
CODIAGNOSABILITY OF NETWORKED DISCRETE EVENT SYSTEMS

SUBJECT TO COMMUNICATION DELAYS AND INTERMITTENT LOSS OF

OBSERVATION

Carlos Eduardo Viana Nunes

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio

de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Doutor

em Engenharia Elétrica.

Orientadores: João Carlos dos Santos Basilio

Marcos Vicente de Brito

Moreira

Rio de Janeiro

Outubro de 2016

CODIAGNOSABILITY OF NETWORKED DISCRETE EVENT SYSTEMS

SUBJECT TO COMMUNICATION DELAYS AND INTERMITTENT LOSS OF

OBSERVATION

Carlos Eduardo Viana Nunes

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. João Carlos dos Santos Basilio, Ph.D.

Prof. Marcos Vicente de Brito Moreira, D.Sc.

Profa. Patŕıcia Nascimento Pena, D.Sc.

Prof. José Eduardo Ribeiro Cury, Docteur d’Etat

Prof. Antônio Eduardo Carrilho da Cunha, D.Eng.

RIO DE JANEIRO, RJ – BRASIL

OUTUBRO DE 2016

Nunes, Carlos Eduardo Viana

Codiagnosability of Networked Discrete Event Systems

subject to communication delays and intermittent loss

of observation/Carlos Eduardo Viana Nunes. – Rio de

Janeiro: UFRJ/COPPE, 2016.

XII, 102 p.: il.; 29, 7cm.

Orientadores: João Carlos dos Santos Basilio

Marcos Vicente de Brito Moreira

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2016.

Referências Bibliográficas: p. 94 – 101.

1. Discrete Events Systems. 2. Communication

network. 3. Failure diagnosis. I. Basilio, João Carlos dos

Santos et al.. II. Universidade Federal do Rio de Janeiro,

COPPE, Programa de Engenharia Elétrica. III. T́ıtulo.

iii

“Satisfaction lies in the effort,

not in the attainment, full effort

is full victory. ”

Mahatma Gandhi

iv

Acknowledgments

First, I thank God, creator of all things, by the infinite love deposited in all humanity

and by the opportunity to be on Earth in order to learn and evolve.

I thank Jesus, by his teachings of love and humility that guide all humanity to

the path of good.

I thank my parents Avany and Hélio, by their unconditional support and because

they provide me all love and education necessary to live with dignity.

I thank my brothers Hélio Jr, André, and Daniela, by their support and wonderful

happy moments that they always provide me.

I thank my wife Carina, a wonderful woman that help me whenever I need.

Thank you dear by trust and love that you always have for me.

I thank deeply my advisors João Carlos Basilio and Marcos Vicente Moreira for

trusting me in execution fo this thesis and by patience and dedication to teach me.

A special thank to my friend Marcos Vinicius, that provided me his time to

discuss many aspects of this thesis and by his help whenever I needed.

I cannot forget the friends that, in some way, help me during all doctoral course:

Cristiano Carvalho, Dayro Barahona, Gustavo Viana, Ingrid Antunes, Felipe Cabral,

Lilian Kawakami, Leonardo Bermeo and Félix Gamarra. Thanks everyone.

To CNPq by financial support.

Carlos Eduardo Viana Nunes

v

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

CODIAGNOSTICABILIDADE DE SISTEMAS A EVENTOS DISCRETOS EM

REDE SUJEITOS A ATRASOS DE COMUNICAÇÃO E PERDA

INTERMITENTE DE OBSERVAÇÃO

Carlos Eduardo Viana Nunes

Outubro/2016

Orientadores: João Carlos dos Santos Basilio

Marcos Vicente de Brito Moreira

Programa: Engenharia Elétrica

No diagnóstico de falhas de Sistemas a Eventos Discretos distribúıdos, é usual-

mente considerado que na comunicação entre os dispositivos não há perdas nem

atrasos na comunicação da ocorrência de eventos para os diagnosticadores. No en-

tanto, os canais de comunicação reais são sujeitos a atrasos e a perdas intermitentes

de pacotes que podem levar o diagnosticador a observar eventos fora da ordem de

ocorrência, proporcionando um incorreto diagnostico da falha. Neste trabalho, inves-

tigamos a codiagnosticabilidade de um sistema em rede com atrasos de comunicação

e perdas intermitentes de observação. Introduzimos a definição de codiagnosticabil-

idade em rede contra atrasos de comunicação e perdas intermitentes de observação,

apresentamos uma condição necessária e suficiente para a codiagnosticabilidade em

rede e propomos um algoritmo para a verificação desta propriedade.

Palavras-chave: Sistemas a eventos discretos, diagnóstico de falhas, comu-

nicação em rede.

vi

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

CODIAGNOSABILITY OF NETWORKED DISCRETE EVENT SYSTEMS

SUBJECT TO COMMUNICATION DELAYS AND INTERMITTENT LOSS OF

OBSERVATION

Carlos Eduardo Viana Nunes

October/2016

Advisors: João Carlos dos Santos Basilio

Marcos Vicente de Brito Moreira

Department: Electrical Engineering

In failure diagnosis of networked Discrete Event Systems, it is usually assumed

that communication among devices is lossless and without delay in the communica-

tion of event occurrences to the diagnosers. However, real communication channels

are subject to transportation delays and intermittent loss of packets which can make

the diagnosers observe events out of their order of occurrence, leading to an incor-

rect fault diagnosis. In this work, we investigate the codiagnosability of networked

systems with communication delays and intermittent losses of observation. We in-

troduce the definition of network codiagnosability against communication delays

and intermittent losses of observation, present a necessary and sufficient condition

for network codiagnosability and propose an algorithm for the verification of this

property.

Keywords: Discrete event systems, failure diagnosis, network communication.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1

2 Discrete Event Systems: theory and fundamentals 6

2.1 Modeling of discrete event systems 7

2.2 Languages . 8

2.2.1 Language of Discrete Event Systems 8

2.2.2 Operations on languages . 10

2.3 Automata . 12

2.3.1 Deterministic automata . 12

2.3.2 Nondeterministic automata 13

2.3.3 Observer automata . 16

2.3.4 Operations on automata . 18

2.4 Failure diagnosis . 23

2.4.1 Algorithms of failure diagnosis 25

2.4.2 Failure diagnosis of DES . 26

2.5 Diagnoser . 27

2.5.1 Centralized diagnosis . 28

2.5.2 Decentralized diagnosis . 29

2.5.3 Codiagnosability verification 32

2.6 Final remarks . 34

viii

3 Communication Networks Subject to Delays and Losses 37

3.1 Communication networks . 38

3.1.1 OSI model . 39

3.1.2 Circuit switching and packet switching 41

3.1.3 Components of a network . 42

3.2 Delays and losses . 43

3.3 Specification of a communication network 47

3.4 Final remarks . 54

4 Codiagnosability of Networked Discrete Event Systems 55

4.1 Problem formulation . 56

4.2 Model of the plant subject to communication delays 58

4.3 Modeling of intermittent loss of events 73

4.4 Model of the plant subject to communication delays and intermittent

loss of observations . 75

4.5 Definition of network codiagnosability of discrete-event systems . . . 78

4.6 Verification of network codiagnosability of discrete-event systems . . . 80

4.7 Complexity analysis of Algorithm 4.2 84

4.8 Concluding Remarks . 90

5 Conclusion and Future Works 92

Bibliographic References 94

ix

List of Figures

2.1 Automaton G. 13

2.2 Nondeterministic automaton. 14

2.3 Nondeterministic automaton with ε-transition. 15

2.4 Automaton G. 17

2.5 Observer automaton of G. 17

2.6 Automaton H . 20

2.7 Coaccessible part of automaton H . 20

2.8 Automaton Tim(H) . 20

2.9 Comp[Trim(H)] . 21

2.10 A general diagnosis framework [1]. 23

2.11 Classification of diagnosis algorithms [1]. 26

2.12 Label automaton Al for building diagnoser 28

2.13 (a) Automaton G (b) Parallel composition between G and Al, (c)

Gd = Obs(G||Al) . 30

2.14 Codiagnosis structure. 30

2.15 Automaton G of example 2.10 . 35

2.16 Automaton ANl . 35

2.17 Automaton GN . 35

2.18 Automaton GF . 35

2.19 Automaton GR1 . 35

2.20 Automaton GR2 . 35

2.21 Verifier automaton GV . 36

3.1 OSI model. 39

3.2 Resume and application of OSI model. 41

x

3.3 Types of delays of a network communication. 44

3.4 Convoy analogy. 46

3.5 Peer-to-peer topology. 48

3.6 Bus topology. 49

3.7 Ring topology. 50

3.8 Star topology. 51

3.9 Tree topology. 51

3.10 Simplex mode . 52

3.11 Half−duplex mode . 52

3.12 Full−duplex mode . 52

4.1 Network decentralized diagnosis architecture. 57

4.2 Automaton G . 63

4.3 Network codiagnosis scheme of example 4.1. 64

4.4 Construction of automaton D1 step-by-step. 65

4.5 Automaton D2. 66

4.6 (a) Automaton G1; (b) Automaton G2. 72

4.7 Automaton H of Example 4.3. 74

4.8 Automaton Hdil. 75

4.9 (a) automaton G′1; (b)automaton G′2. 77

4.10 (a) automaton Ḡ′1; (b)automaton Ḡ′2. 79

4.11 (a) Automaton G′1,ρ, (b) Automaton G′1,F 84

4.12 (a) Automaton G′2,ρ, (b) Automaton G′2,F 85

4.13 (a) Path of V1 with cyclic path cl1 embedded, (b) path of V2 with

cyclic path cl2 embedded. 86

4.14 Path of GV with an embedded cyclic path cl that violates the network

codiagnosability of L. 86

4.15 (a) Automaton Ḡ′1,ρ, (b) Automaton Ḡ′1,F 87

4.16 (a) Automaton Ḡ′2,ρ, (b) Automaton Ḡ′2,F 88

4.17 (a) Path of V̄1 with cyclic path cl1 embedded, (b) path of V̄2 with

cyclic path cl2 embedded. 89

4.18 Part of verifier ḠV . 89

xi

List of Tables

2.1 States and events of the DES composed of machines M1, M2 and a

robot. 9

xii

Chapter 1

Introduction

Industrial systems are becoming more complex with the advance of technology,

thus, failure diagnosis in components of these systems becomes a complex task to

be solved by using only the experience and knowledge of the operator of the system.

In this context, the improvement of automatic failure diagnosis systems becomes an

important area to be developed.

The importance of research in the area of failure diagnosis is reflected in the

number of works published in international conferences. In [2], it is presented the

statistics of published works in WODES (Workshop on Discrete Event Systems) and

DCDS (Workshop on Dependable Control of Discrete Systems) between 1998–2012

and 2007–2011, respectively. In WODES, around 12% of published works are related

with failure diagnosis and in DCDS this statistic is 22%. Furthermore, there are

other contributions to fault diagnosis of DES that have been published in control

journals, such as Automatica, IEEE Transactions on Automatic Control, Control

Engineering Practice, and others.

Since the first publications that addressed the problem of failure diagnosis in

Discrete Event Systems (DES) [3, 4, 5], in which the fundamental concepts of diag-

nosability of DES were presented, many issues related to this problem were presented

in the literature such as: (i) failure prediction, (ii) selection of sensors and dynamic

activation and, (iii) robust diagnosis. In (i), the problem is to predict the occur-

rence of failure events based on the observation of events and then prevent these

failure event occurrence [6, 7, 8, 9, 10, 11, 12, 13]. In (ii), the problem is to ensure

the diagnosability of the language of the system with respect to a set of observable

1

events with smallest cardinality, thus, minimizing the cost of the diagnosis system

associated with the use of sensors [14, 15, 16, 17, 18, 19, 20] and, finally, in (iii),

the problem is to detect the occurrence of unobservable fault events using a set of

sensors that themselves are subject to failures, such as, intermittent or permanent

malfunction [21, 22, 23, 24, 25, 26, 27, 28, 29].

The problem of failure diagnosis was also considered in [30, 31, 32, 33, 34, 35, 36],

with several applications in [37, 38, 39, 40, 41, 42], where it is assumed that com-

munication between the sensors of the system and the diagnoser is perfectly reliable

and the sensors work perfectly, i.e., there is neither loss of observation nor delays in

the communication of the events to the diagnosers. It is realistic to assume that if

diagnoser and plant communicate via a dedicated communication link, also called

point-to-point link [43, 44] since there is a wire for each sensor or actuator point

that connects them to the central control computer. This kind of communication is

complex and expensive and the whole system is difficult to maintain and diagnose

due to the large number of connectors and cables [45]. Thus, due to the complexity

of the plants, the diagnosers are often implemented in a distributed way and, conse-

quently, with the development of network technology, there is a trend in industries

to implement communication systems by using shared (wired or wireless) commu-

nication networks. In a shared network, communication problems such as loss of

observation of events or communication delays are unavoidable [44].

In [46], [26] and [27], the problem of loss of observation is addressed consider-

ing the malfunctioning of sensors of the plant. In [46], it has been developed a

probabilistic methodology for failure diagnosis in finite state machines based on a

sequence of unreliable observations, and in [26, 27], it has been developed a de-

terministic methodology for failure diagnosis in Discrete Event Systems. In these

works, the problem of communication delays between sensors and diagnosers was

not considered.

In networked failure diagnosis systems, communication delay can make the di-

agnoser to receive signals out of the original order of occurrence, and the diagnoser

can erroneously detect the occurrence of a failure event. One way to solve this

problem is to insert clocks and time stamps in the communication protocol. Thus,

the protocol will be able to reorganize the events by using the times inserted in the

2

pack of transmission of each event. However, in order to add a time information

in the communication protocol, it is necessary to synchronize the clocks of the de-

vices, which is not a simple task, since each device must have exactly the same time.

Another problem is maintenance because the synchronization process must be ex-

ecuted periodically on the whole plant, which increases the cost of implementation

[47]. In the literature there are some works about DES with network communication

addressing the problem of communication delays, and most of them are related to

supervisory control, [48, 49, 50, 51, 52, 53]. The problem of failure diagnosis of DES

with communication delay is addressed in [47, 54, 55, 56].

The problem of decentralized supervisory control with communication delays is

presented in [48]. Two types of delays are defined: unbounded delay and bounded

delay by a constant k ∈ N (k-bounded delay). In the unbounded delay approach, the

plant can execute any number of events between the transmission of the occurred

event and its reception by the supervisor. On the other hand, in the k-bounded

delay approach, the plant can execute at most k events between the transmission and

reception of an event by the supervisor. In [48], it is assumed that the communication

is lossless, that is, all messages are eventually delivered within a finite delay and there

is no change of order in the observation by the supervisor.

The problem of centralized supervisory control with communication delays and

partial observations is addressed in [49], where a nonblocking supervisor is designed

to reach a specification even if there are communication delays between plant and

supervisor. It is important to remark that there is no change of order among events in

[49]. The problem of decentralized supervisory control with communication delays

based on conjunctive and permissive structure is addressed in [50] assuming that

uncontrollable events can occur unexpectedly before any control action takes place

on the plant, in order to find conditions of existence of a nonblocking decentralized

supervisor. The notion of delay co-observability for a given specification is also

presented, and it is shown that co-observability is the key condition for the existence

of a decentralized supervisor that can reach the specification.

A strategy of control for a system with network communication is proposed in

[51], whose goal is to compute a supervisor that is tolerant to delays and events

observation losses. In [51], it is assumed that supervisor and plant are networked,

3

and there are two channels connecting both: observation channel and control chan-

nel, and, in both channels, communication delays and loss of information can occur.

The communication delays are assumed to be k-bounded, as in [48], and there is no

change of order of event observation. As a consequence, an event that has occurred

in the plant may not be seen by the supervisor until the occurrence of the next

event in the plant, and the supervisor may not be capable of disabling this event.

In [52], the work presented in [51] is continued, assume the same assumptions as

in [51]. Based on these assumptions, the authors show how to solve the problem

of centralized control of Discrete Event Systems with network communication. In

[53] the problem addressed in [52] is extended to decentralized supervisory control

of networked systems. Control policies are defined for all local supervisor in order

to satisfy the design specifications.

In [47], the problem of decentralized failure diagnosis with communication de-

lays is addressed considering protocols 1 and 2 of [30], and assuming that there

are communication delays between local diagnosers and the coordinator, which is

responsible to reorder the events and to infer the occurrence of failure events. It

is also assumed in [47] that each communication channel that connects a diagnoser

and the coordinator is FIFO (Fist-in-First-out), so that, only events that come from

different diagnosers can be observed in a order different from that executed in the

plant.

In [54], the problem of distributed failure diagnosis in DES subject to commu-

nication delays is presented. It is assumed that, the diagnosis system does not have

a coordinator and, each local diagnoser sends its observation to other local diag-

nosers. As in [48], the observation delay of an event σ that occurs in the plant is

bounded. In [54], it is assumed that the communication delay takes place between

local diagnosers. Moreover, it is assumed that both communication channels that

connect the local diagnosers have the same maximum delay, the communication is

lossless and first-in-first-out (FIFO), i.e, there is no change of order on the event

observations that are transmitted through the same channel.

The problem of decentralized failure diagnosis with communication delays is

addressed in [55] considering protocol 3 of [30], i.e., (i) there is no communication

between the local diagnosers; (ii) each local diagnoser infers the occurrence of the

4

failure event based on its own observations, and; (iii) the failure event is diagnosed

when at least one of the local diagnosers identifies its occurrence. It is assumed

in [55] that there exist communication delays between measurement sites and local

diagnosers, resulting in an out of order observation, by local diagnosers, of the events

executed by the system. The problem of loss of observation was not addressed in

[55].

In this work, we extend the problem considered in [55] to also take into account

loss of observation. Since the communication channels are independent, the delays

generated by each channel can be different. In this work, we assume that the de-

lays are k-bounded as presented in [48]. Based on that, we present the definition

of network codiagnosability against communication delays and loss of observation.

Moreover, we propose an automaton model that describes all possible delays that

the system is subject and, consequently, all possible orders of observation by the

local diagnosers. We also propose an algorithm for the verification of network co-

diagnosability against communication delays and loss of observation, and we show

that the approach presented in [54] can be considered as a particular case of the

problem formulated in this work.

This thesis is organized as follows. In chapter 2, the fundamental concepts of

DES modeled by automata including the notion of failure diagnosis are presented.

We also review the verifier algorithm proposed in [57]. In chapter 3, we present

the main reasons of delays and losses in communication networks. In chapter 4, we

introduce the definition of network codiagnosability against communication delays

and loss of observation, present a necessary and sufficient condition for network

codiagnosability and propose an algorithm for its verification. The final remarks

and suggestions of future research works are presented in chapter 5.

5

Chapter 2

Discrete Event Systems: theory

and fundamentals

Discrete Event Systems (DES) are dynamic systems with discrete states space where

the transitions between states are made by the occurrence, in general asynchronous,

of discrete events. The fact that the states of the systems are discrete implies that it

can assume symbolic values, for example, (on, off), (green, yellow, red), or numeric

values that belong to sets N or Z, or be formed by a subset of enumerable elements

of R. Events can be associated to specific actions (for example, someone presses

a button, an aircraft takes off, etc), or be the result of several conditions that are

satisfied (e.g, an object reaches a point of a production line, a liquid that reaches

a determined height). Although it is possible to model any physical system as a

DES according to some level of abstraction that we can consider, some systems are

naturally discrete and their evolution are determined by the occurrence of events.

This chapter aims to present the basic definitions and notions about DES and

intends to introduce the main concepts on DES for novice readers. The theory

presented is based on [58]. This chapter is structured as follows: in Section 2.1, we

present the main formalisms for DES. In Section 2.2, some definitions and concepts

related to DES are addressed. In Section 2.4, we introduce the basic concepts about

failure and failure diagnosis in DES. Finally, in Section 2.5 the fundamental concepts

about centralized diagnosers, decentralized diagnosers and the verifier proposed in

[57] are reviewed.

6

2.1 Modeling of discrete event systems

The model of a DES must be capable of reproducing, within some prespecified

tolerance, the behavior of the system. In continuous variable dynamic systems

(CVDS), the states are expressed as functions of time, while in DES, the system

behavior is described in terms of traces of events. All traces that can be generated

by a given DES describe the language of this system, which is defined over a set

of events (alphabet) of the system. Thus, when we consider the evolution of states

of a DES, the main concern is the trace associated with visited states and with

the events that cause the corresponding state transitions, i.e. the model of a DES

consists basically of two elements: state and transition.

The DES models take into account some characteristics in order to represent a

determined system:

• The model agreement with reality regarding the purpose of the model.

• The complexity of the model.

In the literature several formalisms to model DES are presented, whose choice

is related to the accuracy and complexity. The model formalisms more frequently

used in the literature are:

• Automata;

• Petri nets;

• Hybrid automata.

The automaton modeling has the following advantages: several problems found

in industries can be modeled with it, the computational implementation is simple

and, algorithms and operations among automata are well known. On the other

hand, simultaneous tasks are better modeled by Petri nets.

In order to illustrate the modeling of a system, consider the following example

[59].

Example 2.1 Consider a manufacturing cell composed of two machines

(M1 and M2) and a robot which transports parts from M1 to M2. Machine M1

7

receives raw parts, and, processes them. After being processed, they are collected by

the robot. In case the robot is busy, the machine M1 holds the part until the robot

becomes available. In case another part arrives while machine M1 is processing some

part, it rejects the part. When the robot takes a part from M1, it transports it to

M2. When the part arrives at M2, the robot will deliver it to M2, only if M2 is free.

Otherwise, the robot holds the part until M2 becomes free. After the robot delivers

the part to M2, it returns to M1. Finally, machine M2 receives the part from the

robot and processes it.

Table 2.1 describes the states and events of machines M1, M2 and the robot.

Notice that, events e1 (part delivered to robot) and a2 (part delivered to M2) belong

to two subsystems: machine M1 and robot, and robot and machine M2, respectively.

It is important to notice that, in order to event e1 to occur, machine M1 must be in

state H1 and the robot in state I; in order to event a2 to occur, the robot must be

in state H and the machine M2 must be in state I2. For other states of the system,

i.e., those that are in only one of the subsystems, the occurrence is determined only

by the current state of the subsystem; for example, the occurrence of event t1 (end of

processing) depends only on machine M1 to be in state P1, independently of which

states the robot and machine M2 are.

�

2.2 Languages

2.2.1 Language of Discrete Event Systems

One of the formal ways to study the logical behavior of a DES is based on the

theories of language and automata. The starting point is the fact that any DES has

an associated event set Σ. The event set Σ is the “alphabet” and the traces are the

“words” of a language. We will assume that Σ is finite. The length of a word is the

number of events it contains. We denote the length of a trace s by ‖s‖. The word

that does not contain events is called the empty trace, and is denoted by ε. The

length of the empty trace ε is zero.

Definition 2.1 (Language) A language defined over an event set Σ is a set of

traces (words) with finite length formed by events of Σ.

8

Table 2.1: States and events of the DES composed of machines M1, M2 and a robot.

Element States Events

Machine M1

M1 available: I1 Arrival of a part to M1: a1

M1 processing: P1 End of processing: t1

M1 holding a processed part: H1 Part delivered to robot: e1

X1 = {I1, P1, H1} E1 = {a1, t1, e1}

Robot

Robot available: I Part delivered to robot: e1

Transporting M1 −M2: T12 Arrival at M2: c2

Waiting at M2: H Part delivered to M2: a2

Returning to M1: R Robot returned to M1: r1

Xr = {I, T12, H,R} Er = {e1, c2, a2, r1}

Machine M2

M2 available: I2 Part delivered to M2: a2

M2 processing: P2 End of processing: t2

X2 = {I2, P2} E2 = {a2, t2}

Example 2.2 Let Σ = {a, b, g} be a set of events. Language L1, defined as

L1 = {ε, a, abb}, consists of only three traces. Language L2 that contains all

possible traces of length 3 that start with event a, can also be listed, namely

L2 = {aaa, aab, aag, aba, aga, abb, agg, abg, agb}.

Let us denote by Σ∗ the set of all finite traces formed with events σ ∈ Σ, including

the empty trace ε. Σ∗ is also referred to as the Kleene-closure of Σ. Notice that

the set Σ∗ is countably infinite since it contain traces of arbitrarily long length. For

example, if Σ = {a, b, c}, then

Σ∗ = {ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, . . .}.

A language L defined over an event set Σ is, therefore, a subset of Σ∗.

The key operation to construct traces, is the concatenation. The trace abb in

Example 2.2 is the concatenation of trace ab with event b; consequently, trace ab is

the concatenation of events a and b. The empty trace ε is the identity element of

concatenation, i.e., εu = uε = u for every trace u.

9

Some terminology about traces can be considered. If tuv = s with t, u, v ∈ Σ∗,

then t is a prefix of s, u is a subtrace of s and v is a suffix of s.

2.2.2 Operations on languages

The usual set operations, such as union, intersection, difference, and complement

with respect to Σ∗, are applicable to languages since languages are sets. Besides

these operations, four other operations can be defined for languages: concatenation,

prefix-closure, Kleene-closure and natural projection.

• Concatenation: Let La, Lb ⊆ Σ∗, then

LaLb := {s ∈ Σ∗ : (s = sasb) ∧ (sa ∈ La) ∧ (sb ∈ Lb)}.

In words, a trace is in LaLb if it can be written as the concatenation of a trace in

La with another trace in Lb.

• Prefix-closure: Let L ⊆ Σ∗, then

L̄ := {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]}.

In words, the prefix closure L ⊆ L is formed by all prefixes of all traces in L.

• Kleene closure: Let L ⊆ Σ∗, then

L∗ := {ε} ∪ L ∪ LL ∪ LLL ∪ ...

This is the same operation as that defined for set Σ, except, now, that it is applied

to set L whose elements may be traces of finite length.

• Natural projection: The natural projection, or simply projection, is a map-

ping from a set of events, Σl, to a smaller set of events, Σs, where Σs ⊂ Σl and,

is denoted by P ; a subscript is usually added to specify either Σs or both Σl

and Σs, for the sake of clarity, when dealing with multiple sets. We extended

the projection operation to traces as follows:

P : Σ∗l → Σ∗s

s 7→ P (s)

10

with the following properties

P (ε) = ε

P (σ) =

 σ, if σ ∈ Σs

ε, if σ ∈ Σl \ Σs

P (sσ) = P (s)P (σ), ∀s ∈ Σ∗l , ∀σ ∈ Σl.

According to the previous definition, the projection operation erases the events

of s ∈ Σ∗l that do not belong to the smaller event set, Σs. This operation can be

used to obtain the observed language of a system.

We can also work with the corresponding inverse mapping, called inverse projec-

tion, which is defined as follows:

P−1 : Σ∗s → 2Σ∗l

s 7→ P−1(s) = {t ∈ Σ∗ : P (t) = s}

The projection P can be extended to a language L ⊆ Σ∗l by applying it to all

the traces in L. Thus,

P (L) = {t ∈ Σ∗s : (∃s ∈ L)[P (s) = t]}.

The inverse projection can also be extended to a language Ls ⊆ Σ∗s as follows:

P−1(Ls) = {s ∈ Σ∗l : (∃t ∈ Ls)[P (s) = t]}.

In order to illustrate the notion of projection, consider the following example

[58].

Example 2.3 Consider set Σ = {a, b, c} and the two proper subsets Σ1 = {a, b}
and Σ2 = {b, c} of Σ. Consider, in addition, the following language:

L = {c, ccb, abc, cacb, cabcbbca} ⊂ Σ∗

Let the projections Pi : Σ∗ → Σ∗i , i = 1, 2. Thus,

P1(L) = {ε, b, ab, abbba}

P2(L) = {c, ccb, bc, cbcbbc}

P−1
1 ({ε}) = {c}∗

P−1
1 ({b}) = {c}∗{b}{c}∗

P−1
2 ({bc}) = {a}∗{b}{a}∗{c}{a}∗

�

11

2.3 Automata

An automaton is a device that is capable of representing a language according to

well defined rules. The formal definition of an automaton is presented in the sequel

[58].

2.3.1 Deterministic automata

The deterministic automaton is formally defined as follows:

Definition 2.2 (Deterministic automata) A deterministic automaton, denoted by

G, is a six-tuple

G = (X,Σ, f,Γ, x0, Xm),

where X is the set of states, Σ is the finite set of events, f : X × Σ → X is the

transition function, where f(x, σ) = y means that there is a transition labeled by

event σ ∈ Σ from state x ∈ X to state y ∈ X, Γ : X → 2Σ is the active event

function, i.e., Γ(x) is the set of events σ ∈ Σ for which f(x, σ) is defined, x0 is the

initial state, and Xm ⊆ X is the set of marked states.

Automata are graphically represented by state transitions diagrams. In these dia-

grams, the states are circles that are connected by arcs labeled with events. The

marked states are identified by two concentric circles and, in general, are related

with the conclusion of a task. The initial state is indicated by an arrow pointing to

it.

Example 2.4 Let G = (X,Σ, f,Γ, x0, Xm) be the automaton shown in the Figure

2.1. Thus, X = {1, 2, 3, 4, 5}, Σ = {a, b, c, d}, x0 = 1, Xm = {3}, the transition

function f is defined as f(1, a) = 2, f(1, b) = 4, f(2, b) = 3, f(3, c) = 3, f(4, d) = 5

and f(5, c) = 5, the active event function is given by: Γ(1) = {a, b}, Γ(2) = {b},
Γ(3) = {c}, Γ(4) = {d}, and Γ(5) = {c}.

An automaton is capable of representing languages. Two kinds of languages can

be associated with the behavior of an automaton G: the generated language and

the marked language. The generated language, denoted by L(G), is formed by all

traces that can be executed by G, starting at the initial state. The marked language,

12

1

2 3

4 5

a
b

b
d

c

c

G

Figure 2.1: Automaton G.

denoted by Lm(G), is a subset of the generated language L(G) and consists of all

traces that finish in a marked state in the state transition diagram of G.

Definition 2.3 (Generated language and marked language). The generated lan-

guage of G = (X,Σ, f,Γ, x0, Xm) is defined as:

L(G) = {s ∈ Σ∗ : f(x0, s)!}.

where f(x0, s)! denotes that f(x0, s) is defined, i.e., ∃y ∈ X such that f(x0, s) = y.

The marked language of G is defined as:

Lm(G) = {s ∈ L(G) : f(x0, s) ∈ Xm}.

Notice that the definition of the generated language implies that ε ∈ L(G).

The language generated by automaton G, shown in Figure 2.1, is L(G) =

{ε, a, b, abcn, bdcn}, where n ∈ {0, 1, 2, ...}. Since Xm = {3}, the marked language is

Lm = abc∗.

2.3.2 Nondeterministic automata

A nondeterministic automaton is defined by Gnd = (X,Σ, fnd,Γ, X0, Xm), where X

is the state set, Σ is the set of events, fnd : X × Σ→ 2X , where 2X is the set of all

subsets of X, Γ is the set of feasible events, X0 ⊆ X and Xm is the set of marked

states. Notice that, differently from deterministic automata, automaton Gnd can

have more than one initial state and the codomain of the transition function fnd is

a subset of X, not a single state.

In order to illustrate a nondeterministic automaton, consider the following ex-

ample.

Example 2.5 Let the nondeterministic automaton, Gnd = (X,Σ, fnd,Γ, X0, ∅),

shown in Figure 2.2. Notice that, the transition function assumes values in 2X ,

13

1

2

3

a

c

c

a

b

b

Gnd

Figure 2.2: Nondeterministic automaton.

for x ∈ X. For instance, fnd(1, a) = {2, 3}, fnd(2, c) = {1, 3} and fnd(3, b) = {1, 2}.
Thus, this type of configuration suggests uncertainty in the dynamic evolution of the

system. �

Automata with ε-transitions

Differently from the deterministic and nondeterministic automata seen before, in an

automaton with ε-transitions, states can change spontaneously without detecting

any event. This class of automata are important when we want to model problems in

the plant, for example, failure and missing of sensors. Since, one of the characteristics

of these automata is the uncertainty of dynamic evolution of the system, they are

considered also nondeterministic automata.

An automaton with ε-transitions, or simply, automaton-ε is defined as the sex-

tuple

Gε = (X,Σ ∪ {ε}, fε,Γ, X0, Xm),

where each parameter of Gε is similar to parameters of nondeterministic automaton

Gnd. Notice that, the transition function fε is defined as fε = X × Σ ∪ {ε} → 2X .

Example 2.6 Consider automaton Gε shown in Figure 2.3. Notice that, this au-

tomaton does not generate trace bc, i.e., there does not exist x such that x =

fε(x0, bc). However, automaton Gε generates trace εbεc which, when observed, is

equivalent to trace bc. �

In order to define the generated and marked language by automaton Gε, let us

introduce the notion of ε-reach. The ε-reach of state x, denoted as εR(x), is defined

as the set of all states reached from state x by following only transitions labeled by

14

1 2 3

4 5

a

b

c

ε ε b

aGε

Figure 2.3: Nondeterministic automaton with ε-transition.

ε. By definition, x ⊆ εR(x). The definition of ε-reach can be naturally extended to

a set of states Y as follows

εR(Y) =
⋃
y∈Y

εR(y) (2.1)

Consider, again, the ε-automaton shown in Figure 2.3. The ε-reach of states in

Gε are as follows: εR(1) = {1, 4}, εR(2) = {2, 5}, εR(3) = {3}, εR(4) = {4},
εR(5) = {5}.

The extended transition function f̃ε is defined in a recursive way as follows. First

we set

f̃ε(x, ε) = εR(x). (2.2)

Second, for w ∈ Σ∗ and σ ∈ Σ, we set

f̃ε(x,wσ) = εR[{k : k ∈ fε(y, σ) for some state y ∈ f̃ε(x,w)].

We can now characterize the generated and marked languages of automaton Gε.

The language generated by Gε is defined as:

L(Gε) = {w ∈ Σ∗ : (∃x ∈ X0)[f̃ε(x,w)!]}, (2.3)

and the language marked by automaton Gε is defined as:

Lm(Gε) = {w ∈ L(Gε)(∃x ∈ X0)[f̃ε(x,w) ∩Xm 6= ∅]}. (2.4)

As said earlier, an important application of nondeterministic automata with ε-

transitions is in the modeling of failures in the plant and loss of information in

sensors, so that some events become unobservable. However, a system with un-

observable events can be modeled using a deterministic automata called Observer,

which will be described in the next subsection.

15

2.3.3 Observer automata

Suppose that Σ is partitioned as Σ = Σo∪̇Σuo, where Σo is the set of observable

events and Σuo is the set of unobservable events. An event is observable when its

occurrence can be registered and communicated to the observer. The unobservable

events are those that cannot be observed by sensors (including the failure events)

or, even though there are sensors to register it, these events cannot be seen because

of the distributed nature of the system. When Σ = Σo∪̇Σuo, the automaton is called

automaton with unobservable events.

The dynamic behavior of an automaton with unobservable events can be de-

scribed by a deterministic automaton called observer automaton, whose set of events

is formed by observable events only. The observer for G, is denoted by Obs(G), and

it is defined as follows:

Obs(G) = (Xobs,Σo, fobs,Γobs, x0obs , Xmobs),

where Xobs ⊆ 2X and Xmobs = {B ∈ Xobs : B ∩ Xm 6= ∅}. In order to define x0obs ,

Γobs, and fobs, it is necessary to introduce the concept of unobservable reach of a

state x ∈ X, denoted as UR(x,Σo):

UR(x,Σo) = {y ∈ X : (∃t ∈ Σ∗uo)[f(x, t) = y]}

The unobservable reach can be extended to a set B ∈ 2X as follows:

UR(B) =
⋃
x∈B

UR(x,Σo)

Thus, x0,obs = UR(x0,Σo), and for all xobs ∈ Xobs, Γobs(xobs) =
⋃
x∈xobs Γ(x),

fobs(xobs, σ) =
⋃
x∈(xobs)∧(f(x,σ)!) UR[f(x, σ),Σo], if σ ∈ Γobs(xo,obs), or, undefined,

otherwise.

In order to illustrate an observer automaton, consider the following example [59].

Example 2.7 Let us consider automaton G shown in Figure 2.4. Suppose that the

event set Σ = {a, b, c} is partitioned in Σo = {b, c} and Σuo = {a}. Thus, when

the automaton starts, it is not possible to know if it is in the initial state x0 = 0

or if it has changed to state x = 1, because the occurrence of event a cannot be

registered. Thus, the initial state of Obs(G,Σo) shown in Figure 2.5 is {0, 1}. In

16

0 1 2

3

G a

b

c

a a

b

Figure 2.4: Automaton G.

{0, 1}

{3, 1} {2, 3, 1}

Obs(G)

b c b

c

c

Figure 2.5: Observer automaton of G.

case event b occurs, we can see that the automaton reaches state {3}, but, since event

a is unobservable, it can also change to state {1} without realizing the occurrence

of event a. Therefore, the occurrence of event b in the observer automaton leads to

state {3, 1}, from the initial state. There are also transitions labeled with event c

that reach state {2, 3, 1} from initial state {0, 1} and state {3, 1}. Finally, when the

occurrence of event c is registered, the observer automaton will keep in state {2, 3, 1}.
However, if event b occurs, the observer will return to the initial state. �

Let us consider the projection Po : Σ∗ → Σ∗o. Then, by construction, observer

Obs(G) has the following properties:

• Obs(G) is a deterministic automaton.

• L(Obs(G)) = Po[L(G)].

• Lm(Obs(G)) = Po[Lm(G)].

17

• Let B(t) ⊆ X be the state of Obs(G) that is reached after trace t ∈ Po[L(G)],

i.e., B(t) = fobs(x0,obs, t). Then, a state x ∈ B(t) iff x is reachable in G by a

trace in P−1
o (t) ∩ L(G).

2.3.4 Operations on automata

In order to analyze a DES modeled by an automaton, we can use a set of operations

on a single automaton. These operations modify appropriately the state transition

diagram according to some language operation that we wish to perform. We also

need to define operations that allow us to combine, or compose, two or more au-

tomata, so that models of complete systems can be built from models of individual

system components.

The operations that modify a single automaton are called unary operations.

They alter state transition diagram of an automaton, but the set of events Σ remains

unchanged. The main unary operations are: Accessible part, Coaccessible part,

Trim operation and Complement. The composition operations are operations that

combine more than one automaton. The main composition operations are: parallel

and product composition.

• Accessible part: If we delete from G all the states that are not reachable

from x0 by some trace in L(G) and their related transitions, without affecting

the languages generated and marked by G, then we take the accessible part of

automaton G. We will denote this operation by Ac(G), where Ac stands for

taking the accessible part, and is defined as follows:

Ac(G) = (Xac,Σ, fac, x0, Xac,m)

where Xac = {x ∈ X : (∃s ∈ Σ∗)[f(x0, s) = x]}, Xac,m = Xm ∩ Xac, and

fac = f |Xac×Σ→Xac .

The notation f |Xac×Σ→Xac means that we are restricting f to the smaller do-

main of the accessible states Xac.

• Coaccessible part: A state x ∈ X ofG is said to be coaccessible if there exists

a path in the state transition diagram of G from state x to a marked state. We

take the coaccessible part by deleting all states of G that are not coaccessible

18

and their related transitions. This operation is denoted by CoAc(G), where

CoAc stands for taking the coaccessible part, and is defined as follows:

CoAc(G) = (Xcoac,Σ, fcoac, x0,coac, Xm),

where Xcoac = {x ∈ X : (∃s ∈ Σ∗)[f(x, s) ∈ Xm]}, x0,coac = x0, if x0 ∈
Xcoac, undefined, otherwise, and fcoac = f |Xcoac×Σ→Xcoac .

The CoAc operation may shrink L(G), since we may delete states that are

accessible from x0. However, the CoAc operation does not affect Lm(G), since

a deleted state cannot be on any path from x0 to Xm. If G = CoAc(G), then

G is said to be coaccessible; in this case, L(G) = Lm(G).

• Trim operation: An automaton that is both accessible and coaccessible is

said to be trim. We define the Trim operation to be

Trim(G) = CoAc[Ac(G)] = Ac[CoAc(G)].

• Complement: Consider a deterministic automaton G = (X,Σ, f,Γ, x0, Xm)

whose marked language is Lm(G). The complement of G os an automaton

Gcomp such that Lm(Gcomp) = Σ∗ \ Lm(G), where Gcomp = Comp(G). The

operation Comp(·) is denoted as Complement. Automaton Gcomp is obtained

as follows.

First, complete the transition function f of G. Thus, G will become a complete

automaton whose generated language is L(G) = Σ∗. In order to do it, let us

denote the new transition function by ft. Then, a new state xd is added to X.

After that, all undefined f(x, σ) in G are then assigned to xd. Thus,

ft(x, σ) =

 f(x, σ), if σ ∈ Γ(x)

xd, otherwise

The new automaton Gt = (X ∪ {xd},Σ, ft, x0, Xm) is such that L(Gt) = Σ∗

and Lm(Gt) = L(G).

After we obtain automaton Gt, we change the marking status of all states of

Gt, i.e., we mark all unmarked states (including xd) and remove the marking

of the marked states. Thus,

Comp(G) = (X ∪ {xd},Σ, ftot, x0, (X ∪ xd) \Xm).

19

1 2

3 4

6

7

ca

bc
a

ab
5

b

a

H

Figure 2.6: Automaton H

1 2

3 7

a

bc

b

CoAc(H)

Figure 2.7: Coaccessible part of automaton H

The following example illustrate the unary operations [58].

Example 2.8 Let automaton H shown in Figure 2.6. In order to obtain its coacces-

sible part, we need to delete all states from which it is not possible to reach marked

state 3. Thus, states 4, 5 and 6 are deleted, leading to the automaton shown in

Figure 2.7. Automata Trim(H) and Comp[Trim(H)] are shown in Figures 2.8 and

2.9.

There are two composition operations called product and parallel composition.

In order to describe these operations, consider the following two automata:

H1 = (X1,Σ1, f1,Γ1, x01 , Xm1) and H2 = (X2,Σ2, f2,Γ2, x02 , Xm2).

• Product composition: The product operation between automata H1 and

1 2

3

a

bc

T rim(H)

Figure 2.8: Automaton Tim(H)

20

1 2

3

a

bc

Comp[Trim(H)]

xda, b

a, c

a, b, c

Figure 2.9: Comp[Trim(H)]

H2 results in the automaton

H1 ×H2 = Ac{X1 ×X2,Σ1 ∪ Σ2, f1×2,Γ1×2, (x01 , x02), Xm1 ×Xm2}

where

f1×2((x1, x2), σ) =

 (f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2),

undefined, otherwise.

and

Γ1×2((x1, x2)) = Γ1(x1) ∩ Γ2(x2)

In the product, the transitions of the two automata must always be synchro-

nized on common events, i.e., events in Σ1 ∩ Σ2. Thus, it corresponds to

intersection of the generated and marked languages:

L(H1 ×H2) = L(H1) ∩ L(H2),

Lm(H1 ×H2) = Lm(H1) ∩ Lm(H2).

Properties of the product

1. Product is commutative up to a reordering of the state components in

the composed states.

2. Product is associative and it can be defined as

G1 ×G2 ×G3 = (G1 ×G2)×G3 = G1 × (G2 ×G3).

• Parallel composition: This composition operation is, usually, used to con-

nect different components in order to model a unique system whose compo-

nents work in synchrony. In general, when a system is composed by different

components that interact with each other, the event set of each component

21

contain events that belong solely to itself, called as private events, and com-

mon events that are shared with each other. Thus, the parallel operation is

suitable to model a entire system from individual components.

The parallel composition between automata H1 and H2 results in the following

automaton

H1||H2 = Ac(X1 ×X2,Σ1 ∪ Σ2, f1||2,Γ1||2, (x01 , x02), Xm1 ×Xm2)

where

f1||2((x1, x2), σ) =



(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2),

(f1(x1, σ), x2), if σ ∈ Γ1(x1) \ Σ2,

(x1, f2(x2, σ)), if σ ∈ Γ2(x2) \ Σ1,

not defined, otherwise.

In the parallel composition, events in Σ1 ∩ Σ2, can only be executed if both

automata execute them at the same time, so that, the automata are synchro-

nized on the common events. On the other hand, the private events, i.e.,

events in (E2 \ E1) ∪ (E1 \ E2), can be executed whenever possible. In order

to characterize the generated and marked languages of G1‖G2 with respect to

G1 and G2, we use the operation of language projection introduced earlier.

Let Σ1 ∪Σ2 be the larger set of events and let Σ1 or Σ2 be the smaller sets of

events. Thus, we can consider two projections

Pi : (Σ1 ∪ Σ2)∗ → Σ∗i for i = 1, 2.

Now, we can characterize the languages resulting from a parallel composition:

1. L(G1‖G2) = P−1
1 [L(G1)] ∩ P−1

2 [L(G2)],

2. Lm(G1‖G2) = P−1
1 [Lm(G1)] ∩ P−1

2 [Lm(G2)].

Properties of parallel composition

1. Pi[L(G1‖G2)] ⊆ L(Gi), for i = 1, 2.

The coupling of the two automata by common events may prevent some of

the traces in their individual generated languages to occur, due to the con-

straints imposed in the definition of parallel composition regarding these com-

mon events.

22

Feedback

Controller

Actuator
Dynamic

Plant
Sensors

Diagnostic
System

yu

Controller
Malfunction

Process
Disturbance

Sensor
Failure

Actuator
Failure

Structural
Failure

Figure 2.10: A general diagnosis framework [1].

2. Parallel composition is commutative up to a reordering of the state components

in composed states.

3. Parallel composition is associative:

G1||G2||G3 = (G1||G2)||G3 = G1||(G2||G3).

2.4 Failure diagnosis

Failure is a term that defines a deviation from normal behavior operation of a

system. The failure treatment, called failure diagnosis, is an important problem in

engineering and consists of detecting and isolating the failure with as much detail

as possible, such as the place where the failure occurred and its dimension.

In Figure 2.10, the components of a general failure diagnosis framework is de-

scribed. The figure shows a controlled process system and indicates the different

sources of failures. In [1] the authors classify the failures in three classes:

• Parameter changes in a model. In a complex plant, there are several processes

occurring under the selected level of detail of the model. Usually, the processes

which are not detailed in the model, are typically gathered in some parameters

of the model. Frequently, parameter failures arise when there is a disturbance

in the process from the environment.

• Structural changes. Structural changes are changes in the physical structure of

the process. They occur due to failures in equipments. Structural malfunctions

23

result in a change of characteristics of the plant, and consequently, in the

information flow of several variables. In order to handle such a failure in a

diagnosis system, it is necessary to remove the current model equations and

replace them with other equations which are capable to describe the current

situation of the process.

• Malfunctioning sensors and actuators. Errors and malfunctioning usually oc-

cur in several devices, but, mainly in actuators and sensors. Some of the

devices provide feedback signals which are very important for the monitoring

and control of the plant. A failure in one of these instruments can cause, in

the plant state variables, a deviation beyond safe acceptable limits, unless the

failure is detected and corrected in time.

The failure diagnosis systems are very important in supervisor systems and in the

failure management of processes. They are responsible for monitoring the behavior of

a complex plant and for providing information about abnormal operation conditions

of its components. In order to design a good failure diagnosis system, a set of

desirable characteristics have to be taken into account. In the sequel, some of these

characteristics are listed [1]:

• Quick detection and diagnosis. An important characteristics of a diagnosis

system is its capacity to respond quickly in detecting and isolating process

failures.

• Isolability. Isolability is the ability of the diagnosis system to distinguish a

failure among different types of failures.

• Robustness. It is important that the diagnosis system is robust to noises

and uncertainties, so that, when a disturbance occurs, the diagnoser does not

confuse it with a failure and send a false alarm.

• Adaptability. Processes, in general, change and evolve due to changes in exter-

nal inputs or structural changes due to the feedback loop. Process operating

conditions can change not only due to disturbances but also due to change

in environmental conditions such as variations in production quantities with

24

changing demands, changes in the quality of raw material etc. Thus the diag-

nosis system must be adaptable to changes.

• Modeling requirements. The amount of modeling required for the development

of a diagnosis classifier is an important issue. For fast and easy deployment

of real-time diagnosis classifiers, the modeling effort must be as minimal as

possible.

Due to these characteristics, many algorithms have been developed to failure

diagnosis problem. In the next subsection, the classification of some algorithms is

shown.

2.4.1 Algorithms of failure diagnosis

A previous knowledge of the process is necessary in order to build a diagnosis system.

It is provided by several characteristics and relations among observed symptoms and

failures. These knowledge can be acquired with experiences in the process and is

usually referred to as knowledge based models or process history [1].

The knowledge based models can be classified as qualitative or quantitative.

In quantitative models, the plant is expressed in terms of mathematical functional

relationships between the inputs and outputs of the system. In contrast, in quali-

tative model, these relationships are expressed in terms of qualitative functions in

different units in a process. Other methods can be developed from the extraction of

the historical system data. These extractions or abstractions of characteristics can

be qualitative or quantitative. In quantitative characteristics, the abstractions can

behave as statistical or not statistical [1].

In contrast to the model-based approaches, where a priori knowledge about the

model (either quantitative or qualitative) of the process is assumed, in process his-

tory based methods, only the availability of large amount of historical process data

is assumed. This classification can be seen in Figure 2.11.

The quantitative methods based models require two steps: (i) verification of

inconsistencies and residual “r” (difference among values of several functions of out-

puts and their desirable values under/without failure conditions) between real and

desirable behavior and; (ii) choice of decision rules for failure diagnosis. Parameters

25

Diagnosis methods

Quantitative
Model-Based

Process history
based

Observers Parity
space

EKF Causal
models

Abstraction
hierarchy

Digraphs Failure
trees physics

Structural Functional
systems
Expert QTA Statistical Neural

networks

PCA/PLS
classifiers

Qualitative
Model-Based

Qualitative Quantitative

Qualitative

Statistical

Figure 2.11: Classification of diagnosis algorithms [1].

and states estimators are used in this kind of strategy. The residuals generated are

verified and decision functions are performed based on the residuals and decision

rules. The quantitative based models also involve analysis of cause and effect on the

system behavior. The main disadvantages of this method is the use of too many

assumptions and its high computational effort; on the other hand, the fact that it

tries to imitate the human analysis is a great advantage.

Methods based in process history usually require a great deal of data. They

are divided in qualitative and quantitative methods. The qualitative methods are

based on specialized systems and involve an explicit mapping of known symptoms.

The quantitative methods, on the other hand, use neural networks and statistical

methods.

Traditionally, the most widely used methods for failure diagnosis are based on

process models. As presented earlier, such methods try to detect all deviations

between the output of the system and the expected output model, supposing that

this deviation is related to a failure. In this context, we use a qualitative method

based on models (failure trees) in this thesis. The method is based on discrete event

systems as presented in [3] and [59].

2.4.2 Failure diagnosis of DES

In this section we will present the main concepts of failure diagnosis systems of

DESs. As seen before, when we add, in the model G, unobservable events, they can

represent a failure event or not. Thus, it is possible to take into account the normal

behavior of the system, described by observed and unobserved events that are not

associated with failures in the system or abnormal behaviors, that is described by

26

unobservable events associated to failures. Then, let Σf ⊆ Σuo be a set of events

associated with failures of the system. In general, the set Σf =
⋃

Σfi , i = 1, 2, . . . , n,

where i means the types of failure that can occur in the plant and each set Σfi is

formed by events that model failures that are correlated in some manner.

In theory of failure diagnosis in DES, we adopt the following notations.

• sf : last event of trace s.

• ψ(Σf) = {s ∈ L : sf ∈ Σf}: set of all traces of L that finish with event

σf ∈ Σf .

• L/s = {t ∈ Σ? : st ∈ L} : language L of continuations after prefix s.

• Σf ∈ s: trace s ∈ L contains a failure event.

We can now present the formal definition of diagnosability of a language L [3].

Definition 2.4 Let L be a language generated by an automaton G and suppose that

L is prefix closed. Thus, L is diagnosable with respect to projection Po : Σ? → Σ?
o

and Σf = {σf} if the following condition holds true [3]:

(∃n ∈ N)(∀s ∈ ψ(Σf))(∀t ∈ L \ s)(||t|| ≥ n⇒ D),

where the diagnosis D is

(@ω ∈ L)[Po(st) = Po(ω) ∧ (Σf /∈ ω)].

In words, the language generated by an automaton G will be diagnosable with

respect to the set of observable events Σo, projection Po and the set of failure events

Σf = {σf}, if the occurrence of event σf can be detected after a finite number of

transitions after the occurrence of σf using traces of observable events only.

2.5 Diagnoser

In order to diagnose failures based on observation of the system behavior in real time

and to verify if the language generated by an automaton G is diagnosable, we can

use a deterministic automaton called diagnoser. Furthermore, depending on how the

information about the dynamic evolution of the system is available, the diagnosis

27

N Fσf

σf
Al

Figure 2.12: Label automaton Al for building diagnoser

system can be divided in two different classes: centralized, that has a unique acqui-

sition system or distributed, which is connected by a communication network, for

example, manufacturing systems or electric power systems. Thus, broadly speaking

diagnosis systems can be classified as follows:

• Centralized, when there is only one diagnoser that has access to all observable

events of system;

• Decentralized, when the reading of the sensors are not centralized, but dis-

tributed in different modules. Each module observes the behavior of some

part of the system using a subset of the observable event set of the system

[30].

2.5.1 Centralized diagnosis

The centralized diagnoser of plant G, denoted by Gd, is an automaton whose set

of events is formed by observable events of G and the states are formed by adding

labels F and N to the states of G in order to indicate if event σf has occurred or

not. Formally, Gd is defined as

Gd = (Xd,Σd, fd,Γd, xod)

where Xd ⊆ 2X×{N,Y }. The diagnoser Gd can be constructed in two steps: (i) get

the parallel composition G||Al, where Al is the label automaton with two states

shown in Figure 2.12; (ii) compute Obs(G||Al).
It is important to observe that the automaton obtained after the parallel compo-

sition computed in step (i) generates the same language as automaton G. Moreover,

the states of G||Al follow the form (x, F) or (x,N) if σf is in the trace that takes

x0 to the state or not, respectively.

A diagnoser, such as presented in Figure 2.13c is implemented in practice using

a digital computer, (or programable logic controller) [59]. Its initial state is x0d ,

28

and after any occurrence of observable events, its state is updated according to the

transition function fd. When the diagnoser reaches a state whose label is equal to

Y , then it is certain that the failure has occurred.

Example 2.9 Consider a plant represented by automaton G, where Σo = {a, b, c}
and Σuo = {σf}, shown in Figure 2.13a. In order to obtain its diagnoser, the parallel

composition G‖Al is first computed, which is shown in Figure 2.13b. After that, we

obtain the observer automaton of G‖Al. The diagnoser of plant G, Gd, is shown in

Figure 2.13c. Notice that the initial state of Gd, {1N, 3F}, has both labels Y and

N . This happens because event σf is unobservable and, if it occur, the diagnoser

will not realize its occurrence; then the system can either be in states 1N or 3F .

As a consequence, the diagnoser cannot say, for sure, whether the failure event has

occurred, i.e., it is uncertain with respect to the occurrence of the failure event. On

the other hand, another event that can occur when the system is in the initial state

is the observable event b; thus, if event b occurs, the diagnoser must indicate that

the system is in state {2N} and, thus, it will be certain that the failure event has

not occurred. Supposing that from the initial state event σf has occurred in the

plant, the diagnoser will remain in state {1N, 3F}, but, when event a occurs, then

the diagnoser changes the current state, {1N, 3F}, to state {4F}, meaning that the

diagnoser is now certain that event σf occurred. �

Notice that, by the construction of automaton Gd, Gd = Obs(G||Al), once the

diagnoser is sure of the occurrence of the failure event, all the following states will

indicate the failure occurrence. However, it is possible for the diagnoser to change

from a normal state to an uncertain.

2.5.2 Decentralized diagnosis

In order to solve the problems associated with the distributed nature of some sys-

tems, in [30] the decentralized structure shown in Figure 2.14 has been proposed.

In this structure, the reading of sensors is decentralized, or distributed in different

modules of diagnosers. Each diagnoser module observes part of the system behavior

based on the information from the sensors connected to it, i.e., based on the ob-

servable events of each diagnoser Σoi where i = {1, 2, ..., n}, where n is the number

29

1

3 4

2 5

σf

a

b
a

c

b

1, N

3, F

4, F

5, F

2, N

5, N

c

σf b

a a

b

{1N, 3Y }

4F 2N

4Y 2N

c c

(b) (c)(a)

a

a

b

b

Figure 2.13: (a) Automaton G (b) Parallel composition between G and Al, (c)

Gd = Obs(G||Al)

Diagnoser 1

Plant

Coordinator

Diagnoser 2 Diagnoser n. . .

Σo1 Σo2
Σon

Figure 2.14: Codiagnosis structure.

30

of diagnosers. Each diagnoser processes the received information and communicates

the result to the coordinator. The coordinator receives the information from the

diagnosers and processes it according to well defined rules and makes a decision

with respect to the failure occurrence.

The diagnosis of a language L depends on a set of elements called protocol,

which is composed of rules used to generate local diagnosis, communication rules

between the module and the coordinator, decision rules used by the coordinator to

diagnose the failure, and the projections Poi : Σ? → Σ?
oi
, i = 1, 2, ..., n, associated

with each diagnoser. In protocol 3 of [30], a failure is diagnosed when, at least, one

local diagnoser identifies its occurrence. Such approach is called codiagnosis. In the

sequel, we present the definition of codiagnosability of a language L, but, before it,

we will review the notion of normal and failure traces.

Definition 2.5 (Normal and failure traces) Let s ∈ L, and define Ls = {s}.
Then s is a failure trace if ∃sp ∈ Ls such that sp = s̃pσf s̃q for some s̃p, s̃q ∈ Σ?.

Otherwise, s is a normal trace. �

According to Definition 2.5, a failure trace is a trace of events s such that σf is

one of its events and a normal trace, on the other hand, does not contain event σf .

The set of all normal traces generated by the system is the prefix-closed language

LN ⊂ L. Thus, the set of all failure traces is given by L \ LN . Let GN be the sub-

automaton of G that models the normal language of the system with respect to the

failure event set Σf . Then, L(GN) = LN .

Definition 2.6 (Language codiagnosability) Let L and LN ⊂ L be prefix closed

languages generated by G and GN , respectively, and Poi : Σ? → Σ?
oi
, i = 1, ..., n

projection operations. Then, L is codiagnosable with respect to the projections Poi e

Σf if

(∃z ∈ N)(∀s ∈ L \ LN)(∀st ∈ L \ LN , ||t|| ≥ z)→

(∃i ∈ {1, 2, . . . , n})(Poi(st) 6= Poi(ω),∀ω ∈ LN)

Remark 2.1 Notice that, when n = 1, Definition 2.6 is equal to the definition of

language diagnosability proposed in [3]. �

31

According to Definition 2.6, L is codiagnosable with respect to Poi and Σf if, and

only if, for all failure traces sF = st of arbitrarily long length after the occurrence

of the failure event, there do not exist traces sNi ∈ LN , where sNj is not necessarily

different from sNk for j 6= k, such that Poi(sNi) = Poi(sF), for all i ∈ {1, 2, . . . , n}.

2.5.3 Codiagnosability verification

Codiagnosability verification of the language of a discrete event system is the first

step to develop a failure diagnosis system for a DES. Some works in literature have

addressed the problem of codiagnosability verification of a DES [34, 57]. In this

thesis, we will adopt the algorithm presented in [57] as the basis for the problem of

network robust diagnosability against delays and loss of observation to be considered

later in this work. We use algorithm 2.1, below, originally presented in [57]

Algorithm 2.1 Codiagnosability verification of DES

Input: G = (X,Σ,Γ, f, x0).

Output: V = (XV ,ΣV ,ΓV , fV , x0V).

1. Compute automaton GN that models the normal behavior of G.

1.1. Define ΣN = Σ \ Σf .

1.2. Build the single state automaton ANl = ({N},ΣN , f
N
l , x0,N), where

fNl (N, σ) = N , for all σ ∈ ΣN , and x0,N = N .

1.3. Build the automaton GN = G× ANl .

1.4. Redefine the set of events of GN as ΣN , i.e., GN = (XN ,ΣN , fN , (x0, N)).

2. Compute automaton GF that models the failure behavior of automaton G.

2.1. Build the label automaton Al = ({N,F},Σf , f
NF
l , x0,NF) where x0,NF =

N , fNFl (N, σf) = F , and fNFl (F, σf) = F , for all σf ∈ Σf , as shown in

Figure 2.12.

2.2. Compute Gl = G‖Al and mark all states labeled with F .

2.3. Compute GF = CoAc(Gl).

32

3. Rename the unobservable events of GNi, as follows.

3.1. Define the following set:

Σ′Ri = {σRi : σ ∈ Σuoi \ Σf}

3.2. Define ΣRi = Σoi ∪ Σf ∪ Σ′Ri.

3.3. Define the following renaming function

Ri : ΣN → ΣRi

where

Ri(σ) =

 σ, if σ ∈ Σoi

σRi , if σ ∈ Σuoi \ Σf

(2.5)

4. Compute automaton GRi = (XN ,ΣRi , fNi , (x0, N)) obtained from GN , by re-

naming its unobservable events according to equation (2.5), for i = 1, . . . , n,

i.e., fNi(xN , Ri(σ)) = fN(xN , σ), for all xN ∈ XN and σ ∈ ΣN .

5. Compute the verifier automaton

GV = GR1‖GR2‖ . . . ‖GRn‖GF (2.6)

6. Verify the existence of a cyclic path cl = (ykV , σk, y
k+1
V , σk+1, . . . , σ`, y

k
V), where

` ≥ k > 0 in GV , that satisfy the following condition:

∃j ∈ {k, k + 1, . . . , `} such that, for some

yjV , (y
j
l = F) ∧ (σj ∈ Σ) (2.7)

If the answer is yes, them L is not codiagnosable with respect to Poi and Σf .

We present the necessary and sufficient condition for codiagnosability of DES pro-

posed in [57] as follows.

Theorem 2.1 [57] Let L and LN be (LN ⊂ L) the prefix closed languages generated

by G and GN , respectively, and let Σf be the set of failure events. Then, L is not

diagnosable with respect to Poi : Σ? → Σ?
oi

, i = 1, . . . , n, and Σf if, and only if, there

33

exists a cyclic path cl := (ykV , σk, y
k+1
V , ..., ylV , σl, y

k
V), where l ≥ k > 0, in V , that

satisfies the following condition:

∃j ∈ {k, k + 1, . . . , `} s.t. for some yjV , (y
j
l = F) ∧ (σj ∈ Σ), (2.8)

The construction of verifier automaton is illustrated in the next example.

Example 2.10 [57] Consider the automaton G shown in Figure 2.15. Consider

a failure diagnosis system composed by two diagnosers, diagnosers 1 and 2, that

observe part of the system, characterizing a decentralized diagnosis system. We

need to verify the codiagnosability of L(G) with respect to Poi, i = 1, 2 and Σf ,

where Σ = {a, b, c, y, σf}, Σo1 = {a, b}, Σo2 = {a, c}, Σuo = {y, σf}, and Σf = {σf}.
Following the steps of Algorithm 2.1, we can obtain an automaton that verify if

L(G) is codiagnosable. First, we obtain automaton GN by computing the parallel

composition between automata G and ANl , i.e., GN = G‖ANl . Automata ANl and

GN are shown in Figures 2.16 and 2.17, respectively. After that, we need to obtain

automaton GF by performing the parallel composition between automaton G and

label automaton Al, and then mark all states labeled with F and take the coaccessible

part of Gl = G‖Al, GF = CoAc(Gl). Automaton Al has already been presented in

Figure 2.12 and automaton GF is shown in Figure 2.18.

After we obtain automata GN and GF , we need to obtain automata GR,1 and

GR,2, from GN , by renaming the unobservable events in the sets Σuo1 \ Σf = {c, y}
and Σuo2 = {b, y}, respectively. Automata GR,1 and GR,2 are shown in Figures

2.19 and 2.20, respectively. Finally, we obtain the verifier by computing the parallel

composition between automata GR,1, GR,2 and GF , i.e., GV = GR,1‖GR,2‖GF . Due

to the size of GV , Figure 2.21, shows only the part of GV that corresponds to the

trace that satisfies the Condition 2.7, therefore implying that the language generated

by G, L(G), is not codiagnosable with respect to Poi and Σf .

2.6 Final remarks

The goal of this chapter was to present the main definitions and concepts of SED

modeled by automata. Notions of languages and operations of automata such as

parallel and product compositions were introduced. In addition, the main concepts

34

1 2 3

4 5 6 7

a

b c a

σf

b, c
a, c

y

G

Figure 2.15: Automaton G of example 2.10

N Σ \ {σf}
AN

l

Figure 2.16: Automaton ANl

1N 2N 3N
a b, c

a, c
GN

Figure 2.17: Automaton GN

1N 2N

4F 5F 6F 7F

a

b c a

σf

y

GF

Figure 2.18: Automaton GF

1N 2N 3N
a b, cR1

a, cR1

GR1

Figure 2.19: Automaton GR1

1N 2N 3N
a c, bR2

a, c
GR2

Figure 2.20: Automaton GR2

35

1N1N1N 2N2N2N 2N2N4F 3N2N5F

3N3N6F 3N3N7F

a σf b

c

a
y, cR1

3N3N5F

bR2

GV

Figure 2.21: Verifier automaton GV

of failure diagnosis of SED, as well as, an algorithm to verify the codiagnosability

of a language have also been presented.

36

Chapter 3

Communication Networks Subject

to Delays and Losses

The introduction of communication among computers had a deep influence in the

organization of computer systems. The old model of a single computer serving

all computational needs of a system has been replaced by the so-called networked

computers, in which the tasks are performed by a large number of computers working

separately but interconnected [60].

In spite of making the communication of large systems, communication networks

have introduced problems such as communication delays and loss of information.

Time delays come from computation time required for coding physical signals, com-

munication processing and network traffic time, while losses of information come

mainly from the limited memory in the devices, network traffic congestion in the

network and drop out packets. Delays can be constant, random, bounded and de-

pend on the network. Due to the asymmetry of delays, the performance of the

system degrades, causing loss of data and out-of-order receptions [61, 62].

The problem of communication delay and losses of information in network com-

munications is known in literature, and there are several works that address this

problem [63, 64, 65], as well as the problem of out of order receptions [66, 67]. In

this chapter, we present the main reasons for the existence of delays and losses.

We also present a communication protocol, architectures and some specifications of

communication networks.

This chapter is structured as follows. In Section 3.1, the structure of a network is

37

presented, and we describe the main communication protocols, the types of network

and a few network devices. In Section 3.2, the main causes of delays, losses and

out-of-order reception are presented. After that, in Section 3.3 we analyze some

features of networks that contribute to problems such as delays and losses. Finally,

in Section 3.4, we review the main concepts presented in this chapter.

3.1 Communication networks

According to [60], a computer network stands for a set of autonomous and inter-

connected computers. Two or more computers are interconnected if they exchange

information through some physical medium, such as copper wires, optic fiber, etc.

Communication networks arose from the necessity to interconnect computers, pro-

grammable logic controllers (PLC), and other industrial devices that are used inde-

pendently. This network interconnection allows data sharing and provides a secure

and accurate information to users.

Since the main application of communication networks is in industries, a robust

communication system against typical characteristics of industrial environments,

such as, hostile environments, electromagnetic interference, real-time characteristic

and a safe and reliable network is necessary. Those aspects have motivated the

ongoing research for new techniques and methods to establish such communications.

Usually, industrial plants are complex and distributed, and the amount of devices

needed to interconnect them is large. Thus, in order to the communication among

these devices to work properly, we need to use a standard model of network commu-

nication called OSI (Open System Interconnection) model. This model allows the

standardization of protocols and, consequently, it improves the compatibility among

devices of different systems, allowing the integration among components of the sys-

tem. After we understand how the communication among devices is executed, it

becomes easier to understand the main causes of delays and losses in the network

communication and also the problem of out-of-order reception.

38

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Application protocol

Presentation protocol

Session protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

Host A Host B

1

2

3

4

5

6

7

Figure 3.1: OSI model.

3.1.1 OSI model

OSI model, shown in Figure 3.1, is a multilayer architecture proposed by the Inter-

national Standards Organization, where seven different layers are used to manage

data communication in a network. This model is also called reference model because

other communication architectures have been created based on the OSI model. Each

layer has a defined goal and is described as follows, starting from the bottom layer

of Figure 3.1 [60].

Layer 1 - Physical. This layer describes the physical devices used in the

transmission of raw signals (electrical, electromagnetic or lights). Cables

(UTP, optic fiber, etc), repeaters and connectors belong to this layer. The

network must ensure the correct transmission of data, i.e., when a host sends

bit 1, the destination host must also receive bit 1. This is ensured by the

physical layer.

39

Layer 2 - Data link. The data link layer is responsible for the flow control

(reception and transmission), for identifying the origin and destination of data

through the Media Access Control address (MAC), and to correct possible

errors occurred during the transmission by the physical medium. The physical

devices that belong to Data link layer are: network board, bridge, access point,

and switch. The protocols CSMA/CD, token passing (revisited in section 3.3),

and several network technologies (Ethernet, Token ring, IEEE 802.11, etc)

belong to this layer.

Layer 3 - Network. Devices and protocols for interconnecting several net-

works are placed in this layer. It is responsible for controlling the traffic of

information in the network routing the messages from the origin to the desti-

nation.

Layer 4 - Transport. This layer provides methods and techniques that

allow the communication between origin and destination, so that, if a message

is sent by an origin host, then, it is received in the destination. In this layer,

the messages are divided in packets (packet is a set of hundreds of bits) in order

to send through the network to the destination. Each packet receive a control

number in the moment of sending, and when they arrive in their destiny, the

receiver can reordering the packets. The transport layer is also responsible for

end-to-end communication, messages exchange between emitter and receiver,

and corrections of some errors in packets.

Layer 5 - Session. The session layer allows users of different hosts to establish

communication between them. A session provides several services, such as,

communication control (it controls whom should transmit the message at each

time), management of signals (avoiding that two devices try to execute the

same operation at the same time), and synchronization.

Layer 6 - Presentation. This layer transforms messages of different for-

mats in a single generic format in order to make possible the communication

among different hosts. This kind of transformation includes procedures such

as cryptography and compaction.

40

Application

Presentation

Session

Transport

Network

Data link

Physical

Services

Formatting and
encoding data

Allocation of resources for
application and synchronization

Information transfer

Routing information

Structuring, access and
error checking

Transmission of
binary data

Example

Eletric signal and
telephone line

Voice conversion in
modulated signal

Communication system

Telephone central

While a person speaks,
another one is listening

Common language

Subject to be treated

Figure 3.2: Resume and application of OSI model.

Layer 7 - Application. The application layer has protocols that execute

user tasks such as transference of files. An application protocol widely used

is the HTTP (HyperText Transfer Protocol), that is the base for the World

Wide Web.

The description and an example of the characteristics of OSI model is shown in

Figure 3.2.

In the communication network, there are two approach to transmit information:

circuit switching and packet switching. The difference between them will be detailed

in the next subsection.

3.1.2 Circuit switching and packet switching

In circuit switching networks, the necessary resources to provide the communication

among devices (buffer, transmission rate, etc), are reserved and used during the

period of transmission. This kind of network is also called deterministic network,

where the information is transmitted in a given interval of time. Thus, the response

time becomes known, and problems such as delays and losses can be avoided. In

packet switching networks, the resources are not reserved, i.e., the messages are

transmitted when the resources are available. This kind of network is also called

probabilistic network, where there is no knowledge about time of transmission, and

41

the information may even not be transmitted.

In order to better understand the difference between both approaches, consider

the following analogy. Suppose two restaurants, one that requires reservations and

another one that does not accept reservations. If we want go to the first restaurant,

we need to make a reservation; however, in general, when we arrive there, we will

be served immediately. In the other case, although, we do not need to make a

reservation, when we arrive there, we may have to wait to be served or, if the

restaurant is crowded, we will not be served at all. In a packet switching network,

if a packet is sent and the data link is not available, it needs to wait in a buffer,

and, thus, its transmission will be delayed. In a circuit switching network, when the

devices need to communicate, a dedicated connection between them is formed and

problems of delays and losses are avoided.

The devices of a network store and resend the packets. They need to store the

whole packet before starting to resend the message to its destination. Thus, the

devices present a storage and resending delay. In addition, each device has a buffer,

also called queue, where packets that are ready to be resent are stored. The buffer

is an important resource because if the data link is busy, the packet needs to wait

there; thus, besides storage and resending delay, the packets are subject to queue

delays in the buffer. Since the buffer is finite, it can be full when a packet is arriving.

Thus, the packet will be discarded. Revisiting the analogy of restaurants, the queue

delay is similar to time spent to be served by the waiter and the packet loss is similar

to not being served because the restaurant is crowded [68].

The main devices that are in most of the communication networks and are re-

sponsible for delays and losses cited above are described in the next subsection.

3.1.3 Components of a network

In a distributed networked system, all devices must be connected in the network. In

order to do so, several equipments are necessary, such as repeaters, bridges, routers

and gateways.

• Repeaters. Devices that amplify signals in order to retransmit it to remote

devices.

42

• Bridges. This kind of device connects two networks that have different electri-

cal and protocols characteristics. For example, suppose that there is a network

segment connected in bus topology (network topologies will be discussed in de-

tails in Section 3.3), and another segment connected in token ring topology.

The direct connection between them is not possible because they have different

rules and protocols, thus, they cannot communicate without a “interpreter”.

In this situation, the bridge translates the information from bus topology to

token ring topology and vice-versa.

• Routers. Devices used to define a path in order to transmit information

packet among different networks.

• Gateway. This device connects different networks, manages collisions, and

translates protocols.

In a communication network, the information travels from the origin host to its

destination crossing several devices such as those cited above. Thus, one of the

main reasons of delays and losses in networks, is the time spent by the information

to cross each device until it reaches its destination. In the next section we describe

the main types of delays that occur in a network.

3.2 Delays and losses

In an ideal configuration, the communication network executes the information

transference instantaneously and without losses. However, this condition is impossi-

ble in real networks since, in general, a network consists of several equipments, with

different transmission rates, mediums of transmission, and topologies. In addition,

complex plants usually have a distributed architecture, and so, their devices are

placed far from each other. These characteristics contribute effectively to generate

delays and losses of information in the communication among devices.

In a communication network, the information is divided into packets, and then,

these packets are transmitted to the destination node. When a packet is transmitted

by a node, it passes through several devices, e.g. routers, bridges, hubs or gateways.

Along the way, the packet is subject to several types of delays and losses. The main

43

Computer 2

Computer 1
Router A Destination

Nodal processing Queue
(waiting for
transmission)

Transmission

Propagation

Propagation

Figure 3.3: Types of delays of a network communication.

types of delays are: nodal processing delay, queue delay, transmission delay and

propagation delay, and the losses can occur because of collisions in the data link or

because the buffers of devices are crowded [68].

In order to facilitate the understanding of the main types of delays generated in

a network, let us consider the scheme of a small network shown in Figure 3.3, which

represents the communication of packets sent by computers 1 and 2 through router

A, until the final destination.

In a communication network, when a packet is sent by the computer, it takes

some time to arrive at the router. After that, the router identifies the packet des-

tination and, then, the packet is sent to its destination. Notice that, during this

procedure, a queue is formed at router A. The transmission of a packet is possible

only if the physical medium is available, and if the packet is the first element of the

queue. Otherwise, the packet that arrives in the router is added to the end of the

queue. We describe, in the sequel, the possible causes of communication delays in

the network.

• Processing delay. It is the time that the router takes to identify the packet

destination and to effectively send it. The time to verify possible errors in the

packets are also included in the processing delay. The processing delay in high

speed devices are in the order of milliseconds.

• Queue delay. The queue delay occurs when a packet waits in the queue to be

44

transmitted, and depends on the length of the queue in the device. If the queue

is empty, and there is no packet being transmitted at that moment, then the

packet is transmitted immediately, and, consequently, the queue delay will be

zero. Otherwise, the packet will wait in the queue, until it can be transmitted.

Queue delays are in the order of milliseconds.

• Transmission delay. The transmission delay is the time spent by a router

to send the whole packet. Suppose that a packet with K bits is sent with a

transmission speed of T bits/s. Thus, the network will finish transmitting this

packet after K/T seconds. Typically, the transmission delays are in the order

of micro or milliseconds depending on the length of the packets.

• Propagation delay. After a packet is sent through a network, it propagates

by the physical medium until it arrives at the destination. The packet prop-

agation takes a certain amount of time, and it is called propagation delay.

The speed of propagation is related to the physical medium where the packet

propagates, and thus, the propagation delay is different according to physical

medium and the distance that the devices are placed. The propagation delay

is in the order of milliseconds.

The difference among the types of delays generated in a communication network

can be understood as follows. The transmission delay is the amount of time that a

device needs to send the whole packet. This time depends on the length of packet

that will be transmitted and on the transmission rate of the network, while the

propagation delay is the time that a bit of a packet takes to propagate from a device

to another one. This delay depends on the distance between the devices and the

rate of transmission.

In order to understand better the difference between transmission and propaga-

tion delay, consider the following analogy. Suppose a highway with some toll booths

and a convoy of cars crossing them as shown in Figure 3.4. Now, imagine that the

toll booths are routers and the part of highway between toll booths is a data link.

Suppose now that, the convoy of cars is a packet and a car of the convoy is a bit.

Thus, when the convoy arrives at the toll booth, each car needs to cross it; thus,

the convoy will spend a certain amount of time to completely cross the toll . This

45

. . .

Convoy of car
Toll Toll

Figure 3.4: Convoy analogy.

time is analog to the transmission delay in a router. After the car crosses the toll, it

goes to the next toll booth. The time spent by the car to reach the next toll booth

is analog to the propagation delay.

The queue delay depends on the length of the queue. For example, if several

packets arrive in an empty queue, the first packet will be transmitted without delay,

while the last one will be subject to delay. The length of the queue depends on

the speed, rate and nature of transmission in data link. The nature of transmission

means that the packets can be sent in different ways: intermittent or continuous.

Let us revisit the analogy represented in Figure 3.4. If several convoys arrive in the

toll booth, they will form a queue to cross the toll booth. Thus, the queue delay

of the last convoy of the queue is longer than the first one. Another factor that

contributes to the queue delay is the relationship between the speed of arrivals and

departures of packets in routers, so that, if the speed of arrival is greater than the

speed of departure, the queue delay will increase. However, the capacity of a queue

is limited, i.e., if a packet arrives in a router and it finds the queue full, the router

will discard it. In other words, the packet will be lost. Another reason for the loss of

packets is the possibility of packets collisions in the network. Revisiting the analogy

of car convoy again, suppose that two or more cars of a convoy are involved in a hit;

thus, this convoy will not be able to reach its destination.

The number of lost packets in a network is related with the intensity of data

traffic. Thus, a measure of the performance of a network can be obtained by using

the probability of packet loss. It is important to remark that, in some protocols,

a lost packet can be retransmitted in order to guarantee that all information is

transferred to the destination.

The problem of communication delays and losses is an important aspect of a

communication network. One of the consequences of communication delays in a

46

network, is that the packets can be received in an order different from the order

they were originally sent. In order to understand better this situation, consider two

convoys that depart from different places to the same destination. Assume that a

convoy departed first, but the highway where it travels has many toll booths and

congestion, and the highway of the second convoy has fewer toll booths and is free.

Thus, even when the distance from origin to destination of the second convoy is

larger, the second convoy may arrive at the destination first before the first convoy.

Due to it, there is a lot of investment in researches and new techniques to solve these

problems.

A complex communication network is, usually, composed of several subnetworks

with different characteristics, such as, transmission rate, topologies, transmission

medium, communication technology and access algorithms, and these specifications

contribute to problems such as delays and losses of information. In the next section,

these specifications are described.

3.3 Specification of a communication network

Specification of a communication network is a set of parameters used in order to the

communication network work correctly. Typically, these parameters are: transmis-

sion rate, physical network topology, physical transmission medium, communication

technology and network access algorithms [69]. We explain in the sequel each one

of these parameters.

• transmission rate. The transmission rate is the amount of information that

a communication channel or a device can transmit in a period of time. It is

also called throughput, and can be measured in kilobits per second (kbps) or

bits per second (bps). This parameter depends on the transmission medium

and the devices of the network. Let us consider a communication between two

devices and suppose that device 1 sends a message to device 2 and that the

transmission rate of device 1 is greater than the transmission rate of device

2. As a consequence, device 2 will receive the information faster than it can

transmit. Then, this situation can lead to data congestion in the network and

the buffer of device 2 can become full, which can make the information be

47

delayed or lost.

• Physical network topology. Several systems consist of many devices in-

terconnected. In order to connect a lot of devices in a network, the notion

of topology must be introduced. Topology is a layout that determines how

the devices will be interconnected. It can be described as physical or logic.

Physical topology is the real connection among devices, i.e., how wires and

devices are connected, whereas logic topology is related to the information

flow through the network. The most common topologies are: peer-to-peer,

bus, ring, star, and tree. Each of these topologies is detailed below.

Peer-to-peer. This topology provides communication between two or

more devices which can be used as routers in order to improve the com-

munication. Peer-to-peer topology is commonly used in temporary con-

nection, for example, the communication between a computer and a PLC

in order to execute some temporary activities. Peer-to-peer topology is

illustrated in Figure 3.5.

PLC

Devices

A B C D

Conection Peer-to-peer between devices

Figure 3.5: Peer-to-peer topology.

Bus. In bus topology, the physical communication medium is shared

by all peripheral devices and controllers. It is widely used in industrial

plants due to its capacity of expansion. Another characteristic of bus

topology is that it works by diffusion (broadcast), i.e., a message sent by

a computer arrives in all devices in the network. On the other hand, the

disadvantage of this topology is that, if a large number of computers are

connected in the network, its performance (velocity, collision, traffic) is

48

deteriorated. The bus topology is illustrated in Figure 3.6.

PLC

A B C D

E F

Devices

Figure 3.6: Bus topology.

Ring. The ring topology is similar to the peer-to-peer architecture where

the devices are connected in a cyclic path, with the last device connected

to the first one. The information passes through the devices in the ring

until it reaches its destination. A disadvantage of this topology is that,

if we want to introduce another device in the network or if a failure in

one of the nodes occurs, the whole connection is interrupted and the

communication is stopped. Although the ring topology is more reliable

than the peer-to-peer topology, it has low capacity of expansion because

of the increase in transmission delay. This topology is shown in Figure

3.7.

Star. In star topology, the devices are connected by a central equipment

that is capable of managing the communications between them. If a

failure occurs in the central node, the whole network will be affected

and the communication will stop. Otherwise, if a failure occurs in some

peripheral nodes of the network, it will not affect the whole network. This

topology is illustrated in Figure 3.8.

Tree. The tree topology is an architecture where devices are organized

in a hierarchical way. In this topology, there is only one path connecting

the nodes, thus, if any connection is lost, then, the communication is in-

terrupted. Industrial systems are examples of networks in tree structure.

This topology is shown in Figure 3.9.

49

PLC

A

B

C

E

F

Devices

D

Figure 3.7: Ring topology.

• Physical transmission medium. There are two types of communication

mediums: physical wire and wireless technology. The physical wires can be

divided in two kind of wires: copper wire or optic fiber. Cooper wires can

be coaxial or twisted pair cables, where the signal is transmitted by electric

impulses while in optic fiber the signal is transmitted by light signals. A

coaxial cable is constructed with two concentric cooper wires and a special

shield that provides isolation from the environment. Thus, this wire supports

electromagnetic interferences [69]. The twisted pair cables are made by four

pair of copper wire twisted with each other. They are twisted in order to

reduce electromagnetic interferences from similar cables around them and are

widely used in several kinds of communication networks. In general, twisted

pairs are cheaper than coaxial cable and have low cost of maintenance. The

optic fiber is a cable that transmits light, not electrical signal; thus, it is

not subject to electromagnetic interferences. However, optic fiber cables are

very expansive due to their complicated manufacturing process. In order to

transmit information, an optic transmitter is used in the origin host to convert

the electrical signal to light one, that is sent through optic fiber until a receiver

that executes the inverse process. Usually, a fiber optic cable consists of a pair

of fibers: (i) a fiber that transmit the information in a way and, (ii) another

one that transmits the information in opposite way.

50

PLC

A

B

C

E

F

Devices

D

Central
Station

Figure 3.8: Star topology.

PLC

A B

C E F

Devices

D

Figure 3.9: Tree topology.

Wireless communications are good alternatives in places that it is not feasible

to implement copper cables or optic fibers. The transmission medium used to

transmit signals using wireless network are known as infrared, microwaves and

radio frequency.

The transmission medium is an important aspect in a network and must be

taken into account when we want to work with delays and losses. In complex

networked systems with several environments and several types of signals, it is

natural that the network is composed by many types of transmission medium.

Thus, it contributes for the increasing of delays and losses in a network.

51

The communication physical medium can be used in three different ways:

simplex, half-duplex and full-duplex.

Simplex. The data link is used only by one of two directions of trans-

mission, as shown in Figure 3.10.

Station A Station B

Figure 3.10: Simplex mode

Half-duplex. The data link is used in both directions, but not simulta-

neously. It is illustrated in Figure 3.11.

Station A Station B

Figure 3.11: Half−duplex mode

Full-duplex. The data link is used in both directions simultaneously. It

is illustrated in Figure 3.12.

Station A Station B

Figure 3.12: Full−duplex mode

• Communication technology. The communication technology is responsible

for the management of the communication between devices in the network

(nodes) [69].

Master/Slave. In a master/slave system, there is a station called mas-

ter that has the right of transmission. The master has the capacity of

passing the transmission rights to the slave stations. Thus, in this con-

figuration, the system becomes dependent on the central station. Slaves

are simple devices (input/output devices, valves, transducers, etc.), that

receive information directly from the master. A slave is connected only

with its master, so that, it responds only to direct requests coming from

52

a determined master. In order to understand better the master/slave

technology, let us consider a classroom where a teacher is explaining a

determined lesson. Suppose that, at some point, a student has a ques-

tion. Then, when the teacher finishes his explanation, he gives the right of

speaking to the student. When the student finishes, the right of speaking

returns to the teacher. In this analogy, the teacher represents a master

device and the student represents the slave. The master/slave structure

can be divided in single-master or multi-master.

Single-master. In this structure, there is only one master in the

system. In general, a CPU or a PLC are central devices that work

as masters, while slaves are connected in a decentralized way in the

system.

Multi-master. There is more than one master in this structure, so

that, all masters can read the information of the system. It is impor-

tant to remark that a slave can only be controlled by one master.

Producer/consumer: In this technology, there is an origin and a des-

tination identifier in the information which allows the data to reach the

specified destination. In addition, all nodes of the network can be syn-

chronized. Thus, multiple nodes (producers) can transmit data to other

nodes (consumers), and a node that is a producer, in a specific moment,

can assume the role of consumer in another moment.

• Network access algorithms. The access algorithms are used by devices in

order to access the information from the network or to send some message.

The most used algorithms to access the network are CSMA/CD and Token

passing [69].

CSMA/CD (Carrier Sense Multiple Access/Colision Detec-

tion). The algorithm CSMA/CD is a media access control that a device

transmits when it detects an available data link. When two or more de-

vices try to transmit at the same time, a collision can occur. When a

collision occurs, the devices receive an information that the data did not

arrive at its destination, and then, the transmission is interrupted. After

53

that, each device waits for a random time interval before resending the

information. This access algorithm tries to guarantee that the message

will arrive at its destination by resending when necessary; however the

retransmission is aborted if there are numerous collisions and the infor-

mation does not arrive to its destination. Therefore, although CSMA/CS

decreases losses of packets, it does not avoid losses of information com-

pletely. In addition, the CSMA/CD increases the communication delays

and the possibility of out-of-order reception due to retransmission time.

Token Passing. Token passing algorithm is used, in general, in ring

topology. This algorithm indicates the direction that the token circulates

and, in case a device wants to transmit an information, it has to pick

up this token and replace it by the message. Then, after finishing the

transmission, the device recovers the token, thus allowing another device

to access the network. This access algorithm eliminates the possibility

of collisions, however, a station wishing to transmit must wait for the

token, increasing the communication delay. Since the token needs to

pass through every device of the ring in a cyclic way, the messages can

be sent out of its original order of occurrence.

3.4 Final remarks

The main goal of this chapter is to present the main reasons of delays and losses

in communication networks. In order to do so, we presented the basic structure of

networks used for establish the communication between several devices of a system.

In addition, we made a detailed explanation of the main types of delays and losses,

as well as, the network characteristics that contribute for these problems, which is

the central problem addressed in this work.

54

Chapter 4

Codiagnosability of Networked

Discrete Event Systems

After we have seen the basic concepts of discrete event systems theory and the main

reasons for the occurrence of delays and losses in communication networks in the

previous chapters, we will address now the problem of failure diagnosis of networked

DES subject to delays and losses of event observation. An important consequence

of communication delays to diagnosis systems is the possibility of reception of data

by diagnosers in a different order from its original order of occurrence in the plant.

In order to analyze the network codiagnosability of discrete event systems, this

chapter is divided as follows: in Section 4.1, we formulate the problem of decentral-

ized diagnosis of networked DES subject to delays and losses of event observation.

In Section 4.2, we present an algorithm to obtain the automaton that models all

possible delays in the communication of events to local diagnosers, and prove the

correctness of this algorithm. In Section 4.3, we review the problem of intermittent

loss of observation, in particular, the Dilation operation, which is the main tool to

model intermittent losses of event observation. The final model of a plant subject to

delays and losses of events is presented in Section 4.4. In Section 4.5, we introduce

the definition of network codiagnosability. In Section 4.6, we propose an algorithm

for the verification of the network codiagnosability of a language generated by a

DES and based on the verification automaton, we present a necessary and sufficient

condition for network codiagnosability. The complexity of the algorithm for verifica-

tion of the network codiagnosability is presented in Section 4.7. Finally, in Section

55

4.8, remarks are presented in order to summarize the contributions of this chapter.

4.1 Problem formulation

In general, different sensors in distributed systems do not share the same commu-

nication channel. This is so because, either the measurement sites are far away

from each other, or a single communication channel may not have enough capac-

ity to transmit all data from a measurement site to a local diagnoser. Thus, the

implementation of several communication channels between measurement sites and

diagnosers is, in general, necessary in network-controlled systems.

In this work, we introduce a network decentralized diagnosis scheme for a dis-

tributed plant with different measurement sites MSj, j = 1, . . . ,m, where each

measurement site MSj reads the signals associated with a subset ΣMSj ⊂ Σo of the

observable events of the system. In this scheme, events of ΣMSj are communicated

to a local diagnoser LDi, i = 1, 2, . . . , n, by an exclusive communication channel

chij, i.e., only the events detected by measurement site MSj can be communicated

through channel chij between measurement site MSj and local diagnoser LDi. Let

us denote the set of events communicated to the local diagnoser LDi, through com-

munication channel chij, as Σoij ⊆ ΣMSj . It is important to remark that if the

communication channel chyx, between a measurement site MSx and a local diag-

noser LDy, does not exist, then Σoyx = ∅. Thus, the set of observable events of LDi,

Σoi , is given by:

Σoi =
m⋃
j=1

Σoij . (4.1)

It is important to notice that Σo =
⋃n
i=1 Σoi . In Figure 4.1, we show the network

decentralized diagnosis scheme proposed in this thesis for a distributed plant with

four measurement sites and two local diagnosers. Notice that measurement site

MS1 is capable of communicating to local diagnoser LD1 through channel ch11

only the events in Σo11 ⊆ ΣMS1 , and that measurement site MS3 communicates

the events in Σo13 ⊆ ΣMS3 and Σo23 ⊆ ΣMS3 to local diagnosers LD1 and LD2,

respectively, through communication channels ch13 and ch23. It is important to

remark that in the network architecture proposed in this work, a measurement site

can transmit a different set of observable events for different local diagnosers, which

56

implies that, in the example depicted in Figure 4.1, Σo13 can be different from

Σo23 . The communication between measurement sites and local diagnosers through

Local Diagnoser 1

ch12
Σo23

Σo24

ch23
ch24

Plant

Coordinator

Σo11

Local Diagnoser 2

ch11
Σo12

MS1 MS2 MS3 MS4

Σo13

ch13

ΣMS1
ΣMS2 ΣMS3

ΣMS4

Bus

Σ = ΣMS1
∪ ΣMS2

∪ ΣMS3
∪ ΣMS4

Figure 4.1: Network decentralized diagnosis architecture.

a communication network can introduce two problems for the failure diagnosis as

follows: (i) delay in the communication of an event occurrence to a local diagnoser;

and (ii) loss of data transmitted through communication channels. When either one

of the situations above occurs, the diagnoser may send a wrong diagnosis decision to

the coordinator, and then, the implemented diagnosis scheme is no longer reliable.

Regarding event communication delays, we make the following assumptions:

A1. The delay in the communication of an event σ ∈ Σo is measured by steps [48],

where one step is the occurrence of an event, i.e., the delay is measured by

the number of events that are executed by the plant after the occurrence of σ

and before its observation by a local diagnoser.

A2. The event communication delays are bounded.

A3. The communication channels follow first-in first-out (FIFO) rule as far as

sending and reception are concerned.

A4. There is one and only one channel chij between measurement site MSj and

local diagnoser LDi, and the maximum communication delay of channel chij,

denoted by kij, is previously known. If a channel chyx does not exist, then by

convention, kyx = 0.

57

Assumptions A1–A4 can be justified with the help of Chapter 3, as follows. The

information travels by the network and it is subject to different types of delays. The

total delay is the sum of all delays that the information is subject. However, since

the system is modeled by non timed automata, time counting becomes complicated.

Thus, we define delays in the classical way in Assumption A1. As we saw in Chapter

3, delays are finite, thus, we assume that the delays are bounded as defined in

Assumption A2, infinite delays are accounted for assuming by the loss of packet.

When a device sends a message, a communication protocol is used. Usually,

protocols like OSI guarantee the correct order of reception between origin and des-

tination; thus, Assumption A3.

Assumption A4 considers that the network has been tested exhaustively in order

to find the time of the delay. Besides that, based on the concepts of network, we

consider that there is only one channel connecting a MSj to LDi.

A5. The event sets ΣMSi and ΣMSj are disjoint for all i, j ∈ {1, 2, . . . ,m}, i 6= j.

Regarding loss of data in communication channels, we make the following assump-

tion:

A6. The loss of observation of events occur in the communication channels that

connect measurement sites and local diagnosers.

Therefore, according to assumption A6, the loss of observation of an event does not

change the plant behavior, but only the observation.

4.2 Model of the plant subject to communication

delays

In the system structure shown in Figure 4.1, data transmitted by a communication

channel, chip, can delay with respect to another communication channel chiq, where

p 6= q and p, q ∈ {1, 2, . . . , j}. As a consequence, in the communication of the events

to the local diagnoser LDi, they can be observed in an order different from their

actual occurrence in the system. Thus, in order to address the problem of failure

diagnosis in networked DES with communication delays, it is necessary to construct

58

automata Gi, i = 1, 2, . . . , n, that represent all possible ordering of observation by

the local diagnosers LDi of the traces executed by the plant.

To distinguish an event σ ∈ Σoij , that is transmitted from measurement site MSj

to the local diagnoser LDi through communication channel chij, from its observation

by the local diagnoser LDi, we create an event σsi , i.e., the transition labeled with

σ represents the occurrence of event σ in the plant, while that, transitions labeled

with σsi represent the success of observation of event σ by local diagnoser i. In this

regard, let

Σs
oij

= {σsi : σ ∈ Σoij}, (4.2)

denote the set of events that are observable by a local diagnoser LDi and corre-

spond to those observable events whose occurrence are recorded at MSj and are

communicated through channel chij, and let

Σs
oi

=
m⋃
j=1

Σs
oij
, (4.3)

denote the set of observable events that are successfully communicated to local

diagnoser LDi. Then, the following bijective function can be defined:

φi : Σs
oi
→ Σoi , (4.4)

σsi 7→ φi(σsi) = σ

The definition of φi can be extended to sets of events as

φi(Σ
s
oi

) =
⋃

σsi∈Σsoi

φi(σsi). (4.5)

In order to obtain an algorithm for the computation of the automaton models Gi,

i = 1, . . . , n, it is necessary to obtain automata Di, i = 1, . . . , n, that model all

possible delays in the communication of the events to local diagnoser LDi, according

to the delay bound of each communication channel that transmits the occurrence of

events to LDi.

Before we present the algorithm for the computation of Di, it is important to

present the following definition.

Definition 4.1 Let Σ = Σo∪̇Σuo. Define Σoν = Σo ∪ {ν} and the set of states Q,

where each state q ∈ Q is labeled with a trace s ∈ Σ?
oν. Then, the following functions

can be defined:

59

a. The replacement function rep is defined as:

rep : Q× N→ Q

where for all q = q1q2...q` ∈ Q,

rep(q, i) =

 q1q2...qi−1νqi+1...q`, if i ≤ `

undefined, otherwise.

b. The elimination function cut is defined as:

cut : Q→ Q

where for all q = q1q2...q` ∈ Q,

cut(q) =

 qiqi+1...q`, if (∃i ≤ `)[(qi 6= ν) ∧ (qk = ν,∀k ∈ {1, 2, ..., i− 1})]
ν, if qk = ν,∀k ∈ {1, 2, . . . , `}.

c. The measurement site index function ms is defined as:

ms : Σoν → {1, 2, ...,m}

where for all σ ∈ Σoν,

ms(σ) =

 j : if σ ∈ Σoij for some i ∈ {1, 2, ..., n}
undefined, otherwise.

�

According to Definition 4.1, function rep(q, i) replaces the i-th element of state

q with element ν. Function cut(q) eliminates the largest prefix of state q formed

only by elements ν, and function ms(σ) returns the index j which corresponds to

the measurement site (MSj) that detects the occurrence of event σ.

Algorithm 4.1 describes the construction of automaton Di, associated with local

diagnoser LDi, that models all possible delays in the communication of events to

LDi, from measurement site MSj, j = 1, 2, . . . ,m. Automaton Di will be referred

to as the communication delay model.

Notice that, Algorithm 4.1 can be divided in three parts: (i) initialization of

automaton Di, Steps 1− 4.2(b), where we define the initial state and the associated

transition functions; (ii) checking of how many events can occur in the plant, with

60

respect to communication delay kij, before one of them is observed, Steps 4.2(c) and

4.2(e), and; (iii) modeling of observation of the events by LDi, Steps 4.2(g) and

4.2(h). The correctness of Algorithm 4.1 will be ensured by Lemma 4.2.

Algorithm 4.1 Construction of automaton Di (Communication delay model)

Input: m, n, Σoij , kij, for i = 1, . . . , n, j = 1, . . . ,m.

Output: Di = (Qi,Σi, δi,Λi, q0i), i = 1, . . . , n.

For i = 1, 2, . . . , n

1: Define u0 = ν and Qi = ∅.

2: Construct Σs
oi

according to Equations (4.2) and (4.3), and define Σi = Σ∪Σs
oi

.

3: Create a FIFO (first in-first out) queue F and add u0 to F .

4: While F 6= ∅ do

4.1: u← F1, where F1 is the first element of the queue.

4.2: If u = u0

• For all σ ∈ Σ, compute:

(a) q̃ = δi(u, σ) =

 σ, if σ ∈ Σoi ;

u, if σ ∈ Σuoi .

(b) If q̃ 6= u, add q̃ to the end of the queue F

• Qi ← Qi ∪ {u}

• Define q0i = ν

• Remove element F1 from the queue F

Else

• Set ` = ‖u‖ and form set I` = {1, 2, . . . , `}

• Denote u = σ1σ2 . . . σ` and compute Iν = {y ∈ I` : (∃σy ∈ u)[σy =

ν]}

• Compute I`\ν = I` \ Iν
• For each σ ∈ Σoi:

(c) q̃ = δi(u, σ) =

 uσ, if ‖σyσy+1...σ`‖ ≤ ki,ms(σy),∀y ∈ I`\ν
undefined, otherwise

61

(d) Add q̃ to the end of the queue F if q̃ is defined

• For each σ ∈ Σuoi:

(e) q̃ = δi(u, σ) =

 uν, if ‖σyσy+1...σ`‖ ≤ ki,ms(σy),∀y ∈ I`\ν
undefined, otherwise

(f) If q̃ /∈ F , add q̃ to the end of the queue F

• For each Σs
oij

, where j = 1, 2, . . . ,m:

(g) Form set Y = {y : (σy ∈ u) ∧ (σy ∈ φi(Σs
oij

)}

(h) If Y 6= ∅ - Compute ŷ = min(Y) - q̃ = δi(u, φ
−1
i (σŷ)) =

cut(rep(u, ŷ))

(i) If (q̃ /∈ Qi) ∧ (q̃ /∈ F), add q̃ to the end of the queue F .

• Set Qi ← Qi ∪ {u}.

• Remove element F1 from the queue F .

5: For each qi ∈ Qi, Λi(qi) = {σ ∈ Σi : δi(qi, σ)!}

Before we present the correctness proof of Algorithm 4.1, we will first give an

example to illustrate the construction of automaton Di according to Algorithm 4.1.

Example 4.1 Let G, depicted in Figure 4.2, be the automaton model of a distributed

system where Σ = {a, b, c, e, σf}, and consider the network decentralized diagnosis

scheme depicted in Figure 4.3, which consists of two local diagnosers, LD1 and

LD2, and three measurement sites, MS1, MS2 and MS3. Let ΣMS1 = {a}, ΣMS2 =

{c} and ΣMS3 = {b, e}, be the sets of events that the measurement sites MS1,

MS2 and MS3, respectively, record. Assume that the set of observable events of the

local diagnoser LD1 is Σo1 = {a, c}. Thus, the occurrences of the events in Σo1

are transmitted through communication channels ch11 and ch12, which implies that,

Σo11 = {a} and Σo12 = {c}. Assume now that the set of observable events of LD2

is Σo2 = {b, c, e}. Thus, the occurrences of the events in Σo2 are communicated

through channels ch22 and ch23, and thus, Σo22 = {c} and Σo23 = {b, e}. Let σf be

the failure event, and assume that the delay bounds of the communication channels

are k11 = k23 = 1 and k12 = k22 = 0.

Notice that automaton G generates failure traces, sF1 = σfbc
n and sF2 = σfabec

n,

and normal trace, sN = bacn, where n ∈ N. Since the sets of observable events of

62

1

2 3

4 5

b

b
σf

a
c

c

a

G

6 7
b

8 c
e

Figure 4.2: Automaton G

LD1 and LD2 are Σo1 = {a, c} and Σo2 = {b, c, e}, respectively, and assuming

that the system works perfectly, i.e, there is neither observation delays nor losses of

events, the traces observed by LD1 are Po1(sN) = Po1(sF2) = acn and Po1(sF1) = cn

and the traces observed by LD2 are Po2(sN) = Po2(sF1) = bcn and Po2(sF2) = becn.

This implies that none of the local diagnosers can diagnose L(G) alone. However,

since LD1 diagnosis trace sF1, and LD2 diagnosis trace sF2, we conclude that the

system is codiagnosable.

Assume now that the system is subject to communication delays. Thus, in order

to consider the observation delays associated with LD1 we will construct automaton

D1 by following Algorithm 4.1 step-by-step. In the first step, variable u0 is defined

as ν and the set of states Q1 is defined as the empty set. In the second step, sets

Σs
o1

= {as1 , cs1} and Σ1 = {a, b, c, e, σf , as1 , cs1} are formed. In Step 3, queue F is

created and state u0 = ν is added to F . While queue F is not empty, the first element

of F is assigned to variable u according to Step 4.1, and, in Step 4.2 since u = ν,

transitions from ν will be defined for all σ ∈ Σ, as follows: δ1(ν, a) = a, δ1(ν, c) = c

and δ1(ν, σf) = δ1(ν, b) = δ1(ν, e) = ν as shown in Figure 4.4(a). Then, state ν

is defined as initial state, as illustrated in Figure 4.4(b). Next, states a and c are

added to the end of queue F , that is F = (ν, a, c) and state ν is added to set Q1, i.e,

Q1 = {ν}. In the second iteration, the first element of F is removed, and the queue

becomes F = (a, c). The first element of the queue is then assigned to variable u,

i.e, u = a, and since u is different from ν in Step 4.2, the length of u is computed

and assigned to variable `; thus set I` = {1} is formed. Then, sets Iν = ∅ and

63

LD1 LD2

Coordenador

Planta G

MS1 MS2 MS3

a c b

ch11 ch12 ch22 ch23

Rede

e

Figure 4.3: Network codiagnosis scheme of example 4.1.

I`\ν = I` are computed. Notice that, the condition in Step 4.2(c) and 4.2(d) check if

the length of the suffixes of u = σ1σ2 . . . σ`, is less than or equal to the delay of the

communication channel that transmits event σy for all y in I`\ν. Since for state a,

the condition in Steps 4.2(c) and 4.2(d) holds true, in Step 4.2(c), transitions from

state a are defined for all σ ∈ Σo1 as follows: δ1(a, a) = aa and δ1(a, c) = ac, as

shown in Figure 4.4(c), and in Step 4.2(d), states aa and ac are added to the end of

the queue F , i.e., F = (a, c, aa, ac). After this, transitions from state a are defined

for all σ ∈ Σuo1 = {b, e, σf}, following the condition of Step 4.2(e), as follows:

δ1(a, b) = δ1(a, e) = δ1(a, σf) = aν, as illustrated in Figure 4.4(d), and state aν is

added to the end of F in Step 4.2(f) which implies that F = (a, c, aa, ac, aν). To

finish this iteration, according to Steps 4.2(g) and 4.2(h), a transition from state

a labeled with as1 is created, i.e., δ1(a, as1) = ν, as illustrated in Figure 4.4(e).

Notice that, δ1(a, cs1) is undefined because c has not occurred yet. Then, state a is

added to set Q1, i.e., Q1 = {ν, a} and is removed from queue F , which becomes

F = (c, aa, ac, aν).

Step 4 will be repeated for all elements of queue F until it becomes empty. Thus,

according to Steps 4.2(g) and 4.2(h), the unique transition that can be defined from

64

ν

a

c

a

c

b, e, σf

D1

aa

ac

a

c

ν

a

c

a

c

b, e, σf

ν

a

c

a

c

b, e, σf

D1

aa

ac

aν

a

c

b, e, σf

ν

a

c

a

c

b, e, σf

D1

aa

ac

aν

a

c

b, e, σfas1 ν

a

c

a

c

b, e, σf

D1

aa

ac

aν

a

c

b, e, σfas1

cs1

ν

a

c

a

c

b, e, σf

D1

aa

ac

aν

a

c

b, e, σfas1

cs1

as1

as1

ν

a

c

a

c

b, e, σf

D1

aa

ac

aν

a

c

b, e, σfas1

cs1

as1

as1

cs1

as1

(a)

(c) (d)

(e) (f)

(g) (h)

ν

a

c

a

c

b, e, σf

(b)

D1

Figure 4.4: Construction of automaton D1 step-by-step.

65

ν b

bb

bν

b

a, σf
a, σf

D2

bc

b

cs2

c

c

bs2

c

bs2

cs2

e es2

e

be
e

bs2

bs2

bs2

ee

eν

a, σf

eb

b

ec

c

cs2

es2

e

es2

es2
es2

(b)

Figure 4.5: Automaton D2.

state c is δ1(c, cs1) = ν, as shown in Figure 4.4(f), since the delay in communication

channel ch12 is zero. Notice that a is the first element of the other states of F , namely

aa, ac, and aν. Thus, there is no feasible transition labeled with σ ∈ Σi according to

Steps 4.2(c) and 4.2(e), Since the maximum delay of communication channel ch11

that transmits event a is equal to one. Moreover, according to Steps 4.2(g) and

4.2(h), the only feasible event for states aa and aν is as1, which implies that the

new transitions from aa and aν that will be defined, are, respectively, δ1(aa, as1) = a

and δ1(aν, as1) = ν, as illustrated in Figure 4.4(g). Since event a belongs to ΣMS1,

and event c belong to ΣMS2, the feasible events of state ac are as1 and cs1. Thus,

transitions δ1(ac, as1) = c and δ1(ac, cs1) = aν are defined, as shown in Figure

4.4(h). Since no other state is created, queue F becomes empty and the algorithm

execution is ended.

In order to model observation delays for LD2, we need to construct automaton

D2 shown in Figure 4.5, which is constructed in a similar way as D1.

�

From algorithm 4.1, Lemmas 4.1 and 4.2 can be stated. However, before we state

the Lemmas, the projection Pi is defined as follows.

Notice that, from Algorithm 4.1, Σi = Σ ∪ Σs
oi

. Then, let us now define the

66

following projection:

Pi : Σ∗i → Σ∗. (4.6)

Now, the following results can be stated.

Lemma 4.1 Pi(L(Di)) = Σ?.

Proof: According to steps 4.2(g) and 4.2(h) there is always a transition from

state qzi to state qpi labeled by an event σsi ∈ Σs
oi

, where qpi is formed by replacing

the first appearance element φi(σsi) in qzi with ν (using the rep function), and by

eliminating the largest prefix formed only with ν (using the cut function). Notice

that, if the observed event φi(σsi) is not the first element of the trace registered in

state qzi, then ‖qpi‖ = ‖qzi‖; otherwise, ‖qpi‖ ≤ ‖qzi‖. In addition, when, after

φi(σsi), where φi(σsi) is the first element in qzi, there are either only ν elements or

‖qzi‖ = 1, then qpi = ν (initial state). Thus, from state qpi it is possible to reach

another state qxi by a transition labeled by an event σsi, where either σsi ∈ Σs
oi

and

φ(σsi) ∈ qpi, where (i) ‖qxi‖ = ‖qpi‖; (ii) ‖qxi‖ ≤ ‖qpi‖, or (iii) qxi = ν. Thus,

from state qzi, it is always possible to reach the initial state ν after at most ‖qzi‖
occurrences of events σsi ∈ φ−1

i (Σoi), which implies that there is a trace t ∈ Σs?

oi
,

such that, δi(qzi , t) = ν. This implies that, all states of Obs(Di,Σ) have the initial

state ν as one of its component. Since Γi(ν) = Σ, all states of Obs(Di,Σ) have Σ

as their feasible event set, which implies that L(Obs(Di,Σ) = Pi(L(Di)) = Σ?. �

Lemma 4.2 The language of automaton Di, L(Di), models all possible orderings

of observation of a trace s ∈ Σ∗ with respect to kij, for j = 1, . . . ,m, and Σoi.

Proof: The event set of Di is obtained by enlarging the event set of G so as to

make a distinction between event occurrences (plant event set Σ) and those actually

observed by the local diagnosers (Σs
oi

). In the first step of Algorithm 4.1, u0 = ν is

defined, which later will be assigned as the initial state of Di, and the set of states

Qi of automaton Di is defined as the empty set. In Step 2, set Σs
oi

is constructed in

order to define the event set Σi = Σ∪Σs
oi

of automaton Di. In Step 3, a FIFO queue

F is generated to store new states created along the algorithm and to ensure that

all states will be processed. The first state to be added to the queue is ν. The next

step, Step 4, will be executed until queue F becomes empty, meaning that all states

of Di have been created and visited. In Step 4.1, the first element of F is assigned to

67

variable u, in order to be processed. In the first run, u = u0, and so, only transitions

labeled with events in Σ = Σoi ∪Σuoi can be created: transitions labeled with σ ∈ Σoi

are created from state ν to state σ, or back to state ν if σ ∈ Σuoi; the former models

the possibility of occurrence of observable events for LDi and the state label informs

the sequence of observable events that has occurred, whereas the latter accounts for

the occurrence of unobservable events for LDi. After that, the created states are

added to the end of queue F to be processed later, element u is added to set Qi, the

initial state q0i = ν is defined, and ν is removed from queue F .

Let us consider the creation of states in Di according to Steps 4.2(c) and 4.2(e).

Let u = σyσy+1 . . . σy+n−2 be the current state of Di, and let ny denotes the delay

of the channel that communicates the occurrence of event σy to diagnoser LDi.

Let us assume that u ∈ Σ∗oν, and consider the problem of evaluating the possibility

of occurrence of an event σy+n−1 ∈ Σ before the observation of one of the events

that form u. According to Steps 4.2(c) and 4.2(e), this evaluation is made in a

recursive way through the suffixes of u. Thus, the condition holds true if, for all

suffixes of u whose first element is not ν, the delay nk of the first element σk is

bigger than the length of the suffix, and when this condition holds true, two new

states are created, namely, u′newn = σyσy+1 . . . σy+n−2σy+n−1, if σy+n−1 ∈ Σoi, and

u′′newn = σyσy+1 . . . σy+n−2ν, if σy+n−1 ∈ Σuoi. If the conditions of Steps 4.2(c) and

4.2(e) are not verified, σy+n−1 cannot occur before one of the events of u is observed.

Consequently, no other new state is created. Steps 4.2(c) and 4.2(e) guarantee that

the maximum delay of the communication channels will be respected in the creation

of the states of Di.

Let us now consider the creation of the transitions in Di labeled with events in Σs
oi

,

according to Steps 4.2(g) and 4.2(h). Assume, initially, that the elements different

from ν of u = σyσy+1 . . . σy+n−2 belong to different measurement sites. Thus, each

event φ−1
i (σk) ∈ Σs

oi
, where σk ∈ Σoi, for k ∈ {y, y + 1, . . . , y + n− 2}, is processed

separately. According to Step 4.2(g), set Y is formed for each set Σs
oij

. In this case,

Y = {k}, for k ∈ {y, y+1, . . . , y+n−2}. Then, in Step 4.2(h), the lowest value of set

Y is taken and the next state is computed by replacing the event on this position in

the label of u by element ν, and then, by applying the function cut, leading to states

uy = σy+1 . . . σy+n−2, uy+1 = σyν . . . σy+n−2, . . ., uy+n−2 = σyσy+1 . . . ν. Notice

68

that, from state u = σyσy+1 . . . σy+n−2, any event of u can be observed, and the

observation of this event lead to one of the states uy, uy+1 . . . , uy+n−2. Moreover,

from any of these states, another event can also be observed, leading to other states

until the initial state ν is reached. Thus, trace σyσy+1 . . . σy+n−2 can be observed in

all possible order of observation with respect to kij, for j = 1, 2, . . . ,m.

Assume now that some of the elements of state u belong to the same measurement

site Σoij . For instance, without loss of generality, let σy+k, σy+`, σy+p ∈ Σoij , (k <

` < p). This implies that φ−1
i ({σy+k, σy+`, σy+p}) ⊆ Σs

oij
. Then, in Step 4.2(g), set

Y = {y + k, y + `, y + p}, associated with Σs
oij

is formed. Thus, according to Step

4.2(h), the smallest element of Y , y + k, is taken, and the next state is computed

by replacing σy+k in u with element ν, and then, by applying the cut function. As a

result, the unique event of Σs
oij

that is feasible in u is φ−1
i (σy+k), and its occurrence

leads to state uy+k = σy . . . σy+k−1νσy+k+1 . . . σy+n−2. The procedure is repeated for

other sets Σs
oij

in a similar way. Thus, Steps 4.2(g) and 4.2(h) guarantee that all

possible observations of a trace are represented in Di, respecting the fact that the

communication channels are FIFO.

The procedure described above is repeated until no new state is created and queue

F becomes empty. Since, according to Step 4.2, the delayed observations are obtained

based on the suffixes of the trace executed by the system, respecting the maximum

delays of the communication channels, and all states q ∈ Qi, where Σ∩Λi(q) 6= ∅, are

such that Λi(q) = Σ, then automaton Di models all possible ordering of observation

of all traces s ∈ Σ∗ with respect to kij, for j = 1, . . . ,m, and Σoi.

�

It is important to remark that Steps 4.2(g) and 4.2(h) are important when there

are more than one event to be processed. Notice that, when more than one event of

u belong to set Σs
oij

, only the first occurred event is feasible to reach the new state

defined in Step 4.2(h). This condition is a direct consequence of Assumption A3,

which establishes that each communication channel follows FIFO rules, i.e., there

is no change in the order among events transmitted in the same communication

channel.

Remark 4.1 In [54], a nondeterministic model is proposed to represent the effects

of communication delays between local diagnosers in a distributed diagnosis archi-

69

tecture, assuming that there exists a unique delay bound k for all communication

channels between diagnosers. This model was called k-delaying&masking model.

It is worth remarking that, differently from [54], we address here the problem of

decentralized diagnosis using Protocol 3 of [30], assuming that each communication

channel between a measurement site and a local diagnoser can have different delay

bounds kij. The effects of these communication delays are captured by automaton

Di, computed according to Algorithm 4.1. It is also important to remark that, dif-

ferently from the k-delaying&masking model, the communication delay model Di

proposed here is deterministic. �

After the computation of automata Di, i = 1, . . . , n, we can obtain automata

Gi, i = 1, 2, . . . , n, that model all possible ordering of observation of the traces of

L by local diagnoser LDi due to communication delays, by performing the parallel

composition of automata G and Di, i.e.:

Gi = G‖Di = (Xi,Σi, fi,Γi, x0i , ∅). (4.7)

Notice that the observable event set of Gi is Σio = Σs
oi

and not Σoi , and its

unobservable event set is Σiuo = Σ, i.e., the occurrence of an event σsi ∈ Σs
oi

represents the successful observation of event σ ∈ Σoi by the local diagnoser LDi.

Since Gi = G‖Di, then the language generated by Gi is given by:

L(Gi) = Pi
−1(L(G)) ∩ L(Di), (4.8)

where Pi is the projection defined in Equation (4.6) and L(Di) denotes the language

generated by automaton Di.

Based on Algorithm 4.1, Equation (4.7), and Lemmas 4.1 and 4.2, we can state

the following theorem related to the observation of the language generated by Gi.

Theorem 4.1 The language generated by Gi, L(Gi), models all possible orderings

of observation of the traces of L(G) with respect to kij, for j = 1, . . . ,m, and Σoi.

Proof: Notice that, since L(Gi) = Pi
−1(L(G)) ∩ L(Di), then

Pi(L(Gi)) = Pi[P
−1
i (L(G)) ∩ L(Di)] ⊆ L(G) ∩ Pi(L(Di)). (4.9)

Now, we will prove that

L(G) ∩ Pi(L(Di)) ⊆ Pi[P
−1
i (L(G)) ∩ L(Di)]. (4.10)

70

In order to do so, let µ ∈ L(G) ∩ Pi(L(Di)). Then, there exist languages K1 ⊆
P−1
i (L(G)) and K2 ⊆ L(Di) such that Pi(s1) = Pi(s2) = µ for any trace s1 ∈ K1

and s2 ∈ K2. Notice that the events in Σs
oi

are private events of Di, and thus, any

trace s2 ∈ K2 must also belong to K1, which implies that K2 ⊆ K1. Thus, since

µ ∈ Pi(K2) and K2 ⊆ K1, µ ∈ Pi(K1 ∩K2) = Pi[P
−1
i (L(G)) ∩ L(Di)], which shows

that L(G) ∩ Pi(L(Di)) ⊆ Pi[P
−1
i (L(G)) ∩ L(Di)]. Since both inclusions (4.9) and

(4.10) hold true, then Pi(L(Gi)) = Pi[P
−1
i (L(G)) ∩ L(Di)] = L(G) ∩ Pi(L(Di)).

According to Lemma 4.1, Pi(L(Di)) = Σ∗, which implies that Pi(L(Gi)) = L(G).

This shows that automaton Gi is not capable of representing the delayed observations

of a trace that does not belong to L(G). Moreover, since all events of Σs
oi

are private

events of Di, the occurrence of these events is allowed whenever they are feasible

by the states of automaton Di in the parallel composition G‖Di. Therefore, since,

according to Lemma 4.2, Di models all possible ordering of observation of all traces

in Σ∗, Gi will model all possible ordering of observation of the traces in L(G). �

Example 4.2 Consider the same plant and decentralized diagnosis architecture pre-

sented in Example 4.1. The automata G1 and G2, depicted in Figure 4.6(a) and

4.6(b), respectively, are computed according to Equation (4.7) as Gi = G‖Di, for

i = 1, 2. The sets of observable and unobservable events of G1 are Σ1o = {as1 , cs1},
and Σ1uo = {a, b, c, e, σf}, respectively, and the sets of observable and unobservable

events of G2 are Σ2o = {bs2 , cs2 , es2}, and Σ2uo = {a, b, c, e, σf}, respectively.

Notice that, languages L(G1) and L(G2) represent all possible ordering of ob-

servation of traces s ∈ L(G) with respect to Σoij and kij, for j ∈ {1, 2, 3}. For

instance, let us consider trace s = bacz ∈ L(G), where z ∈ N. Since Σo11 = {a}
and Σo12 = {c}, and k11 = 1 and k12 = 0, then the possible observations of s for

local diagnoser LD1 are acz and cacz−1. Notice that the following traces are gen-

erated in L(G1) associated with trace s: s1 = baas1(ccs1)
z, s2 = bacas1cs1(ccs1)

z−1

and s3 = baccs1as1(ccs1)
z−1 whose projections Pisi : Σ∗i → Σs∗

oi
are, respectively,

P1s1(s1) = P1s1(s2) = as1c
z
s1

and P1s1(s3) = cs1as1c
z−1
s1

. �

Before we present the modeling of a plant subject to communication delays, let

us introduce the approach of intermittent loss of observation proposed in [26] in the

next section. This approach will be used as base of modeling of a plant subject to

communication delays and intermittent loss of observations proposed in this work.

71

b

σf c

G1

2ν

1ν

3a

5ν 5c
b

4ν

b

e

7aν

8ν

6a

a

cs1

6ν 7ν

as1 as1

3ac

c

a
c

8c

3ν 3c
c

cs1

as1as1

cs1

b

cs1
3aν

as1

(a)

b

σf b

G2

2b

1ν

2ν

3ν

5b

5ν

5bc

5c

5bν4ν

a

7b

6ν

e 8be

3bν
c

3c
cs2

aa

c

cs2

c cs2

bs2

8e

8ν

8ec

8c

8eν

bs2

c

cs2

c cs2

b
es2

es2

es2

bs2bs2

bs2

bs2

7ν

bs2 e

(b)

Figure 4.6: (a) Automaton G1; (b) Automaton G2.

72

4.3 Modeling of intermittent loss of events

Modeling of physical systems using discrete event models assumes that a set of

sensors always reports event occurrences correctly. However, in a complex plant

with network communication, bad sensor operation that results from bad electri-

cal linkage, defective components, large flow of information and collisions in the

communication channels, may lead to observation loss of the events.

One of the most important problem of failure diagnosis is when events are lost

and, consequently, the diagnoser can not observe them. Some works have addressed

this problem in the literature, such as [70], [71] and [26]. In [70] and [71] permanent

loss of events is assumed, i.e., once the system lose an event, it never recovers, and

in [26], the problem of intermittent losses of events is addressed. Since the approach

presented in [26] is more general than permanent loss of observation, in this thesis

we will adopt the second approach as the basis for the network codiagnosability

proposed in this thesis.

Modeling of intermittent loss of observation is made by Dilation operation, de-

fined as follows.

Let Σo = Σilo∪̇Σnilo be a partition of Σo, where Σilo is set of observable events

subject to intermittent loss of observations and Σnilo is set of observable events that

are not subject to intermittent loss of observation. In addition, let Σ′ilo = {σ′ : σ ∈
Σilo} be a set of unobservable events, and Σdil = Σ∪Σ′ilo, i.e., Σdil = Σo∪Σuo∪Σ′ilo.

Definition 4.2 (Dilation [26]) Let Σilo∪̇Σnilo∪̇Σuo be a partition of Σ, where Σilo

is a set of observable events associated with intermittent loss of observations and

Σnilo denotes set of observable events that are not subject to intermittent loss of

observations. Let Σ′ilo and Σdil sets already defined earlier. The Dilation operation,

D, is a mapping as follows

D : Σ∗ → 2(Σ∗dil)

s 7→ D(s)

73

1

5 6

2 3

7

4 e

b, d

d

b

a

b
a

σf

c

H

Figure 4.7: Automaton H of Example 4.3.

where

D(ε) = {ε}

D(σ) =

 {σ}, if σ ∈ Σ \ Σilo

{σ, σ′}, if σ ∈ Σilo

D(sσ) = D(s)D(σ), s ∈ Σ∗, σ ∈ Σ

The dilation operation D can be extended from traces to languages by applying it to

all traces in the language, that is,

D(L) =
⋃
s∈L

D(s)

�

In order to illustrate the dilation operation consider the example 4.3.

Example 4.3 [26] Consider the automaton H shown in Figure 4.7, where Σ =

{a, b, c, d, e, σf}, Σilo = {c} and language L(H) = {ab}{d}∗ ∪ {cσf}({c}{e}∗ ∪
{a}{b, d}∗). Thus, Σdil = {a, b, c, c′, d, e, σf}. Suppose the application of dilation

in trace s1 = abd, then, D(s1) = {abd} since a, b, d 6∈ Σilo. For trace s2 = cσfbe,

then, D(s2) = {c, c′}{σf}{b}{e} = {cσfbe, c′σfbe}. If we apply dilation function

to L(H), it is easy see that D[L(H)] = LH,dil which is generated by automaton of

Figure 4.8

�

74

1

5 6

2 3

7

4 e

b, d

d

b

a

b
a

σf

c

Hdil
c′

Figure 4.8: Automaton Hdil.

4.4 Model of the plant subject to communication

delays and intermittent loss of observations

After the computation of automata Gi, for i = 1, 2, . . . , n, that represent all possible

observations by local diagnosers LDi, i = 1, 2, . . . , n, of the language generated by

G due to communication delays of events, we will now model the intermittent loss

of observation of events in the communication channels. In order to do so, we will

use the dilation function introduced in [26].

Consider the partition of the set of observable events associated with diagnoser

LDi, Σio = Σi,ilo∪̇Σi,nilo, where Σi,ilo and Σi,nilo denote, respectively, the set of

events that are subject to intermittent loss of observation, and the set of events

that are not subject to intermittent loss of observation. Let Σs
i,ilo = φ−1(Σi,ilo)

and Σs
i,nilo = φ−1(Σi,nilo). Then, since the observable event set of Gi is given by

Σio = Σs
oi

, we can make the following partition of the observable event set of Gi:

Σs
oi

= Σs
i,ilo∪̇Σs

i,nilo, (4.11)

where the events of Σs
i,ilo and Σs

i,nilo denote the successful transmission to diagnoser

LDi of the events of Σi,ilo and Σi,nilo, respectively.

Let us define now the set of unobservable events that models the intermittent loss

of observation of events σ ∈ Σs
i,ilo as Σs′

i,ilo = {σ′ : σ ∈ Σs
i,ilo} and set Σ′i = Σi ∪Σs′

i,ilo.

Then, the dilation function Dsi : Σ∗i → 2(Σ′i)
∗

is defined in a recursive way as:

Dsi(ε) = {ε},

Dsi(σ) =

 {σ}, if σ ∈ Σi \ Σs
i,ilo

{σ, σ′}, if σ ∈ Σs
i,ilo

75

Dsi(siσ) = Dsi(si)Dsi(σ), ∀si ∈ Σ?
i , ∀σ ∈ Σi.

The dilation operation Dsi is extended to languages in a straightforward way as

Dsi(L) =
⋃
s∈LDsi(s).

We can now obtain automaton G′i that generates language Dsi [L(Gi)], and that

models both, all possible ordering of observation of events σ ∈ Σo due to commu-

nication delays and the intermittent loss of observation of events σ ∈ Σi,ilo. This

automaton will be defined as follows:

G′i = (Xi,Σ
′
i, f
′
i ,Γ
′
i, x0i , ∅),

where Γ′i(xi) = Dsi [Γi(xi)], for all xi ∈ Xi, and f ′i(xi, σ
′) = fi(xi, σ), if σ′ ∈ Σs′

i,ilo,

and f ′i(xi, σ) = fi(xi, σ), if σ ∈ Σi \ Σs′

i,ilo. Notice that, if Σi,ilo = ∅, G′i = Gi, which

implies that Dsi [L(Gi)] = L(Gi).

The following examples illustrate the construction of G′i considering different

conditions of losses of observation. Later, in Section 4.6, Example 4.4 is used to

illustrate a noncodiagnosable system and Example 4.5 is used to illustrate a codi-

agnosable system.

Example 4.4 Let us consider the problem considered in Example 4.2, and assume

that automata G1 and G2 have been calculated. In addition, suppose that event

a is subject to intermittent loss of observation only by local diagnoser LD1, and

events b and e are subject to intermittent loss of observation only by local diagnoser

LD2. Thus, for local diagnoser LD1, Σ1,ilo = {a} and Σ1,nilo = {c}, and for local

diagnoser LD2, Σ2,ilo = {b, e} and Σ2,nilo = {c}. Automata G′1 and G′2 that model

the communication delay and intermittent loss of observations of the events in Σ1,ilo

and Σ2,ilo, respectively, are shown in Figures 4.9(a) and 4.9(b). Notice that, as

expected, L(G′1) = Ds1 [L(G1)] and L(G′2) = Ds2 [L(G2)]. �

Example 4.5 Let us consider, once again, the problem of Example 4.2 and assume

that G1 and G2 have been calculated. Now, suppose that there is no event subject to

intermittent loss of observation by local diagnoser LD1, and only event b is subject

to intermittent loss of observation by local diagnoser LD2. Thus, for LD1, Σ̄1,ilo = ∅
and Σ̄1,nilo = {a, c}, and for LD2, Σ̄2,ilo = {b} and Σ̄2,nilo = {c, e}. Automata Ḡ′1

76

b

σf c

G′
1

2ν

1ν

3a

5ν 5c
b

4ν

b

e

7aν

8ν

6a

a

cs1

6ν 7ν

as1

3ac

c

a
c

8c

3ν 3c
c

cs1

cs1

b

cs1
3aν

as1

a′s1
as1 a′s1

a′s1
as1as1 a′s1

a′s1

(a)

b

σf b

G′
2

2b

1ν

2ν

3ν

5b

5ν

5bc

5c

5bν4ν

a

7b

6ν

e
8be

3bν
c

3c
cs2

aa

c

cs2

c cs2

bs2

8e

8ν

8ec

8c

8eν

bs2

c

cs2

c cs2

b es2

es2

e′s2

es2
e′s2

b′s2

b′s2

bs2
b′s2

bs2

e′s2

bs2

b′s2

bs2

b′s2 b′s2

(b)

Figure 4.9: (a) automaton G′1; (b)automaton G′2.

77

and Ḡ′2 that model the communication delay and intermittent loss of observations of

events in Σ̄1,ilo and Σ̄2,ilo, are shown in Figures 4.10(a) and 4.10(b).

4.5 Definition of network codiagnosability of

discrete-event systems

In order to obtain all traces of Gi whose projections Pisi : Σ∗i → Σs∗
oi

provide all

possible ordering of observations of a trace s ∈ L(G) due to communication delays,

we will introduce function

χi : Σ∗ → 2Σ∗i , (4.12)

s 7→ χi(s) = P−1
i (s) ∩ L(Di).

Notice that L(Gi) =
⋃
s∈L χi(s), i.e., if the function χi is applied to a trace s ∈

L(G), it generates all possible ordering of observation of s due to communication

delays. In order to also take into account the intermittent loss of observation in

the codiagnosability verification of networked systems, it is necessary to dilate the

traces in L(Gi), using function Dsi . We can define the network codiagnosability of

the language generated by a DES as follows.

Definition 4.3 Let L and LN ⊂ L be the prefix-closed languages generated by G

and GN , respectively. Then, L is said to be network codiagnosable with respect to

χi : Σ∗ → 2Σ∗i , Dsi, projection P ′si : Σ′
∗
i → Σs∗

oi
, for i = 1, . . . , n, and Σf if

(∃z ∈ N)(∀s ∈ L \ LN)(∀st ∈ L \ LN , ||t|| ≥ z)⇒

(∃i ∈ {1, . . . , n})[P ′si [Dsi(χi(st))] ∩ P ′si [Dsi(χi(ωi))] = ∅,∀ωi ∈ LN].

According to Definition 4.3, language L is not network codiagnosable if there exist

a failure trace s and an arbitrarily long length trace t, such that there exist traces

siti ∈ Dsi(χi(st)), i = 1, 2, . . . , n, where siti is not necessarily different from sjtj

for i, j ∈ {1, 2, . . . , n} and siN ∈ Dsi(χi(ωi)), with ωi ∈ LN , satisfying P ′si(siti) =

P ′si(siN), for all i ∈ {1, . . . , n}. In words, a language L is not network codiagnosable

if there exist a failure trace st, with arbitrarily long length after the occurrence

78

b

σf c

Ḡ′
1

2ν

1ν

3a

5ν 5c
b

4ν

b

e

7aν

8ν

6a

a

cs1

6ν 7ν

as1 as1

3ac

c

a
c

8c

3ν 3c
c

cs1

as1as1

cs1

b

cs1
3aν

as1

(a)

b

σf b

Ḡ′
2

2b

1ν

2ν

3ν

5b

5ν

5bc

5c

5bν4ν

a

7b

6ν

e 8be

3bν
c

3c
cs2

aa

c

cs2

c cs2

bs2

8e

8ν

8ec

8c

8eν

bs2

c

cs2

c cs2

b
es2

es2

es2

bs2bs2

bs2

7ν

bs2
e

b′s2 b′s2b′s2

bs2

b′s2 b′s2

b′s2

b′s2

(b)

Figure 4.10: (a) automaton Ḡ′1; (b)automaton Ḡ′2.

79

of the failure event, and there exist normal traces ωi, for i = 1, . . . , n, such that,

the change in the order of observation and the loss of observation of events create

ambiguous observations in all local diagnosers.

4.6 Verification of network codiagnosability of

discrete-event systems

We present in the sequel an algorithm for the verification of network codiagnosability

of DES based on the verification algorithm proposed in [57]. In order to do so, we

first present the definition of the one-to-one event renaming function

ρi : Σ′iN → Σ′iρ , (4.13)

σ 7→ ρi(σ) =

 σρi , if σ ∈ (Σ ∪ Σs′

i,ilo) \ Σf

σ, if σ ∈ Σs
oi
.

where Σ′iN = Σ′i \ Σf , for i = 1, . . . , n. The domain of function ρi can be extended

to Σ′
?

iN
as usual, i.e., ρi(sσ) = ρi(s)ρi(σ), for all s ∈ Σ′

?

iN
and σ ∈ Σ′iN . Function ρi

can also be applied to a language K as ρi(K) = ∪s∈Kρi(s).

Algorithm 4.2 Network codiagnosability verification of DES

Input: G′i = (Xi,Σ
′
i, f
′
i ,Γ
′
i, x0i , ∅), for i = 1, . . . , n.

Output: GV = (XV ,ΣV , fV ,ΓV , x0,V , XVm).

1: Compute automata G′i,N = (X ′iN ,Σ
′
iN
, f ′iN ,Γ

′
iN
, (x0i , N), ∅), where Σ′iN = Σ′i \

Σf , for i = 1, . . . , n, that model the normal behavior of G′i as presented in [57].

2: Compute automata G′i,F = (X ′iF ,Σ
′
i, f
′
iF
,Γ′iF , (x0i , N), ∅), for i = 1, . . . , n, that

model the failure behavior of G′i as presented in [57].

3: Construct automata G′i,ρ = (X ′iN ,Σ
′
iρ , f

′
iρ ,Γ

′
iρ , (x0i , N), ∅), for i = 1, . . . , n,

where Σ′iρ = ρi(Σ
′
iN

), and f ′iρ(xiN , σρi) = f ′iN (xiN , σ) with σρi = ρi(σ), for all

σ ∈ Σ′iN and xiN ∈ X ′iN .

4: Compute automata V̄i = G′i,ρ‖G′i,F = (YVi ,ΣVi , fVi ,ΓVi , yVi,0, ∅), for i =

1, . . . , n, where ΣVi = Σ′iρ ∪ Σ′i.

80

5: Find all cyclic paths cli = (ykVi , σk, y
k+1
Vi

, σk+1, . . . , σ`, y
k
Vi

), where ` ≥ k > 0 in

V̄i that satisfy the following condition:

∃j ∈ {k, k + 1, . . . , `} such that, for some

yjVi = (xji , N, y
j
i , F) ∧ (σj ∈ Σ′i) (4.14)

where xji , y
j
i ∈ Xi.

6: Compute automata Vi = (YVi ,ΣVi , fVi ,ΓVi , yVi,0, YVi,m), where YVi,m is formed

by the states of V̄i that belong to the strongly connected components that contain

cyclic paths cli satisfying condition (4.14).

7: Compute the verifier automaton GV = V1‖ . . . ‖Vn =

(XV ,ΣV , fV ,ΓV , xV,0, XVm), where ΣV =
⋃n
i=1 ΣVi.

8: Verify the existence of a cyclic path cl = (xkV , σk, x
k+1
V , σk+1, . . . , σ`, x

k
V) in GV ,

` ≥ k > 0, that satisfies the following condition:

xqV ∈ XVm ,∀q ∈ {k, k + 1, . . . , `}, and for some

q ∈ {k, k + 1, . . . , `}, σq ∈ Σ.
(4.15)

If the answer is yes, then L is not network codiagnosable with respect to χi,

Dsi, P
′
si

, for i = 1, . . . , n, and Σf . Otherwise, L is network codiagnosable.

Remark 4.2 Notice that the renamed events of verifier Vp are different from the

renamed events of a verifier Vq, where p 6= q. �

Lemma 4.3 Let G′i,N and G′i,F be computed according to Steps 1 and 2 of Al-

gortihm 4.2, respectively. Then, L(G′i,F) =
⋃
s∈L\LN Dsi(χi(s)), and L(G′i,N) =⋃

ω∈LN Dsi(χi(ω)).

Proof: The proof is straightforward from the construction of G′i, G
′
i,N and G′i,F .

�

Theorem 4.2 Language L is network codiagnosable with respect to χi, Dsi, P
′
si

,

for i = 1, . . . , n, and Σf if, and only if, there does not exist a cyclic path

81

cl = (xkV , σk, x
k+1
V , σk+1, . . . , x

`
V , σ`, x

k
V), ` ≥ k > 0 in GV satisfying the following

condition:

xqV ∈ XVm ,∀q ∈ {k, k + 1, . . . , `}, and for some

q ∈ {k, k + 1, . . . , `}, σq ∈ Σ. (4.16)

Proof: (⇒) Suppose that language L is not network codiagnosable with respect to

χi, Dsi, P
′
si

, for i = 1, . . . , n, and Σf . Thus, according to Definition 4.3, there exists

at least one arbitrarily long length trace st ∈ L\LN and traces ωi ∈ LN , i = 1, . . . , n,

where ωi is not necessarily distinct from ωj, for j = 1, . . . , n and i 6= j, such that

P ′si [Dsi(χi(st))] ∩ P ′si [Dsi(χi(ωi))] 6= ∅ for all i ∈ {1, 2, . . . , n}. Thus, according to

Lemma 4.3, if L is not network codiagnosable, there exist traces siti ∈ L(G′i,F) and

siN ∈ L(G′i,N) such that, P ′si(siti) = P ′si(siN) for all i ∈ {1, 2, . . . , n}. As shown

in [57], the existence of traces siti and siN such that P ′si(siti) = P ′si(siN) for all

i ∈ {1, 2, . . . , n}, implies in the existence of a path pi in Vi, that ends with a cyclic

path cli that satisfies condition (4.14), whose associated trace vi ∈ L(Vi) satisfies

PVii(vi) = siti and PViρ(vi) = siNρ, where siNρ = ρi(siN), PVii : Σ∗Vi → Σ∗i and

PViρ : Σ∗Vi → Σ∗iρ.

Notice that, if the states of the cyclic path cli are marked, then vi ∈ Lm(Vi), where

Lm(Vi) denotes the marked language of Vi. Since GV = ||ni=1Vi, then Lm(GV) =⋂n
i=1 P

−1
V Vi

[Lm(Vi)], where PV Vi : Σ∗V → Σ∗Vi. Thus,
⋂n
i=1 P

−1
V Vi

(vi) ⊆ Lm(GV). Let

v ∈ ⋂n
i=1 P

−1
V Vi

(vi). Since vi ∈ Lm(Vi), PVii(vi) = siti and Pi(siti) = st, for all i ∈
{1, . . . , n}, and the common events that synchronize the traces vi, for i = 1, . . . , n,

in
⋂n
i=1 P

−1
V Vi

(vi) are in Σ, then there will be a cyclic path in GV , associated with v

with all states marked, with at least one transition labeled with an event σ ∈ Σ.

(⇐) Suppose that there exists a path p in GV that ends with a cyclic path cl that

satisfies condition (4.16), and let v ∈ Lm(GV) be the trace associated with p. Notice

that, since GV = ‖ni=1Vi, then Lm(GV) =
⋂n
i=1 PV Vi

−1[Lm(Vi)], and PV Vi(v) = vi ∈
Lm(Vi), for i = 1, 2, ..., n. Notice also that, the common events of traces vi ∈ Lm(Vi),

for i = 1, 2, ..., n, are events σ ∈ Σ. Thus, since condition (4.16) is verified, then at

least one event in the cyclic path cl belongs to Σ, which implies that all traces vi are

associated with a path pi that ends with a cyclic path cli, formed with marked states,

that has an event in Σ. According to Algorithm 4.2, the states of a cyclic path cli in

Vi are marked only if the failure has occurred. Thus, associated with the cyclic path cl

82

of GV there exists one cyclic path cli in each verifier Vi, for i = 1, . . . , n, that satisfies

condition (4.14), i.e., there exists a failure trace siti ∈ L(Gi), with arbitrarily long

length, and a normal trace siN ∈ L(Gi), such that P ′si(siti) = P ′si(siN), for all

i ∈ {1, . . . , n}. In order to show that L is not network codiagnosable, notice that,

since condition (4.16) is verified, then there exists an arbitrarily long length failure

trace st ∈ Σ∗, such that PV (v) = st, where PV : Σ∗V → Σ∗. Since the events in Σ

are common events of all verifiers Vi and GV = ‖ni=1Vi, then PVi(vi) = st, where

PVi : Σ∗Vi → Σ∗, which shows that there exists an arbitrarily long length failure trace

st such that siti ∈ Dsi(χi(st)) for i ∈ {1, . . . , n}. Thus, according to Definition 4.3,

L is not network codiagnosable with respect to χi, Dsi, P
′
si

, for i = 1, . . . , n, and Σf .

�

Example 4.6 Let us verify the network codiagnosability of the system presented

in Example 4.4. Following Steps 1, 2, and 3 of Algorithm 4.2, automata G′1,ρ and

G′1,F , shown in Figures 4.11(a) and 4.11(b), respectively and automata G′2,ρ and

G′2,F , shown in Figures 4.12(a) and 4.12(b), respectively, are computed. Continuing

Algorithm 4.2, verifiers V1 and V2 are computed. Due to the size of these automata,

we show in Figures 4.13(a) and 4.13(b), only the paths of V1 and V2 that contain the

cyclic paths cl1 and cl2 that satisfy condition (4.14). After the computation of V1 and

V2, automaton GV = V1||V2 can be computed, in accordance with Step 7. We show

in Figure 4.14 only the path of GV that contains a cyclic path cl associated with the

cyclic paths cl1, (ccs1cρ1)
n, and cl2, (ccs2cρ2)

n. Notice that cl is formed by marked

states and contains an event c ∈ Σ. Thus, according to condition (4.15), language

L is not network codiagnosable with respect to χi : Σ? → 2Σ?i , Dsi, P
′
si

: Σ′
?

i → Σs?
oi

,

for i = 1, 2, and Σf .

Example 4.7 Let us verify the network codiagnosability of the system considered in

Example 4.5. The new verifier ḠV for this example was computed using the compu-

tational tool called DESLAB [72]. This verifier has 344 states, 963 transitions and

was found that ḠV has no cyclic paths that satisfy the condition (4.14). Therefore,

the system is network codiagnosable with respect to communication delays and loss

of observations. Because of the size of the verifier, we will consider only one trace

to illustrate the verification procedure. Following the same procedure as Example

4.6, automata Ḡ1,ρ, Ḡ1,F , Ḡ2,ρ and Ḡ2,F are computed and shown in Figures 4.15(a),

83

bρ1

G′
1,ρ

2νN

1νN

3aN 3acNaρ1

cρ1

3νN 3cN

cρ1

cs1

cs1
3aνN

as1

a′sρ1as1as1 a′sρ1

a′sρ1

(a)

σf c

G′
1,F

1νN 5νF 5cF
b

4νF

b

e

7aνF

8νF

6aF

a

cs1

6νF 7νF

as1 c

8cF

cs1

b

a′s1
as1 a′s1

(b)

Figure 4.11: (a) Automaton G′1,ρ, (b) Automaton G′1,F .

4.15(b), 4.16(a) and 4.16(b), respectively. Continuing Algorithm 4.2, verifiers V̄1

and V̄2 are computed. Due to the size of these automata, we show in Figures 4.17(a)

and 4.17(b), only the paths of V̄1 and V̄2 containing the cyclic paths cl1 and cl2 that

satisfy condition (4.14). After that, automaton ḠV = V̄1‖V̄2 is computed and shown

in Figure 4.18. Notice that, as expected, there is no cyclic path in automaton ḠV

that satisfies condition (4.14).

4.7 Complexity analysis of Algorithm 4.2

The computational complexity in the construction of verifier GV , according to Al-

gorithm 4.2, depends on the complexity of the computation of automata Di, Gi, G
′
i,

and Vi, for i = 1, . . . , n.

In the first step for the construction of automaton Di according to Algorithm

84

bρ2

G′
2,ρ

1νN

2νN

3νN3bνN
cρ2

3cN
cs2

aρ2
aρ2

bs2

b′sρ2

bs2

b′sρ2

2bN

(a)

σf b

G′
2,F

1νN 5bF

5νF

5bcF

5cF

5bνF4νF

a

7bF

6νF

e
8beF

c

cs2

c cs2

bs2

8eF

8νF

8ecF

8cF

8eνF
bs2

c

cs2

c cs2

b es2

es2

e′s2
es2 e′s2

b′s2

b′s2
bs2 b′s2bs2

e′s2

b′s2

8beF

e

bs2

b′s2

(b)

Figure 4.12: (a) Automaton G′2,ρ, (b) Automaton G′2,F .

85

1νN, 1νN

2νN, 1νN

aρ1

a′sρ1

V1

3aN, 4νF

bρ1

cρ1
3cN, 4νF

3cN, 5νF

b

c

3cN, 5cF

3νN, 5νF

σf
cs1

2νN, 4νF

3νN, 4νF
cρ1

cρ1

1νN, 1νN

2bN, 1νN

3bνN, 1νN

b

V2

3cN, 1νN

bρ2

aρ2

3cN, 4νF

3cN, 5bF

b′s2

σf

c

b′sρ2

cρ2

3νN, 1νN

3cN, 5νF

3cN, 5cF

cs2

3νN, 5νF

cρ2

(a) (b)

Figure 4.13: (a) Path of V1 with cyclic path cl1 embedded, (b) path of V2 with cyclic

path cl2 embedded.

(1νN, 1νN), (1νN, 1νN)

(2νN, 1νN), (1νN, 1νN)

(2νN, 1νN), (2bN, 1νN)

(2νN, 1νN), (3bνN, 1νN)

(2νN, 1νN), (3νN, 1νN)

(2νN, 1νN), (3cN, 1νN) (2νN, 4νF), (3cN, 4νF)

a′sρ1

bρ1

σf

bbρ2

aρ2

aρ1

b′s2

b′sρ2

c

cs1

cρ2

cρ1

GV

cs2

cρ2

(3aN, 4νF), (3cN, 4νF)

(3νN, 4νF), (3cN, 4νF)

(3cN, 4νF), (3cN, 4νF)

(3cN, 5νF), (3cN, 5bF) (3cN, 5νF), (3cN, 5νF)

(3cN, 5cF), (3cN, 5cF)

(3νN, 5νF), (3cN, 5cF)

cρ1

(3cN, 5νF), (3cN, 5cF)

(3cN, 5νF), (3νN, 5νF)

Figure 4.14: Path of GV with an embedded cyclic path cl that violates the network

codiagnosability of L.

86

bρ1

Ḡ′
1,ρ

2νN

1νN

3aN 3acNaρ1

cρ1

3νN 3cN

cρ1

cs1

cs1
3aνN

as1

as1as1

(a)

σf c

Ḡ′
1,F

1νN 5νF 5cF
b

4νF

b

e

7aνF

8νF

6aF

a

cs1

6νF 7νF

as1 c

8cF

cs1

b

as1

(b)

Figure 4.15: (a) Automaton Ḡ′1,ρ, (b) Automaton Ḡ′1,F .

87

bρ2

Ḡ′
2,ρ

1νN

2νN

3νN3bνN
cρ2

3cN
cs2

aρ2
aρ2

bs2

b′sρ2

bs2

b′sρ2

2bN

(a)

σf b

Ḡ′
2,F

1νN 5bF

5νF

5bcF

5cF

5bνF4νF

a

7bF

6νF

e
8beF

c

cs2

c cs2

bs2

8eF

8νF

8ecF

8cF

8eνF
bs2

c

cs2

c cs2

b
es2

es2

es2

b′s2

b′s2
bs2 b′s2bs2

b′s2

8beF

e

bs2

b′s2

(b)

Figure 4.16: (a) Automaton Ḡ′2,ρ, (b) Automaton Ḡ′2,F .

88

1νN, 1νN

1νN, 4νF

a

b

V̄1

bρ1

2νN, 7aνF

3aN, 7aνF

aρ1
cρ1

3acN, 7aνF

e

3cN, 7νF

σf

c

3cN, 8νF

as1

3cN, 8cF

3νN, 8νF

cs1cρ1
1νN, 6aF

1νN, 7aνF

3νN, 8cF

c
cρ1

1νN, 1νN

2bN, 1νN

b′sρ2

b

V̄2

2νN, 4νF

bρ2

3νN, 4νF

aρ2

3νN, 5bF 3νN, 5bcF

σf

3νN, 5cF

b′s2

3cN, 5cF

3νN, 5νF

cρ2

cs2
c

2bN, 4νF

c

3cN, 5νF

cρ2
c

(a) (b)

Figure 4.17: (a) Path of V̄1 with cyclic path cl1 embedded, (b) path of V̄2 with cyclic

path cl2 embedded.

(1νN, 1νN), (1νN, 1νN)

(1νN, 1νN), (2bN, 1νN)

(1νN, 4νF), (2bN, 4νF)

(1νN, 4νF), (2νN, 4νF)

bρ2

σf

b′sρ2

aρ2

ḠV

(1νN, 4νF), (3νN, 4νF)

Figure 4.18: Part of verifier ḠV .

89

4.1, only one initial state is created. Then, from the initial state, |Σo| states can be

reached in the worst case, and for each one of these states, |Σo| + 1 states can be

reached. The number of states created at each step of the construction of Di depends

on the delays of the communication channels. Thus, assuming that the maximum

delay for all communication channels is k, then, in the worst case, the number of

states of automaton Di is 1+
k∑
j=0

(|Σo|+1)j×|Σo|. Since Di is deterministic, then the

maximum number of transitions of Di is

(
1 +

k∑
j=0

(|Σo|+ 1)j × |Σo|
)
× (|Σ|+ |Σo|).

Automaton Gi is computed by the parallel composition of automata G and Di.

Let |XDi | be the number of states of automaton Di. Since |X| is the number of states

of G, then the number of states and transitions of Gi are, respectively, |X| × |XDi|
and |X| × |XDi | × |Σi|.

Since automaton G′i is computed by introducing a transition labeled with an

event σ′ ∈ Σs′
i,ilo in parallel with the transitions of Gi labeled with σ ∈ Σs

i,ilo, the

number of states and transitions of G′i are, in the worst case, |X| × |XDi | and

|X|× |XDi |× |Σ′i|, respectively. Since Σ′i = Σ∪Σs
oi
∪Σs′

i,ilo, the maximum number of

events in Σ′i is |Σ|+ 2× |Σo|. Thus, the number of transitions in G′i is, in the worst

case, |X| × |XDi | × (|Σ|+ 2× |Σo|).
Following the complexity analysis presented in [57], each verifier Vi has, in the

worst case, 2×(|X|×|XDi |)2 states and 2×(|X|×|XDi |)2×(2×|Σ|+2×|Σo|−|Σf |)
transitions. Thus, since GV = ‖ni=1Vi, the maximum number of states and transitions

of GV are, respectively, 2n × |X|2n × Πn
i=1|XDi |2 and 2n × |X|2n × Πn

i=1|XDi |2 ×
[|Σ| + n(2 × |Σ| + 2 × |Σo| − |Σf |)]. Therefore, the complexity of Algorithm 4.2

is O(n × 2n × |X|2n × Πn
i=1|XDi |2 × |Σ|). In other words, the Algorithm 4.2 has

exponential complexity with respect to maximum communication delay and number

of local diagnosers.

4.8 Concluding Remarks

The goal of this chapter was, based on the possible occurrence of delays and event

observation losses in communication networks, to consider its consequence on diag-

nosis systems modeled using discrete event systems theory. To this end, we propose

an algorithm to construct an automaton model that describes the event delays and

90

all possible changing of order of event observations by the local diagnosers. More-

over, we proposed an automaton model that describes, both all possible order of

observation and intermittent loss of observation of events. We introduce the defi-

nition of network codiagnosability and present a necessary and sufficient condition

for network codiagnosability based on a finite deterministic automaton. Finally, we

create an algorithm for the verification of network codiagnosability.

91

Chapter 5

Conclusion and Future Works

The goal of this work was to analyze the codiagnasobility of networked discrete

event systems subject to delays and losses of observation. In this sense, the main

contributions of this work are:

1. The introduction of a network codiagnosis architecture based on protocol 3 of

[30] for a distributed plant with different measurement sites.

2. A systematic way to model communication delay by appropriately modifying

the plant automaton into another one whose language considers all possible

change in the order of observation of events due to possible delays and loss of

observation.

3. The definition of network codiagnosability.

4. A verification algorithm for network codiagnosability, and based on a verifier

automaton, a necessary and sufficient condition for network codiagnosability.

The automaton model of a networked discrete event system subject to com-

munication delay and losses of events proposed in this work is general enough to

allow its application in other research topics in DES such as supervisory control of

networked discrete-event systems and to deal with malicious attacks/intrusions to

cyberphysical systems.

Possible topics of research that can continue this work are listed below:

(i) Supervisory control of networked discrete event system. In this topic, the

supervisor can observe events in an order different from the original event

92

occurrence in the plant. Thus, we need to construct a supervisor that, in spite

of observing traces in different order from that occurred in the plant, it makes

appropriate control decisions.

(ii) The decentralized diagnosis system proposed in [47] considers the delays be-

tween local diagnosers and the coordinator over protocols 1D and 2D, while

in this work we consider delays between sensors and diagnosers over protocol

3 of [30]. Thus, an interesting topic of research is the combination of both

approaches in order to construct a general model of delays and loss of obser-

vation.

(iii) The development of a platform to implement a networked discrete event system

and to test it considering the delays and losses of observation. In addition, it

is important to research industrial network communication technologies, such

as, FieldBus and ProfiBus and to evaluate the efficiency of the decentralized

diagnosis scheme proposed in this work.

(iv) To improve the communication delay model, Di, in order to decrease, if pos-

sible, its complexity from exponential to polynomial.

From this thesis, some works have been either published 0r submitted for publi-

cation.

(i) Codiagnostcabilidade robusta a atrasos na comunicação da ocorrência de even-

tos em sistemas a eventos discretos [56].

(ii) Network codiagnosability of Discrete-Event Systems subject to event commu-

nication delays [55]. This work was finalist for best student paper in WODES

2016.

(iii) Codiagnosticabilidade em rede de sistemas a eventos discretos sujeita a atrasos

e perdas de observação de eventos [73].

(iv) Codiagnosability of Networked Discrete Event Systems subject to communica-

tion delays and intermittent loss of observation. This work has been submitted

for a special issue of Journal of Discrete Event Dynamic Systems.

93

Bibliographic References

[1] VENKATASUBRAMANIAN, V., RENGASWAMY, R., YIN, K., et al., “A re-

view of process fault detection and diagnosis: Part I: Quantitative model-

based methods”, Computers & Chemical Engineering , v. 27, n. 3, pp. 293

– 311, 2003.

[2] ZAYTOON, J., LAFORTUNE, S., “Overview of fault diagnosis methods for

Discrete Event Systems”, Annual Reviews in Control , v. 37, n. 2, pp. 308–

320, 2013.

[3] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al., “Diagnosability of

discrete-event systems”, IEEE Transactions on Automatic Control , v. 40,

n. 9, pp. 1555–1575, 1995.

[4] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al., “Failure diagno-

sis using discrete event models”, IEEE Transactions on Control Systems

Technology , v. 4, n. 2, pp. 105–124, 1996.

[5] LIN, F., “Diagnosability of discrete event systems and its applications”, Journal

of Discrete Event Dynamic Systems , v. 4, n. 2, pp. 197–212, 1994.

[6] GENC, S., LAFORTUNE, S., “Predictability in discrete-event under partial

observation”, IFAC Symposium on Fault Detection, Supervision on Safety

of Technical Process, Beijing, China, 2006.

[7] KUMAR, R., TAKAI, S., “Decentralized Prognosis of Failures in Discrete Event

System”, IEEE Transaction on Automatic Control , v. 55, pp. 48–59, 2010.

[8] CHELIDZE, D., CUSUMANO, J. P., “A dynamical systems approach to failure

prognosis”, Journal of Vibration and Acoustics , v. 126, n. 1, pp. 2–8, 2004.

94

[9] JERON, T., MARCHAND, H., GENC, S., et al., “Predictability of sequence pat-

terns in Discrete Event Systems”, 17th World Congress The International

Federation of Automatic Control , v. 41, n. 2, pp. 537–543, 2008.

[10] TAKAI, S., KUMAR, R., “Inference-Based Decentralized Prognosis in Discrete

Event Systems”, IEEE Transactions on Automatic Control , v. 56, n. 1,

pp. 165–171, 2011.

[11] YIN, X., LI, Z., “Reliable Decentralized Fault Prognosis of Discrete-Event Sys-

tems”, IEEE Transactions on Systems, Man, and Cybernetics: Systems ,

v. PP, n. 99, pp. 1–6, 2015.

[12] KHOUMSI, A., CHAKIB, H., “Conjunctive and Disjunctive Architectures for

Decentralized Prognosis of Failures in Discrete-Event Systems”, IEEE

Transactions on Automation Science and Engineering , v. 9, n. 2, pp. 412–

417, 2012.

[13] KHOUMSI, A., CHAKIB, H., “Multi-decision decentralized prognosis of fail-

ures in discrete event systems”. In: 2009 American Control Conference,

pp. 4974–4981, 2009.

[14] DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D., “On an Optimization

Problem in Sensor Selection”, Discrete Event Dynamic Systems , v. 12,

n. 4, pp. 417–445, 2002.

[15] CASSEZ, F., TRIPAKIS, S., “Fault diagnosis with static and dynamic ob-

servers”, Fundamenta Informaticae, v. 88, n. 4, pp. 497–540, 2008.

[16] CASSEZ, F., TRIPAKIS, S., ALTISEN, K., “Synthesis of optimal-cost dynamic

observers for fault diagnosis of discrete-event systems”. In: First Joint

IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering

(TASE’07), pp. 316–325, 2007.

[17] THORSLEY, D., TENEKETZIS, D., “Active acquisition of information for di-

agnosis and supervisory control of discrete event systems”, Discrete Event

Dynamic Systems , v. 17, n. 4, pp. 531–583, 2007.

95

[18] SANTORO, L. P., MOREIRA, M. V., BASILIO, J. C., et al., “Computation of

minimal diagnosis bases of Discrete-Event Systems using verifiers: Method

of the ambiguous cyclic paths”, 12th International Workshop on Discrete

Event Systems , v. 47, n. 2, pp. 440–445, 2014.

[19] BASILIO, J. C., LIMA, S. T. S., LAFORTUNE, S., et al., “Computation of

minimal event bases that ensure diagnosability”, Discrete Event Dynamic

Systems , v. 22, n. 3, pp. 249–292, 2012.

[20] JIANG, S., KUMAR, R., GARCIA, H. E., “Optimal sensor selection for

discrete-event systems with partial observation”, IEEE Transactions on

Automatic Control , v. 48, n. 3, pp. 369–381, 2003.

[21] ATHANASOPOULOU, E., LI, L., HADJICOSTIS, C., “Probabilistic failure

diagnosis in finite state machines under unreliable observations”, 8th In-

ternational Workhop on Discrete Event Systems, Ann Arbor, Michigan,

USA, pp. 301–306, 2006.

[22] THORSLEY, D., YOO, T. S., GARCIA, H. E., “Diagnosability of stochastic

discrete event systems under unreliable observations”, American Control

Conference, Seattle, Washington, USA, pp. 1158–1165, 2008.

[23] BASILIO, J. C., LAFORTUNE, S., “Robust codiagnosability of discrete event

systems”, American Control Conference, St. Louis, MO, USA, pp. 2202–

2209, 2009.

[24] TAKAI, S., “Robust failure diagnosis of partially observed discrete event sys-

tems”. In: 10th Word Congress International Federation of Automatic

Control , v. 43, n. 12, pp. 205–210, 2010.

[25] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C., “Generalized robust

diagnosability of discrete event systems”. In: 18th World Congress Inter-

national Federation of Automatic Control , pp. 8737–8742, 2011.

[26] CARVALHO, L. K., BASILIO, J. C., MOREIRA, M. V., “Robust diagnosis

of discrete event systems against intermittent loss of observations”, Auto-

matica, v. 48, n. 9, pp. 2068–2078, 2012.

96

[27] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C., et al., “Robust diag-

nosis of discrete-event systems against permanent loss of observations”,

Automatica, v. 49, n. 1, pp. 223–231, 2013.

[28] LIMA, S. S., BASILIO, J. C., LAFORTUNE, S., et al., “Robust diagnosis

of discrete-event systems subject to permanent sensor failures”, IFAC

Proceedings Volumes , v. 43, n. 12, pp. 90–97, 2010.

[29] TAKAI, S., “Verification of robust diagnosability for partially observed discrete

event systems”, Automatica, v. 48, n. 8, pp. 1913–1919, 2012.

[30] DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D., “Coordinated decentral-

ized protocols for failure diagnosis of discrete event systems”, Discrete

Event Dynamic Systems: Theory and Applications , v. 10, n. 1-2, pp. 33–

86, 2000.

[31] PATTON, R. J., FRANK, M., P., et al., Issue of fault diagnosis for dynamic

systems . Springer Science & Business Media, 2013.

[32] ZAD, S. H., KWONG, R. H., WONHAM, W. M., “Fault diagnosis in discrete-

event systems: framework and model reduction”, IEEE Transactions on

Automatic Control , v. 48, n. 7, pp. 1199–1212, 2003.

[33] ZAD, S. H., KWONG, R., WONHAM, W., “Fault diagnosis in discrete-event

systems: incorporating timing information”, IEEE Transactions on Au-

tomatic Control , v. 50, n. 7, pp. 1010–1015, 2005.

[34] QIU, W., KUMAR, R., “Decentralized failure diagnosis of discrete event sys-

tems”, IEEE Transactions on Systems, Man and Cybernetics, Part A,

v. 36, n. 2, pp. 384–395, 2006.

[35] WANG, Y., YOO, T. S., LAFORTUNE, S., “Diagnosis of discrete event sys-

tems using decentralized architectures”, Discrete Event Dynamic Systems:

Theory And Applications , v. 17, n. 2, pp. 233–263, 2007.

[36] DOTOLI, M., FANTI, M. P., MANGINI, A. M., et al., “On-line fault detection

in discrete event systems by Petri nets and integer linear programming”,

Automatica, v. 45, n. 11, pp. 2665–2672, 2009.

97

[37] SAMPATH, M., “A hybrid approach to failure diagnosis of industrial systems”.

In: American Control Conference, Arlington, VA., v. 3, pp. 2077–2082,

2001.

[38] SIMSEK, H. T., SENGUPTA, R., YOVINE, S., et al., Fault Diagnosis for Intra-

platoon Communications , Tech. rep., California Partners for Advanced

Transit and Highways (PATH), 1999.

[39] KOFMAN, E., “Discrete event simulation of hybrid systems”, SIAM Journal

on Scientific Computing , v. 25, n. 5, pp. 1771–1797, 2004.

[40] CABASINO, M. P., GIUA, A., POCCI, M., et al., “Discrete event diagnosis us-

ing labeled Petri nets. An application to manufacturing systems”, Control

Engineering Practice, v. 19, n. 9, pp. 989–1001, 2011.

[41] CHEN, Z., LIN, F., WANG, C., et al., “Active Diagnosability of Discrete Event

Systems and its Application to Battery Fault Diagnosis”, IEEE Transac-

tions on Control Systems Technology , v. 22, n. 5, pp. 1892–1898, Sept

2014.

[42] NUNES, C. E. V., BASILIO, J. C., SOTOMAYOR, O. A. Z., “Diagnóstico de

falhas em uma unidade de separação água-óleo-gás usando um modelo a

eventos discretos”. In: XIX Congresso Brasileiro de Automática, 2012.

[43] LUGLI, A. B., SANTOS, M. M. D., Redes industriais caracteŕısticas, padrões

e aplicações . 1st ed. Saraiva, 2014.

[44] SHU, S., LIN, F., “Supervisor Synthesis for Networked Discrete Event Systems

With Communication Delays”, IEEE Transactions on Automatic Control ,

v. 60, n. 8, pp. 2183–2188, 2015.

[45] HUO, Z., FANG, H., MA, C., “Networked control System: State of the art”.

In: Proceedings of the 5th World Congress on Intelligent Control and Au-

tomation, pp. 1319–1322, Hangzhou, P.R. China, 2004.

[46] ATHANASOPOULOU, E., LINGXI, L., HADJICOSTIS, C., “Maximum Like-

lihood Failure Diagnosis in Finite State Machines Under Unreliable Ob-

98

servations”, IEEE Transactions on Automatic Control , v. 55, n. 3, pp. 579

–593, 2010.

[47] DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D., “On the effect of com-

munication delays in failure diagnosis of decentralized discrete event sys-

tems”, Discrete Event Dynamic Systems , v. 13, n. 3, pp. 263–289, 2003.

[48] TRIPAKIS, S., “Decentralized control of discrete-event systems with bounded

or unbounded delay communication”, IEEE Transactions on Automatic

Control , v. 49, n. 9, pp. 1489–1501, 2004.

[49] PARK, SEONG-JIN, CHO, et al., “Supervisory control of discrete event sys-

tems with communication delays and partial observations”, Systems &

Control letters , v. 56, n. 2, pp. 106–112, 2007.

[50] PARK, S.-J., CHO, K.-H., “Decentralized supervisory control of discrete event

systems with communication delays based on conjunctive and permissive

decision structures”, Automatica, v. 43, n. 4, pp. 738–743, 2007.

[51] LIN, F., “Control of networked discrete event systems”. In: Control and Deci-

sion Conference (CCDC), China, pp. 51–56, May 2012.

[52] SHU, S., LIN, F., “Supervisor synthesis for networked discrete event sys-

tems with communication delays”. In: Control Conference (CCC), Xian,

China, pp. 2078–2084, July 2013.

[53] SHU, S., LIN, F., “Decentralized control of networked discrete event systems

with communication delays”, Automatica, v. 50, n. 8, pp. 2108 – 2112,

2014.

[54] QIU, W., KUMAR, R., “Distributed diagnosis under bounded delay communi-

cation of immediately forwarded local observations”, IEEE Transactions

on Systems, Man and Cybernetics, Part A, v. 38, n. 3, pp. 628–642, 2008.

[55] NUNES, C. E. V., MOREIRA, M. V., ALVES, M. V. S., et al., “Network co-

diagnosability of Discrete-Event Systems subject to event communication

delays”. In: 2016 13th International Workshop on Discrete Event Systems

(WODES), pp. 217–223, 2016.

99

[56] NUNES, C. E. V., MOREIRA, M. V., BASILIO, J. C., “Codiagnosticabilidade

robusta a atrasos na comunicação da ocorrência de eventos em sistemas a

eventos discretos”. In: XII Simpósio Brasileiro de Automação Inteligente,

2015.

[57] MOREIRA, M. V., JESUS, T. C., BASILIO, J. C., “Polynomial Time Verifi-

cation of Decentralized Diagnosability of Discrete Event Systems”, IEEE

Transactions on Automatic Control , v. 56, n. 7, pp. 1679–1684, 2011.

[58] CASSANDRAS, C. G., LAFORTUNE, S., Introduction to Discrete Event Sys-

tems . 2nd ed. Springer: New York, 2008.

[59] BASILIO, J. C., CARVALHO, L. K., MOREIRA, M. V., “Diagnose de falhas

em sistemas a eventos discretos modelados por autômatos finitos”, Revista

Controle & Automaçao, v. 21, n. 5, pp. 510–533, 2010.

[60] TANENBAUM, A. S., Network computer . 4th ed. Prentice Hall, 2002.

[61] CHAN, M. C., TSENG, C. C., YEN, L. H., “Jitter-aware packet scheduler for

concurrent multipath transmission in heterogeneous wireless networks”.

In: 2016 IEEE Wireless Communications and Networking Conference,

pp. 1–7, April 2016.

[62] YANG, T. C., “Networked control system: a brief survey”, IEEE Proceedings

Control Theory and Applications , v. 153, n. 4, pp. 403, 2006.

[63] GODOY, E. P., LOPES, W. C., SOUSA, R. V., et al., “Modelagem e simulação

de redes de comunicação baseadas no protocolo CAN-Controller Area Net-

work”, Sba: Controle & Automação Sociedade Brasileira de Automática,

v. 21, n. 4, pp. 425–438, 2010.

[64] LIAN, F., MOYNE, J. R., TILBURY, D. M., “Performance evaluation of con-

trol networks: Ethernet, ControlNet, and DeviceNet”, IEEE Control Sys-

tems , v. 21, n. 1, pp. 66–83, 2001.

[65] VARGAS-RODRIGUEZ, R., MORALES-MENENDEZ, R., “Network-Induced

Delay Models for CAN-based Networked Control Systems”, IFAC Pro-

ceedings Volumes , v. 40, n. 22, pp. 85–92, 2007.

100

[66] RAICIU, C., PAASCH, C., BARRE, S., et al., “How Hard Can It Be? Design-

ing and Implementing a Deployable Multipath TCP”. In: Proceedings

of the 9th USENIX Conference on Networked Systems Design and Imple-

mentation, pp. 29–29, USENIX Association: Berkeley, CA, USA, 2012.

[67] ADHARI, H., DREIBHOLZ, T., BECKE, M., et al., “Evaluation of Concurrent

Multipath Transfer over Dissimilar Paths”. In: 2011 IEEE Workshops of

International Conference on Advanced Information Networking and Ap-

plications (WAINA), pp. 708–714, March 2011.

[68] KUROSE, J. F., ROSS, K. W., Redes de computadores e a internet: uma

abordagem top-down. 5th ed. Pearson, 2010.

[69] MORAES, C. C., CASTRUCCI, P. L., Engenharia de automação industrial .

2nd ed. LTC, 2015.

[70] ROHLOFF, K. R., “Sensor failure tolerant supervisory control”. In: 44th IEEE

Conference on Decision and Control,and the European Control Conference

2005, Seville, Spain, pp. 3493–3498, 2005.

[71] SÁNCHEZ, A. M., MONTOYA, F., “Safe supervisory control under observabil-

ity failure”, Discrete Event Dynamic Systems , v. 16, n. 4, pp. 493–525,

2006.

[72] BERMEO, L. E., BASILIO, J. C., CARVALHO, L. K., “DESLAB: a scientific

computing program for analysis and synthesis of discrete-event systems.”

In: 11th International Workshop on Discrete Event Systems , v. 45, n. 29,

pp. 349–355, 2012.

[73] NUNES, C. E. V., MOREIRA, M. V., ALVES, M. V. S., et al., “Codiagnostica-

bilidade em rede de sistemas a eventos discretos sujeita a atrasos e perdas

de observação de eventos”. In: XXI Congresso Brasileiro de Automática,

2016.

[74] KEROGLOU, C., HADJICOSTIS, C. N., “Distributed diagnosis using prede-

termined synchronization strategies in the presence of communication con-

101

straints”. In: 2015 IEEE International Conference on Automation, Sci-

ence and Engineering (CASE), Gothenburg, Sweden, pp. 831–836, 2015.

102

	List of Figures
	List of Tables
	Introduction
	Discrete Event Systems: theory and fundamentals
	Modeling of discrete event systems
	Languages
	Language of Discrete Event Systems
	Operations on languages

	Automata
	Deterministic automata
	Nondeterministic automata
	Observer automata
	Operations on automata

	Failure diagnosis
	Algorithms of failure diagnosis
	Failure diagnosis of DES

	Diagnoser
	Centralized diagnosis
	Decentralized diagnosis
	Codiagnosability verification

	Final remarks

	Communication Networks Subject to Delays and Losses
	Communication networks
	OSI model
	Circuit switching and packet switching
	Components of a network

	Delays and losses
	Specification of a communication network
	Final remarks

	Codiagnosability of Networked Discrete Event Systems
	Problem formulation
	Model of the plant subject to communication delays
	Modeling of intermittent loss of events
	Model of the plant subject to communication delays and intermittent loss of observations
	Definition of network codiagnosability of discrete-event systems
	Verification of network codiagnosability of discrete-event systems
	Complexity analysis of Algorithm 4.2
	Concluding Remarks

	Conclusion and Future Works
	Bibliographic References

