa (resp. t2 = abc). Therefore, the identi�cation of the pre�xes of the fault

sequences that make the local predictors foresee the fault occurrence plays a key role

in the design of disjunctive decentralized fault predictor systems. 2

By assuming that language L is copredictable with respect to Po,i and Σf , the

problem of designing local fault predictors LPi, i = 1, . . . , n for disjunctive decen-

tralized systems can be transformed into a problem of identifying which pre�xes of

the fault sequences make the local predictors LPi, i = 1, . . . , n, foresee the fault

occurrence.

Notice that, since, by construction, the marked language of observer automaton

GN
i , obtained according to Step 6 of Algorithm 5.1, is formed with the projections

of pre�xes of all arbitrarily long length normal sequences, the following cases are

possible:

• If the observation so of some sequence s ∈ L reaches marked states of GN
i ,

then we are sure that P−1
o,i (so) ∩ L includes pre�xes of arbitrarily long length

normal sequences, and so, a verdict that a fault will occur cannot be issued.

For example, consider state {1F, 7N, 8N, 10N} of automaton GN
2 , depicted

in Figure 5.6b, which is reached by the observation so = aba. Notice that

P−1
o,2 (so) ∩ L includes both a pre�x of a faulty sequence abca ∈ abcaσf and a

pre�x of an arbitrarily long length normal sequence abac ∈ abacσkuo, k ∈ N, and
thus, local predictor LP2 cannot ascertain that a fault will occur by observing

so.

• If the observation s′o (of some sequence s′ ∈ L) reaches unmarked states of

GN
i that have at least one element labeled with N , then P−1

o,i (s′o) ∩ L does

not include pre�xes of arbitrarily long length normal sequences, and so, every

continuation of s′ will inevitably lead G to a fault (otherwise, if it has some

arbitrarily long length continuation without any fault occurrence, it would

make it a pre�x of arbitrarily long length normal sequences, and so, the state

reached by s′o would be marked). For example, consider state {2N} in Fig-

102

ure 5.6b, which is reached by the observation s′o = aa, and then, notice that

P−1
o,2 (s′o) ∩ L = aa, whose only continuation forms the faulty sequence aabcσf .

• Finally, if the observation s′′o (of some sequence s′′ ∈ L) reaches unmarked

states of GN
i and all of their elements are labeled with F , then P−1

o,i (s′′o) ∩ L
corresponds to sequences that have the fault event, and thus, observation s′′o
must be discarded for the design of local fault predictors systems. For example,

state {6F, 9F} of Figure 5.6b is reached by the observation of s′o = abaa;

however P−1
o,2 (s′′o)∩L = abcaσfa corresponds to a sequence for which the fault

event has already occurred.

Therefore, let x represent all �rst unmarked states that immediately follow a

marked state of GN
i and is composed of some state labeled with N . Thus, sequences

si ∈ L(GN
i) that reach x represent the observation si = Po,i(tf) of the smallest pre�x

tf ∈ sf (sf ∈ Ψ(σf)) that is di�erent from every pre�x of (arbitrarily long length)

normal sequences from the point of view of local predictor LPi. We illustrate this

point with the following example.

Example 5.6 Consider the local observer automata GN
1 and GN

2 , depicted in Fig-

ures 5.6a and 5.6b, respectively. The only unmarked state of GN
1 that immediately

follows some marked state is x1 = {9N}, which is reached by sequence to,1 = ac.

Regarding GN
2 , the unmarked states that immediately follow some marked state are

x2 = {2N}, x′2 = {6F, 9F}, and x′′2 = {2F}. The sequences that reach these states

are to,2 = aa, t′o,2 = abab, and t′′o,2 = abaa, respectively. However, notice that the

observations of t′o,2 and t′′o,2 lead GN
2 to states x′2, and x

′′
2, whose components are all

labeled with F , meaning that the fault has already occurred, namely: (i) t′o,2 = abab

corresponds to sequences abcaσfb and abcaσfbc, and; (ii) t
′′
o,2 = abaa corresponds to

sequence abcaσfa. Thus, sequences to,1 and to,2 are the smallest observations that

allow local predictors LP1 and LP2 to foresee fault occurrences, which coincides with

the results obtained in Example 5.5. 2

The existence of pre�xes that allow us to foresee that a fault will certainly occur

suggests that a fault prediction state should be part of fault predictor systems.

Such state is denoted by FP , and, once it is visited, it implies that some fault will

inevitably occur. Algorithm 5.3 presents the construction of local fault predictor

automata Glp,i, i = 1, . . . , n.

Algorithm 5.3 Construction of Local Fault Predictor Automaton Glp,i

Input: Automaton GN
i = (Xi,Σo,i, fi,Γi, x0,i, Xm,i).

Output: Local Predictor Automaton Glp,i.

103

1. Set Q = Xi \Xm,i.

2. Set Xi = Xi ∪ {FP}.
3. For each q ∈ Q:

(a) If ∃(xm, σ) ∈ Xm,i×Σo,i such that fi(xm, σ) = q and q has some element

labeled with N , then rede�ne fi(xm, σ) = FP .

4. Set Xm,i = {FP}.
5. Compute Glp,i = Ac(GN

i).

Step 1 of Algorithm 5.3 creates a set Q formed with all unmarked states of

automaton GN
i . Step 2 adds state FP , used to issue that some fault occurrence

has been foreseen, to the state set of GN
i . Step 3 �nds the unmarked states com-

posed with at least one element labeled with N that are immediately succeeded by

some marked state, and then, replaces the transition with a new one connecting the

marked state to state FP . Step 4 sets state FP as the only marked state. Finally,

Step 5 forms Glp,i as the accessible part of GN
i .

From Algorithm 5.3, it is clear that the marked language of automaton Glp,i is

formed with the smallest observed sequences Po,i(s) that lie outside the projection

of arbitrarily long length normal sequences Po,i(sN), and thus, when sequences s ∈
Lm(Glp,i) are executed by the system, the corresponding local predictor LPi is sure

that a fault will inevitably occur.

Notice that the fault predictor systems developed in Algorithm 5.3 do not issue

false-alarms, i.e., if some local fault predictor LPi observes a sequence that is in its

marked language, which implies that the current state of automaton Glp,i is FP ,

then the fault event will occur for sure. This is ensured by the following lemma.

Lemma 5.3 Let L be the language generated by an automaton G and assume that

L is copredictable with respect to projections Po,i, i = 1, . . . , n, and fault event set

Σf . Then, for all sp ∈ Lm(Glp,i), where Glp,i is obtained in accordance with Algo-

rithm 5.3, the following two statements are both true: (i) P−1
o,i (sp)∩Ψ(σf) 6= ∅ and;

(ii) all sequences in P−1
o,i (sp)∩L are not pre�x of any arbitrarily long length normal

sequence of L. 2

Proof. Assume that L is copredictable with respect to Σf and all Po,i, i = 1, . . . , n,

but there exists a sequence sp ∈ Lm(Glp,i) such that, either (i) P−1
o,i (sp)∩Ψ(σf) = ∅,

or (ii) some sequence in P−1
o,i (sp)∩L is a pre�x of some arbitrarily long length normal

sequence of L. However, if P−1
o,i (sp)∩Ψ(σf) = ∅, then all sequences s ∈ P−1

o,i (sp)∩L
have no fault continuations, which means that they are pre�xes of arbitrarily long

length normal sequences, and so, s ∈ Lm(GN). Thus, Po,i(s) = sp ∈ Lm(GN
i), and,

according to Steps 3 and 4 of Algorithm 5.3, sp /∈ Lm(Glp,i), which contradicts the

initial assumption. On the other hand, if some sequence in s ∈ P−1
o,i (sp) ∩ L is a

104

pre�x of some arbitrarily long length normal sequence of L, then, again, Po,i(s) =

sp ∈ Lm(GN
i), and so, sp /∈ Lm(Glp,i), therefore contradicting the initial assumption.

The next result shows that every fault sequence sf ∈ Ψ(σf) is foreseen by some

local predictor automaton Glp,i, which is obtained in accordance with Algorithm 5.3.

Theorem 5.3 If the language L generated by an automaton G is copredictable with

respect to projections Po,i : Σ∗ → Σ∗o,i, i = 1, . . . , n, and fault event set Σf =

{σf}, then, ∀sf ∈ Ψ(σf),∃i ∈ [1, . . . , n] such that Lm(Glp,i) ∩ Po,i(sf) 6= ∅ and

Lm(Glp,i) ∩ Po,i(L \Ψ(σf)Σ∗) = ∅.

Proof.

Lemma 5.3 ensures that local predictors constructed in accordance with Algo-

rithm 5.3 successfully predict all faults supposed to be predicted given the avail-

able observation. It remains to prove that for every fault sequence sf ∈ Ψ(σf),

there exists a local predictor LPi that foresees its occurrence. We prove that

by contradiction, and, to this end, assume that L is copredictable with respect

to Po,i, i = 1, . . . , n, and Σf , but ∃sf ∈ Ψ(σf),∀i ∈ [1, . . . , n] such that either

Lm(Glp,i) ∩ Po,i(sf) = ∅ or Lm(Glp,i) ∩ Po,i(L \Ψ(σf)Σ∗) 6= ∅. It is worth noticing

that: (i) L∩Ψ(σf)Σ∗ is formed by all pre�xes of all arbitrarily long length fault se-

quences, which implies that L\Ψ(σf)Σ∗ is composed of normal sequences that have

only normal sequence continuations; thus, L \Ψ(σf)Σ∗ recovers all pre�xes of the

sequences of L\Ψ(σf)Σ∗ that were removed. By construction, Lm(Glp,i) is formed by

the projections of all normal sequences that have the same projection Po,i as some

sequence of L that is a pre�x of some fault sequence that LPi is capable of pre-

dicting. Since language L is copredictable, it is clear that for some i = 1, . . . , n, we

have that, according to Algorithm 5.1 and Lemma 5.3, Po,i(sf) /∈ Po,i(Lm(GN)), and

thus, according to Algorithm 5.3, the smallest sequence sp = sσ ∈ Po,i(sf), where
s ∈ Po,i(Lm(GN)) and sσ /∈ Po,i(Lm(GN)) is such that sp ∈ Lm(Glp,i). Notice that

we may even have s = ε. We then conclude that sp ∈ Lm(Glp,i) ∩ Po,i(sf), and so,

Lm(Glp,i)∩Po,i(sf) 6= ∅. In addition, according to De�nition 5.1 and Algorithm 5.3,

for all sequence t such that Po,i(t) ∈ Lm(Glp,i), we have that
(
∃z ∈ N

)(
∀ui ∈

L
)(
∀vi ∈ L/ui

)[
(Po,i(ui) = Po,i(t))∧ (σf /∈ ui)∧ (‖vi‖ ≥ z)⇒ (σf ∈ vi)

]
holds true,

and so, there is no arbitrarily long length normal sequence sN,i = tN,iuN,i such that

Po,i(tN,i) = Po,i(t), which implies that Po,i(t) /∈ Lm(Glp,i) ∩ Po,i(L \Ψ(σf)Σ∗); thus

contradicting our initial assumption.

Example 5.7 Consider automata G, depicted in Figure 5.3, whose language L

is copredictable with respect to Σf = {σf}, Σo,1 = {a, c} and Σo,2 = {a, b}.
By using automaton GN

1 , shown in Figures 5.6a, as an input of Algorithm 5.3,

105

2N, 3N, 7N

4N, 5F, 8N

1N, 6N

FP

a c

c

0N

a

(a) Automaton Glp,1.

1N FP

0N

a

5F

b a

b

b

a

b

a

b

a

3F, 4F, 5Fa

a

6N, 9N

2F

1F, 7N, 8N, 10N

1F, 7F, 8F, 10F

6F, 9F

(b) Automaton Glp,2.

Figure 5.12: Fault predictors.

we construct automaton Glp,1 as follows. First, in Step 1, we form set Q =

{{9N}, {9F}, {1F, 6F, 10N}, {1F, 6F, 10F}, {2F, 3F, 7F}, {4F, 5F, 8F}} composed

of all unmarked states of GN
1 . In Step 2, we add a new state FP . At the end

of Step 3, the only marked state that is immediately succeeded by an unmarked

state and has at least one element labeled with N , is state {9N}, which is connected

to the marked state {1N, 6N} through a transition labeled with event c, and so, this

transition is removed and a new one connecting state {1N, 6N} to {FP} and labeled
with event c is created. In Step 4, state {FP} becomes the only marked state. Fi-

nally, the resulting automaton Glp,1 = Ac(GN
1) is obtained in Step 5, being depicted

in Figure 5.12(a). Analogously, by using automaton GN
2 as input of Algorithm 5.3,

we obtain automaton Glp,2, shown in Figure 5.12(b). It is worth remarking that

the marked languages Lm(Glp,1) = ac and Lm(Glp,2) = aa concur with the results

presented in Examples 5.5 and 5.6. 2

Notice that, when a language is copredictable, if some fault sequence is not

foreseen by a local fault predictor system, then it is certainly detected by another

local fault predictor. For example, for LP1, which is modeled by automaton Glp,1,

even though the observation so,1 = aac may correspond to the faulty sequence s =

aabcσf , which cannot be predicted by LP1, it is foreseen by LP2, since Po,2(aabcσf) =

aab and when LP2 observes its pre�x so,2 = Po,2(aa) = aa, state FP is reached in

automaton Glp,2.

Remark 5.7 (Computational complexity) All steps of Algorithm 5.3 are linear, and

thus, its computational complexity is O(|Xi|). According to Step 6 of Algorithm 5.1,

automaton GN
i = Obs(GN ,Σo,i), where GN is a copy of G` with di�erent marked

states, and so, |Xi| = 2|X`| = 22|X|, which implies that Algorithm 5.3 is O(22|X|). 2

106

5.4 K-copredictability veri�cation

In this section, given that a language is copredictable with respect to Po,i, i =

1, . . . , n, and Σf , and given an integer K, we consider the problem of verifying if all

fault occurrences can be predicted at least K events prior to their occurrences. To

this end, we investigate the problem of �nding the minimal number of events between

the fault prediction by a local fault predictor LPi and its actual occurrence. We refer

to this problem as K-copredictability, whose formal de�nition is as follows.

De�nition 5.3 (K-Copredictability) Let L be a pre�x-closed and live language co-

predictable w.r.t. Po,i : Σ∗ → Σ∗o,i, i ∈ I = {1, 2, . . . , n} and event set Σf = {σf}.
Given an integer K, we say that L is K-copredictable if

(∀sf ∈ Ψ(σf))(∃i ∈ I)
(
Po,i(sf) /∈ Po,i(L \Ψ(σf)Σ∗)→ Kc

)
,

where the K-Copredictability condition Kc is given by

(∃t, u ∈ Σ∗)[(sf = tuσf) ∧ (Po,i(t) /∈ Po,i(L \Ψ(σf)Σ∗)) ∧ (‖u‖ ≥ K)]. 2

As explained in the proof of Theorem 5.3, L\Ψ(σf)Σ∗ is formed with all normal

sequences of L that are continued with normal sequences only. Thus, if for all

fault sequences sf ∈ Ψ(σf), there exists a local predictor where the projection

Po,i(sf) di�ers from those of sequences in L \ Ψ(σf)Σ∗, then, in order for L to be

K-copredictable, all sequences that end with fault event σf must be formed by the

concatenation of two sequences: a sequence t that cannot be confused with any

normal sequence with normal continuations only (meaning that the fault occurrence

has been predicted), and; a sequence u where ‖u‖ ≥ K, which ensures that at least

K events will occur after the fault prediction and before the actual occurrence of

the fault.

In this regard, De�nition 5.3 states that when a language is K-copredictable, if

the fault occurrence in sequence sf is predicted by some local predictor LPi, then

there exists a pre�x t ∈ sf whose observation is su�cient for LPi to predict the

fault occurrence and there exist at least K events between the fault prediction and

its occurrence.

In order to illustrate De�nition 5.3, let us recall the language generated by

automaton G depicted in Figure 5.3, which is copredictable. According to De�-

nition 5.3, it is clear that sequence aabcσf , which is predicted by LP2 only (see

Figure 5.12(b)), satis�es 2-copredictability, since the smallest pre�x of sf whose

observation allows LP2 to predict the fault occurrence is t = aa, which de-

�nes u = bc whose length is 2. On the other hand, sequence aabcσf does not

107

satisfy 3-copredictability, since in order for ‖u‖ = 3, we must set t = a but

Po,2(t) = a ∈ Po,2(L \Ψ(σf)Σ∗) = aba, which violates De�nition 5.3.

We now present an algorithm for the veri�cation of K-copredictability. To this

end, let G be the automaton that models the system and Glp,i, i = 1, . . . , n, the

local fault predictor automata obtained in accordance with Algorithm 5.3. The idea

of the veri�cation strategy we propose here is to identify the states of automaton G

that correspond to the fault prediction state {FP} and then count the number of

events after this state up to the �rst fault event. The whole procedure is given in

Algorithm 5.4.

Algorithm 5.4 K-Copredictability Veri�cation

Input: K, Automata G = (X,Σ, f,Γ, x0, Xm) and Glp,i = (Xlp,i,Σo,i, flp,i,Γlp,i, x0,lp,i,

Xm,lp,i), i = 1, . . . , n.

Output: K-copredictability decision: Yes or No.

1. Set G̃lp,i = Glp,i = (X̃lp,i,Σo,i, f̃lp,i, Γ̃lp,i, x̃0lp,i , X̃mlp,i) for all i = 1, . . . , n.

2. For all G̃lp,i: set Γ̃lp,i({FP}) = Σo,i and de�ne transition f̃lp,i({FP}, σo,i) =

{FP} for all σo,i ∈ Σo,i.

3. Set GK =
(
‖ni=1G̃lp,i

)
‖G = (XK ,ΣK , fK ,ΓK , x0,K , Xm,K).

4. Set GKtest
= (XKt ,ΣKt , fKt ,ΓKt , x0Kt

, XmKt
) = GK.

5. Create a new state y0, set XKt = XK ∪ {y0} and rede�ne x0Kt
= y0.

6. Set Y = ∅ and for all xKt = (xlp,1, . . . , xlp,n, x) ∈ XKt, if ∃i = 1, . . . , n :

xlp,i = {FP} and @(x′Kt , σ) ∈ XKt × Σ, where x′Kt = (x′lp,1, . . . , x
′
lp,n, x

′),

such that fKt(x
′
Kt
, σ) = xKt and x

′
lp,i = {FP} for some i = 1, . . . , n, then set

Y = Y ∪ {xKt}.
7. Build Σ̃ = {σi : i = 1, . . . , |Y |} and set ΣKt = ΣK ∪ Σ̃.

8. For each (yi, σi) ∈ Y × Σ̃ set fKt(y0, σi) = yi.

9. For all (xKt , σf) ∈ XKt × Σf : if fKt(xKt , σf) = x′Kt for some x
′
Kt
∈ XKt, then

set Xm,Kt = Xm,Kt ∪ {xKt} and remove transition (xKt , σf , x
′
Kt

).

10. Set GKtest
= Ac(GKtest

).

11. If min
s∈Lm(GKtest

)
{‖s‖} − 1 ≥ K, then return �Yes�. Otherwise, return �No�.

Algorithm 5.4 works as follows. In Step 1 we set each automaton G̃lp,i as a copy

of Glp,i, i = 1, . . . , n. Then, in Step 2, we de�ne a self-loop in state {FP} with
all locally observable events σo,i ∈ Σo,i for all automaton G̃lp,i, so that, in Step 3,

the language L = L(G) is not harmed when we compute GK =
(
‖ni=1G̃lp,i

)
‖G.

In Step 4 we create automaton GKtest
as a copy of GK , used to perform the K-

copredictability veri�cation. In Step 5 we add a new state y0 to GKtest
and then

set it as the initial state. In Step 6 we search for all states xKt ∈ XKt such that

108

one of their components is {FP} and do not immediately succeed some state x′Kt
that also has {FP} as a component, and store these states in set Y . In Step 7,

we create events σi, i = 1, . . . , |Y |, and add them to ΣKt . In Step 8 we create new

transitions fKt(y0, σi) = yi for all yi ∈ Y . In Step 9, we mark the states where

the transitions labeled by the fault originate and then we remove all fault events

from automaton GKtest
. In Step 10, we take the accessible part of automaton

GKtest
. Finally, we calculate the minimum number of events from the initial to all

marked states. This means that the fault will occur after being predicted in at least

Kmin = min
s∈Lm(GKtest

)
{‖s‖} − 1 events. If Kmin ≥ K, then Step 10 returns �Yes�,

meaning that language L is K-copredictable; otherwise, it returns �No�.

It is not di�cult to see that the marked language of automaton GKtest
obtained

in accordance with Algorithm 5.4 is composed of sequences s = σ̃u, where σ̃ is the

event added to GKtest
to label the transition that connects the new initial state y0 and

those states that have one of their components being {FP} and do not immediately

succeed states x′Kt that also have {FP} as a component, and u is the continuation

of a sequence t that predicts a fault from the perspective of some local predictor

and u immediately precedes a fault occurrence σf . This result is formally presented

as follows.

Lemma 5.4 Let L be a pre�x-closed and live language generated by automaton G,

copredictable with respect to Po,i : Σ∗ → Σ∗o,i, i ∈ I = {1, 2, . . . , n} and event

set Σf = {σf}, and let GKtest
be the automaton obtained in accordance with Al-

gorithm 5.4. Then,
(
∀s = σ̃u ∈ Lm(GKtest

), (σ̃ ∈ Σ̃) ∧ (u ∈ Σ∗)
)
(∃i ∈ I)(∃t ∈

L)
[(
tuσf ∈ Ψ(σf)

)
∧
(
Po,i(t) /∈ Po,i(L \Ψ(σf)Σ∗)

)]
.

Proof.

By construction, if s ∈ Lm(GKtest
), then ∃σ̃ ∈ Σ̃ and u ∈ Σ∗ such that s = σ̃u.

Therefore, (∃xmKt ∈ XmKt
)[fKt(y0, s) = xmKt], and since XmKt

⊆ XK we can con-

clude that a transition fKt(xmKt , σf) has been removed (see Step 9). According

to Step 8, it is clear that state xKt = (xlp,1, . . . , xlp,n, x) reached by event σ̃ is

such that xKt ∈ Y , and thus, according to Step 6, (∃i = 1, . . . , n)[xlp,i = {FP}]
and @(x′Kt , σ) ∈ XKt × Σ and @i = 1, . . . , n such that fk(x′Kt , σ) = xKt and

x′lp,i = {FP}, which means that state xKt has at least one component {FP} and
is not preceded by states with {FP} as some of its components. Thus, associ-

ated with s = σ̃u ∈ Lm(GKtest
), there exists a sequence s′ = tuσf ∈ L(GK). Let

xK ∈ XK be a state such that fK((x0,lp,1, . . . , x0,lp,n, x0), t) = xK . Since one of the

elements of xKt is {FP}, it is clear that ∃i = 1, . . . , n such that Po,i(t) ∈ Lm(Glp,i),

where automaton Glp,i is one of the inputs of Algorithm 5.4. Since L(G̃lp,i) is ob-

tained after removing sequences of L(GN
i) and then concatenating the �pruned se-

quences� with Σ∗o,i, we have that L(GN
i) ⊆ L(G̃lp,i). It is worth remarking that

109

L = L(Gscc) = L
(
‖ni=1G

N
i

)
∩ L(G) whereas L(GK) = L

(
‖ni=1G̃lp,i

)
∩ L ⊆ L, and so,

L = L(Gscc) ⊆ L(GK) ⊆ L, which implies that L(GK) = L. Therefore, sequence

tuσf ∈ L, and as a consequence, tuσf ∈ Ψ(σf). Finally, since L is copredictable,

then, according to Theorem 5.3, we can conclude that ∃i ∈ {1, . . . , n} such that

Po,i(t) /∈ Po,i(L \Ψ(σf)Σ∗).

We now present a necessary and su�cient condition for K-copredictability veri-

�cation based on automaton GKtest
, constructed in accordance with Algorithm 5.4.

Theorem 5.4 Let L be a pre�x-closed and live language copredictable with respect

to Po,i : Σ∗ → Σ∗o,i, i = 1, . . . , n, and event set Σf = {σf}, and let GKtest
be the

automaton obtained in accordance with Algorithm 5.4. Given an integer K ∈ N,
then L is K-copredictable if, and only if, min

s∈Lm(GK)
{‖s‖} − 1 ≥ K.

Proof.

(⇒) Assume that min
s∈Lm(GKtest

)
{‖s‖} − 1 < K. First, notice that Lm(GKtest

) is com-

posed of sequences σ̃u, where σ̃ ∈ Σ̃ and u ∈ Σ∗, and so, according to Lemma 5.4,

(∃i ∈ I) (∃t ∈ L) [tuσf ∈ Ψ(σf) ∧ Po,i(t) /∈ Po,i(L \Ψ(σf)Σ∗)]. Let us de�ne

sf = tuσf . Notice that, there exists at least a sequence u such that ‖u‖ < K, where

u is the longest su�x of t such that Po,i(t) /∈ Po,i(L \Ψ(σf)Σ∗) holds true, therefore,

∀t′, u′ ∈ Σ∗ such that sf = t′u′σf , either ‖u′‖ < K or Po,i(t) ∈ Po,i(L \Ψ(σf)Σ∗),

which implies that L is not K-copredictable.

(⇐) Assume that L is not K-copredictable, and thus (∃sf ∈ Ψ(σf))(∀i ∈
I)
[(
Po,i(sf) /∈ Po,i(L \Ψ(σf)Σ∗)

)
∧
(
∀t, u ∈ Σ∗, (sf 6= tuσf)∨ (‖u‖ < K)∨ (Po,i(t) ∈

Po,i(L \Ψ(σf)Σ∗))
)]
. Since L is copredictable, consider without loss of generality a

fault sequence sf = tuσf such that for all i = 1, . . . , n, either sf is not predictable

or Po,i(t) /∈ Po,i(L \Ψ(σf)Σ∗). Considering the locals i where sf is predictable, and

since, by assumption, L is not K-copredictable, su�x u must be such that ‖u‖ < K.

According to Algorithm 5.3 and Theorem 5.3, pre�x t reaches state {FP} in automa-

ton Glp,i. After computing GKtest
in accordance with Steps 1-5, state xKt reached

by sequence t is added to set Y in Step 6, which is connected to the new initial state

y0 through event σ̃ in Steps 7-8, which results in a new sequence σ̃uσf ∈ L(GKtest
),

which is later pruned in Step 9 and becomes the sequence σ̃u ∈ Lm(GKtest
). Thus,

min
s∈Lm(GKtest

)
{‖s‖} − 1 ≤ ‖σ̃u‖ − 1 = ‖u‖ < K.

Example 5.8 Consider automaton G, depicted in Figure 5.3, whose language L

is copredictable with respect to Σf = {σf}, Σo,1 = {a, c} and Σo,2 = {a, b},
and automata Glp,1 and Glp,2 obtained in accordance with Algorithm 5.3. In or-

der to compute automaton GKtest
according to Algorithm 5.4, �rst, in Steps 1-2,

we create automaton G̃lp,1 (resp, G̃lp,2) as a copy of Glp,1 (resp, Glp,2) and add

110

{2N, 3N, 7N}, {FP}, {2}

{2N, 3N, 7N}, {FP}, {3}

{4N, 5F, 8N}, {FP}, {4}

{FP}, {6N, 9N}, {9}

{FP}, {1F, 7N, 8N, 10N}, {10}

y0
σ1

b

c

a

σ2

Figure 5.13: Automaton GKtest
.

a self-loop with events a, c (resp, a, b) to state {FP}. We then build GKtest
=

G̃lp,1‖G̃lp,2‖G in Steps 3-4. In Step 5, we add a new state {y0} to GKtest
and

set it as the initial state. In Step 6, only states ({2N, 3N, 7N}, {FP}, {2}) and

({FP}, {6N, 9N}, {9}) are stored in set Y . In Step 7, since |Y | = 2, we de�ne

events σ1 and σ2, which form set Σ̃ = {σ1, σ2}. In Step 8, we connect the initial

state {y0} to the states in Y with the events in Σ̃. In Step 9, all fault events are re-

moved and states ({4N, 5F, 8N}, {FP}, {4}) and ({FP}, {1F, 7N, 8N, 10N}, {10})
become marked. Finally, in Step 10, we take its accessible part, resulting in automa-

ton GKtest
, depicted in Figure 5.13. From Figure 5.13, it is clear that every local

predictor foresees the fault occurrence at least K = min{‖σ1bc‖, ‖σ2a‖} − 1 = 1

event prior to the fault occurrence, and thus, according to Step 11, language L is

1-copredictable. 2

Remark 5.8 (Computational complexity) The computational complexity of Algo-

rithm 5.4 lies in Step 3, where we compute GK =
(
‖ni=1G̃lp,i

)
‖G. Since |X̃lp,i| =

|Xlp,i|, the computational complexity for building G̃lp,i is identical to the one of Glp,i,

which is O(22|X|) according to Algorithm 5.3 and Remark 5.7. Thus, Algorithm 5.4

is O(|X| × 22n|X|). 2

5.5 Comparison between the veri�cation methods

proposed here and by KUMAR and TAKAI [85]

In this section we compare the veri�er automata obtained in Examples 1, 2, and 4

and in Section VII of KUMAR and TAKAI [85] with the veri�er and diagnoser-based

test automata proposed in this chapter.

Di�erently from this work, where the fault behavior starts with the occurrence

of the fault event σf , the approach by KUMAR and TAKAI [85] is based on the

predictability of sequences that are not in a non-failure speci�cation language K ⊂
L. By assuming that G = (X,Σ, f, x0) and G′ = (X ′,Σ, f ′, x′0) are the automata

111

0 2

1

a

b c

d f

0 2

1

a

b c

d

3

f

σf

(a) (b)

Figure 5.14: Automaton G of Example 1 of [85] (a) and its equivalent automaton
Geq (b).

{0N, 1N, 2N, 2F}, {0N, 2N, 2F}, {0N}
b a

d

c

f

f

{0N, 1N, 2N, 2F}, {1N}, {1N}

{0N, 1N, 2N, 2F}, {2N, 2F}, {2N}

{0N, 1N, 2N, 2F}, {2N, 2F}, {2F}

{2N, 2F}, {0N, 2N, 2F}, {2N}

{2N, 2F}, {0N, 2N, 2F}, {2F}

0N, 0N, 0N
d

(a) (b)

Figure 5.15: Test automaton Gscc (a) and veri�er automaton Gv (b) for Example 1
of [85].

whose generated language are L and K, respectively, we can build an equivalent

automaton Geq = (Xeq,Σ ∪ {σf}, feq, x0,eq) to G, whose normal sequences form the

non-failure speci�cation language K and P ′(L(Geq)) = L, where P ′ : (Σ∪{σf})∗ →
Σ∗ (see CARVALHO et al. [115, Alg. 4]).

Figure 5.14(a) shows automaton G of KUMAR and TAKAI [85, Example 1],

where Σo,1 = {a, d} and Σo,2 = {b, c, d}. For this example, the non-failure speci�ca-

tion language is K = d∗(a+ bc). Figure 5.14(b) depicts the equivalent automaton

Geq, where a new state (state 3) and a transition between states 2 and 3 labeled by

the fault event σf have been introduced in order to make G appropriate to the set up

of Algorithms 5.1 and 5.2. Notice that the normal sequences of automaton Geq are

the same as those of the non-failure speci�cation language K. Figures 5.15(a) and

5.15(b) show the test automaton Gscc and the veri�er automaton Gv, constructed

in accordance with Algorithms 5.1 and 5.2, respectively. Notice that, as shown in

the �rst row of Table 5.1, the veri�er T = (XT ,Σ, fT , x0,T , ∅) proposed in [85] used

to check the copredictability of the language L generated by G has 17 states and

45 transitions, whereas the diagnoser-based test automaton Gscc, built according to

Algorithm 5.1, has 6 states and 6 transitions and the veri�er automaton Gv, con-

112

Table 5.1: Comparison between automata T , Gscc and Gv, where |TT |, |Tscc| and
|Tv| (resp. |XT |, |Xscc| and |Xv|) denote the number of transitions (resp. states) of
automata T , Gscc and Gv, respectively.

G T Geq Gscc Gv

|X| |XT | |TT | |Xeq||Xscc||Tscc||Xv| |Tv|
Ex. 1 3 17 45 4 6 6 1 1
Ex. 2 5 43 178 6 6 6 7 14
Ex. 4 8 88 500 9 10 10 16 37

Sec. VII 7 107 643 8 8 8 32 80

structed according to Algorithm 5.2, has only 1 state and 1 transition. Therefore,

for this example, the automata proposed here for copredictability veri�cation have

much less states and transitions than that proposed in [85]. Similar results have

been obtained for Examples 2, 4 and the one of Section VII of KUMAR and TAKAI

[85], as seen in rows 2�4 of Table 5.1.

It is worth remarking that these results are expected for the following reasons: (i)

regarding the diagnoser-based test automata Gscc, as conjectured by CLAVIJO and

BASILIO [106], diagnoser-based automata are likely to have, on average, fewer states

than veri�ers for systems with 60 events or less; (ii) regarding the veri�ers, although,

as stated in Remark 5.6, the veri�ers proposed here and by KUMAR and TAKAI [85]

have the same worst-case computational complexity regarding the number of states

of the system, veri�er Gv, obtained in accordance with Algorithm 5.2, is expected to

have fewer states on average, since Gv =
(
‖ni=1GN,i

)
‖Gf and both Gf and each one

of the automata GN,i, i = 1, . . . , n, are obtained by removing states and transitions

from automaton G` and stops when ambiguities cease to exist, whereas veri�er T

generates the complete language, including those sequences whose continuations lie

in speci�cation K.

5.6 Concluding remarks

In this chapter, we have revisited the problem of disjunctive fault predictability of

DESs. Two algorithms for its veri�cation have been proposed: the �rst algorithm

is based on a test automaton [102] and on the search for nontrivial SCCs, whereas

the second algorithm is based on veri�ers [104]. We have provided a procedure for

designing fault predictor systems, which can be used for online fault prediction.

We have also addressed the problem of K-copredictability of DESs and presented

a necessary and su�cient conditions for K-copredictability and an algorithm for

its veri�cation. These approaches have been developed without requiring either

language liveness or absence of state cycles connected by unobservable events only.

113

Finally, a comparison between the automata proposed here for copredictability

veri�cation and that proposed by KUMAR and TAKAI [85] has shown that the

veri�cation automata built in accordance with the algorithms proposed here are

likely to have fewer states than that by KUMAR and TAKAI [85]; however, an

additional work, similar to that performed in [106], is necessary to make a formal

claim regarding the results obtained in the comparison performed in the chapter.

114

Chapter 6

Conclusion and future works

6.1 Conclusion

In this section we summarize all of the contributions given by this thesis.

C1. Current-state opacity enforcement in DES

In Chapter 3, we provided a strategy that realizes the so-called Opacity-Enforcer

by leveraging the possibility of delaying and deleting some event observations. The

Opacity-Enforcer manipulates the event observations outputted by the system with

a view to misleading the Intruder to never estimate secret states.

The proposed Opacity-Enforcer keeps track not only of the events executed by

the system, but also of the release and deletion of their observation signals, and has

shown to have the potential to be used to enforce opacity and, at the same time, not

mislead the legitimate receiver as much as the intruder. In this regard, by assuming

that the legitimate receiver is aware of the actions taken by the Opacity-Enforcer,

we presented a protocol that re�nes the current-state estimates of the system by the

legitimate receiver, hence, mitigating the negative e�ect of the opacity enforcement

on its estimation capability.

C2. Ensuring utility while enforcing CSO in DES

The second contribution given by this work is presented in Chapter 4 and was moti-

vated by the fact that, in order to obfuscate the secret behavior of the system from

intruders, some transmitted information must also be concealed from the legitimate

receiver. To this end, the notion of utility (which di�ers from that presented in [71],

as discussed in Remark 4.1) is introduced. Moreover, we have presented su�cient

and necessary conditions that preserves utility while enforcing current-state opacity.

The algorithm presented in Chapter 3 for realizing the Opacity-Enforcer has

115

also been simpli�ed. The new algorithm obtained in Chapter 4 realizes an Opacity-

Enforcer that now ensures the utility of the system and, at the same time, enforces

current-state opacity, whenever the behavior of the system allows.

C3. Fault copredictability in DES

In Chapter 5, we revisited the problem of disjunctive fault predictability of DESs,

also known as fault copredictability. Two algorithms for its veri�cation have been

proposed: the �rst algorithm is based on a test automaton [102], whereas the second

is based on a veri�er automaton [104].

Although the results presented in Chapter 5 and those presented in KUMAR and

TAKAI [85] may seem alike, as far as the computational complexity is concerned,

the veri�cation automata built in accordance with Algorithms 5.1 and 5.2 proposed

here are likely to have fewer states than that by KUMAR and TAKAI [85]. However,

an additional work, similar to that performed in CLAVIJO and BASILIO [106], is

necessary to make a formal claim regarding the results obtained in the comparison

performed in Section 5.5.

Moreover, we provided a procedure for designing local fault predictor systems,

which can be used for online fault prediction. The problem of K-copredictability

of DESs has also been addressed, where a necessary and su�cient conditions for

K-copredictability and an algorithm for its veri�cation have been given. All of the

results obtained do not require either language liveness or absence of state cycles

connected by unobservable events only.

6.2 Future works

We now present a brief idea for some future works, regarding both opacity and fault

predictability, so as to extend the results provided throughout this thesis. The �rst

idea (FW1) is to address opacity and fault predictability in time-weighted DES. The

second suggestion (FW2) is to propose notions of robust fault copredictability and

networked fault copredictability, and also to develop strategies for their veri�cations.

We discuss these ideas with more details in the sequel.

FW1. Time-weighted and real-time DES

Time-weighted systems have been proposed by SU et al. [116], where the problem

of synthesizing a minimum-makespan supervisor is solved. A �nite time-weighted

automaton is a 2-tuple G = (G,w), where G is the �nite-state automaton and w

is the weighting function that assigns a non-negative weight to each transition of

116

G. As shown by VIANA et al. [114], it is possible to obtain an equivalent untimed

model for this class of automaton.

With respect to opacity, the idea is to use the restrictions imposed by the time-

weighted automaton on the equivalent untimed model to generate feasible CSO

enforcers that also take into account the time elapsed between event occurrences.

Notice however that WANG et al. [41] have approached the problems of LBO and

ISO for a timed class of automata, the so-called real-time automata [117], which

may have some similarity with time-weighted automata, and thus, requires a deeper

investigation.

In addition, fault (co)prediction for time-weighted automata has not been ex-

plored as far as the author of this work knows. Notice that, since the weighting

function w adds information to the model, the state estimation can be improved,

and, as a consequence, it may be the case that system is not predictable with respect

to fault occurrences when modeled by automaton G but its time-weighted version

G is predictable.

FW2. Robust fault copredictability

We have provided, in this work, a strategy for disjunctive fault predictability veri�-

cation in DESs under the assumption that communication channels are ideal. How-

ever, it is not uncommon to have disruptions in these channels, which may cause

intermittent or even permanent losses of observation. It is worth noting that the

problem of robust fault predictability against intermittent/permanent loss of obser-

vations has already been addressed by XIAO and LIU [83]. However, the results

presented here can be combined with the strategies presented in [3�5, 115] in order

to obtain a new strategy capable of verifying robust fault predictability against in-

termittent/permanent loss of observations under disjunctive architectures (in short

words, robust fault copredictability against observation loss). In addition, the ar-

chitecture presented in Chapter 5 can be extended to networked DES, where some

communication channels may be vulnerable to cyber-attacks and the observation of

events may be delayed, as done in [17], in the context of fault diagnosability.

117

References

[1] CASSANDRAS, C. G., LAFORTUNE, S. Introduction to Discrete Events Sys-

tems. 2nd ed. New York, NY, USA, Springer, 2008.

[2] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C. �Generalized robust di-

agnosability of discrete event systems�, IFAC Proceedings Volumes, v. 44,

n. 1, pp. 8737�8742, 2011.

[3] CARVALHO, L. K., BASILIO, J. C., MOREIRA, M. V. �Robust diagnosis of

discrete event systems against intermittent loss of observations�, Auto-

matica, v. 48, n. 9, pp. 2068�2078, 2012.

[4] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C., et al. �Robust diag-

nosis of discrete-event systems against permanent loss of observations�,

Automatica, v. 49, n. 1, pp. 223�231, 2013.

[5] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C. �Diagnosability of

intermittent sensor faults in discrete event systems�, Automatica, v. 79,

pp. 315�325, 2017.

[6] NUNES, C. E., MOREIRA, M. V., ALVES, M. V., et al. �Codiagnosability of

networked discrete event systems subject to communication delays and

intermittent loss of observation�, Discrete Event Dynamic Systems, v. 28,

n. 2, pp. 215�246, 2018.

[7] HADJICOSTIS, C. N. Estimation and Inference in Discrete Event Systems. New

York, NY, USA, Springer, 2020.

[8] ALVES, M. V. S., BASILIO, J. C. �State Estimation and Detectability of Net-

worked Discrete Event Systems with Multi-Channel Communication Net-

works�. In: 2019 American Control Conference (ACC), pp. 5602�5607,

2019. doi: 10.23919/ACC.2019.8814302.

[9] RAMADGE, P. J., WONHAM, W. M. �The control of discrete event systems�,

Proceedings of the IEEE, v. 77, n. 1, pp. 81�98, 1989.

118

[10] CAI, K., ZHANG, R., WONHAM, W. M. �Relative observability of discrete-

event systems and its supremal sublanguages�, IEEE Transactions on Au-

tomatic Control, v. 60, n. 3, pp. 659�670, 2015.

[11] ALVES, M. V., CARVALHO, L. K., BASILIO, J. C. �New algorithms for ver-

i�cation of relative observability and computation of supremal relatively

observable sublanguage�, IEEE Transactions on Automatic Control, v. 62,

n. 11, pp. 5902�5908, 2017.

[12] ALVES, M. V., CARVALHO, L. K., BASILIO, J. C. �Supervisory control of

networked discrete event systems with timing structure�, IEEE Transac-

tions on Automatic Control, v. 66, n. 5, pp. 2206�2218, 2020.

[13] LIMA, P. M., CARVALHO, L. K., MOREIRA, M. V. �Detectable and un-

detectable network attack security of cyber-physical systems�, IFAC-

PapersOnLine, v. 51, n. 7, pp. 179�185, 2018.

[14] LIMA, P. M., ALVES, M. V. S., CARVALHO, L. K., et al. �Security against

communication network attacks of cyber-physical systems�, Journal of

Control, Automation and Electrical Systems, v. 30, n. 1, pp. 125�135,

2019.

[15] LIMA, P. M., ALVES, M. V. S., CARVALHO, L. K., et al. �Con�dentiality of

cyber-physical systems using event-based cryptography�. In: 21st IFAC

World Congress 2020, pp. 1761�1766, Berlin, Germany, 2020.

[16] LIMA, P. M., ALVES, M. V., CARVALHO, L. K., et al. �Security of Cyber-

Physical Systems: Design of a Security Supervisor to Thwart Attacks�,

IEEE Transactions on Automation Science and Engineering, pp. 1�12,

2021.

[17] ALVES, M. V., BARCELOS, R. J., CARVALHO, L. K., et al. �Robust de-

centralized diagnosability of networked discrete event systems against

DoS and deception attacks�, Nonlinear Analysis: Hybrid Systems, v. 44,

pp. 101162, 2022.

[18] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. �Diagnosability of

discrete-event systems�, IEEE Transactions on Automatic Control, v. 40,

n. 9, pp. 1555�1575, 1995.

[19] DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D. �Coordinated decentral-

ized protocols for failure diagnosis of discrete event systems�, Discrete

Event Dynamic Systems: Theory and Applications, v. 10, pp. 33�86, 2000.

119

[20] GENC, S., LAFORTUNE, S. �Predictability of event occurrences in partially-

observed discrete-event systems�, Automatica, v. 45, n. 2, pp. 301�311,

2009.

[21] JIANG, S., KUMAR, R. �Failure diagnosis of discrete-event systems with

linear-time temporal logic speci�cations�, IEEE Transactions on Auto-

matic Control, v. 49, n. 6, pp. 934�945, 2004.

[22] BRYANS, J. W., KOUTNY, M., RYAN, P. Y. �Modelling Opacity Using Petri

Nets�, Electronic Notes in Theoretical Computer Science, v. 121, n. Sup-

plement C, pp. 101�115, 2005.

[23] LIN, F. �Opacity of discrete event systems and its applications�, Automatica,

v. 47, pp. 496�503, 2011.

[24] WU, Y.-C., LAFORTUNE, S. �Comparative analysis of related notions of opac-

ity in centralized and coordinated architectures�, Discrete Event Dynamic

Systems: Theory and Applications, v. 23, n. 3, pp. 307�339, 2013.

[25] SHU, S., LIN, F., YING, H. �Detectability of discrete event systems�, IEEE

Transactions on Automatic Control, v. 52, n. 12, pp. 2356�2359, 2007.

[26] SHU, S., LIN, F. �Co-detectability of multi-agent discrete event systems�. In:

2011 Chinese Control and Decision Conference (CCDC), pp. 1708�1713.

IEEE, 2011.

[27] RAMADGE, P. J., WONHAM, W. M. �Supervisory control of a class of discrete

event processes�, SIAM journal on control and optimization, v. 25, n. 1,

pp. 206�230, 1987.

[28] LIN, F., WONHAM, W. M. �On observability of discrete-event systems�, In-

formation sciences, v. 44, n. 3, pp. 173�198, 1988.

[29] BADOUEL, E., BEDNARCZYK, M., BORZYSZKOWSKI, A., et al. �Concur-

rent secrets�, Discrete Event Dynamic Systems: Theory and Applications,

v. 17, n. 4, pp. 425�446, 2007.

[30] DUBREIL, J., DARONDEAU, P., MARCHAND, H. �Supervisory control for

opacity�, IEEE Transactions on Automatic Control, v. 55, n. 5, pp. 1089�

1100, 2010.

[31] SABOORI, A., HADJICOSTIS, C. N. �Notions of security and opacity in dis-

crete event systems�. In: 46th IEEE Conference on Decision and Control,

pp. 5056�5061, 2007.

120

[32] SABOORI, A., HADJICOSTIS, C. N. �Veri�cation of initial-state opacity in

security applications of DES�. In: 9th International Workshop on Discrete

Event Systems (WODES), pp. 328�333, 2008.

[33] SABOORI, A., HADJICOSTIS, C. N. �Veri�cation of in�nite-step opacity and

analysis of its complexity�, IFAC Proceedings Volumes, v. 42, n. 5, pp. 46�

51, 2009.

[34] SABOORI, A., HADJICOSTIS, C. N. �Coverage analysis of mobile agent tra-

jectory via state-based opacity formulations�, Control Engineering Prac-

tice, v. 19, pp. 967�977, 2011.

[35] SABOORI, A., HADJICOSTIS, C. N. �Veri�cation of K-step opacity and

analysis of its complexity�, IEEE Transactions on Automation Science

and Engineering, v. 8, n. 3, pp. 549�559, 2011.

[36] DUBREIL, J., JÉRON, T., MARCHAND, H. �Monitoring Con�dentiality by

Diagnosis Techniques�, Proceedings of the European Control Conference,

pp. 2584�2589, 2009.

[37] YIN, X., LAFORTUNE, S. �A new approach for the veri�cation of in�nite-step

and k-step opacity using two-way observers�, Automatica, v. 80, pp. 162�

171, 2017.

[38] MA, Z., YIN, X., LI, Z. �Veri�cation and enforcement of strong in�nite-and

k-step opacity using state recognizers�, Automatica, v. 133, pp. 109838,

2021.

[39] FALCONE, Y., MARCHAND, H. �Enforcement and validation (at runtime)

of various notions of opacity�, Discrete Event Dynamic Systems: Theory

and Applications, v. 25, n. 4, pp. 531�570, 2015.

[40] CASSEZ, F. �The Dark Side of Timed Opacity�. In: Advances in Information

Security and Assurance: Third International Conference and Workshops,

ISA 2009, Seoul, Korea, June 25-27, 2009. Proceedings, pp. 21�30, Berlin,

Heidelberg, 2009. Springer Berlin Heidelberg.

[41] WANG, L., ZHAN, N., AN, J. �The opacity of real-time automata�, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, v. 37, n. 11, pp. 2845�2856, 2018.

[42] SABOORI, A., HADJICOSTIS, C. N. �Current-state opacity formulations in

probabilistic �nite automata�, IEEE Transactions on automatic control,

v. 59, n. 1, pp. 120�133, 2014.

121

[43] BÉRARD, B., MULLINS, J., SASSOLAS, M. �Quantifying opacity�, Mathe-

matical Structures in Computer Science, v. 25, n. 2, pp. 361�403, 2015.

[44] KEROGLOU, C., HADJICOSTIS, C. N. �Probabilistic system opacity in

discrete event systems�, Discrete Event Dynamic Systems, v. 28, n. 2,

pp. 289�314, 2018.

[45] YIN, X., LI, Z., WANG, W., et al. �In�nite-step opacity and K-step opacity of

stochastic discrete-event systems�, Automatica, v. 99, pp. 266�274, 2019.

[46] BRYANS, J. W., KOUTNY, M., MAZARÉ, L., et al. �Opacity generalised to

transition systems�, International Journal of Information Security, v. 7,

n. 6, pp. 421�435, 2008.

[47] ZHANG, K., YIN, X., ZAMANI, M. �Opacity of Nondeterministic Transition

Systems: A (Bi)Simulation Relation Approach�, IEEE Transactions on

Automatic Control, v. 64, n. 12, pp. 5116�5123, 2019.

[48] TONG, Y., LAN, H. �Current-State Opacity Veri�cation in Modular Discrete

Event Systems�. In: 2019 IEEE 58th Conference on Decision and Control

(CDC), pp. 7665�7670, 2019.

[49] YANG, S., HOU, J., YIN, X., et al. �Opacity of Networked Supervisory Control

Systems Over Insecure Communication Channels�, IEEE Transactions on

Control of Network Systems, v. 8, n. 2, pp. 884�896, 2021.

[50] DENG, W., YANG, J., JIANG, C., et al. �Opacity of Fuzzy Discrete Event

Systems�. In: 2019 Chinese Control And Decision Conference (CCDC),

pp. 1840�1845. IEEE, 2019.

[51] CONG, X., FANTI, M. P., MANGINI, A. M., et al. �On-line veri�cation of

current-state opacity by Petri nets and integer linear programming�, Au-

tomatica, v. 94, pp. 205�213, 2018.

[52] CONG, X., FANTI, M. P., MANGINI, A. M., et al. �On-line veri�cation of

initial-state opacity by Petri nets and integer linear programming�, ISA

Transactions, v. 93, pp. 108 � 114, 2019.

[53] AN, L., YANG, G.-H. �Opacity Enforcement for Con�dential Robust Con-

trol in Linear Cyber-Physical Systems�, IEEE Transactions on Automatic

Control, v. 65, n. 3, pp. 1234�1241, 2020.

[54] RAMASUBRAMANIAN, B., CLEAVELAND, R., MARCUS, S. I. �Notions of

Centralized and Decentralized Opacity in Linear Systems�, IEEE Trans-

actions on Automatic Control, v. 65, n. 4, pp. 1442�1455, 2020.

122

[55] JACOB, R., LESAGE, J.-J., FAURE, J.-M. �Overview of discrete event sys-

tems opacity: Models, validation, and quanti�cation�, Annual Reviews in

Control, v. 41, pp. 135�146, 2016.

[56] LAFORTUNE, S., LIN, F., HADJICOSTIS, C. N. �On the history of diagnos-

ability and opacity in discrete event systems�, Annual Reviews in Control,

v. 45, pp. 257�266, 2018.

[57] SABOORI, A., HADJICOSTIS, C. N. �Opacity-enforcing supervisory strategies

for secure discrete event systems�. In: 47th IEEE Conference on Decision

and Control (CDC), pp. 889�894, 2008.

[58] SABOORI, A., HADJICOSTIS, C. N. �Opacity-Enforcing Supervisory Strate-

gies via State Estimator Constructions�, IEEE Transactions on Automatic

Control, v. 57, n. 5, pp. 1155�1165, 2012.

[59] YIN, X., LAFORTUNE, S. �A uniform approach for synthesizing property-

enforcing supervisors for partially-observed discrete-event systems�, IEEE

Transactions on Automatic Control, v. 61, n. 8, pp. 2140�2154, 2016.

[60] TONG, Y., LI, Z., SEATZU, C., et al. �Current-state opacity enforcement in

discrete event systems under incomparable observations�, Discrete Event

Dynamic Systems, v. 28, n. 2, pp. 161�182, 2018.

[61] XIE, Y., YIN, X., LI, S. �Opacity enforcing supervisory control using non-

deterministic supervisors�, IEEE Transactions on Automatic Control,

2021. doi: 10.1109/TAC.2021.3131125.

[62] CASSEZ, F., DUBREIL, J., MARCHAND, H. �Synthesis of opaque systems

with static and dynamic masks�, Formal Methods in System Design, v. 40,

n. 1, pp. 88�115, 2012.

[63] DULCE-GALINDO, J. A., ALVES, L. V., RAFFO, G. V., et al. �Enforcing

State-Based Opacity using Synchronizing Automata�. In: 2021 60th IEEE

Conference on Decision and Control (CDC), pp. 7009�7014. IEEE, 2021.

[64] BARCELOS, R. J., BASILIO, J. C. �Enforcing current-state opacity through

shu�e in event observations�, IFAC-PapersOnLine, v. 51, n. 7, pp. 100�

105, 2018.

[65] WU, Y.-C., LAFORTUNE, S. �Synthesis of insertion functions for enforcement

of opacity security properties�, Automatica, v. 50, n. 5, pp. 1336�1348,

2014.

123

[66] WU, Y.-C., LAFORTUNE, S. �Synthesis of optimal insertion functions for

opacity enforcement�, IEEE Transactions on Automatic Control, v. 61,

n. 3, pp. 571�584, 2016.

[67] JI, Y., WU, Y.-C., LAFORTUNE, S. �Enforcement of opacity by public and

private insertion functions�, Automatica, v. 93, pp. 369�378, 2018.

[68] KEROGLOU, C., LAFORTUNE, S. �Veri�cation and Synthesis of Embedded

Insertion Functions for Opacity Enforcement�. In: 56th IEEE Conference

on Decision and Control, pp. 377�383, 2017.

[69] JI, Y., YIN, X., LAFORTUNE, S. �Enforcing opacity by insertion functions

under multiple energy constraints�, Automatica, v. 108, pp. 108476, 2019.

[70] KEROGLOU, C., RICKER, L., LAFORTUNE, S. �Insertion functions with

memory for opacity enforcement�, IFAC-PapersOnLine, v. 51, n. 7,

pp. 394�399, 2018.

[71] WU, Y.-C., RAMAN, V., RAWLINGS, B. C., et al. �Synthesis of Obfuscation

Policies to Ensure Privacy and Utility�, Journal of Automated Reasoning,

v. 60, n. 1, pp. 107�131, 2018.

[72] JI, Y., LAFORTUNE, S. �Enforcing Opacity by Publicly Known Edit Func-

tions�. In: 56th IEEE Conference on Decision and Control, pp. 377�383,

2017.

[73] JI, Y., YIN, X., LAFORTUNE, S. �Opacity enforcement using nondeterministic

publicly known edit functions�, IEEE Transactions on Automatic Control,

v. 64, n. 10, pp. 4369�4376, 2019.

[74] WINTENBERG, A., BLISCHKE, M., LAFORTUNE, S., et al. �Enforcement

of K-Step Opacity with Edit Functions�. In: 2021 60th IEEE Conference

on Decision and Control (CDC), pp. 331�338. IEEE, 2021.

[75] LI, X., HADJICOSTIS, C. N., LI, Z. �Extended Insertion Functions for Opac-

ity Enforcement in Discrete Event Systems�, IEEE Transactions on Au-

tomatic Control, 2021. doi: 10.1109/TAC.2021.3121249.

[76] ZHANG, B., SHU, S., LIN, F. �Maximum information release while ensuring

opacity in discrete event systems�, IEEE Transactions on Automation

Science and Engineering, v. 12, n. 3, pp. 1067�1079, 2015.

[77] BEHINAEIN, B., LIN, F., RUDIE, K. �Optimal Information Release for Mixed

Opacity in Discrete-Event Systems�, IEEE Transactions on Automation

Science and Engineering, v. 16, n. 4, pp. 1960�1970, 2019.

124

[78] YIN, X., LI, S. �Synthesis of dynamic masks for in�nite-step opacity�, IEEE

Transactions on Automatic Control, v. 65, n. 4, pp. 1429�1441, 2020.

[79] HOU, J., YIN, X., LI, S. �A Framework for Current-State Opacity under Dy-

namic Information Release Mechanism�, arXiv preprint arXiv:2012.04874,

2020.

[80] BARCELOS, R. J., BASILIO, J. C. �Enforcing current-state opacity through

shu�e and deletions of event observations�, Automatica, v. 133,

pp. 109836, 2021.

[81] TAKAI, S. �Robust prognosability for a set of partially observed discrete event

systems�, Automatica, v. 51, pp. 123�130, 2015.

[82] BARCELOS, R. J., CORRÊA, M. A., BASILIO, J. C. �Predictability of

Discrete-Event Systems with Cycles of States Connected with Unobserv-

able Events�, Journal of Control, Automation and Electrical Systems,

v. 31, n. 4, pp. 842�849, 2020.

[83] XIAO, C., LIU, F. �Robust Fault Prognosis of Discrete-Event Systems Against

Loss of Observations�, IEEE Transactions on Automation Science and

Engineering, 2021. doi: 10.1109/TASE.2021.3049400.

[84] WATANABE, A. T. Y., LEAL, A. B., CURY, J. E., et al. �Combining online

diagnosis and prognosis for safe controllability�, IEEE Transactions on

Automatic Control, 2021. doi: 10.1109/TAC.2021.3124185.

[85] KUMAR, R., TAKAI, S. �Decentralized prognosis of failures in discrete event

systems�, IEEE Transactions on Automatic Control, v. 55, n. 1, pp. 48�59,

2010.

[86] TAKAI, S., KUMAR, R. �Distributed failure prognosis of discrete event systems

with bounded-delay communications�, IEEE Transactions on Automatic

Control, v. 57, n. 5, pp. 1259�1265, 2012.

[87] KHOUMSI, A., CHAKIB, H. �Conjunctive and disjunctive architectures for

decentralized prognosis of failures in discrete-event systems�, IEEE Trans-

actions on Automation Science and Engineering, v. 9, n. 2, pp. 412�417,

2012.

[88] YIN, X., LI, Z. �Decentralized fault prognosis of discrete event systems with

guaranteed performance bound�, Automatica, v. 69, pp. 375�379, 2016.

125

[89] YIN, X., LI, Z. �Reliable decentralized fault prognosis of discrete-event sys-

tems�, IEEE Transactions on Systems, Man, and Cybernetics: Systems,

v. 46, n. 11, pp. 1598�1603, 2016.

[90] YIN, X., LI, Z. �Decentralized fault prognosis of discrete-event systems using

state-estimate-based protocols�, IEEE transactions on cybernetics, v. 49,

n. 4, pp. 1302�1313, 2019.

[91] ZHOU, Y., CHEN, Z., LIU, Z., et al. �Three kinds of coprognosability for

partially-observed discrete event systems via a matrix approach�, Nonlin-

ear Analysis: Hybrid Systems, v. 42, pp. 101073, 2021.

[92] CHANG, M., DONG, W., JI, Y., et al. �On fault predictability in stochastic

discrete event systems�, Asian journal of Control, v. 15, n. 5, pp. 1458�

1467, 2013.

[93] CHEN, J., KUMAR, R. �Stochastic failure prognosability of discrete event

systems�, IEEE Transactions on Automatic Control, v. 60, n. 6, pp. 1570�

1581, 2015.

[94] LIAO, H., LIU, F., ZHAO, R. �Reliable Co-Prognosability of Decentralized

Stochastic Discrete-Event Systems and a Polynomial-Time Veri�cation�,

IEEE Transactions on Cybernetics, 2021. doi: 10.1109/TCYB.2021.

3051260.

[95] LEFEBVRE, D. �State estimation and fault prediction with partially observed

Petri nets�. In: 2013 IEEE 18th Conference on Emerging Technologies &

Factory Automation (ETFA), pp. 1�8. IEEE, 2013.

[96] LEFEBVRE, D. �Fault diagnosis and prognosis with partially observed Petri

nets�, IEEE Transactions on Systems, Man, and Cybernetics: Systems,

v. 44, n. 10, pp. 1413�1424, 2014.

[97] YIN, X. �Veri�cation of prognosability for labeled Petri nets�, IEEE Transac-

tions on Automatic Control, v. 63, n. 6, pp. 1828�1834, 2018.

[98] YOU, D., WANG, S., SEATZU, C. �Veri�cation of fault-predictability in la-

beled Petri nets using predictor graphs�, IEEE Transactions on Automatic

Control, v. 64, n. 10, pp. 4353�4360, 2019.

[99] CASSEZ, F., GRASTIEN, A. �Predictability of event occurrences in timed

systems�. In: International conference on formal modeling and analysis of

timed systems, pp. 62�76. Springer, 2013.

126

[100] WATANABE, A. T., SEBEM, R., LEAL, A. B., et al. �Fault prognosis of

discrete event systems: An overview�, Annual Reviews in Control, v. 51,

pp. 100�110, 2021.

[101] BARCELOS, R. J., BASILIO, J. C. �New predictability veri�cation tests

for discrete-event systems modeled by �nite state automata�, IFAC-

PapersOnLine, v. 53, n. 4, pp. 243�249, 2020.

[102] VIANA, G. S., BASILIO, J. C. �Codiagnosability of discrete event systems

revisited: A new necessary and su�cient condition and its applications�,

Automatica, v. 101, pp. 354 � 364, 2019.

[103] VIANA, G., MOREIRA, M. V., BASILIO, J. C. �Codiagnosability Analy-

sis of Discrete-Event Systems Modeled by Weighted Automata�, IEEE

Transactions on Automatic Control, v. 64, n. 10, pp. 4361�4368, 2019.

[104] MOREIRA, M. V., JESUS, T. C., BASILIO, J. C. �Polynomial time veri-

�cation of decentralized diagnosability of discrete event systems�, IEEE

Transactions on Automatic Control, v. 56, pp. 1679�1684, 2011.

[105] MOREIRA, M. V., BASILIO, J. C., CABRAL, F. G. � `Polynomial time

veri�cation of decentralized diagnosability of discrete event systems' ver-

sus `Decentralized failure diagnosis of discrete event system': A critical

appraisal�, IEEE Transactions on Automatic Control, v. 61, n. 1, pp. 178�

181, 2015.

[106] CLAVIJO, L. B., BASILIO, J. C. �Empirical studies in the size of diagnosers

and veri�ers for diagnosability analysis�, Discrete Event Dynamic Sys-

tems, v. 27, n. 4, pp. 701�739, 2017.

[107] SANTORO, L. P., MOREIRA, M. V., BASILIO, J. C. �Computation of min-

imal diagnosis bases of Discrete-Event Systems using veri�ers�, Automat-

ica, v. 77, pp. 93�102, 2017.

[108] BASILIO, J. C., LIMA, S. T. S., LAFORTUNE, S., et al. �Computation of

minimal event bases that ensure diagnosability�, Discrete Event Dynamic

Systems: Theory and Applications, v. 22, n. 3, pp. 249�292, 2012.

[109] TARJAN, R. �Depth �rst search and linear graph algorithms�, SIAM Journal

of Computer, v. 1, n. 2, pp. 146�160, 1972.

[110] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., et al. Introduction to

Algorithms. 3rd ed. Cambridge, MA, MIT Press, 2009.

127

[111] JIANG, S., HUANG, Z., CHANDRA, V., et al. �A polynomial algorithm for

testing diagnosability of discrete-event systems�, IEEE Trans. on Auto-

matic Control, v. 46, n. 8, pp. 1318�1321, 2001.

[112] YOO, T.-S., LAFORTUNE, S. �Polynomial-time veri�cation of diagnosability

of partially observed discrete-event systems�, Automatic Control, IEEE

Transactions on, v. 47, n. 9, pp. 1491�1495, 2002.

[113] QIU, W., KUMAR, R. �Decentralized failure diagnosis of discrete event sys-

tems�, IEEE Trans. on Systems, Man and Cybernetics, Part A, v. 36, n. 2,

pp. 384�395, 2006.

[114] VIANA, G. S., MOREIRA, M. V., BASILIO, J. C. �Codiagnosability Anal-

ysis of Discrete-Event Systems Modeled by Weighted Automata�, IEEE

Transactions on Automatic Control, v. 64, n. 10, pp. 4361�4368, 2019.

[115] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C. �Comparative analysis

of related notions of robust diagnosability of Discrete-Event Systems�,

Annual Reviews in Control, v. 51, pp. 23�36, 2021.

[116] SU, R., VAN SCHUPPEN, J. H., ROODA, J. E. �The Synthesis of Time

Optimal Supervisors by Using Heaps-of-Pieces�, IEEE Transactions on

Automatic Control, v. 57, n. 1, pp. 105�118, 2012.

[117] DIMA, C. �Real-time automata�, Journal of Automata, Languages and Com-

binatorics, v. 6, n. 1, pp. 3�24, 2001.

128

	List of Figures
	List of Symbols
	List of Abbreviations
	Introduction
	Opacity
	Fault prediction
	Thesis structure

	Theoretical background
	Discrete-event systems theory
	Opacity and predictability of DES
	Opacity
	Predictability

	Opacity enforcement
	Problem formulation
	Opacity enforcement through shuffle and deletions in event observations
	Opacity-enforcement strategy
	Algorithms
	Algorithm for shuffling event occurrences and observation releases/deletions
	Algorithm for realization of the CSO enforcer

	Example
	Mitigating the negative effect of opacity enforcement on the legitimate receiver's state estimate capability
	Concluding remarks

	Ensuring utility while enforcing opacity
	Problem formulation
	Ensuring utility while enforcing opacity
	Algorithms
	Computation of automaton GaSD
	Computation of automaton RUOE

	Example
	Concluding remarks

	Fault prediction
	Problem formulation
	Copredictability verification
	Copredictability verification using the diagnoser-like test automaton
	Copredictability verification using verifiers

	A disjunctive fault predictor system
	K-copredictability verification
	Comparison between the verification methods proposed here and by kumar2010decentralized
	Concluding remarks

	Conclusion and future works
	Conclusion
	Future works

	References

