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COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
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UMA ABORDAGEM PARA EQUALIZAÇÃO ITERATIVA EM BLOCOS VIA

SENSORIAMENTO COMPRESSIVO: CONEXÕES E APLICAÇÕES EM

RECONSTRUÇÃO DE IMAGENS DE RADAR

Rafael Gustavo da Cunha Pereira Pinto

Março/2017

Orientador: Ricardo Merched

Programa: Engenharia Elétrica

A proliferação de sistemas sub-determinados trouxe a tona uma gama de

novas soluções algoŕıtmicas, baseadas no sensoriamento compressivo (CS) de dados

esparsos. As recursões do tipo greedy e de limitação iterativa para CS se apresentam

comumente como um filtro adaptativo seguido de um operador proximal, não

muito diferente dos equalizadores de realimentação de decisão iterativos em blocos

(BI-DFE), em que um decisor explora a estrutura do sinal de constelação.

A partir da esparsidade intŕınseca presente na modulação de sinais no contexto

de comunicações, a interferência entre blocos (IBI) pode ser abordada utilizando-se

o conceito de CS, onde a realimentação ótima de śımbolos detectados é realizada

de forma adaptativa. O novo DFE se apresenta como um esquema mais

eficiente de reestimação, baseado na atualização por mı́nimos quadrados recursivos

(RLS). Sempre que posśıvel, estas recursões são propostas via formulação linear

no sentido amplo, o que reduz ainda mais o erro médio quadrático mı́nimo

(MMSE) em comparação com abordagens tradicionais. Além de maximizar a

taxa de transferência de informação, o novo algoritmo exibe um desempenho

significativamente superior quando comparado aos métodos existentes.

Também mostraremos que um equalizador BI-DFE formulado adequadamente

se torna um poderoso algoritmo de CS. O novo algoritmo CS-BDFE apresenta

convergência e detecção aprimoradas, quando comparado a métodos de primeira

ordem, superando as recursões de Passagem de Mensagem Aproximada para

Complexos (CAMP). Os méritos das novas recursões são ilustrados através de um

modelo tridimensional para radares MIMO recentemente proposto, onde o algoritmo

CAMP falha em aspectos importantes de medidas de desempenho.
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The widespread of underdetermined systems has brought forth a variety of new

algorithmic solutions, which capitalize on the Compressed Sensing (CS) of sparse

data. While well known greedy or iterative threshold type of CS recursions take

the form of an adaptive filter followed by a proximal operator, this is no different in

spirit from the role of block iterative decision-feedback equalizers (BI-DFE), where

structure is roughly exploited by the signal constellation slicer.

By taking advantage of the intrinsic sparsity of signal modulations in a

communications scenario, the concept of interblock interference (IBI) can be

approached more cunningly in light of CS concepts, whereby the optimal feedback

of detected symbols is devised adaptively. The new DFE takes the form

of a more efficient re-estimation scheme, proposed under recursive-least-squares

based adaptations. Whenever suitable, these recursions are derived under

a reduced-complexity, widely-linear formulation, which further reduces the

minimum-mean-square-error (MMSE) in comparison with traditional strictly-linear

approaches. Besides maximizing system throughput, the new algorithms exhibit

significantly higher performance when compared to existing methods.

Our reasoning will also show that a properly formulated BI-DFE turns out

to be a powerful CS algorithm itself. A new algorithm, referred to as CS-Block

DFE (CS-BDFE) exhibits improved convergence and detection when compared to

first order methods, thus outperforming the state-of-the-art Complex Approximate

Message Passing (CAMP) recursions. The merits of the new recursions are

illustrated under a novel 3D MIMO Radar formulation, where the CAMP algorithm

is shown to fail with respect to important performance measures.

vi



Contents

List of Figures ix

List of Tables xii

Notation xiii

1 Introduction 1

1.1 Compressed sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Compressed sensing algorithms . . . . . . . . . . . . . . . . . 11

2 A Unified Approach to Compressed Sensing and Block-Iterative

Decision Feedback Equalizers 19

2.1 Iterative Estimation in Block-Based Equalizers — Motivation . . . . 22

2.2 Stochastic Problem and the Relation to Iterative DFE . . . . . . . . 25

2.3 Block Linear Equalization Revisited . . . . . . . . . . . . . . . . . . . 28

2.4 Reduced Complexity Widely-Linear BI-DFE . . . . . . . . . . . . . . 32

2.5 Optimal Decision-Delay . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Fast Computation of the Widely-Linear V-BLAST for Increasing

Index Ordered Detection . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Block Memoryless Equalization with Redundancy . . . . . . . . . . . 40

2.7.1 Displacement Structure in Signal Processing . . . . . . . . . . 43

2.7.2 DFT-based Superfast Receivers . . . . . . . . . . . . . . . . . 44

2.8 Reduced-Complexity-Widely-Linear Superfast BI-DFE . . . . . . . . 46

2.9 On Reduced-Redundancy Efficient Superfast Transceivers . . . . . . . 47

2.9.1 Preliminary Simulations . . . . . . . . . . . . . . . . . . . . . 49

2.10 Optimal Iterative Estimation of Digitally Modulated Signal

Constellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.10.1 Adaptive CS-based Formulation . . . . . . . . . . . . . . . . . 58

2.10.2 Computation of the Threshold . . . . . . . . . . . . . . . . . . 63

2.11 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.12 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



3 Stochastic Compressed Sensing Block-Iterative Decision Feedback

Equalization (CS-BDFE) 85

3.1 Kalman Filter based Compressed Sensing . . . . . . . . . . . . . . . . 86

3.2 Block-Iterative DFE . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.1 Threshold Model . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.2 Numerical evaluation . . . . . . . . . . . . . . . . . . . . . . . 94

4 3D Compressed Sensing Radar Imaging and Application of the New

Algorithms 99

4.1 Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 MIMO Radar Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.1 Phased-array systems . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.2 Array geometry considerations . . . . . . . . . . . . . . . . . . 111

4.3.3 Multistatic and MIMO radars . . . . . . . . . . . . . . . . . . 114

4.4 Coherence conditions for F . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Future Work Proposals 132

5.1 Compressed sensing for downsampled received signals . . . . . . . . . 132

5.2 CS-BDFE applied to the estimation of constellation signals . . . . . . 133

6 Final Considerations 135

Bibliography 138

A Entrywise solution for the `0 proximal mapping 148

viii



List of Figures

2.1 Block Transmission Scheme. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Kalman-like DFE estimation. . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Generalized Kalman DFE estimation. . . . . . . . . . . . . . . . . . . 31

2.4 Equivalent DFE architecture. . . . . . . . . . . . . . . . . . . . . . . 31

2.5 One-tap block DFE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 SC-FD DFT Decomposition. . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 SC-FD [(a) and (c)] and MC [(b) and (d)] schemes for channels 1 and

2, for RR, MR, and standard systems — Throughput (Mbps)×SNR (dB). 50

2.8 MC transceivers, M = 64, L = 41 (9 path gains randomly located). . 53

2.9 LTE EPA channel model — Comparison with the ZJ scheme. . . . . 54

2.10 LTE-EPA: Block GDFE (DF-IBI) × ZJ-DFE × standard schemes. . . 55

2.11 A (a) correctly detected and a (b) incorrectly detected symbol are

shown. Black dots show the possible values of x̄i−1(k), given an

estimate xi−1(k). The red dot is the current update ∆x̂i(k) and the

gray circle corresponds to the possible values of ∆x̂i(k) + x̃i(k) given

the variance σ2
i,k. The dashed circle has radius dmin . . . . . . . . . . 65

2.12 Varying α, M = 64, QAM-4 symbols, L = 15, δ = 0, 900 random

channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.13 Varying α, M = 64, QAM-4 symbols, L = 31, δ = 0, 900 random

channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.14 Varying α, M = 64, QAM-4 symbols, L = 15, δ = 7 (MR), 900

random channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.15 Varying α, M = 64, QAM-4 symbols, L = 31, δ = 15 (MR), 900

random channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.16 Varying α, M = 64, QAM-4 symbols, L = 47, δ = 23 (MR), 900

random channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.17 M = 64, QAM-4 symbols, L = 15, δ = 7 (MR), 500 random channels. 74

2.18 M = 64, QAM-4 symbols, L = 31, δ = 15 (MR), 500 random channels. 74

2.19 M = 64, QAM-4 symbols, L = 47, δ = 23 (MR), 500 random channels. 75

2.20 M = 64 QAM-4 symbols, L = 15, δ = 3, 500 random channels. . . . . 76

ix



2.21 M = 64 QAM-4 symbols, L = 31, δ = 7, 500 random channels. . . . . 76

2.22 M = 64 QAM-4 symbols, L = 15, δ = 7 (MR), single channel. . . . . 77

2.23 M = 64 QAM-4 symbols, L = 15, δ = 9, single channel. . . . . . . . . 78

2.24 M = 64 QAM-4 symbols, L = 15, δ = 13, single channel. . . . . . . . 78

2.25 75 QAM-4 symbols recovered from 64 received samples, with no

discarded inputs and 3 padded zeros (500 random channels, L = 15,

δ = 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.26 71 symbols recovered from 64 received samples, with no discarded

inputs and 7 padded zeros (500 random channels, L = 15, δ = 7). . . 80

2.27 87 QAM-4 symbols recovered from 64 received samples, with no

discarded inputs and 23 padded zeros (500 random channels, L = 47,

δ = 23). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.28 73 symbols recovered from 64 received samples, with no discarded

inputs and 5 padded zeros (single, L = 15, δopt = 5). . . . . . . . . . 81

2.29 M = 64 PAM-4 symbols, L = 15, δ = 7 (MR), 500 random channels. . 82

2.30 78 PAM-4 symbols recovered from 64 received samples, with no

discarded inputs and no padded zeros (500 random channels, L = 15,

δ = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.31 75 PAM-4 symbols recovered from 64 received samples, with no

discarded inputs and 3 padded zeros (500 random channels, L = 15,

δ = 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.32 LTE EPA channel model — Comparison with the ZJ scheme. . . . . 84

2.33 LTE-EPA: Block GDFE (DF-IBI) × ZJ-DFE × standard schemes. . . 84

3.1 Resulting Block DFE structure. . . . . . . . . . . . . . . . . . . . . . 90

3.2 Two discs in the complex plane, with different values of x̂ and x̃. The

shaded area denotes the possible values for x(k) = x̂(k) + x̃(k). . . . . 93

3.3 Average Fractional Error for CAMP and CS-BDFE algorithms, with

15 dB SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4 AFE for CAMP and CS-BDFE algorithms, with 15 dB SNR, for block

Toeplitz sensing matrices. . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 False Discovery Ratio for (a) CAMP and (b) CS-BDFE algorithms,

and False Rejection Ratio for (c) CAMP and (d) CS-BDFE

algorithms, with 15 dB SNR. . . . . . . . . . . . . . . . . . . . . . . . 98

3.6 FDR for (a) CAMP and (b) CS-BDFE algorithms, and FRR for

(c) CAMP and (d) CS-BDFE algorithms, with 15 dB SNR, for

block-Toeplitz structured systems. . . . . . . . . . . . . . . . . . . . . 98

4.1 Simplified MIMO radar model . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Beampattern of an array with 11 elements separated by d = λ0/2 . . . 113

x



4.3 Combined beampattern of a virtual array with MT = 5, MR = 11,

dT = 11λ0/2 and dR = λ0/2 . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Comparison of ‖RP(k)‖F in different lags, for two different sequence

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5 (a) AFE and (b) FRR for CAMP and CS-BDFE algorithms for a

MIMO radar setup under 15 dB SNR. . . . . . . . . . . . . . . . . . . 125

4.6 Detail of the FRR plot for CAMP and CS-BDFE algorithms for a

MIMO radar setup under 15 dB SNR. . . . . . . . . . . . . . . . . . . 126

4.7 FDR for CAMP and CS-BDFE algorithms for a MIMO radar setup.

In (a) the noise level is 15 dB SNR, and the algorithm is set up with

σ2
v = 10−1.5σ2

x. In (b) the noise level is kept at 15 dB SNR, while the

algorithm run with σ2
v = 10−2σ2

x which is pertinent to a 20 dB SNR. . 127

4.8 Exact target image for radar testing. . . . . . . . . . . . . . . . . . . 127

4.9 Image recovered using CAMP in a single step, with 10dB SNR. . . . 128

4.10 Image recovered using GDFE in a single step, with 10dB SNR. . . . . 128

4.11 Image recovered using GDFE in a single step, with mismatched σ2
v

set in the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.12 Image recovered using CAMP in a two-step procedure, with 10db SNR129

4.13 Image recovered using GDFE in a two-step procedure, with 10db SNR130

4.14 FDTD image recovered using CAMP in one step. . . . . . . . . . . . 131

4.15 FDTD image recovered using CS-BDFE in one step. . . . . . . . . . . 131

5.1 Single receiver downsampler . . . . . . . . . . . . . . . . . . . . . . . 132

xi



List of Tables

2.1 Fast transversal computation of the V-BLAST filters g`. . . . . . . . . . 39

2.2 Fast transversal computation of the V-BLAST filters g` when δ > L− 1. . 39

2.3 CS-based Kalman algorithm. . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 CS-based Generalized Block Iterative DFE. . . . . . . . . . . . . . . . 95

4.1 Single step recovery performance . . . . . . . . . . . . . . . . . . . . 129

4.2 Single step recovery performance . . . . . . . . . . . . . . . . . . . . 129

xii



Notation

Throughout the text, we are going to use a few typographic notations, listed below:

x lower-case letter denotes a scalar

z∗ complex conjugation of a complex number z

<(z) the real part of a complex number z

=(z) the imaginary part of a complex number z

|x| absolute value of x

x,x, x lower-case boldface letter denotes a vector

x(i) i-th element of a vector

x̂ an unit vector in the same direction as x

x̂ an estimate of x

A, A,A upper-case boldface and calligraphic letters denote matrices

IN N ×N identity matrix

1N×M N ×M all-ones matrix

0N×M N ×M null matrix

AT matrix transposition

A∗ matrix Hermitian transposition

[A]i i-th column of a matrix

[A]i,j the element at row i, column j

[A]i,: i-th row of a matrix

‖x‖p p-norm of vector x

‖x‖ Euclidean norm of vector x

‖A‖F Fröbenius norm of a matrix

‖A‖p induced p-norm of a matrix

‖A‖, ‖A‖2 induced 2-norm of a matrix

λmax(A) largest magnitude eingenvalue of a matrix

⊗ Kronecker product

� Hadamard product

vec(·) column stacking operator

null(·) null space of a matrix

xiii



~ convolution operator
∂
∂x

partial derivative with respect to variable x
∂2

∂2x
second-order partial derivative with respect to variable x

f ′(x) first-order derivative of a function of one variable

f ′′(x) second-order derivative of a function of one variable

In general, upper-case letters denote integer quantities. Dimensions for the

identity matrix I, the all-ones matrix 1 and the null matrix 0 can be omitted

whenever possible and inferred from the implied dimensions.
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Chapter 1

Introduction

Compressed sensing (CS) has been the key to resolving the underdeterminacy

deep-rooted in a variety of practical systems featuring few available

measurements [1–3]. Generally speaking, the solution to these systems when

restricted to the smallest cardinality, represented as the `0-norm, is NP-complex. In

case this restriction is relaxed to the smallest `1-norm, even though obtaining the

solution can be easily expressed as a linear programming, the ongoing search for

iterative algorithms that avoid the computational burden of interior point methods

is paramount[4–10]. When tackled iteratively, the resulting CS recursions take the

form of a block adaptive algorithm equipped with a generic (soft/hard) thresholding

function, thus reflecting some a priori knowledge of sparsity in the unknown

parameter. This is by no means different in spirit from the role of a decision device

commonly deployed by block iterative decision-feedback equalizers (BI-DFE) [11, 12],

where structure is translated to a projection, e.g., of a least-squares (LS) or

minimum-mean square-error (MMSE) estimate, onto the transmitted signal

constellation. Such type of iterative DFE has been proposed, for example,

in [11], under signal-to-interference-plus-noise ratio (SINR) maximization, as a

re-estimation procedure for the transmitted block given prior decisions. A similar

approach has been further considered in [12] under MMSE or a zero-forcing (ZF)

based cost function, in the so-called reduced-redundancy block DFE transceivers.

Despite the similarities between CS and BI-DFE based recursions, these theories

have evolved rather independently, as different recipes working in distinct scenarios.

In this respect, several subtleties arise when comparing the DFE functioning in a

communications setting, and a CS algorithm generally designed for sparsity recovery.

For instance, the block DFE algorithms considered in [11, 12] are similar in nature

to the widely known greedy and iterative soft/hard thresholding (IST and IHT) type

recursions (to be reviewed shortly) commonly referenced in the CS literature, albeit

ones with a few remarkable differences:

1



(1) First, in a BI-DFE, the signal slicer acts on each entry of the MMSE estimated

vector as a projection operator onto the closest point of the signal constellation,

while in a CS algorithm, each entry is projected onto the origin according to a

soft or hard thresholding rule. Second, in block transmission transceivers, the

role of the sensing matrix is frequently assumed by a ‘fat’ matrix possessing

a Toeplitz structure, as a result of the convolutional model inherent to

linear time-invariant (LTI) channels. In order to cope with the intrinsic

underdeterminacy of this problem, the effective transmission matrix can be

modified by introducing some form of redundancy that accounts for interblock

interference (IBI), and/or by the use of past decisions so as to remove IBI —

be it in a linear equalization, or in a block memoryless transmission fashion.

(2) In a general use CS setting, on the other hand, while the sensing matrix still

represents an underdetermined problem, it may not be restricted to Toeplitz

structures, and sparsity allows for data recovery up to a certain extent. The

accuracy in the estimation under additive noise is commonly dictated by the

so-called restricted isometry property (RIP) of the sensing matrix [13], which is

quantified by the noise level, and the presumed sparsity in the target vector.

This is further related to a coherence measure [1] of the sensing matrix, which

is simpler to calculate, and yields useful bounds on different norms of the

estimation error.

The above nuances raise several intuitive questions and suggest that a closer

look into the connections between these two approaches can lead us to improved

performances in each setting individually. For example, what is the exact relation

between the classes of IST/IHT types of compressed sensing algorithms, which aim

sparse recovery from a CS perspective, and the long studied structures of iterative

DFE schemes towards constellation detection in digital communications? Is there a

common line in the derivation of both techniques which can enlighten us with more

efficient and accurate schemes beneficial for each scenario?

The kickoff of this presentation is to highlight that while these concepts have

developed apparently unrelated, both originate from the same exact problem

formulation and can be developed into more efficient techniques to recover structured

signals in both communications and generic sparse settings. We capitalize on the

interplays between the CS and the BI-DFE formulations in order to derive new

algorithms applied to equalization and compressed sensing problems.

From these connections, we approach the CS problem from a LS perspective

by employing a suitable regularization function, in addition to the well known

regularized recursive least-squares (RLS) problem formulation [14]. That is, in a

communications setting, for a complex vector x with entries belonging to a signal

2



constellation, and given its a priori estimate, say, xi−1, any centered vector (x−xi−1)

is potentially a sparse vector. This suggests an `0 or `1 type norm regularizer on

(x−xi−1), as a means to reflecting sparsity adaptively into the BI-DFE formulation.

The iterative solution to such problem will naturally yield a BI-DFE without the

explicit optimization of a feedback matrix as it has been the case in DFE derivations.

The new algorithm can be obtained exactly as Iterative-Shrinking recursions, and

because these are essentially RLS type algorithms, they will generally include an

inverse Hessian matrix term at each algorithm step. The proposed CS algorithms

are specially useful in the case of long transmitted blocks of data, where complexity

becomes higher and sparsity exploitation assumes a crucial role.

A significant implication of this observation for block transmissions is that, while

traditional techniques commonly deploy some form of redundancy to account for

IBI cancellation [12, 15, 16], a CS technique applied to the transmitted vector, if

successful, would require no redundancy whatsoever, and is capable of detecting

both the symbol and its interference altogether. This is to be contrasted with

systems that perform block-by-block detection and employ conventional DFEs (with

memory), or block memoryless DFEs employing minimum, or even zero-redundancy,

in order to eliminate IBI. In fact, for a channel of length L, the concept of

“minimum redundancy” transmissions [17], which have been fairly mentioned in the

communications literature in the context of ZF/MMSE equalizers, makes use of

δ = d(L − 1)/2e zeros appended to the input vector, and will turn out to be not

really minimum, according to our receiver design. That is, our interpretation of

sparsity embedded into the transmitted vector will allow us to recover it exactly,

and with higher throughput than the one assumed by a zero-redundancy scheme.

As a fallout, a procedure that attempts to retrieve x, if successful, will imply that

not only redundancy in transmission is unnecessary, but also that the received signal

can be sampled at a lower rate than what is predicted by Nyquist theory. Although

this is the very essence of CS, here we show how this is particularly applied to signal

constellations in digital communications. Moreover, a compressed sensing approach

devised to detect constellation points will show further improvement in performance

when compared to conventional standard MMSE/ZF-based equalizers that employs

the same level of (low) redundancy, and inevitably suffers from ill-conditioning.

Conversely, we make use of the rationale behind the derivation of BI-DFE

algorithms in order to tackle difficult sensing problems, not commonly solved by

known CS techniques. To this end, we derive a new Compressed Sensing Block

DFE (CS-BDFE) based algorithm, intended (but not limited) to generally ill-posed

scenarios. Unlike in the DFE setup, where the target vector exhibits a constellation

signal nature, in a pure CS application, structure in the data is solely characterized

by vector sparsity, so that current CS algorithms may still not reach the desired
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performance for highly coherent dictionaries. For example, in RADAR applications,

the underlying sensing matrix exhibits a block Toeplitz structure, which can become

very ill-conditioned [18–22]. The unifying approach pursued here will suggest that a

block equalization algorithm, when properly adjusted to detect ‘zeros’ rather than

a constellation signal, can outperform the state-of-the-art of CS algorithms found

in the literature for the same purpose.

Overall, while most CS iterative algorithms consist of least-mean-squares (LMS)

type updates [1–3], we pursue instead a more computationally demanding approach

towards a solution based on second-order methods — albeit one provided with

accelerated convergence, as well as improved accuracy in terms of final estimate

and target support. Despite the additional complexity, the proposed method

outperforms state-of-the-art of CS algorithms based on the concept of message

passing, which is used in this work as a basis for comparison, under meaningful

performance measures. The famed Complex Approximate Message Passing (CAMP)

algorithm, which derives from belief propagation concepts and studied in [10],

constitutes an important class of CS, iterative shrinking recursions, which is well

suited for sparse scenarios when neither the noise variance nor the sparsity levels of

the target are known a priori [23].

Considering the above, the specific contributions of this work are the following:

1. We bring attention to the fact that a properly formulated BI-DFE can be seen

as a CS algorithm obtained in its own right, and not as a pre-imposed structure

optimized via some criterion. While traditional formulations of (block) DFEs

commonly begin with the optimization of feedforward and feedback matrices

in a stochastic sense [11, 12, 24], such architecture in fact arises naturally

from a suitably regularized LS problem, and is therefore optimal in this

sense. This interpretation brings us an important advantage w.r.t. the most

common forms of CS (LMS-based) algorithms, from a BI-DFE perspective:

The Ricatti variable propagated through the Kalman filter exempts us from

most concerns that arise in a general CS scenario, where accuracy is highly

dependent on the sensing matrix coherence. This is analogous to the role of a

RLS adaptive algorithm in the estimation of correlated regressors. Moreover,

unlike in the original BI-DFE[11], where uncertainty throughout the iterations

can be a pre-computed complex phase, a CS based formulation allows for an

adaptive calculation of uncertainty in detection, which is available from the

error covariance before slicing. We pursue the new algorithms under different

policies of assigning uncertainty to the detected entries. Each one exploits a

different strategy for symbol feedback, exhibiting their own complexity and

performance advantages;
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2. Whenever suited, we further derive a reduced-complexity (RC)

widely-linear (WL) [25] version of the BI-DFE, which does not require

the traditional circularity assumption on the involved target and noise

vectors. The advantage of this approach is two-fold: To improve the

performance of current iterative DFE equalizers in a communications setting

for non-circular models or improper signals, and to provide alternative efficient

CS algorithms that are complex in nature. For example, in the case of binary

phase-shifting keying (BPSK) signals, the performance of zero redundancy

equalizers can be further improved compared to their strictly-linear (SL)

counterparts, and becomes even more prominent for redundant transmissions.

The RC approach has been recently shown to be equivalent to the original

WL formulation [26], with order of complexity approximately equal to the SL

one, and for this reason becomes highly motivated;

3. For a greedy approach, we show that a special case of the vertical Bell Labs

Layered space time (V-BLAST) algorithm [27] employing sequential detection

of entries can make use of a fast transversal filter (FTF) to compute the

DFE matrices, henceforth providing a new alternative to the complexity issue

implied by the Cholesky factorization inherent to its solution. Moreover, for

batch estimation, we shall propose superfast solutions in connection to the

proposed WL algorithms, so that further gains in performance are achieved

for improper signals;

4. We investigate the state of the art of superfast realizations of RR transceivers

w.r.t. the so-called linear reduced redundancy (RR) systems, which motivates

the architectures considered in this work. We verify that unlike what has

been claimed in the literature, MR schemes offer no advantage over standard

schemes in neither MC or SC configurations, regardless of its use under

coding or via discrete Hartley transform (DHT) implementations more recently

proposed in [28]. This will be illustrated for both DFT and what the referred

papers name as DHT based transceivers. We demonstrate that the latter

corresponds simply to a DFT based expression, written in terms of DHT

transforms, and that a negligible BER gain is obtained in comparison to

standard schemes. Our simulation results contradict the conclusions in [28–32],

and verify on the other hand, that simple reduced redundancy block decision

feedback equalizers (DFEs), which are widely known, outperform the MC and

SC-FD linear MR counterparts significantly, under much lower redundancy

transmissions, with equal superfast complexity. We consider a simple Extended

Pedestrian A (EPA) model of the Long Term Evolution (LTE) standard [33],

and verify that redundancy cannot be reduced towards its optimal value in ZF
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or MMSE equalization, a condition that can only be achieved by the proposed

block DFE receivers;

5. In view of the discussion in the previous item, and given a primary goal of

minimizing redundancy in block transmissions, we propose a new CS-based

DFE algorithm to deal with signals belonging to signal constellations, which

are capable of retrieving the information vector from an underdetermined

transmission system (that is, below the zero redundancy level);

6. We derive a general purpose CS-BDFE algorithm intended to more strict,

structured sensing problems. Instead of LMS type updates used by most

iterative algorithms in CS, our approach relies on second-order methods, which

although more computationally demanding, exhibits improved accuracy in

terms of final estimate and target support;

7. In order to validate the previous result, we develop a full joint

range/cross-range convolution model for multi-input-multi-output (MIMO)

Radars, and obtain conditions for which CS techniques can be employed

when reconstructing a volumetric image. After constructing the corresponding

discrete model suitable for CS, we take a step further by decoupling it into two

separate sparse problems, albeit ones that exhibit more structured separated

models, convenient for efficient implementations. The recovery ability in

this case is assessed by means of their coherence measure. Using synthetic

simulations, and a finite differences in time domain (FDTD) [34] simulation of

Maxwell’s equations, we gauge both the model and the CS-BDFE algorithm

performances, with excellent results.

This work is organized as follows. We provide a quick review on the basics of CS

concepts, recovery guarantees, and CS algorithms, as well as introduce the CAMP

algorithm in Sec. 1.1. The well known IHT and IST algorithms are obtained from a

more general formulation, which shall motivate the CS-DFE based approach in the

sequel.

In Chapter 2 the BI-DFE based recursion is shown to rise naturally from a RLS

cost function, without a priori assumptions on the DFE feedback structure. We

show how the well known V-BLAST algorithm follows from our derivation as a

special case, and propose a fast computation of its constituting DFE matrices based

on the FTF recursions. From the main CS problem that originates the IHT/IST

algorithms, we show how to extend it in order to obtain a CS-based DFE recursion.

The new algorithm makes use of a statistical hypothesis test that selects the correctly

detected entries to be fed back in order to remove the ‘columns interference’ from
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the linear model. The performance of the novel recursions is evaluated considering

several distinct and useful scenarios.

In Chapter 3 we develop a CS algorithm starting from a stochastic formulation,

yielding a new CS-BDFE algorithm intended to generic compressed sensing

problems. We then proceed to evaluate the performance of the proposed CS-BDFE

and the CAMP algorithms, by means of three different performance indicators,

based on phase transition diagrams. The algorithms efficacy are verified for general

purpose sensing matrices, structured block Toeplitz, as well as matrices designed

exactly from a real MIMO radar setup. Our goal is to demonstrate that, despite

being more complex, the superiority of the proposed CS-BDFE algorithm emerges

as an alternative solution, when fast convergence and accuracy in detection are

mandatory. This becomes specially relevant in difficult, ill-posed scenarios where

the involved sensing matrices are not user-designed.

Chapter 4 applies our previous solutions to the important scenario of 3D radar

imaging reconstruction recently developed by the author in [18, 19], considering

a full joint range/cross-range convolution model for MIMO radars. We further

relate the array geometry and transmitted pulses directly to the radar’s recovery

ability, assessed via the underlying sensing matrix coherence. After constructing

such model, suitable for CS, we take a step further by decoupling it into two

separate sparse problems, albeit ones that exhibit more structured linear relations,

for efficient implementations. This model is then used by a CS-BDFE algorithm

applied to a real-world radar system, considering three performance indicators. We

consider a FDTD simulation of a real radar in order to show that the proposed

CS-BDFE can even disregard secondary scattering, a non-linear effect that is not

taken into account in our model in the first place, which appears as interference.

The publications that resulted from the research present in this dissertation are

the following:

1. A conference paper “Compressed sensing joint range and cross-range

MIMO Radar imaging” [18] presented in the 2015 International Conference

on Acoustics Speech and Signal Processing (ICASSP 2015), where the author

develops the full 3D model for range and cross-range convolution in the

MIMO radar setup, and its corresponding conditions for image recovery via

compressed sensing — see Chapter 4, corresponding to item 7;

2. A conference paper “An efficient two-step procedure for compressed

sensing 3D MIMO radar” [19] presented in the 2015 23rd European Signal

Processing Conference (EUSIPCO 2015), proposing an efficient two-step

procedure for CS — see Chapter 4 corresponding to item 7;
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3. A submitted journal paper “Compressed Sensing Block Decision

Feedback Equalization in Radar Imaging: Interplays and

Connections for Sparse Recovery” [35] to the EURASIP Journal on

Advances in Signal Processing, describing the CD-BDFE algorithm, which

is evaluated against the model presented in the previous publications,

corresponding to contributions 6 and 7;

4. A journal paper (in preparation) on the unification of CS algorithms for

sparse recovery of signal constellation vectors in communications.
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1.1 Compressed sensing

Compressed sensing is a technique for signal reconstruction, where the underlying

linear model that relates measures and the searched parameter consists of an

underdetermined system of equations. The main assumption in CS reckons on an a

priori information that the signal vector to be recovered is sparse, i.e., most of its

entries are null. More specifically, a vector is said to be k-sparse, if at most k of its

entries are non-zero.

The motivation behind its application in signal processing stems from the fact

that although a vast amount of real signals are not sparse, most can be represented

by a sparse combination of bases, notably termed as compressible signals. One can

see CS as way to tackle the ill-conditioning of a certain model, or to reduce the

received signal sampling rate to more tractable levels.

Suppose we have a linear system y = Hx, where H is underdetermined. To

find the sparsest solution, one can resort to the minimization problem:

xo = argmin
x
‖x‖0

s.t. Hx = y,
(1.1)

where ‖ · ‖0 denotes the cardinality of a vector, often treated as a pseudo-norm.

There are a few sufficient conditions to ensure that the minimizer xo is unique.

The first sufficient condition is the so-called null-space property(NSP), which

states that it suffices to recover any k-sparse vector such that no 2k-sparse vectors are

projected onto the null-space of the sensing matrix. The NSP can be characterized

through the notion of spark of a matrix [1], which is given by the smallest number

of its linearly dependent columns. A fundamental theorem by Donoho (Thm. 3 and

Cor. 1 in [36]) shows that if

‖x‖0 <
1

2
Spark(H) (1.2)

is a solution of (1.1), then it is the sparsest possible solution, and necessarily its

unique minimizer. In general, this property is not of practical use, as the spark

of a matrix is difficult to compute, requiring 2P operations for an M × P matrix,

except for a handful of structured matrices. The notion of spark, and in particular,

the so-called full spark matrices, will be significant to our development, and will be

elaborated in Sec. 2.10. Reference [37] presents some classes of matrices that are full

spark, i.e., rectangular M × P matrices H , P ≥M , where Spark(H) = M + 1.

A second condition for the existence of a unique minimizer xo is based on another

measure known as restricted isometry property (RIP), introduced by Candès and

Tao[13]. The RIP is defined in terms of the isometry constant of a matrix H , which
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is the smallest number δk ∈ (0, 1) such that

(1− δk)‖x‖2
2 ≤ ‖Hx‖2

2 ≤ (1 + δk)‖x‖2
2 (1.3)

Loosely speaking, a matrix H is said to obey the RIP of order k, if δk is not too

close to one, implying that it preserves the Euclidean distances between all k-sparse

vectors[3].

To verify how RIP is related to the uniqueness of the minimizer of (1.1), take the

difference between two k-sparse vectors, for which, in general, we obtain a 2k-sparse

vector. If H satisfies RIP of order 2k, that is, 0 < δ2k < 1 , then it will preserve

the distance between those two vectors. Hence, for any k-sparse minimizer xo of a

system whose measurement matrix obeys RIP of order 2k, we have that

(1− δ2k)‖xo − x‖2
2 ≤ ‖H(xo − x)‖2

2 ≤ (1 + δ2k)‖xo − x‖2
2. (1.4)

where x is any other k-sparse vector, x 6= xo. Now, supposing δ2k = 1, the right hand

side of (1.4) becomes zero, meaning that there may exist a x such that H(xo−x) =

0, thus violating the NSP. In this situation, it is not possible to recover all k-sparse

vectors after projection by H . However, just as difficult as calculating the spark,

determining the isometry constant of a matrix is not practical and seldom used,

except for a few classes of matrices where it can be determined by their structure.

A more tractable way to address the uniqueness of the minimizer in (1.1) makes

use of the concept of coherence of a matrix, defined as:

µ(H) , max
i 6=j

|h∗ihj|
‖hi‖2‖hj‖2

, (1.5)

where hi denotes the i-th column of H . As shown in Lemma 1.4 of [1], it is possible

to use the Geršgorin circle theorem to relate the coherence of a matrix to its spark.

The relation between the spark and the mutual coherence, on the other hand, can

be derived by contradiction. Without loss of generality, assume that the columns

of H are normalized. Then, all diagonal elements of the (P × P ) Gram matrix

G(H) = H∗H will be equal to one, and the mutual coherence becomes the

maximum absolute value of any off-diagonal element of G(H). Let Spark(H) = p,
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and denote by Bp any p× p principal submatrix1 of G(H). Then, we must have

|[Bp]ii| = 1 , (1.6)
p−1∑
j=0
j 6=i

|[Bp]ij| ≤ (p− 1)µ(H) . (1.7)

Now, suppose p < 1+µ(H)−1, so that 1 > (p−1)µ(H). This implies that |[Bp]ii| >∑
j 6=i |[Bp]ij| and by the Geršgorin circles theorem, we must have Bp > 0. This is

however a contradiction, since having positive definite submatrices Bp means that

H should have at least p linearly independent columns, i.e., Spark(H) > p. This

establishes the following lowerbound:

Spark(H) ≥ 1 +
1

µ(H)
.

Although simple to compute, the spark obtained from the coherence measure can be

considered a worst-case lowerbound[38], since often, the spark is much larger then

coherence. As a consequence, using (1.2), any k−sparse solution of (1.1) is unique,

given that

k <
1

2

(
1 +

1

µ(H)

)
. (1.8)

1.1.1 Compressed sensing algorithms

Solving (1.1) directly is NP-hard, as it is a combinatorial optimization problem.

Therefore, one of the greatest efforts within the CS community is to find efficient

algorithms for solving this task. The existing CS algorithms found in the literature

of CS can be roughly classified into three groups [2, 3]:

• Exact `1 regularized convex optimization,

• Greedy algorithms,

• Iterative Shrinkage algorithms.

1A n×n principal submatrix of a P ×P matrix is obtained by removing from it P −n similarly
indexed, and not necessarily contiguous, columns and rows. As a consequence, the diagonal of a
principal submatrix is composed by elements of diagonal of the full matrix.
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`1 norm regularized least squares (LS)

Replacing the cardinality measure in (1.1) by an `1-norm, it collapses to the

formulation known as Basis Pursuit(BP):

xo = argmin
x
‖x‖1

s.t. Hx = y.
(1.9)

A result due to Donoho (Thm. 7 in [36]) shows that, if (1.8) holds, then the

unique minimizer of (1.1) is also the unique minimizer of (1.9). The algorithms

for solving `1-norm regularized least squares (LS) problems have a long history of

development, leading to very efficient implementations [39–41]. Another result by

Candès (Thm. 1.1 in [42]) shows that while the isometry constant δ2k < 1 ensures

the uniqueness of the minimizer of (1.1), if δ2k <
√

2− 1, the minimizer of (1.9) is

also a unique minimizer of (1.1).

In a noisy environment, the model is described as y = Hx + v, where v is an

uncorrelated noise; for such models, we can relax the constraint of the BP in (1.9)

and state the problem as

xo = argmin
x
‖x‖1

s.t. ‖y −Hx‖2 ≤ σ.
(1.10)

This is known as Basis Pursuit De-Noising(BPDN) formulation. Note that the BP

is essentially the BPDN with σ = 0. Both algorithms were originally proposed

for decomposing signals in terms of atoms in an overcomplete expansion [43].

A mathematically equivalent formulation, which also arises within the statistics

community is given by

xo = argmin
x
‖y −Hx‖2

s.t. ‖x‖1 < ρ.
(1.11)

For appropriate choices of σ and ρ, this is frequently referred to as the Least Absolute

Shrinkage and Selection Operator(LASSO) (named after an iterative algorithm for

solving this objective function[39]). Moreover, both problems can be formulated as

an unconstrained (regularized) minimization, i.e.,

xo = argmin
x
‖y −Hx‖2

2 + ε‖x‖1, (1.12)

and are equivalent to (1.9) and (1.10) under a proper choice of the lagrange multiplier

ε (see [44]). Theorem 1.2 in [42] shows that, for a small enough isometry constant
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δ2k, the minimizers of (1.10), (1.11) and (1.12) are the unique minimizers of (1.1).

Generally speaking, these problem can be solved by a quadratic constrained

quadratic program (QCQP), for which many solvers are readily available. In CS

applications the number of variables can be quite large, and QCQP becomes

prohibitively slow, as the underlying Karush-Khun-Tucker (KKT) system of

equations [44] becomes too complex. To overcome this limitation, gradient

descent algorithms based on subgradient operators, like LASSO [39], `1-magic [40]

and SPGL1 [41] have been extensively studied and motivated through different

perspectives.

Greedy algorithms

Greedy algorithms mainly seek the active columns of the sensing matrix, i.e., the

support of x, and then estimate those parameters. In this direction, one of the most

popular strategies relies on the Orthogonal Matching Pursuit (OMP) algorithm [4],

also developed for decomposing signals via overcomplete bases. In OMP, the inner

product between the measurement vector and each column of the measurement

matrix is used to detect the support. After a new column is added to the support

of the parameter vector, the parameter is estimated via LS. In the next iteration,

the estimation error is used as measurement vector, and the algorithm continues

until the error becomes smaller than a user-defined level. Since those vectors are

orthogonal to each other[14], OMP will never reselect a column of the measurement

matrix.

Many algorithms extend the idea behind OMP. Some examples include: the

Stagewise OMP (StOMP) [8], the Compressed Sampling Matched Pursuit (CoSaMP)

and Subspace Pursuit (SP)[1]. While the first differs in the way the active columns

are selected, the last two algorithms extend the idea of OMP by obtaining the

entire support in each iteration, and then employing a gradient descent method for

subsequent LS estimations.

Iterative shrinkage algorithms

Iterative algorithms have become an attractive alternative for sparsity recovery, and

can be shown to minimize either (1.1) or (1.9) without the burden of performing

direct matrix inversions with respect to the sensing matrix in the approaches

aforementioned, or of adding constraint variables to the problem. Thus, consider

the following quadratically regularized weighted LS cost function:

JS(x;xi−1) = ‖y −Hx‖2
W + ‖x− xi−1‖2

R + %(x) (1.13)
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where xi−1 is a prior estimate for the vector parameter, and ‖z‖2
W , z

∗Wz is the

weighted squared Euclidean norm. The resulting recursions build upon the notion

of Proximal Mappings [2, 3, 45], commonly employed in CS, leading to different

algorithms depending on the choice of %(x). An important class of CS recursions

known as the iterative hard thresholding (IHT) [7] algorithm, can be obtained via

minimization of (1.13), by choosing %(x) = ε‖x‖0, and setting

W = I

R = I −H∗H .

In the CS community, regularization is referred to as a surrogate cost [7] with

respect to the pure LS problem, and represents nothing but the incorporation of

uncertainty into the problem with respect to xi−1. These choices are the key

to achieving a simple recursion; when R > 0, we have JS(x;xi−1) ≥ J(x) =

JS(x;x), so that the surrogate cost becomes an upper bound for the original `0

problem. Therefore, by iteratively minimizing JS(x;xi−1), we are ultimately using

a majorization-minimization mechanism in order to find the minimum of J(x).

When ‖H‖2 < 1, we have that R = I −H∗H is positive definite, and with the

selection W = I, it can be verified that the optimization of JS(x;xi−1) in (1.13)

can be carried entrywise [7, 23]. Thus, for %(x) = ε‖x‖0, by expanding the squares

in (1.13), we have

JS(x;xi−1) = y∗y + x∗H∗Hx− x∗H∗y − y∗Hx

+ x∗x− x∗H∗Hx+ x∗i−1xi−1 − x∗i−1H
∗Hxi−1

− x∗xi−1 + x∗H∗Hxi−1 − x∗i−1x+ x∗i−1H
∗Hx

+ ε‖x‖0

(1.14)

so that grouping this expression in terms of x and x∗, we have

JS(x;xi−1) = ‖y‖2 + ‖xi−1‖2 − ‖Hxi−1‖2

+ x∗x

+ x∗ [H∗Hxi−1 − xi−1 −H∗y]

+
[
x∗i−1H

∗H − x∗i−1 − y∗H
]
x

+ ε‖x‖0

(1.15)

Now, by introducing

x̂i = xi−1 +H∗ (y −Hxi−1) ,
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this cost can be written as

JS(x;xi−1) = ‖y‖2 + ‖xi−1‖2 − ‖Hxi−1‖2

+ x∗x− x∗x̂i − x̂∗ix+ ε‖x‖0

(1.16)

Note that the first three terms are constants, while the last four terms can be written

as a summation:

JS(x;xi−1) = ‖y‖2 + ‖xi−1‖2 − ‖Hxi−1‖2

+
P−1∑
k=0

x∗(k)x(k)− x∗(k)x̂i(k)− x̂∗i (k)x(k) + ε|x(k)|0,
(1.17)

where |x(k)|0 is defined as the indicator function that returns 0 whenever x(k) = 0,

and 1 otherwise. As a consequence, we can minimize JS(x;xi−1) for xi entrywise,

by introducing the scalar function

D(x(k)) = x∗(k)x(k) + x∗(k)x̂i(k) + x̂∗i (k)x(k) + ε|x(k)|0, (1.18)

which evaluates to

D(x(k)) =

{
0, if x(k) = 0

x∗(k)x(k)− x∗(k)x̂i(k)− x̂∗i (k)x(k) + ε, otherwise
(1.19)

In the second line of (1.19), the minimum is achieved when

∂D(x(k))

∂x∗(k)
= 0, or (1.20)

x(k) = x̂i(k), (1.21)

and, in this case, D(x̂i(k)) = ε − |x̂i(k)|2, which becomes negative if |x̂i(k)| ≥
√
ε.

Thus, the k-th element of xo is given by

xo(k) =

{
x̂i(k), if |x̂i(k)| ≥

√
ε

0, otherwise
(1.22)

The resulting IHT algorithm assumes the following form:

xi = T√ε [xi−1 +H∗ (y −Hxi−1)] , (1.23)

where T√ε(·) is the hard threshold operator defined as

T√ε(z) =

{
z, if |z| >

√
ε

0, otherwise
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On the other hand, by choosing %(x) = ε‖x‖1 in the surrogate cost (1.13), and by

following similar same steps that led to the IHT, we obtain what is known as the

iterative soft threshold (IST) [5] recursion:

xi = Sε [xi−1 +H∗ (y −Hxi−1)] , (1.24)

where Sε(·) refers to the soft-threshold operator, defined as

Sε(z) =

{
z
(

1− ε
|z|

)
, if |z| > ε

0, otherwise
(1.25)

Because of their simplicity, both IST and IHT are widely used in CS, despite some

shortcomings that impair their recovery ability in some scenarios [23]. The main

one is related to selecting the threshold parameter ε. While there is no direct

relation between ε and the signal-to-noise ratio (SNR) or, to the sparsity of the

vector parameter, those two factors are of major influence in the ability of recovery,

given a threshold value. Hence, for the IHT algorithm, there is no guarantee that

it will reach a fixed point, so that the solution obtained may not be a sparse one;

for the IST algorithm, on the other hand, for a given threshold, the SNR heavily

impairs detection. Thus, either an adaptive procedure or a selection heuristic must

be employed, in order for these algorithms to properly work. Usually, the IHT

threshold is determined indirectly, by first selecting a sparsity level, and then setting

the corresponding smallest entries of the estimate to zero, at each iteration. For the

IST algorithm such heuristic does not work, and a more sophisticated adaptive

scheme must be pursued.

One of the advantages of thresholding algorithms is that, besides avoiding

matrix inversions in exact LS problems, compared to Greedy iterations, the solution

support is entirely estimated at each new iteration, which further allows for recursive

corrections until convergence.

Approximate Message Passing (AMP) algorithm

Message passing algorithms constitute one of the most recent advances emerging

in the field of CS, and it is strongly based on the theory of graphs, and Bayesian

networks [1, 9, 10, 46]. They are designed to be as fast as IST, but less sensitive

to noise variations and sparsity. The idea behind those algorithms is to split the

unconstrained `1 regularized cost from (1.12) in two parts, corresponding to the

neighborhoods of the variables xi and the measurements, also called factors. That
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is, we write the target cost (assuming the real case scenario) as

J(x) =
∑
j∈F

(yj − [H ]j,:x) + λ
∑
x∈V

|xi|, (1.26)

where F and V are the sets of factors and variables, respectively, and [H ]j,: is the

j-th row of H . Under this philosophy, (1.26) can be approached from a graph

perspective, where the well known min-sum algorithm can be applied [1, 9, 10, 23].

The resulting recursions are very similar to the IST algorithm and are given by

xi = Sθi(xi−1 +HTei−1) (1.27)

ei = y −Hxi−1 +
1

P
‖xi−1‖0ei−1 (1.28)

where P is the length of x. The algorithm starts with e0 = y and x0 = 0, and

iterates until ‖xi − xi−1‖ reaches a user determined level. The last term on the

second equation on (1.27), is known as Onsager term, and relates to the sparsity of

the solution. The threshold value θi is determined by the Lagrange multiplier λ of

the LASSO in (1.26), resulting

θi =
λ(

1− 1
P
‖xi−1‖0

) (1.29)

In practice, λ is chosen empirically and can be adapted throughout the iterations.

Equation (1.27) accounts only for real valued vectors and matrices. For complex

valued problems, the complex AMP(CAMP)[10] was proposed, with recursions still

similar to the AMP:

x̂i = xi−1 +H∗ei−1 (1.30)

ei = y −Hxi−1 + ei−1
1

2P

m−1∑
j=0

[
S ′θi;< (x̂i(j)) + S ′θi;= (x̂i(j))

]
(1.31)

xi = Sθi (x̂i) (1.32)

where

S ′θt;<(x) = <
(
∂Sθt(x)

∂<(x)

)
and S ′θt;=(x) = =

(
∂Sθt(x)

∂=(x)

)
.

Unlike AMP, in CAMP recursions, the threshold value cannot be obtained directly

from the Lagrange multiplier, so that the authors suggest using the following

heuristics,

θi = κ

√
1

ln 2
median (|x̂i−1|) , (1.33)

where κ is a user-defined parameter that controls the regularization. As in AMP,

the iterations begin with e0 = y and x0 = 0, and stop when ‖xi − xi−1‖ reaches a
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lower limit.

The main advantage of the AMP and the CAMP algorithms over the pure

thresholding methods aforementioned is that they do not require a complex

heuristics for avoiding divergence for typical sensing matrices [46] (although reference

[47] points out that it might fail to converge for arbitrary ones). Message passing

algorithms can be shown to converge to the LASSO solution in the limit, and usually

show superior performance when compared to the IST [1, 10, 46]. In this sense,

CAMP is usually the best choice when little information about noise or sparsity of

the input is available [23].
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Chapter 2

A Unified Approach to

Compressed Sensing and

Block-Iterative Decision Feedback

Equalizers

Ideally speaking, when dealing with a Finite Impulse Response (FIR) channel,

its equalizer as an inversion operation should be an all-pole Infinite Impulse

Response (IIR) filter[48]. In practice, this poses some difficulties in equalization,

as FIR channels often appear with non-minimum phase zeros, leading to unstable

equalizers. Moreover, the presence of poles near the unity circle would amplify

significantly the channel noise. Decision Feedback Equalizers were originally

proposed to ensure that all signals in the equalizer are bounded by feeding back

detected symbols, unlike an all-pole IIR filter would do. Such equalizers are known

to greatly outperform their linear counterparts[48].

While in the literature, (block) DFE equalizers are traditionally derived with the

optimization of feedforward and feedback matrices in a stochastic sense [11, 12, 24],

which in turn are derived from a pre-determined structure, in this chapter we show

that a properly formulated BI-DFE can be seen as a CS algorithm obtained in

its own right, and that such architecture in fact arises naturally from a suitably

regularized LS problem.

Moreover, unlike the original BI-DFE formulation, where uncertainty throughout

the iterations can be a pre-computed, computationally demanding phase [11], we

shall show that a CS-based formulation allows for an adaptive calculation of

uncertainty in detection, which is available from the error covariance before slicing.

We pursue the new algorithms under different policies of assigning uncertainty to

the detected entries. Each one exploits a different strategy for symbol feedback,
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exhibiting their own complexity and performance advantages.

Specifically, the contributions of this chapter are the following:

1. We show that a properly formulated BI-DFE can be seen as a CS algorithm

obtained in its own right, and not as a pre-imposed structure optimized

according to some criterion. While traditional formulations of (block) DFEs

commonly begin with the optimization of feedforward and feedback matrices

in a stochastic sense, such architecture in fact arises naturally from a suitably

regularized LS problem, and is therefore optimal in this sense.

2. As a Greedy approach to recursive estimation, we show that the Vertical

Bell Labs Layered Space Time(V-BLAST) algorithm [27] employing sequential

detection of entries can make use of a fast transversal filter (FTF) in order

to compute the DFE matrices, henceforth providing a new alternative to the

complexity issue implied by the Cholesky factorization inherent to its solution.

3. We derive a Reduced-Complexity (RC) Widely-Linear (WL) [25] version of

BI-DFE, which does not require the traditional circularity assumption on the

involved target and noise vectors.

4. We motivate the new architectures of this work by investigating the

so-called linear reduced redundancy (RR) systems which have been recently

published by the authors in [28–32], and clarify on the actual value of these

implementations. As verified in our experiments, we first conclude that

superfast MR schemes offer no advantage over standard multicarrier and

single carrier schemes, regardless of its use under coding or via ‘new’ discrete

Hartley transform (DHT) implementations as claimed in [28]. This will be

illustrated for both DFT and what the referred papers name as DHT based

transceivers; We demonstrate that the latter corresponds to a DFT based

expression, written in terms of DHT transforms, and that a negligible BER

gain is obtained in comparison to standard schemes. Our simulation results

contradict the conclusions in [28–32], and verify on the other hand, that

simple reduced redundancy block decision feedback equalizers (DFEs), which

are widely known, outperform the MC and SC-FD linear MR counterparts

significantly, under much lower redundancy transmissions, and equal superfast

complexity. We consider a simple Extended Pedestrian A (EPA) model of the

Long Term Evolution (LTE) standard [33], and verify that redundancy cannot

be reduced towards its optimal value in ZF or MMSE equalization, a condition

that can only be achieved by the proposed block DFE receivers.
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5. Motivated by the ever increasing demands of throughput in digital

transmission systems, and the desire to achieve low bit-error-rates (BER)

simultaneously with a scenario of minimized redundancy transmission, we

introduce a novel CS-based algorithm that relies on RLS iterations, which

outperforms the traditional BI-DFE approaches. The CS interpretation of the

original BI-DFE allows us to go beyond minimum redundancy transmissions,

and even below the zero redundancy level, by exploiting sparsity in typical

signal modulations. The crucial point we elaborate on is also motivated by

the discussion in Sec. 1.1.1 regarding the difficulty in selecting regularization

parameters in CS algorithms. We shall propose an adaptive calculation of

the uncertainty in detection, which will be available from the error covariance

computed before slicing at every iteration of the algorithm.

The chapter is organized as follows. In Section 2.1 we show that the RLS

algorithm (or Kalman Filter from a stochastic point of view) can be interpreted

as a block iterative DFE, without direct optimization of feedforward and feedback

matrices. Section 2.2 presents the DFE algorithm from a stochastic approach,

and discusses its optimality in the presence of the slicer. We then extend the

deterministic derivation of the DFE in Sec. 2.3 by showing that a single step of

a RLS iteration collapses to the well-known DFE expressions. In Sec. 2.4, we extend

the Strictly Linear model commonly used in the literature to a Widely-Linear one.

In Sec. 2.5 we show that a successive cancelation DFE algorithm based on the DFE

formulation of Sec. 2.3 collapses to the V-BLAST algorithm. We then propose a

particular form of the V-BLAST where detection is performed sequentially, in a

decreasing index order of entries, and whose DFE feedforward matrices can be

obtained from an FTF recursion. In Sec. 2.7 we review the reduced redundancy

methods of IBI canceling, and superfast structures for DFT based receivers, which

are used as MMSE estimators for initializing the DFE algorithms. In Sec. 2.9, we

discuss the claims from [28–32] on minimum and reduced redundancy schemes,

which motivate the new iterative solutions proposed in this work. We show that

the performance of such schemes depends on the channel itself, such that for some

channels there is no gain in terms of BER and throughput that justify a more

complex, superfast realization. Finally in Sec. 2.10 we incorporate an additional

regularization function to the RLS cost, which will lead us to a new CS-based

BI-DFE structure. The performance of the new algorithm is evaluated in Sec. 2.12.
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2.1 Iterative Estimation in Block-Based

Equalizers — Motivation

Figure 2.1 illustrates a generic precoded transmission scheme in terms of a synthesis

filter bank followed by a length-L discrete LTI single-input-single-output (SISO)

channel H(z). This system corresponds to the trasmitting end of a so-called digital

transmultiplexer [48]. We assume that the reader is acquainted with the theory of

multirate systems, and their descriptions as modern digital transmultiplexers. Their

interpretation as block-based transmissions, are widely used nowadays.

......
...

v(n)

y(n)
H(z)

so(Nn)

s1(Nn−1)

sM−1(Nn−M+1)

So(z)

S1(z)

SM−1(z)

u1(n)

uo(n)
x(n)

N

N

N

uM−1(n)

Figure 2.1: Block Transmission Scheme.

In a digital transmultiplexer, the sampled symbols sk(n), 0 ≤ k ≤ M − 1 are

passed through a set of interpolation filters, which produce uk(n), and are combined

to form a unique stream x(n) that is transmitted over the channel, described by

the transfer function H(z). In the receiving end, decimating filters separate and

restore the original rate of the transmitted signals. With the proper value of N , by

using well known multirate identities and polyphase representations for the involved

quantities, the channel H(z) can be described via a P ×M matrix-valued transfer

function (M ≤ P )

H(z) ,
LB−1∑
`=0

H` z
−k , (2.1)

where LB = bP + L − 1c/M + 1 is the corresponding number of block coefficients

{H`} defining H(z). Let xn = [x(n) x(n − 1) · · · x(n − P − L + 2) ]T =

[xT
n xT

n−1 · · · xT
n−LB+1(0 : r − 1) ]T , with r = (P + L − 1) mod M , be the

full (P + L − 1) × 1 transmitted sequence at time i. The received block can be
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equivalently written as

yn =

LB−1∑
`=0

H` xn−` (2.2)

= Hxn + vn, (2.3)

where we form the P × (P + L− 1) channel matrix

H = [H0 H1 H2 · · · HLB−1( : , 0:r − 1) ]

For the sake of generality, we consider a generic block affine precoding scheme for the

transmitted sequence, i.e., xn = Tnsn + tn, where sn = [ sT
n sT

n−1 · · · sT
n−LB+1(0 :

r−1) ]T denotes the information vector, and tn is a possibly superimposed training

sequence used for estimating the channel within the n-th transmitted block.

Now, consider the linear model (2.3), and assume for simplicity that tn = 0, and

Tn = I, so that sn = xn. For compactness of notation, we shall drop the time index

n in {xn,yn,vn}. Our goal is to demonstrate how an iterative DFE receiver naturally

arises as a Kalman adaptive algorithm without using the common assumptions used

in its conventional derivation. The problem of recursive estimation of a transmitted

vector x can be seen as one that originates from a constant state-space model, i.e.,

xk+1 = Fxk (2.4)

yk = Hxk + v (2.5)

where F = I, and k is now the iteration index for the transmitted block estimate

x. Define the block-column quantities

vvvk = col{v,v, . . . ,v} (2.6)

yyyk = col{y,y, . . . ,y} (2.7)

HHHk = col{H ,H , . . . ,H} (2.8)

comprising k + 1 measurements of {y,v,H}, as well as the corresponding

block-diagonal matrix

WWW−1
k , (R0 ⊕R1 ⊕ . . .⊕Rk) (2.9)

with constant blocks Rj = R. We pose the problem of estimating x0 = x, from the

sequence of observations y in a regularized fashion as

min
x

‖yyyk −HHHkx‖2
WWWk

+ ‖x‖2
Π−1

0
(2.10)
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Thus, fix a time instant i and assume that a filtered MMSE estimate x̂i−1 has been

forcefully projected onto xi−1 = f(x̂i−1). This is commonly the case, for example,

when x belongs to a signal constellation, and f(·) is some approximate threshold

function to ensure that x̂i belongs to the support of x. Denoting the residue of this

projection as

x̄i−1 , x− xi−1, (2.11)

with corresponding error variance

P i−1 = Ex̄i−1x̄
∗
i−1, (2.12)

then, given the channel output measurement y, (2.10) can be equivalently posed as

min
x
‖y −Hx‖2

R−1
v

+ ‖x− xi−1‖2
P−1
i−1

(2.13)

The solution x̂i of any such regularized problem can be recursively computed as [14]

Rē,i = Rv +HP i−1H
∗ (2.14)

Kp,i = P i−1H
∗R−1

ē,i (2.15)

ēi = y −Hxi−1 (2.16)

x̂i = xi−1 +Kp,iēi , x̂0 = 0 (2.17)

P̂ i = P i−1 −Kp,iRē,iK
∗
p,i (2.18)

and a new estimate for x taken as

xi = f(x̂i) (2.19)

Observe that in order to compute the solution, we should be able to relate the

LS variance P̂ i and the corresponding error variance P i after f(·) is applied. In

particular, using a linear function f(x̂i) = x̂i, we have xi = x̂i, and P̂ i = P i, so

that in this case, the recursions simply amount to the well known RLS algorithm,

or Kalman recursions from a stochastic point of view (The latter can be assured for

jointly Gaussian variables, when the optimal estimator in the MMSE sense becomes

an affine one. For other signal distributions, such as the one considered in this work,

this approximation is good enough[14, 49]).

Combining (2.17) and (2.19), xi can be written alternatively as

xi = f(Fp,ixi−1 +Kp,iy) (2.20)
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with

Fp,i = I −Kp,iH (2.21)

Hence, referring to Fig. 2.2, one may readily observe its resemblance to a DFE that

estimates x through feedforward and feedback matrices {Kp,i,Fp,i}.

H(z)

v

Gi

xix̂i

z−1

f(·)
x

Bi

Figure 2.2: Kalman-like DFE estimation.

Now, the channel matrix in question represents in general an undertermined

system, and for arbitrary signals and threshold functions f(·), an iterative attempt to

estimate the transmitted sequence might not succeed. This is because such recursive

estimation employs a constant fat matrix H , i.e., assumed full row-rank, in that P̂ i

is ill-conditioned. It is also the case when x belongs to a signal constellation, so that

selecting f(·) as a commonly used constellation ‘slicer’ would still suffer from the

same impairment. Moreover, as we have mentioned, given (2.19), we would still need

to find a recursive relation between the variances {P i, P̂ i} so that these quantities

are duly propagated. In order to further shed light into the deterministic formulation

of (2.13) and its shortcomings, we examine its analogous stochastic formulation.

2.2 Stochastic Problem and the Relation to

Iterative DFE

We now resort to the equivalence between the deterministic cost of (2.10) and its

stochastic (smoothing) counterpart,

min
K

E ‖x − Kyyyi‖2 , (2.22)

where yyyi is defined in (2.7) and

Exx∗ = Π , Ex = xi−1 = fi(x̂i−1) ,

25



with fi(·) allowed to be time-varying. Let the innovations vector of estimation errors

be defined as

eeei = col{ē0, ē1, . . . , ēi} (2.23)

Given the model in (2.3), the solution to this problem is equivalent to the one that

replaces yyyi with eeei, and is given by

x̂i = RxeeeiR
−1
eeei

eeei (2.24)

=
i∑

k=0

RxekR
−1
ē,kēk (2.25)

where xi is easily seen to be recursively computed as an approximation, by projecting

the estimate x̂i onto the constellation, as

ēi = y −Hxi−1 (2.26)

x̂i = xi−1 +RxeiR
−1
ē,i ēi (2.27)

xi = fi(x̂i) (2.28)

with

Rxei = Exē∗i = Ex(Hx̄i−1 + v)∗ = (Exx̄∗i−1)H∗ (2.29)

Rē,i = E ēiē
∗
i = E (Hx̄i−1 + v)(Hx̄i−1 + v)∗ = HP i−1H

∗ +Rv (2.30)

We may note that the quantitiy (Exx̄∗i−1) in (2.29) can be expressed as

Exx̄∗i−1 = Ex(x− xi−1)∗ (2.31)

= Π−Rxxi−1
(2.32)

where

Rxxi−1
, Exx∗i−1 . (2.33)

We shall also define

Rxi , Exix
∗
i (2.34)

for later reference. Hence,

Exx̄∗i−1 = E(x̄i−1 + xi−1)x̄∗i−1 (2.35)

= Ex̄i−1x̄
∗
i−1 + Exi−1x̄

∗
i−1 (2.36)

= P i−1 + Exi−1x̄
∗
i−1 (2.37)
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Recall that when xi = fi(x̂i) = x̂i, the orthogonality principle naturally yields

Exi−1x̄
∗
i−1 = 0, in which case the recursions collapse to the Kalman filter. In general,

however, this relation does not hold, i.e., given fi(·), we have

E fi(x̂i)[x − fi(x̂i)] 6= 0 (2.38)

and a true stochastic algorithm would require that both P i−1 and
(
Exi−1x̄

∗
i−1

)
be

properly propagated. Nevertheless, if fi(·) is chosen as the minimizer of

min
fi(·)

Ex̄ix̄
∗
i (2.39)

then,

xi = E(x|x̂i) =

∫
Sx

xp(x|x̂i)dx (2.40)

in terms of the conditional probability p(·), with Sx denoting the support of x, so

that

Exix̄
∗
i = 0

and Eqs. (2.14)–(2.19) will follow. That is, the solution based on the innovations

(2.25) becomes

x̂i =
i∑

k=0

P k−1H
∗(HP k−1H

∗ +Rv)−1ēk (2.41)

=
i∑

k=0

(P−1
k−1 +H∗R−1

v H)−1H∗R−1
v ēk (2.42)

= xi−1 + (P−1
i−1 +H∗R−1

v H)−1H∗R−1
v ēi (2.43)

In other words, we obtain (Exx̄∗i−1) = P i−1 in (2.29), and the recursions will assume

the form of a Kalman filter followed by the optimal fi(·) that minimizes (2.39).

From what we have discussed, the optimality on the choice of fi(·) is a

consequence of the orthogonality condition in (2.38), which can be achieved by using

the probabilistic model that generates x̂i from x, and upon minimization of (2.39).

The exact optimal estimator of x given y can be extremely complex for general

vector sizes, and therefore, the exact fi(·) that minimizes (2.39) is intractable.

Still, when the noise p.d.f. is Gaussian, a maximum a posteriori (MAP) criterion

optimally designed for symbol estimation justifies the use of a slicer in the `2-norm

sense, case of the majority of practical applications involving DFEs. The success

in detection is, however, still highly dependent on the structure of H , which in
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case of underdetermined systems, turns detection into an impossible task (specially

if approached with conventional receivers and/or slicers). This is further aggravated

for “bad” channels, so that the inherent Toeplitz structure of H makes this matrix

highly ill-conditioned.

In the following, our goal is to pave the way to a broader concept of IBI estimation

and cancellation, by first showing how conventional block DFEs build up exactly

from LS estimation problem, and that, except for a fixed slicer, the DFE structure

naturally arises without imposing its structure a priori. Moreover, the approach

will suggest an extension of the conventional DFE formulas employing memory —

see e.g., [50] — to a general block scenario also with memory, carrying 2 important

features:

1. Transmission of block sizes with arbitrary length M , possibly smaller than

the channel span. More generally, for M < L, block equalization aims the

recovery of sn−δ, where δ is referred to as the decision-delay associated to the

subblock H of the matrix H exhibiting the best conditioning, while sn−k for

k 6= δ is considered IBI.

2. We show that the structure in Fig. 2.2 can be cast as a special case of a block

DFE with memory equipped with an iterative procedure, similar in spirit to

the ones employed by iterative DFEs. Moreover, the conventional DFE turns

out to represent a single iteration of such iterative scheme, which assumes

perfect detection of past IBI delayed blocks of sn−δ, when M = P .

2.3 Block Linear Equalization Revisited

The conventional approach to deal with the underdeterminacy in a given channel

model that deals with a ‘fat’ matrix H , is an attempt to design feedfoward and

feedback matrices in the MMSE sense, by first removing IBI through subtraction

of past detected (block) symbols (easily extended to the MIMO case). As we have

shown, this is similar to the role of the Kalman variables {Kp,i,Fp,i} obtained exactly

from a deterministic cost, whenever a quantizer (slicer) that makes perfect decisions

over the signal constellation is employed — see Fig. 2.2.

The fundamental difference with respect to the previous discussion relates to

the target portion of the vector x we wish to estimate, which can be reduced by

selecting the corresponding set of columns of H and considering the remaining

entries as nuisance. Next, we readdress the DFE problem under the light of the

iterative block estimation scenario aforementioned, and more importantly, without

assuming its structure a priori.
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Let

xδ = [x(n− δ) x(n− δ − 1) · · · x(n− δ −M + 1) ]T (2.44)

be the transmitted block of interest within x, where δ is the decision-delay to be

suitably chosen, and consider the following partitionings:

H =
[
Hδ H H

]
=
[
H ′ H

]
(2.45)

x =
[

xT
f xT

δ xT
b

]T
=
[

x′ T xT
b

]T
(2.46)

with block dimensions defined as follows:

Hδ : P × δ (2.47)

H : P ×M (2.48)

H : P × (P + L−M − δ − 1) (2.49)

and where we defined x′ = [xT
f xT

δ ]T . The trailing vector xb is (P+L−M−δ−1)×1,

and consists of past transmitted symbols with the general form

xb = [x(n− δ −M) · · · x(P+L−M−δ−2)]T

Note that the delay δ is not necessarily a multiple of the transmitted block size

M (and hence the notation H instead of Hδ in general). The received block in (2.3)

can thus be equivalently written as

y = Hxδ + Hδxf + Hxb + v (2.50)

= Hxδ + vc (2.51)

Now, define the estimation errors

x̃δ,i , xδ − x̂δ,i with variance P̂ i = E x̃δ,ix̃
∗
δ,i (2.52)

x̄δ,i , xδ − xδ,i with variance P δ,i = E x̄δ,ix̄
∗
δ,i (2.53)

corresponding to the LS estimate and detected symbols (after the slicer) respectively.

Also, let

x̌b = [xm(n−δ−M) · · · xm(n−P−L+M+δ+2)]T (2.54)

x̄b = [x̄m(n−δ−M) · · · x̄m(n−P−L+M+δ+2)]T (2.55)

denote the previously detected vector and final estimation errors, say, after i = m
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iterations, so that

Pxb = Ex̄bx̄
∗
b (2.56)

The above model can thus be centralized, by removing the contribution of x̌b from

y, as

y′ = y −Hx̌b (2.57)

= Hxδ + Hδxf + Hx̄b + v (2.58)

= Hxδ + vc (2.59)

where vc ,Hδxf + Hx̄b + v is regarded as noise, with variance given by

Rvc = Evcv
∗
c = E(Hδxf + Hx̄b + v)(Hδxf + Hx̄b + v)∗ (2.60)

= HδExfx
∗
fH

∗
δ + HEx̄bx̄

∗
bH

∗
+ Rv (2.61)

= HδRxfH
∗
δ + HPxbH

∗
+ Rv (2.62)

We are now ready to apply a recursive procedure for symbol estimation which

employs the Kalman recursions. Thus, let f(·) be a slicer that quantizes x̂δ,i. By

making the following identifications,

H ←− H , v ←− vc , Rv ←− Rvc (2.63)

xi ←− xδ,i , y←− y′ P i ←− P δ,i (2.64)

we obtain

Rē,i = Rv +HδRxfH
∗
δ +HPxbH

∗
+ HP δ,i−1H∗ (2.65)

Kp,i = P δ,i−1H∗R−1
ē,i (2.66)

ēi = y′ −Hxδ,i−1 (2.67)

x̂δ,i = xδ,i−1 +Kp,iēi , xδ,0 = 0 (2.68)

xδ,i = f(x̂δ,i) (2.69)

P̂ δ,i = P δ,i−1 −Kp,iRē,iK
∗
p,i , with P δ,0 = Rxδ (2.70)

Observe that these recursions tell us how to update the quantized estimate xδ,i by

using the variance P i, so we would still need to know how to perform the update

P̂ i −→ P i. Figure 2.3 illustrates the resulting block diagram.

In order to show that these equations can be written in a familiar DFE form, we

simply express xδ,i as in Eq. (2.20). That is, combining (2.67) and (2.68), and using
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H
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Figure 2.3: Generalized Kalman DFE estimation.

(2.57), xδ,i can be alternatively written as

xδ,i = f
(
Kp,iy −Kp,iHx̌b − (Kp,iH− I)xδ,i−1

)
(2.71)

= f(Giy −Bix̌b −B′ixδ,i−1) (2.72)

where we have defined

Gi ,Kp,i, Bi , GiH , and B′i , GiH− I

Assume that δ is a multiple of the block size M . Note that for M < P , the

matrix inner product Bix̌b can be written as
∑LB−1

`=δ+1B`,i xn−`,m, so that we can

associate a (time-varying) transfer function Bi(z) to the matrix coefficients {B`,i}
in Bi. Similarly, the output of y can be divided into blocks of size, say, Q,

as y = [y T
n y T

n−1 · · · y T

n−P/Q ]T , and its inner product with Gi written as∑P/Q
`=0 G̀ ,i yn−`. In this manner, we associate a matrix transfer function Gi(z) to

the matrix coefficients in {G̀ ,i} in Gi as well. The equivalent of Fig. 2.3 is shown in

Fig. 2.4.

+

--

•
•

•

vn

Bi(z)

z−(δ+1)

•

xδ,m

Gi(z)

z−1

xδ,ix̂δ,i

•

i = 0
i = 1

i = m

xn

•

...

B′i

H(z) f(·)T

Figure 2.4: Equivalent DFE architecture.

To appreciate the connection of this recursions with a conventional DFE, assume
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that past symbols have been correctly detected. This implies Pxb = 0, so that

Kp,i = RxH∗(HP δ,i−1H∗ +HδRxfH
∗
δ +Rv)

−1

If we initialize this recursions with xδ,0 = 0 and P δ,0 = Rxδ = Rx, and apply a

constellation slicer after a single iteration, then (2.71) collapses to

xδ,1 = f(Kp,1y −Kp,1Hx̌b) (2.73)

Hence, by defining

Rx′ = Ex′x′∗ = Diag(Rxf ,Rxδ) (2.74)

we get {
G1 = RxH∗(H ′Rx′H

′∗ +Rv)
−1

B1 = GH
(2.75)

which are the exact well known expressions for the feedforward and feedback DFE

coefficient matrices obtained in the literature [12, 24]. Here, however, they were

seen as a special case of a single iteration of an algorithm obtained in more general

grounds. In other words, the DFE represents an algorithm in its own right, and

without assuming its structure a priori. This procedure may continue until a more

accurate estimate xδ,i is obtained, with corresponding LS error variance propagated

by (2.70).

2.4 Reduced Complexity Widely-Linear BI-DFE

From the basics of complex random processes, it is well established that in order

to completely characterize the second-order statistics of a signal, one must specify

both its related covariance and pseudo-covariance functions. The particular case

where only its covariance information suffices occurs when the underlying process

is already circular, since in this situation, its pseudo-covariance becomes naturally

zero [14, 25, 26]. In this respect, Widely Linear (WL) formulations of parameter

estimation have been highly motivated, and offer significant gains in performance by

estimating an augmented vector comprising both the original data, and its conjugate.

In contrast to the more common form of Strictly Linear (SL) estimation, the WL

approach enables us to capture both covariance and pseudo-covariance information,

minimizing the MSE when the traditional circularity or properness assumption

in the data no longer holds. For example, the complex envelope found in some

modulation schemes such as M -ary amplitude shift keying (ASK), binary phase shift
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keying (BPSK), offset quadrature phase shift keying (OQPSK) and minimum-shift

keying (MSK), constitute some important examples of improper signals.

It is noteworthy that improperness arises in several other instances with regard

to signaling, as well as noise and/or interference. This is the case of DS-CDMA

systems with improper complex constellations or due to the use of iterative multiuser

receivers. Beamformers for the extraction of an unknown signal from non-circular

interferences is another instance investigated in [25]. Transmitters and receivers with

in-phase and quadrature (IQ) imbalances can also benefit from WL formulations.

Some space-time block codes may also result in improper complex signals. In

multicarrier systems, improper narrowband signals in the form of overlay networks

or due to crosstalk or radio frequency interferences may also appear. In the latter,

the output of a baseband OFDM system may also contain an improper signal, as a

result of colored noise at the channel output.

Despite the gains in performance with respect to the SL approach in these

scenarios, the original WL approach has a potential drawback, in that the complex

WL estimate is double the size of the traditional SL vector. This implies not

only an increase in computational complexity and excess MSE involved, but also a

reduction in convergence speed, in case LMS-like iterative procedures are employed.

Such caveats have hindered the use of the original WL formulation in a number of

applications that require at least the same complexity used by SL solutions.

Recently, as been pointed out by [25], an equivalent formulation of the WL

approach with reduced complexity can be achieved, by replacing the parameter

vector estimate with a real vector, comprising the real and the imaginary parts

of the target complex data. With this simple modification, the redundant

second-order information is eliminated from the vector autocorrelation matrix, and

the computational complexity of the WL filters becomes similar to the one of SL

filters. That is, the modified filters are equivalent to their standard WL counterparts,

in addition to providing reduced complexity.

Motivated by these benefits, in this section we extend the iterative estimation

architectures commonly obtained in a SL scenario to a WL formulation. One

particular advantage of these formulations is that in the case of real constellations,

the BER performance and/or throughput can be considerably improved, specially

with regard to transceivers that employ zero redundancy, as we shall see.

Widely Linear BI-DFE formulas can be obtained by redefining the channel model

in (2.3) in terms of extended quantities, starting by expressing the received signal

as an augmented vector ye, comprising the real and imaginary parts of its complex
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counterpart y:

ye =

[
<(y)

=(y)

]
(2.76)

In this way, the channel model now reads

ye =

[
HR −HI

HI HR

][
xR

xI

]
+

[
vR

vI

]
= Hexe + ve,

(2.77)

where, accordingly, we have now defined extended input and noise vectors xe and

ve, as well as the extended channel matrix He implied by (2.77), with

xR , <(x) , xI , =(x) , vR , <(v) , vI , =(v) , HR , <(H) , HI , =(H)

(2.78)

Note that in the case of real constellations such as BPSK or PAM, (2.77) simplifies

to

ye =

[
HR

HI

]
x +

[
vR

vI

]
(2.79)

which suggests better conditioning in any estimation mechanism, as a result of the

now tall matrix transmission matrix He.

Moreover, because of the block (2×2) pseudocirculant structure of He, it is easy

to verify that it admits the following factorization:

He = (D−1 ⊗ IP )∗(F ⊗ IP )∗Λ(F ⊗ IQ)(D−1 ⊗ IQ) (2.80)

= (D−1F ⊗ IP )∗Λ(FD−1 ⊗ IQ) (2.81)

where D−1 = (1 ⊕ j) (to be defined more generally in (2.110), for M = 2 and

φ = −1), F is a 2× 2 DFT matrix, and

Λ =

[
H

(H∗)T

]
(2.82)

defined in terms of the complex-valued H . Note that we can write (2.81) more

compactly as

He = U∗PΛUQ (2.83)
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where

UQ = FD−1 ⊗ IQ =
1√
2

[
IQ jIQ

IQ −jIQ

]
(2.84)

and with UP defined accordingly. Also, multiplying ye by UP , we get a linear model

description in terms of the original WL formulation (i.e., in terms of augmented

vectors comprising the data and its conjugate):

y′ = Λx′ + v′ (2.85)

where y′ = UPye, x′ = UQxe, and v′ = UPv.

2.5 Optimal Decision-Delay

At this point, an important question concerning the optimality of the above scheme is

how to select the optimal decision-delay δ so as to maximize detection performance.

To this end, intuition tells us that since our optimal estimator is based on the linear

model (2.59), we must select δ in a way that Rvc contains a small contribution

through the blocks Hδ and H — and at the same time, allowing H to capture the

best conditioned block within H . Of course, if x̌b has been accurately estimated, its

contribution to Rvc through H will be negligible; For instance, when dealing with

minimum-phase channels, it makes sense to set δ = 0. Still, in order for it to be

accurately estimated in the previous block, the same reasoning must apply to the

choice of δ over that block. Several criteria can be considered when selecting the

optimal δ. One solution can be achieved by choosing the delay that minimizes the

norm of the gain matrix

min
δ
‖Kp,i‖, (2.86)

thus reducing the noise and interference amplification. From the viewpoint of

signal processing, and considering the Toeplitz structured of H , the solution to

this problem is due to a famous paper by Scaglione et al. [16], where it has been

shown (according to their particular equalization context) to be approximately given

by

δopt = # maximum-phase zeros of H(z) (2.87)

building on a reasoning that yielded the scalar counterpart solution (see the

references therein). We shall see further ahead how this results follow as a special

case, when the columns of H are selected arbitrarily, so that the corresponding

‖Kp,i‖ is minimized.

The block DFE recursions along with the above criterion for selecting the optimal
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subblock H, generalizes the concept of ordered successive cancellation, commonly

encountered in communications, whenever the entries of the received block (which

is IBI-free) are detected serially. In the latter, instead of attempting to estimate

an entire optimal block xδ of size M in a single shot, the entries of xδ can be

estimated successively, in exactly M outer loops, until the entire vector is recovered.

The order of detection within the vector xδ can in turn follow the same optimality

criterion considered when selecting the optimal subblock H, e.g., (2.86). Successive

cancellation is a safer choice when it comes to feeding back past detected symbols,

although resulting in a more complex implementation.

The interpretation of this procedure in light of the above iterative scheme is the

following. Assume that a single iteration for each symbol is sufficient for reliable

detection. As a consequence, note that not only the corresponding column of each

symbol can be completely extracted from the received signal, but IBI can also be

considered perfectly removed. Suppose otherwise that IBI is not removed, and that

h` = hj` , ` = 0, 1, . . . ,M − 1 denote the j-th column of H , ordered according to

some criterion. This means that x̄i−1 will have zero entries at the corresponding

perfect decisions (the same reasoning can be applied if we replace H with H, and

eliminate IBI first, with Pxb = 0), and P δ,i−1 will also have null rows and columns

at the same indexes. Denote by H` the matrix that contains the remaining columns

of H , for every h` removed. Then, using (2.74) with Rx′ = σ2
xI, and Rv = σ2

vI,

recursions (2.65)-(2.70) simplify to

Rē,` = σ2
vI + σ2

xH`H
∗
` , H0 = H (2.88)

Kp,` = σ2
xh
∗
`R
−1
ē,` (2.89)

ē` = ē`−1 − h`−1x`−1 , ē0 = y′ , x−1 = 0 (2.90)

x̂` = Kp,`ē` , (2.91)

x` = f(x̂`) (2.92)

for ` = 0, 1, . . . ,M − 1. For a more familiar notation, let Kp,` = g∗` , and select

the order of detection from the most powerful signal to the least, by picking j` that

minimizes (2.86), or, ‖g`‖2. If we further denote the scalar σ2 , σ2
v/σ

2
x = 1/SNR,

(2.88)–(2.92) becomes equivalent to the following recursions:

g` = (σ2I +H`H
∗
`)
−1h` , where h` = arg min ‖g`‖2 , H0 = H(2.93)

ē` = ē`−1 − h`−1x`−1 , ē0 = y′ , x−1 = 0 (2.94)

x` = f(g∗` ē`) (2.95)

The above algorithm is well known as the Vertical Bell Labs Layered Space

Time (V-BLAST), which has been long proposed in [27] as a possible receiver
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architecture for MIMO systems. Note however, that here we are not restricting

the transmission matrix H to be a tall, or square, well-conditioned one. In the next

section, we shall propose a fast procedure for obtaining the V-BLAST vectors in the

context of zero-padding based transceivers.

2.6 Fast Computation of the Widely-Linear

V-BLAST for Increasing Index Ordered

Detection

The V-BLAST algorithm that relies on optimal ordering is computationally

demanding, due to the optimization of the norms in (2.93). We now argue that

this burden can be substantially reduced if detection is performed sequentially, in

a decreasing order of entry indexes. This is specially useful in the context of a ZP

transceiver, in case IBI is not removed by the previously detected block, but rather

optimally estimated within the current transmission. A significant consequence of

this fact is that, as far as symbol redundancy is concerned, throughput can be

maximized, since the effective redundancy in transmission can be lowered down to

zero. Moreover, the WL formulation can be accounted for, by replacing H with its

extended definition He. In order to see this, consider our original model in (2.3),

which we reproduce here for convenience:

yn = HTnsn + vn, (2.96)

and assume that the precoder Tn is chosen, similarly to (2.100), as

Iδ =

[
0δ×P+L−1[

IP+L−δ−1 0P+L−δ−1×δ

] ] (2.97)

This means that we are padding δ zeros to the transmitted block, which has size P+

L−δ−1. Hence, if 0 ≤ δ ≤ L−1, transmission is accomplished via zero-redundancy,

and by denoting Hδ ,HTn, i.e.,

L− δ

Hδ =

δ + 1
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our goal is to recover sn = sn(0 : P + L− δ − 2) efficiently from

yn = Hδsn + vn. (2.98)

Now, we recognize that the forward filter (2.93) is the exact expression of the

vector-valued Kalman gain found in a standard regularized LS problem, which admits

a fast computation, whenever the data matrix Hδ is formed sequentially in its natural

time index ordering (i.e., without its optimization). This can be done by associating

to h` the columns of Hδ starting from its right-most one. As a result, we can

elegantly borrow the Fast Transversal Filter (FTF) recursions used for efficient LS

algorithms to achieve a fast computation of all {g`} comprising the feedforward DFE

matrix. We remark that no fast computation for the V-BLAST in this scenarion

is available in the literature. Observe that this amounts to P + L − 1 operations

per sample, which can be contrasted with its scalar DFE counterpart, requiring

P (P + L − 1) operations per sample. Table 1 lists the FTF algorithm considering

a pre-windowed data matrix Hδ arising in the (non-optimized ordering) V-BLAST

algorithm1.

The initialization step begins by assigning the inverse SNR, σ2, to the minimum

costs ζf (−2) = ζb(−1), the likelihood variable, γM(0) = 1, and the vectors wf
−1 =

wb
0 = kM−1,0 = 0. The regressor un corresponds to the n-th row of Hδ, and we

iterate recursions 1)–13) in order to compute all g`.

Now, a further improvement is obtained when δ ≥ L − 1. In this case, Hδ

becomes lower triangular, which means that only half of the recursions in Table

2.1 are necessary. This is because the backward prediction filters used by the FTF

algorithm are always null before P + L− δ iterations of the recursions, leaving the

solution solely to the forward prediction part.

Finally, due to the LS form of g` in the V-BLAST algorithm, when the complex

channel is replaced by its extended version He, we can decouple our model into

two with complex channels
{
H , (H∗)T

}
, and proceed by running the above FTF

recursions twice. For the case of real constellations, instead, we can equivalently

reformulate the channel model in (2.79) by regrouping the real and imaginary entries

in pairs, so that the resulting data matrix becomes block Toeplitz with 2× 1 block

entries. In this way, the FTF algorithm is still run in the exact same form, with

double the complexity.

1The FTF algorithm is known to suffer from numerical stability. However, instability is normally
a concern when dealing with long streams of data, when numerical errors inevitably accumulate.
Here, the input data to the algorithm is a finite length impulse response, not exceeding a few
hundreds of taps in most typical cases, and during this time divergence is unlikely to occur.
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Initialization:
ζf (−2) = ζb(−1) = σ2, γM(0) = 1, wf

−1 = wb
0 = kM−1,0 = 0, h−1 = 0

For ` = 0 to P + L− δ − 1, repeat (1)–(14):

1) αM(`− 1) = ĥ(`)− h`−1w
f
`−2

2) f(`− 1) = γM(`− 1)α(`− 1)

3) kM,`−1 =

[
0

kM−1,`−1

]
+ α∗(`−1)

ζf (`−2)

[
1

−wf
`−2

]
4) ζf (`− 1) = ζf (`− 2) + α∗(`− 1)f(`− 1)
5) wf

`−1 = wf
`−2 + kM−1,`−1f(`− 1)

6) γM(`) = γM−1(`− 1) ζ
f (`−2)
ζf (`−1)

7) ν(`) = (last entry of kM,`−1)
8) kM−1,` = kM,`−1(1 : M − 1) + ν(`)wb

`−1

9) β(`) = ζb(`− 1)ν∗(`)
10) γM−1(`) = γM(`)/(1− γM(`)β(`)ν(`))
11) b(`) = γM−1(`)β(`)
12) ζb(`) = ζb(`− 1) + β∗(`)b(`)
13) wb

` = wb
`−1 + kM−1,`b(`)

14) Set: g` = kM,`−1γM(`)

Table 2.1: Fast transversal computation of the V-BLAST filters g`.

Initialization:
ζf (−2) = σ2, γM(0) = 1, wf

−1 = kM−1,0 = 0, h−1 = 0

For ` = 0 to P + L− δ − 1, repeat (1)–(7):

1) αM(`− 1) = ĥ(`)− h`−1w
f
`−2

2) f(`− 1) = γM(`− 1)α(`− 1)

3) kM,`−1 =

[
0

kM−1,`−1

]
+ α∗(`−1)

ζf (`−2)

[
1

−wf
`−2

]
4) ζf (`− 1) = ζf (`− 2) + α∗(`− 1)f(`− 1)
5) wf

`−1 = wf
`−2 + kM−1,`−1f(`− 1)

6) γM(`) = γM−1(`− 1) ζ
f (`−2)
ζf (`−1)

7) Set: g` = kM,`−1γM(`)

Table 2.2: Fast transversal computation of the V-BLAST filters g` when δ > L− 1.
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2.7 Block Memoryless Equalization with

Redundancy

A special case of (2.2) arises when M = P ≥ L (see e.g., [15]), so that the block

impulse response comprises 2 square matrix coefficients, say, H0, with first row

given by the channel samples [h(0) h(1) · · · h(L − 1) 0 · · · 0 ], representing

inter-symbol-interference (ISI), and H1, the remaining IBI, i.e.,

H(z) =

︸ ︷︷ ︸
H0

︸ ︷︷ ︸
H1

z−1+ (2.99)

so that xn = [xT
n xT

n−1(0 :L−2) ]T , and H = [H0 H1( : , 0:L−2) ]. Considering

H(z) in (2.99), in block memoryless equalization, Tn = (I ⊗ T), so that xn =

Tsn + tn, where sn = [ s(Mn) s(Mn− 1) · · · s(Mn−M + 1) ]T is the information

vector and t = [ t(Mn) t(Mn − 1) · · · t(Mn −M + 1) ]T is the corresponding

training vector for that particular block. In this case, redundancy eliminates IBI

via zero-padding (ZP) or zero-jamming (ZJ) with or without cyclic prefixing, or in

the more general case, through a hybrid form of these schemes (ZP-ZJ) [17]. That

is, assume that the channel state information (CSI) is available, and define the

restriction matrices

Iδ =

[
0δ×M

IM

]
(2.100)

Ī T
δ =

[
IP−L+1+δ 0(P−L+1+δ)×(L−1−δ)

]
, (2.101)

where δ ∈ {0, L−1}. The matrix (2.100) is multiplied by the transmitted vector so

as to perform ZP, while (2.101) is multiplied by the output block for the purpose of

ZJ. In this way, defining the precoder as T = IδT, and assuming an additive noise

vector vn with power Rv = σ2
vI, the received block after IBI removal is given by

yon = (Ī T
δ H0Iδ)Tsn + Ī T

δ vn = H0Tsn + von (2.102)

where H0 , Ī T
δ H0Iδ is (M + 2δ − L + 1) ×M . It assumes the following general

banded Toeplitz structure,

L− δ

H0 =

δ + 1

L− δ

δ + 1

(2.103)
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with first row given by [h(δ) · · · h(L − 1) 0 · · · 0 ], and first column

[h(δ) · · · h(0) 0 · · · 0 ]T . The extreme cases of δ = 0 and δ = L − 1

correspond to the full ZJ and ZP schemes respectively. Choices between these values

are said to be of reduced redundancy [17], since typically in block transceivers the

redundancy is chosen to be of the same order of the channel length. The case when

δ = d(L − 1)/2e zeros are padded and discarded at the receiver has been referred

to as a minimum-redundancy system, where the reminiscent ISI is expressed by a

square Toeplitz matrix. Hence, in principle, from the perspective of bandwidth

efficiency, such minimum-redundancy transmission obtained with δ = b(L − 1)/2c
is appealing.

In case IBI of symbols is removed by the discarding of output samples, a

minimum-redundancy receiver assumes a priori that the transmitted vector is

estimated in a single shot by inverting a submatrix of H0 — or, accordingly, its

corresponding covariance (αI + H∗0H0), in the case of a regularized LS (MMSE)

estimator of the form (αI + H∗0H0)−1H∗0. This is however, a naive assumption,

since it fixes a single formula for recovering the transmitted vector, and ignores

the fact that x exhibits a constellation structure. Moreover, from our discussion

on the optimality of the decision delay δ in the block-DFE derivation, we see the

optimal-redundancy in a reduced-redundancy scenario assumes the same role of the

optimal value given by Eq. (2.87). That is, the optimal redundancy level should be

chosen in a way that it minimizes the norm of the estimator, and any non-optimal

choice would increase it. As a result, we conclude that for arbitrary channels, and

therefore arbitrary maximum-phase zeros, their number may not match the optimal

redundancy level, such that square transmission matrices would imply the highest

probability of noise amplification upon inversion, or even linear MMSE estimation.

We shall return to this issue on Sec. 2.9 when analyzing the value of RR systems

more carefully.

Alternatively, as argued in [12], redundancy can be lowered down to zero, by

feeding back past detected blocks xn−1(0 :L−2) in a DFE mode and still outperform

a receiver that simply discards samples. Of course, if P � L, the contribution of

H1 is small, so that usually detecting xn becomes more reliable than attempting

to obtain xn−1 first. If P = L, on the other hand, for impulse responses behaving

toward maximum-phase systems, the contribution of H0 will be negligible. In other

words, differently from the ZP-ZJ approach, inter-block-interference can be removed

via decision-directed receivers, and more importantly, without introducing any form

of redundancy, through a simple one-tap block DFE [51]. This concept has been

exploited in [24], and more recently in [12] in a way that a DFE receiver that

eliminates H1 through feedback outperforms a system that simply discards relevant

received samples on which IBI exists, in terms of symbol error rate and mutual
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information. That is, once the channel is estimated, IBI is removed and the role of

the receiver is to deal with the remaining ISI represented by H0T . For example, in

[24], after IBI removal, the remaining ISI is removed by another DFE as illustrated

in Fig. 2.5.

+

− −

z−1
H1

x̌n

vn

GH0 + H1z
−1

xn

T

B

T

Figure 2.5: One-tap block DFE.

The two forms of IBI cancelation seen in the above block DFE and in

(linear) reduced redundancy schemes, therefore suggest a more powerful combination

of these schemes into a single one, exhibiting enhanced detection performance. That

is, note that after padding with δ zeros at transmission, instead of discarding L−1−δ
samples at reception, we may opt to cancel these remaining IBI samples by decision

feedback. Specifically, write

yon = H0IδTsn + H1IδTsn−1 + vn, (2.104)

= H0Tsn + H1Tsn−1 + vn (2.105)

with (M + δ)×M blocks H0 and H1, so that

y′n = yon −H1IδT šn−1 = H0Tsn + vn. (2.106)

Therefore, compared to linear MR schemes, a block DFE employing δo < d(L−
1)/2e is still expected to result in superior BER performance, as long as redundancy

is not so small that ill-conditioning and error propagation become important; in

this way, one can seek a balance between a minimum, zero-redundancy scheme, and

one that employs more redundant samples, with superior performance against the

linear MR scheme, considering the computational complexity involved. Next, we

shall pursue 2 forms of efficient implementations of transmultiplexers, focusing on

zero redundancy transceivers with reduced complexity and WL formulations.
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2.7.1 Displacement Structure in Signal Processing

In this section, we briefly review the concept of displacement structure in signal

processing, and how it is connected to the efficient implementation of the algorithmic

solutions pursued in this work. We formally introduce the displacement of an

arbitrarily structured matrix, and refer the reader to [12] for further mathematical

details.

Definition 1. A matrix M is said to have a displacement structure with respect to

the operator matrices {Φ,Ξ}, if it satisfies the Stein and/or Sylvester displacement

equations

∇{Φ,Ξ∗}(M ) ,M −ΦMΞ∗ = LQ∗, ∇{Φ,Ξ∗}(M) , ΦM −MΞ∗ = L′Q′∗

(2.107)

where {L,Q} are M × r matrices whose columns are referred to as the generators

of M . The cardinal r is called the displacement rank of M , where r �M .

In (2.107), the structure of the operators {Φ,Ξ} are properly chosen in

accordance to the structure of M such that it yields a low rank factorization.

For instance, Toeplitz and Hankel matrices have displacements ranks with respect

to factor circulant operators {Φ = Zφ,Ξ = Zϕ}, which does not exceed 2 [see,

e.g., (2.112) further ahead]; Cauchy and the so-called polynomial Vandermonde

matrices have displacement ranks with respect to diagonals {Φ = Ds,Ξ = Dt}
and diagonal/Hessenberg matrices {Φ = Dt,Ξ = Ψ} which does not exceed 1 [52].

While these results can be proven for such types of matrices, defining displacement

operators for arbitrary structures can be a more involved task.

The displacement structure of matrices has been exploited implicitly and

explicitly, in a number of scenarios in the past, through proper choices of operators

that can produce a low rank representation of a covariance, say, when M = P i.

The Extended Generalized Sliding-Window Fast Transversal Filter (EGSWFTF)

algorithm of [53] is an example where the displacement generators are implicitly

used to update the solution of a LS problem, by replacing the direct operations with

the coefficient matrix P i, with the ones involving its generators instead. This is the

core of every fast sequential RLS adaptive filter.

A second way to exploit structure, is to solve the displacement equations of

(2.107) for M (either in its Stein or Sylvester forms). Depending on the operators

choice, the solution may be represented efficiently, and used explicitly, for example,

in the realization of a LS or a MMSE formula for a certain signal processing

application. In this sense, given a linear model defined via a channel matrix H,

Single-Carrier Frequency-Domain (SC-FD) and multicarrier (MC) type schemes can

be promptly envisioned via efficient factorizations of either the inverse of a square
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submatrix of H, in the case of a zero-forcing (ZF) receiver, or its corresponding

covariance (αI + H∗H)−1, in the case of a regularized estimator of the form

(αI+H∗H)−1H∗. This is an application of displacement structure in a non-adaptive,

explicit realization of P i.

Except when H exhibits an upper and/or lower triangular structure, it can be

shown from [53], that in general, the following displacement equation for P i holds,

in connection to its defining fast Kalman recursion variables2:

∇{Φθ ,Φ∗ς}(P i) , P i −ΦθP iΦ
∗
ς = Φθ

¯̆
kdoM,N

¯̆
kdo∗M,NΦ

∗
ς + w̄b

M−1,Nw̄
b∗
M−1,N

− Z−1
θ w̄

f
M−1,N−1w̄

f∗
M−1,N−1Z

−∗
ς − k̃M−1,N k̃

∗
M−1,N

(2.108)

where {w̄b
M−1,N , w̄

f
M−1,N−1,

¯̆
kdoM,N , k̃M−1,N} correspond to normalized backward and

forward prediction vectors, and the Kalman gains associated to data breakpoints at

the first and last row of H. The matrices {Zθ,Zς} have companion forms, with last

columns given by the vectors {θ = [ θ0 · · · θM−1 ]T , ς = [ ς0 · · · ςM−1 ]T}:

Zθ =


0 0 · · · θ0

1 0 · · · θ1

...
...

. . .
...

0 0 · · · 1 θM−1

, Zς =


0 0 · · · ς0

1 0 · · · ς1
...

...
. . .

...

0 0 · · · 1 ςM−1

. (2.109)

A key result of [54] is that a low displacement rank (in the above example, of 4), can

always be satisfied as long as the operators {Φθ,Φς} are chosen in connection to the

basis functions that generate the data in H as {Φθ = Z−1
θ ,Φς = Z−1

ς Ψ}. Hence, by

solving (2.108), we are able to find a general representation for P i in terms of the

eigenvectors of the constructed operators {Φθ,Φς}.

2.7.2 DFT-based Superfast Receivers

Superfast representation of matrices refers to the O(M logp2 M) operations (p ≤ 3)

that arise when multiplying a structured matrix by a vector, after solving the

displacement equation (2.108) for some specific operators. One particular example

arises when H is induced by tapped-delay-line models, which is equivalent to

setting Ψ = I, thereby reflecting its Toeplitz-like structure. The well known

DFT-representation is thus a special case of the above formula, when {θi} = {ςi} =

2Moreover, since the parameters of this decomposition have an exact interpretation as
normalized Kalman and prediction vectors, the computation of the generators can be accomplished
by an EGSWFTF algorithm as well
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0, for i 6= 0, so that the matrices {Zθ,Zς} collapse to what is known as θ0 – and ς0

– factor circulant operators. Its eigenvalues correspond to the zeros of the so-called

master polynomials Ω̄θ(z) = φ0 + z−M , and Ω̄′θ(z) = %0 + z−M . When these are

associated to the entries of the vectors {z1, 1/z
∗
2}, then z1(m) = φej

2πm
M , where

φ = |φ0|−1/Mej
∠−φ−1

0
M , and z2(m) = %ej

2πm
M , with % = |%0|1/Mej

∠−%0
M . Define

Dφ , diag({φ−m}M−1
m=0 ), (2.110)

and the DFT filterbanks V P(z1) =
√
MFDφ, V P(z2) =

√
MFD%,V P(1/z∗2) =√

MFD1/%∗ , where F is the DFT matrix. Then, it can be shown that the

corresponding representation of P i is given by

P i =
1

(φ0 − %∗0)
D1/φF

∗
4∑

k=1

ιkΛV 1,bk,θFDφ%∗F
∗Λ̃
∗
V 2,bk,ς

FD1/%∗ (2.111)

where ΛV1,bk,θ = Diag(VP(z1)bk,θ), Λ̃V2,bk,ς = %(M−1)ΛV2,bk,ςDiag
(
e−j

2πm
M |M−1

m=0

)
,

are diagonal matrices with ΛV2,bk,ς = Diag(VP(z2)bk,ς), in which, for compactness

of notation we denote b1,θ ,
¯̆
kdoM,N , b2,θ , w̄f

M−1,N−1, b3,θ , Zθw̄
b
M−1,N ,

b4,θ , Zθk̃M−1,N , b1,ς , Zς
¯̆
kdoM,N , b2,ς , Z−1

ς w̄
f
M−1,N−1, b3,ς , w̄b

M−1,N , and

b4,ς , k̃M−1,N , with ι1 = ι3 = −1, ι2 = ι4 = 1. The resulting receiver is illustrated in

Fig. 2.6.

Λ̃
∗
2,0,ς

Λ̃
∗
2,1,ς

Λ̃
∗
2,2,ς

Λ̃
∗
2,3,ς

Λ1,0,θ

F ∗Λ1,1,θ

Λ1,2,θ

Λ1,3,θ

-

-

Dφ%∗

FF ∗ Dφ%∗

FF ∗

FF ∗ Dφ%∗

FF ∗ Dφ%∗

D1/%∗

x̂
F

H∗

v

H
x

Figure 2.6: SC-FD DFT Decomposition.

Remark: Two particular transceivers that rely on the inversion of Toeplitz matrices

are of special interest:

(i) ZF receiver : In this case, a portion of size M of the received vector y′ is

captured, so that the resulting linear model relies on a simple inversion of a

square Toeplitz matrix. Since Toeplitz inverses have a displacement rank of 2

with respect to circulant factors, any square subblock inverse of H of within
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H can be represented as follows:

H−1 =
1

1− φ0/%∗0
D1/φF

∗
[
Λθ,w̄1FDφ%∗F

∗Λ∗ς,w̄2

−Λθ,Zθw̄#
2
FDφ%∗F

∗Λ∗
ς,Zςw̄

#
1

]
FD1/%∗ (2.112)

Unlike the rank-4 case, the diagonal matrices Λ(·,·) depend on only two

prediction (generating) vectors {w̄1, w̄2} (see details in [55],[54]).

(ii) Full (L − 1) redundancy ZP receiver : It is well known that higher

redundancy results in better BER performance. Moreover, besides superiority

in detection, ZP schemes also allow for less complex representations, since

when δ = L − 1, H exhibits a doubly-windowed structure, and H∗H in

this case becomes symmetric Toeplitz, with displacement rank 2. Hence, its

inverse is represented via 2 branches only, except that here symmetry implies

computation of a single generating vector. This fact was already used in

[56],[55] for channel estimation in a high Doppler OFDM setup.

2.8 Reduced-Complexity-Widely-Linear

Superfast BI-DFE

The initial estimate obtained before any iterative detection scheme requires efficient

implementation of an MMSE estimate. The DFT-based expressions of (2.111) and

(2.112) can be extended to the WL scenario by replacing the channel matrix H with

its extended WL version, i.e., He. We can envision two main forms of estimation,

namely, ZF and MMSE, and all we need is to write the corresponding decompositions

for a subblock of He, or its corresponding covariance (D +H∗eHe)
−1 respectively,

for some block diagonal matrix D. Since from (2.83), He = U∗PΛUQ, these

solutions are easily implemented via (2.111) and (2.112) by replacing the channel

definition with
{
H , (H∗)T

}
. This means that we can simply use these formulas to

express P e = U∗Q(D+Λ∗Λ)−1UQ in terms of the decoupled covariances {P ,P T },
since (D +Λ∗Λ)−1 = (P ⊕ P T ).

On the other hand, when He has the tall structure defined in (2.79), we may

expect further improvement in comparison to its SL counterpart. This is the case

when real modulation schemes such as BPSK or PAM are employed. Observe that

if H is (P × P + L − 1), He is (2P × P + L − 1), and all we need in general for

well-conditioned estimation is that P ≥ L− 1, a requirement easily satisfied. Note

that such configuration not only implies zero redundancy, but a higher throuput

since we are mapping P +L− 1 samples of real data to P samples of complex data.
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2.9 On Reduced-Redundancy Efficient Superfast

Transceivers

As reported recently in [57, 58], the superfast formula of (2.111) has been claimed

novel by the authors of [28–32, 59], in the context of block reduced-redundancy (RR)

scenarios. In this section, we point out that the performance of those RR schemes

depends on the channel, in such way that, for most channels this gain is negligible.

Moreover, we argue against the choice of system throughput as the sole figure of

merit, since this is considered under coded transmission. The purpose of this section

is to complement the results of [12] regarding the use of such transceivers, in a

three-fold sense: First, to clarify that contrary to the claims of [29], there is no

advantage in considering superfast DFT-based linear minimum-redundancy (MR)

transceivers against standard orthogonal frequency division multiplexing (OFDM)

and single-carrier frequency division (SC-FD) schemes even for coded transmissions;

Second, to show that what the authors refer to as a DHT-based receiver also

offers no gain compared to either the analogous DFT or standard schemes as well.

Third, to use these conclusions in order to motivate the importance of the new

iterative solutions proposed in this work, which instead can benefit from superfast

realizations, given an actual, justified gain in terms of BER and throughput.

Thus, recall from our previous discussion on superfast receivers, that their MMSE

or LS structure relies mainly on the decomposition of the covariance (αI+H∗H)−1.

Because in general its displacement rank is 4, it yields a 4-branch receiver design (a

ZF receiver would lead to a simpler 2-branch receiver). In either case, what is

relevant to our discussion here is that the receiver is composed solely by FFTs

matrices, denoted by F , fixed diagonal matrices denoted by D(.), and the diagonal

matrices {Λ(.), Λ̃(.)}, which represent the equalizer parameters, while multiplication

by H∗ is done efficiently via circulant embedding. A multi-carrier (MC) version of

this scheme is simply obtained by moving the far end FFT (or any derived transform,

for that matter) to the transmitter [12].

In [29] and all their subsequent papers, the authors argue that these superfast

transceivers show competitive performance against standard OFDM/SC-FD

schemes in some cases, and that these can only be noticed under coded transmissions,

when the best figure of merit is the data throughput. Now it is known that when

characterizing a receiver, the uncoded bit-error-rate (BER) is normally the first

performance measure observed, and it is much more sensitive than block error

rate (BLER) or coded BER alone. We bring attention to the fact that when

proposing a new receiver, it is paramount that its BER be examined independently of

the coding scheme employed. This is because it is also widely known that depending

on the coding strategy, the BER can experience substantial improvements, which

47



can potentially mask the true benefit delivered by the proposed transceiver.

We do not believe that a comparison based on coded transmissions is the

only option. One can equally argue that if we are to consider a real mobile

environment, one should provide a more general experiment setup that can reflect

the real difficulties encountered when inverting structured square matrices, as for

instance: i) The effect of channel estimation; ii) The effect of ubiquitous intercarrier

interference (ICI); iii) Most importantly: the real impact of ill-conditioned square

matrices inherent to MR schemes considering i) and ii) — which is the reason

why such square matrix inversions have always been avoided; iv) The combination

of i), ii) and iii). Note that MR receivers are also more computationally

demanding than conventional OFDM/SC-FD schemes, being roughly 10 times more

complex (Fig. 2.6).

We invite the reader to revisit Eq. (2.87), in that the optimal redundancy of a

block-by-block based scheme is given by the number of maximum-phase zeros of

the underlying channel. This well established result, and which has an analytical

proof (due to Scaglione et al.’s famous paper [15]), already tells us which channels

can be equalized depending on the desired redundancy (which translates to decision

delay). This fact answers why an MR scheme will not work in most cases. The

explanation is as follows: The minimum d(L − 1)/2e redundancy is optimal (in

a minimum-norm-ZF sense) if it equals the number of stable zeros of the channel

impulse response. The longer the block size compared to the channel, the taller

is its full convolution matrix, and the smaller the probability that its optimal

subblock corresponds to the one of an MR system. The FIR channels in, e.g.,

[28] and other publications are frequently of order 4 at most, chosen with 1 or

2 maximum-phase zeros, for which the minimum is optimal. In [29], it is stated

that “If ill-conditioned channels are not taken into account, by including only the

channels whose condition number of the Toeplitz matrix is 6 times larger than that

of the circulant matrix (comparing to standard OFDM/SC-FD schemes), the MR

scheme can achieve better results in terms of BER”. Since the author simulates

a random channel, this constitutes a modification of the actual scenario. These

channels should not be taken out of the simulations, since they correspond to those

where minimum redundancy is different from its optimal value, a fact that is reflected

in the perceived ill-conditioning.

In [12], it can be verified that by choosing the channel zeros at any configuration

different from having channels exhibiting average half stable zeros (= MR), including

other power delay profiles (where the path delays do not vary randomly in general),

and maximum-phase channels, the MR equalizer by itself fails by far.

Moreover, in an uncoded scheme that presents no BER gain at all, that is, one

that exhibits a ‘flat’ BER curve (see, e.g., Fig. 2.9) — case of most MR simulations,
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any gains seen come from the coding scheme itself and there is no advantage in

considering those over the simplicity of standard OFDM/SF-FC schemes. And it

is understood that in a more sophisticated coding scenario (specially when relying

on feedback of soft-decisions), one can observe huge BER improvements — see, e.g.

[55] in the case of superfast schemes in high mobility environments.

That being said, should the ultimate goal be to reduce redundancy in

transmission, one may simply make use of a memoryless, zero-redundancy

transceiver, as the one long proposed in [51] (and never cited by those authors),

so that equipped with proper coding it can easily outperform the linear MR ones.

As we shall see next, simulations within a Long Term Evolution (LTE) setup show

that a simple block DFE achieves superior performance, with the same complexity,

and smaller redundancy than the lower bound allowed in the linear case.

2.9.1 Preliminary Simulations

In this section, we compare the performance of standard MC and SC-FD schemes

with the ones of the corresponding DFT and DHT-based minimum and optimal

linear reduced redundancy transceivers. We also contrast the performance of the

latter with simple DFE receivers that eliminate IBI via decision feedback, which

just like the linear case, are shown to be implemented in superfast complexity. For

the sake of comparison with the experimental results of [28–32], we assume exact

channel state information (CSI) and remark that in these references, the BER curves

shown by the authors are displayed in the unrealistic range up to 50 dB SNR.

� Experiment 1 (Coded Reduced-Redundancy in SL Transceivers) : We

illustrate the performance of RR systems under coded transmissions, by considering

the same throughput figure of merit used in [29]:

Throughput = b · rc
M

M + δ
(1− BLER)fs bps (2.113)

with b denoting the number of bits required to represent a constellation symbol, rc

the code rate considering the protection of channel coding, fs the sampling frequency,

and with BLER standing for block-error rate, assuming that a data block is discarded

whenever at least one of its original bits is incorrectly decoded at the receiver.

Figure 2.7 shows the throughput when blocks of M = 32, 4-QAM symbols

are transmitted. These channel models are sampled at fs = 150 MHz, and a

convolutional code with constraint length 7, rc = 1/2, and generators g0 =

[133] (octal) and g1 = [165] (octal) are used. The channels have length L = 15,
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Figure 2.7: SC-FD [(a) and (c)] and MC [(b) and (d)] schemes for channels 1 and 2,
for RR, MR, and standard systems — Throughput (Mbps)×SNR (dB).

which are borrowed from [12] (used in the uncoded experiments 1 and 3 therein):

H1(z) = (0.77 + 0.38j) + 0.58jz−8 − 0.58z−9 − 0.567z−10 + 2.7z−13 + 0.4z−14,

H2(z) = (0.77 + 2.38j) + 1.58jz−8 − 0.358z−9 − 0.567jz−10 + 0.5z−13 + 0.1z−14.

The amount of redundancy ranges from the minimum δ = (L − 1)/2 = 7

to full redundancy δ = 14. All receivers are MMSE-based [in fact these are

least-squares (LS)-based, and approximately regularized by the SNR], except for

the standard OFDM which is designed as ZF, for comparison. Note that it is known

that for standard OFDM, both ZF and MMSE perform the same.

The results are more than clear. First, all SC-FD schemes clearly fail [see

Figs. 2.7(a), 2.7(c)]. Note that the MR-SC-FD of Fig. 1(a) is of no use, while

all RR-SC schemes require almost full redundancy (i.e., δ = 12, δ = 13) to

outperform the standard ones in a range of low SNR [Fig. 2.7(c)], say up to

10 dB. Above 10 dB, the gains are negligible. In a meaningful SNR range, which

is usually below ≈17-20 dB, even after coding, both ZF-OFDM/MMSE-SC-FD
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schemes outperform the MR-MMSE all the way. Above that, the coded MR-MC

curves [Figs. 2.7(b), 2.7(d)] only achieve a small throughput gain of at most 10%

over standard schemes at 20 dB, and at 22 dB for Fig. 2.7(b), approximately.

Actually, within this range, one can easily see that the area in the gap between

all OFDM/SC-FD schemes and the MR curves is considerably larger than the

corresponding one above 17-20 dB (i.e., in the limited range the MR system is

claimed to work). Observe that these are static channels, and yet in such idealistic

case (i.e., exact CSI, absence of ICI, reduced numerical errors due to high finite

precision and SNR regularization in the simulations, etc), the small gains in

throughput given by MR systems are only seen at high SNR figures. Moreover,

we readily verify that even after coding, the meaningful SNR range for throughput

improvement is rather reduced.

Remark 1: Note the high complexity employed by such receivers which, even under

coding and MMSE regularization, cannot reach the performance of a simple standard

Zero-Forcing-OFDM. The corresponding ZF-MR-MC schemes show no throughput

gains for any the above channels.

Remark 2: The simulations shown in [29],[28] display the BER/Throughput curves

in the SNR range up to 30-45 dB, which is unrealistic in practical scenarios,

and any gain is only noticeable at very high SNR levels. As an example, the

LTE specifications [33] consider any SNR value above 20 dB as excellent, and the

recommended range for equipment testing is 13-20 dB.

� Experiment 2 (Comparison between DFT and DHT-based SL

schemes): In [60], the authors claim that they have proposed a new DHT

counterpart of the scheme in Fig. 2.6 that works for any channel impulse response,

regardless of its symmetry. This is because, as we have previously mentioned, while

the DFT-based formula originates from the so-called factor circulants {Z−φ0 ,Z−%0},
these can be alternatively expressed through DHTs, just by noticing that

Z1 = D1/φF
∗Λz̄1FDφ = HXbk,θH (2.114)

Z−1 = D1/ρF
∗Λz̄2FDρ = HT

IIXbk,ςHII (2.115)

where

H , <{F }+ ={F } and HII , <{FDφ}+ ={FDφ}

are the Hartley transforms corresponding to the DFT, and a modified DFT, usually

referred to as DFT-II, i.e., FII , FDφ, where again, D(·) are certain fixed diagonal

matrices. While {Λz̄i} are diagonal, the matrices {Xbk,θ ,Xbk,ς} possess a nonzero

diagonal and anti-diagonal only, except that their elements are dependent through
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a mirror symmetry. Obtaining their DHT scheme is straightforward: Replacing

(2.114) and (2.115), into the solution of a rank-n displacement equation for a

generically structured covariance P = (H∗H)−1 yields

P =
1

2

n∑
k=0

HT
IIXk,ςHIIHXk,θH , (2.116)

where n refers to the number of receive branches, given by the displacement rank

of the channel matrix (in the case of ZF) or of its covariance (in the LS case). The

matrices {Xk,θ,Xk,ς} are of the same form of {Xbk,θ ,Xbk,ς}. This amounts to replacing

each receiver branch in Fig. 2.7 by matrix products of the form inside the summation

of (2.116). That is, essentially, the DFT and the DHT formulas stem from the same

displacement operator, and the latter is not a new invention.

Figure 2.8 illustrates the uncoded BER curves for the case when 9 delay paths

are randomly located within an ensemble of 50000 L = 41-tap channels for MC and

SC-FD schemes, with M = 64. This is more reasonable than considering trivial

fourth order channels as random variables, given known wireless communication

standards. It is also the best case scenario for the MR systems, since averaging the

power delay profiles results on average in half stable zeros (=MR), which is not the

case in practice. Still, even the optimally chosen redundancy DFT-based RR-MC

systems reach worse performance than standard schemes. We further include full

(L − 1) redundancy transmissions for comparison. The DHT-based schemes are

illustrated with dashed curves. We can clearly see that, on average, there is also no

BER performance gain of the DHT, over DFT-based schemes, except for a negligible

improvement in the case of an MMSE receiver at high SNR, and for the optimal

redundancy scenario. The minimum redundancy systems performs poorly, and much

worse than standard multicarrier schemes, even for lengths and block sizes {L,M}
of the same order.

� Experiment 3 (Performance for an LTE channel and comparison

with SL ZJ-DFE): Here we reinforce the simulations of [12] by considering an

important case in which, in theory, no linear reduced-redundancy can outperform

the standard MC/SC-FD schemes. Thus, consider an Extended Pedestrian A (EPA)

model, in a LTE environment. We compare in Fig. 2.9, for L = 21, M = 64,

QAM-4, the following (DFT-based) schemes, referring to the figure label,

from the top: (a) A linear MR-MMSE receiver using zero-jamming (ZJ); (b) A

linear full (L − 1)-redundancy MC-MMSE receiver; (c) A linear MR-MC-MMSE

receiver using ZJ, with one symbol re-estimation as in [12]; (d) The linear

full (L−1)-redundancy MC-MMSE receiver with ZJ, and one symbol re-estimation;

(e) The ZF counterpart of (a); (f) The ZF counterpart of (b); (g) Standard
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Figure 2.8: MC transceivers, M = 64, L = 41 (9 path gains randomly located).

ZF-SC-FD, and (h) Standard ZF-OFDM.

This scenario shows that the situation is different for a practical power delay

profile. It is possible to verify that the LTE channel has ≈ 5-6 maximum-phase

zeros, implying that δ = 5 or 6 redundancies are optimal, according to [12],[15].

Observe that this level of redundancy cannot be attained by any linear or DFE

receiver via ZP-ZJ as the one proposed by the authors in [61], even employing

symbol re-estimations (as in [12]). They can only reduce redundancy down to the

minimum of δ = (L − 1)/2 = 10. As can be seen from Fig. 2.9 (dark, flat curves),

the ZF schemes exhibit high, constant BERs = 0.4 for a ZF receiver, and around

0.02 for the ZJ-DFEs, for SNR > 15 dB. Moreover, as in the previous example, the

channel and the block size are of the same order, and unlike suggested in [29, 30],

it gives no advantage to the MR systems.

For completeness of the argument, we include in Fig. 2.10, for the same setup, the

memoryless superfast BI-GDFE that eliminates IBI via decision feedback (instead

of ZJ), as proposed in [12].

This example employs half of the minimum-redundancy used by the author of

[29], i.e., δ = 5 (and roughly the same computational complexity). Compared to the

standard ZF-MC/SC transceivers, the reader can verify how these curves stand out
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Figure 2.9: LTE EPA channel model — Comparison with the ZJ scheme.

significantly, and how close these are to the one of full redundancy-DFE (δ = 20).

The latter in turn performs just as well as the one employing δ = 10, which is the

same amount of redundancy used by the linear MR scheme proposed by the authors

in [29]. Moreover, note from Fig. 2.9, that the δ = 10 redundancy scheme, where

IBI is removed by ZJ, shows a performance that is significantly inferior to the one

of Fig. 2.10, which instead removes IBI via decision feedback.

In summary, these are the conditions in which MR is claimed to work. Gains

are only seen:

1) Under coded transmissions, in terms of Throughput;

2) For channels with exactly half stable zeros;

3) When M and L are of the same order;

4) Only for MMSE receiver;

5) Within all the above, in a reduced range, at high SNR.

Add to all the above, the complexity of the transceiver which is approximately

10 times the complexity of the standard OFDM (which still performs better, even

under coding), the referred superfast RR transceivers are clearly of no use.
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Figure 2.10: LTE-EPA: Block GDFE (DF-IBI) × ZJ-DFE × standard schemes.

2.10 Optimal Iterative Estimation of Digitally

Modulated Signal Constellations

From the above conclusions and the discussion on the need for a reduced redundancy

δ, the optimality of the equivalent decision delay δ plays an important role when

choosing the best set of contiguous entries to be estimated within the transmitted

vector x. This assumes that we are looking into the best submatrix ofH constituted

by contiguous columns, such that, besides being invertible, it also exhibits the best

conditioning for inversion or vector estimation, given the equivalent noise model

defined through the remaining subblocks. The selected columns of H should then

act as a good ‘sensing matrix’, so that the former properties can be more easily

achieved.

These concepts are strongly related to the building blocks of the theory of

compressed sensing, with regards to the properties of general frames (not necessarily

Toeplitz) and which play the role of sensing matrices for sparse signals. It is well

known that good sensing matrices, say, of size M × P , P ≥ M , are given by the

so-called full spark frames. An M × P matrix H is said to be full spark if its spark

is as large as possible, i.e., Spark(H) = M + 1. This means that they are capable of
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supporting signals with the smallest possible sparsity level, that is, signals with the

largest cardinality. Equivalently, full spark matrices have the property that every

M ×M submatrix of H is invertible, and as such, are necessarily full rank (hence

constituting a frame). While full spark matrices have invertible submatrices, they

may not be well-conditioned, which is an important feature in compressed sensing.

Sensing matrices with well-conditioned submatrices satisfying the RIP allows for

stable and efficient recovery of sparse signals. Unfortunately, as we pointed out

in Sec. 1.1, determining the isometry constant that defines the RIP is generally

an intractable problem — the same conclusion holding for finding its spark — so in

practice we replace it by a lower bound on the spark, based on the mutual coherence.

The mutual coherence also plays a role in establishing a lowerbound on the

non-zero eigenvalues of the Gramian matrix of full spark frames. First, note that all

eigenvalues of a Gramian matrix are non-negative. In this case, assuming that

Spark(H) = M + 1, there is at least one principal submatrix BM+1 for which

λmin(BM+1) = 0. From the discussion about the relation between mutual coherence

and spark in Sec. 1.1, we have that all principal M×M submatrices BM are positive

definite. By the Geršgorin circles theorem, there exists an eigenvalue in the circle

defined by

∣∣λ− [BM ]ii
∣∣ ≤ p−1∑

j=0
j 6=i

[BM ]ij . (2.117)

Accordingly, in view of (1.6) and (1.7) we have

|λ− 1| ≤ (M − 1)µ(H) (2.118)

Since BM > 0, a lowerbound on the smallest eigenvalue of any principal submatrix

BM is

λ1(BM) ≥ 1− (M − 1)µ(H), (2.119)

where λ1(BM) ≤ λ2(BM) ≤ · · · ≤ λM(BM). Applying the interlacing property on

the Gramian itself, we have

λ1(G(H)) ≤ λ1(BM+1) ≤ λP−M(G(H)) ⇒ λP−M(G(H)) ≥ 0 ,

λ1(G(H)) ≤ λ1(BM) ≤ λP−M+1(G(H)) ⇒ λP−M+1(G(H)) ≥ 1− (M − 1)µ(H) .
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Since P ≥M , G(H) will have P −M zero eigenvalues, so that

0 = λ1(G(H)) = · · · = λP−M(G(H)) ≤ 1− (M − 1)µ(H)

≤ λP−M+1(G(H)) ≤ · · · ≤ λP (G(H)).

That is, the smallest non-zero eigenvalue of the Gramian matrix of a full spark frame

is lower bounded by 1− (M − 1)µ(H). Even though these results were derived with

H having normalized columns, for general matrices the conclusion that coherence

bounds the smallest non-zero eigenvalue of its Gramian matrix still holds (with a

different lowerbound, considering the proper scalings). That is, from the above

reasoning, the smaller the coherence of a matrix, the larger the smallest non-zero

eigenvalue of its Gramian becomes.

Note that in [16] the optimal delay for equalization is obtained by selecting a

square submatrix of H, formed by a contiguous set of columns, and whose inverse

has minimum norm. Since the norm of the inverse is bounded by the reciprocal of

the smallest singular value, this corresponds to selecting the submatrix of H with the

largest smallest singular value. Thus, selecting the optimal delay also corresponds

to selecting the submatrix (within a now limited subset) with the smallest coherence

and consequently, the largest lowerbound for the spark (given that the non-zero

eigenvalues of the Gramian of this submatrix are the square of its singular values).

Now, in the CS scenario, vector estimation is not restricted to contiguous entries.

This is equivalent to saying that the best submatrix within a sensing matrix is not

restricted to a set of contiguous columns, so the choice of the optimum decision delay

δ within x is no longer relevant. In the communications setup, on the other hand,

the iterative algorithm should be able to detect the correct entries that belong to

a given constellation. These two phases can be cast into a unified framework that

aims to adaptively (and therefore implicitly) select the best set of columns to act

as a sensing matrix to the received data. In our context, the class of transmitting

vectors consisting of modulated signals suggest that these are sparse with respect

to any vector belonging to the constellation, and in particular, to any vector that

attempts to approximate this signal, e.g., a projected estimate, say, xi−1. That

is, the difference between a vector belonging to the constellation and its projected

estimate is expected to be sparse. In this respect, we have that

Spark(H) = min {‖x− xi−1‖0 : H(x− xi−1) = 0 , x 6= xi−1} (2.120)

As a consequence, enforcing this condition in any of the LS type costs aforementioned

may result in further improvement in estimation (since the conditioning of a Toeplitz

subblock of H may be compromised in general, we may think of precoding as one

57



way to design the overall equivalent sensing matrix towards a full spark one3).

At this point, it should be highlighted that the terms “IBI removal” and “output

estimate removal”, which are commonly employed as independent procedures, are in

fact closely related. That is, the a priori error fed back in a re-estimation process, as

e.g., in the BI-DFE aforementioned, is nothing but an attempt to remove IBI, which,

if accomplished exactly through detection, inherits the name “IBI cancelation”. This

paves the way to a wider notion of decision feedback, which we shall pursue exactly

with a CS formulation in mind.

In contrast to the block DFE discussed in the previous section, a CS-based DFE

does not need to assume that the data within x to be estimated is a contiguous

block, as defined by xδ in (2.44). The information of interest can be any subset of

x, while the remaining entries can be cast, either as noise, or as previously detected

entries. The latter, in turn, if assumed correct, can be further used to remove the

corresponding columns from the channel matrix. This can be seen as a generalization

of the notion of IBI removal, prior to any re-estimation procedure. In other words,

these steps can be further merged through an enhanced algorithm that detects the

entire data in x without the need for past IBI cancellation (or combined with a fixed

a priori IBI cancelation as in the conventional DFE). This may further include hybrid

architectures that make use of transmitted redundancy. As a fallout, a procedure

that attempts to retrieve x, if successful, will imply that not only redundancy in

transmission is unecessary, but also that the received signal can be sampled at a

lower rate than what is predicted by Nyquist theory.

2.10.1 Adaptive CS-based Formulation

One way towards solving the underlying underdetermined problem is to account for

a priori knowledge on the parameter x itself, by adding a suitable constraint on the

vector parameter x. This is equivalent to introducing a regularization function %(x)

into the cost (2.13):

min
x
‖y −Hx‖2

R−1
v

+ ‖x− xi−1‖2
P−1
i−1

+ %(x) (2.121)

where %(·) is some regularization or penalty function (not neccessarily smooth). Note

that this problem corresponds to (1.13), by setting W ←− R−1
v and R ←− P−1

i−1.

By realizing that x is sparse with respect to any vector z that belongs to the same

constellation, %(·) can be chosen to be a sparsity inducing regularization function

in terms of x− z. Note that in particular, by setting z = xi−1, we can express our

3This may further shift the load of performing Hessian inversions in decision directed iterations
to the transmitter, so that in some cases, a simpler (block) LMS type algorithm can be a simpler
choice.
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uncertainty about some previous estimate of x in the `0- or `1-norm sense, commonly

employed in CS problems, in addition to the `2-norm regularization. In this case,

(2.121) can be explicitly stated as

min
x
‖y −Hx‖2

R−1
v

+ ‖x− xi−1‖2
P−1
i−1

+ %(x− xi−1) (2.122)

By rewriting the first two terms of (2.122) in a standard completion-of-squares

form, and after ignoring the remaining constant ‖y‖2
(Rv+HPi−1H

∗)−1 , we can express

it equivalently as

min
x
‖x− x̂i‖2

(P−1
i−1+H∗R−1

v H) + %(x− xi−1) (2.123)

≡ min
x
‖x− x̂i‖2

P̂−1
i

+ %(x− xi−1) (2.124)

where

P̂−1
i = P−1

i−1 +H∗R−1
v H

and with x̂i computed via (2.14)–(2.17).

Now, exact minimization of the above iterative problem is only possible in case

P̂i is diagonal, since in this case, minimization can be carried out entrywise, yielding

a solution in closed form (see Appendix A, [23]). The presence of the non-diagonal

weighting matrix, in general, hinders the direct extension of this algorithm to a true

recursive LS update, which calls for an alternative path.

One way to circumvent this problem is by taking advantage of the norm

equivalence property, which ensures that we can bound ‖x− x̂i‖2
P̂−1
i

in the following

manner:

r1,i ‖x− x̂i‖2 ≤ ‖x− x̂i‖2
P̂−1
i
≤ r2,i ‖x− x̂i‖2

for some non-negative constants {r1,i, r2,i}. Since P̂−1
i is a Hermitian positive-definite

matrix, this property can be made more explicit, by using the Rayleigh-Ritz

characterization of eigenvalues (λk) as

λmin

(
P̂−1
i

)
‖x− x̂i‖2 ≤ ‖x− x̂i‖2

P̂−1
i
≤ λmax

(
P̂−1
i

)
‖x− x̂i‖2 .

As a consequence, we can approximate the weighted norm in (2.124) by

‖x− x̂i‖2
P−1
i
≈ ci ‖x− x̂i‖2 = ci

M−1∑
k=0

|x(k)− x̂i(k)|2

where ci is an iteration dependent constant. Because of the norm equivalence

property, we can take a step further and assign different weights for each term
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of the summation, thus leading to an even better approximation

‖x− x̂i‖2
P−1
i
≈ ‖x− x̂i‖2

Ci
(2.125)

where Ci = Diag (c0,i, · · · , cM−1,i) is a diagonal matrix, where all diagonal entries are

bounded by λmin

(
P−1
i

)
≤ ck,i ≤ λmax

(
P−1
i

)
. Moreover, hereafter, we shall consider

a weighted `0-norm regularization denoted by

%(x− xi−1) = ‖x− xi−1‖0,Λi

with Λi = Diag
(
ε′i,0, · · · , ε′i,M−1

)
. In this case, we have

‖x− xi−1‖0,Λi =
M−1∑
k=0

ε′i,k|x(k)− xi−1(k)|0, (2.126)

with |x(k) − xi−1(k)|0 denoting an indicator function that returns 0 whenever we

have x(k)− xi−1(k) = 0, and 1 otherwise, and with ε′i,k the corresponding weighting

scalars. As a consequence, the solution to the problem in (2.124) can be obtained

by solving

min
x

‖x− x̂i‖2
Ci

+ ‖x− xi−1‖0,Λi . (2.127)

Since Ci is diagonal, the solution ẋi, as a proximal mapping, can be computed

exactly as (see App. A) :

ẋi = xi−1 + qi(x̂i − xi−1) (2.128)

= xi−1 + qi(Kp,iēi). (2.129)

where qi(·) is now the entrywise hard threshold operator

qi(θk) =

{
θk, |θk| >

√
εi,k

0, otherwise,
(2.130)

and where we write εi,k = ε′i,k/ci,k to denote a threshold scalar that incorporates the

weights from Ci and the regularization constants ε′i,k.

At this point, exact knowledge of the weights ε′i,k that will lead to the scalars

εi,k is not important. This is because, as we shall see, the underlying thresholds will

be calculated adaptively, so that in this sense, the approximation in (2.125), could

be replaced by an equality, without the need to establish ε′i,k or ci,k in first place.

Those values will be obtained implicitly through a thresholding strategy. We shall

return to this issue further ahead, in light of the new recursions introduced next.
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Observe that qi(·) is iteration dependent, and can be represented by a diagonal

matrix ∆i that selects the surviving entries of its vector argument, while zeroing

out the remaining ones. That is, defining ∆i,k its k-th diagonal entry,

∆i,k =

{
1, |θk| >

√
εi,k

0, otherwise.
(2.131)

so that from (2.129) we have

ẋi = xi−1 +∆iKp,iēi . (2.132)

In words, with the given thresholds, when a symbol is considered incorrect, we

simply set ∆i,k = 1, so that ẋi(k) = x̂i(k). On the other hand, when the symbol is

considered correct, no further update is required for that entry, and ẋi(k) = xi−1(k).

This implies that we should set to zero its corresponding error covariance elements,

while updating the remaining ones. That is, from (2.132), the error covariance of

the new estimate before the slicer, denoted as Ṗi, reads

Ṗi = Pi−1 −∆iKp,iRē,iK
∗
p,i∆

∗
i . (2.133)

Finally, the projection onto the constellation symbol yields

xi = fi(ẋi) (2.134)

Note that once the k-th entry of xi is assumed correct, its corresponding variance

becomes zero. On the other hand, the incorrect entries are projected onto

constellation points. With this in mind, it remains to compute the error covariance

of the signal obtained after the slicer. To this end, we can adopt a first-order model

for f(·) as follows:

xi = ẋi +∆iqi (2.135)

where qi is a zero-mean random perturbation vector, with i.i.d. entries whose

distribution depends on the input signal modulation. For example, if a M -ary QAM

is used, then qi(k) is uniformly distributed inside of a square on the complex plane,

with sides equal to the minimum distance between symbols. The product with the

diagonal matrix ∆i reflects the fact that the slicer operates solely on the incorrect

entries, leaving the remaining ones undisturbed. Hence, denoting the covariance
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matrix of the perturbation vector as Qi, we get

Pi = ∆iṖi∆
∗
i +∆iQi∆

∗
i (2.136)

= ∆iPi−1∆
∗
i −∆iKp,iRē,iK

∗
p,i∆

∗
i +∆iQi∆

∗
i (2.137)

= ∆i

(
Pi−1 −Kp,iRē,iK

∗
p,i + Qi

)
∆∗i (2.138)

Eqs. (2.14)-(2.19) should then be replaced by

Rē,i = Rv +HPi−1H
∗ , (2.139)

Kp,i = Pi−1H
∗R−1

ē,i , (2.140)

ēi = y −Hxi−1 , (2.141)

ẋi = xi−1 +∆iKp,iēi , x0 = 0 (2.142)

xi = fi(ẋi) (2.143)

Pi = ∆i

(
Pi−1 −Kp,iRē,iK

∗
p,i + Qi

)
∆∗i , Ṗ0 = Rx (2.144)

As a result, given εi,k, we can gradually reduce the size of our channel model

as follows. Let xci denote the entries of xi which correspond to zero error, i.e.,

xci = ẋi(Ici) = xi−1(Ici), and where we define the set of indexes of correct decisions

as Ici = {k ∈ Z ||| |ẋi(k)− ẋi−1(k)| < εi,k}. Likewise, let xi be the vector comprising

the incorrect entries, having error covariance P i. Note that the effect of xci−1 in the

a priori error ēi is to succesively remove IBI from the original model.

Assume that at the i-th iteration we have removed the columns of H that

correspond to correct decisions, and defineHc
i the matrix that collects such columns

at time i. Likewise, let H i be the matrix comprising the surviving columns. Then,

observe that ēi can be expressed as

ēi = y −Hc
ix

c
i−1 −H ixi−1 (2.145)

= yi −H ixi−1 (2.146)

where we have further defined

yi , y −Hc
ix

c
i−1

Because the entries in xci−1 contain past assumed correct decisions that did not

change from the previous iterations, we can still write

yi = y −Hc
ix

c
i−1 (2.147)

= y −Hc
i−1x

c
i−2 − H̊ ix̊i−1 (2.148)

= yi−1 − H̊ ix̊i−1 (2.149)
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where x̊i−1 corresponds to new correct decisions added to the set Ici . At each

iteration, a matrix J i is formed such that it selects the incorrectly detected entries

of the current LS estimate xi. Similarly, the correct entries are collected into x̊i

using a matrix J ci , complementary to J i. From these findings, Eqs. (2.139)-(2.144)

collapse to the CS-based DFE algorithm in Table 2.3.

Initialization:
H0 = H, P 0 = Rx, x0 = x0 = 0, y0 = y

Rē,i = Rv +H iP i−1H
∗
i (2.150)

Kp,i = P i−1H
∗
iR
−1
ē,i (2.151)

yi = yi−1 − H̊ ix̊i−1 , (2.152)

ēi = yi −H ixi−1 (2.153)

xi = fi (J ixi−1 + J iKp,iēi) (2.154)

x̊i = Jcixi−1 (2.155)

P i = J i
(
P i−1 −Kp,iRē,iK

∗
p,i + Qi

)
J∗i (2.156)

Table 2.3: CS-based Kalman algorithm.

Note that the size of the data matrix H i, as well as xi, recursively shrinks;

accordingly, the channel model at time i yields an error covariance P i with reduced

size as well.

2.10.2 Computation of the Threshold

A critical factor in deciding which of the detected entries should be taken as correct,

relies heavily on the adaptive choice for the threshold scalars εi,k, which are used

by qi(x̂i − xi−1) = qi(Kp,iēi) in (2.130). One way towards its derivation, which was

roughly pursued in [62] (according to their own residual error definition), consists

in the following. Let the centralized estimate at time i be defined as

∆x̂i = x̂i − xi−1 (2.157)

= x− x̃i − xi−1 (2.158)

= x̄i−1 − x̃i = Kp,iēi (2.159)

We readily notice that the error after detection, x̄i−1, is a sparse vector containing

a few spikes that correspond to the incorrect entries, while x̃i is simply the MMSE

before detection.

The approach followed in [62] (albeit one lacking the level of generality introduced

here), is to consider x̃i as a Gaussian vector noise, in which the spikes of x̄i−1 are
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embedded. Note that because this variable indeed defines an MMSE estimation

error, if x and y are jointly Gaussian, this assumption becomes exact. Regardless

of this fact, the idea is based on a well known result, which states that the mean

of the largest magnitude sample of a Gaussian random vector zi of length M , say,

zi(k) ∼ CN (0, σ2
z), k = 0, 1, . . . ,M − 1, is bounded by [63]

E‖zi‖∞ <
√

2σ2
z lnM (2.160)

By making the association zi ←− x̃i, and considering this variable as background

noise, this suggest a possible way to distinguish the error spikes in (x̂i − xi−1)

from x̃i such that any entry of x̃i with magnitude falling below
√

2σ2
z lnM can be

considered a fluctuation around a correct decision, and therefore are not in error.

Such reasoning was pursued in [62], assuming that zi has Gaussian entries with the

same variance σ2
z . Although the Gaussianity assumption can be approximated, in

general, the variances along the error vector are not identical, so that the application

of this result becomes very restricted. That is, since each element of zi has a different

variance, the corresponding upper bound for the maximum absolute value must be

replaced by

E‖x̃i‖∞ <
√

2σ2
i,max

lnM, (2.161)

where we defined

σ2
i,max = max

0≤k≤M−1
σ2
i,k

Having such a large upper bound for the entries x̃i(k) with small variances could

force correct symbols to be rejected. Having different thresholds for each symbol is

therefore a more plausible assertion.

Specifically, from (2.159), we have that

x̃i = x̄i−1 − Kp,iēi (2.162)

and we already know that it yields the covariance recursion (2.18), i.e.,

P̂ i = P i−1 −Kp,iRē,iK
∗
p,i (2.163)

Since the diagonal elements of P̂ i contains the variances σ2
i,k of each entry of x̃i,

this suggests that they can be used more precisely towards the computation of a

threshold.

Let the minimum distance between two constellation points be denoted by dmin,

as depicted in Fig. 2.11, and observe that either x̄i−1(k) = 0 or |x̄i−1(k)| ≥ dmin,

meaning correct or incorrect symbol detection, respectively. We remark that

in [62], it is further assumed that most non-zero entries of x̄i−1 are such that
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Figure 2.11: A (a) correctly detected and a (b) incorrectly detected symbol are
shown. Black dots show the possible values of x̄i−1(k), given an estimate xi−1(k).
The red dot is the current update ∆x̂i(k) and the gray circle corresponds to the
possible values of ∆x̂i(k) + x̃i(k) given the variance σ2

i,k. The dashed circle has
radius dmin .

max[x̄i−1(k)] = dmin, an assumption needed to estimate the sparsity of x̄i−1 in

their scenario. Rearranging (2.159), we have that

x̄i−1(k) = x̃i(k) + ∆x̂i(k), (2.164)

so that applying the triangular inequality to this relation, we get

|x̃i(k)| + |∆x̂i(k)| ≥ |x̄i−1(k)|. (2.165)

Since incorrect detection implies |x̄i−1(k)| ≥ dmin, using this fact along with (2.165)

gives

|x̃i(k)| + |∆x̂i(k)| ≥ dmin (2.166)

or, equivalently,

|x̃i(k)| ≥ dmin − |∆x̂i(k)| (2.167)

For example, in Fig 2.11(a), the grey circle around the red dot corresponding to ∆x̂i

would not cross the dashed circle with radius dmin, corresponding to a correctly

detected symbol. In Fig 2.11(b), the situation for an incorrectly detected symbol is

depicted.

In the following, we shall assume that x̃i(k) is circular complex Gaussian, for

which it is well known that |x̃i(k)| is Rayleigh distributed [64, 65]. Then, using its

corresponding cumulative probability function, the inequality in (2.167) will be true
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with probability

Pr
(
|x̃i(k)| ≥ dmin − |∆x̂i(k)|

)
= e

− (dmin−|∆x̂i(k)|)2

2σ2
i,k . (2.168)

Let the maximum probability of incorrect symbol detection be denoted by pk. Then,

(2.168) gives

e
− (dmin−|∆x̂i(k)|)2

2σ2
i,k ≤ pk (2.169)

which yields

|∆x̂i(k)| ≤ dmin −
√

2σ2
i,k ln

1

pk
(2.170)

Since pk quantifies the probability of false detection, the smaller pk, the more

restrictive will be the assertion of correct decision. For instance, selecting pk → 0

would imply |∆x̂i(k)| → −∞ in (2.170), meaning that all symbols are considered

incorrect. On the other hand, having a large pk would set the threshold too large, so

that any symbol could be taken as correct. One reasonable choice is pk = 1/M,

which corresponds to allowing at most one symbol in error within M symbols,

considering they are equally likely to be correct. Observe that applying the upper

bound |x̃i(k)| ≤ E‖x̃i‖∞ to (2.167), would imply correct detection whenever

|∆x̂i(k)| ≤ dmin −
√

2σ2
i,max lnM , (2.171)

which follows the same reasoning of the threshold in (2.170) when pk = 1/M.

An alternative threshold-based strategy (as opposed to the one based on the

incorrect detection alone) can be devised considering a likelihood test. From

the basics of hypothesis testing, the Neyman-Pearson lemma establishes that

the likelihood ratio constitutes the most powerful test for a given significance

level [66, 67], defined as the probability of rejecting a correct symbol. In that case,

a symbol is considered correct if

Pr(x̄i−1(k) = 0)

Pr(|x̄i−1(k)| ≥ dmin)
� 1. (2.172)

Since |x̄i−1(k)| ≥ dmin implies |x̃i(k)| ≥ dmin − |∆x̂i(k)| (although the converse

is not true), we have that

Pr(|x̄i−1(k)| ≥ dmin) < Pr(|x̃i(k)| ≥ dmin − |∆x̂i(k)|), (2.173)
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and therefore,

Pr(x̄i−1(k) = 0)

Pr(|x̄i−1(k)| ≥ dmin)
>

Pr(x̄i−1(k) = 0)

Pr(|x̃i(k)| ≥ dmin − |∆x̂i(k)|)
. (2.174)

Thus if
Pr(x̄i−1(k) = 0)

Pr(|x̃i(k)| ≥ dmin − |∆x̂i(k)|)
> α (2.175)

for some likelihood ratio α� 1, the condition in eq. (2.172) is also established.

From (2.164), when a symbol is detected correctly, x̄i−1(k) = 0 and

x̃i(k) = −∆x̂i(k). (2.176)

The probability of correct decision then reads

Pr(x̃i(k) = −∆x̂i(k)) =
1

2πσ2
i,k

e
− |∆x̂i(k)|2

2σ2
i,k (2.177)

so that plugging (2.168) and (2.177) into (2.175), we get

1

2πσ2
i,k

e
− |∆x̂i(k)|2

2σ2
i,k > αe

− (dmin−|∆x̂i(k)|)2

2σ2
i,k . (2.178)

Finally, after some algebra, we have that for a likelihood ratio α, under the condition

that

|∆x̂i(k)| <
dmin

2
−

σ2
i,k

dmin
ln(2απσ2

i,k) (2.179)

we can assume that the symbol has been correctly detected.

Although the Neyman-Pearson lemma also establishes a way to derive α directly

from the significance level [67], this is not possible, since the probability distribution

of |∆x̂i(k)| is not known a priori. We verified that the above criterion is robust with

respect to the choice of α, which allowed us to choose it experimentally with good

results.

We remark that the proposed algorithm can be readily extended to use a WL

formulation, by replacing H with its extended definition He. Although in that case

x̃(k) is a real quantity and its magnitude |x̃(k)| follows a half-normal distribution,

the Rayleigh c.d.f can still be used as an upper bound for its probability. That is, the

threshold strategy based on the likelihood test still applies in that case, considering

a proper scaling of α.
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2.11 Related Works

An algorithm that shares some resemblance with the recursions presented here has

been proposed in [62], in the context of a DFE applied to OFDM related models, in

the specific case of square unstructured channel matrices. Those however, exhibit

several fundamental differences from what is proposed in this work:

(A) First, the DFE in [62] appears as a pre-defined structure, to which CS is applied

to the estimation error in an roughly ad-hoc manner. Here, in contrast, we

show that a DFE is itself the result of a CS formulation, from which, aside

from the fixed threshold function, the algorihm arises naturally as a solution

of a regularized problem; Both classes of recursions considered in this work

provide improved performance compared to the one in [62];

(B) The algorithm in [62] is not adaptive in the strict sense. Note that while we

update the optimal solution from the previous estimate, their approach follows

a re-estimation of xi afresh at every iteration; this is in part due to the fact

that the interpretation of their variables as actual MMSE quantities is missing,

yet, commonly found in an MMSE adaptive scenario;

(C) Their threshold qi(·) is applied to a centralized estimate of x, and in contrast

to our approach, assumes the form qi(x̂i− xi−1) = qi(H
∗
i ēi) instead of relying

on its true MMSE-based estimate qi(Kp,iēi) defined in (2.129);

(D) The assumptions used when defining a threshold for qi(·) differ considerably

from ours. In particular, we arrive at an expression that makes use of

independent thresholds for every entry of the estimated vector, instead of

a single one applied to all entries. This will further impact the performance of

the algorithm in comparison to what is proposed in [62];

(E) The algorithm in [62] was devised to deal with square or tall transmission

matrices; Here, we have focused mainly on the more difficult problem of

generally underdetermined systems, and in particular, on Toeplitz-like sensing

matrices. This is a much more difficult scenario, and the new algorithms still

outperform the ones in [62];

(F) The recursions herein are further proposed under a WL formulation, for which

additional gains can be achieved, in terms of throughput and/or BER. For

example, in the case of real constellations, we shall see that conditioning is

further improved compared to SL solutions;

We remark that the algorithm in [62] was inspired by the StOMP [8] recursions

for CS. Specifically, StOMP also relies on the matched filter output H∗i ēi in order
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to select the entries to be included in the support of the solution. In StOMP, one

threshold value is used for all entries, under the assumption that the estimation

errors are Gaussian with the same variance.

In [25] the Complex Adaptive Reweighting Homotopy (C-ARH) algorithm was

introduced to reduce the complexity of Robust Capon Beamformers (RCB), where,

traditionally, an eigenvalue decomposition is used to determine the regularization

needed to overcome the ill-conditioning of the input signal covariance matrix. It

is then further extended to an iterative version which operates on the updates of

the beamformer coefficients, namely the Iterative C-ARH (It-C-ARH). Since the

interfering sources in that context are supposed to vary slowly compared to the

snapshot sampling frequency, such updating vectors exhibit some level of sparsity,

which benefit from a CS-based approach. The It-C-ARH algorithm differs from ours

in the following points:

(A) Instead of a `0-norm regularization, the It-C-ARH solves a weighted `1-norm

regularized LS problem, with distinct regularizers for each entry of the update

vector;

(B) The LS cost in [25] is not quadratically regularized, and the `2-norm term is

not weighted;

(C) It relies on homotopies, where the penalty in the coefficients are initially

chosen such that it yields a zero solution, and then reduced gradually

until convergence; at each step, a line search finds the optimally penalized

coefficients that includes or removes a single entry in the support of the

solution. That is, a solution is obtained by gradually reducing the weights

in the `1-norm term. This is in contrast to our approach, where the relation

between the adaptive penalties and the thresholds is accounted for implicitly,

and does not need to be defined explicitly in the cost function.

2.12 Simulations

In order to assess the performance of the proposed CS-based Kalman iterations,

we provide a number of experiments comparing the new algorithm against similar

existing transceivers, considering that there are several parameters that need to be

properly tunned.
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Experiment 1 - Choice of the threshold parameter α

The threshold strategy used in the CS-based Kalman algorithm depends on a

parameter α used by the likelihood test. As previously stated, finding its optimal

value depends on the prior knowledge of the true probability density of the updated

estimate, which is not available. Nevertheless, we verify that the likelihood strategy

is robust with respect to the choice of α.

In Figs. 2.12-2.16 we verify the effect of varying α in the CS-based Kalman

iterations, for different channel lenghts and decision-delays. All experiments employ

M = 64 symbols from QAM-4 constellations, and were run for an ensemble of 900

random channels, with 30 block transmissions for each channel realization, whose

taps were drawn from an i.i.d. complex Gaussian distribution. For comparison, we

consider the resulting BER of the ‘Sparsity Enhanced DFE’ proposed in [62], since it

follows similar philosophy for the probabilistic threshold strategy, and the BI-GDFE

from [11] (which is the original BI-DFE algorithm). Because here we are dealing

with the more challenging case of ‘fat’ and square Toeplitz matrices, it is expected

that the Sparsity Enhanced DFE will not perform well, as it has been designed for

tall, and circulant matrices. In these experiments, we used a ZP-ZJ approach in

order to remove the IBI.

Figure 2.12 depicts the case of a full zero-jamming (δ = 0) scheme, for random

channels of length L = 15. The Kalman CS-based iterations outperform the

BI-GDFE, even though the respective BER is high for all values Eb/N0. It is

interesting to note that any value of α > 2 has little effect in performance, although

α = 10 gives the best overall response. Performance degrades when the channel

length is increased, as shown in Fig. 2.13 for L = 31, where the most accurate

detections occur for α = 2 and α = 5. In both cases, the high BER is caused

by the noise amplification due the ill-conditioning of the channel matrix, which

further worsens for longer channels. The likelihood test becomes less effective as the

magnitude of the errors |x̃(k)| can become fairly large even for correctly detected

entries.

70



0 5 10 15 20 25

Eb/N0

10-4

10-3

10-2

10-1

100

B
E

R

Kalman CS (alpha=2)
Kalman CS (alpha=5)
Kalman CS (alpha=10)
Kalman CS (alpha=20)
Kalman CS (alpha=50)
Kalman CS (alpha=100)
Sparsity enh. DFE
BI-GDFE (IDC=[0.85,0.9,0.95,0.99])

Figure 2.12: Varying α, M = 64, QAM-4 symbols, L = 15, δ = 0, 900 random
channels.
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Figure 2.13: Varying α, M = 64, QAM-4 symbols, L = 31, δ = 0, 900 random
channels

In a minimum redundancy (MR) scenario, picking α ≥ 50 yields the best BER

for Eb/N0 ≥ 14 dB, as shown in Figs. 2.14–2.16. Note that around Eb/N0 = 10 dB

the curves exhibit an inflexion, whose slope depends on the α, and which does not

change significantly when α > 50. The magnitude of the errors |x̃(k)| under higher
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noise figures is also responsible for false rejections in the likelihood test. Thus, we

can reduce α at low SNR in order to reduce this effect. In Fig. 2.14, for a channel

length L = 15, the curve for α = 20 exhibits the lowest BER for Eb/N0 < 14 dB.

The same value of α applies for longer channels, say, L = 31 (Fig. 2.15), and L = 43

(Fig. 2.16).

We see that the thresholding strategy is very robust with choice of α, and allows

us to implement simple heuristics that further improve symbol detection.
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Figure 2.14: Varying α, M = 64, QAM-4 symbols, L = 15, δ = 7 (MR), 900 random
channels.

Experiment 2 - Performance Comparison among Transceivers

Figures 2.17-2.19 compare different transceiver algorithms and the Kalman CS-based

iterations, for three different channel lengths in the case of minimum redundancy,

ZP-ZJ setting. We contrast the new algorithm with: a single shot linear MMSE

estimation, the V-BLAST, the sparsity enhanced DFE, and the BI-GDFE, the

latter by varying the number of iterations from 1–4. The experiments are run

for an ensemble of 500 channels with 40 block transmissions through each one, and

considering QAM-4 constellations.
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Figure 2.15: Varying α, M = 64, QAM-4 symbols, L = 31, δ = 15 (MR), 900
random channels.
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Figure 2.16: Varying α, M = 64, QAM-4 symbols, L = 47, δ = 23 (MR), 900
random channels.
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Figure 2.17: M = 64, QAM-4 symbols, L = 15, δ = 7 (MR), 500 random channels.
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Figure 2.18: M = 64, QAM-4 symbols, L = 31, δ = 15 (MR), 500 random channels.
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Figure 2.19: M = 64, QAM-4 symbols, L = 47, δ = 23 (MR), 500 random channels.

Note that, at lower noise levels, the CS-based iterations show superior

performance in most cases. At higher noise levels, the CS-based algorithm followed

closely the BI-GDFE algorithm, but the IDC values in the latter have to be tuned

offline, according to the procedure described in [11]. While this procedure is not very

different from how we proceeded in the selection of α, the CS-based algorithm is less

sensitive to its variation, and a single heuristic for α is deployed in all iterations. In

these three experiments, we have selected α = 20 for Eb/N0 < 14 dB and α = 100

otherwise.

Using smaller values of δ, which corresponds to transmitting more information

samples, the CS-based iterations yield better performance than the competing ones,

as seen in Figs. 2.20 (L = 15, δ = 3) and 2.21 (L = 31, δ = 7), although the

performance for longer channels degrades quickly as result of ill-conditioning of the

channel matrix. In Fig. 2.21 the change in α becomes evident from the jagged line

appearance around 14 dB SNR. Although the heuristics of changing the value of

α was applied to all experiments, this has been the only case which exhibited this

artifact.
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Figure 2.20: M = 64 QAM-4 symbols, L = 15, δ = 3, 500 random channels.
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Figure 2.21: M = 64 QAM-4 symbols, L = 31, δ = 7, 500 random channels.
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Experiment 3 - Optimal decision delay

Figures 2.22-2.24 show the effect of the decision delay in the symbol detection. We

consider the following channel impulse response

H(z) = (0.77 + 0.38j) + 0.57z−8 − 0.58z−9 − 0.567z−10 + 2.7z−13 + 0.4z−14

through which 10000 QAM-4 blocks of symbols of size M = 64 were transmitted.

Figure 2.22 considers a minimum-redundancy scenario. Note that, apart from

the CS-based algorithm, all other equalizers exhibited high BER performance. This

is expected, since the optimal decision delay for this channel is δopt = 13. With

δ = 9 (Fig. 2.23), the performance of the V-BLAST becomes comparable to the

CS-based algorithm. Note that using the optimal decision delay for all schemes, as

seen in Fig. 2.24, even a linear MMSE shows exceptional performance in recovering

symbols. The good results observed in the case of the CS-based and the V-BLAST

schemes are due to the optimality in selecting the entries that are fed back in the

DFE loop. Since in the former case we are feeding back multiple symbols per

iteration, the conditioning of the channel matrix improves faster, which accounts

for the outcomes seen in the MR setting.
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Figure 2.22: M = 64 QAM-4 symbols, L = 15, δ = 7 (MR), single channel.
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Figure 2.23: M = 64 QAM-4 symbols, L = 15, δ = 9, single channel.
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Figure 2.24: M = 64 QAM-4 symbols, L = 15, δ = 13, single channel.

Experiment 4 - Performance without discarding samples

In the conventional ZP-ZJ approach considered in the previous experiments, the

channel output samples are discarded prior to equalization. Following instead the

model in (2.98), Figs. 2.25–2.27 illustrate data recovery for the case where only
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zero-padding is applied, while no IBI removal is attempted.

Figure 2.25 shows the impressive case where from M = 64 received samples,

the CS-based algorithm is capable to recover 75 symbols within two transmitted

blocks at once, with fairly reasonable BER, by padding only 3 zeros to trailing

data. That is, effectively, the received signal can be understood as being sampled

at a lower rate than what is expected from the Nyquist spacing (see also Fig. 2.26).

For a longer channel, shown in Fig. 2.27, the noise amplification still impairs the

BER score, regardless of having a larger number of zeros padded in transmission.

Nevertheless, we see that even in such harsh scenario, the CS-based recursions are

still able to recover more symbols than what is received, except for an increased

BER level.
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Figure 2.25: 75 QAM-4 symbols recovered from 64 received samples, with no
discarded inputs and 3 padded zeros (500 random channels, L = 15, δ = 3).
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Figure 2.26: 71 symbols recovered from 64 received samples, with no discarded
inputs and 7 padded zeros (500 random channels, L = 15, δ = 7).
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Figure 2.27: 87 QAM-4 symbols recovered from 64 received samples, with no
discarded inputs and 23 padded zeros (500 random channels, L = 47, δ = 23).

We consider now the following channel impulse response

H(z) = (0.77 + 0.38j)− 0.58z−3 + 0.28z−8 − 0.567z−10 + 0.7z−13 + 0.4z−15

through which we recovered 73 symbols from M = 64 received samples. In this case,

5 zeros were padded to the trailing data, coinciding to the optimal decision delay of
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δopt = 5. Figure 2.28 shows that, for this specific channel, the sequential V-BLAST

algorithm shows better performance than the CS-Kalman iteration, except for very

high SNR values. That is, although on average the CS-Kalman algorithm exhibits

the best performance, we can expect the sequential V-BLAST to be an alternative

choice for specific channels. Here, from the knowledge of the optimal decision delay,

the latter can make use of the FTF recursions to compute the DFE matrices, leading

to a an efficient implementation compared to the CS-Kalman algorithm.
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Figure 2.28: 73 symbols recovered from 64 received samples, with no discarded
inputs and 5 padded zeros (single, L = 15, δopt = 5).

Experiment 5 - Reduced-Complexity Widely-Linear model

Here, we compare a Reduced-Complexity, Widely-Linear version of the proposed

algorithms, which considers the model representation of (2.79), to their

Strictly-Linear counterparts, when recovering PAM-4 transmissions. In this

experiment, we considered 500 random channels of length L = 15, over which

100 blocks of size M = 64 symbols were sent. Figure 2.29 shows that the WL

model results in improved recovery of the symbols. We highlight that under a

WL formulation, the V-BLAST equalizer achieved the same performance of the

CS-Kalman algorithm, since the channel matrix in this case becomes taller, and

thus, better conditioned.

The RC-WL approach also improves the BER when no IBI removal is considered

in PAM-4 transmissions. Figure 2.30 illustrates the recovery of 78 symbols from 64

input samples, without zero-padding or zero-jamming, while Fig. 2.31 depicts the
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case of 3 padded zeros. Note that, again, the V-BLAST algorithm performs very

well.
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Figure 2.29: M = 64 PAM-4 symbols, L = 15, δ = 7 (MR), 500 random channels.
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Figure 2.30: 78 PAM-4 symbols recovered from 64 received samples, with no
discarded inputs and no padded zeros (500 random channels, L = 15, δ = 0).
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Figure 2.31: 75 PAM-4 symbols recovered from 64 received samples, with no
discarded inputs and 3 padded zeros (500 random channels, L = 15, δ = 3).

Experiment 6 - LTE channel and block IBI removal

We reinstate the scenario of experiment 3 in Sec. 2.9.1, however, this time including

the CS-Kalman iterations in the plot. Just as before, Fig. 2.32 shows the case where

the optimal redundancy level cannot be achieved with ZP-ZJ, either via linear or

a DFE receiver. We clearly see that the CS-Kalman algorithm outperforms all

remaining schemes. Actually, for very high SNR levels, above 25 dB, its performance

becomes at least an order of magnitude superior compared to the iterative DFE that

employs a single step of re-estimation proposed in [12]. Note that it is still worse

than a ZF-OFDM approach, which is much simpler, despite employing double the

redundancy.

In the simulations of Fig. 2.33 we have removed IBI via decision feedback as a

first step. We clearly verify that the superiority of the CS-based iterations stands

out. With the optimal redundancy, say, δ = 5, and for Eb/N0 > 12 dB, it achieves at

least half of the BER obtained for the DFE employing a single re-estimation, except

near Eb/N0 = 14 dB, where the heuristics changes the value of α; with minimum

redundancy, δ = 10, the CS-Kalman exhibits the best performance, with BER of

almost one order of magnitude smaller than the one of a DFE employing a single

estimation, at SNR> 16 dB.
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Figure 2.32: LTE EPA channel model — Comparison with the ZJ scheme.
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Figure 2.33: LTE-EPA: Block GDFE (DF-IBI) × ZJ-DFE × standard schemes.
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Chapter 3

Stochastic Compressed Sensing

Block-Iterative Decision Feedback

Equalization (CS-BDFE)

Although message passing algorithms show faster convergence compared to the

IST and IHT recursions [46], those are still first-order methods. That is, from an

adaptive filtering standpoint, AMP/CAMP can be cast into the well known class of

LMS-based adaptive algorithms, which are notorious for their slow convergence,

when compared, e.g., to algorithms that follow a Newton-descend direction.

Moreover, when dealing with large sensing matrices, specially ill-conditioned ones

as found in a radar imaging setup (developed in the next chapter), the performance

of these recursions can become rather poor, so that convergence and accuracy in

detection become at stake. In this chapter, we pursue a novel approach toward a CS

solution based on second-order methods, with the intent to accelerate convergence,

as well as minimizing excess MSE. To this end, we shall readdress the CS formulation

from a stochastic block equalization perspective.

We derive a CS-BDFE algorithm intended to more strict compressed sensing

problems with regard to the structure of the sensing matrix. Unlike LMS type

updates, which are most commonly used for CS, our approach relies on second-order

methods, which, although more demanding, exhibits improved accuracy in terms of

final estimate and target support.

The chapter is organized as follows. In Sec. 3.1 we motivate a second-order

algorithm for CS, following similar steps of Sec. 2.1. In Sec. 3.2 we derive the

new CS-BDFE algorithm from a stochastic DFE formulation, which differs from

the CS-Kalman of the previous chapter, in the way uncertainty is assigned to the

detected entries.
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3.1 Kalman Filter based Compressed Sensing

In Sec. 2.1, the compressed sensing algorithm introduced for constellation detection

was obtained by exploiting the inherent sparsity in the centralized estimates x−xi−1,

where xi−1 refers to the most recent estimate of x. This can be approached in the `0-

or `1-norm sense, assuming that x is sparse with respect to any vector that belongs

to the same constellation. By enforcing regularization onto the vector x itself, we

express our prior knowledge about its own sparsity, where `0- or `1-norm regularizers

can be employed, just like in the iterative shriking algorithms of Sec. 1.1. While in

the latter these common algorithms consist of LMS-based recursions, here, on the

other hand, we shall consider a non-diagonal covariance method for CS, obtained

from a stochastic formulation.

Thus, given a LS estimate x̂i and its uncertainty P̂ i, by setting %(x) = ‖x‖0,Λi

in (2.124), the minimization problem reads

min
x
‖x− x̂i‖2

P̂
−1
i

+ ‖x‖0,Λi (3.1)

in terms of the weighted `0-norm defined in (2.126). Again, resorting to the norm

equivalence property, we can proceed by substituting

‖x− x̂i‖2

P̂
−1
i
≈ ‖x− x̂i‖2

Ci
, (3.2)

so that (3.1) is replaced by

min
x

‖x− x̂i‖2
Ci

+ ‖x‖0,Λi . (3.3)

The corresponding proximal mapping is computed exactly as

xi = qi(x̂i) (3.4)

where qi(·) is the entrywise hard threshold operator defined in (2.130), and

reproduced here for convenience:

qi(θk) =

{
θk, |θk| >

√
εi,k

0, otherwise,
(3.5)

That is, given εi,k, xi is computed by projecting some of the entries of x̂ onto

the origin. As we shall see, however, differently from the CS-Kalman algorithm of

Sec. 2.1, adaptation of a detected entry that is considered correct is not terminated

based on the threshold. Moreover, the underlying thresholds will be calculated

adaptively, considering an approach similar to the one used in the previous chapter.
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3.2 Block-Iterative DFE

Considering the DFE scheme of Fig. 2.2, it is noteworthy that while the Kalman

recursions attempt to re-estimate a full vector per iteration, for an underdetermined,

or even ill-conditioned problem, this may impair its ability to detect its correct

support. A procedure that detects one symbol at a time, on the other hand, may

offer a safer detection mechanism over a batch processing, despite requiring more

computationally demanding implementations. The above scheme thus reveals a

useful approach to CS, by predefining a detection strategy along with an explicit

optimization of the matrices {Gi,Bi} instead. Among several detection schemes,

one stands out in the context of block equalization, where the nature of the vector

parameter is not a sparse one, but belongs to a given constellation from a digital

modulation.

In the so-called BI-GDFE, under a SL formulation, the authors in [11] formulate

the problem in much the same way as in the conventional derivation, however,

instead of relying on a slicer that makes perfect decisions through the traditional

assumption Exx∗i = Rxxi = σ2
xI, the BI-GDFE relies on “soft” decisions in

the sense that xi admits uncertainty. This has been accomplished by optimizing

the receiver for feedforward and feedback matrices {G,B} with respect to the

signal-to-interference-plus-noise ratio (SINR), where uncertainty in the decision

defined through a correlation coefficient between the transmitted vector and its

detected version, i.e., as Rxxi = ρiσ
2
xI. That is, ρi is referred to as the

input-decision-correlation (IDC) coefficient that reflects the reliability on the

decisions taken at the i-th iteration of a re-estimation process. Although the

optimallity in these recursions can be achieved without explicitly optimizing for

the feedback matrix B (i.e., similarly to Sec. 2.2, with proper constraints), in order

to gain further insight into the DFE recursions, we can resort to the stochastic

dual of (2.13) , by rewriting the minimization problem explicitly in terms of DFE

matrices {G,B} as

min
W

E

∥∥∥∥∥∥∥∥∥x − [G B ]︸ ︷︷ ︸
W

[
y

−xi−1

]
︸ ︷︷ ︸

u

∥∥∥∥∥∥∥∥∥
2

s.t. structured zero-pattern B (3.6)

The solution Wi = [Gi Bi ] can be found similarly to the Wiener-Hopf

technique [49], depending on the availability of a initial estimate, and/or how many

entries of x we wish to detect per algorithm step. Recall that Wiener’s solution is

motivated by a causal, or, more specifically, lower triangular structure for B. More

general cases can be accounted for by restricting B to have a particular structure,
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so that the solution to (3.6) must satisfy the normal equation

WiRu −Rxu = [ 0 Ai ]. (3.7)

That is, the matrixAi is the result of the a priori zero-pattern pre-imposed inB, not

captured by the normal equations, and which implicitly reflects alternative detection

schemes. For example, if the entire estimate xi−1 is available, we can opt to feedback

all the entries at once, so that Ai = 0, and (3.7) colapses to the regular normal

equations. The case of an ordered detection corresponds to the Wiener (causal)

solution, where the entries of xi−1 are fed back as they become available. This is

equivalent to assuming that B is lower triangular, so that Ai becomes an upper

triangular matrix. The order of the detection can be changed by replacing xi−1 in

(3.6) with Jxi−1, where J is a permutation matrix. One procedure that will prove

successful in our context is to have each entry xi(k) estimated individually, after

centralization of the model via the remaining entries of xi−1. This corresponds to

selecting Bi as a full matrix with null diagonal, which implies that Ai is a diagonal

matrix.

Using a SL model (2.3) or the WL description of (2.77), along with the definitions

(2.33) and (2.34) (also extended accordingly for a WL derivation), we have

[
Gi Bi

] [ Rv + σ2
xHH

∗ −HRxxi−1

−R∗xxi−1
H∗ Rxi−1

]
− [σ2

xH
∗ −Rxxi−1

] = [ 0 Ai ] (3.8)

where either Rx = σ2
xI in the SL case, or Rxe = (σ2

xR
I ⊕ σ2

xI
I) in the WL

scenario (assuming uncorrelated real and imaginary parts). For simplicity, we shall

continue with a SL notation, and highlight that the WL formulas can be easily

obtained by properly associating the corresponding quantities. Hence, performing a

standard block triangular factorization of Ru, that is,

Ru =

[
I −HKi−1

0 I

][
Rv +HP̆ i−1H

∗ 0

0 Rxi−1

][
I 0

−K∗i−1H
∗ I

]
(3.9)

and the solution to (3.8) gives{
Gi = ( P̆ i−1 +AiK

∗
i−1 )H∗(Rv +HP̆ i−1H

∗)−1

Bi = GiHKi−1 −Ki−1 +AiR
−1
xi−1

(3.10)

where we defined

Ki , RxxiR
−1
xi

(3.11)
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and the Schur complement in Ru by

P̆ i−1 , σ2
xI −Rxxi−1

R−1
xi−1

R∗xxi−1
(3.12)

= σ2
xI −Ki−1Rxi−1

K∗i−1 (3.13)

We remark that P̆ i−1 is simply the minimum cost that results when estimating x

from xi−1, via Ki−1. This estimate is denoted

x̆i−1 = Rxxi−1
R−1

xi−1
xi−1 = Ki−1xi−1 (3.14)

Let x̂i be the optimal solution to (3.6). Using (3.10), we obtain

x̂i = x̆i−1 −AiR
−1
xi−1

xi−1 +Giei (3.15)

= (I −AiR
−1
xxi−1

)x̆i−1 +Giei (3.16)

where we define ei , (y −Hx̆i−1).

To obtain Ai, note that its entries can be determined by extracting the diagonal

of Bi in (3.10) as

Diag
(
GiHRxxi−1

R−1
xi−1

)
− Diag

(
Rxxi−1

R−1
xi−1

)
+AiDiag

(
R−1

xi−1

)
= 0. (3.17)

Furthermore, if it is assumed that {Rxxi−1
,Rxi} are diagonal matrices, we obtain

Ai = [I − Diag(GiH)]Rxxi−1
(3.18)

This is a reasonable assumption, considering that detection resolves the dependency

among entries, and is consistent with the assumption in [11]. In this case, replacing

(3.18) into (3.15), we obtain

x̂i = Diag(GiH)x̆i−1 +Giei (3.19)

Figure 3.1 illustrates the corresponding block diagram.
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Figure 3.1: Resulting Block DFE structure.

Now, define

Re,i = Rv +HP̆ i−1H
∗. (3.20)

Replacing Gi from (3.10) into (3.18) yields

Ai = Rxxi−1
− ( P̆ i−1 +AiK

∗
i−1 )Diag

(
H∗R−1

e,iH
)︸ ︷︷ ︸

Di

Rxxi−1
(3.21)

= Rxxi−1
− P̆ i−1DiRxxi−1

−AiK
∗
i−1DiRxxi−1

(3.22)

where we denote Di as indicated. Therefore, solving for Ai, we get

Ai = (I − P̆ i−1Di)Rxxi−1
(I +K∗i−1DiRxxi−1

)−1 (3.23)

Note that introducing

Γi = P̆ i−1 +AiK
∗
i−1 (3.24)

we can write Gi = ΓiH
∗R−1

e,i , so that Diag(GiH) can be expressed using only

pre-computed diagonal matrices. That is

Diag(GiH) =
(
P̆ i−1 +AiK

∗
i−1

)
Diag(H∗R−1

e,iH) = ΓiDi. (3.25)

Thus (3.19) simplifies to

x̂i = Γi

(
Dix̆i−1 +H∗R−1

e,iei
)

(3.26)

We remark that the initial estimate x0 can be obtained as a pure MMSE

estimator, where we consider that no entry has been annihilated by the threshold

operation. Since we are also assuming diagonal covariances {Rxxi−1
,Rxi−1

}, then
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P̆ 0 is defined by the diagonal entries of the MMSE estimation error. That is

P̂ 0 =
(
σ−2
x I +H∗R−1

v H
)−1

x0 = P̂ 0H
∗R−1

v y

K0 = I

x̆0 = x0

P̆ 0 = Diag
(
P̂ 0

)
Rxx0 = σ2

xI − P̆ 0,

which in turn can be calculated by superfast receivers as discussed in Sec. 2.7.1.

In order to compute {Rxxi ,Rxi}, however, we need to adopt a model for the

threshold qi(·).

3.2.1 Threshold Model

We adopt a first order random walk model for the threshold function qi(·), where x̂i

is disturbed by a zero-mean uncorrelated random vector qi, with variance Qi, i.e.,

xi = x̂i + qi , (3.27)

Qi , Eqiq
∗
i . (3.28)

In this case, we obtain

Rxxi = Exx∗i (3.29)

= E(x̂i + x̃i)(x̂i + qi)
∗

= Rx̂i = σ2
xI − P̂ i (3.30)

where we defined the estimation error x̃i = x− x̂i, with P̂ i = Ex̃ix̃
∗
i , and assumed

that x̃i and qi are uncorrelated. As a consequence, we have that

P̂ i = σ2
xI − ΓiDi

(
σ2
xI − P̆ i−1

)
D∗iΓ

∗
i −GiRe,iG

∗
i . (3.31)

While the covariance matrix for Ex̂ix̂
∗
i is no longer diagonal, in practice we can use

the approximation

Rx̂i ≈ σ2
xI − Diag(P̂ i). (3.32)

These diagonal entries correspond to a marginalization with respect to the covariance

of x̂i, as if the entries of xi were independently drawn. Note that by taking the
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diagonal of (3.31), the last term of this recursion simplifies to

Diag (GiRe,iG
∗
i ) = ΓiDiag

(
H∗R−1

e,iH
)
Γ∗i (3.33)

= ΓiDiΓ
∗
i (3.34)

Hence, we obtain

Diag(P̂ i) , Υi = σ2
xI − ΓiDi

(
σ2
xI − P̆ i−1

)
D∗iΓ

∗
i − ΓiDiΓ

∗
i (3.35)

Next, for Rxi , we have

Rxi = (x̂i + qi)(x̂i + qi)
∗ (3.36)

= Rx̂i +Qi. (3.37)

so that by virtue of (3.32), we can also take it as a diagonal matrix. At this point,

we are left to specifying the covariance Qi.

Recall from (3.4), and according to (3.27), that by setting xi(k) = x̂(k) we are

equivalently saying that the k-th entry of the LS estimate has not been disturbed by

the threshold. This corresponds to selecting qi(k) = 0, and since qi is zero mean, we

can set [Qi]kk = 0. When otherwise, xi(k) = 0, we assume that the corresponding

entry qi(k) is drawn from a two dimensional uniform distribution in the complex

plane, enclosed by a disc with radius |x̂i(k)|. This implies setting its variance to

[Qi]kk = |x̂i(k)|2/8. Such uniform distribution yields maximum entropy in a closed

interval, and allows for any value inside the disc to be picked with equal probability.

Thus, we can accomodate both cases by equivalently writing

Qi =
1

8
diag

(
|x̂i − xi|2

)
. (3.38)

Now, in block equalization, the estimate xi is obtained from a projection of

x̂i onto the closest point of a signal constellation, via a function f(·) that acts

as a slicer in the `2 sense. In the CS context, and following (3.3)–(3.5) on the

other hand, we are interested in projecting the entries of x̂i onto the origin, while

leaving the remaining ones unaffected. Given the deterministic-stochastic duality

of regularized LS and MMSE problems, it turns out that for any problem of the

form (3.1), once we have properly propagated the uncertainty P̂ i via its respective

defining recursions, we shall have a procedure to solve (3.3) in the context of a

weighted `0 norm regularization.

The adaptive choice for the thresholds εi,k in (3.5) will follow a similar path

used on the previous chapter for the CS-based estimation of constellation signals.

Again, each entry x̃i(k) has variance denoted by σ2
i,k, which is extracted from the

92



corresponding diagonal entry of P̂ i. Due to the Gaussian circularity assumption,

the true value of x(k) = x̂(k) + x̃(k) will be at any point inside a disc centered

in x̂i(k) with radius |x̃i(k)|. Now, note that this disc will not contain the origin if

|x̃i(k)| < |x̂i(k)|, as shown in Fig. 3.2a. In this case there is no possibility of having

x(k) = 0. On the other hand, if |x̃i(k)| ≥ |x̂i(k)|, as in Fig. 3.2b, then we should be

able to set x(k) = 0. Our goal in the remaining of this section, is thus to provide an

robust mechanism to obtain the thresholds for (2.130), based on the pre-computed

statistics of the estimation error x̃i, under a certain hypothesis test.

x̂(k)
x̂(k)

(a) |x̃(k)| < |x̂(k)| (b) |x̃(k)| > |x̂(k)|

Figure 3.2: Two discs in the complex plane, with different values of x̂ and x̃. The
shaded area denotes the possible values for x(k) = x̂(k) + x̃(k).

Based on this observation, we establish our hypothesis test on the likelihoods.

That is, we consider that x(k) 6= 0 if

Pr
(
x(k) 6= 0

)
Pr
(
x(k) = 0

) > α (3.39)

for a predefined level α� 1. Since |x(k)| cannot be zero when |x̃i(k)| < |x̂i(k)| (but

not the converse), we have that

Pr
(
x(k) 6= 0

)
> Pr

(
|x̃i(k)| < |x̂i(k)|

)
. (3.40)

On the other hand, if |x̃i(k)| ≥ |x̂i(k)|, x(k) can assume a zero value, so that

Pr
(
x(k) = 0

)
< Pr

(
|x̃i(k)| ≥ |x̂i(k)|

)
. (3.41)

Then, in order for (3.39) to hold, it suffices that

Pr
(
|x̃i(k)| < |x̂i(k)|

)
Pr
(
|x̃i(k)| ≥ |x̂i(k)|

) > α, (3.42)

93



since
Pr
(
x(k) 6= 0

)
Pr
(
x(k) = 0

) > Pr
(
|x̃i(k)| < |x̂i(k)|

)
Pr
(
|x̃i(k)| ≥ |x̂i(k)|

) . (3.43)

Using the fact that the magnitude |x̃i(k)| follows a Rayleigh distribution, the

likelihood test (3.42) can be expressed analytically as

1− e
− |x̂(k)|2

2σ2
i,k

e
− |x̂(k)|2

2σ2
i,k

> α , (3.44)

so that after some simple algebraic manipulation, we conclude that we should set

xi(k) = x̂i(k) whenever

|x̂i(k)| > σi,k
√

2 ln (1 + α) , (3.45)

otherwise, xi(k) = 0 [but with an increase in uncertainty corresponding to this entry

for the next iteration, by virtue of (3.27)]. We remark that α is a user defined scalar

for the relevance of accepting one entry in xi as correct. The same scalar must be

used for all entries, as we need a common base of comparison in xi.

Again it is not possible to derive α directly from the significance level since the

probability distribution of x̂i(k) is not known a priori, but again we verified that

the above criterion is robust with respect to the choice of α (this allowed us to

choose it experimentally with good results). The scalar α plays a role similar to κ

in (1.33), for the CAMP algorithm, which has to be experimentally chosen as well.

Finally, the complete algorithm is summarized in Table 3.1.

3.2.2 Numerical evaluation

We assess the performance of the new CS-BDFE algorithm via a commonly used

phase transition diagram [68], computed for a large number of sensing matrices,

spanning a range of underdeterminacy and sparsity levels. The latter is normalized

by the number of system variables. That is, given the channel model y = Hx+ v,

whereH is M×N , and x is a k-sparse vector, the horizontal axis in a phase diagram

represents the ratio M/N , while in the vertical axis we read the ratio k/M . Each

point in the resulting plane represents an average value of a performance measure,

here adopted as the Average Fractional Error, i.e.,

AFE , E
‖x− ximax‖
‖x‖

,
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Initialization:
P̂ 0 =

(
σ−2
x I +H∗R−1

v H
)−1

, x0 = P̂ 0H
∗R−1

v y, P̆ 0 = Diag
(
P̂ 0

)
,

Rxx0 = σ2
xI − P̆ 0, K0 = I

Re,i = Rv +HP̆ i−1H
∗ (3.46)

Di = Diag
(
H∗R−1

e,iH
)

(3.47)

Ai = (I − P̆ i−1Di)Rxxi−1(I +K∗i−1DiRxxi−1)−1 (3.48)

Γi = ( P̆ i−1 +AiK
∗
i−1 ) (3.49)

Gi = ΓiH
∗R−1

e,i (3.50)

ei = y −Hx̆i−1 (3.51)

x̂i = ΓiDix̆i−1 +Giei (3.52)

Υi = σ2
xI − ΓiDi

(
σ2
xI − P̆ i−1

)
D∗iΓ

∗
i − ΓiDiΓ

∗
i (3.53)

Rxxi = σ2
xI −Υi (3.54)

Rxi = Rxxi + diag
(
|x̂i − xi|2

)
/8 (3.55)

Ki = RxxiR
−1
xi (3.56)

x̆i = Kixi (3.57)

P̆ i = σ2
xI −KiRxiK

∗
i (3.58)

xi(k) =

{
x̂i(k), |x̂i(k)| > σi,k

√
2 ln (1 + α)

0, otherwise
(3.59)

Table 3.1: CS-based Generalized Block Iterative DFE.

where ximax is the final estimated vector. The rate of success is translated by a color

shading over the plane, where the sharper the transition from red to blue, the higher

the detection ability of the corresponding algorithm, blue being the highest scores

for a given algorithm. While Gaussian matrices are normally used in constructing

the phase transition plot (since good sensing matrices can be designed for certain

applications), in this work, because we deal with the more difficult case of structured

matrices (more specifically, from a MIMO radar scenario in the next chapter),

we shall focus not only on the performance of general purpose Gaussian-based

matrices, but also on block-Toeplitz structures, arising in the MIMO Radar scenario.

Moreover, the superiority of the AMP algorithm observed in [23], motivates us to

adopt the CAMP recursions (1.30)–(1.32) as a basis for comparison.

Figure 3.3 shows the AFE performance of the CAMP and CS-BDFE

algorithms, for complex-valued Gaussian matrices, considering a 15 dB

signal-to-noise-ratio (SNR) environment. We have generated diagrams for 30

ensembles with N = 100, and varying both M and k in the range [1, 100]. We have

set the parameter α = 10 in (3.45). Similarly, we set the CAMP parameter κ = 1

in (1.33), optimized offline. Moreover, the CS-BDFE algorithm requires choosing

values for the variances of signal and noise. Since x has k in N entries drawn
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from a Gaussian distribution with unitary variance, then we have σ2
x = k/N , and

σ2
v = 10−1.5σ2

x. We see that while CAMP exhibits good performance for as little as

10 observations, it does not perform as well for less sparse vectors, even when the

number of observations is larger. The CS-BDFE yields small AFE only for systems

with more than 50 observations, exhibiting a performance similar to the CAMP for

such matrices. On the other hand, CS-BDFE yields lower AFE values than CAMP

for denser vectors, and its performance degrades less abruptly as sparsity diminishes.
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Figure 3.3: Average Fractional Error for CAMP and CS-BDFE algorithms, with
15 dB SNR.

The CAMP algorithm severely deteriorates for block-Toeplitz structured

matrices, while the CS-BDFE shows improved performance, as seen in Fig. 3.4.

Note that there is a much more distinct transition in the detection ability in the

latter case. This is significant to our model, as the MIMO Radar to be presented in

the next chapter is highly structured. In this experiment, we have set the CAMP

parameter to κ = 1.4 and the CS-BDFE parameter to α = 50.

Each matrix used in this experiment has been generated by shifting down a

block column with 5 columns and M − 19 non-zero rows drawn from i.i.d. Gaussian

sequences. The Toeplitz block was constructed by shifting down this block column

by one row, 20 times. Hence, the smallest number of rows M for the sensing matrices

used in the experiment is 20, so that the lowest value in the horizontal axis is 0.2.

Another useful figure of merit for radar systems is the False Discovery Ratio,

defined as

FDR ,
# of entries xi(k) 6= 0 for which x(k) = 0

# of entries xi(k) 6= 0
.

That, is, non-zero entries in xi that correspond to null entries in the true vector

x. These are usually referred to as Type I errors in detection theory. Similarly, the
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Figure 3.4: AFE for CAMP and CS-BDFE algorithms, with 15 dB SNR, for block
Toeplitz sensing matrices.

False Rejection Ratio, defined as the ratio

FRR ,
# of entries xi(k) = 0 for which x(k) 6= 0

# of entries xi(k) = 0
,

corresponds to evaluating the so-called Type II error, that is, null entries in xi that

correspond to non-zero entries in the true vector x. Those two measurements are

rather pertinent, since often in radar imaging the support is more relevant then

the target reflectivity itself. Figures 3.5 (a,b) show that CS-BDFE yields better

FDR scores than CAMP for less sparse vectors, even in situations of less than 50

observations. In terms of FRR, in Figs. 3.5 (c,d), CS-BDFE exhibits a better score

on denser vectors, although not as pronounced as in the case of the FDR.

The FDR and FRR in the case of block-Toeplitz sensing matrices for both

algorithms are depicted in Figs. 3.6 (a-d). They show that the FDR for the CAMP

algorithm has improved, and yet CS-BDFE outperforms it, specially for sparser

vectors. Matrix structure impairs the FRR value of the CAMP algorithm for denser

vectors. For the CS-BDFE, the best FRR figures follow closely the best AFE ones.

That is, for vector sparsities where the CS-BDFE best identifies the solution, it also

excels in finding the right support. When the number of observations falls below

transition in the AFE diagram, the CS-BDFE falsely rejects some entries. During

this experiment, we also noticed that reducing the noise level increases the number of

false detections observed in the case of the CS-BDFE algorithm for sparser vectors,

while keeping the other scores unchanged. This was caused by a drastic reduction of

the uncertainty used for determining the threshold levels, and can be compensated

by an increase in the parameter α.

In the next chapter, we complete the evaluation of the CS-BDFE algorithm in

light of a fully developed MIMO Radar model, where the sensing matrices become

much more structured.
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Figure 3.5: False Discovery Ratio for (a) CAMP and (b) CS-BDFE algorithms, and
False Rejection Ratio for (c) CAMP and (d) CS-BDFE algorithms, with 15 dB SNR.
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Figure 3.6: FDR for (a) CAMP and (b) CS-BDFE algorithms, and FRR for
(c) CAMP and (d) CS-BDFE algorithms, with 15 dB SNR, for block-Toeplitz
structured systems.
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Chapter 4

3D Compressed Sensing Radar

Imaging and Application of the

New Algorithms

Although the theory of Compressed Sensing finds applicability in numerous

situations, important advances have been achieved in fields that exploit spatially

sparse scenarios. This includes Multi-Input-Multi-Output (MIMO) radar systems,

which have proved successful in enhancing resolution, parameter identifiability,

and robustness, specially when compared to its single-antenna and phased-array

analogues [69, 70]. The use of compressed sensing for MIMO radar imaging is

proposed, e.g., in [71], and further exploited in [22], where it is shown to improve

cross-range resolution with randomly positioned antennas. In the latter, the well

known assumptions on Nyquist spatial spacing between the antennas are no longer

relevant. While in [22] the range information is captured by a bank of matched filters,

CS imaging over a full 3D model has been proposed in [20], considering that each

transmitting antenna sends a long Gaussian sequence as a probing pulse. MIMO

radars have also found motivation in the biomedical imaging of sparsely located

tumors, where detection of their support is crucial for an early diagnosis [72, 73].

Regardless of the application, the physical nature of the overall point spread

function that gives rise to an approximate linear model for the radar, turns the

sensing problem into a formidable task. Some figures of merit as false-rejection

and false-detection rates as seen in the previous chapter become very relevant if

considered in a radar scenario. For example, even with the significant progress

in improving current X-ray mammography techniques, the low sensitivity and the

lack of specificity of these methods, result in high false-rejection (4% − 34%), and

false-detection rates, where approximately 70% of all lesions identified by an X-ray

are benign tumors [74, 75]. These are useful figures of merit that extend to general
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MIMO settings, and are considered in this work in order to assess the performance

of the methods proposed herein.

More specifically, the major hindrance in these applications rises from the fact

that, just like in the DFE setup, the inherent sensing matrix in a MIMO radar

model is not fully controlled by the designer, so that not only the problem itself is

naturally ill-posed, but can become highly structured (due to its defining manifold

vectors). This further aggravates ill-conditioning, and leads to adverse results

depending on the iterative approach envisaged.

The specific contributions of this chapter are the following:

1. We develop a full joint range/cross-range convolution model for MIMO

radars and obtain conditions for which CS techniques can be employed for

reconstructing the volume image.

2. After constructing such model, suitable for CS, we take a step further by

decoupling it into two separate sparse problems, albeit ones that exhibit more

structured independent models, suitable for efficient implementations. The

recovery ability of each one is assessed by means of their coherence measure

(Eq. (1.5)).

3. We validate the CS-BDFE algorithm of Chapter 3 simulating a real-world

radar system, using the proposed radar model. Then using a Finite Differences

in Time Domain (FDTD) simulation of wave propagation, we assess both the

model and the algorithm performance, with favorable results.

The chapter is organized as follows. In Sec. 4.1 we review the basics of wave

propagation, that will be used in Sec. 4.2 where we construct a full 3D model for

volume imaging. In Sec. 4.4 we assess the recovery ability by means of its coherence,

by proposing two different approaches for image reconstruction. In Sec. 4.5 we use

the MIMO radar proposed in this chapter to simulate real-world radar systems,

that are used to validate the CS-BDFE algorithm, considering three performance

indicators, and comparing it to the CAMP. Finally, we consider a FDTD simulation

of a real radar system in order to show that the proposed CS-BDFE can disregard

non-linearities not taken into account in our model.

4.1 Wave Propagation

The correct model for electromagnetic waves propagation (also extended to acoustic

analogues) uses the Maxwell’s equations. However, when modeling a radar system,
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the scalar wave propagation equation is commonly used:(
∇2 − 1

c2(x)

∂2

∂2t

)
U(x, t) = 0 (4.1)

where U(x, t) is either the electric or magnetic field, and c(x) is the speed of

propagation as a function of position x. This equation is valid for the wave

propagation in dry air, but it does not take into account polarization changes on the

wave. The wave equation has shown to be adequate in some applications including

ultrasound and some geophysical imaging scenarios [76].

The field in free space, generated by an impulse applied at the origin is the

solution to (
∇2 − 1

c2(x)

∂2

∂2t

)
G(x, t) = −δ(x)δ(t), (4.2)

when c(x) = c0 is constant. The solution of this equation (known as the Green’s

function) is given by

G(x, t) =
δ(t− ‖x‖/c0)

4π‖x‖
, (4.3)

which is time and translation invariant.

Equation (4.1) assumes a point-like radiator at the origin in a Cartesian space.

If we were to consider the antenna geometry and the transmitted pulse shape, the

resulting field would be given by the convolution [76, 77]

U(x, t) = G(x, t)~ [p(t)Js(x)] , (4.4)

where Js(x) is the time-derivative of the antenna current distribution and p(t) the

is pulse function.

At this point, we shall consider ideal omnidirectional radiators, commonly used

in MIMO radar analysis. Note that, given a source located at ζ, in free space, the

incident wave at a position x is

Uin
ζ (x, t) = G(ζ − x, t)~ p(t) =

p(t− ‖ζ − x‖/c0)

4π‖ζ − x‖
(4.5)

since, from (4.3)

G(ζ − x, t) =
δ(t− ‖ζ − x‖/c0)

4π‖ζ − x‖
.

In general, the total field received at a point-like receiver at position ζ̃ is given

by the scattering solution for the wave equation (4.1) [76]

Uζ(ζ̃, t) = Uin
ζ (ζ̃, t) + Usc

ζ (ζ̃, t) (4.6)
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where Usc
ζ is the scattered field, given by

Usc
ζ (ζ̃, t) =

∫
G(ζ̃ − z, t− τ)V(z)

∂2 Uζ(z, τ)

∂2τ
dτd3z, (4.7)

and V(x) , c−2
0 − c−2(x) is a reflectivity function, containing all information about

how the medium differs from free space. One common approximation, used in this

presentation, is known as the Born or the single scattering approximation, where

the total field Ux(z, t) on the right hand side of (4.7) is replaced by the incident field

Uin
x (z, t):

Usc
ζ (ζ̃, t) =

∫
G(ζ̃ − z, t− τ)V(z)

∂2 Uin
ζ (z, τ)

∂2τ
dτd3z (4.8)

As pointed out in Appendix A.1 of [76], the Born approximation allows the field

from a point scatterer to be well defined and nonzero. In this case the scattered

field due to a target at r̄ can be obtained just by setting V(x) = s̄δ(r̄ − x):

Usc
ζ (ζ̃, t) = G(r̄ − ζ̃, t)~

(
s̄
∂2 Uin

ζ (r̄, t)

∂2t

)
, (4.9)

where s̄ is the scalar denoting the reflectivity coefficient of the target.

4.2 MIMO Radar Modeling

Consider an array of MT isotropic transmitters each positioned at ζi,

i = 0, 1, . . . ,MT . The signal is scattered by K point targets located at the

same range D, at positions r̄k, k = 0, 1, . . . , K, and received by an array of MR

receivers positioned at ζ̃j, j = 0, 1, . . . ,MR, as shown in Fig. 4.1. Also, we shall

denote by {ζo, ζ̃o} the geometric centers of the arrays.

D

Rx arrayTx array zj
zi

rk
~

Targets

Figure 4.1: Simplified MIMO radar model

Using (4.9), if each antenna transmits a pulse pi(t), the signals received by the
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sensors can be collected into a MR × 1 size vector given by the convolution sum

yr̄(t) = H̄r(t)~


s̄0

s̄1

. . .

s̄K−1


︸ ︷︷ ︸

Sr̄

∂2

∂2t

Ḡr(t)~


p0(t)

p1(t)
...

pMT−1(t)




︸ ︷︷ ︸
ur̄(t)

(4.10)

Here, each s̄k denotes the reflectance of the target at r̄k, which we collect into

a diagonal matrix Sr̄ = diag[s̄0 . . . s̄K−1], and Ḡr(t) is a matrix containing the

corresponding Green’s functions of the underlying medium, from point ζi to r̄k:

Ḡr(t) =


g0(ζ0, t) g0(ζ1, t) · · · g0(ζMT−1, t)

g1(ζ0, t) g1(ζ1, t) · · · g1(ζMT−1, t)
...

...
. . .

...

gK−1(ζ0, t) gK−1(ζ1, t) · · · gK−1(ζMT−1, t)

 ,

where gi(ζj, t) = G(r̄i − ζj, t). Similarly, H̄r(t) is a matrix whose elements

correspond to the Green’s functions that define the path from the targets back

to the receivers.

We also define the incident signal in (4.10) as:

ur̄(t) , Ḡr(t)~ p(t) =


...

MT−1∑
i=0

gk(ζi, t)~ pi(t)

...

 (4.11)

where p(t) ,
[
p0(t) p1(t) . . . pMT−1(t)

]T

.

Now, as we are considering a free space scenario, applying (4.5) to (4.11), the

k-th element of ur̄(t) is expressed by:

ur̄k(t) =

MT−1∑
i=0

gk(ζi, t)~ pi(t) =

MT−1∑
i=0

pi(t− ‖r̄k − ζi‖/c0)

4π‖r̄ − ζi‖
(4.12)

In order to arrive at a MIMO radar linear model, we shall further consider two

common approximations, namely, a narrowband and a far-field approximation.
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Narrowband approximation

If we assume pi(t) to be narrowband, we can model it as a slow varying envelope

p̃i(t) modulating a complex exponential at a frequency ω0, say, pi(t) = p̃i(t)e
jω0t.

Hence, the k-th second-order derivative in (4.10) is given by

∂2

∂t2
ur̄k(t) =

1

4π

MT−1∑
i=0

p′′i (t− ‖r̄k − ζi‖/c0)

‖r̄k − ζi‖

' −ω
2
0

4π

MT−1∑
i=0

ejω0(t−τi(r̄k))

Dki

p̃i(t− τi(r̄k)) (4.13)

where p′′(·) denotes the second derivative with respect to time, Dki , ‖r̄k−ζi‖, and

τi(r̄k) , Dkic
−1
0 .

Using (4.12), let us define

ā(r̄k) ,


ejω0(t−τ0(r̄k))

Dk0

ejω0(t−τ1(r̄k))

Dk1
...

e
jω0(t−τMT−1(r̄k))

Dk(MT−1)

 . (4.14)

Equation (4.13) can thus be written as:

∂2

∂t2
ur̄k(t) = −ω

2
0

4π
āT (r̄k)


p̃0 (t− τ0(r̄k))

p̃1 (t− τ1(r̄k))
...

p̃MT−1 (t− τMT−1(r̄k))

 (4.15)

Up to this point, we can conclude that each target is illuminated by delayed

replicas of the source pulses, attenuated by the free-space path loss. There is one

more consequence of the narrowband approximation. First, consider the geometric

center of the transmitting array, which we denote by ζo, and define the maximum

travel time within the array range as

∆Tmax , max
i=0...MT−1

‖ζi − ζo‖
c0

Given that pi(t) is a slow-varying envelope with bandwidth Bp, and assuming that

Bp∆Tmax � 1, then [78]

p̃i(t− τi(r̄k)) ' p̃i(t− τ(r̄k)) (4.16)
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where τ(rk) is the time delay from the center of the array to the targets’ common

range

τ(r̄k) ,
‖r̄k − ζo‖

c0

.

Also, note that for targets along the same range, we can define

Dki ' D , ‖r̄k − ζo‖, (4.17)

and

τr , τ(r̄k),

for all targets. In this way, the narrowband approximation becomes

∂2

∂t2
ur̄k(t) = −ω

2
0

4π
āT (r̄k)p̃ (t− τr) , (4.18)

where p̃(t) , [p̃0(t) . . . p̃MT−1(t)]T .

Far-field approximation

If the targets are in the far-field, the Fraunhoffer approximation is commonly used:

‖r̄k − ζi‖ ' ‖r̄k − ζo‖ −
(

¯̂rk − ζo
)T

qi,

where qi , ζi − ζo denotes the vector pointing from the center of the array ζo to

the antenna at ζi, and (̂·) denotes a unit vector in the same direction as (·). Then

the delays τi(r̄k) become

τi(r̄k) ,
‖r̄k − ζi‖

c0

' ‖r̄k − ζo‖
c0

−

(
¯̂rk − ζo

)T

qi

c0

= τr −

(
¯̂rk − ζo

)T

qi

c0

,

so that from (4.15) we obtain

p̃i(t− τi(r̄k))ejω0(t−τi(r̄k)) = p̃i(t− τr)ejω0(t−τr)e
j
ω0
c0

( ¯̂rk−ζo)
T
qi . (4.19)

Considering ‖r̄k − ζi‖ �
(

¯̂rk − ζo
)T

qi, and defining

dk ,
(

¯̂rk − ζo
) ω0

c0
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using (4.17), we have that ā(r̄k) in (4.14) can be written as

ā(r̄k) = −e
jω0(t−τr)

D
a(r̄k), (4.20)

where a(r̄k) is the so called array manifold vector associated to the transmitting

antennas:

a(r̄k) =


ejd

T
k q0

ejd
T
k q1

...

ejd
T
k qMT−1

 . (4.21)

Substituting (4.20) into (4.15), we arrive at

∂2

∂t2
ur̄k(t) = − ω2

0

4πD
ejω0(t−τr)aT (r̄k)p̃ (t− τr)

= − ω2
0

4πD
aT (r̄k)p (t− τr) .

(4.22)

Now, returning to Eq. (4.10), and using (4.22), we can write

yr̄(t) = H̄r(t)~ Sr̄
−ω2

0

4πD
AT (r̄)p (t− τr) (4.23)

where A(r̄) is a matrix containing the manifold vectors corresponding to all targets

at the same range:

A(r̄) =


...

...
...

a(r̄0) a(r̄1) · · · a(r̄K−1)
...

...
...

 . (4.24)

Analogously, using the narrowband and far-field approximations for the return

path (i.e., from the targets to the receiving antennas), we write equivalently

yr̄(t) = − ω2
0

16π2D2
B(r̄)Sr̄A

T (r̄)p (t− 2τr) , (4.25)

where B(r̄) follows the same structure of A(r̄),

B(r̄) =


...

...
...

b(r̄0) b(r̄1) · · · b(r̄K−1)
...

...
...

 .
Each b(r̄k) is the manifold vector of the receiving array, relatively to r̄k, and to the

geometric center of the receiving array, ζ̃o. Here, we consider that τr is approximately
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the same for the trasmitting and receiving paths, since, from our initial arrangement,

the transmitting and receiving arrays are colocated, and we can choose {ζo, ζ̃o} to

coincide. The spatial invariance of the Green’s functions also makes it possible to

set the centers at the origin of the cartesian space ζo = ζ̃o = 0, which simplifies the

analysis of array geometries.

Let

x̄k , −
ω2

0

16π2D2
s̄k

be the free space corrected reflectance. Equation (4.25) can be written as:

yr(t) =
K−1∑
k=0

x̄kb(rk)p
T (t− 2τr)a(rk) (4.26)

=
K−1∑
k=0

x̄k [pT (t− 2τr)a(r̄k)]⊗ b(r̄k). (4.27)

Note that this summation can be represented in matrix form as

yr̄(t) =
[
fr̄0(t− 2τr) · · · fr̄K−1

(t− 2τr)
]

x̄0

...

x̄K−1

 (4.28)

, F̄r(t− 2τr)x̄r (4.29)

where

fr̄k(t) = [pT (t)a(r̄k)]⊗ b(r̄k) (4.30)

= [pT (t)⊗ IMR
] [a(r̄k)⊗ b(r̄k)] , (4.31)

and x̄r =
[
x̄0 · · · x̄K−1

]T

.

A closer look at (4.28) and (4.31) reveals that the received signal is equivalent

to the sum of MR replicas of each transmitted signal, after being apodized by the

combined steering vector a(r̄k)⊗b(r̄k), and scaled by the reflectivity of each target.

If we sample the received signals in yr̄(t) at t = 2τr +nts, n = 0, . . . , N −1, then

(4.28) can be written as

yr̄ =
[
fr̄0 · · · fr̄K−1

]
x̄r , F̄rx̄r, (4.32)
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where

yr̄ =


yr̄(N − 1)

yr̄(N − 2)
...

yr̄(0)

 , (4.33)

and

fr̄k =


fr̄k(N − 1)

fr̄k(N − 2)
...

fr̄k(0)

 =


[pT (N − 1)a(r̄k)]⊗ b(r̄k)
[pT (N − 2)a(r̄k)]⊗ b(r̄k)

...

[pT (0)a(r̄k)]⊗ b(r̄k)

 (4.34)

=


pT (N − 1)a(r̄k)

pT (N − 2)a(r̄k)
...

pT (0)a(r̄k)

⊗ b(r̄k)
= [Pa(r̄k)]⊗ b(r̄k) (4.35)

= [P⊗ IMR
] [a(r̄k)⊗ b(r̄k)] , (4.36)

where in the sampled version of {yr̄(t), F̄r(t)} we have removed the time indexes

from (4.29). The resulting sampled MIMO pulse is N samples long, which we define

the by a vector pulse P as

P,


pT (N − 1)

pT (N − 2)
...

pT (0)

 =


p0(N − 1) p1(N − 1) · · · pMT−1(N − 1)

p0(N − 2) p1(N − 2) · · · pMT−1(N − 2)
...

...
...

...

p0(0) p1(0) · · · pMT−1(0)

 . (4.37)

We can expect matrix F̄r to be ill-conditioned. That is, observe that its column

structure determines an upper bound for its rank. Although the product Pa(r̄k)

is a N × 1 vector, it has only MT degrees of freedom (the inner dimension in the

product); As a result, each column frk will have at most MTMR degrees of freedom,

and hence, rank(F̄r) ≤ MTMR. In general, we expect to probe K � MTMR

directions, which turns F̄r into a very ill-conditioned matrix.

4.3 Beamforming

A typical application of a radar system is to create an image from the measured

data. This means recovering not only the x̄k (or s̄k), but also the target positions
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r̄k. For the sake of simplicity, most systems separate the problem in two steps,

solved individually at range and cross-range. In order to improve range resolution,

a typical system also makes use of a compressible pulse, i.e., one that generates

a very short peak when passed through a matched filter[76]. Cross-range imaging

processes the signal received from a fixed range, generally assuming that the targets

are well resolved along a longitudinal line in the far-field.

4.3.1 Phased-array systems

A special case of the MIMO radar described in the previous section is the so

called phased-array system. In this kind of radar, a single pulse p(t) is sent by

all transmitters. That is, let p(t) = 1MT×1p(t), where

1MT×1 =
[
1 1 · · · 1

]T

. (4.38)

Eq. (4.26) then yields

yr̄(t) = p(t− 2τr)
K−1∑
k=0

x̄kb(r̄k)11×MT
a(r̄k) (4.39)

As a means to increase diversity, one considers a delayed transmission in each

sensor, by replacing the 1MT×1 vector in (4.39) with an apodizing vector βT (rs):

yr̄(t) = p(t− 2τr)
K−1∑
k=0

x̄kb(r̄k)β
T

T (rs)a(r̄k) (4.40)

The vector βT (rs) corresponds to a steering vector pointing to an arbitrary

position rs and whose structure is similar to one of the manifold vector a(r̄k) in

(4.21). Considering that these quantities are formed by complex exponentials, by

the Cauchy-Schwarz inequality, the magnitude of the inner product β T
T (rs)a(r̄k)

will attain its maximum when βT (rs) is the conjugate of a(r̄k).

Usually, a phased-array system operates as a delay-and-sum array, that is, each

received signal is weighted by another apodizing vector. In this case, the received

vector becomes a scalar quantity yrs(t) = β T
R (rs)yr̄(t), i.e.,

yrs(t) = p(t− 2τr)
K−1∑
k=0

x̄kβ
T

R (rs)b(r̄k)a
T (r̄k)βT (rs). (4.41)

Notice again that the vector βR(rs) must be the conjugate of b(r̄k), so as to maximize

the signal energy in yrs(t).

As mentioned in the introduction of this section, for recovering an image from
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the received signal, we would have to know each r̄k a priori. The simplest way to

create an image without this knowledge is known as beam scanning : a radar system

would vary the steering vectors βT (rs) and βR(rs) so as to scan the entire space,

looking for the maxima of yrs(t).

To model a beam scanning system, one can replace x̄r in (4.29) by a larger vector

xr ,
[
x0 · · · xG

]T

containing the reflectivity seen from each direction in a fine

grid containing G points at rk. We assume that all targets are positioned exactly

in the grid, meaning that {rk|0 ≤ k ≤ G− 1} ⊇ {r̄k|0 ≤ k ≤ K − 1}. In this way,

grid points that do not contain a true target will have zero reflectance. We cannot

probe the entire space with a single transmission, as some target directions may

correspond to the nulls of β T
T (rs)a(r̄k) or β T

R (rs)b(r̄k). On the other hand, we can

probe several times, steering in different directions (This of course will only work if

the target reflectivity varies very slowly). Therefore, after probing G directions, we

can write

yr(t) =


y0(t)

y1(t)
...

yG(t)

 =p(t− 2τr)



· · ·β T

R (r0) · · ·
...

· · ·β T
R (rG) · · ·




...
...

b(r̄0) · · · b(r̄K)
...

...


�

�



· · ·β T

T (r0) · · ·
...

· · ·β T
T (rG) · · ·




...
...

a(r̄0) · · ·a(r̄K)
...

...




x0

x1

...

xG


(4.42)

or

yr̃(t) = p(t− 2τr)HR(r)�HT (r)xr (4.43)

where� denotes the Haddamard product operator. Even though this model is linear,

we cannot recover xk exactly from yr(t), as both matrices HR(r) and HT (r) are

rank deficient, with rank(HR(r)) = MR and rank(HT (r)) = MT . This represents

a very ill-posed system, since it is a well-known fact that rank(HR(r)�HT (r)) ≤
MRMT [79], and G is usually greater than MTMR.

One useful notion which arises from the manifold vectors combinations is the

beampattern function [78], which, for the transmitting antenna, is given by

ΥT (ri, rj) = a∗(ri)a(rj), (4.44)

with analogous definition for the receiving beampattern ΥR(ri, rj). It is interesting

to note that, for an optimal choice of apodizing vectors, i.e., β∗T (ri) = aT (ri)

and β∗R(ri) = bT (ri), each element of HR and HT in (4.42) corresponds to the
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beampattern value between the grid direction and the apodizing direction, that is

[HT ]i,j = ΥT (ri, r̄j) and [HR]i,j = ΥR(ri, r̄j).

We remark that, although we assumed that the grid {rk|0 ≤ k ≤ G} is a superset

of the target grid, this assumption can be relaxed, at the expense of a gridding error

due to any target not belonging to the grid.

Another insteresting fact is that the an optimal selection of steerings can be seen

as a spatial matched filter. That is, rearranging (4.41), and considering an optimal

choice of βT (rs) and βR(rs), it is easy to see that the best beamforming is given by

the Hermitian transpose of the model matrix columns:

yrs(t) = p(t− 2τr)
K−1∑
k=0

x̄kβ
T

R (rs)b(r̄k)β
T

T (rs)a(r̄k)

= p(t− 2τr)
K−1∑
k=0

x̄k [βT (rs)⊗ βR(rs)]
T [a(r̄k)⊗ b(r̄k)]

= p(t− 2τr)
K−1∑
k=0

x̄kΥC(rs, r̄k)

(4.45)

where ΥC(rs, r̄k) is the combined beampattern of the receiving and transmitting

arrays, known as the system’s point spread function, which maximizes the received

signal energy whenever rs matches a target direction r̄k. Still, there is no guarantee

that a peak in yrs(t) will correspond to a specific target, since their relative

positions can contribute constructively to the received signal energy. That is, unless

each individual target beampattern has its peak located at possible nulls of the

beampattern corresponding to the steered direction rs, any sidelobe can add up to

a higher peak in the overall point spread function.

4.3.2 Array geometry considerations

All of the above approximations make no consideration on the array geometry. Still,

some choices of the sensor positions can considerably simplify the radar design.

First, note that it is useful to represent the direction vector dk in (4.21) in spherical

coordinates:

dk =
ω0

c0

sin θk cosφk

cos θk cosφk

sinφk

 =
2π

λ0

sin θk cosφk

cos θk cosφk

sinφk

 . (4.46)

This representation allows us to formulate the most common geometry seen in the

literature, namely, the Uniform Linear Array (ULA), composed by a 1D arrangement

of, say, MT equally spaced elements. For the sake of simplicity, one usually aligns

the elements coordinates with the z-axis, so that all sensors are expressed from a
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single reference point qo:

qi =

 0

0

id+ qo

 (4.47)

where d is a fixed spacing between the array elements.

Using (4.46) and (4.47), and defining ψk , 2π
λ0

sin(φk), the manifold vectors as in

(4.21) read:

a(rk) = ejψkqo



1

ejψkd

ejψk2d

...

ejψk(MT−1)d


(4.48)

The structure of a(rk) suggests that the manifold matrix in (4.24) can be written

as the product of a Fourier and a diagonal matrix:

A(r) =


1 1 · · · 1

ejψ0d ejψ1d · · · ejψ(G−1)d

...
...

...
...

ejψ0(MT−1)d ejψ1(MT−1)d · · · ejψ(G−1)(MT−1)d



ejqoψ0

ejqoψ1

. . .

ejqoψ(G−1)

 .
(4.49)

We can use this fact to induce a desired structure in A(r). For instance, by

choosing probing directions in a way that sinφk is uniformly spaced, the manifold

matrix becomes essentially a MT × G partial Discrete Fourier Transform (DFT)

matrix. That is, let ψk = kδ + ψ0. Then (4.49) can be written as

A(r) = ejqoψ0


1

ejdψ0

. . .

ej(M−1)dψ0




1 1 · · · 1

1 ejδd · · · ej(G−1)δd

...
...

...
...

1 ejδ(M−1)d · · · ejδ(G−1)(M−1)d

 ·

·


1

ejqoδ

. . .

ej(G−1)qoδ


(4.50)
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Using (4.50) the beampattern function for the ULA is given by

Υ (φi, φj) = a∗(ri)a(rj) = e−jψijqo
M−1∑
k=0

ejψijkd

= e−jψij(qo+
(M−1)d

2 ) sin
(
ψij

Md
2

)
sin
(
ψij

d
2

) (4.51)

where ψij = 2π
λ0

(sinφj−sinφi). The beampattern for a ULA becomes a real quantity

whenever qo = − (M−1)d
2

, which can be achieved by setting the reference point at the

center of the array. Figure 4.2 shows an example of a beampattern for a 5 element

array.

Figure 4.2: Beampattern of an array with 11 elements separated by d = λ0/2

One common arrangement used in radar systems is the so-called virtual ULA [70].

In this arrangement, the transmitting and receiving array are designed in a way that

the combined manifold vector a(rk) ⊗ b(rk) keeps its components in a geometric

progression, behaving as a larger array. Usually, this is achieved by separating

the transmitting elements by dT = MRdR apart. Alternatively one can multiply

the spacing between receivers by the number of transmitters dR = MTdT . If the

center of the transmiting and receiving arrays are, respectively, at qo and q̃o, the

resulting manifold vector is equivalent to a single array with MTMR sensors centered

at zo = qo + q̃o. Referring to our model in (4.32), the virtual ULA is one of the few

arrangements where rank(Fr) = MTMR [70].
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Figure 4.3 shows the combined beampattern for a virtual ULA, where both arrays

are centered at the origin, d = λ0/2, MT = 5 and MR = 11. In this figure we can

see that the choice dT = MRdR aligns the transmiter’s beampattern peaks with the

receiver’s beampattern zeros, except for the peak at the origin.

Figure 4.3: Combined beampattern of a virtual array with MT = 5, MR = 11,
dT = 11λ0/2 and dR = λ0/2

4.3.3 Multistatic and MIMO radars

The phased array system has the disadvantage of being unable to probe multiple

directions simultaneously, as the transmitter has to be steered to a specific direction.

Hence, loosely speaking, if a target is positioned at a null of its beampattern, it

cannot be recovered. To overcome this limitation, systems that take advantage of

the spatial diversity of the transmitter have been vastly studied.

One of these systems is the multistatic radar, where the transmitters take turns

in sending probing pulses. We can model this operation by using a block-diagonal
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pulse matrix in (4.32) and (4.35), such as

P =



p0 0 · · · · · · 0

0 p1 0 · · · ...
... 0 p2 · · · ...
...

...
. . . . . .

...

0 0 · · · · · · pMT−1


,

where pi = [pi(N −1) . . . pi(0)]T , is the pulse transmitted by the i-th antenna. Note

that each pulse is delayed with respect to the previous one. Again, since we have

multiple pulses being transmitted, the reflectivity of the targets must vary slowly

during an entire probing.

The MIMO radar operates in a similar fashion, but instead of transmitting

multiple pulses sequentially, all transmitters send different pulses at once [69]. In

[69–71, 80], these probing pulses are designed as orthogonal codes, and the received

signal yr(t) is passed through a bank of matched filters, sampled at 2τr. Defining

the combined manifold vector as ci , a(ri)⊗ b(ri), by virtue of orthonormality of

the codes, the signal model after the matched filtering and sampling becomes:

ȳr(2τr) =
[
c0 c1 · · · cK−1

]
xr , Cxr. (4.52)

Reference [70] shows, based on results from [81], that for such configuration a radar

can detect

K ∈
(
MT +MR − 2

2
,
MTMR + 1

2

]
(4.53)

targets, given that the columns of C are linearly independent.

Simultaneous range and cross-range detection in MIMO radars

As we have mentioned, range and cross-range detections are usually treated

separately. The main reason behind this is that range detection demands a high

sampling rate (at least in electromagnetic applications), which is normally hindered

by comercial Analog-to-Digital Converters (ADC). For instance, at the speed of the

light, sub-millimeter detection would require a sampling rate of the order of 6ps,

corresponding to approximately 167 GHz. Nevertheless, assuming that we are able

to sample as fast as necessary, we can now propose a model that treats range and

cross-range simultaneously.

The model we began with in Sec. 4.2 considers all targets as belonging to the

same range. For multiple ranges, xr becomes a function of the range delay τr, so
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that the received signal is more generally replaced by a convolution integral:

yr(t) =

∫
K−1∑
k=0

xk(τr)b(rk) [pT(t− 2τr)a(rk)]dτr + v(t) (4.54)

Hereafter, we shall refer to xk as the target reflectances, as we will only deal with

the radar grid. We shall also add a signal vector v(t) to account for any noise as an

interference in the system.

If we discretize this model at a sampling rate ts, such that multiple ranges can be

written as τrn = τr0−nts/2, and considering that all targets are confined to Q range

bins, we can stack the signal vectors received from multiple ranges into a vector as

y =


yr(2τr0 + (N − 1)ts)

yr(2τr0 + (N − 2)ts)
...

yr (2τr0)

 =

=



Fr(N − 1) 0 · · · 0
... Fr(N − 1)

. . .
...

...
. . . . . . 0

Fr(N −Q)
. . . . . . Fr(N − 1)

...
. . . . . .

...

Fr(0)
. . . . . . Fr(Q− 1)

0 Fr(0)
. . .

...
...

. . . . . .
...

0 · · · 0 Fr(0)


︸ ︷︷ ︸

F


xQ−1

xQ−2

...

x0


︸ ︷︷ ︸

x

+


v(2τr0 + (N − 1)ts)

v(2τr0 + (N − 2)ts)
...

v (2τr0)


︸ ︷︷ ︸

v

(4.55)

where the vector x is composed by stacking the reflectance vectors xr for all ranges,

and v is defined accordingly as above.

While it is tempting to find a least-squares solution for this model, this system

turns out to be very ill-conditioned, as it is rank-deficient by construction. To see

this, note that we can write F in (4.55) in terms of block columns as

y =
[
F0 F1 · · · FQ−1

]
x+ v. (4.56)
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Let the augmented pulse matrix be defined as

Pδ =

 0δ×MT

P

0(Q−1)−δ×MT

 . (4.57)

Then, each Fδ is a block-column defined by

Fδ ,
[
[Pδa(r0)]⊗ b(r0) · · · [Pδa(rG−1)]⊗ b(rG−1)

]
(4.58)

= (Pδ ⊗ IMR
)
[
a(r0)⊗ b(r0) · · · a(rG−1)⊗ b(rG−1)

]
(4.59)

Resorting to the same arguments that led to the conclusions of rank-deficiency

in the single range model, one can verify that rank(Fδ) ≤ MTMR. Thus, we can

expect rank(F) ≤ QMTMR. Since we are now probing a 3-dimensional grid withQG

points, and generally QG > QMTMR, F is rank deficient and therefore, ill-posed

for LS estimation.

The limitation implied by (4.53) with regard to target detection, as well as

the ill-conditioning imposed by the MIMO radar model in (4.55), call for new

solutions and algorithmic forms which allow one to surpass the resolution limits

and computational complexity involved in the existing formulations. In the next

section, we approach these issues in light of the theory of compressed sensing, and

present preliminary results targeting robustness and improved imaging performance

in the case of MIMO transmissions.

4.4 Coherence conditions for F

The model presented in the previous sections assumes that targets are populated in

a dense grid. In many realistic scenarios, however, most of the grid will be empty,

so that the vector x will be truly sparse. In this scenario, the theory of Compressed

Sensing (CS) enlightens possible ways to recover the targets information, overcoming

the ill-conditioning of F imposed implicitly by (spatial) Nyquist limits.

The use of compressed sensing for MIMO radar imaging is proposed, e.g., in [71],

and further exploited in [22], where it is shown to improve cross-range resolution

in MIMO radars with randomly positioned antennas. While in [22] the range

information is addressed by a bank of matched filters, CS imaging over a full 3D

model has been proposed in [20], considering that each transmitting antenna sends

a long Gaussian sequence as probing pulse.

In this section, we aim to derive sufficient recovery conditions for radar imaging

for the full 3D model presented in (4.56), which results in optimal choices of
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transmitted pulses and grid spacing.

As discussed in Sec. 1.1, accurate recovery of x depends heavily on the coherence

of the columns of F
µ(F) = max

i 6=j

|[F ]∗i [F ]j|
‖[F ]i‖‖[F ]j‖

(4.60)

In order to improve the resolution and recovery ability of this system, our goal

is to minimize the coherence measure in (4.60). Both numerator and denominator

can be retrieved from the Gram matrix F∗F : the energy of the columns appear

in its diagonal, while their inner products correspond to the off-diagonal elements.

Our goal is to use the fact that F is highly structured in order to derive conditions

on the transmitted pulse, such that µ(F) is minimized.

Thus, by forming the Gram matrix from the block columns of F

F∗F =


F∗0F0 F∗0F1 · · · F∗0FQ−1

F∗1F0 F∗1F1 · · · F∗1FQ−1

...
...

...

F∗Q−1F0 F∗Q−1FQ−1 · · · F∗Q−1FQ−1

 , (4.61)

each element within its block-elements can be written as

[F∗l Fm]i,j = [[Pla(ri)]⊗ b(ri)]∗ [[Pma(rj)]⊗ b(rj)]

= [[a∗(ri)P∗l ]⊗ b∗(ri)] [[Pma(rj)]⊗ b(rj)]

= [a∗(ri)P∗l Pma(rj)]⊗ [b∗(ri)b(rj)]

= [a∗(ri)RP(l −m)a(rj)] [b∗(ri)b(rj)]

, [G(l −m)]i,j

(4.62)

where Pδ is the augmented pulse matrix defined in (4.57), also reproduced here for

convenience:

Pδ =

 0δ×MT

P

0(Q−1)−δ×MT

 , (4.63)

and RP(l−m) denotes the pulse vector autocorrelation, which can be expressed as

RP(l −m) = P∗l Pm =

=


r00(l −m) r01(l −m) · · · r0(MT−1)(l −m)

r10(l −m) r11(l −m) · · · r1(MT−1)(l −m)
...

... · · · ...

r(MT−1)0(l −m) r(MT−1)1(l −m) · · · r(MT−1)(MT−1)(l −m)

 .
(4.64)
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The elements rij(k) denote the aperiodic cross-correlations of pi(t) and pj(t) at lag

k = l −m

rij(k) =
N+k−1∑
i=0

p∗i (i)pj(i− k) (4.65)

Alternatively, defining the combined manifold vector as

ci , a(ri)⊗ b(ri)

with Q(k) , RP(l−m)⊗IMR
, and using (4.31), it is possible to write [G(l −m)]i,j

in (4.62) as

[G(l −m)]i,j = {[Pl ⊗ IMR
] [a(ri)⊗ b(ri)]}∗ {[Pm ⊗ IMR

] [a(rj)⊗ b(rj)]}

= {[Pl ⊗ IMR
] ci}∗ {[Pm ⊗ IMR

] cj}

= c∗i [P∗l ⊗ IMR
] [Pm ⊗ IMR

] cj

= c∗i [P∗l Pm]⊗ [IMR
IMR

] cj

= c∗i [RP(l −m)⊗ IMR
] cj

= c∗iQ(l −m)cj

(4.66)

With the explicit elements of the Gram matrix as in (4.66), the coherence of F
can be rewritten as

µ(F) = max
i 6=j∨k 6=0

c∗iQ(k)cj

[c∗iQ(0)ci]
1/2 [c∗jQ(0)cj

]1/2 . (4.67)

Observe that in minimizing the above quotient, we have freedom to select

both the MIMO correlation function and the manifold directions. Because exact

(weighted) orthogonality of the manifold vectors can only be attained at one

particular lag k, we can adopt the following procedure.

For the lag k = 0, we pick a set of directions such that ci and cj annihilates

(4.67) for a given i 6= j. For k 6= 0, we would like to design Q(k) as close to the null

matrix as possible. That is, for k = 0 the numerator in (4.67) is given by (4.62):

[G(0)]i,j = [a∗(ri)RP(0)a(rj)] [b∗(ri)b(rj)] (4.68)

which represents the product between the receiver beampattern, i.e., ΥRX(ri, rj) ,

b∗(ri)b(rj), and the weighted beampattern of the transmitter, defined as

ΥTX;W (ri, rj) , a∗(ri)RP(0)a(rj). The fact is that for some array geometries,

it is possible to choose directions where either beampatterns are zero; the number

of selected directions defines the dimension G of the grid. The simplest choice is to

enforce RP(0) = NI, which ensures that all the pulses have the same power and
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are orthogonal at the zero lag. As a result, this choice also simplifies the design of

the transmitting array.

One of such geometries that offers a simple selection of directions is the virtual

ULA, presented in Sec. 4.3.2. As stated in that section, the combined manifold

vectors ci for a virtual ULA can be viewed as an equivalent manifold vector for

an array having M , MTMR entries. With the appropriate parameters in (4.51),

the combined patterns will generate MTMR − 1 possible angles φj for each selected

angle φi. For such arrangement, we can pick a grid of G = MTMR angles, namely,

φi = arcsin (1/2π (sin(φ0) + iδ)) , where δ , (2/MRMT ), and i ∈ Z, i ∈ [0, G).

Now, introduce the Cholesky factorization Q(0) = LL∗, and define c̄i , L∗ci.

For a correlation lag k 6= 0, the ratio in (4.67) can be written as

µ(F) = max
i 6=j∨k 6=0

c̄∗iL
−1Q(k)L−∗c̄j
‖c̄i‖‖c̄j‖

(4.69)

which assumes the form of the well known Rayleigh quotient (see, e.g., 9.8.36 in [79]),

however, one for every Q(k). A simple upper bound for (4.69) is

µ(F) ≤ λmax(L−1Q(k)L−∗) (4.70)

in terms of the maximum eigenvalue λmax(·). Since we have that

λmax(L−1G(k)L−∗) ≤ ‖L−1Q(k)L−∗‖F
= ‖Q−1(0)Q(k)‖F
= M

1/2
R ‖R

−1
P (0)RP(k)‖,

(4.71)

and RP(0) is finite, this requires ideally, RP(k) as a null matrix for all k ∈ [1, Q).

Independent Gaussian sequence sets, as considered in [82], allows us to

approximate the above requirements, i.e., RP(0) = NI and RP(k) = 0, in a

stochastic sense. However, these may demand a high level of synchronization. As

an alternative, we make use of the so-called complementary sequence sets, which can

be generated by optimizing the following block LS criterion (see Eq. (11) in [83]):

min
RP(k)

‖RP(0)−NIMT
‖2
F + 2

Q−1∑
k=1

‖RP(k)‖2
F . (4.72)

One advantage of working with complementary sequences is that we can produce

zero correlations in a range of only Q − 1 samples, yielding lower cross-correlation

within the same range, when compared to its Gaussian sequences counterpart.

Figure 4.4 shows the Frobenius norm of the cross-correlation matrix in different lags,

for a Gaussian sequence set (a) and a complementary sequence set generated using

the WeCAN [83] algorithm (b), both with N = 256 samples in MT = 5 sequences.
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The complementary sequence set exhibits a very low norm when |k| < 48, unlike

the Gaussian sequence set.

(a) Gaussian sequences (b) Complementary sequences

Figure 4.4: Comparison of ‖RP(k)‖F in different lags, for two different sequence
sets.

Note that, by adding constraints to (4.72), it is also possible to restrict the

pulse samples to specific modulations, such as QAM or BPSK, or to constrain the

peak-to-average ratio (PAR) of the sequences (see, e.g., [84]).

Two-step procedure

Note that substituting ci , a(ri)⊗ b(ri) in (4.59), each block-column of F can be

written as:

Fδ = (Pδ ⊗ IMR
)
[
a(r0)⊗ b(r0) · · · a(rG−1)⊗ b(rG−1)

]
= (Pδ ⊗ IMR

)
[
c0 · · · cG−1

]
, (Pδ ⊗ IMR

) C. (4.73)

Thus, (4.56) can be written as

y =
[
F0 F1 · · · FQ

]
x+ v

=
[
(P0 ⊗ IMR

) C (P1 ⊗ IMR
) C · · · (PQ−1 ⊗ IMR

) C
]
x+ v

=
[
P0 ⊗ IMR

P1 ⊗ IMR
· · · PQ−1 ⊗ IMR

]

C

C
. . .

C

x+ v

=
([

P0 P1 · · · PQ−1

]
⊗ IMR

)
(IQ ⊗ C)x+ v. (4.74)
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Then, introducing T ,
[
P0 P1 · · · PQ−1

]
⊗ IMR

and C , IQ ⊗ C, (4.74) can be

written as

y = TCx+ v

= T vec(CX) + v, (4.75)

where X is the reshaped vector x into a size G×Q matrix. Note that x shows two

levels of sparsity: it is a block-sparse vector, with each block, in turn, sparse itself,

as shown in (4.76). That is, each column of X is a sparse vector:

x =





•
0

0

...

•




•
•
0

...

0




0

0

0

...

0


...

0

0

0

...

•





⇐⇒ X =





•
0

0
...

•





•
•
0
...

0





0

0

0
...

0


· · ·



0

0

0
...

•



 (4.76)

A more exact approach should treat x as a sparse tensor, and, in that case,

block sparsity along all directions could be exploited. However, for such problems,

one would have to resort to multi-linear algebra, or to a Matrix Completion approach.

Now, we know from (4.49), that in the case of a virtual ULA arrangement, C

can be written as C , CV D, where D = diag
{
ejz0ψ0 ejz0ψ1 · · · ejz0ψ(G−1)

}
,

and CV is an M×G matrix of discrete Fourier bases defined by the node vector[
ejdψ0 ejdψ1 · · · ejdψG−1

]
, with ψi = sin(φi), and φi a probing angle, as previously

defined.

Now, from (4.75), let

z , vec(CX) (4.77)
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so that

y = T z + v . (4.78)

Note that vector z maintains the block-sparsity property of x.

It is known that M×G Fourier matrices composed by distinct bases are full spark,

with equal norm columns, given that M ≤G (see [37]). Moreover, it is also known

that if C is full spark, this condition allows us to recover the columns of X that are

up to G/2-sparse, since we can recover the block-sparse z from y. Fourier matrices

with equally spaced bases on the unit circle can be shown to satisfy the RIP, and

exhibit the smallest worst-case coherence when G ≥ 2M [37]. We can induce this

structure, using the same probing directions derived previously for optimizing the

coherence of F . That way, C= ejz0ψ0D1CFD2, where

D1 =


1

ejdψ0

. . .

ej(M−1)dψ0

, D2 =


1

ejz0δ

. . .

ejz0(G−1)δ

, (4.79)

and where CF is an M×G partial DFT matrix with ejdδ as basis.

In most practical scenarios, when C is essentially a partial DFT matrix, z

will be quasi-sparse: if a column of the target image X contains a wide target,

its corresponding column in Z , CX will exhibit localized elements (Fourier

bandwidth trade-off). Thus, the only situation where we would have a dense matrix

Z is when X represents a very narrow (cross-range) and long (range) target.

Henceforth, assuming that z is sparse, it can be fully recovered using compressed

sensing techniques from y by designing the columnns of T to have low mutual

coherence. Now, to compute the coherence, one can take advantage of the structure

in T , whose Gram matrix is block-Toeplitz. In this case, each such block is given

by

GT (l −m) = [Pl ⊗ IMR
]∗ [Pm ⊗ IMR

] (4.80)

= RP(l −m)⊗ IMR
. (4.81)

Just like we argued in the case of a one step CS procedure, assuming that all

pulses have the same power, the diagonal elements of GT (0) become constant, and

we can optimize µ(T ) by minimizing all off-diagonal elements of the Gram matrix.

This can be achieved by approximating RP(0) = NIMT
and RP(k) = 0, 0<k<Q,

which is the same approximation used for optimizing the coherence of the full model

matrix F .

The advantage of recovering range and cross-range sequentially as in (4.77)-(4.78)
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is the freedom in controlling the regularization parameters in the CS problems for

each direction individually, allowing for different levels of sparsity in z and x.

Efficient implementation

Exact `1 regularized convex optimization turns out to be inefficient in our case,

since for each grid point to be recovered, a significant number of constraints is

added, resulting in 3QG variables. Furthermore, e.g., interior point solvers do not

take full advantage of the problem structure, as they often require the measurement

matrix to be formed explicitly, and demand a QR decomposition of the KKT system

at each step [44].

On the other hand, as we have seen in Sec. 1.1.1, iterative algorithms have

their complexity dictated by products with the measurement matrix, which can

be implemented very efficiently through (4.77) and (4.78). Here, we are assuming

that the complexity of a matrix-vector product is roughly the same for both the

direct and transposed matrix operations. The superior performance seen in [23]

with regards to the approximate message passing algorithm when the noise variance

and sparsity of input are unknown, motivates us to adopt the CAMP algorithm as

a basis for comparison with standard techniques, since this is a very likely condition

to be found in a radar imaging scenario.

Unlike the direct product Cx, which in general requires GMTMRQ operations,

the block diagonal products require only Q[Glog2G+G+MTMR] operations if C is

a Fourier matrix. Recognizing the block-Toeplitz like structure in S we can reduce

the operations count for Tz from M2
RMTNQ to (N + Q − 1)MT [MTMR + (MR +

2) log2(N +Q− 1)], by using FFT based algorithms.

For the sake of comparison, we implement two iterative procedures, using

message passing algorithms. In the first one we use the CAMP to recover x

directly from y. In this version, each algorithm iteration requires the computation

of TCx and C∗T ∗y. In the second version, we considered the two-step procedure

aforementioned, first recovering z from y (which makes use of products like Tz and

T ∗y). Having recovered z, we reshape it and use the CAMP for each column of Z,

say, [Z]i, so as to retrieve the columns of X. In this step, the products used are

mainly C[X]i and C∗[Z]i.

Note that the two algorithm versions will have the same worst case complexity,

if we consider that the CAMP will always require the same maximum number of

iterations to converge. In practice, the second version is marginally faster, as the

CAMP converges in a smaller number of iterations in the second step, where the

problems are smaller.
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4.5 Simulations

We simulate a MIMO radar setup using the exact model from (4.56), considering

MT = 5 transmitters and MR = 11 receivers, configured as a Virtual ULA. A

complementary sequence comprising 40 pulses is used in each transmission, with a

low correlation interval of 8 pulses, generated using the WeCAN algorithm [83]. The

grid was set with G = 55 probing directions and Q = 7 ranges. Since in this case we

deal with a fixed sensing matrix F , we could only vary the sparsity of the vectors

used as targets. For each possible sparsity ratio, an ensemble of 30 random vectors

was generated, with the non-zero entries drawn from a circular complex Gaussian

distribution. For this simulation, we have set κ = 1.2 for CAMP, and α = 50 for

the CS-BDFE. To assess the performance in this scenario, the AFE, FDR and FRR

figures are displayed with the horizontal axis corresponding to the target sparsity,

while in the vertical axis we have the corresponding performance score. A 15 dB

SNR noise was added to all transmissions in the system. This plot can be understood

as a “slice” of the phase transition diagrams presented in Sec. 3.2.2, parallel to the

vertical axis.

Figure 4.5(a) illustrates the AFE performance. For comparison purposes, the

AFE of a MMSE estimator is also included as an initialization step for the CS-BDFE

algorithm. Note that the CS-BDFE improves its initial estimate, except for very

dense vectors, with above 70% of non-zero entries. On the other hand, the CAMP

algorithm performs worse than the CS-BDFE, as it is impaired for vectors exhibiting

over 50% non-zero entries. The FRR for this scenario is shown in Fig. 4.5(b). The

FRR is almost the same for sparser vectors, but the CS-BDFE is superior when it

comprises more than 50% non-zero entries.
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Figure 4.5: (a) AFE and (b) FRR for CAMP and CS-BDFE algorithms for a MIMO
radar setup under 15 dB SNR.
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Figure 4.6 details the FRR for less than 50% non-zero entries. Although

CAMP presents a better performance than CS-BDFE, at this scale the difference

corresponds to CS-BDFE rejecting only one more entry than CAMP.
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Figure 4.6: Detail of the FRR plot for CAMP and CS-BDFE algorithms for a MIMO
radar setup under 15 dB SNR.

From Fig. 4.7(a) we verify that the CS-BDFE algorithm outperforms the CAMP

with respect to the FDR, even though CS-BDFE requires prior knowledge of the

SNR, which is not the case for the CAMP recursions. On the other hand, CAMP

still requires the user to experimentally select the parameter κ in (1.33).

A mismatch between the system SNR and the parameters σ2
x and σ2

v set in the

CS-BDFE will affect the performance, especially for the FDR measure, as shown in

Fig. 4.7(b). This is verified by setting the σ2
v = 10−2σ2

x, which would be appropriate

for a 20 dB SNR, when the actual SNR is at 15 dB. We verify that both AFE and

FRR did not change significantly, but for a larger mismatch, those performance

measures degrade as well. We remark that in this experiment, CAMP required an

average of 15 iterations to converge, while CS-BDFE required around 4 iterations.

These results indicate that, although the CS-BDFE adds extra complexity per

iteration compared to other iterative algorithms, it still represents an alternative

choice for systems where the FDR is the most significant figure of merit. In the case

of MIMO radars, where the sensing matrix is nearly square, and the corresponding

target vectors may not be sufficiently sparse, the CS-BDFE presents itself as a viable

alternative.
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Figure 4.7: FDR for CAMP and CS-BDFE algorithms for a MIMO radar setup. In
(a) the noise level is 15 dB SNR, and the algorithm is set up with σ2

v = 10−1.5σ2
x. In

(b) the noise level is kept at 15 dB SNR, while the algorithm run with σ2
v = 10−2σ2

x

which is pertinent to a 20 dB SNR.

In a second test, we consider a base image and use it to simulate a real-world

scenario. The setup makes use of 7 transmitters and 10 receivers, with transmitting

sequences comprising 256 pulses. The SNR is adjusted to 10 dB and the targets

are limited to 30 range bins. Figure 4.8 shows the exact target image used in our

simulations.

Figure 4.8: Exact target image for radar testing.

The virtual ULA used in this experiment allows us to construct a grid composed

of 70 directions, which is less dense than the true target grid. We circumvented this

issue by dividing the target grid into four interleaved direction grids of the same

number, say, 70. The results for a single step recovery, that is, recovery based on F
matrix as sensing matrix to retrieve x is shown in Figs. 4.9 and 4.10, for the CAMP

and CS-BDFE algorithms, respectively.

127



Figure 4.9: Image recovered using CAMP in a single step, with 10dB SNR.

Figure 4.10: Image recovered using GDFE in a single step, with 10dB SNR.

In Fig. 4.11, the CS-BDFE algorithm was used, but the σ2
v parameter was set

incorrectly to 10−1.5, which would be adequate for a 15 db SNR.

Figure 4.11: Image recovered using GDFE in a single step, with mismatched σ2
v set

in the algorithm.

128



The resulting performance measurements for this experiment are shown in

Table 4.1. Note that, although more complex, the CS-BDFE algorithm requires

a smaller number of iterations.

Table 4.1: Single step recovery performance

AFE FDR FRR Iterations
CAMP 0.19 35.9% 0.1% 23
CS-BDFE 0.23 0.2% 1.2% 7
CS-BDFE (mismatch SNR) 0.23 9.7% 0.2% 10

Figures 4.12 and 4.13 show the resulting image for a two-step procedure using

CAMP and CS-BDFE. That is, instead of using F as a sensing matrix to recover

x directly from y, we follow (4.77) and (4.78) and construct a pulse matrix T to

recover a sparse vector z from y, which is then reshaped into a matrix Z. The

columns of X are then recovered from Z using C as sensing matrix. The resulting

measures are presented in Table 4.2. The same variance values were used in both

steps, even though in the second step the noise level might not correspond to the

actual SNR due to the detection in the first step. Also note that, in the second step,

the CS-BDFE algorithm requires a very small number of iterations, when compared

to the CAMP.

Table 4.2: Single step recovery performance

AFE FDR FRR Iterations (1st step) Avg. Iterations (2nd step)

CAMP 0.23 29% 1.1% 17 12

CS-BDFE 0.28 0.1% 1.7% 7 3

Figure 4.12: Image recovered using CAMP in a two-step procedure, with 10db SNR

The last experiment is an FDTD[34] simulated scene containing two small solid

boxes with different uniform dielectric constants and a small electrical conductivity,
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Figure 4.13: Image recovered using GDFE in a two-step procedure, with 10db SNR

and is intended to verify the algorithm behavior under some more realistic conditions

such as non-ideal antenna patterns and multiple scattered signals.

For this simulation, we make use of the OpenEMS package [85, 86], with MT = 5

transmitting elements and MR = 11 receiving antennas in a virtual ULA setup, using

the complementary sequence set from Experiment 3, which modulates a f0 = 8 GHz

sinusoidal signal. The simulated antennas are elementary dipoles, and their positions

are quantized to the simulation grid cell size λ0/20. The simulated environment is

a square sheet of 600 mm each side, three cells thick, surrounded by 8 layers of

cells configured as perfectly matched layers (PML)[34] in order to simulate an open

environment. The target boxes are square with 60 mm sides, relative permeability

of ε1 = 3 and ε2 = 5, and both have conductivity of 0.1 S/m.

As the OpenEMS system is not able to simulate multiple sources, and FDTD

simulations tends to oscillate in the natural frequencies of the model grid, we have to

use the linearity of Maxwell’s equations to circumvent those limitations. Each pulse

transmission was simulated individually in two cycles, one with the targets and

the other in free environment. The environment response is subtracted from the

target scattering data and the resulting signal is summed into the overall response.

OpenEMS automatically adapts its time steps during the simulation, based on the

carrier frequency and the grid density, hence the output signals are sampled each

3.6 ps. Finaly, a post-processing script in MATLAB demodulates the 8 GHz carrier

and recovers the complex envelope for the imaging algorithms.

Figures 4.14 and 4.15 show the result of the two different recovery algorithms

using the one-step procedure. Since electromagnetic waves are reflected solely at

medium interfaces, only the borders within the critical angle become visible, as it

would happen to a glass cube. The higher reflectances correspond to the box corners,

and the apparent angular distortion seen is an effect of the non-cartesian mapping of

the axes (the expected recovered shape of the boxes is shown in the insertion at the
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bottom of Figs. 4.14 and 4.15). In the CAMP recovery, between the boxes it appears

the effect of re-scattered fields, not taken into account by the Born approximation

used in first place. Note that the CS-BDFE algorithm correctly rejected this field

as interference.

Figure 4.14: FDTD image recovered using CAMP in one step.

Figure 4.15: FDTD image recovered using CS-BDFE in one step.
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Chapter 5

Future Work Proposals

In this chapter we overview the research topics considered as candidates for

continuity of this work, which can lead to new algorithms and techniques that can

be exploited by radar imaging, as well as in equalization of digital communication

channels.

5.1 Compressed sensing for downsampled

received signals

As argued in Sec. 4.3.3, simultaneous range and cross-range detection demands

a high sample-rate, at least in electromagnetic applications. On the other

hand, reducing the sampling rate at the receiver hinders the radar’s ability of

discriminating details in the range dimension. Compressed sensing techniques allow

us to operate in a lower sample rate, as long as the recovery conditions (NSP, RIP

or low-coherence) presented in Sec. 1.1 can be achieved.

As a motivation, consider the single antenna model presented in Fig. 5.1

Pseudo random

pulse generator

Integrator

Sampler

y(t) y(t)

Ts

m(t)
t-Ts

t

Figure 5.1: Single receiver downsampler
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Suppose that the pseudo-random pulses m(t), as well as the received signal y(t)

are generated at a Ts/R rate. Then, the received signal ȳ(t) can be modeled as

ȳ(t) =
[
m(t) m(t− Ts

R
) · · · m(t− (R−1)Ts

R
)]
]


y(t)

y(t− Ts
R

)

· · ·
y(t− (R−1)Ts

R
)]

 . (5.1)

If m(t) is constrained, e.g., to {−1,+1}, this downsampler can be easily implemented

in the analog domain.

This can be extended to the MIMO model (4.55), by considering a downsampling

matrix M , whose rows contain pseudo-random sequences and allows us not only to

downsample the received vector, but to combine its different signals with each other.

Thus, we can write

ȳ = My

= MFx

= MTCx. (5.2)

Under the assumption that Cx is sparse, our problem now is to investigate

how to optimize the pulse set, such that the coherence µ(MT ) is minimized for a

fixed matrix M corresponding to a hardware implementation of the downsampler.

Following a similar reasoning, the pulse set designed for this downsampler would

also be appropriate for CS in the single step procedure.

5.2 CS-BDFE applied to the estimation of

constellation signals

As noted in Sec. 3.2, a procedure that detects one symbol at a time may offer a

safer detection mechanism for an underdetermined, or even ill-conditioned problem,

over a batch processing such as Kalman recursions. In this case, the full vector is

re-estimated at once per iteration.

Resorting again to the deterministic-stochastic duality of regularized LS and

MMSE problems, it might be possible to extend the CS-BDFE algorithm to a

communications setting, when x belongs on a constellation, and devise a procedure

to solve the regularized LS problem in (2.122). This can be approached by using

the estimate x̂i and its corresponding uncertainty P̂ i obtained from a stochastic

formulation. The threshold strategy of 2.10.2 could be adjusted in order to adapt

the uncertainties in this version of the CS-BDFE.
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Such implementation, although more computationally demanding, could

outperform the CS-Kalman in ill-conditioned scenarios, such as transmissions with

no IBI cancellation or employing full ZJ.
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Chapter 6

Final Considerations

In this work, we unified and took advantage of the interplays between the

CS and the BI-DFE formulations in order to obtain new algorithms both for

equalization and compressed sensing purposes. Although these theories have evolved

rather independently, they both share a common LS formulation with a suitable

regularization function, so that we were able to derive algorithms based on sparsity

constraints for both compressed sensing and block equalization problems.

In Chapter 2, we showed that recursions derived from a LS formulation present

themself as a BI-DFE structure, which is not a result of some pre-imposed structure,

but an algorithm on its own right. We extended the strictly linear BI-DFE problems

to Reduced Complexity Widely Linear formulations, by rewriting the underlying

linear models as ones based on real and imaginary vector extensions. We discussed

the optimality of the decision-delay in the BI-DFE considering the seminal paper

of Scaglione et al. [15, 16], applied to a successive cancellation approach, which

led to the well known V-BLAST algorithm. A significant contribution arising

from our development is that by employing sequential detection, the feedforward

matrices can be computed from fast transversal filter recursions. When the channel

length is smaller than the block size, the model transmission model comprises 2

block coefficients. This allows the IBI to be removed by using redundancy, either

via zero-padding or zero-jamming, or by a combination of both. In case the IBI

is completely removed, a linear MMSE estimator can be used, and implemented

by superfast structures. As DFE receivers demand an initial (linear) MMSE

estimate, superfast receivers become of great importance. We clarified the claims

in [28–32] about minimum and reduced redundancy systems and verified in our

experiments, that MR schemes offer no advantage over standard schemes in neither

MC or SC configurations, regardless of its use under coding or via discrete Hartley

transform (DHT) implementations. Simulations on a simple Extended Pedestrian

A (EPA) model of the Long Term Evolution (LTE) standard, verify that redundancy

cannot be reduced towards its optimal value in a ZF or MMSE equalization scenario,
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which motivates this work on the search of sparsity-based solutions.

A new CS-based DFE algorithm has been derived, based on the LS cost used

similarly for iterative thresholding methods, however, one with a sparsity regularizer

enforced with respect to the most recent Kalman filtered estimate. This will target

constellation based signals, of great interest in digital transmissions. The resulting

recursions can be seen as a generalization of the notion of IBI removal, prior to any

re-estimation procedure. The algorithm makes use of a likelihood test to determine

the thresholds used to assess whether an entry was correctly estimated, which turned

out very effective. It was tested within different contexts, either with or without

redundancy, and proved itself very efficient in terms of BER. When deployed without

IBI removal, the CS-BDFE can retrieve more samples from the input vector than

the length of the output window, that is, the received signal could be sampled at

a lower rate than what is predicted by the Nyquist theory. It also outperformed

other DFE receivers in the minimum redundancy setting, even when the optimal

redundancy could not be achieved by such scheme.

In Chapter 3, we have relied on the same LS form for the cost function used by

the iterative thresholding algorithms, in which we enforced sparsity regularization on

the target vector itself, arriving at Kalman-based recursions for CS. This accelerates

convergence, as well as minimizes excess MSE. To this end, we reformulated the

CS problem from a communications perspective, by showing how a CS algorithm

naturally arises as a solution to well known equalization schemes, vastly exploited in

signal processing community. The resulting CS-BDFE algorithm uses a procedure

that detects one symbol at a time, since re-estimating a full vector at once per

iteration, as done in the Kalman recursions, might impair its ability to detect

the correct support for underdetermined or ill-conditioned problems. A procedure

that detects one symbol at a time is a safer mechanism, despite requiring more

computationally demanding implementations. We employed a DFE structure in

which the feedforward and feedback matrices were optimized. When compared

against CAMP, the CS-BDFE showed improved performance when the sensing

matrix has a block-Toeplitz structure.

In Chapter 4, we developed a full joint range/cross-range convolution model

for MIMO radars and obtained conditions in which CS techniques can reconstruct

a volumetric image. After constructing such model, we take a step further by

decoupling it into two separate sparse problems, albeit ones that exhibit more

structured models, suitable for efficient implementations. We were able to relate

the array geometry and transmitted pulses directly to the radar’s recovery ability,

assessed by the coherence of the sensing matrix. This model is then used to attest

the CS-BDFE performance in a real-world radar application. The algorithm behaves

favorably compared to the CAMP recursions, in terms of recovering the image
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support. From an FDTD simulation of a real radar, the CS-BDFE even disregarded

secondary scattering as interference.
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Dispońıvel em: <http://dx.doi.org/10.1002/cpa.20042>.

[6] DONOHO, D. L., TSAIG, Y. “Fast Solution of `1-Norm Minimization Problems

When the Solution May Be Sparse”, IEEE Transactions on Information

Theory, v. 54, n. 11, pp. 4789–4812, Nov 2008. ISSN: 0018-9448. doi:

10.1109/TIT.2008.929958.

[7] BLUMENSATH, T., DAVIES, M. “Iterative Thresholding for Sparse

Approximations”, Journal of Fourier Analysis and Applications, v. 14, n.

5-6, pp. 629–654, 2008. ISSN: 1069-5869. doi: 10.1007/s00041-008-9035-z.
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<http://www.pnas.org/content/106/45/18914.abstract>.

[10] MALEKI, A., ANITORI, L., YANG, Z., et al. “Asymptotic Analysis of

Complex LASSO via Complex Approximate Message Passing (CAMP)”,

IEEE Trans. on Inf. Theory, v. 59, n. 7, pp. 4290–4308, July 2013. ISSN:

0018-9448. doi: 10.1109/TIT.2013.2252232.

[11] LIANG, Y.-C., SUN, S., HO, C. K. “Block-iterative generalized decision

feedback equalizers for large MIMO systems: algorithm design and

asymptotic performance analysis”, IEEE Trans. on Sig. Proc., v. 54, n. 6,

pp. 2035–2048, June 2006. ISSN: 1053-587X. doi: 10.1109/TSP.2006.

873485.

[12] MERCHED, R. “A Unified Approach to Reduced-Redundancy Transceivers:

Superfast Linear and Block-Iterative Generalized Decision Feedback

Equalizers”, IEEE Transactions on Signal Processing, v. 61, n. 17,

pp. 4214–4229, Sept 2013. ISSN: 1053-587X. doi: 10.1109/TSP.2013.

2264919.
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de Doutorado, Escola Politécnica, Universidade de São Paulo, 2015.
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v. 18, n. 1, pp. 221, 2002. Dispońıvel em: <http://stacks.iop.org/

0266-5611/18/i=1/a=315>.

[78] VAN TREES, H. L. Optimum Array Processing (Detection, Estimation,

and Modulation Theory, Part IV). 1 ed. Hoboken, NJ, USA,

Wiley-Interscience, mar. 2002. ISBN: 0471093904. Dispońıvel
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jnm.1875. Dispońıvel em: <http://dx.doi.org/10.1002/jnm.1875>.

[86] LIEBIG, T. “OpenEMS - Open Electromagnetic Field Solver”. 2011. Dispońıvel
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Appendix A

Entrywise solution for the `0

proximal mapping

Consider the problem in eq. (2.127), where the norm has a diagonal weighting matrix.

We want to minimize the cost

J(x) = ‖x− x̂i‖2
Ci

+ ‖x− xi−1‖0,Λi . (A.1)

where

‖x− xi−1‖0,Λi =
M−1∑
k=0

ε′i,k|x(k)− xi−1(k)|0

is the weighted `0-norm,and |x(k) − xi−1(k)|0 is an indicator function that returns

0 whenever x(k)− xi−1(k) = 0, and 1 otherwise, and Ci = Diag(ci,0, · · · , ci,M−1).

Defining w = x − xi−1 and ∆x̂i = x̂i − xi−1, this is equivalent to find w that

minimizes

J(w) = ‖w −∆x̂i‖2
Ci

+ ‖w‖0,Λi (A.2)

= ‖∆x̂i‖2
Ci

+
M−1∑
k=0

ci,k

[
w(k)w∗(k)− w(k)∆x̂∗i (k)−∆x̂i(k)w∗(k) +

ε′i,k
ci,k
|w(k)|0

]
(A.3)

, ‖∆x̂i‖2
Ci

+
M−1∑
k=0

ci,kDk(w(k)). (A.4)

Thus, minimizing J(w) corresponds to minimize each Dk(w(k)). Note that

Dk(w(k)) evaluate as follows

Dk(w(k)) =

0, if w(k) = 0

w(k)w∗(k)− w(k)∆x̂∗i (k)−∆x̂i(k)w∗(k) + εi,k, otherwise,

(A.5)
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where we introduced εi,k =
ε′i,k
ci,k

. In the second case, we obtain a minimum when

∂Dk(wo(k))

∂w∗(k)
= 0⇒ wo(k)−∆x̂i(k) = 0⇒ wo(k) = ∆x̂i(k) (A.6)

In that case, the minimum cost Dk(∆x̂i(k)) will be

Dk(∆x̂i(k)) = εi,k − |∆x̂i(k)|2, (A.7)

which is negative when |∆x̂i(k)| ≥ √εi,k. Hence, the optimal solution is

wo(k) =

{
0, if |∆x̂i(k)| < √εi,k

∆x̂i(k), otherwise
(A.8)

Thus, replacing w by its definition, the solution is

xi(k) =

{
xi−1(k), if |∆x̂i(k)| < √εi,k

xi−1(k) +∆x̂i(k), otherwise
(A.9)

A more general problem, when the weighting matrix is not diagonal, is known to

be combinatorial, and usually iterative algorithms are used to find a solution [1, 3, 7].
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