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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

O PODER DOS CAMINHOS QUASE MAIS CURTOS E O IMPACTO DA

MOBILIDADE DOS NÓS EM REDES DINÂMICAS

Dianne Scherly Varela de Medeiros

Setembro/2017

Orientador: Miguel Elias Mitre Campista

Programa: Engenharia Elétrica

O objetivo desta tese é investigar três aspectos importantes das redes dinâmicas:

o impacto da mobilidade dos nós na transmissão de dados em múltiplos saltos, o

efeito do uso de caminhos mais longos na importância relativa dos nós, e o de-

sempenho da rede na presença de falha em nós centrais. Para analisar o primeiro

aspecto, este trabalho propõe a (κ, λ)-vizinhança, que estende a vizinhança tradi-

cional para considerar como vizinhos nós a múltiplos saltos de distância e restringe

o estabelecimento de enlaces de acordo com a velocidade relativa entre os nós. Essa

proposta é usada posteriormente no desenvolvimento de três estratégias de encam-

inhamento. A restrição de velocidade relativa imposta nessas estratégias resulta

em uma redução significativa do consumo de recursos, sem que ocorra impacto sig-

nificativo na taxa média de entrega de pacotes. Para analisar o segundo aspecto,

propõe-se a centralidade de intermediação ρ-geodésica, que usa caminhos mais cur-

tos e quase mais curtos para quantificar a importância relativa dos nos. Os caminhos

quase mais curtos são limitados por um fator de espalhamento ρ. O uso de caminhos

não-ótimos provoca o reranqueamento de diversos nós e tem como principal efeito

uma menor ocupação de posições mais centrais por pontos de articulação. Por fim,

o desempenho da rede em presença de falha é investigado através de simulações nas

quais as falhas atingem nós definidos como os mais centrais de acordo com métricas

de centralidade distintas. O resultado é uma redução brusca da vazão média da

rede, independentemente da métrica usada para determinar quais são os nós mais

centrais. O grande trunfo da métrica proposta é que, apesar da severa redução na

vazão, é grande a probabilidade de manter a rede conectada após a falha, uma vez

que é pouco provável que um nó em falha nas posições mais centrais seja também

um ponto de articulação.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

THE POWER OF QUASI-SHORTEST PATHS AND THE IMPACT OF NODE

MOBILITY ON DYNAMIC NETWORKS

Dianne Scherly Varela de Medeiros

September/2017

Advisor: Miguel Elias Mitre Campista

Department: Electrical Engineering

The objective of this thesis is to investigate three important aspects of dynamic

networks: the impact of node mobility on multihop data transmission, the effect of

the use of longer paths on the relative importance of nodes and the performance of

the network in the presence of failure on central nodes. To analyze the first aspect,

this work proposes the (κ, λ)-vicinity, which extends the traditional vicinity to con-

sider as neighbors nodes at multihop distance and restricts the link establishment

according to the relative speed between nodes. This proposal is used later on the

development of three forwarding strategies. The relative speed restriction imposed

on these strategies results in significant reduction of resources consumption, with-

out incurring significant impact on the average packet delivery ratio. To analyze the

second aspect, we propose the ρ-geodesic betweenness centrality, which uses shortest

and quasi -shortest paths to quantify the relative importance of a node. The quasi -

shortest paths are limited by a spreadness factor, ρ. The use of non-optimal paths

causes the reranking of several nodes and its main effect is a reduced occupation of

the most central positions by articulation points. Lastly, the network performenace

in presence of failures is investigated through simulations, in which failures happen

on nodes defined as the most central according to distinct centrality metrics. The

result is a severe reduction of the average network throughput, and it is indepen-

dent of the metric used to determine which nodes are the most central. The major

strength of the proposed metric, then, is that, despite the severe reduction of the

throughput, there is a high probability of maintaining the network connected after

a failure, because it is unlikely that a failing node in the most central position is

also an articulation point.
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Chapter 1

Introduction

Network science is an ascending interdisciplinary field that gained much importance

in the last few decades [1]. It is applied to the study of several topics in different re-

search areas, such as physics, biology, sociology, economics and engineering, covering

a wide range of networks, e.g., trading, semantic, information, terrorist, social, com-

puter, genetic, infrastructure, and protein networks, among many others. Thanks

to network science, researchers are able to better understand the interactions and

associations among network elements, so that they can discover the fundamental

principles that govern the network behavior, structure and functionalities [1]. As

a consequence, network science allows researchers to model real world phenomena,

such as the spread of viruses and the “rich gets richer” effect, or even determine the

role of each element within the network. To this end, it is necessary to use several

tools, such as graph theory, data mining, inferential modeling, and social structures.

As a final step, network science provides the necessary knowledge to control or, at

least, predict the behavior of real systems [2].

Real systems are usually put together under the domain of complex networks,

which are characterized by an irregular and complex structure that dynamically

evolves over time [2]. In addition, they represent systems with thousands or millions

of nodes, such as neural, genetic, transportation, vehicular, computer, electrical,

and telecommunications networks, as well as the Internet and the World Wide Web,

among many others [2]. Nowadays, people that study such networks are mainly

interested in understanding their dynamical behavior. Particularly, researchers aim

to investigate how the network structure (i.e., network topology) affects the system

properties over time. The performance of wireless networks, for instance, is strongly

governed by the network structure. Such networks remain in spotlight even after

years of extensive investigation, because new challenges frequently arise.

The dynamics of wireless networks structure is related to two properties: the

link quality and the node mobility. The latter is intrinsic to dynamic networks,

which are characterized for being prone to frequent topology changes. The result
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is the removal and addition of link as nodes move around, causing intermittent

connectivity. The link quality can change the network structure even when nodes

cannot move, as in static networks. This happens because any modification on the

network surroundings, such as weather fluctuations, can improve or degrade the link

quality, consequently changing the link state. Hence, to study the influence of the

network structure on system properties, we need to analyze both dynamic and static

networks.

In this thesis we focus on Vehicular Ad Hoc Networks (VANETs), which are a

special case of wireless networks, where node mobility can be very intense. Nev-

ertheless, we also use static networks, derived from social and randomly generated

networks. The dynamic nature of VANETs adds even more challenges to the wire-

less paradigm. Handling mobility in such networks remains an open research issue,

especially when communications occur through multiple hops. Multihop commu-

nications are jeopardized by a number of obstacles, such as the ability of nodes to

move around and the intra-flow interference. As a consequence, these networks of-

ten face intermittent connectivity, lack of end-to-end paths, and frequent changes of

intermediary nodes on a path, preventing efficient data transfers [3].

what action the node should perform with the packet, for instance, it could

instantly forward it or drop it if no neighbors are within its radio range.

Routing in VANETs cannot be designed as in static wireless networks, because,

in the latter, lack of end-to-end paths is transitory. In VANETs, there is a high

probability of not having a fully connected network and, consequently, end-to-end

paths can be rare. Therefore, nodes need to have information about their surround-

ings to decide the action they should perform on the packet, e.g., drop it or forward

it to the next hop. To make this decision, nodes need to know how to make the

most of contact opportunities. When developing routing protocols for VANETs, it

is also important to consider that in these networks, there is a reach of interest that

depends on the application, i.e., communication happens between nodes within a

region and, usually, it does not involve nodes in distant areas of a city. The perfor-

mance of multihop communications in such scenarios is highly dependent of nodes

ability to establish efficient routes according to the current network conditions [4].

Researchers tackle this problem by proposing prediction mechanisms to anticipate

contact availability [5] and disruption [6].

Network science also provides tools to discover the roles played by nodes within

the networks. To this end, it is necessary to evaluate nodes relative importance,

improving the decision making process. For instance, based on the acquired knowl-

edge one can find nodes that play the role of brokers and decide to prevent their

failure and protect them from attacks at any cost. This is because brokers are re-

sponsible for everything that travels between two communities and a failure on such
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nodes can interrupt the flow between these communities. In computer networks, a

broker is a bridge, and the communities could be two different Local Area Networks

(LANs). Many flows are processed by the broker, thus, one could decide to install

flow analyzers on such nodes. Hence, important nodes are good candidates to run a

number of control functions, or to help with content dissemination [7–9], depending

on their roles within the network. Such important nodes are also said to be central

nodes and we use both terms interchangeably in this thesis.

The definition of central node may change from one application to the other and

the identification of central nodes is not trivial, particularly in large and dynamic

networks. This identification is fundamental in several networks [10–14]. The most

usual metrics to assess node importance according to its structural position in the

network are the centrality metrics [15–17]. There are plenty of them and some will

be discussed in this thesis. Meanwhile, it is only necessary to know that the main

centrality metrics are degree, closeness, betweenness and eigenvector centralities.

The other existing centralities are usually variants based on them. The degree cen-

trality relates to how popular a node is. The closeness centrality is related to how

quickly a flow can spread from a node to all other nodes in the network, i.e., a

node with high closeness is close to all other nodes in the network. The eigenvec-

tor centrality relates to how well connected a node is, so that a node is important

if its acquaintances are also important. Lastly, the betweenness centrality relates

the importance of a node with the number of shortest paths (geodesics) it belongs

to [15]. Nodes that play the role of brokers have high betweenness, because they

are in-between many other nodes (along the shortest path). Hence, they can control

when and what flows between other pairs of nodes, if it flows along shortest paths.

Investigating the structural importance of nodes in both dynamic and static net-

works is fundamental to make better decisions. Particularly, in dynamic networks,

network science can also help to provide insights on the influence of node mobility, so

that we can maximize the exploitation of contact opportunities. We investigate both

aspects in this thesis. In the following section we highlight our specific objectives.

1.1 Objectives

In this thesis, we investigate the influence of the network structure on the system

behavior. More specifically, we study how this structure affects (i) data forwarding

and (ii) nodes relative importance. We also (iii) introduce an analysis that focuses

on network resilience. To this end, we use dynamic wireless networks, but we also

rely on static networks to lay the basis of our analysis. Hence, the objectives of this

work are three-fold:
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1. To investigate the impact of node mobility on the establishment of multihop

communications, through the analysis of node vicinity;

2. To analyze the influence of longer paths on the assessment of node centrality;

and

3. To verify the impact of single failures of the most central nodes on the network

performance when flows follow shortest paths.

The vicinity analysis is essential for vehicular networking, because it allows a

better comprehension of contact opportunities. The idea is to maximize the com-

municability between pairs of vehicles, i.e., increase the number of opportunities

to successfully transfer data. This is important if vehicle-to-vehicle communications

are used to extend the communication range of a vehicle. For instance, in drive assis-

tant applications it is necessary that vehicles have an extended horizon of awareness,

beyond their local surroundings. This is only possible if vehicles can communicate

successfully with other vehicles at multihop distances. There is a limit, however,

for the necessary reachability of the communication. Depending on the application,

there is no need for a vehicle in the south of a city to communicate with a group

of vehicles in the north of the same city. In addition, considering other types of

applications, such as entertainment (or infotainment), it is necessary to maximize

data transfer between vehicles, which also requires to study and deeply understand

the behavior of contact opportunities. Several studies concerning mobility patterns

and connectivity in Mobile Ad Hoc Networks (MANETs) already exist and many of

them are compiled in several surveys [18–23]. Efforts are also made to address these

issues in VANETs and solutions have already been proposed to partially overcome

the intermittent connectivity problem [5, 6, 24–26]. Other works analyze contact

opportunities through the study of node vicinity [27–29]. Typically, a contact hap-

pens when two nodes are within mutual radio range, restricting node vicinity to

directly reachable nodes. This restriction is not detrimental to a number of appli-

cations for which the 1-hop vicinity is sufficient, such as the detection of congestion

in urban scenarios [30]. Nevertheless, applications that rely on the communication

between nodes separated by longer hop distances waste several contact opportuni-

ties due to the vicinity restriction. Besides that, node vicinity changes frequently

due to the intense node mobility. Phe-Neau et al. [31, 32] use an unusual approach

to exploit contact opportunities. They extend the concept of node vicinity in terms

of hops to also consider nodes reachable at longer distances. The resulting extended

vicinity incorporates nodes even if they are out of mutual radio range and, as a

consequence, nodes find more contact opportunities, through multihop contacts.

We know, however, that VANETs suffer with intermittent connectivity, notably in

multihop communications.
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In this work, we analyze contact opportunities, taking into account the rela-

tionship between nodes extended vicinity and their relative speeds. The goal is to

quantitatively evaluate the expected notion of “better connectivity at lower relative

speeds” to shed more light into multihop communications in typical vehicular sce-

narios. To this end, we propose a methodology to group nodes according to their

relative speeds, i.e., we consider links only between nodes at a certain interval of

relative speeds. This restriction can influence the contact duration, but it helps to

identify conditions for multihop communications, which in a broader sense, depend

on whether opportunistic contacts appear for long enough to be considered useful.

We first (i) study the influence of nodes’ relative speed on the vicinity behavior.

Then, we (ii) further extend the concept of node vicinity to also include nodes’ rela-

tive speed. We consider that relative speeds are more suitable than absolute speeds

because they determine contact duration. The idea is to identify the feasibility of

multihop communications in typical vehicular scenarios. We also (iii) analyze the

usefulness of such communications through the investigation of how much data a

node could transfer to its peer during the available contact duration. Finally, (iv)

we propose and evaluate simple forwarding mechanisms that use the outcomes of

the vicinity analysis.

In addition to the vicinity analysis, a new rationale behind the definition of node

centrality is also proposed in this thesis. Centrality metrics are used to determine

the importance of a node to the network. The focus is on the betweenness centrality

because it finds nodes that can potentially intermediate more flows between other

nodes in the network. Note that, in network science, “flow” is a broad term that can

represent anything that travels across a network, such as packets, gossips, electrical

or chemical signals, vehicles, among other entities. Thus, its definition will depend

on the type of network studied. For instance, if we analyze a computer network, a

flow will represent packets exchanged between communicating nodes. Such networks

can benefit from the traditional concept of betweenness, which uses shortest paths to

determine node importance. In computer networks, e.g., it can be used to estimate

the monitoring and control capabilities of a node [33], to design protocols to elect

nodes as cluster heads [34], to detect the location of vulnerabilities in a network [34],

to design routing protocols in delay tolerant [10, 16, 35, 36] and wireless sensor [37]

networks, among other applications.

Several works question the use of shortest paths as the sole parameter to quantify

the importance of nodes [38–42]. We also question this approach and we argue that

it may underestimate important nodes — in particular, those in the close vicinity

of shortest paths but that do not belong to them. This happens when a node

that falls on many paths slightly longer than the shortest path is ignored by the

betweenness centrality. We inquire why these nodes are neglected, if they are good
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candidates, in practice, to maintain the network connected in case of failure of

more important nodes, or to reduce the load on such nodes. Hence, we propose

a weighted betweenness centrality, the ρ-geodesic betweenness, which extends the

traditional betweenness proposed by Freeman [43] to also consider slightly longer

paths when assessing node importance. Such paths are defined herein as quasi -

shortest paths. In a nutshell, the ρ-geodesic betweenness of a node υk is computed

using the proportion of shortest and quasi -shortest paths that υk falls on between

all possible pairs of nodes in the network. This proportion is weighted by the ratio

between the cost of the shortest path connecting a pair of nodes and the cost of the

quasi -shortest path between the same pair of nodes passing through υk. The search

for quasi -shortest paths is limited by a parameter ρ, which defines the maximum

extra path cost that the proposed ρ-geodesic betweenness can take into account. We

show in this thesis that a small ρ is enough to capture well the idea of quasi -shortest

paths while keeping the computational load low. The metric proposed in this work

can be used as part of the modelling of situations where the management of flows

try to escape from the common-sense, aiming to avoid unwanted consequences that

are expected to happen.

We evaluate the proposed metric by comparing it with other existing between-

ness centrality metrics. We (i) verify if the metrics are capable of pinpointing nodes

that should receive a different value for their centralities compared with the tradi-

tional betweenness. This means that the set of most central nodes can change from

one metric to the other. The nodes that improve their position in the rank can be

more suitable to be used, depending on the application. Then, we (ii) compare the

coefficient of concordance of the rankings obtained for each metric and (iii) investi-

gate if they can break ties between nodes classified in the same position. The goal is

to verify if the metrics are measuring similar characteristics to determine the node

ranking and to find if the metrics can provide a broadened ranking, which widens

the number of options to choose from a more fine-grained node ranking. Following,

we (iv) verify the influence of the parameter ρ on the variation of node positioning

on the rank. Then we (v) analyze the behavior of the rank over time to verify the

impact of the metric on the ability to intermediate paths. Finally, we study the

performance of a dynamic network in presence of single failure. To this end, we (vi)

evaluate the number of critical nodes elected as the most central by each centrality

metric. Then, we consider a shortest-path-based packet forwarding strategy to (vii)

analyze the impact on the network throughput when a failure happens on nodes

classified by each metric as the most central, when flows follow shortest paths.
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1.2 Contributions

The contributions of this work are summarized hereafter.

1. We study the effect of network structure and node mobility on multihop com-

munications and on the evaluation of node centrality. We identify the im-

portance of quantifying the influence of relative speeds on communications in

multihop networks, and the need for a betweenness metric that better cap-

tures the importance of nodes that participate on paths slightly longer than

the shortest one.

2. We propose an extended definition of node vicinity to include both nodes

at multihop distances from an ego node (central node in the vicinity) and

their relative speeds, instead of only focusing on the node adjacent vicinity.

Moreover, we propose the ρ-geodesic betweenness, a weighted centrality metric

that better evaluates the importance of nodes that do not necessarily fall

on shortest paths but frequently participate in paths almost as short as the

shortest ones;

3. We characterize the extended vicinity in three distinct scenarios, to analyze its

behavior under distinct conditions, such as varied node density, and we ana-

lyze the usefulness of a contact opportunity to transfer large files, which could

be required by entertainment applications in VANETs. Then, we demon-

strate through simulations that we can potentially reduce network resource

consumption, without reducing the average packet delivery ratio, using the

relation between relative speeds, hop distance, and contact duration to make

forwarding decisions;

4. We characterize the proposed ρ-geodesic betweenness centrality and we analyze

the connectivity of a dynamic network through a comparative investigation,

where we verify the number of critical nodes in central positions and the impact

on network throughput when central nodes fail and flows follow shortest paths.

These contributions are reported in the following papers, in order of publication:

• “Uma avaliação da Influência da Velocidade dos Nós no Estabelecimento de

Caminhos em Redes Ad Hoc Veiculares”, accepted in the Simpósio Brasileiro

de Redes de Computadores e Sistemas Distribúıdos (SBRC 2015);

• “Intermediação por Espalhamento: Caminhos Quase Mais Curtos Também

Importam”, accepted in the Simpósio Brasileiro de Redes de Computadores e

Sistemas Distribúıdos (SBRC 2016);

7



• “Weighted Betweenness for Multipath Networks”, accepted in the Global In-

formation Infrastructure and Networking Symposium (GIIS 2016);

• “Eficiência dos Caminhos Quase Mais Curtos em Redes Dinâmicas”, accepted

in the Simpósio Brasileiro de Redes de Computadores e Sistemas Distribúıdos

(SBRC 2017);

• “The Power of Quasi-Shortest Paths: ρ-Geodesic Betweenness”, accepted in

the IEEE Transactions on Network Science and Engineering (TNSE 2017);

In the case scenarios studied in this work, results considering different radio

ranges confirm that, indeed, the best contact opportunities happen at few hop dis-

tances and low relative speeds. Nevertheless, we found that a significant number of

useful contacts can happen even between nodes at high relative speeds, separated

by multihop distances. Even in such conditions, we show that nodes can transfer

MB-size messages according to the contact duration. Besides more general results,

we also observe that contacts with longer duration become less frequent for rela-

tive speeds higher than 40 km/h and most likely happen between nodes less than 3

hops away, in sparser scenarios. On the other hand, even considering lower relative

speeds, results show that contacts between nodes separated by more than 6 hops

are not frequent. We also note that high relative speeds can potentially degrade

the number of useful contacts more severely than the hop distance. Finally, com-

paring our forwarding strategies with the Optimized Link State Routing Protocol

(OLSR) [44], we show that it is possible to reduce the waste of resources, without

decreasing the average packet delivery ratio, if we restrict multihop communications

considering the relation between the reachability of nodes and their relative speeds.

This happens even when the forwarding decision only takes into account local infor-

mation. Although the OLSR is not the most suitable routing protocol for VANETs,

we use it because in the current state of the work, we need a routing protocol for

wireless networks that has information about the global network structure.

The vicinity of a node must also include relative speeds both in more theoretical

evaluations and in practical settings [21], and the results obtained herein can be used

as a step forward to develop more sophisticated message dissemination schemes in

vehicular networks. All these results are discussed in our technical report “Impact

of Relative Speed on Node Vicinity Dynamics in VANETs” [45], submitted to the

Wireless Networks Journal (Springer).

The comparisons between our proposed centrality metric and other related met-

rics showed that the ρ-geodesic betweenness can rerank several nodes, even though

it is strongly correlated to the traditional definition of betweenness, already using

low values for the spreadness factor ρ. It is also useful to provide a wider range
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of rank positions, presenting a more fine-grained classification. Yet, the ρ-geodesic

betweenness reduces the number of resources reallocations, when node centrality is

used to place such resources. In addition, our metric is able to keep nodes on the

same rank position for longer time spans in networks with dynamic topology. The

number of articulation points elected by the ρ-geodesic betweenness as the most

central nodes are always less or equal than the number elected by other betweenness

centralities. In a network where flows follow shortest paths, the throughput suffers

a great reduction when a central node fails, which is similar to all the metrics. Even

though the throughput is reduced, the probability that the network is split into sev-

eral connected components is also reduced when failures happen on the most central

nodes elected by our metric.

1.3 Organization

We organize this work as follows. We first introduce in Chapter 2 some definitions

necessary to lay the basis of our work. Chapter 3 describes and characterizes the

datasets used in this thesis. We then proceed to our first analysis, in Chapter 4,

where we propose an extension of node vicinity and a methodology to analyze it.

Chapter 5 discusses the results of our vicinity study, including the analysis of three

proposed forwarding schemes based on our results. Following we begin our second

analysis, starting with Chapter 6, where we propose a novel weighted betweenness

centrality metric. Chapter 7 presents the characterization of the proposed metric

and discusses some possible applications. Finally, Chapter 8 concludes this work

and presents future research directions.
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Chapter 2

Network Model, Concepts and

Definitions

In this chapter, we explain the network model and we formalize the main definitions

and concepts necessary to establish the basis of this work.

2.1 Network model

We consider that networks can be modelled as weighted graphs, G = (V , E ,W). The

set of vertices V contais all nodes in the network, and the set of edges E comprises

all links between nodes in V . Each edge has a cost that belongs to the set of

weights W . Two neighbor nodes υi and υj are connected by an edge εi,j whose

cost is ωi,j ∈ R∗+. The edge εj,i automatically exists if the graph is undirected (or

symmetric). Otherwise, it will exist only if υj is also neighbor of υi, in which case

we say the graph is directed (or asymmetric). The graph G is connected if all nodes

in V are reachable, and not connected, otherwise. If all nodes are reachable, it is

certain that there exists an edge between each and every pair of adjacent nodes.

Connectivity is further discussed in Section 2.4.

We further consider that each node υi can move at speed ~si, where {|~si| ∈
R+ | smin ≤ |~si| < smax}, and smin and smax are the minimum and the maximum

absolute speeds allowed, respectively. The relative speed of nodes υi and υj is, thus,

given by ~ri,j = ~si − ~sj, where | ~ri,j| = |~si − ~sj| and | ~ri,j| ∈ [0, 2× smax]. For the sake

of simplicity, we use the notation si and ri,j to represent, respectively, |~si| and | ~ri,j|,
whenever possible.

We can divide the set of all relative speeds into m consecutive subsets, in which

each relative speed ri,j ∈
⋃m−1
κ=0 Rκ, ∀υi, υj ∈ V , where Rκ = [κ × sδ, (κ + 1) × sδ[

and sδ = 2×smax
m

. In this case, we can group all pairs of nodes υi, υj with ri,j ∈
Rκ in a subset of nodes V(Rκ) ⊆ V . Consequently, we can obtain the subgraph
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GRκ(V(Rκ), E(Rκ)) ⊆ G(V , E), where E(Rκ) is the set of existing links connecting

adjacent nodes in GRκ with ri,j ∈ Rκ. Thus, although two adjacent nodes υi, υj may

be included in V(Rκ) due to their relative speed, a link connecting them will only

exist in E(Rκ) if ri,j ∈ Rκ and they are within mutual radio range. Otherwise, υi, υj

may still be mutually reachable if they are interconnected by a sequence of adjacent

links between pairs of nodes also in V(Rκ). Hence, according to our definition, if

υi, υk, υw, υj are in V(Rκ), and if {ri,k, rw,j} ∈ Rκ, then there is a link between υi, υk

and another between υw, υj. A path from υi to υj will exist in GRκ only if rk,w ∈ Rκ.

As a corollary, if m = 1, all relative speeds are within the same subset R0 =

[0, sδ[= [0, 2 × smax[. Analogously to relative speeds, we divide the set of absolute

speeds into consecutive subsets, represented by Sκ.

2.2 Paths and costs

A path p1,L between source υ1 and destination υL is an ordered sequence of distinct

nodes in which any consecutive pair of nodes is connected by a link. A path does

not contain any loops and any change in the sequence of nodes, either by switching

or by shifting a node, originates a new path. We denote the length of path p1,L as

λ1,L = L− 1, with L ∈ N∗. The cost of this path is denoted by δ1,L, with δ1,L ∈ R∗+,

and it is given by the sum of the individual costs of all links composing the path.

The shortest path p∗1,L between υ1 and υL is the one with the smallest cost,

denoted by δ∗1,L. This path is also known in the literature as the least cost path.

In this work, we use both shortest path and least cost path interchangeably. We

also consider, without loss of generality, the number of hops as the cost of a path,

such that δ1,L = λ1,L and, as a consequence, δ1,L ∈ N∗. In this case, the cost of

the shortest path is given by δ∗1,L = λ∗1,L. Note that more than one shortest path

(geodesic) may exist between the same pair of nodes. We denote the number of

shortest paths between υi, υj as n∗i,j. Yet, we denote the number of shortest paths

between υi, υj passing through υk as n∗i,j(υk).

2.3 Taking nodes on quasi-shortest-path into ac-

count

In some networks, flows do not follow shortest paths. In other networks, it is inter-

esting to have other paths that are a little bit longer. In a computer network, for

instance, the use of shortest paths can lead to the overload of nodes on such paths.

We could reduce this load by splitting the flow between alternative paths. Ideally,

these paths will be as short as the shortest one, and we will be able to increase the
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Figure 2.1: The shortest path between υi and υj is λ∗i,j = 3 hops long. If ρ = 1, the
quasi -shortest path of length λ∗i,j = 4 through υk can be considered too.

overall communication throughput and end-to-end cost. Nevertheless, occasionally,

another shortest path is not available, but many other paths are. We could, then,

use a slightly longer path to reduce the load on the shortest path, at the cost of

a small increase on the end-to-end cost. Very long paths, however, have low or

none contribution to the network operation and should not be used [41]. Hence,

we introduce two conjugated concepts to consider such important alternative paths

when analyzing a network.

Definition 1. Spreadness: The spreadness ρ is the maximum tolerable difference

between the costs δ1,L and δ∗1,L, i.e., ρ = δ1,L − δ∗1,L, with ρ ∈ R+.

Definition 2. Quasi -shortest path: The quasi-shortest path is a path p1,L for

which δ1,L − δ∗1,L ≤ ρ, where ρ is the spreadness factor.

The quasi -shortest path is the most important concept of this work. The idea

behind it is illustrated in Figure 2.1, where ρ = 1. Such quasi -shortest paths are

able to increase the importance of nodes that are ignored or underestimated when

we consider only the shortest paths – this is the case, for example, of node υk (that

does not fall on any shortest paths). Nevertheless, this node is very close to all

shortest paths between both sides of the network, as represented by nodes υi and

υj, respectively. Paths going through υk differ from the shortest path by only one

hop. Note that more than one quasi -shortest path with the same cost can exist

between two nodes and more than one of these paths can pass through the same

intermediary node. Therefore, we represent the number of quasi -shortest paths

between υi, υj as ni,j and, among those, the ones passing through υk as ni,j(υk).

The spreadness ρ defines the extra cost we can add to the shortest path and,

as a consequence, it determines the maximum cost of the quasi -shortest path. This

limitation avoids the explosion of the number of possible paths. Although we defined

ρ ∈ R+, in this work we consider the number of hops as cost metric and, thus, ρ ∈ N.

The spreadness limits the search depth to look only for quasi -shortest paths that

are slightly longer than the shortest path. The idea is based on the fact that the
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throughput of information traveling through paths for which δ1,L � δ∗1,L is expected

to be low [40]. Note that if ρ = 0, δ1,L = δ∗1,L, and only the shortest paths are

considered.

2.4 Connectivity and articulation points

The use of graphs can reveal interesting properties from networks, such as network

connectivity. A network is connected if there is at least one path between all pairs of

nodes, and it is bi-connected if there are at least two node-disjoint paths between all

pairs of nodes. The path redundancy present in bi-connected networks excludes the

possibility of finding nodes that can split the network into one or more connected

components in case of failure. Nodes that can potentially disconnect the network are

said to be articulation points and they represent critical vulnerabilities. Formally,

υa is an articulation point if there exist two nodes υi, υj ∈ V with υi 6= υj 6= υa and

υi 6= υa, such that υa is part of all paths pi,j.

2.5 Node vicinity

The typical vicinity of node υi is composed of directly reachable nodes, i.e., all nodes

υj ∈ V within mutual radio range of υi. In this work, we refer to the central node

of the vicinity, υi, also as the “ego node”. When any node υj is within mutual

range with υi, the link εi,j exists and we say that nodes υi, υj are in contact. Hence,

all nodes υj in υi’s vicinity are in contact with υi. Using the typical definition of

node vicinity, a fraction of nodes can remain nearby the ego node without ever

entering mutual radio range. As a consequence, the ego has a limited view of

its contact opportunities. Additionally, nodes can frequently enter and exit the

mutual radio range, which incurs several vicinity changes over time. Phe-neau et

al. [31, 32] extend the concept of contact to consider also nodes reachable via multiple

hops. Consequently, they also extend the concept of vicinity, incorporating nodes

even if they are out of mutual radio range. Therefore, nodes can potentially find

more contact opportunities. The relative speed of nodes can greatly influence these

opportunities, because it determines the link existence and contact duration [45],

which is equal to the path duration. Hence, we extend the vicinity proposed by

Phe-neau et al. to also consider the relative speed of nodes.

Definition 3. (κ, λ)-vicinity: The (κ, λ)-vicinity of a node υi ∈ GRκ is the set of

all nodes also in GRκ for which the shortest path from υi is λ hops long at most.

The vicinity of a node υi ∈ GRκ can be characterized only by parameters κ and λ,

where λ defines the maximum number of hops from υi, while κ defines the range of
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(a) Vehicles υi, υj , and υk moving at speeds,
si, sj , and sk, respectively.
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vk

vj

(0, 1)-vicinity

(0, 2)-vicinity

GR0

(b) GR0
, (0, 1)- and (0, 2)-vicinity of node υi.

Figure 2.2: Definition of υi’s (κ, λ)-vicinity, disregarding vehicles relative speeds
(m = 1). Subgraph GR0 coincides with G, including all nodes in the network.

relative speeds considered and, consequently, which subgraph must be used. Hence,

nodes in GRκ may not belong to the same (κ, λ)-vicinity of υi, according to the

number of hops (λ) of the shortest path interconnecting them.

Figure 2.2(a) depicts a network of nodes moving at speeds within [0, 45 km/h]

(arrows starting at nodes indicate their absolute speed). In this figure, nodes υi, υj,

and υk move, respectively, at absolute speeds si, sj, and sk, where si ∈ [0, 15 km/h[,

sj ∈ [15, 30 km/h[, and sk ∈ [30, 45 km/h]. If m = 1, the relative speed between

all pairs of nodes in the network lies within R0 = [0, 90 km/h]. Thus, all nodes are

within the (0, λ)-vicinity of υi. Figure 2.2(b) shows υi’s (0, 1)- and (0, 2)-vicinity,

and the subgraph GR0 obtained from the subset V(R0). Note that with m = 1,

V(R0) = V . Hence, all the links connecting nodes in the network do exist and can

be used to compute paths. As a consequence, GR0 = G and the delimitation of υi’s

vicinity does not change according to the different relative speeds, similarly to [32].

If we consider m = 3, we have three different subsets of relative speeds: R0 =

[0, 30 km/h[, R1 = [30, 60 km/h[, and R2 = [60, 90 km/h]. In this case, we can

separate the pairs of nodes within V in subsets, according to their relative speeds:

V(R0), V(R1), and V(R2). From these subsets we obtain the subgraphs illustrated

in Figure 2.3, GR0 , GR1 , and GR2 . Note that, we can compute the shortest paths to

obtain the (κ, λ)-vicinity of node υi only after finding GRκ .

Figure 2.3(a) shows GR0 and the (0, 1)- and (0, 2)-vicinity of υi. We observe

that although the (0, 2)-vicinity includes all nodes in the (0, 1)-vicinity, it does not

include all nodes in GR0 . Therefore, υi requires more than two hops to reach a node

which is not in its (0, 2)-vicinity. In the worst case, no paths connecting υi to these

nodes exist in GR0 , which means that λ → ∞ for the subset V(R0). Figures 2.3(b)

and 2.3(c) show, respectively, the (1, 1)- and (1, 2)-vicinity, and the (2, 1)- and (2, 2)-

vicinity of node υi, as well as GR1 and GR2 .
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(a) GR0 , and (0, 1)- and (0, 2)-vicinity.
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(b) GR1 , and (1, 1)- and (1, 2)-vicinity.
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(c) GR2 , and (2, 1)- and (2, 2)-vicinity.

Figure 2.3: Example of GRκ for nodes with relative speed in Rκ, the links connecting
them, and the (κ, λ)-vicinity of node υi.

2.6 State of a node

Each node υi in direct contact with a peer node υj in GRκ is considered to be in

State σ, where σ = 1. If they need one more node υk ∈ GRκ to reach each other,

than υi, υj are in State 2. If no path exists between them in GRκ , this pair of nodes

is in State ∞, which only represents the absence of intermediary nodes in the same

GRκ to set up a path between υi and υj. This does not necessarily mean that υi and

υj are out of reach, because they can be in contact in another GRκ . Hence, we can

define the state of a node as follows.

Definition 4. State σ: The state of a node corresponds to the shortest hop distance

connecting it to another node.

Note that, as the state of a node depends, in fact, of the distance to a peer node,

each node can be in more than one state simultaneously, depending on how many

peers it has.

The definition of node state is important to analyze transition probabilities be-

tween the states, according to the following model. We model the vicinity dynamics

of a node pair as a continuous time Markovian process. This means that the current

markovian state summarizes the past history of the process [46] and the transition to

another state can happen at any instant of time. The memoryless aspect of this pro-

cess implies that the duration of each state follows an exponential distribution and
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each modification is independent of the sampled time. Thus, we maintain our anal-

ysis agnostic to the duration of a given state to be independent of the time sampling

frequency of events. These properties are convenient since we are most interested in

capturing the vicinity changes of nodes at different relative speeds. Hence, in our

model, for a given pair of nodes υi, υj, the hop distance between them in a given

epoch e is represented by a random variable Xe
i,j, which is stored in a State σ. Each

pair υi, υj may change its state only once per epoch e and the number of states is

equal to the maximum number of hops interconnecting a pair of nodes plus the State

∞. The current State σ of a node is independent of previous states. Consequently,

if υi and υj are λ-hops distant in e, there is a probability that the distance between

them will be d in e+1. Hence, we have that pab = P(Xe+1
ij : σ = b | Xe

ij : σ = a) ≥ 0.

2.7 Vicinity timeline

The vicinity timeline is a pairwise component of the vicinity analysis and it can be

defined as follows.

Definition 5. (κ, λ)-vicinity timeline: The (κ, λ)-vicinity timeline of a pair of

nodes in GRκ is the sequence of states for the pair of nodes in analysis, overtime.

Each entry in the vicinity timeline is an event represented by a tuple

〈ti, tf , υi, υj, λ, ri,j〉, where ti and tf are the initial and final instants of time of the

event, υi, υj is the pair of nodes, λ is the shortest hop distance between them, and

ri,j is their relative speed. State ∞ is represented by λ = 0 in the (κ, λ)-vicinity

timeline. Time intervals are atomic, i.e., there is no other event in the whole timeline

starting or finishing at an instant of time t, where ti < t < tf . This is important

to better understand concurrent events. The state transitions in the (κ, λ)-vicinity

of the node is stored in such timelines, allowing to determine the state transition

probabilities, which details how nodes move relative to each other.

Table 2.1 summarizes the notation described in this chapter, in order of appear-

ance, to facilitate future reference.
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Table 2.1: Summarized notation used in this work.

Notation Comment
V Set of vertices
E Set of edges
ωi,j Cost of edge between nodes i and j
υi Node i
εi,j Edge between nodes i and j
~si or si Absolute speed of node i
~ri,j or ri,j Relative speed between nodes i and j
Rκ Range of relative speeds
κ Index of relative speed range
V(Rκ) Set of nodes moving at relative speeds within Rκ
E(Rκ) Set of edges between nodes moving at relative speeds within Rκ
GRκ

Subgraph of nodes moving at relative speeds within Rκ
Sκ Range of absolute speeds
pi,j Path between nodes i and j
λi,j Hop distance between two nodes, i.e., the path length
δi,j Cost of the path between nodes i an j
p∗i,j Shortest path between nodes i and j

δ∗i,j Cost of the shortest path between nodes i and j

λ∗i,j Length of the shortest path between two nodes

n∗i,j Number of shortest paths between nodes i and j

n∗i,j(υk) Number of shortest paths between nodes i and j passing through node k

ρ Spreadness factor
ni,j Number of quasi -shortest paths between nodes i and j
ni,j(υk) Number of quasi -shortest paths between nodes i and j passing through node k
σ State of a node
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Chapter 3

Datasets Description and

Characterization

In this work, we use different datasets available on the Internet, as well as several

randomly generated static networks. Three of the publicly available datasets rep-

resent dynamic networks, and they are used for the vicinity analysis proposed in

Chapter 4. The remaining four are static networks and we use them to assess the

centrality metric proposed in Chapter 6, as well as the randomly generated static

networks and snapshots from one of the dynamic network datasets. We organize

this chapter in three sections, where we discuss the datasets separately, according

to the type of network they represent.

3.1 Dynamic network datasets

In our analyses, we use three different dynamic network datasets, which are summa-

rized in Table 3.1: Mobility Dataset [47], Ad Hoc City Dataset [48], and TAPAS-

Cologne Dataset [49]. They represent, respectively, medium, sparse and high density

urban scenarios. Each one of them is generated by capturing vehicle mobility, which

Table 3.1: Dynamic network datasets main characteristics.

Feature
Mobility Ad Hoc City TAPASCologne

Dataset [47] Dataset [48] Project [49]
Type of trace Real Real Hybrid
Location method GPS GPS –
Number of vehicles 536 1,200 121,140
Type of vehicle Taxi Bus Car
Total duration 30 days 30 days 2 hours
Sampling frequency 1 sample / 10 seconds 525 samples / 1 day 1 sample / 1 second
Analyzed period 1 day 1 day 10 minutes
Location San Francisco, CA – USA Seattle, WA – USA Cologne – Germany
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(a) Taxi scenario.
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(b) Bus scenario.
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(c) Synthetic scenario.

Figure 3.1: Normalized frequency of updates in each scenario. We divide the cities
in small areas of 100 × 100 m2 and we analyze the sampled period of each dataset.
We consider that areas where we can find frequent updates are also denser areas.
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can be plotted to obtain the city map for each scenario, as shown in Figure 3.1. This

figure represents, in fact, a heatmap of the normalized frequency of updates in small

areas of 100 × 100 m2 for each dataset. We normalize the values by the highest

frequency in each scenario, considering the sampled period. The color range shows

that the more frequent the updates, the more dark red the area. Frequent updates

can happen in an area due to the number of updates sent by a set of vehicles or

due to the number of vehicles sending updates. Knowing that vehicles periodically

send updates, we consider that an area with frequent updates much likely has sev-

eral nodes. Hence, we can infer that the frequency of updates is directly related

to the density of vehicles in the area. It is important to observe that each dataset

represents distinct scenarios, where different types of vehicles move across the cities,

with a diversified range of absolute speeds. To characterize the scenarios in relation

to these speeds, we plot the Cumulative Distribution Function (CDF) of absolute

speeds for each dataset, as shown in Figure 3.2. We discuss the characterization of

each scenario in the following subsections.

(a) Taxi scenario. (b) Bus scenario.

(c) Synthetic scenario.

Figure 3.2: Cumulative distribution function of absolute speeds for each scenario.
(c) Cars in the synthetic scenario register the highest absolute speeds, followed by
the (a) taxis and the (b) buses. The latter registers the highest number of very low
absolute speeds and the most uniform distribution among the analyzed datasets.

20



3.1.1 Mobility Dataset: Taxi scenario

The Mobility Dataset [47] represents the movement of 536 taxis in San Francisco,

California – USA, over 30 days. In fact, the dataset also involves part of the outskirts

of San Francisco. Taxi location is obtained through GPS and updates are sent each

10 seconds. Update events are represented by a tuple 〈lat, long, o flag, t〉, where lat

and long are the latitude and longitude of the vehicle, o flag is the occupancy flag

for the taxi (not used in this work), and t is the event time. Note that the existence

of periodic updates does not necessarily mean that every taxi send its location at

the end of each period. From the provided 30-day dataset, we analyze 1 day.

Figure 3.1(a) shows the normalized frequency of updates for the Taxi scenario,

considering the analyzed 1-day trace. We observe that, although taxis do not have

predefined routes or time schedules, updates are more frequent in the northern area

of the city, which is the city center, according to Google Maps. We also note that

a great number of updates are sent by vehicles traveling through a specific route to

the south, which leads to the city airport, according to Google Maps. We observe

some very straight lines in this figure that do not match any existing roads in reality.

This happens as a consequence of lack of periodic updates for each and every taxi in

the scenario, which leads to approximation errors related to the taxi position, when

computing the absolute speeds.

Figure 3.2(a) shows the CDF of absolute speeds for the Taxi scenario. We observe

that 1% of the absolute speeds is equal to 0 km/h and almost 30% of the absolute

speeds lie within [0, 4 km/h]. Such percentage of very low absolute speeds can be

a consequence of waiting for passengers at taxi stands, in addition to stops due to

traffic lights and street intersections. Traffic jam also contributes to this percentage

and its presence in this scenario is highly plausible, as approximately 90% of the

registered absolute speeds lie within [0, 45 km/h].

3.1.2 Ad Hoc City Dataset: Bus scenario

The Ad Hoc City Dataset [48] registers the mobility of the fleet of city buses in

Seattle, WA – USA, over 30 days. GPS devices are embedded in 1,200 buses and

location information is updated 525 times per day for each bus. Events are repre-

sented by tuples of the type 〈d, t, υi, rt, x, y〉, where d is the day for that event, t

is the event time, υi is the bus identification, rt is the route followed by the vehi-

cle and x, y are the Cartesian coordinates for the vehicle position. Each bus sends

consecutive updates at different time intervals. In average, we should expect one

update for each bus at, approximately, each 3 min. The following characterization

refers to 1 day from the 30-day dataset.

In the Bus scenario, we expect to find less vehicles distributed across the city
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when compared to the Taxi scenario. We further expect that buses have predefined

routes and time schedules. Similarly to the Taxi scenario, we plot the heatmap

for the frequency of updates in each region of 100 × 100 m2. Figure 3.1(b) shows

the resulting map. We observe that frequent updates are concentrated on a small

region, which is the city center, according to Google Maps, where we believe the bus

density is higher.

Figure 3.2(b) shows the CDF of absolute speeds for the chosen day. We observe

that approximately 30% of the absolute speeds in this scenario are equal to 0 km/h,

indicating that buses stop more than taxis. Indeed, this is expected because, besides

the influence of traffic jams, the number of bus stops in the city is usually higher

than the number of taxi stands. In addition, the time spent to pick up passengers at

bus stations is usually higher than at taxi stands. Yet, the number of buses parked

at the bus garage but that continue to send location updates can also influence the

CDF, resulting in a great percentage of null absolute speeds. Similarly to the Taxi

scenario, 90% of the registered absolute speeds lie within [0, 45 km/h].

3.1.3 TAPASCologne Dataset: Cologne synthetic scenario

The TAPASCologne Dataset [49] was produced by the Institute of Transportation

Systems at the German Aerospace Center (ITS-DLR). The goal is to model the

car traffic in Cologne city, Germany, with the highest possible level of accuracy

compared to the real traffic. The dataset is a hybrid model, built with a set of tools

to simulate vehicular mobility, such as the software Simulation of Urban Mobility

(SUMO) and the Travel and Activity Patterns Simulation (TAPAS) methodology,

among others. Location updates are sent each 1 second, but not by every single car.

Each update event is represented by a tuple 〈t, υi, x, y, si〉, where t is the event time,

υi is the vehicle identification, x, y are the Cartesian coordinates for the position,

and si is the absolute speed. In this work we refer to this scenario, interchangeably,

as Synthetic or Cologne scenario.

The complete dataset covers an area of approximately 400 km2 and comprises

more than 700,000 individual trips of regular people cars during a 24-hour period.

Routes and time schedules are not predefined, although they usually follow a pattern

for each person, and very high absolute speeds are registered due to the presence of

highways crossing the city. At the time the analysis in this work was carried out,

the TAPASCologne project provided a 2-hour subset of the dataset. We divide this

dataset in smaller subsets to find the one with the least number of vehicles. The

goal is to ensure timely convergence of our analyses. Hence, we select the first 10

minutes, with almost 9,000 vehicles. Analogously to the Taxi and Bus scenarios, in

Figure 3.1(c) we plot the frequency of updates for the Synthetic scenario, and we
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observe that updates are frequent in several areas of the city.

Figure 3.2(c) shows the CDF of absolute speeds in the 10-minute subset trace.

Absolute speeds are more distributed compared to the other traces and we find

significant number of registers with high absolute speed. Approximately 10% of

absolute speeds are equal to 0 km/h and 30% lie within [0, 40 km/h]. Further, 90%

of the registered speeds are under 100 km/h. This indicates that cars tend to move

faster than buses and taxis, which is expected. The presence of a wide range of

absolute speeds in this dataset, achieving speeds higher than 200 km/h, is probably

a consequence of the coexistence, in the same scenario, of roads and streets with

different achievable speeds, including unlimited speed highways (autobahns).

3.2 Static network datasets

In addition to the dynamic datasets, we use snapshots from the Cologne synthetic

dataset, and three more static datasets derived from social networks. All of them

have distinct characteristics and they are summarized in Table 3.2. Figure 3.3

shows the graph obtained from each static dataset, and one snapshot sample from

the Cologne dataset. In this illustration, the importance of the node is depicted ac-

cording to its topological position. The scheme goes as follows: smaller nodes have

smaller traditional betweenness, hence, the less flows they intermediate using short-

est paths (geodesics); more reddish nodes have lower degree, hence, they have fewer

neighbors; more bluish nodes have higher degree, hence, they have more neighbors.

We further use several randomly generated static networks, which are discussed in

a separate section at the end of this chapter.

3.2.1 Freeman’s EIES

The Freeman’s EIES dataset presents the communication relationships between peo-

ple in a group of 32 academics [50] interested in interdisciplinary research. The data

consists of all messages sent plus acquaintance relationships. The graph of relation-

ships provided by this dataset is shown in Figure 3.3(a). A directed edge between

Table 3.2: Static network datasets main characteristics.

Feature
Freeman’s Doubtful Sound PhD Cologne
EIES [50] Dolphins [51] Students [52] snapshots [49]

Number of nodes 32 62 1,025 1,584–1,916
Number of edges 460 159 1,043 1,573–2,044
Symmetry Asymmetric Symmetric Asymmetric Symmetric
Density 0.464 0.084 0.001 0.001
Number of samples 1 1 1 10
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two nodes [υi, υj] exists only if υi has sent a message to υj, totaling 460 links, with

a density of 0.464. Note that only few nodes in this dataset have high traditional

betweenness, and they are also the nodes with highest degree (large bluish nodes).

Although we can also find few nodes with high degree and low traditional between-

ness (small bluish nodes), degree and traditional betweenness are closely related,

i.e., nodes with high traditional betweenness tend to have high degree.

3.2.2 Doubtful Sound Dolphins

The Dolphins dataset provides the association relationship between 62 dolphins

in Doubtful Sound, New Zealand [51]. Each node corresponds to a dolphin and

the interaction between them is represented by an undirected edge, totaling 159

links. The density of this network is 0.084 and the graph provided by the frequent

associations between dolphins is shown in Figure 3.3(b). In this figure, we observe

several nodes with high traditional betweenness and average degree (large purplish

nodes).

3.2.3 PhD Students

The PhD Students dataset is a very low density network (0.001) representing the

relationships between 1,025 PhD students and advisors [52]. This is a directed

network, where a link exists from υi to υj only if υi is the supervisor of υj, totaling

1,043 links. The graph obtained from these relationships is shown in Figure 3.3(c).

We observe that this network has a peculiar structure, where many nodes behave

as islands (i.e., roots) to which many other leaf nodes are attached. This is an

important characteristic that must be remembered when analyzing the centrality of

nodes in this network. We can spot a single node with high degree (bluish node),

and the majority of nodes have low traditional betweenness (small nodes).

3.2.4 Snapshots from the TAPASCologne dataset

We use 10 samples of the original dataset presented in Subsection 3.1.3, containing

from 1,584 to 1,916 nodes and from 1,573 to 2,044 undirected links, depending on the

snapshot sample. Snapshots with more nodes do not necessarily have more edges,

and vice-versa. Each node in this network represents a vehicle and an edge exists

between them if they are less than 50 meters away from each other. The density

of all samples is 0.001 and one of the sample graphs obtained from this dataset is

shown in Figure 3.3(d). We observe, in this figure, that the majority of nodes are put

together in small groups, in which nodes have low traditional betweenness and low

degree (small reddish nodes). We also note other larger components, among which
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(a) Freeman. (b) Dolphins.

(c) PhD Sutdents. (d) Cologne #1.

Figure 3.3: The visualization of the network topology provided by each dataset
highlights the differences between them. The traditional betweenness is represented
in the node size while the degree, in the node color, such that larger nodes have
higher traditional betweenness and more bluish nodes have higher degree.

we can easily spot the giant component and few very well connected components.

The giant component is composed by several nodes with high betweenness and low

degree (large reddish nodes), whereas the well-connected components are composed

by nodes with high degree and low betweenness (bluish small nodes).
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(a) α = 1.5 (b) α = 2.0 (c) α = 2.5

(d) α = 3.0 (e) α = 3.5 (f) α = 4.0

(g) α = 4.5 (h) Star, |V | = 100

Figure 3.4: Comparison between a star network and sample random networks with
power law degree distribution for different α. All networks have 100 nodes and it is
clear that the structure of the network changes with α, becoming more similar to a
star as α increases.

3.2.5 Randomly generated static network datasets

In addition to the datasets described in Section 3.2, we use several random static

networks. The randomly generated networks share two characteristics: they all

have 100 nodes and they are scale-free, i.e., they follow, approximately, a power-law

degree distribution (P ∝ degree(υi)
−α). We choose such distribution because it is

widely known in the literature that most real networks are scale-free [53].

We use Python’s NetworkX 1.10 module to generate the random scale-free static

networks. This module implements several graph generators, among which we find

the Barabási-Albert [54], Holme-Kim [55], and Havel-Hakimi [56, 57] algorithms.

The first one generates scale-free graphs with scaling factor α ≈ 3 [53]. The second is

essentially an extension of the Barabási-Albert algorithm with a tunable clustering

coefficient that allows achieving higher clustering. The third is able to construct

simple graphs given a valid degree sequence. Hence, if the input is a power-law

sequence, the resulting simple graph will be scale-free.

We want to use scale-free networks with several scaling factors. Thus, we can-
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not use the Barabási-Albert nor the Holme-Kim algorithms, because they produce

networks with α very close to 3. In addition, we want connected simple graphs,

i.e., networks where there is at least one path between any pair of nodes and that

do not have multiple edges between adjacent nodes. Hence, the Havel-Hakimi algo-

rithm perfectly fits our purpose. We arbitrarily choose a number of nodes equal to

100 and, using the Havel-Hakimi algorithm, we timely generate 326 undirected and

connected simple graphs with scaling factor 1.5 ≤ α ≤ 4.9 (step of 0.1). Outside

this range, the algorithm was not able to timely generate graphs that comply with

our restrictions: simple, connected, and undirected.

We tried to generate at least 10 graphs for each α but, for some scaling factors,

it takes too long to find random graphs that comply with our restrictions. Hence,

we generated 10 graphs for each scaling factor within 1.5 and 4.6, and only 2 graphs

for each α ∈ {4.7, 4.8, 4.9}. Note that increasing α means that many more nodes

will have very low degree. This is the reason why it is hard to find connected simple

graphs for α ≥ 4.7. Particularly, the Havel-Hakimi algorithm originates star-like

graphs for higher α. This effect is shown in Figure 3.4, where the corresponding

star graph is depicted in Figure 3.4(h) for comparison. In Figure 3.4, nodes are

colored by degree, and node size represents the traditional betweenness, similarly to

Figure 3.3. Nodes are also grouped by degree in each radial axis. The nodes with

highest traditional betweenness in these graphs also have high degree (large bluish

nodes). Even though we did not achieve a very wide range of scaling factors, we can

use the obtained networks in our analysis without loss of realism. This is possible

because researchers claim that for most real networks α falls approximately between

2 and 3 [53, 58]. Hence, in the following chapters we only show the results obtained

this range of scaling factor.
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Part I

Multihop Communications in

Dynamic Networks
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Chapter 4

Multihop Network Connectivity

This chapter discusses the problematic of node mobility on the establishment of

multihop paths on wireless dynamic networks, presenting related works. It also

describes the analysis proposed to investigate node vicinity behavior, aiming to

maximize the exploitation of contact opportunities.

4.1 Background

The characterization of mobility patterns in wireless networks remains an open re-

search issue. This is particularly true for challenged networks, where contact infor-

mation is not known a priori and there is no infrastructure to provide connectivity.

A good example of such scenario is Vehicular Ad Hoc Networks (VANETs) [59],

especially if they rely only on Vehicle-to-Vehicle (V2V) communications. VANETs

are highly dynamic and the intense node mobility contributes to the intermittent

connectivity and lack of end-to-end paths. This can hinder communications during

contact opportunities, increasing the difficulty to achieve efficient data transfer [3].

Several studies concerning mobility patterns and connectivity in VANETs already

exist and many of them are compiled in a large number of surveys [18–23]. These

works are valuable to provide better insights on routing protocol development for

message dissemination in networks with intermittent connectivity.

The main premise of routing protocols designed for static wireless networks is

that lack of end-to-end paths are transitory. In dynamic networks, where nodes

present intense mobility, this assumption may not be valid, as the probability of

not having a connected network is high. In such environments, it is important to

know when contact opportunities happen, how long they last and how large the

available bandwidth during contact is. Routing protocols designed for dynamic

networks must consider that end-to-end paths are, in fact, rare. The knowledge

of each node about its surroundings must be used at each encounter to determine

what action the node should perform with the packet, for instance, it could instantly
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forward it or drop it if no neighbors are within its radio range. Protocols do not

have information, a priori, about contacts and there is no infrastructure to provide

connectivity. To make better decisions and maximize the exploitation of contact

opportunities, protocols rely on node vicinity [27–29] and mobility history [60, 61].

This increases the probability of successfully forwarding a message to the destination.

Nodes for which this probability is high are said to have high utility [62]. The relative

speed of nodes could be used in the computation of this metric. For instance, if the

relative speed between υi and υj is too high, υi should not try to forward a message

through υj. Hence the overhead on the network would be reduced, becauses useless

packets would not be forwarded.

Focusing on node vicinity, typically, two nodes are considered to be in contact

if they are within mutual radio range, limiting node vicinity to directly reachable

neighbors. Nevertheless, depending on the network topology, a significant fraction

of nodes can remain in the nearby vicinity of a node, within a few hops, when

not in direct contact. Therefore, the typical definition of contact incurs a limited

view of contact opportunities. As an alternative to circumvent this restriction and

better exploit the (potentially) few opportunities, some works propose complex pre-

diction mechanisms to anticipate contact availability [5] and disruption [6]. These

works consider that contacts happen at 1-hop distance, leaving aside several contact

opportunities in the nearby neighborhood.

To exploit more contact opportunities, Phe-Neau et al. [31, 32] propose to extend

the concept of contact to also include nodes reachable via multiple hops. Hence, the

resulting extended vicinity incorporates nodes even if they are out of mutual radio

range, increasing the number of contact opportunities. Hoque et al. [63] use the

idea of extended vicinity to develop an algorithm to analyze multihop connectivity

and network partitioning in VANETs. Forwarding strategies can be tuned to ex-

ploit such opportunities by sending Hello packets (beacons) to discover the nearby

nodes forming the neighborhood. The use of Hello packets introduces an overhead

that depends on the size of the Hello message, the number of neighbors and the

frequency of updates. Nevertheless, nodes can still benefit from multihop contact

opportunities, even if the control overhead increases, because they do not need to

wait for a direct contact to establish communication with other nodes. Hence, the

use of such multihop contact opportunities can even reduce end-to-end delays.

None of the works mentioned in this section studies the influence of relative

speeds on path establishment. This quantity is important to better understand

node mobility and maximize contacts exploitation. Shelly et al. [61], for instance,

use the relative speed of nodes to predict the residual lifetime of a link, using the

node attached to the longest-lasting link to forward the message. This reduces the

probability of link breakage during the communication. In the best case, 90% of the
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predictions have an inaccuracy of less than 30% for a small Hello interval. Several

packets can be dropped because of the failed prediction. We carried out a study to

investigate the influence of nodes’ relative speeds on the establishment of contacts

using the extended vicinity proposed by Phe-Neau et al. The study revealed that

contacts are concentrated at few hops [45, 64], as expected, and flooding procedures

aiming path discovery tend to be inefficient in highly dynamic mobile wireless net-

works [64]. The number of works in the field of mobility pattern analysis is extensive

and the majority state that assessing node mobility is fundamental to understand

the network connectivity and design better routing protocols. Independent whether

the extended vicinity is considered, all of the aforementioned works use node mobil-

ity information, but they leave aside the impact of the relation between the number

of hops separating a pair of nodes and their relative speed.

4.2 Problem statement

Multihop communications are able to extend the coverage of a dynamic network,

but path management and routing in such networks is complex due to node mobility.

Hence, the investigation of mobility patterns is essential to gather information about

suitable communication opportunities. This is particularly important for VANETs

(Vehicular Ad Hoc Networks), because nodes in these networks usually experiment

short contacts due to the intense node mobility. To maximize the exploitation of

contact opportunities, we must analyze node vicinity behavior over time, which is

basically defined in terms of achievable states, time spent in each state, and state

transitions. Such behavior is highly influenced by nodes’ relative speed, as we report

in our work [64]. Hence, in this thesis, we extend this work by aggregating nodes’

relative speed to the concept of node vicinity. As such, protocols could use informa-

tion about relative speeds to predict contact duration and to prioritize information

exchange between nodes according to their relative speeds. Note that, although

absolute speeds are obtained more easily in a vehicular network, we consider that

relative speeds are more suitable than absolute speeds because it determines contact

duration. Relative speeds between nodes within a predetermined radio range can

be estimated in real-time, as shown by Wang et al. [65].

Aiming to demonstrate the influence of nodes’ relative speed on multihop con-

tacts, we take as example a real scenario composed of buses, detailed in Chapter 3.

Figure 4.1 shows the (κ, λ)-vicinity timeline, as well as the average number of hops,

for all pairs of nodes in the Bus scenario. The X-axis represents the number of hops,

λ, separating two nodes. Note that λ = 0 represents State ∞, in which nodes are

out of contact. We consider that buses can exchange packets with each other using

a wireless medium, where only nodes within 100 m radio range are able to commu-
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Figure 4.1: Example of (κ, λ)-vicinity timelines, considering different values for m
to show the influence of relative speeds. Nodes at lower relative speeds can reach
up to 8-hop distance, whereas at higher relative speeds the maximum hop distance
drops to λ = 3.

nicate without packet losses. We set m = 1 and m = 5 to demonstrate the influence

of relative speeds on the vicinity timeline. If m = 1, ri,j ∈ R0 = [0, 200 km/h],

∀υi, υj; whereas for m = 5, we have five intervals of 40 km/h each. Figure 4.1(a)

shows that λmax = 8 is the maximum number of hops, between pairs of nodes with

ri,j ∈ [0, 200 km/h]. In addition, as the average number of hops (λavg) is approxi-

mately equal to 1.44, we conclude that the number of contacts at 1-hop distance is

much higher than at any other hop distance.

Figure 4.1(b) shows the results for pairs of nodes with ri,j ∈ [0, 40 km/h[ and

ri,j ∈ [40, 200 km/h]. For the first range, we quickly note the significant similarity

with Figure 4.1(a). It is clear that both the maximum (λmax = 8) and average

number of hops (λavg = 1.45) remain very similar. For ri,j ∈ [40, 200 km/h], graph

bars become sparser and λmax drops to 3 and λavg = 1.15. Hence, most contacts

in the Bus scenario happen for relative speeds lower than 40 km/h and contacts

at higher relative speeds happen mainly at small λ. As a consequence, we shall

not consider long hop distances for communications if nodes are moving at higher

relative speeds. All scenarios are further investigated in Chapter 5.

Figure 4.2 shows the state transition probabilities, pnm, considering all nodes in

the Bus scenario. Note that values are given in percentage (%) and each State σ

represents nodes that are at λ-hop distance from another node. In this scenario,

contacts are rare and tend to happen for low relative speeds and states. In Fig-

ure 4.2(a) we consider a single range of relative speeds and, consequently, all nodes

are in the same set of nodes V0. Figures 4.2(b) and 4.2(c), in turn, are obtained when

we use m = 5 to split the range of relative speeds, separating nodes into different

subsets V . Figure 4.2(b) represents the subset of nodes with relative speeds within

[0, 40 km/h[ (V0), while Figure 4.2(c) shows the transition probabilities considering

all nodes at relative speeds within the other 4 subsets ([40, 200 km/h]). On the one
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Figure 4.2: State transition probabilities (pnm) in percentage, considering m = 1 and
m = 5. The states and transition probabilities considering only the (b) subgraph
where nodes are in contact at lower relative speeds is very similar to the distribution
presented by the (a) complete graph. Nodes at (c) higher relative speeds are not
able to reach upper states and have higher probability of transitioning to State ∞.
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hand, we observe that Figures 4.2(a) and 4.2(b) are very similar, maintaining the

same upper state (σmax) and the great majority of state transitions. On the other

hand, Figure 4.2(c) shows that the upper state for nodes within [40, 200 km/h] is

significantly lower, confirming our observations from Figure 4.1. Moreover, most

state transitions disappear, especially for σ > 3. This indicates that the highest

contribution for multihop contacts in this scenario is concentrated at speeds lower

than 40 km/h.

We observe in Figure 4.2 that, independently of the relative speed interval, tran-

sitions from one state to itself are most likely to happen. This probability usually

decreases for upper states, indicating that longer hop contacts are more difficult to

maintain for longer intervals of time. The highest probabilities are found for the

transitions ∞→∞ or 8→∞, while the lowest probabilities are found for ∞→ σ,

where σ is any other state. Yet, upper states have higher probability of transition-

ing to infinity. We also observe that any pair of nodes in State σ presents higher

probability to go from its current state to State σ ± 1 rather than to State σ ± n,

with n > 1. Moreover, nodes are more likely to return to State σ − 1 than to go

forward to State σ + 1.

Comparing Figures 4.2(b) and 4.2(c), we further observe that the probability of

going to State ∞ from any other state is much higher for higher relative speeds,

reinforcing the instability of multihop contacts and, moreover, the inconvenient in-

fluence of high relative speeds on these contacts. In fact, the instability increases

even for direct contacts (State 1). For instance, a pair of nodes at relative speed

within [0, 40 km/h[ has 1.055% probability of disconnecting, against a 11.565% prob-

ability if they were at higher relative speeds. These results can be easily obtained

for other datasets and we generalize them for the other scenarios investigated in this

work.

As expected, indeed, node mobility influences multihop communication. There-

fore, we should consider it when developing protocols and applications for mobile

wireless networks, especially vehicular networks. To further evaluate the impact of

such speeds on multihop communications we analyze the (κ, λ)-vicinity, which in-

cludes nodes’ relative speed. In the end of Chapter 5 we use the results obtained from

this evaluation to analyze the performance of forwarding strategies that take into

account the influence of nodes’ relative speed on multihop wireless communications.

4.3 Vicinity analysis methodology

In order to analyze the (κ, λ)-vicinity, this work proposes the following procedure:

1. Mobility trace parsing;
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2. Discovery of (0, 1)-vicinity;

3. Computation of (κ, λ)-vicinity;

4. Generation of (κ, λ)-vicinity timeline.

4.3.1 Mobility trace parsing

We first parse an input mobility trace to generate an output file as required by the

next step. The input file must include, at least, the position of nodes (x, y) at each

time (t) and the node identification (υi). The output file will contain, additionally,

the absolute (si) and the decomposed vector (six, siy) of speeds of each node. If

si is not provided, we compute it, cleaning the inconsistencies, i.e., duplicates and

incoherent absolute speeds. Duplicated data is simply ignored, while incoherent

absolute speeds are fixed through linear interpolation and use of a threshold, based

on what is intuitively expected for the scenario.

When absolute speeds are not provided, we compute them for each υi at each

position over time, as shown in Algorithm 1. We consider that a node moves at

a constant speed si between consecutive events, i.e., between t and t + ∆t, and in

the last register υi stops. Then, we verify for each time t at each position x
(t)
i , y

(t)
i ,

if the provided or calculated absolute speed is higher than the threshold for the

scenario. Case positive, the speed is considered inconsistent, and we assume that a

more consistent value must be found for the time interval [t, t + ∆t]. To this end,

we interpolate the current event
(
t, x

(t)
i , y

(t)
i

)
with the event after the immediately

consecutive one,
(
t+ 2∆t, x

(t+2∆t)
i , y

(t+2∆t)
i

)
. Then, we assume that the node moves

with the new calculated absolute speed from
(
x

(t)
i , y

(t)
i

)
to
(
x

(t+∆t)
i , y

(t+∆t)
i

)
. If the

speed is still above the threshold, we ignore the register. We also use the following

boundary condition to compute the absolute speeds. When there is no event at

t+2∆t we cannot use the Interpolate function, hence, we assign the last absolute

speed (from t−∆t) to the current event (t) and consider that the node stopped at

t+∆t, assigning null absolute speed to this event. As a consequence, less than 0.3%

of the data is ignored due to inconsistencies for the traces we used, which does not

affect our final conclusions.

Each trace samples events at a different rate. Thus, after obtaining absolute

speeds, we format the results with a uniform granularity to facilitate the computation

of the (0, 1)-vicinity. Nodes positions are updated considering that they maintain

a constant speed between two adjacent points. At the end of this step, the size

of the dataset increases significantly, e.g., the 10-minute subset selected from the

TAPASCologne dataset increases from approximately 250 MB to 700 GB, which

makes it difficult to analyze.
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Algorithm 1 Computation of Absolute Speeds

Input: File composed of tuples 〈t, υi, x, y, (optional) si〉
Output: File composed of tuples 〈t, υi, x, y, si, six, siy〉

1: while υi do
2: if si does not exist in file then
3: x

(t)
i , y

(t)
i , x

(t+∆t)
i , y

(t+∆t)
i ← GetPosition(t, t+ ∆t)

4: s
(t)
i , ← ComputeSpeed(x

(t)
i , y

(t)
i , x

(t+∆t)
i , y

(t+∆t)
i , t, t+ ∆t)

5: if s
(t)
i > threshold then

6: s
(t)
i ← Interpolate(t,t+ 2∆t)

7: if valid s
(t)
i then

8: vecspeed ← DecomposeAbsSpeed(s
(t)
i )

9: register ← UpdateRegister(s
(t)
i ,vecspeed)

10: WriteOut(register)
υi ← Next(υi)

11: function Interpolate(t, t+ 2∆t)

12: x
(t)
i , y

(t)
i , x

(t+2∆t)
i , y

(t+2∆t)
i ← GetPosition(t, t+ 2∆t)

13: s
(t)
i ← ComputeAbsSpeed(x

(t)
i , y

(t)
i , x

(t+2∆t)
i , y

(t+2∆t)
i , t, t+ 2∆t)

14: if s
(t)
i > threshold then

15: return IgnoreRegister( )
16: else
17: return s

(t)
i

4.3.2 Discovery of (0, 1)-vicinity

In this step, we compute the (0, 1)-vicinity for every pair of nodes in the network,

considering they are all within GR0 . This means that nodes within a given radio

range are considered to be in contact no matter the relative speed between them.

Contacts in such situation are always at 1-hop distance. Hence, at a first moment,

we do not take relative speeds into account and we use different fixed radio ranges

to observe the effect of the medium attenuation. This step generates an output

file that contains the time (t) at which the pair of nodes (υi, υj) exists in the trace

simultaneously, the absolute (si, sj) and the decomposed vector (six, siy, sjx, sjy) of

speeds of these nodes, the absolute relative speed between them (ri,j), and a flag

(nflag) that indicates whether the nodes are 1-hop neighbors.

4.3.3 Computation of (κ, λ)-vicinity

Next, we obtain all (κ, λ)-vicinities for every node in the scenario, through the

computation of the shortest paths (geodesics) between all nodes in the (0, 1)-vicinity

that exist within the same atomic interval. Each event is recorded in an output file

containing the identification of the nodes (υi, υj), the number of hops (λ) between

them, their relative speed (ri,j), and the time (t) at which they are at λ-hop distance

moving at ri,j relative speed. Note that at this point it is possible to obtain any
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specific (κ, λ)-vicinity of any node υi. To this end, it is only necessary to define the

interval of relative speeds Rκ and the number of hops λ.

4.3.4 Generation of (κ, λ)-vicinity timeline

We then proceed to the generation of the (κ, λ)-vicinity timeline of a pair of nodes.

We use as input the (κ, λ)-vicinity of all nodes and we filter the desired pair of

nodes. The resultant (κ, λ)-vicinity provides information about the initial and final

instants of time of each contact at λ-hop distance and rij relative speed, i.e., the

state of the chosen pair of nodes. We store the state evolution over time to obtain

the (κ, λ)-vicinity timeline of this pair of nodes.
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Chapter 5

Vicinity Analysis: Results and

Discussion

In this Chapter, we analyze nodes’ vicinities using the method proposed in Sec-

tion 4.3. We also discuss possible applications of our results and, based on our

findings, we propose strategies that consider the relative speed of nodes during the

forwarding process. We demonstrate through simulations that incorporating rela-

tive speed awareness into forwarding strategies does not affect the average packet

delivery ratio and potentially reduce network resources consumption in multihop

mobile networks.

5.1 Results

In this section, we investigate the following features:

1. Behavior of nodes’ relative speed;

2. Influence of relative speeds on 1-hop contacts duration;

3. Behavior of number and duration of contacts per (κ, λ)-vicinity;

4. Average time spent by nodes in each State σ;

5. Number of useful contacts according to the (κ, λ)-vicinity.

All results are obtained for different coverage ranges in C = {50, 100, 150, 200}
meters.

5.1.1 Behavior of nodes’ relative speed

We first characterize the scenarios concerning the distribution of nodes’ relative

speed for all radio ranges c ∈ C. The goal is to find at which relative speed contacts
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are more common, considering that all nodes within c are in contact with each other

at 1-hop distance. Figure 5.1 shows the resultant cumulative distribution function

of relative speeds for each trace.

The Bus and Taxi scenarios present a similar distribution of relative speeds, as

depicted in Figure 5.1. Most vehicles in contact move at low relative speeds, but

this percentage decreases for longer ranges. For instance, 99% of nodes in contact

move at relative speeds lower than 25 km/h for c = 50 m. Increasing c to 200 m,

more nodes are included in the network graph and many direct contacts originated

from the additional nodes happen at relative speeds higher than 25 km/h. Hence,

the percentage of nodes moving at relative speeds lower than 25 km/h decreases to

90%. In the Bus scenario, we also have the majority of nodes in contact moving at

speeds lower than 30 km/h for c = 50 m, as shown in Figure 5.1(b). For c = 200 m

the percentage decreases from 92% to 90%. The Synthetic scenario shows a different

behavior, with nodes in contact being able to move at very high relative speeds. For

instance, in Figure 5.1(c), 90% of vehicles in contact move at relative speeds up to

130 km/h for c = 200 m. The presence of such high speeds in the Synthetic scenario

can be a consequence of unlimited speed highways (autobahns) crossing the city.
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Figure 5.1: Cumulative distribution function of relative speeds for contacts at 1-hop
distance. In the (a) Taxi and (b) Bus scenarios, the relative speeds of 1-hop contacts
are usually low. In the (c) Synthetic scenario we observe a wider range of relative
speeds.
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Another remarkable characteristic is shared by all scenarios. In Figure 5.1, we

observe that the distributions do not significantly change for c = {150, 200} m, even

though longer radio ranges may enclose more vehicles. Hence, we can conclude that,

from a certain radio range on, the additional nodes enclosed are not able to change

the distribution of relative speeds.

5.1.2 Influence of relative speeds on 1-hop contacts duration

We investigate the duration of contacts at 1-hop distance to evaluate if either long

or short contacts are more common when nodes meet directly. We also investigate

the relation with the physical distance between nodes. Note that when referring

to distance in hops we always use “hop distance”, whereas for physical distance

we use only “distance”. From our results so far, we observe that even though

most vehicles in contact at 1-hop distance move at low relative speeds, we can also

find some vehicles in contact at higher relative speeds. We expect that at higher

relative speeds contacts at 1-hop distance are shorter, even if they happen at short

physical distance. Obviously, the exact contact duration depends on the scenario.

We investigate this assumption and we show the results for c = 200 m in Figure 5.2,

for each scenario.

Each point in Figure 5.2 represents a contact between a pair of nodes. The du-
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(b) Buses, c = 200 m.
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(c) Synthetic, c = 200 m.

Figure 5.2: Contact duration for 1-hop contacts as a function of relative speed for
each scenario.
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ration of the contact is represented by the Y -axis. Both the relative speed and the

distance between nodes during the contact can change, but we expect the variation

to be small. Therefore, the X-axis represents the average relative speed and each

point is colored according to the average distance during the contact. The distance is

upper-limited by the radio range c used. The Synthetic scenario shows the greatest

number of points, meaning that contacts occur more often than in the other scenar-

ios, which can be due to the higher number of vehicles or the more intense mobility

of nodes in this scenario. Note that the Y -axis in this scenario is upper-limited by

the duration of the 10-minute dataset sample (600 s).

To evaluate Figure 5.2 better, we can divide it into distinct regions, according to

the average relative speed, contact duration and average distance during the contact.

If we choose an appropriate fixed value (threshold) for the average distance during

contact, the regions are defined without much effort. Particularly, when the chosen

threshold is equal to 120 m, we obtain 6 well defined regions where we can identify

at which distance range more contacts happen. The boundaries of the regions are,

then, defined by the thresholds for the following parameters: average relative speed

(40 km/h), contact duration (20 and 200 s). We refer to distances ≥ 120 m as

longer or long range, and < 120 m as shorter or short range; average relative speeds

≥ 40 km/h as high relative speeds, and < 40 km/h as low relative speeds ; contacts

duration ≥ 200 s as long duration, < 20 s as very short duration, and < 200 s but

≥ 20 s as short duration.

We notice in Figure 5.2 that a small percentage of 1-hop contacts can surpass a

duration of 1,000 s. Contacts established at longer distances (≥ 120 m) usually last

for less than 200 s in all scenarios. Very few contacts at such distances have duration

longer than 200 s. We also observe a clear correlation between the contact duration

and the average distance during the contact. Most contacts at small distances

(< 120 m) tend to last longer than 200 s, whereas nodes farther away usually

establish shorter contacts. Regarding the relation between the relative speed and

the average distance during the contact, we observe that long distance contacts

can happen at low or high relative speeds, as shown by the reddish points between

]0, 200]. In addition, even though short distance contacts also happen at any relative

speeds, most of them happen at lower relative speeds (< 40 km/h), as shown by the

yellowish points.

Focusing on the relation between the contact duration and the relative speed, it

is clear that nodes are not able to establish long contacts at high relative speeds.

For instance, contacts longer than 200 s happen only for relative speeds lower than

6 km/h in the Bus and Taxi scenarios, and for relative speeds lower than 11 km/h

in the Synthetic scenario. Very short contacts, on the other hand, can happen at

any relative speed, in all scenarios. This can be observed by the presence of several
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Table 5.1: Relation between contact duration, relative speeds and physical distance
between nodes. Non-existent contacts are represented as “Ø” and existing contacts
as “+”. We use “++” for each combination of relative speed and duration where
contacts exist to indicate at which distance we observe more contacts.

Distance

Relative Speed Duration
Short

(< 120 m)
Long

(≥ 120 m)

Low Very short Ø +
Low Short ++ +
Low Long ++ +
High Very short + +
High Short Ø Ø
High Long Ø Ø

points under 20 s within ]0, 200] range.

Correlating the aforementioned results to obtain the relation between contact

duration, relative speed and distance between 1-hop contacts we obtain the results

summarized in Table 5.1, where we consider low relative speeds as < 40 km/h, very

short contacts as < 20 s and long contacts as ≥ 200 s. The results are clearer if we

focus on the Synthetic scenario, because it has more data. In Table 5.1 we represent

non-existent contacts as “Ø” and existing contacts as “+”. For each combination

of relative speed and duration where contacts exist, we increase the number of “+”

to indicate at which distance we observe more contacts. The results are as follows:

the majority of long contacts at low relative speeds are short distance, but we also

observe very few at longer distances; short contacts at low relative speeds are usually

short distance; very short contacts happen at any speed, but at low relative speeds

they are always long distance, whereas at high relative speeds they can be either

short or long distance; and neither short nor long contacts at high relative speeds

exist.

The analyses carried out indicate that the best opportunities for exploiting the

(κ, λ)-vicinity happen at low relative speeds and short distances, for which contacts

last longer, as expected. Nevertheless, we can also exploit contacts at long physical

distances, as long as they happen at low relative speed. At high relative speeds,

contacts are very short and much likely are not useful for VANET entertainment

applications, because contacts may not be long enough to successfully transfer mes-

sages. Note that considering the relative speed only is not enough to define the

duration of the contact. Very short contacts can happen at low or high relative

speeds, and at low relative speed they can be very short, short or long. Therefore,

on the one hand, if we know that nodes are moving at high relative speeds, we can

be sure that contacts are likely very short. On the other hand, if they are moving

at low relative speeds, we cannot infer anything about contact duration.
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5.1.3 Behavior of number and duration of contacts per

(κ, λ)-vicinity

We characterize the (κ, λ)-vicinity for each scenario regarding the total number and

duration of contacts. We analyze the vicinity for λ ≤ 8, because the contribution of

longer hop distances to the number of contacts is insignificant compared to shorter

hop distances, even using a radio range c = 200 m. The goal is to find out how far

relative speeds influence multihop vicinity. This information can be used by routing

protocols from VANETs to better adjust the maximum expected number of hops

a message should be forwarded and prioritize sending messages to neighbors that

most likely would provide longer contacts.

Figure 5.3 shows the results for the number of contacts, for c = {100, 200} m.

We omit the results for c = 150 m because they are similar to c = 200 m. Each bar
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Figure 5.3: Total number of contacts as a function of the (κ, λ)-vicinity for each
scenario, using c = {100, 200} m. In (a) Taxi and (b) Bus scenarios there is a
significant amount of contacts communicating at hop distances lower than 3. In (c)
Synthetic scenario we can find several nodes communicating even at 6-hop distance.
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on the plot represents a different Rκ, as shown in the secondary X-axis, while the

Y -axis shows the total number of contacts. Note that at each 10 km/h we have a

new Rκ. In spite of the increasing number of contacts from one scenario to the other,

they have some similar characteristics. For instance, we note that more contacts are

established at lower relative speeds and, in all scenarios, the number of contacts

increase for each Rκ when we increase the radio range. We further observe that the

growth rate of the number of contacts for Rκ with κ ≥ 1 tends to be greater than

for κ = 0 when c increases. This is particularly true for R1 in both Bus and Taxi

scenarios. In the Synthetic scenario, the most affected relative speed range by the

radio range is R4. This is a consequence of highways in the scenario, which gives

room to the higher relative speeds. In the Bus and Taxi scenarios, the contribution

on the number of contacts for λ ≤ 3 is more significant than for λ ≥ 4, regardless

of which Rκ we analyze. Concerning the Synthetic scenario, we can find significant

number of contacts up to 6 hops. This occurs because the node density in this

scenario is higher compared to the others.

Figure 5.4 presents the results for the sum of all contacts duration for c =

{100, 200} m. We quickly observe longer total duration in the Synthetic scenario,

compared to the other scenarios. Again, Taxi and Bus scenarios present very similar

behavior, with contacts lasting longer for R0. The Synthetic scenario behaves differ-

ently, with the total duration of contacts being higher for R4. We also observe that

the most significant contribution to the total contact duration is obtained for λ ≤ 2

in the Bus and Taxi scenarios, reaching up to 6 hops in the Synthetic scenario. If

we compare Figures 5.3 and 5.4, we observe that although the taxis and buses do

not have the majority of contacts in R0, this is the range of relative speeds where we

can find the longest total contact duration. Hence, we can infer that nodes within

R0, i.e., nodes almost stationary relatively to each other, tend to remain in contact

for longer periods. Focusing on the Synthetic scenario, we observe that the highest

sum of all contacts duration shifts from R0 to R4 when we increase the radio range

from c = 100 m to c = 200 m, respectively. As the difference between the sum of

all contacts duration is just slightly higher for R4 compared to R0, but the number

of additional contacts is much higher for R4 when we increase the radio range, we

can infer that the additional contacts within R0 tend to last longer than the new

contacts within R4. As a consequence, we can conclude that higher relative speeds

contribute less to longer contacts. More than that, contacts at extremely low rela-

tive speeds (0 ≤ ri,j ≤ 10 km/h) are the ones with the longest duration. Note that

these nodes do not necessarily need to be moving at low absolute speeds. These

results corroborate Figure 5.2.
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5.1.4 Average time spent by nodes in each State σ

We further investigate the average time spent by nodes in each State σ, regarding all

relative speed intervals. Considering VANETs, this evaluation is important because

it allows forwarding protocols to adjust parameters to exploit contact opportunities

more efficiently.

Table 5.2 shows the average time spent in each state, in seconds, for each scenario,

using different radio ranges (c). We observe that the average time in contact is always

longer for State 1 in all scenarios. In the Bus and Taxi scenarios, the contribution

of 8-hop contacts is barely significant. In the Synthetic scenario, the average time

in contact is quite similar for all states with multihop connectivity (λ > 1).

0
200
400
600
800

1000
1200

0 40 80 120 160 200 240

0 3 6 9 12 15 18 21 24

S
um

of
al

lc
on

ta
ct

s
du

ra
tio

n
(×

10
3

s)

Relative speed (km/h)

κ

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5
λ = 6

c = 100 m

0
200
400
600
800

1000
1200

0 40 80 120 160 200 240

0 3 6 9 12 15 18 21 24

S
um

of
al

lc
on

ta
ct

s
du

ra
tio

n
(×

10
3

s)

Relative speed (km/h)

κ

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5
λ = 6
λ = 7
λ = 8

c = 200 m

(a) Taxi scenario.
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(b) Bus scenario.
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(c) Synthetic scenario.

Figure 5.4: Sum of all contacts duration as a function of the (κ, λ)-vicinity for each
scenario, using c = {100, 200} m. In the (a) Taxi and (b) Bus scenarios, the most
significant contribution to the total contact duration happen at very low relative
speeds (< 10 km/h) and up to 2-hop distance. In the (c) Synthetic scenario the most
significant contribution is obtained for nodes communicating up to 6-hop distance
and at relative speeds between 40 and 50 km/h, followed by very low relative speeds
(< 10 km/h).
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Table 5.2: Average time spent in each state, in seconds.

Traces c (m)
State σ

∞ 1 2 3 4 5 6 7 8

Taxi

50 58.17 73.97 63.36 66.99 36.28 16.91 7.17 – –
100 58.00 79.41 38.53 33.25 24.24 27.32 36.60 – –
150 57.88 72.48 29.22 30.65 30.83 30.44 17.53 8.00 –
200 57.77 65.77 27.06 31.87 27.80 24.96 11.92 6.33 5.00

Bus

50 29.62 23.31 10.56 4.60 7.00 – – – –
100 29.59 26.05 13.88 15.73 13.44 11.44 16 – –
150 29.56 27.80 18.68 14.28 8.20 4.55 2.36 1.00 –
200 29.54 29.18 17.38 9.25 6.73 5.58 4.07 2.79 2.5

Synthetic

50 2.07 1.61 1.41 1.21 1.25 1.24 1.27 1.30 1.28
100 2.08 2.17 1.73 1.39 1.33 1.32 1.34 1.36 1.36
150 2.11 2.20 1.84 1.40 1.31 1.26 1.26 1.28 1.32
200 2.08 2.06 1.82 1.37 1.26 1.19 1.17 1.13 1.13

We observe in Table 5.2 that, contrarily to expected, sometimes the average time

in State ∞ increases by a small quantity. For instance, in the Synthetic scenario,

when we increase the radio range from 50 m to 100 m and from 100 m to 150 m, the

average time out of contact increases by a small amount. Even though increasing

c one would expect higher network connectivity, depending on the scenario, we can

also have more transitions from vehicles that were never connected. In the Synthetic

scenario, this phenomenon has as consequence a small increase on the average time

spent in State ∞. This occurs because the number of vehicles transitioning, but

still only connected for a short-time period, is higher than in the Taxi and Bus

scenarios. The level of connectivity of these last scenarios does not change as much

as the Synthetic one. Note that every time we change the radio range, a new graph

appears with new transitions lasting for different amounts of time. As a consequence,

non-linearities can happen on the average time spent on all states and not only on

the State ∞. It is worth mentioning that no matter the radio range, the procedure

proposed can be reproduced to calculate state transitions, even including the idea

of different subgraphs that consider the range of relative speeds (GRκ).

5.1.5 Number of useful contacts according to the (κ, λ)-

vicinity

Finally, we investigate the number of useful contacts according to the (κ, λ)-vicinity,

regarding all hop distances. We consider that a contact is useful if it can transfer

a bundle using the lowest rate allowed by the IEEE 802.11p standard, 3 Mb/s.

In this work, we use bundles of 1 MB and 5 MB, which need approximately 2.67

and 13.33 seconds, respectively, to be transmitted. We do not use single packets

because the shortest contact in our datasets is equal to 1 second, which is enough to
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Figure 5.5: Cumulative distribution function of the duration of contacts for the first
vicinity and the last vicinity able to successfully communicate using packet bundles.
In all scenarios both the hop distance and the relative speeds harshly influence the
communication. In the (a) Taxi and (b) Bus scenarios there are more nodes able to
fully transfer big packet bundles.

transfer up to 384 kB at the lowest rate of 3 Mb/s, 6 times more than the maximum

supported IP packet size (64 kB) and at least 1966 times more than packets used in

VANET safety applications [66].

We investigate all (κ, λ)-vicinities separately and we omit from our analysis all

those not having enough number of contacts. We end up with a huge number of

results, from which we only show the most significant: the first vicinity, represented

by the subgraph GR0 , where relative speeds are within the range [0, 10 km/h[; and

the vicinity with the highest possible relative speed and number of hops, where

communications are still observed. Figure 5.5 plots the Cumulative Distribution
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Function (CDF) of contact duration. The graphs in this figure are subdivided into

3 regions, marked by the different background colors. All contacts in the > 5 MB-

region are able to transfer bundles greater than 5 MB. In the < 1 MB-region, it

is possible to transfer only small bundles with less than 1 MB. Above this last

region, nodes can transfer bundles greater than 1 MB. Note that, in this figure,

curves with lower slopes are better. In all scenarios, we found that the greater the

radio range, the more useful contacts happen for the transmission of both 1 and

5 MB bundle sizes, as expected. We clearly observe that the number of contacts

that can transfer these bundles is a function of both the number of hops and the

relative speed: the number of contacts that successfully transfers the bundles is

more numerous for shorter hop distances at lower relative speeds and becomes less

often for higher relative speeds or number of hops. An interesting finding is that

relative speeds sometimes reduce more severely the number of useful contacts when

compared to the hop distance. For instance, let us compare the GR0 and GR7 in

the Bus scenario (Figure 5.5(b)), for c = 200 m. At 1-hop distance, approximately

97% of contacts in GR0 are able to transfer a 1 MB bundle, against approximately

80% for contacts in GR7 . For λ = 5, we observe a reduction of 7% of contacts in

GR0 able to transfer such bundles, whereas in GR7 the reduction is approximately

38%, when λ = 2. We further observe that the influence of relative speeds and

hop distance on the number of useful contacts is more harsh for the 5 MB bundle.

This behavior is repeated in all evaluated scenarios, although the specific number of

useful contacts changes from one scenario to the other. Despite only confirming the

notion that lower relative speeds provide better contact opportunities, the results

show that increasing the relative speed is worse to wireless communications than

increasing the hop distance. Besides that, we also found that many useful contacts

between nodes at very high relative speeds communicating at multihop distances

also exist, even though less often. For instance, 4% of the nodes can successfully

communicate at 8-hop distance within [190, 200 km/h[ at 200 m radio range, in the

Synthetic scenario. Considering the same radio range, we observe that, much more

frequently, nodes can communicate at 2-hop distance within [60, 70 km/h[ in the

Bus scenario, and within [140, 150 km/h[, in the Taxi scenario.

5.2 Discussion

The main goal of Part I is to demonstrate the impact of nodes’ relative speed on

multihop communications. Moreover, we aim at deriving recommendations taking

into account the correlation between hop distance and relative speed so as to im-

prove wireless communications. Although absolute speeds are more easily obtained

in vehicular networks, we consider that relative speeds are more important since
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they determine the contact duration. The relative speed between nodes within a

predetermined radio range can be estimated even in real time, as shown by Wang

et al. [65]. So far, our results showed that:

1. nodes are normally out of contact in dynamic networks, but when they are in

contact they tend to remain in the same state at low relative speeds. At high

relative speeds, contacts usually happen at few-hop distances;

2. direct contacts between nodes within mutual radio range last longer when

their relative speed is low and their distance is less than 120 m. If the distance

is greater than 120 m, most contact get shorter, independent of the relative

speed. If, however, the relative speed is high, the contact is always very short;

3. contacts are more frequent at low relative speeds in sparser scenarios (Bus and

Taxi), and they tend to happen at most at 3-hop distance. In high density

scenarios (Synthetic), in turn, contacts at high relative speeds are found and

they can happen even at longer hop distances. A significant number of such

contacts, however, cannot be used to transfer data due to their short duration;

4. lastly, the number of useful contacts decreases when the relative speed or the

number of hops increases.

We observed in each evaluation that the Synthetic scenario shows a different be-

havior compared to the other two GPS-based scenarios. Surprisingly, despite being

the most dense scenario, with the highest number of contacts, even achieving longer

hop distances (6 hops), we found that it has the least number of useful contacts. We

attribute this to the singularities of the scenario, such as the heterogeneity of roads,

including unlimited speed highways, and we do not generalize these findings to all

dense scenarios. Following, we describe some possible applications of our findings

and a proof of concept to highlight the importance of our observations.

5.2.1 Applications

Let us consider the purest and simplest idea of routing in challenging networks, such

as VANETs. We do not have information, a priori, about contacts and there is no

infrastructure to provide connectivity. Routing protocols in such networks need to

use node mobility information to maximize the exploitation of contact opportunities.

Shelly et al. [61], for instance, analyze the mobility history of nodes to predict

the residual lifetime of a direct contact. The accuracy of their protocol could be

improved, for instance, if authors included in their model the relation between the

hop distance to the destination and the relative speed (Figure 5.3). As such, if the

destination is too far, the current node could give up sending the message.
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If we take into account some kind of infrastructure, we can use a communication

model based on clusters, where a special node, the cluster head, is responsible for

disseminating messages to nodes in the cluster [67]. The cluster head must be

carefully chosen in order to increase message delivery while minimizing the overhead.

To this end, the relative speed could be a suitable parameter to determine the nodes

in the cluster, including the cluster head. For instance, the cluster should be created

considering only nodes for which relative speeds are very low, so that the cluster

remains unchangeable for longer periods. He et al. [68] propose a minimum delay

routing algorithm considering that messages are disseminated using clusters. In

their scenario, the destination point is fixed and vehicles in the same road travel with

the same speed, with zero relative speed as a consequence. The cluster formation

could benefit from our findings if authors considered that relative speeds can assume

values different from zero. According to our results, protocols based on clusters or

communities could use up to 3-hop communications at low relative speeds in sparser

scenarios, i.e., a cluster could be composed of the (κ, λ)-vicinities of the cluster head,

with 0 ≤ κ ≤ 4 and 1 ≤ ρ ≤ 3. The algorithm proposed by He et al. neither takes

into account the relative speed nor the contact duration between clusters crossing

each other paths. These quantities could be used to determine if the message can

be fully forwarded to the next cluster. For instance, considering a sparse scenario

and a source node that needs to send a 5 MB file to the destination, if the relative

speed between the cluster and the next cluster is higher than 70 km/h, there is a

high probability that the link between the two clusters will break even before the

transfer completes (results from Figure 5.5(b)). One must question if nodes at high

relative speeds are always considered useless contacts. We know that if two vehicles

are moving at high relative speed, at least one of them must be moving at high

absolute speed if they are moving in the same direction, which means that it will

likely encounter a significant number of nodes. This fast node could be used as a

data mule that could disseminate small messages among clusters encountered along

its trip.

The outcome of this work could be used to improve prediction models, and

consequently, reduce the amount of resources wasted to forward packets that are not

likely to arrive at the destination. It could be useful also to improve packet delivery

ratio. Bazzi et al. [60] propose two routing algorithms focusing on cellular networks

offloading in the VANET context. The hop-count-based algorithm considers that if

a path to the nearest Roadside Unit (RSU) does not exist, the vehicle must send

the packet using the cellular network. Bazzi et al. do not focus on packet delivery

ratio improvement, or on saving vehicular network resources. They could improve

their protocol by considering that packets sent to a given RSU will not arrive for

sure, even when a path exists, due to vehicle mobility. Considering a dense scenario,
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like the Synthetic one, if the RSU is 8 hops away from the current node that carries

the message and the relative speed with the next hop is higher than 10 km/h, a

1 MB message will probably not arrive at the RSU (results from Figure 5.5(c)).

Therefore, the routing algorithm could determine that this packet should be sent to

the cellular network, consequently increasing the packet delivery ratio (at the cost of

increasing the cellular network usage). Hence, the information gathered in this work

can be used by VANET routing protocols to better adjust the expected lifetime of a

message in the network, or to choose the next hop, improving prediction algorithms.

As a consequence, we can reduce the waste of resources due to useless packets, or

even increase the packet delivery ratio if we rely on cellular networks.

We also studied the behavior of state transitions and we found singular patterns

for both low and high relative speeds (Figure 4.2). The model can be used, for

instance, to artificially extend a dataset to predict node mobility beyond the duration

of the provided dataset. The resulting mobility pattern can be used in simulations

without being limited by the dataset duration.

5.2.2 Relative-speed-aware packet forwarding

Our discussions in Subsection 5.2.1 raised the possibility of taking better decisions

concerning packet forwarding, if relative speeds between nodes are considered. In

this section, we evaluate this notion by showing that a local forwarding decision

made by the source node can have significant impact on the network performance.

More precisely, we can potentially save network resources by avoiding useless trans-

missions, without reducing packet delivery ratio. Using the Network Simulator 3

(NS-3), we simulate three different forwarding strategies that take into account in-

formation regarding relative speed. These three strategies are proposed herein and

individually applied to the Optimized Link State Routing protocol (OLSR) [44]. We

evaluate their efficiency, and furthermore our analysis, using packet forwarding de-

cisions based on relative speed awareness as a use case. We chose OLSR because

in the current state of our work, we need a routing protocol capable of providing

global information about the network structure. Nevertheless, this protocol is not

the most suitable for VANETs and our results confirm this.

In our simulations, the OLSR is used without any modification to play the role

of baseline routing protocol. We then modify several classes in NS-3, linked to the

operation of OLSR, so that we can implement some restrictions based on our results.

The source files that contain the modified classes are shown in Table 5.3. We know

that each OLSR node needs to know the global topology of the network in order to

compute the shortest paths (geodesics) to other nodes. If we use the number of hops

as cost metric, after computing the routing table, we know the hop distance to the

51



destination and the next hop towards it. We need information about node speed,

but OLSR does not provide any. Thus we need to find a way to disseminate such

information. To this end, we choose the Hello packets, which are sent periodically to

discover neighbor nodes. We modify the header of these packets to include the vector

absolute speed of the sender node, 〈AbsSpeedX, AbsSpeedY〉, as shown in Figure 5.6.

As this information is included in a field that was previously reserved and has no

use in current implementations, we do not add any overhead to the communication.

Each time a node broadcasts a Hello, the neighbor receiving the packet will

have information about the decomposed vector absolute speed of the Hello sender

〈AbsSpeedX, AbsSpeedY〉. As such, the receiver will be able to compute the relative

speed to the Hello sender. All the proposed forwarding strategies rely on this mod-

ification. The forwarding decision is made hop-by-hop, but, to make the protocol

as simple as possible, and to reduce the processing overhead, the sender node is

the only one that can give up forwarding a packet to the next hop because of high

relative speed. More detailed discussion about the sources containing the modified

classes follows.

• olsr-header: modified the Hello header to include nodes vector absolute

speeds and methods to convert this information from and to a floating-point

representation. We also included getters and setters to manipulate the

additional speed field in the header.

• olsr-repositories: we included the vector of absolute speeds in the neigh-

bor tuple that is used by the olsr-routing-protocol in the neighborhood

discovery process.

• olsr-routing-protocol: we included the possibility of defining a relative

speed threshold to be applied in the neighborhood discovery process. For-

warding decisions based on nodes’ relative speed are not processed in this

class. Here we construct the routing table only, based on the neighborhood

limited by the chosen relative speed threshold. We added to the nodes the

capability of computing the relative speed using the Hello messages. We also

included the relative speed information to the routing table entries.

Table 5.3: Source files in NS-3 that implement the modified classes related to OLSR’s
operation.

Source file Comment
olsr-routing-protocol Defines the operation of OLSR
olsr-header Defines the headers of OLSR packets
olsr-repositories Defines the structures needed by an OLSR node
ipv4-route Defines the IP (version 4) route cache entry
ipv4-l3-routing-protocol Defines the operation of IP (version 4)
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0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| AbsSpeedX | AbsSpeedY | Htime | Willingness |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Link Code | Reserved | Link Message Size |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Neighbor Interface Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Neighbor Interface Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

: . . . :

: :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Link Code | Reserved | Link Message Size |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Neighbor Interface Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Neighbor Interface Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

: :

: :

(etc.)

Figure 5.6: Modified format of the OLSR Hello header. The AbsSpeedX and
AbsSpeedY (marked in gray) fields replace a previously 16-bit Reserved field.

• ipv4-l3-protocol: we included the possibility of defining relative speed

thresholds to be used for forwarding decisions. Before sending the packet,

a node must check the routing table and based on the relative speed it chooses

whether it will send the packet to the interface. We also add a new reason for

packet drops (DROP GIVE UP), which happens when the node gives up sending

the packet due to an over-speeding neighbor.

• ipv4-route: we included getters and setters to allow the methods in

olsr-routing-protocol to manipulate the cost metric and the relative speed

between nodes.

The forwarding strategies proposed in this work are discussed hereafter. All of

them use the OLSR as base protocol.

1. Relative Speed Restricted forwarding – RelSpeedR: after computing the routing

table, the sender node, i.e., the origin of the packet, checks the hop distance,

the next hop and the relative speed to the next hop, before forwarding a

packet. The node will only forward the packet to the next hop if the neighbor

is within a relative speed range that still allows reaching the destination at

that hop distance. Hence, we impose a relative speed restriction according to
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Table 5.4: Relative speed thresholds according to the hop distance to the destination.

Hop Distance 1 2 3 4 5 6 7 8
Relative Speed (km/h) 140 120 100 100 100 80 80 70

the hop distance to the destination right before the packet forwarding at the

first hop.

2. Vicinity Restricted forwarding – VicR: we use the concept of (κ, λ)-vicinity to

modify how the OLSR sees its vicinity. We consider that two nodes are neigh-

bors only if they are within a relative speed that allows 1-hop communications.

Hence, during the neighborhood discovery process, we prune some links based

on the relative speed between the adjacent nodes. The forwarding happens

normally, each node checks its routing table and forward the packet to the

next hop based only on the cost metric. Hence, the relative speed restriction

is imposed during the neighborhood discovery.

3. Relative Speed and Vicinity Restricted forwarding – RelSpeedVicR: we first

prune links during the neighborhood discovery, as in VicR. Then, at the first

hop, at the moment the packet is being forwarded, we check the relative speed

to the next hop and the hop distance to the destination, as in RelSpeedR.

Thus, the relative speed restriction is imposed in different moments.

The relative speed thresholds used in all the strategies are based on the results

of Figure 5.3(c). We chose values that would reduce the number of contacts by

only 20%. This quantity could be parameterized according to the application. The

thresholds are summarized in Table 5.4. If nodes are moving at a relative speed

higher than 140 km/h or if they are more than 8-hops away from the destination,

the source node automatically discards the message.

We used a subset of the 10-minute TAPASCologne dataset as the mobility model.

This subset consists of an area with approximately 4.8 km2 containing 688 nodes.

OLSR was used as the baseline routing protocol and we randomly installed 100 UDP

client-server applications on the available nodes. A single node can host several

applications simultaneously. The only restriction is that a client node cannot be its

own server, and vice-versa. Each application sends packets of 1,500 bytes at a rate

of 1 packet per second. The effect of the propagation medium is modeled by the

combination of two propagation models. We assume that vehicles move in an urban

scenario, in which losses are well modeled by the 3-Log-Distance propagation model.

This model allows different attenuation factors for each distance range between the

transmitter and the receiver, dividing the path loss into three separate processes.

The first process is the free-space loss and the second happens due to the different
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Figure 5.7: Comparison of the performance metrics using OLSR and each relative-
speed-aware forwarding strategy based on the OLSR. The average packet delivery
ratio for all strategies is statistically equal, but VicR stands out because it signifi-
cantly reduces resource consumption. RelSpeedVicR is also able to reduce resource
consumption, even though less than VicR.

kind of materials the signal has to travel through. The third is a random loss

process that happens due to the urban environment itself, which causes multipath

interferences and shadowing. In addition to this model, we use the Nakagami-m

propagation model that represents the losses due to fast fading only. We consider

that the signal can reach up to 230 m [69]. Even though we use this radio range,

after 90 m, the fast fading is intense [70] and we model it to significant degrade

the signal-to-noise-ratio. Both the 3-Log-Distance and the Nakagami-m models are

implemented in NS-3.

We analyze the packet delivery ratio at the application level and the forwarding

ratio of dropped packets provided by each forwarding strategy. The delivery ratio is

defined as the total number of packets correctly delivered at the destination divided

by the total number of packets sent, i.e., #delivered packets/#sent packets. The

second metric, the forwarding ratio of dropped packets, is used to investigate the

number of times that packets not delivered are forwarded before being dropped.

With this metric, we aim to have an idea of the amount of resources wasted with

useless transmissions. The forwarding ratio of dropped packets is then defined as the

number of hops used before the packet is dropped divided by the number of necessary

hops to reach the destination. Hence, the highest the forwarding ratio of dropped

packets, the greater the amount of resources wasted with useless transmissions. We

emphasize that we do not include delivered packets in this metric. Hence, we have

that #used hops/#necessary hops≤ 1, and the unitary upper bound happens when

the last hop before the destination transmits the packet but the destination does

not receive it.

Figure 5.7(a) shows the packet delivery ratio for each scenario, using a 95%

confidence interval. We observe that the average packet delivery ratio is statistically

equal if we compare all strategies and the OLSR. The packet delivery ratio is low,

independent of the used strategy, confirming that OLSR based protocols are not the
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most suitable for VANETs in terms of successfully delivered packets.

Figure 5.7(b) shows the results for the forwarding ratio of dropped packets, also

using a 95% confidence interval. Comparing the forwarding strategies, VicR wastes

less network resources with useless transmissions than the others, reaching a forward-

ing ratio of dropped packets equal to 39.4%. The RelSpeedVicR is the second best

forwarding strategy in terms of wasting less resources with packets. This strategy

uses, in average, 50.2% of the necessary number of hops before dropping the packet,

whereas RelSpeedR and OLSR achieve 53.3% and 54.6%, respectively. Therefore,

we can conclude that, in the TAPASCologne scenario, submitted to the simulation

parameters we described earlier, there is a clear tradeoff between delivery ratio and

resource utilization. Considering the average forwarding ratio of dropped packets,

the best strategy is RelSpeedVicR, which combines number of hops and relative

speed knowledge. Although it does not improve the average delivery ratio, it does

not deteriorate it. The RelSpeedVicR reduces the amount of useless transmissions

compared with OLSR, but VicR is the most resource-efficient strategy. Depending on

the application, e.g., if saving network resource is a major concern, one can decide

to use VicR instead of RelSpeedVicR.
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Part II

Assessment of Node Importance

Using Quasi-Shortest Paths
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Chapter 6

The ρ-Geodesic Betweenness

Centrality

In this chapter, we focus on the importance of nodes in general multihop networks,

considering their topological position and the multiple paths between them. To this

end, we first present the existing centrality metrics, focusing on the betweenness

centrality. Then, we propose a new centrality metric, the ρ-Geodesic Betweenness

Centrality, which uses other paths, besides the shortest ones, to assess node impor-

tance.

6.1 Background

Each node in a system plays a different role on the transfer of flows across the

network. The quantification of the importance of each role is not trivial. Knowledge

about node importance is essential to better distribute functionalities across the

network, or to better understand the relations between nodes. Frequently, node

importance is assessed using centrality metrics, which are based on nodes topological

positions. Examples of centrality metrics are degree, closeness, and betweenness [15–

17, 42]. The degree relates to the popularity of a node, the closeness to how quickly

it can access or spread resources (e.g., information), and the betweenness relates to

the control that a node can exert over the flow between other nodes [15]. This work

focuses on the betweenness centrality, which was formally introduced by Freeman

in 1977 [43], based on the intuitions revealed in several previous works, using paths

to determine the importance of a node. Many types of network can benefit from

this information. For instance, in social networks, nodes with high betweenness

are known as gatekeepers or brokers: those that control what information enters or

leaves a group. In computer networks, we may find appealing to place data flow

analyzers on nodes with high betweenness, because they have higher probability
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of lying between other nodes. In the remaining of this section we first review the

traditional definition of betweenness centrality and then we present its main variants

used in the literature.

6.1.1 Betweenness centrality

The traditional idea behind the betweenness centrality is that nodes that fall on

many shortest paths (geodesics) between other nodes are more central, because they

can potentially control the flow of information in the network [71–74]. Note that

this notion assumes that the flows always follow shortest paths. Hence, considering

a pair of nodes υi, υj, the number of shortest paths between them (n∗i,j) passing

through υk (n∗i,j(υk)) increases the control exerted by υk over the flows between

υi, υj. Freeman [43] mathematically formalizes this idea, assuming that a message

passes through one of the existing shortest paths between υi, υj with probability

equal to 1/n∗i,j. The chance that one of such paths passing through υk is randomly

picked is given by [43]:

bi,j(υk) =
n∗i,j(υk)

n∗i,j
, (6.1)

which can be computed considering all pairs in the network, defining the overall

betweenness centrality of υk as:

Btrad(υk) =
∑

i∈V

∑

j∈V

n∗i,j(υk)

n∗i,j
, (6.2)

where i 6= k 6= j and j 6= i1. The betweenness can be further normalized by the

maximum value that could be assigned to a node in a network; this is obtained for

the central node in a star graph with the same number of nodes as the network in

analysis. The betweenness for this central node is equal to the number of paths it

falls on: 0.5 ·
(
|V| − 1

)
·
(
|V| − 2

)
[43]. Note that Freeman initially considered only

undirected graphs, but it is possible to derive, analogously, the normalization factor

for directed graphs, which is equal to
(
|V| − 1

)
·
(
|V| − 2

)
.

Freeman suggests that his metric is suitable for networks where knowledge about

node betweenness can affect the network operation somehow. For instance, in com-

munication networks, if we compute his metric we can find nodes that have the

potential to control the communication between other nodes [43]. As such, we could

instruct these nodes to act as flow selectors, allowing specific flows and blocking oth-

ers. Although very important, Freeman’s betweenness is limited to simple graphs,

leaving aside the strength or cost of the relationship between adjacent nodes, i.e.,

1We always consider these constraints. Therefore, they will be omitted in the remainder of the
work.

59



the weight of the link between a pair of nodes. In the remainder of this work, we

refer to Freeman’s betweenness as the traditional betweenness.

Freeman also assumes that the flow of information is always governed by the

shortest-path rule, which may not be true in some cases. For instance, rumors and

diseases are good examples of information that spread randomly. Rumors can be, in

addition, intentionally channeled through specific intermediaries [75]. Policies [76]

and the placement of virtual machines, on the other hand, are neither necessarily

ruled by randomness nor shortest paths. Instead, they usually follow previously

defined requirements, e.g., to meet energy constraints or performance goals [77].

Many works already questioned the shortest-path rule, proposing new metrics

to quantify the importance of a node [38–42, 78]. Some of them also tried to tackle

this issue in weighted networks [38, 42]. The simplest proposals were made by

Borgatti and Everett [41] and Geisberger et al. [78]. All of them still focus on the

use of shortest paths. In the following sections we discuss the main variants of the

traditional betweenness.

6.1.2 Accounting path length: bounded-distance, distance-

scaled and linearly-scaled betweenness

Borgatti and Everett [41] argue that the length of the path should influence the be-

tweenness because longer paths are less valuable to be controlled or may not be realis-

tic for some networks, such as friendship. Hence, they propose the bounded-distance

and the distance-scaled betweenness centralities, which reduce the importance of

longer paths when computing node betweenness. These metrics are formalized in

Equations 6.3 and 6.4, respectively.

Bbounded(υk) =
∑

i∈V

∑

j∈V
λ∗i,j≤κ

n∗i,j(υk)

n∗i,j
· (6.3)

The parameter κ in Equation 6.3 is used as a threshold, so that paths longer than

κ hops are discarded.

Bdist(υk) =
∑

i∈V

∑

j∈V

1

λ∗i,j
· n
∗
i,j(υk)

n∗i,j
· (6.4)

In the distance-scaled betweenness, instead of discarding longer paths, the authors

use all shortest paths and weight their contribution to the importance of a node

according to their length, λ∗i,j, as shown in Equation 6.4.

Geisberger et al. [78] propose a complementary variation of the distance-scaled

betweenness, the linearly-scaled betweenness, in which they also account for the dis-
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tance between the source and the intermediary node. They argue that intermediary

nodes closer to the destination should have more control over the communication.

Their metric is formalized in Equation 6.5:

Blin(υk) =
∑

i∈|V|

∑

j∈|V|

λ∗i,k
λ∗i,j
× n∗i,j(υk)

n∗i,j
· (6.5)

6.1.3 Analyzing weighted networks: flow and Opsahl’s be-

tweenness

None of the aforementioned works is able to quantify the importance of a node

in weighted networks. Such networks are essential to represent the strength or

the cost of a relationship between two nodes. To assess node importance in these

networks, Freeman et al. [38] and Opsahl et al. [42] propose the flow betweenness

and a weighted variant of the traditional betweenness, to which we refer as Opsahl’s

betweenness. Freeman et al. interpret the weight of each edge in the graph as the

capacity of a channel. This channel can be modeled as an elastic pipe connecting

two nodes and it becomes narrower as the distance between the nodes increases. As

a consequence, the more distant the nodes, the smaller the channel capacity. At

some point, the pipe can no longer be stretched and it breaks, interrupting the flow

between the nodes [38]. The authors determine the maximum flow, mi,j, between a

pair of nodes and the maximum flow between these nodes that passes through υk,

mi,j(υk). To this end, they use the concept of i-j cut sets, which are subsets of edges

that disconnect nodes υi, υj when removed. The overall dependency on υk to the

maximum flow defines the flow betweenness, which can be understood as a measure

of the flow amount supported by a node when the maximum flow is pumped in the

network. The metric is formalized as in Equation 6.6.

Bflow(υk) =
∑

i∈V

∑

j∈V
mi,j(υk)· (6.6)

This value can be normalized by the total flow between all pairs of nodes, given by∑
i∈V
∑

j∈V mi,j.

The major drawback of the flow betweenness centrality is the need to know all

the independent sets between each pair of nodes in the network, which increases

time complexity. Opsahl et al. proposed a simpler workaround to handle weighted

networks [42]. They extend the traditional concept [43] to take into account both

the number of nodes in-between other nodes, known as intermediary nodes, and

the strength of the relationship between the nodes. The authors use a slightly

modified implementation of Dijkstra’s algorithm to find the shortest path using

inverted weights ωi,j tuned by a parameter α ∈ R+, which determines the relative
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importance of the number of links compared to the link weights. Depending on the

value of α, the metric accounts for: only the number of shortest paths (α = 0),

only the inverse of the weights (α = 1), favors the length of the path over the cost

(0 < α < 1), or favors the cost of the path over the length (α > 1). The weighted

adjacency matrix ω and the tuning parameter α are used during the computation

of shortest paths. The metric is formalized as in Equation 6.7.

B(ωα)(υk) =
∑

i∈V

∑

j∈V

n
(ωα)
i,j (υk)

n
(ωα)
i,j

, (6.7)

where n
(ωα)
i,j and n

(ωα)
i,j (υk) represent, respectively, the number of shortest paths and

how many of them pass through υk. Note that ω and α are used in Equation 6.7 to

indicate that the network is weighted and a tuning parameter can be used.

6.1.4 Including longer paths: current flow and random walk

betweenness

The aforementioned works consider that the information in the network will always

follow some kind of optimal path. Newman claims that a realistic betweenness

measure should include paths that are not necessarily the shortest [40]. Thus, he

tackles the problem by completely relaxing the idea of following optimal paths.

Newman suggests that the information in the network can wander around essentially

at random until it finds its destination and, thus, we should include contributions

from many paths that are not optimal in any sense [40]. Hence, he proposes the

random walk betweenness, which measures the expected number of times a random

walk starting at a source and ending at a destination passes through a node υk

along the way, computed considering all pairs of nodes. Such a metric is computed

using matrix methods, and it is proven [40] to be equivalent to the current flow

betweenness [39, 40]. Mathematically, the random walk betweenness is formalized

as in Equation 6.8.

Brnd(υk) =
∑

i∈V

∑

j∈V
I

(ij)
k (6.8)

where I
(ij)
k is computed by Equation 6.9:

I
(ij)
k =

1

2

∑

l∈V
Ak,l|Tk,j − Tk,i − Tl,i + Tl,j| (6.9)

and I
(ij)
i and I

(ij)
j can be 0, when edge nodes υi, υj are not considered, or 1, otherwise.

These equations can be computed using the following steps [40]:
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1. Construct the diagonal matrix of vertex degrees, D;

2. Construct the adjacency matrix, A;

3. Compute the matrix D − A;

4. Remove the xth row and the corresponding xth column;

5. Invert the resulting matrix;

6. Add back the xth row and xth column, but now filled with 0’s. The resulting

matrix is named T ;

7. Calculate the betweenness as in Equation 6.8.

Note that, in the traditional betweenness, the flow knows exactly where it is

going to and which path is the best to arrive there; whereas in the random walk

betweenness, it has no prior idea of where the destination is, wandering around at

random until the destination is found. Hence, we can consider these metrics as the

two extremes of a betweenness centrality spectrum with the other metrics based on

shortest paths lying between them.

Summarizing, the aforementioned works use the frequency of participation on

paths to determine the importance of a node. Each one defines the type of path

they use: all of them or only the shortest ones, and specifies whether the length

or the cost of the path influences on the contribution to the importance of the

node. This is why there are several betweenness metrics. We show the possible

combinations between type and length of paths in Table 6.1.

In this work, we argue that shortest paths alone are not enough to determine

the betweenness centrality of a node, because flows can also follow non-ideal paths,

depending on the network we analyze and the application that we need. Hence, our

idea is similar to the flow and random walk betweenness, according to this aspect,

but it differs from the traditional, bounded-distance, distance-scaled, linearly-scaled

and Opsahl’s betweenness. In addition, we agree that the contribution of the paths

Table 6.1: Summary of betweenness centrality metrics discussed in this work.

Metric Name Symbol
Influence of
Path Length

Type of
Path

Weighted
Networks

Traditional Betweenness [43] Btrad No Shortest No

Bounded-Distance Betweenness [41] Bbounded Yes Shortest No

Distance-Scaled Betweenness [41] Bdist Yes Shortest No

Linearly-Scaled Betweenness [78] Blin Yes Shortest No

Flow Betweenness [38] Bflow Yes All Yes

Opsahl’s Betweenness [42] B(ωα) Yes Shortest Yes

Random Walk Betweenness [40] Brnd Yes All Yes
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should be weighted by their length (or cost), because flows tend to concentrate

on the shortest paths. Therefore, considering this claim, our proposal is similar

to all metrics discussed in this section, except the traditional betweenness, when

length and cost are interchangeable. Nevertheless, even though we consider the

influence of path lengths, we weight the contribution of each path relatively to the

cost of the shortest path. Remember that, in this work, the length and the cost of

a path are used interchangeably. If we account both the influence of path length

(cost) and the type of path considered by each metric, our proposal is different from

all metrics, except the flow and random walk betweenness. In fact, conceptually,

our idea is similar to the one used by these two metrics, but we claim that it

is not necessary to use every path. Instead, it is sufficient to consider only the

shortest paths and slightly longer ones. This is because paths much longer than

the shortest one do not concentrate significant amount of flows and, thus, they

cannot have much influence on the importance of a node [40]. Using such paths

on the computation of centrality metrics unnecessarily increases the complexity of

the metric. We argue, then, that paths longer than a certain threshold could be

discarded without significantly affecting the node importance. Hence, our proposal

uses shortest and slightly longer paths, and consider the cost of each path. Thus it

can be applied to both unweighted and weighted networks This is better discussed

in the next section.

6.2 The ρ-geodesic betweenness

In this section we present the weighted betweenness centrality metric proposed in this

work, discussing its conceptual idea, formalization, properties, and implementation.

6.2.1 Metric overview

We saw in Chapter 1 and in Section 6.1 that the traditional betweenness is fre-

quently used to estimate node importance. This metric, however, only accounts for

uf

ue

uy ux

ub

uc

uz

C1

C2

Figure 6.1: Example of network topology where betweenness centrality metrics can
fail to capture the importance of a node on a quasi-shortest path. The clouds
represent any type of network topology, as long as it is connected.
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shortest paths, ignoring nodes that participate on slightly longer paths. In multihop

networks, we may have multiple paths between pairs of nodes. In this case, we argue

that shortest paths only are not enough to determine node importance and we must

also consider other paths. The use of multiple paths, even if they are not as short as

the shortest one, can provide network reliability and increase the total throughput.

In this thesis, we aim to capture the potential of intermediary nodes neglected

by shortest-path-based betweenness centralities in multipath networks. To this end,

we propose the ρ-Geodesic Betweenness Centrality. In a nutshell, the ρ-geodesic

betweenness of a node υk is computed using the proportion of shortest and quasi -

shortest paths that υk falls on between all possible pairs of nodes in the network.

This proportion is weighted by the ratio between the cost of the shortest path con-

necting a pair of nodes and the cost of the quasi -shortest path between the same

pair of nodes passing through υk. The search for quasi -shortest paths is limited

by the spreadness factor ρ, which defines the maximum extra cost that the pro-

posed ρ-geodesic betweenness can take into account (Chapter 2). We will see that

a small ρ is enough to capture well the idea of quasi -shortest paths while keeping

the computational load low.

Some nodes neglected by the shortest-path-based betweenness centralities can be

crucial to the network operation, but they are not accounted by typical betweenness

metrics just because they do not fall on a sufficiently large number of shortest paths.

This problem is illustrated in Figure 6.1, in which both υc and υb are important to

maintain the network components C1 and C2 connected, and υe connects an edge

node to the rest of the network. Let us consider only the paths between C1 and C2,

and their contribution to the importance of nodes υb, υc and υe. The traditional

betweenness of υc will be the highest among these three nodes followed by υe. The

node υb would receive null importance. This happens because υc and υe participate

on many shortest paths, while υb does not fall on any. Nevertheless, υb must be

given some importance, because it is part of a backup path that can maintain both

network components connected at a small additional cost if υc fails. Even if one of

the paths is slightly longer, it could also be used to distribute the load between both

network components in two paths, to avoid congestion, or as part of a congestion

recovery process. If we consider other paths besides the shortest one to compute the

centrality of nodes, υb would be assigned some importance.

Table 6.2 compares the betweenness computed for υe, υc, and υb using the tra-

ditional (Btrad), distance-scaled (Bdist), and random walk (Brnd) betweenness, con-

sidering two mesh networks composed of six nodes, one connected between υe and

υy, and the other connected to υx, as shown in the clouds of each component in

Figure 6.1. We observe in Table 6.2 that the random walk betweenness is the only

metric able to assign a significant importance to υb. Hence, we say that this metric
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Table 6.2: Comparison of traditional (Btrad), distance-scaled (Bdist) and random
walk (Brnd) betweenness metrics for nodes in Figure 6.1.

Node Btrad Bdist Brnd
υc 63.0 12.1 47.6
υb 9.0 2.5 35.6
υe 17.0 3.9 17.0
υx 73.0 16.1 80.4
υy 81.0 17.7 86.8
υz 7.0 2.1 34.8
υf 0.0 0.0 0.0

proportionally captures the importance of υb to the network. This happens because

the random walk betweenness also accounts for paths longer than the shortest one.

6.2.2 Metric formalization

Our approach differs from the works discussed in Section 6.1 by considering in a

single metric the number of shortest and quasi -shortest paths between all pairs

of nodes, as well as the cost of each path. These costs are introduced as a ratio

between the cost of the shortest path, δ∗i,j, and the cost of the quasi -shortest path

through υk, given by δi,j = δi,k+δk,j. Hence, the ρ-geodesic betweenness weights the

paths proportionally to their costs, assigning higher importance to nodes on shorter

paths. The maximum cost of the quasi -shortest path depends on the spreadness

factor ρ. For instance, if ρ = C, the maximum cost for the quasi -shortest path is

max(δi,j) = δ∗i,j +C, thus, paths that cost δ∗i,j + (C + ϕ), where ϕ ∈ R∗+, are ignored

in the computation. Note that we account for all the paths with cost δi,j ≤ δ∗i,j +C,

including the shortest one (C = 0).

The concept of the ρ-geodesic betweenness (Bρ) is quite similar to the one of the

traditional betweenness, which can be understood as the frequency with which υk

falls on shortest paths between all pairs of nodes in the network. Analogously, the

proposed metric measures the frequency with which υk falls on paths that cost less

than or equal to δ∗i,j+ρ. The idea behind the limitation imposed by ρ is based on the

fact that the throughput of information traveling through paths for which δi,j � δ∗i,j
is expected to be low. The proposed metric is formalized in Equation 6.10.

Bρ(υk) =
∑

i∈V

∑

j∈V
δi,k+δk,j−δ∗i,j≤ρ

n∗i,j(υk) + ni,j(υk)

n∗i,j + ni,j
× δ∗i,j
δi,k + δk,j

· (6.10)

If ρ = 0, δi,j = δ∗i,j, and only the shortest paths are considered. In addition, the

metric is computed for source-destination nodes that lie in the same component, such

that each partial value is equal to zero if these nodes are in different components.
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6.2.3 Properties

The ρ-geodesic betweenness centrality has the following properties:

• It considers the number of multiple paths between nodes, both shortest and

quasi -shortest paths;

• It increases with the participation of υk in both shortest and quasi -shortest

paths;

• It prioritizes low cost paths by decreasing the contribution of costly paths

through a cost ratio;

• It grows with the centrality of the node.

Note that, in this work, the node is considered more central if it participates on

multiple paths, either shortest or quasi -shortest. The reason behind this consider-

ation is that nodes that participate in several quasi -shortest paths should not be

discarded just because they are not on the shortest path, as they could be important

in many situations. For instance, such nodes that are so close to the shortest path

could serve as backup nodes during a network failure. In Figure 6.1, for example, υb

is part of a possible backup path between both sides of the network. The ρ-geodesic

betweenness of nodes υc, υb, υe, υx, υy, υz, υf for ρ = 3 are equal to 117.1, 39.6,

35.6, 156.9, 173.1, 36.2 and 0.0 respectively, considering unitary cost for each link.

The upper and lower limits of each partial term of the metric depend on the

proportion of shortest and quasi -shortest paths that υk participates. In addition,

these limits depend on the ratio between the costs of such paths. The value of ρ can

modify the proportion of node participation on shortest and quasi -shortest paths.

As a consequence, it can influence the limits of each partial term, being able to

decrease the lower limit down to 0 if δi,k + δk,j − δ∗i,j > ρ.

Using larger values for ρ, we can find more quasi -shortest paths, and if ρ is

sufficiently large to account for at least one of these paths, the lower limit will tend

to 0 if the cost of the quasi -shortest paths is much greater than the cost of the

shortest path between the same pair of nodes, i.e., δi,k + δk,j � δ∗i,j. Note that if the

cost is ∞, the nodes are considered as unreachable, meaning that the contribution

to the ρ-geodesic betweenness is null. The lower limit will also tend to 0 if the

value of ρ provides too many quasi -shortest paths, such that the number of existing

paths between υi, υj is much greater than the number of such paths that υk falls

on, i.e., n∗i,j + ni,j � n∗i,j(υk) + ni,j(υk). In the best case scenario, the upper limit

of each term is equal to 1, when υk only falls on shortest paths and participates in

all shortest paths connecting υi, υj, meaning that n∗i,j(υk) +ni,j(υk) = n∗i,j +ni,j and

δ∗i,j = δi,k + δk,j.
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Figure 6.2: The nodes in the example can be divided in 3 sets according to their
ability to intermediate flows: {υa, υe} will never intermediate them, {υb, υd} in-
termediate the great majority, and {υc} intermediates if necessary. Nevertheless,
shortest-path-based centralities, such as the traditional and the distance-scaled be-
tweenness, classify υc in the same set of υa and υe.

The ρ-geodesic betweenness presents an intrinsic higher variance, compared to

other shortest-path-based centrality metrics, such as the traditional and distance-

scaled betweenness. This happens due to the inclusion of the quasi -shortest paths

on the computation of node importance. Therefore, we can have a broader spec-

trum to classify nodes according to their importance and, thus, we achieve a more

fine-grained node ranking. This is especially true for larger ρ. Furthermore, the ρ-

geodesic betweenness is able to assign importance to nodes even if their ego network

density is unitary, whereas the aforementioned metrics cannot, as we observe in Fig-

ure 6.2. If we consider only the set of nodes {υa, υb, υc, υd, υe}, it is clear that using

only shortest paths will lead us to a condensed ranking, with only two positions,

occupied by two groups of nodes: {υb, υd} and {υa, υc, υe}. Nevertheless, υc is clearly

different from υa and υe in the sense that it can obviously intermediate communica-

tions, if necessary, while the former cannot because they are endpoints. Therefore,

we argue that the second group should not be composed by {υa, υc, υe}. Instead,

υc should be reranked as more important than the other two nodes in this group,

broadening the ranking. This reranking is achieved by both the random walk and

the ρ-geodesic betweenness, as we observe in the results of Table 6.3. Note, however,

that the ρ-geodesic betweenness metric (Bρ=1) with ρ = 1 assigns higher importance

Table 6.3: Comparison of the betweenness of nodes in Figure 6.2. Both the random
walk (Brnd) and ρ-geodesic betweenness (Bρ) are able to broaden the node ranking.
The distance-scaled (Bdist) and traditional (Btrad) betweenness cannot capture the
importance of node υc.

Node Btrad Bdist Brnd Bρ=1

υa 0.0 0.0 0.0 0.0
υb 3.0 1.3 3.7 2.7
υc 0.0 0.0 1.3 1.3
υd 3.0 1.3 3.7 2.7
υe 0.0 0.0 0.0 0.0
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to υc proportionally to υb and υd (1.3 vs. 2.7) than the random walk betweenness

(1.3 vs. 3.7).

6.2.4 Algorithm for computing the ρ-geodesic centrality

The steps used to compute our metric for one node υk are as follows.

1. Look for the shortest paths from every υi to every other node υj in the network;

2. For each pair υi, υj, store the cost of the shortest path, the cost threshold and

the number of shortest paths between these nodes;

3. Count and store the number of shortest paths between each pair υi, υj that

passes through υk;

4. Look for the quasi -shortest paths from every υi to every other node υj in the

network, using the stored cost threshold to limit the search;

5. For each pair υi, υj, store the cost of the quasi -shortest paths and the number

of such paths between these nodes;

6. Count and store the number of quasi -shortest paths between each pair υi, υj

that passes through υk;

7. Calculate the betweenness of υk as in Equation 6.10.

At the end of these steps we have the ρ-geodesic betweenness of υk. This can

be easily implemented if we want to compute the betweenness of only one node.

Without any modification, however, if we followed these steps to compute the ρ-

geodesic betweenness of all nodes in the network, the algorithm would not be efficient

because steps 1 and 4 are computationally intensive and would need to be repeated

for each pair υi, υj. Hence, to compute our metric for all nodes in the network,

we modify Brandes’ algorithm for the traditional betweenness [79] to also look for

quasi -shortest paths and account their contribution to the importance of nodes. The

algorithm used to compute the ρ-geodesic betweenness for all nodes in the network

is described in Algorithm 2.

In this work, we use the number of hops as cost metric and, thus, ρ ∈ N. We use

∆max = ρ+ 1 vectors D∆
src and N∆

src for each src to account for the paths that cost

from 0- to ρ-hops more than the shortest one. Vectors D∆
src and N∆

src are composed of

numNodes elements each and D∆
src represents the path cost between src and all other

nodes, while N∆
src has the number of paths between these nodes. Hence, for a given

ρ, we have D∆
src = [δsrc,1, . . . , δsrc,numNodes] and N∆

src = [nsrc,1, . . . , nsrc,numNodes]. Note

that 0 ≤ ∆ ≤ ρ, where ∆ = 0 refers to arrays concerning the shortest paths, and
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Algorithm 2 Basic ρ-geodesic betweenness
Input: ρ,G
Output: ρ-GB

1: for src← 1, numNodes do
2: D∆

src, N
∆
src, N k∆

src, Tsrc ← initialize(G, ρ)
3: D0

src, N
0
src, Tsrc ← find sp(src, ρ)

4: D∀∆>0
src , N k∀∆>0

src , N∀∆>0
src ← find qsp(src, Tsrc)

5: ρ-GB←accumulate(ρ, src, D∆
src, N

∆
src, N k∆

src, ρ-GB)

6: function accumulate(ρ, src, D∆
src, N

∆
src, N k∆

src, ρ-GB)
7: for dest← 1, numNodes do
8: for k ← 1, numNodes do
9: if υk 6= υsrc & υk 6= υdest & υsrc 6= υdest then

10: for ∆← 0, ρ do
11: if ∃ SP through υk ‖ ∃ QSP through υk then

12: ρ-GBk ← ρ-GBk +
N k0

src,dest+N k∆
src,dest

N0
src,dest+N

∆
src,dest

· D
0
src,dest

D∆
src,dest

∆ > 0, to the ones regarding the quasi -shortest paths of cost δ∗i,j +1 ≤ δi,j ≤ δ∗i,j +ρ.

Yet, N k∆
src represents ∆max = ρ + 1 matrices with size numNodes × numNodes,

where each matrix represents one source node. In these matrices, each element is

the number of paths between src and all other nodes that υk falls on. Hence, N k∆
src

for a given ρ is represented by:

N k∆
src =




n1,1(υk) . . . n1,numNodes(υk)

. . . . . . . . .

nnumNodes,1(υk) . . . nnumNodes,numNodes(υk)


 .

Vector Tsrc is composed of numNodes elements and it contains the maximum

allowed cost for the quasi -shortest path between src and all other nodes, i.e., Tsrc =

[δsrc,1 + ρ, . . . , δsrc,numNodes + ρ]. Finally, ρ-GB is a vector composed of numNodes

elements, where each element is the ρ-geodesic betweenness of an intermediary node

υk.

Algorithm 2 uses as input the matrix representation of the network, G, and

the spreadness factor, ρ. It returns the vector ρ-GB, which contains the ρ-geodesic

betweenness of every node. The function INITIALIZE is responsible to create the

arrays and initialize them with the proper values. As we use the number of hops

as the cost of the path, the function FIND SP implements the Breadth-First Search

(BFS) algorithm to find the shortest paths, while the function FIND QSP implements

the Depth-First Search (DFS) algorithm, constrained in depth by vector T, to find

the quasi -shortest paths. Note that FIND SP uses ρ as input only to compute the

maximum allowed length of the quasi -shortest paths. If a real cost was used, for

instance, these functions must be changed. A possible candidate is to modify the

Dijkstra algorithm to compute paths that costs more than the shortest one.
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The ACCUMULATE function described in line 6 of Algorithm 2 is responsible for

summing up the contribution of each pair of nodes υi, υj to the betweenness of the

intermediary node υk. Each time this function is called it updates the ρ-geodesic

betweenness of the intermediary nodes that participate in the paths from src to all

the other nodes. Consequently, in the end of the for loop in line 1 of Algorithm 2,

the vector ρ-GB will contain the ρ-geodesic betweenness of every node.

The analysis of Algorithm 2 shows that the functions INITIALIZE, FIND SP and

FIND QSP, and ACCUMULATE are, respectively, O(n2), O(m + n), and O(ρn2), where

ρ is a constant. Hence, the complexity of the ρ-geodesic betweenness metric can be

computed in O(n2) or O(n3), depending if the network is sparse or dense, respec-

tively.
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Chapter 7

ρ-Geodesic Betweenness:

Characterization and Discussion

We explore the ρ-geodesic betweenness to verify the impact of the quasi -shortest

paths on the importance of nodes in both dynamic and static networks. To this end,

we characterize the metric according to several aspects. Each one is investigated in

this Chapter in a separate section. We then discuss some possible applications of

our metric.

7.1 Analysis guidelines

We analyze the impact and relevance of our metric on four datasets using ρ ≤
5. As we use the number of hops as cost metric, ρ ∈ N, and we account for all

quasi -shortest paths for which δi,j ≤ δ∗i,j + {1, 2, 3, 4, 5}. Our analysis captures the

importance of nodes according to their topological distribution in the network, using

multiple paths. We use the traditional betweenness as the baseline centrality metric

to assess the characteristics of the ρ-geodesic betweenness. We use the following

guideline:

1. Metrics correlation: we analyze the correlation between the random walk,

distance-scaled and ρ-geodesic betweenness with the traditional betweenness.

The goal is to discover how closely related the metrics are to the traditional

betweenness. This is important to verify if they are using similar character-

istics to determine the importance of a node. In addition, we want to verify

whether they can pinpoint nodes to be reranked, even if they are strongly

correlated to the traditional betweenness.

2. Metrics reranking ability : we investigate the behavior of the ranking obtained

for each metric, studying the level of agreement between the metrics and the
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reranking of nodes. Note that the rank position of a node depends on the value

of betweenness assigned to it, such that the first node (most important) has

the highest betweenness. Nodes can be reranked in higher or lower positions,

according to its new value of betweenness.

3. Intermediation ability : we examine the distance-scaled and ρ-geodesic be-

tweenness to determine whether they can pinpoint nodes that are potentially

a better choice to intermediate flows than the ones preferred by the traditional

betweenness. We also investigate for how long nodes can keep the same posi-

tion. A node can be a better choice to intermediate flows if it remains in the

same rank position for longer or, at least, loses its intermediation ability less

frequently. We do not use the random walk betweenness for this analysis be-

cause the dynamic dataset is not a connected network and, thus, the random

walk betweenness cannot be computed using Newman’s algorithm (Subsec-

tion 6.1.4), considering the entire dataset as a single network.

4. Fault tolerance analysis : in this analysis we aim to investigate the performance

of a dynamic network in the presence of single node failures. We assume that

flows travel through shortest paths (geodesics). We investigate the ranking of

the articulation points for each metric and the impact on the network through-

put (bandwidth consumption) when a single fail happens on the nodes claimed

as the most central by each metric.

7.2 Metrics correlation

It is important to know how the metrics relate to the traditional betweenness to

find how the different considerations of each metric influence the similarity between

them. We need the metrics to be strongly correlated, so that we are sure that

they measure similar characteristics. Nevertheless, we also need that each metric

pinpoints nodes that should be reranked according to its own definition of node

importance. The results are shown in Figure 7.1, where the X-axis is the normalized

traditional betweenness and each curve represents one of the other three metrics,

also normalized. The normalizing factor is given by 0.5 · (|V| − 1) · (|V| − 2) for the

undirected graphs and by (|V| − 1) · (|V| − 2) for the directed ones, as explained in

Chapter 6. The axes in Figures 7.1(b) and 7.1(d) are scaled for better visualization.

The random walk betweenness is computed only for the Dolphins dataset due to

restrictions of Newman’s algorithm related to the network structure, as we discussed

previously in this Chapter. We only show the curves for the 1- and 5-geodesic

betweenness (ρ = {1, 5}, respectively), for the sake of clearness. The curves for the

other values of ρ lie between these two.
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Figure 7.1: The correlation with the traditional betweenness is clearly strong for
all metrics, being stronger for the distance-scaled betweenness. The random walk
and ρ-geodesic betweenness show more capability to identify nodes that could re-
ceive a different value for the betweenness. Note that the axes are normalized by(
|V| − 1

)
·
(
|V| − 2

)
if the graph is directed, and by 0.5·

(
|V|−1

)
·
(
|V|−2

)
otherwise.

Figure 7.1 shows that all metrics are strongly correlated to the traditional be-

tweenness, as their coefficient of determination (R2) is high. The strongest corre-

lation is found for the distance-scaled and 1-geodesic betweenness. As ρ increases

the correlation decreases, since the participation of nodes in quasi -shortest paths

increases, pinpointing more nodes to be reranked. Nonetheless, ρ = 1 is already

enough to pinpoint some nodes. This is shown by the dispersion of points around

the curve or, mathematically, by the standard deviation of each fitting, combined

with the R2 value. By comparing these parameters for each curve, we find that the

higher the standard deviation and the lower the R2, the more nodes are identified as

candidates to be reranked. Note, that R2 cannot be very small (< 0.35), as it would

give us only a moderate correlation, meaning that the metrics are almost completely

different, which is not of our interest. If the metrics are completely different from the

traditional betweenness, we cannot assure that they keep the idea of flow control.

Figure 7.1(b) shows a singular behavior. The ρ-geodesic betweenness is quite

identical to the traditional betweenness in the PhD Students network, independently

of ρ. This happens because the relationships between nodes in this network have

strong socialization tendencies, which turns out to produce few multiple paths. The

correlation between the random walk and traditional betweenness can be observed

in Figure 7.1(c). In this scenario, we note that this metric is similar to the 1-geodesic
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betweenness (ρ = 1), and both can almost equally identify that some nodes could

be reranked.

7.3 Metrics reranking ability

Knowing that the ρ-geodesic betweenness can identify nodes that could be reranked,

we further investigate the level of agreement between the metrics regarding the

reranking. We also analyze the influence of ρ on the ranking, which is established

using the betweenness of the nodes, such that the most important node has the

highest betweenness and is the first in the rank, while the node with the lowest

betweenness is the less important and, thus, the last in the rank.

We use the node ranking for the Dolphins network to analyze the level of agree-

ment between the metrics. To this end, we compute the Kendall’s W coefficient for

each pair combination of the metrics. Hence, using the terminology of the coeffi-

cient, the metrics are the judges and every node in the dataset is judged by them.

Kendall’s W defines if the judges agree with the classification assigned to the set

of nodes, i.e., if each metric agrees with the ranking provided by the other metrics.

In Figure 7.2, the closer to the border the blue octagon is, the higher the level of

agreement between the metric and the others. The ranking provided by the distance-

scaled betweenness, for instance, is almost in perfect agreement with the one for the

traditional betweenness. The disagreement between the random walk and the tradi-

tional betweenness is higher than the one between the 1-geodesic betweenness and

the traditional betweenness. As ρ increases, in turn, the disagreement with the

traditional betweenness also increases, because the quasi -shortest paths accounted

become significant. This also happens if we compare the concordance between the

random walk betweenness and our metric. This discussion does not reflect, however,

the rate with which nodes are reranked. Although the concordance between the met-

rics is high, the reranking rate is also high. For instance, we found that compared to

the traditional betweenness, several nodes are reranked independently of the metric

we use. We have a reranking rate of 66.1% using the distance-scaled betweenness,

75.8% for the random walk betweenness, and for the ρ-geodesic betweenness we

have 74.2%, 77.4%, 79.0%, 75.8%, and 77.4% for ρ ∈ {1, 2, 3, 4, 5}, respectively.

This happens because, contrary to Kendall’s W coefficient, the reranking rate does

not take into account whether the change in the rank position is significant.

In order to investigate the intensity of the reranking, we analyze in Figure 7.3

how the rank varies according to the metrics we use. The X-axis represents the

transition between the metrics, while the Y -axis shows the number of positions that

a node gained or lost when we change from one metric to the other. The color grid

shows how frequently the nodes gain or lose y positions. Figure 7.3(a) illustrates the
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Figure 7.2: The Kendall’s W coefficients plotted to each pairwise combination of
betweenness centrality metrics show a high level of agreement between them. The
lowest concordance happens between the traditional and the ρ-geodesic betweenness
for ρ = 5. This is due to the potentially numerous quasi -shortest paths considered
on the metric computation, which vary more significantly the importance of nodes
and, consequently, their rank positions.

results for the Freeman dataset. We observe that at least half of the nodes keep the

same position when we change from the traditional to the 1-geodesic betweenness

(ρ = 1), as shown by the purplish color for y = 0. Note that we can find nodes that

gain up to 10 positions if we use the proposed metric. In turn, if we use the distance-

scaled betweenness, 100% of nodes stay in the same position. We also observe that

increasing ρ affects the ranking with nodes losing or gaining up to 2 positions. The

variation stops at ρ = 4, as for ρ = 5 the influence of quasi -shortest paths ends. We

highlight that, in all scenarios, for ρ > 2 most nodes keep their positions unchanged,

76



-4

-2

0

2

4

6

8

10

B
ρ=1 →

B
ρ=2

B
ρ=2 →

B
ρ=3

B
ρ=3 →

B
ρ=4

B
ρ=4 →

B
ρ=5

B
trad →

B
dist

B
trad →

B
rnd

B
trad →

B
ρ=1

R
an

k
va

ria
tio

n

0

0.2

0.4

0.6

0.8

1

Fr
eq

ue
nc

y

(a) Freeman (32 nodes).
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(b) PhD Students (1,025 nodes).
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(c) Dolphins (62 nodes).
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(d) Cologne #1 (1,579 nodes).

Figure 7.3: The distance-scaled, random walk and ρ-geodesic betweenness are able
to redistribute the node ranking to different extents, compared to the traditional
betweenness.

as shown by the reddish rectangles for y = 0.

Figure 7.3(b) shows the result for the PhD Students dataset. Some nodes change

their position when we use the ρ-geodesic betweenness, but the distance-scaled be-

tweenness has the most significant influence on the ranking for this scenario, as it

spreads the classification. This corroborates the correlation results found for this

dataset. We observe in Figures 7.3(c) and 7.3(d) that all metrics change significantly

the node ranking on the Dolphins and Cologne #1 networks, respectively. For the

Dolphins dataset the random walk and ρ-geodesic betweenness redistribute several

nodes in the rank. The variation on the positions of the rank is representative, with

a range that lies, approximately, between [−21, 13] for the random walk betweenness

and [−18, 10] for our metric. In the Cologne network, the ρ-geodesic betweenness

has more power of modification compared with the other metrics, ranging from −80

to 28 positions. Note that the number of nodes in each dataset is very different

and changing a certain number of positions in each one has a different impact. For

77



instance, if we disregard ties, i.e., each position can be occupied by one node only, a

node in the Freeman dataset promoted by 10 positions improves its importance by

31.25%. In contrast, a node in the sample 1 of the TAPASCologne dataset, in the

same condition, would improve its importance by only 0.64%. We do not imply that

the results observed in Figure 7.3 elects one or other metric as the best centrality

metric. We only intend to present the power of changing nodes ranking for each one

of them. Such reranking reflects what the metric defines as an important node. To

be the best metric depends on the analyzed application.

We further investigate how the centrality metrics evaluated behave in the pres-

ence of ties. The idea is to find how the metrics assess the importance of nodes once

tied in the same rank position by the traditional betweenness. If the metrics are able

to differentiate more nodes, the node ranking will be broadened. Consequently, con-

sidering that one of these nodes could be chosen to execute a functionality, it would

be possible to choose from a finer-grained list of options. The result is shown in

Figure 7.4 for all datasets, considering 1 ≤ ρ ≤ 5. We define the rate of broken ties

as 1− (# tied nodes other metrics/# tied nodes trad metric). As the values

are consistent for all ρ in this range, we label the blue bar in the graph as ρ-geodesic.

We observe that the tiebreaking rate for the ρ-geodesic betweenness is usually equal

or greater than the other metrics, even though we use a small spreadness factor

(ρ = 1). The only exception is the PhD Students scenario, singular in its construc-

tion, which does not provide many multiple paths that could benefit the ρ-geodesic

betweenness. Note that, in this figure, a negative tiebreaking rate means that the

number of tied nodes increased.
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Figure 7.4: Compared to the traditional betweenness, the distance-scaled and ρ-
geodesic betweenness are able to spread the classification rank, giving room to more
positions. Hence, we find less nodes tied in the same position. The random walk
betweenness surprisingly increases the number of tied nodes in the Dolphins dataset.
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7.4 Intermediation ability

The ρ-geodesic betweenness is strongly correlated to the traditional betweenness

but it moves away from the latter as ρ increases. As such, we can identify nodes

that could be given more (or less) importance. Even for low values of ρ, such

as ρ = 1, for instance, we can find nodes that can be reranked, but to a lesser

proportion. In the following analysis, we suppose that nodes are chosen to play a

specific role on the network based on their betweenness. This role could be, for

instance, to act as a packet flow analyzer in a network where flows follow shortest

paths. The placement of this functionality is determined by node centrality, so that

nodes with high betweenness are better candidates because they much likely fall on

the majority of shortest paths between other nodes in the network. We investigate,

then, how the betweenness metrics capture node centrality overtime, which can also

be interpreted as the ability to intermediate flows. To this end, we took 10 samples

from the Cologne network, each 10-seconds.

Nodes that do not fall on any shortest path cannot intermediate flows and it

is expected that the number of nodes that participate in shortest paths influences

how many nodes can play specific roles. In dynamic networks, or in the presence of

node failure, having less options of nodes to play specific roles can lead to service

disruption or even break the network into several connected components. Note that

services in this context can point to different functionalities, such as data storage,

packet forwarding and flow analysis.

Let us continue our analysis supposing that packet analyzers were allocated on

the most central nodes, defined by the traditional betweenness. If in the next instant

some of these nodes come across an event that reduces their ability to intermediate

flows, we will need to reallocate the packet analyzers. This can happen, for instance,

because they became a leaf node or the number of paths through them was severely

reduced. In this scenario, we examine the intermediation ability through the anal-

ysis of the number of reallocations avoided over time. We use both expressions

interchangeably. Figure 7.5(a) is a cumulative distribution that shows how often we

can avoid to reallocate the packet analyzers. The X-axis is the number of times

that we could avoid reallocations, i.e., prevented nodes to lose their intermediation

ability. The Y -axis represents how often at least x reallocations were potentially

avoided during the period in analysis (P (X ≤ x)). While x = 0 means that the

reallocations were never prevented, x = 10 means that nodes never lost their inter-

mediation ability. Clearly, the ρ-geodesic betweenness is always capable of avoiding

more reallocations than the other metrics. Of course, this result is of poor use if the

nodes that keep the intermediation ability are the ones that are never used because

their betweenness is very small, ergo the last nodes in the rank. Therefore, we an-
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Figure 7.5: The proposed ρ-geodesic betweenness is able to reduce the number of
times that nodes lose their ability to intermediate flows in the network compared to
the other metrics, even for the most important nodes. The ρ-geodesic betweenness
can prevent up to 3 reallocations more than the traditional and distance-scaled
betweenness.

alyze the top initial 20 nodes in the network to further verify if they also benefit

from this behavior.

Figure 7.5(b) shows how many times more we can keep nodes intermediation

ability when we change from the traditional to the distance-scaled and ρ-geodesic

betweenness, for the initially top-ranked nodes in the network. The X-axis is the

node label in ascending order of importance. The Y -axis indicates the difference

between the number of times the reallocation was avoided by the distance-scaled

and ρ-geodesic betweenness compared to the traditional betweenness, in absolute

values. We observe that for the top 20 nodes, the distance-scaled betweenness never

avoids more losses than the traditional betweenness. On the other hand, the ρ-

geodesic betweenness is able to avoid more than 1 reallocation to almost half of

these nodes, reaching up to 3 reallocations avoided.

Lastly, we analyze for how long nodes can remain in the same rank position using

each metric. Figure 7.6 shows how frequently we can find nodes that can keep the

same position during the 90 seconds time interval analyzed for the Cologne dataset.

The majority of nodes in this interval frequently jumps between rank positions and
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Figure 7.6: In the highly dynamic scenario of the Cologne vehicular network, the
ρ-geodesic betweenness is the metric that changes less frequently the ranking of
nodes. Of all nodes in the network, 1.2% remain in the same rank position for up
to 10 seconds.

none of them is able to maintain the same position for more than 20 seconds. Hence,

in Figure 7.6, we only show the results for 10 ≤ x ≤ 30. We observe that few nodes

remain in the same rank position and they do so for approximately 10 seconds

maximum. Although this is valid for the minority of nodes in this network, we can

quickly note that the ρ-geodesic betweenness is the metric that achieves the highest

number of nodes that can keep the same rank position for longer, reaching 1.2% of

nodes for ρ = 1, which is 6 times higher than the traditional and {3, 4}-geodesic

betweenness. Therefore, we claim that the ρ-geodesic betweenness is the metric that

can better keep the ranking unchanged for the highly dynamic scenario provided by

the Cologne network.

7.5 Fault tolerance analysis

Suppose the scenario of Section 7.4, where we have allocated packet analyzers on

the nodes that participate the most on shortest paths. The idea of this allocation

choice is because flows tend to follow shorter paths. Nodes with high betweenness

are responsible for intermediating a great number of flows between pairs of nodes

in the network. The problem with that approach is that the proportion of partic-

ipation on shortest paths is related to the criticality of the node to the network

connectivity [80]. Hence, depending on the topology of the network, a failure on a

single node can affect a great number of flows. As the identification of critical nodes

is not trivial [81, 82], one can use the traditional betweenness to identify some of

them [80], because they usually have higher betweenness than ordinary nodes. We

use, then, the Cologne network to investigate the relation between the articulation

points and the traditional, distance-scaled and ρ-geodesic betweenness centralities.

We analyze only the first 6 snapshots (10 seconds each) from the Cologne net-

work. Figure 7.7 shows the result considering the top #5 nodes of the metric in
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Figure 7.7: The number of articulation points existing on each snapshot of the
dynamic Cologne network considering the top #5 positions. In general, this num-
ber is lower for the distance scaled (Bdist) and ρ-geodesic (Bρ) betweenness, when
compared to the traditional betweenness (Btrad).

each snapshot. The X-axis is the snapshot index and the Y -axis is the number of

articulation points existing among the top #5 nodes in each snapshot. We observe

that the number of articulation points is different according to the snapshot and the

metric used. It is clear that both the distance scaled and the ρ-geodesic between-

ness have less articulation points in the top positions. Table 7.1 shows the number

of components existing before and after a failure on a single articulation point in

the top #5 positions. In each snapshot, at least one more connected component is

created. In snapshot #4, up to two components can be created, depending on the

node classification.

A single node failure can have severe impact on the communications, depending

on the network topology. If this node is also an articulation point, the failure can be

fatal to the network operation. We investigate, then, the severity of single failures on

nodes selected as the most central by each betweenness metric. To this end, we use

the Network Simulator (NS-3) aiming to analyze the behavior of the average system

throughput before and after a single node failure on each of the top #5 positions.

The average system throughput is the rate of successful message delivered over the

communication medium, measured in bits per second. We evaluate the results for

each metric by comparing them to the traditional betweenness. We consider that

each node in the network intends to communicate with all the other nodes, even

if they are not in the same connected component. Nevertheless, if two nodes in

Table 7.1: Number of components in each snapshot of the Cologne network before
and after failure on a single articulation point.

Snapshot index
#1 #2 #3 #4 #5 #6

No failure 550 549 546 576 596 578
Single failure 551 550 547 577 / 578 597 579
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Table 7.2: The probability that a failed node is also an articulation point is higher in
the majority of cases for the traditional betweenness, compared to the other metrics.

Snapshot Btrad Bdist Bρ=1 Bρ=2 Bρ=3 Bρ=4 Bρ=5

#1 0.60 0.60 0.60 0.60 0.60 0.60 0.60
#2 0.43 0.33 0.33 0.17 0.0 0.0 0.0
#3 0.88 0.80 0.80 0.80 0.80 0.38 0.25
#4 0.72 0.60 0.60 0.60 0.40 0.40 0.40
#5 1.0 1.0 1.0 0.67 0.80 0.33 0.33
#6 1.0 0.80 1.0 0.80 0.80 0.80 0.43

different components try to communicate they will not succeed because there is

no path between them. Hence, we install one UDP server-client application for

each pair of nodes. All messages exchanged between them have the same size. We

consider that the topology changes each 10 seconds, to match our snapshots. Lastly,

the node to be failed is chosen randomly among each rank position. This means that

if we want to investigate the failure of a node in position n, and there are m nodes

in this position, we randomly chose one of the m nodes to fail. The results depend

on the ranking of each metric. In sparser networks, which have less alternative

paths between pairs of nodes, we should have a behavior similar to the traditional

betweenness. On the other hand, if the offer of alternative paths is higher, the

difference between the metrics will be more accentuated.

We investigate the average network throughput after a failure on a single node

in the top #5 positions. Note that the failed node can be an articulation point or

not. The probability that the failed node is also an articulation point differs for

each metric, as shown in Table 7.2. Comparing the traditional betweenness with

the distance scaled and the ρ-geodesic betweenness, this probability is often higher

for the traditional betweenness. Focusing on the distance scaled and the ρ-geodesic

betweenness, in the studied scenario, the probability that a failed node is also an

articulation point is usually higher for the distance scaled betweenness. In addition,

regarding the variation within the ρ-geodesic betweenness itself, this probability

is reduced when ρ increases. Therefore, we expect the impact of failure on the

throughput of the network to be less harsh for the ρ-geodesic betweenness.

In Figure 7.8 we highlight the maximum average throughput of the network,

achieved when there is no node failure, equal to 21.17 Mb/s. We use it as the

reference value. We observe that a single failure can be disastrous on the average

network throughput, independently of the node rank. The variation among the node

ranks is very small and the throughput loss is lower for less important nodes. For

instance, the worst failure in the first rank causes the drop of the average throughput

to 28.18% of its maximum original value, while for the last rank it is reduced to

28.40% in the worst case. Frequently, nodes classified as more important are the
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same for all metrics, and, thus, the variation of the average throughput within the

same rank is small. Figure 7.9 shows how often the top #5 nodes change during

the 60 seconds of simulation. During 83% of the time, the nodes classified on the

first position is the same for both the traditional and distance scaled betweenness.

Compared to the ρ-geodesic betweenness, it drops to 67% of the time. This value is

not enough, however, to influence the average network throughput. This throughput

is influenced only when the coincidence is smaller than 50% of the time.

The major point of this section was to highlight that the ρ-geodesic betweenness

is able to reduce the number of articulation points in the most central positions.

Additionally, although the throughput results are similar to all metrics, in the eval-

uated scenario, failure on nodes with high ρ-geodesic betweenness usually reduces

slightly less the average throughput of the network. It is important to design a

network where no articulation points exist, but if they do, it is also important not

to place critical functionalities on these points, as they represent major vulnerabili-

ties. Therefore, one should not use the traditional betweenness for such placement.

The ρ-geodesic betweenness, in turn, could be used, as it elects less articulation

points as central nodes and the cost to deviate the flow from the shortest path to a

quasi -shortest path is potentially small, depending on the spreadness factor ρ.

7.6 Discussion

The main goal of Part II is to propose a new betweenness metric to determine node

importance, considering, in addition to shortest paths, longer paths between nodes

in multipath networks. This is important because, in many networks, flows do not

follow only shortest paths. In the literature, we already have a well-known centrality

metric, the random walk betweenness, presented in Chapter 6, that accounts for

longer paths, besides the shortest ones. One may ask, then, why bother to create

another metric to account longer paths if the random walk betweenness proposed
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Figure 7.8: Compared to the traditional (Btrad) and distance scaled (Bdist) between-
ness, a single failure on one of the top #5 nodes of the ρ-geodesic betweenness (Bρ)
is generally less harsh to the average network throughput.
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and ρ-geodesic betweenness are frequently the same as the traditional betweenness,
considering all samples of the Cologne dataset. For lower ranks, the frequency is
significantly reduced.

by Newman [40] does the same job gracefully. The main reason for that is the basis

conjecture behind the random walk betweenness itself, which cannot be applied in

some scenarios. Newman states in his work [40] that his metric suits well situations

where information may follow random paths until it finds its destination, and he

considers that information may not know where it is going to. This may be true

if no global knowledge about the network structure exists, or if we are trying to

model the natural spread of diseases, for instance. As a counter example, in a

computer network where end-to-end paths do exist, and the source of information

knows exactly who is the target of the message, it will always try to use the most

efficient path. Similarly, in transport networks, a driver or a delivery vehicle will

always be more interested in using the shortest path. In both networks, a packet

delivery model fits better the flow process in the network. Nevertheless, in these

networks, and others, it is not always that the shortest path is the best option. For

instance, if every packet delivery happens using the shortest paths, it is possible

that they become congested, being no longer a good option. This is better discussed

in Subsection 7.6.2. Hence, it is interesting to consider longer paths, in addition to

the shortest ones.

The random walk betweenness considers all existing paths between any pair of

nodes in the network, no matter the path length. The contribution of each path to

the importance of a node is proportional to the probability of using the path. This

probability, in turn, varies simultaneously with the cost of number of hops in the

path and the degree of the nodes on it. If successive nodes have high degree or if

the path is long, the contribution will be lower. Unlike random walk betweenness,

the ρ-geodesic betweenness weights the contribution only as a function of the path

cost. In addition, we reduce the number of paths according to the spreadness factor.

Hence, considering that number of hops is used as cost metric, the contribution of

longer paths tends to decrease more quickly for the random walk betweenness, as
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long as the nodes on the path have degree greater than 2.

To incorporate the several paths considered by the random walk betweenness we

can use mainly two methods. The first one simulates several random walks between

pairs of nodes. This method allows for the computation of approximated values of

the random walk betweenness in a distributed fashion [83, 84]. Either sequential

or distributed algorithms, however, require extra attention to not allow the random

walks to loop over the same sequence of nodes, which would erroneously increase

the importance of nodes that are traversed many times. Moreover, we need to be

able to stop the simulation at a step where the values computed for the random

walk betweenness approximate the exact value (given by Newman’s algorithm [40]).

Note that the convergence time can be unfeasible for some applications when using

this approach [83]. The second method computes the metric using Newman’s algo-

rithm, which applies a matrix approach in a very elegant fashion. This approach,

however, is neither appropriate for disconnected nor directed graphs, due to the

generation of null determinants that prevents further computation. The complexity

of this algorithm is O((m + n)n2), which is roughly O(n3) in sparse and O(n4) in

dense networks. The ρ-geodesic betweenness, in turn, does not have any restriction

regarding the structure of the network. Additionally, since it only considers paths

up to a length and not all the paths as the random walk betweenness, it is less

time consuming. Taking a look at Algorithm 2 (Chapter 6), we observe that the

functions INITIALIZE, FIND SP and FIND QSP, and ACCUMULATE are, respectively,

O(n2), O(m+ n), and O(ρn2), where ρ is a constant. Hence, the complexity of the

ρ-geodesic betweenness metric is reduced compared with Newman’s algorithm and

it can be computed in O(n2) or O(n3), depending if the network is sparse or dense,

respectively. The complexity of our metric can be further reduced if the algorithm

is parallelized, which is a matter of parallelizing the single-source shortest paths

(SSSP) and the accumulation functions in Brandes’ algorithm [79], considering un-

weighted networks. This is feasible [85–88] and the graph traversal performed in

the SSSP needs to be run ρ + 1 times to find all the paths that we need to com-

pute the ρ-geodesic betweenness. In addition, if only local knowledge is available, it

is possible to modify a distributed algorithm as the one proposed by Lehman and

Kaufman [89] to compute our metric.

7.6.1 Random walk and ρ-geodesic betweenness centralities

in scale-free networks

As we previously discussed, the random walk and the ρ-geodesic betweenness are

quite different, even though their purpose is to account non-ideal paths. The main

differences between them is the number of paths considered in the computation and
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more significant for higher ρ.

the weight assigned to each one of them. We investigate the impact of this difference

on the importance of nodes in synthetic random networks with power law degree

distribution (P ∝ degree(υi)
−α), generated by the Havel-Hakimi[56, 57] algorithm,

as we explained in Chapter 3. Such networks are also known as scale-free networks

and they are the most common networks in the real world.

We compute the absolute maximum and minimum differences between the values

assigned by the random walk and the ρ-geodesic betweenness, considering all nodes

in each random graph. Figure 7.10 shows the averaged results for each α. We observe

that the minimum difference is always close to zero, while the maximum difference

depends on the value of ρ. Considering the 1-geodesic betweenness (ρ = 1) we note

that the maximum difference between the metrics remains almost constant for all

α. For the 3-geodesic betweenness (ρ = 3), the maximum difference becomes more

significant for 2 ≤ α ≤ 3. We believe that within this interval the number of longer

paths considered by the ρ-geodesic betweenness becomes much greater than the ones

for the random walk betweenness. As such paths can be used as backup or offloading

paths, nodes that participate on them should be valuable.

7.6.2 Applications

Given that the random walk and the ρ-geodesic betweenness are different, although

both use longer paths to assess node importance, each metric should be applied in

different situations. We argue that, in some applications, it is reasonable to exclude

all paths longer than a threshold to compute the importance of a node, as these

paths are much likely neglected. Hence, it is not necessary to compute all the paths

between every pair of nodes as the random walk betweenness does. The use of quasi -

shortest paths, or at least considering them as reasonable alternatives, is a choice

that can be driven by (i) reactive or (ii) proactive situations. In the first case,
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entities try to escape from the common-sense, a.k.a., the shortest path, to avoid

unwanted consequences that are already expected to happen. For instance, a packet

may be sent through a quasi -shortest path if the shortest path between two nodes in

a computer network is congested, or a node, or link, in this path is expected to fail.

Also, the driver in a transport network can choose slightly longer paths during rush

hours to avoid jammed shortest paths. The idea is that it is better to take a little

extra time to arrive, when compared to the normal shortest path, than to either

risk being blocked on the normal shortest path or being forced to take alternative

paths on-the-fly. As for the proactive situations, the idea is to avoid, beforehand, to

damage the shortest path in the near future. This situation can happen whenever

multiple alternatives exist and any one of them could be picked according to a given

criteria. For instance, each packet flow can be sent through different paths so as

to prevent congestion in computer networks. In the same sense, the audience of a

soccer game may also follow different trajectories using different gates to enter a

stadium. Even in social networks we can observe the situation where information

may occasionally follow a path that is neither shortest nor random, e.g., the act of

a friend telling a secret of a third person to a common friend.

In both proactive and reactive situations, the entity arbitrarily chooses a slightly

longer path when there is a high chance that the shortest path is damaged or will

be damaged in the near future. When they choose to follow other paths, they

start to increase the centrality of other nodes. Thinking about city streets, if each

intersection is a node, when cars begin to deviate from the shortest path, other

streets will be used, increasing the centrality of the intersections on this new path.

We use the spreadness factor to denote the additional cost the entity is willing to pay

to arrive at the destination the fastest possible, considering that the shortest path

can be damaged in some sense. This can be better understood using an analogy.

Suppose that we have a set of pipes, with different diameters, ending in a container.

The shorter pipes are also the largest ones, whereas thin pipes are long. We want to

fill the container the fastest we can with some kind of solid particle. We cannot push

all the particles through the shorter pipe because at some point it will be clogged.

Hence, the fastest way to fill the container is to push the particles through all the

pipes. Nevertheless, we cannot use some thinner pipes because the solid particles

do not fit into them. In this case, the spreadness factor could model the diameter

of the pipe, so that only the ones into which the particles fit can be used.

We envision some applications for the ρ-geodesic betweenness that benefit from

the use of quasi -shortest paths. We briefly discuss two of them hereafter. The first

one uses the ρ-geodesic definition as it is. The second excludes the shortest paths

from the computation of the metric, using only the quasi -shortest paths to assess

node importance.
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Delivery of goods

Suppose that a truck wants to go from a factory (υA) to a store (υB) the fastest possi-

ble to deliver some goods. The graph through which the truck moves is modeled such

that each street is an edge and each intersection or traffic light is a node. The topol-

ogy of the delivery problem is depicted in Figure 7.11. The truck can use three paths

to arrive at the destination, p1 = 〈υA, υB, υC , υD, υE〉, p2 = 〈υA, υB, υF , υG, υD, υE〉,
p3 = 〈υA, υB, υH , υI , υJ , υD, υE〉. In this scenario we have a black truck that can

differentiate into three types of drivers: type I (red truck) is ordinary and always

follow the path with the highest betweenness nodes, in this case p1; type II (blue

truck) is impatient and does not want to risk wasting time on a shortest path that

will probably be congested; and type III (green truck) is altruist and chooses to

not follow the suggested path, trying to avoid congesting it. Note that driver type

II chooses path p2 only if p1 is congested, or will likely be congested. Hence we

also represent driver type II on path p1 using dashed lines. Driver type III always

chooses p2 because he believes that it is better to take a longer path than to risk

contribute to the traffic jam or to be trapped in it. We could use the partial values

of the ρ-geodesic betweenness to decide which path should be taken. The values of

the 1-geodesic betweenness for these nodes due to the pair υA, υE, only, are:

• Bρ(υA) = Bρ(υE) = Bρ(υH) = Bρ(υI) = Bρ(υJ) = 0

• Bρ(υB) = Bρ(υD) = 0.8

• Bρ(υC) = 0.5

• Bρ(υF ) = Bρ(υG) = 0.4

Note that the centralities for υH , υI , υJ are null because the truck is willing to pay

only 1 hop more to arrive at the destination. At each step, the truck could choose

the nodes with the highest centrality. Hence, at first, it would follow the path p1.

Nevertheless, when it arrives at υB it discovers that there is too much traffic on

the link εB,C . Both type II and III drivers are willing to pay only 1 hop more

for an alternative path. Hence, when they arrive at υB, they choose the node with

the second highest centrality, υF . In the end, they use a quasi -shortest path with

different intentions, driver type II hopes to take less time to deliver the goods, while

driver type III tries to not contribute to the congestion.

Data concentrators

Suppose now that we have a mobile wireless sensor network deployed in a city,

using, for instance, personal vehicles to collect data. We exclude buses because
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Figure 7.11: Example topology to model the delivery of goods. Three types of
truck drivers want to travel from the factory (υa) to the store (υb) to deliver some
products. Driver type I (ordinary) always follow paths with the most central nodes;
driver type II (impatient) does not want to risk wasting time on a possibly congested
shortest path; and driver type III (altruist) does not want to congest the shortest
paths and, thus, follow slightly longer paths.

these vehicles have fixed routes. The mobile sensors need to send the data to be

processed in the cloud or the fog. We need to know, then, where to place the data

concentrators. Such data concentrators could be seen as cloudlets. We can also

consider that we have both Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure

(V2I) communications. Hence, nodes that are part of the infrastructure could play

the role of both data concentrators and forwarders. It is reasonable to think that

these functionalities should be placed on the most central nodes, because most

vehicles will pass on these nodes, which could lead to the overload of the node.

Therefore, we need to separate these functionalities.

We could use the traditional betweenness to determine where the data forwarders

should be placed, thus using shortest paths only. After this decision, we could

exclude the shortest paths from the computation of the ρ-geodesic betweenness and

use the result to decide where to place the data concentrators. We could have,

then, the placement of forwarders based on shortest paths only and the placement

of concentrators based on quasi -shortest paths only. This is reasonable if we notice

that data forwarding needs faster routes, while concentrators could have slightly

longer delays and, hence, could be placed on slightly longer paths. As cars will

not always follow shortest paths between two locations, we can expect that placing

concentrators on central nodes that participate in several quasi -shortest paths would

still allow a huge number of sensors to offload their data while avoiding burdening

the forwarders with the additional function of a concentrator. In this scenario, we
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could additionally use the results of Part I of this work to better forward packets,

using V2V communications, from a mobile sensor to the data concentrator.
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Chapter 8

Conclusions and Future Work

This thesis studied on the influence of the network structure on system properties

over time. More specifically, we investigated how (i) data forwarding and the (ii)

assessment of nodes relative importance are affected by the structure of multihop

networks. We also (iii) introduced a study of the network performance under failure

of central nodes. In the first analysis, we investigated the impact of node mobility

on the establishment of multihop communications, based on the behavior of node

vicinity. To this end, we proposed the (κ, λ)-vicinity, which extends the concept of

node vicinity to take into account nodes at multihop distance from the ego node

and the relative speed between them. In the second analysis, we studied how node

centrality is affected by the use of longer paths to assess their importance. To this

end, we proposed the ρ-geodesic betweenness centrality, which takes into account

all paths between two nodes that are shorter than a threshold. This threshold is

defined as the cost of the shortest path (geodesic) between the pair of nodes in

analysis added by the spreadness factor ρ. Any cost metric in the real domain,

excluding zero, can be used. Consequently, ρ will be limited to the same domain,

but we need to include zero because we also use shortest paths, which are found

when ρ = 0. In the third analysis, given that each centrality metric provides a

different node ranking, we investigated the number of critical nodes elected as the

most central and how the throughput of the network is affected by a single failure

on one of the most central nodes according to each metric.

We analyzed both dynamic and static networks, using publicly available datasets

and randomly generated scale-free networks. Dynamic networks are characterized

for the frequent topology changes that can happen due to node mobility, causing

intermittent connectivity. We showed that, based on the results of our analyses, we

can potentially reduce resource consumption, without decreasing the average packet

delivery ratio in computer networks, using simple forwarding strategies. Moreover,

if we use slightly longer paths to compute node importance, we are able to reduce

the number of critical nodes among the most central nodes in the network. Hence,
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we are moving in the right direction on the search for better network resilience. The

investigation performed in this work is fundamental to provide better insights on

the behavior of the network structure so that we can maximize the exploitation of

contact opportunities and have more information about nodes roles to make better

decisions.

The proposed extended vicinity uses the relative speed of nodes to determine

whether a link between two nodes should exist. This definition allows identifying

conditions for multihop communications, discarding contacts that are not useful

because they do not last long enough to successfully finish the transmission. We

analyzed the behavior of the proposed (κ, λ)-vicinity using three vehicular network

datasets with distinct node distribution across the covered area. Nodes in each

dataset represent a different type of vehicle: taxis (Taxi scenario), buses (Bus sce-

nario) and personal cars (Synthetic scenario). The Synthetic scenario is, in fact,

a traffic model based on real observations. The majority of relative speeds in the

Bus and Taxi scenarios are lower than 30 km/h, but in the Synthetic scenario we

observed several relative speeds reaching over 100 km/h. In fact, in this scenario,

the majority of relative speeds are lower than 140 km/h.

We quantitatively confirmed the intuition behind “contacts happen more often at

few hops and low relative speeds” for three scenarios. The relation between number

of hops, contact duration and relative speeds of vehicles has never been quantified,

as far as we know. Our results showed that most contacts often happen at few

hops and low relative speeds, as expected. Nevertheless, we also demonstrated that

useful contacts can happen between nodes at higher relative speeds, separated by

longer hop distances, even though less often. In such conditions, some nodes are

still capable of transferring MB-sized messages. We also observed that nodes spend

a lot of time out of contact, in average, and the longest average contact duration

is found for 1-hop contacts. In the Bus scenario, whenever nodes are in contact, in

whichever state, there is a high probability that they remain in this state. When

the hop distance increases, the probability of moving to State∞ also increases, e.g.,

at relative speeds lower than 40 km/h and 1-hop distance, the probability of going

to State∞ is approximately 1.1%; at 7 hops, it increases to 50%. At higher relative

speeds, the probability increases to 11.6% at 1-hop distance, and to 66.7% at 3 hops,

which is the maximum hop distance in this case. We also observed that the duration

of direct contacts at low relative speeds in all scenarios can be very short, short or

long, when the physical distance between nodes is longer than 120 m; and they are

either short or long when the distance is shorter. In turn, contacts between nodes

at high relative speeds are always very short, independently of the distance between

the nodes.

In the Bus and Taxi scenarios, the majority of contacts happen for hop distances
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shorter than 3 hops and at relative speeds lower than 40 km/h (Bus) and 60 km/h

(Taxis). In the Synthetic scenario the hop distance reaches up to 6 hops and we

can find a very significant number of multihop contacts at very high relative speeds.

We attribute this to the higher density of the scenario compared to the other two.

The total duration of contacts is also higher in the Synthetic scenario. Nevertheless,

even with higher density and longer total duration of all contacts, the number of

individual useful contacts in this scenario is small. The longest average time spent

in contact in this scenario is 2.20 s at 1-hop distance considering a radio range of

150 m. Even in sparser scenarios, such as the Bus scenario, the average time in each

state is higher. The number of useful contacts in all scenarios is highly influenced

by both hop distance and relative speed. For security applications, which use very

small packets, all contacts in our scenarios can be used, because they last at least

1 s. If we use MB-sized bundles, the number of useful contacts drops significantly. In

addition, increasing the relative speed sometimes reduces more severely the number

of useful contacts when compared to the hop distance.

The aforementioned results showed the importance of also considering the rel-

ative speeds for path establishment when developing an application for vehicular

networks to avoid unnecessary transmissions, especially when transmitting bigger

messages. The same idea could also be applied to adjust the number of hops a

message could be forwarded. This would be a function of the relative speed between

nodes in contact. To demonstrate the impact of our results on mobile communica-

tions, we proposed three forwarding strategies based on the outcomes of this work,

RelSpeedR, VicR, and RelSpeedVicR and we ran simulations using each one. Al-

though the OLSR is not the most suitable routing protocol for VANETs, all proposed

forwarding strategies are based on it due to our need to have information about the

global network structure, in the current state of the work. To provide information

about nodes’ relative speed, we used a reserved field of the OLSR Hello packet, which

is not currently used by the implementations of this protocol. Hence, we do not add

any overhead to the communication.

We increased the restrictions imposed to each forwarding strategy, starting with

RelSpeedR, where nodes can only forward a packet to the next hop if the neighbor

is within a relative speed range that still allows reaching the destination at that

hop distance. In VicR, we restrict the neighborhood of a node, according to the

relative speed between the node and its adjacent neighbors. RelSpeedVicR uses

both restrictions. We showed that both RelSpeedVicR and VicR can potentially

reduce the waste of network resources without decreasing the average packet deliv-

ery ratio, with VicR presenting the best performance considering this aspect. Our

results showed it is important to consider the relative speed for path establishment

when developing an application for vehicular networks. Nodes moving at high rela-

94



tive speed must not waste time sending unnecessary control messages because each

contact opportunity is frequently short. Hence, the outcomes of this work could be

used to improve existing forwarding schemes.

In this work, we also proposed a different strategy to assess node importance. We

claim that, in some cases, using only the shortest paths to compute node importance

is not sufficient. For instance, the spread of rumors in a social network does not

follow only shortest paths. In a computer network, we could be interested in split-

ting the load on some important node on the shortest path, even if we need to use

slightly longer paths. As such we could prevent failure of the node on the shortest

path due to overload. In the context of smart cities, we could avoid node over-

load by placing different functions in different locations, even if they perform better

when placed, separately, on the same location. For instance, we could place rout-

ing functions on important nodes of the shortest paths, while data concentrators

could be placed on nodes around the shortest paths, i.e., nodes in quasi -shortest

paths. To this end, we propose the ρ-geodesic betweenness centrality, which is a

variant of the traditional betweenness that uses both shortest and quasi -shortest

paths to assess node importance. The idea is to increase the importance of nodes

that do not necessarily fall on shortest paths, but can still be considered critical to

the network operation. We characterized the ρ-geodesic betweenness using several

randomly generated networks that follow a power-law degree distribution, and four

datasets with distinct characteristics, for which we also computed the traditional

and distance-scaled betweenness. We additionally computed the random walk be-

tweenness using Newman’s algorithm, when possible. The random walk betweenness

follows the same idea of using more paths in addition to the shortest ones. It con-

siders, however, that information travels at random using all existing paths. This is

not the case in some situations, such as in the majority of computer and transport

networks, and even in some social networks. In addition, the complexity of this

metric is higher than the one of our metric. Moreover, although similar in concept,

the ρ-geodesic betweenness is quite different from the random walk betweenness in

practice, especially for networks that follow a power-law degree distribution with

2 ≤ α ≤ 3.

Our characterization showed that the ρ-geodesic betweenness is able to rerank

nodes, promoting those that participate in many paths. Even though, it remains

strongly correlated to the traditional betweenness, meaning that they are still mea-

suring the same characteristics of the node. In addition, the level of agreement

between the rankings obtained by each metric is also high, usually over 95% if we

compare the metrics in pairs. Although the concordance between the metrics is very

high, the rate with which nodes are reranked is also high, i.e., several nodes change

positions compared to the traditional betweenness. This happens because, contrary
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to the coefficient of concordance (Kendall’s W), the reranking rate does not account

whether the change in the rank position is significant. The ρ-geodesic betweenness

spreads the classification rank, giving room to break ties between nodes, as the

number of quasi -shortest paths they fall on can be very different. The random walk

betweenness also presents these characteristics, but depending on the dataset, it

can increase the number of nodes tied in the same position. We claim that having

several nodes tied in the same position may waste their potential to contribute to

the operation of the network.

Node reranking according to the ρ-geodesic betweenness also presents the effect

of reducing the number of articulation points among the most central nodes. Such

nodes are critical to the network operation because if they fail they disconnect ar-

eas of the network, i.e., they have the potential to split the network into several

connected components. We found that the probability that a failed nodes is also

an articulation point, considering the top #5 nodes according to each metric, is

never higher in the ρ-geodesic betweenness when compared to the distance-scaled

betweenness and it is always lower compared to the traditional betweenness. This

happens because nodes in the first position are frequently the same, but in the fol-

lowing positions they are usually different. For instance, during 83% of the time,

nodes classified on the first position are the same for both the traditional and dis-

tance scaled betweenness, but comparing the former with the proposed metric this

frequency drops to 67%. We ran separate simulations where we failed a single node

from the top #5 positions from each rank of each metric, to investigate the impact

on the average throughput of the network, i.e., the impact on the rate of successful

message delivered over the communication medium. We observed that a single fail-

ure is disastrous to the average network throughput. Failures on important nodes

according to the proposed metric are usually equal to the other metrics and, some-

times, slightly less impacting. We believe that this happens due to the frequency of

coincidence between the nodes elected as the most important by each metric. When

the coincidence is smaller than 50% of the time, the impact on the throughput is

slightly lower.

We also observed that the ρ-geodesic betweenness has the potential to reduce

the number of resources reallocations, in networks that use shortest path based rules

to distribute resources. Such resources can range from information flow to real or

virtual machines, for example. Some of these networks can quickly change their

topology and in the vehicular network scenario that we analyzed, we found that the

ρ-geodesic betweenness is able to provide longest rank stability to a larger number

of nodes compared to the other metrics. Hence, if we consider a scenario where

central nodes are in charge of a network function, we could decrease the operational

costs due to the reduction on the number of migrations because the central node
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will continue to be central for longer periods.

The vicinity analysis performed in this work is important to understand the dy-

namics of the network. The centrality analysis, in turn, is important to understand

the roles played by nodes within the network. With both analyses, we can have more

knowledge to make better decisions, improving the performance of the network. As

future work we plan to extend our analyses to other real datasets using data mining

tools. The idea is to use these tools due to the huge amount of data produced,

which is difficult to evaluate with ordinary analysis tools. We have already stepped

towards a new routing protocol when we proposed the three forwarding strategies

based on the outcomes of the vicinity analysis. We intend to continue on this path

and fully design such protocol. To this end, we need to consider other routing pro-

tocols, besides the OLSR, that are more suitable for VANETs, but that can provide

information about the topology of the region of interest. In addition, we need to ex-

tend the proposed strategies to also include the relative speeds of the complete path

between the communicating nodes. The performance of the proposed strategies has

to be further evaluated considering that nodes can store messages for a short period

before dropping it, which could increase the rate of successfully delivered messages.

Lastly, we will investigate the performance of the network running under rules

based on the ρ-geodesic betweenness, studying its relevance in different use cases,

including weighted networks. To this end, we first need to optimize the algorithm

to compute the metric, so that we can apply it to larger networks. Then we will

choose different scenarios where the flow behavior can benefit from the use of the

proposed metric to develop specific applications, such as load balancing or increase

the communication throughput. The proposed metric can also be adapted to im-

prove the scenario model. For instance, the spreadness ρ can be dynamic, changing

according to the current status of the network, or it could include not only the cost

of the paths, but also the bandwidth of each path, being in closer agreement with

the communication capacity. We also intend to propose a mechanism to find the

optimum value for ρ according to the characteristics of the scenario.
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