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DIAGNÓSTICO SÍNCRONO DE FALHAS DE SISTEMAS A EVENTOS

DISCRETOS

Felipe Gomes de Oliveira Cabral

Outubro/2017

Orientador: Marcos Vicente de Brito Moreira

Programa: Engenharia Elétrica

Em geral, sistemas são formados pela composição de diversos módulos, compo-

nentes locais ou subsistemas e podem ter um grande número de estados. O cres-

cimento do modelo global do sistema com o número de componentes leva a altos

custos computacionais para técnicas de diagnóstico de falhas baseadas no modelo

global da planta. Neste trabalho, uma nova abordagem para o diagnóstico de falhas

de sistemas a eventos discretos é proposta. O método é baseado no cálculo de um

diagnosticador rede de Petri, chamado de diagnosticador rede de Petri sincronizado

que é construído a partir do comportamento sem falha dos módulos do sistema. A

de�nição de diagnosticabilidade síncrona da linguagem de um sistema em relação à

linguagem de seus módulos, e um algoritmo para veri�car essa propriedade também

são propostos. Uma generalização do diagnosticador síncrono para uma arquitetura

decentralizada, a noção de codiagnosticabilidade síncrona e um algoritmo para ve-

ri�car essa propriedade também são apresentados neste trabalho. A e�ciência do

diagnóstico síncrono pode ser melhorada usando o modelo sem falha do sistema

global, o que leva à de�nição de diagnosticabilidade síncrona condicional. Um al-

goritmo para a veri�cação da diagnosticabilidade síncrona condicional baseado no

método de veri�cação da diagnosticabilidade síncrona é proposto. A relação entre

diagnosticabilidade, diagnosticabilidade síncrona, diagnosticabilidade síncrona con-

dicional e codiagnosticabilidade síncrona de sistemas a eventos discretos também é

discutida. Algoritmos para o cálculo do atraso máximo para todos os métodos de

diagnóstico apresentados neste trabalho são propostos. Um exemplo teórico e uma

implementação prática dos métodos de diagnóstico são apresentados e usados ao

longo deste trabalho com o objetivo de ilustrar e validar os métodos.
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In general, systems are formed by the composition of several modules, local com-

ponents or subsystems, and may exhibit a large number of states. The growth of the

global system model with the number of system components leads to high computa-

tional costs for failure diagnosis techniques based on the global model. In this work,

a new approach for the failure diagnosis of discrete event systems is introduced. The

method is based on the computation of a Petri net diagnoser, called synchronized

Petri net diagnoser (SPND), that is constructed from the nonfailure behavior of the

modules of the system. We also introduce the de�nition of synchronous diagnos-

ability of the language of a system with respect to the languages of its modules,

and present an algorithm to verify this property. We also propose a decentral-

ized synchronized Petri net diagnosis scheme for discrete-event systems modeled as

automata. In order to do so, we de�ne the notion of synchronous codiagnosability

and propose an algorithm to verify this property. The synchronized diagnosis can be

re�ned using the global nonfailure model of the system, leading to the notion of con-

ditional synchronous diagnosability. An algorithm for the veri�cation of conditional

synchronous diagnosability based on the veri�cation of synchronous diagnosability

is proposed. We also discuss the relation among conditional synchronous diagnos-

ability, synchronous codiagnosability, synchronous diagnosability and diagnosability

of discrete-event systems. Algorithms for the computation of the maximum delay

bound for all diagnosis schemes presented in this work are proposed. An example

and a practical implementation of the diagnosis methods are presented and used

throughout this work in order to illustrate and validate the methods.
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Chapter 1

Introduction

Systems that have a discrete state space and whose evolution is driven by the occur-

rence of events, and are not time-driven, are called Discrete-Event Systems (DESs)

[1, 2]. Events are characterized by an instantaneous occurrence, such as the begin-

ning or the �nishing of a task, a sensor state change, or the pressing of a button

by an operator. Several systems can be modeled as DESs, such as manufacturing

systems, robotic systems, tra�c supervision, data management, logistic, and energy

systems.

A DES cannot be modeled by di�erential or di�erence equations due to its dis-

crete nature, and the fact that its evolution is given by the occurrence of events.

Thus, a di�erent mathematical formalism is necessary to describe DESs, and the

most common used in the literature are automata and Petri nets [1�5]. Automata

are directed graphs, where the vertices represent the states of the system, and the

arcs represent transitions labeled with events in order to model their occurrence.

Petri nets are bipartite graphs, or bigraphs, in the sense that it has two types of

nodes (places and transitions), where nodes of the same type cannot be connected.

Tokens are assigned to the places of the Petri net, such that the number of tokens

of each place forms the marking of the Petri net, which also represents the system

state modeled by the net. Notice that, di�erently from automata, the state of the

system is represented in a distributed way and, because of this property, Petri nets

are usually used to represent systems with a high degree of concurrency and a large

number of states.

Automatic systems are becoming more and more independent from human in-

teraction and thus, more complex. Such complexity can be seen in the increase of

systems that are composed of several subsystems that interact in order to complete

tasks. When modeled by an automaton, the global plant model of a DES is obtained

by composing the automaton models of its subsystems. The state space of the re-

sulting automaton can grow exponentially with the number of subsystems, which

can prevent the application of feedback control techniques, known as supervisory

1



control, with a view to modifying the behavior of the system in order to achieve a

set of speci�cations [1, 6, 7]. In order to avoid the use of the global system model

for supervisory control, local modular control strategies have been proposed in the

literature [8�13]. In this work, we take advantage of the modularity of systems in

order to investigate a di�erent problem: the failure diagnosis of DESs.

Automatic systems are subject to failures that can alter their expected behav-

ior and decrease their reliability and performance. Therefore, the study of failure

diagnosis techniques of DESs are fundamental in order to identify the occurrence

of a failure. Usually, a failure is modeled as an unobservable event, i.e., its occur-

rence cannot be detected by a sensor, and, in order to identify if a failure event has

occurred, it is necessary to build a DES model of the nonfailure and post-failure

behaviors of the system. Then, the failure occurrence can be diagnosed by following

the observed traces generated by the system. Several works in the literature ad-

dress the problem of failure diagnosis of discrete-event systems (DESs) modeled by

automata [14�28], timed automata [29�31], and Petri nets [32�39]. In ZAYTOON

and LAFORTUNE [40], an overview of the diagnosis methods for DESs presented

in the literature is carried out.

In the seminal work of SAMPATH et al. [14, 15], a model based failure diag-

nosis scheme is proposed for DESs, and an automaton diagnoser, whose states are

state estimates of the system reached after the observation of a trace, is presented.

Although the diagnoser presented in SAMPATH et al. [14, 15] can be straightfor-

wardly implemented for failure diagnosis, its construction is, in general, avoided

since, in the worst-case, the state-space of the diagnoser grows exponentially with

the cardinality of the state-space of the plant model [14, 15, 19, 41]. Recently, in

CLAVIJO and BASILIO [42], an empirical study on the average state-space size of

the diagnoser proposed in SAMPATH et al. [14] is carried out. In CLAVIJO and

BASILIO [42] it is shown that, on the average, the state-space cardinality of the

diagnoser proposed in SAMPATH et al. [14] can grow polynomially in the number

of states of the system.

In SAMPATH et al. [14], it is stated that diagnosis can be carried out storing

only the current state of the diagnoser, without the need for storing the complete

state space of the diagnoser, and, after the observation of an event, update the state

estimate. However, a method for this implementation is not presented in SAM-

PATH et al. [14]. In QIU and KUMAR [19], a method for diagnosis that avoids the

construction of the diagnoser automaton, is presented. In order to do so, a non-

deterministic automaton is computed, and only the current state of the diagnoser

and the nondeterministic automaton need to be stored. After the occurrence of an

observable event, the next state of the diagnoser can be computed online in polyno-

mial time. However, the details of the practical implementation on a computer are
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not presented in QIU and KUMAR [19].

The diagnosis methods presented in SAMPATH et al. [14], CARVALHO et al.

[23, 25], CABRAL et al. [26], SANTORO et al. [28], CABASINO et al. [38] con-

sider that all system information regarding failure diagnosis, e.g., sensor signals, is

available in a centralized way. However, there is a large number of systems where

the diagnosis information is only available locally [17], which makes the decentral-

ized [17, 19, 20, 43] and distributed [44, 45] architectures more appropriated for

such systems. In DEBOUK et al. [17], several protocols for decentralized diag-

nosis are proposed. The notion of diagnosability introduced in SAMPATH et al.

[14] is extended to decentralized architectures, consisting of local diagnosers that

communicate with a coordinator, in order to detect failure event occurrences. Sev-

eral protocols for decentralized diagnosis, that determine the diagnostic information

generated at each local site, the communication rules used by the local sites, and

the decision rule for failure diagnosis applied by the coordinator are presented in

DEBOUK et al. [17].

In Protocol 3 of DEBOUK et al. [17], the local diagnosers do not communicate

among each other, and the inference on the occurrence of the failure event is carried

out based solely on their own observations. When at least one of the local diagnosers

identi�es the failure event occurrence, the diagnostic is sent to a coordinator that in-

forms it to the system operator. This notion of decentralized diagnosability has been

referred to as disjunctive-codiagnosability [20]. The diagnosability notion presented

in SAMPATH et al. [14] is a particular case of the disjunctive-codiagnosability case

when only one local diagnoser is considered [17]. A di�erent notion of decentralized

diagnosability has been de�ned in WANG et al. [20] and YAMAMOTO and TAKAI

[46], and it is called conjunctive-codiagnosability. In this architecture, any non-

failure trace can be distinguished from the failure traces, after a bounded number of

event occurrences, by at least one local diagnoser. The conjunctive-codiagnosability

and disjunctive-codiagnosability are incomparable [20], which means that a system

can be conjunctive-codiagnosable and not disjunctive-codiagnosable, and vice-versa.

In this work, we are interested only in the disjunctive decentralized diagnosis, which,

from this point, is referred to as codiagnosability.

A vast range of diagnosis methods can be found in the literature for systems

modeled as Petri nets. The simplest way to perform diagnosis in systems modeled

as Petri nets is to build the reachability graph of the Petri net that models the

system, and, after that, obtain its diagnoser. In practice, this approach implies

in replacing the Petri net model with an automaton model of the system, and the

bene�t to represent the state of the system in a distributed way in the net is lost. In

fact, the graph of an automaton model can be much larger than the graph of a Petri

net model for the same system. In order to overcome this problem, several diagnosis
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methods for systems modeled as Petri nets have been proposed in the literature

[35, 47�51].

Recently, in CABRAL et al. [26], a new approach for failure diagnosis of systems

modeled as �nite state automata is proposed. The diagnosis method is based on the

construction of a Petri net diagnoser (PND), which can be obtained in polynomial

time, and provides the current state estimate of the non-failure part of the system

model after the observation of a trace. If an observed trace is executed by the

system, and it is not in the nonfailure behavior model, then a failure is detected.

Alternative diagnosis approaches that only consider the nonfailure behavior of the

system can also be found in the literature [52�55].

In all methods presented in [14�16, 19, 20, 26] the diagnosers are computed based

on the global plant model, which can grow exponentially with the number of system

components. In order to circumvent this problem, failure diagnosis schemes have

been proposed for systems with a modular structure [56�63]. The main idea in these

works is to exploit the modular structure of the system with a view to reducing the

cost associated with the computation of the global system model for diagnosis.

In DEBOUK et al. [56] and CONTANT et al. [59], di�erent notions of modular

diagnosability are proposed. In these works, it is assumed that the failure event

is modeled in a single component of the system, and the goal is to identify the

occurrence of the failure event by using only this component model instead of the

global system model. In CONTANT et al. [59], it is assumed that the module where

the failure event is modeled has a persistent excitation, which allows that languages

that are not diagnosable using the classical de�nition of diagnosability presented

in SAMPATH et al. [14], be modularly diagnosable. Moreover, it is also assumed

in CONTANT et al. [59] that the system has no cycles of unobservable events, and

that the common events of the modules are observable, which implies that the failure

event belongs only to the event set of the component used to construct the diagnoser.

In PENCOLÉ and CORDIER [58], a di�erent modular diagnosis approach is

proposed. In this work, a local diagnoser is constructed for each component of the

system and the local diagnoses are merged in order to obtain the global diagnosis

decision. The main drawback of this method is that, in the worst-case, the paths

of all modules of the system must be synchronized, which leads to an exponential

growth with the number of system components.

In GARCÍA et al. [64], a di�erent approach for modular diagnosis of DESs is

proposed. Di�erently from [56, 59�61], the method proposed in GARCÍA et al.

[64] consists in splitting the system into subsystems, constructing a minimum local

controller for each subsystem, and then computing a diagnoser for each subsys-

tem composed with its minimum local controller. The failure event is detected

when a local diagnoser identi�es its occurrence. In SCHMIDT [62], an incremental
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Figure 1.1: Comparison between the main diagnosis architectures proposed in the
literature: the monolithic scheme (a); the decentralized scheme (b); the distributed
scheme (c); and the modular scheme (d).

abstraction-based approach for the veri�cation of modular language diagnosability

of DESs is proposed, and the di�erences between the diagnosis methods presented

in [56, 58�60] are reviewed.

In Figure 1.1 we show the schematics of the main diagnosis architectures proposed

in the literature: (i) the monolithic scheme; (ii) the decentralized scheme; (iii)

the distributed scheme; and (iv) the modular scheme. Notice that in the modular

architecture we consider that the failure component is G1 and, thus, only the local

diagnoser Gd1 is implemented.

In this work, we propose a new scheme for centralized failure diagnosis and

decentralized failure diagnosis of DESs. We �rst propose a method for centralized

diagnosis that avoids the computation of the global system model. The method is

based on the computation of a Petri net diagnoser, called synchronized Petri net

diagnoser (SPND), which is constructed from the nonfailure behavior of the system

modules. The SPND carries out the online synchronization of the system modules

in order to provide a set of states that contains the state estimate of the nonfailure

behavior of the global system. If the observation of a trace is not recognized in the

SPND, the occurrence of the failure event is detected. In this context, we introduce

the de�nition of synchronous diagnosability of the language of a DES with respect

to the languages of its modules, and present an algorithm to verify this property.
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Figure 1.2: Main diagnosis schemes presented in the literature and the synchronous
diagnosis scheme proposed in this work.

We also propose a decentralized architecture for diagnosis of DESs. This is done

by extending the notion of synchronous diagnosis to the decentralized case using a

scheme similar to the one presented in Protocol 3 of DEBOUK et al. [17], where

all information regarding the observation of events are available locally. In order to

do so, we assume that each component of the system has its own set of observable

events, and a local diagnoser is implemented for each module. We introduce the

de�nition of synchronous codiagnosability, and discuss a veri�cation method and the

implementation of this scheme. Moreover, we present a method for the computation

of the maximum delay bound for synchronous decentralized diagnosis that can also

be used for the synchronous diagnosis method.

Since the state estimate of the SPND contains the state estimate of the nonfailure

behavior of the global system, the synchronous diagnosis is equivalent to the diagno-

sis of a system with an augmented nonfailure language. The synchronous diagnosis

of DESs can be re�ned with the view to reducing the nonfailure language for syn-

chronous diagnosis. This re�nement consists in the addition of boolean conditions

to the transitions of the SPND, which leads to the Conditional Synchronized Petri

Net Diagnoser (CSPND). Since the nonfailure language for synchronous diagnosis

is reduced, the notion of conditional synchronous diagnosability is introduced and

an algorithm to verify this property is presented. We show that systems that are

not synchronously diagnosable can be conditionally synchronously diagnosable and

the delay bound for synchronous diagnosis can be decreased using the conditional

synchronous diagnosis scheme. In Figure 1.2, we show the main diagnosis archi-

tectures presented in the literature. Notice that the synchronous diagnosis scheme

proposed in this work is a new architecture and can be implemented in a centralized

or decentralized way.
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We validate all diagnosis methods presented in this work by applying then to

a didactic manufacturing system [65, 66]. The manufacturing system consists of a

cube assembly mechatronic plant located at the Control and Automation Labora-

tory (LCA) of the Federal University of Rio de Janeiro (UFRJ). We show how the

controlled behavior of the plant is modeled for the application of the synchronous

diagnosis methods. The Petri net diagnosers are presented, and the failure diagnosis

process is illustrated. The delay bound for each synchronous diagnosis method is

also computed.

This work is organized as follows. In Chapter 2, we present preliminary concepts

about DESs modeled as automata and Petri nets. We also present a theoretical

background of failure diagnosis of systems modeled as automata. In Chapter 3, we

present the synchronous centralized diagnosis scheme, and introduce the de�nition

of synchronous centralized diagnosability of DESs. A veri�cation method of the

synchronous diagnosability of DESs and an algorithm to compute the maximum

delay bound for synchronous diagnosis are introduced. In Chapter 4, we present the

synchronous decentralized diagnosis scheme, and the de�nition of synchronous de-

centralized diagnosability of DESs. We also show a comparison between the notions

of synchronous codiagnosability, synchronous diagnosability, the classical diagnos-

ability, and modular diagnosability of DESs. The conditional synchronous diagnosis

architecture is presented in Chapter 5, where the conditional synchronized Petri

net diagnoser is proposed. A comparison between all notions of synchronous diag-

nosability is also carried out in Chapter 5. Finally, in Chapter 6, we present the

conclusions of this work, together with future research topics related to this thesis.
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Chapter 2

Fundamentals of Discrete-Event

Systems

A Discrete Event System (DES) is a system whose state-space is a discrete set

and whose evolution is driven by the occurrence of events. Thus, DESs cannot

be described by di�erential or di�erence equations and, therefore, it is necessary

to present mathematical formalisms that are capable of correctly representing the

evolution of a DES. Although a DES can be described only by its language, this

representation is not practical. In this work, we consider two types of modeling

formalisms largely used to describe DESs: automata and Petri nets [1�5].

In order to present the concepts of automata and Petri nets, we �rst present the

concept of languages, and some notations and de�nitions.

2.1 Languages

In this work, we use the symbol Σ to represent the set of events of a given DES. The

symbol σ is used to represent a generic event. A sequence of events forms a trace

and a trace consisting of no events is called the empty trace and it is represented

by ε. If s is a trace, its length is denoted by ‖s‖. The length of the empty trace ε

is considered to be zero. The formal de�nition of a language is presented as follows

[1].

De�nition 2.1 (Language) A language L de�ned over a set of events Σ is a set

of �nite length traces formed with the events of Σ.

For example, the language L = {ε, e, ed, dee, eed} is composed of �ve traces,

including the empty trace ε, formed with events of Σ = {d, e}. It is important

to remark that languages are sets and, therefore, all operations of sets can also be

applied to languages. In the following, we present other operations that can be

executed using events and traces with the aim to create and modify languages.

8



2.1.1 Language operations

The main operation related to the construction of traces from a set of events Σ,

and therefore languages, is the concatenation. Consider, for example, the trace

abc, formed with the events of Σ = {a, b, c}. The trace abc can be formed by the

concatenation of trace ab with event c. Notice that ab is, itself, a concatenation of

the events a and b. The empty trace ε is the identity element of the concatenation

operation, i.e., σε = εσ = σ.

A language de�ned over Σ is a subset of the set formed by all �nite length traces

of events built with the elements of Σ, including the empty trace ε. This set is

denoted by Σ?, where the operation ? is called Kleene-closure. In particular, the

sets ∅, Σ and Σ? are also languages.

The concatenation and Kleene-closure operations can also be de�ned for lan-

guages, as it is presented in the sequel.

De�nition 2.2 (Concatenation) Let L1, L2 ⊆ Σ?, then the concatenation L1L2

is de�ned as:

L1L2 = {s = s1s2 : (s1 ∈ L1) and (s2 ∈ L2)}.

A trace s is in L1L2 if it is formed by the concatenation of a trace s1 ∈ L1 and

s2 ∈ L2.

De�nition 2.3 (Kleene-closure) Let L ⊆ Σ?, then

L? = {ε} ∪ L ∪ LL ∪ . . .

An element of L? is formed by the concatenation of elements of L. By de�nition,

the empty trace ε is also an element of L?, representing the concatenation of �zero�

elements. Moreover, the Kleene-closure operation is idempotent, i.e., (L?)? = L?.

Another important operation that can be applied to languages is the Pre�x-

closure. Before we present this operation, it is necessary to de�ne pre�x, subtrace

and su�x of a trace s. Let s = tuv, where t, u, v ∈ Σ?, then t is the pre�x of s, u is

the subtrace of s, and v is the su�x of s. Since t, u, v ∈ Σ?, then the traces ε and s

are also pre�xes, subtracess and su�xes of s. The pre�x-closure of a language L is

formally de�ned as follows.

De�nition 2.4 (Pre�x-closure) Let L ⊆ Σ?, then

L = {s ∈ Σ? : (∃t ∈ Σ?)[st ∈ L]}.

The pre�x-closure of a language L, denoted as L, is the set of all pre�xes of

all traces of L. Notice that, by de�nition, L ⊆ L. A language L is said to be

pre�x-closed if L = L, i.e., if all pre�xes of all traces of L are also elements of L.
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Remark 2.1 It is important to remark that, for a language L = ∅, L = ∅. However,
if L 6= ∅, then ε ∈ L. Moreover, ∅? = {ε} and {ε}? = {ε}, and the concatenation

operation between a language and the empty set is equal to the empty set, i.e., ∅L =

L∅ = ∅.

Another important operation that can be applied to traces, or languages, is the

projection operation, de�ned as follows [1].

De�nition 2.5 (Projection) The natural projection P l
s : Σ?

l → Σ?
s, where Σs ⊂

Σl, is de�ned recursively as follows:

P l
s(ε) = ε,

P l
s(σ) =

{
σ, if σ ∈ Σs,

ε, if σ ∈ Σl \ Σs,

P l
s(sσ) = P l

s(s)P
l
s(σ), for all s ∈ Σ?

l , σ ∈ Σl,

where \ denotes set di�erence.

According to De�nition 2.5, the projection operation erases all events σ ∈ Σl \Σs

from the traces s ∈ Σ?
l . The inverse projection operation is de�ned as follows.

De�nition 2.6 (Inverse projection) The inverse projection P l−1

s : Σ?
s → 2Σ?

l is

de�ned as:

P l−1

s (t) = {s ∈ Σ?
l : P l

s(s) = t}.

For a given trace t, formed with events from Σs, P l−1

s (t) produces a set formed

with all traces that can be constructed with the events of Σl whose projection P l
s is

equal to t.

The operations P l
s and P

l−1

s can be extended to languages. In order to do so, it

is necessary to apply these operations to all traces that belong to the language. The

main application of the projection is to represent the observed language of a system

obtained from an observer that has access only to the events registered by sensors

or command events sent by a controller.

It is important to notice the following property obtained from the de�nition of

projection, and set theory:

Ps(La ∩ Lb) ⊆ Ps(La) ∩ Ps(Lb), (2.1)

where La and Lb are two languages de�ned over a set of events Σ, and Ps : Σ? → Σ?
s,

where Σs ⊂ Σ.
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The language of a DES is a set that contains the information regarding all admis-

sible traces that a system is capable of generating. Using languages to describe DESs

can be a di�cult task, since, depending on the system, it is not easy to represent all

its behavior by describing in a set all possibilities of traces generated by the system.

Therefore, it is necessary to de�ne a structure that is capable of representing the

language of a system and that can be manipulated by using well de�ned operations,

allowing the construction and analysis of systems that generate complex arbitrarily

languages. In the next section, we de�ne one of the formalisms used in this work to

represent languages.

2.2 Automata

An automaton is a device that is capable of representing a language according to

well-de�ned rules [1, 2]. In the following, we formally de�ne an automaton.

De�nition 2.7 (Automaton) An automaton, denoted by G, is a �ve-tuple

G = (Q,Σ, f, q0, Qm),

where Q is the set of states, Σ is the set of events, f : Q× Σ→ Q is the transition

function, q0 is the initial state, and Qm is the set of marked states.

The transition function f describes all transitions of the automaton, such that

f(q1, σ) = q2 means that there is a transition (q1, σ, q2), i.e., there exists a transition

from state q1 to state q2 labeled with event σ. For the sake of simplicity, the set of

marked states Qm will be omitted from the automata de�ned in this work, unless

stated otherwise. In other words, an automaton may be represented by a four-tuple

G = (Q,Σ, f, q0), which implies that the set of marked states is Qm = ∅.
We also de�ne ΓG : Q → 2Σ as the feasible event function of a state of G. The

feasible event function ΓG(q) is the set of all events σ for which f(q, σ) is de�ned.

Notice that the feasible event function ΓG can be completely described from the

transition function f .

An automaton can be represented graphically by an oriented graph called state

transition diagram. The states and transitions of the automaton are represented by

circles, forming the vertices of the graph, and oriented arcs connecting the states,

respectively. The arcs are labeled with the events of Σ that cause the transition of

states. In order to represent the initial state of the automaton, we add an arc that

does not have an origin state attached to it.

In the following, we present an example of an automaton and its state transition

diagram.
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Figure 2.1: State transition diagram of automaton G of Example 2.1.

Example 2.1 Let G be an automaton whose state transition diagram is depicted in

Figure 2.1. The state and event sets of G are given by Q = {1, 2, 3} and Σ = {a, b, c},
respectively. The feasible event function is de�ned as: ΓG(1) = {a}, ΓG(2) = {a, b},
and ΓG(3) = {b, c}. The transition function of G is de�ned as: f(1, a) = 2, f(2, b) =

3, f(3, c) = 3, f(3, b) = 2, and f(2, a) = 1. The initial state q0 of G is 1, and the

set of marked states is Qm = {3}.

In this work, we de�ne a path of an automaton G as a sequence

(q1, σ1, q2, . . . , qn−1, σn−1, qn), where σi ∈ Σ, qi+1 = f(qi, σi), i = 1, 2, . . . , n − 1.

A path (q1, σ1, q2, . . . , qn−1, σn−1, qn) is a cyclic path, or simply a cycle, if q1 = qn.

In the following, we de�ne the generated and marked languages of an automaton.

De�nition 2.8 (Generated and marked languages) The generated language

of an automaton G = (Q,Σ, f, q0, Qm) is

L(G) = {s ∈ Σ? : f(q0, s) is de�ned}.

The language marked by G is

Lm(G) = {s ∈ L(G) : f(q0, s) ∈ Qm}.

It is important to remark that, in De�nition 2.8 the transition function is ex-

tended, i.e., f : Q× Σ? → Q. Moreover, for any G such that Q 6= ∅, ε ∈ L(G).

The language L(G) is formed by all traces that can be created by following the

transitions of the state transition diagram starting at the initial state. Therefore,

a trace s ∈ L(G) if, and only if, it corresponds to an admissible path in the state

transition diagram of G, i.e., if, and only if, f(q0, s) is de�ned. It is important to

remark that L(G) is pre�x-closed by de�nition, since a path inG is only possible if all

its pre�xes are also possible. Moreover, if f is a total function over its domain, then

L(G) = Σ?. The generated language of an empty automaton, i.e., an automaton

whose state set is Q = ∅, is also the empty set. In this work, the generated language

of G, L(G), is also referred as L, unless stated otherwise.

If ΓG(q) 6= ∅ for all q ∈ Q, the language generated by G = (Q,Σ, f, q0, Qm) is said

to be live. The language marked by G, Lm(G), is a subset of L and represents all
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traces s such that f(q0, s) ∈ Qm, i.e., all traces that reach a marked state from the

initial state q0 in G. Notice that the language Lm(G) is not necessarily pre�x-closed.

In the next section, we present some operations that can be applied to automata.

2.2.1 Operations on automata

There are basically two groups of operations that can be applied to automata: unary

and composition operations [1].

Unary operations

The unary operations alter the state transition diagram of an automaton keeping its

event set Σ unchanged. In the following, we present the de�nitions of the accessible

and coaccessible part of an automaton.

De�nition 2.9 (Accessible part) The accessible part of an automaton G, Ac(G),

is de�ned as:

Ac(G) = (Qac,Σ, fac, q0, Qac,m),

where Qac = {q ∈ Q : (∃s ∈ Σ?)[f(q0, s) = q]}, Qac,m = Qm ∩ Qac, and fac =

f |Qac×Σ→Qac
1.

Taking the accessible part of an automaton G results in automaton Ac(G), where

all states of G, and its related transitions, that are not reachable from its initial state

q0 are deleted. It is important to notice that the accessible part operation does not

change the generated and marked languages by G, L(G) and Lm(G).

A state q ∈ Q is said to be coaccessible if there exists a path from the state q to

a marked state. The Coaccessible operation erases all states of G, and their related

transitions, that are not coaccessible. The formal de�nition of the coaccessible part

of an automaton G is de�ned as follows [1].

De�nition 2.10 (Coaccessible part) The coaccessible part of an automaton G,

CoAc(G), is de�ned as:

CoAc(G) = (Qcoac,Σ, fcoac, q0,coac, Qm),

where Qcoac = {q ∈ Q : (∃s ∈ Σ?)[f(q, s) ∈ Qm]}, q0,coac = q0 if q0 ∈ Qcoac and q0,coac

is not de�ned if q0 6∈ Qcoac, and fcoac = f |Qcoac×Σ→Qcoac.

1The notation f |Qac×Σ→Qac
is used to indicate that we are restricting f to the smaller domain

of the accessible states Qac.
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Notice that taking the coaccessible part of G may shrink the generated language

of G, i.e., L(CoAc(G)) ⊆ L(G). The marked language of G, Lm(G), is not altered

when taking the coaccessible part of G, i.e., Lm(CoAc(G)) = Lm(G).

Composition operations

Composition operations are used to obtain a single automaton from two or more

automata. In general, these operations are performed with the aim to construct

a global system model from the automaton models of its components, modules or

subsystems that operate concurrently. In this work, we de�ne two composition

operations: product and parallel composition [1].

The product composition, also known as completely synchronous composition,

produces an automaton whose generated language is the intersection of the generated

languages of the automata used in the composition. We formally de�ne the product

composition as follows.

De�nition 2.11 (Product composition) Let G1 = (Q1,Σ1, f1, q0,1) and G2 =

(Q2,Σ2, f2, q0,2) be two automata. The product of G1 and G2 is the automaton

G1 ×G2 = Ac(Q1 ×Q2,Σ1 ∪ Σ2, f, (q0,1, q0,2)),

where

f((q1, q2), σ) =

{
(f1(q1, σ), f2(q2, σ)) if σ ∈ ΓG1(q1) ∩ ΓG2(q2)

unde�ned, otherwise.

In the product, the transitions of the automata must always be synchronized

on a common event, i.e., in order to a transition (q, σ, q′), where q = (q1, q2) and

q′ = (q′1, q
′
2), belong to G = G1×G2, there must exist transitions (q1, σ, q

′
1) in G1 and

(q2, σ, q
′
2) in G2 labeled with the same event σ. The product operation is restrictive,

since it only allows transitions on common events. By de�nition, it can be veri�ed

that L(G1 ×G2) = L(G1) ∩ L(G2). If Σ1 ∩ Σ2 = ∅, then L(G1 ×G2) = {ε}.
In general, systems are formed by simpler and smaller components or subsystems

that interact and form the global system behavior. The component behavior can

be classi�ed into internal (private), and coupling behavior, that synchronizes with

other components. These behaviors are modeled with private and common events,

respectively. In order to model the global system behavior using the models of its

components, there must exist an operation that is capable of integrating the system

component models while taking into account their private behavior. This operation

is called parallel composition and it is formally de�ned as follows.
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De�nition 2.12 (Parallel composition) Let G1 = (Q1,Σ1, f1, q0,1) and G2 =

(Q2,Σ2, f2, q0,2) be two automata. The parallel composition of G1 and G2 is the

automaton

G1‖G2 = Ac(Q1 ×Q2,Σ1 ∪ Σ2, f, (q0,1, q0,2)),

where

f((q1, q2), σ) =


(f1(q1, σ), f2(q2, σ)) if σ ∈ ΓG1(q1) ∩ ΓG2(q2);

(f1(q1, σ), q2) if σ ∈ ΓG1(q1) \ Σ2;

(q1, f2(q2, σ)) if σ ∈ ΓG2(q2) \ Σ1;

unde�ned, otherwise.

In the parallel composition, a common event, i.e., an event in Σ1 ∩Σ2, can only

be executed in G = G1‖G2 if it is executed by G1 and G2 simultaneously. The

private events, i.e., the events in (Σ1 \ Σ2) ∪ (Σ2 \ Σ1) can be executed whenever

possible in G1 and G2. Thus, the parallel composition only synchronizes the common

behavior of components, synchronizing their common events, and the private events

(representing the private behavior of the components) can be executed whenever

possible.

Let Pi = (Σ1∪Σ2)? → Σ?
i be two projections for i = 1, 2. The language generated

by G1‖G2 is equal to L(G1‖G2) = P−1
1 (L(G1)) ∩ P−1

2 (L(G2)). If Σ1 = Σ2, then the

parallel composition reduces to the product, and if Σ1 ∩ Σ2 = ∅, then there are no

synchronized transitions and G1‖G2 models the concurrent behavior of G1 and G2.

In the following, we present an example of the product and parallel composition

operations.

Example 2.2 Let G1 = (Q1,Σ1, f1, q0,1) and G2 = (Q2,Σ2, f2, q0,2) be two au-

tomata, where Σ2 = {a, b, c} and Σ2 = {a, b, d}, whose state transition diagrams

are shown in Figure 2.2. In Figures 2.3(a) and 2.3(b) the automata Gprod and Gpar,

obtained by making the product and parallel compositions of automata G1 and G2,

respectively, are presented. Notice that in automaton Gprod all transitions are labeled

with events from Σ1 ∩Σ2 = {a, b}, while Gpar models the synchronization of G1 and

G2, through events Σ1 ∩Σ2 = {a, b}, and the concurrent behavior represented by the

transitions labeled with events c and d.

2.2.2 Automata with partially observed events

The set of events of an automaton Σ can be partitioned as Σ = Σo∪̇Σuo, where

Σo is the set of observable events and Σuo is the set of unobservable events. An

event is observable when its occurrence can be registered by an external observer
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Figure 2.2: Automata G1 and G2 of Example 2.2.
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Figure 2.3: Automata Gprod and Gpar of Example 2.2.

due, generally, to changes in sensors signals. Failure events, whose occurrence do

not cause any immediate change in sensors readings, are modeled as unobservable

events.

The observed language of a system G can be obtained from its generated lan-

guage L by applying the projection Po(L), where Po : Σ? → Σ?
o. In a system with

unobservable events, it is important to know the set of possible states reachable from

a given state q ∈ Q after the occurrence of an unobservable event or traces formed

by unobservable events. We call this set of states as unobservable reach, denoted by

UR(q), whose formal de�nition is presented as follows.

De�nition 2.13 (Unobservable reach) The unobservable reach of a state q ∈ Q,
denoted by UR(q), is de�ned as:

UR(q) = {y ∈ Q : (∃t ∈ Σ?
uo)[f(q, t) = y]}. (2.2)

The unobservable reach can also be de�ned for a set of states B ∈ 2Q as:

UR(B) =
⋃
q∈B

UR(q). (2.3)

The unobservable reach of a state qν is a set of states that corresponds to all

states that are reached from qν by transitions labeled with unobservable events. The

unobservable reach can be used to build an automaton from G that generates the

observed language of G, Po(L). This automaton is called the observer of G, denoted

by Obs(G,Σo), and is de�ned as follows.

De�nition 2.14 (Observer automaton) The observer of an automaton G with

respect to a set of observable events Σo, denoted by Obs(G,Σo), is given by:
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Obs(G,Σo) = (Qobs,Σo, fobs, q0,obs),

where qobs ⊆ 2Q. fobs, and q0,obs are obtained following the steps of Algorithm 2.1

[1, 67].

Algorithm 2.1 Observer automaton

Input: G = (Q,Σ, f, q0), and the observable event set Σo, where Σ = Σo∪̇Σuo.

Output: Observer automaton Obs(G,Σo) = (Qobs,Σo, fobs, q0,obs).

1: De�ne q0,obs ← UR(q0). Qobs ← {q0,obs} and Q̃obs ← Qobs.

2: Q̄obs ← Q̃obs and Q̃obs ← ∅.

3: For each B ∈ Q̄obs do

3.1: Γobs(B)←
(⋃

q∈B ΓG(q)
)
∩ Σo.

3.2: For each σ ∈ Γobs(B),

fobs(B, σ)← UR({q ∈ Q : (∃y ∈ B)[q = f(y, σ)]}).

3.3: Q̃obs ← Q̃obs ∪ fobs(B, σ).

4: Qobs ← Qobs ∪ Q̃obs.

5: Repeat steps 2 to 4 until all accessible part of Obs(G,Σo) is constructed.

In the following, we present an example of the observer of a system G.

Example 2.3 Let G be the automaton whose transition state diagram is shown in

Figure 2.4(a). The state set of G is Q = {0, 1, 2, 3} and the event set of G is

Σ = Σuo∪̇Σo = {a, b, σuo}, where Σo = {a, b} and Σuo = {σuo}. The observer of G,

Obs(G,Σo), can be seen in Figure 2.4(b). If we assume that the system has executed

trace t = aσuob, then the observed trace is Po(t) = ab, where Po : Σ? → Σ?
o. It

is important to notice that the state reached after the observation of trace Po(t) =

ab in Obs(G,Σo) is {2, 3}, which corresponds to the state estimate of G after the

observation of trace t. Every state of Obs(G,Σo) is a state estimate of G after the

observation of a trace.

In the next section, we present another mathematical formalism used in this

work to represent DESs.

17



a σuo

b

b

0 1 2

3

(a) G

a

b

0 1,2 b
2,3

b
2

(b) Obs(G,Σo)

Figure 2.4: State transition diagram of automaton G of Example 2.3 (a), and ob-
server automaton of G, Obs(G,Σo), that provides the state estimates of G after the
observation of a trace generated by the system (b).

2.3 Petri nets

A Petri net is a mathematical formalism used as an alternative to automata to

represent DESs. Di�erently from automata, in a Petri net the state of the system is

represented in a distributed way, which can be a better representation for concurrent

and complex systems.

In a Petri net, events are associated with transitions and, in order to a transi-

tion occur, a set of conditions must be satis�ed. The information related to these

conditions is represented by the places of the net. Each transition has a set of input

places that represent the conditions that have to be satis�ed in order to the transi-

tion occur, and a set of output places that are related with the conditions that are

a�ected by the transition occurrence.

2.3.1 Petri net structure

In a Petri net, there are two types of vertices: places and transitions. Places,

transitions and the relations between then form the basic information that de�nes

the structure of a Petri net. Each edge of the Petri net graph cannot connect vertices

of the same type which makes the Petri net a bipartite graph. In the following, we

present the formal de�nition of the structure of a Petri net [1, 4].

De�nition 2.15 (Petri net structure) The structure of a Petri net is a weighted

bipartite graph

(P, T, Pre, Post),

where P is the set of places, T is the set of transitions, Pre : (P × T ) → N =

{0, 1, 2, . . .} is the function of arcs that connect places to transitions, and Post :

(T × P )→ N is the function of arcs that connect transitions to places.

The set of places is denoted by P = {p1, p2, . . . , pν} and the set of transitions is

denoted by T = {t1, t2, . . . , tµ}. Therefore, |P | = ν and |T | = µ, where |.| denotes
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Figure 2.5: Structure of the Petri net of Example 2.4.

set cardinality. The set of input places (input transitions) of a transition tj ∈ T

(place pi ∈ P ) is denoted by I(tj) (I(pi)), and it is formed by the places pi ∈ P

(transitions tj ∈ T ) such that Pre(pi, tj) > 0 (Post(tj, pi) > 0). Similarly, the set of

output places (output transitions) of a transition tj ∈ T (place pi ∈ P ) is denoted
by Out(tj) (Out(pi)), and it is formed by the places pi ∈ P (transitions tj ∈ T ) such
that Post(tj, pi) > 0 (Pre(pi, tj) > 0).

Graphically, places are represented by circles, while transitions are represented

by bars. The functions Pre and Post determine the number of arcs that connect

places to transitions and transitions to places. The value of the functions Pre and

Post is represented only if it is di�erent from 1. In the following, we present an

example of a Petri net structure.

Example 2.4 Let the structure of a Petri net, showed in Figure 2.5, be de�ned as

P = {p1, p2}, T = {t1}, Pre(p1, t1) = 1, and Post(t1, p2) = 2. In this example,

I(t1) = {p1} and I(p2) = {t1}, Out(p1) = {t1} and Out(t1) = {p2}.

2.3.2 Petri net marking

In a Petri net, the transitions are associated with events driving a DES, and places

represent the conditions under which these transitions, and therefore the events

associated with them, can occur. In this scheme, the element that indicate if these

conditions are met is the assigning of tokens to places. The number of tokens

assigned to a place is given by x(pi), where x : P → N is a marking function. The

marking of a Petri net is represented by the vector x = [x(p1) x(p2) . . . x(pν)]
T ,

formed by the number of tokens assigned to each place pi, for i = 1, . . . , ν. In the

graphical representation of Petri nets, tokens are indicated by dark dots or numbers

positioned in the appropriate places. We formally de�ne Petri net as follows.

De�nition 2.16 (Petri net) A marked Petri net, or simply a Petri net N
is a �ve-tuple N = (P, T, Pre, Post, x0), where, according to De�nition 2.15,

(P, T, Pre, Post) is the structure of the Petri net, and x0 is the initial marking

function of the Petri net.

In a Petri net, the marking vector x represents the system state. For each new

reachable state, the corresponding Petri net reaches a new marking. In the sequel,

we present an example of a Petri net.
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Figure 2.6: Two examples of Petri nets with di�erent initial markings.

Example 2.5 Consider again the Petri net structure of Example 2.4 depicted in

Figure 2.5. In Figure 2.6 we show two possible initial markings x1
0 = [1 0]T and

x2
0 = [1 2]T .

In a Petri net, a transition tj is said to be enabled when the number of tokens

assigned to each input place of tj is greater or equal to the weight of the arcs that

connect the places of I(tj) to transition tj. The formal de�nition of an enabled

transition is presented as follows.

De�nition 2.17 (Enabled transition) A transition tj ∈ T is said to be enabled

if

x(pi) ≥ Pre(pi, tj), for all pi ∈ I(tj).

2.3.3 Petri net dynamics

In a Petri net, when a transition is enabled, it can �re, or occur. The state transition

function of a Petri net is de�ned through the change in the marking of the places

due to the �ring of an enabled transition. If, for a given marking x, an enabled

transition tj �res, the Petri net reaches a new marking x given by

x(pi) = x(pi)− Pre(pi, tj) + Post(tj, pi), for i = 1, . . . , ν. (2.4)

According to Equation (2.4), if pi is an input place of tj, and tj �res, it loses a

number of tokens equal to the weight of the arc that connects pi to tj, Pre(pi, tj).

If pi is an output place of tj, it gains as many tokens as the weight of the arc that

connects tj to pi, Post(tj, pi). Notice that pi can be, at the same time, an input and

output place of tj. In this case, according to Equation (2.4), Pre(pi, tj) tokens are

removed from pi and, at the same time, Post(tj, pi) tokens are added to place pi.

If, in a Petri net, a place pi has at most one token, for all reachable markings of

the net, then pi is called safe. The Example 2.6 shows the �ring of a transition and

the evolution of the tokens resulting from it.

Example 2.6 Consider the Petri net shown in Figure 2.7(a). Notice that transition

t1 is enabled for the marking x = [1 0]T and, therefore, t1 can �re. If t1 �res, place
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Figure 2.7: Petri net of Example 2.6 with transition t1 enabled (a), and after the
�ring of transition t1 with the new reached marking (b).

p1 loses one token, since the weight of the arc that connects p1 to t1 is 1, and place

p2 receives two tokens, since the weight of the arc that connects t1 to p2 is 2. The

�ring of transition t1 results in the marking x = [0 2]T , depicted in Figure 2.7(b).

2.3.4 Labeled Petri net

In order to model DESs using the Petri net formalism, it is necessary to establish a

correspondence between events and Petri net transitions. It is possible to use Petri

nets to model DESs and represent languages if we associate at least one event to

each transition of the net. This is carried out by a labeling function that associates

a set of events to each transition. This leads to the following de�nition of a labeled

Petri net.

De�nition 2.18 (Labeled Petri net) A labeled Petri net is a seven-tuple N =

(P, T, Pre, Post, x0,Σ, l), where (P, T, Pre, Post, x0) is, according to De�nition

2.16, a Petri net. Σ is the set of events used to label transitions and l : T → 2Σ is

the transition labeling function that associates a subset of Σ to a transition in T .

In a labeled Petri net, an enabled transition tj �res when one of the events

associated to tj occurs. Example 2.7 illustrates a labeled Petri net.

Example 2.7 Consider the labeled Petri net N = (P, T, Pre, Post, x0,Σ, l) depicted

in Figure 2.8, where P = {p1, p2}, T = {t1, t2, t3}, Pre(p1, t2) = Pre(p2, t3) = 1,

Post(t1, p1) = Post(t2, p2) = 1, x0 = [0 1]T , Σ = {a, b, c}, l(t1) = {a}, l(t2) = {a, b},
and l(t3) = {c}. Notice that transitions t1 and t3 are enabled and �re when events

a or c occurs, respectively. It is important to notice that, if transition t2 is enabled,

it �res when event a or b occurs.

2.3.5 State machine Petri net

A state machine Petri net (SMPN) is a special class of Petri nets where each tran-

sition has only one input place and one output place. Moreover, if this Petri net

has only one token, then the SMPN has the same behavior as an automaton, where
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Figure 2.8: Labeled Petri net of Example 2.7.
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Figure 2.9: Automaton G (a), and state machine Petri net N (b) of Example 2.8.

each place is associated with a state of the corresponding automaton. Algorithm

2.2 illustrates the procedure for the construction of a SMPN from an automaton G.

Algorithm 2.2 State machine Petri net

Input: Automaton G = (Q,Σ, f, q0).

Output: State machine Petri net N = (P, T, Pre, Post, x0,Σ, l).

1: Create a place pi ∈ P associated with each state qi ∈ Q.

2: Create a transition tj ∈ T for each transition q` = f(qi, σ) de�ned in G, for

all qi ∈ Q and σ ∈ ΓG(qi), and de�ne l(tj)← {σ}.

3: De�ne Pre(pi, tj) ← 1 and Post(tj, p`) ← 1 for each transition tj ∈ T , if the
transition q` = f(qi, σ) is de�ned in G. Otherwise let Pre(pi, tj) ← 0 and

Post(tj, p`)← 0.

4: Make x0(p0) ← 1 and x0(pi) ← 0 for all pi ∈ P \ {p0}, where p0 denotes the

place associated with the initial state of G, q0.

Example 2.8 illustrates the equivalence between an automaton and its corre-

sponding state machine Petri net.

Example 2.8 Consider automaton G depicted in Figure 2.9(a). In Figure 2.9(b)

we present the SMPN, N , obtained from automaton G according to Algorithm 2.2.

As it can be seen in Algorithm 2.2, in order to represent the exact behavior of an

automaton using a SMPN, we have to replace the states of the automaton with places

of the Petri net, and replace the arcs of the automaton with transitions of the Petri

net, preserving the equivalence between the input and output transitions.
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2.3.6 Binary Petri net

Another class of Petri nets is the binary Petri net [68]. In a binary Petri net, the

maximum number of tokens assigned to each place is forced to be one. Therefore,

if a place that has one token and, after the �ring of a transition, the same place

receives another token, the place continues with only one token.

The binary Petri net can be de�ned as a Petri net with a di�erent evolution rule

for the marking of places after the �ring of a transition tj. This new evolution rule

is de�ned as

x̄(pi) =

{
0, if x(pi)− Pre(pi, tj) + Post(tj, pi) = 0,

1, if x(pi)− Pre(pi, tj) + Post(tj, pi) > 0,
(2.5)

for i = 1, . . . , ν.

2.3.7 Extended Petri net

An extended Petri net is another class of Petri net that contains a special type of arc

known as inhibitor arc [4]. An inhibitor arc is a direct arc that only connects places

to transitions and its end is represented by a small circle. An extended labeled Petri

net is de�ned as follows.

De�nition 2.19 (Extended labeled Petri net) An extended labeled Petri net is

an eight-tuple N = (P, T, Pre, Post, In, x0,Σ, l), where (P, T, Pre, Post, x0,Σ, l) is,

according to De�nition 2.18, a labeled Petri net, and In : (P × T ) → N is the

function of inhibitor arcs that only connects places to transitions.

The inhibitor arc provides a new enabling rule to the transitions of the Petri net,

such that if a place pi is connected to a transition tj by an inhibitor arc, transition

tj will be enabled if the number of tokens in pi is smaller than the weight of the

inhibitor arc that connects pi to tj, In(pi, tj). The transition enabling rule in an

extended Petri net is de�ned as follows.

De�nition 2.20 (Enabled transition) A transition tj ∈ T in an extended Petri

net is said to be enabled if

x(pi) ≥ Pre(pi, tj), and x(pi) < In(pi, tj), for all pi ∈ I(tj),

where, now, we are considering that pi ∈ I(tj), if Pre(pi, tj) > 0 or In(pi, tj) > 0.

Inhibitor arcs only enable or disable transitions, i.e., if a transition tj �res,

where I(pi, tj) > 0, place pi remains with the same number of tokens as before. The

following example illustrates an extended labeled Petri net.
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Figure 2.10: Petri net N of Example 2.9 with transition t1 enabled (a), and after
the �ring of transition t1 with the new reached marking (b). Petri net N with a
di�erent marking where transition t1 is not enabled (c).

Example 2.9 Consider the extended labeled Petri net N = (P, T, Pre, Post, In,

x0,Σ, l) shown in Figure 2.10(a), where P = {p1, p2, p3}, T = {t1}, Pre(p1, t1) = 1,

Post(t1, p3) = 1, In(p2, t1) = 1, x0 = [1 0 0]T , Σ = {a}, l(t1) = {a}. Transition t1 is
enabled since, for the initial marking x0, x(p1) ≥ Pre(p1, t1) and x(p2) < In(p2, t1).

When event a occurs, transition t1 �res and the extended Petri net reaches the new

marking presented in Figure 2.10(b). Now, consider the same Petri net N with

marking x2 = [1 1 0]T , depicted in Figure 2.10(c). For this marking, transition t1

is not enabled since x(p2) = In(p2, t1) = 1.

In the next section, we present the theoretical background of centralized, decen-

tralized, and modular diagnosis of DESs modeled as automata.

2.4 Diagnosability of DESs

2.4.1 Centralized diagnosability of DESs

A common problem in DESs is to determine when a certain unobservable event,

called failure event, has been executed by the system2. When this is possible, it is

said that the system is diagnosable with respect to the projection Po : Σ? → Σ?
o and

the failure event. Let G be the automaton that models a system and let L(G) = L

be the language generated by G. Let Σf ⊆ Σuo be the set of failure events, i.e., the

set of unobservable events whose occurrence must be diagnosed.

For the sake of simplicity, in this work it is assumed that there is only one failure

event, i.e., Σf = {σf}. There is no loss of generality in the results presented in

this work by making this assumption since, for systems with more than one failure

type, each failure type can be considered separately. In the sequel, we present the

de�nition of nonfailure and failure traces of a system.

2In this work, a failure event is considered to be unobservable, since an observable failure event
can be trivially diagnosed.
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De�nition 2.21 (Failure and nonfailure traces) A failure trace is a trace of

events s such that σf is one of the events that form s. A nonfailure trace, on the

other hand, does not contain the event σf .

The nonfailure language LN ⊂ L denotes the set of all nonfailure traces of L,

and the subautomaton of G that generates LN is denoted by GN . Thus, the set of

all traces generated by the system that contain σf is LF = L \ LN .
In SAMPATH et al. [14], the de�nition of language diagnosability is presented

for systems that satisfy two assumptions:

A1. The language generated by the system is live;

A2. There is no cycle of unobservable events in the system.

Under these two assumptions, the following de�nition can be stated [14].

De�nition 2.22 (Language diagnosability) Let L and LN ⊂ L be the live and

pre�x-closed languages generated by G and GN , respectively. Let LF = L \ LN .
Then, L is said to be diagnosable with respect to projection Po : Σ? → Σ?

o and Σf if

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF )(‖t‖ ≥ z)⇒
(Po(st) 6∈ Po(LN)).

According to De�nition 2.22, L is diagnosable with respect to Po and Σf if, and

only if, for all failure traces st with arbitrarily long length after the occurrence of a

failure event, there does not exist a nonfailure trace sN ∈ LN , such that Po(st) =

Po(sN). Therefore, if L is diagnosable, then it is always possible to identify the

occurrence of a failure event after a bounded number of observations of events.

In CASSANDRAS and LAFORTUNE [1], SAMPATH et al. [14, 15], a diagnoser

automaton that can be used to verify the diagnosability of L and also for failure

diagnosis is presented. This diagnoser is constructed based on an automaton Gl

computed from the plant model G, where Gl is obtained by labeling the states of G

according to the traces generated by the system, such that if a state of G is reached

by a trace that contains the failure event σf , then it is labeled with F , otherwise

it is labeled with N . After Gl has been obtained, the diagnoser automaton Gd

is computed by making the observer of Gl with respect to its observable events,

Gd = Obs(Gl,Σo). The diagnoser automaton Gd is formally de�ned as follows.

De�nition 2.23 (Diagnoser automaton) The diagnoser automaton Gd obtained

for the system G with respect to the failure set Σf and observable events set Σo is

given by:

Gd = (Qd,Σo, fd, q0,d),
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where Qd ⊆ 2Q×{N,F}. The transition function fd, and the initial state q0,d are

de�ned according to Algorithm 2.3.

Algorithm 2.3 Diagnoser automaton Gd

Input: G = (Q,Σ, f, q0).

Output: Diagnoser automaton Gd = (Qd,Σo, fd, q0,d).

1: De�ne automaton Al = (Ql,Σf , fl, q0,l), where Ql = {N,F}, fl(N, σf ) = F ,

fl(F, σf ) = F , and q0,l = N .

2: Compute automaton Gl = G‖Al.

3: Compute the diagnoser automaton Gd = Obs(Gl,Σo).

It is important to notice that automaton Gl generates the same language as

automaton G. Moreover, the states of Gl are of the form ql = (q,N), such that

q ∈ Q, if q is reached by a nonfailure trace, and ql = (q, F ) if q is reached by a

failure trace. The generated language of Gd is the natural projection of the generated

language of G, L, i.e., L(Gd) = Po(L).

Since Gd is constructed from the observer automaton of Gl, the states of Gd are

state estimates of Gl after the observation of a trace. If Gd reaches a state labeled

only with the label F , the failure event has certainly occurred and it is diagnosed. A

state of Gd labeled only with N indicates that the failure has not been executed by

the system. States of Gd that have the labels N and F are called uncertain states,

indicating that after the observation of a trace, a failure trace or a nonfailure trace

with the same projection has been executed by the system.

In order to use Gd to verify the diagnosability of L, it is necessary to search for

indeterminate cycles in Gd. An indeterminate cycle is an uncertain cycle, i.e., a

cycle formed by uncertain states, that is associated with at least two cycles in Gl,

one that has only states labeled with N , and one that has only states labeled with

F . If there is an indeterminate cycle in Gd, then the language generated by G, L,

is not diagnosable, otherwise, L is diagnosable.

The following example illustrates the construction of the diagnoser automatonGd

for a given plant G. The state transition diagram of automaton Al is also presented.

Example 2.10 Consider the system G presented in Figure 2.11(a), such that Σ =

Σo∪̇Σuo = {a, b, c, σu, σf}, where Σo = {a, b, c} and Σuo = {σu, σf}. The failure

event set is Σf = {σf}. The �rst step, according to Algorithm 2.3, to construct

the diagnoser of G, Gd, is to build automaton Al, whose state transition diagram

is presented in Figure 2.12. Automaton Gl = G‖Al is depicted in Figure 2.11(b).
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Figure 2.11: Automaton G (a), automaton Gl (b), and diagnoser automaton Gd (c)
of Example 2.10.
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Figure 2.12: Automaton Al of Example 2.10.

Finally, diagnoser Gd is obtained by computing the observer of Gl with respect to its

observable event set Σo, Gd = Obs(Gl,Σo), depicted in Figure 2.11(c).

Notice that the initial state of Gd is {0N} which corresponds to the unobserv-

able reach of the initial state of Gl. After the occurrence of event a, Gd reaches

state {1N ; 2N ; 4F}. The fact that the labels N and F exist in state {1N ; 2N ; 4F}
indicates that, at this point, the diagnoser of G is not sure about the occurrence of

the failure event. This also happens for states {3N ; 5F} and {0N ; 4F} in Gd after

the observations of traces ab and abc, respectively. Notice that there exists an un-

certain cycle in Gd formed by the states {1N ; 2N ; 4F}, {3N ; 5F}, and {0N ; 4F}.
However, this cycle is associated only with states of Gl that have the label N and,

thus, this cycle is not indeterminate. If the system executes the failure trace aσf (bc)
z

the failure event is diagnosed when Gd reaches state {5F}. Notice that, since there

are no indeterminate cycles in Gd, the language of G is diagnosable with respect to

Po : Σ? → Σ?
o and Σf .

Now, let us consider that the observable event set of the system is Σ′o = {b, c},
thus Σ′uo = {a, σu, σf}. The diagnoser of G considering Σ′o as the set of observable

events, G′d is shown in Figure 2.13. Notice that, there exists an uncertain cycle in G′d
formed by the states {0N ; 1N ; 2N ; 4F} and {3N ; 5F}. This cycle is indeterminate

since it is associated with the cycles in Gl labeled with N and F , namely the cycle

formed by the states {0N}, {1N}, {2N} and {3N}, and the cycle formed by the

states {4F} and {5F}.

Since the diagnoser automaton Gd is computed based on an observer, in the

worst case, its state space can grow exponentially with the state space cardinality of

the system |Q|. Therefore, its construction for diagnosability analysis is, in general,
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Figure 2.13: Diagnoser automaton G′d considering Σ′o as the set of observable events
of Example 2.10.

avoided. Other algorithms developed exclusively to verify the diagnosability of L

can also be found in the literature [69�71]. In these works, veri�er automata, whose

state space grows polynomially with the state space of the plant, are presented.

Petri net diagnoser

In SAMPATH et al. [14], it is stated that failure diagnosis can be carried out storing

only the current state of the diagnoser, without the need for storing the complete

state space of the diagnoser, and, after the observation of an event, the state estimate

is updated. However, a method for this implementation is not presented in SAM-

PATH et al. [14]. In CABRAL et al. [26], a Petri net diagnoser (PND) for failure

diagnosis of systems modeled as automata is proposed. The Petri net formalism is

used to structure the diagnoser implementation, which is also presented in CABRAL

et al. [26], where methods for the conversion of the PND into Programmable Logic

Controller (PLC) programming languages are also proposed.

If language L is diagnosable with respect to Po and Σf , then, the PND can be

built in order to perform the diagnosis of the failure event. The PND is constructed

from a state observer Petri net NSO, whose marking, after the observation of a trace,

corresponds to the state estimate of the nonfailure behavior of the global system,

GN . Thus, in order to compute the PND for a system G, it is necessary to obtain

automaton GN whose generated language is the nonfailure language of the system

LN , where LN = L \ LF . Automaton GN can be constructed following the steps of

Algorithm 2.4 [71].

Algorithm 2.4 Nonfailure model of the system.

Input: System model G = (Q,Σ, f, q0), and set of failure events Σf .

Output: Automaton GN .

1: De�ne ΣN ← Σ \ Σf .

2: Build automaton AN composed of a single state N , that is also its initial state,

with a self-loop labeled with all events in ΣN .

3: Construct the nonfailure automaton GN = G× AN = (QN ,Σ, fN , q0,N).
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4: Rede�ne the event set of GN as ΣN , i.e., GN = (QN ,ΣN , fN , q0,N).

After GN has been computed, the state observer Petri net NSO can be obtained

by following the steps of Algorithm 2.5.

Algorithm 2.5 State observer Petri net.

Input: Nonfailure system model GN = (QN ,ΣN , fN , q0,N).

Output: State observer Petri net NSO = (P, TSO, P reSO, PostSO, x0,SO,Σo, lSO).

1: Compute the SMPN N = (P, T, Pre, Post, x0,Σ, l) from GN by using Algo-

rithm 2.2.

2: De�ne the function ReachT (tj), ReachT : To → 2P , where tj ∈ To, and To is
the set of all transitions of N labeled with observable events, as follows:

2.1: Let Out(P )← ∪p∈POut(p) and Out(T )← ∪t∈TOut(t).
2.2: Let {pout} ← Out(tj), P

′
r ← {pout}, and Pr ← P ′r.

2.3: Let T ′u be the set of all transitions of Out(P ′r) labeled with unobservable

events. If T ′u = ∅, ReachT (tj)← Pr and stops.

2.4: Set P ′r ← Out(T ′u), Pr ← Pr ∪ P ′r, and return to Step 2.3.

3: Add to N arcs connecting each observable transition tj ∈ To to the places in

ReachT (tj), generating the Petri net N ′ = (P, T, Pre, Post′, x0,Σ, l).

4: Eliminate all transitions of N ′ labeled with unobservable events and their re-

lated arcs, generating the binary Petri net No = (P, To, P reo, Posto, x0,Σo, lo).

5: Compute NSO = (P, TSO, P reSO, PostSO, x0,SO,Σo, lSO) as follows:

5.1: Set T ′o ← ∅. For all qNi
∈ QN such that ΓGN

(qNi
) ∩ Σo 6= Σo, create a

new transition ti and let T ′o ← T ′o ∪ {ti}.
5.2: Set TSO ← To ∪ T ′o.
5.3: De�ne the new labeling function lSO : TSO → 2Σo, where lSO(tj)← lo(tj),

if tj ∈ To, and lSO(ti)← Σo \ (ΓGN
(qNi

) ∩ Σo), if t
i ∈ T ′o.

5.4: De�ne PreSO : P × TSO → N and PostSO : TSO × P → N, where

PreSO(pi, tj) ← Preo(pi, tj) and PostSO(tj, p`) ← Posto(tj, p`), for all

pi, p` ∈ P and tj ∈ To, and PreSO(pi, t
i) ← 1, PreSO(p`, t

i) ← 0 and

PostSO(ti, p`) ← 0 and PostSO(ti, pi) ← 0, for all ti ∈ T ′o and pi, p` ∈ P
where i 6= `.

5.5: De�ne the initial state of NSO by assigning a token to each place associ-

ated with a state of UR(q0,N) and zero to the other places.
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5.6: Rede�ne TSO, P reSO, and PostSO by eliminating the self-loop transitions

and their associated arcs.

In the Petri net state observer NSO, the places that have tokens after the obser-
vation of a trace correspond to the state estimate of GN . Assume that the language

L is diagnosable with respect to Po and Σf , then, according to De�nition 2.22, after

a bounded number of occurrences of events after the failure event, all places of the

Petri net NSO will have zero tokens. In order to use the Petri net NSO for diagnosis,

a failure detection logic that indicates the failure occurrence when all places of NSO
have zero tokens must be added to NSO. The addition of the failure detection logic

to NSO leads to the Petri net diagnoser ND that can be constructed according to

Algorithm 2.6.

Algorithm 2.6 Petri net diagnoser.

Input: Petri net state observer NSO = (P, TSO, P reSO, PostSO, x0,SO,Σo, lSO).

Output: Petri net diagnoser ND = (PD, TSO∪tf , P reD, PostD, InD, x0,D,Σo∪{λ},
lD).

1: Let tf be a transition created to identify the occurrence of a failure event of

the set Σf . TD ← TSO ∪ tf .

2: De�ne the labeling function lD : TD → 2Σo∪{λ}, where λ is the always occurring

event, such that lD(tD)← lSO(tD) for all tD ∈ TSO, and lD(tf )← {λ}.

3: Add to transition tf an input place pN and an output place pF . PD ← P ∪
{pN , pF}.

4: De�ne PreD : PD×TD → N and PostD : TD×PD → N where PreD(pi, tD)←
PreSO(pi, tD) and PostD(tD, pi) ← PostSO(tD, pi) for all tD ∈ TSO and pi ∈
P , PreD(pN , tf ) ← 1 and PostD(tf , pF ) ← 1, and PreD(pi, tf ) ← 0 and

PostD(tf , pi)← 0 for all pi ∈ P .

5: De�ne the function of inhibitor arcs InD : PD × TD → {0, 1}, where

InD(pD, tf ) = 1 for all pD ∈ P , and InD(pD, tD) = 0 for all other places

pD ∈ PD and transitions tD ∈ TD.

6: The initial marking of place pN is one and of place pF is zero. The other places

have the same initial marking de�ned by x0,SO.

The PND ND computed from Algorithm 2.6 has polynomial growth with the

size of the plant model G [26]. Methods for the conversion of the PND into ladder

diagram and sequential function chart in order to be implemented in a programmable
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Figure 2.15: State machine Petri net N of Example 2.11.

logic controller are also presented in CABRAL et al. [26]. In the following example,

we illustrate the construction of the PND ND and the diagnosis method for a system

G.

Example 2.11 Consider the plant model G of Example 2.10 depicted in Figure

2.11(a). In order to construct the Petri net diagnoser ND, it is necessary �rst to

obtain the nonfailure automaton GN according to Algorithm 2.4. Automaton GN

is depicted in Figure 2.14. Once GN has been computed, the state observer Petri

net NSO can be obtained according to Algorithm 2.5. Following Algorithm 2.5, the

�rst step to construct NSO is to compute the state machine Petri net N shown in

Figure 2.15. The state observer Petri net NSO obtained according to Algorithm 2.5

is depicted in Figure 2.16. Following Algorithm 2.6, the Petri net diagnoser ND,
presented in Figure 2.17 is constructed. Now, consider that the system executes

trace s = aσfbcb. When event a is observed, transition t2 of ND will �re, removing

the token from place 0 and adding one token to places 1 and 2. When event b is

observed, transitions t3 and t5 �re, which remove the tokens from places 1 and 2,

and add a token to place 3. When event c is observed, transition t7 �res and the

initial marking of ND is reached again. Finally, when the second occurrence of event

b is observed, transition t1 �res, removing the token from place 0. At this moment,

transition tf is enabled and, since it is labeled with the always occurring event λ, it

�res, removing a token from pN and adding a token to pF , diagnosing the failure

event occurrence.
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Figure 2.17: Petri net diagnoser ND of Example 2.11.
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2.4.2 Codiagnosability of DESs

In this work, we consider the decentralized diagnosis scheme as described in Protocol

3 of DEBOUK et al. [17]. The Protocol 3 of DEBOUK et al. [17] consists of ` local

diagnosers that do not communicate among each other, where each local diagnoser

has its own set of observable events. Thus, for each local diagnoser, the set of events

can be partitioned as Σ = Σoi∪̇Σuoi , for i = 1, . . . , `. In this scheme, the failure

is diagnosed when at least one of the local diagnosers identi�es its occurrence, and

the diagnosis decision is sent to a coordinator. It is important to remark that in

the decentralized diagnosis scheme proposed in DEBOUK et al. [17], two di�erent

observable event sets may have events in common, i.e., Σoi ∩ Σoj is not necessarily

equal to the empty set, for i 6= j, i, j ∈ {1, . . . , `}. In addition, it is also assumed in

DEBOUK et al. [17] that the language of the system is live.

The following de�nition of language codiagnosability can be stated [17].

De�nition 2.24 (Language codiagnosability) Let L be the live language gener-

ated by G. Then, L is said to be disjunctively codiagnosable with respect to projec-

tions Poi : Σ? → Σ?
oi
, for i = 1, . . . , `, and Σf if

(∃z ∈ N)(∀s ∈ L \ LN)(∀st ∈ L \ LN , ‖t‖ ≥ z)⇒
(∃i ∈ {1, . . . , `})[Poi(st) 6∈ Poi(LN)].

According to De�nition 2.24, L is codiagnosable with respect to Poi and Σf if,

and only if, for all failure traces st with arbitrarily long length after the occurrence

of a failure event, there do not exist nonfailure traces ωi ∈ LN , such that Poi(st) =

Poi(ωi) for all i ∈ {1, . . . , `}. Therefore, if L is codiagnosable, then it is always

possible to identify the occurrence of a failure event after a bounded number of

event observations. Notice that the diagnosability de�nition 2.22 can be obtained

from De�nition 2.24 by making ` = 1.

In order to implement a decentralized diagnosis scheme, it is �rst necessary to

verify if the system is codiagnosable, i.e., verify if it is always possible to identify if a

failure has occurred after a �nite number of event observations after the occurrence of

the failure event. In MOREIRA et al. [71], a polynomial-time algorithm is presented

to verify if the language L is codiagnosable with respect to Poi : Σ? → Σ?
oi
, for

i = 1, . . . , `, and Σf . In the sequel, we present the veri�er algorithm presented in

MOREIRA et al. [71].

Algorithm 2.7 Codiagnosability veri�cation.

Input: System model G = (Q,Σ, f, q0), set of failure events Σf , and Σ = Σoi∪̇Σuoi,

i = 1, . . . , `.
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Output: Codiagnosability decision.

1: Compute automaton GN by following the steps of Algorithm 2.4.

2: Compute automaton GF , whose marked language corresponds to the failure

behavior of the system, as follows:

2.1: Set Al = (Ql,Σf , fl, q0,l), where Ql = {N,F}, q0,l = {N}, fl(N, σf ) = F

and fl(F, σf ) = F , for all σf ∈ Σf .

2.2: Compute Gl = G‖Al and mark all states of Gl whose second coordinate

is equal to F .

2.3: Compute the failure automaton GF = CoAc(Gl).

3: De�ne the function Ri : ΣN → ΣRi
as:

Ri(σ) =

{
σ, if σ ∈ Σoi

σRi
, if σ ∈ Σuoi \ Σf

. (2.6)

Construct automata GN,i = (QN ,ΣRi
, fN,i, q0,N), for i = 1, . . . , `, with

fN,i(qN , Ri(σ)) = fN(qN , σ) for all σ ∈ ΣN .

4: Compute the veri�er automaton GV = (‖`i=1GN,i)‖GF = (QV , (∪`i=1ΣRi
) ∪

Σ, fV , q0,V ).

5: Verify the existence of a cycle cl = (qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V ), where γ ≥ δ >

0, in GV satisfying the following conditions:

∃j ∈ {δ, δ + 1, . . . , γ} s.t. for some qjV ,
(
qjl = F

)
∧ (σj ∈ Σ) . (2.7)

If the answer is yes, then L is not codiagnosable with respect to Poi and Σf .

Otherwise, L is codiagnosable.

Notice that a state of GV is given by qV = (qN,1, qN,2, . . . , qN,`, qF ) where

qN,1, qN,2, . . . , qN,`, and qF are the states of GN,1, GN,2, . . ., GN,`, and GF , respec-

tively, and qF = (q, ql), where q and ql are states of G and Al, respectively. Algorithm

2.7 can be used to verify the centralized diagnosability of L by making ` = 1, i.e.,

by considering only one diagnoser. It is also important to remark that assumptions

A1 and A2 are removed when veri�ers are used instead of diagnosers [19, 71]. In

the sequel, we present an example to illustrate the use of Algorithm 2.12 for the

veri�cation of the codiagnosability.

Example 2.12 Consider the system G depicted in Figure 2.18 and suppose we want

to verify the codiagnosability of L with respect to Poi : Σ? → Σ?
oi
, i = 1, 2 and
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Σf , where Σ = {a, b, c, σf}, Σo1 = {a, c},Σo2 = {b, c}, and Σf = {σf}. In steps

1 and 2, automata GN and GF presented in Figure 2.19(a) and (b), respectively,

are computed. In the sequel, automata GN,1 and GN,2 are built in Step 3. In this

example, automata GN,1 and GN,2 are equal to automaton GN and, thus, are omitted.

Finally, the veri�er automaton GV is shown in Figure 2.20. Notice that there are

no cycles in GV satisfying conditions (2.7). Therefore, the language generated by G

is codiagnosable with respect to Poi and Σf .

If the language L is codiagnosable with respect to Poi and Σf , a decentralized

diagnosis scheme can be implemented with local diagnosers. The Petri net diagnoser

presented in Section 2.4.1 can be used to perform decentralized diagnosis. In order

to do so, it is necessary to build local Petri net state observers NSOi
for each site

considering its own set of observable events Σoi in Algorithm 2.5. After the Petri

nets NSOi
are computed, for i = 1, . . . , `, a failure detection logic must be added

to NSOi
, according to Algorithm 2.6, generating the local Petri net diagnosers NDi

.

Each local diagnoser NDi
will have its own failure place pFi

, whose marking must be

communicated to a coordinator in order to inform the diagnosis of the failure event.

In the sequel, we present another diagnosis framework, known as modular diag-

nosis [59]. The idea in this architecture is to avoid the use of the global plant model

for diagnosis, using only a local diagnoser for the failure component of the system.

2.4.3 Modular diagnosability of DESs

Di�erent modular diagnosis approaches have been presented in the literature [56, 58�

60]. In PENCOLÉ and CORDIER [58], a local diagnoser is computed for each com-

ponent of the system and the diagnoses are merged in order to obtain the global

diagnosis decision. The main drawback of the work presented in PENCOLÉ and

CORDIER [58] is that, in the worst-case, the paths of all modules of the system

must be synchronized, which leads to an exponential growth with the number of

system components. In ZHOU et al. [60], a decentralized modular diagnosis scheme

for DESs is presented, where it is introduced the notion of local nonfailure speci�-

cations for modular diagnosability. In ZHOU et al. [60] it is stated that the local

nonfailure speci�cations are not unique, and a method for the computation of these
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c

Figure 2.18: Automaton G of Example 2.12.
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Figure 2.19: Automaton GN (a) and automaton GF (b) of Example 2.12.
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Figure 2.20: Automaton GV of Example 2.12.

speci�cations is not presented. Since the modular architectures proposed in [58, 60]

are incomparable with the notions of synchronous diagnosability and synchronous

codiagnosability presented in this work we do not further exploit these approaches.

In DEBOUK et al. [56] a di�erent modular architecture for DESs is proposed.

The idea is to compute local diagnosers obtained by following the steps of Algorithm

2.3 for each component of the system. The local diagnoser only diagnoses the failure

modeled in its respective module. In DEBOUK et al. [56], the classical de�nition of

diagnosability [14] is used, and su�cient conditions that ensure global diagnosability

using the modular architecture are proposed.

In CONTANT et al. [59], a notion of modular diagnosability that is di�erent from

the monolithic notion of diagnosability [14], is proposed. Necessary and su�cient

conditions that ensure the modular diagnosability of a DES are presented. Similar

to DEBOUK et al. [56], the modular diagnosis architecture proposed in CONTANT

et al. [59] consists on the computation of local diagnosers that can infer the global

occurrence of the failure event by observing only the local component model where

the failure is modeled. Due to the local diagnoser implementation with the aim

to diagnose a global failure occurrence by observing only the failure component

model, the notion of modular diagnosability proposed in CONTANT et al. [59]

can be compared to the notions of synchronous diagnosability and synchronous

codiagnosability proposed in this work. In order to do so, in this section we present

the modular diagnosis architecture, the notion of modular diagnosability and the

assumptions introduced in CONTANT et al. [59] that ensure the necessary and

su�cient conditions for modular diagnosability.

Let us consider that the global system model is obtained by the parallel com-

position of its subsystems or components, i.e., G = ‖rk=1Gk, where r is the total
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number of system components. In order to introduce the de�nition of modular

diagnosability, we �rst present the assumptions considered in CONTANT et al. [59].

• A1. The language of the system L is live, and there are no cycles of unob-

servable events in the system component models Gk, for k = 1, . . . , r;

• A2. Common events between two or more components are observable;

• A3. The model that exhibits the failure behavior has persistent excitation,

i.e., the failure does not bring the system to a halt.

Based on Assumptions A1-A3, and considering that the system is formed by the

composition of all modules Gk, k = 1, . . . , r, and that the failure event is modeled

only in automaton Gy, y ∈ {1, . . . , r}, the following de�nition of modular diagnos-

ability can be stated [59].

De�nition 2.25 (Modular diagnosability) Let G = ‖rk=1Gk, and let Gy, for

y ∈ {1, . . . , r}, be the automaton that models the failure component. The language

L(G) = L is said to be modularly diagnosable with respect to Σo = ∪rk=1Σk,o and

Σf ⊆ Σy if

(∃z′ ∈ N)(∀s ∈ LF )(∀st ∈ LF , ‖Py,o(t)‖ ≥ z′)⇒
Po(st) 6∈ Po(LN).

We now explain the e�ects of assumptions A1-A3 of the modular diagnosability

de�nition.

Assumption A1 is considered in CONTANT et al. [59] in order to avoid the

existence of hidden cycles [72] in the diagnosers, since the diagnosers are based on

observers. Thus, observers can be used in order to verify the notion of modular

diagnosability, as it is done in CONTANT et al. [59].

Assumption A2 is stated in order to guarantee that if the language of the system

L is diagnosable, then L is modularly diagnosable, and that if the language of the

module Gy, Ly = L(Gy), for y ∈ {1, . . . , r} is diagnosable, then L is modularly

diagnosable3. This result guarantees that, under Assumption A2, only the local

diagnoser associated with module Gy can be used to perform online failure diagnosis

of the system. It is important to remark that, based only on Assumption A2, if Ly
and L are both nondiagnosable, then the modular diagnosability is not guaranteed.

Consider now the implications of Assumption A3. If persistent of excitation

of the failure component is guaranteed, then there does not exist a failure trace

with a su�x of arbitrarily long length formed only with events that belong to the

3In the next chapters we show why Assumption A2 is needed to ensure this result.
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modules Gk, k ∈ {1, . . . , r} and k 6= y. In other words, there cannot exist an

arbitrary long length failure trace in the global behavior model G such that its

arbitrarily long length su�x is formed only with events that do not belong to the

failure component. In practice, Assumption A3 excludes traces from LF that are

known to be impossible to be executed by the system. This implies that the failure

behavior of the system can be modeled by a reduced failure language LredF ⊂ LF .

Therefore, the modular diagnosability de�nition is equivalent, under Assumption

A3, to a weaker de�nition of diagnosability, which can be explicitly considered in

De�nition 2.25 by replacing LF with LredF .

It is also important to remark that, according to Assumptions A1 and A3,

there exists a su�x t associated with any trace s ∈ LredF , such that st ∈ LredF and

Py,o(t) 6= ε. This fact, together with the fact that under Assumption A2, the

diagnosis can be performed only by the local diagnoser associated with Gy, implies

that condition ‖t‖ ≥ z can be replaced with ‖Py,o(t)‖ ≥ z′ in the classical de�nition

of diagnosability (De�nition 2.22), leading to the de�nition of modular diagnosability

(De�nition 2.25).

In the following, we present an example, also presented in CONTANT et al. [59],

that shows the main di�erences between the notions of diagnosability and modular

diagnosability of the language of the system L.

Example 2.13 Let G = G1‖G2‖G3, where automata G1, G2 and G3 are depicted

in Figure 2.21 and automaton G is presented in Figure 2.22. The set of events

of G1, G2 and G3 are Σ1 = Σ1,uo∪̇Σ1,o = {a, b, σf}, Σ2 = Σ2,o = {a, c, d, e}, and
Σ3 = Σ3,o = {a, c, d, e}, respectively, where Σ1,uo = Σf = {σf}, Σ1,o = {a, b},
Σo = Σ1,o ∪ Σ2,o ∪ Σ3,o = {a, b, c, d, e}, and Σuo = {σf}. In order to investigate

the modular diagnosability and monolithic diagnosability, we build the diagnoser

automata of G1 and G, Gd1 and Gd, depicted in Figures 2.23 and 2.24, respec-

tively, according to Algorithm 2.3. Notice that there is an indeterminate cycle in

the diagnoser automaton Gd. Considering only the system model automaton G, the

indeterminate cycle in Gd indicates that the system is not monolithically diagnosable

according to De�nition 2.22.

Let us now analyze the modular diagnosability of L. Notice that, there is an

indeterminate cycle in Gd1, which would indicate that L is not modularly diag-

nosable. However, notice that the indeterminate cycle in Gd1 is not executed due

to the interaction between modules G1, G2 and G3. In other words, transitions

((0N ; 1F ), a, (1F ; 3N)) and ((1F ; 3N), a, (1F ; 3N)) will not be executed in Gd1 since,

event a will not be executed in module G1 due to the interaction of G1 with modules

G2 and G3. Moreover, Assumption A3 guarantees that module G1, which has the

failure event modeled, has persistent excitation. Thus, if the failure event σf occurs

in the system, G1 will execute event b due to Assumption A3 and the occurrence of
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Figure 2.21: Automata G1, G2 and G3 of Example 2.13.
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Figure 2.22: Automaton G of Example 2.13.

σf would be diagnosed by diagnoser Gd1. Notice that, as a consequence of Assump-

tion A3, the system cannot generate the trace σfe
z for an arbitrarily large value of

z. Therefore, the language L is modularly diagnosable with respect to Σo = ∪rk=1Σk,o

and Σf = {σf}, and a local diagnoser can be constructed based only in module G1

in order to diagnose the failure event occurrence.

2.5 Final remarks

In this chapter, the formal de�nition of the language of a DES and two formalisms

capable of representing DESs behavior were presented: (i) automata, and (ii) Petri

nets. In this work, DESs are modeled as automata, which makes the unary and the

composition operations fundamental tools in order to analyze and construct mod-

els of complex DESs from simple models of components or subsystems. Although

the systems considered in this work are modeled using automata, the Petri net for-

malism is used to synthesize the diagnosers proposed in this work. The Petri net

formalism was chosen due to its distributed state representation, which mitigate the

exponential computational complexity of diagnosers based on observers automata.

Moreover, methods for the conversion of Petri net diagnosers into programming

languages for implementation on programmable logic controllers (PLC) have been
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bb
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b

Figure 2.23: Diagnoser automaton Gd1 of Example 2.13.
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Figure 2.24: Diagnoser automaton Gd of Example 2.13.

proposed in the literature [26].

The problem of failure diagnosis of DESs modeled as automata was also pre-

sented in this chapter. We have shown three diagnosis architectures: (i) the mono-

lithic diagnosis [14]; (ii) the decentralized diagnosis, as de�ned in Protocol 3 of

DEBOUK et al. [17]; and (iii) the modular diagnosis scheme [59]. Each one of

these architectures lead to di�erent notions of diagnosability, namely the monolithic

diagnosability, codiagnosability and modular diagnosability.

In the next two chapters, a new architecture for diagnosis of DESs modeled as

automata is proposed. Di�erently from SAMPATH et al. [14] and DEBOUK et al.

[17], this architecture is based on the nonfailure models of the system components

instead of the global plant model. The diagnosis scheme proposed in this work

is called synchronous diagnosis, and can be implemented in a centralized and de-

centralized way. Since all system component models are used in the synchronous

diagnosis, this approach is also di�erent from the method proposed in CONTANT

et al. [59], which can be seen as a particular case of the synchronous decentralized

diagnosis scheme. The comparison between the notions of modular diagnosability

and synchronous codiagnosability is carried out in Chapter 4.
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Chapter 3

Synchronous centralized

diagnosability of DESs

In CABRAL et al. [26], an online diagnoser that provides the state estimate of the

nonfailure part of the system, GN , after the occurrence of an observable trace, is

presented. If an observed trace is not feasible in GN , then the occurrence of the

failure event is detected by the online diagnoser, as it is presented in Section 2.4.

Although the method presented in CABRAL et al. [26] avoids the o�ine computa-

tion of all possible state estimates of the diagnoser, it requires the computation of

GN that may exhibit a large number of states, since it is obtained from the parallel

composition of the nonfailure behavior models of the system components.

In order to avoid the computation of the global plant model for diagnosis, in

this work, we propose a diagnosis scheme that takes advantage of the modularity

of discrete-event systems modeled as automata. In order to do so, we propose a

diagnosis method based on the observation of the nonfailure behavior of the system

components, modeled by GNk
, for k = 1, . . . , r, where r is the total number of system

components [73, 74]. In this regard, let G = ‖rk=1Gk be a composed system, i.e., a

system that is obtained from the parallel composition of several components, where

Gk = (Qk,Σk, fk, q0,k), k = 1, . . . , r, denote the automaton models of the system

components. Let Σk = Σk,o∪̇Σk,uo be the set of events of Gk, where Σk,o and Σk,uo

are the set of observable and unobservable events of Gk, respectively.

The diagnoser proposed in this work, called synchronized Petri net diagnoser

(SPND), is computed based on GNk
, for k = 1, . . . , r, and provides a superset of

the state estimate of the nonfailure behavior model GN after the occurrence of an

observable event. Petri net state observers NSOk
, for k = 1, . . . , r, that estimate

online the state of GNk
are constructed, and the occurrence of the failure event is

indicated by using a failure detection logic that detects the failure event occurrence

when, in at least oneNSOk
for k ∈ {1, . . . , r}, the state estimate is equal to the empty

set, i.e., when an observable event σo ∈ Σk,o that is not possible in the current state
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Figure 3.1: Comparison between the monolithic diagnosis architecture (a); and the
synchronous diagnosis architecture (b).

estimate of GNk
is executed. Since the state estimate of the SPND is a superset of

the actual state estimate of GN , if an event that is not feasible in the current SPND

state estimate is observed, the failure event certainly has occurred.

In Figure 3.1 we show the monolithic and the synchronous diagnosis architec-

tures. In the synchronous diagnosis scheme, all information of the occurrence of ob-

servable events is sent to the diagnoser by a unique communication channel, which

implies that an observable event σo ∈ Σo is observable for all components for which

σo is de�ned, i.e., Σi,o ∩ Σj ⊆ Σj,o, for any i, j ∈ {1, 2, . . . , r}. The Petri net state
observers NSOk

, for k = 1, . . . , r, are naturally synchronized online by the observable

events executed by the system.

Notice that, since the SPND provides a superset of the state estimate of GN , then

it is possible for L to be monolithically diagnosable and not diagnosable by using the

synchronous diagnosis scheme presented in Figure 3.1(b). Thus, it is necessary to

introduce the de�nition of synchronous diagnosability of the language of the system.

This de�nition is presented in the next section.

3.1 Synchronous diagnosability

In order to present the de�nition of synchronous diagnosability of a DES it is nec-

essary �rst to state the following lemma that shows that L(Obs(‖rk=1Gk,Σo)) ⊆
L(‖rk=1Obs(Gk,Σk,o)). This property has been used in the context of supervisory

control and it is presented in [75], and appears as an exercise, without a proof, in

[76].

Lemma 3.1 Let G = ‖rk=1Gk, where Gk = (Qk,Σk, fk, q0,k), for k = 1, 2, . . . , r, and

let Σk,o ⊆ Σk denote the set of observable events of Gk. Let Obs(Gk,Σk,o) denote
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the observer of Gk. Then,

L(Obs(‖rk=1Gk,Σo)) ⊆ L(‖rk=1Obs(Gk,Σk,o)), (3.1)

where Σo = ∪rk=1Σk,o.

Proof. Let L and Lk be the languages generated by G and Gk, respectively, for k =

1, . . . , r, and consider the projections Po : Σ? → Σ?
o, P

k
k,o : Σ?

k → Σ?
k,o, Pk : Σ? → Σ?

k,

and P o
k,o : Σ?

o → Σ?
k,o, for k = 1, . . . , r, where Σ = ∪rk=1Σk, and Σo = ∪rk=1Σk,o.

Since G = ‖rk=1Gk, then, by the de�nition of parallel composition, L(G) =

L(‖rk=1Gk) = ∩rk=1P
−1
k (Lk). Thus,

L(Obs(‖rk=1Gk,Σo)) = Po
(
∩rk=1P

−1
k (Lk)

)
. (3.2)

Let us now consider L (‖rk=1Obs(Gk,Σk,o)). Since L(Obs(Gk,Σk,o)) = P k
k,o(Lk),

then L (‖rk=1Obs(Gk,Σk,o)) = ∩rk=1P
o−1

k,o

(
P k
k,o(Lk)

)
.

According to the de�nitions of P o
k,o, Pk, and Po, it can be seen that

P o−1

k,o (s) = Po(P
−1
k (s)),

for all s ∈ Σ?
k,o. Thus,

P o−1

k,o (P k
k,o(Lk)) = Po(P

−1
k (P k

k,o(Lk))), (3.3)

for k = 1, 2, . . . , r.

Notice that, since Lk ⊆ Σ?
k, Σk ⊆ Σ, and Σk,o ⊆ Σo, P k

k,o(Lk) = Po(Lk), and

Po(P
−1
k (P k

k,o(Lk))) = Po(P
−1
k (Po(Lk))), (3.4)

for k = 1, 2, . . . , r. In addition, notice that

Po(P
−1
k (Po(s))) = Po(P

−1
k (s)), (3.5)

for all s ∈ Lk. Thus,
Po(P

−1
k (Po(Lk))) = Po(P

−1
k (Lk)), (3.6)

for k = 1, 2, . . . , r.

According to Eq. (3.3),

∩rk=1 P
o−1

k,o

(
P k
k,o(Lk)

)
= ∩rk=1Po(P

−1
k (P k

k,o(Lk))). (3.7)

Notice that the right-hand side of Eq. (3.7) can be rewritten according to Eq.

43



(3.4), as follows:

∩rk=1 Po(P
−1
k (P k

k,o(Lk))) = ∩rk=1Po(P
−1
k (Po(Lk))). (3.8)

Now, using Eq. (3.6) in Eq. (3.8) we have that:

∩rk=1 Po(P
−1
k (Po(Lk))) = ∩rk=1Po(P

−1
k (Lk)), (3.9)

and, therefore,

L(‖rk=1Obs(Gk,Σk,o)) = ∩rk=1P
o−1

k,o

(
P k
k,o(Lk)

)
= ∩rk=1Po(P

−1
k (Lk)). (3.10)

Finally, from property (2.1), it can be seen that:

Po
(
∩rk=1P

−1
k (Lk)

)
⊆ ∩rk=1Po(P

−1
k (Lk)).

Therefore, according to Eqs. (3.2) and (3.10),

L(Obs(‖rk=1Gk,Σo)) ⊆ L(‖rk=1Obs(Gk,Σk,o)). (3.11)

�

According to Lemma 3.1, the language generated by Obs(‖rk=1GNk
,Σo) is a subset

of the language generated by the parallel composition of Obs(GNk
,Σk,o), for k =

1, . . . , r. In the following corollary we present a condition that ensures the equality

in (3.1).

Corollary 3.1 Let Σk,uo be the set of unobservable events of Σk, for k = 1, . . . , r.

If Σi,uo ∩ Σj,uo = ∅, for all i 6= j and i, j ∈ {1, . . . , r}, then L(Obs(‖rk=1Gk,Σo)) =

L(‖rk=1(Obs(Gk,Σk,o))).

Proof. In order to prove that L(Obs(‖rk=1Gk,Σo)) = L(‖rk=1Obs(Gk,Σk,o)), it suf-

�ces to prove that L(Obs(‖rk=1Gk,Σo)) ⊇ L(‖rk=1Obs(Gk,Σk,o)), when Σi,uo∩Σj,uo =

∅ for all i 6= j and i, j ∈ {1, . . . , r}, since in Lemma 3.1 we have already

proved that L(Obs(‖rk=1Gk,Σo)) ⊆ L(‖rk=1Obs(Gk,Σk,o)). In order to do so, let

η ∈ L(‖rk=1Obs(Gk,Σk,o)), which, in accordance with Eq. (3.10), implies that

η ∈ ∩rk=1Po(P
−1
k (Lk)), i.e., there exist traces sk ∈ P−1

k (Lk), for k = 1, . . . , r such

that Po(s1) = Po(s2) = . . . = Po(sr) = η. Let Kk ⊆ P−1
k (Lk) be languages such

that η = Po(sk), for any k ∈ {1, . . . , r}. Since Σi,uo ∩ Σj,uo = ∅, for all i 6= j and

i, j ∈ {1, . . . , r}, then all unobservable events of the set Σk,uo are private events of

Σk, for k = 1, . . . , r, which implies that ∩rk=1Kk 6= ∅. Thus, η ∈ ∩rk=1Po(P
−1
k (Lk),

which, in accordance with Eq. (3.2), implies that η ∈ L(Obs(‖rk=1Gk,Σo)). �
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It is important to remark that the condition presented in Corollary 3.1 is only

su�cient, i.e., even if Σi,uo ∩ Σj,uo 6= ∅ for any i 6= j and i, j ∈ {1, . . . , r}, the
language L(Obs(‖rk=1Gk,Σo)) can be equal to L(‖rk=1Obs(Gk,Σk,o)).

In this work, the same strategy for diagnosis proposed in CABRAL et al. [26]

is used, namely, the diagnoser provides the current state estimate of the nonfailure

behavior of the system, and, when an event that is not feasible in the current state

estimate is observed, the diagnoser indicates the occurrence of the failure event.

However, di�erently from CABRAL et al. [26], we exploit the composed structure

of the system, i.e., the online state estimate of each module is carried out by the

diagnoser that naturally synchronizes the state estimate of the modules based on

the occurrence of observable events, whose language is L(‖rk=1Obs(GNk
,Σk,o)) =

∩rk=1P
o−1

k,o (Pk,o(LNk
)), where P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o, and Σo = ∪rk=1Σk,o.

Let LNa denote the augmented nonfailure language obtained by using the syn-

chronous diagnosis approach, i.e., LNa = ∩rk=1P
o−1

k,o (Pk,o(LNk
)). According to Equa-

tion (3.1),

Po(LN) ⊆ LNa , (3.12)

which shows that a diagnoser that uses the information provided by the parallel

composition of the observers of the system modules may represent more observable

traces than the system is capable to generate. Indeed, the diagnosis based on the

observation of the system modules is equivalent to the diagnosis of an augmented

system Ga whose generated language is La = LNa ∪ LF , where LF is the failure

language of the system. Therefore, if there exists a nonfailure trace in LNa \ LN
with the same projection as an arbitrarily long length failure trace in LF , then La
is not diagnosable even if L is diagnosable. This leads to the following de�nition of

synchronous diagnosability of DESs.

De�nition 3.1 (Synchronous diagnosability) Let L and LN ⊂ L denote the

languages generated by G and GN , respectively, and let LF = L \ LN . Consider

that the system is composed of r modules, such that GN = ‖rk=1GNk
, where GNk

is

the automaton that models the nonfailure behavior of Gk, and let LNk
denote the

language generated by GNk
, for k = 1, . . . , r. Then, L is said to be synchronously

diagnosable with respect to LNk
, P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o, for k = 1, . . . , r,

Po : Σ? → Σ?
o, and Σf if

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF , ‖t‖ ≥ z)⇒
(Po(st) 6∈ ∩rk=1P

o−1

k,o (Pk,o(LNk
))).

Notice that De�nition 3.1 of synchronous diagnosability of a language L is equiv-
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alent to the standard de�nition of diagnosability (De�nition 2.22) of a language

La = LF ∪ LNa , where LNa = ∩rk=1P
o−1

k,o (Pk,o(LNk
)). This leads to the following the-

orem that establishes the relation between the notions of diagnosability (De�nition

2.22) and synchronous diagnosability (De�nition 3.1).

Theorem 3.1 If L is synchronous diagnosable with respect to LNk
, P o

k,o : Σ?
o → Σ?

k,o,

Pk,o : Σ? → Σ?
k,o, for k = 1, . . . , r, Po : Σ? → Σ?

o, and Σf , then L is diagnosable with

respect to Po : Σ? → Σ?
o and Σf , where Σo = ∪rk=1Σk,o.

Proof. According to De�nition 3.1, in order to L be synchronously diagnosable,

there cannot be an arbitrarily long failure trace st such that Po(st) ∈ LNa and,

according to De�nition 2.22, in order to L be diagnosable, there cannot be an arbi-

trarily long failure trace st such that Po(st) ∈ Po(LN). Since, according to Equation

(3.12), Po(LN) ⊆ LNa , if Po(st) 6∈ LNa then Po(st) 6∈ Po(LN), which implies that if

L is synchronously diagnosable, L is diagnosable. �

In the next section we present an algorithm for the veri�cation of synchronous

diagnosability of the language of a composed system.

3.2 Synchronous diagnosability veri�er

In order to present the algorithm for the veri�cation of the synchronous diagnos-

ability, we �rst show an algorithm for the computation of the nonfailure behavior

models GNk
from the system components models Gk, and the system model G.

Algorithm 3.1 Nonfailure behavior models of the system components.

Input: Gk = (Qk,Σk, fk, q0,k), for k = 1, . . . , r, and G = (Q,Σ, f, q0).

Output: GNk
= (QNk

,ΣNk
, fNk

, q0,Nk
), for k = 1, . . . , r.

1: Compute automaton GN = (QN ,ΣN , fN , q0) according to Algorithm 2.4 [71].

2: For all transitions fN(qN , σ) = q′N in GN , �ag the transitions fk(qk, σ) = q′k
in Gk, for k = 1, . . . , r, where qk and q′k are the k-th elements of qN and q′N ,

respectively.

3: Obtain automata G′k by erasing from Gk all transitions that are not �agged.

4: Compute automata GNk
= Ac(G′k) = (QNk

,ΣNk
, fNk

, q0,Nk
), for k = 1, . . . , r.

5: Rede�ne the event sets ΣNk
← Σk \ Σf , for k = 1, . . . , r.

According to Algorithm 3.1, the nonfailure behavior models of the system compo-

nents GNk
are obtained from the composed system GN = ‖rk=1GNk

. The construction
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of GNk
from GN is necessary since the post-failure behavior of a failure component

Gi can interact with another component Gj, i 6= j, where the failure event is not

modeled. If, due to the interaction between modules Gi and Gj, the behavior of

Gj after the failure event occurrence is di�erent from its behavior when the failure

event does not occur, Gj can be di�erent from GNj
, even if the failure event is not

modeled in Gj. The following example illustrates this problem.

0 1

23

6
a σf a, c, σu1

e
e

b

c

cc

4 5
a

σu2

e

(a) G1

0

34

1
c

d g

g

2
b

5
h

6 7

σu1

σu2

d

g

(b) G2

Figure 3.2: Automata G1 and G2 of Example 3.1.
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Figure 3.4: Automaton GN of Example 3.1.

Example 3.1 Consider the system G = G1‖G2, where G1 and G2 are depicted

in Figures 3.2(a) and 3.2(b), respectively, and automaton G is shown in Figure

3.3. The event sets of G, G1 and G2 are Σ = {a, b, c, d, e, g, h, σu1, σu2, σf}, Σ1 =

Σ1,o ∪ Σ1,uo = {a, b, c, e, σu1, σu2, σf}, and Σ2 = Σ2,o ∪ Σ2,uo = {b, d, g, h, σu1, σu2},
respectively, where Σ1,o = {a, b, c, e}, Σ1,uo = {σu1, σu2, σf}, Σ2,o = {b, d, g, h}, and
Σ1,uo = {σu1, σu2}. The set of failure events Σf = {σf}. Automaton GN , that

models the nonfailure behavior of G obtained by following Step 1 of Algorithm 3.1,

is presented in Figure 3.4. Notice that transition (1, σu1, 2) of automaton G2 can only

occur after the occurrence of the failure event σf . Moreover, σf belongs only to the

event set of automaton G1, and thus, although the failure event is not modeled in G2,

the transition (1, σu1, 2) of G2 does not belong to its nonfailure behavior. In Figure

3.5, we show automata GN1 and GN2 obtained by following Step 4 of Algorithm 3.1.

The following algorithm can be used to verify the synchronous diagnosability of

the language of a DES.

Algorithm 3.2 Synchronous Diagnosability Veri�cation

Input: System modules Gk, for k = 1, . . . , r, and G = ‖rk=1Gk.

Output: Synchronous diagnosability decision.

1: Compute automaton GF that models the failure behavior of G, whose marked

language is LF = L \ LN , according to Algorithm 2.7 [71].
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2: Compute automata GNk
by following the steps of Algorithm 3.1.

3: Compute automaton GR
N = (QR

N ,Σ
R, fRN , q0) as follows:

3.1: De�ne function Rk : ΣNk
→ ΣR

Nk
, as:

Rk(σ) =

{
σ, if σ ∈ Σk,o,

σRk
, if σ ∈ Σk,uo.

(3.13)

3.2: Construct automata GR
Nk

= (QNk
,ΣR

Nk
, fRNk

, q0,Nk
), k = 1, . . . , r, with

fRNk
(qNk

, Rk(σ)) = fNk
(qNk

, σ), ∀qNk
∈ QNk

and ∀σ ∈ ΣNk
.

3.3: Compute GR
N = ‖rk=1G

R
Nk
.

4: Compute the veri�er automaton GSD
V = (QV ,ΣV , fV , q0,V ) = GF‖GR

N . Notice

that a state of GSD
V is given by qV = (qF , q

R
N), where qF and qRN are states of

GF and GR
N , respectively, and qF = (q, ql), where q ∈ Q and ql ∈ {N,F}.

5: Verify the existence of a cyclic path cl = (qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V ), where

γ ≥ δ > 0, in GSD
V such that:

∃j ∈ {δ, δ + 1, . . . , γ} such that for some qjV ,

(qjl = F ) ∧ (σj ∈ Σ).

If the answer is yes, then L is not synchronously diagnosable with respect to

LNk
, P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o, for k = 1, . . . , r, Po : Σ? → Σ?

o, and

Σf . Otherwise, L is synchronously diagnosable.

The method to verify the synchronous diagnosability of a system is based on

the comparison between automata GF and GR
N . Automaton GF models the failure

behavior of the system G and automaton GR
N models the augmented nonfailure
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Figure 3.5: Automata GN1 and GN2 of Example 3.1.
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behavior considered in the synchronous diagnosis scheme, such that the projection in

Σo of the language generated by GR
N , P

R
o (L(GR

N)), where PR
o : ΣR? → Σ?

o, is equal to

the nonfailure language observed by the synchronous diagnoser, i.e., PR
o (L(GR

N)) =

LNa = ∩rk=1P
o−1

k,o (Pk,o(LNk
)).

In order to prove the correctness of Algorithm 3.2 we �rst present the following

lemmas.

Lemma 3.2 Let GNk
be the automaton that models the nonfailure behavior of Gk,

and LNk
be the language generated by GNk

, for k = 1, . . . , r. Let GR
Nk

be the

automaton obtained from GNk
by applying Step 3 of Algorithm 3.2, and LRNk

be

the language generated by GR
Nk
, for k = 1, . . . , r. Then, PR

o [∩rk=1P
R−1

Nk
(LRNk

)] =

∩rk=1P
R
o [PR−1

Nk
(LRNk

)], where PR
o : ΣR? → Σ?

o, P
R
Nk

: ΣR? → Σ?
Nk
, for k = 1, . . . , r, and

ΣR = ∪rk=1ΣR
Nk
.

Proof. In order to show that PR
o [∩rk=1P

R−1

Nk
(LRNk

)] = ∩rk=1P
R
o [PR−1

Nk
(LRNk

)],

we must only proof that PR
o [∩rk=1P

R−1

Nk
(LRNk

)] ⊇ ∩rk=1P
R
o [PR−1

Nk
(LRNk

)], since

PR
o [∩rk=1P

R−1

Nk
(LRNk

)] ⊆ ∩rk=1P
R
o [PR−1

Nk
(LRNk

)] is true, according to Equation (2.1).

Let s = σo1σo2 . . . σon be a trace of events such that s ∈ ∩rk=1P
R
o [PR−1

Nk
(LRNk

)].

Thus, s ∈ PR
o [PR−1

Nk
(LRNk

)] for all k = 1, . . . , r. Therefore, there exists at least

one trace yk ∈ PR−1

Nk
(LRNk

), for k ∈ {1, . . . , r}, such that Po(y1) = Po(y2) =

. . . = Po(yr) = s. Since Po(y1) = Po(y2) = . . . = Po(yr) = s, yk can be writ-

ten as yk = v1σo1v2σo2v3 . . . vnσonvn+1, where vi ∈ (ΣR \ Σo)
?. Moreover, since

yk ∈ PR−1

Nk
(LRNk

), vi can be written as vi = t1σ
R
k,1t2σ

R
k,2 . . . tη, where σ

R
k,j ∈ ΣR

Nk
,

ti ∈ (ΣR
N \ ΣR

N1
)?. Therefore, there exists at least one trace y ∈ ∩rk=1P

R−1

Nk
(LRNk

)

with the same observation as yk for k = 1, . . . , r. Since PR
o (y) = s, then

s ∈ PR
o [∩rk=1P

R−1

Nk
(LRNk

)], which concludes the proof. �

Lemma 3.3 Let LNk
be the language generated by GNk

. Then,

∩rk=1P
R
o [PR−1

Nk
(LRNk

)] = ∩rk=1P
o−1

k,o (Pk,o(LNk
)).

Proof. Notice that LRNk
is obtained from LNk

by renaming its unobservable events.

Therefore, since P o
k,o : Σ?

o → Σ?
k,o, Pk,o : Σ? → Σ?

k,o, P
R
Nk

: ΣR? → Σ?
Nk
, and

PR
o : ΣR? → Σ?

o, it is straightforward to see that PR
o [PR−1

Nk
(LRNk

)] = P o−1

k,o (Pk,o(LNk
)),

for k = 1, . . . , r. �

We can now state the following theorem that proves the correctness of Algorithm

3.2.

Theorem 3.2 Let LNk
denote the language generated by GNk

, for k = 1, . . . , r.

Then, L is not synchronously diagnosable with respect to LNk
, P o

k,o : Σ?
o → Σ?

k,o,
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Pk,o : Σ? → Σ?
k,o, for k = 1, . . . , r, Po : Σ? → Σ?

o, and Σf if, and only if, there exists

a cyclic path cl = (qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V ) in GSD

V , where γ ≥ δ > 0, such that:

∃j ∈ {δ, δ + 1, . . . , γ} s.t. for some qjV ,

(qjl = F ) ∧ (σj ∈ Σ). (3.14)

Proof. According to De�nition 3.1, in order to verify the synchronous diagnos-

ability of the language of the system L, it is necessary to check if there exists an

arbitrarily long failure trace st such that Po(st) ∈ ∩rk=1P
o−1

k,o (Pk,o(LNk
)). Lemma 3.2

shows that PR
o [∩rk=1P

R−1

Nk
(LRNk

)] = ∩rk=1P
R
o [PR−1

Nk
(LRNk

)], and according to Lemma

3.3, ∩rk=1P
R
o [PR−1

Nk
(LRNk

)] = ∩rk=1P
o−1

k,o (Pk,o(LNk
)). Therefore, ∩rk=1P

o−1

k,o (Pk,o(LNk
)) =

PR
o [∩rk=1P

R−1

Nk
(LRNk

)]. Thus, in order to check the synchronous diagnosability

of L, it can be veri�ed if there exists a failure trace st such that Po(st) ∈
PR
o [∩rk=1P

R−1

Nk
(LRNk

)]. Since the unobservable events of GR
N are renamed, and hence,

are private events of GR
N , it can be seen that the veri�er automaton GSD

V proposed

here is equal to the veri�er automaton GV obtained by applying the method pro-

posed in MOREIRA et al. [71] to a system whose failure automaton marks LF and

whose observable nonfailure behavior automaton generates LNa . Moreover, the same

necessary and su�cient condition (3.14) would be obtained by using the veri�cation

method proposed in MOREIRA et al. [71], which concludes the proof. �

Notice that the construction of GSD
V according to Algorithm 3.2 is polynomial

in the number of states of GNk
, and it is exponential in the number of system

components. In order to see this fact, let us compute the complexity of each step of

Algorithm 3.2.

In Step 1 of Algorithm 3.2, automaton GF is computed. The number of transi-

tions and states of GF are bounded by 2×|Q| and 2×|Q|× |Σ|, respectively [71]. In
Step 2 automata GNk

, for k = 1, . . . , r, are computed. Since automata GNk
are ob-

tained from GN by erasing all transitions that are not associated with a transition of

Gk, and taking the accessible part of the result, the number of transitions and states

of automata GNk
are bounded by the number of transitions and states of automata

Gk. Automata GR
Nk
, computed in Step 3, has the same number of transitions and

states of automata GNk
. Finally, automaton GSD

V is computed by making the paral-

lel composition between automata GR
Nk

and GF . Therefore, the number of states and

transitions of automaton GSD
V are, in the worst-case, equal to (

∏r
k=1 |Qk|)×|Q|, and

(
∏r

k=1 |Qk|)×|Q|×|ΣV |, respectively, where ΣV = ΣR∪Σ. Thus, the computational

complexity of Algorithm 3.2 is O(r × (
∏r

k=1 |Qk|)× |Q| × |Σ|).
Although the computational complexity of the synchronous diagnosability veri-

�er GSD
V is exponential in the number of the system components, the main goal in

this work is to provide a diagnosis method that is polynomial in the number of com-
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ponents of the system, avoiding the exponential growth of the size of the diagnoser

for implementation. In the following example, we illustrate the use of Algorithm 3.2

for the veri�cation of synchronous diagnosability.

Example 3.2 Let G1 and G2, whose transition diagrams are shown in Figure

3.2, be the components of a system G = G1‖G2, depicted in Figure 3.3. Let

Σ = {a, b, c, d, e, g, h, σu1, σu2, σf}, Σo = {a, b, c, d, e, g, h}, Σuo = {σu1, σu2, σf},
Σf = {σf}, Σ1 = {a, b, c, e, σu1, σu2, σf}, Σ2 = {b, c, d, g, h, σu1, σu2, σf}, Σ1,o =

{a, b, c, e}, and Σ2,o = {b, c, d, g, h}. In the �rst step of Algorithm 3.2 automaton

GF , shown in Figure 3.6, is computed. In Step 2, automata GN1 and GN2, depicted

in Figure 3.5, are computed, and, in Step 3, automaton GR
N , obtained by making

the parallel composition of GR
N1

and GR
N2
, depicted in Figures 3.7(a) and 3.7(b), re-

spectively, is computed. Notice that the gray states of GR
N , depicted in Figure 3.8,

and their corresponding transitions labeled with observable events, do not belong to

GN , which indicates the growth of the nonfailure language for synchronous diagno-

sis compared to the monolithic diagnosis scheme. Finally, in Step 4 of Algorithm

3.2, the synchronous veri�er automaton GSD
V , presented in Figure 3.9, is computed.

Notice that there are no cycles in GSD
V that satisfy condition (3.14) of Theorem 3.2.

Thus, L is synchronously diagnosable with respect to LN1, LN2, P
o
1,o : Σ?

o → Σ?
1,o,

P o
2,o : Σ?

o → Σ?
2,o, P1,o : Σ? → Σ?

1,o, P2,o : Σ? → Σ?
2,o, Po : Σ? → Σ?

o, and Σf .

It is important to notice that the sum of the number of states of GN1 and GN2 in

this example is equal to 14, and the cardinality of the state space of GN is 27. This

shows that the synchronous diagnosis scheme has a lower cost for implementation

than a diagnoser computed from the global nonfailure behavior model of the system

GN .

Since the synchronous diagnosis of L is equivalent to the monolithic diagnosis of

the augmented language La = LNa∪LF , where LNa ⊇ Po(LN), then, the delay bound

for synchronous diagnosis can be larger than the delay bound for the monolithic

diagnosis. In the next section, we present a method for the computation of the

delay bound for synchronous diagnosis.

3.3 Delay bound for synchronous diagnosis

In Section 3.1, we have shown that the nonfailure language observed by the syn-

chronous diagnoser can be a larger set than the natural projection of the nonfailure

language of the system. This fact can add a delay1 to the synchronous diagnosis

compared with the standard monolithic diagnosis case, which can cause a decrease

1In this work, the delay bound is considered as the maximum number of events that the system
can execute after the occurrence of the failure event σf , until σf is detected by the diagnoser.
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Figure 3.9: Automaton GSD
V of Example 3.2.
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in the system performance. Thus, the computation of the delay bound z∗ of the

synchronous diagnosis is important to evaluate if this method can be implemented

in a real system. In this section, we present a polynomial time algorithm for the

computation of the delay bound z∗ for synchronous diagnosis. The method for the

computation of the delay bound presented in this section is based on the method

proposed in TOMOLA et al. [77] for the computation of the delay bound for robust

codiagnosability of DESs.

With a view to computing the delay bound z∗, it is necessary to compute �rst

the maximum number of events d that the system can execute after the occurrence

of the failure event σf , for which there exists a failure trace st and a nonfailure trace

ω, such that Po(ω) ∈ LNa , with the same observation:

d = max{‖t‖ : (s ∈ LF )(st ∈ LF )(Po(st) = Po(ω),

Po(ω) ∈ ∩rk=1P
o−1

k,o (Pk,o(LNk
)))}.

Remark 3.1 In order to compute d, it is necessary to �nd the traces st ∈ LF and ω,

where Po(ω) ∈ LNa, such that Po(st) = Po(ω), and t has maximum length. Notice

that GSD
V represents only the nonfailure traces Po(ω) ∈ LNa and failure traces st

that have the same natural projection Po [78]. Therefore, the computation of d can

be carried out by searching the path of GSD
V associated with a trace in Σ? with the

greatest length after the occurrence of the failure event σf .

In the sequel, we present an algorithm for the computation of d based on the

algorithm presented in DASGUPTA et al. [79] for the computation of the length

of the longest path in a directed acyclic graph (DAG). This algorithm was also

presented in TOMOLA et al. [77] and is adapted in this work to the synchronous

diagnosis case.

Algorithm 3.3 Computation of d.

Input: GSD
V .

Output: d.

1: Create the graph G
SD

V by eliminating from GSD
V all states that have label N

and their related transitions.

2: Find all strongly connected components of G
SD

V .

3: Obtain the acyclic graph Gdag = (Qdag,Σdag, fdag, q0,dag), where Σdag =

∪rk=1ΣR
Nk
∪ Σ, from G

SD

V by shrinking each strongly connected component to

a single state as it is done in YOO and GARCIA [80].
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4: (v1, v2, . . . , vη) ← Topological Sort(Gdag), where vj ∈ Qdag, for j = 1, . . . , η,

and η = |Qdag|.

5: De�ne the weight function ρ : Qdag ×Qdag → {0, 1}, where

ρ(vi, vj)←
{

1, if ∃σ ∈ Σ such that fdag(vi, σ) = vj,

0, otherwise.

6: For j = 1, . . . , η:

l(vj)←
{

max{l(vi) + ρ(vi, vj) : (∃σ ∈ Σdag)(fdag(vi, σ) = vj)},
0, if 6 ∃(vi, σ) ∈ Qdag × Σdag such that (fdag(vi, σ) = vj).

7: d← maxj∈{1,...,η}l(vj).

It is important to remark that a topological sort of a DAG is carried out in

Algorithm 3.3 for the computation of d. The Topological Sort Algorithm returns

the linked list of vertices of a DAG G, such that if G has an edge (u, v), then u

appears before v in the ordering [79, 81].

Since the delay bound is the maximum number of events that the system can

execute after the occurrence of the failure event σf , and until σf is detected, for its

computation it is necessary to consider only the traces of GSD
V after the occurrence of

the failure event σf . Therefore, in Step 1 of Algorithm 3.3, the graph G
SD

V , obtained

from GSD
V , is formed only with the states of GSD

V reached after the occurrence of the

failure event σf .

Notice that, in order to compute the maximum delay bound for synchronous

diagnosis, the system must be synchronous diagnosable, and thus, according to

Theorem 3.2, the veri�er GSD
V does not have any cyclic path with one of the events

in the path belonging to Σ. However, the veri�er GSD
V can have cyclic paths formed

with transitions that are labeled with renamed events. In order to eliminate the

cyclic paths of G
SD

V it is necessary to shrink all its strongly connected components,

obtaining the directed acyclic graph Gdag. When the strongly connected component

is shrunk into one vertex, all transitions that reach or leave the strongly connected

component will reach or leave the vertex. This procedure is performed in Steps 2

and 3 of Algorithm 3.3.

The Topological Sort of Gdag is carried out in Step 4 of Algorithm 3.3. Next, in

Step 5, a weight function ρ is introduced to assign weight zero to the transitions of

Gdag labeled with renamed events, and weight one to the transitions of Gdag labeled

with events from Σ. Finally, in Steps 6 and 7, the number of transitions labeled with

events in Σ of the longest path in the weighted acyclic graph Gdag, d, is computed.
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Figure 3.10: Graph G
SD

V = Gdag of Example 3.3.

After the computation of d, the delay bound for synchronous diagnosis can be

computed as

z∗ = d+ 1, (3.15)

since, for obtaining the delay bound z∗, the occurrence of the event that leads to

the synchronous diagnosis of the failure event must be counted.

We present in the sequel an example to illustrate the use of Algorithm 3.3 for

the computation of delay bound z∗ for synchronous diagnosis.

Example 3.3 Consider again the plant G = G1‖G2, whose components G1 and

G2 are shown in Figures 3.5(a) and 3.5(b), respectively. As concluded in Example

3.2, L is synchronously diagnosable with respect to LN1, LN2, P
o
1,o : Σ?

o → Σ?
1,o,

P o
2,o : Σ?

o → Σ?
2,o, P1,o : Σ? → Σ?

1,o, P2,o : Σ? → Σ?
2,o, Po : Σ? → Σ?

o, and Σf .

Thus, the maximum number of events d that can be generated after the occurrence

of the failure event σf , for which there exists a failure trace st and a nonfailure trace

Po(ω) with the same observation, can be computed following the steps of Algorithm

3.3. In order to do so, automata G
SD

V and Gdag are computed from GSD
V . In this

example, G
SD

V = Gdag, and is depicted in Figure 3.10. In Step 4 of Algorithm 3.3,

a Topological Sort is carried out using the graph Gdag, which results in the graph

presented in Figure 3.11. In Steps 5 and 6, the weighting functions ρ and l are

computed, whose result is depicted in Figure 3.12. Finally, d is computed in Step 7,

which results in d = 6 and, therefore, the maximum delay for synchronous diagnosis

of the system G = G1‖G2 is z∗ = 7.

It is important to remark that, in this example, the delay bound for the centralized

diagnosis considering a monolithic diagnoser is also z∗ = 7. This shows that, de-
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Figure 3.11: Graph Gdag of Example 3.3 topologically sorted.
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Figure 3.12: Graph Gdag of Example 3.3 topologically sorted with the value of the
weighting functions ρ(vi, vj) (above the edges) and l(vj) (below the vertices).

pending on the system, the failure event can be diagnosed with the same delay bound

than using the monolithic approach, even with the growth of the observed nonfailure

language for synchronous diagnosis.

3.3.1 Complexity analysis

The computational complexity of Algorithm 3.3 is polynomial in the size of the plant

model G. In order to verify this fact, let us compute the complexity of each step of

Algorithm 3.3.

In Step 1 of Algorithm 3.3, automaton G
SD

V is computed by eliminating from

GSD
V all states that are not reached after the occurrence of the failure event σf , and

their related transitions. Thus, the maximum number of states and transitions of

G
SD

V is bounded by the number of states and transitions of GSD
V . Moreover, Step 1

of Algorithm 3.3 can be performed in linear time with respect to the size of GSD
V .

In Steps 2 and 3 of Algorithm 3.3, the strongly connected components of G
SD

V

are computed and eliminated, generating automaton Gdag. The search for strongly

connected components in a directed acyclic graph can be done in linear time in the

number of vertices and edges of the graph [81]. The number of states and edges of

Gdag is, in the worst case, equal to the number of states and transitions of G
SD

V , and

Gdag can be computed in linear time in the size of G
SD

V . The Topological Sort used
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in Step 4 can also be carried out in linear time with respect to the size of Gdag [81].

Finally, the search for the longest weighted path of Gdag, presented in Step 6, can

also be done in linear time in the size of Gdag.

The overall computational complexity of Algorithm 3.3 is equal to the complexity

of the synchronous diagnosability veri�er, i.e., O(r× (
∏r

k=1 |Qk|)×|Q|× |Σ|), where
r is the total number of system components. Since, for the computation of z∗ it is

necessary to compute d using Algorithm 3.3, the complexity for the computation of

the delay bound for synchronous diagnosis z∗ is O(r × (
∏r

k=1 |Qk|)× |Q| × |Σ|).
In the next section, we present a Petri net diagnoser that synchronizes the state

estimate of the nonfailure behavior of the system modules on their observed events.

3.4 Synchronized Petri net diagnoser

The diagnosis method proposed in this work relies on the computation of a diagnoser

that is capable of estimating the states of the system modules and synchronize the

occurrence of observable events in these modules. In order to do so, it is �rst

necessary to construct an online observer for each module that provides its current

state estimate when an event is observed. The synchronization of the modules is

naturally achieved by implementing the state observers running in parallel.

In Section 2.4.1, we present a state observer Petri net NSO for DESs modeled by

�nite state automata [26]. This Petri net is binary and provides the state estimate of

an automaton after the occurrence of an observable event. If an event σo is observed,

and σo is not feasible in the current state estimate of the nonfailure behavior of the

system, then all tokens of NSO are removed which implies in the detection of the

occurrence of the failure event.

The diagnosis scheme proposed in this work is based on the construction of Petri

net state observers NSOk
, for k = 1, . . . , r, of the nonfailure behavior automaton

models of all components of the system GNk
. Thus, as in CABRAL et al. [26], if

an event σo is observed and σo is not feasible in the current state estimate of NSOk
,

for k ∈ {1, . . . , r}, then all tokens of NSOk
are removed. In order to obtain the

synchronized Petri net diagnoser ND, it is necessary to implement the Petri net

state observers NSOk
running in parallel, and to construct a failure detection logic

that is capable of detecting the occurrence of the failure event when all tokens from

at least one NSOk
are removed, forming a unique Petri net diagnoser ND.

In the sequel, we present Algorithm 3.4 for the computation of the SPND, ND.

Algorithm 3.4 Synchronized Petri net diagnoser.

Input: Automata GNk
, for k = 1, . . . , r.

Output: Synchronized Petri net diagnoser ND.
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1: Compute the state observers Petri nets NSOk
= (PSOk

, TSOk
, P reSOk

, PostSOk
,

x0,SOk
,Σok , lSOk

), for k = 1, . . . , r, according to Algorithm 2.5 [26], that pro-

vides the online state estimate of the nonfailure behavior of the system modules

GNk
.

2: Compute the Petri nets NDk
= (PDk

, TDk
, P reDk

, PostDk
, InDk

, x0,Dk
,Σok , lSOk

),

for k = 1, . . . , r, where InDk
: PDk

× TDk
→ {0, 1} denotes the function of

inhibitor arcs [4], as follows:

2.1: Add to NSOk
a transition tfk labeled with the always occurring event λ.

De�ne TDk
← TSOk

∪ {tfk}.
2.2: Add to NSOk

a place pNk
, and de�ne PreDk

(pNk
, tfk) ← 1. Set

x0,Dk
(pNk

)← 1, and de�ne PDk
← PSOk

∪ {pNk
}.

2.3: De�ne InDk
(pDk

, tfk) ← 1 and InDk
(pDk

, tSOk
) ← 0, ∀pDk

∈ PDk
and

∀tSOk
∈ TSOk

.

3: Compute the synchronized Petri net diagnoser ND = (PD, TD, P reD, PostD,

InD, x0,D,Σo, lSO), as follows:

3.1: Form a unique Petri net by grouping all Petri nets NDk
, for k = 1, . . . , r.

3.2: Add a place pF and de�ne PostD(tfk , pF ) = 1, for k = 1, . . . , r. Set

x0,D(pF )← 0.

In order to prove that the Synchronized Petri net diagnoser ND, obtained from

Algorithm 3.4, can be used for synchronous diagnosis, we �rst introduce the following

lemma that shows that the state of the Petri net state observer NSOk
, reached after

the observation of a trace νk ∈ Σ?
k,o, provides the correct state estimate of GNk

.

Lemma 3.4 Let xSOk
denote the state of NSOk

reached after the observation of a

trace νk, and let qobsk denote the state of Obs(GNk
,Σk,o) reached after the observation

of νk. Then, there exists a place piSOk
∈ PSOk

such that xSOk
(piSOk

) = 1 if and only

if piSOk
is associated with a coordinate qiNk

in qobsk .

Proof. In CABRAL et al. [26] it is presented a method to construct the state

observer Petri net NSO from an automaton G, and it is shown that NSO provides

correctly the state estimate of automaton G. Therefore, the Petri net state observer

NSOk
, obtained by applying the same method to automaton GNk

, provides the estate

estimate of GNk
. �

The result presented in Lemma 3.4 leads to the following theorem.
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Theorem 3.3 Let LF be the language marked by GF , which models the failure be-

havior of the system model G = ‖rk=1Gk, and let LNa =
⋂r
k=1 P

o−1

k,o (Pk,o(LNk
)). Con-

sider language La = LNa ∪LF , and assume that L is synchronously diagnosable with

respect to LNk
, P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o, for k = 1, . . . , r, Po : Σ? → Σ?

o,

and Σf . Let s ∈ La \ LNa be an arbitrarily long trace, such that ∀ω ∈ La satisfying

Po(ω) = Po(s), ω ∈ La \ LNa. Then, the number of tokens in place pF of ND, after
the observation of the trace Po(s), is one.

Proof. If L is synchronously diagnosable and the system generates an unambiguous

trace s, then Po(s) 6∈ LNa , where LNa = ∩rk=1P
o−1

k,o (Pk,o(LNk
)), according to De�ni-

tion 3.1 of synchronous diagnosability. Since Po(s) 6∈ ∩rk=1P
o−1

k,o (Pk,o(LNk
)), then,

∃k ∈ {1, . . . , r} such that Po(s) 6∈ P o−1

k,o (Pk,o(LNk
)). Since Po(s) 6∈ P o−1

k,o (Pk,o(LNk
))

for k ∈ {1, . . . , r}, then P o
k,o(Po(s)) 6∈ P o

k,o(P
o−1

k,o (Pk,o(LNk
))) for k ∈ {1, . . . , r},

due to the de�nitions of P o
k,o : Σ?

o → Σ?
k,o and Po : Σ? → Σ?

o. Notice that

P o
k,o(Po(s)) = Pk,o(s) and P o

k,o(P
o−1

k,o (Pk,o(LNk
))) = Pk,o(LNk

), thus, ∃k ∈ {1, . . . , r}
such that Pk,o(s) 6∈ Pk,o(LNk

). Therefore, since, according to Lemma 3.4, NSOk
pro-

vides the state estimate of GNk
, after the occurrence of s, and ∃k ∈ {1, . . . , r} such

that Pk,o(s) 6∈ Pk,o(LNk
) then at least one state observer Petri net will lose all its

tokens, which will enable transition tfk , labeled with the always occurring event λ.

When transition tfk �res, it adds a token in place F , indicating the occurrence of a

failure event. �

Remark 3.2 It is important to remark that the computational complexity for the

construction of the SPND is polynomial in the number of states and transitions of

GNk
, i.e., the SPND can be obtained in polynomial time in the number of states

and transitions of the modules of the system, avoiding the computation of the global

system model for implementation of the diagnoser.

In the following, we present an example to illustrate the construction and the

diagnosis procedure of the synchronous Petri net diagnoser.

Example 3.4 Consider again the global plant model G = G1‖G2, where G1 and

G2 are depicted in Figures 3.2(a) and 3.2(b), respectively. According to Algorithm

3.4, the �rst step for the computation of the SPND is the computation of the state

observer Petri nets NSO1 and NSO2. In the sequel, Petri nets ND1 and ND2, shown

in Figures 3.13(a) and 3.13(b), respectively, are computed. Finally, the SPND is

obtained by grouping ND1 and ND2, and adding a place pF that receives a token only

when the failure event is diagnosed, indicating its occurrence. The SPND ND is

presented in Figure 3.14.

Let us now show how online diagnosis is carried out by using ND. Suppose that

the failure trace s1 = aσf (a)z ∈ L \ LN for z ∈ N has been executed by the system.
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Figure 3.13: Petri nets ND1 and ND2 of Example 3.4.

Then, the trace observed in the �rst module is P1,o(s1) = aaz and in the second

module is P2,o(s1) = ε. Since in the initial marking of ND1 places p1,0 and p1,4 have

tokens, transitions t1,2 and t2,14 will �re after the observation of event a, which will

remove the tokens from places p1,0 and p1,4 and add tokens to places p1,1 and p1,5.

When the second event a is observed, transitions t1,3 and t2,14 will �re, removing the

tokens from places p1,1 and p1,5. At this point, transition tf1 is enabled and �res,

indicating that the failure has occurred and has been diagnosed.

Now, suppose that the failure trace s2 = aσf (cσu1gghd)z ∈ L \ LN for z ∈ N
has been executed by the system. Then, the trace observed in the �rst module is

P1,o(s2) = a(c)z and in the second module is P2,o(s2) = (cgghd)z. In the initial

marking of ND of Figure 3.14, places p1,0, p1,4, p2,0 and p2,6 have tokens. When event

a is observed, transitions t1,2 and t1,10 �re, removing tokens from places p1,0 and p1,4,

and adding tokens to places p1,1 and p1,5. When event c is observed, transitions t1,11,

t2,2, and t2,13 �re, removing tokens from the places p1,5, p2,0, and p2,6 and adding a

token to place p2,1. The places that have tokens after the trace aσfc has been executed

by the system are p1,1 and p2,1. After the observation of event g, transition t2,3 �res,

removing the token from place p2,1. At this point, transition tf2 is enabled and, since

it is labeled with the always occurring event λ, it �res removing a token from place

pN2 and adding a token to place pF , which diagnoses the failure event σf .

It is important to notice that the two modules of the system are important for

the diagnosis of the failure event σf . For example, the failure trace s2 is diagnosed

from the Petri net ND2, which is built from the nonfailure model of component G2,

GN2. Notice that the failure event σf is not even modeled in automaton G2.

Remark 3.3 It is important to remark that the computation of the state estimate
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Figure 3.14: Synchronized Petri net diagnoser ND of Example 3.4.

of the synchronous Petri net diagnoser, after the occurrence of an observable event

σo ∈ Σo can be carried out in two steps: (i) identify the transitions labeled with

the event σo; (ii) �re these transitions and update the marking of the SPND. This

procedure has linear computational complexity with respect to the size of the SPND.

Since, according to Remark 3.2, ND can be obtained in polynomial time with respect

to the number of states and transitions of automata GNk
, then the computational

complexity of the diagnosis procedure is also polynomial with respect to the size of

automata GNk
.

The synchronous diagnosis method was implemented in a mechatronic plant

located at the Control and Automation Laboratory (LCA) of the Federal University

of Rio de Janeiro (UFRJ). In the next section, we present the functioning of this

mechatronic system and the model obtained for failure diagnosis.

3.5 Synchronized Petri net diagnoser for an auto-

mated system

In this section, we present the design of the synchronized Petri net diagnoser for a

mechatronic system [66]. In order to do so, we �rst present the controlled plant.

3.5.1 Case study system

The controlled plant is a cube assembly mechatronic system of the manufacturer

Christiani [82] installed at the Control and Automation Laboratory of the Federal

University of Rio de Janeiro. This mechatronic system consists of three modules:
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Inductive sensor

Figure 3.15: Schematics of the conveyor belt and the handling unit considered in
the case study.

(i) a conveyor belt with a sensor testing unit that can be fed with plastic or metallic

cube halves; (ii) a handling unit composed of a robotic arm, which has a pneumatic

mechanism that activates a suction cup in order to pick up, transport and deliver

pieces to a press used to assemble two halves of a cube; and (iii) a magazine unit

that stores the assembled cube in a shelf unit with 28 available storage positions.

In this work, only the �rst two modules are considered, i.e., the conveyor belt and

the handling unit. We show a schematics of the case study system in Figure 3.15,

where the conveyor belt and the handling unit can be seen in an aerial view.

We have designed the automated system to deliver two cube halves to the press,

then the press assembles the cube halves into one cube and then the cube is dis-

carded. The behavior of the controlled system is as follows: �rst, the conveyor belt

is fed with a metallic cube half that is delivered to the handling unit. The robotic

arm allocates the metallic cube half in the press and waits for a plastic cube half.

Then, a plastic cube half is delivered to the conveyor belt and it is transported to

the handling unit. The plastic cube half is also delivered to the press by the robotic

arm, and, after that, the cube halves are assembled into one cube by the press. After

that, the robotic arm removes the cube from the press and delivers it to the end of

the conveyor belt, which is switched on in reverse until the cube is discarded from

the system. Then, the conveyor belt is switched o� and the system is ready to start

the process again. Notice that only the conveyor belt and the handling unit were

used in this work.

3.5.2 Modeling the controlled plant

The controlled plant has been modeled with a view to implementing the synchronized

Petri net diagnoser. In order to do so, we have considered that the global system

is composed of two modules: (i) the conveyor belt, and (ii) the handling unit. The

automaton models of the conveyor belt Gcb, and the handling unit Ghu can be seen

in Figures 3.16(a) and 3.16(b), respectively, and the global plant model, Gp, is given
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Figure 3.16: Automaton Gcb that models the conveyor belt (a); and automaton Ghu

that models the handling unit (b).

by Gp = Gcb‖Ghu.

The initial state of automaton Gcb is C0 which represents that the conveyor belt

is turned o� and there are no cube halves on it. A new piece, consisting of a cube

half, is delivered to the conveyor belt, modeled as event a1, and Gcb reaches state

C1, which means that the conveyor belt is turned o� and the �rst cube half is on it.

Then, the conveyor belt is switched on to the direction of the handling unit, modeled

by event cron, which generates the change from state C1 to state C2. When the cube

half reaches the end of the conveyor belt, event coff occurs, and the system evolves

to state C3, indicating that the conveyor belt is switched o�. When the cube half is

removed from the conveyor belt by the robotic arm, event apc occurs, and the system

evolves to state C4. In state C4, the conveyor belt is turned o� waiting for the arrival

of the second cube half. When the second cube half is delivered to the conveyor belt,

event a2 occurs and Gcb evolves to state C5. The system repeats the same behavior

with the second cube half until it reaches state C8, indicating that the second cube

half has been removed from the conveyor belt and the system is waiting for the

robotic arm to deliver an assembled cube. When the robotic arm delivers the cube

to the end of the conveyor belt, event adc occurs, and the system evolves to state C9.

After the cube is delivered, the conveyor belt is switched on in the opposite direction,

modeled by event clon, and Gcb reaches state C10. Gcb stays in state C10 until the

cube is discarded from the system, modeled by event dc, which makes Gcb reach state

C11. After that, the conveyor belt is switched o� when event coff occurs, and Gcb

returns to its initial state. In this system, we have considered that a failure event can
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occur in the robotic arm. This failure, represented by event σf , models the suction

cup malfunctioning of the robotic arm. As a consequence, pieces cannot be removed

from the end of the conveyor belt. Thus, after the occurrence of the failure event,

event apc cannot occur anymore, and event adc can occur inde�nitely, indicating

that the robotic arm will continue to try, unsuccessfully, to pick up pieces at the

end of the conveyor belt and deliver assembled cubes. This behavior is modeled by

transitions (C3, adc, C12), (C7, adc, C12), and (C12, adc, C12) in Gcb, indicating that a

piece is at the end of the conveyor belt and only event adc can occur again.

The initial state of the handling unit model Ghu is H0, which represents that the

robotic arm is aligned with the conveyor belt. If there is a cube half in the end of

the conveyor belt, event apc occurs and Ghu reaches state H1, indicating that the

robotic arm removed the �rst cube half from the conveyor belt and is transporting

it to the press. When the robotic arm delivers the �rst cube half to the press, event

adp occurs and the system evolves to state H2.

The robotic arm is equipped with a high speed counter that is triggered when

it starts to turn. When the high speed counter reaches a previously known value

that represents a given angular position, the robotic arm stops. In order to avoid

positioning errors, after delivering a piece to the press or removing an assembled

cube from the press, the robotic arm must rotate to a position where an inductive

sensor is activated and the high speed counter is reseted. This process is modeled

by event si such that, when event si occurs, the process of delivering a piece to the

press or removing a cube from the press is completed and the robotic arm is ready

to remove a new piece from the conveyor belt or deliver the assembled cube to the

conveyor belt. Thus, after si occurs, Ghu evolves from state H2 to state H3 and the

robotic arm is ready to remove the second cube half from the conveyor belt. The

process is repeated for the second cube half until a cube is assembled by the press,

modeled by event ca, reaching state H6 in Ghu. At this moment, the robotic arm

removes the cube from the press, modeled by event app and starts to transport it to

the conveyor belt, represented by state H7. After event si occurs, the robotic arm

aligns with the conveyor belt and delivers the cube, modeled by event adc. Finally,

after a new occurrence of event si, the handling unit reaches its initial state.

If the failure event σf occurs, the robotic arm cannot pick up cube halves at the

conveyor belt or cubes at the press. As a consequence, events apc and app cannot

occur in Ghu after the failure event. Since there are no sensors that can indicate the

presence of a piece in the handling unit, then, if a failure occurs, the robotic arm

and the press will perform their cyclic behavior without any cube halves or cubes

been transported or assembled.

The set of events of Gcb and Ghu are Σcb = {a1, a2, cron, coff , apc, adc, clon, dc}
and Σhu = {apc, adp, si, ca, app, adc, σf}, respectively, where Σcb,o =
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Table 3.1: States of Gcb.
State Meaning
C0 Conveyor belt switched o� and there are no cube halves on it
C1 Conveyor belt switched o� and the �rst cube half is on it
C2 Conveyor belt switched on with the �rst cube half on it
C3 Conveyor belt switched o� and the �rst cube half is at its end
C4 Conveyor belt switched o� waiting for the second cube half
C5 Conveyor belt switched o� with the second cube half on it
C6 Conveyor belt switched on with the second cube half on it
C7 Conveyor belt switched o� and the second cube half is at its end
C8 Conveyor belt switched o� waiting for the assembled cube
C9 Conveyor belt switched o� with the assembled cube at its end
C10 Conveyor belt switched on in the opposite direction with a cube on it
C11 Conveyor belt switched on in the opposite direction with no pieces on it
C12 Conveyor belt switched o� with one cube half after failure

{a1, a2, cron, coff , adc, clon, dc} and Σhu,o = {adp, si, ca, adc} are the sets of ob-

servable events of Gcb and Ghu, and Σcb,uo = {apc} and Σhu,uo = {apc, app, σf}
are the sets of unobservable events of Gcb and Ghu, respectively. The sets of

events, observable events, and unobservable events of the plant are, respectively,

Σp = Σcb ∪ Σhu, Σp,o = Σcb,o ∪ Σhu,o, and Σp,uo = Σcb,uo ∪ Σhu,uo. It is important

to notice that, since the synchronized Petri net diagnoser will be implemented

in the same PLC as the system controller, the information of both controller

commands and sensor readings contribute to the observable events set Σp,o of Gp.

We summarize the states of Gcb and Ghu in Tables 3.1 and 3.2, respectively, and

the events of Gp in Table 3.3.

3.5.3 Synchronized Petri net diagnoser

In order to build the synchronized Petri net diagnoser of the system Gp = Gcb‖Ghu,

it is �rst necessary to verify if Gp is synchronously diagnosable. In order to do

so, following Algorithm 3.2 the �rst step is to build automaton GF , whose marked

language models de failure language of the system. Automaton GF obtained from

Gp is shown in Figure 3.17. Since, for the veri�cation of synchronous diagnosability,

the marked states of GF are not relevant, the states labeled with F in GF are not

marked. For this example, automaton GF is equal to automaton Gp except from

the labels N and F . In Step 2, automata GNcb
and GNhu

are obtained and are

shown in Figures 3.18(a) and 3.18(b), respectively. Notice that automaton GNcb

is di�erent from automaton Gcb, even with the failure event been modeled only in

automaton Ghu. In Step 3, automaton GR
N is computed from automata GR

Ncb
and

GR
Nhu

that are depicted in Figures 3.19(a) and 3.19(b), respectively. Finally, the

veri�er GSD
V is computed in Step 4. Veri�er GSD

V is omitted here due to the lack
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Table 3.2: States of Ghu.
State Meaning
H0 Robotic arm ready to remove the �rst cube half
H1 Robotic arm is transporting the �rst cube half to the press
H2 Robotic arm returning to its initial position
H3 Robotic arm ready to remove the second cube half
H4 Robotic arm is transporting the second cube half to the press
H5 Robotic arm waiting for the cube to be assembled by the press
H6 Robotic arm starts the process of removing the cube
H7 Robotic arm transporting the cube to the conveyor belt
H8 Robotic arm aligning to the conveyor belt
H9 Robotic arm moving to its initial position
H10 Robotic arm moving to the press

with its vacuum system malfunctioning
H11 Robotic arm returning to its initial position

with its vacuum system malfunctioning
H12 Robotic arm ready to remove the second cube half

with its vacuum system malfunctioning
H13 Robotic arm waiting for the cube to be assembled by the press

with its vacuum system malfunctioning
H14 Press �nishes the cube and robotic arm starts the process of

removing the cube with its vacuum system malfunctioning
H15 Robotic arm aligning to the conveyor belt

with its vacuum system malfunctioning
H16 Robotic arm moving to its initial position

with its vacuum system malfunctioning

Table 3.3: Events of Gp.
Event Meaning
a1 First cube half arrives at the conveyor belt
a2 Second cube half arrives at the conveyor belt
cron The conveyor belt is switched on
coff The conveyor belt is switched o�
apc Robotic arm removes a piece from the conveyor belt
adc Robotic arm delivers a cube to the conveyor belt
clon Conveyor belt is switched on in the opposite direction
dc A cube is discarded from the system
adp Robotic arm delivers a piece to the press
si Inductive sensor is activated
ca Press �nishes the assembling of a cube
app Robotic arm removes a cube from the press
σf The robotic suction cup fails
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of space. Automaton GSD
V does not have any cycle of states satisfying Condition

(3.14), and, thus, the system Gp is synchronous diagnosable.

The synchronized Petri net diagnoser NDp shown in Figure 3.20 is formed by the

Petri nets NDcb
and NDhu

. NDp is computed by following the steps of Algorithm

3.4, from the nonfailure behavior models GNcb
and GNhu

. Let us now show how

online diagnosis is carried out by using NDp . Suppose that the failure trace s =

a1croncoffσfadpsiadpcasiadc has been executed by the system. Before the occurrence

of event adc, the places pC3 , pC4 and pH8 have tokens and, when event adc is executed

by the system, transitions t1,7 and t1,8 �re, removing the tokens from places pC3 and

pC4 . At this point, the state observer Petri net NSOcb
loses all its tokens, enabling

transition tf1 that �res, indicating that the failure event has occurred.

We also have computed the delay bound z∗ for synchronous diagnosis of system

Gp. By following Algorithm 3.3 and Equation (3.15), the maximum number of

events that Gp can generate after the failure event σf until σf is diagnosed by NDp

is z∗ = 15. The delay bound for monolithic diagnosis is 12. As presented in Section

3.3, this di�erence is due to the growth of the nonfailure language for synchronous

diagnosis compared to the monolithic diagnosis scheme. The diagnoser NDp can be

converted into a Ladder diagram by using the method proposed in CABRAL et al.

[26], and implemented on the same PLC where the control code of the system is

implemented.

3.6 Final remarks

In this chapter, we propose a new architecture for the diagnosis of DESs, called

synchronous diagnosis. This architecture is based on the construction of Petri net

state observers of the nonfailure models of the components of the system. If an

observable event that is not feasible in the current state estimate of the nonfailure

behavior of at least one component is executed by the system, the failure event is

diagnosed. We have shown that if there are unobservable events in common between

the components of the system, the nonfailure language for synchronous diagnosis can

be a larger set than the global nonfailure language of the system. Thus, the notion

of synchronous diagnosability and an algorithm to verify this property are proposed.

The synchronous diagnosability veri�cation method has exponential complexity with

the number of system components, in the worst case scenario. However, the main

objective of this work is to present a method for the diagnosis of the failure event

that avoids the use of the global plant model and, thus, avoids the exponential

growth with the number of modules for failure diagnosis.

Since the nonfailure language for synchronous diagnosis can be a larger set that

the nonfailure language of the system, the delay bound for synchronous diagnosis
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Figure 3.17: Automaton GF obtained from Gp.
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Figure 3.20: Petri net diagnoser NDp .
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can be larger than the delay bound using a monolithic diagnosis approach. In this

chapter, we also presented a method for the computation of the delay bound for

synchronous diagnosis.

A practical implementation of the synchronous diagnosis is also presented for a

cube assembly mechatronic system. The system is composed of two modules and

the modeling of the system for synchronous diagnosis is presented. The synchronous

diagnoser was implemented for this system considering two di�erent models for the

same system [65, 66].

In the next chapter, we generalize the notion of synchronous diagnosis to a

decentralized diagnosis scheme. We based our decentralized diagnosis scheme on

Protocol 3 of DEBOUK et al. [17], where the local diagnosers do not communicate

with each other and the failure occurrence information is sent to a coordinator, that

diagnosis the failure event when at least one of the local diagnosers identi�es its

occurrence.
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Chapter 4

Synchronous codiagnosability of

DESs

4.1 Synchronous codiagnosability

In the decentralized diagnosis scheme presented in DEBOUK et al. [17] each local

diagnoser is constructed based on the global model G and, therefore, may grow ex-

ponentially with the number of system components. In this work, in order to avoid

the exponential growth with the number of system components, we extend the syn-

chronous diagnosis approach presented in Chapter 3 to the decentralized case. Dif-

ferently from DEBOUK et al. [17], where the local diagnosers are constructed based

on the global plant model G, in the synchronous decentralized diagnosis scheme,

the local diagnosers are constructed based on the nonfailure behavior model of the

system components [83, 84].

As in Chapter 3, we consider that the system G is obtained by the parallel com-

position of several subsystems, modeled by Gk, k = 1, . . . , r. In order to consider

a synchronous decentralized diagnosis scheme, we assume that each subsystem has

its own set of observable events that are communicated to a local Petri net diag-

noser Nk. In Figure 4.1, we compare the decentralized diagnosis scheme with the

synchronous decentralized diagnosis architecture. In the synchronous decentralized

diagnosis scheme, the set of events of the system component Gk can be partitioned

as Σk = Σ̂k,o∪̇Σ̂k,uo, where Σ̂k,o and Σ̂k,uo are the sets of observable and unobserv-

able events of Gk, respectively. It is important to remark that, di�erently from the

centralized approach presented in Chapter 3 an event can be observable to a local

diagnoser Ni and unobservable to another local diagnoser Nj, i.e., Σ̂i,o∩ Σ̂j,uo is not

necessarily the empty set for j 6= i, i, j ∈ {1, . . . , r}. Thus, Σ̂k,o ⊆ Σk,o.

Figure 4.1(b) depicts the synchronous decentralized diagnosis scheme proposed in

this work. The local Petri net diagnosers Nk are constructed based on the nonfailure
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(b) Synchronous decentralized
diagnosis scheme

Figure 4.1: Comparison between the decentralized diagnosis architecture (a); and
the synchronous decentralized diagnosis architecture (b).

behavior of the system modules GNk
, for k = 1, . . . , r, and they infer the occurrence

of failure events based on their own observations, and send the information regarding

the failure occurrence to the coordinator. A failure is diagnosed when at least one

local diagnoser identi�es its occurrence, which occurs when an event, that is not

feasible in the current state estimate of the nonfailure behavior of one component,

is observed. This diagnosis scheme leads to the following de�nition of synchronous

codiagnosability.

De�nition 4.1 (Synchronous codiagnosability) Let GN = ‖rk=1GNk
, where

GNk
is the automaton that models the nonfailure behavior of Gk, and let LNk

denote

the language generated by GNk
, for k = 1, . . . , r, where r is the number of system

components. Assume that there are r local sites with projections P̂k,o : Σ? → Σ̂?
k,o,

k = 1, . . . , r. Then, L is said to be synchronously codiagnosable with respect to LNk
,

P̂k,o, and Σf if

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF , ‖t‖ ≥ z)⇒
(∃k ∈ {1, 2, . . . , r})(P̂k,o(st) 6∈ P̂k,o(LNk

)).

In the sequel, we show that the synchronous codiagnosability of L with respect

to LNk
, P̂k,o : Σ? → Σ̂?

k,o, and Σf implies in the synchronous diagnosability of L with

respect to LNk
, P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o, for k = 1, . . . , r, Po : Σ? → Σ?

o,

and Σf .

Lemma 4.1 Let st be a failure trace and LNk
be the language generated by GNk

,

for k = 1, . . . , r. Consider the projections P̂k,o : Σ? → Σ̂?
k,o, P̂

o
k,o : Σ?

o → Σ̂?
k,o,

for k = 1, . . . , r, and Po : Σ? → Σ?
o, where Σo = ∪rk=1Σ̂k,o = ∪rk=1Σk,o. Then,
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∃k ∈ {1, . . . , r} such that P̂k,o(st) 6∈ P̂k,o(LNk
), if, and only if,

Po(st) 6∈ L̂Na , (4.1)

where L̂Na = ∩rk=1P̂
o−1

k,o (P̂k,o(LNk
)).

Proof. (⇒) Let k ∈ {1, . . . , r} be such that P̂k,o(st) 6∈ P̂k,o(LNk
). Then, since

P̂ o
k,o : Σ?

o → Σ̂?
k,o, P̂k,o : Σ? → Σ̂?

k,o and Σ̂k,o ⊆ Σo, we have that P̂ o−1

k,o (P̂k,o(st)) ∩
P̂ o−1

k,o (P̂k,o(LNk
)) = ∅. Notice that Po(st) ∈ P̂ o−1

k,o (P̂k,o(st)), since Po : Σ? → Σ?
o,

and Σo = ∪rk=1Σ̂k,o. Therefore, since P̂ o−1

k,o (P̂k,o(st)) ∩ P̂ o−1

k,o (P̂k,o(LNk
)) = ∅, then

Po(st) 6∈ P̂ o−1

k,o (P̂k,o(LNk
)). Thus, Po(st) 6∈ ∩rk=1P̂

o−1

k,o (P̂k,o(LNk
)) = L̂Na .

(⇐) Let us consider that Po(st) 6∈ L̂Na . Thus, ∃k ∈ {1, . . . , r} such that

Po(st) 6∈ P̂ o−1

k,o (P̂k,o(LNk
)). Notice that any trace v ∈ P̂ o−1

k,o (P̂k,o(LNk
)) can be written

as v = t1σo1t2σo2 . . . σontn+1, where ti ∈ (Σo \ Σ̂k,o)
?, σoj ∈ Σ̂k,o, and σo1σo2 . . . σon ∈

P̂k,o(LNk
). Let us suppose that P̂k,o(st) = P̂k,o(v) = σo1σo2 . . . σon . Then, according

to the de�nitions of P̂ o
k,o, P̂k,o and Po, we have that Po(st) ∈ P̂ o−1

k,o (P̂k,o(LNk
)), which

contradicts the initial assumption that Po(st) 6∈ P̂ o−1

k,o (P̂k,o(LNk
)), and therefore,

P̂k,o(st) 6∈ P̂k,o(LNk
). �

Theorem 4.1 If L is synchronously codiagnosable with respect to LNk
, P̂k,o : Σ? →

Σ̂?
k,o, and Σf , then L is synchronously diagnosable with respect to LNk

, P o
k,o : Σ?

o →
Σ?
k,o, Pk,o : Σ? → Σ?

k,o, for k = 1, . . . , r, Po : Σ? → Σ?
o, and Σf , where Σo =

∪rk=1Σk,o = ∪rk=1Σ̂k,o.

Proof. From De�nition 4.1, in order to a language L be synchronously codiag-

nosable with respect to LNk
, P̂k,o : Σ? → Σ̂?

k,o, and Σf , there must exist at least

one local diagnoser Nk, such that P̂k,o(st) 6∈ P̂k,o(LNk
) for any failure trace st with

arbitrary long length after the occurrence of the failure event. According to Lemma

4.1, ∃k ∈ {1, . . . , r} such that P̂k,o(st) 6∈ P̂k,o(LNk
), if, and only if, Po(st) 6∈ L̂Na .

Since P̂k,o : Σ? → Σ̂?
k,o, P̂

o
k,o : Σ?

o → Σ̂?
k,o, Pk,o : Σ? → Σ?

k,o, P
o
k,o : Σ?

o → Σ?
k,o, and

Σ̂k,o ⊆ Σk,o, for k = 1, . . . , r, P o−1

k,o (Pk,o(LNk
)) ⊆ P̂ o−1

k,o (P̂k,o(LNk
)). Therefore,

LNa ⊆ L̂Na . (4.2)

According to Equation (4.1), if L is synchronously codiagnosable with respect

to LNk
, P̂k,o, and Σf , then, for all failure traces st with arbitrarily long length after

the occurrence of σf , Po(st) 6∈ L̂Na . Since, according to Equation (4.2), LNa ⊆ L̂Na ,

then Po(st) 6∈ LNa , which implies, according to De�nition 3.1, that the language L is

synchronously diagnosable with respect to LNk
, Pk,o : Σ? → Σ?

k,o, P
o
k,o : Σ?

o → Σ?
k,o,

for k = 1, . . . , r, Po : Σ? → Σ?
o, and Σf . �
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Figure 4.2: Automaton G of Example 4.1.

Remark 4.1 Notice that, according to Lemma 4.1, to check if (∃k ∈ {1, . . . , r})
such that P̂k,o(st) 6∈ P̂k,o(LNk

) for an arbitrarily long failure trace st is equivalent to

check if Po(st) 6∈ ∩rk=1P̂
o−1

k,o (P̂k,o(LNk
)) for Σo = ∪rk=1Σ̂k,o. Thus, in De�nition 3.1

of synchronous diagnosability, the condition Po(st) 6∈ ∩rk=1P
o−1

k,o (Pk,o(LNk
)) can also

be replaced by

(∃k ∈ {1, 2, . . . , r})(Pk,o(st) 6∈ Pk,o(LNk
)),

which shows that the di�erence between De�nition 3.1 of synchronous diagnosability

and De�nition 4.1 of synchronous codiagnosability lies on the local observable event

sets Σk,o and Σ̂k,o, as pointed out in Corollary 4.1.

In the following example, we show that the converse of Theorem 4.1 is not always

true, i.e., L can be synchronously diagnosable and not synchronously codiagnosable.

Example 4.1 Consider the system G = G1‖G2 shown in Figure 4.2, where G1

and G2 are depicted in Figure 4.3. Let us consider the synchronous decentralized

diagnosis scheme, where the set of observable events of G1 and G2 are Σ̂1,o = {b}
and Σ̂2,o = {c}, respectively. In order to do so, consider automata GN1 and GN2,

depicted in Figure 4.4(a) and 4.4(b), respectively, computed by following Algorithm

3.1. According to De�nition 4.1, L is not synchronously codiagnosable with respect

to LNk
, P̂k,o, and Σf if there exist st ∈ LF , with arbitrarily long length after the

occurrence of σf , and nonfailure traces sN1 ∈ LN1 and sN2 ∈ LN2 such that P̂1,o(st) =

P̂1,o(sN1) and P̂2,o(st) = P̂2,o(sN2). Notice that if st = σfb
z, sN1 = cbz, and sN2 = ε,

where z ∈ N, then P̂1,o(st) = P̂1,o(sN1) = bz and P̂2,o(st) = P̂2,o(sN2) = ε, which

shows that L is not synchronously codiagnosable.

Let us consider now the synchronous centralized diagnosis scheme, where all

information regarding the observation of events is communicated to the centralized

diagnoser. In this scheme, the set of observable events of G1 and G2 are, respectively,

Σ1,o = {b, c} and Σ2,o = {b, c}. Thus, P1,o(st) = bz and, as it can be seen from Figure

4.4(a), there does not exist a nonfailure trace sN1 ∈ LN1 such that P1,o(sN1) = bz.

Thus, L is synchronously diagnosable with respect to LNk
, P o

k,o : Σ?
o → Σ?

k,o, Pk,o :

Σ? → Σ?
k,o, for k = 1, 2, Po : Σ? → Σ?

o, and Σf . �

The following corollary presents a condition that ensures that if L is syn-

chronously diagnosable, then L is synchronously codiagnosable.
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Figure 4.3: Automata G1 and G2 of Example 4.1.
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Figure 4.4: Automata GN1 and GN2 of Example 4.1.

Corollary 4.1 Let Σ̂i,uo∩Σ̂j,o = ∅ for all i, j ∈ {1, . . . , r}. Then, L is synchronously

codiagnosable with respect to LNk
, P̂k,o : Σ? → Σ̂?

k,o, and Σf , if, and only if, L is

synchronously diagnosable with respect to LNk
, P o

k,o : Σ?
o → Σ?

k,o, Pk,o : Σ? → Σ?
k,o,

for k = 1, 2, Po : Σ? → Σ?
o, and Σf .

Proof. Notice that, if Σ̂i,uo∩ Σ̂j,o = ∅ for all i, j ∈ {1, . . . , r}, then Σ̂k,o = Σk,o, and,

therefore, LNa = L̂Na . �

Remark 4.2 According to Equations (3.12) and (4.2), we have that Po(LN) ⊆
LNa ⊆ L̂Na. Thus, synchronous codiagnosability implies in synchronous diagnos-

ability, which ultimately implies in the diagnosability of L. The relation between

the notions of diagnosability, synchronous diagnosability and synchronous codiag-

nosability is summarized in Figure 4.5.

The synchronous codiagnosability veri�cation of the language L can be done by

following the steps of Algorithm 3.2 for the veri�cation of synchronous diagnosability,

Synchronous
diagnosability⇔ ⇔

LNa

Σi,uo ∩ Σj,uo = ∅ Σ̂i,uo ∩ Σ̂j,o = ∅

= =

Synchronous
diagnosability Diagnosability⇒ ⇒

Po(LN)LNa
L̂Na ⊇ ⊇

Synchronous
codiagnosability

Diagnosability

Po(LN) L̂Na

Synchronous
codiagnosability

Figure 4.5: Relation between the notions of diagnosability, synchronous diagnosabil-
ity and synchronous codiagnosability.
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replacing, in the de�nition of the renaming function Rk (Equation (3.13)), in Step

3, the event sets Σk,o and Σk,uo, with Σ̂k,o and Σ̂k,uo, respectively, leading to function

R̂k : ΣNk
→ Σ̂R

Nk
, de�ned as:

R̂k(σ) =

{
σ, if σ ∈ Σ̂k,o

σRk
, if σ ∈ Σ̂k,uo

. (4.3)

By replacing function Rk (Equation (3.13)) with function R̂k (Equation (4.3))

in Algorithm 3.2, the synchronous codiagnosability veri�er automaton GSC
V is com-

puted and the test for synchronous codiagnosability can be done by searching for

cyclic paths in GSC
V formed by states with the label F and not renamed events. In

order to prove the correctness of Algorithm 3.2 for the veri�cation of synchronous

codiagnosability with function R̂k (Equation (4.3)), we present the following lemmas.

Lemma 4.2 Let GNk
be the automaton that models the nonfailure behavior of

Gk, and LNk
be the language generated by GNk

, for k = 1, . . . , r. Let ĜR
Nk

=

(QNk
, Σ̂R

Nk
, f̂RNk

, q0,Nk
) be the automaton obtained from GNk

by applying function R̂Nk

in Step 3 of Algorithm 3.2, and L̂RNk
be the language generated by ĜR

Nk
, for k =

1, . . . , r. Then, P̂R
o [∩rk=1P̂

R−1

Nk
(L̂RNk

)] = ∩rk=1P̂
R
o [P̂R−1

Nk
(L̂RNk

)], where P̂R
o : Σ̂R? → Σ?

o,

P̂R
Nk

: Σ̂R? → Σ?
Nk
, for k = 1, . . . , r, and Σ̂R = ∪rk=1Σ̂R

Nk
.

Proof. The proof is equal to the proof of Lemma 3.2 if we replace PR
o , P

R
Nk
, and

LRNk
with P̂R

o , P̂
R
Nk
, and L̂RNk

, respectively. �

Lemma 4.3 Let LNk
be the language generated by GNk

. Then,

∩rk=1P̂
R
o [P̂R−1

Nk
(L̂RNk

)] = ∩rk=1P̂
o−1

k,o (P̂k,o(LNk
)).

Proof. The proof is equal to the proof of Lemma 3.3 if we replace PR
o , P

R
Nk
, LRNk

,

P o
k,o, and Pk,o with P̂

R
o , P̂

R
Nk
, L̂RNk

, P̂ o
k,o, and P̂k,o, respectively. �

We can now state the following theorem that proves the correctness of Algorithm

3.2 for the veri�cation of synchronous codiagnosability with function R̂k (Equation

(4.3)) applied in Step 3 instead of function Rk (Equation (3.13)).

Theorem 4.2 Let LNk
denote the language generated by GNk

, for k = 1, . . . , r,

and GSC
V = GF‖ĜR

N , where Ĝ
R
N = ‖rk=1Ĝ

R
Nk
. Notice that a state of GSC

V is given by

qV = (qF , q̂
R
N), where qF and q̂RN are states of GF and ĜR

N , respectively, and qF =

(q, ql), where q ∈ Q and ql ∈ {N,F}. Then, L is not synchronously codiagnosable

with respect to LNk
, P̂k,o, and Σf if, and only if, there exists a cyclic path cl =

(qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V ) in GSC

V = GF‖ĜR
N , where γ ≥ δ > 0, such that:

∃j ∈ {δ, δ + 1, . . . , γ} such that for some qjV ,

(qjl = F ) ∧ (σj ∈ Σ).
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Figure 4.6: Automata G1 and G2 of Example 4.2.

Proof. The proof is equal to the proof of Theorem 3.2 if we replace the veri�er

automaton GSD
V with automaton GSC

V . �

In the following, we present an example of the synchronous codiagnosability

veri�cation of the language of a DES.

Example 4.2 Consider again the components G1 and G2 of the system G =

G1‖G2, depicted, respectively, in Figures 3.2(a) and 3.2(b). Automata G1 and

G2 are presented again in Figures 4.6(a) and 4.6(b), respectively. Let Σ =

{a, b, c, d, e, g, h, σu1, σu2, σf}, Σo = {a, b, c, d, e, g, h}, Σuo = {σu1, σu2, σf}, Σf =

{σf}, Σ1 = Σ̂1,o∪̇Σ̂1,uo, and Σ2 = Σ̂2,o∪̇Σ̂2,uo, where Σ̂1,o = {a, b, c, e}, Σ̂1,uo =

{σu1, σu2, σf}, Σ̂2,o = {b, d, g, h}, and Σ̂2,uo = {c, σu1, σu2}. In this example, di�er-

ently from Example 3.2, event c is unobservable to local diagnoser 2, i.e., c ∈ Σ̂2,uo.

Following Steps 1 and 2 of Algorithm 3.2, automata GF , GN1, and GN2 are computed

and can be seen in Figures 3.6, 3.5(a) and 3.5(b), respectively. After GN1 and GN2

have been obtained, it is necessary to rename their unobservable events according

to Equation (4.3), resulting in automata ĜR
N1

and ĜR
N2

that are depicted in Figures

4.7(a) and 4.7(b), respectively. Automaton ĜR
N is computed by making the parallel

composition between ĜR
N1

and ĜR
N2

in Step 3 of Algorithm 3.2 and it is depicted in

Figure 4.8. Since event c is unobservable to local diagnoser 2, then language L̂Na is

a larger set than the language LNa of Example 3.2 where the synchronous centralized

veri�cation is carried out. The growth of the nonfailure language for synchronous

decentralized diagnosis can be seen in automaton ĜR
N , and it is represented by all

observable transitions related with the gray states, that are states that do not exist

in GN , and the self-loops labeled with event c.

In Step 4 of Algorithm 3.2, the veri�er automaton GSC
V is computed. The states

labeled with F of GSC
V and their related transitions can be seen in Figure 4.9. Notice

that automaton GSC
V does not have cyclic paths satisfying condition (3.14), and,

therefore, language L is synchronously codiagnosable with respect to LN1, LN2, P̂1,o,

P̂2,o, and Σf .
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of Example 4.2.

The delay bound for synchronous decentralized diagnosis can be computed using

Algorithm 3.3. In order to do so, automaton GSC
V must be used as input of Algo-

rithm 3.3 instead of automaton GSD
V . In the following example, we compute the

delay bound for synchronous decentralized diagnosis for the system G presented in

Example 4.2

Example 4.3 Consider again the system G = G1‖G2 presented in Example 4.2.

The delay bound for synchronous decentralized diagnosis can be computed by using

the veri�er automaton GSC
V , where its states labeled with F and their correspondent

transitions are depicted in Figure 4.9. By using Algorithm 3.3 with GSC
V as input,

the delay bound for synchronous decentralized diagnosis is z∗ = 7. This result shows

that, even with the growth of the nonfailure language for synchronous decentralized

diagnosis L̂Na with respect to language LNa, the maximum delay bound can be the

same for both architectures.

4.2 Synchronous decentralized failure diagnosis

In order to implement a synchronous decentralized diagnosis scheme, a local diag-

noser Nk must be constructed for each component of the system. In order to do

so, it is necessary �rst to construct the binary state observer Petri net, NSOk
, for

each component as described in Algorithm 2.5. Then, a failure detection logic must

be attached to each NSOk
, forming the local diagnoser Nk. The failure detection

logic indicates the occurrence of the failure event when an event that is not feasible

in the current state estimate of one component is observed. Once the occurrence

of the failure event is detected, the local diagnoser sends this information to the

coordinator that informs the occurrence of the failure event to the operator of the

system. According to Lemma 4.1, the failure detection logic proposed in this work is

equivalent to verify if the observed trace is in L̂Na . Thus, since Po(LN) ⊆ L̂Na , then,
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V formed by the states labeled with F and their

related transitions of Example 4.2.

if L is synchronously codiagnosable, the proposed diagnoser is capable of detecting

the occurrence of a failure trace after a bounded number of observations of events.

Algorithm 4.1 Local Petri net diagnoser for synchronous decentralized diagnosis.

Input: Automata GNk
, for k = 1, . . . , r.

Output: Local Petri net diagnosers Nk, for k = 1, . . . , r.

1: Compute the Petri nets NDk
= (PDk

, TDk
, P reDk

, PostDk
, InDk

, x0,Dk
,Σok , lSOk

),

for k = 1, . . . , r, from automata GNk
according to Algorithm 3.4.

2: Compute the local Petri net diagnosers Nk = (Pk, Tk, P rek, Postk, Ink, x0,k,Σo,

lSOk
), as follows:

2.1: Add a place pFk
to Petri nets NDk

and de�ne Postk(tfk , pF ) = 1, for

k = 1, . . . , r. Set x0,(pFk
) = 0.

The procedure to perform a decentralized synchronous diagnosis scheme is pre-

sented in CABRAL and MOREIRA [83, 84], and the construction of the local diag-

nosers Nk, for k = 1, . . . , r, is illustrated in the following example.

Example 4.4 Consider again the system G = G1‖G2, where G1 and G2 are

depicted in Figure 4.6. We present the nonfailure behavior component models
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GN1 and GN2 in Figure 4.10, where Σ̂1,o = {a, b, c, e}, Σ̂1,uo = {σu1, σu2, σf},
Σ̂2,o = {b, d, g, h}, and Σ̂2,uo = {c, σu1, σu2}. The local Petri net diagnosers N1

and N2 of the modules GN1 and GN2 are computed following Algorithm 4.1 and are

shown in Figures 4.11(a) and 4.11(b), respectively. The failure detection logic is

represented by transitions tf1 and tf2, and places pN1, pN2, pF1, and pF2. Once an

observable event that is not feasible in the current state estimate of GN1 or GN2

occurs, transition tf1 or transition tf2 will be enabled and, since it is labeled with the

always occurring event, it �res indicating that the failure has been diagnosed.

Let us now consider two failure traces s1 = aσf (a)z and s2 = aσf (cσu1gghd)z,

for z ∈ N, in order to illustrate the synchronous decentralized diagnosis. If trace s1

has been executed by the system, the �rst module observes the trace P1,o(s1) = aaz

and the second module observes the trace P2,o(s1) = ε. When the second occurrence

of event a is observed, transitions t1,3 and t1,11 will �re, removing the tokens from

places p1,1 and p1,5, enabling transition tf1 that �res, removing the token from place

pN1 and adding a token to place pF1, diagnosing the occurrence of the failure event

σf .

Consider now that the failure trace s2 has been executed by the system. Trace

s2 is observed by the �rst module as P1,o(s2) = ac and by the second module as

P2,o(s2) = (gghd)z. Notice that, if the system executes the failure trace s2, the

local Petri net diagnoser N2 identi�es the occurrence of the failure event, after the

observation of event g. When event g is observed, transitions t2,1, t2,2 and t2,12 �re,

removing the tokens from places p2,0, p2,1 and p2,6, which enables transition tf2 that

�res indicating that the failure has been diagnosed. It is important to notice that,

although the local Petri net diagnoser N2 is constructed based on module G2 that

does not have the failure event modeled, N2 is necessary to diagnose the failure trace

s2.
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Figure 4.11: Local Petri net diagnosers N1 and N2 of Example 4.4.

4.3 Comparison between modular diagnosability

and synchronous codiagnosability

In this section, we compare the notion of synchronous codiagnosability proposed in

De�nition 4.1 and the notion of modular diagnosability presented in CONTANT

et al. [59] (De�nition 2.25). In order to do so, we consider Assumptions A1-A3 pre-

sented in Section 2.4.3 in the de�nition of synchronous decentralized diagnosability

in order to compare the synchronous decentralized diagnosis approach with the mod-

ular diagnosis scheme. Let us now rewrite De�nition 4.1 according to Lemma 4.1,

where it is shown that to check if ∃k ∈ {1, 2 . . . , r} such that Pk,o(st) 6∈ Pk,o(LNk
) is

equivalent to check if Po(st) 6∈ L̂Na .

De�nition 4.2 (Synchronous codiagnosability) Let GN = ‖rk=1GNk
, and let

LNk
denote the language generated by GNk

, for k = 1, . . . , r, where r is the number of

system components. Then, L is said to be synchronously codiagnosable with respect

to L̂Na, Po, and Σf if

(∃z ∈ N)(∀s ∈ LF )(∀st ∈ LF , ‖t‖ ≥ z)⇒ Po(st) 6∈ L̂Na ,

where L̂Na = ∩rk=1P̂
o−1

k,o (P̂k,o(LNk
)).

Now, let us analyze the e�ects of considering Assumptions A1-A3 in the syn-

chronous codiagnosability de�nition. According to Assumption A1, there are no

cycles of unobservable events in the system component models Gk, for k = 1, . . . , r.

This assumption does not change De�nition 4.2 of synchronous codiagnosability of

L.

86



According Assumption A2, all common events between two or more modules

must be observable. Notice that in the decentralized synchronous diagnosis method,

there can be common events between two or more modules that are unobservable

to all these modules, and also events that are observable to one component and

unobservable to another component. Thus, in order to consider Assumption A2 in

the decentralized synchronous diagnosis approach, we assume that if an event is ob-

servable for one module, then it is observable for all modules for which this event is

de�ned, and that there are no common unobservable events between modules. This

implies that the synchronization between modules is completely observable, which

leads, according to Corollaries 3.1 and 4.1 to the equalities L̂Na = LNa = Po(LN).

Thus, under Assumption A2, De�nition 4.2 of synchronous codiagnosability be-

comes equal to De�nition 2.22 of diagnosability [14] (and equal to De�nition 2.24

of codiagnosability with ` = 1 [17]). It is also important to notice that, as a con-

sequence of Assumption A2, a failure event cannot be modeled in more than one

component of the system.

As pointed out in Section 2.4.3, in practice, Assumption A3 excludes traces

from LF that are known to be impossible to be executed by the system, which

implies that the failure language of the system can be replaced with language LredF ⊆
LF . These traces have arbitrarily long length and can be formed with events of all

modules, except events from the failure model Gy, for y ∈ {1, . . . , r}. Moreover,

as shown in Section 2.4.3, under Assumptions A1-A3, the condition ‖t‖ ≥ z in

De�nition 4.2 can be replaced with ‖Py,o(t)‖ ≥ z′, where the failure component

is Gy, since the diagnosis can be performed only by the local diagnoser associated

with component Gy. Therefore, we can conclude that, under assumptions A1-

A3, the de�nitions of modular diagnosability and synchronous codiagnosability are

equal. Hence, modular diagnosability can be seen as a particular case of synchronous

decentralized diagnosability. Moreover, if the language L is modularly diagnosable

with respect to Σo = ∪rk=1Σk,o and Σf ⊆ Σy, then, only local diagnoserNy associated
with local component Gy must be implemented for diagnosis.

Algorithm 3.2 can be modi�ed in order to check the modular diagnosability of

the language L. In order to do so, the failure component model Gy must be identi�ed

and the search for cyclic paths performed in Step 5 must be modi�ed in order to

take into account only cyclic paths formed by events of Gy. We formalize these

modi�cations in the following algorithm.

Algorithm 4.2 Modular Diagnosability Veri�cation

Input: System modules Gk, where k = 1, . . . , r, failure component model Gy, for

y ∈ {1, . . . , r}, and G = ‖rk=1Gk.

Output: Modular diagnosability decision.
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1: Compute automaton GF that models the failure behavior of G, whose marked

language is LF = L \ LN , according to Algorithm 2.7 [71].

2: Compute automaton GN = (QN ,ΣN , fN , q0) according to Algorithm 2.4 [71].

3: Compute automaton GR
N = (QR

N ,Σ
R, fRN , q0) as follows:

3.1: De�ne function R : ΣN → ΣR
N , as:

R(σ) =

{
σ, if σ ∈ Σo

σR, if σ ∈ Σuo

. (4.4)

3.2: Construct automaton GR
N = (QN ,Σ

R
N , f

R
N , q0,N), with fRN (qN , R(σ)) =

fN(qN , σ), ∀qN ∈ QN and ∀σ ∈ ΣN .

4: Compute the veri�er automaton GM
V = (QV ,ΣV , fV , q0,V ) = GF‖GR

N . Notice

that a state of GM
V is given by qV = (qF , q

R
N), where qF and qRN are states of

GF and GR
N , respectively, and qF = (q, ql), where q ∈ Q and ql ∈ {N,F}.

5: Verify the existence of a cyclic path cl = (qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V ), where

γ ≥ δ > 0, in GM
V , such that:

∃j ∈ {δ, δ + 1, . . . , γ} such that for some qjV ,

(qjl = F ) ∧ (σj ∈ Σy).

If the answer is yes, then L is not modularly diagnosable. Otherwise, L is

modularly diagnosable.

Notice that, since in the modular diagnosis approach all unobservable events

are private events of the modules of the system, the unobservable event renaming

function R of Equation (4.4) can be applied to automaton GN instead of automata

GNk
. In the following theorem, we present the proof of correctness of Algorithm 4.2.

Theorem 4.3 L is not modularly diagnosable with respect to Σo = ∪rk=1Σk,o, and

Σf ⊆ Σy if, and only if, there exists a cyclic path cl = (qδV , σδ, q
δ+1
V , . . . , qγV , σγ, q

δ
V )

in GM
V , where γ ≥ δ > 0, such that:

∃j ∈ {δ, δ + 1, . . . , γ} such that for some qjV ,

(qjl = F ) ∧ (σj ∈ Σy). (4.5)

Proof. According to De�nition 2.25, in order to verify the modular diagnosability of

the language of the system L, it is necessary to check if there exists a failure trace st

such that Po(st) 6∈ Po(LN), and ‖Py,o(t)‖ ≥ z′, where z′ ∈ N. In order to check the
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modular diagnosability of L, it can be veri�ed if there exists a failure trace st such

that Py,o(st) ∈ PR
y,o(L(GR

N)), where PR
y,o : ΣR

N → Σy,o. Since the unobservable events

of GR
N are renamed, and hence, are private events of GR

N , it can be seen that the

veri�er automaton GM
V proposed here is equal to the veri�er automaton GV obtained

by applying the method proposed in MOREIRA et al. [71] to a system whose failure

automatonGF marks LF and the nonfailure behavior is modeled byGR
N . Considering

Assumption A3, the system cannot generate arbitrarily long subtraces formed with

events that do not belong to the failure automaton Gy. Thus, the search for cyclic

paths in GM
V must be carried out only for cyclic paths that have events of Gy, which

concludes the proof. �

Remark 4.3 Recently, an incremental method for the veri�cation of modular di-

agnosability of DESs has been proposed [63]. The method proposed in LI et al.

[63] consists in the construction of a local veri�er automaton GVy for the failure

component Gy. If the failure component is non-diagnosable, a parallel composition

is carried out between veri�er GVy and other components of the system that have

common events with Gy. In the worst case, the veri�er GVy must be composed with

all (
r − 1

k

)
, k = 1, 2, . . . , r − 1,

possible combination of the remaining modules of the system. Notice that in the

method presented in this work for the veri�cation of modular diagnosability, only one

veri�er GM
V must be computed. Since in the method proposed in LI et al. [63] several

automata must be constructed to verify modular diagnosability, and there is no way

to de�ne previously which is the number of states and transitions of the automata

that must be computed, it is impossible to know which one of the methods is the best

one in terms of computational cost for modular diagnosability veri�cation, i.e., the

best method for the veri�cation of modular diagnosability in terms of computational

cost depends on each case.

In the following example, we illustrate the veri�cation of the modular diagnos-

ability and the implementation of a local Petri net diagnoser built from Algorithm

4.1 for the the system presented in Example 2.13.

Example 4.5 Consider again the system G = G1‖G2‖G3 presented in Example

2.13, where G1, G2 and G3 are depicted in Figure 4.12, and automaton G is shown

in Figure 4.13. The set of events of G1, G2 and G3 are Σ1 = Σ1,uo∪̇Σ1,o = {a, b, σf},
Σ2 = Σ2,o = {a, c, d, e}, and Σ3 = Σ3,o = {a, c, d, e}, respectively, where Σ1,uo =

Σf = {σf}, Σ1,o = {a, b}, Σo = Σ1,o ∪ Σ2,o ∪ Σ3,o = {a, b, c, d, e}, and Σuo = {σf}.
The �rst step to verify the modular diagnosability according to Algorithm 4.2 is

to build automaton GF , depicted in Figure 4.14. In Steps 2 and 3, automaton
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Figure 4.12: Automata G1, G2 and G3 of Example 4.5.
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Figure 4.13: Automaton G of Example 4.5.

GR
N is obtained by renaming the unobservable events of GN . We show automaton

GR
N in Figure 4.15. Notice that, in this example, the state transition diagram of

GN and GR
N are equal. In Step 4 of Algorithm 4.2, the veri�er automaton GM

V is

computed by making the parallel composition between automata GF and GR
N . Au-

tomaton GM
V is depicted in Figure 4.16. Notice that there exists the cyclic path

((1, 3, 3, F ; 0, 3, 3, N), e, (1, 3, 3, F ; 0, 3, 3, N)) in GM
V with an event that does not be-

long to automaton G1, which is the failure component model of the system, i.e.,

e 6∈ Σ1. Thus, the language generated by G, L, is modularly diagnosable with respect

to Σo = ∪rk=1Σk,o, and Σf ⊆ Σy. The fact that the system is modularly diagnosable

is guaranteed by Assumption A3 since, although the system could generate the trace

σfe
z, z ∈ N, for an arbitrarily large value of z, it would contradict Assumption

A3. Thus, module G1 eventually will generate event b and the failure event would

be diagnosed.

Let us now illustrate how to perform the diagnosis of the failure event σf by

using the local Petri net diagnoser N1. By following Algorithm 4.1, the local Petri

net diagnoser N1, depicted in Figure 4.17, is computed. If the system generates the

failure trace σfe
zb, where z ∈ N, transition t1,1 will �re when event b is observed,

removing the token from place p1,0, which enables transition tf1. Transition tf1 �res,

removing the token from place pN1 and adding a token to place pF1, diagnosing the

0,0,0,N b

e
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0,3,3,N 1,3,3,F

2,0,0,F
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Figure 4.14: Automaton GF of Example 4.5.
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occurrence of the failure event σf .

4.4 Final remarks

In this chapter, we generalize the notion of synchronous diagnosability to a syn-

chronous decentralized diagnosability. In order to do so, we consider that local

diagnosers based on the nonfailure models of the components of the system are

implemented locally in a decentralized architecture. The local diagnosers do not

communicate among each other and, if a local diagnoser identi�es the failure occur-

rence, it sends this information to a coordinator that indicates the failure occurrence.

In this scheme, an event can be observable to a local diagnoser and unobservable

to another local diagnoser. The nonfailure language for the synchronous decen-

tralized diagnosis scheme can be a larger set than the nonfailure language for the

synchronous centralized diagnosis architecture. Thus, synchronous codiagnosability

implies synchronous diagnosability, which, ultimately implies in the diagnosability

of the language of the system.

We show that the algorithm for the veri�cation of synchronous diagnosability can

be used to verify the synchronous codiagnosability of the language of the system.

Moreover, local Petri net diagnosers based on the nonfailure models of the system

p1,0

pN1

tf1

a, b
t1,1

pF1

Figure 4.17: Local Petri net diagnoser N1 of Example 4.5.
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components are constructed in order to implement the decentralized synchronous

diagnosis scheme. The cube assembly mechatronic system presented in Chapter 3

can also be diagnosed using the decentralized approach proposed in this chapter.

The synchronous decentralized diagnosis scheme presented in this chapter is com-

pared to the modular diagnosis approach presented in CONTANT et al. [59]. If we

apply all assumptions presented in CONTANT et al. [59] to the synchronous decen-

tralized diagnosis scheme, the de�nition of synchronous codiagnosability becomes

equal to the de�nition of modular diagnosability, which shows that modular diagno-

sis can be seen as a particular case of synchronous decentralized diagnosis. Moreover,

if the system is modularly diagnosable, only the local Petri net diagnoser associated

with the failure component need to be computed for failure diagnosis.

In the next chapter, we propose a modi�cation in the local state observer Petri

nets in order to decrease the nonfailure language for synchronous diagnosis. This

modi�cation consists in adding conditions to the observable transitions of the state

observer Petri nets that depend on the marking of the other local Petri nets. These

conditions are created based on the global nonfailure behavior model of the system,

and, since they can decrease the nonfailure language for synchronous diagnosis, we

propose the notion of conditional synchronous diagnosability of DESs.
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Chapter 5

Conditional synchronous

diagnosability of DESs

In this chapter, we propose a modi�cation in the SPND presented in Chapter 3

with a view to improving the synchronous diagnosis of failure events by reducing

the augmented nonfailure language LNa . The idea is to modify the state observers

Petri nets NSOk
, for k = 1, . . . , r, computed by following Algorithm 2.5. Notice that,

according to Algorithm 2.5, the set of transitions of NSOk
is TSOk

= Tk,o∪̇T ′k, where
Tk,o corresponds to all transitions ofNSOk

that are related with observable transitions

of GNk
. In order to not allow a transition tk,i ∈ Tk,o to �re if this transition is not

associated with a transition in the nonfailure automaton GN , a condition must

be added to the synchronized Petri net diagnoser to avoid the incorrect �ring of

tk,i. Moreover, if the observable event that labels tk,i occurs, and this event is not

allowed according to the nonfailure behavior automaton GN , the token of its input

place must be removed, indicating that the state associated with this place does not

belong to the current state estimate of the system. In the following example, we

illustrate this problem.

Example 5.1 Consider the system G = G1‖G2 presented in Example 3.2,

where the state transition diagrams of G1, G2 and G are depicted in Fig-

ures 5.1(a), 5.1(b), and 5.2, respectively. The event sets of G, G1 and G2

are Σ = {a, b, c, d, e, g, h, σu1, σu2, σf}, Σ1 = {a, b, c, e, σu1, σu2, σf}, and Σ2 =

{b, d, g, h, σu1, σu2}, respectively. In Figures 5.3 and 5.4 we show automata GN and

GR
N , respectively, where G

R
N is computed by following Algorithm 3.2. Notice that the

gray states of GR
N do not exist in automaton GN and thus, these states and their

related observable transitions correspond to the augmented nonfailure language for

synchronous diagnosis. Now, consider the synchronized Petri net diagnoser com-

puted for system G in Example 3.4 shown in Figure 5.5.

Suppose that the system has executed trace s = s′a = aceeba, where s′ = aceeb.
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Figure 5.1: Automata G1 and G2 of Example 5.1.

After the observation of the pre�x s′, the places of ND that have tokens are p1,0, p1,4

and p2,2, corresponding to the states (0, 2) and (4, 2) of automaton GR
N . However,

only state (0, 2, N) of GN belongs to the state estimate after the observation of trace

s′. After the second observation of event a, transitions t1,2 and t1,10 �re, removing the

tokens from places p1,0 and p1,4 and adding tokens to places p1,1 and p1,5. However,

state (5, 2, N) do not belong to the state estimate of GN
1 after the observation of

trace s, which shows the growth of the nonfailure language for synchronous diagnosis.

Since state (4, 2, N) does not belong to the state estimate of GN after the observation

of trace s′, when the next event a is observed, the token assigned to place p1,4 should

be removed and no tokens should be added to place p1,5, since this place, combined

with place p2,2, corresponds to a state that does not belong to the state estimate of

GN .

In order to avoid the marking of places that do not correspond to the state esti-

mate of automaton GN , we can add conditions to the observable transitions of ND
that allows these transitions to �re only when a corresponding observable transition

can occur in GN . For example, consider transition t1,10 of ND. This transition cor-

responds to transition (4, a, 5) of automaton GN1, depicted in Figure 5.6(a). Event

a can only occur in GN in states (0, 0, N), (0, 2, N), (0, 3, N), (0, 4, N), (0, 5, N)

(4, 6, N) and (4, 7, N), where only states (4, 6, N) and (4, 7, N) have the �rst coor-

dinate equal to 4. Thus, transition t1,10 can �re in ND only if place p1,4 has a token

and place p2,6 or place p2,7 has a token, since places p1,4, p2,6 and p2,7 correspond to

states 4 of GN1, and states 6 and 7 of GN2, respectively. This shows that, in this

example, the SPND can be modi�ed in order to implement this behavior, decreasing

the augmented nonfailure language LNa for synchronous diagnosis.

1Notice that state (5, 2, N) does not even exist in the state space diagram of GN .
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5.1 Conditional synchronous Petri net diagnoser

As presented in Example 5.1, the SPND can be modi�ed in order to decrease the

augmented nonfailure language for synchronous diagnosis. In order to implement

this modi�cation, we add conditions, i.e., boolean expressions, to transitions tk,i ∈
Tk,o of the Petri nets NSOk

, k = 1, . . . , r, that are associated with the marking

of the other Petri nets NSOj
, j = 1, . . . , r, and k 6= j. If the condition is true, the

transition can �re and the state estimate of local NSOk
is updated, otherwise, we add

an output transition with the complementary boolean condition in order to remove

the token from the input place of tk,i when the event is observed. This modi�cation

leads to an interpreted Petri net called in this work the conditional Petri net state

observer N c
SOk

. The conditional Petri net state observer N c
SOk

, k ∈ {1, . . . , r}, is
an eight-tuple N c

SOk
= (PSOk

, T cSOk
, P recSOk

, PostcSOk
, x0,SOk

,Σk,o, CSOk
, lcSOk

), where

lcSOk
: T cSOk

→ 2Σk,o × CSOk
is a labeling function that associates to each transition

in T cSOk
a set of events from 2Σk,o and a condition C from CSOk

, associated with the

marking of the places of Petri nets N c
SOj

, for j = 1, . . . , r, j 6= k.

In the sequel, we present Algorithm 5.1 for the computation of the conditional

Petri net state observers N c
SOk

, for k = 1, . . . , r.

Algorithm 5.1 Conditional Petri net state observers.

Input: Petri net state observers NSOk
= (PSOk

, TSOk
, P reSOk

, PostSOk
, x0,SOk

,Σk,o,

lSOk
), for k = 1, . . . , r, and automaton GN .

Output: Conditional Petri net state observers N c
SOk

= (PSOk
, T cSOk

, P recSOk
,

PostcSOk
, x0,SOk

,Σk,o, CSOk
, lcSOk

), for k = 1, . . . , r.

1: Let T c
′
SOk

= ∅. Create a new transition tck for each transition q̃Nk
= fNk

(qNk
, σ)

de�ned in GNk
, where q̃Nk

, qNk
∈ QNk

, and σ ∈ Σk,o. For each transition tck,

de�ne PrecSOk
(pk, t

c
k) = 1, if pk corresponds to state qNk

, and PrecSOk
(pk, t

c
k) =

0, otherwise, and do T c
′
SOk

= T c
′
SOk
∪ {tck}.

2: De�ne T cSOk
= TSOk

∪ T c′SOk
.

3: De�ne PrecSOk
: PSOk

× T cSOk
→ N and PostcSOk

: T cSOk
× PSOk

→ N such that

PrecSOk
(pk, tk) = PreSOk

(pk, tk), and Post
c
SOk

(tk, pk) = PostSOk
(tk, pk) for all

pk ∈ PSOk
and tk ∈ TSOk

, and PostcSOk
(tck, pk) = PostcSOk

(tck, pk) = 0, for all

tck ∈ T c
′
SOk

and pk ∈ PSOk
.

4: De�ne lcSOk
: T cSOk

→ 2Σk,o × CSOk
as:

lcSOk
(tk,i) =

{
(lSOk

(tk,i), Ck,i), if tk,i ∈ Tk,o ∪ T c′SOk

(lSOk
(tk,i), 1), otherwise,

(5.1)
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with

Ck,i =

 [
∧r
j=1,j 6=k(

∨
` xj(pj,`))], if tk,i ∈ Tk,o

[
∧r
j=1,j 6=k(

∨
` xj(pj,`))], if tk,i ∈ T c

′
SOk

(5.2)

for all places pj,` ∈ PSOj
such that I(tk,i) and pj,` correspond to states in QNk

and QNj
that are the k-th and j-th coordinates of a state qN ∈ QN , respectively,

where fN(qN , σ) is de�ned for σ ∈ lSOk
(tk,i).

5: De�ne the initial marking of N c
SOk

as xc0,SOk
= x0,SOk

, for k = 1, . . . , r.

Notice that, in Algorithm 5.1, the conditions added to the transitions of the

Petri net state observers NSOk
, k = 1, . . . , r, in Step 4 depend on the marking of

the other Petri net state observers NSOj
, k = j, . . . , r, and j 6= k. Since the Petri

net state observers are binary Petri nets, we consider that the marking of their

places corresponds to a boolean value, i.e., in Equation (5.2), for a given place p,

if x(p) = 0 its boolean value is equal to false, and if x(p) = 1 its boolean value is

equal to true. Moreover, these conditions are created based on the global nonfailure

behavior of the system. Although the global behavior model of the system GN need

to be computed in order to obtain the conditional state observer Petri nets N c
SOk

,

the size of N c
SOk

are still polynomial in the size of the system component models,

avoiding the use of the global plant model for diagnosis. In the following example,

we illustrate the construction of the conditional Petri net state observers.

Example 5.2 Consider the system G = G1‖G2, where G1, G2 and G are de-

picted in Figures 5.1(a), 5.1(b), and 5.2, respectively. The event sets of G, G1

and G2 are Σ = {a, b, c, d, e, g, h, σu1, σu2, σf}, Σ1 = {a, b, c, e, σu1, σu2, σf}, and

Σ2 = {b, d, g, h, σu1, σu2}, respectively. By using Algorithm 2.5, the Petri net state

observers NSO1 and NSO2, shown in Figures 5.7(a) and 5.7(b), respectively, are

computed from the nonfailure models of the components of the system GN1 and GN2
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Figure 5.7: State observer Petri nets NSO1 and NSO2 of Example 5.3.
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Figure 5.8: Conditional Petri net state observer N c
SO1

of Example 5.3.

that are illustrated in Figure 5.6. In order to obtain the conditional Petri net state

observers N c
SO1

and N c
SO2

following Algorithm 5.1, it is necessary to add a transition

for each place of N c
SO1

and N c
SO2

and associate conditions to all transitions of the

Petri net state observer NSO1 (resp. NSO2) that depend on the marking of the Petri

net NSO2 (resp. NSO1). These conditions are obtained from the global nonfailure

behavior model of the system GN , depicted in Figure 5.3. The conditional Petri net

state observers N c
SO1

and N c
SO2

are shown in Figures 5.8 and 5.9, respectively.

Notice that we have added transitions tc1,2, t
c
1,4, t

c
1,6, t

c
1,8, t

c
1,10, and t

c
1,12 to NSO1

and tc2,2, t
c
2,4, t

c
2,6, t

c
2,8, t

c
2,10, t

c
2,12, t

c
2,14, and t

c
2,16 to NSO2. These transitions are added

to NSO1 and NSO2 in order to compute the conditional Petri net state observers N c
SO1

and N c
SO2

in Step 1 of Algorithm 5.1. The conditions are computed and associated

to each transition of N c
SO1

and N c
SO2

in Step 4 of Algorithm 5.1. All condition

predicates associated to the transitions of N c
SO1

and N c
SO2

are represented in Figures

5.8 and 5.9 between brackets, where the logical conjunction and logical disjunction

are represented by dots and commas, respectively. The marking of the places in these

conditions is represented simply by the places. The conditions whose boolean value

is always true are not shown in Figures 5.8 and 5.9.

After the conditional state observer Petri nets NSOk
have been computed, the

conditional Petri net diagnoserND,c can be obtained following the steps of Algorithm
5.2.

Algorithm 5.2 Conditional synchronized Petri net diagnoser.

Input: Conditional Petri net state observers N c
SOk

= (PSOk
, T cSOk

, P recSOk
,

PostcSOk
, x0,SOk

,Σk,o, CSOk
, lcSOk

), for k = 1, . . . , r.
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Output: Conditional synchronized Petri net diagnoser ND,c = (P c
D, T

c
D, P re

c
D,

PostcD, In
c
D, x

c
0,D,Σo, C

c
D, l

c
D), for k = 1, . . . , r.

1: Compute the Petri net N c
Dk

= (P c
Dk
, T cDk

, P recDk
, PostcDk

, IncDk
, xc0,Dk

,Σk,o,

CSOk
, lcSOk

), where IncDk
: P c

Dk
×T cDk

→ {0, 1} denotes the function of inhibitor

arcs, as follows:

1.1: Add to N c
SOk

a transition tfk labeled with the always occurring event λ.

De�ne T cDk
= T cSOk

∪ {tfk}.
1.2: Add to N c

SOk
a place pNk

, and de�ne PrecDk
(pNk

, tfk) = 1. Set

xc0,Dk
(pNk

) = 1, and de�ne P c
Dk

= PSOk
∪ {pNk

}.
1.3: De�ne IncDk

(pcDk
, tfk) = 1 and InDk

(pcDk
, tcSOk

) = 0, ∀pcDk
∈ P c

Dk
and

∀tcSOk
∈ T cSOk

.

2: Compute the conditional synchronized Petri net diagnoser ND,c =

(P c
D, T

c
D, P re

c
D, Post

c
D, In

c
D, x

c
0,D,Σo, C

c
D, l

c
D), as follows:

2.1: Form a unique Petri net by grouping all Petri nets N c
Dk
, for k = 1, . . . , r.

2.2: Add a place pF and de�ne PostcD(tfk , pF ) = 1, for k = 1, . . . , r. Set

xc0,D(pF ) = 0.

In the following, we present an example of the computation of the conditional

synchronized Petri net diagnoser ND,c for the system presented in Example 5.1

that illustrates the decrease in the augmented nonfailure language for synchronous

diagnosis.
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Figure 5.9: Conditional Petri net state observer N c
SO2

of Example 5.3.
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Example 5.3 In order to compute the conditional synchronized Petri net diagnoser

ND,c, according to Algorithm 5.2, it is necessary to group the Petri nets N c
SO1

and

N c
SO2

and add a failure detection logic to indicate when the failure event has been

diagnosed when all tokens of N c
SO1

or N c
SO2

have been removed. Due to the lack of

space, we do not present the Petri net ND,c in this work.

Now, suppose that the system has executed trace s = s′a = aceeba, where s′ =

aceeb. After the observation of the pre�x s′, the places of N c
SO1

and N c
SO2

that have

tokens are p1,0, p1,4 and p2,2, corresponding to states (0, 2) and (4, 2) of automaton

GR
N . However, only state (0, 2, N) of GN belongs to the state estimate after the

observation of trace s′. After the second observation of event a, transitions t1,2 and

tc1,10 will �re, removing the tokens from places p1,0 and p1,4 and adding a token to

place p1,1. Since the token of place p1,4 has been removed as a consequence of the

�ring of transition tc1,10, di�erently from Example 5.1, place p1,5 will not have tokens

after the observation of trace s, indicating that state (5, 2) does not belong to the

state estimate after the observation of s.

Remark 5.1 It is important to remark that not all exceeding behavior of the non-

failure language for synchronous diagnosis LNa with respect to Po(LN) is removed

with the addition of conditions to the transitions of the Petri net state observers

NSOk
in order to compute the conditional Petri net state observers N c

SOk
.

In the next section, we introduce the notion of conditional synchronous diagnos-

ability of DESs and present an algorithm to verify this property.

5.2 Conditional synchronous diagnosability

In the previous section, we show how conditions added to the synchronized Petri net

diagnoser transitions can decrease the nonfailure language for synchronous diagnosis

LNa . These conditions are added with a view to avoiding the �ring of an observable

transition, if these transitions are not possible in the nonfailure behavior automaton

of the system GN . This modi�cation leads to the conditional synchronized Petri net

diagnoserND,c. Since the nonfailure language for synchronous diagnosis is decreased,
it is necessary to de�ne the notion of conditional synchronous diagnosability of DESs.

In order to do so, we �rst show how to model the augmented nonfailure language

for conditional synchronous diagnosis, called LNa,c , where LNa,c ⊆ LNa .

In Chapter 3, we show that the augmented nonfailure language for synchronous

diagnosis LNa is equal to the projection in Σo of the generated language of automaton

GR
N , i.e., LNa = PR

o (L(GR
N)). Moreover, the conditions added to NSOk

in order to

obtain N c
SOk

are based on the observable transitions of GN . Thus, in order to

model the nonfailure augmented language for conditional synchronous diagnosis, we
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have to erase from GR
N the observable transitions that do not exist in GN , leading to

automaton GR
N,c whose observable generated language in Σo is PR

o (L(GR
N,c)) = LNa,c .

This procedure is formally described in Algorithm 5.3.

Algorithm 5.3 Conditional nonfailure behavior model

Input: Automata GN and GR
N .

Output: Automaton GR
N,c.

1: Compute GR
N
′
by eliminating the transitions fRN (qRN , σ) = qRN

′
, such that [(qRN 6∈

QN) ∨ (qRN
′ 6∈ QN)] ∧ (σ ∈ Σo) from GR

N .

2: Compute GR
N,c = Ac(GR

N
′
).

In the sequel, we present an example to illustrate the computation of automaton

GR
N,c according to Algorithm 5.3.

Example 5.4 Consider automata GN and GR
N depicted in Figures 5.3 and 5.4,

respectively. Following Algorithm 5.3, automaton GR
N,c is computed by erasing from

GR
N all observable transitions that do not exist in GN and taking the accessible part

of the resulting automaton. Automaton GR
N,c is shown in Figure 5.10. Notice that

all observable transitions that reach or depart from the gray states, i.e., states that

do not exist in GN , are erased from GR
N in order to obtain GR

N,c.

As stated in Remark 5.1, even with the elimination of the observable transitions

of GR
N that do not exist in GN , the nonfailure language for conditional synchronous

diagnosis LNa,c can still be a larger set than the observable nonfailure language of

the system Po(LN). Thus, even if the language L of a system is diagnosable, L is

not necessarily conditionally synchronously diagnosable. This leads to the following

de�nition of conditional synchronous diagnosability.

De�nition 5.1 Let L and LN ⊂ L denote the languages generated by G and GN ,

respectively, and let LF = L\LN . Consider that the system is composed of r modules,

such that GN = ‖rk=1GNk
, where GNk

is the automaton that models the nonfailure

behavior of Gk, and let LNk
denote the language generated by GNk

, for k = 1, . . . , r.

Then, L is said to be conditionally synchronously diagnosable with respect to LNa,c

and Σf if

(∃n ∈ N)(∀s ∈ LF )(∀st ∈ LF , ‖t‖ ≥ n)⇒
Po(st) 6∈ LNa,c ,

where LNa,c = PR
o (L(GR

N,c)) and GR
N,c is computed according Algorithm 5.3.
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According to De�nition 5.1, in order to verify if the language of a system is

conditionally synchronously diagnosable, it is necessary to verify if there is an arbi-

trarily long length failure trace with the same observation as a nonfailure trace that

belongs to LNa,c . Since all unobservable events of GR
N,c are particular events with

respect to automaton GF , that models the failure language of the system, in order

to verify the conditional synchronous diagnosability of a system, Algorithm 3.2 for

the veri�cation of synchronous diagnosability can be used. In order to do so, instead

of using GSD
V = GF‖GR

N , it is necessary to build GSD
V,c = GF‖GR

N,c and search for

cyclic paths formed with states labeled with F and events that are not renamed. If

there exists a cyclic path in GSD
V,c with these characteristics, then the system is not

conditionally synchronously diagnosable. We illustrate the construction of GSD
V,c in

the following example.

Example 5.5 Consider automaton GF of Example 3.2 depicted in Figure 5.11, and

automaton GR
N,c depicted in Figure 5.10. Automaton GSD

V,c = GF‖GR
N,c is shown in

Figure 5.12. Notice that there are no cyclic paths in GSD
V,c formed with states labeled

with F and events that are not renamed. Thus, the language generated by system

G, L, is conditionally synchronously diagnosable with respect to LNa,c and Σf .

In order to prove that the conditional synchronized Petri net diagnoser ND,c, ob-
tained from Algorithm 5.3, can be used for synchronous diagnosis, we �rst introduce

the following lemma that states that if a system is synchronous diagnosable, then it

is conditionally synchronously diagnosable.

Lemma 5.1 Let LF be the language marked by GF , which models the failure behav-

ior of the system model G = ‖rk=1Gk, and let LNa,c = PR
o (L(GR

N,c)), where G
R
N,c is
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the automaton computed by following Algorithm 5.3. Then, if L is synchronously di-

agnosable with respect to LNk
, P o

k,o, Pk,o, k = 1 . . . , r and Σf , then L is conditionally

synchronously diagnosable with respect to LNa,c and Σf .

Proof. The proof is straightforward and is based on the construction of automaton

GR
N,c according to Algorithm 5.3. Since GR

N,c is obtained by erasing observable tran-

sitions of GR
N that do not exist in GN and taking the accessible part of the result,

L(GR
N,c) ⊆ L(GR

N). Thus, PR
o (L(GR

N,c)) ⊆ PR
o (L(GR

N)), i.e., LNa,c ⊆ LNa . �

In the sequel, we present a theorem that ensures that the removal of observable

transitions from GR
N by following the steps of Algorithm 5.3 in order to compute GR

N,c

has the same e�ect as the conditions added to ND in order to obtain ND,c. In other

words, the conditional synchronized Petri net diagnoser obtained from Algorithm

5.2 can be used for the conditional synchronous diagnosis of DESs.

Theorem 5.1 Let LF be the language marked by GF , which models the failure be-

havior of the system model G = ‖rk=1Gk, and let LNa,c = PR
o (L(GR

N,c)), where G
R
N,c is

the automaton computed by following the steps of Algorithm 5.3. Consider language

La,c = LNa,c∪LF , and assume that L is conditionally synchronously diagnosable with

respect to LNa,c and Σf . Let s ∈ LF such that ∀ω ∈ La,c satisfying Po(ω) = Po(s),

ω ∈ LF . Then, the number of tokens in place pF of ND,c, after the observation of

trace Po(s), is one.

Proof. Notice that, in Chapter 3, it is shown that the synchronous Petri net

diagnoser NSOk
provides the state estimate of the nonfailure behavior of the system

modules GNk
. Thus, the synchronized Petri net diagnoser ND provides the state

estimate of automaton GR
N . In order to compute GR

N,c, the observable transitions

of GR
N related to states that do not exist in GN are erased, according to Algorithm

5.3. Now, consider the conditions associated with the transitions of the Petri nets

N c
SOk

according to Algorithm 5.1, and that the conditional Petri net diagnoser ND,c
is formed by grouping Petri nets N c

SOk
, k = 1, . . . , r according to Algorithm 5.2.

Notice that according to Step 4 of Algorithm 5.1, if an event σo, that labels an

enabled transition tk,i ∈ Tok , is observed for a given marking of ND,c, tk,i will �re
only if there exists a combination of its input place pk,i with the places of the Petri

nets N c
SOj

that have tokens, for j = 1, . . . , r and j 6= k, corresponding to a state of

GN that also have σo active. Otherwise, transition tck,i ∈ T ′SOk
will �re, removing

the token from pk,i, which corresponds to erasing an observable transition from

GR
N that do not exist in automaton GN . Thus, the Petri net ND,c provides the

state estimate of automaton GR
N,c and, according to De�nition 5.1, if the system

executed an unambiguous trace s, Po(s) 6∈ LNa,c . Therefore, if the system executes

an unambiguous failure trace, at least one conditional Petri net state observer N c
SOk

,
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k ∈ {1, . . . , r}, will lose all its tokens, enabling transition tfk that �res, adding a

token to place pF . �

Remark 5.2 It is important to notice that LNa,c can be a smaller set than LNa. This

fact shows that systems that are not synchronously diagnosable can be conditionally

synchronously diagnosable, or the delay bound for conditional synchronous diagnosis

can be smaller than the delay bound for synchronous diagnosis.

A relation between all notions of synchronous diagnosability and synchronous

codiagnosability presented in this work can be stated by using the relation between

the nonfailure augmented languages LNa,c, LNa and L̂Na. Since Po(LN) ⊆ LNa,c ⊆
LNa ⊆ L̂Na, the synchronous codiagnosablity implies the synchronous diagnosability,

that implies the conditional synchronous diagnosability of L, which ultimately implies

the diagnosability of L.

In the sequel, we present an example that shows that a system can be not

synchronously diagnosable and be conditionally synchronously diagnosable.

Example 5.6 Consider the system G = G1‖G2, where G1 and G2 are depicted in

Figures 5.13(a), 5.13(b), respectively. The set of events of G1 and G2 are Σ1 =

{a, c, e, g, σu} and Σ2 = {e, h, σu, σu2, σf}, respectively, where Σ1,o = {a, c, e, g},
Σ2,o = {e, h}, Σ1,uo = {σu}, Σ2,uo = {σu, σu2, σf}, and σf is the failure event.

Automaton GF is shown in Figure 5.14. Notice that automata GF and G are equal,

except for the marked states and the labels N and F . We show automaton GR
N in

Figure 5.15. It can be seen that the language L is not synchronously diagnosable

with respect to LN1, LN2, P
o
1,o, P

o
2,o, P1,o, P2,o, and Σf . In order to see this fact,

consider that the system has executed the failure trace s = hσfeh(eh)z, for z ∈ N.
Notice that, in GR

N , trace hσuR2
eh(σuR2

eh)z has the same observation in Σo, and,

consequently, the system G is not synchronously diagnosable.

Now, consider automaton GR
N,c computed from Algorithm 5.3 shown in Figure

5.16. Notice that there are no traces in GR
N,c with the same observation as trace

s = hσfeh(eh)z. In fact, L is conditionally synchronously diagnosable with respect

to LNa,c and Σf . This example shows that if we re�ne the synchronous diagnosis by

using more information regarding the nonfailure automaton model GN , systems that

are not synchronously diagnosable can be conditionally synchronously diagnosable.

5.3 Conditional synchronized Petri net diagnoser

for an automated system

Consider again the system Gp = Gcb‖Ghu presented in Section 3.5. The set of

events of Gcb and Ghu are Σcb = {a1, a2, cron, coff , apc, adc, clon, dc} and Σhu =
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{apc, adp, si, ca, app, adc, σf}, respectively, where Σcb,o = {a1, a2, cron, coff , adc, clon, dc}
and Σhu,o = {adp, si, ca, adc} are the sets of observable events of Gcb and Ghu, and

Σcb,uo = {apc} and Σhu,uo = {apc, app, σf} are the sets of unobservable events of

Gcb and Ghu, respectively. The sets of events, observable events, and unobservable

events of the plant are, respectively, Σp = Σcb ∪ Σhu, Σp,o = Σcb,o ∪ Σhu,o, and

Σp,uo = Σcb,uo ∪ Σhu,uo. In Section 3.5, we have presented how a synchronized Petri

net diagnoser NDp is obtained for Gp and how the synchronous diagnosis is carried

out. Now, let us consider the conditional synchronous diagnosis of Gp. Before the

construction of the conditional synchronous Petri net diagnoser NDp,c for the system

Gp, it is necessary to verify if the language generated by Gp, Lp, is conditionally syn-

chronously diagnosable. Since Lp is synchronously diagnosable, then, according to

Remark 5.2, Lp is also conditionally synchronously diagnosable, and the conditional

synchronous Petri net diagnoser NDp,c can be constructed.

According to Algorithm 5.2, the conditional synchronous Petri net diagnoser

NDp,c is computed and it is shown in Figure 5.17. It can be seen that in NDp,c, in

order to a transition to �re, it is necessary that the transition is enabled, the system

executes the event that labels the transition and its associated condition is true. In

Table 5.1 we show the meaning of the conditions associated to the transitions of

NDp,c, obtained from the nonfailure automaton behavior model of the system GNp .

In order to simplify the notation, in Table 5.1, each place represent its marking.

The conditions whose boolean value is always true are not represented in NDp,c.

Let us now show how the conditional synchronous diagnosis is carried out by

using NDp,c. Suppose that the failure trace s = a1croncoffσfadpsiadpcasiadc has been
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executed by the system. After the observation of trace a1croncoffσfadpsi, the places

pC3 , pC4 , pH3 , and pH4 have tokens. When event adc is observed again, transitions t2,6
and tc2,8 will �re, removing the tokens of places pH3 and pH4 , which enables transition

tf2 , that �res, diagnosing the occurrence of the failure event. Notice that, after the

observation of trace a1croncoffσfadpsi the condition [C5] = [pC8 ] of transition tc2,8

is true, since place pC8 does not have a token. This happens because, in GNp , the

unique state that has the second coordinate equal to H4 and event adp is active is

state (C8, H4) of GNp . Thus, after the observation of trace a1croncoffσfadpsi, only

event a2 is possible in the conditional nonfailure behavior of the system and, since

event adp is executed, the failure is diagnosed.

It is important to notice that, in Section 3.5, the Petri net diagnoser NDp is

computed and the same failure trace s = a1croncoffσfadpsiadpcasiadc is considered

in order to illustrate the synchronous diagnosis using NDp . In order to facilitate the

comparison, in Figure 5.18 we show the Petri net diagnoserNDp computed in Section

3.5. If the system executes trace s, the failure event σf is diagnosed using diagnoser

NDp , only after the observation of event adc. Thus, for this system, considering the

same failure trace s, by using diagnoser NDp it is necessary that the system executes

three more events in order to NDp diagnose the failure event σf when compared

to diagnoser NDp,c. Moreover, for the same failure trace, in NDp , the failure is

diagnosed after the �ring of transition tf1 while in NDp,c, the occurrence of σf is

diagnosed after the �ring of transition tf2 . More details about the implementation

of NDp,c can be found in MOTA VERAS [66].

The delay bound for conditional synchronous diagnosis of the system Gp can be

computed according to Algorithm 3.3 using the veri�er GSD
V,c instead of GSD

V . The

delay bound for conditional synchronous diagnosis is z∗ = 12, which corresponds to

the delay bound for monolithic diagnosis of the system Gp. The delay bound for

synchronous diagnosis of system Gp, obtained in Section 3.5, is equal to 15. Notice

that, by using the conditional synchronous diagnosis scheme, we have achieved, in

this example, the same value for the delay bound than using the monolithic diagnosis

approach.

5.4 Final remarks

In this chapter, we propose a re�nement in the synchronous diagnosis scheme by

adding conditions to the synchronized Petri net diagnoser transitions. These con-

ditions are based on the nonfailure global behavior model of the system. We show

that, with this re�nement, the augmented nonfailure language of the system for

synchronous diagnosis can be decreased, which implies that systems that are not

synchronously diagnosable can be conditionally synchronously diagnosable, and that
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Figure 5.17: Conditional synchronized Petri net diagnoser NDp,c.
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Table 5.1: Conditions that label the transitions of the Petri net NDp,c.
Condition Meaning

[C1] [pH0 , pH9 ]
[C2] [pH1 , pH2 , pH3 ]
[C3] [pH8 ]
[C4] [pC4 , pC5 , pC6 , pC7 ]
[C5] [pC8 ]
[C6] [pC9 , pC10 , pC11 ]
[C1] [pH0 .pH9 ]
[C2] [pH1 .pH2 .pH3 ]
[C3] [pH8 ]
[C4] [pC4 .pC5 .pC6 .pC7 ]
[C5] [pC8 ]
[C6] [pC9 .pC10 .pC11 ]

even if the system is synchronously diagnosable, it is possible to improve the failure

diagnosis by reducing the delay bound for diagnosis by adding the conditions in the

Petri net diagnoser. A method to verify the conditional synchronous diagnosabil-

ity, based on the synchronous diagnosability veri�er presented in Chapter 3, is also

presented.
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Chapter 6

Conclusion and future research topics

In this work, a synchronous Petri net diagnoser (SPND) for discrete event systems

modeled as automata is proposed. The SPND provides the state estimate of the

nonfailure behavior of the component models of the system after the observation of

a trace. In general, this state estimate constitutes a larger set than the state estimate

of the nonfailure behavior of the composed system. Thus, the notion of synchronous

diagnosability is presented and an algorithm to verify this property is proposed. We

show that a system can be diagnosable and not synchronously diagnosable. Although

the veri�er automaton used to verify the synchronous diagnosability has exponential

growth in the number of system components, it can be computed o�ine and, if

the system is synchronously diagnosable, the SPND can be implemented. Since

the construction of the global plant model for synchronous diagnosis is avoided,

the SPND has polynomial computational complexity with the number of system

components. Since the nonfailure language for synchronous diagnosis can be a larger

set than the nonfailure language of the system, we also propose a method for the

computation of the maximum delay bound for synchronous diagnosis based on the

method proposed in TOMOLA et al. [77].

Moreover, we extend the notion of synchronous diagnosability to a decentralized

setting using a scheme similar to the one presented in protocol 3 of DEBOUK et al.

[17]. In order to do so, we implement a local Petri net diagnoser associated with each

local component of the system. Since in this diagnosis scheme the observation is

decentralized, a local observable event can be unobservable to another site. We have

shown that, because of this fact, a system can be synchronously diagnosable and not

synchronously codiagnosable. However, if a system is synchronously codiagnosable,

it is synchronously diagnosable and, ultimately, diagnosable. We also show that

the modular diagnosis scheme presented in CONTANT et al. [59] can be seen as a

particular case of the synchronous decentralized diagnosis proposed in this work.

A modi�cation of the SPND based on the nonfailure behavior model of the global

system in order to re�ne the synchronous diagnosis is also proposed. This modi�-
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cation relies on the addition of conditions to the synchronous Petri net diagnoser

transitions. We show that such modi�cation can decrease the observed nonfailure

language for synchronous diagnosis, leading to the notion of conditional synchronous

diagnosability. Since the nonfailure language considered for conditional synchronous

diagnosis can be a smaller set that the nonfailure language for synchronous diagnosis,

systems that are not synchronously diagnosable can be conditionally synchronously

diagnosable. Moreover, for systems that are both synchronously diagnosable and

conditionally synchronously diagnosable, the delay bound for the diagnosis of the

failure event can be decreased when the conditional synchronous diagnosis scheme

is used.

In the sequel, we summarize the main contributions of this work.

• A new failure diagnosis scheme based on the observation of the nonfailure

models of the components of the system, called synchronous diagnosis, is pro-

posed.

• The synchronous diagnosis does not use the global plant model for diagnosis,

reducing the computational cost for diagnosis of DESs modeled as automata.

• The notion of synchronous diagnosability and a method for the veri�cation of

this property are proposed.

• An algorithm for the computation of the maximum delay bound for syn-

chronous diagnosis is proposed.

• The synchronous diagnosis scheme is extended to a decentralized setting, lead-

ing to the notion of synchronous codiagnosability.

• A method for the veri�cation of synchronous codiagnosability is presented.

• A comparison between modular diagnosis and decentralized synchronous di-

agnosis is presented, where we have shown that the modular diagnosis is a

particular case of the synchronous decentralized diagnosis scheme.

• The synchronous diagnosis is re�ned, and the notion of conditional syn-

chronous diagnosability is presented.

• A method for the veri�cation of conditional synchronous diagnosability of

DESs is proposed.

• Practical implementations of all diagnosis schemes presented in this work were

carried out, validating the methods for the diagnosis of a manufacturing plant.
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Since, in this work, a new diagnosis scheme for DESs is proposed, there are

several research topics that can be developed based on the results presented in this

thesis. In the sequel, we present possible research topics that can be carried out

from this work.

(i) The conditional synchronous diagnosis scheme can be generalized to a dis-

tributed implementation. In this setting, local Petri net diagnosers can be

constructed for each component of the system and be connected through a

communication network. The observation of events and local state estimates

can be used in order to re�ne the diagnosis decision based on the global non-

failure behavior model of the system. In order to do so, di�erent network

architectures can be considered and communication protocols must be devel-

oped.

(ii) Depending on the system, the construction of local Petri nets associated with

some components are not necessary for the synchronous diagnosis. The compu-

tational complexity of the synchronous diagnoser can be decreased by searching

for the components of the system that are strictly necessary for the diagnosis

of the failure event.

(iii) If di�erent sets of components can be used for synchronous diagnosis, di�er-

ent criteria can be established in order to support the choice of which set of

components is more appropriate for synchronous diagnosis or decentralized

synchronous diagnosis.

All results presented in this thesis have been published or submitted for publi-

cation. In the sequel, we present the contributions related to this work.

(i) Online fault diagnosis of modular discrete-event systems [73].

(ii) Failure diagnosability of modular discrete-event systems [85].

(iii) Algorithms for the veri�cation of synchronous diagnosability and computation

of the delay bound for diagnosis of modular discrete event systems [86].

(iv) Conditional synchronized diagnoser for modular discrete-event systems [87].

(v) Synchronous Codiagnosability of Modular Discrete-Event Systems [83].

(vi) �Polynomial Time Veri�cation of Decentralized Diagnosability of Discrete

Event Systems� vs. �Decentralized Failure Diagnosis of Discrete Event Sys-

tems�: A Critical Appraisal [27].
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(vii) Robust Disjunctive-Codiagnosability of Discrete-Event Systems Against Per-

manent Loss of Observations [77].

(viii) Synchronous Diagnosis of Discrete-Event Systems - Submitted for publication

[74].

(ix) Synchronous codiagnosability of discrete-event systems - Submitted for publi-

cation [84].
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