
A HIGH-PERFORMANCE TWO-PHASE MULTIPATH SCHEME FOR
DATA-CENTER NETWORKS

Lyno Henrique Gonçalves Ferraz

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia Elétrica,
COPPE, da Universidade Federal do Rio de
Janeiro, como parte dos requisitos necessários
à obtenção do título de Doutor em Engenharia
Elétrica.

Orientador: Otto Carlos Muniz Bandeira
Duarte

Rio de Janeiro
Novembro de 2015

A HIGH-PERFORMANCE TWO-PHASE MULTIPATH SCHEME FOR
DATA-CENTER NETWORKS

Lyno Henrique Gonçalves Ferraz

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ
COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. Otto Carlos Muniz Bandeira Duarte, Dr.Ing.

Prof. Antonio Marinho Pilla Barcellos, Ph.D

Prof. Artur Ziviani, Dr.

Prof. Igor Monteiro Moraes, D.Sc.

Prof. Miguel Elias Mitre Campista, D.Sc.

Prof. Pedro Braconnot Velloso, Dr.

RIO DE JANEIRO, RJ – BRASIL
NOVEMBRO DE 2015

Ferraz, Lyno Henrique Gonçalves
A High-Performance Two-Phase Multipath Scheme for

Data-Center Networks/Lyno Henrique Gonçalves Ferraz. –
Rio de Janeiro: UFRJ/COPPE, 2015.

XVI, 63 p.: il.; 29, 7cm.
Orientador: Otto Carlos Muniz Bandeira Duarte
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2015.
Bibliography: p. 59 – 63.
1. Virtualização de Redes. 2. Redes Definidas

por Software. 3. Computação em Nuvens. 4.
Multicaminhos. 5. Centro de Dados. I. Duarte, Otto
Carlos Muniz Bandeira. II. Universidade Federal do Rio de
Janeiro, COPPE, Programa de Engenharia Elétrica. III.
Título.

iii

À minha família.

iv

Agradecimentos

Agradeço aos meus pais e toda minha família pelo constante apoio e eterno
carinho. Agradeço à minha namorada que está sempre ao meu lado, por todo seu
carinho e paciência.

Ao professor Otto, meu orientador, e aos professores Antonio Marinho Pilla
Barcellos, Artur Ziviani, Igor Monteiro Moraes, Miguel Elias Mitre Campista e Pedro
Braconnot Velloso pela participação da banca examinadora. Agradeço também aos
professores Guy e Luís pelos diversos conselhos durante todo o trabalho. Agradeço
também ao Rafael pelos diversos conselhos e por ajudar a organizar o trabalho.

A todos os amigos do GTA, em especial Diogo, Martin e João, pelos conselhos e
pela grande ajuda.

A todos os amigos que sempre estiveram do meu lado.
Aos funcionários do Programa de Engenharia Elétrica da COPPE/UFRJ,

Daniele, Maurício e Rosa e pela presteza no atendimento na secretaria do Programa.
A todos que contribuíram direta ou indiretamente para a minha formação.
Por fim, agradeço a FINEP, CNPq, CAPES, FAPERJ e UOL pelo financiamento

deste trabalho.

v

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

UM ESQUEMA DE ENCAMINHAMENTO MULTICAMINHOS DE DUAS
FASES COM ALTO DESEMPENHO PARA REDES DE CENTROS DE DADOS

Lyno Henrique Gonçalves Ferraz

Novembro/2015

Orientador: Otto Carlos Muniz Bandeira Duarte

Programa: Engenharia Elétrica

Encaminhamento multicaminhos é usado em centros de dados para melhorar
o desempenho de rede ao aproveitar as topologias redundantes. Entretanto, as
propostas de encaminhamento multicaminhos existentes ou requerem modificações
na pilha de protocolos de inquilinos de computação em nuvem, praticável somente
em nuvem privativas, ou não distribuem adequadamente os fluxos na rede. Esta
tese propõe um esquema de encaminhamento que não requer modificações na pilha
de protocolos dos inquilinos e balanceia a carga de rede eficientemente. O proposto
esquema de encaminhamento Multicaminhos de Duas Fases (Two-Phase Multipath –
TPM) é composto de uma fase inteligente de configuração de multicaminhos descobre
caminhos disjuntos ótimos e uma fase rápida de seleção de caminhos em tempo
real que aumenta a vazão de rede. Um gerente logicamente centralizado utiliza
algoritmos genéticos para criar e posteriormente instalar os caminhos na fase fora de
tempo de execução, e controladores locais realizam a escolha de caminhos baseados
na utilização de rede em tempo real. O esquema de encaminhamento Multicaminhos
de Duas Fases (TPM) é analisado em cenários diferentes de localização de base
de dados de utilização de rede, comparado com protocolos similares e apresenta o
melhor desempenho, com uma redução do tempo para completar o fluxo 50% menor
que equal cost multipath e 4.6x menor que spanning tree protocol.

vi

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.)

A HIGH-PERFORMANCE TWO-PHASE MULTIPATH SCHEME FOR
DATA-CENTER NETWORKS

Lyno Henrique Gonçalves Ferraz

November/2015

Advisor: Otto Carlos Muniz Bandeira Duarte

Department: Electrical Engineering

Multipath forwarding has been recently proposed to improve network utilization
in data centers by leveraging its redundant topological design. However, current
multipath proposals either require modifications to the tenants’ network stack, being
feasible only in private clouds, or do not evenly distribute flows over the network. In
this thesis, we propose a novel multipath forwarding scheme that does not require
modifications to the tenants’ network stack and efficiently balances the network
load. Our Two-Phase Multipath (TPM) forwarding scheme is composed of a smart
offline configuration phase that discover optimal disjoint paths and a fast online path
selection phase that improves flow throughput at run time. A logically centralized
manager uses a genetic algorithm to generate and install paths during the offline
configuration, and a local controller performs the online multipath selection based on
network usage. We analyze our Two-Phase Multipath (TPM) scheme for different
workloads and topologies under several scenarios of usage database location, and
show that it yields a flow completion time reduction of more than 50% over equal
cost multipath and 4.6x over spanning tree protocol.

vii

Contents

List of Figures x

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

2 Related Work 5
2.1 Virtual Machine Placement for Load-Balancing 6
2.2 Mice Flows and Elephant Flows Focused Network Improvements . . . 7

3 Architecture 14
3.1 Two Phase Multipath Scheme Improvements 16

3.1.1 Prioritization of Latency-sensitive Small Flows 16
3.1.2 Fine-grained Load-balancing 17
3.1.3 Tenant Isolation and Scalability 17
3.1.4 Incremental Deployability . 18

4 Offline Multipath Configuration Phase 19
4.1 Mathematical Formulation of Multiple Disjoint Steiner Trees Problem 20
4.2 Proposed Genetic Algorithm for Tree Creation 23

5 Online Multipath Selection Phase 30
5.1 Selection Heuristics . 30
5.2 Database Placement . 31
5.3 Long-Lived Flows Migration . 32
5.4 Flow Tracking Policy . 32

6 Simulator and Results 34
6.1 Simulator . 34

6.1.1 Flow Simulator . 34
6.1.2 Workload Model . 35

viii

6.2 Simulation Results . 36
6.2.1 Fattree 4 Topology . 37
6.2.2 Small and Large Flows Proportion in Fattree 4 42
6.2.3 Larger Fattree Topologies . 46
6.2.4 Cisco 3-Tier Topology . 47
6.2.5 Jellyfish Topology . 49
6.2.6 Long-Lived Flows Migration 52
6.2.7 Flow Tracking Policy . 54

7 Conclusion 56
7.1 Future Work . 57

Bibliography 59

ix

List of Figures

1.1 Traditional data-center and cloud data-center traffic growth fore-
cast from 2014 to 2019. Overall, the data-center Compound Annual
Growth Rate (CAGR) is 25%, while the cloud data-center CAGR is
33% resulting in 10.4 ZB in 2019. Adapted from Cisco Global Cloud
Index, 2014-2019 [1]. 1

1.2 Division of data-center traffic. Internal data-center traffic is up to 4x
higher than incoming/outgoing traffic. Adapted from Cisco Global
Cloud Index, 2014-2019 [1]. 2

1.3 Public and private cloud workload forecast. In 2014, 30% of installed
workloads are in public cloud data-center, but as it has a Compound
Annual Growth Rate (CAGR) of 44%, it surpasses the private cloud
workload in 2018. Adapted from Cisco Global Cloud Index, 2014-
2019 [1]. 2

3.1 Two Phase Multipath Scheme Architecture: Multipath Configuration
phase. The global manager 1) gets the topology to calculate multi-
paths and 2) configures the multipaths in network devices. 14

3.2 Two Phase Multipath Scheme Architecture: Multipath Selection
phase. When a new flow arrives at the local controller, it 1) queries
the network usage database and then 2) selects the best path for that
flow. 15

x

4.1 The execution of the proposed tree creation procedure to connect
all ToR switches. Highlighted nodes and edges are part of the tree.
The switch vector s is showed below the graph. (a) The procedure
first picks a random switch forming the first subtree, i.e., s = [s1].
(b)–(d) A new random switch is selected and, if it has a link to any
switch in s, then this link and switch are added to the tree, resulting
in s = [s1 s2 s5 s6]. (e) If the selected switch has no link to other
switches in s, it forms a new subtree, but it is still added to the switch
vector. (f) If the selected switch has links with switches in different
subtrees, it connects to all of them to form a larger tree, resulting in
s = [s1 s2 s5 s6 s7 s4]. The procedure in (b)–(f) is repeated until all
ToR switches are connected in a single tree. 24

4.2 Recombination of two parents to generate two descendants. The
procedure is similar to the tree creation procedure, except that new
switches are selected from the suffix of the other parent. (a) The two
trees are showed with their respective genotypes. The random integer
r = 1 is selected and separates the genotypes in radicals and suffixes,
which will be exchanged. (b)–(f) The two descendants are generated
in parallel. The dark red nodes belong to the first descendant and
the light blue nodes belong to second descendant. 27

4.3 Mutation of an individual to form a new individual. (a) The switch
vector of the original descendant and the random integer r indexing
the switch to be removed. (b)–(e) The formation of the new mutated
individual by adding the switches in the suffix one at a time. Although
the mutated individual has the same switch set, the two genotypes
and resulting trees are different due to the order of the switches in
the vector. 28

6.1 Workload model of the flow simulator. The mean of natural logarithm
of the inter-arrival interval µ represents the workload scenario, the
smaller the µ, the shorter the mean inter-arrival interval and the
greater the load. 35

6.2 Fattree topology with 4-port switches used in our simulations. There
are four different paths to any ToR switch in another pod, and two
different paths to a switch in the same pod. 37

xi

6.3 Flow completion time (FCT) of STP. (a) The FCT CDF as a function
of inter-arrival time median ta. For ta = 1 ms, 30% of flows last more
than 10x the line data-rate time transfer. (b) The expected FCT
value of STP decreases when ta increases because congestion is less
likely to occur. 37

6.4 (a) Link usage at core and aggregation links. stp wastes signifi-
cant network resources by using only a single tree to connect all ToR
switches. (b) Number of active flows per link, considering that at
least one flow is active. At higher workloads, multiple flows share the
same link and reduce the available per-flow rate. 39

6.5 Expected FCT under different workload scenarios (ta values) for the
multipath selection heuristics for stp, ecmp, and tpm using lut,
lup, and lul as path selection heuristics and both global and lo-
cal database locations for Fattree 4 ports. 40

6.6 (a) Link usage at core and aggregation links for stp, ecmp and tpm
for both global and local database placements. (b) Number of
active flows per link, considering that at least one flow is active. . . . 41

6.7 Percentage of small flows (less than 100kB) and large flows (more
than 10MB) varying the σs of the flow size lognormal distribution
with µs = 7. 43

6.8 Workload model for the flows size lognormal σs variation. Besides the
sigma variation simulation, the σs = 2.8 for other simulations. 43

6.9 Expected FCT varying the proportion of small and large flows by
changing the standard deviation σs of the lognormal distribution of
flow sizes, with µs = 7 and ta = 5 ms. 44

6.10 Core and aggregation link utilization of σs ∈ [2, 4] for ecmp and tpm
for both global and local database placements. 45

6.11 Expected FCT for Fattree with 4-port switches. 46
6.12 Expected FCT for Fattree with 6-port switches. 46
6.13 Expected FCT for Fattree with 8-port switches. 47
6.14 The Cisco 3-tier topology, composed of the same 20 switches as in

the previous Fattree 4 topology. The main goal of this topology is
the vertical communication. 48

6.15 Expected FCT for the Cisco 3-tier topology. Although under high
horizontal communication the overall performance degrades when
compared to Fattree 4, the Cisco 3-tier topology significantly ben-
efits from tpm. 48

xii

6.16 Random generated 8-rack Jellyfish topology used on simulations and
two examples of VLANs acquired by the proposed genetic algorithm.
The jellyfish topology has 20 4-port switches whose 8 are Top of Rack
with two servers each. 49

6.17 Expected FCT for the Jellyfish topology. Connections between two
ToR switches benefit communication between the two racks, but de-
grade communication with other ToR switches. Still, tpm improves
FCT when compared to ecmp. 50

6.18 Randomly generated Jellyfish topology with 20 4-port switches, out
of which 16 are ToR switches. This topology also uses 20 switches,
but allows servers to communicate with fewer hops, increasing the
overall end-to-end throughput. 51

6.19 Expected FCT for the 16-rack Jellyfish topology. The presence of
more ToR ports for communication between other switches improves
the overall performance. 51

6.20 FCT of the migration of long-lived flows. sing-mig approach uses a
single path for small flows and migrate long-lived flows to different
paths according to lul. 52

6.21 FCT of the migration of long-lived flows. rnd-mig approach chooses
a random path for small flows and migrate long-lived flows according
to lul. 53

6.22 Expected FCT for different flow tracking policies for tpm with a
global database in Fattree 4 topology. 54

6.23 Expected FCT for different flow tracking policies for tpm with a
local database in Fattree 4 topology. 54

xiii

List of Tables

6.1 Multipath schemes name abbreviations. 36

xiv

List of Abbreviations

ACK Acknowledge, p. 5

ARP Address Resolution Protocol, p. 5

CAGR Compound Annual Growth Rate, p. 3

CONGA CONGestion-Aware balancing mechanism, p. 5

COTS Commercial Off-The-Shelf, p. 14

D3 Deadline-Driven Delivery, p. 5

DCTCP Data-Center Transmission Control Protocol, p. 5

DOVE Distributed Overlay Virtual Ethernet, p. 14

ECMP Equal Cost MultiPath, p. 3

ECN Explicit Congestion Notification, p. 5

FCT Flow Completion Time, p. 3

GLOBAL Single database for the data-center, p. 33

HULL High-bandwidth Ultra-Low Latency, p. 5

IaaS Infrastructure-as-a-Service, p. 3

LAN Local Area Network, p. 3

LOCAL Per rack database, p. 33

LUL Least-used-links, p. 33

LUP Least-used-path, p. 33

LUT Least-used-tree, p. 33

MAC Media Access Control, p. 14

xv

MPTCP MultiPath Transmission Control Protocol, p. 5

NO-END Never decrement cost, p. 33

NVGRE Network Virtualization using Generic Routing Encapsulation,
p. 14

OS Operational System, p. 5

PCP Priority Code Point, p. 14

PM Periodic monitoring to detect flow end, p. 33

RND-MIG Small in random path, migrate Long using lul, p. 33

SDN Software-Defined Networking, p. 5

SFE Scheduled fixed end when flow arrives, p. 33

SING-NIG Small in single path, migrate long using lul, p. 33

SNMP Simple Network Management Protocol, p. 14

SPAIN Smart Path Assignment In Networks, p. 5

STP Spanning Tree Protocol, p. 3

TCP Transmission Control Protocol, p. 5

TPM Two-Phase Multipath, p. 3

TRILL Transparent Interconnection of Lots of Links, p. 3

ToR Top of Rack, p. 3

UDP User Datagram Protocol, p. 14

VLAN Virtual LAN, p. 3

VLB Valiant Load Balancing, p. 3

VM Virtual Machine, p. 5

VXLAN Virtual eXtensible LAN, p. 14

xvi

Chapter 1

Introduction

In cloud computing, data centers share their infrastructure with several tenants
having distinct application requirements [2, 3]. This application diversity within
data centers leads to multiple challenges for network design in terms of volume,
predictability, utilization, and security [4, 5]. The volume of traffic in data-center
in growing, and comprises the majority of traffic. According to forecasts [1], while
IP wide area network traffic will move 2 ZB in 2019, the data-center related traffic
will move 10.4 ZB, as Figure 1.1 depicts. The data-center traffic Compound Annual
Growth Rate (CAGR) is 25%, while the cloud data-center CAGR is 33% against
5% of traditional data-centers.

Figure 1.1: Traditional data-center and cloud data-center traffic growth forecast
from 2014 to 2019. Overall, the data-center Compound Annual Growth Rate
(CAGR) is 25%, while the cloud data-center CAGR is 33% resulting in 10.4 ZB
in 2019. Adapted from Cisco Global Cloud Index, 2014-2019 [1].

First, traffic between Top-of-Rack (ToR) switches is currently estimated to be 4x
higher than incoming/outgoing traffic [1, 6], as Figure 1.2 shows. This high traffic
volume requires specific network topologies for data centers in order to guarantee
full bisection bandwidth and to provide fault tolerance [6–9].

1

Figure 1.2: Division of data-center traffic. Internal data-center traffic is up to 4x
higher than incoming/outgoing traffic. Adapted from Cisco Global Cloud Index,
2014-2019 [1].

Figure 1.3: Public and private cloud workload forecast. In 2014, 30% of installed
workloads are in public cloud data-center, but as it has a Compound Annual Growth
Rate (CAGR) of 44%, it surpasses the private cloud workload in 2018. Adapted from
Cisco Global Cloud Index, 2014-2019 [1].

Second, the composition data-center workload is migrating from private cloud data-
center to public cloud, as Figure 1.3 shows. In 2014, 30% of installed workloads
are in public cloud data-center, but it surpasses the private cloud workload in 2018.
Hence, the cloud providers have less control of the traffic inside the date-center.
Further, the random arrival and departure of virtual machines from multiple tenants
result in an unpredictable traffic workload, making it hard to provide manual solu-
tions for traffic management. Therefore, automated solutions that respond quickly
to changes are required to efficiently allocate the network resources. Finally, in or-
der to avoid forwarding loops, legacy network protocols, such as the Spanning Tree
Protocol (STP) [10], can be employed to disable certain network links. This ensures
that every pair of ToR switches communicates over a single path and that the net-
work is loop-free; however, it also restricts the switches from taking advantage of
the multiple available paths in data center topologies.

2

Whereas volume and predictability are inherent to the traffic nature of the appli-
cation, network utilization can be significantly improved by multipath forwarding.
The idea is to split traffic at flow-level granularity among different paths in order
to fully utilize the available capacity. Although promising, most approaches rely on
heavy modifications to the network stack of end hosts, ranging from explicit conges-
tion notification (ECN) [11, 12] to multipath congestion control [13]. These modifi-
cations are not an issue on private clouds, whose sole purpose is to provide services
within a single domain. However, in public infrastructure-as-a-service (IaaS) clouds,
in which tenants rent virtual machines and have complete control of their network
stacks [14], these solutions are not recommended since they interfere with tenants
autonomy. Therefore, solutions that only enhance the network infrastructure while
not touching the end hosts are required.

A well-known approach for deploying multipath forwarding without modify-
ing the end host is Equal Cost MultiPath (ECMP), commonly adopted in data-
centers [6, 7, 15, 16] as well as in the recent standard called Transparent Intercon-
nection of Lots of Links (TRILL) [17]. Network switches supporting ECMP find
multiple paths with the same cost and apply a hash function to certain fields of
the packet header in order to find the next hop. ECMP is expected to evenly dis-
tribute the flows among the multiple paths and thus reduce network congestion.
Nevertheless, since hash-based path selection does not keep track of path utiliza-
tion, ECMP commonly causes load imbalances when long-lived flows are present
on selected paths [18]. Similarly, in Valiant Load-Balancing (VLB), the flow source
sends traffic to a random intermediate node which, in turn, forwards it to the des-
tination. As ECMP, this also achieves uniform flow distribution on paths; however,
due to the stateless selection of the intermediate node, VLB suffers from the same
problems as ECMP.

With these issues in mind, we propose a Two-Phase Multipath (TPM) forwarding
scheme with a number of key properties:

• No modifications at end hosts: TPM is an in-network load balancing
scheme that does not require modifications to the end hosts. This is required
in multitenant clouds where the provider does not have any access whatsoever
to the tenants’ network stack.

• No modifications in hardware: TPM increases the performance of the data
center with no hardware modifications and avoids changes to the infrastructure
fabric. In addition, it also requires only a handful of configurable features to
keep the implementation cost low.

• Robust to asymmetry and topology: TPM handles path asymmetry due
to link failures and topology design. It can also be deployed in arbitrary

3

topologies and covers the entire spectrum of data center topologies.

• Incrementally deployable: TPM can be deployed in a part of the data
center, and work with other segments of the data center seamlessly.

The proposed TPM multipath scheme separates the forwarding functionality
into two distinct phases, namely, multipath configuration and multipath selection.
Multipath configuration is the offline phase that computes the best possible paths
and configures them in the switches. It creates several virtual local area network
(VLAN) trees interconnecting all ToR switches, and therefore the path selection can
be performed by simply tagging packets with the proper VLAN ID at the outgoing
ToR switch. The VLANs trees reutilize a VLAN ID to several paths, which pro-
vides multiple paths with a reduced number of utilized VLANs ID to comply with
the VLAN ID hard limit. To find these trees, the multipath configuration phase
uses network topology information to reduce path lengths and link diversity. In
particular, we propose and formulate a genetic algorithm to find an optimal set of
trees with disjoint links. The multipath configuration phase remain active during
the operation of the data-center, and reconfigures the trees in the switches when
needed without shutting down the infrastructure. Multipath selection is the online
phase that chooses the best path for a new flow. The selection is based on path
utilization database in order to select the least-used path.

To evaluate TPM, we develop a discrete-event simulator at flow-level granularity
to model the data center. We test scenarios inspired in realistic traffic workloads [19],
and data-center topologies. We also used different configuration and parameters to
evaluate the proposal performance with different database designs, which change
the information stored, update rate, and thus the requirements. The results show
that TPM always performs better than the traditional forwarding schemes. TPM
successfully reduces the congestion and improves the maximum throughput time,
with reductions in the Flow Completion Time (FCT) by more than 50% compared
to uniform path selection schemes such as ECMP, and 4.6x compared to the single
tree scheme STP.

The remainder of this thesis is structured in six chapters. We cover some related
works in Chapter 2. Chapter 3 presents an overview of TPM and our design choices.
Chapter 4 describes the offline multipath configuration phase and Chapter 5 presents
the online multipath selection phase. We present the developed simulator and the
obtained results in different scenarios and topologies in Chapter 6. Finally, we
present the final remarks and discuss future work in Chapter 7.

4

Chapter 2

Related Work

Traditional data centers use dedicated servers to run specific applications, which
result in inefficient resources utilization due to demand variations and consequently
the unused resources [20]. The growth of cloud computing and virtualization tech-
nologies enables the aggregation of several services and applications in a single data
center. The services and applications are virtual networks that share the data center
resources [14]. The aggregation increases resource usage and reduces operation and
maintenance costs. Besides, the virtualized cloud data centers host several tenants,
each has its own applications and services with different requirements. Therefore,
the diversity of applications sharing the infrastructure cause in a variety of traffic
patterns in data center network [21].

The data center topology is built with the goal of providing high computation ca-
pacity with several servers interconnected. To connect the computational resources,
the network topology employs several paths between servers [22]. Thus, an appli-
cation is distributed across servers, which results in a intra data center traffic four
times the outgoing traffic [6].

One of the technologies that allows the cloud computing is server virtualization.
Server virtualization allows efficient data-center resource utilization, because several
virtual machines share the infrastructure, thus avoiding idleness [14, 23, 24]. Never-
theless, cloud computing customers reported “noisy neighbors” problems regarding
the other tenants sharing the resources, which result in unpredictable performance
when collocated tenants try to grab resources. While the hypervisor have means
to ensure the memory disk, and CPU performance to virtual machines, network
performance isolation still an issue [25].

5

2.1 Virtual Machine Placement for Load-
Balancing

One important feature provided by virtual machines is the migration, which
transfers on virtual machine from one server to another. This feature allows data-
center optimal resource utilization, leveraging the virtual machine CPU, memory
and network demands with the available resources [23, 26, 27]. Besides, the infras-
tructure is prone to network failures that hamper the data-center, and even with
few, the network performance degrades significantly by increasing paths size and
forcing the path sharing [9]. Then, some proposals use the migration capability
of cloud computing to ensure virtual machine communication and availability in
failures events, while reducing the bandwidth utilization in data-centers [28].

The optimization of virtual machine (VM) placement ensures efficient resource
utilization, while optimization in multipath routing ensures link efficiency usage.
Nevertheless, managers often perform these optimizations separately, even though
one might affect the other. Jiang et al. formulate and propose an algorithm to solve
the joint routing and VM placement problem [26]. The joint problem formulation
considers tenants or jobs, a set of VMs, to be assigned to the data-center and with
a number of links and machines. The VMs of a job have a resource requirement
and also communicate with each other with certain load. Thus, the optimization
problem tries to allocate these VMs in the servers minimizing the network total load
and the operating costs of the physical machine, while respecting the VM resource
and traffic load requirement. As VMs constantly enter and leave the data-center, the
authors propose an online solution to the problem by a Markov chain approximation,
such that jobs interarrival interval and permanence in the system have exponential
times resulting in a M/M/∞ queue for the number of jobs in the system. As it is
possible to get an approximate value to the objective function for a particular set of
jobs, one can get the optimal approximated solution by traversing a time-reversible
Markov chain. Therefore, the authors successfully achieve cost efficient routing and
VM placement.

The design of network topologies and resource allocation mechanisms account
for failures normally by providing multiple paths between servers and bandwidth
reservation. Nevertheless, components may fail and shut down for maintenance,
and network congestion may cause latency spikes, thus resulting in sections of the
data-center becoming unavailable. Bodik et al. propose an optimization framework
that at the same time it reduces the bandwidth utilization of cloud-based services,
it also improves fault tolerance by spreading virtual machines across the data-center
servers [28]. Given that both improving fault tolerance and improving bandwidth
usage problems are NP-hard, the authors formulate a convex optimization problem

6

and an algorithm to solve it. The optimization problem incentives virtual machine
spreading across servers, and also they include a penalty term for machine reallo-
cations that increase bandwidth usage. The algorithm that solves the optimization
problem optimizes each objective at a time then combines the solution, and overall,
it successfully increases the fault tolerance of services while reducing the bandwidth
usage.

Machine virtualization is one of the features of cloud computing IaaS. The pres-
ence of virtual machines introduce new challenges on where allocate the virtual
machines to ensure the resource requirements, but introduces new opportunities to
improve the network usage, reduce congestion and load-balance the traffic. The
virtual machine allocation mechanism are independent from the forwarding mecha-
nism. Although our proposed scheme does not provide a virtual machine allocation
mechanism built-in, we consider that a complete cloud computing data-center should
include one. The virtual machine allocation mechanisms are compatible with our
proposed forwarding scheme and may improve even more the overall performance.

2.2 Mice Flows and Elephant Flows Focused Net-
work Improvements

The applications running in the data center are varied, each with distinct traf-
fic patterns [19]. Most of the flows are small and short-lived, the so called mice
flows. On the other hand, most of the bytes are transferred in big and long-lived
flows, which compose a minority of total flows. The big and long-lived flows are
the elephant flows. The mice and elephant flows have distinct requirements and
behaviors, which the interaction between them causes packet losses and delays in
requests fulfillment that deteriorate the applications performance.

The mice flows are latency-sensitive, because normally are generated by parti-
tion/aggregate applications, such as Map/Reduce applications used in web searches,
social network content composition, and advertising selection [11]. In this type of
application, the aggregator divides a request into sub-requests and delivers them to
workers during the partition phase. After the computation of the sub-requests, the
workers send the result to the aggregator, which in turn perform the aggregation
phase. The flows of this kind of application have strict delay limits so the responses
are timely presented to the users. The responses that violates the delay limits are
discarded, which degrades the overall quality of the response to users. The main
cause of the response delay increase is the flash congestion during the aggregation
phase, which corresponds to a many-to-one communication. Hence, the prevention
of the issue is mainly the prioritization of delay-sensitive flows and low link usage

7

to avoid traffic congestion losses [29].
Alizadeh et al. propose a fine-grained data-center transmission control protocol

(DCTCP) to overcome the linear increase and exponential decrease procedure of
TCP [11]. In this approach, the switches monitor the port out buffers and when
they are full, the switches interpret it as congestion. The switches mark the explicit
congestion notification (ECN) field in packets headers when they detect the queue
occupancy is greater than a threshold, which is small relatively to the queue size.
When the ECN-marked packet arrives at the receiver, the receiver sends ACK pack-
ets with the ECN-Echo field enabled. Based on the ACKs received, the sender knows
the fraction fc of packets of the stream encountered “congested” queues. Then, once
for every window of data, the sender calculates an estimate of the probability pc of
the next window of data encounter congested queues by pc ← αfc + (1 − α)pc,
where α is the weight of new samples. Then, the congestion window at the sender
is updated to cwnd ← cwnd(1 − pc/2). This algorithm allows the sender react to
as soon as the flow encounters congested queues, before the links are in fact con-
gested. Besides, the congestion window size changes accordingly to the congestion
of the network, avoiding the cut-in-half window policy of conventional transmission
control protocol (TCP), thus allowing a fine-grained rate control.

DCTCP can effectively reduce the congestion by the fine-grained rate control.
Nevertheless, DCTCP still suffers from flash congestion, which instantaneously
floods the network with packets. Besides, DCTCP allows the queues to build up, in-
creasing the total latency of the packets. This scenario is inappropriate for ultra-low
latency application such as high-frequency trading, high-performance computing,
and RAM-Cloud. In this kind of applications, machines interact with each other
with operations involving parallel requests to thousands of servers at microseconds
scale, and the operation is complete only when all requests are satisfied. Thus, any
delay in individual request, degrade the target quality of service. The microsecond
scale latency is achievable if queuing delays are reduced to zero, in a conventional
large scale data-center. With this in mind, Alizadeh et al. extend DCTCP and
propose a High-bandwidth Ultra-Low Latency (HULL) architecture to deliver near
baseline latency and high throughput [12]. Low and predictable latency essentially
requires congestion signaling before congestion occurs. This imposes a tradeoff be-
tween total bandwidth usage and latency by creating bandwidth headroom. The
authors accomplish that by a phantom queue, which simulates a queue and mark
ECN bits based on link utilization instead of queue occupancy. The phantom queue
simulates a queue buildup in a configurable speed slower than the line speed. Thus,
whenever a packet exits the link, the phantom queue updates a packet counter
that allows the calculation of the transmission rate. When the calculated speed is
above the configurable speed threshold, the switch marks the packets, which allows

8

the transport protocol to control the transmission rate with fine-granularity while
leaving the headroom to ensure the low latency.

Providing low latency is extremely important, but as several applications share
the data-center network, not every application have their latency needs accom-
plished. Wilson et al. argue that as applications have different deadlines for their
flows, it is possible to schedule in such way that the majority of flows meet their de-
mands [30]. Wilson et al. propose Deadline-Driven Delivery (D3) control protocol,
which assign flows different transmission rates to accomplish all deadlines as possi-
ble. In D3, the applications request a specific rate to fulfill their deadlines. The rate
request is carried on a packet header sent to the destination, and the network de-
vices send back the allocated rate on the acknowledgement packet. The applications
then use the smallest rate allocated. The network devices use a greedy algorithm
to allocate the requested rates to the applications, and as the flows and required
rates are always changing, the applications periodically send the rate request. If
there is not enough capacity for all request rates, it greedily allocates the rates,
and gives a base rate for the remaining flows. If there is spare rate after allocating
the requested rates, the router allocates the fair share to all flows. In this way, it
reduces the required rates for the next request allowing even more deadlines to be
accomplished.

The congestion in data-center networks may increase the flow completion time
up to two orders of magnitude, which forms a long tail distribution for the flow of
a partition-aggregate application. This long tail means that the partition-aggregate
job has to wait for all flows, thus hampering the overall performance of the appli-
cations. Zats et al. propose a multilayer approach to reduce the long tails in flow
completion time (DeTail) [29]. At the link layer, DeTail employs a lossless fabric
with priority flow control standard capable Ethernet switches, in which switches
send pause frames to previous hop when the ingress queue is occupied to stop the
transmission of a given priority, quenching up to the sources. At the network layer,
the switches load-balance the traffic using the least-congested equal-cost shortest
paths. The switches use the egress queue occupancy as an indicator of congestion,
because if the path is congested, the next hop sends pause frames increasing the
egress queue occupancy. The multipath and pausing may result in out-of-order
packet arrival, thus at the transport layer must be robust to packet reordering. Fi-
nally, at the application layer, applications set the corresponding priority of the
flows in the socket interface. The applications should also be prepared to experience
long quenching time in extreme congestion scenarios. The correlation between the
elements of each layer is extremely important, and the whole system is capable of
significantly reducing the long tails of the flow completion time.

The proposals in literature that cope with mice flows long delays not only require

9

several infrastructure devices modifications, but also modify end servers applica-
tions and protocols to interact with the infrastructure devices, normally to reserve
resources. Thus, these proposals are not suited to cloud data centers with multi
tenants, since each tenant has own distinct applications and protocols. Besides,
even if the protocols are standardized, the interaction between the applications and
network devices present security risks due to isolation violations [4].

At the same time the packet losses due to flash congestion should be avoided,
other flow requirements should also be fulfilled. Elephant flows transfer large
amounts of data, then they demand high throughput but are flexible regarding
delays. Hence, these flows should be organized to utilize the maximum available
bandwidth of the data center. Besides, the elephant flows use all link capacity,
which may cause congestions that affect mice flows. Various proposals use multiple
paths provided by data center network topology to avail the links bandwidth capac-
ity. One technique that uses multiple paths to increase overall throughput is the
Equal Cost MultiPath (ECMP). The routing protocol calculates multiple minimal
paths with the same cost and uses a hash function to spread flows in the different
paths. Then, the flows are expected to be randomly and evenly distributed in the
multiple paths. Link layer protocols already use ECMP such as Transparent In-
terconnection of Lots of Links [17] and IEEE 802.1aq Shortest Path Bridging [31].
Valiant Load Balancing [6] is similar to ECMP, but to select the flow path, the flow
sending server randomly picks up an intermediate switch to forward the flow to.

The MultiPath TCP (MPTCP) [13] divides a TCP flow into several subflows
and send each in a different path, so each subflow has its own congestion control.
The MPTCP approach tries to send each subflow at maximum rate available in each
path to use all available bandwidth for the flow. Since this approach changes the
normal TCP operation, it requires modifications in the guest operational system
(OS).

Some multipath forwarding schemes were proposed in the context of Software-
Defined Networking (SDN) to manage and distribute data center traffic [32]. Al-
Fares et al. [15] propose Hedera, a centralized flow scheduling system that uses
an OpenFlow controller to gather information and manage switches. Hedera uses
ECMP to distribute traffic among different paths and monitors their duration over
time. Hedera detects the presence of long-lived flows and periodically runs a simu-
lated annealing algorithm to distribute these flows into different paths to maximize
transmission rates. In a similar approach, Curtis et al. [33] propose DevoFlow, which
devolves the flow management to switches while the controller only keeps track of
a few targeted flows. DevoFlow uses local probability distributions to select the
next hop for each flow, and also can use centralized algorithms to reschedule flow
paths as in Hedera. Nevertheless, the centralized algorithms are too slow to opti-

10

mize the variable data-center traffic [29]. Our approach assigns the path selection
functionality to the local controllers to avoid such constraints.

A few proposals randomly select one of the multiple paths in the data centers to
distribute the network traffic [6, 22, 34]. Al-Fares et al. [22] design a communication
architecture for the Clos fattree network topology. The solution has no end-host
modification, but requires moderate modifications in switch forwarding functions.
The authors propose an addressing scheme for switches and hosts and a two-level
routing table, which splits traffic according to the destination host. Greenberg et
al. [6] propose VL2, a network architecture that uses a Clos network topology to
form a complete bipartite graph between core and aggregation switches. VL2 ad-
dressing scheme uses two separate classes of IP addresses, one for the infrastructure
topology and another for the tenants’ applications. The VL2 architecture uses a
directory system to map the tenants’ applications addresses to the infrastructure
servers addresses, and the source server encapsulates the tenant’s application pack-
ets with an IP header to the destination server. Besides, for packet forwarding,
it uses Valiant Load Balancing (VLB) to distribute the traffic among the differ-
ent paths. The source encapsulates packets with another IP header to a random
intermediate switch and ECMP distributes the flows among the paths to this in-
termediate switch. To increase entropy of packet headers, the source addresses of
the extra headers are the hash value of the inner packet header, which avoids the
switches ECMP forwarding use the same path due to the multiple encapsulation.

Mudigonda et al. [34] introduces NetLord, a multi-tenant network architecture
that encapsulates tenants’ Layer-2 packets to provide full address-space virtualiza-
tion. An agent in physical servers encapsulates and decapsulates packets of tenants’
virtualized systems. As VL2, only the infrastructure server addresses are exposed in
the network, thus it scales the number of virtual machines. The forwarding mecha-
nism uses a so-called smart path assignment in networks (SPAIN) [35] to distribute
traffic among multiple paths. The SPAIN proposal explores the path diversity of
data center topologies without any changes in the common of the shelf switches.
SPAIN uses an offline greedy algorithm to configure Virtual Local Area Network
(VLAN) trees, so that each tree is built based on minimal path size and link reuse.
The use of VLAN trees allows an easy multipath setup just by configuring different
VLANs in the switches. Further, this approach requires minimal switch features,
including VLAN-based Media Access Control (MAC) address learning and storage.
SPAIN also runs an online algorithm in servers which test the connectivity of the
destination and randomly selects a tree to send a flow. All aforementioned proposals
rely on a random distribution of flows among the available paths, which performs
poorly in the presence of long-lived (elephant) flows. Our proposed TPM scheme
avoids that by employing a path selection heuristic based on link utilization, signif-

11

icantly reducing path selection collision and improving the overall performance.
Alizadeh et al. [18] propose a distributed global congestion-aware (CONGA)

balancing mechanism. Each source ToR switch encapsulates the tenants’ packets
using a VXLAN header, and spine switches update a congestion metric field in this
header. The destination ToR switch decapsulates the packets, forwards them to
the corresponding tenant, and stores the congestion metric of the incoming path.
The congestion metric is opportunistically piggybacked in the VXLAN header when
the destination ToR switch sends packets back to the source ToR switch. Thus,
ToR switches constantly receive the congestion metric for each path it sends traffic,
and choose the path which minimizes the congestion metric. Conga utilizes an in-
network approach, but it requires a new forwarding engine in switches, which could
be costly.

Rojas et al. [36] propose All-Path, a routing paradigm that uses a reactive ap-
proach to learn the paths in data-center, campus, and enterprise networks. Based
on this paradigm, they propose a protocol that learns low-latency paths on-demand
based on broadcasted Address Resolution Protocol (ARP) messages from hosts.
Switches broadcast ARP request messages and store the port from which the first
copy is received. The ARP reply follows the reverse path, allowing switches to
reach every destination. This approach thus frequently balances the flows among
the low-latency paths. As Conga, All-Path also requires costly modifications on
the switches. The proposed TPM scheme can be currently deployed in data centers
by only modifying the software in virtual switches at the physical machines at the
network edge.

Even though these works contribute to key aspects of multipath forwarding for
cloud computing data centers, we claim that to maintain scalability, the network
infrastructure should be oblivious to the multipath scheme. Hence, both encapsu-
lation mechanism and mapping system are always required. For this purpose, we
use VLAN trees, which enable multipath forwarding using conventional features of
commercial off-the-shelf switches. The per-flow management is easily implemented
using distributed SDN controllers to manage the virtual switches at the servers.

Our work proposes a multipathing scheme that generates optimized paths with
genetic algorithm. The approach suits the cloud data center, so it does not require
any tenant modification. The modifications proposed are in infrastructure provider
and are maintained at a minimum level. The multipathing is accomplished in two
phases: Multipath Configuration and Multipath Selection. In Multipath Configura-
tion phase, the genetic algorithm calculates the multiple paths that can be used by
the flows. Then, the multiple paths are configured in the network devices. The Mul-
tipath Configuration is an offline phase; it configures the devices when the network
is not yet in operation or when there are planned or long term topology changes,

12

such as installation of new devices, maintenance operations, and device failures. In
the Multipath Selection phase, the flow path is chosen online. TPM selects paths
for all data-center flows, thus both mice and elephant flows, although elephant flows
benefit more because the scheme improve their overall transmission rate, their most
needed resource. As there is more available bandwidth from thorough path selec-
tion, mice flows benefit indirectly by experiencing less contended paths. Besides,
TPM employs tweaks to address mice flows specific needs.

13

Chapter 3

Architecture

The proposed Two-Phase Multipath (TPM) scheme explores the path diversity
of the network to load balance flows using an in-network approach, without requir-
ing any modification to the tenants’ virtual machines (VMs) protocol stack. As
previously explained, this is performed in two phases: The multipath configuration
phase and the multipath selection phase.

Figure 3.1: Two Phase Multipath Scheme Architecture: Multipath Configuration
phase. The global manager 1) gets the topology to calculate multipaths and 2)
configures the multipaths in network devices.

TPM requires two types of devices to manage the entire network: a logically cen-
tralized global manager responsible for the multipath configuration phase, and local
controllers responsible for the multipath selection phase. Figures 3.1 and 3.2 depict
the TPM architecture. In essence, the global manager collects network topology in-
formation, calculates the available paths, and sends them to the network devices to
be used later during online path selection, as in Figure 3.1. The path computation
is performed before the network becomes operational. When there is a topology
change such as installation of new devices, partial deactivation due to maintenance,
or long term failures, the global manager performs the path computation to install
the new paths, without the need to deactivate the network. To obtain the topology

14

periodically, the global manager may use either the Simple Network Management
Protocol (SNMP) for topology discovery [37] or OpenFlow [38]. The VLAN for
each tree can also be configured using either approach, which guarantees that most
commercial off-the-shelf (COTS) devices are suitable to be used with TPM.

In order to exploit multiple paths without having to modify the network core,
TPM uses VLANs (IEEE 802.1Q). Each VLAN uses a subset of aggregation/core
switches to interconnect all ToR switches in a tree topology.

Instead of assigning a VLAN to each path, TPM uses a VLAN for each tree
in order to aggregate multiple paths into a single VLAN ID, thus saving precious
VLAN ID space (each VLAN ID has only 12 bits). Assuming a data center with n
ToR switches, each tree contains n(n− 1)/2 symmetric paths; our approach is then
able to support up to n(n−1)211 different paths between every pair of ToR switches.
This increases the number of potential paths by a factor of at least n(n−1)/2 when
compared to the case of using a VLAN per path. In addition to increasing path
availability, VLAN trees do not require a routing protocol, since there is only a
single path between any pair of ToR switches in each VLAN.

The trees of each VLAN are not entirely disjoint, and thus each link may belong
to multiple trees. During the multipath configuration phase, however, the trees are
selected to be as disjoint as possible in order to ensure maximum path availabil-
ity between any pair of ToR switches. To find these trees, we propose a genetic
algorithm presented in Chapter 4.

Figure 3.2: Two Phase Multipath Scheme Architecture: Multipath Selection phase.
When a new flow arrives at the local controller, it 1) queries the network usage
database and then 2) selects the best path for that flow.

We assume that each physical machine in a rack has a virtual switch to share

15

the network device between the virtual machines, such as Open vSwitch [39]. The
virtual switches of a rack are connected to the same local controller. During packet
forwarding, the virtual switch inserts a VLAN tag into each outgoing packet and
also removes the VLAN tag from each incoming packet. Upon arrival of a new
outgoing flow, the virtual switch contacts the controller to select an available path
for it. The controller then queries a database with network usage information to
determine the least congested path for the new flow, as explained later in Chapter 5.
Once the path (the corresponding VLAN) is selected, the local controller installs an
OpenFlow VLAN tagging rule on the virtual switch to handle future packets of this
flow, as in Figure 3.2. Each subsequent packet then receives the assigned VLAN tag
and does not require contacting the local controller again.

3.1 Two Phase Multipath Scheme Improvements

TPM scheme allows the optimal path choice to avoid congestion and increase
network performance. Nevertheless, the scheme supports tweaks that improve even
more the performance, which do not require neither modifications on the virtual
machines nor modifications on the infrastructure hardware.

3.1.1 Prioritization of Latency-sensitive Small Flows

There are basically two types of flow in the data center: the bandwidth-hungry
large flows and the latency-sensitive small flows. The large flows do not have strict
latency requirements, thus the multipath load-balancing provides good performance
to transmit the flows. On the other hand, although latency-sensitive small flows
do not use much bandwidth, they have strict latency requirements. The violation
of the deadlines of these flows results in poor application performance, hence they
should be prioritized over the large flows.

Flow prioritization is a common feature of most commercial switches, and the
IEEE 802.1Q Priority Code Point (PCP) bits to classify the priority packets in a
special queue and send them before the other packets. Additionally, switches may
use two more queues with minor priority which they send traffic with a weighted
round robin scheduling discipline. Therefore, the global manager activates the flow
prioritization based on 802.1Q PCP bits only to prioritize the marked flows. The
local controller already sets the virtual switch of the servers to add the 802.1Q header
and set the VLAN tags. Thus, the local controller also sets the virtual switches to
mark the small flows PCP bits. As the local controller has no knowledge of which are
the latency-sensitive small flows a priori, it sets the PCP bits in all new flows, and
unsets the PCP bits of the flows that remain active after some time. Alternatively,

16

as the virtual switches use Open Flow, they can use the conventional flow header
fields to detect the small flows.

3.1.2 Fine-grained Load-balancing

The main goal of load balancing is to distribute the transmitted data between
all available paths, so sending each packet to a different path would be the optimal
solution. Nevertheless, each packet experiences different delays and arrive at the des-
tination in different instants, causing transport layer protocols such as Transmission
Control Protocol (TCP) to interpret the out-of-order packets as sign of congestion
and reduce transmission rates accordingly [40]. Therefore, flows should use a single
path to avoid packet reordering or all transport layer of the data center should be
modified to resist to packet reordering.

In this scenario, to increase the granularity of the load-balancing the flows should
be as small as possible. With that in mind, we use the flowlet concept, which states
that full flows are essentially a set of bursts of packets, the flowlets, in such way
that there is a gap between each flowlet of a flow [40]. If the gap between flowlets
is large enough, each flowlet can use a different path and the packets are received
in-order.

As the local controller uses OpenFlow to control the virtual switches of servers,
every rule is set with a parameter idle timeout. The idle timeout parameter makes
the virtual switch to expire and remove the rule when it does not receive any packets
of the corresponding flow. Thus, by setting the idle timeout of flows rules in virtual
switches ensures different path selection for each flowlet. Indeed, the parameter
value assignment is important, because too small values may result in out-of-order
packets and overload the local controller, and too large values may ignore flowlets.

3.1.3 Tenant Isolation and Scalability

Cloud computing data centers host a huge amount of tenants, which have sev-
eral different requirements. One of the most important requirements is the isolation
between each tenant. The traffic of a tenant should be totally oblivious to other
tenants. Besides, the isolation mechanism should support a large number of tenants,
given the scale of cloud computing data centers. The presence of a large number
of virtual machines, can force the infrastructure fabric to learn all MAC addresses
of the virtual machines. To address this concern, many proposals create an over-
lay to isolate the traffic of tenants with VLAN tags [41], User Datagram Protocol
(UDP) encapsulation such as Distributed Overlay Virtual Ethernet (DOVE) [42]
and Virtual Extensible LAN (VXLAN) [43], or tunneling with Network Virtualiza-
tion using Generic Routing Encapsulation (NVGRE) [44]. The encapsulation allows

17

the separation of each tenant traffic, avoid sending packets to another tenant’ vir-
tual machines. Besides, the encapsulation hides the virtual machines Media Access
Control (MAC) addresses to the infrastructure, which has to learn only the physical
machine MAC address. Except from VLAN tagging which is used to identify the
multiple paths, all of these proposals are compatible with TPM scheme.

3.1.4 Incremental Deployability

Since the VLAN tag insertion/removal is performed at the edge by virtual
switches, the ToR, aggregation, and core switches are oblivious to the existence
of TPM and only forward packets based on their respective VLAN tag and desti-
nation MAC address. This design choice allows TPM to be backward compatible
with existing data center infrastructure and reduce its adoption costs. Additionally,
TPM can also be incrementally deployed. All devices run the default STP protocol
to create a single untagged tree to ensure the interconnection of all ToR switches,
and therefore of all physical machines. In order to send packets to devices that do
not support TPM, the controller instructs the virtual switches to not insert a VLAN
tag into these packets.

Next, in Chapter 4, we describe the offline multipath configuration phase and
the proposed genetic algorithm, and in Chapter 5, we present the online multipath
selection phase proposed heuristics.

18

Chapter 4

Offline Multipath Configuration
Phase

The multipath configuration phase is responsible for calculating and installing
the VLAN trees in the network devices. Each tree interconnects all Top of Rack
(ToR) switches, thus all servers, ideally each tree with different paths between the
ToR switches. The challenge here is to provide enough path diversity for each pair
of ToR switches to improve network utilization. However, it is not clear how many
trees (and different paths) our Two-Phase Multipath (TPM) scheme should use in
total to achieve this. In addition, it is important that the chosen trees be as disjoint
as possible to provide multiple independent paths for each pair of ToR switches.

In this chapter we model the multiple disjoint trees problem, to find the best tree
set with two objective functions. One objective function minimizes the size of the
tree, to avoid long paths; and the other minimizes the link reutilization by the trees
to create disjoint trees and disperse paths. We then propose a genetic algorithm
to find the best tree set using two objective functions. One objective function
minimizes the tree size in order to avoid long paths; and the other minimizes the
link reutilization by the trees to create disjoint trees. The algorithm optimizes both
objective functions considering Pareto dominance group and number of individuals
in the population. The Pareto dominance ensures that the algorithm does not
favor one objective function or the other, because it considers that two individuals
are equivalent if each is better than the one in one of the objective functions. To
calculate the trees, the global manager first acquires the network topology, runs the
proposed genetic algorithm, and then installs the VLAN trees in the network devices.
These operations are first performed offline, and at each long-term modification of
the network, such as the installation of new devices. Nevertheless, once in operation,
the network does not need to shut down to install the new or modified VLAN trees.
Link failures do not trigger the calculation and installation of new trees; instead,
they are detected by local controllers that simply blacklist the affected paths. The

19

paths are periodically probed to verify their availability to remove them from the
blacklist.

We first formulate the multiple disjoint trees problems and then we propose a
genetic algorithm to solve the problem as optimal as possible.

4.1 Mathematical Formulation of Multiple Dis-
joint Steiner Trees Problem

We derive the model from the Steiner Tree Problem, which aims at finding
the minimum weight tree that interconnects a set of terminal nodes. Given the
undirected network graph G = (V,E), an edge cost ce defined on e ∈ E, we want
to interconnect T ⊆ V terminal nodes via multiple disjoint trees I ⊆ E that form
a set P , such that Ik ∈ P, k ∈ [1 . . . n], whose nodes of I are in S ⊆ V . The
cardinality of the tree set P is the maximum number of trees that is possible to
configure in the network, thus the maximum number of VLANs (n = |P | ≤ 212).
We fix |P | = 212 and let the number of valid trees (Ik 6= ∅, k ∈ [1 . . . n]) be an
objective of the formulation determined by the variable xIe to indicate whether tree
I contains edge e, i.e.,

xIe =

1, if e ∈ I
0, otherwise.

(4.1)

We also define the function zSi to indicate whether node i is in tree S i.e.,

zSi =

1, if i ∈ S
0, otherwise.

(4.2)

Note that if the tree node set is not empty (S 6= ∅), then S ⊇ T and zSi = 1, i ∈ T 1.
Our objective is minimize tree sizes and create disjoint trees, thus we define two
objective functions of the edge pertinence matrix x|P |×|E|, F1(x) and F2(x) as

F1(x) =
∑
I∈P

∑
e∈I

cex
I
e (4.3)

and

F2(x) =
∑
I∈P

∑
e∈I

xIe∑
I′∈P xI

′
e

. (4.4)

Equation 4.3 is the sum of all tree edge costs. The tree edge costs should be minimal.
1This definition is slightly different than the traditional node variable Steiner Tree Problem

formulation, which defines also a node cost wi and variable zi on i ∈ V \ T , which indicates the
node pertinence in the tree. The formulation assumes that as terminal nodes are already in the
tree, they are not considered.

20

Note that minimizing Equation 4.3 also reduces the number of valid trees (I 6= ∅, I ∈
P). The xI

e∑
I′∈P

xI′
e

part of Equation 4.4 represents the utilization fraction of edge
e ∈ E by all trees. Each tree should use different and least used edges to maximize
the fraction. Equation 4.4 expresses the sum of all trees and edges utilization, and
should be maximized. Note that Equation 4.4 maximizes when the number of tree
with different edges, increasing the number of valid trees (I 6= ∅, I ∈ P).

We define E(X) = e = (a, b) ∈ E : a, b ∈ X ⊆ V the edge set with both end
nodes in X. We next formulate the problem based on the node variable Steiner Tree
Problem subtour elimination.

minF1(x)− αF2(x) (4.5)

s.t.

∑
e∈E

xIk
e =

∑
i∈Sk

zSk
i − 1 Sk 6= ∅, k ∈ [1 . . . n] (4.6a)

∑
e∈E(X)

xIk
e ≤

∑
i∈X

zSk
i − 1 X ⊆ V,X ∩ Sk 6= ∅, k ∈ [1 . . . n] (4.6b)

∑
e∈E(X)

xIk
e ≤

∑
i∈X\v

zSk
i v ∈ X ⊆ Sk, k ∈ [1 . . . n] (4.6c)

∑
I∈P

∑
e∈E

xIk
e >0 (4.6d)

xIk
e ≥0 integer, e ∈ E, k ∈ [1 . . . n] (4.6e)

zSk
i ≥0 integer, i ∈ V, k ∈ [1 . . . n] (4.6f)

The Objective Function 4.5 is composed by the two Objective Function 4.3 and
4.4. As we want to maximize 4.4, we multiply it by −1. Parameter α indicates the
importance of Objective Function 4.4 when compared to 4.3.

The restriction 4.6a limits the tree edge number, and restrictions 4.6b and 4.6c
ensures the trees are connected and there are no loops. The restriction 4.6d guar-
antees that there is at least one tree. Restrictions 4.6e and 4.6f define the variables.

We now show that the multiple disjoint Steiner trees problem is NP-hard. For
the proof, we consider a restricted version of the problem where the tree set size is
one |P | = 1 and the second Objective Function F2(x) is not considered with α = 0.
We show that the restricted problem is NP-hard, thus the generalized version is also
NP-hard.

Definition 1. Given a graph G = (V,E) and a set of edge costs ce, a tree
|A| = |N | − 1, A ⊆ E,N ⊆ V , we define the tree cost as the sum of the costs of its
edges.

Problem 1. Steiner Tree: Given a graph G = (V,E), a set of terminal nodes
T ⊆ V , and a set of edge costs ce, e ∈ E, find a tree with minimum tree cost that

21

spans all terminal nodes T .
Theorem 1. Problem 1 is NP-hard. Proof Outline. The Problem 1, The mini-

mum Steiner tree Problem is known as NP-hard [45]. There are several definitions
for the Steiner Tree problem including planar graphs, bipartite graphs and grid
graphs, and it results in NP-hard. There several linear programming formulations,
and the subtour elimination formulation is the same as described in this section
setting α = 0.

The Definition 1 can be easily extended to a set of trees.
Definition 2. Given a set of trees P = I1 . . . In, the tree set cost is the sum of

each tree cost.
As the tree set cost is the sum of all trees cost, the fewer members produce

smaller, thus better, tree set cost. Other goal is to have the multiple trees share the
fewest edges as possible, thus we define the edge utilization:

Definition 3. The edge utilization is the inverse of number of times an edge is
used by all trees.

Thus, the fewer the edge is used, the higher the edge utilization. Next, we define
the tree edges utilization:

Definition 4. The tree edges utilization is the sum of the edges utilization of
all its edges.

The tree edges utilization represents how disjoint are the edges of a tree. Con-
sidering a set of trees:

Definition 5. The tree set edges utilization is the sum of all tree edges utiliza-
tion.

As the tree set edges utilization sums the edge utilization for all trees, it results
in the total number of edges that the tree set uses. With all definitions, we can now
evolve from the reduced Steiner tree problem to a more general.

Problem 2. Multiple Disjoint Steiner Trees: Given a graph G = (V,E),
a set of terminal nodes T ⊆ V , and a set of edge costs ce, e ∈ E, find a minimum
cost tree set that spans all terminal nodes T , while having the higher tree set edges
utilization as possible.

The multiple disjoint Steiner trees problem tries not only to find the best way to
connect the terminal nodes in a single tree, but also tries to find the fewest number
of trees using the maximum different edges. The number of trees is part of the
problem, and at the same time that the higher number of trees possibly uses more
edges, it also unnecessarily increases the costs. Next, we restrict the number of trees
to two, and try to find the best pair of trees that interconnects the terminal nodes.

Problem 3. Two Disjoint Steiner Trees: Given a graph G = (V,E), a set
of terminal nodes T ⊆ V , and a set of edge costs ce, e ∈ E, find two minimum cost
trees that spans span all terminal nodes T , while having the higher tree set edges

22

utilization as possible.
Theorem 2. Problem 3 is NP-hard. Proof. This problem is a generalized

version of Problem 1, which we introduce another non-linear term in the objective
of Problem 1. The Problem 3 is easily reduced to Problem 1 by reducing the number
of trees to one and setting α = 0. As we prove Problem 1 is NP-hard by Theorem
1, the Two Disjoint Steiner Trees problem is NP-hard as well.

Finally, by induction we can conclude that:
Theorem 3. The Problem 2, the Multiple Disjoint Steiner Trees problem is

NP-hard. Proof. This problem is a generalized version of Problem 3, which we
prove is NP-hard by Theorem 2. Thus, the multiple disjoint Steiner trees problem
is NP-hard as well. Thus, we should design algorithms and heuristics to solve the
multiple disjoint trees problem.

4.2 Proposed Genetic Algorithm for Tree Cre-
ation

Genetic algorithms are a stochastic optimal search technique inspired by the
natural selection process during biological evolution [46, 47]. The GA is known to
present good solutions to large complex and uncomprehended search spaces, when
the knowledge of the problem is insufficient to shorten the search space, when there
is no available mathematical analysis and traditional methods fail. The GA also
works well with restriction without the need to use extra objective functions to model
the restrictions, and GA has several good approaches to integrate several objective
functions. As the calculus trees set is performed with no strict time requirements in
large interval periodic events, GA is an excellent choice to solve the multiple disjoint
trees problem.

The GA methodology consists of (i) modeling each feasible solution (i.e., a tree in
our case) as an individual, (ii) selecting an initial random population, (iii) calculating
the phenotype of each individual, (iv) selecting parents according to their phenotype,
(v) recombining the selected parents to form new children, (vi) mutating individuals
to form new ones, (vii) selecting the best children to survive to the next generation,
and (viii) go to step (iii) and repeat until a good enough solution is found [48]. The
selection of parents and children forces the genetic algorithm to prioritize the best
solutions. The recombination in step (v) creates new children taking the qualities
of the parents, and the mutation in step (vi) drastically changes the individuals to
avoid local optima. Next, we describe each of these steps in detail and how they
apply to our case.

(i) Individual model: In our application, each individual is a tree interconnecting

23

all ToR switches. More specifically, given the network graph G = (V,E), where V is
the set of switches of the network and E is the set of edges, we define the population
as the set P = {I1, I2, . . . , In}, where each individual Ik ⊆ E is a subset of edges
interconnecting all ToR switches in a tree topology. We define the genotype of an
individual Ik as an ordered vector sk =

[
sk1 sk2 · · · skm

]
containing the switches

that belong to the tree in Ik, with m the size of the tree. The order of the switch
vector sk is important because it is used to find the tree that sk represents, as showed
next. If the superscript index k can be understood from context, we drop it and
represent the switch vector simply as sk =

[
s1 s2 · · · sm

]
for ease of presentation.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: The execution of the proposed tree creation procedure to connect all
ToR switches. Highlighted nodes and edges are part of the tree. The switch vector
s is showed below the graph. (a) The procedure first picks a random switch forming
the first subtree, i.e., s = [s1]. (b)–(d) A new random switch is selected and, if it has
a link to any switch in s, then this link and switch are added to the tree, resulting
in s = [s1 s2 s5 s6]. (e) If the selected switch has no link to other switches in s, it
forms a new subtree, but it is still added to the switch vector. (f) If the selected
switch has links with switches in different subtrees, it connects to all of them to
form a larger tree, resulting in s = [s1 s2 s5 s6 s7 s4]. The procedure in (b)–(f) is
repeated until all ToR switches are connected in a single tree.

24

(ii) Initial population: In order to start the genetic algorithm, we need an initial
population P composed of a few trees. Our general strategy to form a tree is starting
from a random switch and adding one additional switch at a time. Figure 4.1 depicts
the proposed tree creation procedure. The procedure starts with a random switch,
which forms the first subtree, showed in Figure 4.1(a). Then, we select another
switch at random and, if it has a link to any of the already picked switches, that
link is added to the tree and the switch is added to the genotype. Figures 4.1(b)–
4.1(d) show this process, after which we have s =

[
s1 s2 s5 s6

]
. If the selected

switch has no link to any of the switches in s, it forms a new subtree, but it is still
added to the genotype, as showed in Figure 4.1(e) with s =

[
s1 s2 s5 s6 s7

]
. If

the chosen switch has links to more than one switch in s, then there are two possible
cases. First, if they are in different subtrees, the new switch connects to all of them
and forms a single subtree, as showed in Figure 4.1(f). Second, if the new switch
has links to more than one switch in the same subtree, it connects to the first switch
that appears in s. This is showed in Figure 4.1(f); s4 connects to s1 instead of s5

because it is the first switch in s to which s4 has a link. This procedure is repeated
until all ToR switches are connected in a single tree.

(iii) The individual phenotype: While the genotype s of individual I provides
a unique representation of its tree, its phenotype provides a way to quantitatively
compare two individuals. Our goal is to provide a higher phenotype value to an
individual I with smaller tree sizes and higher link diversity. With this goal in
mind, we first define the function x(e, I) to indicate whether individual I contains
edge e, i.e.,

x(e, I) =

1, if e ∈ I
0, otherwise.

(4.7)

If we define the individual objective functions

f1(I) = −|I| (4.8)

and
f2(I) =

∑
e∈I

1∑
I′∈P x(e, I ′) , (4.9)

then, the phenotype of an individual I is defined as the two-dimensional vector
f(I) =

[
f1(I) f2(I)

]
. Function f1(I) in Equation 4.8 provides the negative number

of edges in the tree of individual I, and it has a higher value for smaller tree sizes.
Function f2(I) in Equation 4.9 provides the sum of the utilizations of each edge e
by I, considering all individuals in the population P . It has a higher value if I uses
links that are not used by other individuals in P .

As both characteristics are important, we consider the Pareto dominance to

25

compare individuals. Thus, an individual Ij is better than other individual Ik, noted
as f(Ij) > f(Ik), if fi(Ij) ≥ fi(Ik), for i ∈ {1, 2} and if ∃i such that fi(Ij) > fi(Ik).

(iv) Selection of parents: In order to create the next generation, the first step
is to select certain individuals to be parents. Each individual in the population P
is then assigned a selection probability based on its phenotype value, such that
individuals with a higher phenotype have a higher selection probability. Each pair
of individuals sampled from P becomes the parents of two new descendants. The
number of sampled pairs is therefore |P |/2. The same individual can be sampled
multiple times and participate in different pairs. When all parents are chosen, the
genetic algorithm begins the recombination of parents, as showed in step (v).

In order to calculate the selection probability of each individual, we first find the
best individual Ib in our population P , i.e., Ib = arg maxI∈P F (I). Then, for each
individual I ∈ P , we compute its Euclidean distance to Ib as d(I) = ‖f(I)− f(Ib)‖.
We define the worst individual Iw = arg maxI∈P d(I) as the individual that is the
furthest away from Ib. Since we want nodes closer to Ib to have a higher chance
of being sampled, we define the non-normalized selection probability as p̃(I) =
(1 + ε)d(Iw) − d(I), where ε > 0 is a small constant to ensure that p̃(Iw) > 0.
Finally, we use p̃(I) to obtain the normalized selection probability p(I) as

p(I) = p̃(I)∑
I′∈P p̃(I ′)

. (4.10)

(v) Recombination of parents: Each pair of parents sampled in step (iv)
must be recombined to pass their genotype on to two descendants. Let sa =[
a1 a2 · · · am

]
and sb =

[
b1 b2 · · · bn

]
be the genotypes of two parents, Ia

and Ib, respectively. The recombination procedure starts by selecting a random
position r ∈ [1,min(|Ia|, |Ib|)] of the parents’ genotypes, and splitting them into
both a radical and a suffix. Figure 4.2(a) shows this case for r = 1. The suffixes
of the parents are then exchanged, forming two new individuals Iu and Iv, with
genotypes su =

[
a1 · · · ar br+1 · · · bn

]
and sv =

[
b1 · · · br ar+1 · · · am

]
.

These genotypes, however, do not necessarily form a tree and thus we run a pro-
cedure to ensure the coherence of the descendents. The procedure is similar to the
tree creation procedure in step (ii), but the new switches are selected from the suffix
of the other parent. Figure 4.2 shows a step-by-step example of this recombination
of two parents to generate two descendants. There are only two differences to the
previous tree creating procedure. First, if a switch in the new suffix is already in
the tree, then it is ignored, as showed in Figure 4.2(d). Second, after processing the
new suffix, the ToR switches that are still not connected to the tree are added in
random order, as showed in Figure 4.2(f).

26

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Recombination of two parents to generate two descendants. The proce-
dure is similar to the tree creation procedure, except that new switches are selected
from the suffix of the other parent. (a) The two trees are showed with their respec-
tive genotypes. The random integer r = 1 is selected and separates the genotypes
in radicals and suffixes, which will be exchanged. (b)–(f) The two descendants are
generated in parallel. The dark red nodes belong to the first descendant and the
light blue nodes belong to second descendant.
(vi) Mutation of descendants: After the recombination of parents, each descen-
dant may mutate and generate another individual. This occurs with a probability
pm = 0.10. The mutation procedure uses the genotype of a descendant Iy to generate
a mutated individual Iz, such that the genetic algorithm increases the search space
and avoids premature convergence. Similar to the recombination, the mutation
procedure samples a random integer r ∈ [1, |Iy|] as an index on the descendant’s
genotype sy =

[
s1 s2 · · · sm

]
. Then, the switch at that position is removed

and the genotype is divided in a radical and a suffix. The resulting genotype is
sy =

[
s1 s2 · · · sr−1 sr+1 · · · sm

]
. As in the recombination procedure, the

switches in the suffix are added one at time to form the new mutated individual co-
herently, and any ToR switch that is not present in at the end is included in random

27

(a) (b) (c)

(d) (e)

Figure 4.3: Mutation of an individual to form a new individual. (a) The switch
vector of the original descendant and the random integer r indexing the switch to
be removed. (b)–(e) The formation of the new mutated individual by adding the
switches in the suffix one at a time. Although the mutated individual has the same
switch set, the two genotypes and resulting trees are different due to the order of
the switches in the vector.

order. We present the mutation procedure in Figure 4.3.

(vii) Survivor selection and population size mutation: After the aforemen-
tioned operations, we have a set of the original individuals, the descendants, and
the mutated individuals. It is then required to select which of these individuals will
survive to the next generation. First, we remove all duplicate individuals to ensure
that each individual is a different tree. Next, we must determine the size of the new
population, since the optimal size is unknown beforehand. We sample the number of
individuals of the new population P ′ from a normal distribution N(|P |, σ) centered
in the current population size |P | and having standard deviation σ. The result is
rounded to the nearest integer. Once the new population size is determined, then
the individuals are ordered according to their phenotype and the individuals with
the highest phenotype are selected to survive to the next generation P ′.

After the new generation P ′ is created, we compare it to P to determine if the

28

new generation is better. Recalling that each individual I ⊆ E is a subset of edges,
we define a function G(P) to quantify a population P as

G(P) =
∣∣∣∣∣
n⋃
i=1

Ii

∣∣∣∣∣ . (4.11)

The value of G(P) is the number of links used by all individuals in P and thus it
serves as a diversity index for the population. In essence, populations that use more
links are considered better than those that use fewer links. If G(P ′) > G(P), then
we classify P ′ as a successful generation of P .

To update σ, we use Rechenberg one-fifth success rule [46]. We observe a certain
number of generations and compute the fraction q of successful generations. If
c ∈ [0.817, 1] is a constant, then σ is updated as follows

σ =


σ/c, q > 1/5
σ · c, q < 1/5
σ, q = 1/5.

(4.12)

The idea behind Rechenberg one-fifth success rule is that, if q is too large, we may
be approaching a local minimum and therefore increasing σ is beneficial to increase
the search space in the population size. Likewise, if q is too low, the search space
may be too large and we must narrow it down.

In the offline multipath configuration phase, the genetic algorithm calculates
and configures the multiple paths as VLAN trees. After the multipath configuration
phase, the forwarding scheme selects paths for the flows in the multipath selection
phase. This selection of paths is an online and fast procedure. The next chapter
presents heuristics for the online selection of paths.

29

Chapter 5

Online Multipath Selection Phase

The multipath selection phase occurs online whenever a new flow departs from a
virtual switch. In this case, the virtual switch contacts its local controller to assign a
path (and therefore a VLAN) to the new flow. The entire data-center has a number
of local controllers, each itself controls a set of virtual switches. The number of local
controllers and virtual switches each one controls depends on the total number of
flow arrivals, and we consider as standard case a local controller per rack.

All possible VLAN trees are computed and installed during the multipath con-
figuration phase, and are available to each controller. In order to compute the path,
the local controller accesses a database (cf. Section 5.2) containing the active flows
and their corresponding paths to select a path. Once this is done, the controller
installs an OpenFlow rule on the virtual switch in order to tag each outgoing packet
of this flow with the assigned VLAN ID. Likewise, another rule is installed to untag
each incoming packet of this flow before forwarding them on to the corresponding
virtual machine.

Each local controller manages the flows originated from or directed to a single
rack. In order to offload the amount of controlled flows, the local controller can keep
track of only the large flows, and as soon as it detects them, migrate to a better path
(cf. Section 5.3). To determine when a flow finishes, the local controller frequently
queries the flow statistics of the virtual switches (cf. Section 5.4). To detect and
cope with link and devices failures in paths, the local controller senses when a flow
stops transmitting, which is considered a path failure in that tree and the flow is
rescheduled to use a different path. Periodically, the controller sends probes in the
failed path and reactivates it once it is available again.

5.1 Selection Heuristics

To select a path for each new flow, the local controller selects the path with the
Least-Used-Links (lul). In order to keep track of link usage, for each link e ∈ E,

30

the database stores the link rate r(e) and the number of flows u(e) concurrently
using each link. The link cost is then computed as the ratio u(e)/r(e), such that
a link with a higher number of flows and lower rate has a higher cost. The path
cost is then computed as the maximum link cost along the path, and the path with
the lower cost is selected for a new flow. In case of a tie, the controller chooses
the path uniformly. After the selection, the link usage u(e) for all links in the
path are incremented. Similarly, when a flow finishes, all link costs of the path are
decremented.

We also tested other selection heuristics that relax some database requirements,
but still rely on network usage to determine the path. The Least-Used-Tree (lut),
we track the number of flows using each VLAN tree and use this as the cost of
the tree. Every time a path of this tree is selected for a new flow, the tree cost
is incremented. Similarly, when a flow finishes, the tree cost is decremented. In
Least-Used-Path (lup), the number of flows is tracked on a per-path basis instead
of a per-tree basis. Different than the proposed lul heuristic, both lut and lup
cannot be applied when links have multiple bit rates because these heuristics only
track the number of flows using the resource (a tree for lut and a path for lup).
Therefore, in order to provide a fair comparison, we use in our simulations the same
rate for all links of the data center.

5.2 Database Placement

We consider two extreme cases for the network usage database placement. First,
we consider a single global database that is accessed by all local controllers. In
addition, we also consider each local controller having its own local database to
store the link usage of the paths used by its flows. These two cases (i.e., centralized
and distributed) are in opposite sides of the spectrum and should be enough to tell
the performance of any hybrid solution, if required.

The global database stores information of all active flows in the network; there-
fore, local controllers have accurate knowledge of the network congestion. However,
this requires that all local controllers frequently query and update the database. If
the traffic workload is high, the database would have to answer queries and update
entries at a high rate, which could thwart the task or would require an elastic data
store to keep up with the query/update rate. In addition, all local controllers must
communicate with the central database, which may have a high overhead depend-
ing the query/update frequency. On the other hand, if the database is local and
co-located with the local controller, then all communications remain local. Never-
theless, the database does not have global knowledge of the network usage and may
assume that a path is free when in fact it is not due to the limited visibility.

31

5.3 Long-Lived Flows Migration

We also considered two approaches, in which new arriving flows use a path and we
migrate the long-lived flows to new paths. These approaches relax the requirement
of storing the network usage for all flows in the network usage database. Instead,
the local controller periodically queries the virtual switches for the flows statistics.
and The first approach creates a priority path for all small flows. When they are
considered long-lived, we migrate them to different paths according to least-used-
links heuristic (sing-mig). Since the majority of the flows are small, the local
controller has to keep track of only a small percentage of the flows, the long-lived
ones. This approach reduces the amount of computation of the controller, and at
the same time provides a specific priority path for the small flows.

In another approach, we consider that small flows are uniformly distributed in
all available paths, and we migrate the long-lived flows to different paths according
to least-used-links heuristic (rnd-mig). This approach assumes that the amount
of small flows is too large to share a single path. Thus, the small flows follow
uniformly allocated paths to balance the load. Both sing-mig and rnd-mig have
a configurable parameter the long-lived flow timer, the minimum time to consider
a flow as long-lived. The long-lived flow timer is extremely important, because it
determines how much time the long-lived flow occupies the small flows path, and at
the same time it indirectly dictates the load at the controller to calculate new flows.
To set the long-lived flow timer with OpenFlow, we could use the hard timeout
parameter that expires rules, thus forcing the redefinitions of the rule. We use
the opportunity to calculate and install a rule defining a new path. If we consider
priority queues at the switches, the new rule could also mark the flow as low-priority
to ensure the low latency performance to small flows.

5.4 Flow Tracking Policy

As link costs are used for the path selection, the cost information should be
up-to-date to prevent avoidable collisions. Hence, in addition to updating the costs
when a flow starts, it is also important to update them when a flow finishes. The
aforementioned heuristics determines when the flow finishes at the cost of the local
controller constantly monitoring the flows at the virtual switches. To loosen this
requirement, we propose a few alternative policies to update the link costs when a
flow ends.

In the first policy, the link costs are updated immediately when the flow ends
(dec-end). This approach can be implemented using notifications from the virtual
switches to their local controllers. We consider this approach as a guideline.

32

The second policy simply does not update the costs when the flows finish (no-
end). Although simplistic, this approach has some knowledge of the network uti-
lization, because it accumulates the information selection of paths over time.

The third policy schedules a timeout when the flow starts, regardless of the actual
flow duration (scheduled fixed end – sfe). This approach sets a duration for each
flow and decrements its cost after this interval regardless of the actual flow duration.
Therefore, it does not require tracking of each of the existing flows. Nevertheless, it
must estimate the duration of the flows a priori. In our simulations, we test different
fixed end timeout values.

Finally, the last policy periodically monitors the virtual switches in servers to
get the number of active flows (periodic monitoring – pm). This approach requires
the local controller to constantly monitor the virtual switches to have up-to-date
knowledge of the network utilization.

This chapter presented selection heuristics that are analyzed in the next chapter.
The selection heuristics consider a global or local database to keep track and
select the least used links lul, paths lup, or trees lut. We also relaxed the selection
of the new paths to migrate only the long-lived flows sing-mig and rnd-mig, and
the detection of when a flow ends being either inexistent no-end, scheduled sfe,
or detected by monitoring pm. Next, we simulate the heuristics and present the
results.

33

Chapter 6

Simulator and Results

In this chapter we present the simulator and the simulation results of the pro-
posed Two-Phase Multipath (tpm) forwarding scheme compared with Spanning Tree
Protocol (stp) and Equal Cost MultiPath (ecmp).

6.1 Simulator

6.1.1 Flow Simulator

We developed a discrete event simulator that models data transmission as a
flow, which allows simulations on higher abstraction level when compared to packet
simulators such as NS31, which allows simulation of higher transmission rate and
larger topologies. Our flow simulator organizes the events in a queue ordered by the
time of the event. The simulator picks the next event from the queue, updates the
simulation time and executes it. The simulation ends when the queue of events is
empty or the simulation picks an event, which the time is greater than a limit.

In the simulations, all servers send and receive flows through a Top of Rack (ToR)
switch. Thus, we only consider ToR switches as source and destination, since there
is a single path from the virtual machines to the nearest ToR switch. The model
of the flow considers the source ToR switch, the destination ToR switch, the flow
size, the current transmission rate, and the transmitted bytes. We compute the flow
transmission rate at a given time as the fair share of the most contended traversed
link using a max-min fairness algorithm, which is an optimistic flow model, i.e., it
assumes flows immediately increase/decrease their rate due to the arrival/departure
of other flows in the path. The results are presented with 95% confidence interval.
The total bytes field transferred by a flow includes the TCP/IP and Ethernet header
bytes. All packets have the maximum size, 1500 bytes, allowed by Ethernet, except
the last packet, which sends the remaining flow bytes.

1http://www.nsnam.org/

34

(a) CDF of the flow sizes. (b) CDF of the flow inter-arrival inter-
vals.

Figure 6.1: Workload model of the flow simulator. The mean of natural logarithm
of the inter-arrival interval µ represents the workload scenario, the smaller the µ,
the shorter the mean inter-arrival interval and the greater the load.

6.1.2 Workload Model

The workload model consists of two main parameters, the flow size and the flow
inter-arrival interval. As the flow becomes larger, the time to transmit is longer and
it has a greater probability that the flow shares the link bandwidth with other flows.
The flow sizes follow a lognormal distribution (Xs = eµs+σsZ) with Z a standard nor-
mal variable. We choose the mean and standard deviation of the natural logarithm
of the flow sizes µs = 7 and σs = 2.8, such that the Cumulative Density Function
(CDF) has the following values F (x) = {≈ 0.5|x = 1000,≈ 0.95|x = 100000}, ac-
cording to empirical measures presented by Benson et al. [19]. The flow sizes CDF
is presented in Figure 6.8(a). The second parameter of the workload, the inter-arrival
interval, is used to test the data center with under different loads. Smaller inter-
arrival intervals increase the creation rate of new flows and, consequently, increase
the probability of more flows sharing links bandwidth. The inter-arrival intervals
(in microseconds) also follow a lognormal distribution (Xt = eµt+σtZ ·10−6) with pa-
rameters mean and standard deviation of the variable natural logarithm σt = 2 and
µt. We configured µt based on a chosen inter-arrival time median ta = eµt , varying
it to decrease the workload ta = {1, 2, 5, 10, 15, 20, 30} ms. The ta values are chosen
to model the inter-arrival intervals similar to the empirical measures presented by
Benson et al. [19]. Figure 6.8(b) presents the inter-arrival intervals CDF for each
workload scenario. As the ta parameter increases the rate of new flows and the load
decrease.

We compare our proposed scheme with two forwarding mechanisms that use
conventional features of the network devices: the Spanning Tree Protocol (stp), and
with Equal Cost MultiPath (ecmp) forwarding. The Valiant Load Balancing (vlb)
selects paths at random with a uniform distribution, thus it achieves performance

35

comparable to ecmp.

STP: the switches create a single tree to forward all traffic. Thus, there is a single
path between each pair of ToR switches.

ECMP: link state routing protocols identify the multiple paths with the same costs
between each pair of ToR switches. At each hop, a hash function is applied on
certain fields of the packet header to uniformly distribute the flows over the paths,
and to ensure that all packets of a flow traverse the same path [17]. We model
ECMP as a uniform random variable to select paths.

6.2 Simulation Results

We used the Fattree, Cisco three-tier and Jellyfish topologies, and we also varied
the size of the Fattree topology. These topologies represent both structured and
random designs that provide multiple paths, which forwarding mechanisms avail
to improve the network performance. We also tested other traffic load pattern to
investigate the relation between small and large flows. Finally, we simulated the
heuristics with relaxed constrains. Table 6.1 summarizes the notation used in this
chapter to show the names of the proposals.

Table 6.1: Multipath schemes name abbreviations.
Multipath Configuration Proposals

stp Spanning Tree Protocol
ecmp Equal Cost MultiPath
tpm Two-Phase Multipath

Path Selection Heuristics for TPM Selection
lul Least-Used-Links
lut Least-Used-Tree
lup Least-Used-Path
sing-mig Small in single path, migrate long-lived using lul
rnd-mig Small in random path, migrate long-lived using lul

Database Location for tpm Selection
global Single database for the data-center
local Per rack database

Flow End Policy for tpm Selection
dec-end Decrement cost whenever flow ends
np-end Never decrement cost
sfe Scheduled fixed end when flow arrives
pm Periodic monitoring to detect flow end

36

Figure 6.2: Fattree topology with 4-port switches used in our simulations. There
are four different paths to any ToR switch in another pod, and two different paths
to a switch in the same pod.

(a) (b)

Figure 6.3: Flow completion time (FCT) of STP. (a) The FCT CDF as a function
of inter-arrival time median ta. For ta = 1 ms, 30% of flows last more than 10x the
line data-rate time transfer. (b) The expected FCT value of STP decreases when ta
increases because congestion is less likely to occur.

6.2.1 Fattree 4 Topology

We first run simulations using the Fattree topology with 4-port switches [22],
which presents two different paths to a switch in the same pod (an aggregation
switch away from the ToR), and four different paths to the ToR switches in any
other pods, as depicted in Figure 6.2. The destinations of the flows are uniformly
selected to evenly distribute the traffic across the data center.

We use flow completion time (FCT) as our metric to indicate the quality of the
multipath forwarding scheme. This metric indicates the quality of the forwarding
scheme despite the topology and the network capacity. For each scheme, the FCT is
the flow duration when multiple flows are present normalized by the flow duration
when there is no other concurrent flow in the data center, and thus transmitted at
line speed. A good forwarding scheme offers the maximum bandwidth for the flows
and FCT approximates one. For mice flows, small FCTs represent that the flows are
quickly transmitted, thereby meeting the deadline. Small FCTs for elephant flows
means that these flows achieve high transmission rates which result in improved

37

link usage efficiency, leaving freer paths for other flows. On the other hand, high
FCT indicates that flows are contending for bandwidth, causing lost deadlines and
inefficient link usage. Figure 6.3(a) show the FCT CDF for stp. For high inter-
arrival times (e.g., ta > 15 ms), more than 80% of flows have the minimum FCT
of one, and a small percentage of flows has an FCT larger than one. Nevertheless,
by decreasing the inter-arrival time (ta ≤ 10 ms), a higher percentage of the flows
has an FCT larger than 2. In the heavier workload scenario (ta = 1 ms), very few
flows have an FCT of 1, and around 30% of flows have an FCT larger than 10. This
trend is showed in Figure 6.3(b), which shows the expected FCT as a function of
the inter-arrival time.

To understand the stp performance, we investigate the core and aggregation
link usage. Figure 6.4(a) shows the fraction of time that links are not utilized,
are underutilized due to a bottleneck in another link along the path, and are fully
utilized at line rate. As the workload increases (ta decreases), the fraction of time
that links are utilized is higher, but flows cannot exploit the capacity of most links.
All flows whose destination is in another pod share the same core links, and thus we
expect that the core links are more heavily used. However, we observe that most of
the time core links are not utilized. As stp uses a single tree to forward traffic, all
links not belonging to this tree are free. The core links in the tree also have active
flows only part of the time; however, the bandwidth sharing is uneven and flows
cannot use all available bandwidth.

In addition to low link usage, the high expected FCT is also caused by the
high number of active flows sharing the same link. We see from Figure 6.4(a)
that links have no active flows most of the time, but as the workload increases
(ta decreases), several active flows share the link bandwidth, reducing the expected
FCT. Figure 6.4(b) shows the fraction of time that links are used by a single flow or
by more than one flow. For each link, we only consider the time that it has at least
one active flow. We see that both core and aggregation links have more than one
flow for more than 20% of the time when ta = 10 ms and this is even worse with
ta < 10 ms, with a direct impact on FCT. However, in ta = 30 ms, the percentage
of more than one active flows is higher than smaller tas. The generated data with
random distribution of the flow sizes and inter-arrival interval resulted in some very
large flows concurrently sharing the links, which impacted several other flows. This
behavior is also seen with other forwarding schemes.

We now compare the performance of the same Fattree topology for stp, ecmp,
and the proposed tpm using the Least-Used-Links (lul) heuristic for path selection
and local database placement. We also present results using a global database
placement with entire knowledge of the network just as a performance baseline,
but do not consider the communication nor the query/update overheads of this

38

(a) Core and aggregation link usage.

(b) Number of active flows per link.

Figure 6.4: (a) Link usage at core and aggregation links. stp wastes significant
network resources by using only a single tree to connect all ToR switches. (b)
Number of active flows per link, considering that at least one flow is active. At
higher workloads, multiple flows share the same link and reduce the available per-
flow rate.

39

Figure 6.5: Expected FCT under different workload scenarios (ta values) for the
multipath selection heuristics for stp, ecmp, and tpm using lut, lup, and lul
as path selection heuristics and both global and local database locations for
Fattree 4 ports.

approach. In addition, we also present results using Least-Used-Tree (lut) and
Least-Used-Path (lup) [2].

Figure 6.5 shows the expected FCT for each of the aforementioned techniques.
tpm clearly outperforms stp and ecmp by a significant margin, especially when
the data center is overloaded. In particular, when ta is 5 ms, tpm-local reduces
approximately 11% of the optimal flow completion time when compared to ecmp
and approximately 54% when compared to stp. If the data center has an even
higher load at ta = 1 ms, then tpm-local roughly reduces 31% over ecmp and
4.4x over stp. If a global database is used instead, then these gains are even
more pronounced. At ta = 5 ms, tpm-global reduces 20% of the optimal flow
completion time over ecmp and more than 64% over stp. In the highest workload
scenario of ta = 1 ms, tpm-global reduces approximately 50% over ecmp and 4.6x
over stp.

Figure 6.5 also presents results for different path selection heuristics and database
locations. We see that lup is an optimistic approach since it assumes that all paths
are disjoint. However, as this is not the case in data centers, lup suffers from select-
ing paths with already congested links. In contrast, lut is a pessimistic approach,
because it assumes that all flows in a tree share the same links. lut achieves rea-
sonable performance, reducing FCT up to 22% of the optimal flow completion time
compared to ecmp. Our lul heuristic, however, presents the most fine-grained
knowledge of link usage and it has therefore the best performance. With regard to

40

(a) Core and aggregation link usage.

(b) Number of active flows per link.

Figure 6.6: (a) Link usage at core and aggregation links for stp, ecmp and tpm
for both global and local database placements. (b) Number of active flows per
link, considering that at least one flow is active.

41

database location, both lut and lul benefit from the global knowledge, since the
local database is unaware of the true path usage. However, this is not the case for
lup, because paths originated by a particular ToR switch are not shared with other
switches. Therefore, path usage information is contained in the local database and
a global database does not improve much the performance.

To further investigate the performance of the schemes, we again measure the core
and aggregate link usage as well as the number of active flows per link. Figure 6.6(a)
shows the core and aggregation link utilization for 1 ≤ ta ≤ 10 ms. Clearly, stp
presents the worse performance because it shares a single tree for all flows. Addi-
tionally, most links are often underutilized, reducing even more the performance.
stp core links are highly utilized with more than 25% in the highest workload sce-
nario and become bottlenecks. In contrast, ecmp and tpm use multiple paths for
each pair of ToR switches. As a result, the bottleneck becomes the aggregation
links because fattree topologies offer less disjoint paths to ToR switches in the same
pod. Nevertheless, tpm with both database locations have less underutilized links
than ecmp, which results in better transmission performance. Figure 6.6(b) shows
the number of flows per link, when links are used by one or more flows. The num-
ber of active flows in stp is high due to the limited path diversity, reducing its
performance. ecmp randomizes path selection and does not take network usage
information into account, resulting in path collision even though there are other un-
loaded paths available. Similar to ecmp, tpm uses different paths to forward flows
by creating trees that result in the same paths as ecmp in a Fattree 4 topology.
Nevertheless, as tpm has the network utilization information available during path
selection, its performance is higher even with only a local database. In this case,
tpm reduces link underutilization as well as the number of flows sharing the same
path. Overall, tpm path selection result in best performance due to the higher
maximum utilization of links at line speed and lower under utilization rate, which
also result in more flows not contending for bandwidth.

6.2.2 Small and Large Flows Proportion in Fattree 4

The workload used in the simulations so far uses a fixed relationship between
small and large flows provided by the parameters µs = 7 and σs = 2.8. Considering
flows with less than 100 kB as small and flows with more than 10MB as large,
the percentage of small and large flows in this workload are 94.86% and 0.0002%,
respectively. To analyze the impact of the percentage of small and large flows, we
vary the standard deviation σs of the flow size within the interval [2, 4], which varies
the percentage of small flows from 98.86% to 87.17% and the percentage of large
flows from 0.0002% to 1.09%. As Figure 6.7 shows, the relationship between the

42

Figure 6.7: Percentage of small flows (less than 100kB) and large flows (more than
10MB) varying the σs of the flow size lognormal distribution with µs = 7.

(a) CDF of the flow sizes. (b) CDF of the flow inter-arrival inter-
vals.

Figure 6.8: Workload model for the flows size lognormal σs variation. Besides the
sigma variation simulation, the σs = 2.8 for other simulations.

43

Figure 6.9: Expected FCT varying the proportion of small and large flows by chang-
ing the standard deviation σs of the lognormal distribution of flow sizes, with µs = 7
and ta = 5 ms.

large and small flows relationship changes considerably by varying σs. Figure 6.8
shows the workload for the chosen parameters. Although the variation of σs is in a
small interval, it has huge impacts in the performance. We keep ta fixed at 5 ms for
different σs values to provide the same load across experiments.

As σs increases, there is more variance on the flow size and consequently more
large flows. The presence of more large flows results in more flows sharing the same
links, which severely impacts FCT, as showed in Figure 6.9. The FCT can be up
50 times worse due to the long-lived flows. Figure 6.10 shows both the utilization
and the number of flows per aggregation and core link. The tree used by stp has
half of the aggregation links and a fourth of the core links. Hence, increasing σs, the
core links utilization approximates 25% and the aggregation links 50%, which are
all links available for stp. Furthermore, the links used by stp forwarding scheme,
often are shared by several flows. On the other hand, ecmp and tpm use all links
of the topology, thus increasing σs causes the forwarding schemes to use more of
the links, which enhances the performance. When σs = 4, approximately 1% of the
flows are large, but this drastically changes the workload traffic. In particular, links
are much more overloaded and used by several flows most of the time, as showed
in Figure 6.10. Although the relative increase of large to the small degrades the
performance, tpm can still improve the performance when compared to ecmp. The
main reason is that unlike ecmp that blindly distributes the flows into paths, tpm
detect which path more overloaded and avoid them.

44

(a) Core and aggregation link utilization.

(b) Number of active flows per link.

Figure 6.10: Core and aggregation link utilization of σs ∈ [2, 4] for ecmp and tpm
for both global and local database placements.

45

6.2.3 Larger Fattree Topologies

Figure 6.11: Expected FCT for Fattree with 4-port switches.

To analyze the performance of larger Fattree topologies, we also provide results
using Fattree topologies using 6- and 8-port switches. The Fattree 6 topology is
composed of 6 pods, 9 core switches, and 54 servers, while Fattree 8 is composed of
8 pods, 16 core switches and 128 servers.

Figure 6.12: Expected FCT for Fattree with 6-port switches.

Figures 6.12 and 6.13 show the FCT achieved in both topologies. Compared
with Fattree 4 shown in Figure 6.11, both Fattree 6 and Fattree 8 reduce the overall
FCT. Although there are more servers and ToR switches in these larger topologies,

46

Figure 6.13: Expected FCT for Fattree with 8-port switches.

there are also more available paths to transmit the additional workload. This differ-
ence is visible when comparing Figures 6.11, 6.12 and 6.13. Additionally, the extra
available paths benefits tpm even more, because it has more options to balance the
traffic. However, in larger topologies, the local information becomes less relevant as
it is limited to a smaller proportion of the network and, as a consequence, local
database approaches do not perform as well as a global database.

6.2.4 Cisco 3-Tier Topology

We also used Cisco 3-tier topology [49], the Cisco standard topology for three
layer data-centers. The topology used has three aggregation modules, each with
four access switches, as showed in Figure 6.14. All network devices operate only on
the link layer and, thus, tpm is able to install the required VLANs. The topology
is composed of 12 ToR, 6 aggregation, and 2 core switches, totaling the same 20
switches as in the Fattree 4 topology. Although the redundant paths are mostly
used for fault tolerance in the Cisco 3-tier topology, we allowed all links to be
equally selected for forwarding to provide a fair comparison.

Figure 6.15 shows the expected FCT for the Cisco 3-tier topology. The perfor-
mance of this topology is worse than Fattree 4 because it has less disjoint paths,
even though it has the same number of switches and less ToR switches generat-
ing traffic. The 3-tier topology main goal is the vertical communication, and under
high horizontal communication, the overall performance degrades. Nevertheless, the
Cisco 3-tier topology significantly benefits from tpm, achieving an FCT reduction
of 33% under the highest workload compared to ecmp.

47

Figure 6.14: The Cisco 3-tier topology, composed of the same 20 switches as in
the previous Fattree 4 topology. The main goal of this topology is the vertical
communication.

Figure 6.15: Expected FCT for the Cisco 3-tier topology. Although under high hor-
izontal communication the overall performance degrades when compared to Fattree
4, the Cisco 3-tier topology significantly benefits from tpm.

48

6.2.5 Jellyfish Topology

(a) Jellyfish topology used on
simulations.

(b) Acquired VLAN 1 using
genetic algorithm.

(c) Acquired VLAN 2 using
genetic algorithm.

Figure 6.16: Random generated 8-rack Jellyfish topology used on simulations and
two examples of VLANs acquired by the proposed genetic algorithm. The jellyfish
topology has 20 4-port switches whose 8 are Top of Rack with two servers each.

One of the data-center design problems is managing the growth of the infras-
tructure to support an increase in demand. Structured data-center designs do not
allow the addition of few devices to supply the increasing demand; instead, the
addition of an entire overprovisioned new module with several devices is required.
Singla et al. [50] proposed the Jellyfish network topology to allow incremental infras-
tructure expansions in data centers. Jellyfish is a degree-bounded random regular
graph interconnecting the ToR switches. Jellyfish uses a simple iterative procedure
to create a sufficiently uniform random regular graph, solving efficiently a complex
graph theory problem. The network is initially assumed to have no links. At each
step, a pair of switches with free ports is selected and interconnected, repeating this
procedure until no further links can be added. If in the end there is still a switch
si with more than one free ports, then a random existing link (sj, sk) is removed,
and two links (si, sj) and (si, sk) are created instead. Figure 6.16 shows the 8-rack
Jellyfish topology used in our simulations, which has eight 4-port ToR switches that
use two of those ports to connect to servers. Figures 6.16(b) and 6.16(c) shows two
examples of the VLANs generated by the proposed genetic algorithm of Chapter 4.

Figure 6.17 shows the expected FCT for a 8-rack Jellyfish topology. The FCT
values of all forwarding schemes are higher than both Cisco 3-tier and Fattree 4
topology. In particular, this occurs because the generated Jellyfish topology has the
majority of ToR switches connected to two core switches, but some ToR switches are
directly connected to other ToR switches. Although this benefits the communication
between the two racks, it degrades the communication with other racks. In spite
of this problem, performance still improves by using tpm, achieving a 29% of FCT
reduction compared to ecmp.

49

Figure 6.17: Expected FCT for the Jellyfish topology. Connections between two ToR
switches benefit communication between the two racks, but degrade communication
with other ToR switches. Still, tpm improves FCT when compared to ecmp.

We also used another configuration for the 20 4-port switch Jellyfish topology to
investigate how the increase in number of links affects network performance. Fig-
ure 6.18 shows a second Jellyfish topology, which has 16 ToR switches using one
port to connect to a server and the other three ports to connect to the network
infrastructure. Figures 6.16(b) and 6.16(c) shows two examples of the VLANs gen-
erated by the proposed genetic algorithm of Chapter 4. As each ToR has half of the
number of servers, we halved the inter-arrival time to fairly compare it to the 8-rack
Jellyfish topology.

Figure 6.19 shows the expected FCT for the 16-rack Jellyfish topology. As we can
see, each ToR switch uses one more port to connect to the other network devices,
which creates the possibility of shorter paths. As ecmp always use the shortest
paths, the presence of direct paths between ToR switches increases ecmp perfor-
mance. Additionally, as tpm-global has knowledge of all network usage, it chooses
the best path, which in this scenario presented slightly better results than ecmp. In
contrast, the local database has little knowledge of the network conditions, and
since the several paths use the outbound paths of other ToR switches, it highly im-
pacts the overall performance. Thus, the 16-rack Jellyfish topology, which connects
servers within fewer hops, improves the overall performance.

50

(a) Second jellyfish topology
used on simulations.

(b) Acquired VLAN 1 using
genetic algorithm.

(c) Acquired VLAN 2 using
genetic algorithm.

Figure 6.18: Randomly generated Jellyfish topology with 20 4-port switches, out of
which 16 are ToR switches. This topology also uses 20 switches, but allows servers
to communicate with fewer hops, increasing the overall end-to-end throughput.

Figure 6.19: Expected FCT for the 16-rack Jellyfish topology. The presence of
more ToR ports for communication between other switches improves the overall
performance.

51

6.2.6 Long-Lived Flows Migration

Keeping track of all flows in a data-center may lead to huge processing and stor-
age. Instead, the forwarding engine may keep track of fewer flows, mainly the long-
lived. We simulated to approaches for migrating the flows: a single path for small
flows and migrate long-lived flows to different paths according to lul (sing-mig);
and random paths for small flows and migrate long-lived flows to paths according
to lul (rnd-mig). The main difference between both approaches is that in sing-
mig all flows use the same path when they first arrive, and they are detected as
long-lived, they migrate to different paths. While in rnd-mig, the small flows are
uniformly distributed in all available paths, which are shared with the long-lived
flows. We configured tl the timer to consider the flows as long-lived as 1 ms and
80 ms. 80 ms at line rate 1 Gb/s results in approximately 10 MB, above of which
we consider large flows. A 1 ms transmission at line rate results in approximately
135 kB, which is 35 kB higher than what we consider small flows. We considered
global database for these simulations, and Fattree 4 topology.

Figure 6.20: FCT of the migration of long-lived flows. sing-mig approach uses a
single path for small flows and migrate long-lived flows to different paths according
to lul.

Figure 6.20 presents the results for (sing-mig approach. As we can see, even
though the flows sharing the single path are short, there is a large number of them
which severely impacts the performance. With tl = 80 ms, the performance of
sing-mig is almost as bad as stp. This happens because a great majority of the
flows share the same, exactly as in stp. Considering the stp as the worst scenario,
using the timer at 80ms, up to 99.5% of the flows share the same tree. It would

52

Figure 6.21: FCT of the migration of long-lived flows. rnd-mig approach chooses
a random path for small flows and migrate long-lived flows according to lul.

seem reasonable to use the 80ms tl timer to consider large flows, but leaving the
flows in the same path shared by several others for the time would increase the
transmission times for all flows in that path. Thus, it also increases the fraction of
flows that violate the tl timer. Therefore, it is advisable to use smaller timers to
begin migrating flows. The 1ms timer in the worst case corresponds to up to 85%
of the flows. Although a little more performant than 80ms timer, with tl = 1 ms
the results are still lower than ecmp.

The simulation results for rnd-mig approach to migrate the long-lived flows are
presented in Figure 6.21. Randomizing the path that the flow uses improves the
performance when compared tom sing-mig, and is still better than ecmp. In high
workload scenarios with ta = 1 ms the FCT of rnd-mig is 2% and 7% smaller than
ecmp for tl = 80 ms and tl = 1 ms respectivelly. With tl = 80 ms, approximately
99.5% of the flows remain in their random allocated path until it ends. This behavior
is also seen in ecmp, which explains the close performance. At the same time, this
also means that the local controller tracks only 0.5% of the flows, considerably
reducing the overhead in the local controllers. When we use tl = 1 ms, up to 85%
of the flows remain unbalanced by the local controller, but it also means the local
controller tracks 15% of the flows. As the results, show, we see a clear compromise
between the fraction of tracked flows and the performance of the forwarding scheme.

53

6.2.7 Flow Tracking Policy

The path selection for a flow increases the cost of the links along this path.
When a flow finishes, it is required to reduce the link costs such that future flows
can properly use the available network resources. We analyze the performance of
four policies to decrease the link cost: (i) immediately when each flow finishes (no
special name), (ii) never (noend), (iii) prescheduling a fixed timer for the flows
(sfe), and (iv) by periodically monitoring to sense the active flows (pm). We present
the simulation results for tpm with both a global and local database for the
highest workload (ta = 1 ms).

Figure 6.22: Expected FCT for different flow tracking policies for tpm with a
global database in Fattree 4 topology.

Figure 6.23: Expected FCT for different flow tracking policies for tpm with a local
database in Fattree 4 topology.

Figure 6.22 shows the results of a global database. Policy noend does not
know when flows end and thus it balances the traffic by prioritizing paths whose
links have been less selected. Policy sfe avoids active monitoring, but the correct
tuning of the flow duration is crucial for performance. In the simulations, the flows
durations vary from few microseconds to several seconds with an expected dura-
tion of roughly 1 ms. Thus, the scheduled flow end for 1 ms presents the best
performance, but it is more complex and presents a performance comparable to
never decrementing the costs noend. The pm policy actively monitors the virtual

54

switches, and can accurately estimate the link usage. As expected, the more frequent
the monitoring rate, the better the performance of the selection heuristic.

Figure 6.23 presents the equivalent results using the proposed local database
placement. The results show that a short monitoring period improve the perfor-
mance longer monitoring periods, although the difference in absolute terms are not
notorious, since the performance of local database placement itself is comparable
to never decrementing the costs noend. In particular, this occurs because the infor-
mation is only local and a higher polling rate is not enough to improve performance.
Nevertheless, the results are still better than ecmp.

55

Chapter 7

Conclusion

Cloud computing provides high processing and storage capacity by interconnect-
ing several servers for tenants to share. Thus, it enables efficient resource usage and
also reduces the management and operational costs, which encourage the adoption
of public clouds to host tenants. Nevertheless, it leads to new challenges, because
tenants that share data-centers infrastructure have a myriad of applications with dis-
tinct purposes and requirements. The integration of such tenants and applications
creates high workloads with highly variable traffic patterns. Additionally, the cloud
computing infrastructure provider has to ensure the isolation and security between
tenants and between tenants and the infrastructure as well. Another cloud com-
puting data-center feature network topology is the path mulplicity between servers,
which is often used to increase the failure tolerance. Multipath forwarding has also
been employed to distribute the traffic and enhance the data center network perfor-
mance. The conventional forwarding schemes such as Spanning Tree Protocol (stp)
does not avail the available paths and deactivate several to avoid loops. Other mul-
tipath forwarding schemes such as Equal Cost MultiPath (ecmp) and Valiant Load
Balancing (vlb) avoid this by randomizing the paths the flows take. Nonetheless,
even if the regular distribution mechanisms operate to choose the flows paths, the
path usage is imbalanced due to the flows shape and size. Hence, we need forwarding
mechanisms that load balance the traffic based on network conditions.

This thesis main goal is to present the Two-Phase Multipath (tpm) forwarding
scheme to improve the network performance of public clouds without modification
to the tenants’ network stack and to the data-center infrastructure. We improve the
network performance using VLANs, which are commonly available in commercial
off-the-shelf switches. tpm divides the forwarding into two phases: An offline mul-
tipath configuration phase that calculates available multipaths and installs them in
the virtual switches; and a fast online multipath selection phase to distribute flows
among the available paths. The multipath configuration is based on a genetic algo-
rithm proposed to find disjoint VLAN trees connecting all ToR switches, and the

56

online multipath selection phase uses heuristics based on network usage to select
the path for a new flow. The path selection heuristic may use either a local or a
global database to keep track of link usage and different heuristics to detect when
flows finish.

We formulated the disjoint trees problem and proved NP-hard and we proposed
a genetic algorithm to solve the problem. The genetic algorithm calculates the tree
set with two objective functions: Minimize the size of the trees; and minimize the
link reutilization by the trees. The genetic algorithm also calculates the number of
trees is best suitable the given topology. The utilization of such algorithm does not
restrict the topology that can be used with the scheme, and also allow that topology
changes trigger recalculations. Thus, the genetic algorithm finds an optimal disjoint
tree set for arbitrary topology adapting to the network topology conditions.

The second and online phase uses the network usage information to decide the
paths of the upcoming flows. The design allows the several selection heuristics,
both pessimistic and optimistic, but we see that the most precise least-used-links is
likely the best. Also important is the location of the database. One single database
for all flows in the data-center may be unfeasible for large data-center that have
large amount of traffic, but it reasonable to smaller data-centers. Likewise, the local
database potentially loses information, but even so it improves the performance over
random selection schemes.

We demonstrate through simulations that the proposed tpm scheme has better
performance than the conventional ecmp and stp schemes in high-workload sce-
narios. We simulated Fattree with 4-port switches topology, but also with the lager
Fattree 6-port switches and 8-port switches topologies. We also simulated the for-
warding scheme on cisco 3-tier topology and the random jellyfish topology. Finally,
we simulated capabilities tpm such as the when consider the flows to start load
balancing them and how detec the end of a flow. The results show that the tpm
achieves more than 30% and 4x gains in Flow Completion Time when compared to
ecmp and stp, respectively, using only local databases to store information about
the network utilization. Therefore, we achieve a high-performance multipathing
scheme for cloud computing data-centers without requiring any changes in tenants.

7.1 Future Work

The adoption of a two phase scheme allows each phase mechanisms evolve sep-
arately. The genetic algorithm finds an optimal tree set minimizing both tree size
and link reutilization. Still, there is opportunity to test other optimization methods
to obtain these results. We could use simulated annealing heuristic or even a model
and optimize with greedy algorithms. We could, thus, model and compare the op-

57

timization methods to conclude the scenario each is best suited for. Meanwhile,
the multipath selection mechanism is also modular, and we could test new selection
heuristics. The presence of a database of network usage allows the selection mech-
anism acquire knowledge about the communication pattern of the workload. This
knowledge could be used to predict the workload and schedule the flows accord-
ingly. Besides, the information could be used in conjunction virtual machine (VM)
migration mechanisms to place peer VMs in the same rack to unload the data-center
network.

The scheme would also profit from a testbed implementation. One of the de-
sign choices of the Two-Phase Multipath (tpm) forwarding scheme is requiring only
commercial off-the-shelf switches feature. Provided that the proposal is readily im-
plementable, building a testbed and testing in real scenarios would bring a series of
benefits. The testbed can analyze aspects such as real requirements and limitation
of the proposal. One of the benefits is testing under real traffic data. Although
the workload model approximates the traffic measurements, real application data
can lead to different behavior, which potentially may benefit an information-based
path selection mechanism. The testbed also contributes to measurement such as the
number of arriving flows, database queries, flow pattern and size. We could gather
information to tune forwarding scheme parameters regarding timer to consider the
flow as large and migrate according to the best path and the monitoring interval
to track flow end. Ultimately, these results can drive design choices of how many
servers a controller can handle, and how many controllers one database can handle.

58

Bibliography

[1] CISCO. “Cisco Global Cloud Index: Forecast and Methodology, 2014-2019”,
2015. Americas Headquarters.

[2] FERRAZ, L. H. G., MATTOS, D. M. F., DUARTE, O. C. M. B. “A Two-Phase
Multipathing Scheme based on Genetic Algorithm for Data Center Net-
working”. In: Global Communications Conference (GLOBECOM), 2014
IEEE, pp. 2270–2275, December 2014.

[3] FERRAZ, L. H. G., MATTOS, D. M. F., DUARTE, O. C. M. B. “Um Esquema
de Multicaminhos com Algoritmos Genéticos para Redes de Centro de
Dados”. In: SBRC 2014, Florianópolis, SC, May 2014.

[4] OLIVEIRA, R. R., MARCON, D. S., BAYS, L. R., et al. “Opportunistic
resilience embedding (ORE): Toward cost-efficient resilient virtual net-
works”, Computer Networks, v. 89, pp. 59–77, October 2015.

[5] LAS-CASAS, P. H., GUEDES, D., ALMEIDA, J. M., et al. “SpaDeS: Detect-
ing spammers at the source network”, Computer Networks, v. 57, n. 2,
pp. 526–539, February 2013.

[6] GREENBERG, A., HAMILTON, J. R., JAIN, N., et al. “VL2: A Scalable and
Flexible Data Center Network”, v. 54, n. 3, pp. 95–104, March 2011.

[7] NIRANJAN MYSORE, R., PAMBORIS, A., FARRINGTON, N., et al. “Port-
Land: A Scalable Fault-tolerant Layer 2 Data Center Network Fabric”.
In: Proceedings of the ACM SIGCOMM 2009 Conference on Data Com-
munication, SIGCOMM ’09, pp. 39–50. ACM, 2009.

[8] YAO, F., WU, J., VENKATARAMANI, G., et al. “A comparative analysis of
data center network architectures”. In: IEEE ICC 2014, pp. 3106–3111,
June 2014.

[9] COUTO, R. S., SECCI, S., CAMPISTA, M. E. M., et al. “Latency Versus Sur-
vivability in Geo-Distributed Data Center Design”. In: Global Communi-

59

cations Conference (GLOBECOM), 2014 IEEE, pp. 1102–1107, December
2014.

[10] PERLMAN, R. “An algorithm for distributed computation of a spanningtree
in an extended LAN”. In: ACM SIGCOMM Computer Communication
Review, v. 15, pp. 44–53. ACM, 1985.

[11] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., et al. “Data Center TCP
(DCTCP)”. In: Proceedings of ACM SIGCOMM, pp. 63–74. ACM, 2010.

[12] ALIZADEH, M., KABBANI, A., EDSALL, T., et al. “Less is More: Trad-
ing a Little Bandwidth for Ultra-low Latency in the Data Center”. In:
Proceedings of the 9th USENIX NSDI Conference on NSDI, pp. 19–19,
2012.

[13] RAICIU, C., BARRE, S., PLUNTKE, C., et al. “Improving Datacenter Per-
formance and Robustness with Multipath TCP”. In: Proceedings of ACM
SIGCOMM, pp. 266–277. ACM, 2011.

[14] MATTOS, D. M. F., DUARTE, O. C. M. B. “XenFlow: Seamless Migra-
tion Primitive and Quality of Service for Virtual Networks”. In: Global
Communications Conference (GLOBECOM), 2014 IEEE, pp. 2326–2331,
December 2014.

[15] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B., et al. “Hedera:
Dynamic flow scheduling for data center networks”. In: Proceedings of the
7th USENIX NSDI Conference on NSDI, pp. 19–19. USENIX Association,
2010.

[16] IEEE. “Standard for Local and Metropolitan Area Networks: Virtual Bridges
and Virtual Bridged Local Area Networks - Amendment 9: Shortest Path
Bridging”. March 2012. IEEE802.1aq.

[17] ZHANG, M., GHANWANI, A., MANRAL, V., et al. “Transparent Interconnec-
tion of Lots of Links (TRILL): Clarifications, Corrections, and Updates”.
RFC 7180 (Standards Track), May 2014.

[18] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S., et al. “CONGA:
Distributed Congestion-aware Load Balancing for Datacenters”. In: Pro-
ceedings of ACM SIGCOMM, pp. 503–514, 2014.

[19] BENSON, T., AKELLA, A., MALTZ, D. A. “Network traffic characteristics of
data centers in the wild”. In: Proceedings of the ACM SIGCOMM IMC,
pp. 267–280, 2010.

60

[20] BELABED, D., SECCI, S., PUJOLLE, G., et al. “Impact of Ethernet Multi-
path Routing on Data Center Network Consolidations”. In: Proc. of the
4th Int. Workshop on Data Center Performance (DCPerf’14), ICDCS.
IEEE, June 2014.

[21] BARI, M., BOUTABA, R., ESTEVES, R., et al. “Data Center Network Vir-
tualization: A Survey”, Comm. Surveys Tutorials, IEEE, v. 15, n. 2,
pp. 909–928, 2013.

[22] AL-FARES, M., LOUKISSAS, A., VAHDAT, A. “A scalable, commodity data
center network architecture”. In: Proceedings of ACM SIGCOMM, pp.
63–74. ACM, 2008.

[23] MATTOS, D. M. F., FERRAZ, L. H. G., DUARTE, O. C. M. B. “Virtual Ma-
chine Migration”. In: da Fonseca, N. L. S., Boutaba, R. (Eds.), Cloud Ser-
vices, Networking and Management, Wiley-IEEE Press, Hoboken, EUA,
April 2015.

[24] CARVALHO, H., FERNANDES, N., DUARTE, O. “Um Controlador Robusto
de Acordos de Nível de Serviço para Redes Virtuais Baseado em Lógica
Nebulosa”. In: SBRC 2011, Campo Grande, MS, April 2011.

[25] JEYAKUMAR, V., ALIZADEH, M., MAZIERES, D., et al. “EyeQ: Practical
network performance isolation for the multi-tenant cloud”. In: Proceed-
ings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing.
USENIX Association, 2012.

[26] JIANG, J., LAN, T., HA, S., et al. “Joint VM placement and routing for data
center traffic engineering”. In: INFOCOM, 2012 Proceedings IEEE, pp.
2876 –2880, 2012.

[27] DIAS, D. S., COSTA, L. H. M. “Online traffic-aware virtual machine place-
ment in data center networks”. In: Global Information Infrastructure and
Networking Symposium (GIIS), 2012, pp. 1–8. IEEE, 2012.

[28] BODÍK, P., MENACHE, I., CHOWDHURY, M., et al. “Surviving failures
in bandwidth-constrained datacenters”. In: Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures, and
protocols for computer communication, SIGCOMM ’12, pp. 431–442.
ACM, 2012.

[29] ZATS, D., DAS, T., MOHAN, P., et al. “DeTail: Reducing the Flow Com-
pletion Time Tail in Datacenter Networks”. In: Proceedings of the ACM

61

SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM’12, pp. 139–150.
ACM, 2012.

[30] WILSON, C., BALLANI, H., KARAGIANNIS, T., et al. “Better Never than
Late: Meeting Deadlines in Datacenter Networks”. In: Proceedings of
the ACM SIGCOMM 2011 conference, SIGCOMM ’11, pp. 50–61. ACM,
2011.

[31] ALLAN, D., ASHWOOD-SMITH, P., BRAGG, N., et al. “Shortest Path Bridg-
ing: Efficient Control of Larger Ethernet Networks”, Communications
Magazine, IEEE, v. 48, n. 10, pp. 128–135, 2010.

[32] HAKIRI, A., GOKHALE, A., BERTHOU, P., et al. “Software-Defined Net-
working: Challenges and research opportunities for Future Internet”,
Computer Networks, v. 75, Part A, pp. 453–471, 2014.

[33] CURTIS, A. R., MOGUL, J. C., TOURRILHES, J., et al. “DevoFlow: Scaling
Flow Management for High-performance Networks”. In: Proceedings of
the ACM SIGCOMM 2011 Conference, pp. 254–265. ACM, 2011.

[34] MUDIGONDA, J., YALAGANDULA, P., MOGUL, J., et al. “NetLord: A
Scalable Multi-tenant Network Architecture for Virtualized Datacenters”.
In: Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pp. 62–73. ACM, 2011.

[35] MUDIGONDA, J., YALAGANDULA, P., AL-FARES, M., et al. “SPAIN:
COTS data-center Ethernet for Multipathing over Arbitrary Topologies”.
In: Proceedings of the 7th USENIX NSDI Conference on NSDI. USENIX
Association, 2010.

[36] ROJAS, E., IBAÑEZ, G., GIMENEZ-GUZMAN, J. M., et al. “All-Path bridg-
ing: Path exploration protocols for data center and campus networks”,
Computer Networks, v. 79, pp. 120 – 132, 2015.

[37] PANDEY, S., CHOI, M.-J., WON, Y. J., et al. “SNMP-based enterprise IP net-
work topology discovery”, International Journal of Network Management,
v. 21, n. 3, pp. 169–184, 2011.

[38] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., et al. “OpenFlow:
Enabling Innovation in Campus Networks”, SIGCOMM Comput. Com-
mun. Rev., v. 38, n. 2, pp. 69–74, March 2008.

62

[39] PFAFF, B., PETTIT, J., KOPONEN, T., et al. “Extending networking into
the virtualization layer”, Proc. HotNets, October 2009.

[40] KANDULA, S., KATABI, D., SINHA, S., et al. “Dynamic Load Balancing
Without Packet Reordering”, SIGCOMM Comput. Commun. Rev., v. 37,
n. 2, pp. 51–62, March 2007.

[41] MORAES, I. M., MATTOS, D. M., FERRAZ, L. H. G., et al. “FITS: A flexible
virtual network testbed architecture”, Computer Networks Special issue
on Future Internet Testbeds - Part {II}, v. 63, n. 0, pp. 221 – 237, 2014.

[42] BARABASH, K., COHEN, R., HADAS, D., et al. “A case for overlays in DCN
virtualization”. In: Proceedings of the 3rd Workshop on Data Center -
Converged and Virtual Ethernet Switching, DC-CaVES ’11, pp. 30–37.
ITCP, 2011.

[43] BOUTROS, S., SAJASSI, A., SALAM, S., et al. “VXLAN DCI Using EVPN”.
February 2013.

[44] SRIDHARAN, M., GREENBERG, A., VENKATARAMIAH, N., et al.
“NVGRE: Network virtualization using generic routing encapsulation”.
September 2011.

[45] GAREY, M. R., JOHNSON, D. S. “Computers and intractability: a guide to
the theory of NP-completeness. 1979”, San Francisco, LA: Freeman, 1979.

[46] DOERR, B., DOERR, C. “Optimal Parameter Choices Through Self-
Adjustment: Applying the 1/5-th Rule in Discrete Settings”. GECCO’15,
July 2015.

[47] CARDOSO, L. P., MATTOS, D. M. F., FERRAZ, L. H. G., et al. “An Efficient
Energy-Aware Mechanism for Virtual Machine Migration”. In: 2015 IEEE
Global Information Infrastructure and Networking Symposium (GIIS), Oc-
tober 2015.

[48] COIT, D. W., SMITH, A. E. “Solving the redundancy allocation problem using
a combined neural network/genetic algorithm approach”, Computers &
Operations Research, v. 23, n. 6, pp. 515 – 526, 1996.

[49] CISCO. “Cisco Data Center Infrastructure 2.5 Design Guide”, 2007. Head-
quarters, Americas.

[50] SINGLA, A., HONG, C.-Y., POPA, L., et al. “Jellyfish: Networking Data
Centers Randomly”. In: Proceedings of the 9th USENIX NSDI Conference
on NSDI, NSDI’12, 2012.

63

