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Rio de Janeiro

Março de 2015



DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH

DEFINITION VIDEO SEQUENCES

Gabriel Matos Araujo

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ
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Prof. Eduardo Antônio Barros da Silva, Ph.D.
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me apoiar e me incentivar em vários momentos. Meryelle merece um agradecimento

especial por ser uma companheira leal e por ter me dado um presente sem igual: o

nosso filho Guilherme. Os dois fizeram com que esse processo fosse muito mais fácil.
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o quanto é difcil fazer o doutorado, ministrar aulas e estar envolvido em outras

atividades como projetos de pesquisa. Os meus colegas professores e servidores,
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Nos últimos anos, estamos experimentando uma revolução no campo da interface

homem-máquina. Cada vez mais estamos utilizando formas alternativas de inter-

agir com os nossos dispositivos. Neste contexto, a face, ou partes dela, pode(m)

ser utilizada(s) em várias aplicações. Por exemplo, o rastreamento da posição dos

olhos é importante para manipular conteúdo 3D em dispositivos com tela autoestere-

oscópica. Neste trabalho, nós propomos uma nova abordagem para detectar e ras-

trear pontos da face em sequências de v́ıdeo de alta definição. A detecção é baseada

no SVM (do inglês Support Vector Machine) com kernel gaussiano ou no IPD (do

inglês Inner Product Detector). O método de detecção baseado no IPD é capaz de

encontrar os olhos em 88, 3% das imagens da BioID com um erro relativo menor que

5% da distância interocular. Nós também propomos duas abordagens para integrar

o IPD com o filtro de part́ıcula para rastrear caracteŕısticas faciais como as pupilas.

Um erro relativo médio de 7, 7% da distância interocular foi obtido na nossa base

de dados de alta definição. Além disso, propomos um método global para rastrear

conjuntamente um grupo de caracteŕısticas nos olhos. Neste caso, o rastreamento

pode ser realizado pelo algoritmo de Kanade-Lucas (KL) ou pelo filtro de part́ıculas.

A novidade deste método consiste na integração da detecção com o rastreamento,

na avaliação da consistência temporal, para diminuir a taxa de falsos positivos, e no

uso de restrições geométricas para inferir a posição dos pontos faltantes. Nos exper-

imentos, nós usamos as bases de dados BioID e FERET, bem como cinco sequências

de v́ıdeo de alta definição. Estas sequências possuem quatro indiv́ıduos, tipos difer-

entes de plano de fundo, movimentos rápidos, borramento e oclusão. Os resultados

obtidos indicam que as técnicas propostas são competitivas e capazes de detectar e

rastrear objetos com uma boa confiança.
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In recent years we are experiencing a revolution in the field of man-machine

interfaces. More and more we are using alternative ways to interact with our devices.

In this context, the face, or parts of it, can be used in several applications. As an

example, tracking the positions of the eyes may be important to manipulate 3D

content in devices with autoestereoscopic displays. In this work, we propose a novel

approach to detect and track facial landmarks in high definition video sequences.

The detection is based on Support Vector Machines (SVM) with Gaussian Kernel

or the Inner Product Detector (IPD). Our IPD based detection method can find the

eyes in 88.3% of the BioID images with a relative error less than 5% of the interocular

distance. We also propose two approaches to integrate the IPD with particle filters

in order to track local features such as the pupils. An average relative error of 7.7%

of the interocular distance was obtained in our high definition dataset. In addition,

we propose a global method to jointly track a set o features on eyes. In this case,

the tracking can be performed by the Kanade-Lucas (KL) or the particle filter. The

novelty consists in the integration of detection and tracking, the evaluation of the

temporal consistency to decrease the false positive rates, and the use of geometrical

constraints to infer the position of missing points. In our experiments, we use the

BioID and FERET databases as well as five high definition video sequences with

four subjects, different types of background, fast movements, blurring and occlusion.

The obtained results have shown that the proposed techniques are competitive and

are capable of detecting and tracking landmarks with good reliability.
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Chapter 1

Introduction

Currently we are experiencing a crescent demand for mobile systems. This leads

to a revolution in the way we interact with our devices. More and more, we are

using voice, gestures and expressions to control our gadgets. The last two concur

to the problem of locating and tracking an object in video sequences. To give an

example, suppose we are trying to develop a system that uses gestures to control a

device. The first step of this system can be the detection of the hands. Supposing

one hand was correctly detected, we also need to employ some tracking method to

obtain the movement of the hand along the frames. Finally, this movement can be

coded in a way the machine can interpret it. The same steps can be followed if we

want to use the expression or our face to control a machine. First of all, we have

to detect the face. Then, we need to detect key points, or landmarks, on it. After

that, we can track these points and encode the movement. In most cases we need to

use both detection and tracking, because the detection alone can introduce clutter

to the output (due to false positive detections). Although the tracking can provide

a smoother path, it can diverge in a long term tracking. A possible solution can be

integrating them in a way we can get the best of both worlds [1]. In this work, we

address the three parts of the problem: detection, tracking and their integration.

The objects of interest are landmarks on the face.

In the detection part, we use two different classifiers. One is the well known

Support Vector Machine (SVM). The second is the Inner Product Detector (IPD),

a Correlation Filter based detector [2–4]. This detector is a weak classifier, what

means that it is weakly correlated with the desired pattern. Fortunately, it is known

that it is possible obtain a strong classifier by combining weak classifiers. In the

case of the IPD a cascade has been used. In this context, we have three main

contributions [3, 5, 6]: (i) we conducted several experiments in order to verify the

effect of the detector’s size in the performance; (ii) the discriminant function is more

restrictive than the ones in similar linear classifiers - a desirable feature in cases such

as feature/object detection in images; (iii) the stop criterion used to automatically
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determine the number of stages of the cascade. Our detection method can find the

eyes in 88.3% of the BioID images with an error of less than 5% of the interocular

distance.

We also propose some combinations between detection and tracking methods to

perform landmarks tracking in video sequences. In one of them, we used the IPD

to find the probability distribution function of desired features in images. There are

two variations of such method, one of it is parametric and the other nonparametric.

They are simple, fast and fit in a Bayesian framework, such as the Kalman or

particle filter, for tracking the features in video sequences. When using the IPD as

a nonparametric method for estimating the probability distribution function of the

feature, we obtained an average relative error of 7.7% of the interocular distance

in our high definition dataset. In other contribution, we combine the detector with

two different trackers: the Kanade-Lucas and the Particle Filter. In this context, we

propose an integration method to globally track a set of features on the eyes [7, 8].

This integration is, first of all, based on the analysis of the histogram of the distances

between the detected and tracked points. In addition, we reduce the false positive

rates by verifying the temporal consistency of the obtained points. Although at

this step we have a high hit rate and good precision, there are missing points in

several frames, leading to high false negative rates. To address this issue, we use

the geometry of the face in order to estimate the missed points. This global method

performs well for easy and intermediate/difficult sequences.

The remainder of this work is organized as follows: In Chapter 2 we provide

a review of the state of the art in three parts. In the first part we describe some

previous works in this area. The second part contains a description of the SVM. In

the last part, we describe the state of the art in video tracking, focusing on Bayesian

inference and particle filters. After these chapters, we present our contributions. In

Chapter 3, we describe the IPD and in Chapter 4 we introduce our methods to

combine detection and tracking. Finally, we conclude and discuss some alternatives

for future works in Chapter 5.

2



Chapter 2

A Review of the State-of-the-Art

Algorithms

The problem of locating and/or tracking facial features has been investigated in

recent years. Features on human faces are useful in many applications, such as

biometrics, expression recognition [9], face alignment, pose estimation [10], 3D face

modeling [11, 12], and face tracking.

Eye detection and tracking, in particular, can be used in many applications

as attention and gaze estimation for disabled people (in order to control assistive

devices) [13, 14], driver fatigue detection [15, 16], augmented reality systems [17],

biometrics and so on [18]. There are different ways to locate and track the position

of the eyes [18, 19]. However, most methods in the literature are based on computer

vision techniques. Some of them use the dark and bright pupil effect to track the

eyes [13]. It is common to use active infrared (IR) illuminations, which force the

pupil to appear brighter than the rest of the image [20–22]. These methods can

achieve good accuracy, but can not be used in daylight applications and require

dedicated hardware [23].

The methods to locate facial fiducial points can be divided in two groups: the

group of global methods and the group of local ones [24]. The first group uses

global features, such as texture or edge, to locate the fiducial points. The main

characteristic of global methods is the capability of robustly locating several fiducial

points simultaneously and the main drawback is their computational cost. Well

known examples of global methods are Active Shape Models (ASM) [25] and Active

Appearance Models (AAM) [26]. The ASM consists in searching the best match

between the image and a deformable shape model. In the AAM the model is a

combination of texture and shape. In [24], for example, the minimization step of

the ASM is treated as a classification step and a Support Vector Machine (SVM) [27]

is used to match the template and the image. In [28], to improve the robustness

of the AAM, new constraints based on temporal matching and color are introduced
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in the objective function. Similar methods to AAM, as the one in [29], can also be

found in the literature. In this last one, Cristinace and Cootes proposed a method

called Constrained Local Model (CLM). The main differences between them are that

the CLM learns the variation in the appearance of the regions around the features

and they use a different search algorithm.

In local methods, each fiducial point is detected independently, using only local

information. The main advantage of local methods is the low computational cost.

There are several examples of local methods, most of them using a cascade of boosted

classifiers. In [30], for example, Gabor filters are used to extract features to be

classified by a type of cascade of classifiers. In [31], dot products between gradient

and displacement vectors are used in an objective function whose maximum gives

a good approximation of the eyes’s centers. In [32], a set of isophote1 centers with

high values is used in series with a Scale-invariant Feature Transform (SIFT) [33]

based matching and a kNN classifier to locate the center of the eye. At the same

accuracy, the method proposed by [32] reaches a little bit higher hit rate than the

one proposed by [31] but with increased computational cost. In [34], an adaptive

Cumulative Distributed Function (CDF) analysis is used to locate the pupils. In [35],

the eyes are located by means of projection functions. These methods have one

feature in common: they do not have any type of learning scheme, so they cannot

be generalized to detect other important fiducial points on face. A technique that

uses eye area edge map comparison can be found in [36].

Recent works combine both local and global methods to improve the accuracy.

In [37], Haar filters are used to extract the features. The global part of this method

uses a mixture of Gaussians to infer the joint position the features. Other remarkable

example is the one in [38]. It uses a combination of SIFT and SVM as local features.

Then, they refine the detection using a global method. The global part of their

work consists in an objective function, defined by a Bayesian model, optimized by

a Random Sample Consensus (RANSAC) [39] based algorithm. They reach good

results, but their method is too computationally demanding to be used in online

applications.

All the methods presented above are capable of performing detection of multiple

objects in static images. However, it is possible to use object detectors frame-

by-frame in a video sequence and then employ some tracking method to find an

association between the detected objects across the frames. This approach is known

as tracking-by-detection and have been used in several works recently [1, 7, 40–45].

The main challenge of such approaches is that the detectors usually present false

positives and false negatives at their outputs. In other words, the output of the

1An isophote is a curve with constant intensity. In this case, the luminance is used as an
intensity measure.
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detectors is usually unreliable and sparse [46]. Tracking-by-detection methods have

been used in many applications [1, 47], but have become particularly popular in

pedestrian tracking [45, 46].

In [47], Kalal et al. proposed a method to detect and track an unknown object

defined by the user in a single frame. The detection step is performed by a sequential

randomized forest, that is trained on-line to evaluate a set of 2-bit binary patterns.

The output of the detection feeds a Kanade-Lucas (KL) tracker, that is based on

optical flow [48]. In a more recent work [1], Kalal et al. improved the integration

between the detection and tracking and proposed a robust algorithm called Predator.

They developed a learning method, called P-N learning, that is capable of estimating

the missing detections (false negatives) and the false alarms (false positives). This

learning scheme is used on-line, so the reliability of the detections and consequently

of the tracking are improved over time.

There are several multi-object tracking-by-detection algorithms employed in

pedestrian tracking [40, 42, 45, 46, 49–53]. Some of them apply a temporal

delay in order to use the information from future frames to improve robust-

ness [42, 45, 50, 51, 53]. Others are concerned with online applications and adopted

Markov assumptions, considering only information from past frames [40, 46, 49, 52].

The last ones used the detection in the particle filter framework.

Tracking-by-detection methods also have been used with success to track facial

landmarks in video sequences. As a matter of fact, some methods described at

the beginning of this section have been used in conjunction with tracking methods.

In [32], for example, the eyes are tracked by employing frame-by-frame detection in

a video from a webcam. In [28], the features are detected on each frame through

AAM and two constraints are employed to follow them across the frames. One is

the temporal matching between local features of successive frames. The other is a

segmentation based on facial color. In [37], before performing the facial feature local-

ization, they track the faces by employing the Viola-Jones’s face detector [54] in each

frame and then some heuristics based on the Kanade-Lucas-Tomasi tracker [55] to

find the temporal connection between the detected faces. Cristinacce and Cootes [29]

also applied their facial feature detectors (the CLM, as can be seen earlier in this

section) frame-by-frame in order to track facial features on a video sequence. They

do not try to find a temporal correlation across the frames, but claim that it is

not necessary, since the template learns the appearance of the features and is con-

strained by a joint shape and texture model. In [56], the facial features are detected

in the first frame through SIFT based detectors and the tracking is performed along

the frames by employing Multiple Differential Evolution-Markov Chain (DE-MC)

particle filters.

The use of a probabilistic distribution for the representation of a feature’s local-

5



ization leads naturally to Bayesian tracking and information fusion pipelines. For

instance, a Bayesian method enables learning an underlying distribution for the

position of landmarks using visual features [57], an unscented particle filter can

propagate local points of interest [58], and multiple object detectors in different

cameras can estimate the joint detected distribution in world space [59].

2.1 Support Vector Machine

The Support Vector Machine (SVM) is a machine learning technique, introduced by

Vapnik [27], that has been used in regression and classification problems [27, 60].

In the two-class classification problem, we aim at obtaining a separating hyperplane

that splits the space in two parts. The hyperplane is defined in terms of the nearest

samples of each class. These samples are called support vectors and the distance

between them is called margin. In other words, the SVM provides the hyperplane,

H , that maximizes the margin. If the problem is linearly tractable, this hyperplane

can be described as follows:

f(x) = wTx+ b, (2.1)

where w is orthogonal to the hyperplane H , |b| is the distance between the hyper-

plane and the origin (‖w‖ = 1) and [·]T denotes the transpose.

Since in most cases the problem is not linearly separable, we must introduce a

tolerance variable ξn that allows some samples to be in the margin region or even

in the region of the other class. So, the hyperplane equation can be rewritten as

yn(w
Txn + b)− 1 + ξn ≥ 0, (2.2)

where xn is a training sample and yn is its label. If 0 ≤ ξn ≤ 1, the sample is in the

margin and if ξn > 1 the sample is in the region of the other class. This formulation

is known as soft margin and is illustrated in Figure 2.1. Note that the hyperplanes

H−1 and H+1, the bounds of the margin, are parallel to the separating hyperplane

H .

The optimal separating hyperplane can be obtained by solving the following

optimization problem:

argmin
w,b,ξ

[

1

2
‖w‖2 + C

(

N
∑

n=1

ξn

)]

, (2.3)

subject to

yn(w
Txn + b)− 1 + ξn ≥ 0, ξn ≥ 0, ∀n, (2.4)

where C is a free parameter that defines a penalty for the misclassification and ξ is
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|−b|
‖w‖

H+1

H−1

w

2

‖w‖

|−ξn|
‖w‖

xn

H

Figure 2.1: Linear SVM with soft margin.

a set composed by N elements ξn.

The Equations (2.3) and (2.4) stand for a quadratic optimization problem with

linear constraints. Adopting a Lagrangian solution, the optimization problem can

be rewritten as [27]

Ld =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjK(xi,xj), (2.5)

subject to

0 ≤ αn ≤ C, (2.6)

N
∑

n=1

αnyn = 0, (2.7)

where Ld is the dual objective function, αi is a Lagrange multiplier and K(xi,xj)

denotes a kernel function over the samples. A kernel function returns the inner

product between two samples in a higher (possibly infinite) dimensional space, where

the classes can be linearly tractable [60]. There are several types of kernel functions,

such as linear, polynomial, sigmoidal and Gaussian. The most used are the linear

and the Gaussian (also known as Radial Basis Function (RBF)) kernels. Their

definitions are in Table 2.1.

Table 2.1: Most used kernel functions. For the Gaussian, γ = 1/2σ2 and σ is the
standard deviation.

Function k(x,y)
Linear xTy

Gaussian (RBF) exp (−γ‖x− y‖2)
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Including the Karush-Kuhn-Tucker conditions as constraints

αn [ynxnw + b− 1 + ξn] = 0, (2.8)

µnξn = 0, (2.9)

ynxnw + b− 1 + ξn ≥ 0, (2.10)

for n = 1, · · · , N , we can uniquely determine the solution to the optimization prob-

lem in the Equations (2.5), (2.6) and (2.7) [60].

The resulting discriminant functions is

g(x) = sign

(

∑

i∈SV

yiα
∗
i k(xi,x) + b∗

)

, (2.11)

where

b∗ =
1

nS̃V

∑

i∈S̃V

(

1

yi
−
∑

j∈SV

α∗
jyjk(xj ,xi)

)

, (2.12)

α∗
n and b∗ are optimal solutions, SV is a set composed by the support vectors that

satisfy 0 < αn < C and nS̃V is the number of elements in this set. It is important to

emphasize that α∗
n ≥ 0 only for the support vectors. If α∗

n < C, then ξ∗n = 0 and the

vector is over the margin. If α∗
n = C, we have two cases: if 0 < ξ∗n ≤ C the vector

is in the margin; the vector is over the margin if ξ∗n = 0.

A more detailed description of the SVM can be found in several texts as [27, 60–

64].

2.2 Video Tracking Using State Estimation

Suppose we want to measure time-varying variables related to a physical process.

Recognizing these variables as state variables, we can use state estimation techniques

to do so. These techniques are based on a state space model and on a measurement

model. The state space model provides the link between the states of this process

and the measurement model describes the relation between the states and the data

obtained from the sensory system.

There are several applications of state estimation, but we are interested in ob-

ject tracking in a video sequence. In this case, the variables of interest, or states,

are velocity and position of a moving object. We also need an online estimation

framework, that comprises the state space model, measurement models and optimal

estimation. The state space model provides a link between the states in consecutive

frames. The measurements are related to the two-dimensional position of the object

in a frame of the video sequence. So, the measurement model provides the link
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between these measurements and the states. The frames of a video sequence can

be represented by discrete time indexes and variables like position and velocity are

real-valued vectors. That is the reason we only describe the case of discrete-time

processes of continuous states. For more details, including discrete state variables,

refer to [65].

The framework described above can be used in two scenarios: single and multiple-

hypothesis localization [66]. In Single-Hypothesis Localization (SHL) methods, only

one tracker candidate is estimated and evaluated any time. Gradient based methods,

such as Kanade-Lucas-Tomasi, Mean Shift and Kalman filter are examples of SHL

methods. In Multiple-Hypothesis Localization (MHL) methods, multiple tracker

candidates are evaluated simultaneously. Grid Sampling and Particle Filters are

examples of methods in this category.

A general framework for online estimation is described in Section 2.2.1. In Sec-

tion 2.2.2, we give some details of SHL methods focusing on Kanade-Lucas-Tomasi

tracker. In Section 2.2.3, we describe the Particle Filter, an MHL method.

2.2.1 A Framework for Online Estimation

We can divide the estimation problem in three parts: online estimation, prediction

and retrodiction. In online estimation, also known as optimal filtering, we estimate

the current state using all previous measurements. In prediction, we estimate the

future states. The retrodiction, also known as smoothing or offline estimation,

consists in estimating the past states.

State space model

Let X = R
M be a state space and x(n) ∈ X a state at a discrete time n ∈ Z.

Suppose that we know the state of a process from the beginning up to the present

(x(0),x(1), · · · ,x(n)) and want to estimate the next state x(n+ 1).

Modeling our states as random variables, an optimal estimate of x(n+1) can be

found if we evaluate the conditional density p(x(n + 1)|x(0),x(1), · · · ,x(n)). This

problem can be simplified if we suppose that the problem is a first order Markov

chain, that is, if we assume that the probability of x(n + 1) depends only on x(n)

and not on past states. If this assumption holds, then the conditional density is:

p(x(n+ 1)|x(0),x(1), · · · ,x(n)) = p(x(n + 1)|x(n)). (2.13)

The probability density p(x(n+1)|x(n)) is known as transition probability den-

sity. Knowing it and the a priori p(x(0)), we can determine the probability density
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p(x(n+ 1)) at any time by recursively computing

p(x(n + 1)) =

∫

x(n)∈X

p(x(n+ 1)|x(n))p(x(n))dx(n) for n = 0, 1, · · · (2.14)

In addition, the joint probability of the sequence x(0),x(1), · · · ,x(n) is given by

p(x(0),x(1), · · · ,x(n)) = p(x(0))

n
∏

j=1

p(x(j)|x(j − 1)). (2.15)

Measurement model

Let Z = R
N be a measurement space and z(n) ∈ Z a measurement at the discrete

time n. The sequence of measurements until the present is Z(n) = {z(0), · · · , z(n)}

and the model of the sensory system is defined by the conditional probability density

p(z(n)|x(0), · · · ,x(n), z(0), · · · , z(n − 1)). Assuming that our sensory system is

memoryless, we can rewrite the probability density of the measurements as

p(z(n)|x(0), · · · ,x(n),Z(n− 1)) = p(z(n)|x(n)). (2.16)

Optimal online estimation

In online estimation we start with a prior distribution p(x(0)) at the discrete time

index n = 0. Then, we can receive the first measurement z(0) and obtain the

posterior density p(x(0)|Z(0)). After that, at each time index n, we can obtain the

posterior density p(x(n)|Z(n)) by means of the measurement z(n) and derive an

estimate x̂(n) by using this posterior function. This posterior density is updated,

at each time n, through a recursion as depicted in Figure 2.2.

update

prediction

p(x(0)) estimation

criterion
measurement

z(n)

x̂(n)

n = n + 1

p(x(n)|Z(n− 1))

p(x(n+ 1)|Z(n))

p(x(n)|Z(n))

Figure 2.2: A general scheme for online estimation.

The first step of this recursion is the prediction, where we can obtain the density
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p(x(n + 1)|Z(n)). To do so, we apply Bayes’ theorem combined with the Markov

condition as follows:

p(x(n+ 1)|Z(n)) =

∫

x(n)∈X

p(x(n + 1),x(n)|Z(n))dx(n)

=

∫

x(n)∈X

p(x(n + 1)|x(n),Z(n))p(x(n)|Z(n))dx(n)

=

∫

x(n)∈X

p(x(n + 1)|x(n))p(x(n)|Z(n))dx(n). (2.17)

The last step of the recursion is the update, where we increment the variable n

so that p(x(n+ 1)|Z(n)) becomes p(x(n)|Z(n− 1)) and another measurement z(n)

is collected in order to obtain the next posterior density p(x(n)|Z(n)). Since our

sensory system is memoryless, we can use the Bayes’ theorem to obtain the following

density function:

p(x(n)|Z(n)) = p(x(n)|Z(n− 1), z(n))

=
1

c
p(z(n)|x(n),Z(n− 1))p(x(n)|Z(n− 1))

=
1

c
p(z(n)|x(n))p(x(n)|Z(n− 1)), (2.18)

where c is a normalization constant given by

c =

∫

x(n)∈X

p(z(n)|x(n))p(x(n)|Z(n− 1))dx(n). (2.19)

The recursion using the Equations (4.1), (2.18) and (2.19) is known as Bayes, or

Predictive, filtering [66, 67]. Since it provides the posterior density in each iteration,

we just need an optimality criterion to obtain an optimal estimate of the current

state [65]. If the state and measurement spaces are discrete, the integrals turns into

summations and this recursion becomes a powerful tool. As a matter of fact, it is

difficult to implement this recursion for the continuous case, since it requires good

representations for the density functions with N and M dimensions and efficient

algorithms for the integrations over an M-dimensional space [65]. However, under

known constraints the posterior function can be simplified. The Kalman filter is

a classical example – it is the optimal solution when both state and measurement

models are linear with Gaussian noises [65–67]. In other cases, the state and mea-

surement models are linear, but the distributions of the states are not Gaussian. A

remarkable approximation for this type of problem is the particle filtering, which

implements a recursive Bayesian filter through Monte-Carlo simulations [65–67]. A

brief description of the particle filter is provided in Section 2.2.3.
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2.2.2 Single-Hypothesis Localization

In Single-Hypothesis Localization, only one state candidate is estimated and eval-

uated at each time index n. There are several trackers in this category, such as

Kanade-Lucas-Tomasi (KLT) tracker, Mean shift (MS) tracker and Kalman filter.

In this section, we discuss one of the most used trackers in this category: the KLT

tracker, a gradient-based technique.

Kanade-Lucas-Tomasi Tracker

The (KLT) [55] tracker uses a Newton-Raphson minimization procedure to compute

affine changes between images. In addition, this tracker also uses a set of features

that can improve the tracker’s accuracy. The KLT tracker is based on a technique

proposed by Lucas and Kanade [48], that can compute translational changes using

a Newton-Raphson minimization procedure.

Let IT (·) be a squared window template of size (2W − 1) × (2W − 1) aligned

with the coordinate system of the image In, ∀n. Defining the state x(n) as a pixel

location in the image and x̃(n) the center of the template, the displacement between

the template and a square target in the image can be given by

x(n) = x̃(n) + ∆x(n). (2.20)

Using the estimated displacement x(n−1) at the time n−1 as the initial position of

the target x̃(n), the term ∆x(n) can be interpreted as a small displacement added to

the previous displacement. Adopting the constant-illumination constraint, we can

write the relationship between the template and the window centered at the state

x(n) as

In(w) = IT (w − x(n)) + νn(w) = IT (w − x̃(n)−∆x(n)) + νn(w), (2.21)

where w is a pixel location, νn(w) is an additive noise, |w − x(n)|1 < W and | · |1

denotes the L1 norm.

So, tracking the template in the image consists in obtaining the small displace-

ment that minimizes the error between the window around the state x(n) and the

template. The error can be defined as

ǫ(∆x(n)) =
∑

|w−x(n)|1<W

[IT (w− x̃(n)−∆x(n))− In(w)]2 . (2.22)

If the displacement is small, we can rewrite the template IT (·) through the linear
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terms of its Taylor series:

IT (w− x̃(n)−∆x(n)) ≈ IT (w − x̃(n)) + bT∆x(n), (2.23)

where b = ∂IT (w−x̃(n))
∂w

and [·]T denotes the transpose. Substituting the Equa-

tion (2.23) in the Equation (2.22), we have

ǫ(∆x(n)) =
∑

|w−x(n)|1<W

[

IT (w − x̃(n))− In(w)− bT(w)∆x(n)
]2
. (2.24)

Now, we can obtain the displacement that minimizes the errors by just applying

∂ǫ(∆x(n))

∂∆x(n)
= 0. (2.25)

So, the displacement is

∆x(n) =

∑

|w−x(n)|1<W [IT (w − x̃(n))− In(w)]b(w)
∑

|w−x(n)|1<W bT(w)b(w)
. (2.26)

Although this formulation can lead to a local minimum, we can approach the

global one by using it in an iterative algorithm. In this case, we just have to replace

x̃(n) by x̃(n) + ∆x(n) in each step until convergence is achieved. This technique

works well for pure translational movement. However, as can be seen in [55], it can

be extended to incorporate more complex movements, such as affine transformations.

2.2.3 Multiple-Hypothesis Localization and the Particle Fil-

ter

In Multiple-Hypothesis Localization (MHL), multiple state candidates are evaluated

simultaneously at each time index n. The state space and measurement models are

used to validate these states, or hypotheses. The most likely states are propagated

while the unlikely ones are removed. Multiple hypothesis methods can deal better

with multi-modal density functions, that is the type of distribution we obtain when

dealing with occlusion, noisy environments, clutter and so on. The main drawback

of MHL methods is the relationship between the computational cost and the di-

mensionality of the state space. This is so because the number of hypotheses that

are necessary to explore multi-dimensional state spaces grows exponentially with

the number of dimensions [66]. Currently, one of the most popular MHL methods

is particle filter. Actually, the particle filter is a family of estimators that try an

approximation of the Bayes’ tracker by using Monte Carlo methods. That is why it

is also known as Sequential Monte Carlo (SMC) method. The key idea of the parti-
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cle filter is to use random samples, or randomly selected observations, to represent

the prior probability density. So, it can deal with nonlinearity and non-Gaussian

systems [65, 66]. Following the description in [65], we provide more details about

the particle filter in the remaining of this section.

Importance Sampling

Monte Carlo simulation is a technique for estimating the expectation of any function

for a given distribution by using a set of random samples drawn from that distribu-

tion. Mathematically, if xk, k = 1, · · · , K, are samples drawn from the conditional

density p(x|z), then the expectation of a function g(x) can be estimated by

E [g(x)|z] ≈
1

K

K
∑

k=1

g(xk). (2.27)

This approximation asymptotically tends to the expectation as K increases.

In particle filtering context, we draw a set of samples xk(n) in each time in-

dex n. These samples, called particles, are used to represent the posterior density

p(x(n)|Z(n)). The problem is that we do not know this density in advance. So, we

have to use another distribution q(x), called proposal density, to get the samples. As

a matter of fact, the choice of the proposal density is one of the differences between

some types of particle filters. Using the proposal density, the expectation of g(x)

with respect to p(x|z) can be obtained as follows:

E [g(x)|z] =

∫

g(x)p(x|z)dx

=

∫

g(x)
p(x|z)

q(x)
q(x)dx. (2.28)

Applying the Bayes’ theorem in the equation above, we have:

E [g(x)|z] =

∫

g(x)
p(z|x)p(x)

p(z)q(x)
q(x)dx. (2.29)

Defining

w(x) =
p(z|x)p(x)

q(x)
, (2.30)

we can rewrite the expectation as

E [g(x)|z] =
1

p(z)

∫

g(x)w(x)q(x)dx. (2.31)
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Where p(z) is a normalizing factor that can be expressed as

p(z) =

∫

p(z|x)p(x)dx

=

∫

p(z|x)p(x)

q(x)
q(x)dx

=

∫

w(x)q(x)dx. (2.32)

Then, the expectation becomes:

E [g(x)|z] =

∫

g(x)w(x)q(x)dx
∫

w(x)q(x)dx
. (2.33)

The expectation above can be estimated by means of samples drawn from q(x) using

the following equation:

E [g(x)|z] ≈

∑K
k=1w(x

k(n))g(xk(n))
∑K

k=1w(x
k(n))

. (2.34)

The term w(xk(n)) in the equation above is also known as unnormalized importance

weights. By defining the normalized importance weights as

wnorm(x
k(n)) =

w(xk(n))
∑

w(xk(i))
, (2.35)

we can simplify the Equation (2.34) as

E [g(x)|z] ≈
K
∑

k=1

wnorm(x
k(n))g(xk(n)). (2.36)

To summarize, in the importance sampling, each sample xk(n) has a weight

wnorm(x
k(n)) and together they represent the conditional density p(x|z).

As can be seen in [65], the Equations (2.34) and (2.36) are biased estimates.

Fortunately, under mild conditions and for q(x) overlapping the support of p(x),

the estimate tends asymptotically to the expectation as K increases [65].

Resampling by Selection

Since each sample xk(n) has a weight wnorm(x
k(n)), we can use this information to

select a new set of the samples to obtain a more accurate representation of p(x|z).

This is equivalent to discarding the samples with low weight and keeping multiple

copies of those samples with larger weights (maintaining the number of particles K

constant). This procedure is known as selection and different types of particle filters
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use different types of selection strategies.

One of the most used methods employs a multinomial distribution with the

probabilities given by the importance weights and draws samples with replacement

from it. To do so, the first step is the calculation of the cumulative weights as

follows:

wcum(x
k(n)) =

k
∑

j=1

wnorm(x
k(n)). (2.37)

Then, we generate rk, k = 1, · · · , K random numbers between 0 and 1 from an

uniform distribution. The new set xk
selec(n) is a copy of the sample xj(n), where j

is the smallest sample for which wj
cum ≥ rk.

CONDENSATION Algorithm

The Conditional Density Propagation (CONDENSATION) algorithm is a combina-

tion of importance sampling and resampling by selection [68]. In terms of the general

scheme in Figure 2.2, we start with the prediction of the previous iteration (n− 1):

the predicted density p(x(n)|z(n− 1)) is used as the proposal q(x). At the current

iteration (n), the set xk(n) is used as an unweighted representation of the previ-

ously predicted density. The next step is to find the posterior density p(x(n)|z(n))

by employing the importance sampling. To do so, we use Equation (2.29) with the

following substitutions:

p(x) → p(x(n)|Z(n− 1))

p(x|z) → p(x(n)|z(n),Z(n− 1)) = p(x(n)|Z(n))

q(x) → p(x(n)|Z(n− 1))

p(z|x) → p(x(n)|z(n),Z(n− 1)) = p(x(n)|Z(n)).

Then, the weights w(xk(n)) are obtained by observing that w(xk(n)) =

p(z(n)|xk(n)) and the normalized weights wnorm(x
k(n)) are used as a representa-

tion of p(x(n)|z(n)). After that, we apply the resampling by selection, where we use

the selected samples xk
selec(n) as an unweighted representation of p(x(n)|Z(n)). The

last step of the recursion is the prediction, where we draw a new sample xk(n) for

each xk
selec(n) from the density p(x(n+1)|xk

selec(n)). This new set is a representation

of the conditional density p(x(n + 1)|Z(n)). The CONDENSATION algorithm is

summarized in the Algorithm 1.

In a nutshell, the state space is partitioned in several parts and filled with the

particles according to a probability measure (the normalized weights). The higher

the probability, the more important the particle. Then, we can randomly select

some particles to approximate the evolving density function by using a point-mass
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input : Random draw K particles from the cloud of points;
for k = 1 → K do

xk(0) ∼ q(x(0));
wk(0) = 1

K ;

begin1

begin Update:2

Set the importance weights;3

for k = 1 → K do4

w(xk(n)) = p(z(n)|xk(n));5

Calculate the normalized importance weights;6

for k = 1 → K do7

wnorm(x
k(n)) = w(xk(n))∑

w(xk(n))
;8

end9

begin Estimation:10

x̂(n) =
∑K

k=1w
k
norm(n)x

k(n);11

end12

begin Resampling:13

wcum(x
k(n)) =

∑k
j=1wnorm(x

k(n)),∀k ∈ [1,K];14

for k = 1, · · · ,K do15

rk ∼ U [0, 1];16

j = miniw
i
cum ≥ rk;17

Select xk
selec(n) = xj(n);18

end19

begin Prediction:20

Set n = n+ 1;21

for k = 1, · · · ,K do22

xk(n) ∼ p(x(n)|x(n − 1) = xk
selec(n));23

end24

end25

output: x̂(n)

Algorithm 1: CONDENSATION algorithm [65, 68].
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histogram representation. However, the posterior density is unknown. So, we choose

another distribution, the proposal density, from which we get the samples. As

can be seen in [69], the particle filter was addressed in different areas with many

terminologies. They all can be viewed as different variants in the generic Monte

Carlo filter family. The CONDENSATION algorithm is just one of them. More

detailed descriptions of the particle filter can be found in [65–69].
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Chapter 3

Facial Landmarks Detection using

the Inner Product Detector

Matched filter is a technique frequently used to detect a known signal, the so-called

template, in an unknown signal composed by the desired signal added to an additive

stochastic noise. The filtering, or detection, is achieved by cross-correlating the filter

(or detector) with the unknown signal. The output of the filter is large when there is

the presence of the desired pattern at the input and small otherwise. The detector,

obtained by time-reversing the conjugate of the template, is optimal in the maximum

signal-to-noise ratio (SNR) sense [70].

In a Correlation Filter (CF), we apply the matched filter in the frequency do-

main. To do so, the Discrete Fourier Transform (DFT) is used on the detector and

the signal before computing the cross-correlation between them. The outcome will

present a peak in case the sample is correlated with the detector [70]. One remark-

able advantage of this technique is the tolerance to small variations of the pattern

to be detected. Because of this, the CF and its variations, like Class-dependent

Feature Analysis (CFA), have been widely used to detect objects in images [70–73].

In this work, in order to detect the landmarks, we also use a CF based detector

called Inner Product Detector (IPD) [2–4]. In the IPD, the obtained detector is

optimal with respect to the minimization of the squared classification error. As

in correlation filters, the outcome is the inner product between the detector and a

sample. As in the previous approach, the output is large if the sample is close to the

desired pattern and small otherwise. However, there are two remarkable differences

between the IPD and the CF: (i) CF performs a cross-correlation in the frequency

domain, while IPD does it in the pixel domain. (ii) CF can only incorporate statistics

by weighting the DFT samples, but IPD naturally incorporates a priori statistics in

the autocovariance matrices.

Usually, a one-class classifier either trains with only positive examples (the ones

belonging to the class of interest), or treats positive and non-positive (the ones that
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do not belong to the class of interest) examples differently during training. The name

one-class classifier was coined in a Neural Network context [74], but has since then

been applied to several other contexts, such as SVMs [75]. The one-class classifier

is sometimes also called Positive-Unlabeled (PU) classifier [76].

3.1 One-Class IPD

Let X be a d-dimensional complex random variable with a realization x. This

realization can be associated with one of two classes, C1 or C0. We aim to find a

d-dimensional detector h1, optimal in the least square sense, capable of detecting

an object that belongs to C1. Ideally, we want the following classification rule:

hT
1 x =







1, if x ∈ C1

0, otherwise.
(3.1)

With [·]T denoting a transpose operation. In other words, the classification is per-

formed by the discriminant function

hT
1X = c, (3.2)

where ideally c = 1 if x ∈ C1 and c = 0 if x ∈ C0.

Defining the classification error e as

e = hT
1X − c, (3.3)

the squared error can be written as

‖e‖2 = (hT
1X − c)(hT

1X − c)T . (3.4)

Since h1 and X are real-valued vectors, hT
1X and c are scalars. So, Equation (3.4)

can be expanded as follows:

‖e‖2 = (hT
1X − c)(hT

1X − c)T

= (hT
1X )(hT

1X )T − (hT
1X )cT − c(hT

1X )T + ccT

= hT
1XXTh1 − hT

1X c− hT
1X c+ c2

= hT
1XXTh1 − 2hT

1X c+ c2. (3.5)

Taking the expectation of the squared error, E [‖e‖2], we have:

E
[

‖e‖2
]

= hT
1E
[

XXT
]

h1 − 2hT
1E [X c] + c2. (3.6)
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The desired detector is the one that minimizes the equation above. We can

obtain it by taking the derivative of the Equation (3.6) with respect to h1 and

equating it to zero. To do so, consider the following matrix properties:

∂aT
Ba

∂a
= (B+BT)a, (3.7)

∂aTb

∂a
= b. (3.8)

We find the minimum by taking the derivative and equating to zero:

∂‖e‖2

∂h1
=

∂

∂h1

(

hT
1E
[

XXT
]

h1 − 2hT
1E [X c] + E

[

c2
])

=
(

E
[

XXT
]

+ E
[

XXT
]T
)

h1 − 2E [X c]

= 2E
[

XXT
]

h1 − 2E [X c]

= 0. (3.9)

Supposing that the training set has enough independent samples or, in other words,

that E[XXT] is a full-rank matrix (invertible), we have:

h1 =
(

E[XXT]
)−1

E[X c]. (3.10)

Now, we just have to rewrite the terms E[XXT] and E[X c] as functions of the

training set samples. For the first term, we have:

E[XXT] = E[XXT|C0]p(C0) + E[XXT|C1]p(C1), (3.11)

where p(Ci), with i = {0, 1}, is the probability of a sample being from Ci. Since the

class Ci has Ni samples xik (k = {1, · · ·Ni}), Equation (3.11) can be rewritten as

follows:

E[XXT] = p(C0)
1

N0

N0
∑

k=1

x0kx
T
0k + p(C1)

1

N1

N1
∑

k=1

x1kx
T
1k. (3.12)

We can expand the term E[X c] using a similar argument:

E[X c] = E[X c|C0]p(C0) + E[X c|C1]p(C1). (3.13)

As, ideally, c = 1 for X being from C1 and zero otherwise, E[X c|C0] equals to zero.

So, in terms of the training samples, Equation (3.13) becomes

E[X c] = p(C1)
1

N1

N1
∑

k=1

x1k. (3.14)

Putting Equations (3.12) and (3.14) together, we can express the detector h1 in
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terms of the training samples:

h1 =

(

p(C0)
1

N0

N0
∑

k=1

x0kx
T
0k + p(C1)

1

N1

N1
∑

k=1

x1kx
T
1k

)−1

p(C1)
1

N1

N1
∑

k=1

x1k. (3.15)

Alternatively, recognizing the autocorrelation matrix Ri and the mean µi from

class Ci respectively as

Ri =
1

Ni

Ni
∑

j=1

xijx
T
ij (3.16)

and

µi =
1

Ni

Ni
∑

j=1

xij, (3.17)

the detector h1 can be rewritten in terms of the moments of the random variable X :

h1 = R−1p(C1)µ1. (3.18)

Note that the correlation matrix of the data R =
(

∑n
j=1 p(Cj)Rj

)

must be a

full rank matrix for the existence of R−1. It means that the dimension of the vectors

must be smaller than the number of statistically independent samples. Fortunately,

even if this condition does not hold, it is possible to find an approximated solution

that could be the Minimum Average Correlation Energy (MACE) filter [72] or Class-

dependence Filter Analysis (CFA) [71]. The vector h1 can be used to classify a

unknown sample xk according to the classification rule in Equation (3.1). It holds

even if X is a real-valued random variable.

3.2 IPD in the Transformed Domain

An important interpretation of the IPD arises when we apply the Karhunen-Loève

Transform (KLTr)1 in the data. This transform is also known in the literature as

Hotelling Transform or Principal Component Analysis (PCA) [62, 77].

Since the matrix R in Equation (3.16) has an inverse (because the number of

training samples for the IPD is much larger than the detector’s dimension), it can

be expressed by its eigenvectors and eigenvalues as

R = ΦTΛΦ, (3.19)

1The Karhunen-Loève Transform is most known in the literature as KLT. However, there is an
optical flow based tracker called Kanade-Lucas-Tomasi that is also known as KLT. Since we use
both in this thesis, we refer to the Karhunen-Loève Transform as KLTr and Kanade-Lucas-Tomasi
as KLT to avoid ambiguity
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where the columns ofΦ are the eigenvectors ofR and are also referred to as the prin-

cipal components. Λ is a diagonal matrix containing the variances along the princi-

pal directions and [·]T denotes the transpose operation. Therefore, Equation (3.18)

becomes

h1 = p(C1)Φ
TΛ−1Φµ1. (3.20)

This implies that the IPD applied to a sample x becomes

hT
1 x = p(C1)µ

T
1Φ

TΛ−1Φx

= p(C1)
(

Λ−1/2Φµ1

)T (

Λ−1/2Φx
)

. (3.21)

The operator (Λ−1/2φ) is referred to as the “Whitening Transform” [62, 63], since,

after this transform, the data has equal variances directions (as is the cases in every

white noise). Therefore, from Equation (3.21), one can interpret the IPD as a

template matched to the mean of the class to be detected in the whitened domain.

Using the matched filter terminology, it is a matched filter in the whitened domain.

3.3 IPD with Modified Discriminant Function

The IPD has a strong constraint in its formulation. The constraint imposed by

the discriminant function in Equation (3.2) is that the classes are orthogonal. This

orthogonality is unlikely in real world data. In practice, we can have negative

samples with an IPD value greater than positive samples and even samples with

IPD values outside the interval [0, 1]. One way of keeping the IPD values inside a

bounded interval is to normalize them, and in doing so, the discriminant function

becomes the cosine of the angle between the detector and the sample. With this

strategy, we force the IPD value to lie in the interval [−1, 1] and get rid of the

negative samples that are not in the detector’s direction but have a large IPD value

because of their large magnitude. In doing so, we can keep just the output point xm

with maximum IPD value in order to obtain a single location as result. This yields

the following discriminant function:

xm = arg max
x∈C

(

hT
1 x

‖h1‖‖x‖

)

, (3.22)

where C is a set with K test samples x.

In some cases, it is desirable to keep a set of the most likely candidates instead

of a single point. In this case, it is possible to set up a threshold cangle to select an

interval of the IPD value that can classify correctly some percentage of the training
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samples.

Xc =

{

xc :
hT
1 xc

‖h1‖‖xc‖
> cangle

}

, (3.23)

where Xc is a set of all selected points xc that form a cloud. As a consequence, the

IPD returns a cloud of points with high probabilities of belonging to the class of

interest. This strategy is useful when the IPD is used as previous step for another

method [7] or when it is desirable to keep only the most likely candidates. This

feature is explored in Sections 4.1.1 and 4.1.2.

3.4 Cascade of IPD classifiers

At the end of Section 3.3 we have shown how to obtain a reduced set of candidates

with high probability of being the desired feature. In this section we show an

alternative way of doing so. The IPD is a weak classifier, what means that it

is weakly correlated with the desired pattern. Fortunately, it is known that it is

possible obtain a strong classifier by combining weak classifiers. In the case of the

IPD, a cascade has been used [7]. A cascade is a degenerated binary tree in which

each stage is adjusted to provide a high hit rate even at the cost of a high false

positive rate. Only the samples classified as belonging to the class of interest in a

given stage is provided to the next one. The number of false positive errors can be

reduced by increasing the number of stages, but at cost of reducing the hit rate.

Figure 3.1 shows the IPD cascade structure. Each stage was designed to keep 95%

of the positive training data. In practice, we just picked up the threshold that

keeps 95% of the positive samples in each stage. We automatically stop adding

stages when the accumulated hit rate during training is smaller then 90%. The goal

is to keep only a small set of good candidates. The cascade of IPD classifiers is

particularly useful when the samples to be tested tend to be different from the ones

used in training stage. We explore this in Chapter 4, when using IPD for facial

feature tracking in video sequences.

P

N

P P P P

N N

cloud ofall
samples h

1

1
h
n

1 h
N

1 points

rejected samples

Figure 3.1: A block diagram of a cascade of IPD classifiers.
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3.5 Connection of IPD to the Matched Filter,

Linear Regression, and Linear Discriminant

Analysis

The IPD is a dot-product operation like the Linear Discriminant Analysis (LDA)

and the Linear Regression. However, some differences can be pointed out. To do so,

let us first consider the optimal Bayes solution for the one-class classification case.

Suppose that the classes are normally distributed, that is, the probability that a

sample x belongs to the class Ci is given by p(x|Ci) ∼ N(µi,Σi). In that case, the

sample belongs to the class C1 if

(x− µ1)
TΣ−1

1 (x− µ1) + ln |Σ1| − (x− µ0)
TΣ−1

0 (x− µ0)− ln |Σ0| < cqda, (3.24)

whereΣi is the covariance matrix of the data from Ci, |·| is denoting the determinant,

and cqda is a threshold. The discriminant function in Equation (3.24) is also known

as Quadratic Discriminant Analysis (QDA).

In the LDA, we consider that the covariance of the classes are equal with full

rank. Mathematically, it means Σ = Σ1 = Σ0. Considering this and doing some

manipulations, Equation (3.24) becomes:

(

Σ−1(µ0 − µ1)
)T

x > clda, (3.25)

for some constant clda. Defining the detector w1 =
(

Σ−1(µ0 − µ1)
)T

, we have a

discriminant function similar to the IPD’s (see Equation (3.18)):

wT
1 x > clda, (3.26)

Assuming a zero mean data, that is, µ = 0, then Σ = R. So, we can find an inter-

pretation of the LDA in the transformed domain similar to the one in Section 3.2:

wT
1X =

(

(

ΦTΛΦ
)−1

(µ0 − µ1)
)T

X

= (µ0 − µ1)
TΦTΛ−1ΦX

=
(

Λ− 1
2Φ(µ0 − µ1)

)T (

Λ− 1
2ΦX

)

. (3.27)

From Equation (3.27), the LDA can be viewed as a template matched to the dif-

ference between the means of both classes (positive and negative) in the whitened

domain. Thus, the LDA takes into account the difference between the means of both

classes while the IPD takes into account the average of the class of interest only.

IPD is also similar to Linear Regression, particularly when Least Squares are
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used for estimating the parameters vector β (also known as regression coefficients).

As can be seen in [60], an estimate β̂ can be obtained by

β̂ =
(

XTX
)−1

XTy, (3.28)

where X is a K × (d + 1) matrix with samples xk in the rows and a 1 in the first

position of each and y is a N -dimensional vector of outputs from the training set.

Defining C = XTX and µ = XTy, we have:

β̂ = (C)−1µ. (3.29)

Following steps similar to those adopted in the IPD and LDA cases, the Linear

Regression in the transformed domain is:

β̂
T
X =

(

(

ΦTΛΦ
)−1

µ
)T

X

= µTΦTΛ−1ΦX

=
(

Λ− 1
2Φµ

)T (

Λ− 1
2ΦX

)

. (3.30)

So, the Linear Regression can be viewed as a template matched to the average of

the training data in the whitened domain. The Linear Regression takes into account

the average of the whole data, while the IPD takes into account the average of the

class of interest only.

Up to this moment, we have shown that LDA and Linear Regression are slightly

different from IPD, but a greater difference takes place when we compare their dis-

criminant functions. As a matter of fact, there is no discriminant function in Linear

Regression. The main goal of it is just finding an optimal hyperplane in the least

squares sense that best describes the training data. The IPD detects the samples

that, when whitened, have the smallest angular distance to the class of interest

(specially when using the modified discriminant functions in Equations (3.22) and

(3.23)). Since both, LDA and Linear Regression define a plane that bisects the space,

the IPD is more selective, and has a better performance in the one-class scenario,

when the classes are unbalanced. It occurs when the class of interest has a much

smaller volume in space than the non-class case – exactly the case of feature/object

detection in images.

3.6 Facial Landmarks Detection using IPD

One of the contributions of this work is the use of the IPD to detect facial landmarks

in images. To do so, we employed the system depicted in Figure 3.2. In this section
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we describe each part of this block diagram. We conducted some experiments in

order to show that the IPD can be used for this purpose. In this section we also

describe these experiments, present the results and discuss them.

image

original

face detection
and rescaling

illumination
normalization

RoI
selection

IPD

post-processing

output

Figure 3.2: Block diagram of the facial landmark detection system employed in this
work.

3.6.1 Experimental Procedures

We define a sample as a block centered on a point inside a Region of Interest (RoI)

(more details about the RoI are given in the sequel). For training, the positive

examples are the blocks whose central point is the coordinate of the ground truth

(manual annotation) and its 8-connected neighbors – that provides nine positive

samples per image. The negative class consists of the points inside the RoI that do

not belong to the positive class. Note that there are much more negative samples

per image than positive ones. In order to keep the balance between classes, we
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randomly selected nine negative samples from each training image. So, the training

data consists of nine positive and nine negative samples for each training image. We

subtract the average of the training set from all samples.

We use 10-fold cross validation in our experiments, reporting the average of the

folds as the result. The exceptions are the experiments in which we performed cross

dataset validation.

Datasets

We use two datasets, BioID [78] and FERET [79]. BioID dataset consists of 1,521

gray level images of 23 subjects in frontal pose with a resolution of 384 × 286 pix-

els. This dataset is provided with two sets of annotations. The first set contains

the coordinates of the center of the eyes. The second describes coordinates of 20

landmarks in each face, shown in Figure 3.3. The BioID contains images of individ-

uals wearing glasses and with closed eyes, illumination and background with large

variations, and multiple face scales, rotations and expressions.

The FERET database is composed by 11,338 facial images of 994 subjects at

various angles. The images are colored, with a resolution of 512 × 786 pixels. In

our experiments we use a subset of 2003 images, in which the subjects are in a near

frontal pose, not wearing glasses and do not have facial hair. In this dataset, the

background is plain with frontal illumination and a small range of expressions. The

images used for the experiment were manually annotated with 13 facial points, as

depicted in Figure 3.3. The annotation is also a contribution of this work and is

available at [80].
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Figure 3.3: Left : BioID markup. Right : FERET markup. The annotation over the
pupils is used as reference.
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Preprocessing

All images are preprocessed before the detection procedure. Initially, the face rect-

angle is located using the OpenCV implementation of the Viola-Jones [54] detector.

Although it only occurs in a small number of cases, in some images the algorithm

fails to detect a face. These cases were not considered during evaluation. On the

average, the face detector missed 5.3 of the 152.1 images per fold. The detected

faces are scaled to a predefined size.

The images from BioID dataset were taken in a non-controlled environment, and

have large variations in illumination and/or nonlinear illumination – characteristics

present in many real-world applications. We incorporate robustness to these charac-

teristics employing a four-step illumination normalization procedure [81, 82]: gamma

correction, Difference of Gaussians (DoG) filtering, contrast normalization and hy-

perbolic tangent compression (to adjust the dynamic range). Figure 3.4 shows the

block diagram of the employed illumination normalization method and Figure 3.5

shows the result of this method for some images from BioID dataset.

To reduce the computational complexity of our method, we constrained the IPD

search region. We use the vertical symmetry of the human face and the fact that the

eyes occupy approximately the same relative region of a face-detected window. Our

search region is restricted to an area called Region of Interest (RoI) that has a high

probability of containing the desired point. We learn the RoI from the ground truth

of the training set, assuming that the location of the feature is a random variable

X with Gaussian distribution, mean µX and covariance ΣX . For each position x of

the N images from the training set, we the compute the Mahalanobis distance

d =

√

(x− µX )
t
Σ−1

X (x− µX ). (3.31)

The RoI is the elliptical region bounded by the training sample that maximizes the

Mahalanobis distance dmax with a tolerance of 5%. The Equation (3.32) is used

to verify whether a candidate point xc belongs to the RoI or not. A candidate is

considered inside it when

(xc − µX )tΣ−1
X (xc − µX ) ≤ (1.05 dmax)

2 (3.32)

is satisfied. Figure 3.6 (left) shows the normalized ground truth of the training set

superimposed to an image from BioID dataset with normalized size. The elliptical

regions have a high probability of containing the centers of the eyes. Figure 3.6

(right) illustrates the RoIs. The region of the right eye contains 814 candidate

points and the region of the left eye contains 1, 923. Note that, from this figure, the

Gaussian assumption seems to be realistic. The points from the ground truth tend
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Figure 3.4: Block diagram of the illumination normalization method used in this
work.

to spread in an approximately elliptical region of the faces with normalized size.

After the pre-processing step, we perform the detection using a sliding window

with a low resolution template. In Section 3.6.2 we discuss the ideal sizes of the face

and template used in the proposed methods.

Evaluation

Three accuracy measures were employed in order to assess the performance of

the proposed methods: a local and two global metrics, all inspired on Jesorsky’s

work [83]. The local metric is

e =
‖la − lg‖

deyes
, (3.33)

where la is the coordinate of the automatic label given by the proposed method, lg

is the coordinate of the ground truth (the manually annotated point) and deyes is
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Figure 3.5: The result of the illumination normalization for some images from BioID.

Figure 3.6: Left : training samples ground truth superimposed to a BioID image.
Right : RoI estimated from the training samples.

the distance between the pupils from the ground truth. The local metric is used

when evaluating the performance of a single point. It can be interpreted as the

displacement between the output of the method and the ground truth normalized

by the correct interocular distance.

As described in the literature [23, 83], we assess the precision of our method

considering the intervals in which the value of e is contained. For example, if e ≤

0.25, the method is precise enough to locate the eye. This is so because the distance

between the eye and the corner is approximately 25% of the interocular distance.

Similarly, the method is capable of locating the iris if e ≤ 0.10 and the pupil if

e ≤ 0.05.

The first global measure is

meN =
1

Ndeyes

N
∑

i=1

di, (3.34)
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where N is the number of features (17 in our case) and di is the Euclidean point-

to-point distance between the output of the system and the ground truth for each

individual feature location (error). Note that this is nothing but an averaged error

measure over all landmarks.

In some cases, we only want to evaluate the performance in eye detection. So, it

is common in the literature [23, 31, 34, 36, 57, 83–93] to use the metric eworst (our

second global measure) as follows:

eworst ≤
max(el, er)

deyes
, (3.35)

where deyes is the interocular distance and el and er are the distances between the

estimations for the left and right eyes and their ground truth, respectively. With this

metric, we can compute the maximum normalized error between the two eyes. In a

similar way, we can define two additional variations of the metric in Equation (3.35):

one using the minimum normalized error between the two eyes, and the other using

the averaged normalized error. These normalized measures give us, respectively, the

curves labeled as worse eye, best eye and average eye, as can be seen in Section 3.6.6.

These curves can be used to verify the bounds on the performance of the proposed

method.

3.6.2 The Effect of the Face and Template Sizes on the Per-

formance of the IPD

We evaluate training and testing procedures using different template and face sizes.

As such, the faces obtained by the Viola-Jones Algorithm were scaled to a common

size. Since RoI sizes varies with the face size, the detection computational cost is

proportional to the face size M and the template size N . The relationship between

the face and template sizes is depicted in Figure 3.7. The smaller the face and the

template, the lower is the complexity, producing a trade-off between performance

and computational cost. As an example, the computational complexity when using

faces with 125× 125 pixels and templates with 35× 35 pixels is approximately 1.62

larger than using faces with 100 × 100 pixels and templates with 27 × 27 pixels

((135× 35)/(100× 27) ≈ 1.62).

In this work, the faces were rescaled from 25× 25 pixels up to 125× 125 pixels.

In most cases the faces were downscaled, but there are some cases in which faces

were upscaled. With respect to the template, we started with block sizes from 15%

up to 38% relative to the face size. Table 3.1 shows all face and block sizes used in

this work. The entries of the tables are the absolute sizes of the block.

In Figures 3.8 to 3.10 we show the hit rate curves for the experiment with the
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M
N

Figure 3.7: The computational cost is proportional to the face (M) and template
(N) sizes.

Table 3.1: Evaluated relative block sizes and face sizes

Size of the face (in pixels)
25× 25 50× 50 75× 75 100× 100 125× 125

∼ 15% 3× 3 7× 7 11× 11 15× 15 19× 19

Block size
∼ 20% 5× 5 11× 11 15× 15 21× 21 25× 25

(w.r.t. to the
∼ 28% 7× 7 15× 15 21× 21 27× 27 35× 35

face size)
∼ 35% 9× 9 17× 17 27× 27 35× 35 45× 45
∼ 38% - 19× 19 29× 19 37× 37 47× 47

face and template sizes (using the local metric as explained in Section 3.6.1). We

only show the results for three landmarks, but the results for all of them can be

found in Appendix A. Before we discuss the sizes issue, the reader should keep

in mind that the hit rate for an error smaller than 5% of the inter-ocular distance

suffices for most of landmarks. In addition, the plateau present at the beginning of

most of graphs from now on is due to the downscaling employed on the rectangle of

the detected faces (most of them are larger than 125× 125 pixels). As can be seen

in the plots, the hit rate tends to increase with the block up to a given size. For the

right pupil (Figure 3.8), for example, the hit rate increases with the block size up to

blocks with approximately 28% of the face size. After this size, there is no significant

increase in the hit rate. A similar behavior can be found in other landmarks, such

as outer corner of right eye, inner corner of right eye, inner end of right eyebrow,

tip of nose, right nostril and central point on outer edge of upper lip. To see the

plots for these points, please refer to Appendix A. The same does not occur for

more challenging landmarks such as the right corner mouth (Figure 3.10). For this

point, the hit rate increases with the block size up to blocks with approximately

20% of the face size and then starts to fall as the block size increase. As can be

seen in Appendix A, a similar behavior occurs for other landmarks as outer end of

right eyebrow, right mouth corner and lower lip. All these facial features have larger

variations. Increasing the feature size (and the details, as consequence) probably
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highlights the differences between samples more than their similarities. So, our

detector cannot benefit from increasing the feature size when detecting patterns

with large variations.
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Figure 3.8: Average hit rate for the right pupil using faces from 25 × 25 up to
125× 125 pixels and several block sizes.

Another important conclusion can be drawn from Figures 3.8 to 3.10, but is

highlighted in Figure 3.11. It can be seen that there is no significant gain in using

faces larger than 100× 100 pixels in all cases. The same conclusion can be obtained

by analyzing the complete results in Appendix A. So, this is the face size used in

the remaining of this work.
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Figure 3.9: Average hit rate for the right nostril using faces from 25 × 25 up to
125× 125 pixels and several block sizes.
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Figure 3.10: Average hit rate for the right mouth corner using faces from 25 × 25
up to 125× 125 pixels and several block sizes.
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Figure 3.11: Average hit rate for the right pupil, right nostril and right mouth corner
using faces from 50× 50 up to 125× 125 pixels and blocks with approximately 28%
of the faces size
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In Table 3.2, we show the size of the blocks with best results for each landmark

(the numbering follows the convention in Figure 3.3, left). Note that, due to the

symmetry of the face, we only show half of the points.

Table 3.2: Sizes of the blocks (in pixels) with best results for each landmark (using
faces with 100× 100 pixels).

Landmark Feature Block size
0 pupil 27× 27
2 mouth corner 21× 21
4 outer end of eyebrow 27× 27
5 inner end of eyebrow 35× 35
9 outer corner of eye 35× 35
10 inner corner of eye 35× 35
14 tip of nose 35× 35
15 nostril 27× 27
17 upper lip 35× 35
18 lower lip 21× 21
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3.6.3 Cross-Dataset Validation Between BioID and Color

FERET Databases

In order to evaluate the capability of generalization of our method, we perform

cross dataset validation between BioID and FERET, with results in Figure 3.12.

All plots were obtained using the local metric as explained in Section 3.6.1. Due to

the symmetry of the face, we only show the results for half of the points (the complete

results can be seen in Appendix A). The curves labeled as FERET represent the

experiments in which we trained the IPD using BioID and ran the test in the FERET.

The converse has been made for the curves labeled as BioID. For most features, the

hit rate is high enough to assure the generalization capability. In other words, our

facial features detection system can keep the hit rate, even when samples different

from those used in training are presented. In addition, as can be seen in the plots,

the results tend to be better when training using BioID and testing on FERET.

Such results are expected, since the BioID is more challenging than the FERET

database.

3.6.4 Comparison Between IPD and SVM-RBF

In this Section, we compare the IPD with a state-of-the-art classifier: the SVM with

RBF kernel. The experiments with the SVM were conducted in Matlab environment

using the SVMlight toolbox [61]. We used the same pre-processing used in the

experiments with the IPD. Since the SVM also provides a cloud of points at its

output, we need to employ a post-processing step. For simplicity, we just use the

vector median of the cloud as the candidate point. All detected faces were resampled

to 200×200 pixels. The blocks with size 13×13 pixels centered at the ground truth

and their 8-connected neighbors were considered as positive samples. The blocks

centered at the remaining points inside the RoI were considered as negative samples.

The best parameters γ and C (RBF kernel) where selected by employing a grid

search with an exponential growing rule for the parameters:

γ = 2i, with i = {−18,−17, · · · , 1}.

C = 2j, with j = {−15,−14, · · · , 15}.

Each combination of the parameters where evaluated using k-fold cross validation

with seven folds. The parameters that led to the best average results in the training

stage were γ = 2−10 and C = 21. Given the best parameters, we performed the

test procedure using another k-fold cross validation with seven folds in the whole

dataset.

In Figure 3.13, we have the hit rate curves for the IPD and the SVM. The curves
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Figure 3.12: Cross dataset validation results. Red curves: training with BioID and
testing on FERET. Black curves: training with FERET and testing on BioID.
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in this figure are global results, since they were obtained using the e17 metric (see

Equation (3.34) in Section 3.6.1). As we can notice, the IPD has a performance

that is competitive with the SVM based method for an accuracy bigger than 5% of

the inter-ocular distance. On the other hand, the SVM is better than the IPD for

a smaller accuracy. This is so because the hit rate obtained for landmarks like the

ones on the lips, nose and eyebrows have a smaller maximum value when using IPD.
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Figure 3.13: Comparison between IPD with SVM with RBF kernel. In this plot,
both curves were obtained using the e17 error measure.

From Figures 3.14 to 3.17 we show the local results of all 10 inner landmarks

for both IPD and SVM (using the local metric as explained in Section 3.6.1). Note

that, due to the symmetry of the face, we only show half of the points. To see the

complete results, refer to Appendix A.
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In top left, top right and bottom parts of Figure 3.14, we have a comparison

between IPD and the SVM for the landmarks of the eye.
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Figure 3.14: Top left : the results for the outer corner of right eye. Top right : the
results for the right pupil. Bottom: the results for the inner corner of right eye.
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In left and right sides of Figure 3.15, we have a comparison between IPD and

the SVM for the landmarks on the eyebrows.
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Figure 3.15: Left : the results for the outer end of right eyebrow. Right : the results
for the inner end of right eyebrow.

In left and right sides of Figure 3.16, we have a comparison between IPD and

the SVM for the landmarks on the nose.
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Figure 3.16: Left : the results for for the tip of nose. Right : the results for the right
nostril.
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In top left, top right and bottom parts of Figure 3.17, we have a comparison

between IPD and the SVM for the landmarks on the mouth.
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Figure 3.17: Top left : the results for the right mouth corner. Top right : the results
for the central point on outer edge of upper lip. Bottom:the results for central point
on outer edge of lower lip.

In most cases the SVM has a performance equal to or better than the IPD.

However, the difference is small even in the worst case. This result is expected, since

the SVM is much more complex in computational terms. For the landmark 9, for

example, the evaluation using SVMlight in Matlab environment took approximately

28s per image on the average (in a computer without load). In the same conditions,

the IPD took approximately 0.09s per image. Considering that the IPD can be used

in real time applications [5], it can be advantageous to use it in facial landmark

detection systems. Mainly if an accuracy greater than 5% of the inter-ocular distance

is required. It means that if we need more accurate localization, we have a double

benefit from using the IPD: it is competitive for this accuracy and is computationally

cheaper.

As we have shown in Section 3.6.3, the IPD has a good generalization capability.

It will be even more evident in Chapter 4, where the classifiers trained using the

BioID database are employed with success on our video database. The same cannot
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be said about the SVM. Although the hit rate of the SVM on the BioID is greater

than the IPD, the hit rate is low when using the classifiers trained through BioID

on our video database.

3.6.5 Facial Landmark Detection using IPD - Comparison

with State-of-the-Art Techniques

In this section, we show a comparison with state-of-the-art techniques in facial

landmarks detection. To do so, we evaluated our method on the BioID dataset

using 10-fold cross-validation and the global me17 error measure (proposed by [29]

and described in Section 3.6.1). This comparison is in Figure 3.18, in which all

depicted curves were obtained from [94] using the Engauge digitizer, an open source

digitizing software [95]. The plateau at 20% for the IPD curve is due the downscaling

to 100 × 100 pixels employed on the detected faces (most of them are bigger than

this size).
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Figure 3.18: Comparison with the state of the art. The references are: Lear [94];
BORMAN [96]; Stacked [97]; NK-SVM [98]; CLM [99]; Cons. of Exemp. [100];
Efraty etal [101]; Dibeklioglu et al. [102].

Most of the methods shown in Figure 3.18 are dataset independent. The one

in [101] was trained using 104 images from BioID. We also trained our method

using BioID, but employing a k-fold cross validation instead of selecting a single

training group. Even using BioID for training, our method has a good generalization

capability, as can be seen in Section 3.6.3. Note that the IPD has a competitive
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hit rate in the region of the graph related with a greater accuracy (percentage of

inter-ocular distance smaller than 5%). The IPD can be even more competitive if we

consider that: (1) Our method has no global face model – we only use local detectors;

(2) IPD has a good generalization capability, since it can be used to detect features

in other databases (actually the other methods that are not dataset dependent

also have this feature); and (3) IPD’s detection procedure consists basically of dot

products – it is computationally fast, and thus can be used in real time applications

(the same cannot be said for some methods in Figure 3.18).

3.6.6 Eye Detection using IPD - Comparison with State-of-

the-Art Techniques

As we have shown in Section 3.6.5, the IPD can be used with success to locate

a set of landmarks on faces simultaneously. However, considering only the hit rate,

there is a decrease in competitiveness if a less accurate localization is required. This

is evident if we observe Figure 3.18. Our hit rate is not competitive in the part

of the graph corresponding to a percentage of the inter-ocular distance larger than

5%. As can be seen in Appendix A, a possible cause can be the low hit rate of

more challenging landmarks such as the ones on the eyebrows, tip of nose and lower

lip. On the other hand, many applications involve only detection of features on

eyes, such as attention and gaze estimation of disabled people (in order to control

assistive devices), driver fatigue detection, entertainment, biometrics and so on. So,

in this section, we present the results of the proposed method in eye detection. A

comparison with state-of-the-art techniques is presented as well.

A global performance evaluation of our detection method can be seen in Fig-

ure 3.19. In order to obtain the performance bounds, we have plotted the three

normalized errors (as described in Section 3.6.1) in this plot. The plateau present

at the beginning of the curves is due to the downscaling employed on the rectangle

of the detected faces (most of them are bigger than 100× 100 pixels). A qualitative

result is in Figure 3.20, which depicts the detection result and ground truth super-

imposed on some images from BioID. We have the average hit rate, as well as the

standard deviation, for relevant values of eworst (see Equation (3.35)) in Table 3.3.

Since we used k-fold cross validation with 10 folds in all experiments, all results are

the average across all folds. From these average hit rate figures and their low vari-

ance, we can conclude that the IPD is worth considering as a fiducial point detector.

In our experiments, it took 83.4 milliseconds on average to find both eyes in the

images from the BioID dataset. From the total time, it took 12.4 ms to do the

46



0 5 10 15 20 25
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
Cumulative error distribution on BioID

H
it

ra
te

[
%

]

Percentage of inter-ocular distance [ % ]

 

 

worse
mean
best

Figure 3.19: Hit rate vs. normalized error for worse eye, best eye, and average eye
(see Section 3.6.1).

Table 3.3: Evaluation of our method for values of interest of eworst.

Precision
e ≤ 0.05 e ≤ 0.1 e ≤ 0.15 e ≤ 0.2 e ≤ 0.25

IPD (BioID) 88.3± 2.4 92.7± 1.7 94.5± 1.9 96.3± 1.2 98.9± 0.7

pre-processing step, 20.5 ms to find the right eye, 50.2 ms to find the left eye, and

0.3 ms to do the post-processing. The difference in localization times is because

the left eye RoI is larger than the right eye RoI – see in Figure 3.6. As we only

compute inner products in low resolution images, IPD is fast. Additionally, if the

detection and post-processing are implemented in parallel architectures, such as

GPUs or multiprocessor machines, the final performance can be even better. We

implemented our algorithms in Matlab, and the experiment times reported above

were obtained using a machine with a 3.07 GHz Intel(R) Core(TM) i7 Q950 with

8 GB DDR3/1333MHz RAM memory.
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Figure 3.20: Some results from the BioID dataset. Green circles are the ground
truth; red crosses are the automatic labels. At the top row, successful examples.
Bottom row, unsuccessful ones.

Table 3.4 shows a comparison with the state of the art. All the methods in the

table used the same dataset (BioID is the standard in the literature for this type of

comparison) and the same error metric (eworst is a standard metric as well). Although

the training and testing procedures may differ among them, the comparisons can

be considered as fair if we regard each method as a black box. Each column has

the results for relevant values of eworst and the values inside {·} are the respective

ranks of our method. Our method has rank 1 for the best accuracy (e ≤ 0.05),

which means that it is capable of locating the pupil with good precision. Our rank

goes down for worse accuracies, but our results remain competitive, particularly if

we consider the advantage of the low computational complexity of our method.
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Table 3.4: Performance comparison between different methods on BioID dataset. ‡
Values provided by [31]. † Values provided by [23]. § Values provided by [93]. The
best and our results are in bold. (1) Using MIC+SIFT. “−” Indicate the cases in
which the authors did not provide a worse eye curve and the values could not be
estimated. (*) Images with closed eyes and glasses were omitted. {·} indicate the
rank of our method in a specific accuracy.

Method e ≤ 0.05 e ≤ 0.1 e ≤ 0.15 e ≤ 0.2 e ≤ 0.25

Jesorsky et al., 2001‡ [83] 38.0% 78.8% 84.7% 87.2% 91.8%

Behnke, 2002‡ [84] 37.0% 86.0% 95.0% 97.5% 98.0%

Cristinacce et al., 2004‡ [85] 57.0% 96.0% 96.5% 97.5% 97.1%

Hamouz et al., 2005‡ [86] 58.6% 75.0% 80.8% 87.6% 91.0%

Asteriadis et al., 2006‡ [36] 44.0% 81.7% 92.6% 96.0% 97.4%

Bai et al., 2006† [87] 37.0% 64.00% − − 96.00%

Campadelli et al., 2006‡ [88] 62.0% 85.2% 87.6% 91.6% 96.1%

Chen et al., 2006‡ [89] − 89.7% − − 95.7

Everingham and Zisserman, 2006§ [57] 45.87% 81.35% − − 91.21%

Niu et al., 2006‡ [90] 75.0% 93.0% 95.8% 96.4% 97.0%

Turkan et al., 2007‡ [91] 18.6% 73.7% 94.2% 98.7% 99.6%

Kroon et al., 2008‡ [92] 65.0% 87.0% − − 98.8%

Asadifard and Shanbezadeh, 2010‡ ∗ [34] 47.0% 86.0% 89.0% 93.0% 96.0%

Timm and Barth, 2011‡ [31] 82.5% 93.4% 95.2% 96.4% 98.0%

Valenti and Gevers, 2012† (1) [23] 86.09% 91.67% − − 97.87%

Ren et al., 2014§ [93] 77.08% 92.25% − − 98.99%
IPD 88.3% {1} 92.7% {4} 94.5% {5} 96.3% {6} 98.9% {3}

49



Chapter 4

Facial Landmarks Tracking using

the Inner Product Detector

The method proposed in Chapter 3 is capable of performing detection of multiple ob-

jects in static images. However, it is possible to use object detectors frame-by-frame

of a video sequence and then employ some tracking method to find an association

between the detected objects across the frames. This approach is known as tracking-

by-detection and has been used in several works recently [1, 7, 40–45]. The main

challenge of this approach is that the detectors usually present false positives and

false negatives at their output. In other words, the output of the detectors are

usually unreliable and sparse [46]. In this chapter, we present two ways of using

the IPD in a tracking-by-detection scheme in order to reduce the false negative and

false positive rates. In the first one, proposed in Section 4.1, we integrate the IPD

in a particle filter framework to perform pupil tracking. In the second, we use a

global model of landmarks on eyes to perform an integration between detection and

tracking. This integration, that is based on temporal consistency and geometrical

constraints, is proposed in Section 4.2.

In order to reduce the number of points at the detection output, we employed

a cascade of IPD detectors [7], trained using the BioID dataset. Each stage of the

cascade was designed to keep 95% of the positive training data. The goal is to keep

only a small set of good candidates. A full description of how to design a cascade

of IPD classifiers can be found in Section 3.4.

Five high definition (1080p) videoconference sequences with 300 frames each

were employed to assess the tracking framework. These sequences have a moder-

ate degree of compression artifacts and contain four distinct subjects and different

types of background, movement and face occlusion. The sequence we refer to as

“easy” has little movement of the subject and no occlusion. The one referred to as

“intermediate/difficult” has blur, a subject with a moderate amount of movement

and no occlusion. The other three sequences are considered difficult since they have
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blur, subjects with fast movements, and partial or total occlusion of the face by one

of the hands. We manually annotated 13 fiducial points on the faces, including the

pupils, in all 300 frames. The sequences and the manual annotations are available

at http://www.smt.ufrj.br/∼biometria/etr [80]

4.1 IPD as a Prior for Tracking Using Particle

Filters

In this section we investigate the use of the IPD detector in the particle filter frame-

work. We start by briefly describing Bayesian state estimation and particle filters.

A more thorough description can be found in Section 2.2 or in the literature [65–69].

Let X = R
M be a state space and x(n) ∈ X a state at a discrete time n ∈ Z.

Suppose that we know the states of a process from the beginning up to the present

(x(0),x(1), · · · ,x(n)) and want to estimate the next state x(n+ 1).

Modeling our states as random variables, the optimal estimate of x̂(n+1) comes

from the conditional density

x̂(n + 1) = arg max
x(n+1)

{p(x(n+ 1)|x(0),x(1), · · · ,x(n))} . (4.1)

Let z(n) ∈ R
N be an indirect observation of our state at the discrete time n.

The sequence of measurements until the present is Z(n) = {z(0), · · · , z(n)}. The

model of the sensory system is defined by the conditional probability density

p(z(n)|x(0), · · · ,x(n), z(0), · · · , z(n − 1)). Assuming that our sensory system is

memoryless, we can rewrite the conditional probability density of the measurements

as

p(z(n)|x(0), · · · ,x(n),Z(n− 1)) = p(z(n)|x(n)). (4.2)

The online estimation starts with a prior distribution p(x(0)) at the discrete time

index n = 0, and after that, in each time index n, we can obtain the posterior density

recursively. The first step of this recursion is the prediction, where the Bayes theorem

combined with the Markov condition allows the calculation of p(x(n+1)|Z(n)). The

last step of the recursion is the update, where we increment the variable n so that

p(x(n+1)|Z(n)) becomes p(x(n)|Z(n−1)) and another measurement z(n) is collected

in order to obtain the next posterior density p(x(n)|Z(n)). Since our sensory system

is memoryless, we can use the Bayes theorem.

This recursion is known as Bayes, or Predictive, filtering [66, 67]. Since it pro-

vides the posterior density in each iteration, we need an optimality criterion to

obtain an optimal estimate of the current state [65]. Under known constraints the

posterior density function can be simplified. The Kalman filter is a classical exam-

51



ple – it is the optimal solution when both state and measurement models are linear

with Gaussian noises [65–67]. In other cases, the state and measurement models

are linear, but the distributions of the states are not Gaussian. A remarkable ap-

proximation for this type of problem is the particle filtering, which implements a

recursive Bayesian filter through Monte-Carlo simulations [65–67].

In a nutshell, the particle filter starts by randomly drawing K particles xk(0)

from the cloud of points and initializes their respective weights as wk(0) =
1
K
. In the update step, it sets the importance weights as w(xk(n)) by do-

ing w(xk(n)) = p(z(n)|xk(n)), and calculates the normalized importance weights

wnorm(x
k(n)) by using wnorm(x

k(n)) = w(xk(n))∑
w(xk(n))

. An estimation x̂(n) is given by

x̂(n) =
∑K

k=1w
k
norm(n)x

k(n). It uses resampling to go from this importance-weighted

sample back to a non parametric representation of equally weighted samples.

4.1.1 IPD as Parametric Density Estimation

In the first algorithm to integrate the IPD in the particle filter framework, we suppose

that the cloud of points from the IPD output has a Gaussian distribution. Actually,

if this assumption holds, a Kalman filter would be enough. However, in next section

we will show how to integrate the IPD in the particle filter framework when the

points from the cloud have a distribution with unknown shape (a more realistic

assumption).

The state (or the particle) is the eye position (x, y) in pixels. At the instant n,

the state is:

x(n) = (x(n), y(n)). (4.3)

In the initialization step, we choose K = 300 particles, that is, we pick up only 300

points from the cloud. According to the algorithm described early in this section,

the normalized weights are computed in the update step. To do so, we estimate the

average µc(n) and the covariance matrix Σc(n) using the complete cloud of points.

After that, we compute the likelihood of the particles through a Gaussian modeled

by these parameters, that is:

p(z(n)|xk(n)) =
e[−

1
2
dk(n)TΣ−1

c (n)dk(n)]
√

(2π)2|Σc(n)|
, (4.4)

where

dk (n) = xk(n)− µc(n). (4.5)

The normalized weights wnorm are obtained by normalizing the outcome of the above

equation. The output of the algorithm x̂(n) is the average of the particles xk(n),

weighted by wnorm(x
k(n)). To maintain the stability of the algorithm, the covariance
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matrix Σc(n) needs to be full rank. We use a regularization factor to guarantee this

property even when the cloud has a small number of points.

In the prediction step of the algorithm we use a random walk with Gaussian

noise as follows:

xk(n + 1) = xk(n) + νP(n), (4.6)

where νP(n) = N (0, Id2P). Here, I is a 2 × 2 identity matrix and dP is a scalar.

We find the best value of dP with a leave-one-out cross-validation with grid search

procedure in our video dataset [80]. The best average error for the test set was

eP = 6.94, with a standard deviation of σP = 3.08. In four of five folds, the value of

d2P = 2.25 produced the smallest error.

4.1.2 IPD as Nonparametric Density Estimation

In a parametric approach, as in Section 4.1.1, we use the resulting cloud of points

to estimate the parameters of a known distribution. The nonparametric approach

is even simpler: the whole cloud of points, weighted by their IPD normalized inner

product results, represents the nonparametric distribution [103].

In a particle filter, we use the likelihood of the observation to find the weight of

each particle before the resampling step. The traditional way to do so is to “inter-

polate” the density function using a kernel around each point of the nonparametric

representation. Using a traditional Gaussian kernel, the unnormalized weights of

particles w(xk(n)) are

w(xk(n)) =
M
∑

i=1

ci(n)e
[− 1

2
dk

i
(n)T (Id2)−1dk

i
(n)], (4.7)

where

dk
i (n) = xk(n)− xi(n), (4.8)

M is the number of points in the cloud, and ci(n) is the IPD normalized inner

product value of the i-th point of the cloud xi(n).

As in the parametric case (see Equation (4.6)), in our experiments we use a simple

random walk in the prediction step with Gaussian noise νNP(n) to the particles

xk(n+ 1) = xk(n) + νNP(n), (4.9)

where νNP(n) = N (0, Id2NP) and dNP was obtained in the same manner as in Sec-

tion 4.1.1, with error eNP = 5.85 with a standard deviation of σNP = 2.23. In three

of five folds the smallest average error was obtained by using d2NP = 0.3. The av-

erage errors together with the standard deviations of the two algorithms are shown
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in Table 4.1. There, it can be seen that the nonparametric algorithm has the error

with smallest mean and standard deviation. In this case, the error is defined as the

Euclidean distance between the manual annotation and the output of the system,

expressed as a percentage of the interocular distance.

Table 4.1: Average relative error of the methods described in this paper for the high
definition video sequences. The results were obtained by taking the average of the
relative errors from the test sequences along the frames.

Method error [%] std
Parametric 9.58 5.03

Nonparametric 7.70 2.98

We show the relative error per frame for the two tracking methods in Figure 4.1.

The curves labeled as “P” refer to the parametric method described in the previous

section. The curves labeled “NP” are related to the non-parametric method de-

scribed in this section. Each curve is the average error of the two eyes and the error

was obtained by calculating the Euclidean distance between the manual annotation

and the tracking result and expressing it as a percentage of the interocular distance.

The gaps in the middle of the curves occur when there is no manual annotation,

that is, when some occlusion occurs. Examples are when the subject is blinking or

when his/her hand is in front of his/her head (this occurs in some frames between

frames 50 and 150 of sequence 02 and between frames 200 and 250 of sequence 08).

Peaks of error above 10% of the interocular distance are due to momentary loss of

tracking, most cases in just one of the eyes. It can be noted that the errors for

sequences 01 and 02 are larger. This is so because such sequences are more affected

by blurring and compression artifacts. These facts are evidences of why the average

error is larger for these sequences.

Figure 4.2 shows the visual tracking result of the nonparametric method for

some frames of all sequences of our database1. The circles are the ground truth

(manually annotated) and the crosses are the tracking results for the nonparametric

method. The circles mark the position of the ground truth while the crosses mark

the tracking result. The proposed nonparametric method is robust enough to keep

tracking even in difficult conditions, such as total or partial occlusions (in the cases

where the subject is blinking or putting the hand in front of the head), presence

of blurring and compression artifacts. Note the absence of the reference in some

frames. This is so because the sequences’ annotators where instructed not to mark

a pupil if they were not sure of its position. It is also important to point out that

the manual annotation is noisy in all sequences, which contributes to the graphs in

Figure 4.1 not being smooth.

1The respective videos, as well their visual tracking results, can be watched at
http://www.smt.ufrj.br/∼biometria/etr [80].
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Figure 4.1: Results for the proposed methods on our high definition video sequence
database. The error is the distance between the ground truth and the tracking
result. Each curve is the average error of the two eyes.
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Figure 4.2: Qualitative results for the nonparametric method in our high definition
sequences. Note the presence of different subjects, gender, skin color and background
in the video sequences. The circles are indicating the ground truth (when available)
and the crosses are indicating the tracking results.

56



4.2 Integration Between Detection and Tracking

Using Temporal Consistency and Geometrical

Constraints

A good way of improving robustness in video tracking is integrating detection and

tracking [1, 7]. One contribution of this work is aligned with this idea. In this

section, we describe a way of integrating detection and tracking in order to improve

robustness of online eye tracking in video sequences.

One of the characteristics of the detectors employed in this work (the IPD’s

cascade and SVM with RBF kernel) is that they provide a cloud of points at their

output. These points tend to be grouped in small clusters which are close to each

other and highly correlated with the desired output [3, 104]. This cloud of points is

used to feed a tracker (in this work we use the KL and the Particle Filter). Then,

the outputs of the detection and tracking steps are combined to improve robustness.

4.2.1 Temporal Consistency

The temporal consistency has two parts: the histogram strategy and smoothness of

the point’s trajectory. In the histogram strategy, we use the outputs of the detector

and the tracker to keep the reliable points. In addition, the trajectory of the tracked

object should be smooth. In the smoothness of the point’s trajectory, we propose

a simple way to discard points that do not comply with a smooth trajectory. Both

steps are described in the next sections.

Histogram Strategy

In the Histogram Strategy, we use the consistency between the detector and tracker

outputs in order to discard unreliable detections. To do so, we have to compute

histograms from the cloud of points as follows:

(i) Employ a Hierarchical Clustering algorithm [105] at the cascade’s output.

(ii) Let j be the index of the frame. Compute the vector median of the cloud of

points in order to obtain a single point yj.

(iii) Feed the tracker with the point yj−1 detected in the previous frame and track

it in the current one, to get the estimated point y′j .

(iv) Let xi (i = 1, 2, · · · , N) be a point in a cloud of N points and di the distance

between the tracked point y′j and a point xi. Compute the histogram of the

distances di.
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(v) Analyzing the output of the Hierarchical Clustering algorithm and the his-

togram, we can distinguish a reliable detection from an unreliable one (see the

description below about the histogram analysis). If the detection is reliable,

use the vector median of the cloud yj as output and go to step (ii). If the

detection is not, do not provide an output and go to step (i).

From the analysis of the typical histograms, we can distinguish four types of

behaviors, which are illustrated in Figures 4.3(a) to 4.3(d). The histogram in Fig-

ure 4.3(a) is unimodal, which tends to correspond to a single cluster close to the

desired pattern. This is an indication of a reliable detection. In practice, this behav-

ior is automatically detected if the Hierarchical Clustering provides only one cluster

and the variance of the histogram is smaller than a threshold Th. The histogram

in Figure 4.3(b) has two modes. One of them will in general correspond to a clus-

ter close to the desired point (actually, the histogram have more than two modes

in most cases, as long as they are clearly defined). This case is a candidate for

a reliable detection. This is so because, as discussed later in this section, we can

determine the desired cluster by analyzing the temporal behavior of the centroids

of these clusters. In practice this behavior is automatically detected if the Hierar-

chical Clustering provides two or more centroids and the variance of each cluster

is smaller than a threshold Th. The other two typical histograms, depicted in Fig-

ures 4.3(c) and 4.3(d), indicate unreliable detections, and the corresponding points

should be rejected. The histogram in Figure 4.3(c) has a “uniform” appearance

(does not have any clear peak). Such behavior corresponds to a cloud with too

many scattered points. In practice, this behavior is automatically detected if the

Hierarchical Clustering provides clusters with variances larger than a threshold Th.

The histogram in Figure 4.3(d), that has only a few points, appearing as several

modes, is generally related with isolated noisy points. Note that the range of the

axis corresponding to the number of pixels varies dynamically. So, the number of

points in (a), (b) and (c) are considerably bigger than the respective number in (d).

Such situation also indicates an unreliable detection. In practice, this behavior is

automatically detected if the number of points in the cloud is smaller than a thresh-

old. We empirically evaluated values for the threshold from 1 up to 30. The best

results were obtained when using Th = 10 for all sequences.

Smoothness of the Path

At this point we have a temporal sequence of clusters close to the desired pattern

(note that, as a result of the histogram analysis, there can be some frames with

no reliable clusters). We can choose the best cluster as well as discard further

unreliable clusters by analyzing the temporal evolution of these clusters. We use the
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(a) Unimodal histogram. (b) Bimodal histogram

(c) Uniform histogram. (d) Histogram with few points.

Figure 4.3: Typical histograms obtained from an intermediate/difficult sequence
for the inner corner of the right eye. The range of the axis corresponding to the
number of pixels varies dynamically. So, the number of points in (a), (b) and (c)
are considerably bigger than the respective number in (d).

strategy illustrated in Figure 4.4. The dots represent the points of the cloud and the

crosses, the centroids of these clusters. These centroids are obtained by employing

a Hierarchical Clustering algorithm [105] at the cascade’s output.

In the example in this figure, we assume that the histogram analyses were made

in all frames up to k and therefore all remaining clouds are reliable. The output

point from a previous frame (illustrated as a square in frame k − 2) is projected

in the current one and we verify if there is a centroid in it that lies inside a disc

centered at the projected point. When there is one or more of such centroid, we

pick up the closest to the center of the disk and discard the remaining ones. The

radius of the disk depends on the sequence. We experimented values from 1 up to

10 pixels. The best results were obtained by using disks with radius of 3 pixels for

the easy sequences and 4 pixels for all the others. If no centroid is inside any disks

from the last 5 frames, the cloud corresponding to the current frame is considered

as unreliable, and is thus discarded.

The centroids of the clusters that remain reliable after the histogram and tem-

poral consistency evaluation have a high probability of corresponding to the desired

features. Therefore, we have a low false positive rate. However, many frames are

marked as having unreliable outputs, which gives rise to a high false negative rate
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frame k − 1frame k − 2 frame k ......

Figure 4.4: Temporal evolution of the cloud of points after the histogram analysis.
The output from a previous frame (the square in frame k − 2) is projected into the
current frame (k). A disk of four pixels is centered at the projected point. The
centroid in the current frame that lies inside such disk is considered as reliable and
the those remaining are discarded. If more than one is in it, the closest to its center
is chosen. Note that there is no reliable output at frame k − 1.

(see the plots on the left part of Figures 4.10, 4.11 and 4.12). To overcome this

problem we have devised a method which, whenever there is no reliable detection,

can estimate the location of the missing points based on the geometry of the face.

This is described in the next section.

4.2.2 Geometrical Constraints

As mentioned previously, the feature points of the eyes that we want to track are

the left and right outer corners, left and right inner corners and the two pupils.

Considering that real world faces are far enough from the camera, it is reasonable

to suppose that such feature points lie on a plane. Then, the correspondence of

eyes’ feature points in two different frames can be described by a 2D homography

H [106].

To obtain this homography H, we assume that, between frames, the face is

translated by t = (tx, ty) and is rotated by θ around an axis parallel to the camera’s

principal axis. In addition, we assume also a rotation around an axis orthogonal to

the 3D scene’s horizontal plane, that can be modeled as a scaling s along the camera

plane’s horizontal direction.

Using this motion model, the desired transformation has four degrees of freedom.

As each point correspondence between frames puts two restrictions on the homogra-

phy H, we need two correspondences to determine H. Since we can assume that the

four corners of the eyes comprise a rigid body, we can use these points as references

to obtain the desired homography. Therefore, if at least two eye corners have been

reliably detected in the current frame, and there is a previous frame in which all eye

corners have been reliably detected, the missed points from the current frame can

be estimated.

Figure 4.5 depicts the H parameters t, θ and s, where xi is a point in a previous
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frame and x′
i is its correspondence in the current one.

x1

x2

x
′

1

x
′

2

α

α
′
= α+ θ

t
d

d
′

Figure 4.5: Parameters necessary to compute the homography H between eye cor-
ners in two frames. Note that putting the reference on x1, we have: t = x′

1, θ = α′−α
and s = d′/d.

After obtaining the parameters in Figure 4.5, a missed corner can be estimated

using the expression

x′
i = Hr(θ)Hr(α)HsHr(−α)xi + t, (4.10)

where

Hr(γ) =

[

cos γ − sin γ

sin γ cos γ

]

, Hs =

[

s 0

0 1

]

. (4.11)

When there are more than two correspondences, each pair is used to compute a

different homography. The missed point is the average of the points obtained em-

ploying each possible homography.

Since the pupils can move relatively to the eyes’ corners, we have to use a different

geometrical model for them. It is based on the reasonable supposition that the

distance between the pupils is constant, and also that the distances between them

and the respective inner or outer corners remains constant. We can estimate the

position of a missing pupil in the current frame provided that we know: (i) the

position of the eyes’ corners in both frames; (ii) the position of the pupils in the

previous frame, and (iii) the position of one pupil in the current frame. This model

is illustrated in Figure 4.6. In this illustration, the right pupil is represented by a

cross and the left pupil by a square. The coordinates (δx, δy) of the pupil on the

right eye relative to the outer right eye corner are the same as the coordinates of

the left pupil relative to the left inner eye corner. These coordinates can be used to

determine the missing pupil position.
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δx

δy

δy
δx

Figure 4.6: Geometric model for the location of the pupils.

Evaluating the Consistency of the Geometrical Model

The Temporal Consistency and Geometrical Constraints presented so far are capable

of eliminating unreliable detections while keeping the false positive and false negative

ratios. However, if the output of the detection system is consistently wrong along

the frames, we would obtain a wrong estimate as well. This can lead to an increase

in error rate. Since the homograpies are used to estimate the missing points, we

need a way to evaluate their quality. In this section we present a strategy that can

be used to evaluate the quality of the estimated points and, as a consequence, the

quality of the homographies.

Once we have detected the four corners in the current frame and in a previous

one, we can obtain up to six homographies, one for each pair of correspondent points.

Each homography leads to a mapping that takes a model point xi to a point x
′
i in the

current frame. We can use these mappings to obtain estimates x̂i,n (n = {1, · · · , N}

with N ≤ 6 homographies). Since the homographies are not exactly the same,

each estimate x̂i,n is different. Knowing this, one can evaluate the quality of the

geometrical model and obtain better estimates x̂i by using Algorithm 2.

The Algorithm 2 can produce an estimate better than the one obtained with

the Geometrical Constraints alone and a model that can adapt to a subject facial

geometry. Whenever there are missing points, we use the best model up to this

moment to obtain the estimates. However, it is possible that an unreliable point

passes through the temporal consistency - an error that has some temporal con-

sistency. In this case, even using the best model (the one that produces eH = 0),

the produced estimate is wrong. This is so because some of the homographies are

not good enough. There are three possible scenarios: i) If there are three or four

missing points, there is nothing that can be done since it is not possible to obtain

an homography; ii) with two missing points, we have one homography. Even in

this case the described algorithm is not applicable; iii) In case of one or no missing

point, we have three and six homographies, respectively. If that happens, we can

benefit from the algorithm described in this section. We empirically evaluate values

for threshold TH (step 4) from 1 up to 5 pixels. The value that leads to the best

hit rate in most of the sequences is TH = 3. We present the results for the high
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input : The model points xi, the points in the current frame x′
i

(i = {1, · · · , 4}), the homographies Hn (n = {1, · · · , N} with N ≤ 6),
a Threshold TH and the global error eH .

begin1

for n = 1 → N do2

Get an estimate x̂i,n = Hnxi3

Get the error ei,n = ‖x̂i,n − x′
i‖;4

Calculate the local error eh = 1
4N

∑

i

∑N
n=1 ei,n;5

if eh < eH and N = 6 then6

Do xi = x′
i to update the model.7

Do eH = eh to set a new global error.8

if eh < TH then9

Use the estimates x̂i =
1
N

∑N
n=1 x̂i,n.10

else11

Keep the points with temporal consistency doing x̂i = x′
i.12

end13

output: The global error eH and the final estimates x̂i

Algorithm 2: Evaluation of the geometrical model.

definition video sequences in next section.

4.2.3 Experiments Using a High Definition Video Sequence

Database

To assess the performance of our method, we employ the local accuracy measure de-

scribed in Equation (3.33), Section 3.6.1. In addition, both IPD and SVM classifiers

used in the video sequences were trained using the BioID database. The training

procedures are the same as described in Section 3.6.1. The method described in this

chapter was implemented in C++ using the OpenCV library, and can run in real

time on a fast PC, as specified on Page 47.

As can be seen in Section 3.6.1 (Figure 3.6) the RoIs for features on the right

side of the face can be quite different from the ones on left side. However, as can

be seen in the Appendices A and B, the detection results tend to be equivalent for

the left and right eyes. So, in this section we only show the results for the right

side of the face. The remaining curves (all points of all sequences) can be seen in

Appendix B. First of all, note that the experiments with SVM were not included in

the pictures. We decided to do this because the SVM classifiers have a very small

hit rate in our HD database. Since SVM is a strong classifier, it was not able to

generalize enough to be used with our HD Sequences.

The results in Figures 4.7, 4.8 and 4.9 were obtained using an easy, an interme-

diate/difficult and a hard sequence, respectively. Unlike the rest of this section, in
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this case we are showing the results for both eyes. This is so because in this way the

reader can better appreciate how a reliable detection of one eye landmark can help

correcting the detection of the other. In both figures, we compare the IPD (referred

to as IPD in our plots), IPD feeding a Particle Filter using Temporal Constraints

(referred to as IPD + TC) and the IPD with Particle Filter using Temporal and

Geometrical Constraints (referred to as IPD + TGC in our plots). In all graphs,

we considered both false positives and false negatives as errors. The hit rate curves

in the plots show that there is a decrease in hit rate when we employ the Temporal

Constraints (actually a dramatic decrease in some cases). This is related with the

increase in false negative error. As a matter of fact, this is expected, since the detec-

tion in many frames is considered as unreliable after using the Histogram Strategy

and the Smoothness of the Path. However, since the remaining points have a good

reliability, the easy and intermediate/difficult sequences can benefit from using the

Geometrical Constraints (together with the geometrical model consistency evalua-

tion - see Section 4.2.2). In both cases, the remaining points that were considered

as reliable detections were enough to assure an increase in robustness and, conse-

quently, in hit rate. This fact is even more evident in the graphs corresponding

to the intermediate/difficult sequence. The same does not occur for the hard se-

quences (Figure 4.9). This is so because there is a large number of frames where

no reliable points are detected in these sequences. As a consequence, the results are

not good for the hard sequences, regardless of using the temporal and geometrical

constraints, or the evaluation of the homographies. This suggests that one should

not exceed a maximum error rate to benefit from these constraints. However, is

important to point out that in many practical cases the sequences used will be more

like the easy and the intermediate/difficult sequences. In addition, the majority of

known methods also tends to fail in our difficult sequences (since they have blur,

fast movements, and occlusion by one of the hands).
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Figure 4.7: Comparison between IPD (referred to as IPD), IPD feeding a Particle
Filter using Temporal Constraints (referred to as IPD + TC) and the IPD with
Particle Filter using the Temporal and Geometrical Constraints (referred to as IPD
+ TGC). The results were obtained using an easy sequence.
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Figure 4.8: Comparison between IPD (referred to as IPD), IPD feeding a Particle
Filter using Temporal Constraints (referred to as IPD + TC) and the IPD with
Particle Filter using the Temporal and Geometrical Constraints (referred to as IPD
+ TGC). The results were obtained using an intermediate/difficult sequence.
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Figure 4.9: Comparison between IPD (referred to as IPD), IPD feeding a Particle
Filter using Temporal Constraints (referred to as IPD + TC) and the IPD with
Particle Filter using the Temporal and Geometrical Constraints (referred to as IPD
+ TGC). The results were obtained using a hard sequence.
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In Figures 4.10 to 4.12, we evaluate the behavior of the errors when using only

the Temporal Constraints (referred to as TC in our plots) and using both the Tem-

poral and Geometrical Constraints (referred to as TGC). To do so we plot, for each

method, two different definitions of hit rate. One considers only False Positives (re-

ferred to as FP in our plots) as errors and other considers both False Positives and

False Negatives (referred to as FP + FN) as errors. These plots show that the use

of histogram analysis and temporal consistency was capable of providing a low false

positive rate, but at the expense of a high false negative rate. By comparing them

with the plots for the case when Geometrical Constraints are added, we can see that

the addition of geometrical constraints significantly decrease the false negative rate,

while maintaining the low false positive rate. The results are consistent for both

easy (Figure 4.10) and intermediate/difficult (Figure 4.11) sequences. However, the

analysis of the results for the hard sequence (Figure 4.12) shows that, although the

use of the histogram analysis and temporal consistency are able to provide a rea-

sonably low false positive rate, the use of geometric consistency is not as effective

as in the cases of easy and intermediate/difficult sequences. The reason is the same

as stated before: there is a large number of frames where no reliable points are

detected. Also, since the false positive rates are not as low as in the easier cases,

points in error can lead to wrong geometrical models, which could place a wrong

point in place of a missing one, increasing the false positive rates.
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Figure 4.10: Results for an easy sequence. FP stands for False Positive and FN
stands for False Negative. The curves refereed to as TC were obtained by using
Temporal consistency only. The curves referred to as TGC were obtained by em-
ploying both Temporal and Geometrical Constraints (together with the strategy to
evaluate the obtained model)
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Figure 4.11: Results for an intermediate/difficult sequence. FP stands for False
Positive and FN stands for False Negative. The curves referred to as TC were
obtained by using Temporal consistency only. The curves referred to as TGC were
obtained by employing both Temporal and Geometrical Constraints (together with
the strategy to evaluate the obtained model)
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Figure 4.12: Results for a hard sequence. FP stands for False Positive and FN stands
for False Negative. The curves referred to as TC were obtained by using Temporal
consistency only. The curves referred to as TGC were obtained by employing both
Temporal and Geometrical Constraints (together with the strategy to evaluate the
obtained model)

71



Our method was designed to work with different types of trackers. From Fig-

ures 4.13 to 4.15, we evaluate the impact of changing the tracking method. In

both figures, we compare the IPD (referred to as IPD in our plots), IPD feeding a

Kanade-Lucas tracker using Temporal Constraints (referred to as IPD + TC) and

the IPD with kanade-Lucas using Temporal and Geometrical Constraints (referred

to as IPD + TGC in our plots). In all plots, we considered both false positives

and false negatives as errors. In Figures 4.13 and 4.14 we have the results for an

easy and an intermediate/difficult sequence, respectively. There is no significant

difference between these results and the ones in Figures 4.7 and 4.8, in which a

Particle Filter was used. This is a strong evidence that our method can work well

with different types of trackers. Since our method as stated above is not adequate

for hard sequences, the results for hard sequences in Figure 4.15 are inconclusive.
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Figure 4.13: Comparison between IPD (referred to as IPD), IPD feeding a Kanade-
Lucas tracker using Temporal Constraints (referred to as IPD + TC) and the IPD
with Kanade-Lucas using the Temporal and Geometrical Constraints (referred to as
IPD + TGC). The results were obtained using an easy sequence and correspond to
the right eye’s landmarks.
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Figure 4.14: Comparison between IPD (referred to as IPD), IPD feeding a Kanade-
Lucas tracker using Temporal Constraints (referred to as IPD + TC) and the IPD
with Kanade-Lucas using the Temporal and Geometrical Constraints (referred to as
IPD + TGC). The results were obtained using an intermediate/difficult sequence
and correspond to the right eye’s landmarks.
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Figure 4.15: Comparison between IPD (referred to as IPD), IPD feeding a Kanade-
Lucas tracker using Temporal Constraints (referred to as IPD + TC) and the IPD
with Kanade-Lucas using the Temporal and Geometrical Constraints (referred to as
IPD + TGC). The results were obtained using a hard sequence and correspond to
the right eye’s landmarks.
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Chapter 5

Conclusions and Future work

In this work, we addressed the problem of robustly detecting and tracking facial

landmarks. We used two types of detectors, the Support Vector Machine (SVM) with

RBF kernel and the Inner Product Detector (IPD). Both trainings were performed

in the BioID database. We also used the Kanade-Lucas (KL) and the Particle Filter

(PF) in order to find temporal correlation between detections along the frames and

then perform tracking. Strategies like the ones proposed in this work are known in

the literature as tracking by detection.

We have contributions in the detection part and in the integration between de-

tection and tracking. In the detection, the contributions are:

(i) the changes that we have made in the discriminant function makes the IPD

more restrictive. It allows the selection of a smaller volume of the space – a

desirable feature when the classes are unbalanced. Such unbalancing is exactly

the case of feature/object detection in images;

(ii) we conducted several experiments in order to verify the effect of the detector

size in the performance of the IPD;

(iii) the stopping criterion used to automatically determine the number of stages

of the IPD cascade.

We also proposed novel approaches to combine detection and tracking:

(i) we used the IPD to find the probability distribution function of desired features

in images. There are two variations of such method, one parametric and other

nonparametric. They are simple, fast and fit in a Bayesian framework, such as

the Kalman or particle filter, for tracking the features in video sequences;

(ii) in another contribution, based on the analysis of the histogram of the distance

between tracking and the detection, as well as temporal consistency, we can

find candidate points with low probability of false positives and reasonable
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accuracy. However, this is obtained at the expense of a high false negative

rate;

(iii) other contribution of this paper aims at reducing this false negative rate by

employing geometrical consistency between frames. We use the geometry of

the face to impose localization constraints and recover some missed points;

(iv) as a last contribution in tracking part, we proposed a method to periodically

evaluate the consistency of the model and avoid tracking wrong features that

have some temporal consistency.

Also, in this work we have provided indirect, but useful contributions to the

research community. We manually annotated 13 landmarks in all 2003 images from

FERET in which subjects were in near frontal pose and made available in the web. In

addition, we also have made available the video sequences used in our experiments,

along with the manual annotation of 13 landmarks on the face for all 300 frames of

each sequence.

In the detection part, the IPD has shown competitive results. It can detect

eyes in 88.3% of the BioID images with an error less than 5% of the interocular

distance. This result is comparable to the ones of other methods in the literature,

with the added advantage of not using a global face model. We also show that the

IPD is tolerant to small variations of the desired pattern, has good generalization

potential, is fast enough to be used in real time applications, and can be implemented

in parallel. Although the SVM could reach a higher hit rate in the BioID database,

the IPD performed better in our high definition video sequences.

We also obtained promising results in the tracking part. When integrating the

IPD with particle filter to track local features (the pupils, more specifically), we

obtained an average relative error of 7.7% of the interocular distance in our high

definition dataset. On the other hand, our global method to jointly track a set of

features on eyes performs well for easy and intermediate/difficult sequences. It needs

to be improved especially to deal with hard sequences, where we have a great deal of

fast movement, blur and occlusions. However, in many practical cases the sequences

used will be more like the easy and the intermediate/difficult sequences. In addition,

the majority of known methods also tend to fail in our difficult sequences (due to

blur, fast movements, and occlusion by one of the hands).

It is important to point out that the integration of detection and tracking proce-

dure developed in this work can be used with most other tracking methods. It can

also be used with other types of detectors, as long as they can be adapted to output

a cloud of points instead of a single point. Note that these results are achieved

with reasonably low computational complexity. The proposed detectors have been

implemented in C++ using the OpenCV library, and run in real time on a fast PC.
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5.1 Future work

In Chapters 3 and 4, we have described our method for object detection and tracking

in video sequences. We also have shown competitive detection/tracking results.

However, some modifications can improve the reliability of our methods. In this

section, we introduce these suggested improvements. In Section 5.2 we present a

pre-processing technique that can improve the hit rate in the classification step.

In Section 5.3, we describe a possible way to improve our state model and obtain

better results when tracking with the Particle Filter. In Section 4.2, we employed

a geometric constraint to infer the position of missing points. Unfortunately, this

strategy cannot be generalized to be used with generic shapes. So, in Section 5.4,

we suggested an alternative that could allow it.

5.2 Inner Product Detector and Histogram of

Oriented Gradients

As described in Chapter 3, before detecting the landmarks in the pixel domain, we

employed the pre-processing described in [81, 82]. This pre-processing is an illumi-

nation normalization method that consists in the following sequence of techniques:

Gamma Correction, Difference of Gaussian (DoG) filtering and Contrast Equaliza-

tion.

On the other hand, we can improve the hit rate if we extract more descriptive

features and detect the landmarks in that feature space. Even better if this feature

descriptors could be invariant to illumination changes or shadowing. The Histogram

of Oriented Gradients (HOG) has these characteristics [107]. To obtain the HOG

descriptors, we first split the image in cells and compute one-dimensional histograms

of gradient directions over the pixels of each cell. After that, the histograms are

contrast-normalized by a measure of intensity in blocks larger than the cells. In other

words, the contrast is normalized over overlapping spatial blocks The descriptors are

a combination of the normalized histograms

5.3 Integration Between Particle Filters and IPD

In Section 4.1, we have shown that each landmark in each frame has a cloud of

points at the cascade’s output. Each point of this cloud has a respective inner

product value. This scalar can be viewed as a confidence rate. We also have shown

how to use this information to find the probability distribution function of desired

features’ in images.
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On the other hand, our state modeling consists only in the position of the features

and the velocity and acceleration are considered as noise. Our method can benefit

from incorporating velocity in our space state model while keeping the acceleration

as noise. In addition, we just employ a simple random walk to obtain the estimate

used as output of our method. The prediction step can also provide a more robust

outcome if we employ a more elaborate state modeling.

5.4 A Global Method for Locating a Set of Land-

marks

The use of geometric constraints in our integration method is a good way for esti-

mating the missing points. However, it is strongly related with the problem of eye

tracking and cannot be generalized for using with generic shapes. An alternative

way would be to use a generic deformable template for this task.

The method in [108], or some variation of it, has a potential to be used with our

work. It represents the object by a set of parts arranged in a deformable template.

Each part is modeled separately and the template is composed by spring-like con-

nections. They also address the problem of learning the model from the samples

and matching it through energy minimization or MAP estimate.
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Appendix A

Complementary Results on

Landmarks Detection

This Appendix is a complement of the Chapter 3. It contains the complete results

on landmarks detection, which consists of the hit rate curves for all landmarks of

both datasets, BioID and FERET.

A.1 The effect of the face’s and template’s sizes

on the performance of the IPD

In this section we have the complete results of the experiment employed to obtain

the sizes of the template and face with best performance. First of all, Table A.1

show all faces and blocks sizes used in this work. The entries of the tables are the

absolute sizes of the block.

Table A.1: Evaluated relative block sizes and faces sizes

Size of the face (in pixels)
25× 25 50× 50 75× 75 100× 100 125× 125

∼ 15% 3× 3 7× 7 11× 11 15× 15 19× 19

Block’s size
∼ 20% 5× 5 11× 11 15× 15 21× 21 25× 25

(w.r.t. to the
∼ 28% 7× 7 15× 15 21× 21 27× 27 35× 35

face’s size)
∼ 35% 9× 9 17× 17 27× 27 35× 35 45× 45
∼ 38% - 19× 19 29× 19 37× 37 47× 47

From Figures A.1 to A.10 we show the performance of the IPD when varying

the face’s and template’s sizes.
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Figure A.1: Average hit rate for the right pupil using faces from 25 × 25 up to
125× 125 pixels and several block sizes.
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Figure A.2: Average hit rate for the outer corner of right eye using faces from 25×25
up to 125× 125 pixels and several block sizes.
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Figure A.3: Average hit rate for the inner corner of right eye using faces from 25×25
up to 125× 125 pixels and several block sizes.
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Figure A.4: Average hit rate for the outer end of right eyebrow using faces from
25× 25 up to 125× 125 pixels and several block sizes.
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Figure A.5: Average hit rate for the inner end of right eyebrow using faces from
25× 25 up to 125× 125 pixels and several block sizes.
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Figure A.6: Average hit rate for the tip of nose using faces from 25 × 25 up to
125× 125 pixels and several block sizes.

96



0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Right Nostril

H
it
ra
te

[
%

]

Percentage of inter-ocular distance [ % ]

 

 

25@03
25@05
25@07
25@09

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Right Nostril

H
it
ra
te

[
%

]
Percentage of inter-ocular distance [ % ]

 

 

50@07
50@11
50@15
50@17
50@19

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Right Nostril

H
it
ra
te

[
%

]

Percentage of inter-ocular distance [ % ]

 

 

75@11
75@15
75@21
75@27
75@29

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Right Nostril

H
it
ra
te

[
%

]

Percentage of inter-ocular distance [ % ]

 

 

100@15
100@21
100@27
100@35
100@37

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Right Nostril

H
it
ra
te

[
%

]

Percentage of inter-ocular distance [ % ]

 

 

125@19
125@25
125@35
125@45
125@47

Figure A.7: Average hit rate for the right nostrill using faces from 25 × 25 up to
125× 125 pixels and several block sizes.
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Figure A.8: Average hit rate for the right mouth corner using faces from 25× 25 up
to 125× 125 pixels and several block sizes.
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Figure A.9: Average hit rate for the upper lip using faces from 25×25 up to 125×125
pixels and several block sizes.
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Figure A.10: Average hit rate for the lower lip using faces from 25 × 25 up to
125× 125 pixels and several block sizes.
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In FiguresA.11 to A.30 we have a performance comparison when the relative size

of the block is kept fixed. The performance comparison when the relative block’s

size is approximately 15% of the face’s size is shown in Figures A.11 to A.14.
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Figure A.11: Average hit rate for the outer corner right eye, right pupil, and inner
coner of right eye using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 15% of the faces’s size
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Figure A.12: Average hit rate for the outer end of right eyebrow and outer end
of right eyebrow using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 15% of the faces’s size
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Figure A.13: Average hit rate for the tip of nose and right nostril using faces from
50×50 up to 125×125 pixels and blocks with approximately 15% of the faces’s size
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Figure A.14: Average hit rate for right mouth corner, upper lip and lower lip using
faces from 50× 50 up to 125× 125 pixels and blocks with approximately 15% of the
faces’s size
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The performance comparison when the relative block’s size is approximately 20%

of the face’s size is shown in Figures A.15 to A.18.
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Figure A.15: Average hit rate for the outer corner right eye, right pupil, and inner
coner of right eye using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 20% of the faces’s size
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Figure A.16: Average hit rate for the outer end of right eyebrow and outer end
of right eyebrow using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 20% of the faces’s size
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Figure A.17: Average hit rate for the tip of nose and right nostril using faces from
50×50 up to 125×125 pixels and blocks with approximately 20% of the faces’s size
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Figure A.18: Average hit rate for right mouth corner, upper lip and lower lip using
faces from 50× 50 up to 125× 125 pixels and blocks with approximately 20% of the
faces’s size
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The performance comparison when the relative block’s size is approximately 28%

of the face’s size is shown in Figures A.19 to A.22.

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Outer Corner of Right Eye

H
it
ra
te

[
%

]

Percentage of inter-ocular distance [ % ]

 

 

50@15
75@21
100@27
125@35

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Right Pupil

H
it
ra
te

[
%

]

Percentage of inter-ocular distance [ % ]

 

 

50@15
75@21
100@27
125@35

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Inner Corner of Right Eye

H
it
ra
te

[
%

]

Percentage of inter-ocular distance [ % ]

 

 

50@15
75@21
100@27
125@35

Figure A.19: Average hit rate for the outer corner right eye, right pupil, and inner
coner of right eye using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 28% of the faces’s size
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Figure A.20: Average hit rate for the outer end of right eyebrow and outer end
of right eyebrow using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 28% of the faces’s size
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Figure A.21: Average hit rate for the tip of nose and right nostril using faces from
50×50 up to 125×125 pixels and blocks with approximately 28% of the faces’s size
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Figure A.22: Average hit rate for right mouth corner, upper lip and lower lip using
faces from 50× 50 up to 125× 125 pixels and blocks with approximately 28% of the
faces’s size
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The performance comparison when the relative block’s size is approximately 35%

of the face’s size is shown in Figures A.24 to A.26.
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Figure A.23: Average hit rate for the outer corner right eye, right pupil, and inner
coner of right eye using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 35% of the faces’s size
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Figure A.24: Average hit rate for the outer end of right eyebrow and outer end
of right eyebrow using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 35% of the faces’s size
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Figure A.25: Average hit rate for the tip of nose and right nostril using faces from
50×50 up to 125×125 pixels and blocks with approximately 35% of the faces’s size
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Figure A.26: Average hit rate for right mouth corner, upper lip and lower lip using
faces from 50× 50 up to 125× 125 pixels and blocks with approximately 35% of the
faces’s size
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The performance comparison when the relative block’s size is approximately 38%

of the face’s size is shown in Figures A.27 to A.30.
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Figure A.27: Average hit rate for the outer corner right eye, right pupil, and inner
coner of right eye using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 38% of the faces’s size
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Figure A.28: Average hit rate for the outer end of right eyebrow and outer end
of right eyebrow using faces from 50 × 50 up to 125 × 125 pixels and blocks with
approximately 38% of the faces’s size
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Figure A.29: Average hit rate for the tip of nose and right nostril using faces from
50×50 up to 125×125 pixels and blocks with approximately 38% of the faces’s size
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Figure A.30: Average hit rate for right mouth corner, upper lip and lower lip using
faces from 50× 50 up to 125× 125 pixels and blocks with approximately 38% of the
faces’s size
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A.2 Cross-dataset validation between BioID and

Color FERET

In order to evaluate the capability of generalization of our method, we employed

a cross dataset validation between BioID and FERET. The results are shown in

Figures A.31 to Figures A.34. The curves labeled as FERET represent the exper-

iments in which we trained the IPD using BioID and ran the test in the FERET.

The converse has been made for the curves labeled as BioID.
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Figure A.31: Cross dataset validation results for points on the right eye. Red curves:
training with BioID and testing on FERET. Black curves: trainig with FERET and
testing on BioID.
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Figure A.32: Cross dataset validation results for points on the left eye. Red curves:
training with BioID and testing on FERET. Black curves: trainig with FERET and
testing on BioID.
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Figure A.33: Cross dataset validation results for points on the nose. Red curves:
training with BioID and testing on FERET. Black curves: trainig with FERET and
testing on BioID.
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Figure A.34: Cross dataset validation results for points on the mouth. Red curves:
training with BioID and testing on FERET. Black curves: trainig with FERET and
testing on BioID.
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A.2.1 Comparison Between IPD and SVM-RBF

In Figures A.35 to A.43 we show the local results of all 17 inner landmarks for

both IPD and SVM (using the local metric as explained in Subsection 3.6.1). In

the Figures A.35 to A.37, we have a comparison between IPD and the SVM for the

landmarks of the eye.
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Figure A.35: Left : the results for the right pupil. Right : the results for the left
pupil.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100
landmark 09

H
it 

ra
te

 [ 
%

 ] 

Inter−ocular distance [ % ]

 

 

IPD
SVM RBF

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100
landmark 10

H
it 

ra
te

 [ 
%

 ] 

Inter−ocular distance [ % ]

 

 

IPD
SVM RBF

Figure A.36: Left : the results for the outer corner of right eye. Right : the results
for the inner corner of right eye.
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Figure A.37: Left : the results for the inner corner of left eye. Right : the results for
the outer corner of left eye.

In the Figures A.38 and A.39, we have a comparison between IPD and the SVM

for the landmarks on the eyebrows.
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Figure A.38: Left : the results for the outer end of right eye brow. Right : the results
for the inner end of right eye brow.
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Figure A.39: Left : the results for the inner end of left eye brow. Right : the results
for the outer end of left eye brow.

In the Figures A.38 and A.39, we have a comparison between IPD and the SVM

for the landmarks on the nose.
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Figure A.40: Left : the results for the right nostril. Right : the results for the left
nostril.
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Figure A.41: Results for the tip of nose.

In the Figures A.42 and A.43, we have a comparison between IPD and the SVM

for the landmarks on the mouth.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100
landmark 02

H
it 

ra
te

 [ 
%

 ] 

Inter−ocular distance [ % ]

 

 

IPD
SVM RBF

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100
landmark 03

H
it 

ra
te

 [ 
%

 ] 

Inter−ocular distance [ % ]

 

 

IPD
SVM RBF

Figure A.42: Left : the results for the right mouth corner. Right : the results for the
left mouth corner.
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Figure A.43: Left : the results for the central point on outer edge of upper lip. Right :
the results for central point on outer edge of lower lip.
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Appendix B

Complementary Results on

Landmarks Tracking

In Figures B.1 to B.5, we compare the IPD (referred to as IPD in our graphics), IPD

feeding a Particle Filter using Temporal Constraints (referred to as IPD + TC) and

the IPD with Particle Filter using Temporal and Geometrical Constraints (referred

to as IPD + TGC in our graphs). In all graphs, we considered both, false positives

and false negatives as errors.
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Figure B.1: Comparison between IPD (referred to as IPD), IPD feeding a Particle
Filter using Temporal Constraints (referred to as IPD + TC) and the IPD with
Particle Filter using the Temporal and Geometrical Constraints (referred to as IPD
+ TGC). The results were obtained using Sequence 18 (an easy sequence).
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Figure B.2: Comparison between IPD (referred to as IPD), IPD feeding a Particle
Filter using Temporal Constraints (referred to as IPD + TC) and the IPD with
Particle Filter using the Temporal and Geometrical Constraints (referred to as IPD
+ TGC). The results were obtained using Sequence 14 (an intermediate/difficult
sequence).
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Figure B.3: Comparison between IPD (referred to as IPD), IPD feeding a Particle
Filter using Temporal Constraints (referred to as IPD + TC) and the IPD with
Particle Filter using the Temporal and Geometrical Constraints (referred to as IPD
+ TGC). The results were obtained using Sequence 08 (an intermediate/difficult
sequence).
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Figure B.4: Comparison between IPD (referred to as IPD), IPD feeding a Particle
Filter using Temporal Constraints (referred to as IPD + TC) and the IPD with
Particle Filter using the Temporal and Geometrical Constraints (referred to as IPD
+ TGC). The results were obtained using Sequence 02 (a hard sequence).
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Figure B.5: Comparison between IPD (referred to as IPD), IPD feeding a Particle
Filter using Temporal Constraints (referred to as IPD + TC) and the IPD with
Particle Filter using the Temporal and Geometrical Constraints (referred to as IPD
+ TGC). The results were obtained using Sequence 01 (a hard sequence).
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In Figures B.6 to B.10, we evaluate the behavior of the errors when using the

Temporal Constraints (referred to as TC in our graphs) and using it with the Geo-

metrical Constraints added (referred to as TGC). To do so, we plot the hit rate two

times for each method in these figures. One considering only False Positives (re-

ferred to as FP in our graphs) as errors and other considering both, False Positives

and False Negatives (referred to as FP + FN) as errors.
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Figure B.6: Results for Sequence 18 (an easy sequence). FP stands for False Positive
and FN stands for False Negative. The curves refereed to as TC were obtained by
using Temporal consistency only. The curves referred to as TGC were obtained by
employing both Temporal and Geometrical Constraints (together with the strategy
to evaluate the obtained model)
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Figure B.7: Results for Sequence 14 (an intermediate/difficult sequence). FP stands
for False Positive and FN stands for False Negative. The curves refereed to as TC
were obtained by using Temporal consistency only. The curves referred to as TGC
were obtained by employing both Temporal and Geometrical Constraints (together
with the strategy to evaluate the obtained model)
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Figure B.8: Results for Sequence 08 (an intermediate/difficult sequence). FP stands
for False Positive and FN stands for False Negative. The curves refereed to as TC
were obtained by using Temporal consistency only. The curves referred to as TGC
were obtained by employing both Temporal and Geometrical Constraints (together
with the strategy to evaluate the obtained model)
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Figure B.9: Results for Sequence 02 (a hard sequence). FP stands for False Positive
and FN stands for False Negative. The curves refereed to as TC were obtained by
using Temporal consistency only. The curves referred to as TGC were obtained by
employing both Temporal and Geometrical Constraints (together with the strategy
to evaluate the obtained model)
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Figure B.10: Results for Sequence 01 (a hard sequence). FP stands for False Positive
and FN stands for False Negative. The curves refereed to as TC were obtained by
using Temporal consistency only. The curves referred to as TGC were obtained by
employing both Temporal and Geometrical Constraints (together with the strategy
to evaluate the obtained model)
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Our method was designed to work with different types of trackers. From Fig-

ures B.11 to B.15, we evaluate the impact of changing the tracking method. In both

figures, we compare the IPD (referred to as IPD in our graphics), IPD feeding a

Kanade-Lucas tracker using Temporal Constraints (referred to as IPD + TC) and

the IPD with kanade-Lucas using Temporal and Geometrical Constraints (referred

to as IPD + TGC in our graphs). In all graphs, we considered both false positives

and false negatives as errors.
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Figure B.11: Comparison between IPD (referred to as IPD), IPD feeding a Kanade-
Lucas tracker using Temporal Constraints (referred to as IPD + TC) and the IPD
with Kanade-Lucas using the Temporal and Geometrical Constraints (referred to as
IPD + TGC). The results were obtained using Sequence 18 (an easy sequence).
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Figure B.12: Comparison between IPD (referred to as IPD), IPD feeding a Kanade-
Lucas tracker using Temporal Constraints (referred to as IPD + TC) and the IPD
with Kanade-Lucas using the Temporal and Geometrical Constraints (referred to as
IPD + TGC). The results were obtained using Sequence 14 (an intermediate/difficult
sequence).

139



0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Outer Right Corner

H
it
ra
te

[
%

]

Interocular distance [ % ]

 

 

IPD

IPD + TC

IPD + TGC

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Right Pupil

H
it
ra
te

[
%

]

Interocular distance [ % ]

 

 

IPD

IPD + TC

IPD + TGC

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Inner Right Corner

H
it
ra
te

[
%

]

Interocular distance [ % ]

 

 

IPD

IPD + TC

IPD + TGC

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Inner Left Corner

H
it
ra
te

[
%

]

Interocular distance [ % ]

 

 

IPD

IPD + TC

IPD + TGC

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Left Pupil

H
it
ra
te

[
%

]

Interocular distance [ % ]

 

 

IPD

IPD + TC

IPD + TGC

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Outer Left Corner

H
it
ra
te

[
%

]

Interocular distance [ % ]

 

 

IPD

IPD + TC

IPD + TGC

Figure B.13: Comparison between IPD (referred to as IPD), IPD feeding a Kanade-
Lucas tracker using Temporal Constraints (referred to as IPD + TC) and the IPD
with Kanade-Lucas using the Temporal and Geometrical Constraints (referred to as
IPD + TGC). The results were obtained using Sequence 08 (an intermediate/difficult
sequence).
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Figure B.14: Comparison between IPD (referred to as IPD), IPD feeding a Kanade-
Lucas tracker using Temporal Constraints (referred to as IPD + TC) and the IPD
with Kanade-Lucas using the Temporal and Geometrical Constraints (referred to as
IPD + TGC). The results were obtained using Sequence 02 (a hard sequence).
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Figure B.15: Comparison between IPD (referred to as IPD), IPD feeding a Kanade-
Lucas tracker using Temporal Constraints (referred to as IPD + TC) and the IPD
with Kanade-Lucas using the Temporal and Geometrical Constraints (referred to as
IPD + TGC). The results were obtained using Sequence 01 (a hard sequence).
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