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Esta tese propõe estratégias de monitoração para o controle por modo deslizante
adaptativoe a busca extremal acionada por eventos.

Os novos controladores por modos deslizantes (SMC) e por vetor unitário (UVC)
utilizam realimentação de saída para uma classe de sistemas não-lineares e podem
lidar com incertezas paramétricas e perturbações (des)casadas com majorantes de-
sconhecidos. A convergência em tempo finito do erro de rastreamento para uma viz-
inhança predefinida da origem do sistema em malha fechada é provada com garantia
de desempenho transitório e em regime permanente. A novidade do resultado está
na combinação de duas eficientes ferramentas de adaptação: funções de monitoração
e de barreira. Resultados de simulação incluindo a aplicação em um sistema de fre-
nagem antibloqueio (ABS) e um guindaste ponte rolante ilustram as vantagens das
estratégias adaptativas propostas.

Finalmente, considerando mapas estáticos, esta tese propõe esquemas aciona-
dos por eventos para busca extremal escalar e multivariável. Enquanto a busca de
extremal permite que a saída de um mapa não-linear seja mantida dentro de uma
vizinhança de seu extremo, a estratégia de acionamento por eventos é responsável
por executar aperiodicamente a lei de controle através de um mecanismo de moni-
toração. Condições para o acionamento estático e dinâmico são desenvolvidas. Inte-
grando a teoria de estabilidade de Lyapunov com o método da média para sistemas
descontínuos, um procedimento sistemático de projeto e análise de estabilidade é de-
senvolvido. Os benefícios das novas estratégias de controle são apresentados através
de resultados de simulação consistentes, que comparam as abordagens de aciona-
mento estático e dinâmico.
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This thesis proposes monitoring strategies for adaptive sliding mode controllers
and event-triggered extremum seeking.

The new adaptive sliding mode and unit vector controllers use output feedback
for a class of nonlinear systems and can deal with parametric uncertainties and
(un)matched disturbances with unknown upper bounds. Finite-time convergence
of the tracking error to a predefined neighborhood of the origin of the closed-loop
system is proved with guaranteed transient and steady-state performance. The
novelty of our result lies on two important adaptation tools: monitoring and barrier
functions. Simulation results including the application to Anti-lock Braking System
and Overhead-crane to illustrate the advantages of the proposed adaptive control
strategies.

Finally, based on static maps, this thesis proposes event-triggered schemes for
both scalar and multivariable extremum seeking. While the extremum seeking allows
the output of a nonlinear map to be held within a vicinity of its extremum, the event-
triggered strategy is responsible to execute the control task aperiodically by using
a monitoring mechanism. Static and dynamic triggering condition are developed.
Integrating Lyapunov and averaging theories for discontinuous systems, a systematic
design procedure and stability analysis are developed. Illustration of the benefits
of the new control method are presented using consistent simulation results, which
compare the static and the dynamic triggering approaches.
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3.6 3D Crane - MBF UVC with positive barrier, R(t) and Ṙ(t). . . . . . 51
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Chapter 1

Introduction

In this thesis, the term “monitoring” means checking “something” to observe how it
develops, so that an “appropriate decision” can be taken. Such informal but direct
definition unifies the different contributions proposed throughout this thesis. In our
context, the aforementioned word “something” should be read as an output signal of
a plant or an error signal. While the term “appropriate decision” can mean the in-
crease, decrease or stagnation of an adaptation gain or the update action of a control
signal. Basically, contributions can be divided into three fields: sliding mode-based
controllers, a binary model reference adaptive control strategy and event-triggered
extremum seeking approaches. In sliding mode-based controllers, the output signals
are monitored to adapt the controller gains for stabilization and tracking scenarios.
In the binary model reference adaptive control, the monitoring process of the error
between the plant and the reference model outputs is used for unknown parameters
estimation. In event-triggered extremum seeking approaches, the execution control
task is orchestrated by a monitoring mechanism that invokes control updates when
the difference between the current state value and the last transmitted state value
satisfy the designed triggered condition.

1.1 Sliding Mode and Unit Vector Controllers

The disturbance rejection task for uncertain systems is a longstanding issue in con-
trol theory. The most common way to solve this problem is using control strategies
based on sliding mode [3–9]. In closed-loop, theoretically, the sliding mode control
strategies are able to provide insensitivity to these disturbances while ensuring the
finite-time convergence of the sliding variable [10]. In practice, the implementation
of the standard sliding mode controllers are based on overestimated disturbance’s
upper bounds leading to energetic control efforts and revealing the main drawback
of such strategies: the so-called chattering effect, i.e., dangerous high-frequency vi-
brations of the controlled system [11]. On the other hand, this upper bound in
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general is non constant and frequently unknown [12].
If the upper bound of the disturbance exists but it is unknown, adaptive slid-

ing mode controllers [12–15] were proposed. In references [13, 14] the control gain
increases until the closed-loop reaches the ideal sliding mode and then the gain is
kept fixed. If the disturbance grows, the loss of the sliding mode occurs but the
gain increases to compensate it again. Since the gain cannot decrease, the control
becomes overestimated when the disturbance decreases. Notice that, the distur-
bance rejection problem with perturbations of unknown upper bounds has not been
restricted to the first-order sliding mode scenario. For instance, reference [16] pro-
poses an adaptive super-twisting sliding mode controller with disturbances bounded
by unknown upper-bounds. In reference [17], the main focus was to mitigate the
super-twisting control effort by using equivalent control. In reference [18], the con-
stant gains of the classic super-twisting controller are replaced by adaptive gains
also based on equivalent control estimates, to increase or decrease such gains when
necessary.

To avoid the overestimation, consequently, to alleviate the chattering, and to
guarantee prescribed transient and steady-state performance, this thesis proposes
new adaptive sliding mode control strategies based on monitoring [15] and barrier
functions [12].

Originally, the monitoring function was designed for variable-structure model
reference adaptive controllers [19] to deal with plants without the prior knowledge of
the high-frequency gain sign [20], [21] and [22]. The monitoring function supervises
the tracking error time-response changing the control sign every time they meet.
Then, after a finite number of sign switchings, the true control direction is eventually
found and thereafter the tracking error goes to zero at least exponentially. Several
researches have been conducted in order to extend such results for unit vector control
[22], binary robust adaptive control [23], extremum seeking control via monitoring
function [24], and adaptation of the gains of higher-order sliding mode-based exact
differentiators [25].

In [26], an adaptive first-order sliding mode approach based on monitoring func-
tions is proposed to reject disturbances with unknown bounds. The global tracking
problem is successfully addressed ensuring the convergence of the error signal to a
residual set even considering uncertain plants with non-smooth disturbances. Nev-
ertheless, the residual set could not be rigorously characterized. This issue was
overcome in reference [15], where a new switching scheme was able to guarantee a
prespecified transient time, maximum overshoot, and steady-state error for multi-
variable uncertain plants. Unfortunately, such objectives could be guaranteed using
a discontinuous control signal so that control chattering could not be precluded.

On the other hand, the barrier function has successfully been applied to adaptive
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sliding-mode based schemes to achieve the convergence of the output error to a pre-
defined ϵ-vicinity of zero, with a control signal that is not overestimated and without
using any information about the upper bound of the disturbance [12]. For instance,
in [12, 27] such a strategy is applied to a class of first-order sliding mode controllers
(first-order and integral); in [28, 29], to the case of second-order sliding mode con-
trollers (twisting and variable-gain super twisting) and in [30, 31], to algorithms for
adaptation of the Levant’s differentiator gains [32]. In all above mentioned papers,
only uncertain single-input/single-output plants were considered without ensuring
the specification of the transient phase (prespecified fixed-time convergence to the
residual set and overshoot constraint).

In order to mitigate the indicated issues, the proposed adaptive schemes in this
thesis are divided in two phases: the reaching and the residual phases. In the
reaching phase, the idea is to design an adaptive modulation function to ensure
the convergence of the system outputs of the multivariable plant to the interior of
an ϵ-vicinity of the origin by applying a monitoring function which also guarantees
a prespecified transient time and a maximum overshoot with a finite number of
switchings. In the residual phase, inside the ϵ-vicinity, the barrier function maintain
the output error within such neighborhood of zero, independently of the unknown
upper bound of the disturbances and without overestimating the control signal.
Since the method combines monitoring with barrier functions, it will be referred as
MBF (controller/method).

The main advantages of the monitoring and barrier functions (MBF) adaptive
controllers are:

• Unlike reference [12], a prespecified transient time and maximum overshoot in
the reaching phase is guaranteed.

• Differently from [15], the barrier function in the proposed approach can be
chosen to avoid chattering during the residual phase.

• The control signal overestimation is ultimately avoided.

• The proposed scheme does not require known bounds for the matched and/or
unmatched disturbances.

On the application side, research on modern vehicle engineering has focused on
the design of energy storage devices in electric and hybrid vehicles [33, 34]. Also,
anti-lock braking system (ABS) can be designed taking advantage of the sensors
embedded in the new cars [35] with robust and adaptive control strategies [36–38].
In this context, our adaptive sliding mode controller scheme seems appropriate to be
applied to an ABS ensuring that the slip coefficient corresponding to the maximum
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coefficient of friction between the tire and road is quickly achieved during the braking
process of the car. On the other hand, overhead cranes are widely used to move the
large/heavy objects horizontally for either manufacturing or maintenance practices
in many industrial environments, such as ocean engineering, nuclear industries, and
airports [39]. Indeed, it is not an easy task to control a crane system since naturally
the crane acceleration, required for motion, always induces undesirable load swing.
The acceleration and the deceleration of the overhead crane lead to swings of the
payload; these swings can be dangerous and may cause damage and/or accidents
[40]. The crane control consists of a crane motion and load hoisting control as
well as a payload swing suppression [41]. In the literature, several attempts have
been made to control the load swing [39, 40, 42–44]. In this context, our adaptive
unit vector controller scheme seems appropriate to be applied to an overhead crane
system ensuring the closed-loop properties of fixed-time convergence and prescribed-
performance via monitoring and barrier functions.

1.2 Event-Triggered Extremum Seeking

The final part of this thesis proposes monitoring mechanisms of execution, i.e, event-
triggered schemes, for both scalar and multivariable extremum seeking.

In spite of the fact that the concept of extremum seeking control (ESC) was
introduced 100 years ago by the French Engineer Maurice Leblanc already in 1922
[45], a rigorous demonstration of stability under feedback control only appeared
about 20 years ago [46]. ESC based on the perturbation method [47] adds a periodic
dither signal of small amplitude to the input of the nonlinear map and estimates its
gradient in real time by using a suitable demodulation process. Extremum Seeking
is a control and optimization strategy that allows the output of a nonlinear map to
be held within a vicinity of its extremum. When the parameters of the nonlinear
map are available, it is possible to obtain exactly the gradient of the nonlinearity
and the control objective can be defined as its stabilization. However, because of
parametric uncertainties, the gradient is not always known and the control task is not
always straightforward. Despite the several ESC strategies found in the literature,
the methods based on perturbations (dither signals) are the oldest and, even remain
nowadays quite popular.

After the consolidation of ESC stability results for static and general nonlinear
dynamic continuous-time systems [46], discrete-time systems [48], stochastic systems
[49, 50], multivariable systems [51], and non-cooperative games [52], the theoretical
advances of ESC overcome the border of finite-dimension systems to arrive in the
world of Partial Differential Equations (PDEs). For such infinite-dimensional sys-
tems, boundary feedback controllers are designed to ensure convergence of the ESC
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in the closed-loop form by compensating the input and/or output under propaga-
tion through transport PDEs (delays) [53, 54], diffusion PDEs [55, 56], wave PDEs
[57], Lighthill–Whitham–Richards nonlinear PDEs [58], parabolic PDEs [59], and
PDE-PDE cascades [57].

In the current technological age of network science, researchers are focusing on
decreasing wiring costs by designing fast and reliable communication schemes where
the plant and controller might not be physically connected, or might even be in
different geographical locations. These networked control systems offer advantages
in the financial cost of installation and maintenance [60]. However, one of their major
disadvantages is the resulting high-traffic congestion, which can lead to transmission
delays and packet dropouts, i.e., data may be lost while in transit through the
network [61]. These issues are highly related to the limited resource or available
communication channels’ bandwidth. To alleviate or mitigate this problem, Event-
Triggered Controllers (ETC) can be used.

ETC executes the control task, non-periodically, in response to a triggering con-
dition designed as a function of the plant’s state [62]. Besides the asymptotic sta-
bility properties [63], this strategy reduces control effort since the control update
and data communication only occur when the error between the current state and
the equilibrium set exceeds a value that might induce instability [64]. Pioneering
works towards the development of resource-aware control design includes the con-
struction of digital computer design [65], the event-based PID design [66] and the
event-based controller for stochastic systems [67]. Works dedicated to the extension
of event-based control for networked control systems with a high level of complex-
ity exist for both linear [68–70] and nonlinear [63, 71, 72] systems. Among others,
results on event-based control deal with the robustness against the effect of possible
perturbations [73, 74] or parametric uncertainties [75]. In [76], ETC is designed to
satisfy a cyclic-small-gain condition such that the stabilization of a class of nonlinear
time-delay systems is guaranteed. As well, the authors in [77] proposed distributed
event-triggered leaderless and leader-follower consensus control laws for general lin-
ear multi-agent networks. An event-triggered output-feedback design [78] has been
employed aiming to stabilize a class of nonlinear systems by combining techniques
from event-triggered and time-triggered control. Recently, substantial works have
been carried out to conceive event-based approaches for infinite dimensional systems
[79–83]. We emphasize that among existing results [84, 85] are focused on infinite-
dimensional observer-based event-triggered control for reaction-diffusion PDEs.

To the best of our knowledge, this thesis is the first contribution on event-
triggered ESC based on perturbation method. For static maps, we consider the
design and analysis of the scalar and multivariable ESC within both static and dy-
namic event-triggered control frameworks. As opposed to hybrid systems design [86],
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the stability analysis are carried out using Lyapunov criterion as well as averaging
theory for discontinuous systems to characterize the properties of the closed-loop
systems.

1.3 Organization and Notation

The thesis is organized as follows. Chapters 2 and 3 show the effectiveness of the new
adaptive sliding mode (scalar) and unit vector (multivariable) control approaches,
respectively. Chapter 4 presents the scalar ESC within static event-triggered mech-
anism. The scalar dynamic event-triggered ESC is presented in Chapter 5. The
multivariable ESC generalization within both static and dynamic event-triggered
control frameworks are developed in Chapter 6. The concluding remarks of this
thesis are given in Chapter 7.

Notation: Throughout the manuscript, the 2-norm (Euclidean) of vectors and
induced norm of matrices are denoted by double bars ∥ · ∥ while absolute value
of scalar variables are denoted by single bars | · |. The terms λmin(·) and λmax(·)
denote the minimum and maximum eigenvalues of a matrix, respectively. Consider
ε ∈ [−ε0 , ε0] ⊂ R and the mappings δ1(ε) and δ2(ε), where δ1 : [−ε0 , ε0] → R
and δ2 : [−ε0 , ε0] → R. One states that δ1(ε) has magnitude order of δ2(ε), i.e.,
δ1(ε) = O(δ2(ε)), if there exist positive constants k and c such that |δ1(ε)| ≤ k|δ2(ε)|,
for all |ε| < c.
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Chapter 2

Adaptive Sliding Mode Control with
Guaranteed Performance based on
Monitoring and Barrier Functions

This chapter proposes a new adaptive sliding mode control approach via output feed-
back for a class of nonlinear systems. The sliding-mode based controller can deal
with parametric uncertainties and (un)matched disturbances with unknown upper
bounds. Finite-time convergence of the tracking error of the closed-loop system to
a predefined neighborhood of the origin is proved with guaranteed transient and
steady-state performance. Basically, the novelty of our result lies on combining two
important adaptation tools: monitoring and barrier functions (MBF). The adapta-
tion process is divided into two stages, where an appropriate monitoring function
allows for the specification of performance criteria during the transient phase, while
the barrier function ultimately confines the tracking error within a small residual
set in steady-state. Simulation results including an application to Anti-lock Braking
System illustrate the advantages of the proposed adaptive control strategy.

2.1 Problem Formulation

Consider the uncertain SISO nonlinear plant in regular form

η̇(t) = A11η(t) + A12σ(t) + d1(η(t) , σ(t) , t) , (2.1)

σ̇(t) = A21η(t) + A22σ(t) + d2(η(t) , σ(t) , t) +Kpu , (2.2)

where the state vector is defined as xT (t) := [ηT (t) , σ(t)] ∈ Rn, η(t) ∈ Rn−1 denotes
the unmeasured part, σ(t) ∈ R is the output, u ∈ R is the control input, while the
mapping d1 : Rn−1 × R × R+ 7→ Rn−1 and d2 : Rn−1 × R × R+ 7→ R represent the
unmatched and matched disturbances, respectively.
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Throughout the thesis, the 2-norm (Euclidean) of vectors and induced norm of
a matrices are denoted by double bars ∥ · ∥. The stability margin of a real Hurwitz
matrix A is here defined as λ0 := minj {−Re(λj)} where {λj}’s are the eigenvalues
of A. Moreover, the following assumptions are made throughout the thesis:

(A1) Matrices A11 ∈ R(n−1)×(n−1), A12 ∈ R(n−1)×1, A21 ∈ R1×(n−1), and A22 ∈ R1×1

are all uncertain.

(A2) It is assumed that A11 is Hurwitz, i.e., the plant (2.1)–(2.2) is minimum phase
from u to σ. This assumption is extremely important since it allows the design
of a stable upper bound for the absolute value of the unmeasured state variable
η(t).

(A3) The induced norm of the matrix A12 is majorized by a known positive constant
cησ.

(A4) The disturbances d1(x(t) , t) and d2(x(t) , t) are Lipschitz in x, piece-wise con-
tinuous in t and uniformly bounded by unknown constants d̄1 and d̄2, i.e.,

||d1(x, t)|| ≤ d̄1 and |d2(x, t)| ≤ d̄2 , ∀x and ∀t ≥ 0 .

(A5) Without loss of generality, the high-frequency gain is Kp := 1.

(A6) Only the output σ(t) is available for control design.

The control objective is the ultimate confinement of σ(t) to an ϵ-vicinity of the
origin in the global sense, i.e., for all initial conditions and for all time instant t

greater than a finite time ts (|σ(t)| ≤ ϵ, ∀t ≥ ts), by using only output feedback.
To achieve this goal without knowing the upper bounds d̄1 and d̄2, some adaptation
strategy is necessary.

2.2 Basic Techniques

In this section, basic techniques for the proposed control strategy are introduced.

2.2.1 State-Norm Observer

The first step to start the control design is to obtain an instantaneous norm
bound for the unmeasured state vector. The norm observer, also called first order
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approximation filter (FOAF), is an important tool that allows to reach it by using
only output information [87]. From [88, Lemma 2], the solution of

˙̄η(t) = −γ1η̄(t) + k1|σ(t)|+ k2d̄1 , (2.3)

where η̄ ∈ R1, with the scalar γ1 > 0 being a lower bound for the stability margin
of A11 and appropriate positive constants k1 and k2, is an upper bound for ∥η(t)∥,
modulo some exponentially decaying term, i.e.

∥η(t)∥ ≤ |η̄(t)|+ πη(t) , ∀t ≥ 0 , (2.4)

where πη(t) is an exponentially decaying term depending on the initial conditions
η(0) and η̄(0), with η(t) provided in (2.1).

Note that, although η̄(t) is an upper bound for the unmeasured state η(t), it
cannot be used yet since, from assumption (A5), d̄1 is unknown. The next section
introduces the monitoring function, an important tool which allows the implemen-
tation of an upper bound for η(t) by means of a hybrid state-norm estimation using
switching adaptation.

2.2.2 Monitoring Function - Reaching Phase

The monitoring function is an appropriate switching-based scheme originally
designed to compensate the lack of knowledge about the system such as: the control
direction information [21], unknown bounds of disturbances [26] or disturbances
with unknown and arbitrary growth rate [25]. Here, a more recent version of [21] is
presented in [15] whereby the performance specifications of the closed-loop system
can be achieved, according to the following definition.
Definition 1. The stabilization/tracking error σ(t) is said to satisfy the reaching
and residual phase specifications, if

• |σ(t)| ≤ |σ(0)|+∆, ∀t ∈ [0 , T ),

• |σ(t)| ≤ ϵ , ∀t ≥ T ,

where ∆ > 0 is the maximum allowed overshoot, T > 0 is the maximum transient
time, ϵ ∈ (0 ,∆] is the allowed maximum steady-state error, all of which can be
arbitrarily specified by the user/designer.

The monitoring switching scheme is such that the next switching instant is de-
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fined as [15]

tk+1 := min


|σ(t)| = |σ(0)|+∆

(
1− 1

Rk
1

)
t > tk : or

t = T
(
1− 1

Rk
1

)
and |σ(t)| > ϵ/R2

, k = 1, 2, . . .

(2.5)

where R1 > 1 and R2 > 1 are design constants. If, for some time instant t̄ ≤ T ,
the condition |σ(t̄)| = ϵ/R2 is reached, then the Residual Phase (Section 2.2.3) is
started.

Moreover, the switching index k, is employed in the design of positive monoton-
ically increasing unbounded sequences d̂1(k) and d̂2(k) to counteract the absence of
the constants d̄1 and d̄2 in (A4),

d̂1(k) = c1b
k
1 , (2.6)

d̂2(k) = c2b
k
2 , (2.7)

where c1 , c2 > 0, and b1 , b2 > max{R1 , R2} are arbitrarily constants. Then, a
hybrid state-norm estimation scheme is introduced, based on (2.3)–(2.4), such that

˙̂η(t) = −γ1η̂(t) + k1|σ(t)|+ k2d̂1(k) , (2.8)

and

∥η(t)∥ ≤ |η̂(t)|+ πη(t) . ∀t ≥ 0 , (2.9)

The norm observer η̂(t) flows through a continuous state space but also moves
through different discrete switching modes, as defined by [89].

An important property of the switching rule is that, if k grows and becomes
sufficiently large, then σ(t) satisfies its predefined specifications on the reaching
phase through the switching law (2.5). In the reaching phase, the switching makes
d̂1(k) and d̂2(k) to grow unboundedly as k → ∞. As a result, during the reaching
phase, the monitoring function forces |σ(t)| ≤ ϵ/R2 before the time instant T while
ensuring no violation of the overshoot specification.

2.2.3 Barrier Function - Residual Phase
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The Barrier Function, for a given and fixed ϵ > 0, is defined as an even continuous
function ρB : χ ∈ (−ϵ , ϵ) → ρB(χ) ∈ [ b ,∞ ) strictly increasing on [ 0 , ϵ ) such that
lim|χ|→ϵ ρB(χ) = +∞, ρB(χ) has a unique minimum at zero and ρB(0) = b ≥ 0.

just requires them to be bounded, but there is no need to know what the bounds
In the residual phase, the introduction of a barrier function imposes a hard bound

on the sliding variable by restricting it within a prescribed ϵ-vicinity. The important
features of the controllers based on barrier functions just requires the disturbances
to be bounded, but there is no need to know what the bounds are and the assurance
of avoiding overestimated control gains. Basically, as shown in Figure 2.1, in the
sliding mode control framework, there are two kinds of barrier functions:

• Positive definite Barrier Function (PBF):

ρPB(χ) :=
ϵF̄

ϵ− |χ| , i.e. , ρPB(0) = F̄ > 0 . (2.10)

• Positive Semi-definite Barrier Function (PSBF):

ρPSB(χ) :=
|χ|

ϵ− |χ| , i.e. , ρPSB(0) = 0 . (2.11)

For more details, please see [12].

(a) Positive definite Barrier Function. (b) Positive Semi-definite Barrier Func-
tion.

Figure 2.1: Positive definite and Positive Semi-definite Barrier Functions.

The next section shows how the Barrier Functions can be employed as an adap-
tive strategy avoiding overestimated gains for sliding mode schemes.
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2.3 MBF Adaptive Sliding Mode Control

The Monitoring and Barrier Function (MBF) adaptive sliding mode control law is
given by

u = −ρ(t)sgn(σ(t)) , (2.12)

where ρ(t) is the modulation function such that

ρ(t) =

ρM(t) , if t < t̄

ρB(t) , if t ≥ t̄
. (2.13)

While the closed-loop system is in the reaching phase, it is under the monitoring
function action and, using the hybrid state-norm observer (2.8) and the disturbance
estimate (2.7) with the modulation function designed as

ρM(t) = cσ|σ(t)|+ cdσ d̂2(k) + cηη̂(t) + δ , (2.14)

with appropriate positive constants cσ, cd2 , cη, and δ. On the other hand, in the
residual phase, the modulation function is driven by barrier function such that ρB(t)
is defined by (2.10) or (2.11).

2.3.1 Stability Analysis

Theorem 1 stated below summarizes the main results of the stability properties of
the MBF closed-loop system.

Theorem 1. Consider the plant (2.1)-(2.2), the monitoring scheme with switching
times (2.5), switching-based disturbance estimates (2.6) and (2.7), hybrid state-norm
observer (2.8), and the output-feedback sliding mode control law (2.12) with modula-
tion function (2.13). Assume that (A1)–(A6) hold. Then, all prespecified transient
and steady-state behaviors (maximum overshoot ∆, maximum transient time T and
residual absolute error |σ(t)| less than ϵ) are guaranteed. Furthermore, there exists
an unknown upper bound dmax for the equivalent disturbance in equation (2.2) and
the practical stabilization/tracking is achieved, with the output error σ(t) ultimately
converging to the interior of an ϵ-neighborhood of the origin so that:

• If the barrier function is the positive definite in (2.10), |σ(t)| ≤ ϵ1 such that
|σ(t)| ≤ ϵ1 < ϵ where ϵ1 = ϵ(1− F/dmax) if F < dmax and ϵ1 = 0 if F ≥ dmax.

• If the barrier function is the positive semi-definite in (2.11), |σ(t)| ≤ ϵ2 < ϵ

where ϵ2 = ϵdmax/(dmax + 1).
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Proof. The first step of the proof is to demonstrate that when using the control law
(2.12) with modulation function (2.14), the sliding variable reaches the region |σ| ≤
ϵ/R2 with the guarantee that the specifications of the settling time and maximum
overshoot are not violated.

Consider the following Lyapunov-like candidate function for (2.2)

V (σ) =
1

2
σ2, (2.15)

whose time-derivative satisfies

V̇ = σσ̇

= σ [A21η + A22σ + d2 + u]

≤ |σ| [∥A21∥∥η∥+ |A22||σ|+ |d2|] + σ(t)u . (2.16)

By using the control law (2.12) and taking into account assumption (A4),

V̇ ≤ |σ|
[
∥A21∥∥η∥+ |A22||σ|+ d̄2 − ρ

]
. (2.17)

Then, employing the inequality (2.9) and defining the constants cη > ∥A21∥, cσ >

|A22| and cdσ > max{1 , ∥A21∥}, one has

V̇ ≤ |σ| [cηη̂ + cσ|σ|+ cdσdσ − ρ]

=
√
V
[
cηη̂ + cσ

√
V + cdσdσ − ρ

]
,

where dσ(t) := d̄2 + πη(t). Notice that dσ can be upper bounded by a constant d̄σ

such that d̄σ ≥ d̄2 + πη(0). Nevertheless, d̄σ depends on the unavailable information
d̄2 and η(0).

Thus, by using modulation function ρ(t) = ρM(t), as in (2.14),

V̇ ≤ −δ
√
V + cdσ

(
dσ − d̂2

)√
V

≤ cdσ

(
d̄σ − d̂2

)√
V . (2.18)

First, it is proved by contradiction that, if one starts in the Reaching Phase
(|σ| > ϵ), then after at most finite number of switchings, the Residual Phase (|σ| ≤ ϵ)
will start. Indeed, suppose that the system never enters in Residual Phase. Then,
from (2.5), d̂1(k) and d̂2(k) will switch without stopping either due to |σ(t)| →
|σ(0)| +∆ or to t → T . Therefore, from the σ-equation and taking (2.6) and (2.7)
into consideration, it follows that, no matter how large d̄σ is, after at most finite
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switchings, one has

d̂2(k) > d̄σ , ∀t ∈ [tk , tk+1 ) . (2.19)

Once condition (2.19) is satisfied, the disturbance estimate d̂2 will completely
dominate the right-hand side of inequality (2.18) and guarantees that there exist a
positive integer k̃ > 0, such that, ∀k ≥ k̃ ,

V̇ < 0 , ∀t ∈ [tk , tk+1 ) . (2.20)

The inequality (2.20) implies that any new switching is only due to t = T (1−1/Rk
1)

because, from (2.5), |σ(t)| = |σ(0)| + ∆(1 − 1/Rk
1) implies that |σ| would be in-

creasing, contradicting (2.20). As a result, the time interval between two switchings
is

tk+1 − tk = T (1− 1/Rk
1)− T (1− 1/Rk−1

1 ) = T (R1 − 1)/Rk
1 . (2.21)

Then, through rigorous analysis, it is proven in [15, Theorem 1]that the second stage
starts and it is characterized in what follows.

Now, the dynamic behavior of (2.1)–(2.2) is briefly analyzed under the residual
regime. Since ∥d1(x, t)∥ ≤ d̄1 and |σ(t)| ≤ ϵ, from the solution the of (2.3) it is easy
to verify that

∥η(t)∥ ≤ γ1∥η(0)∥+ k1ϵ+ k2d̄1
γ1

. (2.22)

Therefore, using the control law (2.12) with modulation function ρ(t) = ρB(t), given
by (2.10) or (2.11), equation (2.2) can be rewritten as

σ̇(t) = [d(x, t)− ρB(σ(t))sgn(σ(t))] , (2.23)

d(x, t) = A21η(t) + A22σ(t) + d2(x, t) , (2.24)

such that the disturbance d(t) verifies the following inequality

|d(x, t)| ≤ ∥A21∥∥η(t)∥+ |A22||σ(t)|+ |d2(x, t)|

≤ ∥A21∥
(
γ1∥η(0)∥+ k1ϵ+ k2d̄1

)
γ1

+ |A22|ϵ+ d̄2 ,

= dmax (2.25)

i.e., in the residual phase, the disturbance d(x, t) is bounded by an unknown con-
stant.
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Now, consider the following Lyapunov-like function

V (σ) =
1

2
σ2 +

1

2
(ρB(σ)− ρB(0))

2 . (2.26)

whose time derivative, along (2.23) and (2.25), is

V̇ = σσ̇ + (ρB(σ)− ρB(0))ρ̇B

≤ −(−dmax + ρB)|σ|+ (ρB(σ)− ρB(0))ρ̇B . (2.27)

At this point we have two options:

• Adaptation with Positive definite Barrier Function:

With ρB = ρPB in (2.10), the inequality (2.27) is rewritten as

V̇ ≤ −(−dmax + ρPB)|σ| − (ρPB − F̄ )
ϵF̄

(ϵ− |σ|)2 (−dmax + ρPB)

= −βσ1|σ| − ζ1βσ1|ρPB − F̄ | , (2.28)

where βσ1 = −dmax + ρPB, ζ1 = ϵF̄
(ϵ−|σ|)2 . Then, from [12, Lemma 5], one can

conclude that (2.28) satisfies

V̇ ≤ −β1V
1/2 , with β1 = βσ1

√
2min {1, ζ1} , (2.29)

that results a finite time convergence of the output variable to the region
|σ(t)| ≤ ϵ1 such that |σ(t)| ≤ ϵ1 < ϵ where ϵ1 = ϵ(1 − F/dmax) if F < dmax

and ϵ1 = 0 if F ≥ dmax.

• Adaptation with Positive Semi-definite Barrier Function:

With ρB = ρPSB in (2.11), the inequality (2.27) is rewritten as

V̇ ≤ −(−dmax + ρPSB)|σ| − ρPSB
ϵ

(ϵ− |σ|)2 (−dmax + ρPSB)

= −βσ2|σ| − ζ2βσ2|ρPSB| , (2.30)

where βσ2 = −dmax + ρPSB, ζ2 = ϵ
(ϵ−|σ|)2 . Then, from [12, Lemma 6], one can

conclude that (2.30) satisfies

V̇ ≤ −β2V
1/2 , with β2 = βσ2

√
2min {1, ζ2} , (2.31)
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that results in a finite time convergence of the output variable to the region
|σ(t)| ≤ ϵ2 such that |σ(t)| ≤ ϵ2 < ϵ where ϵ2 = ϵdmax/(dmax + 1).

Thus, the proof is completed.

It is clear from the proof of the Theorem 1 that, independently of the barrier
strategy (positive definite or semi-definite) used in the residual phase, the proposed
MBF adaptive scheme is simple and advantageous, since the monitoring function
is able to ensure the convergence of the closed-loop system in a fixed time while
the positive semi-definite barrier function allows the elimination of the chattering in
the residual phase. For the positive definite barrier function case, a residual sliding
mode remains in steady state but has the advantage of zeroing the output error if
the persistent disturbance is ultimately small enough.

2.4 Numerical Examples

In this section two simulation results are presented, an academic example and
application to anti-lock braking system, to illustrate the advantages of the MBF
strategy.

2.4.1 Academic Example

In order to validate the MBF control strategy, this section considers an academic
example of output-feedback stabilization for a nonlinear unstable system (2.1)–(2.2)

such that xT = [ηT , σ], A11 =

[
−2 1

1 −2

]
, A12 =

[
0

1

]
, A21 =

[
1 1

]
, A22 = 1.75,

Kp = 1,

d1(x, t) =

[
sin(10t)sgn(η1η2)

arctan(η1 + η2 + σ) + cos(2t) + exp(−σ2/2)

]
[11(t)− 11(t− 25)]

d2(x, t) =
[
0.25(1− exp(−|η2|))− exp(−σ2/2)

]
[11(t)− 11(t− 25)] ,

where 11(·) is the unit step function and the initial conditions are ηT (0) = [3 ,−2]

and σ(0) = 1.
In the numerical tests, a maximum overshoot ∆ = 0.5, maximum transient time

T = 1 [sec] and maximum residual value ϵ = 0.1 was chosen as performance criteria.
Then, the switching adaptation based on monitoring function follows (2.5) with
parameters R1 = 1.01 and R2 = 1.1. Estimates for the disturbances bounds d̄1 and
d̄2 are found according to (2.6) and (2.7), respectively, by setting b1 = b2 = 1.21,
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c1 = 0.05 and c2 = 0.1. The hybrid state-norm observer (2.8) parameters are
λ1 = −0.8, k1 = 1.1 and k2 = 1. The constants of the sliding mode controller (2.12)
are cσ = 0.003, cdσ = 0.4, cη = 0.5 (see below (2.17)) and δ = 0.0001. The results
obtained for the proposed sliding mode controller combining monitoring and barrier
functions are shown in Figs. 2.2 and 2.3.

The adaptation based on monitoring function guarantees the convergence of σ(t)
into the ϵ-neighborhood of the origin in fixed time t = 0.9582 and 34 switchings,
blue see Figures 2.2(b), 2.2(d), 2.3(b) and 2.3(d). In addition, the maximum allowed
overshoot specification is satisfied, Figures 2.2(b) and 2.3(b). Since in the sliding
mode reaching phase the monitoring functions were configured identically, there is
an identical behavior of the closed loop system during time interval 0 ≤ t ≤ t.

During the residual phase, if the barrier function is positive definite, depending
on the value of the constant F , different behaviors can be observed. Note that,
the upper bound dmax for the absolute value of the equivalent disturbance d(x, t)

in equation (2.24) is an unknown constant. Therefore, if F is chosen large enough
such that F > dmax, the ideal sliding mode occurs with σ(t) ≡ 0 ∀t > t and the
control signal switches at infinite frequency with amplitude F = 2. This situation
is illustrated by the blue curves in Figures 2.2(b) and 2.2(c). On the other hand, if
F < |d(x, t)|, the control objective is achieved with the practical sliding mode and
continuous control signal until F > |d(x, t)| where the ideal sliding mode begins,
these situations are illustrated in red and yellow in Figures 2.2(b) and 2.2(c) with
F = 1 and F = 0.5, respectively. While F < |d(x, t)|, the control signals behave as
estimates of the equivalent control. When F > |d(x, t)|, the control signals switch
in infinite frequency and amplitude F .

If the barrier function is positive semi-definite, it is easy to verify that the control
signal u attempts to cancel the equivalent disturbance d(x, t) in (2.23), mathemat-
ically, u ≈ −d(x, t), see Figure 2.3(c). In other words, the control signal is always
an estimate of the equivalent control. In a nutshell, the practical stabilization (con-
vergence to a predefined neighborhood of the origin) is reached with a continuous
control signal, see Figure 2.3.

When comparing the numerical results, it is noted that both approaches are able
to ensure the control objective with guaranteed transient and steady-state perfor-
mance for the output signal, see Figures 2.2(a), 2.2(b) and 2.3(a), 2.3(b).

2.4.2 Application Example

In sudden braking processes, the car’s wheel may lock up, leading the driver to
loose the vehicle control. In general, this behavior results in accidents with material
damage and often involves fatal victims. To attenuate those effects, an important
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Figure 2.2: Simulation results - MBF control with positive definite barrier.
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electromechanical device was designed, the Anti-lock Braking System (ABS). The
ABS is able to detect the locking up of one or more wheels, and selectively reduce
the braking pressure by means of the torque to be applied. Such procedure ensures
to the driver that, even in a total braking situation, the vehicle will stop safely and
quickly.

In this section, a simplified mathematical model based on INTECO laboratory
anti-lock braking system [1] is developed. Consider the free body diagram in Fig-
ure 2.4, the lower wheel represents the car motion while the upper one represents
the car’s wheel motion and all parameters are given in Table 2.1. The upper wheel
is equipped with the disk brake system connected to the brake lever which during
deceleration is responsible for increasing the intensity of contact between the wheels
generating a large friction force and causing the wheel speed reduction. From Fig-
ure 2.4, it is easy to see that the torque on the upper wheel is given by the friction
torque between the wheels FNr1µ(λ), by the friction torque in upper bearing M10,
and the input braking torque M1. On the other hand, two friction torques appear
on the lower wheel: between the wheels FNr2µ(λ) and in the lower bearing M20.
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Figure 2.3: Simulation results - MBF control with semi-positive definite barrier.
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Figure 2.4: Free body diagram of ABS [1].

Besides these, we have two forces acting on the lower wheel: the gravity force of the
upper wheel and the pressing force of the shock absorber. Moreover, the constant
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Mg represents the gravitational and shock absorber torques acting on the balance
lever.

Table 2.1: Parameters of INTECO ABS.
Parameter Description Unit Value

r1 radius of upper wheel m 0.0990
r2 radius of lower wheel m 0.0995
L balance lever length m 0.370
θ angle between the normal and the line L ◦ 65.61
J1 moment of inertia of upper wheel kgm2 7.53× 10−3

J2 moment of inertia of lower wheel kgm2 25.60× 10−3

d1 viscous friction coefficient of the upper wheel kgm2/s 1.1874× 10−4

d2 viscous friction coefficient of the lower wheel kgm2/s 2.1468× 10−4

M10 static friction of the upper wheel Nm 0.0032
M20 static friction of the lower wheel Nm 0.0925
Mg gravitational and shock absorber torques Nm 19.62

By defining η1(t) as the angular velocity of the upper wheel of radius r1 and η2(t)

as the angular velocity of the lower wheel of radius r2, the relative difference of the
wheels velocities λ(t) is given by

λ(t) :=



r2η2(t)− r1η1(t)

r2η2(t)
, r2η2(t) > r1η1(t) , η1(t) > 0 , η2(t) > 0

r1η1(t)− r2η2(t)

r1η1(t)
, r1η1(t) > r2η2(t) , η1(t) > 0 , η2(t) > 0

1 , η1(t) ≤ 0 and η2(t) > 0 or η1(t) > 0 and η2(t) ≤ 0

. (2.32)

Since the friction force is obtained as the product of the normal pressing force FN(t)

with the proportionality coefficient

µ(λ(t)) =
c4λ

p(t)

a+ λp(t)
+ c3λ

3(t) + c2λ
2(t) + c1λ(t) , (2.33)

the Newton’s second law for rotatory motion leads to

η̇1(t) =
1

J1
FN(t)r1sµ(λ)−

d1
J1

η1(t)−s1
M10

J1
− 1

J1
s1M1(t) , (2.34)

η̇2(t) = − 1

J2
FN(t)r2sµ(λ)−

d2
J2

η2(t)− s2
M20

J2
, (2.35)

with auxiliary variables

s = sgn(r2η2(t)− r1η1(t)) , (2.36)

s1 = sgn(η1(t)) , (2.37)

s2 = sgn(η2(t)) . (2.38)
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Notice that, from the sum of torques with respect to the point A in Figure 2.4, the
normal force is given by

FN(t) =
Mg + s1M1(t) + s1M10 + d1η1(t)

L(sin(θ)− sµ(λ(t)) cos(θ))
. (2.39)

Therefore, from (2.32)–(2.39), the dynamics of the slip rate λ(t) is given by

dλ(t)

dt
= f(η, t) + g(η, t)M1(t) , (2.40)

satisfying

|f(η, t)| ≤ f and 0 < g ≤ |g(η, t)| , (2.41)

where f and g are unknown constants, see Appendix.
In this chapter, the braking torque applied to the upper wheel, M1 [Nm], is

defined as the input signal, the state vector is defined as η(t) = [η1(t) , η2(t)]
T ∈ R2

and λ(t) is an output of unitary relative degree. Besides that, r1η1 represents the
vehicle wheel longitudinal velocity, while r2η2 represents the car velocity.

The role of the ABS is to control the wheel slip to maximize the coefficient
of friction between the tire and road for any given road surface while the car is
controllable. In this sense, the control objective is defined as the regulation of
the slip coefficient in λref such that µ(λ) reaches its maximum value µ [90–92].
Figure 2.5 shows in blue the longitudinal friction µ-λ curve generated from (2.33)
with parameters of Table 2.2 and in red color the optimum ABS operation point is
denoted, where λref = 0.1875 and µ = µ(λref) = 0.3954.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

Figure 2.5: Longitudinal friction µ-λ curve.
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Table 2.2: Parameters of the friction coefficient equation (2.33).
Parameter Value

a 0.00025724985785
c1 -0.04240011450454
c2 0.00000000029375
c3 0.03508217905067
c4 0.40662691102315
p 2.09945271667129

The output error is defined as

σ(t) := λ(t)− λref , (2.42)

such that, from (2.32), its dynamics is governed by

σ̇(t) = f(η, t) + g(η, t)M1 , (2.43)

where it is assumed the torque M1 as an input signal. Of course (2.34), (2.35) and
(2.43) differ structurally from (2.1) and (2.2), nevertheless, by using the control law
(2.12) as

M1 = −sρ(t)sgn(σ(t)) , (2.44)

where s is given by (2.36), the positive constant g satisfies (A.10), and modulation
function ρ(t) in (2.13), all properties and results provided from Theorem 1 are
ensured to the closed-loop system. In order to illustrate it, consider the following
energy function

Vσ =
1

2
σ2 , (2.45)

whose time derivative, along with (2.43) and (2.44), is

V̇σ = σσ̇

= σ [f(η, t) + g(η, t)M1] = σg(η, t)
[
g−1(η, t)f(η, t) +M1

]
= σs|g(η, t)|

[
s|g−1(η, t)|f(η, t)− sρ(t)sgn(σ)

]
= σ|g(η, t)| [d(η, t)− ρ(t)sgn(σ)] , d(η, t) = |g−1(η, t)|f(η, t) . (2.46)

From (A.9) and (A.10), it is possible to find an upper bound for equation (2.46)
such as

V̇σ ≤ |g(η, t)| [|d(η, t)| − ρ(t)] |σ| . (2.47)
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Thus, during the reaching phase, by using ρ(t) = ρM(t) in (2.14) with cσ = cη = 0,
cdσ = 1, d̂2(k) = d̂(k), the inequality (2.47) is rewritten as

V̇σ ≤ −|g(η, t)|(d̂(k)− d)|σ| − δ|g(η, t)||σ| . (2.48)

From Theorem 1, no matter how large d is, there exist a finite switching number k̄

such that d̂(k) > d for all k ≥ k̄ and, therefore, the sliding mode condition,

σσ̇ ≤ −δg|σ| , (2.49)

is verified until the residual phase begins, where the barrier function ultimately
confines the output variable into a residual set of O(ϵ). Therefore, the ABS remains
active at its optimal operating point, leading to the quickly reaching of the threshold
velocities η

1
and η

2
.

In the simulation, the initial conditions are η1(0) = η2(0) = 180 [rad/s], the
monitoring function parameters are ϵ = 0.001, R1 = 1.01, R2 = 2.5, ∆ = 0.001

while T ∈ {0.25, 0.50, 0.75, 1} and the positive barrier function is F = 4.5.
Figures 2.6 and 2.7 show the performance of the proposed adaptive sliding mode

controller (2.44) with monitoring and barrier functions in an ABS for distinct values
of maximum transient time T . As mentioned earlier, the ABS is turned on only for
a short period of time. Figures 2.6(d) and 2.7(d) show that the system is activated
for approximately 1.5 seconds and less than 1.6 seconds is needed to completely
stop the car which had an initial velocity of 64 km/h, see Figures 2.6(g), 2.6(h)
and Figures 2.7(g), 2.7(h) with traveled distances given in Figures 2.6(i), 2.6(j) and
Figures 2.7(i), 2.7(j). With a finite number of commutations, the control objective
is reached, see Figures 2.6(a), 2.6(b) and Figures 2.7(a), 2.7(b), and the braking
process is carried out with the optimum efficient friction coefficient, Figure 2.6(c)–
2.6(f) and Figure 2.7(c)–2.7(f).

Notice that, no matter which barrier function was chosen, positive definite or
positive semi-definite, the proposed strategy based on monitoring function ensures
the design of adaptation gains which can increase in an event-driven fashion during
the reaching phase to respect the maximum allowed transient time T and over-
shooting ∆, see Figures 2.6 and 2.7. There are differences between the proposed
approaches and they are clear in the residual phase. Of course, from an application
point of view, the chattering phenomenon can cause unacceptable loading and en-
ergy consumption of the actuators and, therefore, it should be avoided. Although
the positive barrier is effective to guarantee the control objectives, the positive semi-
definite one is also efficient since it avoids chattering, as can be seen from Figures
2.6(d)–2.6(f) and 2.7(d)–2.7(f), respectively. In the ABS problem, this residual error
does not have any significant effect.
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In order to establish a comparison with another existing method , consider the
adaptive sliding mode control law [2],

M1 = −sK(t) sgn(σ(t)) , (2.50)

K̇(t) = K̄|σ(t)| , (2.51)

where the constants are K̄ > 0 and K(0) ≥ 0. In Figure 2.8, the initial condition is
K(0) = 0 while K̄ ∈ {25, 50, 75, 100}. This approach does not require the knowledge
of an upper bound for the disturbance but can lead to its overestimation leading to
chattering, see Figures 2.8(d)–2.8(f). Furthermore, this methodology cannot ensures
the transient pre-specification and consequently, the traveled distance may be higher
than achieved with the MBF strategy proposed here, see Figure 2.8(a)–2.8(c) and
Figures2.8(g)–2.8(j).

The sliding modes control law M1 in Figure 2.6 switches in infinite frequency
and, therefore, its slow rate component, the equivalent control M eq

1 (t), acts in order
to cancel the disturbance d(η, t) in (2.46). In other words, on the manifold σ(t) = 0,
M eq

1 (t) is the continuous control effort that yields σ̇(t) ≡ 0, i.e., M eq
1 (t) = −d(η, t).

Although M eq
1 (t) cannot be obtained physically, a realizable estimate is found by

averaging the discontinuous control with a first-order filter [93]

τṀav
1 (t) = −Mav

1 (t) +M1 , Mav
1 (0) = 0 , (2.52)

satisfying, almost everywhere,

|Mav
1 (t)−M eq

1 (t)| ≤ O(τ) , lim
τ→0

O(τ) = 0 . (2.53)

In practice, the time constant 0 < τ << 1 should be small enough as compared to
the slow frequency components and large enough to filter out the high frequency
components [10].

Now, there is one more detail to be explored between the MBF method with
positive definite (MPBF) or semi-definite barrier function (MPSBF). The control
gain generated by the positive semi-definite barrier leads to a slightly inferior per-
turbation compensation. This is not significant since a precise compensation is not
needed. Note that the chattering does not occur at the price of a residual nonzero
error in σ(t). On the other hand, in the positive definite barrier case, high frequency
chattering appears (only) when the bias F̄ in (2.10) exceeds the disturbance upper
bound d̄. Then, the equivalent control M eq

1 (t) exactly compensates the perturbation,
see Figure 2.9.
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Figure 2.6: ABS with MBF control and positive definite barrier.
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Figure 2.7: ABS with MBF control and semi-positive definite barrier.
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Figure 2.8: ABS with adaptive SMC [2].
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Figure 2.9: Comparison between the control efforts.
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Chapter 3

Multivariable Unit Vector Control
with Prescribed Performance via
Monitoring and Barrier Functions

This chapter proposes an adaptive unit vector control approach via output feedback
for a class of multivariable nonlinear systems. The sliding-mode based controller can
deal with parametric uncertainties and (un)matched disturbances with unknown up-
per bounds. Fixed-time convergence of the output to a predefined neighborhood of
the origin of the closed-loop system is proved with guaranteed transient perfor-
mance. The novelty of our result lies on combining two important adaptation tools:
monitoring and barrier functions. The adaptation process is divided into two stages,
where an appropriate monitoring function allows for the specification of performance
criteria during the transient phase, while the barrier function ultimately confines the
output within a small residual set in steady-state. Simulation results including an
application to Overhead Crane System illustrate the advantages of the proposed
adaptive control strategy.

3.1 Problem Formulation

Consider the uncertain MIMO nonlinear plant in regular form

η̇(t) = A11η(t) + A12σ(t) + d1(η(t) , σ(t) , t) , (3.1)

σ̇(t) = A21η(t) + A22σ(t) + d2(η(t) , σ(t) , t) +B2u , (3.2)

where the state is defined as xT (t) := [ηT (t) , σT (t)] ∈ Rn, η(t) ∈ Rn−m its unmea-
sured part, σ(t) ∈ Rm is the output, u ∈ Rm is the input control vector while the
mapping d1 : Rn−m ×Rm ×R+ 7→ Rn−m and d2 : Rn−m ×Rm ×R+ 7→ Rm represent
the disturbances. Moreover, the following assumptions are considered throughout

29



the chapter:

(A1) The matrix A11 ∈ R(n−m)×(n−m), A12 ∈ R(n−m)×m, A21 ∈ Rm×(n−m), A22 ∈
Rm×m and B2 ∈ Rm×m are constant and uncertain.

(A2) It is known that A11 is Hurwitz, i.e., the plant (3.1)–(3.2) has minimum phase.
This assumption is extremely important since it allows the design of a stable
upper bound for the norm of the unmeasured state variable η(t).

(A3) The norm of matrix A12 is majored by a known constant cησ.

(A4) The disturbances d1(x(t) , t) and d2(x(t) , t) are Lipschitz in x, piece wise
continuous in t and uniformly bounded by unknown constants d̄1 and d̄2:

||d1(x, t)|| ≤ d̄1 and ||d2(x, t)|| ≤ d̄2 , ∀t ≥ 0 .

(A5) There exists a matrix Sp such that the high-frequency gain matrix is defined
by

Kp := B2Sp

and −Kp is Hurwitz.

(A6) Only the output σ(t) is available to the feedback design.

The control objective is the ultimate confinement of σ(t) to an ϵ-vicinity of the
origin in the global sense for all instant t greater than a finite time ts (||σ(t)|| ≤
ϵ, ∀t ≥ ts), by using only output feedback. To reach it, with the constraint of
unknowing the upper bounds d̄1 and d̄2, some adaptation strategy is necessary.

3.2 Basic Techniques

In this section, basic techniques for the proposed control strategy are introduced.

3.2.1 Norm Observer

The first step to start the control design is to overcome the unmeasured state prob-
lem. The norm observer, also called first order approximation filter (FOAF), is an
important tool that allows to reach it by using only output information, for more
details see [87]. Lemma 1 shows how the solution of the dynamics

˙̄η(t) = −k1η̄(t) + k2(||σ(t)||+ d̄1) , (3.3)
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is an upper bound for the norm of η(t) in (3.1) where, from (A4), d̄1 is a positive
constant. Furthermore, η(t) and η̄(t) satisfy the inequality

∥η(t)∥ ≤ k3|η̄(t)|+ πη(t) , ∀t ≥ 0 , (3.4)

with constants k1, k2, k3 > 0 while πη(t) is a exponentially decreasing term and
depend on the initial conditions η(0) and η̄(0).

Lemma 1. Consider the η-dynamics in (3.1) and suppose that the assumptions
(A1)-(A3) are satisfied. Then, η̄(t) in (3.3) is a norm observer of η(t) satisfying
(3.4).

Proof. Consider the following candidate Lyapunov function

Vη(t) = η(t)TPηη(t) , Pη = P T
η > 0 , (3.5)

Pη being the solution of the Lyapunov equation

AT
11Pη + PηA11 = −Qη, Qη = QT

η > 0 , (3.6)

and the Rayleigh-Ritz inequality,

λmin{Pη}∥η(t)∥2 ≤ Vη ≤ λmax{Pη}∥η(t)∥2 , (3.7)

where λmin{·} and λmax{·} denote, respectively, the minimum and maximum eigen-
value of a given matrix.

By taking the time derivative of (3.5) with (3.1) and (3.6), one arrives at

V̇η(t) = η̇T (t)Pηη(t) + η(t)TPηη̇(t)

= ηT (t)(AT
11Pη + PηA11)η(t) + 2σT (t)AT

12Pηη(t) + 2dT1 (x, t)A
T
12Pηη(t)

= −ηT (t)Qηη(t) + 2σT (t)AT
12Pηη(t) + 2dT1 (x, t)A

T
12Pηη(t) . (3.8)

Then, equation (3.8) is upper bounded by

V̇η(t) ≤ −λmin{Qη}∥η(t)∥2 + 2∥A12∥∥Pη∥(∥σ(t)∥+ ∥d1(x, t)∥)∥η(t)∥
= −λmin{Qη}∥η(t)∥2 + 2∥A12∥λmax{Pη}(∥σ(t)∥+ ∥d1(x, t)∥)∥η(t)∥ , (3.9)

by using the inequality (3.39) and (A4),

V̇η(t) ≤ −λmin{Qη}
λmax{Pη}

Vη +
2∥A12∥λmax{Pη}

λmin{Pη}
(∥σ(t)∥+ ∥d1(x, t)∥)

√
Vη

≤ −λmin{Qη}
λmax{Pη}

Vη +
2∥A12∥λmax{Pη}

λmin{Pη}
(∥σ(t)∥+ d̄1)

√
Vη . (3.10)
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Now, defining η̃ :=
√

Vη whose time derivative is ˙̃η =
V̇η

2
√
Vη

, is possible to upper

bound it as

˙̃η(t) ≤ − λmin{Qη}
2λmin{Pη}

η̃(t) +
∥A12∥λmax{Pη}

λmin{Pη}
(∥σ(t)∥+ d̄1) . (3.11)

Now, it is defined the constants 0 < k1 <
λmin{Qη}
2λmin{Pη} and k2 >

∥A12∥λmax{Pη}
λmin{Pη} , and upper

bound for (3.11) is given by

˙̃η(t) ≤ −k1η̃(t) + k2(∥σ(t)∥+ d̄1) . (3.12)

Then, invoking the Comparison Lemma [94, p. 102], the solution η̄(t) of (3.3) is an
upper bound for η̃(t) such that

η̃(t) ≤ η̄(t) + exp(−k1t)(η̃(0)− η̄(0)) , (3.13)

consequently,

η̃(t) ≤ |η̄(t)|+ exp(−k1t)(|η̃(0)|+ |η̄(0)|) , (3.14)

and, by using the Rayleigh-Ritz inequality (3.39),

∥η(t)∥ ≤ 1√
λmin{Pη}

|η̄(t)|+ exp(−k1t)
(|η̃(0)|+ |η̄(0)|)√

λmin{Pη}
, (3.15)

therefore the inequality (3.4) is satisfied for any

k3 >
1√

λmin{Pη}
and πη(t) > exp(−k1t)

(|η̃(0)|+ |η̄(0)|)√
λmin{Pη}

. (3.16)

Note that although η̄(t) is a upper bound for the unmeasured part of the state
η(t), it cannot be implemented since, by assumption (A5), d̄1 is unknown. The next
section introduces the monitoring function, an important tool that finally allows
the implementation of an upper bound for η(t) by means of a hybrid state-norm
estimation [25].

3.2.2 Monitoring Function - Reaching Phase

The monitoring function is an appropriate switching scheme designed to compensate
the absence of information such as unknown control direction [21], unknown bounds
of disturbances [26] or disturbances with unknown and arbitrary growth rate [95].
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Here a more recent version [15] is presented in which performance specifications of
the closed-loop system could be achieved.

Definition 2. The stabilization of σ(t) is said to satisfy the reaching and residual
phase specifications, if

• ∥σ(t)∥ ≤ ∥σ(0)∥+∆, ∀t ∈ [0 , T ),

• ∥σ(t)∥ ≤ ϵ , ∀t ≥ T ,

where ∆ > 0 is the allowed maximum overshoot, T > 0 is the maximum transient
time, ε > 0 is the allowed maximum steady-state error, which can be freely specified.

In the reaching phase the monitoring function should force ∥σ(t)∥ ≤ ε/R2 be-
fore a fixed time T ensuring non-infringement of the overshoot specification. The
monitoring switching scheme is such that for every k for which ∥σ(tk)∥ > ε/R2, the
next switching instant is defined as

tk+1 := min


∥σ(t)∥ = ∥σ(0)∥+∆

(
1− 1

Rk
1

)
t > tk : or

t = T
(
1− 1

Rk
1

)
and ∥σ(t)∥ > ϵ/R2

, k = 1, 2, . . .

(3.17)

where R1 > 1 and R2 > 1 are design constants. If, for some time interval t̄ < T ,
the condition ∥σ(t̄)∥ = ε/R2 is reached, then the Residual Phase (Section 3.2.3) is
started.

Moreover, the switching index k is employed in the design of positive monotoni-
cally increasing unbounded sequences d̂1(k) and d̂2(k) to counteract the absence of
constants d̄1 and d̄2, respectively, i.e.,

d̂1(k) = c1b
k
1 , (3.18)

d̂2(k) = c2b
k
2 , (3.19)

where c1 , c2 > 0, and b1 , b2 > max{R1 , R2} are arbitrarily chosen constants. Then,
it is introduced a hybrid state-norm estimation scheme, based on (3.3)–(3.4),

˙̂η(t) = −k1η̂(t) + k2(||σ(t)||+ d̂1(k)) , (3.20)

such that

∥η(t)∥ ≤ k3|η̂(t)|+ πη(t) , ∀t ≥ 0 . (3.21)
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The norm observer η̂(t) flows through a continuous state space but also moves
through different discrete switching modes, as defined by [89].

An important property of the switching rule is that, if k grows and becomes
sufficiently large, then σ(t) satisfies its predefined specifications on the reaching
phase through the switching law (3.17). In the reaching phase, the switching makes
d̂1(k) and d̂2(k) to grow unboundedly as k → ∞. As a result, during the reaching
phase, the monitoring function forces ∥σ(t)∥ ≤ ϵ/R2 before the fixed time instant T
while ensuring no violation of the overshoot specification.

3.2.3 Barrier Function - Residual Phase

The Barrier Function, for a given and fixed ε > 0, is defined as an even continuous
function ρB : χ ∈ (−ε , ε) → ρB(χ) ∈ [ b ,∞ ) strictly increasing on [ 0 , ε ) such that
lim|χ|→ε ρB(χ) = +∞, ρB(χ) has a unique minimum at zero and ρB(0) = b ≥ 0.

In the residual phase, the introduction of a barrier function imposes a hard bound
on the sliding variable by trapping it within a prescribed ϵ-vicinity. The important
features of the controllers based on barrier functions just requires the disturbances
to be bounded, but there is no need to know what the bounds are and the assurance
of avoiding overestimated control gains. Basically as shown in Figure 2.1, in sliding
mode control framework, there are two kinds of barrier functions:

• Positive definite Barrier Function (PBF)

ρpb(χ) :=
εF̄

ε− |χ| i.e., ρPB(0) = F̄ > 0 . (3.22)

• Positive Semi-definite Barrier Function (PSBF)

ρpsb(χ) :=
|χ|

ε− |χ| i.e. ρPSB(0) = 0 . (3.23)

For more details, please see [12].
The next section shows how the Barrier Functions can be employed as an adap-

tive strategy for not overestimated Unit Vector Control schemes.

3.2.4 Adaptive Unit Vector Control

The Monitoring and Barrier Function (MBF) adaptive unit vector control law is
given by

u = −ρ(t)Sp
σ(t)

∥σ(t)∥ , (3.24)
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where the matrix Sp is chosen to verify assumption (A2) and ρ(t) is the modulation
function such that

ρ(t) =

ρM(t) , if t < t̄

ρB(t) , if t ≥ t̄
. (3.25)

While the closed-loop system is in the reaching phase, it is under monitoring function
action and, using the hybrid norm observer (3.20) and disturbance estimate (3.19)
with the modulation function designed as

ρM(t) = cσ∥σ(t)∥+ cdσ d̂2(k) + cηη̂(t) + δ , (3.26)

with appropriate positive constants cσ, cd2 , cη, and δ. On the other hand, when in
the residual phase, the modulation function is driven by barrier function such that
ρB(t) is (3.22) or (3.23).

Notice, the switching law given by (3.17) means that k increases aggressively
if the output σ(t) tends to its prespecified transient T and steady-state values ∆.
This behavior makes the sequences d̂1(k) and d̂2(k) in (3.20) and (3.21) to behave
as exponentially increasing functions, ∀t ≤ t̄, so that the modulation function ρ(t)

in (3.26) is increased to force the convergence of σ(t) to a residual set of order O(ϵ).
When the condition ∥σ(t)∥ ≤ ϵ/R2 is reached, the residual phase is stared and the
increment of the sequence k ceases forever such that the adaptive scheme is driven
by the barrier functions (3.22) or (3.23).

3.3 Stability Analysis

Theorem 2 summarizes the main results of the closed-loop system stability. Notice,
inspired by [96], in our MIMO control strategy, the only required a priori information
about the matrix B2 of the plant is the knowledge of a matrix Sp such that Kp =

B2Sp and −Kp is a Hurwitz matrix. This relaxes the positive definiteness property
and allows the application of our unit vector control.

Theorem 2. Consider the multivariable system (3.1)-(3.2), the monitoring scheme
with switching times (3.17), switching-based disturbance estimates (3.18) and (3.19),
hybrid norm observer (3.20), barrier function (3.22) or (3.23), and the output-
feedback unit vector control law (3.24) with modulation function (3.25). Assume that
(A1)–(A6) hold. Then, all prespecified transient and steady-state behaviors (max-
imum overshoot ∆, maximum transient time T and residual absolute error ∥σ(t)∥
less than ϵ) are guaranteed. Furthermore, there exists an unknown upper bound
dmax for the equivalent disturbance in equation (3.2) and the practical stabilization
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is achieved, with the output error σ(t) ultimately converging to the interior of an
ϵ-neighborhood of the origin so that:

• If the barrier function is the positive definite in (3.22), ∥σ(t)∥ ≤ ϵ1 such that
∥σ(t)∥ ≤ ϵ1 < ϵ where ϵ1 = ϵ(1−F/dmax) if F < dmax and ϵ1 = 0 if F ≥ dmax.

• If the barrier function is the positive semi-definite in (3.23), ∥σ(t)∥ ≤ ϵ2 < ϵ

where ϵ2 = ϵdmax/(dmax + 1).

Then, practical stabilization is achieved, with the output signal converging ulti-
mately close to an ε-neighborhood of the origin. Moreover, all the closed-loop signals
are uniformly bounded and all prespecified reaching and residual phase behavior are
guaranteed as well.

Proof. Consider the following Lyapunov candidate

V (σ) = σTPσ , (3.27)

where P = P T is the solution of the Lyapunov Equation PKp +KT
p P = I. Then,

its time derivative satisfies

V̇ = σTPσ̇ + σ̇TPσ

= σT
(
PA22 + AT

22P
)
σ + 2ηTAT

21Pσ + 2dT2 Pσ + σTPB2u+ uTBT
2 Pσ . (3.28)

By using the control law (3.24) and (A4),

V̇ = σT
(
PA22 + AT

22P
)
σ + 2ηTAT

21Pσ + 2dT2 Pσ − ρ

∥σ∥σ
T (PKp +KT

p P )σ

= σT
(
PA22 + AT

22P
)
σ + 2ηTAT

21Pσ + 2dT2 Pσ − ρ∥σ∥
≤
[
λmax

(
PA22 + AT

22P
)
∥σ∥+ 2λmax (P ) ∥A21∥∥η∥+ 2λmax (P ) ∥d2∥ − ρ

]
∥σ∥ .

Then, employing the inequality (3.21) and defining cσ > λmax

(
PA22 + AT

22P
)
,

cdσ > max(2λmax (P ) ∥A21∥ , 2λmax (P )), and cη > 2λmax (P ) ∥A21∥, one has

V̇ ≤ [cσ∥σ∥+ cηη̂ + cdσdσ − ρ] ∥σ∥
=
[
cσ
√
V + cηη̂ + cdσdσ − ρ

]√
V ,

where dσ(t) := ∥d2(t)∥ + πη(t). Thus, by using modulation function ρ(t) = ρM(t),
as in (3.26),

V̇ ≤ −δ
√
V + cdσ

(
dσ − d̂2

)√
V

≤ cdσ

(
dσ − d̂2

)√
V ,

36



Now, defining V̄ :=
√
V = ∥σ∥ whose time derivative is ˙̄V = V̇

2
√
V

and upper
bounded by

˙̄V ≤ cdσ
2

(
dσ − d̂2

)
. (3.29)

Notice that dσ can be upper bounded by a constant d̄σ,

dσ ≤ d̄σ , (3.30)

such that d̄σ ≥ d̄2 + πη(0). Nevertheless, by assumption d̄σ depends on the unavail-
able information d̄2 and η(0).

First, it is proved by contradiction that, if one starts in the Reaching Phase
(∥σ∥ > ϵ), then after at most finite number of switchings, the Residual Phase
(∥σ∥ ≤ ϵ) will start. Indeed, suppose that the system never enters in Residual
Phase. Then, from (3.17), d̂1(k) and d̂2(k) will switch without stopping either due
to ∥σ(t)∥ → ∥σ(0)∥ + ∆ or to t → T . Therefore, from the σ-equation and taking
(3.18), (3.19) and (3.30) into consideration, it follows that, no matter how large d̄σ

is, after at most finite switchings, one has

d̂2(k) > d̄σ , ∀t ∈ [tk , tk+1 ) . (3.31)

Once condition (3.31) is satisfied, the disturbance estimate d̂2 will completely
dominate the right-hand side of inequality (3.29) and guarantees that there exist a
positive integer k̃ > 0, such that, ∀k ≥ k̃ ,

˙̄V < 0 , ∀t ∈ [tk , tk+1 ) . (3.32)

The inequality (3.32) implies that any new switching is only due to t = T (1−1/Rk
1)

because, from (3.17), ∥σ(t)∥ = ∥σ∥ +∆(1− Rk
1) implies that ∥σ∥ is increasing. As

a result, the time interval between two switchings is

tk+1 − tk = T (1− 1/Rk
1)− T (1− 1/Rk−1

1 ) = T (R1 − 1)/Rk
1 . (3.33)

Then, through rigorous analysis, it is proven in [15, Theorem 1] that the second
stage starts and it is characterized in what follows.

Now, the dynamic behavior of (3.1)–(3.2) is briefly analyzed under the residual
regime. Since ∥d1(x, t)∥ ≤ d̄1 and |σ(t)| ≤ ϵ, from (3.3) and (3.4), it is easy to verify
that

∥η(t)∥ ≤ k2k3
k1

(ϵ+ d̄1) + πη(t̄) . (3.34)
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Therefore, by using control law (3.24) with modulation function based on barrier
(3.26), the equation (3.2) can be rewritten as

σ̇(t) = Kp

[
d(x, t)− ρB(σ(t))

σ(t)

∥σ(t)∥

]
, (3.35)

d(x, t) = K−1
p A21η(t) +K−1

p A22σ(t) +K−1
p d2(x, t) , (3.36)

with equivalent disturbance d(x, t) satisfying

∥d(x, t)∥ ≤ ∥K−1
p ∥∥A21∥∥η(t)∥+ ∥K−1

p ∥∥A22∥∥σ(t)∥+ ∥K−1
p ∥∥d2(x, t)∥

≤ ∥K−1
p ∥

{
∥A21∥

[
k2k3
k1

(ϵ+ d̄1) + πη(t̄)

]
+ ∥A22∥ε+ d̄2

}
= dmax , (3.37)

in other words, in residual phase, the disturbance d(x, t) is upper bounded by un-
known constant dmax.

Now, consider the following candidate Lyapunov function

V =
1

2
σTPσ +

1

2
(ρB − ρB(0))

2 , P = P T > 0 , (3.38)

and the Rayleigh-Ritz inequality,

λmin(P )∥σ∥2 ≤ σTPσ ≤ λmax(P )∥σ∥2 . (3.39)

The time derivative V , along (3.37) and (3.35), satisfies

V̇ =
1

2
σTPσ̇ +

1

2
σ̇Pσ + (ρB − ρB(0))ρ̇B

= dTKT
p Pσ − 1

2

ρB
∥σ(t)∥σ

T (PKp +KT
p P )σ + (ρB − ρB(0))ρ̇B

= dTKT
p Pσ − 1

2
ρB∥σ∥+ (ρB − ρB(0))ρ̇B

≤ −(−2∥Kp∥λmax(P )∥d∥+ ρB)

2
∥σ∥+ (ρB − ρB(0))ρ̇B

≤ −(−2∥Kp∥λmax(P )dmax + ρB)

2
∥σ∥+ (ρB − ρB(0))ρ̇B . (3.40)
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At this point we have two options:

• Adaptation with Positive definite Barrier Function

With ρB = ρPB in (3.22), the inequality (3.40) is rewritten as

V̇ ≤ −(−2∥Kp∥λmax(P )dmax + ρPB)

2
∥σ∥+ (ρPB − F̄ )ρ̇PB

= −(−2∥Kp∥λmax(P )∥dmax + ρPB)

2
∥σ∥+

+ (ρPB − F̄ )
ϵF̄

(ϵ− ∥σ∥)2
1

∥σ∥

(
σTKpd− ρPB

σTKpσ

∥σ∥

)
≤ −(−2∥Kp∥λmax(P )∥dmax + ρPB)

2
∥σ∥+

+ (ρPB − F̄ )
ϵF̄λmin(Kp)

(ϵ− ∥σ∥)2
( ∥Kp∥
λmin(Kp)

dmax − ρPB

)
∥σ∥

≤ −(−d̄max + ρPB)

2
∥σ∥ − (ρPB − F̄ )

ϵF̄λmin(Kp)

(ϵ− ∥σ∥)2
(
−d̄max + ρPB

)
≤ −(−d̄max + ρPB)

2
∥σ∥ − (ρPB − F̄ )

ϵF̄λmin(Kp)

(ϵ− ∥σ∥)2

(
−d̄max + ρPB

)
2

= −βσ1
∥σ∥√
2
− ζ1βσ1

|ρPB − F̄ |√
2

, (3.41)

where βσ1 = −d̄max+ρPB√
2

, ζ1 = ϵF̄λmin(Kp)

(ϵ−∥σ∥)2 , and by using (3.37), the unknown
constant

d̄max = max

{
2λmax(P ),

1

λmin(Kp)

}
∥Kp∥dmax . (3.42)

Then, from [12, Lemma 5], one can conclude that (3.41) satisfies

V̇ ≤ − 1√
λmin{P}

βσ1

√
λmin{P}∥σ∥√

2
− ζ1βσ1

|ρPB − F̄ |√
2

≤ −β1

(√
λmin{P}√

2
∥σ∥+ 1√

2
|ρPB − F̄ |

)

≤ −β1V
1/2 , with β1 = βσ1

√
2min

{
1√

λmin{P}
, ζ1

}
, (3.43)

that results a finite time convergence of the output variable to the region
|σ(t)| ≤ ϵ1 such that |σ(t)| ≤ ϵ1 < ϵ where ϵ1 = ϵ(1 − F/dmax) if F < dmax

and ϵ1 = 0 if F ≥ dmax.
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• Adaptation with Positive Semi-definite Barrier Function

With ρB = ρPSB in (3.23), the inequality (3.40) is rewritten as

V̇≤− (−2∥Kp∥λmax(P )dmax + ρPSB)

2
∥σ∥+ ρPSBρ̇PSB

=− (−2∥Kp∥λmax(P )dmax + ρPSB)

2
∥σ∥+

+ ρPSB
ϵ

(ϵ− ∥σ∥)2
1

∥σ∥

(
σTKpd− ρPSB

σTKpσ

∥σ∥

)
≤− (−2∥Kp∥λmax(P )dmax + ρPSB)

2
∥σ∥+

+ ρPSB
ϵλmin(Kp)

(ϵ− ∥σ∥)2
( ∥Kp∥
λmin(Kp)

∥d∥ − ρpsb

)
≤− (−2∥Kp∥λmax(P )dmax+ρPSB)

2
∥σ∥+

+ρPSB
ϵλmin(Kp)

(ϵ−∥σ∥)2
( ∥Kp∥
λmin(Kp)

dmax−ρPSB

)
≤− (−d̄max + ρPSB)

2
∥σ∥ − ρPSB

ϵλmin(Kp)

(ϵ− ∥σ∥)2
(
−d̄max + ρPSB

)
≤− (−d̄max + ρPSB)

2
∥σ∥ − ρPSB

ϵλmin(Kp)

(ϵ− ∥σ∥)2
(−d̄max + ρPSB)

2

=− βσ2
∥σ∥√
2
− ζ2βσ2

|ρPSB|√
2

, (3.44)

where βσ2 = −d̄max+ρPSB√
2

, ζ2 = ϵλmin(Kp)

(ϵ−∥σ∥)2 , and by using (3.37), the unknown
constant d̄max given by (3.42).

Then, from [12, Lemma 6], one can conclude that (3.44) satisfies

V̇ ≤ − 1√
λmin{P}

βσ2

√
λmin{P}∥σ∥√

2
− ζ2βσ2

|ρPSB|√
2

≤ −β2

(√
λmin{P}√

2
∥σ∥+ 1√

2
|ρPSB|

)

≤ −β2V
1/2 , with β2 = βσ2

√
2min

{
1√

λmin{P}
, ζ2

}
, (3.45)

that results in a finite time convergence of the output variable to the region
∥σ(t)∥ ≤ ϵ2 such that ∥σ(t)∥ ≤ ϵ2 < ϵ where ϵ2 = ϵdmax/(dmax + 1).

Thus, the proof is completed.

In this chapter, we consider a perturbed and uncertain system with state sep-
arated by their internal and external dynamics whose solutions are η(t) and σ(t),
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respectively. Two strategies are employed. In both cases, the monitoring function,
without any knowledge of the disturbances’ upper bounds, is able to drive the slid-
ing variable σ(t) to inside of a prespecified ϵ-neighborhood of the origin ensuring
that there are no violation of the desired overshoot and settling time. It is worth
to mention that the residual width ϵ in (3.22) and (3.23) is an arbitrary parameter
completely chosen by the designer, i.e., different from [18] where an estimate of the
equivalent control based on filtering is employed, our strategy does not depend on
any upper bounds of the disturbance or its derivative, see inequality (21) of [18].

Initially, the monitoring function adapts the gain of the unit vector controller
by using a monotonically increasing sequence k, given by (3.17), able to increase
without bound until the controller’s gain (3.26) achieves its appropriated value to
lead σ(t) to the residual phase. In the first scenario, the adaptive scheme is given by
a combination of the positive definite barrier and the monitoring functions, (3.22)
and (3.26). In this case, already inside of the residual set ϵ, if the bias F is sufficient
larger than the norm of the equivalent disturbance, the control signal is discontinuous
and the positive barrier is able to guarantee ideal sliding mode (σ ≡ 0) and, if F is
insufficient to overcome the norm of the equivalent disturbance, the control signal
is smooth and the practical sliding mode (∥σ∥ ≤ ϵ) is achieved. In the second
case, by using the semi-positive definite barrier function (3.23), the control signal is
continuous and only the practical sliding mode can be indeed reached.

On the other hand, the unmeasured part of the state, the variable η(t), will
converge to a domain around the origin dependent on the unknown but bounded
the amplitude of the perturbation.

3.4 Numerical Examples

In this section two simulation results are presented, an academic example and ap-
plication to an overhead crane system, to illustrate the advantages of the MBF
strategy.

3.4.1 Academic Example

In order to validate the proposed control strategy, this section considers an aca-
demic example of output-feedback stabilization for a MIMO nonlinear unstable

system (3.1)–(3.2) such that A11 =

[
−2 1

1 −2

]
, A12 =

[
0 1

1 0

]
, A21 =

[
1 1

1 1

]
,
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A22 =

[
1 1

0.4 0.5

]
, B2 =

[
1 0

0 1

]
,

d1(x, t) =

[
sin(10t)sgn(η1η2)

arctan(η1 + η2 + σ1 + σ2) + cos(2t) + exp(−σ2
2/2)

]
[11(t)− 11(t− 25)]

d2(x, t) =

[
0.25(1− exp(−|η2|))− exp(−σ2

2/2)

exp(−σ2
1/2) + cos(t)

]
[11(t)− 11(t− 25)]

where 11(t) is the step function and initial conditions ηT (0) = [3 ,−2] and σT (0) =

[2 ,−1].
It was chosen as performance criteria a maximum overshoot ∆ = 0.5, maximum

transient time T = 5 [sec] and maximum residual ϵ = 0.01. Then, the switching law
based on monitoring function follows (3.17) with parameters R1 = 2 and R2 = 1.2.
Estimates for disturbances bounds d̄1 and d̄2 are found from (3.18) and (3.19),
respectively, setting b1 = 1.5, b2 = 1.2, c1 = 0.05 and c2 = 0.1. The hybrid norm
observer (3.20) parameters are λ1 = −0.8 and cησ = 1.1. The positive barrier (3.22)
has parameter F̄ = 20 and the unit vector controller (3.24) parameters are cσ = 3,

cdσ = 4, cη = 5, and Sp =

[
1 0

0 1

]
.

The results obtained for the proposed unit vector controller combining monitor-
ing, positive and semi-positive barrier functions are shown, respctively, in Figs. 3.1
and 3.2. From the control objective point of view, both approaches are able to en-
sure the practical stabilization (convergence to a predefined neighbor of the origin)
with guaranteed transient and steady-state behavior, compares Figures 3.1(a) and
3.1(b) with Figures 3.2(a) and 3.2(b). For both strategies, there is an equivalent
behavior of the closed loop system in the reach phase since the monitoring functions
were configured identically. The monitoring function is allows the specification of
the transition instant to the barrier function avoiding an abrupt discontinuity in the
control, see Figures 3.1(c) and 3.2(c). Moreover, the control effort required by using
the semi-positive barrier is considerably reduced. On the other hand, the residue
when using the positive barrier is lower, Figures 3.1(d) and 3.2(d). Notice that for
t ≥ 25 there is no perturbations therefore the semi-definite barrier goes to zero.

3.4.2 Application Example

Overhead cranes are well known machines used to dislocate heavy, large or even
hazardous materials from an origin to a target localization. This procedure is held
by lifting and lowering a given payload to avoid obstacles in the path. Cranes can
be easily found in harbors, nuclear industries, building sites, factories and airports
[39, 40, 42–44].
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Figure 3.1: Simulation results - unit vector control with monitoring and positive
barrier.
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A overhead crane is composed by the hoisting and support mechanisms, respec-
tively, hoisting line and a trolley-girder. Unfortunately, the hoisting and trolley-
girder accelerations always induce undesirable load swing. This unavoidable load
swing frequently causes efficiency drop, load damages, and even accidents [32]. More-
over, most crane systems are handled by humans which demands a long training to
avoid accidents and to increase the work efficiency.

In this section, to develop a safety and efficient autonomous crane system, the
MBF Adaptive UVC is applied to the INTECO overhead crane system [97]. Consider
the free body diagram in Figure 3.3(b), xc(t), yc(t) and zc(t) are the coordinates of
the payload, xw(t) denotes the distance of the rail with the cart from the center of
the construction of the crane, yw(t) denotes the distance of the cart from the center
of the rail, R(t) denotes the length of the lift-line, α(t) denotes the angle between
the Y axis and the lift-line, β(t) denotes the angle between the negative direction
on the Z axis and the projection of the lift-line onto the XZ plane, mc is the mass
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Figure 3.2: Simulation results - unit vector control with monitoring and positive
barrier.
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of the payload, mw is the mass of the cart and ms is the mass of the moving rail.
The spherical system has been adopted such that the coordinates of the moving

rail (body of mass ms) are

xs(t) = X(t) , (3.46)

ys(t) = 0 , (3.47)

zs(t) = H , (3.48)

of the cart (body of mass mw) are

xw(t) = X(t) , (3.49)

yw(t) = Y (t) , (3.50)

zw(t) = H , (3.51)
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(a) View of INTECO 3D crane. Figure adapted
from [98].
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(b) Free body diagram of INTECO overhead
crane [97].

Figure 3.3: INTECO overhead crane - view and free body diagram.

and, of the payload (body of mass mc) are

xc(t) = X(t) +R(t)sen(α(t))sen(β(t)) , (3.52)

yc(t) = Y (t) +R(t)cos(α(t)) , (3.53)

zc(t) = H −R(t)sen(α(t))cos(β(t)) . (3.54)

The equations of motion are provided from Lagrange’s equation by considering
the payload as a point mass and neglecting the mass and stiffness of the rope. The
kinetic energy is

K =
ms

2

(
ẋ2
s + ẏ2s + ż2s

)
+

mw

2

(
ẋ2
w + ẏ2w + ż2w

)
+

mc

2

(
ẋ2
c + ẏ2c + ż2c

)
(3.55)

=
ms

2
Ẋ2 +

mw

2
(Ẋ2 + Ẏ 2) +

mc

2

(
Ẋ2 + Ẏ 2 + 2 sin(β) cos(α)Rα̇Ẋ

− cos2(α)R2β̇2 + cos(α)ṘẎ +R2α̇2 +R2β̇2 − sin(α)Rα̇Ẏ

+2 cos(β) sin(α)Rβ̇Ẋ + Ṙ2 + 2 sin(α) sin(β)ṘẊ
)
, (3.56)

and the potential energy is given by

U = (ms +mw)gH +mcg(H − cos(β) sin(α)R) . (3.57)
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Therefore, the Lagrangian is

L = K − U (3.58)

=
ms

2
Ẋ2 +

mw

2
(Ẋ2 + Ẏ 2) +

mc

2

(
Ẋ2 + Ẏ 2 + 2 sin(β) cos(α)Rα̇Ẋ

− cos2(α)R2β̇2 + cos(α)ṘẎ +R2α̇2 +R2β̇2 − sin(α)Rα̇Ẏ

+2 cos(β) sin(α)Rβ̇Ẋ + Ṙ2 + 2 sin(α) sin(β)ṘẊ
)

− (ms +mw)gH −mcg(H − cos(β) sin(α)R) . (3.59)

The equations of motion are obtained by calculating

∂

∂t

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fqi − kqi q̇i , (3.60)

for each generalized coordinate qi such that q = [X(t) , Y (t) , R(t) , α(t) , β(t)]T , lead-
ing us to

(ms +mw +mc)Ẍ +mc sin(α) sin(β)R̈ +mc cos(α) sin(β)Rα̈ +mc cos(β) sin(α)Rβ̈

= mc sin(α) sin(β)Rα̇2 +mc sin(α) sin(β)Rβ̇2 − 2mc cos(α) sin(β)α̇Ṙ+

− 2mc cos(β) sin(α)β̇Ṙ− 2mc cos(α) cos(β)Rα̇β̇ + FX − kXẊ , (3.61)

(mc +mw)Ÿ +mc cos(α)R̈−mc sin(α)Rα̈ = mc cos(α)Rα̇2 + 2mc sin(α)α̇Ṙ+

+ FY − kY Ẏ , (3.62)

mc sin(α) sin(β)Ẍ +mc cos(α)Ÿ +mcR̈ = mcRα̇2 +mcRβ̇2 −mc cos
2(α)Rβ̇2+

+mcg cos(β) sin(α) + FR − kRṘ , (3.63)

mc cos(α) sin(β)RẌ −mc sin(α)RŸ +mcR
2α̈ = −2mcα̇RṘ+

+mcg cos(α) cos(β)R +mc cos(α) sin(α)R
2β̇2 , (3.64)

mc cos(β) sin(α)RẌ +mc sin
2(α)R2β̈ = −2mcβ̇RṘ−mcg sin(α) sin(β)R+

+ 2mc cos
2(α)β̇RṘ− 2mc cos(α) sin(α)R

2α̇β̇ . (3.65)

By the assumption of small swing angles and small accelerations as presented in [32],
one has: |Ẍ| , |Ÿ | , |R̈| ≪ g , |Ṙ| ≪ |R|, leading to |Rα̈| , |Rβ̈| ≪ g, and|α̇| , |β̇| ≪ 1.
Therefore, for the overhead crane, sin(α) ≈ 1, cos(α) ≈ 0, sin(β) ≈ β, cos(β) ≈ 1

and neglecting higher-order terms, the nonlinear system (3.61)–(3.65) is simplified
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to

(ms +mw +mc)Ẍ +mcβR̈ +mcRβ̈ = FX − kXẊ , (3.66)

(mc +mw)Ÿ −mcRα̈ = FY − kY Ẏ , (3.67)

mcβẌ +mcR̈ = mcg + FR − kRṘ , (3.68)

−Ÿ +Rα̈ = 0 , (3.69)

Ẍ +Rβ̈ = −gβ . (3.70)

Consequently,

Ẍ = − kX
ms +mw

Ẋ +
1

ms +mw

FX +
1

ms +mw

βFR , (3.71)

Ÿ = − kY
mw

Ẏ +
1

mw

FY , (3.72)

R̈ = − kR
mc

Ṙ +
kX

ms +mw

βẊ − 1

ms +mw

βFX +

(
1

mc

− 1

ms +mw

β2

)
FR + g ,

(3.73)

α̈ = − kY
mw

1

R
Ẏ +

kY
mw

1

R
FY , (3.74)

β̈ = −g
1

R
β +

kX
ms +mw

1

R
Ẋ − 1

ms +mw

1

R
FX − 1

ms +mw

1

R
βFR . (3.75)

By design, the control signal are uX = FX , uY = FY and uR = FR + mcg. Then,
the nonlinear system (3.75)–(3.75) is rewritten as

Ẍ=− kX
ms +mw

Ẋ − mcg

ms +mw

β +
1

ms +mw

uX +
1

ms +mw

βuR , (3.76)

Ÿ=− kY
mw

Ẏ +
1

mw

uY , (3.77)

R̈=− kR
mc

Ṙ+
kX

ms+mw

βẊ+
mcg

ms+mw

β2− 1

ms +mw

βuX+

(
1

mc

− 1

ms+mw

β2

)
uR ,

(3.78)

α̈=− kY
mw

1

R
Ẏ +

kY
mw

1

R
uY , (3.79)

β̈=−
(
1− mc

ms +mw

)
g
1

R
β +

kX
ms +mw

1

R
Ẋ − 1

ms +mw

1

R
uX − mc

ms +mw

1

R
βuR .

(3.80)

Finally, neglecting quadratic and weakly interacting terms, one arrives to the
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nonlinear system

Ẍ=− kX
ms +mw

Ẋ − mcg

ms +mw

β +
1

ms +mw

uX , (3.81)

Ÿ=− kY
mw

Ẏ +
1

mw

uY , (3.82)

R̈=− kR
mc

Ṙ +
1

mc

uR , (3.83)

α̈=− kY
mw

1

R
Ẏ +

kY
mw

1

R
uY , (3.84)

β̈=−
(
1− mc

ms +mw

)
g
1

R
β +

kX
ms +mw

1

R
Ẋ − 1

ms +mw

1

R
uX . (3.85)

In our application example, for the sake of simplicity, the state is available for
feedback and there is no displacement in Y axis such that Y = Y (0) and Ÿ = Ẏ = 0,
then uY = 0 and, consequently, α = α(0) = π/2 and α̈ = α̇ = 0, for all t > 0.
Inspired by [99], the sliding vector σ to efficient payload transportation and the
swing suppression is designed as

σ1 = Ẋ − Ẋd + c1(X −Xd)− c2β , (3.86)

σ2 = Ṙ− Ṙd + c3(R−Rd) , (3.87)

where the constants c1, c2, c3 > 0 and the variables Xd and Rd are the desired cart
position and the desired length of the lift-line, respectively. The time derivative of
(3.86) and (3.87) are given by

σ̇1 = Ẍ − Ẍd + c1(Ẋ − Ẋd)− c2β̇

=

(
c1 −

kX
ms +mw

)
Ẋ − mcg

ms +mw

β − c2β̇ +
1

ms +mw

uX − (Ẍd + c1 + Ẋd) ,

(3.88)

σ̇2 = R̈− R̈d + c3(Ṙ− Ṙd)

=

(
c3 −

kR
mc

)
Ṙ +

1

mc

uR − (R̈d + c3Ṙd) . (3.89)

Now, inspired by [100], we introduce the feedback law

uX = (ms +mw)

[
−
(
c1 −

kX
ms +mw

)
Ẋ +

mcg

ms +mw

β + c2β̇ + U1

]
, (3.90)

uR = mc

[
−
(
c3 −

kR
mc

)
Ṙ + U2

]
, (3.91)

where U1 and U2 represent the discontinuous control law, and define the exogenous
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disturbances

d1 = −(Ẍd + c1Ẋd) , (3.92)

d2 = −(R̈d + c3Ṙd) . (3.93)

By plugging (3.90)–(3.93) in (3.88) and (3.89), the sliding variable dynamics can be
rewritten in a compact form as

σ̇(t) = d(t) + U , (3.94)

with state σ(t) = [σ1(t), σ2(t)]
T , Lipschitz disturbance d(t) = [d1(t), d2(t)]

T and
discontinuous control vector U = [U1, U2]

T .
In the simulation results, the payload must be lifted and lowered while the crane

is in motion and the swing of the payload should be kept as small as possible. The
desired trajectory is given by a parabolic shape such as

Xd(t) =

t−XM , 0 ≤ t ≤ 2XM

0, t > 2XM

, XM > 0 , (3.95)

Rd(t) = Rm +RM
(XM +Xd(t))(XM −Xd(t))

X2
M

. Rm , RM > 0. (3.96)

The crane parameters are: mc = 1kg, mw = 0.6kg, ms = 1kg, kX = 4.1kg/s,
kY = 3.1kg/s and kR = 4.1kg/s. The minimum lift length is Rm = 0.1m, the
lift length must vary of RM = 0.6m, while the cart travel from −XM to XM with
Xm = 30m. It was chosen as the performance criteria a maximum overshoot of
∆ = 0.4, maximum transient time T = 1 [sec] and maximum residual ϵ = 0.2.
Then, the switching law based on monitoring function follows (3.17) with parameters
R1 = 2 and R2 = 10. Moreover, during the residual phase, the disturbance d(t) in
(3.94) is estimated by the monitoring function such that the modulation ρM in (3.25)
is simply

ρM = d̂ = cbk , (3.97)

where c = 0.2 and b = 1.01. The positive barrier function (3.22) has the parameter

F̄ = 5 and the unit vector controller (3.24) employs Sp =

[
1 0

0 1

]
. As presented in

[100], an initial payload swing is considered with initial conditions X(0) = −29m,
Y (0) = 0m, R(0) = 0.1m, Ẋ(0) = Ẏ (0) = Ṙ = 0m/s, α(0) = 90o, β(0) = 6o and
α̇(0) = 0o/s and β̇(0) = 11.4o/s.

First, the performance of the Adaptive UVC is evaluated with monitoring and
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positive barrier functions (Figures 3.4–3.10). In closed-loop, while the reference is
given by a parabolic trajectory, the control law is able to successfully ensure the
tracking on the actuated state variables X(t), Ẋ(t), Y (t), Ẏ (t), R(t) and Ṙ(t), see
Figures 3.4–3.6, as well as the antiswing and antiskew behavior on the underactu-
ated state variables α(t), α̇(t), β(t) and β̇(t), see Figures 3.7 and 3.8. It takes less
than 10 seconds to suppress the payload oscillations, see Figure 3.8(a). From the
point of view of the prescribed tracking performance, during the reaching phase, the
monitoring function is able to guarantee an exponential increase of the modulation
function such that the sliding condition is verified in the fixed-time T = 1 (see Fig-
ure 3.9), where the dashed lines represent the frontiers of allowable excursion of the
sliding vector. Indeed, beyond the fixed-time convergence, the monitoring function
ensures that there is no overshoot violation, as specified in Definition 1. In the
residual phase, with the positive barrier function, the adaptive UVC is discontinu-
ous (Figures 3.10(a) and 3.10(b)), and leads to an exact sliding motion, i.e., σ ≡ 0

for all t > T , see Figures 3.9(e) and 3.9(f).
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(a) State variable X(t).
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(b) State variable Ẋ(t).

Figure 3.4: 3D Crane - MBF UVC with positive barrier, X(t) and Ẋ(t).

Now, the performance of the Adaptive UVC is evaluated with monitoring and
semi-positive barrier functions (Figures 3.11–3.17). In closed-loop, as in the case the
adaptive strategy with positive barrier function, while the reference is given by a
parabolic trajectory, the control law is able to successfully ensure the tracking on the
actuated state variables X(t), Ẋ(t), Y (t), Ẏ (t), R(t) and Ṙ(t), see Figures 3.11–3.13,
as well as the antiswing and antiskew behavior on the underactuated state variables
α(t), α̇(t), β(t) and β̇(t), see Figures 3.14 and 3.15. It takes less than 10 seconds
to suppress the payload oscillations, see Figure 3.15(a). From the point of view
of the prescribed tracking performance, during the reaching phase, the monitoring
function is able to guarantee an exponential increase of the modulation function
such that the sliding condition is verified in the fixed-time T = 1 (Figure 3.16),
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(b) State variable Ẏ (t).

Figure 3.5: 3D Crane - MBF UVC with positive barrier, Y (t) and Ẏ (t).
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(a) State variable R(t).
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(b) State variable Ṙ(t).

Figure 3.6: 3D Crane - MBF UVC with positive barrier, R(t) and Ṙ(t).
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(b) State variable α̇(t).

Figure 3.7: 3D Crane - MBF UVC with positive barrier, α(t) and α̇(t).

where the dashed lines represent the frontiers of allowable excursion of the sliding
vector. Indeed, beyond the fixed-time convergence, the monitoring function ensures
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(a) State variable β(t).
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(b) State variable β̇(t).

Figure 3.8: 3D Crane - MBF UVC with positive barrier, β(t) and β̇(t).

that there is no overshoot violation, as specified in Definition 1. In the residual
phase, with the semi-positive barrier function, different from the adaptive strategy
with positive barrier function, the adaptive UVC is continuous (Figures 3.17(a) and
3.17(b)), and leads to a pratical sliding motion, i.e., ∥σ∥ ≤ ϵ for all t > T , see
Figures 3.16(e) and 3.16(f).
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(a) Sliding vector, σ(t).
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Figure 3.9: 3D Crane - MBF UVC with positive barrier, σ(t) and ∥σ(t)∥.
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(a) Control and disturbance components, U1
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Figure 3.10: 3D Crane - MBF UVC with positive barrier, U and d(t).
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(b) State variable Ẋ(t).

Figure 3.11: 3D Crane - MBF UVC with semi-positive barrier, X(t) and Ẋ(t).
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Figure 3.12: 3D Crane - MBF UVC with semi-positive barrier, Y (t) and Ẏ (t).
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(a) State variable R(t).
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(b) State variable Ṙ(t).

Figure 3.13: 3D Crane - MBF UVC with semi-positive barrier, R(t) and Ṙ(t).
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Figure 3.14: 3D Crane - MBF UVC with semi-positive barrier, α(t) and α̇(t).
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(b) State variable β̇(t).

Figure 3.15: 3D Crane - MBF UVC with semi-positive barrier, β(t) and β̇(t).
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(a) Sliding vector, σ(t).
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Figure 3.16: 3D Crane - MBF UVC with semi-positive barrier, σ(t) and ∥σ(t)∥.
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(a) Control and disturbance components, U1

and d1(t).
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Figure 3.17: 3D Crane - MBF UVC with semi-positive barrier, U and d(t).
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Chapter 4

Static Event-Triggered Extremum
Seeking Control

Considering static maps, this chapter proposes a static event-triggered [63] scheme
for scalar extremum seeking control. While the extremum seeking allows the output
of a nonlinear map to be held within a vicinity of its extremum, the event-triggered
strategy is responsible to execute the control task aperiodically by using a monitor-
ing mechanism. The event-triggered strategy ensures asymptotic stability properties
to the closed-loop system and reduces control effort since the control update and
data communication only occur when a designed triggered-condition is satisfied.
Integrating Lyapunov stability theory and averaging method generalized for discon-
tinuous systems, a systematic design procedure and stability analysis is developed.
Ultimately, the resulting closed-loop dynamics exhibits the advantages of integrat-
ing both approaches, event-triggered and extremum seeking. The Zeno behavior is
precluded and the local exponential stability of the closed-loop system is guaran-
teed. An illustration of the benefits of the new control method is presented using
consistent simulation results.

4.1 Problem Formulation

We consider the following nonlinear static map

Q(θ(t)) = Q∗ +
H∗

2
(θ(t)− θ∗)2 , (4.1)

where H∗ ∈ R−{0} is the Hessian, θ∗ ∈ R is the unknown optimizer, and the input
of the map θ(t) ∈ R is designed as the real-time estimate θ̂(t) ∈ R of θ∗ additively
perturbed by the sinusoid a sin(ωt), i.e.,

θ(t) = θ̂(t) + a sin(ωt) . (4.2)
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Figure 4.1 shows the structure of the event-triggered-based extremum seeking
control system to be designed.

ZOH 1
s

+ Q(·) ×

K

Event-Triggered
Mechanism

u(t) θ̂(t)

a sin(ωt)

θ(t) y(t)

a sin(ωt)

Ĝ(t)

U(t)

U(tk)

Figure 4.1: Event-triggered based on extremum seeking scheme.

From Figure 4.1, the output of the nonlinear map (4.1) can be written as

y(t) = Q(θ(t)) = Q∗ +
H∗

2
(θ(t)− θ∗)2 . (4.3)

4.1.1 Continuous-Time Extremum Seeking

Let us define the estimation error

θ̃(t) = θ̂(t)− θ∗ , (4.4)

and the Gradient estimate

Ĝ(t) = a sin(ωt) y(t) , (4.5)

by the demodulation signal, a sin(ωt), which has nonzero amplitudes a and frequency
ω [51, 101].

From (4.2) and (4.4), we can write

θ(t) = θ̃(t) + a sin(ωt) + θ∗ , (4.6)

and, therefore, by plugging (4.6) into (4.3), y(t) can also be written as

y(t) = Q∗ +
H∗a2

4
+

H∗

2
θ̃2(t) + a sin(ωt)H∗θ̃(t)− H∗a2

4
cos(2ωt) . (4.7)
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Thus, from (4.5) and (4.7), the gradient estimate [55], is given by

Ĝ(t) =
a2H∗

2
(1− cos (2ωt)) θ̃(t) +

aH∗

2
sin (ωt) θ̃2(t)+

+

(
aQ∗ +

3a3H∗

8

)
sin (ωt)− a3H∗

8
sin (3ωt) . (4.8)

Notice the term quadratic in θ̃(t) in (4.8) may be neglected in a local analysis [102].
Thus, hereafter the gradient estimate is given by

Ĝ(t) =
a2H∗

2
(1− cos (2ωt)) θ̃(t) +

(
aQ∗ +

3a3H∗

8

)
sin (ωt)− a3H∗

8
sin (3ωt) .

(4.9)

On the other hand, from the time-derivative of (4.4) and the ESC scheme of
Figure 4.1, the dynamics that governs θ̂(t), as well as θ̃(t), is given by

˙̃θ(t) =
˙̂
θ(t) = u(t) , (4.10)

where u is the ESC law to be designed as

u(t) = KĜ(t) , ∀t ≥ 0 . (4.11)

By taking the time-derivative of (4.9) and the equation (4.10), one gets

˙̂
G(t) =

a2H∗

2
(1− cos (2ωt))u(t) + a2ωH∗ sin (2ωt) θ̃(t)

+

(
aωQ∗+

3a2ωH∗

8

)
cos (ωt)− 3a2ωH∗

8
cos (3ωt) . (4.12)

4.1.2 Event-Triggered Control Emulation of the Extremum

Seeking Design

Let tk denote the unbounded monotonically increasing sequence of time instants,
i.e.,

0 = t0 < t1 < . . . < tk < . . . , k ∈ N , lim
k→∞

tk = ∞ , (4.13)

with the aperiodic sampling intervals τk = tk+1 − tk > 0.
We consider continuous measurement of the system output while actuating the

system using an event-based approach. The actuator transforms the discrete-time
control input U(tk) to a continuous control input u(t) as in sampled data systems
with zero-order hold. By assuming that there is no delay in the Sensor-to-Controller
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and Controller-to-Actuator branches, one has

u(t) = Uk = U(tk) , t ∈ [tk , tk+1) , k ∈ N . (4.14)

Thus, define the control input for all t ∈ [tk , tk+1), k ∈ N,

uk = KĜ(tk) , (4.15)

and we introduce the error vector

e(t) := Ĝ(tk)− Ĝ(t) , ∀t ∈ [tk , tk+1) , k ∈ N . (4.16)

Therefore, by using the event-triggered control law (4.15), adding and subtracting
the term a2H∗K

2
(1− cos (2ωt)) Ĝ(t) into (4.12) and adding and subtracting the term

KĜ(t) into (4.10), one arrives at the Input-to-State Stable (ISS) representation of
the dynamics of Ĝ(t) and θ̃ with respect to the error vector e(t) in equation (4.16):

˙̂
G(t)=

a2H∗K

2
(1− cos (2ωt)) Ĝ(t) +

a2H∗K

2
(1− cos (2ωt)) e(t)− 3a2ωH∗

8
cos (3ωt)

+ a2ωH∗ sin (2ωt) θ̃(t) +

(
aωQ∗ +

3a2ωH∗

8

)
cos (ωt) , (4.17)

˙̃θ(t)=KĜ(tk)+KĜ(t)−KĜ(t)=KĜ(t)+K
[
Ĝ(tk)−Ĝ(t)

]
=
a2H∗K

2
(1− cos (2ωt)) θ̃(t) +Ke(t) +

(
aQ∗K +

3a3H∗K

8

)
sin (ωt)+

− a3H∗K

8
sin (3ωt) . (4.18)

In a conventional sampled-data implementation, the transmission times are dis-
tributed equidistantly in time, meaning that tk+1 = tk + h, for all k , and some
interval h > 0. In event-triggered control, however, these transmission are orches-
trated by a monitoring mechanism that invokes transmissions when the difference
between the current value of the output and its previously transmitted value be-
comes too large in an appropriate sense [69].

4.1.3 Static Event-Triggering Condition

In Definition 3 our triggering strategy is presented.

Definition 3 (Static-Triggering Condition). Consider the nonlinear mapping Ξ :

R× R 7→ R given by

Ξ(Ĝ, e) = σĜ2(t) + Ĝ(t)e(t) , (4.19)
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and K be the control gain in (4.15). The event-triggered controller with triggering
condition consists of two components:

1. A set of increasing time sequence I = {t0 , t1 , t2 , . . .} with t0 = 0 generated
under the following rules:

• If
{
t ∈ R+ : t > tk ∧ Ξ(Ĝ, e) < 0 = ∅

}
, then the set of the times of the

events is I = {t0 , t1 , . . . , tk}.
• If

{
t ∈ R+ : t > tk ∧ Ξ(Ĝ, e) < 0 ̸= ∅

}
, the next event time is given by

tk+1 = min
{
t ∈ R+ : t > tk ∧ Ξ(Ĝ, e) < 0

}
, (4.20)

which is the event-trigger mechanism.

2. A feedback control action updated at the generated triggering instants given by

uk = KĜ(tk) , ∀t ∈ [tk , tk+1) , k ∈ N . (4.21)

4.1.4 Time-scaling System

By using the transformation t̄ = ωt where

ω :=
2π

T
, (4.22)

it is possible to rewrite the dynamics (4.17)–(4.18) in a different time-scale such that

dĜ(t̄)

dt̄
=

1

ω
Ĝ
(
t̄, Ĝ, θ̃,

1

ω

)
, (4.23)

dθ̃(t̄)

dt̄
=

1

ω
Θ̃

(
t̄, Ĝ, θ̃,

1

ω

)
, (4.24)

with

Ĝ
(
t̄, Ĝ, θ̃,

1

ω

)
=
a2H∗K

2
(1− cos (2ωt)) Ĝ(t)+

a2H∗K

2
(1− cos (2ωt)) e(t)+

−3a2ωH∗

8
cos (3ωt)+a2ωH∗ sin (2ωt) θ̃(t)+

+

(
aωQ∗+

3a2ωH∗

8

)
cos (ωt) , (4.25)

Θ̃

(
t̄, Ĝ, θ̃,

1

ω

)
=
a2H∗K

2
(1−cos (2ωt)) θ̃(t)+Ke(t)+

(
aQ∗K+

3a3H∗K

8

)
sin (ωt)+

− a3H∗K

8
sin (3ωt) . (4.26)
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4.1.5 Averaging System

Now, by defining the augmented state

XT (t̄) :=
[
Ĝ(t̄) , θ̃(t̄)

]
, (4.27)

one arrives at the dynamics

dX(t̄)

dt̄
=

1

ω
F
(
t̄, X,

1

ω

)
, FT =

[
Ĝ , Θ̃

]
. (4.28)

Due to the discontinuous nature of the proposed control strategy, throughout
the article the averaging theory for discontinuous systems is used as presented by
[103, Theorems 1 and 2].

The augmented system (4.28) has a small parameter 1/ω as well as a T -periodic

function F
(
t̄, X,

1

ω

)
in t̄, hence it admits the averaging method for stability analysis

by averaging F
(
t̄, X,

1

ω

)
at lim

ω→∞

1

ω
= 0, as shown in [103], i.e.,

dXav(t̄)

dt̄
=

1

ω
Fav (Xav) , (4.29)

Fav (Xav) =
1

T

∫ T

0

F (δ,Xav, 0) dδ . (4.30)

Basically, the problem in the averaging method is to determine in what sense the
behavior of the autonomous system (4.29) approximates the behavior of the nonau-
tonomous system (4.28) such that (4.28) can be represented as a perturbation of
system (4.29).

Therefore, treating the states Ĝ(t̄), e(t̄) and θ̃(t̄) as constants in (4.17), and by
using the averaging values, one gets

dĜav(t̄)

dt̄
=

a2H∗K

2ω
Ĝav(t̄) +

a2H∗K

2ω
eav(t̄) , (4.31)

eav(t̄) = Ĝav(t̄k)− Ĝav(t̄) . (4.32)

Hence, from (4.31) it is easy to verify the ISS relations of Ĝav(t̄) with respect to the
averaged measurement error eav(t̄).
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Moreover, from (4.9),

Ĝav(t̄) =
a2H∗

2
θ̃av(t̄) , (4.33)

and, consequently,

θ̃av(t̄) =
2

a2H∗ Ĝav(t̄) , (4.34)

with time-derivative

dθ̃av(t̄)

dt̄
=

a2H∗K

2ω
θ̃av(t̄) +

1

ω
Keav(t̄) . (4.35)

Therefore, the following average event-triggered detection laws can be introduced
for the average system.

Definition 4 (Average Static-Triggering Condition). Consider the nonlinear map-
ping Ξ : R× R 7→ R given by

Ξ(Ĝav, eav) = σĜ2
av(t̄) + Ĝav(t̄)eav(t̄) , (4.36)

and K be the control gain in (4.15). The event-triggered controller with triggering
condition consists of two components:

1. A set of increasing sequence of time I = {t̄0 , t̄1 , t̄2 , . . .} with t̄0 = 0 generated
under the following rules:

• If
{
t̄ ∈ R+ : t̄ > t̄k ∧ Ξ(Ĝav, eav) < 0 = ∅

}
, then the set of the times of

the events is I = {t̄0 , t̄1 , . . . , t̄k}.
• If

{
t̄ ∈ R+ : t̄ > t̄k ∧ Ξ(Ĝav, eav) < 0 ̸= ∅

}
, next event time is given by

t̄k+1 = min
{
t̄ ∈ R+ : t̄ > t̄k ∧ Ξ(Ĝav, eav) < 0

}
, (4.37)

that is the average event-trigger mechanism.

2. A feedback control action updated at the the generated triggering instants given
as

uk = KĜ(t̄k) , ∀t̄ ∈ [t̄k , t̄k+1) , k ∈ N . (4.38)

4.1.6 Assumptions

The following assumptions are considered throughout the thesis:
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(A1) The unique optimizer value θ∗ ∈ R and the scalar Q∗ are unknown parameters
of the nonlinear map (4.1).

(A2) The Hessian H∗ has known sign, but it is unknown in norm.

(A3) The control gain K satisfies

sign(K) = −sign(H∗) . (4.39)

(A4) There is no delays due processing of sensor and actuator as well as transmis-
sion in the sensor-to-controller and controller-to-actuator branches.

(A5) Only Ĝ(t) is available for the event-triggered design.

4.2 Stability Analysis

This section assumes a partial knowledge of the nonlinear map (4.1) such that the
Hessian sign is a known parameter. Although this hypothesis appears to simplify
the problem, the designer should know if he/she is dealing with an seeking strategy
to reach a maximum or minimum extremum. On the other hand, the optimizer
value θ∗ and parameter Q∗ are completely unknown.

Theorem 3. Consider the closed-loop average dynamics of the gradient estimate
(4.31) and the average event-triggered mechanism given by (4.37). Suppose that As-
sumptions (A1)–(A5) are hold. If Ξ(Ĝav, eav) is given by (4.36) and ω in (4.22) is a
constant sufficiently large compared to the parameters of (4.31), the average gradient
estimate Ĝav(t) system (4.31) is locally exponentially stable and, consequently, θ̃av(t)

converges exponentially to zero. Therefore, there exist constants m,Mθ ,My > 0

such that

|θ(t)− θ∗| ≤ Mθ exp(−mt) +O
(
a+

1

ω

)
, (4.40)

|y(t)−Q∗| ≤ My exp(−mt) +O
(
a2 +

1

ω2

)
, (4.41)

where a > 0, and the constants Mθ and My depend on the initial condition θ(0).
Moreover, there exists a lower bound τ ∗ for the inter-execution interval tk+1− tk for
all k ∈ N precluding the Zeno behavior.

Proof. Now, consider the following Lyapunov function candidate

Vav(t̄) = Ĝ2
av(t̄) , (4.42)
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with time-derivative

dVav(t̄)

dt̄
= −a2|H∗||K|

ω
Ĝ2

av(t̄)−
a2|H∗||K|

ω
Ĝav(t̄)eav(t̄) . (4.43)

From (4.43), if there is no measurement error e(t), i.e., e(t) ≡ 0 ∀t > 0, therefore
the classic extremum seeking implementation, according to equation (4.43) becomes
dVav
dt̄

= −a2|H∗||K|
ω

Ĝ2
av(t̄). On the other hand, the proposed event-triggered approach,

with update law (4.37) and Ξ(Ĝav, eav) given by (4.36), ensures in closed-loop an
exponential decay of Vav(t̄) given by a pre-specified fraction of the ideal decay rate
such that

dVav(t̄)

dt̄
≤ −(1− σ)a2|H∗||K|

ω
Ĝ2

av(t̄) . (4.44)

Now, plugging equation (4.43) in the left-hand side of inequality (4.44), one gets

− a2|H∗||K|
ω

Ĝ2
av(t̄)−

a2|H∗||K|
ω

Ĝav(t̄)eav(t̄) ≤ −(1− σ)a2|H∗||K|
ω

Ĝ2
av(t̄) . (4.45)

Then,

σĜ2
av(t̄) + Ĝav(t̄)eav(t̄) ≥ 0 , (4.46)

or, equivalently,

Ξ(Ĝav, eav) ≥ 0 . (4.47)

The event-triggered mechanism supervises the time derivative of the Lyapunov func-
tion given by (4.43) and its pre-specified upper bound in (4.44) to set the instant
on which these signals meet. This time-instant is the same to send data over the
network and update the actuator, where the condition Ξ(Ĝav, eav) < 0 is verified as
in (4.37). This process can takes place for an indefinite number of times, in other
words, whenever necessary, and guarantees the exponential stability of Ĝav(t̄) in
closed-loop.

By using (4.42) and (4.44), for t̄ ∈ (t̄k, , t̄k+1), an upper bound for (4.43) is

dVav(t̄)

dt̄
≤ −(1− σ)a2|H∗||K|

ω
Vav(t̄) . (4.48)

Then, invoking the Comparison Lemma [94] an upper bound V̄av(t̄) for Vav(t̄) is

Vav(t̄) ≤ V̄av(t̄) , ∀t̄ ∈ [t̄k, t̄k+1) . (4.49)
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given by the solution of the following dynamics

dV̄av(t̄)

dt̄
= −(1− σ)a2|H∗||K|

ω
V̄av(t̄), V̄av(t̄k) = Vav(t̄k) , (4.50)

In other words, ∀t̄ ∈ [t̄k, t̄k+1),

V̄av(t̄) = exp

(
−(1− σ)a2|H∗||K|

ω
(t̄− t̄k)

)
Vav(t̄k) , (4.51)

and the inequality (4.49) is rewritten as

Vav(t̄) ≤ exp

(
−(1− σ)a2|H∗||K|

ω
(t̄− t̄k)

)
Vav(t̄k) . (4.52)

By defining, t̄+k and t̄−k as the right and left limits of t̄ = t̄k, respectively, it easy
to verify that Vav(t̄

−
k+1) ≤ exp

(
− (1−σ)a2|H∗||K|

ω
(t̄−k+1 − t̄+k )

)
Vav(t̄

+
k ). Since Vav(t̄) is

continuous, Vav(t̄
−
k+1) = Vav(t̄k+1) and Vav(t̄

+
k ) = Vav(t̄k), and therefore,

Vav(t̄k+1) ≤ exp

(
−(1− σ)a2|H∗||K|

ω
(t̄k+1 − t̄k)

)
Vav(t̄k) . (4.53)

Hence, for any t̄ ≥ 0 in t̄ ∈ [t̄k, t̄k+1), k ∈ N, one has

Vav(t̄) ≤ exp

(
−(1− σ)a2|H∗||K|

ω
(t̄− t̄k)

)
Vav(t̄k)

≤ exp

(
−(1− σ)a2|H∗||K|

ω
(t̄− t̄k)

)
exp

(
−(1− σ)a2|H∗||K|

ω
(t̄k − t̄k−1)

)
Vav(t̄k−1)

≤ . . . ≤

≤ exp

(
−(1−σ)a2|H∗||K|

ω
(t̄−t̄k)

) i=k∏
i=1

exp

(
−(1− σ)a2|H∗||K|

ω
(t̄i − t̄i−1)

)
Vav(t̄i−1)

= exp

(
−(1− σ)a2|H∗||K|

ω
t̄

)
Vav(0) . (4.54)

Now, one obtains

|Ĝav(t̄)|2 ≤ exp

(
−(1− σ)a2|H∗||K|

ω
t̄

)
|Ĝav(0)|2 (4.55)

=

[
exp

(
−(1− σ)a2|H∗||K|

2ω
t̄

)
|Ĝav(0)|

]2
. (4.56)

Hence,

|Ĝav(t̄)| ≤ exp

(
−(1− σ)a2|H∗||K|

2ω
t̄

)
|Ĝav(0)| . (4.57)
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Since (4.17) is T -periodic in t, 1/ω is a positive small parameter, and from inequality
(4.57) the origin Ĝav = 0 is at least an exponentially stable equilibrium point of the
closed-loop event-triggered system. Then, by invoking [103, Theorem 2], there exists
an upper bound for (4.9) such that

|Ĝ(t)| ≤ |Ĝav(t)|+O
(
1

ω

)
≤ exp

(
−(1− σ)a2|H∗||K|

2ω
t̄

)
|Ĝav(0)|+O

(
1

ω

)
. (4.58)

Although the analysis has been focused on the convergence of Ĝav(t̄) and, conse-
quently Ĝ(t), the obtained results through (4.58) can be easily extended to the
variable θ̃av(t̄) and θ̃(t). Notice that, by using (4.33) and the equation (4.42), one
has

Vav =

(
a2H∗

2
θ̃av(t̄)

)2

=
a4H∗2

4
θ̃2av(t̄) . (4.59)

Then, plugging (4.59) into (4.52), we get

|θ̃av(t̄)|2 ≤ exp

(
−(1− σ)a2|H∗||K|

ω
t̄

)
|θ̃av(0)|2 . (4.60)

Therefore, following the same development carried out between equations (4.56) to
(4.57), one arrives at

|θ̃av(t̄)| ≤ exp

(
−(1− σ)a2|H∗||K|

2ω
t̄

)
|θ̃av(0)| , (4.61)

and

|θ̃(t̄)| ≤ |θ̃av(t̄)|+O
(
1

ω

)
≤ exp

(
−(1− σ)a2|H∗||K|

2ω
t̄

)
|θ̃av(0)|+O

(
1

ω

)
. (4.62)

Now, from (4.6), we have

θ(t)− θ∗ = θ̃(t) + a sin(ωt) , (4.63)

whose norm satisfies

|θ(t)− θ∗| = |θ̃(t) + S(t)| ≤ |θ̃(t)|+ |a sin(ωt)|

≤ exp

(
−(1− σ)a2|H∗||K|

2ω
t̄

)
|θ(0)− θ∗|+O

(
a+

1

ω

)
. (4.64)
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Defining the error variable ỹ(t) as

ỹ(t) := y(t)−Q∗ , (4.65)

and using (4.3) as well as the Cauchy-Schwarz Inequality, its absolute value satisfies

|ỹ(t)| = |y(t)−Q∗| = |H∗||θ(t)− θ∗|2 , (4.66)

and its upper bounded with (4.64)is given by

|y(t)−Q∗|≤ exp

(
−(1−σ)a2|H∗||K|

2
t

)
|H∗|

[
|θ(0)−θ∗|+ 2O

(
a+

1

ω

)]
|θ(0)−θ∗|

+O
(
a2 +

1

ω2

)
. (4.67)

Therefore, by defining the positive constants

m =
(1− σ)a2|H∗||K|

2
, (4.68)

Mθ = |θ(0)− θ∗| , (4.69)

My =

[
|θ(0)− θ∗|+ 2O

(
a+

1

ω

)]
|θ(0)− θ∗| , (4.70)

the inequalities (4.64) and (4.67) satisfy (4.40) and (4.41), respectively.
By invoking [63, Corollary IV.1], the inter-execution instants are lower bounded

by interval τ̄ ∗ spent by the solution of

dϕ(t̄)

dt̄
=

a2|H∗||K|
2ω

(1 + ϕ(t̄))2 , ϕ(0) = 0 , (4.71)

to reach ϕ(τ̄ ∗) = σ. Then, solving the initial value problem (4.71) by using the
method of separation of variables[104] and reminding that t̄ = ωt implies in τ̄ ∗ = ωτ ∗

that ∫ ϕ(τ̄∗)

ϕ(0)

1

(1 + ϕ(t̄))2
dϕ(t̄) =

a2|H∗||K|
2ω

∫ τ̄∗

0

dt̄ , (4.72)[
− 1

1 + ϕ(t̄)

]ϕ(τ̄∗)
ϕ(0)

=
a2|H∗||K|

2ω
[t̄]τ̄

∗

0 , (4.73)

1

1 + ϕ(0)
− 1

1 + ϕ(τ̄ ∗)
=

a2|H∗||K|
2ω

τ̄ ∗ , (4.74)

σ

1 + σ
=

a2|H∗||K|
2ω

τ̄ ∗ . (4.75)
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Then,

τ ∗ =
1

|H∗||K|
2

a2

(
σ

1 + σ

)
, (4.76)

and the Zeno behavior is avoided which completes the proof.

4.3 Simulation results

To highlight the main ideas of the proposed Event-triggered Extremum Seeking
strategy the nonlinear map (4.1) has input θ(t) ∈ R, output y(t) ∈ R, and unknown
parameters H = −1, Q∗ = 7 and θ∗ = 5. The dither signals have parameters
a = 0.1, ω = 3 [rad/sec], and we selected the event-triggered parameters σ = 0.1.
The control gain matrix K = 30 and the initial condition is θ̂(0) = 0.4.

In Figures 4.2(a) and 4.2(b)the Gradient estimate in (4.9) and the error e(t) in
(4.16) are presented. In both cases, the event-triggered mechanism ensures their
convergence to neighborhood of zero. The Gradient stabilization implies reaching
the optimizer θ∗, see Figures 4.2(e) and 4.2(f). Figure 4.2(d) shows the aperiodic be-
havior of how often the control signal U(t) is updated, see also Figure 4.2(c). During
300 seconds of simulation, there were 29 updates of the control signal, consequently,
the average inter-execution interval is equal to 10.7143 seconds. Comparing the
proposed strategy with the classic sample-hold implementation, assuming the same
initial condition and a constant sampling period of h = 0.01 seconds, we would have
30,000 updates of the control signal in 300 seconds of simulation. That is, a number
more than 1,000 times higher than the strategy proposed in this chapter.
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(a) Gradient estimate, Ĝ(t). (b) Measurement error, e(t).

(c) Control input, U(t).
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(d) The inter-execution times using the static
event-triggered extremum seeking.
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(e) Input of the nonlinear map, θ(t). (f) Output of the nonlinear map, y(t).

Figure 4.2: Event-triggered Extremum Seeking Control System.
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Chapter 5

Dynamic Event-Triggered Extremum
Seeking Feedback

This chapter proposes a dynamic event-triggered scheme for scalar extremum seek-
ing control. While the extremum seeking allows the output of a nonlinear map to
be held within a vicinity of its extremum, the event-triggered strategy is responsible
to execute the control task aperiodically by using a monitoring mechanism. The
event-triggered strategy ensures asymptotic stability properties to the closed-loop
system and reduces control effort since the control update and data communication
only occur when a designed triggered-condition is satisfied. Integrating Lyapunov
and averaging theories for discontinuous systems, a systematic design procedure
and stability analysis are developed. Ultimately, the resulting closed-loop dynam-
ics proves the advantages of integrating both approaches, dynamic event-triggered
and extremum seeking. The Zeno behavior is precluded and the local exponential
stability of the closed-loop system are guaranteed. An illustration of the benefits of
the new control method is presented using consistent simulation results.

5.1 Problem Formulation for Event-Triggered Ex-

tremum Seeking

We define the following nonlinear static map

Q(θ(t)) = Q∗ +
H∗

2
(θ(t)− θ∗)2 , (5.1)

where H∗ ∈ R−{0} is the Hessian, θ∗ ∈ R is the unknown optimizer, and the input
of the map θ(t) ∈ R is designed as the real-time estimate θ̂(t) ∈ R of θ∗ additively
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perturbed by the sinusoid a sin(ωt), i.e.,

θ(t) = θ̂(t) + a sin(ωt) . (5.2)

Figure 5.1 shows the structure of the event-triggered-based extremum seeking
control system to be designed.

ZOH 1
s

+ Q(·) ×

K

Event-Triggered
Mechanism

u(t) θ̂(t)

a sin(ωt)

θ(t) y(t)

a sin(ωt)

Ĝ(t)

U(t)

U(tk)

Figure 5.1: Event-triggered based on extremum seeking scheme.

From Figure 5.1, the output of the nonlinear map (5.1) can be written as

y(t) = Q(θ(t))

= Q∗ +
H∗

2
(θ(t)− θ∗)2 . (5.3)

5.1.1 Assumptions

The following assumptions are considered throughout the thesis:

(A1) The unique optimizer value θ∗ ∈ R and the scalar Q∗ are unknown parameters
of the nonlinear map (5.1).

(A2) The Hessian H∗ is a known parameter.

(A3) The control gain K satisfies

sign(K) = −sign(H∗) . (5.4)

(A4) There is no delays due processing of sensor and actuator as well as transmis-
sion in the sensor-to-controller and controller-to-actuator branches.

(A5) Only Ĝ(t) is available for the event-triggered design.
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5.1.2 Continuous-time Extremum Seeking

Let us define the estimation error

θ̃(t) = θ̂(t)− θ∗ , (5.5)

and the Gradient estimate

Ĝ(t) = a sin(ωt) y(t) , (5.6)

by the demodulation signal, a sin(ωt), which has nonzero amplitudes a and frequency
ω [51, 101].

From (5.2) and (5.5), we can write

θ(t) = θ̃(t) + a sin(ωt) + θ∗ , (5.7)

and, therefore, by plugging (5.7) into (5.3), y(t) can also be written as

y(t) = Q∗ +
H∗a2

4
+

H∗

2
θ̃2(t) + a sin(ωt)H∗θ̃(t)− H∗a2

4
cos(2ωt) . (5.8)

Thus, from (5.6) and (5.8), the gradient estimate [55], is given by

Ĝ(t) =
a2H∗

2
(1− cos (2ωt)) θ̃(t) +

aH∗

2
sin (ωt) θ̃2(t)

+

(
aQ∗ +

3a3H∗

8

)
sin (ωt)− a3H∗

8
sin (3ωt) . (5.9)

Notice the term quadratic in θ̃(t) in (5.9) may be neglected in a local analysis [102].
Thus, hereafter the gradient estimate is given by

Ĝ(t) =
a2H∗

2
(1− cos (2ωt)) θ̃(t) +

(
aQ∗ +

3a3H∗

8

)
sin (ωt)− a3H∗

8
sin (3ωt) .

(5.10)

On the other hand, from the time-derivative of (5.5) and the ESC scheme of
Figure 5.1, the dynamics that governs θ̂(t), as well as θ̃(t), is given by

˙̃θ(t) =
˙̂
θ(t) = u(t) , (5.11)

where u is the ESC law to be designed as

u(t) = KĜ(t) , ∀t ≥ 0 . (5.12)
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By taking the time-derivative of (5.10) and the equation (5.11), one gets

˙̂
G(t) =

a2H∗

2
(1− cos (2ωt))u(t) + a2ωH∗ sin (2ωt) θ̃(t)

+

(
aωQ∗+

3a2ωH∗

8

)
cos (ωt)− 3a2ωH∗

8
cos (3ωt) . (5.13)

5.1.3 Event-Triggered Control Emulation of the Extremum

Seeking Design

Let tk denote the unbounded monotonically increasing sequence of time, i.e.,

0 = t0 < t1 < . . . < tk < . . . , k ∈ Z+ , lim
k→∞

tk = ∞ , (5.14)

with the aperiodic sampling intervals τk = tk+1 − tk > 0.
We consider continuous measurement of the system output while actuating the

system using an event-based approach. The actuator transforms the discrete-time
control input U(tk) to a continuous control input u(t) as in sampled data systems
with zero-order hold. By assuming that there is no delay in the Sensor-to-Controller
and Controller-to-Actuator branches, one has

u(t) = Uk = U(tk) , t ∈ [tk , tk+1[ , k ∈ Z+ . (5.15)

Thus, define the control input for all t ∈ [tk , tk+1[, k ∈ N,

uk = KĜ(tk) , (5.16)

and we introduce the error vector

e(t) := Ĝ(tk)− Ĝ(t) , ∀t ∈ [tk , tk+1[ , k ∈ N . (5.17)

Therefore, by using the event-triggered control law (5.16), adding and subtracting
the term a2H∗K

2
(1− cos (2ωt)) Ĝ(t) into (5.13) and adding and subtracting the term

KĜ(t) into (5.11), one arrives at the Input-to-State Stable (ISS) representation of
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the dynamics of Ĝ(t) and θ̃ with respect to the error vector e(t) in equation (5.17):

˙̂
G(t)=

a2H∗K

2
(1− cos (2ωt)) Ĝ(t) +

a2H∗K

2
(1− cos (2ωt)) e(t)+

− 3a2ωH∗

8
cos (3ωt) + a2ωH∗ sin (2ωt) θ̃(t) +

(
aωQ∗ +

3a2ωH∗

8

)
cos (ωt) ,

(5.18)

ė(t)=− a2H∗K

2
(1− cos (2ωt)) Ĝ(t)− a2H∗K

2
(1− cos (2ωt)) e(t)+

+
3a2ωH∗

8
cos (3ωt)− a2ωH∗ sin (2ωt) θ̃(t)−

(
aωQ∗ +

3a2ωH∗

8

)
cos (ωt) ,

(5.19)
˙̃θ(t)=KĜ(tk)+KĜ(t)−KĜ(t)=KĜ(t)+K

[
Ĝ(tk)−Ĝ(t)

]
=
a2H∗K

2
(1− cos (2ωt)) θ̃(t) +Ke(t) +

(
aQ∗K +

3a3H∗K

8

)
sin (ωt)+

− a3H∗K

8
sin (3ωt) . (5.20)

In a conventional sampled-data implementation, the transmission times are dis-
tributed equidistantly in time, meaning that tk+1 = tk+h, for all k , and some inter-
val h > 0. In event-triggered control, however, these transmission are orchestrated
by a monitoring mechanism that invokes transmissions when the difference between
the current value of the output and its previously transmitted value becomes too
large in an appropriate sense [69]. In the subsequent sections, the execution mech-
anism is analyzed.

5.1.4 Dynamic Event Triggering Condition

In Definition 5 our dynamic-triggering strategy is presented.

Definition 5 (Dynamic Triggering Condition). Consider the quadratic mapping

Ξ(Ĝ, e) = a2|H∗||K|
[
σĜ2(t) + Ĝ(t)e(t)

]
, (5.21)

where σ ∈ (0, 1), H∗ is the Hessian, K be control gain in (5.16) and υ(t) as the
solution of the dynamics

υ̇(t) = −µυ(t) + Ξ(Ĝ, e) , µ > 0 , υ(0) ≥ 0 . (5.22)

The event-triggered controller with dynamic-triggering condition consists of two com-
ponents:

1. A set of increasing sequence of time I = {t0 , t1 , t2 , . . .} with t0 = 0 generated
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under the following rule:

• If
{
t∈R+ : t>tk ∧ υ(t)+γΞ(Ĝ, e)<0 = ∅

}
, then the set of the times of

the events is I = {t0 , t1 , . . . , tk}.
• If

{
t∈R+ : t>tk ∧ υ(t)+γΞ(Ĝ, e)<0 ̸= ∅

}
, next event time is given by

tk+1= inf
{
t∈R+ : t>tk ∧ υ(t)+γΞ(Ĝ, e)<0

}
, (5.23)

which is the dynamic event-trigger mechanism.

2. A feedback control action updated at the generated triggering instants given by

uk = KĜ(tk) , (5.24)

for all t ∈ [tk , tk+1), k ∈ N.

5.2 Closed-Loop System

5.2.1 Time-scaling System

By using the transformation t̄ = ωt where

ω :=
2π

T
, (5.25)

it is possible to rewrite the dynamics (5.18)–(5.20) in a different time-scale such that

dĜ(t̄)

dt̄
=

1

ω
Ĝ
(
t̄, Ĝ, θ̃, υ,

1

ω

)
, (5.26)

dθ̃(t̄)

dt̄
=

1

ω
Θ̃

(
t̄, Ĝ, θ̃, υ,

1

ω

)
, (5.27)

dυ(t̄)

dt̄
=

1

ω
Υ

(
t̄, Ĝ, θ̃, υ,

1

ω

)
, (5.28)
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with

Ĝ
(
t̄, Ĝ, θ̃, υ,

1

ω

)
=
a2H∗K

2
(1− cos (2ωt)) Ĝ(t)

+
a2H∗K

2
(1− cos (2ωt)) e(t)− 3a2ωH∗

8
cos (3ωt)

+ a2ωH∗ sin (2ωt) θ̃(t) +

(
aωQ∗ +

3a2ωH∗

8

)
cos (ωt) , (5.29)

Θ̃

(
t̄, Ĝ, θ̃, υ,

1

ω

)
=
a2H∗K

2
(1−cos (2ωt)) θ̃(t) +Ke(t)

+

(
aQ∗K +

3a3H∗K

8

)
sin (ωt)− a3H∗K

8
sin (3ωt) , (5.30)

Υ

(
t̄, Ĝ, θ̃, υ,

1

ω

)
= −µυ(t) + Ξ(Ĝ, e) . (5.31)

An appropriate average system in the time-scale t̄ can be derived in the next
Section.

5.2.2 Average System

Now, by defining the augmented state

XT (t̄) :=
[
Ĝ(t̄) , θ̃(t̄) , υ(t̄)

]
, (5.32)

one arrives at the dynamics

dX(t̄)

dt̄
=

1

ω
F
(
t̄, X,

1

ω

)
, (5.33)

FT =
[
Ĝ , Θ̃ ,Υ

]
. (5.34)

Due to the discontinuous nature of the proposed control strategy, throughout
the article the averaging theory for discontinuous systems is used, as presented by
[103].

The augmented system (5.33) has a small parameter 1/ω as well as a T -periodic

function F
(
t̄, X,

1

ω

)
in t̄, hence it admits the averaging method for stability analysis
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by averaging F
(
t̄, X,

1

ω

)
at lim

ω→∞

1

ω
= 0, as shown in [103], i.e.,

dXav(t̄)

dt̄
=

1

ω
Fav (Xav) , (5.35)

Fav (Xav) =
1

T

∫ T

0

F (δ,Xav, 0) dδ . (5.36)

Basically, the problem in the averaging method is to determine in what sense the
behavior of the autonomous system (5.35) approximates the behavior of the nonau-
tonomous system (5.33) such that (5.33) can be represented as a perturbation of
system (5.35).

Therefore, treating the states Ĝ(t̄), e(t̄) and θ̃(t̄) as constants in (5.18), and using
the averaging values, one gets

dĜav(t̄)

dt̄
=

a2H∗K

2ω
Ĝav(t̄) +

a2H∗K

2ω
eav(t̄) , (5.37)

eav(t̄) = Ĝav(t̄k)− Ĝav(t̄) . (5.38)

Hence, from (5.37) it is easy to verify the ISS relations of Ĝav(t̄) with respect to the
averaged measurement error eav(t̄).

Moreover, from (5.10), one has

Ĝav(t̄) =
a2H∗

2
θ̃av(t̄) , (5.39)

and, consequently,

θ̃av(t̄) =
2

a2H∗ Ĝav(t̄) , (5.40)

with time-derivative

dθ̃av(t̄)

dt̄
=

a2H∗K

2ω
θ̃av(t̄) +

1

ω
Keav(t̄) . (5.41)

Therefore, the following average event-triggered detection laws can be introduced
for the average system.

Definition 6 (Average Dynamic Triggering Condition). Consider the quadratic ma-
trix (5.21), where σ ∈ (0, 1), and K be the control gain in (5.16), γ > 0 a positive
constant and υ(t) the solution of the dynamics

dυav(t̄)

dt̄
=− µ

ω
υav(t̄)+

1

ω
Ξ(Ĝav, eav) , µ>0 , υav(0)≥0 , (5.42)
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where Ξ(Ĝav, eav) = a2|H∗||K|
[
σĜ2

av(t̄) + Ĝav(t̄)eav(t̄)
]
. The event-triggered con-

troller with dynamic-triggering condition consists of two components:

1. A set of increasing sequence of time I = {t̄0 , t̄1 , t̄2 , . . .} with t̄0 = 0 generated
under the following rule:

• If
{̄
t∈R+ : t̄ > t̄k∧υav(t̄)+γΞ(Ĝav, eav)<0=∅

}
, then the set of the times of

the events is I = {t̄0 , t̄1 , . . . , t̄k}.
• If

{̄
t∈R+: t̄ > t̄k∧υav(t̄)+γΞ(Ĝav, eav)< 0̸=∅

}
, next event time is given as

t̄k+1= inf
{̄
t∈R+ : t̄ > t̄k∧υav(t̄)+γΞ(Ĝav, eav)<0

}
, (5.43)

that is the average dynamic event-trigger mechanism.

2. A feedback control action updated at the the generated triggering instants given
as

uk = KĜ(t̄k) , (5.44)

for all t̄ ∈ [t̄k , t̄k+1), k ∈ N.

5.3 Stability Analysis

Theorem 4. Consider the closed-loop average dynamics of the gradient estimate
(5.37) and the average event-triggered mechanism given by Definition 6. Suppose
that Assumptions (A1)–(A5) hold. If the quadratic mapping Ξ(Ĝav, eav) is given by
(5.21) and ω in (5.25) is a constant sufficiently large, the average gradient estimate
system (5.37) with state Ĝav(t) is locally exponentially stable. Consequently, θ̃av(t)

converges exponentially to zero. Therefore, there exist constants m,Mθ ,My > 0

such that

|θ(t)− θ∗| ≤ Mθ exp(−mt) +O
(
a+

1

ω

)
, (5.45)

|y(t)−Q∗| ≤ My exp(−mt) +O
(
a2 +

1

ω2

)
, (5.46)

where a > 0, and the constants Mθ and My depend on the initial condition θ(0).
Moreover, there exists a lower bound τ ∗ for the inter-execution interval tk+1− tk for
all k ∈ N precluding the Zeno behavior.

Proof. First, notice that the dynamic execution mechanism in (5.23) ensures, for all
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t ∈ [tk , tk+1[,

υav(t̄) + γΞ(Ĝav, eav) ≥ 0 , (5.47)

therefore,

Ξ(Ĝav, eav) ≥ −1

γ
υav(t̄) . (5.48)

Now, by using the inequality (5.48), the equation (5.42) can be lower bounded with

dυav(t̄)

dt̄
= −µ

ω
υav(t̄) +

1

ω
Ξ(Ĝav, eav)

≥ −µ

ω
υav(t̄)−

1

ωγ
υav(t̄) = − 1

ω

(
µ+

1

γ

)
υav(t̄) . (5.49)

Invoking [94, Comparison Lemma, pp. 102], the solution υ̂av(t̄) of the following
first-order dynamics

dυ̂av(t̄)

dt̄
= − 1

ω

(
µ+

1

γ

)
υ̂av(t̄) , υ̂av(0) = υav(0) > 0 , (5.50)

precisely,

υ̂av(t̄) = exp

(
− 1

ω

(
µ+

1

γ

)
t̄

)
υ̂av(0) > 0 , ∀t̄ ≥ 0 , (5.51)

is a lower bound for υav(t̄). To verify this fact, notice that, from (5.49) and (5.50),

d(υav(t̄)− υ̂av(t̄))

dt̄
≥ − 1

ω

(
µ+

1

γ

)
(υav(t̄)− υ̂av(t̄)) . (5.52)

Thus,

υav(t̄)− υ̂av(t̄) ≥ exp

(
− 1

ω

(
µ+

1

γ

)
t̄

)
(υav(0)− υ̂av(0))︸ ︷︷ ︸

=0

(5.53)

and

υav(t̄) ≥ υ̂av(t̄) > 0 , ∀t̄ ≥ 0 . (5.54)

Now, since υav(t̄) > 0, for all υav(t̄) ̸= 0, consider the following candidate to
average Lyapunov function

Vav(t̄) = Ĝ2
av(t̄) + υav(t̄) , (5.55)
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with time-derivative

dVav(t̄)

dt̄
= −a2|H∗||K|

ω
Ĝ2

av(t̄)−
a2|H∗||K|

ω
Ĝav(t̄)eav(t̄)−

µ

ω
υav(t̄) +

1

ω
Ξ(Ĝav, eav) .

(5.56)

Now, adding and subtracting the term σ a2|H∗||K|
ω

Ĝ2
av(t̄) in equation (5.56), it is pos-

sible to rewrite it as

dVav(t̄)

dt̄
= −(1− σ)a2|H∗||K|

ω
Ĝ2

av(t̄)−
1

ω
Ξ(Ĝav, eav)−

µ

ω
υav(t̄) +

1

ω
Ξ(Ĝav, eav)

= −(1− σ)a2|H∗||K|
ω

Ĝ2
av(t̄)−

µ

ω
υav(t̄) . (5.57)

By using (5.55), an upper bound for (5.57) is

dVav(t̄)

dt̄
≤ − 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
Vav(t̄) . (5.58)

Then, invoking the Comparison Lemma [94] an upper bound V̄av(t̄) for Vav(t̄) is

Vav(t̄) ≤ V̄av(t̄) , ∀t̄ ∈ [t̄k, t̄k+1) . (5.59)

given by the solution of the following dynamics

dV̄av(t̄)

dt̄
= − 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
V̄av(t̄), V̄av(t̄k) = Vav(t̄k) , (5.60)

In other words, ∀t̄ ∈ [t̄k, t̄k+1),

V̄av(t̄) = exp

(
− 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
(t̄− t̄k)

)
Vav(t̄k) , (5.61)

and the inequality (5.59) is rewritten as

Vav(t̄) ≤ exp

(
− 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
(t̄− t̄k)

)
Vav(t̄k) . (5.62)

By defining, t̄+k and t̄−k as the right and left limits of t̄ = t̄k, respectively, it easy
to verify that Vav(t̄

−
k+1) ≤ exp

(
− 1

ω
min {(1− σ)a2|H∗||K|, µ} (t̄−k+1 − t̄+k )

)
Vav(t̄

+
k ).

Since Vav(t̄) is continuous, Vav(t̄
−
k+1) = Vav(t̄k+1) and Vav(t̄

+
k ) = Vav(t̄k), and therefore,

Vav(t̄k+1) ≤ exp

(
− 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
(t̄k+1 − t̄k)

)
Vav(t̄k) . (5.63)

82



Hence, for any t̄ ≥ 0 in t̄ ∈ [t̄k, t̄k+1), k ∈ N, one has

Vav(t̄) ≤ exp

(
− 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
(t̄− t̄k)

)
Vav(t̄k)

≤ exp

(
− 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
(t̄− t̄k)

)
×

× exp

(
− 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
(t̄k − t̄k−1)

)
Vav(t̄k−1)

≤ . . . ≤

≤ exp

(
− 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
(t̄−t̄k)

)
×

×
i=k∏
i=1

exp

(
− 1

ω
min

{
(1− σ)a2|H∗||K|, µ

})
Vav(t̄i−1)

= exp

(
− 1

ω
min

{
(1− σ)a2|H∗||K|, µ

}
t̄

)
Vav(0) . (5.64)

Now, one obtains

Ĝ2
av(t̄) ≤ Vav(t̄) = Ĝ2

av(t̄) + υav(t̄) (5.65)

≤ V̄av(t̄) = exp

(
−min {(1− σ)a2|H∗||K|, µ}

ω
t̄

)(
Ĝ2

av(0) + υav(0)
)
. (5.66)

Since there exists a positive scalar κ such that

υav(0) ≤ κĜ2
av(0) , (5.67)

it is possible to write

Ĝ2
av(t̄)≤ exp

(
−min {(1−σ)a2|H∗||K|, µ}

ω
t̄

)
(1+κ) Ĝ2

av(0) . (5.68)

Hence,

|Ĝav(t̄)|≤ exp

(
−min {(1−σ)a2|H∗||K|, µ}

2ω
t̄

)√
(1+κ)|Ĝav(0)| . (5.69)

Since (5.18) is T -periodic in t, 1/ω is a small positive parameter, and, from inequality
(5.69) the origin Ĝav = 0 is at least an exponentially stable equilibrium point of the
closed-loop event-triggered system, then, by invoking [103, Theorem 2], there exists
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an upper bound for (5.10) such that

|Ĝ(t)| ≤ |Ĝav(t)|+O
(
1

ω

)
≤ exp

(
−min {(1−σ)a2|H∗||K|, µ}

2
t

)√
(1+κ)|Ĝav(0)|+O

(
1

ω

)
. (5.70)

Although the analysis has been focused on the convergence of Ĝav(t̄) and, conse-
quently Ĝ(t), the obtained results through (5.70) can be easily extended to the
variable θ̃av(t̄) and θ̃(t). Notice that, by using (5.39) and the inequality (5.69), one
has

|θ̃av(t̄)|≤ exp

(
−min {(1−σ)a2|H∗||K|, µ}

2ω
t̄

)√
(1+κ)|θ̃av(0)| , (5.71)

and by invoking [103, Theorem 2], one has

|θ̃(t)|≤ exp

(
−min {(1−σ)a2|H∗||K|, µ}

2
t

)√
(1+κ)|θ̃av(0)|+O

(
1

ω

)
. (5.72)

Now, from (5.7), we have

θ(t)− θ∗ = θ̃(t) + a sin(ωt) , (5.73)

whose its norm satisfies

|θ(t)− θ∗| = |θ̃(t) + S(t)|
≤ |θ̃(t)|+ |a sin(ωt)|

≤ exp

(
−min {(1−σ)a2|H∗||K|, µ}

2
t

)√
(1+κ)|θ(0)− θ∗|+O

(
a+

1

ω

)
.

(5.74)

Defining the error variable ỹ(t) as

ỹ(t) := y(t)−Q∗ , (5.75)

and using (5.3) as well as the Cauchy-Schwarz Inequality [105], its absolute value
satisfies

|ỹ(t)| = |y(t)−Q∗| = |H∗||θ(t)− θ∗|2 , (5.76)
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and its upper bounded with (5.74)is given by

|y(t)−Q∗| ≤ exp

(
−min {(1−σ)a2|H∗||K|, µ}

2
t

)
|H∗|×

×
[
(1+κ)|θ(0)−θ∗|+2

(
a+

1

ω

)]
|θ(0)− θ∗|+O

(
a2 +

1

ω2

)
. (5.77)

Therefore, by defining the positive constants

m =
min {(1− σ)a2|H∗||K|, µ}

2
, (5.78)

Mθ = |θ(0)− θ∗| , (5.79)

My =

[
|θ(0)− θ∗|+ 2

(
a+

1

ω

)]
|θ(0)− θ∗| , (5.80)

the inequalities (5.74) and (5.77) satisfy (5.45) and (5.46), respectively.
Notice that, from (5.43) and by using the Peter-Paul inequality [106], we can

write cd ≤ c2

2ϵ
+ ϵd2

2
, for all c, d, ϵ > 0, with c = |eav(t̄)|, d = |Ĝav(t̄)| and ϵ = σ, for

all t̄ ∈ [tk , tk+1[, the following lower bound is verified

υav(t̄) + γa2|H∗||K|
[
σĜ2

av(t̄) + eav(t̄)Ĝav(t̄)
]

≥ υav(t̄) + γa2|H∗||K|
[
σĜ2

av(t̄)− |eav(t̄)||Ĝav(t̄)|
]

≥ υav(t̄) + γa2|H∗||K|σĜ2
av(t̄)+

− γa2|H∗||K|
2

(
σĜ2

av(t̄) +
1

σ
e2av(t̄)

)
= υav(t̄) + γ

(
q∥Ĝav(t̄)∥2 − p∥eav(t̄)∥2

)
, (5.81)

where

q =
γa2|H∗||K|σ

2
and p =

γa2|H∗||K|
2σ

. (5.82)

In [107], it is shown that a lower bound for the inter-execution interval is given by
the time duration it takes for the function

ϕ(t̄) =

√
γp|eav(t̄)|√

υav(t̄) + γq|Ĝav(t̄)|2
, (5.83)

85



to go from 0 to 1. The derivative of ϕ(t̄) in (5.83) is given by

dϕ(t̄)

dt̄
=

√
γpeav(t̄)

deav(t̄)

dt̄

|eav(t̄)|
√

υav(t̄) + γq|Ĝav(t̄)|2
+

−
√
γp|eav(t̄)|

2(υav(t̄) + γq|Ĝav(t̄)|2)3/2

(
dυav(t̄)

dt̄
+ γqĜav(t̄)

dĜav(t̄)

dt̄

)
, (5.84)

and satisfies the inequality

dϕ(t̄)

dt̄
≤ a2|H∗||K|

2ω

√
p

q
+

a2|H∗||K|
2ω

ϕ(t̄) +
1

2ωγ
ϕ3(t̄) +

a2|H∗||K|
2ω

√
q

p
ϕ2(t̄)+

+
µ

2ω
ϕ(t̄) +

γq|Ĝav(t̄)|2
2ω(υav(t̄) + γq|Ĝav(t̄)|2)

(
−µ− 1

γ
+2

a2|H∗||K|
2

)
ϕ(t̄) . (5.85)

Hence, if a2|H∗||K| ≤ µ, one has

ω
dϕ(t̄)

dt̄
≤ a2|H∗||K|

2

(√
p

q
+ 2ϕ(t̄) +

√
q

p
ϕ2(t̄)

)
. (5.86)

By using the transformation t = t̄
ω
, inequality (5.86) and invoking the Comparison

Lemma [94], a lower bound for the inter-execution time is found as

τ ∗ =

∫ 1

0

1

b0 + b1ξ + b2ξ2 + b3ξ3
dξ , (5.87)

with b0 =
a2|H∗||K|

2σ
, b1 = a2|H∗||K|, b2 =

a2|H∗||K|σ
2

and b3 = 0.
If a2|H∗||K| > µ and γ ≤ 1/(a2|H∗||K| −µ), inequality (5.85) is upper bounded

by

ω
dϕ(t̄)

dt̄
≤a2|H∗||K|

2

√
p

q
+

(
µ

2
+

a2|H∗||K|
2

)
ϕ(t̄)+

+
a2|H∗||K|

2

√
q

p
ϕ2(t̄)+

(
a2|H∗||K|

2
− µ

2

)
ϕ3(t̄) , (5.88)

and the lower bound τ ∗ satisfies equation (5.87) with constants b0 =
a2|H∗||K|

2σ
,

b1 =
µ+ a2|H∗||K|

2
, b2 =

a2|H∗||K|σ
2

and b3 =
a2|H∗||K| − µ

2
.

Finally, if a2|H∗||K| > µ and γ > 1/(a2|H∗||K| − µ), we obtain

ω
dϕ(t̄)

dt̄
≤a2|H∗||K|

2

√
p

q
+

(
a2|H∗||K| − 1

2γ

)
ϕ(t̄) +

a2|H∗||K|
2

√
q

p
ϕ2(t̄) +

1

2γ
ϕ3(t̄) ,

(5.89)
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and the lower bound τ ∗ satisfies the equation (5.87) with constants b0 =
a2|H∗||K|

2σ
,

b1 = a2|H∗||K| − 1

2γ
, b2 =

a2|H∗||K|σ
2

and b3 =
1

2γ
.

Therefore, the Zeno behavior [107] is avoided which completes the proof.

5.4 Simulation results

In order to highlight the main ideas of the proposed event-triggered extremum seek-
ing strategy the nonlinear map (5.1) has input θ(t) ∈ R, output y(t) ∈ R, Hessian
H = −1 and unknown parameters Q∗ = 7 and θ∗ = 5. The dither signals have
parameters a = 0.1, ω = 3 [rad/sec], and we have selected the event-triggered pa-
rameter σ = 0.1. The control gain matrix is K = 30 and the initial condition is
θ̂(0) = 10.

In Figures 5.2(a), 5.2(b) and 5.2(c), the Gradient estimate, its sample and hold
version and the error e(t) are presented, respectively. The dynamic event-triggered
mechanism ensures their convergence to zero. The Gradient stabilization implies
reaching the optimizer θ∗, see Figures 5.2(g) and 5.2(h). Figures 5.2(e) and 5.2(f)
show the aperiodic behavior of how often the control signal U(t) is updated, see also
Figure 5.2(d) for the control signal. During 300 seconds of simulation, there were
98 updates of the control signal, consequently, the average inter-execution interval
was equal to 3.0612 seconds. Comparing the proposed strategy with the classic
sample-hold implementation, assuming the same initial condition and a constant
sampling period of h = 0.01 seconds, we would have 30,000 updates of the control
signal during the simulation time. That is, a number more than 300 times higher
than the strategy proposed in this chapter.
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(a) Gradient estimate, Ĝ(t). (b) Measurement error, e(t).
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(c) Sample-and-Hold Gradient estimate,
Ĝ(tk).

(d) Control input, U(t).
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(f) Zoomed inter-execution intervals,
tk+1 − tk.
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(g) Input of the nonlinear map, θ(t). (h) Output of the nonlinear map, y(t).

Figure 5.2: Event-triggered Extremum Seeking Control System.
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Chapter 6

Multivariable Event-Triggered
Extremum Seeking

Based on static maps, this chapter proposes an event-triggered scheme for multi-
variable extremum seeking control. Both static and dynamic triggering condition
are developed. While the extremum seeking allows the output of a nonlinear map to
be held within a vicinity of its extremum, the event-triggered strategy is responsible
to execute the control task aperiodically by using a monitoring mechanism. The
event-triggered strategy ensures asymptotic stability properties to the closed-loop
system and reduces control effort since the control update and data communication
only occur when a designed triggered-condition is satisfied. Integrating Lyapunov
and averaging theories for discontinuous systems, a systematic design procedure and
stability analysis are developed. Both event-based methods enable one to achieve an
asymptotic stability result. Ultimately, the resulting closed-loop dynamics demon-
strate the advantages of combining both approaches, namely, event-triggered and
extremum seeking control. An illustration of the benefits of the new control method
is presented using consistent simulation results, which compare the static and the
dynamic triggering approaches.

6.1 Problem formulation

We define the following nonlinear static map

Q(θ(t)) = Q∗ +
1

2
(θ(t)− θ∗)TH∗(θ(t)− θ∗) , (6.1)

where H∗ = H∗T ∈ Rn×n is the Hessian matrix, θ∗ ∈ Rn is the unknown optimizer,
θ(t) ∈ Rn is the input map, designed as the real-time estimate θ̂(t) ∈ Rn of θ∗
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additively perturbed by the vector S(t) of sinusoids, i.e.,

θ(t) = θ̂(t) + S(t) . (6.2)

The output of the nonlinear map (6.1) can be written as y(t) = Q(θ(t)). Fig. 6.1
shows the closed-loop structure of the event-triggered-based extremum seeking con-
trol system to be designed.

ZOH
1
s

+ Q(·) ×

K

Event-Triggered
Mechanism

u(t) θ̂(t)

S(t)

θ(t) y(t)

M(t)

Ĝ(t)

U(t)

U(tk)

Figure 6.1: Event-triggered based on extremum seeking scheme.

The following assumptions are considered throughout the thesis.

Assumption 1. The unique optimizer vector θ∗ ∈ Rn, the Hessian matrix H∗ and
the scalar Q∗ ∈ R are unknown parameters of the nonlinear map (6.1). Moreover,
H∗ is symmetric and has known definite sign, thus, being full rank.

Assumption 2. The matrix product H∗K is Hurwitz such that for any given Q =

QT > 0 there exists a P = P T > 0 that satisfies the Lyapunov equation

KTH∗TP + PH∗K = −Q . (6.3)

Furthermore, the sum of the induced norms of the matrices KTH∗TP and PH∗K is
upper bounded by a known positive constant β,

∥KTH∗TP∥+ ∥PH∗K∥ ≤ β , (6.4)

and the least eigenvalue of the matrix Q is lower bounded by a known positive con-
stant α,

α ≤ λmin(Q) . (6.5)
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6.1.1 Continuous-time Extremum Seeking

Let us define the estimation error

θ̃(t) = θ̂(t)− θ∗ , (6.6)

and the Gradient estimate by the demodulation

Ĝ(t) = M(t)y(t) , (6.7)

with dither vectors (see [51, 101])

S(t) = [a1 sin (ω1t) , . . . , an sin (ωnt)]
T , (6.8)

M(t) =

[
2

a1
sin (ω1t) , . . . ,

2

an
sin (ωnt)

]T
, (6.9)

of nonzero amplitudes ai. Moreover, the probing frequencies ωi’s can be selected as

ωi = ω′
iω , i ∈ {1, . . . , n} , (6.10)

where ω is a positive constant and ω′
i is a rational number.

Assumption 3. The probing frequencies satisfy

ω′
i /∈
{
ω′
j ,

1

2
(ω′

j + ω′
k) , ω′

j + 2ω′
k , ω′

k ± ω′
l

}
, (6.11)

for all i, j, k and l.

From (6.2) and (6.6), one has

θ(t) = θ̃(t) + S(t) + θ∗ , (6.12)

and, therefore, by plugging (6.12) into (6.1), y(t) can be written as

y(t) = Q∗ +
1

2
(θ̃(t) + S(t))TH∗(θ̃(t) + S(t))

= Q∗ +
1

2
θ̃T (t)H∗θ̃(t) + ST (t)H∗θ̃(t) +

1

2
ST (t)H∗S(t) . (6.13)

Thus, from (6.7), (6.13) and following [55], the gradient estimate in the average
sense, is given by

Ĝ(t) = M(t)Q∗ +
1

2
M(t)θ̃T (t)H∗θ̃(t) +M(t)ST (t)H∗θ̃(t) +

1

2
M(t)ST (t)H∗S(t) .

(6.14)
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Now, defining

H (t) := M(t)ST (t)H∗

= H∗ +∆(t)H∗ , (6.15)

where the elements of the ∆(t) ∈ Rn×n are given by

∆ii(t)=− cos(2ωit) , (6.16)

∆ij(t)=2
aj
ai

sin(ωit) sin(ωjt)

=
aj
ai

cos((ωi − ωj)t)−
aj
ai

cos((ωi + ωj)t) , (6.17)

for all i ̸=j, and using (6.15), one can rewrite (6.14) as follows

Ĝ(t) = H(t)θ̃(t) +M(t)Q∗ +
1

2
H(t)S(t) + ϑ(t) , (6.18)

ϑ(t) :=
1

2
M(t)θ̃T (t)H∗θ̃(t) . (6.19)

The term ϑ(t) given above is quadratic in θ̃(t) and, therefore, may be neglected in
a local analysis [102]. Thus, hereafter the gradient estimate is given by

Ĝ(t) = H(t)θ̃(t) +M(t)Q∗ +
1

2
H(t)S(t) . (6.20)

On the other hand, from the time-derivative of (6.6) and the ESC scheme de-
picted in Fig. 6.1, the dynamics that governs θ̂(t), as well as θ̃(t), is given by

˙̃θ(t) =
˙̂
θ(t) = u(t) , (6.21)

where u is an ESC law to be designed.
By taking the time-derivative of (6.20), with the help of (6.15) and (6.21), one

gets the following differential equation

˙̂
G(t) = f(t, θ̃(t), u(t))

= H(t)u(t) + w(t, θ̃(t)) , (6.22)

where

w(t, θ̃(t)) = ∆̇(t)H∗θ̃(t) + Ṁ(t)Q∗ +
1

2
∆̇(t)H∗S(t) +

1

2
H∗Ṡ(t) +

1

2
∆(t)H∗Ṡ(t) .

(6.23)
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For all t ≥ 0, the proposed continuous-time controller

u(t) = KĜ(t) , ∀t ≥ 0 (6.24)

where the controller gain K is such that H∗K is Hurwitz.
Our goal is to design a stabilizing controller for the closed-loop system (6.22) and

(6.23) in a sampled and hold fashion by emulating the continuous-time control law
(6.24). In the emulation approach the feedback control law (6.24) is first synthesized
to stabilize the plant in the absence of network. Afterwards, the effect of network
is considered and the sampling rule is constructed [108].

The control law is only updated for a given sequence of time instants (tk)k∈N

defined by an event-generator that is constructed later on. More precisely, the
execution of the control task is orchestrated by a monitoring mechanism that invokes
control updates when the difference between the current value of the output and its
previously computed value at time tk becomes too large with respect to a constructed
triggering condition that needs to be satisfied [69]. Note that in a conventional
sampled-data implementation, the execution times are distributed equidistantly in
time, meaning that tk+1 = tk + h, where h > 0 is a known constant, for all k ∈ N,
while in event-triggered scheme aperiodic sampling may occur.

6.1.2 Emulation of the Continuous-Time Extremum Seeking

Design

Defining the control input for all t ∈ [tk, tk+1), k ∈ N as

uk = KĜ(tk) , (6.25)

we introduce the error vector, that is to say the deviation of the output signal as

e(t) := Ĝ(tk)− Ĝ(t) , ∀t ∈ [tk , tk+1) , k ∈ N . (6.26)

Now, using the event-triggered control law (6.25), adding and subtracting the
term H(t)KĜ(t) and KĜ(t) to (6.22) and (6.21), respectively, one arrives at the
Input-to-State Stable (ISS) representation of (6.21) and (6.22) with respect to the
error vector (6.26) and the time-varying disturbance w(t, θ̃(t)). The resulting dy-
namics are given below:

˙̂
G(t)=H(t)KĜ(t) +H(t)Ke(t) + w(t, θ̃(t)) , (6.27)

˙̃θ(t)=KH(t)θ̃(t) +Ke(t) +KM(t)Q∗+
1

2
KH(t)S(t) . (6.28)
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In the subsequent developments, the static and dynamic triggering mechanisms,
presented in Definitions 7 and 8, respectively.

6.1.3 Event-Triggered Control Mechanism

Definitions 7 and 8 show how the nonlinear mapping Ξ : Rn × Rn 7→ R , given by

Ξ(Ĝ, e) = σα∥Ĝ(t)∥2 − β∥e(t)∥∥Ĝ(t)∥ , (6.29)

where, σ ∈ (0, 1) is a given parameter, can be employed in the design of the static and
dynamic execution mechanisms. The mapping Ξ(Ĝ, e) is designed to appropriately
re-compute the control law (6.25) and update the ZOH actuator depicted in Fig. 6.1
such that the asymptotic stability of the closed-loop system is achieved [69].

Definition 7 (Multivariable Static Triggering Condition). Let Ξ(Ĝ, e) in (6.29)
be the nonlinear mapping and K the control gain in (6.25). The event-triggered
controller with static-triggering condition consists of two components:

1. A set of increasing sequence of time I = {t0 , t1 , t2 , . . .} with t0 = 0 generated
under the following rules:

• If
{
t ∈ R+ : t > tk ∧ Ξ(Ĝ, e) < 0 = ∅

}
, then the set of the times of the

events is I = {t0 , t1 , . . . , tk}.
• If

{
t ∈ R+ : t > tk ∧ Ξ(Ĝ, e) < 0 ̸= ∅

}
, next event time is given by

tk+1 = inf
{
t ∈ R+ : t > tk ∧ Ξ(Ĝ, e) < 0

}
, (6.30)

consisting of the static event-trigger mechanism.

2. A feedback control action updated at the triggering instants (6.25).

Although the aperiodicity of the control update is guaranteed by the static event
generation mechanism (6.30), it is often convenient to use its filtered version to
increase the inter-execution times. In this case, inspired by [107], we also construct
a dynamic event-triggering mechanism described in the following definition.

Definition 8 (Multivariable Dynamic Triggering Condition). Let Ξ(Ĝ, e) in (6.29)
be the nonlinear mapping and K the control gain in (6.25), γ > 0 a positive constant
and υ(t) the solution of the dynamics

υ̇(t) = −µυ(t) + Ξ(Ĝ, e) , µ > 0 , υ(0) ≥ 0 . (6.31)

The event-triggered controller with dynamic triggering condition consists of two com-
ponents:
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1. A set of increasing sequence of time I = {t0 , t1 , t2 , . . .} with t0 = 0 generated
under the following rules:

• If
{
t ∈ R+ : t > tk ∧ υ(t) + γΞ(Ĝ, e) < 0 = ∅

}
, then the set of the times

of the events is I = {t0 , t1 , . . . , tk}.
• If

{
t ∈ R+ : t > tk ∧ υ(t) + γΞ(Ĝ, e) < 0 ̸= ∅

}
, next event time is given

by

tk+1 = inf
{
t ∈ R+ : t > tk ∧ υ(t) + γΞ(Ĝ, e) < 0

}
, (6.32)

which is the dynamic event-trigger mechanism.

2. A feedback control action updated at the triggering instants (6.25).

for all t ∈ (tj, tj+1), υ(t0) = υ(0) ≥ 0 and υ(t−j ) = υ(tj) = υ(t+j ).

6.2 Closed-loop system

6.2.1 Time-scaling System

Now, we introduce a suitable time scale to carry out the stability analysis of the
closed-loop system. From (6.10), one can notice that the dither frequencies (6.8) and
(6.9), as well as their combinations (6.16) and (6.17), are both rational. Furthermore,
there exists a time period T such that

T = 2π × LCM
{

1

ωi

}
, ∀i {1 , 2 , . . . , n} , (6.33)

where LCM denotes the least common multiple such that it is possible to define the
time-scale for the dynamics (6.27)–(6.28) with the transformation t̄ = ωt, where

ω :=
2π

T
. (6.34)

Hence, the system (6.27), (6.28) and (6.31) can be rewritten as

dĜ(t̄)

dt̄
=

1

ω
Ĝ
(
t̄, Ĝ, θ̃, υ,

1

ω

)
, (6.35)

dθ̃(t̄)

dt̄
=

1

ω
Θ̃

(
t̄, Ĝ, θ̃, υ,

1

ω

)
, (6.36)

dυ(t̄)

dt̄
=

1

ω
Υ

(
t̄, Ĝ, θ̃, υ,

1

ω

)
, (6.37)
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where

Ĝ
(
t̄, Ĝ, θ̃, υ,

1

ω

)
= H(t̄)KĜ(t̄) +H(t̄)Ke(t̄) + w(t̄, θ̃(t̄)) , (6.38)

Θ̃

(
t̄, Ĝ, θ̃, υ,

1

ω

)
= KH(t̄)θ̃(t̄) +Ke(t̄) +KM(t̄)Q∗ +

1

2
KH(t̄)S(t̄) , (6.39)

and (6.31) as

Υ

(
t̄, Ĝ, θ̃, υ,

1

ω

)
= −µυ(t̄) + Ξ(Ĝ, e) . (6.40)

From the above dynamics, an appropriate averaging system in the new time-scale
t̄ can be introduced.

6.2.2 Average System

Defining the augmented state as follows

XT (t̄) :=
[
ĜT (t̄) , θ̃T (t̄) , υ(t̄)

]
, (6.41)

the system (6.35)–(6.40) reduces to

dX(t̄)

dt̄
=

1

ω
F
(
t̄, X,

1

ω

)
, (6.42)

where FT =
[
ĜT , Θ̃T ,Υ

]
. Note that (6.42) is characterized by a small parameter

1/ω as well as a T -periodic function F
(
t̄, X,

1

ω

)
in t̄ and, thereby, the averaging

method can be performed on F
(
t̄, X,

1

ω

)
at lim

ω→∞

1

ω
= 0, as shown in references

[94, 103]. The averaging method allows for determining in what sense the behavior
of a constructed average autonomous system approximates the behavior of the non-
autonomous system (6.42). By employing the averaging technique to (6.42), we
derive the following average system

dXav(t̄)

dt̄
=

1

ω
Fav (Xav) , (6.43)

Fav (Xav) =
1

T

∫ T

0

F (δ,Xav, 0) dδ , (6.44)

96



where the averaging terms are given below

Sav(t̄)=
1

T

∫ T

0

S(δ)dδ = 0 , Ṡav(t̄)=
1

T

∫ T

0

Ṡ(δ)dδ = 0 , (6.45)

Mav(t̄)=
1

T

∫ T

0

M(δ)dδ = 0 , Ṁav(t̄)=
1

T

∫ T

0

Ṁ(δ)dδ = 0 , (6.46)

∆av(t̄)=
1

T

∫ T

0

∆(δ)dδ=0 , ∆̇av(t̄)=
1

T

∫ T

0

∆̇(δ)dδ = 0 , (6.47)

and, consequently,

Hav(t̄)=
1

T

∫ T

0

H(δ)dδ = H∗ , Ḣav(t̄)=
1

T

∫ T

0

Ḣ(δ)dδ = 0 . (6.48)

Therefore, treating the states Ĝ(t̄), e(t̄) and θ̃(t̄) as constants in (6.27) and (6.23),
and by using the averaging values (6.45)–(6.48), one gets for all t̄ ∈ [t̄k, t̄k+1)

dĜav(t̄)

dt̄
=

1

ω
H∗KĜav(t̄) +

1

ω
H∗Keav(t̄) , (6.49)

eav(t̄) = Ĝav(t̄k)− Ĝav(t̄) , (6.50)

since the average value of w(t, θ̃(t)) in (6.23) is

wav(t̄, θ̃av(t̄)) = ∆̇av(t̄)H
∗θ̃av(t̄) + Ṁav(t̄)Q

∗ +
1

2
∆̇av(t̄)H

∗Sav(t̄)

+
1

2
H∗Ṡav(t̄) +

1

2
∆av(t̄)H

∗Ṡav(t̄)

= 0 . (6.51)

Hence, from (6.49) it is easy to verify the ISS relationship of Ĝav(t̄) with respect to
the averaged measurement error eav(t̄) in (6.50).

Moreover, from (6.20), one has

Ĝav(t̄) = H∗θ̃av(t̄) , (6.52)

and, consequently,

θ̃av(t̄) = H∗−1Ĝav(t̄) . (6.53)

Taking the time-derivative of (6.53), we get

dθ̃av(t̄)

dt̄
=

1

ω
KH∗θ̃av(t̄) +

1

ω
Keav(t̄) . (6.54)

Therefore, the following average event-triggered detection laws can be introduced

97



for the average system.
Defining the average version of Ξ(Ĝ, e), i.e. as

Ξ(Ĝav, eav) = σα∥Ĝav(t̄)∥2 − β∥eav(t̄)∥∥Ĝav(t̄)∥ , (6.55)

we construct the average event-triggered mechanisms.

Definition 9 (Multivariable Average Static Triggering Condition). Let Ξ(Ĝav, eav)

in (6.55) be the nonlinear mapping and K the control gain in (6.25). The event-
triggered controller with average static-triggering condition in the new time-scale
consists of two components:

1. A set of increasing sequence of time I = {t̄0 , t̄1 , t̄2 , . . .} with t̄0 = 0 generated
under the following rule:

• If
{
t̄ ∈ R+ : t̄ > t̄k ∧ Ξ(Ĝav, eav) < 0 = ∅

}
, then the set of the times of

the events is I = {t̄0 , t̄1 , . . . , t̄k}.
• If

{
t̄ ∈ R+ : t̄ > t̄k ∧ Ξ(Ĝav, eav) < 0 ̸= ∅

}
, next event time is given by

t̄k+1 = inf
{
t̄ ∈ R+ : t̄ > t̄k ∧ Ξ(Ĝav, eav) < 0

}
, (6.56)

which is the average static event-trigger mechanism.

2. A feedback control action updated at the triggering instants:

uk = KĜav(t̄k) , (6.57)

for all t̄ ∈ [t̄k , t̄k+1), k ∈ N.

Definition 10 (Multivariable Average Dynamic Triggering Condition). Let
Ξ(Ĝav, eav) in (6.55) be the nonlinear mapping and K the control gain in (6.25),
µ > 0 be a positive constant and υav be the solution of the dynamics

dυav(t̄)

dt̄
= −µ

ω
υav(t̄) +

1

ω
Ξ(Ĝav, eav) , µ > 0 , υ(0) ≥ 0 . (6.58)

Consequently, the event-triggered controller with dynamic-triggering condition con-
sists of two components:

1. A set of increasing sequence of time I = {t̄0 , t̄1 , t̄2 , . . .} with t̄0 = 0 generated
under the following rule:

• If
{
t̄ ∈ R+ : t̄ > t̄k ∧ υav(t̄) + γΞ(Ĝav, eav) < 0 = ∅

}
, then the set of the

times of the events is I = {t̄0 , t̄1 , . . . , t̄k}.
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• If
{
t̄ ∈ R+ : t̄ > t̄k ∧ υav(t̄) + γΞ(Ĝav, eav) < 0 ̸= ∅

}
, next event time is

given by

t̄k+1= inf
{
t̄ ∈ R+ : t̄ > t̄k ∧ υav(t̄)+γΞ(Ĝav, eav)<0

}
, (6.59)

which is the average dynamic event-trigger mechanism.

2. A feedback control action updated at the triggering instants given by (6.57).

For all t̄ ∈ (t̄j, t̄j+1), υav(t̄0) = υav(0) and υav(t̄
−
j ) = υav(t̄j) = υav(t̄

+
j ).

We claim that the two event-triggering mechanisms discussed above guarantee
the asymptotic stabilization of Ĝav(t̄) and, consequently, that of θ̃av(t̄). Since H∗ is
invertible, both Ĝav(t̄) and θ̃av(t̄) converge to the origin according to the averaging
theory [94].

Remark 1. From the time-scaling relation t̄ = ωt, where ω is a constant, the static
and dynamic triggering mechanisms of the averaging and the original system are
equivalent and only differ in the average sense.

Next, the stability analysis will be carried out considering the static and dynamic
event-triggering mechanisms. Note that, in both strategies it is considered the total
lack of knowledge of the nonlinear map (6.1), i.e., the Hessian H∗, the optimizer θ∗

and the extremum Q∗ are unknown parameters.

6.3 Static Event-Triggering in Extremum Seeking

6.3.1 Stability Analysis

Theorem 5 states the local asymptotic stability of the extremum seeking based on
dynamic event-triggered execution mechanism shown in Fig. 6.2 is ensured.

Theorem 5. Consider the closed-loop average dynamics of the gradient estimate
(6.49) and (6.50) as well as the average static event-triggered mechanism given by
Definition 9. Under Assumptions 1–3, and with the quadratic mapping Ξ(zav) given
by (6.55) and ω > 0 defined in (6.34) is a sufficiently large, the average gradient
estimate system (6.49) and (6.50) with state Ĝav(t) is locally exponentially stable.
Consequently, the dynamics of θ̃av(t) converges exponentially to zero. Therefore,
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Figure 6.2: Event-triggered based on extremum seeking scheme.

there exist constants m,Mθ ,My > 0 such that

∥θ(t)− θ∗∥ ≤ Mθ exp(−mt) +O
(
a+

1

ω

)
, (6.60)

|y(t)−Q∗| ≤ My exp(−mt) +O
(
a2 +

1

ω2

)
, (6.61)

where a =
√∑n

i=1 a
2
i , with ai defined in (6.8) and the constants Mθ, and My de-

pending on the initial condition θ(0). Moreover, there exists a lower bound τ ∗ for
the inter-execution interval tk+1 − tk for all k ∈ N precluding the Zeno behavior.

Proof. Now, consider the following candidate Lyapunov function for the average
system (6.49)

Vav(t̄) = ĜT
av(t̄)PĜav(t̄) , P = P T > 0, (6.62)

with time-derivative

dVav(t̄)

dt̄
= − 1

ω
ĜT

av(t̄)QĜav(t̄) +
1

ω
eTav(t̄)K

TH∗TPĜav(t̄)

+
1

ω
ĜT

av(t̄)PH∗Keav(t̄) , (6.63)

whose upper bound satisfies

dVav(t̄)

dt̄
≤−λmin(Q)

ω
∥Ĝav(t̄)∥2+

2∥PH∗K∥
ω

∥eav(t̄)∥∥Ĝav(t̄)∥. (6.64)
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Using Assumptions 2 and 3, we arrive at

dVav(t̄)

dt̄
≤ −α

ω
∥Ĝav(t̄)∥2 +

β

ω
∥eav(t̄)∥∥Ĝav(t̄)∥ . (6.65)

In the proposed event-triggered mechanism, the update law is (6.56) and
Ξ(Ĝav, eav) is given by (6.55). The signal uav(t) is held constant between two con-
secutive events, i.e., while Ξ(Ĝav, eav)≥ 0, one has

Ξ(zav) = σα∥Ĝav(t̄)∥2 − β∥eav(t̄)∥∥Ĝav(t̄)∥

= β∥Ĝav(t̄)∥
(
σα

β
∥Ĝav(t̄)∥ − ∥eav(t̄)∥

)
≥ 0 . (6.66)

Therefore, considering the event-triggered approach, the average measurement error
eav(t̄) is upper bounded by

∥eav(t̄)∥ ≤ σα

β
∥Ĝav(t̄)∥ . (6.67)

Now, plugging (6.67) into (6.65),

dVav(t̄)

dt̄
≤ −α(1− σ)

ω
∥Ĝav(t̄)∥2 . (6.68)

By using the Rayleigh-Ritz Inequality [94],

λmin(P )∥Ĝav(t̄)∥2 ≤ Vav(t̄) ≤ λmax(P )∥Ĝav(t̄)∥2 , (6.69)

and the following upper bound for (6.68)

dVav(t̄)

dt̄
≤ −α(1− σ)

ω
∥Ĝav(t̄)∥2 ≤ − α(1− σ)

ωλmax(P )
Vav(t̄) . (6.70)

Then, invoking the Comparison Lemma [94] an upper bound V̄av(t̄) for Vav(t̄) is

Vav(t̄) ≤ V̄av(t̄) , ∀t̄ ∈ [t̄k, t̄k+1) . (6.71)

given by the solution of the following dynamics

dV̄av(t̄)

dt̄
= − α(1− σ)

ωλmax(P )
V̄av(t̄), V̄av(t̄k) = Vav(t̄k) , (6.72)

In other words, ∀t̄ ∈ [t̄k, t̄k+1),

V̄av(t̄) = exp

(
− α(1− σ)

ωλmax(P )
(t̄− t̄k)

)
Vav(t̄k) , (6.73)

101



and the inequality (6.71) is rewritten as

Vav(t̄) ≤ exp

(
− α(1− σ)

ωλmax(P )
(t̄− t̄k)

)
Vav(t̄k) . (6.74)

By defining, t̄+k and t̄−k as the right and left limits of t̄ = t̄k, respectively, it easy to
verify that Vav(t̄

−
k+1) ≤ exp

(
− α(1−σ)

ωλmax(P )
(t̄−k+1 − t̄+k )

)
Vav(t̄

+
k ). Since Vav(t̄) is continu-

ous, Vav(t̄
−
k+1) = Vav(t̄k+1) and Vav(t̄

+
k ) = Vav(t̄k), and therefore,

Vav(t̄k+1) ≤ exp

(
− α(1− σ)

ωλmax(P )
(t̄k+1 − t̄k)

)
Vav(t̄k) . (6.75)

Hence, for any t̄ ≥ 0 in t̄ ∈ [t̄k, t̄k+1), k ∈ N, one has

Vav(t̄) ≤ exp

(
− α(1− σ)

ωλmax(P )
(t̄− t̄k)

)
Vav(t̄k)

≤ exp

(
− α(1− σ)

ωλmax(P )
(t̄− t̄k)

)
exp

(
− α(1− σ)

ωλmax(P )
(t̄k − t̄k−1)

)
Vav(t̄k−1)

≤ . . . ≤

≤ exp

(
− α(1− σ)

ωλmax(P )
(t̄−t̄k)

) i=k∏
i=1

exp

(
− α(1− σ)

ωλmax(P )
(t̄i − t̄i−1)

)
Vav(t̄i−1)

= exp

(
− α(1− σ)

ωλmax(P )
t̄

)
Vav(0) . (6.76)

Now, lower bounding the left-hand side and upper bounding the right hand size
of (6.76) with the corresponding sides of (6.69), one gets

λmin(P )∥Ĝav(t̄)∥2 ≤ exp

(
− α(1− σ)

ωλmax(P )
t̄

)
λmax(P )∥Ĝav(0)∥2 . (6.77)

Then,

∥Ĝav(t̄)∥2 ≤ exp

(
− α(1− σ)

ωλmax(P )
t̄

)
λmax(P )

λmin(P )
∥Ĝav(0)∥2

=

[
exp

(
− α(1− σ)

2ωλmax(P )
t̄

)√
λmax(P )

λmin(P )
∥Ĝav(0)∥

]2
, (6.78)

and

∥Ĝav(t̄)∥ ≤ exp

(
− α(1− σ)

2ωλmax(P )
t̄

)√
λmax(P )

λmin(P )
∥Ĝav(0)∥ . (6.79)

Although the analysis has been focused on the convergence of Ĝav(t̄) and, conse-
quently, of Ĝ(t), the obtained results through (6.79) can be easily extended to the
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variables θ̃av(t̄) and θ̃(t). Using relation (6.52), (6.62) and (6.64) are rewritten as

Vav(t̄) = θ̃Tav(t̄)H
∗TPH∗θ̃av(t̄) , (6.80)

dVav(t̄)

dt̄
≤ − α(1− σ)

ωλmax(P )
Vav(t̄) . (6.81)

From Assumption 1, the quadratic matrix H∗ has linearly independent rows and
columns. Furthermore, from Assumption 2, P is a symmetric and positive definite
matrix. Thus, there exists a matrix R with independent columns such that P = RTR

and, consequently, P̄ = H∗TPH∗ is a symmetric and positive definite matrix [109,
Section 6.5] leading to

Vav= θ̃Tav(t̄)P̄ θ̃av(t̄) , (6.82)

satisfying the Rayleigh-Ritz inequality

λmin(P̄ )∥θ̃av(t̄)∥2 ≤ Vav ≤ λmax(P̄ )∥θ̃av(t̄)∥2 . (6.83)

Then, by using (6.76), (6.82) and (6.83), one has

λmin(P̄ )∥θ̃av(t̄)∥2 ≤ exp

(
−(1− σ)λmin(Q)

ωλmax(P )
t̄

)
λmax(P̄ )∥θ̃av(0)∥2 , (6.84)

and

∥θ̃av(t̄)∥ ≤ exp

(
− α(1− σ)

2ωλmax(P )
t̄

)√
λmax(P̄ )

λmin(P̄ )
∥θ̃av(0)∥ . (6.85)

Since (6.36) has discontinuous right-hand side and the mapping Θ̃(t̄, θ̃(t̄), e(t̄))

in (6.39) is T -periodic in t. From (6.85), θ̃av(t̄) is asymptotically stable, by invoking
[103, Theorem 2], such that

∥θ̃(t)− θ̃av(t)∥ ≤ O
(
1

ω

)
. (6.86)

By using the Triangle inequality [110], one has

∥θ̃(t)∥ ≤ ∥θ̃av(t)∥+O
(
1

ω

)
≤ exp

(
− α(1− σ)

2λmax(P )
t

)√
λmax(P̄ )

λmin(P̄ )
∥θ̃av(0)∥+O

(
1

ω

)
. (6.87)
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Furthermore,

∥Ĝ(t)− Ĝav(t)∥ ≤ O
(
1

ω

)
, (6.88)

and by using again the Triangle inequaliy [110], such that

∥Ĝ(t)∥ ≤ ∥Ĝav(t)∥+O
(
1

ω

)
≤ exp

(
− α(1− σ)

2λmax(P )
t

)√
λmax(P )

λmin(P )
∥Ĝav(0)∥+O

(
1

ω

)
. (6.89)

Now, from (6.12), we can write

θ(t)− θ∗ = θ̃(t) + S(t) , (6.90)

whose norm satisfies

∥θ(t)− θ∗∥ = ∥θ̃(t) + S(t)∥
≤ ∥θ̃(t)∥+ ∥S(t)∥

≤ exp

(
− α(1− σ)

2λmax(P )
t

)√
λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥+O

(
a+

1

ω

)
. (6.91)

Defining the error variable ỹ(t) as

ỹ(t) := y(t)−Q∗ , (6.92)

using the fact that y(t) = Q(θ(t)) where Q(θ(t)) is defined in (6.1) and the Cauchy-
Schwarz inequality [105], we get

|ỹ(t)| = |y(t)−Q∗|
= |(θ(t)− θ∗)TH∗(θ(t)− θ∗)|
≤ ∥H∗∥∥θ(t)− θ∗∥2 , (6.93)
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and substituting (6.91) in (6.93), the following holds:

|ỹ(t)|≤∥H∗∥
[
exp

(
− α(1− σ)

2λmax(P )
t

)√
λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥+O

(
a+

1

ω

)]2

= ∥H∗∥
[
exp

(
−α(1− σ)

λmax(P )
t

)
λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥2 +O

(
a+

1

ω

)2

+2 exp

(
− α(1− σ)

2λmax(P )
t

)√
λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥O

(
a+

1

ω

)]
. (6.94)

Since exp
(
− α(1−σ)

λmax(P )
t
)
≤ exp

(
− α(1−σ)

2λmax(P )
t
)

and, according to [94, Definition 10.1],

∥H∗∥O
(
a+ 1

ω

)2 is of order of magnitude O
(
a+ 1

ω

)2, (6.93) is upper bounded by

|y(t)−Q∗| ≤ exp

(
− α(1− σ)

2λmax(P )
t

)
∥H∗∥×

×
[
λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥+ 2

√
λmax(P̄ )

λmin(P̄ )
O
(
a+

1

ω

)]
×

× ∥θ(0)− θ∗∥+O
(
a2 + 2

a

ω
+

1

ω2

)
. (6.95)

Finally, once a , ω > 0, by using the Young inequality [94], a
ω
≤ a2

2
+ 1

2ω2 , and

|y(t)−Q∗| ≤ exp

(
− α(1− σ)

2λmax(P )
t

)
∥H∗∥×

×
[
λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥+ 2

√
λmax(P̄ )

λmin(P̄ )
O
(
a+

1

ω

)]
×

× ∥θ(0)− θ∗∥+O
(
a2 +

1

ω2

)
, (6.96)

since O (2a2 + 2/ω) = 2O (a2 + 1/ω2) has an order of magnitude of O (a2 + 1/ω2)

[94, Definition 10.1].
Therefore, by defining the positive constants

m =
α(1− σ)

2λmax(P )
, (6.97)

Mθ =

√
λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥ , (6.98)

My = ∥H∗∥λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥2 + 2∥H∗∥

√
λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥O

(
a+

1

ω

)
,

(6.99)
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inequalities (6.91) and (6.96) satisfy (6.60) and (6.61), respectively. Since the average
closed-loop system consists of (6.49), with the event-triggered mechanism (6.55),
(6.56), and a control signal’s update law (6.67) satisfying ∥eav(t̄)∥ > σα

β
∥Ĝav(t̄)∥, we

conclude that dVav(t̄)/dt̄ < 0 from (6.65) and for all t̄ ∈ [tk , tk+1[. Thus, one can
state that

σα∥Ĝav(t̄)∥2 − β∥eav(t̄)∥∥Ĝav(t̄)∥ ≥ 0 , (6.100)

and using the Peter-Paul inequality [106], cd ≤ c2

2ϵ
+ ϵd2

2
for all c, d, ϵ > 0, with

c = ∥eav(t̄)∥, d = ∥Ĝav(t̄)∥ and ϵ = σα
β

, the inequality (6.100) is lower bounded by

σα∥Ĝav(t̄)∥2 − β∥eav(t̄)∥∥Ĝav(t̄)∥ ≥

σα∥Ĝav(t̄)∥2 − β

(
σα

2β
∥Ĝav(t̄)∥2 +

β

2σα
∥eav(t̄)∥2

)
= q∥Ĝav(t̄)∥2 − p∥eav(t̄)∥2 , (6.101)

where

q =
σα

2
and p =

β2

2σα
. (6.102)

In [107], it is shown that a lower bound for the inter-execution interval is given by
the time duration it takes for the function

ϕ(t̄) =

√
p

q

∥eav(t̄)∥
∥Ĝav(t̄)∥

(6.103)

to go from 0 to 1. The time-derivative of (6.103) is

dϕ(t̄)

dt̄
=

√
p

q

1

∥eav(t̄)∥∥Ĝav(t̄)∥

eTav(t̄)deav(t̄)dt̄
− ĜT

av(t̄)
dĜav(t̄)

dt̄

(
∥eav(t̄)∥
∥Ĝav(t̄)∥

)2
 .

(6.104)

Now, plugging equations (6.49) and (6.50) into (6.104), one arrives to

dϕ(t̄)

dt̄
=

1

ω

√
p

q

1

∥eav(t̄)∥∥Ĝav(t̄)∥

{
−eTav(t̄)H

∗Keav(t̄)− eTav(t̄)H
∗KĜav(t̄)+

−
[
ĜT

av(t̄)H
∗KĜav(t̄) + ĜT

av(t̄)H
∗Keav(t̄)

]( ∥eav(t̄)∥
∥Ĝav(t̄)∥

)2
 . (6.105)
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Then, the following estimate holds:

dϕ(t̄)

dt̄
≤ 1

ω

√
p

q

∥H∗K∥
∥eav(t̄)∥∥Ĝav(t̄)∥

{
∥eav(t̄)∥2 + ∥eav(t̄)∥∥Ĝav(t̄)∥

+
[
∥Ĝav(t̄)∥2 + ∥Ĝav(t̄)∥∥eav(t̄)∥

]( ∥eav(t̄)∥
∥Ĝav(t̄)∥

)2


=
∥H∗K∥

ω

√
p

q

{
1 + 2

∥eav(t̄)∥
∥Ĝav(t̄)∥

+
∥eav(t̄)∥2
∥Ĝav(t̄)∥2

}
. (6.106)

Hence, using (6.103), inequality (6.106) is rewritten as

ω
dϕ(t̄)

dt̄
≤ ∥H∗K∥

√
p

q
+ 2∥H∗K∥ϕ(t̄) + ∥H∗K∥

√
q

p
ϕ2(t̄) . (6.107)

From the time-scaling t = t̄
ω
, inequality (6.106) and invoking the Comparison Lemma

[94], a lower bound for the inter-execution time is found as

τ ∗ =

∫ 1

0

1

b0 + b1ξ + b2ξ2
dξ , (6.108)

with b0 =
β∥H∗K∥

ασ
, b1 = 2∥H∗K∥ and b2 =

α∥H∗K∥σ
β

. Therefore, the Zeno

behavior is avoided.

Corollary 1. (Static Event-Tiggered Extremum Seeking with known Hessian): Con-
sider the partial knowledge of the nonlinear map (6.1) such that the Hessian matrix
H∗ is a known parameter. Although this hypothesis appears to simplify the problem,
one should note that the extremum seeking strategy is still justified once the opti-
mizer vector θ∗ and parameter Q∗ are unknown. Then, Ξ(Ĝ, e) defined in (6.29) is
equivalent to

Ξ(Ĝ, e) = σĜT (t)QĜ(t)− 2ĜT (t)PH∗Ke(t) ,

resulting in the static event-triggered mechanism

tk+1 = inf
{
t ∈ R+ : t > tk ∧ Ξ(Ĝ, e) < 0

}
,

which ensures the local asymptotic stability of the closed-loop system from Theorem 5.
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6.4 Dynamic Event-Triggering in Extremum Seeking

6.4.1 Stability Analysis

Theorem 6 demonstrates how local asymptotic stability of the extremum seeking
based on a dynamic event-triggered mechanism shown in Figure 6.3 is ensured.

ZOH
1
s

+ Q(·) ×

K

Enable
< 0

γ Ξ(·) e(t) −

u(t) θ̂(t)

S(t)

θ(t) y(t)

M(t)

Ĝ(t)

U(t)

U(tk)
+

ZOH
Ĝ(tk)

+

υ̇=−µυ+Ξ(Ĝ, e)

υ(t)

• Plant
• Extremum Seeking
• Event-Triggered

Plant
Extremum Seeking
Event-Triggered

Figure 6.3: Block diagram of the extremum seeking based on dynamic event-
triggered mechanism.

Theorem 6. Consider the closed-loop average dynamics of the gradient estimate
(6.49) and (6.50) as well as the average dynamic event-triggered mechanism given
by Definition 10. Under Assumptions 1–3 with the quadratic mapping Ξ(Ĝav, eav)

given by (6.55) and a sufficiently large ω > 0 defined in (6.34), the average gradient
estimate system (6.49) and (6.50) with state Ĝav(t) is locally exponentially stable.
Consequently, the dynamics of θ̃av(t) converges exponentially to zero. Therefore,
there exist constants m,Mθ ,My > 0 such that

∥θ(t)− θ∗∥ ≤ Mθ exp(−mt) +O
(
a+

1

ω

)
, (6.109)

|y(t)−Q∗| ≤ My exp(−mt) +O
(
a2 +

1

ω2

)
, (6.110)

where a =
√∑n

i=1 a
2
i , with ai defined in (6.8) and the constants Mθ and My depend-

ing on the initial condition θ(0). Moreover, there exists a lower bound τ ∗ for the
inter-execution interval tk+1 − tk for all k ∈ N precluding the Zeno behavior.

Proof. First, notice that the dynamic triggering mechanism (6.32) ensures, for all
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t ∈ [tk , tk+1[,

υav(t̄) + γΞ(Ĝav, eav) ≥ 0 , (6.111)

and,

Ξ(Ĝav, eav) ≥ −1

γ
υav(t̄) . (6.112)

Now, with the help of (6.112), the following estimate of (6.58) holds

dυav(t̄)

dt̄
= −µ

ω
υav(t̄) +

1

ω
Ξ(Ĝav, eav)

≥ −µ

ω
υav(t̄)−

1

ωγ
υav(t̄) = − 1

ω

(
µ+

1

γ

)
υav(t̄) . (6.113)

Invoking [94, Comparison Lemma, pp. 102], the solution υ̂av(t̄) of the following
first-order dynamics

dυ̂av(t̄)

dt̄
= − 1

ω

(
µ+

1

γ

)
υ̂av(t̄) , υ̂av(0) = υav(0) > 0 , (6.114)

precisely,

υ̂av(t̄) = exp

(
− 1

ω

(
µ+

1

γ

)
t̄

)
υ̂av(0) > 0 , ∀t̄ ≥ 0 , (6.115)

is a lower bound for υav(t̄). To verify this fact, notice that, from (6.113) and (6.114),

d(υav(t̄)− υ̂av(t̄))

dt̄
≥ − 1

ω

(
µ+

1

γ

)
(υav(t̄)− υ̂av(t̄)) . (6.116)

Thus,

υav(t̄)− υ̂av(t̄) ≥ exp

(
− 1

ω

(
µ+

1

γ

)
t̄

)
(υav(0)− υ̂av(0))︸ ︷︷ ︸

=0

(6.117)

and

υav(t̄) ≥ υ̂av(t̄) > 0 , ∀t̄ ≥ 0 . (6.118)

Now, since υav(t̄) > 0, for all υav(t̄) ̸= 0, consider the following Lyapunov candi-
date for the average system:

Vav(t̄) = ĜT
av(t̄)PĜav(t̄) + υav(t̄) , P

T = P > 0 (6.119)

109



The Rayleigh-Ritz inequality writes:

λmin(P )∥Ĝav(t̄)∥2 ≤ ĜT
av(t̄)PĜav(t̄) ≤ λmax(P )∥Ĝav(t̄)∥2 . (6.120)

The time-derivative of (6.119) is given by

dVav(t̄)

dt̄
=

dĜT
av(t̄)

dt̄
P Ĝav(t̄) + ĜT

av(t̄)P
dĜav(t̄)

dt̄
+

dυav(t̄)

dt̄
, (6.121)

which, by using equations (6.49) and (6.58), can be rewritten as

dVav(t̄)

dt̄
= − 1

ω
ĜT

av(t̄)QĜav(t̄) +
1

ω
eTav(t̄)K

TH∗TPĜav(t̄)+

+
1

ω
ĜT

av(t̄)PH∗Keav(t̄)−
µ

ω
υav(t̄) +

1

ω
Ξ(Ĝav, eav) , (6.122)

Under Assumption 2, the following inequality is derived

dVav(t̄)

dt̄
≤ −α

ω
∥Ĝav(t̄)∥2 +

β

ω
∥eav(t̄)∥∥Ĝav(t̄)∥+

1

ω
Ξ(Ĝav, eav) . (6.123)

Plugging (6.55) into (6.123), one has

dVav(t̄)

dt̄
≤ −(1− σ)α

ω
∥Ĝav(t̄)∥2 −

µ

ω
υav(t̄) . (6.124)

Now, using (6.120) and (6.119), inequality (6.124) can be upper bounded as follows

dVav(t̄)

dt̄
≤ − (1− σ)α

ωλmax(P )
ĜT

av(t̄)PĜav(t̄)−
µ

ω
υav(t̄) (6.125)

≤ − 1

ω
min

{
(1−σ)α

λmax(P )
, µ

}
(ĜT

av(t̄)PĜav(t̄)+υav(t̄)) (6.126)

≤ − 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
Vav(t̄) . (6.127)

Then, invoking the Comparison Lemma [94] an upper bound V̄av(t̄) for Vav(t̄) is

Vav(t̄) ≤ V̄av(t̄) , ∀t̄ ∈ [t̄k, t̄k+1) . (6.128)

given by the solution of the following dynamics

dV̄av(t̄)

dt̄
= − 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
V̄av(t̄), V̄av(t̄k) = Vav(t̄k) , (6.129)
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In other words, ∀t̄ ∈ [t̄k, t̄k+1),

V̄av(t̄) = exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
(t̄− t̄k)

)
Vav(t̄k) , (6.130)

and the inequality (6.128) is rewritten as

Vav(t̄) ≤ exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
(t̄− t̄k)

)
Vav(t̄k) . (6.131)

By defining, t̄+k and t̄−k as the right and left limits of t̄ = t̄k, respectively, it easy to
verify that Vav(t̄

−
k+1) ≤ exp

(
− 1

ω
min

{
(1−σ)α
λmax(P )

, µ
}
(t̄−k+1 − t̄+k )

)
Vav(t̄

+
k ). Since Vav(t̄)

is continuous, Vav(t̄
−
k+1) = Vav(t̄k+1) and Vav(t̄

+
k ) = Vav(t̄k), and therefore,

Vav(t̄k+1) ≤ exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
(t̄k+1 − t̄k)

)
Vav(t̄k) . (6.132)

Hence, for any t̄ ≥ 0 in t̄ ∈ [t̄k, t̄k+1), k ∈ N, one has

Vav(t̄) ≤ exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
(t̄− t̄k)

)
Vav(t̄k)

≤ exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
(t̄− t̄k)

)
×

× exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
(t̄k − t̄k−1)

)
Vav(t̄k−1)

≤ . . . ≤

≤ exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
(t̄−t̄k)

)
×

×
i=k∏
i=1

exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
(t̄i − t̄i−1)

)
Vav(t̄i−1)

= exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)
Vav(0) . (6.133)

From (6.119), it follows

ĜT
av(t̄)PĜav(t̄) ≤ Vav(t̄) . (6.134)

Consequently, combining (6.133) and (6.134), one gets

ĜT
av(t̄)PĜav(t̄) ≤ exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)
Vav(t̄ = 0) ,

= exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)(
ĜT

av(0)PĜav(0) + υav(0)
)
.

(6.135)
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Since there exists a positive scalar κ such that

υav(0) ≤ κĜT
av(0)PĜav(0) , (6.136)

it is possible to write

ĜT
av(t̄)PĜav(t̄) ≤ exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)
(1 + κ) ĜT

av(0)PĜav(0) , (6.137)

Therefore, from (6.120), one gets

λmin(P )∥Ĝav(t̄)∥2≤exp

(
− 1

ω
min

{
(1−σ)α

λmax(P )
, µ

}
t̄

)
(1 + κ)λmax(P )∥Ĝav(0)∥2 .

(6.138)

Then,

∥Ĝav(t̄)∥2 ≤ exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)
(1 + κ)λmax(P )

λmin(P )
∥Ĝav(0)∥2

=

[
exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P )

λmin(P )
∥Ĝav(0)∥

]2
.

(6.139)

equivalently,

∥Ĝav(t̄)∥2 −
[
exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P )

λmin(P )
∥Ĝav(0)∥

]2
≤ 0 .

(6.140)

Hence,[
∥Ĝav(t̄)∥+ exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P )

λmin(P )
∥Ĝav(0)∥

]

×
[
∥Ĝav(t̄)∥ − exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P )

λmin(P )
∥Ĝav(0)∥

]
≤ 0

(6.141)

and

∥Ĝav(t̄)∥ ≤ exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P )

λmin(P )
∥Ĝav(0)∥ . (6.142)

Although the analysis has been focused on the convergence of Ĝav(t̄) and, conse-
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quently, Ĝ(t), the obtained results through (6.142) can be easily extended to the
variables θ̃av(t̄) and θ̃(t). From Assumption 1, the quadratic matrix H∗ has linearly
independent rows and columns. Furthermore, from Assumption 2, P is a symmet-
ric and positive definite matrix. Thus, there exist a matrix R with independent
columns such that P = RTR and, consequently, P̄ = H∗TPH∗ is a symmetric and
positive definite matrix [109, Section 6.5]. Thus, by using (6.52), the quadratic term
ĜT

av(t̄)PĜav(t̄) in (6.119) is written as

ĜT
av(t̄)PĜav(t̄) = (H∗θ̃av(t̄))

TP (H∗θ̃av(t̄))

= θ̃Tav(t̄)H
∗TPH∗θ̃av(t̄)

= θ̃Tav(t̄)P̄ θ̃av(t̄) , (6.143)

with the Rayleigh-Ritz inequality

λmin(P̄ )∥θ̃av(t̄)∥2 ≤ θ̃Tav(t̄)P̄ θ̃av(t̄) ≤ λmax(P̄ )∥θ̃av(t̄)∥2 . (6.144)

Therefore, inequality (6.137) can be rewritten as

θ̃Tav(t̄)P̄ θ̃av(t̄) ≤ exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)
(1 + κ) θ̃Tav(0)P̄ θ̃av(0) . (6.145)

Now, by considering inequalities (6.145) and (6.144), and following the steps
between (6.137) and (6.142), one obtains

∥θ̃av(t̄)∥ ≤ exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ̃av(0)∥ . (6.146)

Since the differential equation (6.36) has discontinuous right hand size,
Θ̃(t̄, θ̃(t̄), e(t̄)) in (6.39) is T -periodic in t and satisfy the Lipschitz condition. From
(6.146), by invoking [103, Theorem 2], the θ̃av(t̄) is asymptotically stable. That is

∥θ̃(t)− θ̃av(t)∥ ≤ O
(
1

ω

)
. (6.147)

Using the triangle inequality [110], one has

∥θ̃(t)∥ ≤ ∥θ̃av(t)∥+O
(
1

ω

)
≤ exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ̃av(0)∥+O

(
1

ω

)
.

(6.148)
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Furthermore,

∥Ĝ(t)− Ĝav(t)∥ ≤ O
(
1

ω

)
, (6.149)

and again using the triangle inequality [110], one obtains

∥Ĝ(t)∥ ≤ ∥Ĝav(t)∥+O
(
1

ω

)
≤ exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ̃av(0)∥+O

(
1

ω

)
.

(6.150)

Now, from (6.12), we have

θ(t)− θ∗ = θ̃(t) + S(t) , (6.151)

whose norm satisfies

∥θ(t)− θ∗∥ = ∥θ̃(t) + S(t)∥
≤ ∥θ̃(t)∥+ ∥S(t)∥

≤ exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥+

+O
(
a+

1

ω

)
. (6.152)

Defining the error variable

ỹ(t) := y(t)−Q∗ , y(t) = Q(θ(t)), (6.153)

and using Cauchy-Schwartz inequality [105], we get

|ỹ(t)| = |y(t)−Q∗| = |(θ(t)− θ∗)TH∗(θ(t)− θ∗)|
≤ ∥H∗∥∥θ(t)− θ∗∥2 , (6.154)
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and with the help of (6.152)

|ỹ(t)| ≤ ∥H∗∥
[
exp

(
− 1

ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)
(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥2+

+ 2 exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)√
(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥×

×O
(
a+

1

ω

)
+O

(
a+

1

ω

)2
]
. (6.155)

Since exp
(
−min

{
(1−σ)α
λmax(P )

, µ
}

t̄
ω

)
≤exp

(
−min

{
(1−σ)α
λmax(P )

, µ
}

t̄
2ω

)
and from [94, Defini-

tion 10.1], ∥H∗∥O
(
a+ 1

ω

)2 is of order O
(
a+ 1

ω

)2. Hence, (6.154) leads to

|y(t)−Q∗| ≤ exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)
∥H∗∥

[
(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥+

+2

√
(1 + κ)λmax(P̄ )

λmin(P̄ )

(
a+

1

ω

)]
∥θ(0)− θ∗∥+O

(
a2 + 2

a

ω
+

1

ω2

)
.

(6.156)

Knowing that a , ω > 0 and using Young’s inequality a
ω
≤ a2

2
+ 1

2ω2 , one gets

|y(t)−Q∗| ≤ exp

(
− 1

2ω
min

{
(1− σ)α

λmax(P )
, µ

}
t̄

)
∥H∗∥

[
(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥+

+2

√
(1 + κ)λmax(P̄ )

λmin(P̄ )

(
a+

1

ω

)]
∥θ(0)− θ∗∥+O

(
a2 +

1

ω2

)
(6.157)

since O (2a2 + 2/ω) = 2O (a2 + 1/ω2) is of order O (a2 + 1/ω2) [94, Definition 10.1].
Now, defining the positive constants:

m =
1

2
min

{
(1− σ)α

λmax(P )
, µ

}
, (6.158)

Mθ =

√
(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥ , (6.159)

My = ∥H∗∥(1 + κ)λmax(P̄ )

λmin(P̄ )
∥θ(0)− θ∗∥2

+ 2∥H∗∥
√

(1 + κ)λmax(P̄ )

λmin(P̄ )

(
a+

1

ω

)
∥θ(0)− θ∗∥ , (6.160)

inequalities (6.152) and (6.157) satisfy (6.109) and (6.110), respectively.
Notice that, from (6.55) and (6.59), and using the Peter-Paul inequality [106],

we can write cd ≤ c2

2ϵ
+ ϵd2

2
, for all c, d, ϵ > 0, with c = ∥eav(t̄)∥, d = ∥Ĝav(t̄)∥,
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ϵ = σλmin(Q)
2∥PH∗K∥ and t̄ ∈ [tk , tk+1). The following holds

υav(t̄)+γ
[
σα∥Ĝav(t̄)∥2−β∥eav(t̄)∥∥Ĝav(t̄)∥

]
≥

υav(t̄)+γ

[
σα∥Ĝav(t̄)∥2−

β

2

(
σα

β
∥Ĝav(t̄)∥2+

β

σα
∥eav(t̄)∥2

)]
= υav(t̄) + γ

(
q∥Ĝav(t̄)∥2 − p∥eav(t̄)∥2

)
, (6.161)

where

q =
σα

2
and p =

β2

2σα
. (6.162)

The minimum dwell-time of the event-triggered framework is given by the time it
takes for the function

ϕ(t̄) =

√
γp∥eav(t̄)∥√

υav(t̄) + γq∥Ĝav(t̄)∥2
, (6.163)

to go from 0 to 1. The derivative of ϕ(t̄) in (6.163) is given by

dϕ(t̄)

dt̄
=

√
γpeTav(t̄)

deav(t̄)

dt̄

∥eav(t̄)∥
√

υav(t̄) + γq∥Ĝav(t̄)∥2
+

−
√
γp∥eav(t̄)∥

2(υav(t̄) + γq∥Ĝav(t̄)∥2)3/2

(
dυav(t̄)

dt̄
+ γqĜT

av(t̄)
dĜav(t̄)

dt̄

)
. (6.164)

Now, from (6.31), (6.49), (6.50) and (6.161), one arrives at

deav(t̄)

dt̄
= −dĜav(t̄)

dt̄
, (6.165)∥∥∥∥∥dĜav(t̄)

dt̄

∥∥∥∥∥ ≤ 1

ω
∥H∗K∥∥Ĝav(t̄)∥+

1

ω
∥H∗K∥∥eav(t̄)∥ , (6.166)

dυav(t̄)

dt̄
≥ −µ

ω
υav(t̄) +

q

ω
∥Ĝav(t̄)∥2 −

p

ω
∥eav(t̄)∥2 (6.167)

and from (6.164) the following inequality holds

dϕ(t̄)

dt̄
≤ ∥H∗K∥

ω

√
p

q
+

∥H∗K∥
ω

ϕ(t̄) +
1

2ωγ
ϕ3(t̄) +

∥H∗K∥
ω

√
q

p
ϕ2(t̄) +

µ

2ω
ϕ(t̄)+

+
γq∥Ĝav(t̄)∥2

2ω(υav(t̄) + γq∥Ĝav(t̄)∥2)

(
−µ− 1

γ
+ 2∥H∗K∥

)
ϕ(t̄) . (6.168)

116



Hence, if ∥H∗K∥ ≤ µ/2, one has

ω
dϕ(t̄)

dt̄
≤ ∥H∗K∥

√
p

q
+ 2∥H∗K∥ϕ(t̄) + ∥H∗K∥

√
q

p
ϕ2(t̄) . (6.169)

By using the transformation t = t̄
ω
, inequality (6.169) and invoking the Comparison

Lemma [94], a lower bound of the inter-execution time is found as

τ ∗ =

∫ 1

0

1

b0 + b1ξ + b2ξ2 + b3ξ3
dξ , (6.170)

with b0 =
β∥H∗K∥

σα
, b1 = 2∥H∗K∥, b2 =

σα∥H∗K∥
β

and b3 = 0.

If ∥H∗K∥ > µ/2 and γ ≤ 1/(2|H∗K∥ − µ), from (6.168) we get

ω
dϕ(t̄)

dt̄
≤∥H∗K∥

√
p

q
+
(µ
2
+∥H∗K∥

)
ϕ(t̄)+∥H∗K∥

√
q

p
ϕ2(t̄)+

(
∥H∗K∥−µ

2

)
ϕ3(t̄)

(6.171)

and the minimum dwell-time τ ∗ satisfies (6.170) with b0 =
β∥H∗K∥

σα
, b1 =

µ

2
+

∥H∗K∥, b2 =
σα∥H∗K∥

β
and b3 = ∥H∗K∥ − µ

2
.

Finally, if ∥H∗K∥ > µ/2 and γ > 1/(2∥H∗K∥ − µ), we obtain

ω
dϕ(t̄)

dt̄
≤ ∥H∗K∥

√
p

q
+

(
2∥H∗K∥ − 1

2γ

)
ϕ(t̄) + ∥H∗K∥

√
q

p
ϕ2(t̄) +

1

2γ
ϕ3(t̄) ,

(6.172)

and the lower bound τ ∗ satisfies equation (6.170) with constants b0 =
β∥H∗K∥

σα
,

b1 = 2∥H∗K∥ − 1

2γ
, b2 =

σα∥H∗K∥
β

and b3 =
1

2γ
.Therefore, Zeno behavior is

avoided [107].

Corollary 2. (Dynamic Event-Tiggered Extremum Seeking with known Hessian):
Consider the partial knowledge of the nonlinear map (6.1) such that the Hessian
matrix H∗ is a known parameter. Although this hypothesis appears to simplify the
problem, one should note that the extremum seeking strategy is still justified once
the optimizer vector θ∗ and parameter Q∗ are unknown. Then, Ξ(Ĝ, e) defined in
(6.29) is equivalent to

Ξ(Ĝ, e) = σĜT (t)QĜ(t)− 2ĜT (t)PH∗Ke(t)
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and the dynamic event-triggered mechanism

tk+1 = inf
{
t ∈ R+ : t > tk ∧ υ(t) + γΞ(Ĝ, e) < 0

}
,

where
υ̇(t) = −µυ(t) + Ξ(Ĝ, e) ,

ensures the local asymptotically stability of the closed-loop from Theorem 6.

6.5 Simulation results

We consider the multivariable nonlinear map (6.1) with an input θ(t) ∈ R2, an
output y(t) ∈ R, and unknown parameters

H =

[
100 30

30 20

]
> 0 , (6.173)

Q∗ = 100 and θ∗ =
[
2 4

]T
. The dither vectors (6.8) and (6.9) have parameters

a1 = a2 = 0.1, ω1 = 0.7 [rad/sec], and ω2 = 0.5 [rad/sec], as in [51], and we select the
event-triggered parameters σ = 0.5, α = 1, β = 3.1521, µ = 0.4320 and γ = 0.0542.

The control gain matrix is K = 10−2

[
−6 0

0 −20

]
and initial condition is υ(0) = 0.

In Fig. 6.5, both strategies are simulated, static and dynamic event-triggered ap-

proaches with initial condition θ̂(0) =
[
2.5, 6

]T
. Fig. 6.4(a) and Fig. 6.4(b) shows

the convergence to zero of both the sampled-and-hold version of the gradient esti-
mate when the control signals are given by Fig. 6.4(c) and Fig. 6.4(d), respectively.
Of course, the gradient stabilization implies reaching the optimizer θ∗, as illustrated
in Fig. 6.5(a) and Fig. 6.5(b), consequently, the variable y(t) reaches its extremum
value as shown in Fig. 6.5(c) and Fig. 6.5(d).

Hereafter, we have considered several simulations by using the set of initial condi-

tions θ̂(0) =
[
2− 2 cos

(
2π
100

i
)
, 4− 2 sin

(
2π
100

i
)]T

for i = 1, . . . , 100. Fig. 6.8 shows
the time-evolution of the proposed dynamic event-triggered extremum seeking ap-
proaches. For all initial conditions, the input signal in Fig. 6.7(a) and Fig. 6.7(b)
ensures convergence of the gradient estimate as well as the measurement error as
presented in Fig. 6.7(c)–Fig. 6.8(d). Thus, θ1(t) and θ2(t) tend asymptotically to θ∗1

and θ∗2, respectively, consequently, y(t) to Q∗ (see Fig. 6.6, Fig. 6.8(e) and Fig. 6.8(f).
Finally, Table 6.1 summarizes the statistical data obtained for a set of 5400

simulations of 300 seconds. For any value σ, it is possible to verify that the interval
between executions as well as the dispersion measures (mean deviation, variance
and standard deviation) are greater when the dynamic strategy is employed. For
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(a) Static: sample-and-hold gradient estimate,
Ĝ(tk).
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(b) Dynamic: sample-and-hold gradient esti-
mate, Ĝ(tk).

(c) Static: control input, U(t). (d) Dynamic: control input, U(t).

Figure 6.4: Static and Dynamic Event-triggered Extremum Seeking Systems.

instance, on average, with σ = 0.001, the static strategy performs 1021 updates
while the dynamic one needs 755 updates. When, σ = 0.9, the static case requires 46
updates versus 15 for the dynamic case. Although the control objective is achieved
with both strategies, it is worth noting that the dynamic strategy achieves the
extremum employing less control effort and requiring a small number of control
updates when compared with the static approach (see Table 6.1).
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Table 6.1: Statistics of the inter-execution intervals, tk+1 − tk.
Mean Mean Deviation Variance Standard Deviation

σ Static Dynamic Static Dynamic Static Dynamic Static Dynamic
0.001 0.2939 0.3974 0.5088 0.7330 13.9295 22.3420 3.7322 4.7268
0.002 0.3099 0.4381 0.5337 0.8048 14.3554 23.8753 3.7888 4.8862
0.003 0.3301 0.7370 0.5670 1.3255 15.5122 39.9080 3.9386 6.3173
0.004 0.3496 0.7096 0.5983 1.2811 16.2814 38.8355 4.0350 6.2318
0.005 0.3818 0.8633 0.6512 1.5367 17.6344 48.3978 4.1993 6.9569
0.006 0.4150 0.8587 0.7029 1.5310 18.5522 48.7397 4.3072 6.9814
0.007 0.4365 1.0187 0.7369 1.7873 19.3296 56.6231 4.3965 7.5248
0.008 0.4260 0.7903 0.7179 1.4177 18.8293 43.4613 4.3393 6.5925
0.009 0.4284 0.8496 0.7209 1.5189 19.0454 48.5479 4.3641 6.9676
0.010 0.4686 0.9245 0.7843 1.6425 20.8145 53.0984 4.5623 7.2869
0.020 0.6191 1.3454 1.0229 2.3079 28.7969 73.6432 5.3663 8.5816
0.030 0.7958 1.4215 1.2801 2.4192 37.2480 78.3938 6.1031 8.8540
0.040 0.8192 1.5215 1.3319 2.5772 40.4228 85.4836 6.3579 9.2457
0.050 0.9848 1.9907 1.5642 3.2645 48.6906 109.4917 6.9779 10.4638
0.060 1.1553 2.4570 1.8035 3.9291 55.7665 133.7192 7.4677 11.5637
0.070 1.2836 2.3071 1.9779 3.7365 65.7437 127.1205 8.1082 11.2748
0.080 1.1995 2.8969 1.8986 4.5692 61.9130 160.1954 7.8685 12.6568
0.090 1.4664 2.9279 2.2550 4.5974 74.3021 163.4882 8.6199 12.7862
0.100 1.2588 2.5863 1.9952 4.1467 64.1229 147.5280 8.0077 12.1461
0.200 1.9571 5.1650 3.1000 7.7201 102.7835 286.3306 10.1382 16.9213
0.300 2.0788 7.0843 3.3859 10.2374 113.2025 391.6320 10.6397 19.7897
0.400 3.4475 9.3378 5.3195 12.8145 180.9892 479.3062 13.4532 21.8931
0.500 3.9839 10.5757 6.1247 14.4068 218.1339 566.1838 14.7694 23.7946
0.600 3.4004 12.8756 5.5095 16.9665 191.6231 608.7021 13.8428 24.6719
0.700 5.0007 14.7065 7.6219 18.9248 259.6896 677.2911 16.1149 26.0248
0.800 5.6172 16.5772 8.4851 21.8088 297.7478 807.1438 17.2554 28.4103
0.900 6.6610 20.2129 10.1423 25.3364 445.3767 876.5687 21.1039 29.6069
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(a) Static: input of the nonlinear map, θ(t).
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(b) Dynamic: input of the nonlinear map,
θ(t).
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(c) Static: output of the nonlinear map, y(t).
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(d) Dynamic: output of the nonlinear map,
y(t).

Figure 6.5: Static and Dynamic Event-triggered Extremum Seeking Systems.

121



Figure 6.6: Output of the nonlinear map, y(t).
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(a) Component of the control signal, U1(t). (b) Component of the control signal, U2(t).

(c) Sample-and-hold of the gradient estimate
component, Ĝ1(tk).

(d) Sample-and-hold of the gradient estimate
component, Ĝ2(tk).

Figure 6.7: Dynamic Event-triggered Extremum Seeking Feedback System.
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(a) Component of the gradient estimate, Ĝ1(t). (b) Component of the gradient estimate, Ĝ2(t).

(c) Component of the measurement error, e1(t). (d) Component of the measurement error,
e2(t).

(e) Component of the nonlinear map input,
θ1(t).

(f) Component of the nonlinear map input,
θ2(t).

Figure 6.8: Dynamic Event-triggered Extremum Seeking Feedback System.
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Chapter 7

Conclusion, Publication List and
Future Works

7.1 Conclusion

New output-feedback adaptive sliding mode (scalar) and unit vector (multivariable)
controllers were proposed, respectively, in Chapters 2 and 3, for plants under para-
metric uncertainties and (un)matched disturbances with unknown upper bounds.
By combining monitoring and barrier functions, the MBF controllers were shown
to exhibit the advantages of each of the individual adaptive approaches. Namely, it
allows a specified transient behavior to be achieved and ultimate finite-time conver-
gence to a desired arbitrarily small invariant residual set of the tracking error, whilst
avoiding overestimation of the control signal. In addition, the monitoring function
can be adjusted in order to preclude abrupt control changes in the transition from
monitoring to the barrier function. Nevertheless, the case in which the unmodeled
dynamics is present [111] is left as an interesting future work. The theoretical results
are illustrated by means of numerical simulations for an academic example as well
as for an anti-lock braking system application.

In Chapters 4–6 we proposed the static and dynamic for both scalar and multi-
variable event-triggered extremum seeking. The contribution of treating the specific
hybrid learning dynamics [86] constituted by the sample-and-hold system is clear.
The approach provides explicit functional forms for the exponential convergence
characterizing the stability properties of the closed-loop system. The approach will
be extended to PDE systems following [55, 56] and [84, 85].
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7.2 Publication List

In this section, it is shown the publications of the results obtained through this
doctoral thesis.

Articles in Scientific Journals

1. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.; DIAGNE, M..
Multivariable Event-Triggered Extremum Seeking. IEEE Transactions on
Automatic Control. (UNDER REVIEW)

2. RODRIGUES, V. H. P.; FANTINATTI, M.; HSU, L.; OLIVEIRA,
T. R.. Population Control of Giardia lamblia. IEEE/CAA Journal of
Automatica Sinica (UNDER REVIEW)

3. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.; FRIDMAN, L.
M.. Adaptive Sliding Mode Control with Guaranteed Performance based
on Monitoring and Barrier Functions. International Journal of Adaptive
Control and Signal Processing, v. 36, p. 1252-1271, 2022. https://doi.
org/10.1002/acs.3278

Book Chapter Published

1. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.; FRIDMAN,
L. M.. Unit Vector Control with Prescribed Performance via Monitor-
ing and Barrier Functions, In: Studies in Systems, Decision and Con-
trol, Sliding-Mode Control and Variable-Structure Systems, Tiago Roux
Oliveira, Leonid Fridman and Liu Hsu (editors), Springer Nature. (AC-
CEPTED)

Complete works published in proceedings of conferences

1. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.. Binary Model
Reference Adaptive Control under Disturbances. In: 16th International
Workshop on Variable Structure Systems and Sliding Mode Control (VSS
2022), 2022, Rio de Janeiro. (UNDER REVIEW)

2. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.; DIAGNE, M..
Dynamic Event-Triggered Extremum Seeking Feedback. In: 61st IEEE
Conference on Decision and Control (CDC 2022), 2022, Cancún. (UN-
DER REVIEW)

3. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.; ANJOS, P. V.
M.. Busca Extremal baseada em Eventos com Acionamento Dinâmico. In:
24th Congresso Brasileiro de Automática (CBA 2022), 2022, Fortaleza.
(UNDER REVIEW)
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4. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.; DIAGNE, M..
Event-Triggered Extremum Seeking Control. In: 14th IFAC International
Workshop on Adaptive and Learning Control Systems (ALCOS 2022),
2022, Casablanca. (ACCEPTED)

5. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.. Global Syn-
chronization and Secure Communication via Cascade Norm Observers
and Equivalent Control. In: 6th IFAC Conference on Analysis and
Control of Chaotic Systems (CHAOS’2021), 2021, Catania. https:

//doi.org/10.1016/j.ifacol.2021.11.026

6. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.; FRIDMAN,
L. M.. Busca Extremal baseada em Eventos. In: Anais do 15º Simpó-
sio Brasileiro de Automação Inteligente (SBAI’2021), 2021, Rio Grande.
http://dx.doi.org/10.20906/sbai2021/216633

7. RODRIGUES, V. H. P.; HSU, L.; OLIVEIRA, T. R.; FRIDMAN,
L. M.. Controle Vetorial Unitário Adaptativo via Funções de Barreira
e Monitoração. In: Congresso Brasileiro de Automática 2020. http:

//dx.doi.org/10.48011/asba.v2i1.1124

8. RODRIGUES, V. H. P.; FANTINATTI, M.; HSU, L.; OLIVEIRA,
T. R.. Controle Populacional de Giardia lamblia. In: Anais do 14º
Simpósio Brasileiro de Automação Inteligente, 2019. http://dx.doi.

org/10.17648/sbai-2019-111578

7.3 Future Works

The techniques developed in this thesis allow progress in the following research field:

1. Adaptive SMC with Monitoring and Barrier Functions

• Generalization to Twisting SMC (SISO and MIMO);

• Generalization to Super-Twisting Algorithm (STA) (SISO and MIMO);

• Generalization to High-Order Sliding Mode (HOSM) Differentiator (SISO
and MIMO);
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2. B-MRAC with disturbance

• Generalization to relative degree greater than the unity;

3. Event-Triggered Extremum Seeking

• To develop co-design strategies (static and dynamic). In the co-design
strategy the control law and the event-triggered mechanism are designed
simultaneously, possibly leading to better performance and larger inter-
event times [112];

• To consider the data-packet dropout [61];

• To consider delays [60].
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Appendix A

Anti-Lock Braking System Model

The dynamics of the slip rate λ(t) is given by (2.40) where

f(η, t) =

f+(η, t) , s = 1

f−(η, t) , s = −1
, (A.1)
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(A.3)

g(η, t) = sG(η, t) , G(η, t) =

g+(η, t) , s = 1

g−(η, t) , s = −1
, (A.4)
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(A.5)
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(A.6)

In order to analyze the sign of g(η, t), Figure A.1 shows the curves of g+λ (λ) and
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g−λ (λ) for the possible values of variable λ. Note that g+λ (λ) > 0 and g−λ (λ) > 0

for all 0 < λ(t) < 1 regardless the sign of s. However, from (A.4)–(A.6), it can be

0 0.5 1

0

50

100

150

Figure A.1: Curves of g+λ (λ) and g−λ (λ), for 0 < λ < 1 where min{g+λ (λ)} ≈ 109.8
and min{g−λ (λ)} ≈ 3.9, using the values of Tables 2.1 and 2.2.

observed that the sign of g(η, t) only depends on the sign of s such that g(η, t) > 0

if s = 1 and g(η, t) < 0 if s = −1. Moreover, since the sign of g+λ (λ) > 0 and
g−λ (λ) > 0 for all λ ∈ [0 , 1], g(η, t) switches discontinuously without zero-crossing.

Although equation (2.32) seems to be simple, its use implies a severe restriction
of the model. Note that for sufficiently low speeds, a mathematical indeterminacy
may occur when calculating the slip coefficient. In practice, this problem is overcome
by specifying lower speed limits r1η1 and r2η2, below which the ABS controller is
deactivated.

Initially, since the vehicle is braking without skidding, |η1(t)| ≤ |η1(0)|, |η2(t)| ≤
|η2(0)|, s1 = s2 = 1 and 0 < λ(t) < 1. Then, by defining µ = max {µ(λ)}, from
(A.1)–(A.6),

|f+(η, t)| ≤ 1
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2
|
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+
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+
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+
, (A.7)
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Hence, one has

|f(η, t)| ≤ f , (A.9)

|g(η, t)| ≥ g (A.10)

where f and g are constants described by

f =max
{
f

+
, f

−
}
, (A.11)

g =
min{g−λ (λ)}

max {|η1(0)| , |η2(0)|}
. (A.12)

Moreover, if the vehicle is skidding, from (2.32), λ = 1 and λ̇ = 0, therefore, it is
not reasonable to talk about of g(η, t) as well as f(η, t).

In other words, during the time interval while the ABS is turned on, f(η, t) is
upper bounded by the unknown constant f whilst |g(η, t)| is lower bounded by the
constant g.
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Appendix B

Averaging Theory for Discontinuous
Systems

From [103], let us consider the differential inclusion

dx

dt
∈ εX(t, x) , x(0) = x0 , (B.1)

where x is an n-dimensional vector, t is time, ε is a small parameter, and X(t, x) is
a multivalued function that is T -periodic in t and puts in correspondence with with
each point (t, x) of a certain domain of the (n+1)-dimensional space a compact set
X(t, x) of the n-dimensional space.

Let us put in correspondence with the inlusion (B.1) the average inclusion

dξ

dt
∈ εX̄(ξ) , ξ(0) = x0 , (B.2)

where

X̄(ξ) =
1

T

∫ T

0

X(τ, ξ)dτ . (B.3)

Theorem 7. Let a multivalued mapping X(t, x) be defined in the domain
Q {t ≥ 0 , x ∈ D ⊂ Rn} and let in this domain the set X(t, x) be a nonempty com-
pactum for all admissible values of the arguments and the mapping X(t, x) be con-
tinuous and uniformly bounded and satisfy the Lipschitz condition with respect to
x with a constant λ, i.e., X(t, x) ⊂ SM(0), δ(X(t, x′) − X(t, x′′)) ≤ λ∥x′ − x′′∥,
where δ(P,Q) is the Hausdorff distance between the sets P and Q, i.e., δ(P,Q) =

min {d|P ⊂ Sd(Q), Q ⊂ Sd(P )}, Sd(N) being the d-neighborhood of a set N in the
space Rn; the mapping X(t, x) be T -periodic in t; for all x0 ∈ D′ ⊂ D the solu-
tions of inclusion (B.2) lie in the domain D together with a certain ρ-neighborhood.
Them for each L > 0 there exist ε0(L) > 0 and c(L) > 0 such that for ε ∈]0 , ε0] and
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t ∈ [0, Lε−1]:

1. for each solution x(t) of the inclusion (B.1) there exists a solution ξ(t) of the
inclusion (B.2) such that

∥x(t)− ξ(t)∥ ≤ cε = O(ε); (B.4)

2. for each solution ξ(t) of the inclusion (B.2) there exists a solution x(t) of the
inclusion (B.1) such that the inequality (B.4) holds.

Thus the following estimate is valid:

δ(R̄(t), R′(t)) ≤ cε = O(ε) , (B.5)

where R̄(t) is a section of the family of solutions of the inclusion (B.2) and R′(t) is
the closure of the section R(t) of the family of solutions of the inclusion (B.1).

Theorem 8. Let all the conditions of Theorem 7 and also the following condition be
fulfilled: the R-solution R̄(t) of inclusion (B.2) is uniformly asymptotically stable.
Then there exist ε0 > 0 and c > 0 such that for 0 < ε ≤ ε0

δ(R̄(t), R′(t)) ≤ cε = O(ε) , (B.6)

for all t ≥ 0.
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