
MANIPULABILITY IN TRAJECTORY TRACKING FOR CONSTRAINED

REDUNDANT MANIPULATORS VIA SEQUENTIAL QUADRATIC

PROGRAMMING

Felipe Figueiredo Cardoso

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários

à obtenção do t́ıtulo de Doutor em Engenharia

Elétrica.

Orientador: Fernando Cesar Lizarralde

Rio de Janeiro

Julho de 2019

MANIPULABILITY IN TRAJECTORY TRACKING FOR CONSTRAINED

REDUNDANT MANIPULATORS VIA SEQUENTIAL QUADRATIC

PROGRAMMING

Felipe Figueiredo Cardoso

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. Fernando Cesar Lizarralde, D.Sc.

Prof. Alessandro Jacoud Peixoto, D.Sc.

Prof. Antonio Candea Leite, D.Sc.

Prof. Anna Carla Monteiro de Araujo, D.Sc.

Prof. Adriano Almeida Gonçalves Siqueira, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JULHO DE 2019

Cardoso, Felipe Figueiredo

Manipulability in Trajectory Tracking for Constrained

Redundant Manipulators via Sequential Quadratic

Programming/Felipe Figueiredo Cardoso. – Rio de

Janeiro: UFRJ/COPPE, 2019.

XVI, 117 p.: il.; 29, 7cm.

Orientador: Fernando Cesar Lizarralde

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.

Referências Bibliográficas: p. 107 – 114.

1. Trajectory Tracking. 2. Redundant Manipulators.

3. Holonomic Constraints. I. Lizarralde, Fernando

Cesar. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. T́ıtulo.

iii

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

MANIPULABILIDADE NO RASTREAMENTO DE TRAJETÓRIA PARA

MANIPULADORES REDUNDANTES RESTRITOS VIA PROGRAMAÇÃO

SEQUENCIAL QUADRÁTICA

Felipe Figueiredo Cardoso

Julho/2019

Orientador: Fernando Cesar Lizarralde

Programa: Engenharia Elétrica

Métodos de rastreamento de trajetória para manipuladores redundantes restritos

são apresentados nesta tese, onde o efetuador de um manipulador serial redundante

tem que rastrear uma trajetória desejada enquanto alguns pontos em sua cadeia

cinemática satisfazem uma ou mais restrições. Além disso, dois ı́ndices de mani-

pulabilidade são levados em consideração a fim de otimizar a trajetória para evitar

singularidades. O primeiro ı́ndice é definido em função do jacobiano geométrico do

manipulador na configuração restrita. O segundo ı́ndice é baseado no Jacobiano

restrito, o qual mapeia velocidades no espaço das juntas para a espaço da tarefa, le-

vando em conta as restrições holonômicas. Três métodos para resolver o problema de

rastreamento de trajetória são discutidos. Os dois primeiros, controle cinemático e

programação quadrática (QP), são amplamente discutidos na literatura. O terceiro,

programação quadrática sequencial (SQP), é uma nova abordagem, diferentemente

do controle cinemático ou QP, tem como vantagens (apesar de algumas deficiências)

não depender explicitamente da pseudo-inversa de jacobianos, derivadas da tra-

jetória desejada e linearização de ı́ndices ou restrições. Uma discussão desses três

métodos é apresentada em termos de erro de rastreamento, violação da restrição,

distância de singularidades, entre outros através de experimentos realizados em um

robô colaborativo Baxter.

iv

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

MANIPULABILITY IN TRAJECTORY TRACKING FOR CONSTRAINED

REDUNDANT MANIPULATORS VIA SEQUENTIAL QUADRATIC

PROGRAMMING

Felipe Figueiredo Cardoso

July/2019

Advisor: Fernando Cesar Lizarralde

Department: Electrical Engineering

Trajectory tracking methods for constrained redundant manipulators are pre-

sented in this thesis, where the end-effector of a redundant serial manipulator has

to track a desired trajectory while some points on its kinematic chain satisfy one or

more constraints. In addition, two manipulability indexes are taken into account in

order to optimize the trajectory. The first index is defined in terms of the geometric

Jacobian of the manipulator in the constrained configuration. The second index is

based on the constrained Jacobian, which maps velocities from joint space to task

space, taking into account the holonomic constraints. Three methods for solving the

trajectory tracking problem are discussed. The first two, kinematic control (KC)

and quadratic programming (QP), are widely discussed in literature. The third,

sequential quadratic programming (SQP), is a new approach, unlike KC or QP,

has as advantages (despite some shortcomings) not explicitly depend on pseudo-

inverse Jacobian, derivative from the desired trajectory and linearization of indexes

or constraints. A discussion of these three methods is presented in terms of tracking

error, constraint violation, singularity distance, among others through experiments

performed on a Baxter collaborative robot.

v

Contents

List of Figures viii

List of Tables xi

List of Symbols xii

List of Abbreviations xv

1 Introduction 1

1.1 Trajectory Tracking and Manipulability 3

1.2 Motivation . 5

1.3 Objectives . 6

1.4 Contributions . 6

1.5 Organization . 9

2 Robot Kinematics 10

2.1 Geometric Kinematics . 10

2.1.1 Notation . 10

2.1.2 Cartesian Coordinate System 11

2.1.3 Rotation Kinematics . 12

2.1.4 Motion Kinematics . 13

2.1.5 Multibody . 14

2.1.6 Roll-Pitch-Yaw Angles . 14

2.1.7 Forward Kinematics . 15

2.2 Differential Kinematics . 17

2.2.1 Velocity Kinematics . 17

2.2.2 Geometric Jacobian . 18

2.2.3 Analytical Jacobian . 18

2.3 Kinematic Control . 19

2.3.1 Pose Control in Cartesian Space 20

2.4 Constraints in Applied Mechanics . 21

2.5 Constrained Jacobian . 22

vi

2.6 Manipulability Indexes . 25

3 Methods for Trajectory Tracking 30

3.1 Kinematic Control . 30

3.2 Quadratic Programming . 33

3.2.1 Quadratic Optimization . 33

3.2.2 Trajectory Tracking with QP 34

3.3 Sequential Quadratic Programming 37

3.3.1 Constrained Nonlinear Optimization 37

3.3.2 Motivation for Using the SQP Method 42

3.3.3 Sequential Least Squares Quadratic Programming 45

3.3.4 Multi-Objective Optimization 50

3.3.5 Trajectory Tracking with SQP 52

3.4 Comparison of Methods . 54

4 Simulation and Experimental Results 62

4.1 Kinematic Model of Baxter Research Robot 63

4.1.1 Geometric Analysis . 64

4.1.2 URDF Analysis . 65

4.2 Preliminary Experiment . 67

4.3 Baxter Manipulability . 73

4.4 Simulation with a Scleronomic Constraint 79

4.5 Experiment with a Scleronomic Constraint 89

4.6 Experiment with a Rheonomic Constraint 97

5 Conclusions 105

Bibliography 107

A Proof of Theorems 115

A.1 Definitions . 115

A.2 Proof of Theorem 1 . 116

A.3 Proof of Theorem 2 . 117

vii

List of Figures

1.1 daVinci surgery system and insertion scheme in tissue, courtesy from

Intuitive Surgical and adapted from [16], respectively. 2

1.2 Biofouling removal experimental setup, from [31]. 2

1.3 Snake robot exploring pipeline with different fluid conditions, from [22]. 3

1.4 Jaguar V4 platform with manipulator arm, courtesy from iRobotec. . 3

1.5 Manipulators suited for specific tasks, computer numeric control and

arc welding, courtesy from RobotWorx and Fanuc, respectively. . . . 4

2.1 Cartesian coordinate system, adapted from [35] 11

2.2 Position vector in red color at coincident inertial and body frames,

inertial frame in black color and body frame in blue color. The point

P have equal values in the frames. 12

2.3 Position vector in color red after rotating. The value of the point

P changes in the inertial frame and remains unchanged in the body

frame. R(rp, φp) is defined by rp = [0.775 0.447 0.447]T and φp =

0.813 rad. 12

2.4 Position vector in red color at coincident inertial and body frames,

inertial frame in black color and body frame in blue color. The point

P have equal values in the frames. 13

2.5 Position vector in color red after rotating and translating. The value

of the point P changes in the inertial frame and remains unchanged

in the body frame. R(rp, φp) is defined by rp = [0.775 0.447 0.447]T

and φp = 0.813 rad while rG,B = [0.7 0.7 0.5]T 13

2.6 Revolute joint, θi is connecting the i− 1-th link and the i-th link. . . 14

2.7 Serial manipulator with revolute joints. 15

2.8 Position vector in red color at coincident inertial and body frames,

inertial frame in black color and body frame in blue color. The point

P have equal values in the frames. 17

viii

2.9 Position vector in color red after rotating at a angular velocity.

The value of the point P changes in the inertial frame and re-

mains unchanged in the body frame. R(rp, φ̇p, t) is defined by

rp = [0.775 0.447 0.447]T , φ̇p = 0.813 rad/s and t = 1 s while

ω = [0.630 0.363 0.363]T . 17

2.10 Internal joint velocity control loop. 20

2.11 Kinematic position control loop. 20

2.12 Constrained serial manipulator with revolute joints. 23

3.1 Kinematic control loop with scleronomic constraint. For a rheonomic

constrain u1,b = Jb
†(θ1,b)(N(DΦc,b)uf + (DΦc,b)

†vd(t)). 31

4.1 Baxter R© robot used in experiments. 64

4.2 The arms of Baxter robot, from [38]. 65

4.3 Part of URDF diagram of Baxter and XML code. 66

4.4 Kinematic model of Baxter’s right arm. All Li are in meters, in each

revolute joint ji is located the respective frame Fi. 67

4.5 Experimental configuration. 68

4.6 Desired trajectory defined in (4.9). 69

4.7 Trajectory tracking error for preliminary experiment. 71

4.8 Joint control signals, preliminary experiment. 72

4.9 Kinematic model of Baxter’s right arm with plane constraint between

F4 and F5. 73

4.10 Manipulability wb(θ1,4) with b = 4, wb is multiplied by 103. 74

4.11 Manipulability wr(θ5,7) in a θ5 − θ6 space with plane constraint be-

tween frames F4 and F5. 75

4.12 wb(θ1, 4) curve fitting, wb(θ1, 4) is multiplied by 103. 76

4.13 Manipulability wr(θ5,7) in a θ5 − θ6 plane divided in three regions. . . 77

4.14 Gazebo environment with Baxter model. 79

4.15 Wb and Wr, manipulator satisfy a scleronomic constraint in simulation. 81

4.16 Trajectory error, manipulator satisfy a scleronomic constraint in sim-

ulation. 82

4.17 Velocity in the constraint, manipulator satisfy a scleronomic con-

straint in simulation. 84

4.18 Manipulability indexes wb and wr (wb is multiplied by 103), manipu-

lator satisfy a scleronomic constraint in simulation. 86

4.19 Joint control signals, part 1 of 2, manipulator satisfy a scleronomic

constraint in simulation. 87

4.20 Joint control signals, part 2 of 2, manipulator satisfy a scleronomic

constraint in simulation. 88

ix

4.21 Wb and Wr, manipulator satisfy a scleronomic constraint in experiment. 90

4.22 Trajectory error, manipulator satisfy a scleronomic constraint in ex-

periment. 91

4.23 Velocity in the constraint, manipulator satisfy a scleronomic con-

straint in experiment. 93

4.24 Manipulability indexes wb and wr (wb is multiplied by 103), manipu-

lator satisfy a scleronomic constraint in experiment. 94

4.25 Joint control signals, part 1 of 2, manipulator satisfy a scleronomic

constraint in experiment. 95

4.26 Joint control signals, part 2 of 2, manipulator satisfy a scleronomic

constraint in experiment. 96

4.27 Desired trajectory defined in (4.15). 98

4.28 Wb and Wr, manipulator satisfy a rheonomic constraint in experiment. 99

4.29 Trajectory error, manipulator satisfy a rheonomic constraint in ex-

periment. 100

4.30 Velocity in the constraint, manipulator satisfy a rheonomic constraint

in experiment. 101

4.31 Manipulability indexes wb and wr (wb is multiplied by 103), manipu-

lator satisfy a rheonomic constraint in experiment. 102

4.32 Joint control signals, manipulator satisfy a rheonomic constraint in

experiment. 104

x

List of Tables

1.1 Comparison among methods for trajectory tracking. 8

3.1 Selected test functions. 44

3.2 Highly constrained problems from [24]. 44

3.3 Loosely constrained problems from [24]. 44

3.4 Comparison among methods for trajectory tracking. 57

4.1 Parameters of Baxter. 65

4.2 Initial state of the joint angles for the desired trajectory defined in

(4.9). 69

4.3 Initial end-effector position for the desired trajectory defined in (4.9). 69

4.4 Performance indexes, preliminary experiment. 70

4.5 Parameters values for wr(θ5,7) curve fitting. 78

4.6 Initial end-effector position for the desired trajectory defined in sim-

ulations. 80

4.7 Performance indexes, manipulator satisfy a scleronomic constraint in

simulation. 83

4.8 Performance indexes, manipulator satisfy a scleronomic constraint in

experiment. 92

4.9 Initial state of the joint angles for the desired trajectory defined in

(4.15). 97

4.10 Initial end-effector position for the desired trajectory defined in (4.15). 97

4.11 Performance indexes, manipulator satisfy a rheonomic constraint in

experiment. 99

xi

List of Symbols

B Body frame, p. 11

D Matrix that defines constraint behavior, p. 22

F Frame, p. 10

G Inertial frame, p. 11

H(·) Hessian of a second order differentiable function, p. 35

Ii Identity matrix of size i, p. 10

J(θ) Geometrical Jacobian, p. 18

Kp Controller gain matrix, p. 21

P Point in Cartesian space, p. 11

R(rp, φp) Rotation matrix, p. 12

S Selection matrix, p. 62

T Sampling Period, p. 52

Ti,j Homogeneous matrix from Fi to Fj, p. 13

V Velocity, p. 18

W Integral of w(θ), p. 79

Φ Adjoint Matrix, p. 22

Ψ(u) Merit function, p. 41

α Weight in multi objective optimization, p. 51

γk Step length of SQP, p. 40

λ Lagrange multiplier, p. 38

xii

N Natural numbers set, p. 10

R Real numbers set, p. 10

E Set of equality constraints, p. 34

F Set of optimization problem, p. 34

I Set of inequality constraints, p. 34

L(·, λ) Lagrangian of a optimization problem, p. 38

M Set of objective functions, p. 50

P Pareto set, p. 51

U Set of velocity command, p. 34

N(·) Null space, p. 24

∇f(·) Gradient of a differentiable function, p. 35

ω Angular velocity, p. 11

φp Rotation angle, p. 12

θ Joint angle vector, p. 11

dk Search direction of SQP, p. 40

det() Determinant of a matrix, p. 10

diag() Diagonal matrix, p. 70

e Error signal, p. 19

f(θ) Forward Kinematic function, p. 16

g(u) Constraint function, p. 38

h Axis of rotation, p. 18

m Number of independent holonomic constraints, p. 21

n Number of joints, p. 14

p Pose, p. 20

r Position vector, p. 11

xiii

tr() Trace of a matrix, p. 10

u Velocity command, p. 19

v Linear velocity, p. 11

w(θ) Manipulability, p. 25

x x axis, p. 10

y y axis, p. 10

z z axis, p. 10

xiv

List of Abbreviations

BFGS Broyden-Fletcher-Goldfarb-Shanno, p. 46

IAE Integral of the Absolute Error, p. 63

IK Inverse Kinematics, p. 4

IPM Interior Point Method, p. 43

ISE Integral of the Square Error, p. 62

ITAE Integral of the Time Multiplied by Absolute Error, p. 63

ITSE Integral of Time Multiplied by the Squared Error, p. 63

KC Kinematic Control, p. 5

LPD Least Distance, p. 48

LSEI Linear Least Squares, p. 46

LSI Least Square, p. 48

NNLS Non Negative Least Squares, p. 47

PID Proportional Integral Derivative, p. 5

QP Quadratic Programming, p. 5

ROS Robot Operating System, p. 63

RPY Roll-Pitch-Yaw angles, p. 14

SDK Software Development System, p. 64

SEA Series Elastic Actuator, p. 70

SLSQP Sequential Least Squares Quadratic Programming, p. 37

SO(3) Special group orthonormal of dimension 3, p. 10

xv

SQP Sequential Quadratic Programming, p. 6

URDF Universal Robotic Description Format, p. 64

XML Extensible Markup Language, p. 65

xvi

Chapter 1

Introduction

Robots play a key role nowadays performing tasks nearly impossible for humans, and

the range of applications extends through aerospace, military, oil and gas industry,

assembly lines, agriculture, medicine, among several others. There are several ways

to classify robots according to their characteristics and one important definition is

the redundant robot [15] - A redundant robot possesses more degree of freedoms

than those strictly required to execute its task. This provides the robot with an

increased level of dexterity that may be used to avoid singularities, joint limits, and

workspace obstacles, but also to minimize joint torque, energy or, in general, to

optimize suitable performance indexes.

In many situations the environment puts constraints that can be overcome by

redundant robots, and in these situations robots need to satisfy constraints while

performing tasks. Examples can be found in:

• Minimally invasive surgery, [25]: At the point of insertion of the surgical in-

strument into the patient’s body during minimally invasive surgery the redun-

dancy is used so the instrument does not move transversely in order to prevent

tissue damage, as shown in Figure 1.1.

1

Figure 1.1: daVinci surgery system and insertion scheme in tissue, courtesy from

Intuitive Surgical and adapted from [16], respectively.

• Decommissioning of oil production platforms, [31]: The additional degree of

freedom is used to shape the effector’s impedance in the task of biofouling

scraping in submarine stakes, as illustrated in Figure 1.2.

Redundant Robot

Before the experiment:
wood with biofouling.

After the experiment:
wood without biofouling.

Figure 1.2: Biofouling removal experimental setup, from [31].

• Mapping of opaque pipeline geometry, [22]: A multi-segment snake robot maps

the two-dimensional geometry of a pipeline through the joint angle sensors,

Figure 1.3.

2

Figure 1.3: Snake robot exploring pipeline with different fluid conditions, from [22].

• Finite-time trajectory generation, [27]: A mobile platform gives a holonomic

manipulator additional degrees of freedom to avoid obstacles in a trajectory

generated in finite time, example in Figure 1.4.

Figure 1.4: Jaguar V4 platform with manipulator arm, courtesy from iRobotec.

1.1 Trajectory Tracking and Manipulability

A robot manipulator is defined as, adapted from [69] and [34] - A sequence or rigid

bodies (links) interconnected by articulations (joints) to form a kinematic chain,

along the chain there can be several devices needed for the manipulator to accomplish

the desired tasks: actuators, sensors, end-effector, micro controllers, embedding

processors, buttons among others. Figure 1.5 shows some manipulators examples.

The trajectory tracking problem for a robot manipulator is defined as, adapted

from [69] - The end-effector asymptotically tracks a desired Cartesian trajectory

starting from an initial configuration that may or may not be matched with the

trajectory having the time as a constraint, so the end-effector have to be at a certain

3

Figure 1.5: Manipulators suited for specific tasks, computer numeric control and arc
welding, courtesy from RobotWorx and Fanuc, respectively.

point at a certain time. On the other hand in the path following problem the end-

effector follows a predefined path which does not involve time as a constraint, in

this way the path can be followed at any velocity.

A range of diverse controllers have been proposed to solve the trajectory tracking

problem in manipulators: the classical feedback controller in [71]; fuzzy logic control

[44] for manipulators with uncertain kinematics and dynamics parameters; sliding

mode control [9] using a hybrid position/force control scheme. As this work deals

only with the kinematic equations, the chosen control scheme when using controllers

is the classic feedback in kinematic approach.

In robotics manipulation a singularity according [72] - Represent configurations

from which certain directions of motion may be unattainable where bounded end-

effector velocities may correspond to unbounded joint velocities. Also, according

[72] - When the manipulator approaches the singularity there will not exist a unique

solution to the inverse kinematics (IK) problem, in such cases there may be no

solution or there may be infinitely many solutions.

The manipulability measure of a robot according [54] is - The ability to change

the position or orientation at a given configuration. The manipulability index can

be defined (many different indexes have been proposed in the literature) by the

product of singular values of the product of the Jacobian and its transpose. It

4

may be noted that during a singular manipulator configuration the determinant

of the Jacobian matrix is null, which means null singular values and also a null

manipulability. So a manipulability analysis could help to improve a control strategy

when redundant manipulators satisfy constraints because it is an indication of how

close the manipulator is from a singular configuration.

In [26] is presented a performance metric for the manipulability of constrained

serial manipulators that defines the constrained Jacobian matrix as an analytical

mapping between the end-effector and joint velocities that also takes the kinematic

chain constraints into account. [63] presents a task space control architecture when

the manipulator chain satisfies a holonomic constraint while tracking a trajectory.

This is done through a new set of velocity variables defined using the constrained

Jacobian matrix, the trajectory error and a proportional plus feed-forward controller.

In recent years, with the rise of processing power, many optimization algorithms

have been proposed to replace controllers in diverse situations. When it comes to

trajectory tracking in manipulators, the optimization method named quadratic pro-

gramming is presented by various authors as a viable alternative. The following

works discussed in the next paragraph were chosen (because the completeness of de-

scription or using the same experimental setup) to show how quadratic programming

is used in the trajectory tracking problem.

In [85] repetitive and nonrepetitive motion planning schemes are solved for re-

dundant manipulator through formulation of a quadratic programming (QP) where

neural networks and numerical algorithms QP solvers are used for finding the so-

lutions of the IK problem. In [84] the work of [85] is expanded to include the

maximization of a manipulability index. In [21] the IK problem is again solved

through the QP, in addition to the index of manipulation also includes obstacle

avoidance. In [43] the QP formulation of [85] is modified to include a proportional-

integral-derivative (PID) term in order to have noise suppression capability.

1.2 Motivation

The classical feedback controller in kinematic approach (called from now on sim-

ply kinematic control or KC in some occasions) is a proven method for trajectory

control with a stability proof. In redundant manipulators to minimize or maximize

performance indexes, as example the manipulability, the kinematic control expands

the null space of the manipulator Jacobian, this means that the analytical gradient

of the performance index must be available [68], which is non practical, for example,

when dealing with manipulability in manipulators with many joints. When dealing

with constraints in the kinematic chain, only constraints that are linear to joint

velocities fit the formulation in [63], so nonlinear constraints can not be considered.

5

The QP has an advantage over the kinematic control, the ease of defining equality

and inequality constraints in the formulation of the optimization problem, also there

is no need to adjust controllers parameters (except in some formulations) and the

sampling period is not necessarily needed. However, it has some flaws too, as the

kinematic control the constraints are all linear in terms of joint velocities(the system

nonlinear constraints must be linearized in order to fit the QP formulation) and the

objective function is quadratic at most.

1.3 Objectives

To overcome the main difficulties of kinematic control and QP, this thesis proposes to

apply a constrained nonlinear optimization method in the trajectory tracking prob-

lem, considering that the redundant manipulator satisfy a holonomic constraint in

its kinematic chain and also stay away from singular configurations through the

maximization of the manipulability. There are many methods for solving nonlinear

constrained optimization problems and as will be seen in Chapter 3.3 the sequen-

tial quadratic programming (SQP) is the designed method to solve the trajectory

tracking problem for redundant manipulators including holonomic constraints and

maximization of the manipulability in formulation.

Some advantages of SQP over kinematic control are: this approach does not de-

pend explicitly on the pseudo-inverse of Jacobians, does not need the derivative of

the desired trajectory, ease of defining equality and inequality nonlinear constraints

in the formulation of optimization problem and there is no need to adjust controllers

parameters. The advantages of SQP over QP are the possibility to define nonlin-

ear constraints and objective function, also having the negative feedback loop for

trajectory error.

The SQP shortcomings, in relation to IK and QP, are the convergence time and

the lack of a formal test that guarantees the global stability of the method. The

kinematic control method of [63] (including maximization of the manipulability)

and QP [21, 43, 84, 85] (including holonomic constraints) are modified in a way

that all three methods (kinematic control, QP and SQP) has the same framework:

trajectory tracking for a redundant manipulator satisfying a holonomic constraint

and maximizing the manipulability.

1.4 Contributions

The main contribution of this work is compare the SQP method with the traditional

methods commonly found in literature, kinematic control and QP, for the trajectory

tracking problem. Experiments are performed on a Baxter collaborative robot and a

6

comparative table shows the differences among the methods through various aspects

followed by a discussion about the ease of implementation and effectiveness.

The Table 1.1 is a comparison among some features of papers in kinematic control

[63] and QP [21, 43, 84, 85], and also, the proposed SQP in this thesis. The primary

objective is the trajectory tracking, so, all methods have this feature.

The maximization of manipulability is considering in [21] using approximations

of gradient and Hessian of the manipulability function, in the proposed SQP there

is no need for any approximation, then any complex geometry in the manipulability

function is never discarded.

Holonomic constraints are dealt in [63] using the so called constrained Jacobian, a

formulation that needs a methodology to be derived and needs to redo all calculations

when the constraint is placed on another robot link or the constraint type is changed.

Dealing with holonomic constraints in the proposed SQP is much simpler just insert

an equation into the constraints of the optimization problem formulation.

Unlike in [21], the proposed SQP does not deal with distance to object. Only

in [63] and [43] there is a need to adjust controller parameters, in case multiple

holonomic constraints in the robot kinematic chain can result in a large number of

parameters to be set.

Only the proposed SQP does not need to linearize or curve fitting functions

because the objective function and constraints of the optimization problem may be

nonlinear. Also, the SQP does not need the derivative of the trajectory tracking,

thus, there is no need for inference from the derivative of a desired trajectory definite

on the fly.

The QP and SQP methods are easily scalable, just add more constraints on the

optimization problem formulation. Only the kinematic control in [63] has a global

stability proof through Lyapunov. In terms of convergence time the proposed SQP

is the slower, adding too many decisions variables or constraints may can make the

problem unfeasible for online resolution.

The negative feedback loop for trajectory error in [21, 43] and the proposed SQP

ensures that the desired trajectory is reached even in the presence of noise or system

uncertainties.

7

T
ab

le
1.

1:
C

om
p
ar

is
on

am
on

g
m

et
h
o
d
s

fo
r

tr
a
je

ct
or

y

tr
ac

k
in

g.

F
ea

tu
re

K
C

[6
3]

Q
P

[8
5]

Q
P

[8
4]

Q
P

[2
1]

Q
P

[4
3]

S
Q

P

T
ra

je
ct

or
y

tr
ac

k
in

g
◦

◦
◦

◦
◦

◦
M

ax
im

iz
in

g
m

an
ip

u
-

la
b
il
it

y

◦
◦

◦

H
ol

on
om

ic
co

n
st

ra
in

t
◦

◦
D

is
ta

n
ce

to
ob

je
ct

◦
N

ee
d

ad
ju

st
co

n
tr

ol
le

r

p
ar

am
et

er
s

◦
◦

N
ee

d
li
n
ea

ri
za

ti
on

◦
◦

◦
◦

N
ee

d
cu

rv
e

fi
tt

in
g

◦
N

ee
d

d
er

iv
at

iv
e

of
tr

a-

je
ct

or
y

tr
ac

k
in

g

◦
◦

◦
◦

◦

E
as

il
y

sc
al

ab
le

◦
◦

◦
◦

◦
G

lo
b
al

st
ab

il
it

y
◦

N
eg

at
iv

e
fe

ed
b
ac

k

lo
op

fo
r

tr
a

je
ct

or
y

er
ro

r

◦
◦

◦

F
as

t
co

n
ve

rg
en

ce
◦

◦
◦

◦
◦

8

1.5 Organization

This work is organized as follows:

• Chapter 2 - Introduces some fundamentals in kinematic theory, namely: geo-

metric kinematics, derivative kinematics, kinematic control and constraints in

applied mechanics.

• Chapter 3 - Presents the methods used for trajectory tracking: kinematic

control, QP and SQP. Also, summarizes the implementation differences of

trajectory tracking methods used.

• Chapter 4 - Experiments and simulation are performed using kinematic con-

trol, QP and SQP methods.

• Chapter 5 - Closes the thesis with the conclusions and future works.

9

Chapter 2

Robot Kinematics

In this section topics of geometric kinematics are discussed. It presents the Cartesian

coordinate system, rotation kinematics, motion kinematics forward kinematics and

constraints. The text and the figures are mainly adapted from [34].

2.1 Geometric Kinematics

Geometric kinematics is the branch of science that studies geometry in motion but

does not take its causes into account. Motion means any kind of displacement that

implies a change in position or orientation. The orthogonality conditions (property

in which the scalar product of vectors is null) and geometric transformation (corre-

spondence between points of the same or different spaces) are the basis of geometric

kinematics [34].

2.1.1 Notation

The following notation and definitions are used throughout the thesis: R :=

(−∞,∞) , R+ := [0,∞) and N the natural numbers set. A superscript T denotes

the transpose, matrix or vector. det() is the determinant and tr() the trace of a ma-

trix. Ii is the identity matrix of size i. x , y and z are the axes of a Euclidean space

formed by the canonical unit vectors, i.e. xc =
[

1 0 0
]T

, yc =
[

0 1 0
]T

and

zc =
[

0 0 1
]T

, respectively. A subscript x, y or z means with respect to x axis,

y axis or z axis, respectively. 0i,j is a all zero matrix of i lines and j columns. An

upper dot ˙() is the time-derivative. An upper hat (̂) is the skew symmetric matrix.

SO(3) is the special orthogonal group of dimension 3, matrix R ∈ R3×3 for example,

SO(3) =
{
R ∈ R3×3, RTR = I3 and det(R) = 1

}
. t ∈ R is the time.

A frame is represented by F . The subscript i means a reference for the i-th

element. A subscript (i, j) in a matrix or vector denotes the matrix or vector from

10

y

(0,2,2)

P(3,2,2)

z

(3,2,0) x

(3,0,2)

Figure 2.1: Cartesian coordinate system, adapted from [35]

Fi to Fj. The total numbers of joints is n ∈ N. The joint angle vector, a generalized

coordinate definite in joint space, is represented by θ ∈ Rn, a joint angle in the frame

i is denoted by θi, a joint angle vector between Fi and Fj is represented by θi,j =

[θi θi+1 · · · θj−1 θj]T . The linear and angular velocities are denoted by v ∈ R3 and

ω ∈ R3, respectively. The subscript G means the variable is defined in the inertial

frame while the subscript B means the variable is defined in the body frame.

2.1.2 Cartesian Coordinate System

A Cartesian coordinate system is settled from a set of parallel and mutually per-

pendicular planes. The intersection of a pair of planes defines an axis and the three

intercepting axes define a base, Figure 2.1. The axes x-axis, y-axis and z-axis are

perpendicular to the planes x-plane, y-plane and z-plane, respectively.

The position of a point in the Cartesian space is an intersection of three planes.

In Figure 2.1, for example, the point P ∈ R3 is the intersection of three planes

parallel to y-z-planes (distance x = 3), z-x-planes (distance y = 4) and x-y-planes

(distance z = 2), so the Cartesian coordinates are P (x, y, z) = P (3, 4, 2).

The vectors of position, r ∈ R3, and linear velocity of a point P moving in the

Cartesian space are defined by (2.1) and (2.2), respectively:

11

r =

 rx

ry

rz

 , (2.1)

v =

 vx

vy

vz

 = ṙ =

 ṙx

ṙy

ṙz

 . (2.2)

2.1.3 Rotation Kinematics

Consider a rigid body in a frame B (body frame) that is originally coincident with

the inertial frame G. Figure 2.2 shows a position vector in red color representing

the rigid body at the same position in the frames G and B.

y

x

x

y

z

Body frameB

Inertial frameG

z

P(1,0,0)
P(1,0,0)

Figure 2.2: Position vector in red color
at coincident inertial and body frames,
inertial frame in black color and body
frame in blue color. The point P have
equal values in the frames.

y

x

x

y

z

Body frameB

Inertial frameG

z P(0.658,1.138,0 .408)
P(1,0,0)

Figure 2.3: Position vector in color
red after rotating. The value of the
point P changes in the inertial frame
and remains unchanged in the body
frame. R(rp, φp) is defined by rp =

[0.775 0.447 0.447]T and φp = 0.813 rad.

Consider that the position vector in Figure 2.2 rotates about a fixed vector. As

a result the inertial frame G and the body frame B are not more coincident as seen

in Figure 2.3. In this way the point P have different values for inertial and body

frames and the position vector is related by:

rG = RG,B(rp, φp)rB, (2.3)

where RG,B(rp, φp) ∈ SO(3) is a rotation matrix between the body and inertial

frames described through a rotation by a φp ∈ R angle around a fixed vector rp ∈ R3.

Considering that rp is a unit vector, the rotation matrix in (2.3) is given by the

Euler’s rotation theorem:

RG,B(rp, φp) = er̂pφp , (2.4)

12

where r̂p ∈ R3×3 is the skew symmetric matrix of the unit vector rp. The term er̂pφp

is given by the Rodrigues’s rotation formula [34]:

er̂pφp = I3 + sin(φp)r̂p + (1− cos(φp))r̂
2
p. (2.5)

2.1.4 Motion Kinematics

Consider again a rigid body in a frame B that is originally coincident with the

inertial frame G. A position vector in red color representing the rigid body at the

same position in the frames G and B can be seen in Figure 2.4.

y

x

x

y

z

Body frameB

Inertial frameG

z

P(1,0,0)
P(1,0,0)

Figure 2.4: Position vector in red color
at coincident inertial and body frames,
inertial frame in black color and body
frame in blue color. The point P have
equal values in the frames.

y x

x

y

z

Body frameB

Inertial frameG

z

P(1.358,1 .883,0 .908)
P (1,0,0)

Figure 2.5: Position vector in color red
after rotating and translating. The value
of the point P changes in the inertial
frame and remains unchanged in the
body frame. R(rp, φp) is defined by rp =

[0.775 0.447 0.447]T and φp = 0.813 rad

while rG,B = [0.7 0.7 0.5]T .

Consider now that the position vector also translates besides rotating about a

fixed vector. Again, as a result, the inertial frame G and the body frame B are not

more coincident, now in position and orientation at Figure 2.5.

In order to facilitate calculations, the position vector in (2.1) can be represented

by a (3 + 1)-component vector, where the appended element is a scale factor that

will be equal to 1, called homogeneous position vector,
[
r 1

]T
∈ R4. The homo-

geneous position vector at inertial and body frames is related by:[
rG

1

]
= TG,B

[
rB

1

]
, (2.6)

where TG,B ∈ R4×4 maps a rotation (through RG,B(rp, φp)) and a translation

(through the distance from frame G to frame B given by rG,B ∈ R3) between frames

13

G and B:

TG,B =

[
RG,B(rp, φp) rG,B

01,3 1

]
. (2.7)

2.1.5 Multibody

A multibody is a mechanical system connected by two or more rigid bodies. Each

member of the multibody that can move relative to all other members is a link.

The links are connected by joints. A revolute joint, as shown in Figure 2.6, allows

relative rotation between two joints. Without loss of generality, here in this work,

only revolute joints are considered.

link i

link i−1

joint i

θijoint i−1

joint i+1

Figure 2.6: Revolute joint, θi is connecting the i− 1-th link and the i-th link.

A serial multibody with n revolute joints, also called serial manipulator, can

be seen in Figure 2.7. The inertial frame is F0, frame Fi (i = 1, . . . , n) is the

frame associated with the i-th link and Fe is the end-effector frame. A joint angle,

generalized coordinate, in Fi is denoted by θi, where each θi is related with a revolute

joint.

2.1.6 Roll-Pitch-Yaw Angles

The rotation matrix of (2.4) needs nine parameters to represent orientation, this way

it has a very limited use in control due to the difficulty of handling all nine elements

[8]. A alternative option for a more compact representation is use the Roll-Pitch-

Yaw (RPY) angles which have three independent parameters. These parameters are

14

F0

F1

Fi−1

Fi

Fi+1

Fn Fe

Figure 2.7: Serial manipulator with revolute joints.

the φx roll angle (rotation in x axis), the φy pitch angle (rotation in y axis) and the

φz yaw angle (rotation in z axis).

The RPY is defined by consecutive rotations around the x, y and z. Thus, a

coordinate transformation between two frames is defined by:

R(φ) = R(zc, φz)R(yc, φy)R(xc, φx). (2.8)

where φ =
[
φx φy φz

]T
∈ R3 is the manipulator orientation.

To represent a rotation matrix by RPY angles the following expression is defined:

R(φ)=


cos(φy) cos(φz) sin(φx) sin(φy) cos(φz)−cos(φx) sin(φz) cos(φx) sin(φy) cos(φz)+sin(φx) sin(φz)

cos(φy) sin(φz) sin(φx) sin(φy) sin(φz)+cos(φx) cos(φz) cos(φx) sin(φy) sin(φz)−sin(φx) cos(φz)

− sin(φy) sin(φx) cos(φy) cos(φx) cos(φy)

.
(2.9)

2.1.7 Forward Kinematics

Forward kinematics is the transformation of kinematic information from joint space

(joint angles values) to task space (position and orientation in Cartesian coordi-

nates). In this way, the objective of forward kinematics is to determine the position

and orientation of every frame in a multibody for a set of joint angles.

The orientation of a frame can be found through rotation matrices. In a manip-

ulator chain the rotation matrix between two frames Fi and Fj is given by

Ri,j(rp, φp) =

i=j−1∏
i=1

Ri,i+1(rpi, φi), (2.10)

15

where Ri,i+1(rpi, φi) ∈ SO(3) is the rotation matrix between two consecutive frames.

It is useful to define Ri,i+1(rpi, φi) = er̂piφi where φi = θi and for the sake of simplicity

rpi is always equal to one of the canonical unit vectors, i.e, xc, yc or zc. For example

if the link i rotates around z results Ri,i+1 = eẑcθi . The orientation of Fi with respect

to the inertial frame is defined by R0,i(rp, φp) in (2.10).

The homogeneous transformation matrix, Ti,i+1 ∈ R4×4 that maps a position

vector from Fi to Fi+1 is:

Ti,i+1 =

[
Ri,i+1(rpi, φi) (ri,i+1)i

01,3 1

]
, (2.11)

where (ri,i+1)i ∈ R3×3 is the position vector from Fi to Fi+1 represented in Fi.

In a manipulator chain the homogeneous matrix between Fi and Fj is

Ti,j =

i=j−1∏
i=1

Ti,i+1, (2.12)

so the position of Fi to the inertial frame is defined using T0,i in (2.12):[
r0

1

]
= T0,i

[
ri

1

]
. (2.13)

In a robot manipulator with only revolute joints the pose only depends on the

joint angles (system variables):

p =

[
r

φ

]
= FK(θ), (2.14)

where the pose p ∈ Rη is generally defined as the position plus orientation of a

given part of the manipulator as example the end-effector (the pose can also be

defined in terms of the task space variables), η ∈ N being the dimension of chosen

representation with FK(θ)Rn 7→ Rη representing the forward kinematic function.

The FK(θ) can be split into two parts, position and orientation. The position

part can be found using (2.13). Considering orientation is given by RPY angles,

η = 3 and p ∈ R6, so it can be found using (2.9) and (2.10), which leads the

following relations:

φx = atan2(R(φ)3,2, R(φ)3,3), (2.15)

φy = atan2(−R(φ)3,1,
√
R(φ)23,2 +R(φ)23,3), (2.16)

φz = atan2(R(φ)2,1, R(φ)1,1), (2.17)

where atan2(·) is the two argument arctangent function and R(φ)i,j is an element

16

of R(φ) from the i-th row and j-th column.

2.2 Differential Kinematics

The differential kinematics defines the relationship between the joint velocities and

accelerations to the corresponding manipulator velocities and accelerations on task

space. This section presents the derivative kinematics dealing about velocity kine-

matics, geometric Jacobian and the relation between joint and task space. The text

and the figures are mainly adapted from [35].

2.2.1 Velocity Kinematics

Consider again a rigid body represented by a position vector in a frame B that is

originally coincident with the inertial frame G as shown in Figure 2.8. Consider now

that the frame B is rotating with a angular velocity φ̇p about a vector rp, Figure

2.9.

y

x

x

y

z

Body frameB

Inertial frameG

z

P(1,0,0)
P(1,0,0)

Figure 2.8: Position vector in red color
at coincident inertial and body frames,
inertial frame in black color and body
frame in blue color. The point P have
equal values in the frames.

y

x

x

y

z

Body frameB

Inertial frameG

z P(0.658,1.138,0 .408)
P(1,0,0)

ϕ̇p

Figure 2.9: Position vector in color red
after rotating at a angular velocity. The
value of the point P changes in the
inertial frame and remains unchanged
in the body frame. R(rp, φ̇p, t) is de-

fined by rp = [0.775 0.447 0.447]T , φ̇p =
0.813 rad/s and t = 1 s while ω =
[0.630 0.363 0.363]T .

The coordinates in inertial frame of a position vector in rotation with constant

velocity are:

rG = R(rp, φ̇p, t)rB = er̂pφ̇pt, (2.18)

The velocity of a position vector in the inertial frame F0 is:

vG = ṙG = ω̂BrG (2.19)

17

where ωB ∈ R3 is the angular velocity vector of FB. Considering a rotating frame

with R(rp, φ̇p, t), ω is defined by:

ω =

 ωx

ωy

ωz

 = φ̇prp. (2.20)

2.2.2 Geometric Jacobian

In robotics, the differential kinematics determines the linear velocities of the ma-

nipulator kinematic chain from the joint velocities, which are represented by the

following vector θ̇ ∈ Rn:

θ̇ =
[
θ̇1 θ̇2 . . . θ̇n−1 θ̇n

]T
. (2.21)

The velocity V ∈ R6 on a point in the kinematic chain has respectively the

components of linear and angular velocities in the axes x, y and z:

V =

[
v

ω

]
=
[
vx vy vz ωx ωy ωz

]T
. (2.22)

The geometrical Jacobian J(θ) ∈ R6×n maps the joint velocities to Cartesian

velocities:

V = J(θ)θ̇. (2.23)

The geometric Jacobian for a point P in the manipulator kinematic chain after

the joint n and before the joint n+1 is defined as (only revolute joints are considered):

JP (θ1,n) =

[
h1 × r1,P h2 × r2,P · · · hn−1 × rn−1,P hn × rn,P

h1 h2 · · · hn−1 hn

]
, (2.24)

where hi ∈ R3 is the axis of rotation of the joint i and ri,P is the displacement vector

between the joint i and the point P . For a Jacobian matrix J(θ), JT (θ)(J(θ)JT (θ))−1

is the pseudo-inverse denoted by J†(θ).

2.2.3 Analytical Jacobian

The analytical Jacobian JA(θ) ∈ Rη×nrelates the changes in robots joints angles to

spatial velocity in the task space:

ṗ = JA(θ)θ̇, (2.25)

where ṗ ∈ Rη is the time derivative of pose.

18

The expression of the analytical Jacobian is dependent of the parameterization

and can be calculated using the partial derivative of the pose:

JA(θ) =
∂p

∂θ
. (2.26)

For computational purposes (2.26) is not very practical. So, it is useful to define

the relation of ω and the time derivative of the orientation vector φ̇ given by:

ω = JR(φ)φ̇, (2.27)

considering RPY angles JR(φ) ∈ R3×3 is the representation Jacobian given by: 1 0 sin(φy)

0 cos(φx) − cos(φy) sin(φx)

0 sin(φx) cos(φy) cos(φx)

 (2.28)

That way a expression considering RPY angles for the analytical Jacobian

JA(θ) ∈ R6×6 is given by:

JA(θ) =

[
I3 03×3

03×3 J−1R (φ)

]
J(θ). (2.29)

2.3 Kinematic Control

This section presents the kinematic control for a serial manipulator with n joints.

There are two assumptions to be considered in a kinematic approach: first, the

forward kinematics of the serial manipulator is known; second, the dynamic effects

can be neglected because the tasks require only low joints speed and acceleration

including the joints gear reductions ratios are elevated.

It is considered that the robot manipulator has an internal control loop for joint

velocity, as shown by the block diagram in Figure 2.10. The velocity command

u ∈ Rn is the reference signal while the error signal e ∈ Rn is:

e = u− θ̇. (2.30)

Still in Figure 2.10 the controller is a pure proportional with a high gain that

scales the error in order to generate the control signal ν ∈ Rn sent to the driver.

The torques τ ∈ Rn generated by the driver are sent to the robot joint motors,

responsible for the joint movements. With this internal control loop e → 0 and

u ≈ θ̇.

19

Driver RobotController∑
−

+u θ̇e τν

Figure 2.10: Internal joint velocity control loop.

2.3.1 Pose Control in Cartesian Space

The pose kinematic control in Cartesian space (considering RPY angles) means the

end-effector pose pe ∈ R6 tracks a desired time-varying trajectory pd(t) ∈ R6, so in

the ideal case pe → pd(t), .

The Figure 2.11 shows a block diagram for a kinematic control loop in Cartesian

space and the block Internal control loop refers to the block diagram in Figure 2.10.

Utilizing the analytical Jacobian until the end-effector JAe(θ) ∈ R6×n is possible to

obtain the end-effector pose derivative ṗe ∈ Rm:

ṗe = JAe(θ)θ̇. (2.31)

pd e p

∑ ∑

ṗd

K p

up

∫

Internal
control loop

u θ̇

+

+
J ꝉ(θ)

θpe Forward
kinematics

+

−

Figure 2.11: Kinematic position control loop.

Integrating θ̇ over time and applying the forward kinematics results in the end-

effector pose pe. Still, in Figure 2.11 the pose error ep ∈ R6 is:

ep = pd(t)− pe. (2.32)

The proposed controller up ∈ R6 is a proportional plus feed forward, the pro-

20

portional term Kp ∈ R6×6 is a diagonal gain matrix while the feed forward term

ṗd(t) ∈ R6 is the derivative of the desired trajectory:

up = Kpep + ṗd(t). (2.33)

In order to obtain u, the input for the internal control loop, it is used the Jacobian

pseudoinverse J†Ae(θ) ∈ Rn×6:
u = J†Ae(θ)up. (2.34)

To obtain the position error dynamics derivative (2.32), substitutes ṗd(t) with

(2.33) and considering that θ̇ = u and substituting 2.34 in 2.31 implies up = ṗe:

ėp = ṗd(t)− ṗe = up −Kpep − ṗe = −Kpep (2.35)

where with a positive definite Kp matrix implies that limt→∞ ep(t) = 0.

2.4 Constraints in Applied Mechanics

A constraint is defined as the limitation in motion of particles and rigid bodies.

There are many classifications for constraints and only a subset is discussed in this

section. For a more detailed and complete explanation see [35, 74].

A holonomic system is a system where it is possible express one coordinate in

therms of others coordinates in equations that involves only position variables and

time. As the pose in (2.14) defined by the forward kinematics only depends on

θ, the system variables that describe position, a manipulator that conforms with

p = FK(θ) is a holonomic manipulator. A system where the pose is defined in terms

of the derivatives of system variables is called a non-holonomic system.

For the holonomic manipulator all imposed constraints in the manipulator chain

are also holonomic, being defined by equality equations in terms of positions vari-

ables (joint angles) or those that can be integrated to position level equations if

initially described by velocity level equations [82].

Another classification of constraints which is independent of the constraint being

holonomic or non-holonomic, as long the constraints are expressed in terms of sys-

tems variables [58], is the nomenclature scleronomic and rheonomic. A scleronomic

(or stationary) constraint does not change as a function of time while a rheonomic

(or non-stationary) constraint varies with time.

Regarding the holonomic manipulator with only revolute joints, a scleronomic

constraint is defined as:

f(θ) = vd(t) = constant, (2.36)

where vd(t) ∈ Rm is the desired velocity of the point with m ∈ N being the number

21

of independent holonomic constraints, and for a scleronomic constraint is mandatory

that vd(t) is a constant. On the other hand, a rheonomic constraint is defined as:

f(θ) = vd(t), (2.37)

with vd(t) ∈ Rm being a desired velocity dependent of time.

2.5 Constrained Jacobian

Considering open chain serial manipulators the constrained Jacobian [63] is the

matrix that maps velocities from joint space to task space when the manipulator

satisfy holonomic constraints. The following procedure shows how to obtain the

constrained Jacobian when the manipulator has holonomic constraints at only one

point in chain. From now on, all velocities and Jacobians are considered in the body

frame, the superscript notation with B is ignored to make equations cleaner.

In Figure 2.12 a constrained serial manipulator with n revolute joints is pre-

sented. As in Figure 2.7 F0 is inertial frame, Fi (i = 1, ..., n) the frame attached to

the i-th joint, Fe the end-effector frame and each θi is related with the i-th revolute

joint. Two new frames are defined in Figure 2.12, Fb the frame in the joint before the

holonomic constraints and Fc the frame at the holonomic constraints. The velocity,

Vb ∈ R6, at Fb and the joint velocity are related by:

Vb = Jb(θ1,b)θ̇1,b, (2.38)

where Jb(θ1,b) ∈ R6×b is a partial Jacobian.

The velocity at Fc and Fb are related by:

Vc = Φc,bVb, (2.39)

where the adjoint matrix Φi,j ∈ R6×6 maps velocities between Fi and Fj:

Φi+1,i =

[
RT
i,i+1(rpi, θi) −RT

i,i+1(rpi, θi)[(ri,i+1)i]×

0 RT
i,i+1(rpi, θi)

]
, (2.40)

where (ri,i+1)i ∈ R3 is the displacement vector between frames Fi and Fi+1 repre-

sented in Fi.

The kinematic chain of the manipulator satisfy a holonomic constraint at Fc.

Then it is considered that there is a scleronomic holonomic constraint at Fc defined

using a matrix D ∈ Rm×6 that defines constraint behavior where m is the dimension

22

Figure 2.12: Constrained serial manipulator with revolute joints.

of the constraint and vd(t) ∈ Rm is zero, i.e.,

DVc = vd(t) = 0, (2.41)

while a rheonomic holonomic constraint at Fc is defined using a desired velocity

vd(t) ∈ Rm which is time dependent together with D, i.e.,

DVc = vd(t). (2.42)

Each line in matrix D (considering that all lines are linearly independent) in

(2.41) or (2.42) for simplicity have a Euclidean norm equal to one and defines only

one holonomic constraint. The direction of a displacement constraint is defined

using the first 3 columns (components is axes x, y and z, respectively) of a line.

On the other hand a direction of a rotating constraint is defined using the last 3

columns (components is axes x, y and z, respectively) of a line. So, each row in D

can define only one type of constraint, displacement or rotation.

In order to ensure task feasibility is mandatory that m < b, otherwise the number

of degrees of freedom would be zero or negative implying that only self motion

(m = b) or no motion at all (m > b) at frame Fc. Also, m < 6 is mandatory because

when m = 6 the frame Fc can not move or rotate in any direction.

Substituting (2.38) and (2.39) in (2.41), one has

DΦc,bJb(θ1,b)θ̇1,b = 0. (2.43)

23

The joint velocity vector satisfying (2.43) is given by:

θ̇1,b = Jb
†(θ1,b)N(DΦc,b)uf , (2.44)

where N(DΦc,b) spans the null space of DΦc,b and uf ∈ Rb−m is a control degree

of freedom. The dimension of uf is defined using the manipulator degrees of free-

dom until the holonomic constraints minus the number of independent holonomic

constraints.

On the other hand, the end-effector velocity is given by:

Ve = Je(θ)θ̇. (2.45)

Partitioning Je(θ) into two parts, the end-effector velocity can be written as:

Ve =
[
Je1(θ) Je2(θb+1,n)

] [θ̇1,b

θ̇b+1,n

]
. (2.46)

Replacing (2.44) in (2.46) creates:

Ve =
[
Je1(θ)Jb

†(θ1,b)N(DΦc,b) Je2(θb+1,n)
] [uf

θ̇b+1,n

]
. (2.47)

In (2.47) the matrix multiplication Je1(θ)Jb
†(θ1,b) only depends on θb+1,n consid-

ering Jb(θ1,b) not singular, please, see the proof in [16]. Thus, Jr(θb+1,n) ∈ R6×n−m,

called constrained Jacobian matrix, is defined:

Jr(θb+1,n) =
[
Je1(θ)Jb

†(θ1,b)N(DΦc,b) Je2(θb+1,n)
]
. (2.48)

Consolidating this methodology an algorithm is used to determine the con-

strained Jacobian, defined by Algorithm 1.

Algorithm 1 Constrained Jacobian algorithm.

Define D
Define Jb(θ1,b)
Define Je(θ)
Je1(θ)← first b columns of Je(θ)
Je2(θb+1,n)← last n− b columns of Je(θ)
Jr(θb+1,n)←

[
Je1(θ)Jb

†(θ1,b)N(DΦc,b) Je2(θb+1,n)
]

24

2.6 Manipulability Indexes

A variety of manipulability indexes have been proposed for evaluation of the perfor-

mance of manipulators since the first index in [81]. This section discusses some of

these manipulability indexes found in literature.

• Manipulability [81]

The manipulability is a numeric index that represents the manipulator dis-

tance to singular configurations, thus, maximizing this index means that the

manipulator move away from singularities. For a given Jacobian matrix J(θ)

the manipulability measure w(θ) ∈ R is:

w(θ) =
√
det(J(θ)JT (θ)). (2.49)

• Manipulability Index Squared [75]

The manipulability index squared is a simplified expression that is used be-

cause is a convex function and have a less complicated analytical expression:

w2(θ) = det(J(θ)JT (θ)). (2.50)

• Velocity Manipulability [69]

The velocity manipulability ellipsoid represents the behavior of a manipulator

to arbitrarily change end-effector position an orientation. The end-effector

maximum velocity at a direction is directly proportional to the length of the

ellipsoid axis in this direction. If the ellipsoid is a sphere the maximum end-

effector velocity is isotropic (same value when measured in different directions).

The directions of the principal axes of the ellipsoid are determined by the

eigenvectors of the matrix J(θ)JT (θ), while the dimensions of these axes are

determined by the eigenvalues of the same matrix.

• Force Manipulability [69]

The force manipulability ellipsoid characterizes the end-effector forces that can

be generated with a given set of joint torques being a manipulator at given

posture. The end-effector maximum force at a direction is directly proportional

to the length of the ellipsoid axis in this direction. The maximum force isotropy

is attainable when the ellipsoid is a sphere.

The force ellipsoid is a dual of the velocity ellipsoid, based on the duality be-

tween differential kinematics and statics. So the directions of the principal axes

of the ellipsoid are determined by the eigenvectors of the matrix (J(θ)JT (θ))−1,

25

while the dimensions of these axes are determined by the eigenvalues of the

same matrix.

• Relative Manipulability [40]

The relative manipulability is the manipulability measure independent of the

number the degrees of freedom of the manipulator as well as links lengths. It

has the following expression:

wn(θ) = n
√
det(J(θ)JT (θ))/l2w, (2.51)

where lw =
∑n

i=0 lwi ∈ R is the total length of the manipulator, lwi =√
a2wi + d2wi ∈ R is the total length of the i-th link, awi ∈ R is the i-th

link length defined in Denavit-Hartenberg convention and dwi ∈ R is the i-

th joint offset defined in Denavit-Hartenberg convention. For a explanation of

Denavit-Hartenberg convention see [34, 69, 72].

• Manipulability Polytope [46]

The manipulability polytope gives a representation of velocity bounds of the

manipulator it transforms the admissible range of velocities from joint space

to a polytope in task space. Polytopes are less frequently used than ellipsoids

due to the additional computational cost.

For a manipulator with n joints a joint space polytope that encapsulates all

possible joints velocities from the following vertex representation:

θv =


θ̇v1

θ̇v2
...

θ̇v2n

 =


θ̇−1 θ̇−2 · · · θ̇−n

θ̇−1 θ̇−2 · · · θ̇+n
... . . .

. . .
...

θ̇+1 θ̇+2 · · · θ̇+n

 , (2.52)

where θv ∈ R2n×n, θvi ∈ Rn and θ−i ∈ R and θ+i ∈ R are the minimum and

maximum velocity of the i-th joint. Using the manipulator Jacobian is possible

to transform the joint space polytope in a task space polytope:

vi = Je(θ)θ̇
vT
i , (2.53)

Vwv =
[
vw1 vw2 · · · vw2n

]T
, (2.54)

where vwi ∈ Rn and Vwv ∈ R2n×6. The manipulability polytope is obtained by

calculating the enclosed volume of Vv.

• Avoidance Manipulability [83]

26

The avoidance manipulability represents the shape-changeability (avoidance

ability) of each intermediate link when a prior task is stated for the end-effector

of a redundant manipulator. This manipulability is defined when some part

of the manipulator (regardless of the end-effector) has to execute a sub-task

as example the avoidance of an obstacle. The desired velocity pose of the

manipulator ṗd is defined using the desired joint angle vector derivative θ̇d by

the relation:

ṗd = JAe(θ)θ̇d, (2.55)

which is expanded in:

θ̇d = J†Ae(θ)ṗd + (In − J†Ae(θ)JAe(θ))lAw, (2.56)

where lAw ∈ Rn is an arbitrary vector for the avoidance sub-task executed

executed by the manipulator with the redundant degree of freedom. The

relation for the i-th link desired velocity ṗid ∈ Rm is defined by:

ṗid = JAi(θ)θ̇d, (2.57)

where JAi(θ) ∈ Rm×n is the horizontal concatenation of partial analytical

Jacobian until the i-th link with an all zero matrix 0m×n−i. By substituting

2.56 into 2.57 the following relation is defined:

ṗid = JAi(θ)J
†
Ae(θ)ṗd + JAi(θ)(In − J†Ae(θ)JAe(θ))lAw. (2.58)

Two variables are defined:

∆ṗid = ṗid − JAi(θ)J†Ae(θ)ṗd, (2.59)

Mwi = JAi(θ)(In − J†Ae(θ)JAe(θ)), (2.60)

where ∆ṗid ∈ Rm is the avoidance velocity and Mwi ∈ Rm×n is the avoidance

matrix of the i-th link. The shape of the avoidance manipulability ellipsoid is

given for the equation:

∆ṗTidM
†
wi

T
M †

wi∆ṗid ≤ 1. (2.61)

The rank(Mwi) determines the possible avoidance dimension of the i-th link

while the singular values of Mwi indicates the avoidance ability of the same

i-th link.

• Extended Manipulability [77]

27

The extended manipulability consider constraints that limit the manipulator

maneuverability in the task space incorporating penalization terms. Any con-

straint can be incorporated, the discussion relies only on joint boundaries. A

joint limit derivative potential function for the i-th joint is defined by:

hθi =
(θi − θ−i)2(2θi − θ+i − θ−i)

4(θ+i − θi)2(θi − θ−i)2
, (2.62)

where θ−i and θ+i are the lower and the upper limit of the i-th joint, respectively.

The joint boundaries terms are defined as:

p−θi =

 1, |θi − θ−i | > |θ+i − θi|
1√

1+|hθi|
, otherwise

, (2.63)

p+θi =


1√

1+|hθi|
, |θi − θ−i | > |θ+i − θi|

1, otherwise
, (2.64)

where p−θi is applied when θ̇i < 0 and p+θi when θ̇i > 0, θ̇i ∈ R is the joint

velocity of the i-th joint.

A augmented Jacobian Jem if formed modifying each element of the manipu-

lator Jacobian:

Jemi,j(θ) =

{
p−θiJi,j(θ), θ̇i < 0

p+θiJi,j(θ), θ̇i > 0
, (2.65)

where Ji,j(θ) is the element of row i and column j of J(θ). The extended

manipulability is defined as:

wem(θ) =
√
det(Jem(θ)JTem(θ)). (2.66)

• Null Space Manipulability [66]

The null space manipulability is a local measure of the amount of dexterity

that is retained when a manipulator has one or more joints failures. The value

of a null space manipulability index ranges from zero to one. A zero value

indicates a local loss of full end-effector control while a value of one indicates

that the joints only produce self motion. Let Jwrm(θ) be the manipulator

Jacobian after the columns of the corresponding failed joints being removed.

The null space manipulability is defined by:

wrm(θ) =
√
det(N(Jwrm(θ))N(JTwrm(θ))). (2.67)

• Manipulability of Constrained Manipulators, first index [26]

28

In order to analyze the manipulability of a constrained serial manipulator [26]

proposes the study of two Jacobian matrices, the geometric Jacobian until the

joint before the constraint Jb(θ1,b) and the constrained Jacobian Jr(θb+1,n).

The manipulability of related to Jb(θ1,b) indicates the ability of the constrained

manipulator generating motions in Fc in order to track the desired trajectory

of the end-effector.

wb(θ1,b) =

√
det(Jb(θ1,b)Jb

T (θ1,b)). (2.68)

• Manipulability of Constrained Manipulators, second index [26]:

For the constrained Jacobian matrix Jr(θb+1,n), which can only depend on the

constraint type and kinematics of the joints after the constraint, the manip-

ulability indicates the possibility of generating the desired trajectory in the

end-effector associated with the use of uf and θ̇b+1,n:

wr(θb+1,n) =

√
det(Jr(θb+1,n)Jr

T (θb+1,n)). (2.69)

• Other Indexes

Many other manipulability indexes are defined in the literature, as these in-

dexes are out of scope of this thesis they are only pointed. The indexes re-

lated to the dynamic features of robots are: dynamic manipulability ellipsoid

[67]; energy manipulability ellipsoid [53]; zero moment point manipulability

ellipsoid [55]; dynamic reconfiguration manipulability ellipsoid [23]; dynamic

manipulability of the center of mass [4]. For parallel robots there is the power

manipulability [47]. The indexes related to teleoperation are: teleoperation

manipulability index [76]; infinite manipulability [79]. In [39] are defined the

following indexes for continuum robots, velocity manipulability, compliance

manipulability and unified force-velocity manipulability. For robots hands the

indexes are: joint torque-velocity pair set manipulability [80]; force directional

manipulability [60].

29

Chapter 3

Methods for Trajectory Tracking

In this chapter the objective is to present different methods to solve the following

control problem: the end-effector of a serial manipulator tracks a desired trajec-

tory while the holonomic constraints in the kinematic chain of the manipulator are

satisfied and the manipulability is maximized.

Three different methods are discussed: in Section 3.1 the kinematic control is

presented while in Section 3.2 the quadratic programming is introduced. Lastly, in

Section 3.3 the sequential quadratic programming is designed.

The Section 3.4 summarizes the features and presents a comparison among the

three methods used for trajectory tracking.

3.1 Kinematic Control

In this section an analytical approach for kinematic control in Cartesian space is

presented. This scheme have been used in [16, 17, 62, 63] in the context of robotic-

assisted minimally invasive surgery.

Utilizing the constrained Jacobian Jr(θk+1,n) in (2.48) is possible to obtain the

end-effector velocity:

Ve = Jr(θb+1,n)

[
uf

θ̇n+1,b

]
. (3.1)

Considering the transition function in (3.1) the Figure 3.1 shows a block diagram

for a kinematic control loop with a scleronomic constraint in task space.

Still, in Figure 3.1 applying the forward kinematics results in pe. The pose error

ep ∈ R6 is, same equation of (2.32):

ep = pd − pe. (3.2)

For a control signal up = Kpep+ ṗd, where Kp ∈ R6×6 is the gain matrix, ṗd ∈ R6

is the time derivative of pd and up ∈ R6 is a proportional plus feed forward controller.

30

ṗd

e p
∑ ∑K p

up

∫u=θ̇
+

−

J r
ꝉ
(θb+1,n)

θ

pe Forward
kinematics

u f

J b
ꝉ(θ1,b)N(DΦc, b)

ub+1, n

u1, b+

+pd

Figure 3.1: Kinematic control loop with scleronomic constraint. For a rheonomic
constrain u1,b = Jb

†(θ1,b)(N(DΦc,b)uf + (DΦc,b)
†vd(t)).

Using (3.1) and up, the constrained velocity vector uc ∈ Rn−m is given by:

uc =

[
uf

ub+1,n

]
= Jr

†(θb+1,n)up, (3.3)

where uf ∈ Rb−m is equal to the first b−m elements of uc and ub1,n ∈ Rb−m is equal

to the last n− b elements of uc.

For a scleronomic constraint, (2.43) i.e DΦc,bJb(θ1,b)θ̇1,b = 0 holds and u1,b is

obtained using uf ∈ Rb−m from (3.3). So, the result is:

u1,b = Jb
†(θ1,b)N(DΦc,b)uf . (3.4)

For a rheonomic constraint, (2.43) is rewritten as:

DΦc,bJb(θ1,b)θ̇1,b = vd(t). (3.5)

So, θ̇1,b is defined as:

u1,b = Jb
†(θ1,b)(N(DΦc,b)uf + (DΦc,b)

†vd(t)). (3.6)

The velocity control command, u ∈ Rn, sent to the manipulator is the vertical

concatenation of u1,b from (3.4) or (3.6) and ub+1,n from (3.3):

u =

[
u1,b

ub+1,n

]
. (3.7)

Considering a scleronomic constraint, u can be rewritten in a matrix multiplica-

31

tion form using the terms of right side of equalities (3.3) and (3.4):

u =

[
Jb
†(θ1,b)N(DΦc,b) 0b,n−b

0n−b,b−m In−b

]
Jr
†(θb+1,n)up (3.8)

For the velocity command u (3.1) is rewritten as:

Ve = Jr(θb+1,n)

[
uf

un+1,b

]
. (3.9)

In (3.9) Ve also can be rewritten in a matrix multiplication form because uf =

(J†b (θ1,b)N(DΦc,b))
†u1,b, so:

Ve = Jr(θb+1,n)

[
Jb
†(θ1,b)N(DΦc,b) 0b,n−b

0n−b,b−m In−b

]†
u. (3.10)

Now applying the same methodology from Section 2.3.1 in order to obtain the

position error dynamics derivative (3.2), substitutes ṗd with (2.33), i.e up = Kpep+ṗd

and considering that θ̇ = u, substituting (3.8) in (3.10) implies Ve = up:

ėp = ṗd − Ve = up −Kpep − Ve = −Kpep (3.11)

where with a positive definite Kp matrix implies that limt→∞ ep(t) = 0.

The control strategy in this Section, that is applied in [63], does not address the

manipulability indexes of Section 2.6, it only strives to follow a trajectory with the

holonomic constraints satisfied. So, a modification is proposed, which consists in ex-

pand the null space of Jr(θb+1,n) and Jb(θ1,k) rewriting (3.3), (3.4), (3.6) respectively

as:

[
uf

ub+1,n

]
= Jr

†(θb+1,n)up+

(In−b − Jr†(θb+1,n)Jr(θb+1,n))µr,

(3.12)

u1,b = Jb
†(θ1,b)N(DΦc,b)uf+

(Ib − Jb†(θ1,b)Jb(θ1,b))µb,
(3.13)

u1,b = Jb
†(θ1,b)(N(DΦc,b)uf + (DΦc,b)

†vd(t))+

(Ib − Jb†(θ1,b)Jb(θ1,b))µb,
(3.14)

where µb and µb are additional degrees of freedom that are utilized for maximize

a function, in this case the manipulability indexes defined in (2.68) and (2.69),

32

respectively given by:

µb = kb

(
∂wb(θ1,b)

∂θ

)T
, (3.15)

µr = kr

(
∂wr(θb+1,n)

∂θ

)T
, (3.16)

where kb ∈ R and kr ∈ R define the weight of (3.15) and (3.16), respectively. A

kinematic control algorithm for trajectory tracking is defined by Algorithm 2.

Algorithm 2 Kinematic control algorithm.

Define desired trajectory pd(t)
Define constraint vd(t)
Define sampling interval T
repeat
ep ← pd − pe
up ← Kpep + ṗd
uf ← first b−m lines of (3.12)
ub+1,n ← last n− b lines of (3.12)
if vd(t) = 0 then
u1,b ← first b lines of (3.13)

else if vd(t) 6= 0 then
u1,b ← first b lines of (3.14)

end if

u←
[

u1,b
ub+1,n

]
until trajectory ends

3.2 Quadratic Programming

In this section the trajectory tracking problem for constrained redundant manipu-

lators is addressed by the QP method. The definition of quadratic optimization is

in Subsection 3.2.1 while Subsection 3.2.2 describes how to formulate the tracking

problem as a quadratic problem.

3.2.1 Quadratic Optimization

Engineering optimization is a technique that utilizes a method (generally an algo-

rithm or heuristic) to find a way of designing and operating a system. The optimiza-

tion is done using a combination of the so called decision variables, finding a solution

under certain objectives that also satisfies the design and operation constraints of

the system.

A QP is an optimization problem with a quadratic objective function and linear

33

constraints, which is defined as:

min
u

1

2
uTCu+ cTu ∈ R, subject to: (3.17)

F =


Bi

Tu = si, i ∈ E ;

Bi
Tu < si, i ∈ I;

u ∈ U ,
(3.18)

where u ∈ Rn is the decision variable vector, C ∈ Rn×n is a symmetric matrix of

objective function, c ∈ Rn is a vector of objective function, F is the constraint set

of the optimization problem, Bi ∈ Rn and si ∈ R define the i-th constraint, E is the

set of equality constraints, I is the set of inequality constraints and U is the set of

u.

It can be noted in (3.18) that equality and inequality constraints from the op-

timization problem are linear. In this way, all equations modeling the trajectory

tracking problem should be linear relating to decision variables. The same concept

is applied for the vector in the objective function.

3.2.2 Trajectory Tracking with QP

Regarding the trajectory tracking problem in manipulators, the end-effector follows

the desired pose pd, this way the joint trajectory have to be determined in real time.

A manner to relate the desired pose and the joint trajectory in a linear way is to

take the time derivatives of pd and θ using the analytical Jacobian,

JAe(θ)θ̇ = ṗd, (3.19)

which is used in the repetitive motion planning scheme in [21, 84, 85].

A modification of (3.19) by adding proportional term information is defined by:

JAe(θ)θ̇ = ṗd + k1(pd − pe) (3.20)

where k1 ∈ R+. Considering the error ep = pd − pe in (3.20) leads to:

JAe(θ)θ̇ = ṗd + k1ep. (3.21)

Holonomic constraints in the manipulator kinematic chain are linear equalities

regarding θ̇, DΦc,bJb(θ1,b)θ̇1,b = vd(t). This way can, they be easily integrated in the

quadratic programming formulation as long the decision variable vector u, a joint

velocity command for the robot, is equal to θ̇.

To incorporate the manipulability index w(θ) in the quadratic programming

34

formulation, [21] proposes the following second-order approximation:

w(θ) ≈ ∇wT (θ)u+
1

2
uTHw(θ)u, (3.22)

where ∇w(θ) is the gradient of w(θ) and Hw(θ) is the Hessian of w(θ).

The gradient ∇f(u) ∈ Rn of a differentiable function in u ∈ U is given by:

∇f(u) =

(
∂f

∂u1

∂f

∂u2
· · · ∂f

∂un−1

∂f

∂un

)
, (3.23)

where ui is the i-th variable.

The Hessian H(u) ∈ Rn×n of a second order differentiable function in u ∈ U is:

H(u) =


∂2f

∂u21

∂2f

∂u1∂u2
· · · ∂2f

∂u1∂un−1

∂2f

∂u1∂un
...

...
. . .

...
...

∂2f

∂un∂u1

∂2f

∂un∂u2
· · · ∂2f

∂un∂un−1

∂2f

∂u2n

 . (3.24)

The manipulability may have a very complex analytical expression. Thus, find-

ing ∇wi(θ) and Hwi,j(θ)by the analytical derivative may be impractical. So, [21]

proposes the following numerical approximations:

∇wi(θ) =
∂w

∂θi
≈ w(θ + δθiEi)− w(θ − δθiEi)

2δθi
, (3.25)

Hwi,j(θ) =
∂2w

∂θi∂θj
≈ ∇wj(θ+δθiEi)−∇wj(θ−δθiEi)

2δθi
, (3.26)

where δ ∈ R is a constant and Ei ∈ Rn is a null vector except for the i-th element

having the value 1.

Now a QP formulation for the trajectory tracking problem considering redundant

manipulators that satisfy holonomic constraints in a point of its chain and maximize

manipulability indexes is defined by:

min
u
−1

2
uT (αbHwb(θ1,b) + αrHwr(θb+1,n))u

−(αb∇wbT (θ1,b) + αr∇wrT (θb+1,n))u ∈ R,

subject to:

(3.27)

35

JAe(θ)u = ṗd(t) + k1ep; (3.28a)

DΦc,bJb(θ1,b)u1,b = vd(t); (3.28b)

θ− ≤ θ ≤ θ+; (3.28c)

θ̇− ≤ u ≤ θ̇+, (3.28d)

where Hwb(θ1,b) and ∇wb(θ1,b) are respectively the Hessian and the gradient of

wb(θ1,b), Hwr(θb+1,n) and ∇wr(θb+1,n) are respectively the Hessian and the gradient

of wr(θb+1,n) while αb ∈ R and αr ∈ R are weights for the manipulability indexes.

θ+ ∈ Rn and θ− ∈ Rn denote respectively the upper and lower joint angle limits

while θ̇+ and θ̇− denote respectively the upper and lower joint velocity limits.

In (3.27) a manipulability is maximized searching through the negative of Hessian

and gradient. The first constraint in (3.28a) is responsible for the trajectory tracking.

The second constraints in (3.28b) is the holonomic constraint: if vd(t) is a constant

it is a scleronomic constraint; otherwise it is a rheonomic constraint. The last two

constraints (3.28c) and (3.28d), the inequalities, are the manipulator physical limits

in terms of joint angles and joint velocities, respectively. The QP trajectory tracking

is defined by Algorithm 3.

Algorithm 3 QP trajectory tracking algorithm.

Define desired trajectory pd(t)
Define constraint vd(t)
Define sampling interval T
repeat
tactual = t
u← solution of problem in 3.27 and 3.28
wait until tactual > t+ T

until trajectory ends

From using QP in order to track a desired trajectory for constrained redundant

manipulators the following theorem is established:

Theorem 1. Considering a redundant holonomic robot system, i.e. a redundant

manipulator, where the dynamics effects can be neglected. Assuming joint velocity

commands are sent at a fixed rate (a sampling period) for the redundant manipula-

tor and these commands ensures that the following constraints are satisfied at each

36

sampling period:

JAe(θ)u = ṗd(t) + k1ep; (3.29a)

DΦc,bJb(θ1,b)u1,b = vd(t); (3.29b)

θ− ≤ θ ≤ θ+; (3.29c)

θ̇− ≤ u ≤ θ̇+, (3.29d)

and also minimizes a convex objective function. This can be stated as a QP problem

where the decision variables are equal to joint velocity commands, the constraints

are related to trajectory tracking in (3.29a), velocity in frame satisfying a holonomic

constraint in (3.29b), manipulator physical limits in joint angles in (3.29c) and ma-

nipulator physical limits in joint velocities in (3.29d), also the objective function is

the negative of a manipulability index, which can be approximated by a quadratic

function. Then, the redundant manipulator will track the desired trajectory in its

workspace and satisfy the holonomic constraint assuming it has a high position ac-

curacy, the initial end-effector position coincides with the initial trajectory and the

velocity ellipsoids defined by the manipulability indexes wb(θ1, b) and wm(θb+1,n) are

non vanishing in any direction of the task space.

Proof. See Appendix A.2.

3.3 Sequential Quadratic Programming

The objective of this section is describe how the tracking problem can be achieved

in constrained redundant manipulators using the SQP method. It starts with the

definition of constrained nonlinear optimization and the description of the nonlinear

optimization methods in Subsection 3.3.1 while Subsection 3.3.2 discuss the motiva-

tion for using SQP in the trajectory tracking problem. 3.3.3 discuss the sequential

least squares quadratic programming (SLSQP) , one of many variants implementa-

tion of SQP. In Subsection 3.3.4 a brief discussion of multi-objective optimization is

done towards the weighted-sum method. Subsection 3.3.5 describes how to formulate

the trajectory tracking problem as a constrained nonlinear optimization problem.

3.3.1 Constrained Nonlinear Optimization

The definition of constrained nonlinear optimization problem [28] is - A problem

that involves minimization of a nonlinear function subject to constraints (nonlinear

or linear) on a finite set of continuous variables. The general formulation of the

problem is:

min
u
f(u) ∈ R, subject to: (3.30)

37

F =


gi(u) = 0, i ∈ E ;

gi(u) ≤ 0, i ∈ I;

u ∈ U ,
(3.31)

where u ∈ Rn is the decision variable vector, n ∈ N is the number of decision

variables, f(u) Rn 7→ R is a nonlinear objective function, F is the constraint set

of the optimization problem, gi(u) Rn 7→ R is the i-th constraint (this constraint

can be either linear or nonlinear), E is the finite set of equality constraints, I is the

finite set of inequality constraints and U is the set of u.

The Lagrangian L(u, λ) of the constrained nonlinear optimization problem de-

fined in (3.30) and (3.31) is given by:

L(u, λ) = f(u)−
∑

i∈E ∪I

λigi(u). (3.32)

where λi ∈ R is the i-th Lagrange multipliers of g(u), λ ∈ R|E|+|I| is the Lagrange

multipliers.

There are many methods for solving nonlinear constrained optimization prob-

lems, according to [5] these techniques and some of their main features are summa-

rized into the text, for a deeper discussion of each method see [5, 6, 56].

a) Reduced-Gradient Method

In the reduced-gradient methods the decision variables are separated into a set of

dependent variables (the variables are expressed in terms of other variables) and a

set of independent variables. The reduced gradient is computed to find the min-

imum in the search direction until convergence is achieved. An algorithm for the

reduced-gradient method considering the QP formulation of (3.17,3.18) is defined

by Algorithm 4, where range(·) is the column space of a matrix.

Each iteration makes a horizontal move in the subspace to satisfy the con-

straints. The line search is necessary because f(x) in nonlinear. The quasi-newton

update keeps Bk+1 positive-definite. In order to work with nonlinear constraints the

reduced-gradient method needs a restoration step to regain feasibility.

b) Penalty Function Method

In the penalty function method a penalty parameter is associated with the objective

function in (3.30) leading to the penalty function:

f(u) +
1

r

|E|+|I|∑
i=1

gi(u)2, (3.33)

38

Algorithm 4 Reduced-gradient methods algorithm.

Define initial feasible solution u0
λ0 ← 0
H̄ ← ∇2f(u0)
Ȳ ← range(B)
Z̄ ← null(B)
k ← 0
repeat
c̄k ← ∇f(uk)
Determine z̄, Z̄THkZ̄z̄ = −Z̄T c̄k
p̄k ← Z̄z̄
Determine λk+1, Ȳ

TBTλ = Ȳ T c̄k + Ȳ T H̄kp̄k
Line search: uk+1 ← uk + s̄p̄k, f(uk+1) < f(uk)
H̄k+1 ← quasi-Newton update of H̄k

k ← k + 1
until ‖ Z̄T c̄k ‖< ε

where r ∈ R is a positive penalty parameter. If the solution is infeasible the summa-

tion increases proportional to the square of the constraint violations. An algorithm

for penalty function method is defined by Algorithm 5.

Algorithm 5 Penalty function method algorithm.

Define initial solution u0
Define initial penalty parameter r1
Define constant β < 1
k ← 1
repeat

Determine uk with a iterative method from uk−1
rk+1 ← βrk
k ← k + 1

until ‖ g(uk) ‖< ε

The penalty function is minimized for a decreasing sequence of the penalty pa-

rameter as β < 1. The solution uk in Algorithm 5 does not satisfy the constraints

until convergence of the algorithm is achieved, this convergence can be divided into

two parts. First is the convergence of penalty function to minimum which follows

the convergence rate of the iterative method used, for example a quasi-Newton tech-

nique. Second is the convergence of the iterative solution uk which is linear because

the difference ‖ uk − ufinal ‖ (ufinal is the solution that satisfies ‖ g(uk) ‖< ε) is

proportional to rk.

Numerical difficulties can occur when the penalty parameter approaches zero

because the second term in the penalty function dominates f(u) nullifying the effect

of the original objective function in 3.30. The penalty function method is better

than reduced-gradients methods for nonlinear constraints.

39

c) Augmented Lagrangian Method

To avoid ill-conditioning difficulties of the penalty function method an augmented

Lagragian function is formed by including a linear term involving violated con-

straints:

f(u) +
1

r

|E|+|I|∑
i=1

(
gi(u)− r

2
vi

)2
, (3.34)

where vi is the i-th term of v ∈ R|I|+|E|, the vector of linear terms. An algorithm for

augmented Lagrangian method is defined by Algorithm 6.

Algorithm 6 Augmented Lagrangian method algorithm.

Define initial solution u0
Define initial penalty parameter r1
Define constant β < 1
Define initial linear terms vector v1
k ← 1
repeat

Determine uk with a iterative method from uk−1
vk+1←vk−2g(uk)/rk
rk+1 ← βrk
k ← k + 1

until ‖ g(uk) ‖< ε

The augmented Lagrangian function is minimized for a sequence of values from

the penalty parameter and the linear terms vector as the vector tends toward the

Lagrange multipliers. The method does not have the same numerical difficulties as

the penalty function method because there is no need for the penalty parameter

approach to zero. Usually it is more efficient than penalty function method.

d) Sequential Quadratic Programming

The sequential quadratic programming (SQP) is an iterative method for the con-

strained nonlinear optimization defined in (3.30) and (3.31). In general lines, at

each major iteration the SQP defines the Hessian of the Lagrangian in (3.32) that is

used to generate a QP subproblem whose solution is used to form a search direction.

A SQP algorithm adapted from [56] can be defined by Algorithm 7.

The SQP is solved iteratively with a initial solution u0 ∈ Rn, the k+1-th solution

is obtained from the k-th solution:

uk+1 = uk + γkdk, (3.35)

where dk ∈ Rn is the search direction and γk ∈ R is the step length parameter.

40

Algorithm 7 SQP algorithm.

Initialize u0
k ← 0
repeat

Evaluate L(uk, λk)
Evaluate ∇f(uk)
Formulate the QP problem defined by (3.36) and (3.37)
Solve the QP problem to obtain dk
Determine γk using the merit function in (3.38)
uk+1 ← uk + dkγk
k ← k + 1

until convergence test is satisfied

At each k-th iteration of SQP the search direction is determined by a quadratic

programming subproblem define by:

min
dk

1

2
dk

THk(L(uk, λk))dk +∇fT (uk)dk ∈ R, subject to: (3.36)

F =


∇gTi (uk)dk + gi(uk) = 0; i ∈ E
∇gTi (uk)dk + gi(uk) ≤ 0; i ∈ I

dk ∈ D,
(3.37)

where D is set of dk.

The step length parameter γk is determined to produce a sufficient decrease in

a defined merit function Ψ(u) in the way:

Ψ(uk + dkγk) > Ψ(uk). (3.38)

The SQP is more efficient than penalty function method or augmented La-

grangian method when constraints are nonlinear and it is competitive with reduced-

gradients method for linear constraints.

e) Barrier Function Method

The barrier function method is characterized by generating points inside a feasible

region, i.e. solutions that satisfy the constraints. The barrier function is defined

including a barrier term involving reciprocals of constraints in the objective function

of 3.30:

f(u) + r

|E|+|I|∑
i=1

1

gi(u)
, (3.39)

so, when u is on the border of a feasible region, some gi(u) is near zero and the

barrier term tends to be much greater than f(u). An algorithm for the barrier

41

function method is defined by Algorithm 8.

Algorithm 8 Barrier function method algorithm.

Define initial solution u0
Define initial penalty parameter r1
Define constant β < 1
k ← 1
repeat

Determine uk with a iterative method from uk−1
rk+1 ← βrk
for i = 1 to |E|+ |I| do
λi = rk

gi(uk)2

end for
k ← k + 1

until λigi(uk) < ε ∀i

The barrier function is minimized for a decreasing sequence of barrier term val-

ues. The method works for problems with inequality constraints only. It is usually

less efficient than penalty function method but is still useful if the objective function

is not evaluated at infeasible solutions.

f) Interior Point Method

The interior point method is related to barrier functions also introducing slack vari-

ables to reformulate the inequalities as equalities and hence obtain the solution for

the optimization problem. The objective function with the barrier term is defined

as:

f(u) + r

|I|∑
i=1

log gi(u), (3.40)

in order to prevent the solution leaving the feasible region defined by the inequalities.

An algorithm for interior point method is defined by Algorithm 9.

The interior point method uses line searches to enforce convergence and employ

matrix factorization to compute steps. In terms of performance can be competitive

with SQP methods for nonlinear constraints and with reduced-gradient methods for

linear constraints.

3.3.2 Motivation for Using the SQP Method

After a brief summary of the constrained nonlinear optimization methods a question

arises: which is the most suited method for the trajectory tracking problem where

a redundant manipulator satisfy holonomic constraints and maximize the manipu-

lability index. Also, it is worth emphasizing that the trajectory tracking problem

42

Algorithm 9 Interior point method algorithm.

Define initial solution u0
Define initial penalty parameter r1
Define constant β < 1
k ← 1
repeat

Define the Karush–Kuhn–Tucker (KKT) conditions for the nonlinear problem
Apply Newton method using KKT to obtain dk
Line search with gi(u) to obtain γk = max {γk ∈ (0, 1]}
uk+1 ← uk + dkγk
rk+1 ← βrk
k ← k + 1

until Convergence test is satisfied

requires commands to be sent to the manipulator in a finite interval, usually short

period, of time.

As it can be seen in Section 3.3.5, the trajectory tracking problem described pre-

viously as a constrained nonlinear optimization method has inequalities and nonlin-

ear equalities constraints. The nonlinear constraints eliminate the choice of reduced-

gradient methods. The presence of equalities constraints put aside the choice of the

barrier function method, also considering that the objective function and constraints

can be evaluated at infeasible solutions (joints velocities that surpass the physical

limits of the manipulator).

Modeling the tracking problem to send commands to the manipulator at a fixed

sampling period, usually a fraction of a second in real world applications, requires

optimization to have fast convergence. This characteristic eliminates the choice of

penalty function and augmented Lagrangian methods in favor of a SQP method and

an interior point method (IPM) .

In optimization, test functions are used to evaluate characteristics of algorithms,

such as convergence rate, precision, robustness and general performance. There are

thousands of test functions in literature, a collection of some wide spreading test

functions can be found in [73]. In [24] is presented a few selected test functions from

[1, 30], the description of these functions is in Table 3.1.

In [24] the tests are done using an active set SQP implementation and an IPM im-

plementation (primal-dual implementation based in Lagrange multipliers and New-

ton’s method [5]). Both highly constrained (the decisions variables and constraints

have the same order of magnitude) and loosely constrained (the decisions variables

have a larger order of magnitude of constraints) problems are evaluated, the results

are in Table 3.2 and Table 3.3, respectively.

Table 3.2 shows that the SQP is at least 15 times faster than IPM in highly con-

strained problems while Table 3.3 shows that the IPM is at least 60 times faster than

43

Table 3.1: Selected test functions.
Test function Description
MINC44 [52] Minimize the permanent (definition in [29])

of a doubly stochastic square matrix (defini-
tion in [2]) whose trace is zero.

READING8 [48] A nonlinear optimal control problem consid-
ering tidal power generation.

NCVXQP6 A family of non-convex quadratic problems.
MADSSCHJ [49] A nonlinear minimax problem with equality

and inequality constraints and variable di-
mension.

JIMACK [36] 3-D discretization in finite element method.
OSORIO [13] Unified framework from techniques in large-

scale tabular data protection.
TABLE8 Same problem from OSORIO with less vari-

ables and constraints.
OBSTCLBL [19] Obstacle problem where a rectangle is dis-

cretized in many minor rectangles.

Table 3.2: Highly constrained problems from [24].
Name Nr. variables Nr. constraints SQP time(s) IPM time(s)

MINC44 1113 1033 0.28 7.60
READING8 2002 1000 9.78 251.12
NCVXQP6 10000 7500 3.60 613.38

MADSSCHJ 201 398 0.34 5.51

Table 3.3: Loosely constrained problems from [24].
Name Nr. variables Nr. constraints SQP time(s) IPM time(s)

JIMACK 3549 0 542.42 8.12
OSORIO 10201 202 303.00 0.78
TABLE8 1271 72 3.80 0.04

OBSTCLBL 10000 1 40.84 0.50

44

SQP in loosely constrained problems. The tracking problem previously described

in this section for a seven degrees of freedom manipulator is a highly constrained

problem, so the SQP is the choice. Lastly [24] summarizes some the advantages of

the SQP over IPM which are related to the tracking problem:

• Efficient on highly constrained problems: the tracking problem as modeled in

Section 3.3.5 has more constraints than decision variables.

• Stays feasible with respect to the linear constraints throughout the optimiza-

tion: the velocity commands sent to the manipulator will not attempt to bring

the joints angles beyond their limits (joint angles limits will be modeled as lin-

ear constraints in Section 3.3.5).

• Usually requires less function evaluations: a fast convergence is necessary in

the tracking problem.

• Allows warm starting: the solution and the commands sent to manipulator

are used to parameterize the method.

The SQP method is already used in robotics related applications, especially in

motion planning, here are presented some works. In [51] the SQP is applied to jointly

optimize over the parameters in a task planning trajectory in mobile manipulation.

In [45] the SQP seeks the solution for an optimization motion planning problem

where a manipulator is mounted in a spacecraft. In [42] a mobile manipulator is

expected to follow a trajectory, in an event of failure to obtain a feasible trajectory a

deviation in the Cartesian space is calculated using the SQP. In [70] the SQP is used

to find a human-like trajectory in a robotic arm-hand system. In [59] a comparison

between SQP and IPM is done towards trajectory optimization for robot motion

planning.

3.3.3 Sequential Least Squares Quadratic Programming

The sequential least squares quadratic programming [41] is one of many variants of

a SQP algorithm. It strives for solving the nonlinear optimization problem defined

in (3.30) and (3.31) by using a sequence of constrained least squares problems with

successive second order approximations of the objective function and first order

approximations of the constraints.

The SLSQP follows the general framework defined by Algorithm 7 starting by

choosing an initial solution u0. The next step is enter the loop and evaluate at each

iteration L(uk, λk) and ∇f(uk) in order to formulate the QP problem defined by

(3.36) and (3.37). For computational efficiency it is imperative that the Hessian

45

Hk(L(uk, λk)) in (3.37) is not calculated by the expression in (3.24), but approxi-

mated by some algorithm.

The SLSQP uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) iterative algo-

rithm [56] where the Hessian is approximated using gradient evaluations. In this

way, at each iteration of the SLSQP algorithm the BFGS algorithm is called in order

to compute the approximated Hessian H̃k(uk) ∈ Rn×n.

The BFGS is solved iteratively from an initial decision variable ũ0 ∈ Rn and an

initial Hessian matrix H̃0(ũ0) ∈ Rn×n, then BFGS enters a loop until convergence is

obtained. At each k-th iteration of BFGS the search direction d̃k ∈ Rn is determined

by:

H̃k(ũk)d̃k = −∇f(ũk), (3.41)

then d̃k is used to find a step length parameter γ̃k ∈ R by a line search strategy [56]:

γ̃k = arg min
γ̃>0

f(ũk + γ̃d̃k), (3.42)

and ũk+1 is given by:

ũk+1 = ũk + γ̃kd̃k. (3.43)

The Hessian approximation in the k+1-th iteration of BFGS method is updated

as:

H̃k+1(ũk+1) = H̃k(ũk) +
r̃kr̃

T
k

r̃Tk s̃k
− H̃k(ũk)s̃ks̃

T
k H̃

T
k (ũk)

s̃Tk H̃k(ũk)s̃k
, (3.44)

where r̃k ∈ Rn is defined as

r̃k = ∇f(ũk+1)−∇f(ũk), (3.45)

where s̃k ∈ Rn is defined as

s̃k = ũk+1 − ũk. (3.46)

The update of (3.44) guarantees the symmetry and positive definiteness of

H̃k+1(ũk+1). An algorithm for the BFGS method is defined by Algorithm 10.

The next step in the SLSQP is to formulate the QP problem of (3.36) and (3.37)

using H̃k(uk) instead Hk(L(uk, λk)). In order to find dk, used to form a new iterate

in (3.35), the SLSQP changes the QP formulation of (3.36) and (3.37) into the

following linear least squares (LSEI) formulation [7]:

min
dk

1

2
‖ Adk − a ‖ ∈ R, subject to: (3.47)

46

Algorithm 10 Algorithm for the BFGS method.

Initialize ũ0
Initialize H̃0(ũ0)
k ← 0
repeat
d̃k ← −H̃−1k (ũk)∇f(ũk)
γ̃k ← arg min f(ũk + γ̃d̃k) with γ̃ > 0
ũk+1 ← ũk + γ̃kd̃k
r̃k ← ∇f(ũk+1)−∇f(ũk)
s̃k ← ũk+1 − ũk
H̃k+1(ũk+1)← H̃k(ũk) +

r̃k r̃
T
k

r̃Tk s̃k
− H̃k(ũk)s̃k s̃

T
k H̃

T
k (ũk)

s̃Tk H̃k(ũk)s̃k

k ← k + 1
until convergence test is satisfied

F =


MT

eqdk = meq;

MT
iqdk = miq;

dk ∈ D,
(3.48)

where A ∈ Rn×n and a ∈ Rn can be found respectively by H̃(uk) = ATA and

∇f(uk) = −ATa. Meq ∈ Rn×|E| is the equality constraint matrix, Miq ∈ Rn×|I| is

the inequality constraint matrix, meq ∈ Rn is the equality constraint vector and

miq ∈ Rn is the inequality constraint vector, which are defined by:

Meq =
[
∇gi(uk) · · · ∇g|E|(uk)

]
; i ∈ E , (3.49)

Miq =
[
∇gi(uk) · · · ∇g|I|(uk)

]
; i ∈ I, (3.50)

meq =

 gi(uk)

· · ·
g|E|(uk)

 ; i ∈ E , (3.51)

miq =

 gi(uk)

· · ·
g|I|(uk)

 ; i ∈ I. (3.52)

The QP problem defined by the LSEI formulation in (3.47) and (3.48) is solved

through a non-negative least squares (NNLS) algorithm. The NNLS compute only

non negative constraints so there are some variables transformation to make it pos-

sible. The first is to use the orthogonal basis Mot ∈ Rn×n of the nullspace of MT
eq to

rewrite dk by the following relations:

dk = Mot

[
dk1

dk2

]
, (3.53)

47

 MT
eq

A

MT
iq

Mot =

 M̃eq1 0|E|×n−|E|

Ã1 Ã2

M̃iq1 M̃iq2

 , (3.54)

where dkeq ∈ R|E|, dkiq ∈ Rn−|E|, M̃eq1 ∈ R|E|×|E|, Ã1 ∈ Rn×|E|, Ã2 ∈ Rn×n−|E|,
M̃iq1 ∈ R|I|×|E| and M̃iq2 ∈ R|I|×n−|E|. So dk1 is determined by the following relation:

M̃eq1dk1 = meq. (3.55)

In order to obtain dk2 the following inequality constrained least squares problem

(LSI) is defined (D2 i the dk2 set):

min
dk2
‖ Ã2dk2 − (a− M̃eq1dk1) ‖ ∈ R, subject to: (3.56)

F =

{
M̃iq2dk2 ≥ miq − M̃iq1dk1;

dk2 ∈ D2,
(3.57)

The LSI problem is not solved, instead it will be transformed to the least distance

problem (LPD) with a variable change defined as:

dk3 = RLPDdk2 − ã, (3.58)

where dk3 ∈ R|n−E|, RLPD ∈ Rn−|E|×n−|E| is obtained from the following QR factor-

ization:

Ã2 = QLPD

[
RLPD

0|E|×n−|E|

]
, (3.59)

ã ∈ Rn×|E| is:

ã = Q̃T
LPD(a− Ã1dk1), (3.60)

and Q̃LPD ∈ Rn×n−|E| is the first n − |E| columns of QLPD. The LPD problem is

defined as (D3 i the dk3 set):

min
dk3
‖ dk3 ‖ ∈ R, subject to: (3.61)

F =

{
M̃iq2R

−1
LPDdk3 ≥ miq − (M̃iq1dk1 + M̃eq2R

−1
LPDã);

dk3 ∈ D3,
(3.62)

The LPD has a dual non-negative least squares problem (NNLS) defined as (D3

i the dk3 set):

min
dk4
‖ Ã3dk4 − [0n,1 1]T ‖ ∈ R, subject to: (3.63)

48

F =

{
dk4 ≥ 0;

dk4 ∈ D4,
(3.64)

where dk4 ∈ R|E|+|I| and Ã3 is defined as:

Ã3 = QLPD

 M̃iq M̃eq[
miq − (M̃iq1dk1 + M̃eq2R

−1
LPDã)

]T
0|E|×1

 . (3.65)

In order to find the solution the NLLS set some system variables to zero creating

the active set. In this way the non-negative constraint of these variables is active.

In each iteration the active set is modified by one variable and is ignored leading

to a solution of an unconstrained least squares subproblem, until convergence is

achieved. Details about the NNLS implementation can be found in [14].

The residue dk5 ∈ Rn+1of the NNLS problem is defined by:

dk5 = Ã3dk4 − [0n,1 1]T . (3.66)

Each i-th term solution from the the LDP problem can be determined using the

i-th element of the NNLS residue:

dk3i =
dk5i
dk5n+1

, i = 1, . . . , n− |E|. (3.67)

To obtain dk2 just use (3.58) with dk3 from (3.67), reminding that dk1 was defined

by (3.55) it is now possible use (3.53) to finally define the solution of LSEI problem,

dk the search direction of SLSQP method. An algorithm for the resolution of LSEI

problem is defined by Algorithm 11.

Algorithm 11 Algorithm for the LSEI problem.

Formulate the LSEI problem in (3.47) and (3.48)
Define dk1 and dk2 from (3.53)
Determine Mot and other matrices from (3.54)
dk1 ← M̃−1

eq1meq

Formulate the LSI problem in (3.56) and (3.57)
QR factorization in (3.59)
Formulate the LPD problem in (3.61) and (3.62)
Formulate the dual NNLS problem in (3.63) and (3.64)
Determine NNLS residue: dk5 ← Ã3dk4 − [0n,1 1]T

Determine LPD solution: dk3i =
dk5i

dk5n+1

dk2 ← R−1LPD(dk3 + ã)

dk ←Mot

[
dk1
dk2

]

After finding the search direction, solution of QP problem, the next step of

49

SLSQP is to determine the step length parameter. An overall value would be γk = 1

but if uk is far from a local optimum this value will not guarantee the convergence.

The following merit function is defined:

Ψ(uk) = f(uk) +

|E|∑
i=1

ϕi|gi(uk)|+
|E|+|I|∑
i=|E|+1

ϕi|min(0, gi(uk))|, (3.68)

where min(·, ·) is the minimum value between two arguments and ϕi ∈ R is defined

by:

ϕi = max

(
1

2
(ϕik−1

+ |λi|), |λi|
)
, i = 1, . . . , |E|+ |I|, (3.69)

where max(·, ·) is the maximum value between two arguments, ϕik−1
is the value for

ϕi in the k − 1-th iteration of SLSQP and λi is the Lagrange multiplier of the i-th

constraint. An algorithm for the resolution of SLSQP is defined by Algorithm 12.

Algorithm 12 Algorithm for the SLSQP problem.

Initialize u0
k ← 0
repeat
H̃k(uk)← solution of BFGS algorithm
Formulate the LSEI problem
dk ← solution for the LSEI algorithm
Solve the QP problem to obtain dk
γk ← satisfy: Ψ(uk + dkγk) > Ψ(uk)
uk+1 ← uk + dkγk
k ← k + 1

until convergence test is satisfied

3.3.4 Multi-Objective Optimization

The general formulation of a constrained nonlinear multi-objective optimization

problem is:

min
u
fi(u) ∈ R, i ∈M, subject to: (3.70)

F =


gi(u) = 0, i ∈ E ;

gi(u) ≤ 0, i ∈ I;

u ∈ U ,
(3.71)

where fi(u)Rn 7→ R is the i-th objective function (at least one objective have to be

nonlinear) and M is the finite set of objective functions.

In the multi-objective problem defined by (3.70) and (3.71) |M| objective func-

tions have to be minimized at the same time, however the functions can be conflict-

ing, that means a minimization of one objective function implies in maximization of

50

another. This problem can have a huge or infinite number of solutions so a method

to compare these solutions is required.

Let u1 ∈ U and u2 ∈ U be solutions of the multi-objective problem. u1 dominates

u2 if fi(u1) ≤ fi(u2), i ∈ M and fi(u1) 6= fi(u2), i ∈ M, that is, at least in one

objective the inequality is strict. This dominance relation is defined by the following

notation [18]:

u1 ≺ u2. (3.72)

If u1 ∈ U and u2 ∈ U are non dominated among themselves:

u1 ⊀ u2 and u2 ⊀ u1. (3.73)

A solution u∗ ∈ U is globally Pareto-optimal if there is no solution u ∈ U that

dominates u∗. So the global Pareto-optimal set that contains only globally Pareto-

optimal solutions is defined by:

P = {u∗ ∈ U | @ u ∈ U | f(u2) ⊀ f(u1)} , (3.74)

where the cardinality of P can be huge or infinity. In real-world engineering problems

it is necessary to estimate a finite and representative subset of P .

The weighted-sum is a scalar method to solve multi-objective problems. The

original multi-objective problem is transformed is a mono-objective problem using

a weighted sum of the original objectives.

The original multi-objective problem in (3.70) and (3.71) is rewritten as:

min
u

|M|∑
i=1

αifi(u) ∈ R, i ∈M, subject to: (3.75)

F =


gi(u) = 0, i ∈ E ;

gi(u) ≤ 0, i ∈ I;

u ∈ U ,
(3.76)

where αi ∈ R is the i-th weight element and
∑|M|

i=1 αi = 1.

In the case of only two objective functions (3.75) is rewritten:

min
u

α1f1(u) + α2f2(u), (3.77)

using the fact that α1 + α2 = 1:

min
u

(1− α)f1(u) + αf2(u), (3.78)

where α ∈ R is the weight.

51

In order to generate a set of solutions using this method we have to simply

change the weight value in (3.78) subject to (3.76). If the change interval of the

weight is small enough, a representative global Pareto-optimal set will be generated

for convex objective functions. The main advantage of the weighted-sum method is

the ease of programming [3].

3.3.5 Trajectory Tracking with SQP

The pose error is the difference between the desired pose pd(t) and the actual end-

effector pose pe (time explicit in ep and θ explicit in pe):

ep(t) = pd(t)− pe(θ). (3.79)

Using the SQP to find a solution u ∈ Rn, a joint velocity command for the

manipulator at a fixed step time T ∈ R, that aims to bring the pose error in (3.79)

to zero in a step time, the predicted pose error ẽp ∈ R6 is the desired pose after

the step time minus the pose after the step time (considering that the solution u is

constant at all the step time interval the increment in the joint angle is uT):

ẽp(t) = pd(t+ T)− pe(θ + uT). (3.80)

In an optimization problem, a function can be maximized searching through the

minimization of the negative direction. So, two functions f1 and f2 are defined as

the negative of wb and wr respectively, and evaluated with the SQP solution:

f1 = −wb(θ1,b + u1,bT), (3.81)

f2 = −wr(θb+1,n + ub+1,nT). (3.82)

For a serial redundant manipulator that satisfy one or more holonomic con-

straints in a point of this kinematic chain and tracks a trajectory, using (3.81) and

(3.82) with a parameter α ∈ R where 0 ≤ α ≤ 1, the following optimization problem

is defined where the decisions variables are the joint velocities commands ui:

min
u

(1− α)f1 + αf2 ∈ R, subject to: (3.83)

52

ẽp(t) = 0; (3.84a)

DΦc,bJb(θ1,b + u1,bT)u1,b = vd(t+ T); (3.84b)

θ−i ≤ θi + uiT ≤ θ+i ; (3.84c)

θ̇−i ≤ ui ≤ θ̇+i , (3.84d)

notice that, the decision variables are not explicit in (3.83) and the first equality

constraint of (3.84a), the relations are defined in (3.80) to (3.82).

The objective function in (3.83) is minimized at each step of the SLSQP method

reflecting in an instantaneous value for wb and wr. In order to implement the first

equality of (3.84a), that is predicted error is equal to zero, it is used the forward

kinematics function evaluated at θ + uT :

ẽ(t) = pd(t+ T)− FK(θ + uT) = 0. (3.85)

The second equality in (3.84b) is the holonomic constraint, if vd(t) is a constant it

is a scleronomic constraint, otherwise it is a rheonomic constraint. Notice that, the

second equality of (3.84b) is the same expression for the left side of (2.43) but now

evaluated with u and T . The last two inequality constraints (3.84c) and (3.84d)are

the i-th manipulator physical constraints in terms of joint angle limits and joint

velocity limits, respectively.

It is worth mentioning that the uk+1 solution stay within the limits ±ε from the

uk solution, where ε ∈ R. This is necessary to avoid that u go to the lower and

upper velocity limits in consecutive steps of the SQP method. The SQP trajectory

tracking is defined by Algorithm 13.

Algorithm 13 SQP trajectory tracking algorithm.

Define desired trajectory pd(t)
Define constraint vd(t)
Define sampling interval T
repeat
tactual = t
u← solution of problem in 3.83 and 3.84
wait until tactual > t+ T

until trajectory ends

Remark 1. The optimization problem of (3.83) and (3.84) can be treated as a unique

solution where the α parameter would have to be fixed a priori. This unique solution

results in manipulability values that might not be good compared to other attainable

values. In fact, there may be a range of α values that make the manipulability indexes

53

cooperative and another range where the manipulability indexes are in opposition.

Then, only with multiple solutions is possible to verify the correlation between these

manipulability indexes and this correlation changes according to the location and

type of constraint.

From using SQP in order to track a desired trajectory for constrained redundant

manipulators the following theorem is established:

Theorem 2. Considering a redundant holonomic robot system, i.e. a redundant

manipulator, where the dynamics effects can be neglected. Assuming joint velocity

commands are sent at a fixed rate (a sampling period) for the redundant manipula-

tor and these commands ensures that the following constraints are satisfied at each

sampling period:

pd(t+ T)− FK(θ + uT) = 0; (3.86a)

DΦc,bJb(θ1,b + u1,bT)u1,b = vd(t+ T); (3.86b)

θ−i ≤ θi + uiT ≤ θ+i ; (3.86c)

θ̇−i ≤ ui ≤ θ̇+i , (3.86d)

and also minimizes a nonlinear function. This can be stated as a SQP problem

where the decision variables are equal to joint velocity commands, the constraints

are related to trajectory tracking in (3.86a), velocity in frame satisfying a holonomic

constraint in (3.86b), manipulator physical limits in joint angles in (3.86c) and

manipulator physical limits in joint velocities in (3.86d), also the objective function

is the negative of a manipulability index. Then, the redundant manipulator will track

the desired trajectory in its workspace and satisfy the holonomic constraint assuming

it has a high position accuracy, the initial end-effector position coincides with the

initial trajectory and the velocity ellipsoids defined by the manipulability indexes

wb(θ1, b) and wm(θb+1,n) are non vanishing in any direction of the task space.

Proof. See Appendix A.3.

3.4 Comparison of Methods

The objective of this section is discuss the implementation of each method high-

lighting their differences.

The Table 3.4 shows the following aspects of each method:

• References: The references for kinematic control and QP discuss trajectory

tracking problems together with other objectives (for example manipulability

and constraints). The references for SQP are the author previously works and

the texts that discuss the method.

54

• Basic problem formulation: Inherent from each method.

• Number of calculations for basic description: Although the total cal-

culations and the convergence time are problem dependent, among the three

methods discussed the SQP is always the slower because it solves a sequence

of quadratic problems.

• Manipulator joint velocities constraints: The methods QP and SQP

define as constraints as part of optimization problem. On the other hand the

kinematic control just limits the signal value, which can degrade the method

performance.

• Manipulator joint angle limits: Again the QP and SQP methods define

constraints as part of optimization problem. The kinematic control has to use

the null space of Jacobian.

• Holonomic scleronomic constraint in Fc: First, for the three methods

is necessary to define the scleronomic constraint features: location of in the

manipulator kinematic chain, type (displacement or rotating), dimension and

value. This way vd(t) and the matrices Φc,b, J(θ1,b) and D are defined.

Both QP and SQP add an equality constraint in the optimization problem.

As the QP formulation only supports linear constraints and the information of

the sampling period can not be added without some linearization. So, the best

scenario to satisfy the scleronomic constraint is run the QP at a high rate.

On the other hand, the SQP adds information of the joints values (rotation

for revolute joints and displacement for prismatic joints) in a sampling period

directly in the Jacobian, this way choosing an appropriate sampling period

and ensuring a low convergence time of SQP is ideal scenario.

From the scleronomic constraint features the kinematic control approach

determines the constrained Jacobian using it together with a controller

(proportional plus feed forward) to find the constrained velocity vector,

[uf ub+1,n]T . Now with this vector, the Jacobian pseudo-inverse of Jb(θ1,b)

and the null space of a DΦc, b the control signal that satisfy the scleronomic

constraint is found.

Considering that the QP and SQP algorithms are already coded these methods

are more simple to implement than the kinematic control. Also in case of more

scleronomic constraints in distinct locations of manipulator kinematic chain

just add more equality constraints in the optimization problem formulation of

QP and SQP. In contrast, the kinematic control need another batch of cal-

55

culus probably (formulation still open) including a new Constrained Jacobian

matrix.

Lastly, none of the methods add negative feedback information of how much

the constraint is far from the desired value.

• Holonomic rheonomic constraint in Fc: The comments are the same for

the scleronomic constraint, except that vd(t) is a time dependent function.

• Maximize an index, for example manipulability: The SQP is the only

method that guarantee total fidelity of the index. The QP needs linearization

and the kinematic control needs curve fitting.

• Stability: For the kinematic control is proven. QP and SQP need conditions

and/or assumptions.

56

T
ab

le
3.

4:
C

om
p
ar

is
on

am
on

g
m

et
h
o
d
s

fo
r

tr
a
je

ct
or

y

tr
ac

k
in

g.

M
e
th

o
d

K
in

e
m

a
ti

c
C

o
n
tr

o
l

O
p
ti

m
iz

a
ti

o
n

P
ro

b
le

m
v
ia

Q
u
a
d
ra

ti
c

P
ro

g
ra

m
m

in
g

O
p

ti
m

iz
a
ti

o
n

P
ro

b
le

m
v
ia

S
e
-

q
u

e
n
ti

a
l

Q
u

a
d

ra
ti

c
P

ro
g
ra

m
m

in
g

R
e
fe

re
n
ce

s
T

h
e

m
ai

n
re

fe
re

n
ce

is
th

e
d
is

se
rt

at
io

n

[1
6]

,
ot

h
er

w
or

k
s

ar
e

[1
7,

25
,

26
,

63
]

T
h
e

m
ai

n
re

fe
re

n
ce

is
[2

1]
,
ot

h
er

s
w

or
k
s

ar
e

[4
3,

84
,

85
]

T
h
e

te
x
ts

th
at

d
es

cr
ib

e
th

e
m

et
h
o
d

[4
1,

56
]

an
d

au
th

or
p
re

v
io

u
s

w
or

k
s

[1
0,

11
].

B
a
si

c
p
ro

b
-

le
m

fo
rm

u
-

la
ti

o
n

u
=

J
† (
θ)
u
p

u
p

=
K
p
e p

+
ṗ d

(t
)

e p
=

p d
−
p e

m
in u

1 2
u
T
C
u

+
cT
u
∈
R

F
=

    A
iT
u

=
s i
,
i
∈
E;

A
iT
u
<
s i
,
i
∈
I;

u
∈
U
,

m
in u
f

(u
)
∈
R

F
=

    g i
(u

)
=

0,
i
∈
E;

g i
(u

)
≤

0,
i
∈
I;

u
∈
U
,

N
u
m

b
e
r

o
f

ca
lc

u
la

ti
o
n
s

fo
r

b
a
si

c

d
e
sc

ri
p
ti

o
n

L
ow

,
a

m
at

ri
x

p
se

u
d
oi

n
ve

rs
e

an
d

a

d
er

iv
at

iv
e

ar
e

th
e

m
os

t
co

m
p
le

x
ca

lc
u
-

la
ti

on
s.

M
ed

iu
m

,
ge

n
er

al
ly

p
ol

y
n
om

ia
l

ti
m

e.
H

ig
h
,

it
so

lv
es

a
se

q
u
en

ce
of

li
n
ea

ri
ze

d

q
u
ad

ra
ti

c
op

ti
m

iz
at

io
n

su
b
p
ro

b
le

m
s.

C
on

ti
n
u
ed

on
th

e
n
ex

t
p
ag

e

57

M
e
th

o
d

K
in

e
m

a
ti

c
C

o
n
tr

o
l

O
p
ti

m
iz

a
ti

o
n

P
ro

b
le

m
v
ia

Q
u
a
d
ra

ti
c

P
ro

g
ra

m
m

in
g

O
p

ti
m

iz
a
ti

o
n

P
ro

b
le

m
v
ia

S
e
-

q
u

e
n
ti

a
l

Q
u

a
d

ra
ti

c
P

ro
g
ra

m
m

in
g

M
a
n
ip

u
la

to
r

jo
in

t
v
e
-

lo
ci

ti
e
s

co
n
st

ra
in

ts

L
im

it
th

e
jo

in
t

ve
lo

ci
ti

es
se

n
d

to
ro

b
ot

co
n
tr

ol
le

r: if
u
i
>
θ+ i
→

u
i

=
θ+ i

if
u
i
<
θ− i
→

u
i

=
θ− i

A
d
d

in
eq

u
al

it
y

co
n
st

ra
in

ts
:

θ̇−
≤
u
≤
θ̇+

A
d
d

in
eq

u
al

it
y

co
n
st

ra
in

ts
:

θ̇− i
≤
u
i
≤
θ̇+ i

M
a
n
ip

u
la

to
r

jo
in

t
a
n
g
le

li
m

it
s

U
se

th
e

n
u
ll

sp
ac

e
of

th
e

J
ac

ob
ia

n
in

th
e

co
n
tr

ol
la

w
:

u
=
J
† (
θ)
u
p

+
(I
−
J
† (
θ)
J

(θ
))
ϕ

ϕ
=
K

0

(∂β
(θ

)

∂
θ

) T
θ−
≤
θ i
≤

θ+

β
(θ

)
=
−

1 2n

n ∑ i=
1

(θ i−
θ+ i
/2
−
θ− i
/2

θ+ i
−
θ− i

) 2

A
d
d

in
eq

u
al

it
y

co
n
st

ra
in

ts
:

θ−
≤
θ
≤
θ+

A
d
d

in
eq

u
al

it
y

co
n
st

ra
in

ts
:

θ− i
≤
θ i

+
u
iT
≤
θ+ i

C
on

ti
n
u
ed

on
th

e
n
ex

t
p
ag

e

58

M
e
th

o
d

K
in

e
m

a
ti

c
C

o
n
tr

o
l

O
p
ti

m
iz

a
ti

o
n

P
ro

b
le

m
v
ia

Q
u
a
d
ra

ti
c

P
ro

g
ra

m
m

in
g

O
p

ti
m

iz
a
ti

o
n

P
ro

b
le

m
v
ia

S
e
-

q
u

e
n
ti

a
l

Q
u

a
d

ra
ti

c
P

ro
g
ra

m
m

in
g

H
o
lo

n
o
m

ic

sc
le

ro
n
o
m

ic

co
n
st

ra
in

t

in
F
c

U
se

th
e

co
n
st

ra
in

ed
J
ac

ob
ia

n
to

fi
n
d

th
e

co
n
tr

ol
d
eg

re
e

of
fr

ee
d
om

as
a

w
ay

of

sa
ti

sf
y
in

g
th

e
co

n
st

ra
in

t:

D
Φ
c,
b
J
b
(θ

1
,b
)u

1
,b

=
0

[u
f

u
b+

1
,n

] =
J
r
† (
θ b

+
1
,n

)u
p

u
1
,b

=
J
b
† (
θ 1
,b
)N

(D
Φ
c,
b
)u

f

A
d
d

a
eq

u
al

it
y

co
n
st

ra
in

t:

D
Φ
c,
b
J
b
(θ

1
,b
)u

1
,b

=
0

A
d
d

a
eq

u
al

it
y

co
n
st

ra
in

t:

D
Φ
c,
b
J
b
(θ

1
,b

+
u
1
,b
T

)u
1
,b

=
0

C
on

ti
n
u
ed

on
th

e
n
ex

t
p
ag

e

59

M
e
th

o
d

K
in

e
m

a
ti

c
C

o
n
tr

o
l

O
p
ti

m
iz

a
ti

o
n

P
ro

b
le

m
v
ia

Q
u
a
d
ra

ti
c

P
ro

g
ra

m
m

in
g

O
p

ti
m

iz
a
ti

o
n

P
ro

b
le

m
v
ia

S
e
-

q
u

e
n
ti

a
l

Q
u

a
d

ra
ti

c
P

ro
g
ra

m
m

in
g

H
o
lo

n
o
m

ic

rh
e
o
n
o
m

ic

co
n
st

ra
in

t

in
F
c

U
se

th
e

co
n
st

ra
in

ed
J
ac

ob
ia

n
to

fi
n
d

th
e

co
n
tr

ol
d
eg

re
e

of
fr

ee
d
om

as
a

w
ay

of

sa
ti

sf
y
in

g
th

e
co

n
st

ra
in

t:

D
Φ
c,
b
J
b
(θ

1
,b
)u

1
,b

=
v d

(t
)

[u
f

u
k
+
1
,n

] =
J
r
† (
θ b

+
1
,n

)u
p

u
1
,b

=
J
b
† (
θ 1
,b
)(
N

(D
Φ
c,
b)
u
f

+
(D

Φ
c,
b)
† v
d
(t

))

A
d
d

a
eq

u
al

it
y

co
n
st

ra
in

t:

D
Φ
c,
b
J
b
(θ

1
,b
)u

1
,b

=
v d

(t
)

A
d
d

a
eq

u
al

it
y

co
n
st

ra
in

t:

D
Φ
c,
b
J
b
(θ

1
,b

+
u
1
,b
T

)u
1
,b

=
v d

(t
)

C
on

ti
n
u
ed

on
th

e
n
ex

t
p
ag

e

60

M
e
th

o
d

K
in

e
m

a
ti

c
C

o
n
tr

o
l

O
p
ti

m
iz

a
ti

o
n

P
ro

b
le

m
v
ia

Q
u
a
d
ra

ti
c

P
ro

g
ra

m
m

in
g

O
p

ti
m

iz
a
ti

o
n

P
ro

b
le

m
v
ia

S
e
-

q
u

e
n
ti

a
l

Q
u

a
d

ra
ti

c
P

ro
g
ra

m
m

in
g

M
a
x
im

iz
e

a
n

in
d
e
x
,

fo
r

e
x
a
m

p
le

m
a
n
ip

u
la

-

b
il

it
y

U
se

th
e

n
u
ll

sp
ac

e
of

th
e

J
ac

ob
ia

n
in

th
e

co
n
tr

ol
la

w
:

u
=
J
† (
θ)
u
p

+
(I
n
−
J
† (
θ)
J

(θ
))
ϕ

ϕ
=
K

0

(∂w
(θ

)

∂
θ

) T
w

(θ
)

=
√ de

t(
J

(θ
)J

T
(θ

))

L
in

ea
ri

ze
th

e
m

an
ip

u
la

b
il
it

y
re

w
ri

ti
n
g

th
e

ob
je

ct
iv

e
fu

n
ct

io
n

as
:

m
in u
−

1 2
u
T
H
w

(θ
)u
−
∇
w
T

(θ
)u
,

an
d

se
t

th
e

fo
ll
ow

in
g

co
n
st

ra
in

t:

J
A

(θ
)u

=
ṗ d

(t
)

R
ew

ri
te

th
e

ob
je

ct
iv

e
fu

n
ct

io
n

w
it

h
th

e

m
an

ip
u
la

b
il
it

y
:

m
in u
−
w

(θ
+
u
T

),

an
d

se
t

th
e

tr
a
je

ct
or

y
er

ro
r

as
a

co
n
-

st
ra

in
t: p d

(t
+
T

)
−
F
K

(θ
+
u
T

)
=

0

S
ta

b
il

it
y

A
lm

os
t

gl
ob

al
ly

as
y
m

p
to

ti
c

st
ab

il
it

y
fo

r

cl
os

ed
lo

op
sy

st
em

.

W
it

h
a

p
os

it
iv

e
d
efi

n
it

e
C
∈
R
n
×
n

it
s

p
os

si
b
le

to
re

ac
h

a
ex

ac
t

so
lu

ti
on

u
n
d
er

ce
rt

ai
n

co
n
d
it

io
n
s

or
at

le
as

t
im

p
ro

ve

m
on

ot
on

ic
al

ly
th

e
ac

tu
al

so
lu

ti
on

.

O
n
ly

lo
ca

l
co

n
ve

rg
en

ce
,

gl
ob

al
co

n
ve

r-

ge
n
ce

on
ly

u
n
d
er

co
n
d
it

io
n
s

or
as

su
m

p
-

ti
on

s.

61

Chapter 4

Simulation and Experimental

Results

This chapter shows simulations and experiments with three methods described in

chapter 3, kinematic control, quadratic programming and sequential quadratic pro-

gramming. All experiments are performed in a Baxter research robot. The Section

4.1 presents a kinematic description of the Baxter research robot while 4.2 shows a

preliminary experiment where only trajectory tracking is taken into account (no ma-

nipulability or constraints). Section 4.3 presents a manipulability analysis using the

indexes defined in Section 2.6. Simulation and experiment regarding a scleronomic

constraint are in Sections 4.4 and 4.5, respectively, while the experiment regarding

a rheonomic constraint is in Section 4.6.

The trajectory tracking problem in Chapter 3 was formulated considering the

manipulator end-effector pose (position plus orientation). For all experiments and

simulation the end-effector orientation is despised and only position is considered,

properly represented by means of a selection matrix S ∈ R3×6 defined as:

S =
[
I3 03,3

]
, (4.1)

this selection matrix premultiplies the Jb(θ1,b), Je(θ) and N(DΦc,b) in (2.68), (2.69),

(3.28b) and (3.84b). Also in the formulation of kinematic control, QP and SQP, is

necessary adjust the size of D and Φc,b for R1,3 and R3,3, respectively.

A performance index [20] is a quantitative measure of the system performance

and is chosen to emphasis important system specifications. The following indexes

are defined in relation to trajectory error being tf ∈ R the task execution time, all

integrals are implemented using the trapezoidal rule.

• ISE - integral of the square error. This index discriminate between excessively

overdamped and underdamped systems, also is mathematically convenient for

62

analytical purposes:

ISE =

∫ tf

0

e2p(t)dt. (4.2)

• IAE - integral of the absolute error. This index is particularly useful for

computer simulation studies:

IAE =

∫ tf

0

|ep(t)| dt. (4.3)

• ITAE - integral of the time multiplied by absolute error. This index reduces

the contribution of large initial error and emphasize errors occurring later in

response:

ITAE =

∫ tf

0

t |ep(t)| dt. (4.4)

• ITSE - integral of time multiplied by the squared error. This index has a

time-weighted nature and a frequency domain equivalent index the D-product,

that can be interpreted as a pseudo norm [12].

ITSE =

∫ tf

0

e2p(t)dt. (4.5)

• l2 norm. This index is a distance measure from the origin of the vector space.

l2 norm =‖ ep ‖=
√
eTp ep. (4.6)

4.1 Kinematic Model of Baxter Research Robot

In this section the Baxter robot, from manufacturer Rethink Robotics, is described.

A geometrical analysis is done in order to obtain the descriptive parameters for the

robot kinematic chain. The Baxter robot, Figure 4.1, is a dual arm anthropomorphic

robot used originally for simple industrial jobs as loading, unloading, sorting and

handling of materials. There are two models, the Baxter industrial robot and the

Baxter research robot. The Baxter industrial robot can be programmed moving its

hands to perform the desired task, in this way the robot will memorize the movement

and be able to repeat the task continuously. With this feature, the Baxter industrial

robot is not programmed by engineers writing code, then any regular person with

no knowledge of programming and robotics can teach Baxter industrial robot to

perform tasks in minutes.

On the other hand, the Baxter research robot is designed to be programmed

through the robot operating system (ROS). ROS is a collection of software frame-

63

Figure 4.1: Baxter R© robot used in experiments.

works that provide hardware abstraction, communications infrastructure, robot ge-

ometry, among other things. An introduction to ROS is found in [57]. The manu-

facturer provides a software development system (SDK), using ROS, that offers as

key features the communication with a Linux workstation, measurements from posi-

tion, velocity and torque from joints as also three main modes to control the robot:

desired position, actual velocity or effort torque. To develop this work the choice is

the Baxter research robot because it is possible read the sensors and command the

actuators through ROS.

In order to create a kinematic model for Baxter two steps are performed. First,

a geometrical analysis. Second, analysis of the Universal Robotic Description For-

mat (URDF) file generated from Baxter robot in Figure 4.1 with definition of the

kinematic model via the homogeneous transformation matrix.

4.1.1 Geometric Analysis

The Baxter robot consists in a fixed torso with two arms and a rotational head, as

represent in Figure 4.2. Each arm has 7 revolute joints and each joint has 1 DOF,

so an arm has a total of 7 DOF. The manufacturer has its own nomenclature for the

joints, namely s0, s1, e0, e1, w0, w1 and w2, where the letter s refers to shoulder,

the letter e refers to elbow and the letter w refers to wrist. Figure 4.2 shows the

location of the joints in the Baxter’s right arm as well as the link names connecting

these joints.

The Table 4.1 determines the joints manufacturer nomenclature and the respec-

tive joint angle. Table 4.1 also presents some physical characteristics of joints, the

angle limits in radian (rad), maximum absolute value of velocity in radian per second

(rad/s) and peak torque in Newton meter (Nm). The joint velocity can be positive

or negative depending on direction of joint rotation. The manufacturer nomencla-

ture is neglected in favor of the nomenclature already presented in Chapter 2. Fi is

64

Figure 4.2: The arms of Baxter robot, from [38].

Table 4.1: Parameters of Baxter.
Joint θi Angle limits (rad) |Maximum velocity| (rad/s) Peak torque (Nm)
s0 θ1 -2.46 to 0.89 2.0 50
s1 θ2 -2.15 to 1.05 2.0 50
e0 θ3 -3.03 to 3.03 2.0 50
e1 θ4 -0.05 to 2.62 4.0 50
w0 θ5 -3.06 to 3.06 4.0 15
w1 θ6 -1.57 to 2.09 4.0 15
w2 θ7 -3.06 to 3.06 4.0 15

the i-th frame in Baxter’s kinematic chain and the i-th frame is attached to the i-th

joint.

4.1.2 URDF Analysis

The unified robot description format is the file in a standardized extensible markup

language (XML) that describes a robot model detailing its parts, joints, dimensions

and other features. Details of URDF can be found in [37, 50] and details of XML

can be found in [65]. Using the URDF Baxter’s file the URDF diagram of Baxter

kinematic model is obtained. Figure 4.3 shows part of the URDF Baxter diagram

(on the left) and the XML code (on the right). The frames (as also the joints) are the

ellipses and the links are the rectangles. Joints and links are connected by arrows.

The nomenclature xyz followed by numbers is the distance in m (meters) between

two frames in axes x (first number), y (second number) and z (third number) in

the body frame (frame that the link of the rectangle is on). The nomenclature

rpy followed by numbers is the orientation between two frames in rad considering

RPY angles, where first number is the roll angle, second number is the pitch angle

65

Figure 4.3: Part of URDF diagram of Baxter and XML code.

and third number is the yaw angle. The XML code is explained by itself: the

nomenclature < tag > is the beginning of a tag and < /tag > the end, and there is

also a short notation < tag = data/ >. The parameters of a tag are always inside

the tag beginning and tag end.

Based on the Baxter’s URDF file, a simplified kinematic representation of the

Baxter’s right arm is created, Figure 4.4. In this figure, Li is the distance in meters

along the axis between two joints, ji represents a revolute joint which is located in

the respective frame Fi. From now on the calculations consider only the Baxter’s

right arm.

Now it is possible to determine the homogeneous transformation matrices of

Baxter robot using the parameters from Figure 4.4, except T0,1 (obtained directly

from the URDF file). So, the homogeneous transformation matrix from F1 to inertial

66

F0

F1

F3

F7 Fe

F2

F4 F5

F6

L2 L3 L4

L5

L6 L7

L8

L10

L1

L9

Link 1 2 3 4 5

Length(m) 0.270 0.069 0.102 0.262 0.069

Link 6 7 8 9 10

Length(m) 0.104 0.271 0.010 0.116 0.138

x

z

y

Figure 4.4: Kinematic model of Baxter’s right arm. All Li are in meters, in each
revolute joint ji is located the respective frame Fi.

frame F0 is given by:

T0,1 =


cos(−π/4) − sin(−π/4) 0 0.064

sin(−π/4) cos(−π/4) 0 −0.259

0 0 1 0.129

0 0 0 1

 . (4.7)

The compound homogeneous transformation from Fe to F0 in the Baxter’s arm

is given by:

T0,e = T0,1T1,7T7,e =

[
R0,e (r0,e)0

01,3 1

]
, (4.8)

where (r0,e)0 ∈ R3 and R0,e ∈ R3×3 provide the end-effector position and orientation

in the inertial frame, respectively.

4.2 Preliminary Experiment

The communication with Baxter is performed using the scheme of Figure 4.5. A

computer is connected via an Ethernet cable directly into Baxter. The computer

needs an Ubuntu operating system together with the ROS framework (needs also

some ROS packages coded by the Baxter’s manufacturer), the versions of Ubuntu

and ROS depend on the Baxter installed firmware. The code can be written on

either python (interpreted language) or C++ (compiled language), for this thesis

the choice was python because generally it is easier to debug an interpreted language.

The Baxter uses the Gentoo operating system but this can be abstracted by the user

unless some kind of maintenance needs to be executed.

67

Figure 4.5: Experimental configuration.

The computer used for the experiments uses Ubuntu 12.04 LTS operating system,

ROS Groovy distribution together with version 2.7 of Python. It has an Intel core

i7-5500U 2.40 GHz processor, an Intel HD 5500 onboard video card and 8 GB

DDR3 RAM memory. The experiments and simulation regarding the QP in uses

the package CVXOPT (Python programming language implementation) [78] with

the cone QP method. The experiments and simulation regarding the SQP uses

the package pyOPT (Python programming language implementation) [61] with the

SLSQP method.

A preliminary experiment is defined as follows: the Baxter end-effector tracks a

desired trajectory and there is no holonomic constraint in Baxter kinematic chain.

The objective of this preliminary experiment is to confirm that the environment

(communications, packages, code) is settled and the three methods considered (KC,

QP and SQP) are able to drive the robot.

The desired end-effector trajectory for the preliminary experiment is given by:

pd(t) =

 px(0) + 15 sin(πt/20)

py(0) + 45 sin(2πt/20)

pz(0) + 30 sin(2πt/20)

mm, (4.9)

where px(0), py(0) and pz(0) are the initial positions at natural basis for a Euclidean

three-dimensional space in axes x, y and z, respectively. The initial state of the

joint angles and the initial end-effector position are defined in Table 4.2 and Table

4.3, respectively. The task execution time is 40 s. The desired trajectory in (4.9)

considering the values given by Tables 4.2 and 4.3 is visualized in Figure 4.6.

For all experiments and simulation the same following parameters ares set. In

68

Table 4.2: Initial state of the joint angles for the desired trajectory defined in (4.9).

Joint angle Value (rad/s)
θ1 π/6
θ2 −π/6
θ3 π/3
θ4 π/4
θ5 −π/3
θ6 π/4
θ7 0

Table 4.3: Initial end-effector position for the desired trajectory defined in (4.9).

Axis Value (mm)
px 1071
py -109
pz 326

300

310

-80

320

y (mm)

-100 1080

z
(m

m
)

330

x (mm)

-120 1070

340

-140 1060

350

Figure 4.6: Desired trajectory defined in (4.9).

69

Table 4.4: Performance indexes, preliminary experiment.

Index KC QP SQP
ISE ex 6.33e-06 2.85e-05 1.41e-05
ISE ey 1.40e-04 3.35e-04 2.31e-04
ISE ez 2.40e-04 3.04e-04 2.32e-04
IAE ex 1.18e-02 2.40e-02 1.84e-02
IAE ey 5.93e-02 8.74e-02 7.87e-02
IAE ez 7.21e-02 8.83e-02 7.49e-02

ITAE ex 2.34e-01 4.08e-01 3.40e-01
ITAE ey 1.24e+00 1.60e+00 1.51e+00
ITAE ez 1.39e+00 2.01e+00 1.56e+00
ITSE ex 1.31e-04 3.94e-04 2.47e-04
ITSE ey 3.00e-03 5.38e-03 4.24e-03
ITSE ez 4.26e-03 7.62e-03 4.87e-03
‖ ex ‖ 1.13e-02 4.75e-02 1.68e-02
‖ ey ‖ 5.29e-02 1.66e-01 6.80e-02
‖ ez ‖ 6.92e-02 1.54e-01 6.81e-02

kinematic control the gain matrix has a constant value Kp = diag(2.5, 3.0, 3.75)

(where diag() is a diagonal matrix) and the sampling period T = 0.05 s, in QP the

gain k1 = 6.0 and T = 0.012 s, in SQP T = 0.05 s.

The Baxter is a robot with low position accuracy [33] because the hardware limits

and the existence of series elastic actuator (SEA) [64] in its joints. In this way, the

trajectory errors for the preliminary test in Figure 4.7 are expected to present some

variation about ±5 mm (manufactures published accuracy) even with no holonomic

constraints in the kinematic chain.

Figure 4.7 shows that the error on the x axis is the smallest for the three methods,

always below 5 mm. KC and SQP had worse results on the z axis with some values

around 10 mm while QP showed some values around 10 mm for both z axis and x

axis.

Table 4.4 shows the performance indexes for the preliminary experiment. KC

achieved the best results except for ISE and l2 norm on the z axis. The QP had

the worst results in all indexes, but was not an order of magnitude above the best

result in any index. In general, SQP results were intermediate, sometimes closer to

KC or QP.

Figure 4.8 shows the joint control signals for the preliminary experiment. KC

has the lowest amplitude QP the largest. In KC the variation of the signals is milder

compared to the more aggressive variation of QP and SQP.

70

0 5 10 15 20 25 30 35 40
time (s)

-10

-5

0

5

10

e
rr

o
r

(m
m

)

x axis
y axis
z axis

0 5 10 15 20 25 30 35 40
time (s)

-10

-5

0

5

10

e
rr

o
r

(m
m

)

x axis
y axis
z axis

0 5 10 15 20 25 30 35 40
time (s)

-10

-5

0

5

10

e
rr

o
r

(m
m

)

x axis
y axis
z axis

QP

KC

SQP

Figure 4.7: Trajectory tracking error for preliminary experiment.

71

0 20 40
-0.05

0

0.05

u
1
 (

ra
d

/s
)

0 20 40
-0.05

0

0.05

u
2
 (

ra
d

/s
)

0 20 40
-0.01

0

0.01

u
3
 (

ra
d

/s
)

0 20 40
-0.01

0

0.01

u
4
 (

ra
d

/s
)

0 20 40
-0.01

0

0.01

u
5
 (

ra
d

/s
)

0 20 40
-0.05

0

0.05

u
6
 (

ra
d

/s
)

0 20 40

time (s)

-0.01

0

0.01

u
7
 (

ra
d

/s
)

0 20 40
-0.1

0

0.1

0 20 40
-0.1

0

0.1

0 20 40
-0.2

0

0.2

0 20 40
-0.2

0

0.2

0 20 40
-0.5

0

0.5

0 20 40
-0.5

0

0.5

0 20 40

time (s)

-0.5

0

0.5

0 20 40
-0.05

0

0.05

0 20 40
-0.05

0

0.05

0 20 40
-0.05

0

0.05

0 20 40
-0.05

0

0.05

0 20 40
-0.05

0

0.05

0 20 40
-0.1

0

0.1

0 20 40

time (s)

-0.05

0

0.05

QPKC SQP

Figure 4.8: Joint control signals, preliminary experiment.

72

4.3 Baxter Manipulability

For the experiments e simulation considering a constraint in Baxter’s kinematic

chain, manipulability and trajectory tracking, the holonomic constraint is defined

arbitrary in the Baxter’s kinematic chain between F4 and F5, in this way b = 4.

The displacement of the holonomic constraint from F4 also is defined arbitrary

by Lc = 50 mm, as can be seen in Figure 4.9. The type of the constraint is a

displacement constraint in the x axis of Fc being the matrix D defined by:

D =
[

1 0 0 0 0 0
]
. (4.10)

F0

F1

F3

F7 Fe

F2

F4 F5

F6

Lc

Fc

x

z

y

Figure 4.9: Kinematic model of Baxter’s right arm with plane constraint between

F4 and F5.

Figure 4.10 shows wb(θ1, 4) as function of θ2 and θ3, a blue color means that the

robot is near a singularity and a yellow color means that the robot is far from singular

configurations. As the manipulability of SJ4(θ1,4) takes into account only position

until F4, wb(θ1, 4) does not depend on θ4 neither θ1 because in the inertial frame the

last column of SJ4(θ1,4) is null while in the body frame the first column is null, the

manipulability value is not affected for frame changes. The singular configuration

is reached when θ3 = 0 as also multiple of θ3 = ±π/2. The variation of θ2 does

not change wb(θ1, 4). High values of wb(θ1, 4) are reached near odd multiples of

θ3 = ±π/4.

Figure 4.11 shows wr(θ5,7) in function of θ5 and θ6. In Baxter, as θ7 is coupled

up to a revolute joint in x axis, it does not change the end-effector position (only

orientation), then it does not change the index wr. Visualization of angle values for

singular configurations would be tricky in a 3D plot, so Figure 4.11 shows wr(θ5,7) in

a 2D plot, a dark blue area means the manipulator is near a singular configuration,

while yellow area means the manipulability reached a high value.

73

0

4

0.05

2 1

0.1

w
b

0

0.15

3
 (rad)

0

2
 (rad)

0.2

-1
-2

-2
-4 -3

Figure 4.10: Manipulability wb(θ1,4) with b = 4, wb is multiplied by 103.

74

-2

-4

-3

1

2

3

6
 (rad)

-1

-2

-1

0

5
 (rad)

4

3

2

1

0

Figure 4.11: Manipulability wr(θ5,7) in a θ5−θ6 space with plane constraint between
frames F4 and F5.

75

To maximize the manipulability, the kinematic control method uses (3.16) and

(3.15). This means that the derivatives of analytical expressions for ∂wb(θ1,4)/∂θ

and ∂wr(θ5,7)/∂θ shall be available. These expressions have hundreds of terms mak-

ing impractical to treat them in a short sampling period. Thus, the curve fitting

approach of the manipulability functions is used for the kinematic control. In Figure

4.10, wb(θ1,4) has a sinusoidal shape, so the following second order Fourier series is

used for curve fitting with Figure 4.12 showing the resulting curve:

wb(θ1,4) ≈ 1.048× 10−4 − 6.922× 10−5 cos(3.994θ3)

−2.868× 10−9 sin(3.994θ3)− 1.333× 10−4 cos(3.994θ3)

−5.355× 10−9 sin(3.994θ3).

(4.11)

-4 -3 -2 -1 0 1 2 3 4

3
 (rad)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

w
b

w
b

 data

fitting curve

Figure 4.12: wb(θ1, 4) curve fitting, wb(θ1, 4) is multiplied by 103.

The approach to curve fitting wr(θ5,7) is divide the plane θ5− θ6 in three regions

and use one surface in each region, according to Figure 4.13. Depending on θ5 and

θ6 values, a surface of each region will be used. If θ5 ≥ 0 and θ6 < 0.3911θ5 − 0.565

region 3 is used, else if θ5 < 0 and θ6 < −0.3911θ5−0.565 region 2 is used, else region

1 is used. The surface for each region is defined by a fifth-order polynomial from the

76

-3 -2 -1 0 1 2 3

5
 (rad)

-1.5

-1

-0.5

0

0.5

1

1.5

2

6
 (

ra
d
) Region 1

Region 2 Region 3

Figure 4.13: Manipulability wr(θ5,7) in a θ5 − θ6 plane divided in three regions.

following expression with the parameters values cij ∈ R i = 0, . . . , 5; j = 0, . . . , 5 in

Table 4.3:

wr(θ5,7) ≈ c00 + c10θ5 + c01θ6 + c20θ
2
5 + c11θ5θ6 + c02θ

2
6

+c30θ
3
5 + c21θ

2
5θ6 + c12θ5θ

2
6 + c03θ

3
6 + c40θ

4
5 + c31θ

3
5θ6

+c22θ
2
5θ

2
6 + c13θ5θ

3
6 + c04θ

4
6 + c50θ

5
5 + c41θ

4
5θ6

+c32θ
3
5θ

2
6 + c23θ

2
5θ

3
6 + c14θ5θ

4
6 + c05θ

5
6.

(4.12)

The QP method approximates the manipulability for a second order function

using (3.22) to (3.26) with δ = 0.01. As wb(θ1,4) depends on θ3 only ∇wb3 and

Hwb3,3 need to be calculated considering other values equal to zero. As wr(θ5,7)

depends on θ5 and θ6 only the following values need to be taken into account: ∇wr5,
∇wr6, Hwr5,5, Hwr5,6, Hwr6,5 and Hwr6,6.

The SQP does not need any approximation or fitting to incorporate the manipu-

lability in the objective function. So in terms of representation of true manipulability

value, the SQP has an advantage upon kinematic control and QP methods.

In order to maximize the manipulability the three methods aim to find velocity

77

Table 4.5: Parameters values for wr(θ5,7) curve fitting.

Parameter Region 1 Region 2 Region 3
c00 0.08138 0.1974 0.05468
c10 0.02317 -0.06029 -0.006149
c01 0.1476 0.7356 0.1997
c20 -0.02001 -0.07852 -0.07713
c11 0.03201 -0.3688 0.1848
c02 0.02353 0.9859 0.33
c30 -0.006801 0.04854 -0.08534
c21 -0.06291 -0.05394 -0.02896
c12 -0.07773 -0.4916 0.2412
c03 -0.08908 0.453 0.1595
c40 0.00371 -0.006445 -0.0294
c31 0.007955 0.03075 -0.02699
c22 0.06032 0.03668 0.02751
c13 0.03831 -0.2022 0.0762
c04 0.01848 0.05396 0.02897
c50 -4.334×10−5 -8.346×10−5 -0.003221
c41 -0.001319 -0.001207 -0.003226
c32 -0.001929 0.00685 -0.005685
c23 -0.01301 0.02262 0.01642
c14 -0.005596 -0.0206 0.002887
c05 0.001457 -0.005558 0.001148

78

commands that result in joint angles translating in the peaks of Figures 4.10 and

4.11. To represent the momentary values of wb(θ1,4) or wr(θ5,7) in one index, the

integral of the manipulability indexes are taken into account:

Wb =

∫ tf

0

wb(θ1,4)dt, (4.13)

Wr =

∫ tf

0

wr(θ5,7)dt, (4.14)

so, one solution is defined as a pair Wb ∈ R and Wr ∈ R being classified in dominated

or non dominated.

4.4 Simulation with a Scleronomic Constraint

The simulations are performed in Gazebo, an open-source 3D robotics simulator. A

picture of Gazebo environment with a Baxter model loaded can be seen in Figure

4.14. The computer used for the simulations uses the Ubuntu 16.04 LTS operating

system, ROS Kinetic distribution together with the version 2.7 of Python. The

computer has an AMD Ryzen 5 2600x 3.60 GHz processor, an AMD Radeon RX580

8GB DDR5 video card and 16 GB DDR4 RAM memory.

Figure 4.14: Gazebo environment with Baxter model.

79

Table 4.6: Initial end-effector position for the desired trajectory defined in simula-
tions.

Axis Value (mm)
px 1070
py -114
pz 328

One important factor about Gazebo is the parameter Real Time Factor, defined

by the actual the real time over the simulation time in a window of time, this

parameter can be seen in the bottom of Figure 4.14. When simulating the trajectory

tacking problem the trajectory is defined in real time, so it is desirable that the Real

Time Factor stays close to one during all simulation otherwise the number of samples

will be much smaller than an experiment performed on a real robot.

In this simulation the Baxter model has to track the desired trajectory defined

by (4.9), the initial state of the joint angles and initial end-effector position are given

by Tables 4.2 and 4.6, respectively. The values from Tables 4.3 and 4.6 are not equal

because the manipulator in simulation owns a robotic claw, absent in the real robot.

So, the values of Wr are expected to be higher in simulations. The shape of desired

trajectory is the same as depicted in Figure 4.6, except by offsets in all axes.

Figure 4.15 shows the solution set for the three methods, kinematic control,

QP and SQP. In kinematic control the solutions grouped with a Wr < 4.0 and

5.5× 10−3 < Wb < 7.0× 10−3 are defined with a gain Kr = 0 and a gain kb ranging

from 0 to 1000. An increase in kr gain means an increase in Wr and consequently

in wr(θ5,7). There are a total of 38 samples and 5 form the Pareto set. In the QP

method, the solutions obtained are poor in magnitude, since the solutions that form

the Pareto set are far from the Pareto set solutions of kinematic control and SQP.

In SQP 101 solutions are defined using α =
[

0.00 0.01 · · · 0.99 1.00
]

and

the weighted sum approach. Most solutions with α < 0.30 are grouped in the lower

right corner of the graph with a high Wb value and a low Wr value. An increase in

the α causes an increase in Wr value, but for most solutions it also causes a decrease

in Wb value. The best Wb values are obtained by kinematic control and the best Wr

values by SQP.

Figure 4.16 shows the trajectory error for some of the highlighted solutions in

Figure 4.15. In kinematic control error starts high but in less than 5 seconds the

magnitude is already less than 5 mm. The QP presents a considerable variation of

the error in terms of the desired point regardless of the analyzed axis. The variation

of the SQP is smaller in relation to the QP being the z axis presenting the largest

variation.

80

Figure 4.15: Wb and Wr, manipulator satisfy a scleronomic constraint in simulation.

81

Figure 4.16: Trajectory error, manipulator satisfy a scleronomic constraint in sim-
ulation.

82

Table 4.7: Performance indexes, manipulator satisfy a scleronomic constraint in
simulation.

Index KC
kb = 1000
kr = 0

KC
kb = 5
kr = 10

QP
αb = 10
αr = 0

QP
αb = 2
αr = 0.2

SQP
α = 0.00

SQP
α = 0.77

ISE ex 7.37e-05 1.48e-04 9.47e-04 1.14e-03 1.16e-04 7.35e-04
ISE ey 2.21e-03 4.05e-03 3.27e-03 4.77e-03 2.95e-04 3.02e-03
ISE ez 6.61e-05 1.38e-04 1.15e-03 8.90e-04 8.15e-04 1.15e-03
IAE ex 2.93e-02 3.35e-02 1.43e-01 1.61e-01 5.18e-02 9.33e-02
IAE ey 1.12e-01 1.27e-01 2.88e-01 3.43e-01 9.56e-02 2.71e-01
IAE ez 3.48e-02 4.93e-02 1.71e-01 1.44e-01 1.44e-01 1.63e-01

ITAE ex 3.30e-01 4.45e-01 2.69e+00 3.39e+00 1.14e+00 1.67e+00
ITAE ey 7.19e-01 9.73e-01 6.10e+00 6.71e+00 1.98e+00 5.67e+00
ITAE ez 6.10e-01 7.89e-01 3.30e+00 2.89e+00 3.09e+00 3.36e+00
ITSE ex 3.13e-04 4.02e-04 1.74e-02 2.54e-02 2.66e-03 9.89e-03
ITSE ey 3.37e-03 4.89e-03 7.13e-02 8.63e-02 6.20e-03 5.96e-02
ITSE ez 7.17e-04 1.11e-03 2.10e-02 1.80e-02 1.82e-02 2.57e-02
‖ ex ‖ 3.83e-02 5.44e-02 2.97e-01 3.14e-01 4.81e-02 1.21e-01
‖ ey ‖ 2.10e-01 2.84e-01 5.50e-01 6.59e-01 7.67e-02 2.45e-01
‖ ez ‖ 3.63e-02 5.25e-02 3.28e-01 2.79e-01 1.27e-01 1.51e-01

Table 4.4 shows the performance indexes for the trajectory errors of Figure 4.16.

In general the best results are from kinematic control and the worst from PQ. In

relation to the ITSE, the kinematic control is an order of magnitude smaller than

the QP. In ISE, SQP has better results with α = 0.0 on x and y axes than kinematic

control with kb = 5, kr = 10. In ITAE, only the kinematic control has magnitude

less than 1.00 indicating low variability near the end of the trajectory.

The velocity in the constraint is depicted in Figure 4.17, vc is the constraint

velocity in frame Fc while vd is the desired velocity. In kinematic control the velocity

has a sinusoidal shape, the initial amplitudes are high and the smallest variability

is obtained with kb = 5, kr = 10. In QP, although the velocity average value is close

to zero, the amplitude peak reaches values around 40 mm/s. In SQP for α = 0.0

the velocity average value is below zero and for α = 0.0 the initial variation is high

with values exceeding 10 mm/s.

Figure 4.18 shows the evolution of manipulability indexes. In the kinematic con-

trol wb(θ1,4) always has a high value, with kr = 0 the wr(θ5,7) remains practically

constant throughout the trajectory while for kr = 10 wr(θ5,7) increases at the begin-

ning of the trajectory and then stays almost constant. In the QP method, wr(θ5,7)

remains virtually constant on both graphs while wb(θ1,4) reaches zero at about half

of the trajectory for αb = 10 and at the end of the trajectory for αb = 10. In SQP

83

Figure 4.17: Velocity in the constraint, manipulator satisfy a scleronomic constraint
in simulation.

84

for α = 0.0, wb(θ1,4) has a tendency to increase along the trajectory and wr(θ5,7)

remains almost constant, while for α = 0.77, wb(θ1,4) falls below 0.1 × 10−3 to in-

crease later and wr(θ5,7) increases up to half the trajectory to then remain virtually

constant.

Figures 4.19 and 4.20 show the control signal for all Baxter joints. The kinematic

control has the smallest amplitudes and the smoothest curves, some in sinusoidal

shape, despite wide variations at the beginning of the trajectory. The QP presents

signals with abrupt variations, in noise format considering the 40 seconds window,

with amplitudes exceeding 2 rad/s. In SQP, signals also show abrupt variations but

with a much smaller amplitude than QP, for α = 0.77 the maximum amplitudes are

greater than for α = 0.00.

85

Figure 4.18: Manipulability indexes wb and wr (wb is multiplied by 103), manipulator
satisfy a scleronomic constraint in simulation.

86

Figure 4.19: Joint control signals, part 1 of 2, manipulator satisfy a scleronomic
constraint in simulation.

87

Figure 4.20: Joint control signals, part 2 of 2, manipulator satisfy a scleronomic
constraint in simulation.

88

4.5 Experiment with a Scleronomic Constraint

In this experiment the Baxter has to track again the desired trajectory defined by

(4.9) while satisfying a scleronomic constraint with vd(t) = 0 and maximize the

manipulability, the initial conditions for joint angles and end-effector position are

again given by Tables 4.2 and Table 4.3, respectively. Only two methods, kinematic

control and SQP, were able to reach solutions that satisfy the scleronomic constraint.

The QP method was not able to ensure a satisfactory solution that satisfy the

scleronomic constraint even with multiple attempts for different values of αb, αr and

k1. The set of solutions for kinematic control and SQP are represented in Figure.

4.21.

For the kinematic control in Figure 4.21, 38 solutions are defined with different

values of kb and kr. Increasing only kb from kb = 0 to kb = 1000 for a constant kb = 0

leads to an increase of Wb: the values go from Wb = 5.6× 10−3 to Wb = 6.5× 10−3

while Wr holds in a value about Wr = 2.45. When increasing kr from kr = 0 to

kr = 20 (solution near kb = 5,kr = 10) for a constant kb = 0 the values of Wr go from

Wr = 2.45 to Wr = 3.0, also Wb increases to Wb = 5.6 × 10−3 to Wb = 6.0 × 10−3.

This means there are some cooperative level between Wr and Wb, i.e., when an

index increases the other increases too. Among the 38 solutions only 6 form the

Pareto set. These 6 solutions have low and high values of kb and kr (kb = 5; kr = 10

and kb = 1000; kr = 0) as also intermediate values kp and kr (kb = 10; kr = 5 and

kb = 500; kr = 5). For the values kb > 1000 and kr > 10 the system presents a huge

increase error trajectory or the velocity in the constraint, and then solutions with

these values are discarded.

Using the SQP method, a set of solutions is generated for α =[
0.00 0.01 · · · 0.99 1.00

]
. In this case one solution is a pair Wb and Wr for

a fixed α, that way this set has 101 solution. For the SQP in Figure 4.21, only

2 solutions among 101 form the Pareto. As expected from (3.83) solutions with a

high α value reach the best values of Wr, also some of these solutions reach the best

values of Wb too (for example α = 0.90) while others have low values of Wb. In

another way, solutions with a low α value are clustered with a high Wb value and a

low Wr value.

The trajectory error and the velocity in the constraint for kinematic control and

SQP are represented in Figures 4.22 and 4.23, respectively. Only solutions belonging

to Pareto set are presented, two from the kinematic control (kb = 5; kr = 10 and

kb = 500; kr = 5) and two from the SQP (α = 0.89 and α = 0.90).

Regarding the trajectory error in Figure 4.22, by inspection all graphics seem to a

have similar results, with the error in z axis, in general, being the more error prone.

This is confirmed by Table 4.8 where in all graphics have similar integral values

89

Figure 4.21: Wb and Wr, manipulator satisfy a scleronomic constraint in experiment.

90

Figure 4.22: Trajectory error, manipulator satisfy a scleronomic constraint in ex-
periment.

91

Table 4.8: Performance indexes, manipulator satisfy a scleronomic constraint in
experiment.

Index KC
kb = 500
kr = 5

KC
kb = 5
kr = 10

SQP
α = 0.89

SQP
α = 0.90

ISE ex 1.05e-05 4.02e-05 2.37e-05 2.57e-05
ISE ey 2.29e-04 9.49e-04 3.21e-04 2.64e-04
ISE ez 1.33e-03 7.68e-04 5.16e-04 4.34e-04
IAE ex 1.51e-02 2.80e-02 2.25e-02 2.58e-02
IAE ey 7.11e-02 1.33e-01 8.74e-02 8.25e-02
IAE ez 1.62e-01 1.16e-01 1.15e-01 1.02e-01

ITAE ex 2.38e-01 4.20e-01 3.97e-01 4.54e-01
ITAE ey 1.13e+00 1.82e+00 1.95e+00 1.73e+00
ITAE ez 3.22e+00 1.64e+00 2.28e+00 1.93e+00
ITSE ex 1.20e-04 4.25e-04 3.46e-04 4.13e-04
ITSE ey 2.55e-03 8.15e-03 8.01e-03 5.62e-03
ITSE ez 2.48e-02 6.69e-03 9.69e-03 7.09e-03
‖ ex ‖ 1.45e-02 2.84e-02 2.13e-02 2.27e-02
‖ ey ‖ 6.76e-02 1.38e-01 8.07e-02 7.29e-02
‖ ez ‖ 1.63e-01 1.24e-01 1.02e-01 9.37e-02

except some inferior performance solutions of kinematic control with kb = 5, kr = 10

in y (IAE and l2 norm) and with kb = 500, kr = 5 in z (ISE and ITSE).

In Figure 4.23 it can be noted that vc reaches the objective in all graphics,

regardless the noise, except from the beginning until about 5 seconds. It is possible

to note that the SQP solutions present less variance than kinematic control solutions.

In Figure 4.24 are presented the manipulability indexes behavior through time.

In kinematic control graphics wb(θ1,4) ≥ 0.15 almost all time and 0.5 < wr(θ5,7) <

0.1, which is enough to keep the manipulator far from a singularity. In SQP for

wb(θ1,4), with α = 0.89 lowers the value to near 0.1 × 10−3 but then increases to

about 0.15× 10−3 while with α = 0.90 the value always remains close to 0.15. Still,

in SQP wr(θ5,7) has a similar evolution in the two graphics, increases at almost 0.1

e remains close to this value until the trajectory ends.

In Figures 4.25 and 4.26 are presented the control signals. The magnitude values

are similar to both methods, kinematic control and SQP, with almost all values less

than 0.1. Also, both methods present some peak values in the beginning of the

trajectory. The signal variations are more abrupt in SQP than kinematic control.

92

Figure 4.23: Velocity in the constraint, manipulator satisfy a scleronomic constraint
in experiment.

93

Figure 4.24: Manipulability indexes wb and wr (wb is multiplied by 103), manipulator
satisfy a scleronomic constraint in experiment.

94

Figure 4.25: Joint control signals, part 1 of 2, manipulator satisfy a scleronomic
constraint in experiment.

95

Figure 4.26: Joint control signals, part 2 of 2, manipulator satisfy a scleronomic
constraint in experiment.

96

Table 4.9: Initial state of the joint angles for the desired trajectory defined in (4.15).

Joint angle Value (rad/s)
θ1 0
θ2 −π/6
θ3 π/2
θ4 π/4
θ5 −π/3
θ6 π/4
θ7 0

Table 4.10: Initial end-effector position for the desired trajectory defined in (4.15).

Axis Value (mm)
px 961
py -438
pz 593

4.6 Experiment with a Rheonomic Constraint

In this experiment the manipulator is subject to a rheonomic constraint with vd(t) =

0.01 sin(t)m/s while end-effector tracks the following desired trajectory:

pd(t) =

 px(0) + 15 sin(πt/20)

py(0) + 66 cos(2πt/20)− 66

pz(0) + 30 sin(2πt/20)

mm, (4.15)

where the initial state of the joint angles and the initial end-effector position are

defined in Table 4.9 and Table 4.10, respectively. The task execution time is 12 s.

The desired trajectory in (4.15) considering the values given by Tables 4.9 and 4.10

is visualized in Figure 4.27. Only the SQP method achieve valid solutions for the

rheonomic constraints.

97

580

590

-440

600
z
 (

m
m

)

610

-460

620

-480

-500

y (mm)

-520

-540

-560

x (mm)

970

Figure 4.27: Desired trajectory defined in (4.15).

Again using the SQP method a set of solutions is generated for α =[
0 0.01 · · · 0.99 1

]
. The set of solutions is represented in Figure 4.28 and

six solutions form the Pareto set. It is worth mentioning that not all solutions reach

feasible values for trajectory error or velocity in the constraint. So only 41 solutions

are represented in Figure 4.28 all of them with α ≤ 0.45 and all Pareto solutions

have α ≥ 0.28. In this way, very low α values can not reach the best values for Wb

or Wr, at least most of them are feasible.

The trajectory error and the velocity in the constraint for two α values (α = 0.33

and α = 0.36) are represented in Figures 4.29 and 4.30, respectively. The trajectory

error are most time between −5 mm and 5 mm, except for the trajectory end with

α = 0.28. The Table 4.11 shows the performance index for the trajectory error, the

indexes for α = 0.33 are slightly better than indexes for α = 0.36, except for ISE,

IAE and l2 norm in z axis.

The velocity in the constraint, Figure 4.30, had a hard time to follow vd(t), being

out of phase. But al least manage to satisfy at some level the constraint.

The Figure 4.31 shows the manipulability indexes. In the two graphics wr(θ5,7) is

almost the same with a value slightly above 0.05. In the case of wb(θ1,4), the graphic

with α = 0.33 has a steeper slope reaching at the end a higher value in relation to

α = 0.36.

98

Figure 4.28: Wb and Wr, manipulator satisfy a rheonomic constraint in experiment.

Table 4.11: Performance indexes, manipulator satisfy a rheonomic constraint in
experiment.

Index SQP
α = 0.33

SQP
α = 0.36

ISE ex 4.15e-06 5.93e-06
ISE ey 5.72e-05 6.23e-05
ISE ez 6.70e-05 6.43e-05
IAE ex 5.85e-03 7.07e-03
IAE ey 1.99e-02 2.14e-02
IAE ez 2.49e-02 2.31e-02

ITAE ex 4.02e-02 5.15e-02
ITAE ey 1.27e-01 1.45e-01
ITAE ez 1.50e-01 1.57e-01
ITSE ex 3.06e-05 4.86e-05
ITSE ey 3.51e-04 4.32e-04
ITSE ez 3.99e-04 4.70e-04
‖ ex ‖ 9.12e-03 1.09e-02
‖ ey ‖ 3.38e-02 3.53e-02
‖ ez ‖ 3.66e-02 3.59e-02

99

0 2 4 6 8 10 12

time (s)

-10

-5

0

5

10

e
rr

o
r

(m
m

)

x axis

y axis

z axis

0 2 4 6 8 10 12

time (s)

-10

-5

0

5

10

e
rr

o
r

(m
m

)

x axis

y axis

z axis

SQP, =0.33

SQP, =0.36

Figure 4.29: Trajectory error, manipulator satisfy a rheonomic constraint in exper-
iment.

100

0 2 4 6 8 10 12

time (s)

-20

-10

0

10

20

v
e

lo
c
it
y
 (

m
m

/s
)

v
c

v
d

0 2 4 6 8 10 12

time (s)

-20

-10

0

10

20

v
e

lo
c
it
y
 (

m
m

/s
)

v
c

v
d

SQP, =0.36

SQP, =0.33

Figure 4.30: Velocity in the constraint, manipulator satisfy a rheonomic constraint
in experiment.

101

Figure 4.31: Manipulability indexes wb and wr (wb is multiplied by 103), manipulator
satisfy a rheonomic constraint in experiment.

102

Finally, the Figure 4.32 shows the joint control signals. The two graphics are

very similar and it is noted that the control signal for the first joint is a sinusoidal

signal with the same frequency that the desired velocity of the rheonomic constraint.

103

Figure 4.32: Joint control signals, manipulator satisfy a rheonomic constraint in
experiment.

104

Chapter 5

Conclusions

In this thesis the following problem is presented: the end effector of a serial redun-

dant manipulator has to track a desired trajectory while a point in the kinematic

chain satisfy a holonomic constraint and one or more manipulability indexes are

maximized. Three methods are discussed in order to solve the problem: kinematic

control, quadratic programming and sequential quadratic programming.

Formulate the trajectory tracking problem using sequential quadratic algorithm

method is an alternative solution to kinematic control. First advantage is the ease

of integrating constraints in the optimization formulation, these constraints can

be considered straightforward without any linearization or curve fitting, there is

also scalability of defining multiple constraints without defining any constrained

Jacobian matrix. Second advantage is the possibility to maximize any objective

function without lose its shape for a curve fitting and with the weight sum approach

easily transforms the problem in a multi objective one. The third advantage is there

no need for derivative of trajectory track.

The formulation of the tracking problem through SQP with respect to QP also

has advantages. The first is the lack of linearization of the objective function.

The second is the incorporation of the prediction trajectory error through forward

kinematics, non existent in the formulation by QP because it is a nonlinear function.

The third is the same advantage in relation to kinematic control, the absence of

derivative of trajectory tracking.

In the experiments the SQP is the only method that is able to satisfy both the

scleronomic and rheonomic constraint. As the Baxter is a low position accuracy

robot the QP method have difficult to track the trajectory because its use the end

effector velocity (which is more inaccurate) to adjust the trajectory, so it does not

have success in any experiment.

In the scleronomic experiment although the kinematic control reached higher

values for Wb (with the SQP slightly behind), the values of Wr are much lower than

in SQP. In the rheonomic experiment the kinematic control is unable to guarantee

105

that the velocity constraint is satisfied. So, considering only the experiments in this

thesis the SQP had a better performance than the kinematic control. Further study

is needed to verify why kinematic control failed in the rheonomic experiment.

Some topics for future improvement utilizing the SQP method are listed:

• Add negative feedback information about the velocity in the constraint, so the

method could improve a holonomic constraint that is not being satisfied in a

system application level although it may be satisfied at the algorithm level.

• Study the SQP stability, which need assumptions and conditions e needs study

before the method can be applied in critical systems. extending the results of

actual literature.

• Study how complexity time of SQP applied in the trajectory track behaves in

order to have an estimate of the convergence time

• Apply parallelism on SQP to improve the convergence time. In [32] is intro-

duced a way to accelerate the SQP by minimizing functions evaluation on a

graphical processors unit.

• Integrate the trajectory tracking method via SQP using the dynamic equations

of manipulators.

106

Bibliography

[1] The cuter/st test problem set. http://www.cuter.rl.ac.uk/Problems/mastsif.shtml,

Accessed: 01/07/2019.

[2] T. Ando. Majorization, doubly stochastic matrices, and comparison of eigenval-

ues. Linear Algebra and its Applications, 118:163–248, 1989.

[3] J. Arora. Introduction to Optimum Design. Academic Press, 2012.

[4] M. Azad, J. Babič, and M. Mistry. Dynamic manipulability of the center of mass:

A tool to study, analyse and measure physical ability of robots. IEEE

International Conference on Robotics and Automation, pages 3484–3490,

2017.

[5] M. Bartholomew-Biggs. Nonlinear Optimization with Engineering Applications.

Springer, 2008.

[6] I. Bomze, R. Fletcher, V. Demyanov, and T. Terlaky. Nonlinear Optimization.

Springer, 2007.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, 2009.

[8] R. Campa and H. Torre. Pose control of robot manipulators using different

orientation representations: A comparative review. American Control

Conference, pages 2855–2860, 2009.

[9] L. Capisani and A. Ferrara. Trajectory planning and second-order sliding mode

motion/interaction control for robot manipulators in unknown environ-

ments. IEEE Transactions on Industrial Electronics, 59(8):3189–3198,

2012.

[10] F. Cardoso and F. Lizarralde. Multiobjective manipulability in trajectory track-

ing for constrained redundant robot manipulators. Simpósio Brasileiro de

Automação Inteligente, pages 1773–1778, 2017.

107

[11] F. Cardoso and F. Lizarralde. Comparison of methods for trajectory track-

ing for redundant manipulators under holonomic scleronomic constraints.

Congresso Brasileiro de Automática, 2018.

[12] D. Carrasco and M. Salgado. Optimal multivariable controller design using an

itse performance index. International Journal of Control, 83(11):2340–

2353, 2010.

[13] J. Castro. Minimum-distance controlled perturbation methods for large-scale

tabular data protection. European Journal of Operational Research,

171(1):39–52, 2006.

[14] D. Chen and R. Plemmons. Nonnegativity constraints in numerical analysis.

The Birth of Numerical Analysis, pages 109–139, 2009.

[15] S. Chiaverini, G. Oriolo, and I. Walker. Kinematically Redundant Manipulators.

Handbook of Robotics. Springer, 2008.

[16] F. Coutinho. Controle de Manipulador Redundante com Restrições Cinemáticas

Aplicado a Cirurgias Robóticas Assistidas. Programa de Engenharia

Elétrica, Universidade Federal do Rio de Janeiro, MSc dissertation, Rio

de Janeiro, Brazil, 2015, In Portuguese.

[17] F. Coutinho, C. Pham, P. From, and F. Lizarralde. Abordagem anaĺıtica

para controle no espaço operacional de manipuladores com restrições

cinemáticas. XX Congresso Brasileiro de Automática, pages 958–964,

2014, In Portuguese.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-

objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary

Computation, 6(2):182–197, 2002.

[19] R. Dembo and U. Tulowitzki. On the minimization of quadratic functions

subject to box constraints. Working Paper 71, Yale University, 1983.

[20] R. Dorf and R. Bishop. Modern Control Systems. Pearson, 2016.

[21] K. Dufour and W. Suleiman. On integrating manipulability index into in-

verse kinematics solver. IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, pages 6967–6972, 2017.

[22] J. Everist and W. Shen. Mapping opaque and confined environments using pro-

prioception. IEEE International Conference on Robotics and Automation,

pages 1041–1046, 2009.

108

[23] T. Feng, Y. Kobayashi, M. Minami, and A. Yanou. Dynamic reconfiguration

manipulability analysis of redundant robot. IEEE International Confer-

ence on Mechatronics and Automation, pages 51–56, 2013.

[24] J. Fiala and B. Marteau. Nonlinear optimization: A compar-

ison of two competing approaches, active-set sqp vs. ipm.

https://www.nag.co.uk/market/nonlinear-optimization-comparison.pdf,

Accessed in 01/07/2019.

[25] P. From. On the kinematics of robotic-assisted minimally invasive surgery.

Modeling, Identification and Control, 34:69–82, 2013.

[26] P. From, A. Robertsson, and R. Johansson. On the manipulability of velocity-

constrained serial robotic manipulators. In World Congress, 19(1):10934–

10939, 2014.

[27] M. Galicki. Real-time constrained trajectory generation of mobile manipulators.

Robotics and Autonomous Systems, 78(1):49–62, 2016.

[28] P. Gill, W. Murray, M. Saunders, and M. Wright. Constrained Nonlinear Pro-

gramming. Handbooks in Operations Research and Management Science,

Optimization, Volume 1. Elsevier, 1989.

[29] D. Glynn. The permanent of a square matrix. European Journal of Combina-

torics, 31(7):1887–1891, 2010.

[30] N. Gould, D. Orban, and P. Toint. Cutest: A constrained and unconstrained

testing environment with safe threads for mathematical optimization.

Computational Optimization and Applications, 60(3):545–557, 2015.

[31] L. Hosford. Development and Testing of an Impedance Controller on an An-

thropomorphic Robot for Extreme Environment Operations. Department

of Mechanical Engineering, Massachusetts Institute of Technology, MSc

dissertation, Massachusetts, USA, 2016.

[32] X. Hu, C. Douglas, R. Lumley, and M. Seo. Gpu accelerated sequential

quadratic programming. International Symposium on Distributed Com-

puting and Applications to Business, Engineering and Science, pages 3–6,

2017.

[33] Y. Huang, X. Zhang, X. Chen, and J. Ota. Vision-guided peg-in-hole assembly

by baxter robot. Advances in Mechanical Engineering, 9(12):1–9, 2017.

[34] R. Jazar. Theory of Applied Robotics: Kinematic, Dynamics, and Control.

Springer, 2010.

109

[35] R. Jazar. Advanced Dynamics: Rigid Body, Multibody and Aerospace Applica-

tions. Wiley, 2011.

[36] P. Jimack. Parallel optimization for a finite element problem from nonlinear

elasticity. School of Computer Studies, report 91.22, University of Leeds,

1991.

[37] L. Joseph. Mastering ROS for Robotics Programming. Packt Publishing, 2015.

[38] Z. Ju, C. Yang, and H. Ma. Kinematics modeling and experimental verification

of baxter robot. Chinese Control Conference, pages 8518–8523, 2014.

[39] M. Khadem, L. Cruz, and C. Bergeles. Force/velocity manipulability analysis

for 3d continuum robots. IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, pages 4920–4926, 2018.

[40] J. Kim and P. Khosla. Dexterity measures for design and control of manip-

ulators. IEEE/RSJ International Workshop on Intelligent Robots and

Systems, pages 758–763, 1991.

[41] D. Kraft. A software package for sequential quadratic programming. Deutsche

Forschungs- und Versuchhsanstalf fur Luft- un Raumfahrt, pages 1–33,

1988.

[42] S. Lee. Sequential quadratic programming based global path re-planner for a

mobile manipulator. International Journal of Control, Automation, and

Systems, 4(3):318–324, 2006.

[43] Z. Li, B. Liao, F. Xu, and D. Guo. A new repetitive motion planning scheme

with noise suppression capability for redundant robot manipulators. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, pages 1–11,

2018, Early Access.

[44] X. Liang, Y. Wan, and C. Zhang. Task space trajectory control of robot manip-

ulators with uncertain kinematics and dynamics. Mathematical Problems

in Engineering, pages 1–19, 2017.

[45] Y. Liao and C. Fan. Multi-objective motion planning of space flexible manip-

ulator system. IEEE International Conference on Real-time Computing

and Robotics, pages 477–482, 2016.

[46] P. Long and T. Padir. Evaluating robot manipulability in constrained environ-

ments by velocity polytope reduction. IEEE-RAS International Confer-

ence on Humanoid Robots, pages 497–502, 2018.

110

[47] M. Lorenz, J. Brinker, I. Prause, and B. Corves. Power manipulability analy-

sis of redundant actuated parallel kinematic manipulators with different

types of actuators. IEEE International Conference on Robotics and Au-

tomation, pages 2129–2136, 2016.

[48] S. Lyle and N. Nichols. Numerical Methods for Optimal Control Problems with

State Constraints. Numerical Analysis Report 8/91, Dept of Mathematics,

University of Reading, 1991.

[49] K. Madsen and H. Schjaer-Jacobsen. Linearly constrained minimax optimiza-

tion. Mathematical Programming, 14:208–223, 1978.

[50] A. Martinez and E. Fernándes. Learning ROS for Robotics Programming. Packt

Publishing, 2013.

[51] D. Menell, C. Lin, R. Chitnis, S. Russell, and P. Abbeel. Sequential quadratic

programming for task plan optimization. IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 5040–5047, 2016.

[52] H. Minc. Theory of permanents. Linear Algebra and its Applications, 21:109–

148, 1987.

[53] D. Mori and G. Ishigami. Generalized force-and-energy manipulability for de-

sign and control of redundant robotic arm. IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 1131–1136, 2015.

[54] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic Ma-

nipulation. CRC Press, 1994.

[55] N. Naksuk and C. Lee. Zero moment point manipulability ellipsoid. IEEE

International Conference on Robotics and Automation, pages 1970–1975,

2006.

[56] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[57] J. O’Kane. A Gentle Introduction to ROS.

http://www.cse.sc.edu/ jokane/agitr/, 2013, Accessed in 01/07/2019.

[58] J. Papastavridis. Analytical Mechanics: A Comprehensive Treatise on the Dy-

namics of Constrained Systems; for Engineers, Physicists, and Mathe-

maticians. Oxford University Press, 2002.

[59] D. Pardo, Lukas L. Moller, M. Neunert, A. Winkler, and J. Buchli. Evaluating

direct transcription and nonlinear optimization methods for robot motion

planning. IEEE Robotics and Automation Letters, 1(2):946–953, 2016.

111

[60] J. Pei and J. Cheng. Optimization of force directional manipulability of dexter-

ous robot hand. International Conference on System Science, Engineering

Design and Manufacturing Informatization, pages 226–229, 2010.

[61] R. Perez, P. Jansen, and J. Martins. pyopt: A python-based object-oriented

framework for nonlinear constrained optimization. Structures and Multi-

disciplinary Optimization, 45(1):101–118, 2012.

[62] C. Pham, F. Coutinho, A. Leite, F. Lizarralde, P. From, and R. Johansson.

Analysis of a moving remote center of motion for robotics-assisted mini-

mally invasive surgery. IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1440–1446, 2015.

[63] C. Pham, F. Coutinho, F. Lizarralde, L. Hsu, and P. From. An analytical

approach to operational space control of robotic manipulators with kine-

matic constraints. IFAC In World Congress, 19(1):8509–8515, 2014.

[64] G. Pratt and M. Williamson. Series elastic actuators. IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 399–406, 1995.

[65] E. Ray. Learning XML. O’Reilly, 2001.

[66] R. Roberts, H. Yu, and A. Maciejewski. Characterizing optimally fault-tolerant

manipulators based on relative manipulability indices. IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pages 3925–3930,

2007.

[67] M. Rosenstein and R. Grupen. Velocity-dependent dynamic manipulability.

IEEE International Conference on Robotics and Automation, pages 2424–

2429, 2002.

[68] L. Rozo, N. Jaquier, S. Calinon, and D.Caldwell. Learning manipulability

ellipsoids for task compatibility in robot manipulation. IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pages 3183–3189,

2017.

[69] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics Modeling, Planning

and Control. Springer, 2009.

[70] E. Silva, F. Costa, E. Bicho, and W. Erlhagen. Nonlinear optimization for

human-like movements of a high degree of freedom robotics arm-hand

system. Computational Science and Its Applications, pages 327–342, 2011.

[71] J. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall, 1991.

112

[72] M. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control.

Wiley, 2005.

[73] S. Surjanovic and D. Bingham. Virtual library of simulation experi-

ments: Test functions and datasets - optimization test problems.

https://www.sfu.ca/ ssurjano/optimization.html, Accessed in 01/07/2019.

[74] P. Teodorescu. Mechanical Systems, Classical Models. Volume 1 Particle Me-

chanics. Springer, 2007.

[75] J. Thygeson, S. Moe, K. Pettersen, and J. Gravdahl. Kinematic singularity

avoidance for robot manipulators using set-based manipulability tasks.

IEEE Conference on Control Technology and Applications, pages 142–

149, 2017.

[76] A. Torabi, M. Khadem, K. Zareinia, G. Sutherland, and M. Tavakoli. Manipu-

lability of teleoperated surgical robots with application in design of mas-

ter/slave manipulators. International Symposium on Medical Robotics,

pages 1–6, 2018.

[77] N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, and R. Dillmann. Manipula-

bility analysis. IEEE-RAS International Conference on Humanoid Robots,

pages 568–573, 2012.

[78] L. Vandenberghe. The cvxopt linear and quadratic cone program solvers.

http://www.seas.ucla.edu/ vandenbe/publications/coneprog.pdf, pages 1–

30, Accessed in 01/07/2019.

[79] H. Wang. Towards manipulability of bilateral teleoperators with time-varying

delay. Chinese Automation Congress, pages 946–951, 2018.

[80] T. Watanabe. Manipulability measures taking necessary joint torques for grasp-

ing into consideration. IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 598–603, 2010.

[81] T. Yoshikawa. Manipulability of robot mechanisms. The International Journal

of Robotics Research, 4(2):3–9, 1985.

[82] X. Yun and N. Sarkar. Unified formulation of robotic systems with holonomic

and nonholonomic constraints. IEEE Transactions on Robotics an Au-

tomation, 14(4):640–650, 1998.

113

[83] T. Zhang, F. Yu, M. Minami, O. Yasukura, W. Song, A. Yanou, and M. Deng.

Non-singular configuration analyses of redundant manipulators for opti-

mizing avoidance manipulability. International Conference on Soft Com-

puting and Intelligent Systems, pages 963–970, 2010.

[84] Y. Zhang and l. Jin. Robot Manipulator Redundancy Resolution. Wiley, 2018.

[85] Y. Zhang and Z. Zhang. Repetitive Motion Planning and Control of Redundant

Robot Manipulators. Springer, 2013.

114

Appendix A

Proof of Theorems

A.1 Definitions

Considering the following nonlinear problem:

min
u

f(u) ∈ R, (A.1a)

subject to: ci(u) = 0, i ∈ E ; (A.1b)

ci(u) ≥ 0, i ∈ I. (A.1c)

Definition A.1.1. The active set A(u) at any feasible solution u in (A.1) consists of

the equality constraints indexes from E together with the indexes of the inequalities

constraints i for which ci(u) = 0,

A(u) = E ∪ {i ∈ I|ci(u) = 0} , (A.2)

and at any feasible solution u, the inequality constraint i ∈ I is said to be active if

ci(u) = 0 and inactive if the strict inequality ci(u) > 0 is satisfied.

Definition A.1.2. Given a solution u and the active set A(u) defined in Definition

A.1.1, we say that the linear independence constraint qualification holds if the set

of active constraint gradients {∇ci(u), i ∈ A(u)} is linearly independent.

Definition A.1.3. Given a solution u in (A.1), considering the functions f and ci

in (A.1) are continuously differentiable, and the Definition A.1.2 holds at u. Then,

there is a Lagrange multiplier vector λ, with components λi, i ∈ E ∪ I, such the

115

following conditions are satisfied at (u, λ):

∇L(u, λ) = 0, (A.3a)

ci(u) = 0, i ∈ E , (A.3b)

ci(u) ≥ 0, i ∈ I, (A.3c)

λi ≥ 0, i ∈ I, (A.3d)

λici(u) ≥ 0, i ∈ E ∪ I, (A.3e)

the conditions in (A.3) are the Karush-Kuhn-Tucker (KKT) conditions.

Definition A.1.4. Given a solution u in (A.1), a Lagrange multiplier vector λ

satisfying the (KKT) conditions and H(L(u, λ)) is symmetric and positive definite.

Then, u is a strict local solution for (A.1), i.e., f(u) < f(u∗) for all solutions u∗ in

the neighborhood of u.

A.2 Proof of Theorem 1

This proof is based in [56]. Considering the QP optimization problem given by:

min
u

f(u) =
1

2
uTCu+ cTu ∈ R, (A.4a)

subject to: Bi
Tu = si, i ∈ E ; (A.4b)

Bi
Tu < si, i ∈ I. (A.4c)

Given a solution uk in (A.4) that not minimizes the objective function, a search

direction dk is defined by:

dk = u− uk (A.5)

Substituting (A.5) in (A.4a) results in:

f(uk + dk) =
1

2
uTkCuk +

1

2
dTkCdk + (Cuk + c)Tdk + uTk c, (A.6)

where 1
2
uTkCuk + uTk c is dropped because do not depend on dk. A new optimization

subproblem is defined:

min
dk

1

2
dTkCdk + (Cuk + c)Tdk ∈ R, (A.7a)

subject to: Bi
Tu = 0, i ∈ Wk, (A.7b)

116

where Wk is the working set, i.e., all equalities constraints and the inequalities

constraints form A(u) imposed as equalities.

The null vector is a feasible solution of (A.7), so its objective value in (A.7a)

must be larger than that of dk, this way:

1

2
dTkCdk + (Cuk + c)Tdk < 0. (A.8)

Since dTkCdk ≥ 0 by convexity (C is positive definite), this inequality implies

(Cuk + c)Tdk < 0. Then,

f(uk + γdk) = f(uk) + γ(Cuk + c)Tdk +
1

2
γ2dTkCdk < f(uk), (A.9)

for a γ > 0 sufficiently . From (A.8) the function f(·) is strictly decreasing along

the direction dk, whenever dk 6= 0.

A.3 Proof of Theorem 2

This proof is based in [56]. Considering the SQP optimization problem given by:

min
u

f(u) ∈ R, (A.10a)

subject to: ci(u) = 0, i ∈ E ; (A.10b)

ci(u) ≥ 0, i ∈ I. (A.10c)

Given an iterative solution uk in (A.10) generated by Algorithm 7 and H̃k(uk) is

the approximated Hessian using the BFGS iterative algorithm. Also, functions f(·)
and c(·) are twice differentiable in a neighborhood of u with Lipschitz continuous

second derivatives.

Given a strict local solution u in (A.10) where Definitions A.1.2 and A.1.4 hold.

If ‖ uk − u ‖ and ‖ H̃k(uk) −H(L(u, λ)) ‖ are sufficiently small the following limit

is satisfied

lim
k→∞

‖ Pk(H̃k(uk)−H(L(u, λ))(uk+1 − uk) ‖
‖ uk+1 − uk ‖

= 0, (A.11)

where Pk = In − ATk (AkA
T
k)−1Ak ∈ Rn×n and ATk =

[
∇c1(uk) . . . ∇ci(uk)

]
, i ∈

A(uk). Then, the iterates uk converge superlinearly to u.

117

	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Trajectory Tracking and Manipulability
	Motivation
	Objectives
	Contributions
	Organization

	Robot Kinematics
	Geometric Kinematics
	Notation
	Cartesian Coordinate System
	Rotation Kinematics
	Motion Kinematics
	Multibody
	Roll-Pitch-Yaw Angles
	Forward Kinematics

	Differential Kinematics
	Velocity Kinematics
	Geometric Jacobian
	Analytical Jacobian

	Kinematic Control
	Pose Control in Cartesian Space

	Constraints in Applied Mechanics
	Constrained Jacobian
	Manipulability Indexes

	Methods for Trajectory Tracking
	Kinematic Control
	Quadratic Programming
	Quadratic Optimization
	Trajectory Tracking with QP

	Sequential Quadratic Programming
	Constrained Nonlinear Optimization
	Motivation for Using the SQP Method
	Sequential Least Squares Quadratic Programming
	Multi-Objective Optimization
	Trajectory Tracking with SQP

	Comparison of Methods

	Simulation and Experimental Results
	Kinematic Model of Baxter Research Robot
	Geometric Analysis
	URDF Analysis

	Preliminary Experiment
	Baxter Manipulability
	Simulation with a Scleronomic Constraint
	Experiment with a Scleronomic Constraint
	Experiment with a Rheonomic Constraint

	Conclusions
	Bibliography
	Proof of Theorems
	Definitions
	Proof of Theorem 1
	Proof of Theorem 2

