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NOVAS REPRESENTAÇÕES TEMPO-FREQUENCIAIS PARA EXTRAÇÃO
DE INFORMAÇÃO MUSICAL

Maurício do Vale Madeira da Costa

Abril/2020
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Representações tempo-frequenciais (RTFs) são uma das ferramentas mais
valiosas em processamento digital de áudio, sendo utilizadas em diversas aplicações.
RTFs podem ser calculadas tendo diferentes resoluções em tempo e em frequência e
podem, inclusive, representar determinadas variações em frequência, como no caso
do uso da transformada de fan-chirp. A maior deficiência de RTFs é o espalhamento
de energia relacionado à não-estacionariedade do sinal na região da janela de análise.
Esse tipo de artefato geralmente resulta em prejuízo de desempenho da aplicação
que utilize tal RTF; portanto, ter RTFs que representem precisamente os sinais de
interesse é essencial para melhorar o desempenho de tais sistemas.

Uma forma de se calcular RTFs de alta resolução é combinar RTFs de difer-
entes resoluções de forma a preservar os melhores aspectos de cada uma. Essa é a
ideia geral que embasa todos os métodos propostos nessa tese, da qual o principal
objetivo é possibilitar a representação precisa de sinais de melodia principal em con-
textos polifônicos. Os métodos são classificados como: combinações ponto-a-ponto,
combinações baseadas em informação local, e combinações baseadas em análise de
imagem. Seus desempenhos são medidos por meio de diversos experimentos, em que
são utilizados sinais sintéticos controlados e sinais reais, e os resultados apontam o
método proposto de interpolação de fan-chirps em multirresolução como o melhor
em termos de largura de banda de frequência, definição de onset e faixa dinâmica.

Ademais, um método para anotação automática foi desenvolvido com a finalidade
de facilitar o trabalho de transcrição de padrões rítmicos. Esse método utiliza RTFs
com baixa resolução frequencial e um procedimento de agrupamento para classificar
os tipos de toque. Estima-se uma acurácia de cerca de 75% a 80% em termos de
classificação inicial.
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Time-frequency representations (TFR) are one of the most valuable tools in dig-
ital audio processing, being used in many applications. TFRs can be computed
having different time or frequency resolutions and can even represent a certain fre-
quency variation over time, e.g. when using the fan-chirp transform. The main
shortcoming of TFRs is the energy smearing related to non-stationarity of the signal
within the analysis windows used. This kind of artifact usually results in perfor-
mance degradation of applications that make use of TFRs, hence providing TFRs
that precisely represent the signals of interest is crucial to enhance the performance
of such systems.

A way to compute a high-resolution TFR is to combine TFRs having different
resolutions in such a way that preserves the best aspects of each representation. This
is the general idea behind all methods proposed in this thesis, of which the main goal
is to allow for a sharp representation of main melody signals in polyphonic contexts.
The methods are classified as: bin-wise combinations, combinations based on local
information, and methods based on image analysis. Their performance are assessed
by means of several experiments using both synthetic and real-world signals, and
the results indicate the proposed multi-resolution fan-chirp interpolation method as
the best in terms of frequency bandwidth, onset definition and dynamic range.

Also, an automatic annotation scheme was devised to diminish the human effort
in the transcription of rhythm patterns. This method utilizes TFRs with coarse
frequency resolution and a clustering procedure to classify the types of hit. The
estimated accuracy in terms of classification is around 75% to 80%.
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Chapter 1

Presentation

1.1 Introduction

Music is one of the most universal components in culture, and it has been produced
since the earliest ages of the mankind, being one of the first forms of expression
and communication and playing an important role in rituals, celebrations and cere-
monies. Since the invention of the phonograph in 1877 by Thomas Edison [1], with
which for the first time musical performances could be registered and reproduced,
the recording technology has evolved, and many different types of media have been
used for this purpose. In the last decades, with the advent of digital audio, music has
became more and more accessible, especially nowadays with the low cost associated
with digital devices and music streaming services.

The digital revolution has contributed for a democratization of the access to mu-
sic consumption and production by considerably decreasing the cost associated with
players, storage devices, recording equipment and software for music production.
Furthermore, not only the cost of equivalent tools that existed before has dropped
in the digital era, but also the development of new techniques increased the power
for analyzing audio signals [2–27].

Digital signal processing has brought a whole new universe of possibilities for
manipulating and analyzing signals, being one of the most important set of tools
and techniques in the information era, along with machine learning. Tasks such
as automatic music transcription [28–47] and sound source separation [11, 46, 48–
57] can now be performed by digital processors and provide new ways of human
interaction with music.

In this context, being able to identify the energy concentration in frequency over
time is crucial. The mathematical tools that allow signals to be represented in both
time and frequency are the so-called time-frequency representations (TFRs) [58]. In
audio signal processing in general, several state-of-the-art techniques depend directly
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on the TFR of the signal under analysis [29–34, 36, 37, 40, 41, 59–67], usually
being the only source of information available. Also, in many applications in the
area of music information retrieval (MIR), TFRs are often used as input for their
calculations. Therefore, providing a sparse1 TFR, in which the different components
are well defined and as separated as possible from each other, may be a good way
to improve the performance of such systems.

In practice, when using common TFRs, e.g. the short-time Fourier transform
(STFT), one can improve frequency resolution by using larger analysis windows,
to the detriment of time resolution, and also the other way around, but not both
simultaneously—as dictated by the uncertainty principle [58]; one must cope with
this compromise by choosing an optimum size for the analysis window, which will
depend on the application. For instance, in the study of microtiming2 [62, 68, 69],
the identification of onsets (e.g. when a drum is hit or a guitar string is plucked)
requires fine time resolution, thus calling for short analysis windows. On the other
hand, for pitch related tasks [29, 30, 34–36, 43, 70, 71], the requirement is a frequency
resolution that allows one to discriminate between different musical notes, hence the
need for long analysis windows. Moreover, the analysis of expression includes the
careful dynamic following of pitch, which can vary continually with time, e.g. when
a musician plays or sings using vibrato or glissando. Such fast pitch variations call
for a sufficiently fine resolution of frequency over time.

Although, in essence, the statement of the uncertainty principle is unbreakable,
depending on the nature of the signal to be analyzed and the mathematical proper-
ties that one may not be interested in preserving, some techniques can enhance the
overall time-frequency resolution [58, 72–91]. Each method has its own limitations
and is better suited for signals with certain characteristics.

1.2 Motivation and Scope of this Thesis

In many genres of music, the main melody represents a fundamental element of the
songs, usually being the most important and memorable part of it. For this reason,
dominant melody analysis is one of the most important tasks in the area of MIR,
and has actively been studied by its research community [28, 40–47, 49–53, 55–
57, 66, 71, 92–99] for many years. The majority of the state-of-the-art methods in
MIR make use of machine learning techniques, such as neural networks [14, 31, 40,
41, 43, 49, 50, 53, 53, 56, 59, 62, 92, 93, 100–104], and of TFRs of the audio signal
as input. Therefore, this and many other applications in the context of MIR may

1Here, the term ‘sparsity’ is used in the sense of energy concentration in a small number of
coefficients.

2Microtiming can be considered the small deviations from regular time a performer applies
when playing a musical piece, such as what is identified as swing in jazz.
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profit from TFRs with higher resolution. Especially in the case of melody analysis,
TFRs which are able to represent the typical dynamic frequency variation observed
in such signals seem to be a valuable target.

Although the area of TFRs has already a solid and well stablished mathemati-
cal foundation [58, 81], new methods for generating high-resolution representations
are still being developed [72–91, 105]. This thesis aims at studying and designing
methods for this purpose, especially for representing polyphonic signals containing
fast frequency variations. The main idea that pervades all the approaches present
in this work is to combine different TFRs so that the final TFR gathers the best
characteristics of each one. Since the main goal is to provide representations for
analysis purposes, this work is limited to generating only the magnitude spectro-
grams, without phase information or reconstruction to time domain, which can be
addressed in future work.

Also in the context of MIR, this thesis develops some work over the Brazil-
ian Rhythmic Instruments Dataset (BRID) [106], a dataset comprised of solo- and
multiple-instrument recordings, spanning 10 different percussion instrument classes
and 5 different Brazilian traditional rhythm classes. This dataset is copyright-free,
and available for research within the MIR community, helping to fill a gap con-
cerning this genre in the literature. Annotations of beat and down-beat have been
made, and the ones related to type of articulation are in progress. An automatic
scheme is proposed for helping on this last annotation procedure. This dataset
will allow one to perform various rhythmic analyses, e.g. microtiming and pattern
recognition [106].

Part of this thesis is related to the StaReL3 project, which have counted with col-
laboration of researchers from the Universidade Federal do Rio de Janeiro (UFRJ),
in Brazil, the universities Télécom Paris and CentraleSupélec, in France, and the
Universidad de la República, in Uruguay. The Brazilian researchers were financed
by the federal Brazilian agency CAPES. In this project, tools for the computational
analysis of rhythm and expressiveness in Afro-rooted Latin-American music (samba
and candombe) were developed, along with the production of datasets and some of
the methods proposed in this thesis. The research related to this project took place
at the Télécom Paris university, from January to September of 2019.

This thesis is aligned with open and reproducible research guidelines, so all the
ideas, models and codes produced within the context of this research will be shared
with the community under open licenses whenever possible.

3For details, visit www.smt.ufrj.br/~starel.
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1.3 Thesis Overview

The text is divided into two parts: Part I, which presents a background and the
proposed methods for combining time-frequency representations; and Part II, which
contains experiments, applications and tools for music information retrieval. Chap-
ter 2, which opens Part I, comprises an introduction to time-frequency representa-
tions, where some of the principal representations used for musical signal analysis
are presented; Chapter 3 presents bin-wise combinations of spectrograms; Chapter 4
presents methods for combination of spectrograms based on local information; and
Chapter 5 presents combinations based on image analysis. In Part II, Chapter 6
presents experiments focused on main melody analysis, performed with some of the
methods studied; Chapter 7 presents a method for automatic onset classification,
along with the BRID dataset; and in Chapter 8 the document ends with the main
conclusions of this work, along with directions for future research.

1.4 Publications Summary

In Chapter 3, it is proposed a novel method for bin-wise combination of spectro-
grams, namely, the sample weighted geometric mean (SWGM), which performs a
weighted geometric mean whose weights are given by a function of the samples to
be combined themselves.

• DA COSTA, M. V. M., BISCAINHO, L. W. P. “Combining Time-Frequency
Representations for Music Information Retrieval”. In: Anais do 15o Congresso
de Engenharia de Áudio da AES-Brasil, Florianópolis, Brazil, October 2017.

In Chapter 4, two combination methods based on local information that use the
Gini index as a measure of sparsity are proposed: the local sparsity (LS) and the
smoothed local sparsity (SLS) methods.

• DA COSTA, M. V. M., BISCAINHO, L. W. P. “Combining Time-Frequency
Representations via Local Sparsity Criterion”. In: Proceedings of the 2nd
AES Latin American Congress of Audio Engineering, Montevideo, Uruguay,
September 2018.

• DA COSTA, M. V. M., APOLINÁRIO, I. F., BISCAINHO, L. W. P. “Sparse
Time-Frequency Representations for Polyphonic Audio Based on Combined
Efficient Fan-Chirp Transforms”, Journal of the Audio Engineering Society, v.
67, n. 11, pp. 894–905, November 2019.

In Chapter 5, it is presented a new strategy for estimating and combining dif-
ferent instances of the fan-chirp transform, whose frequency slope parameters are
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computed via a fast implementation based on the structure tensor: the frame-based
method for estimation of main directions (FEMD).

• APOLINÁRIO, I. F., DA COSTA, M. V. M., BISCAINHO, L. W. P. “Struc-
ture Tensor Applied to Parameter Estimation in the Fan-Chirp Transform”. In:
Proceedings of the 2nd AES Latin American Congress of Audio Engineering,
Montevideo, Uruguay, September 2018.

• DA COSTA, M. V. M., APOLINÁRIO, I. F., BISCAINHO, L. W. P. “Sparse
Time-Frequency Representations for Polyphonic Audio Based on Combined
Efficient Fan-Chirp Transforms”, Journal of the Audio Engineering Society, v.
67, n. 11, pp. 894–905, November 2019.

Also in Chapter 5, the structure tensor is used in another novel method that
combines samples of a multi-resolution dictionary of fan-chirp representations: the
multi-resolution fan-chirp interpolation method (MRFCI).

• DA COSTA, M. V. M., BISCAINHO, L. W. P. “High-Definition Time- Fre-
quency Representation Based on Adaptive Combination of Fan-Chirp Trans-
forms via Structure Tensor”. In: Proceedings of the 22nd International Confer-
ence on Digital Audio Effects (DAFx), Birmingham, United Kingdom, Septem-
ber 2019.

In Chapter 7, it is described a novel dataset comprising a wide range of recordings
and annotations of Brazilian traditional rhythmic instruments.

• MAIA, L. S., DE TOMAZ JÚNIOR, P. D., FUENTES, M., et al. “A Novel
Dataset of Brazilian Rhythmic Instruments and Some Experiments in Compu-
tational Rhythm Analysis”. In: Proceedings of the 2nd AES Latin American
Congress of Audio Engineering, Montevideo, Uruguay, September 2018.
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Part I

Time-Frequency Representations
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Chapter 2

Introduction to Time-Frequency
Representations

When dealing with audio signals, knowing its frequency content can be very useful.
The most common tools used to this end are transforms which convert signals in
time domain into signals in frequency domain. If the audio signal under scrutiny
is stationary during the period in which it is being observed, time to frequency
transforms, e.g. the Fourier transform, can provide sparse results, i.e. a signal in
the frequency domain containing very pronounced peaks. Nevertheless, considering
audio signals to be perfectly stationary is unreasonable, since their frequency content
varies in time. Therefore, in order to focus the analysis around a given time τ , during
which the signal could be approximately stationary, it is necessary to use a time
windowing function. Such a function, e.g. Gaussian or Hamming [107], is used to
emphasize parts of this signal near τ , while suppressing the remaining (unwanted)
parts of it. Shifting such a function in time and multiplying it by the signal is
then what allows one to analyze the evolution of the spectrum of the given signal
over time. This way, the corresponding spectrum (i.e. the signal in the frequency
domain) will inform the frequency content of the signal around that specific instant.
By performing this procedure, one represents the signal in a time-frequency domain.

Time-frequency analysis methods are among the most important tools in the
audio signal processing area, being a mature field with a solid mathematical foun-
dation [58]. Due to the great utility of TFRs in different contexts, a wide variety
of TFRs and methods for enhancing such representations have been developed over
the years. In this chapter, some of the principal time-frequency representations used
for musical signal analysis will be briefly studied.
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2.1 The Spectrogram

The most used time-to-frequency transform is the Fourier transform, being adopted
in many procedures [29, 30, 32–34, 36, 37, 59–62, 64, 65] due to its straightforward
interpretation and low computational cost. The Fourier transform [107] of a real-
valued signal x(t), denoted as F(x(t)) = X(f), is given by its projection on a basis
comprised of complex exponentials with different frequencies, and can be defined as

X(f) ,
∫ ∞
−∞

x(t)e−j2πftdt, (2.1)

where t denotes time, f denotes frequency and j2 = −1.
A real-valued analysis window w, used for analyzing a specific excerpt of the

signal, can be continuously shifted in time, providing a spectrum for each instant
τ of the windowed version of x(t). This way, the spectrogram, or energy density
spectrum, X(τ, f) is defined as the squared1 absolute value of the short-time Fourier
transform (STFT):

X(τ, f) ,

∥∥∥∥∫ ∞
−∞

x(t)w(t− τ)e−j2πftdt

∥∥∥∥2

, (2.2)

where ‖ · ‖ denotes the magnitude of its complex argument.
In the discrete time domain n, the Fourier transform (DTFT) of a given signal

x can be computed as

X(ejΩ) ,
∞∑

n=−∞

xne−jΩn, (2.3)

where X(ejΩ) is continuous and periodical, with period 2π.
The spectrum of a given signal x with finite duration of N samples is continuous

and it can be completely summarized by N equally spaced samples, computed by
the so called discrete Fourier transform (DFT) as

Xk ,
N−1∑
n=0

xne−j
2π
N
kn, (2.4)

where k is the frequency index. In practice, more efficient algorithms, namely, Fast
Fourier Transform (FFT) algorithms [107], are used to compute the DFT.

The discrete version of the spectrogram, X ∈ RK×M , follows the same principle
of using a window to focus on some part of the signal. Considering that the time
support of the analysis window is limited in N samples, the discrete spectrogram

1The spectrogram can also be defined simply as the magnitude of the STFT.
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can be described by

Xk,m ,

∥∥∥∥∥
N−1∑
n=0

xn−hmwne−j
2π
N
kn

∥∥∥∥∥
2

, (2.5)

where k ∈ K , {0, 1, 2, ..., K − 1} is the frequency index, m ∈ M , {1, 2, 3, ...,M}
is the time index of the STFT, wn is the analysis window with N samples used for
computation of the spectrogram, and h ∈ N is the analysis hop size in samples. The
time-frequency bins can then be represented in a matrix with the following form:

X =



XK−1,1 XK−1,2 . . . XK−1,M−1 XK−1,M

XK−2,1 XK−2,2 . . . XK−2,M−1 XK−2,M

...
... . .

. ...
...

X1,1 X1,2 . . . X1,M−1 X1,M

X0,1 X0,2 . . . X0,M−1 X0,M


. (2.6)

This matrix can then be interpreted as an image having a vertical frequency
axis and a horizontal time axis. Note that this matrix has the vertical axis inverted
in comparison with the line indexes, so that it will display the frequency axis in
ascending order from bottom to top, providing a more intuitive visualization. Also,
since audio signals are real, the second half of the magnitude spectrum will be just
a mirrored version of the first half; hence, assuming that N is even, all information
can be fully represented by the first half of the spectrum, i.e. K = 1 +N/2.

Although the spectrogram is not a true joint distribution of time and frequency,
since it does not satisfy the fundamental requirements of marginals due to the win-
dowing process [58], i.e. ∑

k

Xk,m 6= ‖xm‖2 (2.7)∑
m

Xk,m 6= ‖Xk‖2, (2.8)

it is a time-frequency distribution that gives the energy density spectrum over dis-
crete time. It has the limitation dictated by the uncertainty principle [58]: a signal
cannot be represented with arbitrarily high time and frequency resolutions simul-
taneously. As the length of the analysis window gets longer, a greater frequency
resolution can be achieved, as longer excerpts of the signal are projected into the
complex exponentials. On the other hand, it provides a poorer time resolution, for
the same reason. As a consequence, non-stationary parts of the signal, such as at-
tack of notes or fast frequency variations, become blurred on the representation, for
they are integrated with their neighborhood. Choosing a generally good analysis
window length is then a typical compromise in all tasks in which the spectrogram
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is used.
As an example of this principle, two different spectrograms of a piano recording,

one using an analysis window of 21.3ms and another using a window of 85.3ms,
are depicted in Figures 2.1, where the first six harmonics of a note are highlighted,
and 2.22, respectively. Note that the harmonics from a single note are represented
in a regular interval in frequency, due to the linear scale of the frequency axis.
As expected, the frequency lines, which are disposed horizontally, are much better
defined in the spectrogram using the longer analysis window, while the onsets, i.e.
the instant of the beginning of notes, are better defined in the spectrogram using
the shorter analysis window.

Figure 2.1: Spectrogram (21.3ms) of a piano signal.

Figure 2.2: Spectrogram (85.3ms) of a piano signal.

It is worth highlighting that the spectrogram has a linear distribution in both
2All spectrograms presented in this thesis are depicted in log-magnitude, with a dynamic range

of 80 dB.
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time and frequency axes. Therefore, for analyzing musical signals, in which the
notes typically have a geometric frequency distribution,3 this TFR exhibits too high
resolution for high-frequency components and too low resolution for low-frequency
components.

2.2 The Fan-Chirp Transform

In order to have a good (sparse) representation of a signal in a spectrogram, its win-
dowed excerpts must be well represented by the basis in which they are projected,
which is a set of complex exponentials in the case of the STFT-based spectrogram.
This means that this signal must be close to stationary during that period. How-
ever, this is often a poor model for many acoustic sources whose frequency content
changes very dynamically, e.g. singing voice or instruments performing vibratos or
glissandos.

The fan-chirp transform (FChT) [70, 72, 73, 77, 80, 108–110] addresses this issue
by representing harmonic signals whose fundamental frequency varies linearly in
time. As long as the analysis window is short enough for the signal to fit this model,
the representation of fast frequency variations is hopefully far superior than what
the spectrogram is capable of conveying. The main idea is to use a basis composed of
complex exponentials whose frequency varies linearly in time (linear chirps). When
the correct frequency slope is used for the harmonic signal under analysis, all of
its frequency content remains well defined, thus overcoming the energy spreading
observed in a signal with fast frequency variations represented by a spectrogram.

The fan-chirp transform XFChT(f, α) of a given signal x(t), in the continuous
time domain, is defined in [109] as

XFChT(f, α) ,

∞∫
−∞

x(t)φ′α(t)e−j2πfφα(t)dt, (2.9)

where φα(t) is a time linear warping function given by

φα(t) =

(
1 +

1

2
αt

)
t, (2.10)

and α is the chirp rate parameter. Note that the instantaneous frequency ψ(t) at
3In Western music, musical notes are disposed according to the equal-tempered scale. The

minimum interval in this scale is a semitone, whose relation in frequency is given by fnote(i+1) =

fnote(i)
12
√
2, where the frequency fnote(i) related to a given note i in the scale serve as a reference

to the frequency fnote(i+1) of the next note in the scale. This way, the notes are distributed in a
geometric fashion in frequency.
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time instant t is given by

ψ(t) = f
dφα(t)

dt
= f(1 + αt), (2.11)

exhibiting a linear variation in time dictated by parameter α. This means that signal
x(t) can be effectively decomposed into a set of linear chirps, which is suitable for
tracking harmonic signals, as desired, since all the harmonic content will share the
same α.

This transform can be interpreted as a generalization of the Fourier transform,
which is obtained with α = 0. By applying the variable change τ = φα(t) to
Equation (2.9), the time domain itself can be warped, achieving

XFChT(f, α) =

∞∫
−1/α

x(φ−1
α (τ))e−j2πfτdτ = F(x(φ−1

α (τ))), (2.12)

where φ−1
α (τ) is given by

φ−1
α (τ) = − 1

α
+

√
1 + 2ατ

α
. (2.13)

The constraint x(t) = 0 for t ≤ −1/α should be assured to avoid aliasing [108].
Figure 2.3 depicts the central frequency of each channel of the Fourier transform

and the fan-chirp transform in the time-frequency domain. One can see that the
channels of the Fourier transform are set to fixed frequencies, while the channels of
the FChT all converge to a point −1/α in the time axis.
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Figure 2.3: Channels of the Fourier transform and the fan-chirp transform.

In Equation (2.12), it is possible to observe that the FChT has the same formu-
lation of the Fourier transform (Equation (2.2)), with the differences that the input
signal x(t) is pre-warped in time, and the inferior integration limit is changed.

A FChT-based spectrogram4 XFChT ∈ RK×M can be implemented by means
4In this thesis, the term spectrogram will be used in a wider sense to denote every TFR, allowing
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of the short-time fan-chirp transform (STFChT), after resampling the input signal
x [109]:

XFChT
k,m,α ,

∥∥∥∥∥
N−1∑
n=0

x̃α,n−hmwne−j
2π
N
kn

∥∥∥∥∥
2

, (2.14)

where x̃n is the discrete version of the time warped signal x(φ−1
α (τ)), with the aliasing

condition satisfied, and h denotes the hop size. In practice, since x(t) is not available,
x̃n must be obtained by resampling xn.5 The constraint related to the aliasing effect
restricts the usable values of α inside an analysis window with N samples to be
within the interval

− 2Fs/N ≤ α ≤ 2Fs/N. (2.15)

With this formulation, the FChT can profit from a fast implementation of the
Discrete Fourier Transform (DFT), i.e. an FFT algorithm [109].

To yield good results, the α parameter must be correctly estimated. This step
is originally performed via an exhaustive search, in which a predetermined set of
values of α is tested, and the choice of the best one is made by searching for the
value of α that maximizes the salience6 function [70, 109]. Another reliable and
significantly faster way to perform this estimation, proposed in [110], consists in
using the structure tensor [111, 112] image technique to estimate the direction of
the frequency lines, and consequently, the parameter α over time. This method will
be studied in Chapter 5.

Since the fan-chirp transform follows the evolution of the fundamental frequency
in time, larger analysis windows can be successfully used to describe monophonic
harmonic signals. To illustrate this, Figure 2.4 depicts a spectrogram of a synthetic
vibrato signal, computed with 2048 samples. One can see that the frequency lines
with steep slopes are poorly represented. Figure 2.5 depicts a FChT-based spectro-
gram of the same signal, where the frequency components can be seen much better
described.

Note that this method can only well represent one monophonic harmonic sound
source at a time, since the whole TFR follows a specific fundamental frequency
variation. Therefore, the problem of dealing with multiple monophonic sources can
only be tackled by combining multiple instances of STFChT, each one optimized for
representing one source, in a way that the best representations remain in the final

one to better distinguish the time-frequency transforms from the TFRs computed with them.
5In practice, in order to simplify the computation of x̃n, the original signal xn is resampled

to have twice the original sampling frequency and a simple linear interpolation is performed to
estimate x̃n, according to Equation (2.13). In the current implementation, the analysis window is
applied after this resampling procedure.

6The salience function relates the amplitude of the frequency bins with the amplitude of their
harmonics. High salience values are then indicators of the presence of well-defined harmonic
sources.
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Figure 2.4: Spectrogram of a synthetic vibrato signal (N = 2048).

Figure 2.5: FChT-based spectrogram of a synthetic vibrato signal (N = 2048).

TFR. This is also addressed in Chapter 5.

2.3 Log-frequency Transforms

2.3.1 The Constant-Q Transform

Another interesting time-frequency representation, which is very useful for musical
signal analysis, is the constant-Q transform (CQT) [113–116], in which the Q refers
to the quality factor, or selectivity, of the filters implicitly used in the transform.
This transform has the desirable property of providing logarithmic resolution7 in
frequency, which matches the way musical notes ascend in the equal-tempered scale.

7Here, it is useful to distinguish the frequency scale, which is related to the distribution of
the center frequencies of the filters used in the transform, from the frequency resolution, which
is related to the frequency width of these filters. The CQT is usually represented in logarithmic
scale, although it is possible to use a linear scale [116].

14



The quality factor can be defined as

Q =
fk

∆fk
, (2.16)

where fk =
√
fiff is the central frequency of the k-th filter with pass-band8 between

fi and ff , and ∆f = ff − fi.
The CQT is an adaptation of the DFT, whose channels have a constant ∆f =

Fs/N , where Fs is the sampling frequency and N is the number of samples analyzed.
In the case of the CQT, since Q is proportional to Fs, the constant N becomes

Nk =
Fs

∆fk
=
QFs

fk
, (2.17)

which then varies with the channel index k.
With this modification, a CQT can be defined by substituting fk/Fs by Q/Nk,

achieving

XCQT
k =

1√
Nk

Nk−1∑
n=0

wk,nxne−j2πQn/Nk , (2.18)

where window wk,n is a function of n and k, since it must follow the number of
samples used per channel. For this same reason, normalization by 1/

√
Nk is nec-

essary. Similarly to what was defined for the standard spectrogram, a CQT-based
spectrogram XCQT can be computed as

XCQT
k,m =

1√
Nk

∥∥∥∥∥
Nk−1∑
n=0

wk,nxn−hme−j2πQn/Nk

∥∥∥∥∥
2

. (2.19)

The quality factor Q can be set to provide a frequency resolution related to a
given number of bins/octave b as

Q =
fk
∆f

=
fk

(21/b − 2−1/b)fk
, (2.20)

where ∆f is the bandwidth. For instance, if a separation of a quarter of tone is
required, one can use b = 48, since there are 12 semitones in an octave, geometrically
related. In this case, Q = fk

(21/48−2−1/48)fk
≈ 34.6. The other free variables to be set

in the CQT are the minimum and maximum frequencies to be analyzed, which will
define the central and limit frequencies of each channel.

When implemented as formulated here, the CQT is very time-consuming. How-
ever, there exist several different approximations which dramatically reduce the cost
of the CQT. For instance, FFT algorithms, filter banks and multi-resolution pro-

8The pass-band is being considered as the region in which the frequency-response of each band-
pass filter is within the interval [−6, 0] dB.
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cessing schemes can be used [105, 114–117]. This way, CQT-based spectrograms (or
approximations) can also be computed, with relatively low computational cost. In
this thesis, the implementation provided in [79] was adopted, in which full rasteri-
zation is provided: only the highest frequency channel is critically sampled and all
other channels are subsampled with the same rate.

Figure 2.6 depicts a CQT-based spectrogram of a piano recording, in which some
interesting characteristics can be observed. The CQT has a fixed distribution of the
harmonic content, in terms of distance in the frequency axe, since the harmonics
are always multiples of the fundamental frequency and the frequency resolution is
logarithmic, as can be observed in Figure 2.6, where the first three harmonics of
four different notes are highlighted. On the downside of this transform is the poor
representation of transient information at low frequencies.

Figure 2.6: Equal harmonic distribution for different notes.

2.3.2 Harmonic CQT

The fact that the harmonic distances are note-independent in a CQT representation
can be explored in a convolutive approach to note searching, since a fixed two-
dimensional filter can be used. Many procedures make use of a tensor in which each
layer comprises a certain range of the CQT spectrogram, in such a way that the
harmonics of each note are aligned throughout the layers. This can be performed
by computing CQTs having different minimum frequency fmini and maximum fre-
quency fmaxi for each layer i. Since this can be time-consuming, a CQT spectrogram
can be computed comprising the maximum range necessary for all layers and inter-
polated to fit the specific range of each layer. This tensor representation is the
so-called harmonic CQT (HCQT), and was proposed in [93]. It is useful especially
for convolutional neural networks (CNNs), which benefit from this structure. A
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visual example of this approach is seen in Figure 2.7. Note that the fundamental
frequency of each highlighted note present in the left spectrogram aligns with its
second harmonic in the second spectrogram, with the third harmonic in the third
spectrogram, and so on. The HCQT is then formed by the region of each spectro-
gram inside the dashed-line area.

Figure 2.7: Equal harmonic distribution for different notes.

2.3.3 Variable-Q Transform

Among many variants of algorithms for the computation of the CQT, there is also
a TFR that exhibits uniformly-distributed frequency bins in log-frequency, whose Q
factors obey a linear function [79]. In this transform, the bandwidth ∆f is given by

∆f = (21/b − 2−1/b)f + κ, (2.21)

where κ is a constant parameter provided to set the variation of Q (see [79] for
details). With this parameter, the bandwidth is no longer proportional to the fre-
quency, and it allows, for instance, the computation of TFRs whose bandwidths are
constant on the auditory critical-band scale, with a smooth variation of Q, or even
a common CQT if κ = 0. This transform provides particularly interesting results
whenever preserving a good time resolution at low frequencies is desirable.

Figure 2.8 depicts two spectrograms9 of a signal containing piano and vocal,
with parameters κ = 0 (equivalent to CQT) and κ = 30, respectively. Note that
the non-stationary components of the lower part of the spectrum, which comprises

9In this work, the implementation provided in [79] was used for the computation of the VQT.
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the first harmonics of the voice and the lower piano notes, are significantly better
defined in the spectrogram using κ = 30, at the expense of having thicker stationary
frequency components.

Figure 2.8: Spectrograms of a signal containing piano and voice, with parameters
κ = 0 (equivalent to CQT) and κ = 30, respectively.

2.4 Concluding Remarks

In this chapter, some TFRs were presented. First, the well-known STFT-based
spectrogram was derived. This representation presents linear frequency resolution
and requires a low computational power, due to the FFT algorithm used to compute
the spectrum of each time frame. The FChT-based spectrogram is a variation of
this TFRs that is able to represent a harmonic sound source whose fundamental
frequency varies continually in time, by modelling the frames as having linear fre-
quency variations. This method also presents linear frequency resolution and can
only properly represent sound sources which share the same α parameter.
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Other three representations were presented, having log-frequency scale: the
CQT, the VQT and the HCQT. The CQT also presents logarithmic resolution in
frequency, while the VQT does not maintain a constant Q; instead, the frequency
resolution in log scale decreases for low frequencies, preserving a better time reso-
lution in such areas. As mentioned, these representations are useful as they fit the
geometric distribution of musical notes in the equal-tempered scale. The HCQT is a
tensor which stacks regions of CQTs in such a way that the harmonics of the sound
sources remain aligned throughout the layers, allowing for a multi-layer processing
of the TFRs, typically found in systems based on deep neural networks. Every
log-scale representation is suitable for this kind of stacking procedure.

On the following chapters, methods for combination of TFRs will be presented.
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Chapter 3

Bin-wise Combination of
Spectrograms

Spectrograms computed with different parameters (analysis window length, bins per
octave, α chirp rate, etc.) are capable of best representing certain aspects of audio
signals, often in a complementary fashion. Nevertheless, it is desirable to have one
representation which could gather the beneficial aspects of all the representations
available. Following this idea, spectrogram combination methods using different
approaches are studied.

In order to combine transforms with different characteristics, e.g. spectrograms
computed with analysis windows of different lengths, all bins with same line and col-
umn indexes must be related to the same time-frequency bins throughout all TFRs,
and therefore all TFRs must deliver the same number of samples in frequency and
time domains. Also, all TFRs must have the same energy E. The dimension-
ality can be equalized either via 2-D interpolation or via zero-padding and some
time-alignment procedure, while the energy match can be assured by simple energy
scaling. The 2-D interpolation1 is used in this work, to facilitate the implementation
using different types of spectrogram.

All combination methods in this work will be presented as the combination of
spectrograms stacked in a generic tensor X ∈ RK×M×P , with K frequency bins,
M time frames, and P different spectrograms; the element at bin (k,m) of the p-
th spectrogram is denoted by Xk,m[p]. In this chapter, bin-wise combinations of
spectrograms (along the p dimension)2 will be studied.

1In this thesis, linear 2-D interpolation was used, since it works for all kinds of frequency scale.
2Here, all spectrograms are computed using the Hamming window, which is one of the most

applied functions for this purpose. Such a choice, although arbitrary, has no significant effect on
the results.
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3.1 The Numerical Mean

This first combination method studied is the numerical mean (NM) [118], which is
the solution that minimizes the mean squared error between the combination result
and the individual spectrograms. Using the appropriate cost function,

XNM
k,m = arg min

X̂k,m

1

P

P∑
p=1

K−1∑
k=0

M∑
m=1

(X̂k,m −Xk,m[p])2, (3.1)

subject to the energy constraint

‖XNM‖1 =
K−1∑
k=0

M∑
m=1

XNM
k,m = E, (3.2)

where ‖ · ‖1 denotes the entrywise L1 norm of a matrix and

E =
K−1∑
k=0

M∑
m=1

Xk,m[p],∀p. (3.3)

This constrained optimization problem can be solved using the method of La-
grange multipliers by finding the critical points of the Lagrangian:

L(X̂, λ) =
1

P

P∑
p=1

K−1∑
k=0

M∑
m=1

(X̂k,m −Xk,m[p])2 + λ(
K−1∑
k=0

M∑
m=1

X̂k,m − E), (3.4)

where scalar λ is the Lagrange multiplier to be determined. The solution is then
obtained by making the derivative of the Lagrangian with respect to X̂k,m equal to
zero:

dL(X̂, λ)

dX̂k,m

= 2X̂k,m + λ− 2

P

P∑
p=1

Xk,m[p] = 0, (3.5)

which leads to

X̂k,m = −λ
2

+
1

P

P∑
p=1

Xk,m[p]; (3.6)

the energy constraint is satisfied with λ = 0, yielding the NM solution

XNM
k,m =

1

P

P∑
p=1

Xk,m[p]. (3.7)

This means that the sample at bin (k,m) at the combined representation will be
computed by averaging the samples of all the representations available at bin (k,m).

To visualize the resulting combination, two test signals were used: one comprised
of a sinusoid with frequency 1 kHz and another comprised of an impulse at 0.5 s, both
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with sampling frequency of 44.1 kHz. Three spectrograms, using analysis windows
with 1024, 2048, and 4096 samples, respectively, were computed for these test signals,
and then combined according to Equation (3.7). Figure 3.1 depicts the spectrum of
a time frame of such spectrograms for the sinusoidal signal, and Figure 3.2 depicts
the evolution of a frequency bin over time for the impulse signal. Zero-padding with
a factor of 8 and a hop size of 64 samples were used in order to provide a sufficient
number of samples to illustrate the signals in detail.

Figure 3.1: Spectrum of a time frame for a sinusoid (1 kHz): different STFT’s and
the numerical mean combination.

Figure 3.2: Time evolution of a frequency bin for an impulse at 0.5 s for different
STFT’s and the numerical mean combination.

In the first image, one can see the general behaviour of what happens frequency-
wise: the frequency peak is better defined by the combined representation than
by the spectrogram computed with a short analysis window, but the spectrogram
computed with a long window is still the best representation in this context; on the
other hand, as for the impulse, seen in the second figure, the spectrogram with a
short window provides the best representation for this signal, as expected.

In these examples, the ideal combined representation should be as close as pos-
sible to the most sparse spectrograms available, i.e. should provide the most pro-
nounced peaks possible. Although the NM method is far from ideal, it still provides
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a good overall time-frequency representation.

3.2 The Reciprocal Mean

The reciprocal mean (RM) combination is also an optimum solution, which mini-
mizes the Itakura-Saito error [118]. The cost function for each bin is given by

Jk,m =
1

P

P∑
p=1

[
X̂k,m

Xk,m[p]
− ln

X̂k,m

Xk,m[p]
− 1

]
, (3.8)

whose unconstrained solution is normalized to match the energy constraint of Equa-
tion (3.2). Deriving this cost function and equating it to zero

dJk,m

dX̂k,m

=
1

P

P∑
p=1

[
1

Xk,m[p]
− 1

X̂k,m

]
= 0, (3.9)

one gets the following relation:

1

P

P∑
p=1

1

Xk,m[p]
=

1

P

P∑
p=1

1

X̂k,m

=
1

X̂k,m

(3.10)

and the reciprocal mean (RM) solution

XRM
k,m = cRM

(
1

P

P∑
p=1

Xk,m[p]−1

)−1

, (3.11)

where the term cRM just equalizes the global energy to match with the energy E of
the individual spectrograms, and is given by

cRM =
E∥∥∥∥( 1

P

∑P
p=1Xk,m[p]−1

)−1
∥∥∥∥

1

. (3.12)

Again, the sinusoid and impulse signals were used to illustrate the results of
this combination procedure, which can be seen in Figures 3.3 and 3.4. As can be
observed, the reciprocal mean yields much better results than the numerical mean,
producing well defined peaks that are close to the best representation among the
ones available for each signal. It is worth noting that, differently from the numerical
mean, the RM representation goes to zero whenever one of the representations goes
to zero. This can be observed in Figure 3.4.
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Figure 3.3: Spectrum of a time frame for a sinusoid (1 kHz): different STFT’s and
the reciprocal mean combination.

Figure 3.4: Time evolution of a frequency bin for an impulse at 0.5 s for different
STFT’s and the reciprocal mean combination.

3.3 The Geometric Mean

In [87], it is shown that the geometric mean (GM) results in an optimal combination
of spectrograms in the sense of minimum mean cross-entropy3 between the combined
spectrogram and the individual ones [119], expressed by

XG
k,m = arg min

X̂k,m

1

P

P∑
p=1

K−1∑
k=0

M∑
m=1

X̂k,m log
X̂k,m

Xk,m[p]
, (3.13)

also subject to the energy constraint of Equation (3.2). The sum along the p dimen-
sion can be transformed into a product inside the logarithm

XG
k,m = arg min

X̂k,m

K−1∑
k=0

M∑
m=1

X̂k,m log
X̂k,m∏P

p=1 Xk,m[p]
1
P

, (3.14)

3The cross-entropy minimization is a well known concept in the field of information theory, which
relates two probabilities distributions allowing one to obtain the least impaired joint density, given
only partial information [87].
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and, once again, the method of Lagrange multipliers can be used to solve this opti-
mization problem, by the following Lagrangian up to constant terms:

L(X̂, λ) =
K−1∑
k=0

M∑
m=1

X̂k,m log
X̂k,m∏P

p=1Xk,m[p]
1
P

+ λ(
K−1∑
k=0

M∑
m=1

X̂k,m − E). (3.15)

The derivative of the Lagrangian with respect to X̂k,m is made equal to zero:

dL(X̂, λ)

dX̂k,m

= log
X̂k,m∏P

p=1Xk,m[p]
1
P

+ 1 + λ = 0. (3.16)

The minimum mean cross-entropy solution is then yielded by solving this equation
for X̂k,m,

XGM
k,m = b−(1+λ)

P∏
p=1

Xk,m[p]
1
P , (3.17)

where b is the base of the logarithm. The geometric mean solution is then obtained
by applying the energy constraint to determine λ,

XGM
k,m = cGM

P∏
p=1

Xk,m[p]
1
P , (3.18)

where
cGM =

E

‖∏P
p=1Xk,m[p]

1
P ‖1

(3.19)

is the energy-matching constant.
This method was developed heuristically in [120] as a way to combine spectro-

grams processed with different window lengths, preserving important visual features
of each spectrogram.

The same test signals were used to compare the GM combination with the stan-
dard spectrograms, which are shown in Figures 3.5 and 3.6. Again, as expected, the
combined curves are good candidates to represent the overall behaviour of all the
spectrograms, but the resulting curves are less sparse than the ones from the RM
combination. Nevertheless, the combination is still a better overall representation
than any of the spectrograms considering both time and frequency resolutions.
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Figure 3.5: Spectrum of a time frame for a sinusoid (1 kHz): different STFT’s and
the geometric mean combination.

Figure 3.6: Time evolution of a frequency bin for an impulse at 0.5 s for different
STFT’s and the geometric mean combination.

3.4 The Minimax

Another optimum combination can be obtained by minimizing the maximum cross-
entropy across the spectrograms [87],

XMM
k,m = arg min

X̂k,m

max
p

K−1∑
k=0

M∑
m=1

X̂k,m log
X̂k,m

Xk,m[p]
, (3.20)

subject to the energy constraint of Equation (3.2). Note that, in order to solve this
problem, N optimizations must be performed (one for each spectrogram in the set).
Jensen’s inequality can be used to reduce the dimensionality of this problem to a
single optimization calculation, by setting an upper bound

max
p

K−1∑
k=0

M∑
m=1

X̂k,m log
X̂k,m

Xk,m[p]
≤

K−1∑
k=0

M∑
m=1

max
p
X̂k,m log

X̂k,m

Xk,m[p]
. (3.21)
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Now, the problem can be reformulated as

XMM
k,m = arg min

X̂k,m

K−1∑
k=0

M∑
m=1

max
p
X̂k,m log

X̂k,m

Xk,m[p]
, (3.22)

which is again subject to the same energy constraint of the other methods. Due to
the monotonicity of the logarithm, this problem is equivalent to

XMM
k,m = arg min

X̂k,m

K−1∑
k=0

M∑
m=1

X̂k,m log
X̂k,m

minpXk,m[p]
. (3.23)

Using the Lagrangian, setting its derivative to zero, and applying the same energy
constraint as done previously, we have the minimax (MM) solution, given by

XMM
k,m = cMM min

p
Xk,m[p], (3.24)

with energy-matching constant

cMM =
E

‖minpXk,m[p]‖1

. (3.25)

Figures 3.7 and 3.8 depict the results of such a combination, compared to the
test signals. As can be observed, the results are very sparse, since the lower valued
samples are selected to compose the combined representation, but at the expense
of flattering the top of the peaks. Note that the combined curves match the lowest
samples, but there is a constant offset applied, which happens due to the energy
matching.

3.5 The Sample-Weighted Geometric Mean

The sample-weighted geometric mean (SWGM), proposed in [75], is a combination
that sits in between the geometric mean and the minimax solutions, and one of the
contributions of this thesis. The main idea is to combine the spectrograms in such
a way that the lowest valued sample takes precedence, increasing the sparsity. In
fact, this principle can be observed in both the minimax and the geometric mean
combinations. The minimax applies absolute importance to the samples having
minimum values; in the geometric mean, whenever a sample is close to zero, the
result tends to be close to zero.

Our solution aims at controlling this effect by performing a weighted geometric
mean, giving more weight to smaller values by means of a weighting function which
depends on the samples to be weighted themselves. The SWGM method can be
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Figure 3.7: Spectrum of a time frame for a sinusoid (1 kHz): different STFT’s and
the minimax combination.

Figure 3.8: Time evolution of a frequency bin for an impulse at 0.5 s for different
STFT’s and the minimax combination.

described by

XSWGM
k,m = cSWGM

(
P∏
p=1

Xk,m[p]γk,m[p]

) 1∑
p γk,m[p]

, (3.26)

where γ ∈ RK×M×P is the weighting function aforementioned

γk,m[p] =

(∏
l 6=pXk,m[l]

1
P−1

Xk,m[p]

)β

, (3.27)

where β ∈ R≥0 is a constant intended to regulate the weighting process, and

cSWGM =
E(∏P

p=1Xk,m[p]γk,m[p]
) 1∑

p γk,m[p]

(3.28)

is the energy-matching gain.
The weight applied to the p-th spectrogram is the ratio between the geometric
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mean of the samples of the remaining spectrograms,4 and the sample at bin (k,m)

of the p-th spectrogram. This necessarily results in larger weights for lower samples.
This fraction is also raised to the power of β to allow for some control over the

weights applied to the mean. Small values of β provide smooth transitions, i.e. lower
peak distortion, with β = 0 corresponding to the GM combination. With β > 0,
the weights take effect, and a sharper spectrogram is achieved, exhibiting higher
sparsity as β grows. Assigning β =∞ is equivalent to computing the MM solution.
Usually, setting 0 ≤ β ≤ 0.5 provides the best results for most cases.5

In order to illustrate this principle, the same spectrograms used for the previous
combination methods were combined using the GM, the MM and the SWGM with
different configurations of β. Figures 3.9 and 3.10 depict the resulting combinations,
without energy compensation, to facilitate observing the boundaries. Here, one can
see the transition between the GM and the MM combinations as β increases. It is
worth highlighting the fact that the SWGM combinations can be almost as sparse
as the MM combinations, with the advantage of better preserving the shape of the
top of the peak. This happens because the discrepancy between the samples near
the peak for the different spectrograms is not as high as in the side-lobes. For this
reason, the resulting side-lobes can get very close to the MM solution ones, while
better keeping the shape of the main lobe.

Figure 3.9: Spectrum of a time frame for a sinusoid (1 kHz): SWGM with different
configurations of β, GM, and MM combinations, without global energy compensa-
tion.

It is important to note that since the weighted geometric mean is performed by
raising the samples to the power of the weighting function and such function can
reach high values, it can easily lead to numeric problems. An easy way to avoid this

4Here, there is not the necessity of performing the geometric mean. Any operation that varies
continually with the samples’ values and results in a value between them will work.

5Differently from [75], in which combination is performed over the compressed version of the
spectrograms, here the energy spectrograms are combined, hence the difference in values of β. This
different approach was chosen for the sake of homogeneity in relation to the other methods.
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Figure 3.10: Time evolution of a frequency bin for an impulse at 0.5 s: SWGM with
different configurations of β, GM, and MM combinations, without global energy
compensation.

problem is setting an upper bound for γ, e.g. γ ≤ 20.
Figures 3.11 and 3.12 depict the SWGM combination using β = 0.5, now applying

the energy matching gain. As can be seen, the results are very sparse and close to
the best spectrogram for each case.

3.6 Concluding Remarks

All the methods presented in this chapter combine different representations in order
to enhance time and frequency resolutions simultaneously. In fact, it is important to
highlight the fact that such procedures do not break the uncertainty principle, which
only constrains the individual standard deviations in time and frequency for a signal
and its Fourier transform [91], but not to a combination of spectra computed from
signals (frames) with different time lengths. In other words, the uncertainty principle
does not hold for all kinds of time-frequency representation. Furthermore, the results
of the combination will never provide peaks in frequency which are narrower than
the ones provided by spectrograms with long windows or have better time definition
than what is provided by the spectrogram computed with short windows.

It is also important to mention that, since the spectrograms are interpolated to
provide the same dimensions and be combined, the new TFRs cannot be inverted
back to time domain, or at least not perfectly. Therefore, these combination pro-
cedures can be very useful whenever a time-frequency representation is needed, but
only for analysis purposes.

In Figures 3.13, 3.14 and 3.15, all the combination methods studied in this
chapter are presented, for comparison, using the same three spectrograms as before
and compensated in energy.

As mentioned, the NM and the GMmethods provide the lowest overall definition.
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Figure 3.11: Spectrum of a time frame for a sinusoid (1 kHz): different STFT’s and
the SWGM combination.

Figure 3.12: Time evolution of a frequency bin for an impulse at 0.5 s for different
STFT’s and the SWGM combination.

Figure 3.13: Spectrum of a time frame for a sinusoid (1 kHz): all combination
methods.

As for the other methods, the SWGM provides slightly better results than the RM
in terms of sparsity, while both present much better definition of the top part of the
peaks, i.e. peak distortion, than the MM. One can state that among the methods
presented, the SWGM provides the best results, immediately followed by the RM
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Figure 3.14: Spectrum of a time frame for a sinusoid (1 kHz): all combination
methods (zoom).

Figure 3.15: Time evolution of a frequency bin for an impulse at 0.5 s: all combina-
tion methods.

combination.
In order to illustrate the effect of combining TFRs of a real audio recording, an

excerpt of a Brazilian song with a rich instrumentation was used. Three spectro-
grams with window sizes of 21.3ms, 42.6ms, and 85.3ms were combined via the
SWGM method, using β = 0.5. These four spectrograms can be seen in Figure 3.16.
As previously discussed, the spectrogram with short analysis window provides better
resolution for transient information, and the one with long analysis window better
defines stationary information. Clearly, the resolution of the combined spectrogram
is better than any of the individual STFT-based spectrograms.

Figure 3.17 depicts the combination of spectrograms of the same signal, this time
computed using the CQT. As can be seen, the combination of such spectrograms
also produces good results.

Although the bin-wise combination methods studied can provide good overall
representations, the resulting TFR may degrade important information, under cer-
tain conditions. In almost all of them, the peak values are attenuated and, depending
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Figure 3.16: Spectrograms of a Brazilian song: STFT (21.3ms, 42.6ms, and
(85.3ms)) and SWGM (β = 0.5), respectively.
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Figure 3.17: Spectrograms of a Brazilian song: CQT spectrograms (12, 24 and 48
bins/octave) and SWGM (β = 0.5), respectively.
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on how poorly concentrated they appear in some TFR provided, this attenuation
can be strong, since the best combination methods tend to give results close to the
minimum values of the given TFRs. For instance, in a fast frequency chirp, the
information may be severely attenuated if a long analysis window is used. As a con-
sequence, a sparser representation is guaranteed at the end, but the energy of some
components may show some loss. One advantage of this approach is the relatively
low computational burden associated with it.

The combination methods of the following chapters were designed to overcome
this problem by considering the context of each bin and assessing which among the
representations available better represents the signal for that specific time-frequency
location. Such methods provide better overall results, at the expense of requiring
much higher computational resources.
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Chapter 4

Combinations of Spectrograms Based
on Local Information

In this chapter, a different approach to the combination of TFRs is studied. Here, the
methods use information related to the region around the time-frequency bins under
analysis to combine different TFRs. The attempt is to minimize energy spreading
using some criterion to select the best representations throughout the time-frequency
plane, avoiding the degradation of frequency components inherent to the bin-wise
combination methods. Two main methods will be presented: the local sparsity
method (LS) [74], along with its smoothed version—the smoothed local sparsity
method (SLS) [72], which are contributions of this thesis, and the Lukin-Todd’s
Method [83].

4.1 The Local Sparsity Method

The LS combination method is based on the quantification of the relevance of each
time-frequency bin (k,m) of the given TFRs in terms of its local sparsity. It starts
with a region selection procedure performed by a two-dimensional window WS with
NS elements around bin (k,m) of each p-th TFR to be combined. This windowed
region, denoted by X̃k,m[p], must have odd numbers of lines and of columns, in order
to be effectively centered at bin (k,m). The sparsity of each region X̃k,m[p] is then
measured via the Gini index (or Gini ratio) [121]

G(X̃) = 1− 2
NS∑
j=1

x̃j
||x̃||1

(
NS − j + 1

2

NS

)
, (4.1)

where x̃ = [x̃1 x̃2 . . . x̃NS ] is a vector containing the elements of the input matrix
X̃ in ascending order of magnitude. The Gini index is a reliable way to assess (or
evaluate) the sparsity of a vector, and is a well known measure of inequality in wealth
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distribution [121]. Its output is limited to the interval [0, 1−1/NS], where 0 denotes
a group of samples with equally distributed energy and 1− 1/NS means maximum
energy concentration. With infinite elements, the index can range [0,1]. Note that
we are dealing with samples that can only assume values greater than or equal to
zero. This index satisfies all the desirable criteria of a measure of sparsity [121]:

1. Robin Hood - Transferring energy from a more energetic sample to a less
energetic sample, assuming the later will not become more energetic than the
former, decreases sparsity.

2. Scaling - Multiplying all the samples by a constant factor does not affect the
overall sparsity: sparsity is scale invariant.

3. Rising Tide - Adding a positive constant to all samples decreases sparsity,
since it reduces the relative inequality between them.

4. Cloning - Adding samples to the set by cloning it results in the same sparsity
of the original set: sparsity is invariant under cloning.

5. Bill Gates - As one sample becomes infinitely more energetic than the others,
the sparsity becomes as high as possible.

6. Babies - Adding zero-energy samples to a population with non-zero total en-
ergy increases sparsity.

It is worth noting a disadvantage of this method, in which, in comparison to
the approach presented in the previous chapter, this measure of a figure-of-merit
regarding a group of samples around a given time-frequency bin under analysis
requires much higher computational resources.

After computing the local sparsity (i.e. the Gini index given in Equation (4.1)
for the regions around bins (k,m)) of all representations, a matrix P̂ is constructed
to indicate which among the available TFRs exhibits the highest local sparsity, for
each time-frequency bin (k,m):

P̂k,m = argmaxpG(X̃k,m[p]). (4.2)

This way, an optimum representation in terms of local sparsity could be com-
puted byXk,m[P̂k,m]. This is not yet the LS combination method, which also includes
a local energy compensation; but this guarantees, under certain conditions, that for
any frequency line, the representation which provides the most resonant peak will
be chosen to represent that time-frequency region, without interference of the other
representations, hence producing a peak with the best possible shape.
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Figures 4.1 and 4.2 depict the curves obtained for the sinusoid and impulse
test signals, as in the previous chapter, for two spectrograms with different window
lengths along with their combinations using the SWGM and the LS− (i.e. LS without
local energy compensation).

Figure 4.1: Spectrum of a time frame for a sinusoid (1 kHz): STFTs, SWGM and
LS−.

Figure 4.2: Time evolution of a frequency bin for an impulse at 0.5 s for STFTs,
SWGM and LS−.

As can be observed in Figures 4.1 and 4.2, the peak obtained by the LS− curve
perfectly follows the sparser curve. In Figure 4.1, the peak-to-sidelobe ratio produced
by this combination is nearly 6 dB higher than for the SWGM combination. An
interesting detail to be noticed is the effect of the window WS when a bin far
from the peak is being evaluated: the spectrogram with longer tail is selected in
the combination, originating the artifacts that can be observed at the bottom of
Figure 4.2.

Nevertheless, this procedure does not yield good results throughout the whole
time-frequency map. For instance, consider the beginning of a musical note with a
fast transient, which is typically comprised of an initial attack followed by the har-
monic components. Right before the attack, representations computed with longer
windows (which provide higher frequency resolution) spread frequency information
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backwards in time. This can be observed in Figure 4.3, where two spectrograms of
a note played in an acoustic guitar are shown. The red dashed line shows the onset
instant.

Figure 4.3: Spectrograms of a note played in an acoustic guitar, using short (21.3ms)
and long (85.3ms) window sizes, respectively.

Comparatively, the regions before the attack, when computed with shorter anal-
ysis window (top figure), show much less energy smearing. This can result in a very
evenly distributed energy, depending on the background noise, hence probably with
lower local sparsity than the same regions in the other spectrogram. As a conse-
quence, undesirable regions from the spectrogram computed with longer window are
selected to compose the combined TFR, as can be observed in Figure 4.4. In general,
the TFR which best represents a certain region of the signal, in the time-frequency
domain, is also the one that best concentrates the signal’s energy; but the energy
spread, in some cases, may produce a greater local sparsity, as can be seen in this
example.

A local energy measure is then used to compensate for such issue. In the prob-
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Figure 4.4: LS− combination of a note played in an acoustic guitar.

lematic regions observed, the representation with lower local energy best represent
the input signal; meanwhile, after the attack of a note, the local energy is roughly
the same for all given TFRs close to frequency lines. Our solution is then to multiply
the value of each sample Xk,m[P̂k,m] by the local energy ratio Ĕ, which compares
the minimum local energy around bin (k,m) among all TFRs with the local energy
of Xk,m[P̂k,m]:

Ĕk,m[P̂k,m] =
minp

∑
i,j(X̆

k,m
i,j [p])∑

i,j(X̆
k,m
i,j [P̂k,m])

, (4.3)

where X̆k,m[p] is a matrix comprised of the region around bin (k,m) of the p-th TFR
under consideration selected by applying a rectangular analysis window WE. This
tends to attenuate the energy of those regions exhibiting energy leakage caused by
large windows, while preserving the shape of the frequency components pre-selected
by the local sparsity criterion. As a consequence, the application of this principle
combines the fine frequency resolution and continuity inherent to the use of long
windows with the time precision attained by short windows. In order to avoid
numerical problems, the local energy is lower-bounded, e.g. by 10−8.

The LS combination XLS is then described as

XLS
k,m = cLSXk,m[P̂k,m]Ĕk,m,[P̂k,m], (4.4)

where cLS is an energy-matching constant.
The window WS, responsible for the local sparsity computation, is designed as

a two-dimensional Hamming window. For computing the local energy in order to
provide the best results at initial transients, an asymmetric window WE is used.
It is also composed of a two-dimensional Hamming window, but with its right half
zeroed. This way, only the energy before the given time-frequency bin is taken into
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account. Figure 4.5 depicts both windows.

(a) WS. (b) WE.

Figure 4.5: Analysis windows used for computing the local sparsity and the local
energy ratio.

The dimensions of WS and WE are related to the resolutions of the assembled
TFRs. Considering that the P TFRs to be combined have been computed with
analysis windows of lengths N1, N2, ..., NP in ascending order, the frequency width
for WS can be sized, e.g., as 10NP/N1. This leaves this window enough room for
including the frequency components present in all representations. For WE, using
a smaller frequency width, e.g. 4NP/N1, usually produces good results. As to the
time span, something between N1 and N2 can be used, e.g. a length of ≈ 50ms.

Figure 4.6 depicts the resulting combination, now using the local energy compen-
sation. As can be observed, the energy smearing was successfully corrected, being
attenuated to values compatible with the noise floor (≈ -70 dB). As for the sinusoid
and impulse signals, the results are roughly the same, and can be seen in Figures 4.7
and 4.8. The major difference that can be observed is the correction of the artifact
before the impulse and a slight distortion in the impulse signal, which happens due
to the asymmetric nature of the local energy analysis window.

One problem related to this type of method is the interference of harmonic
components close to each other in situations where the different representations
to be combined show different resolutions for such components, i.e. there is no
TFR to properly represent all the harmonic components in such region. Since one
representation must be chosen due to its higher local sparsity, necessarily one or more
harmonic components will not be well represented in such regions of interference.
This effect is attenuated when using the modified version of the LS method, namely,
the smoothed local sparsity method.
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Figure 4.6: LS combination of a note played in an acoustic guitar.

Figure 4.7: Spectrum of a time frame for a sinusoid (1 kHz): STFTs, SWGM and
LS.

Figure 4.8: Time evolution of a frequency bin for an impulse at 0.5 s for STFTs,
SWGM and LS.

4.2 The Smoothed Local Sparsity Method

The Smoothed Local Sparsity method (SLS) is a modification of the LS method in-
tended to achieve smoother combinations of TFRs as well as mitigate some artifacts
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by providing soft transitions between different resolutions.
The modification consists in weighting each sample according to its sparsity and

combining all samples in dimension p for each bin (k,m), instead of generating an
index-matrix of optimal samples P̂. In order to generate such weights, a tensor S is
constructed with elements

Sk,m[p] =

(
G(X̃k,m[p])∏
l 6=p G(X̃k,m[l])

)ζ

. (4.5)

Note that S is essentially determined by ratios comparing the sparsity measure of
bin (k,m) in each TFR p with the product of all remaining sparsity measures for
the same bin, which necessarily achieves its highest value for p related to the TFR
with highest local sparsity. Since the difference between the sparsity measures of
different TFRs is usually small, an exponent ζ is used to amplify them.

The final representation XSLS is then defined as

XSLS
k,m = cSLS

∑
pXk,m[p]Sk,m[p]Ĕk,m[p]∑

p Sk,m[p]
, (4.6)

where cSLS matches the overall energy. This combination performs a mean of the
samples through dimension p (which indexes the TFRs) weighted according to their
local sparsities, for each bin (k,m). This provides a smoother final result, since there
are no more hard switching between different TFRs. High values for ζ, e.g. ζ ≥ 50,
are preferable choices, as they tend to give high priority to the best-resolution TFR,
but still allow for smooth transitions. There is no optimum value for such parameter.
By using ζ = ∞, this solution matches the original local sparsity combination
method, since it is equivalent to applying weight 1 to the locally-sparser samples,
and 0 to the others.

In Figures 4.9 and 4.10 one can see the comparison between the SLS and the
LS methods for the test signals. For the sinusoid, the results are nearly indistin-
guishable, and match the representation which best suits the input signal; for the
impulse, the results are similar, with a difference in gain. Also, in the right part of
the image one can see that the subtle change in the choice of the representation that
occurred in the LS combination, causing that artifact, is no more present in the SLS
combination curve. This phenomenon happens when, in some point of transition,
a representation starts to exhibit the highest local sparsity. This is not possible in
the SLS combination due to the continuous nature of the combination: all repre-
sentations are taken into account and have some influence in the final result. Note
that the fact that the shape of these peaks is virtually preserved is the best scenario
possible, since our goal is to just remove artifacts related to abrupt transitions.
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Figure 4.9: Spectrum of a time frame for a sinusoid (1 kHz): STFTs, LS and SLS.

Figure 4.10: Time evolution of a frequency bin for an impulse at 0.5 s for STFTs,
LS and SLS.

In order to compare the combination of spectrograms of a real signal, Figure 4.11
depicts the LS and the SLS combinations, respectively, obtained from three spectro-
grams computed with short (21.3ms), medium (42.6ms), and long (85.3ms) win-
dow sizes. The SLS combination was configured with ζ = 70. The input signal
contains percussive instruments and a cuíca, a Brazilian instrument which can pro-
duce nearly harmonic sounds with fast frequency variation. As desired, the SLS
combination yields a smoother representation, with less artifacts, which are created
by hard switching between spectrograms. Inside the highlighted regions one can
see the presence of vertical artifacts, which are diminished in the SLS spectrogram.
Such subtle peaks in energy could lead, for instance, to false onset detections.

This method does not necessarily yield better overall representations in terms
of sparsity, since the LS method optimizes the local sparsity of each time-frequency
bin, but the resulting TFR can be a better input to several methods that rely on
TFRs to extract information about the audio signal.

One issue inherent to both LS and SLS methods is that, although they are not
limited to combine a specific type of spectrogram, they do not yield good results for
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Figure 4.11: Combined spectrogram using the LS and SLS methods, respectively.

CQT-based spectrograms, since the 2-dimensional analysis windows have fixed size,
while the frequency resolution is not linear in this case. These methods should be
modified to have variable window sizes, in such a way to fit the input representations.

4.3 The Lukin-Todd’s Method

In [83], a combination method, to which we will refer as Lukin-Todd’s method (LT),
based on an energy smearing criterion was devised. There, the best time-frequency
bin of each spectrogram, in Mel scale1, is chosen by measuring how smeared the en-
ergy inside a given frame is, also penalizing the amount of energy present. Since this
procedure also produces harsh transitions between different spectrograms, this en-
ergy smearing measure acts as a weight in a soft combination procedure, to overcome
this effect.

1The Mel scale was defined, based on some experiments, to represent the way humans perceive
linear pitch variation [122].
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Differently to what is performed in the LS method, the LT combination starts
by selecting the region X̃k,m[p] around bin (k,m) of the p-th TFR to be combined,
without applying an edge-softener window. The energy smearing function is then
measured by the function [83]

L(X̃) =

∑NS

j=1 jx̃j√∑NS

j=1 x̃j + ε
, (4.7)

where x̃ = [x̃1 x̃2 . . . x̃NS ] is a vector containing the elements of the input matrix X̃

in descending order and ε is a small constant used to prevent divisions by zero. The
numerator of the ratio evaluates the first moment of the distribution of the energy
magnitudes, while the denominator normalizes the function by the square root of the
total energy of that region. Note that, since the square root is applied, this function
does not totally compensates for the total energy, thus indicating higher smearing
for more energetic regions. This helps reducing energy smearing, in a similar way to
what is performed by the local energy compensation in the LS and SLS methods.

After that, the final representation is obtained by computing a weighted mean,
using the smearing measure:

XLT
k,m = cLT

∑
pXk,m[p]Lk,m[p]−η∑

p Lk,m[p]−η
, (4.8)

where Lk,m[p] = L(X̃k,m[p]) and η is a constant used to exaggerate the differences
in energy smearing, set to 8 in [83].

In order to compare the LT method with the others, it was implemented as a
combination of standard spectrograms, instead of Mel-scale spectrograms, which are
based on the former. This does not affect the quality of the combination criterion
and allows one to better observe the differences between the methods. Figures 4.12
and 4.13 depict the resulting curves using the same simple test signals for the LT
and SLS methods. As can be seen, for these signals, the LT method results in nearly
perfect combination, matching the best representation possible for each case.

However, the energy smearing at the attack of a note is not well treated by this
method, as can be observed in Figure 4.14. Here, the attack is not so well defined
as in the case of the SLS method, which is depicted in Figure 4.15. This problem,
which is specifically solved by using a special asymmetric window to normalize the
local energy in the LS and SLS methods, cannot be addressed here with the same
precision; the symmetric nature of the analysis window results in such less precise
attacks.

Figure 4.16 depicts the same signal with percussive instruments used before, now
combined using the LT method. The result is a very smooth representation, with
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Figure 4.12: Spectrum of a time frame for a sinusoid (1 kHz): STFTs, SLS and LT.

Figure 4.13: Time evolution of a frequency bin for an impulse at 0.5 s for STFTs,
SLS and LT.

Figure 4.14: LT combination of a note played in an acoustic guitar.

the attacks less well defined, as mentioned. A small region is selected in order to
compare one more time the energy smearing in attacks, this time of a percussive
instrument. In Figure 4.17 one can see this selected region for the SLS and the LT
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Figure 4.15: SLS combination of a note played in an acoustic guitar.

combinations, respectively. As shown before, this attack is much less smeared in the
SLS combination than in the LT one.

Figure 4.16: Combined spectrogram using the LT method.

Figure 4.17: Zoom of the combined spectrogram using the SLS and the LT method,
respectively. The attack is much better defined in the SLS combination.
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4.4 Concluding Remarks

In this chapter, the two methods presented follow basically the same strategy: use
local figures-of-merit to guide combinations of representations available. This ap-
proach has the advantage of selecting the best representation for each region of the
time-frequency plane at the cost of having high computational complexity, since a
group of samples must be sorted and processed for the computation of the local
measures for each time-frequency bin. It may be possible to use different figures-of-
merit that require less operations, for instance by subsampling the regions in such
a way that similar results are achieved.

Another point that may be useful to stress is that representations that use dif-
ferent analysis window lengths provide frequency lines having different peak values,
since they have the same energy and larger windows will present higher energy con-
centration in frequency.2 Therefore, if the absolute peak value is a useful feature for
a given application, this kind of combination procedure may not provide consistent
results, since there are regions (especially where there are frequency slopes) where
different resolutions will be used interchangeably.

In the next chapter, another approach will be presented: an image processing
technique will be used to indicate the direction of the frequency lines present in a
spectrogram. This tool provides useful information, which makes possible a low-cost
computation of FChT-based spectrograms and a combination procedure based on
the directions estimated. This last method provides excellent results and requires
much less computational power, compared to the SLS and LT methods.

2This example is considering stationary signals, only to illustrate the principle discussed.
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Chapter 5

Combinations Based on Image
Analysis

In this chapter, two methods [72, 73] for generating high-definition TFRs are studied.
Both make use of an image processing technique, namely, the structure tensor [54,
111, 112], which is used to compute the frequency slope parameter α of the FChT—
as first proposed in [110]. This is performed by analyzing a spectrogram of the
given signal and identifying the direction of the frequency lines, which are then
processed in order to provide the parameter α needed for the computation of the
FChT. Since an exhaustive search is no longer needed, this method circumvents the
high computational complexity required to estimate the correct values for parameter
α. This chapter is strongly based on [72, 73], which are original contributions of this
thesis.

5.1 The Structure Tensor

5.1.1 Computation of the Structure Tensor

Initially, X̂, which is a compressed and limited in dynamic range version of the
spectrogram X of the input signal is built by modifying each bin as bellow:

X̂k,m = max

{
1 +

10

R
log10

X2
k,m

Xmax
, 0

}
, (5.1)

were
Xmax = max

k′,m′
X2
k′,m′ (5.2)
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and R is the desired dynamic range. This procedure1 produces a spectrogram with
values limited between [0, 1] with a dynamic range of R dB with regards to the
original signal.

After that, two derivative versions of X̂ are computed by the application of
partial derivatives with respect to time index m and frequency index k:

X̂m = X̂ ∗D, (5.3)

X̂k = X̂ ∗DT, (5.4)

where D is a discrete differentiation operator, more specifically the Sobel-Feldman
operator [123]

D =

 1 0 −1

2 0 −2

1 0 −1

 , (5.5)

and ∗ denotes the 2-dimensional convolution.
Then, X̂m and X̂k are combined, producing 4 other matrices:

X̂mm = [X̂m � X̂m] ∗G (5.6)

X̂mk = X̂km = [X̂k � X̂m] ∗G (5.7)

X̂kk = [X̂k � X̂k] ∗G, (5.8)

where operator � denotes the Hadamard product (i.e., point-wise matrix multipli-
cation), and matrix G is a 2-D Gaussian smoothing filter with standard deviations
σm and σk in time- and frequency-index directions, respectively, intended to soften
the frequency lines and provide more continuous transitions.2 Matrix X̂mm contains
information related to temporal (horizontal) variation in the image, X̂kk contains
information about frequency (vertical) variation, and X̂mk and X̂km convey both.
Here, all convolutions are applied preserving the original shape of the spectrogram,
hence the initial and final samples generated in the convolution are neglected.

Now, each time-frequency bin (k,m) has a group of four other values related to
it: X̂mm

k,m , X̂kk
k,m, X̂mk

k,m, and X̂km
k,m. Together, such bins form a structure tensor element

1This approach is different from what is performed in the literature [54], in which the full
spectrogram is used.

2Also, as will be discussed in Section 5.3, this smoothing filter is responsible for providing
anisotropy measures which indicate the linearity of the region around the bin under scrutiny.
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Tk,m, which is a 2× 2 symmetric and positive semi-definite matrix:

Tk,m =

X̂mm
k,m X̂km

k,m

X̂mk
k,m X̂kk

k,m

 . (5.9)

This matrix, whose values depend on the time-frequency bin under analysis of
the given spectrogram, has interesting properties, since it carries information re-
garding amplitude variation in different directions. By computing its eigenvalues
and eigenvectors, the direction of frequency lines near the analyzed time-frequency
bin can be estimated, as well as an anisotropy measure, which indicates how focused
on a certain direction is the edge near a given bin, as shown in the following section.

5.1.2 Computation of Angles and Anisotropy Measure

As mentioned, the information required to compute the angle and the anisotropy of
a given time-frequency bin (k,m) is embedded in the eigenvalues and eigenvectors
of the structure tensor element Tk,m. Consider the eigenvalues λk,m and µk,m of
Tk,m, with λk,m ≤ µk,m, and their respective eigenvectors vk,m and wk,m. Since
vk,m = [v1

k,m, v
2
k,m]T is related to the smallest eigenvalue, it is pointing in the direction

of the smallest change, i.e. parallel to the direction of a frequency line near bin
(k,m). Then, the angle of orientation θk,m, in a horizontal perspective, is given by

θk,m = arctan

(
v2
k,m

v1
k,m

)
∈ [−π/2, π/2], (5.10)

with v1
k,m being the horizontal (temporal) component and v2

k,m being the vertical
(frequency) component of vk,m.

The eigenvalues can also indicate the edginess of each bin (k,m) by informing
how different from each other are the changes in the directions of the eigenvectors.
This is called the anisotropy measure Ck,m ∈ [0, 1], defined as

Ck,m =


(
µk,m − λk,m
µk,m + λk,m

)2

, X̂k,m > 0

0, X̂k,m = 0.
(5.11)

The anisotropy measure will then be related to how directional is the given neigh-
bourhood of bin (k,m) and will only be computed for time-frequency bins within
the dynamic range R. A straight frequency line will provide maximum difference
between the eigenvalues, and hence Ck,m will be close to 1, while curved lines yield
smaller values of C. In order to have a softer transition along consecutive values of C,
especially when transitioning to regions of C = 0, a small 2-D Gaussian smoothing
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filter having standard deviations of 0.5 samples is used.
In [54, 72, 73, 110], a threshold is used to limit the range of what should be

considered anisotropic by the restriction µk,m + λk,m ≥ ε, in order to increase ro-
bustness against background noise, with the normal spectrogram (in dB) being used
instead of X̂. Figure 5.1 depicts, as an example, a region of a TFR where there ex-
ists a frequency line, with the structure tensor vectors depicted in blue dashes and
whose magnitude is related to their C, for the two different approaches mentioned,
i.e. using the standard spectrogram and the anisotropy restriction compared to the
spectrogram limited in dynamic range. As one can observe, in our new approach
(shown on the right), the anisotropy tends to be more focused on the frequency lines.
This characteristic will be even more useful in the MRFCI method, to be studied in
Section 5.3, where the combination procedure depends on the anisotropy.

Figure 5.1: Structure tensor computed for a region of a TFR comprising a frequency
line: standard approach and the proposed modified version, respectively.

Although in this new approach there is still one parameter to be set, which is the
dynamic range R of the spectrogram, we believe this is a more easily interpretable
and more controllable parameter to set. Another advantage is that our restriction is
much more insensitive to parameters such as analysis window length, hop size and
G dimensions, while the original restriction directly depends on all these factors. As
a consequence, the modified version is expected to provide much more predictable
and reliable results.

5.1.3 Computation of α

Since the angles θ are related to the time-frequency bins of the given spectrogram,
they live in the discrete time-frequency domain. Nevertheless, the fan-chirp trans-
form is computed using α, which is related to the analog time-frequency domain;
therefore, a transformation must be performed in order to compute the set of α’s
from a set of θ’s.

Let the angle ϑ be the continuous time-frequency domain version of the angle θ,
and vector ν = [ν1, ν2]T the continuous time-frequency domain version of vector v =
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[v1, v2]T. This last conversion can be computed by ν1 = v1h/Fs and ν2 = v2Fs/N ,
where Fs is the sampling rate, h is the hop-size of the STFT, and N is the number
of samples used in the Fourier transform. Figure 5.2 depicts the geometrical relation
between ϑ and α.
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Figure 5.2: Geometrical relation between the orientation angle ϑ and variable α, in
the continuous time-frequency domain.

By analyzing the triangle highlighted in green in Figure 5.2, one can verify that

tanϑ = fα, (5.12)

which using the aforementioned conversions can be written as

tanϑ =
ν2

ν1
=
v2Fs/N

v1h/Fs

= tan θ
F 2

s

Nh
. (5.13)

Using the relation f = kFs/N ,

αk,m = tan θk,m
Fs

hk
=
v2
k,mFs

v1
k,mhk

. (5.14)

Therefore, by performing this conversion one has an αk,m related to each θk,m

estimated from the spectrogram. This conversion will be used in both methods
presented in the following.

5.2 The Frame-Based Method for Estimation of

Main Directions

The frame-based method for estimation of main directions (FEMD) [72] aims to
create a high-resolution TFR by combining different FChT-based spectrograms gen-
erated using the structure tensor to estimate multiple simultaneous α’s. This means
that it makes possible the use of the FChT to create a high-resolution representation
of simultaneous sources, which is not possible using a single FChT-based spectro-
gram. The inclusion of normal spectrograms (equivalent to α = 0) is suitable for
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the description of sources with stable pitch. The combination of the different repre-
sentations can then be performed by any of the combination procedures studied.

5.2.1 Estimating Multiple α’s

Considering that Z simultaneous values of α are required to properly describe the
whole TFR, one should be able to detect Z different α’s for each time frame.3 Note
that this does not mean that there are necessarily Z sound sources present in the
audio signal, since many sources may just require α = 0 to be properly described,
or the different sources may not appear simultaneously.

In order to detect the most prominent α’s, a distribution is estimated for each
time frame m. A one-dimensional Gaussian function is generated for each frequency
bin k, centered at αk,m, with fixed standard deviation σ, and weight Ck,m; then, all
Gaussians generated for that certain frame m are summed up. As a consequence,
the most anisotropic vectors, which are the most relevant ones, have higher influence
in the distribution produced. It is worth mentioning once again that, for harmonic
sources, every harmonic component share the same α, hence a single source will
provide a single peak in the distribution.

After that, the values of α corresponding to the highest peaks in the distribution
are selected as the best candidates, one for each time frame m and source z, to form
a matrix A ∈ RZ×M . For now, the algorithm receives as input from the user the
total number of α estimates Z, but some procedure could be performed in order to
automatically estimate it.

An example of distribution obtained for one frame of a synthetic signal is given
in Fig. 5.3, in blue. The signal consisted of two synthetic vibratos with different
fundamental frequencies and frequency modulation rates. In this particular frame,
both fundamental frequencies increased with estimated chirp rates α1 = 0.38 and
α2 = 1.06, respectively, as indicated by the red crosses.

Since the distribution is comprised of a sum of Gaussian functions, relevant
values of α accumulated close to each other may or may not result in a single peak
in the distribution, according to the value of σ. This parameter impacts the quality
of the overall result, since too large a σ unduly integrates independent peaks into a
single α, while too small a σ improperly discriminates similar values of α. Moreover,
since low peaks will probably lead to spurious results, a threshold relative to the
highest peak is adopted to limit the range within which valid peaks are allowed to
be found. When searching for the Z candidates in the α distribution, if the number
Z ′ of peaks found within the range defined by the threshold is smaller than Z, the
α relative to the highest peak is attributed to the missing Z − Z ′ candidates.

3Note that here we are referring to Z FChT-based representations; since the number of repre-
sentations P to be combined will also include common spectrograms, P > Z.
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Figure 5.3: Estimated distribution for one frame of a synthetic signal (in blue) and
estimated α (in red).

Then, for each frame m and index z, an instance of the FChT will be generated;
at the end, they will all be combined to form a single TFR. The peaks found in
the α distribution are initially estimated and ordered by their values, which means
that there is not necessarily a correspondence between the z indexes and the sound
sources throughout the time frames m.

The α estimation procedure described usually produces some outliers, which may
yield spurious discontinuities in the FChT spectrograms and, therefore, probably in
the final TFR. Hence, some sort of smoothing procedure is advisable.

5.2.2 Filtering the Estimated α’s

Aiming at producing a smoother evolution of α along time dimension m, i.e. along
the rows of A, a simple filtering procedure is performed. As mentioned, the estimates
are ordered, for each time frame m, in such a way that the elements Az,m decrease
with z; this way, if α estimates relative to different sources cross each other, their
indexes z will be exchanged after the cross-point.

After this sorting, two filtering stages are applied through time dimension m, for
each index z: an outlier removal by means of a median filter, and a final smoothing
filtering using a Hann window. With a sufficiently small smoothing filter, the de-
viations produced at the different α cross-points are small enough to be neglected.
This is corroborated by the fact that the fine resolution produced by the FChT has
a relatively small sensitivity to the values of α used. Empirically, both median and
smoothing filters with length of 5 samples have shown to yield good results.

This procedure produces a set Ā ∈ RZ×M , comprised of α’s which evolve
smoothly in time. Despite of the resolution adopted for the spectrogram used for
the structure tensor, one can generate FChTs with any desired resolution, as long as
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synchronism is guaranteed. One could also adopt another hop size, but this would
require resampling Ā. Finally, Z FChT-based spectrograms are computed for each
Āz,m, generating a TFR tensor XFChT ∈ RK×M×Z .

Figure 5.4 shows an example of α estimation where a mixture of two violins was
analyzed. Two TFRs are depicted: (i) using the filtering stage, and (ii) not using any
filtering in the α estimation procedure. Note that the TFR computed from smoothed
α estimates does not exhibit the vertical artifacts produced by abrupt α transitions
observable in the bottom TFR. The third plot depicts the estimates obtained: blue
crosses show the original A, while the filtered Ā is depicted in red. Note that the
outliers present in A are removed and much smoother estimates are obtained. As
can be seen, for this example, two α’s were estimated, hence two different instances
of FChT-based spectrograms were combined using the SLS method.

Figure 5.4: From top to bottom: two TFRs generated by the proposed method
for two violins performing a vibrato, the first with and the second without the α
filtering stage; and their respective estimates, Ā (filtered, in red) and A (non-filtered,
in blue).
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5.2.3 System Overview

A flow chart of the proposed system is depicted in Figure 5.5. The first procedure
consists in computing a compressed magnitude spectrogram X̂ of the input signal
x, for which an appropriate window size must be selected, considering the nature of
the signal. After many experiments, a length of 21.3ms (N1 = 1024 samples) have
shown to be a good generic starting point; using longer window sizes tend to degrade
fast chirps, and therefore degrade the α estimation procedure, while using shorter
windows provide too low frequency resolution. A hop size of N1/4 is also a good
compromise, even if this choice did not show a significant effect on the quality of the
estimation procedures within the range N1/8 to N1/2. After that, the spectrogram
is used as the input image for the structure tensor procedure, which produces as
outputs a set of angles θ and anisotropy measures C. For each time frame m, a
distribution using a sum of Gaussians is generated and a set of Z frequency slopes α
(in matrix A) are estimated. Then, the filtering procedure is applied, and a vector
of values of ᾱ (in matrix Ā) is provided. At this point, the Z instances of FChT are
computed for the input signal x and stacked together with additional spectrograms
into tensor X, after a simple linear 2-D interpolation has been applied to these TFRs
in order to match their dimensions. Finally, all these TFRs are combined using some
combination method, e.g. the SLS, studied in Chapter 4.2. At the end, the system
gives as a result the final combined TFR XComb.

Structure 
Tensor
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Figure 5.5: Flow chart of the FEMD method.

Although the system is tailored for dealing with frequency varying signals, e.g.
harmonic instruments or vocals performing vibratos, the combination procedure
can successfully deal with virtually any kind of musical input signal, thanks to the
inclusion of spectrograms. In fact, it is fairer to say that the proposed system differs
from the usual combination procedures because it uses, in addition to spectrograms,
TFRs based on the FChT, which improve the representation of harmonic frequency
chirps. Anyway, it is a robust and adaptable tool for generating high-resolution
TFRs.
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5.2.4 Proof of Concept

Here, some audio signals will be processed and analyzed to illustrate some character-
istics of the proposed method. All signals were sampled at FS = 48 kHz; the spectro-
gram required to compute the structure tensor used a 1024 samples long (21.3ms)
analysis window with a hop size of 256 samples; the 2-D Gaussian smoothing filter
G (see Equation (5.6)) of the structure tensor was 9×9 samples long with standard
deviations σm = 1.5 (≈ 8ms) and σk = 1.5 (≈ 70Hz), which are minimum values
to effectively reduce interference from background noise; the dynamic range chosen
was R = 40dB, which is enough to separate the frequency lines of interest from the
background noise; in the estimation of the α distribution, the standard deviation of
the Gaussians was σ = 0.07, which assures that peaks close to each other would not
overlap each other, yet a smooth distribution would still be generated; only peaks
not lower than 5% of the highest peak in the estimated distribution were considered
relevant; and the median and smoothing filters applied to α were 5 samples long,
which experimentally has proven to be a minimum filter length to attenuate the
problems observed in most scenarios.

Using the guidelines recommended in Chapter 4, the combinations were per-
formed with the SLS method configured with ζ = 70, which is a high value that
guarantees a sufficiently high prevalence of the best bin in the combination; analysis
window WS with 6 bins (≈ 30ms) of time span and 21 bins (≈ 492Hz) of frequency
span; and analysis windows WE with 6 bins of time span and 9 bins (≈ 211Hz) of
frequency span. Besides a set of FChT-based spectrograms computed using the α
estimated using the proposed method, both the spectrograms used for computation
of the structure tensor (window length of 21.3ms, N1 = 1024) and a spectrogram
with the same resolution of the FChT ones (window length of 42.6ms, N2 = 2048)
were included in the combination.

The first example was computed with two synthetic harmonic signals with si-
nusoidal f0 variation and additive white Gaussian noise, with SNR = 50 dB. These
signals represent what typically occurs when a vibrato is performed on a musical
instrument or by a vocalist. By summing two signals with this characteristic, one
obtains several points where frequency lines cross each other, which are usually the
most difficult time-frames regarding the estimation of α. In Figure 5.6 one can see
the standard spectrogram obtained (top), and the resulting combined TFR (bot-
tom), with the system configured to estimate two simultaneous α’s.

As desired, a sharper TFR was achieved by the proposed method, with a very
fine overall resolution, as expected when one uses the FChT with the correct values
of α. It is worth noting that, for low frequencies, the results are nearly the same in
both TFRs, since the frequency slopes are low. However, for high frequencies, the
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Figure 5.6: TFRs of two synthetic vibrato signals. Standard spectrogram and the
resulting combination of FChT spectrograms, respectively.

results are drastically different.
This signal is a good example to evidence the system’s capability of simultane-

ously estimating multiple α’s and the problem of combining TFRs in points where
two frequency lines with very distinct α’s cross each other [74]. In such regions,
a darker shade surrounding the frequency lines can be observed, which is caused
by the energy smearing that necessarily occurs in this situation, since there is no
representation that well represents both components.

In Figure 5.7 one can see the very good α estimates achieved. Note that occa-
sional outliers occurred, and the filtering procedure was effective to overcome this
issue. Besides, one can see a region where the estimation procedure was not capable
of picking the correct values of α, as probably the peaks obtained on the α distri-
bution were too close to each other. This region is circled by a green-dashed-line.

Now, some real audio recordings representative of the signals this method is
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Figure 5.7: Estimated α’s of a pair of synthetic vibrato signals: theoretical (in
black), estimated (in blue), and filtered (red) values. In green, a region where the
correct α’s could not be estimated.

intended to deal with will be examined. The first signal contains an excerpt of an
opera piece, comprised of a voice singing along with a full orchestra. Typically, vocal
lines in opera present very fast frequency variations, such as accentuated vibratos
and glissandos. In Figure 5.8 one can see the TFRs computed for this signal. The
combined version yields a much better definition of the vocal frequency lines, while
maintaining the same resolution of the STFT for the stationary components, since
they share a common window size. Here, the system was also configured to estimate
two simultaneous α’s.

The other real-world signal processed is an excerpt of two violins performing glis-
sandos in opposite directions summed with a snare drum. The snare drum produces
a sharp and very wide-band sound at its attack, followed by some body resonance,
mainly at low and low-mid frequencies. This signal is useful to visualize the method’s
robustness when dealing with both harmonic and percussive sources simultaneously.
The system here was asked to estimate three α’s per frame. Figure 5.9 depicts the
initial spectrogram and the final combined TFR for this signal. As can be seen, the
violins’ partials could be much more clearly represented by the latter, along with the
drums sound. The snare drum onset can be seen as a vertical pattern around 0.2 s,
with a noticeable energy concentration at low frequencies. In the proposed TFR,
the attack is sharper than in the spectrogram version, while the body resonance
of the drum (horizontal frequency lines that follow after the attack) is still clear.
This happens thanks to the inclusion of the spectrogram with shorter window in the
combination procedure. As an overall observation, one can state that the combined
TFR provides a better time-frequency resolution.

As mentioned, other combination procedures can be used in this method. For in-
stance, the SWGM, which is a much simpler combination in terms of computational

61



Figure 5.8: TFRs of a vocal with orchestra. Standard spectrogram and the resulting
combination of FChT spectrograms, respectively.

burden, can be successfully employed, at the expense of providing a less sharp rep-
resentation. Figure 5.10 depicts the resulting combination for this same signal, now
using the SWGM, while Figure 5.11 depicts a zoomed region of the three represen-
tations for more detailed visual comparison. Note that the lines are, in general, less
well defined, as there are more representations to be combined and the discrepancy
of energy spread is severe, causing the peak distortion discussed in Chapter 3.5. The
choice of the combination method will then depend on the system which will use
the representation and on the computational resources available.

5.3 The Multi-Resolution Fan-Chirp Interpolation

Method

In this section, a different approach for combining TFRs is presented, namely, the
multi-resolution fan-chirp interpolation (MRFCI) [73]. Now, instead of using the
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Figure 5.9: TFRs of two violins and a snare-drum. Standard spectrogram and SLS
combinations, respectively.

Figure 5.10: TFRs of two violins and a snare-drum. Standard spectrogram, SWGM
and SLS combinations, respectively.
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Figure 5.11: Zoomed region of TFRs comprising two violins and a snare-drum.
Standard spectrogram, SWGM and SLS combinations, respectively.

information provided by the structure tensor to estimate directions and generate
TFRs to be combined, such geometric information is used to guide a combination
procedure which builds the final TFR from a pre-computed dictionary of FChT-
based spectrograms with different α chirp rates and analysis window sizes. This
method is then more flexible, as it does not require the pre-setting of the number of
simultaneous α’s to be estimated and adapts the resolution of the analysis window
to the region. Besides, it demands much less computational power, due to the simple
interpolation procedure performed to produce the final TFR, when compared to the
FEMD using the SLS method.

5.3.1 Principles of the Method

The structure tensor outputs, i.e. the set of angles θ and the set anisotropy measures
C, comprise the information of direction and steepness of the region in such direction,
respectively, for each time-frequency bin. As an example, Figure 5.12 depicts a small
region of the spectrogram of an audio signal with blue arrows representing vectors
pointing at direction θ, and having magnitude C. It is possible to observe that
the arrows correctly follow the direction of frequency lines, and that the regions
presenting only background noise, far from the frequency lines, exhibit no arrows
(C = 0). In Figure 5.12, two different regions are highlighted: the arrows inside
region 1 present smaller magnitudes than the ones inside region 2. This occurs
because the latter is surrounded by a much more linear frequency line excerpt than
the former, and linear edges provide maximum difference between the eigenvalues.
This effect depends on the dimensions of the smoothing filter G (Section 5.1.1): a
too small-dimension G induces smaller regions, which favors a linear model, and
thus decreases the effect observed. Also, it is worth noting that the magnitudes
(C) vary smoothly over the whole time-frequency domain, which will assure smooth
transitions between different TFRs in the combined result.

Note that the discrete fan-chirp transform models the input signal as a series of
harmonically related linear frequency chirps, which means that the resulting TFR
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Figure 5.12: Vectors in θk,m directions with magnitudes Ck,m.

will present sparse results when the input signal matches this model within the
analysis window period. As a result, using a larger analysis window allows the
increase of the number of frequency chirp bins in the transform, providing minimum
energy smearing only if the signal under analysis is indeed linearly varying with
slope α for a such a long period.

Such observations are key to the strategies used in the proposed combination
procedure. The idea is to use the anisotropy measure as an indicator of the local
linearity of frequency lines, and therefore an indicator of the best analysis window
length to be used; and parameter α can then be used to choose the best fan-chirp
representation for each time-frequency bin. In the end, the method consists in
performing a linear combination of time-frequency bins of the best candidates among
a set of FChT-based spectrograms with different α’s and analysis window lengths.

A flow-chart of the MRFCI method is depicted in Figure 5.13. Firstly, the audio
signal x is processed to generate a set of different FChT-based spectrograms using
predetermined sets of chirp slopes and analysis window sizes, α and N, respectively.
Then, all TFRs are interpolated4 and assembled in a four-dimensional tensor X.
From the structure tensor of the standard spectrogram X, parameters A, containing
the preferable chirp rates (directional information), and C, indicating the preferable
window sizes, are computed. Finally, a simple linear combination of the TFRs in X

is performed according to A and C for each time-frequency bin (as will be described
in Section 5.3.3), resulting in the combined TFR XComb.

4The different TFRs must be interpolated not only to have the same dimensions, but also share
the same time and frequency axes.
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Figure 5.13: Flow-chart of the MRFCI method.

5.3.2 Computation of the Dictionary Tensor

The tensor X comprises TFRs which will be used in the combination. The objective
is to span a broad variety of TFRs for audio signals. Three general situations can
be observed in musical audio signals: (i) some sort of broadband noise produced, for
instance, by blows, brushes in drums, fricative syllables in vocals, or just background
noise; (ii) percussive information, as that contained in the attack of a note or a drum
hit; and (iii) tonal information, possibly varying continually over time, as in the
case of an instrument performing a vibrato. As an example, Figure 5.14 depicts the
spectrogram of the onset of a harmonic pulse, zoomed in a region close to the attack.
From left to right, it is possible to observe three distinct regions: background noise,
the attack, and tonal information. Note that the angles computed by the structure
tensor are very close to π/2 or −π/2 at the attack, indicating that the energy is
distributed vertically.

Since the attacks are much better defined by transforms using short analysis
windows, it is useful to define a maximum angle above which transient information
should be considered predominant. This angular threshold ϑmax is then chosen
in order to define two different regions: angles that represent attacks, for which
spectrograms with short windows will be used in the combination procedure, and
angles that indicate the presence of tonal information, which will be represented by
FChT-based spectrograms with proper window length and parameter α. These two
angular regions are indicated in Figure 5.15, similarly to what is done in [54], where
a percussive/tonal source separation procedure is performed.

For computation of the optimum α’s distribution, an equally spaced distribution
of angles ϑ is adopted, in order to minimize the energy smearing in tonal regions.
Consider that the angular region [0, ϑmax] will be divided into I parts. This max-
imum analog angle is related to an αmax by the same relation described in Equa-
tion (5.12), which indicates that the analog angle ϑ is proportional to tanα. Since
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Figure 5.14: Spectrogram: onset of a harmonic pulse. Vectors in θk,m directions
with magnitudes Ck,m.

Transient

Frequency  
component

Figure 5.15: Angular regions associated to transient and tonal information.

parameter α better describes the behavior of varying harmonic frequency content,5

instead of setting a global maximum angle, it is better to consider a global αmax.
This parameter can be set, for instance, considering Equation (2.15), since there
is a range of values of α that can be used given the analysis window size and the
sampling frequency.

Now, angles ϑk,m that produce ‖αk,m‖ > αmax will be considered transient in-
formation, while the others will be considered tonal information. Considering again
the relation in Equation (5.12),

tan(ϑmax) = fαmax. (5.15)
5Lower frequencies will have much smaller frequency variation than higher frequencies, for they

follow a proportional relation.
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Considering a generic f , e.g. f = 1, and given αmax and the number of α’s I,

ϑmax = arctan(αmax), (5.16)

and
ϑi = i

ϑmax

I
= i

arctan(αmax)

I
. (5.17)

Finally, we can project a linear distribution of ϑ into α by computing αi as

αi = tan(ϑi) = tan(i arctan(αmax)/I), (5.18)

and the set of α’s that we shall use to compute the FChT-based spectrogram sym-
metrically spans this distribution with positive and negative values:

α = [−ᾱI ,−ᾱI−1, . . . ,−ᾱ1, ᾱ0, ᾱ1, . . . , ᾱI−1, ᾱI ]. (5.19)

For choosing the best distribution of analysis window lengths N =

[N1, N2, . . . , NJ ], since the FFT algorithm is used, powers-of-two are a preferable
choice. This criterion is used to choose the elements of N, optimizing this way the
computational cost regarding this parameter. The parameters to be set are, then,
N, following the aforementioned criterion, and the number I of parameters α. A
set of TFRs is then composed of several instances of FChT-based spectrograms us-
ing the combinations of N and α, and a spectrogram computed with N1 (for the
transients). Note that the sets of FChT-based spectrograms also include common
spectrograms, since XFChT

α=0 = X.
Then, all the representations suffer two-dimensional linear interpolation in such

a way that the highest time and frequency resolutions are preserved. All represen-
tations must have KJ

6 frequency bins after the interpolation, and must be synchro-
nized. In the present implementation, the same hop size is used for computing all
TFRs, but, as mentioned before, this does not guarantee a proper time alignment
between different spectrograms, reason why the time-wise interpolation (or a previ-
ous time shift in x) is also necessary. The set of parameters α and C computed via
structure tensor procedure must also be interpolated, generating matrices A and
C, respectively. The best results are obtained when the conversion from θ to α is
performed before the interpolation.

The last step is to equalize the energy of the TFRs and store them in a four-
dimensional tensor X, with the element Xk,m;j,i being related to the k-th frequency
bin, at the m-th time frame, from a representation that has been computed with
an analysis window of length Nj and a chirp rate parameter ᾱi. Since the transient

6It is worth mentioning once more that the number of frequency bins in the spectrogram is
K = 1 +N/2, hence KJ = 1 +NJ/2.
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information will be represented by a spectrogram originally having K1 frequency
bins, it is allocated at the first and last positions in dimension α for all layers j, and
therefore it will not be necessary to compute FChT-based spectrograms using the
first and last values of α, i. e. ᾱI and −ᾱI . Figure 5.16 depicts the tensor X, where
groups of TFRs with different α’s are illustrated clustered according to the original
number of frequency bins Kj.

m
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<latexit sha1_base64="M0M//raoHhIhAcHEar8Z3j3cy8U=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0V4jHgxWME84BkCb2TSTJmdmaZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jUo1ZQ2qhNLtCA0TXLKG5VawdqIZxpFgrWh8O/NbT0wbruSDnSQsjHEo+YBTtE5qdlEkI+yVyn7Fn4OskiAnZchR75W+un1F05hJSwUa0wn8xIYZasupYNNiNzUsQTrGIes4KjFmJszm107JuVP6ZKC0K2nJXP09kWFszCSOXGeMdmSWvZn4n9dJ7eAmzLhMUsskXSwapIJYRWavkz7XjFoxcQSp5u5WQkeokVoXUNGFECy/vEqal5XgquLfX5dr1TyOApzCGVxAAFWowR3UoQEUHuEZXuHNU96L9+59LFrXvHzmBP7A+/wBiNyPDw==</latexit>

m
<latexit sha1_base64="Lkliuu56KInbK/v56oYIBhgLJzI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W966rbvKnUa3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A0uiM6A==</latexit>

k
<latexit sha1_base64="bEhCVoWIqJXRb8imCCRLjtSjCjQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipORmUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp611W3eVOp1/I4inAG53AJHtSgDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBz+CM5g==</latexit>

↵
<latexit sha1_base64="M0M//raoHhIhAcHEar8Z3j3cy8U=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0V4jHgxWME84BkCb2TSTJmdmaZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jUo1ZQ2qhNLtCA0TXLKG5VawdqIZxpFgrWh8O/NbT0wbruSDnSQsjHEo+YBTtE5qdlEkI+yVyn7Fn4OskiAnZchR75W+un1F05hJSwUa0wn8xIYZasupYNNiNzUsQTrGIes4KjFmJszm107JuVP6ZKC0K2nJXP09kWFszCSOXGeMdmSWvZn4n9dJ7eAmzLhMUsskXSwapIJYRWavkz7XjFoxcQSp5u5WQkeokVoXUNGFECy/vEqal5XgquLfX5dr1TyOApzCGVxAAFWowR3UoQEUHuEZXuHNU96L9+59LFrXvHzmBP7A+/wBiNyPDw==</latexit>

K1<latexit sha1_base64="OWH5MNZdV+ul0xsbXbRAsMJ3DPc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkVFE8FL4KXivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gE18Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6Gbqt55QaR7LRzNO0I/oQPKQM2qs9HDX83qlsltxZyDLxMtJGXLUe6Wvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezUyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDKz7hMUoOSzReFqSAmJtO/SZ8rZEaMLaFMcXsrYUOqKDM2naINwVt8eZk0qxXvvFK9vyjXrvM4CnAMJ3AGHlxCDW6hDg1gMIBneIU3RzgvzrvzMW9dcfKZI/gD5/MHxfmNbw==</latexit>

K2<latexit sha1_base64="xNCYHJqJmmwGmy4XuySdSwHi3+c=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkVFE8FL4KXivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0ikMOi6387K6tr6xmZhq7i9s7u3Xzo4bJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRjdTv/XEtRGxesRxwv2IDpQIBaNopYe7XrVXKrsVdwayTLyclCFHvVf66vZjlkZcIZPUmI7nJuhnVKNgkk+K3dTwhLIRHfCOpYpG3PjZ7NQJObVKn4SxtqWQzNTfExmNjBlHge2MKA7NojcV//M6KYZXfiZUkiJXbL4oTCXBmEz/Jn2hOUM5toQyLeythA2ppgxtOkUbgrf48jJpViveeaV6f1GuXedxFOAYTuAMPLiEGtxCHRrAYADP8ApvjnRenHfnY9664uQzR/AHzucPx32NcA==</latexit>

KJ
<latexit sha1_base64="nnGCMYHmEZvyrKXu6hB+82PAJ1k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU8CJ6iWgekCxhdtJJhszOLjOzQljyCV48KOLVL/Lm3zhJ9qCJBQ1FVTfdXUEsuDau++3kVlbX1jfym4Wt7Z3dveL+QUNHiWJYZ5GIVCugGgWXWDfcCGzFCmkYCGwGo+up33xCpXkkH804Rj+kA8n7nFFjpYe77m23WHLL7gxkmXgZKUGGWrf41elFLAlRGiao1m3PjY2fUmU4EzgpdBKNMWUjOsC2pZKGqP10duqEnFilR/qRsiUNmam/J1Iaaj0OA9sZUjPUi95U/M9rJ6Z/6adcxolByeaL+okgJiLTv0mPK2RGjC2hTHF7K2FDqigzNp2CDcFbfHmZNCpl76xcuT8vVa+yOPJwBMdwCh5cQBVuoAZ1YDCAZ3iFN0c4L8678zFvzTnZzCH8gfP5A+vdjYg=</latexit>

Figure 5.16: Scheme of the four-dimensional TFR dictionary tensor.

5.3.3 Combination Procedure

The combination procedure is independently performed for each time-frequency bin
(k,m), using αk,m, from A, and Ck,m, from C. A linear combination is performed
using two different weights, one being related to αk,m, and another being related to
Ck,m. The idea is to combine the representations that best suit these two parame-
ters by using a simple linear interpolation, which can be represented as triangular
complementary functions.

Figure 5.17 depicts an example of the weights related to the parameters α, λα, for
I = 2. The weight λαi is applied to the i-th layer of X, so the centered weight in the
image, λα0 , in black, is related to the layers in X which were computed with ᾱ0 = 0,
the others in blue, λα1 and λα−1, are related to the layers computed with ᾱ1 and ᾱ−1,
and the last ones, λα2 and λα−2, in orange, are related to the STFT computed with
short window, which is used to represent the transients. For this reason, these last
curves have a plateau in 1 for representing ‖α‖ ≥ ᾱ2. Analogously, λC (depicted in
Figure 5.20) will be used for weighting the layers of X along dimension j, which is
related to K. In this example, the weighting function of λC2 is centered in 0.5, while
the others are set to the minimum and maximum extremes.

The combined TFR XComb is then described by the following two-dimensional
interpolation for each time-frequency bin (k,m):

XComb
k,m =

J∑
j=1

I∑
i=−I

λCk,m;jλ
α
k,m;iXk,m;j,i. (5.20)

As mentioned at the beginning of the chapter, the computation of the struc-
ture tensor as proposed in this thesis provides much better results for the MRFCI
method, since the anisotropy measure is more focused on the frequency lines. This
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. . .
<latexit sha1_base64="cDM6hKdSYEnC4yK9Yy3lMduf1VE=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBHEQ0lU0GPBi8cK9gPaUDabTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+nZXVtfWNzdJWeXtnd2+/cnDYMirTlDWpEkp3QmKY4JI1kaNgnVQzkoSCtcPR7dRvPzFtuJIPOE5ZkJCB5DGnBK3U6g0jhaZfqXo1bwZ3mfgFqUKBRr/y1YsUzRImkQpiTNf3UgxyopFTwSblXmZYSuiIDFjXUkkSZoJ8du3EPbVK5MZK25LoztTfEzlJjBknoe1MCA7NojcV//O6GcY3Qc5lmiGTdL4ozoSLyp2+7kZcM4pibAmhmttbXTokmlC0AZVtCP7iy8ukdVHzL2ve/VW1fl7EUYJjOIEz8OEa6nAHDWgChUd4hld4c5Tz4rw7H/PWFaeYOYI/cD5/AK9xjx4=</latexit>

↵
<latexit sha1_base64="cGNb8TUXW1gbCNWj85P6A4sOrIY=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBDEQ9hVQY8BLx4jmAckS+idzCZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlApurO9/eyura+sbm4Wt4vbO7t5+6eCwYVSmKatTJZRuRWiY4JLVLbeCtVLNMIkEa0bD26nffGLacCUf7ChlYYJ9yWNO0Tqp0UGRDrBbKvsVfwayTIKclCFHrVv66vQUzRImLRVoTDvwUxuOUVtOBZsUO5lhKdIh9lnbUYkJM+F4du2EnDqlR2KlXUlLZurviTEmxoySyHUmaAdm0ZuK/3ntzMY34ZjLNLNM0vmiOBPEKjJ9nfS4ZtSKkSNINXe3EjpAjdS6gIouhGDx5WXSuKgElxX//qpcPc/jKMAxnMAZBHANVbiDGtSBwiM8wyu8ecp78d69j3nripfPHMEfeJ8/hPOPAg==</latexit>

�↵
<latexit sha1_base64="1CaV4coS0Fpqx7mAXCAcLvjC2gg=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBHERUlU0GXBjcsK9gFNWm4mk3bo5MHMRCmh/+HGhSJu/Rd3/o3TNgttPTBwOOdc7p3jp4Irbdvf1srq2vrGZmmrvL2zu7dfOThsqSSTlDVpIhLZ8VExwWPW1FwL1kklw8gXrO2Pbqd++5FJxZP4QY9T5kU4iHnIKWoj9VxhogH2XBTpEPuVql2zZyDLxClIFQo0+pUvN0hoFrFYU4FKdR071V6OUnMq2KTsZoqlSEc4YF1DY4yY8vLZ1RNyapSAhIk0L9Zkpv6eyDFSahz5JhmhHqpFbyr+53UzHd54OY/TTLOYzheFmSA6IdMKSMAlo1qMDUEqubmV0CFKpNoUVTYlOItfXiati5pzWbPvr6r186KOEhzDCZyBA9dQhztoQBMoSHiGV3iznqwX6936mEdXrGLmCP7A+vwBf3eSbQ==</latexit>

1<latexit sha1_base64="kyBNFlMyrTinn7YTmVwlB1dTFL0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKDa9frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LqXVXdxnWldpHHUYQTOIVz8OAGanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fdA+Mnw==</latexit>

�↵
1

<latexit sha1_base64="b+IkurI8REgfOjwDi7xEKsZkJoc=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0UQFyVRQZcFNy4r2Ac0MdxMJu3QySTMTAol9E/cuFDErX/izr9x2mahrQcGDuecy71zwowzpR3n26qsrW9sblW3azu7e/sH9uFRR6W5JLRNUp7KXgiKciZoWzPNaS+TFJKQ0244upv53TGViqXiUU8y6icwECxmBLSRAtv2uAlH8OQBz4YQuIFddxrOHHiVuCWpoxKtwP7yopTkCRWacFCq7zqZ9guQmhFOpzUvVzQDMoIB7RsqIKHKL+aXT/GZUSIcp9I8ofFc/T1RQKLUJAlNMgE9VMveTPzP6+c6vvULJrJcU0EWi+KcY53iWQ04YpISzSeGAJHM3IrJECQQbcqqmRLc5S+vks5lw71qOA/X9eZFWUcVnaBTdI5cdIOa6B61UBsRNEbP6BW9WYX1Yr1bH4toxSpnjtEfWJ8/JwCTQg==</latexit>

�↵
2

<latexit sha1_base64="/sDgLm3rNH9ik1xjB9Oj0nT2gts=">AAAB+XicbVBNS8NAFNzUr1q/oh69LBZBPJSkCnosePFYwdZCE8PLZtMu3WzC7qZQQv+JFw+KePWfePPfuG1z0NaBhWFmHu/thBlnSjvOt1VZW9/Y3Kpu13Z29/YP7MOjrkpzSWiHpDyVvRAU5UzQjmaa014mKSQhp4/h6HbmP46pVCwVD3qSUT+BgWAxI6CNFNi2x004gicPeDaEoBnYdafhzIFXiVuSOirRDuwvL0pJnlChCQel+q6Tab8AqRnhdFrzckUzICMY0L6hAhKq/GJ++RSfGSXCcSrNExrP1d8TBSRKTZLQJBPQQ7XszcT/vH6u4xu/YCLLNRVksSjOOdYpntWAIyYp0XxiCBDJzK2YDEEC0aasminBXf7yKuk2G+5lw7m/qrcuyjqq6ASdonPkomvUQneojTqIoDF6Rq/ozSqsF+vd+lhEK1Y5c4z+wPr8ASiEk0M=</latexit>

�↵
�2

<latexit sha1_base64="IoyzfWLh8G7tufH9F8fWQKkSGcE=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAgiWJIq6LLgxmUF+4AmhpvJpB06mYSZiRBC/RU3LhRx64e482+ctllo64GBwznncu+cIGVUKtv+NlZW19Y3Nitb1e2d3b198+CwK5NMYNLBCUtEPwBJGOWko6hipJ8KAnHASC8Y30z93iMRkib8XuUp8WIYchpRDEpLvllzmQ6H8OACS0fgF+fNiW/W7YY9g7VMnJLUUYm2b365YYKzmHCFGUg5cOxUeQUIRTEjk6qbSZICHsOQDDTlEBPpFbPjJ9aJVkIrSoR+XFkz9fdEAbGUeRzoZAxqJBe9qfifN8hUdO0VlKeZIhzPF0UZs1RiTZuwQioIVizXBLCg+lYLj0AAVrqvqi7BWfzyMuk2G85Fw767rLfOyjoq6Agdo1PkoCvUQreojToIoxw9o1f0ZjwZL8a78TGPrhjlTA39gfH5A2ewlIY=</latexit>

�↵
�1

<latexit sha1_base64="FHPFSc30WIal2h+EFpE2geVlqJM=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwY0lUqMuCG5cV7AOaGG4mk3boZBJmJkII9VfcuFDErR/izr9x2mahrQcGDuecy71zgpRRqWz726isrW9sblW3azu7e/sH5uFRTyaZwKSLE5aIQQCSMMpJV1HFyCAVBOKAkX4wuZn5/UciJE34vcpT4sUw4jSiGJSWfLPuMh0O4cEFlo7BL86dqW827KY9h7VKnJI0UImOb365YYKzmHCFGUg5dOxUeQUIRTEj05qbSZICnsCIDDXlEBPpFfPjp9apVkIrSoR+XFlz9fdEAbGUeRzoZAxqLJe9mfifN8xUdO0VlKeZIhwvFkUZs1RizZqwQioIVizXBLCg+lYLj0EAVrqvmi7BWf7yKuldNJ3Lpn131Wi3yjqq6BidoDPkoBZqo1vUQV2EUY6e0St6M56MF+Pd+FhEK0Y5U0d/YHz+AGoUlJI=</latexit>

�↵
0

<latexit sha1_base64="f2dSo9pcjk+ryCCZbVAj47FClds=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUSFuiy4cVnBPqCN4WYyaYdOJmFmIpaQX3HjQhG3/og7/8Zpm4W2Hhg4nHMu984JUs6Udpxva219Y3Nru7JT3d3bPzi0j2pdlWSS0A5JeCL7ASjKmaAdzTSn/VRSiANOe8HkZub3HqlULBH3eppSL4aRYBEjoI3k27UhN+EQHobA0zH4uVP4dt1pOHPgVeKWpI5KtH37axgmJIup0ISDUgPXSbWXg9SMcFpUh5miKZAJjOjAUAExVV4+v73AZ0YJcZRI84TGc/X3RA6xUtM4MMkY9FgtezPxP2+Q6ejay5lIM00FWSyKMo51gmdF4JBJSjSfGgJEMnMrJmOQQLSpq2pKcJe/vEq6Fw33suHcXdVbzbKOCjpBp+gcuaiJWugWtVEHEfSEntErerMK68V6tz4W0TWrnDlGf2B9/gD4dpRa</latexit>

�↵
3

<latexit sha1_base64="G0kfmftnZ0GUuMmdNVCfSkOfQEE=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwVRIV6rLgxmUF+4AmhpvJpB06mYSZSaGE/okbF4q49U/c+TdO2yy09cDA4ZxzuXdOmHGmtON8W5WNza3tnepubW//4PDIPj7pqjSXhHZIylPZD0FRzgTtaKY57WeSQhJy2gvHd3O/N6FSsVQ86mlG/QSGgsWMgDZSYNseN+EInjzg2QiC68CuOw1nAbxO3JLUUYl2YH95UUryhApNOCg1cJ1M+wVIzQins5qXK5oBGcOQDgwVkFDlF4vLZ/jCKBGOU2me0Hih/p4oIFFqmoQmmYAeqVVvLv7nDXId3/oFE1muqSDLRXHOsU7xvAYcMUmJ5lNDgEhmbsVkBBKINmXVTAnu6pfXSfeq4V43nIebeqtZ1lFFZ+gcXSIXNVEL3aM26iCCJugZvaI3q7BerHfrYxmtWOXMKfoD6/MHLfGTUQ==</latexit>

�↵
�3

<latexit sha1_base64="hzuVuqjhvFgv0kc7jIb+v/JLiys=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAhuLIkV6rLgxmUF+4AmhpvJpB06mYSZiRBC/RU3LhRx64e482+ctllo64GBwznncu+cIGVUKtv+NtbWNza3tis71d29/YND8+i4J5NMYNLFCUvEIABJGOWkq6hiZJAKAnHASD+Y3Mz8/iMRkib8XuUp8WIYcRpRDEpLvllzmQ6H8OACS8fgFxfNqW/W7YY9h7VKnJLUUYmOb365YYKzmHCFGUg5dOxUeQUIRTEj06qbSZICnsCIDDXlEBPpFfPjp9aZVkIrSoR+XFlz9fdEAbGUeRzoZAxqLJe9mfifN8xUdO0VlKeZIhwvFkUZs1RizZqwQioIVizXBLCg+lYLj0EAVrqvqi7BWf7yKuldNpxmw767qrdbZR0VdIJO0TlyUAu10S3qoC7CKEfP6BW9GU/Gi/FufCyia0Y5U0N/YHz+AG0elJQ=</latexit>

...
<latexit sha1_base64="cDM6hKdSYEnC4yK9Yy3lMduf1VE=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBHEQ0lU0GPBi8cK9gPaUDabTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+nZXVtfWNzdJWeXtnd2+/cnDYMirTlDWpEkp3QmKY4JI1kaNgnVQzkoSCtcPR7dRvPzFtuJIPOE5ZkJCB5DGnBK3U6g0jhaZfqXo1bwZ3mfgFqUKBRr/y1YsUzRImkQpiTNf3UgxyopFTwSblXmZYSuiIDFjXUkkSZoJ8du3EPbVK5MZK25LoztTfEzlJjBknoe1MCA7NojcV//O6GcY3Qc5lmiGTdL4ozoSLyp2+7kZcM4pibAmhmttbXTokmlC0AZVtCP7iy8ukdVHzL2ve/VW1fl7EUYJjOIEz8OEa6nAHDWgChUd4hld4c5Tz4rw7H/PWFaeYOYI/cD5/AK9xjx4=</latexit>

�↵̄3
<latexit sha1_base64="z7lzk2ezNzJKppAHi+1APdwQ8d0=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgxZJYoR4LXjxWsB/QhDLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpR3n2ypsbG5t7xR3S3v7B4dH5eOTtopTSWiLxDyW3QAV5UzQlmaa024iKUYBp51gfDf3OxMqFYvFo54m1I9wKFjICGoj+VdegNJDnoywX+uXK07VWcBeJ25OKpCj2S9/eYOYpBEVmnBUquc6ifYzlJoRTmclL1U0QTLGIe0ZKjCiys8WR8/sC6MM7DCWpoS2F+rviQwjpaZRYDoj1CO16s3F/7xeqsNbP2MiSTUVZLkoTLmtY3uegD1gkhLNp4YgkczcapMRSiTa5FQyIbirL6+T9nXVrVXdh5tKo57HUYQzOIdLcKEODbiHJrSAwBM8wyu8WRPrxXq3PpatBSufOYU/sD5/ACNlkaY=</latexit>

↵̄3
<latexit sha1_base64="/kRpZpCa+CQV3jgTgyqVMINFN+w=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxxcD6o1t+4uQNaJV5AaFGgNql/+MKFZzKShArXue25qghyV4VSwWcXPNEuRTnDE+pZKjJkO8sXNM3JhlSGJEmVLGrJQf0/kGGs9jUPbGaMZ61VvLv7n9TMT3QY5l2lmmKTLRVEmiEnIPAAy5IpRI6aWIFXc3kroGBVSY2Oq2BC81ZfXSeeq7l3XvYebWrNRxFGGMziHS/CgAU24hxa0gUIKz/AKb07mvDjvzseyteQUM6fwB87nD7gMkW8=</latexit>

↵̄2
<latexit sha1_base64="1FBy6yNReo8ejI+V8yV9wsMQvHQ=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV6rHgxWMF+wFNKJPtpl262YTdjVBC/4YXD4p49c9489+4bXPQ1gcDj/dmmJkXpoJr47rfzsbm1vbObmmvvH9weHRcOTnt6CRTlLVpIhLVC1EzwSVrG24E66WKYRwK1g0nd3O/+8SU5ol8NNOUBTGOJI84RWMl3w9R+SjSMQ7qg0rVrbkLkHXiFaQKBVqDypc/TGgWM2moQK37npuaIEdlOBVsVvYzzVKkExyxvqUSY6aDfHHzjFxaZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JjKNgRv9eV10qnXvOua93BTbTaKOEpwDhdwBR40oAn30II2UEjhGV7hzcmcF+fd+Vi2bjjFzBn8gfP5A7aIkW4=</latexit>

↵̄1
<latexit sha1_base64="25g3YalXDrOjV3kqJRcbjFvAstA=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxx4g2rNrbsLkHXiFaQGBVqD6pc/TGgWM2moQK37npuaIEdlOBVsVvEzzVKkExyxvqUSY6aDfHHzjFxYZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JgqNgRv9eV10rmqe9d17+Gm1mwUcZThDM7hEjxoQBPuoQVtoJDCM7zCm5M5L86787FsLTnFzCn8gfP5A7UEkW0=</latexit>

↵̄0
<latexit sha1_base64="F14Mgz0WlM3ks7+pOEEEvmHdk+w=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxy4g2rNrbsLkHXiFaQGBVqD6pc/TGgWM2moQK37npuaIEdlOBVsVvEzzVKkExyxvqUSY6aDfHHzjFxYZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JgqNgRv9eV10rmqe9d17+Gm1mwUcZThDM7hEjxoQBPuoQVtoJDCM7zCm5M5L86787FsLTnFzCn8gfP5A7OAkWw=</latexit>

�↵̄1
<latexit sha1_base64="5FDYzWYwIvF7vY1Tlf5oobS6cCQ=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBiyVRoR4LXjxWsLXQhDLZbtqlm03c3RRK6e/w4kERr/4Yb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlk4yRVmTJiJR7RA1E1yypuFGsHaqGMahYI/h8HbmP46Y0jyRD2acsiDGvuQRp2isFFz4ISofRTrArtctV9yqOwdZJV5OKpCj0S1/+b2EZjGThgrUuuO5qQkmqAyngk1LfqZZinSIfdaxVGLMdDCZHz0lZ1bpkShRtqQhc/X3xARjrcdxaDtjNAO97M3E/7xOZqKbYMJlmhkm6WJRlAliEjJLgPS4YtSIsSVIFbe3EjpAhdTYnEo2BG/55VXSuqx6V1Xv/rpSr+VxFOEETuEcPKhBHe6gAU2g8ATP8Apvzsh5cd6dj0VrwclnjuEPnM8fIF2RpA==</latexit>

�↵̄2
<latexit sha1_base64="Vbh5NojphCo25QczGpesVuHFJJU=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgxZJUoR4LXjxWsB/QhDLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpR3n2ypsbG5t7xR3S3v7B4dH5eOTtopTSWiLxDyW3QAV5UzQlmaa024iKUYBp51gfDf3OxMqFYvFo54m1I9wKFjICGoj+VdegNJDnoywX+uXK07VWcBeJ25OKpCj2S9/eYOYpBEVmnBUquc6ifYzlJoRTmclL1U0QTLGIe0ZKjCiys8WR8/sC6MM7DCWpoS2F+rviQwjpaZRYDoj1CO16s3F/7xeqsNbP2MiSTUVZLkoTLmtY3uegD1gkhLNp4YgkczcapMRSiTa5FQyIbirL6+Tdq3qXlfdh5tKo57HUYQzOIdLcKEODbiHJrSAwBM8wyu8WRPrxXq3PpatBSufOYU/sD5/ACHhkaU=</latexit>

. . .
<latexit sha1_base64="cDM6hKdSYEnC4yK9Yy3lMduf1VE=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBHEQ0lU0GPBi8cK9gPaUDabTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+nZXVtfWNzdJWeXtnd2+/cnDYMirTlDWpEkp3QmKY4JI1kaNgnVQzkoSCtcPR7dRvPzFtuJIPOE5ZkJCB5DGnBK3U6g0jhaZfqXo1bwZ3mfgFqUKBRr/y1YsUzRImkQpiTNf3UgxyopFTwSblXmZYSuiIDFjXUkkSZoJ8du3EPbVK5MZK25LoztTfEzlJjBknoe1MCA7NojcV//O6GcY3Qc5lmiGTdL4ozoSLyp2+7kZcM4pibAmhmttbXTokmlC0AZVtCP7iy8ukdVHzL2ve/VW1fl7EUYJjOIEz8OEa6nAHDWgChUd4hld4c5Tz4rw7H/PWFaeYOYI/cD5/AK9xjx4=</latexit>

↵
<latexit sha1_base64="cGNb8TUXW1gbCNWj85P6A4sOrIY=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBDEQ9hVQY8BLx4jmAckS+idzCZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlApurO9/eyura+sbm4Wt4vbO7t5+6eCwYVSmKatTJZRuRWiY4JLVLbeCtVLNMIkEa0bD26nffGLacCUf7ChlYYJ9yWNO0Tqp0UGRDrBbKvsVfwayTIKclCFHrVv66vQUzRImLRVoTDvwUxuOUVtOBZsUO5lhKdIh9lnbUYkJM+F4du2EnDqlR2KlXUlLZurviTEmxoySyHUmaAdm0ZuK/3ntzMY34ZjLNLNM0vmiOBPEKjJ9nfS4ZtSKkSNINXe3EjpAjdS6gIouhGDx5WXSuKgElxX//qpcPc/jKMAxnMAZBHANVbiDGtSBwiM8wyu8ecp78d69j3nripfPHMEfeJ8/hPOPAg==</latexit>

�↵
<latexit sha1_base64="1CaV4coS0Fpqx7mAXCAcLvjC2gg=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBHERUlU0GXBjcsK9gFNWm4mk3bo5MHMRCmh/+HGhSJu/Rd3/o3TNgttPTBwOOdc7p3jp4Irbdvf1srq2vrGZmmrvL2zu7dfOThsqSSTlDVpIhLZ8VExwWPW1FwL1kklw8gXrO2Pbqd++5FJxZP4QY9T5kU4iHnIKWoj9VxhogH2XBTpEPuVql2zZyDLxClIFQo0+pUvN0hoFrFYU4FKdR071V6OUnMq2KTsZoqlSEc4YF1DY4yY8vLZ1RNyapSAhIk0L9Zkpv6eyDFSahz5JhmhHqpFbyr+53UzHd54OY/TTLOYzheFmSA6IdMKSMAlo1qMDUEqubmV0CFKpNoUVTYlOItfXiati5pzWbPvr6r186KOEhzDCZyBA9dQhztoQBMoSHiGV3iznqwX6936mEdXrGLmCP7A+vwBf3eSbQ==</latexit>

1<latexit sha1_base64="kyBNFlMyrTinn7YTmVwlB1dTFL0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKDa9frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LqXVXdxnWldpHHUYQTOIVz8OAGanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fdA+Mnw==</latexit>

�↵
1

<latexit sha1_base64="b+IkurI8REgfOjwDi7xEKsZkJoc=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0UQFyVRQZcFNy4r2Ac0MdxMJu3QySTMTAol9E/cuFDErX/izr9x2mahrQcGDuecy71zwowzpR3n26qsrW9sblW3azu7e/sH9uFRR6W5JLRNUp7KXgiKciZoWzPNaS+TFJKQ0244upv53TGViqXiUU8y6icwECxmBLSRAtv2uAlH8OQBz4YQuIFddxrOHHiVuCWpoxKtwP7yopTkCRWacFCq7zqZ9guQmhFOpzUvVzQDMoIB7RsqIKHKL+aXT/GZUSIcp9I8ofFc/T1RQKLUJAlNMgE9VMveTPzP6+c6vvULJrJcU0EWi+KcY53iWQ04YpISzSeGAJHM3IrJECQQbcqqmRLc5S+vks5lw71qOA/X9eZFWUcVnaBTdI5cdIOa6B61UBsRNEbP6BW9WYX1Yr1bH4toxSpnjtEfWJ8/JwCTQg==</latexit>

�↵
2

<latexit sha1_base64="/sDgLm3rNH9ik1xjB9Oj0nT2gts=">AAAB+XicbVBNS8NAFNzUr1q/oh69LBZBPJSkCnosePFYwdZCE8PLZtMu3WzC7qZQQv+JFw+KePWfePPfuG1z0NaBhWFmHu/thBlnSjvOt1VZW9/Y3Kpu13Z29/YP7MOjrkpzSWiHpDyVvRAU5UzQjmaa014mKSQhp4/h6HbmP46pVCwVD3qSUT+BgWAxI6CNFNi2x004gicPeDaEoBnYdafhzIFXiVuSOirRDuwvL0pJnlChCQel+q6Tab8AqRnhdFrzckUzICMY0L6hAhKq/GJ++RSfGSXCcSrNExrP1d8TBSRKTZLQJBPQQ7XszcT/vH6u4xu/YCLLNRVksSjOOdYpntWAIyYp0XxiCBDJzK2YDEEC0aasminBXf7yKuk2G+5lw7m/qrcuyjqq6ASdonPkomvUQneojTqIoDF6Rq/ozSqsF+vd+lhEK1Y5c4z+wPr8ASiEk0M=</latexit>

�↵
�2

<latexit sha1_base64="IoyzfWLh8G7tufH9F8fWQKkSGcE=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAgiWJIq6LLgxmUF+4AmhpvJpB06mYSZiRBC/RU3LhRx64e482+ctllo64GBwznncu+cIGVUKtv+NlZW19Y3Nitb1e2d3b198+CwK5NMYNLBCUtEPwBJGOWko6hipJ8KAnHASC8Y30z93iMRkib8XuUp8WIYchpRDEpLvllzmQ6H8OACS0fgF+fNiW/W7YY9g7VMnJLUUYm2b365YYKzmHCFGUg5cOxUeQUIRTEjk6qbSZICHsOQDDTlEBPpFbPjJ9aJVkIrSoR+XFkz9fdEAbGUeRzoZAxqJBe9qfifN8hUdO0VlKeZIhzPF0UZs1RiTZuwQioIVizXBLCg+lYLj0AAVrqvqi7BWfzyMuk2G85Fw767rLfOyjoq6Agdo1PkoCvUQreojToIoxw9o1f0ZjwZL8a78TGPrhjlTA39gfH5A2ewlIY=</latexit>

�↵
�1

<latexit sha1_base64="FHPFSc30WIal2h+EFpE2geVlqJM=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwY0lUqMuCG5cV7AOaGG4mk3boZBJmJkII9VfcuFDErR/izr9x2mahrQcGDuecy71zgpRRqWz726isrW9sblW3azu7e/sH5uFRTyaZwKSLE5aIQQCSMMpJV1HFyCAVBOKAkX4wuZn5/UciJE34vcpT4sUw4jSiGJSWfLPuMh0O4cEFlo7BL86dqW827KY9h7VKnJI0UImOb365YYKzmHCFGUg5dOxUeQUIRTEj05qbSZICnsCIDDXlEBPpFfPjp9apVkIrSoR+XFlz9fdEAbGUeRzoZAxqLJe9mfifN8xUdO0VlKeZIhwvFkUZs1RizZqwQioIVizXBLCg+lYLj0EAVrqvmi7BWf7yKuldNJ3Lpn131Wi3yjqq6BidoDPkoBZqo1vUQV2EUY6e0St6M56MF+Pd+FhEK0Y5U0d/YHz+AGoUlJI=</latexit>

�↵
0

<latexit sha1_base64="f2dSo9pcjk+ryCCZbVAj47FClds=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUSFuiy4cVnBPqCN4WYyaYdOJmFmIpaQX3HjQhG3/og7/8Zpm4W2Hhg4nHMu984JUs6Udpxva219Y3Nru7JT3d3bPzi0j2pdlWSS0A5JeCL7ASjKmaAdzTSn/VRSiANOe8HkZub3HqlULBH3eppSL4aRYBEjoI3k27UhN+EQHobA0zH4uVP4dt1pOHPgVeKWpI5KtH37axgmJIup0ISDUgPXSbWXg9SMcFpUh5miKZAJjOjAUAExVV4+v73AZ0YJcZRI84TGc/X3RA6xUtM4MMkY9FgtezPxP2+Q6ejay5lIM00FWSyKMo51gmdF4JBJSjSfGgJEMnMrJmOQQLSpq2pKcJe/vEq6Fw33suHcXdVbzbKOCjpBp+gcuaiJWugWtVEHEfSEntErerMK68V6tz4W0TWrnDlGf2B9/gD4dpRa</latexit>

↵̄2<latexit sha1_base64="1FBy6yNReo8ejI+V8yV9wsMQvHQ=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV6rHgxWMF+wFNKJPtpl262YTdjVBC/4YXD4p49c9489+4bXPQ1gcDj/dmmJkXpoJr47rfzsbm1vbObmmvvH9weHRcOTnt6CRTlLVpIhLVC1EzwSVrG24E66WKYRwK1g0nd3O/+8SU5ol8NNOUBTGOJI84RWMl3w9R+SjSMQ7qg0rVrbkLkHXiFaQKBVqDypc/TGgWM2moQK37npuaIEdlOBVsVvYzzVKkExyxvqUSY6aDfHHzjFxaZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JjKNgRv9eV10qnXvOua93BTbTaKOEpwDhdwBR40oAn30II2UEjhGV7hzcmcF+fd+Vi2bjjFzBn8gfP5A7aIkW4=</latexit>

↵̄1<latexit sha1_base64="25g3YalXDrOjV3kqJRcbjFvAstA=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxx4g2rNrbsLkHXiFaQGBVqD6pc/TGgWM2moQK37npuaIEdlOBVsVvEzzVKkExyxvqUSY6aDfHHzjFxYZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JgqNgRv9eV10rmqe9d17+Gm1mwUcZThDM7hEjxoQBPuoQVtoJDCM7zCm5M5L86787FsLTnFzCn8gfP5A7UEkW0=</latexit>

↵̄0
<latexit sha1_base64="F14Mgz0WlM3ks7+pOEEEvmHdk+w=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxy4g2rNrbsLkHXiFaQGBVqD6pc/TGgWM2moQK37npuaIEdlOBVsVvEzzVKkExyxvqUSY6aDfHHzjFxYZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JgqNgRv9eV10rmqe9d17+Gm1mwUcZThDM7hEjxoQBPuoQVtoJDCM7zCm5M5L86787FsLTnFzCn8gfP5A7OAkWw=</latexit>

�↵̄1<latexit sha1_base64="5FDYzWYwIvF7vY1Tlf5oobS6cCQ=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBiyVRoR4LXjxWsLXQhDLZbtqlm03c3RRK6e/w4kERr/4Yb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlk4yRVmTJiJR7RA1E1yypuFGsHaqGMahYI/h8HbmP46Y0jyRD2acsiDGvuQRp2isFFz4ISofRTrArtctV9yqOwdZJV5OKpCj0S1/+b2EZjGThgrUuuO5qQkmqAyngk1LfqZZinSIfdaxVGLMdDCZHz0lZ1bpkShRtqQhc/X3xARjrcdxaDtjNAO97M3E/7xOZqKbYMJlmhkm6WJRlAliEjJLgPS4YtSIsSVIFbe3EjpAhdTYnEo2BG/55VXSuqx6V1Xv/rpSr+VxFOEETuEcPKhBHe6gAU2g8ATP8Apvzsh5cd6dj0VrwclnjuEPnM8fIF2RpA==</latexit>

�↵̄2<latexit sha1_base64="Vbh5NojphCo25QczGpesVuHFJJU=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgxZJUoR4LXjxWsB/QhDLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpR3n2ypsbG5t7xR3S3v7B4dH5eOTtopTSWiLxDyW3QAV5UzQlmaa024iKUYBp51gfDf3OxMqFYvFo54m1I9wKFjICGoj+VdegNJDnoywX+uXK07VWcBeJ25OKpCj2S9/eYOYpBEVmnBUquc6ifYzlJoRTmclL1U0QTLGIe0ZKjCiys8WR8/sC6MM7DCWpoS2F+rviQwjpaZRYDoj1CO16s3F/7xeqsNbP2MiSTUVZLkoTLmtY3uegD1gkhLNp4YgkczcapMRSiTa5FQyIbirL6+Tdq3qXlfdh5tKo57HUYQzOIdLcKEODbiHJrSAwBM8wyu8WRPrxXq3PpatBSufOYU/sD5/ACHhkaU=</latexit>

...
<latexit sha1_base64="cDM6hKdSYEnC4yK9Yy3lMduf1VE=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBHEQ0lU0GPBi8cK9gPaUDabTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+nZXVtfWNzdJWeXtnd2+/cnDYMirTlDWpEkp3QmKY4JI1kaNgnVQzkoSCtcPR7dRvPzFtuJIPOE5ZkJCB5DGnBK3U6g0jhaZfqXo1bwZ3mfgFqUKBRr/y1YsUzRImkQpiTNf3UgxyopFTwSblXmZYSuiIDFjXUkkSZoJ8du3EPbVK5MZK25LoztTfEzlJjBknoe1MCA7NojcV//O6GcY3Qc5lmiGTdL4ozoSLyp2+7kZcM4pibAmhmttbXTokmlC0AZVtCP7iy8ukdVHzL2ve/VW1fl7EUYJjOIEz8OEa6nAHDWgChUd4hld4c5Tz4rw7H/PWFaeYOYI/cD5/AK9xjx4=</latexit>

Figure 5.17: Example of the weights used for combining TFRs with different α’s
(I = 2).
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Figure 5.18: Example of the weights used for combining TFRs with different K’s
(J = 3).

is especially critical in regions where there are fast frequency variations. The high
anisotropy at bins outside the regions of interest cause energy smearing, since large
analysis windows will be used to compose such bins in the final TFR, and this will
make them integrate the surrounding energy. This effect can be observed in Fig-
ure 5.19, where the test signal gradually increases the frequency variations. The
combination computed with the standard structure tensor (on the left) clearly ex-
hibits more energy smearing.

5.3.4 Practical Considerations

In practice, CPU processing can be saved by using only α = 0 for small window
sizes, e.g. N = 1024 (≈ 21ms), achieving very similar results. Another practical
consideration relates to the storage of X in memory. Since several TFRs may be
stored, it is useful to process the combined TFRs in small excerpts of x, and then
concatenate the results, giving a certain time margin to guarantee the proper com-
putation of all TFRs and the structure tensor parameters. Once the combined TFR
is processed for that given excerpt, its tensor X is no longer needed, and there-
fore the corresponding memory space can be freed up. This approach is also very
appropriate for parallel processing.

Regarding the size of the two-dimensional smoothing filter G, which has a direct
influence on the choice of the analysis window to be used, as mentioned, it needs
to be large enough to encompass a region compatible with the maximum analysis
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Figure 5.19: Varying vibrato: MRFCI combinations using dictionaries of I = 7 and
N ∈ {1024, 2048, 4096}, computed using standard structure tensor and the proposed
modified structure tensor, respectively.

window size, and therefore providing a good estimation of the best analysis window
to be used. Since a Gaussian filter is being used, its dimensions are related to its
standard deviations σk (frequency) and σm (time). Experimentally, using σk relative
to a frequency range around 100Hz and σm relative to 1/4 of the length of the larger
analysis window yields excellent results.

Also, in order to reduce backwards smearing of attacks, asymmetrical analysis
windows having a longer tail on the left side can be used for the longer windows.
Although the structure tensor indicates the presence of the attacks and assigns
short windows for such regions, having frequency components before the attacks
may lead to the use of large windows, which can create energy smearing artifacts.
Nevertheless, this has the side effect of decreasing the frequency resolution provided
by the long window. In the current implementation, the asymmetric windows are
computed by concatenation of the first half of a Hanning window computed with N
samples, and the second half of a Hanning window computed with N/2 samples.

For choosing the transition points for the weights λC , setting the regions ac-
cording to the relation of window sizes has shown to be a good approach. For
instance, Figure 5.20 depicts a good configuration of λC if the window sizes
N ∈ {1024, 2048, 4096} are to be used, tending to yield the minimum energy smear-
ing possible for this case. If a window of 3072 samples were also included, its weight
λC would be centered in C = 0.75. Experimentally, the difference that results from
the inclusion of such a window is negligible.
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Figure 5.20: Example of the weights used for combining TFRs with using N =
[1024, 2048, 4096].

5.3.5 Proof of Concept

In order to assess the performance of the proposed method, both synthetic and
real-world audio signals were analyzed. All input signals had sampling rate Fs =

48000Hz. The system was set according to the following configuration. In the
structure tensor procedure, the analysis windows of the spectrogram had length N =

1024 (21.3ms); in the smoothing two-dimensional filter G, σk corresponded to 100Hz
and σm to 21.3ms; and the dynamic range used in the analysis spectrogram was
R = 50. The analysis window sizes for the FChT-based spectrograms were chosen
as N ∈ {1024, 2048, 4096} (21.3, 42.6 and 85.3ms); in order to reduce backwards
energy smearing, asymmetric analysis windows were used for the computation of
FChT-based spectrograms with N3; αmax = 23.4 resulted from the application of
Equation (2.15); and all TFRs were computed with hop size h = 256 samples.

As a proof of concept, synthetic signals were selected to assess the method per-
formance in specific challenging scenarios with regards to time-frequency representa-
tions. First, a pulse comprised of harmonically related sinusoids, with onset at 0.1 s
and offset at 0.5 s, contaminated by additive white Gaussian noise (SNR = 50dB),
was used. Figures 5.21(a) and (b) depict the spectrograms obtained for this signal,
using K1 = 1024 and K3 = 4096, respectively the shortest and longest window sizes;
and Figures 5.21(c) and (d) depict the resulting TFRs using the proposed combi-
nation procedure, with I = 1 and I = 5 respectively. Red dashed lines indicate the
onset and offset instants to facilitate the visualization.

As can be clearly observed, the two TFRs computed with the proposed method
yielded nearly identical results, combining the time precision provided by the first
spectrogram with the frequency resolution of the second one. Since the frequency
lines present in this signal are well represented by an FChT-based spectrogram with
α = 0 (i.e. a spectrogram), increasing the number of FChTs available does not affect
the result. This could be the case of representing signals of instruments with stable
f0, e.g. piano or harp.

The second example uses a harmonic series whose f0 varies in a sinusoidal fash-
ion with increasing amplitude, also contaminated by additive white Gaussian noise
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(a) Spectrogram: N = 1024. (b) Spectrogram: N = 4096 (asymmetric).

(c) MRFCI: I = 1. (d) MRFCI: I = 5.

Figure 5.21: Spectrograms computed with different window sizes and MRFCI com-
binations with different I computed for a pulse composed of harmonically related
sinusoids. Onset and offset are indicated by the red-dashed lines.

(SNR = 50dB). This signal allows one to verify the capability of handling a wide
variety of α’s. The results are depicted in Figure 5.22, where it is possible to see
the original spectrogram, and three resulting TFRs, computed with I = 1, I = 3

and I = 5. As expected, increasing I also increases the time-frequency resolution,
yielding more concentrated and consistent frequency lines. For instance, the results
obtained for I = 3 and I = 5 differ only in the steeper slopes, mainly on the right
side of the pictures.

The last synthetic signal is a sum of two harmonic signals having different si-
nusoidal variations of f0, with additive white Gaussian noise (SNR = 50dB). For
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(a) Spectrogram: N = 2048. (b) MRFCI combination: I = 1.

(c) MRFCI combination: I = 3. (d) MRFCI combination: I = 5.

Figure 5.22: Varying vibrato: spectrogram and the MRFCI combinations, using
dictionaries of different I’s and N ∈ {1024, 2048, 4096}.

comparison, Figure 5.23 depicts the TFR obtained using the FEMD method, with
the SLS combination procedure, and the combined TFR using the MRFCI method,
for which I = 7 and N ∈ {1024, 2048} was used (to provide a fair comparison).
The resulting TFR represents the input signal with a similar definition, and very
smooth transitions can be observed. In particular, the regions where crossings of
frequency lines are better represented, and there is a slightly higher contrast between
the frequency lines and the background noise.

Finally, an excerpt from a piano and vocal recording was selected to illustrate
how the TFR of a real-world audio signal can be improved by the proposed strategy.
Figure 5.24 depicts its original spectrogram (N = 2048) and the combined TFR,
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Figure 5.23: TFRs of two synthetic vibrato signals. At the top, the representation
obtained via FEMD procedure using the SLS combination, and at the bottom, the
MRFCI combination (I = 7).

using I = 7 and N ∈ {1024, 2048, 4096}. Once again, the TFR generated by
the MRFCI method provides a clear high-resolution representation, which clearly
represents both the piano and the singing vocal—which is performing a very fast
melisma. The contrast is also enhanced, in this example.

5.4 Concluding Remarks

In this chapter, two methods for generating high-definition TFRs were presented.
Both methods make use of the structure tensor technique, which indicates the di-
rection of frequency lines, and thus allow for the fast computation of the frequency
slope parameter α, used in the FChT.

The FEMD provides a set of FChT-based spectrograms, which are computed
using the α’s estimated. Then, these instances are combined using some combi-
nation method, such as the methods presented before. As for the MRFCI, it is
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Figure 5.24: Vocal and piano: spectrogram (N = 2048) and MRFCI combination
(I = 7 and N ∈ {1024, 2048, 4096}), respectively.

a combination method which performs linear combination of samples present in a
multi-resolution dictionary of representations based on the FChT, and this com-
bination procedure is guided by the information provided by the structure tensor.
This last method has proven to be very flexible and has a good tradeoff regarding
the results achieved and its computational cost, which is much smaller than for the
combinations based on local information.

In the next chapter, the experiments that will be presented compare all the
approaches for generating high-definition TFRs in the context of melody analysis.
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Music Information Retrieval:
Experiments, Applications and Tools

77



Chapter 6

Experiments on Main Melody
Analysis

This chapter contains experiments concerning the application of some TFRs among
the methods studied in this thesis for melody analysis. The first set of experiments
aims to characterize the TFRs when representing real-world melodic sources, while
the second one is an attempt to apply different TFRs to a state-of-the-art system [41]
that estimates dominant melodies from mixtures.

6.1 Time-Frequency Representations of Main

Melody Signals

The objective of this first set of experiments is to use the most controlled environ-
ment possible to assess the performance of the different TFR combination methods
when representing melodic signals, which is the main motivation of this thesis.

Here, the MDB-melody-synth dataset [94] is used. It contains solo tracks of
main melody sources, i.e. tracks containing vocals and melodic instruments, with
virtually perfect f0 annotations, which were created by resynthesizing the original
signals to match the automatic annotations.

The synthesis is performed by an improved sinusoidal model that follows the am-
plitudes of the original signal and scale them in frequency according to the f0 anno-
tation; the unvoiced segments, which are annotated as f0 = 0, are muted (for details,
see [67, 94]). In [94], the authors show that the results yielded by different current
state-of-the-art algorithms for melody extraction and multi-f0 using the resynthe-
sized dataset are statistically equivalent to the ones yielded when using manually
corrected annotations with the original signals. Two files of the dataset were not
used in the experiments: the song ‘EthanHein_1930sSynthAndUprightBass’, which
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has a bass track1 as main melody, and the song entitled ‘MusicDelta_GriegTrolltog’,
whose annotations are unusable due to very poor estimations given the complexity
of the signal. In total, 63 signals were used for the experiments.

Since the annotations perfectly match the audio signals, they can be used as
guides to indicate the precise frequency of each harmonic and the exact location of
each onset. Hopefully, this will provide us with useful information to estimate a
statistical behaviour of each TFRs for main melody signals.

In order to save processing power and storage, the audio signals were downsam-
pled to 22.5 kHz, which provides a frequency spectrum from 0 to 11.25 kHz. This
frequency band is enough to comprise at least 10 harmonics for all signals. The
TFRs computed for the experiments are the following:

STFT – STFT-based spectrograms computed with window sizes of 21.3, 42.6 and
85.3ms (N ∈ {512, 1024, 2048} samples, considering the new sampling rate);

STFT-SWGM – the three STFT spectrograms combined using the SWGM
method (β = 0.5);

STFT-SLS – the three STFT spectrograms combined using the SLS method (ζ =

70);

FEMD-SLS – the three STFT spectrograms and one FChT-based spectrogram,
computed with the FEMD method and having analysis window of 42.6ms
(N = 1024 samples), combined using the SLS combination method (ζ = 70);

FEMD-SWGM – the three STFT spectrograms with one FChT-based spectro-
gram, computed with the FEMD method and having analysis window of
42.6ms (N = 1024 samples), combined using the SWGM combination method
(β = 0.5);

MRFCI – spectrogram computed with the MRFCI method, using I = 7, and
symmetrical analysis windows with durations of 21.3, 42.6 and 85.3ms (N ∈
{512, 1024, 2048} samples);

All parameters not mentioned here were set the same way they were described
in the examples present in their respective chapters.

6.1.1 Experiment 1: MDB-Melody-Synth Dataset

The first experiment consists in computing, for all annotated voiced excerpts, the
energy distribution around f0 and its harmonics within a margin of 100Hz, and

1The bass track was not included in the experiment since the distance between its harmonics
was too small.
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then computing the average energy distribution. This average peak format will
summarize information of different melodic sources of the entire dataset.

In order to have a consistent peak estimation for all frames, only the harmonics
2 to 9 were evaluated, in such a way that the margins were always inside the time-
frequency plane. Figure 6.1 depicts an example of a vocal present in the dataset,
represented using the MRFCI method, along with its f0 annotation (red line) and
its corresponding margins (blue lines).

Figure 6.1: Resynthesized vocal signal represented with the MRFCI method, along
with the annotated f0 line (red) and the margins considered for the computation of
the average peak (blue).

As can be seen, the annotation follows exactly the fundamental frequency. Also,
it is worth mentioning that non-harmonic energy of the voice signal, which can
be clearly seen between the frequency lines, is still present; therefore, this synthesis
does not only considers the tonal frequency lines, but it addapts the whole frequency
spectrum of the original signal to match the annotation. Such information can be
linked to noise or the formants of the voice, i.e. the response of the vocal tract,
which changes according to the vowel pronounced.

The peak average computation starts by interpolating the frequency samples of
each frame to compute the peak format having multiples of the annotated f0 as
center, which will not necessarily fall into a frequency index of the representations.
The first and the last 5 frames of each voiced segment are not taken into account,
avoiding the energy spread in frequency inherent in onsets and offsets. Then, for
each harmonic, the vectors containing the frequency peaks are stacked into a matrix;
after that, the average peak of each harmonic is computed and normalized, and
finally the average of such peaks is computed. Figure 6.2 depicts one of the matrices
mentioned, which has the peaks disposed column-wise, in dB. One can see the energy
concentration in the middle (horizontally), but there is also the presence of many
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vectors with energy smearing (vertical dark patterns). Also, it is worth mentioning
that the frequency lines have a large variation in amplitude, since the signal is a
reproduction of a natural voice; hence, the average peaks will take all of these facts
into account.

Figure 6.2: Matrix containing all the frequency peaks disposed side by side for one
harmonic of a vocal signal.

Two figures-of-merit were chosen to compare the different average curves: band-
width within −3 dB (BW) and average dynamic range (DR), in dB, which is the
average difference between the central peak and the valleys.2 Figure 6.3 depicts the
average frequency peaks, in dB, for all spectrograms, with peak normalization. The
results are summarized in Table 6.1.

Figure 6.3: Normalized average frequency peaks, in dB, for all spectrograms.

As expected, the average peak for the STFT-based spectrogram results the worst
of all. In this matter, it has the only advantage of not causing much energy smearing

2The curves tend to have asymmetric valleys due to the tendency of the harmonics’ amplitude
to decrease with frequency.
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BW [Hz] DR [dB]
STFT-1 68.4 16.4
STFT-2 36.2 22.6
STFT-3 25.2 21.7

STFT-SWGM 41.9 21.9
STFT-SLS 22.1 25.3
FEMD-SLS 23.3 25.9

FEMD-SWGM 37.7 23.9
MRFCI 22.8 27.3

Table 6.1: Results for average peaks using the MDB-melody-synth dataset.

in very non-stationary parts of the signal, which are not that frequent. Among the
three STFT-based spectrograms, the one with larger window size seems to be the
best option, on average. This sounds reasonable, since a large proportion of this type
of audio signal is considerably stationary. Nevertheless, the non-stationary parts of
the signal contributes to attenuate the average DR.

As for the combination of these spectrograms, the average curve obtained using
the SWGM method resulted in a similar dynamic range of the best STFT, although
the peak distortion inherent to this method led to a relatively large bandwidth. For
this kind of signal, the SWGM combination will provide a more controlled energy
smearing in non-stationary regions than the STFT using large analysis window, at
the cost of having a worse overall peak definition. This will be better explored in
the next experiment. The SLS combination, on the other hand, beat all the STFT-
based spectrograms and their SWGM combination, having the smallest bandwidth
and highest DR, although at the price of requiring a much higher computational
cost.

The inclusion of a FChT-based spectrogram, via the FEMD method, resulted
in a some improvement of DR and BW, when using the SWGM combination, but
very similar results using the SLS method. It is worth noting that the FEMD
method only includes a FChT-based spectrogram with medium window size, since
it has no procedure for choosing the correct window length for each segment, as does
the MRFCI. Using the FEMD method to include a FChT-based spectrogram with
longer analysis window is possible, but the resulting TFR starts to suffer from too
many artifacts, besides the further increase in computational burden. In the case
of analysing signals with the presence of other sound sources, the number of FChTs
would have to increase, making it too computationally expensive. Nevertheless, the
FEMD method provides better resolution TFRs in non-stationary regions, which
can be important to better capturing details in melody.

The MRFCI method, on the other hand, is a general purpose tool for generat-
ing TFRs, independently from the number of sources or nature of the signal under
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analysis, and it has yielded the best results of all TFRs, except for having a slightly
larger BW compared to STFT-SLS. As discussed before, the TFR computed us-
ing the MRFCI method can benefit from FChTs computed with higher resolution
whenever needed.

6.1.2 Experiment 2: Synthesized Signals with Fixed Har-

monic Relation

The previous experiment used the most natural dataset possible we found in the
literature for this purpose. As mentioned, the natural variations in amplitude and
energy outside the harmonic frequency peaks are present in the dataset. However,
for this reason, it does not allow the analysis of some other characteristics of the
methods, since only annotations regarding the f0 are available. For instance, other
important features to be preserved by a good TFR are the relative amplitude of the
harmonics, which relates to the preservation of timbre,3 and the energy evolution at
the onsets.

For this reason, another dataset was generated by means of a bank of oscillators
having as instantaneous frequency the annotated f0 and its harmonics, with an
arbitrary harmonic relation of amplitudes. For this experiment, it was imposed
an energy loss, in dB, proportional to the harmonic index, i.e. the h-th harmonic
is attenuated by hdB. Although this attenuation factor is arbitrary, it represents
a general tendency regarding the energy of harmonics produced by natural sound
sources. As in the other dataset, the signals which compose this dataset still preserve
all the natural frequency variations typical of melodic signals. Unvoiced excerpts
are also muted. Now, with these more controlled signals, the frequency peaks can
be tracked, allowing for a more detailed analysis in terms of amplitude.

Frequency Peak

First, the same procedure adopted on the previous experiment was applied to this
dataset. Figure 6.4 depicts the new synthetic version of the same excerpt shown in
Figure 6.1, also generated using the MRFCI method. As can be observed, only the
first nine harmonics were generated, since the other ones are not evaluated.

Since the amplitude of each harmonic is theoretically constant, the energy smear-
ing will be primarily caused by the incapability of the methods to correctly reproduce
the fast variations in frequency, considering that all the transient parts of the signal
were not taken into account. Figure 6.5 depicts the matrix obtained the same way as

3The timbre is a much more complex concept and it involves more than just the harmonics’
amplitudes.

83



Figure 6.4: Vocal signal synthesized with arbitrary harmonic amplitudes and rep-
resented with the MRFCI method along with the annotated f0 line (red) and the
margins considered for the computation of the average peak (blue).

before, but for the new synthesized signal, where the energy can be observed much
more consistently concentrated at the center of the vectors.

Figure 6.5: Matrix containing all the frequency peaks disposed side by side for one
harmonic of a vocal signal (synthetic dataset).

Figure 6.6 depicts the average peaks computed for this dataset, using the same
TFR methods, while the results are summarized in Table 6.2. As can be seen, now
the resulting average curves have slightly more focused bandwidths and lower dy-
namic ranges. The main difference observed is regarding the FEMD method, which
yielded higher improvements over the combinations of STFTs, making the average
FEMD-SLS curve to be much closer to the MRFCI one. However, the overall results
did not change drastically, which suggests that this analysis is considerably more
dependent to the qualities of the methods and characteristics of the annotated f0
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than it is to the actual frequency content of the signals. Therefore, if one considers
that the signals contained in this dataset are representative of what can typically be
considered dominant melody sources, it seems fair to assume that the comparative
performance of the methods within this pool relates to their comparative perfor-
mance in real dominant melody analysis scenarios.

Figure 6.6: Normalized average frequency peaks, in dB, for all spectrograms (syn-
thetic dataset).

BW [Hz] DR [dB]
STFT-1 68.2 15.8
STFT-2 36.1 21.1
STFT-3 21.8 20.4

STFT-SWGM 38.6 20.7
STFT-SLS 23.2 22.4
FEMD-SLS 23.3 26.1

FEMD-SWGM 37.5 23.3
MRFCI 22.1 26.2

Table 6.2: Results for average peaks using the new synthesized dataset.

Harmonic Relative Magnitude

This experiment is intended to assess the ability of the different methods to re-
produce the correct magnitudes of each harmonic. Here, a different procedure was
adopted: the peak values of each harmonic, which are the central samples of the
aforementioned matrices, were stored for the whole dataset, and the attenuation
previously imposed on each harmonic was compensated. Then, the median ampli-
tude of each harmonic was computed and the distributions were normalized by the
average median amplitude of each TFR method. This way, if a given representation
preserves the harmonic relation imposed, the result should be similar distributions
for all harmonics, with median magnitudes at 0 dB.
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For a better visualization of the distributions, the boxplot standard will be
adopted, as can be seen in Figure 6.7: the first quartile (Q1), or lower quartile,
is the middle value between the median and the smallest number in the dataset; the
second quartile (Q2) is the median value; the third quartile (Q3), or upper quartile,
is the middle value between the median and the largest number in the dataset; the
central box contains the samples inside the interquartile range (IQR), which are the
samples that sit between Q1 and Q3, IQR = Q3 − Q1, and thus concentrates 50%
of the samples in the dataset. The IQR is used to define the range of feasible sam-
ples. Here, the maximum is set to the largest sample bellow Q3 + 1.5IQR and the
minimum is set to smallest sample above Q1 − 1.5IQR. Samples outside this range
are considered as outliers.
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Figure 6.7: Boxplot of data.

Figure 6.8 depicts the normalized distributions of amplitudes of each TFR, in
dB. Regarding the STFTs, the results show the increase in dispersion caused by
increasing the length of the analysis window. One can see that the energy smearing
is more pronounced at upper harmonics, since they present steeper slopes, causing
this higher dispersion and tendency of amplitude loss.

Among all the combination methods, the SWGM presented the best relative
amplitude preservation, also having the smallest dispersions. This is reasonable,
since every time-frequency bin suffers the effect of all input representations, unlike
the other methods, which tend to favour the best input representation for each bin;
the loss in sharpness of the frequency peaks, i.e. large bandwidths, does not mean
a lack of precision in representing amplitudes.

As for the SLS combination, using the FEMD method contributed to some re-
duction in the overall dispersion. The MRFCI presented a larger dispersion, which
also increased with the harmonic index, and there is also a slight tendency of ampli-
tude attenuation in upper harmonics, although much smaller than for the STFT-3.
In fact, the median magnitudes of all TFRs were within a 1 dB deviation, which
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shows that there is practically no tendency of systematically changing the timbre
some way.

Figure 6.8: Distributions of amplitudes of each harmonic.

Onsets

This next experiment assesses the behaviour of the methods at onsets. Two types
of curves were computed centered at the onsets: the average energy (sum of all
frequency bins) of the time frames; and the average indicator function (sum of all
frequency bins of the differential spectrogram4). Since this dataset is comprised of
sinusoids with fixed amplitude and the non-voiced excerpts are muted, the energy
per frame should theoretically form a step at the onsets.

Figure 6.9 depicts the average energy per frame at onsets for each TFR. The
results show that, as expected, the STFT-1 spectrogram is the one that best follows
the aforementioned behaviour. This curve is nearly identical to the one yielded for
the MRFCI, which is by far the best one among all the combination methods. The

4The differential spectrogram is computed by the first order differentiation time-wise.
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results regarding the SLS combinations follow the same sharp slope of the MRFCI,
but present an energy bump after the onset, followed by an energy stabilization
towards the correct amplitude. The SWGM combinations resulted in even more
abrupt slope and higher energy peak after the onset, rapidly decreasing and matching
with the SLS curves.

Figure 6.9: Average of the energy function at onsets for each TFR.

The normalized indicator functions, depicted in Figure 6.10, reflect a similar
behaviour of the representations, showing the MRFCI curve matching the STFT-
1, the SLS curves taking more frames to decay, and the SWGM curves decaying
towards a more pronounced valley after the onset and then converging to 0.

Figure 6.10: Average of the indicator function at onsets for each TFR.

From the resulting curves, one can conclude that the MRFCI tends to best
preserve the energy evolution in such transient regions, for this particular dataset.
Although this experiment only uses one particular type of onset, the intrinsic nature
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of the MRFCI method and the results obtained with this experiment suggest that
it may also provide the best representation of general transient information.

6.1.3 Concluding Remarks

In summary, the STFT-3, STFT-SLS, FEMD-SLS and MRFCI spectrograms have
performed similarly in terms of best bandwidth, while the MRFCI and the FEMD-
SLS spectrograms performed best in terms of dynamic range, considering both
datasets. Regarding the preservation of peak amplitude, the SWGM combinations
yielded the most concentrated distributions, while the MRFCI had the most scat-
tered patterns, especially in upper harmonics, although no significant bias could be
observed. As for the onsets, the MRFCI method showed the best results, nearly
identical to the STFT-1.

Considering all these results, one can state that, among this particular pool and
for these figures-of-merit, the MRFCI and the FEMD-SLS methods have performed
best. The computational cost of the MRFCI method, on the other hand, is much
smaller5 than the cost of the FEMD-SLS, being comparable to the FEMD-SWGM,
which makes the MRFCI the most suitable method for representing melodic signals.
We believe that the combination of only the STFT-2 and the STFT-3 spectrograms
would lead to better results for the SWGM method in terms of bandwidth and
dynamic range, but then we would have to include as well another version of the
other methods without the STFT-1, and the comparison would be too extensive.
Besides, the other methods benefit from the presence of STFT-1.

It is worth commenting one more time that, depending on the circumstances,
computational burden can be a bottleneck, e.g. when dealing with large datasets,
hence using light combinations may be the best choice for such situations. An-
other limitation is that the SLS and MRFCI methods are designed to only provide
representations with linear frequency resolution, while the SWGM can be applied
to any set of representations having the same time-frequency dimensions. In sit-
uations where log-frequency spectrograms are required, SWGM combinations may
be the only way to improve such representations. It seems possible to adapt the
other methods to provide spectrograms with non-linear frequency resolution, but
this work is yet to be done.

5This happens primarily due to the computation of the sparsity for each time-frequency bin,
which envolves sorting all the samples around the bin under analysis.
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6.2 Dominant Melody Estimation

This section contains a brief experiment for which a state-of-the-art system [40,
41] for dominant melody estimation was used. The experiment was conducted in
collaboration with G. Doras (IRCAM)6, who is the main author of [40, 41]. Here,
the idea was to assess the performance of this system using different TFRs as input,
maintaining the exact same architectural conditions. For this reason, we had to deal
with several constraints, which limited our options of usable representations.

In [41], the U-Net [28, 40, 41, 43, 48–50] architecture is used in conjunction with
a sequential method to train the network using ground truth data at increasing res-
olutions. In this architecture, the system first provides (at the descending branch of
the U), via downsampling, coarser resolutions of the input information to be learned
by means of convolution and pooling layers; and then (at the ascending branch of
the U), upsampling is used to allow the network to learn to recreate representations
at finer resolutions by means of convolution and transposed convolution layers.

As input, the original system receives HCQT tensors of the audio files. Since
the number of frequency bins is limited in 360, for computational reasons, it is
impossible to use linear frequency spectrograms spanning the same frequency band
and having usable frequency resolution.7 Besides, it seems that only other log-
frequency spectrograms are suitable for substituting the HCQT in this case, for
their interesting geometrical properties (see Chapter 2), which are exploited by
convolutional networks. The following TFRs were tested as input of this system, all
with 6 harmonic layers with indexes ih ∈ {0.5, 1, 2, 3, 4, 5}:

HCQT – Harmonic CQT set of spectrograms computed with b = 60bins/octave;

HCQT-SWGM – three different sets of harmonic CQT spectrograms computed
with b ∈ {60, 40, 20} bins/octave, combined using the SWGM method (β =

0.5);

HVQT-SWGM – three different sets of harmonic VQT spectrograms [79], com-
puted with b = 60 bins/octave and parameter κ ∈ {4, 17, 30} (see Equa-
tion 2.21), combined using the SWGM method (β = 0.5).

Figure 6.11 depicts examples of the representations adopted for this experiment.
As discussed in Chapter 2, the CQT produces excessively smeared results for the
low frequency range, due to its high frequency resolution in this region. The combi-
nation of CQTs with different resolutions provides a better overall definition of the
non-stationary frequency components, at the expense of generating less pronounced

6https://www.ircam.fr/person/guillaume-doras/
7An attempt of using a harmonic version of the MRFCI was made, without success.
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peaks. The VQT produces representations which smoothly change resolution with
the frequency, leaving the high frequency components unaffected (in comparison to
the CQT) and providing a better time definition in the low frequency range. By
combining such representations using the SWGM, an even better time-frequency
resolution is achieved, also at the expense of loosing some definition of frequency
peaks.

To train the network, the MedleyDB [124] dataset was used, as in [41]8. The
system was retrained with each of the representations, using the 10-fold strategy.
Figure 6.12 depicts the average performances of the system measured using as figure-
of-merit the melody voicing recall (VR), voicing false alarm (VFA), raw pitch ac-
curacy (RPA), raw chroma accuracy (RCA), and overall accuracy (OA) scores, as
provided by the mir_eval toolbox (see [125] for details).

As can be seen, the differences in the results are not sufficient to attest an increase
in performance and they suggest that the system was unable to take full advantage of
the more detailed frequency lines provided. In fact, as discussed before, the SWGM
combination provides a better overall representation at the expense of flattening the
frequency peaks; for signals with a more static f0, the CQT should provide a more
pronounced representation of the frequency peaks, and thus it might be a better
TFR in such cases, while, for signals with a more dynamic f0, the combinations may
provide better results. This may be the explanation for the decrease in dispersion
of the average results for the combined TFRs in terms of overall accuracy.

It is worth mentioning that such kind of systems may provide very different
results with small architectural adjustments and that maybe this architecture is not
well suited to profit from this kind of enhancement in details of frequency lines,
due to its internal process tailored to deal with low-resolution versions of the input.
Nevertheless, further experiments shall be conducted with different architectures or
with modified versions of this same system, which may exhibit a more significant
difference in performance when using TFRs with enhanced time-frequency resolution
and may allow the use of linear-frequency spectrograms.

8In our experiments, a more precise version of the annotations, which were not available during
the time the experiments in [41], are used, which explain the discrepancies in the results obtained
with the HCQT representations.
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Figure 6.11: Examples of TFRs used in the experiment: CQT, CQT-SWGM and
VQT-SWGM, respectively.
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Figure 6.12: 10-folds mean scores distributions obtained with mir_eval using dif-
ferent TFRs: voicing recall (VR), voicing false alarm (VFA), raw pitch accuracy
(RPA), raw chroma accuracy (RCA), and overall accuracy (OA).
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Chapter 7

Automatic Percussion Transcription

Many percussion instruments can be played with different articulations,1 producing
a variety of tones, hence proper notation in this aspect is important in order to
characterize the recorded instruments and extract useful information concerning the
patterns played. To this end, it was proposed a method to automatically classify
the onsets of percussion instruments, facilitating the annotation work by providing
a good overall initial classification; the annotation procedure is then finalized by
manually checking and correcting eventual mistakes. In this chapter, the automatic
onset classification scheme will be described along with the BRID dataset [106],
which comprises a set of recordings and annotations of percussion instruments play-
ing different genres of traditional Brazilian music. As mentioned in Chapter 1, this
work is related to the StaReL2 project, and the dataset contents are available at
http://www02.smt.ufrj.br/~starel/datasets/brid.html.

7.1 Onset Detection

The classification scheme uses onset annotations previously produced by means of a
state-of-the-art method [126], a robust approach to onset detection designed to be
applied to any type of music. Their method is based on auditory spectral features
and bi-directional long short-term memory (Bi-LSTM) recurrent neural networks
(RNN). The scheme is purely data driven, and yields high temporal precision as
well as detection accuracy.

This method makes use of a network consisting of a concatenation of three hid-
den layers for each direction (6 layers in total) with 20 Bi-LSTM. The authors used
two different-resolution mel-spectrograms, computed with analysis window sizes of
23.2 ms and 46.4 ms, respectively, and their first order difference as input represen-

1Here, in the context of percussion instruments, we consider the term articulation as being the
type of hit produced, e.g. a surdo being struck with or without hand muffling.

2www.smt.ufrj.br/~starel
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tations, in order to help the networks capture features precisely in both time and
frequency. The implementations used are available in the madmom package.3

As output, a text file is generated, containing a list of time-stamps that indicate
where onsets have been detected.

7.2 Classification Scheme

In order to perform the classification of the detected onsets, a list was made contain-
ing the number of classes (types of hit) for each kind of instrument. For instance,
instruments like snare drum and reco-reco were considered to have only one type of
articulation, while others, e.g. pandeiro or tantã, were set to have three. After this
initial classification, depending on the pattern played in each recording, the number
of classes may have to be manually changed. A more detailed list could also be
produced to indicate the number of classes needed for each file individually.

Classification is performed in the time-frequency domain, using regions of the
spectrogram as input to a non-supervised clustering procedure, namely, the k-means
algorithm, which will be described in the next section. First, the signals under
analysis are down-sampled to a sampling frequency of Fs = 11025 samples per
second. This reduces the number of samples to be considered in the spectrum
and focuses only on the ones with higher energy. Since we are not interested in
fine frequency resolution, the spectrograms are computed with K = 256 frequency
samples and hop-size h = 128. This way, the channels of the DFT encompass
relatively large frequency bands. By using this scheme, small variations in tuning
and overall timbre (like those occurring when drums are muffled with the musician’s
hand), are neglected.

Then, the k-means classifier is fed with matrices containing the region of the
spectrogram indicated by the onset detector. Such regions vary according to the
type of instrument and include all the frequency samples, approximately from 5ms
before the onset to 200ms after it. This time span has shown to be sufficient to
allow the correct classification of the articulations. Also, a half Hamming window is
applied to those matrices, so that the energy decreases in time, hence giving more
weight to the earlier samples. In order to provide better synchronism, the regions
are chosen so that the time frame with higher energy lays on the third position of
the matrix. After that, the classification is performed and a column containing the
class-index of each onset is aggregated to the list of onsets. Figure 7.1 depicts the
classification procedure.

Since there is no kind of source separation procedure in this scheme, it is only
useful for classifying tracks containing a single instrument, or at least with a large

3Madmom package version 0.16 [127].

95



Region 
Selection

Onset 
Detection

k-meansSpectrogram
0.20		1	
0.24		2	
0.35		1	
0.38		1	
0.48		3	

Figure 7.1: Flow-chart of the onsets classification scheme.

predominance of one instrument in terms of overall gain.

7.3 k-Means Clustering

The most ubiquitous algorithm known as the k-means4 is a simple strategy of iter-
ative refinement, based on two main steps [128]: assignment of the samples, which
will be denoted as s, to clusters; and update of the cluster centroids. These two
steps are performed until the centroid updates no longer result in changes.

Let uni be the centroid of cluster i at n-th iteration. The algorithm5 starts by
setting B6 centroids (or means) randomly in the space: u1

1,u
1
2,u

1
3, . . . ,u

1
B; then, the

iterations are performed as follows:

Assignment step – all samples in the set are assigned to its nearest centroid ac-
cording to the Euclidean distance, forming clusters

Uni = {sl : ‖sl − ui‖ ≤ ‖sl − uj‖ ∀j, 1 ≤ j ≤ B}. (7.1)

Update step – the centroids are updated according to the new set of clusters by
averaging all its samples:

un+1
i =

1

|Uni |
∑
sl∈Uni

sl, (7.2)

where |Uni | denotes the number of elements in cluster i.
4It is also known as the Lloyd’s algorithm, particularly in the computer science community.
5The Matlab implementation of this method was used in this work. For more details, see

https://www.mathworks.com/help/stats/kmeans.html.
6Although originally the variable name k is used to denote the number of clusters, which

origins the name of the method, this same letter has been used previously in the text to denote the
frequency index in spectrograms, hence the adoption of other letter in this context. Thus, strictly,
we are talking about B-means.
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7.4 The Brazilian Rhythmic Instruments Dataset

This section briefly describes the Brazilian Rhythmic Instruments Dataset (BRID),
a copyright-free dataset for research within the MIR community, published in [106].7

This is the dataset for which the automatic annotation procedure was designed. It
is comprised of 274 solo- and 93 multiple-instrument recorded tracks of 10 different
instrument classes with variations (e.g. material, size, stick) playing in 5 main
rhythm classes (samba, partido alto, samba-enredo, capoeira, and marcha). Here,
the dataset recording process and content are described. At the time of writing,
annotations of beat and downbeat have been made, and the ones concerning type
of articulation are still being manually checked.

7.5 Dataset

The BRID was originally developed in the context of sound source separation [129],
but its applicability can be extended to other areas, computational rhythm analysis
in particular. The dataset contains 367 short tracks of around 30 s on average,
totaling 2 hrs 57min. The tracks consist of recordings of solo or multiple instruments,
playing characteristic Brazilian rhythms.

The recordings present instruments played in different Brazilian rhythmic styles.
Although samba and two sub-genres (samba-enredo and partido alto) have been
favored, BRID also features marcha, capoeira, and a few tracks of baião and maxixe
styles. The number of tracks per rhythm is summarized in Tables 7.1 and 7.2.

All featured rhythms are in duple meter. Samba is specially known for this type
of bar division and for the accentuation of the second beat [130]. Only combina-
tions of instruments and rhythms that are traditionally seen in Brazilian music were
considered, to provide a faithful representation of each rhythm.

7.5.1 Instruments

The recorded instruments were selected among the most representative ones in
Brazilian music, more specifically in samba music. Ten different instrument classes
were chosen: agogô, caixa (snare drum), cuíca, pandeiro (tambourine), reco-reco,
repique, shaker, surdo, tamborim and tantã. To provide a variety of sounds, both
membranophones and idiophones were featured. Also, whenever possible, instru-
ments were varied in shape, size, material (e.g., leather or synthetic drumhead),

7In this thesis, the description of the dataset is strongly based on [106], which is also one of its
original contributions.
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Table 7.1: Tempi/number of solo tracks per rhythm.
Rhythm Tempo (bpm) # Tracks
Samba (SA) 80 54
Partido alto (PA) 100 55
Samba-enredo (SE) 130 60
Marcha (MA) 120 27
Capoeira (CA) 65 12
Samba - virada (VSA) 75 or 80 3
Partido alto - virada (VPA) 75 or 100 36
Samba-enredo - virada (VSE) 130 17
Marcha - virada (VMA) 120 8
Other (OT) - 2

Table 7.2: Number of multi-instrument tracks per rhythm.
Rhythm # Tracks
Samba (SA) 41
Partido alto (PA) 28
Samba-enredo (SE) 21
Marcha (MA) 3
Capoeira (CA) -

pitch/tuning (e.g., in a samba school,8 surdos are usually tuned in three different
pitch ranges) and in the way they were struck (e.g., with the hand or with a wooden
or a plastic stick), spanning a total of 32 variations. For example, the dataset
features two caixa variations (12” in diameter with either 4 or 6 snare wires), six
pandeiro variations (either 10”, 11” or 12” in diameter with a leather or nylon drum-
head) and three tamborim variations (one with a leather head struck with a wooden
stick, and another one with a nylon head struck with either a wooden or a plastic
stick9). Figure 7.2 shows real pictures of the instrument classes considered.

7.5.2 Dataset Recording

All the recordings were made in a professional recording studio in Manaus, Brazil,
between October and December of 2015. The recording room has rectangular shape
with dimensions of 4.3m×3.4m×2.3m and is acoustically treated with a combina-
tion of wood and acoustic foam.

Both microphone model and positioning were optimized to translate the sound
of each instrument as naturally as possible in the recording, considering the instru-
ment size and the room acoustics. Most instruments were recorded with dynamic
microphones within a distance of around 20 cm. The digital files were recorded with

8A popular association for the practice of samba. Samba schools are usually strongly connected
to a specific community, where their social events take place and to whom they provide several
social services. The climactic event for samba schools is the annual carnival parade, when imbued
with communal effort they compete for the title.

9A leather-head tamborim is not played with a plastic drum stick.
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(a) Agogô (b) Caixa (c) Cuíca (d) Pandeiro (e) Reco-reco

(f) Repique (g) Shaker (h) Surdo (i) Tamborim (j) Tantã

Figure 7.2: Instrument classes.

a sampling rate of 44.1 kHz and 16-bit resolution.
There are two groups of tracks in the dataset. The first one consists of in-

struments recorded solo, with the musicians performing in various Brazilian styles
following a metronome track. Three musicians were recorded separately, each play-
ing around 90 different instrument–rhythm combinations. For each instrument class,
there is at least one track that consists of a virada of one of the main rhythms.10

These are free improvisation patterns (still subject to the metronome track), which
are very common in rodas de samba.11 It is worth mentioning that the musicians
brought their own instruments for the recording sessions. Although the general char-
acteristics of each instrument are the same, e.g., size and type of material, subtle
differences in construction bring additional timbre variability to the dataset.

The second set of tracks of the dataset gathers group performances, with the
musicians playing together different rhythmic styles without a metronome refer-
ence. The instruments were individually captured with directional microphones,
which were strategically positioned to minimize sound bleed, and two condenser
microphones in omni polar pattern captured the overall sound in the room. The
performances were designed to emulate typical arrangements of each style. Fol-
lowing this procedure, 19 recordings were made with four musicians, 29 with three
musicians, and 45 with two musicians playing at a time.

10Except for shaker tracks.
11A small and informal gathering to play and dance to samba music. It is a common practice

highly characterized by improvisation where musicians and dancers interact and learn with one
another.
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7.6 Examples

The articulation of some instruments, e.g. the agogô, can be very easy to classify.
The agogô is comprised of a set of bells, whose tonal signatures are roughly invariant
and very distinct from one another, which facilitates the clustering procedure. Fig-
ure 7.3 depicts a classification obtained for an agogô recording, where the numbers
at the top and the colours are related to the cluster indexes. In this case, the agogô
has two different bells, whose sounds were correctly identified for all the 93 onsets
present in the recording. Figure 7.4 depicts one example of the time-frequency re-
gion for each articulation, or sound of each bell. As can be observed, the sound
produced is strongly tonal and different frequencies are excited in each example.

Figure 7.3: Classification of different articulations on an agogô recording.

However, for other instruments, identifying the correct class for each hit is not
that easy, due to the variability inherent to the playing techniques and strong sim-
ilarities in timbre. For instance, instruments which rely on a muffling technique to
produce different articulations may produce a very wide variety of sounds, and play-
ing consistently in terms of timbre can be very challenging. This is the case of the
pandeiro (or tambourine), which is a complex instrument comprised of a tensioned
drumhead (typically made of leather) and metal jingles. It can be played in many
different ways and a very wide variety of sounds can be produced by it.

A common pandeiro pattern in samba music is played by repeating the cell of
articulations [1, 2, 3, 2], where such articulations are produced by: (1) hitting the
drumhead with the thumb, (2) hitting the drumhead with the tip of the fingers
while muffling it using the hand that is holding the pandeiro, and (3) hitting the
drumhead with the bottom of the hand, near the fist, while muffling it. This pattern
can be seen in Figure 7.5, where the recorded signal is illustrated along with the
indications of each articulation, in numbers and colours.

The first articulation produces a sound comprised of the resonance of the leather
and a soft jingle from the metal parts, while the articulations 2 and 3 produce very
similar sounds, having a fast decay resonance of the skin and along with the shimmer
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Figure 7.4: Samples of the two different articulations of an agogô recording.

Figure 7.5: Classification of different articulations on a pandeiro recording.

of the metal jingles. Since the muffling changes the tuning of the drumhead, the
hits using this technique may vary in terms of tonal content, and the randomness
inherent to the sound of the metal jingles produces noise-like patterns in the time-
frequency domain, which are also very variable. Figure 7.6 illustrates the time-
frequency regions of one example of each articulation aforementioned. As can be
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observed, the energy concentration in low frequencies, related to the resonance of
the leather, is extended in time, and it comprises a large proportion of the overall
energy; at the other articulations the energy in low frequencies lasts much shorter
and there is more energy caused by the metal jingles spread through the spectrum.
Since the articulations 2 and 3 are very similar, for this example, two onsets of class
2 were classified as 3, which provided an accuracy of 98.5%.

This procedure was applied to all the recordings of solo instruments, and thus
good initial classifications were provided. Considering all the files and the percentage
of signals which were much harder to correctly classify, the overall accuracy was
lower than it was for the examples presented. The procedure provided, at least, an
overall accuracy of around 75-80%. This estimate was made by considering only
the corrections in terms of classes, and not inclusion or removal of onsets. As a
result, the effort required to produce the final annotations was significantly reduced,
although the manual checking and correcting stage was still necessary.
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Figure 7.6: Samples of articulations 1–3 of a pandeiro recording, respectively.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we have addressed the problem of generating high-resolution TFRs,
with a special attention to polyphonic signals containing fast frequency variations.
All the methods presented are based on the idea of combining TFRs with different
resolutions to produce a TFR with high energy concentration wherever possible in
the time-frequency plane. The methods were classified by their general approach,
being: bin-wise combinations, combinations based on local information, and meth-
ods based on image analysis.

The combination methods were compared using synthetic and real-world signals,
in an attempt to characterize their general behaviour, especially when dealing with
signals of main melody. First, the methods were compared within their own class,
and then more precise and extensive experiments were performed with a select group
containing some of the best methods of each kind.

The preliminary results show that, among the bin-wise combination methods,
the sample-weighted geometric mean (SWGM) outperforms the others, providing
the best overall combination of peaks in both time and frequency, followed by the
reciprocal mean. All methods of this nature present the advantage of requiring rela-
tively low computational power and the disadvantage of having some peak distortion,
which may be a problem for certain systems.

Among the combinations based on local information, the local sparsity (LS)
method have shown to be a better solution than the Lukin-Todd’s (LT) method in
terms of time precision, due to the use of an asymmetrical window for the local en-
ergy compensation. The smoothed local sparsity (SLS) method, which is a smooth
version of the LS, tends to smooth out the transitions between different representa-
tions and artifacts that are caused by such hard transitions. These methods require
a very high computational power due to the calculations of the local features, but
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provide significantly better results than the bin-wise combinations, as they tend to
optimize the local energy concentration.

As for the methods based on image analysis, the frame-based method for esti-
mation of main directions (FEMD) provides excellent overall results, and has the
advantage of accumulating the information within the frames to compute the FChTs
using the most relevant chirp directions. Since it relies on a combination method,
e.g. the SLS, its computational burden and final resolution depend on it. A limi-
tation of this method is the need for the configuration of the number of instances
of FChT to be computed. The multi-resolution fan-chirp interpolation (MRFCI)
method has shown to be more flexible and much less computationally heavy, when
compared to the FEMD used in conjunction with the SLS, providing similar or
even better results in some cases, without the necessity of configuring the system
according to the signal to be analyzed.

In the experiments using main melody datasets with precise f0 annotations,
the STFT-SLS, FEMD-SLS and MRFCI spectrograms have shown to provide the
narrowest bandwidth; the MRFCI and the FEMD-SLS spectrograms provided the
largest dynamic range; the SWGM combinations yielded the most concentrated
distributions regarding the preservation of peak amplitude; and the MRFCI method
provided the best results in terms of onset definition.

Considering all figures of merit, the MRFCI and the FEMD-SLS have shown to
be the best methods of this set. Nevertheless, since computational burden can be
a bottleneck for scalability, using bin-wise combinations may be preferable in some
circumstances, also due to their ability to combine representations with non-linear
frequency resolution, e.g. the CQT.

In the experiment using the U-net system for dominant melody detection, only
TFRs with log-frequency scale could be used, which limited the range of methods
for this task. The results have shown no relevant improvement in performance when
using the representations combined with the SWGM. It seems like this system was
unable to profit from the increase in definition of the frequency lines, maybe due
to the characteristics of the architecture adopted or to the fact that the SWGM
combination flattens the frequency peaks.

The method for automatic classification of types of hit proved very handy, fa-
cilitating the manual effort of annotating the rhythmic patterns contained in the
BRID dataset. The precise annotations regarding onset and types of hit will al-
low for studies of microtiming and pattern characterization of Brazilian traditional
rhythms.

105



8.2 Future Work

The future works have been duly mentioned in the text, in their own contexts. Here,
they are summarized in the following. This work focused on providing magnitude
spectrograms of different natures for audio signal analysis. Though, in the context
of audio manipulation, one must be able to reconstruct the signal back to time
domain. Future research can be conducted in order to provide the methods with
such capability. Also, a lighter version of the LS and SLS methods may be viable
by downsampling the region around the time-frequency bins in such a way that the
sparsity is preserved. This could considerably reduce the computational burden of
those methods, making them more suitable for practical applications.

Regarding the experiment with dominant melody detection, some different
neural-network architectures may be tested or developed to be able to use high-
resolution TFRs such as the ones presented in this work. Furthermore, procedures
such as the structure tensor, the combinations based on local information, and the
fan-chirp transform might could be modified to work properly with log-frequency
spectrograms, which would allow the whole set of proposed methods to be used with
a much larger set of methods for MIR.
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