
SPATIO-TEMPORAL ALIGNMENT AND ANALYSIS OF VIDEOS FOR

INDUSTRIAL APPLICATIONS

Allan Freitas da Silva

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários

à obtenção do t́ıtulo de Doutor em Engenharia

Elétrica.

Orientadores: Eduardo Antônio Barros da

Silva

Sergio Lima Netto

Rio de Janeiro

Abril de 2019

SPATIO-TEMPORAL ALIGNMENT AND ANALYSIS OF VIDEOS FOR

INDUSTRIAL APPLICATIONS

Allan Freitas da Silva

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. Eduardo Antônio Barros da Silva, Ph.D.

Prof. Sergio Lima Netto, Ph.D.

Prof. José Gabriel Rodriguez Carneiro Gomes, Ph.D.

Prof. Lisandro Lovisolo, D.Sc.

Prof. Hélio Côrtes Vieira Lopes, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

ABRIL DE 2019

Silva, Allan Freitas da

Spatio-temporal alignment and analysis of videos for

industrial applications/Allan Freitas da Silva. – Rio de

Janeiro: UFRJ/COPPE, 2019.

XVII, 193 p.: il.; 29, 7cm.

Orientadores: Eduardo Antônio Barros da Silva

Sergio Lima Netto

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.

Referências Bibliográficas: p. 153 – 166.

1. Signal Processing. 2. Video Processing. 3.

Video Alignment. 4. Cluttered Environment. 5.

Moving Camera. I. Silva, Eduardo Antônio Barros da

et al. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia Elétrica. III. T́ıtulo.

iii

We all change. When you think about it, we’re all different people

all through our lives, and that’s okay, that’s good, you gotta keep

moving, so long as you remember all the people that you used to

be. I will not forget one line of this. Not one day. I swear. I will

always remember when the Doctor was me.

—The Doctor, Doctor Who

People’s dreams... don’t ever end!

—Marshall D. Teach, One Piece

iv

Agradecimentos

Gostaria de agradecer primeiramente à minha famı́lia por todo o apoio e suporte

que eu sempre recebi em todas as etapas da minha vida, sem os quais eu certamente

não seria capaz de chegar onde eu cheguei hoje.

Agradeço à minha namorada e grande parceira Carolina por estar presente em

todos os momentos (dos mais alegres aos mais desesperadores), por estar sempre

disposta a escutar e nunca poupar palavras de incentivo. Sua atuação foi essencial

até mesmo para a finalização deste texto, se dispondo a conferir e revisar diversos

detalhes.

Reservo também um espaço para todos os colegas que eu encontrei durante minha

vida acadêmica, em especial no SMT, que sempre me fizeram me sentir parte de uma

famı́lia. Agradeço por toda ajuda que sempre recebi, assim como por todos os mo-

mentos de descontração, momentos culinários, momentos de cafezes. Agradeço em

especial a todos aqueles com os quais eu trabalhei diretamente, não só me fornecendo

mais conhecimentos teóricos como também me permitindo ser um profissional mel-

hor.

Agradeço aos meus orientadores Eduardo e Sergio por sempre acreditarem no

meu potencial e nunca pouparem esforços para me ajudar da maneira que fosse

necessária. Apesar de tantos anos de conviência, ainda percebo que tenho muito a

aprender com a presença deles, tanto profissionalmente quanto pessoalmente.

Agradeço aos meus orientadores Yannick e Guillaume na França, e todas as

pessoas no IMS, que me receberam de braços abertos e me acolheram quando eu

estava longe de casa. Sou grato por tudo que aprendi durante este peŕıodo e por

estarem dispostos a participar dessa minha jornada acadêmica.

Agradeço aos membros da banca, que se dispuderam a participar da defesa apesar

de todas as adversidades. Certamente suas contribuições serão fundamentais para

a continuação deste trabalho.

Por fim, agradeço às instituições de incentivo à pesquisa, em especial à Capes e

ao CNPq, que me financiaram em todo o meu percurso acadêmico e que deveriam

ser mais valorizadas pela sociedade. Espero um dia poder retribuir tudo que me foi

oferecido.

v

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

ALINHAMENTO ESPAÇO-TEMPORAL E ANÁLISE DE VÍDEOS PARA

APLICAÇÕES INDUSTRIAIS

Allan Freitas da Silva

Abril/2019

Orientadores: Eduardo Antônio Barros da Silva

Sergio Lima Netto

Programa: Engenharia Elétrica

Neste trabalho, investiga-se o uso de técnicas de processamento de sinais e visão

computacional com o objetivo de fornecer ferramentas para a análise de sinais em

um contexto de deteção de anomalias com aplicação na indústria. Para este tipo de

análise, é comum ser realizado algum tipo de comparação entre sinais diferentes, de

modo que faz-se necessário o uso de técnicas de alinhamento de sinais.

A primeira parte deste trabalho lida com o alinhamento temporal de sinais. São

considerados os casos em que os sinais possuem o mesmo comprimento, logo só é

necessário estimar um atraso que alinhe os sinais, ou taxas diferentes, onde também

é necessário o uso de técnicas de warping. Os sinais utilizados para alinhamento

podem ser tanto sinais de interesse, como v́ıdeo ou áudio, quanto informações au-

xiliares presentes no sistema, como por exemplo a medição de consumo de energia

em uma plataforma móvel. Também considera-se o uso de técnicas que realizam

o rastreamento da câmera a partir de imagens para a realização do alinhamento

temporal.

A segunda parte deste trabalho estuda o alinhamento espacial de imagens. Um

conjunto de técnicas para estimação do campo de movimento dos ṕıxeis das imagens

é aplicado tanto em uma bases de dados tradicional quanto na aplicação industrial

considerada, o que envolve também um estudo da robustez dos métodos a diferentes

condições.

Por fim, a terceira parte do trabalho lida com a identificação de eventos em

uma nova aplicação. Durante um processo de escoamento de um fluido, obtêm-se

imagens contendo um padrão de interferências de luz. Deseja-se estimar posições

neste padrão em imagens, de modo a extrair caracteŕısticas do fluido utilizado.

vi

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

SPATIO-TEMPORAL ALIGNMENT AND ANALYSIS OF VIDEOS FOR

INDUSTRIAL APPLICATIONS

Allan Freitas da Silva

April/2019

Advisors: Eduardo Antônio Barros da Silva

Sergio Lima Netto

Department: Electrical Engineering

In this thesis, we investigate the use of signal processing and computer vision

techniques aiming to provide tools for signal analysis in a context of anomaly de-

tection in industrial applications. In this kind of analysis, it is common to perform

some sort of comparison between different signals, which requires the use of signal

alignment techniques.

The first part of the thesis deals directly with the temporal alignment of signals.

We consider the cases in which the signals have the same length, when is only

necessary to estimate a delay that aligns the signals, or different lengths, which

also requires the use of warping techniques. The signals employed in the alignment

can be either a signal-of-interest, such as video or audio, or auxiliary information

obtained from the system, for example the measurement of power consumption in a

moving platform. We consider the use of techniques that perform camera tracking

from images to obtain a temporal alignment.

The second part of this thesis studies the spatial alignment of images. Techniques

for the estimation of the motion field of the image pixels are applied on a standard

database and on the considered industrial application, which also involves a study

of the method robustness to different image characteristics.

At last, the third part of the thesis deals with the identification of events in a

new application. During a fluid flow process, we obtain images containing a light

interference pattern. We aim to estimate positions on this pattern, in order to

extract the characteristics of the fluid employed.

vii

Contents

List of Figures xii

List of Tables xvii

1 Introduction 1

1.1 Objectives . 1

1.2 Applications . 2

1.2.1 Surveillance System Description 2

1.2.2 Video Database of Abandoned Objects in a Cluttered Indus-

trial Environment . 4

1.2.3 Experimental Setup for Polymer Characterization 6

1.3 Related Work . 8

1.3.1 Video Alignment . 8

1.3.2 Motion Estimation . 10

1.3.3 Optical Flow . 11

1.3.4 Fringe Detection . 13

1.4 Text Organization . 15

2 Signal Alignment Using Sensor Ensemble 16

2.1 Alignment Algorithm for Curvilinear Tracks 17

2.1.1 Reference Video Fundamental Period Estimation 18

2.1.2 Target Video Alignment . 20

2.2 Experimental Results . 20

2.2.1 Reference Signal Fundamental Period Estimation 21

2.2.2 Alignment of the Reference and Target Signals 23

2.3 Summary . 24

3 Online Sequence Synchronization Based on Dynamic Time Warp-

ing 26

3.1 Dynamic Time Warping . 27

3.2 Online Dynamic Time-Warping . 27

3.3 Video Alignment for Moving Camera Object Detection 33

viii

3.4 Experimental Results . 34

3.4.1 Tests with Different Cost Functions 34

3.4.2 Online Warping . 37

3.4.3 Tests of Robustness . 38

3.5 Analysis Based on the Sensor Data 42

3.5.1 Alignment of Non-Sparse Signals 42

3.5.2 Alignment of Sparse Signals 42

3.6 Summary . 50

4 Camera Trajectory Estimation 52

4.1 Robust Large Scale Monocular Video SLAM 52

4.1.1 Keyframe Selection . 53

4.1.2 Submap Reconstruction . 53

4.1.3 Pairwise Similarity Estimation 55

4.1.4 Relative Similarity Averaging 58

4.1.5 Outlier Removal Algorithm 59

4.1.6 Large-Scale Relative Similarity Averaging 60

4.2 Experimental Results . 65

4.2.1 Tests with DORIS Videos . 66

4.3 Summary . 74

5 Video Spatial Alignment Using Optical Flow 75

5.1 Optical Flow Estimation . 76

5.1.1 Horn and Schunck Method . 77

5.1.2 General Optical Flow Algorithm 81

5.2 Advanced Data Terms . 85

5.2.1 Color Tensor . 85

5.2.2 Proposed Color tensor . 89

5.2.3 Structure Tensor . 90

5.2.4 ROF-NND Image Descriptor 91

5.2.5 Proposed Image Descriptor . 93

5.3 Optical Flow for Tensor-valued Images 94

5.4 Experimental Results . 96

5.4.1 Middlebury Dataset . 96

5.4.2 Quadratic Formulation . 99

5.4.3 Robust Function . 99

5.4.4 Improved Regularization . 101

5.4.5 Illumination . 103

5.4.6 Results on VDAO Database and DORIS Videos 106

5.5 Summary . 110

ix

6 Polymer Characterization Using Mathematical Morphology 118

6.1 Mathematical Morphology . 119

6.1.1 Geodesic Morphology . 120

6.2 Processing of Birefringence Images Using Mathematical Morphology

Techniques . 122

6.2.1 Input Image Enhancement . 123

6.2.2 Minima Contour Detection with Watershed 127

6.2.3 Skeleton Creation and Center Detection 131

6.2.4 Post-processing . 131

6.2.5 Inflection Points Detection . 136

6.3 Experimental Results . 138

6.3.1 Experimental Framework . 139

6.3.2 Performance Assessment . 139

6.3.3 Comparison with Other Methods 141

6.3.4 Comparative Evaluation with Reference Method (GIMP) . . . 145

6.4 Summary . 147

7 Conclusions and Future Work 149

7.1 Conclusions . 149

7.2 Future Work . 150

7.2.1 Online Sequence Synchronization Based on Dynamic Time-

Warping . 150

7.2.2 Camera Trajectory Estimation 151

7.2.3 Video Spatial Alignment Using Optical Flow 151

7.2.4 Polymer Characterization Using Mathematical Morphology . . 152

Bibliography 153

Appendices 167

A Camera Models and Projective Geometry 167

A.1 Homogeneous Coordinates . 167

A.2 Camera Model . 169

A.3 Fundamental Matrix . 171

A.4 Essential Matrix . 172

A.5 Computation of the fundamental matrix 173

A.6 Reconstruction from Two Views . 174

A.7 Triangulation . 177

A.8 Ambiguity in the Reconstruction . 178

A.9 Reconstruction for Multiple Views . 180

x

B Lie Groups and Lie Algebra 185

B.1 Group . 185

B.2 Field . 185

B.3 Vector Space . 186

B.4 Algebra . 186

B.5 Lie Groups and Lie Algebra . 187

B.6 Adjoint Representation . 188

B.7 Baker-Campbell-Hausdorff Formula 188

B.8 Concentrated Gaussian Distribution 189

B.9 Examples . 189

B.9.1 Special Orthogonal Group SO(2) 189

B.9.2 Special Orthogonal Group SO(3) 190

B.9.3 Special Euclidean Group SE(2) 190

B.9.4 Estimation of a Proper Three-Dimensional Rotation 191

xi

List of Figures

1.1 Robotic platform in a industrial environment. 3

1.2 3D model of the rail (gray) and the robotic platform (blue). 4

1.3 Example of a target frame with video anomalies to be detected and

a similar reference frame. 5

1.4 Prototype system to monitor an industrial environment with a camera

mounted on a moving platform. 6

1.5 Portion to the right of the monitored environment. 6

1.6 Mid section of the monitored environment. 7

1.7 Portion to the left of the monitored environment. 7

1.8 Experimental apparatus to induce birefringence properties in a polymer. 8

1.9 Example of birefringence image obtained with the experiment shown

in Fig. 1.8. 9

2.1 Example of fundamental period estimation. 19

2.2 Example of the fundamental period estimation and relative delay be-

tween two signals. 22

2.3 Cross-covariance using data ensembles acquired with start in a

straight section of the rail. 24

2.4 Cross-covariance using data ensembles acquired with start in a in a

curve section of the rail. 25

3.1 Example of the cost matrix computation performed by the online

DTW algorithm. 32

3.2 Example of the cost matrix computation in the DTW algorithm. . . . 36

3.3 Average alignment error (in frames) using as cost function the MSE

between subsampled frames. 39

3.4 Example of frame mismatch from the VDAO database. 40

3.5 Example of the difference of illumination in videos acquired with the

DORIS system. 41

3.6 Set of sensors from a target recording. 43

3.7 Set of sensors from a reference recording. 44

xii

3.8 Set of non-sparse signals from a target recording used in the alignment. 45

3.9 Set of non-sparse signals from a reference recording used in the align-

ment. 46

3.10 Alignment error (in frames) using the non-sparse sensor ensemble

corresponding to the run 1. One can see that the algorithm loses

track of the correct alignment in the regions with background noise. . 46

3.11 Example of the cost function computation for the sensor that mea-

sures the yaw velocity. 47

3.12 Example of the cost function computation for the sensor that mea-

sures the acceleration in the y axis. 48

3.13 Set of sparse signals from a target recording used in the alignment. . 49

3.14 Set of sparse signals from a reference recording used in the alignment. 50

3.15 Alignment error (in frames) of the peak regions in the video 1. 51

4.1 Block diagram of the SLAM algorithm. 53

4.2 Example of the keyframe selection step. 54

4.3 Example of the submap reconstruction step. 56

4.4 Pairwise similarity estimation step. 57

4.5 Example of the relative similarity averaging step. 59

4.6 Block diagram of the large scale relative similarity averaging algorithm. 61

4.7 Example of the graph partitioning. 62

4.8 Example of a supergraph that connects the subgraphs in Fig. 4.7. . . 63

4.9 Example of a video with a circular camera trajectory. 65

4.10 Circular trajectory estimated by the SLAM algorithm. 65

4.11 Frames of the video 2 in the KITTI odometry dataset. 67

4.12 Camera trajectory for the video 2 in the KITTI odometry dataset. . . 68

4.13 Camera trajectory for the video 5 in the KITTI odometry dataset. . . 69

4.14 Example of frames from the DORIS videos with a flat surface occu-

pying a significant portion of the frame. 70

4.15 Example of frames from the DORIS videos showing the lack of overlap

in the scenes before and after a pillar. 72

4.16 Example of frames from the DORIS videos containing large texture-

less objects. 73

4.17 Camera trajectory for some excerpts of the DORIS videos. 74

5.1 Block diagram of the iterative optical flow algorithm. 82

5.2 Visualization of the tensorial representation for several grayscale values. 87

5.3 Example of color image obtained with the concatenation of four linear

images. 87

5.4 Visualization of the tensorial representation corresponding to Fig. 5.3. 88

xiii

5.5 Visualization of the proposed tensorial representation for several

grayscale values. 89

5.6 Visualization of the proposed tensorial representation corresponding

to Fig. 5.3. 90

5.7 Patch from the image Venus in the Middlebury training dataset (see

Section 5.4.1). 91

5.8 Visualization of the structure tensor image corresponding to Fig. 5.7. 92

5.9 Image descriptor as described in [62]. 92

5.10 Visualization of two components of the descriptor image correspond-

ing to Fig. 5.7. 93

5.11 Sequences from the Middlebury training dataset - part 1. 97

5.12 Sequences from the Middlebury training dataset. - part 2 98

5.13 Ground truth for the sequences from the Middlebury training dataset. 100

5.14 Example of the optical flow computation for the image Grove2 in the

Middlebury database using a quadratic penalty function. 102

5.15 Example of the optical flow computation for the image Grove2 in the

Middlebury database using the Charbonnier penalty [55]. 104

5.16 Example of the optical flow computation for the image Grove2 in

the Middlebury database using the Charbonnier penalty and the im-

proved regularization of [50]. 107

5.17 Example of illumination changes applied in the second image of the

Grove2 pair. 108

5.18 EPE for the optical flow algorithms with the inclusion of an additive

term in one of the images. 108

5.19 EPE for the optical flow algorithms with the inclusion of a multiplica-

tive term in one of the images. 109

5.20 EPE for the optical flow algorithms with the inclusion of a gamma

correction in one of the images. 109

5.21 Example of the optical flow computation for two images with illumi-

nation changes in the DORIS system. 112

5.22 Example of the frame alignment for two images with illumination

changes in the DORIS system. 113

5.23 Example of the optical flow computation for two images with a frame

mismatch in the VDAO database. 114

5.24 Example of the frame alignment for two images with a frame mis-

match in the VDAO database. 115

5.25 Example of the optical flow computation for two images with a frame

occlusion in the VDAO database. 116

xiv

5.26 Example of the frame alignment for two images with a frame occlusion

in the VDAO database. 117

6.1 Example of image obtained in a flow-induced birefringence experiment.118

6.2 Erosion, dilation, opening and closing operations. 121

6.3 Geodesic erosion and dilation operations. 123

6.4 Block diagram of the proposed method. 124

6.5 Input image enhancement. 124

6.6 Highlight of the gaps of the fringes connecting consecutive dark and

bright fringes. 125

6.7 Example of birefringence images before and after the enhancement

step based on the white top-hat and black top-hat operations. 126

6.8 Minima contour detection with watershed. 127

6.9 Watershed peak detection method. 128

6.10 Contours of the dark fringes obtained with the use of the watershed

method. 129

6.11 Minima imposition method. 130

6.12 Skeleton creation and center detection. 131

6.13 Skeletonisation using maximal disks. 132

6.14 Post-processing. 132

6.15 Detailed block diagram of the post-processing. 133

6.16 Detail of the contours of the dark fringes obtained with the use of the

watershed method. 133

6.17 Detail of the branching points removal method, where the circles show

the points to be removed. 134

6.18 Final selection of the segments after the spurious segments are removed135

6.19 Selection of the horizontal part of the segments. 136

6.21 Inflection points detection. 136

6.20 Detected positions for each segment. 137

6.22 Fringe retardation order (k) of sample GPPS1 at 1 mm/s. 138

6.23 Example of the detection of the inflection point. 138

6.24 Mean square error (mm2) for several values of the window width. . . 140

6.25 Mean square error (mm2) for several values of the minimum length

threshold. 141

6.26 Detection rate for several values of the minimum length threshold. . . 142

6.27 Birefringence image binarization. 142

6.28 Contours of the dark fringes. 144

6.29 |PSD| as a function of distance along centerline. 146

xv

6.30 Standard deviation S as a function of distance along centerline of

GPPS1. 147

6.31 Standard deviation S as a function of distance along centerline of

GPPS2. 147

7.1 Example of birefringence image obtained with another experiment,

which shows a different geometry than the one seen in Fig. 1.9. 152

A.1 Intrinsic geometry for two cameras representing the same scene. . . . 168

A.2 Projection onto an image plane performed by a pinhole camera. . . . 170

A.3 Possible solutions for the decomposition of the essential matrix in a

pair of cameras. 176

A.4 Triangulation of a three-dimensional point without noise in the mea-

surements. 177

A.5 Triangulation of a point with a noisy measurement of the correspond-

ing points. 178

A.6 Projective reconstruction of a scene. 179

A.7 Metric reconstruction of a scene. 180

A.8 Initial reconstruction of a scene. 181

A.9 Correspondences between the image points xi from a new view and

the cloud of triangulated points Xi. 182

A.10 Expansion of the number of triangulated points. 182

A.11 Equivalent points in different coordinate systems. 184

B.1 Example of a concentrated Gaussian distribution for the Lie group

SE(2). 192

xvi

List of Tables

2.1 Comparison between the fundamental period obtained by the algo-

rithm and the robot positioning system estimate. 23

3.1 Properties of the videos used in the tests. 34

3.2 Alignment error (in frames) for several cost functions used in the

DTW algorithm. 37

3.3 Processing time for several cost functions used in the DTW algorithm. 37

3.4 Alignment error (in frames) for several effects applied to the video 1. 41

3.5 Alignment error of the peak regions corresponding to the run 1. . . . 49

5.1 Average end-point error (EPE) on the Middlebury training dataset

for different data terms and a quadratic penalty function. 101

5.2 Average end-point error (EPE) on the Middlebury training dataset

for different data terms using the Charbonnier penalty [55]. 103

5.3 Average end-point error (EPE) on the Middlebury training dataset

for different data terms using the Charbonnier penalty [55] and the

improved regularization of [50]. 105

5.4 Average end-point error (EPE) on the Middlebury training dataset

summarizing the results from Tabs. 5.1, 5.2, and 5.3. 106

5.5 Alignment error for the examples given in Figs. 5.22, 5.24 and 5.26

for several methods. 111

6.1 Mean square error (mm2) obtained with the proposed method, the

method based on the image derivative [76, 84] and the method based

on image binarization [74]. 144

6.2 Detection rate obtained with the proposed method, the method based

on the image derivative [76, 84] and the method based on image bi-

narization [74]. 145

xvii

Chapter 1

Introduction

Industrial processes have benefited from computer vision techniques to minimize

costs and increase security. One example is the use of RGB and thermal cameras

in surveillance systems to monitor an environment, recognize and track all kinds of

events in the scene, and detect gas leakage or fire [1–3].

In several applications, static cameras are spread out to cover the entire environ-

ment. A more challenging approach uses cameras installed in a moving robotic plat-

form, which facilitates the monitoring of difficult-to-access environments and also

increases the range of the cameras without incurring a considerable cost increase

[4]. However, these applications may result in an increased complexity by requiring

methods to localize the camera and identify the recordings carried out in the same

position, which can be a problem in applications with limited computational power.

The last decade also saw an increase in the number of devices that may simulta-

neously measure different data on an environment. Equipment such as smartphones

or the Kinect provide several sensors accessible to the public at a low cost. For this

reason, surveillance systems should be able to analyze multiple information from a

large number of sources. The diversity of the signals acquired simultaneously and

the easiness in their acquisition create a demand for techniques to properly align

them, so that they can be compared. Moreover, it is important to identify the oc-

currence of different events in the signals, which provides a better understanding of

the systems involved.

1.1 Objectives

This thesis deals with the problem of signal alignment and camera localization for

a video surveillance application that employs a moving platform equipped with a

camera and several other sensors. For this application, the platform moves in a trail

installed in an environment and camera records it in at least two different moments:

a reference recording that validates the normal condition of the environment and a

1

target recording that may contain an unexpected event that must be detected. In

this context, the signal alignment provides means for the reference and target signals

to be compared properly. In addition, the camera localization allows the system to

identify in which positions the anomaly may have occurred.

Another application considered on this thesis is the estimation of viscosity prop-

erties of polymer melts based on the analysis of images obtained during the flow

of the polymer inside equipment designed for this purpose. In this analysis, one

identifies the occurrence of dark fringes and estimates their position, which can be

used to infer the stress levels on the polymer.

The contributions of this thesis are as follows. In the first part, we investigate the

signals acquired by a surveillance system in a industrial environment (see Sections

1.2.1 and 1.2.2). Using these signals (which are not necessarily video signals), we

develop methods capable of performing the temporal alignment between the signals

in the cases when they have the same or different lengths. We also investigate an

approach of the simultaneous localization and mapping (SLAM) algorithm in [5],

which estimates the trajectory of a moving camera, in order to adapt this framework

to the video surveillance application.

The second part of this thesis deals with the spatial alignment. After performing

a temporal alignment step, we develop methods to perform a spatial alignment

step (in this case specifically for the video signals), while considering different ways

to extract features from the images. This study also takes into account several

conditions that can jeopardize the computation of the spatial alignment, such as

difference of illumination and occlusion.

The third and final part of this thesis studies the images obtained during the flow

of molten polymers (see Section 1.2.3). We present a novel approach to automatically

detect the position of dark fringes in these images, using mathematical morphology

techniques to find the patterns that characterize the fringes and detect the center

position of each one of them. The results are compared with other fringe detection

methods, revealing the superior precision of our method.

1.2 Applications

This section describes in more details the main applications that are related to the

techniques developed in this thesis.

1.2.1 Surveillance System Description

DORIS - Monitoring Robots for Offshore Facilities is a project which endeavors

to design and implement a surveillance system for remote supervision, diagnosis,

2

and data acquisition on offshore facilities. The proposed system is composed by a

rail-guided mobile robot that moves inside a cluttered industrial environment [6–8].

The robotic platform is capable of carrying different interchangeable sensors, such as

cameras, microphones, gas detectors, vibration and temperature sensors, which pro-

vide information about several properties of the robot and the environment. In that

manner, the DORIS system presents a modular framework which allows performing

several tasks such as: detection of audio anomalies [9], identification of gas leakage,

detection of video anomalies [10, 11], and diagnosis of rotating machines [12]. A

first prototype of the robotic platform was installed in a industrial environment as

shown in Fig. 1.1, and runs in a circular track whose model can be seen in Fig. 1.2.

Details on mechanics and control system of this prototype can be seen in [6–8].

Figure 1.1: Robotic platform in a industrial environment.

The video-anomaly detection algorithm compares frames from a new video that

may contain an anomaly with the most similar frames from a reference video (a

previous recording which was validated by an operator as having no anomalies).

During an alignment step, the algorithm computes a homography [13] between con-

secutive frames and uses it to estimate the horizontal displacement between frames,

whose integral gives an estimate of the absolute position where each frame was ac-

quired. Finally, the method uses a model-based maximum likelihood method to

align frames based on their absolute position estimate. However, since this method

computes only horizontal displacements, it is not compatible with non-rectilinear

camera movements. Fig. 1.3 shows a frame from a video with an abandoned object

and a frame with the same view from the reference video.

The system also has several sensors measuring orientation, speed, acceleration,

3

Figure 1.2: 3D model of the rail (gray) and the robotic platform (blue).

and power consumption. This information can be used, for instance, to estimate

the current position and provide temporal and spatial alignment. The system has

a native algorithm that uses information on the power consumption of the engines,

along with a knowledge of their mechanical properties, to provide a rough estimate

of the linear displacement between the current instant and the starting position,

which can also be used to align any video with a reference video.

1.2.2 Video Database of Abandoned Objects in a Cluttered

Industrial Environment

The video database of abandoned objects in a cluttered industrial environment

(VDAO) is a database created to promote the research on anomaly detection meth-

ods, containing several HD videos recorded in an industrial environment. A camera

was coupled in a Roomba c© robot, which was programmed to perform a back-and-

forth movement in a rail, as exemplified in Fig. 1.4. For each recording, different

objects were placed in the environment, simulating an anomaly to be detected, with

two different lighting conditions.

The database possesses 4 videos containing only the original environment (as at-

tested by an operator), considered the reference videos, 56 videos containing a single

object placed in an arbitrary position in the environment, and 6 videos containing

multiple objects placed in the environment, which adds up to 8 h of recordings with

24 objects. A manual marking of a bounding box for the position of each inserted ob-

ject is also available. Figs. 1.5, 1.6, and 1.7 show parts of the environment recorded

with the system shown in Fig. 1.4.

4

(a)

(b)

Figure 1.3: Example of a target frame with video anomalies to be detected and a
similar reference frame. (a) Reference frame. (b) Target frame from the same scene
with a few different objects marked by a red square.

5

Figure 1.4: Prototype system to monitor an industrial environment with a camera
mounted on a moving platform.

Figure 1.5: Portion to the right of the monitored environment.

1.2.3 Experimental Setup for Polymer Characterization

An application that can benefit from computer vision techniques is in the processing

of polymers for industrial applications. Polymers are processed in a high tempera-

ture, which makes them subject to a high level of deformation. The final structure

6

Figure 1.6: Mid section of the monitored environment.

Figure 1.7: Portion to the left of the monitored environment.

of the material depends directly on its rheological (i.e. flow-related) properties.

Considering the high costs involved in trial and error procedures, due to the use of

large industrial machinery, it is essential to define experiments to model the flow of

viscoelastic fluids.

In an attempt to overcome this challenge, techniques for determining the flow

birefringence stress patterns can be coupled with sophisticated experimental appa-

ratus, such as the multipass rheomoter (MPR) developed by Prof. Mackley and

co-workers [14–19]. In this device it is possible to map the stress field during the

7

flow, when it is equipped with an optical cell designed to fit the different geometries.

The experimental procedure shown in Fig 1.8 is based on inducing a birefringence

property in a fluid as a result of the orientation of the polymer chains during its flow.

The polymer flows inside the MPR, which contains a specific geometry to induce

the desired properties in the fluid. Using a light source positioned at one side and

a camera on the other side, it is possible to measure a pattern of light interference,

resulting in an image such as the one in Fig. 1.9. This pattern exhibits bright and

dark fringes, whose positions depend on the geometry of the experiment and the

properties of the flow. Therefore, the obtained patterns of bright and dark fringes

provide information about the spatial evolution of the stress in the molten polymer.

Figure 1.8: Experimental apparatus to induce birefringence properties in a polymer.

1.3 Related Work

In this section we review several areas of study with use in the aforementioned

applications.

1.3.1 Video Alignment

The problem of video alignment appears repeatedly and in different ways in the

literature. Some studies, such as [20–22], try to align video sequences that capture

the same scene, that is, that have a considerable amount of visual overlapping.

In other applications, an alignment must be made between sequences acquired

from the same position but at different times. In some cases, side information

8

Figure 1.9: Example of birefringence image obtained with the experiment shown in
Fig. 1.8.

related to the signal of interest can be used to improve the performance, as in

[23], which combines the visual information and a global positioning system (GPS)

signal. Yet other methods [21], besides using correspondences (via homography or

even via fundamental matrix), profit from additional information available in the

data stream, such as audio signals, to perform correlation measurements and obtain

the desired alignment between distinct video sequences.

A field of research that has been neglected is the video alignment of videos

acquired by moving single cameras following an approximately identical trajectory.

Distinct methods can be applied to solve this problem. In [24] the video signals are

transformed into one-dimensional signals through color histogram extraction from

each frame and the serialization of the acquired data. To perform the alignment,

correlation measures are taken from the one-dimensional data, which are used as a

feature for a dynamic programming algorithm to compute the alignment.

The most relevant technique for aligning two signals is the dynamic time warp-

ing (DTW) [25, 26]. DTW considers that one sequence can be shrunk or stretched

along the time axis to match the other. The problem of finding the best mapping

can be described as the search for the path that minimizes the matching error be-

tween sequences. This technique has been initially used in the context of automatic

speech recognition, but it has already been successfully applied to a wide range of

applications, such as biomedicine [27], entertainment [28] and data-mining [29].

The standard DTW algorithm has a computational complexity that is quadratic

with the number of elements of the sequences. To solve this problem, some con-

9

straints can be applied to save computation in the cost matrix. Sakoe-Chiba [26]

bounds the path to lie inside a region around the diagonal of the cost matrix, while

Itakura [25] restricts the path to be inside a parallelogram, requiring that one se-

quence never be more than a certain number of times faster than the other sequence.

Other approaches, such as the one in [30], prune the DTW matrix if the cost reaches

a given threshold. A DTW algorithm with linear computational complexity was de-

veloped by Salvador et al. [31]. It employs a multi-resolution approach to spare

some computation. A drawback that is shared by these methods is the fact that

the cost matrix must be computed beforehand, which creates difficulties for online

processing.

An online DTW with linear complexity was developed by Dixon [32]. The pro-

posed online DTW performs incremental alignment between two signals when one

of them is being received in real time, so only a subsequence of one of the signals

is currently known. This algorithm is applied in the alignment of audio signals to

provide live analysis of musical performance.

A temporal alignment technique is frequently one of the steps of a video anomaly

detection algorithm. In [33] a technique for detection of objects in a road was pro-

posed. It applies a DTW algorithm to align present and past camera images using

a similarity metric based on projective geometry information [13]. After aligning

the frames, the algorithm applies a road registration, and objects are detected by

image subtraction. A similar approach was developed by Mukojima et al. [34] in

the context of railroad object detection. This algorithm performs time alignment

between the reference and target videos by computing frame-by-frame correspon-

dences and then applying a DTW algorithm using a similarity metric derived from

the corresponding keypoints. After synchronizing both videos, the method performs

spatial alignment between frames and computes image subtraction metrics to detect

anomalies. Another method for detecting objects in a road was proposed in [35].

This approach applies a rough video alignment that uses only a GPS signal, that

is followed by a geometric registration between frames, and objects in the road are

detected by the computation of a correlation metric.

1.3.2 Motion Estimation

Recurrent problems in computer vision are camera localization and motion estima-

tion. The field of simultaneous localization and mapping (SLAM) refers to algo-

rithms that use any available information to estimate the movement of the camera

as well as to reconstruct the environment in which the camera moves. For this pur-

pose, several methods propose the use of auxiliary information, such as laser [36],

radar [37] or infrared signals [38]. In [39], for instance, a method developed for

10

low-powered devices uses a camera mounted in an aerial vehicle and pointed down-

wards along with a height sensor and estimates visual maps using a graph-based

formulation.

Among such methods, the visual SLAM is composed of approaches that use a

camera as their primary sensor. Davison [40, 41] uses a monocular camera and

estimates the camera linear and angular velocities for each new frame, considering

that between each measurement a random speed variation can occur. The work

seen in [42] develops an object-oriented SLAM, which uses recognition algorithms

to identify objects in the environment, which are used as features that are tracked

along the frames.

Some of the most successful visual SLAM algorithms use stereo cameras [43],

which are not widely spread. However, approaches using monocular cameras have

several drawbacks since no information regarding the depth of the scene can be

directly inferred from the images. To work around this problem, visual SLAM algo-

rithms with monocular cameras usually use two main steps [5]: a visual odometry

method to estimate camera poses and a loop closure step that prevents errors due

to the uncertainty of the scale. The visual odometry step computes the epipolar

geometry between frames, which is usually used to build submaps of the camera

trajectory [44], and the results are refined with a bundle adjustment algorithm [45].

The loop closure step computes connections between submaps [44] or frames [46, 47]

to detect loop closures, which are used to refine the results by minimizing a cost

function.

A visual SLAM method that has state-of-the-art results in trajectory estimation

of a monocular calibrated camera has been proposed in [5]. This method develops

a new formalism using notions of Lie algebra [48] to efficiently estimate submaps of

the camera trajectory, and uses graph optimization to combine different submaps

and remove outliers.

1.3.3 Optical Flow

Optical flow consists of the calculation of the apparent motion of the image pixels.

Using two images, the goal is to calculate a field of two-dimensional vectors that

register the movement of points from one image to the other. For such calculation,

an algorithm of optical flow must be able to overcome a few obstacles that can arise

in real videos, such as outliers from the discontinuities or occlusions, variation in

lighting and regions with big disparities between images.

Despite the fact that algorithms were established about 40 years ago [49], the

calculation of optical flow is still in constant evolution, having reached significant

advances in recent years. As viewed in [50], most of the advances in optical flow are

11

still based on the basic structure proposed in [49]. They often include coarse-to-fine

estimation [51], creating a pyramid of subsampled versions of the images, warping

the images with the current flow, and optimizing it incrementally. Among the

improvements to this algorithm, one can cite, for instance, the inclusion of texture

decomposition [52, 53], a refinement step with a median filtering to remove outliers

[50, 53], as well as the inclusion of robust penalty functions [50, 54, 55] along with

a graduated-non-convexity scheme [56] to optimize them. One can also mention

the study developed in [57], where in this work, several regularization techniques

are reviewed, and a decoupling strategy for the inclusion of non-convex functions is

proposed, along with a normalization factor for each term.

A recent trend in the development of new methods is the robustness to different

characteristics. An example is when the images have distinct lighting conditions.

Such case can happen, for instance, if the images were acquired in separate moments,

and the weather or the sunlight is different during each recording, or if the movement

of the camera and the objects create a different pattern of shadows cast upon the

scene. This creates a difference of content in the images, which violates the basic

assumption made in [49], that the only difference in the intensity values between

the two images is due to the motion of the objects in the scene. To solve this issue,

several methods replace the brightness information for each pixel by a much richer

feature. In [58] it is assumed that the brightness information can be modeled as

a combination of the reflectance of the objects and the illumination provided by a

light source. By decomposing the brightness in these two components, a method

that takes into account each component as separate cues is proposed, enforcing the

use of the reflectance component, which should have reduced lighting influences. A

similar approach is developed in [58], by decomposing a color image in illumination

and chromaticity components. In [59], several strategies for the color decomposition

are discussed and tested, each one with a different invariance to illumination changes.

A family of methods propose different illumination-robust descriptors. In [60] the

authors propose dividing the images in patches centered on each pixel, normalizing

the variance and the mean of the intensity values, stacking the patch in a vector,

and using it as a descriptor for each pixel, thus showing that the sum of square

differences (SSD) between two descriptors is equivalent the zero-normalized cross-

correlation (ZNCC) between the original patches. A binary descriptor is defined

in [61], by associating the neighborhood around each pixel to an eight-bit string

which depends on the edges direction. Since the descriptors do not rely on the edges

magnitude, they become more robust against illumination changes. Another neigh-

borhood descriptor is proposed in [62]. They define a different set of displacements,

depending on the size of the neighborhood, and compute the SSD between each

neighborhood and its n-th displaced version. The result of this operation is asso-

12

ciated with the n-th component of a descriptor, along with a normalization, which

they show to be more robust to illumination changes than [60] and [61].

Difficulties in the estimation of the optical flow can also arise when estimating

the flow for large displacements. In this case, the traditional coarse-to-fine heuristic

is expected to fail, since the dimension of the objects could be smaller than the

displacement they perform. Methods such as [63, 64] draw ideas from deep learning

concepts. Those methods perform pre-processing in the images based on the dense

SIFT [65], which is rearranged to become similar to the architecture of a convolu-

tional neural network (CNN). With this step, they find candidates for the correct

flow, which are used both as initialization and as an additional term during the

optimization. In [66] it is proposed a different initialization step based on patch

matching techniques.

One of the first successful methods to develop a deep learning architecture for this

problem is the FlowNet described in [67]. It defines two different architectures: the

FlowNetSimple (also called FlowNetS), which concatenates the two images prior

to the application on the network, and the FlowNetCorr (or FlowNetC), which

concatenates the features obtained for each image in an intermediate layer. Since the

known optical flow databases are too small for the training of CNNs, it also proposes

the Flying Chairs database, containing over 20 thousand synthetic sequences with

ground truth. A continuation of this method, the FlowNet2 [68], stacks several

FlowNetC and FlowNetS networks to compute the incremental flow, creating a

model with a large number of parameters.

In [69], it is proposed an architecture with three levels of CNNs to compute

the optical flow, having results similar to the FlowNetC with much fewer parame-

ters. Another architecture that cascades CNNs is proposed in [70], which sometimes

outperforms the FlowNet2 while having fewer parameters to train.

In a recent work, [71] obtains state-of-the-art results with an architecture inspired

by traditional optical flow methods. They include a pyramid of features obtained

with a CNN, warp the features of the second image using the current flow estimate,

use a CNN to find the optimum flow for the current level and refine the estimate

using a feed-forward CNN. This architecture also allows them to have almost 20

times fewer parameters than the FlowNet2.

1.3.4 Fringe Detection

Several aspects related to the processing of different types of polymer tested in

the MPR rheometer have been discussed and presented during the last years [14–

16, 19, 72, 73]. In general, many methods studied fringe detection, specially in the

context of light interference fields [74–83]. For example, a method based on image bi-

13

narization creates a centerline of each fringe by employing morphological approaches

like thinning or skeletonisation [74]. In other works, the periodic characteristics of

the fringes are modulated by a signal [77].

Some of the most successful techniques to detect light interferometric fringes

[76, 84] rely on the estimation of an orientation map for each image, which is used

with an adaptive median filter to remove noise. By measuring the changes in the

gradient component along the direction given by the orientation map, one can define

the positions of maxima and minima in the image, which characterize the centerline

for each light or dark fringe.

However, most of the methods developed for light interference fields tend to

fail when applied to the case of birefringence images. In this scenario, the fringe

patterns in the images are related to the flow and geometry of the experiment and

some assumptions about the periodicity of the image do not hold. In addition, due

to experimental problems such as impurity in the material and difficulty in the image

acquisition, the resulting images are often corrupted by noise.

For the specific case of MPR optical images, [85] mentioned the application of a

morphological analysis that considers a skeleton birefringence pattern to detect the

position of the fringes. However, no further details are provided about the adopted

approach.

Recently, it was proposed in [86] a group of mathematical morphology techniques

to find the patterns that characterize the birefringence fringes obtained in the MPR

[14, 17, 18, 87]. Their approach to detect the center position of each fringe con-

tains five steps: (i) input image enhancement, (ii) minima contour detection with

watershed, (iii) skeleton creation and center detection, (iv) post-processing and (v)

inflection points detection. The authors showed that the method has great potential

for detecting dark fringes in birefringence images with accuracy prediction compa-

rable to a manual marking while minimizing the need for human interaction with

the images.

In [88] a semi-automated methodology was presented for the principal stress

difference (PSD) analysis from flow-induced birefringence images using the GNU

Image Manipulation Program (GIMP) open-source software. The position of the

centers of dark fringes obtained through the flow-induced birefringence images of

two polystyrene samples processed in the MPR4 was determined with greater ac-

curacy and with shorter processing time when compared with the standard manual

technique. The main advantage of using the cited approach is that it does not re-

quire any prior knowledge of advanced image processing techniques nor the use of

expensive computational packages. However, in such scheme, the user still performs

the fringe processing and analysis one image at a time, resulting in a time-consuming

process.

14

1.4 Text Organization

The remainder of this text is organized as follows. Chapter 2 presents a method

to temporally align signals acquired in the surveillance system, assuming that dur-

ing the recording the moving platform had the same speed. Since this condition is

hardly met, Chapter 3 deals with the alignment problem in the case where there are

distinct signal lengths between each recording. In Chapter 4, a SLAM algorithm is

described and tested in several databases, including videos from the DORIS surveil-

lance system. Chapter 5 deals with the problem of the spatial alignment of two

images, using the optical flow algorithm, which can be used to complement the tem-

poral alignment performed in Chapters 2 and 3. Chapter 6 describes the proposed

methodology to handle the fringe-estimation problem detailed in Section 1.2.3. Fi-

nally, Chapter 7 summarizes the work developed in this thesis and devises proposals

for future works.

15

Chapter 2

Signal Alignment Using Sensor

Ensemble

Anomaly detection problems often have a reference signal that saves information

about the normal condition in a process or environment. In this scenario, a new

target signal must be aligned to the reference signal in order to be properly compared

and analyzed. However, the alignment using only the information intrinsic to the

desired signals can be costly and imprecise.

In this chapter, we propose an alignment algorithm using correlation measures

obtained from sensor ensembles which have a time stamp that enables a synchro-

nization with another signal of interest, such as the ones in Section 1.2.1. For this

approach, the signal of interest was acquired with a moving sensor (e.g., a moving

camera), and several different sensors were also available, which measure other in-

formation that may be correlated with the movement and position of the moving

sensor. Angular and linear velocity sensors are good examples of sensors that may

be related to the robot movement.

It is assumed that the signals were acquired using a robotic platform in a closed-

loop trajectory that moves at the same speed for any recording, but there may be

an unknown delay between the signals obtained from different recordings. Since

the robotic platform moves in a closed-loop trajectory, whenever it is in the same

position along the trajectory, the sensor ensemble should output a similar set of

samples, indicating that there is a periodic behavior in the acquired signals. The

proposed algorithm also includes an initial step to identify the fundamental period

of the signals, which simplifies the computation of the correlation. The algorithm

is applied to signals acquired using the current prototype of the DORIS system,

which has several sensors measuring physical and electrical properties of the robotic

platform, such as orientation, angular velocity and power consumption.

This chapter is organized as follows: in Section 2.1, the proposed algorithm that

aligns a signal of interest using other synchronized information is described. It is

16

composed of a first step that pre-processes a reference set of signals and a second

step that aligns the pre-processed reference to a target set of signals. Section 2.2

shows the performance evaluation of both steps of the proposed methodology.

2.1 Alignment Algorithm for Curvilinear Tracks

Given the surveillance system described in Section 1.2.1, it is assumed that two

surveillance rounds were performed. For each round, several pieces of information

were acquired: some auxiliary signals used to monitor the current state of the robot

and some signals that a surveillance algorithm must monitor, for instance, a video

signal or an audio signal. For each run, it is assumed that all this set of information

was available in a synchronized manner.

The first round, called reference, contains the normal behavior of the environment

(for instance, having no video anomalies) as validated by a human system operator.

A second run, called target, may have an abnormal behavior in a given sensor, for

instance, it may contain a video that registered a fire or a leakage.

The alignment between a target and a reference signal of interest, acquired during

different rounds of a robotic platform, can be obtained through the auxiliary signals,

by calculating the relative delay δ̂ that maximizes the cross-covariance between the

reference and target signals obtained with the same sensor, in the following manner:

δ̂ = argmax
δ

∑
i

∑
n

(ri(n+ δ)− r̄i)(ti(n)− t̄i), (2.1)

where ri(n) and ti(n) represent the signals acquired by the ith sensor during the

recording of the reference and target videos, and r̄i and t̄i are their respective means.

The computation of the cross-covariance seen in Eq. (2.1) can be efficiently per-

formed in a simple step with the help of the two-dimensional covariance between

two images. Considering two matrices R and T, the cross-covariance can be written

as:

cij =
∑
m

∑
n

(R(m+ i, n+ j)− R̄)(T(m,n)− T̄). (2.2)

The signals from the reference and target sensors can be grouped in such a way

that they compose the matrices R and T whose ith rows contain, respectively, data

from sensors ri and ti. Using these matrices, one arrives at the following cross-

covariance equation:

cij =
∑
m

∑
n

(rm+i(n+ j)− R̄)(tm(n)− T̄). (2.3)

17

This equation shows that, if one normalizes the signals by removing the mean

value, Eq. (2.3) becomes identical to the argument of Eq. (2.1) for a null i. Therefore

the optimization problem becomes:

δ̂ = argmax
j

c0j. (2.4)

A computationally efficient way to obtain the cross-covariance matrix is to use

the two-dimensional DFT:

C = [cij]M×N = DFT2D
−1[DFT2D[R] ◦DFT2D[T]∗], (2.5)

where ◦ is the element-wise multiplication operator and ∗ is the complex conjugate

operator.

Nevertheless, it is necessary that both vectors have the same dimension, for this

computation to be possible. If this is not true, the zero-padding technique can be

used to allow the computation. In the general case, considering N1 the length of

vectors ri and N2 the length of vectors ti, the vectors are filled with zeros until their

length is (N1 +N2 − 1).

Alg. 1 summarizes the procedure of obtaining the relative delay between two

vectors ensembles.

Algorithm 1 Alignment algorithm from the maximum cross-covariance between
the two vector ensembles.

Input: Data from reference sensors (ri) and target sensors (ti)
Output: Delay δ̂ that maximizes the cross-covariance between reference and
target data

1: N1 = length(ri), N2 = length(ti)
2: ri =

[
ri zeros(1, N2 − 1)

]
3: ti =

[
ti zeros(1, N1 − 1)

]
4: R =

 r1
...

rM

, T =

 t1
...

tM


5: C = [cij]M×N = DFT2D

−1[DFT2D[R] ◦DFT2D[T]∗]

6: δ̂ = argmax
j

c0j

2.1.1 Reference Video Fundamental Period Estimation

The procedure shown in Alg. 1 increases the length of every vector ri and ti in order

to determine the cross-covariance matrix using the two-dimensional DFT. Since it is

assumed that the signals were acquired in a robotic platform that moves in a closed-

loop trajectory, the signals transmitted by the sensors will naturally have a periodic

18

behaviour. The estimation of the lap period, given by the amount of time needed for

the robot to perform a complete lap of the rail, allows the smallest representation

of the environment and simplifies the computation of the cross-covariance.

To find the lap period, the cross-covariance technique can be applied. This step

requires a set of signals acquired during at least two consecutive rounds of the robot.

The whole set containing all acquired data from the multiple consecutive rounds is

considered to be a reference data ensemble that has a periodic behavior with an

unknown number of periods, therefore composing the vector ri. The initial samples,

which should be composed of at most half the total number of samples, compose

the vector ti.

It is expected that the correlation will entail a high value for at least two different

values of delay, indicating the position from which the data were copied from the

vector ri to the vector ti and the samples from the subsequent rounds that are similar

to the first one. These samples are generally obtained from the same position of the

robot in the rail. In this way, two consecutive peaks in the value of the covariance

function mark the time the robot takes to complete a lap around the rail, therefore

indicating the fundamental period of the signals.

An example of correlation obtained in this step is shown in Fig 2.1. The peaks

indicate that if one applies a delay of 0, 200 or 400 samples, the correlation is high,

which indicates that this signal has a fundamental period of 200 samples.

Figure 2.1: Example of fundamental period estimation. The distance between the
peaks, denoted as τ , indicates the estimated period of the signals.

By the end of this step, the algorithm generates a new reference video containing

an exact complete round of the robotic platform on the rail and the associated data

from the sensors. Alg. 2 summarizes this step.

19

Algorithm 2 Obtention of the reference data fundamental period.

Input: Reference data from the sensors (ri) in two consecutive rounds, interval
(N2) of samples to be used in the covariance computation.
Output: Fundamental period (τ), vectors ensemble (ri) and reference videos
with exact one lap around the rail.

1: N1 = length(ri)
2: ti =

[
ri(1, · · · , N2) zeros(1, N1 −N2)

]
3: R =

 r1
...

rM

, T =

 t1
...

tM


4: C = [cij]M×N = DFT2D

−1[DFT2D[R] ◦DFT2D[T]∗]
5: τ = difference between the positions of the two largest peaks of c0j

2.1.2 Target Video Alignment

After processing the reference data, an approach similar to the one seen in Alg. 1 is

used to align the target data from a new recording to the processed reference data.

For this step, it is not necessary to wait for the system to obtain the data from a

complete lap around the rail to perform the alignment. It is necessary, however,

that there are enough data to perform the covariance computation.

The target vectors are filled with zeros (zero padding) if needed, until they have

the same length τ of the reference vectors, which after the pre-processing step contain

an exact complete round of the robotic platform and are assumed to be a periodic

signals. The algorithm, then, computes the cross-covariance between the reference

and target data using a DFT as given in Alg. 1.

The resulting cross-covariance should present a peak that indicates the position

around which the information in the reference data are similar to the target data.

This will occur every time the data are acquired from the same position along the

rail. In this way, the results indicate the delay between the reference and target

signal. Alg. 3 describes the process of obtention of the delay between the reference

and target video. Since for this algorithm it is assumed that the reference data ri

contain an exact period of the signals, it is only necessary to perform a zero-padding

in the target data ti, in comparison with the Alg. 1.

2.2 Experimental Results

For recording the database, a camera was configured to record videos at a framerate

of 25 Hz and a resolution of 800 × 450 pixels. Several signals were synchronously

acquired in a real industrial environment with a robotic platform moving along a

rail having an average speed of 0.1 m/s. The signals are transmitted to a central

computer via a wi-fi network, along with a time stamp used to synchronize them.

20

Algorithm 3 Efficient alignment using the maximum cross-correlation.

Input: Reference data (ri) containing an exact period and target data (ti)
Output: Delay (δ̂) that maximizes the cross-correlation between reference and
target data

1: N1 = length(ri), N2 = length(ti)
2: ti =

[
ti zeros(1, N1 −N2)

]
3: R =

 r1
...

rM

, T =

 t1
...

tM


4: C = [cij]M×N = DFT2D

−1[DFT2D[R] ◦DFT2D[T]∗]

5: δ̂ = argmax
j

c0j

Initial recordings with consecutive rounds allow the testing of the fundamental pe-

riod estimation of reference signals. Afterwards, a new set of signals was recorded

to be used as target signals. The algorithms were implemented in Matlab [89] and

C++ programming languages.

The estimation of the signals period is compared to the positioning estimate

of the DORIS system, which allows the estimation of the time the robot takes to

perform a full lap around the industrial plant (130 m). It is also possible to use this

position estimate to perform a rough video alignment between the reference and

target sequences, which is compared to the estimated delay that aligns reference

and target data.

2.2.1 Reference Signal Fundamental Period Estimation

Alg. 2 was tested in the estimation of the fundamental period of the reference signal

using a data set with two complete laps of the robot in the rail, as given in Fig. 2.2.

In this figure, the signal (a) defines the vector ri. An excerpt of this signal is copied

into another vector, creating signal (b), associated to the vector ti. The correlation

between the vectors creates the signal (c), whose peaks indicate the same spot in

the rail. The distance between the correlation peaks yields an estimate of the time

the robot takes to complete a full lap in the rail. The signal (d) contains an exact

period of the signal (a).

Tab. 2.1 presents a fundamental period obtained for a reference video. This

value is compared to the one obtained from the positioning system of the robot.

The method is also tested on a recording containing signals acquired with a sample

rate of 10 Hz with the robot moving at the speed of 0.2 m/s.

21

(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Example of the fundamental period estimation and relative delay be-
tween two signals. The dashed lines indicate the probable regions of the reference
signal that are similar to the target signal. (a) Reference signal of a sensor of the
ensemble during two robot laps, assigned to the vector ri. (b) Samples of the signal
(a) used as target vector ti. (c) Cross-covariance between ri and ti used to obtain
the fundamental period of the reference signal, according to Alg. 2. (d) One lap
of the reference signal (a). (e) Samples in the data set of the target signal of the
same sensor. (f) Cross-covariance of the sensor ensemble to obtain the relative delay
between the signals, according to Alg. 3.

22

Table 2.1: Comparison between the fundamental period obtained by the algorithm
and the robot positioning system estimate. Configuration 1: sampling rate of 25 Hz
and average speed of 0.1 m/s. Configuration 2: sampling rate of 10 Hz and average
speed of 0.2 m/s.

Fundamental period (number of samples)
Algorithm Position estimate

Configuration 1 30985 30947
Configuration 2 6042 6033

2.2.2 Alignment of the Reference and Target Signals

The synchronization test was performed using an exact period of the reference signals

obtained after the application of Alg. 2. Fig. 2.2 also presents an example of

the computation of the relative delay between the videos. The signal (d) contains

8000 samples acquired in a posterior recording. The cross-correlation between the

reference data and target data, shown in image (f), presents the delay that maximizes

the similarity between the signal samples, that is, the delay needed to perform the

synchronization.

In another test, one varied the number of samples of the target signal and the

position where the samples were acquired, in order to analyze how the algorithm

behaves when the target signal has less meaningful information. For this test, target

signals with 2000, 5000, 10000 or 15000 samples were used, and the acquisition could

start in a straight or in a curve section of the rail. Figs. 2.3 and 2.4 present the

cross-covariance obtained for two signal ensembles, obtained at distinct positions

and with distinct sample amounts.

The results show that the number of samples used in the target signals has

a significant impact on the algorithm performance. Having only a small amount

of samples, there may not be enough information for the algorithm to find a single

region with enough similarity. This fact occurs in the signal used in the computation

of image (d), whose recording started in a straight section of the rail. With few

samples, the correlation metric indicates more than one position in the reference

signal that has samples similar to the target sequence, and the algorithm is not able

to decide in which straight section of the rail the signal was acquired (see Fig. 1.2

for a model of the rail). The signal used in the computation of image (a) started in

a curve section of the rail, with a very distinct pattern. In this case, even with few

samples there is enough information to detect the correct corresponding section of

the rail.

23

(a) (b)

(c) (d)

Figure 2.3: Cross-covariance using data ensembles acquired with start in a straight
section of the rail. (a) Signal with 2000 samples. (b) Signal with 5000 samples. (c)
Signal with 10000 samples. (d) Signal with 15000 samples.

2.3 Summary

This chapter presented a method to perform the alignment of any signals of interest

that are synchronized to an ensemble of sensors that have a periodic behavior and

have no speed variation between multiple recordings, such as the ones present in

a robotic platform moving in a closed-loop trajectory along a rail. Through the

maximization of a similarity (measured by the cross-correlation function) of the

captured signals, one is able to obtain the fundamental period of the signals and

their alignment delay. The method was tested and compared with an odometry

system present in a surveillance system, and the results suggest that, for a data set

with enough samples, the method shows a similar behaviour to the method natively

present in the robot. The next chapter depicts an alignment method that is able to

compensate the case when the signals exhibit a difference in the lengths. In addition,

the algorithms from Chapter 2 were adapted to directly use the signal of interest

information (in this case, the video content) to perform the alignment.

24

(a) (b)

(c) (d)

Figure 2.4: Cross-covariance using data ensembles acquired with start in a curve
section of the rail. (a) Signal with 2000 samples. (b) Signal with 5000 samples. (c)
Signal with 10000 samples. (d) Signal with 15000 samples.

25

Chapter 3

Online Sequence Synchronization

Based on Dynamic Time Warping

A common problem in anomaly detection is the case where two signals have different

lengths, which may occur, for instance, due to different sampling rates or if the

signals were recorded using sensors moving with different speeds.

In this chapter, we investigate the alignment between two video sequences that

register the same scene. It is considered that a camera goes multiples times through

an environment. During each recording, the camera follows approximately the same

trajectory but its speed along the trajectory may differ among recordings, thus

generating time warping between the videos.

This work proposes a video alignment algorithm based on the dynamic time-

warping (DTW), that can be used in anomaly detection systems. An online DTW

approach is adapted and optimized in the context of real-time video alignment. The

algorithm was tested with several image distance metrics using data acquired in a

robotic platform that moved at different speeds. The videos were acquired using

the robotic system described in Section 1.2.1, which also includes the simultaneous

recording of several signals from various auxiliary sensors.

This chapter is divided as follows: in Section 3.1, a traditional method to align

and compare signals with different lengths is described. Section 3.2 shows an online

version of the traditional method that is able to compute a similar result with less

computational complexity, and Section 3.3 adapts these methods to perform video

alignment in the context of the moving-camera object detection. Section 3.4 that

may have a difference in their lengths, and also shows tests to assess the method

robustness Section 3.5 shows an application of the same side information employed

in Chapter 2 for the alignment of signals.

26

3.1 Dynamic Time Warping

Dynamic time warping (DTW) is a technique that aligns two time series X =

[x1, x2, · · · , xN] and Y = [y1, y2, · · · , yM] with coincidental beginnings and ends by

warping one of the sequences in a nonlinear fashion to match the other. The DTW

aims to find the minimum-cost path W = [w1;w2; · · · ;wL] which is a sequence of

the ordered pairs wk = (ik, jk) ∈ [1 : N]× [1 : M] such that xik and yjk are aligned.

This path W should satisfy some constraints:

• Boundary: w1 = (1, 1) and wL = (N,M);

• Monotonicity: i1 < i2 < · · · < iL, j1 < j2 < · · · < jL;

• Continuity: wk+1 − wk ∈ {(1, 0), (0, 1), (1, 1)}.

To find the optimal warping path that aligns the time series X and Y, one

can create a cost matrix d of size N ×M where each element d(i, j) represents a

similarity measurement between the samples xi and yj that is also the cost of their

misalignment. The optimal warping path is the one that minimizes the sum of the

costs along the path:

DTW(X,Y) = min
∑

(i,j)∈W

d(i, j). (3.1)

This problem can be easily solved by dynamic programming, creating an

accumulated-cost matrix D with elements D(i, j) using the following recursive for-

mulation:

D(i, j) = d(i, j) + min(D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)). (3.2)

The path is obtained by starting at the element D(N,M) and testing each pre-

vious element D(N−1,M), D(N,M−1) and D(N−1,M−1) in the recursion. For

whichever has the smallest value, the corresponding index (N − 1,M), (N,M − 1)

or (N − 1,M − 1) is added to the path and the recursion continues from it until the

element D(1, 1) is reached, as described in Alg. 4.

3.2 Online Dynamic Time-Warping

The classical DTW, described in Section 3.1, requires that all samples from both

sequences are known at the start of the execution of the algorithm, since it aligns

the initial and final samples from each sequence beforehand. One of its drawbacks

is that when one of the sequences is only partially known the boundary conditions

27

Algorithm 4 Dynamic time-warping algorithm.

Input: Time series (X = [x1, x2, · · · , xN] and Y = [y1, y2, · · · , yM]).
Output: Warping path (W = [w1;w2; · · · ;wL]).

1: for i ∈ {1, ..., N} and j ∈ {1, ...,M} do
2: Compute d(i, j) = f(xi, yj)
3: Compute D(i, j) using Eq. (3.2)
4: end for
5: Compute the warping path W using Alg. 5

Algorithm 5 Dynamic programming to find the optimal warping path given an
accumulated-cost matrix.

Input: Accumulated-cost matrix (D).
Output: Warping path (W = [w1;w2; · · · ;wL]).

1: Initialize an empty warping path W
2: Assign i = N and j = M
3: while i > 0 and j > 0 do
4: Assign w = (i, j)
5: Append W = [w;W]
6: if D(i− 1, j) < D(i− 1, j − 1) and D(i− 1, j) < D(i, j − 1) then
7: Assign i = i− 1
8: end if
9: if D(i, j − 1) < D(i− 1, j − 1) and D(i− 1, j) < D(i− 1, j) then

10: Assign j = j − 1
11: end if
12: if D(i− 1, j − 1) ≤ D(i− 1, j) and D(i− 1, j) ≤ D(i, j − 1) then
13: Assign i = i− 1 and j = j − 1
14: end if
15: end while

28

cannot be satisfied. The online DTW proposed by [32] seeks the best alignment of

a partially unknown target sequence and a subsequence of the reference, restricting

the search to a prealigned window so that the algorithm has linear complexity.

Starting with reference and target subsequences of the size of the search window

c, the algorithm applies the standard DTW to find an initial warping path, inserting

a weight 2 for diagonal steps in the definition of the accumulated cost matrix of

Eq. (3.2), so that there is no bias for diagonal movements:

D(i, j) = min


D(i− 1, j) + d(i, j)

D(i, j − 1) + d(i, j)

D(i− 1, j − 1) + 2d(i, j)

. (3.3)

In the first iteration, the algorithm considers that the reference and target

sequences are composed of c values, so only the elements of the cost function

d(i, j), i, j = 1, · · · , c are computed. Eq. (3.3) is used to determine the values

of the elements D(i, j), i, j = 1, · · · , c of the accumulated-cost matrix D.

For each new iteration, the algorithm uses the values of the accumulated-cost

computed up to a given point to decide whether to increase the size of the reference

or the target subsequences. Afterwards, instead of re-computing all costs between

samples from both sequences, it uses the cost matrix found in the previous iteration

and only updates it with the costs associated with the new sample. In addition,

in order to spare computation, it only computes the values of the cost function

between the new sample from one sequence and the last c samples from the other

sequence (instead of all of them, as in the original DTW). The accumulated-cost

matrix D is also updated by applying Eq. (3.3) only for the positions where the

value of d(i, j) is currently known, and a new warping path between the reference

and target subsequences is found. Alg. 6 describes these ideas.

In Fig. 3.1, an example of the evolution of the cost matrix computation is pre-

sented. In the figure, the white squares represent pixels not yet computed in the cost

matrix, the light gray squares represent the initial elements computed in the cost

matrix, and the dark gray square represents the warping path computed in the for-

ward direction. During each step, the algorithm checks the forward path to decide if

it should include in the matrix a new sample from the target sequence (Figs. 3.1(b)

and 3.1(c)), reference sequence (Figs. 3.1(e) and 3.1(f)) or both (Fig. 3.1(d)), and

computes the similarity metric between the new sample from one sequence and the

last 4 samples from other sequence. In this figure, it can be seen that, starting in

Fig. 3.1(d), a few samples from the cost matrix were not computed, remaining as

white squares in the figure.

29

Algorithm 6 Online dynamic time-warping algorithm.

Input: Time series (X = [x1, x2, · · · , xN] and Y = [y1, y2, · · · , yM]), search
window size (c).
Output: Warping path (W = [w1;w2; · · · ;wL]).

1: for i ∈ {1, ..., c} and j ∈ {1, ..., c} do
2: Compute d(i, j) = f(xi, yj)
3: Compute D(i, j) using Eq. (3.3)
4: end for
5: Assign updateType = “BOTH”, previousUpdate = “BOTH”
6: Assign updateCount = 0, ref = c, tar = c
7: while ref ≤ N and tar ≤M do
8: Define updateType using Alg. 7
9: if updateType == “REF” or updateType == “BOTH” then

10: for i = ref + 1 and j ∈ {tar − c+ 1, ..., tar} do
11: Compute d(i, j) = f(xi, yj)
12: Compute D(i, j) using Eq. (3.3)
13: end for
14: end if
15: if updateType == “TAR” or updateType == “BOTH” then
16: for i ∈ {ref − c+ 1, ..., ref} and j = tar + 1 do
17: Compute d(i, j) = f(xi, yj)
18: Compute D(i, j) using Eq. (3.3)
19: end for
20: end if
21: if updateType 6= previousUpdate and updateType 6= “BOTH” then
22: Assign updateCount = updateCount+ 1
23: else
24: Assign updateCount = 1
25: end if
26: Assign previousUpdate = updateType
27: end while
28: Compute the warping path W using Alg. 5

30

Algorithm 7 Algorithm to determine the next update in the online DTW.

Input: Current number of consecutive updates of same type (updateCount),
maximum number of consecutive updates (maxCount), previous update type
(previousUpdate), search window size (c), accumulated-cost matrix (D), last
reference position (ref), last target position (tar).
Output: Type of update used in the current iteration (updateType).

1: if updateCount > maxCount then
2: if previousUpdate == “TAR” then
3: Assign updateType = “REF”
4: end if
5: if previousUpdate == “REF” then
6: Assign updateType = “TAR”
7: end if
8: else
9: Find i such that D(i, tar) = min(D(1, tar), ..., D(ref, tar))

10: Find j such that D(ref, j) = min(D(ref, 1), ..., D(ref, tar))
11: if D(i, tar) < D(ref, j) then
12: Assign updateType = “TAR”
13: end if
14: if D(i, tar) > D(ref, j) then
15: Assign updateType = “REF”
16: end if
17: if D(i, tar) == D(ref, j) then
18: Assign updateType = “BOTH”
19: end if
20: end if

31

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Example of the cost matrix computation performed by the online DTW
algorithm. The white square represents pixels not yet computed in the cost matrix,
the light gray squares represent the initial elements computed in the cost matrix and
the dark gray square represents the warping path computed in the forward direction.
The number inside each square represents the iteration where that element of the
cost matrix was computed. (a) Initial elements. (b) and (c) New sample from
the target sequence included. (d) New sample from both the target and reference
sequence included. (e) and (f) New sample from the reference sequence included.

32

3.3 Video Alignment for Moving Camera Object

Detection

The framework of surveillance systems with moving camera object detection im-

poses several constraints that must be satisfied by the alignment algorithm. In this

application, one of the sequences, the reference signal, is fully known and the other

sequence, the target sequence, is being received in real-time and must be aligned and

processed on-the-fly, which makes the online DTW a suitable approach. However, in

order to be used in this framework, some innovations had to be made to the online

DTW algorithm.

Since the original algorithm was developed for a music application, a new cost

function must be applied in order to align the video frames. Furthermore, when

dealing with videos acquired in a surveillance operation, one can often deal with

frames recorded in the same position that have regions with different information.

As can be seen in Fig. 1.3, the frames from the target video may have regions with

video anomalies. In this case there may be objects that did not exist or were in a

different position during the reference recording. Thereby, the alignment algorithm

must be able to align frames even when one of them has small regions that do not

match the ones in the other. We have performed several tests to determine the best

cost function to be used in this application and propose the use of a simple metric,

the mean square error (MSE) between subsampled frames, showing in Tabs. 3.2 and

3.3 that it produces the best compromise between error rate and processing time.

The original algorithm proposed by Dixon [32] performs a warping between two

videos which can include repetitions of any of the frames of the videos. However,

in an object detection application, the real concern is, for each new frame in the

reference video, finding a frame that is equivalent to each new frame in the target

video. Therefore, the proposed algorithm computes the optimal warping path and,

for each target frame, finds the aligned reference frame with the minimum cost.

In addition, the online DTW algorithm computes the path in the forward di-

rection, incrementally computing the optimal warping for each new frame. In the

proposed system, a latency in the warping path computation is introduced, by com-

puting the alignment for a given target frame only after the k subsequent frames

were received. This approach was discussed in [32] and was deemed unnecessary

in the context of music alignment. However, since this work deals with a different

application, this approach with latency is also considered.

33

3.4 Experimental Results

Using the robotic platform described in Section 1.2.1, six runs of the robot were

performed and a video and its equivalent sensor information were acquired. From

these runs, two videos were used as reference videos and four as target videos in

which at least one anomalous object was placed in the environment. For three target

videos, the robotic platform was programmed to vary its speed between 0.2 m/s

and 0.4 m/s along the trajectory. A reference video for these three target videos

was recorded with a constant speed of 0.2 m/s, which generates a time-warping

between the reference and target videos to be aligned. The fourth target video

was recorded with a constant speed of 0.1 m/s, but containing regions with larger

anomalous objects than the other three target videos, as the one seen in Fig. 1.3, and

a reference video for this target was also recorded at the constant speed of 0.1 m/s

(having no time warping). All videos have a spatial resolution of 800×450 pixels and

a frame rate of around 2.5 fps. Tab. 3.1 summarizes some of the properties of the

videos. The proposed algorithm was implemented in C++ and tested with several

configurations. The tests were made in a computer with an Intel Core i7-3630 QM

processor with 2.4 GHz clock and 16 GB of RAM running Windows 10 c©.

Table 3.1: Properties of the videos used in the tests.

Duration (s) Total frames Camera speed (m/s)
Target 1 560 1400 0.2 to 0.3
Target 2 486 1215 0.2 to 0.4
Target 3 488 1218 0.2 to 0.4
Target 4 1329 3176 0.1

Reference 1 649 1622 0.2
Reference 2 1346 3050 0.1

3.4.1 Tests with Different Cost Functions

To test the robustness of the DTW algorithm in this application, several cost func-

tions were considered. In [28], a DTW is developed which uses a subsampled version

of the frame as the frame descriptor, and uses as cost function the L1-norm between

frame descriptors. In this work, we subsample the frames to the size 16 × 9, stack

their lines in a descriptor vector and consider both L1 and L2 norms.

The moving-camera background-subtraction algorithm proposed in [34] employs

the normalized vector distance (NVD) [90] to compare frames and detect anomalies,

which can also be applied as a cost function in a DTW algorithm. For this test, the

original frames are subsampled to the size 80× 45 and each frame is divided into 25

image patches. Other common metrics for comparing frames include the structural

34

similarity (SSIM) [91] and distance between the histogram of oriented gradients

(HoG) descriptors [92]. The HoG descriptor is based on the implementation given

by [93] and the SSIM is applied in the comparison of the frames after downsampling

them to the size 32× 18.

The original DTW described in Sec. 3.1 was also tested in the videos for com-

parison purposes. Since it has a computational complexity that is quadratic on the

length of the videos, this method was only tested with the cost function that com-

putes the L2-norm of the error between subsampled frames. In Fig. 3.2, one can

see an example of the cost matrix computation using the original DTW and the

online approach. In Fig. 3.2(b), the white regions in the upper right and lower left

represent all similarities that were not computed by the online DTW, which did not

result in any alignment error (Figs. 3.2(c) and 3.2(d)).

For the sake of comparison, the sensor data information obtained from the

DORIS system (the set of auxiliary signals obtained during each recording) is also

adapted to a DTW algorithm. This information is the same used for the video

alignment discussed in Chapter 2, but in this new experiment, it was imposed that

the reference and target sequences can have a different speed, so the premises of the

algorithm described in Chapter 2 were not satisfied. Considering ri the set of sen-

sor outputs from the reference recording at time i, and tj the ones from the target

recording at time j, we applied the DTW with cost function:

d(i, j) = ‖ri − tj‖2 . (3.4)

It is also important to emphasize the alignment that was actually computed by

the online DTW algorithm. This algorithm computes an online warping path that

only considers the current samples available and is used to control the comparisons

that must be computed or that can be ignored. This path is represented as the

dark gray squares in Fig. 3.1. However, this warping path was used only during the

execution of the algorithm and not analyzed in this first experiment.

For this experiment, the online algorithm decides which comparisons are or not

necessary, creating the cost matrix depicted in Fig. 3.1. After this procedure, a

warping path is found using Alg. 5, which may or may not coincide with online

warping path depicted as the dark gray squares in Fig. 3.1. Thereby, this experi-

ment strictly analyzes the impact of the several cost functions and the reduced cost

matrix on the alignment between the target and reference sequences. In the second

experiment, we perform an analysis of the quality of the incremental path estimated

by the online approach.

Tab. 3.2 presents the alignment error between the several cost functions tested

in the DTW algorithm. The positioning estimate of the DORIS system, which was

35

(a) (b)

(c) (d)

Figure 3.2: Example of the cost matrix computation in the DTW algorithm. In the
figures, the warping path was too thin and was dilated for a better visualization.
(a) Original DTW - The full matrix is computed. (b) Online DTW - Only a region
of the cost matrix inside a given search window is computed. (c) Original DTW -
Warping path. (d) Online DTW - Warping path.

also used in Chapter 2, was employed in the computation of a video alignment

between the reference and target videos, and its results were considered as ground-

truth. For each cost function, the DTW alignment was computed, which gives for

each frame of the target video the corresponding frame of the reference video. The

alignment error is computed by taking the average of the absolute difference between

the frame position given by the estimated alignment and the frame position given

by the ground truth.

Tab. 3.3 shows the average processing time for each cost function. As can

36

be seen from the results in Tabs. 3.2 and 3.3, the cost function based on the L2-

norm (which represents, up to scale, the MSE between subsampled frames) is only

outperformed, in terms of alignment error, by the cost functions based on NVD and

SSIM. However, it is at least two times faster than both of them. Given that it

is advantageous that the alignment step be as simple as possible due to the very

complex nature of the anomaly detection step, this indicates that the MSE is the

recommended cost function to be used in a real-time application.

Table 3.2: Alignment error (in frames) for several cost functions used in the DTW
algorithm. The best 3 results are marked in blue.

Average error (frames)
Target 1 Target 2 Target 3 Target 4

Online DTW

L1 0.95 0.92 1.45 0.44
L2 0.58 0.48 0.80 0.37

SSIM 0.41 0.39 0.66 0.36
NVD 0.48 0.60 0.78 0.32
HoG 0.45 0.61 0.95 0.38

Sensor 4.88 6.08 5.86 4.84
Original DTW L2 0.58 0.48 0.80 0.37

Table 3.3: Processing time for several cost functions used in the DTW algorithm.
The best 3 results are marked in blue.

Processing time (s)
Target 1 Target 2 Target 3 Target 4

Online DTW

L1 76 82 89 283
L2 83 80 87 308

SSIM 189 187 189 516
NVD 243 233 236 671
HoG 89 79 83 280

Sensor 19 18 20 76
Original DTW L2 41311 52954 40567 132571

3.4.2 Online Warping

In a real-time anomaly-detection application, a frame from the target video must

be synchronized to a frame from the reference video in order to produce an output

without prior knowledge of any posterior target frames. If the system can allow

a fixed latency by producing a detection output for the target frame N only after

K new target frames have been received, the optimal alignment for frame N can

be estimated with a fixed view into the future, which can make it more stable and

reliable. In this case, the optimal warping path used to align the target frame N is

37

computed between a subset of the reference sequence and the target sequence up to

the frame (N +K).

In this test, we analyze how the DTW algorithm behaves when providing a frame

alignment in a real-time application. Using as cost function the MSE between

subsampled frames, we vary the allowed latency in the system. Using the online

DTW algorithm, the cost matrix is gradually filled and whenever it includes elements

computed from a new target frame (N + K), a warping path is computed and the

algorithm outputs the best aligned reference frame for the target frame N . Note

that for a zero latency, the path computed is the one shown in a dark gray color in

Fig. 3.2. The results can be compared to the ones shown in Tab. 3.2, by considering

that it represents the case when all information from the target video is available in

the computation of the video alignment, so it is equivalent to the alignment error

with infinite latency.

Fig. 3.3 shows the alignment error obtained when using several values of latency

in the warping computation. The results show that, contrary to what is stated in

[32], the use of latency can reduce the alignment error up to a third of the one

obtained when using only the current target frame. Fig. 3.3 also shows that with a

latency of 50 frames, which corresponds to approximately 20 s, the error becomes

close to the minimum, reaching a value similar to the one in Tab. 3.2. For all cases,

a good trade-off is found when using a latency of around 15 frames, which represents

a delay of approximately 6 s and is not prohibitive for the considered application.

3.4.3 Tests of Robustness

Due to the lack of a larger amount of video samples, since the recording demands

a displacement of people and equipment, and also require prior scheduling of a

recording in an industrial environment, our video database does not have much

content variability. To test the robustness of the DTW algorithm in the alignment

of surveillance videos, we simulated some conditions that can occur in the acquisition

of videos by the DORIS system.

Among the problems that can occur during video acquisition, one of the most

common is a change in the field of view. Since, in this application, a camera is

mounted on a robotic platform hung on a trail with a closed-loop trajectory, the

traction can sometimes make the camera shake or even make the robot slightly

twist around the rail, which can create differences in the camera field of view during

the reference and target recording. To simulate this effect, a random crop was

performed by fixing a window size (proportional to the frame size) and randomly

selecting a window of the given size inside each frame of the reference and target

videos. Although this problem was not so common in the videos acquired using the

38

(a) (b)

(c) (d)

Figure 3.3: Average alignment error (in frames) using as cost function the MSE
between subsampled frames. (a) Video 1. (b) Video 2. (c) Video 3. (d) Video 4.

DORIS system, it occurred quite frequently for videos from the VDAO database.

An example of a frame mismatch from this database can be seen in Fig. 3.4.

Another common problem is a difference in illumination in the videos. Since the

recordings took several hours in the same day and there are regions in the video

that show the external environment, the movement of the sun and clouds can create

differences in the average illumination, regions of shadow, and/or sunlight reflection.

An example of the difference of illumination in videos acquired using the DORIS

system is depicted in Fig. 3.5. To create a variation between the target and reference

illumination, the target frames were processed in order to increase their contrast.

The last problem considered for this test is the noise. During the recordings,

the videos were acquired by a camera and transmitted, via wi-fi, to a receiver that

is always at least 10 m away. However, since there is a lot of electrical machinery

inside the industrial plant, the interference created by these objects can result in a

loss of data packets and frames, and the resulting video often has repeated frames

and reduced quality. In order to assess the algorithm performance when dealing

with this problem, we induced a difference between reference and target frames by

39

compressing every target frame with lower quality.

In Tab. 3.4, the results of the alignment algorithm for one target video after

applying the several deformations in the frames are presented. The results indicate

that among all conditions that can affect the video acquisition, the shaking or twist in

the robot is the main responsible for the loss of performance of the DTW algorithm.

This result is somewhat expected since these deformations can create videos with

little or no content in common between the reference and target videos, so there is

no equivalent information in both videos to be corresponded. However, often this

effect is temporary: it is possible that some frames from the target video do not

have much content in common with the reference frames, due to a difference in the

field of view caused by a shaking or a twist in the robot position, and there is no

synchronism between the videos, but after a while the robot can stop shaking or

enter a straight section of the rail and correct any abnormal twist that occurred

(a)

(b)

Figure 3.4: Example of frame mismatch from the VDAO database [94]. (a) Frame
from a reference video. (b) Equivalent frame in another video with a mismatch.
Due to the movement, the camera was rotated with respect to the first recording.

40

during a curve. Therefore an algorithm should be able to recover the synchronism

when it is available.

Table 3.4: Alignment error (in frames) for several effects applied to the video 1.

Average error (frames)
Original 0.58

Crop (90 % of the frame) 1.46
Crop (70 % of the frame) 2.88
Crop (60 % of the frame) 21.41

Contrast 0.72
Compression 0.97

(a)

(b)

Figure 3.5: Example of the difference of illumination in videos acquired with the
DORIS system. Two videos that were recorded at different times during the same
day, and may present a different light pattern. (a) Frame of a recording where the
lawn is under sunlight. (b) Equivalent frame from another recording where a shadow
covers the lawn.

41

3.5 Analysis Based on the Sensor Data

The sensor data can provide valuable clues to complement the information given by

the video content. However, as can be seen from the results of Tab. 3.2, applying

the DTW algorithm to the whole set of sensor data yielded worse results than any

method that uses solely the video content. A thorough analysis of the sensor data

available in the DORIS system must be performed in order to determine which

sensors can actually contribute to the robot localization and how this information

can be extracted.

The set of sensor data is shown in the Fig. 3.6 for a target video and in Fig. 3.7

for its reference video. An analysis of these plots shows that these sensors have two

distinct behaviors. For most of the sensors (plots (a), (b), (c), (d), (f), (g), (h),

(i) and (l)), the signals are composed of a background noise and some sparse peaks

that, if compared to the model of the rail in Fig. 1.2, appear in positions in which

the robot moves along a curve. The other sensors (plots (j), (k), (m) and (n)) create

signals that are more elaborate than only a sequence of peaks followed by noise.

Due to this distinct nature, the sensors were split in two sets (sparse and non-sparse

signals), and experiments were performed in each set. Moreover, a visual inspection

revealed two signals that seem to be more influenced by the background noise (plots

(e) and (o)), which represent the acceleration in the x axis and the average current

consumption. These signals were disregarded for these tests, since it is likely that

are not suited for this algorithm.

3.5.1 Alignment of Non-Sparse Signals

The set of sensors that generates non-sparse signals is shown in Figs. 3.8 and 3.9.

For these sensors, the approach of using a DTW algorithm in the whole set of sensors

ensemble, using Eq. (3.4) as cost function, was once again employed.

Fig. 3.10 shows the alignment error for each frame in the target sequence. The

result shows that the DTW algorithm is not able to properly align the signals. This

fact may occur because the signals acquired from these sensors change significantly

for different recordings, and the DTW algorithm is not robust to this effect.

3.5.2 Alignment of Sparse Signals

For the set of sensors producing signals that have sparse peaks added to a background

noise, the DTW algorithm cannot be applied directly. As can be seen from the Figs

3.11 and 3.12, the cost function computed for these signals has a few sparse small

regions of local minima in the cost matrix. This behavior is caused by the fact

that most of the comparisons are made between samples from the reference and

42

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.6: Set of sensors from a target recording. The visual information for each
plot was reduced in order to treat each signal as a generic signal in the set. (a)
Yaw velocity. (b) Roll velocity. (c) Angular velocity - x axis. (d) Angular velocity
- y axis. (e) Acceleration - x axis. (f) Acceleration - y axis. (g) Acceleration - z
axis. (h) Orientation quaternion x. (i) Orientation quaternion y. (j) Orientation
quaternion z. (k) Orientation quaternion w. (l) Roll. (m) Pitch. (n) Yaw. (o)
Average current consumption.

43

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.7: Set of sensors from a reference recording. The visual information for
each plot was reduced in order to treat each signal as a generic signal in the set. (a)
Yaw velocity. (b) Roll velocity. (c) Angular velocity - x axis. (d) Angular velocity
- y axis. (e) Acceleration - x axis. (f) Acceleration - y axis. (g) Acceleration - z
axis. (h) Orientation quaternion x. (i) Orientation quaternion y. (j) Orientation
quaternion z. (k) Orientation quaternion w. (l) Roll. (m) Pitch. (n) Yaw. (o)
Average current consumption.

44

(a) (b)

(c) (d)

Figure 3.8: Set of non-sparse signals from a target recording used in the alignment.
The visual information for each plot was reduced in order to treat each signal as a
generic signal in the set. (a) Orientation quaternion z. (b) Orientation quaternion
w. (c) Pitch. (d) Yaw.

45

(a) (b)

(c) (d)

Figure 3.9: Set of non-sparse signals from a reference recording used in the align-
ment. The visual information for each plot was reduced in order to treat each
signal as a generic signal in the set. (a) Orientation quaternion z. (b) Orientation
quaternion w. (c) Pitch. (d) Yaw.

Figure 3.10: Alignment error (in frames) using the non-sparse sensor ensemble cor-
responding to the run 1. One can see that the algorithm loses track of the correct
alignment in the regions with background noise.

46

target signals that just have background noise. Therefore, not enough information

is provided for the DTW algorithm to properly align the sequences.

(a) (b)

(c) (d)

Figure 3.11: Example of the cost function computation for the sensor that measures
the yaw velocity. (a) Original DTW - The full matrix is computed. (b) Online
DTW - The algorithm fails to detect the region that contain the optimum alignment
between the signals, when compared to Fig. 3.2. (c) Original DTW - Warping path.
(d) Online DTW - Warping path.

For this experiment, a threshold was applied in the reference and the target

signals to extract the interval of samples that contain each peak, which are the

only samples that provide meaningful information to align the signals. Then, the

47

(a) (b)

(c) (d)

Figure 3.12: Example of the cost function computation for the sensor that measures
the acceleration in the y axis. (a) Original DTW - The full matrix is computed. (b)
Online DTW - The algorithm fails to detect the region that contains the optimum
alignment between the signals, when compared to Fig. 3.2. (c) Original DTW -
Warping path. (d) Online DTW - Warping path.

DTW algorithm was applied to the alignment of each peak of target signal to the

equivalent peak of the reference signal.

After an analysis of the signals, it could also be observed that for some signals the

peaks in the reference and target runs can have a significant difference of amplitude.

Therefore, those signals were also disregarded and the tests were performed only

48

in the signals from the sensors shown in Figs. 3.13 and 3.14. The results of the

alignment of the peak regions are presented in Fig. 3.15. The results show that, on

average, the alignment error is smaller than the one seen in Tab. 3.2, when using

the sensor information, and even comparable to the error obtained when using only

the video information.

(a) (b)

(c) (d)

Figure 3.13: Set of sparse signals from a target recording used in the alignment.
The visual information for each plot was reduced in order to treat each signal as a
generic signal in the set. (a) Acceleration - y axis. (b) Acceleration - z axis. (c)
Orientation quaternion x. (d) Roll.

Table 3.5: Alignment error of the peak regions corresponding to the run 1.

Sensor Average error (frames)
Acceleration - y axis 1.27
Acceleration - z axis 0.62

Orientation quaternion x 0.55
Roll 0.49

49

(a) (b)

(c) (d)

Figure 3.14: Set of sparse signals from a reference recording used in the alignment.
The visual information for each plot was reduced in order to treat each signal as a
generic signal in the set. (a) Acceleration - y axis. (b) Acceleration - z axis. (c)
Orientation quaternion x. (d) Roll.

3.6 Summary

This chapter presented a video-based temporal alignment algorithm for surveillance

systems based on a dynamic time-warping approach. The algorithm was tested

with videos acquired in a real application using several metrics to be used as cost

function for the DTW algorithm, which culminated in the choice of the mean square

error between frames. Additional experiments showed conditions that can make the

alignment algorithm fail, and the other available signals were investigated more

deeply in the alignment problem.

The next chapter studies a method that uses video information to reconstruct

the camera trajectory, which can be used to extract various other properties from

videos. For instance, the video alignment can be performed by searching the frames

whose cameras are in a similar position and orientation.

50

(a) (b)

(c) (d)

Figure 3.15: Alignment error (in frames) of the peak regions corresponding to the
run 1. (a) Acceleration - y axis. (b) Acceleration - z axis. (c) Orientation quaternion
x. (d) Roll.

51

Chapter 4

Camera Trajectory Estimation

In applications involving a moving sensor, it may be important to estimate the

actual position of the sensor, which can be used for example to help a robot navigate

through an environment, to synchronize signals, or to identify patterns. In computer

vision, the problem of estimating the position of a moving sensor, as well as a

mapping of the environment, is named the simultaneous localization and mapping

(SLAM) problem.

This chapter investigates an approach that solves the SLAM problem using only

camera information. The studied work, proposed by [5], employs notions of Lie

groups with a graph-based optimization to estimate the trajectory and has shown

significant advances for camera trajectory computation. The videos obtained in

Section 1.2.1 are tested in this algorithm and the results are discussed.

The chapter is organized as follows. Section 4.1 details the SLAM algorithm of

interest. In Section 4.2, some tests are performed using this algorithm for different

databases. The results for the DORIS videos are analyzed and the limitations of

the algorithm are discussed.

4.1 Robust Large Scale Monocular Video SLAM

The work developed in [5] presents an algorithm for the trajectory estimation of a

monocular calibrated camera evolving in a large unknown environment. This work

develops a SLAM algorithm that employs the concept of Lie groups to robustly align

trajectories estimated in multiple submaps. To align a larger number of submaps,

the work proposes a graph-based optimization algorithm, which also employs an

efficient outlier-removal step.

This SLAM algorithm is composed of four main modules, which are depicted in

Fig. 4.1. To reduce the computational complexity and also to ensure that pairs of

frames have a minimum camera displacement between them, a keyframe selection

step is employed. The keyframes are split in submaps and inside each submap the

52

algorithm estimates the camera trajectory along the frames. In order to align all

submaps, three-dimensional similarities between pairs of submaps, which transform

the coordinates of one submap to another, are computed. The recovered submaps

and the 3D similarities between submaps are used in the relative similarity averaging

step, that computes the three-dimensional similarities that take each submap to a

common global coordinate.

For a better understanding of the algorithm, the reader is invited to read Ap-

pendix A, which describes notions of projective geometry, and Appendix B, which

shows theoretical concepts of Lie algebra.

Figure 4.1: Block diagram of the SLAM algorithm proposed in [5].

4.1.1 Keyframe Selection

To perform a keyframe selection, it is necessary to use a fast method that will be

applied in the whole set of frames. Thereby, the algorithm applies a Lucas-Kanade

tracker [95], which detects and tracks Harris points of interest (PoI) [96] in the video

frames. A frame is selected as a keyframe when the Euclidean distance between the

corresponding PoI of the current frame and the previous keyframe is bigger than a

given threshold (which is typically 5% of the image width).

Fig. 4.2 exemplifies the keyframe selection step. The method starts with the

first frame being considered a keyframe. The ensuing frames are tested and only

the one whose content displays a substantial difference with respect to the previous

keyframe, which is represented in the figure as the one where the black circle moves

a minimum amount of pixels, is defined as another keyframe.

4.1.2 Submap Reconstruction

The set of keyframes selected in the previous step is split in clusters of L consecutive

frames with overlap factor of 50% and, for each keyframe, SURF keypoints [97] are

53

Figure 4.2: Example of the keyframe selection step. The sequence of frames is
represented as the dashed parallelograms and the ones considered as keyframes are
displayed with solid lines. Significant difference from the previous keyframe is used
to classify the next keyframe.

computed. For each cluster (or submap), SURF descriptors are matched and used

in the estimation of corresponding points between pairs of keyframes. In order

to increase the number of connections among frames, reducing the occurrence of

incremental errors, this step is performed for all pairs of consecutive frames and also

for some pairs of non-consecutive frames. The epipolar geometry of each of these

pairs of frames is computed through the estimation of the essential matrix [13] using

the five point algorithm [98], combined with a RANSAC algorithm [13] and a bundle

adjustment optimization [45].

Using the essential matrix computed for a pair of frames, one can estimate the

rotation between the camera coordinate systems of each frame of the pair [13], that

is, the relative rotation between the orientation of the camera for each frame. As

a result of this calculation, several relative rotations between frames are estimated.

These relative rotations estimated for all pairs of frames are then employed in the

computation of a global orientation for each frame, in relation to a reference common

to all frames. For this computation, the relative similarity averaging algorithm

described in the following sections can also be employed (which is defined for a

general transformation).

After estimating a global orientation for each frame in the submap, the position

of the camera for each frame still needs to be determined. In order to estimate the

camera pose for each frame, keypoints are tracked among the frames and a linear

programming is employed in the computation of the Known rotation problem [99],

which is described below.

Known rotation problem: For a camera matrix P =
[
R t

]
=

R1 t1

R2 t2

R3 t3

,

54

x =

xy
1

 is an image point with corresponding three-dimensional point X. The

reprojection error is given by:

E(X,R, t) =

∥∥∥∥(x− R1X + t1
R3X + t3

, y − R2X + t2
R3X + t3

)∥∥∥∥2

. (4.1)

For the reprojection error to be less than a given threshold γ, this condition can

be written as:

‖((xR3 −R1)X + xt3 − t1, (yR3 −R2)X + yt3 − t2)‖2 ≤ γ(R3X + t3)2. (4.2)

If R is known, this condition is a convex constraint, and linear programming can

be used to solve simultaneously for t and X.

In Fig. 4.3, one can see an example of the submap reconstruction step. Each

submap in this case is a set of consecutive keyframes which may contain an overlap

with another submap. The camera trajectory for each submap is reconstructed by

solving Eqs. (4.1) and (4.2). The dashed lines highlight the reconstructed trajectory

for the frames that belong to the overlap of two submaps, therefore should represent

the same trajectory. However, each reconstruction uses its own referential, so these

trajectories must be rotated, scaled and translated with respect to each other. The

next steps cope with the alignment of different referentials.

4.1.3 Pairwise Similarity Estimation

After the previous step, for each submap a camera trajectory and a cloud with

triangulated points were estimated. However, the reconstruction for each submap

was made according to a different coordinate system. In order to align all submaps,

a three-dimensional similarity between pairs of submaps must be calculated, which

can be seen as matrices that belong to the Lie group Sim(3):

Sim(3) =

[
sR t

01×3 1

]
, (4.3)

with R ∈ SO(3), t = [t1, t2, t3]T and s ∈ R+.

To reduce the number of similarities to compute, a bag-of-words [100] approach

is applied to three-dimensional SURF descriptors of all submaps to find a unique

descriptor for the whole submap. A similarity is determined for consecutive submaps

and also between each submap and its 10 nearest neighbors using the bag-of-words

descriptor as a metric of distance.

55

(a)

(b)

Figure 4.3: Example of the submap reconstruction step. In this example, each
submap is composed of a sequence of 15 consecutive frames with eight frames of
overlap with the previous and next submaps. For each submap, a reconstruction
of the camera trajectory is computed using Eqs. 4.1 and 4.2. The dashed lines
highlight the reconstructed trajectory for the frames in the overlap of two consecutive
submaps. (a) Submap 1. (b) Submap 2.

56

In order to estimate a similarity between two submaps, SURF descriptors for

each three-dimensional point are obtained by averaging the SURF descriptors of the

image points that generated this triangulated point, and the descriptors are matched

between submaps. A three-point algorithm [101] combined with the RANSAC is

applied to obtain a three-dimensional similarity, which is refined by minimizing the

sum of the position errors weighted by the covariance of each triangulated point.

Finally, considering that this similarity can be modeled as a concentrated Gaus-

sian distribution on the group Sim(3), a covariance for each similarity is also found.

In the end of this step, the algorithm has computed similarities Zij ∈ Sim(3) be-

tween the coordinate system of the submap i and the submap j along with a covari-

ance Σij for these estimates.

Fig. 4.4 exemplifies the pairwise similarity estimation. The frames inside each

submap are used for the triangulation of three-dimensional points. By tracking

triangulated points across different submaps, it is possible to compute a pairwise

similarity transformation between two submaps, which is composed of rotation,

translation and scaling, that aligns the axis for both reconstructions to a same

common axis. The next step takes all relative similarities and maps all axes to a

global reference.

Figure 4.4: Pairwise similarity estimation step. For each submap, keypoints in-
side the frames are tracked and triangulated to three-dimensional points (points
X1,...,XM for submap 1 and Y1,...,YM for submap 2). Using corresponding three-
dimensional points from two submaps, a similarity transformation is computed that
transforms a point represented according to the axis x1,y1,z1 to a point represented
according to the axis x2,y2,z2

57

4.1.4 Relative Similarity Averaging

From the results obtained in the previous subsection, relative similarities Zij that

align the submaps i and j were computed, along with a covariance matrix Σij. In

this step, we need to estimate the global similarities (XiS, XjS), that is, the three-

dimensional similarities between a global reference frame S and each submap. Given

the submaps i and j, one can consider that the similarity Zij that takes from the

submap i to the submap j should be equivalent to going from the submap i to

the reference frame S (using the global similarity XiS), and then going from the

reference frame S to the submap j (using X−1
jS). Considering the existence of noise

in the measurements, represented by the covariance matrix Σij, the following model

is obtained:

Zij = exp∧(biij)XiSX
−1
jS , (4.4)

where biij ∼ NRp(0p×1,Σij) is a white Gaussian noise.

Considering that the measurements Zij are outlier-free, an estimate of the global

similarities XiS and XjS can be obtained by the relative similarity averaging prob-

lem, which minimizes the following cost function:

argmin
{XiS}i∈V

∑
i,j∈E

∥∥log∨ ZijXjSX
−1
iS

∥∥2

Σij
, (4.5)

with ‖‖2
Σ representing the Mahalanobis distance. This equation is similar to a gen-

eralized least squares problem, where one estimates the distance between a model

(XjSX
−1
iS) and the estimate (Zij), pondering by the covariance of the error (Σij).

One can also note the function log∨, which maps the similarities to the Lie algebra,

where the optimization is performed.

If the procedure of selecting pairs of submaps has chosen submaps that do not

have common regions in the scene, a relative similarity computed can represent an

outlier. In this case, the minimization problem represented by Eq. (4.5) can fail to

find the correct global similarities. Thus, an outlier removal algorithm is necessary

to solve the relative similarity averaging problem.

The problem given by Eq. (4.5) can also be seen as the inference problem in a

factor graph G = {V , E}. In this context, each vertex Vi corresponds to a global

similarity measurement XiS and each pairwise factor Eij corresponds to a relative

measurement Zij that links the vertices Vi and Vj. The following subsections describe

an outlier removal algorithm and a relative similarity averaging algorithm that uses

notions of graph optimization.

In Fig. 4.5, one can see an example of the relative similarity averaging step.

Using the relative similarities computed in the previous step, for each submap is

58

computed a similarity transformation that maps its axis to a global referential. The

trajectories found for each submap, that can now described with respect to the same

referential, are merged to define the camera trajectory for the whole input video.

(a)

(b)

Figure 4.5: Example of the relative similarity averaging step. The camera trajectory
is estimated for each submap according to its own referential and contains only a
part of the total trajectory. After computing relative similarities between pairs of
submaps, all referential are mapped to a global one and the parts of the trajectory
are merged to compose the total trajectory of the camera along the whole video. (a)
Camera trajectories for each submap that are combined to form a single one. (b)
Global camera trajectory for the whole video that is a composition of the trajectories
computed for each submap.

4.1.5 Outlier Removal Algorithm

To remove outlier measurements in the SLAM algorithm, it is assumed that every

relative similarities between consecutive submaps are inliers. For the other relative

similarities, the error inside a cycle, which should be small for a measurement to be

considered as an inlier, is tested:

εTP−1ε < tχ2 , (4.6)

59

where ε is the cycle error, P is the covariance associated with this cycle and tχ2 is a

value based on the χ2.

A naive algorithm to test a relative similarity Zkl could be to test the cycle

ZklZl(l−1)Z(l−1)(l−2)...Z(k−1)k, which contains the similarity between the k-th and l-

th submaps (Zkl), and all consecutive similarities from the l-th to k-th submaps

(Zl(l−1)...Z(k−1)k). However, this approach can fail for larger cycles, since it accumu-

lates any small errors in each similarity. Instead of using consecutive measurements

in the cycle, an algorithm proposed in [5] searches for the shortest cycles (in the

sense of minimum number of connections) that contain only inliers. This algorithm

is described in Alg. 8.

Algorithm 8 Algorithm to remove outlier similarity measurements.

Input: Relative similarities Zij, covariance matrices Σij, value of tχ2 .
Output: Graph containing only inlier relative similarities.

1: Initialize an empty graph G = {V , E}
2: Add the vertex X1S to V
3: for k ∈ {1, ..., N} do
4: Add the vertex XkS to V
5: Add the factor

{
Z(k−1)k,Σ(k−1)k

}
to E

6: for l ∈ {1, ..., k} do
7: Find the shortest path from XkS to XlS in G
8: Compute the cycle error ε and covariance P
9: if εTP−1ε < tχ2 then

10: Add the factor {Zlk,Σlk} to E
11: end if
12: end for
13: end for

4.1.6 Large-Scale Relative Similarity Averaging

An efficient algorithm to estimate a large number of similarities was also proposed

in [5]. This method splits the original graph into NS subgraphs of maximum size n

and creates a supergraph that links all subgraphs. For each iteration, it alternates

between solving the problem locally for each subgraph and computing messages sent

from other subgraphs by building and solving a supergraph. A block diagram of this

method is shown in Fig. 4.6.

Graph partitioning

In this step, the graph is split into NS subgraphs with a maximum size n. This par-

tition considers the temporal order of the vertices, so that the subgraphs are always

composed of n consecutive subgraphs X(k+1)S...(k+n)S. The removed measurements

are given the names of inter-measurements and in their locations are placed factors

60

Figure 4.6: Block diagram of the large scale relative similarity averaging algorithm.

ZiRk
, which are considered a message that connects this subgraph with the other

subgraphs. Note that since each subgraph is processed independently, each one has

its own reference Rk. The messages ZiRk
will be responsible for linking all references

to a common global reference. Fig. 4.7 shows an example of an original graph that

is partitioned into 3 subgraphs of maximum size 3.

Message initialization

Each message ZiRk
is initialized with the identity matrix, which represents the iden-

tity element of the group of similarities Sim(3), and its covariance matrix Σi
iRk

is initialized with infinite covariance, to indicate that there is no certainty in the

current value. Through the course of the algorithm, these values are iteratively

updated.

Subgraphs optimization

For each subgraph Gk = {Vk, Ek} an estimative of the global similarities {XiRk
}i∈Vk

that relate each submap i to the subgraph reference Rk is found by using a Gauss-

Newton algorithm [102]:

61

(a)

(b)

Figure 4.7: Example of the graph partitioning. (a) Original graph. The inter-
measurements are marked with green dashed lines. (b) Subgraphs of maximum size
3. The inter-measurements are replaced by the messages marked with red dashed
lines.

argmin
{XiRk

}
i∈Vk

∑
(i,j)∈Ek

∥∥log∨(ZijXjRk
X−1
iRk

)
∥∥2

Σi
ij

+
∑

(i,j)∈Vk

∥∥log∨(ZiRk
X−1
iRk

)
∥∥2

Σi
iRk

. (4.7)

62

In this optimization, the first term was derived from Eq. (4.5). It enforces that

the similarity that takes the submap i to the reference Rk, combined with the

similarity that takes the reference Rk to the submap j, should be similar to the

similarity that relates directly the submaps i and j. The second term uses the

current estimate of the messages ZiRk
. Since this message is an estimate of the

transformation between the submap i and the reference Rk, which is exactly the

transformation the algorithm wants to estimate for XiRk
, this term enforces that

ZiRk
and XiRk

should be similar. The covariances {P i
iRk
}i∈Vk associated with the

global similarities {XiRk
}i∈Vk are estimated by a Laplace approximation.

Supergraph building

After each subgraph has been solved, the algorithm builds a supergraph

GSUPER = {VSUPER, ESUPER} using the inter-measurements and the global similar-

ities {XiRk
}i∈Vk . This supergraph is used to estimate transformations that take

each reference frame of each subgraph to a global reference frame, which are called

super-measurements. Each inter-measurements Zij with covariance Σi
ij defines a

super-measurement by the following equations:

ZRkRl
= X−1

iRk
ZijXjRl

, (4.8)

where it is considered that the transformation from Rk to Rl is equivalent to the

combination of the transformations from Rk to i (X−1
iRk

), from i to j (Zij), and then

from j to Rl (XjRl
), and

ΣRk
RkRl

= AdG(X−1
iRk

)(P i
iRK

+ Σi
ij + AdG(Zij)P

j
jRl
AdG(Zij)

T)AdG(X−1
iRk

)T (4.9)

is the associated covariance.

If multiple inter-measurements Zij connect the same nodes in each pair of sub-

graphs, an average of the results is used as the super-measurement. Fig. 4.8 shows

an example of the supergraph built using the subgraphs of Fig. 4.7.

Figure 4.8: Example of a supergraph that connects the subgraphs in Fig. 4.7.

63

Supergraph optimization

To solve the supergraph, this algorithm is applied recursively, considering that the

supergraph is a new graph input. The algorithm should be recursively called using

smaller supergraphs as inputs until it can find only one subgraph, when it returns

the results to a previous iteration.

Similarities computation

The quantities of interest({XiS}i∈V) with covariance {P i
iS}i∈V are the global simi-

larities between the nodes of the original graph and a global reference S. At this

point, it was estimated how to represent the submap i with respect to the reference

Rk (using XiRk
), and how to map the reference Rk to the global reference S (using

XRkS). Therefore, the global similarities {XiS}i∈V can be obtained by:

XiS = XiRk
XRkS, (4.10)

with covariance

P i
iS = P i

iRk
+ AdG(XiRk

)PRk
RkS

AdG(XiRk
)T . (4.11)

Once all quantities are computed, one can estimate the cost function given by

Eq. (4.5). This cost function is used as a stop condition to the algorithm: If the

cost is higher than the one found in a previous iteration, the algorithm exits, oth-

erwise, the messages ZiRk
, which in the first steps were initialized with ZiRk

= Id

and Σi
iRk

=∞, are updated and the algorithm returns to the subgraph optimization

step.

Messages computation

If the algorithm decides that the error is still decreasing, the messages ZiRk
are

updated and the algorithm continues the loop. For each inter-measurement Zij the

message ZiRk
is updated using the previously estimated similarities, using the path

from i to j, from j to Rl, from Rl to S, and then from S to Rk:

ZiRk
= ZijXjRl

XRlSX
−1
RkS

, (4.12)

associated to the covariance

Σi
iRk

= AdG(Zij)
[
P j
jRl

+ AdG(XjRl
)
{
PRl
RlS

+AdG(XRlSX
−1)PRk

RkS
AdG(XRlSX

−1
RkS

)T
}

AdG(XjRl
)T
]
AdG(Zij)

T + Σi
ij

. (4.13)

64

4.2 Experimental Results

To test the SLAM algorithm, several databases were used in order to reproduce

the results seen in [5]. An initial experiment was performed in a demo video that

employed a camera moving in a circular trajectory. Some frames from this video

can be seen in Fig. 4.9. After applying the SLAM algorithm, it is expected that

the method can estimate a circular-shaped trajectory for the camera, but without

recovering correct scale of the scene. In Fig. 4.10, one can see the results of the SLAM

algorithm for this video, which shows that the algorithm can correctly estimate a

circular trajectory for the camera.

(a) (b)

(c) (d)

Figure 4.9: Example of a video with a circular camera trajectory. The figures from
(a) to (d) represent the progression of the video.

Figure 4.10: Circular trajectory estimated by the SLAM algorithm.

65

Another experiment was performed using videos from the KITTI database [103],

which is composed of videos acquired using an autonomous driving car moving

along a road. This database also employs a laser scanner and a GPS to provide an

accurate ground truth for the camera position. Some examples of frames from this

database are shown in Fig. 4.11. The SLAM algorithm was tested in some videos

from this database, and the results were compared to the camera positions provided

by the ground truth. Figs. 4.12 and 4.13 show the camera trajectory estimated

for two different videos by the SLAM algorithm and the ground truth. For these

videos, even though the camera moves along a trajectory more complex than the last

experiment, with several curves for both sides, the algorithm can correctly estimate

a trajectory for the camera that has the same shape as the ground truth, but with

different scale, rotation and position (therefore there is a similarity transformation

that aligns the two trajectories and makes them similar).

4.2.1 Tests with DORIS Videos

Another experiment was performed using the SLAM algorithm in the DORIS videos

described in Section 1.2.1, containing a complete round on the rail. The parameters

were the same used in the previous test. Several problems intrinsic to this application

made the SLAM algorithm unable to execute all steps and estimate a trajectory.

After analyzing the videos and the partial results, it was discovered that for

certain regions of the videos, when the camera passes near a pillar, the algorithm

consistently loses track of the trajectory. The causes for this issue are twofold.

As can be seen from the example shown in Fig. 4.14, these frames have a flat

surface that occupies most of the frame. For the regions near the pillar, the SURF

algorithm is not able to detect a sufficient number of keypoints, and the descriptor for

each keypoint is not distinctive since the image does not have a diversified content.

In addition, for these regions, other characteristics such as the lighting condition,

the compression noise, or even a small disturbance of the camera become prominent

and may lead to an erroneous displacement estimation [104, 105].

Hence, even if the algorithm finds a sufficient number of keypoints, the detected

keypoints are not representative to describe the scene content. Consequently the

procedure of finding corresponding points, computing the epipolar geometry and

estimating the camera displacements (see Section 4.1.2) becomes unreliable. Also,

some assumptions, such as the one that states that consecutive relative measure-

ments are always inliers (see Section 4.1.5), can not be satisfied.

When trying to estimate the trajectory for the complete round, it is also not

possible to ignore the regions with pillars and bypass the computation of the camera

trajectory for these frames, for example, interpolating the displacement obtained

66

(a)

(b)

(c)

(d)

Figure 4.11: Frames of the video 2 in the KITTI odometry dataset. (a) Frame 30.
(b) Frame 50. (c) Frame 1000. (d) Frame 4660.

67

(a)

(b)

Figure 4.12: Camera trajectory for the video 2 in the KITTI odometry dataset. (a)
Ground truth. (b) Result of the SLAM algorithm.

68

(a)

(b)

Figure 4.13: Camera trajectory for the video 5 in the KITTI odometry dataset. (a)
Ground truth. (b) Result of the SLAM algorithm.

69

(a)

(b)

Figure 4.14: Example of frames from the DORIS videos with a flat surface occupying
a significant portion of the frame. (a) Frame 7400. (b) Frame 12570.

70

using a frame before and a frame after the pillar. As can be seen from Fig. 4.15, the

pillars may be so wide that there is almost no overlap in the scene before and after

it, which makes the estimation of the camera trajectory unfeasible [106].

In a second experiment, each video sequence was split into several smaller se-

quences, removing the parts of the videos that are near a pillar. It was also decided

to use only sequences where the camera performs simpler movements. Two types of

video excerpt were tested: pieces of the video with curves in the rail, but the camera

movement is entirely contained in the horizontal plane, and pieces of the video in

which the camera moves in a straight section of the rail.

For this experiment, the algorithm is able to execute all its steps but still provides

a result that does not match the expected trajectory, as shown in Fig. 4.17. Several

causes were identified as being responsible for this problem.

Even with the removal of the regions with pillars, several other textureless objects

may occupy a large portion of the frames, due to the presence of large machinery in

the industrial environment, which, as previously mentioned, deteriorates the results.

Examples of the textureless objects contained in the scene can be seen in Fig. 4.16.

Another characteristic from the DORIS videos is that they often have objects

closer to the cameras when compared to the videos from the KITTI dataset. These

objects create larger regions with occlusion of the background, which increases the

number of outliers in the correspondences between keypoints.

A further analysis revealed another problem on the DORIS videos that can make

the SLAM algorithm fail, which is related to the type of movement performed by

the camera. In these videos, the camera moves along a direction that is perpendic-

ular to the orientation of the camera, contrary, for example, to the videos in the

KITTI dataset, which have the camera pointed to the front of a car. In this case,

the viewpoints disappear much faster in the videos, which reduces the field of view

in common between several views. Consequently, it becomes harder to create con-

nections between frames, the algorithm identifies fewer loop closures and provides

less robust results.

For the sake of comparison, it was discussed in Section 4.1 that the frames must

have a minimum camera displacement between them, and it was defined a step

to select keyframes that present a displacement of around 5% of the image width.

Therefore, one could expect that, if an object enters the camera field of view in the

left of the image, and moves to the right until it vanishes (or the other way around),

it should appear in around 20 keyframes. For the KITTY videos, during a curve, the

objects that are closest to the camera and go through the entire camera field of view

appear in around 40 frames, or 4 s of the video. In the DORIS videos, however, the

turns are much faster. An object close to the camera appears in at most 20 frames,

or 2 s of the video.

71

(a)

(b)

Figure 4.15: Example of frames from the DORIS videos showing the lack of overlap in
the scenes before and after a pillar. (a) Frame obtained to the left of the pillar shown
in Fig. 4.14(a). (b) Frame obtained to the right of the pillar shown in Fig. 4.14(a).

72

(a)

(b)

Figure 4.16: Example of frames from the DORIS videos containing large textureless
objects. (a) Object in a sequence with curves in the rail. (b) Object in a sequence
on a straight section of the rail.

73

(a) (b)

(c) (d)

Figure 4.17: Camera trajectory for some excerpts of the DORIS videos. (a) Result
for the u-shaped region of the rail. (b) Result for the straight section of the rail. (c)
Ground truth of the U-shaped region of the rail (marked in red). (d) Ground truth
of the straight section of the rail (marked in red).

4.3 Summary

This chapter described an approach to perform the estimation of the camera tra-

jectory and mapping of an environment for videos acquired with a moving camera.

The algorithm was tested in several databases with results similar to the ground

truth.

However, when testing with the DORIS videos, is was observed that the al-

gorithm was not able to operate properly. A discussion was made about several

conditions that provide a challenge for the SLAM algorithms and how they appear

in the DORIS videos. It should be concluded that the DORIS videos present a new

challenging scenario with several restrictions for the SLAM algorithm, and it should

be adopted as another benchmark to foster the development of more robust SLAM

algorithms.

The next chapter describes some advances in the computation of the optical

flow, and applies the optical flow algorithm to perform a spatial alignment of two

frames from the DORIS system. Some concepts of the operation on the matrix space

performed by this algorithm are also carried out to the next chapter.

74

Chapter 5

Video Spatial Alignment Using

Optical Flow

The previous chapters dealt with the temporal alignment or synchronization of video

sequences. However, due to differences in the sampling rate or difficulties in the ac-

quisition, the synchronized frames can still be significantly different from each other.

In some applications, it is also necessary to include a step to perform the spatial

alignment of the frames. An approach that detects video anomalies [1] performs this

step by computing a simple homography transformation [13] between the frames,

which is a transformation that maps one plane into another plane. However, if the

scene contains a wide range of depths it cannot be approximated as being contained

on a single plane, therefore this transformation is likely to fail. In order to perform

this alignment, one can consider instead the computation of the optical flow, which

estimates the apparent motion field between the images and represents a generic

translation computed independently for each pixel or region.

The study of motion fields in image sequences is a relevant topic in computer

vision since the movement of objects provides important characteristics which allow

a different level of data analysis. The applications that can benefit from this study

are various: for surveillance it makes possible the detection of moving objects in a

steady background, besides providing information on the motion that may be used

on the objects tracking; in meteorology it allows the interpretation of clouds and

detection of climatic phenomena; for video compression it gives means to reduce

data storage and transmission of frames by estimating it using its optical flow and

a close frame. However, it is important to bear in mind that the real motion field of

the objects, in general, is unknown and must be estimated from projections of the

objects in the images.

Optical flow consists of the calculation of the apparent motion of the image pixels.

Using two images, the goal is to calculate a field of two-dimensional vectors that

register the movement of points from one image to the other. For such calculation,

75

an algorithm of optical flow must be able to overcome a few obstacles that can

arise in real videos, such as outliers from the discontinuities or occlusions, different

lighting conditions and regions large motions between images.

Among the optical flow methods, an approach less developed in the literature is

the representation of images where the content for each pixel is a feature instead of

a luminance value, like those defined inside the context of a Riemannian manifold.

This kind of representation allows a better generalization of the image space, en-

abling it to be represented with a non-Euclidian geometry. An example for the use

of images inserted in a Riemannian manifold is given by the eigenfaces, in which the

Euclidian distance between pixels from an image is not the best way to represent

the distance between two faces. Thus, if one maps the image space to some specific

feature space, it is possible that an algorithm is able to better represent the image

content.

This chapter studies several data structures and image descriptors in the context

of the optical flow estimation. These required the development of an algorithm

that handles matrix data. The optical flow algorithm is extended to operate on

images where each pixel contains a tensor that belongs to a Riemannian manifold.

The algorithms were tested in a benchmark for evaluation of optical flow. Finally,

tests using videos from the DORIS system depicted in Section 1.2.1 and the VDAO

database described in Section 1.2.2 were also performed.

This chapter is organized as follows. Section 5.1 details the basics of the optical

flow computation. Section 5.2 depicts several techniques that extract complex prop-

erties from the set of pixels, defining a tensor or a descriptor for each pixel, which

can provide more information than just the gray level of the pixels, and can be

used in the optical flow estimation. Since some studied techniques map the original

images to tensor-valued images, Section 5.3 shows an extension of the optical flow

algorithms able to operate such spaces. Section 5.4 shows several results for the

developed algorithms for an optical flow database, and also some results for videos

from the surveillance system application described in Section 1.2.1 and the database

described in Section 1.2.2.

5.1 Optical Flow Estimation

Given two images I1 and I2 of size M ×N , the optical flow searches for the vector

fields u and v that makes one image match the other, that is, for the discrete case:

I1(i, j) = I2(i+ u(i, j), j + v(i, j)), (5.1)

76

where u(i, j) and v(i, j) are respectively elements of u and v. In the following

sections, two optical flow algorithms are derived. First, a modern version of the

Horn and Schunk method [49], using quadratic functions, is defined. Then, several

algorithms that were based on the Horn and Schunk method are discussed and a

generic algorithm is shown.

5.1.1 Horn and Schunck Method

The first successful optical flow method [49] consists in the estimation of the motion

field based on the intensity values of the image pixels. The estimation of u and v

can be made with the following optimization procedure:

(û, v̂) = arg min
u,v

∑
i,j

ED(i, j) + λES(i, j)

= arg min
u,v

∑
i,j

ρD(I1(i, j)− I2(i+ u(i, j), j + v(i, j)))+

λ[ρS(u(i, j)− u(i+ 1, j)) + ρS(u(i, j)− u(i, j + 1))+

ρS(v(i, j)− v(i+ 1, j)) + ρS(v(i, j)− v(i, j + 1))]. (5.2)

In Eq. (5.2), the term ED(i, j) represents a data term and ρD(x) is a penalty

function. This term is responsible for finding similar regions in the images related

to the vector field. that is, to enforce the validity of the brightness constancy given

by Eq. (5.1). The term ES(i, j), where ρS(x) is also a penalty function, weighted by

a constant λ, represents the spatial or regularization term which is responsible for

finding vectors with spatial consistency, reducing outliers. For the basic optical flow

algorithm proposed in [49], both penalty functions are of the form ρ(x) = x2. This

corresponds to making a Gaussian assumption on the noise, so this method cannot

deal with motion boundaries and occlusions, and is not robust in these cases.

One main issue of Eq. (5.2) is the non-linearity of the image intensities in the

values of u(i, j) and v(i, j). Assuming these displacement values to be small, one

can perform a first order Taylor approximation to linearize the data term:

I2(i+ u(i, j), j + v(i, j)) ≈ I2(i, j) + I2x(i, j)u(i, j) + I2y(i, j)v(i, j), (5.3)

where I2x and I2y represent, respectively, the horizontal and vertical image gradients.

Since a linearization is necessary, the algorithm may fail when the displacement

is too large. A common practice in modern algorithms is to include a warping

strategy, in combination with a course-to-fine estimation. For each iteration, a

current estimate of the motion field is used to create a warped version of the image

I2, and only the flow increment is computed. For this case, the following linearization

77

is performed:

I2(i+ uk(i, j) + du(i, j), j + vk(i, j) + dv(i, j)) ≈ I2(i+ uk(i, j), j + vk(i, j))

+ I2x(i+ uk(i, j), j + vk(i, j))du(i, j)

+ I2y(i+ uk(i, j), j + vk(i, j))dv(i, j), (5.4)

where uk(i, j) and vk(i, j) are the current estimates of the flow and du(i, j) and

dv(i, j) are their increments. The term I2(i + uk(i, j), j + vk(i, j)) represents the

warped version of the image I2, where the pixels (i, j) are displaced by the current

estimates of the flow.

To deal with large motions, the optical flow computation can be performed in

an incremental way by a multiscale approach that uses subsampled versions of each

frame [51, 54]. If one subsamples the two images, the motion field is numerically

smaller, so the linearizations should hold, and they provide a rough estimate to

the true displacement, therefore the flow increment that must be estimated should

also be small. The algorithm creates a pyramid with several levels of subsampling.

During the optimization, the optical flow obtained in a previous iteration, where the

input is a smaller version of the image, is used as an initialization for the algorithm

using a higher resolution.

Since the regularization term compares the flow for each position with the flow

on its neighbors, one can create a linear system to simultaneously optimize this term

for all pixels. For the data term, the following expression is found:∑
i,j

ED(i, j) =
∑
i,j

(I2x(i+ uk(i, j), j + vk(i, j))du(i, j)

+ I2y(i+ du(i, j), j + vk(i, j))dv(i, j) + It(i, j))
2, (5.5)

where It(i, j) = I1(i, j)− I2(i+ uk(i, j), j + vk(i, j)).

For simplicity in the notations, we define I2w(i, j) = I2(i + uk(i, j), j + vk(i, j)),

which is equivalent to assuming that the pixels (i, j) are displaced by the current

flow estimate (uk(i, j), vk(i, j)) creating a warped version (I2w) of the image I2.∑
i,j

ED(i, j) =
∑
i,j

(I2x(i, j)du(i, j) + I2y(i, j)dv(i, j) + It(i, j))
2

=
∑
i,j

(
It(i, j) +

[
I2x(i, j) I2y(i, j)

] [du(i, j)

dv(i, j)

])2

, (5.6)

where I2x(i, j), I2y(i, j) and It(i, j) are computed using the warped image I2w.

In Eq. (5.6), the sum of squares can be transformed into the L2 norm of a vector.

78

Stacking all pixels (i, j) in a single vector, one finds the following equation:

∑
i,j

ED(i, j) =

∥∥∥∥∥b + J

[
du

dv

]∥∥∥∥∥
2

2

, (5.7)

where:

du =


du(1, 1)

...

du(M,N)


T×1

, (5.8)

dv =


dv(1, 1)

...

dv(M,N)


T×1

, (5.9)

b =


It(1, 1)

...

It(M,N)


T×1

, (5.10)

and

J =


I2x(1, 1) 0 I2y(1, 1) 0

.

0 I2x(M,N) 0 I2y(M,N)


T×2T

, (5.11)

with T = MN .

For the regularization term, a similar derivation can be made:

∑
i,j

ES(i, j) =
∑
i,j

(uk(i, j) + du(i, j)− uk(i+ 1, j) + du(i+ 1, j))2

+(uk(i, j) + du(i, j)− uk(i+ 1, j) + du(i, j + 1))2

+(vk(i, j) + dv(i, j)− vk(i+ 1, j) + dv(i+ 1, j))2

(vk(i, j) + dv(i, j)− vk(i+ 1, j) + dv(i, j + 1))2. (5.12)

Given the matrices Fy and Fx such that:

Fyx =


1 −1 0 · · · 0

0 1 −1 0 · · · 0
...

...
...




x(1, 1)
...

x(M,N)

 =


x(1, 1)− x(2, 1)

...

 (5.13)

79

and

Fxx =


1 0 · · · 0 −1 0 · · · 0

0 1 0 · · · 0 −1 0 · · · 0
...

...
...

...




x(1, 1)
...

x(M,N)

 =


x(1, 1)− x(1, 2)

...

 . (5.14)

Stacking all pixels (i, j) in a single vector, the comparison between different

neighbor displacements seen in Eq. (5.12) can be expressed through a product with

the matrices Fy, Fx and the stacked vector. Therefore:

∑
i,j

ES(i, j) = ‖Fyu + Fydu‖2
2 + ‖Fxu + Fxdu‖2

2

+ ‖Fyv + Fydv‖2
2 + ‖Fxv + Fxdv‖2

2 , (5.15)

where:

u =


uk(1, 1)

...

uk(M,N)


T×1

, (5.16)

v =


vk(1, 1)

...

vk(M,N)


T×1

, (5.17)

and du and dv are the same as before.

If one stacks u and v in a single vector, a more concise form can be found:

∑
i,j

Es(i, j) =

∥∥∥∥∥r + F

[
du

dv

]∥∥∥∥∥
2

2

, (5.18)

where

r =


Fyu

Fxu

Fyv

Fxv


4T×1

, (5.19)

F =


Fy 0

Fx 0

0 Fy

0 Fx


4T×2T

. (5.20)

Replacing Eqs. (5.18) and (5.7) in Eq. (5.2), one can consider the data and

regularization terms in a single equation:

80

(dû,dv̂) = arg min
du,dv

‖b + J

[
du

dv

]
‖2

2 + λ‖r + F

[
du

dv

]
‖2

2

= arg min
du,dv

‖g + H

[
du

dv

]
‖2

2, (5.21)

g =

[
b

λr

]
5T×1

, (5.22)

H =

[
J

λF

]
5T×2T

. (5.23)

Finally, after each intermediate iteration, a median filter is applied to the flow

computed, which helps in the removal of outliers [53]. The full method is described

in Alg. 9 and a block diagram is shown in Fig. 5.1.

Algorithm 9 Baseline coarse-to-fine optical flow algorithm.

Input: Image pair oI1 and oI2 of size M × N , regularization parameter λ,
pyramid levels L, pyramid factor η.
Output: Vector fields uk and vk.

1: Initialize uk = 0M/Lη×N/Lη and vk = 0M/Lη×N/Lη
2: for l ∈ {L− 1, ..., 0} do {Loop for the multiscale approach}
3: Downsample the original images oI1 and oI2 by lη to create I1 and I2

4: Upsample the previous flow uk and vk by η
5: Assign uk = ηuk and vk = ηvk

6: for n ∈ {1, ..., Niter} do {Inner loop}
7: Warp I2: I2(i, j) = I2(i+ uk(i, j), j + vk(i, j))
8: Compute I2x, I2y and It

9: Compute g and H from Eqs. (5.22) and (5.23)
10: Use a solver to find the solution of Eq. (5.21)
11: Update the flow uk = uk + du and vk = vk + dv
12: if l 6= 0 then
13: Apply a median filter to uk and vk

14: end if
15: end for
16: end for

5.1.2 General Optical Flow Algorithm

Several approaches propose variations to the method in [49], described in Section

5.1 above. Some works propose different penalty functions, like ρ(x) =
√

(x2 + σ)

[55], ρ(x) = log
(

1 + x2

2σ

)
[54] and ρ(x) = (x2 + ε2)a [50]. For this case, one can

approximate Eq. (5.2) to a quadratic penalty around the current motion, introducing

81

Figure 5.1: Block diagram of the iterative optical flow algorithm.

a weight w(x) that depends on the selected robust function and the current motion,

which is analogous to M-estimator [107] methods:

w(x) =
∂ρ(x)
∂x

x
. (5.24)

Note that for a quadratic function, w(x) = 2. Therefore, the weight is constant

and the problem becomes the one described in Section 5.1.

For the data term, this leads to the following equation:

∑
i,j

ED(i, j) =
∑
i,j

wD(It(i, j))(I2x(i, j)du(i, j) + I2y(i, j)dv(i, j) + It(i, j))
2

=
∑
i,j

wD(It(i, j))(It(i, j) +
[
I2x(i, j) I2y(i, j)

] [du(i, j)

dv(i, j)

]
)2, (5.25)

where wD is computed for each iteration using Eq. (5.24) with the desired robust

function ρD.

Performing the same development seen in the previous section, one finds that

∑
i,j

ED(i, j) =

∥∥∥∥∥b + J

[
du

dv

]∥∥∥∥∥
2

ΩD

, (5.26)

where

‖X‖2
Ω = XTΩX (5.27)

is a Mahalanobis norm and ΩD = diag(wD(b)).

For the regularization, one finds:

82

∑
i,j

Es(i, j) =

∥∥∥∥∥r + F

[
du

dv

]∥∥∥∥∥
2

ΩS

, (5.28)

with ΩS = diag(wS(r)) and wS is obtained using Eq. (5.24) for the desired ρS (which

is often the same as ρD).

Replacing Eqs. (5.26) and (5.28) in Eq. (5.28), the optimization problem be-

comes:

(dû,dv̂) = arg min
du,dv

∥∥∥∥∥g + H

[
du

dv

]∥∥∥∥∥
2

Ω

, (5.29)

with

Ω =

[
ΩD 0

0 ΩS

]
. (5.30)

In order to optimize non-convex functions, a graduated non-convexity scheme

[56] is applied. First, the algorithm estimates the optical flow by using a convex

penalty function. In any following step, the results from the previous step are

used as an initial condition, and the penalty function to be used is a combination

of convex and non-convex functions. In the last step, the algorithm optimizes the

optical flow using only the desired non-convex function. This procedure is equivalent

to minimizing a variant of Eq. (5.29):

(dû,dv̂) = arg min
du,dv

α

∥∥∥∥∥gQ + HQ

[
du

dv

]∥∥∥∥∥
2

ΩQ

+ (1− α)

∥∥∥∥∥g + H

[
du

dv

]∥∥∥∥∥
2

Ω

, (5.31)

where gQ, HQ and ΩQ were obtained using Eqs. (5.22), (5.23) and (5.30) considering

a quadratic robust function. The parameter α controls the importance given to the

quadratic approximation and the desired robust function, and is changed along the

iterations.

Among the more advanced algorithms, one can cite [50], which reviews improve-

ments proposed in decades of algorithmic development and compares them with the

original algorithm. For this approach, the use of median filters [53] can reduce the

number of outliers and is proved to be one of the main responsible for the perfor-

mance gain in the estimation. A different algorithm was proposed, which estimates

u and v and replaces the regularization term ES(u(i, j), v(i, j)) in Eq. (5.2) by:

ES(u(i, j), v(i, j)) =
∑

(i′,j′)∈Ni,j

zi
′,j′

i,j (ρS(û(i, j)− û(i′, j′)) + ρS(v̂(i, j)− v̂(i′, j′))),

(5.32)

83

where Ni,j represents a neighborhood around (i, j) and zi
′,j′

i,j is a weight that con-

trol how much the displacement in the pixel (i′, j′) influences the estimation of the

displacement in the pixel (i, j), and is defined as:

zi
′,j′

i,j ∝ exp

(
−|i− i

′|2 + |j − j′|2

2σ2
1

− |I1(i, j)− I1(i′, j′)|2

2σ2
2nc

)
o(i, j)

o(i′, j′)
, (5.33)

for some constants σ1, σ2, and nc, and o(i, j) represents an occlusion estimation

[108]. This equation means that the regularization gives more weight to pixels close

to each other, to pixels whose value are similar, and to locations where no occlusion

is detected.

It was also shown that performing this regularization can be approximated as

replacing the median filtering step in the optical flow algorithm (see Alg. 9) by

a weighted median, with weights given by Eq. (5.33). The complete algorithm is

described in Alg. 10.

Algorithm 10 Optical flow algorithm with a non-quadratic robust function and a
weighted non-local regularization.

Input: Image pair oI1 and oI2 of size M × N , regularization parameter λ,
pyramid levels L, pyramid factor η.
Output: Vector fields uk and vk.

1: Initialize uk = 0M/Lη×N/Lη and vk = 0M/Lη×N/Lη
2: for α ∈ {1, 0.5, 0} do {Loop for the graduated non-convexity approach}
3: for l ∈ {L− 1, ..., 0} do {Loop for the multiscale approach}
4: Downsample the original images oI1 and oI2 by lη to create I1 and I2

5: Upsample the previous flow uk and vk by η
6: Assign uk = ηuk and vk = ηvk

7: for n ∈ {1, ..., Niter} do {Inner loop}
8: Warp I2: I2(i, j) = I2(i+ uk(i, j), j + vk(i, j))
9: Compute I2x, I2y and It

10: Compute g, H and Ω from Eqs. (5.22), (5.23) and (5.30)
11: Compute gQ, HQ and ΩQ from Eq. (5.31)
12: Use a solver to find the solution of Eq. (5.31)
13: Update the flow uk = uk + du and vk = vk + dv
14: if l 6= 0 then
15: Compute the weights zi

′,j′

i,j defined in Eq. (5.33)

16: Apply a weighted median filter to uk and vk using the weights zi
′,j′

i,j

17: end if
18: end for
19: end for
20: end for

84

5.2 Advanced Data Terms

Several data representation techniques were considered for this study. In [109], it

is proposed a tensorial representation of images in the HSL color space in order to

enable the use of tensor theory in color dissimilarity computation. Another case

studied is the structure tensor [110], which is a widely used matrix that summarizes

local structure information derived from the image gradients. Finally, an image

descriptor similar to the one proposed in [62] was also tested, since it is robust to

illumination changes and is defined by a set of oriented gradients that are more

general than the ones used for the structure tensor computation.

5.2.1 Color Tensor

The work of Rittner et al. [109] proposes a two-dimensional second-order tensor

derived from the hue, saturation and luminance (HSL)color space. More specifi-

cally, if the tensor is symmetric, the eigenvalues are real and the eigenvectors are

perpendicular [111]. Due to this property, this tensor can be univocally described

by an ellipse. The eigenvectors of the tensor can be associated to the orientation

of the ellipse, and the eigenvalues can be combined to define eccentricity and trace

(also called sum) of the ellipse.

Those three properties (orientation, eccentricity, and trace) can intuitively be

associated to colors in the HSL space. The hue, which has orientation information,

defines the ellipse orientation. The saturation, which keeps information of the ratio

of colors to determine the purity of a given color, can be associated with the eccen-

tricity. The lightness, which defines the amount of brightness or energy in the color,

has an association to the trace.

Alg. 11 defines the maps between RGB and HSL color spaces. Based on the

relation between the HSL colors and the desired properties of the tensor, Alg. 12

defines the map from an RGB value to the color tensor.

Examples

For grayscale images, the 3 RGB channels are equal, so the pixel value is[
C C C

]
. This color is represented in the HSL space as

[
0 0 C

]
and is mapped

to the tensorial space as: 
θ = 0

λ1 = λ2 = C/2

R =

[
C/2 0

0 C/2

] . (5.34)

A visualization of the equivalent tensors for several grayscale values can be seen

in Fig 5.2.

85

Algorithm 11 Color map from RGB to HSL.

Input: RGB value (R,G,B ∈ [0, 1]).
Output: HSL value (H,S, L ∈ [0, 1]).

1: Compute Cmax = max(R,G,B)
2: Compute Cmin = min(R,G,B)
3: Compute ∆ = Cmax − Cmin
4: Hue calculation:

H =


0, ∆ = 0

1
6
(G−B

∆
), Cmax = R,G > B

1
6
(B−R

∆
+ 2), Cmax = G

1
6
(R−G

∆
+ 4), Cmax = B

1
6
(G−B

∆
+ 6), Cmax = R,G < B

5: Lightness calculation:
L = (Cmax + Cmin)/2

6: Saturation calculation:

S =

{
0, ∆ = 0
∆

1−|2L−1| , ∆ 6= 0

Algorithm 12 Map from the RGB color space to the color tensor of [109].

Input: RGB value (R,G,B ∈ [0, 1]).
Output: Color tensor R (R ∈ R2×2).

1: Convert to the HSL space using Alg. 11
2: Compute θ = πH
3: Compute λ1 = L

2−S
4: Compute λ2 = L(1−S)

2−S
5: Compute:

V =

[
cos θ sin θ
− sin θ cos θ

]
6: Compute:

D =

[
λ1 0
0 λ2

]
7: Compute the color tensor:

R = VDVT

86

Figure 5.2: Visualization of the tensorial representation [109] for several grayscale
values. The tensor for each pixel is represented as an ellipse whose axes correspond
to the two eigenvectors and the radius are given by the two eigenvalues.

An image that contains values for the red, blue, and green colors covering the

range 0 · · · 255 is seen in Fig. 5.3. The corresponding tensorial representation is

given by Fig. 5.4.

Figure 5.3: Example of color image obtained with the concatenation of four linear
images. For each quadrant, R and G varies linearly in the range 0 · · · 255. The
image in the top left has B = 0, the one in the top right has B = 170, the bottom
left image has B = 85 and the bottom right image has B = 255

Based on Figs. 5.2 and 5.3, one can conclude that for values close to grayscale,

the tensor has a structure that is almost isotropic (the ellipses are close to circles).

The tensor for each pixel is represented as an ellipse whose axes correspond to the

two eigenvectors and the radius are given by the two eigenvalues. Since for this

range of values the hue component, which represents the dominant color, is not well

defined, this isotropic behavior is desired since it means that for any orientation,

which is defined by the hue, the resulting ellipse is almost the same.

87

Figure 5.4: Visualization of the tensorial representation [109] corresponding to
Fig. 5.3. The tensor for each pixel is represented as an ellipse whose axes corre-
spond to the two eigenvectors and the radius are given by the two eigenvalues.

However, this representation has the disadvantage that it can create tensors with

null eigenvalues (one null eigenvalue if the saturation S is 1 or two null eigenvalues

if the lightness L is 0), which makes it unfit to be used with any operation of

matrix inversion. In addition, one can also see a fast transition in the tensor space

when a color has a saturation close to one, which can be seen in the borders of

the images. This behavior may create discontinuities, which makes the optical flow

algorithm more prone to errors due to the linearizations and estimation of derivatives

performed in the algorithm.

88

5.2.2 Proposed Color tensor

In order to prevent the equivalent color tensor from ever having null eigenvalues,

the previous map was altered. First, a small offset ε was included to prevent a null

eigenvalue in the cases of a lightness L close to 0. Then, we also define the map

using a correction value M in place of the saturation, to handle some discontinuities

in the extremum values (saturation close to 0 and 1). Finally, a constant K was

included to prevent the cases where a value of M creates a null eigenvalue. The

proposed map is defined in Alg. 13.

Algorithm 13 Map from the RGB color space to the proposed color tensor.

Input: RGB value (R,G,B ∈ [0, 1]).
Output: Color tensor R (R ∈ R2×2).

1: Convert to the HSL space using Alg. 11
2: Compute M = KL(1− L)S, 0 < K < 4
3: Compute θ = πH
4: Compute λ1 = L+ε

2−M
5: Compute λ2 = (L+ε)(1−M)

2−M
6: Compute:

V =

[
cos θ sin θ
− sin θ cos θ

]
7: Compute:

D =

[
λ1 0
0 λ2

]
8: Compute the color tensor:

R = VDVT

Examples

Examples for the tensorial representation of grayscale and color images can be

seen, respectively, in Figs. 5.5 and 5.6. The proposed map keeps the same advantages

of the previous one, but also circumvents the cases where a tensor with a null

eigenvalue could be created.

Figure 5.5: Visualization of the proposed tensorial representation for several
grayscale values. The tensor for each pixel is represented as an ellipse whose axes
correspond to the two eigenvectors and the radius are given by the two eigenvalues.

89

Figure 5.6: Visualization of the proposed tensorial representation corresponding to
Fig. 5.3. The tensor for each pixel is represented as an ellipse whose axes correspond
to the two eigenvectors and the radius are given by the two eigenvalues.

5.2.3 Structure Tensor

Image structure tensor is a matrix that contains information about the local statistics

of the first-order intensity distribution. It is defined as:

S(i, j) =

[
[W ∗ I2

x](i, j) [W ∗ IxIy](i, j)
[W ∗ IxIy](i, j) [W ∗ I2

y](i, j)

]
, (5.35)

where W is a smoothing window and ∗ is a two-dimensional convolution.

The advantage of this representation is that it is able to identify simple geo-

metrical structures, based on the eigenvalues λ1 and λ2, which also provides an

interpretation of the matrix as an ellipse. Edges and dominant orientations are de-

noted by the cases where λ1 � λ2, which have a physical interpretation as ellipses

90

with high eccentricity, and the dominant orientation is associated to the eigenvec-

tor corresponding to λ1. Corners are identified by the regions with λ1, λ2 � 0

and λ1 ≈ λ2, that is, when the ellipses are close to isotropic and sufficiently large.

Smooth or untextured regions appear when λ1, λ2 ≈ 0.

In Fig. 5.7, a patch of the Venus image contained in the Middlebury [112] training

dataset (see Section 5.4.1) is highlighted. It contains flat regions and edges in

different orientations. Fig. 5.8 shows the corresponding image where each pixel is

replaced by its structure tensor. Each tensor is represented as an ellipse whose axes

correspond to the two eigenvectors and the radii are given by the two eigenvalues.

One should notice that the ellipses tend to be thinner in the borders, where the

gradients have a similar orientation.

Figure 5.7: Patch from the image Venus in the Middlebury [112] training dataset
(see Section 5.4.1).

5.2.4 ROF-NND Image Descriptor

An image descriptor that presents several illumination invariances was described in

[62]. It divides the image in patches and defines a set of displacements based on the

patch size. Each component of the k-th image descriptor for each pixel x is defined

as:

CPk
(i, j) =

∑
i′,j′∈W

(I(i′, j′)− I(i′ + ik, j
′ + jk))

2, (5.36)

which represents a comparison between the patch W centered on (i, j), the current

pixel, and the patch Pk centered on (i+ik, j+jk). The different patches Pk represent

all the patches centered on a pixel contained on W other than (i, j). Therefore, the

number of possible displacements (ik, jk), and consequently the number of compo-

91

Figure 5.8: Visualization of the structure tensor image corresponding to Fig. 5.7.
The tensor for each pixel is represented as an ellipse whose axes correspond to the
two eigenvectors and the radii are given by the two eigenvalues.

nents for this descriptor, is given by the amount of pixels inside W minus one (for

example, for 3× 3 patches a descriptor with eight components is created, with dis-

placements (ik, jk) ∈ [(−1, 1), (0, 1), (1, 1), (−1, 0), (1, 0), (−1,−1), (0,−1), (1,−1)]).

This procedure is exemplified in Fig. 5.9.

Figure 5.9: Image descriptor as described in [62]. A patch W is centered in each
pixel, and compared to the patches Pk.

One should notice that each descriptor represents information analogous to a

directional gradient. The comparison tends to yield a higher value for CPk
if, in the

direction pointed by (ik, jk), there is a higher intensity variation. If the patches are

similar, there is almost no variation in the direction of (ik, jk) and CPk
has a lower

value.

In order to make this descriptor robust to illumination changes, a normalization

92

is applied and the descriptor is mapped as

C ′Pk
(i, j) = exp

(
−CPk

(i, j)

σ2
x(i, j)

)
, (5.37)

where σx is a measure of the local variation defined as the mean of the descriptors

computed with a displacement of one pixel in the horizontal and vertical directions,

that is

σ2
x(i, j) =

1

4

4∑
k=1

CPk
(i, j) =

1

4

4∑
k=1

∑
i′,j′∈W

(I(i′, j′)− I(i′ + ik, j
′ + jk))

2. (5.38)

In Fig. 5.10 two descriptors obtained from Fig. 5.7 are shown. One can see that

each component keeps a different piece of information with respect to the image

intensity variation in different directions.

(a) (b)

Figure 5.10: Visualization of two components of the descriptor image corresponding
to Fig. 5.7. One can see that each component highlights different information in the
image.

5.2.5 Proposed Image Descriptor

A few modifications were proposed in order to reduce the dimensionality, to adapt

to the tensorial framework, and to improve its performance. From Fig. 5.9 and

Eq. (5.37), one can see that there is a redundancy in the computation of the de-

scriptors. The result of Eq. (5.37) for a patch W centered on (i, j) and a patch

CPk
obtained with a displacement of (ik, jk) is the same as the result obtained for a

patch W centered on (i+ ik, j + jk) and a patch CPw obtained with a displacement

of (iw, jw) = (−ik,−jk). We reduce to half the number of descriptors by merging

the redundant descriptors as

ĈPk
=
CPk

+ CPN/2+k

2
. (5.39)

93

We also extend this definition to define an SPD matrix similar to a structure

tensor. One can see a similarity between Eq. (5.36) and Eq. (5.35), with the sum

along the patch acting as the spatial integration given by the convolution with W ,

and the term (I(i′, j′)− I(i′+ ik, j
′+ jk))

2 being similar to the elements I2
x,I2

y in the

structure tensor definition. For this reason, we define a structure tensor based on

this descriptor information as

S(i, j) =


ĈP1(i, j) Ĉ1,2(i, j) Ĉ1,3(i, j) Ĉ1,4(i, j)

Ĉ1,2(i, j) ĈP2(i, j) Ĉ2,3(i, j) Ĉ2,4(i, j)

Ĉ1,3(i, j) Ĉ2,3(i, j) ĈP3(i, j) Ĉ3,4(i, j)

Ĉ1,4(i, j) Ĉ2,4(i, j) Ĉ3,4(i, j) ĈP4(i, j)

 , (5.40)

where Ĉa,b(i, j) is a generalization of Eq. (5.36) to generate the cross-term

Ĉa,b(i, j) =
∑

i′,j′∈W

(I(i′, j′)− I(i′ + ia, j
′ + ja))(I(i′, j′)− I(i′ + ib, j

′ + jb)). (5.41)

For this tensor, we use a different normalization step. Instead of performing the

normalization given by Eq. (5.37) for each component, we compute the structure

tensor and normalize it using the trace such that

Ŝ(i, j) = S(i, j)/trace(S(i, j)). (5.42)

5.3 Optical Flow for Tensor-valued Images

In this section we extend the algorithms shown in Section 5.1.1 to operate on tensor-

valued images, such as the case when the color tensor described in Section 5.2.1 or the

structure tensor described in Section 5.2.3 are used for the optical flow computation.

Considering the case of tensor-valued images R1 and R2, we define the data term

as

ED(i, j) = d2(R2(i, j),R2(i+ uk(i, j) + du(i, j), j + vk(i, j) + dv(i, j)), (5.43)

where d(A,B) is a metric to compute the similarity between two tensors (note

that we are still not considering the use of a non-linear penalty function in the

algorithm). Among the similarity metrics, one can cite the Frobenius norm proposed

in [113, 114]:

d2(i, j) = ‖R1(i, j)−R2(i+ uk + du, j + vk + dv)‖2
F , (5.44)

94

and the Riemannian distance proposed in [115, 116]:

d2(i, j) =
∥∥log(R1

−1(i, j)R2(i+ uk + du, j + vk + dv))
∥∥2

F
. (5.45)

In order to optimize this function, we employ a Gauss-Newton framework. Con-

sidering the function d(i, j, uk, vk, du, dv), for each iteration we find the update du, dv

that minimizes the cost function, which requires the following linearization for the

function d:

d(i, j, uk, vk, du, dv) ≈d(i, j, uk, vk, 0, 0) +
∂

∂du
d(i, j, uk, vk, du, dv)|du=0du

+
∂

∂du
d(i, j, uk, vk, du, dv)|dv=0dv, (5.46)

where the term d(i, j, uk, vk, 0, 0) is equivalent to the term It(i, j) = I1(i, j) −
I2(i + uk(i, j), j + vk(i, j)) in the algorithm described in Section 5.1.1. The term
∂
∂du

d(i, j, uk, vk, du, dv) is similar to the image gradient I2x, and can be estimated

with finite differences, for example, with the following equation (and analogous for

dv and I2y):

∂

∂du
d(i, j,uk, vk, du, dv)|du=0 =

1

2
(d(i+ 1, j, uk, vk, 0, 0)− d(i− 1, j, uk, vk, 0, 0)). (5.47)

The remaining of the algorithm is similar to the ones developed in Section 5.1.1.

If one performs the same development, Eqs. (5.48) and (5.49) are replaced by:

b =


Rt(1, 1)

...

Rt(M,N)


T×1

, (5.48)

and

J =


Rx(1, 1) 0 Ry(1, 1) 0

.

0 Rx(M,N) 0 Ry(M,N)


T×2T

, (5.49)

where

Rt(i, j) = d(i, j, uk, vk, 0, 0), (5.50)

Rx(i, j) =
∂

∂du
d(i, j, uk, vk, du, dv)|du=0, (5.51)

95

and

Ry(i, j) =
∂

∂dv
d(i, j, uk, vk, du, dv)|dv=0. (5.52)

5.4 Experimental Results

The algorithms described in this chapter were tested. For this study, different data

terms were compared. The results obtained with grayscale images, which are com-

mon in the literature, are compared to the ones obtained with the features defined

in Section 5.2.

In addition, a common practice to gain robustness against illumination changes

[52, 53] is to apply a Rudin–Osher–Fatemi (ROF) [117] structure texture decompo-

sition method in the input images, which was also considered in the experiments

that follow. For this decomposition, the structure component is obtained through

an optimization procedure that estimates a denoised version of an image I:

Ŝ = arg min
S
‖∇S‖1 + λ ‖S − I‖2

2 , (5.53)

where Ŝ is the estimated structure component. The texture part is estimated as the

image with the structure removed:

T̂ = I − Ŝ. (5.54)

The pre-processed input image is defined as a linear combination of the texture

and structure components:

Î =
(kT̂ + Ŝ)

k + 1
, (5.55)

where k is defined as 20 according to [53].

5.4.1 Middlebury Dataset

The Middlebury dataset [112] is a widely used dataset to benchmark optical flow

algorithms. It is composed of real videos captured in a controlled environment

containing either a non-rigid motion or sequences adapted from stereo matching

and synthetic images with a realistic scenario. For the real sequences, a hidden

fluorescent texture was painted on the objects, and a tracking of those features

provide ground truth for the motion field. The sequences are divided into two sets,

the training set, for which the ground truth is provided, and the test set, which is

used to create a rank among the methods since the ground truth is hidden. Two

consecutive frames for the sequences from the training set are shown in Figs. 5.11

and 5.12. For these sequences, the motion between consecutive frames is at most

96

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11: Sequences from the Middlebury training dataset - part 1. (a) and (b)
Dimetrodon, frames 10 and 11. (c) and (d) Hydrangea, frames 10 and 11. (e) and
(f) Grove2, frames 10 and 11. (g) and (h) Grove3, frames 10 and 11.

97

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: Sequences from the Middlebury training dataset - part 2. (a) and (b)
Urban2, frames 10 and 11. (c) and (d) Urban3, frames 10 and 11. (e) and (f)
RubberWhale, frames 10 and 11. (g) and (h) Venus, frames 10 and 11.

98

around 20 pixels, which is less than 10% of the image dimensions. However, in order

for the linearization steps of the algorithms to still be valid, a multiscale approach

may be necessary.

Several error metrics are evaluated, with the main ones being the average an-

gular error (AAE) [118] and the average end-point error (EPE) [119]. The average

angular error is computed by measuring for each pixel the angular distance between

the ground truth and the estimated flow, while for the average endpoint error the

Euclidian distance between ground truth and the estimated flow for each pixel is

computed. In both cases, a mean value for the whole image is determined.

This database also defines a color-based coding for visualization of the flow fields.

For each displacement vector, the orientation is assigned to a hue value and the

magnitude is associated with a saturation value, and the corresponding RGB image

is displayed. The ground truth for the motion between frames 10 and 11 of the

sequences displayed in Figs. 5.11 and 5.12 is shown in Fig. 5.13.

5.4.2 Quadratic Formulation

The optical flow algorithm depicted in Alg. 9 was analyzed. It uses a quadratic

function in the data term and regularization term, being closer to the original for-

mulation of Horn and Schunk.

For each case, the algorithms were tested in the Middlebury training sequences

shown in Figs. 5.11 and 5.12 with several values for the regularization parameter λ

(see Eq. (5.2)), and the best result was selected.

In Tab. 5.1, one can see the results for the EPE between the flow obtained

with each method from Sections 5.1, 5.2, 5.3, and the ground truth. The flow

obtained for the sequence Grove2 using the various methods is displayed in Fig.

5.14. The methods based on brightness information, in addition to being simple,

provide slightly better results than the other methods, which could be explained by

the fact that they provide a significant amount of information without introducing

further non-linearities.

5.4.3 Robust Function

In this section, the experiments from Section 5.4.2 were performed replacing the

quadratic term by a non-quadratic function in the optical flow algorithm, in this

case, the Charbonier function [55], which is one of the most used penalty functions

in the optical flow computation [50]. For this experiment, Alg. 10 was used (see

Section 5.1.2), however, the weighted median filter (steps 14-17) was removed and

replaced with the simple median filter used in the steps 12-14 of Alg. 9. For this

99

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.13: Ground truth for the sequences from the Middlebury training dataset.
The motion field is coded into an RGB image by mapping, for each pixel, the
orientation of the motion vector for that pixel to the hue of the color, and the
magnitude of the motion vector to the saturation of the color, according to [112].
(a) Dimetrodon. (b) Hydrangea. (c) Grove2. (d) Grove3. (e) Urban2. (f) Urban3.
(g) RubberWhale. (h) Venus.

100

Table 5.1: Average end-point error (EPE) on the Middlebury training dataset for
different data terms and a quadratic penalty function. 1- Dimetrodon. 2- Grove2.
3- Grove3. 4- Hydrangea. 5- RubberWhale. 6- Urban2. 7- Urban3. 8- Venus.

1 2 3 4 5 6 7 8 Average
Brightness

(Section 5.1)
0.24 0.19 0.63 0.26 0.16 0.54 0.73 0.34 0.38

Brightness with
ROF decomposition
(Eqs. (5.53),(5.54)

and (5.55))

0.23 0.20 0.68 0.19 0.12 0.48 0.84 0.34 0.39

Color tensor
(Section 5.2.1)

0.17 0.22 0.70 0.22 0.18 0.66 0.83 0.55 0.44

Proposed
color tensor

(Section 5.2.2)
0.16 0.19 0.64 0.24 0.17 0.44 0.75 0.49 0.39

Structure tensor
(Section 5.2.3)

0.30 0.39 0.94 0.31 0.19 1.27 1.34 0.48 0.65

Image descriptor
(Section 5.2.4)

0.28 0.32 0.81 0.21 0.15 0.60 1.10 0.37 0.48

Proposed
image descriptor
(Section 5.2.5)

0.30 0.30 0.80 0.21 0.16 0.59 0.95 0.40 0.46

Structure Tensor
derived from

image descriptor
(Section 5.2.5)

0.31 0.31 0.82 0.22 0.17 0.58 0.90 0.42 0.46

algorithm, it was also required to configure the parameter λ. To this end, several

values were tested and the best result for each case was selected.

Tab. 5.2 shows the results obtained with the version of the algorithm using the

Charbonnier penalty and the flow obtained for the Grove2 sequence is shown in

Fig. 5.15. One can notice that all methods benefit from having the Charbonnier

penalty, and the results are consistently better than the ones seen in Tab. 5.1. For

this case, the methods based on brightness information yield once again the best

results.

5.4.4 Improved Regularization

This section shows results for the same set of experiments performed in Section 5.4.3,

replacing the median filter used in the steps 12-14 of Alg. 9 by the weighted median

filter (Eq. 5.32), therefore using the improved algorithm defined in Alg. 10. This

should in principle generate an optical flow algorithm capable of handling occlusions

and outliers, due to the robust function, and a regularisation able to simultaneously

adapt the smoothing effect according to the image content, due to the non-local

weighted term, and the flow contrast, due to the robust function.

101

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.14: Example of the optical flow computation for the image Grove2 in the
Middlebury database using a quadratic penalty function. (a) Ground truth. Results
obtained with them methods based on: (b) brightness (c) brightness with ROF
decomposition, (d) color tensor, (e) proposed color tensor, (f) structure tensor, (g)
image descriptor, (h) proposed image descriptor, (i) structure tensor derived from
the image descriptor.

In Tab. 5.3 one can see the results obtained for each method, and an example of

the flow obtained for the sequence Grove2 is shown in Fig. 5.16. For this case, the

methods based on the brightness information are once again better than the other

methods, but now with less intensity. However, they have the drawback of not being

robust to some forms of illumination changes, which will be demonstrated through

in the experiments in the following subsections.

It is also important to notice from the summary in Tab. 5.4 that the proposed

modifications consistently yield slight improvements in relation to the original ones.

For the one based on the color tensor, the proposed modifications reduce the non-

linearities of the color maps, which tends to reduce the errors due to the performed

linearizations. For the one based on image descriptors, the proposed modifications

102

Table 5.2: Average end-point error (EPE) on the Middlebury training dataset for
different data terms using the Charbonnier penalty [55]. 1- Dimetrodon. 2- Grove2.
3- Grove3. 4- Hydrangea. 5- RubberWhale. 6- Urban2. 7- Urban3. 8- Venus.

1 2 3 4 5 6 7 8 Average
Brightness

(Section 5.1)
0.17 0.15 0.58 0.21 0.14 0.36 0.43 0.26 0.29

Brightness with
ROF decomposition
(Eqs. (5.53),(5.54)

and (5.55))

0.15 0.16 0.64 0.16 0.09 0.34 0.55 0.28 0.30

Color tensor
(Section 5.2.1)

0.15 0.17 0.61 0.18 0.13 0.51 0.55 0.45 0.34

Proposed
color tensor

(Section 5.2.2)
0.13 0.15 0.57 0.22 0.14 0.39 0.51 0.36 0.31

Structure tensor
(Section 5.2.3)

0.17 0.28 0.86 0.24 0.14 1.05 1.10 0.40 0.53

Image descriptor
(Section 5.2.4)

0.20 0.27 0.78 0.18 0.12 0.45 0.83 0.28 0.39

Proposed
image descriptor
(Section 5.2.5)

0.21 0.23 0.71 0.17 0.10 0.44 0.74 0.29 0.36

Structure Tensor
derived from

image descriptor
(Section 5.2.5)

0.19 0.25 0.78 0.17 0.12 0.44 0.62 0.29 0.36

reduce the redundancy in the components of the descriptor and provide them with

more information, which tends to improve its results.

5.4.5 Illumination

In order to evaluate the influence of illumination changes, we simulate illumination

changes as proposed in [61, 120]. For each image pair, the intensities from the second

image are transformed as follows:

Î2 = 255m

(
I2

255

)γ
+ a, (5.56)

where the parameter m represents a multiplicative term, the parameter a represents

an additive term, and the parameter γ represents a gamma correction. Fig. 5.17

shows the impact of each of these three perturbations in the final image.

In this experiment, we vary the values of m, a and γ, and test the performance

of the flow estimation. It was noticed that only the information based on the image

descriptor are robust to all three types of illumination changes, and the algorithms

based on the structure tensor and the brightness using ROF decomposition present

103

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.15: Example of the optical flow computation for the image Grove2 in
the Middlebury database using the Charbonnier penalty [55]. (a) Ground truth.
Results obtained with the methods based on: (b) brightness (c) brightness with ROF
decomposition, (d) color tensor, (e) proposed color tensor, (f) structure tensor, (g)
image descriptor, (h) proposed image descriptor, (i) structure tensor derived from
the image descriptor.

robustness to some of the changes. In Figs. 5.18 to 5.20, we omit the results for the

algorithm using brightness information and the color tensor, since they do not show

any robustness to illumination changes.

In Fig. 5.18, one can see the EPE obtained when including an additive term

in one of the images. The methods have shown strong robustness to it, since it is

easier to compensate the difference in the mean values of the images. The method

based on the ROF decomposition starts to fail from a given brightness threshold. As

can be seen from Eqs. (5.53), (5.54) and (5.55), this method decomposes the image

into a component of texture, which only contains high frequency content and should

be immune to the additive term, and a component of structure, which is similar

to a denoised version of the image, and therefore contains the additive term. The

104

Table 5.3: Average end-point error (EPE) on the Middlebury training dataset for
different data terms using the Charbonnier penalty [55] and the improved regulariza-
tion of [50]. 1- Dimetrodon. 2- Grove2. 3- Grove3. 4- Hydrangea. 5- RubberWhale.
6- Urban2. 7- Urban3. 8- Venus.

1 2 3 4 5 6 7 8 Average
Brightness

(Section 5.1)
0.16 0.10 0.40 0.21 0.12 0.23 0.30 0.22 0.22

Brightness with
ROF decomposition
(Eqs. (5.53),(5.54)

and (5.55))

0.13 0.10 0.47 0.15 0.07 0.22 0.38 0.24 0.22

Color tensor
(Section 5.2.1)

0.14 0.12 0.47 0.18 0.12 0.40 0.45 0.47 0.29

Proposed
color tensor

(Section 5.2.2)
0.14 0.13 0.42 0.22 0.14 0.31 0.42 0.43 0.28

Structure tensor
(Section 5.2.3)

0.16 0.24 0.78 0.21 0.13 0.56 0.95 0.35 0.42

Image descriptor
(Section 5.2.4)

0.16 0.20 0.67 0.18 0.10 0.32 0.74 0.24 0.33

Proposed
image descriptor
(Section 5.2.5)

0.16 0.18 0.62 0.17 0.09 0.33 0.58 0.24 0.30

Structure Tensor
derived from

image descriptor
(Section 5.2.5)

0.16 0.18 0.61 0.16 0.10 0.32 0.50 0.24 0.28

image used in the algorithm is a combination of the structure and texture images,

therefore it is still influenced by the additive term, which is the reason why the

algorithm starts to fail for a high value of a. The other methods use information

based on image gradients in the algorithms, therefore it is expected that they should

be immune to this type of illumination changes. The fluctuation in the curves are

caused by the gradients of the image borders.

Fig. 5.19 shows the results when a multiplicative term is applied to one of the

images. For this case, only the descriptor-based methods show EPEs that are robust

to this parameter. This behavior is due to the fact that they include a normalization

step (Eqs. (5.37) and (5.42)), which is responsible for removing the multiplicative

term. The curves for the ROF decomposition and the structure tensor show that

they do not present any robustness to this effect, since the error increases drastically

for any value of m different than 1 (which represents the result shown in Tab. 5.3).

The results obtained with the inclusion of a gamma correction in one of the

images is depicted in Fig. 5.20. Once again, the descriptor-based methods are the

only ones with some level of robustness to this effect. The EPE for the methods

based on the ROF decomposition and the structure tensor increases for values of γ

105

Table 5.4: Average end-point error (EPE) on the Middlebury training dataset sum-
marizing the results from Tabs.5.1, 5.2, and 5.3.

Quadratic
function

Robust
function

Improved
regularization

Brightness
(Section 5.1)

0.38 0.29 0.22

Brightness with
ROF decomposition
(Eqs. (5.53),(5.54)

and (5.55))

0.39 0.30 0.22

Color tensor
(Section 5.2.1)

0.44 0.34 0.29

Proposed
color tensor

(Section 5.2.2)
0.39 0.31 0.28

Structure tensor
(Section 5.2.3)

0.65 0.53 0.42

Image descriptor
(Section 5.2.4)

0.48 0.39 0.33

Proposed
image descriptor
(Section 5.2.5)

0.46 0.36 0.30

Structure Tensor
derived from

image descriptor
(Section 5.2.5)

0.46 0.36 0.28

different than 1 (where the result for γ = 1 is the same as the one shown in Tab. 5.3).

5.4.6 Results on VDAO Database and DORIS Videos

The performance of the studied methods was analyzed in a real application. In the

object detection framework such as the one embedded in the DORIS system (see

Section 1.2.1), it is often necessary to perform a spatial alignment, whether to align

frames from synchronized videos, whether to align frames from the same video.

In this section, we analyze the performance of the optical flow algorithm in the

alignment of synchronized videos. Two possible problems can appear, as described

in Section 3.4.3. The camera can shake between different recordings, creating dif-

ferences in the camera field of view, shown in Fig. 3.4. Another common problem is

the recording at different times of the day, which creates a difference in the illumina-

tion, as seen in Fig. 3.5. This shows the importance of defining illumination-robust

methods.

We assess the optical flow algorithms by using them to align the pairs of images

given by Figs. 3.4 and 3.5. We report results only for the methods that provided the

106

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.16: Example of the optical flow computation for the image Grove2 in the
Middlebury database using the Charbonnier penalty [55] and the improved regu-
larization of [50]. (a) Ground truth. Results obtained with the methods based on:
(b) brightness (c) brightness with ROF decomposition, (d) color tensor, (e) pro-
posed color tensor, (f) structure tensor, (g) image descriptor, (h) proposed image
descriptor, (i) structure tensor derived from the image descriptor.

best results for each approach, that is, we omit the ones based on the original color

tensor and the original image descriptor. However, for these sequences, since there is

no ground truth available, we can only measure the alignment error. After the flow

computation, we warp the second image using the motion field, which compensates

the displacement for each pixel and makes the resulting image similar to the first

image. We perform a qualitative evaluation of the obtained motion field and the

warped image, and them compute the mean square error (MSE) and structural

similarity (SSIM) between the first image and the warped second image, removing

the image borders. These objective metrics are not ideal, since they do not take into

account the influence of occlusions, interpolation errors or difference of illumination,

but can give a hint about the algorithm behavior.

107

(a) (b)

(c) (d)

Figure 5.17: Example of illumination changes applied in the second image of the
Grove2 pair. (a) Original image. (b) Multiplicative term. (c) Additive term. (d)
Gamma correction.

Figure 5.18: EPE for the optical flow algorithms with the inclusion of an additive
term in one of the images.

Fig. 5.21 shows the estimated motion field for the images from the DORIS system

with illumination changes. The flow is coded using the definition given in Subsec-

tion 5.4.1. For this pair of images, there is a small horizontal displacement, therefore

108

Figure 5.19: EPE for the optical flow algorithms with the inclusion of a multiplicative
term in one of the images.

Figure 5.20: EPE for the optical flow algorithms with the inclusion of a gamma
correction in one of the images.

it is expected that the flow for the whole image has the same horizontal orientation

with a magnitude proportional to the scene depth, which translates to this color

coding as a blue image with different levels of saturation.

One can notice that in Figs. 5.21(c)-(f) the estimated flow seems influenced by

the difference of illumination in images. In the region where there is a difference of

illumination in the lawn, the estimated flow has a different orientation (the color

changes to purple or red) and a much higher magnitude (the color is highly saturated

when compared to the pixels outside this region).

109

Comparing the results to the warped images shown in Fig. 5.22, one can conclude

that the algorithm tries to compensate the motion of the shaded region, filling the

lawn with illuminated pixels from outside the lawn. On the other hand, the results

from Figs. 5.21(g) and (h), using the descriptors-based methods, show a motion

that is more coherent, as expected, with little or no influence of the difference in

illumination.

However, for the methods influenced by the illumination pattern, the error be-

tween the first image and the warped second image, shown in Tab. 5.5, is smaller.

Even if they find a wrong displacement, they still create a warped image more similar

to the first image in terms of magnitude.

Fig. 5.23 presents the motion field for the example of the VDAO database that

shows a frame mismatch. In this example, since there is no evident difference in the

lighting conditions, all methods have a similar performance, with the methods based

on the brightness information apparently having a result that seems less corrupted

by noise. The methods based on the structure tensor and the image descriptor,

which use information related to the image gradients, seem to be more prone to

errors in the borders, where the estimation of the image gradients is less precise.

However, one can notice that for the first image in Fig. 5.24(a) there is a small

light source reflecting in pipes in the upper left section, which makes some methods

fail to compute the flow in this region. Only the algorithms based on the image

descriptor seems to be immune to this effect, and the method based on the structure

tensor shows some reduction upon this effect. In Tab. 5.5, one can also see that the

approach based on the structure tensor provides the lowest MSE, which is due to

the fact that in this region with reflection in the upper right, the algorithm fills the

pixels with a gray color that is closer to the light pattern.

Figs. 5.25 and 5.26 show an additional experiment containing frames from the

VDAO database with a pipe partially occluding the scene. All methods completely

fail in the occluded region, which is somewhat expected. The methods based on the

image descriptor seem to be more influenced by the occlusion created by fast moving

objects, since in Figs. 5.26(g) and (h) they fail to represent the moving pipe.

5.5 Summary

This chapter discussed the spatial alignment of images using the optical flow algo-

rithm. The basic composition of the algorithm was presented and several variations

were tested. The results showed that the traditional methods have a better perfor-

mance with images without illumination changes, which is a problem that appears

in the applications studied in this thesis. Modifications to some of the algorithms

were proposed, and the results demonstrate that they provide a small increase in

110

Table 5.5: Alignment error for the examples given in Figs. 5.22, 5.24 and 5.26 for
several methods. For each case, the motion field between two images is computed,
the second image is warped to match the first and the MSE and SSIM metrics
between the first image and the warped second image are computed, excluding the
image borders.

Light Mismatch Occlusion
MSE (103) SSIM MSE (103) SSIM MSE (103) SSIM

Brightness
(Section 5.1)

0.07 0.87 0.82 0.69 0.22 0.94

Brightness with
ROF decomposition
(Eqs. (5.53),(5.54)

and (5.55))

0.07 0.87 0.72 0.66 0.39 0.93

Proposed
color tensor

(Section 5.2.2)
0.07 0.88 0.78 0.69 0.11 0.96

Structure tensor
(Section 5.2.3)

0.04 0.87 1.01 0.57 0.09 0.95

Proposed
image descriptor
(Section 5.2.4)

0.07 0.86 2.81 0.61 0.70 0.91

Structure Tensor
derived from

image descriptor
(Section 5.2.5)

0.12 0.84 2.93 0.58 0.55 0.91

performance.

Some qualitative tests were performed in frames from the DORIS system, which

showed that despite not having the best overall performance, the approach based

on the proposed image descriptor provides results with more robustness to the il-

lumination changes that occur during a day, which are inevitable for the intended

application.

The next chapter studies another application of computer vision techniques to

estimate the position of dark fringes acquired using the experiment described in

Section 1.2.3, which can be used to estimate properties of a given material.

111

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.21: Example of the optical flow computation for two images with illumi-
nation changes in the DORIS system. In this part, there is a small displacement
in the horizontal direction, so it is expected that the computed flow has the same
orientation along the image, therefore should have be represented as an image with
the same hue and different levels of saturation. (a) Original frame from the first
sequence. (b) Original frame from the second sequence. Motion field obtained with:
(c) brightness method, (d) brightness with ROF decomposition, (e) proposed color
tensor, (f) structure tensor, (g) proposed image descriptor, (h) structure tensor de-
rived from the image descriptor.

112

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.22: Example of the frame alignment for two images with illumination
changes in the DORIS system. Using the estimated motion field shown in Fig. 5.21,
one warps the image (b) to make it similar to the image (a). Warped images obtained
with: (c) brightness method, (d) brightness with ROF decomposition, (e) proposed
color tensor, (f) structure tensor, (g) proposed image descriptor, (h) structure tensor
derived from the image descriptor.

113

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.23: Example of the optical flow computation for two images with a frame
mismatch in the VDAO database. For these sequences, there is a small displacement
in the horizontal direction, so it is expected that the computed flow has the same
orientation along the image. However, due to the frame mismatch, the images are
also rotated with respect to each other. (a) Original frame from the first sequence.
(b) Original frame from the second sequence. Motion field obtained with: (c) bright-
ness method, (d) brightness with ROF decomposition, (e) proposed color tensor, (f)
structure tensor, (g) proposed image descriptor, (h) structure tensor derived from
the image descriptor.

114

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.24: Example of the frame alignment for two images with a frame mismatch
in the VDAO database. Using the estimated motion field shown in Fig. 5.23, one
warps the image (b) to make it similar to the image (a). Warped images obtained
with: (c) brightness method, (d) brightness with ROF decomposition, (e) proposed
color tensor, (f) structure tensor, (g) proposed image descriptor, (h) structure tensor
derived from the image descriptor.

115

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.25: Example of the optical flow computation for two images with a frame
occlusion in the VDAO database. For these sequences, there is a small displacement
in the horizontal direction, so it is expected that the computed flow has the same
orientation along the image. However, there is a pipe close to the image position
creating an occlusion of the background. (a) Original frame from the first sequence.
(b) Original frame from the second sequence. Motion field obtained with: (c) bright-
ness method, (d) brightness with ROF decomposition, (e) proposed color tensor, (f)
structure tensor, (g) proposed image descriptor, (h) structure tensor derived from
the image descriptor.

116

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.26: Example of the frame alignment for two images with a frame occlusion
in the VDAO database.Using the estimated motion field shown in Fig. 5.23, one
warps the image (b) to make it similar to the image (a). Warped images obtained
with: (c) brightness method, (d) brightness with ROF decomposition, (e) proposed
color tensor, (f) structure tensor, (g) proposed image descriptor, (h) structure tensor
derived from the image descriptor.

117

Chapter 6

Polymer Characterization Using

Mathematical Morphology

An interesting application to the detection of events is the experiment described in

Section 1.2.3. In this application, a polymer flows inside a specific apparatus that

induces a birefringence property on the fluid. With a camera placed at a proper

location, it is possible to acquire images that show a pattern of light and dark fringes

due to the birefringence property, and the understanding of this pattern provides

information about the spatial evolution of the stress in the molten polymer. An

example of an image acquired from this experiment can be seen in Fig. 6.1

Figure 6.1: Example of image obtained in a flow-induced birefringence experiment.
For each dark fringe is associated a fringe order k, according to [88], marked as the
white numbers.

The patterns of bright and dark fringes can be converted into the principal stress

difference (PSD) profile, which is an important property to characterize the polymer,

using the semi-empirical stress optical rule [18, 19, 87, 88, 121, 122]. Along the flow

centerline, the PSD is equal to the first normal stress difference, that is

|PSD| = |σ11 − σ22| = |τ11 − τ22| =
kλ

| C | d
, (6.1)

118

where σ11 and σ22 are the first principal stress values, τ11 and τ22 are the first normal

stress values, C is the stress optical coefficient, λ is the wavelength of the polarized

light which hits the birefringent medium and d is the anisotropic medium length.

The variable k = 0, 1, 2, . . . is the fringe order and is represented as the white

numbers in Fig. 6.1. Using Eq. (6.1) if the values of the parameters given by the

experiment are known, the PSD profile along the centerline can be determined by

knowing the relative retardation of the dark fringe order k, which is fixed for each

experiment, and the position each fringe appears in the image, which must be esti-

mated for each image. If one needs to assess the stress property on a large number

of polymers under different conditions, it is imperative the development of methods

capable of automatically identifying the occurrence of dark fringes in the images.

This work aims to present a novel approach using mathematical morphology

techniques to identify the patterns of the dark fringes from the birefringence images

presented in [88]. In addition, it also performs the automatic detection of the dark

fringes centers, allowing the collection of measurements to be obtained in a faster and

more accurate way. To introduce such methodology, the remaining of this paper is

organized as follows: Section 6.1 describes techniques of mathematical morphology

that were used for the development of the proposed algorithm. In Section 6.2,

a step-by-step description of the fringe position detector based on mathematical

morphology techniques is presented. Section 6.3 assesses the proposed methodology

by comparing its results with the ones obtained with the GIMP software and with

other methods adapted to the context of birefringence images [15, 18, 19, 88, 123].

6.1 Mathematical Morphology

Mathematical morphology is the study of the shape of spatial structures, often used

to remove imperfections or identify patterns [124]. It provides tools to analyze the

relationship between the pixel values of an image, considering their spatial ordering

and a small template called structuring element. These interactions between an

image and a structuring element are explored using two basic operations, namely

erosion and dilation [125].

The erosion of an image F using an structuring element B can be defined as

follows. One starts assuming that F and B exist in the same two-dimensional

Euclidian space, where F is a grayscale image and B is a structuring element that

is defined as a binary set.

The eroded value of F for each pixel x is the minimum intensity value inside the

window delimited by the structuring element B. If b is a translation belonging to

the structuring element, the eroded image εB(F) is equal to:

119

Erosion: [εB(F)](x) = min
b∈B

F(x + b). (6.2)

Similarly, the dilation operation of F by B, which is the dual operation of the

erosion, is defined for each pixel x as the maximum value of the image intensity

value in the window defined by the structuring element B, leading to:

Dilation: [δB(F)](x) = max
b∈B

F(x + b). (6.3)

Examples of the erosion and dilation operations are despicted, respectively, in

Figs. 6.2(c) and 6.2(d), where it can be observed that the erosion shrinks the objects

while the dilation enlarges them.

The erosion and dilation operations can be used to define more complex morpho-

logical operations, among which we can mention the opening and closing operations,

widely used in morphological processing [125]. The opening consists of an erosion of

F by the structuring element B, followed by a dilation using the same structuring

element. The following equation describes it:

Opening: γB(F) = δB[εB(F)]. (6.4)

The closing operation is the dual to the opening operation, and is performed

by applying a dilation of F by the structuring element B followed by a erosion

using the same structuring element. It is equivalent to applying the opening to the

complement of the original image, and then taking the complement of the result, as

shown in the following equation:

Closing:φB(F) = εB[δB(F)]. (6.5)

Figs. 6.2(e) and 6.2(f) show, respectively, examples for the opening and closing

operation. One can see that the opening removes the image tips while the dilation

fills the image holes (which is equivalent to removing the tips on the complement of

the image).

6.1.1 Geodesic Morphology

The basic morphology operations consider only an input image and compute its

relation with a structuring element. Geodesic transformations [125] consider instead

two input images: the original input image, called marker, and a second image which

acts as a mask. A morphological transformation is applied to the marker image,

using a simple structuring element. However, if for a given position the result is

bigger or smaller than the mask, depending on the operation, it is set as the value

of the mask.

120

(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Erosion, dilation, opening and closing operations. (a) Original image.
(b) Structuring element defining a window for the maximum and minimum opera-
tions, consisting of one pixel to the left, the current pixel and one pixel to the right.
(c) Erosion: The object is reduced. (d) Dilation: The object is enlarged in the
borders. (e) Opening: The object tips are removed, making it smaller. (f) Closing:
The object holes are filled, making it bigger. In (c)-(f), the solid lines represent
the values of the original image before the morphological operations and the gray
rectangles show the result after each operation.

A geodesic erosion of size 1 consists of a morphological erosion of a marker image

F using an elementary isotropic structuring element B, such as the one given by

Fig. 6.2(b), followed by a pointwise maximum between the result and the mask G,

as follows:

121

Geodesic erosion: ε
(1)
G (F) = ε(1)(F) ∨G, (6.6)

where a ∨ b represents the maximum value between a and b. This operation is

despicted in Figs. 6.3(d) and 6.3(e), which show that the geodesic erosion uses the

mask to limit the shrinkage effect caused by the erosion (see Fig. 6.2(c)).

A geodesic dilation of size 1 consists of a morphological dilation of a marker image

F using an elementary structuring element B, followed by a pointwise minimum

between the result and the mask G, as follows:

Geodesic dilation: δ
(1)
G (F) = δ(1)(F) ∧G, (6.7)

where a ∧ b represents the minimum value between a and b. An example of this

operation is shown in Figs. 6.3(b) and 6.3(c), where one can see that, when compared

to the dilation seen in Fig. 6.2(d), the geodesic dilation forces the dilation process

to propagate the image only to regions delimited by the mask.

6.2 Processing of Birefringence Images Using

Mathematical Morphology Techniques

In this chapter, we propose a method to automatically detect the dark fringes in the

birefringence patterns, which is an improvement to the four-step approach that was

introduced in [86]. This approach differs from other, more traditional, methods as

it works strictly on the geometrical domain, avoiding the use of more complex tools

that can also be more error-prone, such as frequency-domain techniques and trans-

formations [74, 76, 84]. A block diagram summarizing the workflow of the proposed

method is presented in Fig. 6.4. The first step consists of image enhancement that

removes some of the image noise, providing a sharper version of the input image

that allows a more precise detection in the subsequent steps. In the second step,

the minima contours are detected through the application of the watershed [126]

method, further detailed. A skeleton [127] of the dark fringes is created from the

previous-step output and the center of the image, which is the region of interest for

the fringe position detection, is selected in the third step. Finally, in step four, post-

processing is performed to increase the precision on the dark-fringe final detection.

A detailed explanation of each of those steps is given in the subsections that follow.

122

(a)

(b) (c)

(d) (e)

Figure 6.3: Geodesic erosion and dilation operations. (a) Original image - marker
image. (b) Mask image used in the geodesic erosion, whose values are given by the
solid black lines. The gray rectangles show the marker image, for comparison. (c)
Geodesic erosion: Erosion of the marker image. The mask prevents the decrease in
the marker caused by the erosion. (d) Mask image used in the geodesic dilation,
whose values are given by the solid black lines. The gray rectangles show the marker
image, for comparison. (e) Geodesic dilation: Dilation of the marker image. The
mask prevents the growth in the marker caused by the dilation.

6.2.1 Input Image Enhancement

To obtain an improved version of the image, thus improving the detection algorithm

results, this section describes an image enhancement method that is applied in the

proposed algorithm as a preprocessing step.

123

Figure 6.4: Block diagram of the proposed method.

Figure 6.5: Input image enhancement.

Due to a noisy acquisition process, the birefringence images often have a cracked

appearance, as can be seen in Fig. 6.6. There it can be observed that neither their

white nor their dark fringes are well defined, having many gaps that can connect

consecutive dark fringes. They make the task of correctly identifying the fringes

124

positions very difficult for the image processing algorithms. One way to approach

this problem is to apply some morphological operations on the input images as a pre-

processing step (Fig. 6.5) that aims to highlight the fringe silhouettes, thus making

the algorithms less prone to errors.

Figure 6.6: Highlight of the gaps of the fringes connecting consecutive dark and
bright fringes. The dark regions have lower pixel values whereas the bright regions
have higher pixel values.

In this work we propose to use two morphological operations in succession to

improve the image quality, namely white top-hat and black top-hat. The white

top-hat operation [125] aims to obtain the peak grayscale values of the image by

applying morphological operations over it. In order to do so a modified version of

the image, obtained via the morphological opening operation defined in Section 6.1

is subtracted from the original image, as described by:

White top-hat:WTH(F) = F− γ(F), (6.8)

where γ() represents the opening operation.

The idea behind this operation is that, as shown in Fig. 6.2(e), the opening

removes the peaks in the shape of the objects, keeping the parts of the object that

do not contain peaks. The white top-hat operation then takes the original image

and subtracts from it a version of the image with the peaks removed, so after the

subtraction only the peaks remain.

In the opposite way, the black top-hat operation [125] is responsible for extracting

the valleys of the grey-level images. To perform this operation, the original image

is subtracted from a modified version of the image, after going through a closing

operation, as given by:

Black top-hat:BTH(F) = φ(F)− F, (6.9)

where φ() represents the closing operation.

This equation means that initially the closing operation is applied to create

a version of the image with all valleys filled, such as the one seen in Fig. 6.2(f).

125

(a) (b)

(c) (d)

Figure 6.7: Example of birefringence images before and after the enhancement step
based on the white top-hat and black top-hat operations. Its effect is best observed
at the consecutive bright and dark fringes in the modified image. (a) Original image.
(b) Enhanced image with increased contrast. (c) Detail of the original image. (d)
Detail of the enhanced image.

Afterwards, by subtracting this result from the original image, only the filled valleys

remain, so the result of the black top-hat operation is an image containing only the

valleys of the original image.

The resulting images after the described procedures, that are the white top-hat

image containing the peaks and the black top-hat image containing the valleys, are

added to the original image, emphasizing the peaks and valleys of the grayscale

image, therefore enhancing its contrast. The use of these techniques yields a better

distinction between the bright and dark fringes, as illustrated in Fig. 6.7.

126

6.2.2 Minima Contour Detection with Watershed

Since the current state of the image is still not easy to process, in order to locate

the minima contours of the pre-processed image we apply the watershed operation

as described in this section.

Figure 6.8: Minima contour detection with watershed.

In order to detect the center of each dark fringe (Fig. 6.8), a different mathe-

matical morphology method was used, namely the watershed [126] algorithm. This

method aims to detect local maxima positions in a given grayscale image. The intu-

ition behind the method is the following: the method considers the image topology

to be a succession of peaks and valleys; in the bottom of the valleys it is assumed

to exist holes. If a liquid would enter the valleys through these holes, at the same

time for holes at the same depth, there would be an instant when the liquids in

two consecutive valleys would merge. The position where those liquids merge is

considered to be a local maximum, as depicted in Fig. 6.9.

The loci of the maxima can be used to detect the center of each one of the dark

fringes. To do so one initially needs to obtain the complement of the image, therefore

making each peak a valley and each valley a peak. After that, one should apply the

watershed method to the inverted image. An example of the result obtained with

this procedure can be seen in Fig. 6.10(a), where the resulting analysis still presents

some detection artifacts.

Although this result seems to be initially encouraging, one can readily see that

it is not enough to solve the problem of detecting the position of the dark fringes,

as this simple application of the watershed method creates a result that has at the

same time regions with under-segmentation, showing missing boundaries, and over-

segmentation, displaying undesired boundaries. This can be improved by feeding the

algorithm with some prior knowledge, like the approximate positions of the maxima

(or minima). In our proposed approach a human user must input the location

of every bright fringe (the minima points in an inverted image). The imposition of

those minima locations [125] creates a mask Fm whose values are tmax (the maximum

value allowed to the pixel) except where the minima were imposed (where the mask

127

Figure 6.9: Watershed peak detection method. The inner peaks are detected and
marked as the red vertical lines.

value is set to 0), as given by

Fm =

{
0, if a minimum was imposed

tmax, otherwise
, (6.10)

where tmax is the largest possible pixel value in the grayscale image. This process is

detailed in Fig. 6.11.

We then take the minimum between each pixel value and the value of the mask

in that position, whose result is called (F + 1) ∧ Fm in Fig. 6.11(b). After that,

the signal Fm is considered the marker and the signal (F + 1) ∧ Fm the mask of

a geodesic erosion, as defined in Subsection 6.1.1. Successive geodesic erosions are

performed (Figs. 6.11(c)-(g)) until the image becomes unchanged by further erosions

(Fig. 6.11(h)). Note that, when you perform the minima imposition, the imposed

minima will be the only local minima in the resulting image, lending to it a smooth

appearance.

After the minima imposition, we then apply the previously described watershed

method to the resulting image to obtain the maxima contours, avoiding in this case

under- and over-segmentation issues. An example of the results after the minima

imposition can be seen in Fig. 6.10b, which improves upon the results shown in

Fig. 6.10a. One can see in the region highlighted by a blue ellipse that the minima

imposition technique reduces some over-segmentation artifacts while, as seen in the

128

(a) (b)

Figure 6.10: Contours of the dark fringes obtained with the use of the watershed
method. (a) without minima imposition. (b) with initial minima imposition (marked
as a red diamond). The blue ellipses and the red rectangles show, respectively, re-
gions where there is over-segmentation and undetected fringes in the version without
minima imposition.

129

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.11: Minima imposition method. (a) Original figure F and mask Fm. (b)
Pixelwise minimum between Fm and (F + 1), which is defined as (F + 1) ∧ Fm.
(c) Morphological erosion of Fm. (d) Maximum between (F + 1) ∧ Fm and the
result of the morphological erosion of Fm. The red dashed line shows the values
that were changed in the maximum operation. (e) Final result of the first geodesic
erosion of Fm. (f) Second geodesic erosion of Fm. (g) Third geodesic erosion of
Fm. (h) Fourth geodesic erosion of Fm. The signal remains unchanged after any
other geodesic erosion, so it is considered the reconstruction via successive erosions
of (F + 1) ∧ Fm from the mask Fm.

130

region delimited by the red rectangle, and also increases the amount of successfully

detected fringe contours.

6.2.3 Skeleton Creation and Center Detection

After we obtain the minima contour with the watershed operation we need to further

process it in order to produce 1 pixel-wide contours. To do so we employ the

skeletonisation technique described in this section.

Figure 6.12: Skeleton creation and center detection.

The result of the watershed method is a binary image that indicates boundaries

that separate each bright region, so it should represent a centerline for the dark

fringes. In order to select the exact position of the fringe centers it is necessary that

the contour lines are exactly one-pixel wide. Sometimes, after using the watershed

method the contour lines are thicker than one pixel, thus lowering the accuracy

of the method. To deal with this problem we propose (Fig. 6.12) the use of a

skeletonisation method [127]. A morphological skeleton of a binary image such as

the contours in Fig. 6.10 is defined as the locus of the center of the maximal disks

completely contained in the image. Fig. 6.13 shows the step-by-step procedure to

obtain the skeleton of an image. This procedure creates thinner segments with a

thickness of one pixel, which is mandatory for the next steps.

6.2.4 Post-processing

After obtaining the pixel-thin contours we proceed to the estimation of the fringe

center position, as well as, removing the false detections. This section describes the

post-processing methods employed in this task.

131

(a) (b)

(c) (d)

Figure 6.13: Skeletonisation using maximal disks. The union of all maximal-disk
centers defines the skeleton. (a) Original image. (b) Some maximal disks and the
initial construction of the skeleton. (c) Maximal disks covering the whole image.
(d) Complete skeleton.

Figure 6.14: Post-processing.

132

Figure 6.15: Detailed block diagram of the post-processing.

At this point, the contour lines, which we expect to be present only in the

dark fringes, may also erroneously appear in a bright fringe. As can be seen from

Fig. 6.10, the contours have some segments that do not belong to the dark fringes

and should not be used to estimate their position. This figure also shows that those

segments have a shape similar to a vertical line, being perpendicular to the fringe

variation. The algorithm uses this fact to detect and remove flaws in the contours by

separating it into small segments and removing those that have a vertical orientation.

In addition, one is not interested in identifying the whole dark fringe but only the

position of its center, therefore the contours can be further processed in order to

extract only the required information. The post-processing pipeline is depicted in

Figs. 6.14 and 6.15 and is described in the next sections.

Figure 6.16: Detail of the contours of the dark fringes obtained with the use of the
watershed method. One can notice some flaws in the detection, with parts of the
contour highlighted by a red square appearing in the bright fringe.

Removal of values in borders:

In the first step, only the center columns of the image are kept, which contain the

region of interest for the detection of the fringe positions. We remove any contour

outside the center columns of the image, delimited by the thin region that contains

a fringe pattern (see Fig. 6.7).

133

Removal of branching points:

Afterwards, the branching points, which are points connected to three or more

points, are removed from the remaining skeleton, that after this operation will be

just a set of unconnected segments, as seen in Fig. 6.17.

(a) (b)

Figure 6.17: Detail of the branching points removal method, where the circles show
the points to be removed. The branching points are considered as the points con-
nected to three or more points. (a) Before branching point removal; (b) after branch-
ing point removal.

Removal of small segments:

After this step, several spurious segments may still remain. We count for each

segment the number of points contained in it, and the segments that have less than

a given number of points are removed.

Removal of vertical segments:

We also analyze each segment and measure its horizontal length, which is done by

counting the number of columns that it occupies, and remove those that and have a

horizontal length smaller than a threshold (in other words, are ”too vertical”), since

they most likely do not correspond to the desired center position of the fringes. An

example of segments that remain after these cleaning steps can be seen in Fig. 6.18.

Identification of horizontal parts:

In this step, we want to determine the vertical position for the center of each dark

fringe. Comparing Figs. 6.10 and 6.18, one can see that due to the shape of the dark

134

(a) (b)

Figure 6.18: Final selection of the segments after the spurious segments are removed.
(a) Before segment removal; (b) after segment removal. The removed spurious
segments are marked as light gray in the figure.

fringes the remaining segments have a parabolic shape with a vertical orientation,

whose peak indicates the position of the center of the fringe. Therefore, in order

to identify this center, we detect the peaks in the segments by using a horizontal

window to select for each segment the part that has the largest number of horizontal

points. As illustrated in Fig. 6.19, when sliding the horizontal window along the

vertical direction, the position that yields the largest segment corresponds to the

135

location of the peak (within a certain accuracy given by the window width).

(a) (b)

Figure 6.19: Selection of the horizontal part of the segments. (a) Wrong region -
few points. (b) Correct region - largest number of points.

Estimation of central positions:

Finally, the center position of each fringe is selected as the mean of the vertical

coordinates of each skeleton pixel within the horizontal window. If after this step

more than one segment is detected between two consecutive maximal points man-

ually input, only the one with the greater number of points is kept. This step is

illustrated in Fig. 6.20(a) and the final result is shown in Fig. 6.20(b).

6.2.5 Inflection Points Detection

After selecting the correct segments to represent each fringe, we proceed to the

detection of the inflection point of the image. This section describes the employed

procedure.

Figure 6.21: Inflection points detection.

A final important point for the characterization of the flow is an inflection point.

As reported by [88], this point helps to characterize the geometry of the experiment

136

(a) (b)

Figure 6.20: Detected positions for each segment. The red X marks in the center
column the vertical coordinates for the segment that has the largest number of
horizontal points, which represents the center for each dark fringe according to the
procedure described in Section 6.2.4. (a) Result before the elimination of double
detections. (b) Final result, after the elimination of double detections, when there
is more than one segment to represent a dark fringe. The ambiguous segments,
marked as light gray, were removed.

and is defined with the maximum retardation order k in the flow, despite not being

associated to the horizontal part of any dark or bright fringe in the images, as one

can see in Fig. 6.22. In order to estimate this point, the algorithm described in

137

Subsections 6.2.1-6.2.4 is applied in the transposed images to detect the two vertical

dark fringes around the inflection point (Fig. 6.21), and the position ofo the inflection

point is defined as the average of the center of the two vertical fringes. An example

of this detection is show in Fig. 6.23.

Figure 6.22: Fringe retardation order (k) of sample GPPS1 at 1 mm/s. The inflection
point is reported in [88] as the one with a retardation order k = 8 and is related to
the geometry of the experiment.

Figure 6.23: Example of the detection of the inflection point. The center of the white
contours associated to each vertical fringe is marked as a cross and the estimated
inflection point is marked as a circle.

6.3 Experimental Results

In this section we will analyze the algorithm performance, starting from a description

of the experimental framework, followed by a performance assessment to calibrate

the algorithm. The results of the proposed algorithm are first compared to other

methods found in the literature and then compared to the reference method.

138

6.3.1 Experimental Framework

The algorithm described in Section 6.2 was developed in MATLAB c© [89] environ-

ment using morphological function implementations present on the Image Process-

ing Toolbox. The results were obtained using a computer with a Xeon E3-1270 v5

3.6GHz processor and 32GB of RAM.

The flow-induced birefringence images acquired during a steady state for two

polystyrene samples were presented in [88] as was also the identification of fringe

orders k (based on the knowledge of the physical properties of the experiment). It is

important to note that the algorithm proposed here is not entirely automatic because

it requires that, for each different experiment, an operator inputs a few minima to

be imposed to one of the frames, using the procedure described in Section 6.2.2,

which are used in all images from the same experiment.

6.3.2 Performance Assessment

In this section, the proposed algorithm is thoroughly analyzed. In the first exper-

iment, the pre-processing step described in Subsection 6.2.1, which includes image

enhancement and minima imposition, is enabled and disabled to show its effective-

ness. Then, two parameters present in Subsection 6.2.4 have their value adjusted,

namely the threshold that controls the removal of spurious elements (see Fig. 6.18)

and the width of the window that selects the horizontal part for each segment, which

represents the center of each dark fringes (see Fig. 6.19).

In order to define an objective evaluation, the measurements obtained in [88]

were considered as a ground truth, and for each algorithm setup the mean square

error between the obtained fringe positions and the ground truth was computed.

For this evaluation, only the experiment obtained with the GPPS1 flow at 1 mm/s

was used, since it shows a pattern where the fringes are neither too few nor too thin.

From this experiment, 15 images were obtained and used for this study.

Determination of the fringe center:

As described in Section 6.2.4, the detected contours have a shape similar to a noisy

parabola positioned inside the dark fringes, and the center of each dark fringe is

identified by the vertex of this parabola. A simple way that has been devised to find

the position of the vertex is to use a moving horizontal window, analyzing for each

position the part of the contour that fits entirely inside this window and identifying

the one with the largest length. In order to so, we must define the optimal width of

the horizontal window. A window that is too thin may lead to a false detection due

to noise. If it is too wide, the algorithm is able compensate the noise but it loses

139

precision. In this experiment we analyze different window widths and determine the

one that provides the lowest average error for the algorithm.

Fig. 6.24 shows an evolution of the mean squared error obtained by the algorithm

for several values of the window width. In the figure, the multiple curves represent

the results for a fixed value of the length that separates spurious and accepted

elements. In Fig. 6.24(a), the pre-processing is disabled while in Fig. 6.24(b) it is

enabled. It is important to notice the range of the error values, since in the curves

with the pre-processing disabled, the minimum observed error is higher than the

maximum error with the pre-processing enabled. Comparing only the best results

for each case, the pre-processing step reduces by up to 20 times the error in the

proposed algorithm.

In Fig. 6.24(b), the curves reveal the two cases where the error tends to be higher:

if the window is too restrict, so it is more likely to contain small peaks in the data,

and too big, so the window contains larger segments that may not represent the

fringe centers. There seems to be a region for some intermediate values where the

error reaches its minimum and is less sensitive to the variation of this parameter.

To determine a compromise in the algorithm configuration, the window was defined

to have a width of 5 pixels.

 0.005

 0.05

 0.5

 0 2 4 6 8 10 12

M
ea

n
 s

q
u

ar
e

er
ro

r

Window width

min length = 1
min length = 5

min length = 11

(a)

 0.005

 0.05

 0.5

 0 2 4 6 8 10 12

M
ea

n
 s

q
u

ar
e

er
ro

r

Window width

min length = 1
min length = 5

min length = 11

(b)

Figure 6.24: Mean square error (mm2) for several values of the window width. (a)
Without pre-processing. (b) With pre-processing.

Removal of spurious elements:

In the detected contours, part of the noise is due to impurities in the experiments,

that create undesirable contours inside the bright fringes. As described in Section

6.2.4, a post-processing step separates the contours in segments and removes from

the final detection the ones with a length smaller than a threshold. There is an

optimum value for this threshold. If it is too big, it is possible that all segments

associated to a fringe are removed and no position estimate can be provided. In

140

this experiment, we evaluate the impact of the threshold that removes undesirable

segments in the detection of the fringe centers.

In Fig. 6.25 one can see the relation between the mean square error and the

minimum segment length for a few fixed values of the window width. Another

important aspect in this experiment is the detection rate, that is, the amount of

fringes where there is at least one detected segment and the algorithm can estimate

a fringe center. This characteristic is exemplified in Fig. 6.26.

Comparing Figs. 6.25(a) and 6.26(a), one can see that the error increases with a

bigger threshold. This behavior can be explained by the fact that without the pre-

processing step, the algorithm creates spurious segments that are indistinguishable

from the true segments (the ones that follow the fringe pattern), so any attempt to

remove wrong segments also removes the true ones, and the detection rate drastically

falls when the threshold is increased. With the inclusion of the pre-processing step,

a different behavior can be seen, as shown in Figs. 6.25(b) and 6.26(b). With bigger

values for the acceptable segment length, more spurious segments are removed while

still keeping an amount of accepted segments, since the detection rate shows a

smaller decrease, and the mean square error is in fact reduced. In order to provide

an algorithm able to detect the fringe positions for at least 95% of the cases with

the smallest error, the threshold value was defined as 5 pixels.

 0.005

 0.05

 0.5

 0 2 4 6 8 10 12

M
ea

n
 s

q
u

ar
e

er
ro

r

Minimum horizontal length

min length = 1
min length = 5

min length = 11

(a)

 0.005

 0.05

 0.5

 0 2 4 6 8 10 12

M
ea

n
 s

q
u

ar
e

er
ro

r

Minimum horizontal length

min length = 1
min length = 5

min length = 11

(b)

Figure 6.25: Mean square error (mm2) for several values of the minimum length
threshold. (a) Without pre-processing. (b) With pre-processing.

6.3.3 Comparison with Other Methods

Two other methods were evaluated in comparison with the proposed method. Those

methods were developed to detect fringes on images originated in different experi-

ments and were adapted to the context of birefringence images.

The method [74] separates the bright and dark fringes by binarizing the images

using a threshold that can be constant or adaptive, and then applies a skeletonisation

141

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12

D
et

ec
ti

o
n

 r
at

e

Minimum horizontal length

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12

D
et

ec
ti

o
n

 r
at

e

Minimum horizontal length

(b)

Figure 6.26: Detection rate for several values of the minimum length threshold. (a)
Without pre-processing. (b) With pre-processing.

technique to find the central position for each fringe. Due to impurities in the

experiments, the image has a cracked appearance. A simple constant threshold is

not able to distinguish every bright and dark fringe in the images, as can be seen

in Fig. 6.27(a). However, by manually selecting two levels of threshold to be used

in different parts of the image, a good compromise between algorithm performance

and model overfitting can be found, as shown in Fig. 6.27(b).

(a) (b)

Figure 6.27: Birefringence image binarization. (a) With a constant threshold. (b)
With two levels of threshold.

In [76, 84] a technique to detect fringes in light interferometric experiments

is described. First, it estimates a local orientation map for each pixel [128], and

pre-processes the images by applying a directional median filtering that uses the

estimated orientation in order to remove the noise in the direction tangent to fringe

orientations while also keeping sharp transitions perpendicular to the fringe orien-

tations. Afterwards, the method computes the directional derivatives of the pre-

processed images, also using the orientation map. Then it binarizes the directional

142

derivatives and considers the fringe centers as the edges of this binarized image, that

is, the positions where there is a fast transition between a positive and a negative

gradient.

However, also due to the characteristics of the birefringence images, the esti-

mation of an orientation map is likely to produce a noisy result. We implement

this algorithm using only a horizontal median filtering, since it corresponds to the

expected tangent of orientation of the fringes in the center of the images, which is

the region-of-interest for the detection. For this reason,, we also compute only the

vertical derivative to be used in the binarization and detection step. An example of

the implementation of the methods in [74] and [76, 84] applied to the birefringence

images can be seen in Fig. 6.28.

The same objective evaluation used to set up and validate the proposed algorithm

is employed in the comparison with the aforementioned methods. For each method,

we compute the mean square error between the obtained contours and the manual

marking, and count the amount of fringes that were not detected to estimate the

detection rate. Since those methods only provide a basic skeleton of the fringe

image, no precise central position is extracted. In order to properly compare with

the proposed method, the post-processing step described in Subsection 6.2.4 and

optimized in Subsection 6.3.2 is also applied.

In Tab. 6.1, one can see a comparison of the mean squared error obtained with

each method. For the method [74], no pre-processing step is defined, so, in order

to provide a fair comparison, the proposed pre-processing(which includes the input

enhancement and minima imposition) was also tested with this method. The works

[76, 84] already include a median filtering to enhance the image, and for this reason

two cases were considered. In the first one, the algorithm was tested using only

the median filter, which is labelled as no pre-processing in Tab. 6.1. In the second

one, the algorithm was tested with the median filter in addition to the presently

proposed pre-processing, which is labelled as with pre-processing in Tab. 6.1.

Tab. 6.2 shows the detection rate for the same methods and configuration. Com-

paring the performance of the mean square error and the detection rate, one can see

that the proposed method, with the correct configuration, produces a result with the

lowest error while providing the second-best detection rate, being better than the

binarization method in both metrics In addition, while it produces a detection rate

lower than the one of the derivative method, its mean squared error is twice as small.

In addition, one can also see from the results in Tab. 6.1 that the works [76, 84]

have a loss of performance in the presence of the pre-processing step. The reason

for this behavior is that, as a byproduct of the minima imposition technique, the

resulting image loses its original local minima, presenting only the imposed minima,

as discussed in Subsection 6.2.2.

143

(a) (b)

Figure 6.28: Contours of the dark fringes obtained with: (a) [74] and (b) [76, 84].

Table 6.1: Mean square error (mm2) obtained with the proposed method, the
method based on the image derivative [76, 84] and the method based on image
binarization [74].

Pre-processing Proposed Derivative Binarization
no 0.086 0.029 0.019
yes 0.013 0.043 0.019

144

Table 6.2: Detection rate obtained with the proposed method, the method based on
the image derivative [76, 84] and the method based on image binarization [74].

Pre-processing Proposed Derivative Binarization
no 0.85 1.00 0.93
yes 0.95 1.00 0.93

6.3.4 Comparative Evaluation with Reference Method

(GIMP)

The results obtained using the approach presented in Subsection 6.2 after processing

15 images for each experiment were compared with those disclosed in [88], in which a

methodology based on GIMP software was proposed. For this purpose, we consider

the flow direction through the slit at three different velocities (0.5, 1 and 2 mm/s in

the experiments using GPPS1 sample and 0.2, 0.5 and 1 mm/s in the experiments

using GPPS2 sample). Note that the flow-induced birefringence images acquired

during a steady state for two polystyrene samples were presented in [88] together

with the determination of fringe order (k).

Fig. 6.29 shows a comparison for GPPS1 and GPPS2 samples of the measure-

ments obtained with GIMP software and also those acquired with the proposed

morphological approach. The values for the principal stress difference module along

the flow centerline were calculated using Eq. (6.1).

As mentioned in [87, 88], the flow in the slit-die is characterized by two regions:

(i) the inlet in which PSD values reach the maximum and (ii) the exit region in which

the PSD value is zero. These regions correspond, respectively to the maximum value

of k next to fringe position 0 mm, which is the spatial region where molten polymer

reaches the geometry channel, and to the value of k = 0 that corresponds to channel

length (fringe position = 5 mm). According to the figures, it is possible to observe

that the results obtained with the proposed methodology presented good agreement

with the results obtained with the GIMP software and the proposed methodology

was able to determine the points with maximum retardation order, which are related

to the fringe position equal to 0 mm, for all the experiments, with the exception

of the experiment for the sample GPPS2 carried out at 0.2 mm/s (Fig. 6.29(d)).

In this case, the proposed methodology was not able to properly detect the fringe

k = 8, due to the overlap of fringes k = 7 and k = 8 in the image.

The standard deviation (S) of the fringe positions for both techniques is pre-

sented in Figs. 6.30 and 6.31. It is possible to observe in Figs. 6.30(b) and 6.31(b),

which represent the proposed approach via mathematical morphology, a more pre-

dictable behavior of the standard deviation. For these cases, the highest values

of standard deviation are between the middle and the exit of the slit, that is, ap-

145

 0

 20

 40

 60

 80

 100

-2 0 2 4 6 8

|P
S

D
| [

k
P

a]

Fringe position [mm]

0.5 mm/s GIMP
0.5 mm/s Algorithm

(a)

 0

 20

 40

 60

 80

 100

-2 0 2 4 6 8

|P
S

D
| [

k
P

a]

Fringe position [mm]

1 mm/s GIMP
1 mm/s Algorithm

(b)

 0

 50

 100

 150

 200

-2 0 2 4 6 8

|P
S

D
| [

k
P

a]

Fringe position [mm]

2 mm/s GIMP
2 mm/s Algorithm

(c)

 0

 20

 40

 60

 80

 100

-2 0 2 4 6 8

|P
S

D
| [

k
P

a]

Fringe position [mm]

0.2 mm/s GIMP
0.2 mm/s Algorithm

(d)

 0

 40

 80

 120

 160

 200

 240

 280

-2 0 2 4 6 8

|P
S

D
| [

k
P

a]

Fringe position [mm]

0.5 mm/s GIMP
0.5 mm/s Algorithm

(e)

 0

 40

 80

 120

 160

 200

 240

 280

-2 0 2 4 6 8

|P
S

D
| [

k
P

a]

Fringe position [mm]

1 mm/s GIMP
1 mm/s Algorithm

(f)

Figure 6.29: |PSD| as a function of distance along centerline. (a) GPPS1 flow at
0.5 mm/s. (b) GPPS1 flow at 1 mm/s. (c) GPPS1 flow at 2 mm/s. (d) GPPS2 flow
at 0.2 mm/s. (e) GPPS2 flow at 0.5 mm/s. (f) GPPS2 flow at 1 mm/s.

proximately between fringe position = 2 and 4 mm. Also, experiments with lower

velocities, where the fringes are larger and the images display a lower number of

fringes, show, in general, larger values of standard deviation. On the other hand,

for the GIMP approach, there is no simple pattern for the standard deviation since

it also depends on subjective factors. These observations suggest that the morpho-

logical approach helps to increase the reproducibility of the results. In addition, the

full processing of 15 images, together with the statistical treatment of the results,

146

takes around 30 s. With the GIMP software, the processing must be performed

for one image at a time, taking around 8 min for determination of the dark fringe

centers for the 15 images tested.

 0

 0.2

 0.4

 0.6

 0.8

 1

−2 0 2 4 6 8

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 [
m

m
]

Fringe position [mm]

0.5 mm/s
1 mm/s
2 mm/s

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

−2 0 2 4 6 8

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 [
m

m
]

Fringe position [mm]

0.5 mm/s

1 mm/s

2 mm/s

(b)

Figure 6.30: Standard deviation S as a function of distance along centerline of
GPPS1. (a) Manual method (GIMP). (b) Proposed morphological approach.

 0

 0.2

 0.4

 0.6

 0.8

 1

−2 0 2 4 6 8

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 [
m

m
]

Fringe position [mm]

0.2 mm/s

0.5 mm/s

1 mm/s

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

−2 0 2 4 6 8

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 [
m

m
]

Fringe position [mm]

0.2 mm/s

0.5 mm/s

1 mm/s

(b)

Figure 6.31: Standard deviation S as a function of distance along centerline of
GPPS2. (a) Manual method (GIMP). (b) Proposed morphological approach.

6.4 Summary

In this chapter, a novel approach to the problem of detecting the position of dark

fringes in flow-induced birefringence images obtained during the melt flow in the

multipass rheometer was presented and applied for a sample of polystyrene. The

proposed methodology allows fast and accurate measurements of the dark fringe

centers. In addition, it is an automatic method, which provides the minimum human

intervention in the image processing, in contrast to the semi-automatic methodology

using GIMP software, presented in [88], in which the user must interfere directly

147

in the measurements. The results obtained have been shown to be consistent with

those of semi-automatic detection using GIMP software, with the advantage of a

smaller variance of the measurements. Most of the deviation observed is due to

difficulties in the image acquisition, which cause some fringes to have low contrast

and also make consecutive fringes appear mixed in the recorded image. However,

it is important to observe that this problem can be solved with improvements in

the experiments, such as lens adjustments in which the passage of polarized light

is changed in order to improve the quality of the images allowing clearer and more

defined fringes. One should also bear in mind that the amount of time taken to

correct those easily identifiable mistakes of the algorithm is still much smaller than

the one it takes to perform all the measurements using the GIMP methodology.

The obtained results indicate that the proposed method is a reliable alternative to

the manual (and semi-automatic) methods currently in use, as it is able to perform

the detection of the positions with high confidence and in a faster way than the

alternative methods.

148

Chapter 7

Conclusions and Future Work

This chapter summarizes the results obtained in this thesis and highlights the main

contributions. Some ideas for the continuation of the developed activities are also

discussed.

7.1 Conclusions

This thesis investigated the use of signal processing and computer vision with a

focus on the alignment of signals and identification of events. The study can be

divided into three main topics: temporal alignment, spatial alignment and analysis

of events.

In the first part, several techniques were studied in order to determine a syn-

chronism between signals. Initially, this thesis showed a method to perform the

alignment of two given sets of signals obtained in a surveillance system, considering

that they show a periodic behavior and the periods for each set are similar. There-

fore, they only required the estimation of a delay to properly align them, which we

obtain by maximizing the similarity of the signals. The results are compared to an

odometry system and they are shown to be similar to the odometry system results.

We also considered the case where the signals may have different lengths, in

which the signal alignment requires a technique more complex than the estimation of

a delay. We investigated a temporal alignment algorithm based on a dynamic time-

warping approach, showing results on videos signals obtained with a surveillance

system application, which allowed us to define the best cost function to be used

on video signals. We also studied different signals recorded using this system and

assessed the obtention of the alignment for these signals.

Additionally, we ponder the use of an algorithm to estimate the camera tra-

jectory, which can also be used to perform the temporal alignment of two videos

while also providing information about their positioning in the environment. We

presented an algorithm and tested with several databases. However, we observed

149

that the DORIS videos possess several characteristics that are challenging for the

SLAM computation, which require the development of more robust algorithms.

For the second part, we dealt with the problem of the spatial alignment of two

images. We discussed the basics of the optical flow algorithm, intending to use

it on this problem, showed some improvements and studied other techniques that

can be used in this context. We tested the algorithms on a traditional database,

and the results showed that classical methods have a better performance. However,

some tests on the DORIS system and VDAO database revealed that they have a

significant number of imperfections, such as different lighting conditions and objects

creating a large region with occluded objects. Based on a qualitative analysis, the

approach using a proposed image descriptor was determined as being the one that

provides results with more robustness to the illumination changes that occur during

a day.

The third part of this thesis contemplated an industrial application that required

an analysis through image processing techniques. We proposed an approach to

estimate the positions of dark fringes in a given image, which were used to estimate a

physical property of a material. The results were compared to other fringe detection

methods and to a manual marking using the GIMP software, evidencing the superior

performance of the proposed method, which we consider to be a reliable alternative

to the manual method currently in use.

7.2 Future Work

In this section, we present the main ideas for future works that can be done in the

areas addressed in this thesis.

7.2.1 Online Sequence Synchronization Based on Dynamic

Time-Warping

The techniques reported in Chapter 3 have been applied to align videos from the

VDAO database in the work proposed in [129], which are used in training of a deep

learning classifier to detect video anomalies. During the development of the work

[129], it was noticed that if one uses videos with a number of frames per second larger

than the one originally employed in the results from this chapter, then the camera

trepidation is more influent and can even create a situation where the displacement

of the camera between two frames is contrary to the expected movement of the

robot. This condition creates a situation where the best alignment between two

sequences is not a smooth warping path such as the ones shown in this thesis, but

instead a path that should allow a small fluctuation, up to some range that depends

150

on the camera vibration. A possible continuation of this work is to develop a new

algorithm able to compensate for the camera vibration.

7.2.2 Camera Trajectory Estimation

The method studied in Chapter 4 performs SLAM intended to operate on any input

video. Instead of using a generic algorithm, one could, for instance, include informa-

tion that is only valid for videos from the application considered in this thesis. Since

in the DORIS system the robot moves in fixed rail, one can include the model of the

rail in the algorithm, to estimate the camera poses and the similarities in the cases

that the algorithm fails, or use the model to help the computation of the epipolar

geometry (for example, using the model to guide the choice of the best solution for

the essential matrix in the five-point algorithm).

7.2.3 Video Spatial Alignment Using Optical Flow

The tests performed in Chapter 5 used a subset of the Middlebury database which

contains the ground truth, since the results for the remainder of the database can

only be obtained upon a submission to the developers, which must follow some

protocol and may take a certain amount of time. Since in this thesis a more detailed

analysis was performed, it was not practical to obtain results on these sequences. A

future contribution is to formalize a proposed method and to submit results to this

database.

Regarding the results from the VDAO database and DORIS videos, since there is

no available ground truth, the only quantitative result was obtained by computing

the error between aligned images. This metric is not suitable since the images

naturally have differences in illumination and may even contain different objects,

whose detection is exactly the purpose for which the databases were developed.

Different strategies could be used to measure a quantitative result. The align-

ment obtained with the optical flow methods could be compared to the alignment

obtained after the computation of a homography, as in [1]. One can also replace the

spatial alignment in the object detection framework and assess the detection results.

Finally, one can also use the manual marking information provided in the VDAO

database, which contains a bounding box for the abandoned objects in the video, to

estimate a ground truth for the motion field in the region defined by the bounding

box.

151

7.2.4 Polymer Characterization Using Mathematical Mor-

phology

The method developed in Chapter 6 depends on a previous analysis of the exper-

iment and identification of the pattern to be detected, which was made in [88].

Therefore, a continuation of this work is the inclusion of a pre-processing step re-

sponsible for the identification of possible candidates of fringes to be detected by

the algorithm, to be subsequently validated by an operator.

Another future contribution is to reproduce the results on different experiments.

The method described in this thesis was developed specifically for the application

shown in Section 1.2.3. If one performs an experiment with different equipment, the

fringes may have another disposition due to being obtained with a different geometry,

such as the image observed in Fig 7.1. Since these images show characteristics

different from the ones studied in this thesis, the developed methods should be

adapted, incorporating other visual clues that are identified in this new experiment.

Figure 7.1: Example of birefringence image obtained with another experiment, which
shows a different geometry than the one seen in Fig. 1.9.

152

Bibliography

[1] DE CARVALHO, G. H. F., THOMAZ, L. A., DA SILVA, A. F., et al. “Anomaly

detection with a moving camera using multiscale video analysis”, Multi-

dimensional Systems and Signal Processing, v. 30, n. 1, pp. 311–342, Jan.

2019.

[2] THOMAZ, L. A., JARDIM, E., DA SILVA, A. F., et al. “Anomaly detection in

moving-camera video sequences using principal subspace analysis”, IEEE

Transactions on Circuits and Systems I: Regular Papers, v. 65, n. 3,

pp. 1003–1015, March 2018.

[3] NAKAHATA, M. T., THOMAZ, L. A., DA SILVA, A. F., et al. “Anomaly

detection with a moving camera using spatio-temporal codebooks”, Mul-

tidimensional Systems and Signal Processing, v. 29, n. 3, pp. 1025–1054,

July 2018.

[4] TOMIOKA, Y., TAKARA, A., KITAZAWA, H. “Generation of an optimum

patrol course for mobile surveillance camera”. In: IEEE Transactions on

Circuits and Systems for Video Technology, v. 22, pp. 216–224, Feb. 2012.

[5] BOURMAUD, G., MÉGRET, R. “Robust large scale monocular visual SLAM”.

In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1638–1647, Boston, USA, June 2015.

[6] DE CARVALHO, G. P. S., FREITAS, G. M., COSTA, R. R., et al. “DORIS -

monitoring robot for offshore facilities”. In: Offshore Technology Confer-

ence, Rio de Janeiro, Brazil, Oct. 2013.

[7] GALASSI, M., RØYRØY, A., DE CARVALHO, G. P. S., et al. “DORIS -

a mobile robot for inspection and monitoring of offshore facilities”. In:

Anais do XX Congresso Brasileiro de Automática, Belo Horizonte, Brazil,

Sept. 2014.

[8] FREITAS, R. S., XAUD, M. F. S., MARCOVISTZ, I., et al. “The embedded

electronics and software of DORIS offshore robot”. In: IFAC Workshop

153

on Automatic Control in Offshore Oil and Gas Production, Florianópolis,

Brazil, May 2015.

[9] PREGO, T. M., DE LIMA, A. A., NETTO, S. L., et al. “Audio anomaly

detection on rotating machinery using image signal processing”. In: IEEE

7th Latin American Symposium on Circuits Systems (LASCAS), pp. 207–

210, Feb. 2016.

[10] CARVALHO, G., DE OLIVEIRA, J. F. L., DA SILVA, E. A. B., et al. “Um

sistema de monitoramento para detecção de objetos em tempo real em-

pregando câmera em movimento”. In: XXXI Simpósio Brasileiro de Tele-

comunicações, Fortaleza, Brazil, Sept. 2013.

[11] DE CARVALHO, G. H. F. Automatic detection of abandoned objects with a

moving camera using multiscale video analysis. PHD Thesis, COPPE -

Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2015.

[12] DE LIMA, A. A., PREGO, T. M., NETTO, S. L., et al. “On fault classification

in rotating machines using fourier domain features and neural networks”.

In: IEEE 4th Latin American Symposium on Circuits and Systems (LAS-

CAS), pp. 1–4, Feb. 2013.

[13] HARTLEY, R., ZISSERMAN, A. Multiple view geometry in computer vision.

Cambridge University Press, 2004.

[14] MACKLEY, M., HASSELL, D. “The multipass rheometer: a review”, Journal

of Non-Newtonian Fluid Mechanics, v. 166, n. 9, pp. 421–456, 2011.

[15] LORD, T. D., SCELSI, L., HASSELL, D. G., et al. “The matching of 3D

Rolie-Poly viscoelastic numerical simulations with experimental polymer

melt flow within a slit and a cross-slot geometry”, Journal of Rheology,

v. 54, n. 2, pp. 355–373, 2010.

[16] HASSELL, D. G., MACKLEY, M. R. “An experimental evaluation of the be-

haviour of mono and polydisperse polystyrenes in Cross-Slot flow”, Rhe-

ologica Acta, v. 48, n. 5, pp. 543–550, 2009.

[17] HASSELL, D. G., AUHL, D., MCLEISH, T. C. B., et al. “The effect of vis-

coelasticity on stress fields within polyethylene melt flow for a cross-slot

and contraction–expansion slit geometry”, Rheologica Acta, v. 47, n. 7,

pp. 821–834, 2008.

154

[18] COLLIS, M., MACKLEY, M. “The melt processing of monodisperse and poly-

disperse polystyrene melts within a slit entry and exit flow”, Journal of

Non-Newtonian Fluid Mechanics, v. 128, n. 1, pp. 29–41, 2005.

[19] LEE, K., MACKLEY, M. “The application of the multi-pass rheometer for

precise rheo-optic characterisation of polyethylene melts”, Chemical En-

gineering Science, v. 56, n. 19, pp. 5653–5661, 2001.

[20] DOUZE, M., REVAUD, J., VERBEEK, J., et al. “Circulant temporal encod-

ing for video retrieval and temporal alignment”, International Journal of

Computer Vision, v. 119, n. 3, pp. 291–306, 2016.

[21] DAI, C., ZHENG, Y., LI, X. “Accurate video alignment using phase corre-

lation”, IEEE Signal Processing Letters, v. 13, n. 12, pp. 737–740, Dec.

2006.

[22] CASPI, Y., IRANI, M. “Spatio-temporal alignment of sequences”, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, v. 24, n. 11,

pp. 1409–1424, Nov. 2002.

[23] DIEGO, F., PONSA, D., SERRAT, J., et al. “Video alignment for change

detection”, IEEE Transactions on Image Processing, v. 20, n. 7, pp. 1858–

1869, July 2011.

[24] CHUPEAU, B., OISEL, L., JOUET, P. “Temporal video registration for water-

mark detection”. In: IEEE International Conference on Acoustics Speech

and Signal Processing Proceedings, v. 2, pp. 157–160, May 2006.

[25] ITAKURA, F. “Minimum prediction residual principle applied to speech recog-

nition”, IEEE Transactions on Acoustics, Speech, and Signal Processing,

v. 23, n. 1, pp. 67–72, Feb. 1975.

[26] SAKOE, H., CHIBA, S. “Dynamic programming algorithm optimization for

spoken word recognition”, IEEE Transactions on Acoustics, Speech, and

Signal Processing, v. 26, n. 1, pp. 43–49, Feb. 1978.

[27] YUAN, Y., CHEN, Y.-P. P., NI, S., et al. “Development and application of

a modified dynamic time warping algorithm (DTW-S) to analyses of pri-

mate brain expression time series”, BMC Bioinformatics, v. 12, n. 1, 2011.

[28] KAPPELER, A., ILIADIS, M.AND WANG, H., KATSAGGELOS, A. K.

“Block based video alignment with linear time and space complexity”. In:

IEEE International Conference on Image Processing (ICIP), pp. 3324–

3328, Sept. 2016.

155

[29] RAKTHANMANON, T., CAMPANA, B., MUEEN, A., et al. “Searching and

mining trillions of time series subsequences under dynamic time warping”.

In: Proceedings of the 18th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 262–270, Aug. 2012.

[30] SILVA, D. F., BATISTA, G. E. A. P. A. “Speeding up all-pairwise dynamic

time warping matrix calculation”. In: SIAM International Conference on

Data Mining, pp. 837–845, Miami, USA, May 2016.

[31] SALVADOR, S., CHAN, P. “Toward accurate dynamic time warping in linear

time and space”, Intelligent Data Analysis, v. 11, n. 5, pp. 561–580, Oct.

2007.

[32] DIXON, S. “Live tracking of musical performances using on–line time warping”.

In: 8th International Conference on Digital Audio Effects (DAFx), pp.

92–97, Madrid, Spain, Sept. 2005.

[33] KYUTOKU, H., DEGUCHI, D., TAKAHASHI, T., et al. “Subtraction-

based forward obstacle detection using illumination insensitive feature

for driving-support”. In: IEEE International Conference on Computer

Vision (ICCV), pp. 515–525, Berlin, Germany, 2012.

[34] MUKOJIMA, H., DEGUCHI, D., KAWANISHI, Y., et al. “Moving cam-

era background-subtraction for obstacle detection on railway tracks”. In:

IEEE International Conference on Image Processing (ICIP), pp. 3967–

3971, Phoenix, USA, Sept. 2016.

[35] KONG, H., AUDIBERT, J. Y., PONCE, J. “Detecting abandoned objects with

a moving camera”, IEEE Transactions on Image Processing, v. 19, n. 8,

pp. 2201–2210, Aug. 2010.

[36] CASTELLANOS, J. A., MONTIEL, J. M. M., NEIRA, J., et al. “The SPmap: a

probabilistic framework for simultaneous localization and map building”,

v. 15, pp. 948–953, 1999.

[37] DISSANAYAKE, M., NEWMAN, P., CLARK, S., et al. “Photographing

long scenes with multi-viewpoint panoramas”. In: IEEE Transactions on

Robotics and Automation, v. 17, pp. 229–241, 2001.

[38] ENDRES, F., HESS, J., ENGELHARD, N., et al. “An evaluation of the RGB-

D SLAM system”. In: IEEE International Conference on Robotics and

Automation (ICRA), pp. 1691 – 1696, Saint Paul, MN, 2012.

156

[39] STEDER, B., GRISETTI, G., STACHNISS, C., et al. “Visual SLAM for flying

vehicles”. In: IEEE Transactions on Robotics, v. 24, pp. 1088–1093, Oct.

2008.

[40] DAVISON, A. J. “Real-time simultaneous localisation and mapping with a

single camera”. In: Proceedings of the Ninth IEEE International Confer-

ence on Computer Vision (ICCV), pp. 1403–1411, Washington, DC, USA,

2003.

[41] DAVISON, A. J. “SLAM with a single camera”. In: SLAM/CML Workshop at

ICRA, 2002.

[42] SALAS-MORENO, R. F., NEWCOMBE, R. A., STRASDAT, H., et al.

“SLAM++: simultaneous localisation and mapping at the level of ob-

jects”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1352–1359, Portland, USA, 2013.

[43] KONOLIGE, K., AGRAWAL, M. “FrameSLAM: from bundle adjustment to

real-time visual mapping”, IEEE Transactions on Robotics, v. 24, n. 5,

pp. 1066–1077, Oct. 2008.

[44] CLEMENTE, L., DAVISON, A., REID, I., et al. “Mapping large loops with a

single hand-held camera”. Atlanta, USA, June 2007.

[45] TRIGGS, B., MCLAUCHLAN, P. F., HARTLEY, R. I., et al. “Bundle ad-

justment - a modern synthesis”. In: International Workshop on Vision

Algorithms: Theory and Practice, pp. 298–372, London, UK, 2000.

[46] ENGEL, J., SCHÖPS, T., CREMERS, D. “LSD-SLAM: large-scale di-

rect monocular SLAM”. In: European Conference on Computer Vision

(ECCV), pp. 834–849, Zurich, Switzerland, Sept. 2014.

[47] KLOPSCHITZ, M., ZACH, C., IRSCHARA, A., et al. “Generalized detection

and merging of loop closures for video sequences”. In: International Sym-

posium on 3D Data Processing, Visualization and Transmission, Atlanta,

USA, Sept. 2008.

[48] CHIRIKJIAN, G. S. Stochastic models, information theory, and lie groups.

Springer-Verlag, 2012.

[49] HORN, B. K., SCHUNCK, B. G. Determining optical flow. Technical report,

Cambridge, USA, 1980.

157

[50] SUN, D., ROTH, S., BLACK, M. J. “A quantitative analysis of current prac-

tices in optical flow estimation and the principles behind them”, Interna-

tional Journal of Computer Vision, v. 106, n. 2, pp. 115–137, Jan. 2014.

[51] BROX, T., BRUHN, A., PAPENBERG, N., et al. “High accuracy optical flow

estimation based on a theory for warping”. In: European Conference on

Computer Vision (ECCV), v. 3024, pp. 25–36, Prague, Czech Republic,

May 2004.

[52] WEDEL, A., POCK, T., BRAUN, J., et al. “Duality TV-L1 flow with funda-

mental matrix prior”. In: 23rd International Conference Image and Vision

Computing New Zealand, pp. 1–6, Nov. 2008.

[53] WEDEL, A., POCK, T., ZACH, C., et al. “Statistical and geometrical ap-

proaches to visual motion analysis”. chap. An improved algorithm for

TV-L1 optical flow, pp. 23–45, Berlin, Heidelberg, 2009.

[54] BLACK, M. J., ANANDAN, P. “The robust estimation of multiple motions:

parametric and piecewise-smooth flow fields”, Computer Vision and Im-

age Understanding, v. 63, n. 1, pp. 75–104, 1996.

[55] BRUHN, A., WEICKERT, J., SCHNÖRR, C. “Lucas/Kanade meets

Horn/Schunck: combining local and global optic flow methods”, Inter-

national Journal of Computer Vision, v. 61, n. 3, pp. 211–231, Feb. 2005.

[56] BLAKE, A., ZISSERMAN, A. Visual reconstruction. MIT Press, 1987.

[57] ZIMMER, H., BRUHN, A., WEICKERT, J. “Optic flow in harmony”, In-

ternational Journal of Computer Vision, v. 93, n. 3, pp. 368–388, July

2011.

[58] PARK, S., KWAK, N. “Illumination robust optical flow estimation by

illumination-chromaticity decoupling”. In: IEEE International Confer-

ence on Image Processing (ICIP), pp. 1910–1914, Quebec City, Canada,

Sept. 2015.

[59] MILEVA, Y., BRUHN, A., WEICKERT, J. “Illumination-robust variational

optical flow with photometric invariants”. In: Proceedings of the 29th

DAGM Conference on Pattern Recognition, pp. 152–162, Berlin, Heidel-

berg, 2007.

[60] DRULEA, M., NEDEVSCHI, S. “Motion estimation using the correlation

transform”, IEEE Transactions on Image Processing, v. 22, n. 8, pp. 3260–

3270, Aug. 2013.

158

[61] MOHAMED, M. A., RASHWAN, H. A., MERTSCHING, B., et al.

“Illumination-robust optical flow using a local directional pattern”, IEEE

Transactions on Circuits and Systems for Video Technology, v. 24, n. 9,

pp. 1499–1508, Sept. 2014.

[62] ALI, S., DAUL, C., GALBRUN, E., et al. “Illumination invariant optical

flow using neighborhood descriptors”, Computer Vision and Image Un-

derstanding, v. 145, n. C, pp. 95–110, April 2016.

[63] WEINZAEPFEL, P., REVAUD, J., HARCHAOUI, Z., et al. “DeepFlow: large

displacement optical flow with deep matching”. In: IEEE International

Conference on Computer Vision (ICCV), pp. 1385–1392, Washington,

USA, 2013.

[64] REVAUD, J., WEINZAEPFEL, P., HARCHAOUI, Z., et al. “EpicFlow: edge-

preserving interpolation of correspondences for optical flow”. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp.

1164–1172, Boston, USA, June 2015.

[65] FEI-FEI, L., PERONA, P. “A Bayesian hierarchical model for learning natural

scene categories”. In: IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), v. 2, pp. 524–531, Washington,

DC, USA, June 2005.

[66] BAILER, C., TAETZ, B., STRICKER, D. “Flow fields: dense correspon-

dence fields for highly accurate large displacement optical flow estima-

tion”, IEEE Transactions on Pattern Analysis and Machine Intelligence,

March 2017.

[67] DOSOVITSKIY, A., FISCHER, P., ILG, E., et al. “FlowNet: learning optical

flow with convolutional networks”. In: IEEE International Conference on

Computer Vision (ICCV), Santiago, Chile, Dec. 2015.

[68] ILG, E., MAYER, N., SAIKIA, T., et al. “FlowNet 2.0: evolution of optical

flow estimation with deep networks”. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, July 2017.

[69] RANJAN, A., BLACK, M. J. “Optical flow estimation using a spatial pyra-

mid network”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 2720–2729, Honolulu, Hawaii, July 2017.

[70] HUI, T.-W., TANG, X., LOY, C. C. “LiteFlowNet: a lightweight convolu-

tional neural network for optical flow estimation”. In: IEEE Conference

159

on Computer Vision and Pattern Recognition (CVPR), pp. 8981–8989,

Salt Lake City, USA, June 2018.

[71] SUN, D., YANG, X., LIU, M.-Y., et al. “PWC-Net: CNNs for optical flow using

pyramid, warping, and cost volume”. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Salt Lake City, USA, Sept. 2018.

[72] HASSELL, D. G., LORD, T. D., SCELSI, L., et al. “The effect of boundary

curvature on the stress response of linear and branched polyethylenes in

a contraction–expansion flow”, Rheologica Acta, v. 50, n. 7, pp. 675–689,

Aug. 2011.

[73] REYNOLDS, C., THOMPSON, R., MCLEISH, T. “Pressure and shear rate de-

pendence of the viscosity and stress relaxation of polymer melts”, Journal

of Rheology, v. 62, n. 2, pp. 631–642, 2018.

[74] FAROOQ, M., ASLAM, A., HUSSAIN, B., et al. “A comparison of image

processing techniques for optical interference fringe analysis”, Photonic

Sensors, v. 5, n. 4, pp. 304–311, 2015.

[75] YE, G., WEI, L. “A method for interference fringe fast skeletonizing”. In: 2nd

International Conference on Computer Science and Network Technology,

pp. 1784–1786, Changchun, China, Dec. 2012.

[76] YU, Q., ANDRESEN, K. “Fringe-orientation maps and fringe skeleton ex-

traction by the two-dimensional derivative-sign binary-fringe method”,

Applied Optics, v. 33, n. 29, pp. 6873–6878, 1994.

[77] EL-MORSY, M. “A new algorithm for automatic double bright fringe

of multiple-beam fizeau fringe skeletonization using Fourier transform

method of fringe pattern analysis”, Journal of Signal and Information

Processing, v. 3, n. 3, pp. 412–419, 2012.

[78] SOKKAR, T., DESSOUKY, H. E., SHAMS-ELDIN, M., et al. “Automatic

fringe analysis of two-beam interference patterns for measurement of re-

fractive index and birefringence profiles of fibres”, Optics and Lasers in

Engineering, v. 45, n. 3, pp. 431 – 441, 2007.

[79] POON, C. Y., KUJAWINSKA, M., RUIZ, C. “Automated fringe pattern anal-

ysis for Moiré interferometry”, Experimental Mechanics, v. 33, n. 3,

pp. 234–241, Sept. 1993.

160

[80] HUNTLEY, J. M. “Automated fringe pattern analysis in experimental mechan-

ics: A review”, The Journal of Strain Analysis for Engineering Design,

v. 33, n. 2, pp. 105–125, 1998.

[81] FULONG, D., WANG, Z. “Automatic fringe patterns analysis using digital

processing techniques: I. Fringe center method”, Acta Photonica Sinica,

v. 28, n. 8, pp. 700–6, 1999.

[82] WANG, Z., HAN, B. “Enhanced random phase shifting technique”. In: X

SEM International Congress & Exposition on Experimental & Applied

Mechanics, Costa Mesa, USA, June 2004.

[83] MEYER, F. “Iterative image transformations for an automatic screening of

cervical smears”, Journal of Histochemistry & Cytochemistry, v. 27, n. 1,

pp. 128–135, 1979.

[84] ZHANG, D., MA, M., AROLA, D. D. “Fringe skeletonizing using an improved

derivative sign binary method”, Optics and Lasers in Engineering, v. 37,

n. 1, pp. 51–62, 2002.

[85] AGASSANT, J.-F., BAAIJENS, F., BASTIAN, H., et al. “The matching of

experimental polymer processing flows to viscoelastic numerical simula-

tion”, International Polymer Processing, v. 17, n. 1, pp. 3–10, 2002.

[86] THOMAZ, L. A., DA SILVA, A. F., DA SILVA, E. A. B., et al. “A mor-

phological approach to the automatic detection of dark fringes applied

to birefringence images”. In: IEEE International Conference on Image

Processing (ICIP), pp. 739–743, Phoenix, USA, Sept. 2016.

[87] FARIAS, T. M., SECCHI, A. R., BUTLER, S., et al. “Utilização da técnica de

birrefringência em reômetro multipasse para a diferenciação de grades de

poliestireno cristal”, Poĺımeros, v. 24, n. 5, pp. 596–603, 2014.

[88] CASTRO, A. M., PEREIRA, J. O., FARIAS, T. M., et al. “Application of

the GIMP software in the analysis of birefringence images obtained in a

multipass rheometer”, Rheologica Acta, v. 57, n. 2, pp. 113–126, 2018.

[89] MATLAB. version 8.0.0.783 (R2012b). Natick, Massachusetts, The Math-

Works Inc., 2012.

[90] MATSUYAMA, T., OHYA, T., HABE, H. “Background subtraction for non-

stationary scene”. In: Asian Conference on Computer Vision (ACCV),

pp. 622–667, Taipei, Taiwan, Jan. 2000.

161

[91] WANG, Z., BOVIK, A. C., SHEIKH, H. R., et al. “Image quality assessment:

from error visibility to structural similarity”, IEEE Transactions on Image

Processing, v. 13, n. 4, pp. 600–612, April 2004.

[92] DALAL, N., TRIGGS, B. “Histograms of oriented gradients for human detec-

tion”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 886–893, Washington, USA, June 2005.

[93] JUNIOR, O. L., DELGADO, D., GONCALVES, V., et al. “Trainable classifier-

fusion schemes: an application to pedestrian detection”. In: 12th Interna-

tional IEEE Conference on Intelligent Transportation Systems, pp. 1–6,

Oct. 2009.

[94] DA SILVA, A. F., THOMAZ, L. A., CARVALHO, G., et al. “An annotated

video database for abandoned-object detection in a cluttered environ-

ment”. In: International Telecommunications Symposium (ITS), pp. 1–5,

São Paulo, Brazil, Aug. 2014.

[95] LUCAS, B. D., KANADE, T. “An iterative image registration technique with

an application to stereo vision”. In: 7th International Joint Conference

on Artificial Intelligence, Vancouver, Canada, 1981.

[96] HARRIS, C., STEPHENS, M. “A combined corner and edge detection”. In:

Fourth Alvey Vision Conference, pp. 147–151, 1988.

[97] BAY, H., ESS, A., TUYTELAARS, T., et al. “Speeded-up robust features

(SURF)”, Computer Vision and Image Understanding (CVIU), v. 110,

n. 3, pp. 346–359, June 2008.

[98] NISTER, D. “An efficient solution to the five-point relative pose problem”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 26,

n. 6, pp. 756–770, June 2004.

[99] OLSSON, C., ERIKSSON, A., HARTLEY, R. “Outlier removal using dual-

ity”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1450–1457, San Francisco, USA, June 2010.

[100] SIVIC, J., ZISSERMAN, A. “Efficient visual search of videos cast as text

retrieval”, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, v. 31, n. 4, pp. 591–606, April 2009.

[101] UMEYAMA, S. “Least-squares estimation of transformation parameters be-

tween two point patterns”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, v. 13, n. 4, pp. 376–380, April 1991.

162

[102] ABSIL, P.-A., MAHONY, R., SEPULCHRE, R. Optimization algorithms on

matrix manifolds. Princeton University Press, 2008.

[103] GEIGER, A., LENZ, P., URTASUN, R. “Are we ready for autonomous driv-

ing? The KITTI vision benchmark suite”. In: IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), Providence, USA, June

2012.

[104] GONZALEZ, R., RODRIGUEZ, F., GUZMAN, J. L., et al. “Combined visual

odometry and visual compass for off-road mobile robots localization”,

Robotica, v. 30, n. 6, pp. 865–878, 2012.

[105] NOURANI-VATANI, N., BORGES, P. V. K. “Correlation-based visual odom-

etry for ground vehicles”, Journal of Field Robotics, v. 28, n. 5, pp. 742–

768, 2011.

[106] SCARAMUZZA, D., FRAUNDORFER, F. “Visual odometry [Tutorial]”,

IEEE Robotics Automation Magazine, v. 18, n. 4, pp. 80–92, Dec. 2011.

[107] HUBER, P., WILEY, J., INTERSCIENCE, W. Robust statistics. Wiley New

York, 1981.

[108] XIAO, J., CHENG, H., SAWHNEY, H., et al. “Bilateral filtering-based optical

flow estimation with occlusion detection”. In: European Conference on

Computer Vision (ECCV), pp. 211–224, Berlin, Heidelberg, 2006.

[109] RITTNER, L., FLORES, F. C., LOTUFO, R. A. “A tensorial framework

for color images”, Pattern Recognition Letters, v. 31, n. 4, pp. 277–296,

March 2010.

[110] BIGUN, J., GRANLUND, G. H. “Optimal orientation detection of linear sym-

metry”. In: IEEE International Conference on Computer Vision (ICCV),

London, UK, June 1987.

[111] BISHOP, R. L., GOLDBERG, S. I. Tensor analysis on manifolds. Dover

Publications, 1980.

[112] BAKER, S., SCHARSTEIN, D., LEWIS, J. P., et al. “A database and eval-

uation methodology for optical flow”, International Journal of Computer

Vision, v. 92, n. 1, pp. 1–31, 2011.

[113] R WIEGELL, M., TUCH, D., B W LARSSON, H., et al. “Automatic seg-

mentation of thalamic nuclei from diffusion tensor magnetic resonance

imaging”, NeuroImage, v. 19, pp. 391–401, July 2003.

163

[114] ZIYAN, U., TUCH, D., WESTIN, C.-F. “Segmentation of thalamic nuclei

from DTI using spectral clustering”. In: 9th International Conference

on Medical Image Computing and Computer-Assisted Intervention (MIC-

CAI), v. 9, pp. 807–14, Copenhagen, Denmark, Feb. 2006.

[115] PENNEC, X., FILLARD, P., AYACHE, N. “A Riemannian framework for

tensor computing”, International Journal of Computer Vision, v. 66, n. 1,

pp. 41–66, Jan. 2006.

[116] FILLARD, P., ARSIGNY, V., AYACHE, N., et al. “A Riemannian framework

for the processing of tensor-valued images”. In: Deep Structure, Singular-

ities, and Computer Vision, pp. 112–123, Berlin, Heidelberg, 2005.

[117] RUDIN, L. I., OSHER, S., FATEMI, E. “Nonlinear total variation based noise

removal algorithms”, Physica D, v. 60, n. 1-4, pp. 259–268, Nov. 1992.

[118] BARRON, J. L., FLEET, D. J., BEAUCHEMIN, S. S. “Performance of optical

flow techniques”, International Journal of Computer Vision, v. 12, n. 1,

pp. 43–77, Feb. 1994.

[119] OTTE, M., NAGEL, H. H. “Optical flow estimation: advances and com-

parisons”. In: Eklundh, J.-O. (Ed.), European Conference on Computer

Vision (ECCV), pp. 49–60, Berlin, Heidelberg, 1994.

[120] HAFNER, D., DEMETZ, O., WEICKERT, J. “Why is the census transform

good for robust optic flow computation?” In: Scale space and variational

methods in computer vision, pp. 210–221, Berlin, Heidelberg, 2013.

[121] AHMED, R., LIANG, R., MACKLEY, M. “The experimental observation

and numerical prediction of planar entry flow and die swell for molten

polyethylenes”, Journal of Non-Newtonian Fluid Mechanics, v. 59, n. 2,

pp. 129–153, 1995.

[122] MACOSKO, C. W., LARSON, R. G. Rheology: principles, measurements,

and applications. 1 ed. New York, Wiley, 1994.

[123] FULLER, G. G. Optical rheometry of complex fluids. New York, Oxford

University Press, Inc, 1995.

[124] SERRA, J. Image analysis and mathematical morphology. Orlando, USA,

Academic Press, Inc., 1983.

[125] SOILLE, P. Morphological image analysis: principles and applications. 2 ed.

Secaucus, NJ, USA, Springer-Verlag New York, Inc., 2003.

164

[126] BEUCHER, S., LANTUÉJ, C. “Use of watersheds in contour detection”. In:

International workshop on image processing, real-time edge and motion

detection, 1979.

[127] HARALICK, R. M., SHAPIRO, L. G. Computer and robot vision. 1st ed.

Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc., 1992.

[128] YU, Q., LIU, X., ANDRESEN, K. “New spin filters for interferometric fringe

patterns and grating patterns”, Applied Optics, v. 33, n. 17, pp. 3705–

3711, 1994.

[129] AFONSO, B. M., CINELLI, L. P., THOMAZ, L. A., et al. “Moving-camera

video surveillance in cluttered environments using deep features”. In:

IEEE International Conference on Image Processing (ICIP), pp. 2296–

2300, Athens, Greece, Oct. 2018.

[130] XU, G., ZHANG, Z. Epipolar geometry in stereo, motion and object recogni-

tion. Kluwer Academic Publishers, 1996.

[131] LOWE, D. G. “Distinctive Image Features from Scale-Invariant Keypoints”,

International Journal of Computer Vision, 2004.

[132] LEUTENEGGER, S., CHLI, M., SIEGWART, Y. “BRISK: binary robust in-

variant scalable keypoints”. In: IEEE International Conference on Com-

puter Vision (ICCV), pp. 2548–2555, 2011.

[133] ALAHI, A., ORTIZ, R., VANDERGHEYNST, P. “FREAK: fast retina key-

point”. In: IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp. 510 – 517.

[134] LONGUET-HIGGINS, H. C. “A computer algorithm for reconstructing a

scene from two projections”, Nature, v. 293, n. 5828, pp. 133–135, Sept.

1981.

[135] ZHANG, Z. “Determining the epipolar geometry and its uncertainty: a re-

view”, International Journal of Computer Vision, v. 27, n. 2, pp. 161–195,

April 1998.

[136] LUONG, Q.-T., VIÉVILLE, T. “Canonical representations for the geometries

of multiple projective views”, Computer Vision and Image Understanding,

v. 64, n. 2, pp. 193–229, Sept. 1996.

[137] FARAUT, J. Analysis on Lie groups: an introduction. Cambridge University

Press, 2008.

165

[138] BOURMAUD, G. Estimation de paramètres évoluant sur des groupes de Lie:

Application à la cartographie et à la localisation d’une caméra monocu-

laire. PHD Thesis, Université de Bordeaux, Bordeaux, France, 2015.

166

Appendix A

Camera Models and Projective

Geometry

In this section, several concepts related to projection of the real world into a camera

are depicted. This subject is of paramount importance to the understanding of the

algorithms to recover the camera trajectory from a video sequence.

If several cameras record the same scene in different positions, there is a rela-

tionship between the positioning of the cameras and the images they create. As can

be seen in Fig. A.1, image points in multiple views that represent the same three-

dimensional point define an intrinsic geometrical property among the cameras.

In this example, a three-dimensional point X is projected in the left image onto

the point x, and the projection ray passes through the camera center C. The point

x′ is also a projection of the X on the right image, which passes through the camera

center C′. Since the projection rays are assumed to be straight lines, the knowledge

of an image point x in one image imposes a restriction on the position of the image

point x′ in the other image. The next sections define a model for the camera and for

the geometry between multiple views, and show how to explore these geometrical

properties to infer information about the camera positioning based on the image

content.

A.1 Homogeneous Coordinates

The mathematical definition of the camera projection and the relationship between

images can be simplified if one considers the use of homogeneous coordinates. A

point in the space R2 is usually represented by a vector (x, y)T . By extending the

vector to include a third component, for example, (x, y, 1)T it is said that the vector

is represented in homogeneous coordinates. This representation has the advantage

of allowing a simplification of several operations.

167

X

x

C’C

x’

e e’
l’

Figure A.1: Intrinsic geometry for two cameras representing the same scene. The
three-dimensional point X is projected in the left image onto the point x and in the
right image onto the point x′. The projection for each image is defined by the image
plane and the camera center, C and C′ respectively for the left and right cameras.

For instance, a line in the space R2 is the set of points where the relation ax +

by + c = 0 is valid. Based on this definition, a line can be represented as the vector

l = (a, b, c)T . In order to test if the point x = (x, y, 1)T , in homogeneous coordinates,

belongs to the line l, it is necessary and sufficient to compute the internal product

between x and l, that is

xT l = (x, y, 1)(a, b, c)T = ax+ by + c, (A.1)

which is zero if x belongs to the line l. One should notice that if the vector (x, y, 1)

belongs to the line l, any vector of the form (kx, ky, k)T also belongs to this line, so

that the set of vectors (kx, ky, k)T represent the same point (x, y)T . Since the factor

k can be arbitrary, it is often defined as k = 1.

Another simplification is the definition of a point at infinity x∞. Consider two

parallel lines l1 = (a, b, c)T and l2 = (a, b, c′)T . The point where the two lines

intersect can be found by using the following expression [13]:

x∞ = l1 × l2 = (c− c′)(b,−a, 0)T , (A.2)

where one can see that it is mathematically impossible to normalize the coordi-

nates such that the last coordinate is equal to one. However, it is known that x∞ is

168

obtained as the solution to the intersection of two parallel lines, therefore should rep-

resent a point at infinity. Thereby, any vector in homogeneous coordinates defined

as (x, y, 0)T represents a point at infinity.

A.2 Camera Model

A camera is a device that captures still images by mapping points in the three-

dimensional space onto a projection plane. A simple approach to understand the

operation of a camera is the model of a pinhole camera. It considers that the camera

is composed of a box with a tiny aperture and a projection surface, without any lens

in the exterior, and every light ray passes through the aperture and projects an

inverted image onto a surface in the opposite side of the camera.

For convention, to further simplify the mathematics, it is often defined a virtual

projection plane placed in front of the camera. In this paradigm, the projection

occurs when the light ray crosses the projection plane towards the aperture, which is

called the camera center. Considering the camera center as the origin of a coordinate

system, the point X in the three-dimensional space and the equivalent point x in

the projected image space, and considering the projection plane to be perpendicular

to the z axis passing through the point Z = f , the projection of the point X to the

point x can be expressed as:

x = PX =

f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 =

fXfY
Z

 =

fX/ZfY/Z

1

 , (A.3)

where the matrix P that transforms the point X to the point x is called the camera

matrix and f is the focal length.

In Fig. A.2, the projection p of the camera center is considered as the origin

of a coordinate system in the image. However, the origin of the coordinate system

of an image is often defined as the top left or down left positions. If one wants to

translate the coordinate system to a different location, the camera center must be

compensated in Eq. (A.3), leading to the following equation:

x =

fX/Z + px

fY/Z + py

1

 =

f 0 px 0

0 f py 0

0 0 1 0



X

Y

Z

1

 . (A.4)

If the coordinate system of the three-dimensional space should also be rotated

or translated, which is the case for instance if there are multiple cameras to be

169

X

Z

X

Y

x

y

x

C p

Figure A.2: Projection onto an image plane performed by a pinhole camera. The
point X in the three-dimensional space is projected to the point x in the image
plane through the light ray that crosses the camera center C.

modeled according to the same reference, the camera model has to be further refined

to also cope with this change in the coordinates. The model is adapted to include

a transformation that rotates and translates the coordinate system to coincide with

the coordinate centered on the camera. The camera model becomes:

x =

f 0 px 0

0 f py 0

0 0 1 0

[R t

0 1

]
X = K

[
R | t

]
X = PX, (A.5)

with

K =

f 0 px

0 f py

0 0 1

 . (A.6)

The matrix R and the vector t represent, respectively, a rotation and a trans-

lation of the camera with respect to space coordinates, and are called the extrinsic

parameters of the camera. The matrix K is called the calibration matrix and sum-

marizes the intrinsic parameters of the camera, which are related to the projection

of the three-dimensional points to generate the image points.

It is also possible to derive the expression of the camera center given the camera

matrix P. Consider the points A and C, with C having the property that PC = 0.

Any point that belongs to the line connecting A and C can be generated using the

following expression:

X = λA + (1− λ)C, (A.7)

170

where λ is a variable used to parameterize a point in the line. The projection of the

point X in the image is:

x = PX = λPA + (1− λ)PC = λPA. (A.8)

It should be noted that any point X defined by Eq. (A.7) possesses the same

image point x = λPA. One can conclude that this line represents a projection ray,

and since there was no assumption about the point A, the remaining point C such

that PC = 0 must be the camera center.

An even more generic model considers other effects. In CCD cameras, a pixel

may not be square, which happens when the camera has different focal lengths in

the horizontal (fx) and vertical (fy) directions. A camera may also have a shear

distortion in the projected image, exemplified by the factor s, which occurs when

the image axes x and y are not perpendicular. The camera model considering the

aforementioned distortions is:

K =

fx s px

0 fy py

0 0 1

 . (A.9)

A.3 Fundamental Matrix

As seen in Fig. A.1, given an image point from one camera and a second camera

recording the same scene, any point in the second camera corresponding to a point

in the first camera necessarily must belong to a line that also contains the projection

of the camera center of the first camera. The fundamental matrix is an object that

summarizes the geometric relation between points from the two views.

The geometric relation between the image points can be explained as follows.

Consider two cameras with known camera matrices P and P′, and an image point

x in the first image that is the projection of the three-dimensional point X. The

projection ray that creates the image point can be defined by two points: the camera

center, where PC = 0, and any point that respects the relation x = PX. According

to [130], the second point can be obtained by computing the pseudoinverse of P, as

X+ = P+x. The projection ray is a line defined as the set of points X(λ), for a

parameter λ,such that:

X(λ) = X+ + λC. (A.10)

In the second view, the projection of any projection ray such as the one defined

in Eq. (A.10) is called an epipolar line, and it passes through the projection of the

two known points that were used to define it, X+ and C. The projection of the

171

camera center is represented by e′ and is called the epipole. The image points that

define this epipolar line are:

e′ = P′C, (A.11)

and

x+ = P′X+ = P′P+x. (A.12)

Representing the epipolar line as a vector, one can write [13]:

l′ = e′ × x+ = [e′]×P′P+x = Fx, (A.13)

and

F = [e′]×P′P+. (A.14)

where [e′]× is an antisymmetric matrix created from the components of e′ =

(e′1, e
′
2, e
′
3)T in order to transform a vectorial product into a scalar product, using

the following map:

[e′]× =

 0 −e′3 e′2

e′3 0 −e′1
−e′2 e′1 0

 . (A.15)

The matrix F is called a fundamental matrix and establishes a relationship be-

tween two views from the same scene: an image point x from the first image defines

a projection ray, and the projection of this line in the second image defines the

epipolar line l′. If one knows the point x from one image and the fundamental

matrix, the corresponding point x′ in the second image must belong to the epipolar

line l′. Thus, one can find the following equation relating the corresponding points

x and x′ in the two views:

0 = x′
T
l′ = x′

T
Fx. (A.16)

A.4 Essential Matrix

The essential matrix can be interpreted as a particular case of the fundamental

matrix when the calibration matrix is known. Since a camera matrix is given by the

expression P = K
[
R | t

]
, one can remove the effect of the calibration matrix,

which is equivalent to using a normalized coordinate system in the image, with:

P̂ = K−1P =
[
R | t

]
, (A.17)

172

and then

x̂ = K−1PX = K−1x. (A.18)

Given a pair of normalized cameras, P̂ =
[
I | 0

]
and P̂′ =

[
R | t

]
, the

essential matrix that represents the relationship between the cameras is given by:

E = [t]×R = R[RTt]×, (A.19)

which shows that the essential matrix depends only on the relative rotation and

translation between both cameras.

The essential matrix also defines the relation between corresponding normalized

points, similarly to Eq. (A.16):

x̂′
T
Ex̂ = 0. (A.20)

Replacing Eq. (A.18) in Eq. (A.16), one can find a relation between the funda-

mental and essential matrices, given the calibration matrices:

E = K′TFK. (A.21)

A.5 Computation of the fundamental matrix

Eq. (A.14) shows how to retrieve the fundamental matrix that relates two images if

the camera matrices are known. However, a common application is the case where

only the images are known, and one wants to infer properties of the positioning of

the cameras and the three-dimensional space. In this situation, the fundamental

matrix must be computed directly from the image information.

Feature detector and descriptor algorithms are tools that can be used to esti-

mate corresponding points in two images. Algorithms such as the scale-invariant

feature transform (SIFT) [131], the speeded-up robust features (SURF) [97], the bi-

nary robust invariant scalable keypoints (BRISK) [132], or the fast retina keypoint

(FREAK) [133] detect representative points in the images and create, for each point,

a feature descriptor, often based on the local information. These descriptors can be

used to estimate corresponding points between the images, by pairing points with

similar descriptors.

The estimation of the fundamental matrix can be made using a set of correspond-

ing points. Each pair of corresponding points provides an equation on the elements

of the fundamental matrix given by Eq. (A.16). Using a sufficient number of points,

one can create a system of equations to solve for the elements of the fundamental

matrix.

Some of the classical algorithms to compute the fundamental matrix are the

173

eight-point algorithm [134] , the seven-point algorithm [135] and the five-point al-

gorithm [98]. The eight-point algorithm [134] requires at least eight pairs of corre-

sponding points to compute the eight unknown elements of the matrix (which is of

size 3× 3), assuming that in homogeneous coordinates the scale can be disregarded.

The seven-point algorithm [135] also includes the restriction that det(F) = 0, there-

fore only seven points are necessary. The five-point algorithm [98] is used in the

case where the camera calibration is known, and also includes restrictions on the

essential matrix.

A.6 Reconstruction from Two Views

The previous sections depicted the relation between the disposition of the cam-

eras in a scene and the image they create. If there is no information about the

three-dimensional space and only those images are known, it is possible to estimate

information of the cameras disposition from the image contents.

Eq. (A.14) shows the relation between the fundamental matrix F and the under-

lying camera matrices P and P′. Combining Eqs. (A.14) and (A.3), one deduces

that:

0 = x′
T
Fx = (P′X)TF(PX) = XT (P′

T
FP)X, (A.22)

which, in order to be true for any X, implies that P′TFP is skew-symmetric.

A possible pair of camera matrices that defines the fundamental matrix F is the

following:

P =
[
I | 0

]
and P′ =

[
SF | e′

]
, (A.23)

since [
SF | e′

]T
F
[
I | 0

]
=

[
FTSTF 0

e′TF 0

]
=

[
FTSTF 0

0 0

]
(A.24)

is skew-symmetric if S is also skew-symmetric. In [136] it is proposed that S = [e′]×.

In fact, there is a family of matrices similar to the ones shown in Eq. (A.23) that

define the same fundamental matrix F. They are of the form:

P =
[
I | 0

]
e P′ =

[
[e′]×F + e′vT | λe′

]
, (A.25)

for any vector v and scalar λ. This indicates that there is an ambiguity in the

reconstruction, which is further discussed in the subsection A.8.

If the calibration matrices for both cameras are known beforehand, the cameras

can be obtained from the essential matrix in a simpler way. As shown in Eq. (A.19),

the essential matrix is defined by a rotation matrix R and a translation vector

174

t. Using an SVD decomposition of the essential matrix, it is possible to define a

factorization of the form E = SR. An SVD of the essential matrix is:

E = U

1 0 0

0 1 0

0 0 0

VT . (A.26)

Using

W =

0 −1 0

1 0 0

0 0 0

 and Z =

 0 1 0

−1 0 0

0 0 0

 , (A.27)

one finds that

S = UZUT = [t]× and R = UWVT or UWTVT. (A.28)

From Eq. (A.28), one can see that there are two possible values for the matrix

R, which is due to a symmetry in the position of the cameras. In addition, with

this decomposition, the matrix S necessarily has a Frobenius norm equal to
√

2 [13]

and the corresponding vector t is unitary, which shows that it is not possible to find

the true displacement in the three-dimensional space, but only a normalized vector

can be estimated, unless some clue about the original scene is known beforehand.

Since the matrix E is also in homogeneous coordinates, it is not possible to infer

the correct of sign of the components, as the scale of the matrix is normalized,

therefore a scale of −1 produces the same matrix. Combining the indefinition of the

sign and the two solutions for the rotation, one concludes that this decomposition

defines four possible candidates for the camera position, which have are symmetrical

among them, as seen in Fig. A.3. In order to distinguish among these four cases, it

is often defined that all three-dimensional points must be facing the cameras. Thus,

using a triangulation technique, one can obtain the solution that provides the largest

number of points in front of the cameras.

In analogy to Eq. (A.25), which shows the pair of cameras when the calibration

is unknown, the pair of cameras obtained using the essential matrix is:

P =
[
I | 0

]
and P′ =

[
R | λt

]
, (A.29)

for a scalar λ.

Once the camera matrices P and P′ are known, the camera centers C and C′

for this reconstruction can be found as the null space of the camera matrices, since

PC = 0 and P′C′ = 0.

175

X

A B

(a)

X

A
B

(b)

X

A
B

(c)

X

A
B

(d)

Figure A.3: Possible solutions for the decomposition of the essential matrix in a pair
of cameras. The point X represents a three-dimensional point that is projected into
two cameras with centers A and B. (a) Point in front of both cameras. (b) Point
behind both cameras. (c) Point in front of camera A and behind camera B. (d)
Point in front of camera B and behind camera A.

176

A.7 Triangulation

With a pair of camera matrices P and P′ and the corresponding image points x

and x′, it is possible compute the position of the three-dimensional point that was

projected into the cameras. Since a point in the image plane and the corresponding

camera matrix define a projection ray, two projection rays can be found. The

intersection of those lines define the point X in the space, which is the point where

the projections x = PX are x′ = P′X valid. Fig. A.4 shows an example of the

triangulation.

X

x

C’C

x’

Figure A.4: Triangulation of a three-dimensional point without noise in the mea-
surements. The point X

Assuming that the estimation of the corresponding points can have noise, the

restriction defined by Eq. (A.16) may not be satisfied, which potentially leads to

an error in the computation of the camera matrices and the projection rays may

not intersect. Therefore, it may not be possible to find a point X that is projected

onto both images. In this case, one should either introduce some step to correct

the measurements and define a criterion to select points that minimize a pre-defined

error. Fig. A.5 shows an example of the triangulation when the measurements have

noise.

According to [13], an optimum algorithm for the triangulation in the presence

of noise minimizes a cost function that finds approximations of the corresponding

points where the epipolar geometry given by Eq. (A.16) is valid. Considering the

points x and x′, one aims to obtain the points x̂ and x̂′, respectively, subject to the

restriction that x̂TFx̂′ = 0, by minimizing the expression:

F = d(x, x̂)2 + d(x′, x̂′)2, (A.30)

177

x

C’C

x’
x’̂

X̂

x̂

Figure A.5: Triangulation of a point with a noisy measurement of the corresponding
points. The points x̂ and x̂′ represent an approximation of the corresponding points
x and x′ for which the projection rays intersect, and the point X̂ is the resulting
triangulation.

where the operator d(x,y) represents, for instance, the L2 norm between x and y.

Since for the corrected points x̂ and x̂′ Eqs. (A.13) and (A.16) should be true, one

can chose to correct the point x by minimizing in Eq. (A.30) the distance between

the point x and some epipolar line l, analogously for x′ and l′. In addition, since

there is a relation between l and l′, it is possible to parameterize both lines using

the same variable t. In this scheme, the optimization searches for the value of t that

minimizes:

F = d(x, l(t))2 + d(x′, l′(t))2, (A.31)

which can be found as the solution of a sixth-th order polynomium in t [13].

A.8 Ambiguity in the Reconstruction

Section A.6 shows that even if the fundamental or essential matrix is known, it is

not possible to define unequivocally the pair of cameras that generated the input

images. In fact, if there is no information about the original coordinate system

in the three-dimensional space, it is not possible to recover the exact location of

the objects using only a projection of the space. Any valid solution and the true

solution are related by a transformation. This section details this ambiguity in the

reconstruction.

Using a set of corresponding points xi and x′i, it is possible to obtain the re-

178

construction of the scene {P,P′,Xi}, with cameras P and P′ and the triangulated

points Xi. However, for any projective transformation H, one can find a new tri-

angulated point X̄i = HXi and a camera matrix P̄ = PH−1 that have the same

projection in the images, since:

P̄X̄i = PH−1HXi = PXi = x, (A.32)

analogously for the other camera.

One should notice that, if only the points x and x′ are known, it is not possible

to distinguish between the reconstructions {P,P′,Xi} and {P̄, P̄′, X̄i}, since they

map the image points and define the same epipolar geometry. In this case, it is said

that any reconstruction differs from the true one by a projective transformation,

as is exemplified in Fig. A.6. This conclusion can also be drawn from Eq. (A.25),

which shows a decomposition of the fundamental matrix into two cameras with

several degrees of freedom. In this case, the parametrization of the cameras mirror

the degrees of freedom of the projective transformation that defines the ambiguity

of the reconstruction.

C’C

(a)

C’
C

(b)

Figure A.6: Projective reconstruction of a scene. The reconstruction (b) differs from
the real reconstruction (a) by a projective transformation.

If the calibration matrices are known, only the extrinsic parameters of the cam-

179

eras need to be estimated. Since the intrinsic parameters are fixed, it is possible to

find a reconstruction of a scene such that for the set of valid solutions, the projec-

tion ray for the same point always forms the same angle with the image plane. In

this case, the reconstruction is named a metric reconstruction, and any valid recon-

struction is related to the true solution by a similarity transformation, as seen in

Fig. A.7. This case is analogous to Eq. (A.29), which shows a pair of reconstructed

cameras where the second camera is rotated with respect to the first one and it is

not possible to find the true displacement between them.

C’C

(a)

C’C

(b)

Figure A.7: Metric reconstruction of a scene. The reconstruction (b) differs from
the real reconstruction (a) by a similarity transformation.

A.9 Reconstruction for Multiple Views

If three or more views are available, which is the case for instance if one uses a video

with a moving camera, the mathematical development of the geometry that relates

two views, described in the previous sections, can be extended. For three views,

180

one can define a tensor [13] to relate the geometry of the views, in replacement of

the fundamental matrix. Increasing the number of views, problems with an even

greater dimensionality must be solved. For these cases, the solution often consists

in splitting the views into pairs, reconstructing the scene for a pair of views and

incrementally introduce the other views.

The structure from motion (SfM) algorithm is a method to reconstruct the scene

for multiple views of a scene. This section describes a basic version of the SfM

algorithm to incrementally solve the reconstruction for multiple views using the

equations developed for two views.

Using an initial pair of images, one can find corresponding points, compute the

fundamental matrix and find a valid pair of camera matrices and a set of triangulated

points. Fig. A.8 shows this initial solution. In this figure, the cameras with centers

C1 and C2 have correspondent of image points represented with the same color and

some triangulated points Xi are found.

C3C1

C2

X1
X2

X3

Figure A.8: Initial reconstruction of a scene.

In a subsequent step, the other views are incorporated onto the initial recon-

struction. For each view, one finds corresponding points between the current view

and any other view already included in the reconstruction. For those points that

were already used in the reconstruction, the triangulated points are already known,

therefore there is a relation between three-dimensional points Xi and image points

xi in the current image, as can be seen in Fig. A.9. With a sufficient number of

points, the camera matrix for this view can be computed using Eq. (A.5). The cor-

responding points that were not used in the reconstruction are used to triangulate

new points, increasing the point cloud, as depicted in Fig. A.10.

181

C3C1

C2

X1
X2

X3

x1
x2 x3

Figure A.9: Correspondences between the image points xi from a new view and the
cloud of triangulated points Xi.

C3C1

C2

X1
X2

X3

X4

Figure A.10: Expansion of the number of triangulated points, with inclusion of the
points triangulated from new correspondences.

A different approach to solve the SfM involves the computation of an independent

reconstruction for each pair of images, and then the normalization of every recon-

struction to the same coordinate system. As discussed in Subsection A.8, given a

pair of images, there is a family of possible solutions for the reconstruction of the

scene. If one uses two pairs of images representing the same scene and finds the

camera matrices independently for each pair, there is no guarantee that the recon-

182

struction of the first pair and the reconstruction of the second pair are compatible,

since due to the ambiguity, each one has its own coordinate system (for example,

the three-dimensional space extrapolated from the images can have different scales,

the origin of this space can be in different positions, etc.). However, among the

family of solutions for the second reconstruction, one can assume that there is a

solution in the same coordinate system of the first one, which is related to the so-

lution previously found by a specific transformation, which depends on the type of

reconstruction. The algorithm in this approach computes individual reconstructions

and then finds the transformations that make them compatible.

Given a first image pair, one follows the procedure described in the previous

sections to reconstruct the scene, finding camera matrices P2 and P3 and triangu-

lated points, according to Fig. A.8, and those points in space are described using

a coordinate system based on the two cameras. A new pair is formed using a new

view and the last view, that creates another reconstruction with cameras P̂2 and

P̂3 and a set of points X̂i. Using the correspondences between images, one can find

points Xi in a reconstruction of the scene that are equivalent to points X̂i in another

reconstruction. Fig. A.11 shows equivalent triangulated points, each one with its

own coordinate system.

Since it is desired that every reconstruction is grouped in a global one, one

estimates a transformation Xi = HX̂i that makes the second coordinate system

coincide with the first one. In order for the projections in the image to remain the

same, the new camera must be such that P3 = P̂3H, which represents the camera

matrix P̂3 found in the second reconstruction written with respect to the coordinate

system used in the first one.

183

C1

X1
X2

X3

X

Y

Z

(a)

C2

X1
X2

X3

X

Y

Z

^
^

^

(b)

Figure A.11: Equivalent points in different coordinate systems. In (a), the points
Xi are expressed in function of a coordinate system obtained from in the first re-
construction and centered in C1. In (b), the points X̂i are expressed in function
of a coordinate system obtained from the new reconstruction and centered in C2.
Points with the same color in different reconstructions represent correspondences.

184

Appendix B

Lie Groups and Lie Algebra

Lie groups arise from several structures in nature that present a continuous sym-

metry. In order to properly introduce the concept of Lie groups, we define some

basic algebraic definitions that will be useful for the remaining of this thesis. A few

examples in the end of this section aid in the understanding of the concepts here

presented.

B.1 Group

Consider that G is a set and ◦ is a binary operation, also called group operator, that

takes any two elements of G and returns an element of G. The pair (G, ◦) is called

a groupoid:

∀g1, g2 ∈ G : g1 ◦ g2 ∈ G. (B.1)

To be considered a group, a groupoid must respect the following properties:

• Associativity: ∀g1, g2, g3 ∈ G : g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3;

• Existence of identity element: ∃e ∈ G| ∀g ∈ G : e ◦ g = g ◦ e = g;

• Existence of inverse element: ∀g ∈ G : ∃g−1 ∈ G| g−1 ◦ g = g ◦ g−1 = e.

B.2 Field

A field is a set F together with two operations + and · from F × F to F such that

the following properties are true:

• Associativity: ∀a, b, c ∈ F : (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c);

• Commutativity: ∀a, b ∈ F : a+ b = b+ a and a · b = b · a;

185

• Existence of identity element: ∃ea ∈ F | ∀a ∈ F : a + ea = a and ∃em ∈
F | ∀a ∈ F : a · em = a;

• Existence of inverse element: ∀a ∈ F : ∃(−a) ∈ F | a + (−a) = ea and

∀a ∈ F, a 6= ea : ∃(a−1) ∈ F | a · (a−1) = em;

• Distributivity of multiplication over addition: ∀a, b, c ∈ F : a · (b + c) =

(a · b) + (a · c);

B.3 Vector Space

Given a field F and a set V , defining two operations + from V ×V to V and · from

F × V to V , a vector space over F is the set V together with the operations + and

· with the following properties:

• Associativity of addition: ∀u,v,w ∈ V : (u + v) + w = u + (v + w);

• Commutativity of addition: ∀u,v ∈ V : u + v = v + u;

• Existence of additive identity element: ∃e ∈ V | ∀u ∈ V : u + e = u;

• Existence of additive inverse element: ∀u ∈ V : ∃(−u) ∈ V | u + (−u) = e;

• Associativity of scalar multiplication: ∀u ∈ V, a, b ∈ F : a · (b · u) = (ab) · u;

• Distributivity of scalar multiplication with respect to vector addition: ∀u,v ∈
V, a ∈ F : a · (u + v) = a · u + a · v;

• Distributivity of scalar multiplication with respect to field addition: ∀u ∈
V, a, b ∈ F : (a+ b) · u = a · u + b · u;

• Existence of scalar multiplication identity element: ∃em ∈ F | ∀u ∈ V : em·u =

u;

B.4 Algebra

Assuming a field F and a vector space A over F with an additional binary operation ·
from A×A to A, we say that A is an algebra over F if it has the following properties:

• Right distributivity: ∀x,y, z ∈ A : (x + y) · z = x · z + y · z;

• Left distributivity: ∀x,y, z ∈ A : x · (y + z) = x · y + x · z;

• Scaling: ∀x,y ∈ A, ∀a, b ∈ F : (ax) · (by) = (ab)(x · y);

186

B.5 Lie Groups and Lie Algebra

A Lie group (G, ◦) is a special kind of group that has a particular geometry for

which the set G is a smooth manifold, such that the mappings a(g1, g2) = g1 ◦ g2

and b(g) = g−1 are both analytic, which means that the functions a(g) and b(g)

are continuous, infinitely differentiable and can be expressed as a Taylor series that

converge around any point in its domain.

In a matrix Lie group (G, ◦), the elements are g ∈ G ⊂ RN×N and the group

operator ◦ is the matrix multiplication. Some important examples of matrix Lie

group are:

• General linear group: GL(N,R) =
{
A ∈ RN×N | det(A) 6= 0

}
;

• Orthogonal group: O(N) =
{
X ∈ GL(N,R)| XTX = I

}
;

• Special orthogonal group: SO(N) =
{
X ∈ GL(N,R)| XTX = I, det(X) = 1

}
;

• Rigid body motion: SE(3) =

[
R t

01×3 1

]
, with R ∈ SO(3) and t = [t1, t2, t3]T ;

• 3D similarity: Sim(3) =

[
sR t

01×3 1

]
, with R ∈ SO(3), t = [t1, t2, t3]T and

s ∈ R+.

Given a matrix Lie group, elements g ∈ G close to the identity element can be

written as g = exp(X)| X ∈ G, where G is an open neighborhood of 0N×N in the

tangent space at the identity of G, and is called the Lie algebra G [48]. The matrix

Lie algebra G associated to the Lie group G is the set of all matrices X such that

the exponential of each X results in an element of the Lie group G. The opposite

is also valid, and the matrix logarithm provides the inverse mapping between an

element of the Lie algebra and an element of the Lie group:

expG : G → G (B.2)

logG : G→ G. (B.3)

The Lie algebra G associated to a p-dimensional Lie group G is a p-dimensional

vector space, so there is also a mapping between G and Rp which is defined by the

∨ (“vee”) operator:

[]∨G : G → Rp (B.4)

[]∧G : Rp → G. (B.5)

187

In order to reduce the notation, it is also common to denote expG([]∧G) as exp∧G
and logG([]∨G) as log∨G.

The theory of Lie groups provides a tool to define symmetries from a mathemat-

ical point of view. The Lie algebra represents the space tangent to the Lie group

at the identity, having a one-to-one map between them. The importance of the Lie

algebra is that, in general, it is easier to work on a linear space than the “curved”

space defined by the Lie group.

B.6 Adjoint Representation

Since the Lie groups are usually non-commutative, we define a function AdG, called

the adjoint representation of the Lie group G, to express the non-comutativity. For

X ∈ G and a ∈ G, we seek an element b ∈ G in order to satisfy X expG(a) =

expG(b)X. It can be proved that [48]:

b = XaX−1 = AdG(X)a. (B.6)

Other measurement of commutativity is the function adG, called the adjoint

representation of the Lie algebra G. For a,b ∈ Rp, the function adG is defined as:

adG(b)a =
[
[b]∧G [a]∧G − [a]∧G [b]∧G

]∨
G
. (B.7)

Recall that a product on the group represents the group operator ◦, which maps

two elements of the group in another element of the group (for instance, a com-

bination of two successive rotations define a new rotation). Therefore, the adjoint

representation embodies the multiplicative structures of the group and the algebra.

B.7 Baker-Campbell-Hausdorff Formula

The BCH (Baker-Campbell-Hausdorff) formula [137] expresses the group product

directly in Rp. Given X = exp∧(a) and Y = exp∧(b), with X, Y ∈ G and a,b, the

following equation is valid:

log∨G(exp∧G(a) exp∧G(b)) = b + JG(b)a +O(‖a‖2), (B.8)

where

JG(b) =
∞∑
n=0

BnadG(b)n

n!
= I +

1

2
adG(b) + · · · (B.9)

is the left Jacobian of G and Bn are Bernoulli numbers. This equation defines a

first-order Taylor linearization of the group product. One should also notice that

188

this linearization is expressed with respect to the adjoint representation. If the Lie

group is commutative, then

log∨G(exp∧G(a) exp∧G(b)) = b + a. (B.10)

B.8 Concentrated Gaussian Distribution

The distribution of X ∈ G is called a (right) concentrated Gaussian distribution on

G of mean µ and covariance P, denoted p(X) = NR
G (µ,P), if:

X = exp∧G(ε)µ, (B.11)

where p(ε) = NRp(0,P) and P ⊂ Rp×p is a symmetric positive-semidefinite matrix.

If the maximum of the eigenvalues of P is small, the probability mass is concen-

trated around µ and we may approximate p(X) as:

p(X) ≈ 1

(2π)p det(P)
e−

1
2‖log∨G(µ−1X)‖2

P . (B.12)

The next subsection shows an example of a concentrated Gaussian distribution.

B.9 Examples

B.9.1 Special Orthogonal Group SO(2)

The special orthogonal group SO(2) represents the group of rotations in the two-

dimensional plane, and is defined as:

SO(2) =
{
R ∈ R2×2|RTR = I, det(R) = 1

}
. (B.13)

The associated Lie algebra is:

so(2) =

{
u =

[
0 −θ
θ 0

]
|θ ∈ R

}
. (B.14)

The adjoint representation AdSO(2)(R) is:

AdSO(2)(R) = I. (B.15)

It is important to mention that this group is commutative, since the combination

of rotations with angles θ1 and θ2 is a rotation with angle θ1 + θ2. For this reason,

the adjoint is the identity matrix, which validates the commutative property.

189

B.9.2 Special Orthogonal Group SO(3)

The special orthogonal group SO(3) represents the group of rotations in the three-

dimensional space, and is defined as:

SO(3) =
{
R ∈ R3×3|RTR = I, det(R) = 1

}
. (B.16)

The associated Lie algebra is:

so(3) =

u =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 |θ1, θ2, θ3 ∈ R

 . (B.17)

The adjoint representation AdSO(3)(R) is:

AdSO(3)(R) = R. (B.18)

Contrary to the group SO(2), the group SO(3) is noncommutative. For instance,

if one rotates an object by 90 degrees in one axis, and after that rotates it by 90

degrees in another axis, the result is different from the one obtained if the order of

rotations is the inverse. For this reason, the adjoint is not the identity matrix.

B.9.3 Special Euclidean Group SE(2)

The special Euclidean group SE(2) represents rigid transformations in the two-

dimensional space. The group has three dimensions, corresponding to translation

and rotation in the plane, and can be defined as:

SE(2) =

{
X =

[
R t

0 1

]
|R ∈ SO(2), t =

[
u

v

]
∈ R2

}
. (B.19)

The associated Lie algebra is:

se(2) =

u =

0 −θ x

θ 0 y

0 0 0

 |θ, x, y ∈ R

 . (B.20)

The adjoint representation AdSE(2)(X) is:

AdSE(2)(X) =

[
R q

0 1

]
|R ∈ SO(2),q =

[
v

−u

]
∈ R2. (B.21)

In Fig. B.1, an example of a concentrated Gaussian distribution for the SE(2)

group is presented. Under the assumption of the concentrated Gaussian distribution,

the parameters of the Lie algebra se(2) follow a normal distribution, as can be seen in

190

Fig B.1(a). After applying an exponential map exp∧SE(2) and moving the distribution

around the average µ, the distribution of the parameters of the Lie group becomes

the one seen in Fig. B.1(b). A way of interpreting the graph is to consider that

the position and direction of the arrows correspond, respectively, to the position

and orientation of an object. According to this interpretation, the concentrated

Gaussian distribution represents a more complex modelling for a real application.

It provides a tool to model the pose of the objects using a single structure.

B.9.4 Estimation of a Proper Three-Dimensional Rotation

In order to estimate a proper three-dimensional rotation, which has 3 degrees of

freedom, one can write an expression of the matrix in function of the rotation angles.

This is can be made by the use of the Euler angles parametrization:

X =

1 0 0

0 cosα − sinα

0 sinα cosα


 cos β 0 sin β

0 1 0

− sin β 0 cos β


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 . (B.22)

However, this parametrization, despite allowing the optimization using a single

3-parameter vector [α, β, γ], has a drawback. If, for instance, β = π/2, then

X =

 0 0 1

sin(α + γ) cos(α + γ) 0

− cos(α + γ) sin(α + γ) 0

 , (B.23)

which means that the angles α and γ become coupled and changes in any of them

produce the same result, a change in the angle (α+ γ). This effect is called gimbal

lock and produces a loss of a degree of freedom under certain conditions.

A second approach is to use the matrix space:

X =

x1 x2 x3

x4 x5 x6

x7 x8 x9

 . (B.24)

For this approach, the optimization is performed in the 9-parameter vector

[x1, x2, x3, x4, x5, x6, x7, x8, x9] with additional constraints XTX = I and det(X) = 1.

Thus, an algorithm has to estimate nine parameters, in contrast to the tree parame-

ters used in the previous representation, solving a constrained optimization problem,

which is more complex and more susceptible to ill-conditioning.

A third approach is to model the proper three-dimensional rotation as belonging

to the Lie group SO(3), which has an associated Lie algebra of the form:

191

(a)

(b)

Figure B.1: Example of a concentrated Gaussian distribution for the Lie group
SE(2). (a) Samples of the parameters of the Lie algebra se(2) under a normal
distribution. (b) Samples mapped to the concentrated Gaussian distribution in the
Lie group SE(2). The samples are mapped using the exp∧SE(2) (blue arrows) and

then moved around the average µ (green arrows) [138].

X =

 0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

 =
3∑
i=1

θiEi, (B.25)

192

for some bases

E1 =

0 0 0

0 0 −1

0 1 0

 ,E2 =

 0 0 1

0 0 0

−1 0 0

 and E3 =

0 −1 0

1 0 0

0 0 0

 . (B.26)

Since the Lie algebra can be mapped to a three-dimensional Euclidean space,

the optimization can be performed in a 3-parameter vector. In this case, the op-

timization operates in a space where every matrix has size 3 × 3 and intrinsically

respects the constraints, which, besides providing a more elegant solution, also has

better convergence properties. In addition, several operations such as composition,

inversion, differentiation, and interpolation, can be addressed by the theory of Lie

groups.

193

	List of Figures
	List of Tables
	Introduction
	Objectives
	Applications
	Surveillance System Description
	Video Database of Abandoned Objects in a Cluttered Industrial Environment
	Experimental Setup for Polymer Characterization

	Related Work
	Video Alignment
	Motion Estimation
	Optical Flow
	Fringe Detection

	Text Organization

	Signal Alignment Using Sensor Ensemble
	Alignment Algorithm for Curvilinear Tracks
	Reference Video Fundamental Period Estimation
	Target Video Alignment

	Experimental Results
	Reference Signal Fundamental Period Estimation
	Alignment of the Reference and Target Signals

	Summary

	Online Sequence Synchronization Based on Dynamic Time Warping
	Dynamic Time Warping
	Online Dynamic Time-Warping
	Video Alignment for Moving Camera Object Detection
	Experimental Results
	Tests with Different Cost Functions
	Online Warping
	Tests of Robustness

	Analysis Based on the Sensor Data
	Alignment of Non-Sparse Signals
	Alignment of Sparse Signals

	Summary

	Camera Trajectory Estimation
	Robust Large Scale Monocular Video SLAM
	Keyframe Selection
	Submap Reconstruction
	Pairwise Similarity Estimation
	Relative Similarity Averaging
	Outlier Removal Algorithm
	Large-Scale Relative Similarity Averaging

	Experimental Results
	Tests with DORIS Videos

	Summary

	Video Spatial Alignment Using Optical Flow
	Optical Flow Estimation
	Horn and Schunck Method
	General Optical Flow Algorithm

	Advanced Data Terms
	Color Tensor
	Proposed Color tensor
	Structure Tensor
	ROF-NND Image Descriptor
	Proposed Image Descriptor

	Optical Flow for Tensor-valued Images
	Experimental Results
	Middlebury Dataset
	Quadratic Formulation
	Robust Function
	Improved Regularization
	Illumination
	Results on VDAO Database and DORIS Videos

	Summary

	Polymer Characterization Using Mathematical Morphology
	Mathematical Morphology
	Geodesic Morphology

	Processing of Birefringence Images Using Mathematical Morphology Techniques
	Input Image Enhancement
	Minima Contour Detection with Watershed
	Skeleton Creation and Center Detection
	Post-processing
	Inflection Points Detection

	Experimental Results
	Experimental Framework
	Performance Assessment
	Comparison with Other Methods
	Comparative Evaluation with Reference Method (GIMP)

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Online Sequence Synchronization Based on Dynamic Time-Warping
	Camera Trajectory Estimation
	Video Spatial Alignment Using Optical Flow
	Polymer Characterization Using Mathematical Morphology

	Bibliography
	Appendices
	Camera Models and Projective Geometry
	Homogeneous Coordinates
	Camera Model
	Fundamental Matrix
	Essential Matrix
	Computation of the fundamental matrix
	Reconstruction from Two Views
	Triangulation
	Ambiguity in the Reconstruction
	Reconstruction for Multiple Views

	Lie Groups and Lie Algebra
	Group
	Field
	Vector Space
	Algebra
	Lie Groups and Lie Algebra
	Adjoint Representation
	Baker-Campbell-Hausdorff Formula
	Concentrated Gaussian Distribution
	Examples
	Special Orthogonal Group SO(2)
	Special Orthogonal Group SO(3)
	Special Euclidean Group SE(2)
	Estimation of a Proper Three-Dimensional Rotation

