
A BUS-BASED OPPORTUNISTIC SENSING NETWORK

Pedro Henrique Cruz Caminha

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia Elétrica,
COPPE, da Universidade Federal do Rio de
Janeiro, como parte dos requisitos necessários
à obtenção do título de Doutor em Engenharia
Elétrica.

Orientadores: Luís Henrique Maciel Kosmalski
Costa
Rodrigo de Souza Couto

Rio de Janeiro
Outubro de 2020

A BUS-BASED OPPORTUNISTIC SENSING NETWORK

Pedro Henrique Cruz Caminha

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientadores: Luís Henrique Maciel Kosmalski Costa
Rodrigo de Souza Couto

Aprovada por: Prof. Luís Henrique Maciel Kosmalski Costa
Prof. Rodrigo de Souza Couto
Prof. Marcelo Gonçalves Rubinstein
Prof. Michele Nogueira Lima
Prof. Miguel Elias Mitre Campista

RIO DE JANEIRO, RJ – BRASIL
OUTUBRO DE 2020

Cruz Caminha, Pedro Henrique
A bus-based opportunistic sensing network/Pedro

Henrique Cruz Caminha. – Rio de Janeiro:
UFRJ/COPPE, 2020.

XVI, 94 p.: il.; 29, 7cm.
Orientadores: Luís Henrique Maciel Kosmalski Costa

Rodrigo de Souza Couto
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2020.
Referências Bibliográficas: p. 88 – 94.
1. Internet of Things. 2. Vehicle-based Sensing. 3.

Mobile Wireless Networks. I. Costa, Luís Henrique Maciel
Kosmalski et al. II. Universidade Federal do Rio de Janeiro,
COPPE, Programa de Engenharia Elétrica. III. Título.

iii

À minha família, meus amigos e
amigas

iv

Agradecimentos

Gostaria de agradecer a todas as pessoas que participaram, de alguma forma dessa
tese. Primeiro à minha família, em especial à minha mãe Olga, meu pai Moacyr
e meus irmãos Walter e Victor, por sempre terem me dado força pra seguir em
frente. Seus conselhos, observações e companheirismo me ajudaram a ser quem eu
sou. Agradeço também ao companheirismo da Marilu, da Tequila, do Tigrão e da
Dulce, que mostram que amizade é um laço maior do que a própria humanidade.

Agradeço aos meus orientadores Luís e Rodrigo, que me ensinaram muitas coisas
importantes para a tese e tantas coisas importantes que não foram para a tese.
Agradeço as palavras sempre amigas pra corrigir meus erros. Também agradeço a
confiança depositada em mim por diversas ocasiões, incluindo a oportunidade de
lecionar uma matéria para a graduação.

Je me remercie de mes superviseurs Anne et Marcelo, qu’on supporté ma faible
fluence de la langue française. Vous m’avez appris beaucoup dans un temps très
petit.

Agradeço ao professor Abílio pelas importantes sugestões.
Agradeço aos meus professores e colegas do Colégio Pedro II e aos meus profes-

sores e colegas do CEFET. Em especial à professora Kátia Cilene, que me ajudou a
escolher a engenharia.

Agradeço a todos os professores e colegas do laboratório GTA. Foi um prazer
dividir esse espaço com pessoas de tanto valor. As lições que eu aprendi com vocês
ultrapassam os limites acadêmicos.

Agradeço ao JB (in memmoriam), que produziu comigo minha primeira publi-
cação.

Agradeço também ao Hugo Sadok, por me ajudar a fazer as perguntas certas
quando eu tinha as dúvidas erradas.

Agradeço ao Fernando Molano pelo intercâmbio de ideias sobre LoRa.
Agradeço ao Roberto Gonçalves e ao Felipe da Silva por terem participado do

projeto que deu origem a essa tese. O trabalho não teria sido o mesmo sem vocês.
Agradeço aos meus colegas de laboratório no meu curto período no LIP6. Em

especial, ao Giovanni Farina, por dividir a sala comigo.
Agradeço ao Pré-Universitário Comunitário Rubem Alves, por ter me propor-

v

cionado tanto aprendizado enquanto ensinava. Agradeço também por ter me feito
conhecer algumas pessoas tão maravilhosas. Agradeço à equipe, à professora Geórgia
Atella por coordenar o curso, e aos alunos e alunas por me ensinarem tanto.

Agradeço aos meus amigos Bruno Maia e Juliana Loiola, que compartilham
comigo o carinho por dinossauros.

Agradeço à Priscila Oliveira, por me apresentar a tantas partes do Rio que que
não conhecia.

Agradeço à Raquel Franco, por ser uma amiga tão próxima, mesmo tão distante.
Agradeço aos meus amigos de intercâmbio da Maison du Brésil. Ao cavaco da

Luciana Vieira, por ter chorado quando eu precisava, e ao pessoal do sextou, que
me acolheu. Agradeço aos papos intermináveis na cozinha do 5ème. Agradeço à
Allana, Amanda, Dioclécio, Erato, Farah, Heraldo, Jota, Mari, Rose e Thaíssa por
manterem a cozinha sempre arrumada e pela belíssima participação na noëltoyage.

Je me remercie de Amandine, pour m’avoir appris beaucoup sur la France.
I thank Emma for giving me the coolest parrot I’ve ever seen.
Agradeço à Namibia Guevara por me ajudar a parar de pensar nesta tese quando

isso foi necessário.
Agradeço ao Carlos Quinhões por me fazer pensar em guitarra e vídeo-game

quando eu deveria pensar na tese.
Agradeço à Júlia Faria por me deixar confuso com perguntas sobre engenharia.
Agradeço ao Lucas Cunha, que compartilha comigo o desprezo por tanta coisa.
Agradeço à Julia Kubrusly por falar sobre o Pará.
Agradeço à Érica Santos por dividir comigo algumas frustrações da vida.
Agradeço aos meus amigos da escola, Daim, Felipe, Juliana, Karla, Tainá e

Victor. Nós nos vimos crescer e espero que nos vejamos envelhecer.
Agradeço à Luciana Rodrigues por ser uma inspiração pra mais leitura e reflexão.
Agradeço à minha amiga Lucille por, na reta final, fazer o isolamento ser menos

chato.
Gostaria de agradecer ao professor Marcelo Rubinstein, à professora Michele

Nogueira e ao professor Miguel Campista por terem aceitado fazer parte da banca,
usando seu tempo pra avaliar meu trabalho e propor sugestões.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brasil (CAPES). Este trabalho também contou com
apoio do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq),
da Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), e
da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), processo
#15/24494-8.

Finally, I would like to thank the open-source community for sharing their work.
Without their contributions, this work would be impossible. More specifically, I

vi

would like to acknowledge Skyclick and Freepik from https://www.flaticon.com/
for the icons used in this thesis. I would also like to acknowledge OpenStreetMaps
for the maps used in this thesis (exceptions are stated in the text).

vii

https://www.flaticon.com/

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

UMA REDE DE SENSORIAMENTO OPORTUNISTA BASEADA EM ÔNIBUS
URBANOS

Pedro Henrique Cruz Caminha

Outubro/2020

Orientadores: Luís Henrique Maciel Kosmalski Costa
Rodrigo de Souza Couto

Programa: Engenharia Elétrica

Uma estratégia promissora para implementar uma rede de sensores sem fio
móveis (Mobile Wireless Sensor Network – MWSN) é empregar ônibus urbanos
como sensores. O paradigma de internet das coisas (Internet of Things – IoT)
pode utilizar a mobilidade dos ônibus e aumentar a cobertura espacial da rede com
menos sensores, em comparação com o cenário estático. Devido às limitações de
dispositivos IoT, ônibus podem entregar, de maneira oportunista, dados a nós de
Névoa localizados em pontos de ônibus. A Névoa pré-processa os dados e os envia
para a Nuvem, que os serve às aplicações. Isso cria um compromisso, pois ônibus
cobrem a cidade parcialmente, e a frequência dos ônibus - e da coleta de dados -
é heterogênea pela cidade. Adicionalmente, a entrega oportunista dos dados pode
criar atrasos maiores do que os tolerados pelas aplicações. Esta tese apresenta três
contribuições principais. Primeiro, os atrasos devido à entrega oportunista são min-
imizados, a partir de um problema de localização dos nós de Névoa. Segundo, é
proposta uma métrica de cobertura espacial para MWSNs baseada em ônibus e um
modelo para a escolha dos ônibus que maximizam a cobertura. Uma outra métrica
de cobertura também é proposta, levando em consideração restrições das aplicações
servidas pela rede. Também é proposta uma métrica da contribuição de cada ônibus
para a cobertura. A terceira e última contribuição é um protótipo para o Sensing-
Bus, uma MWSN baseada em ônibus urbanos. Utilizam-se dados de GPS dos ônibus
da cidade do Rio de Janeiro para validar as contribuições. Entre outras observações,
os resultados mostram que se 16% dos pontos de ônibus forem equipados com nós
de Névoa, o maior atraso de entrega na rede é de 32 min. Adicionalmente, 32 ônibus
podem cobrir 40% da mesma que a frota completa, de 6.075 ônibus.

viii

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.)

A BUS-BASED OPPORTUNISTIC SENSING NETWORK

Pedro Henrique Cruz Caminha

October/2020

Advisors: Luís Henrique Maciel Kosmalski Costa
Rodrigo de Souza Couto

Department: Electrical Engineering

Embedding sensors in urban buses is a promising strategy to deploy a city-wide
Mobile Wireless Sensor Network (MWSN). The Internet of Things (IoT) paradigm
can take advantage of bus mobility, achieving extended spatial coverage with fewer
sensors as compared to a static setup. To overcome the limitations of IoT devices,
buses can, in an opportunistic fashion, deliver data to Fog nodes located in bus stops.
Fog nodes pre-process data and send it to the Cloud, which makes makes it externally
available. The trade-offs are that urban buses only cover part of the city and that
the frequency of the buses, and consequently of the data collection, is heterogeneous
across the city. Additionally, buses may be unable to deliver the collected data on
time due to the opportunistic communication to the Fog node. In this thesis, we
present three main contributions. First, we propose a method to minimize delivery
delays when there is a limited number of Fog nodes. In our second contribution,
we propose a coverage metric to bus-based MWSNs and an optimization model to
maximize coverage for a constrained number of participating buses. We also propose
a more restrictive coverage metric, that takes into account the delivery delay and
the measurement frequency of each sensed region, relating these metrics to different
applications. We propose a metric for bus coverage contribution, showing that the
importance of each bus depends on the applications the system serves. Finally,
our third contribution is a prototype for SensingBus, a bus-based MWSN. We use
real GPS traces from the bus fleet of Rio de Janeiro to validate our contributions.
Among other remarks, our results show that if 16% of bus stops are equipped with
Fog nodes, the maximum delivery delay is about 32 minutes. We also show that 32
buses can cover about 40% of the region covered by all the 6,075 buses of the fleet.

ix

Contents

List of Figures xiii

List of Tables xv

List of Abbreviations xvi

1 Introduction 1

2 Related Work 5
2.1 Vehicle-based sensing . 6
2.2 Fog node placement and delivery delay 8
2.3 Coverage of vehicle-based MWSNs 10

3 Bus-based Urban Sensing 13
3.1 Target applications . 13
3.2 SensingBus . 14

3.2.1 Networking context . 15
3.2.2 System architecture . 15
3.2.3 Fog level . 17
3.2.4 Cloud level . 17

4 A Delay Optimization Model for Bus-based MWSNs 19
4.1 Delays on a constrained number of Fog nodes 20
4.2 Sensing node memory requirements 21
4.3 Assuming full delivery on single contact 22
4.4 Candidate Fog node removal . 23
4.5 Optimal Fog node placement . 25

4.5.1 The p-center problem . 25
4.6 A fast algorithm for Fog node selection 28

4.6.1 Complexity analysis . 28
4.6.2 Comparison with the optimal solution 30

4.7 Applying the algorithm to real-world data 30

x

4.7.1 Dataset analysis . 32
4.7.2 Algorithm results . 33

4.8 Reducing the problem cardinality . 34
4.9 Cardinality reduction applied to a real scenario 36

4.9.1 Dataset construction . 37
4.9.2 Reduction of dataset cardinality 38
4.9.3 Optimal results after cardinality reduction 39

4.10 Remarks . 40

5 A Coverage Metric for Bus-based MWSNs 41
5.1 A simple coverage model . 42

5.1.1 The city map as a graph . 43
5.1.2 Coverage as a function of street segments 43
5.1.3 Mixed-Integer Linear Programming formulation 45
5.1.4 Maximal Covering Location Problem 46
5.1.5 Case study . 46
5.1.6 Obtaining data . 47
5.1.7 Data analysis . 49
5.1.8 Experiment execution . 50
5.1.9 Results . 51

5.2 A delay-aware coverage metric . 53
5.2.1 Constructing the covered set 54
5.2.2 Experimental analysis . 55
5.2.3 Comparison with another coverage metric 60
5.2.4 Comparison with the static case 61

5.3 Per-vehicle coverage analysis . 63
5.3.1 Coverage contribution metric 64
5.3.2 Data-driven analysis . 64
5.3.3 Contribution ranking . 66

5.4 Remarks . 68

6 The SensingBus Prototype 70
6.1 Sensing nodes . 70
6.2 Fog nodes . 73
6.3 Cloud node . 73
6.4 Prototype analysis . 74

6.4.1 Sensing accuracy in the presence of mobility 75
6.4.2 Fog node performance . 79

6.5 Remarks . 82

xi

7 Conclusions and Future Work 84
7.1 Data delivery delays . 85
7.2 Coverage metric . 85
7.3 SensingBus prototype . 86
7.4 Future work . 87

References 88

xii

List of Figures

2.1 Overview of a bus-based data gathering and distribution system. . . . 5

3.1 The architecture of SensingBus. 16
3.2 Architecture of the Sensing nodes in SensingBus. 16
3.3 Architecture of the Fog nodes in SensingBus. 17
3.4 Architecture of the cloud node. 18

4.1 Effects in delay caused by the removal of a Fog node. 23
4.2 Effects in delay of multiple buses caused by the removal of a Fog node. 24
4.3 An instance of the p-center problem. 26
4.4 Example of the Fog node placement problem transformed into the

p-center problem. 27
4.5 Relative gap in network maximum delay in function of removed Fog

node candidates on a 5x5 and 10x10 Fog node candidates grid. 31
4.6 Cumulative distribution of maximum delay of each bus. 32
4.7 Distribution of delays before filtering and after 1,800 s, 3,600 s, and

7,200 s filters. 34
4.8 Network maximum delay (∆max) for different filters, as a function of

the number of removed candidates. 35
4.9 Examples of the edge elimination procedure. 36
4.10 Dataset attributes before filtering. 37
4.11 Dataset attributes after filter contacts by time of day and by delays

bigger than 30 minutes. 38

5.1 Coverage of street segments by buses equipped with sensors. 44
5.2 Route reconstruction from GPS traces. 47
5.3 Processing flow used to study a real scenario. 48
5.4 Distribution of estimated street segment lengths captured with Snap

to Roads. 50
5.5 Relative coverage of the buses equipped with sensors. 51
5.6 Visit number of street segments throughout a day. 52
5.7 Procedure to construct the delay-aware coverage maps. 55

xiii

5.8 Cumulative distance traveled on each time of the day. 57
5.9 Abacus of the coverage of Rio de Janeiro in function of F(xi,xj), for

different Dmax over one week. 59
5.10 Coverage of the central region of Rio de Janeiro for different smart

city applications. 59
5.11 Abacus of a coverage metric disregarding street segment lenght for

Rio de Janeiro in function of F(xi,xj), for different Dmax over one week.
The metric proposed by Ali and Dyo is marked with a red “×”. . . . 61

5.12 Example of covered streets by static sensors placed within communi-
cation range the gateways. 62

5.13 Coverage gain by buses of Rio de Janeiro in comparison to a static
network, in function of F(xi,xj), for different Dmax over one week. . . . 63

5.14 CDF of the bus contributions Kb
a from Rio de Janeiro. 65

5.15 Average of the average coverage contributions Kb
a from Rio de Janeiro,

for region and bus proportion between downtown and suburbs. 66
5.16 Bus contribution rank as a function of average contribution rank, for

different applications, for the 10 largest average contributions. 67
5.17 Bus contribution rank as a function of average contribution rank, for

different applications. 67
5.18 Contribution ranking difference of the same bus for an application

compared to its contribution rank for another application. 69

6.1 The external and internal parts of the Sensing node. 71
6.2 Data visualization offered by the Cloud node. 76
6.3 Positioning of the Sensing nodes for the mobility experiment. 76
6.4 Comparison between static and mobile measurements. 77
6.5 Trajectory followed in Casing Effect Experiment (Source: Google

Earth). 78
6.6 Comparison Between Internal and External Measurements. 79
6.7 Temperature measured by the external sensor. 80
6.8 Analysis of the data receive by the Fog nodes of the prototype. 81
6.9 Testbed to execute the Fog node stress test. 81
6.10 Results of the Fog node stress tests. 82

xiv

List of Tables

2.1 Related work and their approach on vehicular sensing. 8
2.2 Related work and their approach on sink positioning and delivery delay. 10
2.3 Related work and their approach on sensing coverage. 12

3.1 Smart city applications and their data needs in terms of minimum
measurement frequency and maximum tolerated delay. 14

4.1 Notations used modeling the delivery delays. 20
4.2 Dataset parameters. 33
4.3 Dataset attributes. 38
4.4 Suboptimal results obtained with Algorithm 1. 39
4.5 Number of dbrsybrs restrictions in the problem. 39
4.6 Optimal results of the Fog node placement problem with reduced

cardinality. 39

5.1 Notations used in the coverage model. 42
5.2 Attributes of the gathered and estimated datasets. 49
5.3 Number of active buses in the different weekdays. 57
5.4 Coverage obtained by different Smart city applications. 60
5.5 Applications requirements limits to benefit from the mobile scenario. 63
5.6 Kendall coefficient of bus contributions ranking. 68

6.1 Equipment and software used in the SensingBus prototype. 71
6.2 Equipment and software used in the Fog node prototype. 73
6.3 Software used in the Cloud node prototype. 74
6.4 API endpoints offered by the prototype. 75

xv

List of Abbreviations

CCDF Complementary Cumulative Distribution Function, p. 50

DAWN Density Adaptive routing With Node deadline awareness, p. 9

FETRANSPOR Rio de Janeiro Federation of Passenger Transportation Com-
panies, p. 30

IoT Internet of Things, p. 1

MCLP Maximal Covering Location Problem, p. 46

MILP Mixed-Integer Linear Programming, p. 26

MWSN Mobile Wireless Sensor Network, p. 1

OSRM Open Source Routing Machine, p. 57

V2I Vehicle to Infrastructure, p. 31

WSN Wireless Sensor Network, p. 3

xvi

Chapter 1

Introduction

Smart cities aim at improving the quality of citizens’ life by providing new public
services or enhancing the efficiency of the existing ones. The key idea consists
of monitoring several aspects of the city and using the collected information as
the fundamental input to intelligent applications, such as waste management, air
quality monitoring, and noise monitoring, only to cite a few [1]. Each application
has requirements about the information they use to work properly. For instance,
geographical regions have to be sensed with a minimum frequency or data has to
be delivered with a maximum delay. In this scenario, the Internet of Things (IoT)
paradigm can be a useful tool to collect data for each smart city application. In a
nutshell, the basic principle of IoT is to add communication, processing, and sensing
capabilities to everyday objects [2].

To provide effective sensing in smart cities, one has to spread IoT devices in large
geographic regions. Such strategy might prove prohibitively expensive. For example,
in the case of street lighting, every light pole would be equipped with sensors and
communication interfaces. Considering a big city with several thousands of light
poles distributed over a large area, adding IoT devices to every light pole imply
significant deployment and maintenance costs. One alternative is to consider a
Mobile Wireless Sensor Network (MWSN) that covers the entire region of interest.
As sensors move through the region, their individual coverage is enlarged, avoiding
additional costs with IoT devices. This approach, termed as mobile sensing in the
literature, creates a trade-off between mobility cost and the time to cover a given
area [3]. Additionally, regions may not get covered at all times. Sensors gather
data about each region with a given frequency, which is ultimately a consequence of
sensors movement. Since applications need a region to be sensed with a minimum
frequency, some regions might be visited by sensors, but not enough times to provide
data for a certain application. In this sense, mobility may imply a trade-off to the
spatial coverage.

Another aspect that must be addressed is data transmission from the sensors

1

to the final applications. If we expect a sensor to transmit data as soon as data is
gathered, it needs to be permanently connected to the servers where applications
run. This means that all the regions where sensors gather information must also
be covered by some network. Therefore, for sensors to immediately deliver data, all
the targeted region must be covered by gateways, a situation which can also lead to
preposterous costs. The network coverage can be reduced by delivering data in an
opportunistic fashion, a communication paradigm enabled by mobility [4]. With this
strategy, sensors gather and store data until a connection to a gateway is possible.
When sensors are in the communication range of a gateway, they can finally deliver
data.

Opportunistic delivery also poses a trade-off that must be managed, since data
is not delivered immediately. The delivery delay is the time elapsed between the
moment a sensor gathers some piece of data and the time the application receives
the data. Relying on opportunistic delivery can increase this interval significantly.
Considering that applications have requirements regarding a maximum delivery de-
lay, opportunistic communication can make data useless to the applications. For
this reason, it is important to make sure that the delivery delay is minimal. Addi-
tionally, when reasoning whether a region is covered by the MWSN, it is important
to consider if the data about this region is delivered on time.

One way of granting mobility to sensors is to embed them into buses, in line
with the IoT paradigm [5]. In this scenario, data is gathered through a bus-based
MWSN. The advantage of using buses to transport sensors is threefold. First, buses
cover a significant area of cities. Second, the additional cost of carrying IoT devices
in buses is negligible. Third, the route of a given bus line is generally the same, with
reasonably regular intervals, providing predictable coverage. Moreover, bus lines
usually present some itinerary overlapping, which means that one location might be
on the route of several buses. Thus, several measurements of this location can be
collected, fulfilling the minimum measurement frequency requirement for different
applications.

Typically, IoT devices have limited processing power and storage capacity, while
smart city applications collect and analyze a large amount of data. Thus, a solution
to store and process the collected data is to use a cloud computing infrastructure [6].
IoT devices are responsible for sensing and actuation, while heavier processing tasks
are performed in the cloud, which has more processing power and is able to gather
all data collected in a distributed fashion. In a bus-based MWSN, this is important
since it is not expected that buses carry around hardware capable of intensive pro-
cessing or heavy storage. A major concern regarding this approach is the network
traffic exchanged between devices and the cloud, which might be high. Furthermore,
security is a concern, given that IoT devices may be unable to run secure protocols

2

to communicate with the cloud. We overcome these limitations by employing a fog
computing infrastructure between IoT devices and the cloud. The role of the fog is
to pre-process data before it reaches the Internet [7]. By combining these elements,
Li et al. [8] propose a three-level architecture to develop a Cloud of Things. With
the Cloud of Things, we can employ more sophisticated security protocols before
the messages are sent over the Internet. Additionally, we can aggregate, filter, and
compress messages in the fog, reducing the traffic sent to the cloud and network
costs.

To address the problems listed before, this thesis presents three main contribu-
tions:

• A method to minimize the delivery delay by an optimal positioning of a limited
number of gateways;

• A metric to define the coverage of the applications served by a bus-based
MWSN;

• A prototype to test the adequacy of each node in the three-level architecture
for a bus-based MWSN.

This work also introduces SensingBus, a system that uses the concept of mobile
sensing in smart cities. To offer sensor mobility, SensingBus leverages the mobility of
bus lines of public transportation systems. Thus, using the IoT paradigm, buses in
SensingBus are equipped with sensors and a communication interface to collect and
send the collected data to Fog nodes located at bus stops. The fog sends data to the
Cloud, after performing preliminary processing. SensingBus applies the three-level
architecture of Li et al. to the bus-based sensing.

We observe that even though the literature presents works to minimize delays
on static [9, 10] and mobile [11] Wireless Sensor Networks (WSNs), their focus is to
optimize trajectories or packet routing. Optimizing trajectories is not possible on a
mobile network composed of buses that follow fixed trajectories. Also, packet routing
is not significant to the case we consider in this text, in which buses deliver data
directly to the Fog nodes. It is also possible to find extensive work on the coverage
of vehicle-based MWSNs [12–14]. These metrics are suited for MWSNs that are
constantly connected. We propose a coverage metric that uses the streets covered by
buses, observing the measurement frequency and the delivery delay as requirements
of the targeted applications. Regarding the last contribution, there are other bus-
based MWSN prototypes in the literature [5, 13, 15, 16]. These prototypes do not
consider a Fog level on their architecture. In this work, we implement the three-
level architecture and perform experiments related to processing, communication,
and mobility.

3

The remainder of this thesis is organized as follows. Chapter 2 reviews the related
work. Chapter 4 presents a method to minimize the delivery delay and applies it to
a real dataset. Chapter 5 proposes a coverage metric for bus-based MWSNs, also
applying it to a real dataset. Chapter 6 presents a prototype and the results of
experiments made with it. Finally, in Chapter 7 we conclude the thesis and discuss
possibilities of future work.

This text is based on the publications which resulted from the thesis. Chapter 4
is based on [17–19]. Chapter 5 borrows material from [20–24]. Finally, Chapter 6 is
an adaptation of [25, 26]

4

Chapter 2

Related Work

To position this thesis with respect to the literature, we start by describing the
works which proposed vehicle-based MWSNs. We outline the differences between
our prototype and other prototypes. We proceed by comparing our delivery delays
analysis with other approaches that measure and minimize delays. In the sequence,
we conclude the related work section comparing our coverage metric proposal with
other coverage metrics found in the literature.

Sensor networks are usually composed of many Sensing nodes that sense data
about the environment and send this data to one or more sinks. The sink, then,
sends data to a so-called task manager node, responsible for storing, processing and
serving data to users [27]. In the case of mobile sensing, sensors move around the
targeted areas, gathering data. Figure 2.1 illustrates a typical scenario of bus-based
sensing.

ii
i

iii

iv v

Figure 2.1: Overview of a bus-based data gathering and distribution system.

In Figure 2.1, a bus collects data throughout its trajectory (i), while another
bus (ii) delivers data to a sink placed into a bus stop. The sink sends the data to

5

the cloud node (iii). The cloud node processes the data (iv) and serves it to the
corresponding applications (v). In the present work, the sinks are Fog nodes that
receive data and can also perform pre-processing.

The present work studies an opportunistic scenario, where buses transfer data
only when a Fog node (i.e., a sink) is encountered. In the literature, it is possible to
find works where sensor nodes can route messages between themselves until a sensor
node can deliver data to a sink. Other works assume that the delivery network
covers the whole of the targeted regions. These differences can change the expected
delivery delay and also induce different communication strategies, related to the
routing between vehicles. We compare our proposal to works that apply these
other strategies, to delimit scenarios and conditions in which each proposal is more
adequate. The next section overviews the literature on vehicle-based sensing, to
distinguish the present work and the state of the art.

2.1 Vehicle-based sensing
The pioneer project BusNet [15] monitors potholes on the road surface using sensors
embarked on buses. Buses are used as sensors and also as data mules. Buses sense
data and store it. When a bus is in communication range to a secondary bus stop,
it decides on whether to deliver the sensed data to the secondary bus stop or to
receive the data previously stored on this bus stop by other buses. A bus delivers
data if it is moving away from the primary bus stop, and receives the data stored in
the secondary bus stop if the bus is moving towards a primary bus stop. Therefore,
buses take raw data from a secondary bus stop to another one until data reaches the
main bus stop. Once in the main bus stop, the information is retrieved and served
to the road conditions monitoring application. This thesis evaluates the impact of a
similar schema on delivery delays. Additionally, we study the coverage of the system
and adapt the coverage metric for the data requirements of different applications.
As the last difference, the present work considers a three-level architecture, with fog
and cloud computing.

Projects Mosaic [13, 28, 29] and Opensense [16, 30] use urban buses to monitor
the air quality of cities. Sensor nodes are installed in vehicles and send raw data
to the cloud using a GSM/GPRS module. The cloud is responsible for processing
data and delivering it to end-users through an API. However, air quality sensors are
not reliable in the presence of mobility. The sensors work measuring light scattering
caused by particles. The movement of buses changes the flow inside sensors, creating
measurement distortions for these sensors. Mosaic designs an algorithm to improve
the accuracy of particle sensors in a mobile scenario, using information about the
bus speed to correct the measurements. Opensense proposes log-linear models to

6

infer the air quality of regions that are not visited by buses and, therefore, not
directly measured. In Mosaic and Opensense, buses are connected all the time with
the cloud, being able to send data with negligible delay. In the present thesis, we
test the accuracy of the sensors that measures humidity, temperature, light intensity,
and barometric pressure. Additionally, we study an architecture with delay-tolerant
delivery.

The work of Apte et al. [31] and the work of Von Fischer et al. [32] explore the
predictable mobility of Google Street View cars. Apte et al. embark sensors in
the cars to measure the air quality in the city of Oakland, proposing methods to
implement similar services in other cities. Similarly to this work, Apte et al. use
street segments of the city to define the regions that can be covered. Von Fischer et
al. use the improved coverage provided by Google Street View cars to detect gas
leaks and rapidly communicate them to maintenance teams, avoiding accidents. Gas
leak sensors are not reliable in the presence of mobility. Therefore, to infer the gas
leak magnitude, sensors send data to a prediction algorithm that uses the speed of
the wind to correct the measurements. In their work, Apte et al. and Von Fischer et
al. focus their efforts on improving the results from the available data. The present
thesis focuses on strategies to improve the data gathered by the system.

Alsina et al. [33] design a bus-based MWSN for noise monitoring. The paper
evaluates the costs and equipment requirements to implement this network. They
also propose strategies to build a noise map of the city, canceling the noise from
the bus carrying the sensors. The authors conclude that the application of noise
monitoring can exploit the mobility of urban buses to improve its coverage, an
assumption we share with them.

SmartSantander uses vehicles as part of a multi-purpose WSN to gather data
about the city of Santander [5]. Other urban objects are used to sense and actu-
ate in the city, providing services to its citizens. The work presents a framework
to integrate IoT in the smart city environment and deploys a city-wide network,
showing the feasibility of this system and some applications that can benefit from
it, such as environmental monitoring and smart parking. In the communication
paradigm used, data is delivered immediately to the applications. This means that
there is no concern about delivery delays, but there is also a high cost with network
infrastructure.

Dias et al. [34] analyze the throughput of an opportunistic network composed
of public buses and show that this network is capable of transmitting enough data
for many applications, including sensing. Our work considers a similar network,
proposing an algorithm to allocate its sinks. We thus analyze its behavior to delimit
the applications that can use buses as a mobility platform.

Mosaic [13, 28, 29], Opensense [16, 30], Apte et al. [31], Von Fischer et al. [32],

7

Table 2.1: Related work and their approach on vehicular sensing.

Reference Delay-tolerant
delivery

Three-level
architecture

Multi-
application Vehicle type

[15] Yes No No Buses
[13, 28, 29] No No No Buses

[16, 30] No No No Buses

[31] No No No Google Street
View cars

[32] No No No Google Street
View cars

[33] No No No Buses

[5] No Yes Yes
Buses, service
vehicles, and

taxis
Present work Yes Yes Yes Buses

and Alsina et al. [33] focus their work on processing the data gathered by vehicle-
based MWSNs. They aim at obtaining the best results given the gathered data. In
the present work, we place our efforts in obtaining the best data possible in terms
of the applications requirements. Additionally, in the prototype, we try to analyze
the feasibility of the three-level architecture in terms of storage, networking, and
processing capabilities. We believe that the data processing performed by these
works can benefit from the fog and the cloud, enabling new applications. Table 2.1
summarizes the main differences between the prototype we develop in this thesis
and the systems proposed in the literature. The columns of the table respectively
point to the reference for the work, indicate if the work supports delay-tolerant data
delivery, if it employs the same three-level architecture, if the work is designed to
serve multiple applications, and the type of vehicle employed in the sensing tasks.

The works listed before show that vehicle-based urban sensing is a promising
option to collect data for smart city applications. This thesis proposes models that
can be used by such works to minimize the delivery delay or to estimate the covered
area by each one of them.

2.2 Fog node placement and delivery delay
In Chapter 4, we analyze the delay induced by opportunistic delivery in a bus-
based MWSN. We also propose a method to place a limited number of Fog nodes
while minimizing the delivery delay. The problem is equivalent to the problem of
positioning sinks or gateways to minimize the delivery delay in an MWSN.

There is a rich literature on sink positioning for static WSNs, focusing on different
quality of service metrics. Wong et al. propose an algorithm to decide a location for

8

the sinks on a WSN that achieves the lowest latency possible [9]. The work shows
that an optimal solution is not always feasible because of its time complexity, and
proposes an approximation algorithm, capable of obtaining a satisfactory solution in
feasible time. Since the time to store and forward data is usually higher than data
propagation time over the network links, Wong et al. use the number of hops as
the metric to minimize. Our work differs from [9] since we consider MWSNs where
buses provide mobility to nodes, reducing the costs of deployment, but keeping the
covered area.

Umer et al. [10] propose a routing protocol that employs clustering to select sinks
on a static WSN deployed in a hospital. This network is delay-sensitive and, thus,
critical information employs dedicated paths. Their strategy to minimize delays
through sinks selection is not applicable in our scenario. We focus on a scenario
where sensors are mobile and routing between them is not possible.

In the case of mobile WSNs, it is more common to find studies that take advan-
tage of sink mobility to enhance communication between sinks and sensor nodes.
Using Hilbert curves, Ghafoor et al. [11] define trajectories for mobile sinks on WSNs
with static sensors. A Hilbert curve defines a mapping between 1-dimensional and
2-dimensional space. Therefore, a Hilbert curve is capable of defining a path for
a sink to cover the area where sensors are scattered. The order of a Hilbert curve
defines the density of the mapping, consequently defining the number of times a sink
passes by the same region. Their work increases the order of the Hilbert curve in
areas with more Sensing nodes. These strategies were designed to operate on net-
works with static sensors and their use with mobile sensor nodes, such as considered
in our scenario, is not investigated.

The study of Hu et al. makes an analysis of sink placement in MWSNs [35].
They propose a metric that, given a sensor mobility pattern, estimates the amount
of data that sinks can gather. Then, they propose an optimization method to place
static sinks and maximize the amount of exchanged data. Liang and Fan also pro-
pose a method to place sinks in an MWSN [36]. They formulate a multi-objective
optimization problem to minimize costs while maximizing the communication cov-
erage of sinks. In the present work, we focus on minimizing the delivery delay when
placing the Fog nodes.

In MWSNs with opportunistic data delivery, contacts are not always predictable.
Therefore, one challenge is to properly deliver data after it is gathered. One possible
strategy to improve the probability of early delivery is to replicate through the net-
work the messages containing sensed data. The protocol DAWN (Density Adaptive
routing With Node deadline awareness) [37] makes every node share the node den-
sity of their neighborhood with their neighbors. With this information, and with a
deadline to deliver the data, a node tries to locally decide the next hop or the next

9

Table 2.2: Related work and their approach on sink positioning and delivery delay.

Reference
Considers sink

mobility
Considers

sensor
mobility

Minimizes
delivery delay

Replication
overhead

[9] No No Yes No
[10] No No Yes No
[11] Yes No No No
[35] No Yes No No
[36] No Yes No No
[37] No Yes Yes Yes
[38] No Yes Yes Yes

Present work No Yes Yes No

hops, in case of message replication. Of course, the cost of replicating messages can
become impractical. Feng et al. propose the Distance-aware Replica Adaptive Data
Gathering protocol [38]. This protocol aims to find a reasonable trade-off between
replicating messages and delivering data timely. In the present thesis, we take the
predictability of bus routes to our advantage, avoiding any replication at all.

Table 2.2 summarizes the differences between this thesis and the related work
regarding sink positioning and delivery delay. The columns present the reference
of the work, indicate if the work considers sink mobility, if the work considers sen-
sor mobility, if it minimizes delivery delay, and if there is replication overhead,
respectively.

2.3 Coverage of vehicle-based MWSNs
The coverage of MWSNs is an important metric for the quality of data generated by
them [39]. In the previous sections, we discussed similarities between the projects
Mosaic and Opensense, but they use very different strategies to study the coverage
of their proposals.

Mosaic divides the city using a grid and sets a score for every grid cell. This
score depends on the number of routes that include the grid cell [13]. Additionally,
Mosaic proposes an algorithm to select the best buses to receive Sensing nodes and
cover points of interest spread in the city. We propose a coverage metric based on
street segments and a method to select the best buses to receive Sensing nodes while
maximizing coverage.

Opensense [16] divides the city into street segments and uses log-linear models
to predict pollution data on segments that are not directly measured. The results
obtained by Opensense show that, for urban environments, the street segmentation
is more appropriate than grid partitioning. This happens because the number of

10

visits is not uniformly distributed inside a grid cell, but it is uniformly distributed
inside a street segment. We propose a metric that uses street segmentation and
estimates coverage by taking into account the number of measurements in each
street segment. This makes it possible to identify places where there are not enough
measurements to serve as input to the applications. The present thesis also proposes
an optimization method to maximize the covered region using a limited number of
buses. Another important difference is that neither Mosaic nor Opensense consider
the data delivery delay. For this reason, their coverage models are not suited for
opportunistic delivery when the applications have requirements on delivery delay.

Ali and Dyo propose a coverage metric for a bus-based WSN focused on road
surface inspection [12]. Their proposed metric divides the city into street segments
and considers a street segment as covered if at least one bus line passes through
it. Ali and Dyo also propose a method to choose a limited number of bus lines
while maximizing coverage. The authors test the method using a dataset containing
the routes of London buses. In this thesis, we initially propose a similar approach,
but we consider the lengths of the streets when calculating the coverage. The basic
idea of our metric is that longer streets potentially produce more data. We also
propose a method to maximize coverage when the number of participating buses is
limited. Then, we propose a more general metric, that considers both delays and
measurement frequency when calculating the coverage. The problem studied by Ali
and Dyo can be interpreted as a particular case of the present work. Their work is a
case where applications need only one measurement, have no delay restrictions and
every street segment has unitary length.

Zhao et al. propose a coverage metric for vehicle-based WSNs that takes into
account the time between measurements [14, 40]. In their work, time is discretized
into slots and the area of the city is divided into a grid. A cell in the grid is covered
for a given time slot if and only if a participating vehicle is inside the grid cell
during the time slot. They also propose a metric called Inter-Cover Time, which is
the time elapsed between two consecutive samples of the same grid cell. Another
contribution of Zhao et al. is a metric called Opportunistic Coverage Ratio, which
is the expected number of covered grid cells on a given time interval. Using these
metrics, Zhao et al. define a notion of coverage quality and propose an algorithm
to find the best vehicles to sense a certain region with a given coverage quality. In
our work, we use the measurement frequency to determine whether there is enough
information in a given time interval, taking advantage of the predictability of bus
routes. Additionally, we add the delivery delay to our coverage metric, making
sure that applications get data in a timely manner. Zhao et al. do not consider
the delivery delay in their metrics. We also propose a method to optimally chose
vehicles to sense a certain region, but we define regions as street segments, with a

11

Table 2.3: Related work and their approach on sensing coverage.

Reference
Considers Considers

Covered unit Multi-purposemeasurement delivery
frequency delay

[13] Yes No Grid tile No
[16, 30] Yes No Street segment No

[12] No No Unweighted Nostreet segment
[14, 40] Yes No Grid tile Yes

[41] No No Point of interest No
[42] Yes No Place Yes
[43] No No Place Yes

Present work Yes Yes Street segment Yes

different definition of coverage.
The work by Zhang et al. introduces a coverage metric for Mobile Crowdsensing

Networks that takes into consideration the quality of data gathered by the net-
work [41]. In their metric, points of interest (POI) are sensed if a participating user
is within the sensing range of the POI. Since POIs are weighted according to their
importance, the total coverage is the sum of weights of the union of all sensed POIs.
Crowdsensing coverage is also explored by Chon et al. [42]. They consider a region is
covered if it is visited by at least one participant in the sensing tasks. Masutani [43]
proposes a route control method to maximize the coverage of vehicle crowdsensing.
In his work, the coverage metric is based on sensing demands. It considers a certain
area covered if it is visited by at least one car during a given time window. The time
window is the time the sensing task is valid. These three works do not take into
account the measurement frequency nor the delivery delay of data, making them
suited only for applications with no constraints regarding these metrics.

Table 2.3 shows the main aspects of the papers related to MWSN coverage.
The columns respectively indicate the reference of the work, if the work takes the
measurement frequency into account, whether the work takes the delivery delays
into account, the approach used by the work to divide the studied region, and if
the work is designed for multiple applications. The table shows that the present
work, to the best of our knowledge, is the only that proposes a coverage notion
considering the measurement frequency and the delivery delay of sensed data. This
makes the proposed metric capable of estimating the coverage of a larger number of
applications, since it considers their restrictions.

12

Chapter 3

Bus-based Urban Sensing

In this thesis, we consider a bus-based mobile wireless sensor network. In this
chapter, we outline the assumptions we make about the scenario and context where
the network is deployed. Therefore, we list the requirements of such a system and
then we characterize its main aspects, defining an architecture and its elements.
Since a bus-based MWSN is built to serve smart city applications, we start by
describing the target applications. This description can show us the main challenges
to be addressed by a bus-based MWSN.

3.1 Target applications
There is a wide range of smart city applications that can benefit from data gathered
by buses. Most of them fall into the categories of smart mobility, smart environment,
and smart living [44]. A few examples are pothole detection, air quality monitoring,
and noise monitoring. Buses can also serve as data mules for sensors in buildings,
electricity meters, smart lamps, smart trashcans, and others. For such applications
to work properly, it is important that data meets certain requirements. In the case
of an MWSN with delay-tolerant data delivery, the critical requirements are related
to temporal adequacy of data [39]. In this context, temporal adequacy refers to the
sensing frequency of each area, and the time it takes since a bus collects data until
it is available to applications and users. The survey conducted by Zanella et al. [1]
identifies applications, the measurement frequency needed, and the delay tolerated
by those applications. Sinaeepourfard et al. [45] also provide the measurement
frequency needed for some smart city applications, but gives no information on
delays.

As Table 3.1 shows, different applications have different requirements on mea-
surement frequency and maximum delivery delay. The values are defined by
Zanella et al. [1] and Sinaeepourfard et al. [45], as indicated in the table. We
note that the waste management application tolerates a delay up to six times the

13

Table 3.1: Smart city applications and their data needs in terms of minimum mea-
surement frequency and maximum tolerated delay.

Application Tolerated Measurement Sourcedelay (s) frequency (day−1)

Waste management 1,800 24 [1]
Air quality monitoring 300 48 [1]
Noise monitoring 300 144 [1]
Electricity meter not defined 96 [45]
Gas meter not defined 96 [45]
Temperature not defined 96 [45]
Weather not defined 48 [45]

delay tolerated by air quality monitoring and noise monitoring. This happens be-
cause the conditions of waste management infrastructure change more slowly than
the conditions of air quality and noise in a city.

The column Measurement frequency of Table 3.1 means that a region must be
visited several times a day. The number of times per day depends on the application.
Also, every piece of data has a deadline to arrive at the application, otherwise it is
not possible to offer the desired services to the final users.

3.2 SensingBus
The models and prototypes developed in this thesis are applied in the context of
SensingBus, a bus-based MWSN proposed in this thesis. SensingBus aims to provide
the following functionalities to its users:

• Data gathering: buses working as Sensing nodes gather data along their
paths;

• Data pre-processing: Fog nodes pre-process data before they send data over
the Internet. Among other things, Fog nodes can remove inconsistent data,
compress data or implement robust security protocols;

• Data transmission: data travels from buses to the final applications, using
the Internet, the fog and the cloud infrastructure;

• Data storage: the cloud stores data gathered by buses;

• Data query: applications can query SensingBus about historical data.

To provide these functionalities, SensingBus embarks Sensing nodes into urban
buses and attaches Fog nodes to bus stops. The urban buses gather data and deliver
data directly to the Fog nodes, opportunistically.

14

3.2.1 Networking context

Due to the large amount of data exchanged by users, cellular networks are reaching
their operational limits. As pointed by Zhou et al., data offloading through oppor-
tunistic mobile networks is one of the main strategies to circumvent this problem [46].
In this strategy, delay-tolerant data is piggybacked on mobile nodes and delivered
to gateways in their paths, instead of using traditional cellular networks [47].

In the literature, there are works that propose leveraging the mobility of buses
to offload data from the cellular networks [15, 34, 46]. In this case, buses serve as
data mules and offload data using gateways spread around the city. Buses carrying
sensors can use the same gateways to deliver data collected throughout their paths.
Another advantage of using opportunistic communication is to still be able to sense
regions not covered by cellular networks, a situation that still happens in some cities.

We assume that sensors carried by buses gather data about the city and store
them until a connection with a gateway is possible. We also assume that all stored
data can be delivered during a single connection. We develop this assumption further
in Chapter 4. Gateways, located at bus stops, receive data when buses are within
communication range, and use the Internet to send this data to a cloud server. The
architecture of the system, described in the next section, defines the task of each of
the elements.

3.2.2 System architecture

SensingBus follows the three-level architecture for IoT proposed by Li et al. [8], as
illustrated in Figure 3.1. In the sensing level, sensors embarked on buses gather data
about the city, using the IoT paradigm. Then, sensed data is sent to the fog level.
Fog nodes pre-process the data and send it to the cloud level, using the Internet. In
the cloud level, data is processed, stored, and served to the final applications. We
detail each level in the next sections.

Sensing level

The Sensing level is responsible for gathering data about the city and sending it to
Fog nodes. Along with the sensed data, the Sensing node registers the timestamp
and geographic coordinates of each sample. This level is composed of the set of all
Sensing nodes located in the buses. The high-level architecture of a Sensing node is
shown in Figure 3.2.

The Controller of the Sensing node manages all tasks of the node. At a specific
sampling rate, the Controller reads the coordinates and time indicated by the GPS
Receiver and also reads the measurements of every sensor in the Sensor Bank. The
coordinates, time, and measurements are associated and written into the Persistent

15

Sensing
Level

Fog
Level

Internet

Cloud
Level

Figure 3.1: The architecture of SensingBus.

Memory. At every iteration, the Controller also queries the Wireless Interface to
check whether a connection is established with a Fog node. The Sensing node
connects to the Fog node using a private network, where all the other devices are
trusted. Whenever a connection is established, the Controller sends all the data
stored in the Persistent Memory to the Wireless Interface. This data is sent to a
Fog node, and can thus be deleted from the Persistent Memory in the Sensing node.
The size of the Persistent Memory must be enough to hold all data gathered between
any two consecutive encounters of the Sensing node with a Fog node.

Controller

GPS
Receiver

Sensor
Bank

Wireless
Interface

Persistent
Memory

Sensing node

To a Fog
node

Figure 3.2: Architecture of the Sensing nodes in SensingBus.

One design objective of SensingBus is to have inexpensive Sensing nodes, so
even a constrained budget is enough to equip a significant amount of buses. Thus,
Sensing nodes are simple and constrained in terms of computational resources. Since
data must be stored by Sensing nodes before sending them to Fog nodes, Sensing
nodes have persistent memory requirements that must be addressed. We study these
requirements in Section 4.2.

16

3.2.3 Fog level

The Fog level follows the fog computing paradigm [7]. Fog nodes are located at the
edge of the network. Their computational power is at an intermediate level between
Sensing nodes and nodes in the Cloud level, which are cloud servers. Basically,
Fog nodes receive raw data from the Sensing level, pre-process it, and send it over
the Internet to the Cloud level. The pre-processing is fundamental to our system
since it can provide important functionalities that improve performance and security.
These functionalities include data aggregation, data compression, cryptography, and
others. Figure 3.3 shows the Fog node architecture.

Wireless
Interface

Fog node

Application
Client

Application
Server

Pre-processing

Controller

Network
Interface

To Cloud
node

From a
Sensing node

Figure 3.3: Architecture of the Fog nodes in SensingBus.

Fog nodes act as both application clients and servers, depending on the context.
From the viewpoint of Sensing nodes, Fog nodes are application servers receiving
data. Additionally, Sensing nodes also view Fog nodes as access points, since Fog
nodes create private networks for communication between Fog and Sensing nodes.
On the other hand, to the nodes in the Cloud level, Fog nodes are application clients.
They connect to the Cloud level using the Internet and forward data received from
the Sensing nodes.

Communication between Sensing nodes and Fog nodes happens on a private
network, therefore, a certain security level is assured. The messages between Fog
nodes and Cloud nodes travel over the Internet. Therefore, it is important that Fog
nodes use protocols that implement authorization and data integrity. In Chapter 6
we detail the implementation of authorization and data integrity.

3.2.4 Cloud level

The Cloud level is the final destination of the collected data. Inside it, data is stored,
processed, and made available to users. There are many reasons for having these
tasks performed by a cloud service, but the most important are the elasticity and

17

the availability of the cloud. Elasticity is important because we expect intensive
algorithms to run over data from time to time. Availability is important because
SensingBus might act as the core of fundamental services, such as flood warnings.
Figure 3.4 illustrates the architecture of the Cloud node.

IaaS Cloud

Web
Interface

Database
Server

API

From
Fog nodes

To
users

Cloud node

Figure 3.4: Architecture of the cloud node.

The web server of the Cloud node waits for messages from Fog nodes and data
queries from users. Fog nodes can only add data to the database, whereas users can
only read data from the database. The Cloud node consists of a virtual machine
running on a distributed IaaS cloud. This arrangement provides elasticity, allow-
ing the processing and storage of the Cloud node to grow and shrink, on-demand.
Moreover, availability is favored by the distributed aspect of the IaaS cloud. Differ-
ent sites of the distributed cloud can replicate the same Cloud node, improving the
resilience of the system.

Cloud nodes must hold a certificate signed by a Certificate Authority trusted
by the nodes of the Fog level, in such a way that Fog nodes know if they have
their messages intercepted and even discarded. Additionally, Cloud nodes must be
capable of checking the certificates presented by Fog nodes. This prevents malicious
devices from inserting data into the Cloud node database.

The architecture of SensingBus is the starting point for the models and prototype
developed in this work. The next chapters describe the models, the prototype, and
the experiments performed with them.

18

Chapter 4

A Delay Optimization Model for
Bus-based MWSNs

As described in Chapter 3, the Sensing node and the Fog node are one hop apart in
our scenario. Additionally, we assume that a single encounter is enough to deliver
all data gathered between the present encounter and the immediately previous en-
counter. We discuss this assumption further in Section 4.3. Regarding the wireless
communication technology, we can employ IEEE 802.11p, IEEE 802.11n, or other
wireless technologies. Each technology has different range and data rates, producing
different communication coverage and throughput.

When data is gathered, the Sensing node i.e., the bus waits until a connection
with a Fog node is established. Next, the Sensing node sends the data to the Fog
node. Finally, the Fog node sends this data to the Cloud node through the Internet.
The delay from the data being gathered until it is available to the users is the time
the Sensing node waits for a connection with a Fog node plus the time the Fog
node takes to send it to the Cloud node. The maximum time that a Sensing node
waits for a connection is equivalent to the time a bus takes to travel from a bus
stop vicinity to the next bus stop vicinity, assuming both bus stops have Fog nodes
installed. The time the Fog node takes to send the data to the Cloud node is the
Internet latency between the Fog and the Clod nodes. Typically, the time for a bus
to travel from one bus stop vicinity to the vicinity of another bus stop is of a few
minutes, and the time to send data between nodes is of a few milliseconds. In this
sense, we expect that the time to send the data is negligible when compared to the
time waiting for a connection. Therefore, this thesis models the delay as the time
between contacts, neglecting the time to send the data from the Sensing node to the
Cloud node. In the next section, we formalize this definition and analyze the effect
of the Fog nodes positioning to the delays.

19

4.1 Delays on a constrained number of Fog nodes
We assume that, given a certain budget, the number of chosen Fog nodes is smaller
than the number of bus stops. Therefore, the problem is to decide which bus stops
should work as Fog nodes. This section models the envisioned network and the delay
added to data sensed by this network. Table 4.1 summarizes the notations used in
this chapter.

Table 4.1: Notations used modeling the delivery delays.

Notation Description Type

B Buses moving around the city Set
S Bus stops that are eligible to be Fog nodes Set
C Pairs (b, s) for every bus b that makes contact with bus stop s Set
I Bus stops that must be Fog nodes Set

nbudget Number of allowed Fog nodes Parameter

dbsr
The time elapsed from the contact of bus b with bus stop s Parameteruntil the contact of bus b with bus stop r, with s, r ∈ S

Sb
Sequence of bus stops that make contact Parameterwith bus b, ordered by contact time

Sb(i) Function that returns the i-th element of the sequence Sb Parameter

Tb(i)
Function that returns the time when bus b makes Parametercontact with the ith element of the sequence Sb

δb Sequence of delays suffered by data gathered by bus b Parameter

δb(i)
Function that returns the delay suffered by data gathered Parameterbetween the ith and the (i+ 1)th element of the sequence Sb

nb Number of bus stops in the path of bus b Parameter

Mg
Data gathered between the contact of a Parameterbus with two consecutive bus stops

Mt
Data transferred by a bus on a Parametersingle contact with a bus stops

genrate The data generation rate by a sensor node Parameter
txrate The transmission rate between a bus and a bus stop Parameter
ctime The contact time between a bus and a bus stop Parameter
∆max Maximum possible delay between any two Fog nodes of the network Variable
xs Boolean that indicates whether s is chosen as a Fog node Variable

ybrs
Boolean that indicates if, for bus b, Variablebus stop s is the next Fog node when departing from bus stop r

Let b ∈ B be a bus equipped with a Sensing node, s ∈ S a bus stop that is
a Fog node candidate, Sb an ordered list in which every element Sb(i) is the ith

(1 ≤ i ≤ nb) stop s that b makes contact with, and Tb(i) the instant when the bus
b makes contact with the ith stop in Sb. It is possible to see the sequence Sb as the
path of b through the stops with which b makes contact. When a bus b ∈ B gathers
data throughout its path in Sb, such data gets delayed when the bus does not contact
some Fog node. Data gathered right after b loses contact with Sb(1) is delayed by
Tb(2) − Tb(1). Every other piece of data gathered by b on the way between Sb(1)

20

and Sb(2) has a smaller delay, until b makes contact with Sb(2). The same can be
applied to any pair (Sb(i), Sb(i + 1)) that happens in the path Sb. For the sake of
simplicity, the expression (Tb(i + 1) − Tb(i)) is defined as the delay between Sb(i)

and Sb(i+ 1).
It is possible to define δb as the sequence of delays for a bus b as follows:

δb = {Tb(2)− Tb(1), Tb(3)− Tb(2), ..., Tb(nb)− Tb(nb − 1)}. (4.1)

Note that, in Equation 4.1, the element δb(i) is a function that returns the time
a bus takes to go from the stop Sb(i) to the stop Sb(i + 1). Given that a given bus
b contacts nb bus stops, Sb(nb) is the last element in the bus path, an thus element
δb(nb) cannot be defined. Therefore, we define the maximum delay of network, ∆max,
as the highest delay of every delay sequence from the buses:

∆max = max
b∈B

(
max

i∈{2,...,(nb−1)}
(δb(i))

)
. (4.2)

4.2 Sensing node memory requirements
Our model assumes that data is gathered by a bus b after the contact with a Fog
node on its path Sb(i) and it is completely delivered on the contact with the next
Fog node, Sb(i + 1). Throughout the travel time, represented by δb(i), data is
incrementally stored in the Persistent Memory module. Assuming that the memory
module is empty when the bus leaves Sb(i), the total data stored in the memory
module when the bus arrives in Sb(i+ 1) is:

Mg = genrate × δb(i), (4.3)

where genrate is the data generation rate, i.e., the amount of data generated by the
sensor bank and GPS Receiver module by unit of time. The Persistent Memory
must be capable of storing the maximum amount of data expected for it. Since we
assume a constant genrate, the maximum amount of data is achieved when δb(i) is
maximum. In Section 4.1, the maximum δb(i) is defined as ∆max. In Section 4.7.1
we show that, for a network using the buses of the city of Rio de Janeiro, it is
possible to achieve the value of 2 h for ∆max. Additionally, using the results from
Sinaeepourfard et al. [45], we estimate that the average amount of data generated by
typical smart city sensors in 2 h is 717 B. Therefore, the amount of data to be stored
in the memory module is 717 B for each sensor in the sensor bank. In Chapter 6,
we build a Sensing node prototype that, in 2 h, generates 64 kB per sensor. This is
explained by the fact that we employ higher sampling rates than the expected by

21

Sinaeepourfard et al. Therefore, it is also possible to estimate the generation rate
of sensors operating with different sampling rates.

Given the reasoning before, we can assume that the Sensing nodes must have a
Persistent Memory module capable of storing 64 kB for each sensor in the Sensor
Bank.

4.3 Assuming full delivery on single contact
In this thesis, we assume that Sensing nodes are able to completely deliver the data
gathered between stops Sb(i) and Sb(i + 1) when a contact with the Fog node in
Sb(i + 1) occurs. We refer to this as the assumption of full delivery on a single
contact. Given that Mt is the amount of data transferred from the bus to the Fog
node at the bus stop Sb(i+ 1), our assumption holds if:

Mg = Mt. (4.4)

Inside the Sensing node, when the wireless interface makes contact with a Fog
node, data is transferred first from the Persistent Memory to the Controller, then
from the Controller to the Wireless Interface and, finally, from the Wireless Interface
to the Fog node. Each one of these transmissions might have different transmission
rates, and the minimum of these rates limits the transmission as a whole. Therefore,
we define txrate as the minimum of these transmission rates. The transmission
between the Fog node and the Sensing node is only possible while there is a contact
between them. The time of contact, denoted by ctime is the time during which the
bus is connected to a Fog node. The time ctime is a function of the bus speed,
route, and the transmission range between a Fog node and a Sensing node. For the
assumption of full delivery on a single contact to be valid, the txrate must be big
enough to unload, during ctime, all the data generated by the sensor bank during
δb(i). This holds true if the following inequality is satisfied, with Mg as defined in
Section 4.2:

txrate × ctime ≥Mg. (4.5)

To estimate the txrate and ctime of a worst-case scenario, we used measurements
and estimations from different works, respecting the worst-case scenarios when ap-
plicable. The work of Borges et al. [48] measured the contact time between a bus
and a bus stop, using IEEE 802.11. Borges et al. concluded that, on average, a
bus makes contact with a bus stop for 65 s if it stops at it. Additionally, it makes
contact for 32 s if the bus does not stop. The work of Rubinstein et al. [49] measured
vehicle to vehicle communication using IEEE 802.11, achieving average throughput
of 1.81 MB/s throughout the interval of contact, using a relative speed of 120 km/h.

22

Defining ctime as 32 s and txrate as 1.81 MB/s, we can use Inequation 4.5 to estimate
that the maximum amount of gathered data is 57.92 MB.

Using the results from Section 4.2, we can conclude that a bus that makes contact
with a Fog node for 32 s, every 2 h and achieves an average throughput of 1.81 MB/s
could carry more than 80,000 sensors in its sensor bank and still unload all the
contents in the memory module if using the sampling rates from Sineepourfard et
al.. In Chapter 6, we show that the Sensing node in our prototype can carry about
900 sensors and still unload all the data generated in a single contact. Therefore, it
is reasonable to assume that the Sensing node can completely deliver gathered data
on a single contact.

4.4 Candidate Fog node removal
In the problem, every bus stop s ∈ S is initially a Fog node candidate. We define
the bus stop s as removed if s is not chosen as a Fog node. When a bus stop s is
removed, the nodes cannot deliver data to it and must deliver the data to the next
Fog node on their path.

The removal of s has effects on the sequence δb, illustrated in Figure 4.1. If a
bus b has s as the element Sb(i) and s is removed, b must deliver to Sb(i+1) all the
data that otherwise would be delivered to s, in Sb(i). This means that, when Sb(i)

is removed, δb(i− 1) becomes the old δb(i− 1) plus δb(i). Additionally, the old Sb(i)

is removed from the sequence Sb, the old δb(i) is removed from the sequence δb, and
every element after Sb(i) and δb(i) is shifted one position behind.

Sb(i-1) Sb(i+1)Sb(i)

δb(i-1) δb(i)
b

(a) Delay before the removal of a single Fog node.

Sb(i-1) Sb(i+1)Sb(i)

δb(i-1)+δb(i)
b

(b) Delay after the removal of a Fog node.

Figure 4.1: Effects in delay caused by the removal of a Fog node.

Different buses are affected differently by a Fog node candidate removal, since
buses can follow different paths. Figure 4.2 illustrates the removal of the candidate

23

q ∈ S for two different buses, b, c ∈ B. The buses b and c are moving along the
bus stops p, q, r, s, t ∈ S along different paths. The sequence of bus stops for b is
Sb = (p, q, r) and its sequence of delays is δb = (1, 2). The sequence of bus stops for
c is Sc = (s, q, t) and δc = (3, 1) is its sequence of delays. When q is removed, Sb

becomes (p, r), δb becomes (3), Sc becomes (s, t), and δc becomes (4).

p r

q1 2

b

s t
3 1c

(a) Delays before the removal of a single Fog node.

p r

3

b

s t

4
c

(b) Delays after the removal of a single Fog node.

Figure 4.2: Effects in delay of multiple buses caused by the removal of a Fog node.

We then define the operation of Fog node candidate removal s ∈ S as:

1. Remove s from the set S

2. For every b ∈ B:

(a) If there is some Sb(i) = p, for every i:

i. Remove of Sb(i) from Sb;
ii. Assign δb(i− 1) := δb(i− 1) + δb(i);
iii. Remove δb(i) from δb.

The removal of the Fog node candidate s changes one or more delays in δb, if and
only if s is part of Sb. We define the removal delay of s (δrem(s)) as the maximum
delay produced by the removal of s:

Drem(s) = max
b∈B

(
max

i∈{2,...,(mb−1)}
({δb(i− 1) + δb(i)|Sb(i) = s})

)
. (4.6)

24

A Sensing node might make contact with the same Fog node more than once
because the bus can drive near the same bus stop during different stages of its path.
Therefore, Sb(i) and Sb(j) can return the same s, for b ∈ B, s ∈ S, and i ̸= j.
Additionally, a contact between a bus b and a Fog node on the bus stop Sb(i) does
not imply that the bus serves passengers on Sb(i).

A last consideration about the model is the fact that it is not possible to remove
some bus stops. For instance, bus stops that are the first or last bus stop in the
path of some bus b ∈ B must be Fog nodes. If we remove a bus stop that is the first
in the path of b, the delay calculation is invalidated; if we remove a bus stop that
is the last in the path of b, data is lost, because b gathers data and is not able to
deliver it. We define as I the set of bus stops that must be chosen as Fog nodes.

4.5 Optimal Fog node placement
In some cases, the number of possible Fog nodes is constrained by a given budget.
We define as nbudget the number of Fog nodes available to be placed onto the bus
stops in S. As shown in Section 4.4, there is a relationship between the placement
of the Fog nodes and the delays experienced by data. Therefore, it is possible to
formulate an optimization problem to choose nbudget stops to receive Fog nodes while
minimizing the maximum delay suffered by data.

We model this problem as a p-center problem, a known problem in the liter-
ature [50]. We then propose a heuristic algorithm to find suboptimal solutions.
Finally, we use a suboptimal solution to speed up the algorithm to find the optimal
solution.

4.5.1 The p-center problem

The p-center problem is an NP-hard problem [50]. It consists of a set S of facility
candidates and a set C of demands that must be satisfied by the set of facilities. To
every demand, there is a distance between this demand and the candidates that can
satisfy this demand, if they are chosen to be facilities. Each demand is satisfied by
the nearest facility. The problem consists of choosing p facilities while minimizing
the biggest distance between any demand and the facility that satisfies the demand.
Figure 4.3 illustrates an instance of the p-center problem as a bipartite graph, with
p = 2. In this instance, {a, b, c} is the subset of the vertices that represent the
facility candidates of the problem, and {x, y, z} is the subset of the vertices that
represent the demands of the problem. A weighted edge dkj starting on demand k

and ending on facility j represents the distance between k and j.
To transform the problem of choosing the minimal delay Fog nodes into the p-

25

z x

y

a

b

c

Facility candidate

Chosen candidate

Demand

dyc

dya

dzb
dxb

dxc
dzc

dza

dyb
drs Delay between r and s

dxa

Figure 4.3: An instance of the p-center problem.

center problem, we must first remember that buses gather data, store it and deliver
to Fog nodes that are located at bus stops. Therefore, every time a bus b ∈ B gathers
data, a demand is created. The demand is served when b delivers this data to a Fog
node. This means that, once b gathers data, each subsequent bus stop s ∈ S on its
path is a candidate for serving the demand that is created. The distance between
a demand and a facility candidate is the delay generated by delivering the present
data to the corresponding bus stop, if we chose this bus stop to be a Fog node.

Every time a bus unloads data, the oldest data on its memory is the one with the
biggest delay. With this in mind, we can argue that the demand that matters is the
oldest data stored by the bus until it reaches a Fog node. This happens because any
data more recent than the oldest is, by definition, not suffering the biggest delay. As
discussed in Section 4.3, all data stored is delivered and then erased when b makes
contact to s. Therefore, the oldest data a bus holds is the data it gathers as soon
as it leaves a bus stop with a Fog node. Hence, we can consider that our demands
are the encounters of a bus with a bus stop. It is possible then to define the set C of
demands as the set containing all pairs (b, s) representing any bus b ∈ B that makes
contact to s ∈ S:

C =
∪
b∈B

nb−1∪
i=0

(b, Sb(i)). (4.7)

Figure 4.4 illustrates the procedure of transforming the Fog node placement
problem into the p-center problem. The bus path Sb is the sequence (w, x, y, z),
where w, x, y, z ∈ S. When the problem is transformed into the p-center problem,
the set of demands is {wb, xb, yb} and the set of facility candidates is {x, y, z}. Each
edge represents the time elapsed since the bus passed by the demand until the bus
encounters a facility candidate that can satisfy the demand.

As defined in Equation 4.7, we do not consider the last bus stop encountered
by a bus as a demand, because there is no data collected immediately after it. We
define the optimization problem using Mixed-Integer Linear Programming (MILP):

26

w x ydwx dxy
zdyz

Facility candidate

Demand

Demand and facility
candidate

drs Delay between r and s
wb

x y

dwy

z

dxz

dwz

xb yb

dwx dxy dyz

Figure 4.4: Example of the Fog node placement problem transformed into the p-
center problem.

minimize: ∆max; (4.8)

s.t.:
∑
s∈S

ybrs = 1 , ∀(b, r) ∈ C; (4.9)

ybrs − xs ≤ 0,∀(b, r) ∈ C, s ∈ S (4.10)∑
s∈S

xs = nbudget; (4.11)

∑
s∈S

dbrsybrs −∆max ≤ 0 , ∀(b, r) ∈ C, ∀r ∈ S; (4.12)

xs = 1, ∀s ∈ I; (4.13)

∆max ∈ Z; (4.14)

ybrs ∈ {0, 1}, ∀b ∈ B, ∀r, s ∈ S; (4.15)

xs ∈ {0, 1} ∀s ∈ S. (4.16)

The problem is defined the same way as the p-center problem [50]. Equation 4.8
is the objective of the problem and minimizes ∆max, which is the biggest delay in
the network. The binary variables xs indicate whether the bus stop s is chosen to be
a Fog node. The binary variables ybrs indicate if, once bus b leaves bus stop r, the
next Fog on its path is encountered at bus stop s. The parameter dbrs represents the
time it takes for b to go from stop r to stop s. Equation 4.9 is a set of restrictions to
make sure that, once b leaves r, data is delivered only to one bus stop. Equation 4.10
states that, if a bus stop s is not chosen to be a Fog node, then no Sensing node

27

can unload data on it. Equation 4.11 limits the number of chosen bus stops to the
budget defined by the problem. Equation 4.12 defines ∆max as the biggest delay
among the delays experienced in the network. Equation 4.13 forces that stops in I
are chosen. Equation 4.14, Equation 4.15, and Equation 4.16 define the limits and
domains of the variables.

4.6 A fast algorithm for Fog node selection
The solution of the Fog node placement in real-life scenarios might not be practical,
because of its possible processing time and memory requirements. Therefore, this
work proposes a greedy solution, specified in Algorithm 1, that is initialized as if
every Fog node candidate was an actual Fog node. At every iteration, the algorithm
removes the Fog node candidate with the minimum removal delay, defined in Equa-
tion 4.6. The algorithm finishes when the set of Fog nodes candidates has nbudget

elements or when it is not possible to remove more candidates, since the algorithm
must choose at least the candidates in I. In both cases, the algorithm returns the
current set of Fog node candidates.

The algorithm parameters are: the set of buses B; the set of Fog node candidates
S; the set I of bus stops that must be Fog nodes; the vector paths, that stores
the list Sb for every element b ∈ B; a function δb(i) for every b ∈ B; and nbudget, the
amount of desired Fog nodes.

In a nutshell, Algorithm 1 stores in max_ts[s] the maximum delay that ap-
pears when bus stop s is removed. The algorithm then removes the stop for which
max_ts[s] is the lowest. The algorithm then refreshes max_ts with the new re-
moval delays and proceeds removing bus stops from the candidate group, until there
are nbudget bus stops or there are no more removable stops.

4.6.1 Complexity analysis

Given the parameters of Algorithm 1, we define m as the size of the largest list in
paths and n as the cardinality of S, |S|. If we implement the functions δb with
lists, the largest one has size m− 1.

The time complexity of the algorithm is the complexity of the initial test, on
Line 1, plus the complexity of the removal delay list initialization, on Line 3, plus
the complexity of Fog node candidates removal, on Line 7.

The initial test on Line 1 is a cardinality comparison of the sets S and I with
nbudget. Using O notation for worst-case scenario, the initial test complexity is O(1).

The initialization of the list of removal delays, on Line 3, is an iteration over
every m elements of Sb, nested in an iteration over every k elements of B. Hence,

28

Algorithm 1 Fog Node Placement Algorithm
Data: B = {b1, . . . , bk}, S = {s1, . . . , sn}, I = {ssy, . . . , ssz}, paths = (Sb1, . . . , Sbk),

δb1, . . . , δbk, nbudget

1: if |S| − |I| ≤ nbudget then return I ▷ It is not possible to obtain nbudget Fog nodes
2: max_ts ← (0) ▷ Initialize max_ts as a zeroes vector
3: for b ∈ B do ▷ Initialize removal delay list
4: for i← 1, |Sb| do
5: max_ts[Sb[i]] ← max(δb[i− 1] + δb(i),max_ts[Sb[i]])

6: R ← ∅
7: while |R|+ |I|+ nbudget < |S| do ▷ Remove Fog node candidates until budget is achieved
8: for p ∈ S do ▷ Select a candidate with minimum removal delay
9: if (dmin == NULL ∨ dmin < max_ts[s]) ∧ s ̸∈ I ∧ s ̸∈ R then

10: dmin ← max_ts[s]
11: s_to_remove ← s

12: for Sb ∈ paths do
13: for i← 1, |Sb| do
14: if Sb[i] = s_to_remove then
15: δb[i− 1] ← δb(i− 1) + δb(i) ▷ Refresh the delay between the previous and the

next candidates
16: if max_ts[Sb[i+ 1]] < δb(i− 1) + δb(i)) then
17: max_ts[Sb[i+ 1]] ← δb(i− 1) + δb(i)) ▷ Refresh removal delays
18: if i > 1 then
19: if (max_ts[Sb[i− 1]] < δb[i− 2] + δb(i− 1)) then
20: max_ts[Sb[i− 1] ← δb[i− 2] + δb(i− 1)

21: Remove(Sb[i]) ▷ Remove i from Sb[i]

22: R ← R∪ {s_to_remove} ▷ Insert the removed candidate into the set of removed
candidates

23: return {S \ R} ▷ Return the set of non-removed candidates

the complexity of this part is O(km).
The Fog node candidates removal has an external loop, starting on Line 7, in

which |R| grows one unit per iteration. This is limited by the value of nbudget. Since
nbudget is limited by n, the complexity of the Fog node candidates removal is the
complexity of its inner loops multiplied by n. Nested to the loop on Line 7, there
are two other loops, in sequence. On Line 8, a loop iterates over all n elements in S,
checking if s ∈ I and if s ∈ R. Since it is possible to use data structures where the
complexity of such checks is O(1), the time complexity of loop in Line 8 is O(n).

The loop in Line 12 iterates over all k elements Sb of vector paths. Nested to
the loop on Line 12, another loop iterates over all the elements of every Sb, with a
maximum of m. On every iteration, the element δb of vector max_ts is accessed
and the elements δb(i− 2), δb(i− 1), and δb(i) are also accessed. To avoid iterating
over the list δb to find these elements, a pointer to these elements can be coupled to
Sb(i). This way, the access to δb(i − 2), δb(i − 1), and δb(i) in this loop has worst
case complexity O(1). Therefore, the loop in Line 12 has complexity O(km).

The insertion of s into the set R has complexity O(1). Given the complexities of
the nested loops, the complexity of the loop that starts on Line 7 is O(n2+kmn+n).
As a consequence, the time complexity of the Algorithm 1 is given by O(1 + km +

29

n2 + kmn + n). By the notation O, the time complexity is O(n2 + kmn), i.e., the
biggest between O(n2) and O(kmn).

4.6.2 Comparison with the optimal solution

To analyze the approximation offered by our greedy approach, we compare the
solutions found by our algorithm with the ones obtained by the optimal problem
solution. To this end, we generate artificial data that simulates a bus mobility
scenario, composed of Fog node candidates. The Fog node candidates are organized
in a grid and bus mobility is simulated. We perform the evaluation for 5 buses
moving around a grid with 25 bus stops as well as a scenario with 10 buses moving
around a grid with 100 bus stops. For every scenario, we generate 30 datasets.

The parameters used on each dataset are: the size of the path of each bus, the
delays between stops along a bus path, and the bus stops on each path. To generate
the datasets, we sample a real dataset for the size of the paths (normalized by the
number of bus stops) and the delays along the path. The bus stop sequence is chosen
randomly. We perform the sampling and randomization with uniform distribution.

To solve the problem, we use IBM ILOG CPLEX 12.5.1. Figures 4.5a and 4.5b
show the results for 25 and 100 bus stops, respectively, by plotting the relative gap
in ∆max achieved by the proposed algorithm and the optimal solution, for every
number of removed candidates. The relative gap is the difference between the two
results divided by the optimal result. The error bars represent a 95% confidence
interval.

The results show that the proposed algorithm finds solutions close to one optimal
solution. In the worst case of the studied scenarios, the algorithm is less than 10%
distant from the optimal.

4.7 Applying the algorithm to real-world data
Our case study consists in running Algorithm 1 using a dataset containing the posi-
tions of buses and bus stops in the city of Rio de Janeiro, Brazil. The instantaneous
GPS positions of buses and the positions of bus stops are published on the website of
Rio de Janeiro Federation of Passenger Transportation Companies (FETRANSPOR
in the Brazilian acronym) [51, 52]. Bus positions are collected and stored in one
file with the instantaneous positions of all buses, updated every minute. Bus stop
positions, which are fixed, are provided on a separate file. From these datasets, we
generate the data we needed to solve the Fog placement problem.

Instantaneous positions of buses are collected for a 24h interval, from November,
30th, 0:00 h, to December, 1st, 0:00 h, in the year of 2016. This data is inserted into

30

0 2 4 6 8 10 12 14 16
Number of removed sinks

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Re
la

tiv
e

ga
p

(a) Grid with 25 Fog node candidates and 5 buses.

60 65 70 75 80
Number of removed sinks

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e

ga
p

(b) Grid with 100 Fog node candidates and 10 buses.

Figure 4.5: Relative gap in network maximum delay in function of removed Fog
node candidates on a 5x5 and 10x10 Fog node candidates grid.

a database, together with the positions of bus stops. We define that a bus and a bus
stop make contact if the distance between them is less than or equal to 300 m. This
range is assumed because it is a typical value for Vehicle to Infrastructure (V2I)
communication [53]. A tuple (instant, bus, bus stop) is selected for every instant
when a bus makes contact to a bus stop and a new dataset is built with all the
tuples. This dataset contains data from 6,272 bus stops and 6,683 buses. From this
dataset, it is possible to obtain the sets B, S, Sb, and δb.

31

4.7.1 Dataset analysis

As pointed by Dias [54], the dataset provided by FETRANSPOR may contain some
inconsistencies. We analyze the dataset to verify the extent of such inconsistencies.
The analysis of the dataset shows that data must be filtered before further process-
ing, especially when it comes to large intervals between contacts. Figure 4.6 shows
the cumulative probability function of the maximum delay for each bus. It shows
that approximately 20% of buses have maximum delay greater than 7,200 s. This
means that 20% of the buses travel more than two hours without stopping at a bus
stop to serve passengers. While it is extremely rare for urban buses to remain two
hours without stopping at a bus stop, it is expected that a sampling rate of 1 posi-
tion/minute leaves out many contacts that last less than two minutes. Moreover, it
is possible that some buses are out of service, but with their GPS equipment turned
on. Our solution to this problem is to filter out buses that have large intervals
between contacts, assuming that these buses are not fit for data collection.

Figure 4.6: Cumulative distribution of maximum delay of each bus.

Three different filters are applied to the dataset, eliminating every bus b that,
for some i, has δb(i) > 7,200 s, δb(i) > 3,600 s, or δb(i) > 1,800 s. Figure 4.7a shows
the distribution of all delays in the network before the filter. Figure 4.7b shows
the distribution of the delays in the network after the filter of 7,200 s, Figure 4.7c
shows the distribution of the delays in the network after the filter of 3,600 s, and
Figure 4.7d shows the distribution of the delays in the network after a 1,800 s filter.

Figure 4.7 shows that the filters do not significantly change the delay distribution
of the network, except for setting a threshold for the maximum delay. Table 4.2
shows the parameters of the original dataset and the filtered ones. These results show
that, after all the filters, the remaining buses still make contact to approximately
99% of all the 6,272 bus stops somewhere in their paths. This indicates that there

32

Table 4.2: Dataset parameters.

Filter Number Stops Candidates
maximum delay (s) of Buses visited in I

No filter 6,683 6,272 1,266
7,200 5,429 6,272 1,085
3,600 4,104 6,266 933
1,800 2,200 6,218 641

is no significant loss in spatial coverage. On the other hand, limiting the number of
buses that are used for gathering data means that the area covered is less visited by
sensing buses, making it less likely for a sensor to detect some event of interest [3, 21].
We discuss the coverage of the network in Chapter 5.

4.7.2 Algorithm results

We employ Algorithm 1 to remove Fog node candidates according to the maximum
budget to each one of the datasets. Figure 4.8a shows the network delay ∆max

when executing the algorithm using the dataset obtained after the 7,200 s filter,
for different numbers of removed candidates. Similarly, Figure 4.8b and Figure 4.8c
show, respectively, the same results for the filters of 3,600 s and 1,800 s. We omit the
values for fewer removals because there is no modification on them. The dots in these
figures are inflection points, meaning that the delay is the same for a given range of
removed candidates. These inflection points happen because the algorithm removes
successive Fog node candidates without penalties to the network maximum delay
until a certain threshold, limited by some bottleneck Fog node. When the bottleneck
Fog node candidate is removed, the network maximum delay finally increases. Then,
the cycle repeats for a new threshold.

The results show that our solution is capable of eliminating more than 83% of
the bus stops (i.e., 5205, 5200, and 5160 bus stops, for the filters of 7,200 s, 3,600 s,
and 1,800 s, respectively) while having less than 10% delay increase (i.e., 7,920 s,
3,960 s, and 1980 s, for the filters of 7,200 s, 3,600 s, and 1,800 s, respectively). In
Figure 4.8, we observe that the delay obtained with the removal of 83% of the bus
stops is 7,200 s, 3,708 s, and 1,800 s, for the filters of 7,200 s, 3,600 s, and 1,800 s,
respectively. In the case of the filter of 1,800 s, it is possible to use 20% (i.e., 1,244
bus stops) of the bus stops as Fog nodes and still have a network maximum delay
of 30 minutes.

The results also show that the network maximum delay starts increasing faster
when more Fog node candidates are removed. Furthermore, the analysis shows that

33

(a) Distribution of all delays before filtering. (b) Distribution of delays after 7,200 s filter.

(c) Distribution of delays after 3,600 s filter. (d) Distribution of delays after 1,800 s filter.

Figure 4.7: Distribution of delays before filtering and after 1,800 s, 3,600 s, and
7,200 s filters.

different filters can provide different delay levels. In Section 3.1, we discuss that
applications have different tolerances to delay. A possible scenario is that buses are
divided into different delay levels, balancing the trade-off between delay constraints
and the amount of data available. This option can also decide which buses and
bus stops have the potential to serve which application. We use a similar idea in
Section 5.2 to estimate the coverage of such a network.

4.8 Reducing the problem cardinality
In Section 4.5.1, we present a MILP formulation for the Fog node placement problem.
Since the p-center is NP-Hard [50], solving the problem for even a small amount of
buses can be unpractical. In this section, we show that a suboptimal solution can
be used to solve the Fog node placement problem. Then, we use the algorithm for
Fog node placement presented in Section 4.6 to generate a suboptimal to solve the
MILP formulation, finding an optimal solution.

34

(a) Network maximum delay (∆max) filtered for
7,200 s, as a function of the number of removed
candidates.

(b) Network maximum delay (∆max) filtered for
3,600 s, as a function of the number of removed
candidates.

(c) Network maximum delay (∆max) filtered for
1,800 s, as a function of the number of removed
candidates.

Figure 4.8: Network maximum delay (∆max) for different filters, as a function of the
number of removed candidates.

In the MILP formulation of the optimal Fog node placement problem, the number
of variables xs is the number of elements in the set S. The number of variables ybrs

and parameters dbrs is the same, and follows the expression
∑

b∈B
(1+nb)nb

2
, where

nb is the number of bus stops that b encounters along its path. We present three
strategies to reduce the number of variables ybrs and parameters dbrs:

• Elimination by suboptimal solution: As defined in Equation 4.13, ∆max

is always the biggest delay dbrs suffered by any data gathered by the network
(more formally, it is the biggest dbrs to which ybrs equals to one). We can
thus reduce the solution space of the problem using any viable solution. Let
∆max be the solution of the problem and ∆∗

max be a viable solution. If ∆∗
max is

viable, ∆max is smaller or equal to ∆∗
max. Therefore, it is possible to eliminate

from the original dataset all delays dbrs that are bigger than ∆∗
max and their

respective ybrs. In Figure 4.9, the suboptimal solution ∆∗
max equals to 3 and

35

dxz equals to 4. Therefore, we can use this strategy to eliminate dxz.

• Elimination by zero value: In a given instant, a bus can make contact to
many Fog nodes simultaneously. In this situation, we can have a sequence of
bus stops with delay equal to zero. When the problem is transformed into
a p-center instance, this creates edges with weight dbrs equal to zero. Since
there is no delay nor data gathered between these stops, we can eliminate
dbrs and ybrs without losing the optimality of the solution. We use this logic
to eliminate the variable dxy and its corresponding yxy from the example in
Figure 4.9.

• Elimination by guaranteed choice: The Fog node placement problem has
a set s ∈ I of bus stops that must be chosen. If the path of a bus b ∈ B
contains s, and s ∈ I, we can assume that any data gathered before s is
delivered at most when b encounters s. This means that we can eliminate any
variable related to an edge that starts before s and ends after s. In Figure 4.9,
I = x and dwy starts before and ends after x in the path of the bus. Therefore,
we eliminate dwy and its corresponding ywy using this strategy.

w x y

dwy = 2

z

dxz = 4

dwz = 6

Facility candidate

Demand

Demand and facility
candidate

drs Delay between r and s

Candidate that
must be chosen

Eliminated edge

dxy = 0

Δ*max = 3

Figure 4.9: Examples of the edge elimination procedure.

To apply the first strategy, it is necessary to obtain a suboptimal solution. Hence,
we use the solutions obtained by Algorithm 1 to reduce the problem cardinality.

4.9 Cardinality reduction applied to a real sce-
nario

In Section 4.7, we apply the Fog Node Placement Algorithm to a dataset with real
bus mobility data. We use the same API offered by FETRANSPOR [51, 52] to apply
the cardinality reduction. We gather instantaneous positions of buses throughout a
24h interval. We start on November, 5th, 0:00 h and end on November, 6st, 0:00 h

36

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4

Delay between contacts (s)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0
C

D
F

(a) Cumulative distribution of delivery delays
with no filter.

2 3 0 2 0 5 0 8 1 1 1 4 1 7 2 0 2 3
Time of the day (h)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

C
D

F

(b) Contacts cumulative distribution throughout
the day.

Figure 4.10: Dataset attributes before filtering.

in the year of 2017. Also, because of the complexity of solving the MILP, we limit
our analysis to the South Zone of the city of Rio de Janeiro. We consider a bus
in the South Zone if it is inside the coordinates with latitude between -23.013874
and -22.918251, and longitude between -43.296139 and -43.149197 during all the
analyzed time. As in Section 4.7, we consider that a bus is in contact with a bus
stop if the distance between them is less than 300 m [53]. In the sequence, we detail
the construction of the dataset and analyze it.

4.9.1 Dataset construction

We analyze the delays of the dataset, to evaluate if it is well suited for our procedure.
Figure 4.10a shows the cumulative distribution of the delays. We observe that more
than 90% of the delays are smaller than 1000 s. Figure 4.10b shows the cumulative
distribution of contacts in function of the time of the day. We note that there are
fewer contacts at the end of the evening and the beginning of the morning. One
possibility is that there are fewer buses serving passengers. For this reason, we
consider only contacts happening between 8 h and 22 h.

We use the results from Zanella et al. [1] and consider that delays larger than
30 minutes are too long. We consider that a path starts with the first contact
after a delay that is larger than 30 minutes, and it ends with the last contact
before the second delay larger than 30 minutes. We can then build I. We also
eliminate from the dataset any buses that have more than two delays bigger than 30
minutes, considering that they are not suitable for sensing. Table 4.3 summarizes
the attributes of the resulting data.

Figure 4.11a illustrates the cumulative distribution of delays after the filters.
We eliminate the contacts before 8 h and after 22 h, and eliminate buses with delays

37

Table 4.3: Dataset attributes.

Attribute Value (#)
Buses 116
Bus stops 6.310
Bus stops with any contact 744
Total of contacts 485.208
Bus stops in I 116

1 0 0 1 0 1 1 0 2 1 0 3

Delay between contacts (s)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

C
D

F

(a) Delay cumulative distribution after filter-
ing.

0 2000 4000
Number of contacts during a path

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

C
D

F

6000

(b) Contacts cumulative distribution after fil-
tering.

Figure 4.11: Dataset attributes after filter contacts by time of day and by delays
bigger than 30 minutes.

bigger than 30 min in their paths. Figure 4.11b shows the cumulative distribution of
the number of contacts of each bus in the dataset. We then use this filtered dataset
to choose the optimal Fog node placement.

4.9.2 Reduction of dataset cardinality

We apply the pre-processing defined in Section 4.8 to the dataset obtained in Sec-
tion 4.9.1. Table 4.4 shows the suboptimal delivery delay ∆∗

max obtained by the
Fog Node Placement Algorithm, for different values of nbudget. We can observe that
after 120 Fog nodes, it is not possible for the algorithm to lower the biggest delay
in the network. To obtain the results, we use a 2.93GHz Intel(R) Xeon(R) X5570,
with 100 GB of RAM. The cardinality reduction can make a solution possible, with
execution times lower or equal to 2.42 s.

We use the suboptimal results to apply the strategies described in Section 4.8 and
then use the dataset with reduced cardinality as an input to the p-center problem
modeled in Section 4.5.1.

Table 4.5 shows the number of variables dbrs and ybrs that are eliminated from
the problem. The values of nbudget used to find optimal solutions are bigger than

38

Table 4.4: Suboptimal results obtained with Algorithm 1.

nbudget ∆∗
max Execution time (s)

116 2067 2.35
117 1917 2.37
118 1848 2.39
119 1801 2.40
120 or more 1794 2.42 (for 120)

120 Fog nodes. Therefore, we only need to find the suboptimal solution for 120 Fog
nodes.

Table 4.5: Number of dbrsybrs restrictions in the problem.

Cardinality reduction Number of elements dbrsybrs

Before cardinality reduction 1.122.629.838
After cardinality reduction for 120 Fog nodes 393.157

4.9.3 Optimal results after cardinality reduction

We use the data to build the Fog node placement problem as a p-center instance,
as described in Section 4.5.1. We use the values 200, 300, 400, 500, 600, and 700
for nbudget, since there are 744 stops with which there is any contact and 116 stops
that have to receive a Fog node. We execute the problem using IBM ILOG CPLEX
12.5.1, in a processor 2.93 GHz Intel(R) Xeon(R), with 100 GB of RAM. Table 4.6
shows the obtained results.

Table 4.6: Optimal results of the Fog node placement problem with reduced cardi-
nality.

nbudget ∆max (s) Execution time (s)
200 1786 1601
300 1786 1643
400 1786 1354
500 1786 1376
600 1786 1378
700 1786 1381

The instances with reduced cardinality converge to the optimal solution in 1643 s
or less in all the observed cases. As a comparison, we try to solve the instances
without the cardinality reduction. After 50 h of CPU time, the execution is still in
the phase of construction of the data structures of the problem.

39

4.10 Remarks
Opportunistic communication can help bus-based sensing to offload data. Buses
play the role of Sensing nodes, gathering data and delivering it to Fog nodes when
a connection is available. The Fog nodes, coupled to bus stops, sends data to the
Cloud node, which processes and serves data to the users. Nevertheless, the delays
between the gathering time and the delivery time can render data useless to the
applications.

In this chapter, we presented a model to estimate the delay of data collected by a
bus-based mobile wireless sensor network. We also presented an optimization model
to minimize the maximum delay when the number of Fog nodes is constrained by a
certain budget. We have shown that this problem can be interpreted as an instance
of the P-Center problem. We also proposed a heuristic to find good solutions when
finding an optimal solution is impractical. Finally, we use the heuristic to reduce
the cardinality of the optimal model, making it possible to solve bigger instances of
the problem.

We applied the models and methods proposed to real GPS data from the bus
fleet of the city of Rio de Janeiro. The results have shown that, for the city of Rio
de Janeiro, it is possible to obtain a network using approximately 16% of the bus
stops as Fog nodes and have a maximum delay of 30 minutes in data delivery. Our
results have also shown that the cardinality reduction made it possible to find an
optimal solution to the Fog node placement problem to the buses and bus stops of
the south zone of Rio de Janeiro in about 25 minutes.

40

Chapter 5

A Coverage Metric for Bus-based
MWSNs

In this thesis, we study a scenario where buses carry nodes capable of sensing en-
vironmental data, as illustrated in Figure 2.1. This data is stored in the buses
and transmitted to a Fog node through a wireless interface. Fog nodes, located
at bus stops, receive data and send them to the Task Manager node through the
Internet. One aspect that we must be careful about is that applications atop a
bus-based mobile wireless sensor network may have specific requirements in terms
of data completeness, timeliness [55], and granularity [1]. The completeness and
granularity of spatial coverage are related to the knowledge of the complete area of
the city and to what extent the measurements are spread through this city. Also,
acquiring measurements about different areas can reduce noise and uncertainties
about neighboring regions [56]. The timeliness is related to up-to-date is data when
it is ready for an application [55].

As discussed in Section 3.1, smart city applications have requirements in terms of
the delivery delay and the frequency of data collection. As illustrated in Table 3.1,
applications can tolerate different maximum delays. Additionally, applications can
tolerate a minimum measurement frequency. This means that, for every application,
in a given time interval, there should be a minimum number of measurements and
the data generated by each measurement should be delivered to the application
within a maximum delay. We denote the maximum delivery delay tolerated by an
application as Dmax, and the minimum measurement frequency as Fmin.

In this chapter, we model the spatial coverage of a bus-based mobile wireless
sensor network, relying on the fact that buses have fixed trajectories. We then
propose a MILP formulation to maximize coverage while using only a subset of the
total bus fleet as Sensing nodes. We use the problem to discover the maximum
coverage obtained by different numbers of Sensing nodes [19, 21]. We then improve
this metric to consider the Dmax and the Fmin of a target application. We apply this

41

Table 5.1: Notations used in the coverage model.

Notation Description Type

G Graph representing the road map of a city Graph
V Vertices of the road map of a city Set
E Street segments of the city Set
Es Street segments covered by the buses chosen in the problem output Set
Ec The subset of E that is covered for the considered application Set
B Urban buses that serve a city Set
Bs Buses equipped with Sensing nodes, the problem output Set

N(xi,xj)
Buses that can cover street segment (xi, xj) Set

Tb Street segments that can be covered by bus b Set
P The set containing all the paths of the buses Set
A The applications served by the bus-based MWSN Set
H The set containing the demands of the Maximum Covering Location Problem Set
J The set containing the facility candidates of the Maximum Covering Location Problem Set
ah The benefit of satisfying demand h in the Maximum Covering Location Problem Parameter

(xi, xj) The street segment that starts in vertex xi and ends in vertex xj Parameter
l(xi,xj)

The length of street segment (xi, xj) Parameter
p Total number of buses to be equipped with Sensing nodes Parameter
CB

a The coverage obtained by the buses in B to the application a Parameter
Pb[m] The mth edge visited by bus b ∈ B in its path Pb Parameter
Dmax The maximum tolerated delivery delay for the considered application Parameter
Fmin The minimum measurement frequency required by the considered application Parameter

vT
(xi,xj)

The number of visits received by Parameterstreet segment (xi, xj) on a given time interval
F(xi,xj)

The frequency at which the street segment (xi, xj) is visited Parameter
Kb

a The contribution of bus b to the coverage of application a Parameter
Pb The path ((xi, xj), (xj , xk), (xk, xl) . . .) of bus b, in terms of edges in E Sequence
wb Binary value indicating if bus b is chosen to be equipped with a Sensing node Variable

z(xi,xj)
Binary value indicating if street segment (xi, xj) is covered Variable

C Total simple coverage of the city Variable
Cc Delay-aware coverage of the city for the considered application Variable

metric to real mobility traces of buses from the city of Rio de Janeiro, considering
the requirements of the applications of waste management, air quality monitoring,
and noise monitoring. We present the results in the form of an abacus, relating
coverage to different applications and their tolerances, in terms of delivery delay
and measurement frequency. We also compare the coverage obtained to the scenario
where bus stops serve as gateways to static sensors [22, 23]. Finally, we use this
delay-aware coverage metric to rank the buses and verify if the same bus is equally
important to different applications [24]. Understanding the importance of each bus
can help to schedule the implementation and maintenance of the system.

5.1 A simple coverage model
Buses follow predictable paths that, all together, do not cover all of the streets of
a city. As such, it is important to model the spatial coverage of buses to predict
the coverage of a bus-based mobile sensor network. For the sake of readability, the
notation we use in this chapter is summarized in Table 5.1.

42

5.1.1 The city map as a graph

We divide each street into non-overlapping parts named street segments. The street
segment is used as an atomic unit of the measured region. A street segment must be
a part of a street with a single entrance, a single exit, and a single possible path inside
it. An example of a street segment is a portion of street between two consecutive
corners. A similar definition can be found in the work by Ali and Dyo [12] and
Opensense [16].

A common way of representing the road map of a city consists of modeling it
as a directed graph G = {V , E}. The set V contains the vertices of G. Each vertex
x1, . . . , x|V| ∈ V represents an intersection, a curve, or other point of interest in the
street topology. The set E contains the edges of G. An edge (xi, xj) ∈ E exists if and
only if it is possible to follow a street from xi to xj, not visiting any other vertex. A
weight l(xi,xj) is associated to each edge (xi, xj), representing the distance between
xi and xj. A street is a sequence of vertices since a street is an ordered collection of
points of interest. A vertex can be part of more than one street when this vertex is
an intersection between two or more streets. Every edge in E represents a portion
of street with a single entrance, a single exit, and a single possible path inside it.
Hence, we can conclude that each edge in E is a street segment.

We denote by E the set of all street segments in the city and by B the set of
buses. The path of a bus is composed of street segments. If the path of a bus b ∈ B
contains a street segment (xi, xj) ∈ E , the section (xi, xj) can be covered by bus b.
The sections covered by bus b compose the set Tb. Although different buses may
follow different paths, a path of a bus might overlap with the path of other buses.
Therefore, a single street segment (xi, xj) might be covered by more than one bus.
We denote by N(xi,xj) the set of buses that cover the street segment (xi, xj).

It is also possible that some street segments remain uncovered because no buses
cross them. We suppose that these street segments are covered by a complementary
sensing system and are then out of the scope of our model.

5.1.2 Coverage as a function of street segments

We define as Bs ⊂ B the subset of buses that are equipped with Sensing nodes. We
can now define the set of covered street segments Es as:

Es =
∪
b∈Bs

Tb, (5.1)

where Bs is the set of buses that carry a sensing device and Tb is the set of street
segments covered by bus b. Figure 5.1 illustrates this situation. In this figure, bus
b covers the set of street segments Tb = {(xi, xj), (xj, xk), (xk, xl), (xl, xm)} and bus

43

c covers Tc = {(xj, xk), (xk, xl)}. Therefore, the set Es of covered street segments is
Tb ∪ Tc = {(xi, xj), (xj, xk), (xk, xl), (xl, xm)}.

Utril
le St.

Corot S
t.

Vlamink St.

Renoir S
t.

Rodin S
t.

xi

xj

xk

xl

xms2

s1

b

c
Covered
by bus b

Covered
by bus c

Figure 5.1: Coverage of street segments by buses equipped with sensors.

Street segments may have different lengths. We expect that sensors generate
more data when the bus is passing by longer streets. For this reason, coverage C

should also integrate the length of every section:

C =
∑

(xi,xj)∈Es

l(xi,xj), (5.2)

where l(xi,xj) is the length of section i.
For modeling purposes, it is possible to associate a variable z(xi,xj) to every street

segment (xi, xj) ∈ E , indicating whether the segment is covered:

z(xi,xj) =

1, if (xi, xj) ∈ Es,

0, otherwise.
(5.3)

We can rewrite then Equation 5.2 as:

C =
∑

(xi,xj)∈E

l(xi,xj)z(xi,xj). (5.4)

If all buses in the city have embedded sensing devices, i.e., Bs = B, we obtain the
maximum coverage. Nevertheless, in real life, this choice may produce prohibitive
installation and maintenance costs. As a consequence, for a given budget, we need
to limit the number of buses equipped with Sensing nodes. Hence, the problem is
to choose which buses should be equipped with the available Sensing nodes.

44

Let B be the set of buses and p be the number of Sensing nodes, defined by the
available budget. We need to select a subset of buses Bs ⊂ B such that |Bs| = p.
Since buses may cover different sets of street segments, with different lengths, the
choice of Bs may affect the coverage of the network. Let also N(xi,xj) be the set of
buses that cover (xi, xj) if equipped with sensing capabilities. Thus, section (xi, xj)

is covered by bus b if b ∈ N(xi,xj) and b ∈ Bs. The problem, described next, is to
select Bs ⊂ B, with cardinality p, to maximize the coverage of Equation 5.4.

5.1.3 Mixed-Integer Linear Programming formulation

We model the problem of choosing p buses as a Mixed-Integer Linear Programming
(MILP) problem. We formulate the problem as a MILP because it is possible to
either solve the problem optimally or, for too large instances, estimate the gap
between a suboptimal solution and the best possible solution. In Section 5.1.4, we
show that the problem is equivalent to the Maximal Covering Location Problem, a
known problem in the literature. The MILP formulation is represented as follows:

maximize:
∑

(xi,xj)∈E

l(xi,xj)z(xi,xj) (5.5)

subject to:
∑

b∈N(xi,xj)

wb ≥ z(xi,xj), ∀(xi, xj) ∈ E ; (5.6)

∑
b∈B

wb = p; (5.7)

wb ∈ {0, 1}, ∀b ∈ B; (5.8)

z(xi,xj) ∈ {0, 1}, ∀(xi, xj) ∈ E . (5.9)

The objective function of Equation 5.5 maximizes the spatial coverage defined
in Equation 5.4. Equation 5.6 states that a street segment (xi, xj) is covered (i.e.,
z(xi, xj) = 1) if the solution has at least one of the buses that pass through (xi, xj).
Since this is a maximization problem, there is no need to limit a minimum value
for variables z(xi,xj), because these variables contribute positively for the objective
function, assuming the maximum possible value. Equation 5.7 ensures that the
number of chosen buses is p. Equations 5.8 and 5.9 define wb and z(xi,xj) as binary
variables. When the problem is solved, a variable wb = 1 indicates that bus b is
chosen to receive a Sensing node and wb = 0 indicate that bus b should not carry
a Sensing node. Respectively, z(xi,xj) = 1 indicates that street segment (xi, xj) is
covered by the current configuration, while z(xi,xj) = 0 indicates that the street

45

segment (xi, xj) is not covered. The set Bs, containing the buses that maximize
coverage, is the set of buses b for which wb equals to 1.

5.1.4 Maximal Covering Location Problem

We show that the problem of choosing a limited set of buses while maximizing
coverage is equivalent to the Maximal Covering Location Problem (MCLP) [57]. In
MCLP, there is a set H of demands distributed on space. For every demand h ∈ H,
there is a value ah related to the benefit of satisfying demand h. Demands must
be satisfied by a set J of facility candidates, also distributed on space. The MCLP
defines that an installation j can satisfy a demand h if and only if the distance
between h and j is less or equal than a given distance. In this sense, it is possible to
determine a set Nh ⊂ J of candidates that satisfy demand h. Additionally, there is
a limit on the number of installations that can be built, denoted by p. The objective
of MCLP is to choose a subset J∫ ∈ J to build installations, maximizing the benefit
of the satisfied demands, such that |J∫ | equals to p.

The transformation of our problem into an MCLP consists in considering street
segments as demands and buses as installation candidates. The length l(xi, xj) of the
street segment (xi, xj) is considered as the benefit ah of satisfying demand h. The
inverse transformation is also possible by transforming demands in street segments,
installation candidates in buses, and benefit ah of satisfying demand h into the
length of street segment (xi, xj).

The bidirectional transformation proves the equivalence of both problems. The
MCLP is an NP-Hard problem [57]. Since there is a bidirectional transformation
between the bus coverage problem and the MCLP, our problem is also NP-Hard.

5.1.5 Case study

We assess the behavior of our model by analyzing the street coverage in the city of
Rio de Janeiro, Brazil. Our analysis rely on real data containing the positions of all
buses in the city for a day-long period. Besides, we use this data to build the input
for the MILP formulated in Section 5.1.3, which consists of:

• Set J , containing all the buses in the city;

• Set H, containing all the street segments in the city;

• Set Nh, for every h ∈ H, containing all the buses that can cover section h;

• Parameters ah, associated with the lengths of every h ∈ H.

We obtain data from real mobility traces from buses. Then, we pre-process data
by filtering it and detecting the street segments covered by each bus. We then use

46

this data to build the MILP defined in Section 5.1.3. Finally, we solve the problem
and obtain its solution. The next sections detail the whole procedure.

5.1.6 Obtaining data

In Section 4.7 we use an API offered by FETRANSPOR to build a dataset and
perform a case study of our method. We use the same API to build another dataset
and study the coverage problem. The API offers, for each bus in the fleet of Rio de
Janeiro, a tuple containing the bus identification, its instantaneous GPS coordinates,
and the timestamp of the acquisition of this information. The tuples are refreshed
every minute.

We assume that buses follow fixed paths and that departure intervals might vary
in the course of a day, but the same schedule is followed in all weekdays. We gather
data from the API during 24 h, between May 10th, 0:00 h and May 11th, 0:00 h, in
the year of 2017, a Wednesday. The coordinates of each bus are ordered in time,
resulting in a sampling of their paths, for every minute. We refer to this dataset as
the gathered dataset.

Bus traces have one GPS-coordinate sample per minute per bus. A street seg-
ment may be crossed by a bus in less than one minute, hence, the GPS sampling
rate does not allow the detection of all the street segments in the path of each bus.
Figure 5.2a illustrates an example of this situation, where gps1, gps2, and gps3 are
the GPS coordinates of bus b. These coordinates do not describe the path of b in
terms of the street segments of the road map.

Utril
le St.

Corot S
t.

Vlamink St.

Renoir S
t.

Rodin S
t.

xi

xj

xk

xl

xms2

s1

b

nth GPS
coordinate

of bus b

gps1

gps2

gps3

gpsn

(a) GPS traces of bus b.

Utril
le St.

Corot S
t.

Vlamink St.

Renoir S
t.

Rodin S
t.

xi

xj

xk

xl

xms2

s1

b

Path of
bus b

nth GPS
coordinate

of bus b

gps1

gps2

gpsn

gps3

(b) Reconstruction of the path of b using GPS
traces.

Figure 5.2: Route reconstruction from GPS traces.

It is necessary to obtain the path of a bus in terms of all the edges in E that are
part of the path of the bus, i.e., the street segments of the path. For this reason, we
use the process flow illustrated in Figure 5.3. We detail each step in the sequence
of this text.

47

Reconstruct
routes

Construct
the problem

Solve the
problem

ii iii iv
Filter

GPS traces
ib

Figure 5.3: Processing flow used to study a real scenario.

The flow receives as input the GPS traces of each bus. In Step (i), we filter the
gathered positions that are identified as noise. This procedure is necessary because
GPS coordinates gathered from the buses are error-prone [58]. Using the GPS
traces, we detect data points indicating that some buses are parked at bus garages,
which generate data points even when they are not in service. Using this filter, the
positions of the same bus path are ordered and, if the distance between two points
is smaller than a certain threshold, we can filter the second position out. The first
position is never removed and subsequent positions are compared only to points that
are already inside the resulting dataset. We pick 10 m as the threshold because it is
a typical error range of commercial GPS devices [58]. After this filtering phase, the
buses have some positions removed from their paths, resulting in fewer positions as
an input to the next procedure. In case a bus has all but one position removed from
its path, the bus is considered as stopped and removed from the dataset.

In the course of a single minute, a bus can travel more than one street segment.
This situation is illustrated in Figure 5.2a, with no GPS samples taken while the
bus is in street segments (xi, xj) and (xk, xl). With this regard, simply mapping the
gathered positions of a bus to the corresponding section may not reflect the complete
coverage of this bus. In Step (ii), a routing algorithm reconstructs the most likely
route followed by each bus, in terms of the street segments of the city. To perform
these steps, we use the API Google Snap to Roads [59]. This API receives a list
of ordered coordinates as the input, which is a sampling of the path traveled by
a vehicle. It returns the most likely path followed by the vehicle according to the
input coordinates, in the form of new coordinates, adjusted to the topology of the
roads. In the case an input coordinate does not fall within a street segment, Google
Snap to Roads approximates the input coordinates to the nearest street segment.
Therefore, the only way GPS errors can affect the path estimation is if the input
coordinates are closer to some street segment that is not the previous or the next
segment in the path. Since GPS errors are about 10 m [58], it is reasonable to expect
that the coordinates are precise enough for Google Snap to Roads to discover the
street segment where the bus was originally traveling when its position was sampled.
Google Snap to Roads also associates every new coordinate to a place id, which
represents a Road Segment. Road Segments are data structures used by Google
to define segments for their Road API [60]. The Road API is used to give drivers
indications on routes and directions. Therefore, a Road Segment is a street segment

48

Table 5.2: Attributes of the gathered and estimated datasets.

Attribute Value Dataset
Total gathered positions (#) 5,496,878 Gathered
Total buses in original set (#) 6,075 Gathered
Removed positions after filtering (#) 1,384,925 Gathered
Total positions after filtering (#) 4,111,953 Gathered
Removed buses after filtering (#) 328 Gathered
Total buses after filtering (#) 5,747 Gathered
Total positions after estimation (#) 52,250,671 Estimated
Total street segments (#) 95,992 Estimated
Sum of all street segment lengths (km) 5,655 Estimated
Total distance traveled (km) 1,005,327 Estimated

of our model, since every point on a street is mapped into one, and just one, Road
Segment. Figure 5.2 illustrates the processes through which samples of the path
followed by bus b are transformed into a path and associated to street segments
(xi, xj), (xj, xk), (xk, xl), (xl, xm).

We refer to an adjusted coordinate associated to a road segment as an adjusted
position. The dataset obtained after Step (ii) is called estimated dataset. Sec-
tion 5.1.7 performs an analysis of the gathered and estimated datasets, detailing
Step (iii) and Step (iv).

5.1.7 Data analysis

The objectives of gathering and processing real data from buses are to use it as the
input to the problem formulated in Section 5.1.3. To understand the considered
scenario, it is important to perform an analysis of the data in terms of its size,
before and after Step (ii). Table 5.2 exhibits some attributes of the gathered and
estimated datasets.

The gathered data contains 5,496,878 positions, obtained from 6,075 buses. The
filter removes 1,384,925 positions and 328 buses (i.e., about 25% of positions and 5%
of buses are removed); thus, we finally dispose of 4,111,953 positions and 5,747 buses.
After these positions are applied to Google Snap to Roads, we obtain 52,250,671 es-
timated positions. The increase in the number of positions occurs because Google
Snap to Roads estimates a smooth path for the vehicle. As a consequence, it may
generate several positions between a pair of input coordinates. The estimated posi-
tions are distributed in 95,992 street segments. The sum of the estimated lengths
of all street segments is 5,655 km. According to the government of Rio de Janeiro,
the city has a total of 10,577 km of streets. Hence, it is possible to estimate that the

49

total fleet of buses is capable of covering 53 % of the streets.
In this thesis, the coverage obtained with a given number of buses is compared

to the coverage of all the buses, using a relative coverage. We define the relative cov-
erage as the coverage obtained divided by the coverage when all buses are equipped
with Sensing nodes, expressed in percentages. In this way, it is possible to better
evaluate the effect of the different budgets, in terms of Sensing nodes. Figure 5.4
illustrates the Complementary Cumulative Distribution Function (CCDF) of the
estimated street segment length. We note that the majority of lengths lie between a
few tens to a few thousands of meters. The street segments with the biggest lengths
were checked manually, for consistency. The three biggest street segments range
from 1,780 m to 2,146 m. Those correspond to freeways that cross the city.

1 0
-1

1 0
0

1 0
1

1 0
2

1 0
3

1 0
4

S treet section length (m)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

C
C

D
F

Figure 5.4: Distribution of estimated street segment lengths captured with Snap to
Roads.

The Union of Bus Companies of Rio de Janeiro (i.e., Rio Ônibus) also makes
available an estimate of the distance traveled by the fleet over the year [61]. We
use the most recent records in relation to the dataset (Jan-Aug, 2016) to evaluate
the obtained length estimations. According to the data, a bus travels an average of
218 km per day. In our estimation, the average bus travels 175 km on a day. Since we
are performing a coverage analysis, it is safe to conclude that we make a pessimistic
estimation. Therefore, it is possible to execute Step (iii) and construct the MILP
with the dataset.

5.1.8 Experiment execution

After executing steps (i), (ii), and (iii), we can use data as the input to the coverage
problem, completing Step (iv). The problem is solved using IBM CPLEX 12.5.1.
This tool works finding solution candidates and upper limits to the solution, making
it possible to estimate the maximum gap between the best solution found and the
best solution possible. Given the complexity of the problem, we configure the solver

50

to return the best solution when the gap between the upper limit and the best
solution found is within 2.0% of the upper limit. We choose a gap of 2.0% because it
is the smallest gap we obtain for every tested value. We obtain this gap considering
the best equipment available, an Intel Xeon E5-2650 with 264 GB of RAM. The
values we use as the budget for the number of buses to be equipped with Sensing
nodes (in the model, denoted by p) are 2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024,
2,048, and 4,096. The total number of buses is 5,747.

5.1.9 Results

We show in Figure 5.5 the relative coverage for different budgets of Sensing nodes.
As explained in Section 4.7.1, the relative coverage is calculated concerning the
coverage when all buses are equipped with Sensing nodes. The horizontal axis is in
logarithmic scale.

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
1 0

2
1 1

2
1 2

Buses equipped with sensors (#)

0

2 0

4 0

6 0

8 0

1 0 0

R
e

la
ti

v
e

 c
o

v
e

ra
g

e
 (

%
)

Figure 5.5: Relative coverage of the buses equipped with sensors.

We observe in the plot that 1,024 buses, or approximately 18% of the bus fleet,
are able to cover at least 94% of the streets served by buses. This is equivalent to
5,060 km of streets. It is also worth noting that with 32 buses (25) we are able to
cover about 40% of the total covered area. Hence, it is possible to use a so small
subset of the buses to build a prototype of the complete service and yet cover 40% of
the target area. This shows that it is possible to adopt an incremental deployment
of such a sensing system.

The focus of the optimization problem is on maximizing the spatial coverage
of the network. Nevertheless, mobile sensing poses a trade-off between spatial and
time coverage [3]. Even though the area reached by each sensor grows with mobil-
ity, some areas are not sensed the whole time. To evaluate the time coverage, we
count the number of times the same street segment is visited by any bus equipped

51

10
0

10
1

10
2

10
3

10
4

Number of visits

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F 5.9%

27.8%

67.3%

94.2%

100.0%

(a) CDF of the amount of times the same street
segment is visited, for different coverage propor-
tions.

0 20 40 60 80
Relative coverage (%)

0

20

40

60

80

100

120

140

160

A
v

er
ag

e
n

u
m

b
er

 o
f

v
is

it
s

(#
)

100

(b) Average of times a street segment is visited,
in function of the coverage proportion.

Figure 5.6: Visit number of street segments throughout a day.

with a Sensing node. The number of visits for a given street segment influences
the likelihood of detecting some event of interest in this section or determines the
freshness of sensed data. Additionally, a larger number of visits also improves the
efficiency of algorithms for noise reduction and value prediction [40, 56].

To estimate the effects of the proposed optimization on the time coverage, we
evaluate the number of times each street segment is visited in our dataset, for
different values of the relative coverage. Figure 5.6a shows the CDF of the number
of visits of the same street segment for the relative coverage levels of 5.9%, 27.8%,
67.3%, 94.2%, and 100%. These relative coverage numbers correspond to the use of
2, 16, 128, 1,024, and 5,747 buses, respectively. The horizontal axis is in logarithmic
scale. It is possible to observe that when the relative coverage is 5.9%, the covered
street segments get at most three visits, but when the relative coverage is 94.2%,
more than 70% of the covered street segments are visited more than once.

Another way to visualize the information on time coverage is represented in
Figure 5.6b. This figure shows the average number of visits received by each street
segment in the course of a day as a function of all the relative coverage levels obtained
in our experiments. We observe that the growth rate increases when relative coverage
is around 50%. This result reinforces the idea that it is possible to incrementally
deploy the sensing system. First, minimal service is established and few applications
are supported, since some applications might need a greater number of visits per
day; later, more equipment is integrated into the system, enabling new applications
and spreading the service to more areas of the city.

These results outline that a naive coverage metric is not able to account for
the timeliness of data. In Section 3.1, we discuss the requirements of smart city
applications in terms of the delivery delay and the frequency of data. In the next

52

section, we refine the coverage metric proposed to account for these requirements.

5.2 A delay-aware coverage metric
Each bus in set B follows a fixed path through the street segments of the city.
We take as an example the path Pb of bus b ∈ B, illustrated in Figure 5.1.
The path Pb can be represented as a sequence of the edges in the graph G,
((xi, xj), (xj, xk), (xk, xl), (xl, xm) . . .), where Pb[n] is the nth edge reached by b and
(xi, xj), (xj, xk), (xk, xl), (xl, xm) . . . ∈ E . While passing through a street segment,
a bus gathers data and stores it until the bus reaches the next Fog node. When
a connection is established, the bus delivers the data. The delivery delay of data
gathered in street segment (xi, xj) is the time elapsed between the instant when
the first data about this street segment is collected until the instant when data is
delivered to a Fog node. We assume that vertex xl ∈ V is in communication range
of Fog node s2. We also assume that xl is the first vertex in communication range
of a Fog node that b passes after passing by xi, xj, and xk. The path of bus b is a
sequence of vertices that includes the street segment (xi, xj). Later, when passing
by vertex xl, b delivers data to Fog node s2. The time elapsed between the moment
b reaches xi until the moment b reaches xl represents the delivery delay suffered
by the data collected by b in (xi, xj). The bus b also collects data from the street
segments (xj, xk) and (xk, xl), delivering this data when it reaches xl. Similarly to
the case of (xi, xj), the delay these pieces of data suffer is the time elapsed between
the instant b reaches the first vertex of the street segment and the time b reaches xl.

Several aspects might influence the delivery delay of data collected in a street
segment (xi, xj). Among them, traffic conditions, the number of times a bus stops
to serve passengers, and the distance between (xi, xj) and the gateway where data
from (xi, xj) is delivered. As shown in Table 3.1, different applications can tolerate
different data delivery delays. This means that, depending on the delivery delay,
data collected on segment (xi, xj) may be useful or not for a given application. Since
different applications may have different tolerances to delay, the same data may be
useful to some applications and not for others.

As we show in Section 5.1.9, buses might sense a street segment (xi, xj) several
times during a given interval of time T . This can happen either because (xi, xj) is in
the path of more than one bus but also because some buses can pass over the same
street segment several times during T . In this case, it is possible to say that there is
a certain measurement frequency of street segment (xi, xj). As shown in Table 3.1,
applications might need a certain measurement frequency to provide a reasonable
service to its users.

53

5.2.1 Constructing the covered set

A coverage metric must reflect application requirements in terms of delays and
measurement frequency. To define the coverage for a given application, we use its
maximum tolerated delay, Dmax, and its minimum tolerated measurement frequency,
Fmin. We say that a bus b ∈ B has visited street segment (xi, xj) ∈ E if, after passing
by (xi, xj) and collecting data, b is able to deliver the data before Dmax. We can
define the visiting frequency F(xi,xj) of (xi, xj) as the number of times (xi, xj) has
been visited by any bus in a given period T . A street segment (xi, xj) is covered if
and only if its visiting frequency is greater than or equal to the minimum visiting
frequency Fmin required by the target application. It is possible, then, to define Ec
as the subset of E containing all the covered street segments, which is evaluated
in terms of Dmax and Fmin. The set Ec and the set Es, defined in Section 5.1, are
not the same. The set Es contains the set of street segments that can be covered
given that applications restrictions are satisfied with a single visit and data can
be delivered with indefinite delays; Ec contains the street segments that can be
covered given specific application requirements regarding measurement frequency
and delivery delay.

Algorithm 2 Algorithm to construct the subset Ec
Data: P = {Pb1, . . . , Pbn}, Dmin, Fmax
1: visits_counters ← 0
2: for Pbi ∈ P do ▷ For the bus path of every bus
3: m ← 0
4: while m ≤ |Pbi| do ▷ For each street segment along the path of bi
5: delivery_delay ← get_delivery_delay(Pbi,m)
6: if delivery_delay ≤ Dmax then
7: visits_counters[Pbi[m]] ← visits_counters[Pbi[m]] + 1 ▷ Count the number of

visits for each section
8: m ← m+1
9: Ec ← ∅

10: for section ∈ E do ▷ Verify the measurement frequency for each section
11: measurement_frequency ← visits_counters[section]/T
12: if measurement_frequency ≥ Fmin then
13: Ec ← Ec ∪ section

14: return Ec

Algorithm 2 formalizes the construction of Ec. The algorithm receives as inputs
the set P , the limit Dmax, and the limit Fmin. The set P contains all the paths
from the buses. Each path is defined in terms of the street segments of the city,
as discussed in Section 5.1.1. The limits Dmax and Fmin define, respectively, the
maximum delivery delay and the minimum measurement frequency tolerated by the
considered application. The array visits_counters is an array indexed by section.
In the while loop starting at Line 4, the visits of each section are accumulated in
visits_counters. The function get_delivery_delay receives as input a path and

54

an index m in the path. The function returns the delivery delay for the mth street
segment of the path. The for loop starting in Line 10 adds to the subset Ec the
sections that were visited with at least the minimum measurement frequency Fmin.
The algorithm returns the subset Ec, containing the street segments that are covered
for the considered application. This set is the final output of the algorithm.

Given the reasoning above and the construction of Ec, Equation 5.10 defines the
coverage Cc of a city for a given application as the sum of the lengths of street
segments that are visited within a minimum visiting frequency, normalized by the
sum of the length of all the street segments of the city. In Equation 5.10, Ec is the
set of covered street segments and L is the sum of street segments lengths.

Cc =
∑

(xi,xj)∈Ec

l(xi,xj)

L
· (5.10)

It is important to note that the coverage metric proposed is one-dimensional in
space. Since we assume a multi-purpose MWSN, we do not infer the sensing range
of each sensor. Therefore, we assume the sensing range as the width of each street
that a bus passes by. As a consequence, coverage is related to the length of streets
covered by each bus.

5.2.2 Experimental analysis

To show the feasibility of our delay-aware coverage metric, we apply the metric to
a hypothetical network, derived from real mobility traces of the buses of the city of
Rio de Janeiro. To obtain the traces, we use the same API used in Section 5.2.2
and Section 5.1.6. Additionally, we use a similar procedure to the one followed in
Section 5.1.6. We collect the GPS traces, filter them, and adjust them to the topol-
ogy of the street segments. Nevertheless, this is not enough to obtain a delay-aware
coverage of the city. We must also obtain the delivery delay of each measurement,
accessing the times when each bus can make contact with a gateway and, therefore,
can deliver data. Finally, we can compute the coverage of the city, for different
application requirements.

Reconstruct
routes

Estimate
visit times

Build
coverage map

ii iii iv

Filter
GPS traces

ib

Split map into
street segments

ia

Figure 5.7: Procedure to construct the delay-aware coverage maps.

Figure 5.7 illustrates the procedure we follow to compute the coverage of the city
to different applications and build a coverage map. In Step (ia), we split the city

55

map into street segments and in Step (ib) we filter the GPS traces. Then we follow
to Step (ii) and use the filtered GPS traces and the map to reconstruct the bus
routes. These steps are similar to the steps followed in Section 5.1.6. In Step (iii)
we estimate the visit times of each visited street segment. Then, in Step (iv), we can
use the number of visits of each street segment to build a coverage map for different
applications. In the sequence, we detail the steps of the procedure.

Data collection and processing

To divide the streets of Rio de Janeiro into street segments, we use a map provided
by OpenStreetMap [62]. The area of Rio de Janeiro is selected from the map, using
a square delimited by the coordinates (-23.07,-43.7) and (-22.78,-43.16). To select
this region, we use the tool Osmium1. The map is a graph that uses the same model
described in Section 5.1.1. Therefore, each edge of the graph is a street segment.
The sum of all street segment lengths on the map is 13,852 km. This dataset is the
output of Step (ia) in Figure 5.7.

To perform Step (ib) of the procedure, we employ the same API used in Sec-
tion 5.1.6 and in Section 4.7. We collect 29,155,221 GPS positions of 5,706 buses
during the week between November, 5th, 00:00, and November, 11th, 23:59, in the
year of 2018. Since GPS coordinates are prone to errors, we eliminate inconsistent
records. We consider that the records outside the square defined by the map and the
records with timestamp out of the gathered period are inconsistent. Also, to reduce
the cardinality of the dataset, we eliminate consecutive records of the same bus that
differ from less than 10 meters. It is possible to discard these records because the
difference between them is within the GPS error, i.e. 10 m [63]. After these filters,
there are 19,979,537 records. Table 5.3 shows the number of active buses for each
day of the week. A bus is considered active if there is at least one entry for this bus
in the day. It is possible to note that the largest difference in the number of buses is
between Wednesday and Sunday. This difference is of 216 buses, which represents
only 4% of the buses. Based on this result, the dataset is not divided into weekdays
and weekends.

We also analyze the effect of the time of day when the buses are operating. To
do so, we compute the cumulative distance traveled by buses at each moment of the
day. Figure 5.8 shows the result of the total distance traveled as a function of the
time of the day. It is possible to observe that the distance traveled is close to zero
between 0h and 4h. Therefore, we choose to eliminate this interval of the day of
our analysis, trusting that the buses are not capable of collecting data during this
interval.

1https://osmcode.org

56

https://osmcode.org

Table 5.3: Number of active buses in the different weekdays.

Day of Number
the week of buses
Monday 5,540
Tuesday 5,546
Wednesday 5,573
Thursday 5,563
Friday 5,547
Saturday 5,435
Sunday 5,357

0 2 4 6 8 10 12 14 16 18 20 22
Time of the day (h)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
is

ta
n

ce
 t

ra
v

el
ed

 (
k

m
)

1e10

24

Figure 5.8: Cumulative distance traveled on each time of the day.

Bus traces have one GPS coordinate sample per minute per bus. As illustrated
in Figure 5.2a, the GPS sampling rate does not allow the detection of all the street
segments in the path of each bus. To complete Step (ii) of Figure 5.7, it is necessary
to obtain the path of each bus in terms of all the edges in G that are part of the path
of the bus, i.e., the street segments of the path. We use the matching function on
Open Source Routing Machine (OSRM) [64]. This function returns the most likely
route followed by a vehicle, from a sequence of GPS coordinates. OSRM returns a
route as a sequence of vertices of the map. This way, we obtain the paths of the
buses as a list of all the vertices where the buses pass by. This is a similar procedure
to Step (ii) followed in Section 5.1.6, but in Section 5.1.6 we use the service Google
Snap to Roads. With this list, we can derive the street segments visited by each
bus. Figure 5.2 illustrates the transformation of GPS samples into the bus path in
terms of map vertices.

After obtaining the paths in terms of map vertices, we must also associate to
every edge (xi, xj) in a path Pb, the instant when b passes by this edge. It is expected

57

that between two consecutive GPS positions, the route generated by OSRM consists
of many vertices. Since OSRM identifies the vertices that correspond to a given GPS
position in the matching, we associate the timestamp t of the GPS position to the
corresponding vertex returned by OSRM. Then, we use interpolation to associate
an instant to the other vertices, employing the time between vertices as weights.
In other words, we assume the bus traveled at a constant speed between those two
points and derive the arrival instant on each vertex.

To determine the time at which a bus can start delivering data, it is necessary to
detect the instants when a bus is in contact with a gateway, completing Step (iii).
Hence, we define that a bus can deliver data when it reaches a vertex that is within
the communication range of a bus stop. We define that a node is within the com-
munication range of a bus stop when it is at a distance of 10 m or less from this
bus stop. Therefore, the bus can deliver data when it is within the communication
range of at least one bus stop. After the processing, it is possible to build the set Ec
and, finally, evaluate the coverage for different applications.

Coverage analysis

With the data obtained in Section 5.2.2, we perform Step (iv), building a coverage
map of the network. Using different values for the maximum delays Dmax, we can
build an abacus of the network coverage. Figure 5.9 shows the coverage of Rio de
Janeiro as a function of Fmin, for different maximum delays Dmax of 12 s, 120 s, 300 s,
600 s, 1,800 s, and 72,000 s. These values represent the applications on Table 3.1, but
other values of maximum delay are added to represent applications that do not have
a delay defined in the literature. The case where Dmax is unrestricted (i.e., 72, 000 s)
and Fmin is minimum (i.e, one – 100) is equivalent to the coverage proposed in
Section 5.1. To calculate F(xi,xj), we count the number of visits received by (xi, xj)

and divide it by the period T . The period used to calculate the measurement
frequency is of 20 h, since it is the period considered in the traces. If we observe the
less restricted case, where Dmax = 72, 000 s and Fmin = 1 measurement per day, we
can note that the coverage is 43.7% of the streets. It is also possible to observe that,
for Fmin = 1 measurement per day, the coverage value for Dmax = 120 s more than
doubles when compared to Dmax = 12 s. In every observed case, a change in Dmax or
in Fmin implies in a coverage change, as a consequence. These results demonstrate
the importance of considering the delivery delay when estimating the coverage of
such network.

As shown in Table 3.1, a Dmin of 300 s corresponds to the applications of air
quality and noise monitoring, while a Dmin of 1,800 s represents an application of
waste management. Figure 5.10 illustrates the coverage for the central region of Rio
de Janeiro, for the applications of waste management, air quality monitoring, and

58

100 101 102 103 104

Visiting frequency (day -1)

0

10

20

30

40

50

60

70

C
o

v
er

ag
e

(%
)

Dmax = 1 2 s

Dmax = 1 2 0 s

Dmax = 3 0 0 s

Dmax = 6 0 0 s

Dmax = 1 ,8 0 0 s

Dmax = 7 2 ,0 0 0 s

Figure 5.9: Abacus of the coverage of Rio de Janeiro in function of F(xi,xj), for
different Dmax over one week.

noise monitoring. The area illustrated in Figure 5.10 has 22.26 km2, representing
about 1.86% of the total area of Rio de Janeiro. The streets in blue are the coverage
of the noise monitoring application. Since the air quality monitoring application is
less restrictive than the noise monitoring, the coverage of this application is equal to
the coverage of the noise monitoring application plus the street segments in green.
The application of waste management is even less restrictive than the application
of air quality monitoring. Its coverage is the coverage of air quality monitoring plus
the street segments in red. The street segments in gray could not be covered.

Waste
management

Air quality
monitoring

Noise
monitoring

Not covered

Figure 5.10: Coverage of the central region of Rio de Janeiro for different smart city
applications.

59

Table 5.4: Coverage obtained by different Smart city applications.

Application Coverage (%)
Waste management 27.9
Air quality monitoring 19.3
Noise monitoring 12.0

Using the delay and frequency thresholds in Table 3.1, it is possible to define
the coverage for different applications for smart cities. Table 5.4 shows the coverage
for some of these applications. This table and Figure 5.10 show the differences
in coverage obtained with different real-world requirements. We can observe in
Table 5.4 a difference of up to 15.9% in the coverage of the analyzed applications.
In other words, the coverage more than doubles when we compare the applications
of noise monitoring and waste management.

An important remark is that Meegahapola et al. and Liu et al. show that it is
possible to rebuild bus routes in Singapore and London, even when GPS traces are
not available [65–67]. This means that, with some adjustments, the methods used in
this thesis can be replicated to these cities. Since our coverage metric considers the
delivery delay, it is expected that buses can achieve better coverage in cities with
higher bus density and faster traffic.

5.2.3 Comparison with another coverage metric

There are many coverage metrics that do not consider the maximum delivery delay
Dmax and the minimum measurement frequency Fmin tolerated by each application.
The coverage metric proposed by Ali and Dyo is an example of this situation [12].
Their metric counts the number of streets that are visited at least once by any bus.
Therefore, in addition to not including Dmax and Fmin, the length of street segments
are also not considered. Even though it appears very similar to our proposal, not
considering Dmax and Fmin creates a significant difference. To show the importance
of considering Dmax and Fmin, we apply the coverage metric by Ali and Dyo to
the dataset obtained in Section 5.2.2. After estimating the coverage by the origi-
nal model proposed by Ali and Dyo, we adapt their coverage metric to take into
consideration Dmax and Fmin.

Figure 5.11 shows the coverage as estimated by Ali and Dyo. We also plot the
coverage values when different restrictions on Dmax and Fmin are imposed, to show
the impact of considering these dimensions. The coverage obtained by Ali and Dyo,
signaled by an “×” symbol, is the unrestricted case. In our dataset, this means

60

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4

Visiting frequency (da y 1)

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

#
 C

o
v

e
re

d
 s

tr
e

e
t

s
e

c
ti

o
n

s
 (

1
0

7
)

Dmax = 1 2 s

Dmax = 1 2 0 s

Dmax = 3 0 0 s

Dmax = 6 0 0 s

Dmax = 1 ,8 0 0 s

Dmax = 7 2 ,0 0 0 s

×

Figure 5.11: Abacus of a coverage metric disregarding street segment lenght for
Rio de Janeiro in function of F(xi,xj), for different Dmax over one week. The metric
proposed by Ali and Dyo is marked with a red “×”.

Dmax = 72,000 s and Fmin = 1. It is possible to observe that the coverage obtained
by Ali and Dyo overestimates the coverage to any application whose restrictions
are tighter than Dmax = 72,000 s and Fmin = 1. This result further stresses the im-
portance of considering Dmax and Fmin when estimating coverage, even in the case
where the coverage metric ignores the length of streets.

5.2.4 Comparison with the static case

The goal of using mobile sensors is to achieve better spatial coverage for certain
applications. To quantify the coverage gain, we want to analyze the coverage ob-
tained by leveraging bus mobility and compare it with the coverage obtained by a
hypothetical static scenario. In the case of bus-based mobility, sensors cover each
street segment from its beginning to its end. This is not the case for static sensors.
Therefore, it is important to use a method capable of considering the coverage of
fractions of street segments. In this static scenario, bus stops are Fog nodes and
sensors are placed within their communication range. We consider as covered a
fraction of street segment that is inside the communication range of at least one Fog
node. The total coverage is the sum of the lengths of all covered fractions.

To evaluate the static coverage, we consider that it is possible to place static
sensors anywhere in the communication range of Fog nodes. Therefore, any piece of
street segment inside the communication coverage of a Fog node is also covered by

61

sensors. To evaluate this coverage, we treat each Fog node as a circle of radius equal
to the communication range. Figure 5.12 illustrates the coverage by static sensors
placed in the communication range of Fog nodes. The union of the circles represents
the area in the city where communication with at least one Fog node is possible.
Formally, street segments can be represented as line segments, such that the union of
these line segments is the total road map of the city. In this static coverage metric,
the total sensing coverage is the intersection between the area where communication
with Fog nodes is possible and the road map of the city. Our evaluations show a
total static coverage of 1.7% of the total roads on the map. The static coverage
obtained is equivalent to about 242 km of streets.

Utril
le St.

Corot S
t.

Vlamink St.

Renoir S
t.

Rodin S
t.

xi

xj

xk

xl

xms2

s1
Covered section

Communication range

Figure 5.12: Example of covered streets by static sensors placed within communi-
cation range the gateways.

Figure 5.13 shows the coverage gain obtained by the bus-based mobility of sensors
over the course of a week. We define the coverage gain as the coverage obtained by
the bus-based MWSN divided by the static coverage. It is possible to note that the
coverage gain for an application of waste management (Dmax = 1,800 s , Fmin = 24
per day – approx. 101.4) is more than 16.4 times, while for the applications of
air quality (Dmax = 300 s, Fmin = 48 per day – approx. 101.7) and noise monitoring
(Dmax = 300 s, Fmin = 144 per day – approx. 102.2) are 11.6 and 7.6, respectively.
Table 5.5 shows, for each Dmax analyzed, the maximum Fmin that could benefit from
the mobility, when compared to the static scenario. In other words, it shows the
tightest application requirements that could be satisfied by the mobile network and
still improve coverage.

In this section, we have shown that the coverage of smart city applications can
largely benefit from the mobility provided by buses. We have also shown that the
coverage of a bus-based network is related to the requirements of each application.
As a consequence, buses offer different coverage to different applications. In the

62

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4

Visiting frequency (da y 1)

0

5

1 0

1 5

2 0

2 5

C
o

v
e

ra
g

e
 g

a
in

Dmax = 1 2 s

Dmax = 1 2 0 s

Dmax = 3 0 0 s

Dmax = 6 0 0 s

Dmax = 1 ,8 0 0 s

Dmax = 7 2 ,0 0 0 s

Figure 5.13: Coverage gain by buses of Rio de Janeiro in comparison to a static
network, in function of F(xi,xj), for different Dmax over one week.

Table 5.5: Applications requirements limits to benefit from the mobile scenario.

Dmin (s) Fmin (day−1)
12 105
120 715
300 960
600 1110

1,800 1203
72,000 1219

next section, we study whether different buses contribute differently to the coverage
of an MWSN.

5.3 Per-vehicle coverage analysis
Quantifying individual bus contributions can help to identify which buses are critical
to the sensing tasks. This information allows operators to deploy a more efficient
network by, for example, dismissing some buses from sensing tasks. Therefore, it is
possible to lower the global costs in terms of sensing equipment, data transmission,
and data mining. To help to achieve this goal, we propose a metric to quantify
such contribution, verifying if the coverage is more influenced by the contributing
bus or the application. Again, we apply this metric to real GPS traces from the
buses in the city of Rio de Janeiro to rank each bus based on its importance to the

63

applications of waste management, air quality, and noise monitoring.

5.3.1 Coverage contribution metric

We denote B the set of buses of the city and A the set of applications served
by the MWSN. Each bus b ∈ B may follow a different path or face different traffic
conditions, while each application a ∈ A has its requirements. As already mentioned
in the previous sections, the notations used in this chapter are in Table 5.1.

Using the coverage model defined in Section 5.2, we define the coverage contri-
bution of b ∈ B for a single application a ∈ A as:

Kb
a =

CB
a − C

{B−b}
a

CB
a

, (5.11)

where Kb
a is the individual coverage contribution of bus b to the application a, CB

a

is the coverage obtained for application a using all the buses in B, and C
{B−b}
a is

the coverage obtained by the MWSN when b is removed from the network. The
coverage metric presented in Equation 5.10 is CB

a , and C
{B−b}
a is the same coverage,

obtained excluding b from sensing tasks. Note that the contribution metric is a real
number between 0 and 1.

To decide which buses of the MWSN are the most or least important for a given
application, we rank buses according to their contributions. The effectiveness of an
MWSN increases when it can serve several applications at the same time. In this
case, the problem is that these applications have different requirements in terms of
collected data. Therefore, we expect that the same bus has different contributions
depending on the application. This means that some buses can be dismissed from
the sensing task for some applications, but must remain in the network because they
are required by some other applications.

5.3.2 Data-driven analysis

We use the same scenario to verify the variability of bus contributions with respect
to different applications. We consider the same three applications as before, namely
waste management, air quality monitoring, and noise monitoring.

To calculate the coverage of each application, we employ the same procedure
described in Section 5.2.2. We also use the same map and the same API used in
the previous sections to obtain bus mobility traces and to assess their contacts with
Fog nodes. We collect data from November 1st to November 30th, 2018, obtaining
GPS coordinates generated by 5,856 buses. Then, we proceed with steps (ib), (ii),
(iii), and (iv) of Figure 5.7.

64

10 4 10 3 10 2 10 1

Coverage average contribution (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Average
Waste management
Air quality
Noise monitoring

Figure 5.14: CDF of the bus contributions Kb
a from Rio de Janeiro.

Coverage contribution

Using the data obtained in Step (iii), it is possible to evaluate the coverage ob-
tained by all the buses or by a subset of them for each considered application. More
specifically, we calculate C

{B−b}
a , the coverage for an application a when bus b is not

present, for every bus and every application. As a reference, during the evaluated
period, the set of all buses can cover 50.0% of the city for an application with restric-
tions of Dmax = 72,000 s and Fmin = 1 (the least restrictive possible in our dataset).
This represents a total of 6,929 km of streets.

Figure 5.14 illustrates the cumulative distribution of bus contributions for the
applications of waste management, air quality, and noise monitoring, obtained us-
ing Equation 5.11 for each application. Figure 5.14 also illustrates the cumulative
distribution of the average contribution of each bus over the three applications. The
graph shows that the curve for the average contribution has much fewer buses with
very low contributions than the curves for each application. It also shows that dis-
tributions depend on the applications, suggesting that applications are relevant to
the contribution.

We also obtain the average speed of buses and the total coverage for each day.
Considering the 30 days, the Pearson coefficient of the correlation between average
speed and coverage is 0.834, 0.878, and 0.882 for the applications of waste manage-
ment (i.e., the least restrictive one), air quality, and noise monitoring (i.e., the most
restrictive one), respectively. A less restrictive application, with Fmin = 1/day and
Dmax = 24h would have a Pearson coefficient of 0.788. This indicates that more
restrictive applications receive more influence from the traffic conditions.

65

1 5 10 15 20 25 30
Day

0.00002

0.00006

0.00010

0.00014

C
ov

er
ag

e
av

g
co

nt
ri

bu
tio

n
(%

)

downtown suburban

1.0

1.5

2.0

2.5

3.0

3.5

S
ub

ur
ba

n/
do

w
nt

ow
n

ra
tio

Figure 5.15: Average of the average coverage contributions Kb
a from Rio de Janeiro,

for region and bus proportion between downtown and suburbs.

We know from Section 5.1.9 that city coverage is not spatially homogeneous.
To measure this effect on the contributions of the buses, we divide buses into two
groups: downtown buses, which visit downtown at least once, and suburban buses,
which never visit downtown. We define the downtown as the rectangle inside the co-
ordinates (-22.915651,-43.209736) and (-22.888928,-43.170168). Figure 5.15 shows,
for each day, the average contribution of each group, for each considered applica-
tion. It also shows, on the right axis, the ratio between suburban and downtown
buses. We indicate Sundays and holidays with an “×” mark. We note that, when
the number of downtown buses decreases, they are more important.

5.3.3 Contribution ranking

To quantify the impact of the application to the contribution, in the next experiment,
we rank the buses for each application by ordering their coverage contributions. We
also evaluate the average of their contributions for the considered applications. After
that, we measure the ranking difference of the same bus, for all of the considered
applications and for their average contributions.

Figure 5.16 shows, on the horizontal axis, the rank of each bus when ranked by
their average contribution, for the top 10 average contributors. In the vertical axis,
Figure 5.16 shows the contribution rank for the analyzed applications. Therefore,
every vertical section represents the ranks of the same bus. Buses represented more
to the left have a higher average contribution. We note that the most relevant buses
tend to have high contributions for every application, but this tendency does not
hold for all of the 10 most relevant buses. The 10th bus in the average ranking
is in 2, 387th, 564th, and 1st places for waste management, air quality, and noise
monitoring, respectively, out of 5,856 buses.

To study the whole dataset, Figure 5.17 extends the information in Figure 5.16

66

2 4 6 8 10
Average contribution rank

0

1000

2000
C

on
tr

ib
ut

io
n

ra
nk

Waste mgmt
Air quality
Noise monitoring

Figure 5.16: Bus contribution rank as a function of average contribution rank, for
different applications, for the 10 largest average contributions.

0 1000 2000 3000 4000 5000 6000
Average contribution rank

0

2000

4000

6000

C
on

tr
ib

ut
io

n
ra

nk

Waste mgmt
Air quality
Noise monitoring

Figure 5.17: Bus contribution rank as a function of average contribution rank, for
different applications.

67

Table 5.6: Kendall coefficient of bus contributions ranking.

Application Kendall coefficient
Waste management × Air quality 0.21
Waste management × Noise monitoring 0.20
Air quality × Noise monitoring 0.17

for all buses in the dataset. It is possible to observe that, except for the buses with
the lowest average contribution, there is low stability of positions between rankings.
This means that, in our dataset, there are not many buses that are important
to every application, but there is a significant number of buses that have a low
contribution to all the applications. To quantify the stability between rankings,
Table 5.6 shows the Kendall correlation coefficients of the contribution rankings of
the considered applications. A Kendall coefficient of 1 means that rankings are
correlated and thus independent of the application, while a coefficient of 0 means
that rankings are uncorrelated. The small values of Kendall coefficients confirm that
the applications have a strong influence over bus importance.

Figure 5.18 shows the cumulative distribution of the ranking difference of the
same bus between its position in the contribution rankings of different applications.
We observe that, in every case, more than 40% of the 5,856 buses change at least
1,000 places in the ranking. This means that the proposed contribution metric is
highly related to the target application. Moreover, some changes in the application
requirements can also change the way buses contribute to the coverage. The initial
slope of the ranking difference between air quality and noise monitoring applications
indicates that the contribution of buses for these applications is closer than the
contributions for waste management. This trend is confirmed by Table 5.6. The
proposed metric made it possible to discover and quantify the difference in each bus
importance to the city coverage.

5.4 Remarks
In this chapter, we have explored the coverage of a bus-based Mobile Wireless Sensor
Network. First, we proposed a coverage metric that considers that a street segment
is covered if any bus with a Sensing node passes by it. For this metric, we proposed
a MILP to maximize coverage when the number of Sensing nodes is limited. We
showed that only 32 buses can cover at least 40% of the total covered by all buses.
We also showed that street segments are measured a different number of times.
This last finding, together with our findings in Chapter 4, motivated us to propose

68

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
Ranking difference

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

C
D

F

Waste management vs Air quality

Waste management vs Noise monitoring

Air quality vs Noise monitoring

Figure 5.18: Contribution ranking difference of the same bus for an application
compared to its contribution rank for another application.

another coverage metric.
We proposed a coverage metric that considers the maximum delivery delay and

the minimum frequency of measurement of each street segment. We showed that
coverage is related to each application. We also showed that buses contribute dif-
ferently to the coverage of different applications.

69

Chapter 6

The SensingBus Prototype

We build a prototype for the SensingBus architecture, described in Chapter 3, to
confirm its feasibility and scalability. The next sections explain in detail the dif-
ferent parts of the prototype. Additionally, the source code and documentation
are available at https://github.com/pedrocruz/sensing_bus. The software is
registered1 and licensed under Apache License 2.02.

6.1 Sensing nodes
Sensing nodes employ an Arduino UNO as Controller, due to its low cost.
The Wireless Interface is an ESP8266, a programmable micro-controller with a
IEEE 802.11b/g/n interface. Table 6.1 lists the hardware used in the Sensing node
prototype.

Physically, the Sensing node is composed of two parts: one is kept inside the bus
and the other is installed outside the vehicle. This division is performed because
some modules must be exposed to the environment, such as sensors and transmitters,
while other components must be protected from harsh environmental conditions.
For example, rain can harm some electronic equipment, but a rain sensor must be
exposed to the rain to measure it. The part inside the vehicle contains the Controller,
GPS Receiver, and Persistent Memory. The GPS Receiver and Persistent Memory
share the same board. The external part contains the Wireless Interface, GPS
Receiver antenna, and Sensor Bank.

The external part is protected by an acrylic case, measuring 7× 7× 4 cm, to be
placed on the rooftop of the bus. The protective case has a transparent surface and
some holes, allowing sensors to effectively sense the environment. Figure 6.1 shows
the internal and external parts of the Sensing node prototype. We test the effect of
the protective case and the effect of the mobility in Section 6.4.

1process number BR512019002626-8
2https://www.apache.org/licenses/LICENSE-2.0

70

https://github.com/pedrocruz/sensing_bus

Table 6.1: Equipment and software used in the SensingBus prototype.

Module Equipment Manufacturer
Controller Arduino UNO R3 Arduino
GPS Receiver GS-96U7 Guangzhou Xintu
Persistent Memory GS-96U7 Guangzhou Xintu
Wireless Interface ESP8266 Espressif

Sensor Bank

Humidity DHT11 DFRobot
Temperature DHT11 DFRobot
Light Intensity GL5528 GBK Robotics
Rain Intensity GL5528 GBK Robotics
Barometric Pressure BMP180 Sparkfun
Temperature BMP180 Sparkfun

(a) External part of the Sensing node. (b) Internal part of the Sensing node.

Figure 6.1: The external and internal parts of the Sensing node.

The following functionalities are currently implemented in the Sensing nodes:

• Data gathering: the sensors in the Sensor Bank gather data about the
environment;

• Data temporary storage: the Persistent Memory stores data until a con-
nection with a Fog node is established;

• Data delivery: the Wireless Interface data delivers data to a Fog node when
a connection is available.

The Controller queries the sensors in the Sensor Bank and the GPS Receiver
every second. Every query generates a total of 53 bytes, that are stored in the
Persistent Memory.

Taking advantage of the programmable Wireless Interface, we implement a sim-
ple protocol for the communication between the Controller and the Wireless Inter-

71

face. In this protocol, the Controller asks periodically if there is a connection and
the Wireless Interface answers. When the answer is positive, the Controller sends
enough data to fill the buffer of the Wireless Interface, waits for data to be sent and
initializes a new iteration, asking again if there is a connection. We implement the
code for the Arduino UNO and for the ESP82663.

As an implementation issue, the SRAM of Arduino Uno is limited. We take
advantage of the fact that application-level messages have constant values per node,
such as a header, indicating the sensors installed in the bank and the id of the
sensor. We treat all the constants as strings and store them in the flash memory,
avoiding keeping them in the SRAM. Another important implementation issue is
related to the very little RAM of ESP8266. It is thus expected that the data
stored in the Persistent Memory is several times bigger than the RAM available
in Arduino and ESP8266. This means that Arduino must send several chunks of
data to the ESP8266, until the data in the Persistent Memory is entirely copied.
The ESP8266 must then flush every chunk to the Fog node before it can receive
more data. In our first implementation on ESP8266, it would receive a chunk from
the Controller, open a TCP connection, send the chunk of data and close it right
after. Every chunk of data would open a new TCP connection. Even though this
approach saves lines of code, every new connection creates new objects that are not
discarded immediately when the connection closes, because of TCP’s TIME_WAIT.
Since many connections would remain open, the memory of ESP8266 would be full
with the pending connections, causing instability to ESP8266. To solve this issue,
the connection status is kept and ESP8266 performs several requests over the same
connection.

The Wireless Interface holds the SSID and password of a WPA2-protected net-
work created by the Fog nodes. The Wireless Interface searches periodically for a
wireless network with a pre-configured SSID, and answers queries from the Con-
troller. After the Wireless Interface signals the Controller about a new connection,
the Controller only sends application-specific data to the Wireless Interface. The
Wireless Interface prepares the HTTP headers and executes a POST method to the
Fog node. We performed preliminary experiments and noticed data loss when the
Controller would send more than 2 kB of data to the Wireless Interface. Therefore,
every POST holds about 2 bytes of sensed data. Each POST also holds 80 bytes of
application header and about 133 bytes on HTTP headers. Also according to our
preliminary experiments, preparing HTTP headers in the Wireless Interface is two
times faster than preparing the HTTP headers inside the Controller. The codes
used in this test are found in the folder “sensing/tests” of the Github repository4.

3https://github.com/pedrocruz/sensing_bus/tree/master/sensing
4https://github.com/pedrocruz/sensing_bus/tree/master/sensing/tests

72

https://github.com/pedrocruz/sensing_bus/tree/master/sensing
https://github.com/pedrocruz/sensing_bus/tree/master/sensing/tests

6.2 Fog nodes
Table 6.2 shows the equipment we use to build the Fog node. We chose the Raspberry
Pi II Model B as Controller because of its computing power, size, costs, and available
interfaces. We chose the WiPi as the Wireless Interface due to its costs and because
of the number of simultaneous connections that it supports. Some other options
with greater communication range were considered but discarded, because of the
low number of simultaneous connections supported. The effect of simultaneous
connections is further discussed in the Section 6.4.2.

The Wireless Interface of Fog nodes acts as an IEEE 802.11 access point protected
with WPA2 (Wi-Fi Protected Access 2). The SSID and password are configured into
the Controller. In the Controller, an HTTP server implemented in Python serves
incoming requests and pre-process data before sending it to the Cloud node.

Table 6.2: Equipment and software used in the Fog node prototype.

Module Equipment Manufacturer
Controller Raspberry Pi II B Raspberry Pi Foundation
Wireless Interface WiPi Element14

Fog nodes have the following pre-processing functions currently implemented:

• Error detection: data is checked for inconsistencies and defective data is
discarded;

• Data concentration: when several buses simultaneously connect to the fog
node, their data is stored and sent periodically, reducing the number of con-
nections to Cloud level;

• Data compression: data is compressed before it is sent, reducing the traffic
to the Internet.

For every request, the Fog node Controller checks data and discards inconsistent
measurements. After that, data is accumulated in a concentration queue. At regular
intervals, data is compressed and sent to the Cloud node. To send data, the Fog
node acts as an HTTPS client, getting authorization by presenting its certificate to
the Cloud node.

6.3 Cloud node
The prototype of the Cloud node is implemented in software. Table 6.3 shows the
software used to implement the Cloud node. An Apache (http://httpd.apache.

73

http://httpd.apache.org/
http://httpd.apache.org/

org/) server runs on a virtual machine, instantiated on an IaaS cloud. The Apache
server executes a Django (https://www.djangoproject.com/) application, that
relies on MySQL (https://www.mysql.com/) to store data, and on Django REST
Framework (http://www.django-rest-framework.org/) to create API endpoints.
The Cloud node exposes an URL for data insertion. This URL is protected by
Apache, which only authorizes clients if they present valid certificates, generated by
a trusted Certificate Authority. Therefore, on SensingBus as a whole, data integrity
and authorization between the Sensing level and the Fog level rely upon WPA2,
whereas between Fog and Cloud levels, data integrity and authorization are assured
by HTTPS. The Cloud node prototype also provides API endpoints for querying
data. Data can be queried by date, time, location, and sensor type. Thus, users can
use SensingBus to develop their own applications. Table 6.4 lists the endpoints of
the API. The complete API documentation can be found together with the available
code.

Table 6.3: Software used in the Cloud node prototype.

Module Software Publisher
IaaS Cloud OpenStack OpenStack Foundation
Server Apache 2.4.18 Apache Software Foundation
Database MySQL 5.7 Oracle
Web Interface Django Django Software Foundation
Web API Django REST Framework Tom Christie

The following functions are currently implemented in Cloud nodes:

• Data insertion endpoints: API endpoints are exposed for data insertion;

• Data query endpoints: API endpoints are exposed for data query. Data
can be queried by date, time, location and sensor type.

• Data visualization: Data can be visualized on a map.

The communication between Sensing nodes and Fog nodes is performed us-
ing HTTP, the communication between Fog nodes and Cloud is performed using
HTTPS, and users fetch data using a RESTful API. This ensures uniform inter-
faces, to deal with the heterogeneity of devices and applications.

Figure 6.2 illustrate the data visualization offered by the Cloud node.

6.4 Prototype analysis
In this section, we perform experiments with the prototype nodes. First, we eval-
uate the accuracy of data sensing in the presence of mobility. Then, we perform

74

http://httpd.apache.org/
https://www.djangoproject.com/
https://www.mysql.com/
http://www.django-rest-framework.org/

Table 6.4: API endpoints offered by the prototype.

Name Method Description

/visualize GET Renders the visualization webpage
POST Returns map data, filtered by the parameters

measurements GET Lists all code measurements, filtered by the parameters

measurements/k
GET Retrieve the measurement represented by k
PUT Update the measurement represented by k

DELETE Delete the measurement represented by k
/batch_sec POST Receives a batch of measurements using HTTPS
/zip_batch_sec POST Receives a batch of zipped measurements using HTTPS

experiments stressing the Fog node prototype.

6.4.1 Sensing accuracy in the presence of mobility

We evaluate sensor measurements reliability under a real scenario. We build two
Sensing node prototypes to perform this task: one plays the role of mobile sensor
and the other plays the role of static sensor.

Two sessions of experiments are carried inside the campus of Universidade Federal
do Rio de Janeiro, in Brazil. In the first one, the Mobility Effect Experiment, we
compare the measurements obtained by a static and a moving Sensing node. The
second session of experiments, named Casing Effect Experiment, takes into account
measurement behavior regarding the case of the sensor bank.

Mobility Effect Experiment

We position the static node aside an internal street of the campus, as shown in Fig-
ure 6.3a. We attach the mobile node to the car window, as shown in Figure 6.3b. The
car performs a circular trajectory close to the static node. The nodes are synchro-
nized to acquire data simultaneously. This procedure allows the comparison between
the sensed data collected under distinct mobility conditions. As a consequence, we
can evaluate possible factors that may affect the accuracy of measurements during
mobile platform circulation in metropolitan areas. This experiment is carried out
on a sunny day between 10:00 AM and 12:00 AM.

The Mobility Effect Experiment reveals a relevant difference between static and
mobile sensors measurements. Figure 6.4a shows the speed of the mobile node
throughout the experiment. The plots in Figure 6.4 are aligned in the horizontal
axis, meaning that the times are aligned between plots. Figure 6.4b shows the
temperature variation of both static and mobile nodes along the time at one sample
per second rate. The blue points plot the air temperature in Celsius measured by the
static node sensor, whereas the red points plot the mobile node sensor measurements.
As one can observe, while the static node registers a temperature increase around

75

Figure 6.2: Data visualization offered by the Cloud node.

(a) Static Node. (b) Mobile Node.

Figure 6.3: Positioning of the Sensing nodes for the mobility experiment.

4 C, the mobile node registers a decrease around 10 C. A reverse behavior can be
observed for the relative humidity, at smaller proportions. As Figure 6.4c shows,
the static node value (blue dots) decreases 4%, whereas the mobile node value (red
dots) increases 7%. Light intensity has no speed dependency and a comparison
between the mobile and static values reveals high sensor directionality, as shown
in Figure 6.4d. Although the barometric pressure shows fluctuations during the
experiment, the speed dependency can be assigned to the Venturi effect caused by
the airflow through the box bottom face holes [68], as shown in Figure 6.4e. This
effect motivated us to perform our next experiment.

76

M
o

b
il

e
n

o
d

e

sp
ee

d
 (

k
m

/h
)

0

Time (s)
0 200 400 600 800

30

(a) Speed of the mobile node throughout the experiment.
T

em
p

er
at

u
re

 (
C

)

30

35

40

45

Time (s)
0 200 400 600 800

Mobile node Static node

(b) Temperature observed in the experiment.

R
el

at
iv

e

h
u

m
id

it
y

 (
%

)

22

26

30

Time (s)
0 200 400 600 800

Mobile node Static node

(c) Relative humidity observed in the experiment.

L
ig

h
t

in
te

n
si

ty
 (

lu
x

)

0

400

800

Time (s)
0 200 400 600 800

Mobile node Static node

(d) Light intensity observed in the experiment.

B
ar

o
m

et
ri

c

p
re

ss
u

re
 (

m
b

ar
)

1015

Time (s)
0 200 400 600 800

1018

Mobile node Static node

(e) Barometric pressure observed in the experiment.

Figure 6.4: Comparison between static and mobile measurements.

Casing Effect Experiment

The Casing Effect Experiment is performed after the analysis of the mobile effect
that showed a temperature variation of up to ten degrees between the mobile and

77

Figure 6.5: Trajectory followed in Casing Effect Experiment (Source: Google Earth).

the static node measurements. As one can observe in Figure 6.3, the sensors are
protected by an acrylic box, which has a number of holes on the bottom face to
perform air inlet and outlet. This assembling is weatherproof, protecting the sensors
against bad weather conditions. Nevertheless, we must check whether the data
acquired is reliable, regardless of the mobility. To accomplish this task, we attach two
Sensing node prototypes side by side on the car window. One of the prototypes with
the sensors inside the box and the other with the sensors outside the box. The vehicle
moves along the trajectory shown in Figure 6.5 to acquire campus environmental
data. This experiment session was performed in a cloudy day between 3:00 PM and
4:00 PM, with no rain.

Figure 6.6 shows the differential temperature and relative humidity between the
start point and points along the trajectory. Temperature variation, as shown in
Figure 6.6a, during the vehicle trajectory, reveals that the small difference between
internal assembled sensors (red points) and external assembled sensors (blue points)
suggests a minor casing effect. The chosen trajectory (shown on Figure 6.5) has
some local micro-climates not detected by internal sensors, but detected by the
external ones. These micro-climate areas can be easily identified by analyzing the
heat map of Figure 6.7. Regarding relative humidity, the casing effect is more
visible due to the low values of internal sensor measurements compared with the
external ones. Similar to the temperature behavior, one can verify in Figure 6.6b
that internal sensors show almost no fluctuations, whereas the external sensors show

78

0 5 0 0 1 5 0 0 2 5 0 0

-2
.0

-1
.0

0
.0

0
.5

1
.0

Distance from Start Point (m)

D
iff

e
re

n
c

ia
l

Te
m

p
e

ra
tu

re
 (

°C
)

Exte rnal Se nsors

Inte rnal Se nsors

(a) Internal and external temperature.

0 5 0 0 1 5 0 0 2 5 0 0

-2
-1

0
1

2
3

4

Distance from Start Point (m)

D
iff

e
re

n
c

ia
l

H
u

m
id

it
y

 (
%

)

Exte rnal Se nsors

Inte rnal Se nsors

(b) Internal and external humidity.

Figure 6.6: Comparison Between Internal and External Measurements.

more fluctuations in relative humidity measurements.

6.4.2 Fog node performance

We conduct a number of experiments to test the scalability of our Fog node pro-
totype. Our goal is to know whether the Fog node prototype can stand all the
simultaneous contacts that it should in a real deployment. To achieve this goal, we
must first evaluate the number of contacts a single Fog node has to serve simultane-
ously. To estimate this number, we perform an analysis of the datasets we analyzed
in sections 5.1.6, 4.7, 5.2.2, and 5.3.2, containing the positions of all bus stops in Rio
de Janeiro and the positions of all buses in Rio de Janeiro, refreshed every minute.
We collect the positions of all buses throughout 8:00 AM and 10:00 PM of Novem-
ber 30th, 2016. The early and late hours of the day are discarded because a great
number of buses is parked, creating distortions in our evaluation.

We assume that every bus carries a Sensing node and every bus stop has a
Fog node installed. For every minute, the positions of buses and bus stops are
compared. If the distance between a bus and a bus stop is shorter than a given
threshold that represents the communication range, we consider that the Sensing
node in the bus can send data to the Fog node on the bus stop. We define five
different communication ranges: 1000, 500, 250, 125, and 72 meters. Using this
dataset, it is possible to evaluate the amount of data received by every Fog node.
As mentioned in Section 6.1, the Sensing node generates 53 bytes per second, it is
possible to estimate the data received by a Fog node on a single contact. We estimate
the data received as the Sensing node data generation rate times the elapsed time

79

-4 3 .2 3 5 -4 3 .2 3 0 -4 3 .2 2 5 -4 3 .2 2 0-2
2

.8
6

5
-2

2
.8

5
5

-2
2

.8
4

5

Longitude (de gre e s)

L
a

ti
tu

d
e

 (
d

e
g

re
e

s
)

2 4

2 2 .4

Te mpe rature °C

Figure 6.7: Temperature measured by the external sensor.

since the last encounter of this Sensing node with a Fog node. Fig 6.8a illustrates the
cumulative distribution of the amount of data received by each Fog node throughout
a day. It is possible to note that, for all ranges, less than 40% of Fog nodes receive
less than 1 MB (106) of data.

To test the scalability of the Fog node prototype, we evaluate the maximum
number of Sensing nodes served simultaneously by each Fog node, during the day.
Figure 6.8b shows the cumulative distribution of the maximum number of Sensing
nodes served simultaneously by each Fog node, for different communication ranges.
According to Rubinstein et al. [49], the range of IEEE 802.11g in traffic speed is
inferior to 250 m. Since our prototype can use IEEE 802.11b/g/n, we adopt 250 m
as a reference. In Figure 6.8b, it is possible to note that, for a communication range
of 250 m, around 88% of Fog nodes serve less than 20 Sensing nodes simultaneously.
Therefore, we adopt 20 as the maximum number of Sensing nodes to use in the
stress test.

We use the same datasets to verify the intercontact times of buses with bus stops,
considering a communication range of 250 m. We observe that, in more than 98%
of the samples, a bus waits less than 10 minutes between contacts. Therefore, we
configure every Sensing node in our stress test with data equivalent to 10 minutes
of sensing. Given that the sensor bank in our prototype generates 53 bytes every
second, 10 minutes of sensing produces 31,800 bytes. This is equivalent to 15 HTTP
POSTs from the Sensing node to the Fog node, since each POST holds about 2 kB
in data and about 213 B in headers, as mentioned before.

80

103 104 105
106 107

108

Amount of data received in a day (B)

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
p

o
rt

io
n

 o
f

F
o

g
 n

o
d

es Range = 100m
Range = 500m
Range = 250m
Range = 125m
Range = 72m

(a) Cumulative distribution of data received by
each Fog node in a day, for different communi-
cation ranges.

0 100 200 300
Number of simultaneous contacts

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o

rt
io

n
 o

f
b

u
s

st
o

p
s

400

Range = 100m
Range = 500m
Range = 250m
Range = 125m
Range = 72m

(b) Cumulative distribution of maximum num-
ber of Sensing nodes served by each Fog node,
for different communication ranges

Figure 6.8: Analysis of the data receive by the Fog nodes of the prototype.

To simulate the simultaneous arrival of Sensing nodes in the communication
range of a Fog node, we simultaneously turn on one, five, ten, fifteen, and twenty
Sensing nodes within range of the Fog node. After Sensing nodes are on, we wait
for all data to be received by the Fog node and transmitted to the Cloud node of
the prototype. We call this the Fog node stress test. For each number of Sensing
nodes, the test is repeated 30 times. Throughout the tests, we do not observe any
instability in our nodes. The codes used in this experiment are available in the folder
“fog/stress_tests” of the repository5. Figure 6.9 shows the setup of the testbed for
the Fog node stress test.

5https://github.com/pedrocruz/sensing_bus/tree/master/fog/stress_tests

(a) Arduinos and ESP8266’s for
the Fog node stress test.

(b) Full setup for the Fog node stress test.

Figure 6.9: Testbed to execute the Fog node stress test.

81

https://github.com/pedrocruz/sensing_bus/tree/master/fog/stress_tests

Figure 6.10 shows the results for the average memory, CPU usage, and through-
put since the first POST arrives at the Fog node, until the last POST arrives at the
Fog node, for all the participating Sensing nodes. Measurements are presented with
95% confidence interval.

5 10 15 204

5

6

7

8

9

10

11

U
sa

g
e

(%
)

Number of simultaneous gathering nodes (#)

50

100

150

T
h

ro
u

g
h

p
u

t
(k

b
it

s/
s)

CPU Usage (%)

Memory Usage (%)

Throughput (kbits/s)

Figure 6.10: Results of the Fog node stress tests.

On Figure 6.10, one can observe that the Fog node can serve up to 20 Sensing
nodes without exhausting its memory and CPU resources. It is worth noting that
the average throughput growth is not linear. This means that the throughput ob-
tained by each Sensing node drops as the number of Sensing nodes increases, as a
consequence of competition for the transmission medium. In Chapter 4, we study
the intercontact times between buses and bus stops. Considering the data genera-
tion rate of the sensor bank and the reasoning in Section 4.3, we can conclude that
the throughput per Sensing node must be at least 3 kbps to deliver all data gathered
in a single contact opportunity. Our experiments show that our prototype suits such
requirements, even in the worst case, with 20 simultaneous Sensing nodes sharing
the same Fog node.

6.5 Remarks
In this chapter, we presented a prototype for the nodes of each SensingBus level.
We tested the accuracy of the data gathered by the Sensing node in the presence of
mobility. In the experiments, we found that the casing plays a significant role when
it comes to the Venturi effect, and can hinder measurements of barometric pressure.
Regarding the Fog node prototype, we successfully tested its capacity to serve up
to 20 simultaneous buses.

82

With the tests performed on the Sensing and the Fog node prototypes, we believe
that they are suited for smart city sensing under the aspects of sensing accuracy,
persistent memory size, and pre-processing requirements.

83

Chapter 7

Conclusions and Future Work

Smart cities need data to provide services to their citizens [1]. Mobile Wireless Sen-
sor Networks (MWSNs) are an option to decrease the sensing cost of large areas,
such as a city [3]. The mobility increases the region covered by each sensor, lowering
the number of sensors and, consequently, the costs. Additionally, mobility enables
opportunistic data delivery, creating a trade-off between networking costs and de-
livery delay [4]. Using the Internet of Things (IoT) paradigm [2, 5], it is possible
to leverage the mobility of buses for sensing tasks. Therefore, buses become sensor
nodes that travel through the city gathering data.

IoT devices are usually limited in terms of computational power. To compensate
for the limited resources of IoT devices, and cope with the need for low latency by
some services, a three-level architecture can be used [8]. In the first level, IoT devices
gather data; in the second level, Fog nodes receive data and pre-process data; in the
third level, a Cloud node processes, stores and serves data. This creates a scenario
where buses equipped with Sensing nodes drive through the city, collect data, and
deliver data to Fog nodes located in bus stops. The Fog nodes pre-process data and
send it to a Cloud node, that serves data to third-party applications.

Sensors are carried around by buses and deliver data when they are in the com-
munication range of a Fog node. This means that regions are not covered the whole
time and sensed data is not delivered instantly. Therefore, there are different visit-
ing frequency and delivery delay for different streets. Since smart city applications
have different data needs [1, 45], each application can benefit from data gathered
from different streets. Consequently, the coverage of the network is not the same
for different applications.

To confront the challenges posed by bus-based urban sensing, this thesis presents
three main contributions:

• A study of the data delivery delays, with a method to minimize delays for a
constrained number of Fog nodes.

84

• A coverage metric, considering delay and sensing frequency requirements and
a metric for bus relevance to their coverage contribution.

• A prototype for each node of SensingBus.

We applied these contributions to real datasets produced from the buses of the
city of Rio de Janeiro. This procedure allowed us to have a few insights about a
real-world bus-based MWSN.

The next sections examine each contribution in detail. We then conclude this
thesis by presenting thoughts on future work.

7.1 Data delivery delays
When investigating the effects of bus-based sensing for delivery delays, we showed
that the number and positioning of Fog nodes in the network pose great influence
in the network delivery delay. We proposed a Mixed-Integer Linear Programming
(MILP) problem based on the p-center problem to place a limited number of Fog
nodes into the bus stops while minimizing the maximum delivery delay. We also
proposed a heuristic to find suboptimal solutions [17, 18]. This heuristic is able to
reduce the cardinality of the problem, making it possible to find optimal solutions
for larger instances [19]. Our results showed that, for the city of Rio de Janeiro, it
is possible to obtain an MWSN using approximately 16% of the bus stops as Fog
nodes and have a maximum delay of 32 minutes in data delivery. It is worth noting
that the maximum delay is 30 minutes when every bus stop in this network acts as
a Fog node.

7.2 Coverage metric
We also analyzed the spatial coverage of an MWSN based on urban buses. We
proposed a coverage model as a function of the street segments to be sensed, the set
of buses equipped with Sensing nodes, and their paths in the city. We formulated a
MILP problem to maximize the coverage when there is a budget limiting the number
of buses that can be equipped with Sensing nodes. The results showed that with
only 18% of the fleet of Rio de Janeiro we can cover at least 94% of the total area
which the whole fleet could cover. Interestingly enough, we show that only 32 buses
can cover at least 40% of the total covered by all buses [19, 21]. This indicates that it
is possible to establish an initial service at a very low cost and incrementally deploy
a system that serves the whole city. Finally, the results also show the relationship
between the number of buses, spatial coverage, and the number of times that a

85

specific street segment is visited during the day. These last results inspired us to
develop a more strict coverage metric.

We elaborated on the coverage metric to take into account the minimum vis-
iting frequency and the maximum delivery delay tolerated by an application. We
applied the metric and presented our results in the form of an abacus. Therefore,
it is possible to obtain the coverage of the network, given a certain application that
requires a minimum visiting frequency and maximum delivery delay. We also ob-
tained the coverage of applications that have known minimum visiting frequencies
and maximum delivery delays in the literature. We found that a waste management
application can cover 27.9% of the city of Rio de Janeiro using the urban buses of
the city. We also showed that, for this application, buses increase the coverage of
the network up to 16.4 times, when compared to the scenario where sensors are
static [22, 23].

Finally, we investigated the role of individual buses to the coverage of different
applications in a city-wide MWSN. We proposed a contribution metric to individual
buses that takes into account the coverage lost for a single application when a bus
is not performing sensing tasks. Using our delay-aware coverage metric, we applied
the contribution metric to the urban buses in the city of Rio de Janeiro, considering
the applications of waste management, air quality, and noise monitoring. We also
ranked the buses in terms of their city coverage contributions for each application
and compared the rankings of each one. We show that the contribution of each bus is
dependant on the targeted application. For instance, the Kendall coefficient between
the rankings of the applications of air quality and noise monitoring is 0.17 (1.0 means
that the rankings are equal). With the results, a developer can build a more efficient
bus-based MWSN, deciding which buses are crucial to each application [24].

7.3 SensingBus prototype
As a final contribution, we developed a prototype for each node of the studied
bus-based MWSN. We aimed to provide a proof of concept of the proposed Sens-
ingBus system. The prototype demonstrated the feasibility of SensingBus through
the results obtained using a prototype, built using low-cost hardware. Those results
analyze the scalability of the SensingBus prototype. We have shown that the effect
of mobility is negligible to the sensors of temperature, humidity, and light intensity,
but they might suffer significant effect from protective cases, necessary to imple-
ment the systems. Barometric pressure sensors also suffer from the Venturi effect,
which can affect the accuracy of data [69]. We have also shown that the Fog node
prototype can receive data from at least 20 buses, simultaneously. We note that 20
simultaneous buses is a reasonable number for a city like Rio de Janeiro [25, 26]. The

86

software developed for the prototype is registered and available for other developers.

7.4 Future work
As future work, we plan to use the Fog nodes to coordinate cooperation between
buses, to eliminate, or at least reduce, the amount of duplicate data. This notion
of duplicate data must take into account the spatiotemporal data requirements of
targeted applications. Since a bus-based MWSN can serve different applications, it
is likely that data gathered for different target applications has to be gathered with
different granularity by the same bus. For instance, a Fog node can request a bus
to lower the sampling rate of its temperature sensor, but increase the sampling rate
of its rain sensor.

An important metric to consider in the future is the sensing delay, to discover
how long it takes since an event happens until the moment it can be sensed. Some
streets are visited with high frequency, but with non-uniform intervals. This can
create problems for applications that need quick event detection. A study on sensing
delay can identify the possibilities of bus-based MWSN for these applications.

Another important improvement is to consider the different business models of
public transportation, to minimize the deployment costs of such a system. For in-
stance, if the transport system is a public concession operated by private companies,
it might be of public interest that the contract demands a certain amount of budget
for city sensing. Alternatively, it might be more interesting to the city that sensing
and transport contracts are completely separated.

A last idea is to take into account the instabilities in the transportation service
and their implications for the sensing services. For instance, heavy traffic conditions
or regular changes in the bus routes can have an impact on the sensing tasks. The
reliability level of transport services is also related to the city where the service oper-
ates. This means that different cities might need different levels of countermeasures
to undermine the instabilities in the sensing provided by bus-based MWSNs.

87

References

[1] ZANELLA, A., BUI, N., CASTELLANI, A., et al., “Internet of things for smart
cities,” IEEE Internet of Things Journal, v. 1, n. 1, pp. 22–32, 2014.

[2] GUBBI, J., BUYYA, R., MARUSIC, S., et al., “Internet of Things (IoT): A
vision, architectural elements, and future directions,” Future Generation
Computer Systems, v. 29, n. 7, pp. 1645–1660, 2013.

[3] LIU, B., BRASS, P., DOUSSE, O., et al., “Mobility improves coverage of sen-
sor networks.” In: 6th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2005.

[4] EKICI, E., GU, Y., BOZDAG, D., “Mobility-Based Communication in Wireless
Sensor Networks,” IEEE Communications Magazine, v. 44, n. 7, pp. 56 –
62, 7 2006.

[5] SANCHEZ, L., MUÑOZ, L., GALACHE, J. A., et al., “SmartSantander: IoT
experimentation over a smart city testbed,” Computer Networks, v. 61,
pp. 217–238, 2014.

[6] XU, K., QU, Y., YANG, K., “A tutorial on the Internet of Things: From a
heterogeneous network integration perspective,” IEEE Network, v. 30,
n. 2, pp. 102–108, 2016.

[7] BONOMI, F., MILITO, R., ZHU, J., et al., “Fog computing and its role in
the Internet of Things.” In: ACM Workshop on Mobile Cloud Computing
(MCC), pp. 13–16, Aug. 2012.

[8] LI, W., SANTOS, I., DELICATO, F. C., et al., “System modelling and per-
formance evaluation of a three-tier Cloud of Things,” Future Generation
Computer Systems, 2016.

[9] WONG, J. L., JAFARI, R., POTKONJAK, M., “Gateway placement for la-
tency and energy efficient data aggregation.” In: 29th Annual IEEE In-
ternational Conference on Local Computer Networks, pp. 490–497. IEEE,
2004.

88

[10] UMER, T., AMJAD, M., AFZAL, M. K., et al., “Hybrid rapid response routing
approach for delay-sensitive data in hospital body area sensor network.”
In: Proceedings of the 7th International Conference on Computing Com-
munication and Networking Technologies, p. 3. ACM, 2016.

[11] GHAFOOR, S., REHMANI, M. H., CHO, S., et al., “An efficient trajectory de-
sign for mobile sink in a wireless sensor network,” Computers & Electrical
Engineering, v. 40, n. 7, pp. 2089–2100, 2014.

[12] ALI, J., DYO, V., “Coverage and mobile sensor placement for vehicles on pre-
determined routes: a greedy heuristic approach.” In: 14th International
Joint Conference on e-Business and Telecommunications (ICETE 2017).
SCITEPRESS, 2017.

[13] GAO, Y., DONG, W., GUO, K., et al., “Mosaic: A low-cost mobile sensing
system for urban air quality monitoring.” In: 35th Annual IEEE Interna-
tional Conference on Computer Communications (INFOCOM’2016), pp.
1–9. IEEE, 2016.

[14] ZHAO, D., MA, H., LIU, L., et al., “On opportunistic coverage for urban
sensing.” In: 10th International Conference on Mobile Ad-Hoc and Sensor
Systems (MASS), pp. 231–239. IEEE, 2013.

[15] ZOYSA, K. D., KEPPITIYAGAMA, C., SENEVIRATNE, G. P., et al., “A
public transport system based sensor network for road surface condition
monitoring.” In: Workshop on Networked Systems for Developing Regions.
NSDR, 2007.

[16] MARJOVI, A., ARFIRE, A., MARTINOLI, A., “High resolution air pollution
maps in urban environments using mobile sensor networks.” In: 2015 In-
ternational Conference on Distributed Computing in Sensor Systems, pp.
11 – 20. IEEE, 2015.

[17] CRUZ, P., COUTO, R. S., COSTA, L. H. M. K., “Um Algoritmo de Posi-
cionamento de Pontos de Coleta para uma Rede de Sensores Baseada em
ônibus Urbanos.” In: XXXV Simpósio Brasileiro de Redes de Computa-
dores e Sistemas Distribuídos (SBRC’2017), 2017.

[18] CRUZ, P., COUTO, R. S., COSTA, L. H. M. K., “An algorithm for sink posi-
tioning in bus-assisted smart city sensing,” Future Generation Computer
Systems, pp. 761–769, Oct. 2017. Impact Factor: 5.768.

89

[19] CRUZ, P., COUTO, R. S., LUCENA, A., et al., “Estratégias de pré-
processamento para posicionamento de pontos de coleta em redes de
sensores móveis.” In: 50o Simpósio Brasileiro de Pesquisa Operacional
(SBPO’2018), 2018.

[20] CRUZ, P., COUTO, R. S., COSTA, L. H. M. K., “Análise da Cobertura
Espacial de uma Rede de Sensores Baseada em Ônibus Urbanos.” In:
Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos
(SBRC’2018), v. 36, 2018.

[21] CRUZ, P., COUTO, R. S., COSTA, L. H. M. K., et al., “On the Coverage of
Bus-Based Mobile Sensing,” Sensors (Basel, Switzerland), v. 18, n. 6,
pp. 1–12, 2018. Impact Factor: 3.031.

[22] CRUZ, P., COUTO, R. S., COSTA, L. H. M. K., et al., “Qu’attendre de la
collecte de données dans une ville par des bus équipés de capteurs?” In:
Rencontres Francophones sur la Conception de Protocoles, l’Evaluation de
Performance et l’Expérimentation des Réseaux de Communication, v. 4,
2019.

[23] CRUZ, P., COUTO, R. S., COSTA, L. H. M. K., et al., “A delay-aware cov-
erage metric for bus-based sensor networks,” Computer Communications,
v. 156, pp. 192–200, 2020.

[24] CRUZ, P., COUTO, R. S., COSTA, L. H. M. K., et al., “Per-Vehicle Cov-
erage in a Bus-Based General-Purpose Sensor Network,” IEEE Wireless
Communications Letters, 2020.

[25] CRUZ, P., SILVA, F. F., PACHECO, R. G., et al., “SensingBus: Using Bus
Lines and Fog Computing for Smart Sensing the City,” IEEE Cloud Com-
puting, pp. 58–69, 2018. Impact Factor: 4.393.

[26] CRUZ, P., SILVA, F. F., PACHECO, R. G., et al., “SensingBus: um Sis-
tema de Sensoriamento Baseado em ônibus Urbanos.” In: XXXV Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuıdos, 2017.

[27] AKYILDIZ, I. F., SU, W., SANKARASUBRAMANIAM, Y., et al., “A sur-
vey on sensor networks,” IEEE Communications magazine, v. 40, n. 8,
pp. 102–114, 2002.

[28] DONG, W., GUAN, G., CHEN, Y., et al., “Mosaic: Towards City Scale Sensing
with Mobile Sensor Networks.” In: IEEE 21st International Conference
on Parallel and Distributed Systems (ICPADS’2015), pp. 29–36. IEEE,
2015.

90

[29] GUAN, G., CHEN, Y., GUO, K., et al., “Low-cost urban air quality monitoring
with Mosaic.” In: Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 642–643. IEEE, 2016.

[30] ABERER, K., SATHE, S., CHAKRABORTY, D., et al., “OpenSense: open
community driven sensing of environment.” In: ACM SIGSPATIAL In-
ternational Workshop on GeoStreaming, pp. 39–42. ACM, 2010.

[31] APTE, J. S., MESSIER, K. P., GANI, S., et al., “High-Resolution Air Pol-
lution Mapping with Google Street View Cars: Exploiting Big Data,”
Environmental Science & Technology, v. 51, n. 12, pp. 6999–7008, Jun.
2017.

[32] VON FISCHER, J. C., COOLEY, D., CHAMBERLAIN, S., et al., “Rapid,
Vehicle-Based Identification of Location and Magnitude of Urban Natural
Gas Pipeline Leaks,” Environmental Science & Technology, v. 51, n. 7,
pp. 4091–4099, Mar. 2017.

[33] ALSINA-PAGÈS, R. M., HERNANDEZ-JAYO, U., ALÍAS, F., et al., “De-
sign of a mobile low-cost sensor network using urban buses for real-time
ubiquitous noise monitoring,” Sensors, v. 17, n. 1, pp. 57, 2016.

[34] DIAS, D. S., COSTA, L. H. M. K., DE AMORIM, M. D., “Data offloading
capacity in a megalopolis using taxis and buses as data carriers,” Vehicular
communications, v. 14, pp. 80–96, 2018.

[35] HU, Y., XUE, Y., LI, Q., et al., “The sink node placement and performance
implication in mobile sensor networks,” Mobile Networks and Applications,
v. 14, n. 2, pp. 230–240, 2009.

[36] LIANG, Q., FAN, Y., “An Optimal Sink Placement for High Coverage and Low
Deployment Cost in Mobile Wireless Sensor Networks.” In: International
Symposium on Intelligence Computation and Applications, pp. 543–551.
Springer, 2017.

[37] FU, Q., ZHANG, L., FENG, W., et al., “Dawn: A density adaptive routing
algorithm for vehicular delay tolerant sensor networks.” In: 2011 49th
Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 1250–1257. IEEE, 2011.

[38] FENG, Y., GONG, H., FAN, M., et al., “A distance-aware replica adaptive data
gathering protocol for delay tolerant mobile sensor networks,” Sensors,
v. 11, n. 4, pp. 4104–4117, 2011.

91

[39] MERINO, J., CABALLERO, I., RIVAS, B., et al., “A data quality in use model
for big data,” Future Generation Computer Systems, v. 63, pp. 123–130,
2016.

[40] ZHAO, D., MA, H., LIU, L., et al., “Opportunistic coverage for urban vehicular
sensing,” Computer Communications, v. 60, pp. 71–85, 2015.

[41] ZHANG, M., YANG, P., TIAN, C., et al., “Quality-aware sensing coverage in
budget-constrained mobile crowdsensing networks,” IEEE Transactions
on Vehicular Technology, v. 65, n. 9, pp. 7698–7707, 2015.

[42] CHON, Y., LANE, N. D., KIM, Y., et al., “Understanding the coverage and
scalability of place-centric crowdsensing.” In: Proceedings of the 2013
ACM international joint conference on Pervasive and ubiquitous com-
puting, pp. 3–12. ACM, 2013.

[43] MASUTANI, O., “A sensing coverage analysis of a route control method for
vehicular crowd sensing.” In: 2015 IEEE International Conference on Per-
vasive Computing and Communication Workshops (PerCom Workshops),
pp. 396–401. IEEE, 2015.

[44] ALBINO, V., BERARDI, U., DANGELICO, R. M., “Smart cities: Definitions,
dimensions, performance, and initiatives,” Journal of Urban Technology,
v. 22, n. 1, pp. 3–21, 2015.

[45] SINAEEPOURFARD, A., GARCIA, J., MASIP-BRUIN, X., et al., “Estimat-
ing Smart City sensors data generation.” In: 2016 Mediterranean Ad Hoc
Networking Workshop (Med-Hoc-Net’2016), pp. 1–8. IEEE, 2016.

[46] ZHOU, H., WANG, H., LI, X., et al., “A survey on mobile data offloading
technologies,” IEEE Access, v. 6, pp. 5101–5111, 2018.

[47] BARON, B., SPATHIS, P., DE AMORIM, M. D., et al., “Mobility as an Al-
ternative Communication Channel: A Survey,” IEEE Communications
Surveys & Tutorials, v. 21, n. 1, pp. 289–314, 2018.

[48] DA SILVA, V. B., DA SILVA, F. O., CAMPISTA, M. E. M., et al., “A
trajectory-based approach to improve delivery in drive-thru internet sce-
narios.” In: 2013 IEEE International Conference on Communications
Workshops (ICC), pp. 489–494. IEEE, 2013.

[49] RUBINSTEIN, M. G., ABDESSLEM, F. B., DE AMORIM, M. D., et al.,
“Measuring the capacity of in-car to in-car vehicular networks,” IEEE
Communications Magazine, v. 47, n. 11, 2009.

92

[50] KARIV, O., HAKIMI, S. L., “An algorithmic approach to network location
problems. I: The p-centers,” SIAM Journal on Applied Mathematics, v. 37,
n. 3, pp. 513–538, 1979.

[51] IPLANRIO. “Descrição do Dataset Conjunto GPS ônibus.” Avail-
able at http://dadosabertos.rio.rj.gov.br/apitransporte/
apresentacao/pdf/documentacao_gps.pdf (Retrieved on June 12,
2018), Dec 2016.

[52] IPLANRIO. “Documentação de paradas das linhas de ônibus.” Avail-
able at http://dadosabertos.rio.rj.gov.br/apiTransporte/
Apresentacao/csv/gtfs/onibus/paradas/gtfs_todas-linhas-
paradas.csv (Retrieved on November 10, 2016), Dec 2016.

[53] GOZÁLVEZ, J., SEPULCRE, M., BAUZA, R., “IEEE 802.11p vehicle to infras-
tructure communications in urban environments,” IEEE Communications
Magazine, v. 50, n. 5, 2012.

[54] DIAS, D., COSTA, L. H. M. K., “Análise da Capacidade de Dados de uma Rede
de Ônibus Urbanos.” In: XXXIV Simpósio Brasileiro de Telecomunicações
e Processamento de Sinais. SBrT, 2016.

[55] PIPINO, L. L., LEE, Y. W., WANG, R. Y., “Data quality assessment,” Com-
munications of the ACM, v. 45, n. 4, pp. 211–218, 2002.

[56] STA, H. B., “Quality and the efficiency of data in smart-cities,” Future Gener-
ation Computer Systems, 2016.

[57] CHURCH, R., VELLE, C. R., “The maximal covering location problem,” Pa-
pers in regional science, v. 32, n. 1, pp. 101–118, 1974.

[58] KAPLAN, E. D., HEGARTY, C. J., “Understanding GPS - principles and
applications second edition. ARTECH HOUSE,” Inc., MA, pp. 153–173,
2006.

[59] GOOGLE. “Google Maps API Snap to Roads.” Available at https://
developers.google.com/maps/documentation/roads/snap (Retrieved
on June 12, 2018), May 2018.

[60] GOOGLE. “Google Place IDs.” Available at https://developers.google.
com/maps/documentation/roads/intro (Retrieved on June 12, 2018),
May 2018.

93

http://dadosabertos.rio.rj.gov.br/apitransporte/apresentacao/pdf/documentacao_gps.pdf
http://dadosabertos.rio.rj.gov.br/apitransporte/apresentacao/pdf/documentacao_gps.pdf
http://dadosabertos.rio.rj.gov.br/apiTransporte/Apresentacao/csv/gtfs/onibus/paradas/gtfs_todas-linhas-paradas.csv
http://dadosabertos.rio.rj.gov.br/apiTransporte/Apresentacao/csv/gtfs/onibus/paradas/gtfs_todas-linhas-paradas.csv
http://dadosabertos.rio.rj.gov.br/apiTransporte/Apresentacao/csv/gtfs/onibus/paradas/gtfs_todas-linhas-paradas.csv
https://developers.google.com/maps/documentation/roads/snap
https://developers.google.com/maps/documentation/roads/snap
https://developers.google.com/maps/documentation/roads/intro
https://developers.google.com/maps/documentation/roads/intro

[61] RIOÔNIBUS. “Dados operacionais mensais do MUNICÍPIO DO RIO DE
JANEIRO ano de 2016 (2º trimestre).” Available at http://www.
rioonibus.com/2016/12/07/planilhas/ (Retrieved on June 12, 2018),
2017.

[62] OPENSTREETMAP CONTRIBUTORS. “South America dump retrieved
from https://download.geofabrik.de/south-america.html .” https:
//www.openstreetmap.org, 2017.

[63] ZOGG, J.-M., “GPS - Essentials of Satellite Navigation.” Technical report,
UBlox, 2009.

[64] LUXEN, D., VETTER, C., “Real-time routing with OpenStreetMap data.”
In: 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS ’11, pp. 513–516, 2011.

[65] MEEGAHAPOLA, L., KANDAPPU, T., JAYARAJAH, K., et al., “BuScope:
Fusing Individual & Aggregated Mobility Behavior for “Live” Smart City
Services.” In: MobiSys, pp. 41–53, 2019.

[66] MEEGAHAPOLA, L., ATHAIDE, N., JAYARAJAH, K., et al., “Inferring Ac-
curate Bus Trajectories from Noisy Estimated Arrival Time Records.” In:
IEEE ITSC, pp. 4517–4524, 2019.

[67] LIU, X., ZHOU, Y., RAU, A., “Smart card data-centric replication of the multi-
modal public transport system in Singapore,” J. Transp. Geo., v. 76,
pp. 254–264, 2019.

[68] BAYLAR, A., OZKAN, F., UNSAL, M., “Effect of air inlet hole diameter of
venturi tube on air injection rate,” KSCE Journal of Civil Engineering,
v. 14, n. 4, pp. 489–492, 2010. ISSN: 1976-3808. doi: 10.1007/s12205-
010-0489-6. Available at: <http://dx.doi.org/10.1007/s12205-010-
0489-6>.

[69] CRUZ, P., PINTO NETO, J. B., CAMPISTA, M. E. M., et al., “On the Accu-
racy of Data Sensing In the Presence of Mobility.” In: 7th International
Conference on the Network of the Future (NoF’2016), Nov. 2016.

94

http://www.rioonibus.com/2016/12/07/planilhas/
http://www.rioonibus.com/2016/12/07/planilhas/
https://download.geofabrik.de/south-america.html
 https://www.openstreetmap.org
 https://www.openstreetmap.org
http://dx.doi.org/10.1007/s12205-010-0489-6
http://dx.doi.org/10.1007/s12205-010-0489-6

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Related Work
	Vehicle-based sensing
	Fog node placement and delivery delay
	Coverage of vehicle-based MWSNs

	Bus-based Urban Sensing
	Target applications
	SensingBus
	Networking context
	System architecture
	Fog level
	Cloud level

	A Delay Optimization Model for Bus-based MWSNs
	Delays on a constrained number of Fog nodes
	Sensing node memory requirements
	Assuming full delivery on single contact
	Candidate Fog node removal
	Optimal Fog node placement
	The p-center problem

	A fast algorithm for Fog node selection
	Complexity analysis
	Comparison with the optimal solution

	Applying the algorithm to real-world data
	Dataset analysis
	Algorithm results

	Reducing the problem cardinality
	Cardinality reduction applied to a real scenario
	Dataset construction
	Reduction of dataset cardinality
	Optimal results after cardinality reduction

	Remarks

	A Coverage Metric for Bus-based MWSNs
	A simple coverage model
	The city map as a graph
	Coverage as a function of street segments
	Mixed-Integer Linear Programming formulation
	Maximal Covering Location Problem
	Case study
	Obtaining data
	Data analysis
	Experiment execution
	Results

	A delay-aware coverage metric
	Constructing the covered set
	Experimental analysis
	Comparison with another coverage metric
	Comparison with the static case

	Per-vehicle coverage analysis
	Coverage contribution metric
	Data-driven analysis
	Contribution ranking

	Remarks

	The SensingBus Prototype
	Sensing nodes
	Fog nodes
	Cloud node
	Prototype analysis
	Sensing accuracy in the presence of mobility
	Fog node performance

	Remarks

	Conclusions and Future Work
	Data delivery delays
	Coverage metric
	SensingBus prototype
	Future work

	References

