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• Agradeço à Tia Deise, secretária academia da Graduação do IM/UFRJ,

que resolveu infinitos pepinos meus na época da Graduação e Mestrado em
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• Agradeço mais em particular ainda aos alunos dessa turma que me tornei mais
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Arnol’d por aparecer em um trabalho controverso sobre ensino de Matemática Pura, “On teaching
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Distorções não-lineares podem aparecer em sinais de áudio desde o momento da

sua gravação até a posterior reprodução: equipamentos precários ou operados de

maneira indevida, mı́dias fisicamente degradadas e baixa qualidade dos aparelhos

de reprodução são somente alguns exemplos onde não-linearidades podem aparecer

de modo natural.

Outro defeito bastante comum em gravações antigas são os pulsos longos, em

geral causados pela reprodução de discos com arranhões muito profundos ou fitas

magnéticas severamente degradadas. Tais defeitos são caracterizados por uma des-

continuidade inicial na forma de onda, seguida de um transitório de baixa frequência

e longa duração.

Em ambos os casos, artefatos auditivos podem ser criados, causando assim uma

experiência ruim para o ouvinte. É importante então desenvolver técnicas para

mitigar tais efeitos, tendo como base somente uma versão do sinal degradado, de

modo a recuperar o sinal original não degradado.

Nessa tese são apresentadas técnicas para lidar com esses dois problemas: o pro-

blema de restaurar gravações corrompidas com distorções não-lineares é abordado

em um contexto bayesiano, considerando tanto modelos autorregressivos quanto de

esparsidade no domı́nio da DCT para o sinal original, bem como por uma solução

determińıstica também usando esparsidade; para a supressão de pulsos longos, uma

abordagem paramétrica é revisitada, junto com o acréscimo de um eficiente procedi-

mento de inicialização, sendo também apresentada uma abordagem não-paramétrica

usando processos gaussianos.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
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Memoryless nonlinear distortion can be present in audio signals, from record-

ing to reproduction: bad quality or amateurishly operated equipments, physically

degraded media and low quality reproducing devices are some examples where non-

linearities can naturally appear.

Another quite common defect in old recordings are the long pulses, caused in gen-

eral by the reproduction of disks with deep scratches or severely degraded magnetic

tapes. Such defects are characterized by an initial discontinuity in the waveform,

followed by a low-frequency transient of long duration.

In both cases audible artifacts can be created, causing an unpleasant experience

to the listener. It is then important to develop techniques to mitigate such defects,

having at hand only the degraded signal, in a way to recover the original signal.

In this thesis, techniques to deal with both problems are presented: the restora-

tion of nonlinearly degraded recordings is tackled in a Bayesian context, considering

both autoregressive models and sparsity in the DCT domain for the original signal,

as well as through a deterministic solution also based on sparsity; for the suppression

of long pulses, a parametric approach is revisited with the addition of an efficient

initialization procedure, and a nonparametric modeling via Gaussian process is also

presented.
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Chapter 1

Introduction

“Abandon all hope, ye who enter here.”

– Dante Alighieri1, Divine Comedy

The human being has always been concerned with the preservation of impor-

tant moments for posterior admiration: the prehistoric man carved figures in the

rocks, mainly as part of its rituals; the creation of the written language allowed the

recording of informations in a less pictorial way than primitive drawings; and with

the development of better tools it was possible to manufacture canvas, inks and

brushes, and with some technical effort the paintings became more and more pre-

cise and realistic. All these aspects are about the recording of visual information,

and the recording of auditory information needed to wait until the technological

advances of recent times.

One of the earliest forms of “recording” audio information, at least in a graphical

way, dates back to about two millennia BCE2, where tables with cuneiform sym-

bols represented the melodic line of some songs. More sophisticated notations were

developed along time, in particular the modern staff notation, whose rudimentary

ideas date back to the 11th. Century, with Guido d’Arezzo3. However, the recording

of audio information in written form possesses a severe and obvious drawback: in

order to be heard, it must be played by a person or group of people! Moreover,

there must be another person able to transcribe the audio information to a written

format, not an easy task.

The earliest known device to record an audio information without being tran-

scribed by a human was the phonautograph, created and patented by Édouard-Léon

Scott de Martinville4 in 1857. Built analogously to some structures of the human

ear, this device was able to transcribe sound waves in a pictorial information, its

1Durante degli Alighieri, Florence, c. 1265 – Ravenna, September 1321.
2Abbreviation to “Before Common Era” or “Before Current Era”.
3Guido d’Arezzo, c. 991 – after 1033.
4Édouard-Léon Scott de Martinville, April 25, 1817 – April 26, 1879.
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corresponding waveform. It was intended not for playing back the sound, but only

to create a visual representation of the audible information. However, in 2008 re-

searchers were able to play these waveforms, recorded more than 150 years ago [3].

Some years later, in 1877, Thomas Edison5 invented and patented the phono-

graph, the first device able to record and reproduce the recorded sound. Like the

phonautograph, it used a conical horn to conduct the air pressure to a membrane,

which moved an attached needle back and forth, engraving the waveform in a metal,

later replaced by a wax, cylinder. The playback of the sound was done in a dual

way, by using the needle to trace the groove, causing the membrane to vibrate and

emit sound. Some years later, the standard recording media became a disk instead

of a cylinder.

Fast-forwarding some years, around 1950 recording in magnetic tapes became

very popular, since it allowed to record continuously for a longer duration and with

much higher fidelity than before. Another advantage of using magnetic tapes was

allowing the easy manipulation of the recorded information, by physically combining

audio excerpts recorded in more than one tape.

And finally, around 1975 began the digital era of recorded audio, the most rapid

and far-reaching series of changes in the history of recorded audio until now. Digital

recording and reproducing media, like the DAT (Digital Audio Tape) and the CD

(Compact Disc), became the standard, both for the industry and the consumer.

In all these cases, the recorded information is sensitive to the preservation state of

the physical media; and for the oldest recordings it is almost certain that the media

is degraded in some way, leading to audible artifacts that impair the quality of

perceived information. For example, a cylinder or disk could be scratched (or even

broken), causing deviations along the needle’s path and disturbances in the arm

response, creating then sounds like clicks or thumps, technically known as impulsive

noise and long pulse, respectively; the puncture on the disk might not be well

centralized, and the disk might be bent if subject to high temperatures, creating then

variations of speed during reproduction; the process of recording and reproducing

information in a magnetic tape is inherently nonlinear, due to the physical process

involved in the production of a magnetic flux from an electrical current, causing

nonlinear modifications to the recorded audio.

It is then important to be able to “undo” some of these impairments, returning

back to the original recorded information, and this is the main focus of this thesis.

After the emergence and popularization of the digital computer, restoration pro-

cedures on acoustical information from degraded media became more efficient and

easy to perform, despite not being straightforwardly designed.

The defects in an audio recording can be broadly divided in localized or dis-

5Thomas Alva Edison, Milan, February 11, 1847 – West Orange, October 18, 1931.
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tributed. A localized degradation is one that affects only short sections of the signal,

like the clicks heard in a scratched disk. On the other hand, distributed defects, like

background noise, nonlinear distortions in magnetic tapes, and variations of speed,

for example, impact the entire signal or a large portion of it. It is not easier to re-

store one or another category of degradations: each one possesses its particularities

that must be exploited in order to create an effective restoration procedure.

In this work, we propose solutions to some of these problems. The restoration

procedure is performed in a digital computer, with a digitized version of the degraded

signal and via statistical methods for their description, its respective degradations

and its estimation. Each of these theoretical frameworks and procedures are de-

scribed in detail along the text. This thesis is structured in the following way:

• This first part presents very briefly the theoretical foundations that are needed

to tackle the problem: Chapter 2 recalls some basic tools and definitions from

Probability and Statistics, followed by the Bayesian computational methods

used in most of the proposed algorithms in Chapter 3. Finally, in Chapter 4

the autoregressive model for audio signals is presented and discussed in detail.

• The second part presents solutions to the restoration of audio signals with

nonlinear distortions when the original signal is modeled via the AR model.

Chapter 5 is a brief introduction to nonlinearities in audio signals, and in

Chapter 6 some possibilities to model nonlinear phenomena are presented.

Solutions to the restoration of audio signals degraded by nonlinear distortion

without and with memory are presented in Chapters 7 and 8, respectively, and

its results and related future works are described in Chapter 9.

• In the third part, the problem of nonlinearly distorted audio signals is tackled

from a more recent perspective: the original undistorted signal is modeled as

approximately sparse in the DCT domain. In Chapter 10, an adaptation of

[4] to the case of audio signals is presented, where the sparsity of the signal is

deterministically modeled. On the other hand, Chapter 11 models the sparsity

in a Bayesian context via Laplace priors in the DCT domain.

• In the fourth part, the problem of degradation by low frequency decaying

pulses is treated. In Chapter 12, a parametric model for the pulse is presented

together with an estimation procedure for their parameters, while in Chapter

13 the pulse is modeled in a non-parametric way via a Gaussian Process,

and also an efficient initialization procedure for the variables of the initial

discontinuity is presented.

• Finally, the fifth and last part of the text discusses the results obtained and

indicates future works in Chapter 14.
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Publications associated with this thesis are [5–7].

Whenever possible, historical information is provided, and essential concepts are

discussed in an intuitive way before presenting their more technical aspects. I hope

that its improved readability justifies the extended length of this text.
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Chapter 2

Probability and Statistics

“God does not play dice with the universe.”

– Albert Einstein1

2.1 Probability: quantifying uncertainty since an-

tiquity

The human being has always been concerned with uncertainty. Since the beginning

of the civilizations, quantifying and (trying to) reduce the uncertainty of natural

phenomena is important: the first farmers in the Fertile Crescent were concerned

whether it would rain or not, and they prayed and did offerings to the gods in order to

reduce the uncertainty in the climate; there are historical reports of gambling games

in ancient times, from Egypt to Greece, in which the player could use dishonest

artifacts to reduce the uncertainty on their odds of winning; in the 9th. Century

Al-Kindi2 used rudimentary techniques of Statistics to create the first known code

breaking algorithm, thus reducing the uncertainty about the information contained

in an encrypted message [8, 9].

Fast-forwarding to more recent times, Probability and Statistics theory are

widely employed in our world, in almost every scientific field of knowledge. For

example, it is unimaginable to publish a scientific paper reporting the result of some

experiment without a statistical analysis of the data, leading to a “proof” of the

correctness (or not) of the proposed claim; investment funds employ very sophisti-

cated techniques of Probability theory with the goal of predicting the behavior of

the financial market; Netflix uses statistical algorithms to predict which films you

will like to watch, based on information about films already watched and rated.

1Albert Einstein, Ulm, March 14, 1879 – Princeton, April 18, 1955.
2Abu Yūsuf Ya’qūb ibn ’Ish. āq as.-S. abbāh. al-Kind̄i, Basra, c. 801 – Baghdad, c. 873.
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Unfortunately not every person is aware of Probability and Statistics theory, and

sometimes many are fooled by banks, lotteries and casinos.

The main usage of Probability and Statistics in this thesis will not have any

of the motivations above; they will serve as an abstract and very powerful tool to

describe audio signals and other quantities related to them. This chapter is not an

introduction to Probability and Statistics, but only a collection of ideas and methods

that will be used during this text. As an introduction to the subject we strongly

recommend the book [10].

2.2 The relationship between Probability and

Statistics

In the last section we talked about Probability and Statistics not in a symmetric

way. In fact, these fields are very different, despite this fact being not so clear. In

order to explain this, take a look on the diagram below, strongly inspired by [11]:

Data generating process Observed data

Probability

Statistics

Figure 2.1: Probability and Statistics.

Probability theory is concerned with obtaining information from the data being

generated by some well-known data generating process. For example, one could be

interested in computing the expected number of heads until the first tail appears in

a tossing coin game, knowing beforehand that the coin is fair and having a model

for the process being studied.

On the other hand, Statistics theory does the opposite, that is, it tries to in-

fer informations about the data generating process, analyzing the available data.

Following the example in the last paragraph, a gambler could be interested in dis-

covering whether the coin is fair, based on a sequence of trials of the coin tossing

game.

This difference should always be clear when dealing with probabilistic and sta-

tistical concepts, in order to guide our intuition. In this work we will be mainly

interested in creating a probabilistic model for audio signals and their respective
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defects, depending on some parameters, and estimating these quantities from the

data available in order to restore the degraded signal. So, in the figure presented

above, we will be mainly interested in the arrow from right to left.

2.3 Interpretations of Probability

Probability theory is quite an old subject in Mathematics, being studied regularly

since Renaissance by famous mathematicians and philosophers like Cardano3, de

Moivre4, Pascal5, Fermat6, the Bernoulli family7, and many others [9, 12]. Since the

subject involves much more than technical effort in order to understand its basis

due to its philosophical content, it is then natural that some discordances about the

interpretations of probability have emerged along time. For example, how does one

interpret the following sentences?

• The probability of obtaining the number 2 when throwing a balanced dice is

1/6, approximately 16.67%.

• The probability of raining tomorrow in Rio de Janeiro is 32%.

Intuitively, the first one is quite simple, since we can imagine that if one throws the

dice several times, in approximately 1/6 of the trials the number 2 will be obtained8.

But what about the second sentence? If one tries to interpret it in the same fashion

as the first one, something very weird will happen! There is no way of repeating the

“tomorrow” several times and computing the proportion of “tomorrows” in which

will rain in Rio de Janeiro, unless we accept the hypothesis of multiple parallel

universes in Physics!

In fact, these two sentences lead to very different interpretations of probability:

the frequentist and the subjective ones. The frequentist interpretation is exactly

what we proposed in the beginning of the last paragraph: the probability of an event

occurring is its relative frequency when the number of trials is big enough. On the

other hand, the subjective interpretation is related to the degree of plausibility one

associates with the occurrence of some event. Note that the subjective interpretation

is much more reasonable than the frequentist one in the second sentence: based on

methods for weather forecasting, the degree of belief of someone in the hypothesis

3Gerolamo Cardano, Pavia, September 24, 1501 – Rome, September 21 1576.
4Abraham de Moivre, Vitry-le-François, May 26, 1667 – London, 27 November, 1754.
5Blaise Pascal, Clermont-Ferrand, June 19, 1623 – Paris, August 19, 1662.
6Pierre de Fermat, Beaumont-de-Lomagne, August 17, 1601 or 1607 – January 12, 1665.
7A family of merchants and scholars from Switzerland.
8In fact this is not so simple as stated. What do we mean by “several times” and “ap-

proximately”? Our mind can accept this inaccuracy, but rigorously there is something missing.
Nowadays, with the modern foundations of Probability theory, this can be viewed as a family of
theorems, the Laws of Large Numbers.
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of raining tomorrow in Rio de Janeiro might be not high enough to make him

worry about a flood, but sufficiently high to make him carry an umbrella inside his

backpack.

There are other possible interpretations of Probability [13], and this is always a

cause of huge controversies in the scientific community. Although very interesting,

this philosophical aspect of the theory is not the main focus of this work.

2.4 Probability spaces and random variables

The axiomatization of Probability theory we use nowadays is due to Kolmogorov,

and was first published in 1933 (English translation can be found in [14]). Despite

the previous discussion, the axioms postulated by Kolmogorov and stated below

are independent of any interpretation of Probability. The main ingredients to do

Probability are9:

• A set Ω, called the sample space;

• A σ-algebra F defined over Ω, called the set of events ;

• A function P : F → [0, 1], the probability measure, satisfying P(Ω) = 1 and

P(∪∞n=1En) =
∑∞

n=1 P(En), if the sequence (En)n∈N ⊂ F is disjoint.

The triple (Ω,F ,P) is called a probability space. Intuitively, the set Ω represents the

possible outcomes of an experiment, and F consists of the subsets of Ω we judge

“reasonable” to measure. Finally, the function P(.) assigns a number from 0 to 1 to

any of these “reasonable” sets, representing its probability. The function P(.) and

the σ-algebra must satisfy some compatibility conditions that are beyond the scope

of this text.

One of the main advantages of using this framework is that it allows the use of the

very powerful tools of Calculus. This is done via the concept of a random variable,

which means nothing more than a function X : Ω → R satisfying the condition

X−1(−∞, a) ∈ F , for all a ∈ R. Despite its apparent obscurity, a random variable

is only a way of summarizing numerically the possible results of an experiment,

ignoring all the detailed information contained in Ω. The above condition that

X(.) must satisfy is a very technical one and is called measurability. It guarantees

essentially that the random variable does not require any information that is not

available in the σ-algebra F10.

9For a precise definition of these entities, see [15, 16].
10The name “random variable” is a very misleading one, since there is nothing more determinis-

tic than a function that assigns one number to another object in a well defined way, and since it is
a function it is not a variable anymore! Anyway, this is the best known way to express uncertainty
in terms of real numbers, and unfortunately it received this name, which is widely used in the
literature.
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Associated with each random variable there is its respective distribution, being

essentially a function representing how the probability is spread among the image

of the function X(.): since we are assigning a real number to each possible outcome

in Ω, it is reasonable to assign probabilities to these real numbers as well. The two

main types of random variables are the discrete and continuous ones. The image of

a discrete random variable is a discrete subset of R, denoted by {x1, x2, . . . }, and

for each xi there is a number pi associated, representing its probability of occur-

rence, that is, pi = P(X = xi) := P(X−1(xi)). The sequence p1, p2, . . . is called the

probability mass function (PMF) of X. Continuous random variables are character-

ized by the existence of a probability density function (PDF), an integrable positive

function f : R → R satisfying P(X ∈ (a, b)) := P(X−1(a, b)) =
b∫
a

f(x) dx. And

finally, independently of being discrete or continuous, we can define the cumulative

distribution function (CDF) by F (x) = P(X ∈ (−∞, x)), for all x ∈ R.

Random variables can also be vector-valued, that is, a measurable function X :

Ω→ Rn, for some n ∈ N. The random vector X is composed of n random variables,

denoted by X1, . . . , Xn, and can also be discrete or continuous. We will be only

interested on continuous random vectors. Analogously to the univariate case, this

situation is characterized by the existence of an integrable function f : Rn → R such

that P(X ∈ D) := P(X−1(D)) =
∫
D
f(x) dx, where D ⊂ Rn. This function is also

called the probability density function.

We note that independently of the random variable being discrete or continuous,

we will always refer to its PMF or the PDF only as its distribution. Since in

this work we will deal essentially with continuous distributions, this should cause

no confusion. Some results will be then stated only for continuous distributions,

but a discrete counterpart always does exist. There are some well-known family of

distributions, and for a non-extensive list see Chapter 5 of [10].

A very important theorem we must use along the text is the change of variables

for multidimensional random variables, since sometimes we will need to compute

the PDF of a function of a random vector. We state this theorem here, without

proof.

Theorem 2.4.1 (Change of variables for multidimensional random variables). Let

the random vector X = (X1, . . . XN) have a continuous joint distribution for which

the joint PDF is given by fX, whose support is the set S ⊂ RN . Define a new

random vector Y = (Y1, . . . YN) as:

Y1 = r1(X1, . . . , XN);

... (2.1)

YN = rN(X1, . . . , XN).
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Assume that the functions r1, . . . , rN define an one-to-one and differentiable trans-

formation of S onto the set T ⊂ RN , whose inverse is given by

x1 = s1(y);

... (2.2)

xN = sN(y),

where y = (y1, . . . , yN) ∈ T . Then the joint PDF of Y, denoted by fY, is given by

fY(y) =




fX(s1(y), . . . , sN(y))|J |, for y ∈ T ;

0, otherwise,
(2.3)

where J is the determinant

J = det




∂s1

∂y1

. . .
∂s1

∂yN
...

. . .
...

∂sN
∂y1

. . .
∂sN
∂yN



. (2.4)

2.4.1 An example

We provide now a short example to clarify the meaning of the above defined objects.

Suppose that a fair coin is tossed 10 times. Then the sample space Ω consists of

the 210 possible outcomes of this experiment, that is, all the sequences of length 10

consisting of head and tails. Since any subset of Ω is reasonable to be measured,

meaning that at least intuitively we can assign probability to all of them, the σ-

algebra F is the power set of Ω. Under the hypothesis of fairness of the coin, it is

reasonable to assign probability 1/210 to any element of Ω, that is, P(ω) = 1/210,

for all ω ∈ Ω. It can be proven that this choice of (Ω,F ,P) is in fact a probability

space.

Now imagine that one is interested not in all the sequences of heads and tails

obtained in a trial of the experiment, but only in the number of heads obtained. This

clearly defines a function X : Ω→ R, that can be proven to satisfy the conditions to

be a random variable. Since the number of heads in a trial can be only 0, 1, . . . , 10,

this is a discrete random variable, and the associated probabilities pi are easily

computable.

Sometimes, mainly when considering continuous random variables, the sample

space is some Euclidean space Rn itself, and the considered random variable is

the identity function. In this cases, we can “forget” about the sample space and

probability measure, since all the required informations are encoded in the PDF.
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2.5 Statistical inference: retrieving information

from data

When we assign a probability model to some real world phenomena, we are almost

always ignoring the underlying sample space, σ-algebra and probability measure,

but simply associating a distribution to them. Every useful family of distribution

consists of a PMF or a PDF and its respective parameters11, denoted in both cases

by f(x|θ), where x is the argument of the function and θ is a vector containing

the parameters of the distribution. The main problem in statistical inference is to

estimate θ from observations of the corresponding distribution. There are several

tools for estimating the parameters of a probability distribution [17], and now the

distinction between the frequentist and subjective views of Probability arises again.

From the frequentist point of view, the parameters are an unknown and fixed

quantity, and one of the most popular ways of estimating θ in this context is the

maximum likelihood method, briefly described here.

The likelihood function is defined as

`(θ; x) = f(x|θ), (2.5)

considered as a function of θ when the observed data are fixed and equal to x. The

maximum likelihood estimator of θ is then the value that maximizes the function

`(.; x), that is,

θML = argmax
θ∈Θ

`(θ; x), (2.6)

where the set Θ is the set of possible values of θ. This estimate is interpreted as the

parameters value for which the observed data are the most probable ones. There are

several ways of computing this maximum (or these maxima) [18], but sometimes the

likelihood function is very complicated to maximize, even via sophisticated numerical

methods, and this will be exactly our main problem in using it in this work. We

must resort to more advanced techniques, presented in the next section.

2.6 Parameters as random quantities: Bayes’ the-

orem, or “inverse probability”

When doing some calculations in the eighteenth Century, the Presbyterian minister

Thomas Bayes certainly did not expect to be as famous as he is today. In that time,

11From the Ancient Greek παρα, “para”, meaning “beside, subsidiary, auxiliary”, and µετρoν,
“metron”, meaning “measure”. Therefore, the word “parameter” can be understood as a
subsidiary- or quasi-measurement.
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he discovered a particular case of the now called Bayes’ Theorem, independently

rediscovered and generalized some years later by Laplace12 [9]. This result remained

controversial in the mathematical community for a long time, and was also known

as inverse probability. For a history of Bayesian Statistics, see [19]. The importance

of Bayesian methods in this work is the shift of paradigm it provides to the problem

of statistical inference.

Recall that in the previous section the parameter θ was considered a fixed and

unknown vector that we want to estimate from the observed data. Using Bayes’

Theorem, it is possible to assign probabilities to θ as well:

f(θ|x) =
f(x|θ)f(θ)

f(x)
. (2.7)

But the equation above says that we must pay some price in order to do this as-

signment: we must create a prior distribution for θ, a function f(θ) representing

our initial knowledge about the parameters. For example, if one knows that its

components are all positive and that they are all close to zero, this information can

be encoded in f(θ) in order to assign probabilities directly to θ.

Note that the denominator in Equation 2.7 is a fixed number, since it depends

only on the observed data. It can be viewed as a constant guaranteeing that f(θ|x)

integrates to one. Another form of the Bayes’ Theorem that we will use in this work

ignores this constant, and states that

f(θ|x) ∝ f(x|θ)f(θ). (2.8)

The function f(θ|x) is called the posterior distribution of θ, and can be un-

derstood as the degree of belief we have about any particular choice of θ. Several

reasonable estimators can be constructed using this distribution, in particular using

the notion of a loss function. Very briefly, given a estimator θ̂ for the parameter θ,

we can define a loss function, denoted by L(θ, θ̂), representing the loss of choosing

θ̂ when the true value of the parameter is θ. Some common loss functions are given

by:

• Lp(θ, θ̂) = ‖θ − θ̂‖p

• Lε(θ, θ̂) =





0, if ‖θ − θ̂‖ ≤ ε;

1, otherwise.

The Bayes estimator is the estimator that minimizes the expected posterior loss,

given by

r(θ̂|x) =

∫ +∞

−∞
L(θ, θ̂)f(θ|x) dθ. (2.9)

12Pierre-Simon Laplace, Beaumont-en-Auge, March 23, 1749 – Paris, March 5, 1827.
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For a single real parameter and using the Lp loss function with p = 1, the Bayes

estimator is the median of the posterior distribution, whereas with p = 1 it is the

mean of the posterior distribution. The Lε loss function with small ε leads to the

maximum of the posterior distribution, given by:

θMAP = argmax
θ∈Θ

f(θ|x). (2.10)

This estimator is interpreted, in contrast to the maximum likelihood, as the most

probable θ for the observed data. For more details, see [11].

Recall that in the previous section we pointed out that maximizing the likelihood

function can be a very difficult procedure, even with the aid of sophisticated numer-

ical methods, and the posterior distribution for θ can be even more complicated,

since it is essentially the product of the likelihood with the prior distribution. The

main advantage now is that θ possesses a probability distribution, and if we are

able to sample from this distribution, we are perhaps able to estimate quantities of

interest from it. How to sample from probability distributions is the subject of the

next chapter.
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Chapter 3

Monte Carlo methods

“Any one who considers arithmetical methods of producing random digits

is, of course, in a state of sin. For, as has been pointed out several times,

there is no such thing as a random number – there are only methods to

produce random numbers, and a strict arithmetic procedure of course is

not such a method.”

– John von Neumann

In this chapter we briefly recall some solutions to the problem of obtaining sam-

ples from some particular probability distribution, with special emphasis on Markov

Chain Monte Carlo (MCMC) methods, since they will be widely used in the rest of

the text. The chapter is organized as follows: in Section 3.1 some motivations and

the earlier solutions to the sampling problem are presented, and Section 3.2 intro-

duces the MCMC methods used in this text, in particular the Metropolis-Hastings

algorithm (3.2.2), the Gibbs sampler (3.2.3) and the Metropolis within Gibbs (3.2.4).

We close the chapter discussing some convergence issues about these algorithms in

Section 3.2.5.

3.1 Motivation and early methods for sampling

Every random experiment we perform can be regarded as a sampling procedure from

some probability distribution. For example, if one tosses a fair coin and associates

the number 1 to tail and 0 to head, this person is performing a sample from the

Bernoulli distribution with parameter 1/2; if one spins a roulette and observes the

angle of the pointer with the x axis, a sample from the uniform distribution in the

interval [0, 2π) is obtained. But imagine now a person throwing a dart on a target

and computing the distance from its center: it is not obvious from which probability

distribution this sample is. On the other hand, if one wants to obtain a sample from

a Beta distribution with parameters 0.7 and 0.59, it is not clear which procedure
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must be adopted in order to perform this task. Even if such procedure is created, if

one wishes to generate a large number of samples it can be very tedious to repeat

the procedure several times. Imagine, for example, tossing a coin a million times to

obtain a million samples from the Bernoulli distribution with parameter 1/2: even

if tossing one coin per second, the entire procedure will last for approximately 11

days and 13 hours!

The first solutions to this problem appeared around 1940 in correspondences

between von Neumann and Stanislaw Ulam1 [20], and we recall them briefly here.

For an excellent historical presentation of Monte Carlo methods see [21].

3.1.1 Inverse probability transform and the accept-reject

method

The problem motivating von Neumann and Ulam was of practical interest: they were

working together at Los Alamos after World War II, and they needed to compute

quantities like the mean distance a neutron travels during some nuclear reaction

before it collides with another atomic nucleus, and how much energy the neutron

loses after some collision. The physicists at Los Alamos were unable to solve this

problem analytically, since it required a lot of very difficult computations. The

idea of using random numerical experiments to obtain the required quantities was

from Ulam, when convalescing from an illness and playing solitaire! The following

quotation is a remark from 1983 by Stan Ulam [20]:

“The first thoughts and attempts I made to practice [the Monte Carlo

Method] were suggested by a question which occurred to me in 1946 as

I was convalescing from an illness and playing solitaires. The question

was what are the chances that a Canfield solitaire laid out with 52 cards

will come out successfully? After spending a lot of time trying to es-

timate them by pure combinatorial calculations, I wondered whether a

more practical method than “abstract thinking” might not be to lay it

out say one hundred times and simply observe and count the number of

successful plays. This was already possible to envisage with the beginning

of the new era of fast computers, and I immediately thought of problems

of neutron diffusion and other questions of mathematical physics, and

more generally how to change processes described by certain differential

equations into an equivalent form interpretable as a succession of random

operations. Later [in 1946], I described the idea to John von Neumann,

and we began to plan actual calculations.”

1Stanislaw Marcin Ulam, Lemberg, April 13, 1909 – Santa Fe, May 13, 1984.
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In a letter to Ulam, von Neumann proposed the inverse probability transform

and the accept-reject methods as a partial solution to this problem, and also pointed

out some of its problems.

The inverse probability transform is a way of generating samples from virtually

any distribution from samples of the uniform distribution on the interval [0, 1], as

stated in the following theorem:

Theorem 3.1.1 (Inverse Probability Transform). Let X be a continuous random

variable with PDF f(x) and CDF F (x), and let Y = F (X). Then the distribution

of Y is the uniform distribution on the interval [0, 1].

Its proof is very simple, and can be found in [10] or [22]. To illustrate, imag-

ine that one is interested in generating samples from X following the exponential

distribution with parameter 1. It is well known that the PDF and CDF of this dis-

tribution are given, respectively, by f(x) = e−x and F (x) = 1− e−x, for x > 0. The

inverse of F (.) is given by F−1(y) = − ln(1− y), for y ∈ [0, 1]. The theorem states

that Y = F (X) is uniformly distributed in the interval [0, 1], and a straightfor-

ward computation shows that F−1(Y ) is exponentially distributed with parameter

1. If y1, . . . , yn are samples from the uniform distribution on the interval [0, 1], then

− ln(1 − y1), . . . ,− ln(1 − yn) are samples from the exponential distribution with

parameter 1.

The other method proposed by von Neumann is the accept-reject method, briefly

explained now. Suppose one wishes to generate sample from a random variable X

with PDF f(.), called the target distribution, and one is unable to sample directly

from f(.). But suppose that an auxiliary random variable Y is available, whose PDF

g(.) is easy to sample from. The basic idea of the method consists in generating

samples from Y and “accept” these samples as genuine samples of X if they passes

through some test. More precisely, f(.) and g(.) must satisfy two conditions:

i) f(.) and g(.) have compatible supports, that is, g(x) > 0 when f(x) > 0;

ii) There is a constant M such that f(x)/g(x) ≤M , for all x.

Being these two conditions satisfied, we generate a sample y from g(.) and indepen-

dently generate u from a uniform distribution in the interval [0, 1]. If

u ≤ 1

M

f(y)

g(y)
, (3.1)

we accept y as a genuine sample from f(.), and reject it otherwise.

It is not intuitive to see that this method in fact provides exact samples of f(.),

and a proof can be found in [22]. We provide an intuitive explanation based on

Figure 3.1.
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Mg(.)
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u1Mg(y)

u2Mg(y)

Figure 3.1: Illustration of the accept-reject method.

The condition to accept y as a genuine sample from f(.) in Equation 3.1 can be

rewritten as

uMg(y) ≤ f(y), (3.2)

that is, the product uMg(y) falls under the graph of f(.). In the figure above,

the depicted value of y was sampled from g(.), and two samples from the uniform

distribution on the interval [0, 1], denoted by u1 and u2, are shown. In the first case,

the product u1Mg(y) is under the graph of f(.), so this value of y is accepted as a

sample from f(.). In the second case, the product u2Mg(y) is above the graph of

f(.) and the sample y is rejected as a genuine sample from f(.). It is now clear the

requirement of existing some M satisfying f(x)/g(x) ≤ M , for all x: otherwise, it

will be impossible to perform the comparison just described, and there is no means

of deciding to accept or reject y.

It can be proven that the probability of acceptance in the accept-reject method

is 1/M [22]. Therefore, the efficiency of the method depends on finding an auxiliary

distribution that is close to the target one, in the sense that M ≈ 1, and that it

is also easy to sample from. It is not so obvious which auxiliary distribution is the

best one. Another drawback of the method is that its efficiency in high dimensions

is very poor [22].

Note that we learned how to generate samples from virtually any probability

distribution, but we always needed at least samples from the uniform distribution

on the interval [0, 1]. In the same correspondence cited in the beginning of this

section, von Neumann also proposed a method to generate these samples using the

middle-square method, a deterministic algorithm that generates numbers following

approximately this distribution. He noted that the sequences generated are periodic

with a very short period, and do not pass through many statistical tests of random-

ness. Nevertheless, he wrote that this method was good enough for his purposes.

Nowadays one of the most widely used methods of generating pseudo-random num-
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bers from a uniform distribution is the much more efficient Mersenne Twister [23].

But if one is interested in possessing genuine uniform random numbers, one can buy

them [24]!

Being the development of these methods secret, von Neumann and Ulam needed

a code to denote and talk about it. The name Monte Carlo methods was suggested

by a colleague of them, Nicholas Metropolis2, referring to the Monte Carlo Casinos in

Monaco, where Ulam’s uncle used to gamble. Nowadays, the Monte Carlo methods

are a very wide class of algorithms, and a particular class that will be of great

importance for us is the Markov Chain Monte Carlo methods, that we will see in

the next sections.

3.2 Markov Chain Monte Carlo (MCMC) meth-

ods

Recall that in the previous section we pointed out some problems of the accept-reject

method: the difficulty of creating a good auxiliary distribution and its inefficiency

in higher dimensions. On the other hand, the samples it generates are exact and

independent, allowing us to use the Central Limit Theorems to compute quantities

related to the target distribution. However, in 1906 Andrey Markov3 published a

work [25] introducing a new class of stochastic process, described by dependent ran-

dom variables with a well-behaved and very simple dependence relation, for which

a version of the Central Limit Theorems is also valid, leading to a class of theorems

known as ergodic theorems. This process is now known as Markov chain, and cu-

riously at that time it was introduced without any practical purpose, but only to

serve as a counterexample! The first practical application of this concept dates back

to 1917, when Erlang4 used the Markov chains to model call loss and waiting time

in the telephone network of Denmark [26]. The basic concepts of Markov chain are

beyond the scope of this text. A very succinct exposition leading directly to the

MCMC methods can be found in [11], and a much more technical and detailed text

is [27].

3.2.1 From Monte Carlo to MCMC methods

Some years after the correspondence between von Neumann and Ulam, again at

Los Alamos Nicholas Metropolis needed to compute the free energy of a compli-

cated thermodynamic system. Being unable to do the calculation analytically, the

2Nicholas Constantine Metropolis, Chicago, 11 June, 1915 – Los Alamos, October 17, 1999.
3Andrey Andreyevich Markov, Ryazan, June 14, 1856 – Petrograd, July 22, 1922.
4Agner Krarup Erlang, Lønborg, January 1, 1878 – Copenhagen, February 3, 1929.

19



solution given by his friends to approximate the computation by some stochastic

simulation seemed to be a good idea. But now the scenario was quite different: a

thermodynamic system consists of a lot of particles, and the probability distribu-

tions they needed to deal with were very high-dimensional, making impossible the

efficient use of any known sampling method. However, after some hard work the

problem was solved by Metropolis together with Arianna W. Rosenbluth5, Marshall

N. Rosenbluth6, Augusta H. Teller7, and Edward Teller8 and published in 1953 [28],

leading to the Metropolis algorithm9. The main idea of the proposed solution is

to construct not a sequence of independent and exact samples from a target dis-

tribution, but at each iteration sample from different random variables forming a

Markov chain whose stationary distribution is the target distribution. Therefore,

the samples obtained are not exactly from the desired distribution, but only from

an approximation of it. It is expected that if the algorithm runs for sufficiently

long time, the output of the chain can be considered as samples from the exact

distribution, after some iterations called the burn-in time, where the chain does not

converged. The convergence of Markov chains is very difficult to assess, and we will

return to this point later in this chapter.

The Metropolis algorithm was generalized several years later in 1970 by Hast-

ings10 [29], leading to the Metropolis-Hastings algorithm11, which we present in the

next section.

3.2.2 The Metropolis-Hastings algorithm

The idea of this algorithm is similar to the accept-reject method: a sample from some

auxiliary distribution is generated and accepted as a genuine sample of the target

distribution if some criteria is satisfied. More precisely, let f(.) be the (possibly

multidimensional) target distribution and let x(i) be the current state of the chain,

that is, the last sampled and accepted value for f(.). A new value x∗ is then

sampled from an auxiliary distribution, called the proposal distribution and denoted

by q(·; x(i)). Note that the proposal distribution is allowed to depend on x(i), as

expected when working with Markov chains. This sample is accepted as a genuine

5Information not found.
6Marshall Nicholas Rosenbluth, Albany, February 5, 1927 – San Diego, September 28, 2003.
7Information not found.
8Edward Teller, Budapest, January 15, 1908 – Stanford, September 9, 2003.
9In fairness to the other authors, the algorithm should rather be known as the Metropolis-

Rosenbluth-Rosenbluth-Teller-Teller algorithm.
10W. K. Hastings, Toronto, July 21, 1930.
11Followig the same reasoning, this algorithm should be called the Metropolis-Rosenbluth-

Rosenbluth-Teller-Teller-Hastings algorithm.
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sample from f(.) with probability

α(x(i),x∗) = min

(
1,
f(x∗)q(x(i); x∗)

f(x(i))q(x∗; x(i))

)
. (3.3)

If the proposed sample is accepted, the new state of the chain is x(i+1) = x∗, and

x(i+1) = x(i) otherwise. The initialization of the algorithm, i.e. the determination

of x(0), is left at the choice of the user.

Note that the condition to accept the proposed sample in Equation 3.3 is much

more complicated that the one in the accept-reject method in Equation 3.1. This is

to ensure that the corresponding Markov chain satisfies the detailed balance equation

[11, 27], a sufficient condition for f(.) to be the stationary distribution of the chain.

If this and two more technical conditions12 are satisfied, the Markov chain converges

to f(.), in the sense that samples from it are closer and closer to samples from f(.).

The efficiency of the algorithm depends on the choice of the proposal distribution.

A popular choice is a Gaussian distribution centered at the previous value of the

chain, that is, q(x; x(i)) ∼ N(x; x(i),D), where D is a diagonal matrix of the same

dimension as x. How to choose the diagonal terms in D is a delicate task: a broad

proposal distribution is very likely to propose values where f(.) has very small values,

leading to a large amount of rejected values; on the other hand, a more concentrated

proposal distribution does not explore well the sample space of f(.). Some authors

suggest tuning the variance until 40% of samples are accepted, as a compromise

between both situations [30].

3.2.3 The Gibbs sampler

Fourteen years after the generalization of the Metropolis algorithm by Hastings, in

1984 the brothers Stuart13 and Donald Geman14 were working with restoration of

degraded monochromatic images. Inspired by Statistical Mechanics, they proposed a

mathematical model for the images that was very similar to the Ising15 model, widely

used in Ferromagnetism. To restore images via their method, it was necessary again

to sample from very high-dimensional probability distributions, and unaware of the

previous work by Metropolis et. al. and Hastings, they proposed a new method

to generate samples from multidimensional probability distributions, known as the

Gibbs sampler 16 [31].

The main idea of the Gibbs sampler is to split a multivariate distribution in

12Namely, aperiodicity and irreducibility. For more details, see [27].
13Stuart Alan Geman, Chicago, c. 1949.
14Donald Jay Geman, Chicago, September 20, 1943.
15Ernst Ising, Cologne, May 10, 1900 – Peoria, May 11, 1998.
16Josiah Willard Gibbs, born in February 11, 1839 in New Haven, Connecticut, died in April

28, 1903, more than eighty years before the emergence of the method!
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several components, and sample from each component conditioned on the value of

the others. More precisely, let f(x) be the target distribution we want to sample

from, and partition the x variable in k subsets, x1, . . . ,xk. Denote by x
(i)
1 , . . . ,x

(i)
k

the current sampled value of each sub-variable. The next iteration of the algorithm

is then given by:

x
(i+1)
1 ∼ f(x1|x(i)

2 , . . . ,x
(i)
k ) (3.4)

x
(i+1)
2 ∼ f(x2|x(i+1)

1 ,x
(i)
3 , . . . ,x

(i)
k ) (3.5)

...

x
(i+1)
k ∼ f(xk|x(i+1)

1 , . . . ,x
(i+1)
k−1 ), (3.6)

where the symbol y ∼ g(.) means “sample y from the distribution g(.)”. Note

that in each step of this iteration the sampled values of the previous variables must

be updated in the respective conditional distributions. The initial set of samples

x
(0)
1 , . . . ,x

(0)
k can be constructed in any way the user desires.

It can be proven that this algorithm in fact creates a Markov chain whose sta-

tionary distribution is f(.) [27], and although the Geman brothers did not know the

Metropolis-Hastings algorithm at that time, it can also be proven that the Gibbs

sampler is a particular case of it [27, 30]. Both methods became popular in the

statistical community after the work [32].

3.2.4 Metropolis within Gibbs

In order to apply the Gibbs sampler, one must be able to sample from all conditional

distributions described above. But sometimes we are quite unlucky, and some of

these distributions are not easy to sample from. However, there is a simple solution

to this problem, leading to the algorithm known as Metropolis within Gibbs [30].

Suppose, for example, that we desire to sample from a bivariate distribution

f(x1, x2), with conditionals given by f(x1|x2) and f(x2|x1). Furthermore, suppose

that only the first conditional distribution is easy to sample from. Instead of directly

sampling from f(x2|x1) when required, we can sample a value x∗2 from a proposal

distribution q(·;x1) and accept this value as a genuine sample from f(x2|x1) with

probability given by Equation 3.3. This procedure is called a Metropolis step inside

the Gibbs sampler, and although it looks like an heuristic solution to the problem,

the convergence of this modified Gibbs sampler can also be proven [27].
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3.2.5 Convergence issues

All MCMC methods presented above have the drawback of generating only ap-

proximate samples from the target distributions; moreover, such samples are also

dependent on each other. However, for most purposes, the second problem can be

circumvented by the ergodic theorems, but the first one is quite more complicated

to ignore. Recall that in all cases the corresponding Markov chain is constructed

in order to set the target distribution as the stationary distribution. Moreover, the

chain also satisfies conditions that guarantee its convergence to the stationary dis-

tribution. But how long one must wait in order to be sufficiently close to the target

distribution? This is not an easy question to answer, and a lot of study has been

done in this direction. There are some partial results, mainly if the state space of

the chain is discrete [33]. Even without being able to give a definitive answer to this

question, there are a lot of convergence diagnostic tools [34], but all of them possess

some serious drawback.

In this work, we will adopt a heuristic practice that showed to be very effective.

We will define a certain number of iterations, called the burn-in time and denoted

by Nburn-in, such that the samples before Nburn-in are discarded since the chain is still

“moving” towards its stationary distribution, and the samples after Nburn-in are used

to compute some value of interest about the distribution. This procedure will be

performed visually, by looking at the plots of the iterations and searching for some

point where the chain exhibits a constant and regular pattern. It is important to note

that this is not the usual procedure in the statistics community: some statisticians

recommend running two or more chains in order to correctly access the convergence,

instead of looking at only a single chain. See [30] for a more extensive discussion.
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Chapter 4

Autoregressive models for audio

signals

“Essentially, all models are wrong, but some are useful.”

– George E. P. Box1

Many audio signals we hear everyday are produced by either musical instruments

or human voice – both having some well defined (but not necessarily well known)

physical and acoustic properties, or by synthesizers, which by means of electric

and/or electronic devices can mimic real instruments or create entirely new sounds.

Even though the later does not necessarily follow the same physical principles of

the former, a great variety of both kinds of sounds share a common property: our

ears and brain can extract some “useful” information from them. The music being

played can have a weird melodic or harmonic structure, and even if one does not

appreciate it, the music does not sound like random noise.

The above discussion suggests that the majority of audio signals we perceive and

understand possess some underlying structure. The goal of this chapter is to present

and discuss a mathematical model for this structure. In the next sections we will

convince ourselves that a deterministic model does not fit properly, since we want

to deal with a large class of audio signals. We then present the autoregressive (AR)

model and discuss its interpretations from both the statistical and signal processing

viewpoints. Finally, in the last section we discuss to which extent the AR model is

valid for audio signals.

4.1 The autoregressive (AR) model

It was mentioned above that most of the audio signals we hear and interpret, in

the sense that they have some useful information, possess some internal coherence

1George Edward Pelham Box, Gravesend, October 18, 1919 – Madison, March 28, 2013.
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that can be exploited in order to describe them. Roughly this means that these

signals are not just noise, or simply random amplitudes drawn from some probability

distribution.

Indeed, this fact can be extended to all the information we can perceive and

comprehend: our brain prefers structured information to pure noise. This is depicted

in Figure (4.1). On the left, we see one of the most famous paintings in the world, the

Mona Lisa. Clearly, to paint it, Leonardo da Vinci have not picked random brushes,

random colors and made random strokes until “converge” to the Mona Lisa. On the

other hand, the figure on the right was created in this fashion: a random matrix was

constructed, each entry of which is zero (represented as black) or one (represented

as white) with probability 1/2 and associated the zeros to the black color and the

ones to the white color.

Figure 4.1: Mona Lisa and a random image.

If you look at a pixel in the forehead of Mrs. Lisa del Giocondo, you can expect

that its neighbor pixels are similar, in some sense. However, in the noisy image this

does not occur, since the color of one pixel does not depend on its neighbors. Now

that we have gained some intuition, let us bring this idea to the audio context.

Let x be a vector containing some generic audio signal, properly time-sampled2.

Due to the enormous variety of audio signals, we cannot expect to create a reasonable

deterministic model to all of them: if this model exists, it will be so complex, with

so many variables, that it cannot be practical. So we can suppose that each time

sample xn from the signal x is a sample from some abstract random variable3, which

2By this we mean that the original analog signal was adequately filtered with an anti-aliasing
filter and sampled at a sampling rate in such a way that allows us to recover the original signal,
e.g. 44,100 Hz. We will always make this hypothesis when talking about audio signals.

3Pay attention to the use of the word “sample” here! The first use was to denote a sample
of a discrete-time signal, while the second denotes the act of taking a (pseudo)random number
following some probability distribution.
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we will denote as Xn. Then the set {Xn} is a stochastic process, and the vector x is

a time series, that is, a sample – in the statistical sense – of the underlying process

{Xn}. Obviously there are infinitely many ways of translating the internal structure

of the signal into the description of the stochastic process, but the temporal order

of audio signals tells us that it is reasonable that every random variable Xn depends

in some way on the precedent ones Xk, for k < n. But in principle Xn will have

little relation with some distant Xk, for k � n4.

Thus, we can say that Xn is a function of Xn−1, Xn−2, . . . , Xn−P , for some P 5.

A class of functions that keeps some compromise between simplicity and reality

is the affine one, that is, the n−th random variable of the stochastic process is a

linear combination of the P precedent random variables plus an error, called the

innovation error :

Xn =
P∑

i=1

aiXn−i + En. (4.1)

We assemble the coefficients a1, . . . , aP into a column vector a. The innovation

error must include every information within the signal that cannot be well explained

linearly by the previous time samples. In order to allow En to contain the greatest

amount of information possible, it is usually modeled as independent and identically

distributed (iid) Gaussian random variables with zero mean and variance σ2
e , inde-

pendent of Xn. This choice of distribution is justified by the Principle of Maximum

Entropy [13]:

Theorem 4.1.1 (Principle of Maximum Entropy). Let E be a random variable with

probability density function f whose support is R, and define the differential entropy

of E as h(E) = −
∫ +∞
−∞ f(x) ln(f(x)) dx. Suppose that the mean and variance of

E exist, are finite and equal to µ and σ2, respectively. Then the distribution that

maximizes h(E) is a Gaussian with mean µ and variance σ2.

Despite appearing mysterious, this result possesses a nice interpretation. The

differential entropy measures how much “information” a continuous probability dis-

tribution contains, in the sense of measuring its uncertainty: the more uncertain is

4One can argue that a violin playing some note for a long time breaks this hypothesis. Or even
worse, if there is the exact repetition of some fragment within a piece, this hypothesis is broken in
an even more radical way. But note that these two cases represent long-term correlations within
an audio signal, and this is not the goal of the AR model. Indeed, as will be more clear in Section
4.3, this model is adequate to represent aspects of the physical creation of the sound, related with
resonant frequencies of the corresponding instrument or voice. Although more easily interpretable
in the frequency domain, it is easier to describe these features in the time domain via the AR
model.

5The correlation between two distant time samples of the signal depends not only on P , but
also on the position of poles of the linear filter associated with the AR model, to be discussed in
more detail in Section 4.3.
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the distribution, the greatest is its entropy [35]6. This is more easily understood if

the support of the distribution is a closed interval [a, b]. In this case, it can be shown

that the distribution of maximum entropy in this domain is the uniform [35]. This

is in accordance with our interpretation, since this distribution does not prioritize

any region of its support, leading to the greatest amount of uncertainty, in the intu-

itive meaning of the word. Following this reasoning, one expects that the maximum

entropy distribution over the entire real line is as most uniform as possible, since the

uniform “distribution” is not a probability distribution over R! The above results

tells us that the most uniform distribution over R (that is, the maximum entropy

distribution) is a Gaussian.

If a stochastic process satisfies Equation 4.1, we say that it is an autoregressive

process of order P , abbreviated by AR(P ). We will suppose that short sections of

audio signals are well described by this model, in the sense that the time samples

contained in each of these blocks of signal can be supposed to be samples from

a stochastic process satisfying Equation 4.1, for a particular set of coefficients a

and σ2
e . The order P and how large can a block be for the model be considered

sufficiently accurate will be discussed in more detail later.

This model is widely studied in Statistics, because of its simple form and its abil-

ity to fit several phenomena of importance. It can be generalized in several ways,

usually described in the literature by acronyms like ARMA (autoregressive moving-

average), TVAR (time-varying autoregressive), ARMAX (autoregressive moving-

average with exogenous inputs), ARIMA (autoregressive integrated moving aver-

age), ARFIMA (autoregressive fractionally integrated moving average), SARIMA

(seasonal autoregressive integrated moving average), SARIMAX (seasonal autore-

gressive integrate moving average with exogenous inputs), and so on [36].

Perhaps the complexity of these models increases proportionally with the size

of the corresponding acronym and, on the other hand, the intuition about them

decreases in inverse proportion. It is natural to ask whether the use of a more

complex model allows for a better representation of audio signals. Indeed, in Section

5.2.4 of [37], the ARMA model for interpolation of missing time samples in audio

signals is explored, and the conclusion is that in this particular case the increase

in accuracy does not justify the increase in complexity. The TVAR seems to be

a natural extension of the AR model for audio signals, and it is presented in this

context in [38], with good results being reported. The use of this extended model

6The concept of entropy of a random variable was first defined by Shannon (Claude Elwood
Shannon, Petoskey, April 30, 1916 – Medford, February 24, 2001), and this name was suggested
to him by von Neumann: “You should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under that name, so it already has a
name. In the second place, and more important, no one really knows what entropy really is, so in
a debate you will always have the advantage.”.
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to perform restoration procedures is one of the possible future works in this thesis.

We will convince ourselves in Section 4.3 that the AR model can provide a very

accurate representation for audio signals.

4.1.1 How large a block and the order must be?

If the audio signal is time-sampled at 44,100 Hz, the CD sampling rate, a monophonic

audio signal which is 4 minutes long is represented by a vector x of dimension

10,584,000. It is not reasonable to assert that all these random variables are well

described by a single set of parameters through Equation 4.1: since the structure of

the signal may change along the time, the parameters representing the dependence

of time samples on the previous ones also could change.

But one does not need to look at the audio signal in such a big time scale to note

that a single set of parameters is not enough. Indeed, it is enough to consider one set

of parameters a and σ2
e for each block of approximately 20 milliseconds (ms), about

1,000 time samples at the above sampling rate, and an order around 40. The size of

1,000 for a block is the approximate extent to which audio signals can be considered

as stationary, and the order of 40 is enough to model the frequencies and resonances

within the considered block (for more details, see [37] and references therein, and

[39] for a discussion from the lossless audio compressing viewpoint). Obviously some

exceptions can occur, for example, the beginning of a plosive phoneme in a speech

signal or the attack of a percussion instrument, and in this work we will consider

other values for these parameters as well. These numbers should be considered only

as general guidelines, not strict rules to be followed7.

A possible explanation from the psychoacoustical viewpoint for the size of the

block is now presented. Suppose that a digital audio signal consists of single pulses

equally spaced with separation equal to L time samples, that is, every time sample

of the considered signal is zero, except the time samples indexed by integer multiples

of L, that are equal to one. If one plays this signal by considering its sampling rate

of 44,100 Hz, for L greater than a value of approximately 1,000 it will be possible

to distinguish the individual pulses, whereas for L smaller than this value, a single

tone will be heard. This experiment indicates that this number is related with some

kind of “resolution” in our process of hearing, and blocks smaller than this size are

essentially indistinguishable.

7Recall the quote at the beginning of this chapter!
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4.2 Statistical description of audio signals using

the AR model

Since we have a probability distribution for the innovation error, we can deduce one

for the audio signal as well. Let x = [x1 x2 . . . xN ]T be a block of N time samples

from an audio signal. For simplicity, we partition this vector in two sub-vectors of

size P and (N − P ), respectively:

x0 = [x1 x2 . . . xP ]T and x1 = [xP+1 . . . xN ]T . (4.2)

For now consider that the vector x0 is known, since to compute some xn we need

to know the previous P entries of x. In particular, to compute xP+1 we need the

information in x0, and since our signal begins at x1, there is nothing more we can

resort to in order to compute xP+1.

We can also assemble the innovation errors from (P + 1) to N into a vector:

e = [eP+1 eP+2 . . . eN ]T . (4.3)

Recall that the innovation error was modeled as iid Gaussian random variables

with mean 0 and variance σ2
e , that is,

pEn(en) =
1√

2πσ2
e

exp

(
− 1

2σ2
e

e2
n

)
, for n = P + 1, . . . , N, (4.4)

or equivalently, by taking the product of the above pdf’s,

pE(e) =
1

(2πσ2
e)

N−P
2

exp

(
− 1

2σ2
e

eTe

)
. (4.5)

If we write the equations for the AR model for xP+1, . . . , xN , we have





xP+1 = a1xP + a2xP−1 + · · ·+ aPx1 + eP+1

xP+2 = a1xP+1 + a2xP + · · ·+ aPx2 + eP+2

...

xN = a1xN−1 + a2xN−2 + · · ·+ aPxN−P + eN ,

(4.6)
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and after solving the above equations for eP+1, . . . , eN , we obtain:





eP+1 = xP+1 − a1xP − a2xP−1 − · · · − aPx1

eP+2 = xP+2 − a1xP+1 − a2xP − · · · − aPx2

...

eN = xN − a1xN−1 − a2xN−2 − · · · − apxN−P .

(4.7)

Since we are supposing that x0 is known, the above equations describe a linear

change of variables from x1 to e, which has unitary Jacobian. This is easily seen by

noting that the Jacobian matrix is given by the (N − P )× (N − P ) matrix below:

Jij =

(
∂ei
∂xj

)
=




1 0 . . . . . . . . . . . . 0

−a1 1 0 . . . . . . . . . 0

−a2 −a1 1 0 . . . . . . 0

−a3 −a2 −a1 1 0 . . .
...

...
. . . . . . . . . . . . . . .

...

0 . . . −aP . . . −a1 1 0

0 0 . . . −aP . . . −a1 1




, (4.8)

whose determinant equals 1, since it is upper triangular with ones on the diagonal.

In matrix terms, we can write Equation 4.7 in two different ways:

e = Ax or e = x1 −Xa, (4.9)

where the matrices A, of size (N − P )×N , and X, of size (N − P )× P are given

respectively by

A =




−aP . . . −a1 1 0 . . . 0

0 −aP . . . −a1 1
... 0

...
. . . . . . . . . . . . . . .

...

0 . . . 0 −aP . . . −a1 1



, (4.10)

and

X =




xP xP−1 . . . . . . x2 x1

xP+1 xP . . . . . . x3 x2

...
. . . . . . . . . . . .

...

xN−2 xN−3 . . . . . . xN−P xN−P−1

xN−1 xN−2 . . . . . . xN−P+1 xN−P



. (4.11)

30



We can then write down a statistical description of x1, supported by Theorem

2.4.1:

p(x1|x0, a, σ
2
e) = pE(Ax) =

1

(2πσ2
e)

N−P
2

exp

(
− 1

2σ2
e

xTATAx

)
, (4.12)

or equivalently,

p(x1|x0, a, σ
2
e) = pE(x1 −Xa)

=
1

(2πσ2
e)

N−P
2

exp

(
− 1

2σ2
e

(x1 −Xa)T (x1 −Xa)

)
. (4.13)

Note that the first equation is quadratic in x, while the second one is quadratic

in a. This fact will be explored in later chapters to obtain some likelihoods and

conditional distributions.

The Equations 4.12 and 4.13 are called the conditional likelihood of parameters

a and σ2
e . This name derives from the conditioning on x0, which was essential to

the described procedure.

If one is performing a block-wise restoration procedure, an overlap of P time

samples between adjacent blocks solves the conditioning problem. The only block

that must be treated separately is the first one, since there are no time samples

on which to condition. On the other hand, if one is interested in estimating the

parameters a and σ2
e by maximum likelihood, a potentially more reliable estimate

can be obtained without the conditioning, since the statistical information about the

parameters that is contained in x0 is being ignored. To surpass this, one must use

the exact likelihood p(x|a, σ2
e), which is given by p(x1|x0, a, σ

2
e)p(x0|a, σ2

e). Usually

this is not performed, because the computation of the additional term p(x0|a, σ2
e)

is quite complicated, as seen in Appendix C of [37]. Clearly this is not a rigorous

justification for not using the exact likelihood instead of the conditional one, but

an acceptable excuse. A better reason would be a Theorem asserting that ignoring

this term is not so bad. In fact, one can prove that for N � P the following

approximation is true [40]:

p(x|a, σ2
e) ≈ p(x1|x0, a, σ

2
e), (4.14)

that is, the exact likelihood is approximately equal to the conditional likelihood, if

we have enough time samples. Intuitively, if we have a sufficient number of time

samples such that for the majority of time samples its dependency on the first P

ones is “lost”, then the exact likelihood carries just a little more information in

comparison to the approximated one.
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4.3 Interpretation of the AR model in the fre-

quency domain

When we introduced the AR model in Equation 4.1, there was no clue on how to

interpret it in the frequency domain, a tool widely employed in signal processing,

specially audio processing. In this section we first interpret the AR model as a filter

acting on a signal, giving as output the desired audio excerpt. Then we analyze the

frequency content of this last signal in order to get a new intuition about the model.

Let us remember Equation 4.1, that defines a stochastic process following the

AR model:

Xn =
P∑

i=1

aiXn−i + En. (4.15)

Since we are considering contiguous short sections of an audio signal as a realization

of a particular stochastic process of this kind, when such a signal is available we

can exchange the capital letters in the above equation (except for P , of course!) for

small ones:

xn =
P∑

i=1

aixn−i + en. (4.16)

Now, the above equation is written in terms of time samples from a signal, not ran-

dom variables anymore. We can take the z-transform on both sides of the equation,

and we have8:

X(z) = X(z)
P∑

i=1

aiz
−i + E(z), (4.17)

and we can rewrite this equation as:

X(z)

(
1−

P∑

i=1

aiz
−i
)

= E(z). (4.18)

If we think that the signal e is an input for some filter whose output is x, the

8To be coherent with almost all signal processing books, we denote the z-transform of a signal
by its correspondent capital letter followed by (z), indicating that it is a function of the complex
variable z. If this signal arises from observations of a stochastic process {Xn} this must cause no
confusion, despite both being represented by the capital letter X.

32



above equation gives us the transfer function of this filter. More precisely9:

A(z) :=
X(z)

E(z)
=

1(
1−

P∑
i=1

aiz−i
) . (4.19)

This analysis provides a new insight about the AR model: a time-series that is

well-explained by an AR model is the output of an all-pole filter, whose input is the

random sequence e. We now interpret this fact in the frequency domain, where it

is even more interesting. First, we must recall two definitions and some facts from

random signal processing theory.

Definition 4.3.1. A stochastic process {Xn} is wide-sense stationary (WSS) if its

mean and auto-correlation function satisfy, respectively, the conditions below:

• E(Xn) = µX is independent of n, and

• E(XnXn+k) = rXX(k) is only dependent on the lag k between two time samples,

and not on their absolute positions.

Observation 4.3.1. One can also define a strict-sense stationary (SSS) stochastic

process. We will not need this definition here. It is common both in the Statistics

and Signal Processing literature to refer to WSS processes simply as “stationary”,

and we will adopt this practice here.

In other words, the first- and second-order statistics of a stationary stochastic

process are time-invariant.

It is possible to measure the frequency content of a stochastic process. Unfortu-

nately one cannot simply compute the discrete Fourier transform of realizations of

this process, since it is very likely that these signals do not satisfy the conditions to

possess a well-defined transform. In practice this is not a big issue here, since in the

end we will be dealing only with finite-dimensional sequences. The following point

is more important: even if one is very lucky and the given realization can be trans-

formed, the computation will reveal the frequency content only of this realization,

providing no information about the others. There are several ways of defining a

mathematical entity containing the required information, and we will adopt the one

below. The motivation for this definition can be found in the very clear exposition

in Section 7.1 of [41].

9It is more usual in the signal processing literature to denote transfer functions of linear filters
by H(z), but since the filter related to the AR model is quite special and will appear several times
during this text, we will denote it by a special letter.
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Definition 4.3.2. The power spectral density (PSD) of a stationary stochastic pro-

cess {Xn} is given by the discrete Fourier transform of its auto-correlation function:

PXX(ω) =
+∞∑

k=−∞
rXX(k)e−j2πωk, (4.20)

where ω is measured in radians per time sample.

Observation 4.3.2. There is a more general definition of power spectral density of

stochastic processes, which is valid for other classes than the stationary one. This

definition is outside the scope of this thesis, and we recommend the book [40] for a

complete treatment of spectral theory of time series. The definition given above is

in fact a (very surprising) theorem, known as the Wiener10-Khinchin11 theorem12.

To compute the PSD of an AR process, we have some obstacles: 1) to use

the PSD definition given above, we must ensure that the process is stationary, a

condition equivalent to the stability of the filter whose transfer function is A(z);

and 2) we must compute its auto-correlation function, a task that can be tedious.

We first tackle the second obstacle and for the moment suppose stationarity. Since

x is the output of the filter whose transfer function is A(z) when the input is e, the

relation between their respective PSDs is given by:

PXX(ω) = |A(ej2πω)|2PEE(ω). (4.21)

Observation 4.3.3. This relation also is valid only for stationary processes, and a

proof can be found in Section 8.4 of [41]. Note that the process {En} is WSS.

Since the process {En} is iid Gaussian with mean 0 and variance σ2
e , its PSD is

given by σ2
e . Then, the above formula reduces to:

PXX(ω) =
σ2
e∣∣∣∣1−

P∑
i=1

aie−j2πωi
∣∣∣∣
2 . (4.22)

Now, with the PSD of an AR process at hand, we can continue with its inter-

pretation in the frequency domain. Since we are assuming stationarity, the causal

filter whose transfer function is A(z) is stable. This is equivalent to saying that its

poles are all inside the unit circle13. If we write the poles of A(z) in polar form as

10Norbert Wiener, Columbia November 26, 1894 – Stockholm March 18, 1964.
11Aleksandr Yakovlevich Khinchin, Kondrovo, July 19, 1894 – Moscow, November 18, 1959.
12This theorem is also known as the Wiener-Khinchin-Einstein or Khinchin-Kolmogorov theo-

rem. The history of Science does not allow us to ignore the name of both great scientists, so for
a more complete exposition of the history of this result, see the references within the Wikipedia
page of the theorem [42].

13For a proof of this result, see [43].
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rie
jθi , for i = 1, . . . , P , then one expects PXX(ω) to be peakier for ω around θi if

the corresponding radius ri is close to one. Since PXX(ω) contains the information

on frequencies present in x, the arguments of the poles of A(z) are related to these

frequencies and their respective radii measure how much this frequency is being

excited.

Note that this interpretation is perfectly correlated with our experience in hearing

music! At each instant of time there is a set of frequencies being played: for example,

the fundamental notes present in some chord and its harmonics (due to the physical

properties of the instrument being played), and each frequency possesses its own

amplitude, which means that some frequencies are being more excited than others.

Recall that Equation 4.1 at the beginning of this chapter was proposed only as a

way to translate into mathematical terms some internal correlation present in audio

signals, and its interpretation there was very loose. We have now seen that this very

simple structure is intimately related to fundamental properties of audio signals.

From the signal processing viewpoint, the generation of pitched sounds is related

with resonances, well modeled by poles in its generating system.

To close this section, it is interesting to note that the AR model was born in

an entirely different context: the first time it appeared in history, explicitly used to

model time series14, was in a work of Yule15 from 1927 [44], where he applied the AR

model to study the Wolf’s Sunspot Number, one of the most widely studied time

series in Statistics. These data are being collected on a regular basis since 1750, and

this quantity measures the number of sunspots and groups of sunspots present on

the surface of the Sun. It is important to understand the periodicity behavior of this

time series, since sunspots are related to solar storms, that can in turn disturb the

operation of electromagnetic devices here on Earth. These phenomena correspond

to concentrations of magnetic field flux, and the details of its generation are still not

well understood.

14A mathematical formulation similar to the AR model appeared before in recursive least square
filters, firstly proposed by Gauss in the 19th. Century.

15George Udny Yule, Morham February 18, 1871 - Cambridge June 26, 1951.
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Chapter 5

Introduction

“Happy families are all alike; every unhappy family is unhappy in its own

way.”

– Lev Tolstoy1, Anna Karenina

This second part of the thesis deals with the restoration of nonlinearly distorted

audio signals, a class of degradations whose mechanism of creation is not well approx-

imated by a linear filter acting on the original signal. We need more sophisticated

mathematical structures to represent this class of distortions. This part is struc-

tured in the following way: in this chapter we introduce the concept of nonlinear

distortion, pointing out its differences from the linear ones in Sections 5.1 and 5.2,

and finally discussing its effects on audio signals on Section 5.3; Chapter 6 presents

some ways to describe the nonlinear world, introducing the Volterra2 series model

and some of its particular cases, finishing with some applications of these concepts

in audio processing; the most technical Chapters, 7 and 8, deal with the restora-

tion of audio signals degraded by nonlinear distortions without and with memory,

respectively. These two chapters contain extensions of the work initiated in [45].

Finally, in Chapter 9, the results and future extensions of the work are presented.

5.1 What is a “distortion”?

A search for the word “distortion” in Google returns about 59,900,000 results. If

one wants to briefly understand the term, Google’s first result, the corresponding

Wikipedia article in English [46], is the best option. When consulted in November

2015, it defines the term in the following way:

1Lev Nikolayevich Tolstoy, Yasnaya Polyana, September 9, 1828 – Astapovo, November 20,
1910.

2Vito Volterra, Ancona, May 3, 1860 – Rome, October 11, 1940.
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Distortion is the alteration of the original shape (or other characteristic)

of something, such as an object, image, sound or waveform.

Let us understand what this means. First of all, note that this is a very general

definition – so general that includes cases not usually associated with distortion, in

the intuitive sense of the word. For example, if you turn down the volume knob

of your audio player, or if you use an equalizer to modify the frequency content of

the music you hear, you are distorting the signal. Even the procedure of recording

and playing an audio signal includes some degree of distortion. And if you think

more carefully, even the mere act of hearing some music being played involves some

distortion, which depends on the acoustics of the room, the physical properties of

head, ears and body. All these features together modify the “original shape” of the

music being played.

At this point, the reader may ask himself what we mean by the “original shape” of

an audio signal, since almost everything in the environment can distort it, in the

sense defined above. Perhaps the best definition of “original shape”, in our particular

case of audio restoration, is the sound produced at the exact moment and exact

location of the recording. Every procedure done with the signal after this moment

introduces distortions, in the sense defined above: inaccuracies of the recording

equipment, posterior edition and mixing of the signal, injuries on the media (CD,

vinyl disk, magnetic tapes), bad quality of playing devices, headphones and speakers,

equalization by the listener, and so on.

Of course we will not adopt a definition as broad as the previous one. The word

distortion brings to mind something bad, unwanted. In the context of audio restora-

tion, it means some modification of the audio signal that is potentially unpleasant to

the listener. To illustrate, not all the procedures exemplified on the last paragraph

modify the signal in an annoying way: the edition and mixing of the recorded signal

can be performed to provide a better experience to the listener, the inaccuracies

of the recording equipment can be barely noticeable, the equalization can be done

in order to make the music more pleasant to the listener and some distortions in

electric guitar signals could also be pleasant. On the other hand, if you play some

piece of Bach in a very poor quality speaker with a very loud volume, the listening

experience will be horrible! Even if the listener has access to a high-end playing

equipment, the media can be severely damaged, greatly modifying the original au-

dio signal. Only the second kind of modification deserves to be called distortion:

some special change on the original signal that produces a potentially annoying,

unpleasant experience to the listener.

Note that this definition is personal, in the sense that something that sounds

annoying for one person is not necessarily annoying to another one. There is some

kind of “common sense”, but disagreements occur very frequently: for example, a
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distorted guitar in a heavy metal band can be very annoying for someone, but not for

fans of heavy metal. However, the perception of distortions, specially the nonlinear

distortions to be discussed in the next section, is a well-studied subject, and objective

metrics inspired by psychoacoustics that measures the amount of nonlinearities in an

audio signal exists [47]. This metric, called Rnonlin, will appear in future chapters.

5.2 And what is a “nonlinear” distortion?

Recall from the courses of Signal Processing [43] that a linear system is an operator

H between two spaces of functions3 satisfying some special conditions. If x1 and x2

are two admissible inputs to the system4, let us call y1 = H{x1} and y2 = H{x2}
the respective outputs. The special condition that H must satisfy to be called linear

is the following equation:

H{ax1 + bx2} = ay1 + by2, (5.1)

for all real numbers a and b5.

So, the most obvious way to define a nonlinear system is an operator H between

two spaces of functions that does not satisfy Equation 5.1. But maybe this definition

lacks utility in this simple form. It says nothing about the nature of the system,

and Lev Tolstoy would say that linear systems are all alike; every nonlinear system

is nonlinear in its own way. To illustrate this, recall that the graphs of linear

functions are straight lines (and in higher dimensions are planes, hyper-planes, and

so on) but the graph of every other kind of function may look very weird, even with

the assumptions of continuity, differentiability, analyticity, and so on.

In order to study the effects of nonlinear systems on audio signals, we must

restrict ourselves to some special cases, since the enormous variety of this kind of

system does now allow us to create a generic approach that works in all cases. The

description of such cases is the subject of the next chapter. For now, let us close

this chapter with a brief description of an interesting interpretation of nonlinearity

in the frequency domain.

3For the time being, it is not necessary to describe more precisely these spaces.
4This means to say that both functions belongs to the domain of the operator H.
5The x and y functions do not possess the arguments (t) or [n], usually employed to denote

continuous- or discrete-time signals because the above definition applies to both cases. We will
emphasize the specific case when it is necessary.
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5.3 Effects of linear and nonlinear transforma-

tions in the frequency domain

In the beginning of this chapter we defined a generic linear system. Now, we restrict

ourselves to the discrete-time case. To be consistent with the literature, we will

not write the signal as x(t), but as x[n], where n can assume integer values. If this

system is time-invariant [43], we can write the action of H on some signal in the

time domain as

y[n] = (h ∗ x)[n], (5.2)

where ∗ denotes the convolution operation and h[n] is the impulse response of the

system H. If the sequence x[n] = ekωn is given as input to the considered linear

system, we have that:

y[n] = (h ∗ x)[n] (5.3)

=
+∞∑

k=−∞
h[k]x[n− k] (5.4)

=
+∞∑

k=−∞
h[k]ejω(n−k) (5.5)

= ejωn︸︷︷︸
x[n]

+∞∑

k=−∞
h[k]e−jωk

︸ ︷︷ ︸
H(ejω)

, (5.6)

where we define H(ejω) as the frequency response of the filter H. Intuitively, this

quantity measures how the filter responds to the input of a signal x[n] containing a

single frequency.

Unfortunately, this situation is impossible when dealing with real signals: all

the considered signals have bounded support, implying that the support of their

Fourier transform is unbounded. However, the majority of signals we deal with

contains some frequencies that are much more prominent than others6. So we can

bury our heads in the sand for a moment, ignore the mathematical technicalities

and approximate a real signal by a superimposition of a finite set of frequencies

ejω1n, . . . , ejωkn. For simplicity, consider again a single frequency ejωn and now let H
be a nonlinear system. Since it is quite hard to model nonlinear systems (see next

chapter for more details), consider a simplified one: each time sample y[n] of the

output signal is given by f(x[n]), where f(.) is an arbitrary nonlinear function7. If

6This hypothesis will be largely explored in Part III of the thesis.
7This kind of nonlinear systems will be studied in more details in Part II and III of the thesis.
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we expand this function in a Taylor series around the origin (supposing that it is

analytic), we obtain

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (m)(0)

m!
xm + . . . . (5.7)

Therefore, the response of this system to the input x[n] = ejωn is given by

y[n] = f(ejωn) = f(0) + f ′(0)ejωn +
f ′′(0)

2!
ej2ωn + · · ·+ f (m)(0)

m!
ejmωn + . . . , (5.8)

which contains a superimposition of all frequencies that are integer multiples of ω,

unless the function f(.) is so well-chosen such that the coefficients of the Taylor

series prevent the creation of these additional frequencies8.

This fact provides a very interesting interpretation of nonlinearities in audio sig-

nals, usually stated simply as “nonlinear distortions creates new frequencies within

a signal”. Usually this fact is taken as the definition of a nonlinear system, which is

quite useful albeit not correct from the logical viewpoint. This definition is also as

general as saying that the filter does not satisfy Equation 5.1, but it provides nice

interpretation and intuition about nonlinearities in the frequency domain. Indeed,

there is also a measure of nonlinearity inspired by this fact, called the total harmonic

distortion (THD). For more details, see Chapter 4 of [48].

Recording Storage Reproduction
Emmited
Sound

Played
Sound

Figure 5.1: Audio chain, from emission to reproduction.

Nonlinear distortions can be present at every stage of the chain illustrated in

Figure 5.1, from the recording to the posterior reproduction by the listener, and can

be divided in intentional and unintentional distortions. Examples of the intentional

ones are: compression during recording, in order to improve the SNR; and guitar

pedal effecs and tube amplifiers, which shape the timbre of the original instrument’s

sound. On the other hand, examples of unintentional nonlinear distortions could be

over-compression and accidental saturation during recording; damage of the media

in which the signal is stored; and reproduction outside the loudspeaker’s linear range.

Thus, nonlinear distortions are not necessarily annoying to the listener, and

sometimes are even essential in the process of audio recording. Since this thesis

is concerned with the restoration of degraded audio signals, we will be mainly in-

terested in “undoing” an unintentional (and then potentially annoying)9 nonlinear

8When dealing with nonlinear distortions in Part II and III of this thesis we will be interested
exactly in this case, in order to mitigate the nonlinearity within an audio signal.

9But not every unintentional nonlinear distortion is necessarily annoying! The Wikipedia page
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distortion that might be present in an audio signal. For this, we first must have a

way to describe nonlinear systems, subject of the next chapter.

We conclude by saying that the matter of deciding if a distortion is intentional

or not, annoying or not is purely subjective and depends on the user of the proposed

methods. There is this loose correspondence between unintentional and annoying

nonlinearities but this is not a general rule to be followed.

of the album “In The Court of The Crimson King” [49] by the legendary progressive rock band
King Crimson, reports that the stereo master recorder used during the mixing stage had incorrectly
aligned heads, and this misalignment resulted in a loss of high-frequencies and introduced some
nonlinear distortions in the entire album, more perceived in the song “21st Century Schizoid Man”.
Since the original tapes were considered lost, even after some edition of the audio this problem
was present in the first editions of the vinyl, and it was solved only around 2003, when the original
tapes were found. I was not able to find a more reliable source to this fact, like an interview of some
member of the band, but this appears to be a well-known fact in the progressive rock community,
as I inferred from reading topics in some forums. The version I have of this album is one of the
post-2003 ones, so I am also unable to compare with the original recording.

This history illustrates an unintentional nonlinearity that was not necessarily annoying, since its
artistic impact was consistent with the purpose of the song.
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Chapter 6

Trying to describe the nonlinear

world

Perhaps the most popular and studied way of describing nonlinear systems is the

Volterra series, because of its flexibility to model several real-world phenomena and

relatively easy description [50], even though it was not created specifically with this

goal in mind. This chapter was written with the aim of introducing this tool and

contextualizing in this more general scenario the models we use. It is organized as

follows: Section 6.1 briefly explains the birth of the Volterra series in the context of

integral equations and explains its link with nonlinear systems in both continuous-

and discrete-time cases; in Section 6.2 we restrict the general definition of a Volterra

model to some particular cases of interest, parameterized by a finite number of

coefficients; Section 6.3 presents the block-oriented models, an important class of

nonlinear systems that are special cases of Volterra models; and finally, Section 6.4

reports some early applications of Volterra models in audio processing, not only for

restoration, but also for modeling and recreating an intentional nonlinear distortion.

6.1 Volterra Series

Vito Volterra was an Italian mathematician and physicist who, among other things,

is known for his contributions to the theory of integral equations [51]. This kind

of equations arise quite naturally when studying, for example, the existence and

uniqueness of solutions of ordinary differential equations1.

1Of course, integral equations should not be taken as mere ancillary objects to the study of
differential equations. Indeed, some physical laws like the Maxwell equations can be written both
in the differential of integral forms, each one possessing its own advantages and beauty. There is
also the field of study of integro-differential equations, very important to Statistical Mechanics and
electrical circuit analysis [52].
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For example, consider the differential equation below:





dy

dx
= F (x, y(x));

y(x0) = y0,
(6.1)

for x ∈ (x0 − ε, x0 + ε). If we integrate this equation from x0 to x, we obtain:

y(x) = y0 +

∫ x

x0

F (s, y(s)) ds. (6.2)

If one defines φ0(x) = y0 and considers the sequence

φn(x) = y0 +

∫ x

x0

F (s, φn−1(s)) ds (6.3)

for n ≥ 1, it can be shown that under some mild conditions on F [53]2 that sequence

φn(t) defined above converges to the unique solution of Equation 6.1, as n → ∞.

This is the well-known Picard-Lindelöf theorem.

If one considers the slightly more general integral equation given by

φ(x) = f(x) +

∫ x

0

F (x, y, φ(y)) dy, (6.4)

where the functions f(x) and F (x, y, z) are known and φ(x) is the unknown function,

it can be shown [54] that the iterative sequence defined by

φn(x) = f(x) +

∫ x

0

F (x, y, φn−1(y)) dy (6.5)

for n ≥ 1 and φ0(x) = f(x) converges to the desired solution φ(x) as n→∞.

And finally considering the special case where F (x, y, φ(y)) = λK(x, y)φ(y),

where K satisfies K(x, y) = 0 if y > x, called the Volterra equation of the second

kind and very common in Physics [52], the procedure considered above leads to the

following series expansion [54]:

φ(x) = f(x) +
∞∑

n=1

λn
∫ x

0

Kn(x, y)f(y) dy, (6.6)

where Kn(x, y) is called the iterated kernel defined by K1(x, y) = K(x, y) and for

n ≥ 2

Kn(x, y) =

∫ x

0

K(x, z)Kn−1(z, y) dz. (6.7)

Equation 6.6 is the link between integral equations and nonlinear systems. This

2It is enough to consider F uniformly Lipschitz continuous on the second variable.
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link appears for the first time in history in a wartime report from 1942 [55] by

Norbert Wiener, and it was made public after the war. A more detailed exposition

of this report can be found in [56]. We briefly transcribe here a derivation of this

link below, following Chapter 1 of [50].

6.1.1 Relation of Volterra series with nonlinear systems

In the continuous-time scenario, the definition of a linear system in Equation 5.1

implies that the output y(.) is given by the convolution between the input u(.) and

the impulse response of the system, denoted by h(.):

y(t) =

∫ +∞

−∞
h(s)u(t− s) ds =

∫ +∞

−∞
h(t− s)u(s) ds. (6.8)

If one considers also that the system is causal and relaxed, this implies that h(t) = 0,

for t < 0, u(t) = 0 for t ≤ 0, y(0) = 0 and the convolution in Equation 6.8 above

reduces to

y(t) =

∫ t

0

h(s)u(t− s) ds =

∫ t

0

h(t− s)u(s) ds. (6.9)

Now if one defines K(x, y) = K1(x, y) = h(x − y)u(x) and considers f(x) = 1,

the Equation 6.9 is essentially the term for n = 1 in the series in Equation 6.6.

Considering high-order terms, it is possible to model more general relations between

the input u(.) and the output y(.). In particular, the terms in the series for n = 2

and n = 3 are, respectively, given by:

∫ x

0

∫ x

0

h(x− z)h(z − y)u(z)u(y) dzdy (6.10)

and ∫ x

0

∫ x

0

∫ x

0

h(x− z)h(z − s)h(s− y)u(z)u(s)u(y) dzdsdy, (6.11)

which can be clearly seen as generalizations of the usual convolution in Equation

6.9.

Now it is no longer necessary to restrict ourselves to any framework imposed by

the Volterra equation of second kind, and we are free to define the continuous-time

Volterra model to a nonlinear system, relating its input u(.) and its output y(.)

according to the infinite series

y(t) = y0 + y1(t) + y2(t) + y3(t) + . . . , (6.12)

where y0 is a constant, y1(t) is the first-order term defined in Equation 6.8, and for
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n ≥ 2, yn(t) is defined by

yn(t) =

∫ +∞

−∞
. . .

∫ +∞

−∞
hn(s1, . . . , sn)u(t− s1) . . . u(t− sn) ds1 . . . dsn, (6.13)

where each hn is a function with a similar role as the impulse response of the system.

The more important point we must learn with this discussion is that since the

Volterra model defined above is inspired by a method for solving integral equations

that are ubiquitous in Physics to describe inherently nonlinear real world phenom-

ena, it is a good candidate to model generic nonlinear systems.

6.1.2 Discrete-time Volterra series model

Now it is quite simple to define a model relating the input and output of a nonlinear

system, inspired by the discussion above. If u[.] and y[.] are, respectively, the input

and output of a nonlinear system, we can suppose that the relation between them

is given by

y[k] = y0 + y1[k] + y2[k] + y3[k] + . . . , (6.14)

where the first term is a constant, the second one is the usual convolution between

the input and the impulse response

y1[k] =
+∞∑

l=−∞
h1[l]u[k − l], (6.15)

and for n ≥ 2, yn[k] is given by

yn[k] =
+∞∑

l1=−∞
. . .

+∞∑

ln=−∞
hn[l1, . . . , ln]u[k − l1] . . . u[k − ln], (6.16)

where again each hn is a function with a similar role as the impulse response of the

system3.

This is the discrete-time Volterra model of a nonlinear system, and in the next

section we point out some of its applications in audio processing. The main reference

for this Chapter [50]4 presents a lot of applications to diverse fields of science.

3We will not consider convergence issues for now, since the great generality of the model turns
very difficult to assert convergence in the general case. In next sections we will restrict the model
to specific cases where this point will be enlightened.

4I thank very much Professor Amit Bhaya for recommending me this great book!
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6.2 Particular classes of Volterra models

Equations 6.14, 6.15 and 6.16, which define the discrete-time Volterra model, are

very general since all implied sums are infinite. First we consider the finite-

dimensional models, defined by

y[k] = y0 +
N∑

n=1

yMn [k], where (6.17)

yMn [k] =
M∑

l1=0

. . .
M∑

lN=0

hn[l1, . . . , ln]u[k − l1] . . . u[k − ln].

Note that it is reasonable to call this class of models causal, since the time sample

y[k] is determined only by the “present” u[k] and the “past” u[k − l], for l > 0.

The class of model defined by Equations 6.17 is denoted by V(N,M), where the

first parameter N is called the nonlinear degree and the second one M the dynamic

order of the model. Indeed, if we take y0 = 0 and N = 1, we obtain the description

of a linear FIR filter, since Equation 6.17 reduces to

y[k] =
M∑

l1=0

h1[l1]u[k − l1]. (6.18)

On the other hand, considering M = 0, the relation between signals u[.] and y[.] is

a static memoryless polynomial nonlinearity of degree N :

y[k] = y0 +
N∑

n=1

hn[0, . . . , 0]u[k]n. (6.19)

Nothing prevents us from considering the infinite dimensional limiting cases

V(∞,M), V(N,∞) and V(∞,∞), and these cases will be indeed studied later.

6.3 Block-oriented models

Despite being finite-dimensional, the class V(N,M) carries a problem: in order to

uniquely specify a model within it, a large number of coefficients is necessary. To

understand this, note that each function hn[l1, . . . , ln] is specified by (M + 1)n real

numbers, since each li can assume the values from 0 to M (M + 1 possibilities) and

there are n such li’s. Since n varies from 1 to N , the total number of coefficients

necessary to specify a model is given by

1 +
N∑

n=1

(M + 1)n =
N∑

n=0

(M + 1)n =
(M + 1)N+1 − 1

M
≈MN . (6.20)
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When one needs to identify such a system, the potentially great amount of coeffi-

cients can lead to several problems. This motivates us to restrict even more the class

V(N,M). Recall that the simplest finite-dimensional Volterra models are the classes

V(1,M) with y0 = 0 and V(N,0), containing the FIR filters and the static memoryless

polynomial nonlinearities, respectively. If we combine these linear filters and static

nonlinearities in series and/or parallel, we are considering the block-oriented models.

This name is motivated by the fact that these models are graphically represented by

a block diagram, each block containing the filter or the static memoryless nonlin-

earity. In this thesis, the nonlinear distortions studied will be modeled in this way.

For now, we just consider the theoretical relationship between block-oriented mod-

els and the classes V(N,M), and in the next sections we will present three particular

block-oriented models.

6.3.1 Hammerstein model

This model consists of a single static memoryless nonlinearity f(.) followed by a

linear filter with transfer function B(z), as illustrated in Figure 6.1. For the moment

we consider f(.) as a polynomial of degree N and the filter as an FIR one of order

M , leading to the class H(N,M) of finite-dimensional Hammerstein models.

u[k]
B(z) =

M∑
l=0

blz
−l

f(.)
φ[k] y[k]

Figure 6.1: Hammerstein model.

We now prove that H(N,M) ⊂ V(N,M). Let the polynomial f(.) be given by

f(u) =
N∑
n=0

anu
n, the transfer function B(z) =

M∑
l=0

blz
−l and as indicated in Figure

6.1, we denote the intermediate output of the static nonlinearity by φ[k]. Note that

φ[k] = f(u[k]) =
N∑

n=0

anu[k]n, (6.21)

and the overall output of the model is given by

y[k] =
M∑

l=0

blφ[k − l]. (6.22)

These two equations can be combined to generate a single formula, like the one
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given by Equation 6.17. After substituting and rearranging the terms, we have that:

y[k] = a0

M∑

l=0

bl

︸ ︷︷ ︸
y0

+
N∑

n=1

M∑

l=0

anblu[k − l]n

︸ ︷︷ ︸
yMn [k]

. (6.23)

By examining the term yMn [k] above, we conclude that

hn[l1, . . . , ln] =




anbl, if l1 = · · · = ln = l;

0, otherwise.
(6.24)

Because of that, we can view the Hammerstein models as diagonal Volterra

models, since only the “diagonal” terms in each function hn can be different from

zero. But note that the converse is not true: not every diagonal Volterra model is a

Hammerstein one, since the diagonal terms in the latter case is proportional to the

impulse response of the linear filter B(z), as is clearly seen in Equation 6.24, and

this imposes an additional constraint to the model.

Since the orders of the polynomial nonlinearity and of the linear filter are N and

M , respectively, a Hammerstein model is uniquely determined by N +M + 2 coef-

ficients, a number much smaller than MN , the approximate number of coefficients

necessary to specify a generic Volterra model in V(N,M).

6.3.1.1 More general linear filters

The hypothesis of an FIR filter in the Hammerstein model is quite restrictive, and if

one wants to use a filter with a more general impulse response, the finite-dimensional

Hammerstein and Volterra models are not enough. If the desired linear filter is causal

and stable, let us denote its impulse response by bl, for l ≥ 0. Now, Equation 6.23

can be adapted to this case by considering the limiting case M →∞:

y[k] = a0

∞∑

l=0

bl

︸ ︷︷ ︸
y0

+
N∑

n=1

∞∑

l=0

anblu[k − l]n

︸ ︷︷ ︸
yMn [k]

. (6.25)

Note that this representation is only valid if the series above converge. A suffi-

cient condition for this convergence is the BIBO stability of the linear filter in the

model. In fact, recall that for linear and time-invariant filters the BIBO stability is
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equivalent to its impulse response being absolutely summable5 [43]:

∞∑

l=0

|bl| <∞. (6.26)

This implies immediately that the first sum in Equation 6.25, given by a multiple

of
∞∑
l=0

bl, converges. Now, for each fixed n = 1, . . . , N , consider that the input to the

linear filter is the sequence defined by anu[k]n, for k ∈ Z, which is bounded if the

sequence u[k] also is bounded. Then each term of the second sum in Equation 6.25,

given by
∞∑
l=0

anblu[k − l]n, is just the filtering of this sequence by the linear filter.

This sum exists and is finite for any k ∈ Z, since we are supposing the linear filter

to be BIBO stable.

This particular class of Hammerstein models is denoted by H(N,∞), and it is

clearly a subset of the class V(N,∞). In its most general form, the class H(N,∞) is

infinite-dimensional, but we will be interested in some finite-dimensional sub-classes.

For example, if the linear filter is an all-pole one and causal, its impulse response

is determined by the finite number of coefficients in the denominator of its transfer

function, and the model is then determined by a finite number of coefficients. But

since the filter is not FIR anymore, we need all the terms in the series in Equation

6.25 to fully represent this model in the framework we constructed here.

6.3.1.2 More general nonlinear distortions

If one desires to use a more general nonlinear distortion, a natural extension of

the cases presented here is to consider analytical nonlinear distortions, given by its

Taylor series centered in zero

f(u) =
∞∑

n=0

anu
n, (6.27)

provided the series converges at least in a small interval. The overall output of the

model is given now by

y[k] = a0

M∑

l=0

bl

︸ ︷︷ ︸
y0

+
∞∑

n=1

M∑

l=0

anblu[k − l]n

︸ ︷︷ ︸
yMn [k]

. (6.28)

Note that the convergence condition in the above series is that all the terms of

5The actual definition of a BIBO-stable system is: if the input is a sequence in `∞, its respective
output is also in `∞. The acronym BIBO means bounded input bounded output. For more details,
see [43].
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the input sequence u[.] belong to the convergence interval of the Taylor series. This

gives rise to the class H(∞,M).

6.3.1.3 More general linear filters and nonlinear distortions

Of course we can consider both analytical nonlinear distortion and an IIR filter in

the same model, giving rise to the even more general relationship between input u[.]

and output y[.]:

y[k] = a0

∞∑

l=0

bl

︸ ︷︷ ︸
y0

+
∞∑

n=1

∞∑

l=0

anblu[k − l]n

︸ ︷︷ ︸
yMn [k]

. (6.29)

These models generate the class H(∞,∞). Sufficient conditions to the convergence of

the above series are the intersection of the conditions to assert the convergence of

the series in Equations 6.25 and 6.28, namely the BIBO-stability of the linear filter

and every term of the input sequence u[.] belonging to the convergence interval of

the Taylor series of the analytical nonlinear distortion [50].

6.3.2 Wiener model

This model consists of the same components of the Hammerstein one, but in reverse

order: first the linear filter whose transfer function is B(z) acts on the input u[.],

followed by the static memoryless nonlinearity denoted by f(.), as indicated in Figure

6.2 below:

u[k]
B(z) =

M∑
l=0

blz
−l

f(.)
ψ[k] y[k]

Figure 6.2: Wiener model.

Analogously to the Hammerstein model, if we consider f(.) as a polynomial of

degree N and the filter as an FIR one of order M , we obtain the class of the finite-

dimensional Wiener models, denoted by W(N,M). It is also possible to show that

W(N,M) ⊂ V(N,M), but this demonstration is very tedious and will be omitted here.

6.3.3 Wiener-Hammerstein model

Finally, the last model of interest for us is the Wiener-Hammerstein model, con-

sisting of a linear filter, a static memoryless nonlinear distortion and another linear

filter, connected in cascade, as shown in Figure 6.3 below:
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u[k]
B(z) =

M1∑
l=0

blz
−l

f(.)
φ[k] y[k]ψ[k]

C(z) =
M2∑
l=0

clz
−l

Figure 6.3: Wiener-Hammerstein model.

Considering f(.) as a polynomial of degree N and both filters as FIR of or-

ders M1 and M2 respectively, as indicated in Figure 6.3, we have the class of

finite-dimensional Wiener-Hammerstein models, denoted by WH(N,M1,M2), that is

contained in the class V(N,M), for some value of M , but again the details will be

omitted.

6.4 Applications of nonlinear models in audio

processing

The nonlinear distortions in audio signals can be divided in intentional and unin-

tentional ones, as we have seen in Chapter 5. Therefore, early works in this field are

divided mainly in two categories: simulation and compensation of nonlinear distor-

tions, briefly explained here: the goal of the simulation of a nonlinear distortion is

to identify an intentional effect in order to reproduce it in another situation. For

example, one could try to infer the parameters of a Volterra model associated with

an historical guitar valve amplifier, and apply this effect into a new sound; on the

other hand, the restoration procedures are concerned with the identification of the

nonlinearity and its inversion, in order to mitigate it and recover the original sound.

Although philosophically different, the technical procedures are very similar,

since both requires the identification of some model for the nonlinearity. Naturally,

the Volterra model, or some block-oriented model, was widely used in this task, and

here we list (non extensively) some of the previous work in this field.

The earliest proposed technique for the restoration of nonlinear distorted audio

appeared in 1982 [57], and it did not use the Volterra model. Instead, it was based

on “equalizing” the histogram of speech signals, in order to recover its original distri-

bution. The works [58–60] deal with more specific sources of nonlinearity: magnetic

recordings, horn loudspeakers and distortions usually present in old motion-pictures,

respectively.

A more general approach to the restoration procedure is the Ph.D. thesis [61],

where a coupling of AR and Volterra models is performed in order to model the

entire audio signals. Associated publications expanding the work from this thesis
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are [62, 63].

Finally, some applications of Volterra models for simulation of nonlinear devices

in audio can be found in [64, 65].
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Chapter 7

Invertible memoryless nonlinear

distortion

Now that we have discussed some ways of modeling nonlinearities, we apply them to

the problem of audio restoration. In this chapter we tackle the case of memoryless

nonlinear distortions, with the additional assumption of invertibility. In Section 7.1

we present the model used to describe the nonlinear distortion; Section 7.2 presents

a particular model where the inverse of the static nonlinearity is approximated by

its Taylor series centered at zero, leading to a model in class V(∞,0); in Section 7.3 we

approximate the static nonlinearity by a piecewise linear function, which does not

comply to any class of Volterra models presented; we close the chapter with Section

7.4, where the estimation procedure for the undistorted signal is briefly discussed.

Of the references given at the end of the last chapter, none is tailored to treat

generic memoryless distortions in audio signals. However, some of them are specific

to some situation, like nonlinearities present in old motion-pictures [60] or caused by

horn loudspeakers [59]. Despite this, the problem of memoryless nonlinear distortion

was tackled in other contexts [4, 66], both supposing sparsity of the underlying

original signal.

The contributions of the thesis to this topic will be stated at each section where

a solution to the problem is given.

7.1 Describing the model

The relation between the original audio signal x and the distorted one y is shown

in Figure 7.1 below:

We only have access to a single copy of the distorted signal, and we wish to recover

the original one. Naturally we need some assumptions about the undistorted signal

in order to recover it; otherwise the problem is ill-posed. As argued in Chapter
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xn yn
f(.)

Figure 7.1: Non-linear memoryless distortion model.

4, the AR model is convenient to describe audio signals, and it is our choice here.

Short excerpts of the degraded signal are described by the diagram in Figure 7.2,

where en is the Gaussian excitation sequence and A(z) is the corresponding all-pole

filter of the AR model, as discussed in Section 4.3.

xn yn
f(.)en A(z) =

1

1−
P∑
i=1

aiz−i

Figure 7.2: Complete non-linear memoryless distortion model.

Actually, this is the Wiener model, as described in Section 6.3.2. Since we

are mainly interested in estimating and inverting only the distortion, it is more

convenient to focus on the memoryless nonlinear part, and treat the parameters of

the AR model as nuisance1. Since we do not have access to the input of this model

(this is exactly what we want to recover), this is usually called a blind identification

problem.

7.2 Polynomial approximation to the inverse of

the nonlinear distortion

In this section, we present a Bayesian solution when the inverse of the nonlinear

distortion is approximated by its Taylor series centered at zero. This solution was

firstly proposed in [45], and the contributions of the thesis to the topic were some

modifications on the proposal distribution for sampling the coefficients of the poly-

nomial, and additional tests with real signals corrupted by artificial distortions, both

polynomial and more general ones.

1This is a recurrent term in Bayesian Statistics, representing a parameter whose estimation is
not the main goal, but which must be taken into account to estimate the desired parameters.
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7.2.1 Description of the approximation

We impose additional assumptions over the nonlinearity f(.), in order to enable its

estimation and posterior inversion: anti-symmetric, invertible, and with f ′(0) = 1.

The unitary derivative around the origin may appear quite mysterious here, but

it acts like a “regularization condition”: since the problem is inherently ill-posed,

several solutions would exist without some additional condition. In particular, the

recovered signal can have arbitrarily high amplitude and the coefficients of f(.) can

be chosen in order to cancel out this high amplitude when computing the distorted

signal. The condition f ′(0) = 1 then says that the original and distorted signal are

“similar” when their amplitudes are close to zero, preventing the amplitude of the

recovered signal from being arbitrarily high.

As it will be clear in the next paragraphs, it is more convenient to write the

formulas with the inverse of f(.), which we will call g(.) instead of f−1(.), to avoid

cumbersome notations. In terms of the function g, the aforementioned hypotheses

can be written as:

• g(y) = −g(−y), for all y ∈ R;

• g′(y) > 0, for all y ∈ R;

• g′(0) = 1.

If g(.) is approximated by its Taylor series and one wishes to incorporate the

above restrictions2 on the approximation, we can write it as:

x = g(y) = y +m1y
3 +m2y

5 + · · ·+mMy
2M+1. (7.1)

In this first part of the work, the value of M , related to the order of the polyno-

mial g(.), is unknown and can be tuned by the user to obtain the desired result. This

is a drawback of the method that will be addressed in future works by estimating

M via a reversible Jump MCMC algorithm [27].

Since this equation is linear in the coefficients of the polynomial, it can be written

in matrix form as:

x = y + Ym, (7.2)

2Except for the invertibility, which is more difficult to assure. One possibility is to consider
only positive coefficients, but this is very restrictive. We will soon see how to numerically verify
this.

56



for a block of N time samples from signal y, where

Y =




y3
1 y5

1 . . . y2M+1
1

y3
2 y5

2 . . . y2M+1
2

...
...

. . .
...

y3
N y5

N . . . y2M+1
N




(7.3)

and

m = [m1 m2 . . . mM ]T . (7.4)

This linearity in m will turn the procedure of estimation much easier, as we will see.

7.2.2 Computation of the likelihood

In order to estimate vector m, we must write the likelihood function for the pa-

rameters, given the observed signal. In Chapter 4, we considered x as an excerpt

of the original signal of length N , and split this vector into its first P time samples

(x0 = [x1 . . . xP ]T ) and the remaining (N − P ) samples (x1 = [xP+1 . . . xN ]T ).

The corresponding excitation signal is denoted by e = [eP+1 . . . eN ]T , and fi-

nally the corresponding distorted signal y is also split into its first P time samples

(y0 = [y1 . . . yP ]T ) and the remaining (N −P ) samples (y1 = [yP+1 . . . yN ]T ). The

exact likelihood of the parameters a and σ2
e is approximated by

p(x|a, σ2
e) ≈ p(x1|x0, a, σ

2
e) =

1

(2πσ2
e)

N−P
2

exp

(
− 1

2σ2
e

eTe

)

=
1

(2πσ2
e)

N−P
2

exp

(
− 1

2σ2
e

xTATAx

)
(7.5)

=
1

(2πσ2
e)

N−P
2

exp

(
− 1

2σ2
e

(x1 −Xa)T (x1 −Xa)

)
,

where matrices A and X were defined in Chapter 4. From now on, by an abuse of

notation, we write an equality sign instead of the approximation sign, as discussed

in Chapter 4.

The change of variables in Equation 7.1 does not have unitary Jacobian, and

in order to obtain the likelihood of the parameters given the vector y we must use

Theorem 2.4.1.

In our case, function g already defines functions sn, for n = P + 1, . . . N , by

xn = sn(y1, . . . , yN) = g(yn) = yn +m1y
3
n +m2y

5
n + · · ·+mMy

2M+1
n , (7.6)
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and its partial derivatives are given by

∂sn
∂yl

=





1 +
M∑

j=1

(2j + 1)mjy
2j
n , if n = l,

0 otherwise,

(7.7)

leading to a diagonal Jacobian matrix, whose determinant is given by

N∏

n=P+1

[
1 +

M∑

j=1

(2j + 1)mjy
2j
n

]
. (7.8)

If we define vectors

hn = [3y2
n 5y4

n . . . (2M + 1)y2M
n ]T (7.9)

for n = P + 1, . . . , N , we can write the Jacobian determinant in a more compact

form as
N∏

n=P+1

[
1 + hTnm

]
. (7.10)

By using Theorem 2.4.1 in Equation 7.5, we can deduce the likelihood of the

desired parameters given vector y:

p(y|m, a,σ2
e) =

N∏

n=P+1

∣∣1 + hTnm
∣∣×

1

(2πσ2
e)

N−P
2

exp

[
− 1

2σ2
e

(y + Ym)TATA(y + Ym)

]
. (7.11)

A method for estimating the parameters is maximizing the likelihood with re-

spect to m, a and σ2
e , leading to an estimate of the parameters for which the distorted

signal is the most probable one. This approach was first proposed in [45] and pub-

lished with some modifications in [67], where the Gauss-Newton method [18] was

used to maximize the likelihood. We explain in details only the Bayesian approach,

since the contribution of the thesis to the topic was in this context.

7.2.3 Bayesian estimation of the nonlinear distortion

Some drawbacks of likelihood maximization by means of a deterministic algorithm

are that it could be trapped close to a local maximum, and that it is not straight-

forward to deal with the constraints imposed to the coefficients of the polynomial

g(.), since they define a quite complicated region of RM . In the Bayesian context

these issues are simpler to address, and we also have the possibility of treating more
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than one defect in the audio signal at a time, by incorporating it on the PDF of

the signal. It is important to note that this last point can be misleading, since it

seems that it is straightforward to bundle all the defects that an audio signal can

possess, estimate its respective parameters and restore the signal, but even slight

modifications in the problem can lead to very complicated PDFs, as we will see

in the case of nonlinear distortion with memory. Anyway, despite such practical

difficulties, Bayesian methods provide us with this great flexibility.

By using the Bayes’ Theorem, we obtain

p(m, a, σ2
e |y) ∝ p(y|m, a, σ2

e)p(m)p(a)p(σ2
e), (7.12)

where p(m), p(a) and p(σ2
e) are prior distributions for the respective parameters,

chosen as:

• p(m) ∝ exp

(
− 1

2σ2
m

mTm

)
Ω(m), where function Ω(m) returns 1 if g satisfies

the required constraints3 and 0 otherwise;

• p(a) ∝ exp

(
− 1

2σ2
a

aTa

)
Φ(a), where function Φ(a) returns 1 if a contains the

coefficients of a stable all-pole filter and 0 otherwise;

• σ2
e ∼ IG(α, β), where IG denotes the Inverse Gamma distribution.

The particular choice of a truncated Gaussian and an Inverse Gamma are for math-

ematical convenience since they lead to simpler conditional distributions, as will be

seen later. Hyper-parameters σ2
m, σ2

a, α and β are chosen to make the priors vague

(large variance).

Now, we can write the joint posterior distribution of the parameters:

p(m, a, σ2
e |y) ∝

[
N∏

n=P+1

∣∣1 + hTnm
∣∣×

1

(2πσ2
e)

N−P
2

exp

{
− 1

2σ2
e

(y + Ym)TATA(y + Ym)

}]
×

[
exp

(
− 1

2σ2
m

mTm

)
Ω(m)

]
×
[
exp

(
− 1

2σ2
a

aTa

)
Φ(a)

]
×

[
σ2−(α+1)

e exp

(
− β

σ2
e

)]
. (7.13)

A possible estimation of the parameters based on the posterior distribution is

the maximum a posteriori, which yields the parameters that maximize this distri-

bution. This estimate can be interpreted as the most probable parameters that

caused the distortion. If the introduction of Bayesian methods was done, among

3How this is done will be addressed later when we show some results of the method.
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other things, in order to avoid maximizing the likelihood in Equation 7.11, it makes

no sense to maximize the even more complicated posterior distribution. An alterna-

tive approach is to take samples of this distribution, and numerically estimate any

quantity of interest based on those samples. In this work, we estimate the mean of

the posterior distribution by simply averaging its samples, leading to an estimate

of the parameters that can be used to obtain a restored signal that is as close as

possible from the original one in the `2 norm.

In order to obtain samples from the posterior distributions we employ the Gibbs

sampler, which generates samples from the conditional distributions in an iterative

fashion:

a) Initialize values m(0), a(0) and σ2(0)

e

b) For k from 1 to Niter:

i) Sample σ2(k)

e from distribution p(σ2
e |m(k−1), a(k−1),y)

ii) Sample a(k) from distribution p(a|m(k−1), σ2(k)

e ,y)

iii) Sample m(k) from distribution p(m|a(k), σ2(k)

e ,y)

Note that it is not strictly necessary to initiate the variable σ2
e since it is the first

variable to be sampled in the iterative scheme presented above. Note also that the

order in which the sampling is performed does not matter [22].

We then estimate the posterior mean by the formulas:

σ̂2
e =

1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

σ2(k)

e , (7.14)

â =
1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

a(k), (7.15)

m̂ =
1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

m(k), (7.16)

where Nburn-in is the burn-in time of the Markov chain, as explained in Chapter 3.

To use the Gibbs sampler we must first compute the conditional distributions,

which can be easily obtained by simply considering the posterior distribution in

Equation 7.13 as a function of only the variable in question, ignoring the others. We

now perform this procedure.

7.2.3.1 Conditional distribution of σ2
e

Recall the formula for the joint posterior distribution of the parameters in Equation

7.13. We need to compute the quantity p(σ2
e |m, a,y). This conditional distribution
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means that the values of m, a and y are fixed, so the desired distribution depends

only on σ2
e , being the other terms only normalizing constants to ensure that this

function in fact integrates to one. So, if we consider only the terms dependent on

σ2
e in Equation 7.13 we obtain:

p(σ2
e |m, a,y) ∝

[
1

(σ2
e)

N−P
2

exp

{
− 1

2σ2
e

eTe

}]
×
[
(σ2

e)
−(α+1) exp

(
− β

σ2
e

)]

∝ (σ2
e)
−(N−P2

+α+1) exp

(
−(eTe + β)/2

σ2
e

)
. (7.17)

Note that this last expression is the kernel of an Inverse Gamma distribution with

parameters N−P
2

+ α and eT e+β
2

, i.e. this is the distribution of p(σ2
e |m, a,y), from

which is easy to sample from via built-in functions of numerical softwares.

This procedure will be repeated along the text to obtain all conditional distri-

butions needed to perform the restoration.

7.2.3.2 Conditional distribution of a

To compute p(a|m, σ2
e ,y) note first that the likelihood in Equation 7.11 depends

on a in a complicated way. But recall from Chapter 4 and Equation 7.5 that this

dependence can be rewritten in order to be quadratic in a. Using this in the posterior

distribution we obtain that:

p(a|m, σ2
e ,y) ∝

[
exp

{
− 1

2σ2
e

(x1 −Xa)T (x1 −Xa)

}]
×
[
exp

(
− 1

2σ2
a

aTa

)
Φ(a)

]

= exp

{
− 1

2σ2
e

(x1 −Xa)T (x1 −Xa)− 1

2σ2
a

aTa

}
Φ(a), (7.18)

which can be rearranged to be the kernel of a Gaussian distribution, restricted to

the support of the function Φ(.). Its covariance matrix is Ca =

(
XTX

σ2
e

− IP
σ2
a

)−1

and its mean is µa =
1

σ2
e

CaX
Tx1 =

1

σ2
e

(
XTX

σ2
e

− IP
σ2
a

)
XTx1.

7.2.3.3 Conditional distribution of m

Finally, to compute the conditional of m, note that the Jacobian determinant in the

posteriori distribution in Equation 7.13 makes things quite complicated, since the
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distribution will not belong to any well known family:

p(m|a, σ2
e ,y) ∝

[
N∏

n=P+1

∣∣1 + hTnm
∣∣×

exp

{
− 1

2σ2
e

(y + Ym)TATA(y + Ym)

}]
×

[
exp

(
− 1

2σ2
m

mTm

)
Ω(m)

]
. (7.19)

Note that the terms inside the exponentials are quadratic in m, suggesting that

the conditional distribution is “almost” a truncated Gaussian, only modified by the

Jacobian determinant.

In order to sample from this distribution, we perform a Metropolis-Hastings

step inside the Gibbs sampler, leading to the Metropolis within Gibbs algorithm

previously discussed in Chapter 3: at each step k of the algorithm, instead of di-

rectly sampling m(k) from p(m|a, σ2
e ,y), we sample m∗ from a proposal distribution

q(m|m(k−1)), that may in principle be dependent on the previous sample, and de-

cide if it is “good” enough to be considered a genuine sample from p(m|a, σ2
e ,y) by

tossing a coin that comes up head with probability

α(m(k−1),m∗) = min

(
1,

p(m∗|a(k−1), σ2
e

(k−1),y)q(m(k−1)|m∗)
p(m(k−1)|a(k−1), σ2

e
(k−1),y)q(m∗|m(k−1))

)
, (7.20)

this sample being accepted if head is obtained and rejected otherwise.

The proposal distribution q(m|m(k−1)) will be obtained by means of the Laplace

approximation, first proposed by Laplace in 1774, in a work whose translation can

be found in [68] by S. M. Stigler4, a notable researcher of the History of Statistics [9].

7.2.3.3.1 Interlude: Laplace approximation

The brief explanation we give here is closely related to the one found in [69], and

we transcribe it here for completeness reasons.

Consider a random vector in RN for which the PDF is given by p(z) = h(z)/Z,

where Z is the (perhaps unknown) normalizing constant of the PDF. If z0 is a

maximum point of h(.), we can write down the following approximation:

lnh(z) ≈ lnh(z0) +
1

h(z0)
∇h(z0)− 1

2
(z− z0)TH(z− z0)

= lnh(z0)− 1

2
(z− z0)TH(z− z0), (7.21)

4Stephen Mack Stigler, Minneapolis, August 10, 1941.
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where H is (minus) the Hessian matrix of lnh(.) evaluated at z0:

H = −∇∇ lnh(z0). (7.22)

Note that since z0 is a maximum point of h(.), this matrix is non-negative.

By exponentiating both sides of Equation 7.21, we obtain:

h(z) ≈ h(z0) exp

{
−1

2
(z− z0)TH(z− z0)

}
, (7.23)

and finally

p(z) ≈ 1

Z
h(z0) exp

{
−1

2
(z− z0)TH(z− z0)

}
, (7.24)

at least for z sufficiently close to z0. One can find the constant Z if it is necessary,

but we will not need this for now. The important conclusion here is that close to a

maximum point, the PDF p(.) can be well approximated by a Gaussian with mean

z0 and covariance matrix H−1.

7.2.3.4 Back to the conditional distribution of m

If we consider the natural logarithm of p(m|a, σ2
e ,y) in Equation 7.19, we have that:

ln p(m|a, σ2
e ,y) =

N∑

n=P+1

ln
∣∣1 + hTnm

∣∣

− 1

2σ2
e

(y + Ym)TATA(y + Ym)+

− 1

σ2
m

mTm + C, (7.25)

which is only defined for m in the support of the function Ω(.) and the additive

constant C arises from the proportionality constant in Equation 7.19.

In order to apply the Laplace approximation to this distribution, it is necessary

to find its maxima. This function is not straightforwardly maximized by analytical

means, so we compute the maxima by employing the Newton method [18], initialized

at the last sampled and accepted value of m. If we denote the obtained maximum

point of ln p(m|a, σ2
e ,y) by mmax and by H the negative-Hessian matrix computed at

this maximum, the proposal distribution in the Metropolis step will be a Gaussian

with mean mmax and covariance matrix H−1. Both the Hessian matrix and the

gradient vector of ln p(m|a, σ2
e ,y) have been previously computed by hand to be

used in the Newton method.

63



7.3 Piecewise linear approximation to the nonlin-

ear distortion

Now we present another Bayesian solution, resulted from approximating the inverse

of the nonlinear distortion by a piece-wise linear function. Again this solution was

first proposed in [45], and my contributions were: reformulation of the model to

analyze several blocks of signal simultaneously; and further tests with real signals

corrupted by piece-wise linear and more general distortions that resulted in realizing

the method suffers from some limitations not previously encountered when dealing

with artificial signals [45]. This solution was presented in EUSIPCO’2015 [6], and

the exposition here follows the paper very closely, including more details in some

critical parts.

7.3.1 Description of the approximation

In order to treat several blocks of signal, we split the original and distorted signals

x and y, respectively, each one consisting of N time samples, in B sub-signals of

length L, denoted by xj and yj, for j = 1, . . . , B, respectively, corresponding to

contiguous sections of each one.

x1 x2 x3 xB−1 xB. . .

x︷ ︸︸ ︷

y1 y2 y3 yB−1 yB. . .

y︷ ︸︸ ︷

Figure 7.3: Signals x and y split in blocks.

Each block xj is supposed to follow an AR model of order P , with parameters

aj and σ2
ej

. We also suppose, for simplicity, that the blocks are independent5. For

notational reasons, we will denote by a and σ2
e the vectors containing the concate-

nations of each aj and σ2
ej

, respectively. For each block, there is a corresponding

excitation signal, denoted by ej, of length (L− P ), and consisting of iid samples of

a Gaussian distribution with zero mean and variance σ2
ej

for j = 1, . . . , B, whose

5This hypothesis is clearly false, since the AR coefficients of one block are related with its
adjacent ones because of the continuity within the signal. However, giving up of the dependency is
not harmless to the method, as will be seen in the results in Chapter 9, in addition to simplifying
all computations that follow.
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concatenation we will denote as e. Finally, we denote the first P time samples of

each block of signals x and y by x0
j and y0

j , and the remaining (L−P ) time samples

by x1
j and y1

j , respectively, for j = 1, . . . , B.

As in the previous case, the distortion is supposed to be anti-symmetric, invert-

ible and with unitary derivative at the origin; and again we describe an approxima-

tion for the inverse of the nonlinear distortion, also denoted by g(.), illustrated in

Figure 7.4 below. This illustration is important to better understand the following

definitions.

∆y

y1 = x1 yi−1 yi yM = 1
y

x1

xi

xi−1

xM

x

θi

︸ ︷︷ ︸
Ii

gi

Figure 7.4: Piecewise linear approximation for f−1(.).

Without loss of generality, assume that all time samples of the corrupted signal

y are in the interval [−1, 1]. Taking into account the hypothesis of anti-symmetry

in function g(.), it is necessary to specify it only for positive arguments. So we split

the interval [0, 1] into M contiguous intervals6 of the same length ∆y = 1/M , and

denote each of these sub-intervals by Ii = [yi−1, yi], for i = 1, . . . ,M . Note that

yM = 1 and define y0 = x0 = 0. Over each interval Ii, the inverse of the nonlinear

distortion is approximated by an affine function with slope mi = tan(θi), denoted

by gi(.). The whole approximation, computed at some point by calculating the

corresponding piecewise linear approximation, is denoted by g(.). To impose the

required restrictions to this function, we assume that each mi is positive in order to

6The same letter M was used in Section 7.2 to denote the number of polynomial coefficients,
and is now used to denote the number of linear segments approximating the non-linear function.
This should cause no confusion to the reader, since the two models under consideration are different.
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ensure the invertibility, and m1 = 1, to enforce unitary derivative around the origin.

Obviously the function g(.) must also be continuous, so the intercept of each gi(.)

must be chosen in order to ensure that there will be no “jumps” in the transition from

one segment to another. In other words, the function gi(.) has slope mi = tan(θi)

and passes through the point (yi−1, xi−1). This implies that it must be given by

x = gi(y) = xi−1 +mi(y − yi−1), (7.26)

where y is a generic point in the interval Ii and x is its image via function g(.). In

order to compute this, note that it is possible to obtain the value of each xi, for

i = 1, . . . ,M , as a function of known terms, given explicitly by the formula

xi = ∆y
i∑

j=1

mj = ∆y
i∑

j=1

tan(θj). (7.27)

To prove this relation, consider i ∈ {1, . . . ,M} fixed and note that

i∑

j=1

tan(θj) = tan(θ1) + tan(θ2) + · · ·+ tan(θi−1) + tan(θi)

=
x1

∆y
+
x2 − x1

∆y
+ · · ·+ xi−1 − xi−2

∆y
+
xi − xi−1

∆y

=
xi
∆y

, (7.28)

where in the third equality all the terms in the numerator cancels out, except the

last one. Passing ∆y to the other side gives the required result.

Therefore, the function gi(.) can be computed in the following way:

x = gi(y) = ∆y
i−1∑

j=1

mj +mi(y − yi−1), (7.29)

for y ∈ Ii. Now, if −y < 0, there is a value of i ∈ {1, . . . ,M} such that y ∈ Ii, and

we can compute g(−y) using its anti-symmetry property:

g(−y) = −g(y) = −gi(y) = −
[

∆y
i−1∑

j=1

mj +mi(y − yi−1)

]
. (7.30)

Finally, by assembling the results above, for any value of y ∈ [−1, 1], the value

of x = g(y) can be computed by the formula

x = g(y) = sign(y)gi(|y|) = sign(y)

[
∆y

i−1∑

j=1

mj +mi(|y| − yi−1)

]
, (7.31)
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where sign(y) is the sign of the number y and the index i is such that |y| ∈ Ii. Note

that if i = 1, the above formula reduces to

x = g(y) = sign(y)(|y| − y0) = sign(y)|y|. (7.32)

Since both Equations 7.31 and 7.32 are linear in each mj, we can write it in a

vector form. Define the vector m as

m = [m2 m3 . . . mM ]T , (7.33)

and suppose that |y| ∈ Ii, with i > 1. Then, Equation 7.31 can be rewritten as

x = g(y) = sign(y)∆y + rTy m, (7.34)

where

ry = sign(y)[∆y . . . ∆y (|y| − yi−1) 0 . . . 0]T , (7.35)

and the element (|y| − yi−1) occupies the (i − 1)-th entry of vector ry, in order to

multiply mi in vector m.

Note that if i = 1,

x = g(y) = sign(y)|y|+ rTy m, (7.36)

where now ry = 0.

By assembling the above results, we conclude that the original signal x can be

written in function of the distorted one y and the vector m as

x = u + Rm, (7.37)

where the vector u contains the terms that do not multiply m in Equations 7.34

and 7.36 and the lines of the matrix R are the vectors rTyn as defined above, for each

value of yn.

Since this relation between x and m is linear in m, the estimation procedure will

be very similar to the one employed in the polynomial approximation, described in

Section 7.2.
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7.3.2 Computation of the likelihood

With the notation and hypotheses introduced in the beginning of Section 7.3.1, the

exact likelihood of the parameters a and σ2
e are approximated as

p(x|a,σ2
e) =

B∏

j=1

p(xj|aj, σ2
ej

) ≈
B∏

j=1

p(x1
j |x0

j , aj, σ
2
ej

)

=
B∏

j=1

1

(2πσ2
ej

)
L−P

2

exp

(
− 1

2σ2
ej

eTj ej

)

=
B∏

j=1

1

(2πσ2
ej

)
L−P

2

exp

(
− 1

2σ2
ej

xTj AT
j Ajxj

)
(7.38)

=
B∏

j=1

1

(2πσ2
ej

)
L−P

2

exp

(
− 1

2σ2
ej

(x1
j −Xjaj)

T (x1
j −Xjaj)

)
,

where matrices Aj and Xj were defined in Chapter 4, and the indexes denote the

corresponding block of signal. Again we will abuse the notation and write an equality

sign instead of the approximation above.

The change of variables from x to y does not have unitary Jacobian, and again

we must resort to the change of variables given in Theorem 2.4.1. Following the

notation introduced in the Theorem, function g(.) already defines functions sn, for

n = P + 1, . . . , N :

xn = sn(y1, . . . , yN) = gin(yn), (7.39)

where in is the index such that yn ∈ Iin , for n = P + 1, . . . , N . Their partial

derivatives are given by

∂sn
∂yl

=




min , if n = l

0 otherwise,
(7.40)

leading again to a diagonal Jacobian matrix, whose determinant is given by

M∏

i=1

mNi
i , (7.41)

where Ni is the number of time samples over the entire signal that are affected by

mi.

68



Therefore, the likelihood of the parameters given vector y is

p(y|m,a,σ2
e) =

M∏

i=1

mNi
i ×

B∏

j=1

1

(2πσ2
ej

)
L−P

2

exp

(
− 1

2σ2
ej

(uj + Rjm)TAT
j Aj(uj + Rjm)

)
, (7.42)

where vector uj and matrix Rj are defined as in Section 7.3.1, for their respective

blocks.

7.3.3 Bayesian estimation of the nonlinear distortion

In order to estimate the vector m containing the slopes of the piecewise linear ap-

proximation to the inverse of the nonlinear distortion, we appeal again to a Bayesian

framework, motivated by the same reasons as in the previous case. By using Bayes’

Theorem, we obtain

p(m, a,σ2
e |y) ∝ p(y|m, a,σ2

e)p(m)p(a)p(σ2
e), (7.43)

where p(m), p(a) and p(σ2
e) are prior distributions for the respective parameters,

which we choose as:

• p(m) ∝ exp

(
− 1

2σ2
m

mTm

)
Ψ(m), where function Ψ(m) returns 1 if g satisfies

the required constraints, that is m2, . . . ,mM > 0, and 0 otherwise;

• p(a) ∝
B∏

j=1

exp

(
− 1

2σ2
a

aTj aj

)
Φ(aj), where function Φ(aj) returns 1 if aj con-

tains the coefficients of a stable all-pole filter and 0 otherwise;

• σ2
e ∼

B∏

j=1

IG(α, β), where IG denotes the Inverse Gamma distribution.

The hyper-parameters σ2
m, σ2

a, α and β are chosen to turn the priors vague.
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The joint posterior distribution of the parameters is then given by:

p(m,a,σ2
e |y) ∝

[
M∏

i=1

mNi
i ×

B∏

j=1

1

(2πσ2
ej

)
L−P

2

exp

(
− 1

2σ2
ej

(uj + Rjm)TAT
j Aj(uj + Rjm)

)]
×

[
exp

(
− 1

2σ2
m

mTm

)
Ψ(m)

]
×
[

B∏

j=1

exp

(
− 1

2σ2
a

aTj aj

)
Φ(aj)

]
×

[
B∏

j=1

σ2−(α+1)

ej
exp

(
− β

σ2
ej

)]
(7.44)

To obtain samples from this distribution, we use the Gibbs sampler, implemented

in the following way:

a) Initialize values m(0), a
(0)
1 , . . . , a

(0)
B and σ2(0)

e1
, . . . , σ2(0)

eB

b) For k from 1 to Niter:

i) For j from 1 to B:

Sample σ2(k)

ej
from distribution p(σ2

ej
|m(k−1), a(k−1),σ2(k−1)

e(−j)
,y)

ii) For j from 1 to B:

Sample a
(k)
j from distribution p(aj|m(k−1), a

(k−1)
(−j) ,σ

2(k)

e ,y)

iii) Sample m(k) from distribution p(m|a(k),σ2(k)

e ,y),

where σ2
e(−j)

and a(−j) denote the vectors σ2
e and a without the respective j−th

components.

We then estimate the posteriori mean by the formulas:

σ̂2
ej

=
1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

σ2(k)

ej
, for j = 1, . . . , B, (7.45)

âj =
1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

a
(k)
j , for j = 1, . . . , B, (7.46)

m̂ =
1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

m(k), (7.47)

where Nburn-in is the burn-in time of the Markov chain, as explained in Chapter 3.

The derivation of the conditional distributions is very similar to those detailed

in Section 7.2.3, and therefore we will skip most of the already explained details.
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7.3.3.1 Conditional distribution of σ2
ej

Since we are supposing independent blocks, this conditional can be obtained by

assuming that it is the only block being analyzed, leading to p(σ2
ej
|m, a,y) ∼

IG
(
L−P

2
+ α,

eTj ej+β

2

)
, for j = 1, . . . , B.

7.3.3.2 Conditional distribution of aj

Similar considerations hold in this case, and we obtain that p(aj|m,σ2
e ,y) is

a truncated Gaussian, restricted to the support of the function Φ(.), with co-

variance matrix Caj =

(
XT
j Xj

σ2
ej

− IP
σ2
a

)−1

and mean µaj =
1

σ2
ej

CajX
T
j x1

j =

1

σ2
ej

(
XT
j Xj

σ2
ej

− IP
σ2
a

)
XT
j x1

j , for j = 1, . . . , B.

7.3.3.3 Conditional distribution of m

Due to the geometric restrictions on m and the Jacobian of the transformation from

x to y, this conditional is not of any known family of distributions:

p(m|a,σ2
e ,y) ∝

[
M∏

i=1

mNi
i ×

B∏

j=1

exp

(
− 1

2σ2
ej

(uj + Rjm)TAT
j Aj(uj + Rjm)

)]
×

[
exp

(
− 1

2σ2
m

mTm

)
Ψ(m)

]
. (7.48)

In order to sample from this distribution, we employ again the Metropolis within

Gibbs technique, sampling at each step k of the algorithm a vector m∗ from a

proposal distribution q(m|m(k−1)), also obtained by means of the Laplace approx-

imation of the target distribution p(m|a,σ2
e ,y), and accepting m∗ as a genuine

sample from this distribution with probability

α(m(k−1),m∗) = min

(
1,

p(m∗|a(k−1),σ2
e

(k−1),y)q(m(k−1)|m∗)
p(m(k−1)|a(k−1),σ2

e
(k−1),y)q(m∗|m(k−1))

)
. (7.49)

The proposal distribution is again a Gaussian, centered at the maximum value

of ln p(m|a,σ2
e ,y), denoted by mmax and obtained by the Newton method with

initial point m(k−1), and with covariance matrix given by the negative-Hessian of

ln p(m|a,σ2
e ,y) computed at mmax. The gradient vector and Hessian matrix re-

quired to use the method were previously computed by hand.
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7.4 A note about the estimation of the undis-

torted signal

During this chapter we presented strategies to estimate the vector m, containing

parameters that describe the nonlinear distortion. Denote this estimate by m̂. In

order to estimate the original signal, we compute then

x̂ = y + Ym̂ (7.50)

when the inverse of the nonlinearity is approximated by a polynomial (Section 7.2)

or

x̂ = u + Rm̂ (7.51)

when it is approximated by a piecewise linear function (Section 7.3), where matri-

ces and vectors Y, R, y, and u were all previously defined above. We are then

computing a function of the expected value of the conditional distribution of m.

To be more coherent with the Bayesian approach used in this chapter, it would be

better to sample from the conditional distribution of x, which when conditioned in a

particular value of m, denoted here by m0, possesses all the probability concentrated

in a single point given by y+Ym0 or u+Rm0, depending on the hypothesis over the

nonlinearity. After the burn-in time, the estimate for x would be then the average

of these samples, and each particular sample is given as a function of m. Therefore,

we will be computing the expected value of a function of the conditional distribution

of m.

Up to this point we have no evidence that these two different estimates for x are

equal. But note that the functions of m considered above are linear, implying in

equality in Jensen’s7 inequality (ϕ(E[X]) ≤ E[ϕ(X)] if ϕ is convex, with equality if

and only if ϕ is linear), and thus we can conclude that both estimates are equivalent.

Since it is convenient to compute only once the estimate for x, we implement the

first procedure.

We thank Professor Ralph Silva for warning me of this little issue in the text.

7Johan Ludwig William Valdemar Jensen, Nakskov, May 8, 1859 – Copehnagen, March 5,
1925.
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Chapter 8

Invertible nonlinear distortions

with memory

This chapter proposes a method for treating nonlinear distortions with memory, a

defect quite more complicated than the one discussed in Chapter 7. It is organized

as follows: Section 8.1 motivates the introduction of memory in the nonlinear system

analyzed, with examples from real cases; next, in Section 8.2 we present a way to

introduce the memory in the system via the Hammerstein model, a particular case

of the Volterra series model presented in Chapter 6 and recalled in Section 8.3; in

Section 8.4 we compute the likelihood of the desired parameters of the nonlinear

distortion, and finally in Section 8.5 we present an algorithm based on Bayesian

techniques to estimate such parameters. This solution was published in [7].

Remarkable previous works in this field include [61] and [70]. In the first one, a

Volterra series model coupled with an AR model is proposed to restore nonlinearly

distorted audio signals. This structure is capable to account for the memory, but

as stated by the authors the large number of coefficients to estimate makes the pro-

cedure very difficult. In the second reference, the authors report that the use of a

Hammerstein model is sufficiently accurate to model distortions caused by ampli-

fiers and magnetic recorders, and also propose a method to identify such system.

However, their approach assumes that the shape of the spectrum of the undistorted

signal is constant over time, which is not an accurate hypothesis for audio.

The method proposed here does not require strong hypothesis on the signal

spectrum, and since it is based on the Hammerstein system rather than Volterra

series, it does not need to estimate a large number of coefficients.

The contributions of the thesis to the topic were some modifications in the pro-

posal distributions and reinitialization procedure for the estimated parameters, be-

sides suggestions about the tests performed.
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8.1 Why memory?

The models presented in previous chapters were said to be memoryless, meaning that

the distortion applied to one particular time sample of the original signal does not

depend on the time samples around it. Although important to give insight about the

problem and approximate some distortions created by real devices, this hypothesis

is too simple for many practical applications and must therefore be improved. For

example, the attack and release times in dynamic range compressors determine how

fast the compressor reacts to changes in the input signal level, meaning that at a

particular time sample the effect depends not only on it but also on their neighbors1;

analog guitar pedal effects are built using circuits composed by resistors, inductors

and capacitors, whose output is described by a differential equation involving the

input signal, and thus depends on its integral; finally, the process of recording on a

magnetic tape is inherently nonlinear and not memoryless, because of the differential

equations relating the input signal and the magnetic field applied to the tape. If

one is interested in accurately treating a nonlinear distortion caused by any of these

examples, it is necessary to model this dependence of a single time sample of the

distorted signal on more than one time sample of the original one. This dependence

will be called the memory of the system.

8.2 How to introduce it?

Even though the signals could be analog, we will be interested on their digital

counterparts, since the restoration procedure is performed on digital computers.

Recall from Chapter 6 that the discrete-time Volterra series model is a very general

and physically reasonable way of describing nonlinear systems. Considering its more

general form given in Equations 6.14, 6.15 and 6.16, the memory is also modeled,

since the k−th time sample of the system’s output y[k] could depend on the entire

input signal u[.]. But as we noted later in that chapter, even the finite-dimensional

versions of the discrete-time Volterra series model, given by Equation 6.17, are very

complicated, since they require a very large number of parameters to be uniquely

determined. We introduced in Section 6.3 the block-oriented models, a simplification

of the general case that balances complexity and flexibility. We then presented

three examples: the Hammerstein, Wiener and Wiener-Hammerstein models. Any

of these could in principle be used to model devices causing nonlinear distortions in

audio signals. We chose the Hammerstein model here, because of its compromise

between simplicity and accuracy, and also because it was the first block-oriented

1If the compressor and the input signal are analog, we can say that the effect depends on the
derivative of the input signal at each point.
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model used in the restoration of nonlinearly distorted audio [70], with good results

being reported. In that work, based on experiments performed with tube amplifier

and magnetic recorder, the authors argue that the model is reasonably accurate to

model real devices2.

Intuitively, adopting the Hammerstein model is also a good approach to introduce

memory in our system. Denote the original undistorted signal by x and the observed

distorted signal by z. As we can see in Figure 8.1, the original signal is processed

by a memoryless nonlinear distortion f(.), creating the intermediate signal y. Now,

a linear filter is applied to this intermediate signal, and this last block is responsible

for the memory, since a linear filter is usually represented by a difference equation

relating its input with its output. For example, if B(z) is the transfer function of

an FIR filter, each time sample zn of the distorted signal is a linear combination

of the time samples yn, yn−1, . . . , yn−Q of the intermediate signal, which are in turn

nonlinear functions of the time samples xn, xn−1, . . . , xn−Q.

xn
B(z)

f(.)
yn zn

Figure 8.1: Hammerstein model.

8.3 Describing the model

As we convinced ourselves in the last section, the Hammerstein model is a good can-

didate to introduce memory in the nonlinear system. We now detail some additional

assumptions made in the context of audio restoration.

xn ynf(.)en A(z) =
1

1− P∑
i=1

aiz−i
B(z) =

1

1−
Q∑
i=1

biz−i
zn

Figure 8.2: Complete model generating a nonlinearly distorted audio signal.

Figure 8.2 above represents the overall system, from the generation of the original

and undistorted audio signal to its posterior nonlinear distortion. As in Chapter 7,

short excerpts of the original signal are modeled by an AR process of order P . The

2This is half of a paragraph in Section 2 of the paper, and there is no reference or more
descriptions of the experiments, for reasons of space, since the paper is a conference one.
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first block represents an all-pole filter, excited by a Gaussian sequence e and giving

rise to an excerpt of the original signal x. This signal passes through the static

memoryless nonlinearity f(.), creating the intermediate signal y. As in Section 7.2,

we suppose that this function is anti-symmetric, invertible and possesses unitary

derivative in zero, implying that its inverse g(.) = f−1(.) exists and satisfies:

• g(y) = −g(−y), for all y ∈ R;

• g′(y) > 0, for all y ∈ R;

• g′(0) = 1.

We again as in Section 7.2 approximate g(.) by its Taylor polynomial of order

M centered in zero, in order to obtain a parametric form for the distortion. Finally,

the linear filter whose transfer function is B(z) is chosen to be an all-pole of order

Q, since as we will see in the next sections, with this assumption it is easier to write

the likelihood functions for the parameters. We note again that the orders P , M

and Q are unknown beforehand and can be tuned manually by the user to obtain

better results, an issue to be addressed in the future.

8.4 Computation of the likelihood

As in Chapter 7, we consider x = [x1 . . . xN ]T as an excerpt of the original signal

of length N , x0 = [x0 . . . xP ]T its first P time samples and x1 = [xP+1 . . . xN ]T its

remaining (N − P ) time samples. Denote by e = [eP+1 . . . eN ]T the corresponding

excitation signal and by y the intermediate signal, split in y0 and y1 analogously to

x. Finally, denote by z the observed distorted signal and define R = P +Q. Split z

in its first R time samples z = [z1 . . . zR]T and its remaining (N −R) time samples

z = [zR+1 . . . zN ]T .

We computed in Section 7.2.2 the likelihood of parameters m, a and σ2
e , which

is given by

p(y|m, a,σ2
e) =

N∏

n=P+1

∣∣1 + hTnm
∣∣×

1

(2πσ2
e)

N−P
2

exp

[
− 1

2σ2
e

(y + Ym)TATA(y + Ym)

]
. (8.1)

Since we will need to perform another change of variables, it will be useful to change

a little bit the notation:

• Recall firstly that this likelihood is not exact, but an approximation, since

the term on the right side is the likelihood conditioned to y0, denoted by

p(y1|y0,m, a, σ2
e).
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• Each term of the Jacobian determinant above can be rewritten as |g′(yn; m)|,
where the derivative is taken with respect to the variable of the polynomial

and we now make explicit the dependence of g(.) on m.

• The term (y + Ym)TATA(y + Ym) inside the exponential can be rewritten

as eTe =
∑N

n=P+1 e
2
n. In turn, each en is given by

en = xn −
P∑

i=1

aixn−i = g(yn; m)−
P∑

i=1

aig(yn−i; m), (8.2)

which we can denote for the moment as en(m, a).

Therefore, the likelihood in Equation 8.1 can be rewritten as:

p(y|m, a,σ2
e) ≈ p(y1|y0,m, a, σ2

e) =

N∏

n=P+1

|g′(yn; m)| 1

(2πσ2
e)

N−P
2

exp

[
− 1

2σ2
e

N∑

n=P+1

en(m, a)2

]
. (8.3)

We now consider the all-pole filter whose transfer function is B(z) acting on the

signal y. The relation between y and z is given by

zn = yn +

Q∑

i=1

bizn−i. (8.4)

Since this equation is recursive and our signal is finite, it is not valid for every time

sample of signal z. When we used the AR equation to describe the relation between

e and x, it was valid only for xn with n = P + 1, . . . , N . Now, to compute some zn

we need the previous Q time samples, implying that the relation in Equation 8.4 is

valid only for n = R + 1, . . . , N , where R was defined as P + Q. If we write these

equations, we have:





zP+Q+1 = yP+Q+1 + b1zP+Q + b2xP+Q−1 + · · ·+ bQzP+1

zP+Q+2 = yP+Q+2 + b1zP+Q+1 + b2xP+Q + · · ·+ bQzP+2

...

zN = yN + b1zN−1 + b2zN−2 + · · ·+ bQxN−Q.

(8.5)

As for the AR model, we must assume that the time samples zP+1, zP+2, . . . , zP+Q

are known beforehand, implying that the above transformation from y to z is of

unitary Jacobian.
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Then, the likelihood in Equation 8.3 is updated to:

p(z|b,m, a, σ2
e) ≈ p(z1|z0,b,m, a, σ2

e) =

N∏

n=R+1

∣∣∣∣
∂

∂zn
h(zn, . . . , zn−i; b,m)

∣∣∣∣
1

(2πσ2
e)

N−R
2

exp

[
− 1

2σ2
e

N∑

n=R+1

en(b,m, a)2

]
, (8.6)

where the function h(·; b,m) is defined by

h(zn; b,m) = g



zn −

Q∑

i=1

bizn−i

︸ ︷︷ ︸
yn

; m



, (8.7)

and en(b,m, a) is given by

en = g



zn −

Q∑

j=1

bjzn−j

︸ ︷︷ ︸
yn

; m



−

P∑

i=1

aig



zn−i −

Q∑

j=1

bjzn−i−j

︸ ︷︷ ︸
yn−i

; m



. (8.8)

Note that now we must make explicit in the Jacobian determinant the variable

in which each term is derived, since it does not depend on a single time sample of

signal z anymore.

As before, we want to find the best values of b and m based only on the knowl-

edge of the distorted signal z. If maximizing the likelihood by means of a deter-

ministic method was reasonable in the memoryless case, here this strategy seems to

be inadequate, since the likelihood in Equation 8.6 is a very complicated function,

potentially with several local maxima. In fact, tests performed previously in [45]

show that the Newton method is not very effective here, since its convergence to

the global maximum is conditioned on a good starting point, which is not readily

available. In order to estimate the desired parameters we employ again Bayesian

methods, described in more detail in the next section.

8.5 Bayesian estimation of the distortion param-

eters

By using the Bayes’ Theorem, we have

p(b,m, a, σ2
e |z) ∝ p(z|b,m, a, σ2

e)p(b)p(m)p(a)p(σ2
e), (8.9)
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where p(b), p(m), p(a) and p(σ2
e) are the prior distributions for the parameters,

given, similarly as in the memoryless case, by:

• p(b) ∝ exp

(
− 1

2σ2
b

bTb

)
Φ(b), where function Φ(b) returns 1 if b contains

the coefficients of a stable all-pole filter and 0 otherwise;

• p(m) ∝ exp

(
− 1

2σ2
m

mTm

)
Ω(m), where function Ω(m) returns 1 if g satisfies

the required constraints presented in Section 7.2.1 and 0 otherwise;

• p(a) ∝ exp

(
− 1

2σ2
a

aTa

)
Φ(a), where function Φ(a) is the same defined in p(b);

• σ2
e ∼ IG(α, β), where IG denotes the Inverse Gamma distribution.

The hyper-parameters σ2
m, σ2

a, σ
2
b , α and β are chosen to turn the priors vague.

The posterior distribution is then given by:

p(b,m, a, σ2
e |z) ∝

N∏

n=R+1

∣∣∣∣
∂

∂zn
h(zn, . . . , zn−i; b,m)

∣∣∣∣
1

(2πσ2
e)

N−R
2

exp

[
− 1

2σ2
e

N∑

n=R+1

en(b,m, a)2

]
×

[
exp

(
− 1

2σ2
m

mTm

)
Ω(m)

]
×
[
exp

(
− 1

2σ2
a

aTa

)
Φ(a)

]
×

[
exp

(
− 1

2σ2
b

bTb

)
Φ(b)

]
×
[
σ2−(α+1)

e exp

(
− β

σ2
e

)]
. (8.10)

As in the memoryless case, we obtain samples from this distribution and compute

the posterior mean as an estimate of the parameters b, m, a, σ2
e .

We sample from this distribution using the Gibbs sampler, implemented in the

following way:

a) Initialize values m(0), a(0), b(0) and σ2(0)

e

b) For k from 1 to Niter:

i) Sample σ2(k)

e from distribution p(σ2
e |b(k−1),m(k−1), a(k−1), z)

ii) Sample a(k) from distribution p(a|b(k−1),m(k−1), σ2(k)

e , z)

iii) Sample b(k) from distribution p(b|m(k−1), a(k), σ2(k)

e , z)

iv) Sample m(k) from distribution p(m|b(k), a(k), σ2(k)

e , z)

79



The posterior mean is estimated by the formulas:

σ̂2
e =

1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

σ2(k)

e , (8.11)

â =
1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

a(k), (8.12)

b̂ =
1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

b(k), (8.13)

m̂ =
1

Niter −Nburn-in

Niter∑

k=Nburn-in+1

m(k), (8.14)

where Nb is the burn-in time of the Markov chain, as explained in Chapter 2.

To compute the conditional distributions required by the Gibbs sampler, we

consider the posterior distribution in Equation 8.10 as a function of only the variable

of interest, ignoring the others, resulting in the distributions described below.

8.5.1 Conditional distribution of σ2
e

p(σ2
e |b,m, a, z) ∝

[
1

(σ2
e)

N−R
2

exp

{
− 1

2σ2
e

N∑

n=R+1

en(b,m, a)2

}]

×
[
(σ2

e)
−(α+1) exp

(
− β

σ2
e

)]

∝ (σ2
e)
−(N−R2

+α+1) exp

(
−(
∑N

n=R+1 en(b,m, a)2 + β)/2

σ2
e

)
, (8.15)

which implies that p(σ2
e |b,m, a, z) ∼ IG

(
N−R

2
+ α,

∑N
n=R+1 en(b,m,a)2+β

2

)
a distribu-

tion that is easy to sample from, by using built-in functions of numerical softwares.

8.5.2 Conditional distribution of a

Recall that we can write the posterior distribution in Equation 8.10 in such a way

that the dependence in a is quadratic, implying that its conditional distribution is

given by:

p(a|b,m, σ2
e , z) ∝

[
exp

{
− 1

2σ2
e

(x1 −Xa)T (x1 −Xa)

}]
×
[
exp

(
− 1

2σ2
a

aTa

)
Φ(a)

]

= exp

{
− 1

2σ2
e

(x1 −Xa)T (x1 −Xa)− 1

2σ2
a

aTa

}
Φ(a), (8.16)
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where matrix X was defined in Chapter 4. Each entry of vector x1 necessary to

compute the formula above is given by

xn = g

(
zn −

Q∑

j=1

bjzn−j; m

)
, (8.17)

implying that it can be computed only from z and from the variables on which the

distribution is conditioned.

Therefore, the conditional distribution for a is a truncated Gaussian, constrained

to the support of the function Φ(.), with covariance matrix Ca =

(
XTX

σ2
e

− IP
σ2
a

)−1

and mean µa =
1

σ2
e

CaX
Tx1 =

1

σ2
e

(
XTX

σ2
e

− IP
σ2
a

)
XTx1.

8.5.3 Conditional distribution of m

As in the memoryless case, the conditional distribution of m does not belong to a

well known family that is easy to sample from, because of the Jacobian determinant

in Equation 8.6:

p(m|b, a, σ2
e , z) ∝

[
N∏

n=R+1

∣∣∣∣
∂

∂zn
h(zn, . . . , zn−i; b,m)

∣∣∣∣× exp

{
− 1

2σ2
e

N∑

n=R+1

en(b,m, a)2

}]
×

[
exp

(
− 1

2σ2
m

mTm

)
Ω(m)

]
. (8.18)

We can rewrite the argument of the first exponential in order to make explicit the

quadratic dependence in m:

p(m|b, a, σ2
e , z) ∝

[
N∏

n=R+1

∣∣∣∣
∂

∂zn
h(zn, . . . , zn−i; b,m)

∣∣∣∣×

exp

{
− 1

2σ2
e

(y + Ym)TATA(y + Ym)

}]
×

[
exp

(
− 1

2σ2
m

mTm

)
Ω(m)

]
, (8.19)

where matrix Y is given by

Y =




y3
1 y5

1 . . . y2M+1
1

y3
2 y5

2 . . . y2M+1
2

...
...

. . .
...

y3
N y5

N . . . y2M+1
N



, (8.20)
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each yn is computed as

yn = zn −
Q∑

i=1

bizn−i, (8.21)

and matrix A was defined in Chapter 4. Therefore, all the quantities required can

also be computed from z and from the other variables on which the distribution is

conditioned.

To sample from this distribution we employ a Metropolis within Gibbs step,

where the proposal distribution at each step is computed by means of the Laplace

approximation, as in the memoryless case. More specifically, the proposal distribu-

tion is Gaussian with mean equal to some mode of ln p(m|b, a, σ2
e , z) and covariance

matrix given by the negative-Hessian of this function computed at this mode. This

maximum point is obtained by the Newton method with starting point equal to

the current sample m(k−1). The gradient vector and the Hessian matrix were com-

puted by hand in a very tedious computation that was omitted from the text for

conciseness sake.

8.5.4 Conditional distribution of b

Analogously to the conditional distribution of m, this distribution is not a member

of a well known family:

p(b|m, a, σ2
e , z) ∝

N∏

n=R+1

∣∣∣∣
∂

∂zn
h(zn, . . . , zn−i; b,m)

∣∣∣∣ exp

[
− 1

2σ2
e

N∑

n=R+1

en(b,m, a)2

]
×

[
exp

(
− 1

2σ2
b

bTb

)
Φ(b)

]
. (8.22)

Now the situation is quite more complicated, since the argument inside the first

exponential cannot be rewritten in order to be quadratic in b, since higher powers

of the coefficients bi appear in each en:

en(b,m, a) = g

(
zn −

Q∑

j=1

bjzn−j; m

)
−

P∑

i=1

aig

(
zn−i −

Q∑

j=1

bjzn−i−j; m

)
. (8.23)

Despite this difficulty, we can still use the Laplace approximation and Metropolis

within Gibbs, as in the sampling of the conditional distribution of m. To find

a maximum point of ln p(b|m, a, σ2
e , z) we use the Newton method initialized in

the current sample b(k−1) and use the obtained point as the mean of the proposal

Gaussian distribution. Its covariance matrix is given by the negative-Hessian of

ln p(b|m, a, σ2
e , z) computed at the obtained maximum. Again the gradient vector
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and the Hessian matrix were computed by hand, but now the computation is even

more tedious and longer than for the conditional distribution of m. It will also be

omitted from the text for conciseness reasons.

8.5.5 Reinitialization procedure

Preliminary tests implementing the procedure described above with real signals

distorted with artificial distortions showed that there is a great chance of the chain

being trapped for a very long time around a local maximum, if the starting point

is not close enough to the global maximum. This was also an issue in using the

Newton method for maximizing the likelihood in Equation 8.6. Some theorems

of the MCMC theory guarantee that the chain will eventually explore the region

where the global maximum is located, but this can take a very long time, since

some sample from the proposal distribution must be in this region, and this sample

must be accepted. In order to overcome this problem by increasing the odds of the

chain quickly reaching the region around the global maximum, the reinitialization

procedure described below was proposed:

i) Randomly choose parameters a, b and m respecting the constraints imposed

by functions Φ(.) and Ω(.);

ii) Find a local maximum of their respective conditional distributions, by using

the Newton method initialized at the previously chosen values;

iii) Approximate the conditional distributions around the local maximum found

in the previous step via Laplace approximation;

iv) Sample a, b and m from this approximate distribution;

v) Accept the samples generated in the previous step with probability given by

the acceptance probability of the Metropolis-Hastings algorithm (Equation

3.3), with q(· ; ·) = 1.

The last step departs from the standard Metropolis-Hastings algorithm, since the

proposal distribution is not taken into account in the calculation of the acceptance

probability. The precise computation of this quantity is very complicated, since the

sampled distribution is not specified by a single formula, but is constructed in steps

i), ii) and iii) above. However, this simplification does not impact the convergence

of the chain, since this procedure is only performed during the burn-in. How often

the reinitialization procedure is performed is a parameter set by the user.
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Chapter 9

Results and Future works

In Chapters 7 and 8 we presented methods for restoring audio signals degraded

by nonlinear distortion without and with memory, respectively. We now report

some results obtained with these methods. Tests were performed with real and

artificial signals, artificially distorted by nonlinear systems following or not their

respective models. The organization of the chapter is as follows: in Sections 9.1 and

9.2 we present the results for the memoryless case, where the distortion possesses

polynomial inverse or is piecewise linear, respectively, and in Section 9.3 the effects

of some parameters are tested using some statistical tools and discussed in details;

in Section 9.4 the results for the case with memory are shown, and finally in Section

9.5 some conclusions are summarized and future works are indicated.

Algorithms were implemented and executed in my personal computer1 ASUSTM2

K45VM with processor Intel Core i7 3610QMTM3 at 2.3 GHz clock and possessing

8 GB of RAM, in MATLABTM4 version R2014a.

9.1 Memoryless nonlinear distortions: Polyno-

mial approximation

The polynomial approximation to the inverse of the nonlinear distortion was pre-

sented in Section 7.2. Two main types of tests were performed: artificial signals

modified with artificial distortions following the model; and real signals modified

with artificial distortions both following the model or more general ones. The first

type of test is performed in order to assess the method’s accuracy and convergence,

while the second one aims at verifying the method’s generality and capability of

1Except those presented in Section 9.4, for the restoration of signals degraded by nonlinear
distortions with memory

2ASUSTeK Computer Inc., http://www.asus.com/
3Intel Corporation, http://www.intel.com/
4The MathWorks, Inc., http://www.mathworks.com/
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treating more realistic distortions.

9.1.1 Artificial signals and distortion following the model

An artificial signal with 1,000 time samples that follows an AR model was generated.

The filter representing the AR model had poles at frequencies π/16, π/8 and π/4

radians per time sample and its respective conjugated frequencies, each one with

module 0.99. The variance of the excitation signal was chosen to be σ2
e = 5× 10−6,

a value of an order of magnitude typically seen in real digitized audio signals, whose

amplitude is at most 1. The signal was distorted by the inverse function of the

polynomial

g(y) = y + 5y3 + 30y5, (9.1)

and this inverse was computed for each value of the original signal x via the bisection

method. Note that g(.) is in fact invertible, since its derivative is always positive.

We wish then to recover the variables m = [5 30]T containing the coefficients of

g(.) except for the first one, a = [5.1713 − 11.7727 15.1104 − 11.5384 4.9675 −
0.9415]T containing the coefficients of the AR model above and the variance of the

excitation signal σ2
e = 5× 10−6.

The single block of N = 1,000 time samples was analyzed, with constants P and

M fixed at their correct values, 6 and 2, respectively. The parameters of the prior

distributions were σ2
m = 1010, σ2

a = 1010 and α = β = 10−10.

A Gibbs sampler together with a Metropolis step for sampling m, as described

in Section 7.2, was run for 100 iterations, each one lasting approximately 0.412 s.

The burn-in period was 50 iterations. Note that from the statistical viewpoint this

is too few iterations, but for our purposes here, obtaining good audible results, this

amount of iterations suffice.

Figure 9.1 shows the gradual convergence along the iterations to the polynomial

coefficients, the most important parameters to be estimated. Although the chain

output appears to be constant after the first ones, this is not the case. Zooming

on the last 50 iterations, after the burn-in period, illustrates this point, as can be

seen in Figure 9.2. We can also compare the original, distorted and restored signals

by plotting them simultaneously or in a scatter plot, as in Figures 9.3 and 9.4,

respectively. Figure 9.5 illustrates the convergence of a and finally in Tables 9.1 and

9.2 we can compare the real and estimated values, as the mean after the burn-in

time, for parameters a and m, respectively. On the convergence plots, the red square

and the green circle always denote the real and estimated values, respectively.

We can then conclude that the method is capable of correctly identifying the

desired parameters in this simple scenario, and assess its accuracy and convergence.
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Figure 9.1: Artificial signal and distortion with polynomial inverse: Convergence of
polynomial coefficients.
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Figure 9.4: Artificial signal and distortion with polynomial inverse: Distorted and
restored signals plotted against the original one.
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Figure 9.5: Artificial signal and distortion with polynomial inverse: Convergence of
the AR model coefficients.
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Table 9.1: Artificial signal and distortion with polynomial inverse: Comparison of

real and estimated values of the coefficients of the AR model.

Real Estimated

a1 5.1713 5.1846

a2 -11.7727 -11.8278

a3 15.1104 15.2079

a4 -11.5384 -11.6288

a5 4.9675 5.0102

a6 -0.9415 -0.9493

Table 9.2: Artificial signal and distortion with polynomial inverse: Comparison of

real and estimated values of the polynomial coefficients.

Real Estimated

m1 5 4.9992

m2 30 30.0073

9.1.2 Real signals and distortion following the model

The next step is to consider real signals distorted by a function whose inverse is

polynomial. We consider three signals:

• flute.wav, a 3-s single note played on the flute, with some vibrato;

• orchestra.wav, a 9-s long excerpt of orchestral music, with long notes being

played;

• voice.wav, a 2-s long speech signal in Portuguese, emitted by a female voice.

All the signals above are monophonic, in PCM format and sampled at 44,100 Hz,

except voice.wav, sampled at 48,000 Hz. Each one was distorted by the inverse of

the polynomial g(y) = y+ 5y3 + 30y5, as in the previous case. A block of 1,000 time

samples around the maximum amplitude time sample of each signal was analyzed,

since this region was expected to provide more information about the high-order

terms in g(.).

The value of P that better describes the considered block of signal is unknown

and fixed at 40 in all cases. To verify the accuracy of the estimation of a, we compare

its estimated values via the Gibbs sampler with the values estimated directly from

the original signal using the covariance method [71], implemented in the arcov

function of MATLABTM.
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Since we are dealing with real signals, we can compare them by hearing, and not

only by looking at plots that can possibly fool our senses. The tested signals are

available in website [72] under the link Companion website to my D.Sc. Thesis5.

Moreover, we compare the restored and original signals via the Rnonlin metric [47],

a perceptually-based objective evaluation tool that mimics the way our ears and

brain interpret nonlinearity in audio signals. It compares the tested signal against

the original one using a series of filters, called gammatone filters, and returns a grade

from 0 to 1. The closer the grade is to 1, better the tested signal should sound. It is

important to note that the scale is not linear: a signal that scores 0.7 could sound

very bad, and for some signals there is a great difference if its distorted version

scores 0.95 and the restored one scores 0.99, despite the numbers being quite close.

Grades below 0.7 were not observed in any of our tests. It is worth noting that the

Rnonlin metric is invariant under scaling of the signals: multiply the tested or the

reference signal by a positive constant does not affect the obtained grade. Therefore,

any eventual scaling done to avoid clipping when saving some signal does not affect

its respective Rnonlin grade.

For each of the three signals tested, three figures are shown: the first one displays

the convergence of m (Figures 9.6, 9.9 and 9.12), the second one the convergence of

the first 6 coefficients of the respective AR models (Figures 9.7, 9.10 and 9.13) and

the third one the distorted and restored signals against the original ones. (Figures

9.8, 9.11 and 9.14).

Table 9.3: Real signals and distortion with polynomial inverse: Rnonlin grades for

distorted and restored signals.

flute.wav classical.wav voice.wav

Distorted 0.8775 0.9615 0.9165

Restored 0.9954 0.9985 0.9955

5Note that the dynamic range of these signals is different from the dynamic range presented
in the figures below. This occurs because in order to save an audio signal in MATLABTM it is
necessary to normalize it by keeping its maximum amplitude time sample equal to one; otherwise
the signal will be clipped.
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Figure 9.6: Signal flute.wav and distortion with polynomial inverse: Convergence
of polynomial coefficients.
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Figure 9.7: Signal flute.wav and distortion with polynomial inverse: Convergence
of the first 6 AR model coefficients.
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Figure 9.8: Signal flute.wav and distortion with polynomial inverse: Distorted and
restored signals plotted against the original one.
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Figure 9.9: Signal classical.wav and distortion with polynomial inverse: Conver-
gence of polynomial coefficients.
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Figure 9.10: Signal classical.wav and distortion with polynomial inverse: Con-
vergence of the first 6 AR model coefficients.
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Figure 9.11: Signal classical.wav and distortion with polynomial inverse: Dis-
torted and restored signals plotted against the original one.
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Figure 9.12: Signal voice.wav and distortion with polynomial inverse: Convergence
of polynomial coefficients.
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Figure 9.13: Signal voice.wav and distortion with polynomial inverse: Convergence
of the first 6 AR model coefficients.
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Figure 9.14: Signal voice.wav with piecewise linear distortion: Distorted and re-
stored signals plotted against the original one.
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By hearing the signals and comparing their Rnonlin grades we conclude that the

method is also effective in this more realistic scenario, since no audible difference

between the restored and original signals are noted. However, the estimation of

parameters a and m is not as accurate as in the previous case. This was an expected

behavior, since the underlying signals do not follow exactly an AR model.

An important point to be discussed is about the convergence of m, in particular

m2. By looking at the convergence plots in Figures 9.6, 9.9 and 9.12, it seems that

the posterior mean of m2 was estimated very far from its real value, mainly in signal

voice.wav. In fact the estimation was not so accurate, and a possible reason is

discussed. In the previous case, when analyzing artificial signals, the largest entry

of the original signal in absolute value was far greater than one, and now when

dealing with real signals they have been normalized to limit the magnitude of its

largest entry in absolute value to one. After applying the inverse of the polynomial

f(.) to the original signal, its time samples are now much smaller than one. This new

distorted signal provides us only a little amount of useful information to estimate

the high-order coefficients of g(.), since when a small number is raised to a positive

power, it becomes even smaller. Another possibility is that the AR model is not

adequate to model the considered excerpt of the speech signal.

However, as we can note from hearing the signals or comparing their Rnonlin

grades, this issue almost does not impact the perceived quality of the restored signals.

As the distorted signals provide little information about the high-order coefficients

of g(.), the sensitivity of the signal to these coefficients is low, since they multiply

very small numbers. This is a very important reason to not look only at the plots

when dealing with real signals! Our ears and eyes perceive the information in very

different ways, and our senses may be easily fooled.

9.1.3 Real signals and more general distortions

Finally, in this section we report the more realistic case of real signals distorted by

more general distortions. The test signals are the same as the previous ones, but

distorted by the function f(x) = arctan(λx)/λ, where the value of λ allows one to

control the distortion level applied to the original signal while keeping the constraint

of unitary derivative in the origin. The evaluated signals are the same used in the

previous sections, and we considered λ ∈ {1, . . . , 5}.
For each signal we considered a single block of length 1,000 centered at the

respective maximum amplitude time sample. The values of M and P were fixed at

4 and 40, respectively, for all signals, since this choice of parameters showed good

results in all cases. The parameters of the prior distributions were again σ2
m = 1010,

σ2
a = 1010, α = β = 10−10. In Table 9.4, the Rnonlin grades for the distorted and
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restored signals for each value of λ are shown. All signals are available in webpage

[72].

Table 9.4: Real signals with more general distortions: Rnonlin grades for distorted
and restored signals.

flute.wav classical.wav voice.wav

λ = 1
Distorted 0.9730 0.9989 0.9852
Restored 0.9999 1.0000 1.0000

λ = 2
Distorted 0.9288 0.9903 0.9554
Restored 0.9999 1.0000 1.0000

λ = 3
Distorted 0.8948 0.9736 0.9281
Restored 0.9999 1.0000 1.0000

λ = 4
Distorted 0.8694 0.9524 0.9058
Restored 0.9999 1.0000 1.0000

λ = 5
Distorted 0.8486 0.9295 0.8880
Restored 0.9999 1.0000 1.0000

We can conclude that the method is also efficient for distortions that do not

follow the model, being then capable of removing distortions caused by real devices

that deviate from the memoryless assumption. In informal hearings evaluation, no

audible difference between restored and original signal was noted, in accordance to

the Rnonlin grades.

9.2 Memoryless nonlinear distortions: Piecewise

linear approximation

The piecewise linear approximation to the inverse of the nonlinear distortion was

presented in Section 7.3. The results illustrated here expand and detail those shown

in [6]. The performed tests are similar to those in Section 9.1.

9.2.1 Artificial signals and distortion following the model

A 1,000-time sample artificial signal following an AR model with poles of module 0.99

at frequencies π/16, π/8, and π/4 radians per time sample and its corresponding

conjugate frequencies was generated. The variance of the excitation signal was

chosen to be σ2
e = 5 × 10−6. The original signal was distorted by a piecewise

linear function where each segment had slopes given by 1, 1/2, 1/4, 1/8, and 1/16,

respectively. Therefore, we wish to recover vector m = [2 4 8 16]T , vector

a = [5.1713 − 11.7727 15.1104 − 11.5384 4.9675 − 0.9415]T , and the variance

of the excitation signal σ2
e = 5× 10−6.
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The single block of 1,000 time samples was analyzed at once. Therefore the

values of N , L and B were, respectively, 1,000, 1,000, and 1. The parameters of the

prior distributions were σ2
m = 1010, σ2

a = 1010, α = β = 10−10. The values of M and

P were the correct ones, that is, M = 4 and P = 6.

The Gibbs sampler described in Section 7.3 was run for 100 iterations, lasting

0.099 s each, in average. The burn-in time was 50 iterations long.

Figures 9.15, 9.16, 9.17, 9.18 and 9.19 show, respectively, the convergence of the

angular coefficients, a “zoom” on its last 50 iterations, the convergence of a and two

plots comparing the original, distorted and restored signals. Tables 9.5 and 9.6 also

compare the real and estimated values for parameters a and m, respectively. On

the convergence plots, the red square and the green circle always denote the real

and estimated values, respectively.

Note that the typical amplitude of the restored signals here are quite different

from the ones presented in the previous section, and a reason is provided now.

Recall that when developing the theory of piecewise linear approximation in Section

7.3 we considered that the distorted signal lies in [−1, 1], and in order to fulfill

this hypothesis some scaling on the distorted signal was necessary. Because of the

considered hypothesis on the distorting nonlinearity, the distorted signal tends to

have a smaller dynamic range in relation to the undistorted one. Therefore, when

applying the piecewise linear function to the distorted signal its dynamic range is

amplified, yielding the large amplitude seen here. However, as explained before, this

scaling does not impact the Rnonlin grade when dealing with real signals.

From these tests, we can then conclude that the algorithm is capable of identi-

fying correctly the desired parameters in this simple scenario, and assess aspects of

its accuracy and convergence.

Table 9.5: Artificial signal and piecewise linear distortion: Comparison of real and

estimated values of the AR model coefficients.

Real Estimated

a1 5.1713 5.1510

a2 -11.7727 -11.6790

a3 15.1104 14.9289

a4 -11.5384 -11.3530

a5 4.9675 4.8679

a6 -0.9415 -0.9192
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Figure 9.15: Artificial signal and piecewise linear distortion: Convergence of angular
coefficients.
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Figure 9.16: Artificial signal and piecewise linear distortion: Convergence of angular
coefficients after the burn-in time.
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Figure 9.17: Artificial signal and piecewise linear distortion: Convergence of the AR
model coefficients.

Table 9.6: Artificial signal and piecewise linear distortion: Comparison of real and

estimated values of the angular coefficients.

Real Estimated

m2 2 1.9997

m3 4 3.9988

m4 8 7.9957

m5 16 15.9902
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Figure 9.18: Artificial signal and piecewise linear distortion: Comparison of original,
distorted and restored signals.
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Figure 9.19: Artificial signal and piecewise linear distortion: Distorted and restored
signals plotted against the original one.

9.2.2 Real signals and distortion following the model

The next step is to consider real signals, distorted by functions following the piece-

wise linear model. The tested signals were the same as in Section 9.1, distorted by

a piecewise linear function where each segment has slopes given by 1, 1/2, 1/4, 1/8,

and 1/16, respectively, as in the previous case, implying that the desired vector m

is given by

m = [2 4 8 16]T . (9.2)

For each of the three signals tested, three figures are shown: the first one displays

the convergence of m (Figures 9.20, 9.23 and 9.26), the second one the convergence

of the first 6 coefficients of the respective AR model (Figures 9.21, 9.24 and 9.27) and

the third one the distorted and restored signals against the original ones (Figures

9.22, 9.25 and 9.28).

The value of P was chosen to be 40 for signals flute.wav and voice.wav, and

30 for the signal classical.wav, since this choice presented better results, and

we compare the estimated value of a returned by the Gibbs sampler with those

estimated from the original signal via the covariance method. We can see that the

estimate of m and a is not as accurate as in the artificial scenario, but for all three

signals tested the result is satisfactory.
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The restored signals are compared with the original one using the Rnonlin tool,

and the respective grades are displayed in Table 9.7.

We conclude that the method is capable of dealing with real signals, where the

AR model is an approximation for the underlying signal. No audible differences

between restored and original signals are noticed, in accordance to their respective

Rnonlin grades.

Table 9.7: Real signals with piecewise linear distortion: Rnonlin grades for distorted

and restored signals.

flute.wav classical.wav voice.wav

Distorted 0.7404 0.7930 0.8069

Restored 0.9999 0.9999 0.9995
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Figure 9.20: Signal flute.wav with piecewise linear distortion: Convergence of
angular coefficients.
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Figure 9.21: Signal flute.wav with piecewise linear distortion: Convergence of the
first 6 AR model coefficients.
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Figure 9.22: Signal flute.wav with piecewise linear distortion: Distorted and re-
stored signals plotted against the original one.
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Figure 9.23: Signal classical.wav with piecewise linear distortion: Convergence
of angular coefficients.
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Figure 9.24: Signal classical.wav with piecewise linear distortion: Convergence
of the first 6 AR model coefficients.
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Figure 9.25: Signal classical.wav with piecewise linear distortion: Distorted and
restored signals plotted against the original one.
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Figure 9.26: Signal voice.wav with piecewise linear distortion: Convergence of
angular coefficients.
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Figure 9.27: Signal voice.wav with piecewise linear distortion: Convergence of the
first 6 AR model coefficients.
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Figure 9.28: Signal voice.wav with piecewise linear distortion: Distorted and re-
stored signals plotted against the original one.

9.2.3 Real signals and smooth distortions

Finally, in this section we report the more realistic case of real signals distorted

by smooth distortions. The test signals are the same as before, but distorted by

the function f(x) = arctan(λx)/λ, where the value of λ allows one to control the

distortion level applied to the original signal while keeping the constraint of unitary

derivative in the origin. We considered λ ∈ {1, . . . , 5}.
The values of N , M and P , as well as the mean time per iteration, number of

iterations and burn-in time for each analyzed signal are shown in Table 9.8. In each

case, the value of N represent the size of the whole signal, split in contiguous blocks

of 1,000 time samples. Note that it was necessary to analyze more than one block

of signal and use very high M in order to obtain good results. A possible reason for

these two facts will be presented soon. The parameters of the priors distributions

were again σ2
m = 1010, σ2

a = 1010, α = β = 10−10. Since the values of M and P are

quite high, I chose not to plot several figures with the convergence of the variables,

but only display Table 9.9, where the Rnonlin grades for the distorted and restored

signals for each value of λ are shown. All signals are available in webpage [72].
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Table 9.8: Parameters of the algorithm for each signal.

flute.wav classical.wav voice.wav

Mean time per iteration 1.40 s 6.58 s 1.47 s
Number of iterations 100 50 50

Burn-in time 50 30 30
N 10,000 30,000 10,000
M 90 100 90
P 40 10 40

Table 9.9: Rnonlin grades for distorted and restored signals.

flute.wav classical.wav voice.wav

λ = 1
Distorted 0.9730 0.9989 0.9852
Restored 0.9995 0.9996 0.9957

λ = 2
Distorted 0.9288 0.9903 0.9554
Restored 0.9994 0.9998 0.9958

λ = 3
Distorted 0.8948 0.9736 0.9281
Restored 0.9990 0.9998 0.9954

λ = 4
Distorted 0.8694 0.9524 0.9058
Restored 0.9977 0.9999 0.9944

λ = 5
Distorted 0.8486 0.9295 0.8880
Restored 0.9945 0.9999 0.9932

We conclude that the proposed method is capable of dealing with real signals

and smooth distortions, although some manual tuning of parameters, specially the

length of the considered signal (related to B) and the number of linear functions

used in the approximation (given by M), must be made in order to reach a good

of result. Since we have access to the original signal, we are able to compare the

restored and original signals in order to judge the quality of the obtained result; in

a more realistic scenario, this judgment should be performed perceptually by the

user. Despite this, no audible differences between restored and original signals were

noted, as confirmed by their respective Rnonlin grades.

We now return to the discussion about the requirement of a quite highM and sev-

eral blocks in order to accurately estimate the smooth nonlinear distortion. When

first evaluating this method with real signals, we noted that a small number of

segments (e.g. M ≈ 7) was not enough to approximate a smooth distortion, con-

tradicting our initial intuition. We then tried larger values of M , but this yielded

poorer estimates of m. In order to provide more data to the algorithm, the method

was extended to several contiguous blocks of signal (each one with its respective AR

parameters, in order to fulfill the stationarity hypothesis in each block), and a com-

bination of a high value of M and several blocks showed the good results reported
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here.

After investigating this counterintuitive behavior of M , we noted that the ap-

proximation error due to the piecewise linear approximation to a smooth function

induces something similar to additive white noise in the original signal, impairing

then the estimation of all quantities of interest. When the value of M increases,

the magnitude of this error gets smaller, implying a higher SNR, which above some

value no longer impacts the estimation of the AR model parameters. It is interest-

ing to note that the polynomial model also introduces an error, but it tends to be

smoother and less harmful than the error in the piecewise linear approximation.

9.3 Further tests investigating the effects of

model orders

In the previous sections we performed tests to evaluate the capability of the proposed

methods to deal with real signals and distortions not following the respective models

(polynomial or piecewise linear). However, when dealing with artificial signals and

distortions following the respective models, the orders of both the AR model and

the distortion were assumed known; moreover, when dealing with real signals a fixed

value for these orders were considered, and no considerations were made about the

sensitivity of the obtained results with respect to these variables. In this section we

perform additional tests in order to study this behavior. We thank Professor Paulo

Esquef for suggesting these tests6, and Professor Ralph Silva for indicating me the

adequate statistical tools to employ here.

More specifically, the following verifications are performed here:

• Test the significance of a particular polynomial coefficient via an approximate

credence interval (also called credible interval), estimated from the obtained

samples from the posterior distribution. For a 95% credence interval for some

parameter, we assess that with probability 0.95 the correct value for this pa-

rameter lies within this interval7; if this interval contains the value zero, we

have some statistical evidence that this parameter is irrelevant to the model.

One expects that when the distortion possesses a polynomial inverse, the addi-

tional coefficients not present in the actual function will have low significance,

which means that zero will be in their respective 95% approximate credence

interval.

6And a lot of other improvements scattered along the text!
7Note that this probability is in the parameter space since we are in a Bayesian context, and

can be understood as our degree of belief in the occurrence of this fact. For a more complete
discussion about credence and confidence intervals, its counterpart in the frequentist context, see
[10, 11].
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Since the considered posterior distributions are unimodal and symmetric (via

inspection of the histogram constructed from the MCMC samples), the 95%

approximate credence interval was constructed by estimating the 0.025 and

0.975 quantiles of the posterior distribution.

• Another way to verify the significance of some parameter of the model is via

the deviance information criterion (DIC) [73, 74]. This criterion is one possible

way to evaluate which model is more adequate to a given dataset, specifically

when samples from the variables within the model are obtained via a Gibbs

sampler. For a more extensive discussion, see [75]. Basically, if p(y|θ,M)

denotes the likelihood of the observed data with respect to the parameters θ

in the model M, define the deviance as

D(θ) = −2 log p(y|θ,M), (9.3)

and define the DIC as

DIC(M) = E[D(θ)|y,M]−D(E[θ|y,M])︸ ︷︷ ︸
=CM

+E[D(θ)|y,M]︸ ︷︷ ︸
=GM

. (9.4)

The term CM is responsible for the model complexity, and GM evaluates the

goodness of fit of the model, as argued in [75]. If θ1, . . . ,θL are samples of

the posterior distribution for θ (after the burn-in time of the corresponding

Markov chain), the DIC can be approximated as

DIC(M) ≈ 2

L

L∑

i=1

D(θi)−D
(

1

M

L∑

i=1

θi

)
. (9.5)

Models with smaller DIC should be preferred to models with larger DIC. In

our case, a model is simply a choice of orders to the polynomial and AR model.

The autocorrelation function of the chains generated via the Gibbs sampler were

also estimated, in order to analyze its internal correlation. For all the cases we

observed that the samples within each chain are very uncorrelated, supporting the

fact that the posterior mean is well estimated by the sample mean of all the samples

after the burn-in time.

Only the polynomial approximation of the inverse of the distorting function

was considered in these tests, since it was already noticed that the piecewise linear

approximation is more sensitive to the choice of both the AR model order and the

number of linear coefficients.
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9.3.1 Artificial signal

As before, we consider an artificial signal with 1,000 time samples following the

AR model with poles at frequencies π/16, π/8 and π/4 radians per time sample

and their respective conjugated frequencies, each one with module 0.99, variance of

excitation signal equal to σ2
e = 5× 10−6 and distorted by the inverse of the function

g(y) = y + 5y3 + 30y5. (9.6)

In this case, the correct values of P and M are given by 6 and 2, respectively. Tests

were performed by considering the combinations of the values below:

Pw ∈ {4 5 6 7 8} (9.7)

Mw ∈ {2 3}, (9.8)

the subscript “w” being used to denote a possibly wrong value for the respective

variable. For each combination of these parameters 1,000 iterations of the Gibbs

sampler was run, with a burn-in period of 200 iterations, the parameters being then

estimated as the mean after the burn-in time.

In Table 9.10 we can compare the DIC value for all possible combinations of Pw

and Mw. The smallest value was obtained when Pw = 6 and Mw = 3, but the DIC

value obtained by considering Mw = 2, the correct value for M , is very close to the

minimum. In Table 9.11 we can compare the estimated values for m for all possible

values of Pw and by considering Mw = 2. We conclude that the method is quite

insensitive to the choice of the order of the AR model, estimating accurately the

values of polynomial coefficient even when the order of the AR model used is not

the correct one. And finally in Table 9.12 we show the estimated values for m3 for

all possible values of Pw and by considering Mw = 3. The behavior of the first two

coefficients was very similar to the one presented in Table 9.11 and was omitted to

avoid redundancy. Note that all credible intervals contain the value zero, indicating

that the additional coefficient is not significant.

Table 9.10: Values of DIC for every evaluated combination of Pw and Mw.

Pw

4 5 6 7 8

Mw
2 37,402 -1587 -10,994 -10,985 -10,976
3 37,689 -1556 -10,995 -10,985 -10,975
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Table 9.11: Estimated values for m and its respective 95% credence interval, for all
values of Pw and Mw = 2.

mEST
1 95% credence interval mEST

2 95% credence interval

Pw

4 4.9861 (4.8841, 5.0791) 30.0986 (29.6090, 30.5911)
5 4.9979 (4.9682, 5.0255) 30.0145 (29.8685, 30.1680)
6 4.9994 (4.9946, 5.0043) 30.0074 (29.9808, 30.0356)
7 4.9996 (4.9947, 5.0045) 30.0063 (29.9790, 30.0323)
8 4.9996 (4.9949, 5.0048) 30.0062 (29.9782, 30.0345)

Table 9.12: Estimated values for m3 and its respective 95% credence interval, for all
values of Pw and Mw = 3.

mEST
3 95% credence interval

Pw

4 1.4773 (-3.5764,6.7234)
5 0.5853 (-1.3876, 2.6950)
6 0.3493 (-0.0696, 0.7784)
7 0.3531 (-0.0471, 0.7872)
8 0.3366 (-0.0951, 0.7401)

9.3.2 Real signal and distortion following the model

The evaluated signal was flute.wav, distorted by the inverse of the function

g(y) = y + 5y3 + 30y5. (9.9)

An excerpt of 1,000 time samples around the time sample with greatest amplitude

was given as input to the algorithm.

A preliminary test was performed with the original undistorted signal, by esti-

mating the coefficients of its AR model via the Gibbs sampler (a description of this

procedure can be found in [37], and can be easily derived from the computations in

Chapter 7 by not considering the nonlinear distortion). Recall that in Chapter 9

the considered value of P for this signal was P = 40, and now we estimated its AR

model coefficients for all values of P between 1 and 100 and computed the respective

DIC. The (quite surprising) result is shown in Figure 9.29. Note that the minimum

value of the DIC is obtained when P = 10, a value much smaller than we typically

use. From the statistical viewpoint, this result says that P = 10 is the order that

best balances the goodness of fit of the model to the signal with the amount of coef-

ficients being used. Motivated by this, the next performed test was to estimate the

polynomial coefficients from the distorted signal, by varying its order and the order
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of the AR model, considering the following possible values for these parameters:

P ∈ {5 10 15 35 40 45} (9.10)

Mw ∈ {2 3 4}. (9.11)

Note that the considered values for P were chosen to vary around the smallest

DIC value and also around the previously used value of P = 40. Note also that the

notation Pw is not being used now, since there is no correct value of P to compare

with.

In Table 9.13 we can compare the value of the DIC for the possible combinations

of P and Mw. We see that all the values in the table are quite similar, and the

smallest one is obtained with P = 15 and Mw = 3. One then expects that the

restored signals in all the cases are similar, since the balance between goodness of

fit and number of parameters is also similar.

This expectation is confirmed in Tables 9.14, 9.15, and 9.16, where we can com-

pare the estimated coefficients and their respective credence intervals for all possible

values of P and for Mw = 2, 3, and 4, respectively. In all the cases the first two

coefficients are accurately estimated, and in the majority of the cases, the credence

interval for the additional coefficients contains the value zero, indicating a possible

non-relevance of these coefficients to the model. A notable exception is the coeffi-

cient m3 when considering Mw = 3 and for P = 35, 40, and 45: note that in these

cases, exactly the order of the AR model we usually employ, the credence intervals

do not contain zero, despite being quite large.

Finally, Table 9.17 explores the obtained data from the perceptual viewpoint,

showing the Rnonlin grades for the restored signals for all the evaluated combinations

of P and Mw. Since all these grades are above 0.99, all the restored signals sound

well and very similar to the original one.

From the facts here presented, there is a good indication that the method is

robust when dealing with uncertainties in the order of the AR model and in the

number of estimated polynomial coefficients.

Table 9.13: Values of DIC for the evaluated combinations of P and Mw, for signal
flute.wav.

P
5 10 15 35 40 45

Mw

2 -9761.7 -9929.8 -9946.7 -9817.3 -9793.1 -9749.8
3 -9767.5 -9940.5 -9967.2 -9853.0 -9828.9 -9785.2
4 -9768.2 -9939.3 -9968.8 -9849.9 -9826.0 -9782.7
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Figure 9.29: Values of DIC obtained by estimating the AR coefficients of signal
flute.wav from the undistorted signal.

Table 9.14: Estimated values for m with Mw = 2 and respective credence intervals
for signal flute.wav.

m1 m2

P

5
4.9641 21.8542

(4.4021, 5.5457) (17.1972, 26.1374)

10
4.7690 26.1534

(4.3019, 5.2390) (21.4162, 30.7603)

15
4.8365 27.3262

(4.4258, 5.2511) (22.8975, 31.7114)

35
4.9513 25.7907

(4.5450, 5.3612) (22.0712, 30.0611)

40
4.9165 26.4759

(4.5165, 5.2941) (22.4469, 30.6645)

45
4.9087 26.5360

(4.5289, 5.2923) (22.7767, 30.7638)
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Table 9.15: Estimated values for m with Mw = 3 and respective credence intervals
for signal flute.wav.

m1 m2 m3

P

5
4.8179 26.3430 -26.5399

(4.2234, 5.4139) (16.6037, 35.2139) (-72.2440, 18.1854)

10
4.6576 29.9602 -27.8584

(4.1690, 5.1213) (22.4057, 36.8454) (-63.2952, 10.8280)

15
4.6882 31.3323 -33.0040

(4.2833, 5.1597) (24.9481, 37.1822) (-65.8360, 2.4175)

35
4.7261 31.5246 -46.5278

(4.3170, 5.1231) (26.4135, 36.9292) (-73.6289, -20.3166)

40
4.7301 32.4659 -48.5663

(4.3650, 5.1077) (27.2651, 37.7625) (-74.0608, -19.8508)

45
4.7427 31.9574 -45.6351

(4.4092, 5.0880) (26.9208, 36.9537) (-70.3939, -17.6893)

Table 9.16: Estimated values for m with Mw = 4 and respective credence intervals
for signal flute.wav.

m1 m2 m3 m4

P

5
4.9351 17.2693 120.6199 -582.8433

(4.3660, 5.5094) (5.1151, 29.4901) (-46.000, 277.30) (-1172.0, 40.700)

10
4.7096 22.7309 102.4117 -520.8744

(4.1709, 5.2288) (12.5394, 32.8604) (-23.700, 231.10) (-1000.4, -11.500)

15
4.7039 24.0778 89.2106 -476.4663

(4.3006, 5.1529) (14.7799, 32.3728) (-20.6723, 203.1274) (-905.3743, -56.9789)

35
4.7096 25.6183 50.8882 -362.6989

(4.2835, 5.1158) (17.2817, 34.3839) (-54.3067, 157.2487) (-741.5982, 32.0465)

40
4.7154 28.7001 18.2970 -259.0733

(4.3488, 5.1256) (20.9743, 36.7219) (-87.7011, 124.5855) (-639.7903, 125.0064)

45
4.7213 28.1296 20.6746 -248.0669

(4.3181, 5.0867) (20.3072, 35.8469) (-88.1985, 129.4112) (-652.7289, 159.8463)

Table 9.17: Rnonlin grades for restored signal for the possible combinations of P
and Mw

P
5 10 15 35 40 45

Mw

2 0.9904 0.9951 0.9976 0.9970 0.9975 0.9975
3 0.9920 0.9956 0.9971 0.9958 0.9967 0.9966
4 0.9931 0.9961 0.9967 0.9957 0.9969 0.9968
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9.3.3 Real signal and more general distortions

The same signal flute.wav was considered, now being distorted by the function

f(x) = arctan(λx)/λ, for λ = 3. This case is more interesting, since there is no

“correct” values of P nor M to compare with. Since in Section 9.1.3 the number of

estimated polynomial coefficients was M = 4 and motivated by the choice of P in

the last section, here we considered the following possible values for M and P :

P ∈ {5 10 15 35 40 45} (9.12)

M ∈ {3 4 5}. (9.13)

The DIC value for all the evaluated combinations of P and M was between -

9,650 and -9,860, not indicating a clearly better choice of orders, at least from the

statistical viewpoint. From the perceptual perspective the same behavior occurs:

the Rnonlin grade for the signals restored with the polynomial coefficients estimated

from all possible combinations of P and M were all above 0.99, indicating that these

signals are essentially indistinguishable from the original undistorted signal.

Since the obtained results here presented no small variability, we chose to not

display any table or picture detailing them.

9.3.4 Conclusion

From the set of tests performed in this section, we conclude that the proposed

method to deal with memoryless nonlinear distortions by estimating a polynomial

approximation to its inverse is quite robust to the choice of order of both AR model

and number of polynomial coefficients, even when the considered distortion does

not follow the model being used. Since the same behavior was not observed when

considering the piecewise linear approximation to the inverse of the nonlinearity,

only the polynomial approximation was employed in the model with memory, and

the respective results are discussed in more detail in the next section.

9.4 Nonlinear distortions with memory

A very extensive set of tests were performed with this method, and their results are

reported in [7]. In website [72] under the link Companion website to paper submitted

to IEEE SPL the tested signals are available for listening, and a short description

of these tests and respective results is presented here.

Three signals were tested, all in in 16-bit PCM format and sampled at 44,100

Hz:

• chopin.wav, a 9-s long excerpt of a piano piece composed by Chopin;
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• holst.wav, a 16-s long excerpt of an orchestral piece composed by Holst;

• voice.wav, a 2-s long female speech signal in Portuguese.

Although the proposed algorithm was tailored to deal with a static memo-

ryless nonlinearity with polynomial inverse followed by an IIR filter, tests were

performed in more general scenarios: other nonlinearities were considered, like

g1(y) = arctan(λy)/λ, g2(y) = erf(λy)/λ and g3(y) = tanh(λy)/λ; and an FIR linear

filter with transfer function B(z) = 1−1.21z−0.46z2. Besides that, we also consid-

ered distortions following the model g(y) = (1/µ)[(µy)+5(µy)3 +10(µy)5 +30(µy)7]

followed by an IIR filter with transfer function B(z) = 1/(1 − 1.68z + 2.112z2 −
1.72z3 + 0.95z4 − 0.38z5 + 0.079z6). The parameters µ and λ are designed to pro-

duce varied distortion levels without changing the nature of the distortion. As can

be seen in the Rnonlin grades reported in [72], the restoration procedure performs

well even when dealing with more general cases, despite some restored signals not

sounding exactly the same as the original one. This is a point to be further investi-

gated, since apparently the nonlinearity is mitigated but a linear residual is left in

the restored signal. From the perceptual viewpoint, this can be easily circumvented

by an equalization of the restored signal, performed by the user, but we wish to seek

for a more elegant and less hands-on solution.

9.5 Conclusion and future works

We presented two methods for restoring signals degraded with memoryless nonlinear

distortion, one where the nonlinearity is modeled as the inverse function of a poly-

nomial and other where it is supposed to be piecewise linear. An extension of the

polynomial modeling was also presented, now coupled to a linear filter modeling the

distorting system memory. The option for the polynomial instead of the piecewise

linear model is due to the fact that the former showed to be more stable and less

dependent of parameter tuning by the user.

In the memoryless case, no difference between restored and distorted signals

were noted in any of the situations described above, whereas in the problem with

memory apparently some residual of the linear filter was left on the restored signal

when dealing with distortions more general than the model could describe, a point

to be further investigated. It is important to note that both methods proposed to

treat memoryless nonlinear distortions are robust to initialization.

Publications derived from this framework are: [6], which introduced the piece-

wise linear modeling at EUSIPCO 2015, and [7], which presents the algorithm for

restoration of nonlinear distortions with memory. We discuss now some future works.
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9.5.1 Future works

A drawback of all the three proposed methods is that a great feature of the Bayesian

approach is being unused: the possibility of employing a prior distribution that re-

flects some previous knowledge about the underlying signal. For example, when

modeling audio signals via the AR model, it is expected that the poles of the re-

spective filter are close to the unit circumference, and that lower frequencies are

more likely to appear than higher ones. Since we are modeling the underlying signal

via the difference equation that defines the AR model, the only way we can con-

trol this information is via the coefficients of the polynomial in the denominator of

its respective filter. It is not straightforward to translate this previous knowledge

about the location of the roots of a polynomial into information about its coeffi-

cients. Moreover, as argued in [76], polynomial roots can be very sensitive to their

coefficients, meaning that for some polynomials a small coefficient change greatly

changes their roots. In [77] and [78], a framework for estimating AR models via

their poles is presented, together with the possibility of modeling uncertainties in

their orders. Implementing this method, first in the memoryless case to gain intu-

ition, and then in the case with memory both for the AR model and for the linear

filter, is a future work of this thesis. Despite needing a lot of technical effort to

understand and implement the algorithm, we expect that this new framework will

not present convergence problems and will require no fine tuning of parameters by

the user nor the reinitialization procedure8. Another advantage of this approach is

that with more significant prior information it will be possibly easier to estimate

the parameters of the distortion when the signal contains some level of noise.

As mentioned above, it is not so easy to control the shape of a polynomial via

its coefficients, and this also impacts the modeling of the static memoryless nonlin-

earity. Recall that in Chapters 7 and 8 we needed to perform a quite complicated

procedure in order to ensure that the polynomial satisfied the required constraints,

since they are not easily described via its coefficients. A possibility to circumvent

this issue is to approximate the nonlinearity by splines instead of single polyno-

mials9. Another possibility to model the static memoryless nonlinearity is via a

Gaussian process [79]. This approach was reported to present good results in the

context of blind identification of Wiener systems [80], and possesses the advantage

of being nonparametric, allowing for more general nonlinearities.

Recall that we expect that, when dealing with nonlinear distortions with mem-

ory, the posterior distribution for the parameters of the linear filter was expected to

be multi-modal. Sampling from distributions with this characteristic is quite com-

8We thank very much my friend Carlos Tadeu for suggesting me these two references and this
extension of the work.

9We thank professors Thais Fonseca and Helio Migon for this and other suggestions.
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plicated since there is a possibility to being trapped around a single mode for a long

time, and a reinitialization procedure was proposed to avoid this issue and accelerate

convergence. However, recently a method was proposed to sample from multi-modal

distributions, inspired by problems in petroleum engineering [81]! Since in our case

the dimension of the search space is quite small, this method is feasible to be used

without increasing too much the time per iteration. Try to use this sampling scheme

is a future work.

Departing somewhat from the Bayesian approach, another possibility to treat

memoryless nonlinear distortions is an adaption of [82], where the authors propose

an iterative algorithm to restore lost time samples in discrete-time signals that can

be locally described by an AR process. The function to be minimized is the sum

of squares of the residual errors, which is a function of the AR model parameters

and the missing time samples, and is also quadratic with respect to both variables

separately. In our case, this quantity is a function of the AR model parameters and

the polynomial coefficients of the nonlinearity, but the property of being quadratic

with respect to both variables separately still holds. Therefore, the same algorithm

proposed in [82] could be applied here. Preliminary tests indicate that this approach

presents good results, but more tests should be performed.

In [83] the authors present a Bayesian method for estimating time-frequency

surfaces for signals corrupted with noise, with applications to music and speech

signals. This framework might be more adequate to restore audio signals corrupted

with background noise than by modeling them via the AR model and estimating its

time samples, and coupling it with the estimation of nonlinear distortion is a possible

future work. A crude implementation of the algorithm presented in [83] was done

and not extensively tested. The coupling with the estimation of nonlinearity will be

very challenging, both theoretically and computationally.

The maximum a posteriori estimator for the parameters of the distortion and

for the underlying signal is not ideal from the perceptive viewpoint. As mentioned

in Chapter 7, this estimator yields the signal that is closer to the original one in

the `2 norm, and it is a well known fact that our ears do not perceive similarity

in this norm10. Therefore, the introduction of psychoacoustical elements into the

restoration procedure is a good idea to circumvent this problem. This approach

showed good results when applied to the problem of enhancement of signals with

broadband noise [84], but is not easily generalized to nonlinear distortions. How-

ever, how humans perceive nonlinearities in audio signals was a subject of study,

and a series of experiments culminated in the Rnonlin metric we used to measure

the quality of the restored signals (see [47] and references therein). More recently,

10For example consider MP3 files, which when plotted against their uncompressed versions are
very different but may sound very similar.
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the use of psychoacoustical elements was introduced in the nonlinear domain: in

[85] the authors proposed a method for clipping signals with low perceived distor-

tion with relation to the underlying signal; the “dual” problem, the declipping of an

audio signal, was tackled in this framework in [86]; and in [87] a psychoacoustically

motivated optimization criterion was proposed to compensate nonlinearities caused

by loudspeakers. In this last work, the model used for the nonlinearity is the Ham-

merstein model, the same employed in Chapter 8 to model nonlinear distortions

with memory.

Furthermore, comparisons of the proposals with previous works in this area will

also be addressed as future works.

Finally, we recall that the main goal of this research line is to deal with nonlinear

distortion with memory, more adequate to model nonlinearities present in audio

signals. This will be the main focus of the future research in this direction.
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Part III

RESTORATION OF AUDIO

SIGNALS WITH

NONLINEAR DISTORTIONS

VIA SPARSITY-BASED

MODELS
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Chapter 10

Not so Bayesian: Memoryless

nonlinear distortions from a sparse

viewpoint

This chapter departs somewhat from the rest of the thesis, since Bayesian methods

are not used here. It contains the first part of a collaboration with Leonardo Duarte

from UNICAMP, and here an adaption of his work [4] to the context of audio signals

is presented. Instead of modeling the original undistorted audio signal via the AR

model, we now adopt another philosophy: it is reasonable to suppose that audio

signals are approximately sparse in the frequency domain, and since nonlinearities

“create new frequencies”, as discussed in Chapter 5, nonlinearly distorted audio

signals are less sparse in the frequency domain. This fact will be exploited to create

an objective function, related to the sparsity degree of the restored signal, that when

minimized will yield the coefficients of a polynomial approximation of the inverse of

the nonlinear distortion.

The Chapter is organized as follows: in Section 10.1 we argue that it is reasonable

to suppose that audio signals are approximately sparse in the frequency domain;

next, in Section 10.2, the problem of restoring nonlinearly distorted audio signals

is formulated in the sparsity context, and the corresponding proposed solution is

presented; results are shown in Section 10.3, followed by a discussion of future works

in Section 10.4.

10.1 Are audio signals really sparse in the fre-

quency domain?

Let x be an excerpt of an audio signal of length N . We can compute its DFT, but

since it is a complex transform, we opt for using its DCT. The DCT is a family
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of real transforms (and thus of clearer interpretation) that projects a vector onto

a basis composed of time-sampled cosines. The most widely used member of this

family of transforms is usually called the DCT in the current literature, and the

respective DCT coefficients of signal x are given by:

wk = ck

N∑

i=1

xi cos
( π

2N
(2i− 1)(k − 1)

)
, (10.1)

for k = 1, . . . , N , where the weighting coefficients ck are given by c1 = 1/
√
N and

ck =
√

2/N , for k = 2, . . . , N . Alternatively we can write this more compactly in

matrix form:

w = Ψx, (10.2)

for an adequate matrix Ψ. It can be shown that the DCT matrix is orthogonal,

that is, the signal in time domain can be easily recovered via

x = ΨTw. (10.3)

The DCT was firstly introduced in [88], and its importance in Signal Processing,

in particular for lossy image and audio compression, relies on its energy compaction

property [89], which means that for typical audio and images signals most of its

information tends to be concentrated in a few low-frequency components. More

precisely, when the DCT of a signal is computed, one expects that there will be

only a few coefficients substantially different from zero and that the large majority

of them will be very close to zero. Signals with this property are called compressible

in the DCT domain, since the smallest components can in principle be ignored with

little impact on the overall structure of the signal. Mathematically it is easier to

formulate the concept of sparsity, meaning that only a few coefficients are different

from zero, and that all the others are exactly equal to zero.

The notion of sparsity is clearly just an approximation of the more realistic

concept of compressibility, and the latter may be reasonably assumed in most audio

signals, or at least in excerpts of them: one does not expect that a short excerpt of

an audio signal (of approximately 20 ms, for example) contains a lot of frequencies

with substantially large coefficients, unless the considered excerpt is very noisy or

contains the attack of a note. With this in mind, we will assume that small excerpts

of undistorted audio signals are in general compressible in the DCT domain.
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10.2 Formulation of the problem and proposed

solution

As before, denote by f(.) the distorting function, which we will suppose to be

invertible and anti-symmetric, and denote its inverse by g(.). We approximate it

parametrically via a polynomial given by

g(y) = m1y +m2y
3 + · · ·+mMy

2M−1. (10.4)

Note that here we are not imposing that f ′(0) = 1 as previously, and the reason

will become clear soon. Denote the vector containing the polynomial coefficients by

m, the original undistorted signal by x and the observed distorted signal by y. The

relation between x and y can be written in matrix form as

x = Ysm, (10.5)

where matrix Ys is (unlike in Chapter 7) given by

Ys =




y1 y3
1 . . . y2M−1

1

y2 y3
2 . . . y2M−1

2
...

...
. . .

...

yN y3
N . . . y2M−1

N



, (10.6)

being the subscript “s” used to denote the sparsity context.

Therefore, having in mind that x is more sparse than y in the DCT domain, up

to this point the problem can be formulated as finding coefficients m1, . . . ,mM ≥ 0

of polynomial g(.) such that the restored signal Ysm is maximally sparse in the

DCT domain. Note that another condition must be placed over the restored signal

in order to solve the problem, otherwise m = 0 will always be the best solution that

fits into the sparsity criteria! In previous works [6, 7, 67] the condition f ′(0) = 1 was

imposed, but preliminary tests indicated that in this context this restriction leads

to a very “noisy” objective function, which is difficult to optimize. Now we require

that ‖Ysm‖2 = 1, where ‖ · ‖2 denotes the `2 norm of a given vector, to avoid the

null solution.

Despite nonlinearities creating new frequencies within the original signal, it is

not so obvious that this simple sparsity criterion will lead to a reasonable result.

Nevertheless, it is proved in [4] that under some mild conditions over original signal

x and distorting function f(.) this criterion is sufficient to guarantee perfect recovery

of the original signal.
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10.2.1 How do we measure sparsity?

The most obvious way to measure the sparsity of a signal is via its `0 “norm”1,

which is simply the number of its nonzero entries. One can then try to find m that

minimizes the `0 norm of vector ΨYsm, that is, the number of nonzero coefficients

in the DCT of the restored signal. However, it is well known that optimization

problems that deal directly with the `0 norm are NP-hard [91], and thus impossible

to solve in a feasible time. Furthermore, because the original audio signal is not

exactly sparse in the DCT domain, the use of the `0 norm would yield meaningless

results. There are other functions that behave like a quantification of sparsity in

some contexts, being the `1 norm the most common [90]. Another possibility is

to use an `p norm with p close to zero [90]. Here we consider another criteria, a

smoothed version of the `0 norm [92], computed as

Fσ(v) = N −
N∑

i=1

exp

(
− v2

i

2σ2

)
, (10.7)

where N is the dimension of vector v, vi are its entries for i = 1, . . . , N and σ is a

parameter that controls the smoothness of function Fσ(.). It is easy to verify that

lim
σ→0

Fσ(v) = ‖v‖0. (10.8)

Therefore, the smaller is σ, the best the approximation is, but function Fσ(.) is less

smooth; on the other hand, a larger value of σ implies a worse approximation but a

smoother function.

The problem to be solved can be summarized in the following way:

min
m

Fσ(ΨYsm) (10.9)

subject to mi ≥ 0, for i = 1, . . . ,M

and ‖Ysm‖2 = mTYT
s Ym = 1.

The proposed optimization problem is a nonlinear and nonconvex one, with

equality and inequality constraints. Since both objective function and restrictions

are continuously differentiable in their whole domain, the Karush-Kuhn-Tucker

(KKT) Theorem [18] is applicable, ensuring that any critical point of the objec-

tive function in the constrained domain is also a critical point of the unconstrained

1In fact this is not a norm, since it does not satisfy the homogeneity condition. However, this
name is currently used in the literature [90].
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function L(m, ν,µ), given by

L(m, ν,µ) = Fσ(ΨYsm)− νmTYT
s Ym−

M∑

i=1

µimi. (10.10)

Function L(m, ν,µ) is called the Lagrangian and constants ν and µ are the KKT

multipliers. The optimization algorithm employed is explained in more details in

the next section.

10.3 Results

In this section, we present some results obtained with this method. Tests were per-

formed with the same three real signals as before: flute.wav, classical.wav and

voice.wav, distorted by functions following the model, that is, inverse of polynomial

functions, and by more general ones, like the arctangent.

In the polynomial case, because of the unitary energy restriction imposed on the

restored signal, the estimated coefficients will almost surely differ from the original

ones by a constant factor. In order to better compare the estimated coefficients with

the original ones we do not consider directly the output of the algorithm, but its

normalization with respect to the respective first coefficient.

An excerpt of 3,000 time samples around the time sample with greatest absolute

value was given as input to the algorithm, corresponding to approximately 70 ms

at the usual frequency sampling rate of 44,100 Hz. This choice of block length was

motivated by the fact that preliminary tests using 1,000 time samples (the same

block size considered in Chapter 9 when the signal is modeled via the AR model)

have not shown good results. By increasing the block size, the obtained result was

better and beyond 3,000 time samples small variability in the results was obtained.

The initialization was random, by uniformly choosing m that satisfied the unit

energy restriction of the restored signal. Since as the value of σ decreases the

objective function becomes less smooth, the risk of being trapped at a local minimum

increases, so the algorithm was run 10 times for each combination of σ and number

of coefficients to estimate, and the value that produced the smallest value of the

objective function was selected.

In order to solve the problem in Equations 10.9, the function fmincon imple-

mented in the Optimization ToolboxTM of MATLABTM was employed. It uses, by

default, the well known interior-point algorithm [18] to find the critical points of

the Lagrangian in Equation 10.10, being tailored to solve the following optimization
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problem:

min
x
G(x) such that





c(x) ≤ 0,

ceq(x) = 0,

Ax ≤ b,

Aeqx = beq,

bl ≤ x ≤ bu,

(10.11)

where functions c(.) and ceq(.) can be nonlinear and the “eq” subscript denotes

equality constraints.

10.3.1 Real signals and distortion following the model

The three signals were distorted by the inverse of the function g(y) = y+5y3 +30y5,

so the set of coefficients we wish to recover (after the aforementioned normalization)

is m = [1 5 30]T . Tests were performed by estimating 2, 3, 4, or 5 coefficients, with

σ equal to 0.01, 0.001, and 0.0001. For the signal flute.wav all combinations of

the parameters above are shown, together with the Rnonlin grade of the respective

restored signal. Since σ = 0.01 did not produce good results, for the two other

signals we consider only σ equal to 0.001 and 0.0001, and since the estimation of

5 coefficients with these values of σ always produced good results, we also omit

this case for the last two signals, for the sake of conciseness. The results of each

experiment is described in the label of the respective figure in the next pages.
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Figure 10.1: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 2 polynomial
coefficients and with σ = 0.01. Estimated coefficients (after normalization): m = [1
0.10394]T . Rnonlin grade of restored signal: 0.87895.
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Figure 10.2: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 2 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
8.6893]T . Rnonlin grade of restored signal: 0.95226.
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Figure 10.3: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 2 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 7.5153]T . Rnonlin grade of restored signal: 0.96208.
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Figure 10.4: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 3 polynomial
coefficients and with σ = 0.01. Estimated coefficients (after normalization): m = [1
4.2288×10−5 1.2489]T . Rnonlin grade of restored signal: 0.87893.
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Figure 10.5: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 3 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
5.20316 26.4716]T . Rnonlin grade of restored signal: 0.99924.
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Figure 10.6: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 3 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 5.5478 25.6305]T . Rnonlin grade of restored signal: 0.9982.
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Figure 10.7: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 4 polynomial
coefficients and with σ = 0.01. Estimated coefficients (after normalization): m = [1
8.61824×10−7 7.37578×10−6 14.2044]T . Rnonlin grade of restored signal:
0.87937.
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Figure 10.8: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 4 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
5.2033 26.4707 0.000159133]T . Rnonlin grade of restored signal: 0.99924.
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Figure 10.9: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 4 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 5.54781 25.6305 1.09001×10−5]T . Rnonlin grade of restored signal: 0.9982.
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Figure 10.10: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 5 polynomial
coefficients and with σ = 0.01. Estimated coefficients (after normalization): m = [1
2.473372×10−6 1.658071×10−5 0.0001989655 133.1624]T . Rnonlin grade of
restored signal: 0.87985.
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Figure 10.11: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 5 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
5.20311 26.4721 0.000339132 0.00132257]T . Rnonlin grade of restored signal:
0.99924.
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Figure 10.12: Signal flute.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 5 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 5.5478 25.6305 5.57641×10−7 1.61131×10−6]T . Rnonlin grade of restored
signal: 0.9982.
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Figure 10.13: Signal classical.wav and distortion with polynomial inverse: Dis-
torted and restored signals plotted against the original one, by estimating 2 polyno-
mial coefficients and with σ = 0.001. Estimated coefficients (after normalization):
m = [1 9.6572]T . Rnonlin grade of restored signal: 0.99682.
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Figure 10.14: Signal classical.wav and distortion with polynomial inverse: Dis-
torted and restored signals plotted against the original one, by estimating 2 polyno-
mial coefficients and with σ = 0.0001. Estimated coefficients (after normalization):
m = [1 8.0819]T . Rnonlin grade of restored signal: 0.99851.
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Figure 10.15: Signal classical.wav and distortion with polynomial inverse: Dis-
torted and restored signals plotted against the original one, by estimating 3 polyno-
mial coefficients and with σ = 0.001. Estimated coefficients (after normalization):
m = [1 3.61329 37.0926]T . Rnonlin grade of restored signal: 0.99957.
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Figure 10.16: Signal classical.wav and distortion with polynomial inverse: Dis-
torted and restored signals plotted against the original one, by estimating 3 polyno-
mial coefficients and with σ = 0.0001. Estimated coefficients (after normalization):
m = [1 4.56602 28.6338]T . Rnonlin grade of restored signal: 0.99986.
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Figure 10.17: Signal classical.wav and distortion with polynomial inverse: Dis-
torted and restored signals plotted against the original one, by estimating 4 polyno-
mial coefficients and with σ = 0.001. Estimated coefficients (after normalization):
m = [1 3.61332 37.0924 0.000258148]T . Rnonlin grade of restored signal:
0.99957.
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Figure 10.18: Signal classical.wav and distortion with polynomial inverse: Dis-
torted and restored signals plotted against the original one, by estimating 4 polyno-
mial coefficients and with σ = 0.0001. Estimated coefficients (after normalization):
m = [1 4.56602 28.6339 3.99215×10−6]T . Rnonlin grade of restored signal:
0.99986.
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Figure 10.19: Signal voice.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 2 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
7.4192]T . Rnonlin grade of restored signal: 0.98252.
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Figure 10.20: Signal voice.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 2 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 7.8708]T . Rnonlin grade of restored signal: 0.9828.
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Figure 10.21: Signal voice.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 3 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
5.52482 11.2933]T . Rnonlin grade of restored signal: 0.98717.
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Figure 10.22: Signal voice.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 3 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 5.51225 17.795]T . Rnonlin grade of restored signal: 0.99321.
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Figure 10.23: Signal voice.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 4 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
5.52468 11.2941 0.000318054]T . Rnonlin grade of restored signal: 0.98717.
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Figure 10.24: Signal voice.wav and distortion with polynomial inverse: Distorted
and restored signals plotted against the original one, by estimating 4 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 5.51225 17.795 7.32559×10−6]T . Rnonlin grade of restored signal: 0.99321.
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10.3.2 Real signals and more general distortions

Now we present results for the same three signals, but distorted by f(x) =

arctan(λx)/λ; 2, 3, 4, or 5 polynomial coefficients were estimated when σ equal

to 0.001 and 0.0001, and λ equal to 3 and 5 for signal flute.wav. For the two other

signals, only 3, 4 and 5 coefficients (successful cases) were estimated for both values

of σ, and λ only equal to 5 (more difficult case), for the sake of conciseness.

From the set of results, we conclude that the method is also capable of dealing

with more general distortions that do not follow the polynomial model. But the

Rnonlin grades of restored signals were inferior to those attained via the Bayesian

method + AR model in Chapter 9, specially for more severe distortions.
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Figure 10.25: Signal flute.wav and arctan distortion with λ = 3: Distorted and
restored signals plotted against the original one, by estimating 2 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
5.3253]T . Rnonlin grade of restored signal: 0.93325.
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Figure 10.26: Signal flute.wav and arctan distortion with λ = 3: Distorted and
restored signals plotted against the original one, by estimating 2 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
4.3529]T . Rnonlin grade of restored signal: 0.94191.
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Figure 10.27: Signal flute.wav and arctan distortion with λ = 3: Distorted and
restored signals plotted against the original one, by estimating 3 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
0.00693206 38.046]T . Rnonlin grade of restored signal: 0.9554.
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Figure 10.28: Signal flute.wav and arctan distortion with λ = 3: Distorted and
restored signals plotted against the original one, by estimating 3 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
1.52905 25.5723]T . Rnonlin grade of restored signal: 0.97866.
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Figure 10.29: Signal flute.wav and arctan distortion with λ = 3: Distorted and
restored signals plotted against the original one, by estimating 4 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
2.93198 1.590276×10−5 152.1739]T . Rnonlin grade of restored signal: 0.99265.
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Figure 10.30: Signal flute.wav and arctan distortion with λ = 3: Distorted and
restored signals plotted against the original one, by estimating 4 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
3.228501 1.156322×10−6 155.9281]T . Rnonlin grade of restored signal: 0.99428.
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Figure 10.31: Signal flute.wav and arctan distortion with λ = 3: Distorted and
restored signals plotted against the original one, by estimating 5 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
3.243514 7.969379 0.0004540494 592.43]T . Rnonlin grade of restored signal:
0.99873.
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Figure 10.32: Signal flute.wav and arctan distortion with λ = 3: Distorted and
restored signals plotted against the original one, by estimating 5 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
3.09376 10.88234 9.293036 509.0448]T . Rnonlin grade of restored signal:
0.99834.
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Figure 10.33: Signal flute.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 2 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
18.388]T . Rnonlin grade of restored signal: 0.88007.
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Figure 10.34: Signal flute.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 2 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
12.7266]T . Rnonlin grade of restored signal: 0.90389.
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Figure 10.35: Signal flute.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 3 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
3.496801×10−7 284.5015]T . Rnonlin grade of restored signal: 0.93519.
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Figure 10.36: Signal flute.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 3 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
1.895975 240.9501]T . Rnonlin grade of restored signal: 0.94183.
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Figure 10.37: Signal flute.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 4 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
4.8439853 7.3989657×10−5 3807.2556]T . Rnonlin grade of restored signal:
0.94378.
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Figure 10.38: Signal flute.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 4 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
8.1256837 1.2031784×10−5 2855.4944]T . Rnonlin grade of restored signal:
0.96974.
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Figure 10.39: Signal flute.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 5 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
9.7696998 3.68211803×10−5 0.00056596077 51400.2147]T . Rnonlin grade of
restored signal: 0.97501.
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Figure 10.40: Signal flute.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 5 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
11.6885289 1.01438552×10−5 8.40545167×10−5 42223.3473]T . Rnonlin grade
of restored signal: 0.9846.

-1 -0.5 0 0.5 1
Distorted/restored Signal

-1

-0.5

0

0.5

1

O
ri

gi
na

l s
ig

na
l

Distorted
Restored
Ideal curve

Figure 10.41: Signal classical.wav and arctan distortion with λ = 5: Distorted
and restored signals plotted against the original one, by estimating 3 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
4.630399×10−8 327.907]T . Rnonlin grade of restored signal: 0.99621.
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Figure 10.42: Signal classical.wav and arctan distortion with λ = 5: Distorted
and restored signals plotted against the original one, by estimating 3 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 4.809496×10−8 308.858]T . Rnonlin grade of restored signal: 0.99666.
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Figure 10.43: Signal classical.wav and arctan distortion with λ = 5: Distorted
and restored signals plotted against the original one, by estimating 4 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
2.8919144 0.00023571741 4152.9576]T . Rnonlin grade of restored signal: 0.99433.
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Figure 10.44: Signal classical.wav and arctan distortion with λ = 5: Distorted
and restored signals plotted against the original one, by estimating 4 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 7.356875 3.6340337×10−6 3492.8213]T . Rnonlin grade of restored signal:
0.99931.
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Figure 10.45: Signal classical.wav and arctan distortion with λ = 5: Distorted
and restored signals plotted against the original one, by estimating 5 polynomial
coefficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
5.22644732 67.9592461 0.0011397553 44369.3479]T . Rnonlin grade of restored
signal: 0.99767.
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Figure 10.46: Signal classical.wav and arctan distortion with λ = 5: Distorted
and restored signals plotted against the original one, by estimating 5 polynomial
coefficients and with σ = 0.0001. Estimated coefficients (after normalization): m =
[1 7.41929168 86.2401877 400.492152 28287.5355]T . Rnonlin grade of
restored signal: 0.99978.
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Figure 10.47: Signal voice.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 3 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
1.534064×10−7 281.9483]T . Rnonlin grade of restored signal: 0.97526.
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Figure 10.48: Signal voice.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 3 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
1.893394 218.4783]T . Rnonlin grade of restored signal: 0.97178.
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Figure 10.49: Signal voice.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 4 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
5.8241809 0.00022433054 3131.1817]T . Rnonlin grade of restored signal: 0.98109.
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Figure 10.50: Signal voice.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 4 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
8.2542508 3.4241203×10−6 2779.2316]T . Rnonlin grade of restored signal:
0.98549.
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Figure 10.51: Signal voice.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 5 polynomial coef-
ficients and with σ = 0.001. Estimated coefficients (after normalization): m = [1
10.3912932 6.38860371 0.00312219062 36923.8279]T . Rnonlin grade of restored
signal: 0.987.
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Figure 10.52: Signal voice.wav and arctan distortion with λ = 5: Distorted and
restored signals plotted against the original one, by estimating 5 polynomial coef-
ficients and with σ = 0.0001. Estimated coefficients (after normalization): m = [1
11.4995107 8.66801619×10−6 7.84890812×10−5 42730.0166]T . Rnonlin grade
of restored signal: 0.99234.

10.3.3 Signals corrupted with noise

A great advantage of this method over the previously presented Bayesian one is that

it is capable of dealing with noise. It is known that in this context the restoration

procedures based on the AR model do not perform well [45], while the sparsity

context is very adequate to incorporate noise, since it also corrupts the sparsity

of the original undistorted signal. We made tests considering additive white noise

before and after the nonlinearity, as discussed in more detail below.

Some caution is needed when applying the estimated polynomial to the noisy

signal: if the noise was added after the nonlinearity it is not recommended to apply

the estimated polynomial directly into the noisy signal, because some amplification

of the noise can occur, being then advisable to use some denoising tool beforehand;

if the noise is added before the nonlinearity, then the estimated polynomial can be

directly applied to the distorted signal, in order to recover the noisy (but not dis-

torted anymore) signal, and if the user desires, some denoising tool can be employed

now. The main point illustrated in these results is that the nonlinearity is well es-

timated even in noisy signals, and not that the original noiseless signal is recovered

by the proposed method.

The signal flute.wav was distorted by the inverse of g(y) = y+ 5y3 + 30y5, and

white noise was added before and after the distortion, with SNR of 40, 30 and 20.
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The correct number of coefficients was estimated, with values of σ equal to 0.01,

0.001 and 0.0001. Results are shown in the figures below.
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Figure 10.53: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 40 dB added before the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.01.
Estimated coefficients (after normalization): m = [1 0.00021312 1.3451]T .
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Figure 10.54: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 40 dB added before the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.001.
Estimated coefficients (after normalization): m = [1 5.2954 26.0273]T .
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Figure 10.55: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 40 dB added before the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.0001.
Estimated coefficients (after normalization): m = [1 5.4108 26.0804]T .
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Figure 10.56: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 30 dB added before the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.01.
Estimated coefficients (after normalization): m = [1 4.4298×10−5 1.593]T .
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Figure 10.57: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 30 dB added before the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.001.
Estimated coefficients (after normalization): m = [1 5.10902 23.9181]T .
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Figure 10.58: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 30 dB added before the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.0001.
Estimated coefficients (after normalization): m = [1 6.18909 16.4272]T .
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Figure 10.59: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 20 dB added before the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.01.
Estimated coefficients (after normalization): m = [1 0.00019273 2.2457]T .
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Figure 10.60: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 20 dB added before the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.001.
Estimated coefficients (after normalization): m = [1 5.07302 14.6999]T .
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Figure 10.61: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 20 dB added before the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.0001.
Estimated coefficients (after normalization): m = [1 3.41822 30.3089]T .
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Figure 10.62: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 40 dB added after the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.01.
Estimated coefficients (after normalization): m = [1 4.05×10−5 1.283]T .
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Figure 10.63: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 40 dB added after the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.001.
Estimated coefficients (after normalization): m = [1 5.57332 21.0047]T .
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Figure 10.64: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 40 dB added after the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.0001.
Estimated coefficients (after normalization): m = [1 4.8327 1.703×10−6]T .
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Figure 10.65: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 30 dB added after the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.01.
Estimated coefficients (after normalization): m = [1 5.333×10−5 0.7367]T .
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Figure 10.66: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 30 dB added after the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.001.
Estimated coefficients (after normalization): m = [1 5.0044 3.4084×10−6]T .
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Figure 10.67: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 30 dB added after the nonlinearity: Distorted and restored signals plot-
ted against the original one, by estimating 3 polynomial coefficients and with
σ = 0.0001. Estimated coefficients (after normalization): m = [1 1.1117×10−7

4.1482×10−7]T .
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Figure 10.68: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 20 dB added after the nonlinearity: Distorted and restored signals plotted
against the original one, by estimating 3 polynomial coefficients and with σ = 0.01.
Estimated coefficients (after normalization): m = [1 1.036×10−6 4.9218×10−6]T .
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Figure 10.69: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 20 dB added after the nonlinearity: Distorted and restored signals plot-
ted against the original one, by estimating 3 polynomial coefficients and with
σ = 0.001. Estimated coefficients (after normalization): m = [1 3.5346×10−6

1.9985×10−6]T .
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Figure 10.70: Signal flute.wav, distortion with polynomial inverse and noise with
SNR of 20 dB added after the nonlinearity: Distorted and restored signals plot-
ted against the original one, by estimating 3 polynomial coefficients and with
σ = 0.0001. Estimated coefficients (after normalization): m = [1 1.5062×10−5

6.9605×10−5]T .

We note that the estimate of m is better when the noise is added before the

nonlinearity: even for a SNR of 20 dB the estimated values are quite close to the

correct ones. However, when the noise is added after the nonlinearity, the estimate

is not so accurate: for a SNR of 20 dB the estimated values of m are far from the

true ones, for a SNR of 30 dB and σ = 0.001 only the first coefficient was correctly

estimated, and for a SNR of 40 dB and σ = 0.001 the estimate is quite good.

10.4 Conclusion and future works

The set of good results presented here together with the great computational ef-

ficiency of the proposed algorithm indicates that this approach is very promising.

When dealing with distortions following the model, even when the number of coef-

ficients being estimated is different from the original one, the result is quite good,

a fact that is confirmed by the plots shown above, the Rnonlin grades and by the

informal subjective tests performed. When the number of coefficients being esti-

mated is larger than the real value, the remaining estimated values are close to zero,

a fact that is reasonable to expect. When more general distortions were considered,

the method is also capable of estimating a set of polynomial coefficients that largely

mitigates the distortion. And finally, when dealing with noisy signals, the method
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is also capable of correctly estimating the polynomial coefficients, at least in some

scenarios.

The main advantage of this framework when comparing to the Bayesian one

is its computational efficiency: for example, the extensive tests with the signal

flute.wav with distortion following the model, including the computation of the

Rnonlin grades, lasted less than 3 minutes2. On the other hand, this method gives

only a point estimate, whereas with the Bayesian one much more information about

the credibility of the estimate is available.

Since our main goal is to treat nonlinear distortions with memory, generalizing

this proposed solution to this scenario is the main theme to be addressed in fu-

ture works. Preliminary attempts were performed, but it is not clear under which

conditions regarding the distortion the same solution will also perform well. More-

over, since the linear filter after the nonlinear distortion in the Hammerstein model

does not affect the sparsity of the original signal, maybe some modification of the

objective function will lead to a better result.

2Recall that in Chapter 9 the estimation of a single set of coefficients using the Gibbs sampler
lasted approximately 41 s.
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Chapter 11

Bayesian again: Treating

memoryless nonlinear distortions

from sparse and Bayesian

viewpoints

This chapter is an extension of the previous one, where the problem of memoryless

nonlinear distortion in audio signals was tackled from a different perspective that

dispenses the AR model. Preliminary tests using the former technique to treat

nonlinear distortions with memory indicated that some modifications should be

done in the objective function, which then turns very complicated, and amenable

to exhibit multiple local minima. This approach is also under development, but

we chose to firstly consider the sparsity-based approach in a Bayesian context. In

[93], the problem of Compressive Sensing is tackled from a Bayesian perspective,

using adequate priors to model the sparsity in some domain of the signal one wishes

to recover. Here we present an adaptation of this work to the case of nonlinear

measurements where the nonlinearity is unknown, together with some modifications

needed to correctly estimate the nonlinearity.

This Chapter is organized as follows: firstly in Section 11.1 we describe how it is

possible to induce sparsity via an adequate choice of prior distributions; next, in Sec-

tion 11.2 the problem of memoryless nonlinearities is formulated in a Bayesian con-

text, and in Section 11.3 the optimization procedure employed is described; finally,

in Section 11.4 some results are presented, and in Section 11.5 further developments

are proposed.
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11.1 How to induce sparsity via prior distribu-

tions?

Consider the classical least squares problem:

min
x
||Ax− y||2, (11.1)

where || · ||2 denotes the `2 norm. One possible way to interpret this problem is the

following: maybe the linear system Ax = y has no solution, but one wishes to find

the best solution, that is, the value (or possibly values) of x that are closer to being

a genuine solution of the considered linear system.

From a statistical viewpoint, we can think of Equation 11.1 as a linear regression

problem: vector y contains a set of observations that one expects to be linearly

related to a set of (unknown) coefficients stored in vector x via (known) matrix A;

and such measurements are possibly corrupted with noise that one supposes to be

Gaussian with variance equal to σ2
e . Therefore, the observed data can be written in

the following way:

y = Ax + e, (11.2)

where the entries of vector e are iid Gaussian with 0 mean and variance σ2
e . It is

then possible to write the likelihood for the desired parameters:

p(y|x) ∝ exp

(
− 1

2σ2
e

||Ax− y||2
)
. (11.3)

Maximizing Equation 11.3 with respect to x in order to obtain its maximum likeli-

hood estimator leads exactly to the problem in Equation 11.1.

It is known that in some cases the maximum likelihood estimator to x can amplify

the noise present in the observations [17, 37], so it is convenient to regularize the

problem. Suppose that one knows a priori that the coefficients in x cannot be

arbitrarily large. It is then reasonable to suppose that x is drawn from a Gaussian

distribution with 0 mean and some covariance matrix Γ, that is,

p(x) ∝ exp

(
−1

2
xTΓ−1x

)
. (11.4)

By multiplying Equation 11.4 with the likelihood in Equation 11.3, we obtain the

posterior distribution of x, via Bayes’ Theorem:

p(x|y) ∝ exp

(
− 1

2σ2
e

||Ax− y||2 −
1

2
xTΓ−1x

)
, (11.5)
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which if maximized leads to the maximum a posteriori estimator, given by

min
x
||Ax− y||2 + ||Γx||2. (11.6)

This is the well known Tikhonov1 regularization, and a closed form to this estimator

is available, but it will not be of use here.

However, this regularization only carries information about the overall magnitude

of x, not about its components individually. If one also knows that only a few entries

of x are different from zero, for example, this regularization is not adequate, and

one can rather use the following prior “distribution”2:

p(x) ∝ exp (−τ ||x||0) , (11.7)

where || · ||0 is the `0 “norm”, which leads to the following optimization problem:

min
x
||Ax− y||2 + τ ||x||0. (11.8)

This problem is known to be NP-hard [91], and as discussed previously in Chapter 10,

since the considered signals are not exactly sparse, we must employ a more flexible

prior distribution. One can change the `0 “norm” by its tightest convex relaxation,

the `1 norm, which leads to the optimization problem below, much easier to solve

and known to also induce (approximate) sparsity in vector x [90]:

min
x
||Ax− y||2 + λ||x||1. (11.9)

In the statistical community, this regularization is called the LASSO (least ab-

solute shrinkage and selection operator), and was introduced in 1996 [94]. See also

[95]. In a Bayesian context, Equation 11.9 can be interpreted as if independent

Laplace priors have been imposed onto every entry of x:

p(x) ∝ exp (−λ||x||1) . (11.10)

Using directly Laplace priors is not convenient, because after the required change

of variables, the obtained distribution will be very complicated. Fortunately there

is a way of writing the Laplace distribution as a mixture of Gaussian and Gamma

distributions, which will be better detailed in the next Section.

1Andrey Nikolayevich Tikhonov, Gzhatsk, October 30, 1906 – Moscow, October 7, 1993.
2Note that this is not a proper probability distribution. Since using improper prior distributions

is recurrent in Bayesian statistics and we are not interested in the respective posterior distribution
but only the ensuing optimization problem, we will not further discuss this point.
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11.2 Formulation of the problem in a Bayesian

context

Let x be an excerpt of an audio signal of length N , supposed to be sparse in the

DCT domain (a reasonable assumption, as explained in Chapter 10). Let Ψ be the

DCT matrix, such that w = Ψx are the DCT coefficients of signal x.

As before, let f(.) be the nonlinear distorting function, that is, the observed

distorted signal y is given by f(x), where function f(.) is applied entry-wise in

vector x. Suppose f(.) to be anti-symmetric and monotonically increasing. Given

such hypotheses, which guarantee that f(.) is invertible, denote its inverse by g(.).

We parametrize it via its truncated Taylor series around zero:

g(y) = m1y +m2y
3 +m3y

5 + · · ·+mMy
2M−1, (11.11)

and assemble the corresponding coefficients in vector m. Estimating g(.) is equiva-

lent to estimating vector m.

Remember that nonlinearities are known to create new frequency components

in the original signal, as discussed in Chapter 5. Since the signals being considered

are compressible, we cannot assure that previously to the distortion some frequency

components are exactly zero, but only sufficiently small. This fact about nonlineari-

ties can be adapted to this scenario by noting that these sufficiently small frequency

components will not be so small after the distortion. In other words, the distorted

signal is “less compressible” in the DCT domain. This justifies the imposition of a

Laplace prior onto every component of w that will be constructed in a hierarchical

way, as previously stated:

w|γ ∼
N∏

i=1

N(wi|0, γi) = N(w|0, diag(γ)) (11.12)

γ|λ ∼
N∏

i=1

Γ(γi|1, λ/2), (11.13)

where Γ(·|α, β) denotes the Gamma distribution with shape and scale parameters

given respectively by α and β, and diag(γ) denotes a diagonal matrix with vector

γ along the diagonal. It can be shown that the following result is valid [93]:

p(w|λ) =

∫ +∞

0

p(w|γ)p(γ|λ) dγ =
λN/2

2N
exp

(
−
√
λ

N∑

i=1

|wi|
)
, (11.14)

that is, by integrating γ out we are really imposing a Laplace prior onto w. The

hyper-parameter λ controls the sparsity degree of x in the DCT domain, and in
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order to add another degree of flexibility, λ can be viewed as a realization of the

following hyper-prior:

λ|ν ∼ Γ(λ|ν/2, ν/2). (11.15)

This prior is very flexible, since it can provide very vague or very specific information

about λ, depending on the chosen value of ν. Moreover, its value can be also

estimated from the data, as it will become clear.

Since the original undistorted signal is given by x = ΨTw, its distribution is

given by [17]:

x|γ ∼ N(x|0,ΨTdiag(γ)Ψ), (11.16)

and after the change of variables x = g(y) (already performed in Chapter 7), we

conclude that:

p(y|γ,m) =

∏N
i=1 |g′(yi)|

(2π)N/2| det(ΨTdiag(γ)Ψ)|1/2×

exp

{
−1

2
g(y)T (ΨTdiag(γ)Ψ)−1g(y)

}
. (11.17)

This distribution seems cumbersome, but some of its terms can be further sim-

plified:

• By noting that det(Ψ) = 1, the determinant term can be rewritten as:

| det(ΨTdiag(γ)Ψ)|1/2 = | det(ΨT ) det(diag(γ)) det(Ψ)|1/2

= | det(diag(γ))|1/2 (11.18)

=
N∏

i=1

γ
1/2
i ; (11.19)

• The inverse matrix inside the exponential is given by

(ΨTdiag(γ)Ψ)−1 = ΨTdiag(1/γ)Ψ =
N∑

i=1

1

γi
ψTi ψi, (11.20)

where ψi is the i-th line of matrix Ψ. Therefore,

g(y)T (ΨTdiag(γ)Ψ)−1g(y)

= g(y)T

(
N∑

i=1

1

γi
ψTi ψi

)
g(y)

=
N∑

i=1

1

γi
g(y)TψTi ψig(y)︸ ︷︷ ︸

:=ξi

=
N∑

i=1

ξi
γi
. (11.21)
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With these simplifications, we have that

p(y|γ,m) ∝
(

N∏

i=1

|g′(yi)|
γ

1/2
i

)
exp

{
−1

2

N∑

i=1

ξi
γi

}
, (11.22)

where

ξi = g(y)TψTi ψig(y). (11.23)

By using Bayes’ Theorem, it is then possible to write the posterior distribution

of the parameters:

p(γ, λ,m|y) ∝ p(y|γ,m)p(γ|λ)p(λ)p(m), (11.24)

where p(λ) and p(γ|λ) are given by adequate Gamma distributions, as stated above.

Two different priors for m will be considered, and for the moment we will keep the

term p(m). By applying the formulas for the distributions into the right hand side

of Equation 11.24, we have that:

p(γ, λ,m|y) ∝
[(

N∏

i=1

|g′(yi)|
γ

1/2
i

)
exp

{
−1

2

N∑

i=1

ξi
γi

}]
×
[
N∏

i=1

λ

2
e−

λ
2
γi

]
×

[
(ν/2)ν/2

Γ(ν/2)
λν/2−1e−

ν
2
λ

]
× p(m). (11.25)

Note that despite this distribution depending on ν, this variable is not written

as an argument of the function, since it can be kept fixed during the optimization

procedure in order to ensure some desired behavior of λ, depending on the will of

the user.

11.3 Maximization of the posterior distribution

Some attempts to directly treat this distribution have been tried, for example, max-

imizing its logarithm with respect to γ, λ, ν and m, as presented in [93]. Unfortu-

nately, regardless of the choice of prior distribution for m, this procedure was shown

to be inadequate here because of some convergence issues found in the optimization

algorithm, whose reason is a point to be further investigated.

Since γ is a nuisance parameter and all computations involving the hierarchical

prior for w have already been performed, we can integrate it out and obtain the

distribution p(λ,m|y). Integrating λ out would also be adequate, but this compu-

tation is impossible to be carried out by hand, as it will become clear soon. We now

describe the procedure to integrate Equation 11.25 in γ.

If we consider the terms in Equation 11.25 that depend only on γ, we obtain
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after some simplifications:

N∏

i=1

1

γ
1/2
i

exp

{
−1

2

(
ξi
γi

+ λγi

)}
, (11.26)

which if integrated with respect to γ leads to

N∏

i=1

∫ +∞

0

1

γ
1/2
i

exp

{
−1

2

(
ξi
γi

+ λγi

)}
dγi. (11.27)

Fortunately, this integral can be computed by hand, at the cost of a very long

and tedious derivation. In fact, the indefinite integral

∫
1

x1/2
exp

{
−1

2

(a
x

+ bx
)}

dx (11.28)

can be computed, and its solution is given by3

√
π

2b

[
e−
√
ab

(
Φ

(
x
√
b−√a√

2x

)
+ 1

)
+ e

√
ab

(
Φ

(√
a+ x

√
b√

2x

)
− 1

)]
, (11.29)

where Φ is the error function, given by

Φ(x) =
2√
π

∫ x

0

e−t
2

dt. (11.30)

With the indefinite integral, we can obtain

∫ +∞

0

1

x1/2
exp

{
−1

2

(a
x

+ bx
)}

dx =

√
2π

b
e−
√
ab, (11.31)

and after substituting adequate values for a and b, we conclude that:

N∏

i=1

∫ +∞

0

1

γ
1/2
i

exp

{
−1

2

(
ξi
γi

+ λγi

)}
dγi =

(2π)N/2

λN/2
exp

{
−
√
λ

N∑

i=1

√
ξi

}
.

(11.32)

3Thanks a lot, WolframAlpha! But in fact this procedure is not needed, since this function
can be recognized as the kernel of the Generalized Inverse Gaussian (GIG) distribution [96], and
its respective normalizing constant can be used to obtain the desired result.

177



Therefore, the integrated posterior distribution is given by

p(λ,m|y) =

∫ +∞

0

p(γ, λ,m|y) dγ

∝
[
N∏

i=1

|g′(yi)|
]
×
[
λ

2

]N
×
[

(ν/2)ν/2

Γ(ν/2)
λν/2−1e−

ν
2
λ

]

× p(m)×
[
λ−N/2 exp

{
−
√
λ

N∑

i=1

√
ξi

}]
. (11.33)

Instead of maximizing this distribution with respect to λ, m and ν, we equiva-

lently maximize its logarithm, given by:

log p(λ,m|y) =
N∑

i=1

log |g′(xi)|+N log

(
λ

2

)
+
ν

2
log
(ν

2

)
− log Γ

(ν
2

)

+
(ν

2
− 1
)

log(λ)− ν

2
λ+ log p(m)

− N

2
log(λ)−

√
λ

N∑

i=1

√
ξi. (11.34)

Unfortunately, regardless of the prior distribution for m, it is not possible to ob-

tain analytical expressions for the values of λ, m and ν that maximize this function,

and a numerical algorithm is employed to this end; the procedure is presented in

more details in Section 11.4, together with some results. To close the theoretical

exposition, we discuss the prior distributions for m.

11.3.1 Non-informative prior for m

Recall that the prior distributions in Bayesian Statistics can be seen as regularization

of ill-posed problems, as discussed in the beginning of this chapter. Up to this point,

the regularization of variable m was performed in this way: firstly recall, as discussed

in Chapter 7, that if some regularization is not imposed, any multiple of the inverse

of the real distorting function is a possible estimate; to avoid this issue, we imposed

g′(0) = 1, which implies that its first coefficient is equal to one.

Therefore, the prior distribution imposed over the coefficients m2:M was a vague

one, given by

pNI(m2:M) ∝ exp

(
− 1

2σ2
m

mT
2:Mm2:M

)
, (11.35)

where m2:M denotes the entries of m from the second to the last, and the value of

σ2
m was chosen to be large enough to make this prior vague. The interpretation of

this distribution is that little is known about m2:M , and thus we do not want to

restrict its possible values. We will denote this prior by pNI, being the subscript

178



“NI” used to indicate when the non-informative prior is being used.

With this restriction over m, function g(.) can be rewritten as

g(y) = y +m2y
3 +m3y

5 + · · ·+mMy
2M−1, (11.36)

and the relation between x and y is written linearly in m2:M as

x = y + Ym2:M , (11.37)

where the matrix Y is the same as in Chapter 7.

11.3.2 Informative prior for m

Recall that in Chapter 10 we have not restricted any particular entry of m, but

rather the norm of the restored signal. This was motivated by the fact that m = 0

will always be a trivial solution to the proposed optimization problem – a solution

that must be avoided. Directly imposing this condition by means of a degenerate

prior distribution for m means to say that ‖g(y)‖2 = 1, an unnecessary geometric

restriction over m that we are able to avoid.

Firstly, note that with this restriction it is not necessary to equate the value of

m1 to one, thus we will consider the entire vector m such that the relation between

x and y can be written as

x = Ysm, (11.38)

where matrix Ys is the same as in Chapter 10.

The desired information we wish to incorporate into the model can be induced

in a soft way: it is not strictly necessary to have the norm of the restored signal

exactly equal to one, but only to restrict its most probable values in order to avoid

several solutions to the optimization problem. We can then induce that ‖g(y)‖2 ≈ 1

via the prior distribution given by

pI(m) ∝ exp
(
−k(‖g(y)‖2

2 − 1)2
)

= exp
(
−k(mTYT

s Ysm− 1)2
)
, (11.39)

being the subscript “I” used to indicate the use of an informative prior. The pa-

rameter k controls how much the deviates of ‖g(y)‖2
2 from 1 are penalized and can

be controlled by the user.

11.4 Results

In this section we present some results of the preliminary development presented up

to this point. Tests were performed with both artificial and real signals, distorted

179



with artificial distortions following the model, that is, with polynomial inverse.

As in Chapter 10, the maximization of the posterior distribution in Equation

11.34 was performed via the fmincon function implemented in the Optimization

ToolboxTM of MATLABTM .

The distorting function was the inverse of polynomial g(y) = y + 5y3 + 30y5.

When using the noninformative prior we expect to recover exactly the last two

coefficients of the vector m = [1 5 30]T , but the informative prior will give a set

of coefficients tailored to ensure that the norm of restored signal is approximately

equal to one. In order to better compare both estimated coefficients, in this second

situation we normalize the estimate by its first value, as in Chapter 10.

When the set of polynomial coefficients is estimated via the noninformative prior

we denote it by mNI, whereas if the informative prior is used it will be denoted as

mI.

11.4.1 Artificial signal

A signal of length 500 was generated following the proposed model, explained in

detail below:

• The value of ν was fixed at one;

• A value of λ was generated by sampling from a Gamma distribution with both

parameters equal to 1/2;

• The values of γi for i = 1, . . . , 500 were generated by independently sampling

from a Gamma distribution with parameters 1 and λ/2, and assembled in

vector γ;

• The original undistorted signal x was generated by sampling from a Gaussian

distribution with mean 0 and covariance matrix ΨTdiag(γ)Ψ;

• The distorted signal y was obtained by artificially distorting signal x with the

inverse of polynomial g(y) = y + 5y3 + 30y5.

As in [93], here in the case of nonlinear measurements it is also better to keep

the value of ν fixed instead of variable in the objective function. In all runs of the

algorithm, the value of ν was fixed at 10. It was noted that this arbitrarily chosen

value almost does not impact the optimization procedure. When using the informa-

tive prior for m the value of k was fixed at 5, and when using the noninformative

prior the value σ2
m was fixed at 1,000. In all cases the runtime of the optimization

algorithm was very similar, from 1 to 2 minutes, approximately. This time can be

improved if the computation of quantities ξi is performed in another way, a point

that is further discussed in the next section.
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The algorithm was initialized with a random value for λ following a Gamma

distribution with both parameters equal to 5 and the coefficients of the polynomial

equal to zero.
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Figure 11.1: Artificial signal and distortion with polynomial inverse: signals restored
via both priors for m plotted against the original one. Estimated coefficients (after
normalization): mNI = [10.4098 28.0037] and mI = [1 8.4968 31.7339].

We note that despite the estimated coefficients not being exactly equal to the

true ones, both restored signals are visually very similar, and also similar to the

ideal curve. We now proceed to the tests with real signals.

11.4.2 Real signal

Tests similar to the previous were also performed with real signals. The tested

signal was flute.wav, artificially degraded by the inverse of polynomial g(y) =

y + 5y3 + 30y5. The estimation of the polynomial coefficients was done by using

both noninformative and informative priors. An excerpt of 500 signal time samples

around the time sample with the greatest magnitude was given as input to the

algorithm.

The initialization was similar to the one in the previous section, but now the

algorithm runtime is much larger, about 6 minutes for the noninformative prior and

about 3 minutes for the informative prior. This difference is due to the fact that

now the signal does not follow the model exactly, and then more iterations of the

algorithm are needed.
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Figure 11.2: Signal flute.wav and distortion with polynomial inverse: signals re-
stored via both priors for m plotted against the original one. Estimated coefficients
(after normalization): mNI = [67.7055 0.125876] and mI = [1 2.04694 40.9771].
Rnonlin grades of distorted, restored via noninformative prior and restored via in-
formative prior, respectively: 0.87759, 0.84921 and 0.95251.

We note that the polynomial coefficients obtained via the informative prior are

closer to the true ones than when obtained via the noninformative prior, a fact that

is reflected in the quality of the corresponding restored signals. However, the better

estimate here is not so accurate as the one obtained when using the AR model, and

a possible reason to this fact is discussed in the next section.

11.5 Conclusion and future works

This is a very preliminary work and still a lot of investigation must be performed

in order to better understand some aspects of the proposed algorithm. The good

results obtained in the preliminary tests indicated that this approach could lead to

a very effective treatment of the restoration of nonlinear distortions, even after the

incorporation of memory into the model.

We note that the estimates obtained with this model are less accurate than the

ones obtained when assuming an AR model for the undistorted signal. A possible

reason for this fact is that audio signals are better characterized by AR models than

by their compressibility in the DCT domain. Nevertheless, the second model is more

robust to noisy signals, as shown in the results of Chapter 10.

A major advantage of this algorithm when compared with the one proposed in
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Chapter 10 is that there is no need to arbitrarily choose some essential parameter like

σ, which controls the smoothness of the objective function. The only arbitrary choice

here is parameter ν, which we observed to be much less critical in the optimization

procedure.

We list below some future works:

• Intuitively, the same optimization procedure proposed in [93] without inte-

grating γ should work here, but apparently the nonlinearity is a complicating

factor. Better understanding why this procedure fails is necessary.

• The Laplace prior is not the only one suitable to enforcing sparsity, and other

possibilities should be tested. In [97] some possible sparsity inducing priors

are presented, maybe more adequate to our case than the Laplace prior.

• As can be seen in Equation 11.14, parameter λ is responsible for controlling the

sparsity of the restored signal in the DCT domain. It can also be noted that

this parameter is constant for all the DCT components. However, when dealing

with audio signals, one expects that low frequencies are more significant than

high frequencies. This information can be incorporated into the model in order

to improve the estimation procedure, e.g. by using a value of λ which depends

on the frequency bin.

• The sparsity context is very good to treat noise, since noise also reduces the

sparsity of the original signal in the DCT domain. In [93], the measurements

were considered noisy, but in order to simplify the adaptation, here we assumed

them to be noiseless. Incorporating noise into the model is also a future work.

• In the present implementation, quantities ξi are computed in a for loop at

each iteration of the optimization algorithm, which slows down the algorithm.

Increasing the computational efficiency is a future work.

• Up to this point we are profiting only from the estimated maximum of the

posterior distribution. This distribution contains a lot of information that is

being ignored, for example, a credence interval for both λ and the polynomial

coefficients. Better exploring the full potential of the Bayesian approach is a

future work.

• Finally, incorporating memory into the model is our major goal, since they

allow for a more realistic approximation to actual nonlinearities found in audio

signals.
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Part IV

RESTORATION OF AUDIO

SIGNALS

DEGRADED WITH LOW

FREQUENCY

DECAYING PULSES
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Chapter 12

First attempt: a parametric

description for the pulse

In this fourth part of the thesis we outdistance the restoration of audio signals with

nonlinear distortions to treat other defects. A very annoying degradation present

in some analogical media are the long pulses with significant low-frequency content.

This kind of defect is caused by deep scratches or breakages in vinyl and gramophone

disks or cylinder recordings, or damage in optical films soundtracks, among others.

It has the usual form of a high-amplitude discontinuity in the waveform followed

by a pulse of decaying frequency and amplitude. Physically, this can be understood

as the response of the playback device to the physical degradation in the medium.

Since this degradation is very severe, the device is removed from its linear range of

operation and presents this atypical behavior.

This topic is the first one we worked, continuing the work initiated in [98] and

having resulted in conference paper [5], in which this chapter is based. The con-

tributions of this thesis to the topic were some modifications onto the proposal

distributions for some parameters, a more efficient implementation and tests with

real signals, both naturally and artificially distorted.

The chapter is organized as follows: In Section 12.1 some previous works are

presented, followed by the description of our proposed model in Section 12.2. The

algorithm to remove the degradation is described in Section 12.3 and some results

are presented in Section 12.4.

12.1 Previous works

The first algorithm to treat this defect was proposed in [99, 100], and is based on

the hypothesis of the similarity among the pulses present in a signal: since one of its

possible causes are big scratches on the surface of the media, every time the needle
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passes through them, similar disturbances will occur, differing only in its location

and amplitude. These two quantities are estimated by comparing the degraded signal

with a database of pulses. The authors reported good results when this hypothesis

is valid, but its scope is limited to pulses similar to the ones present in the database.

Moreover, if two or more pulses are superimposed, the method fails.

A statistical approach capable of treating more general cases can be found in

[37, 101]. This method assumes that both the underlying signal and the pulse

are modeled by AR processes that are superimposed. The original signal is then

estimated by separating both processes. Some disadvantages are requiring that the

location of the pulse is known and that the AR model for the pulse is not very

accurate.

In [102] a much simpler method is proposed, based on a nonlinear filtering tech-

nique called Two-Pass Split Window (TPSW). This filtering is used to obtain a

rough estimate of the pulse format, being then smoothed by a piecewise polynomial

fitting. Although this method requires less computational power, the location of

the pulse must still be known. And finally, in [103] is proposed a solution using the

Empirical Mode Decomposition (EMD), a way of decomposing a signal waveform

into a set of simpler functions, called the Intrinsic Mode Functions.

In this work we propose a method that jointly localizes and estimates the shape

of the pulse. It also does not require any previous knowledge about the parameters

of the AR process that models the underlying signal. The price we must pay is an

increase in the required computational power. We describe now the model for the

pulse and its relation with the underlying signal.

12.2 A model for the long pulse

The proposed model for the degradation describes it as an initial discontinuity,

followed by damped oscillations and of decaying frequency, which we will call tail.

The initial discontinuity is modeled as white noise, beginning at time sample n0 of

the original signal and lasting for M time samples, with variance σ2
d fixed:

vd(n) = r(n)[u(n− n0)− u(n− n0 −M)], (12.1)

where u(n) is the unit step, r(n) ∼ N(0, σ2
d) and n0, M and σ2

d are unknown a priori.

The model for the tail is based on [102], and is mathematically described by

vt(n) = Vte
−n/(fsτe) sin

(
2πn

fn
fs

+ φ

)
[u(n− n0 −M − 1)], (12.2)
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where

fn = (fmax − fmin)e−n/(fsτf ) + fmin. (12.3)

Variables n0 and M are the same as before, and the new variables are defined below:

• Vt is related to the tail amplitude;

• fs is the signal sampling rate (usually 44.1 kHz);

• τe is the time constant (in seconds) associated with the pulse envelope decay;

• τf is the time constant (in seconds) associated with the pulse frequency decay;

• fmax and fmin are, respectively, the maximum and minimum tail oscillation

frequencies (in Hz);

• φ is the pulse initial phase.

All these quantities (except for fs) are also unknown beforehand. Our goal is

then to estimate n0,M, σ2
d, Vt, τe, τf , fmax, fmin, and φ in order to recover the original

signal.

An important point that must be discussed is the estimation of the underlying

AR model’s parameters: ideally they should also be estimated together with the

other unknowns, but this implies an enormous increase in the required computational

time. The estimation of a and σ2
e by themselves is not costly, but there are several

quantities along the process that depend on them. If those two parameters are

not constant over the entire procedure, such quantities must be computed several

times. To overcome this, we will analyze a block of signal that contains not only

the initial discontinuity and the tail, but also a region preceding the initial estimate

of the beginning of the degradation. The parameters of the AR model will then be

estimated from this region before the algorithm initialization. Note, however, that

this does not require the exact location of the degradation beginning.

An important feature of this model for the pulse tail is that it is deterministic: if

its parameters are known, then the pulse format if uniquely determined. This prop-

erty will become important soon, when computing some conditional distributions.

To simplify the notation, we assemble the parameters of the initial discontinu-

ity, the tail and the AR model for the original signal in vectors θd, θt, and θx,

respectively:

θd = [n0 M σ2
d]
T , (12.4)

θt = [Vt τe τf fmax fmin φ]T , (12.5)

θx = [aT σ2
e ]
T . (12.6)
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The concatenation of these three vectors is denoted by θ:

θ = [θTd θTt θTx ]T . (12.7)

We will denote the original and corrupted signal blocks as x and y, respectively,

and their length as N . To describe the relationship between these vectors, we create

three sets of indexes, i0, i1 and i2, indicating the time samples in y that belong to

the regions preceding the degradation, to the initial discontinuity of the pulse and to

its tail, respectively. We define then sub-vectors x0,y0,x1,y1,x2, and y2 containing

the corresponding time samples in each set of indexes and satisfying

y0 = x0, (12.8)

y1 = x1 + vd, (12.9)

y2 = x2 + vt. (12.10)

We can also define the auxiliary matrices K, U1, and U2, containing the columns

of the N ×N identity matrix with indexes i0, i1, and i2, respectively. We can then

write

x = Kx0 + U1x1 + U2x2. (12.11)

Matrix A defined in Chapter 4 containing the coefficients of the AR model can be

partitioned in a similar way as A0 = AK, A1 = AU1, and A2 = AU2. These

partitioning will be useful for some computations in the next sections.

12.3 Description of the algorithm

As usual, we wish to recover the original underlying signal x from the observed

degraded signal y and their mutual relationship, described by the pulse model pre-

sented in the last section. The assumption that x is well described by an AR model

allows us to write an statistical description for it, and consequently, for y, θt, and

θd. By using the Bayes’ Theorem, we can compute the posterior distribution for

the desired quantities, p(θt,θd,x|θx,y), the maximum of which we want to find.

Unfortunately, the computation of this distribution leads to a very complicated for-

mula, from which it is hard to extract useful information. To circumvent this issue,

we obtain samples of it, by means of a Gibbs sampler with some Metropolis steps,

implemented in the following way:

a) Initialize values θ
(0)
d and θ

(0)
t

b) For k from 1 to Niter:
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i) Sample θ
(k)
t and x(k) from distribution

p(θt,x|θ(k−1)
d ,θx,y)

ii) Sample n
(k)
0 and M (k) from distribution

p(n0,M |σ2(k−1)

d ,θ
(k)
t ,x(k),θx,y)

iii) Sample σ2(k)

d from distribution

p(σ2
d|n(k)

0 ,M (k),θ
(k)
t ,x(k),θx,y).

The mean of the posterior distribution is then estimated by averaging the samples

obtained after burn-in time (see Chapter 3). In the next sections we compute the

required conditional distributions.

12.3.1 Sampling from p(θt,x|θd,θx,y)

The first step of the Gibbs sampler requires this distribution, which we will compute

now. We use Bayes’ Theorem to split it in more easily obtainable distributions:

p(θt,x|θd,θx,y) = p(θt|θd,θx,y)p(x|θ,y)

∝ [p(y|θ)p(θt)]p(x|θ,y). (12.12)

We have now two distributions to compute: p(y|θ) and p(x|θ,y). We will separate

their computation in different subsections to keep the text organized.

12.3.1.1 Computation of p(y|θ)

The computation of this quantity is quite complicated, and will be split in several

steps, to improve the readability of the text. Two auxiliary results are stated here,

and will be referenced when necessary. Most of the auxiliary computations are

omitted from the text in order to improve readability.

12.3.1.1.1 Gaussian integrals

Integrals of the form

I =

∫

RD
exp

{
−1

2
(a+ bTy + yTCy)

}
dy (12.13)

are quite recurrent in Statistics, and in this chapter we will come across one. By

means of a very boring computation (essentially completing the squares and com-
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paring with the PDF of a multivariate Gaussian distribution) we can prove that

I =
(2π)D/2

det(C)1/2
exp

{
−1

2

(
a− bTC−1b

4

)}
. (12.14)

12.3.1.1.2 Product of multivariate Gaussians PDFs

If we consider a multidimensional random variable whose PDF is given by the

product of two multivariate Gaussian PDFs, we can conclude that it is also a mul-

tivariate Gaussian. More precisely, let

f(x) ∝ f1(x)f2(x), (12.15)

where f1(x) = N(x|µ1,Σ1) and f2(x) = N(x|µ2,Σ2). Therefore,

f(x) ∝ exp

{
−1

2
(x− µ1)TΣ−1

1 (x− µ1)− 1

2
(x− µ2)TΣ−1

2 (x− µ2)

}
, (12.16)

and the expression inside the exponential is quadratic in x. We can then complete

the squares in order to write it in the form

f(x) ∝ exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (12.17)

but this procedure leads to a very boring computation. We obtain parameters µ

and Σ in another way: after deriving and equating to zero the argument of the

exponential in Equation 12.16 we conclude that µ = (Σ−1
1 +Σ−1

2 )(Σ−1
1 µ1 +Σ−1

2 µ2),

and by taking the negative Hessian of this same quantity we arrive at Σ = (Σ−1
1 +

Σ−1
2 )−1. Therefore, f(x) = N(x|µ,Σ).

12.3.1.2 Back to the computation of p(y|θ)

We then rewrite p(y|θ) as

p(y|θ) =

∫

RN
p(x,y|θ) dx =

∫

RN
p(x|θ)p(y|x,θ) dx. (12.18)

Note that x does not depend on θd and θt, since both sets of parameters describe

only the degradation, and not the underlying original signal. Therefore, we can

substitute p(x|θ) by p(x|θx), which by Equations 4.12 and 4.14 is approximately

Gaussian with mean 0 and covariance matrix σ2
e(A

TA)−1. Once again we will abuse

the approximation in Equation 4.14 and consider it as an equality, implying that

p(x|θ) = p(x|θx) = N(x|0, σ2
e(A

TA)−1). (12.19)
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Note that there is another abuse of notation here, since we are not allowed to write

that a PDF is equal to a distribution. Since the notation and the computations in

this chapter are sufficiently complicated, small abuses like this will be recurrent and

must cause no confusion to the reader.

To compute p(y|x,θ), note first that the time samples in y0 are uncorrupted

and the time samples in y2 are uniquely determined by the parameters of the tail

in θt. Therefore, their distribution can be modeled by adequate multi-dimensional

Dirac’s1 delta distributions. And since the time samples in y1 are the time samples

in x1 plus random Gaussian noise, we can write

p(y|x,θ) = δ(y0 − x0)×N(y1|x1, σ
2
dIM)× δ(y2 − (x2 + vt)), (12.20)

since this distribution is conditioned on θ and x.

Therefore, the product p(x|θ)p(y|x,θ) is given by

N(x|0, σ2
e(A

TA)−1)× [δ(y0 − x0)×N(y1|x1, σ
2
dIM)× δ(y2 − (x2 + vt))]. (12.21)

Note that the integral to be computed in Equation 12.18 is with respect to x,

and the second Gaussian in the last Equation is in y1 variable, depending on x1

only in its mean. To make explicit the dependence on x1, we can use the symmetry

of the Gaussian distribution and consider that N(y1|x1, σ
2
dIM) = N(x1|y1, σ

2
dIM),

in the sense that the PDF of both distributions is given by the same formula. By

using the decomposition of x given in Equation 12.11, we obtain:

p(x,y|θ) = p(x|θ)p(y|x,θ) =

N(Kx0 + U1x1 + U2x2|0, σ2
e(A

TA)−1)×
[δ(y0 − x0)×N(x1|y1, σ

2
dIM)× δ(y2 − (x2 + vt))], (12.22)

and finally,

p(y|θ) =

∫

RN
p(x|θ)p(y|x,θ) dx =

∫

RN
N(Kx0 + U1x1 + U2x2|0, σ2

e(A
TA)−1)×

[δ(y0 − x0)×N(x1|y1, σ
2
dIM)× δ(y2 − (x2 + vt))] dx =

∫

RM
N(Kx0 + U1x1 + U2x2|0, σ2

e(A
TA)−1)|x0=y0 and x2=y2−vt×

N(x1|y1, σ
2
dIM) dx1, (12.23)

1Paul Adrien Maurice Dirac, Bristol, August 8, 1902 – Tallahassee, October 20, 1984.
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where in the last equality we computed the integral over x0 and x2, and the unusual

expression N(Kx0 +U1x1 +U2x2|0, σ2
e(A

TA)−1)|x0=y0 and x2=y2−vt denotes the con-

ditional distribution when x0 = y0 and x2 = y2−vt, which depends only on x1. To

compute this integral we substitute the formulas for the respective Gaussian PDFs

and use the results in Section 12.3.1.1.1, with y = x1. After a very tedious but

straightforward computation, we obtain that

p(y|θ) =
λM

(2πσ2
e)

N−P
2 det(Φ)

exp

{
− 1

2σ2
e

Emin

}
, (12.24)

where

Emin = λ2yT1 y1 + zT

[
AT

0

AT
2

]
[A0 A2]z + (xMAP

1 )TΘ, (12.25)

z =

[
y0

y2 − vt

]
, (12.26)

xMAP
1 = Φ−1Θ, (12.27)

Φ = λIM + AT
1 A1, (12.28)

Θ = λy1 −AT
1 [A0 A2]z. (12.29)

12.3.1.3 Computation of p(x|θ,y)

This computation is much easier, and was performed indirectly in the last section.

By using Bayes’ Theorem, we have

p(x|θ,y) ∝ p(y|x,θ)p(x|θ), (12.30)

which is exactly the distribution computed in Equation 12.22, that is,

p(x|θ,y) = N(Kx0 + U1x1 + U2x2|0, σ2
e(A

TA)−1)×
[δ(y0 − x0)×N(x1|y1, σ

2
dIM)× δ(y2 − (x2 + vt))]. (12.31)

This distribution can be further simplified by noting that the first Gaussian depends

essentially only on x1, since its dependence on x0 and x2 are restricted by the two

Dirac’s deltas. As stated in Section 12.3.1.1.2, the product of Gaussians is also

Gaussian, and after performing the computations to find its mean and covariance

matrix, we obtain

p(x|θ,y) = δ(y0 − x0)×N(x1|xMAP
1 , σ2

eΦ
−1)× δ(y2 − (x2 + vt)). (12.32)
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12.3.1.4 Prior distribution for θt

As stated in Equation 12.12, the posterior distribution of θt is given by p(y|θ)p(θt),

where p(y|θ) is given in Equation 12.24. Note that the dependence in θt is very

complicated, and this fact implies that no choice of prior distribution for θt can

make this distribution easier to sample from, suggesting that a Metropolis step

within the Gibbs sampler can be used to sample from this distribution. A choice

of prior distribution that is a good compromise between simplicity and accuracy is

broad Gaussian for variables that can assume any real value, and Inverse Gamma

with small parameters for the remaining ones.

12.3.1.5 Proposal distributions to sample θt from

As suggested in [30], a Gaussian distribution centered at the previous value is, in

most cases, a good proposal distribution, and is the one adopted here. However, since

the posterior distribution for θt is quite complicated, we have no intuition about the

degree of dependence between its components, a fact that prevents us from using a

covariance matrix that suitably expresses this dependence. Furthermore, we will not

be able to independently control the acceptance rate of a single parameter at a time,

and if a particular variable presents convergence problems, this behavior can slow

down the overall convergence of the algorithm. Therefore, a diagonal covariance

matrix seems to be a good choice, since in this case each component of θt is sampled

independently. The variance for each variable is chosen to keep its acceptance rate

around 50%, as suggested by some authors to guarantee that the sample space of

the sampled variable is well explored in a reasonable computational time [30].

12.3.1.6 A further simplification

In order to decide between accepting or rejecting any sampled value for any com-

ponent of θt, the acceptance ratio for the Metropolis-Hastings algorithm (Equation

3.3) must be computed, implying that the complicated Equation 12.24 must be

calculated twice. Since it requires the inversion of a matrix and some matrix mul-

tiplications, this task is very computationally intensive. However, a simplification

in Equation 12.24 can be done: note that λ is likely to be very small, since σ2
d is

usually several orders of magnitude greater than σ2
e . In the argument of the expo-

nential in Equation 12.24 this quantity multiplies y1, whose entries do not typically

exceed 3σd beyond the underlying signal, due to their Gaussian distribution. We

then ignore all terms inside the exponential involving λ in Equation 12.24, which
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becomes proportional to exp(−1
2
zTRz), where

R =
1

σ2
e

[
AT

0

AT
2

]
S[A0 A2], (12.33)

with

S = IN−P −A1(A−1A)−1AT
1 . (12.34)

Both matrices R and S were obtained by simply making λ = 0 in Equation 12.24

and related quantities.

By making this assumption, we are supposing that y1 contains no useful infor-

mation to compute p(y|θ). Note that R does not depend on θt, and thus can be

computed only once per iteration of the Gibbs sampler.

With this simplification, the distribution of Vt is easily described, and thus can

be directly sampled from. By examining Equation 12.24, with the hypothesis of

λ = 0, as a function of Vt only, we identify a Gaussian distribution with mean

µVt =

[y0 y2]

[
A0

A2

]
SA2p

pT (AT
2 SA2)p

(12.35)

and variance

σ2
Vt =

1

pT (AT
2 SA2)p

, (12.36)

where vector p satisfies Vtp = vt.

12.3.1.7 Conclusion

Now, the first step of the Gibbs sampler is completely described. Sampling from the

posterior distribution of θt is performed by the Metropolis steps discussed above,

where the acceptance rate is more easily computed with the simplification of λ = 0

in Equation 12.24. One exception is variable Vt, whose distribution in this simplified

scenario is Gaussian, as explained above.

After a sample of θt is obtained, we must sample from p(x|θ,y), a distribution

that is easy to sample from, as seen in Equation 12.32.

12.3.2 Sampling from p(n0,M |σ2
d,θt,x,θx,y)

This distribution is much easier to sample from than that previously discussed. By

using Bayes’ Theorem and supposing independence a priori between n0 and M , we

have

p(n0,M |σ2
d,θt,x,θx,y) ∝ p(y|x,θ)p(n0)p(M), (12.37)
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where

p(y|θ,x) = δ(y0 − x0)×N(y1|x1, σ
2
dIM)× δ(y2 − (x2 + vt)), (12.38)

as stated previously in Equation 12.20. However, as a function of n0 and M , the

equation above defines a very complicated distribution, which cannot be simplified

with the choice of a clever prior distribution. Then, p(n0) was chosen to be uniform

over an interval centered at the initial guess n
(0)
0 , while p(M) was chosen as a Poisson

with parameter equal to the initial value M (0). In order to sample from the required

distribution, another Metropolis step within the Gibbs sampler is employed, where

the proposal distributions for n0 and M are discrete uniform distributions over an

interval centered at their respective last sampled and accepted values. The length

of the intervals are chosen to keep the acceptance rate around 50%.

12.3.3 Sampling from p(σ2
d|n0,M,θt,x,θx,y)

This is the last step of the Gibbs sampler. To compute the required distribution,

we use the Bayes’ Theorem once again and obtain:

p(σ2
d|n0,M,θt,x,θx,y) ∝ p(y|x,θ)p(σ2

d). (12.39)

Now, the dependence of the p(y|x,θ) on σ2
d is very simple, since this is a scale

parameter for the distribution. Therefore, the Inverse Gamma distribution with

parameters αd and βd is a good choice of prior distribution, since it implies that

p(σ2
d|n0,M,θt,x,θx,y) is also an Inverse Gamma with parameters given by

α = αd +
M

2
(12.40)

and

β = βd +
1

2

M−1∑

i=0

vd(n0 + i)2. (12.41)

Hyperparameters αd and βd are chosen very close to zero to turn the prior vague,

reflecting no previous knowledge about σ2
d.

12.4 Results

Tests similar to those in [5] were performed, in three different scenarios: artificial and

real signals degraded artificially with pulses generated using the presented model;

real degraded signal obtained from a damaged cylinder recording. All signals are

in PCM format, sampled at fs = 44.1 kHz with 16-bit precision. The algorithm
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was implemented and executed in my personal computer ASUSTM2 K45VM with

processor Intel Core i7 3610QMTM3 at 2.3 GHz clock and possessing 8 GB of RAM,

in MATLABTM4 version R2014a.

12.4.1 Artificial signal degraded artificially with pulses gen-

erated using the proposed model

An artificial signal following the AR model with 5,000 time samples was generated.

The filter representing the AR model has poles at frequencies π/16, π/8, and π/4

radians per time sample and their corresponding conjugate frequencies, each one

with module 0.99. The variance of the excitation signal was chosen to be σ2
e =

5× 10−7. The initial discontinuity of the pulse begins at time sample n0 = 500 and

lasts for M = 10 time samples, with variance given by σ2
d = 0.5. The parameters

in θt are Vt = 0.3, τe = 0.07 s, τf = 0.013 s, fmax = 60 Hz, fmin = 20 Hz, and

φ = 0 rad. These parameters, inspired by [98, 102], were chosen in order to roughly

describe a typical pulse present in audio signals.

The algorithm was run for 300 iterations, with a burn-in time of 250 iterations.

Therefore, the estimated parameters consist of the average of the last 50 samples.

In order to better compare the original, initial and estimated values for θt, we

assemble them in Table 12.1. Figures 12.1, 12.2, and 12.3 show the convergence of

the parameters in θd and first and second halves of θt, respectively. Green squares

are real values, and red circles represent the estimated values for each parameter.

Finally, in Figure 12.4 we can compare the estimated pulse (in red) with the original

one (in blue). The degraded signal is also shown, in green.

Table 12.1: Artificial signal with artificial pulse: comparison of real, initial and
estimated values for parameters in θd and θt.

Real values Initial values Estimated values
n0 500 485 500
M 10 15 10
σ2
d 0.5 0.4 0.4579
Vt 0.3 0.5 0.3003
τe 0.07 0.09 0.0705
τf 0.013 0.010 0.0143
fmax 60 55 55.641
fmin 20 25 19.7078
φ 0 0.3 -0.0134

2ASUSTeK Computer Inc., http://www.asus.com/
3Intel Corporation, http://www.intel.com/
4The MathWorks, Inc., http://www.mathworks.com/
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Figure 12.1: Artificial signal with artificial pulse: Convergence of θd.
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Figure 12.2: Artificial signal with artificial pulse: Convergence of Vt, τe, and τf .
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Figure 12.3: Artificial signal with artificial pulse: Convergence of fmin, fmax, and φ.
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Figure 12.4: Artificial signal with artificial pulse: Comparison of the estimated pulse
(red) with the original pulse (blue). The degraded signal is shown in green.
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We conclude that the method is capable of identifying the correct parameters

with reasonable accuracy, although the variance of proposal distributions must be

tuned by hand in order to the algorithm present good convergence properties. Each

iteration takes about 0.57 s.

The initial values shown in Table 12.1 were chosen by hand, and are close to

the real values in order to also roughly describe a real pulse. Tests not shown here

indicated that the initial values of n0 and M are more critical to the convergence

of the algorithm than the initial value of the variables in θt. This issue will be

circumvented in Chapter 13, where an efficient initialization procedure for the n0

and M is presented, together with a nonparametric model for the tail of the pulse.

12.4.2 Real signal degraded artificially with pulses gener-

ated using the proposed model

The chosen signal was orchestra.wav, a 9-s long excerpt of orchestral music with

long notes being played, the same used in Chapter 9. An arbitrary excerpt of 10,000

time samples of the signal was separated and corrupted by a pulse following the

presented model with the same parameters as in the previous section: the initial

discontinuity of the pulse begins at time sample n0 = 500 and lasts for M = 10

time samples, with variance given by σ2
d = 0.5. The parameters in θt are Vt = 0.3,

τe = 0.07 s, τf = 0.013 s, fmax = 60 Hz, fmin = 20 Hz, and φ = 0 rad. These

parameters were chosen by hand in order to roughly describe a typical pulse present

in audio signals. The order of the AR model was P = 40.

The algorithm was run for 200 iterations, with a burn-in time of 150 iterations.

Therefore, the estimated parameters consists of the average of the last 50 samples.

Now the mean time per iteration was around 2.35 s, since the block analyzed is

longer. In Table 12.2 we can compare the original, initial and estimated values for

θd and θt, and Figures 12.5, 12.6, and 12.7 show the convergence of the parameters

in θd and first and second halves of θt, respectively. Green squares are real values,

and red circles represent the estimated values for each parameter. Finally, in Figure

12.8 we can compare the estimated pulse (in red) with the original one (in blue).

The degraded signal is also shown, in green. The initial values are the same as

previously.
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Table 12.2: Real signal with artificial pulse: comparison of real, initial and estimated
values for parameters in θd and θt.

Real values Initial values Estimated values
n0 500 485 500
M 10 15 10
σ2
d 0.5 0.4 0.5059
Vt 0.3 0.5 0.3062
τe 0.07 0.09 0.0696
τf 0.013 0.010 0.0126
fmax 60 55 54.118
fmin 20 25 19.6077
φ 0 0.3 0.2106
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Figure 12.5: Real signal with artificial pulse: Convergence of θd.
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Figure 12.6: Real signal with artificial pulse: Convergence of Vt, τe, and τf .
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Figure 12.7: Real signal with artificial pulse: Convergence of fmin, fmax, and φ.
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Figure 12.8: Real signal with artificial pulse: Comparison of the estimated pulse
(red) with the original pulse (blue). The degraded signal is shown in green.

Note that in this more realistic scenario the convergence of the parameters

(mainly the ones in θt) is more problematic than in the previous case. In fact,

some fine tuning of the variances of the proposal distributions was necessary in or-

der to obtain a proper exploration of the sample space, and to arrive at the desired

result.

It is important to note that a single AR model of order P = 40 is being used

for a block of 10,000 time samples, whereas as discussed in Chapter 4 it should be

valid within a block of approximately 1,000 time samples. This robustness of the

method is a remarkable property, and a possible reason for this fact is that the tail

of the pulse varies much slower than the underlying original signal, implying that

their internal correlation structures are very different, being the fine description in

small scale given by the AR model not necessary anymore. Indeed, in Chapter 13

the signal located at the tail portion of the pulse is approximated by white noise

(an AR model of order P = 0), and good results are also obtained.

12.4.3 Real degraded cylinder recording

We now test the proposed method in a real degraded audio. At the webpage [104]

of the National Library of Catalonia we can find a collection of recordings from the

beginning of the twentieth Century made in wax cylinders. All those recordings

are severely degraded, and some of them also contain long pulses. The chosen
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record here is from cylinder number 154, approximately from 1907, where the long

pulse occurs right at the beginning when the music being played is presented. A

transcription of this short excerpt is “Danza número 2 de Grieg, por el eminente

pianista Sr. Marshall”.

An excerpt of 7,000 time samples around the pulse was isolated, and the pa-

rameters of the AR model were estimated from the first 630 time samples. The

algorithm was run for 500 iterations, with a burn-in time of 400 iterations, the re-

quired parameters being then estimated as the average of the last 100 samples. The

mean time per iteration was around 1.3173 s. In Table 12.3 we can compare the

initial (set by hand) and estimated values for θd and θt, and Figures 12.9, 12.10,

and 12.11 show the convergence of the parameters in θd and first and second halves

of θt, respectively. Finally, in Figure 12.12 we can compare the estimated pulse (in

red) with the original signal (in green).

Therefore, the proposed method also performs well in this realistic scenario,

despite the fine tuning of the variances of proposal distributions being necessary in

order to obtain a proper exploration of the sample space.

An improvement of the technique here presented is proposed in the next chapter,

together with a list of future works.

Table 12.3: Real signal with real pulse: comparison of initial and estimated values
for parameters in θd and θt.

Initial values Estimated values
n0 630 642
M 350 268
σ2
d 0.1 0.4853
Vt 0.3 0.2499
τe 0.07 0.0140
τf 0.013 0.0064
fmax 60 132.0232
fmin 20 29.3860
φ 0 -0.4316
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Figure 12.9: Real signal with real pulse: Convergence of θd.
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Figure 12.10: Real signal with real pulse: Convergence of Vt, τe, and τf .
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Figure 12.11: Real signal with real pulse: Convergence of fmin, fmax, and φ.
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Figure 12.12: Real signal with real pulse: Comparison of the estimated pulse (red)
with the original signal (green).
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Chapter 13

Further developments in the long

pulse problem: tail modeled by a

Gaussian Process and an efficient

initialization procedure for some

variables

In the last chapter we presented a first attempt to restore audio signals degraded

by long pulses, continuing the idea firstly presented in [98], where the tail of the

pulse was modeled parametrically by a function depending on six parameters that

must be estimated in order to remove its effect on the audio signal. Moreover, the

initial discontinuity and its length were modeled by another three parameters, and

the previously presented method lacks an effective initialization procedure for these

variables. We present now two improvements in these directions: the tail of the pulse

is now non-parametrically modeled via a Gaussian process, presented in Section

13.2, after a brief review of Gaussian processes in Section 13.1; and an initialization

procedure for the location variables is presented in Section 13.3. Finally, in Section

13.4 some results are presented, followed by future works in Section 13.5.

13.1 A brief review of Gaussian processes

Recall that in Chapter 4 we defined a stochastic process as a collection of random

variables {Xt}, for t in an arbitrary index set T . A Gaussian process is a special kind

of stochastic process, where every finite linear combination of the random variables

in {Xt} has a joint Gaussian multivariate distribution. Equivalently, we can say that

for every finite set of indexes t1, . . . , tk ∈ T , the random vector (Xt1 , . . . , Xtk) is a
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multivariate Gaussian random vector. The theory of Gaussian process is widely used

in Statistics, in particular in Machine Learning and Linear Regression [69, 79, 105].

We can see the set {Xt} as a function of variable t that we simply denote by X.

The usual notation to indicate that it is a Gaussian process is X ∼ GP(m,K), where

mt = E[Xt] is the mean function and K(Xt, Xs) = cov(Xt, Xs) is the covariance

kernel. Without loss of generality we can consider thatm is identically zero, implying

that every property of the process can be obtained from the covariance kernel only.

Therefore, it is the most important part of the description of a Gaussian process,

and some examples of covariance kernels widely used in the literature are presented

below. An extensive discussion of their properties can be found in [79, 106]:

• Constant: K(x, y) = C

• Gaussian noise: K(x, y) = σ2δx,y

• Squared-exponential: K(x, y) = σ2
f exp

(
−‖x− y‖

2

2σ2
l

)

• Ornstein-Uhlenbeck: K(x, y) = exp

(
−‖x− y‖

`

)

• Matérn: K(x, y) =
21−ν

Γ(ν)

(√
2ν‖x− y‖

`

)ν

Kν

(√
2ν‖x− y‖

`

)
, where Kν de-

notes the modified Bessel function of order ν and Γ is the gamma function

• Periodic: K(x, y) = exp

(
−2 sin(‖x− y‖/2)

`2

)

• Rational quadratic: K(x, y) = (1 + ‖x− y‖2)α, for α ≥ 0

Some of these kernel functions possess interesting interpretations and are specif-

ically tailored for some special situations: the constant kernel ensures that all the

random variables are identically correlated; the Gaussian noise kernel represents

nothing more than independent and identically distributed Gaussian random vari-

ables; the squared exponential kernel is tailored to model smooth functions; the

Matérn kernel possesses a simplified form with ν = n + 1/2 for n integer, and is

specially used in Machine Learning when ν = 3/2 and ν = 5/2; the periodic kernel is

good to model periodicity within the process. Note that all of these kernels depend

on some parameters that must be estimated or determined beforehand.

13.2 Pulse tail modeled by a Gaussian process

The idea of modeling the tail of the long pulse via a Gaussian process was motivated

by the fact that the convergence of its respective variables in the parametric model
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presented in the last chapter was quite complicated in some cases. One possible

reason for this fact is that their posterior distribution is very complicated, implying

the need to use a Metropolis step within the Gibbs sampler in order to estimate

them. Moreover, the typical format of the tail is quite simple, so we would not

expect to use so many (six) parameters to completely describe it. In this Section we

present a framework to model the tail of the pulse non-parametrically via a Gaussian

process, together with the respective estimation procedure.

To establish notation, denote the original signal by x and the corrupted signal

by y. As in the last chapter, we can split these signals in sub-signals denoted by x0,

y0, x1, y1, x2 and y2 containing the region preceding the degradation (sub-index 0),

the initial discontinuity (sub-index 1) and the pulse tail (sub-index 2) in the original

and degraded signals respectively. We can then write

y0 = x0, (13.1)

y1 = x1 + vd, (13.2)

y2 = x2 + f , (13.3)

where vd denotes the initial discontinuity and f is the pulse tail. Define auxiliary

matrices K, U1 and U2, sub-matrices of the identity matrix, such that

x = Kx0 + U1x1 + U2x2. (13.4)

Also define the matrices A0 = AK, A1 = AU1 and A2 = AU2, which will be useful

in the estimation procedure.

The initial discontinuity is still modeled as white noise, beginning at time sample

n0 of the original signal and lasting for M time samples, with variance σ2
d fixed:

vd(n) = r(n)[u(n− n0)− u(n− n0 −M)], (13.5)

where r(n) ∼ N(0, σ2
d) and n0, M and σ2

d are unknown a priori.

The pulse tail, before the sampling of the signal, can be seen as a generic function

f(t) that is superimposed to the original signal. It is known that this function is

much smoother than the underlying signal, thus it is reasonable to model it via a

Gaussian process with squared-exponential covariance kernel:

f ∼ GP(0, K), (13.6)

where the covariance kernel computed at two time instants t1 and t2 is given by

K(t1, t2) = σ2
f exp

(
−|t1 − t2|

2

2σ2
l

)
. (13.7)
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Parameters σ2
f and σ2

l control the amplitude of the pulse and the effective extent of

the correlation kernel, respectively.

The choice of this covariance kernel to model the tail of a long pulse is ques-

tionable, since it models a stationary function f , which is clearly not the case of

a typical tail of a long pulse. Nothing prevents us from defining a new covariance

kernel specifically tailored to deal with long pulses, but it is possible that this kernel

would also depend on a lot of parameters, similarly to the parametric model of the

last chapter. But considering that we chose the non-parametric model because of

its simplicity, this approach would make no sense.

When dealing with the time-sampled signal, we are considering time samples of

function f , that we denote by vector f . By the definition of a Gaussian process,

we know that f has a joint multivariate Gaussian distribution with 0 mean and a

covariance matrix that we will discuss later.

Since we are adopting the Gaussian process model in a Bayesian framework, it

is possible to assign priors to the parameters of the covariance kernel and estimate

them together with the remaining variables. However, in the preliminary tests per-

formed until now, the values of these parameters were fixed in the beginning of the

estimation procedure; more details about this are given in Section 13.4.

As previously done, assemble the parameters of the initial discontinuity and the

AR model for the original signal in vectors θd and θx, respectively:

θd = [n0 M σ2
d]
T , (13.8)

θx = [aT σ2
e ]
T . (13.9)

Recall that the vector θt containing the parameters of the tail is not necessary

anymore, since vector f contains the entire pulse.

As in the previous chapter, the parameters of the AR model for the underlying

signal are not estimated together with the other unknowns, because this would

imply an increase in the required computational time. Therefore, these quantities

are estimated beforehand, by analyzing a region of the signal preceding the estimated

beginning of the degradation.

13.2.1 Description of the algorithm

We wish to recover signal x from the observed degraded signal y. The hypothesis

that the original signal is well described by an AR model allows us to write a statisti-

cal description for it, and after some change of variables and long computations, for

y, θd and f . By using Bayes’ Theorem, we can compute the posterior distribution

for the quantities we wish to estimate, that is p(θd, f ,x|θx,y), which will be used

to this end. Since the expression for this distribution is complicated and intractable
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analytically, we sample from this distribution via a Gibbs sampler, eventually with

some Metropolis steps, implemented in this way:

a) Initialize values n
(0)
0 , M (0), σ2(0)

d , f (0) and x(0)

b) For k from 1 to Niter:

i) Sample n
(k)
0 and M (k) from distribution

p(n0,M |σ2(k−1)

d , f (k−1),x(k−1),θx,y)

ii) Sample f (k) from distribution

p(f |n(k)
0 ,M (k), σ2(k−1)

d ,x(k−1),θx,y)

iii) Sample x(k) from distribution

p(x|n(k)
0 ,M (k), σ2(k−1)

d , f (k),θx,y)

iv) Sample σ2(k)

d from distribution

p(σ2
d|n(k)

0 ,M (k), f
(k)
t ,x(k),θx,y).

The mean of the posterior distribution is estimated by averaging the samples ob-

tained after the burn-in time.

Note that the sampling procedures for variables n0, M , σ2
d, and x are identical

to those presented in the previous chapter: there, these variables are conditioned on

the entire vector θt, which uniquely determines the tail of the pulse; and here they

are conditioned on f , which obviously also uniquely determines the pulse tail.

We now describe the conditional distribution p(f |θd,x,θx,y).

13.2.1.1 Computation of p(f |θd,x,θx,y)

By using Bayes’ Theorem, we have that

p(f |θd,x,θx,y) ∝ p(y|f ,θd,x,θx)p(f). (13.10)

Since we are supposing that f is well described by a Gaussian process with a

quadratic-exponential covariance kernel, we have that f ∼ N(0,Cf), where matrix

Cf is given by the Gram matrix of the covariance kernel function, computed from

Equation 13.7. The likelihood p(y|f ,θd,x,θx) was computed in the previous chapter
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in Equation 12.24, and we recall its formula here, together with the necessary minor

modifications:

p(y|f ,θd,x,θx) =
λM

(2πσ2
e)

N−P
2 det(Φ)

exp

{
− 1

2σ2
e

Emin

}
, (13.11)

where

Emin = λ2yT1 y1 + zT

[
AT

0

AT
2

]
[A0 A2]z + (xMAP

1 )TΘ, (13.12)

z =

[
y0

y2 − f

]
, (13.13)

xMAP
1 = Φ−1Θ, (13.14)

Φ = λIM + AT
1 A1, (13.15)

Θ = λy1 −AT
1 [A0 A2]z. (13.16)

We noticed that by considering λ = 0 this expression is much simplified, and

this is a reasonable hypothesis, as previously discussed. We have then

p(y|f ,θd,x,θx) ∝ exp

(
−1

2
zTRz

)
, (13.17)

where

R =
1

σ2
e

[
AT

0

AT
2

]
S[A0 A2], (13.18)

S = IN−P −A1(A−1A)−1AT
1 . (13.19)

Therefore, the conditional distribution for f is given by

p(f |θd,x,θx,y) ∝ exp

(
−1

2
fTCff

)
exp

(
−1

2
zTRz

)
(13.20)

= exp

{
−1

2

(
fTCff + zTRz

)}
. (13.21)

We must then compute the term zTRz in order to explicit its dependence on f . To

this end, note that it can be rewritten as:

zTRz = [yT0 (y2 − f)T ]

[
R11 R12

R21 R22

][
y0

y2 − f

]
(13.22)

= −yT0 R12f − fTR21y0 − yT2 R22f − fTR22y2 + fTR22f+

terms not depending on f . (13.23)
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Therefore, we have that

fTCff + zTRz = −yT0 R12f − fTR21y0 − yT2 R22f−
fTR22y2 + fTR22f + fTCff+ (13.24)

terms not depending on f .

Since this expression is quadratic in f , the conditional distribution for f is a

Gaussian whose mean and covariance matrix can be easily computed by finding

the critical point and the negative Hessian of the expression above, respectively, as

indicated in Section 12.3.1.1.2. We then have that f |θd,x,θx,y ∼ N(f̄ ,Σf), where

f̄ = [R22 + C−1
f + RT

22 + C−Tf ]−1[RT
12y0 + R21y0 + (RT

22 + R22y2)], (13.25)

Σf =

[
1

2
(R22 + C−1

f + RT
22 + C−Tf )

]−1

. (13.26)

We now impose two additional simplifications:

• Since the tail of the pulse varies much slower than the original underlying

signal we can abandon its AR structure, at least in the region of the pulse tail.

This corresponds to considering matrix A2 as an identity matrix, and then

matrix R22 turns out to be diagonal with constant terms. Intuitively, we are

considering that the underlying original signal is essentially white noise when

compared to the tail of the pulse.

• Sampling from the distribution N(f̄ ,Σf) is very expensive, since the size of

f can be of the order of thousands of time samples. Therefore, instead of

sampling from it, at each step of the algorithm we simply compute f̄ and

consider its value as the current value of f .

Finally, to completely explain the algorithm, we must describe the computation

of initial values n
(0)
0 , M (0), σ2(0)

d , f (0), and x(0):

• The initialization of n0 and M requires a long explanation, and is described

in more detail in Section 13.3.

• The only unknown part in the variable x that is directly sampled in the al-

gorithm is x1. It is initialized simply with zeros, meaning that no previous

knowledge about the signal underlying the initial discontinuity is available.

• The variable σ2
d is initialized by computing the variance of the initial discon-

tinuity, using the estimate provided by the initialization of n0 and M .

• The initialization of f is performed by using function fitrgp of MATLABTM,

available in the last versions of the Statistics and Machine Learning
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ToolboxTM, where the beginning of the pulse is given by the initial estimate

of n0 and M . This function also estimates parameters σ2
l and σ2

f , which are

kept fixed during the entire procedure.

13.3 Initialization procedure for the location vari-

ables

As noticed in the last chapter, an accurate initialization of variables n0 and M was

important for the effective convergence of the Gibbs sampler. This initialization was

performed by hand, and a method for automatically doing this task was required.

In [107] a method for detection of long pulses in audio signals is presented, and we

adapted this method to provide a quite accurate estimate of the desired variables.

The initialization procedure looks for unusual bursts of high-frequencies in a

time-frequency domain, typical of the initial discontinuity of the pulse. More pre-

cisely, the corrupted signal is split in contiguous blocks of length L with an overlap

of 50% between adjacent blocks, and the discrete Fourier Transform (DFT) [43] of

each block is computed. Denote the DFT of block b by ŷb, for b = 1, . . . B. Since

there is significant audio content up to some frequency, it is more convenient to look

for unusual information in vectors ŷb starting at some frequency defined by the user.

Denote this cut-off frequency by fco and the respective frequency bin by αco. Define

then function µ by

µ(b) =
1

β − αco + 1

β∑

k=αco

|ŷb(k)|, (13.27)

where β is the last frequency bin of the considered block. This function is an

arithmetic mean of the high frequency content of each block, starting at frequency

fco, and we expect that a high value of it represents an initial discontinuity present

in block b of the degraded signal. However, some problems may occur: as reported

in [107], if the considered signal possesses a broad dynamic range with substantial

high-frequency content (for example, brass or percussive instruments), the value of

µ can be high but not necessarily corresponding to the presence of long pulses.

In order to circumvent this issue, a median filter is used in function µ. As it is

known in the literature, the median filter has the property of removing local occur-

rences of unusual values within a sequence, and is widely used in Image Processing

as a tool to remove impulsive noises while preserving edges [108]1. The procedure is

described below:

• Define a new function µm, resulting by median filtering µ with an odd-sized

1There is a folk Theorem stating that “median filtering outperforms linear filtering for supress-
ing noise in image with edges”, that recently was proven to be false, in general [109].
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window of length c, that is, each value of µ is substituted by the median of

the c values centered on it.

• In order for the functions µm and µ to have the same domain, we pad function

µ, previously to the median filtering, with bc/2c zeros before and after its first

and last values, respectively.

• Define function ∆µ(b) as the difference between µ and µm normalized by its

highest value, that is,

∆µ(b) =
µ(b)− µm(b)

max
b′

[µ(b′)− µm(b′)]
, (13.28)

for b = 1, . . . , B. This ensures that the maximum absolute value of ∆µ is one,

thus allowing an easier definition of the threshold specified below.

• Define a threshold λ such that block b∗ is considered corrupted by the initial

discontinuity of a long pulse if |∆µ(b∗)| ≥ λ.

This procedure defines a set of blocks b∗1, . . . , b
∗
M , possibly corrupted by initial

discontinuities of long pulses, and assumes that these blocks are causally ordered.

We need to use this information to generate initial estimates for n0 and M . If the

blocks above are contiguous, we define n
(0)
0 as the first time sample of block b∗1, and

M (0) as the gap size between the last time sample of block b∗M and n
(0)
0 . If the blocks

are not contiguous, the signal is possibly corrupted by more than one pulse, and

for each contiguous set of selected blocks (which we expect to represent each pulse

within the signal) we perform this procedure, obtaining an initial estimate of n0 and

M for each pulse present in the signal.

In order to better estimate these variables, the value of L, representing the length

of each block prior to the computation of its DFT, must be discussed. In [107] it was

adopted L = 2048, but now this choice would lead to a very crude estimate of n0 and

M . Moreover, recall from Chapter 12 that the size of the analyzed signal around

the pulse is at most 10,000 time samples, implying that this signal can be split in

a very small number of blocks. Since we are not interested in a good frequency

resolution but only in a good time resolution and in the frequency content, we use

a small window of length L between 16 and 64, depending on the considered signal

being noisy or not. The values of L, Fco, and λ can be chosen by the user, and we

noticed that the aforementioned window size and λ around 0.4 lead to a good initial

estimate of the desired variables, which the Gibbs sampler is able to fix and then

arrive at its correct value. This point will be further discussed in the next section,

together with some results.
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13.4 Results

Since in this chapter two independent methods to perform two tasks were presented,

first we show here some results using techniques from Chapter 12: in Section 13.4.1

we incorporate the initialization procedure here proposed to the estimation scheme

previously presented, where the pulse was described parametrically then, and in

Section 13.4.2 we show the results of the initialization procedure together with the

nonparametric model of the pulse.

All the signals are available in [72] under the link Companion website to my D.Sc.

Thesis.

13.4.1 Pulse described parametrically with the initialization

procedure

Tests were performed with a real signal corrupted by an artificial pulse following

the parametric model and with a real degraded signal. The results are split in the

next two sections, to improve the organization. The main goal of this section is

to provide results to compare with those presented in Section 12.4, since the main

difference between both methods being tested is just the initialization procedure.

13.4.1.1 Real signal with artificial pulse

An arbitrary excerpt containing 10,000 time samples of the signal classical.wav

was extracted and corrupted artificially by a pulse following the parametric model,

as in the last chapter, with the following parameters: n0 = 500, M = 10, σ2
d = 0.5,

Vt = 0.3, τe = 0.07, τf = 0.013, fmax = 60, fmin = 20, and φ = 0. Recall that these

parameters were chosen by hand in order to roughly describe a typical pulse present

in audio signals. The variables of the initialization procedure were fixed at L = 16,

fco = 3, 000 Hz, c = 5, and λ = 0.4.

The algorithm was run for 200 iterations, with a burn-in time of 150 iterations.

Therefore, the estimated parameters consists of the average of the last 50 samples.

The time per iteration was also about 2.35 s, since the estimation procedure is

similar to that in the last chapter. In Table 13.1 we can compare the original,

initial and estimated values for θd and θt, and Figures 13.2, 13.3, and 13.4 show the

convergence of the parameters in θd and first and second halves of θt, respectively.

Green squares are real values, and red circles represent the estimated values for each

parameter. Finally, in Figure 13.5 we can compare the estimated pulse (in red) with

the original one (in blue). The degraded signal is also shown, in green. In Figure

13.1 function ∆µ is plotted, and we can see that only one pulse was detected within

the degraded signal, as expected.
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Note that the initialization procedure was able to estimate the correct values of

n0 and M quite accurately, and all the variables in vector θ were estimated in a

way such that the restored signal presents no audible difference with respect to the

original one.

Table 13.1: Real signal with artificial pulse: comparison of real, initial and estimated
values for parameters in θd and θt.

Real values Initial values Estimated values
n0 500 504 500
M 10 8 10
σ2
d 0.5 0.2128 0.5897
Vt 0.3 0.5 0.3302
τe 0.07 0.09 0.0652
τf 0.013 0.010 0.0098
fmax 60 55 80.5181
fmin 20 25 20.0280
φ 0 0.3 0.0521
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Figure 13.1: Function ∆µ for real signal with artificial pulse.
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Figure 13.3: Real signal with artificial pulse and initialization procedure: Conver-
gence of Vt, τe, and τf .
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Figure 13.4: Real signal with artificial pulse and initialization procedure: Conver-
gence of fmin, fmax, and φ.
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Figure 13.5: Real signal with artificial pulse and initialization procedure: Compari-
son of the estimated pulse (red) with the original pulse (blue). The degraded signal
is shown in green.
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13.4.1.2 Real degraded signal

As in Section 12.4, the recording from cylinder number 154 from [104], approximately

from 1907 and corrupted with a long pulse, was analyzed. An excerpt of 7,000 time

samples around the pulse was isolated, and the parameters of the AR model were

estimated from the first 600 time samples. The algorithm was run for 500 iterations,

with a burn-in time of 400 iterations. Therefore, the estimated parameters are given

by the mean of the last 100 iterations.

Since the considered signal is also corrupted with background noise, the size

of the window in the initialization procedure was chosen to be 64 time samples,

and for the same reason the cut-off frequency was chosen to be fco = 10, 000 Hz.

The threshold λ was chosen as 0.4 and the size of the median filter was 30 blocks.

In Table 13.2 we can compare the initial and estimated values for θd and θt, and

Figures 13.7, 13.8, and 13.9 show the convergence of the parameters in θd and first

and second halves of θt, respectively. Finally, in Figure 13.10 we can compare the

estimated pulse (in red) with the original signal (in green). In the figures depicting

convergence of variables the red circle denotes the respective estimated value.

We note again that the initialization procedure is capable of correctly locating

the initial discontinuity, with some tuning of its parameters. This task is necessary

because of the fact that the signal is also corrupted with background noise.

Table 13.2: Real signal with real pulse and initialization procedure: comparison of
initial and estimated values for parameters in θd and θt.

Initial values Estimated values
n0 640 643
M 288 278
σ2
d 0.2132 0.2351
Vt 0.5 0.2239
τe 0.09 0.0150
τf 0.010 0.0071
fmax 55 85.7401
fmin 25 26.0414
φ 0.3 0.1786
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Figure 13.6: Function ∆µ for real signal with artificial pulse.
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Figure 13.7: Real signal with real pulse and initialization procedure: Convergence
of θd.
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Figure 13.8: Real signal with real pulse and initialization procedure: Convergence
of Vt, τe, and τf .
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Figure 13.9: Real signal with real pulse and initialization procedure: Convergence
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Figure 13.10: Real signal with real pulse and initialization procedure: Comparison
of the estimated pulse (red) with the original signal (green).
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13.4.2 Pulse described by a Gaussian process with the ini-

tialization procedure

We now merge the two improvements proposed in this chapter, and abandon the

parametric model for the pulse. The same tests as before were performed, and the

results are split in the next two subsections, for organization sake.

13.4.2.1 Real signal with artificial pulse

An excerpt consisting of 7,000 time samples of the signal classical.wav was ex-

tracted and corrupted artificially by a pulse following the parametric model with the

same parameters as before. Recall that the excerpt previously considered consisted

of 10,000 time samples, but now we decreased its size because of the computational

cost required, further discussed below. The initialization procedure was performed

with L = 16, fco = 3, 000 Hz, c = 5, and λ = 0.4.

Since there is no need to estimate the variables in θt anymore, the algorithm was

run for only 50 iterations, being the first 25 considered the burn-in time. The time

per iteration is much larger than before, of about 14 s, the reason for this being

the need of compute and operate with the covariance matrix of a multidimensional

Gaussian of size approximately 6,000 × 6,000 at each iteration, in order to estimate

the tail of the pulse. Also for this reason the considered excerpt is smaller than

before, with no impairment on the quality of the restored signal2.

In Table 13.3 we can compare the original, initial and estimated values for θd

and Figure 13.12 show the convergence of the parameters in θd, where green squares

are real values, and red circles represent the estimated values for each parameter.

Finally, in Figure 13.13 we can compare the estimated pulse (in red) with the original

one (in blue). The degraded signal is also shown, in green. In Figure 13.11 function

∆µ is plotted, and we can see that only one pulse was detected within the degraded

signal, as expected.

We note from this set of results that the Gaussian process model for the tail of

the pulse is able to estimate it correctly, despite the squared exponential covariance

kernel not being the most adequate one to model its characteristics.

2When trying to run the algorithm with a block of size 10,000 we exceeded the capacity of the
memory of my computer, 8 GB. By considering only 7,000 time samples, the memory use is at
most 6,5 GB.
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Table 13.3: Real signal with artificial pulse: comparison of real, initial and estimated
values for parameters in θd.

Real values Initial values Estimated values
n0 500 504 499
M 10 8 11
σ2
d 0.5 0.6953 0.9667
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Figure 13.11: Function ∆µ for real signal with artificial pulse, estimated by a Gaus-
sian process.
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Figure 13.12: Real signal with artificial pulse estimated by a Gaussian process and
initialization procedure: Convergence of θd.
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Figure 13.13: Real signal with artificial pulse estimated by a Gaussian process and
initialization procedure: Comparison of the estimated pulse (red) with the original
pulse (blue). The degraded signal is shown in green.
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13.4.2.2 Real degraded signal

Finally, we present the last test, where the previously considered real degraded signal

is restored using the Gaussian process model for the tail of the pulse. The same

excerpt of 7,000 time samples around the pulse was considered, and the parameters of

the AR model were also estimated from the first 600 time samples. The algorithm

was run for 40 iterations, half of which are considered as the burn-in time. The

parameters of the initialization procedure were the same as before: L = 64, fco =

10, 000 Hz, λ = 0.4 and c = 30.

In Table 13.4 we can compare the initial and estimated values for θd, and Figure

13.15 shows the convergence of the parameters in θd, where the red circles represent

the estimated values. In Figure 13.16 we can compare the estimated pulse (in red)

with the original signal (in green). In Figure 13.14 function ∆µ is plotted.

Table 13.4: Real signal with real pulse and initialization procedure: comparison of
initial and estimated values for parameters in θd.

Initial values Estimated values
n0 640 638
M 288 268
σ2
d 0.2132 0.3350
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Figure 13.14: Function ∆µ for real signal with real pulse estimated by a Gaussian
process.
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Figure 13.15: Real signal with real pulse estimated by a Gaussian process and
initialization procedure: Convergence of θd.
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Figure 13.16: Real signal with real pulse estimated by a Gaussian process and
initialization procedure: Comparison of the estimated pulse (red) with the original
signal.

From this set of results we conclude that modeling the tail of the pulse by a

Gaussian process is also effective when dealing with real degraded signals, with the

advantage of its estimate being much simpler than the estimation procedure of the

parameters in the parametric model.
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13.5 Conclusion and future works

In this chapter we presented two improvements to the solution of the problem of

long pulse suppression: an efficient initialization procedure for the variables in θd;

and a nonparametric and more flexible model for the pulse tail. We conclude from

the presented results that these two techniques, together with the sampling scheme

for θd presented in Chapter 12, provide a good framework for joint location and sup-

pression of long pulses in audio signals. There is the need to tune some parameters,

specially in the initialization procedure, but this task is much easier than tuning

the parameters of the proposal distribution for θt in Chapter 12. We note that the

introduction of the Gaussian process model for the pulse tail implies an increase in

the required computational cost, but not to a critical level: the increase in the time

spent per iteration is compensated by the need of fewer iterations in order for the

sampler to properly converge.

We believe that the content in this chapter and the previous one provides a solu-

tion to the considered problem that is good enough to be published, and a paper with

this content is being prepared, where more extensive tests with real degraded signals

will be performed, in addition to comparisons with previously proposed methods.

A possible future work is to consider the detection of initial discontinuities not

by an arbitrarily fixed threshold value applied on function ∆µ, but in the context

of Statistical Decision Theory: it is possible to create a statistical model for the

frequency content of a block of an audio signal (e.g., in [83] a Markov chain model

is proposed), and treat the problem of deciding if a block is corrupted or not by an

initial discontinuity as hypothesis testing.

A drawback of the proposed method is the interpolation of the missing signal

in the initial discontinuity: it is performed as a maximum a posteriori procedure,

and as reported in [37] this is not very effective with long initial discontinuities.

Indeed, when considering the real cylinder recording, even after the convergence of

the algorithm it is possible to hear a small click in the beginning of the pulse. A

possible way to improve this part of the algorithm is to substitute the sampling

of the x1 variable in the Gibbs sampler for a more efficient interpolation scheme

[82, 110]. This will not lead to the classical sampler, since it is not guaranteed that

this interpolation will be equivalent to a sample of the conditional distribution of

x1, but we believe that it will not impair the convergence properties of the sampler.

Another possibility is to estimate the parameters of the AR model along the

procedure, which implies an increase in the required computational power. This

could improve the interpolation of the missing signal in the initial discontinuity.

We also believe that this approach works when dealing with multiple superim-

posed pulses, a degradation which appears when a big scratch is close to another in
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a disk recording, for example. In order to treat this degradation some adaptations

must be made in the algorithm, and this will be performed very soon in order to be

included in the paper being prepared with the content of this chapter.
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Part V

CONCLUSION
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Chapter 14

Conclusion and future works

“Let me tell you something you already know. The world ain’t all sunshine

and rainbows. It’s a very mean and nasty place and I don’t care how tough

you are it will beat you to your knees and keep you there permanently if

you let it. You, me, or nobody is gonna hit as hard as life. But it ain’t

about how hard ya hit. It’s about how hard you can get it and keep moving

forward. How much you can take and keep moving forward. That’s how

winning is done!”

– Rocky Balboa, Rocky IV

In this thesis we presented several methods to dealing with nonlinearities in audio

signals, as well as some approaches to the problem of low frequency decaying pulses:

• In Chapter 7 two methods to deal with nonlinear distortions with memory

were presented, one based on a polynomial approximation for the inverse of

the nonlinearity, and other based on a piecewise linear approximation.

• Chapter 8 contains preliminary studies on a method to treat nonlinear distor-

tions with memory, being modeled by a Hammerstein system, more adequate

to deal with real distortions found in audio signals.

• Chapter 9 contains the results from the investigations presented in Chapters

7 and 8, and publications derived from this framework are [6, 7].

• The third part of the thesis contains a treatment of memoryless nonlinearities

from a more recent viewpoint: we abandon the AR model for the underlying

original signal and suppose that it is sparse in the DCT domain. In Chapter

10 this approach is tackled from a deterministic viewpoint, whereas in Chapter

11 the sparsity in the DCT domain is modeled in a Bayesian context.

• The thesis is closed with a detailed treatment of the low-frequency decaying

pulse problem: in Chapter 12 the pulse is modeled in a parametric way, and
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in order to estimate its tail it is necessary to estimate some parameters (this

approach was published in [5]); and in Chapter 13 a more modern and elegant

treatment is proposed, modeling the tail via a Gaussian process and consider-

ing an initialization procedure for some variables, critical to the convergence

of the Gibbs sampler.

Some possibilities for future works were largely explained and motivated along

these chapters, but we recall them briefly here and propose other possibilities beyond

the subjects studied until now, as well as collaborations with researchers from other

areas where statistical methods can be also employed.

14.1 Nonlinear distortions + AR model

• Parameterize the filters of the AR model and in the Hammerstein model via

their poles, instead of their coefficients.

• Approximate the static memoryless nonlinearity via splines instead of polyno-

mials or piecewise linear functions; another possibility is to model the static

memoryless nonlinearity via a Gaussian process.

• Implement a sampling scheme able to deal with multi-modal distributions, for

dealing with nonlinear distortions with memory.

• Adapt the idea presented in [82] to nonlinearly distorted audio signals.

• Turn the method robust to noise, correctly estimating the coefficients even in

this scenario.

• Introduce psychoacoustical elements in the restoration procedure.

• Compare with previous works.

14.2 Nonlinear distortions + sparsity

The main future work of Chapter 10 is to generalize the proposed method to deal

with nonlinear distortions with memory. We recall now some future works related

to the content of Chapter 11:

• Explore other prior distributions tailored to model sparsity of the original

undistorted signal.

• Reformulate the model in order to allow some frequency-depending penalty,

since lower frequencies are more likely to be present within an audio signal

than the higher ones.
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• Incorporate noise in the model and thus allow for an estimation of the noisy

signal, being the sparsity context more adequate for this task than the AR

one.

• Increase computational efficiency by not computing some important quantities

in a recursive way (recall the remark at the end of Section 11.5).

• Explore more deeply the information available in the posterior distribution.

• Incorporate memory within the model.

14.3 Low-frequency decaying pulse

• Treat the problem of detecting an initial discontinuity in the context of Sta-

tistical Decision Theory.

• Implement a more efficient interpolation scheme for the time samples in the

initial discontinuity.

• Estimate the AR model parameters along the procedure, in order to make the

interpolation more efficient.

14.4 Other audio restoration problems

During the year of 2015, I co-supervised the course completion assignment of Lúıs

Felipe Velloso de Carvalho [111], where sinusoidal analysis methods were employed

to restore audio signals degraded by speed variations during its playback. The

main idea of the proposed algorithm is to detect and track the spectral peaks in

order to find the main frequency lines of the signal and then obtain a global curve,

representing the possible speed variations within the degraded signal. An algorithm

which realizes time-varying resampling is then used to correct such deviations. Good

results were reported even in real distorted signals, but the presence of background

noise impairs the efficiency of the method, mainly because the frequency lines are

misidentified in this context.

In [112] (also available online at the author’s webpage

http://bayes.wustl.edu/) is proposed a Bayesian technique to estimate

the spectrum of a signal, and it is argued that this procedure is much more efficient

than computing the FFT, if the signal is embedded in white noise. We expect

that if the estimation of spectral peaks was done via this Bayesian method, the

posterior restoration of audio signals degraded by speed variations will be much

more effective. Preliminary tests indicated that this Bayesian technique is able
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to correctly estimate the main frequencies present in audio signals, even when

corrupted with additive white noise.

14.5 Applications of Statistics techniques to other

fields

The amount of Statistics I learned during my D.Sc. certainly allows me to collabo-

rate with researchers from other areas wanting to use statistical (mainly Bayesian)

computational methods in their research. A possible future collaboration is with

Leonardo Duarte from UNICAMP, employing MCMC methods in the estimation of

nonlinearities in chemical sensor analysis. Another possibility is collaborate with

some friends from the Institute of Physics of UFRJ working with quantum optics,

being the use of statistical methods very important to validate the results of experi-

ments. Currently I am also participating in a series of lectures with some friends and

professors from the Institute of Mathematics of UFRJ, aiming at learning Gaussian

processes in more detail.

Finally, although not exactly an application of Statistics, I wish to publish my

M.Sc. monograph [1] as a book, as suggested by the examiners.
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algorithm for the restoration of audio signals corrupted with low-frequency

pulses”, Journal of the Audio Engineering Society, v. 51, n. 6, pp. 502–517,

2003.

[103] ESQUEF, P. A. A., WELTER, G. S. “Audio se-thumping using Huang’s Em-

pirical Mode Decomposition”. In: Proceedings of the 14th. International

Conference on Digital Audio Effects (DAFx-11), Paris, France, September

2011.

[104] DE CATALUNYA, B. “Uns incunables del sonor - La col·lecció Regordosa-
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