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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

OPTIMIZATION OF NONLINEAR SYSTEMS WITH UNCERTAIN

OBJECTIVE FUNCTIONS VIA SLIDING-MODE CONTROL

João Carlos Espiúca Monteiro

Março/2020

Orientador: Alessandro Jacoud Peixoto
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Nesse trabalho, nós propomos técnicas para otimização em tempo-real, estima-

tiva de consenso e rastreamento global de sistemas não-lineares incertos via reali-

mentação de sáıda. Considerando os problemas de otimização, nós propomos três

técnicas distintas: uma para otimização com apenas um objetivo e uma variável

de decisão e duas para otimização multi-objetivo e com múltiplas variáveis de de-

cisão. Todos os problemas de otimização são sujeitos à dinâmica de um processo

parcialmente desconhecido. As técnicas propostas são baseadas na teoria de modos-

deslizantes com funções de chaveamento periódicas e podem ser interpretadas como

cascatas de duas malhas de controle. A primeira malha define a dinâmica quando em

deslizamento, guiando o erro para zero. A segunda malha é responsável por garan-

tir a ocorrência do modo-deslizante. Nós utilizamos uma abordagem inovadora ao

permitir que o projetista selecione funções de chaveamento cont́ınuas na segunda

malha, além de permitir que uma classe mais abrangente de controladores possa ser

utilizada na primeira malha. Considerando otimização multi-objetivo com funções

objetivo convexas e teoria dos jogos, nós mostramos que uma das estratégias atinge

um equiĺıbrio de Nash, enquanto que a outra atinge uma solução eficiente no sentido

de Pareto. Para permitir o uso da última em problemas de otimização distribúıda,

nós desenvolvemos uma estimador dinâmico de consenso capaz de determinar a

medição máxima (mı́nima) em uma rede, onde cada nó na rede realiza uma única

medição e pode se comunicar com os seus vizinhos diretos.

No que diz respeito à dinâmica do processo, são consideradas (i) plantas estáticas,

(i) afins na entrada de controle e (iii) não-lineares com um único equiĺıbrio expo-

nencialmente estável. Nós mostramos que as estratégias propostas são robustas a

v



dinâmicas não-modeladas e, a menos do grau relativo e de algumas hipóteses não-

restritivas, não dependem de um conhecimento prévio do modelo do sistema. Ade-

mais, a direção de controle (ganho de alta frequência) é considerada desconhecida e

variante com o estado.

Ao longo da Tese nós apresentamos diversos resultados numéricos obtidos através

de simulações, tanto teóricas quanto inspiradas em problemas práticos de engen-

haria.
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In this work, we propose techniques for real-time optimization, consensus estima-

tion, and global output tracking of uncertain nonlinear systems via output-feedback.

Regarding the optimization problems, we propose three different techniques: one

for single-objective optimization with only one decision variable, and two for multi-

objective optimization with multiple decision variables. All optimization problems

are subject to the dynamics of a partially unknown process. These techniques are

based on the theory of sliding-modes with periodically switching functions and can

be interpreted as cascades of two control loops. The first loop defines the sliding-

mode dynamics, driving the error towards zero. The second is responsible for ensur-

ing that a sliding-mode occurs. We take a novel approach by allowing the control

designer to select continuous switching functions on the second loop, as well as se-

lecting a broader class of controllers (possibly not based on sliding-modes) for the

first-loop. Considering multi-objective optimization with convex objective functions

and game theory, we show that one of the controllers drives the output toward a

Nash equilibrium, while the other drives the output toward a Pareto efficient solu-

tion. To enable the application of the former to distributed optimization, we derive

a dynamic consensus estimator capable of finding the maximum (minimum) mea-

surement on a network, where each network node makes a single measurement and

can communicate with its direct neighbors.

Regarding the process dynamics, we consider (i) static, (ii) input-affine, and

(iii) exponentially stable nonlinear systems. We show that the proposed strategies

are robust to unmodeled dynamics and, but for the relative degree and some mild

assumptions about the unknown dynamics, do not rely on knowledge about the
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system model. Furthermore, the control direction (high-frequency gain) is always

considered unknown and state-varying.

Throughout the Thesis, we provide several numerical simulation examples, both

theoretical and inspired by engineering practice.
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Chapter 1

Introduction

Many of nature’s phenomena are mathematically described by ordinary differential

equations in the form of

ẋ(t) = f(t, x) + g(t, x)u(t) (1.1)

Equations like (1.1) have been widely used to describe the dynamics of physical

systems, from the ratio between predators and preys in an ecosystem and substances

in a chemical reaction to the motion of the human body. Functions f, g and u

characterize the velocity vector field that establishes how the system evolves through

time. This vector field can be smooth (C∞), have up to n continuous derivatives

(Cn) or even be discontinuous. Nonlinear systems with discontinuous right-hand

side have several characteristics that can be exploited for control design and are the

main object of interest of this Thesis.

When the right-hand side of (1.1) is discontinuous, the system motion is governed

by a non-smooth vector field. A classic example is that of a mechanical system

subject to Coulomb (dry) friction, which is depicted in Figure 1.1a. Even systems

with smooth internal dynamics can be forced to follow non-smooth trajectories by

a suitable choice of control input u. As an example, consider the integrator ẏ = u

with control law u = − sign(y), see Figure 1.1b.

The study of this class of systems led to the development of the mathematical

foundation for variable structure control (VSC) which, in turn, motivate the tech-

niques developed in this work. Under this framework, the theory of sliding-mode

control (SMC) were and continues to be developed. In this direction, we propose

SMC-based output feedback control laws for linear and nonlinear systems, with the

objective of output regulation, output tracking, and real-time optimization. Before

presenting our main objective, we provide a brief summary of some techniques from

the control theory literature that resonate with the results in this Thesis.
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Figure 1.1: (a) Phase plane portrait of a spring mass system with Coulomb friction
(ÿ + 0.8 sign(ẏ) + y = 0), and (b) output of an integrator ẏ = u with control law
u = − sign(y).

Variable Structure Systems

As the name suggests, a system is said to be of variable structure when its dynamics

varies from one structure to another. Therefore, a variable structure system (VSS)

is the composition of more than one continuous subsystem, a switching variable,

and a switching logic. If we revisit the aforementioned spring-mass system with

Coulomb friction, the switching variable is ẏ. The switching logic states that, when

the velocity is positive the friction force is negative, and vice-versa, such that it

always opposes the movement of the body.

As another example, consider a linear oscillator

ÿ(t) + y(t) = u(t) (1.2a)

u(t) =

{
0 , y > 0

−ẏ(t)− 0.5 , y < 0
(1.2b)

which is forced via the control input u, with switching surface y = 0. This system

can be divided into two continuous subsystems

ÿ(t) + y(t) = 0 , y > 0 (1.3a)

ÿ(t) + ẏ(t) + y(t) = −0.5 , y < 0 (1.3b)

Basically, the controller is turned off when y > 0 and on when y < 0 with the

objective of stabilizing the oscillator at y = −0.5, as illustrated in fig. 1.2. Note

that even if the origin was an unstable focus of the original linear system, there

would still exist a region of attraction containing trajectories on y > 0.

For the purpose of this work, the switching function will always be a differentiable

function of the system states and (possibly) time. The terms switching variable,

switching surface, and switching manifold all refer to the equation that defines the
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Figure 1.2: Phase portrait of the oscillator (1.2a) with control (1.2b).

subspace of the onto which the system trajectories should be confined. The terms

switching function and switching logic refer to the actual control law that enforces

this dynamic behavior.

We are particularly interested in a specific type VSS — sliding-mode controllers.

Loosely speaking, if a VSS is such that on “opposite sides” of its switching manifold

the vector field “points towards” it, then the system movement will become restricted

to this manifold. When this happens, the system is said be in sliding-mode. Hence,

the manifold is called a sliding manifold and the associated switching function is

called sliding-mode control (SMC)1.

A fundamental property of sliding-modes is that they describe a movement that

is not predicted by any of the structures that compose the system.

The appeal of SMC is that it allows one to divide the stability analysis in two

stages: (i) attractiveness of the sliding manifold and (ii) stability of trajectories

inside the manifold. It is important to bear this in mind, since this two-step approach

will be used throughout this Thesis. A simple example (Utkin 1977) that illustrates

this concept of separability consists of a mass-spring-damper system

ÿ(t)− µ ẏ(t) + k sign(σ) y(t) = 0 (1.4a)

σ(y, ẏ) = α y2 + ẏ y (1.4b)

with negative damping −µ < 0 and sign varying spring constant k > 0 dependent

on the switching manifold σ = 0. This particular VSS behaves like two distinct

unstable linear systems2

ÿ(t)− µ ẏ(t) + k y(t) = 0 (1.5a)

ÿ(t)− µ ẏ(t)− k y(t) = 0 (1.5b)

1It is, however, not always the case that the switching manifold coincides with the sliding
manifold. In this Thesis, however, this holds for all control laws.

2When it is clear that a system possesses a single equilibrium point, we use the (not so rigorous)
terminology “stable system” to refer to the stability of this point.
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depending on the value of sign(σ). It is possible to show that trajectories of (1.4a)-

(1.4b) tend to the line αy + ẏ = 0, as indicated by Figure 1.3c. When the system

reaches this manifold, its motion becomes restricted to it, therefore governed by

the exponentially stable structure αy + ẏ = 0. Since the system cannot leave the

manifold, it is said to enter a sliding-mode on the manifold.

y

ẏ

(a)

y

ẏ

(b)

y

ẏ

(c)

Figure 1.3: Phase portraits of systems (a) (1.5b), (b) (1.5a), and (c) (1.4a)-(1.4b),
for µ = 0.5, k = 2, and α = 0.4.

This example illustrates a fundamental aspect of SMC — when in sliding-mode,

a system motion is governed by a trajectory that is not inherent to any of those

present on the variable structure. This new trajectory is solely defined by the sliding

manifold σ = 0. Therefore, when the system is restricted to σ = 0, its stability is

determined from the analysis of σ̇ = 0.

One may use the aforementioned aspects of SMC to design a controller for an

arbitrary system. The process is outlined as follows: (i) design of the sliding manifold

σ = 0 such that the origin of σ̇ = 0 is asymptotically stable and (ii) develop a control

law that drives the system towards the sliding manifold.

Control of Nonlinear Systems

Control theory provides tools to influence and ultimately alter a process behavior.

Typically, this is done in a feedback control framework similar to the one that

is conceptually described in Figure 1.4. The process outputs are measured with

sensors, compared to a reference, and sent to the controller, which computes the

system input based on some knowledge of the process model.

Feedback controllers of this form can be divided into two main classes: output

feedback and state feedback. Which strategy is chosen depends strongly on what can

be measured. Full-state feedback techniques are the ones that, in general, provide

wider stability margins and stronger convergence properties, but require all states to

be measured for implementation. This requirement increases the amount of sensors

needed to implement the control, which increases the implementation cost. Even
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Figure 1.4: Typical framework for feedback control design.

more critical, sensors for some physical quantities are unreliable or nonexistent.

Control via Output Feedback

This work is devoted to the control and real-time optimization of input-affine non-

linear systems via output feedback. Since our results are based on sliding-mode

control, when dealing with systems with unit relative degree, there is usually no

need to estimate other states. On the other hand, when the system relative degree

is greater than one, some of the system states, or at least some estimation of the

system states, are usually required to control the output. Therefore, when it is de-

sirable to maintain a feedback control framework, state observers are implemented

to produce estimates of the unmeasured states.

Control via Observer-Based Design

The most common and direct approach to adapt a state feedback controller for

output feedback is to implement a state observer to estimate the unmeasured states,

and use these estimated states in place of the real ones. For linear systems, it

can be shown that if both the observer and the ideal state feedback controller are

asymptotically stable, so is their interconnection3. This property of linear systems

is known as separation principle, or separation property (Chen 1999, page 255).

Although very powerful, this design pattern is not easily extended to nonlinear

systems. In fact, the separation principle is (in general) not valid for nonlinear

systems, even when the system is globally stabilizable by state feedback, and globally

observable. Kokotovic (1992) provides a comprehensive example,

ẋ1(t) = −x1(t) + x2(t)x2
1(t) + u(t) (1.6a)

ẋ2(t) = −x2(t) + x2
1(t) (1.6b)

with equilibrium globally asymptotically stable for u = −x2x
2
1. If one substitutes in

the control equation the second state by the exponentially stable observer

˙̂x2(t) = −x̂2(t) + x2
1(t) (1.7)

3Implicit in this argument is the fact that the controller and the observer must also be linear.
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the equilibrium of the system (1.6a)-(1.6b) with control u = −x̂2x
2
1 becomes only

semi-globally asymptotically stable. Mazenc et al. (1994) provides three other ex-

amples that also illustrates this concept.

To the best of the authors knowledge, the first result towards a separation prin-

ciple for nonlinear systems is due to Teel and Praly (1994), and states that: if the

unmeasured states are uniformly continuously observable (UCO), global stabilizabil-

ity by state feedback implies semi-global stability by output feedback. In (Teel and

Praly 1995), the authors generalized the results for systems that accept some UCO

state feedback controller, and proved semi-global and semi-global practical stability

of such systems. These assumptions are further relaxed in (Shim and Teel 2001).

There are several observers in the control literature, each one possessing specific

properties. If one seeks a linear observer, the most common ones are Luenberger and

Kalman (and its variations) state estimators. Nonlinear observers are more general,

accommodating a wider variety of design variations. Usual choices include high-

gain observers (HGO) (Khalil and Praly 2014) and sliding-mode observers (SMO).

In section 1.2.1, a large selection of sliding-mode observers is reviewed, and the

reader is also referred to (Takahashi and Peres 1999) for an insightful comparison

between different sliding-mode observers under a unifying approach.

For this Thesis, the possibility of relying on state observers is advantageous.

That is because we will show that the output tracking and real-time optimization

techniques developed in this work can make use of observers of the states norm,

given that some stability and convergence properties hold, to write the control laws

using only output-feedback.

Real-time Optimization

The real-time optimization problem being referred to in this Thesis is one in which

• the objective function is unknown,

• it is a function of the decision variable, and

• it can only be manipulated by appropriate choice of the control input,

• which appears on the right-hand side of the ordinary differential equation that

governs the behavior of the decision variable.

It is said that the problem is solved in real-time because one must determine and

track (in real-time), by choice of a suitable input, the optimum value of a perfor-

mance index associated to some (partially observable and controllable) dynamical

system with control. In the control literature, this problem is usually tackled using

techniques from the extremum-seeking or the optimal control literatures.
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Real-time Optimization and its Relation to Tracking Control

As defined in the previous section, real-time optimization can also be understood as

tracking control of a system with unknown control direction, as we show below.

Let a dynamic system have state x(t) and measurable output y(t) = h ◦ x(t),

where h(.) is an unknown performance index with a unique optimum y∗ = h(x∗).

Real-time optimization consists in changing x(t) online, such that y∗ is found online.

To illustrate this problem, consider

ẋ(t) = u(t) (1.8a)

y(t) =
1

2
[x(t)− a]2 (1.8b)

with unknown constant a ∈ R, state x(t) ∈ R, input u(t) ∈ R and, output y(t) ∈ R.

It is assumed that y(t) is measurable, but its model is unknown. Additionally,

assume that it is known that y∗ = 0, but it is not known that x∗ = a nor is the state

measurable. With this information, one could attempt to treat the optimization

problem as a control one. For that, the output error is defined as

e(t) = y(t) (1.9a)

ė(t) = [x(t)− a]u(t) (1.9b)

and let kp(x) = x(t)−a denote the system high-frequency gain. Note that, not only

is this gain unknown, but it changes sign as x crosses x∗ = a. Thus, most of the

traditional linear and nonlinear controllers fail to stabilize the error at e = 0 ⇐⇒
y = y∗.

This problem inspires one to derive controllers for systems with time-varying or

state-dependent high-frequency gains. If a controller is robust to changes in the

system high-frequency gain sign, than it should be capable of reducing the output

until it reaches its minimum. If the minimum varies with time, it suffices to show

that the output is able to track some given monotonically decreasing reference ym(t),

such that ym(t) ≤ y∗(t) after some time t = tm.

In the sliding-mode control literature, Utkin (1992, section 13.3) and Drakunov

and Özgüner (1992) are among the first to consider this interpretation of real-time

optimization.

Other algorithms, not only optimization algorithms, may benefit from reinter-

pretations based on control theory. For instance, in (Bhaya and Kaszkurewicz

2006; Bhaya and Kaszkurewicz 2007; Ferreira et al. 2005) the authors provide well-

explained and self-contained descriptions of how algorithms for finding zeros, solving

linear systems, and convex programming can be written as control problems.
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Real-time Optimization and Optimal Control

The most significant difference between optimal control techniques and the ones

developed in this Thesis is that, for optimal control, it is required to know the process

model or at least some approximation of it. Using sliding-mode techniques, it is

assumed that the plant dynamics follow some simple pre-defined nominal model, and

mismatches between the nominal and physical models are treated as disturbances.

The sliding-mode control is then designed with the nominal model in mind, but in a

way that provides robustness to the unknown disturbances. On the other hand, the

plant dynamics is considered as a constraint of the optimization problem in optimal

control.

For example, to find the solution that minimizes the problem described by (1.9)

through optimal control, the first step would be to formulate the problem as

minu(t) y(t) = 1
2

[x(t)− a]2

s.t. ẋ(t) = u(t) ,

x(t0) = x0

(1.10)

If the process model is known to the designer, optimal control becomes a good

choice since it allows one to explicitly include the process dynamics while also provid-

ing for the inclusion of other constraints, such as input bounds4. For a concise and

elegant introduction to optimal control, the reader is referred to (Liberzon 2011).

Some Considerations

Before presenting the objective that guides the research developed in this thesis, we

highlight some aspects of the control theory that have been briefly discussed in this

introduction.

Sliding-mode control is a model-free robust control strategy. It is model-free in

the sense that it does not require explicit knowledge about the process model to de-

sign the feedback controller. Therefore, a sliding-mode control law does not feature

terms tailored for canceling or compensating for the process dynamics. Strategies

belonging to this vast class of controllers are thus robust to model uncertainties

and external disturbances without the need for parameter estimation. Ideally, SMC

techniques can be considered completely insensitive to matched input disturbances

and model uncertainties, as long as some (usually not restrictive) assumptions are

satisfied.

Sometimes it is not possible to measure the system states needed to implement

4Concerning the solution method rather than the problem formulation, one thing to bear in
mind is that when formulating an optimal control problem, one must solve a Hamilton-Jacobi-
Bellman equation, and it must lead to a computable feedback solution(Liberzon 2011).
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a state-feedback control. Thus, despite yielding weaker stability properties, output-

feedback controllers have great relevance in both engineering practice and control

theory.

Real-time optimization is a difficult problem, specially if little or no model in-

formation is known. However, these problems can be interpreted under the light of

trajectory tracking control and the existing literature shows promising results for

single-input single-output systems.

The above reasons are the three cornerstones that motivate the current Thesis.

Thus, the results pursued in this manuscript concern (i) robust control of highly

uncertain nonlinear systems, with unknown control direction, via sliding-modes,

(ii) the extension of these controllers to tackle real-time optimization, and (iii) the

generalization of these controllers to perform optimization with multiple decision

variables with one or more objective functions.

1.1 Objective

The objective of this Thesis is to provide solutions for real-time multi-objective op-

timization. We offer solutions for multi-objective optimization seeking both Pareto

efficiency and Nash equilibrium. For problems where agents in a distributed net-

work measure the many objectives independently, we provide a solution that finds

the maximum (minimum) overall objective value in the network. This overall ob-

jective is a combination of each agents individual objective function.

All optimization algorithms utilize sliding-mode based ESC, a technique that

can also be used to perform output-tracking of systems with unknown control di-

rection. Thus, one secondary goal of this Thesis is to investigate and highlight this

interconnection, hopefully showing that insights from the solution to one problem

might help developing solutions to the other.

When implementing the proposed sliding-mode strategies, an unwanted and well-

known characteristic of SMC is revealed — chattering, high frequency switching of

the control signal. Chattering can hamper control performance, so all techniques de-

veloped in this work also aim to overcome this (possible) challenge by an appropriate

continuous approximation of the control signal.

Each one of the proposed control laws is followed by mathematical proofs of

stability and convergence. When proving stability, our primary attempt is to find

conditions for (uniform) global or semi-global asymptotic stability. Practical sta-

bility is also obtained when the output error is driven towards an ultimate bound

instead of zero. In practice, effects from sampled-data implementation, sensor noise

and unmodeled dynamics impact the performance of ideal controllers, such that

practical stability is what can be actually achieved in practice. When proving con-
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vergence, we assume the existence of a unique global extremum to formulate a proof

that is coherent with the global and semi-global stabilities properties of the control

algorithm. The results remain valid for locally convex objective functions, but the

region of attraction then becomes an open, connected, and invariant set containing

the extremum.

All stability and convergence results are developed using Lyapunov’s stability

theory in conjunction with Filippov and Aizerman-Pyatnitskii (Polyakov and Frid-

man 2014) definitions for the solution of discontinuous differential equations.

1.2 Literature Review

1.2.1 Sliding-Mode Control

The concept of sliding-mode control dates back to the 1960’s and it is still an active

research topic. Publications in this area can be divided into two categories, namely

(1) first-order sliding-modes and (2) higher-order sliding-modes.

First-order sliding-modes techniques are the foundation of sliding-mode control.

In short, given a dynamic system with states x ∈ Rn, first-order sliding-mode con-

sists of steering the system states towards a surface

σ(x) = 0 (1.11)

such that the system trajectories are restricted to this surface. One of the first

complete texts on the subject was published by Utkin (1977). In this work, Utkin

discusses the fundamental design and analysis tools used in SMC. As usual in SMC,

the author considers systems with relative degree equal to one, and systems affine

in the control input. The concept of equivalent control, which is formally described

in appendix A, is also introduced by the author.

As successful applications of the theory grew, other survey (Hung et al. 1993)

and tutorial (DeCarlo et al. 1988; Young et al. 1999) papers were published. In

the 1990’s, practical implementations of SMC have reached several areas, such as:

robotic manipulator control, motor control, aircraft control, and spacecraft control

(Hung et al. 1993).

As an extension to the theory of SMC, Levant (1993) presented the concept

of higher-order sliding-mode control (HOSMC). In HOSMC, the control signal is

continuous and r − 1 times differentiable, such that only its r-th derivative is dis-

continuous. With respect to the sliding surface σ(x) = 0, HOSMC drives not only
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σ but also its r − 1 derivatives to zero,

σ(x) = σ̇(x) = . . . = σ(r−1)(x) = 0 (1.12)

Since the derivatives are also driven to zero, this solution yields differentiable control

laws, which ideally prevent chattering, e.g. in the absence of unmodeled dynamics,

control discretization, and noise. Following the definition in (Levant 1993), tech-

niques based only on the sign of the sliding-variable are called first-order sliding

mode control (FOSMC).

A particular case of HOSMC that has received significant attention is that

of second-order sliding-mode control (2-SMC). Still in (Levant 1993), the author

presents the super-twisting controller, which can be understood as a nonlinear PI

controller. To illustrate this controller, consider the input-affine sliding variable

dynamics

σ̇(t) = a(σ) + b(σ)u(t) (1.13)

obtained for some sliding surface σ(x) = 0. The super-twisting controller for this

system is given by

u(t) = u1(t) +

∫ t

0

u2(τ)dτ (1.14a)

u1(t) =

{
−κ1 |σ0|0.5 sign(σ) , |σ| > σ0

−κ1 |σ|0.5 sign(σ) , |σ| ≤ σ0

(1.14b)

u2(t) =

{
−uM
−κ2 sign(σ) , |u| ≤ uM

(1.14c)

with positive gains κ1, κ2 > 0, sliding surface boundary layer σ0 > 0, and control

bound uM > 0.

In (Venkataraman and Gulati 1993), the authors propose a technique called ter-

minal sliding-mode control, a 2-SMC law designed to achieve finite-time convergence

of the state to the origin after the trajectories have reached the sliding surface. The

control law is based on terminal attractors, a concept initially discussed in the field

of neural networks (Zak 1988). Considering a system with output y(t) and output

error e(t) = y(t) − ym(t), for some prescribed reference ym(t), the control law is

defined as

u(t) = λ (βn/βd) e
βn/βd−1(t) ė(t) + κ sign(σ) (1.15a)

σ(t) = ė(t) + λ eβn/βd(t) (1.15b)
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with λ, κ > 0, βn ∈ (0, βd) and βd = (2k + 1), k ∈ N. Note that βn/βd < 1, such

that eβn/βd−1 → ±∞ as e → 0. Thus, terminal sliding-mode assumes ė = 0 when

e = 0 in order to avoid singularity. Ideally, this is true, but cannot be guaranteed

when practical aspects are taken into consideration. To solve this issue, Feng et al.

(2002) propose the so-called non-singular terminal sliding-mode control

u(t) = λ (βn/βd) ė
2−βd/βn(t) + κ sign(σ) (1.16a)

σ(t) = ė(t) + (1/λ)eβn/βd(t) (1.16b)

Additionally, (Yu and Zhihong 2002) add a proportional term to (1.16b) to ensure

fast convergence far from the origin.

A well-known concept in SMC is that of equivalent control. When a system is

in sliding-mode, by definition, the control input switches value at infinite frequency

in order to keep the system constrained to the sliding manifold. Alternatively, one

could compute the equivalent smooth control that would drive the system along the

manifold. This equivalent smooth control input is called equivalent control. As an

alternative to usual FOSMC and HOSMC, Hsu (1997) proposes the use of a low-pass

filter to extract the equivalent control and compose the control law using model-

reference adaptive control. Overall, the controller is composed of two elements.

First, a nominal control input is computed using the model nominal parameter

values, which are updated using model-reference adaptive control. To this signal,

the estimated equivalent control, obtained by filtering the switching element, is

added.

In the context of multi-input multi-output (MIMO) systems control, the tradi-

tional approach of FOSMC is to define n sliding variables σj, such that each control

input is defined as uj = ρj sign(σj). Alternatively, unit vector control (UVC) (Gut-

man and Leitmann 1975; Gutman 1979), also known as unit control, defines the

control input as

u(t) = ρ(t, x)
σ(x)

||σ(x)|| (1.17)

where ρ > 0 and σ =
[
σ1 . . . σn

]T
. An underlying property of UVC is that it

produces a sliding-mode only when all sliding variables converge to zero, i.e. all

σj = 0. Thus, there is no chattering during the reaching phase of any of the sliding

variables. For some systems, this might produce better transient responses. Unit

vector control has been used in the context of model-reference adaptive control

(Cunha et al. 2003) and modified to consider systems that can be written in special

normal form5 (Oliveira et al. 2010a).

5Systems that are transformable into the special normal form have stable zero dynamics, are
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An interesting application of SMC lies in the design of state and disturbance

observers. In (Drakunov 1992), the concept of equivalent control (Utkin 1977; Utkin

1992) is used to develop a first-order sliding-mode observer (SMO) for minimal phase

autonomous nonlinear systems. Drakunov and Utkin (1995) follow this concept

to obtain an SMO for linear systems with nonzero control input. Application of

this SMO for non-autonomous nonlinear systems would require the control input

derivatives, which might not be acceptable if the control is non-differentiable, e.g.

pulse-width modulation motor control. As a viable alternative, Barbot et al. (1996)

consider nonlinear systems in triangular input observer form to propose an SMO

that does not rely on input derivatives. To obtain an estimate of the equivalent

control, Young et al. (1999) use a third-order low-pass butterworth filter. The

authors also discuss how fast sensor dynamics impact the observers performance and

show applications of SMO for disturbance estimation. In (Xiong and Saif 2001), the

authors develop an SMO for a wide class of disturbed nonlinear systems.

These approaches based on first-order SMO converge to a common structure

where the system is written in strict-feedback form (Khalil 2002, page 595) and

states are estimated sequentially. In each estimation step, a low-pass filter is used

to obtain the equivalent control. Assuming an input disturbance d added to the

double integrator example, a usual first-order SMO is given by

˙̂x1(t) = x̂2(t) + κ1 sign(e1) (1.18a)

˙̂x2(t) = u(t) + κ2 sign(e2) (1.18b)

d̂ = κ2 sign(e2)|eq (1.18c)

where (.)eq stands for the equivalent value of a discontinuous element, e1 = x1− x̂1,

e2 = x2 − x̂2 = κ1 sign(e1)|eq, and κ1, κ2 > 0. To avoid peaking, individual state

observers are only turned on after the previous observations are in sliding-mode

(Sussman and Kokotovic 1991). Regarding the above example, this would require

setting ˙̂x2 = 0 while e1 > ε, for some small ε > 0. In (Haskara and Özgüner 1999),

the authors show how the filter time constants and the sampling period impact

estimation accuracy.

Higher-order sliding-mode observers (HOSMO) have been successfully designed

for state and disturbance estimation of dynamic systems. A natural extension of the

results obtained for first-order SMO is provided in (Floquet and Barbot 2006) and

consists of replacing the first-order switching functions (sign functions) by the super-

twisting algorithm (Levant 1993; Fridman and Levant 2002). For this HOSMO, the

same property of sequential convergence of estimated states observed in first-order

SMO holds. HOSMO can be used to design exact real-time differentiators. Levant

affine in the control input and have constant high-frequency gain matrix.

13



(2003) rewrites the differentiation problem as an output tracking one. Via HOSMC,

the output of a chain of integrators is set to track the signal to be differentiated,

such that differentiation is written as an integration problem. This technique is

a generalization of the so called robust exact differentiator (RED) (Levant 1998).

Since the RED depends on bounds of the output derivatives, convergence properties

of this technique are local. Global exact differentiators based on this concept were

obtained in (Nunes et al. 2009; Oliveira et al. 2017a).

Mathematical Aspects of SMC

The importance of this area is not restricted to its practical relevance, but also due

to relevant mathematical problems associated with systems governed by differential

equations with discontinuous right-hand side. Lack of continuity implies that typi-

cal methods for characterizing solutions of differential equations and their stability

properties cannot be applied to VSS. For instance, Lyapunov’s stability definitions

cannot be directly applied to such systems. Hence, a new set of mathematical tools

had to be developed to study SMC.

The first rigorous study of VSS was presented in 1960 by Filippov in his cele-

brated theory of differential equations with discontinuous right-hand side (Filippov

1964; Filippov 1988), which is based on the concept of differential inclusions. How-

ever, Filippov’s theory fails to describe some discontinuous systems nonlinear in the

control input (Bartolini and Zolezzi 1985), and for this reason it was criticized by

some authors (Utkin 1992; Aizerman and Pyatnitskii 1974). Naturally, this gave

birth to extensions of the theory (Aizerman and Pyatnitskii 1974).

As an alternative to Filippov’s theory, many authors use the concept of equiva-

lent control (Utkin 1977; Utkin 1992) to define the solutions of VSS systems subject

to sliding-modes, i.e. SMC systems. Note that both formalisms can be connected

since Utkin’s approach can also be written following the theory of differential inclu-

sions (Utkin 1992).

Considering Lipschitz continuous Lyapunov function, Shevitz and Paden (1994)

present stability results and invariance principles based on Filippov’s differential in-

clusions and Clarke’s generalized gradient (Clarke 1990). In (Polyakov and Fridman

2014), the authors provide a comprehensive review of mathematical tools used to

establish Lyapunov stability properties of a large class of discontinuous systems.

The techniques presented in their paper are applicable to piecewise continuous Lya-

punov functions, which include Lipschitz continuous functions as a particular case.

Furthermore, all mathematical tools are provided based on Filippov’s definition. For

a review of the theory, refer to appendix A.

Throughout this Thesis, since we restrict our analysis to this class of nonlinear

systems, all mathematical tools were .
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1.2.2 Extremum-Seeking Control (ESC)

Extremum-seeking control (ESC) is the name given for a wide variety of real-time

optimization techniques used to dynamically find the optimum operating condition

of an unknown output map. ESC algorithms can be either model-free or model-

based and are suited for problems where only limited knowledge of the output map

is available.

ESC allows one to treat the optimization problem as a control problem.6 Thus,

optimization is performed dynamically and properties such as disturbance rejec-

tion and robustness to modeling errors are easily incorporated to the optimization

algorithm. There are mainly four classes of ESC strategies: perturbation-based,

model-based, sliding-mode based and numerical optimization-based. Apart from nu-

merical optimization-based ESC, these techniques are discussed separately and in

chronological order in this section. We choose not to cover numerical optimization

because it is substantially different than the techniques covered in this work.

Extremum-seeking control (ESC) received great attention from the control com-

munity after the work of Krstić and Wang (2000), which established the first rigorous

stability proof of a perturbation-based design. Since then, many significant theo-

retical results on stability and performance aspects have been published by several

authors. This sections highlights some of these works in order to adequately place

the contributions of this Thesis later on.

As an interesting remark, most of the works on perturbation-based and model-

based ESC can be placed under an unifying framework for analysis purposes, as

presented in (Nešić et al. 2010b; Nešić et al. 2010a; Nešić et al. 2012)

In what follows, we try to provide an in-depth review of the most recent works

on ESC, which are then summarized in tables 1.1 and 1.2. We encourage the reader

to refer to these tables while following through the review. Regarding the works

dealing with the multi-variable optimization, summarized in table 1.2, it is essential

to note that, even though some authors do not make explicit statements specifying

what type of equilibrium is reached, we decide if the solution is a Nash equilibrium

or Pareto efficient based on our interpretation of the results. For all works that

employ scalarization techniques, Pareto efficiency is assumed because the objective

functions considered by the authors are always convex. Therefore, convergence to

the scalarized problem implies convergence to a solution on the Pareto front.

6Another example of real-time optimization implemented in a control framework is model pre-
dictive control.
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Perturbation-Based

In (Krstić and Wang 2000), the author established the first stability proof for a

perturbation-based design. The results are obtained for a plant composed of a

general nonlinear system connected to an input-to-output equilibrium map. This

equilibrium map might contain multiple equilibria, but for each equilibrium, the map

can be restricted to a region around the equilibrium and, restricted to this region, the

map is convex. In other words, the equilibrium map is convex in each equilibrium.

The existence of a feedback controller that makes each equilibrium locally stable

is assumed. The structure of this controller is shown in Figure 1.5. Even though

quite general nonlinear systems are considered, to prove stability the dynamics are

assumed fast (quasi-static) with respect to the ESC algorithm. This approach is

observed in almost every ESC technique, except those based on sliding-modes. It is

worth noting that, prior to (Krstić and Wang 2000), most authors considered the

extremum-seeking problem on plants composed by a static map. Few authors had

already considered the less general problems where the plant is the cascade of: (i) a

linear dynamic system and a nonlinear static map (Wiener model), (ii) a nonlinear

static map and a linear dynamic system (Hammerstein model), or (iii) both at the

same time (Wiener-Hammerstein model).

+
k

s

ωl

s+ ωl
×

s

s+ ωh

ẋ = f(x, α(x, θ))

y = h(x)

θ

a sin(ωt)

y

≈ y = h ◦ l(θ)

Figure 1.5: Block diagram of the perturbation-based extremum-seeking control al-
gorithm published in (Krstić and Wang 2000).

Rotea (2000) provide a generalization for MIMO plants of the results presented

by Krstić and Wang (2000). Each input channel of the MIMO dynamic system is

assumed LTI and uncoupled from the other channels (diagonal). Both measurement

noise and sensor dynamics are taken into account. During the same conference,

Walsh (2000) presented a generalization for MISO plants following the same as-

sumptions originally considered by Krstić and Wang (2000).

The first proof for discrete-time systems appeared in (Choi et al. 2002). The

authors considered SISO plants composed of a linear dynamic system connected to
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the equilibrium map and linear sensor dynamics (Wiener-Hammerstein systems).

Tunning of perturbation-based extremum-seeking controllers can be quite diffi-

cult, specially for nonlinear dynamic plants. For a simple SISO problem, there are

five control parameters to be designed:

• high-pass filter cutoff frequency;

• low-pass filter cutoff frequency;

• integrator gain;

• dither (usually sinusoidal) amplitude;

• dither (usually sinusoidal) frequency.

Tan et al. (2006) elaborate on this topic to provide a clearer insight on the perfor-

mance impacts and overall sensitivity with respect to these parameters. Further-

more, the authors show conditions for semi-global practical stability of the opti-

mal operating condition, in contrast to the usual local results, and present a novel

extremum-seeking controller without high-pass and low-pass filters.

Another interesting aspect highlighted in (Tan et al. 2006) is the possibility of

choosing excitation (dither) signals other than sine waves, a topic that was then

thoroughly studied in (Tan et al. 2008). Three performance indicators are analyzed:

speed of convergence, domain of attraction, and accuracy of solutions. It is shown

that there exists a trade-off between these indicators inherent to the excitation signal

choice. This calls for experimenting with different dither signals when designing

an extremum-seeking controller. Overall, an important result is that: for small

amplitudes, the square wave provides the fastest rate of convergence. This happens

because, as shown by the authors, the convergence rate is proportional to the dither

power. Results from both of these works are summarized in (Nešić 2009).

In general, problems of global optimization are hard to solve. A common ap-

proach to such problems is to disturb the system when it becomes stuck at a local

optimum, making it leave this valley and continue its search towards the global so-

lution. In this direction, the authors of (Tan et al. 2009) present an ESC law for

tracking a global extremum of general SISO nonlinear plants in the presence of local

extrema. The algorithm is designed without high-pass or low-pass filters and starts

from a large initial excitation amplitude, which converges monotonically to zero.

The main underlying assumption is that, starting from a sufficiently large dither

amplitude that is continuously decreased, the average system is driven towards the

global extremum. Although the authors provide a formulation where the amplitude

may converge to zero, one should note that this is usually not desirable. Note that,

if the perturbation vanishes, then any measurement noise is free to drive the output

away from its extremum value.

Perturbation-based ESC usually rely on some sort of gradient estimation inner
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loop to update the input average value. In (Moase et al. 2010), the authors pro-

pose a novel Newton-like adaptation law based on the estimation of the output

map first and second derivatives. By using an estimate of the map Hessian inverse,

the algorithm is able to alleviate convergence problems associated with traditional

perturbation-based extremum-seeking algorithms, which rely solely on gradient esti-

mation. This adaptation is coupled with a method for varying the dither amplitude,

which enables it to increase should the optimal operating condition change over time.

Local stability results are obtained for Wiener-Hammerstein plants. One significant

advantage of this extremum-seeking method over traditional gradient-based meth-

ods, is that its convergence rate is not proportional to the output second derivative.

Thus, it is easier to tune the algorithm to achieve a desired performance. This

work is significantly generalized for exponentially stable MIMO nonlinear systems

in (Ghaffari et al. 2012).

A common drawback of most perturbation-based, model-based and numerical

optimization-based ESC approaches, is the required time-scale separation between

plant and controller dynamics. Nešić et al. (2010b) develop a unifying framework

for the analysis of both perturbation-based (singular perturbation) and model-based

(parameter estimation) ESC approaches, showing that a three time-scale separation,

with the plant presenting the fastest dynamics and the other two enforced in the con-

trol algorithm, is required to achieve stability. Moase and Manzie (2012) are among

the first to propose a technique that addresses this issue of requiring a time-scale

separation. Their technique yields fast convergence to the optimal operating condi-

tion. Similar to the perturbation-based ESC law originally proposed by (Krstić and

Wang 2000), which uses low and high-pass filters, Moase and Manzie (2012) apply

a Luenberger observer to estimate the objective function gradient. This approach

does not rely on a time-scale separation and is able to achieve semi-global stability

for Wiener-Hammerstein plants.

Following the results in (Krstić and Wang 2000), the stability proof of

perturbation-based extremum-seeking algorithms usually relies on averaging analysis

applied to the static map, followed by singular perturbation analysis of the dynamic

system. As an alternative, Dürr et al. (2013) show that trajectories of many ESC

systems can be approximated by a Lie bracket dynamic system computed from the

former. It is established that uniform asymptotic stability of the Lie bracket ap-

proximation implies uniform stability of the corresponding ESC system, which is

the usual stability property sought for such systems. However, only static MISO

plants are considered. This is generalized in (Dürr et al. 2017) for MISO nonlinear

systems. This work can be viewed as an alternative framework in which to prove

stability of ESC laws, as opposed to the averaging analysis approach proposed by

(Krstić and Wang 2000).
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Under a different design pattern, (Guay and Dochain 2014a; Guay 2016) pro-

poses a novel extremum-seeking algorithm for minimum-phase nonlinear systems

affine in the control input and with unit relative degree. The algorithm is based on

proportional-integral action and does not rely on a time-scale separation between

plant dynamics and control algorithm. Hence, it is able to provide fast transient re-

sponse. Also, a neighborhood of the unknown optimum of an order that is inversely

proportional to the dither frequency is reached. As pointed out by the authors,

this results is counterintuitive in the context of perturbation-based ESC, but follows

principles exploited in (Moase and Manzie 2012)7. A similar approach is proposed

in (Guay and Dochain 2017), but written under an adaptive control framework for

parameter identification. This work uses the proportional-integral approach, but

an estimate of the objective function gradient is obtained from a time-varying pa-

rameter estimation routine (Guay and Dochain 2015). An advantage of using the

time-varying parameter estimation routine, as stated by the authors, is that it re-

moves the need to resort to averaging analysis to establish the convergence of the

ESC algorithm to the unknown steady-state optimum.

All ESC laws discussed so far are designed for optimization of an unknown objec-

tive function. Using a Newton-based extremum-seeking algorithm, Mills and Krstić

(2015) and Mills and Krstić (2018) generalize this concept for the optimization of

an arbitrary derivative of the output map. In (Mills and Krstić 2015) the authors

establish the results for static maps. This result is later generalized in (Mills and

Krstić 2018) for a wide class of stable SISO nonlinear systems.

Considering only output delays on a MISO static non-linearity, Oliveira et al.

(2015) establish local stability results for gradient-based and Newton-based ESC

laws. This work is continued in Oliveira et al. (2017b), where both input and

output delays (which need not be equal) are considered. The results in (Oliveira

et al. 2015; Oliveira et al. 2017b) are posed for the traditional problem of optimizing

an unknown objective function.

In (Rušiti et al. 2016), the authors merge the works of Mills and Krstić (2015)

and Oliveira et al. (2015) to produce a Newton-based ESC law for the optimization

of higher derivatives of an unknown objective function subject to output delay. An

introduction to what is required to generalize these results to the stochastic case is

given in (Rušiti et al. 2018), and later generalized the usual class of exponentially

stable nonlinear systems considered in the ESC literature, assuming that the plant

dynamics are significantly faster than the controller dynamics.

Finally, a very comprehensive overview of gradient-based and Newton-based

7As shown in chapter 3, the sliding-mode ESC proposed in this work also reaches a neighborhood
inversely proportional to the frequency of a sinusoidal component, which plays the role of switching
function instead of dither signal. Besides, it is shown in section 2.2.2 that the proposed sliding-
mode ESC behaves as a high-gain proportional-integral one
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extremum-seeking techniques is presented in (Krstić 2013).

Model-Based ESC

In contrast to perturbation-based design, where the objective function is assumed

completely unknown, model-based design considers only parametric uncertainties.

The objective function structure is considered known as a function of unknown

parameters and a measurable subset of the system state. Model-based methods rely

on parameter adaptation to reach the optimal operating condition. An important

distinction between this class of ESC algorithms and perturbation-based ones, is

that the objective function value need not be available for online feedback.

The foundations for model-based ESC design were laid by Guay and Zhang

(2003). In this work, the authors develop an extremum-seeking scheme for MISO

nonlinear systems affine in the control input and in the unknown parameters.

Through an adaptation law, the unknown parameters are estimated and their values

used to steer the measurable states to their optimal operating condition. Not that

this operating condition is known, since the objective function structure is assumed

known. For example, consider the optimization of f(x) = ax2+bx+c, with unknown

parameters a, b, c ∈ R. Even though a, b and c are unknown, one already knows a

priori that the optimum is at x∗ = −b/2a. Thus, if b and a are successfully esti-

mated, the ESC problem is solved. For the same class of dynamic systems, Dehaan

and Guay (2005) provide a generalization for constrained optimization problems.

In (Adetola and Guay 2006), the authors consider the optimization of SISO

Wiener plants. The algorithm distinguishes itself from previous model-based ap-

proaches because it consists of a two-stage optimization procedure. Using state and

parameter estimations, the set-point that optimizes the current estimate of the ob-

jective function is computed. This value is input to a model predictive controller

which solves a finite horizon optimal control problem to determine the plant input.

This two-stage approach to extremum-seeking is generalized in (Adetola and Guay

2010) for a wide class of nonlinear systems.

A common limitation of model-based ESC is the need for persistence of excita-

tion in order to achieve parametric convergence. Convergence is required to obtain

the objective function estimate, which is used to compute the optimal operating

condition. This limitation is overcome in (Adetola and Guay 2007) by translating

it to a sufficient signal richness condition on the control input.

Similar to perturbation-based ESC, model-based approaches need some sort of

time-scale separation between the plant dynamics and the extremum-seeking algo-

rithm, requiring the first to be faster than the latter. In an attempt to relax this

requirement, Sharafi et al. (2013) and Sharafi et al. (2015) propose a fast model-

based ESC for SISO Hammerstein plants, that is, with LTI output dynamics. The
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algorithm uses a high-frequency dither excitation signal within a model-based frame-

work to achieve fast convergence of the parameters estimation.

Sliding-Mode Based ESC

Sliding-mode based ESC (SM-ESC) differs from other traditional extremum-seeking

approaches in that it (usually) does not rely on estimation of derivatives nor model

knowledge. An appealing aspect of SM-ESC is that it inherits its robustness proper-

ties, such as disturbance rejection, from sliding-mode control. Although intimately

related to perturbation and model-based extremum-seeking techniques, SM-ESC

development occurred somewhat parallel to these areas.

Two of the very first works to consider extremum-seeking in the context of

sliding-modes are (Utkin 1992, section 13.3) and (Drakunov and Özgüner 1992).

In (Drakunov and Özgüner 1992), the authors use a periodic switching function

u(t) = ρ sign

(
sin

[
πσ(t)

T

])
(1.19a)

σ(t) = y(t) + λ

∫ t

0

[y(τ)− ȳ]dτ (1.19b)

with ȳ greater than the maximum output value, to track the maximum output

value of a process with unit relative degree. This concept was used in (Drakunov

et al. 1995) to maximize friction in anti-lock braking systems. This technique dis-

tinguishes itself from other ESC designs in that it does not rely on a time-scale

separation between plant dynamics and extremum-seeking algorithm. The results

are valid for input-affine nonlinear systems with unit relative degree from input to

the performance index.

Similar to perturbation-based ESC, the technique mentioned above can be ap-

plied to a wider class of exponentially stable nonlinear systems by forcing a time-scale

separation in the control system. This is studied in (Haskara et al. 2000; Yu and

Özgüner 2002). In (Haskara et al. 2000), the authors propose a two time-scale sep-

aration approach by adding an integrator to the control law proposed by Drakunov

and Özgüner (1992), such that

u(t) = kI

∫ t

0

ρ sign

(
sin

[
πσ(τ)

T

])
(1.20)

with small integral gain kI > 0 that guarantees that the control dynamics are

slower than the plant dynamics. The authors carry out the stability results for this

control strategy through Lyapunov stability methods, without resorting to singular

perturbation tools, since the control signal is continuous. Following this design

pattern, Yu and Özgüner (2002) show that a similar control strategy, with sliding
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surface σ(.) written as a function of the states, can be applied to systems with small

time-delays, given an appropriate choice of control parameters. An estimation of

the objective function gradient is also obtained from filtering of the sliding variable

σ(t). The natural disadvantage of this control law is the need for state-feedback.

Design and parameter tuning guidelines for this type of SM-ESC are given in (Pan

et al. 2003).

Similar to (Haskara et al. 2000), Pan et al. (2003) use the two time-scale approach

to propose a smooth SM-ESC based on second-order sliding-modes. Stability results

are obtained for the same class of systems considered in the former, i.e. exponentially

stable nonlinear systems.

From a different perspective, Fu and Özgüner (2009) and Fu and Özgüner (2011)

propose an extremum-seeking algorithm based on gradient estimation via sliding-

modes. Assuming the objective function depends solely on the plant output and that

both of these values are available for measurement, a discrete-time sliding variable

is defined to obtain an estimate of the objective function derivative with respect to

the system output. Stability results follow for SISO nonlinear systems affine in the

control input that can be cast into normal form (Khalil 2002, Theorem 13.1).

Based on the tracking controller of Oliveira et al. (2010b) for strongly nonlinear

systems with unknown control direction, Oliveira et al. (2011) and Oliveira et al.

(2012) propose an extremum-seeking controller for SISO input-affine nonlinear sys-

tems with unit relative degree. The controller is based on that of (Drakunov 1992),

such that

u(t) = ρ(t) sign

(
sin

[
πσ(t)

T

])
(1.21a)

σ(t) = y(t) + λ

∫ t

0

sign[y(τ)− ȳ]dτ (1.21b)

Note that, in this case, the gain ρ is a function of time. The authors show that, by

varying ρ(t) based on an estimate of the states norm (which must be observable),

this control law is able to achieve global asymptotic stability with respect to the

optimal operating condition. These results are generalized in (Peixoto and Oliveira

2014; Peixoto and Oliveira 2016; Lizarralde et al. 2017; Lara-Cisneros et al. 2017)

for system with uniform arbitrary relative degree. In (Peixoto and Oliveira 2014;

Peixoto and Oliveira 2016), the authors use high-gain observers with variable gain to

obtain estimates of the system external dynamics. This estimate is used to compute

the sliding variable σ(t) in such a way that, after the trajectories converge, the

dynamics from σ(t) to y(t) become of unit relative degree. Still considering arbitrary

relative degree, Lizarralde et al. (2017) replace sign(.) for tanh(.) in (1.21) and

stability is established through traditional singular perturbation theory, such that
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the stability results hold only locally. An advantage of this method is that there is no

need for additional filters when designing the control algorithm, but it does, however,

require the ESC algorithm dynamics to be slower than the process dynamics. In

(Lara-Cisneros et al. 2017), high-gain observers are also used to estimate the external

dynamics, and this estimate used to compute the sliding variable σ(t). However,

in contrast to (Peixoto and Oliveira 2014), the modulation function ρ(t) is not

computed from a norm observer, but takes the form of a feedback linearizing term.

Multi-Objective Optimization, Multiple Decision Variables, and ESC

When it comes to optimization with one or more objecties and one or more decision

variables, the literature is not as extensive as that for optimization problems with

only one decision variable and one objective function. Thus, we have decided to

dedicate a section for reviewing these works separately.

Let a process be described by the following dynamic equation

ẋ(t) = f(t, x, u) (1.22a)

y(t) = h(t, x) (1.22b)

with input u(t) ∈ Rnu , state x(t) ∈ Rn, and output y(t) ∈ Rny . When looking for an

optimal behavior of such a process, one must define one or more objective functions

Ji(t, y) responsible for measuring the system performance. In doing so, the system

dynamics become a constraint to the optimization problem, which is written (with

some abuse of terminology) as

min
u

: J(y) =
[
J1(y) . . . Jny(y)

]T
(1.23a)

st : ẋ(t) = f(t, x, u) (1.23b)

y(t) = h(t, x) (1.23c)

The minimum of a vector in Rny is not well-defined. It is used in a broader sense

to indicate either Pareto efficiency or Nash equilibrium. We have also chosen to

omit additional equality or inequality constraints. Even though these constraints

are usually inherent in optimization problems, constraints other than the process

dynamics are not covered in this Thesis.

Depending on whether or not optimization is performed assuming access to all

decision variables and/or one single objective, there are three large families of opti-

mization problems that can be described by (1.23),

• multi-objective — where one player has access to all decision variables and

modifies all objective functions,
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• team theory — where multiple cooperative players have access to all decision

variables and modify a single objective function,

• game theory — where multiple noncooperative players have access to parti-

tions of the decision variables and modify a partition of (including their own)

objective functions.

For short, to make the notation easier, we use multiple inputs multiple outputs

(MIMO) optimization to refer to problems with multiple decision variables and

multiple objectives, and we use multiple inputs single output (MISO) to refer to

problems with multiple decision variables and only one objective, both regardless of

the number of players.

When applying game theory to (1.23), it is assumed that each agent (player)

in a game is responsible for one control input (action) ui, which modifies its de-

cision variable yi through the x-dynamics (1.23b) and, consequently, changes its

corresponding objective function Ji value. Interaction between agents can be ei-

ther noncooperative, when there is no information exchange between agents, such as

by communicating the value of their objective functions, or cooperative, when each

agent obtains information from at least one of the other agents.

Scalarization (Marler and Arora 2004; Marler and Arora 2010) consists of cast-

ing the multi-objective, single-player problem into an (ideally) equivalent single-

objective problem. The simplest choices of scalarization are (i) weighted sums (Mar-

ler and Arora 2010), where the scalar objective is obtained by a convex combination

of the objectives, and (ii) global criterion (Marler and Arora 2004), where a no-

preference criterion based on the vector of objective functions, such as the distance

from it to some desired solution, is minimized. Optimization problems with only

one objective and multiple decision variables are seldom obtained in practice. How-

ever, since scalarization is an effective way of solving MIMO optimization, MISO

optimization is also a relevant area of study.

When considering multi-objective optimization problems, the question of

whether or not a given point is an optimum must be addressed with care. De-

pending on the number of players or the type of game, it is said that a point in

multi-objective optimization is an optimizer when it is either in Nash equilibrium

(when there are multiple players) or in a Pareto optimum set, i.e. when it is Pareto

efficient (when there is only one player or multiple players in a cooperative game).

Nash equilibrium (Nash 1950) is used to describe optimal solutions in cooperative

and noncooperative games. It is achieved when an agent can not benefit (improve

its objective Ji) from unilaterally changing its strategy. In a continuous scenario,

24



Nash equilibrium of a point y∗ is verified if

∂Ji(y)

∂yi

∣∣∣∣
y=y∗

= 0, ∀i ∈ [1, ny]

Alternatively, to be Pareto efficient, the solution must be such that there can

be no individual improve in any objective function without deteriorating the per-

formance of another one. For continuous and unconstrained problems, a necessary

condition for Pareto efficiency of a point y∗ is that matrix ∂J/∂y|y=y∗ must be rank

deficient (Miettinen 1998; Kalyanmoy 2001). If the matrix ∂J/∂y is square, this

condition is equivalent to

∣∣∣∣∣∣∣∣

∂J1/∂y1 . . . ∂J1/∂yn
...

. . .
...

∂Jn/∂y1 . . . ∂Jn/∂yn

∣∣∣∣∣∣∣∣
y=y∗

= 0

Keeping the concepts of Pareto efficiency, Nash equilibrium, and multi-objective

optimization in mind, we proceed to review what we believe are the most relevant

works in multi-variable ESC. Note, however, that in the field of ESC, it so happens

that some authors do not explicitly state whether their solution is Pareto efficient

or in Nash equilibrium. So we take the freedom to interpret the results and decide

whether the solution is one or the other. Once again, we encourage the reader to

follow this review together with tables 1.1 and 1.2.

Ariyur and Krstic (2002) and Ghaffari et al. (2012) propose similar techniques

for MISO optimization. While Ariyur and Krstic (2002) generalize the traditional

gradient estimation (Krstić and Wang 2000) approach, Ghaffari et al. (2012) improve

upon the Newton-based approach (Moase et al. 2010), which relies on both gradient

and Hessian estimation. In (Frihauf et al. 2011), the authors propose an ESC

algorithm to achieve Nash equilibrium for classes of noncooperative games with

both quadratic and non-quadratic objective functions Ji(y) satisfying a diagonal

dominance condition. Assuming some degree of connectivity between each individual

agent in a cooperative game, Poveda and Quijano (2013) propose a technique to

achieve one Pareto efficient solution using scalarization via convex combination.

Still based on perturbation methods, Guay and Dochain (2014b) propose a

MIMO optimization algorithm, which converts the MIMO problem to MISO via

scalarization by global criterion. The seeking algorithm is implemented by estimat-

ing the objective function gradient using a nonlinear observer, as detailed in (Guay

and Dochain 2015), based on the parameter estimation routine of Dhaliwal and

Guay (2012). Also based on parameter estimation, Guay et al. (2018) propose a

solution for cooperative games using the so-called proportional-integral ESC tech-
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nique (Guay and Dochain 2017). The proportional-integral action is used to stabilize

the possibly unstable input-affine process, and parameter estimation is performed

using the algorithm described in (Guay and Dochain 2015). As in (Poveda and Qui-

jano 2013), scalarization is applied, and each agent tries to optimize the estimate

of a convex combination of all objectives, which is obtained using a proportional-

integral (unrelated to and not to be confused with the authors’ proportional-integral

ESC algorithm) consensus approach (Freeman et al. 2006).

Considering sliding-mode based extremum-seeking control (SM-ESC), optimiza-

tion is usually treated as output-tracking of systems with unknown control direction,

with the usual advantage of not relying on separate time-scales between the plant

dynamics (fast) and the control dynamics (slow). In this context, Pan et al. (2002)

and Peixoto and Oliveira (2012) are one of the first to propose new SM-ESC al-

gorithms for MIMO optimization. In both works, the authors can achieve a Nash

equilibrium in noncooperative games. Although their techniques share the advan-

tages above of SM-ESC, only static systems with weak coupling between channels

are considered, such that |∂Ji/∂yi| is significantly greater than |∂Ji/∂yj|, for j 6= i.

Considering cooperative games, Salamah et al. (2018) can remove this weak cou-

pling constraint and achieve a Pareto efficient solution. Once again, scalarization is

performed via convex combination, and each agent estimates this common objective

through the same proportional-integral consensus (Freeman et al. 2006) algorithm

used by (Poveda and Quijano 2013; Guay et al. 2018). Salamah and Özgüncr (2018)

propose an SM-ESC algorithm for MISO problems. In this work, optimization is

performed one channel at a time, such that when a specific channel is running the

control algorithm, the others are frozen at their previous set-point value.

At last, very recently, (Peixoto et al. 2020) published an extension of the earlier

results in (Peixoto and Oliveira 2012). In contrast to their earlier conference paper

(Peixoto and Oliveira 2012), where only the basic steps of the multi-variable design

were discussed, the complete control design and rigorous convergence analysis are

detailed in the recent manuscript. Moreover, the authors are able to relax the diag-

onal dominance condition, replacing it with a significantly less restrictive triangular

dominance condition.

1.2.3 Consensus Estimation

Consensus algorithms are of particular interest for distributed team theory opti-

mization problems, where multiple players collectively access the decision variables

towards optimizing the same objective function. In fact, this is what motivated us to

develop the consensus algorithm for maximum output estimation that we describe

later in chapter 6. Distributed is used in the sense that the many players (also called
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Table 1.1: Summary of the main theoretical results on extremum-seeking control
(ESC) discussed in section 1.2.2. All works that are labeled as partially applicable
to nonlinear systems actually rely on a time-scale separation and strong stability
and convergence assumptions, such that the process behaves as a static map.
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Dürr et al. (2017)
Guay et al. (2018)
Mills and Krstić (2018)
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Salamah and Özgüncr (2018)
Salamah et al. (2018)

sl
id

in
g
-m

o
d

e
b

as
ed

Peixoto et al. (2020)
Guay and Zhang (2003)
Dehaan and Guay (2005)
Adetola and Guay (2006)
Adetola and Guay (2010)

m
o
d

el
-b

as
ed

Sharafi et al. (2013)

applicable partially applicable

27



Table 1.2: Summary of theoretical results on multi-variable extremum-seeking con-
trol (ESC) listed in chronological order according to their category: perturbation-
based or sliding-mode based. Columns MIMO and MISO indicate the type of op-
timization, while columns Scalarization, Cooperative, and Noncooperative (which
do not apply to MISO optimization) further specify the type of problem. Columns
Nash and Pareto (also not applicable to MISO optimization) indicate the type of
equilibrium. Columns Slow, Weak Decoupling, and Chattering indicate the possible
drawbacks of each technique.
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nodes in the consensus literature) collaborate towards estimating a common perfor-

mance index, but each player only has access to a subset of the measurements and

estimates of the other players. The players belong to a network, and the connections

between them determine the measurements and estimates that a player has access

to. Consensus is used in the sense that each player aims at estimating the common

performance index, and all the players converge to the same estimate.

Problems such as this one are extensively studied in the area of networked sys-

tems. They usually appear in two forms: static consensus and dynamic consensus.

In static consensus, a snapshot of the nodes’ inputs at a given time is used to initial-

ize the algorithm, but changes to these inputs are ignored. In dynamic consensus,

algorithms are designed to track the desired network performance as the nodes’

inputs change through time.

Some of the pioneering works on consensus estimators are due to Spanos et al.

(2005), Ren and Beard (2005), and Olfati-Saber et al. (2007). There are many works

on consensus estimators dealing with average consensus. In the static case, authors
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have proposed many solutions, encompassing, for example, privacy-preserving al-

gorithms (Manitara and Hadjicostis 2013; Mo and Murray 2016), robustness to

switching topologies and time-delays (Olfati-Saber and Murray 2004), and distur-

bance rejection (Bauso et al. 2009). Since the literature on static consensus is quite

mature, one might be tempted to repeatedly apply a static algorithm over fixed

periods of time. As discussed and exemplified by Kia et al. (2019), this is usually

not the best approach.

In contrast, dynamic consensus algorithms are explicitly developed to deal with

time-varying inputs. Although the literature is not as extensive as the one on static

consensus, for specific consensus algorithms (mainly average consensus), authors

have already tackled problems such as robustness to additive disturbances (Shi and

Johansson 2013), privacy-preserving schemes (Kia et al. 2015), and robustness to

communication delays (Moradian and Kia 2018). Very recently, Kia et al. (2019)

wrote a survey paper on various applications and theoretical foundations of dy-

namic average consensus algorithms. For a thorough review of the state-of-the-art

of consensus estimators, we strongly recommend (Kia et al. 2019) and the references

therein. Also, a field of study that uses many of the techniques that come from the

dynamic consensus literature is leader-follower networks of mobile agents.

Regarding maximum-value consensus, some authors have studied this problem

to solve time synchronization in wireless sensor networks. In such a network, each

sensor performs measurements in a given time and publishes this information to its

neighbors. Thus, all logical times must be synchronized across the network. For this

problem, authors have proposed appealing static consensus algorithms tackling the

most common challenges of wireless sensor networks — privacy-preservation (Wang

et al. 2019), security against malicious attacks (He et al. 2014a), and robustness to

network delays (He et al. 2014b).

1.3 Contributions

In this section, we highlight the main contributions of the present work. These con-

tributions appear in more than one form: (i) novel control algorithms, (ii) extension

of current sliding-mode extremum-seeking control frameworks to embrace different

design choices, and (iii) a mathematical foundation on which to establish the sta-

bility and convergence properties of similar control strategies yet to be developed.

Concerning the novel and the extended control algorithms, we list them in table 1.3

to assist the reader in comparing the results to the existing literature.

Following the main objective of this Thesis — provide solutions for real-time

multi-objective optimization — we can list four main contributions.

• Sliding-mode based ESC algorithms for real-time single-objective optimization
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Table 1.3: Summary describing the applicability and characteristics of the real-
time optimization techniques proposed in this Thesis. All columns have the same
meanings as in tables 1.1 and 1.2, and two additional columns were added. Columns
Exponentially Stable and Unstable refer to the required stability properties of the
process.
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and output-feedback trajectory tracking of input-affine nonlinear systems with

unknown control direction. There are two versions:

(1) Described in sections 2.2 and 3.2, applies to input-affine nonlinear sys-

tems with uniform unit relative degree. This algorithm is an extension

of usual sliding-mode based controllers for processes with unknown con-

trol direction, enabling the control designer to implement a continuous,

possibly chattering-free control algorithm.

(2) Published in (Lizarralde et al. 2017) and described in sections 2.3 and 3.4,

implements the previous control law on exponentially stable nonlinear

systems with arbitrary relative degree, relying on a time-scale separation

between the process dynamics and the controller dynamics.

• Sliding-mode based ESC algorithms for real-time, multi-objective, and dis-

tributed optimization problems, capable of achieving Nash equilibrium when

all objective functions are convex. There are four versions.

(1) Published in (Peixoto et al. 2020) and described in chapter 4, applies to

static maps.

(2) Described in section 4.3, extends the first controller, enabling the con-

trol designer to implement a continuous, possibly chattering-free control

algorithm, for input-affine nonlinear system with uniform unit relative

degree, without relying on any time-scale separation. Nonetheless, if one

forces a time-scale separation between the control algorithm proposed in
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this section and the plant dynamics, it follows directly from the results

of section 2.3 that the algorithm proposed in section 4.3 works for a class

of exponentially stable nonlinear systems with arbitrary relative degree

• Sliding-mode based ESC algorithms for real-time multi-objective optimization

problems, capable of achieving Pareto efficient solutions when all objective

functions are convex.

(1) Described in chapter 5, applies to static maps and relies on the scalar-

ization of the multiple objective functions, assuming a non-distributed

scenario, to achieve a Pareto efficient solution.

• A sliding-mode based consensus estimator, published in (Monteiro and Peixoto

2020) and described in chapter 6, capable of determining the maximum (min-

imum) output value among all outputs measured in a network of agents that

cooperate with each other. The necessary and sufficient assumption is that

the graph describing the network is strongly connected.

1.3.1 Connection with Similar Works

Regarding output-tracking and real-time optimization of single-input single-output

systems, our proposed sliding-mode controller is heavily based on the earlier works

of Drakunov and Özgüner (1992), Haskara et al. (2000), Oliveira et al. (2010b),

and Oliveira et al. (2012). There are, however, some key aspects that tell our work

apart from the former. These works implement a two-layer cascade sliding-mode

strategy. The second layer is responsible for locking on the unknown high-frequency

gain sign, while the first implements a first-order sliding mode controller to drive

the error towards zero. We, on the other hand, provide a general framework that

enables the control designer to remove chattering from the second sliding-mode layer

and also select several other control algorithms (other than sliding-mode controllers)

to drive the error to zero in the first layer. Throughout the manuscript we highlight

these differences and show how the stability proof is modified to account for these

changes.

The extension of the aforementioned controllers to systems with arbitrary rel-

ative degree relates to the ones in (Peixoto and Oliveira 2014) and (Lara-Cisneros

et al. 2017). Nonetheless, there are key differences between ours and the aforemen-

tioned works. As already mentioned, the difference between (Lara-Cisneros et al.

2017) and (Peixoto and Oliveira 2014) is that the former computes the modula-

tion function based on feedback linearization, while the latter uses a norm observer.

Both algorithms make use of high-gain observers to obtain an estimate of the system
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external dynamics when written in normal form (Khalil 2002, page 541), which im-

plies the existence of a global diffeomorphism (or a series of local diffeomorphisms)

that transforms the system into this form. We, on the other hand, show that, un-

der the assumption that the system admits a two time-scale separation and that

its quasi-steady-state model has unit relative degree, a simpler control law may be

used.

The stabilization controller for SISO systems with unknown output sign, ex-

emplified in section 3.3, can be related to (Scheinker and Krstić 2013; Scheinker

and Krstić 2016). However, our control technique is fundamentally different, since

Scheinker and Krstić require the control algorithm dynamics to be slower than the

plant dynamics, and is based on perturbation-based ESC. Either way, Scheinker and

Krstić (2013) and Scheinker and Krstić (2016) provide more general results based

on the minimization of control Lyapunov functions, which remain an open topic for

future development of the SISO sliding-mode controller proposed in this Thesis.

Regarding multi-objective optimization, our work on solving noncooperative

problems via extremum-seeking shares a deep relation with (Peixoto and Oliveira

2012). In fact, the start of our study on multi-objective optimization derives from

this work. Nonetheless, in contrast to this earlier conference paper, where only the

basic steps of the multi-variable design were discussed, the complete control design

and rigorous convergence analysis are detailed in this Thesis, following our published

results in (Peixoto et al. 2020). Moreover, we are also able to relax the diagonal

dominance condition considered in (Peixoto and Oliveira 2012) to a triangular domi-

nance condition, which is significantly less restrictive, as well as generalize the results

for input-affine nonlinear systems. The former diagonal dominance condition was

generally assumed in works about multi-agents in noncooperative games (Pan et al.

2002; Frihauf et al. 2011). Another similarity of our results to those of Pan et al.

(2002) and Frihauf et al. (2011) is that our algorithm also drives the system to a

Nash equilibrium. Regarding the algorithm sensitivity to its initial conditions, the

method based on periodic switching functions overcomes traditional perturbation-

based approaches, since global convergence to a small neighborhood of the extremum

(practical stability) is demonstrated rather than local stability results, given that all

objective functions are convex. We say that global convergence is achieved because

any initial conditions are allowed.

Finally, regarding cooperative multi-objective optimization, we take inspiration

from the recent works of (Guay et al. 2018; Salamah and Özgüncr 2018; Salamah et

al. 2018). Our contributions to this area are two-fold: not only do we develop a novel

sliding-mode-based extremum-seeking controller (chapter 5), but we also propose a

novel dynamic consensus estimator (chapter 6) that can be used in a variety of other

optimization algorithms, and even outside the optimization and control fields.
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Chapter 2

Output-Feedback Trajectory

Tracking under Unknown Control

Direction

Sliding-mode control (SMC) consists of modifying a process behavior by inducing

a movement that is restricted to a sub-space of its phase space. To achieve this

behavior, SMC strategies use control laws that force a discontinuity in one of the

derivatives of the process output.

Two concepts are crucial for defining SMC laws; sliding-surfaces (sliding-

manifolds) and switching-functions. The sliding-manifold defines the sub-space of

the phase space to which the system movement should be restricted, while the

switching-function defines the control law, calculated as a function of the sliding-

manifold, to ensure that the above restriction is satisfied.

For SISO systems, the sliding-manifold splits the phase-space in two parts, each

one with its own velocity vector field as a function of the switching-function. On the

other hand, when there are multiple (nu) inputs, the nu sliding-manifolds S1 to Snu

divide the phase-space into 2nu parts, again with individual velocity vector fields as

functions of the nu switching-functions.

S2

S1

S1 ∩ S2

Figure 2.1: Two switching manifolds S1 and S2 dividing R3 into 4 parts.

In this chapter, we commence our study on sliding-mode control and its ap-
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plications to robust output-feedback trajectory tracking and real-time model-free

optimization. Regarding robust tracking, robustness is used in the sense that the

control law is capable of recovering from changes in the control direction. Although

Utkin (1992), Drakunov and Özgüner (1992), Haskara et al. (2000), Oliveira et al.

(2010a), Oliveira et al. (2012), Aminde et al. (2013), and Lizarralde et al. (2017),

among others, have provided relevant contributions to this area, we believe the re-

sults we present in this chapter further improve upon the works of these authors.

Not only do we allow the control designer to choose among a broader range of

controllers, but we also provide strong stability and convergence results.

The main objectives of this Thesis, discussed in section 1.1, are related to op-

timization, nonetheless, as indicated in the very first publications in the subject

of tracking control under unknown control direction, techniques robust to these

changes are usually applicable to perform real-time optimization. Therefore, the re-

sults we develop in this chapter serve as cornerstones to those detailed in chapters 3

and 4. We present solutions for trajectory tracking of uncertain nonlinear systems

with unknown high-frequency gain. These solutions are based on sliding-mode con-

trol (SMC), and are inherently discontinuous1. Thus, there is a need to properly

define what properties should their solutions satisfy. These definitions follow Fil-

ippov’s theory of ordinary differential equations with discontinuous right-hand side

(Filippov 1964; Filippov 1988) and its implications (Polyakov and Fridman 2014).

Considering the proper mathematical tools, solutions to SMC problems and their

stability proofs are presented. The reader is referred to appendix A for a review of

these tools.

2.1 Problem Formulation

In this section we deal with single-input single-output (SISO) input-affine nonlinear

systems that can be modeled by a finite number of coupled first-order differential

equations,

ẋ(t) = f(x) + g(x)u(t) (2.1a)

y(t) = h(x) (2.1b)

where t ∈ R̄+ denotes time, x : R̄+ 7→ Rn denotes the state variables, ẋ their

derivatives with respect to time, f, g : Rn 7→ R denote the state and input functions,

y : R̄+ 7→ R denotes the system output and h : Rn 7→ R the output function.

Discontinuities are only allowed in the control input. Therefore, functions f , g and

1Continuity of a system is said in terms of its velocity vector field. Note that, as defined in
appendix A, solutions are always absolutely continuous.
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h are at least C0. The control input u : R̄+ 7→ R is piecewise continuous in its

arguments.

Without loss of generality, throughout this manuscript, all signals that evolve

through time are defined on [0, tf ] ⊂ R̄+. If a solution exists ∀t ≥ 0, then tf =∞.

Furthermore, we omit the dependence of f , g, and h on time, since time-variant

systems can be considered by augmenting the state vector with a fictitious state

xn+1(t) = t.

The control law presented in this section is based on the work of Oliveira et al.

2011 and was published under a less general framework in (Lizarralde et al. 2017).

Before jumping into it, we elaborate a little more on what properties that systems

described by (2.1) must satisfy.

Definition 1 (Relative Degree and High-Frequency Gain). System (2.1) has relative

degree r ∈ N > 0 at x′ ∈ Rn iff there exists an open neighborhood U : x′ ∈ U such

that, ∀x ∈ U and ∀k ∈ {0, 1, . . . , r− 2}, the first r− 1 Lie derivatives exist and they

satisfy

LgL
k
fh(x) = 0 and LgL

r−1
f h(x) 6= 0 (2.2)

From this relation, the system high-frequency gain (HFG) is defined as

kp(x) = LgL
r−1
f h(x) (2.3)

One may understand the relative degree as the number of times one must differ-

entiate the system output with respect to time such that the control action appears.

For instance, most mechanical devices are governed by second-order dynamics, such

that it is only possible to directly act on the system acceleration, the second deriva-

tive of its position. Thus, if one takes the force exerted on such mechanical devices

as the input and their position as the output, the system has relative degree equal

to two.

Assumption 1 (Uniform Relative Degree). The relative degree r of system (2.1) is

constant ∀x ∈ Rn.

Assumption 2 (Bounded HFG). The system high-frequency gain is continuous

∀x ∈ Rn and its absolute value has a lower-bound

0 < kp ≤ |kp(x)| (2.4)

that holds uniformly on x.

These assumptions are not very restrictive, since they just require the relative
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degree to remain constant and the high-frequency gain to remain bounded. Note

that we do not impose any previous knowledge on the HFG sign. A slightly more

restrictive assumption, but common in SMC literature and required to develop the

stability proofs presented in this work, is given below.

Assumption 3 (Unit Relative Degree). System (2.1) is assumed to have relative

degree r = 1, such that

kp(x) = Lgh(x) =

(
∂h

∂x

)T

g(x) (2.5)

holds for every x ∈ Rn.

Processes with a unit relative degree are those that allow the input to influence

the output velocity directly, which, for instance, is not the case for most mechanical

systems. We do relax this assumption further in section 2.3, but we then require

strong stability properties from (2.1).

2.2 Continuous Sliding-Mode Controller for

Input-Affine Processes

Suppose system (2.1) is required to follow a known reference trajectory

ym(t), ẏm(t) ∈ R (2.6)

with pre-specified velocity ẏm(t). Define the tracking error

e(t) = y(t)− ym(t) (2.7a)

ė(t) = Lfh(x) + kp(x)u(t)− ẏm(t) (2.7b)

where u is the control input yet to be specified.

Remark 1. If sign(kp) is known, finite-time stabilization of the origin of sys-

tem (2.7) is relatively simple. It suffices to choose u = −ρ sign(kp) sign(e), with

sufficiently high ρ > 0, such that disturbances caused by Lfh(x) are dominated. The

proof follows from the simple Lyapunov function V (e) = e2 and it is well-known in

the SMC literature.

Since Lfh(x) and kp(x) are both unknown, stabilization of e(t) is not a trivial

task. The main idea here, which was first published by Drakunov et al. (1995) and

later generalized by Oliveira et al. (2011), is to define a sliding variable σ(t) as a

function of e(t), such that when σ enters a sliding-mode with σ̇ = 0 the error is led
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to zero e(t)→ 0. For that, let

σ(t) = e(t) +

∫ t

0

fe(e)dτ (2.8a)

σ̇(t) = ė(t) + fe(e) (2.8b)

with fe : R 7→ R restricted by the following assumption.

Assumption 4 (Stable Error Dynamics Design). Function fe : R 7→ R is chosen

such that

• the origin of ė+ fe(e) = 0 is globally asymptotically stable (GAS);

• solutions to ė + fe(e + O(ε)) = 0 with small disturbances of order O(ε) in fe

are globally ultimately bounded, with ultimate bound also of order O(ε).

In (Oliveira et al. 2011), this function is defined as fe(e) = λ sign(e) with λ > 0,

which satisfies Assumption 4. The demonstration is easily verified with V (e) = e2.

Another valid (and more general) choice is fe(e) = λ sigmoidε(e), where sigmoidε(e)

denotes a smooth implementation of sign(e). It is important to let the control

designer choose fe(e), since the differential equation ė + fe(e) = 0 will be the one

driving the error to zero.

From Assumption 4 and (2.8b), it follows that: if σ enters a sliding regime on a

constant value, its derivative goes to zero, and the error is also led to zero. Thus,

e = 0 is at least GAS, depending on the selection of fe. If σ enters a real sliding-

mode regime, i.e. approaches the sliding surface and stays around its vicinity, then

the error trajectories are globally ultimately bounded, with ultimate bound of order

O(ε).

Definition 2 (Real Sliding-Mode). A system is said to be in real sliding-mode when

its trajectories can be driven, by appropriate choice of design parameters, arbitrarily

close to the sliding manifold.

Definition 3 (Matched Input Disturbance Form). A system is in matched input

disturbance form when it is written as

σ̇ = kp (u+ d) (2.9)

where terms that do not belong to the control input can be grouped and written as

an additive disturbance that influences the system together with the control input.

To find the control law (switching function) that makes σ enter a real sliding-

mode on σ = kT , thus drives σ arbitrarily close to kT , for some integer k and
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the control parameter T > 0, (2.7) is substituted in (2.8) and the σ-dynamics is

rewritten in an equivalent matched input disturbance form

σ̇(t) = kp(x) [u(t) + dσ(x, e, ẏm)] (2.10a)

kp(x) dσ(x, e, ẏm) = [Lfh(x) + fe(e)− ẏm(t)] (2.10b)

where dσ(x, e, ẏm) is a matched input disturbance with respect to u, which grows

infinitely as the HFG approaches zero kp(x) → 0. As usual in SMC theory, the

control law that achieves the desired sliding-mode relies on a known disturbance dσ

bound.

Assumption 5 (Disturbance Boundedness). There exist known functions α1 ∈ K
and β1 ∈ KL such that ||Lfh(x)|| ≤ α1(||x||) + β1(||x(0)|| , t) and

|dσ| ≤
1

kp

[
α1(||x||) + |fe(e)− ẏm(t)|+ β1(||x(0)|| , t)

]
(2.11)

In equation (2.11), α1 depends on the norm of the full state x. From a practical

point of view, if the problem is such that α1 depends only on the output y, then

an upper-bound d̄σ for |dσ| can be computed directly from (2.11). Nonetheless, in

the general case, some estimation of ||x|| must be obtained to compute d̄σ. Thus,

consider the following assumption valid.

Assumption 6 (Norm Observability). System (2.1) is uniformly input-output-to-

state stable (UIOSS) (Krichman et al. 2001, Definition 2.1) and, therefore, admits

a norm observer (Krichman et al. 2001, Proposition 5.3)

||x|| ≤ ᾱ3 (||η||) + β2(||x|| , t) (2.12a)

η̇ = −η + α3(|u|) + α4(|y|), η(0) = 0 (2.12b)

with known functions ᾱ3(s) = ᾱ−1
1 (2s) ∈ K∞, β2(s, t) = ᾱ1(2ᾱ2(s)e−t) ∈ KL,

and α3, α4 ∈ K, where ᾱ1, ᾱ2 ∈ K∞ are the bounds of a UIOSS-Lyapunov func-

tion (Krichman et al. 2001, Definition 2.2)

ᾱ1(||x||) ≤ V (x) ≤ ᾱ2(||x||) (2.13)

of system (2.1).

This assumption might be restrictive in some cases and it can, in fact, be ignored

if one does not require global stability results. When local stability results are

enough, it is usual to select the maximum control effort as the norm bound for dσ.

Nonetheless, Assumption 6 allows us to rewrite (2.11) in terms of η, which depends
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solely on u and y,

kp |dσ| ≤ α1

(
ᾱ3 (||η||) + β2(||x|| , t)

)
+ |fe(e)− ẏm(t)|+ β1(||x(0)|| , t)

≤ α1 (2ᾱ3(||η||)) + α1(2β2(||x|| , t)) + |fe(e)− ẏm(t)|+ β1(||x(0)|| , t)
= α5 (||η||) + β3(||x|| , t) + |fe(e)− ẏm(t)|+ β1(||x(0)|| , t)
≤ α5 (||η||) + β3(2 ||η|| , t) + β3(2(||x|| − ||η||), t) + |fe(e)− ẏm(t)|+ β1(||x(0)|| , t)
= d̄σ(η, e, ẏm) + β3(2(||x|| − ||η||), t) + β1(||x(0)|| , t)
= d̄σ(η, e, ẏm) + β4(|eη(0)| , t) + β1(||x(0)|| , t)

(2.14a)

d̄σ = α5 (||η||) + β3(2η, t) + |fe(e)− ẏm(t)| (2.14b)

where β3(x, t) = α1(2β2(||x|| , t)) is known, α5(η) = α1(2ᾱ3(||η||)), β4(|eη(0)| , t), and

eη = ||x|| − ||η|| is the norm observation error. Once again, we reinforce that, in

practice, the upper-bound (2.14b) can be replaced by a constant upper-bound lower

or equal to the maximum control effort.

With the bound provided by (2.14), the controller that produces sliding-mode

σ = kT , for some integer k, is ready to be presented. This controller constitutes the

second layer of the two-layer cascade sliding-mode controller for output tracking. It

is important that the reader understands this first control law, because it serves as

a basis (not in a mathematical sense) for all techniques that are presented in this

Thesis.

Proposition 1 (Sliding-Mode Controller Design). Consider the σ-dynamics written

in input disturbance form, system (2.10) with input u, matched input disturbance dσ

and unknown high-frequency gain kp(x), repeated below to ease redability

σ̇(t) = kp(x) [u(t) + dσ(x, e, ẏm)] (2.15a)

kp(x) dσ(x, e, ẏm) = [Lfh(x) + fe(e)− ẏm(t)] (2.15b)

Also, consider Assumption 2, such that the high-frequency gain is bounded away

from zero, and the disturbance bound d̄σ from (2.14). Define the input

u(t) = ρ(η, e, ẏm) sigmoidε

(
sin
[π
T
σ(t)

])
(2.16a)

ρ(η, e, ẏm) =
κ

kp

[
d̄σ(η, e, ẏm) + δ

]
(2.16b)

with T, δ > 0, κ ≥ 1 and non-decreasing, odd function sigmoidε : R 7→ [−1, 1], such

that sigmoidε(s) ≥ 1/κ for s > ε, where 0 < ε� 1. Then, (i) no finite-time escape

occurs in the system signals, x, y, σ, and u, and (ii) the σ-dynamics reach a O(ε)

real sliding-mode on the sliding manifold σ = kT in finite time, for some integer k.
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Proof. The proof is done in two steps. First, we assume that property (ii) is satisfied

and that there is a time t = t1 for which σ enters real sliding-mode. This is used

to prove property (i). Second, property (ii) is proved. Furthermore, there are two

equations in this proof that deserve a special mention, they are equations (2.18) and

(2.22). The former allows us to write the proof simultaneously for continuous and

discontinuous control laws, there is, if we let β(σ) = 1 in (2.20), then the sigmoidε(.)

in (2.16a) becomes sign(.). The latter makes this proof easier to follow and to be used

in conjunction to Assumption 4 to prove global tracking and real-time optimization,

which we do later in Theorems 1 and 3.

Property (i) Since property (ii) is assumed valid, the sliding variable σ(t) must be

bounded, which in turn implies that the control signal u(t) is bounded. Note that

σ(t) can be seen as an input to the error dynamics (2.8), which from Assumption 4

is GAS and, therefore, BIBO stable. Hence, both e(t) and y(t) = e(t) + ym(t) are

bounded. Finally, since u(t) and y(t) are bounded and the system (2.1) is UIOSS

(Assumption 6), the system state x(t) is also bounded.

Property (ii) The objective is to show that σ(t) converges to kT , for some integer

k, such that the distance |σ(t0)− kT | is minimal. Additionally, if sign(kp) < 0, k

must be even and if sign(kp) > 0, k must be odd. With this in mind, note that the

inequality

kπ ≤ π

T
σ(t) ≤ (k + 1)π , k(σ) =

⌊
σ(t)

T

⌋
(2.17)

holds ∀t ≥ 0, where k depends on σ. For any real s, bsc denotes the greatest integer

lower or equal to s. Moreover, sin (πσ/T ) > 0 for k even and sin (πσ/T ) < 0 for k

odd. Therefore, the control input (2.16) can be written as

u = β(σ)ρ(−1)k (2.18)

for some nonnegative function β(σ)2, and the following inequality is valid:

β(σ) ≥ 1/κ ⇐⇒
∣∣∣sin

[π
T
σ(t)

]∣∣∣ > ε (2.19)

Without loss of generality, consider ε� 1, such that the above inequality becomes

β(σ) ≥ 1/κ ⇐⇒
∣∣∣∣
σ(t)

T
− k̃
∣∣∣∣ π > ε (2.20)

where k̃ = round(σ(t)/T ) denotes the rounding of σ(t)/T to the nearest integer

value. To show that an O(ε) sliding-mode occurs on the manifold σ = k∗T , for some

2For sigmoidε(.) = sign(.) function β(σ) ≡ 1 is a constant.
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integer k∗, assume there is a time instant t0 ≥ 0 for which σ(t) is not in sliding

motion, and define

k0 = bσ(t0)/T c (2.21a)

k∗ = k0 +
sign(kp) + (−1)k0

2
(2.21b)

sk∗ =

(
σ(t)

T
− k∗

)
π (2.21c)

where k∗ = k0 or k∗ = k0+1, depending on sign(kp) and the parity of k0. Essentially,

k∗ must be odd when sign(kp) > 0 and even when sign(kp) < 0. When k0 does not

comply with these conditions, k∗ is set to the following integer value k∗ = k0 + 1.

These results are preliminary and will be used to prove V̇ (sk∗) < 0, for |sk∗ | > ε,

considering the candidate Lyapunov function

V (sk∗) =
T

π
|sk∗| , V̇ (sk∗) =

T

π
sign(sk∗)ṡk∗ (2.22)

which is differentiable for every sk∗ ∈ R \ {0}, hence, usual Lyapunov analysis can

be carried on, according to Corollary 3, even if sigmoidε(.) = sign(.). To this end,

consider the time derivative of sk∗ along the trajectories of (2.10)

ṡk∗ = σ̇ = kp (u+ dσ) = kp
[
β(σ)ρ(−1)k + dσ

]
(2.23)

where the last equality is a consequence of (2.18). By using kp = |kp| sign(kp),

ṡk∗ = |kp|
[
β(σ)ρ (−1)k sign(kp) + dσ sign(kp)

]
(2.24)

and, consequently,

V̇ (sk∗) = |kp|
[
β(σ)ρ (−1)k sign(kp) sign(sk∗) + dσ sign(kp) sign(sk∗)

]
(2.25)

The first term in brackets corresponds to the control action, while the second cor-

responds to the system disturbances. To obtain sk∗ ṡk∗ < 0, for |sk∗ | > ε, the first

term should be negative and it must dominate the second one. Therefore, we aim

at showing that

(−1)k sign(kp) sign(sk∗) = (−1)k sign(kp)
sk∗

|sk∗ |
= −1 (2.26)

independent of sign(kp) and the parity of k.

First, note that k∗ is chosen such that σ(t)/ε ∈ [k∗−1, k∗+1], at least at t = t0.
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Verify that

k =

⌊
σ(t)

T

⌋
= k∗ − 1 =⇒ σ(t)

T
∈ [k∗ − 1, k∗] (2.27a)

k =

⌊
σ(t)

T

⌋
= k∗ =⇒ σ(t)

T
∈ [k∗, k∗ + 1] (2.27b)

and consider both cases:

• k = k∗ − 1 =⇒ σ(t)/T < k∗

(−1)ksk∗ = (−1)k
(σ
T
− k∗

)
π = (−1)k(−1)

∣∣∣σ
T
− k∗

∣∣∣ π

= (−1)k+1
∣∣∣σ
T
− k∗

∣∣∣ π = (−1)k
∗
∣∣∣σ
T
− k∗

∣∣∣ π

(−1)ksk∗ = (−1)k
∗ |sk∗| (2.28)

• k = k∗ =⇒ σ(t)/T > k∗

(−1)ksk∗ = (−1)k
(σ
T
− k∗

)
π = (−1)k

∣∣∣σ
T
− k∗

∣∣∣ π = (−1)k
∗
∣∣∣σ
T
− k∗

∣∣∣ π

(−1)ksk∗ = (−1)k
∗ |sk∗ | (2.29)

Equations (2.28) and (2.29) substituted into (−1)k sign(kp) sign(sk∗) yield

(−1)k sign(kp) sign(sk∗) = (−1)k
∗

sign(kp) (2.30)

Therefore, to obtain (2.26), one must find (−1)k
∗

sign(kp) = −1, which is a direct

consequence of k∗ definition (2.21b). In fact, as previously stated, k∗ is odd for

sign(kp) > 0 which implies (−1)k
∗

sign(kp) = (−1)k
∗

= −1. For sign(kp) < 0, k∗ is

even, implying (−1)k
∗

sign(kp) = (−1)k
∗+1 = −1. Thus, equation (2.26) holds and

V̇ (sk∗) in (2.25) is rewritten as

V̇ (sk∗) = |kp| [−β(σ)ρ+ dσ sign(kp) sign(sk∗)]

≤ −kp [β(σ)ρ− |dσ|]
≤ −

[
β(σ)

(
κd̄σ + δ

)
− d̄σ

]
+ kp

[
β4(|eη(0)| , t) + β1(||x(0)|| , t)

]

with the help of (2.14). Finally, since β4 and β1 are class KL functions which vanish

exponentially, and taking inequality (2.20) into account,

V̇ (sk∗) ≤ −δ < 0 , |sk∗| > ε (2.31)

This concludes the proof, implying that real sliding-mode occurs in sk∗ = 0 ⇐⇒
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σ = k∗T , with ultimate bound

|σ| ≤ k∗ T +
ε T

π
≤ k∗ T +O(ε) (2.32)

Proposition 1 implies that the second layer of the two-layer cascade controller

is capable of producing real or ideal sliding-modes on a constant manifold σ =

k∗ T , for some integer k∗, depending on the choice of sigmoidε. Therefore, the

output error dynamics, after some finite time, is governed by one of the equations

in Assumption 4, and the control designer is free to choose the desired transient

response by a proper selection of fe(e).

Theorem 1. Consider system (2.1) with output error (2.7), reference model ym(t),

and control law (2.8), (2.16). Then, the output tracking error origin is uniformly

globally practical asymptotically stable (UGPAS), with ultimate bound |e| ≤ O(ε),

and all system states remain bounded.

Proof. The proof is a direct consequence of Proposition 1 and Assumption 4. From

Proposition 1, equation (2.32) , it follows that |σ(t)− k∗ T | ≤ (ε/π), for t ≥ t1 and

some integer k∗. Hence, consider the change of variables ē = e − σ + k∗ T , such

that, for t ≥ t1, equation (2.8) is rewritten as

k∗ T = ē+

∫ t

0

fe(ē+O(ε))dτ (2.33a)

0 = ˙̄e+ fe(ē+O(ε)) (2.33b)

From Assumption 4, it follows that the origin of ē is UGPAS, with ultimate bound

|ē| ≤ O(ε). Since |e| ≤ |ē|+ |σ − k∗ T |, the origin of e is also UGPAS with ultimate

bound |e| ≤ O(ε). To conclude the proof, since the system is UIOSS and its input

and output are bounded, the state x must also be bounded.

Theorem 1 concludes the general results on global output tracking under un-

known control direction. Below, we work on this results to provide two useful

choices for fe(e) that will be used throughout this manuscript.

Corollary 1. Consider Theorem 1 and let fe(e) = λ satε̄(e), with

sat ε̄(e) =

{
e/ε̄ , |e| < ε̄

sign(e) , otherwise
(2.34)

where λ > 0 and ε̄ ≥ 2ε T/π. Then, the output tracking error origin is UGPAS, with

ultimate bound |e| ≤ 2ε T/π ≤ O(ε).
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Proof. Consider (2.33) with fe(.) = λ satε̄(.) and (2.34). Using the Lyapunov func-

tion V (ē) = ē2, with ē from the proof of Theorem 1, and the fact that ε̄ > ε T/π,

it follows that ē = 0 is UGPAS with ultimate bound |ē| ≤ ε T/π. Therefore, since

e = ē+ (σ − k∗ T ), the tracking error origin e = 0 is UGPAS, with ultimate bound

|e| ≤ ε T/π + ε T/π = 2ε T/π ≤ O(ε).

Corollary 2. Consider Theorem 1 and let sigmoidε(.) = sign(.) and κ = 1. Then,

(i) an ideal sliding-mode σ = k∗T is attained in finite time, for some integer k∗, and

(ii) if fe(.) = λ sign(.), with λ > 0, the output tracking error origin is UGAS, and

e = 0 is reached in finite time.

Proof. By taking sigmoidε(.) = sign(.), one has ε = 0, which, from Proposition 1,

implies σ = kT and σ̇ = 0 for t ≥ t1 and some integer k. The proof of property

(i) is established by considering Assumption 4. To prove property (ii), note that

fe(.) = λ sign(.) and ε = 0 imply ė + sign(e) = 0. Hence, UGAS and finite-time

convergence follow from the Lyapunov function V (e) = |e|.
Note that, if one specializes the proposed control law by selecting sigmoidε(.) =

sign(.) and fe(.) = λ sign(.), the controller is the exact same as the one in Oliveira

et al. 2011; Oliveira et al. 2012.

2.2.1 Tuning Guidelines

In general, we recommend using the controller proposed in Corollary 1, since simu-

lations considering implementation constraints, such as sampling rate and actuator

dynamics, indicate that usual switching functions based on fe(.) = λ sign(.) suffer

from severe performance deterioration in these cases. On the other hand, continu-

ous approximations, such as fe(.) = λ satε̄(.) and sigmoidε(.) = satε(.), offer smaller

gains near e = 0, reducing the error sensitivity with respect to these constraints.

Assuming fe(.) = λ satε̄(.) and sigmoidε(.) = satε(.), directives for choosing the

controller parameters are given in this section.

Essentially, there are 5 parameters available for the designer: δ, T , ε, ε̄ and λ.

Together, they control all the major convergence and robustness properties of the

proposed controller, as discussed below and illustrated in fig. 2.2.

δ (excess in control) and T (sliding manifold position) Together they make

for the maximum amount of time taken for σ to enter sliding motion, given

by T/δ. Therefore, one should compromise when attempting to reduce the

“open-loop transient” duration by choosing when to reduce T , which increases

chattering and requires a smaller sampling period, and when to increase δ,

which increases the control signal. It is desirable that T/δ be as small as

possible so that the controller recovers promptly from: strong disturbances
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λ
ε̄
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ε̄
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λ/ε̄

T/δ

t

ē

Figure 2.2: Summary of effects of the control parameters (δ, T, ε, ε̄, λ) on the auxiliary
tracking error ē(t), which is O(ε) close to e(t).

and possible losses of controllability. One should note, however, that this

estimate is usually very conservative and small transient responses can be

achieved with a much softer (but not guaranteed) upper bound 0.1T/δ.

ε (steady-state error) Determines the maximum steady-state output tracking er-

ror, given by |e| ≤ 2ε T/π. It should satisfy 0 < ε� 1. Care should be taken

when decreasing ε, because smaller values of ε usually produce chattering.

ε̄ (chattering reduction) Reduces the input gain seen by the noise coming from

nonzero σ − k∗ T and defines a lower error bound, above which ė = −λ.

Thus, by proper choice of ε̄ (big enough), the output becomes less sensitive to

imperfections from real sliding motion, which are inevitable. Nonetheless, big

values of ε̄ imply slower error decay rates when |e| < ε̄.

λ (error decay rate) Controls the error decay rate ė, which is (i) linear, with

|e(t)| = |e(t1)| − λ(t − t1) for |e| ≥ ε̄ or (ii) exponential, with |e(t)| ≈
|e(t1)| exp [−(λ/ε̄)(t− t1)] for |e| < ε̄, where t1 is the time at which σ en-

ters real sliding-mode. Although λ should be big for higher decay rates, it

should not be so big as to increase chattering.

2.2.2 Interpretation via High-Gain Proportional Integral

Control

The proposed controller with sigmoidε(.) = satε(.) and fe(.) = λ satε̄(.), when in real

sliding-mode, reduces to a high-gain proportional integral controller (where the inte-
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gral action is even higher than the proportional action). This interpretation is very

enlightening and might aid one in developing and interpreting control algorithms

based on different choices of fe(.). Note that, when σ enters real sliding-mode,

σ(t) = k∗ T +O(ε), for some integer k∗ and O(ε) < εT/π. Therefore,

sin(πσ/T ) = sin(πk∗ + πO(ε)/T )

= cos(πk∗) sin(πO(ε)/T )

= − sign(kp) sin(πO(ε)/T )

sin(πσ/T ) ≈ − sign(kp)πO(ε)/T

and

u(t) = ρ(t) sat ε

(
sin
[π
T
σ(t)

])
≈ − sign(kp)

πρ(t)

ε T
O(ε) (2.35)

From equation (2.8), when σ is in real sliding-mode and |e| < ε̄ (which is true for

some finite time), k∗ T +O(ε) = e+ (λ/ε̄)
∫
edτ . Thus,

u(t) ≈ − sign(kp)
πρ(t)

ε T

[
e(t) +

λ

ε̄

∫
e(τ)dτ − k∗ T

]
(2.36)

Finally, let de = dσ − fe/kp, such that

ė(t) = kp(x) [u(t) + de(t)] (2.37)

which, for small tracking error |e| < ε̄ and σ in real sliding-mode, becomes

ė(t) ≈ −|kp(x)|
µ

[
e(t) +

λ

ε̄

∫
e(τ) dτ − k∗ T + µ de(t)

]
(2.38)

with µ = ε T/[πρ(t)].

Equation (2.38) shows that the proposed controller behaves like a high-gain pro-

portional integral controller with matched input disturbances. Since k∗ T is constant,

it is perfectly compensated by the integral action. The other disturbance component

de(t) is significantly attenuated. In fact, from equations (2.16b), (2.14b), when σ is

in real sliding-mode, |de(t)| ≤ |ρ(t)|, which implies µ |de(t)| ≤ ε T/π.

Hence, the proposed control law functions in two stages. First, σ is driven

towards the sliding manifold σ = k∗ T and the high-frequency gain sign is obtained

from sign(kp) = − cos(πk∗), since k∗ is odd for sign(kp) > 0 and even otherwise.

Then, a high-gain proportional integral controller drives the tracking error to zero

while compensating for constant and small time-varying disturbances.
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2.2.3 Application to the Speed Control of Van der Pol Os-

cillators

The Van der Pol oscillator model is widely used in control theory and applications.

It consists of a mass-spring-damper system with nonlinear damping coefficient. In

this work, we write it as

mÿ(t) + b(y)ẏ(t) + ky(t) = u(t) (2.39)

with spring constant k > 0, mass m > 0 and damping b(y) = b1[(y/b0)2 − 1],

b0, b1 > 0. The nonlinear damping b(y) is negative for |y| < b0 and positive otherwise.

To write (2.39) in state-space form, let x = [y ẏ]T, such that

ẋ(t) =

[
0 1

−k/m −b(x1)/m

]
x(t) +

[
0

1/m

]
u(t) (2.40)

where both y and ẏ are assumed measured and y′ = ẏ is chosen as output, where y′

is just a new variable to denote the output. The assumption of measurable velocity

ẏ is relaxed in section 2.3, where only the position y is measured and a lead filter

is used to estimate ẏ. For now, this assumption is required to obtain unit relative

degree from input to output. To obtain the modulation function ρ(t), consider the

following bounds:

b(y) ≤ b̄1

[
(y/b̄0)2 − 1

]
= b̄(y) (2.41a)

k ≤ k̄ (2.41b)

m = 1 (2.41c)

where the mass m is assumed exactly known for simplicity. Finally, combining the

previous expressions yield

ρ(t) = κ
(∣∣k̄y + b̄(y)ẏ

∣∣+ |fe(e)− ẏ′m(t)|+ δ
)

(2.42)

For simulation purposes, we set m = 1 kg, k = 100 N/m, b1 = 10 N/(m/s) and

b0 = 0.05 m. To compute the lower bounds, we consider k̄ = 1.25k, b̄1 = 1.25b1, and

b̄0 = 1.25b0, that is, a 25% safety margin on each parameter. Assume the following

specifications for the velocity controller: following error below 0.01 m/s, settling

time of 0.2 s, and real sliding-mode achieved in 0.05 s. Following the procedure of

section 2.2.1, the controller gains are set to: ε = 0.02, T = 1 m/s, δ = 2 m/s2, ε̄,

λ = 5 m/s2, and ε̄ = 0.05 m/s.

Implementing the controllers in discrete-time with a sampling period of 10 µs, a
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reference signal y′m(t) = sin(2πt), and solving the simulation with first order Runge-

Kutta with a step size of 1 µs, the closed-loop system was simulated and the results

are shown in fig. 2.3. To show the results with ideal sliding-modes, a simulation using

sign(.) functions was also performed. Ideally, if one reduces the simulation step size

even further, the output tracking error can be driven exactly to zero. Nonetheless,

it is evident that the control signal suffers from severe chattering when ideal sliding-

mode controllers are considered, while absolutely no chattering is observed when

using the saturation function.
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Figure 2.3: Simulation results for the SISO output tracking example with sigmoid
and sign functions.

Another interesting result observed during simulations is that: even when one

increases the modulation function ρ(t), e.g. due to a conservative choice, the control

via sigmoid(.) functions is able to adaptively adjust the control signal and stabilize

the system without requiring any increase in control action. This happens because
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when σ enters real sliding motion, the output u(t) becomes (almost) equal to the

equivalent control, which is unique and does not depend on ρ(t). Figure 2.4 ex-

emplifies this property with 3 different choices of ρ(t): ρ1(t) from equation (2.42),

ρ2(t) = 40 and ρ3(t) = 100. This is a major advantage over usual sign(.) imple-

mentations, where the control signal switches with an amplitude exactly equal to

ρ(t).
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Figure 2.4: Comparison of control signals for different values of ρ(t), respectively:
ρ1(t) from (2.42), ρ2(t) = 40 and ρ3(t) = 100.

The only significant difference between possible modulation function choices lies

in the system transient response. For instance, assume that at some t = t0, σ(t0)

is in sliding motion and kp abruptly changes signal. Or, equivalently, assume that

t0 = 0 and the initial condition σ(t0) is such that sin(σ(t0)π/T ) = ±1. Until σ enters

real sliding-mode again at t = t1, the control signal decreases from u(t0) = ±ρ(t0)

to u(t1) = ueq(t1), where ueq(t) denotes the equivalent control at time t.

Additionally, to display the controller ability to track changes to the high-

frequency gain, a final example is considered. Let system (2.39) be modified with

the inclusion of γ(t) = sign[sin(2πt/0.6)] pre-multiplying u(t),

mÿ(t) + b(y)ẏ(t) + ky(t) = γ(t)u(t) (2.43)

such that the HFG signal is changed every 0.3 seconds. No controller parameter is

changed and a simulation is performed using the controller via sigmoid functions.

Figure 2.5 shows the σ switches from one sliding manifold to the other in order to

track the HFG sign. Furthermore, every time γ(t) changes sign, σ exits its sliding

motion and the error starts to grow, until σ slides again, which takes less than 20

milliseconds.
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Figure 2.5: Sliding variable σ(t) and output tracking error e(t) when the HFG
of (2.43) changes sign every 0.3 seconds.

2.3 Extension to Arbitrary Relative Degree

The results presented so far are restricted to SISO systems with unit relative degree

from input u to output y. In this section, the unit relative degree assumption is

slightly relaxed by considering systems with arbitrary relative degree from input to

output, but with fast dynamics. The fast dynamics are such that the corresponding

slow model has relative degree equal to one. Thus, consider system

ẋ(t) = f(x, z, µ) + g(x, z, µ)u(t) (2.44a)

µż(t) = fz(x, z, µ) (2.44b)

y(t) = h(z) (2.44c)

with small constant 0 < µ� 1 such that x(t) ∈ Rn varies slowly when compared to

z(t) ∈ Rm. In other words, we have |ẋ(t)| ≤ O(1) and |ż(t)| ≤ O(µ).

Assumption 7 (Arbitrary Relative Degree). The relative degree of (2.44) from its

input u to its output y is arbitrary, finite, and holds uniformly in x.

Assumption 8 (Slow Model). The model (2.44b) is in standard form (Khalil 2002,

page 424). Therefore, the algebraic equation 0 = fz(x, z, 0) has k ≥ 1 real roots. For

simplicity, we consider k = 1. The slow model is defined as

˙̄x(t) = f(x̄, ϕ(x̄), 0) + g(x̄, ϕ(x̄), 0)u (2.45a)

ȳ(t) = (h ◦ ϕ)(x̄) (2.45b)
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Assumption 8 can be interpreted as substituting the fast dynamics (2.44b)

in (2.44) by its quasi-steady-state form. For this reason, model (2.45) is often

called a quasi-steady-state model of (2.44). In contrast, while z approaches its

quasi-steady-state value, the movement is said to be contained in a boundary layer.

Since, implicitly, we assume the existence of an equilibrium z̄ = ϕ(x) of z, it

is only natural to pose some stability assumption on this equilibrium. For that,

consider the change of variables ez(t) = z(t) − ϕ(x) that denote the distance from

z(t) to its equilibrium and the fast time variable τ = t/µ. The dynamics ez in the

τ time-scale is

dez
dτ

= fz(x, ez + ϕ(x), µ)− µ∂ϕ
∂x
f(x, ez + ϕ(x), µ) (2.46)

which, by setting µ = 0 and allowing x to vary slowly (instead of freezing it at its

initial value), simplifies to (Khalil 2002, page 432-433)

dez
dτ

= fz(x, ez + ϕ(x), 0) (2.47)

Model (2.47) is called the boundary layer system.

Assumption 9 (Exponentially Stable Boundary Layer). The equilibrium ez = 0 of

the boundary layer system (2.47) is exponentially stable.

Assumption 10 (Exponentially Stable Slow Model). Let the slow model (2.45) be

controlled by (2.16), with reference output ym(t), such that |ẏm(t)| ≤ O(1). Then,

for every ym(t), there is xs(t, ym) that is a solution to (2.45a) and the equilibrium

x̄− xs = 0 is exponentially stable.

Assumptions 9 and 10 are important for the application of Tikhonov’s theorem,

which is used below to prove local asymptotic stability of the proposed tracking and

extremum-seeking controllers. Nonetheless, they are also reasonable assumptions if

one attempts to develop specific Lyapunov-based stability proofs for such controllers.

For this reason we highlight them separately from the following assumption, which

is specific for the application of Tikhonov’s theorem.

Assumption 11. System (2.44) satisfies the conditions to apply Tikhonov’s theorem

on the infinite time interval (Khalil 2002, Theorem 11.2). Hence,

x(t) = x̄(t) +O(µ), ∀t (2.48a)

z(t) = z̄(t) +O(µ), ∀t ≥ tb (2.48b)

for some tb > 0.

Tikhonov’s theorem guarantees that both x(t) and z(t), trajectories of the actual
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process, will remain close to x̄(t) and z̄(t), trajectories of the slow model. To ensure

that the output y(t) also remains close to its quasi-steady-state counterpart ȳ(t),

one final assumption is in order.

Assumption 12. Let Dy ⊆ R be compact and ym : R̄+ 7→ Dy. The output function

h(.) is locally Lipschitz continuous in Dy, with Lipschitz constant Lh > 0, such that

||y − ȳ|| = ||h(z)− h(z̄)|| ≤ Lh ||z − z̄|| ≤ LhO(µ). Thus,

y(t) = ȳ(t) +O(µ), ∀t ≥ tb (2.49)

holds for every y(t) ∈ Dy.

Note that the above assumptions allow for the direct applications of Tikhonov’s

theorem to prove that the proposed output tracking controller (Theorem 1) is ap-

plicable to system (2.44). This is summarized in the following theorem, which, for

the above reasons, is given without proof.

Theorem 2. Consider system (2.44) with slow model (2.45). Let the control

law (2.16) be designed such that Theorem 1 is satisfied for the slow model. Then,

the output error e(t) = y(t)− ym(t) origin is practical asymptotically stable (PAS),

with ultimate bound |e| ≤ O(ε) + O(µ). Therefore, the output tracks the reference,

but for a small residual error of order O(ε) +O(µ).

It is only possible to consider Theorem 2, obtained after the direct application

of Tikhonov’s theorem because our control formulation supports the use of both

continuous and smooth control actions. Otherwise, it would not be possible to

consider Tikhonov’s theorem, since it does not cover systems with a discontinuous

right-hand side.

2.3.1 Application to the Speed Control of Van der Pol Os-

cillators with Filtered Velocity

Having shown the validity of the proposed controller to systems with fast dynamics

and arbitrary relative degree, the Van der Pol oscillator example of section 2.2 is

revisited. Only this time, an output feedback implementation is pursued. For that,

every occurrence of ẏ(t) in the control law is replaced by z(t), where z(t) is a velocity

estimate obtained from the lead filter

µż(t) = −z(t) + ẏ(t) (2.50a)

µz(t) = µz(0)− y(0)−
∫ t

0

z(τ)dτ + y(t) (2.50b)

For simulation purposes, the filter time constant is set to µ = 0.005 and the same
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parameters used when resorting to state feedback are used, i.e. ε = 0.02, ε̄ = 0.05,

T = 1, λ = 5, δ = 2, and sampling period of 10 µs. The results are shown in fig. 2.6,

where the continuous controller via saturated gains is compared to the discontinuous

controller via sign functions. It is evident that the discontinuous implementation is

unable to maintain the desired performance, which severely deteriorates when the

lead filter is considered. The continuous controller via sigmoid function, on the other

hand, is able to track the output. Small oscillations can be seen in the transient

response due to the delay induced by the lead filter.
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Figure 2.6: Simulation results of the Van der Pol oscillator (2.39) controlled via
output feedback (µ = 0.005). To the left, controller with sigmoid functions (ε = 0.02
and ε̄ = 0.05). To the right, controller with sign functions.

If one wishes to increase the filter time constant, the control parameters ε and

ε̄ should also be increased. For instance, by selecting ε = 0.1 and ε̄ = 0.25, it is

possible to set µ = 0.02, which is 4 times higher than what was previously needed.

Note that all parameters were proportionally increased. Using this new selection of
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control parameters, the sigmoid controllers via state feedback and output feedback

with lead filter are compared, see fig. 2.7. By increasing the filter time constant,

the time-scale separation between the fast-dynamics (filter) and the slow-dynamics

(tracking controller) decreases, explaining the deterioration in control performance.

This deterioration is significantly more severe in the discontinuous implementation,

which is expected. Intuitively, when the right-hand side is discontinuous, the velocity

vector field changes abruptly, making it harder for the slow-model to match the

process dynamics. This gives an intuition into why Tikhonov’s theorem does not

apply to systems with a discontinuous right-hand side.
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Figure 2.7: Comparison results of the Van der Pol oscillator (2.39) controlled via
state and output feedback. To the left, controller via state feedback. To the right,
controller via output feedback (µ = 0.02). Both controllers make use of sigmoid
functions (ε = 0.1 and ε̄ = 0.25).
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Chapter 3

Single-Objective Real-Time

Optimization

In this chapter, the previous results on output-tracking via output-feedback are

applied to real-time optimization. The optimization technique developed here is

based on earlier results by Drakunov et al. (1995) and Oliveira et al. (2012), and

may be placed under the category of extremum-seeking control (ESC).

Optimization problems arise in most engineering applications. Given a set of

objective functions and system constraints, optimization is used to determine the

optimal process input and design parameters that are needed to meet these condi-

tions. Constraints are related to the system’s optimal performance, but they can

also drive the choice of an optimization algorithm. For instance, when modifications

must be made in real-time, and the objective functions are measured but unknown,

the problem becomes harder to solve since process information and computational

power are limited. In the optimal control literature, extremum-seeking control (ESC)

algorithms are a suitable choice when it comes to dealing with real-time optimization

of systems with unknown (or partially unknown) models.

When the objective function is known, or at least its model is known, but the

parameters are unknown, it is common to use other techniques from the optimal

control literature, such as model predictive control. Optimal control is an exciting

and vast branch of control theory, from which, unfortunately, we cover only the

small subset related to ESC. For an in-depth view of optimal control, the reader is

referred to (Liberzon 2011).

In the following section, we describe the optimization problem and how it relates

to the output-tracking of processes with unknown control direction. The objective

of this section is to help the reader understand this connection while also writing

the underlying assumptions needed to establish it.
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3.1 Problem Formulation

In this Thesis, we write single-objective optimization with one decision variable as

a standard optimal control problem1:

min
u

: ν = J(y) (3.1a)

s.t. : ẋ(t) = f(x) + g(x)u(t) (3.1b)

y(t) = h(x) (3.1c)

The function J : R 7→ R is called the objective function, and represents a perfor-

mance that must be optimized, e.g. the power output in power plants, the temper-

ature in heat exchangers, and a company’s profit. In (3.1), the objective is written

as a function the process output. Several variations of this problem include the

control effort u(t) in the objective function, in order to waste less control energy,

or an explicit dependence on time. On the other hand, we only take the control

effort into account in the process dynamics, which is seen as an equality constraint

to the optimization problem. It is usual to consider other equality and inequality

constraints, but they are not accounted for in this work.

To consider the above optimization problem solved, one must find the control

input u(t) that drives the process output such that the objective function J(y) is

minimized over time. The two usual approaches to this problem are (i) to solve it

offline and then apply the pre-computed control effort over a fixed period of time,

or (ii) to continuously update the control input. A widely adopted technique that

can tackle both of the approaches above simultaneously is model predictive control

(Camacho and Bordons Alba 2007). Extremum-seeking falls into the category of

continuously updating the control input.

If we take the objective function and differentiate it with respect to time,

ν̇(t) =
∂J(y)

∂y
[Lfh(x) + Lgh(x)u(t)] (3.2)

the connection to output-tracking of systems with unknown control direction be-

comes apparent. With respect to the process output y, the high-frequency gain is

Lgh(x). However, if we take the objective as the process output, the high-frequency

gain becomes

kp(x) =
∂J(y)

∂y
Lgh(x) (3.3)

1We write optimization as a minimization problem, but all results are readily applied to maxi-
mization problems.
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which is only a function of x, since the mapping from y to x is static. Thus, even

if the process HFG does not change signal, the HFG with respect to the objective

changes every time the output crosses the optimal value. For example, when dealing

with minimization, ∂J/∂y < 0 to the left of the minimum and ∂J/∂y > 0 to the

right.

Remark 2. For simplicity, in what follows we ignore the variable ν and use only

y = h(x) as the objective function. This simplification does not impose any loss

of generality, since we might consider ν = J ◦ h(x) = h′(x). We use the notation

y = h(x) to keep the results closer to the ones already established for output-tracking.

To adapt the previous output-tracking results from extremum-seeking, some

changes are in order since Assumption 2 is no longer valid. Also, to derive global

results on ESC, some assumptions on the output function are needed. Otherwise,

convergence to local optima can still be established, as demonstrated at the very

end of section 3.2. These assumptions are provided below.

Assumption 13 (Unique Extremum). The output function h(.) in (2.1b) is con-

tinuous and differentiable almost everywhere in its domain and have a unique strict

global minimizer x∗, with minimum y∗ = h(x∗).

Assumption 14 (Known Gradient Bound). For any chosen ∆ > 0, there exists

∆̄(∆) > 0 and known constants L(∆) and kp(L) such that

L ≤
∣∣∣∣
∣∣∣∣
∂h(x)

∂x

∣∣∣∣
∣∣∣∣ and 0 < kp(L) ≤ |kp(x)| = |Lgh(x)|

∀x 6∈ D∆ =
{
x ∈ Rn : ||x− x∗|| ≤ ∆̄ , |y(x)− y∗| ≤ ∆

} (3.4)

holds uniformly on t. This means that a lower bound L for the derivative can be

established for any ∆-neighborhood of the optimum y∗ and that the system remains

controllable outside this vicinity.

Note that Assumption 14 replaces Assumption 2 close to the optimizer and is

equivalent to the latter when the states are outside of the ∆-neighborhood, i.e.

∀x 6∈ D∆.

3.2 Continuous Sliding-Mode Extremum-

Seeking-Controller for Input-Affine Processes

To implement the extremum-seeking solution, the control law developed in sec-

tion 2.2 is used to track a monotonic function. Since the solution presented here

is for minimization problems, the output reference ym : R+ 7→ R is monotonically
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decreasing, converges to a constant value, i.e. ∃ limt→∞ ym(t), and chosen such that

there exists t∗ ≥ 0 for which t ≥ t∗ =⇒ ym(t) ≤ y∗. This last requirement en-

sures that the model reaches the optimum, and it is reasonable since bounds for the

optimal value are usually known in practice.

Remark 3. To adapt this control law for maximization problems, one need only

change ym(.) from a monotonically decreasing to a monotonically increasing func-

tion, such that for t ≥ t∗ =⇒ ym(t) ≥ y∗.

Below, we enunciate and prove the theorem that states the results of the sliding-

mode controller for real-time optimization. Considering our general formulation

with a sigmoid function and the function fe(e) in the σ-dynamics, our previous

choice of Lyapunov function (2.22) based on the absolute value makes the proof of

the next theorem easier.

Theorem 3. Consider system (2.1) with output error (2.7) based on a differentiable

and monotonically decreasing output model ym(t), and control law (2.8), (2.16),

fe(e) = λ sigmoid ε̄(e) (3.5)

with λ > 0 and ε̄ > 0. Then, the extremum-seeking error

e∗(t) = y(t)− y∗ (3.6)

is uniformly globally practical asymptotically stable, with ultimate bound |e∗| ≤ ∆ +(
1 + λ/δ

)
T ≤ ∆ +O(T ).

Proof. To prove that oscillations above the minimum y∗ are bounded by |y − y∗| ≤
∆ +O(T ), it is necessary and sufficient to show that after regaining controllability,

i.e. x 6∈ D∆ ⇐⇒ |y − y∗| > ∆, at a time t0, the sliding variable σ will enter real

sliding-mode at t1, such that |y(t0)− y(t1)| ≤ O(T ). Thereafter, the error decreases

until |y − y∗| ≤ ∆ and the system loses controllability once again. Hence, y(t1)

is the maximum value the output is allowed to reach before decreasing, and it is

already a worst case estimate.

This proof is made in two steps. First, it is shown that the amount of time

needed for σ to enter real sliding-mode is t1 − t0 ≤ O(T ). Second, this implies that

the output distances itself from the ∆-neighborhood by |y(t1)− y(t0)| ≤ O(T ).

At time t0, when the system leaves D∆, controllability is regained and, assuming

that σ is not in real sliding-mode, the Lyapunov function (2.22) derivative satis-

fies (2.31). Therefore,

V (t1)− V (t0) =

∫ t1

t0

V̇ (τ)dτ ≤ −δ(t1 − t0)
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t1 − t0 ≤ [V (t0)− V (t1)] /δ

from the proof of Theorem 1, we know that V (t0)− V (t1) ≤ T , therefore

t1 − t0 ≤ T/δ ≤ O(T ) (3.7)

Recall the sliding variable σ definition (2.8). From this equation and the time

difference inequality (3.7),

σ(t1)− σ(t0) = e(t1)− e(t0) +

∫ t1

t0

fe(e)dτ

|e(t1)− e(t0)| ≤ |σ(t1)− σ(t0)|+
∫ t1

t0

|fe(e)| dτ

|e(t1)− e(t0)| ≤ |σ(t1)− σ(t0)|+ λ

∫ t1

t0

dτ

|e(t1)− e(t0)| ≤ (1 + λ/δ)T ≤ O(T ) (3.8)

where |σ(t1)− σ(t0)| ≤ T was used. From the output error definition (2.7),

|y(t1)− y(t0)| ≤ |e(t1)− e(t0)|+ |ym(t1)− ym(t0)| (3.9a)

Since ym(t) maps to a complete set (the real line) and converges to a constant value,

it forms a Cauchy sequence, implying |ym(t1)− ym(t0)| → 0 as t → ∞. Thus,

ultimately,

|y(t1)− y(t0)| ≤ |e(t1)− e(t0)| ≤ (1 + λ/δ)T ≤ O(T ) (3.10)

Since y(t1)− y∗ = y(t1)− y(t0) + y(t0)− y∗ = y(t1)− y(t0) + ∆, it follows that

|y(t1)− y∗| ≤ (1 + λ/δ)T + ∆ ≤ O(T ) + ∆ (3.11)

which concludes the proof.

Remark 4. If for some time t2 ∈ (t0, t1) the system state happens to enter D∆ such

that |y − y∗| ≤ ∆, the distance |y(t2)− y(t0)| ≤ |y(t1)− y(t0)|, since it is assumed

that the output distances itself from y(t0) during the interval [t0, t1]. Therefore, the

bound |y − y∗| ≤ ∆ +O(T ) remains valid.

If there are multiple isolated optima, convergence to one of these local optima

can still be established. For that, the bound L computed for the ∆-vicinity in

Assumption 14 must hold in a neighborhood

D∆ =
{
x ∈ Rn : ||x− x∗|| ≤ ∆̄ , |y − y∗| ≤ ∆ + (1 + λ/δ)T

}
(3.12)
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This guarantees that the output will remain bounded to the ∆-vicinity of one of the

optima and will not exit this vicinity.

3.3 Stabilization of Systems with Unknown Out-

put Sign

Constraints on a mobile robot sensor configuration or sensor malfunction are some

of the reasons for uncertain output measurements. For instance, imagine a mobile

robot carrying a single range-finder and placed at a known position, but unknown

orientation, from some wall. The control objective is to make the robot face the

wall. This scenario is depicted in fig. 3.1. Note that, if the distance from the wall

is given lw > 0, and the sensor measures a distance ls > 0, the vehicle measured

orientation with respect to the wall, denoted θs, is

θs = arccos(lw/ls) = |θ| (3.13)

where θ is the actual orientation.

ls ls = lw ls

Figure 3.1: Illustration of a mobile robot carrying a laser range-finder and measuring
its distance from a wall.

This example motivates the development of a control law for cases where only the

output absolute value is available for measurement. Thus, consider the dynamics

ẋ(t) = f(x) + g(x)u(t) (3.14a)

y(t) = h(x) (3.14b)

ys(t) = |y(t)| (3.14c)

with state vector x : R̄+ 7→ Rn, unmeasured output y : R̄+ 7→ R and measurement

ys(t) : R̄+ 7→ R+. Let Lgh(x) be bounded away from zero such that Assumption 2

holds, and define the high-frequency gain with respect to the measured output

kp(x) = sign(y)Lgh(x) (3.15)
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The control objective is to asymptotically stabilize y(t) at y = 0 using only the

measurable signal ys(t). On a side note, we could also consider Lgh(x) changing

sign over time, but then the problem would fall back to the same case as the one

considered in section 3.2.

Since ys = 0 if and only if y = 0, and the absolute value function is continuous, it

follows that asymptotic stabilization of ys = 0 implies asymptotic stabilization of y =

0. Hence, a straightforward approach is to treat the control problem as an extremum-

seeking problem. The major differences from this formulation to other extremum-

seeking schemes mentioned in this work are that (i) the minimum output value is

known (y∗ = 0) a priori and (ii) the HFG kp(x) is discontinuous at y = 0, where it

changes sign. These imply the following lemma, which replaces Assumption 14.

Lemma 1. There exists a known constant L such that

L ≤
∣∣∣∣
∂h(x)

∂x

∣∣∣∣ , ∀x ∈ D∆ ={x ∈ Rn : |y| > 0} (3.16)

holds uniformly on t. Therefore, ∆ in Assumption 14 can be set to zero.

With the above lemma and the already mentioned assumptions, the following

theorem can be established.

Theorem 4. Consider system (3.14) with output error e(t) = ys(t) and control

law (2.8), (2.16),

fe(e) = λ sigmoidε(e) (3.17)

with λ > 0. Then, the output origin y = 0 is UGPAS, with ultimate bound |e| ≤(
1 + λ/δ

)
T ≤ O(T ).

Proof. The proof is straightforward by considering the proof of Theorem 3 and

letting y(t0) = y∗, where t0 is the time at which controllability is lost.

Remark 5. Since controllability is only lost at y(t0) = y∗ and immediately regained

afterwards, different from the ESC results presented in chapter 3, the error ultimate

bound does not include a parcel ∆. This is the same bound experienced by a tracking

controller if one lets the HGF to change its sign, without crossing kp(x) = 0, as

illustrated in the Van der Pol oscillator example of section 2.2.3.

3.3.1 Application to Mobile Robots

The results presented in this section are quite general and apply to a wide class of

input-affine nonlinear plants with (almost) arbitrary output functions. A subclass
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of such plants that also plays an important role in control theory is given below

ẋ(t) = b(x) [u(t) + d(t)] (3.18a)

y(t) = |x| (3.18b)

with state x : R̄+ 7→ R, output y : R̄+ 7→ R and control input u : R̄+ 7→ R. An

example system that follows (3.18) is the orientation dynamics of differential drive

mobile robots, as depicted in fig. 3.1.

For simplicity, we assume that d(t) is not estimated and that the following bounds

are known

b(y) ≤ |b(x)| (3.19a)

d(t) ≤ d̄(t) (3.19b)

Using these bounds, the modulation function ρ(t) is defined as

ρ(t, y) =
κ

b(y)
(λ+ δ) + d̄(t) (3.20)

For simulation purposes, let b(x) = 1 deg/s for x ∈ [0, π/2]∪ [π, 3π/2], b(x) = 0.4

deg/s for x ∈ (π/2, π) ∪ (3π/2, 2π), d(t) = 0 for t ∈ [0, 2] ∪ [4,∞) and d(t) = 10

for t ∈ (2, 4). The change in b(x) represent a loss of traction due to slippage on the

mobile robot wheels as illustrated in fig. 3.2.

b(x) = 1

b(x) = 1

b(x) = 0.4

b(x) = 0.4

Figure 3.2: Representation of different slip coefficient impacting controllability.

As a worst case scenario, we take b = 0.3 deg/s and d̄(t) = 15. To recover

from a 10 deg error in 1 second, let λ = 10 deg/s and in order to achieve practical

stability with at most 2 deg error, let δ = 5 deg/s and T = 2/3 deg. The controller

is implemented via saturated gain sigmoid functions, with ε = 0.5 deg, ε̄ = 1 deg

and ρ(t, y) = 65. Finally, to meet the 2 deg error specification, (1 + λ/δ)T ≤ 2,

which, for λ = 10 and δ = 5, implies T = 2/3 deg.

The simulation output is shown in fig. 3.3, where the controller is implemented
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in discrete-time with sampling period of 10 ms and the first-order motor dynamics

H(s) =
1

0.015s+ 1
(3.21)

is considered. The sampling period is selected to be 10 ms to bring the simulation

closer to typical processing constraints of controllers used in mobile robotics. The

results are compared with a traditional sigmoid ε(.) = sign(.) controller to show that

the continuous approximation via saturated gain improves performance and reduces

chattering.
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Figure 3.3: Simulation results for the mobile robot example (3.18) with motor dy-
namics (3.21).
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3.4 Extension to Arbitrary Relative Degree

To conclude this chapter, we provide one final result that shows that the proposed

extremum-seeking control law, the same as the output-tracking control law for sys-

tems with unknown control direction, can be used for systems with arbitrary relative

degree. This is a short section, since it is a direct consequence of the results already

discussed in section 2.3. Since the results also follow from the direct application

of Tikhonov’s theorem under the same assumptions as in section 2.3, we give the

following theorem without proof.

Theorem 5. Consider system (2.44) with slow model (2.45). Let the control

law (2.16) be designed such that Theorem 3 is satisfied for the slow model, for some

objective function satisfying Assumptions 13 and 14. Then, the extremum-seeking

error e∗(t) = y(t)− y∗ origin is PAS, with ultimate bound |e∗| ≤ ∆ +
(
1 + λ/δ

)
T +

O(µ) ≤ ∆ +O(T ) +O(µ).

An example that illustrates this extension to an arbitrary relative degree is the

previous one for mobile robots, with results shown in fig. 2.6. In this example, the

relative degree is equal to two, and given that the motor dynamics is faster than

the ESC dynamics, stabilization (minimization of the output absolute value) is still

possible given an appropriate choice of control parameters.

Finally, our approach to arbitrary relative degree follows the usual generaliza-

tions made in the model-based and perturbation-based extremum-seeking literature.

Nonetheless, one important advantage of our results, which are based on sliding-

mode control, is that they are do not rely on any time-scale separation when the

process has unit relative degree.
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Chapter 4

Multi-Objective Real-Time

Optimization with Multiple

Decision Variables

In chapter 3, we have discussed optimization in the sense of single-objective problems

with only one decision variable. Even though the results are significant, single-

objective problems and, especially, problems with only one decision variable are

not that common. In practice, more than one objective needs to be satisfied, as

best as possible, and there are multiple decision variables capable of changing these

objectives. While the notion of best is intuitive in single-objective problems, this is

not necessarily the case in multiple-objective optimization. When there are multiple

objectives, there might be several equally good solutions, and selecting among them

is usually a matter of establishing some preference measurement.

In the next section, we formulate the multi-objective optimization problems con-

sidering two distinct concepts of optimal solutions that are commonly used in multi-

objective optimization — Pareto efficiency and Nash equilibrium.

4.1 Problem Formulation

Similarly to the problem formulation for single-objective optimization problems with

only one decision variable, we write the multi-objective optimization problem with

multiple decision variables, or MIMO optimization for short, as1

min
u

: ν = J(y) =
[
J1(y) . . . JnJ (y)

]T
(4.1a)

s.t. : ẋ(t) = f(x) + g(x)u(t) (4.1b)

y(t) = h(x) (4.1c)

1We define what we mean by minimum of a vector in the next section.
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This time, however, we have nJ ≥ 1 objectives functions , with J : Rny 7→ RnJ ,

ny ≥ 1 outputs, with h : Rn 7→ Rny , and n ≥ 1 states, with f : Rn 7→ Rn,

and nu ≥ 1 inputs (decision variables), with g : Rn 7→ Rnu . The optimization

problem described by (4.1), just as it was in the SISO case, does not cover equality

or inequality constraints other than the process dynamics. Regarding the process

constraints, for a part of this chapter, we will consider static systems, such that the

optimization problem is rewritten as

min
x

: ν = J(y) =
[
J1(y) . . . JnJ (y)

]T
(4.2a)

s.t. : y(t) = h(x) (4.2b)

4.1.1 Optimum Characterization

We consider two interpretations of optimum of multi-objective problems in this

Thesis — Pareto efficiency and Nash equilibrium. In this chapter, the algorithms

described in sections 4.2 and 4.3 produce solutions in Nash equilibrium, while the last

algorithm, described in chapter 5, is capable of reaching Pareto efficient solutions.

Nash Equilibrium

Nash equilibrium, as defined and proved by Nash (1950), applies to n-person games.

First, we quote the definition of an n-person game from Nash (1951): “For us an n-

person game will be a set of n players, or positions, each with an associated finite set

of pure strategies; and corresponding to each player, i, a payoff function, pi, which

maps the set of all n-tuples of pure strategies into the real numbers. When we use

the term n-tuple we shall always mean a set of n items, with each item associated

with a different player.”.

A pure strategy is deterministic and defines how a person plays a game. To estab-

lish a parallel between our approach to multi-objective optimization and n-person

games, consider again the optimization problem described by (4.1). Interpreting

equation (4.1) as an n-person game, the payoffs are the objective functions Ji(.) and

the pure strategies are the control algorithms, which modify the game through the

control actions ui(.), components of the control vector u(.). The process dynamics

is a constraint to the optimization problem. Since in n-player games there are as

many payoffs as players and strategies, it also follows that nJ = ny = nu, i.e. there

are as many objective functions as process outputs and process inputs.

In an n-person game, it is said that an n-tuple of pure strategies counters another

tuple when it yields the highest possible payoff against the n − 1 strategies of the

other players (which remain unchanged).
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Definition 4 (Nash Equilibrium (Nash 1950)). In an n-person game, an n-tuple of

pure strategies is a Nash equilibrium points if it counters itself. In other words, an

n-tuple is a Nash equilibrium when no player can benefit from unilaterally changing

its strategy.

Definition 5. Let J ∈ C1. In terms of the derivatives of the objective functions

Ji(.) and of the way we established the parallel between n-person games and multi-

objective optimization, a solution y∗ is a Nash equilibrium point if and only if

∂Ji(y)

∂yi

∣∣∣∣
y=y∗

= 0, ∀i ∈ [1, ny]

Pareto Efficiency

Compared to Nash equilibrium, reached when no improvement can be achieved

by unilaterally changing one’s strategy, Pareto efficiency is a state of allocation of

resources where there can be no improvement in one objective function without

deteriorating the performance of another. We introduce the concept using the term

”allocation of resources” because, initially, Pareto efficiency was developed as a tool

to study economic efficiency, and it is now widely used throughout microeconomics,

welfare economics, and multi-objective optimization.

Pareto improvements allow for multiple strategies to change at once such that at

least one improves, and none deteriorates. In terms of multi-objective optimization

and, specifically, problem (4.1), finding a Pareto efficient solution involves execut-

ing Pareto improvements through the decision variables yi until no further Pareto

improvement is possible.

Definition 6 (Pareto Efficiency). A solution is said to be Pareto efficient if it is

not strictly dominated by any other solution. A solution y′ is strictly dominated by

some other solution y′′ if y′′j ≤ y′j (y′′j ≥ y′j), for every j, and y′′k < y′k (y′′k > y′k), for

at least one k.

Definition 7 (Pareto Front). The Pareto front is the set of all Pareto efficient

solutions. This set is denoted by P (J).

Once again, in terms of the derivatives of the objective functions Ji, we define

below the conditions for a solution to belong to the Pareto front P (J).

Definition 8. Let J ∈ C1. For a problem with an identical number nJ = ny of ob-

jective functions Ji and decision variables yj, a necessary condition for y∗ = h(x∗) ∈
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Rny to be Pareto optimal, thus belong to the Pareto front P (J), is that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂J1

∂y1

∂J1

∂y2

. . .
∂J1

∂yn
∂J2

∂y1

∂J2

∂y2

. . .
∂J2

∂yn
...

...
. . .

...
∂Jn
∂y1

∂Jn
∂y2

. . .
∂Jn
∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=x∗

= 0 (4.3)

In other words, the Jacobian matrix must be rank deficient. Additionally, if the h(x)

is strictly convex, then the above condition becomes both necessary and sufficient.

4.2 SM-ESC for Nash Equilibrium Seeking in

Static Noncooperative Infinite Games

In this section, we describe our results (Peixoto et al. 2020) on real-time multi-

objective optimization via sliding-mode extremum-seeking. These results apply to

static plants, with optimization problems described by (4.2). In the optimization

literature, such problems are called static noncooperative infinite games (Basar and

Olsder 1999).

To solve the optimization problem, we follow the same methodology used in

chapter 3. Let nJ = ny = n, and write

ν(h(x)) = J(h(x)) =
[
J1 ◦ h1(x) . . . Jn ◦ hn(x)

]T
(4.4)

Combining the objective function with the output map to make the notation less

cumbersome, we use only

y(x) = h(x) =
[
h1(x) . . . hn(x)

]T
(4.5)

to denote the objective function image ν(h(x)). By differentiating (4.5) and setting

ẋ = u, one obtains

ẋ(t) = u(t) (4.6a)

ẏ(t) =
∂h

∂x
(x)u(t) (4.6b)

where u(t) ∈ Rn is a control signal yet to be specified. To ensure that output-

feedback controllers can be used and no signal escapes in finite time, we make the

following assumption.
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Assumption 15 (Unboundedness Observability (Angeli and Sontag 1999)). The

closed-loop system (4.6) possesses an unboundedness observability property, such

that if any internal signal escapes in some finite time, then all other signals escape

at the same time.

In order to accurately define the minimum-seeking problem considered here,

we make the following assumptions, which are quite common in multi-objective

optimization problems.

Assumption 16 (Unique Optimizer). Let θj ∈ Rn−1 denote all elements of x ∈ Rn,

but for the j-th entry, and let h ∈ C2. Then, each function hj(·) is unimodal w.r.t.

xj, thus, for every fixed θj ∈ Rn−1 there exists a unique minimizer x∗j(θj) such that

∂hj
∂xj

∣∣∣∣
xj=x∗j

= 0 and
∂2hj
∂x2

j

∣∣∣∣
xj=x∗j

> 0 (4.7)

where x∗j : Rn−1 7→ R is a continuous function of the n− 1 variables θj.

The objective of the controller we propose in this section is to achieve a Nash

equilibrium. Since the controller behaves as an extremum-seeking controller, the

expected result is to converge to a Nash equilibrium, and remain arbitrarily close to

it. Mathematically, we describe this behavior in the following definition.

Definition 9 (∆-Neighborhood). The ∆-neighborhood of the minimizer x∗j(θj) is

the region of diameter ∆ along x∗j(θj), i.e., the set

D∆j
=

{
x ∈ Rn : |xj − x∗j(θj)| ≤

∆

2

}
(4.8)

where ∆>0 is a constant.

Assumption 17 (Bounded Jacobian). Outside the ∆-neighborhood, the main diag-

onal of the HFG matrix are bounded away from zero,

0 <

∣∣∣∣
∂hj
∂xj

∣∣∣∣ , ∀x /∈ D∆j
(4.9)

with j ∈ {1, . . . , n}.
Note that, for simplicity, only one parameter ∆ is considered for all regions

D∆j
. The minimum-seeking problem considered in this section can now be stated

as follows:
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(I) Extremum Points: Let Θ∗j denote the nonempty set of minimizers

Θ∗j =

{
x∗ ∈ Rn :

∂hj(x
∗)

∂xj
= 0 ,

∂2hj(x
∗)

∂x2
j

< 0

}
⊆ D∆j

(4.10)

which is the same as the set D∆j
with ∆ = 0. We say that y∗j = hj(x

∗) is an

extremum (minimum) of the smooth mapping hj(·) when x∗ ∈ Θ∗j . Moreover,

we say that x∗ is a minimizing point of h(·) when x∗ is sufficiently close to

Θ∗ =
n⋂

j=1

Θ∗j (4.11)

where sufficiently close means that x∗ ∈ D∆j
. Set Θ∗ contains all Nash equi-

librium points for the optimization problem (4.2).

(II) Parametric Uncertainties: We assume that Θ∗, x∗, h(·) and its gradient are

unknown to the control designer.

Remark 6 (Equilibrium Points). When x → x∗ ∈ Θ∗ one has that ∂hj/∂xj → 0,

for every j. Thus, the set Θ∗ contains all Nash equilibrium points. Note, however,

that when the mapping h(·) is weakly coupled, x∗ is also close to Pareto efficient,

since solutions belonging the Pareto optimum set satisfy

∣∣∣∣
∂h

∂x

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∂h1

∂x1

. . .
∂h1

∂xn
...

. . .
...

∂hn
∂x1

. . .
∂hn
∂xn

∣∣∣∣∣∣∣∣∣∣

= 0 (4.12)

which for weakly coupled systems, with (4.12) in dominant triangular or dominant

diagonal form, implies ∂hj/∂xj close to zero. If (4.12) is triangular or diagonal,

then both sets (Pareto efficient and Nash equilibrium points) coincide.

4.2.1 The Class of the Input-Output Mapping

The first derivative of the output y with respect to time can be written as in (4.6),

where the high-frequency gain matrix is written as

∂h

∂x
(x) =




∂h1

∂x1

∂h1

∂x2

. . .
∂h1

∂xn
∂h2

∂x1

∂h2

∂x2

. . .
∂h2

∂xn
...

...
. . .

...
∂hn
∂x1

∂hn
∂x2

. . .
∂hn
∂xn




= kp(x) + k̃p(x) (4.13a)
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kp(x) =




∂h1

∂x1

0 . . . 0

0
∂h2

∂x2

. . . 0

...
...

. . .
...

0 0 . . .
∂hn
∂xn




, k̃p(x) =




0
∂h1

∂x2

. . .
∂h1

∂xn
∂h2

∂x1

0 . . .
∂h2

∂xn
...

...
. . .

...
∂hn
∂x1

∂hn
∂x2

. . . 0




(4.13b)

where kp(x) holds the diagonal and k̃p(x) the off-diagonal entries (coupling elements)

of ∂h(x)/∂x. Note that the main diagonal of k̃p(x) is zero. Thus, the j-th line of

k̃p(x) corresponds to the coupling of channels ui (i 6= j) in the channel uj.

Recall that, from Assumption 17, the inverse matrix k−1
p (x) is well defined outside

the ∆-neighborhood. Therefore, one can rewrite (4.6b) as

ẏ(t) = kp(x)
[
u(t) + k−1

p (x)k̃p(x)u(t)
]
, ∀xj /∈ D∆j

(4.14)

Note that the matrix k−1
p k̃p also has a zero main diagonal.

As a generalization with respect to (Peixoto and Oliveira 2012), we can cover

input-output mappings h(·) such that k−1
p k̃p is triangular, so that no hard restriction

is assumed for the class of triangular input-output mapping h(·). Moreover, for the

non-triangular case, we consider the so-called “triangular dominant case”, which

represents a remarkably relaxed assumption in contrast to (Peixoto and Oliveira

2012), where diagonal dominance was assumed. This is the approach we followed in

(Peixoto et al. 2020).

First, we consider the change of variables u = S(x)v with S(x) a pre-multiplier

state-dependent diagonal matrix with continuous positive functions sj : Rn 7→ R+

to be defined later on. Thus, one can rewrite (4.14) as

ẏ(t) = kp(x)S(x)
[
v(t) + S−1(x)k−1

p (x)k̃p(x)S(x)v(t)
]
∀x /∈ D∆j

(4.15)

To avoid the loss of controllability near the Nash equilibrium, as in Assump-

tion 17, the following assumption is taken as granted, where kpj = ∂hj/∂xj.

Assumption 18. Outside the ∆-neighborhood, there exists a known constant

Lj(∆)>0 such that

Lj ≤ |kpj(x)sj(x)| , ∀x /∈ D∆j
(4.16)

with j = 1, . . . , n, where ∆ can be made arbitrary small by allowing a smaller Lj(∆).

Assumption 18 guarantees a lower-bound for the diagonal elements of the HFG

matrix (kp + k̃p)S in the v-coordinate system. Now, we consider the following as-
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sumption regarding the class of input-output mappings h(·) for non-triangular cases:

Assumption 19 (Bounded Matched Disturbances Pre-Multiplier). There exists a

known state-dependent diagonal matrix S(x) ∈ Rn×n, such that

∣∣∣S−1(x)k−1
p (x)k̃p(x)S(x)

∣∣∣ ≤ P , ∀x /∈ D∆j
(4.17)

where P is a known constant matrix with non-negative elements. The inequality

is understood element-by-element and all entries of the main diagonal of S(x) are

continuous positive functions sj : Rn 7→ R+.

Note that, since S−1k−1
p k̃pS has zero main diagonal, then P also has a zero

main diagonal. Assumption 19 allows that, but for scaling factors si(x), every off-

diagonal entry of the Jacobian matrix is dominated by the corresponding diagonal

entry kpj =
∂hj
∂xj

, so that one can write:

∣∣∣∣
∂hj
∂xi

∣∣∣∣ ≤ pij |kpj(x)| sj(x)

si(x)
, ∀i , ∀x /∈ D∆j

(4.18)

where pij denotes the ij-th components of matrix P in Assumption 19. Assump-

tion 19 is a little restrictive, but it still allows to encompass a large class of functions

h(·), for instance any polynomial function, functions that admit a local polynomial

approximation, and functions with a triangular Jacobian matrix.

Remark 7. If each component of the objective function is polynomial (at least lo-

cally) of order rj, and ∂h/∂x is upper-triangular, a choice of sj(x), other than the

trivial choice sj(x) = 1, that satisfies (4.18) is

sj(x) = sj+1(x) max

(
aj

|xj − xdj|rj−1 + bj
, 1

)
(4.19a)

sn(x) = 1 (4.19b)

where xd =
[
xd1 . . . xdn

]T
is some rough estimate of the optimizer x∗, e.g. the

initial guess x(0), and aj, bj > 0. If ∂h/∂x is lower-triangular, then

sj(x) = sj−1(x) max

(
aj

|xj − xdj|rj−1 + bj
, 1

)
(4.20a)

s0(x) = 1 (4.20b)

Finally, we introduce one other condition which characterizes the coupling be-

tween input and output channels of the process, relaxing the previous diagonal

72



1

s
× sgn

[
sin
(
πE−1σ

)]
σ = e+ Λ

∫ t
0 sgn(e)dτ +/-

y = h(x)

ρ = S(x) %

x

x u σ e

y

ρ

y

ym

process

extremum-seeking controller

Figure 4.1: Illustrative block diagram of the proposed multi-variable sliding-mode
based extremum-seeking controller.

dominance property assumed in (Peixoto and Oliveira 2012).

Assumption 20 (Upper-Boundedness of (4.17)). In Assumption 19, the constant

matrix P is “triangular dominant”, such that ∀i, j with i < j (or ∀i, j with i > j),

the entries pij ∈ R+ satisfy

pij < 1 (4.21)

with sufficiently small values.

In (Frihauf et al. 2011; Peixoto and Oliveira 2012), it was considered that all

entries pij ∀i 6= j were sufficiently small. This is the mentioned “Jacobian diagonal

dominance” condition. Here, in contrast, we consider only this constraint ∀i < j

(i > j), named “triangular dominance condition”, which requires only pij to be

sufficiently small for i < j (i > j). Each element below (above) the main diag-

onal of the Jacobian matrix must be sufficiently small while no hard restriction

is imposed on each element above (below) the main diagonal.

In what follows, for simplicity and without loss of generality, the triangular

dominant case is considered only when the elements below (i < j) the Jacobian

main diagonal are smaller than one.

4.2.2 Extremum-Seeking Controller

In this section, we describe our sliding-mode extremum-seeking-controller for static

nonlinear plants (Peixoto et al. 2020), which we later illustrate by considering the

signal power control of Raman optical amplifiers modeled as a static I/O mapping,

as well as numerical simulation examples.

The developed output-feedback based ESC law with periodic switching function

is written as

u(t) = ρ(t) sign
(
sin
[
πT −1σ(t)

])
(4.22a)
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ρ(t) = S(x)%(t) (4.22b)

with ρ(t) = diag
(
ρ1(t) , . . . , ρn(t)

)
being the modulation function (continuous

in t) to be defined later on by designing %(t),

S(x) = diag
(
s1(x) , . . . , sn(x)

)
(4.23)

with si(x) satisfying Assumptions 18 and 19,

σ(t) = e(t) + Λ

∫ t

0

sign[e(τ)]dτ (4.24)

and Λ, T > 0 being appropriate constant matrices in the form Λ =

diag
(
λ1, . . . , λn

)
and T = diag

(
T1 , . . . , Tn

)
.

The error signal e is given by

e(t) = y(t)− ym(t) (4.25)

where ym : R̄+ 7→ Rn is a simple ramp time function. The structure of the proposed

multi-variable sliding-mode based ESC algorithm is shown in fig. 4.1.

For analysis purposes, such a vector function is produced by the reference model

ẏm = −Km , ym(0) = ym0 (4.26)

with Km ∈ Rn > 0, ym0 ∈ Rn a design constant vector, and the elements Kmj

(j = 1, . . . , n) of Km =
[
Km1 . . . Kmn

]T
positive constants (decreasing ramps).

The modulation function ρ is designed to make y(t) track ym(t) as long as possible.

In this sense, y is brought to the neighborhood of the extremum y∗ = h(x∗). One

can saturate the model output at a rough known norm bound of y∗ in order to

avoid an unbounded reference signal ym(t) in the controller, without affecting the

overall control performance. The decreasing reference signal dictates the speed of

convergence and brings a smooth transition to the extremum.

Basically, we need to construct ρ such that a sliding-mode σ̇j = 0 (j = 1, . . . , n)

appears in finite time on one of the manifolds σj = kTj, for some integer k. From

(4.24),

σ̇ = ė+ Λ sign(e) = 0 (4.27)

where sign(e) =
[

sign(e1) . . . sign(en)
]T

. It is possible to conclude that if e

tends to zero, then y = h(x) tracks ym. In other words, each yj is driven to the

neighborhood of a minimum y∗j , which is a function of xi (∀i 6= j), remaining close
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to it as long as yj is kept away from a small neighborhood of y∗j , since ∂hj/∂xj is

away from zero, according to Assumptions 16 and 17.

On the other hand, once yj enters the neighborhood of y∗j , the term ∂hj/∂xj

becomes too small and the controllability for the j-th channel is lost. Consequently,

tracking would stop. However, the neighborhood of the optimum would have been

achieved. Thus, the control strategy would guarantee at least that yj would remain

close to y∗j thereafter.

The control law given in (4.22)–(4.26) can be summarized in table 4.1. The

meaning of each parameter is the same as explained in section 2.2.1. The more

intricate design part is that of the modulation function ρ(t), which needed to assure

the closed-loop stability properties, as it will be shown in sections 4.2.3 and 4.2.4.

However, from a practical point of view, the design can be simplified, according to

the remark below.

Table 4.1: Control variables and parameters of the sliding-mode extremum-seeking
controller for static nonlinear plants, that is capable of finding a Nash equilibrium.

u(t)=ρ(t) sign (sin [πT −1σ(t)]) ρ(t)=S(x)%(t), ẋ(t) = u(t)

σ(t)=e(t)+Λ
∫ t

0
sign[e(τ)]dτ e(t)=y(t)−ym(t), x(0) = x0

Λ=diag (λ1, . . . , λn) T =diag (T1, . . . , Tn)

Km = [Km1, . . . , Kmn]T ẏm(t)=Km, ym(0) = ym0

Remark 8 (Practical Implementation Aspects). It must be highlighted that the de-

sign of the pre-compensation matrix S(x) and the modulation function % is intricate

but is needed mainly to obtain the stability result of the thesis. On the other hand,

the algorithm implementation can be straightforward. In practice, for weakly cou-

pled systems, there is usually no need to compute or estimate matrix S(x), and a

constant modulation gain (instead of a modulation function) can be used. By doing

so, only two integrators and trivial mathematical operations are needed to compute

the control law, see (4.22) to (4.26) or table 4.1. In such a case, the only drawback

of not computing the full modulation function (where the main complexity of the

algorithm is incorporated) is that local stability results are achieved, but these are

often sufficient in practical applications.
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4.2.3 Modulation Function Design

Matched Input Disturbance

From equations (4.25), (4.26), (4.27) and the y-dynamics in (4.6), one can obtain

the σ-dynamics as

σ̇(t) = kp(x)[u(t) + dσ(x, e, ẏm)] (4.28)

where the relationship ∂h(x)/∂x = kp(x) + k̃p(x) is used, with kp in (4.13), and the

matched input disturbance is defined by

kp(x) dσ(x, u, e, ẏm) =
[
k̃p(x)u(t)− ẏm + Λ sign(e)

]
(4.29)

Furthermore, by expanding the components of (4.28), one obtains n equalities

σ̇j(t) = kpj(x) [uj(t) + dσj(x, ūj, ej, ẏmj)] (4.30)

where ūj denotes all components of u, but for the j-th component. Expanding the

matched disturbance component-wise,

kpjdσj =
∑

i 6=j

(
∂hj
∂xi

)
ui − ẏmj + λj sign(ej) , ∀x (4.31)

where the dependency of each function on its variables is omitted for simplicity. It

must be highlighted that (4.31) holds ∀x.

Matched Input Disturbance Norm Bound

From (4.31), it follows that

dσj =
∑

i 6=j

(
∂hj/∂xi
kpj

)
ui −

ẏmj
kpj

+
λj
kpj

sign(ej) , x /∈ D∆j
(4.32)

Then, by noting that |ui| ≤ ρi (i = 1, . . . , n) and considering Assumption 18, one

can obtain the following upper-bound for |dσj|:

|dσj| ≤
∑

i 6=j
pij
ρisj
si

+
1

kpj
(|ẏmj|+ λj) , x /∈ D∆j

(4.33)
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where pij denotes the ij-th components of matrix P in Assumption 19. Since ρi =

si%i, according to (4.22), then one can write the inequality

|dσj|
sj
≤
∑

i 6=j
pij%i +

1

kpjsj
(|ẏmj|+ λj) , x /∈ D∆j

(4.34)

Recall that, according to Assumption 19, for the triangular case, it is possible to

set S = I or use the suggestion from Remark 7. For the non-triangular case, a pre-

multiplier matrix S(x), function of the states, is usually needed. In this formulation

where the process is a static output map, the states are available for the controller

since they are the integral of the control input.

Modulation Function Design

The modulation function ρ is designed so that a sliding-mode is obtained in finite

time on one of the manifolds σj = kTj, for some integer k.

In the convergence analysis, it is shown that one sufficient condition to assure

the realization of the σ-sliding-modes is given by

ρj = %jsj ≥ |dσj|+ sj δj , j = 1, . . . , n (4.35)

where δj > 0 is an arbitrary constant. Below, one possible implementation of the

modulation function such that (4.35) holds is presented. In contrast to (Peixoto and

Oliveira 2012), the modulation functions ρj assume different values.

From (4.34), one can choose %j to satisfy

%j ≥
∑

i 6=j
pij%i +

1

Lj
(|ẏmj|+ λj + δj) (4.36)

with δj > 0, which assures that (4.35) holds using the inequality Lj ≤ |kpjsj| from

Assumption 18. The inequalities in (4.36) can be rewritten in the compact form

(I − P )x% ≥ B(ẏm) (4.37)

which is understood element-wise and must hold for x /∈ D∆j
, where B =[

B1 . . . Bn
]T

, with Bj(ẏmj) = 1
Lj

(|ẏmj|+ λj + δj), and x% =
[
%1 . . . %n

]T
.

Matrix P comes from Assumption 19.

Defining the objective function CTx%, where C ∈ Rn
+ is a weight vector, the

modulation function is obtained by solving (e.g. via linear programing) the following
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optimization problem:

min
x%

CTx% , (4.38a)

s.t. (I − P )x% ≥ B(ẏm) , (4.38b)

x% > 0

One can verify that Assumption 20 is a sufficient condition for the existence of a

solution. To avoid solving this problem for all possible values of ẏm, one might use

an upper-bound for |ẏm| when computing B.

4.2.4 Stability and Convergence Analysis

In this section, the stability and convergence results of the real-time multi-variable

extremum-seeking controller are carried out by showing that the existence of ideal

sliding-modes guarantees the attractiveness of the ∆-neighborhoods, which are

reached in finite time.

Realization of Ideal Sliding-Modes

The next proposition summarizes the results regarding the existence of ideal sliding-

modes. This proposition is very similar to Proposition 1, and this similarity will be

used to shorten the proof.

Proposition 2 (Occurence of Sliding-Modes). Consider the system (4.6), with con-

trol law (4.22) and modulation function ρ in (4.22) satisfying (4.38), while x /∈ D∆j
.

Let t0 ≥ 0 be a time instant such that σj is not in sliding motion at t = t0, i.e.,

σj(t0) 6= k0jTj where k0j =
⌊
σj(t0)

Tj

⌋
. Then, if x /∈ D∆j

, ∀t ≥ t0, a sliding-mode on

σj = k∗Tj, with k∗j = k0j − 1, k∗j ∈ {k0j − 1, k0j + 1}, is achieved in some finite time

tj ≥ t0 which satisfies t0 ≤ tj < t0 +O(Tj/δj) with δj > 0 in (4.35). Moreover, no

finite-time escape occurs in the system signals.

Proof. First, note that the inequality

kjπ ≤
π

Tj
σj < (kj + 1)π , kj =

⌊
σj
Tj

⌋
(4.39)

holds ∀t ≥ 0, where k is time-dependent, and j = 1, . . . , n. For any real s, bsc
denotes the greatest integer lower or equal to s. Moreover, define

k0j = bσj(t0)/Tjc (4.40a)

k∗j = k0j +
sign(kpj) + (−1)k0j

2
(4.40b)
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αj =

(
σj(t)

Tj
− k∗j

)
π (4.40c)

and, since sin
(
π
Tj
σj

)
≥ 0 for an even k and sin

(
π
Tj
σj

)
≤ 0 for an odd k, rewrite

the control signal as

uj(t) = ρj(t) sign

(
sin

[
π

Tj
σj(t)

])
= ρj(−1)kj (4.41)

Comparing (4.40) and (4.72) to (2.21) and (2.18) from the proof of Proposition 1,

we define the candidate Lyapunov function

V (αj) =
Tj
π
|αj| , V̇ (αj) =

Tj
π

sign(αj)α̇j (4.42)

and conclude that

V̇ (αj) = |kpj| [−ρj + dσj sign(kpj) sign(αj)]

≤ |kpj| (−ρj + |dσj|)

Considering the modulation function design from the solution of (4.38) that guar-

antees that (4.35) holds, it follows that

V̇ (αj) ≤ |kpj|
(
−sjδj
Lj
− |dσj|+ |dσj|

)
= − |kpj|

sjδj
Lj

and, using the inequality Lj ≤ |kpjsj| from Assumption 18,

V̇ (αj) ≤ −δj < 0 (4.43)

Equation (4.42) confirms that V (αj) from (4.42) is a Lyapunov function.

Nonetheless, before stating that a sliding-mode occurs, we first prove that no finite-

time escape occurs in the closed-loop signals.

If xj 6∈ D∆j
, ∀t ≥ t0, then one can conclude that αj is uniformly bounded in

∀t ≥ t0 and cannot escape in finite time. Subsequently, σj and the objective function

output yj do not escape in finite time. Otherwise, if xj ∈ D∆j
for some period of

time, one has that xj is uniformly bounded, leading to the same conclusion that yj

does not escape in finite time due to the continuity regarding the output function

h(·). Since the above reasoning holds for j = 1, . . . , n, then the full plant output y

does not escape in finite time. Hence, from the unbounded observability assumption

(Assumption 15), one can assure that all closed-loop signals cannot escape in finite

time.

Finally, from (4.43), one can conclude that an ideal sliding-mode occurs on the
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manifold αj = 0, or equivalently, on the manifold σj = k∗jTj. From the Lyapunov

function definition, this sliding-mode occurs after a finite time tj, which belongs to

the interval

t0 ≤ tj ≤ t0 +
Tj |αj(t0)|

πδj
≤ t0 +

Tj
δj

(4.44)

Convergence Analysis

Theorem 6 (Globally Convergent ESC). Consider the system (4.6), with control

law (4.22) and modulation function ρ in (4.22) satisfying (4.38), while x /∈ D∆j
. As-

sume that all assumptions regarding the objective function hold, i.e. Assumptions 16

to 19. Then: (i) all ∆j-neighborhoods D∆j
are globally attractive and are achieved in

finite time, and (ii) for a sufficiently small design constant Lj from Assumption 18,

the oscillations around the minimum y∗ of y can be made of order O(maxj Tj), with

T given in (4.22). In addition, all closed-loop signals remain uniformly bounded,

except for σ which is only the argument of a sine function in (4.22).

Proof. In what follows, consider j ∈ {1, . . . , n}. The general idea of the proof is

based on two properties. First, no finite-time escape occurs in the system signals

according to Proposition 2. Second, outside the neighborhood D∆j
, the partial

derivative of the output function hj w.r.t. xj do not vanish, that is kpj = ∂hj/∂xj 6=
0 ,∀x /∈ D∆j

. While xj stays outside the neighborhood D∆j
sliding-mode on σj =

k∗Tj assures that x is driven back to the neighborhood D∆j
. Now, we proceed to

the detailed proof of the properties (i) and (ii) of Theorem 6.

(i) Attractiveness of D∆j
: First, recall that finite-time escape is avoided for the

closed-loop system signals. Then, from Proposition 2, there exists a finite time tj

such that σj = k∗jTj, ∀t ∈ [tj, t
∗
j), where t∗j > tj is a time for which x ∈ D∆j

. Then,

σ̇j = 0 and, from (4.24), one has that ėj = −λj sign(ej) or ej ėj = −λj|ej| ≤ 0,

∀t ∈ [tj, t
∗
j). Thus, the error ej = yj − ymj tends to zero. Moreover, one of the

following properties hold at any time t > t0 :

• yj < ymj ⇐⇒ sign(ej) < 0

Meaning that yj is below a function ymj of time which decreases and, eventu-

ally, crosses the minimum value y∗j .

• yj > ymj ⇐⇒ sign(ej) > 0

Meaning that ẏj(t) = −Kmj − λj sign(ej) = − (Kmj + λj) < 0, thus, the

objective function value yj decreases at a rate Kmj + λj when it is above the

model reference ymj.
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Therefore, yj must decrease, reaching the neighborhood hj
(
D∆j

)
in a finite time t∗j ,

which satisfies

t∗j ≤ tj +

∣∣ymj(t0)− y∗j
∣∣

Kmj + λj
(4.45)

where y∗j denotes the j-th component of the objective function global minimum y∗,

which exists and is unique from Assumption 16. Therefore, from the definition of

D∆j
(Definition 9) and the continuity assumption on the output function, xj reaches

D∆j
no longer than t = t∗j .

(ii) Oscillations of Order O(maxj Tj):

It is proved that xj reaches D∆j
, nonetheless, it might remain inside this region or

oscillate above it, and, similarly, yj with respect to the corresponding neighborhood

hj(D∆j
), for t ≥ t∗j .

These oscillations come from the loss of control strength as kpj → 0 whenever

the relation Lj ≤ |sj(x)kpj(x)| is violated or are due to the recurrent changes in

the sign of kj at the extremum point. During these oscillations, σj can go from one

sliding manifold σj = k∗jTj (k∗j even) to another (k∗j odd). In such case, yj could

start oscillating around y∗j with increasing amplitude. We show now that this does

not happen.

Assume that xj reaches the frontier of D∆j
(from the inside) at some time t′j > t∗j

and σj is not in sliding-mode at t = t′j. The time instant t∗j is defined in the first part

of the proof. From Proposition 2, σj reaches a sliding-mode again after a finite time

t′′j ≤ t′j + Tj
∣∣αj(t′j)

∣∣ /πδj. Following the same procedure as in Theorem 3, we show

that, during this time, the output yj distances itself from hj
(
D∆j

)
by an amount of

order O(maxj Tj).

Recall the sliding-variable σ definition (4.24). From this equation and the in-

equality for ∆tj = t′′j − t′j ≤ Tj
∣∣αj(t′j)

∣∣ /πδj,

σj(t
′′
j )− σj(t′j) = ej(t

′′
j )− ej(t′j) +

∫ t′′j

t′j

λj sign (ej) dτ

∣∣ej(t′′j )− ej(t′j)
∣∣ ≤

∣∣σj(t′′j )− σj(t′j)
∣∣+

∫ t′′j

t′j

|λj sign (ej)| dτ

∣∣ej(t′′j )− ej(t′j)
∣∣ ≤

∣∣σj(t′′j )− σj(t′j)
∣∣+ λj

∫ t′′j

t′j

dτ

∣∣ej(t′′j )− ej(t′j)
∣∣ ≤ Tj + λj∆tj ≤

(
1 +

λj
∣∣αj(t′j)

∣∣
πδj

)
Tj

∣∣ej(t′′j )− ej(t′j)
∣∣ ≤ (1 + λj/δj)Tj ≤ O(Tj) (4.46)

where
∣∣σ(t′′j )− σ(t′j)

∣∣ ≤ Tj and
∣∣αj(t′j)

∣∣ ≤ π were used. From the output error
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definition (4.25),

∣∣y(t′′j )− y(t′j)
∣∣ ≤

∣∣ej(t′′j )− ej(t′j)
∣∣+
∣∣ymj(t′′j )− ymj(t′j)

∣∣

∈
{

(1 + λj/δj)Tj , [1 + (1 +Kmj)λj/δj]Tj

}
(4.47)

where the term Kmj is considered if the reference model is not saturated at some

lower-bound below y∗j . Otherwise, after a time t′′′j : ymj(t) < y∗j (t) and ẏmj(t) = 0, for

t ≥ t′′′j , the lower-bound (1 + λj/δj)Tj is considered. Either way, it follows that the

oscillations above the region hj
(
D∆j

)
are of order O(Tj), for every j ∈ {1, . . . , n}.

Thus, for each channel, the oscillations above the hj
(
D∆j

)
regions are of order

O(Tj), and, in the worst case, the oscillations of y above y∗ are of order O(maxj Tj).

4.2.5 Numerical Simulation Example

As an example, consider

y = h(x) =
1

2

[
(x1 − x2 + 1)2

(x2 − 1)2

]
=⇒ x∗(x2) =

[
x2 − 1

1

]
and y∗(x∗) =

[
0

0

]

(4.48)

With the proposed control strategy, we set ẋ(t) = u(t), such that the high-frequency

gain (with respect to u) is

∂h

∂x
(x) =

[
(x1 − x2 + 1) −(x1 − x2 + 1)

0 (x2 − 1)

]
(4.49)

Furthermore, note that Assumption 16 is satisfied and Θ∗ = {(0, 1)}. In this exam-

ple, the HFG matrix is triangular, so we set s1(x) = s2(x) = 1. Another possibility

would be to choose sj(x) according to Remark 7.

To achieve minimization at a rate of 4 units per second, let λ1 = λ2 = 4 and,

for simplicity, δj = λj, Kmj = 0, and ymj(t) = 0. To keep oscillations of yj above

the regions hj(D∆j
) bounded by (at most) 0.7 for y1 and 0.5 for y2, from (4.47), let

T1 = 0.35 and T2 = 0.25. The only control parameters missing in the design are ρ1

and ρ2. Instead of assuming we now the bounds pij and Lj from Assumptions 18

and 19, we fix

ρ =

[
20

11

]
(4.50)
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which, from (4.38), should guarantee convergence as long as

[
20− 11p12

−20p21 + 11

]
≥ 8

[
1/L1

1/L2

]
(4.51)

Note that, as long as p12 < 20/11 ≈ 1.8 and p21 < 11/20 = 0.55, there will always be

a solution for L1 and L2. In fact, since we know the objective function, we also know

that p12 = 1, p21 = 0, L1 = 8/9 ≈ 0.9, and L2 = 8/11 ≈ 0.7. Thus, we also know in

advance that ∆1 ≈ 1.8 and ∆2 ≈ 1.4. These values for ∆j imply that controllability

is lost when (y1 − y∗1) ≤ 0.5(0.9)2 ≈ 0.4 or (y2 − y∗2) ≤ 0.5(0.7)2 ≈ 0.25. Therefore,

based on the values the tuples (λj, δj, Kmj, Tj), after the ESC algorithm converges,

the oscillations above the minimum must stay below (y1− y∗1) ≤ 0.4 + 0.7 = 1.1 and

(y2 − y∗2) ≤ 0.25 + 0.5 = 0.75.

The simulation outputs are shown in fig. 4.2, where the controllers are imple-

mented in discrete-time with sampling periods of 1 ms. To the right, we show the

results with the sliding-mode controller exactly as proposed in this section. To the

left, we change the sign functions by continuous approximations, just as it was done

in section 2.2.3, using ε = 0.2 for the sigmoid in the definition of u(t) and ε̄ = 1 for

the sigmoid in the definition of σ(t). In this example we see that, with the discrete-

time implementation, the controller using a continuous approximation outperforms

the one with discontinuous control action in terms of chattering, but presents a

slightly bigger maximum error after convergence.

To demonstrate the robustness of the proposed strategy, first-order input and

output filters,

Hin =
s

0.03s+ 1
and Hout =

s

0.01s+ 1
(4.52)

are added and another simulation is conducted (fig. 4.3). Using the continuous

switching function via saturated gain, there is a slight increase in control effort,

but the final performance is similar to the one observed in the static case. For the

discontinuous control implementation and the same control parameters, convergence

was not achieved after adding the filters.

4.2.6 Application to Raman Optical Amplifiers

As a more interesting and practical example, as published in (Peixoto et al.

2020), the controller is applied to the optimization of the output signal power

spectrum of Raman optical amplifiers. A Raman amplifier possesses a set of np

pump lasers (actuators), which emit electromagnetic waves inside an optical fiber

(of length L), centered at a collection of discrete, non-overlapping wavelengths
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Figure 4.2: Simulation results for the MIMO ESC example of section 4.2.5. To
the right, the implementation with discontinuous control action. To the left, the
implementation using a continuous approximation of the sign function.

Λp = {λi : i = 1, 2, . . . , np}. Through the optical fiber, data propagates on ns

discrete and non-overlapping wavelengths, from the fiber upstream to the fiber

downstream. Each data signal is subject to wavelength-dependent loss, crosstalk

and propagation delay (Headley and Agrawal 2005; Palais 1998; Kidorf et al. 1999).

Let Ps(t, z) ∈ Rns and Pp(t, z) ∈ Rnp be vectors corresponding to the power

(in W) of a data signal or a pump signal, respectively, propagating at time t and

distance z (measured along the fiber) from the upstream end of the span (z = 0) to

the downstream (z = L). At the upstream, it is desired to regulate the data signals

power, which travel across the fiber with discrete, and non-overlapping wavelengths

Λs={λi : i=np + 1, np + 2, . . . , N}, with N=np + ns. In general, such a regulation

process is implemented in open-loop. The pump powers at the end of the span
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Figure 4.3: Simulation results for the MIMO ESC example of section 4.2.5 with
input and output filters (4.52) and the continuous control implementation. To the
left, the nominal results without the filters. To the right, the results after adding
the filters.

(downstream) are considered as the control efforts U(t) = Pp(t, L), the measured

output is the data signals also at the end of the span Y (t) = Ps(t, L), and the

upstream data signals power d(t) = Ps(t, 0) are faced as disturbances. The idea

in considering feedback control of such amplifiers is to obtain robust signal power

regulation in the presence of upstream signal power disturbances d(t) and other

uncertainties (Palais 1998; Dower et al. 2008; Peixoto and Oliveira 2012). The aim

is also to minimize the variation of the downstream data channels power.

It is proposed a static model to describe the signal power dynamics in the fiber,

which satisfactorily approximates the well-known model based on partial differential

equations (PDEs). We show a more realistic numerical application example for
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the optical fiber using 32 signal channels, while only four channels were considered

in (Peixoto and Oliveira 2012), that highlights the advantages of the proposed global

and multi-variable extremum-seeking controller.

In what follows, we give the detailed steps required to represent the simulated

Raman optical amplifier in the form (4.6). First, we find the static MIMO model

by numerically solving the corresponding PDEs representing the propagation of the

signals along the fiber. Then, we select the pump wavelengths so that each pump

strongly affects a set of data signals. Finally, we apply the proposed objective func-

tion to obtain the final output according to (4.5), and include the input integrator

to fit equation (4.6).

Static MIMO Model in Raman Problem Propagation

Consider the simplified average field power model given in (Bromage 2004) for Ra-

man amplifier fiber spans. This mathematical model can be described by N first-

order nonlinear transport partial differential equations as in (Dower et al. 2008;

Peixoto and Oliveira 2012), see also appendix B. By numerically solving the PDEs

and considering the steady-state solution

lim
t→∞

Ps(t, L) = H(θp) (4.53)

which relates a constant pump power θp = Pp(t, L) ∈ Rnp to the corresponding limit

of the output Ps(t, L), the smooth and static map H : Rnp 7→ Rns is obtained, with

H =
[
H1 . . . Hns

]T
and Hi : Rnp 7→ R+, provided D(t) = Ps(t, 0) = θs is a

constant vector.

Besides the fast transient behavior of the power dynamics, which is explained in

details in (Peixoto and Oliveira 2012), chattering is reduced by adding integrators

at the input side. Then, the downstream signal power Y (t) = Ps(t, L) can be ap-

proximated by the following smooth and static map Y (t) = H(U(t)). In a nutshell,

the following first-order MIMO non-linear system represents the process:

ẋ = u , Y = H(x)

with u ∈ Rnp being the control input, x = U ∈ Rnp , the state vector (the actual

plant input), and Y the measured output.

Selection of the Pump Wavelength

As shown in (Kidorf et al. 1999), a pump with wavelength λj strongly affects data

signals centered 100 nm above λj. Thus, let gj be disjoint subsets of {1, 2, . . . , ns}
constituted by the index of the data signal power vector Y related to the signals
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strongly affected by the j-th pump signal power xj, with xj being the j-th element

of the pump signal power vector x (Peixoto and Oliveira 2012). Let Hgj : Rnp 7→ Rpj

be the map obtained by collecting all Hi, with i ∈ gj and Hi from (4.53), where pj

is the number of elements of the set gj, i.e., the number of data signals belonging to

group gj.

The output of the group gj is given by the performance index of interest:

yj(t) = Jj(Hgj(x))

where the objective function (or output static mapping) Jj : Rpj 7→ R is defined by

(Dower et al. 2008; Peixoto and Oliveira 2012):

Jj(ζ) = −(Jaj(ζ) +RjJbj(ζ) (4.54a)

Jaj(ζ) =

√
(ζ − ζd)TQj(ζ − ζd) (4.54b)

Jbj(ζ) =

√√√√ 1

pj − 1

pj∑

i=1

[ζi − Ej(ζ)]2 (4.54c)

Ej(ζ) =
1

pj

pj∑

i=1

ζj (4.54d)

where Qj ∈ Rpj×pj is a positive semi-definite design matrix and Rj ≥ 0 is a positive

design constant.

The first term Jaj penalizes deviations of the output signal power (for group

gj) from the desired power level ζd ∈ Rpj , and the second term Jbj (proportional

to the standard deviation) penalizes ripple in the corresponding signal spectrum.

An alternative (Dower et al. 2008) for penalizing ripple in the signal spectrum is

given by Jbj(ζ) =
∑pj

i,k=1 , i6=k R
j
ik(ζi−ζk)2, where the constants Rj

ik can be chosen to

satisfy Rj
ik ∝ 1

(λi−λk)2 , with λi and λk being the wavelength of the signals belonging

to the same group gj.

Finally, the process can be modeled as in (4.6):

ẋ(t) = u(t) (4.55a)

y = h(x) =
[
h1(x) . . . hn(x)

]T
(4.55b)

where hj(x) = Jj(Hgj(x)).
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A Particular Optical Fiber with 32 Data Signals

An optical fiber TrueWave R© Reach - Low Water Peak with 32 input signals (ns =

32) and two backward pumps (np = 2), spreading a length of L = 100 km is

considered. The data signals are included at z = 0 and the pumps at z = L.

In contrast to (Peixoto and Oliveira 2012), here we extend the number of data

signals from 4 to 32, with 32 wavelengths (given in nm), split into two groups,

Λs =
[
1530 . . . 1541.8 1570 . . . 1582.4

]T
. In each group, signals are equally spaced

by 100 GHz. As in (Peixoto and Oliveira 2012), we use the same number of pumps

with wavelengths Λp =
[
1442 1490

]T
.

As a nominal scenario, we consider that all data signals enter the fiber with −10

dBm power.

Model Parameters: Experimental Characterization

Comparing our simulation results with experimental data and the overall qualita-

tive behavior of the Raman optical amplifier system, it is possible to verify that

our simulations are representative of the expected steady-state behavior of such sys-

tems. Specifically, our simulations reflect a Raman optical amplifier based on the

TrueWave R© Reach - Low Water Peak (RFLWP) optical fiber, with model param-

eters experimentally characterized by the company OFS Fitel Denmark ApS. The

results are consistent with those in (Dower et al. 2008) and (Bromage 2004), which

indicates that our proposed control scheme has the potential to provide consistent

practical results.

The Raman gain spectra (Agrawal 2001) of the optical fiber considered here fits

the experimental spectra provided in (Bromage et al. 2002), see fig. 4.4, differing

only by a scale factor of 1.2.

Objective Function

The objective functions in (4.54a) are implemented with p1 = p2 = 16, Q1 = Q2 =

I16×16, ζd = [−10 . . . − 10]T (dBm), R1 = 10, and R2 = 5. Note that deviations

from the desired level of −10 dBm are penalized for both groups as well as the

standard deviation.

Approximations to Speed Up the Numerical Simulations

Consider that both pump powers x1 and x2 are fixed and belong to the grid

P = {15, 15.1, 15.2, . . . , 30} (dBm), i.e., x(t) = Pp(t, L) is constant (∀t), where x =[
x1 x2

]T
∈ R2 and x1, x2 ∈ P . Then, by numerically solving the PDEs it is possi-

ble to obtain the static mapping H(·) from (4.53), where H(x) = limt→∞ Ps(t, L) =,
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Figure 4.4: In solid black, the experimental data extracted from (Bromage et al.
2002), for a TrueWave R© Reduced Slope (RS) optical fiber. In blue circles our ex-
perimental data characterized by OFS Fitel Denmark ApS for a TrueWave R© Reach
- Low Water Peak (RFLWP) optical fiber. The “x” markers correspond to our ex-
perimental data multiplied by a factor of 1.2, showing that the TrueWave R© (RS)
and the TrueWave R© (RFLWP) data differ only by a scale factor.

for each fixed x1, x2 ∈ P . To further refine this grid, the output functions Hi(x)

(i = 1, . . . , 32) and objectives functions h1(x) = J1(Hg1(x)) and h2(x) = J2(Hg2(x))

are approximated via spline interpolation.

Figures 4.5a and 4.5b illustrate the input-output static mapping y1 = h1(x) =

J1(Hg1(x)) and y2 = h2(x) = J2(Hg2(x)), for the RFLWP optical fiber with down-

stream data signals power at −10 dBm and a desired upstream power of −10 dBm.

The maximum values in the region of interest x1, x2 ∈ [20, 28] (dBm) are also dis-

played.

Controller Parameters and Modulation Function

The control strategy (4.22), (4.24) was implemented with λ1 = λ2 = 6 (dBm/µs).

The tracking error (4.25) is such that the reference signal (4.26) is a ramp function

generated with Km = [6 17.36]T (dBm/µs), and ym(0) = [−7.46 − 13.02]T (dBm).

In order to reduce the oscillations around the set of maximizers, we have considered

sufficiently small values of T1 = T2 = 0.01 (dBm).
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Figure 4.5: IO nominal maps y1 = h1(x) and y2 = h2(x) and the maximum values
(in black) corresponding to the set of maximizers Θ∗1 and Θ∗2, respectively.

Simple Modulation Function Implementation

Since there is an inherent decoupling between each pump and its most affected data

channels, it is not necessary to compute the modulation function as a time-varying

function. For instance, the same results displayed in this section can be obtained

with constant modulation functions ρ1 = ρ2 = 1.6 (dBm/µs).

Full Modulation Function Implementation

For completeness regarding the global convergence results, we show how to obtain

the time-varying modulation function, as described in section 4.2.3. To design the

modulation function we perform all computations using the nominal plant parame-

ters inside the region of intereset. Initially, we adjust the size of the ∆-neighborhoods

to ∆ = 0.01 mW so that the desired final error is smaller than 0.01 mW for both

channels. Then, we compute the norm bound g21(x) for (∂h2/∂x1)/(∂h2/∂x2).

We set s2(x) = (1 + r) g21(x), with r = 0.5, and s1(x) = 1, and select the

constants p12 = 1/(1 + r) = 2/3 and p21 = 0.9 in order to assure that

∣∣∣∣
∂h2

∂x1

∣∣∣∣ < p12

∣∣∣∣
∂h2

∂x2

∣∣∣∣
s2

s1

, x 6∈ D∆2

and ∣∣∣∣
∂h1

∂x2

∣∣∣∣ < p21

∣∣∣∣
∂h1

∂x1

∣∣∣∣
s1

s2

, x 6∈ D∆1

Hence, the matrix P in Assumption 19 is given by

P =

[
0 2/3

0.9 0

]
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Finally, we compute the partial derivatives ∂hj/∂xj and use the values for ∆ and

sj to find the lower-bounds L1 = 1 and L2 = 3.7, which ensure that Assumption 18

holds, i.e., Lj ≤ |kpjsj| holds in the region of interest.

The modulation functions %1 = 44.7 (dBm/µs) and %2 = 47.5 (dBm/µs) are

obtained via linear programming by solving (4.38). In this example, since both

p12 < 1 and p21 < 1, this solution is equivalent to obtaining x% = [%1 %2]T from

x% = (I−P )−1B, where B =
[
B1 B2

]T
, with Bj = 1

Lj
(Kmj + λj + δ), for j = 1, 2,

and δ = 1 (dBm/µs).

Numerical Simulations

The following numerical simulations illustrate the applicability of the proposed

extremum-seeking controller, where a parametric perturbation in the fiber is con-

sidered in order to point out the recovery capability of the proposed scheme.

It must be stressed that our control algorithm is easy to implement in a real

experiment due to its simplicity. Only two integrators are needed, the sine function

can be implemented via lookup tables, and the sign function can be approximated

by any sigmoid function if a smooth control effort is required.

The plant initial conditions (pumps powers) are given by x1(0) = 25 dBm and

x2(0) = 27 dBm. The Euler integration method was used with step size equal to

2−32 s ≈ 0.2 ns. Although apparently very small, this simulation step size is around

one thousand times smaller than the plant dynamics (which are in the order of

microseconds), thus consistent with the overall problem statement.

Full Pump Effort × Online Optimized Pump Effort

Here, it is illustrated that if one simply drives the Raman amplifier with full pump

power, a signal power spectrum far from a flat shape is produced. Figure 4.6 shows

the data and pump signals power spectrum. The pink line corresponds to the initial

power distribution, while the red line corresponds to the final power spectrum when

full power is employed in the pump signals (x1, x2) = (28, 28) dBm. It is clear that

the power of all data signals increase but without assuring any optimum criterion.

On the other hand, when ESC is applied, a flat spectrum is obtained (blue line).

Moreover, since the objective functions of both groups are penalized to achieve the

desired downstream signal power level (black line) and to reduce ripple in the power

spectrum, both groups achieve a power spectrum around the desired level with a

root mean squared error and ripple smaller than 0.5 dBm. This small error is also

evident in fig. 4.7, which shows the evolution of the downstream data signals powers

through time.

The corresponding time behavior of the control pump signals are illustrated
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Figure 4.6: Power spectrum of all 34 signals transmitted in the optical fiber (top):
power in dBm and wavelength in nm. Zoomed-in views are displayed in the bottom
figures: 2 pumps control signals (bottom left), 16 data signals belonging to group
1 (bottom center) and 16 data signals belonging to group 2 (bottom right). Initial
power in pink (circle), optimal power in blue (star), and the results of applying
maximum pump power in red (square). The black line corresponds to the desired
power level (−10 dBm).

in fig. 4.8, where the convergence to the ∆-neighborhoods is apparent. The time

evolution of the plant outputs is displayed in fig. 4.9. This can also be observed in

fig. 4.8, where x2(t) enters the ∆-neighborhood at t = 75 µs while x1(t) enters in

the corresponding ∆-neighborhood at t = 50 µs.

Downstream Power Regulation in the Presence of Upstream Power Vari-

ations

The coefficients of h1(·) and h2(·) are assumed uncertain for control design, belong-

ing to intervals around the nominal values. Step changes in the upstream signal

powers or in the downstream desired power level correspond to some change in the

coefficients of h1(·) and h2(·) and, consequently, in the optimal power of the pumps.

For robustness assessment, before t = 150 µs, the nominal plant is considered

with upstream (desired downstream) signal power at −10 dBm (−10 dBm) and,

after that, the static output maps are abruptly replaced by their perturbed versions
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Figure 4.7: Time behavior of the power of all 32 data signals in dBm: 16 data signals
belonging to group 1 (top) and 16 data signals belonging to group 2 (bottom).

corresponding to a step change in the upstream signal power from −10 dBm to −3

dBm. In the sequel, at t = 200 µs, the upstream signal power returns to the nominal

value (−10 dBm) while the desired downstream signal power drops to −20 dBm.

Figures 4.10 and 4.11 show the convergence of the pumps power (x1, x2), ini-

tialized at (25, 27) dBm, to the ∆-neighborhood of the final maximizer (23.8, 21.2)

dBm, after two abrupt perturbations which modify the optimal operating condition.

Comparison: Downstream Power Spectrum Optimization

In (Dower and Farrell 2006), the authors propose a regulatory control to maintain the

downstream signals power at some fixed desired value, corresponding to fixed pump

powers, which should be provided by an external set-point selection algorithm. Thus,

optimization is not incorporated in the closed-loop control. Using this fixed set-point

and a known model of the fiber dynamics, a linearized model is obtained around the

operational point. Through simulations, the authors indicate the robustness of this

technique with respect to small changes around the operational point (upstream and

downstream pumps and signals powers), see figure 3 in (Dower and Farrell 2006).

In contrast to (Dower and Farrell 2006), we incorporate online optimization in

the control-loop, so that the proposed control scheme can find the optimal pump
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signal x2(t) (bottom). All signals are expressed in dBm. The black line shows the
maximizers values, and the dashed lines are the corresponding Delta-neighborhoods.

powers required for regulating the downstream signals powers at some desired level.

Our control strategy can easily cope with more significant changes to the upstream

signals power and the desired downstream signals power. In comparison to (Dower

and Farrell 2006), where small variations of 1 dBm are applied to the upstream

signals and the desired downstream signals power, we show robustness to changes

of 10 dBm. Only small variations are possible in (Dower and Farrell 2006) because

the authors rely on linearization.

In (Dower et al. 2008), a perturbation based ESC is employed to shape the

downstream signal power spectrum according to some flat function, i.e., the same

control objective considered in this Thesis and published in (Peixoto et al. 2020).

However, in (Dower et al. 2008), the system outputs are evaluated many times per

iteration to obtain approximated gradient calculations and to conduct line searches.

In comparison to (Dower et al. 2008), our proposed controller is more straight-

forward because it does not require probing the system to collect evaluations of the

objective function output, and no gradient estimation is needed. Our ESC scheme

drives the pump powers toward the optimum point by using only two integrators

and the periodic switching function control law. Moreover, we achieve similar results
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Figure 4.9: Time behavior of the objective functions corresponding to the static
maps. Top: plant output y1 and reference trajectory ym1. Bottom: plant output y2

and reference trajectory ym2.

but with smaller relative error and ripple (both lower than 0.5 dBm, cf. fig. 4.7).

4.3 Continuous SM-ESC for Nash Equilibrium

Seeking in Input-Affine Processes

The results published by Peixoto et al. (2020) and described in the last section,

apply to nonlinear static processes. Such processes are usually steady-state approx-

imations of some dynamic system. In this section, we proceed in the direction of

relaxing the assumption of a static process and generalize the results for input-affine

nonlinear systems. Furthermore, following the control design proposed in chapter 2,

we also generalize the control algorithm to provide for continuous control actions,

and control laws based on techniques other than sliding-modes.
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4.3.1 The Class of Input-Output Mappings

Regarding the process dynamics, instead of considering a static nonlinear map,

consider the optimization problem (4.1), and the process dynamics

ẋ(t) = f(x) + g(x)u(t) (4.56a)

y(t) = h(x) (4.56b)

with internal states x : R̄+ 7→ Rn, measured outputs y : R̄+ 7→ Rn, piecewise

continuous control input u : R̄+ 7→ Rn, and unknown functions f : Rn 7→ Rn and

g : Rn 7→ Rn×n. Discontinuities are only allowed in the control input, such that

functions f , g, and h are at least C0.

As in section 4.2, for simplicity, we assume that y(t) = h(x) represents both the

process output and the objective function value.

Following the usual procedure of differentiating the output with respect to time,

the first derivative of y is written as,

ẏ(t) = Lfh(x) + Lgh(x)u(t) (4.57a)

Lgh(x) =

(
∂h

∂x

)T

g(x) = kp(x) + k̃p(x) (4.57b)

with kp(x) holding the elements in the diagonal of Lgh(x), and k̃p(x) the off-diagonal

elements, just as it was done in (4.13). Regarding the diagonal entries, we make the

following assumption.

Assumption 21 (Unit Relative Degree). Let the ∆-neighborhood be defined as in

Definition 9. Outside the ∆-neighborhood, the elements on the main diagonal of

matrix kp, denoted kpj, are bounded away from zero,

0 < |kpj| ∀x 6∈ D∆j
(4.58)

with j ∈ {1, . . . , n}. Thus, for x 6∈ D∆j
, the process has unit relative degree from

input uj to output yj.

Considering the change of variables u(t) = S(x)v(t), with matrix S(x) such that

Assumptions 18 and 19 are satisfied with kp(x) from (4.57b), we rewrite the output

dynamics as

ẏ(t) = kpS(x)
[
v(t) + S−1kpk̃pS(x)v(t) + S−1k−1

p (x)Lfh(x)
]

(4.59)

Two aspects must be taken into account. First, we whish to develop an output-

feedback control law. Therefore, the matrix S(x) should be replaced by an estimate
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which does not depend on the states. Second, to make for a straightforward proof,

we merge the control laws presented in sections 2.2 and 4.2. Thus, considering the

following assumption, which allows us to replace matrix S(x).

Assumption 22 (Norm Observability). Let ξ(t) = x(t) − xd, with xd ∈ Rn some

estimate of the optimizer x∗ : y∗ = h(x∗), and assume that (4.56) is uniformly

input-output-to-state stable (UIOSS), such that it admits a norm observer (see As-

sumption 6). Hence, there is η such that

||ξ|| ≤ ᾱ3 (||η||) + β2(||ξ|| , t) (4.60a)

η̇ = −η + α3(||u||) + α4(||y||), η(0) = 0 (4.60b)

with known functions ᾱ3(s) = ᾱ−1
1 (2s) ∈ K∞, β2(s, t) = ᾱ1(2ᾱ2(s)e−t) ∈ KL, and

α3, α4 ∈ K, from Assumption 6.

Matrix S(x) is chosen such that the controllability loss near the ∆j-neighborhood

is kept above a lower-bound (Assumption 18) and that the j-th terms in the diagonal

of the HFG matrix dominate the off-diagonal terms of the j-th row (equation (4.18)

and Assumptions 19 and 20).

Assumption 23. Let ξ(t) = x(t)−xd, with xd ∈ Rn some estimate of the optimizer

x∗ : y∗ = h(x∗). There exists S(x) = diag
(
s1(||ξ||) , . . . , sn(||ξ||)

)
, with sj(.) ∈

K, such that after some finite time Assumptions 18 and 19 hold replacing sj(||x||) by

sj ◦ ᾱ3(||η||), with η and ᾱ3 from Assumption 22.

Since we assume the existence of a state norm observer, the previous assumption

is enough to write the ESC algorithm in an output-feedback framework. It restricts

the classes of objective function for which the control law is valid. Nonetheless, as

before, objective functions that are (at least locally) polynomial in x, and with a

“dominant triangular” Jacobian matrix are still covered.

Remark 9. Additionally, if the functions f and g are such that ẋj depends only on

the states xj up to xn (x0 up to xj) and the objective function Jacobian is “dominant

upper-triangular”, then it is possible to develop n norm observers, each with state

ηj ∈ Rj, one for each |xj − xdj|. With these estimates, based on Remark 7, one

might use a diagonal matrix S : Rn
+ 7→ Rn×n

+ , such that

sj(ηj, . . . , ηn) = sj+1(ηj+1, . . . , ηn) max

(
aj

ᾱ
rj−1
3,j (||ηj||) + bj

, 1

)
(4.61a)

sn(ηn) = 1 (4.61b)

with aj, bj > 0, and ᾱ3,j(.) ∈ K∞ obtained from each norm observer.
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To obtain a control law that does not depend on the states, the disturbances due

to Lfh(x) must also be bounded. Thus, consider also the following assumption.

Assumption 24 (Disturbance Boundedness). Let (Lfh)j denote the j-th element

of Lfh, and ξ(t) = x(t) − xd, as in Assumption 22. There exist known functions

α1, j ∈ K and β1, j ∈ KL such that
∣∣∣(Lfh)j

∣∣∣ ≤ α1, j(||ξ||) + β1, j(||ξ(0)|| , t).

4.3.2 Extremum-Seeking Controller

The control law presented in this section is an extension of that of section 4.2.2. Note,

however, that although the controller in section 4.2.2 is not explicitly developed for

input-affine nonlinear systems, it is capable of dealing with such systems given that

the modulation function overcomes the disturbances. In this section, we not only

make sure this happens, but we also extend the controller so that continuous and

non-sliding-mode based algorithms can be implemented.

Combining the controllers (4.22) and (2.16), the ESC with periodic switching

function is written as

u(t) = ρ(t) sigmoidε
(
sin
[
πT −1σ(t)

])
(4.62a)

ρ(t) = S(η)%(t) (4.62b)

σ(t) = e(t) +

∫ t

0

fe(e)dτ (4.62c)

e(t) = y(t)− ym(t) (4.62d)

with ρ(t) = diag
(
ρ1(t) , . . . , ρn(t)

)
being the modulation function (continuous

in t) to be defined later on by designing %(t), S(η) satisfying Assumption 23, T =

diag
(
T1 , . . . , Tn

)
> 0. The function ym ∈ C1 : R̄+ 7→ Rn is such that ∃ tm :

ym(t) ≤ y∗, ∀t ≥ tm, and the function fe : Rn 7→ Rn is such that the following

assumption holds.

Assumption 25 (Stable Error Dynamics Design). Function fe : Rn 7→ Rn is chosen

such that

• the j-th element of fe, denoted fej is a function of ej only;

• the origin of ėj + fej(ej) = 0 is globally asymptotically stable (GAS);

• solutions to ėj + fej(ej + O(ε)) = 0 with small disturbances of order O(ε) in

fej are globally ultimately bounded, with ultimate bound also of order O(ε);

• the integral
∫ tb
ta
|fej(ej)| dτ ≤ O(tb − ta);
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• given an initial state ej(t0), the dynamics ėj+fej(ej+O(ε)) = 0 =⇒ |ej(t)| ≤
|ej(t0)|, t ≥ t0.

4.3.3 Modulation Function Design

Matched Input Disturbance Norm Bound

To develop the modulation function, once again, we must write the σ-dynamics and

find an expression for the matched disturbances. Thus, from (4.56) and (4.62),

σ̇(t) = kp(x)[u(t) + dσ(x, e, ẏm)] (4.63a)

kp(x) dσ(x, u, e, ẏm) =
[
k̃p(x)u(t)− ẏm(t) + fe(e) + Lfh(x)

]
(4.63b)

Expanding the σ-dynamics element-wise,

σ̇j(t) = kpj(x) [uj(t) + dσj(x, ūj, ej, ẏmj)] (4.63c)

kpj(x)dσj =
∑

i 6=j

(
∂hj
∂xi

)
ui − ẏmj + fej(ej) + (Lfh)j (4.63d)

where (Lfh)j denotes the j-th element of Lfh.

The above equalities hold ∀x. To design the modulation function, however, we

must find a bound for dσ, which must hold ∀x 6∈ Dj. Thus, from Assumptions 18,

19 and 23, and comparing (4.63) with (4.34),

|dσj|
sj
≤
∑

i 6=j
pij%i +

1

kpjsj

[
|fej(ej)− ẏmj|+

∣∣∣(Lfh)j

∣∣∣
]
, x /∈ D∆j

(4.64)

Furthermore, since we assume (i) the existence of a state norm observer (Assump-

tion 22), (ii) that S(x) satisfies Assumption 23, and (iii) that the state-dependent

disturbances are bounded by class K and class KL functions (Assumption 24), there

are known functions ασj(.) ∈ K and βσj(., t) ∈ KL, such that, after a finite time tσj ,

|dσj|
sj
≤
∑

i 6=j
pij%i +

1

kpjsj

[
|fej(ej)− ẏmj|+ ασj(||η||) + βσj(||η|| , t) + δj

]
,
x /∈ D∆j

t ≥ tσj

(4.65)

where, based on Assumptions 22 and 24, ασj and βσj are obtained by the following

expansion

∣∣∣(Lfh)j

∣∣∣ ≤ α1, j(||ξ||) + β1, j(||ξ(0)|| , t)

≤ α1, j

(
ᾱ3 (||η||) + β2(||ξ|| , t)

)
+ β1, j(||ξ(0)|| , t)
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≤ α1, j (2ᾱ3(||η||)) + α1, j(2β2(||ξ|| , t)) + β1, j(||ξ(0)|| , t)
= ασj (||η||) + βσj(||ξ|| /2, t) + β1, j(||ξ(0)|| , t)
≤ ασj (||η||) + βσj(||η|| , t) + βσj(||ξ|| − ||η|| , t) + β1, j(||ξ(0)|| , t)
= ασj (||η||) + βσj(||η|| , t) + βσj(|eη(0)| , t) + β1, j(||ξ(0)|| , t) (4.66)

with ασj(.) = α1, j (2ᾱ3(.)) ∈ K and βσj(., t) = α1, j(β2(., t)) ∈ KL.

Modulation Function Design

From the previous section, it is known that a sufficient condition for producing

sliding-modes on the manifolds σj = kjTj, for some integers kj, is that (4.35) is

satisfied, that is

ρj = %jsj ≥ |dσj|+ sj δj , j = 1, . . . , n (4.67)

Applying the new upper-bound (4.65) for
∣∣dσj

∣∣, it follows that

%j ≥
∑

i 6=j
pij%i +

1

Lj

[
|fej(ej)− ẏmj|+ ασj(||η||) + δj

]
(4.68a)

(I − P )x% ≥ B(ẏm, e, η) (4.68b)

Bj(ẏmj, ej, η) =
1

Lj

[
|fej(ej)− ẏmj|+ ασj(||η||) + δj

]
(4.68c)

where (4.68b) is understood element-wise and must hold for x 6∈ D∆j
, B =[

B1 . . . Bn
]T

, and x% =
[
%1 . . . %n

]T
.

Thus, defining the objective function CTx%, with weight vector C ∈ Rn
+, each ρj

can be obtained solving

min
x%

CTx% , (4.69a)

s.t. (I − P )x% ≥ B(ẏm, e, η) , (4.69b)

x% > 0

where the only difference from (4.38) is in the matrix B formula, i.e. equation (4.68c).

4.3.4 Stability and Convergence Analysis

Having adapted the necessary parts from sections 2.2 and 4.2, we are now ready

to state the proposition which summarizes the results regarding the existence of

sliding-models (real or ideal).

101



Proposition 3 (Occurence of Sliding-Modes). Consider the system (4.56), with

control law (4.62) and modulation function ρ in (4.62b) satisfying (4.69), while

x /∈ D∆j
. Let t0 ≥ tσj be a time instant such that σj is not in sliding motion at

t = t0, i.e., σj(t0) 6= k0jTj where k0j =
⌊
σj(t0)

Tj

⌋
, and such that (4.65) holds. Then,

if x /∈ D∆j
, ∀t ≥ t0, an O(εj) real sliding-mode on σj = k∗Tj, with k∗j = k0j − 1,

k∗j ∈ {k0j − 1, k0j + 1}, is achieved in some finite time tj ≥ t0 which satisfies

t0 ≤ tj < t0 + O(Tj/δj) with δj > 0. Moreover, no finite-time escape occurs in the

system signals.

Proof. Following the same steps as in the proof of Proposition 2, let

kjπ ≤
π

Tj
σj < (kj + 1)π , kj =

⌊
σj
Tj

⌋
(4.70)

and

k0j = bσj(t0)/Tjc (4.71a)

k∗j = k0j +
sign(kpj) + (−1)k0j

2
(4.71b)

αj =

(
σj(t)

Tj
− k∗j

)
π (4.71c)

Now, however, we rewrite the control signal as

uj(t) = κjρj(t) sigmoidε

(
sin

[
π

Tj
σj(t)

])
= κjρjβj(σj)(−1)kj (4.72)

for nonnegative functions βj(σj) such that

βj(σj) ≥ 1/κj ⇐⇒
∣∣∣∣sin

[
π

Tj
σj(t)

]∣∣∣∣ > εj (4.73)

Without loss of generality, let εj � 1, such that

βj(σj) ≥ 1/κj ⇐⇒
∣∣∣∣
σj(t)

Tj
− k̃j(t)

∣∣∣∣ π > εj (4.74)

where k̃j(t) = round(σj(t)/Tj) denotes the rounding of σj(t)/Tj to the nearest integer

value. Thus, defining V (αj) =
Tj
π
|αj|,

V̇ (αj) = |kpj| [−κjρjβj(σj) + dσj sign(kpj) sign(αj)]

≤ |kpj| (−κjρjβj(σj) + |dσj|)
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and applying (4.74),

V̇ (αj) ≤ |kpj| (−ρj + |dσj|) , |αj| > εj

Considering the modulation function design from the solution of (4.69) that guar-

antees that (4.67) holds, and, once again, the proof of Proposition 2

V̇ (αj) ≤ −δj < 0 , |αj| > εj (4.75)

and no finite-time escape occurs in the closed-loop signals.

Then, from (4.75), one can conclude that an O(εj) sliding-mode occurs on the

manifold αj = 0, or equivalently, on the manifold σj = k∗jTj. From the Lyapunov

function definition, this sliding-mode occurs after a finite time tj, which belongs to

the interval

t0 ≤ tj ≤ t0 +
Tj |αj(t0)|

πδj
≤ t0 +

Tj
δj

(4.76)

Theorem 7. Consider the system (4.56), with control law (4.62) and modulation

function ρ satisfying (4.69), while x /∈ D∆j
. Assume that all assumptions regarding

the objective function hold, i.e. Assumptions 16 to 19 and 23. Then: (i) all ∆j-

neighborhoods D∆j
are globally attractive and are achieved in finite time, and (ii) for

a sufficiently small design constant Lj from Assumption 18, the oscillations around

the minimum y∗ of y can be made of order O(maxj Tj), with Tj given in (4.62).

In addition, all closed-loop signals remain uniformly bounded, except for σ which is

only the argument of a sine function in (4.62a).

Proof. (i) Attractiveness of D∆j
: Let j ∈ {1, . . . , n}. To prove that all ∆j-

neighborhoods are attractive, let t ≥ tj, with tj from Proposition 3, such that σj =

k∗jTj +O(εj), ∀t ∈ [tj, t
∗
j), and consider the change of variables ēj = ej − σj + k∗j Tj,

such that, for t ∈ [tj, t
∗
j), the σj-dynamics from (4.62c) is rewritten as

k∗j Tj = ēj +

∫ t

0

fej(ēj +O(εj))dτ (4.77a)

0 = ˙̄ej + fej(ēj +O(εj)) (4.77b)

Thus, from Assumption 25, the origin of ēj is UGPAS, with ultimate bound ēj ≤
O(εj). Since |ej| ≤ |ēj| + |σ − k∗ T |, the origin of ej is also UGPAS with ultimate

bound |ej| ≤ O(εj), and since ym is designed such that ∃ tm : ym(t) ≤ y∗, ∀t ≥ tm,

it follows that the regions ∆j are reached in finite time.

(ii) Oscillations of Order O(maxj Tj): Assume that xj reaches the frontier of
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D∆j
(from the inside) at some finite time t′j, such that σj is not in sliding-mode

at t = t′j. From Proposition 3, σj reaches a sliding-mode again after a finite time

t′′j ≤ t′j + Tj/δj. Following the same procedure as in Proposition 2, we show that,

during this time, the output yj distances itself from hj
(
D∆j

)
by an amount of order

O(maxj Tj).

Recall the assumptions on fe(.) from Assumption 25. Then, from the sliding-

variable σ definition (4.62c) and the inequality for ∆tj = t′′j − t′j ≤ Tj/δj,

σj(t
′′
j )− σj(t′j) = ej(t

′′
j )− ej(t′j) +

∫ t′′j

t′j

fej(ej)dτ

∣∣ej(t′′j )− ej(t′j)
∣∣ ≤

∣∣σj(t′′j )− σj(t′j)
∣∣+

∫ t′′j

t′j

|fej(ej)| dτ
∣∣ej(t′′j )− ej(t′j)

∣∣ ≤
∣∣σj(t′′j )− σj(t′j)

∣∣+O(∆tj)∣∣ej(t′′j )− ej(t′j)
∣∣ ≤ Tj +O(Tj/δj) ≤ O(Tj) (4.78)

where
∣∣σ(t′′j )− σ(t′j)

∣∣ ≤ Tj was used. From the output error definition (4.62d),

∣∣y(t′′j )− y(t′j)
∣∣ ≤

∣∣ej(t′′j )− ej(t′j)
∣∣+
∣∣ymj(t′′j )− ymj(t′j)

∣∣

∈
{
O(Tj) , O(Tj) + max

t∈ [t′j , t
′′
j ]
|ẏmj(t)|

Tj
δj

}
(4.79)

where the last term is considered if the reference model is not saturated at some

lower-bound below y∗j . Otherwise, after a time t′′′j : ymj(t) < y∗j (t) and ẏmj(t) = 0,

for t ≥ t′′′j , the same lower-bound as in (4.78) is considered. Either way, it follows

that the oscillations above the region hj
(
D∆j

)
are of order O(Tj), for every j ∈

{1, . . . , n}.
Thus, for each channel, the oscillations above the hj

(
D∆j

)
regions are of order

O(Tj), and, in the worst case, the oscillations of y above y∗ are of order O(maxj Tj).

Remark 10 (Arbitrary Relative Degree). If one considers the results discussed in

section 2.3, it becomes clear that the algorithm proposed in this section can be applied

to nonlinear systems with arbitrary relative degree, given that both the assumptions

made in this section and those necessary to apply Tikhonov’s theorem (Khalil 2002,

Theorem 11.2) as described in section 2.3 are satisfied.
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Chapter 5

Real-Time Optimization with

Multiple Decision Variables

In this section, we develop a control algorithm capable of solving real-time opti-

mization with multiple decision variables and only one objective function. This

development is expected, considering that the most common way of solving multi-

objective problems is by combining all objectives in a single one, a process known

as scalarization. We will not, however, delve into the details of scalarization, and,

for the reminder of this section, we will consider that the single-objective at hand is

already the result of some previous scalarization step. Additionally, if we consider

that the previous objectives are convex, it is guaranteed that the solution of the

single-objective problem is Pareto efficient (Wendell and Lee 1977).

Therefore, for the reminder of this section, we are interested in solving the opti-

mization problem described by (4.2), rewritten as

min
x

: ν = J(y) (5.1a)

s.t. : y(t) = h(x) (5.1b)

with objective function J : Rny 7→ R and output map h : Rn 7→ Ry. Once again, to

ease the notation and without loss of generality, we combine the objective function

with the output map, such that y(t) = h(x) ∈ R represents both.

By differentiating the input-output map with respect to time, and setting ẋ = u,

one obtains

ẋ(t) = u(t) (5.2a)

ẏ(t) =
∂h(x)

∂x

T

u(t) (5.2b)

where u(t) ∈ Rn is a control signal yet to be specified. To ensure that output-
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feedback controllers can be used without risking finite-time escape of any closed-loop

signal, we assume that Assumption 15 holds. Besides, to obtain global results, we

assume the existence of a unique global minimum.

Assumption 26 (Unique Optimizer). Let h ∈ C2. Then, the output h(·) is uni-

modal w.r.t. xj, for every j ∈ {1, . . . , n}, and there exists a unique minimizer x∗,

with y∗ = h(x∗), such that

∂h

∂xj

∣∣∣∣
x=x∗

= 0 and
∂2h

∂x2
j

∣∣∣∣
x=x∗

> 0 (5.3)

The objective of the controller we propose in this section is to remain as close

as possible to the minimizer, as it was done for the controllers described in the

previous sections. Once more, we describe this behavior using the concept of ∆-

neighborhoods.

Definition 10 (∆-neighborhood). The ∆-neighborhood of the minimizer is the re-

gion

D∆ =

{
x ∈ Rn : ||x− x∗|| ≤ ∆

2

}
. (5.4)

and the ∆j-neighborhoods are the regions

D∆j
=

{
x ∈ Rn :

∣∣∣∣
∂h

∂xj

∣∣∣∣
x∈D∆

≤
∣∣∣∣
∂h

∂xj

∣∣∣∣

}
. (5.5)

Therefore, the ∆-neighborhood is the ball of diameter ∆ around the minimizer x∗,

while the ∆j-neighborhoods are volumes along the curves ∂h/∂xj = 0. Furthermore,

it also follows that D∆ =
⋂n
j=1D∆j

.

Assumption 27 (Bounded Gradient). Outside the ∆-neighborhood, all elements of

the HFG vector are bounded away from zero,

Lj <

∣∣∣∣
∂h

∂xj

∣∣∣∣ , ∀x /∈ D∆ (5.6)

where Lj are known arbitrarily small positive constants, with j ∈ {1, . . . , n}. Fur-

thermore, L = maxj Lj.

Note that, Definition 10 with Assumption 27 ensure that the partial derivatives

∂h/∂xj do not change sign when x 6∈ D∆j
, i.e.,

sign

(
∂h

∂xj

)
= −1 or sign

(
∂h

∂xj

)
= 1 , ∀x 6∈ D∆j

, j ∈ {1, . . . , n} (5.7)
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Finally, to ensure that output-feedback controllers can be used and no signal

escapes in finite time, we make the following assumption.

Assumption 28 (Unboundedness Observability (Angeli and Sontag 1999)). The

closed-loop system (5.2) possesses an unboundedness observability property, such

that if any internal signal escapes in some finite time, then all other signals escape

at the same time.

5.1 The Class of Input-Output Mapping

The first derivative of the output y with respect to time can be written as in (4.6),

where the high-frequency gain vector is written as

∂h

∂x
(x) =

[
∂h
∂x1

. . . ∂h
∂xn

]T
= kp(x) (5.8)

Therefore, equation (5.2) is rewritten as

ẋ(t) = u(t) (5.9a)

ẏ(t) =
n∑

j=1

∂h(x)

∂xj
uj(t) (5.9b)

5.2 Extremum-Seeking Controller

In this section, we describe our sliding-mode extremum-seeking-controller for static

nonlinear plants with multiple decision variables and one objective function, which

we later illustrate by considering a numerical simulation example.

The developed output-feedback based ESC law with periodic switching function

is written as

u(t) = ρ(t) sign (sin[πT σ(t)]) (5.10a)

σ(t) = e(t) + λ

∫ t

0

sign(e(τ))dτ (5.10b)

where ρ(t) = diag
(
ρ1(t) , . . . , ρn(t)

)
is the modulation function (continuous in

t) to be defined later on, T =
[

1/T1 , . . . , 1/Tn

]T
, with Ti 6= Tj for i 6= j, and

λ > 0. The error signal is given by

e(t) = y(t)− ym(t) (5.11)

where ym : R̄+ 7→ R is a ramp function, which decreases with time, such that
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∃ tm : ym(t) ≤ y∗, for all t ≥ tm. For analysis purposes, we define ym(t) as

ym(t) = ym0 −Kmt (5.12)

with design constants ym0 ∈ R and Km > 0. Thus, the objective of the controller

is to make y track ym0, while x 6∈ D∆, such that y reaches an arbitrarily small

neighborhood of the minimum y∗.

5.3 Modulation Function Design

5.3.1 Matched Input Disturbance

From equations (5.10) and (5.11), and the output dynamics (5.9), the σ-dynamics

can be written as

σ̇(t) = kp(x)u(t) + dσ(e) =
n∑

j=1

[
∂h(x)

∂xj

]
uj(t)−Km + λ sign(e) (5.13)

which is valid ∀x. Thus, with respect to the σ-dynamics, the matched input distur-

bance is given by

dσ(e) = −Km + λ sign(e) (5.14)

Furthermore, we can also rewrite (5.13) as

σ̇(t) =
n∑

j=1

|kpj(x)| sign(kpj(x))uj(t) + dσ(e) (5.15)

a format which will be useful later to prove the stability of the proposed controller.

5.3.2 Modulation Function Design

The modulation function must be designed in such a way that a sliding-mode is

enforced on some sliding-surface σ = kTj, for some integer k and one of the parame-

ters Tj. From the previous sections, we already know that it is necessary to select ρ

such that the modulation function overcomes the matched disturbances. Therefore,

consider the following choice of modulation functions,

ρj(t) = ρ(t) =
|dσ(e) + δ|

minj Lj
(5.16)

with Lj from Assumption 27 and δ > 0, which is very similar to (2.16b), the mod-

ulation function for SISO systems.
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5.4 Stability and Convergence Analysis

In this section, the stability and convergence results of the real-time multi-variable

extremum-seeking controller for systems with multiple decision variables and one

objective are carried out by showing that the existence of ideal sliding-modes guar-

antees the attractiveness of the ∆-neighborhood, which is reached in finite time.

5.4.1 Existence of a Family of Integers

Before presenting the main results, we first establish a relation between the param-

eters Tj. This relation is important to guarantee the existence of a set of σ-intervals

of the form [ki, ki+1], for integers ki and ki+1, which are attractive and invariant

with respect to σ(t), for each fixed configuration of sign(kpj), j ∈ {1, . . . , n}. These

attractive intervals are such that the trajectory σ(t) converge to different sliding

manifolds as the output y(t) approaches the optimal solution. In practice, this re-

lation between the different parameters Tj does not need to be so strict, but we

enforce it to obtain the convergence and stability results. Thus, consider

Tj = NjT (5.17)

with Nj ∈ N as defined in the following lemma.

Lemma 2. For any real s, let bsc denote the greatest integer lower or equal to s.

Consider positive integers Ni (i = 1, . . . , n) satisfying the properties

(a) N1 >
∑n

j=2Nj > N2 >
∑n

j=3Nj > N3 > . . . > Nn−1 > Nn.

(b)
⌊
Nj
Nk

⌋
=

Nj
Nk

is an even integer when k > j (j = 2, . . . , n− 1).

Then the integers

⌊
m1N1 +m2N2 + . . .+mnNn

Ni

⌋
and mi

with m1, . . . ,mn ∈ {0, 1}, have the same parity for i = 1, . . . , n.

Proof. First note that, for all k ∈ {1, . . . , n− 1}, one has

n∑

j=k+1

mjNj ≤
n∑

j=k+1

Nj

since mj = 0 or mj = 1. Moreover, from property (a), one can write that
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∑n
j=k+1Nj < Nk and, thus

∑n
j=k+1 mjNj

Nk

<

∑n
j=k+1Nj

Nk

< 1

and

∑n
j=1mjNj

Nk

=

∑k−1
j=1 mjNj

Nk

+mk +

∑n
j=k+1 mjNj

Nk

<

∑k−1
j=1 mjNj

Nk

+mk + 1

where the quantity ∑k−1
j=1 mjNj

Nk

is an even integer according to property (b). In addition, since
∑k−1
j=1 mjNj

Nk
+ mk <∑n

j=1 mjNj

Nk
, one can conclude that

⌊∑n
j=1mjNj

Nk

⌋
=

⌊∑k−1
j=1 mjNj

Nk

⌋
+mk

and the integer
⌊∑n

j=1 mjNj

Nk

⌋
has the same parity as mk, recalling that

∑k−1
j=1 mjNj

Nk
is

an even integer according to property (b).

Remark 11 (Possible Choice for Nj). One possible (conservative) choice for the

parameters Nj that satisfies Lemma 2 is

Nj = 2n−j , j = 1, . . . , n .

The parameters mj are not available to the control designer. Nonetheless, study-

ing the changes of these parameters according to the sign sign(∂h/∂xj) of the partial

derivatives is paramount in establishing the convergence results. Thus, consider two

variations of mj(t) ∈ {0, 1}, either

mj(t) =

{
1, sign(kpj(t)) = 1

0, sign(kpj(t)) = −1
(5.18a)

or

mj(t) =

{
0, sign(kpj(t)) = 1

1, sign(kpj(t)) = −1
(5.18b)

Lemma 3 (Families of Integers). Consider the partial derivatives kpj = ∂h/∂xj

from the system (5.2b). Then, according to the definitions (5.18a) and (5.18b),
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there exist two families of integers N+
m and N−m , such that

(−1)

⌊
N
Nj

⌋
sign (kpj) =

{
−1, N ∈ N+

m

1, N ∈ N−m
(5.19)

Proof. From Lemma 2, the positive integers
⌊
m1N1+m2N2+...+mnNn

Ni

⌋
and mi have the

same parity. So, one can write

(−1)

⌊
N
Nj

⌋
= (−1)mj =

{
1 , mj = 0

−1 , mj = 1
(5.20)

where

N = 2mM +m1N1 +m2N2 + . . .+mnNn (5.21)

M is the least common multiple of the the numbers {N1, . . . , Nn}, and m is any

arbitrary integer (positive or negative). In this sense, N represents a family of

integers for each arbitrary m. When the integers mj are all fixed, N represents a

family of integers for each arbitrary m. Dividing N in (5.21) by Nj,

⌊
N

Nj

⌋
=

2mM

Nj

+

⌊
m1N1 +m2N2 + . . .+mnNn

Nj

⌋
(5.22)

it follows that
⌊
N
Nj

⌋
and

⌊
m1N1+m2N2+...+mnNn

Nj

⌋
have the same parity since 2mM/Nj

is an even integer.

Now, considering the two particular choices of mj from (5.18), define the two

families of integers

N+
m(t) =

{
N ∈ Z : N = 2mM +m1N1 + . . .+mnNn, m ∈ Z,

mj =
1 + sign(kpj(t))

2

}
(5.23a)

and

N−m(t) =

{
N ∈ Z : N = 2mM +m1N1 + . . .+mnNn, m ∈ Z,

mj =
1− sign(kpj(t))

2

}
(5.23b)
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Therfore, equation (5.20) can be further expanded in

(−1)

⌊
N
Nj

⌋
= (−1)mj =





−1, N ∈ N+
m and sign(kpj) = 1

1, N ∈ N+
m and sign(kpj) = −1

−1, N ∈ N−m and sign(kpj) = −1

1, N ∈ N−m and sign(kpj) = 1

(5.24)

which when multiplied by sign(kp) yields (5.19).

5.4.2 Existence of a Family of σ-Intervals

In this section, a possible choice for the parameters Tj is proposed. This choice

guarantees that, for a fixed configuration of sign(kp), there exists a family of σ-

intervals of the form [ki, ki+1] which are invariant with respect to σ(t).

Lemma 4 (Family of σ-Intervals). Consider the σ-dynamics (5.15), written below

to ease redability,

σ̇(t) =
n∑

j=1

|kpj(x)| sign(kpj(x))uj(t) + dσ(e) (5.25)

and select Tj in the control input (5.10a) as

Tj = NjT, ∀j ∈ {1, . . . , n} (5.26)

with T > 0 and the positive integers Nj selected according to Lemma 2. Then, for

each permutation of sign(kpj), j ∈ {1, . . . , n}, there exists a family of σ-intervals of

the form [ki, ki+1] which are invariant with respect to σ(t).

Proof. Let Tj = NjT and expand equation (5.15) by including the control sig-

nal (5.10a) to obtain

σ̇(t) =
n∑

j=1

|kpj(t)| ρj(t)(−1)

⌊
σ(t)
TNj

⌋
sign(kpj(t)) + dσ(t) (5.27)

which holds ∀x. For σ(t)/T in the neighborhood of [N,N+µ), where N is an integer

of the family N = 2mM +m1N1 +m2N2 + . . .+mnNn, for an arbitrary integer m,

N ≤ σ(t)

T
< N + µ (5.28)

and

⌊
N

Nj

⌋
≤ N

Nj

≤ σ(t)

TNj

<
N

Nj

+
µ

Nj

(5.29)
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For a sufficiently small µ,

0 < µ < min
j

{
Nj

(⌊
N

Nj

⌋
+ 1− N

Nj

)}
(5.30)

which is independent of m, the following inequality holds ∀j,
⌊
N

Nj

⌋
≤ N

Nj

≤ σ(t)

TNj

<
N

Nj

+
µ

Nj

≤
⌊
N

Nj

⌋
+ 1 (5.31)

and we conclude that

⌊
σ

TNj

⌋
=

⌊
N

Nj

⌋
(5.32)

Connecting the above equality with Lemma 3 and defining N+
m ∈ N+

m and N−m ∈
N−m , it follows that

(−1)

⌊
σ(t)
TNj

⌋
sign(kpj(t)) =

{
−1, σ(t)/T ∈ [N+

m, N
+
m + µ+)

1, σ(t)/T ∈ [N−m, N
−
m + µ−)

(5.33a)

0 < µ+ < min
j

{
Nj

(⌊
N+
m

Nj

⌋
+ 1− N+

m

Nj

)}
(5.33b)

0 < µ− < min
j

{
Nj

(⌊
N−m
Nj

⌋
+ 1− N−m

Nj

)}
(5.33c)

Then, the so-called σ-intervals are the set Iσ defined as

Iσ =
⋃

∀m
Iσ(m) (5.34a)

Iσ(m) =

{
[N−m, N

+
m] , N−m ≤ N+

m[
N−m, N

+
m+1

]
, N+

m < N−m
(5.34b)

The set Iσ defines infinitely many closed intervals that, for a fixed sign(kpj), are

attractive and invariant with respect to σ(t). This conclusion follows from combin-

ing (5.27) with (5.33) and (5.34).

Moreover, for a fixed sign(kpj), the length of each interval Iσ(m) ∈ Iσ is constant

and smaller or equal to 2M since

∣∣N+
m −N−m

∣∣ =
∣∣[m+

1 N1 + . . .+m+
nNn

]
−
[
m−1 N1 + . . .+m−nNn

]∣∣ ≤ 2M (5.35)

Lemma 5 (Boundedness of σ for x 6∈ D∆j
). Let [t0, t̄0] be an interval such that

∀t ∈ [t0, t̄0], x 6∈ D∆j
, ∀j, i.e., the gradient does not change sign. Then, by using
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the modulation function design (5.16) that ensures
∑n

j=1 |kpj| ρj > |dσ|+ δ,

|σ(t)− σ(t0)| ≤ 2MT, ∀t ∈ [t0, t̄0] (5.36)

Proof.

(i) If σ(t0) ∈ Iσ(m) ⊂ Iσ for some m.

From Lemma 4, boundedness of σ(t) must follow since near the lower bound of

Iσ(m) one has that σ̇ ≥ δ and near the upper bound one has that σ̇ ≤ −δ.
(ii) If σ(t0) 6∈ Iσ.
The signal σ(t) either stays outside Iσ ∀t ∈ [t0, t̄0] or there exists t0∗ ∈ [t0, t̄0] such

that σ(t∗0) ∈ Iσ(m) ⊂ Iσ for some m. Thus, in both cases |σ(t)− σ(t0)| ≤ 2MT .

5.4.3 Attractiveness of Some D∆j

From the previous demonstrations in this section, it is shown that, as long as x 6∈
D∆j

, the signal σ(t) remains bounded. This result alone is enough to ensure that

|e(t)| decreases, y(t) approaches the optimum value, and, thus, x(t) shall reach D∆j

for some j ∈ {1, . . . , n}. To accompany this result, we must show that as x(t)

approaches D∆j
none of the system signals escape in finite time. These properties

are summarized in the following lemma.

Lemma 6 (Attractiveness of D∆j
). Consider system (5.2), with control (5.10),

(5.11), (5.12), and (5.16). Assume that, at t = t0, x(t0) 6∈ D∆j
and let t∗y be

a finite time such that ym(t) < y∗, for t ≥ t∗y. Then, y(t) decreases at a rate

ẏ(t) ≤ −(Km + λ), for t ≥ t∗y and x 6∈ D∆j
. Additionally, none of the signals, x(t),

y(t), u(t), and σ(t), escape in finite time.

Proof. We divide this proof in two steps. First, we show that finite-time escape is

not possible. Second, we show that y(t) decreases at the aforementioned rate.

(i) No Finite-Time Escape

When the modulation function is constant, the smoothness of the output function

h(·) and the unbounded observability assumption Assumption 28 are enough to

guarantee that finite-time escape does not occurs

(ii) Rate of Convergence

If finite-time escape is avoided, then there exists ty∗ > 0 so that for t ≥ ty∗ , ym <

y∗ ⇐⇒ sign (e) = 1. Hence,

σ(t) = e(t) + λ

∫ t

0

sign(e(τ))dτ (5.37)
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satisfies

σ(t) = e(t) + λ

∫ ty∗

0

sign(e(τ))dτ + λ

∫ t

ty∗

(1)dτ (5.38)

∀t ≥ ty∗ . Therefore, one has that

σ(t) = y(t)− ym(t) + λt+ C , ∀t > ty∗ (5.39)

where C = λ[ty∗ +
∫ ty∗

0
sign(e(τ))dτ ] is a constant. One can further write

y(t) = σ(t)− (km + λ)t− C , ∀t > ty∗ (5.40)

In addition, since

σ̇(t) = ė(t) + λ sign(e(t)) (5.41)

one can write that

σ̇(t) = ė(t) + λ , ∀t ≥ ty∗ (5.42)

or, equivalently,

ẏ = σ̇(t)− (km + λ) , ∀t ≥ ty∗ (5.43)

assuring that y decreases when σ̇ < km + λ.

Therefore, y decreases with rate not lower than km +λ, that is, y must approach

y∗. So, there exists at least one channel j such that sign(kpj(t)) changes and, thus,

xj reaches D∆j
. Thus, after some finite time, there exists xj inside of the D∆j

region,

for some value of j.

5.4.4 Dominant Configuration of Signs

To differentiate between the different channels, let us group the indices j in three

disjoint sets, P , P∆, and P∆̄, such that P ∪ P∆ ∪ P∆̄ = {1, . . . , n}.

P(t) = {j ∈ N : L < |∂h(t)/∂xj|} (5.44a)

P∆(t) = {j ∈ N : |∂h(t)/∂xj| ≤ Lj} (5.44b)

P∆̄(t) = {j ∈ N : Lj < |∂h(t)/∂xj| ≤ L} (5.44c)

with L and Lj from Assumption 27, and p, p∆, and p∆̄ the number of elements in

P , P∆, and P∆̄, respectively. The meaning of these sets is provided below.
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P The collections of channels further away from their respective D∆j
regions, for

which the partial derivatives are larger than the largest minimum bound.

P∆ The collections of channels inside the D∆j
regions, for which the partial deriva-

tives are below their corresponding lower bounds Lj.

P∆̄ The collections of channels close to the D∆j
regions by an amount up to L−Lj,

for which the partial derivatives are between the channel lower bound Lj and

the maximum lower bound L.

So, the sign of kpj is held constant ∀j ∈ P ∪ P∆̄ and can change only for

j ∈ P∆, only for the channels j for which x ∈ D∆j
.

Definition 11 (Dominant Configuration os Signs). At any given time instant t,

there is a corresponding configuration of signs for the components kpj(t) of the gra-

dient vector kp(t) = ∂h(t)/∂x. Given a particular configuration of signs, we define

the dominant configuration of signs as the set

D(t) = {sign(kpj(t)) : j ∈ P} (5.45)

containing all signs of partial derivatives of channels j for which L < |∂h(.)/∂xj|1.

During some time interval [t0, t1], t1 > t0, the inherited dominant configuration

of signs is called fixed when the following items hold:

• P 6= ∅ in [t0, t1].

• If, for t ∈ [t0, t1], some new channel (with index i) become a new member of

D(t0), then the sign of kpi(t) must be the same as in t = t0.

Hence, the dominant configuration of signs D(t0) changes to a new dominant config-

uration D(t1), at t = t1, if there exists at least one channel (with index k) belonging

to D(t1) such that sign(kpk(t1)) 6= sign(kpk(t0)).

Recall that, as long as all the partial derivatives retain their signs, sign(kpj(t))

remains constant ∀j, there are two familes of integers N−m and N+
m , explained in

Lemma 3, there exists a set Iσ of infinitely many disjoint sets Iσ(m) that, according

to Lemma 4, are invariant with respect to σ(t). Furthermore, σ(t) remains bounded

according to Lemma 5.

In what follows, we provide a generalization of Lemma 5 by showing that the

existence of a fixed dominant configuration of signs guarantees that σ(t) remains

bounded to an interval [N−m, N
−
m+1], even when some channel k ∈ P∆(t) changes sign

of kpk(t) inside the D∆k
-neighborhood by crossing the level surface ∂h(.)/∂xk = 0.

1It is interesting to see this set as the one containing the signs of the partial derivatives of all
the channels j that are far away from the level surfaces ∂h(.)/∂xj = 0
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This also will ensure that y decreases as long as the dominant configuration of signs

remains fixed.

Lemma 7 (Boundedness of σ for a Fixed Dominant Configuration of Signs).

Consider σ-dynamics (5.13), with control (5.10), (5.11), (5.12), and (5.16). Let

t ∈ [t0, t̄0] such that a fixed dominant configuration of signs D(t) is achieved for t in

this interval. Then, for some m, it follows that σ(t)/T ∈ Iσ(m) ⊂ Iσ and, thus

|σ(t)− σ(t0)| ≤ 2MT, ∀t ∈ [t0, t̄0] (5.46)

Proof. First, rewrite the σ-dynamics as (∀x)

σ̇ =
∑

j∈P
|kpj| ρj(−1)

⌊
σ(t)
TNj

⌋
sign(kpj) +

∑

j∈P∆̄

|kpj| ρj(−1)

⌊
σ(t)
TNj

⌋
sign(kpj) + d′σ (5.47)

where

d′σ =
∑

j∈P∆

|kpj| ρj(−1)

⌊
σ(t)
TNj

⌋
sign(kpj) + dσ (5.48)

is regarded as a disturbance, which satisfies

|d′σ| ≤
∑

j∈P∆

Ljρj + |dσ| (5.49)

since |kpj(t)| ≤ Lj, when j ∈ P∆. Moreover, one has that

(−1)

⌊
σ(t)
TNj

⌋
sign(kpj(t)) =





1, σ(t)/T ∈ [N−m, N
−
m + µ−)

−1, σ(t)/T ∈ [N+
m, N

+
m + µ+)

−1, σ(t)/T ∈ [N+
m+1, N

+
m+1 + µ+)

, j ∈ P ∪ P∆̄

(5.50a)

and

(−1)

⌊
σ(t)
TNj

⌋
sign(kpj(t)) ∈ {−1, 1} j ∈ P∆ (5.50b)

Thus, for σ(t) ∈ T [N−m, N
−
m + µ−), one can write

σ̇ =
∑

j∈P
|kpj| ρj +

∑

j∈P∆̄

|kpj| ρj + d′σ (5.51)
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Since j ∈ P =⇒ 0 < Lj ≤ L < |kpj|, and
∑

j∈P∆̄
|kpj| ρj > 0 when ρj > 0,

σ̇ ≥
∑

j∈P
Lρj + d′σ . (5.52)

Then, due to the design of the modulation function ρi = ρ, i ∈ {1, . . . , n}, in (5.16),

repeated below,

ρ =
d̄σ + δ

minj Lj
=
d̄σ + δ

Lm
(5.53)

where d̄σ > |dσ| and 0 < Lm < min{L1, . . . , Ln} one can conclude that

∑

j∈P
Lρj = p(Lρ) (5.54)

and

|d′σ| ≤ ρ
∑

j∈P∆

Lj + |dσ| (5.55a)

or, equivalently,

−ρ
∑

j∈P∆

Lj − |dσ| ≤ d′σ ≤ ρ
∑

j∈P∆

Lj + |dσ| (5.55b)

leading to the conclusion that

σ̇ ≥ p(Lρ)− ρ
∑

j∈P∆

Lj − |dσ| = ρ(Lp−
∑

j∈P∆

Lj)− |dσ| . (5.56)

Therefore, by choosing L large enough and Lm small enough so that

Lp−
∑

j∈P∆

Lj > Lm > 0 (5.57)

then ρ(Lp−∑j∈P∆
Lj) > ρLm = d̄σ + δ and

σ̇ ≥ ρ(Lp−
∑

j∈P∆

Lj)− |dσ| ≥ δ (5.58)

Analogously, when σ(t) ∈ T [N+
m, N

+
m + µ+) or σ(t) ∈ T [N+

m+1, N
+
m+1 + µ+), one can

further write

σ̇ = −
∑

j∈P
|kpj| ρ−

∑

j∈P∆̄

|kpj| ρ+ d′σ . (5.59)
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and, consequently,

σ̇ ≤ −
∑

j∈P
|kpj| ρ+ d′σ . (5.60)

since −∑j∈P∆̄
|kpj| ρ ≤ 0. In addition, d′σ ≤ ρ

∑
j∈P∆

Lj + |dσ| and |kpj| > L for

j ∈ P , then one has that the following inequalities hold

σ̇ ≤ −p(Lρ) + ρ
∑

j∈P∆

Lj + |dσ| , (5.61)

and

σ̇ ≤ −ρ(Lp−
∑

j∈P∆

Lj) + |dσ| ≤ −ρLm + |dσ|︸ ︷︷ ︸
=−d̄σ+|dσ |−δ

≤ −δ . (5.62)

Finally,

σ̇ ≥ δ , ∀x , σ(t) ∈ T [N−m, N
−
m + µ−) (5.63a)

and

σ̇ ≤
{
−δ, σ(t)/T ∈ [N+

m, N
+
m + µ+)

−δ, σ(t)/T ∈ [N+
m+1, N

+
m+1 + µ+)

(5.63b)

which, together, imply σ(t) ∈ Iσ(m) ⊂ Iσ, for t ∈ [t0, t̄0].

If the dominant configuration of signs remained fixed ∀t ∈ [ta,∞), proving the

convergence of y towards the minimum y∗ would be a matter of applying Lemma 7.

However, this cannot hold. To show that the fixed dominant configuration of signs

changes, let ta > ty∗ , such that

y(t) = σ(t) + (km + λ)t− C (5.64a)

y(ta) = σ(ta) + (km + λ)ta − C (5.64b)

and, thus

y(t)− y(ta) = σ(t)− σ(ta)− (km + λ)(t− ta)
|y(t)− y(ta)| ≤ |σ(t)− σ(ta)| − (km + λ)(t− ta)
|y(t)− y(ta)| ≤ 2MT − (km + λ)(t− ta) (5.65)

So, y → y∗ since y(t) reduces as long as the dominant configuration of signs remains

fixed, and, consequently, for every channel j, x → D∆j
until P = ∅. Therefore,
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there exists tb > ta such that the dominant configuration of signs changes.

5.4.5 Convergence Towards the Optimum

Having already established Lemmas 5 and 7, the main proof of this section, conver-

gence of the output towards the optimum, is ready to be presented. For that, the

challenge that remains is showing that y → y∗, even though the dominant configu-

ration of signs might change over time. For that, we show that, but for oscillations

of order O(T ), the decision variables x(t) approach the optimum D∆ and remain

arbitrarily close to this set thereafter.

Theorem 8. Consider system (5.2), with control (5.10), (5.11), (5.12), and (5.16),

all repeated here for simplicity.

ẋ(t) = u(t) (5.66a)

ẏ(t) =
∂h(x)

∂x

T

u(t) (5.66b)

e(t) = y(t)− ym(t) (5.66c)

ym(t) = ym0 −Kmt (5.66d)

ρj(t) = ρ(t) =
|dσ(e) + δ|

minj Lj
(5.66e)

Recall D∆ =
⋂
∀j D∆j

from Definition 10. Then, by applying the control algorithm as

described above, it follows that D∆ becomes attractive, D∆, and y(t)→ y∗. Further-

more, oscillations of the vector of decision variables x(t) away from the minimizer

are bounded, ||x(t)− x∗|| ≤ ∆/2 +O(T ).

Proof.

(i) Attractiveness of D∆

Assume that we have some dominant configuration of signs D(tc1), at t = tc1 >

ty∗ . This dominant configuration of signs changes only when, due to changes in

one channel j ∈ P∆, x(t) leaves the D∆j
-neighborhood and, also, the |∂h(t)/∂xj|

becomes greater than L at t = tc2 > tc1 . So, recalling the relation between L and ∆

defined in Definition 10 and Assumption 27,

|xj(tc2)− xj(tc1)| ≥ ∆ (5.67)

Moreover, recalling that ẋj = uj and |uj| = ρ, one has that:

xj(t) = xj(tc1) +

∫ t

tc1

uj(τ)dτ , t ∈ [tc1 , tc2 ] (5.68)
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when σ is not in sliding motion, and

|xj(t)− xj(tc1)| ≤ ρ(tc2 − tc1) (5.69)

leading to the conclusion that the time required for changing the dominant config-

uration has the lower bound

tc2 − tc1 ≥
∆

ρ
(5.70)

During this time interval [tc1 , tc2 ], the dominant configuration is fixed so that

σ(t) ∈ Iσ(m) ⊂ Iσ is kept in an interval of length up to 2M and y decreases.

Indeed, with ty∗ ≤ tc1 ≤ t ≤ tc2 ,

[y(t)− y(tc1)] = [σ(t)− σ(tc1)] + (km + λ)(t− tc1) (5.71)

with σ satisfying

|σ(t)− σ(tc1)| ≤ 2MT (5.72)

Hence, since |σ(t)− σ(tc1)| ≤ 2MT one has that

−2MT ≤ σ(t)− σ(tc1) ≤ 2MT (5.73)

and

[σ(t)− σ(tc1)]− (km + λ)(t− tc1) ≥ −2MT − (km + λ)(t− tc1) (5.74)

from which one can conclude that

[y(t)− y(tc1)] = [σ(t)− σ(tc1)]− (km + λ)(t− tc1) ≤ 0 (5.75)

or, equivalently,

y(t) < y(tc1) (5.76)

for

(t− tc1) ≥ 2M

(km + λ)
T (5.77)

It mean that y decreases after an interval of order O(T ). Moreover, at t = tc2 , one
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has that

[y(tc2)− y(tc1)] ≥ −2MT +
∆(km + λ)

ρ
> 0 (5.78)

since

(tc2 − tc1) ≥ ∆

ρ
≥ 2M

(km + λ)
T (5.79)

for T sufficiently small such that

T ≤ ∆

ρ

(km + λ)

2M
=

∆Lm
(km + λ+ δ)

(km + λ)

2M
(5.80)

After t = tc2 , σ(t) moves towards a an interval Iσ(m2) ⊂ Iσ, reaching it at t =

tσ2 , and y might increase along the time interval [tc2 , tσ2 ]. In fact, there are three

possibilities:

(1) σ(t) stays in the same interval Iσ(m) ∀t.

(2) σ(t) decreases towards a new interval Iσ(m2) while t ∈ [tc2 , tσ2 ].

(3) σ(t) increases towards a new interval Iσ(m2) while t ∈ [tc2 , tσ2 ].

In the first two cases, y decreases and moves towards the minimum y∗. Focusing on

the third case, assume that σ(t) > σ(tc2), ∀t ∈ [tc2 , tσ2 ]. For what follows, recall the

demonstration of Lemma 6. If the time derivative of σ(t) is such that σ̇(t) ≤ km+λ,

then ẏ = σ̇ − (km + λ) ≤ 0, ty∗ < tc2 ≤ t ≤ tσ2 . Thus, y does not increase.

So, consider the case where σ̇ > km + λ. In this case, ẏ = σ̇ − (km + λ) > 0,

ty∗ < tc2 ≤ t ≤ tσ2 . Moreover, since σ̇ > km + λ one can write

σ(tσ2)− σ(tc2) ≥ km + λ(tσ2 − tc2) (5.81)

Now, since the interval Iσ(m2) is located at most 2M apart, |σ(t)− σ(tc2)| ≤ 2MT

and, therefore,

(km + λ)(tσ2 − tc2) ≤ σ(tσ2)− σ(tc2) ≤ 2MT (5.82)

and

(tσ2 − tc2) ≤ 2M

(km + λ)
T (5.83)

i.e., tσ2 − tc2 is of order O(T ). Consequently,

[y(tσ2)− y(tc2)] = [σ(tσ2)− σ(tc2)]− (km + λ)(tσ2 − tc2) (5.84)
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implies

|y(tσ2)− y(tc2)| ≤ |σ(tσ2)− σ(tc2)|+ (km + λ)(tσ2 − tc2) ≤ 4MT (5.85)

and y can increase only during the interval [tc2 , tσ2 ] and at most by a value of order

O(T ).

Taking t = tσ2 as the initial instant, and since tσ2 − tc2 is of order O(T ), one has

that the next dominant configuration of signs change occurs (otherwise y decreases

until it reaches the minimum) at some t = tc3 > tσ2 such that

tσ2 − tc2 <
∆

ρ
≤ (tc3 − tc2) (5.86)

since tc3−tc2 is greater that tσ2−tc2 , for T sufficiently small. With similar arguments,

one can verify that y decreases during the interval [tσ2 , tc3 ], i.e.,

y(tc3) < y(tσ2) ≤ y(tc1) (5.87)

and can increase during the interval [tσ2 , tσ3 ] not more than a value of order O(T ).

This drives the conclusion that y approaches the extremum or the dominant con-

figuration of signs disappear P = ∅. In both cases, x(t) reaches a neighborhood of

order O(T ) around D∆. Hence, it follows that D∆ is attractive.

(ii) Oscillations of order O(T )

When some channel j escapes from this neighborhood of order O(T ) around D∆,

such that P 6= ∅, a new dominant configuration of signs is obtained, guaranteeing

that y diverges from y∗ not more than a value of order O(T ).

5.5 Numerical Simulation Example

To illustrate the proposed extremum-seeking controller, consider the optimization

of the Rosenbrock function,

h(x) = 50

N/2∑

k=1

(
x2

2k−1 − x2k

)2
+ (x2k−1 − 1)2 (5.88)

with N = 2, see fig. 5.1. It is possible to optimize functions of higher dimension, but

we illustrate the problems with N = 2 because it is easier to visualize the results.

We have chosen to optimize the Rosenbrock function because it is a challenging

objective function, with a global minimum at x∗ = [1 1]T.

We consider two simulation scenarios. In the first, we run the simulation with

the control law as described in this section. In the second, we modify the control
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law to implement a continuous unit-vector control, rewriting (5.10) as

uj(t) = ρj(t)
s(t)

max (||s(t)|| , ε) (5.89)

s(t) = sin

[
πσ(t)

Tj

]
(5.90)

The small parameter ε = 0.1 is used to avoid the discontinuity when s → 0. For

both controllers, we set ρ1 = ρ2 = 0.5, x(0) =
[
−1 −1

]
, λ = 0.1, T1 = 0.1, and

T2 = 0.2. We set the reference model

ym(t) = max (y(0) (1− t/20) , 0) = max (200− 10t, 0) (5.91)

such that the output should reach a small neighborhood of the minimum at t = 20.

The sampling period is fixed at 10−4.

The simulation results are shown in figs. 5.1 and 5.2. In both cases, it is possible

to verify that the controllers can drive the output towards the minimum value.

The performance is similar, but it is interesting to note that, in this case, the

unit-vector control formulation outperforms the approach via sign function. This

result is far from a generalization, and simulations with other objective functions

display different results. Nonetheless, it is interesting to show that, depending on

the problem at hand, one might benefit from other control formulations.
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Figure 5.1: Two-dimensional Rosenbrock function at the top, and the systems trajec-
tories when solving the two-dimensional optimization problem of section 5.5 using
(left) the control with sign function (5.10) and (right) unit-vector control with a
continuous switching element (5.89).
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Chapter 6

Dynamic Estimator for Extremum

Consensus

Consensus estimation consists in applying an update rule such that, in a distributed

network where each node has its inputs and estimates, every node converges to a

desired performance index, which is a function of the network inputs. To converge

to this desired index, each node can exchange information with a finite number of

neighbor nodes.

In distributed optimization problems, it is appealing to consider consensus es-

timation as a valuable tool to perform scalarization of the multiple objective func-

tions, see (Poveda and Quijano 2013; Guay et al. 2018; Salamah et al. 2018). In

these works, the authors consider the average consensus estimator of Freeman et al.

(2006) to perform scalarization through weighted sums. In all three works, the fi-

nal objective is to solve the single-objective optimization problem, obtaining then a

Pareto efficient solution. The downside of this approach is that, if the set of Pareto

efficient solutions is non-convex, not all solutions are reachable after solving the

single-objective optimization problem.

To counter this drawback, in this Thesis, we propose a novel dynamic consensus

estimator capable of finding the overall maximum (minimum) input in a network.

Thus, applying the proposed algorithm in a distributed optimization problem, one

may consider the nodes inputs as the individual objective functions, and by esti-

mating the overall maximum (minimum) objective in the network, one may apply

scalarization via Chebyshev’s distance to find Pareto efficient solutions for classes of

optimization problems with non-convex Pareto sets. Naturally, if all objective func-

tions are convex, Chebyshev’s distance can still be used to find all Pareto efficient

solutions, similarly to how weighted sums would be used.
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6.1 Problem Formulation

There are two varieties of consensus estimators: static estimators and dynamic es-

timators. In static consensus, a snapshot of the nodes inputs at a given time is

used to initialize the algorithm, but changes to these inputs are ignored thereafter.

Static consensus is useful if the inputs vary slowly or do not vary at all. If the inputs

vary through time, and such changes cannot be ignored, one should instead consider

dynamic consensus. In dynamic consensus, algorithms are designed such that each

node tracks the overall network performance index as it changes through time due

to changes to the nodes inputs. In this section, we provide the mathematical back-

ground and the assumptions needed to develop our dynamic consensus estimator for

maximum (minimum) estimation.

Consider a group of n labeled nodes, with labels belonging to the set V =

{1, 2, . . . , n}, each one holding an input uj(t) ∈ R and an estimate x(t) ∈ R,

both function of time. These nodes interact over a communication network, with

topology represented by a directed graph G = (V , E), where E ⊂ V × V is the set

of all edges which connect two nodes. It is said that a node i receives information

from node j if and only if (i, j) ∈ E . When this is the case, node i has access to the

inputs and the estimates of node j at any given time t.

Many properties can be associated with graphs, but we are particularly interested

in the following (see fig. 6.1 for illustrations of some of them).

Definition 12 (Undirected Path). An undirected path is a sequence of nodes

i1, i2, . . . , ip such that either (ij, ij+1) ∈ E or (ij+1, ij) ∈ E.

Definition 13 (Weakly Connected). A graph is weakly connected if every pair of

nodes lie on some undirected path.

Definition 14 (Directed Cycle). A directed cycle is a sequence of nodes i1, i2, . . . , ip,

with i1 = ip, such that (ij, ij+1) ∈ E.

Definition 15 (Strongly Connected). A graph is strongly connected if every pair

of nodes lie on some directed cycle. Considering undirected graphs, weakly connected

⇐⇒ strongly connected.

Definition 16 (Directed Path). Similar to an undirected path, a directed path is a

sequence of nodes i1, i2, . . . , ip such that (ij, ij+1) ∈ E.

Definition 17 (Shortest Path, Distance, Eccentricity, and Diameter). The shortest

path between two nodes in a directed graph is the directed path with the least amount

of edges. The distance between two nodes δ(i, j) is the number of edges in a shortest

path, and the eccentricity of a node is its greatest distance to any other node. The
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diameter, denoted d(G), is the greatest eccentricity of all nodes in a graph.

(a) (b) (c)

Figure 6.1: Examples of (a) an undirected strongly connected graph, (b) a weakly
connected but not strongly connected directed graph, and (c) a strongly connected
directed graph.

Assumption 29 (Graph Properties). For the remaining of this chapter, we use

G = (V , E) to denote a directed and strongly connected graph, with nodes belonging

to V = {1, 2, . . . , n} and edges belonging to E ⊂ V × V.

For a given node j,

Uj(t) = {ui(t) ∈ R : (j, i) ∈ E} ∪ {uj(t)} (6.1a)

Xj(t) = {xi(t) ∈ R : (j, i) ∈ E} ∪ {xj(t)} (6.1b)

are the sets containing all inputs and all estimates that node j is aware of, including

its own input and estimate, which belong to the singletons {uj(t)} and {xj(t)}.
Given a vector v ∈ Rp, vj ∈ R denotes its j-th component. Therefore, the

vectors containing all inputs and all estimates in the network are u(t), x(t) ∈ Rn,

respectively.

Assumption 30 (Differentiable Input Vector). The input vector u(t) is differen-

tiable almost everywhere.

Assumption 31 (Bounded Input Derivative). The input vector u(t) is absolutely

continuous and there is a known upper-bound L > 0 to its time derivative

max
j∈V
|u̇j(t)| ≤ L , ∀t (6.2)

which is defined almost everywhere.

Depending on the context, the function max(.) can denote either the maximum

component of a vector or the maximum element in a set. Also, recall the sign

function definition

sign(ζ) =

{
−1 , ζ < 0

1 , ζ > 0
(6.3)
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However, we consider that if ζ = 0 is not a sliding-surface, sign(ζ) = 0 at ζ =

0. Otherwise, sign(ζ) is undefined at ζ = 0. We consider the following linear

approximation of the sign function,

sigmoid
ε

(ζ) =

{
sign(ζ) , |ζ| > ε

ζ/ε , |ζ| ≤ ε
(6.4)

for any positive scalar ε > 0.

Considering the above definitions, the purpose of this chapter is to develop an

algorithm such that all estimates xj are driven toward the maximum input max(u)

in the network. In other words, for t > t∗, |xj(t)−max(u(t))| < ε, for all j ∈ V
and for an arbitrarily small scalar ε > 0, where the convergence time t∗ > 0 can be

made arbitrarily close to zero.

6.2 Dynamic Consensus Estimator

In this section, we formulate the problem and present the sliding-mode based max-

imum consensus algorithm.

Let G be the graph of a network such that Assumption 29 is satisfied. For this

class of networks, consider the update rule

τ ẋj = (1 + α) sigmoid
ε

(êj) + sign(ej) (6.5a)

êj = max (Xj)− xj (6.5b)

ej = max (Uj)− xj (6.5c)

where êj(t) ∈ R is the error between the node estimate and the maximum estimate

it knows, ej(t) ∈ R the error between the node estimate and the maximum input it

knows, τ > 0 is a scalar that controls the convergence rate, and α ∈ (0, 1) and ε > 0

are other design parameters.

The first component of (6.5) is responsible for driving all estimates toward a

common value, which is the highest in the entire network. The second component

is responsible for driving the estimates toward the maximum input.

We assume that u(t) is differentiable almost everywhere, and that its rate of

change u̇(t) is bounded, such that Assumptions 30 and 31 are true. Assumption 31

is important to enable the control designer to select an appropriate value for the

parameter τ in (6.5a).

Lemma 8 (Convergence to max(x)). Let the graph G satisfy Assumptions 29 to 31,

and let all nodes update their estimates through the update rule (6.5), starting at
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an initial time t0. Then, with τ < α/L, the network achieves a consensus and

all estimates converge to max(x) − xj ≤ O(ε) after a finite time t1 ≤ t0 + O(τ),

remaining therein for t ≥ t1.

Proof. At any given time, a node’s estimate is lower than or equal to the highest

estimate that it is aware of, i.e. xj(t) ≤ max(Xj(t)), ∀j ∈ V . Thus, considering

also the ε-vicinity of max(Xj), there are three possibilities for any node j: xj ≤
max(Xj)− ε, max(Xj)− ε < xj < max(Xj), and xj = max(Xj).
xj ≤ max(X j)− ε . In this case, it follows that êj ≥ ε ⇐⇒ sigmoidε(êj) = 1,

and (6.5a) becomes

τ ẋj = 1 + α + sign(ej) ≥ α (6.6)

with a solution

xj(t) ≥ xj(t
′
0) + (α/τ)(t− t′0) (6.7)

where t′0 > t0 is a time instant at which xj enters the region xj ≤ max(Xj) − ε.

Therefore, while xj is not close to max(Xj) it increases at a rate α/τ .

xj = max(X j) . In this case, êj = 0 ⇐⇒ sigmoidε(êj) = 0, and (6.5a) becomes

τ ẋj = sign(ej) (6.8)

such that the dynamics of ej becomes

ėj = τ
d

dt
max(Uj)− sign(ej) (6.9)

Therefore, as long as τ < 1/L, ej = 0 is a sliding-surface while xj = max(Xj).
Furthermore, to guarantee that the neighbors i of node j for which max(Xi) = xj

have estimates converging to xj, one must have α/τ > L ⇐⇒ τ < α/L. This

conclusion follows from (6.7).

These two cases are enough to show that xj → max(x), ∀j ∈ V , entering an ε-

vicinity of max(x) in finite time, since all estimates are either increasing, according

to (6.7) or bounded by their highest known input until another estimate exceeds it.

When this happens, the exceeded estimate, for instance xi, must track its current

maximum known estimate max(Xi). This process repeats itself and propagates

through the network until all estimates reach xj ≥ max(x)− d(G) ε, converging in a

finite time

t1 ≤ t0 + ∆
(α
τ
− L

)−1

≤ t0 +O(τ) (6.10a)
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∆ = max

([
u(t0)

x(t0)

])
−min(x(t0)) (6.10b)

The propagation is guaranteed because G is strongly connected. The factor d(G)

acts as a worst case bound because the estimate error might propagate through the

network from max(x) to the node furthest from it. This distance is, at most, equal

to the graph diameter d(G).

From the perspective of consensus, Lemma 8 is enough to show that the network

reaches a consensus with the proposed technique. It does not, however, establish any

relationship between the nodes inputs and the consensus value. The next theorem

shows that the update rule (6.5) is able to enforce tracking of the maximum network

input.

Theorem 9 (Convergence to max(u)). Let the graph G satisfy Assumptions 29 to 31,

and let all nodes update their estimates through the update rule (6.5), starting at an

initial time t0. Then, with τ < α/L, the network achieves a consensus and all

estimates converge to |max(u)− xj| < O(ε) after a finite time t∗ ≤ t0 + O(τ),

remaining therein for t ≥ t∗.

Proof. From Lemma 8 we already know that max(Xj)− xj ≤ ε and max(x)− xj ≤
d(G) ε hold ∀j ∈ V for t ≥ t1. Thus, it suffices to show that max(x) → max(u).

The proof is then split into two parts. First, we show that if max(x) < max(u), all

estimates increase. Otherwise, if max(x) > max(u), all estimates decrease.

max(x) < max(u) . Let j : uj = max(u), which implies uj = max(Uj), and let

k ∈ {i ∈ V : (j, i) ∈ E} ∪ {j} (6.11)

that is, k correspond to all nodes that node j has access to, including itself. Consid-

ering these nodes and t > t1, such that max(Xj)−xj ≤ ε ⇐⇒ sigmoidε(êj) = êj/ε,

τ ẋk =
1 + α

ε
êk + sign(ek) (6.12)

Since max(x) < max(u), then sign(ek) = sign(max(u) − xk) = 1. Furthermore,

from its definition, it follows that êk ≥ 0, and equation (6.12) can be converted to

the inequality

τ ẋk ≥ 1 (6.13)

which yields

xk(t) ≥ xk(t2) + (t− t2)/τ (6.14)
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where t2 ≥ t1 is any time instant for which max(x) < max(u). Hence, for t > t1,

max(Xj) must reach max(u) in a finite time

t∗1 ≤ t1 + ∆∗
(

1

τ
− L

)−1

(6.15a)

∆∗ = |max(u(t1))−max(Xj(t1))| (6.15b)

From Lemma 8, |xj −max(u)| ≤ d(G) ε, ∀j ∈ V , is reached in a finite time bounded

by (6.15).

max(x) > max(u) . Consider the error function

e = max(x)−max(u) = 0 (6.16)

with time derivative

τ ė = sign(ei)− τ
d

dt
maxu(t) (6.17)

where i : xi = max(x) and sigmoidε(xi) = 0 was omitted because xi is not in sliding-

mode. Since max(x) > max(u), then sign(ei) = −1. Therefore, the following is valid

whenever max(x) > max(u):

τ ė ≤ τL− 1 (6.18a)

e(t) ≤ e(t3)−
(

1

τ
− L

)
(t− t3) (6.18b)

where t3 ≥ t1 is any time instant for which max(x) > max(u). Hence, for t > t1 and

max(x) > max(u), the maximum estimate max(x) reaches max(u) in a finite time

t∗2 ≤ t1 + ∆∗
(

1

τ
− L

)−1

(6.19)

which equals the bound (6.15) for the previous case. Once again, invoking Lemma 8,

|xj −max(u)| ≤ d(G) ε, ∀j ∈ V , is reached in a finite time bounded by (6.19).

Finally, since it was shown that max(x) is driven toward max(u), we conclude

from (6.10), (6.15), and (6.19) that |max(u)− xj| ≤ d(G) ε ≤ O(ε) is reached in a

finite time

t∗ ≤ t0 + t1 + ∆∗
(

1

τ
− L

)−1

≤ t0 +O(τ) (6.20)

Remark 12 (Finite Time Upper-Bounds). It is worth pointing out that both conver-
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gence time upper-bounds (6.10) and (6.20) are very conservative, since, to compute

them, it is assumed that the inputs are always growing at their maximum possible

rate L ≥ maxj∈V |u̇j|.

Remark 13 (Application to Minimum Consensus Estimation). The proposed con-

sensus estimator can be easily applied to the problem of finding the minimum overall

input in a network, instead of the maximum overall input. For that, one need only

change the max(.) functions by min(.) functions, and no other modification is needed,

such that the consensus dynamics is written as follows.

τ ẋj = (1 + α) sigmoid
ε

(êj) + sign(ej) (6.21a)

êj = min (Xj)− xj (6.21b)

ej = min (Uj)− xj (6.21c)

Theorem 9 guarantees that all estimates track the maximum network input, with

an arbitrarily small error of order O(ε). Naturally, in practical discrete-time imple-

mentations, even though the theory ensures arbitrarily fast convergence rates and

small tracking errors, there is a tradeoff between improving these values and select-

ing an appropriate sampling period. The faster the system dynamics, the smaller

the sampling period. Likewise, the smaller the desired tracking error, the smaller

the sampling period. To help implementing the proposed consensus algorithm (6.5),

we highlight some implementation guidelines.

6.2.1 Discrete-Time Implementation Guidelines

To avoid undesired chattering, we have experienced better results using the trape-

zoidal integration rule and using sigmoidε(ej) instead of sign(ej) in (6.5a). For the

initial states, we suggest using xj(t0) = uj(t0). Let perror > 0 and prate > L denote

the desired maximum error and minimum convergence rate, with L from Assump-

tion 31. Using these specifications, the control parameters are defined as

ε = perror/d(G) (6.22a)

τ = α/prate (6.22b)

Although we let α ∈ (0, 1), we usually select α = 0.5.

There are two basic rules to select the sampling period. It can be either a

function of the convergence rate or a function of the desired tracking error. To

ensure convergence and that both specification are met, the sampling period ts
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should be

ts ≤ min (ε , τ/100) (6.23)

Naturally, if the sampling period ts is pre-defined, good choices of ε and τ are

ε ≥ ts (6.24a)

τ ≥ 100 ts (6.24b)

There is a margin on τ , such that the 102 factor can be relaxed to 10 without much

impact on performance.

Finally, we stress that it is essential to select an appropriate sampling period.

Otherwise, there might be convergence issues that may hinder the algorithm per-

formance. If reducing the sampling period or increasing τ are not viable options,

one might actually lower the parameter τ . Although this seems counterintuitive, it

mitigates the problem, at the expense of increasing chattering.

6.2.2 Numerical Simulation Example

In this section, we illustrate the proposed consensus algorithm properties through

two numerical simulations. The first one serves to illustrate the algorithm tracking

performance and its convergence properties, while the second displays its robustness

to the network size. The graphs topologies for these simulations are illustrated in

fig. 6.2. Note that, regarding the network connectivity, the second topology is the

worst possible, since every node has the same eccentricity, which equals the network

diameter d(G2) = 99.

(a)

n = 4

(b)

n = 100

Figure 6.2: Topology of the two graphs, Ga on the left and Gb on the right, considered
in the simulations. For simplicity, we draw only 13 nodes of Gb, but the actual
simulation runs with 100 nodes.

As suggested in section 6.2.1, all simulations are solved using the trapezoidal

integration rule.
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Small Network

The first simulation consists of a graph Ga with four nodes connected as in fig. 6.2(a),

each with a sinusoidal input

uj(t) = sin(2πt/j) (6.25)

Nodes are numbered starting from the topmost node in fig. 6.2(a) and increase

clockwise until the last node is reached. The target consensus value max(u) is

shown in fig. 6.3. All parameters, together with those of the other simulation, are

listed in table 6.1. The control parameters are chosen according to (6.22) and (6.23)

to achieve a desired maximum consensus error perror = 0.01 and a desired minimum

convergence rate prate = 2π.

Table 6.1: Parameters used to run the simulations on graphs Ga and Gb of fig. 6.2.

τ α ε ts

Simulation of Ga 8 · 10−2 5 · 10−1 2.5 · 10−3 10−4

Simulation of Gb 5 · 10−2 5 · 10−1 10−3 10−4

Large Network with Sparse Connectivity

This simulation consists of a graph Gb with one hundred nodes connected as in

fig. 6.2(b), labeled clockwise, with ramp inputs

uj(t) =

(
j

n

)
t+ bj (6.26a)

bj−1 =

(
j − 1

jn

)
tf + bj (6.26b)

bn = 1− tf , tf = 10 (6.26c)

Out of curiosity, note that limn→∞max(u(t)) = [(t/tf )
2 − 1] tf/2 + 1, for t ∈ [0, tf ],

with u(t) from (6.26), is a parabola. The target consensus value max(u) is shown in

fig. 6.3. All control and simulation parameters are listed in table 6.1. The control

parameters are chosen according to (6.22) and (6.23) to achieve a desired maximum

consensus error perror = 0.1 and a desired minimum convergence rate prate = 10.

Simulation Results

The simulation results are shown in fig. 6.4 for both scenarios. Note that, as ex-

pected, during both simulations all nodes estimates converge to the maximum net-

work input and proceed to track this value afterwards. The bottom graphs display

the tracking errors, which remain smaller than the prescribed values of 0.01 and 0.1.
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Figure 6.3: Maximum consensus of networks Ga and Gb shown in fig. 6.2, with
inputs (6.25) and (6.26). In blue the value of max(u) and in light gray the nodes
inputs uj. Only the inputs u1, u33, u66, and u100 are shown for Gb.

Analyzing the results from the first simulation (topmost plots in fig. 6.4), we

observe some of the convergence properties of the proposed consensus algorithm.

A lot can be said about the interaction between nodes 2 (in solid black), 3 (in

dashed black), and 4 (in solid red). Focusing on a short frame at the begining of

the simulation, one can study several convergence properties discussed in the proof

of Lemma 8, and also get a good feeling of the algorithm transient behavior.

When the simulation starts, node 4 knows no higher estimate than its own, and,

hence, x4 tracks its own input, since max(U4) = u4. Meanwhile, not only does node 3

knows an estimate higher than its own, max(X3) = x2, but also max(U3) = u2 > x3.

Thus, node’s 3 estimate increases at a rate (2 + α)/τ . At approximately t = 8.4

ms x3 surpasses x4, and node 4 will then start increasing its estimate at a rate α/τ ,

since max(X4) = u4 < x4, and follow x3. Shortly after, at approximately t = 11 ms,

x3 surpasses max(U3) = x2, node’s 3 highest known input, and x3 will then start

increasing at a rate α/τ , the same as x4. Both estimates continue to grow until x3

reaches the ε-vicinity below x2 at approximately t = 157 ms. From this moment on,

the network reaches a consensus and all estimates track max(u).

The results of the second simulation illustrate a phenomenon that, although very

unlikely, can occur on some occasions. It is the error propagation from one node to

another across a long path in the network, in this case, across the entire network.

In the current example, it happens because max(u) is always changing from uj to

uj+1 as time goes by. These consecutive changes imply that xj−1 is always chasing

xj. Since all estimates are increasing at the same rate, without ever reaching one
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Figure 6.4: Simulation results for networks Ga and Gb, with inputs (6.25) and (6.26),
using the proposed consensus algorithm (6.5). At the top, the solution of Ga. At
the bottom, the solution of Gb, where only 25 out of the 100 nodes are shown.
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another, the final consensus error for each node becomes

|max(u)− xj|t≥10 ≈ δ(j, 100) r ε = (100− j) r ε

where δ(j, 100) is the distance from node j to node 100 and r ∈ (0, 1) a ratio which

determines the separation between each estimate. On this simulation scenario, we

have r ≈ 0.7. On average, the overall final consensus errors is reduced if the node

inputs of this second example are randomly reordered or, even better, if more edges

are added to the network, such that the network diameter d(G2) decreases.

6.3 Privacy-Preserving Dynamic Consensus Esti-

mator

As it is, the proposed consensus estimator fails to provide privacy with respect to

the nodes inputs and estimates. From the update rule (6.5), it is clear that any

node in the network is aware of the inputs and estimates from all of its neighbors.

In this section, we propose a modification to the proposed consensus estimator such

that it is able to deliver privacy with respect to the nodes inputs. For that, we avoid

transmitting the nodes inputs to their neighbors. Instead, we rely on the neighbor

nodes telling to which direction should a node update its estimate.

Remark 14. In this section, we develop a privacy preserving consensus estimator.

We do not, however, develop the stability nor the convergence proof, but leave them

as a topic for future research.

Consider the following modification to the consensus dynamics (6.5),

τ ẋj = (1 + α) sigmoid
ε

(êj) + sign(uj − xj) (6.27a)

êj = max (Xj)− xj (6.27b)

Xj = {x ∈ R : x = xi +Ni, (j, i) ∈ E} ∪ {xj} (6.27c)

where Ni is a zero-mean random variable that adds noise to the estimate advertised

by node i, and Xj is modified to reflect that node j only knows the estimates of its

neighbors plus some noise Ni.

The idea behind the above update rule is to protect the information about the

node input and to mask the information about the node estimate. The node input

is protected since it is never transmitted to any neighbor, and the estimates are

masked by adding noise before transmitting them. By not transmitting the inputs,

one downside is an increase in the convergence time. Furthermore, the noise added

to the estimates cause a deviation that is proportional to the noise power.
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This privacy preserving algorithm can also be modified to serve as a minimum

consensus estimator. For that, one need only swap the max(.) function by the min(.)

function in (6.27b).

We do not prove the convergence or stability of the proposed privacy-preserving

dynamic consensus estimator. Nonetheless, it is not unexpected that the modified

consensus algorithm retains the properties of the one from section 6.2, but for a small

residual error. The residual error is caused by the noise added to the argument of

the sigmoidε(.) function in eq. (6.27a), and, thus, can be made arbitrarily small by

admitting more disclosure of the nodes estimates.
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Chapter 7

Conclusion

In this Thesis, the main topic of study has been real-time optimization of single-

objective and multi-objective problems, with single or multiple decision variables,

and subject to the dynamics of an underlying process. Other contributions are made

on global output tracking and dynamic consensus estimation. Although we start the

thesis by describing the results on output-tracking, we follow a different path in this

conclusion to highlight what we believe are the most relevant contributions.

Two distinct extremum-seeking sliding-mode controllers using only input-output

information and periodic switching functions were introduced to solve multi-

objective problems from two different perspectives. First, in section 4.2, we develop

an algorithm capable of driving the trajectories of a process towards an equilibrium

that corresponds to the Nash equilibrium of a multi-objective output map. Chang-

ing the way we compute the periodic switching function amplitude, in section 4.3,

we show that the same algorithm is also able to optimize multi-objective problems

subject to the dynamics of a nonlinear input-affine process. Second, in chapter 5,

we develop an algorithm capable of driving the system trajectories toward an equi-

librium that corresponds to the optimizer of a single-objective optimization problem

with multiple decision variables. Assuming convex objective functions and taking

the convex combination of the multiple objectives, a common technique for scalar-

ization, we show that the solution is Pareto efficient. Our results extend the cur-

rent theory of sliding-mode extremum-seeking control by significantly widening the

class of solvable optimization problems to include those with nonlinear input-affine

underlying processes, without relying on any time-scale separation nor producing

undesired chattering.

A novel dynamic consensus estimator for maximum-value and minimum-value

estimation (section 6.2) is introduced and generalized (section 6.3) to avoid the dis-

closure of a node’s private estimates and measurements. Although the literature is

quite vast on consensus estimation, and especially maximum-value estimation has

been extensively studied by several authors, to the best of our knowledge, our algo-
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rithm is the first to address dynamic maximum-value and minimum-value consensus

explicitly.

Even though single-objective real-time optimization via extremum-seeking-

control and trajectory tracking of systems with unknown control direction via

output-feedback are topics that have received much attention in the past three

decades, we have also managed to provide some contributions to them in chap-

ters 2 and 3. For both cases, we have extended the current theory on sliding-mode

control via switching functions to admit chattering-free control laws by resorting to

continuous switching elements. Furthermore, we generalize the sliding-mode con-

troller such that the proposed control law covers several different types of sliding

surfaces. Both of these contributions, but especially the latter, extend the possible

practical implementations in the sense of expanding the design choices available to

the control designer.

Additionally, we show that the proposed sliding-mode controllers for extremum-

seeking and output tracking can be applied to arbitrary nonlinear systems, given

that the closed-loop satisfy the conditions to apply Tikhonov’s theorem.

Finally, throughout the manuscript, we have illustrated most of the proposed

algorithms through numerical simulations, inspired by theory and from practical

applications. Notably, in section 4.2.6, an engineering application concerning the

multi-variable real-time optimization for the output signal power spectrum of Raman

optical amplifiers was considered to evaluate the performance of the multi-objective

extremum-seeking control for Nash equilibrium seeking. The parameters of the op-

tical fiber used in the simulations describe a Raman optical amplifier based on the

TrueWave R©Reach - Low Water Peak(RFLWP) optical fiber, with model parame-

ters experimentally characterized by the company OFS Fitel Denmark ApS. The

results are consistent with those of the literature, and performance improvements

are obtained with the proposed scheme to pursue a flat signal spectrum and output

signal power regulation.

7.1 Future Works

A common next step of every technique developed in this Thesis is experimental

validation. Even though we thought out the simulations to display some practical

implementation aspects, such as discrete-time implementation, control amplitude

limitation, and chattering alleviation, experimental validation is indispensable to

evaluate the proposed algorithms appropriately.

Regarding the multi-variable optimization algorithm proposed in chapter 5, there

are three future developments that could improve the algorithm significantly:

• proof of convergence of the control design via unit-vector control, illustrated

142



in section 5.5, with control law (5.10) rewritten as

uj(t) = ρ(t)
s(t)

max (||s(t)|| , ε) (7.1)

s(t) = sin

[
πσ(t)

Tj

]
(7.2)

where we use max (||s(t)|| , ε) instead of ||s(t)|| to make the control law contin-

uous;

• generalization to input-affine nonlinear systems;

• distributed implementation relying on scalarization via consensus estimation

using average consensus or the proposed maximum (minimum) consensus es-

timator.

It is worth noting that many authors suggest the approximation of ||v|| using ||v||+ ε.

However, we have experienced that this approach delivers worse results when com-

pared to max (||v|| , ε). Naturally, more experimentation is necessary before drawing

any conclusions.

Extensively used in this Thesis and by many authors in the past three decades,

the control design via periodically switching functions, sign(sin(.)), can still be sig-

nificantly improved and generalized. Taking inspiration from the example of unit-

vector control for the multi-variable case, we suggest the following generic periodi-

cally switching function:

u(t) = ρ(t)φ
(
sin
[
πT−1σ(t)

])
(7.3)

where φ(.) can be any control law based on the output error that is capable of

making the origin of the closed-loop process asymptotically stable. For instance, if

one whishes to apply super-twisting control, then

φ(s) = φ1(s) +

∫ t

0

φ2(s)dτ (7.4a)

φ1(s) =

{
−κ1 |s0|0.5 sign(s) , |s| > s0

−κ1 |s|0.5 sign(s) , |s| ≤ s0

(7.4b)

φ2(s) =

{
−φM
−κ2 sign(s) , |φ| ≤ φM

(7.4c)

The original periodically switching function is recovered by selecting φ(.) = sign(.).

Extensive studies must still be conducted to characterize φ(.) properly, and to de-

velop the stability and convergence results.
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As discussed in section 1.3.1, the stabilization controller for SISO systems with

unknown output sign can be related to (Scheinker and Krstić 2013; Scheinker and

Krstić 2016), where the authors provide general results based on the minimization of

control Lyapunov functions. Such a formulation allows one to consider stabilization

as a consequence of solving an optimization problem via extremum-seeking control.

Following this same direction with the controller proposed in section 3.3 might yield

interesting new results. Also, one thing to keep in mind is that, when using control

Lyapunov function, the objective function is known to the control designer, a fact

that might be exploited to improve the performance of the sliding-mode controller.

Regarding the dynamic consensus estimator, we have already indicated a mod-

ification to ensure privacy preservation in section 6.3. Although we have tested

in simulations this modified version of the algorithm, its stability and convergence

properties still need to be studied. The other developments in the proposed consen-

sus algorithm that we see as the most promising are:

• adapt the algorithm to enable a discrete-time implementation;

• improve the algorithm to ensure robustness to network delays;

• improve the algorithm to ensure robustness to malicious network attacks.
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Nešić, D. (2009). “Extremum seeking control: Convergence analysis”. In: European

Contr. Conf. IEEE, pp. 1702–1715 (cit. on p. 17).
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Scheinker, A. and M. Krstić (2016). Model-free Stabilization by Extremum Seeking.

Springer (cit. on pp. 32, 144).

Sharafi, J., W. H. Moase, and C. Manzie (2015). “Fast extremum seeking on Ham-

merstein plants: A model-based approach”. In: Automatica 59, pp. 171–181 (cit.

on p. 20).

Sharafi, J., W. H. Moase, R. C. Shekhar, and C. Manzie (2013). “Fast model-based

extremum seeking on Hammerstein plants”. In: IEEE Conf. on Dec. and Contr.

IEEE, pp. 6226–6231 (cit. on pp. 20, 27).

Shevitz, D. and B. Paden (1994). “Lyapunov stability theory of nonsmooth systems”.

In: IEEE Trans. Automat. Contr. 39.9, pp. 1910–1914 (cit. on p. 14).

Shi, G. and K. H. Johansson (2013). “Robust consensus for continuous-time multia-

gent dynamics”. In: SIAM Journal on Control and Optimization 51.5, pp. 3673–

3691 (cit. on p. 29).

Shim, H. and A. Teel (2001). “Further results on the nonlinear separation principle:

the general ’asymptotically controllable’ case”. In: IFAC Proceedings Volumes

34.6, pp. 1457–1462 (cit. on p. 6).

Spanos, D. P., R. Olfati-Saber, and R. M. Murray (2005). “Dynamic consensus on

mobile networks”. In: IFAC World Congress. Citeseer, pp. 1–6 (cit. on p. 28).

Sussman, H. J. and P. V. Kokotovic (1991). “The peaking phenomenon and the

global stabilization of nonlinear systems”. In: IEEE Trans. Automat. Contr. 36.4

(cit. on p. 13).

Takahashi, R. H. and P. L. Peres (1999). “Unknown input observers for uncertain

systems: A unifying approach”. In: European J. of Contr. 5.2-4, pp. 261–275

(cit. on p. 6).
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Yu, H. and Ü. Özgüner (2003). “Smooth extremum-seeking control via second order

sliding mode”. In: American Contr. Conf. Vol. 4. IEEE, pp. 3248–3253 (cit. on

p. 27).

Yu, X. and M. Zhihong (2002). “Fast terminal sliding-mode control design for non-

linear dynamical systems”. In: IEEE Trans. on Circuits and Sys. I: Fundamental

Theory and Applications 49.2, pp. 261–264 (cit. on p. 12).

Zak, M. (1988). “Terminal attractors for addressable memory in neural networks”.

In: Physics Letters A 133.1-2, pp. 18–22 (cit. on p. 11).

155



Appendix A

Mathematical Background

A.1 Notation

• R̄ = R∪{−∞,+∞} is the set of extended real numbers, R+ = {x ∈ R|x > 0},
and R̄+ = R+ ∪ {+∞}.

• The Euclidean norm of a vector x ∈ Rn is denoted ||x||.

• The i-th element of a vector x ∈ Rn is denoted either xi or (x)i.

• The absolute value |x| of a vector x ∈ Rn is taken element-wise, such that

|x| = [|x1| |x2| . . . |xn|]T

• The sign function is defined as

sign
α

(x) =





+1 , x > 0

−1 , x < 0

0 , x = 0

(A.1)

• The geometric sum of two sets M1,M2 ⊆ Rn is denoted by “+”,

M1 +M2 =
⋃
{x1 + x2} , x1 ∈M1 , x2 ∈M2 (A.2)

• The set of continuous functions defined on Ω ⊆ Rn, continuously differentiable

up to order k is denoted Ck(Ω). If Ω = Rn, the domain is omitted and

Ck(Ω) = Ck.

• If V : Rn 7→ R belongs to C1, its gradient is defined as the column vec-

tor ∇V (x) =
[
∂V
∂x1

∂V
∂x2

. . . ∂V
∂xn

]T
. If σ : Rn 7→ Rp, its gradient is a

matrix with columns given by the gradients of its components ∇σ(x) =

[∇σ1(x) ∇σ2(x) . . . ∇σp(x)]T.
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• The power set of M , set of all possible combinations of subsets of M , is denoted

2M .

A.2 Discontinuous Systems

The mathematical foundations for SMC lie in Filippov’s theory of ordinary differen-

tial equations with discontinuous right-hand side (Filippov 1988), henceforth called

discontinuous ODEs. It is known that Filippov’s theory fails to describe some sys-

tems nonlinear in the control input. Even though we deal with systems affine in the

control input, for the sake of completeness, two other interpretations of solutions

to discontinuous ODEs are considered. The first one is due to Utkin’s equivalent

control method (Utkin 1992), while the other is an extension of Filippov’s theory

with elements taken from Utkin’s method (Aizerman and Pyatnitskii 1974).

For continuous ODEs (those with continuous right-hand sides), the classical the-

ory (Chicone 2006) introduces a solution to

ẋ = f(t, x) , f : R× Rn 7→ Rn (A.3)

as a differentiable function x : R 7→ Rn, defined on some interval I ⊆ R. Further-

more, if f ∈ Ck, for some k = 1, 2, . . . ,∞, then also x ∈ Ck.

Existence and uniqueness of solutions of (A.3) are properties usually related

to smoothness or Lipschitz continuity, with Lipschitz continuity observed with re-

spect to the second argument of f . Unfortunately, neither smoothness nor Lipschitz

continuity are properties that apply to discontinuous ODEs.

Example 1. Consider the simple relay controlled integrator

ẋ = − sign(x) (A.4)

This trivial example of great practical relevance cannot be studied in light of classical

ODE theory, since the sign function is discontinuous at x = 0.

Instead, we consider f in (A.3) piece-wise continuous, such that its domain

of definition can be split into N disjoint open connected subsets Gj ⊂ R × Rn,

and the boundary set S =
N⋃
j=1

∂Gj is of measure zero (in Lebesgue’s sense). The

function f is continuous at every Gj and for each (t∗, x∗) ∈ ∂Gj, any sequence

(tk, xk) ∈ Gj : (tk, xk) → (t∗, x∗) is such that f(tk, xk) → f j(t∗, x∗). Functions

fj : R× Rn 7→ Rn are defined according to this limiting process,

f j(t, x) = lim
(tk,xk)→(t∗,x∗)

f(tk, xk) , (tk, xk) ∈ Gj , (t∗, x∗) ∈ ∂Gj (A.5)
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A.2.1 Filippov’s Definition of Solutions

Filippov’s theory of ODEs with discontinuous right-hand side provides an axiomatic

definition of solutions to (A.3) with f piecewise continuous1. For that, equa-

tion (A.3) is substituted by the following differential inclusion

ẋ ∈ Kf (t, x), (A.6a)

Kf (t, x) =





{f(t, x)} , (t, x) ∈ Rn+1 \ S

co

(
⋃

j∈N (t,x)

{f j(t, x)}
)

, (t, x) ∈ S (A.6b)

where co(M) is the convex closure of a set M , and set-valued index function N :

Rn+1 7→ 2{1,2,...,N} defined on S indicates boundaries ∂Gj which intersect at (t, x),

N (t, x) = {j ∈ {1, 2, . . . , N} | (t, x) ∈ ∂Gj} (A.7)

Note that, by definition, the set Kf (t, x) is a convex polyhedron for (t, x) ∈ S.

Definition 18 (Filippov 1988, page 50). An absolutely continuous function x : I 7→
Rn defined on some interval or segment I is a solution of (A.3) if it satisfies the

differential inclusion (A.6) almost everywhere on I2.

The intuition behind Filippov’s definition is actually simple. The set-valued

function Kf determines allowable velocities that a solution of (A.3) might take.

For a point (t, x) 6∈ S that does not belong to the discontinuity set (switching

manifold in the case of SMC), Kf (t, x) is a singleton containing only f(t, x), such

that ẋ = f(t, x). For (t, x) ∈ S in the discontinuity set, the velocity should belong

to the convex combination of every possible velocity vector in a neighborhood Bδ \S
(δ → 0) of (t, x), that is, an infinitesimal neighborhood of (t, x) that discards the

set S of zero measure.

For SMC, it is common to consider f(t, x) discontinuous only on a smooth man-

ifold S = {x ∈ Rn | σ(x) = 0} computed from the switching function σ : Rn 7→ R,

which separates the state-space into two domains G+ = {x ∈ Rn | σ(x) > 0} and

G− = {x ∈ Rn | σ(x) < 0}, as shown in fig. A.1.

Let functions f+ and f− be defined on G+ and G− by the limiting process (A.5),

for a constant t. In this case, the set Kf obtained at (t, x) ∈ S is a line segment

1Actually, Filippov’s theory covers the case where f(t, x) is not piecewise continuous, but locally
measurable. For such systems, the method of Filippov regularization (Filippov 1988, page 85) is
used.

2The term almost everywhere is used because there might be points t ∈ I, constituting a set of
zero measure, for which x is not differentiable.
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S

G+

G−

f+

f−

Kf (t, x)

TxS
∇σ(x)

f0

Figure A.1: Geometric illustration of Filippov’s definition with f discontinuous on
a smooth manifold S = {x ∈ Rn | σ(x) = 0}.

connecting the end points of vectors f+ and f−,

Kf (t, x) = {v ∈ Rn | v = αf− + (1− α)f+} , (t, x) ∈ S , α ∈ [0, 1] (A.8)

In order to obtain a smooth movement along the manifold, while satisfying the

inclusion (A.6), the velocity vector f0 at (t, x) ∈ S should belong to the tangent

space TxS of S at (t, x). Since TxS = {v ∈ Rn | <∇σ(x), v >= 0}, the function

f0 is such that <∇σ(x), f0>= 0, with f0 ∈ Kf (t, x) from (A.8). This equation can

always be satisfied if f+
Nf
−
N < 0 at (t, x), where f+

N =<∇σ, f+> and f−N =<∇σ, f−>
are the length of the projections of vectors f+

N (t, x) and f−N (t, x) onto ∇σ(x).

Definition 19. An absolutely continuous function x : I 7→ Rn defined on some

interval or segment I is a solution of (A.3) with f discontinuous only on a smooth

manifold S = {x ∈ Rn | σ(x) = 0} and f+
Nf
−
N < 0 for every (t, x) if it satisfies

ẋ =

{
f(t, x) , x ∈ Rn \ S
f0(t, x) , x ∈ S

(A.9a)

f0 =
f−Nf

+ − f+
Nf
−

f−N − f+
N

(A.9b)

almost everywhere on I.

Definition 20. A solution x : I 7→ Rn of (A.3) in the sense of Definition 19 is

said to slide on S, according to the sliding motion equation (A.9b) after it reaches

the manifold S.

Definition 21. If, for a fixed initial condition x0, all solutions approach the manifold

S and reach it in some finite time t ∈ I, these solution are said to constitute a sliding

family on S.

Definition 19 assumes f+
Nf
−
N < 0 at (t, x), otherwise Kf (t, x)∩TxS = ∅ and every

possible solution satisfying (A.6) will cross S at (t, x). In other words, if on both
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sides of the switching manifold S the vector field points to the same side of S, then

trajectories necessarily cross the manifold at (t, x).

A.2.2 Nonlinear Systems Affine in the Control Input

In feedback control, it is usual to deal with systems governed by continuous dynam-

ics, but forced by a (possibly) piecewise continuous input. To represent this class of

systems, let

ẋ = f(t, x, u(x)) (A.10)

be a modification of (A.3), with f : Rn+1 × Rp 7→ Rn continuous and control input

u : Rn 7→ Rp piecewise continuous. Similar to Definition 19, each component ui of u

is assumed to be discontinuous only on a smooth surface Si = {x ∈ Rn | σi(x) = 0}.
Furthermore, (A.10) is simplified to

ẋ = a(t, x) + b(t, x)u(x) (A.11)

with a : Rn+1 7→ Rn and b : Rn+1 7→ Rn×p continuous. Although simpler than (A.3)

and (A.10), system (A.11) covers most practical engineering problems. This modi-

fication changes the differential inclusion (A.6) to

ẋ ∈ a(t, x) + b(t, x)Ku(x), (A.12a)

Ku(x) =
[
Ku1(x) . . . Ku2(x)

]T
(A.12b)

Kui(x) =

{
{ui(x)} , σi(x) 6= 0

αu−i (x) + (1− α)u+
i (x) , σi(x) = 0

(A.12c)

with α ∈ [0, 1], such that αu−i (x) + (1−α)u+
i (x) is the convex combination of u+

i (x)

and u−i (x), defined by the limiting process (A.5).

A.2.3 Nonuniqueness of Solutions

Definition 19 guarantees the existence of solutions of (A.3), but it does not state

anything about uniqueness. In fact, by definition of (A.6) on the switching manifold,

uniqueness of solutions of (A.3) is not expected. Therefore, for control purposes, a

control law should guarantee strong stability properties, since these properties apply

for every solution. In this direction, the next section presents strong stability prop-

erties based on Lyapunov’s stability theory (Lyapunov 1992) and its generalizations

for discontinuous systems satisfying (A.6).
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A.2.4 Lyapunov Stability and Convergence Properties

Stability is the kernel of most control problems and its modern definition is due

to the famous thesis of Lyapunov 1992, originally published in Russian in 1892.

Prior to Lyapunov’s work, stability analysis consisted of neglecting all terms in f of

order higher than k in x3, usually by applying some linearization procedure, such as

Taylor series expansion. One exception to this methodology is the work of Poincare,

which inspired some results presented by Lyapunov in his thesis. In contrast to

linearization and similar techniques, Lyapunov stability studies how small deviations

from the initial condition x0 of a nominal trajectory (solution) x∗(t, t0, x0) impact

the resulting motion. That is, what happens to x∗(t, t0, x′0) when one changes the

initial condition to x′0 ∈ x0 +B(δ).

As commonly done in stability analysis, we study stability with respect to the

zero solution (origin) x∗(t, t0, x0), since any problem can be put in this perspective by

an appropriate change of variables z = x−x∗. The definitions of Lyapunov stability,

asymptotic stability, exponential stability and related properties are not given here,

since they are the same as the ones for continuous systems. The reader is directed

to (Khalil 2002) for these definitions. Roughly speaking, for an arbitrary vicinity

B(ε) of the origin, if one is able to find B(δ) : x0 ∈ B(δ) for which trajectories do

not leave B(ε), then the origin is stable. Additionally, asymptotic stability implies

that, on top of stability, trajectories eventually reach the origin, while exponential

stability forces the convergence rate to be at least exponential.

To redefine Lyapunov’s function method for systems with discontinuous right-

hand side, we first revisit the classical method for f continuous. In this case, let

a continuous function V ∈ C0 represent, in some sense, the system energy, with

V (x) > 0 for x 6= 0, and V (0) = 0. If, for every solution x(t) of (A.3), the function

V (x(t)) is weakly decreasing, i.e. it is allowed to remain constant, then the origin

of (A.3) is stable. Additionally, if V (x(t)) is strictly decreasing and tending to zero

as t → +∞, then the origin is asymptotically stable. For V ∈ C1 continuously

differentiable the above properties are rewritten in the widely used forms

V̇ (x) = ∇TV (x)f(t, x) ≤ 0 stable origin (A.13a)

V̇ (x) = ∇TV (x)f(t, x) < 0 asymptotically stable origin (A.13b)

By analyzing these stability conditions for continuous systems, it is clear what

must be tackled to obtain an equivalent method for discontinuous systems:

• Even if V is differentiable with respect to the state x, it will not be continuously

differentiable, since f(t, x) is piecewise continuous. Therefore, there is set of

3In analyzing stability, it is usual to consider a time-invariant system and augment the state
vector x by the fictitious state xn+1 = t, with ẋn+1 = 1, if the system is time-variant.
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measure zero for which V̇ is discontinuous.

• When the energy function V is not everywhere differentiable, independent

of the continuity or not of f , there is a set of measure zero for which V̇ is

undefined.

In the first case, V is differentiable with respect to x, V̇ is discontinuous at points x ∈
S that belong to the switching manifold. When V is not everywhere differentiable, its

derivative V̇ is (usually) undefined only at x = 0. Therefore, we consider generalized

derivatives and generalized gradients, and show how these concepts fit to non-smooth

stability analysis4.

Definition 22. Let ϕ : R 7→ R be a real-valued function and {hn} an infinite

sequence converging to zero. A number

Dhnϕ(t) = lim
n→+∞

ϕ(t+ hn)− ϕ(t)

hn
, Dhnϕ(t) ∈ R̄ (A.14)

is called a derivative number. The set of every possible derivative number

DKϕ(t) =
⋃

{hn}∈K
Dhnϕ(t) , DKϕ(t) ⊂ R̄ (A.15)

with K the set of sequences {hn} converging to zero, is called the contingent derivative

set.

Naturally, at points t where ϕ is differentiable, it must follow that DKϕ(t) =

{ϕ̇(t)}.

Example 2. Let ϕ(t) = |t|. The contingent derivative at t = 0 may be obtained by

taking any sequence {h−n } converging to zero from the left

Dh−n
ϕ(0) = lim

n→+∞
ϕ(0 + h−n )− ϕ(0)

h−n
= lim

n→+∞
−h−n
h−n

= −1 (A.16)

and any sequence {h+
n } converging to zero from the right

Dh+
n
ϕ(0) = lim

n→+∞
ϕ(0 + h+

n )− ϕ(0)

h+
n

= lim
n→+∞

h+
n

h+
n

= 1 (A.17)

such that DKϕ(0) = {−1, 1}.

Example 3. Let ϕ(t) = t sin(1/t) for t 6= 0 and ϕ(0) = 0. To find the contingent

derivative at t = 0 the process is more involved than that of example 2. Considering

4These concepts are presented in a greater extent in (Polyakov and Fridman 2014).
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any sequence {hn} converging to zero,

Dhnϕ(0) = lim
n→+∞

ϕ(0 + hn)− ϕ(0)

hn
= lim

n→+∞
ϕ(hn)

hn
= lim

n→+∞
sin(1/hn) (A.18)

and with hn = 1/(2πn+ α), α ∈ [−π/2, π/2]

Dhnϕ(0) = lim
n→+∞

sin(2πn+ α) = sin(α) (A.19)

such that the contingent derivative is the interval DKϕ(0) = [−1, 1].

Let I ⊆ R̄ be an interval possibly containing ±∞. A function ϕ : I 7→ R̄ is

decreasing on I if and only if

ϕ(t1) ≤ ϕ(t2) , ∀t1 < t2 (A.20)

Lemma 9. Let ϕ : R 7→ R be defined on some interval I. If DKϕ(t) ≤ 0 on I, then

ϕ is decreasing on I and differentiable almost everywhere on I.

This lemma provides a background on which to develop a discontinuous Lya-

punov function method. Nonetheless, it is more general than needed, since no

further assumption is made on φ. Since Lyapunov function method is applied to

nonnegative functions, Lemma 9 is rewritten considering such functions.

Lemma 10. Let V : R 7→ R be nonnegative on an interval I,

(1) continuous at any t ∈ I : V (t) = 0 and

(2) its contingent derivative DKV (t) ≤ 0 for t ∈ I : V (t) 6= 0,

then V (t) is decreasing and almost everywhere differentiable on I.

Basically, Lemma 10 states that V (t) converges asymptotically to zero and it

is not allowed to leave the origin. It is clear that function V (t) will be used as a

Lyapunov function. For that, one still needs to define its derivative when evaluated

along the trajectories of (A.12), i.e. determine a chain rule to differentiate V (x).

The first step in this direction is the generalization of direction derivatives.

Definition 23. Let V : Rn 7→ R be a real-valued function defined on an open

nonempty set Ω ⊆ Rn and {vn} an infinite sequence of real vectors converging d ∈
Rn. A number

D{hn},{vn}V (x) = lim
n→+∞

V (x+ hnvn)− V (x)

hn
, D{hn},{vn}V (x) ∈ R̄ (A.21)

163



is called a directional derivative number. The set of every possible directional deriva-

tive number

DK,M(d)V (x) =
⋃

{hn}∈K,{vn}∈M(d)

D{hn},{vn}V (x) , DK,M(d)V (x) ⊂ R̄ (A.22)

with M(d) the set of sequences {vn} converging to d, is called the contingent direc-

tional derivative set.

As observed for contingent derivatives, at points x where V is differentiable, it

follows that DK,M(d)V (x) = {∇V (x)Td}.
Finally, considering the derivative of V (x) along the trajectories of x, described

by the differential inclusion (A.12), let

DKf (t,x)V (x) =
⋃

d∈Kf (t,x)

DK,M(d)V (x) (A.23)

Lemma 11 (Polyakov and Fridman 2014, corollary 2). Let the set-valued function

Kf : Rn+1 7→ 2Rn in (A.6) be defined and upper-semicontinuous on I × Ω and set

Kf (t, x) be nonempty, compact and convex on this domain, where Ω ⊆ Rn is open

and nonempty. Furthermore, let V : Rn 7→ R be a nonnegative function on Ω. If

the inequality

DKf (t,x)V (x) ≤ 0 (A.24)

holds for every t ∈ I and x ∈ Ω : V (x) 6= 0, then function V is decreasing along the

solutions of (A.6).

The above lemma closely relates to Lyapunov’s stability theory of dynamical

systems. Nonetheless, before providing a functional approach to Lyapunov stability

two definitions are in order.

Definition 24. A continuous function W : Rn 7→ R is said to be positive definite

iff W (0) = 0 and W (x) > 0 for every x ∈ Rn \ {0}.

Definition 25. A function V : Rn 7→ R defined on a nonempty set Ω ⊆ Rn : {0} ∈
int(Ω) is said to be proper on Ω iff

• it is continuous at the origin;

• it is bounded by a positive definite function V : Rn 7→ R such that V(x) ≤ V (x).

Furthermore, if Ω = Rn and V is radially unbounded, V is globally proper.
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Theorem 10 (Polyakov and Fridman 2014, theorem 7). Let a function V : Rn 7→ R
be proper on Ω and

DKf (t,x)V (x) ≤ 0 for t ∈ R and x ∈ Ω \ {0} (A.25)

Then, the origin of system (A.6) is Lyapunov stable. If V is globally proper, then

the origin is globally stable.

Note how Theorem 10 is closely related to usual definitions of Lyapunov sta-

bility of continuous systems (Khalil 2002). Theorems for asymptotic, exponential

and finite-time stability can be readily stated by following the notion of contingent

directional derivatives and these properties continuous counterparts (Polyakov and

Fridman 2014).

In the design of sliding-mode control laws, one usually defines a piecewise con-

tinuous control input u : Rn 7→ Rp, where each component ui is discontinuous only

on a smooth surface Si = {x ∈ Rn | σi(x) = 0}. This was discussed in page 160. For

such systems, considering a Lyapunov function V : Rp 7→ R defined on Ωσ ⊆ Rp,

continuous at the origin and differentiable at σ ∈ Ωσ \ {0}, it follows that

DKf (t,x)V (σ) = ∇V (σ)Tσ̇ for σ ∈ Ωσ \ {0} (A.26)

Corollary 3. Consider system (A.12), with control input u discontinuous only on a

smooth surface Si = {x ∈ Rn | σi(x) = 0}. Let σ denote the new coordinate system

after the change of variables σ(x). Furthermore, consider V : Rp 7→ R defined on

Ωσ ⊆ Rp, positive definite and differentiable at every σ ∈ Ωσ \ {0}. Then, the origin

of the differential inclusion (A.12) is Lyapunov stable iff

∇V (σ)Tσ̇ ≤ 0 for σ ∈ Ωσ \ {0} (A.27)

If V is radially unbounded and Ωσ = Rp, then the origin is globally stable.

This corollary establishes circumstances for which a discontinuous system sta-

bility may be inferred from traditional Lyapunov stability analysis. This results is

implicitly used in most of the SMC literature.

A.2.5 Discussion on Definitions other than Filippov’s

Filippov’s theory was criticized by many authors, mainly because it apparently yields

results not adequate to those observed in real application. This happens when the

system is nonlinear in the control input, but it is arguable if these inconsistencies

are not a consequence of oversimplified models.

Utkin provides an alternate definition, based on the concept of equivalent con-
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trol (Utkin 1992). To apply the equivalent control method, one considers sys-

tem (A.10) and computes a equivalent control input ueq such that trajectories stay

on the switching manifold. This is achieved by finding ueq that solves

<∇σ(x), f(t, x, ueq)> = 0 (A.28)

This procedure is can be written in terms of the differential inclusion

ẋ ∈ f(t, x,Ku(x)) (A.29)

with solution defined as in Definition 19 and Ku(x) from (A.12b)-(A.12c). It is

clear that, in general, Utkin’s equivalent control method allows ẋ to take values

from a non-convex set f(t, x,Ku(x)). a fact that complicates the analysis of the

method (Polyakov and Fridman 2014).

A definition that, in a way, merges both Utkin’s and Filippov’s definitions is

given by Aizerman and Pyatnitskii 1974. In short, it consists of taking the convex

closure of f(t, x,Ku(x)), such that

ẋ ∈ co {f0(t, x), f(t, x, ueq)} (A.30)

An important aspect of this definition is that, if some stability property is obtained

for (A.30), than the same property holds for both Filippov’s and Utkin’s defini-

tions (Polyakov and Fridman 2014).

It is not hard to show that the three definitions coincide when f is affine in the

control input and the switching manifold S depends solely on x, in fact, they yield

the exact same differential inclusions.
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Appendix B

Raman Amplifier Power Dynamics

and Numerical Coefficients

Consider a simpler average field power model (Bromage 2004) which suffices for Ra-

man amplifier fiber spans. This model is described by N first-order nonlinear partial

differential equations (transport PDEs): τi
∂Pi
∂t

+ µi
∂Pi
∂z

= −αiPi +
∑N

j=1 (j 6=i) cijPiPj,

where Pi(t, z) is the power (in W) of a propagating signal (data or pump) at time

t and distance z from the upstream end of the span (measured along the fiber),

corresponding to the wavelength λi (data or pump). The constants τi, µi and αi

denote, respectively, the propagation delays per unit length (µs/km), propagation

directions (dimensionless), losses per unit length (1/km). The constant cij denotes

the coupling coefficient per unit length (1/W km) from the signal with wavelength

λj to the signal with wavelength λi propagating in the fiber. This quantities τi(λi),

αi(λi) and cij(λi, λj) are functions of the wavelengths propagating in the fiber. In

this Thesis, we consider only counter-propagating pump signals, the data signals

are co-propagating by default. The propagation direction µi (i = np + 1, . . . , N) is

equal to −1 for pump signals, and it is equal to +1 for data signals.

For a compact form for the power dynamics, consider the following uncer-

tain matrices: τ := diag
([

τ1 . . . τN

])
, µ := diag

([
µ1 . . . µN

])
, A :=

diag
([

α1 . . . αN

])
and C ∈ RN×N , where its ijth entry is given by cij. The

power dynamics can be rewritten as (Dower et al. 2008):

τ
∂P

∂t
+ µ

∂P

∂z
= −AP + diag(P )CP

with P =
[
P1 . . . PN

]T
partitioned in the form P = P (t, z) :=

[
Pp(t, z)

Ps(t, z)

]
∈

RN . These PDEs require the specification of one spatial and one temporal boundary

condition per entry in P . The temporal initial condition is specified by an initial
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spatial power distribution P (0, z). The spatial boundary conditions are specified

by the vector of backward propagating pump powers and the vector of forward

propagating data signal powers (Krstić and Smyshlyaev 2008; Krstić 2009).

For the case where 4 data signals and 2 pump signals are considered, the

physical parameters τ , A, and C were experimentally characterized by the com-

pany OFS Fitel Denmark Ap., consider the following wavelengths (em nm) pre-

sented in the fiber: Λp =
[

1442 1480
]T

e Λs =
[

1530 1550 1570 1590
]T

.

The physical parameters are: 106τ=diag
([

4.876 4.877 4.877 4.878 4.878 4.879
])

,

A=diag
([

0.058 0.051 0.047 0.045 0.045 0.045
])

,

C =




0 −0.23 −0.59 −0.62 −0.18 −0.10

0.22 0 −0.17 −0.25 −0.39 −0.57

0.55 0.16 0 −0.12 −0.15 −0.21

0.58 0.24 0.12 0 −0.11 −0.14

0.17 0.37 0.15 0.11 0 −0.11

0.09 0.53 0.20 0.14 0.11 0




and µ = diag
([
−1 −1 1 1 1 1

])
.

For the case of 32 data signals, we have chosen 16 wavelengths equally spaced by

100 GHz from 1530 nm to 1541.8 nm for the first group and 16 other wavelengths

equally spaced from 1570 nm to 1582.4 nm for the second group. We have also

changed the second pump wavelength to 1490 nm. All the coefficient matrices were

approximated via interpolation of experimental data, as in (Dower et al. 2008). In

particular, the entries of the matrices τ , A and C were determined numerically as

follows:

τi = fτ (λi) , Ai = fa(λi) , Cij = fc(λi, λj)

where

fτ (λ) =
4∑

i=1

η̂iλ
i , fa(λ) =

4∑

i=1

α̂iλ
i−1

with

η̂ =
[

2.48× 10−4 −1.03 0.022 0.022
]
× 10−14

and

α̂ =
[

4.9× 10−9 −1.9× 10−5 2.33× 10−2 −8.5
]

obtained via least square to fit the case of 4 data signals. By using the available

Raman gain efficiency, experimentally characterized by the company OFS Fittel

Denmark Ap., as a function of the frequency difference between the signal and the

pump with wavelength of 1442 nm, it is possible to determine the coefficient of the
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matrix C via interpolation by using

fc(λ, η) = γ(λ, η) Γ(sgn(λ− η)ρ(λ, η)) (B.1)

where

γ(λ, η) =





1

4
, if λ > η

0 , if λ = η

−η
4λ

, if λ < η

Γ(ζ) =
∑3

i=1 κ̂i exp
(
−β̂(ζ − ζ̂i)2

)
, with

κ̂ =
[

1.813× 10−1 5.652× 10−1 −3.117× 10−2
]

and

ζ̂ =
[

4.250 1.282× 101 4.176× 10−1
]

ρ(λ, η) = 2.9979×105
(

1
η
− 1

λ

)
and β̂ = 5.1509×10−2. This choice of the interpolates

came from (Dower et al. 2008), which is commonly used in optical fibers.
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