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Prof. André Barreira da Silva Rocha, Ph.D.

Prof. Tiago Roux de Oliveira, D. Sc.

Prof. Alessandro Jacoud Peixoto, D. Sc.

Prof. Eugenius Kaszkurewicz, D. Sc.

RIO DE JANEIRO, RJ – BRASIL
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Esta tese analisa a utilização de polı́ticas competitivas de publicidade em uma classe
proposta de modelos dinâmicos de duopólio, inspirados no modelo clássico Vidale-Wolfe.
Uma suposição básica é de que a empresa com uma menor participação no mercado
chaveia para um controle que utiliza um esforço extra para alcançar a firma concor-
rente. Investigam-se padrões de dinâmica dos modelos propostos, sujeitos a polı́ticas
de publicidade competitivas baseadas nas variáveis de estado observadas, calculando-se
um ı́ndice de desempenho associado. Mostra-se como utilizar este ı́ndice em conjunção
com a análise qualitativa da dinâmica para prever o resultado de um determinado cenário,
para eventual tomada de decisão.
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This thesis investigates the effect of competitive advertising policies in a proposed
class of duopoly dynamic models, inspired on the classical Vidale-Wolfe model. A ba-
sic assumption is that the firm with a lower market share than its target market share
level switches on an extra control effort in its attempt to reach and surpass its competitor.
Dynamical patterns of the proposed models, subject to competitive advertising policies
which are based on the observed state variable, are investigated. An associated perfor-
mance index is calculated. This index in conjunction with the qualitative analysis of the
dynamics should guide the management decision on advertising spending.
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Chapter 1

Introduction

A duopoly refers to a situation in which two companies own all or nearly all of the market
for a given product or service. A duopoly is the most basic form of oligopoly, which
refers to a market dominated by a small number of companies. A duopoly can have the
same impact on the market as a monopoly if the two players collude on prices or output.
Collusion results in consumers paying higher prices than they would in a truly compet-
itive market and is illegal under antitrust laws in many countries. For example, Boeing
and Airbus have been called a duopoly for their command of the large passenger airplane
market. Similarly, Amazon and Apple have been called a duopoly for their dominance
in the e-book marketplace [12]. A central feature of oligopoly markets, is competitive
interdependence: the decisions of every firm significantly affect the profits of competi-
tors. In contrast, each seller in a perfectly competitive market is so small that it has an
imperceptible competitive impact on its rivals [13].

Advertising has been and continues to be an important topic for academic research,
in both marketing and management science, as attested by the appearance of recent sur-
veys devoted to the topic in both areas. As Erickson [14] writes “A critical aspect of the
advertising budgeting process involves competitive issues – anticipated spending levels
of major competitors, effects that competitive advertising may have on the firm’s market
share, sales, and profit, and the interactive nature of a competitor’s advertising with a
firm’s own. Competition is ignored only at the firm’s peril; empirical studies (e.g., Lit-
tle 1979) have shown quite clearly that competitive advertising can have a direct, and
negative, effect on a company’s market share.”

Since a competitive scenario with strategic decisions being made by two competing
firms is usually described by the word duopoly, this term is also used while describing
dynamic models of advertising competition. However, it is important to point out here
that, in the simplest case of two firms producing an identical product, the normal use of
the term duopoly in the economics literature involves the use of product price, implicitly
or explicitly. This is the case with the three most popular models of duopoly behavior,
namely quantity leadership (Stackelberg), price leadership, simultaneous quantity setting
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(Cournot), simultaneous price setting (Bertrand), the terms in parentheses are the names
of the economists who introduced these models which now bear their names [15]. In
contrast, as we will see, many models of advertising competition focus on advertising
effort (as a control) and its effect on market share (controlled variable), without explicitly
taking product price into account. This thesis will concentrate on such models, in order to
avoid the complications of price dynamics and emphasize the control aspects and strategic
interactions.

Specifically, we consider a duopolistic industry in which two firms are engaged in a
brand competition using advertising policies which may have a predatory effect on the
opponent’s brand. If an increase of advertising in one firm causes a decrease in the sales
of its rivals, then that advertising can be called predatory, although the firm may gain more
than the sum of the losses of the other firms [16, p. 144, chap. 6]. In comparative advertis-
ing a brand can be implicitly or explicitly compared two or more products. Although it is
legitimate to compare a product favorably against other products, it can be challenged by
law in countries such as the US [17, p. 71, chap. 3]. Alternatively, predatory advertising
can be an inevitable side effect of market saturation – in other words, if one firm gains
clients, it is because the other has lost them.

1.1 Structure of the thesis

In the remainder of this chapter we review models of advertising and models of duopolies
that use advertising in the definition of their dynamics. We also include one way of for-
mulating the differential game duopoly approach and the policies obtained for nonprice
duopoly models using differential games. This should help the reader contrast the ap-
proach proposed in this thesis with differential games applied to duopolies.

In chapter 2, we discuss our approach to the study of advertising policies in a duopoly.
In brief, the approach consists in using simple implementable advertising policies in a
given model and with them identify initial conditions which lead to a firm fulfilling its
target market share. At the same time, we calculate an associated performance index for
the dynamical system. The obtained market share and the associated index value should
guide management on the decision of adopting or not a given advertising policy. Note that
our approach is complementary to differential games approach where a control function
that maximizes a performance index is calculated.

In chapters 3, 4 and 5 the proposed approach is applied to different duopoly models
of advertising. The models in chapters 3 and 4 are extensions of the models Vidale-Wolfe
and Deal. In chapter 3, a complete description of the dynamics for the model VWDsC
is given. In chapter 4, more modifications to Vidale-Wolfe are studied. In chapter 5, we
consider the model Lotka-Volterra with switched predation which is a model based on the
Lotka-Volterra model for competing species.
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The final chapter 6 summarizes the contributions and indicates some possible future
work.

1.2 Literature review

We will first briefly review the different models and approaches in the literature with
regard to competitive advertising in a duopoly. Broadly speaking, there are models which
study the dynamics of market shares or sales of the competing firms and those that study
a hypothetical quantity called consumer “goodwill” under the effect of different types
of advertising. There are approaches which consider only the dynamics of the market
share or sales and others that consider the interaction of prices with the market dynamics.
Finally, in terms of the mathematical tools used to study the different classes of models,
there are two main approaches: (i) using the tools of dynamical systems, and (ii) using
differential games.

We first present the different classes of models that have been proposed, followed by
a brief overview of differential game approaches as well as a critique of these approaches,
leading to our proposal, which is centered on a dynamical systems approach that seeks to
model some qualitative and behavioral aspects of complex advertising decision making,
in order to capture some of its important aspects. Thus, the possible value of the our
approach lies in its adequacy as a model of aggregate advertising decision making, its
mathematical tractability and its potential implementability by real decision makers.

1.2.1 Dynamic models of response to advertising in duopolies

One of the earliest mathematical models of advertising was proposed by Dorfman and
Steiner [18], they assumed that a firm makes two kinds of choices: the price of its product
and the amount of its advertising budget. They related the quantity the firm can sell per
unit of time, q, its price, p, and its advertising variable, in this case advertising budget, u,
as a function

q = f(p, u) (1.1)

and used graphical methods and calculus to derive a basic qualitative result stated as fol-
lows: A firm which can influence the demand for its product by advertising will, in order

to maximize its profits, choose the advertising budget and price such that the increase in

gross revenue resulting from a one dollar increase in advertising expenditure is equal to

the ordinary elasticity of demand for the firm’s product. On the other hand, they conclude
their article by saying “There are good grounds for doubting the economic significance of

the whole business of writing down profit functions (or drawing curves) and finding points

of zero partial derivatives (or graphical points of tangency). Such devices are merely aids

to thinking about practical problems and it may be an uneconomical expenditure of ef-
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fort to devote too much ingenuity to developing them. Yet such devices are aids to clear

thought and, if sufficiently simple and flexible, they help us find implications, interrela-

tionships, and sometimes contradictions which might escape notice without them. Such

aids are particularly needed in the field of nonprice competition” (emphasis ours).

We will work with models for advertising dynamics in nonprice competition in a
duopoly. We continue with a literature review of models of advertising dynamics, briefly
reviewing the various classes of models, in accordance with the broad classifications price
and nonprice models.

1.2.2 Dynamic duopoly models involving price and advertising effort

In 1962, shortly after publication of the Dorfman-Steiner model, Nerlove and Arrow [19]
introduced their model for the goodwill stock of a firm. It is sometimes referred to as a
two level model in the sense that another variable of interest is derived from the good-
will. Advertising (the control variable) affects the goodwill G directly and goodwill then
determines, through a functional relationship, the main variable of interest q which is the
quantity to be produced (and sold) by the firm. The corresponding equations are:

Ġ(t) = u(t)− δG(t) (1.2)

q = f(p,G, z) (1.3)

where G is the goodwill, u(t) is the advertising and δ is a decay factor, the quantity q to
produce or sell as a function of the price p, the goodwill G and other factors represented
by z.

Finally, we briefly mention the class of Cournot duopoly models with advertising,
although since they consider price, they will not be considered further in this proposal.
Cournot duopoly [15, p. 507, sec. 27.5] is very important in oligopoly theory but usually it
is not considered part of marketing. In a Cournot duopoly, there is a single price affected
by the total production of the firms. Cellini and Lambertini, in 2003, used an inverse
demand function p(t) = (res(t) − q(t))

1
α , where p(t) is the price at time t, res(t) is

the consumer reservation price, q(t) is the total quantity produced by the firms and the
parameter α ∈ (0,∞) determines the curvature of the demand. Their assumption is that
res(t) can be increased by firms advertising efforts ui(t). They use a dynamic similar
to Nerlove-Arrow rės(t) =

∑n
i=1 ui(t) − δres(t), res(0) = res0 > 0 [20, p. 130-

132, sec. 6.2]. Escobido and Hatano derive a quantity production adjustment process in a
Cournot duopoly that is equivalent to a Lotka-Volterra competing species equation [21].
Another type of models is dynamic games with price and advertising, for a discussion see
[20, p. 132-141, sec. 6.3].
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1.2.3 Dynamic duopoly models involving only advertising effort
(nonprice models)

In 1957, Vidale and Wolfe [22] carried out detailed analyses of real firms and advertising
data in order to propose their well known eponymous model:

dS(t)

dt
= βu(t)

M − S(t)

M
− δS(t) (1.4)

where S(t) is the sales rate at time t, β is a response constant, M is the saturation of the
sales rate, u(t) is the advertising rate and δ is a decay constant of the sales.

Another important class of models are derived from the Lanchester model of human
warfare [23] which was first applied to advertising competition by Kimball [24], and
reapplied to oligopolies by Little [25] in 1979. Little presented the following Lanchester
model

Ṡ1 = β1u1S2 − β2u2S1 (1.5)

Ṡ2 = β2u2S1 − β1u1S2 (1.6)

where Si is the sales rate of firm Fi, ui is the advertising rate of Fi, βi is the advertising
effectiveness constant of Fi, the total market sales is M = S1 + S2. The sales of Fi
increases proportionally to its competitor’s sales Sj and decreases proportionally to its
own sales Si. The situation is symmetric for the opponent. Notice that the substitutions
S1 = S, S2 = M − S, β1M = β and β2u2 = δ in (1.5) result in the Vidale-Wolfe
monopoly model, so that the Lanchester model can be seen as a generalization of (1.4)
[25].

Little [25] argued that a good model of advertising should include the sales response
to advertising expenditures, the carryover effect of past advertising on current sales, as
well as the possibility of diminishing returns to cumulative advertising expenditures and
generalized the Lanchester model to comply with the response having the diminishing
returns property:

Ṡ1 = β1u
α1
1 S2 − β2uα2

2 S1 (1.7)

Ṡ2 = β2u
α2
2 S1 − β1uα1

1 S2 (1.8)

where 0 < αi < 1 corresponds to a concave response in ui and αi > 1 corresponds to an
S-shaped response in ui.

There have been several reviews of models of advertising, one of the first by Sethi
in 1977 [26] was mainly on monopolies. Later, reviews by Feichtinger et al. in 1994
[27], Erickson in 1995 [28] focused mainly on duopolies for which open-loop advertsing
strategies were computed. In a more recent survey by Huang et al. 2012 [29] although

5



duopolies are mentioned, the main focus is on oligopolies and supply chains, which are
in many cases one manufacturer and two resellers. More recent surveys on differential
games focus on supply chains [30], [31].

The models for the dynamics of many of the duopolies and of the oligopolies proposed
in the literature were derived from Nerlove-Arrow [19], Diffusion [32], Vidale-Wolfe [22]
and Lanchester [24] [25]. In 2012, Bhaya and Kaszkurewicz proposed a unified model
inspired by the Vidale-Wolfe [33] and a variation of it in [34]. In 2014, Wang et al.
proposed a new dynamic model of advertising based on Lotka-Volterra [35]. Our focus is
on models that consider the sales response to advertising, we will study the models similar
to the models proposed by Bhaya and Kaszkurewicz [33, 34], and the model proposed by
Wang et al. [35].

Sales response to advertising are models derived from Vidale-Wolfe or Lanchester
models. One of the first was presented by Deal [1] and it is a simplified model of the
dynamics of a duopoly, as an extension of the monopoly model of Vidale and Wolfe. We
will discuss Deal’s model, given below, as a starting point for the introduction of our
model later on:

ṡ1(t) = −δ1s1(t) + β1u1(t)[M − s1(t)− s2(t)]/M (1.9)

ṡ2(t) = −δ2s2(t) + β2u2(t)[M − s1(t)− s2(t)]/M (1.10)

where si(t) is sales rate for firm Fi at time t, ui(t) is the advertising expenditure for Fi at
time t, δi is the sales decay parameter, βi is the sales response parameter and M the total
potential market size. In this model there is an expression for the sales response of each
competitor, and the effect of competition is also recognized by the introduction of the
coupling term (M − s1 − s2)/M in each equation. The coupling term can be interpreted
as follows. The direct effect of competitive pressure is that, as the sales to all other market
parties increase, the size of the remaining unconquered market decreases and this in turn
diminishes the sales effectiveness of successive advertising expenditures for the firm.

Wang et al. [6] combined Vidale-Wolfe and Lanchester models as follows

dxi
dt

= βiui(1− xi)− βjujxi − δixi, i, j = 1, 2 i 6= j xi(0) = xi0 (1.11)

where the xi = si/M is the market share of firm Fi, the cross term −βjujxi is from the
Lanchester model and the terms βiui(1 − xi) − δixi from Vidale-Wolfe. The Lanchester
model was used by many authors to model the dynamics on the saturated market (x2 +

x1 = 1) [6], Wang et. al lifted that restriction so that the market shares could grow from
small initial values to saturation ( 0 ≤ x1 + x2 ≤ 1). In 2014, Hung et al. [36] used a
Lotka-Volterra model for the dynamics on the saturated market.
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Bhaya and Kaszkurewicz [33] proposed a unifying model derived from Vidale-Wolfe

ẋ1 = u11(1− x1 − x2)− u12(x1 + x2) (1.12)

ẋ2 = u22(1− x1 − x2)− u21(x1 + x2) (1.13)

where uii is the positive advertising acting on the unconquered market (1− x1 − x2) and
uij, i, j = 1, 2 i 6= j is the predatory advertising, i.e., the advertising of firm j acting
on the conquered market (x1 + x2).

In an extension of their previous model, Bhaya and Kaszkurewicz [34] assume that
the loss of one firm is the gain of the other. The dissertation by Cruz [37] uses a (CLF)
Lyapunov Control Function for the model defined by Bhaya and Kaszkurewicz in [34].

Recently Wang et al. proposed an aggregate model for a duopoly. In the first level
advertising generates the maximum sales that could be achieved for each firm. In the
second level the sales follow a Lotka-Volterra competing species dynamics in which each
firm can grow its sales until its corresponding maximum. The sales response to advertising
model based on Lotka-Volterra proposed in [35] is

Ṡ1 = S1(b1 − a11S1 − a12S2) (1.14)

Ṡ2 = S2(b2 − a21S1 − a22S2) (1.15)

where Si is the sales of firm i at time t, bi = f(ui) is the intrinsic sales growth and ui is
the advertising level of firm i, aii is the growth restriction of firm i on itself and aij is the
growth restriction on firm i created by firm j. The term having the growth restriction aii
is also known as an overcrowding term in ecology while the term having aij is referred to
as a predation term.

1.2.4 Differential games of advertising

Apart from the model, the other important ingredient required for a mathematical analy-
sis of advertising dynamics is the stipulation of an objective function for a firm. This is
a strategic managerial task and not an easy one, because it needs to be time varying, in
response to the life cycle of the product, to competitive pressures and so on. In addition,
objectives of competing firms may differ. For instance, one firm may be interested only
in maximizing its total profit over the fiscal year and its competitor may be interested
only in maximizing its market share by the end of the year. Evidently, different objec-
tives result in different advertising strategies. These two objectives could be weighted
and additively combined into one as is common in optimal control theory, leading to a
performance index. Deal [1] proposed one such performance index, which he called a
tempered performance index in order to highlight the fact that the choice of weight can
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be used to trade off (or temper) market share and profit:

Ji = wiSi(tf )/[Si(tf ) + Sj(tf )] +

∫ tf

t0

[RiSi(t)− u2i (t)]dt (1.16)

where i refers to one of the firms and j to the other, Si is the sales, Ri is the net revenue
coefficient, wi the weighting factor for the performance index, t0 the initial time of the
planning horizon and tf the final time of the planning horizon.

As Deal points out, his model is a simple formulation of a complex advertising deci-
sion, but one that represents the important characteristics of advertising decision making.
Furthermore, he states explicitly that the real value of the model lies in its adequacy as a
normative model of aggregate advertising decision making and in its approachability for
solution by differential games techniques.

When each firm optimizes its performance index subject to the system dynamics, the
firms are said to be participating in a differential game. Suppose that the performance
index Ji is associated with firm i. In the finite horizon case, the objective has two terms:
the profit from time t0 until tf plus a salvage value at final time tf .

Ji =

∫ tf

t0

gi(x1, . . . , xn, u1, . . . , un, t)dt+ hi(xi(tf ), tf ), i = 1, . . . , n (1.17)

or, in the case of infinite horizon, the objective has one term: the profit from time 0 until
∞.

Ji =

∫ ∞
t0

gi(x1, . . . , xn, u1, . . . , un, t)dt, i = 1, . . . , n (1.18)

The firm i attempts to maximize Ji subject to the dynamics

Ṡi = fi(x1, . . . , xn, u1, . . . , un, t), xi(0) = xi0, i = 1, . . . , n (1.19)

where the controls ui are advertising rates, the state variables xi are market shares or sales
[28].

Assuming that competitors cannot collude and that each of them has complete infor-
mation on the best strategies of its opponent, or that it can infer them, Nash equilibria are
sought. Informally, a Nash equibilibrium is a set of strategies where one player cannot
improve its outcome unilaterally. Nash equilibria can be found using Hamilton-Jacobi-
Bellman-Isaacs equations, obtained from the objective (1.17) and the constraints (1.19).

The Hamiltonian for the differential game just described is [28]:

Hi = gi +
n∑
j=1

λijẋj, i = 1, . . . , n (1.20)
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where λij are called costate variables. The necessary conditions for a Nash equibilibrium
are given by

∂Hi

∂ui
= 0, i = 1, . . . , n (1.21)

and for a given a finite horizon T :

λ̇ij = −∂Hi

∂xj
−
∑
k 6=i

∂Hi

∂uk

∂u∗k
∂xj

, i, j = 1, . . . , n

λii(tf ) =
∂Hi

∂xi

∣∣∣∣
t=tf

, i, j = 1, . . . , n (1.22)

λij(tf ) = 0, i, j = 1, . . . , n

where u∗k are Nash equilibrium strategies. If there is an infinite horizon, the constraints on
the costates λii(tf ), λij(tf ) are replaced by an assumption that the problem approaches a
steady state.

There are two types of Nash equilibria: open-loop and closed-loop. Open-loop equi-
librium strategies depend only on time t. Closed-loop strategies depends on states Si as
well as time t. A closed-loop equilibrium that does not depend on initial conditions is
called a feedback strategy. Finding closed loop strategies is difficult because the sum of
partial derivatives in (1.22) is nonzero in general and the system of differential equations
are not solvable in many cases. The closed-loop strategies can be determined only in
special cases.

Remark: Even though many of the early models were descriptive, they were con-
ducive to the use of differential game theory in order to derive the associated optimal
dynamic advertising policies. In fact, most of the economics and management literature
is focused on designing management strategies that optimize some pre-determined per-
formance indices, using tools from differential game theory, to investigate Nash equilibria
that represent some possible equilibrium market shares [38–40], and the recent surveys
[29], [30], [31]. Several studies also emphasize the appearance of chaos in duopolistic or
oligopolistic models (see, e.g., [41, 42] and references therein).

1.2.5 Duopoly differential games with dynamics derived from
Vidale-Wolfe or Lanchester models

Table 1.1 lists duopoly differential games that use Vidale-Wolfe or Lanchester dynamics.
We can make the following observations from the entries in the table:

• Note that the feedback strategies found in most of the cases use the approach sug-
gested by Case in 1979 [2]. Only Bass et al. [8] and Krishnamoorthy et al. [10] do
not cite Case, however they also use the value function approach with infinite hori-
zon and make assumptions about the form of functions. Krishnamoorthy et al. uses
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a value function V that is linear (V (Si, Sj) = ki(T−Si−Sj) where i, j = 1, 2 i 6= j)
and two types of demand function, one linear and the other isoelastic. Bass et al.
uses a value function V that is linear (Vi(S1, S2) = αi+ρiSi+γiS3−i where i = 1, 2

and αi, ρi, γi ∈ R).

• In most of the cases the open-loop solution is computed numerically.

• The last entry in Table 1.1, corresponding to Jorgensen et al. [11], is not directly
related to Lanchester or Vidale-Wolfe. They bring attention to state-redundant dif-
ferential games which have the property that the open-loop solution and the closed-
loop solution are the same. The study of differential games with this property began
with the work of Leitmann-Schmittendorf.

1.2.6 Characteristics of differential game solutions

• The usability of a solution of a differential game depends on its type of equilibrium
strategy, i.e., closed-loop or open-loop strategy.

– A closed-loop strategy that is also a feedback strategy is preferred so that
the competitors can adjust their strategies as the state changes. A closed-
loop strategy must satisfy (1.19), (1.21) and (1.22), i.e. a system of partial
differential equations where the state equations have initial conditions and the
costate equations have final conditions.

– Open-loop strategies are viable only if competitors decide their strategy at the
beginning of the interaction and do not make any adjustment thereafter. In the
case of open-loop strategies, they must satisfy (1.19), (1.21) and (1.22). How-
ever, in this case the summation in (1.22) is zero because the strategy depends
only on time not on the states and open-loop equilibria can be computed. Also,
if the time horizon is infinite the terminal time horizon conditions should be
replaced by steady state assumptions.

• It is assumed that each competitor has full knowlegdge of the competitive interac-
tion and the profit structure of the other competitors [14, p. 7, chap. 2].

• Solving differential games with either open-loop or closed-loop Nash equilibrium
strategies is difficult [9]. In 1995, Erickson [28] stated that without some de-
velopment in the area of partial differential equations closed-loop solutions for
oligopolies will continue being difficult to obtain. In 2004, Jarrar et al.[7] stated
that in many cases researchers simplify the HJB equations to make them analyti-
cally tractable and find a solution.
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Published by Dynamics Type of solution Remarks
Deal 1979 section E.1,
[1]

V-W OLNE numerical.
Finite horizon.

Case 1979 section [E.2],
[2]

Lanchester CLNE FS analytical.
Infinite horizon

Zero discount factor

Sorger 1989 section
[E.3], [2]

Lanchester OLNE, CLNE FS an-
alytical. Finite, infi-
nite horizon

Nonzero discount factor. Square root of
market share (dim. returns). For finite
horizon does qual. analysis of system of
diff. eq.

Chintagunta et al. 1992
section E.4, [3]

Lanchester CLNE FS analyti-
cal. OLNE numeri-
cal. Infinite horizon

Square root on advertising (dim. returns).
Zero discount factor. Empirical data test.

Erickson 1992 section
E.5, [4]

Lanchester CLNE FS analyti-
cal. OLNE numeri-
cal. Infinite horizon

Square root on advertising (dim. returns).
Zero discount factor. Empirical data test.

Fruchter et al. 1997 sec-
tion E.6, [5]

Lanchester CLNE numerical,
OLNE numerical.
Infinite horizon

Solves numerically an IBVP (initial value
boundary problem) instead of a TBVP
(two boundary). Nonzero discount fac-
tor. Time dependent CLNE proportional to
OLNE.

Wang et al. 2001 section
E.7, [6]

Lanchester
and V-W

CLNE numerical.
OLNE numerical.
Finite horizon

No discount factor. Empirical data test.

Jarrar et al. 2004 section
E.8, [7]

Lanchester CLNE numerical. In-
finite horizon

Nonzero discount factor. Numerical sol. of
differential equations of value function.

Bass et al. 2005 section
E.9, [8]

Lanchester.
Brand adv.,
generic adv.

CLNE FS symbolic.
Infinite horizon

Solves numerically a system of algebraic
eq. to get the symbolic values. Nonzero
discount.

Wang et al. 2007 section
E.10, [9]

Lanchester. CLNE numerical.
OLNE numerical.
Infinite horizon

Empirical study. Square root of advertising
in the dynamics is not always suitable for
the problem.

Krishnamoorthy et al.
2010 section E.11, [10]

V-W. Price
and advertis-
ing

CLNE FS analyti-
cal.Infinite horizon

Value function is linear on the state. Two
forms of demand function.

Jorgensen et al. 2010
section E.12, [11]

State-
Redundant
games.

Analytical For state-redundant games and some
linear-state games the OLNE solution is
the same as the CLNE FS solution. For in-
stance, Leitmann-Schmittendorf.

Table 1.1: Duopoly differential games and their solutions. CLNE= closed-loop Nash
equilibrium, OLNE= open-loop Nash equibilibrium, FS= Feedback strategy, i.e. subgame
perfect (not depending on initial conditions)
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• The use of numerical algorithms for solving competitive advertising is widespread,
only special cases can be solved analytically. See Table 1.1.

• Even though the closed-loop solution and in particular the feedback strategy solu-
tion, which depends only on the state, is more appealing to decision makers of the
firms, in many cases it is the open-loop solution that is calculated because it is more
tractable [11].

• As a remark, note that when facing the tradeoff between a closed-loop solution
and the tractability of the open-loop solutions, researchers have looked for problem
structures where both solutions are the same, i.e. the open-loop solution is a closed-
loop solution [11]. These are very special rather crafted cases.
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Chapter 2

Proposed approach to study advertising
duopoly dynamics

In this chapter, we will put together the observations regarding the types of models and
approaches available and propose an approach that allows some flexibility in modeling
different types of strategic behavior by the competing firms and, in order to do so, ex-
amines the consequences of adopting such strategies, rather than attempting to compute
them as optimizers of some performance criterion.

2.1 Outline of the proposed approach

Our perspective is to investigate market share dynamics of some nonprice duopoly models
subject to a competitive advertising policy. Once the possible market share outcomes
have been characterized, they are also evaluated with respect to a performance index. The
primary concern is not with maximizing a performance index, rather the objective for firm
Fi is to take action to try to prevent its current market share falling below its target market
share. This approach can be regarded as being complementary to the differential games
approach, which starts out by optimizing a performance index, through the calculation of
an optimal advertising effort (which is often difficult to calculate and implement).
As we recall from the previous section, the problems with finding the optimal control for

a differential game are as follows:

- It is generally not analytically computable.

- In most cases it is not in feedback form for a finite horizon.

- The approaches taken so far are to make simplifications or assumptions with regard
to the dynamics in order to obtain an analytical solution or a numerical solution.

- In general both firms need complete information (state and parameters) of the sys-
tem. However, information of a competitor may not be readily available.
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We propose an alternative approach in which:

• Firm Fi takes action to try to reach at least its target market share.

• A performance index is used to evaluate the advantage of different advertising con-
trols, but not to design them, as in the differential game approach.

• A simple and naturally implementable policy is used. It is based on switching
control that relies only on the observed state of the system, but in which each firm
does not use private or privileged information of its competitor in order to design
its policy.

In this context, we will make the following assumptions in order to model the behavior of
firms:

A1. Both firms have complete access to current market share information (i.e., to states
x1, x2).

A2. The total market capacity is normalized to unity (applicable when the state variable
is the market share of the firm).

A3. The market environment is purely competitive, i.e. there is no collusion or market
division between the firms.

A4. A firm changes its advertising expenditure only when it perceives that it has a
smaller market share than its target market share.

A5. The change in the previous assumption occurs in a predetermined manner, by
switching on an additional positive advertising effort directed at regaining lost mar-
ket share (and possibly surpassing the competitor’s market share).

Given these assumptions, our focus is on analyzing the resulting dynamics and identifying

initial market shares which achieve the following goal:

G The goal of a firm is to reach or surpass its target market share. The firm with an
initial market share that is smaller than its target applies an additional advertising
effort to reach its target. Once a firm surpasses its target market share, it stops
making its additional advertising expenditure.

Evidently, if the goal of surpassing a target share is unachievable, then it is of interest to
know if the long term outcome for the firm is its target market share.
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2.2 Proposed unified model of advertising dynamics

This section first describes a general model which contains, as special cases, the models
of interest previously discussed. We propose a unified model (UM) that can generate
different models with appropriate parameter choices:

ẋ1 = u11(x1, x2)(1− x1 − x2)− v12(x1, x2) + v21(x1, x2) (2.1)

ẋ2 = u22(x1, x2)(1− x1 − x2)− w21(x1, x2) + w12(x1, x2) (2.2)

where u11(x1, x2), u22(x1, x2), v12(x1, x2), v21(x1, x2), w12, w21(x1, x2) are the terms to
be defined, and the states x1, x2 are the market shares of firms F1, F2 unless otherwise
specified.

The UM model generalizes the model in [34]. Some models generated from (2.1)-
(2.2) are listed below:

• The Vidale-Wolfe model without decay terms. The values for the terms in (2.1)-
(2.2) are:

u11 = k1, v12 = v21 = 0 (2.3)

u22 = k2, w21 = w12 = 0 (2.4)

• The Lanchester model. The values for the terms in (2.1)-(2.2) are:

u11 = 0, v12 = v21 = k1x2 (2.5)

u22 = 0, w21 = w12 = k2x1 (2.6)

• The Lotka-Volterra model. The values for the terms in (2.1)-(2.2) are:

u11 = b1x1, v12 = ((a11 − b1)x1 + (a12 − b1)x1)x1, v21 = 0 (2.7)

u22 = b2x2, w21 = ((a22 − b2)x2 + (a21 − b2)x1)x2, w12 = 0 (2.8)

2.3 Associated Performance Index

Often, profit is also a criterion of interest. Deal [1] proposed a performance index which
uses market share and profit (see equation (1.16)), and we use the following simplified
version which corresponds to the index used by Sethi in [40, p. 196, chap. 7] without the
discount factor, since a finite horizon problem is being considered:

Ji(r, xi(t), ui(t), t) =

∫ tf

t0

[rxi(t)− ui(t)]dt (2.9)
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where i refers to firm i, r is the maximum sales revenue factor of the market, t0 the initial
time of the planning horizon and tf the final time of the planning horizon. We use Ji
as an abbreviation for Ji(r, xi(t), ui(t), t). Note that a firm makes profits when its index
J(xi) is positive, whereas it makes a loss when its index J(xi) is negative. The term
rxi(t) represents the income of firm Fi, so that the factor r converts market share xi to a
money unit, i.e. thousand of dollars. The factor r can be estimated as the product of the
maximum number of items that can be sold in the market multiplied by the average price
of the product.

2.4 Motivation for using state dependent control

Consider the following system which is the simplified Vidale-Wolfe model for a
monopoly firm F without the decay term.

Ṡ(t) = u(t)(M − S(t)) (2.10)

where S is the sales, M is total sales the market can support, u(t) is the advertising effort
or control. Suppose that F can sell at most an amount M∗ < M ; this could happen
because it has a limited production given its current factory capability. Since the term
(M − S(t)) on the right hand side of (2.10) is always positive for all possible S(t), it
follows that, in order for S(t) to increase, we should have u(t) > 0 whenever S(t) ∈
[0,M∗]. When S(t) exceeds M∗, it is reasonable to suppose that spends zero advertising
effort, i.e., u(t) = 0 for S(t) ≥ M∗. One particular choice of continuous control that
achieves this is k(M∗ − S(t) for S(t) ∈ [0,M∗] and u(t) = 0 for S(t) ≥ M∗. Another,
possibly more realistic strategy recognizes that, even when a given maximum sales level
has been achieved, advertising effort should merely be reduced and not extinguished, in
order to avoid losing the sales level it has achieved, due to ongoing externalities. The
two strategies just described are depicted in Figures 2.1 (a) and (b), with the former being
continuous and the latter discontinuous.

Additional motivation for decision makers to use switching control comes from the
concept of performance dashboards from [43, p. 4-5, chap. 1]. A performance dashboard
communicates strategic objectives and enables business people to measure, monitor, and
manage the key activities and processes needed to achieve their goals. To achieve all this,
a performance dashboard provides three main sets of functionality:

• Monitor critical business processes and activities using metrics that trigger alerts
when performance falls below predefined targets.

• Analyze the root cause of problems by exploring relevant and timely information
from multiple perspectives at various levels of detail.
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SM∗0

u(t) = k(M∗ − S(t))

u(t) = 0

(a)

u

SM∗0

u(t) = Mleft

u(t) = Mright

(b)

Figure 2.1: Control u(t) applied to achieve the sales goal of at least M∗. The continuous
case is shown in (a) the control u(t) = k(M∗ − S(t) > 0 when current sales S(t) < M∗

and u(t) = 0 when M∗ < S(t). The discontinuous case is shown in (b) where the
control is a switching control u(t) = Mleft when S(t) < M∗ and u(t) = Mright when
M∗ < S(t).

• Manage people and processes to improve decisions, optimize performance, and
steer the organization in the right direction.

Performance dashboards provide benefits such as actionable information delivered in a
timely fashion that lets users take action to fix a problem [43, p. 15, chap. 1].

The goal of the dashboard is to present organized data to the decision maker in an
easy-to-understand format. In addition to providing the data of the current metric, the
dashboard provides values of other metrics, at comparable times, that would help the
decision maker in the understanding of the current metric. A dashboard is more than
simple reporting, a dashboard is also interactive. [44, p. 402, chap. 10]. Figure 2.2 shows
a speedometer which is one way of displaying part of a dashboard.
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In trouble

Attention needed

Good

Figure 2.2: A speedometer for indicator Sales in millions of $ using a standard coloring for the status of a
metric: red=In trouble (from 0 to 22), yellow=Attention needed (from 22 to 44), and green=Normal (from
44 to 70).

Following the dashboard usage in business management, one can see that an switching
control strategy can be regarded as a corrective action when, for instance, the state of the
metric market share or sales changes its status from green (normal) to yellow (attention
needed).
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2.5 Objectives of the firms

The goal of firm Fi is to have, at the saturated market, at least its target market share
targeti. The target of a firm defines the switching line. This line goes from the origin to
the target market share of the firm on the saturated market share line. This switching line
specifies the change of controls of the firm: When a firm perceives that its market share
is below its target share, that firm turns on an extra control. Depending on the value of
target1 + target2 the possibilities are:

1. The sum target1 + target2 = 1. In this case, both firms have the same switching
line. For instance, if both firms want to have at least with 0.5 of the market share in
the long run then the switching line is the equal share line x2 − x1 = 0.

2. The sum target1 + target2 > 1. In this case, there are two switching lines, one for
each firm. Even though in a duopoly the market shares of the two firms comprise
the total market, it is highly probable, given the competition between the firms, that
each firm wants a bigger market share than the other firm. For instance, suppose
that firm F1 desires 0.6 of the market share and F2 desires 0.7 of the final market
share. The switching line for F1 is x2 − 0.4

0.6
x1 = 0 and F1 achieves its goal when

x1 >
0.6
0.4
x2. The switching line for F2 is x2 − 0.7

0.3
x1 = 0 and F2 achieves its goal of

having at least 0.7 of the market share when x2 > 0.7
0.3
x1.

3. The sum target1 + target2 < 1. In this case, there are two switching lines, one
for each firm. Even though this case seems to have no conflict, depending on the
initial conditions and the parameters of the system, a firm might or might not reach
its target market share.

2.6 Classes of Control Functions used by each firm

The control laws to be used are simple laws. A policy u = kx which is state dependent
with gain parameter k > 0, is said to be a constant rate control, and if u = k > 0 (not
dependent on state), then it is called a constant effort control. In general, the controls we
will use are constant effort, constant rate or a sum of them.

Specifically we propose the use of switching control or variable structure control [45].
Each firm uses the state x to test if its target market share is currently fulfilled. For
example, the firm Fi could use a constant effort control while its goal is achieved, but
uses a constant effort plus a constant rate control when its goal is not fulfilled. In other
words, Fi applies its additional constant rate control to try to fulfill its goal. For instance,
if the goal of each firm is to have at least 0.5 of the total market at steady state, the
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switching control would be

ui(x1, x2) =

{
kixi + ci if xi < xj

kixi if xi > xj
i = 1, 2; j 6= i (2.11)

Note that, in order to define a dynamical system subject to control (2.11) on the dis-
continuity line x2 − x1 = 0, we will use the Filippov rule (see Appendix A, [46]).

2.7 Objective of this thesis

In addition to proposing modifications of advertising models, this thesis focuses on an-
swering the following question, that follows naturally from the assumptions made above:

• Is it possible to identify initial market shares and advertising effort parameters for
which the firm with an initial market share below its target will (respectively, will
not) be able to attain it?

Also, we want to define a reasonable performance index that will allow a classification of
advertising strategies.
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Chapter 3

Dynamics of a modification to the
Vidale-Wolfe-Deal model under
feedback control

3.1 Introduction

We chose to work with the Vidale-Wolfe model [22] because it directly relates market
share with advertising and it was tested against real world data. Deal [1] was the first to
use the Vidale-Wolfe model for the duopoly case. In addition it has been an inspiration
for many models [29].

Before presenting the model Vidale-Wolfe-Deal with switching control (VWDsC),
we give some notation related to second order dynamical systems with discontinu-
ous right-hand sides. For general second order models (i.e. having a state vector
x = [x1(t), x2(t)]

T ∈ R2), an ODE with one discontinuity boundary Σ and lower and

upper vector fields fL = [fL1 (x), fL2 (x)]T and fU = [fU1 (x), fU2 (x)]T on either side of Σ is
written as:

ẋ =

{
fL(x), x ∈ L
fU(x), x ∈ U

(3.1)

where the regions L,U are separated by Σ = {x : H(x) = 0}. L corresponds to the

lower region where H(x) < 0 and U to the upper region where H(x) > 0.
Next, we proceed to the basic control policy which is used in the model VWDsC:

ui(x1, x2) =

{
kixi + ci if xi < xj

kixi if xi > xj
(3.2)

where i = 1, 2 and j 6= i. Policy (3.2) can be interpreted as follows: if firm Fi is leading
the market (i.e., xi > xj), it uses a constant effort advertising policy (kixi); however at the
moment at which the competing firm Fj becomes the leader (exceeds the market share of
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firm Fi ), firm Fi switches to an additional (constant rate) effort (ci) in its attempt to avoid
falling behind its competitor.

In order to proceed, some terminology is introduced. The policy (3.2) is one that
switches from constant effort to constant effort plus constant rate and vice-versa, when-
ever the equal market share line x1 = x2 is crossed. Since the switching policy is discon-
tinuous on this boundary, the equal share line is also referred to as discontinuity boundary

and denoted by the symbol Σ.
Using this previous notation and the policies 3.2 as uii and vij = wij = 0 with

i, j = 1, 2 in model UM (2.1 - 2.2), the equations that define the model VWDsC are as
follows:
The upper field fU , which defines the dynamics in the region U , is given by:

ẋ1 = (k1x1 + c1)(1− x1 − x2) (3.3)

ẋ2 = k2x2(1− x1 − x2) (3.4)

The lower field fL, which defines the dynamics in the region L, is given by:

ẋ1 = k1x1(1− x1 − x2) (3.5)

ẋ2 = (k2x2 + c2)(1− x1 − x2) (3.6)

On Σ, the dynamics is defined following the Filippov rule which is based, roughly speak-
ing, on a convex combination of the lower and upper fields (see Appendix A, [46, p. 50-52,
chap. 2] for mathematical details).
Remark: The policy described above belongs to the class of switching policies, in which
the switching is based on the observations of the states (market shares). In fact, many other
choices of control laws are possible for models derived from the Vidale-Wolfe model and
represent different hypotheses about the behavior of competing firms (see, for example,
[14, 29, 42, 47, 48]).

Figure 3.1 identifies the regions and the relevant lines for model (3.3)-(3.6). The
discontinuity boundary Σ is the line x2 = x1, also written as H(x) = x2 − x1 = 0. The
line 1−x1−x2 = 0 corresponds to a saturated market, and is denoted as Sat. The segment
SatU (resp. SatL) corresponds to firm F2 (resp. F1) ending with a bigger saturated market
share. The point E is the equal share saturation point, i.e. where both firms have half of
the total saturated market. The triangle T , defined as {x ∈ R2

+ : x1 + x2 ≤ 1}, is the

set of all feasible states. The region U is the set {x ∈ R2
+ : x1 + x2 ≤ 1 ∧ x2 > x1}

where the dynamics (3.3)-(3.4) corresponding to fU is active. The region L is the set
{x ∈ R2

+ : x1 + x2 ≤ 1 ∧ x1 > x2} where the dynamics (3.5)-(3.6) corresponding to fL

is active.
Given the definition of the switching controls, it is clear that, if a trajectory attains
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the equal market share line Σ at a point below the equal saturated market share E (see
Figure 3.1), then both firms switch on their extra-advertising efforts. Depending on the
relative magnitude of their efforts, a resultant motion, called sliding, may occur for some
segment of Σ. The endpoint of this sliding motion, marked by a dot in Figure 3.1, is
Send = (send, send). For brevity, we will use only one coordinate when referring to points
on the equal share line Σ, i.e. we will use send when referring to the sliding end point.

A separatrix is a trajectory which separates obvious distinct regions in the phase plane
[49, p. 111, chap. 3]. Recall that the goal of each firm is to obtain at least 50% of the
saturated market share. For each firm Fi, there is a trajectory ϕ such that it separates the
phase plane into two regions: starting in one of the regions it achieves its goal in the long
term, while starting in the other it does not. In model (3.3)-(3.6), we call separatrix the
trajectory ϕ which separates regions (of initial conditions) which correspond to different
outcomes (e.g. Firm F1 has a larger long term market share than Firm F2, or vice-versa).

Observe that separatrices are associated to a vector field as well as to a firm and de-
pending on the parameters of the system, a given firm can have a separatrix derived from
fU or from fL, hence we use the notation ϕYi to denote the separatrix for firm Fi, i = 1, 2

obtained using the dynamics of the field fY , Y = U,L. Figure 3.1) shows the case where
there is one separatrix in region L, other cases will be shown in section 3.2.3.

x1

x2

U

L

0

1

1

Sat
E0.5

0.5

SatU

SatL

Σ given by
H(x) = x2 − x1 = 0

send

ϕL
2 = ϕL

1

Figure 3.1: The upper region U , the lower region L, the switching line Σ = {x : H(x) = x2 − x1 = 0},
the segment Sat defined by 1 − x1 − x2 = 0. The segment SatU (resp. SatL) is the portion of Sat that
lies in region U (resp. L). T is the triangle defined by the points (1, 0), (0, 1), (0, 0). The point marked
E is the equal share saturation point, i.e. where both firms have half of the total market. In this figure the
sliding end is send < 0.5 and there is one separatrix ϕL

2 = ϕL
1

The set of initial shares (T ) is partitioned into regions by separatrices. In the cases
where there is only one separatrix, one of the firms does not fulfill its goal of at least 50%

of the market share even when it begins with a bigger initial market share. For instance, if
the separatrix is ϕU2 = ϕU1 (see Fig. 3.2(c) and (d)) and the initial market share x20 > x10

is below ϕU2 , then firm F2 ends with less than half when market saturation is reached.
Given this kind of behavior, the evolution of the market shares after the equal market
share is reached until market saturation is attained has to be described.

A trajectory that departs from an initial condition in U or L (i.e. not on Σ) and attains
Σ is said to have reached Σ, and the period in which this occurs is known as the reaching
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phase. Once the trajectory from U (resp. L) reaches Σ there are the following possibilities
(formal mathematical definitions of sliding and crossing are given in Appendix A):

1. The trajectory crosses from U into L (resp. from L into U )

2. The trajectory moves along Σ, which is known as sliding, and then crosses from U

into L (resp. from L into U ) finally ending on SatL (resp. SatU ).

3. The trajectory slides on Σ up to a certain point, and then returns to U (resp. to L)
finally ending on SatU (resp. SatL).

4. The trajectory slides on Σ until it attains the saturated equal market share point E.

For brevity we will refer case 1 as reaching and crossing (RC), case 2 as reaching, sliding
and crossing (RSC), case 3 as reaching, sliding and returning (RSRet) and case 4 as
(RS). This cases are shown in Figure 3.2.

3.2 Main result for model VWDsC

The main result for model VWDsC is a complete description of market share dynam-
ics. Theorem 3.2.1 characterizes the market share dynamics having initial conditions
x2(0) > x1(0), i.e. trajectories τ beginning in U , which attain with the equal share line
Σ. The case for τ beginning in L, i.e. x1(0) > x2(0) is analogous and it is omitted for
brevity. Other possibilities, completing the description of the market share dynamics, are
given in remarks 1 and 2, which follows Theorem 3.2.1.

Theorem 3.2.1 (Characterization of market share dynamics for model (3.3)-(3.6)
with controls (3.2)). Suppose that τ is a trajectory that starts in region U , i.e. firm F1

starts out with a smaller market share x1(0) < x2(0) and that the parameters k1, c1, k2, c2
are known, then the trajectories reaching the equal market share line Σ can have one of

the following behaviors:

1. If the sliding end point send = 0.5 then any trajectory τ with initial conditions in

region U and below separatrix ϕU1 reaches the equal share line and slides until the

saturated equal share point E on the saturated market line (see Figure 3.2a)

2. If the sliding end point send < 0.5 and k2 > k1, then the separatrix is ϕL2 = ϕL1 and

some trajectories beginning in region U reach the equal share line Σ, move on it

until the point send and return to U finally ending on the saturated market Sat with

firm F2 having more than 50% of the market share.(see Figure 3.2b)

3. If the sliding end point send < 0.5 and k1 > k2, then the separatrix is ϕU2 = ϕU1 and

the trajectories beginning in region U and below ϕU2 reach the equal share line Σ,
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(a) If the trajectories reach the equal market share on the sliding segment Σs, they

stay on the equal market share until the point send and then cross into region

L finally ending on the saturated market Sat with firm F1 having more than

50% of the market share. (see Figure 3.2c)

(b) If the trajectories reach the equal market share line on the crossing segment

Σc, they cross into region L finally ending on the saturated market Sat with

firm F1 having more than 50% of the market share.(see Figure 3.2d)

Proof. Proof of Theorem 3.2.1 given in Appendix C Demonstrations of properties of

model VWDsC.
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1send = 0.5 send < 0.5

send < 0.5 send < 0.5

Figure 3.2: Possible outcomes for firm F2, which has been chosen, without loss of generality, to have a
bigger initial market share. The sliding end point send is marked by a dot. (a) RS: With initial conditions
that lie below ϕU

1 , F2 loses its initial advantage, but ends with equal market share at saturation, (b) RSRet:
For some trajectories firm F2’s initial advantage reduces to an equal share, but at saturation F2 has more
than half of the market, (c) RSC: Firm F2 loses its initial advantage, has a period of equal share and at
saturation line ends with less than half of the market, (d) RC: Firm F2 loses its initial advantage and ends,
at saturation line, with less than half of the market, without experiencing a period of equal share.

Remarks:

1. If firm F2’s separatrix is ϕU2 , then trajectories beginning above ϕU2 do not attain
the equal share line Σ and they lead to firm F2 ending with more than 50% of the
market share (see Figure 3.2a, 3.2c and 3.2d).

2. If firm F2’s separatrix is ϕL2 (see Figure 3.2b), then any trajectory beginning in U ,
whether it attains Σ or not, leads to firm F2 ending with more than 50% of the
market share. This last case applies also to trajectories beginning in L and above
ϕL2 .

3. When the firms spend a period of time on the equal share line, i.e. sliding occurs,
both firms turn on their extra effort which leads to a larger advertising cost.

4. There are trajectories which cannot occur, when parameters have a given relation:
When k2 > k1 (resp. k1 > k2) it is not possible that firm F1 (respectively F2) ends
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with a larger saturated market share. See Propositions C.0.5 and C.0.6 in Appendix
C.

All the proofs are detailed in Appendix C Demonstrations of properties of model

VWDsC.

3.2.1 The state variables (market shares) x1, x2 are nondecreasing
along the trajectories

For all trajectories originating in the interior of the triangle T , equations (3.3)-(3.6) imply
that the state derivatives ẋ1, ẋ2 are always nonnegative, this implies that they are non-
decreasing. The variables x1, x2 always increase, except at Sat where x1, x2 remain
unchanged, see section 3.2.2 next.

3.2.2 Equilibria in U , their location and stability properties

We observe that the set of points {(a, 1 − a) : a ∈ [0, 0.5]} is an equilibrium set for the
dynamics in U defined by fU . This is because the term (1 − x1 − x2) is a factor in the
expression defining fU , implying that the vector field fU vanishes on the set {(a, 1 − a) :

a ∈ [0, 0.5]} defined by the upper half of the line Sat.
If the market is unsaturated (i.e., 1−x1−x2 > 0), the only equilibrium point for (3.3),

(3.4) is x1 = −c1/k1, x2 = 0. Under the assumptions that ki, ci are positive for i = 1, 2,
this means that this equilibrium point lies on the negative segment of the x1 axis and is
outside the first quadrant. In other words, it is a virtual equilibrium, in the sense that it is
outside of the feasible region T . Also, it is an unstable node.
Behavior of points on Sat

The Jacobian matrix J1(x1, x2) for (3.3), (3.4) is given by:[
−2k1x1 + k1 − c1 − k1x2 −c1 − k1x1

−k2x2 −2k2x2 − k2x1 + k2

]
(3.7)

Substituting the coordinates of a point (a, 1− a) on Sat in (3.7) we have J1(a, 1− a)[
−k1a− c1 −k1a− c1
−k2(1− a) −k2(1− a)

]
= −u11T, (3.8)

where u = (k1a+c1, k2(1−a)) ∈ R2 and 11 = (1, 1) ∈ R2. Abbreviating J1(a, 1−a)

by J1, the equations J1u = −(u11T)u and J1w = 0w, for w ∈ 11⊥ (11⊥ = {v : v11T = 0})
show that −11Tu is a negative eigenvalue associated with the direction of the eigenvector
u, and 0 (zero) is an eigenvalue associated with an eigenvector in 11⊥ (the eigenvector w

can be chosen as (1,−1)).
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Since for a ∈ [0, 0.5) and any choices of k1, c1, k2 (all positive), the eigenvector u

points towards Sat and furthermore the eigenvector (1,−1) is parallel to Sat, we can
conclude that trajectories in the interior of T will approach Sat. Once a point on Sat is
attained, the trajectory stops evolving (ẋ1 = ẋ2 = 0). In this sense, Sat is a continuum of
points that attract trajectories originating in T , and behave like equilibria. The points on
Sat are attractive but a perturbation that changes the state from point P1 on Sat to another
point P2 on Sat will stay on P2.

3.2.3 Types of separatrices

Separatrices associated with the regions U and L are defined as follows: ϕU (resp. ϕL) is
a trajectory confined to U (resp. L) starting at an initial condition on the x2 (resp. x1) axis
and ending at point E. At least one separatrix will exist because a separatrix is a special
trajectory that reaches Sat at the equal market share saturated market E and one of the
firms or both could reach the equal share saturated market E.

Figure 3.3a shows the case in which two separatrices, denoted ϕU1 and ϕL2 occur (recall
that the subscript indicates the firm to which the separatrix applies). When both separatri-
ces exist, the region in between them (shown in white in Figure 3.3a) is a region where the
firms tie, i.e. each firm ends up with half the saturated market share. There are parameter
values for which only one separatrix exists ϕU1 = ϕU2 (resp. ϕL1 = ϕL2 ) and it applies to
both firms. This is shown in Figure 3.3b (resp. Figure 3.3c). Firm F2(resp. F1) achieves
its goal above (resp. below) its separatrix.
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Figure 3.3: Types of separatrices: The superscript identifies the field used in the calculation and the
subscript identifies the firm to which the separatrix applies. (a) There are two separatrices ϕU

1 and ϕL
2 . The

trajectories that start in the white region between ϕU
1 and ϕL

2 are such that both firms end up with half of
the market share in the long run. The cases depicted in (b) and (c) have only one separatrix, in case (b) the
separatrix is ϕU

2 = ϕU
1 , in case (c) the separatrix is ϕL

2 = ϕL
1 .

If only one separatrix exists then it applies to both firms (see Figure 3.3b and 3.3c). If
two separatrices exist, the separatrix for firm F1 is ϕU1 and the separatrix for firm F2 is ϕL2
(see Figure 3.3a). The mathematical details needed to calculate the separatrix of a firm
are given in Appendix B.

26



3.2.4 Reaching, sliding and crossing behaviors with regard to the
equal share line Σ

If only one separatrix ϕU2 = ϕU1 (resp. ϕL2 = ϕL1 ) exists, then trajectories beginning in
U (resp. in L) and below the separatrix ϕU2 (resp. above ϕL1 ) lead to firm F2 ( resp. F1)
not attaining its goal of at least 50% of the saturated market share. These trajectories,
on reaching the equal share line Σ could slide on Σ and then cross it into L, or could
directly cross Σ into L. If there are two separatrices ϕL2 and ϕU1 , trajectories beginning in
the region in between them reach Σ and then slide on it until the saturated equal market
share point E. Thus, it remains to find additional conditions on the policy parameters
(ki, ci) that result in these different types of possible behavior. Notice that it is necessary
to define the segment Σs ⊂ Σ on which sliding occurs. Similarly, it is necessary to define
a segment Σc ⊂ Σ on which crossing occurs.

The details about reaching, sliding and crossing the equal share line Σ are given in
Appendix C Demonstrations of properties of model VWDsC.

3.3 Designing advertising policies: a pictorial version of
the main results for model VWDsC

To facilitate the use of the results given in section 3.2, this section provides a pictorial
version of the main results, identifying regions of the phase plane (i.e. initial conditions)
that lead to different outcomes for the long term market shares of the competing firms. In
order to do this, we assume, without loss of generality, that firm F1 starts out with a lower
initial market share (i.e. x1(0) is in U ).

Figure 3.4 shows regions of all initial conditions in U for which firm F1 can attain or
surpass the market share of firm F2. In Figure 3.4a firm F1 will attain 50% of the saturated
market share while in Figure 3.4b firm F1 will end with more than 50% of the saturated
market share. If the separatrix is ϕL2 = ϕL1 , then there are no initial conditions in U for
which F1 attains at least 50% of the saturated market. For this reason the case ϕL2 = ϕL1

is not included in Figure 3.4.
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Figure 3.4: The gray regions of U contain the initial conditions for which: (a) F1 attains 50% of the
saturated market, (b) F1 surpasses the saturated market share of F2.
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Figure 3.5a shows a gray region for which F1 attains equal market share in the long
term. In Figure 3.5b, only initial conditions on the separatrix, shown in gray, lead to both
firms ending with 50% of the saturated market share. If the separatrix is ϕL2 = ϕL1 , then
there are no initial conditions in U for which F1 attains 50% of the saturated market. For
this reason the case ϕL2 = ϕL1 is not included in Figure 3.5.
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Figure 3.5: The gray regions of U contain the initial conditions for which both firms end with an equal
saturated market share in the long term. In (b) these initial conditions lie on the separatrix ϕU

2 = ϕU
1 and

the region collapses to a single curve (the separatrix)

Figure 3.6 shows gray regions of initial conditions for which F1 can never attain the
saturated market share of its competitor, firm F2.
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Figure 3.6: The gray regions of U contain the initial conditions in U for which the firm F1 end with a
saturated market share smaller than the saturated market share of F2.

In summary, supposing that firm F1 has a lower initial market share, the strategy
determined by Theorem 3.2.1 is to use a constant rate k1 > k2. With this choice, the
separatrix ϕU1 exists and if the initial market shares are below it, then firm F1 is guaranteed
50% of the saturated market share (see Figure 3.4a) or even more than 50% of the market
share (see Figure 3.4b). In this case, firm F1 should also calculate its performance index
to evaluate if its investment plans are better aligned with having 50% of the saturated
market share or having more than 50% of it (the calculation of a performance index will
be discussed in the next section). If the initial conditions are above the separatrix ϕU1 ,
then firm F1 will end with less than 50% of the saturated market share, not attaining its
goal. Again, the question of whether to enter the market or not, should be decided using
a performance index.
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3.4 Simulation of different scenarios

Next, we present simulations with different parameters displayed on the phase plane.
Without loss of generality, the scenarios are commented on from the viewpoint of firm
F2. Recall that the goal of each firm is to end with at least 50% of the saturated market
share. We assume that F2 is already in the market so that its initial market share satisfies
x2(0) > x1(0). Also, suppose that the parameters k2, c2, k1, c1 are known. The entering
firm F1, i.e. F1 enters the market, also wants to get at least half of the saturated market.
The simulations were done using the software Berkeley Madonna [51].

Notice that in all scenarios firm F2 achieves its goal of having at least half of the
market for any trajectory τ is above its separatrix, which can be ϕU2 or ϕL2 . Firm F1

achieves its goal for any trajectory τ below its separatrix, which can be ϕU1 or ϕL1 . If there
are two separatrices, the region in between ϕU1 and ϕL2 is a draw region where each firm
ends with half of the saturated market.

In the first scenario, shown in Figure 3.7, we investigate if there is a trajectory such
that firm F1 reaches the equal market share line and finally ends with more than half of
the saturated market share when k1 < k2, i.e. when F1 makes an insufficient effort. The
answer is no. If k1 < k2 there is no trajectory that reaches the equal market share line,
remains on it and finally ends with more than half of the saturated market share (Propo-
sition C.0.5) neither a trajectory that reaches the equal market share line on the crossing
segment and finally ends with more than half of the saturated market share (Proposition
C.0.6). However, if k2 > k1 and c1/(k2− k1) < 0.5, there are trajectories τ that reach the
equal market share Σ, remains on it and then return to U , so that finally F2 ends with more
than half of the saturated market. This corresponds to Theorem 3.2.1 2 with send < 0.5

and is highlighted in gray color in Figure 3.7.
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Figure 3.7: Insufficient effort by initially disadvantaged firm F1. Phase plane of model (3.3)-(3.6) with
parameters k1 = 1, c1 = 0.3, k2 = 2, c2 = 0.3. The highlighted gray trajectory τ starts in U and is such
that firm F1 reaches the equal market share, remains on it but finally firm F2 ends with more than half of
the saturated market share. This corresponds to Theorem 3.2.1 2.

In the next scenario, shown in Figure 3.8, if firm F1 increases its the constant effort
c1 > c2 but keeps its constant rate k1 < k2, does firm F1 ends with more than half of the
saturated market share? If the sliding end point send = 0.5 there are two separatrices ϕU1
and ϕL2 . The trajectories with initial conditions below ϕU1 and above ϕL2 reach the equal
market share line, remains on it and finally reach the saturated equal market share point
E = 0.5, so that finally firms F2 and F1 end with half of the saturated market share. For
instance, when the parameters are k1 = 1, c1 = 2, k2 = 2, c2 = 0.3, trajectories that
reach Σ slide until 0.5 as shown in Figure 3.8. These cases correspond to Theorem 3.2.1
1 where firm F2 retains half of the saturated market share.
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Figure 3.8: If send = 0.5, there are separatrices ϕU
1 and ϕL

2 . All trajectories τ with initial conditions
below ϕU

1 and above ϕL
2 end at the saturated equal market share E, i.e. firm F2 finally ends with half of

the saturated market share. The firm F1 does a bigger constant effort c1 > c2 but a smaller constant rate
k1 < k2 when compared to the previous scenario. The phase plane of model (3.3)-(3.6) corresponds to
parameters k1 = 1, c1 = 2, k2 = 2, c2 = 0.3. The highlighted gray trajectory τ is such that it reaches the
equal market share Σ and remains on it until the saturated equal market share point E. This corresponds to
Theorem 3.2.1 1.

In the last scenario, shown in Figure 3.9, if firm F1 increases its constant rate k1 >
k2, does F1 ends with more than half of the saturated market share? If the sliding end
coordinate send < 0.5, the answer is yes, firm F1 can end with more than half of the
saturated market share. Figure 3.9 shows trajectories sliding on Σ and then crossing
into region L (this corresponds to Theorem 3.2.1 3a) and trajectories directly crossing
into region L (this corresponds to Theorem 3.2.1 3b). Note that if firm F2 had used a
constant effort c2 = 0.8 it would have attained half of the market share (this corresponds
to Theorem 3.2.1 1). With a constant effort c2 = 0.8, all trajectories that attain the equal
market share line Σ stay on it until the saturated equal market share point E.
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Figure 3.9: Firm F2 loses its initial advantage. The phase plane of model (3.3)-(3.6) corresponds to
parameters k1 = 3.1, c1 = 1.8, k2 = 2, c2 = 0.3. All trajectories below the separatrix ϕU

2 = ϕU
1 that reach

the equal market share line on the sliding segment Σs, remain on it and then they cross into region L, with
firm F1 ending with more than half of the saturated market share (see Theorem 3.2.1 3a). The trajectories
that reach the equal market share line on the crossing segment Σc directly cross into region L (see Theorem
3.2.1 3b). The highlighted gray trajectory is such that it reaches the equal market share line Σ, remains on
it for some time and then it crosses into region L where firm F1 ends up with more than half of saturated
the market share.

3.5 Evaluating outcomes of the proposed policies using a
performance index in model VWDsC

Market share is one viewpoint of the interaction between the two firms. We use the index
(2.9) with the control functions given in in (3.2) to measure the performance of each firm.
A firm makes profits when its index J(xi) is positive, whereas it makes a loss when its
index J(xi) is negative. The simulations were done using the software Berkeley Madonna
[51].

Figure 3.10 shows a situation in which there is only one separatrix ϕL2 = ϕL1 which
means that firm F2 has a larger region (above the separatrix) of initial conditions for
which it has a long term market share greater or equal to 50%. In figure 3.10 the sales
revenue coefficient r = 2 is low enough that despite the long term market share advantage
of firm F2, its performance index is always negative for initial conditions on the axis.
The light (resp. dark) gray region demarcates sets of initial conditions for which the
performance index of firm F1 is positive (resp. negative). This means that for the chosen
(low) sales revenue coefficient, firm F2 makes a loss despite its larger market share, while
firm F1 operates with a profit despite its lower market share. This suggests that the level
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of advertising expenditure of firm F2 is excessive.
Figure 3.11 shows that with a bigger sales revenue coefficient r = 4, there are three

final outocomes of the indexes: only firm F2 has a positive index, both firms have positive
indexes or only firm F1 has a positive index. Besides, note that most of the trajectories
correspond to both firms making profit even though in several of those trajectories a firm
does not fulfill its target market share at saturated market.

Thus, the value of the sales revenue coefficient is decisive for assessing profitability
with respect to market share. In fact this analysis should be carried out to test any de-
sired choice of parameters for different sales revenue coefficients in order to design the
appropriate advertising policies of type (3.2).

Figure 3.10: F2 spends more on advertising,
i.e. it makes bigger efforts k2, c2 when com-
pared to F1. With a sales revenue coefficient
r = 2, both firms have negative index values
in the dark gray region and Firm F2 has nega-
tive index values and firm F1 has positive index
values in the light gray region.

Figure 3.11: With a bigger sales revenue coef-
ficient is r = 4 there are trajectories where both
firms make a profit, i.e. their indexes are posi-
tive, even where their corresponding long term
market share is lesss than 50%.

3.6 Remarks on model VWDsC

• The entering firm F1 needs its constant effort k1 > k2 to obtain more than half of
the long term market share.

• The entering firm F1 needs its constant effort k1 = k2 to obtain half of the long
term market share.

• Not using the discount rate, which brings profit future values to present values is
a mathematical simplification. However, in the simulations the system reaches its
steady state in a small number of time units so that it can be considered a finite time
horizon, so that it is unnecessary to consider all profits in terms of present value.
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• The performance index identifies which trajectories make a profit, thus the index
and the saturated market share values can be used to make advertising expendi-
ture decisions. For example, if the revenue factor of the market is low, then high
spending on advertising could lead to big market share but low profit.
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Chapter 4

Modification of Vidale-Wolfe-Deal
model with Predatory Advertising

4.1 Introduction

We study a modification of the Vidale-Wolfe-Deal model that has switched predation, this
model will be called VWDsP. We assume that both firms want to attain at least half of the
market share. In this model each firm uses the same control uii in regions U and L:

u11 = k1x1 + c1 (4.1)

u22 = k2x2 + c2 (4.2)

The switching control is on the predatory advertising. A firm Fi turns on its predatory
advertising when it is losing i.e., when xi < xj . The predatory advertising by firm F1 is:

w21 =

c21x2 if x1 < x2 ,

0 if x1 > x2
(4.3)

and the predatory advertising by firm F2 is:

v12 =

c12x1 if x2 < x1 ,

0 if x2 > x1
(4.4)

We replace (4.1), (4.1), (4.3) and (4.4) in model (2.1-2.2) to get the VWDsP model:
The upper field fU , which defines the dynamics in the region above Σ, is

ẋ1 = (k1x1 + c1)(1− x1 − x2) (4.5)

ẋ2 = (k2x2 + c2)(1− x1 − x2)− c21x2 (4.6)

when x2 > x1
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The lower field fL, which defines the dynamics in the region below Σ, is

ẋ1 = (k1x1 + c1)x1(1− x1 − x2)− c12x1 (4.7)

ẋ2 = (k2x2 + c2)(1− x1 − x2) (4.8)

when x1 > x2

On Σ, the dynamics is defined following the Filippov rule (see Appendix A, [46, p. 50-52,
chap. 2]).

4.2 Equilibrium points of model VWDsP

The saturated market line Sat(1 − x1 − x2 = 0) is not stable anymore. In region U , ẋ1
is zero on Sat but ẋ2 is not. In region L, ẋ1 is not zero on Sat but ẋ2 is. Let a trajectory
τ begin in region U and satisfy 1 − x10 − x20 > 0, with this setting the dynamics of the
system is nondecreasing for market share x1 so that τ tries to reach 1−x1−x2. However,
market share x2 does not allow τ to reach the saturated market line 1 − x1 − x2 because
of the term −c21x2.

In order to calculate the equilibrium points we will work with the field fU (the calcu-
lation of the equilibria of fL is analogous). The system (4.5)-(4.6) has three equilibria:

P1 = [ 10 ] (4.9)

The eigenvalues of the Jacobian at equilibrium point P1 are

λ1(P1) =
−c1 − c2 − c21 − k1 −

√
(c1 + c2 + c21 + k1)2 − 4c21(k1 + c1)

2
(4.10)

λ2(P1) =
−c1 − c2 − c21 − k1 +

√
(c1 + c2 + c21 + k1)2 − 4c21(k1 + c1)

2
(4.11)

P2 =

[
− c1
k1

c1k2−c2k1−c21k1+k1k2+
√

(c2k1+c1k2−c21k1+k1k2)2+4c2c21k21
2k1k2

]
(4.12)

and the eigenvalues of the Jacobian at equilibrium point P2 are

λ1(P2) =
c1k2 + c2k1 + c21k1 + k1k2 −

√
(c2k1 + c1k2 − c21k1 + k1k2)2 + 4c2c21k21

2k2

(4.13)

λ2(P2) =
−
√

(c2k1 + c1k2 − c21k1 + k1k2)2 + 4c2c21k21
k1

(4.14)
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P3 =

[
− c1
k1

c1k2−c2k1−c21k1+k1k2−
√

(c2k1+c1k2−c21k1+k1k2)2+4c2c21k21
2k1k2

]
(4.15)

and the eigenvalues of the Jacobian at equilibrium point P3 are

λ1(P3) =
c1k2 + c2k1 + c21k1 + k1k2 +

√
(c2k1 + c1k2 − c21k1 + k1k2)2 + 4c2c21k21

2k2
(4.16)

λ2(P3) =

√
(c2k1 + c1k2 − c21k1 + k1k2)2 + 4c2c21k21

k1
(4.17)

Propositions 4.2.1, 4.2.2 and 4.2.3 below refer to trajectories beginning in U with their
dynamics defined by ( 4.5)-( 4.6) which are attracted by the virtual stable node P1 (which
is virtual because it lies in region L but corresponds to the field fU )

Proposition 4.2.1 (Equilibrium point P1 is stable). For all positive parameter values

Equilibrium point P1 of system ( 4.5)-( 4.6) is stable and virtual.

Proof. The equilibrium P1 = [1, 0]T corresponds to the dynamics defined by fU . How-
ever, it lies in region L (because x1 > x2) where the field fL defines the dynamics, so that
P1 is virtual.

If (c1 + c2 + c21 + k1)
2 − 4c21(k1 + c1) > 0 then we can write√

(c1 + c2 + c21 + k1)2 − 4c21(k1 + c1) = (c1 + c2 + c21 + k1)
2− 4c21(k1 + c1)−α > 0

(4.18)
where α is a real positive number. Using 4.18 in the eigenvalues equations (4.10) and
(4.11), we obtain

λ1(P1) = −2(c1 + c2 + c21 + k1) + α < 0 (4.19)

λ2(P1) = −α (4.20)

because both eigenvalues are real negative numbers, the equilibrium point P1 is a stable
node in this case.

If(c1 + c2 + c21 +k1)
2−4c21(k1 + c1) < 0 then the eigenvalues are a pair of conjugate

imaginary numbers with negative real part and the equilibrium point P1 is a stable focus.
Then the equilibrium point P1 of system ( 4.5)-( 4.6) is virtual and stable.

Proposition 4.2.2 (Condition for equilibrium point P2 to be a saddle. ). If 2k1(c21 −√
c2c21) > 0 then the equilibrium point P2 of system ( 4.5)-( 4.6) is a saddle.

Proof. The eigenvalue λ2(P2), given in (4.14), is negative because it is the negative of
the square root of the sum of two squared numbers. In order to analyze’ the eigenvalue
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λ1(P2), given in (4.13), we use the triangle inequality to obtain√
(c2k1 + c1k2 − c21k1 + k1k2)2 + 4c2c21k21 < (c2k1 + c1k2 − c21k1 + k1k2)+

2k1
√
c2c21

(4.21)

substituting (4.21) into (4.13) leads to

λ1(P2) > 2k1(c21 −
√
c2c21) (4.22)

because the LHS of (4.22) is positive by hypothesis, λ1(P2) > 0. Because λ1(P2) > 0

and λ2(P2) < 0, the equilibrium point P2 is a saddle.

Remark: If 2k1(c21 −
√
c2c21) < 0, the eigenvalue λ1(P2) could still be positive. It is

the condition λ1(P2) > 0 and λ2(P2) < 0 that makes the equilibrium point P2 a saddle.

Proposition 4.2.3 (Equilibrium point P3 is an unstable node). For all positive param-

eter values Equilibrium point P3 of system ( 4.5)-( 4.6) is unstable.

Proof. Because all the system parameters are positive numbers and the expressions of the
eigenvalues corresponding to point P3 (4.16) and (4.17), the eigenvalues λ1(P3) > 0 and
λ2(P3) > 0. This implies that the equilibrium point P3 is an unstable node.

4.3 Dynamics of trajectories reaching the equal market
share line Σ in model VWDsP

Determining the crossing Σc and sliding Σs sets: To describe trajectories that reach the
equal market share line Σ, we need to determine the crossing set Σc and the sliding set
Σs. To calculate these sets, we use the crossing condition (4.23). (See Appendix A).

〈∇H(w), fU(w)〉〈∇H(w), fL(w)〉 > 0 (4.23)

where w ∈ Σ, i.e. w = (w,w) for model (4.5)-(4.6).
An interpretation for condition (4.23) is that each inner product projects the corre-

sponding field onto ∇H(w), which is the normal to Σ. The convention is that a positive
(resp. negative) sign indicates that the projection points into region U (respectively L).
Then, one way for obtaining the crossing set Σc is to calculate where 〈∇H(w), fU(w)〉
and 〈∇H(w), fL(w)〉 have the same sign. The advantage of analyzing each product sep-
arately is that it simplifies the algebra.

If the system parameters are known, using the point w = (w,w) as argument for the
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inner products in (4.23) defines the scalar functions

gU(w) := 〈∇H(w), fU(w)〉 (4.24)

gL(w) := 〈∇H(w), fL(w)〉 (4.25)

In the case of model (4.5)-(4.8), the equal market share line Σ is described by
H(x) = x2 − x1 = 0 and its normal is ∇H(x) = [−1 1]T , with this information
the corresponding scalar functions are:

gU(w) = (2k1 − 2k2)w
2 + (2c1 − 2c2 − c21 − k1 + k2)w − (c1 − c2) (4.26)

gL(w) = (2k1 − 2k2)w
2 + (2c1 − 2c2 + c12 − k1 + k2)w − (c1 − c2) (4.27)

Since the right hand sides of (4.26)-(4.27) are parabolas in w, sign(gU(w)) and
sign(gL(w)) can be determined by calculus. Once the signs are calculated, the sets can be
combined to obtain the crossing set Σc, which is comprised of the points where the values
of parabolas have the same sign, and sliding set Σs, which is the complement of Σc, i.e.
the points where the values of parabolas w are zero or have different signs. The zeros of
(4.26) are:

v1 =
−β +

√
β2 + 8(k1 − k2)(c1 − c2)

4(k1 − k2)
(4.28)

v2 =
−β −

√
β2 + 8(k1 − k2)(c1 − c2)

4(k1 − k2)
(4.29)

where β = (2c1 − 2c2 − c21 − k1 + k2) and the zeros of (4.27) are:

w1 =
−γ +

√
γ2 + 8(k1 − k2)(c1 − c2)

4(k1 − k2)
(4.30)

w2 =
−γ −

√
γ2 + 8(k1 − k2)(c1 − c2)

4(k1 − k2)
(4.31)

where γ = (2c1 − 2c2 + c12 − k1 + k2)

The second derivatives of (4.26) and (4.27) are:

gU(w)′′ = 4(k1 − k2) (4.32)

gL(w)′′ = 4(k1 − k2) (4.33)

We describe the process of determining the crossing set Σc and the sliding set Σs the
with the following algorithm:

Algorithm for calculating the crossing Σc and the sliding set Σs

1. For each field F = U,L determine the sign of gF (w). The signs are calculated
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using the fact that (4.26) and (4.27) are parabolas on the variable w and thus their
second derivatives are constants.

• Let the w1, w2 be the zeros of gF (w)

• If sign(gF (w)′′) < 0, then gF (w) has a maximum

– If w1, w2 are real numbers, sign(gF (w)) determined as follows:

sign(gF (w)) =


1 if w is between its zeros w1, w2

0 if w is any of its zeros w1, w2

−1 for any other value of w

(4.34)

– If w1, w2 are conjugate imaginary numbers, then sign(gF (w)) = −1.

• If sign(gF (w)′′) > 0, then gF (w) has a minimum

– If w1, w2 are real numbers, sign(gF (w)) is determined as follows:

sign(gF (w)) =


−1 if w is between w1, w2

0 if w = w1 or w = w2

1 for any other value of w

(4.35)

– If w1, w2 are conjugate imaginary numbers, then sign(gF (w)) = 1.

2. Combine the signs of the fields obtained in step 1 to calculate the sets

• the crossing set is

Σc = {w|sign(gU(w))sign(gL(w)) > 0} (4.36)

• the sliding set is the complement of Σc, i.e. its elements are all w for which
the projections do not have the same sign.

4.4 Pseudoequilibrium points of model VWDsP

A pseudoequilibrium point is an equilibrium that may come into existence because of
the use of switching control (See Appendix A). The pseudoequilibrium candidates are
obtained using the fact that at a pseudoequilibrium the fields must be aligned and have
opposite directions. Thus for the system (4.5)-(4.8) it must hold that

(k1x1 + c1)(1− x1 − x2)
(k1x1 + c1)(1− x1 − x2)− c12x1

=
(k2x2 + c2)(1− x1 − x2)− c21x2

(k2x2 + c2)(1− x1 − x2)
< 0 (4.37)
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considering that the pseudoequilibrium is on Σ where x1 = x2 = w∗ and after some
algebraic operations, (4.37) can be rewritten as

1

1− c12w∗

(k1w∗+c1)(1−2w∗)
= 1− c21w

∗

(k2w∗ + c2)(1− 2w∗)
< 0 (4.38)

The pseudoequilibrium candidates for model (4.5), (4.8), which were obtained using the
proportion in (4.38), are points on Σ having coordinates w∗:

w∗1 =
−(A−B)−

√
(A−B)2 + 4B(2c1c21 + 2c12c2)

4B
(4.39)

w∗2 =
−(A−B) +

√
(A−B)2 + 4B(2c1c21 + 2c12c2)

4B
(4.40)

w∗3 = 0 (4.41)

where A = 2c1c21 + 2c12c2 + c12c21 and B = c21k1 + c12k2.
Notice that for w∗3 the proportion is positive, so that it cannot be a pseudoequilibrium.

Proposition 4.4.1 (Feasibility interval for a pseudoequilibrium point). If w∗ is a pseu-

doequilibrium of model (4.5)-(4.8) then the following inequalities are satisfied

(i) A pseudoequilibrium can occur in the interval

0 < w∗ < 1/2

(ii) The relation of the predation effort with the other control efforts at a pseudoequi-

librium is

c21w
∗ > (k2w

∗ + c2)(1− 2w∗)

c12w
∗ > (k1w

∗ + c1)(1− 2w∗)

Proof. Given that the parameters k1, c1, k2, c2, c12, c21 are positive, the condition (1 −
2w∗) > 0 must hold to fulfill (4.38). This leads to w∗ < 1/2. Since we are only inter-
ested in positive values for the states x1, x2, item (i) is proved and the interval where a
pseudoequilibrium can occur is

0 < w < 1/2 (4.42)

Also, for the proportion in (4.38) to be negative, the following conditions must hold

c21w
∗ > (k2w

∗ + c2)(1− 2w∗)

c12w
∗ > (k1w

∗ + c1)(1− 2w∗)

and item (ii) is proved.
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Proposition 4.4.2 (Signs of pseudoequilibrium candidates). The pseudoequibilibrium

candidates w∗1 given by (4.39) and w∗2 given by (4.40) have the following properties:

(i) w∗1 is a negative number.

(ii) w∗2 is a positive number.

Proof. By multiplying w∗1w
∗
2 we get

w∗1w
∗
2 = −4B(2c1c21 + 2c12c2) (4.43)

which is a negative number because the parameters of model (4.5)-(4.8) are all positive
numbers. Then, one factor has to be positive and the other negative.

Because the square root is a nondecreasing function we can write√
(A−B)2 + 4B(2c1c21 + 2c12c2) = (A−B) + α (4.44)

where α > 0. Substituting (4.44) into (4.40)

w∗2 = α (4.45)

Because α > 0, w∗2 is a positive number and (ii) is proved.
Since w∗1w

∗
2 < 0 by (4.43) and w∗2 > 0, w∗1 is a negative number and (i) is proved.

Given that the states have to be positive, the only possible pseudoequilibrium for
model (4.5), (4.8) is w∗2 > 0.

Proposition 4.4.3 (Pseudoequilibrium feasability satisfied by w∗2). If the pseudoequi-

librium candidates w∗1 and w∗2, resp. defined in (4.39) and (4.40), satisfy

w∗1 + w∗2 > 0 (4.46)

then w∗2 <
1
2
.

Proof. Adding w∗1 + w∗2 we get

w∗1 + w∗2 =
1

2
− A

2B
(4.47)

Using the hypothesis w∗1 + w∗2 > 0 in the previous we obtain

A

B
< 1 (4.48)

Rewriting w∗2 in (4.40) we obtain

w∗2 =
−(A−B) +

√
(A−B)2 + 4B(A− c21c12)

4B
(4.49)
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Since the terms A,B and the parameters are nonnegative we can write

w∗2 <
−(A−B) +

√
(A−B)2 + 4BA

4B
(4.50)

Applying the triangular inequality to the RHS of the previous inequality and simplifying
terms we obtain

w∗2 <
−(A−B) +

√
(A−B)2 + 4BA

4B
<

1

2

√
A

B
(4.51)

Using (4.48) in (4.51)

w∗2 <
−(A−B) +

√
(A−B)2 + 4BA

4B
<

1

2

√
A

B
<

1

2
(4.52)

so that w∗2 <
1
2

and w∗2 satisfies Proposition 4.4.1.

Lemma 4.4.4 (Pseudoequilibrium of Model VWDsP). Trajectories of the system (4.5)-

(4.8) end at a pseudoequilibrium point.

4.5 Simulations of model VWDsP

We have done several simulations of the model (4.5)-(4.8) and the trajectories ended at a
pseudoequilibrium point on the equal market share line Σ. Depending on the parameters,
a trajectory that reaches Σ may slide on it, cross it or have both behaviors at different time
values.

Table 4.1 shows different parameter values and the corresponding pseudoequilibrium.
Notice how increasing parameter k1 (lines 1-5) and parameter c1 (lines 6-9) increases the
market share value attained at a the pseudoequilibrium. However, increasing the predation
c21 done by firm F1 on firm F2 (lines 10-13) decreases noticeably the market share value
attained at the pseudoequilibrium.

We also ran simulations with the parameters k2, c2, c21, k1, c1, c12 taking a permutation
of the values 0.25, 1.25, 2.5, 3.75, 5 and all ended at a pseudoequilibrium point on the
equal share line Σ below (.5, .5) and above (0, 0) so that the trajectories of model (4.5)-
(4.8) end at a pseudoequilibrium on the equal market share line independent of the efforts
done by the firms.

Next, we present the qualitative analysis of two scenarios: in the first, both firms F1

and F2 do the same predation effort. In the second scenario, firm F1 does a predation
effort that is bigger than the effort of firm F2.

The first scenario of model (4.5)-(4.8) has the parameters k1 = 1.5, c1 = 0.7,
c21 = 0.15, k2 = 2, c2 = 1, c12 = 0.15. Firm F1 and F2 apply the same predation effort.
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# k1 c1 c21 k2 c2 c12 Pseudoequilibrium
1 0.2 0.1 0.1 1 0.5 0.4 (0.476757, 0.476757)
2 1 0.1 0.1 1 0.5 0.4 (0.478694, 0.478694)
3 2 0.1 0.1 1 0.5 0.4 (0.480711, 0.480711)
4 3 0.1 0.1 1 0.5 0.4 (0.482384, 0.482384)
5 4 0.1 0.1 1 0.5 0.4 (0.483793, 0.483793)
6 0.2 0.5 0.1 1 0.5 0.4 (0.478772, 0.478772)
7 0.2 1 0.1 1 0.5 0.4 (0.480841, 0.480841)
8 0.2 2 0.1 1 0.5 0.4 (0.483955, 0.483955)
9 0.2 3.1 0.1 1 0.5 0.4 (0.486381, 0.486381)

10 0.2 0.1 0.4 1 0.5 0.4 (0.423564, 0.423564)
11 0.2 0.1 1 1 0.5 0.4 (0.36038, 0.36038)
12 0.2 0.1 2 1 0.5 0.4 (0.309017, 0.309017)
13 0.2 0.1 3 1 0.5 0.4 (0.283095, 0.283095)

Table 4.1: One parameter variation in model VWDsP. Increasing k1 or c1 moderately increases the mar-
ket share value at pseudoequilibrium. On the other hand, increasing the predation effort c21 decreases
noticeably the market share value at pseudoequilibrium.

The corresponding phase plane is shown in Figure 4.1 where one can see all trajectories
go to a pseudoequilibrium on the equal market share line. The equilibrium points of the
fields are shown in Tables 4.2 and 4.3, note that field fL has a virtual stable equilibrium
in region U , respectively field fU has a virtual stable equilibrium in region L.

Dynamics of a trajectory on the equal market share line Σ

• Crossing and sliding sets are determined using the algorithm 4.3. The projections
for determining the sets are 〈∇H(w), fU(w)〉 = −w2 − 0.25w + 0.3 , that has
the zeros w1 = −0.68681 and w2 = 0.43681, and 〈∇H(w), fL(w)〉 = −w2 +

0.05w+ 0.3, that has the zeros w1 = −0.52329 and w2 = 0.57329. Because we are
interested only w values that are nonnegative and below saturation (w = 0.5), the
crossing set is Σc = [0, 0.43681) (where trajectories cross into region U ) and the
sliding set is Σs = [0.43681, 0.5]. Figure 4.3 shows the the plots of the signs of the
projections and their products which are used by the algorithm for determining the
segments on the equal share line.

• One of the pseudoequilibrium ratios corresponding to pseudoequilibrium condition

for scenario 1 is− 1.0 (1.05w3+0.0075w2−0.255w)
12.0w4+0.2w3−5.8w2−0.05w+0.7

. Scenario 1 has a pseudoequilibrium
w∗2 = 0.48925 because its field component ratio is negative with numerator value
of 0.03084 and denominator value of −0.04255
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Figure 4.1: Model VWDsP, scenario 1: Firm
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vertising.
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fL x Eigs(J(x)) Type[
0
1

] [
−3.7293
−0.12066

]
Stable node[

1.42467
−0.5

] [
−2.874
0.15065

]
Saddle[

−0.491341
−0.5

] [
3.9827
2.874

]
Unstable node

Table 4.2: Model VWDsP, scenario 1: Equi-
librium points of field fL with parameters
k1=1.5, c1=0.7, k2 =2, c2 =1, c12 =0.15

fU x Eigs(J(x)) Type[
1
0

] [
−3.2484
−0.10159

]
Stable node[

−0.466667
1.41129

] [
−3.8618
0.08307

]
Saddle[

−0.466667
−0.51962

] [
3.8618
2.9794

]
Unstable node

Table 4.3: Model VWDsP, scenario 1: Equi-
librium points of field fU with parameters k1 =
1.5, c1 = 0.7, c21 = 0.15, k2 = 2, c2 = 1
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sign(〈∇H(w), fL(w)〉)sign(〈∇H(w), fL(w)〉)+0.3

Figure 4.3: Model VWDsP, scenario 1: Signs of the inner products used in the calculation of conditions
for crossing and sliding.

In the second scenario of model (4.5)-(4.8) firm F1 does a bigger predation effort than
the predation effort of firm F2, i.e. c21 ≈ 7.33c12. This scenario exemplifies the situation
where large predation effort (by firm F1) or small predation effort (by firm F2) leads to
a pseudoequilibrium on the equal market share line. The parameters in this scenario are:
k1 = 1.5, c1 = 0.7, c21 = 1.1, k2 = 2, c2 = 1, c12 = 0.15. Figure 4.4 shows the
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phase plane and the equilibrium points of the fields are shown in Tables 4.4 and 4.5, note
that field fL has a virtual stable equilibrium in region U and field fU has a virtual stable
equilibrium in region L.

Dynamics of a trajectory on the equal market share line Σ

• Crossing and sliding sets are determined using the algorithm 4.3. The projections
for determining the sets are 〈∇H(w), fU(w)〉 = −1.0w2 − 1.2w + 0.3 , that has
the zeros w1 = −1.4124 and w2 = 0.2124, and 〈∇H(w), fL(w)〉 = −1.0w2 +

0.05w+0.3, that has the zeros w1 = −0.52329 and w2 = 0.57329. Because we are
interested only in w values which are nonnegative and below saturation (w = 0.5)
the crossing set is Σc = [0, 0.2124) (where trajectories cross into region U ) and the
sliding set is Σs = [0.2124, 0.5]. Figure 4.6 shows the the plots of the signs of the
projections and their products which are used by the algorithm for determining the
segments on the equal share line.

• One of the pseudoequilibrium ratios corresponding to pseudoequilibrium condition

for scenario 2 is − 1.0 (3.9w3+0.055w2−0.92w)
12w4+0.2w3−5.8w2−0.05w+0.7

. Scenario 2 has a pseudoequilibrium
w∗2 = 47869 because its field component ratio is negative with numerator value of
0.06043 and denominator value of −0.01137.
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Figure 4.4: Model VWDsP, scenario 2: Firm
F1 doing big spending on advertising when
compared to firm F2 (c21 ≈ 7.33c12).
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plots of the market shares x1(t), x2(t) with ini-
tial conditions x1(t) = 0.04 and x2(t) = 0.05
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fL x Eigs(J(x)) Type[
0
1

] [
−3.7293
−0.12066

]
Stable node[

1.42467
−0.5

] [
−2.874
0.15065

]
Saddle[

−0.491341
−0.5

] [
3.9827
2.874

]
Unstable node

Table 4.4: Model VWDsP, scenario 2: Equi-
librium points of field fL with parameters k1 =
1.5, c1 = 0.7, k2 = 2, c2 = 1, c12 = 0.15

fU x Eigs(J(x)) Type[
1
0

] [
−3.6341
−0.66592

]
Stable node[

−0.466667
1.08966

] [
−3.5253
0.56551

]
Saddle[

−0.466667
−0.672993

] [
3.5253
3.2095

]
Unstable node

Table 4.5: Model VWDsP, scenario 2: Equi-
librium points of field fU with parameters k1 =
1.5, c1 = 0.7, c21 = 1.1, k2 = 2, c2 = 1
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Figure 4.6: Model VWDsP, scenario 2: Signs of the inner products used in the calculation of conditions
for crossing and sliding.

4.6 Evaluating outcomes of the proposed policies using a
performance index for model VWDsP

We use the index (2.9). Note that a firm makes a profit when its index Ji is positive,
whereas it makes a loss when its index is negative.

The market share xi(t) evolution is given by the system (4.5), (4.8) and the control
functions ui(t) used for the index are liste below. The control function for each firm in
the upper field fU are

u1 = (k1x1 + c1) (4.53)

u2 = (k2x2 + c2)− c21 (4.54)

when x2 > x1
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The control function for each firm in the lower field fL are

u1 = (k1x1 + c1)− c12 (4.55)

u2 = (k2x2 + c2) (4.56)

when x1 > x2

On Σ, both firms turn on their extra effort

u1 = (k1x1 + c1)− c12 (4.57)

u2 = (k2x2 + c2)− c21 (4.58)

when x1 = x2

The scenarios were simulated using the software Matlab. The first scenario of model
(4.5)-(4.8) has the parameters k1 = 1.5, c1 = 0.7, c21 = 0.15, k2 = 2, c2 = 1, c12 = 0.15

and r = 4.5 where both firms do the same predation effort, i.e. c21 = c12. In this setting
both firms end at a pseudoequilibrium point below 0.5 on the equal market share line Σ.

Even if both firms end on the equal market share line, a firm needs to identify on
which trajectories it makes a profit. Figure 4.7 shows the trajectories in the phase plane
according to their index value at final time, these indexes were calculated using a revenue
factor r = 4.5. Only firm F2 makes a profit on the solid line trajectories, both firms make a
profit on the dashed line trajectories and only firm F1 makes a profit on the dashed-dotted
line trajectories, firm F1 profits in more trajectories because it is doing smaller efforts
(k1 < k2 and c1 < c2). Figure 4.8 shows J2V s.J1 to help identify compromise solutions,
i.e. conditions that end in positive Ji and those values cannot improve anymore.
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Figure 4.7: Model VWDsP, scenario 1: Tra-
jectories plotted according to their index values
at final time.
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J1(x1(t), x2(t), t) vs. J2(x1(t), x2(t), t)
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Figures 4.9 and 4.10 show the index values when the market share of the entering firm
(xi < xj) is fixed and the market share of the other firm is increasing. From these figures
one can see that the firm that begins with a smaller market share has in most of the cases
a smaller and decreasing performance index value.
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Figure 4.9: Model VWDsP, scenario 1: Value
of indices when the initial value x1(0) = 0.04 is
fixed.
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Figure 4.10: Model VWDsP, scenario 1:
Value of indices when the initial value x2(0) =
0.05 is fixed.

The second scenario of model VWDsP has firm F1 with a bigger predation effort
c21 = 1.1.

A firm needs to identify on which trajectories it makes a profit regardless of its final
market share, which in this case is on the equal market share. Figure 4.11 shows the
trajectories in the phase plane according to their index value at final time, these indexes
were calculated using a revenue factor r = 4.5. Only firm F2 makes a profit on the solid
line trajectories, both firms make a loss on the dotted line trajectories and only firm F1

makes a profit on the dashed-dotted line trajectories, firm F1 profits less than in the first
scenario because now it is spending far more in predatory advertising. Figure 4.12 shows
J2V s.J1 to help identify compromise solutions, i.e. conditions that end in positive Ji and
those values cannot improve anymore.
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Figure 4.11: Model VWDsP, scenario 2: Tra-
jectories plotted according to their index values
at final time.
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Figure 4.12: Model VWDsP, scenario 2:
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Figures 4.13 and 4.14 show the index values when the market share of the entering
firm (xi < xj) is fixed and the market share of the other firm is increasing. From these
figures one can see that the firm that begins with a smaller market share has in most of the
cases a smaller and decreasing performance index value.
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Figure 4.13: Model VWDsP, scenario 2:
Value of indices when the initial value x1(0) =
0.04 is fixed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−4

−2

0

2

4

6

8

10

x1(0)

J

Final J1 vs. x1(0), x2(0) = 0.05
k1 =1.5, c1 =0.7, c21 =1.1
k2 =2, c2 =1, c12 =0.15, r =4.5

 

 
J1

J2

Figure 4.14: Model VWDsP, scenario 2:
Value of indices when the initial value x2(0) =
0.05 is fixed.

4.7 Remarks on model VWDsP

• The saturated market is not reached, i.e. the long run equal market share is below
the saturated equal market share.

• As the predation effort uij increases, the steady state market share decreases, see
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Table 4.1.

• Even though it may seem reasonable for a firm Fi to turn on a predatory advertising
spending uji when its target market is below its goal (xi < xj), from the analysis of
model VWDsP we see that this leads to both firms reaching an equal market share
in the long run independent of the efforts they might apply, and this may not be
reasonable since it would mean that a firm spending very little on advertising would
end with the same market share as a firm spending big amounts. Further analysis
by the decision maker would be needed to decide whether this could happen: for
example, in some markets with unsatisfied buyers, frequently changing from one
firm to the other.

4.8 Model Vidale-Wolfe-Deal model with 2 switching
lines (VWD2s)

A model which is more realistic in terms of target market shares is the model VWD2s.
In this model, the target market shares of the firms are different, firm F1 desires a long
term market share target1, and F2 desires a long term market share target2 which satisfy
target1 + target2 > 1. In this setting, each Fi has its own switching line.

The model VWD2s is as follows:

1. F2 fulfills its target2 in the region U wich is above ΣUM , which is defined by the
line x2 − target2

1−target2x1 = 0. The upper field fU operating in U is ΣUM , is

ẋ1 = (k1x1 + c1)(1− x1 − x2) (4.59)

ẋ2 = k2x2(1− x1 − x2) (4.60)

when x2 >
target2

1− target2
x1

2. The region M is where neither firm obtains its target market share. It is below ΣUM

and above ΣML, which is defined by the line x2− 1−target1
target1

x1 = 0. The middle field
fM operating in M is

ẋ1 = (k1x1 + c1)(1− x1 − x2) (4.61)

ẋ2 = (k2x2 + c2)(1− x1 − x2) (4.62)

when x2 <
target2

1− target2
x1 and x2 >

1− target1
target1

x1

3. The region L is where firm F1 obtains its target market share. It is below ΣML,
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which is the line x2 − 1−target1
target1

x1 = 0. The lower field fL operating in L is

ẋ1 = k1x1(1− x1 − x2) (4.63)

ẋ2 = (k2x2 + c2)(1− x1 − x2) (4.64)

when x2 <
1− target1
target1

x1

4. On the switching lines ΣUM and ΣML the dynamics is defined following the Filip-
pov rule which is based, roughly speaking, on a convex combination of the lower
and upper fields with respect to the corresponding switching line (see Appendix A,
[46, p. 50-52, chap. 2] for mathematical details).

Figure 4.15 identifies the regions and the relevant lines for model VWD2s which is
defined by (4.59)-(4.64). It uses target2 = 0.8 and target1 = 0.7. ΣUM is the line
x2 − 0.8

0.2
x1 = 0 and ΣML is the line x2 − 3

7
x1 = 0. The line 1 − x1 − x2 = 0 is the

full market line which corresponds to the saturated market, which will be called Sat. The
interior of the triangle T , defined as (1, 0), (0, 1), (0, 0) is the set of all feasible states. The
region U is the set {x ∈ R2

+ : x1 + x2 ≤ 1 ∧ x2 > 4x1 ∧ x2 > 3
7
x1} where the dynamics

corresponding to fU is acting. The region M is the set {x ∈ R2
+ : x1 + x2 ≤ 1 ∧ x2 <

4x1 ∧ x2 > 3
7
x1} where the dynamics corresponding to fM is acting. The region L is the

set {x ∈ R2
+ : x1 + x2 ≤ 1 ∧ x2 < 4x1 ∧ x2 < 3

7
x1} where the dynamics corresponding

to fL is acting.
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(0.7, 0.3)

M

ΣML
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Figure 4.15: The regions: upper U , middle M and lower L. The switching lines ΣUM =
{x : H(x) = x2 − 4x1 = 0}, ΣML = {x : H(x) = x2 − 3

7
x1 = 0},. The segment Sat

segment which is defined by 1− x1 − x2 = 0. T is the interior of the triangle defined by
the points (1, 0), (0, 1), (0, 0)

4.9 Simulations of model VWD2s

The scenarios were simulated using the software Matlab. The first scenario of model
(4.59)-(4.64) has the parameters k1 = 1.5, c1 = 0.7, c21 = 0.15, k2 = 2, c2 = 1,
c12 = 0.15 and r = 4.5 where the control efforts of the firms are not very different and
the outcome in terms of final index values is divided evenly between the firms.
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In the first scenario, shown in Figures 4.16 and 4.17, the firms do similar control
efforts and the long run market share values are evenly distributed on the saturated market
share. In the switching lines ΣUM and ΣML crossing is the behavior observed.
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Figure 4.16: Model VWD2s, scenario 1: Firm
F1 and F2 spend similar amounts in advertising.
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Figure 4.17: Model VWD2s, scenario 1:
Time plots of the market shares x1(t), x2(t)
with initial conditions x1(t) = 0.04 and
x2(t) = 0.05

In the second scenario, shown in Figures 4.18 and 4.19, firm F1 does bigger control
efforts than firm F2 and most of the trajectories go down where firm F1 has a bigger long
run market share. In the switching lines crossing and sliding are the behaviors observed.
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Figure 4.18: Model VWD2s, scenario 2: Firm
F1 spends more than F2 in advertising.
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Figure 4.19: Model VWD2s, scenario 2:
Time plots of the market shares x1(t), x2(t)
with initial conditions x1(t) = 0.04 and
x2(t) = 0.05
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4.10 Evaluating outcomes of the proposed policies using
a performance index for model VWD2s

We use the index (2.9). Note that a firm makes a profit when its index Ji is positive,
whereas it makes a loss when its index is negative.

In the first scenario, shown in Figures 4.20-4.22, the control efforts of the firms are not
very different and the outcome in terms of final index values is divided evenly between the
firms. Figure 4.20 shows the trajectories in the phase plane according to their index value
at final time, these indexes were calculated using a revenue factor r = 3.5. Only firm F2

makes a profit on the solid line trajectories, both firms make a profit on the dashed line
trajectories and only firm F1 makes a profit on the dashed-dotted line trajectories, firm F1

profits in more trajectories because it is doing smaller efforts (k1 < k2 and c1 < c2).
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Figure 4.20: Model VWD2s, scenario 1: Trajectories plotted according to their index values at final time.

Figures 4.21 and 4.22 show the index values when the market share of the entering
firm (xi < xj) is fixed and the market share of the other firm is increasing. From these
figures one can see that the firm that begins with a smaller market share has in most of the
cases a smaller and decreasing performance index value.
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Figure 4.21: Model VWD2s, scenario 1:
Value of indices when the initial value x1(0) =
0.04 is fixed.
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Figure 4.22: Model VWD2s, scenario 1:
Value of indices when the initial value x2(0) =
0.05 is fixed.

In the second scenario, shown in Figures 4.23-4.25, firm F1 does a bigger control
effort than firm F2. In this setting more trajectories go down, i.e. where F1 end with a
bigger market share in the long run. Figure 4.23 shows the trajectories in the phase plane
according to their index value at final time, these indexes were calculated using a revenue
factor r = 3.5. Only firm F2 makes a profit on the solid line trajectories, and both firms
make a loss on the dotted line trajectories. Firm F1 does not make a profit because its big
spending on advertising does not generate profit for the market revenue factor r = 3.5.
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Figure 4.23: Model VWD2s, scenario 2: Trajectories plotted according to their index values at final time.

Figures 4.24 and 4.25 show the index values when the market share of the entering
firm (xi < xj) is fixed and the market share of the other firm is increasing. From these
figures one can see that the firm that begins with a smaller market share has in most of the
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cases a smaller and decreasing performance index value.
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Figure 4.24: Model VWD2s, scenario 2:
Value of indices when the initial value x1(0) =
0.04 is fixed.
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Figure 4.25: ModelVWD2s, scenario 2:
Value of indices when the initial value x2(0) =
0.05 is fixed.

4.11 Remarks on model VWD2s

• Model VWD2s extends model VWDsC and the analysis done for model VWDsC
applies to model VWD2s on each discontinuity line, for firm F2 (resp. F1)the line
of interest is ΣUM (resp. ΣML).

– The saturated market share line is a set of attractive points.

– The state variables are nondecreasing, they increase while they are below the
saturated market share Sat and remain unchanged once they reach Sat.

– Trajectories that reach the switching line ΣUM (or ΣML) have the same be-
havior as in model VWDsC, the difference is the slope of the switching lines.

– The model has no pseudoequilibrium point (neither on ΣUM nor on ΣML).

– Each firm has a separatrix, in the case of firm F2 (resp. firm F1) a separatrix is
calculated using its target saturated market share point (1− target2, target2)
(resp. (target1, 1 − target1)) which is where ΣUM (resp. ΣML) and Sat

intersect. A separatrix for firm F2 (resp. F1) may be ϕU or ϕM (resp. ϕM or
ϕL), i.e. obtained with fields fU or fM (resp. fM or fL).

– Firm F2 (resp. F1) fulfills its target market share above (resp. below) its
separatrix.

• The difference is that a separatrix may span more than one region: for firm F2 (resp.
F1) it may span region U or regions M and L (resp. regions M and U or region L).
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Chapter 5

Duopoly model based on Lotka-Volterra
dynamics with switched predation
(LVsP)

5.1 Introduction

Wang et al. [35] proposed a duopoly model with Lotka-Volterra competing species dy-
namics where the state variable is sales:

ẋ1 = x1(b1 − a11x1)− a12x1x2 (5.1)

ẋ2 = x2(b2 − a22x2)− a21x1x2 (5.2)

in this model, all the coefficients aij, bi are assumed nonnegative and it is stated that
bi = f(advertising).

Wang et al. [35] showed that model (5.1-5.2) fulfills the desired properties of adver-
tising function [25], but there is no exact hint on how to obtain the coefficient bi as a
function of advertising. Because of this we consider this model theoretical. However, re-
cent papers use Lotka-Volterra models and this indicates that they should be explored. In
2016, Marasco et al. [52] used a nonautonomous Lotka-Volterra system to model market
share dynamics that depend on utility functions of the competing firms. Because of the
special functional forms they impose, Marasco et al. can obtain an analytical solution to
the system. In 2014, Hung et al. [36] modeled the saturated market dynamics using a
Lotka-Volterra model.

In analogy with the biological models, the value bi/aii could be thought of as a car-
rying capacity (i.e., market saturation level) for firm i and the so-called “interaction”
term aijxixj as a term describing predatory advertising. Note that if the state variable
to be used is market share, the Lotka-Volterra model does not result in invariance of to-
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tal market share (always equal to one), ensuring instead that each market share variable
is below or equal to a given upper bound (via the carrying capacity of each firm). One
way for model (5.1-5.2) to enforce the invariance of total saturated market share is set-
ting b1 = a11 = a12 = b2 = a22 = a21 = 1, but this reduces the model (5.1-5.2) to
Vidale-Wolfe-Deal’s model where ui = xi.

The fact that the Lotka-Volterra model cannot enforce the saturated market restriction
led to the choice, in this chapter, of the number of clients as the state variable instead of
market share. In this case the predatory term aijxixj , i.e. advertising, removes clients
from one firm. In the context of a duopoly for an essential good, it is also reasonable
to argue that clients removed from one firm go to the other firm and, motivated by this
observation, we propose the following duopoly model with Lotka-Volterra type dynamics,
together with controlled predatory terms:

ẋ1 = x1(b1 − a11x1)− u12x1x2 + u21x1x2 (5.3)

ẋ2 = x2(b2 − a22x2) + u12x1x2 − u21x1x2 (5.4)

where bi, aii defines the saturation level for firm i, uij is a control coefficient determining
predatory advertising by firm j on firm i (i.e, firm j capturing clients of firm i). In what
follows, it will be postulated that the advertising effort or expenditure by a firm modifies
the values of the control coefficients uij depending on its perception of its client base.

The policy uij is a predatory advertising effort made by firm Fj on firm Fi and it is as
follows:

uij =

cij if xj < xi ,

dij if xj > xi
(5.5)

where i, j = 1, 2, i 6= j and the policy ci,j > di,j , i.e. firm Fj applies a bigger predatory
advertising constant effort on firm Fi clients when xj < xi, this is when Fj has a smaller
number of clients.

After using the policies (5.5) and some algebra in model (5.3-5.4) its fields are ob-
tained:
The upper field fU , which defines the dynamics in region U , is given by

ẋ1 = x1(b1 − a11x1 + (−d12 + c21)x2) (5.6)

ẋ2 = x2(b2 − (−d12 + c21)x1 − a22x2) (5.7)

The lower field fL, which defines the dynamics in region L, is given by

ẋ1 = x1(b1 − a11x1 + (−c12 + d21)x2) (5.8)

ẋ2 = x2(b2 − (−c12 + d21)x1 − a22x2) (5.9)
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On Σ, the dynamics is defined following the Filippov rule (see Appendix A, [46, p. 50-52,
chap. 2]). Note that all coefficients bi, aii, cij, dij (i, j = 1, 2, i 6= j) are real nonnegative
numbers.

5.2 Equilibria of model LVsP

We analyze the equilibrium points in field fU (the analysis of field fL is analogous). The
equilibria are the zeros of the RHS (right hand side) of system (5.6), (5.7). In order to find
if a equilibrium point is stable or not, the jacobian of the system is used:[

−2a11x1 + b1 + (c21 − d12)x2 (c21 − d12)x1
x2(−c21 + d12) b2 − (c21 − d12)x1 − 2a22x2

]
(5.10)

The four equilibria points of the model (5.6), (5.7) are:

1. Equilibrium point P1 = (0, 0) and its corresponding jacobian matrix J(P1) =[
b1 0

0 b2

]
with the eigenvalues readily on the diagonal, so that P1 is an unstable

node because bi > 0, i = 1, 2.

2. Equilibrium point P2 = (0, b2/a22) and its corresponding jacobian matrix J(P2) =[
b1 + (c21−d12)b2

a22
0

b2∗(−c21+d12)
a22

−b2

]
with the eigenvalues on the diagonal.

3. Equilibrium point P3 = (b1/a11, 0) and its corresponding jacobian matrix J(P3) =[
−b1 (c21−d12)b1

a11

0 b2 − (c21−d12)b1
a11

]
with the eigenvalues on the diagonal.

4. Equilibrium point P4 = ( a22b1+b2c21−b2d12
a11a22+c221−2c21d12+d212

, a11b2−b1c21+b1d12
a11a22+c221−2c21d12+d212

) and its corre-
sponding jacobian matrix is[

−2a11(a22b1+b2β)
a11a22+β2 + β(a11b2−b1β)

a11a22+β2 + b1
β(a22b1+b2β)
(a11a22+β2)

−β(a11b2−b1β)
a11a22+β2 −2a22(a11b2−b1β)

a11a22+β2 − β(a22b1+b2β)
a11a22+β2 + b2

]

where β = c21 − d12.

The type of the equilibrium points P2, P3 and P4 depends on parameter values, for in-
stance using the parameters a11 = 1, a22 = 1, b1 = 10.9, b2 = 6.8, c12 = 7.1, c21 = 5.5,
d12 = 6.3, d21 = 4.6 the equilibrium points P2, P3 and P4 are respectively saddle, saddle
and stable focus.

59



5.3 Dynamics of trajectories reaching the equal number
of clients line Σ in model LVsP

Determining the crossing Σc and sliding Σs sets: To describe a trajectory that reaches
the equal number of clients Σ, we need to determine if that trajectory reaches the equal
number of clients Σ in the crossing set Σc or in the sliding set Σs. For this we will use the
Algorithm 4.3.

In the case of model (5.6)-(5.8), the equal number of clients line Σ is described by
H(x) = x2 − x1 = 0 and its normal is ∇H(x) = [−1 1]T , and the following scalar
functions are parabolas, then we can use Algorithm 4.3.

gU(w) := 〈∇H(w), fU(w)〉 = (a11 − a22 − 2c21 + 2d12)w
2 + (b2 − b1)w (5.11)

gL(w) := 〈∇H(w), fL(w)〉 = (a11 − a22 + 2c12 − 2d21)w
2 + (b2 − b1)w (5.12)

where w = (w,w) which is a point on the equal number of clients line Σ.
Algorithm 4.3 calculates sign(gU(w)) and sign(gL(w)) using their respective zeros

and second derivatives. Once the signs of the values of the points in each parabola are
calculated, the sets can be combined to obtain Σc, the crossing set that is comprised of
the points where the values of parabolas have the same sign, and Σs, the sliding set that
is comprised of the points where the values of the parabolas have opposite sign. To apply
Algorithm 4.3 the zeros needed are:

Zeros of gU(w) : wU1 = 0 wU2 =
b1 − b2

a11 − a22 − 2c21 + 2d12
(5.13)

Zeros of gL(w) : wL1 = 0 wL2 =
b1 − b2

a11 − a22 + 2c12 − 2d21
(5.14)

The needed second derivatives are:

gU(w)′′ = 2a11 − 2a22 − 4c21 + 4d12 (5.15)

gL(w)′′ = 2a11 − 2a22 + 4c12 − 4d21 (5.16)

Next we enunciate a proposition which for the given case exemplifies the usage of the
fact that the gU(w) and gL(w) are parabolas. (For the the calculations Algorithm 4.3 is
used and it takes into account other cases)

Proposition 5.3.1 (Calculating the crossing set Σc and sliding set Σs). Suppose that

(i) b1 < b2

(ii) gU(w)′′ < 0

(iii) gL(w)′′ > 0
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then for nonnegative w values

- the crossing set is Σc = {w|w ∈ (0, wU2 )}

- the sliding set is Σs = {w|w ∈ [wU2 ,∞)}

Proof. First we find the sign of wU2 . Comparing (5.13) and (5.15) we find that the denom-
inator of wU2 is 2gU(w)′′ then by assumption (ii) the denominator of wU2 is negative. The
numerator of wU2 is negative by assumption (i). Because of this we have

wU2 > 0 (5.17)

The function gU(w) is a parabola on variablew by (5.11) and by assumption (ii) its second
derivative is negative, then it has a maximum. From this and (5.17) we have

sign(gU(w)) =


−1 if w ∈ (−∞, 0)

1 if w ∈ (0, wU2 )

−1 if w ∈ (wU2 ,∞)

(5.18)

Now we find the sign of wL2 . Comparing (5.14) and (5.16) we find that the denomi-
nator of wL2 is 2gL(w)′′ then by assumption (ii) the denominator of wU2 is positive. The
numerator of wL2 is negative by assumption (i). Because of this we have

wL2 < 0 (5.19)

The function gL(w) (5.12) is a parabola and by assumption (iii) its second derivative is
positive, then it has a minimum. From this and (5.19) we have

sign(gL(w)) =


1 if w ∈ (−∞, wL2 )

−1 if w ∈ (wL2 , 0)

1 if w ∈ (0,∞)

(5.20)

By the crossing condition (A.5) (in Appendix A) and the definitions (5.11)-(5.12), the
crossing set Σc is comprised of the values w where sign(gU(w)) = sign(gL(w)) 6= 0 and
the sliding set Σs is its complement. Combining this and the results in (5.18) and (5.20),
and considering we are interested in the nonnegative values of w, the sets for crossing and
sliding on the equal number of clients line Σ are

Σc ={w|w ∈ (0, wU2 )} (5.21)

Σs ={w|w ∈ [wU2 ,∞)} (5.22)

61



Determining pseudoequilibrium points: A pseudoequilibrium point is an equilibrium
that may come into existence because of the use of switching control (See Appendix A).
The pseudoequilibrium candidates are obtained using the fact that at a pseudoequilibrium
the fields must be aligned and have opposite directions. The pseudoequilibrium candi-
dates for model (5.6), (5.9) are:

w∗1 = 0 (5.23)

w∗2 =
b1 + b2
a11 + a22

(5.24)

Note that

• the pseudoequilibrium candidates obtained are independent of the predation coeffi-
cients cij, dij where i 6= j and i, j = 1, 2.

• the candidate w∗1 = 0 is not stable because the point (0, 0) is unstable for both fields
fU and fL.

• the candidate w∗2 can be a pseudoequilibrium only if w∗2 ∈ Σs.

5.4 Simulations of different scenarios of model LVsP

The first scenario of model (5.6)-(5.9) has the parameters b1 = 6.8, a11 = 1, c21 = 3.6,
d21 = 1.6, b2 = 10.9, a22 = 1, c12 = 5.5, d12 = 4.6. In this case, the efforts c21, d21
are small when compared to those of firm F2. The corresponding phase plane is shown in
Figure 5.1 where one can see that firm F2 ends with all the clients and firm F1 is extincted
from the market. The equilibrium points of the fields are shown in Tables 5.1 and 5.2,
note that both fields have stable equilibrium points in region U . The stable equilibrium of
field fL is virtual but it still attracts trajectories beginning in L to U . It is virtual because it
corresponds to the dynamics of field fL but lies in region U where the dynamics is given
by field fU .
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Figure 5.1: Model LVsP, scenario 1: Firm F1 doing little spending on advertising when compared to firm
F2.

fL x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

6.8
0

] [
37.42
−6.8

]
Saddle[

0
10.9

] [
−35.71
−10.9

]
Stable node[

−2.20296
2.30845

] [
−9.1323
9.0268

]
Saddle

Table 5.1: Model LVsP, scenario 1: Equilib-
rium points of field fL with parameters b1=6.8,
a11=1, d21 =1.6, b2 =10.9, a22 =1, c12 =5.5

fU x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

0
10.9

] [
−10.9
−4.1

]
Stable node[

6.8
0

] [
17.7
−6.8

]
Saddle[

−2.05
8.85

] [
−10.317

3.517

]
Saddle

Table 5.2: Model LVsP, scenario 1: Equilib-
rium points of field fU with parameters b1=6.8,
a11 =1, c21 =3.6, b2 =10.9, a22 =1, d12 =4.6

Dynamics of a trajectory on the equal number of clients line Σ

• Crossing and sliding sets are determined using the algorithm 4.3 for their calcula-
tion. The projections for determining the sets are 〈∇H(w), fU(w)〉 = 2.0w2 +

4.1w , that has the zeros w1 = 0.0 and w2 = −2.05 , and 〈∇H(w), fL(w)〉 =

7.8w2 + 4.1w, that has the zeros w1 = 0.0 and w2 = −0.5256. Figure 5.2 shows
the the plots of the signs of the projections and their products to help visualize
the procedure. Note that we are interested only in nonnegative w values, then the
crossing set is Σc = (0,∞), and all the trajectories that reach Σ cross into U .

• There is no pseudoequilibrium since candidate w∗2 = 8.85 belongs to the crossing
set Σc.
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Figure 5.2: Model LVsP, scenario 1: Signs of the inner products used in the calculation of conditions for
crossing and sliding.

The second scenario of model (5.6)-(5.9) has the parameters b1 = 6.8, a11 = 1,
c21 = 4.4, d21 = 3, b2 = 10.9, a22 = 1, c12 = 5.5, d12 = 4.6. In this case firm F1 does
more effort than in the previous scenario, but it is not enough for beating the number of
clients of firm F2. Firm F2 ends with bigger number of clients but now firm F1 is not
extincted from the market. The corresponding phase plane is shown in Figure 5.3. The
equilibrium points of the fields are shown in Tables 5.3 and 5.4, note that both fields have
stable equilibrium points in region U . In the case of field fL this equilibrium is virtual but
still attracts trajectories beginning in L to U .
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Figure 5.3: Model LVsP, scenario 2: Firm F1 increases its effort. In this scenario both firms coexist in
the long term, firm F2 still ends with a bigger number of clients.

• Crossing and sliding sets are determined using the algorithm 4.3 for their calcula-
tion. The projections for determining the sets are 〈∇H(w), fU(w)〉 = 0.4w2 +

4.1w , that has the zeros w1 = −10.25 and w2 = 0.0, and 〈∇H(w), fL(w)〉 =

5.0w2 + 4.1w, that has the zeros w1 = −0.82 and w2 = 0.0. Figure 5.4 shows
the the plots of the signs of the projections and their products. Note that we are
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fL x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

6.8
0

] [
27.9
−6.8

]
Saddle[

0
10.9

] [
−20.45
−10.9

]
Stable node[

−2.82069
3.84828

] [
−9.3998
8.3722

]
Saddle

Table 5.3: Model LVsP, scenario 2: Equilib-
rium points of field fL with parameters b1=6.8,
a11=1, d21 =3, b2 =10.9, a22 =1, c12 =5.5

fU x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

0
10.9

] [
−10.9
4.62

]
Saddle[

6.8
0

] [
12.26
−6.8

]
Saddle[

4.44231
11.7885

] [
−11.4913
−4.7395

]
Stable node

Table 5.4: Model LVsP, scenario 2: Equilib-
rium points of field fU with parameters b1=6.8,
a11 =1, c21 =4.4, b2 =10.9, a22 =1, d12 =4.6

interested only in nonnegative w values, then the crossing set is Σc = (0,∞), and
all the trajectories that reach Σ cross into U .

• There is no pseudoequilibrium since candidate w∗2 = 8.85 belongs to the crossing
set Σc.
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Figure 5.4: Model LVsP, scenario 2: Signs of the inner products used in the calculation of conditions for
crossing and sliding.

The third scenario of model (5.6)-(5.9) has the parameters b1 = 6.8, a11 = 1, c21 =

4.9, d21 = 4.5, b2 = 10.9, a22 = 1, c12 = 5.5, d12 = 4.6. In this scenario, firm F1 again
increases its efforts and now manages to end with the same number of clients of firm F2.
Some trajectories starting in region L crosses into region U but after some time return to
the equal number of clients line Σ to end at a pseudoequilibrium point. The corresponding
phase plane is shown in Figures 5.5 and 5.5. The only difference between these phase
planes is that the step size in Figure 5.5 is smaller and this results in the reduction of the
chattering observed in the sliding trajectories. Figures 5.7 and 5.8 that shows the time
plot xi(t) of a trajectory that has crossing and sliding behaviors, again the trajectories
are the same what is different between this figures is the setpsize, which is smaller in the
figure without noticeable chattering. The equilibrium points of the fields are shown in
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Tables 5.5 and 5.6, note that in this case both fields have stable virtual equilibrium points:
the virtual equilibrium of fL is x = [0 10.9]T and the virtual equilibrium of field fU is
x = [9.23853 8.12844]T . The trajectories beginning in region L(resp. U ) are attracted to
region U (resp. L) by the virtual equilibrium of field fL (resp. fU ).
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Figure 5.5: Model LVsP, scenario 3: Firm
F1 increases again its effort and this introduces
a pseudoequilibrium. Firms F1 and F2 coex-
ist with an equal number of clients. The phase
plane shows trajectories crossing and then re-
turning to Σ
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Figure 5.6: Model LVsP, scenario 3: Same
simulation as in Figure 5.5, but here the
stepsize = 0.0002 is smaller and this reduces
most of the chattering on the equal number of
clients line Σ.

fL x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

6.8
0

] [
17.7
−6.8

]
Saddle[

0
10.9

] [
−10.9
−4.1

]
Stable node[

−2.05
8.85

] [
−10.317

3.517

]
Saddle

Table 5.5: Model LVsP, scenario 3: Equilib-
rium points of field fL with parameters b1=6.8,
a11=1, d21 =4.5, b2 =10.9, a22 =1, c12 =5.5

fU x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

0
10.9

] [
−10.9
10.07

]
Saddle[

6.8
0

] [
8.86
−6.8

]
Saddle[

9.23853
8.12844

] [
−8.6835− 2.5398i
−8.6835 + 2.5398i

]
Stable focus

Table 5.6: Model LVsP, scenario 3: Equilib-
rium points of field fU with parameters b1=6.8,
a11 =1, c21 =4.9, b2 =10.9, a22 =1, d12 =4.6
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Figure 5.7: Model LVsP, scenario 3: State
variable as function of time for a trajectory hav-
ing crossing and sliding behavior. When the
stepsize = 0.001 the trajectories have notice-
able chattering when it slides.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

t

x
i(
t)

xi(t)
b1 =6.8, a11 =1, c21 =4.9, d21 =4.5
b2 =10.9, a22 =1, c12 =5.5, d12 =4.6, r =1

 

 

x1(t), x1(0) = 0.5

x2(t), x2(0) = 0.03

Figure 5.8: Model LVsP, scenario 3: Same
simulation as in Figure 5.7, but here the
stepsize = 0.0002 is smaller and this reduces
most of the chattering when the trajectory slides.

• Crossing and sliding sets are determined using the algorithm 4.3 for their calcu-
lation. The projections for determining the sets are 〈∇H(w), fU(w)〉 = 4.1w −
0.6w2 , that has the zeros w1 = 0.0 and w2 = 6.83, and 〈∇H(w), fL(w)〉 =

2.0w2 + 4.1w, that has the zeros w2 = 0.0 and w2 = −2.05. Figure 5.9 shows the
the plots of the signs of the projections and their products. Note that we are inter-
ested only in nonnegative w values, then the crossing set is Σc interval (0, 6.8333)

and the sliding set is Σs = [6.8333,∞). Trajectories that reach Σc cross into U and
trajectories that reach Σs slide until a pseudoequilibrium point.

• There is a pseudoequilibrium point w∗2 = 8.85 that belongs to the sliding set Σs.
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Figure 5.9: Model LVsP, scenario 3: Signs of the inner products used in the calculation of conditions for
crossing and sliding.

The fourth scenario of model (5.6)-(5.9) has the parameters b1 = 6.8, a11 = 1,
c21 = 5.5, d21 = 3, b2 = 10.9, a22 = 1, c12 = 5.5, d12 = 4.6. The corresponding
phase plane is shown in Figure 5.10 and 5.11. The only difference between these phase
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planes is that the step size in Figure 5.11 is smaller and this results in the reduction of
the chattering observed in the sliding trajectories. When compared to the third scenario,
firm F1 increases its effort c21 = 5 > 4.9 but decreases d21 = 3 < 4.5, with these ef-
forts firm F1 manages to end with the same number of clients of firm F2. But now the
observed trajectories only slides on Σ until they reach a pseudoequilibrium point. The
equilibrium points of the fields are shown in Tables 5.7 and 5.8, note that in this case both
fields have stable virtual equilibrium points: the virtual equilibrium of fL is x = [0 10.9]T

and the virtual equilibrium of field fU is x = [9.1768 2.64088]T . So that the trajectories
beginning in region L(resp. U ) are attracted to region U (resp. L).
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Figure 5.10: Model LVsP, scenario 4: Firm
F1 increases c21 and diminishes d21. In the
long term, firms F1 and F2 coexist with an equal
number of clients. The phase plane shows that
trajectories slides to a pseudoequilibrium.
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Figure 5.11: Model LVsP, scenario 4: Same
simulation as in Figure 5.10, but here the
stepsize = 0.0002 is smaller and this reduces
most of the chattering on the equal number of
clients line Σ.

fL x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

6.8
0

] [
27.9
−6.8

]
Saddle[

0
10.9

] [
−20.45
−10.9

]
Stable node[

−2.82069
3.84828

] [
−9.3998
8.3722

]
Saddle

Table 5.7: Model LVsP, scenario 4: Equilib-
rium points of field fL with parameters b1=6.8,
a11=1, d21 =3, b2 =10.9, a22 =1, c12 =5.5

fU x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

0
10.9

] [
16.61
−10.9

]
Saddle[

6.8
0

] [
−6.8
4.78

]
Saddle[

9.1768
2.64088

] [
−5.9088− 2.9918i
−5.9088 + 2.9918i

]
Stable focus

Table 5.8: Model LVsP, scenario 4: Equilib-
rium points of field fU with parameters b1=6.8,
a11 =1, c21 =5.5, b2 =10.9, a22 =1, d12 =4.6

• Crossing and sliding sets are determined using the algorithm 4.3 for their calcu-
lation. The projections for determining the sets are 〈∇H(w), fU(w)〉 = 4.1w −
1.8w2 , that has the zeros w1 = 0.0 and w2 = 2.278, and 〈∇H(w), fL(w)〉 =
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5.0w2 + 4.1w, that has the zeros w1 = −0.82 and w2 = 0.0. Figure 5.12 shows
the the plots of the signs of the projections and their products. Note that we are in-
terested only in nonnegative w values, then the crossing set is Σc = (0, 2.2778)and
the sliding set is Σs = [2.2778,∞). Trajectories that reach Σc cross into U and
trajectories that reach Σs slide until a pseudoequilibrium point.

• There is a pseudoequilibrium point w∗2 = 8.85 that belongs to the sliding set Σs.
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Figure 5.12: Model LVsP, scenario 4: Signs of the inner products used in the calculation of conditions
for crossing and sliding.

Finally, the fifth scenario of model (5.6)-(5.9) has the parameters b1 = 6.8, a11 = 1,
c21 = 7.1, d21 = 6.3, b2 = 10.9, a22 = 1, c12 = 5.5, d12 = 4.6. When compared to the
fourth scenario, firm F1 increases its efforts c21 = 7.1 > 5 and d21 = 6.3 > 3, with these
efforts firm F1 ends with a bigger number of clients than firm F2. The corresponding
phase plane is shown in Figure 5.13 where the observed trajectories cross into L. The
equilibrium points of the fields are shown in Tables 5.9 and 5.10, note that in this case
both fields have stable equilibrium points in region L. In the case of field fU it is a stable
virtual equilibrium and the trajectories beginning in region U are attracted to region L.
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Figure 5.13: Model LVsP, scenario 5: Firm F1 increases again its effort and this time firm F1 is the one
ending with a bigger number of clients.

fL x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

6.8
0

] [
−6.8
5.46

]
Saddle[

0
10.9

] [
15.52
−10.9

]
Saddle[

9.46341
3.32927

] [
−6.3963− 3.2798i
−6.3963 + 3.2798i

]
Stable focus

Table 5.9: Model LVsP, scenario 5: Equilib-
rium points of field fL with parameters b1=6.8,
a11=1, d21 =6.3, b2 =10.9, a22 =1, c12 =5.5

fU x Eigs(J(x)) Type[
0
0

] [
10.9
6.8

]
Unstable node[

0
10.9

] [
34.05
−10.9

]
Saddle[

6.8
0

] [
−6.8
−6.1

]
Stable node[

4.69655
−0.841379

] [
−7.6166
3.7614

]
Saddle

Table 5.10: Model LVsP, scenario 5: Equilib-
rium points of field fU with parameters b1=6.8,
a11 =1, c21 =7.1, b2 =10.9, a22 =1, d12 =4.6

• Crossing and sliding sets are determined using the algorithm 4.3 for their calcu-
lation. The projections for determining the sets are 〈∇H(w), fU(w)〉 = 4.1w −
5.0w2 , that has the zeros w1 = 0.0 and w2 = 0.82, and 〈∇H(w), fL(w)〉 =

4.1w − 1.6w2, that has the zeros w1 = 0.0 and w2 = 2.5625. Figure 5.14
shows the the plots of the signs of the projections and their products. Note that
we are interested only in nonnegative w values, then the crossing set is Σc =

(0, 0.82) ∪ (2.5625,∞) and the sliding set is Σs = [0.82, 2.5625]. Trajectories
that reach Σc in the interval (0, 0.82) cross into U and trajectories that reach Σc in
the interval (2.5625,∞) cross into L.

• There is no pseudoequilibrium point because the w∗2 = 8.85 belongs to the crossing
set Σc.
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Figure 5.14: Model LVsP, scenario 5: Signs of the inner products used in the calculation of conditions
for crossing and sliding.

5.5 Evaluating outcomes of the used policies using a per-
formance index for model LVsP

We use the index (2.9). Note that a firm makes a profit when its index Ji is positive,
whereas it makes a loss when its index is negative. The number of clients xi(t) evolution
is given by the system (5.6), (5.7) and the controls ui(t) are given in (5.5).

The scenarios were simulated using the software Matlab. In the first scenario, the
controls c21 = 3.6 and d12 = 1.6 actioned by firm F1 are small when compared to the
controls c21 = 5.5 and d21 = 4.6 of firm F2. In this setting firm F2 ends with more clients
than firm F1, actually firm F1 ends without clients. Figure 5.15 shows the trajectories in
the phase plane according to their index value at final time, these indexes were calculated
using a revenue factor r = 1 and firm F2 is the only firm that makes a profit. There is
little variation of the index values as can be seen in Figures 5.17 and 5.18. The small
increases of the index values are more noticeable in Figure 5.16 where the indexes are
plotted against each other.
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Figure 5.15: Model LVsP, scenario 1: Trajec-
tories plotted according to their index values at
final time. In this scenario firm F2 has positive
indexes while firm F1 has negative indexes.
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Figure 5.16: Model LVsP, scenario 1:
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Figure 5.17: Model LVsP, scenario 1: Value
of indices when the initial value x1(0) = 0.5 is
fixed.

0 1 2 3 4 5 6 7 8 9 10
−40

−20

0

20

40

60

80

x1(0)

J

Final J1 vs. x1(0), x2(0) = 0.03
b1 =6.8, a11 =1, c21 =3.6, d21 =1.6
b2 =10.9, a22 =1, c12 =5.5, d12 =4.6, r =1

 

 

J1

J2

Figure 5.18: Model LVsP, scenario 1: Value
of indices when the initial value x2(0) = 0.03 is
fixed.

In the next scenario, the controls c21 = 5.5 and d12 = 3 actioned by firm F1 are
similar in magnitude when compared to the controls c21 = 5.5 and d21 = 4.6 of firm F2.
Now, both firms end with the same number of clients. Figure 5.19 shows the trajectories
according to their indexes at final time, these indexes were calculated using a revenue
factor r = 1 and both firms make a profit. The firm that begins with a smaller number
of clients makes a smaller profit: (a) In Figure 5.21 the initial conditions are x1(0) =

0.5 and x2(0) ∈ [0.03, 12], the index J2 grows as x2(0) grows and it is bigger than J1
when x2(0) > x1(0). (b) In Figure 5.22 the initial conditions are x2(0) = 0.03 and
x1(0) ∈ [0, 10], the index J1 increases as x1(0) increases and it is bigger than J2 when
x1(0) > x2(0).
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Figure 5.19: Model LVsP, scenario 4: Trajec-
tories plotted according to their index values at
final time. In this scenario both firms F1 and F2

have positive indexes.
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Figure 5.20: Model LVsP, scenario 4:
J1(x1(t), x2(t), t) vs. J2(x1(t), x2(t), t)
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Figure 5.21: Model LVsP, scenario 4: Value
of indices when the initial value x1(0) = 0.5 is
fixed.
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Figure 5.22: Model LVsP, scenario 4: Value
of indices when the initial value x2(0) = 0.03 is
fixed.

In the last scenario, the controls c21 = 7.1 and d12 = 6.3 actioned by firm F1 are
bigger in magnitude when compared to the controls c21 = 5.5 and d21 = 4.6 of firm F2.
In this situation firms F1 and F2 coexist in the long term, with firm F1 having more clients
than firm F2. Figure 5.23 shows the the trajectories in the phase plane according to their
index value at final time, these indexes were calculated using a revenue factor r = 1. Firm
F1 is the only firm that makes profit, even though firms coexist in the long term. In Figure
5.25 the index J2 increases as x2 increases but the growth is small and the index remains
negative. In Figure 5.26 the index J1 increases as x1 increases. When the index values
are plotted against each other, i.e. J2 vs. J1, as in Figure 5.24 the indexes do not seem
to create a front although their values have rather small variations (see Figures 5.25 and
5.26).
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Figure 5.23: Model LVsP, scenario 5: Trajec-
tories plotted according to their index values at
final time. In this scenario firm F1 has positive
indexes while firm F1 has negative indexes.
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Figure 5.24: Model LVsP, scenario 5:
J1(x1(t), x2(t), t) vs. J2(x1(t), x2(t), t)
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Figure 5.25: Model LVsP, scenario 5: Value
of indices when the initial value x1(0) = 0.5 is
fixed.
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Figure 5.26: Model LVsP, scenario 5: Value
of indices when the initial value x2(0) = 0.03 is
fixed.

5.6 Remarks on model LVsP

• The entering firm, i.e. the firm with a smaller initial market share, can introduce
a pseudoequilibrium on the equal number of clients line Σ using an appropriate
control value. Using a control value larger than this, the entering firm can achieve
a larger number of clients than its competitor.

• The firm decides which advertising control efforts to apply using its performance
index in a finite horizon, i.e. the firm evaluates the costs and benefits it obtains with
different advertising efforts.
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• If the state variable is market share, the Lokta-Volterra model does not result in
invariance of total market share (always equal to one), ensuring instead that each
market share variable is below or equal to a given upper bound. This fact led to
the choice, in this chapter, of the number of clients as the state variable instead of
market share.

75



Chapter 6

Conclusions and Future Work

This thesis focuses on the analysis of qualitative behavior of the dynamics of models,
making use of simple policies, whereas the emphasis in the existing literature has been
mainly on the optimization of quadratic (or related) performance indices, as well as on
the differential game-theoretic aspects of such models.

The relatively simple choices of the switching behavior, variable structure control
theory made possible a complete qualitative analysis, for any choice of initial condition,
and for several different strategies and scenarios. This is to be contrasted with a specific
trajectory produced by optimal control approaches. In fact, this possibility of complete
qualitative analysis is sometimes referred to as a flight simulator mode [53] and should,
in our opinion, be considered a strength of the proposed approach.
The contributions of this thesis are as follows:

• Proposal of the models VWD2s (Vidale-Wolfe-Deal with two switching lines) and
LVsP (Lotka-Volterra with switched predation and conservation).

• The qualitative analysis of the proposed models, under switching control based on
measurement of each firm’s market share. The proposed switching control, unlike
those resulting from optimal control/differential game approaches, is simple and
thus implementable.

• Use of a performance index to identify trajectories that make a profit at saturated
market in conjunction with the qualitative analysis of the market share dynamics to
aid in the choice of advertising policies.

Some possible future works are listed:

• Developing a user friendly interface for the pieces of software elaborated for this
thesis, in order to simulate the dynamics of a duopoly subject to switching policies.

• Discussing whether firms can switch between distinct models, because it has been
assumed that both firms follow the same model. However, in line with the switching
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behavior that the firms are allowed to have, this leaves open the analysis of what
happens if the disadvantaged firm decides to change its strategy (e.g., switch to a
different one) and a game theoretic analysis would be appropriate in this case.

• Using delays in the estimates of market shares (which may introduce chaos or limit
cycles).

• Using a combined logistic function to enforce the saturated market restriction and
relating it to a Lotka-Volterra model.

• Using the current value of the associated performance index in the switching deci-
sion.
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Appendix A

Filippov solutions on the discontinuity
boundary

Since the model used in this paper presents discontinuities in the vector fields on the equal
share line, it is necessary to define the vector field on the discontinuity boundary, so that
trajectories that reach it can be continued in an unambiguous manner. We will use the
concept of a Filippov solution [46]. We recapitulate Filippov theory for the second order
models (state vector x = [x1(t), x2(t)]

T ∈ R2) very briefly below, following the very
clear presentation in [54]. The ODE with one discontinuity boundary Σ and vector fields
fL = [fL1 (x), fL2 (x)]T and fU = [fU1 (x), fU2 (x)]T on either side of Σ is written as:

ẋ =

{
fL(x), x ∈ L
fU(x), x ∈ U

(A.1)

where the regions L,U are separated by Σ. Σ is defined by H(x) = 0. L corresponds to
the region where H(x) < 0 and U to the region where H(x) > 0.

According to Filippov [46], solutions of (A.1) can be constructed by concatenating
standard solutions in L,U and sliding solutions on Σ, which are obtained using the Fil-
ippov convex rule. The crossing set Σc ⊂ Σ is defined as the set of all points x ∈ Σ, at
which the two vectors fL(x), fU(x) have nonzero components of the same sign, transver-
sal to Σ (〈∇H(x), fU(x)〉〈∇H(x), fL(x)〉 > 0). By definition, at such a point x, a trajec-
tory of (A.1) reaching x from L (resp. U ) crosses Σ and is concatenated with a trajectory
entering U (resp. L) from x. The sliding set Σs is defined as the complement to Σc in Σ.
The sliding set may contain singular sliding points, i.e. points with zero as component on
the normal to Σ. Either both vectors fL(x) and fU(x) are tangent to Σ, or one of them
vanishes while the other is tangent to Σ, or both vanish at a sliding singular point.

The Filippov rule associates the following convex combination Φ(x) of the two vec-
tors fL(x), fU(x) to each nonsingular sliding point x ∈ Σs, where 〈·, ·〉 denotes the
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standard inner product in R2.

Φ(x) = λfL(x) + (1− λ)fU(x) (A.2)

λ =
〈∇H(x), fU(x)〉

〈∇H(x), fU(x)− fL(x)〉 (A.3)

where λ was obtained using the condition that Φ(x) lies on the tangent line to Σ at x.
The equation

ẋ = Φ(x), x ∈ Σs (A.4)

is a scalar differential equation on Σs, which is smooth on one-dimensional sliding subin-
tervals of Σs. Solutions of this equation are called sliding solutions.

Equilibria of (A.4) for which the vectors fL(x), fU(x) are anticollinear (∠(fU , fL) =

180◦) and transversal to Σs in opposite directions (〈∇H(x), fU(x)〉〈∇H(x), fL(x)〉 < 0),
are called pseudo-equilibria of (A.1) and also referred to as quasi-equilibria by Filippov
[46]. Thus pseudo-equilibria lie in the interior of sliding segments. A non-singular sliding
point x ∈ Σs for which fL = 0, λ = 1 or fU = 0, λ = 0 implies Φ = 0 and is called
a boundary equilibrium point. A tangent point T is a point at which the vectors fL, fU

are non-zero, but one of them is tangent to Σ. A sliding segment terminates either at a
boundary equilibrium, or at a tangent point.

Phase portraits of Filippov systems can have multiple sliding segments and be rather
complex, Figure A.1 (a) is a rather simple phase portrait to exemplify previous definitions.
In this example Σ is a line. The depicted area for the given fields has a sliding subseg-
ment Σs, and two crossing subsegments Σc. Points A and C are boundary equilibrium
points. Figure A.1 (b) shows the corresponding fields fU , fL at V,W,B, Z. Here V, Z
are crossing points, W,B are sliding points. Notice that B is a pseudoequilibrium point.

A B

U

L
ΣsΣc Σc

Σ
C A

B
C

V W Z

U

L

fL

fU

Σ

(a) (b)

Figure A.1: (a) Sample phase portrait showing segments Σs and Σc. (b) V , Z crossing
points, W , B sliding points. B is a pseudoequilibrium point, i.e. ∠(fU , fL) = 180◦

The conditions for deciding if a trajectory will cross or slide at point x ∈ Σ or to
determine if x is a pseudo-equilibrium are:
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• Crossing (x ∈ Σc):

〈fL(x),∇H(x)〉〈fU(x),∇H(x)〉 > 0 (A.5)

• Sliding (x ∈ Σs):

〈fL(x),∇H(x)〉〈fU(x),∇H(x)〉 <= 0 (A.6)

• Pseudo-equilibrium : (x ∈ Σs) and ∃ w ∈ R+ such that

fL(x) = −wfU(x) (A.7)

The anticollinearity between fU(x) and fL(x) is expressed by (A.7). Condition (A.7) is
simpler to apply, resulting in equations of lower degree in the components of x, than the
equivalent condition 〈fL(x),fU (x)〉

(|fL(x)‖‖fU (x)‖ = −1.
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Appendix B

Algorithm for obtaining separatrices of
model VWDsC

We use the dynamics (3.3), (3.4) (resp. (3.5), (3.6)) to calculate ϕU (resp. ϕL) in the
phase plane x1 − x2 from the corresponding expression for dx2

dx1
. Furthermore, we use

dx2
dx1

∣∣
E

as an abbreviation for the limiting expression for dx2
dx1

as it approaches the saturated
equal market share E from region U (resp. from region L).

Thus, in order to derive a condition that determines if a trajectory starting in U will
reach the equal share E, we obtain dx2

dx1
from (3.3), (3.4):

dx2
dx1

=
k2x2

k1x1 + c1
(B.1)

The solution of (B.1) using the initial conditions (x20 , x10) is

x2 =
x20

(k1x10 + c1)k2/k1
(k1x1 + c1)

k2
k1 . (B.2)

Renaming x10 as X1 and x20 as X2 and setting (x1, x2) = (0.5, 0.5) in (B.2) yields the
locus of all initial conditions (X1, X2) that end at (0.5, 0.5), i.e. the separatrix ϕU

X2 = 0.5
(k1X1 + c1)

k2/k1

(k10.5 + c1)
k2
k1

(B.3)

Analogously, trajectories in L satisfy:

dx2
dx1

=
k2x2 + c2
k1x1

(B.4)

The solution of (B.4) using the initial conditions (x20 , x10) is

x2 =
k2x20 + c2
k2(x10)

k2/k1
x
k2
k1
1 −

c2
k2

(B.5)
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and, as before setting x10 = X1, x20 = X2 and (x1, x2) = (0.5, 0.5) yields the equation
for the separatrix ϕL:

X2 =
1

k2

((
1

2
+
c2
k2

)
k2(2X1)

k2/k1 − c2
)

(B.6)

Remark: The geometrical idea used to decide whether a separatrix exists or not is
shown in Figure B.1. The trajectory defining a separatrix ϕU (resp. ϕL) calculated from
(B.3) (resp. (B.6)) must lie in its defining region U (resp. L), which means that its slope
at E, calculated from (B.1) (resp. (B.4)) must be less than (resp. greater than) unity, so
that it comes from region U and points into the region L (resp. comes from L and points
into U ) in the neighborhood of E.

x1

x2

U

L
0

1

1

Σ

Sat

E0.5

0.5

Figure B.1: The fields fU or fL approaching the equal market share point E from the left
can be as shown. In the case of the dashed line, the slope is less than unity and the field
indicates that the trajectory comes from U . In the case of the continuous line, the slope is
greater than unity and the field indicates that the trajectory comes from L.

We describe the process of determining the existence of separatrices as the following
algorithm:

Algorithm (Existence of separatrices)

1. Calculate the slope sfU = dx2
dx1

∣∣
E

using (B.1) (resp. the slope sfL = dx2
dx1

∣∣
E

using
(B.4)).

2. If sfU > 1 (resp. sfL < 1) then the separatrix ϕU (resp. ϕL) does not exist. In this
case, the curve (B.3) comes from L, i.e. it partially lies in L (resp. (B.6) comes
from U , i.e. it partially lies in U ) , but it was derived from the equations of fU (resp.
fL).

3. For region U : If sfU < 1

(a) Set X1 = 0 in (B.3) and solve for X2. This determines the point at which
(B.3) intersects the x2 axis.

(b) If X2 ∈ [0, 1], then
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Use x10 = X1 and x20 = X2 as the initial conditions in (B.2)(X1, X2

from step 3a). The resulting equation defines the separatrix ϕU .

(c) If X2 /∈ [0, 1] or @x2, then the separatrix ϕU does not exist.

4. For region L: If sfL > 1

(a) Set X2 = 0 in (B.6) and solve for X1. This determines the point at which
(B.6) intersects the x1 axis.

(b) If X1 ∈ [0, 1], then

Use x10 = X1 and x20 = X2 as the initial conditions in (B.5)(X1, X2

from step 4a). The resulting equation defines the separatrix ϕL.

(c) If X1 /∈ [0, 1] or @x1, then the separatrix ϕL does not exist.

5. Once ϕU and ϕL are determined, they are associated with each firm:

(a) If only one separatrix exists, then both firms are associated with it. If only
ϕU (resp. ϕL) exists, then the separatrix for firm F2 is ϕU2 (resp. ϕL2 ) and the
separatrix for firm F1 is ϕU1 (resp. ϕL1 )

(b) If both separatrices exist, then the separatrix for firm F2 is ϕL2 and the separa-
trix for firm F1 is ϕU1

Remark: All trajectories with initial conditions above (resp. below) separatrix of firm
F2 (resp. F1) lead to firm F2 (resp. F1) attaining its goal of gaining at least 50% of
the saturated market share and if both separatrices exist, then all trajectories originating
from initial conditions in the region between them will converge to the saturated equal
market share point E. Since a separatrix is just a trajectory in the phase plane that ends at
the saturated market line Sat, it follows that trajectories below (resp. above) a separatrix
always remain below it (resp. above it). This is because if the trajectories were to intersect
at a point that is not an equilibrium there would be more than one value for the derivative
and the uniqueness of the derivative would be violated.
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Appendix C

Demonstrations of properties of model
VWDsC

Theorem 3.2.1 (Characterization of market share dynamics for model (3.3)-(3.6)
with controls (3.2)). Suppose that τ is a trajectory that starts in region U , i.e. firm F1

starts out with a smaller market share x1(0) < x2(0) and that the parameters k1, c1, k2, c2
are known. then the trajectories reaching the equal market share line Σ can have one of

the following behaviors:

1. If the sliding end point send = 0.5 then any trajectory τ with initial conditions in

region U and below separatrix ϕU1 reaches the equal share line and slides until the

saturated equal share point E on the saturated market line (see Figure 3.2a)

2. If the sliding end point send < 0.5 and k2 > k1, then the separatrix is ϕL2 = ϕL1 and

some trajectories beginning in region U reach the equal share line Σ, move on it

until the point send and return to U finally ending on the saturated market Sat with

firm F2 having more than 50% of the market share.(see Figure 3.2b)

3. If the sliding end point send < 0.5 and k1 > k2, then the separatrix is ϕU2 = ϕU1 and

the trajectories beginning in region U and below ϕU2 reach the equal share line Σ,

(a) If the trajectories reach the equal market share on the sliding segment Σs, they

stay on the equal market share until the point send and then cross into region

L finally ending on the saturated market Sat with firm F1 having more than

50% of the market share. (see Figure 3.2c)

(b) If the trajectories reach the equal market share line on the crossing segment

Σc, they cross into region L finally ending on the saturated market Sat with

firm F1 having more than 50% of the market share.(see Figure 3.2d)

Proof. 1. If sliding end point send = 0.5 then any trajectory τ with initial conditions

in region U and below separatrix ϕU1 reaches the equal share line and slides until
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the saturated equal share point E on the saturated market line.

When send = 0.5, there are two separatrices. To see this, suppose there is only
one separatrix, without loss of generality suppose ϕU does not exist ϕL exists. A
send, the field fU points from L into U since ϕU does not exist and the field fL also
points from L into U since ϕL exists (see the remark in Appendix B Algorithm for

obtaining separatrices). Then, this implies that send is a crossing point which is a
contradiction with send being a sliding point. Then, two separatrices exist and the
separatrix corresponding to firm F1 is ϕU1 . Next, determineX2 from (B.3) by setting
X1 = x1(0), if x2(0) < X2 the trajectory τx1(0),x2(0) is below ϕU1 . Because trajec-
tories in the phase plane can only cross at singular points, the trajectory τx1(0),x2(0)
runs below ϕU1 and reaches Σs. By Proposition C.0.7 there is no pseudo-equilibrium
point, so that τx1(0),x2(0) slides on Σ until the saturated equal market share point E
which is an attractive point.

2. If sliding end point send < 0.5 and k2 > k1, then the separatrix is ϕL2 = ϕL1 and

some trajectories beginning in region U reach the equal share line Σ, move on it

until the point send and return to U finally ending on the saturated market Sat with

firm F2 having more than 50% of the market share. When send < 0.5 and k2 > k1,
the separatrix is ϕL2 = ϕL1 : Suppose that separatrix ϕU exists, this implies there
is a trajectory τ that reaches Σc at a crossing point. But this is a contradiction
with Proposition C.0.6, so that the only separatrix is ϕL2 = ϕL1 . Next, determine if
τx1(0),x2(0) , obtained ,intersects with Σ.If it intersects Σ it does it on a sliding point
(intersection on a crossing point is impossible by Proposition C.0.6). After reaching
Σ, τx1(0),x2(0) slides on it and at sliding end it returns to U (since crossing into L is
impossible by Proposition C.0.5). By Proposition C.0.4 and Proposition C.0.6, once
crossing occurs there is no reaching Σ anymore and τx1(0),x2(0) will end in SatU with
Firm F2 having more than 50% of the market.

3. If sliding end point send < 0.5 and k1 > k2, then the separatrix is ϕU2 = ϕU1 and

the trajectories beginning in region U and below ϕU2 reach the equal share line Σ,

Suppose the separatrix is ϕL, then at the saturated market share fL points from L

into U . But this contradicts Proposition C.0.6 which when applied to the situation
k1 > k2 states that there is no trajectory starting in L and reaching the crossing
segment Σc. Then the separatrix has to be ϕU1 = ϕU2 .

(a) If the trajectories reach the equal market share on the sliding segment Σs, they

stay on the equal market share until the point send and then cross into region

L finally ending on the saturated market Sat with firm F1 having more than

50% of the market share.

In this case the trajectory τx1(0),x2(0) reaches the sliding segment Σs and slides
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on it until send (by Proposition C.0.7 there is no pseudo-equilibrium point).
When it reaches send, trajectory τx1(0),x2(0) crosses into L. To see this, suppose
it returns to U , so that that the final saturated market would be in SatU above
the saturated equal market share E which is the intersection of ϕU1 with Sat,
then τx1(0),x2(0) would intersect ϕU1 at a point below Sat which is not singular
point of the system which is not possible. Then, trajectory τx1(0),x2(0) has to
end in SatL with Firm F1 having more than 50% of the market.

(b) If the trajectories reach the equal market share line on the crossing segment

Σc, they cross into region L finally ending on the saturated market Sat with

firm F1 having more than 50% of the market share.

In this case the trajectory τx1(0),x2(0) reaches the crossing segment Σc. At it,
τx1(0),x2(0) could cross into L or return to U . Suppose that it returns to U ,
this leads to the contradiction of τx1(0),x2(0) intersecting with ϕU1 = ϕU2 at a
nonsingular point as in (a). Then, τx1(0),x2(0) has to cross into L and end in
SatL with Firm F1 having more than 50% of the market.

Proposition C.0.1 (Characterization of the sliding segment Σs). The sliding segment

Σs for the model (3.3)-(3.6) is one of the following:

(i) If k2 > k1, Σs is the segment from 0 to send = min{0.5, c1
k2−k1}.

(ii) If k1 > k2, Σs is the segment from 0 to send = min{0.5, c2
k1−k2}.

(iii) If k2 = k1, Σs is the segment from 0 to send = 0.5.

Proof. We analyze sliding of the model (3.3)-(3.6) using the tangents to a trajectory eval-
uated in the neighborhood of x ∈ Σ. This leads to simpler algebraic operations than the
standard sliding condition (A.6) from Appendix A Filippov solutions on the discontinuity

boundary. Evaluating that the sliding condition is satisfied using the tangents is equiva-
lent to using the intersection of signs of the projections of the fields onto the normal to Σ,
(which is another simplification to solving directly (A.6) and will be used in later chap-
ters). Still, we consider that the use of tangents on the equal share line Σ is straightforward
for model (3.3)-(3.6).

Since the coefficients k1, k2, c1, c2 as well as the variables x1, x2 are positive, the value
of the tangent is positive. The tangents tanfU (x1, x2) and tanfL(x1, x2) where the vector
field fL points into U and simultaneously the vector field fU points into L, thus satisfy

tanfU (x1, x2) =
k2x2

k1x1 + c1
< 1

tanfL(x1, x2) =
k2x2 + c2
k1x1

> 1
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for a point (x1, x2) = (a, a) on Σ this leads to

− c2 < a(k2 − k1) < c1 (C.1)

First, considering the case k2 > k1 in (C.1) yields the sliding condition

−c2
k2 − k1

< a <
c1

k2 − k1
(C.2)

From (C.2) and since a ∈ Σ and a ∈ T , then a belongs to the segment from 0 to send =

min{0.5, c1
k2−k1} so that (i) is proved.

Considering the case k2 < k1 in (C.1) yields the sliding condition

−c1
k1 − k2

< a <
c2

k1 − k2
(C.3)

From (C.3) and since a ∈ Σ and a ∈ T , then a belongs to the segment from 0 to send =

min{0.5, c2
k1−k2} so that (ii) is proved.

Third, considering k1 = k2 in (C.1) yields

− c2 < c1 (C.4)

In this case, all x ∈ Σ that are not pseudo-equilibrium points are sliding points (see
Appendix A Filippov solutions on the discontinuity boundary) because (C.4) is always
satisfied. From (C.4) and since a ∈ Σ and a ∈ T , then a belongs to the segment from 0

to 0.5

Proposition C.0.2 (Configuration of vector fields fL, fU on the segment Σs). The con-

figuration of the vector fields approaching the sliding segment Σs for the model (3.3)-(3.6)

is fU pointing into L and fL pointing into U

Proof. Proposition C.0.2 is true because Proposition C.0.1 was derived from that config-
uration of fields, which is shown in Figure C.1a and the other configuration where fU is
pointing into U and fL is pointing into L is not possible (Figure C.1b) as shown below.

Σs Σs

(a) (b)

fU

fLfU

fL

Figure C.1: Configurations of fields fU and fL for a point belonging to Σs: The con-
figuration in (a) is the only possible configuration. The configuration of fields in (b) is
impossible.
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For this configuration the tangents tanfU (x1, x2) and tanfL(x1, x2) where the vector
field fL points into L and simultaneously the vector field fU points into U , thus satisfy

tanfU (x1, x2) =
k2x2

k1x1 + c1
> 1

tanfL(x1, x2) =
k2x2 + c2
k1x1

< 1

for a point (x1, x2) = (a, a) on Σ this yields

c1 < a(k2 − k1) < −c2 (C.5)

from (C.5) and considering that the model parameters are positive real numbers a has to
be smaller than a negative real number and bigger than a positive real number which is
a contradiction, so this configuration of the fields is not possible. In the case k2 > k1,
a > c1

k2−k1 and a < −c2
k2−k1 . In the case k1 > k2, a < −c1

k1−k2 and a > c2
k1−k2 .

Proposition C.0.3 (Characterization of the crossing segment Σc). The crossing seg-

ment Σc for the model (3.3)-(3.6) is one of the following:

(i) If k2 > k1 and c1
k2−k1 < 0.5, Σc is the segment from c1

k2−k1 to 0.5.

(ii) If k1 > k2 and c2
k1−k2 < 0.5, Σc is the segment from c2

k1−k2 to 0.5.

(iii) If c2 = c1 = 0 or k2 > k1 and c1 = 0 or k1 > k2 and c2 = 0 , Σc is the segment

from 0 to 0.5.

Proof. Since by definition Σc ∪ Σs = Σ and a point x on Σ belongs either to Σs or Σc,
we can compute Σc = Σ− Σs.

From proposition C.0.1(1), if k2 > k1, Σs is the segment from 0 to send where send =

min{0.5, c1
k2−k1}. Thus, in order to have a crossing segment in T , we must have c1

k2−k1 <

0.5. In this case Σc is the segment from c1
k2−k1 to 0.5 and (i) is proved.

From proposition C.0.1(2), if k1 > k2, Σs is the segment from 0 to send where send =

min{0.5, c2
k1−k2}. Thus, in order to have a crossing segment in T , we must have c2

k1−k2 <

0.5. In this case Σc is the segment from c2
k1−k2 to 0.5 and (ii) is proved.

Let c1 = c2 = 0 in (C.1), this leads to 0 < a < 0, so that Σs = ∅ and Σc is the segment
from 00 to 0.5. If k2 > k1 and c1 = 0, then send = 0 and Σc is the segment from 0 to 0.5.
If k1 > k2 and c2 = 0, then send = 0 and Σc is the segment from 0 to 0.5. This proves
(iii).

Proposition C.0.4 (The sliding segment Σs is followed by the crossing segment Σc).
If the sliding segment Σs and the crossing segment Σc both exist, Σs is followed by Σc.

Then, once crossing occurs there is no possibility of regaining market share for the firm

that lost part of it.
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Proof. Since both the sliding segment Σs and the crossing segment Σc exist, from propo-
sitions C.0.1 and C.0.3, we see that in T , only Σs followed by Σc can occur.

x2

x1

τ
send

x1

x2

τ

(a) (b)

k2 > k1 k2 > k1

ϕU
2 = ϕU

1
ϕU
2 = ϕU

1

send

0 1

1 1

10

0.5 0.5

0.5 0.5

Figure C.2: Suppose that k2 > k1, send < 0.5 and firm F1 has an initial lower market share than F2,
then: (a) There is no trajectory τ that reaches the equal market share line on the sliding segment Σs, remains
on it for some time and then crosses into L, with F1 ending with a bigger market share than F2 (b) There is
no trajectory τ that reaches the equal market share line on the crossing segment Σc and crosses into L, with
F1 ending with a bigger saturated market share than F2

Proposition C.0.5. If k2 > k1 and the sliding end point send < 0.5, then there is no

trajectory τ that has initial conditions in U and reaches Σ at a point (v, v) below the

sliding end point send, slides until send and then crosses into L. (See Figure C.2a)

Proof. To see this, we obtain an expression for tanfL (c1/(k2 − k1), c1/(k2 − k1))

tanfL(c1/(k2 − k1), c1/(k2 − k1)) = k2/k1 + (k2 − k1)c2/c1k1 (C.6)

Since k2 > k1 and all parameters k1, c1, k2, c2 are positive (C.6) is always greater than 1,
i. e. the condition for crossing into L is never met when k2 > k1.

Proposition C.0.6. If k2 > k1 and the sliding end point send < 0.5, then there is no

trajectory τ that has initial conditions in U and reaches the crossing segment Σc. (See

Figure C.2b)

Proof. Consider a disk with center at (x1, x2) ∈ Σ and radius δ. Let τ be a trajectory that
passes by (x1, x2 = x1 + δ) in U . If the trajectory τ were to hit Σ in the crossing segment
( c1
k2−k1 < x2 = x1 < 0.5), the tangent at (x1, x2 = x1 + δ) has to be less than 1 as δ → 0

for crossing from U into L

lim
δ→0+

tanfU (x1, x1 + δ) =
k2x1

k1x1 + c1
< 1 (C.7)

Let the LHS of (C.7) be rewritten as

1

k1/k2 + c1/(k2x1)
(C.8)
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Since the crossing needs to be in Σc, we have x1 > c1/(k2−k1), so that c1 < x1(k2−k1).
Using this in (C.8)

1

k1/k2 + c1/(k2x1)
>

1

k1/k2 + (x1(k2 − k1)/(k2x1))
= 1 (C.9)

But (C.9) conflicts with (C.7), so that it is not possible that a trajectory τ beginning in U
and satisfying k2 > k1 to intersect the equal market share on the crossing segment Σc.
Similarly, for a trajectory τ starting in region L crossing directly into region U can only
occur when k2 > k1.

The next proposition shows that he model (3.3)-(3.6) does not have pseudoequilibrium
points. Pseudo-equilibrium points are the stationary points of the differential equation
(A.4), see Appendix A.

Proposition C.0.7 (Nonexistence of pseudo-equilibria). The model (3.3)-(3.6) does not

have any pseudo-equilibrium points.

Proof. Substituting x1 = x2 = a in (3.3)-(3.6), the pseudo-equilibrium condition (A.7)
for their existence is

k1a+ c1
k1a

=
k2a

k2a+ c2
< 0

which cannot be satisfied because the parameter values are positive numbers, and point
(a, a) belongs to the first quadrant. Hence, the model (3.3), (3.6) does not present any
pseudo-equilibrium point.
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Appendix D

Numerical considerations on simulating
Odes with discontinuous RHS
(right-hand sides)

In the first simulations, the package by Piiroinen and Kuznetzov [55] was used for simu-
lating Odes with discontinuous RHS. However, we had problems with some simulations
showing wrong trajectories, trajectories which did not stop at the corresponding equilib-
rium point. For instance, the simulation of model VWDsC in Figure D.1 shows trajecto-
ries continuing upwards on the saturated market line Sat and then stopping in the second
quadrant where state variable x1 is negative. The problem was reported but we received
no answer. As of 2016, the package is not available for download anymore.
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2

 

 

Orbit x2 x1

Equal share

Full market

Figure D.1: Simulation ran with Piiroinen, Kuznetsov Matlab software. Trajectories shoul stop on the
saturated line Sat, however in the simulation they continue moving upwards.

After that, we used the application Berkeley Madonna [51] for running the simula-
tions. However, we found wrong trajectories model VWDsC like the one shown in Figure
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D.2. From the experience accumulated doing simulations with Berkeley Madonna appli-
cation we inferred that Berkeley Madonna considers the function if -used to implement
Odes with discontinuous RHS- a continuous function and in some cases you get a reason-
able behavior on the sliding segments and in other it disagrees with the theory of Odes
with discontinuous RHS. Also, for more complex dynamics like the Lotka-Volterra derive
model defining the dynamics with the function if becomes very complex.
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1 = ϕU

2
τ

Send

Figure D.2: Trajectory on the phase plane showing more than one crossing. This situation does not
comply with Filippov’s theory for Odes with discontinuous RHS.

Diminishing the time step in the simulations ran with Berkeley Madonna reduced the
chattering in many cases. However, this was not the case for some simulations of the
model LVsP presented in Chapter 5 which still had a good amount of chattering.

Because of the previous situations, we implemented a simple discretization which
supports the discretization methods Forward-Euler or RK4 (Runge Kutta 4) and uses the
Filippov Rule for the field value on the sliding segments. The result are obviously better
in smoothing the chattering on the sliding set Σs because the field defined by the Filippov
rule on the sliding segment is tangent to the discontinuity line. However, since we are
working with finite precision arithmetic when doing simulations on computers, any point
which lies inside an ε-tube around the switching line and satisfies the sliding condition
(A.6) is assigned the field (A.2) corresponding to the Filippov rule for sliding dynamics.
See Figure D.3.

U

L

Σ

ǫ

Figure D.3: A magnified section of the discontinuity line Σ. For a point that lies in the ε-tube around Σ
and satisfies the sliding condition (A.6), the point is assigned the field (A.2) defined by the Filippov rule for
the numerical discretization
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Consider an autonomous Ode System given in vector form:

ẋ = f(x) (D.1)

For instance if x ∈ R2, x = [x1, x2]
T and f(x) = [f1(x1, x2), f2(x1, x2)]

T

The Forward Euler discretization [56, p. 257, chap. 5] calculates the next time value for
x using the first order Taylor approximation:

x(t+ h) = x(t) + hf(x(t)) (D.2)

The fourth term Runge-Kutta (RK4) [56, p. 277-278, chap. 5] is more complex and re-
quires more operations. It calculates the next time value for x using the following steps:

1. calculate k1 = hf(x(t))

2. calculate k2 = hf(x(t) + 1/2k1)

3. calculate k3 = hf(x(t) + 1/2k2)

4. calculate k4 = hf(x(t) + k3)

5. calculate
x(t+ h) = x(t) + 1/6(k1 + 2k2 + 2k3 + k4) (D.3)

A basic ε-tube algorithm for calculating x for the next time step

1. Determine the field f to be used for calculating x(t+ h)

• if (x(t) ∈ ε-tube) and x(t) ∈ Σs) , then the field to be used is f(x(t)) =

Φ(x(t)) with Φ(x) defined in (A.2).

• if(x2(t) > x1(t) + ε), then the field to be used is f(x(t)) = fU(x(t))

• if(x1(t) > x2(t)− ε), then the field to be used is f(x(t)) = fL(x(t))

2. Calculate x(t + h) using the field f in the selected discretization method, i.e. in
(D.2) for Forward Euler or (D.3) for RK4.

We show phase planes from simulations done with Berkeley Madonna (Figure D.4)
and with the basic ε-tube algorithm (Figure D.5). Obviously there is a trade-off between
the size of ε-tube and the discretization step size. One would like to use a thin ε-tube but
one also needs that the simulation solution falls inside the ε-tube and this implies using a
small step size. The thinner the tube, the smaller the step size.
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Figure D.4: Phase plane plotted with simula-
tion data calculated using Berkeley Madonna.
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Figure D.5: Phase plane plotted with simula-
tion data calculated using the basic ε-tube algo-
rithm.

Figure D.6 shows that there are small errors that can be seen when doing a zoom
near the sliding end point send when in the phase plane of Figure D.5, this is because of
finite precision arithmetic and the use of the ε-tube. The zoom also shows that taking
into account the numerical errors, the sliding segment is effectively send. Figure D.7
corresponds to the same trajectory shown in Figure D.2.
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Figure D.6: Zoom of the phase plane nearby
the sliding end point send
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Figure D.7: Trajectory calculated using the
basic ε-tube algorithm.

Remark: We assume that for a point that lies in the ε-tube the firm, whose target mar-
ket share is represented by Σ, has its extra effort turned on when calculating its associated
performance index J . The justification is that the firm wants more market share than its
target market share even though they accept at least their target market share.
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Appendix E

Review of duopoly models

E.1 K. R. Deal, 1979 [1]

E.1.1 Model derived from

Vidale-Wolfe.

E.1.2 Formulation

The objectives J1, J2 of firms F1, F2 are

max
u1

J1 = w1
S1(tf )

S1(tf ) + S2(tf )
+

∫ tf

t0

(c1S1(t)− u21(t))dt (E.1)

max
u2

J2 = w2
S2(tf )

S1(tf ) + S2(tf )
+

∫ tf

t0

(c2S2(t)− u22(t))dt (E.2)

and the system dynamics is

Ṡ1(t) = β1u1(t)
[M − S1(t)− S2(t)]

M
− δ1S1(t) (E.3)

Ṡ2(t) = β2u2(t)
[M − S1(t)− S2(t)]

M
− δ2S2(t) (E.4)

where xi(t) is the sales of firm Fi, ui(t) is the advertising expenditure of Fi, δi is the sales
decay parameter, βi is the sales response parameter, M is the total sales potential. In the
objective function, wi is the weight that is given to the final market proportion obtained,
ci is the net revenue coefficient, u2i is the advertising cost and cixi(t) is the revenue for Fi.
Assumption: the size of the potential market is fixed at M and this size is not changed by
advertising.
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E.1.3 Solution

Solves the open-loop Nash equilibrium using a numerical method.

E.2 J. Case, 1979 [2]

E.2.1 Model derived from

Lanchester. Its game formulation/solution is later used by others like Erickson, Chinta-
gunta.

E.2.2 Formulation

Firm 1 max
u1

=

∫ ∞
0

e−r1t(g1x(t)− c1
2
u21(t)dt x1(t) = x(t) (E.5)

Firm 2 max
u2

=

∫ ∞
0

e−r2t(g2(1− x(t))− c2
2
u22(t)dt x2(t) = 1− x(t) (E.6)

subject to
ẋ(t) = u1(t)(1− x(t))− u2(t)x(t) (E.7)

where

i = 1, 2 number of the firm

t time

x1(t) = x(t) market share of firm 1 at time t

x2(t) = 1− x(t) market share of firm 2 at time t

ui(t) advertising of firm i at time t (control variable)

r ≥ 0 discount factor

gi > 0 constant unit margin of firm i

ci > 0 constant cost parameter of firm i

x0 ∈ [0, 1] initial market share of firm 1 at t = 0
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E.2.3 Solution

The infinite horizon planning has an analytical closed-loop solution.
Case (1979) derives conditions which a pair of feedback strategies (u1(x), u2(x)) has

to satisfy, if it constitutes a Nash equilibrium for the above game. Moreover, he calculates
explicit expressions for ui(x), i = 1, 2, in the case of no discounting (i.e., r = 0).

E.3 G. Sorger, 1989 [2]

E.3.1 Model derived from

Uses a model derived from Lanchester. It is a A modification of the Case Game.

E.3.2 Formulation

max
ui

=

∫ tf

0

e−rit(gixi(t)−
ci
2
u2i (t))dt i = 1, 2, x1(t) = x(t)x2(t) = 1− x(t) (E.8)

subject to
ẋ(t) = u1(t)

√
1− x(t)− u2(t)

√
x(t) (E.9)

where i = 1, 2 is the firm index, Fi is the firm i, x1(t) = x(t) and x2(t) = 1 − x(t) are
the market shares of F1 and F2 at time t, ui(t) is the advertising rate of Fi, ri ≥ 0 is the
constant discount factor of Fi, gi is the constant margin of Fi, ci > 0 is the constant cost of
Fi Total market potential is constant. Sorger uses the square root of the the market share
in the dynamics equation to obtain a market share with a concave response so that it has
dimishing returns, in contrast to Little in 1979 who used an exponent on the advertising
effort to obtain a concave or an S-shaped response.

E.3.3 Solution

Finite time horizon, Open-Loop, Closed-loop) derives differential equation on the costate.
Sorger does a qualitative analysis on that equation.

Infinite time horizon has analytical solution for Open-loop and Closed-loop.

E.4 P. K. Chintagunta, N. J. Vilcassim, 1992 [3]

E.4.1 Model derived from

Lanchester.
Uses econometric estimation of response and differential games. Estimates parame-

ters k1 and k2 using a regression.
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E.4.2 Formulation

ẋ = β1
√
u1(1− x)− β2

√
u2x (E.10)

x1 = x is the market share of firm 1, x2 = 1− x is the market share of firm 2.
Discrete equation

xt+1 − xt = β1
√
u1,t+1(1− xt)− β2

√
u2,t+1xt (E.11)

So that players need to know the previous period market share M . The problem to be
solved is

max
ui

πi =

∫ ∞
0

e−rt(gixiSinst − ui)dt (E.12)

subject to
ẋi = βi

√
ui(1− xi)− βj

√
ujxi i, j = 1, 2 i 6= j (E.13)

where xi is the market share of firm i and x2 = 1− x1, ui are the advertising controls. r
is the discount factor, gi is the net contribution as a fraction of dollar sales for firm i, gi
is constant and independent of sales. Sinst is the instantaneous total sales in the market
in dollars at time t. r is the same for both firms. Parameters βi have to be empirically
estimated. Firms cannot collude, so that a Nash equilibrium is appropriate.

E.4.2.1 Open-loop

To obtain the OLNE (open-loop Nash equilibrium), maximize the Hamiltonian

maxHui = (gixiSinst−ui)+λi(βi
√
ui(1−xi)−βj

√
ujxi) i, j = 1, 2 i 6= j (E.14)

where λi are the costates.
The necessary conditions for the OLNE are

∂Hi

∂ui
= 0, ẋi =

∂Hi

∂λi
λ̇i = rλi −

∂Hi

xi
i = 1, 2 (E.15)

After simplifications, the above system of equations is transformed in

ui =

[
λiβi(1− xi)

2

]2
(E.16)

Ṁi = βi
√
ui(1− xi)− βj

√
ujxi i, j = 1, 2 i 6= j (E.17)

λ̇i = giSinst + λi(r + βi
√
ui + βj

√
uj i, j = 1, 2 i 6= j (E.18)

The system of equations given by (E.16), (E.17) and (E.18) does not have a closed
form solution. Chintagunta and Vilcassim solved it numerically using an algorithm pro-
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posed by Deal in 1979.

E.4.2.2 Closed-loop

They apply the Two-Player Game of Case (1979). The assumption made is that the dis-
count factor r is strictly positive and is close to zero in magnitude.

The advertising controls obtained are

u1 =
1

3
[2TR2 − S + 2(T 2R4 − STR2)] (E.19)

u2 =
1

3

[
2S

R2
− T + 2

(
T 2 +

S2

R4
− ST

R2

) 1
2

]
(E.20)

where R = k2
k2

x
1−x , S = g1Sinstx and T = g2Sinst(1− x).

Parameters β1, β2 in (E.10) were estimated using ordinary least squares and the his-
torical datasets for Coke and Pepsi advertising expenditures.

E.4.3 Solution

• Closed-loop, analytical solution for infinite time horizon. Solution as in
Case(1979).

• Open-loop, numerical solution.

• Solutions obtained are also analyzed using empirical data.

E.5 G. Erickson, 1992 [4]

E.5.1 Model derived from

Lanchester.

E.5.2 Formulation

Each firm seek to maximize its discounted profit

max

∫ ∞
0

e−rthi(x, u1, u2) (E.21)

dynamics is given by

ẋ = f(x, u1, u2), x(0) given (E.22)

also 0 ≥ x ≤ 1 and ui > 0
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Firms cannot cooperate, so that it is reasonable that they search for Nash equilibria. A

Nash equilibrium is a pair of strategies, one for each competitor, which has the property
that no competitor would like unilaterally to change its strategy (Moorthy 1985). In a
Nash equilibrium, each strategy is a competitor’s best strategy, given the strategies of its
rival, where ”best” means maximizing the profit integral.

There are two kinds of Nash equilibria that can be pursued: open-loop, where adver-
tising is a function of time, ui = ui(t, x(0)), in which x(0) is the starting value for market
share, and closed-loop, where advertising is a function of time and the current state of
the system ui = ui(t, x, x(O)). Unfortunately, open-loop and closed-loop equilibria are
generally different. The most frequently used approach in differential games has been to
develop open-loop equilibria, primarily because they are easier to compute (Case 1979).

Open-loop equilibria are by definition time consistent, in that if at some intermediate
point the competitors are asked to reconsider their strategies they would refuse to change
them (Fershtman 1987a). Open-loop strategies are not subgame perfect, they change
if initial conditions change. To be subgame perfect, an equilibrium must not depend
upon initial conditions. Specifically, strategies ui(t, x) that depend upon current values of
state vaiiables as well as time and that do not depend upon initial conditions are termed
feedback strategies (Fershtman 1 987b).

In general, closed-loop equilibria have been difficult to obtain, since they tend to in-
volve partial differential equations (Starr and Ho 1969; Fershtman 1987a).

E.5.2.1 Case approach to Lanchester game

An approach by Case (1979), however, offers hope for a class of problems, those involving

a single state variable, for which only ordinary, and not partial, differential equations

are required. In particular, Case’s approach can be applied to competitive situations

involving duopolistic competition for market share.

Case ( 1979, pp. 210-215) considers what he terms perfect equilibria, which are time

invariant (stationary) functions of state variables. This definition of ”perfect” equilibria

differs from what is elsewhere defined as ”perfect” (e.g., Friedman 1986). CASE, JAMES

H., Economics and the Competitive Process, New York University Press, New York, 1979.

Procedure by Case

• Define the Hamiltonians

Hi = hi(x, u1, u2) + λif(x, u1, u2) (E.23)

where λi is the costate and each firm maximizes its Hi

• Now determine ui(x, λ1, λ2) and A2(x, λ1, λ2) that form a Nash equilibrium for the
auxiliary game
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maxHi, i = 1, 2 (E.24)

Define the Hamilton-Jacobi equations

hi(x, û1(x, V
′

1 (x), V
′

2 (x)), û2(x, V
′

1 (x), V
′

2 (x)))

+ V
′

i f(x, V
′

1 (x), V
′

2 (x)), û2(x, V
′

1 (x), V
′

2 (x)))

= rVi(x) + ci i = 1, 2 (E.25)

where the ci are arbitrary real numbers and r is the discount factor, the Vi(M) are
the value functions for firm i, they are the discounted profit for firm i on an optimal
advertising path. The costate and value functions are related by λi = V

′
i (x), for

different starting levels x. If the system of ordinary differential equations defined
by (E.25) can be solved for V1(x) and V2(x), a perfect equibilibrium is derived:

ui(M) = ûi(x, V
′

1 (x), V
′

2 (x)) (E.26)

An equilibrium (E.26), forms an optimal strategy for each firm i and for any inital
value x. Because ci are arbitrary, there are infinite number of perfect advertising
equilibria.

E.5.3 Lanchester differential game

The objective for each firm

max
ui

∫ ∞
0

e−rt(gixi − ui)dt, i = 1, 2 (E.27)

subject to
ẋi = βiu

αi
i (1− xi)− βjuαjj xi, i, j = 1, 2 i 6= j (E.28)

where ui is the advertising effort of firm i, r is the discount factor, gi is the gross profit
rate of firm i, xi is the market share of firm i and x1 = x, x2 = 1− x, βi is a constant for
firm i.

E.5.4 Closed-loop solution

Analytical solutions can be derived only for r = 0. The following relations result and
they define ui implicitly in term of x.

gixi +
1− αj
αi

ui −
β3−i
αiβi

u1−αii u
α3−i

xi
x3−i

3−i , i = 1, 2 (E.29)
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Explicit forms for ui when αi = 0.5, i = 1, 2 in (E.29) are given below

ui(x) =
2
C2
i

D2
i
E3−i − Ei + 2

√
E2
i −

C2
i

D2
i
EiE3−i +

C4
i

D4
i
E2

3−i

3
i = 1, 2 (E.30)

where
Ci =

xi
x3−i

, Di =
βi
β3−i

, Ei = gix− ci, i = 1, 2 (E.31)

Note that x and ui are simultaneuos in different equations and also nonlinear.

E.5.4.1 Open-loop solution

The following differential equations are derived from the necessary conditions of the
open-loop strategies

u̇i = 2ui

(
r +

β3−i
√
u3−i

x3−i
− giβix3−i

2
√
ui

)
, i = 1, 2 (E.32)

After estimating parameters, the system (E.32) is solved numerically.

E.5.4.2 Conclusions

For two cases: Soda drinks (Coke, Pepsi) and Beer drinks (Miller, Anheuser-Busch) they

estimate parameters for the model and conclude that closed-loop perfect equilibrium fits

better the historical datasets

E.5.5 Solution

• Closed-loop, analytical solution for infinite time horizon. Solution as in
Case(1979).

• Open-loop, numerical solution.

• Solutions obtained are also analyzed using empirical data.

E.6 G. A. Fruchter, S. Kalish, 1997 [5]

E.6.1 Model derived from

Lanchester.
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E.6.2 Formulation

Two firms compete using a system dynamics described using Lanchester model they de-
termine the optimal advertising strategy for maximum discounted profits. New mathe-
matical approach. Discounted profit for each firm

max
uk

Jk(u1, u2) =

∫ ∞
0

[gkxk(t)− cku2k(t)]e−rtdt, k = 1, 2 (E.33)

subject to
ẋ(t) = β1u1(t)(1− x(t))− β2u2(t)x(t) (E.34)

where x1 + x2 = 1 and xk is the fraction of the market that belongs to firm k. The
constant gk is the gross profit rate of firm k, r is the discount rate and ck is the effectiveness
of advertising buying power, usually c1 = c2 = 1. The variables u1, u2 are the controls

based on advertising, in particular uk, k = 1, 2 is the square root of the advertising

expenditures of firm k. When the current state is also the initial state, the computed
optimal controls become a feedback strategy which depends on (x, t) . The effectiveness
of the combat of firm k is measured by βkuk(t).

E.6.3 Solution

Numerical solution. They transformed the problem into an initial value problem. Closed-
loop solution depends on time and state.

E.6.3.1 Open-loop

The first order necessary conditions using the variational approach as in Bryson and Ho
1975 on the differential game are

λ̇k(t) = rλk(t) + (β1u1(t) + β2u2(t))λk(t) + (−1)kgk, k = 1, 2 lim
t→∞

λk(t)e
−rt = 0

(E.35)

u̇k(t) =
(−1)k+1

2
c−1k βkλk(t)(1− xk(t)), k = 1, 2 (E.36)

Substituting (E.36) in (E.35) and (E.34) they obtain the following two-point boundary
value problem TPBVP value obtained

ẋ =
1

2
[c−11 β2

1(1− x)2λ1 − c−12 β2
2(x)2λ2], x(0) = x0 (E.37)

λ̇k = rλk +
1

2
[c−11 λ1λkβ

2
1(1− x)− c−12 β2

2λ2λkx]− (−1)k+1gk, lim
t→∞

λk(t)e
−rt = 0

(E.38)
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where k = 1, 2. In their lemma 1 they let λk(t) = (−1)k+1gke
rtΦ(t), k = 1, 2, also λk

satisfies (E.37) and (E.38). Using this assumptions Φ(t) satisfies a backward differential
equation

Φ
′
(t) =

1

2
[c−11 β2

1g1(1− xP )− c−12 β2
2g2x

P ]ertΦ2(t)− e−rt lim
t→∞

Φ(t) = 0 (E.39)

Note the change in notation x was replaced by xP to denote x during planning.
Let

Φ(t)ert = ψ(xP ) (E.40)

to get a new backward differential equation for ψ(xP )

ψ
′
(xP )ψ(xP )[c−11 β2

1g1(1− xP )2 − c−12 β2
2g2(x

P )2]− [c−11 β2
1g1(1− xP )

− c−12 β2
2g2x

P ]ψ2(xP ) = 2rψ(xP ), lim
t→∞

ψ(xP )e−rt = 0 (E.41)

where
The TPBVP (E.37), (E.38) can be transformed in the following IVP (initial value

problem)

ẋP =
1

2
[c−11 β2

1(1− xP )2g1 − c−12 β2
2(xP )2g2]e

rtΦ(t), x(0) = x0 (E.42)

Φ̇(t) =
1

2
[c−11 β2

1(1− xP )g1 − c−12 β2
2x

Pg2]e
rtΦ2(t)− e−rt, Φ(0) = ψ(x0) (E.43)

where ψ(x0) is obtained from the backward equation (E.41)
The control for the open-loop problem is

uOLk =
1

2
c−1k βkgkΦ(t)ert(1− xPk k = 1, 2 (E.44)

where xP1 = xP and xP2 = 1− xP and xP satisfies (E.42) and (E.43).

E.6.3.2 Closed-loop

The closed loop is time variant and depends linearly on the actual market share. Time
variant coefficients incorporate the discount factor. Its computation requires the solution
of a backward differential equation and a set of two nonlinear differential equations for
an initial value problem. Let the close-loop strategies be

u∗k =
1

2
c−1k βkgkΦ(t)ert(1− xk), k = 1, 2 (E.45)

The closed-loop advertising expenditures are proportional to the open-loop advertis-
ing expenditures and to the square of the competitor’s actual market share. From (E.44)
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and (E.45), we get

u∗k = uOLk
1− xk
1− xpk

, k = 1, 2 (E.46)

E.7 Q. Wang, Z. Wu, 2001 [6]

E.7.1 Model derived from

Lanchester and Vidale-Wolfe.

E.7.2 Formulation

Model

max
ui≥0

Ji =

∫ tf

0

(Mpixi − u2i )dt+ gixi(tf ) (E.47)

subject to

dxi
dt

= βiui(1− xi)− βjujxi − δixi, i, j = 1, 2 i 6= j xi(0) = xi0 (E.48)

where xi is the market share of firm i, ui is a variant of the advertising expenditure of
firm i, βi are response constants to the advertising of firm i, δi is a decay constant, pi
is the unit price at which firm i sells, M is the total market and gi is a valuation of the
market share of firm i at time T . The market share satisfies 0 ≤ x1 + x2 ≤ 1 and the total
market is normalized to 1, which is a subtle difference from other models and allows for

market growth until saturation. In other models, x1 + x2 = 1. The model does not use
any discount factor.

E.7.3 Solution

Numerical algorithm for open-loop and closed-loop Nash equilibrium solutions.
The solutions they obtain are numerical, for OLNE and CLNE. i.e., they solve the dif-

ferential equations for the necessary conditions numerically. Algorithm starts estimating
an initial value for each auxiliary variable λi(0) and φi(0) (for CLNE only). The neces-
sary conditions of Nash optimality are then solved forward in time by using the fourth
order Range-Kutta method. The values of auxiliary variables at terminal time T , λi(T )

and φi(T ), are with target values gi and 0. If they are within predetermined ranges a solu-
tion is found. Otherwise, the differential equations are solved again with the initial values
λi(0) adjusted by δi and φi(0) by σi (See expressions for δi and σi in the paper) They say
their model is better for the datasets tested.
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E.8 R. Jarrar, G. Martı́n-Herrán, G. Zaccour, 2004 [7]

E.8.1 Derived from

Lanchester.

E.8.2 Formulation

max
u1

∫ ∞
0

e−rt(g1x− u1)dt (E.49)

max
u2

∫ ∞
0

e−rt(g2(1− x)− u2)dt (E.50)

subject to
ẋ(t) = β1

√
u1(t)(1− x(t))− β2

√
u2(t)x(t), x(0) = x0 (E.51)

where x1(t) = x(t) is the market share of firm 1 at time t and x2(t) = 1 − x(t) is the
market share of firm 2 at time t, βi, i = 1, 2 is a constant that denotes the advertising
effectiveness of firm i, ui(t) is the advertising budget of firm i, gi is the gross margin per
point of market share for firm i and r is the discount rate.

From page 996: However, in an infinite-horizon setting, the assumption of a zero-

discount rate lacks conceptual appeal.

E.8.3 Solution

They proposed a numerical algorithm for solving Markow perfect equilibrium for the
Lanchester duopoly model where the discount factor can be nonzero.

Discussion

The standard sufficient condition to determine a stationary MPNE (Markov Perfect
Nash Equilibrium) is to find bounded and continuously differentiable functions Vi(x),
i = 1, 2 , satisfying, for all x, 0 ≥ x ≤ 1, the Hamilton-Jacobi-Bellman (HJB) equations

rV1(x) = max
a1

[g1x− a21 + V
′

1 (x)(β1a1(t)(1− x(t))− β2a2(t)x(t))] (E.52)

rV2(x) = max
a2

[g2(1− x)− a22 + V
′

2 (x)(β1a1(t)(1− x(t))− β2a2(t)x(t))] (E.53)

where a2i = ui the change is for computations purposes, Vi(x) is the value function of
firm i and V ′i (x) its derivative. u2i is used for computations.

The usual algorithm for obtaining MPNE strategies is:

• Assume interior solutions and take derivatives of (E.52), (E.53) with respect to a1,

112



a2, respectively, and equate to zero

a1 =
β1
2

(1− x)V
′

1 (x), a2 = −β2
2
xV

′

2 (x) (E.54)

For M ∈ (0, 1) these equations can be rewritten as

V
′

1 (M) =
2a1

β1(1− x)
, V

′

2 (x) = − 2a2
β2x

(E.55)

• Substitute for ui from E.54) in (E.52), (E.53) to obtain two differential equations
involving Vi(x), V ′i (x) i = 1, 2, and x.

• Postulate a functional form for Vi(x) , i = 1, 2 —for example, a polynomial of a
certain degree—and determine its coefficients by identification.

The main difficulty is that one cannot find such a functional form (at least nobody has
found it yet); hence, two options are possible:

- The first is to obtain these value functions numerically.

- The second is to somehow simplify the HJB equations so that they become analyt-
ically tractable. The literature has adopted this last approach.
For instance, to solve the HJB equations and derive a stationary MPNE, Chintagunta
and Vilcassim (1992) use an equivalent system defined in terms of the advertising
variables a1 and a2 rather than the value functions. Indeed, they use (E.55)) to re-
place Vi(x) by their expressions in terms of ai in the HJB equations. Assuming that
the discount rate r = 0, then the HJB differential equations system is reduced to a
simple system of two algebraic equations with two unknown variables, a1 and a2.

Jarrar et al. use a system of differential equations on Vi. They substitute ai from from
E.54) in (E.52), (E.53) to obtain

rV1(x) = g1x+

(
β1
2

(1− x)V
′

1 (x)

)2

+
β2
2

2
x2V

′

1 (x)V
′

2 (x) (E.56)

rV2(x) = g2(1− x) +

(
β2
2
xV

′

2 (x)

)2

+
β2
1

2
(1− x)2V

′

1 (x)V
′

2 (x) (E.57)

after algebraic computations they obtain a system of V ′i on the RHS in terms of Vi on
the LHS, which they solve numerically with ODE45 available in Matlab.
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E.9 F. M. Bass, A. Krishnamoorthy, A. Prasad, S. Sethi,
2005 [8]

E.9.1 Model derived from

Lanchester. It includes brand and generic advertising.

E.9.2 Formulation

Change in primary demand Q is given by

dQ

dt
= Ṡ1(t) + Ṡ2(t) = k1a1(t) + k2a2(t) (E.58)

where Si is the rate of change of the sales of Fi (firm i), ai is the generic advertising of
Fi, ki is the effectiveness of that advertising and i = 1, 2.

The generic advertising effect on the sales of firm i is

Ṡi,g(t) = θi(k1a1(t) + k2a2(t)) (E.59)

The brand advertising effect on the sales of firm i, which is a Lanchester model, is given
by

Ṡi,b(t) = βiui(t)
√
M(t)− Si(t)− βjuj(t)

√
Si(t), i, j = 1, 2 i 6= j (E.60)

where ui is the advertising of Fi, βi is the effectiveness of the advertising of Fi.
The total change of sales is Ṡi = Ṡi,g(t) + Ṡi,b(t), i.e., variation due to generic plus

variation due to brand advertising.

Ṡi(t) = βiui(t)
√
M(t)− Si(t)− βjuj(t)

√
Si(t)

+ θi(k1a1(t) + k2a2(t)), Si(0) = Si0 i, j = 1, 2 i 6= j (E.61)

The controls of Fi are its brand advertising ui(t) and its generic advertising ai(t). The
discounted profit maximization problem is

Vi(S1, S2) = max
ui(t),ai(t),pi(t)

∫ ∞
0

e−rit ((1− bipi(t) + dip3−i(t))pi(t)Si(t)− C(ui(t), ai(t))) dt,

(E.62)
where ri is the discount rate, pi is the price charged, bi and di are demand parameters, the
factor (1 − bipi(t) + dip3−i(t)) of pi(t)Si(t is interpreted as the reduction in sales due to
price competition and C(ui(t), ai(t)) is the total advertising expenditure of firm Fi. The
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expenditure in advertising is quadratic

C(ui(t), ai(t)) =
ci
2

((ai(t))
2 + (ui(t))

2) (E.63)

E.9.3 Solution

They obtain closed loop solutions.They obtain perfect Markov Nash equilibrium, i.e., they
use an infinite time horizon. Work with symmetric and asymmetric firms. Symmetric is
when the two firms have the same parameters, asymmetric otherwise. For firm i i = 1, 2

the optimal decisions are:

• Brand advertising

u∗i (t) =
βi
ci

(ρi − γi)
√
S3−i(t) (E.64)

• Generic advertising

a∗i (t) =
ki
ci

(θiρi − θ3−iγi) (E.65)

• Price
p∗i (t) =

di + 2b3−i
4b1b2 − d1d2

(E.66)

• Value function
Vi(S1, S2) = αi + ρiSi + γiS3−i (E.67)

where α1, α2, ρ1, ρ2, γ1 and γ2 solve the systems of six equations

riαi −
k2i
2ci

(θiρi + ρ3−iγi)
2

− k23−i
c3−i

(θ1ρ1 + θ2γ1)(θ2ρ2 + θ1γ2) = 0 i = 1, 2 (E.68)

riβi −mi +
β2
3−i

c3−i
(ρ1 − γ1)(ρ2 − γ2) = 0 i = 1, 2 (E.69)

riγi −
β2
i

2ci
(ρi + γi)

2 = 0 i = 1, 2 (E.70)

Krishnamoorthy et al. conclude that the impact of generic brand advertising is limited
and that brand advertising has more effects on the market shares in the long run.
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E.10 Q. Wang, Z. Wu, 2007 [9]

E.10.1 Model derived from

Lanchester.
Empirical study of Lanchester. Issues considered are: i) specification of market share

response model ii) effect of inflation iii) performance of competitive strategies. It is shown
a) square root in market share response equation is often inappropriate b) market share
variations are more responsive to current advertising c) closed-loop Nash equilibrium
strategies are better than open-loop strategies for maximizing profit d) general perfect
equilibria

E.10.2 Model

max
Ai≥0

Ji =

∫ tf

0

e−rt(Sinstpfixi − ui)dt+ gixi(tf ) (E.71)

subject to

dxi
dt

= βi(ui(t))
αi(1− xi)− βj(uj(t))αjxi, i, j = 1, 2 i 6= j (E.72)

where Sinst is the instantaneous total sales in the market in dollars at time t, r is the
discount rate, xi is the market share of firm i, pfi is the unit profit margin of firm i, gi
is the valuation of the ending market in present value, i = 1, 2 and the planning interval
is [0, T ], the adverstising expenditure of firm i is ui. Perfect equilibria by Case uses an
infinite planning horizon.

Little 1979, used 0 < αi < 1 to obtain a sales response that is concave from a

Lanchester model.

Difference with 2001, the exponent αi, αj on the advertising controls. Also discount

factor.

Remark:

The introduction of the power function generalizes the Lanchester model but makes
more complex. To overcome this, later studies use the square root function αi = 0.5 for
mathematical tractability without empirical validation (Deal 1979, Sorger 1989, Chinta-
gunta Vilcassim 1992)

CLNE solutions allow decision makers to react to current situations and are more ap-
propriate for marketing problems. However, general CLNE solutions have been rarely
discussed. Erickson 1992 and Chintagunta-Vilcassim 1992 use perfect equilibria closed-
loop Nash equilibrium PECLNE solution developed by Case 1979. PECLNE is a special
case of CLNE. PECLNE depends on states alone and they are obtained using an infi-
nite time horizon. Empirical studies by Erickson 1992 and Chintagunta-Vilcassim 1992
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showed that they fit better the data analyzed than OLNE.
With the present state of knowledge, solving OLNE or CLNE is difficult. Numerical

algorithms have been developed to obtain general OLNE or CLNE solutions to dynamic
competitive advertising models (Deal 1979, Wang Wu 2001)

E.10.3 Solution

They solve open-loop Nash equilibrium (OLNE), closed-loop Nash equilibrium (CLNE),
perfect equilibria closed-loop Nash equilibria (PECLNE) using the algorithm in Wang,
Wu 2001, which is a numerical algorithm.

In their empirical studies they use nonzero discount factor and found that

• market share variations are more responsive to current advertising

• CLNE are better competitive advertising strategies for firms maximizing profits

• PECLNE equilibrium strategies are usually not good competitive advertising strate-
gies for firms maximizing profits

• square roots of advertising in the system dynamic are not suitable for all industries

E.11 A. Krishnamoorthy, A. Prasad, S. P. Sethi, 2010 [10]

E.11.1 Model derived from

Vidale-Wolfe. The model combines price and advertising for a duopoly differential game.

E.11.2 Formulation

max
u1(t),p1(t)

=

∫ ∞
0

e−r1t((p1 −m1)ṡ1(t)−
c1
2
u21(t))dt (E.73)

max
u2(t),p2(t)

=

∫ ∞
0

e−r2t((p2 −m2)ṡ2(t)−
c2
2
u22(t))dt (E.74)

subject to

ṡ1(t) = ρ1u1(t)
√
M − S1(t)− S2(t)D1(p1(t)) (E.75)

ṡ2(t) = ρ2u2(t)
√
M − S1(t)− S2(t)D2(p2(t)) (E.76)

• Si(t) is the cumulative sales of firm i at time t

• M is the market potential
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• ui(t) is the advertising effort of firm i at time t

• pi(t) is the price of firm i at time t

• ci is the coefficient of advertising cost of firm i

• βi is the effectiveness of advertising of firm i

• mi is the marginal cost of production of firm i

• αi is the demand intercep of firm i (linear demand)

• φi is the price sensitivity of firm i (linear demand)

• ηi is the price elasticity of firm i (isoelastic demand)

• ri discount factor of firm i

• Vi(si, sj) is the value function for firm i when its cumulative sales is si and the
cumulative sales of its competitor is sj

• Di is the demand function for firm i

E.11.3 Solution

Closed-loop solution using the assumption of a constant value for the derivative of the
value function and two forms for the demand function: linear and isoelastic. The feedback
strategies they find are:

p∗i (si, sj) =
1

2

(
αi
φi

+mi −
∂Vi
∂Si

)
(E.77)

u∗i (si, sj) =
βi

4ciφi

(
αi + φi

(
∂Vi
∂Si
−mi

))2√
M − Si − Sj (E.78)

• They assume a constant value for the derivative of the value function and two forms
for the demand function: linear and isoelastic.

• The solution is analytical in term of constants, which are calculated from a system
of equations.

• They obtain an analytical solution of the infinite horizon formulation.

• The symmetric case, when all parameters are the same for both firms
ci = cj = c, ri = rj = r, qi = qj = q,mi = mj = m,αi = αj = α,

and φi = φj = φ is solved analytically.

• The case where firms can have different the parameter values are obtained numeri-
cally.
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E.12 S. Jorgensen, G. Martı́n-Herrán, G. Zaccour, 2010
[11]

E.12.1 Leitmann-Schmitendorf model

The Leitmann-Schmitendorf model has a decay like Vidale-Wolfe and a cross term from
Lanchester. Its system dynamics is

ẋi(t) = ui(t)−
ci
2
u2i − kiuj(t)xi(t)− δixi(t) (E.79)

where x(t) is the sales rate at time t, ci, δi, ki are positive parameters. The effect of
advertising is ui(t)− ci

2
u2i , it has a decay like Vidale-Wolfe δixi(t) and a Lanchester term

kiuj(t). The objective functional is

Ji(ui) =

∫ tf

0

(pixi(t)− ui(t))dt (E.80)

where pi > 0 is the price per unit sold an ui is the rate of advertising expenditure.

E.12.2 Tractability of calculating the equilibrium

Feedback Nash equilibrium allows players to take decisions throughout the game in con-
trast to open-loop equilibrium where the players choose their strategies at the beginning
without changing it during the game. However, open-loop Nash equilibrium has been pop-
ular in applications because it is generally much easier to compute. Facing the trade-off

between strategic appeal of feedback equilibrium and the tractability of open-loop equi-

librium, researchers have looked for game structures where an open-loop equilibrium is

subgame perfect, in an attempt to get the best of the two equilibrium types. The Leitmann-

Smittendorf differential game belongs to the class of State-Redundant differential games.

In this class of games, the open-loop Nash equilibrium is subgame perfect.

E.12.3 Linear and state-redundant differential games

To define the notion of state redundancy, first consider an N player differential game
played on the interval [t 0, T ]. Let the control ui(t) ∈ Ui ⊆ Rm and the state xi(t) ∈
X ⊆ Rp. The state equations describing the motion are

ẋ(t) = f(x(t), u(t), t), x(t0) = x0 (E.81)
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where u(t) = (u1(t), u2(T ), . . . , uN(t). The payoff functional is

Ji(u, t0, x0) =

∫ tf

t0

gi(x(t), u(t), t)dt+ Si(x(tf ), tf ) (E.82)

where function gi is player i’s instantaneous payoff and Si. The Hamiltonian of player i
is

Hi(x, u, λi, t) = gi(x, u, t) + λif(x, u, t) (E.83)

where λi(t) is a p−dimensional vector of costate variables. Candidates for Nash equilib-
rium have to satisfy the following necessary conditions

ẋ(t) = f(x(t), u(t), t), x(t0) = x0 (E.84)

λ̇i(t) = −∂Hi(x(t), u(t), λi(t), t)

∂x
, λi(tf ) =

∂Si(x(tf ), tf )

∂x(tf )
(E.85)

∂Hi(x(t), u(t), λi(t), t)

∂ui
= 0, i = 1, . . . , N (E.86)

E.12.4 Linear state games

Linear state games were introduced by Dockner et al. as the state-separable. The state-
separability conditions are:

∂2Hi

∂ui∂x
= 0, for

∂Hi

∂ui
= 0,

∂2Hi

∂x2
= 0,

∂2Si
∂x2

= 0 (E.87)

for a weaker version of the condition ∂2Hi
∂ui∂x

= 0 see Dockner et al.
Cleamhaut and Wan introduced the trilinear game, which is a kind of linear state game,

it is the first model where the open-loop Nash equilibrium is subgame perfect.A game is
called trilinear when the Hamiltonians are linear in state and costate variables as well as
functions of the control variables.

There are many applications of linear state games in economics and management:
Breton et al., Jorgensen and Zaccour, Jorgensen et al., Martı́n-Herrán and Zaccour, Vis-
colani and Zaccour, Cellini and Lambertini.

Exponential games are also a subclass of linear state games. In this class the objective
is ∫ tf

t0

gi(u(t), t)e−muix(t)dt (E.88)

where µi ∈ Rp are constants. The state equations are

ẋ(t) = f(u(t), t), x(t0) = x0 (E.89)
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Note that the state dynamics depend only on the controls and the state variables enter
the objective functions in the exponent. Dockner et. al used the transformation yi(t) =

e−muix(t). Jorgensen let the control variables enter the into the dynamics and the objective
in exponential form and uses the same procedure as Leitmann-Schmitendorf to show that
the OLNE is a FNE which is subgame perfect. Yeung extends the game in Jorgensen to a
setting where the Hamiltonians are not required to be linear in the state.

E.12.5 State-redundant games

Leitmann-Schmitendorf initiated the state-redundant differential games. A differential
game is state-redundant if the following holds: If after the substitution for the solution

of the costate, obtained from equation (E.85), in the Hamiltonian-maximization condi-

tions (E.86), these hamiltonian equations are independent of the state variables and of

their initial values, then the game is state-redundant Note that state-redundant games
are state-separable, but state-separable games are not necessarily state-redundant games.
Leitmann-Schmitendorf models and Feichtinger model are examples of state-redundant
games.
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