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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

UMA CONTRIBUIÇÃO AOS CONTROLADORES PREDITIVOS BASEADOS

EM MODELO COM FREQUÊNCIA DE CHAVEAMENTO FIXA E BAIXO

CUSTO COMPUTACIONAL

Thiago Cardoso Tricarico

Julho/2022

Orientador: Mauricio Aredes

Programa: Engenharia Elétrica

Esta tese propõe uma nova técnica de controle preditivo baseado em modelo

para aplicações em conversores de potência. Esta técnica é baseada em um recente

algoritmo meta-heurístico, chamado algoritmo Jaya, como o otimizador do MPC.

A solução proposta apresenta três benefícios: implementação simples, custo com-

putacional viável, e frequência de chaveamento �xa. A estratégia proposta de MPC,

referida como Jaya-MPC, destaca-se como uma alternativa ao FCS-MPC que ap-

resenta uma frequência de chaveamento variável. Além disso, este trabalho propõe

uma contribuição secundária: uma nova métrica, que avalia o espalhamento do per�l

da frequência de chaveamento de conversores de potência, avaliando a variabilidade

da frequência de chaveamento produzida por controladores preditivos. Este trabalho

utiliza esta métrica para investigar o per�l de frequência de chaveamento do FCS-

MPC. Um método simples de parametrização do algoritmo de controle proposto

surge de uma análise paramétrica, resultando numa solução com alta qualidade de

energia. Além disso, este trabalho compara o custo computacional, baseado no

número de predições, tanto do controlador proposto como do paradigma do MPC

na eletrônica de potência. Os resultados experimentais provam que a estratégia pro-

posta é uma técnica de implementação simples com um custo computacional viável

e elevada qualidade de energia.
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Abstract of Thesis presented to COPPE/UFRJ as a partial ful�llment of the

requirements for the degree of Doctor of Science (D.Sc.)

A CONTRIBUTION TO MODEL PREDICTIVE CONTROLLERS WITH

FIXED SWITCHING FREQUENCY AND LOW COMPUTATIONAL COST

Thiago Cardoso Tricarico

July/2022

Advisor: Mauricio Aredes

Department: Electrical Engineering

This thesis proposes a new Model Predictive Control (MPC) technique for power-

converter applications, based on a recent meta-heuristic algorithm, called the Jaya

algorithm, as the optimizer of MPC. The proposed solution presents three bene�ts:

simple implementation, viable computational cost, and �xed switching frequency.

The proposed MPC strategy, referred to as Jaya-MPC, stands out as an alterna-

tive to the classical Finite-Control-Set Model Predictive control (FCS-MPC), which

presents a variable switching frequency. In addition, this work proposes a secondary

contribution: a new metric, which assesses the spread of the switching frequency pro-

�le of power converters, i.e., it evaluates the variability of the switching frequency

produced by MPC. This work uses this metric to investigate the switching frequency

pro�le of FCS-MPC. A straightforward parameter-setting method of the proposed

algorithm rises from a parametric analysis, resulting in a high-power-quality so-

lution. Also, this work compares the computational cost, based on the number of

predictions, of both the proposed controller and the paradigm of MPC in power elec-

tronics. Experimental outcomes prove that Jaya-MPC is a simple-implementation

technique with viable computational cost and high power quality.
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Chapter 1

Introduction

I
n the last two decades, model predictive control (MPC) stood out as the most

promising alternative to linear controllers in power electronics converters [1].

The most common MPC strategy in power electronics is the Finite-Control-Set MPC

(FCS-MPC) [2�4]. It presents several advantages: simple implementation and no

need for a modulator; fast dynamical response and high disturbance-rejection capa-

bility; easy handling with multivariable systems, and easy inclusion of nonlinearities

and constraints [1, 4�6]. But, MPC techniques often present also a few drawbacks:

elevated computational cost and variable switching frequency.

There are power electronics applications that bene�t from variable switching

frequency [7], but they di�er from the FCS-MPC spread pro�le: these techniques

provide a well-determined, i.e., a known and controlled, spread pro�le to reduce

electromagnetic interference. FCS-MPC variable switching frequency is not well-

determined and presents a highly spread pro�le.

Most trend research regarding MPC in power electronics aims to solve the vari-

able switching frequency [8�17]. Indeed, these researches split into two main paths:

adding the switching frequency variability in the optimization problem, whether

by adding the switching frequency in the cost function or by selecting an optimal

switching sequence aiming at achieving a �xed switching frequency � which typi-

cally turns it into a more complex approach, compared to the classical FCS-MPC

�, or using another class of MPC, called Generalized Predictive Control (GPC)

that solves a continuous-control-set problem, instead of a �nite one, and intrinsi-

cally provides a �xed switching frequency, by using a modulator. However, this

second approach typically presents a complex formulation and implementation and

not rarely high computational costs � all rely on the complexity of the optimization

solver.

The MPC strategies that aim at providing �xed switching frequency without the

use of a modulator do not provide a quantitative analysis of the level of variability
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of the switching frequency, i.e., they do not present a metric to quantify how much

these methods reduce the variability of the switching frequency to consider them

as �xed (or constant). To solve the variability of the switching frequency in FCS-

MPC, one may either increase its complexity or change to another strategy that

also presents high-complexity and high-cost drawbacks: this is the motivation of

this work.

Motivation:

� FCS-MPC has emerged as an alternative to GPC in power electronics appli-

cations due to its simple and very intuitive implementation, but it leads to

variable switching frequency;

� The works that analyze or attempt to control the switching frequency of FCS-

MPC do not provide quantitative tools to calculate the switching frequency

spread. Often it is not the aim of these studies, but this observation shows a

gap in the �eld concerning the quantitative analysis of the switching frequency

components of MPC approaches.

Main Question:

� Is it possible to design a GPC strategy proposing an optimization solver that

makes its formulation and implementation simple and reduces the computa-

tional cost to values close to the ones observed in FCS-MPC?

1.1 Proposal Description

This thesis aims to propose an alternative solution to the classical FCS-MPC

approach. This proposal intends to provide a viable computational cost with simple

implementation, besides a �xed switching frequency.

Including the switching frequency variability in the optimization problem of FCS-

MPC naturally increases its computational cost and formulation and implementation

complexity. Besides, the literature misses a method to evaluate the reduction of the

switching frequency spread. Hence, this work focuses on the alternative of building

a GPC solution with an optimization solver that can achieve the desired features:

simple implementation and low computational cost. This research also provides a

method to quantify the switching frequency variability.

Several works study di�erent algorithms for GPC, but the literature review car-

ried out in this thesis shows that a recent meta-heuristic optimization method, called

Jaya algorithm, stands out as a promising alternative.
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This thesis proposes an MPC strategy, called Jaya-MPC, to power electronics

converters with a �xed switching frequency. This new method combines a modi-

�ed Jaya algorithm with model predictive control to achieve reduced computational

cost and simple implementation while presenting high steady-state and dynamical

performances.

So, if the formulation and implementation of the proposed controller are simple

enough, close to the simplicity of the classical FCS-MPC, and if it presents a feasible

computational cost, it is simpler than the alternatives that increase the formulation

complexity of FCS-MPC.

1.2 Methodology

Using the Jaya optimization method as the solver of a continuous-control-set

MPC demands few modi�cations in the original algorithm, which leads to the ne-

cessity of four analyses to demonstrate the e�ectiveness of this new method:

� A parametric analysis to address the changes in the original Jaya algorithm

that demand a proper parameter setting. This analysis will lead to a simple

approach with only one control parameter;

� An analysis of switching frequency pro�les of FCS-MPC. A secondary con-

tribution of this work emerges from this study: a new metric, based on the

instantaneous estimation of the switching frequency, that evaluates the total

spread of its pro�le;

� A discussion about the computational cost of both Jaya-MPC and FCS-MPC;

� Experimental validation of the proposed Jaya-MPC controlling a power con-

verter in real-time.

The scope of the analyses of this work is limited to the application of Jaya-

MPC in an ac-current control of a three-phase converter connected to the grid,

i.e., the proposed control technique is indicated for applications that demand ac-

current control with the typical MPC features � fast dynamical response and high-

disturbance rejection �, besides a �xed switching frequency. But at the end of

this document, it will be explicit that the extension of the proposed MPC in other

applications in power electronics is straightforward.
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1.3 Work Organization

Chapters 2 and 3 review the state-of-the-art on model predictive control in power

electronics and the Jaya algorithm. They present their fundamentals, classi�cations,

and main open topics.

Chapter 4 introduces this thesis proposal: a modi�ed Jaya algorithm used as the

solver of a model predictive control applied to power converters. It also addresses

the modi�cations in the original Jaya algorithm.

Chapters 5 discuss the parametric analysis �ndings that lead to a simple design

for the proposed controller.

Chapter 6 presents the secondary contribution of this work: a metric to evaluate

the switching frequency spread of power converters operating with model predictive

control.

Chapter 7 presents the experimental results that demonstrate the e�ectiveness of

the proposed controller concerning control regulation performance, computational

cost, and power quality.

Chapter 8 closes this document by presenting the main �ndings of the work.

The appendices A, B and C present simulation results regarding disturbance

rejection, the use of the original weights of the Jaya-MPC, and an additional dis-

cussion about the switching frequency spread of FCS-MPC; these results do not

comprise the main scope of this thesis but provide valuable paths for the research

and future works.

Publication

Part of the �ndings of this Thesis have been published in the following paper:

[18] - Tricarico, T.; Costa, J.A.; Herrera, D.; Galván-Díez, E.; Carrasco, J.M.;

Aredes, M.Total Frequency Spread: A New Metric to Assess the Switching

Frequency Spread of FCS-MPC. Energies 2022, 15, 5273.
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Chapter 2

Literature Review On Model

Predictive Control

M
odel predictive control is a class of control strategies that predict the system's

future behavior based on its dynamical model; It asses the predictions in a

cost function to select the best control action that �ts the control objectives.

Implementing this control strategy demands three key elements: the predictive

model, evaluating the predictions, the cost function, assembling the control ob-

jectives and constraints, and the optimization algorithm, solving the optimization

problem de�ned by the cost function [1].

MPC advantages include feasibility for multivariable systems, fast dynamical

response, and straightforward incorporation of constraints and nonlinear features

[1]. However, this strategy demands high computational e�ort in comparison with

classical linear control � for a long time, only processes with very-slow dynamics

were feasible for the use of MPC �, but the advances in microprocessors technology

have brought MPC to a new era by enabling its application in systems with fast-

dynamics, like power-electronics based systems [1, 19, 20].
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2.1 MPC in Power Electronics: A Historical Survey

2.1.1 From 1980 to 2000: The First Proposals of MPC

The �rst report on the use of MPC in power-electronics dates from 1983 [21]

when Joachim Holtz proposed a predictive controller to regulate the stator current

of an ac-machine driven by a switched voltage source; and, in [22], Ralph Kennel

adds precalculation blocks (predictions) to the standard dc-current control loop of

a thyristor bridge.

Although Ralph Kennel calls his proposal a predictive control strategy, his ap-

proach di�ers from the actual comprehension of model predictive control in power

electronics; most papers regarding MPC that review the subject claim Joachim

Holtz's work was the �rst MPC application in power electronics.

Before these works, only the process industry �eld [1] dealt with MPC. After

that, in 1994 [23], Hoang Le-Huy and his colleagues implemented a predictive ac-

current controller � similar to the one of [21] � in a 1-KW permanent-magnet

synchronous motor driven by a PWM-based inverter.

2.1.2 From 2000 to 2010: GPC vs. FCS-MPC

Despite the innovations of [21] and [23], the study of predictive control in power

electronics remained out of focus � the MPC �eld remained restricted to the indus-

try process �elds � until the �rst decade of the 2000s when researches about MPC

in power electronics become a trending topic mainly by the works of José Rodrìguez

and his colleagues [24�34], and Ralph Kennel and Arne Linder [35�38].

In 2000, Ralph Kennel and Arne Linder �rst introduced the concept of

Generalized-Predictive-Control (GPC) to power electronics: they proposed the ap-

plication of GPC to control both ac-current and speed of a squirrel cage induction

machine fed by a voltage source inverter [36]. The study veri�ed that GPC's perfor-

mance was superior to that of the PI-based controller. However, the computational

cost of GPC was twice higher despite having implemented timesaving precalculation

approaches and neglected the cross-coupling terms in the stator current model to

simplify the model and reduce the computational cost.

During the 2000s, Ralph Kennel and Arne Linder were the pioneers in the study

of MPC techniques for motor-drive control. After introducing GPC in power elec-

tronics [36], they proposed the use of Explicit Model Predictive Control (EMPC) to

reduce the amount of computational cost associated with GPC by moving part of

the mathematical e�ort o�ine [37, 38]. However, EMPC demands a very complex

mathematical background.

In parallel to the work of Ralph Kennel and Arne Linder, José Rodríguez and
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his colleagues followed a di�erent path: instead of considering a continuous control

action �inherent to GPC and EMPC formulation �, they assessed the model pre-

dictions considering a discrete control set since power-electronic converters actuators

present discrete nature.

This idea, presented in 2004 [39], led to an MPC algorithm with a lower com-

putational, simple formulation, and fast dynamical response. Today, this algorithm

is known as Finite-Control-Set Model Predictive Control (FCS-MPC) and elimi-

nates the need for a modulator since it directly provides the switching pulses to the

power-converter. Yet, this implementation has a drawback: the resultant switching

frequency presented a variable pro�le.

From there on, several works [24�34, 40�47] proposed FCS-MPC in many power

electronics applications due to its simplicity and fast response � Indeed, the lit-

erature states that, regarding reference-tracking response and disturbance rejection

capabilities, MPC outperforms linear control techniques, such as PI and PR based

controllers [48�51]; both GPC and FCS-MPC grant faster dynamical response and

a sti�er performance when compared to classical linear control.

In 2009, José Rodrìguez and his colleagues provided a detailed description of the

fundamentals and applications of FCS-MPC 1 in power electronics and reviewed the

most relevant works from the early 1990s until 2009 [34] resuming the state-of-the-art

of MPC applied to power electronics converters until then.

2.1.3 From 2010 to 2020: The Growth of FCS-MPC

Since then, works that deal with MPC in power electronics have increased expo-

nentially, as depicted in Figure 2.1 � which compiles the publications in conferences

and journals of IEEE and IET regarding MPC in power electronics from 2000 to

2022 � and, in 2011, according to [20], the �rst MPC-based drive entered the mar-

ket of electrical-drives. The growth of MPC applications in the last decade is due

to the simple implementation, simple formulation, and viable computational cost of

FCS-MPC that popularized this technique. These valuable features are always in

line with technical advances.

In 2012, José Rodríguez and Patricio Cortés published the �rst and best-known

book on MPC for power converters and electrical drives [51]. Since most works of

both authors during the 2000s focused on FCS-MPC, the book deals only with this

class of controller; it provides detailed implementation and simulation of several

applications of FCS-MPC, covering the practical issues related to it.

In 2013, José Rodríguez and his colleagues published in [19] the state-of-the-art

of FCS-MPC in power electronics by summarizing the topics presented in [51].

1The �rst time the term Finite-Control-Set Model Predictive Control was conceived was in [34].
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Figure 2.1: Survey of publications regarding MPC applications in power electronics

from 2000 to 2022, in journals and conferences of IEEE and IET (survey compiled

in June 2022).

In 2015 [20], Samir Kouro, José Rodríguez, and their colleagues discuss the Role

of MPC in the evolution of power electronics, compare the features of the main

control techniques used in power converters against FCS-MPC, and summarize the

most relevant publication of MPC applied to di�erent typologies of power convert-

ers in the �elds of power quality, machine drive, grid-connected converters, and

controllable power supply, from 2008 to 2015.

In 2016, Venkata Yaramasu and Bin Wu Published a book [52] in which they pro-

foundly discuss the applications of FCS-MPC in Wind Energy Conversion Systems

(WECS), presenting their fundamentals and the speci�c features of each predictive

control algorithm. Besides, it shows how FCS-MPC became the major trend in

MPC applications in power electronics due to its simplicity.

In the same year, Tobias Geyer took a step forward out of academia and compiled

the industrial applications of MPC regarding medium-voltage variable-speed drives

[53], showing that MPC has already achieved an industrial stage. However, the

book also discusses the issues related to the computational burden and the variable

switching frequency.

In 2017, Sergio Vazquez, José Rodríguez, and their colleagues published in [1]

the most embracing review to date on MPC in power electronics, including GPC and

EMPC besides FCS-MPC, which was the main focus of the past surveys presented in

[19, 20, 34]. They have summarized the main contributions since 2000 and classi�ed

the di�erent MPC strategies in power electronics and their development stages,

control diagrams, features, challenges, and open topics.

More recently, in 2021, [54] provides a review of the di�erent types of Model-

Free Predictive Control (MFPC) in power electronics applications. This kind of

control technique aims at achieving the optimal switching state, often substituting
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the predictive model with a look-up table strategy or data-driven model. These

approaches present a slightly superior performance to the conventional FCS-MPC

under parameter uncertainty. However, the experimental results of [54] only show

this improvement when high parameter error occurs � in the order of magnitude

of 100% to 150% error of an L �lter based converter.

2.2 Classi�cation of MPC in Power Electronics

Power electronics literature divides MPC into two main classes, regarding

the type of optimization problem: Finite-Control-Set MPC (FCS-MPC) and

Continuous-Control-Set MPC (CCS-MPC) [1, 55].

FCS-MPC takes advantage of the fact that power converters present a discrete

nature, i.e., the actuation in these converters is a set of switching pulses called

switching states. Hence, the control actions set is the �nite set of switching pulses,

which leads to a formulation of the integer optimization problem [1, 34]. This

approach eliminates the use of a modulator since the control algorithm provides an

optimal switching-state (see Figure 2.2 (a)) [1, 34].

On the other hand, CCS-MPC solves the optimization problem to �nd a contin-

uous control action that minimizes a cost function. Then, a modulator receives the

optimal control action to generate the switching pulses (see Figure 2.2 (b)) [1, 55].

(b)(a)

FCS-MPC

measurementsswitching pulses

Electrical
systemmodulator

CCS-MPC

measurementscontrol action

switching
pulses

converter

Electrical
system

converter
converter

Figure 2.2: General control structure of (a) FCS-MPC and (b) CCS-MPC.

FCS-MPC and CCS-MPC can be divided into two other sub-classi�cations

each (see Figure 2.3): Optimal-Switching-Vector-MPC (OSV-MPC) and Optimal-

Switching-Sequence-MPC (OSS-MPC); and Generalized Predictive Control (GPC)

and Explicit MPC (EMPC) [1].
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Finite-Control-Set 
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Continuou-Control-Set
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Figure 2.3: Classi�cation of types of MPC applied to power electronics.

OSV-MPC is the �rst and most common FCS-MPC strategy2 applied to power

electronics converter since it presents the simple formulation and easy addition of

constraints [1]. However, the switching frequency of this technique is variable.

OSS-MPC aims at solving the switching frequency variability by considering

a set of switching sequences, but it introduces a new variable in the optimization

problem: the instant times the switching pulses change state in a switching sequence.

This approach gives OSS-MPC the characteristic of emulating a modulator behavior

inside the optimization problem; this implementation is more complex than the one

of OSV-MPC � it adds several calculation steps that involve derivatives of the

cost function regarding the instant times the pulses change [56, 57]. Indeed, OSS-

MPC solves the variable switching frequency issues associated with OSV-MPC but

increases the computational cost [1], and removes the most attractive feature of

OSV-MPC: simplicity � due to its simplicity, OSV-MPC is much more popular

MPC approach in power electronics.

GPC is the most common strategy in CCS-MPC because it implements online

optimization in contrast with the EMPC, which uses o�ine optimization and para-

metric search. Both provide the control action to a modulator, which provides a �xed

switching frequency pro�le. However, both strategies present complex formulations

[1].

EMPC solves o�ine optimization problems for several con�gurations and stores

2Since OSV-MPC is the �rst FCS-MPC strategy used in power electronics, it is also referred to
as FCS-MPC in the literature.
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the solutions in a table format, resulting in an embedded online control that only

searches this table using search algorithms. Although this strategy reduces the

computational cost, it needs high amounts of memory, which elevates the total cost

of the solution [1].

Analytically solving part of the optimization problem may reduce the compu-

tational cost of GPC, but it is only simple for reduced-order problems with linear

models [1].

Both GPC and EMPC can add constraints and non-linear features to the op-

timization problem, but, in the case of GPC, it increases the computational cost

[1, 55]. These techniques may implement long horizon predictions, but it raises the

computational cost, demands enhanced search algorithms for FCS-MPC strategies,

and grows the order of the optimization problem of CCS-MPC. Hence, it is more

common to use a unit prediction horizon.

Both OSV-MPC and GPC are the most popular approaches among these tech-

niques, but, in power electronics applications, OSV-MPC is the most used technique

since 2004 3.

3The interest of the �eld in GPC has reduced since the FCS-MPC proposal because of the
simplicity and intrinsic feasibility that FCS-MPC provides to power converters.
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2.3 Issues Related to MPC

Each MPC algorithm is di�erent, depending on the application, the control ob-

jectives, and the type of MPC strategy, but they share three common elements:

the predictive model, the cost function, and the optimization solver. Each of these

elements presents di�erent issues, and most of the studies in the power electronics

literature aim to address these issues [1, 51].

2.3.1 Regarding The Predictive Model

The predictive model is the element that describes the system dynamics over

the prediction horizon. Because of the digital nature of MPC implementation, the

predictive model is discrete and obtained by using the Euler approximation and

Taylor series if the system is linear. However, the discretization of nonlinear systems

often demands other techniques, which may be more complex [1].

The quality of the prediction model, therefore, the quality of the discretization

plays a signi�cant role in the predictive controllers' performance, i.e., the control

e�ort will only be an optimal solution if the predictions are precise. The main

applications of MPC use the Forward-Euller method to obtain the predictive model.

In FCS-MPC, the imprecision of the predictive model may degrade its perfor-

mance even more since it presents variable switching frequency, which may push the

converter to resonance problems [1].

Several works propose solutions for mitigating resonance problems using an active

damping �lter or a long-prediction horizon strategy; both increase the computational

e�ort [58�60].

2.3.2 Regarding The Cost Function

Building the cost function � and setting its weight factors, if that is the case

� is the main task in MPC: it de�nes the control objectives that the controller

aims at achieving and in�uences steady-state characteristics, like RMS value of ac

electrical quantities, total-harmonics-distortion (THD), and harmonic spectrum [1].

For instance, in [51], the authors study this in�uence by comparing two simple

cost functions with the same current regulation objective and demonstrate that

quadratic-error (||e||2) and the absolute value of the error (|e|) present di�erent

steady-state waveforms in a three-phase converter.

Figure 2.4 presents the main control objectives and the most common secondary

goals found in the literature regarding MPC in power electronics.
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Figure 2.4: Main and secondary control objectives allowed by MPC in power elec-

tronics applications.

The main control objectives often comprise a quadratic-error cost function of

one or more variables, e.g., currents, and voltages [1, 19, 34, 51]. However, it is

often common to �nd other objectives related to torque, �ux, speed, and active and

reactive power in applications such as control of electrical machines [52].

On the other hand, secondary objectives are suitable for penalties or added as

additional costs, weighted by proper weight factors [52].

Adding peak-value constraints in both CCS-MPC and FCS-MPC is one of the

most common secondary objectives. Some works related to OSV-MPC include vari-

ables in the cost function to minimize the number of commutations in each sampling

period to reduce losses or the variability of the switching frequency [1, 30], but these

additions make the cost function and its weighting design more complex.

In GPC and EMPC, these variables are unnecessary since they use a modulator

that produces �xed switching frequency [1]; it is also possible to add the variation

in the control e�ort in the cost function to reduce its slew rate, although it is not

common in power electronics applications [1, 19].

When the cost function deals with a multi-objective problem, it often uses
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weighting-factors [1, 19]. The design of these factors a�ects performance, robust-

ness, and stability of the controller � the literature already established that optimal

control does not guarantee system stability [1]�, but only a few works deal with

stability demonstration of MPC in power electronics systems [61�63].

It is well-established that using a per-unit base system helps the decision of the

weight factors values [33]. However, optimal weighting factor selection is still an

open topic in MPC [1].

2.3.3 Regarding The Optimization Solver

The main challenge of the optimization solver is �nding an optimum solution

within the time of a sampling period. In power electronic applications, this period

is around a few microseconds. Thus, not every algorithm can be used in MPC,

making this issue the main aim of several works [1] � including this thesis.

The computational burden of a predictive controller is strongly related to the

number of times the algorithm evaluates the cost function and the predictive model.

Hence, optimization algorithms that achieve the optimal solution with a reduced

number of evaluations tend to present a lower computational cost [1].

Some approaches of GPC try to calculate an approximation of the optimum

solution to reduce the number of generations of the optimization algorithm [55, 64].

However, it may lead to local-optimum, depending on the cost function, and, in a

non-linear system, it may not even be possible [1].

In FCS-MPC, some integer-optimization techniques reduce the computational

e�ort by disregarding the redundant switching states, thus reducing the number of

predictive models- and cost function- evaluations [65�68]. Although several studies

focus on reducing the computational burden, it is still an open topic in MPC applied

to power electronics converters [1].

2.3.4 Regarding The Switching Frequency

FCS-MPC and its variations have been the subject of several types of research

in recent years, applied in various branches of power electronics [1], [2], [5] and [6],

due to the �exibility that the cost function provides in controlling the variables of

interest, as well as presenting a superior transient response to linear control [69].

According to [8], the variable switching frequency is one of the open problems

of FCS-MPC. This issue is associated with a non-symmetric and widely spread fre-

quency spectrum that can cause resonance problems, making FCS-MPC unsuitable

for applications that require strict harmonic control, such as in grid-connected con-

verters or powering sensitive loads [4].
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Several proposals aim to mitigate or control the FCS-MPC switching frequency,

but so far, the state-of-the-art of MPC in power electronics misses quantitative

analyses regarding the switching frequency spread pro�le of FCS-MPC.

Spread-spectrum modulation techniques (SS-PWM) are a solution for reducing

electromagnetic interference (EMI) reduction [7]. These modulation methods shape

the switching frequency spectrum in such a way that the energy of the modulated

signal distributes spreads in a predetermined range rather than concentrating it on

a single frequency.

These spread-spectrum techniques di�er from FCS-MPC since they use a mod-

ulator with a known modulation strategy that distributes the switching frequency

within a predetermined range and shape, whereas FCS-MPC produces a variable,

widely spread, asymmetric, and not well-de�ned switching frequency pro�le. Ta-

ble 2.1 provides a brief comparison of the variable switching frequency of SS-PWM

techniques and FCS-MPC.

Table 2.1: Comparison between the variable switching frequency characteristics of

FCS-MPC and the SS-PWM techniques.

SS-PWM FCS-MPC

symmetry symmetrical spread asymmetrical spread

controllable
controlled

bandwidth
uncontrolled

pro�le shape well-determined shape
not �xed shape, highly dependent

of the parameters of the controller

drawback

more complex

implementation

than conventional PWM

may cause

resonance problems,

zero crossing issue,

and low power quality
advantage EMI reduction -

Metrics to Assess Switching Frequency

Up to now, the only metric to characterize the switching frequency of FCS-MPC

is the average switching frequency [3].

Equation (2.1) gives the value of the average switching frequency, f̄sw, over a

period equalsMTs, but this quantity does not estimate the variability,i.e., the spread

of the switching frequency.

f̄sw = lim
M→∞

1

nsckMTs

M∑
m=1

‖∆Sm‖1 (2.1)
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M is the total of samples, Ts is the sampling period; ∆Sm is the di�erence

between two consecutive switching states; ns is the number of power switches per

leg in the power converter under analysis; and ck is a correction factor that depends

on the converter topology and aims to accomplish the criteria of (2.2). For instance,

in a two-level three-phase converter, both ck and ns are equal to 2.

∆Sm
ck
∈ {−1, 0, 1} (2.2)

Another metric found in the literature to characterize the power quality of FCS-

MPC is the Total Harmonic Distortion (THD). However, the THD calculation only

considers the harmonic components of the fundamental frequency, i.e., it does not

quantify the non-characteristic components of the switching frequency.

One of the �rst e�orts to control the switching frequency in FCS-MPC was

described in [8] and [9]. These works added a term in the cost function to penal-

ize excessive switching state changes. Yet, this method guarantees neither a �xed

switching frequency nor a well-de�ned frequency spectrum.

Further, [10] and [11] attempts to shape the switching frequency spectrum by

mitigating speci�c harmonics.

The work of [10] uses a notch �lter in the cost function to avoid speci�c harmonic

components. Even though this approach can reduce some harmonics, the switching

frequency is still variable.

The study of [11] uses a similar method based on a sliding discrete Fourier

transform (SDFT) method applied to the cost function. This approach calculates a

�nite number of components of distinct frequency spectra, assigning weights for each

harmonic. However, as in [10], the suppression of some harmonics does not ensure a

�xed switching frequency. Both works increase the formulation complexity of FCS-

MPC and come up against the fact that they do not know the non-characteristic

frequencies produced by FCS-MPC.

The work of [70] proposes a hybrid OSV-MPC by adding a low-pass �lter to

remove the high-frequency components in the switching function produced by a

classical FCS-MPC. But this approach removes one of the key features of FCS-

MPC: the fast dynamical response because the actuation signal � the �lter output

� presents slow dynamics due to the low cut-o� frequency. Also, the results show a

high ripple and do not discuss the e�ect of adding the �lter in the regulation error.

The works of [13] and [14] use the concept of OSS-MPC � which formulates the

optimization problem as a function of time instants the switching vectors transit. In

both cases, the MPC technique involves calculating the derivative of the cost func-

tion besides demanding a switching sequence generator block, which increases the

computational cost and the formulation complexity. These are valuable advances
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in the state-of-the-art and contribute to providing a solution that mimics the be-

havior of a modulator strategy; the results of the method of [13] do not discuss the

switching frequency pro�le produced by OSS-MPC.

On the other hand, the methods de�ned in [15],[71] and [16] adds the modulation

stage in the cost function. This method � called modulated MPC (M2PC) � is

similar to the OSS-MPC since it also needs an additional stage to calculate the

switching times. [15] and [71] use this technique for a multilevel-converter while [16]

uses it for an NPC converter. These works are also valuable advances to the state-

of-the-art, but despite mimicking de behavior of a modulator stage and reducing the

THD� compared to FCS-MPC�, they yet produce a spread pro�le when analyzing

the frequency spectrum using FFT. These approaches add extra calculation steps

that increase the formulation complexity compared to FCS-MPC, like those of the

OSS-MPC class.

Two recent papers, [72] and [73], study how di�erent cost function strategies

a�ect a grid-forming converter, but both miss a more rigorous quanti�cation of

switching frequency spread.

The work of [72] examines the in�uence of two cost functions without frequency

control and two cost functions with frequency control in the voltage THD at sev-

eral operating points. However, the analysis of the cost functions' impact on the

switching frequency is only qualitative.

The study presented in [73] in 2020 expanded the �ndings of [72], performing an

in-depth examination of the cost function's weights and sampling frequency impact

on switching frequency and THD.

However, [73] bases its analysis only on average switching frequency , like other

works in the state-of-the-art [8], [9], [11]. Other works [10], [12], [13], [14], [16] do

not use this metric, assessing only THD and FFT.

All of those works use di�erent techniques, aiming to control the FCS-MPC

switching frequency pro�le and provide valuable contributions to the �eld. However,

the state-of-the-art does not fully assess the spread pro�le of the switching frequency

of FCS-MPC approaches. Most of them use only the average switching frequency to

validate the e�ectiveness of their analyses. However, this thesis will demonstrate, in

Chapter 6, that this average metric cannot fully characterize the switching frequency

of FCS-MPC.
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2.4 The Current Dilemma of MPC in Power Elec-

tronics

The literature review on the state-of-the-art of MPC in power electronics leads

to some statements regarding the challenges that MPC faces:

� FCS-MPC has developed as a viable and simple-to-implement alternative to

GPC over the past two decades because of the infeasibility of GPC concern-

ing computational cost and the adaptability of FCS-MPC to various power

converters topologies;

� Although FCS-MPC presents variable switching frequency, it is the most used

predictive controller because of its simplicity;

� In FCS-MPC, the cost function can include switching frequency as a control

objective, but it results in a more complex control problem;

� Besides, including multi-objectives in the cost function hampers the weight-

factors selection;

� Other strategies derived from FCS-MPC, like OSS-MPC, try to control the

switching frequency by assessing the switching time instants in the optimiza-

tion problem or even emulating the behavior of a modulator;

� Although these techniques reach relative success regarding the qualitative re-

duction of switching frequency spread, they increase the formulation complex-

ity and computational cost in relation to FCS-MPC;

� All these works do not assess the switching frequency spread quantitatively,

only measuring the average switching frequency;

� GPC is a solution with �xed switching frequency and online solving of the

optimization problem � instead of EMPC that solves it o�ine;

� However, the implementation complexity of GPC is higher than FCS-MPC

since solving a continuous optimization problem is often more di�cult than

solving an integer optimization problem and demands more computational

e�ort;

� In summary, FCS-MPC gained attention because of its simplicity; OSS-MPC

techniques attempt to �x the switching frequency variability of OSV-MPC at

the expense of more complex and computationally costly approaches, while

GPC has been left aside in the mainstream of power conversion applications.
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These observations point to the question that motivated this work:

Is it possible to design a GPC strategy proposing an optimization solver that

makes its formulation and implementation simple and reduces the computational

cost to values close to the ones observed in FCS-MPC?

19



Chapter 3

Literature Review On Jaya

T
his chapter reviews a recent meta-heuristic algorithm called Jaya and its

applications in power electronics. It describes how this algorithm works,

showing its main advantage: simple implementation. At the end of the review, it

became clear the gap in the application of this algorithm in MPC; this thesis intends

to explore this gap.
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3.1 Background

Classical optimization techniques are well-established in several applications in

engineering, providing mathematically well-grounded solutions. However, these

methods may fail when applied to more complex optimization problems. In these

cases, meta-heuristic techniques stand out as an alternative that is commonly more

�exible and e�cient, besides dismissing the necessity of �rst and second-order

derivatives. Yet, these techniques present a higher computational cost and several

algorithm-speci�c control parameters, called hyper-parameters.

With the advances in computational hardware capacity over the decades, the

shortcomings related to the computational cost tend to decrease, leading to increased

use of meta-heuristic methods � mainly in o�ine optimization problems. Even so,

the di�culty of tuning hyper-parameters continues to be a drawback since these

parameters strongly a�ect the performance of their respective optimization methods.

Natural processes like evolution commonly inspire meta-heuristic optimization

techniques � the literature also refers to them as natural optimization.

Two groups of algorithms classify most of the meta-heuristic methods: Evolu-

tionary Algorithms (EA) and Swarm-Intelligence (SI) based algorithms. While the

former tries to mimic natural evolution (natural selection) rules to solve optimization

problems, the latter metaphors biological group-behavior observed in nature.

These methods are probabilistic (non-deterministic) and require usual hyper-

parameters like population size and the number of generations. Besides these,

each algorithm requires its speci�c hyper-parameters. The precise tuning of these

algorithm-speci�c hyper-parameters is a critical factor that a�ects the performance

of each algorithm. The improper tuning may increase the computational e�ort

or even jeopardize the search for an optimal solution. Online control applications

avoid these algorithms because of the complexity, probabilistic nature, and di�culty

of setting hyper-parameters.

3.2 Jaya Algorithm

In 2015, Venkata Rao proposed in [74] a new meta-heuristic optimization method,

called Jaya Algorithm, which presented the advantage of simple implementation and

dismissed algorithm-speci�c hyper-parameters. These assets and the algorithm's

performance drew the attention of researchers in the �eld of meta-heuristic opti-

mizations. It is also feasible for multi-objective and multi-dimensional optimization

problems [75].

In the original work [74], the author compares the performance of the Jaya algo-

rithm against a well-established group of optimization algorithms by testing them
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in a benchmark composed of 24 constrained and 30 unconstrained optimization

problems. The statistical results of the tests have also supported the superior per-

formance of the Jaya method. Yet, the authors emphasize that neither Jaya nor any

other algorithm can be referred to as the 'best' algorithm.

Jaya is a population-based algorithm similar to well-established meta-heuristic

algorithms, but it di�ers from them regarding the inspiration, as it does not mimic

any natural process. Indeed, the core of the Jaya algorithm involves a simple rule:

getting closer to the optimal solution and moving away from the worst solution, i.e.,

it calculates the new individuals (un+1,m) of the population based on the best (ub)

and the worst (uw) individuals of each generation.

Equation (3.1) implements this core idea, in which the indexes m and n means

themth individual of the population at the nth generation; and the parameters r1 and

r2 are random-variables, which weight both the terms (ub−|un,m|) and (uw−|un,m|)
that aims to get the new individual closer to the best solution and to move it away

from the worst solution.

un+1,m = un,m + r1 (ub − |un,m|)− r2 (uw − |un,m|) (3.1)

If the new individual of a population is a better solution than the previous one,

the algorithm includes it in the next one; if not, the algorithm discards the new

individual, keeping the previous one in the next generation.

Algorithm 1 presents the procedures of the Jaya optimization method, and Fig-

ure 3.1 depicts its �owchart. Note that it only demands the setting of two com-

mon hyper-parameter: population size (M) and maximum number of generations

(N). It sets a random initial population and does not require any algorithm-speci�c

hyper-parameter since it generates the random weights (r1 and r2) with uniform

distribution.

After the publication of the original Jaya algorithm, many works developed vari-

ant methods applied to engineering optimization problems [76�80]. These variants

modify the original procedure according to the problem they aim to solve.

In 2019, Venkata Rao published the only book [81] so far, compiling and describ-

ing the applications and procedures of the Jaya algorithm and its variants up to the

end of 2018. The book reports a few applications in electrical engineering, but none

related to model predictive control.
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Algorithm 1: Original Jaya algorithm (introduced in [74]).
Data: f : U → V ; u ∈ Rn; v ∈ R;
Result: optimal solution u? = argmin

u
f(u); optimal cost v? = min (f (u))

1 initialize:

2 population size (M)

3 number of generations (N)

4 random initial population set (Uo = {u0,1, . . . ,u0,M})
5 begin

6 select best and worst solution: (ub,uw)

7 foreach generation: n ≤ N do

8 foreach un,m ∈ Un do

9 generate random numbers:( r1 ∼ U(0, 1) and r2 ∼ U(0, 1))

evaluate new individual: un+1,m

un+1,m = un,m + r1 (ub − |un,m|)− r2 (uw − |un,m|)
10 if un+1,m is not a better solution than un,m then

11 un+1,m = un,m

12 end

13 end

14 select best and worst solution: (ub,uw)

15 end

16 return result u? = ub

17 end
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Intialize:
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number of generations:
initial population:

Select best and worst solutions:
best solution:
worst solution:
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End
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for:
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Figure 3.1: Flowchart of the original Jaya algorithm.
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3.3 Applications in Power Electronics

Figure 3.2 shows a survey of the publication of the Jaya algorithm in conferences

and journals from IEEE and IET since 2016, covering power electronics applications.

These data con�rm that the Jaya algorithm is the topic of only a few works in power

electronics, showing its novelty.

Figure 3.2: Survey of publications covering Jaya algorithm applications in Power

Electronics from 2016 to 2022, in journals and conferences of IEEE (survey compiled

in June 2022).

Table 3.1 presents a list of the most signi�cant publications of the Jaya algorithm

and its variants applied to power electronics. Most applications comprise o�ine

optimization problems, such as control-parameters optimization and optimal power

dispatch. A few promissory works use Jaya as an online solver in MPPT algorithms

applied to photovoltaic systems. Indeed, none of these works proposes the Jaya

algorithm as an o�ine or online optimization solver for MPC applications; this is

the gap this thesis proposal intends to explore.

Table 3.1: Main publications using the Jaya algorithm in power electronics.

Year
Optimal Power Control Parameter MPPT

Dispatch Optimization algorithms

2016 � [82] �

2017 [83] [84, 85] [86, 87]

2018 [88�91] [92, 93] [94]

2019 [95�99] [100] [101]

2020 [102] � �

2021 [103, 104] � [105, 106]
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3.3.1 Applications in Power Dispatch and Energy Manage-

ment

Many papers present studies regarding the usage of Jaya in optimal reactive

power dispatch algorithm [83, 88, 89, 95] � indeed, it is the most common applica-

tion so far.

In [96], the work assesses an economic dispatch problem in a microgrid with the

presence of solar and wind generations. And, in [97], it presents a method based on

the Jaya algorithm to �nd the optimal placement of a D-STATCOM in distribution

networks to reduce the total power losses and improve the voltage pro�le.

The work presented in [90] introduces a new meta-heuristic algorithm, called

Quasi-Oppositional-Jaya (QO-Jaya), for solving optimal power �ow problems. This

proposition is more complicated than the classical Jaya algorithm, but the simula-

tion results lead to the conclusion that the proposed method betters the original

Jaya algorithm in reducing the active power losses and improving voltage stability.

However, it considers only a few simulation scenarios.

In [98], it studies a probabilistic approach for microgrids' optimal energy manage-

ment considering ac network constraints, using the Jaya algorithm as the optimiza-

tion solver. Related research presented in [91] applies Jaya to energy management

systems in smart grids. The study published in [99] aims to minimize the losses in

a radial distribution system. In this application, Jaya assesses both placement and

sizing of Distributed Generation (DG) units.

3.3.2 Applications in Control Parameters Optimizations

The work presented in [100] applies Jaya to enhance the automatic generation

control of two power system areas. Simulation results demonstrate that the Jaya

approach reduces the frequency deviations of both areas when compared to the case

that uses the Ziegler-Nichols method to tune the controller's parameters.

In [84], it uses Jaya to tune the parameters of a speed controller of a DC-motor

to improve its dynamical response; it also compares its performance against the

one of a PSO (Particle Swarm Optimization) algorithm. The experimental results

lead to the conclusion that, while the PSO algorithm presents the best steady-state

response, the Jaya algorithm gives the best transient response, although the work

studies only one scenario.

In [82], it proposes a new Load Frequency Control (LFC) strategy, based on a

fuzzy controller, to decrease frequency oscillations caused by load disturbances and

wind �uctuations in a wind-thermal power network. The work applies an online

Jaya algorithm to tune the control parameters optimally. A similar approach [93]

uses Jaya to design an LFC to mitigate frequency deviations in a multi-area power
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system's interconnection problem that incorporates renewable energy generations.

The work presented in [85] uses the Jaya algorithm to tune a Linear-Quadratic

Regulator (LQR) employed on a power system stabilizers (PSS) to stabilize a syn-

chronous machine. But, the study provides only a few simulation results comparing

LQR with a PID controller.

In [92], the study introduces a Jaya-based method for both shunts- and series-

controls of a Uni�ed Power Quality Conditioner (UPQC) applied to a PV system.

The optimization problem is based on auto-tuning PR controllers and comprises two

cost functions to improve power quality for both voltage and current. It provides

experimental results and compares the proposed method with other optimization

techniques. The work analyses multiple scenarios, including linear, nonlinear, and

unbalanced loads; voltage-sag, voltage-swell, and unbalance-voltage-sag conditions.

The results validate the e�ectiveness of the proposed Jaya method and support the

conclusion that the use of Jaya enhances the dynamical response of the system.

3.3.3 Applications in MPPT Algorithms

In [86], it proposes a Jaya-based maximum-power-point-tracking (Jaya-MPPT)

method for photovoltaic arrays working under variable shading conditions. In [94],

the authors extend this study and provide experimental results to support the con-

clusion that the proposed Jaya MPPT algorithm beats a PSO-based MPPT algo-

rithm in three key metrics: convergence speed, oscillations in the convergence, and

overall tracking e�ciency.

The work presented in [87] combines the Jaya algorithm with a Di�erential Evo-

lution algorithm � called Jaya-DE � to improve the performance of MPPT in pho-

tovoltaic systems under high �uctuations in temperature and radiance. The study is

very detailed, and the experimental results demonstrate that the Jaya-DE method

outperforms other strategies described in the state-of-art of MPPT algorithms.

In [101], the work studies the performance of a Jaya-based MPPT algorithm ap-

plied to a hybrid photovoltaic-fuel-cell for grid integration. It provides experimental

results � carried out in a hardware-in-the-loop environment � that support the

conclusion that Jaya-MPPT presented a performance superior to PSO (Particle

Swarm Optimization) or ABC (Arti�cial Bee Colony) algorithms.
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3.3.4 Others Applications

Parameters identi�cation using Jaya is still a topic in power electronics applica-

tions: both papers presented in [107] and [108] use Jaya as a parameter identi�cation

algorithm for Permanent-Magnet Synchronous Machine (PMSM) and photovoltaic

models, respectively.

In [109], it applies a modi�ed-Jaya algorithm in an optimization problem concern-

ing the coordination of overcurrent relays. The results show that the modi�ed-Jaya

algorithm outperformed the basic genetic algorithm. However, simulation tests do

not include any other optimization.
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Chapter 4

Thesis Proposal

S
olving a continuous-set optimization problem with low-computational cost in

the context of a GPC is the principal task of this work to provide a viable

solution for MPC with �xed switching applied to real-time ac-current controlling in

a power converter. Thus, this chapter proposes the combination of a modi�ed-Jaya

algorithm and GPC. It also details the development of this control strategy and

de�nes the scope of its application. This solution consists of the main contribution

of this thesis.
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4.1 Jaya Algorithm Applied to MPC

Figure 4.1 shows the control structure proposed in this thesis; the Jaya-MPC

block includes the common elements of a typical MPC controller, such as a predictive

model, the control objectives, the constraints � de�ning the control optimization

problem �, and the Jaya-MPC algorithm with the modi�cations (highlighted in

red) in the original Jaya algorithm so that it �ts as the solver for MPC. In this

diagram, the system's input u is the power converter's modulation index.

Figure 4.1: Top-level block diagram of the closed-control loop with the proposed

Jaya-MPC applied to power converters.

This proposal falls into the GPC class and uses Jaya as the optimization solver.

This combination merges characteristics of both GPC and Jaya: �xed-switching

frequency (GPC), reduced computational cost, simple implementation, and reduced

control parameters in the optimization solver (Jaya).

4.2 Cost Function

The cost function de�nes the control objectives in model predictive controllers.

It may be a purely regulation problem or a constrained4-regulation problem.

4Simple inclusion of constraints in the control law is one of the most attractive features of MPC
[1].

30



Equation (4.1) shows the general form of the cost function that suits the appli-

cation of this work. It comprises the quadratic error 5 between the predictive output

(yp) and its reference (ysp) and two penalty terms associated with both inputs and

output constraints, respectively. In power converters, the inputs (u) are often the

modulation indexes, and the outputs (y) are the electrical quantities the controller

aims to regulate, e.g., voltages, currents, active and reactive power.

J (u,yp) = ||yp (u)− ysp||22 + Pu (u) + Py (yp) (4.1)

4.2.1 Regulation Cost

The �rst term of the left-hand side of Equation (4.2) deals with regulating the

system's output, i.e., the control variable of the power converter; if only this term

is active, the optimization problem is free of constraints, and the minimum value

of cost function is zero. However, in that case, the Jaya-MPC stops and returns a

solution when this cost is less than a pre-de�ned tolerance.

||yp (u)− ysp||22 ≤ tol (4.2)

4.2.2 Input Constraints Penalty

In power converters control, the modulation index bound-limits are the most

common input-constraint; Equation (4.3) formally de�nes these constraints.

uinf ≤ u ≤ usup (4.3)

Equation (4.4) formalizes a typical penalty Function (Pu (u)) strategy to deals

with the inputs constraints:

Pu (u) =

 0 , uinf ≤ u ≤ usup

P , otherwise
(4.4)

4.2.3 Output Constraints

The output constraints play a role in avoiding the control variables, such as

voltages and currents, being out of a safe operating range during transient dynamics.

In other words, the output penalty term in the cost function acts to make the system

operate within the range represented by Equation (4.5).

5Studies report that quadratic error cost as a better choice of regulation cost function than the
absolute value of the error [51].
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yinf ≤ yp ≤ ysup (4.5)

Similar to the case of the input constraints, Equation (4.6) de�nes the output

constraints penalty function. This function penalizes the control actions that result

in predictions out of the bounds of Equation (4.5).

Py (yp) =

 0 , yinf ≤ yp ≤ ysup

P , otherwise
(4.6)

4.3 Control Optimization Problem

Equation (4.7) formalizes the optimization problem related to the control prob-

lem that Jaya-MPC aims at solving; it is composed by the cost function � which

depends on the control input (u), the output predictions (yp) and the output refer-

ence (ysp) � subject to the model dynamics (predictive model) and the input and

the output constraints
(
uinf ,usup,yinf ,ysup

)
.

The predictions (yp) are a function (F ) of the system inputs (u) and the system

states (x).

u? = argmin
u

J (u,yp,ysp)

s.t. yp = F (x,u)

uinf ≤ u ≤ usup

yinf ≤ yp ≤ ysup

(4.7)

If the predictive model is linear, which is a usual case in power converter models

that deal with only the �lter dynamics, the optimization problem turns into Equation

(4.8).

u? = argmin
u

J (u,yp,ysp)

s.t. xk+1 = Axk +Buk

yp = Cxk+1

uinf ≤ u ≤ usup

yinf ≤ yp ≤ ysup

(4.8)

Further, Equation (4.8) becomes (4.9), if the optimization problem with linear

predictive model presents no constraints.
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u? = argmin
u

J (u,yp,ysp)

s.t. xk+1 = Axk +Buk

yp = Cxk+1

(4.9)

4.4 Jaya-MPC Algorithm

Algorithm 2 shows the pseudo-code of the �rst version � with �xed weight

factors (r1, r2) � of the proposed Jaya-MPC algorithm; it highlights in red the

di�erences from the original Jaya algorithm (see Algorithm 1). These di�erences

can be summarized as follows:

� Jaya-MPC uses �xed weight factors instead of the original Jaya algorithm

that uses random variables with uniform distribution as the weight factor.

This modi�cation gives Jaya-MPC deterministic behavior to avoid large steps
6 when calculating the new individuals since the feasible search-space in the

power converters applications ranges from -1 to 1, i.e., the feasible values for

the modulation index;

� The initial population set has a small size (M = 3)7 and is de�ned based on the

upper and lower limits of the system's input (u); the original Jaya algorithm

generates initial population randomly;

� Inside the loop of the Jaya algorithm, it includes the function that evaluates

the prediction over the population;

� The stop criteria in the original Jaya algorithm is only the maximum number of

generations, which is a parameter the user de�nes. In the Jaya-MPC, besides

this parameter, the user sets a tolerance (tol) for the cost function since it is

a regulation problem. Hence, the algorithm stops and returns the optimal8

control e�ort if it achieves a value less than the tolerance.
6The size of the deterministic weight factors and the analysis of di�erent weighting strategies

proposed in this work are discussed in Chapter 5.
7M = 3 is the smallest population size allowed in the Jaya algorithm, which reduces the algo-

rithm's computational cost.
8The optimization literature often uses the term "optimal" to describe the solution of the

optimization algorithm given the tolerance or other stopping criteria. Almost all optimization
algorithms do not return the exact value of the local or global optimum, but if it returns a solution
within the tolerance criteria, this solution is called the "optimal" control e�ort.
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Algorithm 2: Proposed Jaya-MPC algorithm.
Data: cost function: J : Rn → R

output reference: ysp

input constraints: {uinf ,usup}
output constraints: {yinf ,ysup}

Result: optimal solution: u? = argmin
u

J(u,yp)

optimal: cost J? = min (J(u,yp))

1 initialize:

2 number of generations (N)

3 population size (M = 3)

4 �xed weight factors9(r1, r2)

5 initial population set
(
Uo =

{
uinf , u

sup−uinf
2

,usup
})

6 begin

7 foreach generation: n ≤ N do

8 foreach un,m ∈ Un do

9 evaluate predictions: yp = F (x,u)

10 calculate the cost function: J (yp,u,ysp)

11 select best and worst solution: (ub,uw)

12 if J(ub) < J? then

13 J? = J(ub)

14 u? = ub

15 end

16 evaluate new individual: (un+1,m)

17 un+1,m = un,m + r1 (ub − |un,m|)− r2 (uw − |un,m|)
18 end

19 if J? < tol then

20 return (u?, J?)

21 end

22 end

23 return (u?, J?)

24 end

9The �rst version of this algorithm uses constant values for the weight factors. However, an
adaptive approach that evaluates r1 and r2 in each generation will be discussed in the next chapter.
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Table 4.1 describes the di�erences between the proposed Jaya-MPC and the

original Jaya algorithm (see Algorithm 1), which were highlighted in red in Figure

4.1.

Table 4.1: Comparison between the original Jaya algorithm (see Algorithm 1) and
the proposed Jaya-MPC algorithm (see Algorithm 2).

original Jaya algorithm (1) proposed Jaya-MPC (2)

initial population random and large deterministic and small

weight factors random deterministic

stop criteria �xed generations cost tolerance

4.4.1 Initial Population

The initial population of the algorithm is a set of discrete control actions Uo =

{u0,1, . . . ,u0,M} containing only three individuals (M = 3) � the minimum set size

the algorithm needs to work 10 � to reduce the computational cost of the algorithm.

Hence, Jaya-MPC initial population can be de�ned as:

Uo =

{
uinf ,

usup − uinf

2
,usup

}
(4.10)

Where usup and uinf are the maximum and minimum inputs allowed in the sys-

tem, i.e., the maximum and minimum modulation indexes allowed in the converter.

From the initial population � composed of the three levels of the power converter

�, the algorithm progresses and calculates new individuals, based on the rule of

Equation 4.11, that makes each individual of the population move away from the

worst solution (uw) and approaches the best solution (ub).

un+1,m = un,m + r1 (ub − |un,m|)− r2 (uw − |un,m|) (4.11)

It means that the algorithm �nds a continuous set of control e�orts from a dis-

crete set � as a contrast to the common FCS-MPC approaches, which evaluate

only discrete actions: the converter's switching states. After solving the optimiza-

tion problem, the algorithm returns the optimal solution (u?), a set of continuous

signals, i.e., the modulation indexes, and provides them to a PWM block to generate

switching pulses with �xed switching frequency.

This change of paradigm, which is the core of GPC, makes the number of pre-

dictions the algorithm assesses independent of the quantity of switching states of

10The Jaya algorithm selects the best and the worst solution among those in the current popula-
tion in every step. It means that the algorithm needs more than two individuals in the population.
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the power converter. Thus, the computational cost � directly associated with the

number of predictions � of the proposed technique is una�ected by the power con-

verter topology and depends only on the optimization algorithm, the �lter model,

and the cost function.

This topology independence feature could lead to a practical bene�t in appli-

cations such as multilevel converters, which present a large set of switching states.

For instance, in a typical FCS-MPC, this set would feed the predictor block, lead-

ing to an increase in the total number of predictions � even when switching-states

reduction techniques are employed [110]. Hence, this prediction increment leads to

more cost function evaluations, which raises the computational cost. Although this

application is beyond the scope of this thesis, it may motivate future work.

Although the classical FCS-MPC is known for the lowest computational cost

among MPC techniques for typical two-level converters, it often demands high sam-

pling frequencies to compensate for variable-switching frequency e�ects, such as high

ripples and zero-crossing issues. The analyses of chapter 6 address this trade-o�,

which is a key element in validating the Jaya-MPC as a viable solution with low

computational cost and �xed switching frequency.

4.4.2 Stop Criteria

The original Jaya algorithm evaluates a new population until it reaches a de�ned

number of generations (N). Then, the algorithm returns an approximation of the

optimal solution.

Jaya-MPC still sets a maximum number of generations, but as the control objec-

tive is a regulation problem, the minimum cost is zero. So, if the cost function value

of the best solution (ub) of the current generation is lower than a de�ned tolerance

(tol), the algorithm stops and returns the optimal modulation index (u?).

In this work, the tolerance error in the regulation problem is equal to 1 %.

Therefore, as the cost function is quadratic, the tolerance is 1×10−4, i.e., if the cost

function value for a determined solution is less than this tolerance (J? < 1× 10−4),

the regulation error is less than 1%.
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4.4.3 Weighting Factors Strategy

In the original Jaya algorithm, the weighting factors r1 and r2 are random vari-

ables (see Algorithm 1). This approach leads to non-deterministic behavior, which

may be undesired in the applications of this work. Hence, it is necessary to de�ne

deterministic values for r1 and r2.

These values play a crucial role in the performance of the Jaya-MPC. If they are

too large, the new population maybe not be inside the feasible control-e�ort limits

[−1, 1]; if they are too small, the algorithm would need several iterations to reach

the optimal solution.

This work proposes two approaches to address this problem: �xed-weights strat-

egy and adaptive-weights strategy; these strategies' goals are to reduce the total

number of generations of the algorithm and enhance the controller's performance.

The �xed-weights strategy sets constant values for both weight-factors (r1, r2),

while in the adaptive-weights approach, it sets initial values for r1 and r2 and, as the

algorithm proceeds, it recalculates both weight-factors in each generation, according

to Equation (4.12). The next chapter details the analysis of the performance of both

approaches.

(r1, r2) =
(r1
n
,
r2
n

)
(4.12)

The �xed-weights approach �ts in the proposed Jaya-MPC algorithm (see Algo-

rithm 2). However, the adaptive-weights strategy demands an alteration, resulting

in the following adaptive Jaya-MPC Algorithm (3).

The only di�erence (highlighted in red) to the Jaya-MPC algorithm is the inclu-

sion of the procedure that recalculates the weight-factors inside the generation loop,

according to Equation (4.12).
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Algorithm 3: Jaya-MPC algorithm with adaptive weight-factors strategy.
Data: cost function: J : Rn → R

output reference: ysp

input constraints: {uinf ,usup}
output constraints: {yinf ,ysup}

Result: optimal solution: u? = argmin
u

J(u,yp)

optimal: cost J? = min (J(u,yp))

1 initialize:

2 number of generations (N)

3 population size (M = 3)

4 initial weight factors (r1, r2)

5 initial population set
(
Uo =

{
uinf , u

sup−uinf
2

,usup
})

6 begin

7 foreach generation: n ≤ N do

8 evaluate adaptive weight-factors: (r1, r2) =
(
r1
n
, r2
n

)
9 foreach un,m ∈ Un do

10 evaluate predictions: yp = F (x,u)

11 calculate the cost function: J (yp,u,ysp)

12 select best and worst solution: (ub,uw)

13 if J(ub) < J? then

14 J? = J(ub)

15 u? = ub

16 end

17 evaluate new individual: (un+1,m)

18 un+1,m = un,m + r1 (ub − |un,m|)− r2 (uw − |un,m|)
19 end

20 if J? < tol then

21 return (u?, J?)

22 end

23 end

24 return (u?, J?)

25 end
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4.5 Jaya-MPC For Ac Current Control

This work proposes using the Jaya-MPC algorithm for ac-current control in the

αβ-frame of a three-phase converter connected to the grid since this scope is the

most common MPC application in power electronics.

Figure 4.2 depicts the block diagram of the system studied in this work: the

plant is a three-phase dc-ac converter, with an inductive �lter connected to the grid.

A pq-theory block generates the current references (ispLαβ) based on the active (psp)

and reactive power references (qsp).

Jaya-MPC

Plant

grid

Contoller

pq Theory

jaya-optm

Predicitive 
Model 

initial 
population

cost 
function

Jaya-MPC

Figure 4.2: Block diagram of the Jaya-MPC ac-current control loop in the αβ-frame.
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The system inputs u are the modulation indexes (mαβ), while the systems out-

puts are the ac-currents (ispLαβ), both referred to the αβ-frame. Hence, the initial

population is a set of modulation indexes with a superior and inferior bounds equal

to 1 and -1, respectively, which leads to expressions of Equations (4.13) and (4.13).

Uo
α = {−1, 0, 1} (4.13)

Uo
β = {−1, 0, 1} (4.14)

These Equations mean that the Jaya-MPC algorithm starts from an initial pop-

ulation containing the upper and lower limits of the control e�ort and progresses

to converge to the optimal modulation index, given the cost function of Equation

(4.15), which contains both quadratic error terms and the penalty term that penal-

izes overcurrent values.

J = ||ispLαβ − i
p
Lαβ
||22 + Py(iLαβ) + Pu(mαβ) (4.15)

4.5.1 Predictive Model

For the three-phase converter presented in Figure 4.2,the MPC strategies studied

in this work uses Equation (4.16) and (4.17) to predict the dynamics of the ac

currents in the αβ-frame.

The discretization process of the system's state-equation used the Forward-Euler

method, which is the most common approach to derive the predictor model for power

converter applications [51�53].

ipLα =

(
1− R Ts

L

)
ikLα +

Ts
L
vkg α −m

k
α

Tsv
k
dc

2L
(4.16)

ipLβ =

(
1− R Ts

L

)
ikLβ +

Ts
L
vkg β −m

k
β

Tsv
k
dc

2L
(4.17)

R and L are the �lter's resistance and inductance; Ts is the sampling period;

and vkgαβ , i
k
Lαβ

, and vkdc are the measurements, at the sampling-instant k, of the grid

voltage, the �lter's ac-current, and the dc-link voltage, respectively.
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Chapter 5

Parametric Analysis

T
he Jaya-MPC algorithm uses deterministic values as weighting parameters

(r1, r2) in contrast to the original Jaya algorithm that uses random variables.

This di�erence motivates the study of two strategies to set weight parameters of

Jaya-MPC: �xed weights and adaptive weights. Besides, this study also considers

the relation between r1 and r2, i.e., if these values are correlated or not, and what

is the correlation rule that �ts best the goal of improving steady-state performance

while reducing the average number of generations that Jaya-MPC requires to achieve

the optimal control-e�ort, given the cost function. This chapter covers four anal-

yses regarding the weighting-factor strategy of the Jaya-MPC algorithm and the

correlation between both weight-factors (r1, r2):

� Non-correlated �xed-weights strategy analysis;

� Non-correlated adaptive-weights strategy analysis;

� Correlated �xed-weights strategy analysis;

� Correlated adaptive-weights strategy analysis.
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5.1 Simulation Setup

These analyses are carried out inMATLABTM/SimulinkTM , which runs a para-

metric sweep on Jaya-MPC; for each combination of the parameters r1 and r2, the

procedures evaluate the values of three metrics:

� Average number-of-generations until Jaya-MPC reaches the optimal solution,

given a tolerance;

� Average optimal-cost that Jaya-MPC achieves;

� Total-harmonic-distortion (THD) of the ac-currents.

Figure 5.1 shows the �owchart of the MATLABTM algorithm that runs the

parametric analyses; for each analysis, it sets the simulation parameters (according

to Table 5.1), and runs the SimulinkTM system, for each pair of weight-factors

(r1, r2) in the parametric sweep.

Jaya-MPC

Plant

grid

Contoller

pq Theory

Simulink

calculate 
metrics

set values of

set simulation
paramters

Save

for each
analysis

is the end of 
the analysis?

N

generate
plots and

Tables

s

MATLAB

Figure 5.1: Flowchart of the MATLABTM/SimulinkTM simulation procedure,

which automatically runs the parametric analyses regarding the weighting-factors

strategies.
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After each simulation, the MATLABTM algorithms evaluate the three metrics,

save the variables, and, when the analysis ends, generate the plots and tables. The

modeled system comprises a three-phase converter connected to an ideal grid with

Jaya-MPC block controlling the ac-current, given a step in the power references.

The metrics are assessed over two periods of the fundamental frequency after the

system achieves steady-state.

Table 5.1: Simulation parameters for the parametric analyses.

Nominal Electrical Parameters

Vrms,LL 220 V

Vdc 450 V

S 10 KVA

f 60 Hz

Filter Parameters

L 2.03 mH

R 30.6 mΩ

Jaya-MPC Parameters

N 8

tol 10−4

Switching Frequency (Fsw) 5940 Hz

Sampling Period ( 1
Fsw

) 168.35 µs

Simulation Parameters

simulation time step 1.68 µs

simulation time 0.0667 s (4 cycles)

5.2 Non-Correlated Fixed-Weights Strategy

The non-correlated �xed-weights strategy is the �rst approach to answer the

question: is there any combination of �xed values for r1 and r2 that could reduce

the average number of generations while maintaining a suitable steady-state perfor-

mance?

The analysis of this section runs a 2-dimensional parametric sweep for each com-

bination of r1 and r2, with no correlation between them, i.e., both are independent

values. The limits of both weight factors range from 0.05 to 1.0.
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5.2.1 Analysis of The Average Number of Generations

Figure 5.2 depicts the parametric-sweep result of the average number of gener-

ations that Jaya-MPC takes to return the optimal control-e�ort � a measurement

of how the parameters r1 and r2 a�ect the performances of the algorithm.

In (a), it presents the parametric surface of the average number of generations

produced by the parametric analysis; in (b), it depicts the heat map, i.e., the top-

view of (a). These data show a rough surface with no correlation between r1 and r2;

Besides, none of the sets (r1, r2) can reach an average number of generations below

four.

Figure 5.2: Non-correlated parametric analysis of the in�uence of Jaya weight pa-

rameters (r1, r2) in the performance of Jaya-MPC: (a) 3D-view and (b) 2D-view

of the time-average number of generations. Lower average number of generations

(4.99) achieved by using (r1 = 0.29, r2 = 0.24).

5.2.2 Analysis of The Average Optimal Cost

Figure 5.3 depicts the results of the parametric-sweep for the average optimal-

cost that Jaya-MPC achieves in steady-state.

In (a), it presents the parametric surface of the average number of generations

produced by the parametric analysis; in (b), it depicts the heat map, i.e., the top-

view of (a). Jaya-MPC reaches the lowest average optimal cost using lower values of

r1 and r2 in the left lower corner of (b); the other corners present higher costs, which

means that the regulation of the ac-currents in these corners are worse than the one

in the left lower corner. These results indicate a relation of symmetry between r1 and

r2 � around the line r1 = r2 �, which is the �rst clue that it may be a correlation

rule between both parameters to be studied and explored.
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Figure 5.3: Non-correlated parametric analysis of the in�uence of Jaya weight pa-

rameters (r1, r2) in the performance of Jaya-MPC: (a) 3D-view and (b) 2D-view of

the time-average cost of ac current control performed by Jaya-MPC. Lower average

optimal-cost (5.59× 10−5) achieved by using (r1 = 0.11, r2 = 0.09).

5.2.3 Analysis of The THD

Figure 5.4 shows the results of the parametric sweep for the THD of the ac-

currents. In (a), it presents the parametric surface of the THD for each set of r1 and

r2; in (b), it depicts the heat map, i.e., the top-view of (a).

Figure 5.4: Non-correlated parametric analysis of the in�uence of Jaya weight pa-

rameters (r1, r2) in the performance of Jaya-MPC:(a) 3D-view and (b) 2D-view of

the THD (%). Lower THD(1.1%) achieved by using (r1 = 0.12, r2 = 0.09).
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The surfaces of Figures 5.4 and Figure 5.3 present similar shapes because both

THD and average-optimal cost strongly correlate. An explanation for that is that

the cost function is a current regulation, and the better the regulation performance,

the lower the THD. Hence, this metric presents the same correlation rule observed

in Figure 5.3 (b).

5.3 Non-Correlated Adaptive-Weights Strategy

The non-correlated adaptive-weights strategy considers that, as the Jaya-MPC

calculates new generations and approaches the optimal value, the steps to calculate

the next individuals of the population may be smaller since they are closer to the

optimal solution.

In other words, this strategy decreases the values of the weights r1 and r2 (see

Equation (4.12)) as the number of generations increases, allowing the algorithm to

reach the optimal solution in a more precise way and reducing the average number

of generations spent by the algorithm.

The analysis of this section runs a 2-dimensional parametric sweep on Jaya-MPC

and computes the values of the same three metrics for each combination of r1 and

r2, with no correlation between them.

5.3.1 Analysis of The Average Number of Generations

Figure 5.5 depicts the parametric-sweep result of the average number of gener-

ations that Jaya-MPC takes to return the optimal control-e�ort � a measurement

of how the adaptive parameters r1 and r2 a�ect the performances of the algorithm.

In (a), it presents the parametric surface of the average number of generations

produced by the parametric analysis; in (b), it depicts the heat map, i.e., the top-

view of (a). The parameters r1 and r2, shown in (a) and (b), are the initial ones,

i.e., Jaya-MPC starts running these pair of weights, and as the generations increase,

it updates the values of r1 and r2 using Equation (4.12).

A comparison with the equivalent analysis of Figure 5.2 shows that the use of the

adaptive-weights strategy leads to a reduction in the average number of generations

to reach the optimal control e�ort � note that the heat map scale of both Figures 5.5

and 5.2 are the same and now Jaya-MPC achieves an average number of generations

below 4.

Instead of the equivalent analysis of Figure 5.2, the adaptive-weights strategy

presents a correlation region between r1 and r2 that can be explored: two well-de�ned

valley in the neighborhood of the region r1 = r2 � one, with a local-minima, in the

top-right corner of (b), and the other centered at the point (r1 = 0.3, r2 = 0.28).
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Figure 5.5: Non-correlated parametric analysis of the in�uence of the adaptive-

weight parameters (r1, r2) in the performance of Jaya-MPC: (a) 3D-view and (b)

2D-view of the time-average number of generations. Lower average number of gen-

erations (3.58) achieved by using (r1 = 0.3, r2 = 0.28).

5.3.2 Analysis of The Average Optimal Cost

Figure 5.6 shows that the use of the adaptive-weights strategy leads to a

parametric-surface smother than one of the equivalent analyses with the �xed-

weights approach (see Figure 5.3).

Figure 5.6: Non-correlated parametric analysis of the in�uence of the adaptive-

weight parameters (r1, r2) in the performance of Jaya-MPC: (a) 3D-view and (b)

2D-view of the average optimal-cost; Lower average cost (3.18 × 10−5) is achieved

by using (r1 = 0.33, r2 = 0.32).

47



In other words, while the �xed-weights strategy presents several local valleys,

with only a limited region with a lower average cost, this strategy results in a surface

with one well-de�ned valley around the line de�ned by r1 = r2. This �nding suggests

that the adaptive-weights strategy is a more robust approach since it achieves lower

cost function values for a wide range of the parameters r1 and r2.

5.3.3 Analysis of The THD

Figure 5.7 shows the parametric surfaces of the THD value of the ac-currents

when Jaya-MPC uses the adaptive-weights strategy. The results show that this

strategy produces a surface with a valley around the region r1 = r2, in contrast

with the �xed-weighs strategy (see Figure 5.4) that produces a surface with several

valleys. This feature is a valuable asset of the adaptive-weights strategy since it

results in a well-de�ned region where Jaya-MPC reaches low THD values, which

means a more robust approach to set the parameters r1 and r2.

Figure 5.7: Non-correlated parametric analysis of the in�uence of the adaptive-

weight parameters (r1, r2) in the performance of Jaya-MPC: (a) 3D-view and (b)

2D-view of the THD (%) of the ac-currents. Lower THD(0.8%) achieved by using

(r1 = 0.26, r2 = 0.25).

5.4 Correlated-Weights Strategy

The non-correlated parametric analyses show that both �xed-weights and

adaptive-weights strategies present symmetric behavior around the line r1 = r2.

However, the �xed-weights strategy does not produce a well-de�ned valley in the

region r1 = r2, as the surfaces of each metric are very sharp. On the other hand,
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in the case of the adaptive-weights strategy, the analyses show a well-de�ned valley

around the line r1 = r2, resulting in a robust region from the point-of-view of the

parameter setting.

These �ndings lead to a correlation between the parameters r1 and r2. Thus, it

is only necessary to design one parameter in the Jaya-MPC, making it simpler to

set and analyze.

Figure 5.8 shows the results of the correlation-rule (r1 = r2) in both �xed-weights

and adaptive-weights strategies: (a) depicts the average number of generations that

Jaya-MPC takes to return the optimal modulation index to control the ac cur-

rents; (b) shows the average optimal-cost achieved by the Jaya-MPC algorithm; (c)

presents THD of the ac currents.

These results lead to the following �ndings:

� Although the �xed-weights strategy can achieve values of THD and average

optimal cost close to the ones produced by the adaptive-weights strategy, it

takes, on average, more generations than the adaptive-weights strategy � this

�nding dismisses the �xed-weight strategy;

� For values of r1 greater than .25, the adaptive-weights strategy results in an

almost-constant low THD (less than 2.0 %) and an almost-constant average

cost less than the tolerance (tol = 1×10−4), which means a robust and reliable

strategy � this �nding con�rm that the correlated adaptive-weights strategy

is a simpler and more reliable solution.

Table 5.2 presents the values of each metric for three possible con�guration of

the parameters r1 and r2 using the correlation rule r1 = r2. These results show that

both r1 = 0.25 and r1 = 0.33 lead to the best results: the former gives the best

average minimum cost and THD, and the latter gives the lower average number of

generations.

Table 5.2: Steady-state metrics of the of Jaya-MPC in αβ-frame with correlated

adaptive-weights strategy (r1 = r2).

r1 = 0.25

r2 = 0.25

r1 = 0.33

r2 = 0.33

r1 = 0.5

r2 = 0.5

mean min cost 3.7e-05 3.4e-05 3.9e-05

mean no. of iterations 3.98 3.78 4.94

THD(%) 0.93 0.88 0.99
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Figure 5.8: Correlated parametric analysis (r2 = r1) of the performance of Jaya-

MPC using �xed-weights and adaptive-weights: (a) average number of generations

to return the solution; (b) average optimum-cost; (c) ac current THD (%).

The results of this chapter support the conclusions that the adaptive-weights

strategy outperforms the �xed-weights one and that the correlated rule between both

weights (r1 = r2) leads to a simple design solution with only one control parameter.

Thus, from now on, the following chapters use the adaptive-weights strategy with

r1 = 0.33 as the initial parameter of the Jaya-MPC since it gives a lower average

minimum cost and THD.
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Chapter 6

Switching Frequency And

Computation Cost

A
secondary contribution of this thesis is detailed in this chapter: a metric

to evaluate the switching frequency spread of FCS-MPC. This new metric is

based on an instantaneous estimation of the switching frequency. The following anal-

yses show the di�culty of setting the sampling frequency of FCS-MPC because of its

non-linear switching frequency pro�le that produces non-characteristic harmonics.

Also, at the end of this chapter, it presents a discussion regarding the computational

cost of both FCS-MPC and Jaya-MPC based on how many predictions these two

strategies evaluate.
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6.1 Analysis On The Switching-Frequency Spread

The work presented in [111] estimates the switching frequency of power convert-

ers using a simple algorithm, based on the time that elapses between switching state

transitions, i.e., the time between positive- and negative-edge commutations.

The advantage of this algorithm is that it estimates the switching frequency in-

stantaneously, which makes it suitable for analyzing the switching frequency spread-

spectrum pro�le.

Figure 6.1 depicts the estimation of the switching frequency (f̂sw) of a standard

PWM block using a sinusoidal modulation index with �xed amplitude and frequency

(60Hz). The estimated signal presents the instantaneous switching frequency with

an average value of 5940 Hz, the exact value of the switching frequency set in the

PWM block, and symmetrical low deviations from this value, due to the e�ects of

the fundamental component in the modulation process.

0.034 0.036 0.038 0.04 0.042 0.044 0.046 0.048 0.05
Time (s)

87

90

93

96

99

102

105

108

111

F
u
n
d
am

en
ta

l
H

ar
m

on
ic

(n
th
)

101th

97th

f̂sw

Figure 6.1: Estimation of the instantaneous switching frequency of a standard PWM

module with a triangle carrier (Fs = 5940Hz) using the algorithm proposed in [111].

Based on this estimation, it is possible to extract a set of switching frequency

components, F̂sw, and their respective distribution Hsw, i.e., the weight of each

component in the switching frequency pro�le; Equations (6.1) and (6.2) gives these

sets:

F̂sw = {f sw1 , . . . , f swN } (6.1)

Hsw = {hsw1 , . . . , hswN } (6.2)
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Once having (6.1) and (6.2), one can extract the dominant frequency, f ?sw, which

is the main component of F̂sw, i.e., the component with the highest weight, h?sw, in

Hsw. Equations (6.3) and (6.4) formalizes these steps:

h?sw = max{Hsw} (6.3)

f ?sw = f swi , {f swi ∈ F̂sw / h?sw = hswi } (6.4)

6.1.1 Total Frequency Spread

This thesis proposes a metric, as a secondary contribution of this work, based

on the distribution of the switching frequency estimation provided by this algorithm

to quantify the total spread of the switching frequency pro�le of both Jaya-MPC,

which uses a PWM modulator with a �xed switching frequency, and FCS-MPC,

which presents a variable switching frequency, to compare them.

Equation (6.5) shows the Total-Frequency-Spread (TFS) metric. It consists of

the sum of the quadratic deviations between the dominant-frequency (f ?sw) and each

existing frequency (f swn ), weighted by the distribution (hswn ); this value is normalized

by the dominant-frequency (f ?sw) times its respective value in the distribution pro�le

(h?sw).

TFS =
1

h?swf
?
sw

√√√√ N∑
n=1

(hswn )2 ||f swn − f ?sw||2 (6.5)

6.1.2 Analysis of TFS of a PWM Module

Figure 6.2 shows that the normalized distribution of the instantaneous switching

frequency (hsw) of Figure 6.1 is coherent with the FFT of the switching-pulses,

containing the modulator switching frequency component (99th) plus the two side

lobes (97th and 101th). Also, this outcome shows that the dominant frequency (f ?sw)

of an ideal PWM-based converter equals the average switching frequency (f̄sw).

The components' amplitudes of both FFT and hsw are di�erent because hsw is a

normalized distribution of f̂sw, i.e., the percent time that f̂sw is equal to each com-

ponent, which is conceptually di�erent from the meaning of the FFT component's

amplitude.
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Figure 6.2: FFT of the switching pulses of a PWM-based converter and the instan-

taneous switching frequency components (Hsw).

6.1.3 Analysis of TFS in FCS-MPC

Figure 6.3 shows the estimation of the instantaneous switching frequency of an

FCS-MPC with high variability: it ranges from a low switching frequency component

(fminsw ) to its maximum (fmaxsw ) theoretical value, which equals half of the sampling

frequency.
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Figure 6.3: Instantaneous switching frequency of an FCS-MPC with sampling-

frequency equal to 5940Hz (Fs = 99× 60Hz).
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The literature already established that the maximum switching frequency of

FCS-MPC is half of the sampling frequency [1] � with a pro�le highly spread below

this maximum value � but misses providing a quantitative method to analyze the

spread frequencies.

Figure 6.4 (a) depicts the FFT of the switching pulses produced by FCS-MPC,

while (b) shows the average switching frequency (yellow bar) and the set of switching

frequency components (Hsw � red bars).

Figure 6.4: FCS-MPC with sampling frequency equal to 5940 Hz: (a) FFT of the

switching pulses and (b) switching frequency components (Hsw).

One can note that a qualitative analysis of (a) makes it highly di�cult to isolate

the switching frequency components, unlike the case of a PWM-based converter.

However, the distribution of the FCS-MPC instantaneous switching frequency

(see (b)) isolates the switching frequency components and shows that the average

switching frequency, f̄sw, is not even a component of hsw, and it is way distant from

the dominant-frequency.

In other words, f̄sw is only a poor average representation of the spread pro�le of

switching pulses produced by FCS-MPC.

The spread pro�le of the switching frequency and the low-frequency component

(fminsw ) cause a typical issue in FCS-MPC: zero crossing error. Figure 6.5 displays a

comparison between the waveforms of the converter ac-currents for both Jaya-MPC

and FCS-MPC.
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Figure 6.5: Comparison of the zero-crossing error between Jaya-MPC and FCS-

MPC (with sampling frequency (Fs) of 5940 Hz).

The ripple in the ac-currents using the FCS-MPC is bigger and more irregular

than the one of Jaya-MPC because all those spread components of Figure 6.4 (b);

if the FCS-MPC had only the average switching frequency(1145 Hz), the ripples

would not be so irregular.

These �ndings demonstrate the drawback of FCS-MPC, which is the variable

switching frequency pro�le that makes it hard to design the �lter, and may lead to

undesired resonance e�ects if any of the switching frequency components are closer

to the resonance frequency of the �lter.

One could argue that increasing the sampling frequency would reduce the switch-

ing frequency spread in FCS-MPC since it decreases the THD. However, Figure 6.6

proves otherwise: it shows an overall trend of THD reduction as the sampling fre-

quency increases, but the TFS presents a highly non-linear behavior, meaning that

the spread pro�le of FCS-MPC highly depends on the sampling frequency choice, a

result that the literature yet had not provided.
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Figure 6.6: Sampling frequency e�ect in FCS-MPC: THD and TFS.

The analysis of the dominant frequency leads to the �nding that this main com-

ponent of the switching frequency pro�le is an integer fraction of the sampling

frequency:

f ?sw =
Fs
q
, {q ∈ N/q ≥ 2} (6.6)

Figure 6.7 (a) con�rms this �nding by showing the value of f ?sw (green dots and

yellow circles) for the same set of sampling frequencies of the previous analysis �

the dashed lines show the relations between Fs and f ?sw. In most cases, q ranges

from 2 to 7 (see (b)), but for some sampling frequencies, the values of q are greater,

making f ?sw more distant from fmaxsw , therefore, increasing the TFS � these cases

are the reason of those high TFS peaks of Figure 6.6. Once again, these results

prove how di�cult it is to set the sampling frequency of the FCS-MPC and how the

spread of the switching frequency pro�le can be a consequence of this choice.
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Figure 6.7: E�ect of sampling frequency in the dominant frequency (f ?sw) of FCS-

MPC: (a) f ?sw as an integer ratio of Fs (see Equation (6.6)), for di�erent values of q;

(b) percent distribution of q � high TFS peaks are associated to high values of q.

Setting the sampling frequency as a multiple integer p of the fundamental fre-

quency (Fs = p× 60Hz) results in a dominant frequency proportional to the funda-

mental frequency:

f ?sw =
p

q
× 60Hz, p >> q (6.7)

If p and q were integer multiples of each other, it would ensure the dominant

frequency is a harmonic component of the fundamental frequency. However, the

previous results show that there is no easy way to determine q. Therefore, the

dominant frequency often will be a non-characteristic component in the switching

frequency pro�le.

All the previous works in the literature use either THD or the average switch-

ing frequency to characterize FCS-MPC, but now the �ndings of this thesis prove

that these metrics are not suitable tools to analyze the switching frequency spread

produced by FCS-MPC techniques.

Those works provide valuable contributions to the �eld but can only lead to qual-

itative observations, unlike this thesis, which presented the �rst metric to evaluate

the switching frequency spread of FCS-MPC quantitatively.
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6.2 Analysis On The Computational Cost

Although GPC techniques, such as Jaya-MPC, operate with a �xed switching

frequency, their formulation and computational cost are more complex and costly.

But, as Jaya-MPC stands out as a simple-formulation GPC technique, the last issue

it must address is the computational cost.

6.2.1 Computational Cost Metric

This thesis uses a metric to compare the computational cost of MPC techniques.

This metric quanti�es how many predictions � and cost function evaluations � the

MPC strategy assesses during a base period. Equation 6.8 shows this metric, called

number-of-predictions-per-period (NPP ), where np is the number of predictions that

the controller assess during a normalized period (To), given a base period (Tbase);

the value of Tbase is equal to one sampling-period of the PWM block (Ts) for the

analyses of this section.

NPP =
np
To

(6.8)

For the Jaya-MPC, the number of predictions during a sampling period (Ts) is

equal to the number of generations (ng) that it takes to return the optimal solution

times the population size (M).

np = ng ×M (6.9)

This work analyses both Jaya-MPC and FCS-MPC performing ac-current control

in the αβ-frame. FCS-MPC evaluates the same number of predictions regardless of

the axes, but Jaya-MPC spends di�erent number of generations on each axis. Hence,

it calculates di�erent values of the number of predictions on each axis in the same

sampling period. Therefore, Equation 6.9 counts the sum of the α- and β-axes

predictions:

np = (ngα + ngβ)×M (6.10)

For the Jaya-MPC, the normalized period is equal to one (To = 1) because the

base period is equal to the sampling period (Ts = Tbase). Hence, Equation 6.8 turns

into the Equation 6.11:

NPP = (ngα + ngβ)×M (6.11)

As the population size is constant, the value of NPP is a function of the number

of generations. In this sense, the maximum value of NPP is:
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max(NPP ) = max (ngα + ngβ)×M (6.12)

On the other hand, the number of predictions of FCS-MPC is proportional to

the number of switching states of the converter (Ns). As the FCS-MPC controls the

current of two axes (αβ-frame), Equation (6.13) computes the number of predictions

for FCS-MPC:

np = 2Ns (6.13)

Substituting (6.13) in (6.8), Equation (6.14) yields the value of NPP :

NPP =
2Ns

To
(6.14)

Thus, one may assess the NPP for di�erent values of sampling-frequency (fk) in

FCS-MPC through Equation (6.15), given the base period Ts.

NPP = 2Ns × fk × Ts (6.15)

6.2.2 Comparative Analyses for a Three-Phase Converter

Figure 6.8 (a) shows the number of generations that Jaya-MPC calculates for

each one of the axes in the αβ-frame, while (b) presents the sum of these two

quantities re�ecting the total computational burden of the algorithm.

Based on Equations (6.11) and (6.15) it is possible to compare the computa-

tional cost of the Jaya-MPC and the FCS-MPC for a two-level three-phase converter

� which has 8 switching states (Ns = 23) �, using di�erent values of sampling-

frequency in the FCS-MPC (see Table 6.1).

Table 6.1: Comparative analysis between Jaya-MPC and FCS-MPC regarding the

computational cost.

Jaya-MPC (Fs)
FCS-MPC (fk = k × Fs)

k = 1 k = 2 k = 3 k = 4

Sampling

Frequency
5940Hz 5940Hz 11880Hz 17820Hz 23760Hz

max(NPP ) 36 16 32 48 64

THD 0.9% 18% 6.9% 3.7% 2.3%
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Figure 6.8: Number of generations of Jaya-MPC: (a) ngα and ngβ, and (b) total

number of generations (ngα + ngβ).

The results of this comparison lead to the following �ndings:

� the max(NPP) of Jaya-MPC is slightly superior to the one of FCS-MPC with

a sampling frequency twice the Jaya-MPC switching frequency;

� But, when looking at THD, one can note that FCS-MPC needs greater sam-

pling frequency to achieve THD lower than 5% � which is an expected be-

havior found in the literature;

� It means that Jaya-MPC demands a viable amount of predictions that can

compete with FCS-MPC regarding the computational burden since FCS-MPC

needs a sampling period greater than two times the switching frequency of

Jaya-MPC, which is necessary to achieve lower THD.

These observations support the conclusion that besides inherently providing a

�xed switching frequency pro�le with low THD, Jaya-MPC results in a solution with

a computational cost, similar, or even better, to the one of the classical FCS-MPC

technique that typically needs greater values of sampling frequency to achieve viable

THD values �which reduces the available computational capability, i.e., the amount

of processing time, to address all the predictions and cost function evaluations.
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Chapter 7

Experimental Validation

R
eal-time validation of the proposed Jaya-MPC in a power converter is the

main goal of this chapter. It describes the experimental setup, the devel-

opment method, and the tests to validate the Jaya-MPC. First, it presents the

equipment, software, and tools used in this stage of the work. Then, it explains the

code development method that ensures code reliability. Further, the results, split

into three sections, demonstrate the computational cost viability, current-regulation

performance, and power quality, con�rming that Jaya-MPC is a viable solution for

real-time control of power converters.
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7.1 Experimental Setup

The experimental Setup comprises a set of equipment, measurement instruments,

and software available in the Laboratory of Power Electronics and Medium Voltage

(LEMT).

Figure 7.1 shows the test bench and Table 7.1 describes each element in this

setup. The circuit diagram of Figure 7.2 details how these elements interconnect.

The dc-side power source is a variable transformer with a recti�er connected to the

secondary winding. This equipment provides dc output voltage, manually regulated,

connected to the dc-link of the power converter, which operates with a nominal power

of 10 kW.

Figure 7.1: Equipment used in the experimental setup.

Two measurement instruments collected the data and waveforms during the ex-

perimental trials: an Oscilloscope, model DL850EV - YOKOGAWA, and a Power

Quality and Energy Analyzer, model 435 Series II - FLUKE.

Code Compose Studio (CCS) is the Integrated Development Environment (IDE)

used to develop and debug the embedded code programmed in a microcontroller

(TMS320F28335 from Texas Instruments) that controls and automates the power

converter.
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Table 7.1: Experimental setup description.

description

1 10 kW dc-ac IGBT-based two-level three-phase power converter

2 ac side circuit breaker � connects 1 to the utility grid (220 Vrms)

3 VARIAC plus recti�er � provides adjustable DC voltage to 1

4 circuit breaker � connects the ac side of 3 to the utility grid (440 Vrms)

5 debugging session of CCS session connected with 1 via USB cable

6 Oscilloscope � YOKOGAWA - DL850EV

7 Power Quality and Energy Analyzer � FLUKE - 435 Series II

The power converter has a set of 5 sensors (see Figure 7.2) to measure the

ac line voltages (Vab, Vbc), the ac currents (Ia,Ib), and the dc link voltage (Vdc); the

inductor L; the ac side contactor K; and the control board , which reads the sensors'

measurements and acts to turn-on/turn-o� the contactor K.

Table 7.2 gives the nominal electrical parameters and the �lter parameters for

the experimental setup presented in Figure 7.2; it also provides the Jaya-MPC setup.

Note that these are the same electrical system parameters of the simulations carried

out in the previous chapters.

Table 7.2: Experimental setup parameters.

Nominal Electrical Parameters

Vrms,LL 220 V

Vdc 450 V

S 10 KA

f 60 Hz

Filter Parameters

L 2.03 mH

R 30.6 mΩ

Jaya-MPC Parameters

N 8

tol 10−4

Switching Frequency (Fsw) 5940 Hz

Sampling Period ( 1
Fsw

) 168.35 µs

weighting-factors strategy correlated-adaptive

initial weight-factors (r1 = 0.33, r2 = 0.33)
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Figure 7.2: Circuit diagram of the experimental setup.

7.1.1 State Machine

The state machine of the CCS project is a C++ class that manages the automa-

tion of the converter and runs the Jaya-MPC controller. The �owchart of Figure

7.3 gives a simple understanding of the main code steps involved in the execution of

this class:

� code starts in Standby state, which resets the relevant variables, ensuring the

ac side contactor is open and the PWM module is o�;

� if the user presses the start button, it transits to the TurningOn state that

enables the PWM module and waits for 100ms to transit to Operating state;

� by entering the Operating state, the code closes the ac side contactor, connect-

ing the converter to the utility grid;

� while in Operating state, the embedded system executes the Jaya-MPC's C++

class, returning the modulation index to the PWM module;

� if any alarm triggers, the code switches to the AlarmState, which opens the ac

side contactor and turns o� the PWM module;

� if the cause of the alarm has ceased and the user has pressed the stop button,

it switches back to Standby ;

� if the user presses the stop button during regular operation, it also transits to

Standby.

This state machine ensures the level of automation and protection that the ex-

perimental tests require.
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Figure 7.3: Flowchart of the state machine used in the CCS project.

7.2 Code Development in CCS

This section summarizes the method to develop the embedded code project,

which comprises two main elements: the test-driven development (TDD) approach,

including the description of the two major groups of tests, and the pipeline feature

that joins these elements in an automated test platform.

7.2.1 Test Driven Development (TDD)

Test-Driven Development (TDD) is a simple yet powerful software development

methodology that ensures reliability. Figure 7.4 illustrates this methodology: �rst,

the programmer writes a small test that checks a feature he wants to add or change

in a code; as this feature is yet missing, the test fails, and only after that the

programmer can write a piece of code that makes the test pass. Then one can

refactor the code to clean or organize it, but with the certainty that the test still

passes after code changes; whenever the project demands a new feature, you shall

create a new test.
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Figure 7.4: Simple representation of Test-Driven-Development (TDD) approach.

TDD aims to create a foundation in which it built the code project, ensuring

most of the code has tests that verify its behavior. Therefore, if any future changes

or updates occur, the tests secure the overall reliability of the code.

This work provides two main sets of tests to validate the overall performance

and functionality of the embedded code: the unit tests, programmed in C++, check

the features of each class in the CCS project. Figure 7.5 (a) shows the result of the

log console of CCS after building the C++ project with all 85 test passing. The

second group of tests comprises automatic PSCADTM simulations that specify the

overall control system performance and check if each alarm protects the converter

within the speci�ed parameters. Figure 7.5 (b) presents the result of these 20 tests

passing.

Despite the TDD reliability characteristic, the overall development depends on an

automatic trigger that can execute these batches of tests each time a modi�cation

occurs in code. Then, the method of this thesis uses a feature from the GitLab

platform, called Pipeline, that triggers all these tests each time a commit occurs.

GitLab is an online platform that integrates several tools for code development,

but the core of this platform is version control that allows the users to commit,

i.e., to register all the changes made in the project, including the code, during the

development steps.

Using the pipeline tool, whose interface is depicted in Figure 7.6, we can au-

tomatically execute all the C++ unit tests and PSCADTM simulation tests; the

pipeline tool builds the CCS project to check if any code change breaks the memory

map of the microcontroller used in the power converter. This last test does not pass

only if a code change or addition results in a compiled project that does not �t in

the memory map of the microcontroller.
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Figure 7.5: Log from (a) CCS after running C++ unit tests and (b) pyCharm after

running PSCADTM simulation tests.

Figure 7.6: Pipeline tests ensuring expected code behavior.

7.3 Computational Cost

Figure 7.7 presents the computational cost and regulation error of the exper-

imental results for di�erent operation points. These data came from the graph

functionality in Code Compose Studio (CCS) that plots data from the microcon-

troller while the embedded code is being executed in real-time. The horizontal axis

of each plot contains a set of samples that CCS updates periodically through se-

rial communication. It saves a set of 198 samples, which means two periods of the

fundamental frequency with a sampling frequency of 5940Hz.
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Figure 7.7: Experimental data from Code Compose Studio (CCS) showing the num-

ber of generations (left column) and minimum cost (right column) achieved by

Jaya-MPC: for di�erent ac current setpoints: (a) and (b) iref = 0.2 pu; (c) and

(d) iref = 0.4 pu; (e) and (f) iref = 0.6 pu; (g) and (h) iref = 0.8 pu; (i) and (j)

iref = 1.0 pu.
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The left column of Figure 7.7 shows the number of generations (left axis) per

sampling period while the right column depicts the regulation error (right axis), i.e.,

the value of the minimum cost achieved by Jaya-MPC after executing the respective

amount iterations each sampling period. These data con�rm that the real-time

operation of the proposed controller ensures a regulation error below the tolerance

within a limited and well-de�ned number of generations.

Figure 7.8 shows the expected number of generations and regulation errors ob-

served in the PSCADTM � simulations run the same code project used in the

experimental setup. Comparing this result against Figure 7.7, one can conclude

that the simulation's methodology is robust and precise in replicating the behavior

observed in the experimental setup.
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Figure 7.8: Simulation of the number of generations of Jaya-MPC in PSCADTM

with the same embedded code used in the experimental setup.

The outcomes presented in Figure 7.9 reinforce the real-time viability of the

proposed control: in (a), it depicts the time that only the Jaya-MPC class takes to

calculate the optimal control e�ort; in (b), it shows the time the entire embedded

code project takes 11 to execute all the routines and return the modulation index.

In both cases, the execution time is variable since it depends on the number of

generations the Jaya-MPC runs in each sampling period. But we can determine

the maximum execution time using the oscilloscope's persistence con�guration that

overlaps each set of samples obtained when a trigger occurs. This acquisition mode

11Besides the control class, the embedded code includes the measurements class, the protection
system, the state machine, the plot feature class that allows for plotting internal variables in the
debug session of CCS, besides the references generation block.
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guarantees the oscilloscope saves the waveforms during steady-state and transient,

including the worst-case, overlapping them.

Using this acquisition mode, we can determine the total number of generations

(see (c)) of Jaya-MPC � the sum of iterations from both α- and β- controllers �

range from 4 up to 12 iterations. Hence, the maximum execution times (worst case)

of the Jaya-MPC and the hole embedded code are 54µs and 120µs 12, respectively;

both respect the sampling time of 168 µs and agree with data from Figure 7.7 and

from the analysis of Section 6.2 (see Figure 6.8).

Figure 7.9: Execution times of (a) Jaya-MPC control class and (b) entire CCS

project.

In summary, the experimental outcomes displayed in Figures 7.7 and 7.9 prove

that the proposed Jaya-MPC ensures a regulation error below the desired tolerance

within a well-determined number of generations, resulting in a viable computation

cost approach, therefore, a viable control strategy for real-time application. In-

deed, these processing times can be reduced by optimizing the code and compiled

program.

12The embedded code was developed upon a C++ library that optimizes the code regarding
memory usage. Therefore, the processing times were optimized � neither by the code structure
nor by the compiler. It means that these processing times can be reduced; these results are a proof
of concept that demonstrates the real-time operation viability of the Jaya-MPC algorithm.
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7.4 Current Regulation Performance

The following outcomes, collected using a YOKOGAWA oscilloscope (model

DL850EV), describe the initialization and turn-o� processes of the converter and

the ac-current regulation performance achieved by the Jaya-MPC.

Figure 7.10 (a) shows the instant time the PWM module activates, and after

100ms, it closes the ac side contactor (see (b)), making the measured voltage equal

to the grid voltage � this aim of this approach is to avoid current inrush when

turning on the PWM module.

At the same time, the ac side contactor closes (see (b)), and the control receives

a reference step of 1.0 pu of ac-current. Figure 7.10 (c) shows that the converter

currents su�er no overshoot when the equipment is subject to a nominal active power

step.

Figure 7.10: Experimental results: (a) turning on converter with active power ref-

erence of 1.0 pu; (b) Jaya-MPC starts after closing AC ; (c) zoom of the initial ac

current transient with no overshoot.

72



The dc-link voltage drops when this power step occurs because the dc voltage

source (VARIAC plus recti�er) has a considerable ac-side impedance that reduces the

secondary winding voltage, causing a dc voltage disturbance. But, this disturbance

does not a�ect the ac-current regulation during the transient period because MPC

typically provides a high disturbance-rejection capability.

The simulation of the same scenario of Figure 7.10, depicted in Figure 7.11,

con�rms that the PSCADTM simulation, using the same embedded code from the

experimental setup, can replicate the results observed in Figure 7.10 (b), with almost

identical transient response.

0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22 0.225

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

C
u
rr

en
t
(p

.u
.)

ia
ib
ic

Figure 7.11: PSCADTM Simulation of the converter ac currents in the same scenario

of Figure 7.10, running the same embedded code used in the experimental setup.

Figure 7.12 shows a scenario in which a reactive current step occurs from 0.1 pu

to 1.0 pu. In(b), it shows the fast response of Jaya-MPC ac-current regulation, and,

in (a), one can note that the dc-link voltage drop is almost null, di�erent from the

previous cases because now the system deals majority with reactive power, and only

with lower active power, related to the converter losses.

The simulation result of Figure 7.13 shows this same scenario of reactive current

injection. Again, The waveforms of Figure 7.12 (b) and Figure 7.13 present almost

identical transient response.
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Figure 7.12: Experimental results: (a) reactive power step from 0.1 pu to 1.0 pu; (b)

zoom out of the transition period with no overshoot.
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Figure 7.13: PSCADTM Simulation of the converter ac currents in the same scenario

of Figure 7.12, running the same embedded code used in the experimental setup.

74



Figure 7.14 presents a scenario where a 0.5 pu to 1.0 pu step followed by 1.0 pu

to 0.5 pu down step occurs. The ac currents remain balanced during the test, and

the dc-voltage disturbances do not a�ect the overall control performance.

Figure 7.14: Experimental results: (a) active power step from 0.5 pu to 1.0 pu, then

back to 0.5 pu; (b) and (c) zoom out of the transition periods with no overshoot.

Figure 7.15 (a) shows the smooth turn-o� dynamics of the converter, disabling

the PWM module and disconnecting the equipment from the ac grid. Here, the ac

currents go from nominal active power to zero with no issue (see (b)); the dc-voltage

disturbance is because of the same reason explained in the previous cases and, again,

it causes no safety problem for the equipment.
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Figure 7.15: Experimental results: (a) turning o� converter with an active power

step from 1.0 pu to 0.0 pu; (b) zoom of instant time that code turns o� PWM.
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7.5 Power Quality

This section presents the experimental results, collected using a Power Quality

and Energy Analyzer (model FLUKE - 435 Series), regarding power quality achieved

by Jaya-MPC.

The experimental setup is subjected to a grid line voltage pro�le of Figure 7.16

(a) with low harmonic content (see (b)). This stage of the experimental validation

comprises two tests, one for active-power injection and the other for reactive-power

injection; both analyze the THD and the harmonic content of the converter ac

currents in steady-state.

Figure 7.16: Experimental data collected using FLUKE - 435 Series II: (a) grid line

voltage waveforms and (b) their harmonic content.

Figure 7.17 (a) and (b) show the phasor-planes of the test cases in which the

converter injects nominal active power and reactive power, respectively � the same

scenarios of the steady-state stage of Figures 7.10 and 7.12. The thick arrows rep-

resent the voltage phasors, while the thin arrows represent the current phasors; (c)

and (d) display the harmonic content of the ac currents from both cases. These out-

comes con�rm that Jaya-MPC produces a high power-quality solution, but active

power injection results in lower THD (2.2% � see (c)) than the one of reactive power

injection (3.3% � see (d)).
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Figure 7.17: Experimental data collected using FLUKE - 435 Series II: ac current

phasors for (a) active power injection and (b) reactive power injection, and their

respective harmonic contents (c) and (d).
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Chapter 8

Conclusions and Future Works

8.1 Conclusion

K
eeping researching alternatives to improve the control performance of power

converters is a major demand in the power electronics �eld. MPC is a path

for these improvements and research. This work followed this path and, based on the

literature review on MPC in power electronics, formulated the following question:

Is it possible to design a GPC strategy proposing an optimization solver that

makes its formulation and implementation simple and reduces the computational

cost to values close to the ones observed in FCS-MPC?

This question motivated the research of this thesis and, according to the liter-

ature review presented in Chapter 3, the Jaya algorithm stood out as a promising

solution since it does not need any algorithm-speci�c hyper-parameters, dismisses

the use of derivatives in the formulation, and solves a large variety of optimization

problems.

Thus, this thesis proposed an MPC strategy that uses a modi�ed Jaya algorithm

as the controller optimization solver. The proposed algorithm aims to be a viable

alternative to FCS-MPC regarding implementation complexity and reliable compu-

tational cost. It is worth pointing out that the �ndings of this work are restricted to

the scope of the main application of MPC in power electronics, which is ac-current

control of grid-connected power converters.

Although the original Jaya algorithm presents no algorithm-speci�c hyper-

parameters, the proposed Jaya-MPC demands the setting of one weight factor be-

cause of the changes to remove the non-deterministic behavior from the original

algorithm.

The parametric analyses described in Chapter 5 lead to the �nding that the

adaptive-weight approach outperforms the �xed-weight one, providing a simple de-

sign solution. This approach ensures low THD in the ac currents and a viable
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number of generations. The consequence of this last feature is that Jaya-MPC's

computational cost can compete with the one of FCS-MPC since the latter often

demands high sampling frequencies to achieve better regulation performance.

This work also introduced a new metric (TFS) to analyze the spread of the

switching frequency pro�le of FCS-MPC. The proposed metric suits this analysis

better because it is based on an instantaneous estimation of the switching frequency.

Future researchers can now use these TFS-based analyses to assess the switching

frequency spread of MPC-based strategies.

The results of Chapter 6 supported the conclusion that FCS-MPC works with

a high TFS that is very sensitive to the choice of the sampling period and that

the average switching frequency proved to be a poor tool for specifying FCS-MPC.

This work also showed that the main switching frequency component often is a

non-characteristic harmonic of the fundamental frequency.

These results reinforce the argument that designing viable and simple-

implementation GPC strategies is a possible alternative to FCS-MPC; This thesis

did not analyze other FCS-MPC-derived approaches, like those that fall into the

OSS-MPC classi�cation. But, as these strategies are more complex versions of im-

plementation and formulation than FCS-MPC and have higher computational costs

than FCS-MPC when Jaya-MPC competes with FCS-MPC in the matter of compu-

tational cost, it shows to be a viable alternative for predictive control applications in

power electronics converters within the scope of this thesis proposal. It is important

to note that the processing time of a control strategy is highly dependent on the

hardware and the code development approach, as well as the optimization of the

code. This work shows that Jaya-MPC operates in real-time, proving to be a viable

alternative to the �eld.

The experimental results and the methodology of this research, including the

automatic test system approach, prove that the Jaya-MPC works with high power-

quality performance, dismissing the use of extra control loops to reject harmonics

and an a�ordable real-time computational cost.

Therefore, by combining the outcomes and �ndings from these analyses, this

work concludes that Jaya-MPC is a viable and competitive alternative to FCS-

MPC, presenting high-performance dynamics with �xed-switching frequency and

low computational cost.
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8.2 Future Works

The continuation of this work includes extending the proposed Jaya-MPC to

other applications in power electronics, such as LCL-�lter-based converters and LC-

�lter-based converters operating as voltage sources, i.e., with voltage control. The

proposed controller presents a valuable potential for Multilevel Converters. Code

development of the proposed technique can include optimization practices to reduce

the processing time of the proposed controller.

Concerning the evaluation of the switching frequency spread, future studies can

analyze the TFS of other MPC strategies to advance the �ndings regarding this

subject in power electronics applications. Furthermore, TFS can be quanti�ed along

with the switching losses of MPC-based power converters to determine a relation

between the spread and the converter's e�ciency.
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Appendix A

Disturbance Rejection

During the development of this thesis, the disturbance rejection of Jaya-MPC

was an object of study in the stage of MATLABTM simulation to design it. High

disturbance rejection performance is a common characteristic of MPC in power elec-

tronics because of their fast dynamical response and the fact the predictor model

includes the measurement of these disturbances. The system of Figure 4.2 was mod-

eled in SimulinkTM to analyze a set of three types of disturbances: ac grid voltage

harmonics, ac grid voltage unbalancing � due to negative sequence components�,

and dc-link voltage variations.

Figure A.1 shows the simulation setup, which is composed of three blocks: the

current reference generator based on the pq-theory, the voltage-disturbances gen-

erator, and the three-phase converter system that contains the model of the plant,

and the Jaya-MPC block, which calls the Jaya-MPC algorithm and provides the

optimal modulation index to the PWM-block. After the end of the simulation, a

MATLABTM algorithm generates the graphics. Table A.1 shows the simulation

parameters.
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Figure A.1: Exploded view of the system modeled in SimulinkTM to analyze the

Jaya-MPC disturbance rejection.
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Table A.1: Simulation parameters for the time-domain analyses.

Nominal Electrical Parameters

Vrms,LL 220 V

Vdc 450 V

S 10 KA

f 60 Hz

Filter Parameters

L 2.03 mH

R 30.6 mΩ

Jaya-MPC Parameters

N 8

tol 10−4

Switching Frequency (Fsw) 5940 Hz

Sampling Period ( 1
Fsw

) 168.35 µs

weighting-factors strategy correlated-adaptive

initial weight-factors (r1 = 0.33, r2 = 0.33)

Simulation Parameters

simulation time step 1.68 us

disturbances occur at 0.05 s

A.1 Disturbance Rejection Analysis

Besides the fast reference-tracking response, converters controllers must present

a disturbance-rejection capability when dealing with grid-harmonics or negative-

sequence disturbances in the grid voltage. The following results address these issues

and demonstrate the e�ectiveness of Jaya-MPC in keeping the ac-currents regulated

with a high-power quality even when the grid voltage presents these disturbances.

A.1.1 Rejection of Grid Harmonics

Figure A.2 shows the electrical quantities of the converter in a scenario with the

presence of grid harmonics. In (a), it presents the grid voltages in the αβ-frame with

a harmonic-content disturbance starting at the instant of 0.05 s. This disturbance

results in a voltage THD equal to 6.8%. Note that, in (b), the ac-currents keep

regulated with a high power quality due to the Jaya-MPC fast-response, leading to

a THD no greater than 1%. In (c), the active and reactive power start to present

oscillations (p̃conv, q̃conv) because of the low-frequency harmonics in the grid voltage.
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Figure A.2: Jaya-MPC response under grid voltage harmonics: (a) waveforms of the

grid-voltage with a harmonic disturbance in 0.05s (THD = 6.8%); (b) waveforms of

the ac-currents with lower THD; (c) active and reactive power with oscillation due

to the grid voltage harmonics.
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In the same scenario of Figure A.2, Figure A.3 shows the control signals of

Jaya-MPC. In (a), it depicts the modulation index generated by the Jaya algorithm

fast responding to the grid-voltage disturbance and adding the respective harmonic

components to the converter voltage to block the path for ac-current harmonics.

Figure A.3: Jaya-MPC response under grid voltage harmonics: (a) modulation index

calculated by the Jaya algorithm; (b) optimal cost pro�le for each sampling instant;

(c) number-of-generations that Jaya-MPC took to return the optimal control-action

for each sampling instant; (d) distribution of the optimal-cost pro�le; (e) distribution

of the number-of-generations pro�le.
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This e�ort leads to an increase in the instantaneous minimum cost (b) and

the number of generations (c) that Jaya-MPC achieves and takes to return the

optimal modulation index presented in (a). But even with this increase, the average

minimum cost and the average number of generations (blue dashed lines) remain

below 10−4 and 4, respectively; the distribution of these two metrics is presented in

(d) and (e) con�rms this conclusion.

A.1.2 Rejection of Negative Sequence Voltage

Figure A.4 shows the electrical quantities of the converter in a scenario with the

presence of a negative-sequence disturbance in the grid voltage; in (a), it presents the

grid voltages in the αβ-frame with a 10% negative-sequence component starting at

the instant of 0.05 s. Note that, in (b), the ac-currents keep regulated with a high

power quality due to the Jaya-MPC fast-response, leading to a THD lower than

1%. In (c), the active and reactive power start to present oscillated components

(p̃conv, q̃conv) because of the negative-sequence component in the grid-voltage.
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Figure A.4: Jaya-MPC response under a negative-sequence disturbance in the grid

voltage: (a) waveforms of the grid-voltage with a negative-sequence disturbance in

0.05s; (b) waveforms of the balanced ac-currents with lower THD; (c) active and

reactive power with oscillation due to the grid voltage negative sequence components.

102



In the same scenario of Figure A.4, Figure A.5 shows the control signals of

Jaya-MPC; in (a), it depicts the modulation index generated by the Jaya algorithm

fast responding to the grid-voltage disturbance and adding the negative-sequence

component to the converter voltage to block the path for negative-sequence currents.

Figure A.5: Jaya-MPC response under a negative-sequence disturbance in the grid

voltage: (a) modulation index calculated by the Jaya algorithm; (b) optimal cost

pro�le for each sampling instant; (c) number-of-generations that Jaya-MPC took to

return the optimal control-action for each sampling instant; (d) distribution of the

optimal-cost pro�le; (e) distribution of the number-of-generations pro�le.

103



This e�ort does not lead to an increase in the instantaneous minimum cost (b)

but raises the number of generations (c) that Jaya-MPC takes to return the optimal

modulation index of the β-component and reduces the one of the α-component.

This characteristic results in an average number of generations (blue dashed lines

in (c)) slightly inferior to 4 for the α-component and slightly superior to 4 for the

β-component; the distribution of these two metrics presented in (d) and (e) con�rms

these conclusions.

A.1.3 Rejection of Dc-Link Disturbance

The following disturbance-rejection analysis deals with dc-link voltage variation

� which may occur during the operation of power converters � and must be ad-

dressed by the controller to not a�ect the system dynamics at the ac-side of the

converter. Figure A.6 shows the electrical quantities of the converter in a scenario

with the presence a step of 10 % in the dc-link voltage (a).
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Figure A.6: Jaya-MPC response under a 10% step of the dc-link voltage: (a) dc-link

voltage with a positive-step disturbance in 0.05s; (b) waveforms of the ac-currents

with lower THD; (c) active and reactive power with no oscillations.

The Jaya-MPC rejection capability ensures that this dc voltage deviation leads

to no ac-current disturbance (b), keeping with the low values of ISE e IAE. The

active and reactive power also remains constant during the disturbance (see (c)),

con�rming that the regulation keeps unchanged.
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Note that the Jaya-MPC reduces its control-e�orts to compensate for the dc-

link voltage increase (see Figure A.7(a)). This compensation presents no e�ect in

the instantaneous minimum cost achieved by Jaya-MPC (see Figure A.7(b)), but

reduces the peaks of the instantaneous number-of-generations (see Figure A.7(c)).

The distributions of Figure A.7 (d) and (e) con�rm these �ndings.

Figure A.7: Jaya-MPC response under a 10% step of the dc-link voltage: (a) mod-

ulation index calculated by the Jaya algorithm; (b) optimal cost pro�le for each

sampling instant; (c) number-of-generations that Jaya-MPC took to return the op-

timal control-action for each sampling instant; (d) distribution of the optimal-cost

pro�le; (e) distribution of the number-of-generations pro�le.
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Figure A.8 shows the electrical quantities of the converter in a scenario with the

presence of a step reduction of 10 % in the dc-link voltage (a). The Jaya-MPC

rejection capability ensures that this dc-voltage deviation provokes no ac-current

disturbance (b), keeping them with low values of ISE e IAE; the active and reactive

power also remains constant during the disturbance (see (c)).
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Figure A.8: Jaya-MPC response under a 10% negative-step of the dc-link voltage:

(a) dc-link voltage with a negative-step disturbance in 0.05s; (b) waveforms of the

ac-currents with lower THD; (c) active and reactive power with no oscillations.
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The Jaya-MPC increases its control-e�orts to compensate for the dc-link volt-

age decrease (see Figure A.9(a)). This compensation presents a slightly increase in

a few peaks of the instantaneous minimum cost achieved by Jaya-MPC (see Fig-

ure A.9(b)), and also increases the instantaneous number-of-generations (see Figure

A.9(c)). The distributions of Figure A.9 (d) and (e) con�rm these �ndings.

Figure A.9: Jaya-MPC response under a 10% negative-step of the dc-link voltage:

(a) modulation index calculated by the Jaya algorithm; (b) optimal cost pro�le for

each sampling instant; (c) number-of-generations that Jaya-MPC took to return the

optimal control-action for each sampling instant; (d) distribution of the optimal-cost

pro�le; (e) distribution of the number-of-generations pro�le.
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A.2 Model Parameter Sensibility

Figure A.10 compares the model parameter sensibility of both Jaya-MPC and

FCS-MPC facing a �lter parameter uncertainty ∆L. While Jaya-MPC presents a low

sensibility, maintaining THD below 5%, the FCS-MPC can only achieve this level

of robustness with greater values of sampling frequency. This �rst result strongly

suggests that Jaya-MPC is a more robust approach than FCS-MPC. However, future

research can deepen these �ndings by analyzing how the sampling frequency a�ects

both the parameter sensibility and switching frequency pro�le produced by FCS-

MPC.
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Figure A.10: Model parameter sensibility: THD of Jaya-MPC (a) and FCS-MPC

(b) when subject to a model parameter error ∆L.

109



Appendix B

Random-weights on Jaya-MPC

Figure B.1 shows the statistical analysis of Jaya-MPC using the original Jaya

algorithm weights with uniform distribution. This analysis ran 100 experiments and

calculated the statistics for the THD � the blue 'x' is a discarded outlier. The THD

ranges from 5.5% to 6.4%, with an average value slightly greater than 6.

As the uniform distribution produces random values with an expected value of

0.5, this result presents an average THD close to the value produced by the correlated

�xed weights strategy of Figure 5.8 (c) with r1 = r2 = 0.5. This result con�rms that

the weighting strategy proposed in this work suits better the scope of the application

of Jaya-MPC, but future studies can determine a better statistical distribution for

the Jaya-MPC weights.
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Figure B.1: THD of Jaya-MPC using the original random weights in the Jaya algo-

rithm with uniform distribution.
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Appendix C

Switching Transitions in The Cost

Function

One of the �rst approaches to deal with the variable switching frequency in

FCS-MPC was to add the switching states transition (Spn−Skn) as a term of the cost

function [8, 9], as in Equation (C.1):

J = ||ispLα − i
p
Lα
||2 + ||ispLβ − i

p
Lβ
||2 + λ

∑
n

|Spn − Skn| (C.1)

This approach aims to concentrate the switching frequency components within

a smaller range by con�guring the weight parameter λ, but now, it is possible to

quantitatively determine the contribution of this term in the switching frequency

spread by analyzing the e�ect of λ in the TFS.

Figure C.1 (a) shows that neither THD nor TFS bene�ts from the use of this

method; in fact, the TFS is worse when λ di�ers from zero, and, in (b), one can

observe this method contributes to reducing both average switching frequency and

dominant frequency.
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Figure C.1: E�ect of λ using FCS-MPC with cost function (C.1) and sampling

frequency equal to 5940Hz (Fs = 99× 60Hz): (a) TFS and THD; (b) f ?sw and f̄sw.

On the other hand, in the case which Fs = 29460Hz � where the TFS peak is

highest in analyses of Chapter 6 (see Figure 6.6) �, Figure C.2 (a) shows that λ

impacts signi�cant in TFS reduction. However, THD increases because it is highly

correlated with the average switching frequency, i.e., as the value of f̄sw decreases,

the converter makes fewer switching transitions, leading to greater ripples, therefore,

jeopardizing power quality.

112



0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200
T
F
S

(%
)

0

5

10

15

T
H

D
(%

)

(a)

TFS
THD - IEEE 519-2014

0 1 2 3 4 5 6 7 8 9 10
6(#10!3)

0

2

4

6

8

10

12

f
? sw

(k
H

z
)

0

2

4

6

8

7 f s
w

(k
H

z
)

(b)

f ?
sw
7fsw

Figure C.2: E�ect of λ using FCS-MPC with cost function (C.1) and sampling

frequency equal to 29460 Hz (Fs = 491 × 60 Hz): (a) TFS and THD; (b) f ?sw and

f̄sw.

These �ndings demonstrate that the technique of adding the switching transitions

to the cost function does not ensure the expected behavior of reducing the switching

frequency variability. Again, it depends on the sampling period since FCS-MPC

produces a highly nonlinear and not well-de�ned switching frequency pro�le. But,

with the TFS metric, future studies can analyze each method in the literature to

assess their contribution to the reduction of the switching frequency spread.

113


	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Proposal Description
	Methodology
	Work Organization

	Literature Review On Model Predictive Control
	MPC in Power Electronics: A Historical Survey
	From 1980 to 2000: The First Proposals of MPC
	From 2000 to 2010: GPC vs. FCS-MPC
	From 2010 to 2020: The Growth of FCS-MPC

	Classification of MPC in Power Electronics
	Issues Related to MPC
	Regarding The Predictive Model
	Regarding The Cost Function
	Regarding The Optimization Solver
	Regarding The Switching Frequency

	The Current Dilemma of MPC in Power Electronics

	Literature Review On Jaya
	Background
	Jaya Algorithm
	Applications in Power Electronics
	Applications in Power Dispatch and Energy Management
	Applications in Control Parameters Optimizations
	Applications in MPPT Algorithms
	Others Applications


	Thesis Proposal
	Jaya Algorithm Applied to MPC
	Cost Function
	Regulation Cost
	Input Constraints Penalty
	Output Constraints

	Control Optimization Problem
	Jaya-MPC Algorithm
	Initial Population
	Stop Criteria
	Weighting Factors Strategy

	Jaya-MPC For Ac Current Control
	Predictive Model


	Parametric Analysis
	Simulation Setup
	Non-Correlated Fixed-Weights Strategy
	Analysis of The Average Number of Generations
	Analysis of The Average Optimal Cost
	Analysis of The THD

	Non-Correlated Adaptive-Weights Strategy
	Analysis of The Average Number of Generations
	Analysis of The Average Optimal Cost
	Analysis of The THD

	Correlated-Weights Strategy

	Switching Frequency And Computation Cost
	Analysis On The Switching-Frequency Spread
	Total Frequency Spread
	Analysis of TFS of a PWM Module
	Analysis of TFS in FCS-MPC

	Analysis On The Computational Cost
	Computational Cost Metric
	Comparative Analyses for a Three-Phase Converter


	Experimental Validation
	Experimental Setup
	State Machine

	Code Development in CCS
	Test Driven Development (TDD)

	Computational Cost
	Current Regulation Performance
	Power Quality

	Conclusions and Future Works
	Conclusion
	Future Works

	References
	Disturbance Rejection
	Disturbance Rejection Analysis
	Rejection of Grid Harmonics
	Rejection of Negative Sequence Voltage
	Rejection of Dc-Link Disturbance

	Model Parameter Sensibility

	Random-weights on Jaya-MPC
	Switching Transitions in The Cost Function

