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à obtenção do t́itulo de Doutor em Engenharia

Elétrica.

Orientador: Amit Bhaya

Rio de Janeiro

Setembro de 2017



MODELING AND ANALYSIS OF MARKET SHARE DYNAMICS IN A

DUOPOLY SUBJECT TO AFFINE FEEDBACK ADVERTISING POLICIES

AND DELAYS

Walter Aliaga Aliaga

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ
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Examinada por:

Prof. Amit Bhaya, Ph.D.
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
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MODELAGEM E ANÁLISE DA DINÂMICA DE FATIA DE MERCADO EM

UM DUOPÓLIO SUJEITO A PUBLICIDADE AFIM REALIMENTADA E

ATRASOS

Walter Aliaga Aliaga

Setembro/2017

Orientador: Amit Bhaya

Programa: Engenharia Elétrica

Esta tese apresenta extensões aos modelos de Vidale-Wolfe e Lanchester para

a dinâmica de duopólios. As novidades nas extensões propostas são a introdução

expĺıcita de um conjunto de clientes indecisos nos modelos existentes, os quais

consideram apenas os conjuntos de clientes das duas empresas concorrentes, e o

uso de poĺıticas de publicidade afins com realimentação. Demonstra-se que sob a

classe proposta de poĺıticas de publicidade, os modelos estendidos de Vidale-Wolfe e

Lanchester, apesar de terem dinâmicas diferentes , apresentam pontos de equiĺıbrio

idênticos com as mesmas propriedades de estabilidade. A introdução de um terceiro

conjunto de clientes indecisos também motiva a introdução de um modelo mais elab-

orado da dinâmica de mercado baseado no modelo Replicador-Mutador da teoria dos

jogos evolucionários. A proposta do modelo é realizada identificando estratégias com

elementos de uma matriz de preferência consistindo nas preferências de escolha das

empresas pelos clientes e a matriz de mutação representa probabilidades de transição

de um conjunto de clientes para outro. O modelo proposto é analisado em relação aos

pontos de equiĺıbrios e suas propriedades de estabilidade, bem como a sensibilidade

paramétrica sob as poĺıticas de publicidade propostas. Todos os modelos propostos

são analisados quanto à estabilidade, a presença de oscilações, a existência de bi-

furcações de Hopf quando atrasos de implementação ou de adoção são introduzidos.

Os modelos estendidos de Vidale-Wolfe e Lanchester são robustos para atrasos em

implementacão enquanto que para o atraso de adocão apresentam a existência de

bifurcações. O modelo Replicador-Mutador proposto é robusto para ambos tipos de

atrasos.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

MODELING AND ANALYSIS OF MARKET SHARE DYNAMICS IN A

DUOPOLY SUBJECT TO AFFINE FEEDBACK ADVERTISING POLICIES
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Walter Aliaga Aliaga

September/2017

Advisor: Amit Bhaya

Department: Electrical Engineering

This thesis presents extensions of the Vidale-Wolfe and Lanchester models for

market share duopoly dynamics. The novelties in the proposed extensions are the ex-

plicit introduction of a set of undecided clients into existing models, which consider

only the sets of clients of the two competing firms, as well as the use of decentral-

ized affine feedback advertising policies. It is shown that, under the proposed class

of advertising policies, the extended Vidale-Wolfe and Lanchester models, despite

having different dynamics, have equilibria in identical locations, with the same sta-

bility properties. The introduction of a third set of undecided clients also motivates

the introduction of a more elaborate model of market share dynamics based on the

replicator-mutator model from evolutionary game theory. This is done by identifying

strategies with the entries of a preference matrix consisting of the choice preferences

of firms by clients and the mutation matrix representing transition probabilities

from one set of clients to another. The proposed model is analysed with respect

to equilibria and their stability properties, as well as parametric sensitivity, under

the proposed advertising policies. All proposed models are analysed for stability,

the presence of oscillations, existence of Hopf bifurcations when implementation or

adoption delays are introduced. The extended models of Vidale-Wolfe and Lanch-

ester are robust to implementation delays, while for adoption delays, bifurcations

can occur. The proposed replicator-mutator model is robust for both types of delays.
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Chapter 1

Introduction

A market is a set of agreements by which buyers and sellers exchange goods and

services [1]. The number of participating firms, the uniformity of the product, and the

form of competition among firms define the structure of a market [2]. A predominant

form of market structure is the oligopoly, which represents an interdependent market

[2] with few supply-side firms and a large number of buyers on the demand side [3].

The simplest type of oligopoly is the duopoly, where the market consists of two

companies offering similar or identical products [4]. This thesis will deal exclusively

with the case of duopolies which, although studied for a long time, remains a subject

of intense research.

Markets are not static; they vary in time; therefore the competition strategies

which exist in the firms which make up the market such as price, quality, adver-

tising, etc. are also influenced by changes in the market [5]. On the other hand,

the consumer buying process is strongly influenced by cultural, social, personal, and

psychological factors. Thus, characteristics such as behavior, value systems, social

hierarchy, age, occupation, personality, motivation, and perception have significant

influence in consumer decision-making [6].

Given these conditions and with the purpose of influencing the consumer buying

process, firms use advertising to promote the sale of their products. Thus, advertis-

ing can be understood as a form of communication used to induce consumers to take

a particular action concerning goods or services [7]. Advertising involves communi-

cating the “value proposition” of the company or brand using the paid media to

inform, persuade, and remind consumers of the product offered [6]. The accounting

of advertising and the return on its investment becomes an important parameter

to be considered by firms, thus, quantifying the effects of advertising becomes a

significant task.

Advertising results can be assessed by communication impacts and by the ef-

fects on sales and profits [6]. Several models have been developed using different

approaches [7], with the most popular continuos-time models being those of Nerlove
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and Arrow [8], Vidale and Wolfe [9], and Lanchester [10].

The models proposed by Vidale and Wolfe and Lanchester are sales-advertising

models characterized by a direct relationship between the rate of change in sales

and advertising [11]. The Vidale-Wolfe model represents competitive interaction

indirectly through its influence on the unsaturated market, while the Lanchester

model describes direct competition for market share assuming that the market is

saturated (namely, that the market shares of the firms add up to one) [12]. Over

time, extensions and diverse approaches to the original models have been presented

[13], [14]. In recent years, new modeling has been proposed under new approaches

such as population dynamics and evolutionary game theory.

Evolutionary Game Theory studies the behavior of large populations of agents

which interact strategically repeatedly subject to frequency-dependent selection pro-

cesses [15]. In the context of socioeconomic models, it is assumed that agents have

the capacity to adapt their behavior, thus changing their strategy in response to re-

turn, which in turn, is determined by the behavior of the population as a whole [16].

In this way, the Evolutionary Game Theory is useful in the socioeconomic context

because it allows studying the diversity, interaction, and evolution of social systems

[17].

Finally, the presence of delays can be found in several systems in which, in

many cases, the time lag between the actual system information and the time when

it becomes available is significant [18]. In the specific case of models of economic

phenomema, it is natural to suppose that there is a delay between the time when

the economic decision is made and the time when the decision produces results.

Classes of models in which some model variable depends on past as well as current

values also imply the existence of delays [19].

1.1 Motivation

Market dynamics and consumer behavior constitute complex systems characterized

by processes of interaction between the different agents in the market. On the other

hand, the information flow and processes which determine the dynamics of these

systems are influenced by the presence of delays. In this context, the extension or

generalization of existing models in the literature and the formulation of new models

contempalting delays offer the possibility of a better understanding of these systems.
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1.2 Objectives

The objectives of this thesis are:

• To study the Vidale-Wolfe and Lanchester models introducing a third popula-

tion of undecided users and decentralized affine feedback advertising policies.

• To propose a model based on the evolutionary dynamics that considers the

interaction between the various agents that integrate a duopolistic market

under decentralized affine feedback advertising policies.

• To analyze the existence of delays in the proposed duopoly models subject to

decentralized affine feedback advertising policies.

1.3 Structure of the thesis

This thesis is organized as follows. Chapter 1 starts by presenting a general intro-

duction to the subject of the thesis. The motivation for the proposed models and

advertising policies, as well as the objectives of the thesis are also given in this

chapter.

In Chapter 2 a review of the main features of market dynamics and the consumer

behavior processes is presented. The chapter also offers an overview of duopoly

models subject to advertising policies and discusses the existence of different types

of delays in markets and consumer behavior.

Chapter 3 examines the Vidale-Wolfe and Lanchester models in which a third

population of undecided users has been introduced and also proposes the use of a

decentralized affine feedback advertising policy. The proposed models are analysed

with regard to the existence and stability properties of their equilibria. Chapter 4

analyses the models studied in Chapter 3 subject to the presence of delays in the

available information and in the response of the users to advertising of the firms.

Chapter 5 presents a new model of duopolistic dynamics based on the evolution-

ary dynamics. The chapter studies the main characteristics of the formulated model

as well as the existence, the stability and the parametric sensitivity of its solutions.

In Chapter 6 the evolutionary model proposed in the previous chapter is studied

assuming the presence of delays.

Finally, Chapter 7 exposes the conclusions of the thesis and indicates possibilities

for future research.
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Chapter 2

Duopolistic markets, advertising,
consumer behavior and models: a
brief review

In this chapter, we first present in section 2.1 an overview of the dynamics of the

duopolistic market with competitive advertising. Subsequently, in section 2.2 we

examine the main characteristics of consumer behavior describing the interaction

between clients and firms in a market. The next section 2.3 presents a review of

the duopoly models under competition in advertising. Section 2.4 discusses different

types of delays that arise in advertising processes. Finally, in section 2.5 we present

and explain the advertising policies that will be used throughout this thesis.

2.1 Duopolistic market and advertising

A market is a set or group of buyers and sellers interacting, resulting in the possibility

of exchanging between them [20]. A predominant form of market structure is the

oligopoly which represents a market with few enterprises and a large number of

buyers from the demand side [3] and characterized because the firms are aware of

each other [21]. The simplest type of oligopoly is the duopoly, where the market

consists of two companies offering similar or identical products [4].

Markets are dynamic, therefore, the strategies of competition existing in the firms

which conform the market such as price, quality, publicity, etc. are also influenced

by market changes [5]. On the other hand, the consumer buying process is strongly

influenced by cultural, social, personal and psychological factors [6]. Therefore, given

these conditions and in order to influence the behavior of people [22] and in this way

to impact in the process of consumer’s purchase, firms use advertising to promote

the sale of their products [23]. Thus, advertising can be understood as a form of
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communication used to induce consumers to take a particular action with respect

to products or services [7].

Advertising involves communicating the “value proposition” of the company or

brand using the paid media to inform, persuade, and remind consumers of the prod-

uct offered [6]. In this sense, advertising results can be assessed by communication

impacts and the effects on sales and profits [6]. Thus, the accounting of advertising

and the return on its investment becomes an important parameter to be considered

by firms.

2.2 Consumer behavior and interaction between

clients and firms in a duopoly

Consumers demand goods and services produced by firms [2]. In this context, the

consumer behavior is a dynamic process involving the action of a group of individ-

uals. It is also a process that includes many decision making and involves states of

emotion and coping strategies [24].

The decision making of people is characterized by particular conditions of the

individual such as education, experience, emotion, stress [25] and by social conditions

as for example family relationships, labor relations, friendships, markets, etc [26].

In the traditional economic sphere, it is assumed that individuals, in making

choices, have a condition of rationality that leads them to select what they perceive to

be in their best interests [2]. Thus, in economics terms, rationality can be interpreted

as a behavior to maximize profit [27].

However, in many cases, the actual behavior in the client decision-making pro-

cess is different from the rational consumption model because the behavior of the

people may vary depending on the type of situation in which they are found, as well

as the particular characteristics of the decision to consider or choose [28]. Thus, in

real situations, agents use inductive rules of thumb to make decisions instead of ab-

solutely rational reasons [29]. Additonally people’s choices may change due to social

influence. Thus, the behavior of others, for example, can give relevant information

about the products they will purchase, so that people can learn from their own

experiences and their environment [30]. The behavioral approach considers the envi-

ronmental setting in which the decision making happens [31]. Behavioral economics

uses concepts from psychology and anthropology together with economic principles

allowing a better understanding of real markets [30].

In competitive duopolies, there is a permanent process of clients migrating from

a firm or service provider to their competitor. This consumer behavior occurs either

for intrinsic (e.g. desire to try a new brand) or for extrinsic motives (such as price,
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coupon) [32], [33]. This migration between firms is denominated in some areas as

churn, turnover rate or client evasion. The churn rate is a key metric for some

business segments, especially for Software and Service (SaaS) companies to track

the percentage of clients that have canceled the service [34, 35]. From the modeling

point of view, it is important to include the churn phenomenon in the dynamics [36].

Moreover, studies show that advertising affects all clients in the market [7], and may

affect their preferences regarding the firms, resulting in churn, as well as the effect

of decay or forgetfulness.

The main contributions of this thesis are in this context: specifically, it is pro-

posed to model the advertising process as affecting three populations. The first two

are the clients of the two competing firms in the duopoly, while the third is that of

undecided clients. The latter population is not modeled explicitly in existing adver-

tising models, and it will be shown that its consideration allows for an extension as

well as a unification of the Vidale-Wolfe and Lanchester models. Continuing with the

idea of three populations, a new model is proposed. It considers client preferences

in more detail and is based on the well known replicator-mutator dynamics model

from evolutionary game theory. Finally, the impact of different types of delays on

these models is also analysed.

Figure 2.1 summarizes the above discussion, in the form of a graph representing

the interactions between sets of clients and firms. Nodes of the graph represent sets

of clients or firms. Edges represented as solid arrows represent possible transitions

between the sets of clients. These transitions occur as a result of advertising by

the firms, which are assumed to affect all three sets of clients, as well as due to

interactions between clients belonging to the different sets. Existing models in the

literature do not consider the set of undecided clients.

Due to the existence of interactions between the various market agents (clients-

clients, clients-firms, firms-clients, firms-firms) and assuming that agents are not

blind followers of habitual behavior and, unlike, they are able to modify their be-

havior according to changes in the environment and the environment, in turn, is also

affected by the behavior of agents [17], an analysis of the resulting dynamics among

the agents involved contemplates the study of social and economic systems before

to processes of opinion formation, decision-making, emergence of behavior, norms,

or conduct.
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Firm 2

Advertising

Firm 1

Clients of rm 1 Clients of rm 2

Undecided clients

Transitions

Figure 2.1: Representation of the interactions between clients and firms in a duopoly.
The continuous arrows represent the transitions between clients of firm 1, firm 2 and
the undecided users. The dashed arrows indicate that advertising by both companies
affects all three types of clients.

2.3 Review of existing models of market share dy-

namics under advertising

The following is a brief summary of the various continous-time models of the market

share dynamics under advertising.

2.3.1 Dynamics of monopoly models with advertising

Advertising dynamics models describe the dynamics of the market share under the

influence of a control action, called advertising. These models date back to pioneering

works by Nerlove and Arrow [8] and Vidale and Wolfe [9] and have since been

developed in a number of ways. The most basic model of a firm advertising a single

product is called a monopoly model. Denoting the market share (fraction of the

population that buys the product) by x, the most general model of its evolution

over time can be written as the following ordinary differential equation (ODE):

ẋ = C(x, u)−D(x), (2.1)

where C(x, u) is the term representing the growth of the market share as a function

of the current share x and advertising action u , and D(x) is the term representing

decrease or loss of the market share. In this terminology, the model proposed by
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Nerlove and Arrow [8] can be described as follows. Instead of modeling the share x

directly, Nerlove and Arrow propose to use an abstract quantity called goodwill for

the firm’s product and choice C(x, u) = u, D(x) = λx. Thus, from an initial value

x0 of goodwill, its evolution is described by ODE:

ẋ = u− λx(t), x(0) = x0 (2.2)

Vidale and Wolfe [9] proposed to use a total number of consumers, denoted M , and

the fraction of this total conquered by the firm as market share, denoted x. With

these definitions, they proposed the choice resulting in the following ODE:

ẋ =
b

M
u(1− x)− λx, x(0) = x0, (2.3)

where ũ = bu
M

is the advertising expenditure and λ the consumer loss ratio attributed

to consumers desisting from the product of the firm. Comparing Nerlove-Arrow

(2.2) and Vidale-Wolfe models (2.3), it is observed, under constant advertising

effort, that, in order to reach equilibrium in the market share denominated xeq, the

corresponding constant advertising efforts are:

uNAeq = δxeq (2.4)

uVWeq =
λxeq

1− xeq
(2.5)

Another notable aspect of the Vidale-Wolfe model is the saturation in the growth of

the market share as it approaches its maximum value (which is 1, imposed by nor-

malization). As can be clearly seen from equation (2.5) this means that advertising

effort tends to infinity as the desired equilibrium share xeq approaches 1.

2.3.2 Models of duopoly advertising dynamics

In this section, the extensions of monopoly models to the case of duopolies will be

presented briefly, aiming to motivate the models that will be analyzed and proposed

as objects of study in this work.

2.3.2.1 Vidale-Wolfe model

Deal [37] proposed an extension of the Vidale-Wolfe model [9] in the case of a

duopoly, expressing the variation of the market share of participating firms in the

following way:

ẋi = kiui (1− x1 − x2)− λixi, i = 1, 2 (2.6)
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where xi = Si
M

is the current market share of firm i, ui is the advertising expenditure

of firm i, bi is the advertising response rate of firm i, λi is the decay constant of firm

i, and ki = bi
M

, considering M as the potential market of firms, and Si the firm’s

sales rate i.

The model proposed by Deal [37] considers that the effects of advertising act only

on the unconquered part of the market, thus discarding the influence of advertising

on the market shares conquered by competing firms. This hypothesis in Deal’s model

been questioned by empirical studies that evidence the influence of advertising on

the market as a whole [7].

Several extensions and variations to the Vidale-Wolfe model have also been devel-

oped in the literature. Many of these studies use the approach of differential games

and optimal control formulating advertising strategies based on the Nash equilib-

rium. For more details of these model extensions and variations, see [13, 14, 38].

2.3.2.2 Lanchester model

The Lanchester model [10] was originally formulated for combat problems and was

later discussed by Kimball [39] as a model for the analysis of competition advertising.

The Lanchester model can be understood as an extension of the Vidale-Wolfe model

[9] within a duopoly with competition in advertising. The model of Lanchester [10]

represents the dispute of the market shares between the two participating firms as

follows:

ẋ1 = k1u1 (1− x1)− k2u2x1
x2 = 1− x1

(2.7)

where xi is the market share relative to firm i (i = 1, 2), ki is the advertising response

rate of firm i, and ui is the advertising expenditure of firm i.

The Lanchester model [10], different from the Deal model [37], represents the

dynamics of competition in advertising, modeling advertising as the only cause of

variation in the market share of firms. On the other hand, the Lanchester model

does not consider the decay term contemplated in the Vidale-Wolfe model, which is

used to represent the effects produced by factors such as the quality of the product

or service, as well as competition in advertising with other firms not modeled in the

duopoly [7].

Similar to the Vidale-Wolfe model, several extensions to the Lanchester model

have been developed in the literature. Again, the most frequent approach in these

studies is differential games, in which open-loop and closed-loop strategies are formu-

lated in the Nash equilibrium sense. For reviews of model extensions and variations,

see [13, 14, 38].
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2.3.2.3 Duopoly model using population dynamics

Consumers interact with each other, so that their opinions or behaviors change over

time, resulting in behavior similar to the population dynamics between different

species in biological systems. Thus, biological population dynamics can be used to

study consumer behavior [40],[41]. Wang et al. [40] analyze the effect of advertising

on sales of similar products considering the Lotka-Volterra population model [42],

[43]. The Wang et al. model [40] representing the competition of two firms can be

expressed as:

ẋ1 = x1 (b1 − a11x1 − a12x2)

ẋ2 = x2 (b2 − a21x1 − a22x2)
(2.8)

where x1 and x2 are the sales of firms, b1 and b2 are the intrinsic growth coefficients

of firms, a11 and a22 are the growth restriction coefficients in firms’ own products, a12
is the competition coefficient (or predation) of firm 2 in relation to firm 1, and a21

the competition coefficient (or predation) of firm 1 in relation to firm 2. The intrinsic

growth of sales can be affected by price, quality, promotion and advertising. Wang

et al. [40] also assume a functional relation f(·) between advertising level qi of firm

i and the intrinsic growth rate coefficient bi:

bi = f(qi), i = 1, 2 (2.9)

(the reader is referred to [40] for more details on the function f).

In the next section, we argue that a generalization of model (2.8) can be arrived

at using models from evolutionary game theory.

2.3.2.4 Duopoly model using evolutionary games

Evolutionary Game Theory studies the behavior of large populations of agents which

interact strategically repeatedly. Changes in the behavior of these populations are

driven by natural selection processes through differences in birth and death rates or

by “myopic” decision rules applied by individual agents [15].

Evolutionary Game Theory originated as an application of the classical Game The-

ory formulated by Neumann and Morgenstern [44] to biological contexts, arising

from the perception that frequency-dependent aptitude introduces a strategic as-

pect to evolution [45]. In classical Game Theory, the interactions between rational

agents are modeled as games of two or more players who can choose from a set of

strategies. Thus, Game Theory is the mathematical study of interactive decision-

making in the sense that decision-makers take their own choices and those of others

into account [46].
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Evolutionary Game Theory was first developed by Fisher [47] in an attempt to ex-

plain the approximate equality of sexual proportion in mammals. Later Lewontin

[48] made the first explicit application of the Game Theory to evolutionary biology.

In 1972 Maynard Smith defined the concept of Evolutionary Stable Strategy. In the

year 1973, Maynard Smith and Price in their paper “The Logic of Animal Conflict”

[49] generalized the concept of an evolutionarily stable strategy.

Maynard Smith’s seminal text “Evolution and the Theory of Games” [50] appears

in 1982, followed in 1984 by Robert Axelrod’s famous work “The Evolution of Co-

operation” [51]. Since then, there has been a constant interest by economists and

social scientists in the Evolutionary Game Theory.

The interest of applying the Theory of Evolutionary Games in social and economic

sciences is based on three aspects. The first aspect is that the concept of biological

evolution can be understood as cultural evolution, referring to changes in beliefs and

customs over time. The second aspect is that the premises of limited rationality in

the approach to evolutionary game theory [52] are in many cases more appropriate

for modeling social systems. The third aspect is that the Evolutionary Game Theory

explicitly represents a dynamic theory.

Deterministic evolutionary games of large populations can be described by the equa-

tions of the replicator developed by Taylor and Jonker [53] and Zeeman [54] that

propose to represent the selection process as follows:

ẋi = xi [fi(x)− φ]

x = (x1, . . . , xn)

f = (f1, . . . , fn)

(2.10)

where:

• xi is the fraction of the population with strategy i and it is assumed that
n∑
i=1

xi = 1,

• fi =
n∑
j=1

aijxj is the aggregate return with strategy i (also referred to as fitness

of strategy i),

• aij is the payoff of agents with strategy i in interaction with agents with

strategy j, and

• φ = fTx is the mean population return [55].

At this point, it is worth mentioning the equivalence between the replicator

equation and the general Lotka-Volterra equation which describes the interaction of
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n species, since this can be represented as:

ẏi = yi

ri +
n∑
j=1

bijyj

 i = 1, . . . , n (2.11)

where yi is the abundance of species i, ri the rate of growth of species i, and bij the

interaction between species i and j.

In [56] it is argued that the replicator equation with n strategies can be trans-

formed into a Lotka-Volterra equation of n − 1 species. Thus, expressing equation

(2.10) in summation form the replicator equation can be represented as:

ẋi = xi

 n∑
j=1

aijxj − φ

 i = 1, . . . , n (2.12)

Rewriting equation (2.11) for the case of n − 1 species and considering bij as the

interaction between species, the Lotka-Volterra equation can be expressed as:

ẏi = yi

ri +
n−1∑
j=1

bijyj

 i = 1, . . . , n− 1 (2.13)

Thus, equations (2.12) and (2.13) are equivalent for ri = ain−ann and bij = aij−anj.
The correspondence between Lotka-Volterra equations and the replicator equa-

tion represents a link between ecological theory and the theory of evolutionary games

[56], [57]. Moreover, given the use of the Lotka-Volterra dynamics in the duopoly

modeling, presented in subsubsection 2.3.2.3, the use of the replicator dynamics is

suggested in this context as well. Before formalizing this idea, a generalization of

the replicator dynamics is presented.

The more general description of evolutionary dynamics includes frequency-

dependent selection processes and mutation processes and can be represented by

the equations called Replicator-Mutator:

ẋi =
n∑
j=1

xjfjqji(µ)− xiφ (2.14)

where,

• xi is the fraction of the population with strategy i with
n∑
i=1

xi = 1,

• aji is the payoff of the agents with strategy j in interaction with agents with

strategy i,

• fj =
n∑
i=1

ajixi is the fitness strategy j,
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• qij is the mutation rate of strategy i for the strategy j with
n∑
j=1

qij = 1,

• µ is the mutation parameter, and

• φ = fTx is the average fitness of the population.

Thus, it follows that the replicator equation is a special case of the Replicator-

Mutator equation in the absence of mutation processes [57].

Although it was originated in a biological context, the theory of evolutionary

games provides analysis tools for several areas, including in particular the social and

economic sciences [55, 57–60].

In the specific context of markets and advertising, we highlight the work devel-

oped by Wang [61], which presents an evolutionary model for an online advertising

ecosystem, also covering some aspects of advertising strategies. Details of this model

are given in the appendix B.

2.4 Delays in markets and consumer behavior

The presence of delays can be found in several systems of diverse areas as mathe-

matics, biology, economics, physics and social sciences [19].

Delays in the economy may arise in many ways; one manner is a delay between

the time the economic decision is made and the time when the decision produces

the results. Another form is the estimate of the expected values when the function

to determine the result is dependent on the current and past values [19].

In the particular case of a duopolistic market, it is possible to indicate that

clients and firms can require different sources of information past and present in the

decision-making process [18]. So, in the consumer decision process, an existence of a

time gap between the recognition of the necessity of a product and the purchase of

the same is perceived. This time can be generated as a result of factors internal or

external to the consumer such as age, social level, availability of time, information

search, product prices or product quality [62].

On the other hand, in the decision-making process of the firms it is observed that

the acquisition and processing of data besides being difficult are costly in resources

and time, therefore, in many cases, the information of the system is available after

the strategic decision is implemented [18]. Thus time delay between the actual infor-

mation of the system and the moment when the information is available or known

is significant [18].

Within this framework, two types of delays in the duopolistic market approach

are proposed in the following sections. In order to represent the duopoly models
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with delay we first write a general market share model in a manner similar to (2.1),

that is:

ẋ = f (x, u)− g(x) (2.15)

where f (x, u) is the term representing the growth of the market share as a function

of the market share x and advertising action u , and g(x) is the term representing

decrease or loss of the market share.

2.4.1 Implementation delay in advertising policy

We define implementation delay following [63]:

Definition 1. Implementation delay is said to occur when the market share infor-

mation utilized to define advertising policy is lagged or delayed with respect to the

instant when the latter is applied.

From the definition, denoting uτ = u (t− τ) it follows that the following modi-

fication to (2.15):

ẋ = f(x, uτ )− g(x) (2.16)

represents a market share dynamics model with implementation delay.

Figure 2.2: A timeline illustrating implementation delay: current time is t, at which

(feedback) advertising effort u(·) will be applied. If the only market share information

available is that of past instant (t−τ), this means that the advertising effort applied

at time t can be expressed as u(x(t− τ)).

2.4.2 Adoption delay

The effect of the company’s advertising policy on clients is not immediate, thus in

this section we define the idea of adoption delay following [64]:

Definition 2. Adoption delay is said to occur when advertising policy put into effect

at time t, acting on the market share variables at time t, will only affect the dynamics

at time t+ τ .
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Supposing time T = t + τ , to be the current time instant, the market share

dynamics in general form can be written as:

ẋ(T ) = f (x(t), u(t))− g(T ) (2.17)

Since x(t) = x(T − τ) = xτ and u(t) = u(T − τ) = uτ , equation (2.17) can be

rewritten as:

ẋ(T ) = f (xτ , uτ )− g(x(T )) (2.18)

Figure 2.3: A timeline illustrating adoption delay: current time is T = t + τ , but

(feedback) advertising effort u(x(t)) is applied at time t = T−τ , based on the known

market share x(t) at time t.

2.5 Decentralized affine feedback advertising pol-

icy

The decentralized affine feedback advertising policy used in this thesis is formulated

as:

u1 = k1x1 + c1 (2.19)

u2 = k2x2 + c2 (2.20)

where:

ui is the advertising effort of firm i

xi is the market share of firm i.

ki is the proportional effort of firm i

ci is the constant effort of firm i.

Note that, the advertising policy of the firms, expressed by two terms, the first

being proportional to market share (kixi) and the second having a constant value

(ci), is also decentralized in the sense that firm i bases its policy based only on

information about its own market share xi.

Affine control has been proposed, in the context of predator-prey models and

using full state feedback, in the textbook [65]. Prior to this, decentralized affine
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control, also in the context of predator-prey models, was used in [66], [67] and sub-

sequently in [68] . Taking inspiration from these applications, it was then proposed

to use decentralized affine advertising (DAA) policies in models of duopolies in [69],

[70] . The main motivations for the use of DAA policies in this thesis are summarized

below:

• DAA policies have a natural interpretation as proportional plus constant control,

and are easy to implement, in contrast to optimal controls, which are usually very

hard to calculate and also to implement.

• The simple mathematical form of DAA policies also permits analytical derivations

of stability and bifurcation results for the models proposed in this thesis.

Given the fact that, in this thesis, all advertising policies or controls are affine and

decentralized, and determined by the choice of the parameters (ki, ci, i = 1, 2), the

results presented are analytical, allowing a policy designer to predict what happens

under different scenarios, for different choices of the parameter values. This is in

contrast with the approach of optimal control, which determines a (usually open

loop and not necessarily decentralized) policy that takes the system state from an

initial set of market shares to a desired final set of market shares, minimizing some

cost function. In the proposed approach, costs can be evaluated by substituting the

proposed controls into a specified cost function and using the results in a “flight

simulator” mode [71]. It is also possible, for example, to draw isocost contours that

connect reachable states with the same terminal cost.

16



Chapter 3

Vidale-Wolfe model and extended
Lanchester model under affine
advertising control policy

In this chapter, the Vidale-Wolfe and Lanchester models are reexamined from the

perspective of the existence of a population of undecided clients in a duopolistic

market. The chapter begins by examining Deal’s extension of the Vidale-Wolfe model

and concludes that it is essentially equivalent to a model with an undecided set

of clients, in addition to the two usual sets of clients of the competing firms. In

section 3.2 an extension of the Lanchester model considering the existence of a third

set of undecided clients showing that this model is a genuine extension and is not

subsumed by the earlier models is formulated. Section 3.3 presents an equilibrium

and stability analysis of the models introduced in the previous sections, subjected

to affine advertising control policies. Subsequently, numerical simulations that verify

the analytical results are given in section 3.4. Finally, section 3.5 summarizes the

conclusions of the chapter.

3.1 Vidale-Wolfe model considering undecided

users

Deal [37] proposed an extension of the Vidale-Wolfe model to the case of a duopoly

considering that the effects of advertising act only on the unconquered part of the

market, thus discarding the influence of advertising on the market shares conquered

by the competing firms. Thus denoting the unconquered part of the market by

x3, which corresponds to the population of undecided individuals, the Vidale-Wolfe
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model can be expressed by the following equations:

ẋ1 = x3u1 − λ1x1
ẋ2 = x3u2 − λ2x2
ẋ3 = −x3u1 − x3u2 + λ1x1 + λ2x2

(3.1)

Assuming that the total population size is constant and normalized to 1 [22], i.e.,

x1 + x2 + x3 = 1, the model (3.1) can be expressed as follows:

ẋ1 = u1 − u1x1 − u1x2 − λ1x1
ẋ2 = u2 − u2x1 − u2x2 − λ2x2

(3.2)

Under constant controls, the equilibrium point of the system (3.2) is calculated to

be:

(x∗1, x
∗
2) =

(
λ2u1

λ1λ2 + λ1u2 + λ2u1
,

λ1u2
λ1λ2 + λ1u2 + λ2u1

)
(3.3)

where x1, x2 and x3 are the state variables representing the market shares of firm 1,

firm 2 and undecided users respectively, u1 and u2 are the actions, assumed constant,

of firm 1 and firm 2 representing positive advertising, λ1 and λ2 are the decay terms

of firm 1 and firm 2. Figure 3.1 shows the relation between the interaction between

clients in the Vidale-Wolfe model.

Firm 2

Advertising

Firm 1

Clients of rm 1 Clients of rm 2

Undecided clients

Transitions

(a)

Clients of rm 1 Clients of rm 2

Undecided clients

(b)

Figure 3.1: A graph representation of client and firm interactions in a duopoly with
advertising. (a) The nodes represent clients and firms and the edges represent in-
teractions (advertising or transitions) between them, (b) Vidale-Wolfe model (3.10)
showing only transitions between client sets of firms 1 and 2 and the set of undecided
clients, but no transitions amongst themselves.
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3.2 Extended Lanchester model considering un-

decided users

The Lanchester model [10] can be understood as an extension of the Vidale-Wolfe

model [9] within a duopoly with competition in advertising [72]. The Lanchester

model in contrast with the Deal model [37] considers advertising to be the sole

cause of variation of the market share of firms. For this reason, the Lanchester

model does not consider the decay term contemplated in the Vidale-Wolfe model,

which is used to represent the loss of market share produced by factors such as

quality of the product or service, as well as competition in advertising with other

firms not modeled in the duopoly. In addition, the Lanchester model assumes that

the market is saturated (i.e., the sum of market shares of the two firms is unity),

so that competition takes place in a situation where the market share gained by

one firm is equal to that lost by the other. In other words, there are no undecided

clients at all. With these assumptions, the classical Lanchester model is given by

the following equations:

ẋ1 = x2u1 − x1u2
ẋ2 = x1u2 − x2u1

(3.4)

In order to extend both the Lanchester as well as the Deal-Vidale-Wolfe models, we

argue that the firm i’s advertising acts on the undecided consumers in a positive sense

(i.e., to increase xi), while it acts negatively on firm j (its competitor). In addition,

we assume that the decay terms that occur in the Deal-Vidale-Wolfe model represent

migration of clients of firms 1 and 2 to the set of undecided clients. In mathematical

terms, the proposed extension of the Lanchester model is as follows:

ẋ1 = −x1u2 + (x3 + x2)u1 − λ1x1
ẋ2 = −x2u1 + (x3 + x1)u2 − λ2x2
ẋ3 = −x3u1 − x3u2 + λ1x1 + λ2x2

(3.5)

Note that x3 has the same dynamics as in the Vidale-Wolfe model, because of the

fact that the Lanchester model just adds and subtracts the terms xiuj from the

corresponding equations, so that the sum of the first two equations in the Vidale-

Wolfe model is the same as the corresponding sum in the Lanchester model. Since

the total population size is constant and normalized to 1, the model (3.5) can be
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expressed as follows:

ẋ1 = u1 − x1(u1 + u2 + λ1)

ẋ2 = u2 − x2(u1 + u2 + λ2)
(3.6)

Thus the fixed points of the system (3.6) are determined as:

(x∗1, x
∗
2) =

(
u1

λ1 + u1 + u2
,

u2
λ2 + u1 + u2

)
(3.7)

where x1, x2 and x3 are the state variables representing the market shares of firm 1,

firm 2 and undecided users respectively, u1 and u2 are the actions of firm 1 and firm

2 representing positive advertising, λ1 and λ2 are the decay terms of firm 1 and firm

2, respectively. Figure 3.2 illustrates the relation between the interaction between

clients in the extended Lanchester model.

Firm 2

Advertising

Firm 1

Clients of rm 1 Clients of rm 2

Undecided clients

Transitions

(a)

Clients of rm 1 Clients of rm 2

Undecided clients

(b)

Figure 3.2: A graph representation of client and firm interactions in a duopoly with
advertising. (a) The nodes represent clients and firms and the edges represent inter-
actions (advertising or transitions) between them, (b) extended Lanchester model
(3.17) showing transitions between all client sets.

3.3 Equilibria and stability analysis of duopoly

models considering undecided users under an

affine advertising control policy

In this section, we analyze the existence and stability of the equilibrium points of

the duopoly models proposed in the previous sections. For this purpose, we first

make the following standard assumptions:

Assumption 1. The market shares of firm 1 (x1) and firm 2 (x2) are considered to

be nonnegative values in the interval [0, 1].
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Assumption 2. The coefficients of models and control policies : λ1, λ2, u1, u2, k1,

k2, c1 and c2 are assumed to be positive values.

Assumption 3. The decay rates are assumed to be equal for both firms, λ1 = λ2 = λ

3.3.1 Affine control in Vidale-Wolfe model

The advertising efforts of the firms are assumed to be affine and decentralized as

explained in section 2.5 above:

u1 = k1x1 + c1 (3.8)

u2 = k2x2 + c2 (3.9)

Then, substituting the affine advertising efforts (controls) in the model (3.2) yields:

ẋ1 = −k1x21 − k1x1x2 + k1x1 − λx1 + c1 − c1x1 − c1x2
ẋ2 = −k2x22 − k2x1x2 + k2x2 − λx2 + c2 − c2x1 − c2x2

(3.10)

Reordering terms we have:

ẋ1 = −k1x21 − k1x1x2 − ax1 − c1x2 + c1

ẋ2 = −k2x22 − k2x1x2 − bx2 − c2x1 + c2
(3.11)

where:

a = (c1 + λ− k1)
b = (c2 + λ− k2)
The dynamics and corresponding equilibrium points for the model (3.11) are shown

in table 3.1. Note that for general cases of affine control, particular conditions are

considered for control parameters in order to establish analytical solutions for equi-

librium points. Thus for policy 4, k1 = c1 = c2 = c. For policy 5, k1 = c1 = k and

for policy 6, k1 = k2 = k and c1 = c2 = c. In addition, in table 3.1, we have that for

policy 4, p = 3c+ λ+ g and q = 3c+ λ− g where g = (5c2 + 2cλ+ λ2)
1
2 , for policy

5, f =
√
λ2 + 4k2 and finally for policy 6, f =

√
e2+2ec+c2+8ck

4 where e = c + λ− k.

Summary of these considerations are shown in Appendix A (Table A.4)

Now, the stability is determined by the signs of the determinant and trace of the

Jacobian matrix evaluated at the corresponding equilibrium points. The Jacobian

matrix for model (3.11) with respect to x1 and x2 is given by:

JVW =

−2k1x1 − k1x2 − a −k1x1 − c1
−k2x2 − c2 −2k2x2 − k2x1 − b

 (3.12)
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Hence, the determinant and trace for the Jacobian matrix are:

det = 2k1k2x21 + 4k1k2x1x2 + 2k1k2x22 + ak2x1 + 2ak2x2 + 2bk1x1

+ bk1x1 − c1k2x2 − c2k1x1 + ab− c1c2
(3.13)

tr = − 2k1x1 − k1x2 − k2x1 − 2k2x2 − a− b (3.14)

The conditions that ensure the stability of the equilibrium points of the Vidale-Wolfe

model are shown in table 3.3. Note, the expressions for the determinants and traces

of the Vidale-Wolfe for special cases of affine control, are displayed in Appendix A

(Table A.2).

Policy Control Parameters Dynamic Eq. for Vidale-Wolfe model Equilibrium Points

P1
u1 = c1 ẋ1 = −c1x1 − c1x2 − λx1 + c1

(
c1

c1+c2+λ
, c2
c1+c2+λ

)
u2 = c2 ẋ2 = −c2x1 − c2x2 − λx2 + c2

P2
u1 = k1x1 ẋ1 = −k1x21 − k1x1x2 + k1x1 − λx1

(
0, c2

c2+λ

)
u2 = c2 ẋ2 = −c2x1 − c2x2 − λx2 + c2

(
k1−c2−λ

k1
, c2
k1

)
P3

u1 = k1x1 ẋ1 = −k1x21 − k1x1x2 + k1x1 − λx1
(0, 0)

u2 = k2x2 ẋ2 = −k2x22 − k2x1x2 + k2x2 − λx2

(
0, k2−λ

k2

)(
k1−λ
k1

, 0
)

P ∗3
u1 = kx1 ẋ1 = −kx21 − kx1x2 + kx1 − λx1

(
−kx2−k+λ

k
, x2

)
u2 = kx2 ẋ2 = −kx22 − kx1x2 + kx2 − λx2 (0, 0)

P4
u1 = k1x1 + c1 ẋ1 = −k1x21 − k1x1x2 + k1x1 − λx1

(
2c−p
2c ,

p
2(c+λ)

)
u2 = c2 ẋ2 = −c2x1 − c2x2 − λx2 + c2

(
2c−q
2c ,

q
2(c+λ)

)
P5

u1 = k1x1 + c1 ẋ1 = −k1x21 − k2x1x2 − c1x1 + k1x1 − λx1 + c1

(
−λ−f
2k , 0

)
u2 = k2x2 ẋ2 = −k1x1x2 − k2x22 − c1x2 + k2x2 − λx2

(
−λ+f
2k , 0

)
(

k
k2−k ,

2kk2−kλ+k2λ−k22
kk2−k22

)
P6

u1 = k1x1 + c1 ẋ1 = −k1x21 − k1x1x2 + k1x1 − λx1 + c1 − c1x1 − c1x2
(
−e−c−2f
4k , −e−c−2f4k

)
u2 = k2x2 + c2 ẋ2 = −k2x22 − k2x1x2 + k2x2 − λx2 + c2 − c2x1 − c2x2

(
−e−c+2f
4k , −e−c+2f4k

)

Table 3.1: Dynamic equations and equilibrium points for the Vidale-Wolfe model
(3.10) under different control policies

3.3.2 Affine control in the extended Lanchester model

Similar to Vidale-Wolfe model, the affine advertising control of the firms for extended

Lanchester model is defined as:

u1 = k1x1 + c1 (3.15)

u2 = k2x2 + c2 (3.16)

Then, substituting the controls in the model (3.6) yields:

ẋ1 = −k1x21 − k2x1x2 − c1x1 − c2x1 + k1x1 − λx1 + c1

ẋ2 = −k1x1x2 − k2x22 − c1x2 − c2x2 + k2x2 − λx2 + c2
(3.17)
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Rearranging terms:

ẋ1 = −k1x21 − k2x1x2 − wx1 + c1

ẋ2 = −k2x22 − k1x1x2 − zx2 + c2
(3.18)

where:

w = (c1 + c2 + λ− k1)
z = (c1 + c2 + λ− k2)
Table 3.2 shows the equations of dynamics and the equilibrium points of the extended

Lanchester model for particular cases of the affine control. Note that, similar to

the Vidale-Wolfe model, particular cases of control parameters are considered to

establish analytical solutions for equilibrium points. For policy 4, k1 = c1 = c2 = c.

For policy 5, k1 = c1 = k and for policy 6, k1 = k2 = k and c1 = c2 = c. In addition,

in table 3.2, for policy 4, p = 3c+λ+g and q = 3c+λ−g where g = (5c2 + 2cλ+ λ2)
1
2 ,

for policy 5, f =
√
λ2 + 4k2 and finally for policy 6, f =

√
e2+2ec+c2+8ck

4 where

e = c + λ − k. Summary of these considerations are shown in Appendix A (Table

A.4)

The Jacobian matrix for model (3.18) with respect to x1 and x2 is given by:

JLe =

−2k1x1 − k2x2 − w −k2x1
−k1x2 −2k2x2 − k1x1 − z

 (3.19)

whence, the determinant and trace for the Jacobian matrix are:

det = 2k21x
2
1 + 4k1k2x1x2 + 2k22x

2
2 + k1wx1

+ 2k1zx1 + 2k2wx2 + k2zx2 + zw
(3.20)

tr = − 3k1x1 − 3k2x2 − z − w (3.21)

The conditions that ensure stability of the equilibrium points of the extended Lanch-

ester model are shown in table 3.3. The expressions for the determinants and traces

of the extended Lanchester model for special cases of affine control are displayed in

Appendix A (Table A.3). From the results presented in tables 3.1, 3.2 and 3.3 we

can formulate the main result:

Theorem 1. The extended Lanchester model (3.17) and the Vidale-Wolfe model

(3.10) both under affine advertising policy ui = kixi + ci, i = 1, 2 are equivalent for

the same choices of affine policy parameters (ki, ci) in the sense that both models have

the same equilibrium points with the same stability properties (even though stability

conditions, eigenvalues and dynamics differ).

Proof. Follows from the composition of results given in Table 3.1, Table 3.2 and

Table 3.3
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Policy Control Parameters Dynamic equations for extended Lanchester model Equilibrium Points

P1
u1 = c1 ẋ1 = −c1x1 − c2x1 − λx1 + c1

(
c1

c1+c2+λ
, c2
c1+c2+λ

)
u2 = c2 ẋ2 = −c1x2 − c2x2 − λx2 + c2

P2
u1 = k1x1 ẋ1 = −k1x21 − c2x1 + k1x1 − λx1

(
0, c2

c2+λ

)
u2 = c2 ẋ2 = −k1x1x2 − c2x2 − λx2 + c2

(
k1−c2−λ

k1
, c2
k1

)
P3

u1 = k1x1 ẋ1 = −k1x21 − k2x1x2 + k1x1 − λx1
(0, 0)

u2 = k2x2 ẋ2 = −k2x22 − k1x1x2 + k2x2 − λx2

(
0, k2−λ

k2

)(
k1−λ
k1

, 0
)

P ∗3
u1 = kx1 ẋ1 = −kx21 − kx1x2 + kx1 − λx1

(
−kx2−k+λ

k
, x2

)
u2 = kx2 ẋ2 = −kx22 − kx1x2 + kx2 − λx2 (0, 0)

P4
u1 = k1x1 + c1 ẋ1 = −k1x21 − c1x1 − c2x1 + k1x1 − λx1 + c1

(
2c−p
2c ,

p
2(c+λ)

)
u2 = c2 ẋ2 = −k1x1x2 − c1x2 − c2x2 − λ

(
2c−q
2c ,

q
2(c+λ)

)
P5

u1 = k1x1 + c1 ẋ1 = −k1x21 − k2x1x2 − c1x1 + k1x1 − λx1 + c1

(
−λ−f
2k , 0

)
u2 = k2x2 ẋ2 = −k1x1x2 − k2x22 − c1x2 + k2x2 − λx2

(
−λ+f
2k , 0

)
(

k
k2−k ,

2kk2−kλ+k2λ−k22
kk2−k22

)
P6

u1 = k1x1 + c1 ẋ1 = −k1x21 − k2x1x2 − c1x1 − c2x1 + k1x1 − λx1 + c1
(
−e−c−2f
4k , −e−c−2f4k

)
u2 = k2x2 + c2 ẋ2 = −k1x1x2 − k2x22 − c1x2 − c2x2 + k2x2 − λx2 + c2

(
−e−c+2f
4k , −e−c+2f4k

)

Table 3.2: Dynamic equations and equilibrim points for the extended Lanchester
model (3.17) under different control policies

Policy Equilibrium Points Stability conditions for VW Stability conditions for extended Lanchester
P1

(
c1

c1+c2+λ
, c2
c1+c2+λ

)
None None

P2

(
0, c2

c2+λ

)
k1 < c2 + λ k1 < c2 + λ(

k1−c2−λ
k1

, c2
k1

)
k1 > c2 + λ k1 > c2 + λ

P3

(
0, k2−λ

k2

)
k1 < k2 k1 < k2(

k1−λ
k1

, 0
)

k2 < k1 k2 < k1

P ∗3
(
−kx2−k+λ

k
, x2

)
λ < k λ < k

P4
(
2c−q
2c ,

q
2(c+λ)

)
None None

P5

(
−λ+f
2k , 0

)
k > k2(λ−f)

2(λ+f−k2) k > 2k2−f−λ
2(

k
k2−k ,

2kk2−kλ+k2λ−k22
kk2−k22

)
k2(λ−k2)
λ−2k2 < k <

k22
λ

k2(λ−k2)
λ−2k2 < k < 2k2−λ

2

P6
(
−e−c+2f
4k , −e−c+2f4k

)
k < 2f + λ− 2c k < 2f + λ− 2c

Table 3.3: Conditions of the control parameters to guarantee stability of the equi-
librium points.

Remark : The extended Lanchester model (3.17) and the Vidale-Wolfe model (3.10)

become identical under the control ui = kixi.

3.4 Numerical Results

This section presents some numerical simulations to verify the analytical results

found in the previous sections. Figure 3.3 allows the comparison of the classical

Lanchester model with the extended Lanchester model, thus figure 3.3(a) shows that

the equilibrium points are always on the line x1+x2 = 1 while figure 3.3(b) indicates

the influence of considering an undecided population, that is, the equilibrium points

lie below the line x1 + x2 = 1.
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Figure 3.3: Evolution of market shares of firms x1 and x2 under affine control policies
with parameters k1 = 0, c1 = 0.2, 0.4, 0.6, k2 = 0, c2 = 0.1 for: (a) classical Lanch-
ester model for x1(0) = 0.2, (b) extended Lanchester model with undecided users
for x1(0) = 0.2, x2(0) = 0.1 and λ = 0.2. Note that in classical Lanchester model
the market shares are always on the line x1 + x2 = 1.

Next, figure 3.4 allows the comparison of the extended Lanchester model

for different values of λ. Figure 3.4(a) shows extended Lanchester model for

λ = 0 where the equilibrium point lies on the red line x1 + x2 = 1, on the

other hand, figure 3.4(b) shows extended Lanchester model for λ = 0.2, then the

equilibrium point lies on the green line x1+x2 = 0.75. The shift in the line of equilib-

rium points is a consequence of changing the value of λ from zero to a positive value.
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Figure 3.4: Phase plane of the market shares of firms x1 and x2 under affine control
policies with parameters k1 = 0, c1 = 0.35, k2 = 0, c2 = 0.25 for: (a) extended
Lanchester model with λ = 0, (b) extended Lanchester model with λ = 0.2. Note the
change in the line containing the equilibrium points. In this case, the new equation
of line is x1 + x2 = 0.75.
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Figure 3.5 shows the evolution of market shares of brands under increase in

advertising u1 and u2 constant. Thus, figure 3.5(a) shows the evolution of market

shares in Vidale-Wolfe model and figure 3.5(b) shows the evolution of market shares

in extended Lanchester model. In both models three increases in advertising u1

are considered. Note that the equilibrium points in both models under the same

control policy are equal and that the difference in the dynamics of models can be

seen in the evolution of market share of firm 2 when the increment in advertising

u1 is greater.
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Figure 3.5: Evolution of market shares of firms x1 and x2 under affine control policies
for: (a) Vidale-Wolfe model expressed in equation (3.11) , (b) extended Lanchester
model expressed in equation (3.18).

Next, figures 3.6(a) and 3.6(b) show the phase planes of the models (3.11)

and (3.18) for the following control parameters k1 = 0.3, c1 = 0.35, k2 = 0.2, c2 =

0.25. Thus it is observed that the models of Vidale-Wolfe and extended Lanchester

have the same equilibrium points (x∗1 = 0.49, x∗2 = 0.31) although they have different

trajectories. Therefore numerical results presented in figures 3.6(a) and 3.6(b) are

in accordance with Theorem 1.
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Figure 3.6: Phase plane of the market shares of firms x1 and x2 under affine control
policies with parameters k1 = 0.3, c1 = 0.35, k2 = 0.2, c2 = 0.25 for: (a) Vidale-Wolfe
model expressed in equation (3.11) , (b) extended Lanchester model expressed in
equation (3.18). It is observed that the models have the same equilibrium point but
different dynamics.

Finally, figure 3.7 shows the phase plane for special case when u1 = k1x1 and

u2 = k2x2 with k1 = k2. Note that in this special case the Vidale-Wolfe and

extended Lanchester models have the same dynamic and the fixed points are a set

of points.

Remark : The values of λ found in the literature related to empirical data [5, 7, 73,

74] are used for numerical simulations.
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Figure 3.7: Phase plane of the market shares of firms x1 and x2 under affine control
policies with parameters k1 = 0.5, c1 = 0, k2 = 0.5, c2 = 0, λ = 0.2 for: (a) Vidale-
Wolfe model expressed in equation (3.11) , (b) extended Lanchester model expressed
in equation (3.18).
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3.5 Chapter conclusions

This chapter argued for the explicit introduction of a third class of undecided clients

into Deal’s version of the classical Vidale-Wolfe model, and also into an extension

of Lanchester’s model, which includes both decay terms and the “spillover” effect

of advertising on clients of the rival firm as well as on the undecided clients. The

proposed modification of the Lanchester dynamics extends the classical model from

the saturated market to the unsaturated market. A complete analysis of the location

and stability properties of the equilibria of these two models under a general class of

decentralized affine feedback advertising policies leads to the surprising conclusion

that, despite differences in the trajectories, under identical advertising policies, the

final outcome in terms of equilibrium market share is the same for both models.

This is an indication of the fact that, even though Little’s algebraic manipulation

showed that the Lanchester model for two firms in a saturated market subsumes

the single firm Vidale-Wolfe model, and this is no longer true in the duopoly case,

there is still a deep similarity between the two models (same equilibrium outcome

for same advertising policy).
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Chapter 4

Vidale-Wolfe model and extended
Lanchester model with delays
under affine advertising control
policy

In this chapter, the models studied in chapter 3 are described and analyzed consid-

ering the presence of delays. Section 4.1 presents an initial overview of the Vidale-

Wolfe and Lanchester models considering delays. In section 4.2 and section 4.3 the

two types of delays discussed in section 2.4 are incorporated into the Vidale-Wolfe

and extended Lanchester models in order to perform stability and bifurcation anal-

yses. Section 4.4 carries out a numercial study of the effect of different values of

delay for each firm. Finally, section 4.5 presents the conclusions of the chapter.

4.1 Delays in Vidale-Wolfe and Lanchester mod-

els

The Vidale-Wolfe [9] and Lanchester [10] models have been widely studied in various

approaches. However, to the best of our knowledge, all published models consider

instant access to market information as well as the immediate effect of advertising

on market shares. This assumption is not a realistic one, and consideration of delays

in market behavior is necessary for a better understanding of market dynamics [75].

However, introduction of delays can induce important changes in the dynamics of

systems, including oscillatory, unstable and chaotic behaviors [76]. The introduction

of delays has been considered for some classes of duopoly models [63, 64, 77–81].

However, the class of market share models under advertising control policies has not

been studied to date. The remainder of this chapter will motivate and describe the
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introduction of two types of delays into the Vidale-Wolfe and extended Lanchester

models. Stability and bifurcation analyses of the proposed delay models finalize the

chapter.

4.2 Vidale-Wolfe model with delays under affine

advertising control policy

4.2.1 Vidale-Wolfe model with implementation delay

Recalling the definition in subsection 2.4.1 the Vidale-Wolfe model with implemen-

tation delay can be defined as follows:

ẋ1 = u1τ (1− x1 − x2)− λ1x1
ẋ2 = u2τ (1− x1 − x2)− λ2x2

(4.1)

where the implementation delays affect the advertising policies (now denoted uiτ , i =

1, 2) as follows:

u1τ = k1x1τ + c1 = k1x1 (t− τ1) + c1

u1τ = k2x2τ + c2 = k2x2 (t− τ2) + c2

Substituting the above expressions into (4.1), the Vidale-Wolfe model with imple-

mentation delay can be expressed as:

ẋ1 = −k1x1x1τ − k1x2x1τ − k1x1τ − c1x1 − c1x2 − λx1 + c1

ẋ2 = −k2x1x2τ − k2x2x2τ − k2x2τ − c2x1 − c2x2 − λx2 + c2
(4.2)

In this chapter, it will henceforth be assumed that implementation delays are equal

(i.e., τ1 = τ2 = τ). This assumption is mainly to make stability and bifurcation

analysis possible. Section 4.4 relaxes this assumption and carries out a numerical

study of the case of unequal implementation delays.

For model (4.2) when τ1 = τ2 = τ , the Jacobian matrix [82] with respect to

equilibrium point is given by:

Jvw =

Avw Bvw

Cvw Dvw

 (4.3)

where:

Avw = −k1x1τ − c1 − λ+ e−ψτ (−k1x1 − k1x2 + k1)

Bvw = −k1x1τ − c1
Cvw = −k2x2τ − c2
Dvw = −k2x2τ − c2 − λ+ e−ψτ (−k2x1 − k2x2 + k2)
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At equilibrium it must hold that:

(x∗1(t), x
∗
2(t)) = (x∗1(t− τ), x∗2(t− τ)) (4.4)

Hence, the stability of equilibrium points is determined by the following character-

istic equation:

Pvw(ψ, τ) = Ψ 2 + P1vwΨ + P2vw + P3vwe
−2ψτ + P4vwΨe

−ψτ + P5vwe
−ψτ (4.5)

where:

P1vw = k1x1 + k2x2 + c1 + c2 + 2λ

P2vw = k1λx1 + k2λx2 + c1λ+ c2λ+ λ2

P3vw = k1k2x
2
1 + 2k1k2x1x2 + k1k2x

2
2 − 2k1k2x1 − 2k1k2x2 + k1k2

P4vw = k1x1 + k1x2 + k2x1 + k2x2− k1− k2

P5vw = k1k2x
2
1 + 2k1k2x1x2 + k1k2x

2
2 + c1k2x1 + c1k2x2 + c2k1x1 + c2k1x2 − k1k2x1 −

k1k2x2 + k1λx1 + k1λx2 + k2λx1 + k2λx2 − c1k2 − c2k1 − k1λ− k2λ
Considering the special case when: k1 = k2 = k and c1 = c2 = c we have:

x∗1 = −1
4
−2c− λ+ k +

√
c2 + 2c (c+ λ− k) + 8ck + (c+ λ− k)2

k
(4.6)

x∗2 = −1
4
−2c− λ+ k +

√
c2 + 2c (c+ λ− k) + 8ck + (c+ λ− k)2

k
(4.7)

Thus, in this case, the characteristic equation is given by:

Pvw(ψ, τ) = Ψ 2 + P1vwΨ + P2vw + P3vwe
−2ψτ + P4vwΨe

−ψτ + P5vwe
−ψτ (4.8)

where:

P1vw = c+ 3
2λ+ 1

2

√
4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2 + k

2

P2vw = 1
2kλ+ cλ+ 1

2λ
2 + 1

2

√
4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

P3vw = 2c2+2cλ−
(
c− 12λ−

1
2k
) (√

4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2
)

+ 12λ
2+ 12k

2+

2ck

P4vw =
√

4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2 − 2c− k − λ
P5vw = −cλ− 32kλ−

1
2λ
2 + 1

2λ
√

4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2
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4.2.1.1 Stability analysis of the characteristic equation for τ = 0

In this case, the characteristic equation is given by:

Pvw(ψ, τ) = Ψ 2 + P6vwΨ + P7vw (4.9)

where:

P6vw = P1vw + P4vw

P7vw = P2vw + P3vw + P5vw

Then, the stability criteria [83] are satisfied whenever

P6vw > 0

P7vw > 0
(4.10)

Therefore, we may formulate the following proposition:

Proposition 1. The equilibrium point (x∗1, x
∗
2) of model (4.2) is a stable equilibrium

point for τ = 0 whenever the conditions in (4.10) hold.

4.2.1.2 Stability analysis of the characteristic equation for τ > 0

For convenience, we present the statement of the Hopf bifurcation theorem below,

taken from [84], since this will be the main tool used for bifurcation analysis

throughout this thesis.

Hopf bifurcation theorem1

Let ẋ = A (λ) x + F (λ,x) be a Ck, with k ­ 3, be a planar vector field de-

pending on a scalar parameter λ such that F (λ,0) = 0 and DxF (λ,0) = 0 for

all sufficiently small |λ|. Assume that the linear part A (λ) at the origin has the

eigenvalues α (λ)± iβ (λ) with α (0) = 0 and β (0) 6= 0. Furthermore, suppose that

the eigenvalues cross the imaginary axis with nonzero speed, that is:

dα

dλ
(0) 6= 0 (4.11)

Then, in any neighborhood U of the origin in R2 and any given λ0 > 0 there is a

λ with |λ| < λ0 such that the differential equation ẋ = A
(
λ
)

x + F
(
λ,x

)
has a

nontrivial periodic orbit in U .

1Also atributed to Poincaré and Andronov and called the Poincaré-Andronov-Hopf theorem.
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Returning to the analysis when τ > 0, in this case the characteristic equation
is given by equation (4.5). Next, considering Ψ = iw and substituting in (4.5),
yields:

Pvw(iω, τ) = (iω)2+P1vw (iω)+P2vw+P3vwe−2(iω)τ+P4vw(iω)e−(iω)τ+P5vwe−(iω)τ (4.12)

Then, separating the real and imaginary parts, we have:

P3vw cos (2ωτ) + ωP4vw sin (ωτ) = ω2 − P2vw − P5vw cos (ωτ) (4.13)

−P3vw sin (2ωτ) + ωP4vw cos (ωτ) = −P1vwω + P5vw sin (ωτ) (4.14)

Solving equations (4.13) and (4.14), we obtain:

0 =− P4vwω3 + P 24vw sin (ωτ)ω2 + P4vwP2vww + P4vwP3vw cos (2ωτ)ω

− P1vwP5vwω + P 25vw sin (ωτ) + P3vwP5vw sin (2ωτ)
(4.15)

Now, after rearrangement the characteristic equation becomes:

Pvw(ψ, τ) = Ψ2 + P1vwΨ + P2vw + e−ψτ
(
P4vwΨ + P3vwe

−ψτ + P5vw
)

(4.16)

Then, the second necessary condition for the existence of a Hopf Bifurcation [85] is for-

mulated as:

<
(
dλ

dτ

)
6= 0 (4.17)

Now, calculating
(
dλ
dτ

)
from (4.16) we get:

(
dλ

dτ

)
=
Evw + Fvwi

Gvw +Hvwi
(4.18)

where:

Evw = −w
(
4P3vw cos2 (ωτ) + P4vwω sin (ωτ) + P5vw cos (ωτ)− 2P3vw

)
Fvw = −w (4P3vw cos (ωτ) sin (ωτ)− cos (ωτ)P4vwω + P5vw sin (ωτ))

Gvw = −4P3vwτ cos (ωτ) sin (ωτ) + τP4vwω cos (ωτ)− τP5vw sin (ωτ) + P4vw sin (ωτ)− 2w

Hvw = 4P3vwτ cos2 (ωτ)+P4vwτω sin (ωτ)+P5vwτ cos (ωτ)−P4vw cos (ωτ)−2P3vwτ−P1vw
Therefore:

<
(
dλ

dτ

)
=
EvwGvw + FvwHvw

G2vw +H2vw
6= 0 (4.19)

Hence, from the previous analysis, the following proposition can be formulated:

Proposition 2. The model (4.2) has Hopf bifurcation for delay value τ > 0 when the

equation (4.15) has a positive solution and condition (4.19) holds.
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4.2.2 Numerical results for Vidale-Wolfe model with imple-

mentation delay

In this section some numerical results for the Vidale-Wolfe model with implementation

delay are presented. The following parameter values are considered: x1(0) = 0.2, x2(0) =

0.1, λ = 0.2, k1 = 0.4, c1 = 0.35, k2 = 0.17, c2 = 0.4. For these parameters, the equilibrium

point is given by: x∗1 = 0.44, x∗2 = 0.39

First, analyzing for τ = 0, the parameter values in equation (4.9) are substituted.

Thus,

Pvw(ψ, τ) = Ψ2 + 1.2954Ψ + 0.174 (4.20)

Hence, according to Proposition 1 it can be said that equilibrium point is stable.

Next, for the case when τ > 0, the parameter values in equation (4.12) are replaced

leading to

Pvw(ψ, τ) = Ψ2 + 1.39Ψ − 0.09Ψe−ψτ + 0.001e−2ψτ − 0.06e−ψτ + 0.238 (4.21)

Then, solving the equation for λ = iω, it is noted that the characteristic equation has

no positive root. Therefore, considering Proposition 2 it is concluded that the model has

no Hopf bifurcation.

In figure 4.1 numerical simulations for the Vidale-Wolfe model with implementation

delay are presented. Figure 4.1(a) shows the dynamics of the model without delay (τ = 0).

Next, figure 4.1(b) ilustrates the dynamics of the model for delay value τ = 10. Note that

the equilibrium point maintains its stability.
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Figure 4.1: (a) Vidale-Wolfe model without delay and (b) Vidale-Wolfe with imple-
mentation delay for τ1 = τ2 = τ = 10.
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4.2.3 Vidale-Wolfe model with adoption delay

From subsection 2.4.2, the Vidale-Wolfe model with adoption delay can be formulated as

follows:

ẋ1 = u1τ (1− x1τ − x2τ )− λ1x1
ẋ2 = u2τ (1− x1τ − x2τ )− λ2x2

(4.22)

where:

u1τ = k1x1τ + c1 = k1x1 (t− τ1) + c1

u2τ = k2x2τ + c2 = k2x2 (t− τ2) + c2

Substituting the above expressions into (4.22), the Vidale-Wolfe model with adoption

delay can be expressed by:

ẋ1 = −x21τk1 − x1τx2τk1 − x1τ c1 + x1τk1 − x2τ c1 − λx1 + c1

ẋ2 = −x1τx2τk2 − x22τk2 − x1τ c2 − x2τ c2 + x2τk2 − λx2 + c2
(4.23)

Considering that τ1 = τ2 = τ , the Jacobian matrix with respect to equilibrium point for

model (4.23) is given by:

Jvw =

Avw Bvw

Cvw Dvw

 (4.24)

where:

Avw = −λ+ e−ψτ (−2x1τk1 − x2τk1 − c1 + k1)

Bvw = e−ψτ (−x1τk1 − c1)
Cvw = e−ψτ (−x2τk2 − c2)
Dvw = −λ+ e−ψτ (−x1τk2 − 2x2τk2 − c2 + k2)

At equilibrium it must hold that:

(x∗1(t), x
∗
2(t)) = (x∗1(t− τ), x∗2(t− τ)) (4.25)

Therefore, the stability of equilibrium points will be determined by the characteristic

equation expressed by:

Pvw(ψ, τ) = Ψ2 + P1vwΨ + P2vw + P3vwe
−2ψτ + P4vwΨe

−ψτ + P5vwe
−ψτ (4.26)

where:

P1vw = 2λ2

P2vw = λ2

P3vw = 2k1k2x21 + 4k1k2x1x2 + 2k1k2x22 + c1k2x1 + c1k2x2 + c2k1x1 + c2k1x2 − 3k1x2 −
3k1k2x2 − c1k2 − c2k1 + k1k2

P4vw = 2k1x1 + k1x2 + k2x1 + 2k2x2 + c1 + c2 − k1 − k2
P5vw = 2k1λx1 + k1λx2 + k2λx1 + 2k2λx2 + c1λ+ c2λ− k1λ− k2λ
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Considering the special case when: k1 = k2 = k and c1 = c2 = c we obtain:

x∗1 = −1
4

−2c− λ+ k +
√
c2 + 2c (c+ λ− k) + 8ck + (c+ λ− k)2

k
(4.27)

x∗2 = −1
4

−2c− λ+ k +
√
c2 + 2c (c+ λ− k) + 8ck + (c+ λ− k)2

k
(4.28)

Therefore, the characteristic equation is given by:

Pvw(ψ, τ) = Ψ2 + P1vwΨ + P2vw + P3vwe
−2ψτ + P4vwΨe

−ψτ + P5vwe
−ψτ (4.29)

where:

P1vw = 2λ2

P2vw = λ2

P3vw = −
(
c− λ− 12k

) (√
4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

)
+2c2+3cλ+λ2− 12kλ+ 12k

2+

2ck

P4vw = −c− 32 −
1
2k + 3

2

√
4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

P5vw = −cλ− 32λ
2 − 12kλ+ 3

2λ
√

4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

4.2.3.1 Stability analysis of the characteristic equation for τ = 0

In this case, the characteristic equation is given by:

Pvw(ψ, τ) = Ψ2 + P6vwΨ + P7vw (4.30)

where:

P6vw = P1vw + P4vw

P7vw = P2vw + P3vw + P5vw

Thus the stability is given when:

P6vw > 0

P7vw > 0
(4.31)

Therefore, from the previous analysis we can conclude

Proposition 3. The equilibrium point (x∗1, x
∗
2) of model (4.23) is a stable equilibrium point

for τ = 0 when the conditions expressed in (4.31) hold.

4.2.3.2 Stability analysis of the characteristic equation for τ > 0

In this case, the characteristic equation is given by equation (4.26). Now, considering

Ψ = iw and substituting in (4.26), we obtain:

Pvw(iω, τ) = (iω)2+P1vw (iω)+P2vw+P3vwe−2(iω)τ+P4vw(iω)e−(iω)τ+P5vwe−(iω)τ (4.32)
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Then, separating the real and imaginary parts, we have:

P3vw cos (2ωτ) + ωP4vw sin (ωτ) = ω2 − P2vw − P5vw cos (ωτ) (4.33)

−P3vw sin (2ωτ) + ωP4vw cos (ωτ) = −P1vwω + P5vw sin (ωτ) (4.34)

Solving equations (4.33) and (4.34), we get:

0 =− P4vwω3 + P 24vw sin (ωτ)ω2 + P4vwP2vww + P4vwP3vw cos (2ωτ)ω

− P1vwP5vwω + P 25vw sin (ωτ) + P3vwP5vw sin (2ωτ)
(4.35)

After rearrangement the characteristic equation becomes:

Pvw(ψ, τ) = Ψ2 + P1vwΨ + P2vw + e−ψτ
(
P4vwΨ + P3vwe

−ψτ + P5vw
)

(4.36)

Then, the second necessary condition for Hopf Bifurcation existence [85] is formulated as:

<
(
dλ

dτ

)
6= 0 (4.37)

Now, calculating
(
dλ
dτ

)
from (4.36) we obtain:

(
dλ

dτ

)
=
Avw +Bvwi

Cvw +Dvwi
(4.38)

where:

Avw = −w
(
4P3vw cos2 (ωτ) + P4vwω sin (ωτ) + P5vw cos (ωτ)− 2P3vw

)
Bvw = −w (4P3vw cos (ωτ) sin (ωτ)− cos (ωτ)P4vwω + P5vw sin (ωτ))

Cvw = −4P3vwτ cos (ωτ) sin (ωτ) + τP4vwω cos (ωτ)− τP5vw sin (ωτ) + P4vw sin (ωτ)− 2w

Dvw = 4P3vwτ cos2 (ωτ)+P4vwτω sin (ωτ)+P5vwτ cos (ωτ)−P4vw cos (ωτ)−2P3vwτ−P1vw
Therefore:

<
(
dλ

dτ

)
=
AvwCvw +BvwDvw

C2vw +D2vw
6= 0 (4.39)

Thus, from the previous analysis, we have:

Proposition 4. The model (4.23) has Hopf bifurcation for delay value τ > 0 when the

equation (4.35) has a positive solution and condition (4.39) holds.

4.2.4 Numerical results for Vidale-Wolfe model with adop-

tion delay

Some numerical results for the Vidale-Wolfe model with adoption delay are now presented.

The following parameter values are considered: x1(0) = 0.2, x2(0) = 0.1, λ = 0.25, k1 =

0.25, c1 = 0.15, k2 = 0.2 and c2 = 0.1. For these parameters, the equilibrium point is given

by: x∗1 = 0.383, x∗2 = 0.226.
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Now, analyzing for τ = 0, we substitute the parameter values in equation (4.30) and

we get:

Pvw(ψ, τ) = Ψ2 + 0.71Ψ + 0.09 (4.40)

Hence, from Proposition 3 it can be affirmed that equilibrium point is stable.

Then, for the case when τ > 0, substituting the parameter values in equation (4.32)

we obtain:

Pvw(ψ, τ) = Ψ2 + 0.5Ψ + 0.21Ψe−ψτ − 0.02e−2ψτ + 0.05e−ψτ + 0.06 (4.41)

Solving the equation for λ = iω we have that one solution is given by ω = 0.17 and

τ = 15.28. Now, substituting these values in equation (4.39) we have that
(
dλ
dτ

)
6= 0.

Therefore, according to Proposition 4 it can be stated that the model has Hopf bifurcation.

Figures 4.2 and 4.3 illustrate the numerical results for the Vidale-Wolfe model with

adoption delay. Thus, in figure 4.2(a) the dynamics of the model without delay (τ = 0) is

shown. Then, figure 4.2(b) shows the dynamics of the model for τ = 10. Note that in this

case, the dynamics of the model has oscillations but the equilibrium point remains stable.

Figure 4.3(a) illustrates the dynamics of the model for τ = 15.28. This delay value is the

critical delay value (τc) that produces existence of Hopf bifurcation. Finally, figure 4.3(b)

shows the dynamics of the model for τ = 40. Notice that the model for this delay value

has oscillations and the equilibrium point loses stability.
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Figure 4.2: Evolution of market shares of firms x1 and x2 for: (a) Vidale Wolfe model
without delay τ = 0 and (b) Vidale Wolfe model with adoption delay τ = 10
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Figure 4.3: Evolution of market shares of firms x1 and x2 for: (a) Vidale Wolfe
model with adoption delay τc = 15.28 and (b) Vidale Wolfe model with adoption
delay τ = 40

4.3 Extended Lanchester model with delays un-

der affine advertising control policy

4.3.1 Extended Lanchester model with implementation de-

lay

Once again, considering the analysis presented in the previous chapter and subsection 2.4.1,

the extended Lanchester model with implementation delay can be expressed by:

ẋ1 = u1τ (1− x1)− u2τx1 − λ1x1
ẋ2 = u2τ (1− x2)− u1τx2 − λ2x2

(4.42)

where:

u1τ = k1x1τ + c1 = k1x1 (t− τ1) + c1

u2τ = k2x2τ + c2 = k2x2 (t− τ2) + c2

Substituting the above expressions into model (4.42) we obtain:

ẋ1 = −k1x1x1τ − k2x1x2τ + k1x1τ − c1x1 − c2x1 − λx1 + c1

ẋ2 = −k1x2x1τ − k2x2x2τ + k2x2τ − c1x2 − c2x2 − λx2 + c2
(4.43)

Considering that τ1 = τ2 = τ , the Jacobian matrix for model (4.43) is given by:

Jel =

Ael Bel

Cel Del

 (4.44)

where:

Ael = −k1x1τ − k2x2τ − c1 − c2 − λ+ e−ψτ (−k1x1 + k1)
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Bel = −e−ψτ (k2x1)

Cel = −e−ψτ (k1x2)

Del = −k1x1τ − k2x2τ − c1 − c2 − λ+ e−ψτ (−k2x2 + k2)

Given the conditions of equilibrium points, we get:

(x∗1(t), x
∗
2(t)) = (x∗1(t− τ), x∗2(t− τ)) (4.45)

Therefore, the stability of equilibrium points will be determined by the characteristic

equation expressed by:

Ψ2 + P1vwΨ + P2vw + P3vwe
−2ψτ + P4vwΨe

−ψτ + P5vwe
−ψτ (4.46)

where:

P1vw = 2k1x1 + 2k2x2 + 2c1 + 2c2 + 2λ

P2vw = k21x
2
1 + 2k1k2x1x2 + k22x

2
2 + 2c1k1x1 + 2c1k2x2 + 2c2k1x1 + 2c2k2x2 + 2k1λx1 +

2k2λx2 + c21 + 2c1c2 + 2c1λ+ c22 + 2c2λ+ λ2

P3vw = −k1k2x1 − k1k2x2 + k1k2

P4vw = k1x1 + k2x2 − k1 − k2
P5vw = k1x

2
1 + 2k1k2x1x2 + k2x

2
2 + c1k1x1 + c1k2x2 + c2k1x1 + c2k2x2 − k21x1 − k1k2x1 −

k1k2x2 + k1λx1 − k22x2 + k2λx2 − c1k1 − c1k2 − c2k1 − c2k2 − k1λ− k2λ

Considering the special case when: k1 = k2 = k and c1 = c2 = c we have:

x∗1 = −1
4

−2c− λ+ k +
√
c2 + 2c (c+ λ− k) + 8ck + (c+ λ− k)2

k
(4.47)

x∗2 = −1
4

−2c− λ+ k +
√
c2 + 2c (c+ λ− k) + 8ck + (c+ λ− k)2

k
(4.48)

In this case, the characteristic equation is given by:

Pel(ψ, τ) = Ψ2 + P1elΨ + P2el + P3ele
−2ψτ + P4elΨe

−ψτ + P5ele
−ψτ (4.49)

where:

P1el = 2c+ k + λ+
√

4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2+

P2el = 2cλ+ 12λ
2 + 12k

2 + 2c2 + 2ck+
(
c+ 1

2λ+ 1
2k
) (√

4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2
)

P3el = ck + 1
2kλ+ 1

2k
2 − 12k

√
4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

P4el = −c− 12λ−
3
2k + 1

2

√
4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

P5el = −12k
2 − ck − 32kλ−

1
2k
√

4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2
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4.3.1.1 Stability analysis of the characteristic equation for τ = 0

In this case, the characteristic equation is given by:

Pel(ψ, τ) = Ψ2 + P6elΨ + P7el (4.50)

where:

P6el = P1el + P4el

P7el = P2el + P3el + P5el

Thus, stability conditions are:

P6el > 0

P7el > 0
(4.51)

From the previous analysis, it can be concluded that:

Proposition 5. The equilibrium point (x∗1, x
∗
2) of model (4.43) is a stable equilibrium

point for delay value τ = 0 when the conditions expressed in (4.51) hold.

4.3.1.2 Stability analysis of the characteristic equation for τ > 0

In this case, the characteristic equation is given by equation (4.49). Now, considering

Ψ = iw and substituting in (4.49), we obtain:

Pel(iω, τ) = (iω)2 + Pel (iω) + P2el + P3ele
−2(iω)τ + P4el(iω)e−(iω)τ + P5ele

−(iω)τ (4.52)

Solving the equation and next separating the real and imaginary parts, we get:

P3el cos (2ωτ) + ωP4el sin (ωτ) = ω2 − P2el − P5el cos (ωτ) (4.53)

−P3el sin (2ωτ) + ωP4el cos (ωτ) = −P1elω + P5el sin (ωτ) (4.54)

Solving equations (4.53) and (4.54), we have:

0 =− P4elω3 + P 24el sin (ωτ)ω2 + P4elP2elω + P4elP3el cos (2ωτ)ω

− P1elP5elω + P 25el sin (ωτ) + P3elP5el sin (2ωτ)
(4.55)

Now, rearranging the characteristic equation becomes:

Pel(ψ, τ) = Ψ2 + P1elΨ + P2el + e−ψτ
(
P4elΨ + P3ele

−ψτ + P5el
)

(4.56)

Then, the second necessary condition for Hopf Bifurcation existence [85] is formulated as:

<
(
dλ

dτ

)
6= 0 (4.57)
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Now, calculating
(
dλ
dτ

)
from (4.56) we get:

(
dλ

dτ

)
=
Ael +Beli

Cel +Deli
(4.58)

where:

Ael = −w
(
4P3el cos2 (ωτ) + P4elω sin (ωτ) + P5el cos (ωτ)− 2P3el

)
Bel = −w (4P3el cos (ωτ) sin (ωτ)− cos (ωτ)P4elω + P5el sin (ωτ))

Cel = −4P3elτ cos (ωτ) sin (ωτ) + τP4elω cos (ωτ)− τP5el sin (ωτ) + P4el sin (ωτ)− 2w

Del = 4P3elτ cos2 (ωτ) + P4elτω sin (ωτ) + P5elτ cos (ωτ)− P4el cos (ωτ)− 2P3elτ − P1el
Therefore:

<
(
dλ

dτ

)
=
AelCel +BelDel

C2el +D2el
6= 0 (4.59)

From the previous analysis it can be concluded that:

Proposition 6. Model (4.43) has Hopf bifurcation for delay value τ > 0 when equation

(4.55) has a positive solution and condition (4.59) holds.

4.3.2 Numerical results for extended Lanchester model with

implementation delay

In this section, some numerical results for the extended Lanchester model with implemen-

tation delay are presented. The parameter values considered are similar to the Vidale-Wolfe

model, that is: x1(0) = 0.2, x2(0) = 0.1, λ = 0.2, k1 = 0.4, c1 = 0.35, k2 = 0.17, c2 = 0.4.

The equilibrium point for these parameters results: x∗1 = 0.44, x∗2 = 0.39.

Now, analyzing for τ = 0, the parameter values in equation (4.50) are substituted and

it is obtained:

Pel(ψ, τ) = Ψ2 + 2.0569Ψ + 1.042 (4.60)

Taking into account Proposition 5 it can be said that equilibrium point is stable.

Then, when τ > 0, the parameter values in equation (4.52) are replaced. Hence we

have:

Pel(ψ, τ) = Ψ2 + 2.38Ψ − 0.32Ψe−ψτ + 0.01e−2ψτ − 0.39e−ψτ + 1.42 (4.61)

Next, solving the equation for λ = iω we find that the characteristic equation has no

positive root. Therefore, considering Proposition 6 it is concluded that the model has no

Hopf bifurcation.

In figure 4.4 numerical simulations for the extended Lanchester model with implemen-

tation delay are shown. Figure 4.4(a) illustrates the dynamics of the model without delay

(τ = 0). Figure 4.4(b) shows the dynamics of the model for delay value τ = 10. Notice

that the equilibrium point maintains its stability.
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Figure 4.4: Evolution of market shares of firms x1 and x2 for:(a)extended Lanchester
model without delay (τ = 0) and (b) extended Lanchester model with implementa-
tion delay τ = 10

4.3.3 Extended Lanchester model with adoption delay

From subsection 2.4.2, the extended Lanchester model with adoption delay can be formu-

lated as follows:

ẋ1 = u1τ (1− x1τ )− u2τx1τ − λ1x1
ẋ2 = u2τ (1− x2τ )− u1τx2τ − λ2x2

(4.62)

where:

u1τ = k1x1τ + c1 = k1x1 (t− τ1) + c1

u2τ = k2x2τ + c2 = k2x2 (t− τ2) + c2

Substituting the above expressions, model (4.62) can be expressed by:

ẋ1 = −x21τk1 − x1τx2τk2 − x1τ c1 − x1τ c2 + x1τk1 − λx1 + c1

ẋ2 = −x1τx2τk1 − x22τk2 − x2τ c1 − x2τ c2 + x2τk2 − λx2 + c2
(4.63)

Once again, considering that τ1 = τ2 = τ , the Jacobian matrix for model (4.63) is given

by:

Jel =

Ael Bel

Cel Del

 (4.64)

where:

Ael = −λ+ e−ψτ (−2x1τk1 − x2τk2 − c1 − c2 + k1)

Bel = −e−ψτx1τk2
Cel = −e−ψτx2τk1
Del = −λ+ e−ψτ (2x1τk1 − 2x2τk2 − c1 − c2 + k2)
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At equilibrium it must hold that:

(x∗1(t), x
∗
2(t)) = (x∗1(t− τ), x∗2(t− τ)) (4.65)

Therefore, the stability of equilibrium points will be determined by the characteristic

equation expressed by:

Pel(ψ, τ) = Ψ2 + P1elΨ + P2el + P3vwe
−2ψτ + P4elΨe

−ψτ + P5ele
−ψτ (4.66)

where:

P1el = 2λ

P2el = λ2

P3el = 2k21x
2
1 + 4k1k2x1x2 + 2k2x22 + 3c1k1x1 + 3c1k2x2 + 3c2k1x1 + 3c2k2x2 − k21x1 −

2k1k2x1 − 2k1k2x2 − k22x2 + c21 + 2c1c2 − c1k1 − c1k2 + c22 − c2k1 − c2k2 + k1k2

P4el = 3k1x1 + 3k2x2 + 2c1 + 2c2 − k1 − k2
P5el = 3k1λx1 + 3k2λx2 + 2c1λ+ 2c2λ− k1λ− k2λ
Considering the special case when: k1 = k2 = k and c1 = c2 = c we obtain:

x∗1 = −1
4

−2c− λ+ k +
√
c2 + 2c (c+ λ− k) + 8ck + (c+ λ− k)2

k
(4.67)

x∗2 = −1
4

−2c− λ+ k +
√
c2 + 2c (c+ λ− k) + 8ck + (c+ λ− k)2

k
(4.68)

In this case, the characteristic equation is given by:

Pel(ψ, τ) = Ψ2 + P1elΨ + P2el + P3ele
−2ψτ + P4elΨe

−ψτ + P5ele
−ψτ (4.69)

P1el = 2λ

P2el = λ2

P3el = −
(
c− λ− 12k

) (√
4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

)
+2c2+cλ+λ2− 12kλ+ 12k

2+2ck

P4el = c− 32λ−
1
2k + 3

2

√
4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

P5el = cλ− 32λ
2 − 12kλ+ 3

2λ
√

4c2 + 4ck + 4cλ+ k2 − 2kλ+ λ2

4.3.3.1 Stability analysis of the characteristic equation for τ = 0

In this case, the characteristic equation is given by:

Pel(ψ, τ) = Ψ2 + P6elΨ + P7el (4.70)

where:

P6el = P1el + P4el

P7el = P2el + P3el + P5el
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Thus the stability is established when:

P6el > 0

P7el > 0
(4.71)

From the previous analysis, it can be inferred

Proposition 7. The equilibrium point (x∗1, x
∗
2) of model (4.63) is a stable equilibrium

point for delay value τ = 0 when the conditions expressed in (4.71) hold.

4.3.3.2 Stability analysis of the characteristic equation for τ > 0

In this case, the characteristic equation is given by equation (4.69). Now, considering

Ψ = iw and substituting in (4.69), we get:

Pel(iω, τ) = (iω)2 + P1el (iω) + P2el + P3ele
−2(iω)τ + P4el(iω)e−(iω)τ + P5ele

−(iω)τ (4.72)

Then, separating the real and imaginary parts, we have:

P3el cos (2ωτ) + ωP4el sin (ωτ) = ω2 − P2el − P5el cos (ωτ) (4.73)

−P3el sin (2ωτ) + ωP4el cos (ωτ) = −P1elω + P5el sin (ωτ) (4.74)

Solving equations (4.73) and (4.74), we obtain:

0 =− P4elω3 + P 24el sin (ωτ)ω2 + P4elP2elω + P4elP3el cos (2ωτ)ω

− P1elP5elω + P 25el sin (ωτ) + P3elP5el sin (2ωτ)
(4.75)

Now, rearranging the characteristic equation we get:

Pel(ψ, τ) = Ψ2 + P1elΨ + P2el + e−ψτ
(
P4elΨ + P3ele

−ψτ + P5el
)

(4.76)

Then, the second necessary condition for Hopf Bifurcation existence [85] is formulated as:

<
(
dλ

dτ

)
6= 0 (4.77)

Now, calculating
(
dλ
dτ

)
from (4.76) we obtain:

(
dλ

dτ

)
=
Ael +Beli

Cel +Deli
(4.78)

where:

Ael = −w
(
4P3el cos2 (ωτ) + P4elω sin (ωτ) + P5el cos (ωτ)− 2P3el

)
Bel = −w (4P3el cos (ωτ) sin (ωτ)− cos (ωτ)P4elω + P5el sin (ωτ))

Cel = −4P3elτ cos (ωτ) sin (ωτ) + τP4elω cos (ωτ)− τP5el sin (ωτ) + P4el sin (ωτ)− 2w

Del = 4P3elτ cos2 (ωτ) + P4elτω sin (ωτ) + P5elτ cos (ωτ)− P4el cos (ωτ)− 2P3elτ − P1el
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Therefore:

<
(
dλ

dτ

)
=
AelCel +BelDel

C2el +D2el
6= 0 (4.79)

From the previous analysis, it can be concluded that

Proposition 8. Model (4.63) has Hopf bifurcation for delay value τ > 0 when equation

(4.75) has a positive solution and condition (4.79) holds.

Remark : Since the existence and the value of ω depends on the delay value τ and the

control parameters (ki, ci) there is also the possibility of considering the control parame-

ters (ki, ci) as bifuraction parameters. In appendix D we present numerical results for a

particular case where c1 is considered to be the bifurcation parameter.

4.3.4 Numerical results for extended Lanchester model with

adoption delay

Similiar to the previous section, numerical results for the extended Lanchester model with

adoption delay are now presented. Once again, the parameter values considered are similar

to Vidale-Wolfe model: x1(0) = 0.2, x2(0) = 0.1, λ = 0.25, k1 = 0.25, c1 = 0.15, k2 = 0.2,

c2 = 0.1. For these parameters the equilibrium point is given by: x∗1 = 0.383, x∗2 = 0.226.

First, analyzing for τ = 0, the parameter values of simulation in equation (4.70) are

substituted and it is obtained that:

Pvw(ψ, τ) = Ψ2 + 0.97Ψ + 0.23 (4.80)

Then, taking into account Proposition 7 it is concluded that equilibrium point is stable.

Next, analyzing when τ > 0, substituting the parameter values in equation (4.72) we

have:

Pvw(ψ, τ) = Ψ2 + 0.5Ψ − 0.47Ψe−ψτ + 0.005e−2ψτ − 0.11e−ψτ + 0.06 (4.81)

Then, solving equation (4.81) for λ = iω we have that one solution is given by ω =

0.17 and τ = 14.98. Now, substituting these values in equation (4.79) we have that(
dλ
dτ

)
6= 0. Therefore, according to Proposition 8 it can be affirmed that the model has

Hopf bifurcation.

Figures 4.5 and 4.6 illustrate the numerical results for the extended Lanchester model

with adoption delay. Thus, in figure 4.5(a) the dynamics of the model without delay (τ = 0)

is shown. Next, figure 4.5(b) illustrates the dynamics of the model for τ = 10. Notice that

the dynamics of the model has oscillations however the equilibrium point prevails stable.

Figure 4.6(a) shows the dynamics of the model for τ = 15.5. This delay value is the

critical delay value (τc) which produces existence of Hopf bifurcation. Then, figure 4.6(b)

illustrates the dynamics of the model for τ = 40. Note that the model has oscillations and

the equilibrium point becomes unstable.
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Figure 4.5: Evolution of market shares of firms x1 and x2 for: (a) Extended Lanch-
ester model without delay τ = 0 and (b) Extended Lanchester model with adoption
delay τ = 10
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Figure 4.6: Evolution of market shares of firms x1 and x2 for: (a) Extended Lanch-
ester model with adoption delay τc = 14.98 and (b) Extended Lanchester model
with adoption delay τ = 40

4.4 Vidale-Wolfe model and extended Lanchester

model with unequal delays under affine ad-

vertising control policy

In the previous sections, the Vidale-Wolfe and extended Lanchester models were analyzed

considering the existence of two types of delays (implementation and adoption). In order

to find analytical solutions equal delay values for both firms (τ1 = τ2) were considered,

however, this assumption is often not true in real situations. Thus, in this section, some

numerical simulations are shown with unequal delay values for each firm (τ1 6= τ2).
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4.4.1 Vidale-Wolfe model with unequal delay values under

affine advertising control policy

Rewriting the equation (4.2) for the Vidale-Wolfe model with unequal implementation

delays and defining x1τ and x2τ as follows:

x1τ = x1(t− τ1)
x2τ = x2(t− τ2)
we have:

ẋ1 = −k1x1x1τ − k1x2x1τ − k1x1τ − c1x1 − c1x2 − λx1 + c1

ẋ2 = −k2x1x2τ − k2x2x2τ − k2x2τ − c2x1 − c2x2 − λx2 + c2
(4.82)

Likewise, rewriting the equation (4.23) for the Vidale-Wolfe model with unequal adoption

delays we obtain:

ẋ1 = −x21τk1 − x1τx2τk1 − x1τ c1 + x1τk1 − x2τ c1 − λx1 + c1

ẋ2 = −x1τx2τk2 − x22τk2 − x1τ c2 − x2τ c2 + x2τk2 − λx2 + c2
(4.83)

Assume the same parameters as in section 4.2 and unequal delay values (τ1 6= τ2). Figures

4.7 and 4.8 show the numerical results for the Vidale-Wolfe model with implementation

and adoption delay respectively but with different delay values for each firm. Figure 4.7(a)

illustrates the dynamics of the model with implementation delay considering τ1 > τ2. In

figure 4.7(b) the dynamics of the model when τ1 < τ2 is presented. Note that in both

cases the equilibrium point remains stable and for τ1 > τ2 the dynamics has a crossing

in time plots of market share trajectories. Figure 4.8(a) shows the dynamics of the model

with adoption delay when τ1 > τ2. Finally, in figure 4.8(b) the dynamic of the model for

τ1 < τ2 is ilustrated. Note that both models exhibit oscillations, but in both cases, the

equilibrium points remain stable.

48



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Time plots of Market shares of firm 1 and firm 2 for Vidale−Wolfe model
with unequal implementation delay

Time

M
a
rk

e
t 

S
h

a
re

s
 o

f 
fi
rm

 1
 a

n
d
 f

ir
m

 2

 

 
Firm 1

Firm 2

(a)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Time plots of Market shares of firm 1 and firm 2 for Vidale−Wolfe model
with unequal implementation delay

Time

M
a
rk

e
t 

S
h

a
re

s
 o

f 
fi
rm

 1
 a

n
d
 f

ir
m

 2

 

 
Firm 1

Firm 2

(b)

Figure 4.7: Evolution of market shares of firms x1 and x2 for: (a) Vidale-Wolfe
model with implementation delay τ1 = 15, τ2 = 10 (b) Vidale-Wolfe model with
implementation delay τ1 = 10 and τ2 = 15
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Figure 4.8: Evolution of market shares of firms x1 and x2 for: (a) Vidale-Wolfe model
with adoption delay for τ1 = 18 and τ2 = 10 (b) Vidale-Wolfe model with adoption
delay for τ1 = 10 and τ2 = 18

4.4.2 Extended Lanchester model unequal delay values un-

der affine advertising control policy

Similar to the previous subsection, equation (4.43) which represents the extended Lanch-

ester model with implementation delay is initially rewritten:

ẋ1 = −k1x1x1τ − k2x1x2τ + k1x1τ − c1x1 − c2x1 − λx1 + c1

ẋ2 = −k1x2x1τ − k2x2x2τ + k2x2τ − c1x2 − c2x2 − λx2 + c2
(4.84)
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Likewise, equation (4.63) for extended Lanchester model with adoption delay is rewritten:

ẋ1 = −x21τk1 − x1τx2τk2 − x1τ c1 − x1τ c2 + x1τk1 − λx1 + c1

ẋ2 = −x1τx2τk1 − x22τk2 − x2τ c1 − x2τ c2 + x2τk2 − λx2 + c2
(4.85)

Then, suppose for numerical analysis the same parameters from section 4.3 and unequal

delay values (τ1 6= τ2) are considered.

Therefore, figures 4.9 and 4.10 illustrate the numerical results for the extended Lanch-

ester model with implementation and adoption delay respectively for different delay values

for each firm. Figure 4.9(a) shows the dynamics of the model with implementation delay

for τ1 > τ2. Then, in figure 4.9(b) we present the dynamics of the model considering

τ1 < τ2. Notice that in both cases the equilibrium point remains stable and for τ1 > τ2

the dynamics present two crosses between the trajectories.

Figure 4.10(a) presents the dynamics of the model with adoption delay for τ1 > τ2.

Finally, figure 4.10(b) shows the dynamics of the model when τ1 < τ2. Note that both

models present oscillations but in both cases, the equilibrium points remain stable.
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Figure 4.9: Evolution of market shares of firms x1 and x2 for: (a) Extended Lanch-
ester model with implementation delay for τ1 = 15 and τ2 = 10 (b) Extended
Lanchester model with implementation delay for τ1 = 10 and τ2 = 15
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Figure 4.10: Evolution of market shares of firms x1 and x2 for: (a) Extended Lanch-
ester model with adoption delay for τ1 = 18 and τ2 = 10 (b) Extended Lanchester
model with adoption delay for τ1 = 10 and τ2 = 18

Finally, figure 4.11 shows summarizes the results of numerical simulations performed

for different values of τ1 and τ2 and leads to the formulation of conjectures about conditions

for the existence of Hopf bifurcation in Vidale-Wolfe and extended Lanchester models with

unequal adoption delays.

0 5 10 15 20 25 28 35 40
0

5

10

15

20

25

28

35

40

↓
τ

1
+τ

2
=2τ

c

2τ
c

2τ
c

Delay values for existence/non−existence of Hopf bifurcation for Vidale−Wolfe model
with unequal adoption delays

τ
1

τ 2

(a)

0 5 10 15 20 25 28 35 40
0

5

10

15

20

25

28

35

40

↓
τ

1
+τ

2
=2τ

c

(τ
c
,τ

c
)

2τ
c

2τ
c

Delay values for existence/non−existence of Hopf bifurcation for extended Lanchester model
with unequal adoption delays

τ
1

τ 2

(b)

Figure 4.11: Existence of Hopf bifurcation for unequal adoption delay values for x1
(τ1) and x2 (τ2) for: (a) Vidale-Wolfe model and (a) Extended Lanchester model.
The symbol × denotes non-existence while the symbol + denotes existence of Hopf
bifurcation.
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4.5 Chapter conclusions

• In the presence of implementation delays the Vidale-Wolfe and extended Lanchester

models present stable dynamics regardless of the delay values.

• For the case of identical adoption delays for both firms, the behavior of the Vidale-Wolfe

and extended Lanchester models was analysed mathematically and can be summarized

as follows:

– For τ < τc, in both models, market shares may have an oscillatory transient, but

eventually settle at a equilibrium.

– For both models, there exists a critical value of delay τc for Hopf bifurcation.

– As τ becomes progressively larger than τc, bounded and eventually unbounded

oscilaltions of market share occur and the equiibrium point becomes unstable.

• The case of unequal delay values for each firm is very complex and was therefore studied

through numerical simulations, leading to the formulation of the following conjectures:

– For implementation delay: The Vidale-Wolfe and extended Lanchester models show

stable dynamics regardless of delay values τ1 and τ2.

– For adoption delay: The Vidale-Wolfe model can present Hopf bifurcation when the

condition τ1 + τ2 > 2τc is satisfied. For extended Lanchester model, the existence

of Hopf bifurcations seems to be possible only when the condition τ1 = τ2 = τc is

satisfied.
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Chapter 5

The Replicator-Mutator model
under affine advertising control
policy

In this chapter, a new model of duopolies under the approach of the evolutionary dy-

namics is formulated. Thus, we first present in section 5.2 the main characteristics of an

evolutionary model. Subsequently, in section 5.3 we present the proposal of the use of the

Replicator-Mutator model in the study of the dynamics of interaction between clients and

firms in the particular case of a duopolistic market. Next, in section 5.4 an equilibria and

stability analysis of the model proposed in the previous section is developed. Afterward, in

section 5.5 parametric sensitivity is analyzed. Then, in section 5.6 we formulate considera-

tions regarding the use of the Replicator-Mutator model under an affine advertising control

policy control. Finally, in section 5.7 numerical results of Replicator-Mutator model are

shown.

5.1 Motivation for the introduction of the

Replicator-Mutator model

We observe that in both the Vidale-Wolfe model (3.2) and the extended Lanchester model

(3.6), in the absence of advertising (i.e. setting u1 = u2 = 0), from equations (3.3) and

(3.7), the market shares of both firms decay to the zero equilibrium. In other words, both

models only display nontrivial dynamics in the presence of advertising effort. It is known

however that interaction between sets of clients of different firms can lead to an intrinsic

dynamics of market share – these dynamics are often referred to by the terms word of

mouth or diffusion effects [86]. As pointed out in section 2.3 there have been some efforts

to model such intrinsic dynamics using population biology (predator-prey) models [40].

Another class of models that describes dynamics of interacting sets of individuals, is that

of the replicator and replicator-mutator models from the field of evolutionary game theory
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EGT). Such models are now being widely applied outside EGT and the main motivation

of this chapter is to propose such models for the advertising and duopoly context.

With this motivation in mind in the next section, we investigate an alternative ap-

proach to the problem of modeling finer structure in the manner that advertising might

affect client choices and migrations between sets of clients. This alternative approach is

based on Evolutionary Game Theory (EGT) and, by making appropriate identifications,

we will be able to adapt the Replicator-Mutator model of EGT to our objective of modeling

market share dynamics under advertising which affect client preferences.

5.2 Evolutionary Game Theory models

An evolutionary model is characterized by the presence of selection, replication and mu-

tation processes. The selection process is a mechanism of discrimination that favors some

specific entities rather than others. In the context of Game Theory, the selection mecha-

nism is determined by the concept of return or payoff. It is assumed that players select

strategies with higher payoff values. The replication process ensures that desirable prop-

erties of the system entities are preserved from one generation to the next. Finally, the

mutation process allows the generation of new diversities, thus preventing stagnation. In

the socioeconomic context, the process of mutation is viewed as a procedure of experi-

mentation or innovation which allows the emergence of new identities or new patterns of

behavior.

Evolutionary Game Theory can be understood as the study of the evolution of strate-

gies in a population context. In socioeconomic models, it is assumed that players have the

ability to adapt their behavior, thus changing their strategy in response to payoff, which

in turn, is determined by the behavior of the population as a whole [16].

Evolutionary dynamics provides a mathematical framework appropriate for modeling

the principles of natural selection (replication, mutation, competition, and adaptability-

dependent strategies) [55], which in turn, allows it to describe how agents can make deci-

sions in complex environments in which interaction with other agents is present [46]. The

representation of evolutionary dynamics can be based on the Replicator-Mutator equa-

tion, which offers a general description of deterministic evolutionary dynamics including

frequency-dependent selection processes and mutation processes [87].

To apply this class of models to the dynamics of advertising in duopolies, it is pro-

posed to identify the concept of strategy with the action of choosing a particular firm.

So, the fraction of the population choosing a strategy becomes the fraction of clients who

choose a particular firm (i.e. the firm’s market share). The mutation process represents a

spontaneous change of a client from one firm to another or to neither of the two competing

firms (in this case, the client becomes a member of the set of undecided clients). Finally,

client preferences regarding firms can be represented in terms of payoff coefficients.

Based on these correspondences, an evolutionary model of the dynamics of interaction

between clients and firms is formalized, taking into account the following aspects:

54



• Client decision-making is determined according to its preference coefficients for each

firm involved in the market.

• Clients can change their preferences for firms.

• Through advertising, participating firms can foster increased client preference with re-

gard to themselves.

In order to advance, the following notation and terminology is needed:

n is the number of firms that make up the market.

xi is the state variable representing the market share of firm i, (xi ∈ [0, 1]).

x is the vector which represents the market shares of the participating firms.

aij is the element of the preference matrix representing the clients’ preference for firm i

in relation to firm j.

A = (aij) is the preference matrix of the clients with respect to the firms.

qji is the element of the mutation matrix which represents the probability of change of

choice of the clients of firm j to firm i. Since the diagonal element qii represents the

probability of sticking to firm i, it can be thought of as a fidelity parameter.

Q = (qij) is the mutation matrix of the clients in relation to the firms.

fj =
n∑
i=1

ajixi is the fitness in relation to the choice of firm j.

f is the vector which represents the fitness of the participating firms in the market.

µ = qii ∈ [0, 1] is the fidelity parameter will be used to parametrize the matrix Q.

φ =
n∑
i=1

fixi is the average fitness of the population.

F = diag (f) = diag (Ax)

Using this notation, a proposal to model the interaction dynamics between clients and

firms is made using the Replicator-Mutator equations (see figure 5.1)

ẋi =
n∑
j=1

xjfjqji(µ)− xiφ (5.1)

We can express the model in matrix form:

ẋ = QTFx− φx (5.2)
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Figure 5.1: Duopoly markets and consumer behavior: (a) the interaction between
economic agents, (b) Replicator-Mutator model, showing the terms that determine
transitions between sets of clients

5.3 Replicator-Mutator Model

Considering that the total population remains constant, the evolution of the dynamics

of the Replicator-Mutator equations represented in equation (5.1) occurs in a simplex

of order n − 1 [87]. For the particular case of a market composed of 2 firms, strategy 1

corresponds to the choice of firm 1, strategy 2 with the choice of firm 2, and strategy 3

to a state of indecision in which neither firm has been chosen. Thus, considering equation

(5.1) for the case of n = 3 we obtain the following system of equations, written in full:

ẋ1 = x1f1q11 + x2f2q21 + x3f3q31 − x1φ (5.3)

ẋ2 = x1f1q12 + x2f2q22 + x3f3q32 − x2φ (5.4)

ẋ3 = x1f1q13 + x2f2q23 + x3f3q33 − x3φ (5.5)

For the terms fi and φ, we have:

f1 = a11x1 + a12x2 + a13x3 (5.6)

f2 = a21x1 + a22x2 + a33x3 (5.7)

f3 = a31x1 + a32x2 + a33x3 (5.8)

φ = f1x1 + f2x2 + f3x3 (5.9)

In relation to the elements of matrix Q the literature establishes several forms of definition

[58], [60], [88], however, for the model proposed in this work with the purpose of simplifying

the structure of equations, we consider the work of Komarova et al. [89], which proposes

a mutation matrix Q that is independent of the preference matrix A.

In order to define the form of the mutation matrix, we assume that, for all i, a client of

firm i has the fidelity parameter µ. This means that the qii = µ for all i, and the matrix Q

has a constant diagonal. In addition, for each i, we introduce a parameter pi that weights
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the “left over” probability (1 − µ) (i.e., the probability of changing firms) between the

firms j, k 6= i, so that the remaining elements of row i (probabilities of the transitions

i → j and i → k are pi(1 − µ) and (1 − pi)(1 − µ) maintaining the ith row sum equal to

one. Thus the mutation matrix has the form:

Q =


µ p1 (1− µ) (1− p1) (1− µ)

p2 (1− µ) µ (1− p2) (1− µ)

p3 (1− µ) (1− p3) (1− µ) µ

 (5.10)

where, pi is a factor ∈ (0, 1] that determines the values of the off-diagonal entries of row i

of matrix Q.

5.3.1 Example showing nontrivial dynamics in the absence

of exogenous advertising effort

In this section, to illustrate the flexibility and importance of an appropriate choice of

parameters of the Replicator-Mutator model, we present a market scenario in which a

limit cycle is present. Consider a market in which the clients have the same preference for

the firms and for remaining undecided and also assuming that clients have high loyalty

regarding the chosen firm, the matrices of preference and mutation should be defined as

follows:

A =


1 0.2 0.2

0.2 1 0.2

0.2 0.2 1

 , Q =


0.78 0.2 0.02

0.02 0.78 0.2

0.2 0.02 0.78

 (5.11)

Figure 5.2 shows the numerical results for market scenario expressed in (5.11). Figures

5.2(a) and 5.2(b) present the evolution of the market share of the firms for initial con-

ditions x1(0) = 0.2 and x2(0) = 0.1 and the phase plane respectively. Note that for this

configuration of the matrices A and Q, the dynamics of the market scenario presents a

limit cycle.
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Figure 5.2: (a) Evolution of the market shares of firms x1 and x2 (b) Phase plane of
the Replicator-Mutator model. Note the existence of a limit cycle in this particular
market scenario defined by (5.11).

Now, suppose that an increase (e.g constant effort with value of 0.4) occurs only in

the clients’ preference of the firm 1 with regard to firm 2 (a12) and that the remaining

elements of the matrices A and Q remain unchanged, that is:

A =


1 0.6 0.2

0.2 1 0.2

0.2 0.2 1

 , Q =


0.78 0.2 0.02

0.02 0.78 0.2

0.2 0.02 0.78

 (5.12)

Figure 5.3 presents the numerical results for market scenario described in (5.12). Similarly

to previous case, figures 5.3(a) and 5.3(b) show the evolution of the market share of the

firms for initial conditions x1(0) = 0.2 and x2(0) = 0.1 and the phase plane, respectively.

Note that the increase in the element a12 results in the disappearance of the limit cycle.
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Figure 5.3: (a) Evolution of the market shares of firms x1 and x2 (b) Phase plane of
the Replicator-Mutator model. Note that, in this case, the limit cycle vanishes.
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Remark : Using the Bendixson criterion [90] it is easy to see that the VW model and

the extended Lanchester model under constant effort (ci) in advertising do not have limit

cycles.

5.3.2 Comments

1. Comparing the growth terms C(xi, u) of the RM model (5.1) and the VW model

(3.2), it is clear that they would be the same if, in the VW model, u1 = u2 =: uvw,

is defined as an appropriate function of aij , qij , µ and, furthermore, the D(x) = λixi

term in the VW model has λi set to φ.

2. In the particular context of electronic markets and on-line advertising, the work

developed by Wang [61], presents an evolutionary model for an online advertising

ecosystem, also covering some aspects of advertising strategies. Details of this model

are given in Appendix B.

3. The Replicator-Mutator model proposed for the duopoly modeling in this thesis is

inspired by the work of Wang [61]. However, there are significant differences with

regard to the proposal in this chapter:

- Wang’s work [61] considers the dynamics of users and firms using internet

advertising, contemplating several specific forms of interaction in this context.

- We propose to use the Replicator-Mutator equations without modification,

in order to model the aggregated dynamics of client decision-making. On the

other hand, the Wang model [61] parameterizes the behavior of the individual

client, which results in a very large number of parameters (see Appendix B).

- Wang’s work [61] considers only aspects of modeling and simulation of the

dynamics proposed therein, while this thesis carries out a more comprehensive

study that contemplates an equilibria and stability analysis as well as the

formulation of advertising policies for the model.

5.4 Equilibria and stability analysis of Replicator

Mutator model

The analytical study of the Replicator-Mutator model for a large number of strategies

is complex because of the nonlinear nature of the equations, the number of parameters

involved and the possibility of dependence among its elements.

For this reason, several studies on the fixed points of the Replicator-Mutator equa-

tions established hypotheses which made analysis possible. For example, in the study by

Komarova et al. [89], a symmetric matrix A, a symmetric and independent matrix Q, and

equal population fractions for the fixed points are considered. In Olfati-Saber’s work [58]

the particular case of mutation parameter µ tending to zero is considered. In the study
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of Hussein [59] the existence of dominant strategies is used. In the work of Izquierdo and

Izquierdo [91] the condition of dominant strategies is established and the use of a muta-

tion factor µ tending to zero as well. Finally, in the study by Pais and Leonard [92], the

condition of a circulating preference matrix A was stipulated. In this thesis, we propose

to use a slight generalization of Komarova’s method.

Rewriting the equations of the evolutionary model proposed in section 5.3 for the

particular case of a duopoly, we have:

ẋi =
3∑
j=1

xjfjqji(µ)− xiφ (5.13)

where:

fj =
3∑
j=1

aijxj (5.14)

φ =
3∑
i=1

fixi (5.15)

Example 1:

For simplicity, we start with a symmetric preference matrix A and a mutation matrix

Q independent of the matrix A. Thus, considering a particular case where the matrices A

and Q represent a type of market where the consumers have a greater preference for the

acquisition of a product regardless of the firm chosen, in other words, the consumers can

change brands but will not stop acquiring the product. It is assumed that the undecided

users have similar preferences for both firms. Finally, in regard to the matrix Q it is

assumed that the clients have high fidelity for the firms they have chosen and undecided

clients have equal probabilities of choosing either firm.

Given these assumptions the matrices A and Q are defined as follows:

A =


1 a a

3

a 1 a
3

a
3

a
3 1



Q =


µ 0.8 (1− µ) 0.2 (1− µ)

0.8 (1− µ) µ 0.2 (1− µ)

0.5 (1− µ) 0.5 (1− µ) µ


In order to analyse the fixed points of (5.13), we first observe from (5.3) to (5.9)

that, for all i, ẋi is given by a polynomial of degree three in xi. Thus, in order to find a

fixed point of (5.13), equivalently of (5.3)- (5.5), we need to find values of xi, i = 1, 2, 3

that are simultaneously zeros of three polynomial of degree three (right hand sides of

(5.3)- (5.5)). Since the xi are nonnegative variables in the interval [0, 1] and sum to one,

we can introduce a parametrization similar to that used for the elements of the mutation
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matrix, as follows:

x1 = α (5.16)

x2 = β (1− α) (5.17)

x3 = (1− β) (1− α) (5.18)

where α, β ∈ [0, 1] parametrize the fixed points being sought.

Suppose that the market shares of firm 2 and undecided clients are equal, i.e, β = 0.5.

For Example 1, substituting equations (5.16) , (5.17), and (5.18) into the right hand

side of equation (5.13) and setting it to zero, the cubic equation for determining the fixed

points is:

0 = α3 (1.16a− 1.5) + α2 (1.325 + 0.675µ− 1.37a− 0.296µa)

+ α (0.1a− 1.150 + 0.650µ) + 0.1083a− 0.325µ− 0.1083aµ
(5.19)

This equation can have up to three real roots, which are denoted αi, i = 1, 2, 3, so that the

first coordinate of the fixed point x1 can be equal to αi, i = 1, 2, 3 and the corresponding

values of x2, x3 are found from (5.17) and (5.18).

Local stability of the equilibrium points is determined through linearization [90]. From

(5.13):

ẋ1 = g1 (x1, x2)

ẋ2 = g2 (x1, x2)
(5.20)

The Jacobian matrix for model (5.20) with respect to x1 and x2 is given by:

JRM =

A B

C D

 (5.21)

where the symbolic expressions for A,B,C,D in (5.21) and for the equilibria are given in

Appendix E.

In terms of A,B,C,D the eigenvalues for the Jacobian are:

Γ =
1
2

[
(A+D)±

√
4BC + (A−D)2

]
(5.22)

Now, considering equations (5.19) and (5.22) for some values of element of preference

matrix a in order to analyze the existence and stability of the equilibrium points of the

Replicator-Mutator model we obtain.

• For a = 0.3

In this case, equation (5.19) is given by:

0 = −1.15α3 + α2 (0.91 + 0.59µ) + α (−1.12 + 0.77µ) + 0.36− 0.36µ (5.23)
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• For a = 0.6

For this value of element a, equation (5.19) is given by:

0 = −0.79α3 + α2 (0.5 + 0.5µ) + α (−1.09 + 0.88µ) + 0.39− 0.39µ (5.24)

Figures 5.4 and 5.5 show the location and stability of the equilibrium point x1 for equations

(5.23) and (5.24). Figures 5.4(a) and 5.5(a) illustrate the loci of solutions α1, α2 and α3 as

µ varies. From the figures, it can be observed that solution α1 increases monotonically with

µ. On the other hand, it is observed that additional real solutions α2 and α3 appear after

the parameter µ crosses a certain threshold value. This threshold value is proportional

to the value of element a, that is, a greater value of element a requires a higher value of

parameter µ to ensure the existence of the solutions. Additionally, it is possible to say that

solution α2 has monotonic increasing behavior and α3 has monotonic decreasing behavior

as parameter µ increases. In regard to the stability of solutions, figures 5.5(a) and 5.5(b)

show that solution α1 is stable for all range of variations of the parameter µ given that

the eigenvalues have negative real parts. For the case of solutions, α2 and α3 the figures

illustrate that both solutions are unstable because the eigenvalues have positive real part.
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Figure 5.4: (a) locus of equilibrium points (b) eigenvalue plot showing local stability
under variation of parameter µ for a = 0.3. Note that in this case an increase in the
fidelity parameter results in the existence of three solutions for x1.

5.5 Parametric sensitivity of equilibrium points

of Replicator Mutator Model

In order to analyze the parametric sensitivity of the fixed points of the Replicator-Mutator

model expressed by equation (5.13), the fixed points of the model are calculated under

variations in the elements of matrices A and Q.

62



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variation of parameter µ

Equilibrium points under variation of parameter µ for a=0.6

E
q
u

ili
b
ri
u
m

 p
o
in

t

(a)

0 0.2 0.4 0.6 0.8 1
�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

Variation of parameter µ

Stability of equilibrium points under variation of parameter µ for a=0.6

R
e
a

l 
p
a

rt
 o

f 
e
ig

e
n
v
a
lu

e
s

(b)

Figure 5.5: (a) locus of equilibrium points (b) eigenvalue plot showing local stability
under variation of parameter µ for a = 0.6. Observe that in this case again an
increase in the fidelity parameter results in the existence of three solutions for x1. In
this case (a = 0.6) the threshold value for the existence of three solutions is higher
than the previous case (a = 0.3)

To simplify the analysis, it is assumed that the elements of the initial preference matrix

of clients A and the elements of the initial mutation matrix of clients Q have a structure

similar to matrices A and Q from the last section. Hence for a = 0.6 and µ = 0.8, we

obtain:

A =


1 0.6 0.2

0.6 1 0.2

0.2 0.2 1

 (5.25)

Q =


0.8 0.16 0.04

0.16 0.8 0.04

0.1 0.1 0.8

 (5.26)

5.5.1 Parametric sensitivity of the equilibrium points of

Replicator-Mutator Model under variations in the el-

ements of client preference matrix A

In this section, the parametric sensitivity of the equilibrium points of the Replicator-

Mutator model is analyzed under variations in the elements of the preference matrix of

clients A assuming a given mutation matrix Q and an initial preference matrix of clients

A defined by equations (5.25) and (5.26). The variations in the elements of the clients’
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preference matrix A are determined by the following equation:

A =


1 a12 a13

a21 1 a23

a31 a32 1

 (5.27)

aij = rij + ∆aij (5.28)

where:

aij is the final value of element aij
rij is the initial value of element aij
∆aij is the variation of element aij

5.5.1.1 Variation of element a12

In this case, the variation in element a12 conforming equation (5.28) is considered. Then,

the expression for equation (5.19) which determines the fixed points is given by:

0 = −0.8α3 + 0.9α2 − 0.378α+ 0.5a12α3 − 0.9a12α2 + 0.4a12α+ 0.078 (5.29)

Figure 5.6 shows that the equilibrium point x1 has monotonic increasing behavior as ele-

ment a12 increases. Also, the equilibrium point is stable for the whole interval of variation

of the element a12 since that Figure 5.6(b) shows the eigenvalues have negative real part

over this range of variation.
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Figure 5.6: Parametric sensitivity under variation of element a12: (a) locus of equi-
librium point x1 (b) eigenvalue plot showing local stability of equilibrium point x1.
Note that an increase of element a12 means an increase in the preference to firm 1
over firm 2 and this leads to an increase in the market share of firm 1.
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5.5.1.2 Variation of element a21

Proceeding with the sensibility analysis, we now consider variation of element a21. Thus,

equation (5.19) is determined as:

0 = −0.8α3 + 0.9α2 − 0.38α+ 0.5a21α3 − 0.58a21α2 + 0.08a21α+ 0.08 (5.30)

The solution for equation (5.30) is shown in figure 5.7. The figure illustrates that equilib-

rium market share x1 has monotonic decreasing behavior under increase of element a21.

Figure 5.7(b) shows that equilibrium point x1 is stable up to the value of ∆a21 = 0.56.
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Figure 5.7: Parametric sensitivity under variation of element a21: (a) locus of equi-
librium point x1 (b) eigenvalue plot showing local stability of equilibrium point x1.
Observe that an increase of element a21 means a decrease in the preference to firm
1 over firm 2 and this leads to a decrease in the market share of firm 1.

5.5.1.3 Variation of element a31

In this instance, we consider variation in element a31. So, equation (5.19) is expressed by:

0 = −0.8α3 + 0.9α2 − 0.378α+ 0.5a31α3 − 0.55a31α2 + 0.05a31α+ 0.078 (5.31)

Figure 5.8 shows the change in the equilibrium point. It is observed the equilibrium market

share x1 has monotonic decreasing behavior under increase of element a31. Figure 5.8 also

shows the equilibrium point x1 is stable in the interval of variation [0, 0.3307] of element

a31.
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Figure 5.8: Parametric sensitivity under variation of element a31: (a) locus of equi-

librium point x1 (b) eigenvalue plot showing local stability of equilibrium point x1.

Note that an increase of element a31 means a decrease in the preference to firm 1

over being undecided and this leads to a decrease in the market share of firm 1.

5.5.1.4 Variation of element a32

Continuing with the sensibility analysis, the variation of element a32 is now examined,

equation (5.19) becomes:

0 = −0.8α3 + 0.9α2 − 0.378α− 0.25a32α3 + 0.525a32α2 − 0.3a32α+ 0.078 (5.32)

Figure 5.9 shows that equilibrium point x1 has monotonic decreasing behavior under

increase of element a32. In addition, it is observed in figure 5.9 that equilibrium point x1
is stable up to the value of ∆a32 = 0.6212.
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Figure 5.9: Parametric sensitivity under variation of element a32: (a) locus of equi-

librium point x1 (b) eigenvalue plot showing local stability of equilibrium point x1.

Note that an increase of element a32 means an increase in the preference to being

undecided over firm 2 and this leads indirectly to a decrease in the market share of

firm 1.

5.5.1.5 Variation of element a13

Variation in element a13 is now contemplated. Thus, equation (5.19) is given as:

0 = −0.8α3 + 0.9α2 − 0.378α− 0.5a13α3 − 0.9a13α2 − 0.4a13α+ 0.078 (5.33)

The solution for equation (5.33) is shown in figure 5.10. The figure illustrates that equi-

librium point x1 has monotonic increasing behavior under variations of element a13. Con-

cerning the stability of the equilibrium point, it is possible to note in figure 5.10 that

equilibrium point x1 is stable for the whole interval of variation of element a13.
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Figure 5.10: Parametric sensitivity under variation of element a13: (a) locus of equi-
librium point x1 (b) eigenvalue plot showing local stability of equilibrium point x1.
Note that an increase of element a13 means an increase in the preference to firm 1
over being undecided and this leads to an increase in the market share of firm 1.

5.5.1.6 Variation of element a23

To finalize the sensitivity analysis under variations in the elements of preference matrix

A, the change in element a23 is studied. So, equation (5.19) is expressed by:

0 = −0.8α3 + 0.9α2 − 0.378α− 0.25a23α3 + 0.54a23α2 − 0.33a23α+ +0.04a23 + 0.078

(5.34)

Figure 5.11 shows the variation in the equilibrium point. Note that equilibrium point x1
has monotonic decreasing behavior under increase of the element a23. Furthermore, figure

5.11 shows that equilibrium point x1 is stable for the whole interval of variation of element

a23.
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Figure 5.11: Parametric sensitivity under variation of element a23: (a) locus of equi-
librium point x1 (b) eigenvalue plot showing local stability of equilibrium point x1.
Note that an increase of element a23 means an increase in the preference to firm 2
over being undecided and this leads indirectly to a decrease in the market share of
firm 1 since the flow of undecided clients to firm 1 is adversely affected.

Table 5.1 shows a summary of parametric sensitivity of equilibrium points of

Replicator-Mutator model under increases, one element at a time, in the elements

of the clients’ preference matrix A.

Behavior (x1)
Element aij ↑ a12 a13 a21 a23 a31 a32

monotonic increasing ↑ X X
monotonic decreasing ↓ X X X X

Table 5.1: Parametric sensitivity of equilibrium points of Replicator-Mutator model
under increase in the elements of preference matrix A. Note that, as expected intu-
itively, only the increases in preferences for firm 1 result in increases of its market
share x1 (i.e., increases in a12, a13 result in increased x1); while increases in all other
elements (a21, a23, a31, a32) result in decreases in x1.

5.5.2 Parametric sensitivity of the equilibrium points of the

Replicator-Mutator model under variations in the el-

ements of client mutation matrix Q

Similarly to the study of the previous subsection, the parametric sensitivity of the fixed

points of the Replicator-Mutator model expressed in equation (5.13) under changes in

the elements of the mutation matrix of clients Q is now analyzed. For this purpose, the

hypothesis of an established preference matrix A and an initial mutation matrix Q defined

by equations (5.25) and (5.26) is considered. Remembering that matrix Q depends on
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the mutation parameter µ and the relationship between elements qij , the variation in the

elements of the matrix Q can be formulated through the change in parameter µ on the

main diagonal or by the variation parameters (pi) which relate to the off-diagonal elements

of the matrix. In the first case, the variation is produced in all the elements of matrix Q

while in the second instance the change is reflected in each row of the elements of matrix

Q.

Recall that the mutation matrix Q is given by the following expression:

Q =


µ p1 (1− µ) (1− p1) (1− µ)

p2 (1− µ) µ (1− p2) (1− µ)

p3 (1− µ) (1− p3) (1− µ) µ

 (5.35)

µ ∈ [0, 1] (5.36)

pi ∈ [0, 1] (5.37)

where:

µ is the fidelity parameter of the clients.

pi is the parameter that establishes the relative importance of the off-diagonal entries qij .

5.5.2.1 Variation of parameter µ

In this case, the variation of mutation parameter µ is considered. Thus, equation (5.19)

is given as:

0 = −0.8X3 + 0.5X2 − 1.09X + 0.5µX2 + 0.89µX − 0.39µ+ 0.39 (5.38)

Figure 5.12 shows that equation (5.38) has three solutions. The threshold value of param-

eter µ for the simultaneous existence the three solutions is (µ = 0.958). One solution (blue)

of the equilibrium points has monotonic increasing behavior under increase of mutation

parameter µ. In addition it is observed that this solution is stable for all range of varia-

tion of parameter µ. The second solution (green) of the equilibrium point has monotonic

increasing behavior and a condition of instability throughout the interval of existence. Fi-

nally, the third solution (red) of the equilibrium point has monotonic decreasing behavior

and similar to the second solution it has a condition of instability for the whole of existence

interval.
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Figure 5.12: Parametric sensitivity under variation of the mutation parameter µ: (a)
locus of equilibrium point x1 (b) eigenvalue plot showing local stability of equilibrium
point x1. Note that in this case an increase in the fidelity parameter results in the
existence of three solutions for market share x1. In special case of solution α1 (blue
curve) an increase in the fidelity parameter results in the increase of market share
x1 due to form of matrix Q (5.35) and the structure of equation (5.3).

5.5.2.2 Variation of parameter p1

The variation in parameter p1 is now analyzed. Equation (5.19) becomes:

0 = −0.8X3 + 0.9X2 − 0.378X + 0.078 (5.39)

Figure 5.13 shows that equilibrium point x1 is constant under changes of parameter p1.

In addition it is observed that the equilibrium point is stable for all range of variation of

parameter p1 given that the eigenvalues have negative real part.

5.5.2.3 Variation of parameter p2

The variation of parameter p2 is studied. So, equation (5.19) can be expressed as:

0 = −0.8X3 + 0.9X2 − 0.33X − 0.06p2X + 0.06p2 + 0.03 (5.40)

The solution for equation (5.40) is illustrated in figure 5.14. The figure shows that equi-

librium point x1 has monotonic increasing behavior under increase in parameter p2. It

is observed from Figure 5.14(b) that equilibrium point x1 is stable in the intervals of

variation [0, 0.08] and [0.1563, 1] of parameter p2.
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Figure 5.13: Parametric sensitivity under variation of parameter p1: (a) locus of
equilibrium point x1 (b) eigenvalue plot showing local stability of equilibrium point
x1. Observe that the variaton in the parameter p1 does not affect the market share
of the firm 1 due to the structure of equation (5.3).
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Figure 5.14: Parametric sensitivity under variation of parameter p2: (a) locus of
equilibrium point x1 (b) eigenvalue plot showing local stability of equilibrium point
x1. Note that an increase in the parameter p2 increases the market share of the firm
1 due to the structure of equation (5.3).

5.5.2.4 Variation of parameter p3

To finalize the sensitivity analysis under variations in matrix Q, the variation of parameter

p3 is now regarded. Thus, equation (5.19) is given by:

0 = −0.8X3 + 0.88X2 − 0.328X + 0.04p3X2 − 0.1p3X + 0.06p3 + 0.048 (5.41)

Figure 5.15 shows that equilibrium point x1 has monotonic increasing behavior under

increase of parameter p3. Moreover, Figure 5.15 shows that the equilibrium point is stable

for the whole range of variation of parameter p3.
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Figure 5.15: Parametric sensitivity under variation of parameter p3: (a) locus of
equilibrium point x1 (b) eigenvalue plot showing local stability of equilibrium point
x1. Observe that an increase in the parameter p3 increases the market share of the
firm 1 due to the structure of equation (5.3).

Table 5.2 displays a summary of the parametric sensitivity of equilibrium points of

Replicator-Mutator model under increases, one parameter at a time in the elements of the

mutation matrix Q.

Behavior (x1)
Parameter qij ↑ µ(αi) p1 p2 p3

monotonic increasing ↑ X(α1, α2) X X
monotonic decreasing ↓ X(α3)

constant X
multiple equilibrium points X

Table 5.2: Parametric sensitivity of the equilibrium points of Replicator-Mutator
model under increase in the parameters defining the mutation matrix Q (5.35).
Note that only variation in fidelity parameter µ produces the existence of multiple
equilibrium points for market share of Firm 1 (x1). With regard to the outcome of x1
under variation in the parameters (p1, p2, p3) the behavior of the market share x1 for
each parameter variation can be explained by the form of the equations (5.3)- (5.5)
that relate the probability of change (qij) in the choice of the clients.

5.6 Replicator-Mutator under affine advertising

control policy

In view of the results of section 5.5 the possibility of changing or altering the equilibrium

points (market shares) of the firms participating in the duopolistic market through changes
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in fidelity parameter µ, variations in the elements of preference matrixA and modifications

in the elements of mutation matrix Q can be affirmed. However, it is observed that,

although fidelity parameter µ and matrix Q allows modification of the market shares, the

literature considers them as intrinsic characteristics of the population [58]. Based on these

observations, the following hypotheses are formulated:

1. Advertising performed by a firm does not modify mutation parameter µ and the el-

ements of mutation matrix Q. Specifically, it is assumed that the fidelity rate and

mutation matrix Q are characteristics of the population, not directly affected by ad-

vertising.

2. Advertising implemented by a firm can modify the specific elements of preference matrix

A, causing them to increase in the case of successful advertising.

5.6.1 Proposal of Control Policy

Based on the above hypotheses, it is possible to represent ∆aij as the variation of element

aij of preference matrix A. Thus, rewriting the equations of the Replicator-Mutator model

established in equation (5.13) and allowing variations ∆aij in the elements aij of the

matrix A we have the following expression:

ẋi =
3∑
j=1

xjfjqji(µ)− xiφ (5.42)

where:

fj =
3∑
j=1

(aij + ∆aij)xj (5.43)

Considering the hypotheses formulated above the relationship between publicity and vari-

ation of the element of preference matrix A is represented as follows:

∆aij = f(Pij) = uij (5.44)

where:

∆aij is the variation of element aij
f(Pij) is a function of advertising

uij is the advertising of the firm i over firm j.

Now, assuming that the impact of the advertising ui of firm i is reflected only in

the entry aij of the preference matrix we have:

A =


1 a12 + u1 a13

a21 + u2 1 a23

a31 a32 1

 (5.45)
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Thus, equations (5.42), (5.43) and (5.44) model the dynamics of the interactions of the

agents involved in a duopoly, taking into account the effect of the advertising by the firms

with the purpose of changing their participation in the market.

As in the previous chapters, we propose the use of an affine advertising control policy

defined by:

u1 = k1x1 + c1 (5.46)

u2 = k2x2 + c2 (5.47)

5.7 Numerical results

In this section, numerical results for the Replicator-Mutator model under affine advertising

control policies are exhibited. The numerical analysis covers the study of three types

(scenarios) of markets represented by different configurations of the elements of preference

matrix A and mutation matrix Q. In each market scenario, the implementation of two

control policies by the firms with the objective of altering their participation in the market

is considered.

5.7.1 Market Scenario 1 (Mobile phone market)

The first scenario models a market where consumers have a greater preference for the

acquisition or use of the good or service regardless of the firm chosen. It means the clients

can change firms but do not stop having or using the product or service. Concerning the

undecided users, we consider that they have similar preferences for both firms as well as

the same possibilities of changing their choice. An example of this type of scenario is the

mobile phone market or the bank account market [93], [94]. Based on these assumptions,

the matrices of preference and mutation are defined as follows:

A =


1 0.6 0.2

0.6 1 0.2

0.2 0.2 1

 (5.48)

Q =


0.8 0.16 0.04

0.16 0.8 0.04

0.1 0.1 0.8

 (5.49)

Figure 5.16 and figure 5.17 show the numerical results for market scenario 1 under affine

control policies formulated by firms 1 and 2. Thus, in figures 5.16(a) and 5.17(a) the

evolution of the market shares of the firms for initial conditions x1(0) = 0.2 and x2(0) = 0.1

is observed. Then, figures 5.16(b) and 5.17(b) present the phase planes for both control

policies. Note that the equilibrium point for policy 1 is given by (x∗1 = 0.46, x∗2 = 0.49)
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while for policy 2 the equilibrium point is (x∗1 = 0.54, x∗2 = 0.40).

Comparing figures 5.16 and 5.17, it is noted that the increase in advertising of firm 1

produces a large increment in the market share of the company. About firm 2, it is observed

that the increase in advertising (lower than firm 1) does not produce an increment in the

respective market share. Notice that in this market scenario, one firm has increased its

market share and the other has decreased its market share although both companies have

increased their advertising. Table 5.3 summarizes the values corresponding for the control

parameter, the equilibrium points and the eigenvalues for market scenario 1 considering

each control policy.
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Figure 5.16: (a) Evolution of the market shares of firms x1 and x2 for market scenario
1 under policy 1 (b) Phase plane for market scenario 1 under policy 1.
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Figure 5.17: (a) Evolution of the market shares of firms x1 and x2 for market scenario
1 under policy 2 (b) Phase plane for market scenario 1 under policy 2.
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Policy Control Parameters Equilibrium Points Eigenvalues of the Jacobian

P1
u1 = 0.2x1 + 0.1

(x∗1 = 0.46, x∗2 = 0.49)
−0.21

u2 = 0.1x2 + 0.2 −0.61

P2
u1 = 0.3x1 + 0.6

(x∗1 = 0.54, x∗2 = 0.40)
−0.37

u2 = 0.2x2 + 0.3 −0.78

Table 5.3: Control parameters, equilibrium points and eigenvalues of the Jacobian
for market scenario 1 under advertising control policies.

5.7.2 Market Scenario 2 (Credit card market)

The second scenario attempts to model a market where the preference of consumers to

buy or use a product or service regardless of the firm selling it is almost the same as the

preference to stop acquiring or using the product or service. Likewise, it is considered that

the possibility of changing firms is the same as that of stopping the use of the product

(becoming undecided). In other words, the fidelity of the clients to the product or service

is relatively low. About undecided users, it is assumed again that they have similar prefer-

ences for both firms and they have the same possibilities of changing their choice of using

any firm. An example of this type of scenario may be the credit card market [93], [95].

Based on these assumptions, the preference and mutation matrices are defined as follows:

A =


1 0.6 0.4

0.6 1 0.4

0.3 0.3 1

 (5.50)

Q =


0.4 0.2 0.4

0.2 0.4 0.4

0.2 0.2 0.6

 (5.51)

Figure 5.18 and figure 5.19 show the numerical results for market scenario 2 under affine

control policy 1 and affine control policy 2 respectively shown in Table 5.4. In figure

5.18(a) and 5.19(a) we show the evolution of the market shares of the firms for initial

conditions x1(0) = 0.2 and x2(0) = 0.1. Then, figures 5.18(b) and 5.19(b) present the

phase planes for both advertising policies. Note that the equilibrium point for policy 1

is given by (x∗1 = 0.25, x∗2 = 0.25) and in the case of policy 2 the equilibrium point is

(x∗1 = 0.26, x∗2 = 0.25).

Evaluating figures 5.18 and 5.19, it can be seen that the market shares of both firms

do not change although both companies have increased their advertising (the increase in

advertising of firm 1 is greater than the increase in the publicity of company 2). Table 5.4

displays the values for the control parameters, the equilibrium points and the eigenvalues

of the Jacobian for each advertising policy.
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Figure 5.18: (a) Evolution of the market shares of firms x1 and x2 for market scenario
2 under policy 1 (b) Phase plane for market scenario 2 under policy 1.
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Figure 5.19: (a) Evolution of the market shares of firms x1 and x2 for market scenario
2 under policy 2 (b) Phase plane for market scenario 2 under policy 2.

Policy Control Parameters Equilibrium Points Eigenvalues of the Jacobian

P1
u1 = 0.2x1 + 0.1

(x∗1 = 0.25, x∗2 = 0.25)
−0.46

u2 = 0.1x2 + 0.2 −0.51

P2
u1 = 0.3x1 + 0.6

(x∗1 = 0.26, x∗2 = 0.25)
−0.48

u2 = 0.2x2 + 0.3 −0.54

Table 5.4: Control parameters, equilibrium points and eigenvalues of the Jacobian
for the market scenario 2 under advertising control policies.

5.7.3 Market Scenario 3 (Operating system market or Foot-

ball team market)

The third scenario seeks to model a market characterized by the high preference of con-

sumers about the product or service that they buy or use in direct relation to the chosen
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brand. That is, clients have a high preference for a product and a high fidelity for the

chosen firm. Concerning the undecided clients, it is supposed that they have the same

status of preference and loyalty to both firms. An example of this type of market scenario

may be the smartphone market, the football team market, the motorcycle market, or the

operating system market [93], [96], [97]. Based on these assumptions it is possible to define

the matrices of preference and mutation as follows:

A =


1 0.8 0.2

0.8 1 0.2

0.4 0.4 1

 (5.52)

Q =


0.8 0.04 0.16

0.04 0.8 0.16

0.1 0.1 0.8

 (5.53)

Figure 5.20 and figure 5.21 show the numerical results for market scenario 3 under affine

control policies performed by firms 1 and 2. In figure 5.20(a) and 5.21(a) we observe

the evolution of the market shares of the firms for initial conditions x1(0) = 0.2 and

x2(0) = 0.1. Then, figures 5.20(b) and 5.21(b) present the phase planes for both policies.

Note that the equilibrium point for policy 1 is (x∗1 = 0.19, x∗2 = 0.20) and for policy 2 the

equilibrium point is (x∗1 = 0.42, x∗2 = 0.27).

Examining figures 5.20 and 5.21, it is observed that the increase in advertising of firm

1 produces a large increment in the market share of the company. About firm 2, it is

noted that an increase in advertising (lower than firm 1) produces an increment (lower

than firm 1) in the respective market share. Notice that in this market scenario, both

firms have increased their market share. Table 5.5 summarizes the values for the control

parameters, the equilibrium points and the eigenvalues for this market scenario considering

each advertising policy.
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Figure 5.20: (a) Evolution of the market shares of firms x1 and x2 for market scenario
3 under policy 1 (b) Phase plane for market scenario 3 under policy 1.
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Figure 5.21: (a) Evolution of the market shares of firms x1 and x2 for market scenario
3 under policy 2 (b) Phase plane for market scenario 3 under policy 2.

Policy Control Parameters Equilibrium Points Eigenvalues of the Jacobian

P1
u1 = 0.2x1 + 0.1

(x∗1 = 0.19, x∗2 = 0.20)
−0.08

u2 = 0.1x2 + 0.2 −0.27

P2
u1 = 0.3x1 + 0.6

(x∗1 = 0.42, x∗2 = 0.27)
−0.18 + 0.016i

u2 = 0.2x2 + 0.3 −0.18− 0.016i

Table 5.5: Control parameters, equilibrium points and eigenvalues of the Jacobian
for the market scenario 3 under advertising control policies.

5.8 Chapter conclusions

The conclusions of this chapter are:

• The Replicator-Mutator equation can be formulated as a new class of model of the
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dynamics of a duopolistic market with competition in advertising.

• For the proposed Replicator-Mutator model the analysis of the existence of the equilib-

rium points and their stability is feasible under certain hypotheses regarding preference

matrix A, mutation matrix Q, mutation parameter µ and the population values for the

fixed points.

• The Replicator-Mutator model shows different parametric sensitivity about the equilib-

rium points and the stability conditions under variations in the elements of preference

matrix A and mutation matrix Q.

• The Replicator-Mutator model allows the representation of different market scenarios

through diverse configurations of preference matrix A and mutation matrix Q.

• The same affine advertising control policies have very different outcomes (market shares)

in diverse market scenarios, showing the versatility of the model and the importance of

an adequate choice of preference, fidelity and mutation parameters.
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Chapter 6

The Replicator-Mutator model
with delays under affine
advertising control policy

In this chapter, the Replicator-Mutator model formulated in the previous chapter consider-

ing the presence of delays is analyzed. Thus, in sections 6.2 and 6.3, the Replicator-Mutator

model regarding the two types of delays defined in chapter 2 are examined. Then, section

6.4 carries out a stability analysis of the Replicator-Mutator model for different delay

values τ . In section 6.5 a numerical study of the Replicator-Mutator model with delays

for the same market scenarios of chapter 5 is performed. Section 6.6 presents a numerical

simulation of the Replicator-Mutator model considering different values of delays for each

firm. Finally, section 6.7 contains the conclusions of the chapter.

6.1 Delays in the Replicator-Mutator model

In the last two decades, the Replicator-Mutator equations have been studied using different

approaches in different areas. However, there are few studies considering the presence of

delays. The existing studies essentially address biology [98] and networking [99] themes

and in most cases only contemplate the replicator equations [100], [101], [102].

In the context of duopolistic markets, the Replicator-Mutator model formulated in

Chapter 5, similarly to the models presented in Chapter 3, considers instant access to

market information as well as immediate response to the effects of advertising. However,

as explained above, these assumptions do not usually hold in real markets.

Thus in analogy with the analysis performed for the Vidale-Wolfe and extended Lanch-

ester models the inclusion of delays into the Replicator-Mutator model will allow a better

description of the dynamics of the market. Nevertheless, as was also mentioned and verified

in the Vidale-Wolfe and extended Lanchester models, the presence of substantial changes

in the behavior of the system is possible.

The following sections develop an analysis of the Replicator-Mutator model supposing
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the existence of delays.

6.2 The Replicator-Mutator model with imple-

mentation delay under affine advertising con-

trol policy

Considering the Replicator-Mutator model formulated in chapter 5 and the assumption ex-

posed in subsection 2.4.1 concerning the delay in the available information the Replicator-

Mutator model with implementation delay can be defined the following way:

ẋi =
3∑
j=1

xjfjτqji − xiφ (6.1)

A =


a11 a12 + u1τ a13

a21 + u2τ a22 a23

a31 a32 a33

 (6.2)

where:

fjτ = fj (t− τj)
u1τ = k1x1τ + c1

u2τ = k2x2τ + c2

x1τ = x1 (t− τ1)
x2τ = x2 (t− τ2)
Assuming the condition of equal delay values for each firm (τ1 = τ2) the expressions for

x1τ and x2τ are given by: x1τ = x1 (t− τ1) = x1 (t− τ) and x2τ = x2 (t− τ2) = x2 (t− τ).

6.3 The Replicator-Mutator model with adoption

delay under affine advertising control policy

Similar to the previous section, the Replicator-Mutator model with adoption delay can be

expressed as:

ẋi =
3∑
j=1

xjτfjτqji − xiφ (6.3)

A =


a11 a12 + u1τ a13

a21 + u2τ a22 a23

a31 a32 a33

 (6.4)
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where:

xjτ = xj (t− τj)
fjτ = fj (t− τj)
u1τ = k1x1τ + c1

u2τ = k2x2τ + c2

x1τ = x1 (t− τ1)
x2τ = x2 (t− τ2)
Again, assuming the condition of equal delay values for each firm (τ1 = τ2) the expressions

for x1τ and x2τ are given by: x1τ = x1 (t− τ1) = x1 (t− τ) and x2τ = x2 (t− τ2) =

x2 (t− τ).

6.4 Stability analysis of the Replicator-Mutator

model with delays

This section analyses the stability of equilibria of the Replicator-Mutator model as delay

τ varies. Note that the analysis is the same for both types of delays.

For the Replicator-Mutator model with delay:

ẋi =
3∑
j=1

xjfjτqji − xiφ (6.5)

let the equilibrium points be denoted (x∗1, x
∗
2).

The characteristic equation for (6.5) is as follows:

Prm(ψ, τ) = Ψ2 + P1rmΨ + P2rm + P3rme
−2ψτ + P4rmΨe

−ψτ + P5rme
−ψτ (6.6)

where:

Pirm, i = 1, . . . 5, is a real coefficient.

6.4.1 Stability analysis of the characteristic equation for τ = 0

In this case, assuming τ = 0, equation (6.6) yields

Prm(ψ, τ) = Ψ2 + P6rmΨ + P7rm (6.7)

where:

P6rm = P1rm + P4rm

P7rm = P2rm + P3rm + P5rm

Then, the stability criteria [83] can be established when

P6rm > 0

P7rm > 0
(6.8)
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Therefore, we may formulate the following proposition:

Proposition 9. The equilibrium point (x∗1, x
∗
2) of model (6.5) is a stable equilibrium point

for τ = 0 when the conditions expressed in (6.8) hold.

6.4.2 Stability analysis of the characteristic equation for τ > 0

Now, analyzing for τ > 0, and replacing Ψ = iω in (6.6) we have:

Prm(iω, τ) = (iω)2+P1rm (iω)+P2rm+P3rme−2(iω)τ+P4rm(iω)e−(iω)τ+P5rme−(iω)τ (6.9)

Then, separating the real and imaginary parts from (6.9), we obtain:

P3rm cos (2ωτ) + ωP4rm sin (ωτ) = ω2 − P2rm − P5rm cos (ωτ) (6.10)

−P3rm sin (2ωτ) + ωP4rm cos (ωτ) = −P1rmω + P5rm sin (ωτ) (6.11)

Solving equations (6.10) and (6.11), we obtain:

0 =− P4rmω3 + P 24rm sin (ωτ)ω2 + P4rmP2rmw + P4rmP3rm cos (2ωτ)ω

− P1rmP5rmω + P 25rm sin (ωτ) + P3rmP5rm sin (2ωτ)
(6.12)

Now, rearranging the characteristic equation (6.6) we get:

Prm(ψ, τ) = Ψ2 + P1rmΨ + P2rm + e−ψτ
(
P4rmΨ + P3rme

−ψτ + P5rm
)

(6.13)

Then, the second necessary condition for Hopf Bifurcation existence [85] is formulated as:

<
(
dλ

dτ

)
6= 0 (6.14)

Next, calculating
(
dλ
dτ

)
from (6.13) gives:

(
dλ

dτ

)
=
Erm + Frmi

Grm +Hrmi
(6.15)

where:

Erm = −w
(
4P3rm cos2 (ωτ) + P4rmω sin (ωτ) + P5rm cos (ωτ)− 2P3rm

)
Frm = −w (4P3rm cos (ωτ) sin (ωτ)− cos (ωτ)P4rmω + P5rm sin (ωτ))

Grm = −4P3rmτ cos (ωτ) sin (ωτ) + τP4rmω cos (ωτ)− τP5rm sin (ωτ) +P4rm sin (ωτ)− 2w

Hrm = 4P3rmτ cos2 (ωτ)+P4rmτω sin (ωτ)+P5rmτ cos (ωτ)−P4rm cos (ωτ)−2P3rmτ−P1rm
Therefore:

<
(
dλ

dτ

)
=
ErmGrm + FrmHrm

G2rm +H2rm
6= 0 (6.16)

Hence, from the previous analysis, the following proposition can be formulated:
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Proposition 10. The model (6.5) has Hopf bifurcation for delay value τ > 0 when the

equation (6.12) has a positive solution and condition (6.16) holds.

6.5 Numerical results

This section presents numerical results for the Replicator-Mutator model assuming the

existence of delays. For this purpose, the analysis considers the same three market scenarios

proposed and studied in chapter 5.

6.5.1 Market Scenario 1 (Mobile phone market)

Recalling subsection 5.7.1 , this scenario represents a type of market where the clients

prefer to purchase the product independent of the brand chosen. For convenience, the

preference matrix A and the mutation matrix Q for this market scenario are given below

once again:

A =


1 0.6 0.2

0.6 1 0.2

0.2 0.2 1

 (6.17)

Q =


0.8 0.16 0.04

0.16 0.8 0.04

0.1 0.1 0.8

 (6.18)

6.5.1.1 Market Scenario 1 with implementation delay

Substituting the expressions of matrices A and Q into equation (6.1) and analyzing the

Replicator-Mutator model we have that the characteristic equation for policy 1 is given

by:

Prm1(ψ, τ) = Ψ2 + 0.85Ψ + 0.14 + 0.01e−2ψτ − 0.02Ψe−ψτ − 0.01e−ψτ (6.19)

In the same way, the characteristic equation for policy 2 can be expressed as:

Prm1(ψ, τ) = Ψ2 + 1.11Ψ + 0.28 + 0.01e−2ψτ − 0.03Ψe−ψτ − 0.02e−ψτ (6.20)

Then, assuming τ = 0 equations (6.19) and (6.20) yield:

Prm1(ψ, 0) = Ψ2 + 0.83Ψ + 0.14 (6.21)

Prm1(ψ, 0) = Ψ2 + 1.08Ψ + 0.27 (6.22)

Hence, taking into account Proposition 9 it can be said that equilibrium point is stable.
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Now, analyzing for τ > 0, we substitute Ψ = iω in (6.19) and (6.20). Thereby, solving

the corresponding equations, it is observed that the characteristic equation has no positive

root. Therefore, considering Proposition 10 it can be inferred that the market scenario 1

with implementation delay has no Hopf bifurcation.

6.5.1.2 Market Scenario 1 with adoption delay

Replacing the expressions of matrices A and Q into (6.3) and evaluating the Replicator-

Mutator model, we can express the characteristic equation for policy 1 by:

Prm1(ψ, τ) = Ψ2 + 2.89Ψ + 1.73 + 0.91e−2ψτ − 2.07Ψe−ψτ − 2.51e−ψτ (6.23)

Similarly, for control policy 2, the characteristic equation can be represented as:

Prm1(ψ, τ) = Ψ2 + 3.44Ψ + 2.41 + 1.09e−2ψτ − 2.36Ψe−ψτ − 3.24e−ψτ (6.24)

Now, assuming τ = 0 equations (6.23) and (6.24) become:

Prm1(ψ, 0) = Ψ2 + 0.82Ψ + 0.13 (6.25)

Prm1(ψ, 0) = Ψ2 + 1.08Ψ + 0.26 (6.26)

Therefore, considering Proposition 9 it can be said that equilibrium point is stable.

Then, analyzing for τ > 0, we replace Ψ = iω in (6.23) and (6.24). Thus, solving

the respective equations it is noted that the characteristic equation has no positive root.

Hence, taking into account Proposition 10 it is concluded that the martket scenario with

adoption delay has no Hopf bifurcation.

Figure 6.1 shows the numerical results for market scenario 1 under affine control policy

1 considering the two types of delays defined in equations (6.1) and (6.3). In this way,

figure 6.1(a) illustrates the Replicator-Mutator model considering the presence of imple-

mentation delay and figure 6.1(b) examines the Replicator-Mutator model considering the

presence of adoption delay. Analyzing the figures, it is possible to corroborate the propo-

sitions formulated about the stability of the equilibrium point for both types of delays. It

is also possible to note when comparing the figures that the stabilization time for the case

of adoption delay is larger.
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Figure 6.1: Evolution of the market shares of firms 1 and 2 for market scenario 1
under policy 1 with (a) implementation delay with delay values τ1 = 20 and τ2 = 20
and (b) adoption delay with delay values τ1 = 20 and τ2 = 20.

Next, in figure 6.2 the evolution of the market shares of the firms for market scenario

1 under affine control policy 2 assuming the two types of delays defined in equations (6.1)

and (6.3) for initial conditions x1(0) = 0.2 and x2(0) = 0.1 is presented. Thus, figure

6.2(a) illustrates the dynamics of the market considering the presence of implementation

delay and figure 6.2(b) displays the dynamics of the market supposing the presence of

adoption delay. In a similar way to control policy 1, the figures allow corroboration of the

Proposition 9 and Proposition 10 about the stability of the equilibrium points. In this

case, again it is noted that the time stabilization for adoption delay is larger.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6
u1=0.3x

1
+0.6, u2=0.2x

1
+0.3, τ

1
=20, τ

2
=20

u1=0.3x
1
+0.6, u2=0.2x

1
+0.3, τ

1
=20, τ

2
=20

Time plots of Market shares of firm 1 and firm 2 for RM model (Scenario 1) under policy 2
 considering implementation delay

Time

M
a
rk

e
t 
S

h
a
re

s
 o

f 
fi
rm

 1
 a

n
d
 f
ir
m

 2

 

 
Firm 1

Firm 2

(a)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6
u1=0.3x

1
+0.6, u2=0.2x

1
+0.3, τ

1
=20, τ

2
=20

u1=0.3x
1
+0.6, u2=0.2x

1
+0.3, τ

1
=20, τ

2
=20

Time plots of Market shares of firm 1 and firm 2 for RM model (Scenario 1) under policy 2
 considering adoption delay

Time

M
a
rk

e
t 
S

h
a
re

s
 o

f 
fi
rm

 1
 a

n
d
 f
ir
m

 2

 

 
Firm 1

Firm 2

(b)

Figure 6.2: Evolution of the market shares of firms 1 and 2 for market scenario 1
under policy 2 with (a) implementation delay with delay values τ1 = 20 and τ2 = 20
and (b) adoption delay with delay values τ1 = 20 and τ2 = 20.
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6.5.2 Market Scenario 2 (Credit cards market)

Recalling subsection 5.7.2, this scenario describes a market where the clients have low

fidelity. So, the preference matrix A and the mutation matrix Q for this market scenario

are:

A =


1 0.6 0.4

0.6 1 0.4

0.3 0.3 1

 (6.27)

Q =


0.4 0.2 0.4

0.2 0.4 0.4

0.2 0.2 0.6

 (6.28)

6.5.2.1 Market Scenario 2 with implementation delay

Following the same procedure as in market scenario 1, we substitute matrices A and Q

into equation (6.1). Then, analyzing the Replicator-Mutator model, we have that the

characteristic equation for policy 1 is given by:

Prm2(ψ, τ) = Ψ2 + 0.97Ψ + 0.23 + 0.01e−2ψτ − 0.01Ψe−ψτ − 0.01e−ψτ (6.29)

Similarly, the characteristic equation for control policy 2 can be expressed as:

Prm2(ψ, τ) = Ψ2 + 1.03Ψ + 0.27 + 0.01e−2ψτ − 0.01Ψe−ψτ − 0.01e−ψτ (6.30)

Now, considering τ = 0 equations (6.29) and (6.30) become:

Prm2(ψ, 0) = Ψ2 + 0.82Ψ + 0.13 (6.31)

Prm2(ψ, 0) = Ψ2 + 1.08Ψ + 0.26 (6.32)

From Proposition 9 it can be affirmed that the equilibrium point is stable.

Now, analyzing for τ > 0, we substitute Ψ = iω in (6.29) and (6.30). Thereby, solving

the corresponding equations, we have that the characteristic equation has no positive

root. Hence, based on Proposition 10 it is concluded that the market scenario 2 with

implementation delay has no Hopf bifurcation.

6.5.2.2 Market Scenario 2 with adoption delay

As in the previous case, we substitute matrices A and Q into (6.3) and the characteristic

equation for policy 1 is:

Prm2(ψ, τ) = Ψ2 + 1.24Ψ + 0.39 + 0.02e−2ψτ − 0.28Ψe−ψτ − 0.17e−ψτ (6.33)
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Equivalently for control policy 2, the characteristic equation can be written as:

Prm2(ψ, τ) = Ψ2 + 1.42Ψ + 0.50 + 0.03e−2ψτ − 0.39Ψe−ψτ − 0.28e−ψτ (6.34)

Now, analyzing for τ = 0, equations (6.23) and (6.24) are given by:

Prm2(ψ, 0) = Ψ2 + 0.82Ψ + 0.13 (6.35)

Prm2(ψ, 0) = Ψ2 + 1.08Ψ + 0.26 (6.36)

Therefore, according to Proposition 9 it can be said that the equilibrium point is stable.

Then, considering now τ > 0, and subtituting Ψ = iω in (6.33) and (6.34) we can solve

the respective equations. Thus, it is noted that the characteristic equation has no positive

root. Accordingly, from Proposition 10 follows that market scenario 2 with adoption delay

has no Hopf bifurcation.

Figure 6.3 shows the numerical results for market scenario 2 under affine control policy

1 considering the two types of delays defined in equations (6.1) and (6.3). In figure

6.3(a) the dynamics of the model considering the presence of implementation delay is

presented. Next, figure 6.3(b) displays the model presuming the presence of adoption

delay. Examining the figures, it is possible to confirm Proposition 9 and Proposition 10

formulated concerning the stability of the equilibrium points for both types of delays.

Moreover, comparing the figures, we note that the stabilizaton time is larger in the case

of the adoption delay.
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Figure 6.3: Evolution of the market shares of firms 1 and 2 for market scenario 2
under policy 1 with (a) implementation delay with delay values τ1 = 20 and τ2 = 20
and (b) adoption delay with delay values τ1 = 20 and τ2 = 20.
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In figure 6.4 the dynamics of the market shares of the firms for market scenario 2 under

affine control policy 2 assuming the two types of delays defined in equations (6.1) and (6.3)

for initial conditions x1(0) = 0.2 and x2(0) = 0.1 is shown. Figure 6.4(a) illustrates the

model with the presence of implementation delay and figure 6.4(b) describes the model

suppposing the existence of adoption delay. Similar to the case of control policy 1 the

figures indicate that the equilibrium point is stable regardless of the type of delay and

that in the case of adoption delay the stabilization time is larger.
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Figure 6.4: Evolution of the market shares of firms 1 and 2 for market scenario 2
under policy 2 with (a) implementation delay with delay values τ1 = 20 and τ2 = 20
and (b) adoption delay with delay values τ1 = 20 and τ2 = 20.

6.5.3 Market Scenario 3 (Operating system market or Foot-

ball team market)

To finalize the numerical study of the Replicator-Mutator model with delays, in this in-

stance we consider a market scenario that represents a type of market where the clients

have a high predilection and loyalty for the products of the chosen company. The preference

matrix A and the mutation matrix Q for this type of market are:

A =


1 0.8 0.2

0.8 1 0.2

0.4 0.4 1

 (6.37)

Q =


0.8 0.04 0.16

0.04 0.8 0.16

0.1 0.1 0.8

 (6.38)
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6.5.3.1 Market Scenario 3 with implementation delay

Similarly to the steps utilized in the previous market scenarios, we substitute the expres-

sions of matrices A and Q into equation (6.1). Then analyzing the Replicator-Mutator

model, we have that the characteristic equation for policy 1 is given by:

Prm3(ψ, τ) = Ψ2 + 0.36Ψ + 0.2 + 0.01e−2ψτ − 0.01Ψe−ψτ − 0.01e−ψτ (6.39)

In like manner, for control policy 2 the characteristic equation is:

Prm3(ψ, τ) = Ψ2 + 0.39Ψ + 0.04 + 0.01e−2ψτ − 0.02Ψe−ψτ − 0.01e−ψτ (6.40)

Then, considering τ = 0 equations (6.39) and (6.40) are represented as:

Prm3(ψ, 0) = Ψ2 + 0.35Ψ + 0.2 (6.41)

Prm3(ψ, 0) = Ψ2 + 0.37Ψ + 0.4 (6.42)

Thus, according to Proposition 9 it can be concluded that equilibrium point is stable.

Next, analyzing for τ > 0, we substitute Ψ = iω in (6.39) and (6.40). So, solving the

corresponding equations, it can be noted that the characteristic equation has no positive

root. Therefore, from Proposition 10 it is concluded that the market scenario 3 has no

Hopf bifurcation.

6.5.3.2 Market Scenario 3 with adoption delay

Similar to all previous cases, firstly the expressions of matrices A and Q are replaced

into (6.3). Then evaluating the Replicator-Mutator model, we can write the characteristic

equation for policy 1:

Prm3(ψ, τ) = Ψ2 + 1.21Ψ + 0.36 + 0.18e−2ψτ − 0.85Ψe−ψτ − 0.52e−ψτ (6.43)

In the same way for control policy 2, we can express the characteristic equation as:

Prm3(ψ, τ) = Ψ2 + 2.08Ψ + 1.01 + 0.66e−2ψτ − 1.71Ψe−ψτ − 1.64e−ψτ (6.44)

Now, assuming τ = 0 equations (6.43) and (6.44) become:

Prm3(ψ, 0) = Ψ2 + 0.36Ψ + 0.02 (6.45)

Prm3(ψ, 0) = Ψ2 + 0.37Ψ + 0.03 (6.46)

Hence, from Proposition 9 it can be said that the equilibrium point is stable.

Then, analyzing for τ > 0, we substitute Ψ = iω in (6.43) and (6.44). Solving the

respective equations it is observed that the characteristic equation has no positive root.

Accordingly, based on Proposition 10 it is determined that the market scenario 3 has no
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Hopf bifurcation.

Figure 6.5 presents the numerical results for market scenario 3 under affine control

policy 1 supposing the existence of both types of delays formulated in equations (6.1)

and (6.3). Figure 6.5(a) shows the dynamics of the market considering the presence of

implementation delay and figure 6.5(b) illustrates the dynamics of the market presuming

the existence of adoption delay. Observing the figures, it is possible to confirm as in all

previous cases the stability of the equilibrium points and the larger stabilization time for

adoption delay.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

u1=0.2x
1
+0.1, u2=0.1x

1
+0.2, τ

1
=20, τ

2
=20

u1=0.2x
1
+0.1, u2=0.1x

1
+0.2, τ

1
=20, τ

2
=20

Time plots of Market shares of firm 1 and firm 2 for RM model (Scenario 3) under policy 1
 considering implementation delay

Time

M
a
rk

e
t 
S

h
a

re
s
 o

f 
fi
rm

 1
 a

n
d

 f
ir
m

 2

 

 
Firm 1

Firm 2

(a)

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

u1=0.2x
1
+0.1, u2=0.1x

1
+0.2, τ

1
=20, τ

2
=20

u1=0.2x
1
+0.1, u2=0.1x

1
+0.2, τ

1
=20, τ

2
=20

Time plots of Market shares of firm 1 and firm 2 for RM model (Scenario 3) under policy 1
 considering adoption delay

Time

M
a
rk

e
t 
S

h
a

re
s
 o

f 
fi
rm

 1
 a

n
d

 f
ir
m

 2

 

 
Firm 1

Firm 2

(b)

Figure 6.5: Evolution of the market shares of firms 1 and 2 for market scenario 3
under policy 1 with (a) implementation delay with delay values τ1 = 20 and τ2 = 20
and (b) adoption delay with delay values τ1 = 20 and τ2 = 20.

Finally, figure 6.6 shows the evolution of the market shares of the firms for market

scenario 3 under affine control policy 2 considering the two types of delays defined in

equations (6.1) and (6.3). In figure 6.6(a) the evolution of the market shares assuming

the presence of implementation delay is shown and in figure 6.6(b) the dynamics of the

market shares supposing the presence of adoption delay is illustrated. Similar to all the

analyzed cases, the figures allow verifying Proposition 9 and Proposition 10 formulated,

which is that the equilibrium points are stable regardless of the type of delay and that

stabilization time in the adoption delay is larger.
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Figure 6.6: Evolution of the market shares of firms 1 and 2 for market scenario 3
under policy 2 with (a) implementation delay with delay values τ1 = 20 and τ2 = 20
and (b) adoption delay with delay values τ1 = 20 and τ2 = 20.

6.6 The Replicator-Mutator model under affine

advertising control policy considering un-

equal delay values

Likewise to the Vidale-Wolfe and extended Lanchester models from section 4.4 in this

section numerical simulations for the Replicator-Mutator model considering unequal delay

values for each firm are presented.

6.6.1 The Replicator-Mutator model under affine advertis-

ing control policy considering unequal delay values of

implementation

Rewriting the Replicator-Mutator model considering the implementation delay we obtain

ẋi =
3∑
j=1

xjfjτqji − xiφ (6.47)

A =


a11 a12 + u1τ a13

a21 + u2τ a22 a23

a31 a32 a33

 (6.48)

where: fjτ = fj (t− τj), u1τ = k1x1τ + c1 and u2τ = k2x2τ + c2

Assuming the condition of different delay values for each firm the expressions for x1τ and

x2τ are given by: x1τ = x1 (t− τ1) and x2τ = x2 (t− τ2).
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6.6.2 The Replicator-Mutator model under affine advertis-

ing control policy considering unequal delay values of

adoption

Rewriting the Replicator-Mutator model assuming the adoption delay we have

ẋi =
3∑
j=1

xjτfjτqji − xiφ (6.49)

A =


a11 a12 + u1τ a13

a21 + u2τ a22 a23

a31 a32 a33

 (6.50)

where: xjτ = xj (t− τj), fjτ = fj (t− τj), u1τ = k1x1τ + c1 and u2τ = k2x2τ + c2

Now, considering different delay values for each firm we get: x1τ = x1 (t− τ1) and x2τ =

x2 (t− τ2).
Then, based on the assumptions cited, numerical simulations for each market scenario

under both types of delays with different delay value for each company are presented. The

control parameters for control policy 1 are given by k1 = 0.2, c1 = 0.1,k2 = 0.1, c2 = 0.2

and for the case of control policy 2 by k1 = 0.3, c1 = 0.6, k2 = 0.2, c2 = 0.3. Furthermore,

the initial conditions in all cases are setting in x1(0) = 0.2 and x2(0) = 0.1.

For market scenario 1, figure 6.7 shows the evolution of the market shares of firms

1 and 2 under affine control policy 2 for both types of delays. Specifically, figure 6.7(a)

illustrates the case of implementation delay for τ1 = 10 and τ2 = 20 while figure 6.7(b)

presents the case of adoption delay considering τ1 = 25 and τ2 = 5. From the figures, it can

be said that the equilibrium point remains stable for both types of delays. Additionally,

in the case of adoption delay, the existence of two crossings between the time responses of

market shares is observed.
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Figure 6.7: Evolution of the market shares of firms 1 and 2 for market scenario 1
under policy 2 with (a) implementation delay with delay values τ1 = 10 and τ2 = 20
and (b) adoption delay with delay values τ1 = 25 and τ2 = 5.

Next, for market scenario 2 figure 6.8 displays the evolution of the market shares of

firms 1 and 2 under affine control policy 2 for both types of delays. Expressly, figure 6.8(a)

presents the case of implementation delay for τ1 = 20 and τ2 = 30 while figure 6.8(b)

shows the case of adoption delay considering τ1 = 30 and τ2 = 20. From the figures, we

can declare that the equilibrium point remains stable for both types of delays. Moreover,

it is noted in similar form with market scenario 1 that in the case of adoption delay there

are two crosses between the trajectories of the market shares.
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Figure 6.8: Evolution of the market shares of firms 1 and 2 for market scenario 2
under policy 2 with (a) implementation delay with delay values τ1 = 20 and τ2 = 30
and (b) adoption delay with delay values τ1 = 30 and τ2 = 20.

Finally, for market scenario 3, figure 6.9 presents the evolution of the market shares

of firms 1 and 2 under affine control policy 2 assuming both types of delays. Specifically ,

figure 6.9(a) shows the case of implementation delay for τ1 = 20 and τ2 = 30 while figure

6.9(b) illustrates the case of adoption delay considering τ1 = 30 and τ2 = 20. From the

96



figures, it can be affirmed that equilibrium point remains stable for both types of delays.

Furthermore, it is observed in both cases of delays there is no existence of crossing between

the trajectories of the market shares.
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Figure 6.9: Evolution of the market shares of firms 1 and 2 for market scenario 3
under policy 2 with (a) implementation delay with delay values τ1 = 20 and τ2 = 30
and (b) adoption delay with delay values τ1 = 30 and τ2 = 20.

6.7 Chapter conclusions

• The Replicator-Mutator model was formulated considering the existence of delays in

the information available in the decision making of the firms and in the response of the

clients to the advertising by the firms.

• The Replicator-Mutator model in the three market scenarios considered shows stability

with regard to both types of delays, regardless of the market scenario studied, the control

policy implemented, and the delay values.

• In the three market scenarios analyzed for Replicator-Mutator model with delays, it

is observed that the time of stabilization for adoption delay is larger than the case of

implementation delay.

• For both types of delays, and both control policies, the stabilization time of the

Replicator-Mutator model considering delay for the 3 market scenarios analyzed is larger

than the case of the Replicator-Mutator model without delay.
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Chapter 7

Conclusions, Contributions and
Future work

This last chapter summarizes the main conclusions and contributions of the thesis and

indicates some possibilities for future work in the area.

7.1 Summary of thesis and concluding remarks

This thesis addressed the modeling of the dynamics of a duopolistic market with competi-

tion in advertising using the traditional Vidale-Wolfe, Lanchester and Replicator-Mutator

models as starting points to propose new models. Chapter 3 presented an extension to

the Lanchester model based on the hypothesis of the existence of a third population of

undecided clients, in addition to the usual two associated to the two firms in the duopoly.

The results showed that the extended Lanchester model allows modeling the duopolistic

dynamics considering three populations of clients and explicitly modeling the process of

competition between the firms. Chapter 3 also established the interesting result that, de-

spite differences in the trajectories, under identical advertising policies, the final outcome

in terms of equilibrium market share is the same for both Vidale-Wolfe and the proposed

extended Lanchester models .

In Chapter 4 the existence of delays in the Vidale-Wolfe and extended Lanchester

models was contemplated. Two types of delays in the models were considered, the delay in

the available information (implementation delay) and the delay in the response of clients

to advertising (adoption delay). The analysis showed that the Vidale-Wolfe and extended

Lanchester models present stability under implementation delay. In the case of adoption

delay, the models show the existence of Hopf bifurcation.

In Chapter 5 a new approach for modeling duopolistic dynamics based on the

Replicator-Mutator equations was proposed. The Replicator-Mutator model makes use

of preferences and loyalty of the clients to the firms allowing a more flexible modeling

of duopolistic markets because it is possible to represent different scenarios or types of

markets through the preference matrix A and the mutation matrix Q.
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Finally, in Chapter 6 the existence of delays in the Replicator-Mutator model was

proposed, using implementation and adoption delays as in Chapter 4. The results found in

the three market scenarios analyzed showed that the Replicator-Mutator model is stable in

the presence of both types of delays. Furthermore, the results exhibited that the Replicator-

Mutator model with adoption delay shows a stabilization time larger than the model with

the same value of implementation delay.

The main contributions of this thesis are:

• Proposal of a model for extending for the Vidale-Wolfe and Lanchester models by

explicitly modeling a set of undecided clients who can transition to the set of clients

of either of the competing firms or remain undecided. This new set is also the desti-

nation of clients that are lost to either firm through the decay terms in conventional

Vidale-Wolfe models and its introduction made possible the introduction of a new

model (extended Lanchester) that has all the features of both Vidale-Wolfe and

Lanchester models.

• Formulation of a new evolutionary model for duopolistic markets through the

Replicator-Mutator equations that offers more flexibility in the characterization of

existing behaviors in these markets.

• The analysis of the models containing delays that represent lags in availability of

information used for feedback as well as delays in the response of clients to adver-

tising.

For the reader’s convenience, the main features of existing and proposed models are sum-

marized in Table 7.1 and Table 7.2.

Model
Features

UC ECD D CD ASEP

Vidale-Wolfe (3.10) X X X X X
Lanchester (3.4) X X X X X

Extended Lanchester (3.17) X X X X X
Replicator-Mutator (5.13) X X X X X

Table 7.1: Comparison between the duopoly models existing in the literature and
those proposed in this thesis with regard to existence of undecided clients (UC),
explicitly competitive dynamics (ECD), presence of delays (D), complex dynamics
(CD) and analytical solutions for equilibrium points (ASEP), where X denotes non-
existence and Xdenotes existence.
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Model
Delay type

Implementation delay Adoption delay

Vidale-Wolfe (3.10) X X
Extended Lanchester (3.17) X X
Replicator-Mutator (5.13) X X

Table 7.2: Comparison between the models with delays in regard to the existence of
Hopf bifurcations where X denotes non-existence and Xdenotes existence.

7.2 Future work

• Future research relating to the Vidale-Wolfe and extended Lanchester models should

include the formulation of a topological conjugacy between the trajectories of the Vidale-

Wolfe and extended Lanchester dynamical systems.

• Proposals for other advertising control policies and extensions to the models to represent

targeted policies and the inclusion of other parameters in the modeling (such as price,

quality) should also be considered.

• For the Replicator-Mutator model a systematic study of the dependence of the mutation

matrix Q on the client’s preference matrix A as well as of the consideration of the effect

of advertising on the mutation matrix Q and on the mutation parameter µ. Other

studies may involve the formulation and demonstration of general properties of the

model regarding the existence of equilibrium points and their stability conditions.

• Development of analytical results for the case of unequal delay values for each firm and

the discussion of the existence of the other types of delays (for example delay in the

undecided population x3).

100



Bibliography

[1] BEGG, D. Foundations of economics. McGraw-Hill, 2006.

[2] MCEACHERN, W. A. ECON Microeconomics. Cengage Learning, 2015.

[3] FRIEDMAN, J. Oligopoly Theory. Cambridge University Press, 1983.

[4] MANKIW, N. G. Principles of Microeconomics. Cengage Learning, 2011.

[5] ERICKSON, G. M. “An oligopoly model of dynamic advertising competition”, Euro-

pean Journal of Operational Research, v. 197, n. 1, pp. 374–388, 2009.

[6] KOTLER, P., ARMSTRONG, E. Principles of marketing. Pearson Education, 2010.

[7] WANG, Q., WU, Z. “A duopolistic model of dynamic competitive advertising”, Eu-

ropean Journal of Operational Research, v. 128, n. 1, pp. 213–226, 2001.

[8] NERLOVE, M., ARROW, K. J. “Optimal advertising policy under dynamic condi-

tions”, Economica, pp. 129–142, 1962.

[9] VIDALE, M., WOLFE, H. “An operations-research study of sales response to adver-

tising”, Operations research, v. 5, n. 3, pp. 370–381, 1957.

[10] LANCHESTER, F. W. Aircraft in warfare: The dawn of the fourth arm. Constable

limited, 1916.

[11] FEICHTINGER, G., HARTL, R. F., SETHI, S. P. “Dynamic optimal control models

in advertising: recent developments”, Management Science, v. 40, n. 2, pp. 195–

226, 1994.

[12] MAHAJAN, V., MULLER, E., WIND, Y. New-product diffusion models, v. 11.

Springer Science & Business Media, 2000.

[13] HUANG, J., LENG, M., LIANG, L. “Recent developments in dynamic advertising

research”, European Journal of Operational Research, v. 220, n. 3, pp. 591–609,

2012.

[14] ERICKSON, G. Dynamic models of advertising competition, v. 13. Springer Science

& Business Media, 2012.

101



[15] SANDHOLM, W. H. “Evolutionary game theory”. In: Encyclopedia of Complexity

and Systems Science, Springer, pp. 3176–3205, 2009.

[16] IZQUIERDO, L. R., IZQUIERDO, S. S., VEGA-REDONDO, F. “Learning and evo-

lutionary game theory”. In: Encyclopedia of the Sciences of Learning, Springer,

pp. 1782–1788, 2012.

[17] MATSUI, A. “On cultural evolution: social norms, rational behavior, and evolutionary

game theory”, Journal of the Japanese and International Economies, v. 10, n. 3,

pp. 262–294, 1996.

[18] MIŚKIEWICZ, J. “Economy with the time delay of information flow—The stock

market case”, Physica A: Statistical Mechanics and its Applications, v. 391,

n. 4, pp. 1388–1394, 2012.

[19] SCOTT, A. (Ed.). Encyclopedia of nonlinear science. Routledge, 2006.

[20] PINDYCK, R. S., RUBINFELD, D. Microeconomics (6th edn). Pearson Prentice

Hall, 2005.

[21] LAMBERTINI, L. Game theory in the social sciences: a reader-friendly guide. Taylor

& Francis, 2011.

[22] SHARMA, A., MISRA, A. “Backward bifurcation in a smoking cessation model with

media campaigns”, Applied Mathematical Modelling, v. 39, n. 3, pp. 1087–1098,

2015.

[23] SONG, J., LI, F., WU, D. D., et al. “Supply chain coordination through integration

of innovation effort and advertising support”, Applied Mathematical Modelling,

2017.

[24] HOYER, W. D., MACINNIS, D. J., PIETERS, R. Consumer behavior. Nelson

Education, 2016.

[25] JUST, D. R. Introduction to behavioral economics. Wiley Global Education, 2013.

[26] RUSSELL, E. The fundamentals of Marketing. AVA Academia, 2010.

[27] LUO, G. Y. Evolutionary foundations of equilibria in irrational markets, v. 28.

Springer Science & Business Media, 2011.

[28] VARIAN, H. R., REPCHECK, J. Intermediate microeconomics: a modern approach,

v. 6. WW Norton & Company New York, 2010.

[29] FAGGINI, M., VINCI, C. P. Decision theory and choices: A complexity approach.

Springer Science & Business Media, 2010.

[30] FATAS, E., FLETCHER, A., HARGREAVES-HEAP, S., et al. Behavioural Eco-

nomics in Competition and Consumer Policy. ESRC Centre for Competition
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[101] SÎRGHI, N., NEAMŢU, M. “Dynamics of Deterministic and Stochastic Evolu-

tionary Games with Multiple Delays”, International Journal of Bifurcation and

Chaos, v. 23, n. 07, pp. 1350122, 2013.

[102] KHALIFA, N. B., AZOUZI, R. E., HAYEL, Y. “Hopf Bifurcations in Replicator

Dynamics with Distributed Delays”, arXiv preprint arXiv:1703.06721, 2017.

107

https://tel.archives-ouvertes.fr/tel-00451970/document
https://tel.archives-ouvertes.fr/tel-00451970/document


Appendix A

Vidale-Wolfe and extended
Lanchester models

A.1 Equilibrium points for special cases of affine

control

Policy Control Parameters Equilibrium Points Conditions of Existence
P1 u1 = c1,u2 = c2

(
c1

c1+c2+λ
, c2
c1+c2+λ

)
Always exists

P2 u1 = k1x1,u2 = c2

(
0, c2

c2+λ

)
Always exists(

k1−c2−λ
k1

, c2
k1

)
k1 > c2 + λ

P3 u1 = k1x1,u2 = k2x2

(0, 0) Always exists(
0, k2−λ

k2

)
k2 > λ(

k1−λ
k1

, 0
)

k1 > λ

P4 u1 = k1x1 + c1,u2 = c2

(
2c−p
2c ,

p
2(c+λ)

)
Negative⇒Never exists(

2c−q
2c ,

q
2(c+λ)

)
c+ λ < g < 3c+ λ

P5 u1 = k1x1 + c1,u2 = k2x2

(
−λ−f
2k , 0

)
Negative⇒Never exists(

−λ+f
2k , 0

)
λ < f < 2k + λ(

k
k2−k ,

2kk2−kλ+k2λ−k22
kk2−k22

)
k < k2λ

λ−k2 ∧ k2 < λ
2

P6 u1 = k1x1 + c1,u2 = k2x2 + c2

(
−e−c−2f
4k , −e−c−2f4k

)
Negative⇒Never exists(

−e−c+2f
4k , −e−c+2f4k

)
2c+λ−k
2 < f < 3k+λ+2c

2

Table A.1: Equilibrium points and conditions of the control parameters for existence
of the equilibrium points under special cases of affine control
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Policy Determinant for Vidale-Wolfe model Trace for Vidale-Wolfe model
P1 λ (c1 + c2 + λ) −c1 − c2 − 2λ
P2 c2k1x1+ c2k1x2+ 2λk1x1+λk1x2+ c2λ− c2k1+λ2−λk1 −2k1x1 − k1x2 − c2 − 2λ+ k1

P3

2k1k2x21+4k1k2x1x2+2k1k2x22+2λk1x1+λk1x2+λk2x1+
2λk2x2 − 3k1k2x1 − 3k1k2x2 + λ2 − λk1 − λk2 + k1k2 −2k1x1 − k1x2 − k2x1 − 2k2x2 − 2λ+ k1 + k2

P4 c2x1 + c2x2 + 2cλx1 + cλx2 − c2 + cλ+ λ2 −2cx1 − cx2 − c− 2λ

P5
2kk2x21+ 4kk2x1x2+ 2kk2x22+ 2λkx1+λkx2+ +λk2x1+
+2λk2x2 − 2kk2x1 − 2kk2x2 + λ2 − λk2

−2kx1 − kx2 − k2x1 − 2k2x2 − 2λ+ k2

P6 (kx1 + kx2 + λ− k) (2kx1 + 2kx2 + 2c+ λ− k) −3kx1 − 3kx2 − 2c− 2λ+ 2k

Table A.2: Expressions for determinants and traces in Vidale-Wolfe model (3.10)
under special cases of affine control

Policy Determinant for extended Lanchester model Trace for extended Lanchester model
P1 (c1 + c2 + λ)2 −2c1 − 2c2 − 2λ
P2 (k1x1 + c2 + λ) (2k1x1 + c2 + λ− k1) −3k1x1 − 2c2 − 2λ+ k1

P3
2k21x

2
1 + 4k1k2x1x2 + 2k21x

2
2 + 3λk1x1 + 3λk2x2 − k21x1 −

2k1k2x1 − 2k1k2x2 − k22x2 + λ2 − λk1 − λk2 + k1k2
−3k1x1 − 3k2x2 − 2λ+ k1 + k2

P4 (2cx1 + c+ λ) (cx1 + 2c+ λ) −3cx1 − 3c− 2λ

P5
2k2x21 + 4kk2x1x2 + 2k22x

2
2 + 3λkx1 + 3λk2x2 + 2k2x1 −

2kk2x1 + kk2x2 − k22x2 + λ2 + λk − λk2
−3kx1 − 3k2x2 − 2λ− k + k2

P6 (2kx1 + 2kx2 + 2c+ λ− k) (kx1 + kx2 + 2c+ λ− k) −3kx1 − 3kx2 − 4c− 2λ+ 2k

Table A.3: Expressions for determinants and traces in extended Lanchester model
(3.17) under special cases of affine control

A.2 Particular Conditions for the control param-

eters in special cases of affine control

Policy Particular control parameters Expressions of Variables

P4 k1 = c1 = c2 = c
p = 3c+ λ+ g, q = 3c+ λ− g

g =
√

5c2 + 2cλ+ λ2

P5 k1 = c1 = k f =
√
λ2 + 4k2

P6
k1 = k2 = k f =

√
e2+2ec+c2+8kc

4
c1 = c2 = c e = c+ λ− k

Table A.4: Particular conditions for control parameters and expressions of variables
under special cases of affine control used in section 3.3 to analyse the equilibria and
stability of Vidale-Wolfe (3.10) and extended Lanchester models (3.17).
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Appendix B

Wang’s model of online
advertising ecosystem

Wang’s study [61] starts by defining the clients, the advertisers, and the website publishers

as agents involved in an online advertising ecosystem exposed to complex interaction pro-

cesses. Wang contemplates the modeling individual of the clients’ choice about advertisers

and modeling of the choice of advertisers concerning the website publishers. The model

proposed by Wang [61] takes into account the dynamics of the clients and the advertisers,

the preferences of the clients and the advertisers, the influence of advertising on the clients,

the positions of the advertisers in a ranking of websites and the interaction between other

advertisers. The model presented by Wang [61], characterizing the dynamics of clients and

advertisers utilizing the Replicator-Mutator dynamics is expressed as follows:

ẋu = [Qu]T Fuxu − φuxu +
N∑
v=1

λuvρuvyv −
N∑
v=1

αvyv (B.1)

ẏv = [Pv]T Hvyv − φvyv +
M∑
l=1

γvlξvlyv − βvyv (B.2)

where N is the number of the clients, M is the number of the advertisers in the ecosystem,

xu are the states which represent the individual assignment of the clients to the firms,

and yv are the states which depict individual assignment of the advertisers to the ranking

of websites, Qu is the mutation matrix individual of the clients about the choice of the

firms, Pv is the mutation matrix individual of the advertisers to the ranking of websites,

Fu is the diagonal matrix of individual fitness associated with the clients concerning to

firms, Hv is the diagonal matrix of individual fitness associated with the firms about the

ranking of websites, φu is the individual average fitness associated with the clients, φv

is the individual mean fitness associated with the firms, αu is the total capacity of the

clients, βv is the total capacity of the advertisers, λuv is the link between clients u and v,

ρuv is the influence of the client u about the client v, γvl is the influence of the advertiser

v to the advertiser l, and ξvl is the link between advertisers v and l.
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Equation (B.1) models the evolution of the individual clients’ choice to advertisers by

considering individual client’s preferences and the advertising effect enforced by the ad-

vertisers. Thus, the first two expressions of equation (B.1) represent the individual clients’

choice considering their preferences exclusively, while the last two parts of equation (B.1)

describe the influence of the advertising done by the advertisers based on the position of

a website publisher ranking. On the other hand, equation (B.2) represents the modeling

of the dynamics of advertisers to the website publisher. In this case, the Qiuchen Wang

model considers that the choice of the advertisers is determined by the individual pref-

erences of the advertisers and by the effect of interaction with other advertisers. So, the

first two expressions of equation (B.2) represent the choice of the advertisers only by their

preferences whereas the last two expressions of equation (B.2) describe the influence of

the other advertisers through the interaction in the ecosystem, taking into consideration

the presence of the website publishers, which interconnect clients and advertisers.

Concerning the design of advertising strategies by advertisers, Wang’s study [61] mainly

develops a verbal description of possible strategies that advertisers could carry out to im-

prove their relationship with the clients. The strategies addressed are essentially advertis-

ing strategies based on the acquisition of information and location of the clients.
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Appendix C

Parametric sensitivity of the
equilibrium points under variation
of population distribution
parameter β

C.1 Variation of population distribution parame-

ter β

In chapter 5 to simplify the analysis of the existence and stability of the equilibrium points,

the particular condition of the existence of two strategies with an equal fraction of the

population was considered. Now, in this section we examine the variation in parameter β

from equations (5.17) and (5.18). Thereby, equation (5.19) is given by:

0 = α3
(
2.4β − 1.6β2 − 1.6

)
+ α2

(
3.408β2 − 4.544β + 2.32

)
+ α

(
2.292β − 1.02− 2.016β2

)
+ 0.208β2 − 0.148β + 0.1

(C.1)

Figure C.1 shows that equilibrium point x1 has no monotonic behavior under the whole

interval of variations of parameter p4. Thus, it is possible to observe the existence of three

curves for x1. Then, the first curve (green) exists for the interval [0, 0.25]. The second curve

(red) exists for the interval [0.24, 0.25] and the third curve (blue) exists for the interval

[0.24, 1]. The first and third curve have monotonic increasing behavior, while the second

curve has monotonic decreasing behavior. Now, about the stability of the equilibrium point

figure C.1 displays that the equilibrium point is stable between the intervals [0, 0.204] and

[0.286, 1], that is, the rest point x1 is stable in stretches of the first (green) and third (blue)

curve.
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Figure C.1: Parametric sensitivity under variation of parameter β: (a) locus of equi-
librium point x1 (b) eigenvalue plot showing local stability of equilibrium point x1.
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Appendix D

Hopf bifurcation in Vidale-Wolfe
and extended Lanchester model

D.1 Hopf bifurcation caused by varying the con-

trol parameters

Rewriting the extended Lanchester model with adoption delay from Chapter 4, we have:

ẋ1 = u1τ (1− x1τ )− u2τx1τ − λ1x1
ẋ2 = u2τ (1− x2τ )− u1τx2τ − λ2x2

(D.1)

where:

u1τ = k1x1τ + c1 = k1x1 (t− τ1) + c1

u2τ = k2x2τ + c2 = k2x2 (t− τ2) + c2

Substituting the above expressions, model (D.1) can be expressed by:

ẋ1 = −x21τk1 − x1τx2τk2 − x1τ c1 − x1τ c2 + x1τk1 − λx1 + c1

ẋ2 = −x1τx2τk1 − x22τk2 − x2τ c1 − x2τ c2 + x2τk2 − λx2 + c2
(D.2)

In order to analyze the existence of Hopf bifurcation as a function of control parameters

we consider the following values for numerical simulations: x1(0) = 0.2, x2(0) = 0.1, λ =

0.25, k1 = 0.25, k2 = 0.2, c2 = 0.1, τ1 = 10, τ2 = 10. Figure D.1 shows the numerical results

with c1 being the bifurcation parameter. Figure D.1(a) presents the dynamics of the model

for c1 = 0.15 with oscillatory transient but stable dynamics meanwhile figure D.1(b) shows

the dynamics of the model for c1 = 0.19 with the existence of Hopf bifurcation.
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Figure D.1: Evolution of the market shares of firms 1 and 2 for the extended Lanch-
ester model with adoption delays for k1 = 0.25, k2 = 0.2, c2 = 0.1 with (a) equal
adoption delay value τ = 10 and c1 = 0.15 and (b) equal adoption delay value τ = 10
and c1 = 0.19. Note that for c1 = 0.19 the model presents Hopf bifurcation, that is,
variation of the control parameters can also lead to bifurcations.
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Appendix E

Links to Maple code for the
models proposed in this thesis

E.1 Maple code for the Vidale-Wolfe model

https://www.dropbox.com/s/ulx24q2gfs8labq/Vidale_Wolfe_Model.mw?dl=0

E.2 Maple code for the extended Lanchester

model

https://www.dropbox.com/s/te1vvx73715efm9/Extended_Lanchester_Model.mw?dl=

0

E.3 Maple code for the Vidale-Wolfe and ex-

tended Lanchester model with delays

https://www.dropbox.com/s/in3a00utheg5pcu/Vidale_Wolfe_extended_

Lanchester_Models_with_Delays.mw?dl=0

E.4 Maple code for the Replicator-Mutator

model

https://www.dropbox.com/s/5pt0lrhxeu6j17o/Replicator_Mutator_Model.mw?dl=0
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E.5 Maple code for the Replicator-Mutator

model with delays

E.5.1 Maple code for the Replicator-Mutator model with

implementation delay

https://www.dropbox.com/s/t54nkrgjz1x5co8/Replicator_Mutador_Model_with_

Implementation_Delay.mw?dl=0

E.5.2 Maple code for the Replicator-Mutator model with

adoption delay

https://www.dropbox.com/s/lbssvzt4lcqrnkr/Replicator_Mutador_Model_with_

Adoption_Delay.mw?dl=0
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