6 A
li.l“l o COPPE
<
Instituto Alberto Luiz Coimbra de U F RJ
Pés-Graduagao e Pesquisa de Engenharia

SYNCHRONOUS FAILURE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS

Felipe Gomes de Oliveira Cabral

Tese de Doutorado apresentada ao Programa
de Pos-graduacao em Engenharia Elétrica,
COPPE, da Universidade Federal do Rio de
Janeiro, como parte dos requisitos necessarios
a obtencao do titulo de Doutor em Engenharia

Elétrica.

Orientador: Marcos Vicente de Brito Moreira

Rio de Janeiro
Outubro de 2017



SYNCHRONOUS FAILURE DIAGNOSIS OF DISCRETE-EVENT SYSTEMS

Felipe Gomes de Oliveira Cabral

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ
COIMBRA DE POS-GRADUACAO E PESQUISA DE ENGENHARIA (COPPE)
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSARIOS PARA A OBTENCAO DO GRAU DE DOUTOR
EM CIENCIAS EM ENGENHARIA ELETRICA.

Examinada por:

Prof. Joao Carlos dos Santos Basilio, Ph.D.

Prof. Marcos Vicente de Brito Moreira, D.Sc.

Prof. José Eduardo Ribeiro Cury, Docteur d’Etat

Prof. Max Hering de Queiroz, D.Sc.

Prof. Antonio Eduardo Carrilho da Cunha, D.Eng.

RIO DE JANEIRO, RJ — BRASIL
OUTUBRO DE 2017



Cabral, Felipe Gomes de Oliveira

Synchronous failure diagnosis of discrete-event
systems/Felipe Gomes de Oliveira Cabral. — Rio de
Janeiro: UFRJ/COPPE, 2017.

XVT [127] pf: 1.3 29, 7Tem.

Orientador: Marcos Vicente de Brito Moreira

Tese (doutorado) - UFRJ/COPPE/Programa de
Engenharia Elétrica, 2017.

Referéncias Bibliograficas: p. [119 -
1. Failure diagnosis. 2. Synchronous diagnosis. 3.

Discrete-event systems. 1. Moreira, Marcos Vicente de
Brito. II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Elétrica. II1. Titulo.

il




iv

Porque dele, e por meio dele, e
para ele sao todas as coisas. A
ele, pois, a gloria eternamente.

Amém! (Romanos 11. 36)



Agradecimentos

Agradeco a Deus, criador e sustentador de todas as coisas, que pela sua graca me
concedeu essa conquista.

Agradeco aos meus pais Ronaldo e Denise por sempre acreditarem em mim.
Sempre pude e posso contar com voces.

Agradeco a minha esposa Julia pelo companheirismo e paciéncia durante todo o
periodo de doutorado e em especial no ultimo ano, que se provou ser o mais dificil.

Agradeco a todos os irmaos em Cristo que congregam na Igreja Batista no Horto,
Igreja Evangélica Congregacional de Higienopolis (IECH) e Primeira Igreja Batista
no Andarai (PIBA) por todos os momentos de comunhdo comigo e com minha
esposa.

Agradeco ao meu orientador e amigo, Marcos Moreira, por todas as horas de
aconselhamento e orientacao que nao se limitam ao escopo deste trabalho.

Agradeco a todos os amigos e companheiros que fiz ao longo da graduacao.
Em especial, aos grandes amigos do curso de Engenharia Elétrica da UFRJ: Rafael
Mazza, Mayara Cagido, Rafael Caetano, Tiago Granato e Victor Portavales. O
companheirismo de vocés foi, e continua, sendo fundamental.

Agradeco a todos os amigos que fiz no Laboratério de Controle e Automacao
(LCA) da COPPE/UFRJ que me acompanharam durante o mestrado e doutorado.
Em especial, Wesley Silveira, Publio Lima, Tiago Franca, Juliano Freire, Jean To-
mola, Félix Gamarra, Thiago Henrique, Gustavo Viana e Marcos Vinicius.

Agradeco a todos os alunos e amigos que fiz durante o periodo em que fui profes-
sor substituto do Departamento de Engenharia Elétrica da UFRJ. Honestamente,
posso dizer que aprendi mais com vocés do que ensinei.

Agradeco a todos os professores da COPPE/UFRJ que de forma direta ou indi-
reta contribuiram com a minha formacao.

Agradeco ao Conselho Nacional de Desenvolvimento Tecnolégico e Cientifico

(CNPq) pelo suporte financeiro.



Resumo da Tese apresentada & COPPE /UFR.J como parte dos requisitos necessérios

para a obtencao do grau de Doutor em Ciéncias (D.Sc.)

DIAGNOSTICO SINCRONO DE FALHAS DE SISTEMAS A EVENTOS
DISCRETOS

Felipe Gomes de Oliveira Cabral

Outubro/2017

Orientador: Marcos Vicente de Brito Moreira

Programa: Engenharia Elétrica

Em geral, sistemas sao formados pela composicao de diversos médulos, compo-
nentes locais ou subsistemas e podem ter um grande nimero de estados. O cres-
cimento do modelo global do sistema com o nimero de componentes leva a altos
custos computacionais para técnicas de diagnostico de falhas baseadas no modelo
global da planta. Neste trabalho, uma nova abordagem para o diagnoéstico de falhas
de sistemas a eventos discretos é proposta. O método é baseado no célculo de um
diagnosticador rede de Petri, chamado de diagnosticador rede de Petri sincronizado
que é construido a partir do comportamento sem falha dos modulos do sistema. A
definicao de diagnosticabilidade sincrona da linguagem de um sistema em relacao a
linguagem de seus modulos, e um algoritmo para verificar essa propriedade também
sao propostos. Uma generalizagao do diagnosticador sincrono para uma arquitetura
decentralizada, a nocao de codiagnosticabilidade sincrona e um algoritmo para ve-
rificar essa propriedade também sao apresentados neste trabalho. A eficiéncia do
diagnoéstico sincrono pode ser melhorada usando o modelo sem falha do sistema
global, o que leva a definigao de diagnosticabilidade sincrona condicional. Um al-
goritmo para a verificacao da diagnosticabilidade sincrona condicional baseado no
método de verificacdo da diagnosticabilidade sincrona é proposto. A relagdo entre
diagnosticabilidade, diagnosticabilidade sincrona, diagnosticabilidade sincrona con-
dicional e codiagnosticabilidade sincrona de sistemas a eventos discretos também é
discutida. Algoritmos para o calculo do atraso maximo para todos os métodos de
diagnostico apresentados neste trabalho sao propostos. Um exemplo tedrico e uma
implementacao préatica dos métodos de diagnoéstico sao apresentados e usados ao

longo deste trabalho com o objetivo de ilustrar e validar os métodos.
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In general, systems are formed by the composition of several modules, local com-
ponents or subsystems, and may exhibit a large number of states. The growth of the
global system model with the number of system components leads to high computa-
tional costs for failure diagnosis techniques based on the global model. In this work,
a new approach for the failure diagnosis of discrete event systems is introduced. The
method is based on the computation of a Petri net diagnoser, called synchronized
Petri net diagnoser (SPND), that is constructed from the nonfailure behavior of the
modules of the system. We also introduce the definition of synchronous diagnos-
ability of the language of a system with respect to the languages of its modules,
and present an algorithm to verify this property. We also propose a decentral-
ized synchronized Petri net diagnosis scheme for discrete-event systems modeled as
automata. In order to do so, we define the notion of synchronous codiagnosability
and propose an algorithm to verify this property. The synchronized diagnosis can be
refined using the global nonfailure model of the system, leading to the notion of con-
ditional synchronous diagnosability. An algorithm for the verification of conditional
synchronous diagnosability based on the verification of synchronous diagnosability
is proposed. We also discuss the relation among conditional synchronous diagnos-
ability, synchronous codiagnosability, synchronous diagnosability and diagnosability
of discrete-event systems. Algorithms for the computation of the maximum delay
bound for all diagnosis schemes presented in this work are proposed. An example
and a practical implementation of the diagnosis methods are presented and used

throughout this work in order to illustrate and validate the methods.
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Chapter 1
Introduction

Systems that have a discrete state space and whose evolution is driven by the occur-
rence of events, and are not time-driven, are called Discrete-Event Systems (DESs)
[1, 2]. Events are characterized by an instantaneous occurrence, such as the begin-
ning or the finishing of a task, a sensor state change, or the pressing of a button
by an operator. Several systems can be modeled as DESs, such as manufacturing
systems, robotic systems, traffic supervision, data management, logistic, and energy
systems.

A DES cannot be modeled by differential or difference equations due to its dis-
crete nature, and the fact that its evolution is given by the occurrence of events.
Thus, a different mathematical formalism is necessary to describe DESs, and the
most common used in the literature are automata and Petri nets [1H5]. Automata
are directed graphs, where the vertices represent the states of the system, and the
arcs represent transitions labeled with events in order to model their occurrence.
Petri nets are bipartite graphs, or bigraphs, in the sense that it has two types of
nodes (places and transitions), where nodes of the same type cannot be connected.
Tokens are assigned to the places of the Petri net, such that the number of tokens
of each place forms the marking of the Petri net, which also represents the system
state modeled by the net. Notice that, differently from automata, the state of the
system is represented in a distributed way and, because of this property, Petri nets
are usually used to represent systems with a high degree of concurrency and a large
number of states.

Automatic systems are becoming more and more independent from human in-
teraction and thus, more complex. Such complexity can be seen in the increase of
systems that are composed of several subsystems that interact in order to complete
tasks. When modeled by an automaton, the global plant model of a DES is obtained
by composing the automaton models of its subsystems. The state space of the re-
sulting automaton can grow exponentially with the number of subsystems, which

can prevent the application of feedback control techniques, known as supervisory



control, with a view to modifying the behavior of the system in order to achieve a
set of specifications [I} @, [7]. In order to avoid the use of the global system model
for supervisory control, local modular control strategies have been proposed in the
literature [8HI3]. In this work, we take advantage of the modularity of systems in
order to investigate a different problem: the failure diagnosis of DESs.

Automatic systems are subject to failures that can alter their expected behav-
ior and decrease their reliability and performance. Therefore, the study of failure
diagnosis techniques of DESs are fundamental in order to identify the occurrence
of a failure. Usually, a failure is modeled as an unobservable event, i.e., its occur-
rence cannot be detected by a sensor, and, in order to identify if a failure event has
occurred, it is necessary to build a DES model of the nonfailure and post-failure
behaviors of the system. Then, the failure occurrence can be diagnosed by following
the observed traces generated by the system. Several works in the literature ad-
dress the problem of failure diagnosis of discrete-event systems (DESs) modeled by
automata [[4H28], timed automata [29-31], and Petri nets [32-39]. In ZAYTOON
and LAFORTUNE [40], an overview of the diagnosis methods for DESs presented
in the literature is carried out.

In the seminal work of SAMPATH et al. [14, 15], a model based failure diag-
nosis scheme is proposed for DESs, and an automaton diagnoser, whose states are
state estimates of the system reached after the observation of a trace, is presented.
Although the diagnoser presented in SAMPATH et al. [14] [15] can be straightfor-
wardly implemented for failure diagnosis, its construction is, in general, avoided
since, in the worst-case, the state-space of the diagnoser grows exponentially with
the cardinality of the state-space of the plant model [14] 15 19, 41]. Recently, in
CLAVIJO and BASILIO [42], an empirical study on the average state-space size of
the diagnoser proposed in SAMPATH et al. [14] is carried out. In CLAVIJO and
BASILIO [42] it is shown that, on the average, the state-space cardinality of the
diagnoser proposed in SAMPATH et al. [14] can grow polynomially in the number
of states of the system.

In SAMPATH et al. [14], it is stated that diagnosis can be carried out storing
only the current state of the diagnoser, without the need for storing the complete
state space of the diagnoser, and, after the observation of an event, update the state
estimate. However, a method for this implementation is not presented in SAM-
PATH et al. [14]. In QIU and KUMAR [19], a method for diagnosis that avoids the
construction of the diagnoser automaton, is presented. In order to do so, a non-
deterministic automaton is computed, and only the current state of the diagnoser
and the nondeterministic automaton need to be stored. After the occurrence of an
observable event, the next state of the diagnoser can be computed online in polyno-

mial time. However, the details of the practical implementation on a computer are



not presented in QIU and KUMAR [19].

The diagnosis methods presented in SAMPATH et al. [14], CARVALHO et al.
123, 25], CABRAL et al. [26], SANTORO et al. [28], CABASINO et al. [38] con-
sider that all system information regarding failure diagnosis, e.g., sensor signals, is
available in a centralized way. However, there is a large number of systems where
the diagnosis information is only available locally [17], which makes the decentral-
ized [17, 19, 20 43] and distributed [44, [45] architectures more appropriated for
such systems. In DEBOUK et al. [17], several protocols for decentralized diag-
nosis are proposed. The notion of diagnosability introduced in SAMPATH et al.
[14] is extended to decentralized architectures, consisting of local diagnosers that
communicate with a coordinator, in order to detect failure event occurrences. Sev-
eral protocols for decentralized diagnosis, that determine the diagnostic information
generated at each local site, the communication rules used by the local sites, and
the decision rule for failure diagnosis applied by the coordinator are presented in
DEBOUK et al. [17].

In Protocol 3 of DEBOUK et al. [I7], the local diagnosers do not communicate
among each other, and the inference on the occurrence of the failure event is carried
out based solely on their own observations. When at least one of the local diagnosers
identifies the failure event occurrence, the diagnostic is sent to a coordinator that in-
forms it to the system operator. This notion of decentralized diagnosability has been
referred to as disjunctive-codiagnosability [20]. The diagnosability notion presented
in SAMPATH et al. [14] is a particular case of the disjunctive-codiagnosability case
when only one local diagnoser is considered [I7]. A different notion of decentralized
diagnosability has been defined in WANG et al. |[20] and YAMAMOTO and TAKAI
[46], and it is called conjunctive-codiagnosability. In this architecture, any non-
failure trace can be distinguished from the failure traces, after a bounded number of
event occurrences, by at least one local diagnoser. The conjunctive-codiagnosability
and disjunctive-codiagnosability are incomparable [20], which means that a system
can be conjunctive-codiagnosable and not disjunctive-codiagnosable, and vice-versa.
In this work, we are interested only in the disjunctive decentralized diagnosis, which,
from this point, is referred to as codiagnosability.

A vast range of diagnosis methods can be found in the literature for systems
modeled as Petri nets. The simplest way to perform diagnosis in systems modeled
as Petri nets is to build the reachability graph of the Petri net that models the
system, and, after that, obtain its diagnoser. In practice, this approach implies
in replacing the Petri net model with an automaton model of the system, and the
benefit to represent the state of the system in a distributed way in the net is lost. In
fact, the graph of an automaton model can be much larger than the graph of a Petri

net model for the same system. In order to overcome this problem, several diagnosis



methods for systems modeled as Petri nets have been proposed in the literature
[35, [47H5T].

Recently, in CABRAL et al. [26], a new approach for failure diagnosis of systems
modeled as finite state automata is proposed. The diagnosis method is based on the
construction of a Petri net diagnoser (PND), which can be obtained in polynomial
time, and provides the current state estimate of the non-failure part of the system
model after the observation of a trace. If an observed trace is executed by the
system, and it is not in the nonfailure behavior model, then a failure is detected.
Alternative diagnosis approaches that only consider the nonfailure behavior of the
system can also be found in the literature [52H55].

In all methods presented in [14-16] [19] 20, 26] the diagnosers are computed based
on the global plant model, which can grow exponentially with the number of system
components. In order to circumvent this problem, failure diagnosis schemes have
been proposed for systems with a modular structure [56H63]. The main idea in these
works is to exploit the modular structure of the system with a view to reducing the
cost associated with the computation of the global system model for diagnosis.

In DEBOUK et al. [56] and CONTANT et al. [59], different notions of modular
diagnosability are proposed. In these works, it is assumed that the failure event
is modeled in a single component of the system, and the goal is to identify the
occurrence of the failure event by using only this component model instead of the
global system model. In CONTANT et al. [59], it is assumed that the module where
the failure event is modeled has a persistent excitation, which allows that languages
that are not diagnosable using the classical definition of diagnosability presented
in SAMPATH et al. [14], be modularly diagnosable. Moreover, it is also assumed
in CONTANT et al. [59] that the system has no cycles of unobservable events, and
that the common events of the modules are observable, which implies that the failure
event belongs only to the event set of the component used to construct the diagnoser.

In PENCOLE and CORDIER [58], a different modular diagnosis approach is
proposed. In this work, a local diagnoser is constructed for each component of the
system and the local diagnoses are merged in order to obtain the global diagnosis
decision. The main drawback of this method is that, in the worst-case, the paths
of all modules of the system must be synchronized, which leads to an exponential
growth with the number of system components.

In GARCIA et al. [64], a different approach for modular diagnosis of DESs is
proposed. Differently from [56, 5961, the method proposed in GARCIA et al.
[64] consists in splitting the system into subsystems, constructing a minimum local
controller for each subsystem, and then computing a diagnoser for each subsys-
tem composed with its minimum local controller. The failure event is detected

when a local diagnoser identifies its occurrence. In SCHMIDT [62], an incremental
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Figure 1.1: Comparison between the main diagnosis architectures proposed in the
literature: the monolithic scheme (a); the decentralized scheme (b); the distributed
scheme (c); and the modular scheme (d).

abstraction-based approach for the verification of modular language diagnosability
of DESs is proposed, and the differences between the diagnosis methods presented
in [56, 58-60] are reviewed.

In Figure[I.I)we show the schematics of the main diagnosis architectures proposed
in the literature: (i) the monolithic scheme; (ii) the decentralized scheme; (iii)
the distributed scheme; and (iv) the modular scheme. Notice that in the modular
architecture we consider that the failure component is (G; and, thus, only the local
diagnoser (G4, is implemented.

In this work, we propose a new scheme for centralized failure diagnosis and
decentralized failure diagnosis of DESs. We first propose a method for centralized
diagnosis that avoids the computation of the global system model. The method is
based on the computation of a Petri net diagnoser, called synchronized Petri net
diagnoser (SPND), which is constructed from the nonfailure behavior of the system
modules. The SPND carries out the online synchronization of the system modules
in order to provide a set of states that contains the state estimate of the nonfailure
behavior of the global system. If the observation of a trace is not recognized in the
SPND, the occurrence of the failure event is detected. In this context, we introduce
the definition of synchronous diagnosability of the language of a DES with respect

to the languages of its modules, and present an algorithm to verify this property.
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Figure 1.2: Main diagnosis schemes presented in the literature and the synchronous
diagnosis scheme proposed in this work.
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We also propose a decentralized architecture for diagnosis of DESs. This is done
by extending the notion of synchronous diagnosis to the decentralized case using a
scheme similar to the one presented in Protocol 3 of DEBOUK et al. [I7], where
all information regarding the observation of events are available locally. In order to
do so, we assume that each component of the system has its own set of observable
events, and a local diagnoser is implemented for each module. We introduce the
definition of synchronous codiagnosability, and discuss a verification method and the
implementation of this scheme. Moreover, we present a method for the computation
of the maximum delay bound for synchronous decentralized diagnosis that can also
be used for the synchronous diagnosis method.

Since the state estimate of the SPND contains the state estimate of the nonfailure
behavior of the global system, the synchronous diagnosis is equivalent to the diagno-
sis of a system with an augmented nonfailure language. The synchronous diagnosis
of DESs can be refined with the view to reducing the nonfailure language for syn-
chronous diagnosis. This refinement consists in the addition of boolean conditions
to the transitions of the SPND, which leads to the Conditional Synchronized Petri
Net Diagnoser (CSPND). Since the nonfailure language for synchronous diagnosis
is reduced, the notion of conditional synchronous diagnosability is introduced and
an algorithm to verify this property is presented. We show that systems that are
not synchronously diagnosable can be conditionally synchronously diagnosable and
the delay bound for synchronous diagnosis can be decreased using the conditional
synchronous diagnosis scheme. In Figure [1.2] we show the main diagnosis archi-
tectures presented in the literature. Notice that the synchronous diagnosis scheme
proposed in this work is a new architecture and can be implemented in a centralized

or decentralized way.



We validate all diagnosis methods presented in this work by applying then to
a didactic manufacturing system [65, 66]. The manufacturing system consists of a
cube assembly mechatronic plant located at the Control and Automation Labora-
tory (LCA) of the Federal University of Rio de Janeiro (UFRJ). We show how the
controlled behavior of the plant is modeled for the application of the synchronous
diagnosis methods. The Petri net diagnosers are presented, and the failure diagnosis
process is illustrated. The delay bound for each synchronous diagnosis method is
also computed.

This work is organized as follows. In Chapter 2] we present preliminary concepts
about DESs modeled as automata and Petri nets. We also present a theoretical
background of failure diagnosis of systems modeled as automata. In Chapter (3] we
present the synchronous centralized diagnosis scheme, and introduce the definition
of synchronous centralized diagnosability of DESs. A verification method of the
synchronous diagnosability of DESs and an algorithm to compute the maximum
delay bound for synchronous diagnosis are introduced. In Chapter |4 we present the
synchronous decentralized diagnosis scheme, and the definition of synchronous de-
centralized diagnosability of DESs. We also show a comparison between the notions
of synchronous codiagnosability, synchronous diagnosability, the classical diagnos-
ability, and modular diagnosability of DESs. The conditional synchronous diagnosis
architecture is presented in Chapter [p where the conditional synchronized Petri
net diagnoser is proposed. A comparison between all notions of synchronous diag-
nosability is also carried out in Chapter 5] Finally, in Chapter [0 we present the

conclusions of this work, together with future research topics related to this thesis.



Chapter 2

Fundamentals of Discrete-Event

Systems

A Discrete Event System (DES) is a system whose state-space is a discrete set
and whose evolution is driven by the occurrence of events. Thus, DESs cannot
be described by differential or difference equations and, therefore, it is necessary
to present mathematical formalisms that are capable of correctly representing the
evolution of a DES. Although a DES can be described only by its language, this
representation is not practical. In this work, we consider two types of modeling
formalisms largely used to describe DESs: automata and Petri nets [TH5)].

In order to present the concepts of automata and Petri nets, we first present the

concept of languages, and some notations and definitions.

2.1 Languages

In this work, we use the symbol ¥ to represent the set of events of a given DES. The
symbol o is used to represent a generic event. A sequence of events forms a trace
and a trace consisting of no events is called the empty trace and it is represented
by e. If s is a trace, its length is denoted by ||s||. The length of the empty trace e

is considered to be zero. The formal definition of a language is presented as follows
1.

Definition 2.1 (Language) A language L defined over a set of events ¥ is a set
of finite length traces formed with the events of 3.

For example, the language L = {¢,e,ed, dee,eed} is composed of five traces,
including the empty trace e, formed with events of ¥ = {d,e}. It is important
to remark that languages are sets and, therefore, all operations of sets can also be
applied to languages. In the following, we present other operations that can be

executed using events and traces with the aim to create and modify languages.



2.1.1 Language operations

The main operation related to the construction of traces from a set of events X,
and therefore languages, is the concatenation. Consider, for example, the trace
abe, formed with the events of ¥ = {a,b,c}. The trace abc can be formed by the
concatenation of trace ab with event c. Notice that ab is, itself, a concatenation of
the events a and b. The empty trace ¢ is the identity element of the concatenation
operation, i.e., o€ = €0 = 0.

A language defined over X is a subset of the set formed by all finite length traces
of events built with the elements of X, including the empty trace . This set is
denoted by X*, where the operation x is called Kleene-closure. In particular, the
sets (), ¥ and X* are also languages.

The concatenation and Kleene-closure operations can also be defined for lan-

guages, as it is presented in the sequel.

Definition 2.2 (Concatenation) Let Ly, Ly C X*, then the concatenation Ly Ly
18 defined as:
LiLy ={s=s152:(s1 € L1) and (s € Lo)}.

A trace s is in L Ly if it is formed by the concatenation of a trace s; € L; and
So € Lo.

Definition 2.3 (Kleene-closure) Let L C X*, then

L*={¢}ULULLU...

An element of L* is formed by the concatenation of elements of L. By definition,
the empty trace € is also an element of L*, representing the concatenation of “zero”
elements. Moreover, the Kleene-closure operation is idempotent, i.e., (L*)* = L*.

Another important operation that can be applied to languages is the Prefix-
closure. Before we present this operation, it is necessary to define prefix, subtrace
and suffix of a trace s. Let s = tuv, where t,u,v € ¥*, then ¢ is the prefix of s, u is
the subtrace of s, and v is the suffix of s. Since t,u,v € ¥*, then the traces ¢ and s
are also prefixes, subtracess and suffixes of s. The prefix-closure of a language L is

formally defined as follows.

Definition 2.4 (Prefix-closure) Let L C X*, then

L={sex:(3teystel]}

The prefix-closure of a language L, denoted as L, is the set of all prefixes of
all traces of L. Notice that, by definition, L C L. A language L is said to be

prefix-closed if L = L, i.e., if all prefixes of all traces of L are also elements of L.



Remark 2.1 It is important to remark that, for a language L = 0, L = (). However,
if L # 0, then ¢ € L. Moreover, (* = {e} and {e}* = {¢}, and the concatenation
operation between a language and the empty set is equal to the empty set, i.e., DL =

L = 0.

Another important operation that can be applied to traces, or languages, is the

projection operation, defined as follows [I].

Definition 2.5 (Projection) The natural projection P! : ¥F — X%, where ¥, C

Y, 1s defined recursively as follows:

Pl(e) =,

Pl( ) o, if o€ X,
g) =
g, ifoe X\ s,

Pl(so) = PY(s)P!(c), for all s € ¥f,0 € %,

where \ denotes set difference.

According to Definition [2.5] the projection operation erases all events o € ¥;\ X,

from the traces s € Y. The inverse projection operation is defined as follows.

Definition 2.6 (Inverse projection) The inverse projection Pfl DY 2% s
defined as:

Py ={sexf: Pl(s) =t}

For a given trace ¢, formed with events from X,, P (t) produces a set formed
with all traces that can be constructed with the events of ¥; whose projection P! is
equal to t.

The operations P! and Psl_1 can be extended to languages. In order to do so, it
is necessary to apply these operations to all traces that belong to the language. The
main application of the projection is to represent the observed language of a system
obtained from an observer that has access only to the events registered by sensors
or command events sent by a controller.

It is important to notice the following property obtained from the definition of

projection, and set theory:

P,(L. N Ly) C Py(Ly) N Py(Ly), (2.1)

where L, and L; are two languages defined over a set of events X, and P : ¥* — X%,

where >, C 2.
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The language of a DES is a set that contains the information regarding all admis-
sible traces that a system is capable of generating. Using languages to describe DESs
can be a difficult task, since, depending on the system, it is not easy to represent all
its behavior by describing in a set all possibilities of traces generated by the system.
Therefore, it is necessary to define a structure that is capable of representing the
language of a system and that can be manipulated by using well defined operations,
allowing the construction and analysis of systems that generate complex arbitrarily
languages. In the next section, we define one of the formalisms used in this work to

represent languages.

2.2 Automata

An automaton is a device that is capable of representing a language according to

well-defined rules [IL 2]. In the following, we formally define an automaton.

Definition 2.7 (Automaton) An automaton, denoted by G, is a five-tuple

G=(Q.%, [,q,Qm),

where Q) is the set of states, X is the set of events, f: Q) X X — @ is the transition

function, qq is the initial state, and Q,, is the set of marked states.

The transition function f describes all transitions of the automaton, such that
f(q1,0) = g2 means that there is a transition (¢, 0, ¢2), i.e., there exists a transition
from state ¢ to state ¢y labeled with event o. For the sake of simplicity, the set of
marked states @), will be omitted from the automata defined in this work, unless
stated otherwise. In other words, an automaton may be represented by a four-tuple
G =(Q,%, f,q), which implies that the set of marked states is @Q,, = (.

We also define I'; : Q — 2% as the feasible event function of a state of G. The
feasible event function I'¢(q) is the set of all events o for which f(q, o) is defined.
Notice that the feasible event function I'¢ can be completely described from the
transition function f.

An automaton can be represented graphically by an oriented graph called state
transition diagram. The states and transitions of the automaton are represented by
circles, forming the vertices of the graph, and oriented arcs connecting the states,
respectively. The arcs are labeled with the events of > that cause the transition of
states. In order to represent the initial state of the automaton, we add an arc that
does not have an origin state attached to it.

In the following, we present an example of an automaton and its state transition

diagram.
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Figure 2.1: State transition diagram of automaton G of Example

Example 2.1 Let G be an automaton whose state transition diagram is depicted in
Figure[2.1] The state and event sets of G are given by Q = {1,2,3} and £ = {a, b, c},
respectively. The feasible event function is defined as: T'g(1) = {a}, T'c(2) = {a, b},
and I'¢(3) = {b, c}. The transition function of G is defined as: f(1,a) =2, f(2,b) =
3, f(3,¢) =3, f(3,b) =2, and f(2,a) = 1. The initial state qo of G is 1, and the
set of marked states is Q., = {3}.

In this work, we define a path of an automaton G as a sequence
(q1a0-17q27---;Qn—lagn—laQn)a where o € 27 qi+1 = f(Qi7Ui>7 = 1,2,...,” — L
A path (g1,01,q2, -, Gn-1,0n_1,¢n) is a cyclic path, or simply a cycle, if ¢; = gp.

In the following, we define the generated and marked languages of an automaton.

Definition 2.8 (Generated and marked languages) The generated language
of an automaton G = (Q, %, f,qo, Qm) 18

L(G)={se€ X" f(q,s) is defined}.

The language marked by G is

Lin(G) ={s € LIG) : f(q0,5) € Qm}-

It is important to remark that, in Definition the transition function is ex-
tended, i.e., f: Q x 3* — Q. Moreover, for any G such that Q # (), ¢ € L(G).

The language £(G) is formed by all traces that can be created by following the
transitions of the state transition diagram starting at the initial state. Therefore,
a trace s € L(G) if, and only if, it corresponds to an admissible path in the state
transition diagram of G, i.e., if, and only if, f(qo, s) is defined. It is important to
remark that £(G) is prefix-closed by definition, since a path in G is only possible if all
its prefixes are also possible. Moreover, if f is a total function over its domain, then
L(G) = X*. The generated language of an empty automaton, i.e., an automaton
whose state set is @ = (), is also the empty set. In this work, the generated language
of G, L(G), is also referred as L, unless stated otherwise.

If T(q) # 0 for all ¢ € @, the language generated by G = (Q, X, f, o, Q) is said
to be live. The language marked by G, L£,,(G), is a subset of L and represents all

12



traces s such that f(qo, s) € Qum, i.e., all traces that reach a marked state from the
initial state o in G. Notice that the language £,,(G) is not necessarily prefix-closed.

In the next section, we present some operations that can be applied to automata.

2.2.1 Operations on automata

There are basically two groups of operations that can be applied to automata: unary

and composition operations [I].

Unary operations

The unary operations alter the state transition diagram of an automaton keeping its
event set 2 unchanged. In the following, we present the definitions of the accessible

and coaccessible part of an automaton.

Definition 2.9 (Accessible part) The accessible part of an automaton G, Ac(G),

18 defined as:

AC(G) = (Qaca E, faca q0, Qac,m)a

where Qac - {q € Q . (38 € E*)[f(CIo,S) - Q]}7 Qac,m - Qm N Qac: and fac =
Flauexs—qud}

Taking the accessible part of an automaton G results in automaton Ac(G), where
all states of GG, and its related transitions, that are not reachable from its initial state
qo are deleted. It is important to notice that the accessible part operation does not
change the generated and marked languages by G, L(G) and L,,(G).

A state g € @ is said to be coaccessible if there exists a path from the state ¢ to
a marked state. The Coaccessible operation erases all states of GG, and their related
transitions, that are not coaccessible. The formal definition of the coaccessible part

of an automaton G is defined as follows [I].

Definition 2.10 (Coaccessible part) The coaccessible part of an automaton G,
CoAc(G), is defined as:

COAC(G) = (Qcoaca Ea fcoac: 4o, coac> Qm)7

where Qcoac = {C] € Q : (38 € 2*)[][.((]7 S) € Qm}}: qo,coac = 40 Zf qo € Qcoac and q0,coac
is not defined if qo € Qcoac, and frone = f

!The notation f|g,.xx—0,. is used to indicate that we are restricting f to the smaller domain
of the accessible states Qqec.

Qcoac X Z_>62c0u,c °
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Notice that taking the coaccessible part of G may shrink the generated language
of G, i.e., L(CoAc(G)) C L(G). The marked language of G, L,,(G), is not altered
when taking the coaccessible part of G, i.e., £,,(CoAc(G)) = L,,(G).

Composition operations

Composition operations are used to obtain a single automaton from two or more
automata. In general, these operations are performed with the aim to construct
a global system model from the automaton models of its components, modules or
subsystems that operate concurrently. In this work, we define two composition
operations: product and parallel composition [I].

The product composition, also known as completely synchronous composition,
produces an automaton whose generated language is the intersection of the generated
languages of the automata used in the composition. We formally define the product

composition as follows.

Definition 2.11 (Product composition) Let G, = (Q1,%1, f1,q01) and Gy =
(Q2, 22, f2,q02) be two automata. The product of G1 and Gy is the automaton

Gl X G2 = AC(Ql X Q27 21 U 227 .fa (QO,1>qO,2>)a

where

(fl(q170-)7f2<qQ70->) ZfU < FGl(ql)mFGZ(qQ)
undefined, otherwise.

f((q1,92),0) :{

In the product, the transitions of the automata must always be synchronized
on a common event, i.e., in order to a transition (¢, o,q’), where ¢ = (¢, ¢2) and
q = (4}, d,), belong to G = G x G, there must exist transitions (¢1, 0, q]) in Gy and
(g2, 0,q¢5) in G labeled with the same event 0. The product operation is restrictive,
since it only allows transitions on common events. By definition, it can be verified
that L(G1 X Ga) = L(G1) N L(G3). Tf X1 Ny =0, then L(Gy x Go) = {e}.

In general, systems are formed by simpler and smaller components or subsystems
that interact and form the global system behavior. The component behavior can
be classified into internal (private), and coupling behavior, that synchronizes with
other components. These behaviors are modeled with private and common events,
respectively. In order to model the global system behavior using the models of its
components, there must exist an operation that is capable of integrating the system
component models while taking into account their private behavior. This operation

is called parallel composition and it is formally defined as follows.
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Definition 2.12 (Parallel composition) Let G; = (Q1,%1, f1,9,1) and G =
(Q2, %2, fa,q02) be two automata. The parallel composition of G1 and Go is the

automaton

GlHGQ = AC(Ql X Q27 Z]1 U 227 f’ (QO,ly %,2)),

where

(f1(q1,0), (g2, 0))  if o € Ty (@) NTey(2);

f((Ch q2) 0_) _ (fl(q170)7QQ) ZfO' € FGl(Ql)\EQ;
7 ’ (Ch, fQ(QQﬂ 0)) ZfO' € FG2(Q2) \ 21;
undefined, otherwise.

In the parallel composition, a common event, .., an event in >y N s, can only
be executed in G = G||Gs if it is executed by G; and G5 simultaneously. The
private events, i.e., the events in (X1 \ Xo) U (22 \ X1) can be executed whenever
possible in G and G5. Thus, the parallel composition only synchronizes the common
behavior of components, synchronizing their common events, and the private events
(representing the private behavior of the components) can be executed whenever
possible.

Let P; = (31UX5)* — X7 be two projections for i = 1,2. The language generated
by G1]|Gs is equal to L£(G1||G2) = Py H(L(Gh)) N Py ' (L(Gy)). If ) = Xy, then the
parallel composition reduces to the product, and if ¥; N Xy = (), then there are no
synchronized transitions and G1]|G2 models the concurrent behavior of G; and Gs.

In the following, we present an example of the product and parallel composition

operations.

Example 2.2 Let G; = (Q1,%1, f1,q0,1) and G2 = (Q2,22, f2,q02) be two au-
tomata, where 3y = {a,b,c} and ¥y = {a,b,d}, whose state transition diagrams
are shown in Figure . In Figures (a) and (b) the automata Gproq and Gy,
obtained by making the product and parallel compositions of automata G1 and G,
respectively, are presented. Notice that in automaton Gpr.q all transitions are labeled
with events from X1 N Yy = {a, b}, while Gpa, models the synchronization of Gy and
G, through events 1 N Yo = {a, b}, and the concurrent behavior represented by the

transitions labeled with events ¢ and d.

2.2.2 Automata with partially observed events

The set of events of an automaton ¥ can be partitioned as ¥ = »,UX,,, where
Y, is the set of observable events and ¥, is the set of unobservable events. An

event is observable when its occurrence can be registered by an external observer
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Figure 2.2: Automata G; and G5 of Example [2.2]
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Figure 2.3: Automata G),oq and G, of Example [2.2]

due, generally, to changes in sensors signals. Failure events, whose occurrence do
not cause any immediate change in sensors readings, are modeled as unobservable
events.

The observed language of a system G can be obtained from its generated lan-
guage L by applying the projection P,(L), where P, : ¥* — ¥*. In a system with
unobservable events, it is important to know the set of possible states reachable from
a given state ¢ € () after the occurrence of an unobservable event or traces formed
by unobservable events. We call this set of states as unobservable reach, denoted by

UR(q), whose formal definition is presented as follows.

Definition 2.13 (Unobservable reach) The unobservable reach of a state q € @Q,
denoted by UR(q), is defined as:

UR(q) ={y € Q: (3t € X,,)[f(¢,t) = v} (2.2)

The unobservable reach can also be defined for a set of states B € 29 as:

UR(B) = | J UR(q). (2.3)

qeB
The unobservable reach of a state ¢, is a set of states that corresponds to all
states that are reached from ¢, by transitions labeled with unobservable events. The
unobservable reach can be used to build an automaton from G that generates the

observed language of G, P,(L). This automaton is called the observer of G, denoted
by Obs(G,%,), and is defined as follows.

Definition 2.14 (Observer automaton) The observer of an automaton G with

respect to a set of observable events ¥, denoted by Obs(G,%,), is given by:
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ObS(G: Eo) = (Qob57 an fobs» qo,obs)a

where qops C 2%, fops, and Qo.obs are obtained following the steps of Algorithm
[1, [67].

Algorithm 2.1 Observer automaton

Input: G = (Q.,%, f,q0), and the observable event set ¥, where ¥ = ¥,UN,,.
Output: Observer automaton Obs(G,%,) = (Qobss Loy fobss q0.0bs)-

1: Deﬁne q0,obs < UR(QO) Qobs — {qo,obs} and Ci?/obs — Qobs-

2: Qobs — @obs and @obs — @

3: For each B € Qups do

3.1: Tops(B) (quB FG(q)> ny,.
3.2: For each o € I'yp5(B),

fors(B,0) <~ UR({q € Q: 3y € B)lg= f(y,0)]}).

3.3: @obs — CN?obs U fobS(B7 U)'
4-' Qobs <~ Qobs U éobs'

5: Repeat steps 2 to 4 until all accessible part of Obs(G,%,) is constructed.

In the following, we present an example of the observer of a system G.

Example 2.3 Let G be the automaton whose transition state diagram is shown in
Figure [2.4)(a). The state set of G is Q = {0,1,2,3} and the event set of G is
Y = 3,,US, = {a,b, 04}, where 3, = {a,b} and Xy, = {0u.}. The observer of G,
Obs(G,%,), can be seen in Figure[2.4|(b). If we assume that the system has executed
trace t = aoy,b, then the observed trace is P,(t) = ab, where P, : ¥* — X% It
is important to notice that the state reached after the observation of trace P,(t) =
ab in Obs(G,%,) is {2,3}, which corresponds to the state estimate of G after the
observation of trace t. Fvery state of Obs(G,%,) is a state estimate of G after the

observation of a trace.

In the next section, we present another mathematical formalism used in this

work to represent DESs.
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Figure 2.4: State transition diagram of automaton G of Example 2.3 (a), and ob-
server automaton of G, Obs(G, %, ), that provides the state estimates of G after the
observation of a trace generated by the system (b).

2.3 Petri nets

A Petri net is a mathematical formalism used as an alternative to automata to
represent DESs. Differently from automata, in a Petri net the state of the system is
represented in a distributed way, which can be a better representation for concurrent
and complex systems.

In a Petri net, events are associated with transitions and, in order to a transi-
tion occur, a set of conditions must be satisfied. The information related to these
conditions is represented by the places of the net. Each transition has a set of input
places that represent the conditions that have to be satisfied in order to the transi-
tion occur, and a set of output places that are related with the conditions that are

affected by the transition occurrence.

2.3.1 Petri net structure

In a Petri net, there are two types of vertices: places and transitions. Places,
transitions and the relations between then form the basic information that defines
the structure of a Petri net. Each edge of the Petri net graph cannot connect vertices
of the same type which makes the Petri net a bipartite graph. In the following, we

present the formal definition of the structure of a Petri net [I1 [4].

Definition 2.15 (Petri net structure) The structure of a Petri net is a weighted
bipartite graph
(P, T, Pre, Post),

where P is the set of places, T is the set of transitions, Pre : (P xT) — N =
{0,1,2,...} is the function of arcs that connect places to transitions, and Post :

(T x P) — N is the function of arcs that connect transitions to places.

The set of places is denoted by P = {pi,ps,...,p,} and the set of transitions is
denoted by T' = {t,1s,...,t,}. Therefore, |P| = v and |T'| = p, where |.| denotes
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Figure 2.5: Structure of the Petri net of Example 2.4]

set cardinality. The set of input places (input transitions) of a transition ¢; € T
(place p; € P) is denoted by I(t;) (I(p;)), and it is formed by the places p, € P
(transitions t; € T') such that Pre(p;,t;) > 0 (Post(tj,p;) > 0). Similarly, the set of
output places (output transitions) of a transition t; € T' (place p; € P) is denoted
by Out(t;) (Out(p;)), and it is formed by the places p; € P (transitions t; € T') such
that Post(t;,p;) > 0 (Pre(p;,t;) > 0).

Graphically, places are represented by circles, while transitions are represented
by bars. The functions Pre and Post determine the number of arcs that connect
places to transitions and transitions to places. The value of the functions Pre and
Post is represented only if it is different from 1. In the following, we present an

example of a Petri net structure.

Example 2.4 Let the structure of a Petri net, showed in Figure be defined as
P = {p1,p2}, T = {t1}, Pre(pi,t1) = 1, and Post(t1,ps) = 2. In this example,
I(t1) = {p1} and I(p2) = {t1}, Out(p1) = {t1} and Out(t1) = {p2}.

2.3.2 Petri net marking

In a Petri net, the transitions are associated with events driving a DES, and places
represent the conditions under which these transitions, and therefore the events
associated with them, can occur. In this scheme, the element that indicate if these
conditions are met is the assigning of tokens to places. The number of tokens
assigned to a place is given by x(p;), where z : P — N is a marking function. The
marking of a Petri net is represented by the vector z = [z(py) z(p2) ... z(p,)]%,
formed by the number of tokens assigned to each place p;, for « = 1,... v. In the
graphical representation of Petri nets, tokens are indicated by dark dots or numbers

positioned in the appropriate places. We formally define Petri net as follows.

Definition 2.16 (Petri net) A marked Petri net, or simply a Petri net N
is a five-tuple N = (P, T, Pre, Post,zq), where, according to Definition
(P, T, Pre, Post) is the structure of the Pelri net, and xq is the initial marking
function of the Petri net.

In a Petri net, the marking vector x represents the system state. For each new
reachable state, the corresponding Petri net reaches a new marking. In the sequel,

we present an example of a Petri net.
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Figure 2.6: Two examples of Petri nets with different initial markings.

Example 2.5 Consider again the Petri net structure of Example depicted in
Figure . In Figure we show two possible initial markings xy = [1 0|7 and

zg =1 2]".

In a Petri net, a transition ¢; is said to be enabled when the number of tokens
assigned to each input place of ¢; is greater or equal to the weight of the arcs that
connect the places of I(t;) to transition ¢;. The formal definition of an enabled

transition is presented as follows.

Definition 2.17 (Enabled transition) A transition t; € T is said to be enabled
if

x(p;) > Pre(p;,t;), for all p; € I(t;).

2.3.3 Petri net dynamics

In a Petri net, when a transition is enabled, it can fire, or occur. The state transition
function of a Petri net is defined through the change in the marking of the places
due to the firing of an enabled transition. If, for a given marking z, an enabled

transition ¢; fires, the Petri net reaches a new marking z given by

Z(pi) = x(p;) — Pre(p;, tj) + Post(t;,p;), fori=1,... v (2.4)

According to Equation (2.4), if p; is an input place of ¢;, and ¢; fires, it loses a
number of tokens equal to the weight of the arc that connects p; to t;, Pre(p;,t;).
If p; is an output place of ¢;, it gains as many tokens as the weight of the arc that
connects t; to p;, Post(t;,p;). Notice that p; can be, at the same time, an input and
output place of ¢;. In this case, according to Equation , Pre(p;,t;) tokens are
removed from p; and, at the same time, Post(t;, p;) tokens are added to place p;.

If, in a Petri net, a place p; has at most one token, for all reachable markings of
the net, then p; is called safe. The Example [2.6] shows the firing of a transition and

the evolution of the tokens resulting from it.

Example 2.6 Consider the Petri net shown in Figure[2.7(a). Notice that transition
ty is enabled for the marking x = [1 0|7 and, therefore, t can fire. If t; fires, place
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Figure 2.7: Petri net of Example with transition ¢; enabled (a), and after the
firing of transition ¢; with the new reached marking (b).

p1 loses one token, since the weight of the arc that connects py to ty is 1, and place
po recetves two tokens, since the weight of the arc that connects t1 to py is 2. The
firing of transition t, results in the marking T = [0 2]7, depicted in Figure (b)

2.3.4 Labeled Petri net

In order to model DESs using the Petri net formalism, it is necessary to establish a
correspondence between events and Petri net transitions. It is possible to use Petri
nets to model DESs and represent languages if we associate at least one event to
each transition of the net. This is carried out by a labeling function that associates
a set of events to each transition. This leads to the following definition of a labeled

Petri net.

Definition 2.18 (Labeled Petri net) A labeled Petri net is o seven-tuple N =
(P, T, Pre, Post, xy,%,1), where (P,T, Pre, Post,xq) is, according to Definition
2.16, a Petri net. X is the set of events used to label transitions and | : T — 2% is

the transition labeling function that associates a subset of X to a transition in T.

In a labeled Petri net, an enabled transition ¢; fires when one of the events
associated to t; occurs. Eixample illustrates a labeled Petri net.

Example 2.7 Consider the labeled Petrinet N' = (P, T, Pre, Post, xq,3,1) depicted
in Figure 2.8, where P = {p1,p2}, T = {t1,t2,13}, Pre(pi,ta) = Pre(pa,ts) = 1,
Post(ty,p1) = Post(ty, p2) =1, 2, = [0 1]7, & = {a,b,c}, l(t;) = {a}, I(t2) = {a, b},
and l(t3) = {c}. Notice that transitions t; and tz are enabled and fire when events
a or ¢ occurs, respectively. It is important to notice that, if transition ty is enabled,

it fires when event a or b occurs.

2.3.5 State machine Petri net

A state machine Petri net (SMPN) is a special class of Petri nets where each tran-
sition has only one input place and one output place. Moreover, if this Petri net

has only one token, then the SMPN has the same behavior as an automaton, where
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Figure 2.9: Automaton G (a), and state machine Petri net N (b) of Example

each place is associated with a state of the corresponding automaton. Algorithm
illustrates the procedure for the construction of a SMPN from an automaton G.

Algorithm 2.2 State machine Petri net

Input: Automaton G = (Q,%, f, q).
Output: State machine Petri net N = (P, T, Pre, Post, xy,%,1).

1: Create a place p; € P associated with each state q; € Q.

2: Create a transition t; € T for each transition ¢ = f(q;,0) defined in G, for
all g € Q and 0 € 'c(q;), and define I(t;) < {o}.

3: Define Pre(p;,t;) <— 1 and Post(t;,ps) < 1 for each transition t; € T, if the
transition q = f(q;,0) is defined in G. Otherwise let Pre(p;,t;) < 0 and
Post(t;, pe) < 0.

4: Make zo(po) < 1 and xo(p;) < 0 for all p; € P\ {po}, where py denotes the

place associated with the initial state of G, qq.

Example illustrates the equivalence between an automaton and its corre-

sponding state machine Petri net.

Example 2.8 Consider automaton G depicted in Figure [2.9(a)l In Figure
we present the SMPN, N, obtained from automaton G according to Algorithm 2.3

As it can be seen in Algorithm in order to represent the exact behavior of an
automaton using a SMPN, we have to replace the states of the automaton with places
of the Petri net, and replace the arcs of the automaton with transitions of the Petri

net, preserving the equivalence between the input and output transitions.
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2.3.6 Binary Petri net

Another class of Petri nets is the binary Petri net [68]. In a binary Petri net, the
maximum number of tokens assigned to each place is forced to be one. Therefore,
if a place that has one token and, after the firing of a transition, the same place
receives another token, the place continues with only one token.

The binary Petri net can be defined as a Petri net with a different evolution rule
for the marking of places after the firing of a transition ¢;. This new evolution rule

is defined as

(pi) = { 0,if x(p;) — Pre(pi,t;) + Post(t;, p;) =0, (2.5)

L if x(p;) — Pre(p;, t;) + Post(t;,p;) > 0,

fori=1,...,v.

2.3.7 Extended Petri net

An extended Petri net is another class of Petri net that contains a special type of arc
known as inhibitor arc [4]. An inhibitor arc is a direct arc that only connects places
to transitions and its end is represented by a small circle. An extended labeled Petri

net is defined as follows.

Definition 2.19 (Extended labeled Petri net) An extended labeled Petri net is
an eight-tuple N = (P, T, Pre, Post, In, xy,%,1), where (P, T, Pre, Post, zo,%,1) is,
according to Definition a labeled Petri net, and In : (P x T) — N is the

function of inhibitor arcs that only connects places to transitions.

The inhibitor arc provides a new enabling rule to the transitions of the Petri net,
such that if a place p; is connected to a transition ¢; by an inhibitor arc, transition
t; will be enabled if the number of tokens in p; is smaller than the weight of the
inhibitor arc that connects p; to t;, In(p;,t;). The transition enabling rule in an

extended Petri net is defined as follows.

Definition 2.20 (Enabled transition) A transition t; € T in an extended Petri

net 1s said to be enabled if

x(p;) > Pre(pi,t;), and x(p;) < In(p;,t;), for all p; € 1(t;),

where, now, we are considering that p; € 1(t;), if Pre(p;,t;) >0 or In(p;,t;) > 0.

Inhibitor arcs only enable or disable transitions, i.e., if a transition t; fires,
where I(p;,t;) > 0, place p; remains with the same number of tokens as before. The

following example illustrates an extended labeled Petri net.
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Figure 2.10: Petri net N of Example with transition ¢; enabled (a), and after
the firing of transition ¢; with the new reached marking (b). Petri net AV with a
different marking where transition ¢; is not enabled (c).

Example 2.9 Consider the extended labeled Petri net N = (P, T, Pre, Post, In,
0, 2,1) shown in Figure[2.10((a), where P = {p1,p2,p3}, T = {t:}, Pre(p1,t1) = 1,
Post(ty,p3) =1, In(ps,t1) = 1, 2, = [1 0 0|7, ¥ = {a}, I(t:) = {a}. Transition t, is
enabled since, for the initial marking x,, x(p1) > Pre(py,t1) and x(p2) < In(pa,t1).
When event a occurs, transition ty fires and the extended Petri net reaches the new
marking presented in Figure (b) Now, consider the same Petri net N with
marking z, = [1 1 07, depicted in Figure[2.10(c). For this marking, transition t,

is not enabled since x(p2) = In(pe,t;) = 1.

In the next section, we present the theoretical background of centralized, decen-

tralized, and modular diagnosis of DESs modeled as automata.

2.4 Diagnosability of DESs

2.4.1 Centralized diagnosability of DESs

A common problem in DESs is to determine when a certain unobservable event,
called failure event, has been executed by the systemﬂ When this is possible, it is
said that the system is diagnosable with respect to the projection P, : ¥* — % and
the failure event. Let G be the automaton that models a system and let £(G) = L
be the language generated by G. Let ¥ C X, be the set of failure events, i.e., the
set of unobservable events whose occurrence must be diagnosed.

For the sake of simplicity, in this work it is assumed that there is only one failure
event, i.e., Xy = {os}. There is no loss of generality in the results presented in
this work by making this assumption since, for systems with more than one failure
type, each failure type can be considered separately. In the sequel, we present the

definition of nonfailure and failure traces of a system.

2In this work, a failure event is considered to be unobservable, since an observable failure event
can be trivially diagnosed.
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Definition 2.21 (Failure and nonfailure traces) A failure trace is a trace of
events s such that oy is one of the events that form s. A nonfailure trace, on the

other hand, does not contain the event oy.

The nonfailure language Ly C L denotes the set of all nonfailure traces of L,
and the subautomaton of GG that generates Ly is denoted by G . Thus, the set of
all traces generated by the system that contain o; is Lp = L\ Ly.

In SAMPATH et al. [I4], the definition of language diagnosability is presented

for systems that satisfy two assumptions:
A1l. The language generated by the system is live;
A2. There is no cycle of unobservable events in the system.
Under these two assumptions, the following definition can be stated [14].

Definition 2.22 (Language diagnosability) Let L and Ly C L be the live and
prefiz-closed languages generated by G and Gy, respectively. Let Ly = L\ Ly.
Then, L is said to be diagnosable with respect to projection P, : ¥* — X% and Xy if

(3z e N)(Vs € Lp)(Vst € Lr)(|lt] > 2) =
(Po(St) Q PO(LN>>'

According to Definition [2.22] L is diagnosable with respect to P, and ¥y if, and
only if, for all failure traces st with arbitrarily long length after the occurrence of a
failure event, there does not exist a nonfailure trace sy € Ly, such that P,(st) =
P,(sy). Therefore, if L is diagnosable, then it is always possible to identify the
occurrence of a failure event after a bounded number of observations of events.

In CASSANDRAS and LAFORTUNE [1], SAMPATH et al. [14, [15], a diagnoser
automaton that can be used to verify the diagnosability of L and also for failure
diagnosis is presented. This diagnoser is constructed based on an automaton G
computed from the plant model GG, where (G is obtained by labeling the states of G
according to the traces generated by the system, such that if a state of G is reached
by a trace that contains the failure event o, then it is labeled with F', otherwise
it is labeled with N. After G; has been obtained, the diagnoser automaton Gy
is computed by making the observer of (G; with respect to its observable events,

G4 = Obs(G}, %,). The diagnoser automaton Gy is formally defined as follows.

Definition 2.23 (Diagnoser automaton) The diagnoser automaton G4 obtained
for the system G with respect to the failure set ¥y and observable events set ¥, is
given by:

Ga = (Qa, X0, fa, 90,d),
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where Qg C 29N} The transition function fy, and the initial state qo,d are
defined according to Algorithm[2.3

Algorithm 2.3 Diagnoser automaton G4

InPUt: G = (QJ ZJ f7 QO)
Output: Diagnoser automaton Gq = (Qa, X0, f4, 90.d)-

1: Define automaton Ay = (Qi, Xy, fi,qoy), where Q; = {N,F}, fi(N,o0f) = F,
filF,op) =F, and qo; = N.

2: Compute automaton G = G|| A;.

3: Compute the diagnoser automaton G4 = Obs(Gy, ¥,).

It is important to notice that automaton (; generates the same language as
automaton G. Moreover, the states of G are of the form ¢, = (¢, N), such that
q € Q, if ¢ is reached by a nonfailure trace, and ¢ = (¢, F') if ¢ is reached by a
failure trace. The generated language of G, is the natural projection of the generated
language of G, L, i.e., L(Gy4) = P,(L).

Since G4 is constructed from the observer automaton of (¢, the states of G4 are
state estimates of (G; after the observation of a trace. If G, reaches a state labeled
only with the label F', the failure event has certainly occurred and it is diagnosed. A
state of G4 labeled only with N indicates that the failure has not been executed by
the system. States of GG; that have the labels N and F' are called uncertain states,
indicating that after the observation of a trace, a failure trace or a nonfailure trace
with the same projection has been executed by the system.

In order to use G4 to verify the diagnosability of L, it is necessary to search for
indeterminate cycles in GG4. An indeterminate cycle is an uncertain cycle, i.e., a
cycle formed by uncertain states, that is associated with at least two cycles in G,
one that has only states labeled with N, and one that has only states labeled with
F. If there is an indeterminate cycle in G4, then the language generated by G, L,
is not diagnosable, otherwise, L is diagnosable.

The following example illustrates the construction of the diagnoser automaton G4

for a given plant GG. The state transition diagram of automaton A; is also presented.

Example 2.10 Consider the system G presented in Figure such that ¥ =
YUYy = {a,b,c,04,0¢}, where ¥, = {a,b,c} and B, = {oy,0¢}. The failure
event set is Xy = {os}. The first step, according to Algorithm to construct

the diagnoser of G, Gg, is to build automaton A;, whose state transition diagram

is presented in Figure [2.12  Automaton G, = G||A; is depicted in Figure [2.11(D)}
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Figure 2.11: Automaton G (a), automaton G; (b), and diagnoser automaton G4 (c)

of Example

Figure 2.12: Automaton A; of Example 2.10]

Finally, diagnoser G4 is obtained by computing the observer of G, with respect to its
observable event set ,, G4 = Obs(Gy, 5,), depicted in Figure[2.11(c)

Notice that the initial state of G4 is {ON} which corresponds to the unobserv-
able reach of the initial state of G;. After the occurrence of event a, G4 reaches
state {1N;2N;4F}. The fact that the labels N and F ezist in state {1N;2N;4F}
indicates that, at this point, the diagnoser of G is not sure about the occurrence of
the failure event. This also happens for states {3N;5F} and {ON;4F} in G4 after
the observations of traces ab and abc, respectively. Notice that there exists an un-
certain cycle in G4 formed by the states {1N;2N;4F}, {3N;5F}, and {ON;4F}.
Howewver, this cycle is associated only with states of G that have the label N and,
thus, this cycle is not indeterminate. If the system executes the failure trace ac¢(bc)?
the failure event is diagnosed when Gy reaches state {5F'}. Notice that, since there
are no indeterminate cycles in Gy, the language of G is diagnosable with respect to
P,: ¥ = X% and Xy.

Now, let us consider that the observable event set of the system is 3! = {b,c},
thus ¥, = {a,04,0¢}. The diagnoser of G considering 3!, as the set of observable
events, G, is shown in Figure . Notice that, there exists an uncertain cycle in G/,
formed by the states {ON;1N;2N;4F} and {3N;5F}. This cycle is indeterminate
since it is associated with the cycles in Gy labeled with N and F', namely the cycle
formed by the states {ON}, {IN}, {2N} and {3N}, and the cycle formed by the
states {4F'} and {5F'}.

Since the diagnoser automaton (G is computed based on an observer, in the
worst case, its state space can grow exponentially with the state space cardinality of

the system |@Q|. Therefore, its construction for diagnosability analysis is, in general,
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Figure 2.13: Diagnoser automaton G/, considering Y/ as the set of observable events
of Example [2.10

avoided. Other algorithms developed exclusively to verify the diagnosability of L
can also be found in the literature [69-71]. In these works, verifier automata, whose

state space grows polynomially with the state space of the plant, are presented.

Petri net diagnoser

In SAMPATH et al. [14], it is stated that failure diagnosis can be carried out storing
only the current state of the diagnoser, without the need for storing the complete
state space of the diagnoser, and, after the observation of an event, the state estimate
is updated. However, a method for this implementation is not presented in SAM-
PATH et al. [14]. In CABRAL et al. [26], a Petri net diagnoser (PND) for failure
diagnosis of systems modeled as automata is proposed. The Petri net formalism is
used to structure the diagnoser implementation, which is also presented in CABRAL
et al. [26], where methods for the conversion of the PND into Programmable Logic
Controller (PLC) programming languages are also proposed.

If language L is diagnosable with respect to P, and X, then, the PND can be
built in order to perform the diagnosis of the failure event. The PND is constructed
from a state observer Petri net NVgo, whose marking, after the observation of a trace,
corresponds to the state estimate of the nonfailure behavior of the global system,
Gn. Thus, in order to compute the PND for a system G, it is necessary to obtain
automaton Gy whose generated language is the nonfailure language of the system

Ly, where Ly = L'\ Lp. Automaton G can be constructed following the steps of

Algorithm [2.4] [71].

Algorithm 2.4 Nonfailure model of the system.

Input: System model G = (Q, %, f,q0), and set of failure events Xy.
Output: Automaton Gy.

1: Define Xy < X\ Xy.

2: Build automaton Ay composed of a single state N, that is also its initial state,

with a self-loop labeled with all events in Y.

3: Construct the nonfailure automaton Gy = G x Ay = (OQn, 2, fn, qo.n)-
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Redefine the event set of Gy as Xy, i.e., Gy = (Qn, XN, N, Qo.N)-

After Gy has been computed, the state observer Petri net NMgp can be obtained
by following the steps of Algorithm [2.5]

Algorithm 2.5 State observer Petri net.

Input: Nonfailure system model Gy = (Qn, XN, [N, Go.N)-

Output: State observer Petri net Nso = (P, Tso, Preso, Postso, ©o 50, %o, ls0)-

1:

Compute the SMPN N = (P, T, Pre, Post,xq,%,1) from Gy by using Algo-
rithm [2.2.

- Define the function Reachr(t;), Reachr : T, — 2, where t; € T,, and T, is

the set of all transitions of N labeled with observable events, as follows:

2.1: Let Out(P) < UpepOut(p) and Out(T') <— UerOut(t).
2.2: Let {pour} < Out(t;), P! < {pout}, and P, < P..

2.3: Let T) be the set of all transitions of Out(P)) labeled with unobservable
events. If T =0, Reachp(t;) < P, and stops.

2.4: Set P! < Out(T)), P. < P.UP/

T’

and return to Step 2.3.

- Add to N arcs connecting each observable transition t; € T, to the places in

Reachr(t;), generating the Petri net N' = (P, T, Pre, Post', xy,%,1).

- Eliminate all transitions of N labeled with unobservable events and their re-

lated arcs, generating the binary Petri net N, = (P, T,, Pre,, Post,, g, X0, l,).

- Compute Nso = (P, Tso, Preso, Postso, Xo.50, 2o, lso) as follows:

5.1: Set T, < 0. For all qn, € Qn such that Ty (qn,) NE, # X,, create a
new transition t' and let T < T, U {t'}.

5.2: Set Tso + T, UT..

5.3: Define the new labeling function lso : Tso — 2%, where lso(t;) < L,(t;),
ift; € T,, and lso(t') < 3, \ (Tay(qn,) N'Y,), if t* € T,

5.4: Define Preso : P X Tso — N and Postso : Tso x P — N, where
Preso(pi,tj) < Prey(pi,t;) and Postso(t;,pe) < Post,(tj,pe), for all
pi,pr € P and t; € T,, and Preso(pi,t') «+ 1, Preso(pe,t') + 0 and
Postgso(t',pe) < 0 and Postso(t',p;) < 0, for all t' € T. and p;,p; € P
where i # (.

5.5: Define the initial state of Nso by assigning a token to each place associ-
ated with a state of UR(qo n) and zero to the other places.
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5.6: Redefine Tso, Preso, and Postso by eliminating the self-loop transitions

and their associated arcs.

In the Petri net state observer Nso, the places that have tokens after the obser-
vation of a trace correspond to the state estimate of Gy. Assume that the language
L is diagnosable with respect to P, and X, then, according to Definition 2.22] after
a bounded number of occurrences of events after the failure event, all places of the
Petri net Ngo will have zero tokens. In order to use the Petri net Ngo for diagnosis,
a failure detection logic that indicates the failure occurrence when all places of Nso
have zero tokens must be added to Ngo. The addition of the failure detection logic

to Nso leads to the Petri net diagnoser Np that can be constructed according to
Algorithm

Algorithm 2.6 Petri net diagnoser.

Input: Petri net state observer Nso = (P, Tso, Preso, Postso, 0,50, 2o, lso)-
Output: Petri net diagnoser Np = (Pp, TsoUty, Prep, Postp, Inp, o p, X, U{\},
Ip).

1: Let ty be a transition created to identify the occurrence of a failure event of
the set Ef. TD — TSO U tf.

2: Define the labeling function lp : Tp — 259N where ) is the always occurring
event, such that Ip(tp) < lso(tp) for all tp € Tso, and Ip(ty) < {A}.

3: Add to transition ty an input place py and an output place pp. Pp < P U
{pn,pF}

4: Define Prep : Pp xTp — N and Postp : Tp x Pp — N where Prep(p;,tp) <
Preso(pi,tp) and Postp(tp,p;) < Postso(tp,pi) for all tp € Tso and p; €
P, Prep(pn,tf) < 1 and Postp(ty,pr) < 1, and Prep(pi,ty) < 0 and
Postp(ts,pi) < 0 for all p; € P.

5: Define the function of inhibitor arcs Inp : Pp x Tp — {0,1}, where
Inp(pp,ty) = 1 for all pp € P, and Inp(pp,tp) = 0 for all other places

pp € Pp and transitions tp € Tp.

6: The initial marking of place py is one and of place pr is zero. The other places

have the same initial marking defined by x¢ so.

The PND Np computed from Algorithm has polynomial growth with the
size of the plant model G [26]. Methods for the conversion of the PND into ladder

diagram and sequential function chart in order to be implemented in a programmable
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Figure 2.14: Nonfailure behavior automaton G of the system G of Example [2.11]

Figure 2.15: State machine Petri net A of Example 2.11]

logic controller are also presented in CABRAL et al. [26]. In the following example,

we illustrate the construction of the PND ANp and the diagnosis method for a system

G.

Example 2.11 Consider the plant model G of Erample depicted in Figure
. In order to construct the Petri net diagnoser Np, it is necessary first to
obtain the nonfailure automaton Gy according to Algorithm [2.4 Automaton Gy
is depicted in Figure [2.1]) Once G has been computed, the state observer Petri
net Nso can be obtained according to Algorithm [2.5. Following Algorithm the
first step to construct Ngo is to compute the state machine Petri net N shown in
Figure[2.15 The state observer Petri net Nso obtained according to Algorithm
is depicted in Figure [2.16. Following Algorithm the Petri net diagnoser Np,
presented in Figure |2.17 is constructed. Now, consider that the system executes
trace s = aogbcb. When event a is observed, transition ty of Np will fire, removing
the token from place 0 and adding one token to places 1 and 2. When event b is
observed, transitions t3 and ts fire, which remove the tokens from places 1 and 2,
and add a token to place 3. When event c s observed, transition t; fires and the
initial marking of Np is reached again. Finally, when the second occurrence of event
b is observed, transition ty fires, removing the token from place 0. At this moment,
transition ty is enabled and, since it is labeled with the always occurring event X, it
fires, removing a token from py and adding a token to pr, diagnosing the failure

event occurrence.
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Figure 2.16: State observer Petri net Ngo of Example

Figure 2.17: Petri net diagnoser Np of Example
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2.4.2 Codiagnosability of DESs

In this work, we consider the decentralized diagnosis scheme as described in Protocol
3 of DEBOUK et al. [I7]. The Protocol 3 of DEBOUK et al. [17] consists of ¢ local
diagnosers that do not communicate among each other, where each local diagnoser
has its own set of observable events. Thus, for each local diagnoser, the set of events
can be partitioned as ¥ = %, UX,,., for i = 1,...,¢. In this scheme, the failure
is diagnosed when at least one of the local diagnosers identifies its occurrence, and
the diagnosis decision is sent to a coordinator. It is important to remark that in
the decentralized diagnosis scheme proposed in DEBOUK et al. [17], two different
observable event sets may have events in common, i.e., 3, M X, is not necessarily
equal to the empty set, for i # j, 4,5 € {1,...,¢}. In addition, it is also assumed in
DEBOUK et al. [17] that the language of the system is live.
The following definition of language codiagnosability can be stated [17].

Definition 2.24 (Language codiagnosability) Let L be the live language gener-
ated by G. Then, L is said to be disjunctively codiagnosable with respect to projec-
tions Py, : X — X5, fori=1,...,(, and Xy if

(FzeN)(Vse L\ Ly)(Vst € L\ Ly, ||t]| > 2) =
(Fi e {1,....0})[P,,(st) & P,.(Ln)].

According to Definition L is codiagnosable with respect to P, and Xy if,
and only if, for all failure traces st with arbitrarily long length after the occurrence
of a failure event, there do not exist nonfailure traces w; € Ly, such that P, (st) =
P, (w;) for all ¢ € {1,...,¢}. Therefore, if L is codiagnosable, then it is always
possible to identify the occurrence of a failure event after a bounded number of
event observations. Notice that the diagnosability definition can be obtained
from Definition by making ¢ = 1.

In order to implement a decentralized diagnosis scheme, it is first necessary to
verify if the system is codiagnosable, i.e., verify if it is always possible to identify if a
failure has occurred after a finite number of event observations after the occurrence of
the failure event. In MOREIRA et al. [71], a polynomial-time algorithm is presented
to verify if the language L is codiagnosable with respect to P, : ¥* — X7, for
it =1,...,¢, and X;. In the sequel, we present the verifier algorithm presented in
MOREIRA et al. [71].

Algorithm 2.7 Codiagnosability verification.

Input: System model G = (Q, %, f,q), set of failure events X, and X = X,,US,,,,
i=1,...,0
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Output: Codiagnosability decision.

1: Compute automaton Gx by following the steps of Algorithm [2.4)

2: Compute automaton G, whose marked language corresponds to the failure

behavior of the system, as follows:
2.1: Set Al = (Ql?zfaflaqo,l)7 where Ql = {N7 F}: qdo,; = {N}7 fl(Na Uf) =F
and fi(F,of) = F, for all oy € Xy.

2.2: Compute G, = G||A; and mark all states of G| whose second coordinate
s equal to F.

2.3: Compute the failure automaton Gr = CoAc(G)).

3: Define the function R; : Xy — Xg, as:

Ri(o) o, if o€, (2.6)
i\0) = . .
OR;, ifo € Zuoi\zf

Construct automata Gn; = (Qn,Xg,, fNi,qon), for i = 1,...,0, with
Inilan, Ri(0)) = fx(qn, o) for all o € Xy

4: Compute the verifier automaton Gy = (||\,Gn.i)||Gr = (Qv, (U_,Xg,) U
X, fviqov)-

5: Verify the existence of a cycle cl = (¢, o5, q?j’l, s QY Oy, @), where y > § >

0, in Gy satisfying the following conditions:

35 €{6,0+1,...,7} s.t. for some ql,, (qu =F)A(o;€Y). (2.7)

If the answer is yes, then L is not codiagnosable with respect to P, and ;.

Otherwise, L s codiagnosable.

Notice that a state of Gy is given by ¢v = (¢n1,qn2,---,qNe qr) Where
gn1,qN2; - --,qng, and gp are the states of Gy 1, Gnya, ..., Gny, and G, respec-
tively, and qr = (g, q;), where ¢ and ¢; are states of G and A;, respectively. Algorithm
can be used to verify the centralized diagnosability of L by making ¢ = 1, i.e.,
by considering only one diagnoser. It is also important to remark that assumptions
Al and A2 are removed when verifiers are used instead of diagnosers [19, [71]. In
the sequel, we present an example to illustrate the use of Algorithm for the

verification of the codiagnosability.

Example 2.12 Consider the system G depicted in Figure[2.18 and suppose we want

to verify the codiagnosability of L with respect to P, : ¥X* — X5 1 = 1,2 and

0;7
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Y¢, where ¥ = {a,b,c,0¢}, ¥, = {a,c},%,, = {b,c}, and ¥y = {os}. In steps
1 and 2, automata Gy and Gp presented in Figure [2.19(a) and (b), respectively,
are computed. In the sequel, automata Gn1 and G are built in Step 3. In this
example, automata G and Gy 2 are equal to automaton G'n and, thus, are omitted.
Finally, the verifier automaton Gy is shown in Figure [2.20L Notice that there are
no cycles in Gy satisfying conditions . Therefore, the language generated by G

is codiagnosable with respect to P, and Xy.

If the language L is codiagnosable with respect to P,, and ¥, a decentralized
diagnosis scheme can be implemented with local diagnosers. The Petri net diagnoser
presented in Section [2.4.1] can be used to perform decentralized diagnosis. In order
to do so, it is necessary to build local Petri net state observers Ngo, for each site
considering its own set of observable events ¥,, in Algorithm [2.5] After the Petri
nets Ngo, are computed, for i = 1,...,¢, a failure detection logic must be added
to Nso,, according to Algorithm [2.6] generating the local Petri net diagnosers Np,.
Each local diagnoser Np, will have its own failure place pg,, whose marking must be
communicated to a coordinator in order to inform the diagnosis of the failure event.

In the sequel, we present another diagnosis framework, known as modular diag-
nosis [59]. The idea in this architecture is to avoid the use of the global plant model

for diagnosis, using only a local diagnoser for the failure component of the system.

2.4.3 Modular diagnosability of DESs

Different modular diagnosis approaches have been presented in the literature [56, [58-
60]. In PENCOLE and CORDIER [58], a local diagnoser is computed for each com-
ponent of the system and the diagnoses are merged in order to obtain the global
diagnosis decision. The main drawback of the work presented in PENCOLE and
CORDIER [58] is that, in the worst-case, the paths of all modules of the system
must be synchronized, which leads to an exponential growth with the number of
system components. In ZHOU et al. [60], a decentralized modular diagnosis scheme
for DESs is presented, where it is introduced the notion of local nonfailure specifi-
cations for modular diagnosability. In ZHOU et al. [60] it is stated that the local

nonfailure specifications are not unique, and a method for the computation of these

C
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Figure 2.18: Automaton G of Example
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Figure 2.19: Automaton Gy (a) and automaton G (b) of Example 2.12]
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Figure 2.20: Automaton Gy of Example 2.12

specifications is not presented. Since the modular architectures proposed in 58 [60]
are incomparable with the notions of synchronous diagnosability and synchronous
codiagnosability presented in this work we do not further exploit these approaches.

In DEBOUK et al. [56] a different modular architecture for DESs is proposed.
The idea is to compute local diagnosers obtained by following the steps of Algorithm
for each component of the system. The local diagnoser only diagnoses the failure
modeled in its respective module. In DEBOUK et al. [56], the classical definition of
diagnosability [14] is used, and sufficient conditions that ensure global diagnosability
using the modular architecture are proposed.

In CONTANT et al. [59], a notion of modular diagnosability that is different from
the monolithic notion of diagnosability [14], is proposed. Necessary and sufficient
conditions that ensure the modular diagnosability of a DES are presented. Similar
to DEBOUK et al. [56], the modular diagnosis architecture proposed in CONTANT
et al. [59] consists on the computation of local diagnosers that can infer the global
occurrence of the failure event by observing only the local component model where
the failure is modeled. Due to the local diagnoser implementation with the aim
to diagnose a global failure occurrence by observing only the failure component
model, the notion of modular diagnosability proposed in CONTANT et al. [59]
can be compared to the notions of synchronous diagnosability and synchronous
codiagnosability proposed in this work. In order to do so, in this section we present
the modular diagnosis architecture, the notion of modular diagnosability and the
assumptions introduced in CONTANT et al. [59] that ensure the necessary and
sufficient conditions for modular diagnosability.

Let us consider that the global system model is obtained by the parallel com-

position of its subsystems or components, i.e., G = ||}_; Gk, where r is the total
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number of system components. In order to introduce the definition of modular

diagnosability, we first present the assumptions considered in CONTANT et al. [59).

e Al. The language of the system L is live, and there are no cycles of unob-

servable events in the system component models Gy, for k=1,... r;
e A2. Common events between two or more components are observable;

e A3. The model that exhibits the failure behavior has persistent excitation,

i.e., the failure does not bring the system to a halt.

Based on Assumptions A1-A3, and considering that the system is formed by the
composition of all modules Gy, k = 1,...,r, and that the failure event is modeled
only in automaton Gy, y € {1,...,r}, the following definition of modular diagnos-
ability can be stated [59).

Definition 2.25 (Modular diagnosability) Let G = ||;_,Gy, and let G, for
y € {1,...,r}, be the automaton that models the failure component. The language
L(G) = L is said to be modularly diagnosable with respect to ¥, = Uj_3k, and
YpCXyof

(32" € N)(Vs € Lg)(Vst € Lp, || P, o) > 2') =
P,(st) € P,(Ly).

We now explain the effects of assumptions A1-A3 of the modular diagnosability
definition.

Assumption A1 is considered in CONTANT et al. [59] in order to avoid the
existence of hidden cycles [72] in the diagnosers, since the diagnosers are based on
observers. Thus, observers can be used in order to verify the notion of modular
diagnosability, as it is done in CONTANT et al. [59].

Assumption A2 is stated in order to guarantee that if the language of the system
L is diagnosable, then L is modularly diagnosable, and that if the language of the
module G, L, = L(G,), for y € {1,...,r} is diagnosable, then L is modularly
diagnosabldP] This result guarantees that, under Assumption A2, only the local
diagnoser associated with module G, can be used to perform online failure diagnosis
of the system. It is important to remark that, based only on Assumption A2, if L,
and L are both nondiagnosable, then the modular diagnosability is not guaranteed.

Consider now the implications of Assumption A3. If persistent of excitation
of the failure component is guaranteed, then there does not exist a failure trace

with a suffix of arbitrarily long length formed only with events that belong to the

3In the next chapters we show why Assumption A2 is needed to ensure this result.
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modules Gy, k € {1,...,7} and k # y. In other words, there cannot exist an
arbitrary long length failure trace in the global behavior model G such that its
arbitrarily long length suffix is formed only with events that do not belong to the
failure component. In practice, Assumption A3 excludes traces from L that are
known to be impossible to be executed by the system. This implies that the failure
behavior of the system can be modeled by a reduced failure language L} C Lp.
Therefore, the modular diagnosability definition is equivalent, under Assumption
A3, to a weaker definition of diagnosability, which can be explicitly considered in
Definition by replacing Ly with L7%4.

It is also important to remark that, according to Assumptions A1l and A3,
there exists a suffix ¢ associated with any trace s € L%, such that st € L7 and
P,,(t) # e. This fact, together with the fact that under Assumption A2, the
diagnosis can be performed only by the local diagnoser associated with G, implies
that condition ||t|| > 2z can be replaced with ||P,,(¢)|| > 2’ in the classical definition
of diagnosability (Definition , leading to the definition of modular diagnosability
(Definition [2.25)).

In the following, we present an example, also presented in CONTANT et al. [59],
that shows the main differences between the notions of diagnosability and modular

diagnosability of the language of the system L.

Example 2.13 Let G = G41||Gs||Gs, where automata G1, Gy and G5 are depicted
in Figure [2.21] and automaton G is presented in Figure 2.2 The set of events
of G1, Gy and G are 31 = X1 ,,U%1, = {a,b,0¢}, Xy = 5o, = {a,c,d, e}, and
Yy = Y3, = {a,c,d, e}, respectively, where ¥y, = X5 = {os}, X1, = {a,b},
Yo = 1, UXe,UXs, = {a,b,c,d e}, and ¥,, = {or}. In order to investigate
the modular diagnosability and monolithic diagnosability, we build the diagnoser
automata of Gv and G, Gy, and G4, depicted in Figures [2.25 and [2.24], respec-
tively, according to Algorithm [2.3. Notice that there is an indeterminate cycle in

the diagnoser automaton G4. Considering only the system model automaton G, the
indeterminate cycle in Gy indicates that the system is not monolithically diagnosable
according to Definition [2.22,

Let us now analyze the modular diagnosability of L. Notice that, there is an
indeterminate cycle in Gg,, which would indicate that L is not modularly diag-
nosable. However, notice that the indeterminate cycle in Gg, is not exvecuted due
to the interaction between modules G, Go and G3. In other words, transitions
((ON;1F),a,(1F;3N)) and ((1F;3N),a, (1F;3N)) will not be executed in Gy, since,
event a will not be executed in module G due to the interaction of Gy with modules
Gy and Gs. Moreover, Assumption A8 guarantees that module G, which has the
failure event modeled, has persistent excitation. Thus, if the failure event of occurs

in the system, Gy will execute event b due to Assumption A3 and the occurrence of
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Figure 2.21: Automata G, G5 and Gj3 of Example [2.13

Figure 2.22: Automaton G of Example

oy would be diagnosed by diagnoser Gg,. Notice that, as a consequence of Assump-
tion A3, the system cannot generate the trace ose® for an arbitrarily large value of
z. Therefore, the language L is modularly diagnosable with respect to X, = Uj_1 Xk,
and Xy = {0y}, and a local diagnoser can be constructed based only in module Gy

in order to diagnose the failure event occurrence.

2.5 Final remarks

In this chapter, the formal definition of the language of a DES and two formalisms
capable of representing DESs behavior were presented: (i) automata, and (i) Petri
nets. In this work, DESs are modeled as automata, which makes the unary and the
composition operations fundamental tools in order to analyze and construct mod-
els of complex DESs from simple models of components or subsystems. Although
the systems considered in this work are modeled using automata, the Petri net for-
malism is used to synthesize the diagnosers proposed in this work. The Petri net
formalism was chosen due to its distributed state representation, which mitigate the
exponential computational complexity of diagnosers based on observers automata.
Moreover, methods for the conversion of Petri net diagnosers into programming

languages for implementation on programmable logic controllers (PLC) have been
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Figure 2.23: Diagnoser automaton G4, of Example [2.13]
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Figure 2.24: Diagnoser automaton G4 of Example 2.13]

proposed in the literature [26].

The problem of failure diagnosis of DESs modeled as automata was also pre-
sented in this chapter. We have shown three diagnosis architectures: (i) the mono-
lithic diagnosis [14]; (i¢) the decentralized diagnosis, as defined in Protocol 3 of
DEBOUK et al. [I7]; and (iii) the modular diagnosis scheme [59]. Each one of
these architectures lead to different notions of diagnosability, namely the monolithic
diagnosability, codiagnosability and modular diagnosability.

In the next two chapters, a new architecture for diagnosis of DESs modeled as
automata is proposed. Differently from SAMPATH et al. [14] and DEBOUK et al.
[17], this architecture is based on the nonfailure models of the system components
instead of the global plant model. The diagnosis scheme proposed in this work
is called synchronous diagnosis, and can be implemented in a centralized and de-
centralized way. Since all system component models are used in the synchronous
diagnosis, this approach is also different from the method proposed in CONTANT
et al. [59], which can be seen as a particular case of the synchronous decentralized
diagnosis scheme. The comparison between the notions of modular diagnosability

and synchronous codiagnosability is carried out in Chapter
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Chapter 3

Synchronous centralized
diagnosability of DESs

In CABRAL et al. |26], an online diagnoser that provides the state estimate of the
nonfailure part of the system, Gy, after the occurrence of an observable trace, is
presented. If an observed trace is not feasible in GG, then the occurrence of the
failure event is detected by the online diagnoser, as it is presented in Section
Although the method presented in CABRAL et al. [26] avoids the offline computa-
tion of all possible state estimates of the diagnoser, it requires the computation of
G n that may exhibit a large number of states, since it is obtained from the parallel
composition of the nonfailure behavior models of the system components.

In order to avoid the computation of the global plant model for diagnosis, in
this work, we propose a diagnosis scheme that takes advantage of the modularity
of discrete-event systems modeled as automata. In order to do so, we propose a
diagnosis method based on the observation of the nonfailure behavior of the system
components, modeled by Gy, , for k = 1,...,r, where r is the total number of system
components 73], [74]. In this regard, let G = ||}_; Gk be a composed system, i.e., a
system that is obtained from the parallel composition of several components, where
Gr = (Qr, Zk, fr, k), k = 1,...,r, denote the automaton models of the system
components. Let ¥ = 3 ,UY o be the set of events of Gy, where X, and X,
are the set of observable and unobservable events of Gy, respectively.

The diagnoser proposed in this work, called synchronized Petri net diagnoser
(SPND), is computed based on Gy,, for &k = 1,...,r, and provides a superset of
the state estimate of the nonfailure behavior model G after the occurrence of an
observable event. Petri net state observers Ngo,, for k = 1,...,r, that estimate
online the state of Gy, are constructed, and the occurrence of the failure event is
indicated by using a failure detection logic that detects the failure event occurrence
when, in at least one Nsp, for k € {1,...,r}, the state estimate is equal to the empty

set, i.e., when an observable event o, € X, that is not possible in the current state
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Figure 3.1: Comparison between the monolithic diagnosis architecture (a); and the
synchronous diagnosis architecture (b).

estimate of Gy, is executed. Since the state estimate of the SPND is a superset of
the actual state estimate of Gy, if an event that is not feasible in the current SPND
state estimate is observed, the failure event certainly has occurred.

In Figure [3.1] we show the monolithic and the synchronous diagnosis architec-
tures. In the synchronous diagnosis scheme, all information of the occurrence of ob-
servable events is sent to the diagnoser by a unique communication channel, which
implies that an observable event o, € X, is observable for all components for which
0, is defined, i.e., ¥;,NY; C X, for any 4,5 € {1,2,...,r}. The Petri net state
observers Nso,, for k = 1,...,r, are naturally synchronized online by the observable
events executed by the system.

Notice that, since the SPND provides a superset of the state estimate of Gy, then
it is possible for L to be monolithically diagnosable and not diagnosable by using the
synchronous diagnosis scheme presented in Figure (b) Thus, it is necessary to
introduce the definition of synchronous diagnosability of the language of the system.

This definition is presented in the next section.

3.1 Synchronous diagnosability

In order to present the definition of synchronous diagnosability of a DES it is nec-
essary first to state the following lemma that shows that L£(Obs(||;_,Gk,%,)) C
L(]|3210bs(Gg, X)) This property has been used in the context of supervisory
control and it is presented in [75], and appears as an exercise, without a proof, in
[76].

Lemma 3.1 Let G = ||}, Gk, where Gy, = (Qk, Xk, fe. o), fork=1,2,...,r, and
let ¥k, C X denote the set of observable events of Gi. Let Obs(Gy, Xk,) denote
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the observer of Gy. Then,

L(Obs([[1=1Gr: X0)) € L([[k=1005(Gr, Xio)), (3.1)
where Y, = Uj_ X 0.
Proof. Let L and L be the languages generated by G and Gy, respectively, for k =
1,...,r, and consider the projections P, : X* — X7, P,fp DY DY DV DI
and P¢ 35 — 3¢ for k=1,...,r, where ¥ = U;_, ¥, and X, = Uj_ Y 0.

Since G = ||;_;Gk, then, by the definition of parallel composition, £(G) =
L(|[5=1Gr) = My P, ' (Ly). Thus,

L(Obs(|[1=1Gr, Zo)) = Py (Mt P ' (Ln)) - (3.2)
Let us now consider £ (|[;_;0bs(Gy, Xk,)). Since L(Obs(Gy, Ex,0)) = P, (L),
then £ (||;_;0bs(Gr, Sio)) = Moy P2, (PEL(Li))-
According to the definitions of PY , P, and P, it can be seen that
Pg, (s) = Po(Py ' (s)),
for all s € ¥} . Thus,

P2, (PE(Ly)) = BB (PEL(Ly))), (3.3)

fork=1,2,...,r.
Notice that, since Ly C 35, ¥ C X, and ¥g, C %, P,fp(Lk) = P,(Ly), and

Po(PH (Pro(Li))) = Po(B (Po(Li))), (3.4)

for k=1,2,...,r. In addition, notice that

for all s € L. Thus,
Py(Py (Po(Ly))) = Po(Py (L)), (3.6)

fork=1,2,...,r.
According to Eq. (3.3)),

vy Py (PEL(Ly)) = Moy Po(P M (PEL(Ly))). (3.7)

Notice that the right-hand side of Eq. (3.7) can be rewritten according to Eq.
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(3.4), as follows:

Miet Po(Py (Pio(Li))) = My Po( B (Po(Li))).- (3.8)

Now, using Eq. (3.6) in Eq. (3.8) we have that:
Mzt Po(Py  (Po(Li))) = Moy Po( By (L)), (3.9)

and, therefore,

L(|[5=10b5(G, Zio)) = it Pl (Piio(Li)) = Moy Po( B (L)) (3.10)
Finally, from property (2.1, it can be seen that:
B, (ﬂizlpf@k)) c ﬂzzlpo(Pi;1<Lk))-

Therefore, according to Egs. (3.2 and (3.10)),
L(Obs([[z=1Grs o)) € L(|l5=10b5 (G Xio))- (3.11)

[ |
According to Lemmal3.1] the language generated by Obs([;,_, G, Xo) is a subset
of the language generated by the parallel composition of Obs(Gy,, Xy,), for k =

1,...,r. In the following corollary we present a condition that ensures the equality

in (31).

Corollary 3.1 Let ¥y, be the set of unobservable events of Xy, for k =1,...,r.
If Sivo NBjuo =0, for alli # j and i,j € {1,...,r}, then L(Obs(|[,_1Gk, o)) =
L([[5=1(0bs(Gr, Bi0)))-

Proof. In order to prove that L(Obs(||j_1Gk, 20)) = L(||j—;0bs(Gk, X)), it suf-
fices to prove that L(Obs(||}_,Gk, X0)) 2 L(|[;—;00s(Gy, 3i)), when X, o N3 40 =
0 for all @ # j and 4,5 € {1,...,r}, since in Lemma we have already
proved that L£(Obs(||—1Gk: 20)) € L(||ieqObs(Gy, Xko)). In order to do so, let
n € L(|[;_,0bs(Gy, Tx,)), which, in accordance with Eq. (3.10), implies that
n € Ni_,P,(P; (L)), i.e., there exist traces s, € P. (L), for k = 1,...,r such
that P,(s1) = P,(s2) = ... = Py(s,) = n. Let K}, C P_'(L;) be languages such
that n = P,(sg), for any k € {1,...,7r}. Since X, N X;4 = 0, for all i # j and
i,j € {1,...,r}, then all unobservable events of the set X ,, are private events of
Y, for k = 1,...,r, which implies that N_, K} # 0. Thus, n € N;_, P,(P, (L),
which, in accordance with Eq. (3.2)), implies that n € L(Obs(|[;_1 Gk, X)) |

44



It is important to remark that the condition presented in Corollary is only
sufficient, i.e., even if 3, ., N3, ,, # 0 for any ¢ # j and ¢,57 € {1,...,r}, the
language L(Obs(][;_Gk, Xo)) can be equal to L(||;_,0bs(G, Xk.0))-

In this work, the same strategy for diagnosis proposed in CABRAL et al. [26]
is used, namely, the diagnoser provides the current state estimate of the nonfailure
behavior of the system, and, when an event that is not feasible in the current state
estimate is observed, the diagnoser indicates the occurrence of the failure event.
However, differently from CABRAL et al. [26], we exploit the composed structure
of the system, i.e., the online state estimate of each module is carried out by the
diagnoser that naturally synchronizes the state estimate of the modules based on
the occurrence of observable events, whose language is L(||;_,0bs(Gn,,Xk0)) =

ZzlP,;’:(Pk’D(LNk)), where PY X5 — X ) P, ¥ — Xp , and X, = Up_ Xk,

Let Ly, denote the augmented nonfailure language obtained by using the syn-

chronous diagnosis approach, i.e., Ly, = ﬂzzlP,;’:(Pkp(LNk)). According to Equa-

tion (B.1),

P,(Ly) C Ly, (3.12)

which shows that a diagnoser that uses the information provided by the parallel
composition of the observers of the system modules may represent more observable
traces than the system is capable to generate. Indeed, the diagnosis based on the
observation of the system modules is equivalent to the diagnosis of an augmented
system G, whose generated language is L, = Ly, U Lp, where L is the failure
language of the system. Therefore, if there exists a nonfailure trace in Ly, \ Ly
with the same projection as an arbitrarily long length failure trace in Lpg, then L,
is not diagnosable even if L is diagnosable. This leads to the following definition of

synchronous diagnosability of DESs.

Definition 3.1 (Synchronous diagnosability) Let L and Ly C L denote the
languages generated by G and Gy, respectively, and let Lp = L\ Ly. Consider
that the system is composed of r modules, such that Gy = ||j_,Gn,, where Gy, is
the automaton that models the nonfailure behavior of Gy, and let Ly, denote the
language generated by Gy, , for k =1,...,r. Then, L is said to be synchronously
diagnosable with respect to Ly,, Pg,: X5 — 3f ), Pro: X5 =Yg, fork=1,...,r,
P, :¥* — X%, and Xy if

(32 e N)(Vs € Lp)(Vst € L, ||t]| > 2z) =
(Polst) & s Py (Prol(Ln,))).

Notice that Definition of synchronous diagnosability of a language L is equiv-
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alent to the standard definition of diagnosability (Definition of a language
L, = LpULy,, where Ly, = ﬂ2:1P57;1(Pk70(LNk)). This leads to the following the-
orem that establishes the relation between the notions of diagnosability (Definition
and synchronous diagnosability (Definition .

Theorem 3.1 If L is synchronous diagnosable with respect to L, , Py, : X5 — ¥
Pro: ¥ = X5, fork=1,...,r, P : X* = X%, and Xy, then L is diagnosable with
respect to Py 1 X% — X% and Xy, where ¥, = U _ Y ,.

Proof. According to Definition 3.1 in order to L be synchronously diagnosable,
there cannot be an arbitrarily long failure trace st such that P,(st) € Ly, and,
according to Definition 2.22] in order to L be diagnosable, there cannot be an arbi-
trarily long failure trace st such that P,(st) € P,(Ly). Since, according to Equation
(3-12), P,(Ln) C Ly,, if Py(st) € Ly, then Py(st) € P,(Ly), which implies that if
L is synchronously diagnosable, L is diagnosable. |

In the next section we present an algorithm for the verification of synchronous

diagnosability of the language of a composed system.

3.2 Synchronous diagnosability verifier

In order to present the algorithm for the verification of the synchronous diagnos-
ability, we first show an algorithm for the computation of the nonfailure behavior

models Gy, from the system components models G}, and the system model G.

Algorithm 3.1 Nonfailure behavior models of the system components.

Input: Gy, = (Qr, Xk, fr, o), fork=1,....r, and G = (Q, %, f, q)-
O'utp’u,t. GNk = (QNmszvakaO,Nk): fOT’ k’ = 1, o, T

1: Compute automaton Gn = (Qn,Xn, fn,q) according to Algorithm [71)].

/

2: For all transitions fx(qn,0) = ¢ in Gy, flag the transitions fi(qx,0) = g,
in Gy, for k=1,...,r, where q, and q, are the k-th elements of qn and qjy,

respectively.
3: Obtain automata G, by erasing from Gy, all transitions that are not flagged.
4: Compute automata G, = Ac(G},) = (Qns 2Ny [N Qon,), fork=1,...,r.

5: Redefine the event sets Xy, < X \ Xy, fork=1,...,r.

According to Algorithm 3.1} the nonfailure behavior models of the system compo-

nents Gy, are obtained from the composed system Gy = ||;,_;Gn,. The construction
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of Gy, from Gy is necessary since the post-failure behavior of a failure component
G can interact with another component G, ¢ # j, where the failure event is not
modeled. If, due to the interaction between modules G; and Gj, the behavior of
G after the failure event occurrence is different from its behavior when the failure
event does not occur, G; can be different from Gy, even if the failure event is not

modeled in G;. The following example illustrates this problem.

Figure 3.2: Automata G; and G of Example 3.1]

S8

3,5

===

Figure 3.3: Automaton G of Example [3.1]
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Figure 3.4: Automaton Gy of Example [3.1]
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Example 3.1 Consider the system G = G1||G2, where Gy and Gy are depicted
in Figures [3.9(a) and [3.3(b), respectively, and automaton G is shown in Figure
[3.3 The event sets of G, Gy and Gy are ¥ = {a,b,c,d,e,g,h,001,0u,07}, 1 =
Yi10UXiu = {a,b,c,e,0u1,0u,0f}, and o = ¥g, U g, = {b,d, g, h, 041,042},
respectively, where X1, = {a,b,c,e}, X140 = {0u1,0u2,0¢}, X2, = {b,d,g,h}, and
Yiuo = {0u,0u}. The set of failure events Xy = {os}. Automaton Gy, that
models the nonfailure behavior of G obtained by following Step 1 of Algorithm
15 presented in Figure . Notice that transition (1,0,1,2) of automaton Gy can only
occur after the occurrence of the failure event of. Moreover, oy belongs only to the
event set of automaton G1, and thus, although the failure event is not modeled in G,
the transition (1,0,1,2) of Gy does not belong to its nonfailure behavior. In Figure
we show automata Gy, and Gy, obtained by following Step 4 of Algorithm [3.1]

The following algorithm can be used to verify the synchronous diagnosability of

the language of a DES.

Algorithm 3.2 Synchronous Diagnosability Verification

Input: System modules Gy, for k=1,...,r, and G = ||}_,G.

Output: Synchronous diagnosability decision.

1: Compute automaton Gg that models the failure behavior of G, whose marked
language is Ly = L\ Ly, according to Algorithm (2.7 [71)].
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2: Compute automata G, by following the steps of Algorithm [3.1]
3: Compute automaton G& = (QF, X, f& q0) as follows:

3.1: Define function Ry : Xy, — XF , as:

) ‘ E E 09

Ruo)=4 7 1o (3.13)
ORy, U 0 € Xk o

3.2: Construct automata G, = (Qn, 5%, [N qon,), k = 1,....r, with

I8 (any, Ri(0)) = fu,(an,, 0), Yan, € Qn, and Vo € Ly,
3.8: Compute GF = |[}_,G%, .

4: Compute the verifier automaton G3¥ = (Qv, v, fv,qv) = Gr|GE. Notice
that a state of G3P is given by qv = (qr, %), where qp and ¢% are states of

Gr and G%, respectively, and qr = (q,q), where ¢ € Q and q, € {N, F'}.

5: Verify the existence of a cyclic path cl = (q{sf,ag,q€,+1, e ,q‘w/,aw,q@), where

v >8>0, in GYP such that:

3j € {6,0+1,...,7} such that for some ¢,
(¢ =F)A(0; €5).

If the answer is yes, then L is not synchronously diagnosable with respect to
Ly, PRy 35 = 35 Pro: X = X5, fork=1,....r, P, : X* = X7, and

Y. Otherwise, L is synchronously diagnosable.

The method to verify the synchronous diagnosability of a system is based on
the comparison between automata G and Gﬁ. Automaton G models the failure

behavior of the system G and automaton GX models the augmented nonfailure

Figure 3.5: Automata Gy, and Gy, of Example [3.1]
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behavior considered in the synchronous diagnosis scheme, such that the projection in
3, of the language generated by G&, PE(L(GR)), where PE : ©E — %% is equal to
the nonfailure language observed by the synchronous diagnoser, i.e., PR(L(GE)) =
Ly, = My P2, (Pro(Liy)).

In order to prove the correctness of Algorithm we first present the following

lemmas.

Lemma 3.2 Let Gy, be the automaton that models the nonfailure behavior of Gy,

and Ly, be the language generated by Gy, for k = 1,...,r. Let Gf’,k be the

automaton obtained from Gy, by applying Step 3 of Algorithm and Lf}k be

the language generated by G , for k = 1,...,r. Then, PE[m;_ PE "(LE )] =
1 PRIPE (LR )], where PR S8 — xr PR 2R 5y

sfork=1,...,r, and
Lh=u;_ 2R
= k'

Proof. In order to show that PR[n;_,P§ (LX) = ni_ PR[PE (LR ),

we must only proof that PE[N;_,PE (LE) 2 ni_PE[PE "(LE )], since
PR[M;_ PR (LR )] € ny_ PE[PE (LR )] is true, according to Equation (2.1).
Let s = 00,0, ...0,, be a trace of events such that s € N;_, PR[P{ " (L% ).
Thus, s € PR[P§ (LR )] for all k = 1,...,r. Therefore, there exists at least
one trace y, € P§ (LX), for k € {1,...,r}, such that P,(y1) = Po(y2) =
... = P,(y,) = s. Since P,(y1) = Py(y2) = ... = P,(y.) = s, yr can be writ-
ten as yp = V10,,U200,V3 . . . Un0,, Uni1, Where v; € (X \ X,)*. Moreover, since
ye € PE(LE), v; can be written as v; = tioftoof, .. t,, where off, € SR |
t; € (% \ £ )*. Therefore, there exists at least one trace y € Ny_, P (L% )
with the same observation as y;, for & = 1,...,r. Since PR(y) = s, then

o

s € PE[ zzlPﬁ;I(Lﬁk)], which concludes the proof. |
Lemma 3.3 Let Ly, be the language generated by Gy, . Then,
r -1 r o1
M PPN, (LN)] = M Py (Pro(Lny)).

Proof. Notice that Lﬁk is obtained from Ly, by renaming its unobservable events.
Therefore, since Py, : X5 — X, Pro @ X — X, Pﬁk D ML XN, and
PR SR — ¢ it is straightforward to see that PR[PE (LR )] = P¢, (Pro(Ln,)),
fork=1,...,r. [ |

We can now state the following theorem that proves the correctness of Algorithm

B.2

Theorem 3.2 Let Ly, denote the language generated by Gy, for k = 1,...,r.
Then, L is not synchronously diagnosable with respect to Ly,, P, : X5 — Xf ),
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Pro: X5 =35, fork=1,...,r, Po: 3" = X7, and Xy if, and only if, there exists
0+1

a cyclic path cl = (¢, 05,40, ..., qV, 0, ¢%) in G2, where v > § > 0, such that:
Jje{0,0+1,...,7} s.t. for some q{},
(¢ = F)A(0; €X). (3.14)

Proof. According to Definition 3.1 in order to verify the synchronous diagnos-
ability of the language of the system L, it is necessary to check if there exists an
arbitrarily long failure trace st such that P,(st) € ﬂj,;:lP,f;l(Pk’o(LNk)). Lemma
shows that PF| zzlPﬁgl(Lﬁk)] = Zzle[Pﬁ;(Lﬁk)], and according to Lemma
B3, Moy PREIPE " (LE)] = Ny PE, (Pho(Ly,)). Therefore, M_y PY, (Pio(Ly,)) =
PERn;_ PE(LE ).  Thus, in order to check the synchronous diagnosability
of L, it can be verified if there exists a failure trace st such that P,(st) €
PEIn;_ P (L )] Since the unobservable events of G are renamed, and hence,
are private events of G, it can be seen that the verifier automaton G proposed
here is equal to the verifier automaton Gy obtained by applying the method pro-
posed in MOREIRA et al. [T1] to a system whose failure automaton marks Ly and
whose observable nonfailure behavior automaton generates Ly,. Moreover, the same
necessary and sufficient condition (3.14]) would be obtained by using the verification
method proposed in MOREIRA et al. |[71], which concludes the proof. [ |

Notice that the construction of G{P according to Algorithm is polynomial
in the number of states of Gy,, and it is exponential in the number of system
components. In order to see this fact, let us compute the complexity of each step of
Algorithm

In Step 1 of Algorithm automaton G is computed. The number of transi-
tions and states of G are bounded by 2 x |@| and 2 x |Q] x |X|, respectively [T1]. In
Step 2 automata Gy, , for £ =1,... 7, are computed. Since automata Gy, are ob-
tained from G by erasing all transitions that are not associated with a transition of
G, and taking the accessible part of the result, the number of transitions and states
of automata Gy, are bounded by the number of transitions and states of automata
G. Automata Gﬁk, computed in Step 3, has the same number of transitions and
states of automata Gy, . Finally, automaton G is computed by making the paral-
lel composition between automata G§,_and Gp. Therefore, the number of states and
transitions of automaton G are, in the worst-case, equal to ([T,_, |Qx|) X |Q|, and
(ITiz; 1Qkl) x 1Q] x |Zv], respectively, where ¥y, = SFUX. Thus, the computational
complexity of Algorithm [3.2]is O(r x (IT;_, |Qx]) x |Q] x |]).

Although the computational complexity of the synchronous diagnosability veri-
fier G{P is exponential in the number of the system components, the main goal in

this work is to provide a diagnosis method that is polynomial in the number of com-
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ponents of the system, avoiding the exponential growth of the size of the diagnoser
for implementation. In the following example, we illustrate the use of Algorithm

for the verification of synchronous diagnosability.

Example 3.2 Let G, and G5, whose transition diagrams are shown in Figure
be the components of a system G = G1||Gs, depicted in Figure . Let
Y = {abcd e g h oy, 00,05}, L, = {a,b,c,d e, g, h}, Xy = {0u1,0u,0/},
Y = {os}, X1 = {a,b,c,e,0u1,0u2,0¢}, Yo = {b,c,d, g, h,0u1,0u2,0¢}, X1, =
{a,b,c,e}, and Xo, = {b,c,d,g,h}. In the first step of Algorithm automaton
Gr, shown in Figure[3.6, is computed. In Step 2, automata Gy, and Gy,, depicted
. Figure are computed, and, in Step 3, automaton G, obtained by making
the parallel composition of GXand G¥, depicted in Figures (a) and (b), re-
spectively, is computed. Notice that the gray states of GX, depicted in Figure
and their corresponding transitions labeled with observable events, do not belong to
G, which indicates the growth of the nonfailure language for synchronous diagno-
sis compared to the monolithic diagnosis scheme. Finally, in Step 4 of Algorithm
the synchronous verifier automaton G3P, presented in Figure 15 compuled.
Notice that there are no cycles in G3P that satisfy condition of Theorem .

*
1,07

Thus, L is synchronously diagnosable with respect to Ly,, Lyn,, Py, : 25 — X
Py =35, Pl X" = X1, Po: ¥ =55, Pp: X" — X5, and Xy

It is important to notice that the sum of the number of states of G, and Gy, in
this example is equal to 14, and the cardinality of the state space of G 1s 27. This
shows that the synchronous diagnosis scheme has a lower cost for implementation

than a diagnoser computed from the global nonfailure behavior model of the system
Gn.

Since the synchronous diagnosis of L is equivalent to the monolithic diagnosis of
the augmented language L, = Ly, ULp, where Ly, 2 P,(Ly), then, the delay bound
for synchronous diagnosis can be larger than the delay bound for the monolithic
diagnosis. In the next section, we present a method for the computation of the

delay bound for synchronous diagnosis.

3.3 Delay bound for synchronous diagnosis

In Section we have shown that the nonfailure language observed by the syn-
chronous diagnoser can be a larger set than the natural projection of the nonfailure
language of the system. This fact can add a delayﬂ to the synchronous diagnosis

compared with the standard monolithic diagnosis case, which can cause a decrease

'Tn this work, the delay bound is considered as the maximum number of events that the system
can execute after the occurrence of the failure event o, until oy is detected by the diagnoser.
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Figure 3.8: Automaton G¥ of Example [3.2}
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in the system performance. Thus, the computation of the delay bound z* of the
synchronous diagnosis is important to evaluate if this method can be implemented
in a real system. In this section, we present a polynomial time algorithm for the
computation of the delay bound z* for synchronous diagnosis. The method for the
computation of the delay bound presented in this section is based on the method
proposed in TOMOLA et al. [77] for the computation of the delay bound for robust
codiagnosability of DESs.

With a view to computing the delay bound z*, it is necessary to compute first
the maximum number of events d that the system can execute after the occurrence
of the failure event o, for which there exists a failure trace st and a nonfailure trace

w, such that P,(w) € Ly,, with the same observation:

d=max{||t| : (s € Lr)(st € Lr)(P,(st) = P,(w),
Po(w) € Moy Py (Pro(Ly)))}-

Remark 3.1 In order to compute d, it is necessary to find the traces st € Ly and w,
where P,(w) € Ly,, such that P,(st) = P,(w), and t has mazimum length. Notice
that G3P represents only the nonfailure traces P,(w) € Ly, and failure traces st
that have the same natural projection P, [78]. Therefore, the computation of d can
be carried out by searching the path of GYP associated with a trace in ¥* with the

greatest length after the occurrence of the failure event oy.

In the sequel, we present an algorithm for the computation of d based on the
algorithm presented in DASGUPTA et al. [79] for the computation of the length
of the longest path in a directed acyclic graph (DAG). This algorithm was also
presented in TOMOLA et al. [77] and is adapted in this work to the synchronous

diagnosis case.

Algorithm 3.3 Computation of d.
Input: GJP.
Output: d.

1: Create the graph 5‘5,13 by eliminating from G3P all states that have label N

and their related transitions.
. —SD
2: Find all strongly connected components of G\, .

3: Obtain the acyclic graph Gaoy = (Qdag, Xdag, fdags 10.dag), where Lgog =
ZzlEﬁk U, from @‘S/D by shrinking each strongly connected component to
a single state as it is done in YOO and GARCIA [80)].
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4: (v1,02,...,0y) < Topological Sort(Gaeg), where vj € Qaag, for j =1,...,1,
and 1 = |Qdag|-

5: Define the weight function p: Qag X Qaag — {0, 1}, where

1, if Jdo € ¥ such that fiq(vi,0) = vj,

0, otherwise.

p(vhvj) — {

6: For j=1,...,n:

(v) maz{l(v;) + p(vi, v;) = (30 € Biag)(faag(vi, o) = vj)},
j 0,if Avi,0) € Quag X Saag such that (faag(vi, o) = v;).

T:od <+ ma%'je{l,.“,n}l(vj)‘

It is important to remark that a topological sort of a DAG is carried out in
Algorithm for the computation of d. The Topological Sort Algorithm returns
the linked list of vertices of a DAG G, such that if G has an edge (u,v), then u
appears before v in the ordering [79, [81].

Since the delay bound is the maximum number of events that the system can
execute after the occurrence of the failure event oy, and until oy is detected, for its
computation it is necessary to consider only the traces of G after the occurrence of
the failure event 0. Therefore, in Step 1 of Algorithm the graph @‘S,D, obtained
from G2, is formed only with the states of G{ reached after the occurrence of the
failure event oy.

Notice that, in order to compute the maximum delay bound for synchronous
diagnosis, the system must be synchronous diagnosable, and thus, according to
Theorem the verifier G{ does not have any cyclic path with one of the events
in the path belonging to . However, the verifier G32 can have cyclic paths formed
with transitions that are labeled with renamed events. In order to eliminate the
cyclic paths of ﬁ‘S/D it is necessary to shrink all its strongly connected components,
obtaining the directed acyclic graph Gg,y. When the strongly connected component
is shrunk into one vertex, all transitions that reach or leave the strongly connected
component will reach or leave the vertex. This procedure is performed in Steps 2
and 3 of Algorithm

The Topological Sort of G4, is carried out in Step 4 of Algorithm [3.3] Next, in
Step 5, a weight function p is introduced to assign weight zero to the transitions of
G aqg labeled with renamed events, and weight one to the transitions of G,y labeled
with events from Y. Finally, in Steps 6 and 7, the number of transitions labeled with

events in X of the longest path in the weighted acyclic graph Gg,g, d, is computed.
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After the computation of d, the delay bound for synchronous diagnosis can be

computed as

Z=d+1, (3.15)

since, for obtaining the delay bound z*, the occurrence of the event that leads to
the synchronous diagnosis of the failure event must be counted.
We present in the sequel an example to illustrate the use of Algorithm for

the computation of delay bound z* for synchronous diagnosis.

Example 3.3 Consider again the plant G = G41||Ga, whose components G1 and
Gy are shown in Figures[3.8(a) and[3.5(b), respectively. As concluded in Ezample
L is synchronously diagnosable with respect to Ly,, Ln,, PY, : X5 — X7,
Pg, X5 = X5, Pio: ¥ = Xj,, Pao: ¥ = X5, Py X — X5, and Xy,
Thus, the mazimum number of events d that can be generated after the occurrence
of the failure event oy, for which there exists a failure trace st and a nonfailure trace
P,(w) with the same observation, can be computed following the steps of Algorithm
. In order to do so, automata @iD and Ggaq are computed from GYP. In this
example, @}S;D = Gag, and is depicted in Figure|3.10. In Step 4 of Algorithm
a Topological Sort is carried out using the graph Gaaq, which results in the graph
presented in Figure [3.11 In Steps 5 and 6, the weighting functions p and | are
computed, whose resull is depicted in Figure[3.12 Finally, d is computed in Step 7,
which results in d = 6 and, therefore, the maximum delay for synchronous diagnosis
of the system G = G1||Gy is z* =T.

It is important to remark that, in this example, the delay bound for the centralized

diagnosis considering a monolithic diagnoser is also z* = 7. This shows that, de-
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pending on the system, the failure event can be diagnosed with the same delay bound
than using the monolithic approach, even with the growth of the observed nonfailure

language for synchronous diagnosis.

3.3.1 Complexity analysis

The computational complexity of Algorithm [3.3]is polynomial in the size of the plant
model G. In order to verify this fact, let us compute the complexity of each step of
Algorithm

In Step 1 of Algorithm , automaton EiD is computed by eliminating from
GP all states that are not reached after the occurrence of the failure event oy, and
their related transitions. Thus, the maximum number of states and transitions of
E‘S/D is bounded by the number of states and transitions of G{’. Moreover, Step 1
of Algorithm can be performed in linear time with respect to the size of G52,

In Steps 2 and 3 of Algorithm , the strongly connected components of @iD
are computed and eliminated, generating automaton Gyg,4. The search for strongly
connected components in a directed acyclic graph can be done in linear time in the
number of vertices and edges of the graph [8I]. The number of states and edges of
G aqg 15, in the worst case, equal to the number of states and transitions of éiD, and

. . . . . -5 .
Gdqg can be computed in linear time in the size of GVD. The Topological Sort used

29



in Step 4 can also be carried out in linear time with respect to the size of Gyq, [81].
Finally, the search for the longest weighted path of G4, presented in Step 6, can
also be done in linear time in the size of Ggq.

The overall computational complexity of Algorithm [3.3]is equal to the complexity
of the synchronous diagnosability verifier, i.e., O(r x ([[,_, |Qx|) X |Q] % |£]), where
r is the total number of system components. Since, for the computation of z* it is
necessary to compute d using Algorithm [3.3] the complexity for the computation of
the delay bound for synchronous diagnosis z* is O(r x ([[,_, |Qx|) x |Q| x |Z]).

In the next section, we present a Petri net diagnoser that synchronizes the state

estimate of the nonfailure behavior of the system modules on their observed events.

3.4 Synchronized Petri net diagnoser

The diagnosis method proposed in this work relies on the computation of a diagnoser
that is capable of estimating the states of the system modules and synchronize the
occurrence of observable events in these modules. In order to do so, it is first
necessary to construct an online observer for each module that provides its current
state estimate when an event is observed. The synchronization of the modules is
naturally achieved by implementing the state observers running in parallel.

In Section [2.4.T] we present a state observer Petri net Nso for DESs modeled by
finite state automata [26]. This Petri net is binary and provides the state estimate of
an automaton after the occurrence of an observable event. If an event o, is observed,
and o, is not feasible in the current state estimate of the nonfailure behavior of the
system, then all tokens of Ngo are removed which implies in the detection of the
occurrence of the failure event.

The diagnosis scheme proposed in this work is based on the construction of Petri
net state observers Nso,, for k = 1,...,r, of the nonfailure behavior automaton
models of all components of the system Gp,. Thus, as in CABRAL et al. [20], if
an event o, is observed and o, is not feasible in the current state estimate of Ngo,,
for k € {1,...,r}, then all tokens of Ngp, are removed. In order to obtain the
synchronized Petri net diagnoser Np, it is necessary to implement the Petri net
state observers Ngp, running in parallel, and to construct a failure detection logic
that is capable of detecting the occurrence of the failure event when all tokens from
at least one Nsp, are removed, forming a unique Petri net diagnoser Np.

In the sequel, we present Algorithm for the computation of the SPND, Np.

Algorithm 3.4 Synchronized Petri net diagnoser.

Input: Automata Gy, fork=1,...,r.
Output: Synchronized Petri net diagnoser Np.
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1: Compute the state observers Petri nets Nsok = (Pso,,Tso,, Preso,, Postso,
L0505, Doy Lso, ), for k = 1,...,r, according to Algorithm [26]], that pro-
vides the online state estimate of the nonfailure behavior of the system modules
Gy,

P

2: Compute the Petrinets Np, = (Pp,,Tp,, Prep,, Postp,, Inp,, %o p,, Yoy, ls0;),
for k =1,...,r, where Inp, : Pp, x Tp, — {0,1} denotes the function of

inhibitor arcs [4], as follows:

2.1: Add to Nso, a transition ty, labeled with the always occurring event .
Define Tp, < Tso, U{ts}

2.2: Add to Nso, a place py,, and define Prep,(pn,,t) < 1. Set
zo.p, (pn,) < 1, and define Pp, < Pso, U {pn,}

2.3: Define Inp, (pp,,ty,) < 1 and Inp, (pp,.tso,) < 0, Vpp, € Pp, and

\V/tsok € Tgok.

3: Compute the synchronized Petri net diagnoser Np = (Pp,Tp, Prep, Postp,
Inp,x0p, Y0, lso), as follows:
3.1: Form a unique Petri net by grouping all Petri nets Np,, fork=1,...,r.
3.2: Add a place pp and define Postp(ts,,pr) = 1, for k = 1,...,r. Set

$07D(pp) +~— 0.

In order to prove that the Synchronized Petri net diagnoser Np, obtained from
Algorithm [3.4] can be used for synchronous diagnosis, we first introduce the following
lemma that shows that the state of the Petri net state observer Nso,, reached after

the observation of a trace vy € 3} , provides the correct state estimate of Gy, .

Lemma 3.4 Lel x4, denole the state of Nso, reached after the observation of a
trace vy, and let qups, denote the state of Obs(Gy, , Xk,,) reached after the observation
of vi. Then, there exists a place pso, € Pso, such that xso, (pse,) = 1 if and only

ifpisok 15 associated with a coordinate qﬁvk N Qobs, -

Proof. In CABRAL et al. |26] it is presented a method to construct the state

observer Petri net Nso from an automaton G, and it is shown that Nso provides

correctly the state estimate of automaton GG. Therefore, the Petri net state observer

Nso, , obtained by applying the same method to automaton G, , provides the estate

estimate of Gy, . u
The result presented in Lemma leads to the following theorem.
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Theorem 3.3 Let L be the language marked by G g, which models the failure be-
havior of the system model G = ||, _, Gy, and let Ly, =(;_, P,;’:(Pkp(LNk)). Con-
sider language L, = Ly, ULp, and assume that L is synchronously diagnosable with
respect to L, Py, X5 — X5, Pro X5 =35, fork=1,...,r, B, : ¥* — X7,
and Xy. Let s € L, \ Ly, be an arbitrarily long trace, such that Vw € L, satisfying
P,(w) = P,(s), w € L, \ Ly,. Then, the number of tokens in place pr of Np, after

the observation of the trace P,(s), is one.

Proof. If L is synchronously diagnosable and the system generates an unambiguous
trace s, then P,(s) € Ly,, where Ly, = zzlp,f’;l(Pk,O(LNk)), according to Defini-
tion of synchronous diagnosability. Since P,(s) ¢ mgzng;l(Pk,O(LNk)), then,
3k € {1,....r} such that Py(s) & P, (Pro(Ln,)). Since Py(s) & P2, (Pro(Ly,))
for k € {1,...,r}, then P? (P,(s)) & P§7O(P57;1(Pk,o(LNk))) for k € {1,...,r},
due to the definitions of P¢, : X5 — 3f and F, : ¥* — Xj. Notice that
Pg(Py(s)) = Pro(s) and P¢ (P2, (Peo(Ln,))) = Pro(Ly,), thus, 3k € {1,...,7}
such that Py ,(s) € Pro(Ly,). Therefore, since, according to Lemma , Nso, pro-
vides the state estimate of Gy, , after the occurrence of s, and 3k € {1,...,r} such
that Py ,(s) & Pro(Ly,) then at least one state observer Petri net will lose all its
tokens, which will enable transition ¢y, , labeled with the always occurring event A.
When transition ¢y, fires, it adds a token in place F, indicating the occurrence of a

failure event. [ |

Remark 3.2 It is important to remark that the computational complexity for the
construction of the SPND is polynomial in the number of states and transitions of
Gn,, t.e., the SPND can be obtained in polynomial time in the number of states
and transitions of the modules of the system, avoiding the computation of the global

system model for implementation of the diagnoser.

In the following, we present an example to illustrate the construction and the

diagnosis procedure of the synchronous Petri net diagnoser.

Example 3.4 Consider again the global plant model G = G4||Ga, where G; and
Gy are depicted in Figures [3.9(a) and [3.9(b), respectively. According to Algorithm
the first step for the computation of the SPND is the computation of the state
observer Petri nets Nso, and Nso,. In the sequel, Petri nets Np, and Np,, shown
in Figures[3.13(a) and [3.13(b), respectively, are computed. Finally, the SPND is
obtained by grouping Np, and Np,, and adding a place pr that receives a token only
when the failure event is diagnosed, indicating its occurrence. The SPND Np is
presented in Figure[3.14)

Let us now show how online diagnosis is carried out by using Np. Suppose that

the failure trace s; = aoy(a)® € L'\ Ly for z € N has been executed by the system.
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(a) Np,

Figure 3.13: Petri nets Np, and Np, of Example

Then, the trace observed in the first module is Py ,(s1) = aa® and in the second
module is Py ,(s1) = €. Since in the initial marking of Np, places p1o and p1 4 have
tokens, transitions t1 o and to 14 will fire after the observation of event a, which will
remove the tokens from places p1o and pi4 and add tokens to places pi1 and pis.
When the second event a is observed, transitions t13 and to 14 will fire, removing the
tokens from places p11 and py5. At this point, transition ty is enabled and fires,
wndicating that the failure has occurred and has been diagnosed.

Now, suppose that the failure trace sy = aog(coy,1gghd)® € L\ Ly for z € N
has been executed by the system. Then, the trace observed in the first module is
P ,(s2) = a(c)® and in the second module is Py,(s3) = (cgghd)®. In the initial
marking of Np of Figure[3.14), places p1o, p14, p2o and pag have tokens. When event
a s observed, transitions t1 2 and t1 19 fire, removing tokens from places p1 o and p1 4,
and adding tokens to places p1 1 and p1 5. When event c is observed, transitions t; 1,
ta2, and ta 13 fire, removing tokens from the places p1 s, pao, and pag and adding a
token to place ps 1. The places that have tokens after the trace aosc has been evecuted
by the system are p11 and pa1. After the observation of event g, transition ty3 fires,
removing the token from place py . At this point, transition ty, is enabled and, since
it 1s labeled with the always occurring event A, it fires removing a token from place
pn, and adding a token to place pr, which diagnoses the failure event oy.

It is important to notice that the two modules of the system are important for
the diagnosis of the failure event o¢. For example, the failure trace sy is diagnosed
from the Petri net Np,, which is built from the nonfailure model of component Gs,

Gn,. Notice that the failure event oy is not even modeled in automaton Gs.

Remark 3.3 It is important to remark that the computation of the state estimate
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Figure 3.14: Synchronized Petri net diagnoser Np of Example [3.4

of the synchronous Petri net diagnoser, after the occurrence of an observable event
0, € X, can be carried out in two steps: (i) identify the transitions labeled with
the event o,; (ii) fire these transitions and update the marking of the SPND. This
procedure has linear computational complexity with respect to the size of the SPND.
Since, according to Remark[3.3, Np can be obtained in polynomial time with respect
to the number of states and transitions of automata Gy, , then the computational
complexity of the diagnosis procedure is also polynomial with respect to the size of

automata Gy, .

The synchronous diagnosis method was implemented in a mechatronic plant
located at the Control and Automation Laboratory (LCA) of the Federal University
of Rio de Janeiro (UFRJ). In the next section, we present the functioning of this

mechatronic system and the model obtained for failure diagnosis.

3.5 Synchronized Petri net diagnoser for an auto-

mated system

In this section, we present the design of the synchronized Petri net diagnoser for a

mechatronic system [66]. In order to do so, we first present the controlled plant.

3.5.1 Case study system

The controlled plant is a cube assembly mechatronic system of the manufacturer
Christiani [82] installed at the Control and Automation Laboratory of the Federal

University of Rio de Janeiro. This mechatronic system consists of three modules:

64



o Inductive sensor

ﬂ

Figure 3.15: Schematics of the conveyor belt and the handling unit considered in
the case study.

(1) a conveyor belt with a sensor testing unit that can be fed with plastic or metallic
cube halves; (77) a handling unit composed of a robotic arm, which has a pneumatic
mechanism that activates a suction cup in order to pick up, transport and deliver
pieces to a press used to assemble two halves of a cube; and (iii) a magazine unit
that stores the assembled cube in a shelf unit with 28 available storage positions.
In this work, only the first two modules are considered, i.e., the conveyor belt and
the handling unit. We show a schematics of the case study system in Figure [3.15
where the conveyor belt and the handling unit can be seen in an aerial view.

We have designed the automated system to deliver two cube halves to the press,
then the press assembles the cube halves into one cube and then the cube is dis-
carded. The behavior of the controlled system is as follows: first, the conveyor belt
is fed with a metallic cube half that is delivered to the handling unit. The robotic
arm allocates the metallic cube half in the press and waits for a plastic cube half.
Then, a plastic cube half is delivered to the conveyor belt and it is transported to
the handling unit. The plastic cube half is also delivered to the press by the robotic
arm, and, after that, the cube halves are assembled into one cube by the press. After
that, the robotic arm removes the cube from the press and delivers it to the end of
the conveyor belt, which is switched on in reverse until the cube is discarded from
the system. Then, the conveyor belt is switched off and the system is ready to start
the process again. Notice that only the conveyor belt and the handling unit were

used in this work.

3.5.2 Modeling the controlled plant

The controlled plant has been modeled with a view to implementing the synchronized
Petri net diagnoser. In order to do so, we have considered that the global system
is composed of two modules: (i) the conveyor belt, and (i7) the handling unit. The
automaton models of the conveyor belt G, and the handling unit G}, can be seen
in Figures (a) and (b), respectively, and the global plant model, G, is given
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Figure 3.16: Automaton G, that models the conveyor belt (a); and automaton Gy,
that models the handling unit (b).

by G, = Ga||Gha-

The initial state of automaton G, is Cy which represents that the conveyor belt
is turned off and there are no cube halves on it. A new piece, consisting of a cube
half, is delivered to the conveyor belt, modeled as event a;, and G, reaches state
(1, which means that the conveyor belt is turned off and the first cube half is on it.
Then, the conveyor belt is switched on to the direction of the handling unit, modeled
by event cr,,, which generates the change from state C; to state C5. When the cube
half reaches the end of the conveyor belt, event ¢,¢ occurs, and the system evolves
to state ('3, indicating that the conveyor belt is switched off. When the cube half is
removed from the conveyor belt by the robotic arm, event a,. occurs, and the system
evolves to state Cy. In state Cy, the conveyor belt is turned off waiting for the arrival
of the second cube half. When the second cube half is delivered to the conveyor belt,
event as occurs and G, evolves to state C5. The system repeats the same behavior
with the second cube half until it reaches state Cg, indicating that the second cube
half has been removed from the conveyor belt and the system is waiting for the
robotic arm to deliver an assembled cube. When the robotic arm delivers the cube
to the end of the conveyor belt, event a,4. occurs, and the system evolves to state Cy.
After the cube is delivered, the conveyor belt is switched on in the opposite direction,
modeled by event cl,,, and G, reaches state C1g. G stays in state Cpy until the
cube is discarded from the system, modeled by event d., which makes GG, reach state
Ch1. After that, the conveyor belt is switched off when event c,;; occurs, and G

returns to its initial state. In this system, we have considered that a failure event can
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occur in the robotic arm. This failure, represented by event oy, models the suction
cup malfunctioning of the robotic arm. As a consequence, pieces cannot be removed
from the end of the conveyor belt. Thus, after the occurrence of the failure event,
event a,. cannot occur anymore, and event ag. can occur indefinitely, indicating
that the robotic arm will continue to try, unsuccessfully, to pick up pieces at the
end of the conveyor belt and deliver assembled cubes. This behavior is modeled by
transitions (Cj, age, C12), (C7, age, C12), and (Cha, age, C12) in G, indicating that a
piece is at the end of the conveyor belt and only event ay4. can occur again.

The initial state of the handling unit model G}, is Hy, which represents that the
robotic arm is aligned with the conveyor belt. If there is a cube half in the end of
the conveyor belt, event a,. occurs and Gy, reaches state H;, indicating that the
robotic arm removed the first cube half from the conveyor belt and is transporting
it to the press. When the robotic arm delivers the first cube half to the press, event
aqp occurs and the system evolves to state Hs.

The robotic arm is equipped with a high speed counter that is triggered when
it starts to turn. When the high speed counter reaches a previously known value
that represents a given angular position, the robotic arm stops. In order to avoid
positioning errors, after delivering a piece to the press or removing an assembled
cube from the press, the robotic arm must rotate to a position where an inductive
sensor is activated and the high speed counter is reseted. This process is modeled
by event s; such that, when event s; occurs, the process of delivering a piece to the
press or removing a cube from the press is completed and the robotic arm is ready
to remove a new piece from the conveyor belt or deliver the assembled cube to the
conveyor belt. Thus, after s; occurs, Gy, evolves from state Hs to state Hs and the
robotic arm is ready to remove the second cube half from the conveyor belt. The
process is repeated for the second cube half until a cube is assembled by the press,
modeled by event c,, reaching state Hg in Gj,. At this moment, the robotic arm
removes the cube from the press, modeled by event a,, and starts to transport it to
the conveyor belt, represented by state H;. After event s; occurs, the robotic arm
aligns with the conveyor belt and delivers the cube, modeled by event a4.. Finally,
after a new occurrence of event s;, the handling unit reaches its initial state.

If the failure event oy occurs, the robotic arm cannot pick up cube halves at the
conveyor belt or cubes at the press. As a consequence, events a,. and a,, cannot
occur in GGy, after the failure event. Since there are no sensors that can indicate the
presence of a piece in the handling unit, then, if a failure occurs, the robotic arm
and the press will perform their cyclic behavior without any cube halves or cubes
been transported or assembled.

The set of events of G and Gy, are Yo = {ai, a2, CTon, Coff, Apes des Clon, de}

and Xp, = {ape, Qap, Si; Cas App, Ade, 0},  respectively, where g, =
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Table 3.1: States of G,.

State Meaning

Co Conveyor belt switched off and there are no cube halves on it

4 Conveyor belt switched off and the first cube half is on it

Cy Conveyor belt switched on with the first cube half on it

Cs Conveyor belt switched off and the first cube half is at its end

Cy Conveyor belt switched off waiting for the second cube half

Cs Conveyor belt switched off with the second cube half on it

Cs Conveyor belt switched on with the second cube half on it

Cr Conveyor belt switched off and the second cube half is at its end

Cs Conveyor belt switched off waiting for the assembled cube

Cy Conveyor belt switched off with the assembled cube at its end

Cho Conveyor belt switched on in the opposite direction with a cube on it

C11 Conveyor belt switched on in the opposite direction with no pieces on it

Cia Conveyor belt switched off with one cube half after failure
{a1, a2, cTon, Coffy Qdes Clon, de} and gy o = {adp, Sis Cay aac} are the sets of ob-
servable events of G, and Gpy, and X u = {ap} and Zpyuo = {ape, Gpp, 0}

are the sets of unobservable events of G, and Gy,, respectively. The sets of
events, observable events, and unobservable events of the plant are, respectively,
Xp = 2 UZhu, Ypo = Zebo U Do, and Xy uo = Lebuo U Lhuuo- 1t is important
to notice that, since the synchronized Petri net diagnoser will be implemented
in the same PLC as the system controller, the information of both controller
commands and sensor readings contribute to the observable events set X, , of G,,.
We summarize the states of G4 and Gy, in Tables and [3.2] respectively, and
the events of G, in Table [3.3]

3.5.3 Synchronized Petri net diagnoser

In order to build the synchronized Petri net diagnoser of the system G, = G ||Gha,
it is first necessary to verify if GG, is synchronously diagnosable. In order to do
so, following Algorithm the first step is to build automaton Gg, whose marked
language models de failure language of the system. Automaton G obtained from
G is shown in Figure[3.17 Since, for the verification of synchronous diagnosability,
the marked states of G are not relevant, the states labeled with F' in G are not
marked. For this example, automaton Gr is equal to automaton G, except from
the labels N and F'. In Step 2, automata Gy, and Gy, are obtained and are
shown in Figures [3.18(a) and [3.1§|(b), respectively. Notice that automaton Gy,
is different from automaton G, even with the failure event been modeled only in
automaton Gp,. In Step 3, automaton G§ is computed from automata G and

Gﬁhu that are depicted in Figures (a) and (b), respectively. Finally, the
verifier G{P is computed in Step 4. Verifier Gy is omitted here due to the lack
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Table 3.2: States of Gj,,.

State Meaning
Hy Robotic arm ready to remove the first cube half
H, Robotic arm is transporting the first cube half to the press
Hy Robotic arm returning to its initial position
H; Robotic arm ready to remove the second cube half
H, Robotic arm is transporting the second cube half to the press
H;  Robotic arm waiting for the cube to be assembled by the press
Hg Robotic arm starts the process of removing the cube
H; Robotic arm transporting the cube to the conveyor belt
Hyg Robotic arm aligning to the conveyor belt
Hy Robotic arm moving to its initial position
Hy Robotic arm moving to the press
with its vacuum system malfunctioning
Hyy Robotic arm returning to its initial position
with its vacuum system malfunctioning
Hi, Robotic arm ready to remove the second cube half
with its vacuum system malfunctioning
Hy3  Robotic arm waiting for the cube to be assembled by the press
with its vacuum system malfunctioning
Hyy Press finishes the cube and robotic arm starts the process of
removing the cube with its vacuum system malfunctioning
Hys Robotic arm aligning to the conveyor belt
with its vacuum system malfunctioning
Hyg Robotic arm moving to its initial position
with its vacuum system malfunctioning
Table 3.3: Events of G,,.
Event Meaning
ay First cube half arrives at the conveyor belt
as Second cube half arrives at the conveyor belt
CTon The conveyor belt is switched on
Coff The conveyor belt is switched off
Ape Robotic arm removes a piece from the conveyor belt
Qe Robotic arm delivers a cube to the conveyor belt
cl,,  Conveyor belt is switched on in the opposite direction
d. A cube is discarded from the system
Agp Robotic arm delivers a piece to the press
S; Inductive sensor is activated
Ca Press finishes the assembling of a cube
App Robotic arm removes a cube from the press
of The robotic suction cup fails
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of space. Automaton G7P does not have any cycle of states satisfying Condition
(3-14), and, thus, the system G, is synchronous diagnosable.

The synchronized Petri net diagnoser AVp, shown in Figure is formed by the
Petri nets Np,, and Np,, . Np, is computed by following the steps of Algorithm
B.4 from the nonfailure behavior models Gy, and Gy,,. Let us now show how
online diagnosis is carried out by using Np,. Suppose that the failure trace s =
@1 CTonCof £0 fAdpSidpCaSiaqe has been executed by the system. Before the occurrence
of event a,., the places pc,, pe, and py, have tokens and, when event a4, is executed
by the system, transitions ¢; ;7 and ¢, g fire, removing the tokens from places pc, and
pc,- At this point, the state observer Petri net Nso,, loses all its tokens, enabling
transition ¢y, that fires, indicating that the failure event has occurred.

We also have computed the delay bound z* for synchronous diagnosis of system
G,. By following Algorithm and Equation , the maximum number of
events that G, can generate after the failure event o until oy is diagnosed by Np,
is 2* = 15. The delay bound for monolithic diagnosis is 12. As presented in Section
3.3 this difference is due to the growth of the nonfailure language for synchronous
diagnosis compared to the monolithic diagnosis scheme. The diagnoser Np, can be
converted into a Ladder diagram by using the method proposed in CABRAL et al.
[26], and implemented on the same PLC where the control code of the system is

implemented.

3.6 Final remarks

In this chapter, we propose a new architecture for the diagnosis of DESs, called
synchronous diagnosis. This architecture is based on the construction of Petri net
state observers of the nonfailure models of the components of the system. If an
observable event that is not feasible in the current state estimate of the nonfailure
behavior of at least one component is executed by the system, the failure event is
diagnosed. We have shown that if there are unobservable events in common between
the components of the system, the nonfailure language for synchronous diagnosis can
be a larger set than the global nonfailure language of the system. Thus, the notion
of synchronous diagnosability and an algorithm to verify this property are proposed.
The synchronous diagnosability verification method has exponential complexity with
the number of system components, in the worst case scenario. However, the main
objective of this work is to present a method for the diagnosis of the failure event
that avoids the use of the global plant model and, thus, avoids the exponential
growth with the number of modules for failure diagnosis.

Since the nonfailure language for synchronous diagnosis can be a larger set that

the nonfailure language of the system, the delay bound for synchronous diagnosis
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Automaton G obtained from G).

Figure 3.17
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can be larger than the delay bound using a monolithic diagnosis approach. In this
chapter, we also presented a method for the computation of the delay bound for
synchronous diagnosis.

A practical implementation of the synchronous diagnosis is also presented for a
cube assembly mechatronic system. The system is composed of two modules and
the modeling of the system for synchronous diagnosis is presented. The synchronous
diagnoser was implemented for this system considering two different models for the
same system [65, [66].

In the next chapter, we generalize the notion of synchronous diagnosis to a
decentralized diagnosis scheme. We based our decentralized diagnosis scheme on
Protocol 3 of DEBOUK et al. [17], where the local diagnosers do not communicate
with each other and the failure occurrence information is sent to a coordinator, that
diagnosis the failure event when at least one of the local diagnosers identifies its

occurrence.
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Chapter 4

Synchronous codiagnosability of
DESs

4.1 Synchronous codiagnosability

In the decentralized diagnosis scheme presented in DEBOUK et al. [17] each local
diagnoser is constructed based on the global model G and, therefore, may grow ex-
ponentially with the number of system components. In this work, in order to avoid
the exponential growth with the number of system components, we extend the syn-
chronous diagnosis approach presented in Chapter [3| to the decentralized case. Dif-
ferently from DEBOUK et al. [17], where the local diagnosers are constructed based
on the global plant model G, in the synchronous decentralized diagnosis scheme,
the local diagnosers are constructed based on the nonfailure behavior model of the
system components [83] [84].

As in Chapter 3] we consider that the system G is obtained by the parallel com-
position of several subsystems, modeled by Gy, £k = 1,...,r. In order to consider
a synchronous decentralized diagnosis scheme, we assume that each subsystem has
its own set of observable events that are communicated to a local Petri net diag-
noser N;. In Figure .1l we compare the decentralized diagnosis scheme with the
synchronous decentralized diagnosis architecture. In the synchronous decentralized
diagnosis scheme, the set of events of the system component GG can be partitioned
as X = f)kvon]k,uo, where f];w and f];wo are the sets of observable and unobserv-
able events of Gy, respectively. It is important to remark that, differently from the
centralized approach presented in Chapter [3| an event can be observable to a local
diagnoser N; and unobservable to another local diagnoser N}, i.e., ZA]Z»,O N f]j,uo is not
necessarily the empty set for j #i, 4,5 € {1,...,r}. Thus, f];w C Yko

Figure (b) depicts the synchronous decentralized diagnosis scheme proposed in

this work. The local Petri net diagnosers N}, are constructed based on the nonfailure
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Figure 4.1: Comparison between the decentralized diagnosis architecture (a); and
the synchronous decentralized diagnosis architecture (b).

behavior of the system modules Gy, , for k =1,...,r, and they infer the occurrence
of failure events based on their own observations, and send the information regarding
the failure occurrence to the coordinator. A failure is diagnosed when at least one
local diagnoser identifies its occurrence, which occurs when an event, that is not
feasible in the current state estimate of the nonfailure behavior of one component,

is observed. This diagnosis scheme leads to the following definition of synchronous

codiagnosability.
Definition 4.1 (Synchronous codiagnosability) Let Gn = ||;_,Gn,, where
G, s the automaton that models the nonfailure behavior of Gy, and let Ly, denote

the language generated by G, for k = 1,...,r, where r is the number of system
components. Assume that there are r local sites with projections ﬁk,o X = 2270,
k=1,...,r. Then, L is said to be synchronously codiagnosable with respect to Ly, ,
f’k,o, and Xy if

(3z e N)(Vs € Lp)(Vst € L, ||t]| > 2z) =
Bk e {1,2,...,7))(Pro(st) & Peo(Ln,)).

In the sequel, we show that the synchronous codiagnosability of L with respect
to Ly, P;w X — 53270, and X ¢ implies in the synchronous diagnosability of L with
respect to Ly, B¢, 35 — Xf ), Pro : X = X, for k=1,...,r, B, : X% — 37,
and Xy.

Lemma 4.1 Let st be a failure trace and Ly, be the language generated by Gy, ,
for k = 1,...,r. Consider the projections Py, : ¥* — 2270; ]5,3,0 DN 2’:707
Jor k =1,...,r, and P, : ¥* — X, where ¥, = U2:12k,o = Up_12ko. Then,
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dk e {1,...,r} such that pkp(st) ¢ pkz,o<LNk,); if, and only if,
P,(st) & Ly, (4.1)
where Ly, = M_1 P2, (Pro(Ln,))-

Proof. (=) Let k € {1,...,r} be such that Py o(st) & Pyo(Ly,). Then, since
]5,;’70 D XE = 2270, Py X — ZA]ZO and ¥, C ¥,, we have that 15,?7;1(]3;6,0(515)) N
Pg. (Pro(Ly,)) = 0. Notice that P,(st) € P, (Ppo(st)), since P, : % — X,
and ¥, = Uj_,%,. Therefore, since P, (Pro(st)) N PY, (Pro(Ly,)) = 0, then
Py(st) & By (Pro(Lw,). Thus, Py(st) & Gy Py (Pro(L,)) = L.

(<) Let us consider that P,(st) ¢ f}Na. Thus, 3k € {1,...,r} such that
P,(st) & f’,f;l(pko(LNk)) Notice that any trace v € Pg’;l(f’m(LNk)) can be written
as v = 104,104, - . . O, tny1, Where t; € (3, \ f]kjo)*, 0o, € f]kjo, and 0,,0,, ...0,, €
]-C’k’o(LNk). Let us suppose that pk,o(st) = If’kp(v) = 04,00, - - - 0o,. Then, according
to the definitions of ]5,5’0, ]5;670 and P,, we have that P,(st) € ]5,;’;1(]5;@0(1'1%)), which
contradicts the initial assumption that P,(st) ¢ P,f7;1(]5k70(LNk)), and therefore,

]—c’ho(st) g pk,o<LNk)- .

Theorem 4.1 If L is synchronously codiagnosable with respect to Ly, , pkp DX =
ii,o, and Yy, then L is synchronously diagnosable with respect to L, , Py, : 35 —
Yior Pro t X = g, for k= 1,....r, B, : ¥* — X7, and Yy, where ¥, =
Ur1Zk0 = Ui 2k 0-

Proof. From Definition in order to a language L be synchronously codiag-
nosable with respect to Ly,, Py, : 5* — 2270, and Xy, there must exist at least
one local diagnoser N, such that ]5,670(575) ¢ Pk,O(LNk) for any failure trace st with
arbitrary long length after the occurrence of the failure event. According to Lemma
1l 3k € {1,...,r} such that By ,(st) & Pro(Ly,), if, and only if, P,(st) & Ln,.
Since Py : % — 5, Po, o 55— Sr, Poo t BF — S5, PY, 0 S5 — Of,, and
Sho € Sho, for k=1,...,7, P2 (Pro(Ln,)) € P2, (Pro(Ln,)). Therefore,

Ly, C Ly,. (4.2)

According to Equation , if L is synchronously codiagnosable with respect
to Ly, , ﬁ’kvo, and Xy, then, for all failure traces st with arbitrarily long length after
the occurrence of o, P,(st) ¢ f)Na. Since, according to Equation , Ly, C f/Na,
then P,(st) ¢ Ly,, which implies, according to Definition that the language L is
synchronously diagnosable with respect to Ly,, P, : X% — X5, B¢, X5 — Xf
for k=1,...,r, P,: X* — X%, and Xy. [ |
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Figure 4.2: Automaton G of Example [4.1]

Remark 4.1 Notice that, according to Lemma to check if (3k € {1,...,7})
such that Py o(st) & Ppo(Ln,) for an arbitrarily long failure trace st is equivalent to
check if P,(st) ¢ ﬂ;zlﬁ’,{?:(]f’k,o(LNk)) for ¥y = U;_ Y. Thus, in Definition
of synchronous diagnosability, the condition P,(st) & HZZIP,SV:(P;C,O(LN,C)) can also
be replaced by

(Fk € {1,2,...,7})(Pro(st) € Pro(Ln,)),

which shows that the difference between Definition of synchronous diagnosability
and Definition of synchronous codiagnosability lies on the local observable event

sets X, and 2;@0, as pointed out in Corollary 4.1,

In the following example, we show that the converse of Theorem [4.1]is not always

true, ¢.e., L can be synchronously diagnosable and not synchronously codiagnosable.

Example 4.1 Consider the system G = G4||Goy shown in Figure where G4
and Gy are depicted in Figure [{.5 Let us consider the synchronous decentralized
diagnosis scheme, where the set of observable events of G1 and Gy are 2170 = {b}
and 2270 = {c}, respectively. In order to do so, consider automata Gy, and Gy,
depicted in Figure[{.4)(a) and [f.4(b), respectively, computed by following Algorithm
(3.1, According to Definition L is not synchronously codiagnosable with respect
to Ly, , P;w, and Xy if there exist st € Lp, with arbitrarily long length after the
occurrence of oy, and nonfailure traces sy, € Ly, and sy, € Ly, such that PLo(st) =
]51,0(3]\/1) and 15270(515) = 15270(5N2). Notice that if st = o¢b?, sy, = cb?, and sy, =€,
where z € N, then Py y(st) = Pio(sn,) = b° and Py,(st) = Pyo(sn,) = €, which
shows that L is not synchronously codiagnosable.

Let us consider now the synchronous centralized diagnosis scheme, where all
mformation regarding the observation of events is communicated to the centralized
diagnoser. In this scheme, the set of observable events of G and G4 are, respectively,
Y10 =1bc} and Xy, = {b,c}. Thus, P, ,(st) = b* and, as it can be seen from Figure
(a), there does not exist a nonfailure trace sy, € Ly, such that Py ,(sn,) = b*.
Thus, L 1s synchronously diagnosable with respect to Ly,, Py, : X5 — X} ,, Pro -
Y= X Jor k=1,2, By : X* = X7, and Y. 0

The following corollary presents a condition that ensures that if L is syn-

chronously diagnosable, then L is synchronously codiagnosable.
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Figure 4.3: Automata G and G5 of Example 4.1}
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Figure 4.4: Automata Gy, and Gy, of Example .1}

Corollary 4.1 Let ZAJMOHXA]]"O =0 foralli,j € {1,...,r}. Then, L is synchronously
codiagnosable with respect to Ly, , ]AD;W DV 2270, and Xy, if, and only if, L is
synchronously diagnosable with respect to Ly, , PP, : X5 — X} ,, Pro : X° — X,
Jork=1,2, P,:¥* = X%, and Xy.

Proof. Notice that, if ZAIMO N f]j,o = foralli,je{l,...,r}, then ik,o = Y0, and,
therefore, Ly, = iNa. |

Remark 4.2 According to Equations and {{.4), we have that P,(Ly) C
Ly, C ﬁNa. Thus, synchronous codiagnosability implies in synchronous diagnos-
ability, which ultimately implies in the diagnosability of L. The relation between
the notions of diagnosability, synchronous diagnosability and synchronous codiag-

nosability is summarized in Figure [{.5

The synchronous codiagnosability verification of the language L can be done by

following the steps of Algorithm [3.2]for the verification of synchronous diagnosability,

Synchronous Synchronous _ _
codiagnosability = diagnosability — | Diagnosability

Ly, D Ly, D P,(Ly)

~

Ei,uo N Ej,uo = @ Zi,uo N @

Y0 =
Synchronous <\i/> Synchronous
diagnosability codiagnosability

Ly = Ly,

a

Diagnosability

I <

PO(LN)

Figure 4.5: Relation between the notions of diagnosability, synchronous diagnosabil-
ity and synchronous codiagnosability.
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replacing, in the definition of the renaming function R (Equation (3.13)), in Step
3, the event sets Xy , and Xy 0, With f];w and ik,um respectively, leading to function
Ry : Xy, — 28 | defined as:

Ry(o) = (4.3)

A o, ifoe ik,o
Or,, ifoe i];wo '

By replacing function R, (Equation (3.13)) with function R, (Equation 1)
in Algorithm , the synchronous codiagnosability verifier automaton G3° is com-
puted and the test for synchronous codiagnosability can be done by searching for
cyclic paths in G3¢ formed by states with the label F' and not renamed events. In
order to prove the correctness of Algorithm for the verification of synchronous

codiagnosability with function R, (Equation 1} ), we present the following lemmas.

Lemma 4.2 Let Gy, be the automaton that models the nonfailure behavior of
Gy, and Ly, be the language generated by Gy, for k = 1,...,r. Let éf}k =
(@Qn,, f]ﬁ,k, fﬁk, qo.n,) be the automaton obtained from Gy, by applying function RNk
in Step 3 of Algorithm and [A/ﬁk be the language generated by é’R , for k =
1,....r. Then, PR[M;_ PE (LR )] = m;_, PR[PE " (LR )], where PE zR — ¥,

P]{?k DR YN, Jor k= 1,...,r, and 28 = Z:liﬁk'

Proof. The proof is equal to the proof of Lemma if we replace PF, P{ | and
Ly, with PR, Pf\}zk, and L& N, » respectively. [ |

Lemma 4.3 Let Ly, be the language generated by Gn,. Then,
Mot PPN, (L] = Mt Py (Prol L)

Proof. The proof is equal to the proof of Lemma [3.3|if we replace P, P{ , L
P, and P, with PR, PA’]{Z, [A/ﬁk, ]3,3,0, and P, ,, respectively. [ |

We can now state the following theorem that proves the correctness of Algorithm
for the verification of synchronous codiagnosability with function Ry (Equation

(4.3)) applied in Step 3 instead of function Ry (Equation (3.13)).

Theorem 4.2 Let Ly, denote the language generated by Gy,, for k = 1,...,r,
and G5€ = Gp||GR, where GR = ||7_ IGR Notice that a state of G3¢ is given by
qv = (qr,GR), where qr and ¢& are states of Gp and G N, respectively, and qp =
(q,q), where ¢ € Q and q € {N,F}. Then, L is not synchronously codiagnosable
with respect to Ly, , 15;6,0, and Xy if, and only if, there exists a cyclic path cl =

(& 05, qy, 00,40 in G = GF||GN, where v > 0 > 0, such that:

Jj€{0,0+1,...,7} such that for some q{'/,
(g = F)A(0j €).
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Figure 4.6: Automata Gy and G of Example 4.2]

Proof. The proof is equal to the proof of Theorem if we replace the verifier
automaton Gy with automaton G{°. |
In the following, we present an example of the synchronous codiagnosability

verification of the language of a DES.

Example 4.2 Consider again the components Gy and Gy of the system G =
G1||G2, depicted, respectively, in Figures [3.9(a) and [3.4(b). Automata G and
Gy are presented again in Figures [{.6/(a) and [{-6(b), respectively. Let ¥ =
{a,b,c,d,e,g,h,001,0u,0¢}, o = {a,b,c,d,e,g,h}, Lo = {0w1,0u,0¢}, L =
{of}, &1 = ZA]LOL'JZA)LUO, and Yo = 2270022#0, where 21’0 = {a,b,c, e}, XA)LUO =
{ou1,0u,0¢}, XA]Q’O = {b,d,g,h}, and XA]Q,M = {c¢,0u1,0u2}. In this example, differ-
ently from Example event ¢ is unobservable to local diagnoser 2, i.e., ¢ € iQ,UO.
Following Steps 1 and 2 of Algorithm[3.2, automata Gp, Gn,, and Gy, are computed
and can be seen in Figures [3-8(a) and [3.5(b), respectively. After Gy, and Gy,
have been obtained, it is necessary to rename their unobservable events according
to Equation 7 resulting in automata éffl and @ﬁQ that are depicted in Figures
(a) and (b), respectively. Automaton C?f, is computed by making the parallel
composition between Gﬁl and Gﬁb wn Step 8 of Algorithm and it is depicted in
Figure . Since event c is unobservable to local diagnoser 2, then language sza 8
a larger set than the language Ly, of Example where the synchronous centralized
verification is carried out. The growth of the nonfailure language for synchronous
decentralized diagnosis can be seen in automaton G N, and 1t is represented by all
observable transitions related with the gray states, that are states that do not exist
wmn Gy, and the self-loops labeled with event c.

In Step 4 of Algorithm the verifier automaton G3° is computed. The states
labeled with F of G3¢ and their related transitions can be seen in Figure|.9 Notice
that automaton G3C does not have cyclic paths satisfying condition M, and,
therefore, language L is synchronously codiagnosable with respect to Ly,, Ly, plw
Py, and Xy
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Figure 4.7: Automata G¥ and G%  of Example .

The delay bound for synchronous decentralized diagnosis can be computed using
Algorithm In order to do so, automaton G{¢ must be used as input of Algo-
rithm instead of automaton G{P. In the following example, we compute the
delay bound for synchronous decentralized diagnosis for the system G presented in

Example 4.2

Example 4.3 Consider again the system G = G1||Gy presented in Example .
The delay bound for synchronous decentralized diagnosis can be computed by using
the verifier automaton G, where its states labeled with F and their correspondent
transitions are depicted in Figure . By using Algorithm with G3° as input,
the delay bound for synchronous decentralized diagnosis is z* = 7. This result shows
that, even with the growth of the nonfailure language for synchronous decentralized
diagnosis sza with respect to language Ly,, the mazimum delay bound can be the

same for both architectures.

4.2 Synchronous decentralized failure diagnosis

In order to implement a synchronous decentralized diagnosis scheme, a local diag-
noser N}, must be constructed for each component of the system. In order to do
so, it is necessary first to construct the binary state observer Petri net, Ngo,, for
each component as described in Algorithm Then, a failure detection logic must
be attached to each Ngo,, forming the local diagnoser Nj. The failure detection
logic indicates the occurrence of the failure event when an event that is not feasible
in the current state estimate of one component is observed. Once the occurrence
of the failure event is detected, the local diagnoser sends this information to the
coordinator that informs the occurrence of the failure event to the operator of the
system. According to Lemma[4.1] the failure detection logic proposed in this work is

equivalent to verify if the observed trace is in ﬁN Thus, since P,(Ly) C [A/Na, then,
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Figure 4.9: Part of automaton G{¢ formed by the states labeled with F and their
related transitions of Example [4.2]

if L is synchronously codiagnosable, the proposed diagnoser is capable of detecting

the occurrence of a failure trace after a bounded number of observations of events.

Algorithm 4.1 Local Petri net diagnoser for synchronous decentralized diagnosis.

Input: Automata Gy, fork=1,...,r.
Output: Local Petri net diagnosers Ny, fork=1,... r.

1: Compute the Petrinets Np, = (Pp,,Tp,, Prep,, Postp,,Inp,,xop,, Yo, lso,),
fork=1,...,r, from automata Gy, according to Algorithm [3.4]

2: Compute the local Petri net diagnosers Ny, = (Py, Tk, Prey, Posty, Ing, xo , o,

lso,), as follows:

2.1: Add a place pr, to Pelri nets Np, and define Posty(ts, ,pr) = 1, for
k=1,...,r. Set xo(pr,) =0.

The procedure to perform a decentralized synchronous diagnosis scheme is pre-
sented in CABRAL and MOREIRA [83, 84], and the construction of the local diag-

nosers Ny, for k = 1,...,r, is illustrated in the following example.

Example 4.4 Consider again the system G = G1||Gs, where Gi and Gy are
depicted in Figure [{.60, We present the nonfailure behavior component models

84
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Figure 4.10: Automata G, and Gy, of Example [4.4]

Gy, and Gy, in Figure where XA]LO = {a,b,c e}, XA]LUO = {0uw,0u,07},
2270 = {b,d,g,h}, and f]gw = {c¢,0u1,0u}. The local Petri net diagnosers Ny
and Ny of the modules Gy, and Gy, are computed following Algorithm [{.1] and are
shown in Figures [{.11)(a) and [4.11}(b), respectively. The failure detection logic is
represented by transitions ty and ty,, and places pn,, Pn,, Pr, and pp,. Once an
observable event that is not feasible in the current state estimate of Gy, or Gy,
occurs, transition ty or transition ty, will be enabled and, since it is labeled with the
always occurring event, it fires indicating that the failure has been diagnosed.

Let us now consider two failure traces sy = aos(a)® and sy = acs(coyu1gghd)?,
for z € N, in order to illustrate the synchronous decentralized diagnosis. If trace s,
has been executed by the system, the first module observes the trace Py ,(s1) = aa?
and the second module observes the trace P ,(s1) = c. When the second occurrence
of event a is observed, transitions ti3 and t1 11 will fire, removing the tokens from
places p11 and p1 5, enabling transition ty, that fires, removing the token from place
pN, and adding a token to place pg,, diagnosing the occurrence of the failure event
of.

Consider now that the failure trace sy has been executed by the system. Trace
sy is observed by the first module as Py ,(s2) = ac and by the second module as
Py ,(s2) = (gghd)?. Notice that, if the system executes the failure trace sq, the
local Petri net diagnoser Ny identifies the occurrence of the failure event, after the
observation of event g. When event g is observed, transitions tq 1, tao and tyq2 fire,
removing the tokens from places pago, pa1 and pag, which enables transition ty, that
fires indicating that the failure has been diagnosed. It is important to notice that,
although the local Petri net diagnoser Na is constructed based on module Gy that
does not have the failure event modeled, Ny is necessary to diagnose the failure trace

S9.

85



-
Y 2,15

°—x ti2

Figure 4.11: Local Petri net diagnosers N; and N5 of Example [4.4

4.3 Comparison between modular diagnosability

and synchronous codiagnosability

In this section, we compare the notion of synchronous codiagnosability proposed in
Definition and the notion of modular diagnosability presented in CONTANT
et al. [59] (Definition [2.23)). In order to do so, we consider Assumptions A1-A3 pre-
sented in Section in the definition of synchronous decentralized diagnosability
in order to compare the synchronous decentralized diagnosis approach with the mod-
ular diagnosis scheme. Let us now rewrite Definition according to Lemma {4.1
where it is shown that to check if 3k € {1,2...,7} such that Py ,(st) € Pro(Ly,) is
equivalent to check if P,(st) & Ly, .

Definition 4.2 (Synchronous codiagnosability) Let Gy = |,_,Gn,, and let
Ly, denote the language generated by Gy, , fork =1,...,r, where r is the number of
system components. Then, L is said to be synchronously codiagnosable with respect
to ﬁNa, P,, and Xy if

(32 € N)(Vs € Lp)(Vst € L, ||t| > 2) = P,(st) & L, ,
where Ly, = M_1 P2, (Pro(Ln,))-

Now, let us analyze the effects of considering Assumptions A1-A3 in the syn-
chronous codiagnosability definition. According to Assumption A1, there are no
cycles of unobservable events in the system component models Gy, for k=1,... 7.
This assumption does not change Definition of synchronous codiagnosability of
L.
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According Assumption A2, all common events between two or more modules
must be observable. Notice that in the decentralized synchronous diagnosis method,
there can be common events between two or more modules that are unobservable
to all these modules, and also events that are observable to one component and
unobservable to another component. Thus, in order to consider Assumption A2 in
the decentralized synchronous diagnosis approach, we assume that if an event is ob-
servable for one module, then it is observable for all modules for which this event is
defined, and that there are no common unobservable events between modules. This
implies that the synchronization between modules is completely observable, which
leads, according to Corollaries and to the equalities ﬁNa = Ly, = P,(Ln).
Thus, under Assumption A2, Definition of synchronous codiagnosability be-
comes equal to Definition of diagnosability [14] (and equal to Definition [2.24]
of codiagnosability with ¢ = 1 [I7]). Tt is also important to notice that, as a con-
sequence of Assumption A2, a failure event cannot be modeled in more than one
component of the system.

As pointed out in Section [2.4.3] in practice, Assumption A3 excludes traces
from Lp that are known to be impossible to be executed by the system, which
implies that the failure language of the system can be replaced with language L7¢¢ C
Lp. These traces have arbitrarily long length and can be formed with events of all
modules, except events from the failure model G, for y € {1,...,r}. Moreover,
as shown in Section under Assumptions A1-A3, the condition [[t|| > z in
Definition can be replaced with ||P,,(t)|| > 2/, where the failure component
is G

with component G,. Therefore, we can conclude that, under assumptions Al-

y» since the diagnosis can be performed only by the local diagnoser associated
A3, the definitions of modular diagnosability and synchronous codiagnosability are
equal. Hence, modular diagnosability can be seen as a particular case of synchronous
decentralized diagnosability. Moreover, if the language L is modularly diagnosable
with respect to X, = U,_, %, and Xy C X, then, only local diagnoser N,, associated
with local component G, must be implemented for diagnosis.

Algorithm can be modified in order to check the modular diagnosability of
the language L. In order to do so, the failure component model G, must be identified
and the search for cyclic paths performed in Step 5 must be modified in order to
take into account only cyclic paths formed by events of G,. We formalize these

modifications in the following algorithm.

Algorithm 4.2 Modular Diagnosability Verification

Input: System modules Gy, where k = 1,...,r, failure component model G, for
ye{l,....r}, and G = ||;_,Gy.
Output: Modular diagnosability decision.
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1: Compute automaton G that models the failure behavior of G, whose marked
language is Ly = L\ Ly, according to Algorithm [71].

2: Compute automaton Gy = (Qn, XN, [n,qo) according to Algorithm [71)].
8: Compute automaton G§ = (Q% X8, fE q0) as follows:

3.1: Define function R: Xy — S8, as:

R(J):{m ifo e, (4.4)

OR, ng € 2]uo

3.2: Construct automaton GR = (Qn, XX, [ qon), with f&(qn, R(0)) =
fnlgn, o), Yan € QN and Vo € Xy.

4: Compute the verifier automaton G¥ = (Qv, v, fv,qv) = Gr||GE. Notice
that a state of G is given by qv = (qr,qR), where qr and q¥ are states of

Gr and G%, respectively, and qr = (q,q), where ¢ € Q and q, € {N, F'}.
5: Verify the existence of a cyclic path cl = (q{s/,acg,qf/ﬂ, e ,q&,aw,qg/), where

v >4 >0, in G, such that:

3j € {6,0+1,...,7} such that for some ¢,
(@ = F) A (o €5y).

If the answer is yes, then L is not modularly diagnosable. Otherwise, L 1is

modularly diagnosable.

Notice that, since in the modular diagnosis approach all unobservable events
are private events of the modules of the system, the unobservable event renaming
function R of Equation can be applied to automaton Gy instead of automata
Gn,.. In the following theorem, we present the proof of correctness of Algorithm

Theorem 4.3 L is not modularly diagnosable with respect to ¥, = Up_1X,, and
Xr C X, if, and only if, there exists a cyclic path cl = (¢, 05,65, ... LAy 0y, @)

in GM, where v > 0 > 0, such that:

Jj € {0,0+1,...,7} such that for some q{'/,
(¢l = F) A (0 €. (4.5)

Proof. According to Definition in order to verify the modular diagnosability of
the language of the system L, it is necessary to check if there exists a failure trace st
such that P,(st) & P,(Ly), and || P, ,(t)|| > 2/, where 2’ € N. In order to check the
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modular diagnosability of L, it can be verified if there exists a failure trace st such
that P, ,(st) € P} ,(L(GY)), where BfY : X — %, ,. Since the unobservable events
of G¥ are renamed, and hence, are private events of GX, it can be seen that the
verifier automaton G proposed here is equal to the verifier automaton Gy obtained
by applying the method proposed in MOREIRA et al. [71] to a system whose failure
automaton G marks Ly and the nonfailure behavior is modeled by G%. Considering
Assumption A3, the system cannot generate arbitrarily long subtraces formed with
events that do not belong to the failure automaton G,. Thus, the search for cyclic
paths in G/ must be carried out only for cyclic paths that have events of G, which

concludes the proof. [ |

Remark 4.3 Recently, an incremental method for the verification of modular di-
agnosability of DESs has been proposed [63]. The method proposed in LI et al.
[63] consists in the construction of a local verifier automaton Gy, for the failure
component G,. If the failure component is non-diagnosable, a parallel composition
is carried out between verifier Gy, and other components of the system that have

common events with Gy. In the worst case, the verifier Gy, must be composed with

all .
(r; ),k—l,Z,...,r—l,

possible combination of the remaining modules of the system. Notice that in the
method presented in this work for the verification of modular diagnosability, only one
verifier G must be computed. Since in the method proposed in LI et al. [63] several
automata must be constructed to verify modular diagnosability, and there is no way
to define previously which is the number of states and transitions of the automata
that must be computed, it is impossible to know which one of the methods is the best
one in terms of computational cost for modular diagnosability verification, i.e., the
best method for the verification of modular diagnosability in terms of computational

cost depends on each case.

In the following example, we illustrate the verification of the modular diagnos-
ability and the implementation of a local Petri net diagnoser built from Algorithm
for the the system presented in Example [2.13]

Example 4.5 Consider again the system G = G1||Gs||G3 presented in Example
where G1, Gy and G3 are depicted in Figure[{.13, and automaton G is shown
in Figure . The set of events of G1, Go and G3 are £y = 3 ,U%1, = {a,b,0¢},
Yo = 39, = {a,c,d,e}, and 3 = X3, = {a,c,d, e}, respectively, where ¥, =
Y= {os}, 1o ={a,b}, ¥, =%X1,U35,UX;3, ={a,b,c,d e}, and ¥, = {0y}
The first step to wverify the modular diagnosability according to Algorithm 18
to build automaton Gp, depicted in Figure [{.1f} In Steps 2 and 3, automaton
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(a) Automaton G4 (b) Automaton Go (c) Automaton Gs

Figure 4.12: Automata G, G5 and G35 of Example 4.5

URGTXV DL
(&
b 233 )b, e

Figure 4.13: Automaton G of Example 4.5

GE is obtained by renaming the unobservable events of Gn. We show automaton
G in Figure . Notice that, in this example, the state transition diagram of
Gy and G% are equal. In Step 4 of Algorithm the verifier automaton GM is
computed by making the parallel composition between automata Gp and G¥. Au-
tomaton G is depicted in Figure . Notice that there exists the cyclic path
((1,3,3,F;0,3,3,N),e,(1,3,3, F;0,3,3,N)) in GM with an event that does not be-
long to automaton Gy, which is the failure component model of the system, 1i.e.,
e & 3. Thus, the language generated by G, L, is modularly diagnosable with respect
to X = Up_1 X0, and Xy C X,. The fact that the system is modularly diagnosable
is guaranteed by Assumption A3 since, although the system could generate the trace
ore*, z € N, for an arbitrarily large value of z, it would contradict Assumption
A3. Thus, module G eventually will generate event b and the failure event would
be diagnosed.

Let us now ullustrate how to perform the diagnosis of the failure event oy by
using the local Petri net diagnoser Ni. By following Algorithm the local Petri
net diagnoser Ny, depicted in Figure 1s computed. If the system generates the
failure trace ore*b, where z € N, transition t,, will fire when event b is observed,
removing the token from place p1 o, which enables transition ty,. Transition ty, fires,

removing the token from place py, and adding a token to place pp,, diagnosing the

e e e
O
€ e

Figure 4.14: Automaton Gz of Example [4.5]
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Figure 4.15: Automaton G% of Example [4.5]
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Figure 4.16: Automaton G of Example .

occurrence of the failure event oy.

4.4 Final remarks

In this chapter, we generalize the notion of synchronous diagnosability to a syn-
chronous decentralized diagnosability. In order to do so, we consider that local
diagnosers based on the nonfailure models of the components of the system are
implemented locally in a decentralized architecture. The local diagnosers do not
communicate among each other and, if a local diagnoser identifies the failure occur-
rence, it sends this information to a coordinator that indicates the failure occurrence.
In this scheme, an event can be observable to a local diagnoser and unobservable
to another local diagnoser. The nonfailure language for the synchronous decen-
tralized diagnosis scheme can be a larger set than the nonfailure language for the
synchronous centralized diagnosis architecture. Thus, synchronous codiagnosability
implies synchronous diagnosability, which, ultimately implies in the diagnosability
of the language of the system.

We show that the algorithm for the verification of synchronous diagnosability can
be used to verify the synchronous codiagnosability of the language of the system.

Moreover, local Petri net diagnosers based on the nonfailure models of the system

t
a,b 1,1
P1o

lp

PNy PR

Figure 4.17: Local Petri net diagnoser N; of Example [£.5]
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components are constructed in order to implement the decentralized synchronous
diagnosis scheme. The cube assembly mechatronic system presented in Chapter
can also be diagnosed using the decentralized approach proposed in this chapter.

The synchronous decentralized diagnosis scheme presented in this chapter is com-
pared to the modular diagnosis approach presented in CONTANT et al. [59]. If we
apply all assumptions presented in CONTANT et al. [59] to the synchronous decen-
tralized diagnosis scheme, the definition of synchronous codiagnosability becomes
equal to the definition of modular diagnosability, which shows that modular diagno-
sis can be seen as a particular case of synchronous decentralized diagnosis. Moreover,
if the system is modularly diagnosable, only the local Petri net diagnoser associated
with the failure component need to be computed for failure diagnosis.

In the next chapter, we propose a modification in the local state observer Petri
nets in order to decrease the nonfailure language for synchronous diagnosis. This
modification consists in adding conditions to the observable transitions of the state
observer Petri nets that depend on the marking of the other local Petri nets. These
conditions are created based on the global nonfailure behavior model of the system,
and, since they can decrease the nonfailure language for synchronous diagnosis, we

propose the notion of conditional synchronous diagnosability of DESs.
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Chapter 5

Conditional synchronous
diagnosability of DESs

In this chapter, we propose a modification in the SPND presented in Chapter
with a view to improving the synchronous diagnosis of failure events by reducing
the augmented nonfailure language Ly,. The idea is to modify the state observers
Petri nets Ngo,, for k= 1,...,r, computed by following Algorithm 2.5 Notice that,
according to Algorithm the set of transitions of Ngo, is Tso, = TkoUT}, where
T}, corresponds to all transitions of N, that are related with observable transitions
of Gy,. In order to not allow a transition ¢ ; € T}, to fire if this transition is not
associated with a transition in the nonfailure automaton Gy, a condition must
be added to the synchronized Petri net diagnoser to avoid the incorrect firing of
tri. Moreover, if the observable event that labels ¢;; occurs, and this event is not
allowed according to the nonfailure behavior automaton Gy, the token of its input
place must be removed, indicating that the state associated with this place does not
belong to the current state estimate of the system. In the following example, we

illustrate this problem.

Example 5.1 Consider the system G = G41||Ge presented in FEzample
where the state transition diagrams of Gy, Go and G are depicted in Fig-
ures [5.4(a), [5.4(b), and respectively.  The event sets of G, Gi and Gy
are ¥ = {a,b,c,d,e,g,h,001,0u,0¢}, L1 = {a,b,c,e,0u1,0u,0¢}, and ¥y =
{b,d, g, h,0u1,0u}, respectively. In Figures and [5.4] we show automata Gy and
GE, respectively, where G% is computed by following Algorithm . Notice that the
gray states of G do not exist in automaton Gy and thus, these states and their
related observable transitions correspond to the augmented nonfailure language for
synchronous diagnosis. Now, consider the synchronized Petri net diagnoser com-
puted for system G in Example shown in Figure[5.5,

Suppose that the system has executed trace s = s'a = aceeba, where ' = aceeb.
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(a) Gy (b) G2

Figure 5.1: Automata G and G5 of Example [5.1]

After the observation of the prefiz s, the places of Np that have tokens are p1o, p1a
and paa, corresponding to the states (0,2) and (4,2) of automaton G¥. However,
only state (0,2, N) of Gn belongs to the state estimate after the observation of trace
s'. After the second observation of event a, transitions t1 2 and ty 19 fire, removing the
tokens from places p1 o and p14 and adding tokens to places p11 and p; 5. However,
state (5,2, N) do not belong to the state estimate of GNE] after the observation of
trace s, which shows the growth of the nonfailure language for synchronous diagnosis.
Since state (4,2, N) does not belong to the state estimate of G after the observation
of trace s', when the next event a is observed, the token assigned to place py 4 should
be removed and no tokens should be added to place p; 5, since this place, combined
with place pa o, corresponds to a state that does not belong to the state estimate of
Gy.

In order to avoid the marking of places that do not correspond to the state esti-
mate of automaton Gy, we can add conditions to the observable transitions of Np
that allows these transitions to fire only when a corresponding observable transition
can occur in Gy. For example, consider transition t119 of Np. This transition cor-
responds to transition (4,a,5) of automaton Gy, , depicted in Figure[5.6(a). Event
a can only occur in Gy in states (0,0,N), (0,2,N), (0,3,N), (0,4,N), (0,5,N)
(4,6,N) and (4,7,N), where only states (4,6, N) and (4,7, N) have the first coor-
dinate equal to 4. Thus, transition ty 19 can fire in Np only if place py4 has a token
and place pa ¢ or place pa7 has a token, since places p1a, pae and par correspond to
states 4 of Gn,, and states 6 and 7 of Gy,, respectively. This shows that, in this
example, the SPND can be modified in order to implement this behavior, decreasing

the augmented nonfailure language Ly, for synchronous diagnosis.

!Notice that state (5,2, N) does not even exist in the state space diagram of G .
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Figure 5.3: Automaton G of Example 5.1}
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Figure 5.4: Automaton G¥ of Example [5.1]
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Figure 5.5: Synchronized Petri net diagnoser Np of Example [5.1]

(b) GN2

Figure 5.6: Automata Gy, and Gy, of Example [5.1]
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5.1 Conditional synchronous Petri net diagnoser

As presented in Example 5.1} the SPND can be modified in order to decrease the
augmented nonfailure language for synchronous diagnosis. In order to implement
this modification, we add conditions, i.e., boolean expressions, to transitions ¢ ; €
Ty of the Petri nets Nso,, & = 1,...,r, that are associated with the marking
of the other Petri nets /\/'SO]., j=1,...,r, and k # j. If the condition is true, the
transition can fire and the state estimate of local Ngo, is updated, otherwise, we add
an output transition with the complementary boolean condition in order to remove
the token from the input place of ¢;; when the event is observed. This modification
leads to an interpreted Petri net called in this work the conditional Petri net state
observer N§p, . The conditional Petri net state observer N, , k € {1,...,r}, is
an eight-tuple N§o = (Pso,, Téo,, Preso, , Postso, » 20,50, Zk.0: Csoy, S0, ), where
S0, * Téo, = 27+ x Csp, is a labeling function that associates to each transition
in T, a set of events from 2%ko and a condition C' from Cgg,, associated with the
marking of the places of Petri nets N, , for j =1,...,r, j # k.

In the sequel, we present Algorithm for the computation of the conditional

Petri net state observers Ng, , for k=1,...,r.

Algorithm 5.1 Conditional Petri net state observers.

Input: Pelrinet state observers Nso, = (Pso,, Tso,, Preso,, Postso,, 0,50, 2k 0,

lso,), for k=1,...,r, and automaton Gy.
Output: Conditional Petri net state observers N5, = (Pso,,Téo,, Prego,
POSthk, 20,50y, ka, Csok, l§0k>, fO?" k= 1, NN

1: Let Tgok = (). Create a new transition t, for each transition Gn, = fn,(qn,,0)
defined in Gy, , where qn,,qn, € @n,, and o € Xy ,. For each transition tj,
define Prego, (pr,t) = 1, if pr. corresponds to state qu,, and Prego, (pr, t;) =
0, otherwise, and do Tglok = Tglok U {t¢}.

2: Define Tg'Ok =Ts0, U Tgvlok

3: Define Prego, : Pso, X T§o, — N and Postgy, : T§o, X Pso, — N such that

Prego, (pr, te) = Preso, (pr, te), and Postgo, (te, pr) = Postso, (tr, pr) for all
pr € Pso, and ty € Tso,, and Postgg, (5, pr) = Postgo, (th,pr) = 0, for all
ts € TSo, and pi € Pso,.

4: Define lgo, : Tso, — 2702 x Cso, as:

(Iso, (tei), Cii)s if tri € Tho U TS,
(Iso, (tri), 1), otherwise,

I50, (tri) = {
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with

o — N1 e (Ve (i) if tei € Tho (5.2)

N1V i)l if thi € Téo,

for all places p;s € Pso, such that I(ty;) and p;, correspond to states in Qn,

and Q; that are the k-th and j-th coordinales of a state qn € Qn, respeclively,
where fn(qn, o) is defined for o € lso, (tk)-

5: Define the initial marking of N§o, as 1§ 50, = To,s0,, for k=1,...,7.

Notice that, in Algorithm the conditions added to the transitions of the
Petri net state observers Nso,, k = 1,...,r, in Step 4 depend on the marking of
the other Petri net state observers Ngoj, k=yj,...,r, and 7 # k. Since the Petri
net state observers are binary Petri nets, we consider that the marking of their
places corresponds to a boolean value, i.e., in Equation , for a given place p,
if z(p) = 0 its boolean value is equal to false, and if z(p) = 1 its boolean value is
equal to true. Moreover, these conditions are created based on the global nonfailure
behavior of the system. Although the global behavior model of the system Gy need
to be computed in order to obtain the conditional state observer Petri nets N, ,
the size of N§Ok are still polynomial in the size of the system component models,
avoiding the use of the global plant model for diagnosis. In the following example,

we illustrate the construction of the conditional Petri net state observers.

Example 5.2 Consider the system G = G1|Ga, where Gi, Gy and G are de-
picted in Figures [5.1(a), [5.1(b), and respectively.  The event sets of G, Gy
and Gy are ¥ = {a,b,c,d,e,g,h,0u1,0u2,0r}, ¥1 = {a,b,c,e,00,0u,07}, and
Yo ={b,d, g, h,0u1,0u}, respectively. By using Algorithm the Petri net state
observers Nso, and Nso,, shown in Figures [5.7(a) and [5.7(b), respectively, are

computed from the nonfailure models of the components of the system Gy, and Gy,

(a) Nso,

Figure 5.7: State observer Petri nets Nso, and Ngo, of Example
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Figure 5.8: Conditional Petri net state observer N§,, of Example [5.3]

that are illustrated in Figure[5.6. In order to obtain the conditional Petri net state
observers Ngo, and N§p, following Algorithm it is necessary to add a transition
for each place of N§o, and N§p, and associate conditions to all transitions of the
Petri net state observer Nso, (resp. Nso,) that depend on the marking of the Petri
net Nso, (resp. Nso,). These conditions are obtained from the global nonfailure
behavior model of the system Gy, depicted in Figure[5.3 The conditional Petri net
state observers No, and N§p, are shown in Figures cmd respectively.

Notice that we have added transitions 15 ,, 15 4, t{ ¢, 17, 1510, and t5 15 to Nso,
and t5 o, 15 4, 156, 158, 15 10, 1512, 1514, and t5 5 to Nso,. These transitions are added
to Nso, and Nso, in order to compute the conditional Petri net state observers Ngol
and N§o, in Step 1 of Algorithm[5.1, The conditions are computed and associated
to each transition of N§o, and N§o, in Step 4 of Algorithm [5:1, All condition
predicates associated to the transitions of N§o, and N§p, are represented in Figures
and between brackets, where the logical conjunction and logical disjunction
are represented by dots and commas, respectively. The marking of the places in these
conditions is represented simply by the places. The conditions whose boolean value
18 always true are not shown in Figures and [5.9

After the conditional state observer Petri nets Nso, have been computed, the
conditional Petri net diagnoser Np . can be obtained following the steps of Algorithm

5.2

Algorithm 5.2 Conditional synchronized Petri net diagnoser.

Input: Conditional Petri net state observers N, = (Pso,,Téo,, Preso,

Postgo, , 0,50, Lko» Csoys l50,)s for k=1,...,r.
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Output: Conditional synchronized Petri net diagnoser Np. = (P§,T§, PreS,,
Postt,, Ing, 6 p, X0, Ch,15), for k=1,... 7.

1: Compute the Petri net /\/'f)k = (Pﬁk,Tf)k, Preg, , Posty, , InG, , @6 p, s Yk,0,

Csoys S0, ), where Ing, = P, xTh — {0,1} denotes the function of inhibitor

arcs, as follows:

1.1: Add to N§p, a transition ty, labeled with the always occurring event .
Define Tp, = T§o, U {ty,}-

1.2: Add to N§o, o place pn,, and define Preg, (pn,,tp) = 1. Set
x87Dk(ka) =1, and define Pp_= Pso, U {pn, }-

1.3: Define Ing, (ph,,ty,) = 1 and Inp, (pp,,tso,) = 0, Vpp, € Pp and
Vtso, € Téo, -

2: Compute the conditional synchronized Petri net diagnoser ./\/'D7C =
(Pp, Th, Preg, Post,, InG, 2§ p, Yo, Cp, 1), as follows:
2.1: Form a unique Petri net by grouping all Petri nets NBk; fork=1,...,r.

2.2: Add a place pp and define Post},(ts, ,pr) = 1, for k = 1,...,r. Set
x&p(pF) =0.

In the following, we present an example of the computation of the conditional
synchronized Petri net diagnoser Np . for the system presented in Example

that illustrates the decrease in the augmented nonfailure language for synchronous

diagnosis.
5, o9 beg h
t271 y U I
b.d,g,h
d. [pw, P1,1,DP1,2, p1,3]

rg-[PlA,pl,s]

’ D27
t 5 ° 5 3
9.[Pro.Pri Pz Pis f216 9 b,c,d, h
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D24

Figure 5.9: Conditional Petri net state observer N, of Example [5.3]
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Example 5.3 In order to compute the conditional synchronized Petri net diagnoser
Nbp.e, according to Algorithm [5.9, it is necessary to group the Petri nets Ny, and
N§02 and add a failure detection logic to indicate when the failure event has been
diagnosed when all tokens of N§o, or N§p, have been removed. Due to the lack of
space, we do not present the Petri net Np . in this work.

Now, suppose that the system has executed trace s = s'a = aceeba, where s =
aceeb. After the observation of the prefiz s', the places of N5y, and N§p, that have
tokens are p1g, p1a and paa, corresponding to states (0,2) and (4,2) of automaton
GE. However, only state (0,2, N) of Gy belongs to the state estimate after the
observation of trace s'. After the second observation of event a, transitions t1 o and
1§ 10 will fire, removing the tokens from places p1o and p14 and adding a token to
place pi1. Since the token of place p14 has been removed as a consequence of the
firing of transition t{ 1o, differently from Example place py 5 will not have tokens
after the observation of trace s, indicating that state (5,2) does not belong to the

state estimate after the observation of s.

Remark 5.1 It is important to remark that not all exceeding behavior of the non-
failure language for synchronous diagnosis Ly, with respect to P,(Ly) is removed
with the addition of conditions to the transitions of the Petri net state observers

Nso, in order to compule the conditional Petri net stale observers No, .

In the next section, we introduce the notion of conditional synchronous diagnos-

ability of DESs and present an algorithm to verify this property.

5.2 Conditional synchronous diagnosability

In the previous section, we show how conditions added to the synchronized Petri net
diagnoser transitions can decrease the nonfailure language for synchronous diagnosis
Ly,. These conditions are added with a view to avoiding the firing of an observable
transition, if these transitions are not possible in the nonfailure behavior automaton
of the system G . This modification leads to the conditional synchronized Petri net
diagnoser Np .. Since the nonfailure language for synchronous diagnosis is decreased,
it is necessary to define the notion of conditional synchronous diagnosability of DESs.
In order to do so, we first show how to model the augmented nonfailure language
for conditional synchronous diagnosis, called Ly, ., where Ly, . C Ly,.

In Chapter [3] we show that the augmented nonfailure language for synchronous
diagnosis Ly, is equal to the projection in ¥, of the generated language of automaton
GR, i.e., Ly, = PE(L(GR)). Moreover, the conditions added to Nso, in order to
obtain N§, are based on the observable transitions of G. Thus, in order to

model the nonfailure augmented language for conditional synchronous diagnosis, we
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have to erase from G% the observable transitions that do not exist in G, leading to
automaton G, whose observable generated language in 3, is P(L(GF.)) = Lu, .-
This procedure is formally described in Algorithm

Algorithm 5.3 Conditional nonfailure behavior model

Input: Automata Gy and GE.
Output: Automaton G .

1: Compute G]]f,, by eliminating the transitions fR(qR, o) = qﬁ,/, such that [(¢% ¢
Qv V (a¥ & Q)] A (0 € o) from GR.

2: Compute Gf . = Ac(GR.

In the sequel, we present an example to illustrate the computation of automaton
GY . according to Algorithm

Example 5.4 Consider automata Gy and GX depicted in Figures and
respectively. Following Algom'thm automaton Gﬁ,e 18 computed by erasing from
GE all observable transitions that do not exist in Gy and taking the accessible part
of the resulting automaton. Automaton Gﬁyc 18 shown in Figure . Notice that
all observable transitions that reach or depart from the gray states, i.e., states that

do not exist in Gy, are erased from G¥ in order to obtain G% .

As stated in Remark [5.1], even with the elimination of the observable transitions
of GE that do not exist in G, the nonfailure language for conditional synchronous
diagnosis Ly, can still be a larger set than the observable nonfailure language of
the system P,(Ly). Thus, even if the language L of a system is diagnosable, L is
not necessarily conditionally synchronously diagnosable. This leads to the following

definition of conditional synchronous diagnosability.

Definition 5.1 Let L and Ly C L denote the languages generated by G and Gy,
respectively, and let Ly = L\ Ly. Consider that the system is composed of r modules,
such that Gy = ||5_1Gn,, where Gy, is the automaton that models the nonfailure
behavior of G, and let Ly, denote the language generated by G, , for k=1,... 7.

Then, L is said to be conditionally synchronously diagnosable with respect to Ly, .
and Xy if

(3n € N)(Vs € Lg)(Vst € L, |[t] > n) =
PO(St) Q LNa,,c?

where Ly, , = PF(L(GE,)) and Gf, is computed according Algorithm .
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Figure 5.10: Automaton Gﬁ’c of Example [5.4
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Figure 5.11: Automaton G of Example [5.5

According to Definition in order to verify if the language of a system is
conditionally synchronously diagnosable, it is necessary to verify if there is an arbi-
trarily long length failure trace with the same observation as a nonfailure trace that
belongs to Ly, . Since all unobservable events of G, are particular events with
respect to automaton G, that models the failure language of the system, in order
to verify the conditional synchronous diagnosability of a system, Algorithm for
the verification of synchronous diagnosability can be used. In order to do so, instead
of using Gy = Gp||GY, it is necessary to build Gy = Gp||Gf . and search for
cyclic paths formed with states labeled with F' and events that are not renamed. If
there exists a cyclic path in G2 with these characteristics, then the system is not
conditionally synchronously dlagnosable. We illustrate the construction of Gv,c i

the following example.

Example 5.5 Consider automaton G of Example[3.9 depicted in Figure and
automaton GY . depicted in Figure . Automaton Gy = Gp||GR . is shown in
Figure . Notice that there are no cyclic paths in G‘S}E formed with states labeled
with F' and events that are not renamed. Thus, the language generated by system

G, L, is conditionally synchronously diagnosable with respect to Ly, . and Xy.

In order to prove that the conditional synchronized Petri net diagnoser Np ., ob-
tained from Algorithm [5.3] can be used for synchronous diagnosis, we first introduce
the following lemma that states that if a system is synchronous diagnosable, then it

is conditionally synchronously diagnosable.

Lemma 5.1 Let Lg be the language marked by G, which models the failure behav-
ior of the system model G = ||;_ Gy, and let Ly,, = PF(L(GE,)), where GF, is
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Figure 5.12: Verifier automaton G2 of Example
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the automaton computed by following Algorithm[5.5. Then, if L is synchronously di-
agnosable with respect to L,, P ,, Pro, k=1...,7 and Xy, then L is conditionally

synchronously diagnosable with respect to Ly, . and Xy.

Proof. The proof is straightforward and is based on the construction of automaton
GY . according to Algorithm Since G¥ . is obtained by erasing observable tran-
sitions of G¥ that do not exist in Gy and taking the accessible part of the result,
L(GR.) € L(GR)- Thus, P(L(GF,)) € PL(GR)), ie., L, € Ly, u

In the sequel, we present a theorem that ensures that the removal of observable
transitions from G by following the steps of Algorithmin order to compute G,
has the same effect as the conditions added to Np in order to obtain Np .. In other
words, the conditional synchronized Petri net diagnoser obtained from Algorithm

5.2 can be used for the conditional synchronous diagnosis of DESs.

Theorem 5.1 Let Ly be the language marked by Gr, which models the failure be-
havior of the system model G = ||;_ Gy, and let Ly, , = PF(L(GY ), where GF, is
the automaton computed by following the steps of Algorithm[5.5 Consider language
Ly = LNa’CUfF, and assume that L is conditionally synchronously diagnosable with
respect to Ly, . and Xy. Let s € Ly such that Vw € L, satisfying P,(w) = P,(s),
w € Lp. Then, the number of tokens in place pr of Np., after the observation of

trace P,(s), is one.

Proof. Notice that, in Chapter [3 it is shown that the synchronous Petri net
diagnoser Ngo, provides the state estimate of the nonfailure behavior of the system
modules Gy, . Thus, the synchronized Petri net diagnoser Np provides the state
estimate of automaton G%. In order to compute Gﬁc, the observable transitions
of G related to states that do not exist in Gy are erased, according to Algorithm
(.3l Now, consider the conditions associated with the transitions of the Petri nets
N§p, according to Algorithm and that the conditional Petri net diagnoser Np .
is formed by grouping Petri nets NSC‘Ow k =1,...,r according to Algorithm
Notice that according to Step 4 of Algorithm [5.1] if an event o,, that labels an
enabled transition t,,; € T,,, is observed for a given marking of Np, tx; will fire
only if there exists a combination of its input place p;; with the places of the Petri
nets Ngoj that have tokens, for j = 1,...,r and j # k, corresponding to a state of
G that also have o, active. Otherwise, transition tf; € T, will fire, removing
the token from py;, which corresponds to erasing an observable transition from
GR that do not exist in automaton Gy. Thus, the Petri net NVp . provides the
state estimate of automaton Gﬁc and, according to Definition , if the system
executed an unambiguous trace s, P,(s) € Ly, .. Therefore, if the system executes

an unambiguous failure trace, at least one conditional Petri net state observer N, ,
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ke {1,...,r}, will lose all its tokens, enabling transition ty, that fires, adding a
token to place pp. [ |

Remark 5.2 It is important to notice that Ly, . can be a smaller set than Ly, . This
fact shows that systems that are not synchronously diagnosable can be conditionally
synchronously diagnosable, or the delay bound for conditional synchronous diagnosis
can be smaller than the delay bound for synchronous diagnosis.

A relation between all notions of synchronous diagnosability and synchronous
codiagnosability presented in this work can be stated by using the relation between
the nonfailure augmented languages Ly, ., Ly, and ﬁNa. Since P,(Ly) C Ly,, C
Ly, C ﬁN[L, the synchronous codiagnosablity implies the synchronous diagnosability,
that implies the conditional synchronous diagnosability of L, which ultimately implies
the diagnosability of L.

In the sequel, we present an example that shows that a system can be not

synchronously diagnosable and be conditionally synchronously diagnosable.

Example 5.6 Consider the system G = G1||Ga, where G1 and Go are depicted in
Figures [5.13(a), [5.13(b), respectively. The set of events of Gy and Gy are Iy =
{a,c,e,g9,0.,} and o = {e, h,04,0u2,0¢}, respectively, where 1, = {a,c,e, g},
Yoo = {e,h}, 1w = {0u}, Bouwe = {0u,0u2,0¢}, and oy is the failure event.
Automaton G is shown in Figure[5.1{] Notice that automata Gy and G are equal,
except for the marked states and the labels N and F. We show automaton G& in
Figure [5.15 It can be seen that the language L is not synchronously diagnosable
with respect to Ln,, Ln,, Py,, P53, Pios Pao, and Xy. In order to see this fact,
consider that the system has executed the failure trace s = horeh(eh)?, for z € N.
Notice that, in GE, trace hauR2€h(auRth)Z has the same observation in X,, and,
consequently, the system G is not synchronously diagnosable.

Now, consider automaton Gﬁc computed from Algorithm shown in Figure
. Notice that there are no traces in G, with the same observation as trace
s = hoseh(eh)?. In fact, L is conditionally synchronously diagnosable with respect
to L, and Xy. This example shows that if we refine the synchronous diagnosis by
using more information regarding the nonfailure automaton model G, systems that

are not synchronously diagnosable can be conditionally synchronously diagnosable.

5.3 Conditional synchronized Petri net diagnoser

for an automated system

Consider again the system G, = Gu||Gh, presented in Section B.5] The set of

events of Gy and G, are Y4 = {a1,a2, Cron, Coff, Qpes Qde, Clon, dc} and Xy, =
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Figure 5.15: Automaton G% of Example .
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Figure 5.16: Automaton G, of Example

{@pes Adp, Siy Cay App, Qac, 05}, Tespectively, where Xy, , = {a1, az, Cron, Coffy ae,s Clon, de}
and Ypy o = {aap, Si, Ca, age} are the sets of observable events of G, and Gy, and
Yebuo = {ape} and Xpyuo = {ape, app, ¢} are the sets of unobservable events of
Gq and Gy, respectively. The sets of events, observable events, and unobservable
events of the plant are, respectively, X, = X U Xpy, 2po = Xebo U Xy, and
Ypuo = Lebuo U Lhuuo- I Section we have presented how a synchronized Petri
net diagnoser Np  is obtained for G, and how the synchronous diagnosis is carried
out. Now, let us consider the conditional synchronous diagnosis of G),. Before the
construction of the conditional synchronous Petri net diagnoser N Dp,.c for the system
Gy, it is necessary to verify if the language generated by G, Ly, is conditionally syn-
chronously diagnosable. Since L, is synchronously diagnosable, then, according to
Remark L, is also conditionally synchronously diagnosable, and the conditional
synchronous Petri net diagnoser Np, . can be constructed.

According to Algorithm [5.2] the conditional synchronous Petri net diagnoser
NDM is computed and it is shown in Figure . It can be seen that in ./\/’Dp,c, in
order to a transition to fire, it is necessary that the transition is enabled, the system
executes the event that labels the transition and its associated condition is true. In
Table we show the meaning of the conditions associated to the transitions of
N, D,.c» Obtained from the nonfailure automaton behavior model of the system G, .
In order to simplify the notation, in Table [5.1] each place represent its marking.
The conditions whose boolean value is always true are not represented in Np_ .

Let us now show how the conditional synchronous diagnosis is carried out by

using NDP’C. Suppose that the failure trace s = a1¢ro,Coff0 f@apSiQapCaSiaqc has been
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executed by the system. After the observation of trace aicroncofroraqpsi, the places
Pcs» Peys PH5» and py, have tokens. When event a4, is observed again, transitions ;6
and t5 ¢ will fire, removing the tokens of places pg, and pg,, which enables transition
ts,, that fires, diagnosing the occurrence of the failure event. Notice that, after the
observation of trace ajcronCofs0sagys; the condition [C5] = [peg] of transition 5
is true, since place pc, does not have a token. This happens because, in Gy, , the
unique state that has the second coordinate equal to H, and event ag, is active is
state (Cs, Hy) of G,. Thus, after the observation of trace aicronCoffofaaps;, only
event asy is possible in the conditional nonfailure behavior of the system and, since
event ag, is executed, the failure is diagnosed.

It is important to notice that, in Section , the Petri net diagnoser Np, is
computed and the same failure trace s = a1cronCoff0 £adpSiAapCaSiade 18 considered
in order to illustrate the synchronous diagnosis using Np,. In order to facilitate the
comparison, in Figure We show the Petri net diagnoser Np, computed in Section
B.5] If the system executes trace s, the failure event oy is diagnosed using diagnoser
Nbp,, only after the observation of event aq.. Thus, for this system, considering the
same failure trace s, by using diagnoser Np, it is necessary that the system executes
three more events in order to Np, diagnose the failure event o; when compared
to diagnoser Np .. Moreover, for the same failure trace, in Np,, the failure is
diagnosed after the firing of transition ¢y while in Np, ., the occurrence of oy is
diagnosed after the firing of transition ¢4,. More details about the implementation
of Np, . can be found in MOTA VERAS [66].

The delay bound for conditional synchronous diagnosis of the system G, can be
computed according to Algorithm using the verifier G‘S/fz instead of G{P. The
delay bound for conditional synchronous diagnosis is z* = 12, which corresponds to
the delay bound for monolithic diagnosis of the system G,. The delay bound for
synchronous diagnosis of system G, obtained in Section is equal to 15. Notice
that, by using the conditional synchronous diagnosis scheme, we have achieved, in
this example, the same value for the delay bound than using the monolithic diagnosis

approach.

5.4 Final remarks

In this chapter, we propose a refinement in the synchronous diagnosis scheme by
adding conditions to the synchronized Petri net diagnoser transitions. These con-
ditions are based on the nonfailure global behavior model of the system. We show
that, with this refinement, the augmented nonfailure language of the system for
synchronous diagnosis can be decreased, which implies that systems that are not

synchronously diagnosable can be conditionally synchronously diagnosable, and that
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Table 5.1: Conditions that label the transitions of the Petri net N Dyp.c-

Condition Meaning
[Cl] [pH07pH9]
[02] [pH17pH27pH3]
[Cs] [p]

[04] [pC47p057pC()-apC7]
[C5] [pc]

[%] [pcsa?pClo?pCu]
[C1] [P, Do)

[ [Pi, P, P
[Cs] [Pr]

[C4] [Pc: P Pes ey
[C5] [Pcs]

[Cs] PGy -PCro-Pey]

even if the system is synchronously diagnosable, it is possible to improve the failure
diagnosis by reducing the delay bound for diagnosis by adding the conditions in the
Petri net diagnoser. A method to verify the conditional synchronous diagnosabil-
ity, based on the synchronous diagnosability verifier presented in Chapter |3 is also

presented.
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Chapter 6
Conclusion and future research topics

In this work, a synchronous Petri net diagnoser (SPND) for discrete event systems
modeled as automata is proposed. The SPND provides the state estimate of the
nonfailure behavior of the component models of the system after the observation of
a trace. In general, this state estimate constitutes a larger set than the state estimate
of the nonfailure behavior of the composed system. Thus, the notion of synchronous
diagnosability is presented and an algorithm to verify this property is proposed. We
show that a system can be diagnosable and not synchronously diagnosable. Although
the verifier automaton used to verify the synchronous diagnosability has exponential
growth in the number of system components, it can be computed offline and, if
the system is synchronously diagnosable, the SPND can be implemented. Since
the construction of the global plant model for synchronous diagnosis is avoided,
the SPND has polynomial computational complexity with the number of system
components. Since the nonfailure language for synchronous diagnosis can be a larger
set than the nonfailure language of the system, we also propose a method for the
computation of the maximum delay bound for synchronous diagnosis based on the
method proposed in TOMOLA et al. [77].

Moreover, we extend the notion of synchronous diagnosability to a decentralized
setting using a scheme similar to the one presented in protocol 3 of DEBOUK et al.
[17]. In order to do so, we implement a local Petri net diagnoser associated with each
local component of the system. Since in this diagnosis scheme the observation is
decentralized, a local observable event can be unobservable to another site. We have
shown that, because of this fact, a system can be synchronously diagnosable and not
synchronously codiagnosable. However, if a system is synchronously codiagnosable,
it is synchronously diagnosable and, ultimately, diagnosable. We also show that
the modular diagnosis scheme presented in CONTANT et al. [59] can be seen as a
particular case of the synchronous decentralized diagnosis proposed in this work.

A modification of the SPND based on the nonfailure behavior model of the global

system in order to refine the synchronous diagnosis is also proposed. This modifi-
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cation relies on the addition of conditions to the synchronous Petri net diagnoser
transitions. We show that such modification can decrease the observed nonfailure
language for synchronous diagnosis, leading to the notion of conditional synchronous
diagnosability. Since the nonfailure language considered for conditional synchronous
diagnosis can be a smaller set that the nonfailure language for synchronous diagnosis,
systems that are not synchronously diagnosable can be conditionally synchronously
diagnosable. Moreover, for systems that are both synchronously diagnosable and
conditionally synchronously diagnosable, the delay bound for the diagnosis of the
failure event can be decreased when the conditional synchronous diagnosis scheme
is used.

In the sequel, we summarize the main contributions of this work.

e A new failure diagnosis scheme based on the observation of the nonfailure
models of the components of the system, called synchronous diagnosis, is pro-

posed.

e The synchronous diagnosis does not use the global plant model for diagnosis,

reducing the computational cost for diagnosis of DESs modeled as automata.

e The notion of synchronous diagnosability and a method for the verification of

this property are proposed.

e An algorithm for the computation of the maximum delay bound for syn-

chronous diagnosis is proposed.

e The synchronous diagnosis scheme is extended to a decentralized setting, lead-

ing to the notion of synchronous codiagnosability.
e A method for the verification of synchronous codiagnosability is presented.

e A comparison between modular diagnosis and decentralized synchronous di-
agnosis is presented, where we have shown that the modular diagnosis is a

particular case of the synchronous decentralized diagnosis scheme.

e The synchronous diagnosis is refined, and the notion of conditional syn-

chronous diagnosability is presented.

e A method for the verification of conditional synchronous diagnosability of

DESs is proposed.

e Practical implementations of all diagnosis schemes presented in this work were

carried out, validating the methods for the diagnosis of a manufacturing plant.
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Since, in this work, a new diagnosis scheme for DESs is proposed, there are

several research topics that can be developed based on the results presented in this

thesis. In the sequel, we present possible research topics that can be carried out

from this work.

(7)

(iid)

The conditional synchronous diagnosis scheme can be generalized to a dis-
tributed implementation. In this setting, local Petri net diagnosers can be
constructed for each component of the system and be connected through a
communication network. The observation of events and local state estimates
can be used in order to refine the diagnosis decision based on the global non-
failure behavior model of the system. In order to do so, different network
architectures can be considered and communication protocols must be devel-

oped.

Depending on the system, the construction of local Petri nets associated with
some components are not necessary for the synchronous diagnosis. The compu-
tational complexity of the synchronous diagnoser can be decreased by searching
for the components of the system that are strictly necessary for the diagnosis

of the failure event.

If different sets of components can be used for synchronous diagnosis, differ-
ent criteria can be established in order to support the choice of which set of
components is more appropriate for synchronous diagnosis or decentralized

synchronous diagnosis.

All results presented in this thesis have been published or submitted for publi-

cation. In the sequel, we present the contributions related to this work.

(7)

Online fault diagnosis of modular discrete-event systems [73].
Failure diagnosability of modular discrete-event systems [85].

Algorithms for the verification of synchronous diagnosability and computation

of the delay bound for diagnosis of modular discrete event systems [86].
Conditional synchronized diagnoser for modular discrete-event systems [87].
Synchronous Codiagnosability of Modular Discrete-Event Systems [83].

“Polynomial Time Verification of Decentralized Diagnosability of Discrete
Event Systems” vs. “Decentralized Failure Diagnosis of Discrete Event Sys-
tems™ A Critical Appraisal [27].
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(vit) Robust Disjunctive-Codiagnosability of Discrete-Event Systems Against Per-

manent Loss of Observations [77].

(viii) Synchronous Diagnosis of Discrete-Event Systems - Submitted for publication
[74).

(iz) Synchronous codiagnosability of discrete-event systems - Submitted for publi-
cation [84].
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