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contar ao longo desses anos não só com seus valiosos ensinamentos, como também

com a amizade, além da proposta de bons trabalhos de mestrado e doutorado.

Agradeço ao orientador Eduardo Nunes pela dedicação e zelo com que tratou
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

CONTROLE ADAPTATIVO MULTIVARIÁVEL: GANHO DE ALTA

FREQUÊNCIA INCERTO, ROBUSTEZ E DESEMPENHO TRANSITÓRIO

GARANTIDO

Andrei Giordano Holanda Battistel

Janeiro/2015

Orientadores: Liu Hsu

Eduardo Vieira Leão Nunes

Programa: Engenharia Elétrica

Este trabalho propõe novas soluções para o Controle Adaptativo Multivariável

por Modelo de Referência (MIMO MRAC). As técnicas são aplicáveis a plantas de

grau relativo arbitrário e não exigem condições de simetria relacionadas ao ganho

de alta frequência (HFG), considerado desconhecido. Controladores robustos com

garantia de desempenho transitório são obtidos sem a necessidade de parametrização

aumentada do controlador.

Em comparação às técnicas convencionais do MRAC, os controladores propostes

são aplicáveis a uma classe mais abrangente de sistemas. Em vez da frágil e restritiva

condição de simetria, o HFG deve ter autovalores reais e positivos e forma de Jordan

diagonal. Algoritmos com alto ganho e projeção paramétrica são propostos a fim

de obter controladores mais robustos em relação àqueles baseados apenas em lei do

gradiente. O MRAC Binário (BMRAC) é generalizado para grau relativo arbitrário

utilizando diferenciadores exatos, tal que se obtem rastreamento global e exato de

sáıda com garantias de desempenho transitório. Propõe-se ainda uma nova exten-

são ao BMRAC utilizando adaptação com projeção e alto ganho além de filtragem

do sinal de controle e malha de predição. O controlador resultante, chamado BM-

RAC Estendido, permite rastreamento prático de sáıda com garantias de transitório.

Simulações numéricas são apresentadas a fim de confirmar os resultados teóricos e

ilustrar a performance dos controladores.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

MULTIVARIABLE ADAPTIVE CONTROL: UNCERTAIN HIGH FREQUENCY

GAIN, ROBUSTNESS AND GUARANTEED TRANSIENT PERFORMANCE

Andrei Giordano Holanda Battistel

January/2015

Advisors: Liu Hsu

Eduardo Vieira Leão Nunes

Department: Electrical Engineering

This work proposes new solutions to Multivariable Model Reference Adaptive

Control (MIMO-MRAC) for plants with arbitrary relative degree without requiring

stringent symmetry assumptions related with the plant uncertain high frequency

gain (HFG). Robust controllers with guaranteed transient performance are obtained

without the need of augmented control parametrization.

Compared to conventional MRAC techniques, the proposed controllers are appli-

cable to a wider class of plants. Instead of fragile symmetry conditions, the HFG is

required to have diagonal Jordan form with real and positive eigenvalues, which is a

robust and generic condition. Controllers based on parameter projection with high

adaptation gain are proposed to obtain improved robustness in comparison to pure

gradient adaptive laws. The Binary-MRAC(BMRAC) is generalized to arbitrary

relative degree using exact differentiators, such that global exact output tracking is

obtained with guaranteed transient properties. A further extension of the BMRAC

is proposed, which inherits its high gain and adaptation laws with projection com-

bined with input filtering and prediction loop.The result is the Extended BMRAC

(eBMRAC), a robust global practical output tracking controller with guaranteed

transient. Simulations are presented to illustrate theoretical developments and per-

formance of the proposed techniques.
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Chapter 1

Introduction

In several control applications, the knowledge of system models and/or parameters is

not accurate enough. Also, it is often necessary to deal with plants with uncertainties

and unmodeled dynamics, or even systems whose parameters vary with time or

according to its operating point. In such cases, it is not unusual that fixed-gain

controllers do not suffice for a desirable operation. Such applications brought up

the need to develop strategies to design controllers that would adjust themselves

recursively during the system operation. This adjustment would be done based both

on prior system knowledge and on information obtained through measurements, such

as input-output or states. In other words, the desired controller would “adapt” itself

over time based on some form of system identification [1, 2].

The term“Adaptive Control” have been used since the 1950s, initially motivated

by the problem of designing autopilots for aircrafts operating at a wide range of

speeds and altitudes [1]. Since aircraft dynamics are conceptually nonlinear and

time varying, a single fixed-gain controller would not suffice due to large parameter

variations. This lead to adoption of gain scheduling, based on the fact that aircraft

dynamics can be approximated by a linear model for a given operating point specified

by speed and altitude [2].

Several strategies to self-adjusting controllers were proposed thereafter, such as

rudimentary model reference schemes [3],[4], sensitivity rules [5],[6] and the MIT

rule. Later on, Kalman proposed a self-tunning optimal linear quadratic controller

which was updated based on explicit identification of the system parameters [7].

The 1960s brought advances and theoretical understanding through Lyapunov

analysis and the use of state variable representation. On the other hand, the crash

of the X-15 test plane was partially attributed to the adaptive system [8], which

eventually led to some loss of interest in the field. However, some important con-

tributions were made, such as the development of Dynamic Programming and the

advances in System Identification. Also, previously proposed techniques were revis-

ited in the light of the Lyapunov method [9], providing better understanding and
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restating the importance of rigorous theoretical analysis.

Significant amount of research regarding stability proofs and conditions suc-

ceeded such as [10]. In 1979, Egardt [11] showed that adaptive strategies would

become unstable in the presence of disturbances. The works by Rohrs[12] and Ioan-

nou [13], brought more examples of the lack of robustness which raised awareness for

the fact that the assumptions under which stability was guaranteed was very sensi-

tive to unmodeled dynamics, triggering the interest on Robust Adaptive Control.

Regarding the multi-input multi-output (MIMO) systems, several techniques

were later proposed, when the ideia of model reference (or model following) was

already discussed, such as [14], [15], [16], [10], [17] and [18]. Significant progress was

achieved through [19] where the relative degree for MIMO systems was introduced,

as well as the concept of interactor matrix.

Adaptive Control is nowadays a mature branch of control theory with a rich and

vast literature, including several textbooks as [20], [21], [2],[22] among others. It is

also a field of current interest in diverse engineering and science fields, with open

research problems [23].

In the specific case of MIMO systems, there are both theoretical challenges and

practical interest, since a variety of systems have multiple inputs and multiple out-

puts. Also, some concepts known for the scalar case have to be reexamined and

generalized for multivariable systems.

Several works proposed solutions to the MIMO MRAC problem. An early design

for unknown HFG was proposed assuming that a symmetryzing matrix Sp is known

such that KpSp = (KpSp)
T > 0 is known [24], [21], [2]. This is a not only restrictive

requirement whenKp is unknown, but also a fragile condition that is easily destroyed

for arbitrarily small parametric disturbances.

Circumvention of the symmetry requirements were later possible by using factor-

ization of Kp such as [25], which led to controller overparametrization. A recently

proposed approach based on generalized passivity resulted in a controller that does

not involve augmented parametrization and also exempts the symmetry assumption.

However, the drawback is that it is restricted to uniform relative degree one.

The idea of using variable structures in MRAC is also used in MIMO systems,

such as [26], [27], [28] and [29]. Even though the HFG needs to be only anti-

Hurwitz, not symmetric, the Sliding Mode Control (SMC) has significant drawbacks

such as chattering and sensitivity to noise. This encouraged the use of adaptation

laws with projection or sigma-modifications, such that parameters are limited. In

techniques such as the BMRAC, the gain can be tuned up to a high value to improve

performance and still result in chattering-free control laws [30].

The purpose of this work is to present new techniques for direct Model Ref-

erence Adaptive Control (MRAC) using output feedback. In the Direct Adaptive
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Control, the controller parameters are updated directly from an adaptive law, whilst

the Indirect Adaptive Control the plant parameters are firstly estimated and these

estimates are used to calculate a controller. The term output feedback means that

state variables are not measured nor used for control purposes.

This work is dedicated to propose new MRAC techniques that require less restric-

tive assumptions than those found in the literature for MIMO systems. Also, we are

concerned in obtaining robust controllers with guaranteed transient performance.

We propose a new MRAC algorithm that is similar to conventional designs, such

as seen in [21],[2]. Its advantages are the relative simplicity, since it is fairly related

to standard designs; the applicability to plants with arbitrary relative degree and

the exemption of symmetry requirements, such that it can be applied to a wider

class of plants in comparison to conventional techniques.

It is known that pure gradient adaptive control may suffer from lack of robustness

and poor adaptation transient. This has motivated us to propose an extension to a

recently proposed Binary MRAC (BMRAC) technique [31]. This algorithm is the

MIMO extension to a projection based controller [32] which assures boundedness on

controller parameters. The resulting controller is shown to have improved robustness

and guaranteed transient performance.

Inspired by the BMRAC technique and in the light of the recently proposed L1

Adaptive Control (L1-AC) [33], which was widely discussed and uses interesting con-

trol ingredients, we also propose a further extension to the BMRAC, which we called

Extended BMRAC (eBMRAC). This controller is based on a combination of early

proposed techniques and shows to present interesting robustness and guaranteed

transient properties. Also, we show that it is possible to circumvent fundamental

limitations of the L1-AC.

In the next sections we present some basic definitions we use throughout the text

and a brief literature review, focusing mainly on the techniques within the scope of

this thesis. For further and more general references on adaptive control, see [23].

1.1 Basic Definitions

In this section we present basic definitions, Lemmas and Theorems that are used

throughout the text.

3



1.1.1 Linear Systems

Consider a Linear Time Invariant (LTI) system described by the following realization

or state-space model with p inputs and q outputs.

ẋ(t) = Ax(t) +Bu(t) (1.1)

y(t) = Cx(t) +Du(t) (1.2)

with A ∈ IRn×n, B ∈ IRn×p, C ∈ IRq×n and D ∈ IRq×p; x ∈ IRn is the system state,

u ∈ IRp is the input and y ∈ IRq is the output.

This system can be described in input-output form by

Y (s) = G(s)U(s) (1.3)

G(s) = C(sI − A)−1B +D (1.4)

where I is the n × n identity matirx, Y (s) and U(s) are the Laplace transforms of

y(t) and u(t) respectively, and G(s) has q rows and p columns and its elements are

rational functions of s.

Another way to describe an LTI system is using operators [21]. Consider the

inverse Laplace transform ofG(s), the output for a given input u(t) is the convolution

y(t) =

∫ t

0

g(t− τ)u(τ)dτ (1.5)

Considering G(s) as an operator whose operation is defined by (1.5), it is convenient

to express the system (1.3) as

y(t) = G(s)[u](t) (1.6)

such that G(s)[u](t) denotes the output of a system whose operator representation

is G(s) and input is u(t).

The concepts of Controllability and Observability of a system are useful and

defined as follows.

Definition 1 (Controllability [34]) The state equation (1.1) or the pair (B,A)

is said to be controllable if for any initial state x(0) = x0 and any final state x1,

there exists an input that transfers x0 to x1 in a finite time. Otherwise (1.1) is said

to be uncontrollable.

Definition 2 (Observability [34]) The state equation (1.1)–(1.2) is said to be

observable if for any unknown initial state x(0) = x0, there exists a finite t1 :> 0

such that the knowledge of the input u(t) and the output y(t) over [0, t1] suffices
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to determine uniquely the initial state x(0). Otherwise the equation is said to be

unobservable.

It is possible to verify whether a system is Controllable/Observable or not using

the following matrices.

CM =
[

B AB A2B . . . An−1B
]

(1.7)

OM =
[

CT ATCT (AT )2CT . . . (AT )n−1CT
]T

(1.8)

A system is controllable if and only if rank(CM) = n and is observable if and only

if rank(OM) = n. For other necessary and sufficient conditions on Controllability

and Observability, see [34].

In this work we are particularly interested in the observability index, ν, which

is the least integer such that

OM =
[

CT ATCT (AT )2CT . . . (AT )ν−1CT
]T

= n

1.1.2 Stability of Dynamic Systems

We use the standard Lyapunov stability definitions. For further reference, the reader

is referred to [2, 21, 35].

Consider a system described by the possibly nonlinear differential equation

ẋ = f(x, t), x(t0) = x0 (1.9)

where x(t) ∈ Rn, f : J ×B(r) → R,J = [t0,∞) and B(r) = {x ∈ IRn||x| < r}. We

assume that f possesses one and only solution x(t) = x(t; x0, t0) for every x0 ∈ B(r)
and every t0 ∈ IR+.

Assume the system (1.9) has a solution x(t) = x(t; x0, t0) for a given pair of

{x0, t0 }. The condition f(0, t) = 0, ∀t ≥ t0 means that the origin xe = 0 is an

equilibrium state of the system. If there exists h > 0 such that the ball B(h) =

{∈ IRn : ||x|| ≤ h} contains no other equilibrium states, xe = 0 is said to be an

isolated equilibrium state.

Definition 3 (Stability [2]) The equilibrium state xe = 0 of system (1.9) is stable

if for every ǫ > 0 and any t0 ≥ 0 there exists a δ(ǫ, t0) > 0 such that ||x0|| < δ implies

that ||x(t; x0, t0)|| < ǫ, ∀t ≥ t0. The equilibrium state xe = 0 is unstable if it is not

stable.
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Definition 4 (Uniform Stability [2]) The equilibrium state xe = 0 of system

(1.9) is uniformly stable if δ(ǫ, t0) = δ(ǫ) in Definition 3

Definition 5 (Attractive Equilibrium [2]) The equilibrium state xe = 0 of sys-

tem (1.9) is attractive if for every t0 ≥ 0 there exists a ρ(t0) > 0 such that ||x0|| < ρ

implies that limt→∞ x(t; x0, t0) = 0.

Definition 6 (Uniform Asymptotic Stability [2]) The equilibrium state xe =

0 of system (1.9) is uniformly asymptotically stable if it is uniformly stable and if

for some δ1 > 0, every ǫ1 > 0, and any t0 ≥ 0 there exists a T (ǫ1, δ1) > 0 such that

||x0|| < δ1 imples that ||x(t; x0, t0)|| < ǫ1, ∀t ≥ t0 + T .

We are also interested in systems whose trajectories are attracted to a small

vicinity of the equilibrium point. We shall refer to practical stability according to

the following definition.

Definition 7 (Practical Stability [36], [37]) The system ẋ = f(t, x, v) is said to

be uniformly input-to-state practically stable (ISpS) if there existe β ∈ KL, γ ∈ K,

referred as the ISpS gain, and a nonnegative constant κ, such that for each initial

time t0 ≥ 0 and initial condition x(t0), and each bounded measurable input signal

v(·) defined on [ t0∞ )], the solution exists on [ t0∞ )] and is such that

||x(t)|| ≤ β(||x(t0)|| , t− t0) + γ(
∣

∣

∣

∣v[t0,t]
∣

∣

∣

∣

∞
) + κ (1.10)

Where
∣

∣

∣

∣v[t0,t]
∣

∣

∣

∣

∞
= supt∈[t0,t]|f(t)|. When (1.10) is satisfied with v ≡ 0, we say that

the system is uniformly globally asymptotically practically stable (GApS), and in

addition, if β = ce−a(t−t0)|x(t0)|, wehre c and a are generic positive constants, it is

said to be uniformly globally exponentially practically stable (GEpS)

1.1.3 Stable Polynomials

Stability of linear systems described in state-space form (1.1) or input-output (1.3)

is directly related to the eigenvalues of the matrix A or the poles of G(s), given by

the roots of the characteristic equation det(sI − A) = 0.

Consider the polynomial X(s) = αns
n + αn−1s

n−1 + . . .+ α0.

Definition 8 [2] We say that X(s) is monic if αn = 1 and the degree of X(s) is

n if the coefficient αn of sn is nonzero.

Definition 9 (Hurwitz Polynomial [2]) A polynomial is said to be Hurwitz if

all the roots of X(s) = 0 are located in Re[s] < 0
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Definition 10 (Schur Polynomial [2]) A polynomial is said to be Schur if all

the roots of X(s) = 0 are located in Re[s] < |1|

A polynomial is said to be stable if it is Hurwitz for continuous-time systems

and Schur for discrete-time systems.

Definition 11 (Hurwitz and Anti-Hurwitz Matrices) A matrix A is said to

be Hurwitz if all its eigenvalues are negative, that is, the roots of λI−A = 0 are in

Re[λ] < 0. Similarly, A matrix A is said to be Anti-Hurwitz if all its eigenvalues

are positive, that is, the roots of λI − A = 0 are in Re[λ] > 0.

1.1.4 Interactor Matrix and the High Frequency Gain

Consider a continuous-time linear time-invariant (LTI) plant with M inputs and M

outputs.

y(t) = G(s)[u](t) (1.11)

where y(t) ∈ IRM is the plant output, u(t) ∈ IRM is the plant input, with t ∈ [0,∞).

The concept of interactor matrix [38] is important in MRAC schemes, since it

determines the system structure at infinity. For design purposes we shall also refer

to a modified interactor, which is defined next [2, 21].

Proposition 1 [21] For any M ×M proper rational full rank transfer matrix G(s)

there exists a unique lower triangular polynomial matrix ξ(s), defined as the left

interactor matrix of G(s), of the form

ξ(s) =













sl1 0 . . . . . . 0

sl1h21(s) sl2 0 . . . 0
...

...
...

...
...

sl1hM1(s) sl1hM2(s) . . . slM−1hMM−1(s) slM













, (1.12)

where hij(s), j = 1, . . . ,M − 1, i = 2, . . . ,M , are polynomials divisible by s and

li ≥ 0, i = 1, . . . ,M , are integers such that

lim
s→∞

ξ(s)G(s) = K0
p

is finite and nonsingular

Note that the inverse of the left interactor is not stable. Since in the design of

model reference control ξ−1(s) is required to be stable, it is convenient to employ a

modified left interactor matrix that has a stable inverse.
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Proposition 2 [21] For any M ×M proper rational full rank transfer matrix G(s)

there exists a lower triangular polynomial matrix ξ(s), defined as the modified left

interactor (MLI) matrix of G(s), of the form

ξ(s) =













d1 0 . . . . . . 0

hm21(s) d2(s) 0 . . . 0
...

...
...

...
...

hM1(s) hM2(s) . . . hMM−1(s) dM(s)













, (1.13)

where hmij (s), j = 1, . . . ,M − 1, i = 2, . . . ,M , are some polynomials and di(s) =

sli + ai1s
li−1 + . . . + aili, and i = 1, . . . ,M are any chosen monic stable polynomials

such that

lim
s→∞

ξ(s)G(s) = Kp (1.14)

is finite and nonsingular. Furthermore, hmij (s) can be chosen as hmij (s) = poly-

nomial part of slj
(

hij(s) + ai1s
−1hij(s) + . . .+ ailis

−lihij(s)
)

for j = 1, . . . ,M − 1,

i = 2, . . . ,M . For this choice of hmij (s), we have

lim
s→∞

ξ(s)G0(s) = K0
p (1.15)

For proofs, see [21][pp.385].

Thus, Eq. (1.14) defines the High Frequency Gain (HFG) of the system transfer

function (matrix) G(s). In the SISO case, kp is a scalar and the interactor matrix is

any stable polynomial of degree n−m. The condition usually assumed for adaptive

control is that there is prior knowledge on the signal of kp [].

In the multivariable case, different knowledge and conditions are required on Kp

to different adaptive control techniques. In this Thesis we draw special attention

to mitigating symmetry requirements on the HFG and seek to use a more robust

condition referred to as the PDJ condition (Positive Diagonal Jordan), defined as

follows.

Definition 12 (Positive Diagonal Jordan Condition (PDJ)) A matrix is

said to be PDJ if its eigenvalues are real and positive and its Jordan form is

diagonal.

A matrix satisfying the PDJ condition can be multiplied by a symmetric positive

definite (SPD) matrix such that the product is also SPD. This result is of particular

importance to this work and is stated in the following lemma.

Lemma 1 ([39], [40]) Given Kp ∈ R
M×M , there existsW = W T > 0, W ∈ R

M×M

such that

WKp = KT
p W > 0,
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if and only if Kp is PDJ .

Proof: see [40].

Further, it can be shown that if the leading minors of Kp are nonzero, there

exists a matrix L̄ such that L̄Kp is PDJ. Consider the LDU factorization [41] of Kp.

Kp = LpDpUp

where Lp is unit lower triangular, Dp is diagonal and Up is unit upper triangular. It

is possible to choose a diagonal matrix D0 with positive real and distint eigenvalues

such that there is a lower triangular matrix

L̄ = D0(LpDp)
−1

This implies that

K̄p = L̄Kp = D0(LpDp)
−1(LpDp)Up = D0Up

is upper triangular and PDJ. According to Lemma 1, there is W such that WL̄Kp

is SPD.

This result is also important to our work, since it shows that even if the plant

HFG is not PDJ, a multiplier can be used to satisfty the PDJ condition. This idea

is explored in Chapters 2 and 3.

1.1.5 Passivity Concepts

Definition 13 (Positive Real Transfer Functions [35]) A M ×M proper ra-

tional transfer function matrix G(s) is called positive real if

• poles of all elements G(s) are in Re[s] ≤ 0,

• for all real ω for which jω is not a pole of any element of G(s), the matrix

G(jω) +GT (−jω) is positive semidefinite, and

• any pure imaginary pole jω of any element of G(s) is a simple pole and the

residue matrix lims→jω)(s− jω)G(s) is positive semidefinite Hermitian.

The transfer function G(s) is called strictly postive real if G(s − ε) is positive real

for some ε > 0

Lemma 2 (Positive Real Lemma [35]) Let G(s) = C(sI −A)−1B be a M ×M

strictly proper transfer function matrix where (A,B) is controllable and (A,C) is
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observable. Then G(s) is positive real if and only if there exit matrices P = P T > 0,

and Q = QT ≥ 0 such that

ATP + PA = −Q , (1.16)

PB = CT . (1.17)

Lemma 3 (Kalman-Yakubovich-Popov [35]) Let G(s) = C(sI − A)−1B be a

M × M strictly proper transfer function matrix where (A,B) is controllable and

(A,C) is observable. Then G(s) is strictly positive real if and only if there exit

matrices P = P T > 0, and Q = QT ≥ 0 and a positive constant ǫ such that

ATP + PA = −Q− ǫP , (1.18)

PB = CT . (1.19)

1.2 Problem Description - Multi-Input Multi-

Output (MIMO) Case

Similarly to the approach of [21], we will consider simultaneously both continuous-

time (CT) systems and discrete-time (DT) systems. To this end, the symbol D

is used, in the CT case, as the Laplace transform variable or the time differential

operator D[x](t) = ẋ(t), t ∈ [0,∞), as the case may be or, in the DT case, as the

z-transform or the time advance operator D[x](t) = x(t + 1), t ∈ {0, 1, 2, 3, ...}, as
the case may be. A polynomial in D is said to be stable if its roots have strictly

negative real parts (Hurwitz polynomial), in the CT case, or are strictly inside the

unit circle of the complex plane (Schur polynomial), in the DT case.

Consider an uncertain MIMO LTI plant withM inputs andM outputs described

in state space form as

D[xp] = Apxp + Bpu , y = Hpxp , (1.20)

where xp(t)∈ IRn is the state, y(t) ∈ RM is the plant output, u(t) ∈ RM is the plant

input, with t ∈ [0,∞) for the continuous-time (CT) case and t ∈ {0, 1, 2, 3, ...} for

the discrete-time (DT) case, and Ap, Bp, Hp are constant uncertain matrices.

In input/output form one has

y(t) = G(D)[u](t). (1.21)

The objective of the model reference adaptive control (MRAC) can be stated as

10



follows. Given a reference model system of the form:

ym(t) = Wm(D)[r](t), (1.22)

where Wm(D) is and M ×M rational transfer function matrix, ym(t) ∈ RM is the

reference output, and r(t) ∈ RM is an external input signal, find a feedback control

signal u(t) for the plant (1.21) with unknown G(D) such that y(t) tracks ym(t)

as close as possible and the closed-loop system is globally stable in the sense that

all signals in the system are bounded for any bounded initial conditions and input

signals.

The following assumptions are made:

(A1) G(D) has full rank and all its zeros are stable;

(A2) The plant is controllable and observable;

(A3) The observability index ν of G(D), or an upper bound of ν, is known;

(A4) There exists a known diagonal polynomial matrix ξm(D), defined as the

modified left interactor (MLI) matrix of G(D) of the form ξm(D) =

diag {d1(D), d2(D), . . . , dM(D)} where di(D) are monic stable polynomials

of degrees li > 0, such that the high frequency gain matrix of G(D), defined

as Kp = limD→∞ ξm(D)G(D) . is finite and nonsingular.

The MLI is defined as in Subsection 1.1.4, rewritten to encompass both CT and

DT systems as in [21][Lemma 9.1]

ξm(D) =













d1(d) 0 . . . . . . 0

hm21(D) d2(D) 0 . . . 0
...

...
...

...
...

hM1(D) hM2(D) . . . hMM−1(D) dM(D)













, (1.23)

Note that Assumption (A4) means that the vector relative degree of G(D) is known.

Let the reference signal ym be generated by the following reference model:

ym = Wm(D) r ; r, ym ∈ IRM , (1.24)

The tracking error is then given by

e = y − ym (1.25)

11



The transfer function matrixWm(D) has the same vector relative degree asG(D).

Without loss of generality, it is possible to choose Wm(D) = ξ−1
m (D).

When the plant is known, a control law which achieves the matching between

the closed-loop transfer function matrix and Wm(D) is given by

u∗ = θ∗
T

ω (1.26)

where the parameter matrix is written as

θ∗ =
[

θ∗
T

1 θ∗
T

2 θ∗
T

3 θ∗
T

4

]T

, (1.27)

with θ∗1, θ
∗
2∈ IRM(ν−1)×M , θ∗3, θ

∗
4∈ IRM×M and the regressor vector

ω = [ωT
u ωT

y yT rT ]T , wu, wy ∈ IRM(ν−1) (1.28)

is obtained from I/O state variable filters given by:

ωu = A(D)Λ−1(D)u , ωy = A(D)Λ−1(D)y , (1.29)

where A(D) = [IDν−2 IDν−3 · · · ID I]T , Λ(D) = λ(D)I with λ(D) being a

monic stable polynomial of degree ν − 1.

The plant transfer matrix can be expresses as a product G(D) = Z0(D)P−1
0 (D).

With the matching control of Eq. (1.26), the parameter matrix (1.27) and the re-

gressor (1.28), the matching equation

θ∗T1 A(D)P0(D) +
(

θ∗T2 A(D) + θ∗T3 Λ(D)
)

Z0(D) = Λ(D)
(

P0(D)− θ∗T4 ξm(D)
)

(1.30)

defines the matching parameters θ∗T1 , θ∗T2 θ∗T3 , and θ∗T4 [21]. Also, the matching con-

ditions require that θ∗T4 = K−1
p .

However, since the plant is unknown, the desired parameters matrix θ∗ is also

unknown. In this case, the following control law can be used

u(t) = θ(t)ω(t) (1.31)

It is important to note that the in the MIMO case, solution of matching equation is

possibly non-unique, such that Eq. (1.30) may admit a set of solutions to θ∗. This is

worthy of attention since in this case it is not possible to identify the plant even with

a rich signal[42]. In this work we are interested in boundedness of the closed loop

signals and tracking of the reference model. The problem of parameter convergence

is discussed in detail in [43] and [42].

An error equation can be developed extending the usual approach for SISO

12



Figure 1.1: Block Diagram of MRAC structure

MRAC to the multivariable case [21].

Defining the state vector X =
[

xTp , ω
T
u , ω

T
y

]T
with the following dynamics

D[X] = A0X + B0u. (1.32)

Then, adding and subtracting B0u
∗ and

D[X] = A0X + B0u+ B0

(

θ∗Tωr +K∗T
θ r
)

− B0u
∗. (1.33)

noting that there are matrices Ω1 and Ω2 such that ω = Ω1X +Ω2r, it follows that

D[X] = AcX + BcKp [u− u∗] + Bcr, y = H0X (1.34)

with Ac = A0 + B0θ
∗TΩ1, Bc = B0K

∗T
θ = B0K

−1
p . The reference model can be

described by

D[Xm] = AcXm +Bcr (1.35)

The error state xe dynamics is given by

D[xe] = Ac xe +BcKp[u− θ∗
T

ω], e = Ho xe, (1.36)

{Ac, Bc, Ho} is a nonminimal realization of Wm(D), so that the error equation can

be written in input-output form as

e = Wm(D)Kp

[

u− θ∗
T

ω
]

. (1.37)
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1.3 Multivariable Model Reference Adaptive

Control and its Symmetry Conditions

The conventional multivariable direct Model Reference Adaptive Control (MIMO

MRAC) algorithm is designed under the stringent assumption that a multiplier

Sp for the High Frequency Gain (HFG) matrix Kp is known, such that SpKp be-

comes symmetric positive definite (SPD) [2, 21]. This assumption is nongeneric,

thus fragile, since symmetry is easily destroyed by an arbitrarily small parametric

perturbation on Kp.

To illustrate this issue, we consider the case of direct adaptive visual tracking

for planar manipulators using a fixed camera (plant) with optical axis orthogonal

to the robot workspace. The camera orientation is uncertain with respect to the

robot workspace coordinates [44, 45]. The objective is to control the robot so that

the image of its end-effector tracks a desired trajectory in the image plane. This

problem is discussed in detail in Subsection 2.3.2.

In this case, the HFG is essentially a rotation matrix where φ is the angle between

camera and manipulator frames.

Kp =

[

cos(φ) −sin(φ)
sin(φ) cos(φ)

]

(1.38)

Except for trivial cases, this matrix is not SPD and has complex eigenvalues. Con-

sidering a nominal φnom = 45◦, Kp is:

Kpnom =

[

0.7071 −0.7071

0.7071 0.7071

]

A possible symmetrizig matrix would be

Sp =

[

2 1

−2 1

]

such that SpKp is SPD.

SpKpnom =

[

2.1213 −0.7071

−0.7071 2.1213

]

However, if the actual value of φ is slightly different of φnom, say φ = 45.01◦, the
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product SpKp is no longer SPD.

SpKp =

[

2.1212 −0.7075

−0.7067 2.1214

]

Recent progress in circumventing the symmetry assumption has brought renewed

attention to the MIMO MRAC problem. By using matrix factorization methods,

it is possible to design stable MIMO-MRAC for plants with uncertain and possibly

non-symmetric HFG [21, 25, 46–50]. However, while such factorization approach

represents a quite general solution, it leads to controller overparametrization.

Further details on the method based on SDU factorization is given in Subsec-

tion 1.4.2. The necessity of overparametrization not only increases the number of

adapted parameters by a scale of M(M − 1)/2 as it can lead to loss of robustness,

since the matching parameters form a linear manifold (and therefore unbounded)

[51, 52].

For plants with uniform relative degree one, using the Immersion and Invari-

ance approach (I & I) [53], the symmetry condition was also circumvented. The

I & I method requires the knowledge of a less restrictive multiplier Γ such that

KpΓ
T +ΓKT

p > 0 [54]. However, the adaptive law had to include additional filtering

and auxiliary control signals. Another possibility for the case of relative degree one

appeared more recently in [39] and [44] based on a generalized passivity condition

named WSPR, instead of the usual SPR (Strictly Positive Real) condition. The

concept of WASPR (W-almost SPR) was also introduced in [39] and consists in

requiring the plant to become WSPR through some static output feedback. It was

shown in [44] that a necessary and sufficient condition for minimum phase plants of

relative degree one to be WASPR is that the HFG matrix has a positive diagonal

Jordan form. We shall refer to this condition as the PDJ condition. The WSPR

approach leads to a simpler adaptation law which is just the conventional (unnor-

malized) Lyapunov-based law without the augmented parametrization required in

the factorization methods.

Recalling the visual servoing example, we note that Kp in Eq. 1.38 is not PDJ

either since it has complex eigenvalues. However according to the results of Subsec-

tion 1.1.4, we know that it is possible to obtain a multiplier L̄ that guarantees that

L̄Kp does satisfy the PDJ condition. Considering the nominal value of φnom = 45◦,

it is possible to use the multipler L̄ as

L̄ =

[

35.3553 0

−0.7071 0.7071

]

such that L̄Kp satisfies the PDJ condition in the interval −71◦ < φ < 73◦. Unlike
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the symmetry condition, which can be easily destroyed by small parametric pertur-

bation, PDJ condition is valid on a set. The visual servoing application is discussed

in detail in Subsection. 2.3.2

In the next section we present a brief review of related MIMO MRAC designs

to provide a better comparison with the new techniques to be proposed in the next

chapters. These techniques require the PDJ condition on Kp and mitigate the need

of symmetry conditions.

1.4 Review of Previous Designs

Only CT systems will be considered in this section. The Lyapunov design develops

the adaptation law from a Lyapunov function involving the error state and the

parametric errors.

For simplicity, consider the case of uniform relative degree one. In the scalar

case, it is well known that a simple way to form the Lyapunov function is by choos-

ing an SPR reference model so that the positive real lemma can be applied to the

error state equations. In the multivariable case, the transfer function Wm(D)Kp

can only be SPR if Kp is symmetric. In order to relax this stringent condition,

two recent methods can be used: (a) HFG factorizations with corresponding con-

trol reparametrization [25] and (b) a generalized passivity condition (WSPR) [39].

We briefly overview these methods in order to put into perspective our proposed

methods.

1.4.1 Lyapunov Design

Let us recall the main steps in the SISO design:

1. Wm(s) is a scalar transfer function chosen to be SPR.

2. The adaptive control law is

u = θTω , (1.39)

where θ(t) is an estimate of θ∗. With (1.39) the output error is a linear function

of the parameter error θ̃ = θ − θ∗,

e = Wm(s)Kp

[

θ̃Tω
]

. (1.40)

3. Assuming that sign(Kp) is known, stability and convergence of e(t) are assured

by the update law (SISO case)

θ̇ = −γ sign(Kp)ωe . (1.41)
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The MIMO generalizations of these steps, discussed in the textbooks [2, 21], can be

briefly summarized as follows.

For Step 1 ,a diagonal reference modelWm(s) is selected as in (1.24). For Step 2,

the matrix version of the control law (1.39) is employed, where θ is a matrix, while

ω is an enlarged vector. The MIMO error equation retains the same form of the

SISO error equation (1.40), except that Wm(s), Kp and θ̃ are matrices. For Step 3,

different assumptions about Kp have been made. An early design for unknown Kp

was considered in [2, 21, 24], under the additional assumption that a matrix Sp is

known such that KpSp = (KpSp)
T > 0.

This assumption is quite restrictive when Kp is unknown. However, it is illus-

trative to show the corresponding Lyapunov function and adaptive law of this pio-

neering method [24]. To this end, consider a state realization of the error equation

(1.40):

ẋe = Ac xe +BcKp[θ̃
Tω], e = Ho xe, (1.42)

where {Ac, Bc, Ho} is a realization of Wm(s). As usual, assume that Wm(s) is SPR.

Then, by the positive real lemma, for some symmetric positive definite (SPD) P and

Q one has AT
c P + PAT

c = −Q; PB = HT
o . The Lyapunov function is given by

V = xTe Pxe + tr(θ̃Γpθ̃
T ) (1.43)

where Γp = KT
p S

−1
p = (S−1

p )T (KpSp)
T (S−1

p ), P = P T > 0. Differentiating with

respect to t, one gets

V̇ = xTe (A
T
c P + PAc)xe + 2(ωT θ̃KT

p B
T
c Pxe + tr(θ̃Γp

˙̃θT )) (1.44)

Then the following type of adaptive law was proposed in [24]:

˙̃θT = −Speω
T ; (1.45)

From (1.44) and (1.45) one gets

V̇ = −xTeQxe + 2(ωT θ̃KT
p B

T
c Pxe − tr(θ̃ΓpSpeω

T )) (1.46)

or (Note: if x, y ∈ R
n then tr(xyT ) = yTx),

V̇ = −xTeQxe + 2(ωT θ̃KT
p B

T
c Pxe − ωT θ̃ΓpSpe) (1.47)

For negative semi-definitness, we set ΓpSp = KT
p . This means that Sp must be

chosen such that KPSP = (KPSP )
T becomes SPD. Thus, a quite stringent prior

knowledge (of one such Sp) is required about Kp.
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1.4.2 Gain factorization

A new parametrization can be performed using a factorization of the high frequency

gain Kp. For this, we need the following lemma (see [25])

Lemma 4 Every m × m real matrix Kp with nonzero leading principal minors

∆1, ∆2, · · · ,∆m can be factored as

Kp = SDU , (1.48)

where S is symmetric positive definite, D is diagonal, and U is unity upper trian-

gular.

Proof. Since the leading principal minors of Kp are nonzero, there exists a unique

factorization

Kp = L1DpL
T
2 , (1.49)

where L1 and L2 are unity lower triangular and

Dp = diag

{

∆1,
∆2

∆1

, · · · , ∆m

∆m−1

}

. (1.50)

Factoring Dp as

Dp = D+D , (1.51)

where D+ is a diagonal matrix with positive entries, we rewrite (1.49) as Kp =

L1D+L
T
1L

−T
1 DLT

2 , so that (1.48) is satisfied by

S = L1D+L
T
1 , U = D−1L−T

1 DLT
2 . (1.52)

�

Remark. The above factorization Kp = SDU is not unique because the positive

diagonal matrix D+ is a free parameter.

The SDU factorization of Kp is then employed to derive a new form of the error

equation. Substituting Kp = SDU in (1.37) we obtain

e = Wm(s)SD[Uu− Uθ∗T1 ω1 − Uθ∗T2 ω2 − Uθ∗3y − Uθ∗4r] . (1.53)

A further refinement of this expression will make sure that the control law is well-

defined. With the decomposition

Uu = u− (I − U)u (1.54)

where (I − U) is strictly upper triangular, it is possible to define the control signal

u as a function of (I − U)u. No static loops can appear, because u1 depends on
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u2, · · · , um, while u2 depends on u3, · · · , um, and so on. The unknown entries of U

are incorporated in the new parametrization by defining K1 = Uθ∗T1 , K2 = Uθ∗T2 ,

K3 = Uθ∗3, and K4 = Uθ∗4, and rewriting (1.53) as

e = Wm(s)SD[u−K1ω1 −K2ω2 −K3y −K4r − (I − U)u] . (1.55)

Next, new parameter vectors Θ∗
i are introduced via the identity

[

Θ∗T
1 Ω1 Θ∗T

2 Ω2 · · · Θ∗T
m Ωm

]T

≡

K1ω1 +K2ω2 +K3y +K4r + (I − U)u . (1.56)

In addition to the concatenated ith rows of the matrices K1, K2, K3, K4, each row

vector Θ∗T
i includes the unknown entries of the ith row of (I−U). The corresponding

regressor vectors are

ΩT
1 =

[

ωT u2 u3 · · · um

]

, (1.57)

ΩT
2 =

[

ωT u3 · · · um

]

,
...

ΩT
m =

[

ωT
]

.

The error equation (1.55) has thus been brought to the new form

e = (Wm(s)S)D

(

u−
[

Θ∗T
1 Ω1 Θ∗T

2 Ω2 · · · Θ∗T
m Ωm

]T
)

. (1.58)

In this new parametrization the adaptive control law is

u =
[

ΘT
1Ω1 ΘT

2Ω2 · · · ΘT
mΩm

]T

, (1.59)

where Θi are the estimates of Θ∗
i . Compared with the control law (1.31), this control

makes use of a larger number of parameters.

The key feature of the error equation (1.58) is that the diagonal matrixD appears

in the place of the Kp, and an assumption can be made about the signs of its entries

d1, · · · , dm. The following lemma holds (see [25]).

Lemma 5 For any A = diag{−ai}, ai > 0, (i = 1, · · · ,m), and any m ×m unity

lower triangular matrix L1, there exists D+ = diag{d+i }, d+i > 0, such that

Wm(s)S = (sI − A)−1L1D+L
T
1 (1.60)

is SPR.
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Proof. See proof in [55].

Combining the state x ∈ R
n of the plant (1.21) with the filter states ω1, and ω2

in CT (D = s), it is defined X = [xT ωT
1 ωT

2 ]
T ∈ R

n+2m(ν−1). Where XM denotes

the state of the corresponding nonminimal realization Cm(sI−Am)
−1Bm ofWm(s)S

where CmBm = S. Then, the state error z = X − Xm and the output error e in

(1.58) satisfy

ż = Amz + BmD

(

u−
[

Θ∗T
1 Ω1 · · · Θ∗T

m Ωm

]T
)

,

e = Cmz . (1.61)

Because Wm(s)S is SPR, there exist matrices Pm = P T
m > 0 and Qm = QT

m > 0

satisfying

AT
mPm + PmAm = −2Qm , (1.62)

PmBm = CT
m .

An update law for the control parameters vectors Θi is design in the adaptive control

(1.59) in a complete analogy with SISO adaptive case. The following Lyapunov

function is used

V =
1

2

(

zTPmz +
M
∑

i=1

γ−1
i |di|Θ̃T

i Θ̃i

)

, (1.63)

where Θ̃i = Θi−Θ∗
i are the parameter errors, di are the entries of D, and γi > 0 are

adaptation gains. The time derivative of (1.63) along the trajectories of the error

system (1.61) yields

V̇ = −zTQmz + zTPmBmD
[

Θ̃T
1Ω1 · · · Θ̃T

MΩM

]T

+
M
∑

i=1

γ−1
i |di|Θ̃T

i
˙̃Θi

= −zTQmz +
M
∑

i=1

γ−1
i |di|Θ̃T

i

[

γi sign(di)eiΩi +
˙̃Θi

]

.

An update law which renders V̇ nonpositive, V̇ = −zTQmz, is

Θ̇i =
˙̃Θi = −γi sign(di)eiΩi , (i = 1, · · · ,M) . (1.64)

Thus, the adaptive control (1.59) and the update law (1.64) guarantee Θ̃i,Θi ∈ L∞

and z ∈ L∞ ∩ L2.

Because z = X−XM andXM are bounded, X is also bounded and, consequently,

y, ω1 and ω2 are bounded. Since r(t) is uniformly bounded by assumption, ω is

bounded. To prove that Ω1, · · · ,Ωm are bounded and, hence, u is also bounded,
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we return to (1.57). The advantage of the structure of (1.57), resulting from the

control parametrization, is that Ωm = ω being bounded, implies that um = ΘT
mΩm

is bounded. Therefore ΩT
m−1 = [ωT um] is bounded. Repeating this argument

it is possible to show that um−1, · · · , u2, u1 are all bounded. Therefore, all the

signals in the closed-loop system are bounded. This also implies that ż, ė, Θ̇i and

consequently V̈ are all uniformly bounded. Finally, the usual argument invoking

Barbalat’s Lemma proves that z(t), e(t) → 0 as t→ ∞.

Thus, the result is a controller that assures that all the closed loop signals are

uniformly bounded and the tracking error e(t) converges to zero.

1.4.3 Generalized Passivity (WSPR)

The factorization approach leads to a more involved adaptive law as a result of the

augmented parametrization. Moreover, it is dependent of the input-output pair-

ing since this affects the signs of the leading principal minors of Kp and also the

assumptions that they be nonzero.

In order to circumvent such limitations, possibly at the expense of a more restric-

tive assumption about the unknown HFG, a new method was developed based on

a generalized passivity condition described by a modified positive real lemma which

characterizes the so called WSPR systems. The advantage of the resulting adapta-

tion algorithm is its simplicity. It does not involve augmented parametrization, is

independent of the input/output pairing and leads to adaptive laws which are very

close to the traditional ones.

From the Positive Real Lemma (1.17), one has that BTPB = BTCT = CB.

Thus, a LTI system (1.1) can only be SPR if (Kp = CB) is symmetric and positive

definite (SPD). This condition is usually not satisfied by real systems. A more

relaxed condition is the following. A solution to overcome this difficulty was recently

proposed in [39, 44], exploiting the more general concept of passivity associated with

the WSPR condition defined hereafter together with the condition of WASPR (“W

Almost SPR”) and some basic results related with such conditions , where the last

can be obtained by multiplying the output error vector by a triangular matrix.

Definition 14 (WSPR [39, 44]) A linear time-invariant system with state real-

ization {AK , B, C}, where AK ∈ R
n×n, B ∈ R

n×m, and C ∈ R
m×n is said to be W–

Strictly-Passive (WSP) and its transfer function C(sI−AK)
−1B is said W–Strictly

Positive Real (WSPR), if there exist symmetric and positive definite matrices P , Q,
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and W such that

AT
KP + PAK = −Q , (1.65)

PB = CTW . (1.66)

It was noted in [44] that, unlike the SPR condition, the equations (1.65)-(1.66) no

longer require the symmetry condition of CB but instead of W (CB), according to

Lemma 1 As in [56],[30], if Kp does not satisfy the PDJ condition, we choose an

adequate matrix multiplier L such that LKp does satisfy such condition in a robust

way using the above result.

Definition 15 (WASPR [39, 40]) A linear time-invariant system with state re-

alization {A,B,C}, is said to be WASPR if it can be made WSPR through a static

output feedback, i.e., if there exists K ∈ R
m×m such that C(sI − AK)

−1B results

WSPR, with AK = A−BKC.

Theorem 1 (WASPR Theorem [40]) Every strictly proper and minimum phase

system {A,B,C}, with A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n and m×m transfer function

C(sI − A)−1B, can be made WSPR via (sufficiently large) output feedback, if and

only if Kp has positive real eigenvalues and its Jordan form is diagonal.

The passifying multiplier L is chosen so that the modified system {AK , BcKP , LH0}
satisfies the WASPR condition of Theorem 1. This allows us to deal with plants

with non-symmetric HFG, requiring it only to satisfy the PDJ condition, which

is robust and non fragile in opposition to symmetry requirements of conventional

MRAC designs. One possible way to determine a passifying multiplier L is using

the LDU factorization, as shown in [30]. To make this work more self-contained,

this is discussed in Subsection 2.2.5.

1.4.4 WSPR based MIMO MRAC

Consider the control given by (1.39) and the error equations (1.40) and (1.36)in CT.

Assume that Wm(s)Kp is WSPR. Then, by definition, one has

AT
c P + PAc = −Q , (1.67)

PBKp = HT
o W . (1.68)
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for some SPD matrix W . Now, as in [39], using the factorization W = STS, S ∈
R

M×M non singular, it can be shown that the Lyapunov function (compare with the

function utilized for the conventional adaptive law (1.43))

V = xTe Pxe + tr
[

Sθ̃TΓ−1θ̃ST
]

, (1.69)

where Γ is SPD. Let the adaptive law be chosen as

θ̇T = −eωTΓ . (1.70)

Then, the derivative of V is given by

V̇ = −eTQe+ 2eTWθ̃Tω − 2tr
[

SeωT θ̃ST
]

, (1.71)

V̇ = −eTQe+ 2eTWθ̃Tω − 2ωT θ̃We , (1.72)

and, since the last two terms cancel, we have

V̇ = −eTQe , (1.73)

implying that the adaptation is globally stable and the tracking error e tends to

zero asymptotically. It is important to notice that the matrix W is not used in the

adaptive law. It is only used to prove the stability.

1.5 L1 Adaptive Control

A recently proposed control architecture has attracted notable attention in the past

few years. The so-called L1 Adaptive Control (L1-AC), firstly published in [33]-[57]

and later in the book [58], according to the authors, provides fast adaptation with

guaranteed transient properties using high adaptation gain. The controller basically

consists of a modified Model Reference Adaptive Control (MRAC) using an input

filtered control, a state prediction loop and high-gain adaptation law with parameter

projection.

The L1-AC has been applied to aerospace systems. In [59], flight tests in an

Unmanned Aerial Vehicle (UAV) showed robustness of the L1-AC. Robustness of

the L1-AC was illustrate using the Rohrs counterexample as benchmark, where

the conventional MRAC failed to maintain stability in the presence of unmodeled

dynamics. Control of sattelites using the L1-AC is presented in [60], motivated by

the use of high gain fast adaptation with quantifiable transient bounds. The interest

in uniformly bounded transient lead to the the use a modified parametrization of

L1-AC in [61], where the application is control of unmanned quadrotor aircrafts.
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An overview of the application of L1-AC to aerospace systems, as well as a more

extensive list of applications, is seen on [62]. Fundamental control characteristics of

flying applications and discussion regarding what makes L1-AC suitable in this case

is found in [63].

Other recent work can also be found on the literature reporting successful appli-

cations of the L1-AC. In [64] L1-AC is used to compensate hysteresis in piezoelectric

actuators. Experimental results are presented showing good performance. In [65],

the ability to provide guaranteed transient behavior motivated the extension of L1-

AC to infinite-dimensional systems, where it is then applied to the design of adaptive

observers and controllers.

The basic formulation of L1-AC is presented in this section. We revisit this

technique in Chapter 4, where its drawbacks are discussed and a comparison with a

newly presented controller is established.

1.5.1 L1-AC Problem Formulation

This subsection is based on [58].

Consider the class of systems

ẋ(t) = Ax(t) + b(u(t) + θTx(t)), x(0) = x0 (1.74)

y(t) = cTx(t); (1.75)

where x(t) ∈ IRn is the system state vector (measured); u(t) is the control signal;

b, c ∈ IRn are known constant vectors; A ∈ IRn×n is a known n × n matrix with

(A, b) controllable; θ is the unknown parameter, which belongs to a compact set and

y(t) ∈ IR is the regulated output.

The authors in [58] present an adaptive control solution such that y(t) follows a

given bounded and picewise-continuous reference signal r(t) with quantfiable tran-

sient and steady-state performance bounds.

To that end, the following control structure is used

u(t) = um(t) + uad(t), um(t) = −kTmx(t) (1.76)

where km renders Am , A − bkTm Hurwitz, while uad(t) is an adaptive component

soon to be defined. The partially closed-loop system is given by:

ẋ(t) = Amx(t) + b(θTx(t) + uad(t)), x(0) = x0 (1.77)

y = cTx(t) (1.78)
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The following state-predictor is used

˙̂x(t) = Amx̂(t) + b(θ̂Tx(t) + uad(t)) x̂(0) = x̂0; (1.79)

ŷ = cT x̂(t) (1.80)

where x̂(t) ∈ IRn is the state of the predictor and θ̂(t) ∈ IRn is the estimate of the

parameter θ, obtained by a projection based adaptive law

˙̂
θ = γProj(θ̂(t),−x̃T (t)Pbx(t)), θ̂(0) = θ̂0 ∈ Θ; (1.81)

the prediction error is defined as x̃(t) , x̂(t)− x(t), γ ∈ IR+ is the adaptation gain,

P = P T is the solution of Lyapunov equation AT
mP + PAm = −Q for arbitrary

symmetric Q = QT > 0. The projection is confined to the set Θ. The adaptive

control signal in the frequency domain is

uad(s) = −C(s)(η̂(s)− kgr(s)) (1.82)

where r(s) and η̂(s) are the Laplace transforms of r(t) and η̂(t) = θ̂T (t)x(t), respec-

tively. The input gain kg , −1/(cTA−1
m b) is assumed known and C(s) is a stable

filter. The L1-AC architecture is presented in the block diagram of Fig. 1.2.

Figure 1.2: L1-AC architecture

The L1-AC is defined by Eq. (1.76),(1.79)-(1.82). A L1 condition on km and

C(s) is required as follows:

λ , ||G(s)||1 L < 1 (1.83)

with

G(s) , H(s)(1− C(s)), H(s) , (sI − Am)
−1b, L , max

θ∈Θ
||θ||1 (1.84)

The L1-AC considers a reference system defined by the nonadaptive version of the
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adaptive control system in Eq. (1.75), (1.76), (1.82) as follows

ẋref (t) = Axref (t) + b(θTxref (t) + uref (t)), xref (0) = x0, (1.85)

uref (s) = −C(s)(θTxref (s)− kgr(s))− kTmxref (s), (1.86)

yref (s) = cTxref (s) (1.87)

Note that the controller (1.86) attempts to compensate only for uncertainties within

the bandwidth of C(s).

Lemma 6 If ||G(s)||1 L < 1, then the system (1.86) is bounded-input-bounded-state

(BIBS) stable with respect to r(t) and x0

(Proof: see [58])

The following expression to the prediction error dynamics is obtained from

Eqs. (1.77) and (1.79)

˙̃x(t) = Amx̃(t) + bθ̃T (t)x(t), x̃(0) = 0 (1.88)

with it is defined θ̃(t) = θ̂(t) − θ. Two lemmas are stated in [58] for the prediction

error.

Lemma 7 The prediction error in (1.88) is uniformly bounded:

||x̃||∞ ≤
√

θmax

λmin(P )Γ
, θmax , 4max

θ∈Θ
||θ||2 (1.89)

where λmin(P ) is the minimum eigenvalue of P

Lemma 8 If uad(t) is defined according to (1.82) and the condition (1.83) holds,

then we have the following asymptotic result:

lim
t→∞

x̃(t) = 0

These two lemmas ensure convergence and guaranteed transient properties on the

prediction error. We note, however, that at this point no guarantees are yet given

to the tracking error.

The following theorem L1-AC is stated as found in [58] and defines the system

state properties related to the reference system of Eq. (1.86).

Theorem 2 (L1-AC Theorem) For the system in (1.75) and the controller de-

fined via (1.76) and (1.79)-(1.82) subject to the L1-norm condition in (1.83), we
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have

||xref − x||∞ ≤ γ1√
Γ
, ||uref − u||∞ ≤ γ2√

Γ
(1.90)

lim
t→∞

||xref − x|| = 0, lim
t→∞

||uref − u|| = 0, (1.91)

where

γ1 ,
||C(s)||1

1− ||G(s)||1 L

√

θmax

λmin(P )
, (1.92)

γ2 , ||H1(s)||1

√

θmax

λmin(P )
+
∣

∣

∣

∣C(s)θT + kTm
∣

∣

∣

∣

1
γ1 (1.93)

(Proof: see [58])

Theorem 2 implies that x(t) and u(t) can be made arbitrarily close to xref (t)

and uref (t) by increasing the adaptive gain Γ. The control objective is then reduced

to selecting km and C(s) to obtain a desired response in the reference system.

For stabilization purposes, the following remark of [58] should be highlighted

Remark 1 Since C(0) = 1, application of Final Value Theorem to the closed-loop

reference system in (1.86) in the case of constant r(t) ≡ r leads to

lim
t→∞

yref (t) = cTH(0)C(0)kgr = r

Which along Theorem 2 indicates that a guaranteed performance can be obtained

for constant reference signals.

It should be also noted that the L1-AC algorithm we presented here deals with

SISO systems with known input gain and state feedback. Different variations of

the L1-AC are found in the literature, so as it is possible to deal with unknown

input gain, output feedback, nonlinear systems, MIMO systems, among other classes

of plants. Nevertheless, it is interesting to note that these different applications

often require significant changes in the controller architecture. For a more complete

reference on L1-AC, see [58].

Despite reports of successful applications, some recent work question the effi-

ciency of the L1-AC such as [66] and [67]. Criticisms include the use of excessively

high adaptation gains and the inability to track a time-varying reference. The draw-

backs of L1-AC are further discussed in Chapter 4.
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1.6 Objective and Contribution of the Work

The objective of this Thesis is to propose new MRAC designs that does not require

stringent symmetry assumptions on the HFG and to obtain robust controllers with

guaranteed transient properties.

We seek to relax the stringent gain symmetry conditions on the plant HFG

without the need of overparametrization and for plants of arbitrary relative degree.

We thus propose techniques that require the PDJ condition on the HFG, which is a

less restrictive condition.

In Chapter 2, we propose a new MRAC algorithm based on the bilinear error

formulation, which is similar to conventional techniques. Circumvention of the sym-

metry assumption is achieved by means of a new adaptation law, such that the new

controller is simple. Also, it can be applied to plants with arbitrary relative degree.

Since pure gradient adaptive control suffers from lack of robustness and may

present poor adaptation transient, this has motivated the proposal of an extension to

the BMRAC (Binary Model Reference Adaptive Control) [32]. The BMRAC consists

basically of the conventional MRAC modified by parameter projection combined

with high adaptation gain. and its MIMO extension was recently proposed in [30].

The BMRAC tends to behave as a sliding mode controller as the adaptation gain is

increased. However, such gain can be tuned up to a sufficient value while avoiding

chattering. Even though this solution also requires only thatKp is PDJ, thus relaxing

the symmetry condition, it was restricted to plants of uniform relative degree one.

In Chapter 3, we propose a further extension to MIMO BMRAC to encompass

non-uniform arbitrary relative degree plants that achieves global exact tracking.

The relative degree obstacle is circumvented by using a hybrid estimation scheme

recently generalized to a multivariable framework [68]. Such estimator, named,

Global Robust Exact Differentiator (GRED), switches between a standard MIMO

lead filter and a nonlinear one which utilizes Robust Exact Differentiators (RED)

[69] based on higher order sliding modes. The use of MIMO GRED renders the error

system uniformly globally exponentially practically stable with respect to a small

residual set with ultimate convergence to zero.

The reason why we only dealt with a more elementary architecture of L1-AC

in the previous section is because we are interested on its main features: the high

gain adaptation with projection, the use of a prediction loop and the control input

filtering. These ingredients are present in other previously proposed techniques as

the Binary MRAC (BMRAC) [70] and the Smooth Sliding Control (SSC) [71]. These

controllers present robustness and good transient behavior,

The Smooth Sliding Control (SSC), proposed by Hsu in [71] as a solution to avoid

chattering in sliding mode control (SMC) systems, also relies on input filtered control
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together with an output error prediction loop, similarly to the L1-AC. The high-gain

naturally appears since the control signal is generated by an amplitude modulated

relay function. The discontinuous control is filtered prior to being injected into

the plant, providing a smooth control signal. Despite the similarity, however, an

essential difference is apparent since the SSC explicitly employs a reference model

- which L1-AC does not. It is then possible to track a time-varying reference with

a small residual error with the SSC while such property is not guaranteed with the

L1-AC.

The use of high gain projection adaptation laws was proposed by [70], under

the designation of Binary-MRAC (BMRAC), as a method to improve adaptation

transient and to achieve the good performance and robustness properties of a sliding

mode controller (SMC), while avoiding chattering. it can be shown that the BMRAC

tends to a sliding mode controller as the adaptation gain was increased. Therefore,

it can be expected that the SMC can be replaced by a BMRAC loop.

In Chapter 4, we propose a new controller obtained by a combination of BMRAC

and SSC that shares the main features of L1-AC. The new controller is shown to

present desirable robustness and guaranteed transient characteristics and is able to

overcome certain limitations found in the L1-AC.

Also, it is interesting to compare the eBMRAC performance to the regular BM-

RAC. It is expected the eBMRAC to inherit robustness properties from the SSC

architecture, such that it would be an advantage in comparison to the BMRAC.

This controller is presented in its SISO version with preliminar results to MIMO

extension.
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Chapter 2

Bilinear Error Multivariable

MRAC

2.1 Introduction

Inspired by recent results related to the WSPR concept, we revisit the“conventional”

MIMO direct MRAC design [2, 21] and propose a new design. The significant advan-

tage is that, while keeping similar structure and complexity as in the conventional

design, the stability can be established without requiring the aforementioned sym-

metry conditions.

This chapter proposes a new multivariable MRAC design for plants with arbi-

trary (vector) relative degree, based on the PDJ condition. Both Continuous-Time

and Discrete-Time cases are considered.

In order to extend the MIMO MRAC to plants which do not satisfy the PDJ

condition, we proceed as explained in [44]. We choose an adequate matrix multiplier

L such that LKp does satisfy such condition in a robust way, i.e, the condition holds

for an open set in the Kp space. Furthermore, we propose a modified adaptation

law using right gain multipliers so that global stability and error convergence to zero

can be proved for the MIMO MRAC. We show that, under certain circumstances,

the symmetry requirements can be relaxed in the conventional design.

To this end, we first establish a fundamental lemma about the boundedness of

the normalized estimation error, the estimated parameters, and their derivatives or

variations. Such lemma leads to the complete stability and convergence proof of

the closed-loop adaptive system, following a well established stability analysis [21,

pp.405].
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2.2 Bilinear MIMO MRAC Design using a stabi-

lizing multiplier

Our new controller inherits the design approach based on a bilinear error formulation

as in the conventional MIMO MRAC and its basic structure. Since the control signal

is obtained through different update laws, we present the problem formulation as in

the conventional case and thus propose a new update law. We use “conventional” to

refer to MIMO MRAC techniques found in textbooks such as [2] and [21]. In this

way, a direct comparison between both approaches is easily established, showing that

the new controller is similar to the conventional one. However, with a important

difference in the choice of new adaptation laws.

2.2.1 Error Equations

The output error and input signal are given by (1.25) and (1.31) and repeated here

for convenience

e = y − ym; u = θTω (2.1)

The control objective is to find a feedback control u(t) such that the output error

tends asymptotically to zero for arbitrary initial conditions and uniformly bounded

picewise continuous reference signals r(t).

For both the continuous and discrete-time cases, the error is thus obtained from

(1.31), (1.25) and (1.37).

(y − ym) = Wm(D)Kp

[

(θ − θ∗)Tω
]

(2.2)

Without loss of generality, choose Wm(D) = ξm(D)−1 from Eq. (1.23):

ξm(D)(y − ym) = Kp

[

(θ − θ∗)Tω
]

(2.3)

Let δm denote the maximum degree of ξm(D). Then, filtering both sides by h(D) =
1

f(D)
where f(D) is any stable polynomial (Hurwitz, in CT, or Schur, in DT) of

degree δm, we get

ξm(D)h(D)(y − ym) = Kp

[

h(D)[u]− θ∗
T

h(D)[ω]
]

(2.4)

And then define the normalized error, with ψ being the estimate of ψ∗ = Kp

ǫ =
ξm(D)h(D)[y − ym] + ψξ

1 + β(ζT ζ + ξT ξ)
(2.5)
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with the signals ξ(t) and ζ(t) defined as

ξ(t) = θT (t)ζ(t)− h(D)[θTω](t) (2.6)

ζ(t) = h(D)[ω](t) (2.7)

From (2.4), (2.5) and (2.6), defining ψ̃ = ψ − ψ∗ and θ̃ = θ − θ∗ and noting that

u = θTω

ǫ =
Kp

[

h(D)[u](t) + θ̃Th(D)[ω](t)− θTh(D)[ω](t)
]

1 + β(ζT ζ + ξT ξ)
+

+
ψ(t)θT (t)ζ(t)− ψ(t)h(D)[u](t)

1 + β(ζT ζ + ξT ξ)
(2.8)

Finally, since ψ∗ = Kp and from (2.6) and (2.7), we find the bilinear parametric

error model [2].

ǫ =
ψ̃ξ +Kpθ̃

T ζ

m2
(2.9)

where m2 is a normalizing signal defined as follows with β > 0.

m2 = 1 + β(ζT ζ + ξT ξ) (2.10)

It is easy to conclude that such normalization implies that the estimation error ǫ is

bounded if the parameters are bounded, irrespectively of the signals ξ and ζ provided

they are L∞
e .

2.2.2 Conventional Design

Using the previous error model, the conventional design [21] requires the knowledge

of an M × M matrix Sp such that KpSP = (KpSp)
T > 0, for the CT case, or

2I > KpSP = (KpSp)
T > 0, in the DT case. Then, the CT parameter update laws

are given by

θ̇T (t) = −Spǫ(t)ζ
T (t) (2.11)

ψ̇(t) = −Γǫ(t)ξT (t) (2.12)

For the DT case we have:

θT (t+ 1) = θT (t)− Spǫ(t)ζ
T (t) (2.13)

ψ(t+ 1) = ψ(t)− Γǫ(t)ξT (t) (2.14)
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where Γ is an M × M constant adaptation gain matrix such that Γ = ΓT > 0

(2βI > Γ for the DT case).

It is particularly important to note here that, in this scheme, the matrix Sp has

to be known and is used in the adaption law. This is a specially restrictive condition

if Kp is uncertain since symmetry is a nongeneric property and could be destroyed

with an arbitrarily small modification of Kp, within the uncertainty domain.

Stability can be proven using the error model of Eq. (2.9) and the following

Lyapunov-like function:

V (θ̃(t), ψ̃(t)) =
1

2
tr[θ̃(t)Γ−1

p θ̃T (t)] +
1

2
tr[ψ̃T (t)Γ−1ψ̃(t)] (2.15)

with Γp = SpK
−T
p , and t ∈ [0,∞) for the CT case and t ∈ {0, 1, 2, 3, ...} for the DT

case.

2.2.3 New Design

The new solution uses the following adaptation laws for the CT case. The multiplier

L̄ is such that L̄Kp is PDJ and is used to ensure stability properties for the closed

loop system.

θ̇T (t) = −L̄ǫ(t)ζT (t)Γ1 (2.16)

ψ̇(t) = −ǫ(t)ξT (t)Γ2 (2.17)

and, for the DT case

θT (t+ 1) = θT (t)− L̄ǫ(t)ζT (t)Γ1 (2.18)

ψ(t+ 1) = ψ(t)− ǫ(t)ξT (t)Γ2 (2.19)

where Γ1 and Γ2 are arbitrary symmetric positive definite matrices. Note here

that the gain matrices Γ1,Γ2 are right multipliers (they weight the elements of the

regressors vectors ζ, ξ), while in the conventional laws, are left multipliers (they

weight the elements of the error vector ǫ). Moreover, note that in the new design,

the gains Γ1,Γ2 are arbitrary, while in the conventional case the gain Sp explicitly

involves the symmetrization of SpKp.

2.2.4 Stability Analysis

We wish to establish the following fundamental lemma.

Lemma 9 Supposing that a matrix L̄ is known such that L̄Kp is PDJ, the following

stability properties can be established:
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(i) The adaptive law (2.16), (2.17) ensures that θ(t), ψ(t), ǫ(t) ∈ L∞, θ̇(t), ψ̇(t),

ǫ(t)m(t) ∈ L∞, and
∫ t2

t1

x2(t)dt ≤ ac (2.20)

for some constant ac > 0, any t1, t2 ≥ 0, x(t) = ‖θ̇(t)‖+ ‖ǫ(t)‖m(t)

(ii) The adaptive law (2.18), (2.19) ensures that θ(t), ψ(t), ǫ(t), e(t)m(t) ∈ L∞,

and
t2−1
∑

t=t1

x2(t) ≤ ad (2.21)

for some constant ad > 0, any t1, t2 ≥ 0, x(t) = ‖θ(t+ 1)− θ(t)‖+ ‖ǫ(t)‖m(t).

If this lemma holds, the closed loop stability and tracking error asymptotic con-

vergence can be proved following a well established analysis as found in the textbook

by Tao [21, pp. 405].

Continuous-time

The proof of Lemma 9 for the CT case follows.

Proof: As in [39], we consider the following factorizations to propose a

Lyapunov-like function candidate, W1 = ST
1 S1, S1 ∈ R

M×M nonsingular, W2 =

ST
2 S2, S2 ∈ R

M×M nonsingular.

V (θ̃, ψ̃) =
1

2
tr[S1θ̃

TΓ−1
1 θ̃ST

1 ] +
1

2
tr[S2L̄ψ̃Γ

−1
2 ψ̃T L̄TST

2 ] (2.22)

whose time derivative is:

V̇ = tr[S1
˙̃θTΓ−1

1 θ̃ST
1 ] + tr[S2L̄

˙̃ψΓ−1
2 ψ̃T L̄TST

2 ] (2.23)

Substituting (2.16) and (2.17) in (2.23), we have

V̇ = tr[−S1L̄ǫζ
T θ̃ST

1 ] + tr[−S2L̄ǫξ
T ψ̃T L̄TST

2 ] (2.24)

Since tr(xyT ) = yTx, it is possible to rewrite (2.24) as V̇ = −(ζT θ̃W1L̄ǫ +

ξT ψ̃T L̄TW2L̄ǫ) with W1 = ST
1 S1 and W2 = ST

2 S2 being SPD matrices. This can

be rewritten as

V̇ = −(ζT θ̃W1 + ξT ψ̃T L̄TW2)L̄ǫ = −ǫT L̄T (W1θ̃
T ζ +W2L̄ψ̃ξ) (2.25)

DefiningW1 = W2L̄Kp such thatW−1
2 W1 = L̄Kp, one has V̇ = −ǫT L̄TW2L̄(Kpθ̃

T ζ+
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ψ̃ξ). Thus, it leads to

V̇ = −m2[ǫT L̄T ]W2L̄ǫ = −m2[ǫT L̄TW2L̄ǫ] ≤ 0 (2.26)

Note that L̄Kp must be anti-Hurwitz, since W1 = W2L̄Kp, can be written as

KT
p L̄

TW2 + W2L̄Kp = 2W1 since W1 and W2 are symmetric. We should empha-

size that, even though symmetry is required for W1 and W2, these matrices are just

for the stability analysis and do not need to be known i.e. only their existence must

be guaranteed. This holds if L̄Kp is PDJ.

It is interesting to observe that de PDJ condition appears as a technicality in

the stability proof and it is not associated to any property of the system. In the

generalized passivity framework, where this condition was originally established, the

PDJ condition is associated to a passivity property.

This result guarantees that θ(t), ψ(t) ∈ L∞. Then, from 2.9, one concludes that

ǫ(t) ∈ L∞. Indeed, note that in (2.9) and (2.10) the denominator contains the

squared norms ζ and ξ while these signals appear linearly in the numerator. From

the update laws (2.16) and (2.17), it follows that θ̇(t), ψ̇(t), ǫ(t)m(t) ∈ L∞ due to

the normalization (ζ and ξ appear quadratically in the numerator and also in the

denominator). Integrating both sides of (2.26) and from the uniform boundedness

of V (t), one concludes that ‖ǫm‖ ∈ L2. Noting that (2.16) can be rewritten as
˙̃θT = −mǫ(ζT/m)Γ1 and since ζT/m ∈ L∞ then ‖ ˙̃θ‖ ∈ L2.

The necessary condition for the existence of a SPDW2 such thatW1 = W2L̄Kp is

also SPD is that L̄Kp must have real positive eigenvalues and diagonal Jordan form

(PDJ) [44, Lemma 3]. This is indeed less restrictive than the symmetry requirement

and, moreover, it is a non fragile and generic condition.

Discrete-time

Proof: We use the same Lyapunov-like candidate considered in the previous

case

V (θ̃(t), ψ̃(t)) =
1

2
tr[S1θ̃

TΓ−1
1 θ̃ST

1 ] +
1

2
tr[S2L̄ψ̃Γ

−1
2 ψ̃T L̄TST

2 ] (2.27)

From (2.18) and (2.19), it follows that

∆V = V (θ̃(t+ 1), ψ̃(t+ 1))− V (θ̃(t), ψ̃(t)) = (2.28)

= −tr[S1L̄ǫ(t)ζ
T (t)θ̃(t)ST

1 ]− tr[S2L̄ǫ(t)ξ
T (t)ψ̃T (t)L̄TST

2 ]+

+
1

2
tr[S1L̄ǫ(t)ζ

T (t)Γ1ζ(t)ǫ
T (t)L̄TST

1 ]+

+
1

2
tr[S2L̄ǫ(t)ξ

T (t)Γ2ξ(t)ǫ
T (t)L̄TST

2 ]

35



Using the property tr(xyT ) = yTx, it follows that

∆V = −ζT θ̃W1L̄ǫ+
1

2
(ζTΓ1ζ(L̄ǫ)

TW1L̄ǫ) + (2.29)

− (ξT ψ̃T L̄TW2)L̄ǫ+
1

2
((L̄ǫ)TW2L̄ǫξ

TΓ2ξ)

where, as in the previous case, W1 = ST
1 S1 and W2 = ST

2 S2 are SPD matrices.

Defining W1 = W2L̄Kp and noting that W1 = W2L̄Kp = KT
p L̄

TW2 = W T
1 , and from

(2.9), one has that

∆V = −(ζT θ̃KT
p L̄

T − ξT ψ̃T L̄T )W2L̄ǫ+ (2.30)

+
1

2
((L̄ǫ)TW1L̄ǫ)(ζ

TΓ1ζ) +
1

2
((L̄ǫ)TW2L̄ǫ)(ξ

TΓ2ξ)

Note that ζT θ̃KT
p − ξT ψ̃T = ǫTm2, and since m2 = 1 + β(ζT ζ + ξT ξ), this leads to

∆V = −[1 + β(ζT ζ + ξT ξ)]((L̄ǫ)TW2L̄ǫ) + (2.31)

+
1

2
((L̄ǫ)TW1L̄ǫ)(ζ

TΓ1ζ) +
1

2
((L̄ǫ)TW2L̄ǫ)(ξ

TΓ2ξ)

Thus, the following inequality can be derived

∆V ≤ −(L̄ǫ)TW2L̄ǫ− β(ζT ζ)((L̄ǫ)W2L̄ǫ)− β(ξT ξ)((L̄ǫ)TW2L̄ǫ)+

+
1

2
λmax(Γ1)ζ

T ζ((L̄ǫ)TW1L̄ǫ) +
1

2
λmax(Γ2)ξ

T ξ((L̄ǫ)TW2L̄ǫ)

which can be further developed to

∆V ≤ −(L̄ǫ)TW2L̄ǫ− ζT ζ

[

ǫT L̄T

(

βW2 −
1

2
λmax(Γ1)W2L̄Kp

)

L̄ǫ
]

+

−ξT ξ
[

β − 1

2
λmax(Γ2)

]

[

(L̄ǫ)TW2L̄ǫ
]

(2.32)

Thus, to ensure that ∆V ≤ 0, β is chosen to satisfy the inequalities

β ≥ 1

2
λmax(Γ2) (2.33)

βW2 −
1

2
λmax(Γ1)W2L̄Kp ≥ 0 (2.34)

It is important to note that W2 is only used for analysis purposes, which makes

it desirable to obtain a condition on β that does not depend on W2. A simpler

expression is derived as follows.

Since W2 e W2L̄Kp are symmetric, then (βW2 − 1
2
λmax(Γ1)W2L̄Kp) is also sym-
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metric. Hence,

W2

(

βI − 1

2
λmax(Γ1)L̄Kp

)

=

(

βI − 1

2
λmax(Γ1)K

T
p L̄

T

)

W2 (2.35)

Thus, it follows that

W2(βI −
1

2
λmax(Γ1)L̄Kp) =

W2

2
(βI − 1

2
λmax(Γ1)L̄Kp)+ (βI − 1

2
λmax(Γ1)K

T
p L̄

T )
W2

2
(2.36)

The above equation has the form ATW2+W2A = Q (with A = βI− 1
2
λmax(Γ1)L̄Kp).

Thus, if λi(A) > 0, then Q = QT > 0. Therefore, (2.34) holds if

β >
λmax(Γ1)λmax(L̄Kp)

2
(2.37)

Consequently, if the explicit inequality

β > max

(

1

2
λmax(Γ2),

λmax(Γ1)λmax(L̄Kp)

2

)

(2.38)

is satisfied then ∆V ≤ −(L̄ǫ)TW2L̄ǫ, as desired for stability. Finally, using similar

arguments as for the CT case, the DT part of Lemma 9 also holds.

Table 2.1: Comparison between conventional and new design
Plant model y(t) = G(D)[u](t)
Reference Model ym = Wm(D)

Error model ǫ =
ψ̃ξ +Kpθ̃

T ζ

m2

Regressor Matrix ω = [ωT
u ωT

y yT rT ]T

Filters ωu = A(D)Λ−1(D)u
ωy = A(D)Λ−1(D)y

Normalizing Signals ξ(t) = θT (t)ζ(t)− h(D)[θTω](t)
ζ(t) = h(D)[ω](t)

m2 = 1 + β(ζT ζ + ξT ξ)
β is arbitrary positive in CT and has to satisfy (2.38) in DT

Control Law u = θTω
Conventional Design New Design

Adaptation Law

CT :

{

θ̇T (t) = −Spǫ(t)ζ
T (t)

ψ̇(t) = −Γǫ(t)ξT (t)

DT :



















θT (t+ 1) = θT (t)+

− Spǫ(t)ζ
T (t)

ψ(t+ 1) = ψ(t)+

− Γǫ(t)ξT (t)

CT :

{

θ̇T (t) = −L̄ǫ(t)ζT (t)Γ1

ψ̇ = −ǫ(t)ξT (t)Γ2

DT :



















θT (t+ 1) = θT (t)+

− L̄ǫ(t)ζ(t)TΓ1

ψ(t+ 1) = ψ(t)+

− ǫ(t)ξ(t)TΓ2

Lyapunov Function V = tr[θ̃Γ−1
p θ̃T ] + tr[ψ̃TΓ−1ψ̃] V (θ̃, ψ̃) = 1

2
tr[S1θ̃

TΓ−1
1 θ̃ST

1 ]+

+1
2
tr[S2L̄ψ̃Γ

−1
2 ψ̃T L̄TST

2 ]

Remark 2 (Extension to the conventional design) The result of Lemma 1
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can be applied to the conventional design assuming that Γ = γI and Sp is such

that SpKp is PDJ. In this case, Sp plays the role of the stabilizing multiplier L̄.

2.2.5 Determining the stabilizing multiplier L̄

Assuming that a nominal value of Kp is known and that all leading minors are

nonzero, then the following factorization always exists

Kp = LpDpUp (2.39)

where Lp is unit lower triangular, Dp is diagonal and Up is unit upper triangular.

Choosing a diagonal matrix D0 with positive and distinct diagonal elements and

with the matrices Lp and Dp of the LDU factorization of the nominal value of Kp,

a lower triangular multiplier matrix L̄ can be obtained

L̄ = D0(LpDp)
−1 (2.40)

such that the matrix

K̄p = LKp = D0(LpDp)
−1(LpDp)Up = D0Up (2.41)

is upper triangular with diagonal elements and eigenvalues positive real and distinct.

Thus, from [44, Lemma 3] there exists a matrix W such that WLKp is SPD.

2.3 Simulation Results

In this section, we present some simulation results to illustrate the theoretical de-

velopments.

2.3.1 Process control plant with nonuniform relative degree

satisfying the PDJ condition

The first case we address is inspired on a stable chemical process model presented in

[72, pp.701], which is made unstable in order to address a more challenging control

problem. We consider an uncertain MIMO LTI plant with nonuniform vector relative

degree (ρ1=2, ρ2=1).

G(s) =

[

4
s2+4s+3

−2
s2+4s+3

−1
s−1

1
s−1

]

(2.42)
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Figure 2.1: Process control plant tracking performance: plant output y (—); and
model output ym (- -)

Note that Kp = lims→∞ξ(s)G(s) is PDJ but not symmetric

Kp =

[

4 −2

−1 1

]

(2.43)

We use the reference model:

Wm(s) =

[

1
s2+2s+1

0

0 1
s+2

]

(2.44)

with reference signals r1 = 8 sin(t) and r2 = 8 sin(1.2t). We choose β = 0.1; the

matrix gains are Γ1 = 0.25 diag{0.5, 1, 5, 1, 0.5, 1, 1, 1}, Γ2 = 0.25I2×2; I/O state

filters (1.29): Λ(s) = 1
s+10

; (observability index) ν = 2; h(s) = 1
(s+2)2

. The controller

is designed assuming that there is no prior knowledge on the plant parameters, so

that the estimated parameters initial conditions are set to zero. The remaining

system initial conditions are also set to zero.

The tracking performance of the proposed controller can be seen in Fig. 2.1, and,

as expected, the tracking errors converge to zero as shown in Fig. 2.2. As can be

observed in Fig. 2.3, the control signal u(t) converges to u∗.

2.3.2 Visual Servoing Application

Consider the problem of direct adaptive visual tracking for planar manipulators

using a fixed camera (plant) with optical axis orthogonal to the robot workspace.
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Figure 2.2: Process control plant: tracking errors
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Figure 2.3: Process control plant: control signal u (—); and model matching signal
u∗ (- -)
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The camera orientation is uncertain with respect to the robot workspace coordinates

[44, 45]. The objective is to control the robot so that the image of its end-effector

tracks a desired trajectory in the image plane. The objective is to control the robot

Figure 2.4: Camera-robot system representation

such that the image of the efectuator tracks the desired trajectory in the image

plane.

The motivation to choose this example is that the HFG is essentially a rotation

matrix which, except for the trivial cases, is neither non-symmetric nor PDJ since

its eigenvalues are complex.

The associated cartesian control problem of the camera coordinate frame is de-

scribed by:

ẋc = Kpu; Kp =

[

cos(φ) −sin(φ)
sin(φ) cos(φ)

]

(2.45)

Where xc ∈ IR2 represents the coordinates of the efectuator in the image plane,

u ∈ IR2 is the cartesian control law. The HFG is the rotation matrix that represents

the relationship between the image space and the robot workspace. Trajectory in

the image plane is generated by the following reference model:

Wm(s) =

[

1
s+1

0

0 1
s+1

]

(2.46)

Considering the LDU decomposition of the nominal value of Kp

Kp =

[

c −s
s c

]

=

[

1 0

s/c 1

][

c 0

0 1/c

][

1 −s/c
0 1

]

, (2.47)

the stabilizing multiplier L̄ can be obtained as previously discussed, leading to

L̄ = D0

[[

1 0

s/c 1

] [

c 0

0 1/c

]]−1

=

[

κ1/c 0

−κ1s κ2c

]

. (2.48)
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Figure 2.5: Visual servoing plant tracking performance: plant output y (—); and
model output ym (- -) with stabilizing multiplier

where c = cos(φ) and s = sin(φ). Defining D0 = diag{κ1, κ2} and replacing in

L̄ = D0(LpDp)
−1, we can evaluate L̄ for some nominal value of φ fixing κ2 = 1 and

letting κ1 be a free parameter. For a given nominal value of φ, denoted φnom, and

a given κ1, the range of camera orientation that allows the PDJ condition to hold

for LKp can be determined numerically as presented in [44]. The reference signals

are chosen as r1 = r2 = 20sqw(0.2t), where sqw(t) denotes the unit amplitude

square wave. The matrix gains are Γ1 = Γ2 = 10I2×2 and we choose β = 1. Other

design parameters are: I/O state filters (1.29): Λ(s) = 10
s+3

and (observability index)

ν = 1; h(s) = 1
(s+1)

. The plant initial conditions are zero. The controller is designed

assuming the nominal φnom = 45◦. The multiplier L̄ is calculated according to

Eq. (2.48) using κ1 = 50 and κ2 = 1. The real angle is set to φ = 75◦. The

remaining system initial conditions are also set to zero.

The system tracking performance is significantly improved when the multiplier is

used (see Fig. 2.7–2.6). With the stabilizing multiplier, the tracking errors converge

to zero around t = 50s as can be seen in Fig. 2.5 and Fig. 2.6 whilst in the other

case convergence is not observed even for longer simulations (t=5000s).

2.3.3 Discrete-Time Plant

We consider a generic discrete-time second order plant with nonuniform relative

degree. For the sake of simplicity, we firstly consider a plant with the same Kp as

the process control plant, which is nonsymmetric and PDJ. Note that this plant is
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Figure 2.6: Visual servoing plant with the stabilizing multiplier: tracking errors
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Figure 2.7: Visual servoing plant without the stabilizing multiplier: tracking errors
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Figure 2.8: Tracking errors for discrete-time plant with β < βmin

unstable.

G(z) =

[

4
(z+0.4)(z−0.2)

−2
(z+0.4)(z−0.2)

−1
z+1.2

1
z+1.2

]

(2.49)

The reference model is chosen as

Wm(z) =

[

1
(z+0.2)2

0

0 1
z+0.4

]

(2.50)

with reference signals r1 = sin(kT ) and r2 = sin(3kT ). The matrix gains are set

to Γ1 = 2I8×8, Γ2 = 2I2×2; I/O state filters (1.29): Λ(s) = 1
z+0.2

; (observability index)

ν = 2; h(s) = 1
(z+0.4)2

. The plant initial conditions are x = [5 5 5]. The controller is

designed assuming that there is no prior knowledge on the plant parameters, so that

the estimated parameters initial conditions are set to zero. The remaining system

initial conditions are also set to zero.

Unlike the CT case, the parameter β now plays an essential role and has to be

consciously chosen. We refer to (2.38) to obtain a lower bound on β:

β > 4.733

The result obtained using β = 4 is seen in Fig. 2.8, where it is possible to note

an unstable behavior. It is interesting to note, however, that this estimate is a lower

bound that guarantees stability, such that convergence is possibly achieved with

values of β slightly below βmin.
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Figure 2.9: Tracking errors for discrete-time plant with β = 4.75

With β = 4.75, convergence is obtained after a large transient oscillation, as

shown in Fig. 2.9, indicating that β should be tuned up the minimum value.

The transient is fairly improved with β = 15, as shown in Fig. 2.10. Tracking

performance is shown in Fig. 2.11, where it is possible to note a reasonable output

tracking result.
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Figure 2.10: Tracking errors for discrete-time plant with β = 15
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Figure 2.11: Tracking performance for discrete-time plant with β = 15
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Chapter 3

Multivariable Binary-MRAC using

Global Exact Differentiators

(GRED-BMRAC)

3.1 Introduction

In this chapter we propose a robust controller with guaranteed transient performance

for plants with arbitrary relative degree that does not require symmetry assumptions

on the HFG.

This is achieved by means of a further extension to MIMO BMRAC to encompass

non-uniform arbitrary relative degree plants that achieves global exact tracking by

using a hybrid estimation scheme recently generalized to a multivariable framework

[68]. Such estimator, named Global Robust Exact Differentiator (GRED), switches

between a standard MIMO lead filter and a nonlinear one which utilizes Robust

Exact Differentiators (RED) [69] based on higher order sliding modes. The use of

MIMO GRED renders the error system uniformly globally exponentially practically

stable with respect to a small residual set with ultimate convergence to zero.

The BMRAC (Binary Model Reference Adaptive Control) [32] is based on adap-

tation laws with projection. This allows the adaptive system to be tuned by increas-

ing the adaptation gain, which makes BMRAC tend to behave as a sliding mode

controller. However, such gain can be tuned up to a sufficiently large value while

avoiding chattering. This allows us to obtain a better transient behavior and ro-

bustness in comparison to adaptive controllers based on gradient adaptation. This

technique is also based on the PDJ condition onKp instead of symmetry conditions.

IfKp is not PDJ, we use a multiplier L̄ such that L̄Kp is PDJ. Only Continuous-Time

systems are considered in this case.

The formulation is the same as presented in Section 1.2 and we only deal with
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CT systems. An important modification is the choice of the reference model, which

is of the form

ym = Wm(s) r ; r, ym ∈ IRM (3.1)

Wm(s) = diag
{

(s+ a)−1, ..., (s+ a)−1
}

L−1(s) (3.2)

where a > 0 and the poles are repeated. Also, L(s) is given by

L(s) = diag {L1(s), L2(s), ..., LM (s)} , (3.3)

where Li(s), i = 1, ...,M are Hurwitz polynomials given by

Li(s) = s(ρi−1) + l
[i]
ρi−2s

(ρi−2) + ...+ l
[i]
1 s+ l

[i]
0 (3.4)

where ρi is the relative degree of output i and li > 0.

The choice of the reference model follows the idea of reducing an arbitrary relative

degree problem to one with uniform relative degree one, which is achieved through

differentiation of output signals.

The transfer matrix Wm(s) has the same vector relative degree as G(s) and its

HFG is the identity matrix. If Kp is PDJ, it is also possibe to conclude that the

error system of Eq. (1.37) is WSPR since the model is a multiple of the identity

matrix L(s)Wm(s) = 1
s+a

I. To consider more general reference models one could

use the WASPR concept [39, 40], as in [30]1. However, if the PDJ condition is not

satisfied on Kp, it is possible to use a stabilizing multiplier L̄ such that L̄Kp is PDJ.

The modified tracking error is, in this case

eL(t) = L̄(y(t)− ym(t)) (3.5)

and can be described by the following model

ẋe = Acxe + BcKp [u− u∗] , eL = L̄H0xe (3.6)

which can also be rewritten in input-output form as

eL = Wm(s)L̄Kp [u− u∗] (3.7)

The BMRAC extension to MIMO systems is used as proposed in [30]. We adopt

1The tracking of more general reference models could be obtained by simply preshaping the
reference signal r through a precompensator at the input of the above model.
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the following parametrization

ϑ=vec(θ)=













θ[1]

θ[2]

...

θ[n]













, Ω=IM ⊗ ω=









ω
. . .

ω









(3.8)

with Ω ∈ IRNM×M , ϑ ∈ IRNM , where N is the number of elements of the regressor

vector ω, θ[i] is the i-th column of the parameter matrix θ and ⊗ is the Kronecker

product. The BMRAC MIMO adaptation law is given by

ϑ̇ = −ϑσ − γΩeL (3.9)

with σ given by a projection

σ =

{

0, if ||ϑ|| < Mϑ or σeq < 0

σeq, if ||ϑ|| ≥Mϑ and σeq ≥ 0
(3.10)

σeq =
−γϑTΩeL

||ϑ||2
(3.11)

where Mϑ > ||ϑ∗||. The control law can be rewritten as

u(t) = θT (t)ω(t) = ΩT (t)ϑ(t) (3.12)

This approach is already established for plants with uniform relative degree [30].

An extension for arbitrary relative degree can be obtained using the derivatives of

y such that a system with relative degree one is rendered.

To provide some insight in this idea, we consider the following plant

y=









1

(s+ 1)(s+ 2)
0

0
1

s+ 3









u

which has a nonuniform relative degree (ρ1 = 2, ρ2 = 1). The underlying idea

of the GRED-BMRAC is to generate a system with uniform relative degree one

through output derivatives, such that a following modified output is obtained. In

this illustrative example, we would have

ξy =







s+ 1 0

0 1















1

(s+ 1)(s+ 2)
0

0
1

s+ 3









u (3.13)
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Which is equivalent to

ξy = L(s)y = ẏ + y

Instead of using the tracking error e = y − ym, we use a modified error of relative

degree one

ē = ξy − ξm (3.14)

Thus, to overcome the relative degree restriction, we employ the operator defined

in Eq. (3.4) such that L(s)Ḡ(s) and L(s)Wm(s) have uniform vector relative degree

one. Note that since Wm(s) is chosen by design, ξm is easily generated without the

need of calculating derivatives.

However, we still have to address the problem of obtaining ξy since it is not

directly available as the operator of Eq. (3.13) is not implementable. To solve this

problem, we use a global robust exact differentiator (GRED) that switches between

a lead filter and a nonlinear estimator. The GRED provides exact derivatives, such

that a modified system of relative degree one is then rendered and BMRAC can be

applied.

3.2 BMRAC using a MIMO lead filter

The BMRAC proposed in [30] achieves global exact tracking if the considered plant

has uniform relative degree one.

To overcome the relative degree restriction, we employ the operator defined in

Eq. (3.4) such that L(s)G(s) and L(s)Wm(s) have uniform vector relative degree

one. To this end we define the following modified output

ξy = L(s)y =









y
(ρ1−1)
1 + · · ·+ l

[1]
1 ẏ1 + l

[1]
0 y1

...

y
(ρM−1)
M + · · ·+ l

[M ]
1 ẏM + l

[M ]
0 yM









=









∑ρ1−1
j=0 l

[1]
j h

T
1A

(j)
c X

...
∑ρM−1

j=0 l
[M ]
j hTMA

(j)
c X









= H̄X ,

(3.15)

where hTi ∈ R
n+2M(ν−1) is the i-th ’ of matrix Ho and the second equality is derived

from Assumption (A4) and (3.6). We create a modified WSPR error of relative

degree one:

ēL = L̄(ξy − ξm); ξm = L(s)ym; (3.16)

ẋe = Acxe + BcKp [u− u∗] , ēL = L̄H0xe (3.17)

which can also be rewritten in input-output form as follows, since Wm(s) commutes

with L̄

ēL = Wm(s)L̄Kp [u− u∗] (3.18)
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Note that ξm is directly available for implementation while the signal ξy needed to

overcome the relative degree obstacle is not A possible way to solve this problem is

to estimate ξy by means of a lead filter.

ξ̂l = La(s)ξy, La(s) = L(s)F−1(τs) (3.19)

where F (τs)=diag{(τs+1)ρ1−1, . . . , (τs+1)ρm−1}. One can note that as τ >0 tends to

zero, ξ̂l approximates ξy. The error signal that will drive adaptation is an estimate

of ēL(t):

ˆ̄eL = L̄(ξ̂l − ξm) (3.20)

Defining the lead filter estimation error as the difference between the estimate of

ξy obtained by the lead filter and its actual value

εl = ξ̂l − ξy (3.21)

its dynamics can be described by:

ẋε =
1

τ
Aεxε + Bεξ̇y, εl = Hεxε , (3.22)

where ξ̇y = H̄AcX + H̄BcKpϑ̃
TΩ + H̄Bcr (see (1.34) and (3.15)),

Aε = block diag {A[1]
ε , . . . , A

[M ]
ε }, Bε = block diag {B[1]

ε , . . . , B
[M ]
ε } , Hε =

block diag {H [1]
ε , . . . , H

[M ]
ε }, withA[i]

ε ∈ R
ρi−1×ρi−1, B

[i]
ε ∈ R

ρi−1×1, H
[i]
ε ∈ R

1×ρi−1,

A[i]
ε =



















−a[i]ρi−2 1 0 . . . 0

−a[i]ρi−3 0 1 . . . 0
...

...
...

. . .
...

−a[i]1 0 0 0 1

−a[i]0 0 0 0 0



















, B[i]
ε =



















−b[i]ρi−2

−b[i]ρi−3
...

−b[i]1
−b[i]0



















,

H [i]
ε =

[

1 0 0 . . . 0
]

,

a
[i]
j = Cρi−1

ρi−1−j, b
[i]
j =Cρi−1

j+1 Cn
l = n!/(k!(n− k)!)

In the stability analysis of the closed-loop error system, with state zT =
[

xTe xTε
]

,

we will consider the presence of a uniformly bounded output disturbance βα(t) of

order τ . Taking into account the presence of βα(t), the lead estimation error can be

represented as the :

εl = ξ̂l − ξy + βα(t) (3.23)

where by design βα(t) ≤ εM with εM = τKR
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Using the MIMO lead filter the adaptation law is given by

ϑ̇ = −ϑσ − γΩ(ˆ̄eL + βα) (3.24)

with σ given by a projection

σ =

{

0, if ||ϑ|| < Mϑ or σeq < 0

σeq, if ||ϑ|| ≥Mϑ and σeq ≥ 0
(3.25)

σeq =
−γϑTΩ(ˆ̄eL + βα)

||ϑ||2
(3.26)

where Mϑ > ||ϑ∗||. At this point, the following Theorem can be stated.

Theorem 3 Consider the plant (1.21) and the reference model (3.1)–(3.3) with

control signal (3.12) and adaptation law (3.24)–(3.26). Suppose that assumptions

(A1) to (A5) hold. If the disturbance βα(t) is uniformly bounded by ||βα(t)|| ≤ τKR,

where KR > 0 is a constant, then for sufficiently small τ > 0 and sufficiently large

γ > 0, the closed-loop error system (3.6), (3.12), (3.15), (3.22), (3.24)–(3.26) with

state zT =
[

xTe xTε
]

, is uniformly globally exponentially practically stable (GEpS)

with respect to a residual set, i.e., there exist constants cz, a > 0 such that ||z(t)|| ≤
cze

−a(t−t0) ||z(t0)||+O(
√
τ) +O(

√

1/γ) holds ∀z(t0), ∀t ≥ t0 > 0.

(Proof: see Appendix B.1)

Corollary 1 For all R > 0, there exists τ > 0 sufficiently small and γ sufficiently

large such that for some finite time T , the error state z(t) is steered to an invariant

compact set DR := {z : ||z|| ≤ R}.

Corollary 2 Signals y
(i)
j (t), i = 0,. . ., ρj, j = 1,. . .,M are uniformly bounded, i.e.,

∃K [j]
i > 0 such that |y(i)j (t)| ≤ K

[j]
i , ∀ t ≥ t0 ≥ 0, i=0,. . ., ρj , j=1,. . .,M . Moreover,

if ||xe(t)||≤R, ∀t>T , then, ∃C [j]
ρj >0 such that

∣

∣

∣

∣

∣

∣
y
(ρj)
j[T,t]

∣

∣

∣

∣

∣

∣

∞
≤C [j]

ρj , j = 1, . . . ,M . (Proof:

see Appendix B.2)

3.3 MIMO Robust Exact Differentiators

A possible extension of the RED to MIMO systems could be obtained using an RED

of appropriate order in each output. The order of differentiators in each output is

chosen so as to to obtain outputs or relative degree one.

The idea is to use a RED of order pj = ρj − 1 for each output yj ∈ R, j =

1, . . . ,M .
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





















































































ζ̇
[j]
0 =v

[j]
0 , v

[j]
0 =−λ[j]0

∣

∣

∣
ζ
[j]
0 −yj(t)

∣

∣

∣

pj
pj+1

sgn(ζj0−yj(t))+ζ
[j]
1

ζ̇
[j]
1 = v

[j]
1 ,

v
[j]
1 = −λ1

∣

∣

∣
ζ
[j]
1 − v

[j]
0

∣

∣

∣

(n−1)/n

sign(ζ
[j]
1 − v

[j]
0 ) + ζ

[j]
2

...

ζ̇
[j]
i =v

[j]
i ,

v
[j]
i =−λ[j]i C

[j]
1

pj−i+1

ρj

∣

∣

∣
ζ
[j]
i −v[j]i−1

∣

∣

∣

pj−i

pj−i+1
= sgn(ζ

[j]
i −v[j]i−1) + ζ

[j]
i+1,

...

ζ̇ [j]pj
= −λ[j]pj

C [j]
ρj
sgn(ζ [j]pj

− v[j]pj
),

(3.27)

where i = 0, . . . , pj − 1, v
[j]
−1 = yj(t), C

[j]
ρj is a known constant such that |y(ρj)j (t)| ≤

C
[j]
ρj , ∀t. If the parameters λ

[j]
i are properly recursively chosen then the equalities

ζ
[j]
0 = yj(t); ζ

[j]
i = y

(i)
j (t), j = 1, . . . ,M ; i=1, . . . , pj

are established in finite time [69].

Under the foregoing conditions, the above differentiator can provide the exact

yj(t) derivatives. According to [69], the RED’s performance is asymptotically op-

timal in the presence of small Lebesgue-measurable input noise. Moreover, it is

important to stress that the variables of each individual RED (3.27) cannot escape

in finite time. This result is formalized in the following Lemma.

Lemma 10 Consider system (3.27), with state ζ [j] = [ζ
[j]
0 . . . ζ

[j]
pj ]

T . If
∣

∣

∣
y
(i)
j (t)

∣

∣

∣
≤

K
[j]
i , i = 0, . . . , ρj , ∀t (finite), for some positive constants K

[j]
i , i = 0, . . . , ρj, then

ζ [j](t) cannot diverge in finite time.

(Proof: see [68])

Thus, using a MIMO RED, composed by M REDs of order ρj − 1 for each output

yj, the following estimate for ξy can be obtained:

ξ̂r =









ζ
[1]
ρ1−1 + · · ·+ l

[1]
1 ζ

[1]
1 + l

[1]
0 ζ

[1]
0

...

ζ
[M ]
ρM−1 + · · ·+ l

[M ]
1 ζ

[M ]
1 + l

[M ]
0 ζ

[M ]
0









. (3.28)

Then, the derivatives of y could be used as in ξy = L(s)y. However, only local

convergence of the error state to zero could be guaranteed, since the signals y
(ρj)
j (t),

j = 1, . . . ,M should be uniformly bounded.
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Using the MIMO RED the adaptation law is given by

ϑ̇ = −ϑσ − γΩL̄(ξ̂r − ξm) (3.29)

with σ given by a projection

σ =

{

0, if ||ϑ|| < Mϑ or σeq < 0

σeq, if ||ϑ|| ≥Mϑ and σeq ≥ 0
(3.30)

σeq =
−γϑTΩL̄(ξ̂r − ξm)

||ϑ||2
(3.31)

where Mϑ > ||ϑ∗||.
It is important to note that the control input (3.12) with adaptation law (3.29)–

(3.31) guarantees only local/semi-global stability properties, since the RED requires

that y(ρi) should be uniformly bounded to provide exact derivatives.

3.4 Global RED based BMRAC

The Global RED is a hybrid compensator which consists of a (time-varying) convex

combination of a lead filter estimate (3.19) and a RED estimate (3.28) according to:

ξ̂g = α(ν̃rl) ξ̂l + [1− α(ν̃rl)] ξ̂r , (3.32)

where ν̃rl = ξ̂r − ξ̂l is the difference between both estimates. The switching function

α(ν̃rl) is a continuous, state dependent modulation which assumes values in the

interval [0, 1] and allows the controller to smoothly change from one estimator to

the other.

Specifically, α(·) is designed such that
∣

∣

∣

∣

∣

∣
ξ̂g − ξ̂l

∣

∣

∣

∣

∣

∣
≤ τKR:

α(ν̃rl)











0, ||ν̃rl|| < εM −∆

(||ν̃rl|| − εM +∆)/∆, εM −∆ ≤ ||ν̃rl|| < εM

1, ||ν̃rl|| ≥ εM

(3.33)

where 0 < ∆ < εM is a boundary layer used to smoothen the switching function,

and εM := τKR with KR being an appropriate positive design parameter, that is

selected such that εM − ∆ > ε̄l. This implies that after some finite time only the

MIMO RED is active (α = 0), providing exact estimation of the output derivatives

ξy, as desired. Some insight on how to tune MIMO GRED parameters is given below

(for further refereence, see [68]).

Remark 3 The parameter εM should be small enough in order to guarantee that

54



the MIMO RED is used only when it provides a satisfactory derivative estimate,

otherwise a poor transient tracking performance could result. On the other hand if

εM is not large enough, then the switching scheme could not ultimately select the

MIMO RED, thus degrading the steady state tracking performance. The parameter

∆ is only used to smoothly switch between the MIMO RED and the MIMO lead filter.

As well as the boundary layer method, it may be advantageous in practice in order

to reduce noise sensitivity.

In order to guarantee global exponential stability with respect to a small residual

set and to achieve global convergence of the error state to zero, we show that the

BMRAC using a MIMO lead filter presented in Section 3.2 can be combined with

the MIMO RED (Section 3.3).

It should be noted that global stability to an invariant compact set DR is guaran-

teed independently of switching between both estimators since it is possible to show

that the resulting system is equivalent to a BMRAC using a MIMO lead filter with

a uniformly bounded output disturbance of order τ . Thus, global practical stability

and convergence to the compact set DR are guaranteed, according to Theorem 3.

The switching function is properly chosen to ensure that after some finite time only

the estimate provided by the MIMO RED is used.

Using the GRED to estimate ξy the adaptive law is

ϑ̇ = −ϑσ − γΩL̄(ξ̂g − ξm) (3.34)

with σ given by a projection

σ =

{

0, if ||ϑ|| < Mϑ or σeq < 0

σeq, if ||ϑ|| ≥Mϑ and σeq ≥ 0
(3.35)

σeq =
−γϑTΩL̄(ξ̂g − ξm)

||ϑ||2
(3.36)

where Mϑ > ||ϑ∗||. The stability and convergence results of the proposed control

scheme are stated in the following theorem. A block diagram of such scheme is

shown in Fig. 3.1.

Theorem 4 Consider the plant (1.21) and the reference model (3.1)–(3.3) with

control law given by (3.12) and adaptation law (3.34)–(3.36). The switching function

α(·) is defined in (3.33). Suppose that assumptions (A1) to (A5) hold. with ϑ(0) <=

Mϑ and for sufficiently small τ > 0 and sufficiently large γ > 0, the closed-loop error

system described by (3.12), (3.6), (3.15), (3.22), (3.34)–(3.36) is uniformly globally

exponentially practically stable (GEpS) with respect to a residual set and the MIMO
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Figure 3.1: Block diagram of GRED-BMRAC

RED estimation and all closed-loop signals are uniformly bounded. Moreover, for

λ
[j]
i , j = 1, . . . ,M , i = 0, . . . , ρj−1, and KR properly chosen, the estimation of the

output derivatives ξy becomes exact, being made exclusively by the RED (α(·) = 0)

after some finite time. Then, the closed-loop error state zT =
[

xTe xTε
]

, and hence the

output tracking error e, converge exponentially to zero. (Proof: see Appendix B.3)

3.5 Simulation Results

Consider a MIMO LTI actuator/process similar to the example used in [51] described

by

A=













1 2 3 1

0 2 1 1

0 0 1 1

0 0 0 1













; B=













10 20 0 0

−1 −0.5 0 −0.5

0 0 16 80

0 0 0 4













,

H=I

which has transfer matrix G0(s). The plant is composed by this actuator/process

and a sensor with transfer matrix given by Gs(s) = diag{1/(s+ 1), 1/(s+ 1), 1, 1}.
The resulting transfer matrix G(s) = Gs(s)G0(s) from u to y has the following

vector relative degree (ρ1 = 2, ρ2 = 2, ρ3 = 1, ρ4 = 1). The model is chosen as

Wm(s) = diag{1/(s+1), 1/(s+1), 1/(s+1), 1/(s+1)}. For simplicity, we have chosen

Kp = B to be PDJ. Then, with L(s)=diag {(s+ 1), (s+ 1), 1, 1}, the corresponding
transfer matrix L(s)Wm(s)KP can be shown to be WSPR. When this is not the case,

a passivating multiplier can be used based on some nominal Kp [40]. According
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Figure 3.2: Tracking errors obtained with BMRAC using only the RED to compen-
sate relative degree

to the proof of the WASPR Theorem of [39], it is easy to conclude that a WSPR

system will remain WSPR with any output feedback with static gain −k, where k
is a positive scalar. It was verified that one could improve the convergence speed of

the tracking error by tuning up the scalar k.

The reference input signal r(t) ∈ IR4 was chosen as biased square waves f(t/T ) =

sqw(2t/T )+1 with different periods T , rT = 0.5[f(t/6); 2f(t/2); 3f(t/4); 3f(t/0.3)].

The only prior knowledge needed for the control design is Mϑ = 15 (see (3.36)) and

observability index ν = 2. The adaptation gain is γ = 10. Other design parameters

are: Lead filter (3.19): τ =0.01s; MIMO RED (3.27)-(3.28): λ
[1]
0 =1.5C

[1]1/2

2 , λ
[1]
1 =

1.1C
[1]
2 and C

[1]
2 =10; switching function (3.33): εM = 0.5 and ∆= 0.2. The plant

initial conditions are y(0) = [1 1 1 1]. The remaining system initial conditions are

set to zero.

Using only the RED, the system shows unstable behavior, as seen in Fig. 3.2.

When only the lead filter is used, large error persists as shown in Fig. 3.3. When the

hybrid differentiator is employed, zero tracking errors are achieved within numerical

integration errors, as seen in Fig. 3.4. Tracking performance is shown in Fig. 3.5.

Control chattering was also avoided as shown in Fig. 3.6. Finally, in Fig. 3.7 one

can note that the differentiation is firstly done by the lead filters and it switches

permanently to the MIMO RED in finite time. It should be noted that under the

same conditions, the system is unstable if only the MIMO RED is used.

3.5.1 Comparison with Bilinear MRAC

Revisiting the example of the process control plant in Subsection 2.3.1, it is possible

to illustrate the advantages of the Binary-MRAC.

In this example, the references are square waves r(t) = [5sqw(t/3) 5sqw(t)].

The performance obtained with the Blinear MRAC in Chapter 2 is shown on

Fig. 3.8–3.9 where it is possible to note a slow convergence of the tracking error.
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Figure 3.3: Tracking errors obtained with BMRAC using only the lead filter to
compensate relative degree
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Figure 3.4: Tracking errors obtained with the hybrid scheme (GRED-BMRAC)
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Figure 3.5: Tracking performance obtained with the hybrid scheme (GRED-
BMRAC)
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Figure 3.6: Control signal of the hybrid scheme (GRED-BMRAC)
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Figure 3.7: Switching function of the hybrid scheme (GRED-BMRAC)
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Figure 3.8: Bilinear MRAC tracking performance: plant output y (—); and model
output ym (- -)

Due to the guaranteed transient property of BMRAC, this performance is fairly

improved when using GRED-BMRAC. The result is seen in Fig. 3.10–3.11.
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Figure 3.9: Window of Fig. 3.8. Bilinear MRAC tracking performance: plant output
y (—); and model output ym (- -)
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Figure 3.10: GRED-BMRAC tracking performance: plant output y (—); and model
output ym (- -)
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Chapter 4

Extended Binary-MRAC

4.1 Introduction

The use of high gain adaptation laws with projection, as discussed in the previous

chapter, improves robustness of adaptive controllers by ensuring parameter bound-

edness. We showed that the Binary-MRAC also has the desirable property of guar-

anteed transient, that is, tracking errors converge exponentially to a residual set

with ultimate convergence to zero. The BMRAC tends to a variable structure con-

troller as the gain tends to infinity, but the control signal is still smooth and free

of chattering in the absence of unmodeled dynamics that would destroy the relaive

degree one assumption.

Since we are interested in robust controllers, a technique worth of attention is the

Smooth Sliding Control, proposed in [71]. It consists of a Variable Structure control

with MRAC parametrization with input filtered control and the use of a prediction

loop. The result is a controller that is robust to unmodeled dynamics and time-delays

and shows good transient performance. Also, due to the filtering and prediction loop

features, it generates a control signal that is also free of chattering.

The BMRAC and the SSC present interesting characteristics, which can be com-

bined to generate a new controller. In this Chapter we combine the use of high gain

adaptation with projection with input filtering and prediction loop. This leads to a

new controller that has interesting robustness and transient properties. We call this

new architecture the Extended BMRAC (eBMRAC).

The main features of the resulting combination can be also found in the recently

proposed L1 Adaptive Control (L1-AC) [58]. Since this controller was widely dis-

cussed in the past few years, we dedicate a section to compare both techniques. The

L1-AC is known to present some limitations in tracking time varying references,

despite its robustness and performance for stabilization purposes.

We discuss this new technique mainly in the SISO framework. Preliminary results
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to a Multivariable extension are discussed at the end of the Chapter. We deal only

with CT systems.

The control objective is to find a feedback control signal u(t) for the plant (1.21)

with unknown G(s) and M = 1 such that y(t) tracks ym(t) as close as possible and

the closed-loop system is globally stable in the sense that all signals in the system

are bounded for any bounded initial conditions and input signals.

The control input that achieves matching between model and plant is given by

(1.26) with parameters defined in Eq. (1.27) and the regressor of Eq. (1.28). Tracking

error is given by

e = y − ym

whose states are

ẋe = Acxe + k∗bc[u− u∗]; e = hTc xe (4.1)

or in input/output form as

e = k∗Wm(s)[u− u∗]; k∗ = kp/km (4.2)

Since the parameter vector is not known, the control input is designed using an

estimate θ of the ideal parameter θ∗. The implementable control law is given by:

u(t) = θT (t)ω(t) (4.3)

4.2 Binary Model Reference Adaptive Control

(BMRAC)

The Binary-MRAC for arbitrary relative degree plants was proposed in [70] and

consists of a high gain projection adaptation based MRAC. The resulting system

presents better transient performance and robustness to unmodeled dynamics than

conventional adaptive controllers.

For the case ρ = 1, θ is obtained by a projection-type adaptation law

θ̇(t) = −σ(t)θ(t)− γe(t)ω(t) (4.4)

with high gain γ and the projection factor defined as

σ =







0 , if ‖θ‖ < Mθ or σeq < 0

σeq , if ‖θ‖ ≥Mθ and σeq ≥ 0
(4.5)
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with a constant Mθ ≥ ||θ∗|| and

σeq =
−γeθTω
||θ||2

(4.6)

The BMRAC scheme is depicted in Fig. 4.1.

Figure 4.1: BMRAC block diagram

4.3 Smooth Sliding Control (SSC)

The Smooth-Sliding Control technique was proposed in [71] as a solution to avoid

chattering in variable structure model reference control systems. The architecture

of L1-AC resembles the SSC closely, but with a few key differences: i) the absence

of an explicit reference model; ii) the use of projection based adaptation instead of

relay switched control; iii) the need to structurally redesign the algorithm to deal

with output feedback and unknown input gain; and iv) the inability to track a time-

varying reference with acceptable error as will be seen in Section. 4.4. Here, we focus

on the case ρ = 1 for the sake of simplicity, since only straightforward modifications

are needed to deal with arbitrary relative degree [71].

4.3.1 Plants with relative degree one

The SSC is also based on the MRAC framework where the error equations are given

by (4.1)-(4.2). The SSC employs a filtered input and a prediction loop, which is

also used in the L1-AC. The smooth control law is obtained using an averaging filter

with sufficiently small time constant τ such that the control u is replaced by uav0 , an
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approximation of the equivalent control (u0)eq. The control law is

u = unom − uav0 ; uav0 = (1/Fav(τs))u0 (4.7)

u0 = f(t)sign(ε0) (4.8)

where ε0 is an output prediction error associated with the prediction loop

ε = e− ê; ê = knomWm(s)[u0 − uav0 ]; (4.9)

And the usual output feedback error is used as follows.

e = k∗Wm(s)[u− u∗]; k∗ = kp/km (4.10)

where Wm(s) is a reference model chosen SPR. since ê can be interpreted as a

predicted output error by considering knom and u0 as estimates of k∗ and unom −
u∗, respectively. With correct estimates the prediction would be exact, as seen

in eq. (4.8), (4.9) and (4.2). The modulation function f(t) is chosen such that

f(t) ≥ |u∗(t)− unom(t)| ; ∀t. The SSC scheme is presented in Fig 4.2.

Figure 4.2: Smooth sliding control block diagram

4.4 Combining SSC and B-MRAC

The core idea of this chapter is to propose a controller that combines the SSC and

BMRAC by using the SSC architecture with the BMRAC adaptation. The resulting

scheme is named Extendend BMRAC (eBMRAC) To that end, the relay of the SSC
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is replaced by an output feedback projection adaptation law with standard MRAC

parametrization. The scheme is seen in Fig. 4.3.

Consider the MRAC error equations (4.1)-(4.2). As well as the SSC, the eBM-

RAC uses an input filtered control signal

u(t) = C(s)[u0(t)]; u0(t) = θ(t)Tω(t) (4.11)

where θ is an adaptive parameter. For the sake of simplicity, the plant high fre-

quency gain kp is assumed known. Nevertheless, the case where only sign(kp) is

known can be addressed using a similar development as in [71].

Consider the auxiliary errors

ê = k∗Wm(s)[u− u0], ε = e− ê (4.12)

The adaptation law with parameter projection is

θ̇(t) = −σθ − γεω (4.13)

σ =







0 , if ‖θ‖ < Mθ or σeq < 0

σeq , if ‖θ‖ ≥Mθ and σeq ≥ 0
(4.14)

σeq =
−γεθTω
||θ||2

(4.15)

The eBMRAC equations are e = y − ym, Eq. (4.2), (4.11)–(4.15) with ω as

defined in Section 2. The block diagram is shown in Fig. 4.3. The predicted error ê

state dynamics can be written as

˙̂xe = Ac x̂e + k∗bc [u− u0], ê = hTc x̂e, (4.16)

with k∗ = kp/km. This allows us to obtain the state dynamics for the prediction

error

ẋε = Ac xε + k∗bc [u0 − u∗], ε = hTc xε, (4.17)

ε = k∗Wm(s)[u0 − u∗]; (4.18)

Note that the prediction error does not depend on the filtered input.

The following properties are guaranteed by the projection based adaptation law:

Theorem 5 Consider the error system described by (4.1)-(4.2) and the auxiliary er-

rors (4.12),(4.17). The control signal is given by (4.11) with adaptation law (4.13)–

(4.15). Assume that assumptions (A1)-(A4) hold, ||θ(0)|| ≤Mθ and kp is known. If
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Figure 4.3: Extended BMRAC (eBMRAC) block diagram

τ is sufficiently small, then

i) ||θ|| ≤Mθ, ∀t ≥ 0;

ii) ||xε(t)||2 ≤ c1e
−λ1t ||xε(0)||2 +O(γ−1), ∀t ≥ 0 for some positive constants c1 and

λ1;

iii) The prediction error ε tends asymptotically to zero;

iv) e tends exponentially to some small residual interval of order τ .

Proof: see Appendix C

In the presence of unmodeled dynamics, it is expected that the prediction error

tends to zero as gamma increases, since as γ tends to infinity, the resulting controller

tends to the SSC. In this case, the eBMRAC should inherit the SSC properties of a

free of chattering control signal and robustness to unmodeled dynamics.

The more general case, when only sign(kp) is known and unmodeled dynamics

(including delays) are present, could also be considered following the same devel-

opments presented by [71]. It is worth of notice, however, that even though these

results are not yet theoretically established, they are expected to be obtained without

redesign of the controller. Simulations results show the behavior for aforementioned

cases.
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4.4.1 Adaptation Law with Projection with Smooth Satu-

ration function for disturbance rejection

In [73], a Binary Adaptive Controller (referred to as dual mode therein) is employed

with a smooth saturation term to provide robustness to disturbances. This idea is

also useful for the eBMRAC, since unmodeled dynamics can be treated as distur-

bances.

The modified adaptive law with smooth saturation is

û = θTω − d̄
ε

||ε||+ δ
(4.19)

where d̄ and δ are positive gains.

The smooth saturation is continuous with respect to its argument and is illus-

trated in Fig. 4.4 To obtain a similar result to [73], we introduce the following
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Figure 4.4: Smooth saturation function

function

f(||ε||) = ||ε|| dmax − d̄
||ε||2

||ε||+ δ
(4.20)

such that f(||ε||) ≥ 0 if d̄ ≤ dmax. The maximum value of f(||ǫ||) is

f(||ε||max) = εdmaxc(d̄) (4.21)

with

c(d̄) = (−1 + ds)−
d̄ (−1 + ds)

2

dmaxds
(4.22)
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and

ds =

√

d̄

d̄− dmax

(4.23)

Using this new law along with the previous results it is possible to state the

following theorem.

Theorem 6 Consider the plant (1.21) with M = 1 and reference model (1.22)

with uniformly bounded disturbances ||d(t)|| ≤ dmax and the error system described

by (4.1)-(4.2) and the auxiliary errors (4.12),(4.17). The control signal is given by

(4.19) with adaptation law (4.13)–(4.15). Assume that assumptions (A1)-(A4) hold,

||θ(0)|| ≤ Mθ and kp is known and an upper bound d̄ ≥ d0 > dmax is known. If τ is

sufficiently small, then the prediction error converges exponentially to a residual set

of

||ε|| ≤ O(1/
√
γ) +O(δc(d0)/λmin(Q))

where Q is the solution to the Lyapunov equation AT
c P +PAc = −Q with Pbc = hTc .

Without disturbances, the prediction error exponentially converges to a residual set

||ε|| ≤ O(1/
√
γ)

and ultimately tends asymptotically to zero.

Proof: see Appendix C

Corollary 3 If γ and δ are O(1/
√
γ), then ||ǫ|| → 0 as γ → ∞.

This theorem shows that it is possible to reject uniformly bounded disturbances

by adding a smooth saturation term in the control law, resulting in a more robust

controller.

4.5 Simulation Results

4.5.1 Robustness properties of the eBMRAC

It is expected that the eBMRAC to inherit some of the SSC properties, since the

BMRAC tends to a sliding mode controller as the gain is increased. This makes

the proposed controller more interesting, since in this case it would present certain

advantages in comparison to both the BMRAC and the SSC alone. This section

shows a few properties through numerical simulations.

We consider a first order unstable plant

G(s) =
1

s− 2
(4.24)
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Figure 4.5: Tracking error with BMRAC

and the following reference model

Wm(s) =
3

s+ 3
(4.25)

In this case, the ideal parameter vector and k∗ are

θ∗ = [−5 3] ; k∗ =
kp
km

=
1

3
(4.26)

unless stated otherwise, we use Mθ = 6.5.

Performance in the presence of unmodeled time-delays

It is shown in [71] that the SSC presents robustness to unmodeled time-delays in

comparison to conventional VS-MRAC. This is a desirable property that is not

verified for the BMRAC alone.

The results obtained for the previously presented plant with adaptation gain

chosen as γ = 10 and reference signal r(t) = sin(0.8t)+0.5sin(t) are seen in Figs. 4.5-

4.6. No time-delay is considered and it is possible to note the error convergence to

zero. We now consider the same plant with time-delay, that is

Gpd(s) =
1

s− 2
e−µs (4.27)

With µ = 0.1s, simulation results obtained with the same choice of parameters

as the previous case show that tracking performance is poor, as seen in Fig. 4.7-4.8.

Performance is fairly improved when the averaging filter and the prediction loop
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Figure 4.6: Tracking performance with BMRAC
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Figure 4.7: Tracking error with BMRAC in the presence of unmodeled time-delay
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Figure 4.8: Tracking performance with BMRAC in the presence of unmodeled time-
delay

are inserted. Even though convergence is not expected in the tracking error, as seen

in Fig. 4.9, it can be made small with an appropriate choice of the averaging filter.

In this case we use τ = 0.01s and set knom = 1.

Prediction error, on the other hand, converges to zero, as shown in Fig. 4.10.

Tracking performance is seen in Fig. 4.11.

4.5.2 Performance in the presence of unmodeled dynamics

It is also interesting to verify the performance of eBMRAC for plants with unmodeled

dynamics. Similarly to the case of systems with unmodeled time-delays, it can

be shown that robustness properties are improved in comparison to BMRAC. We

consider the following plant

Gpd =
1

s− 2

1

(µs+ 1)2
(4.28)

Reference signal is r(t) = sin(0.8t) + 0.5sin(t). With µ = 0.05s and γ = 100,

tracking is not achieved with BMRAC, as shown in Fig. 4.12.

Using the averaging filter it is possible to improve the performance. With τ =

0.03s and knom = 1.5, convergence is obtained for the prediction error, as seen in

Fig.. 4.13. Since τ has to be tuned with a relatively high value, tracking performance

is downgraded, as it is possible to note in Figs. 4.14-4.15. It is important to note,

however, that decreasing τ does not improve tracking error properties in the presence
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Figure 4.9: Tracking error with eBMRAC in the presence of unmodeled time-delay
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Figure 4.10: Prediction error with eBMRAC in the presence of unmodeled time-
delay
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Figure 4.11: Tracking performance with eBMRAC in the presence of unmodeled
time-delay
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Figure 4.12: Tracking with BMRAC in the presence of unmodeled dynamics
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Figure 4.13: Prediction error with eBMRAC in the presence of unmodeled dynamics

of unmodeled dynamics. This can be understood intuitively, since as τ is decreased,

also is the effect of the averaging filter, such that the controller approaches the

regular BMRAC. Fig. 4.16 shows that the control is free of chattering.

Disturbance rejection using an augmented regressor

It is possible to reject constant perturbations through a simple modification of the

regressor vector:

ωaug = [yp(t) r(t) 1]

The following results are obtained for the first order plant of Eq. (4.27) with

unmodeled time-delay of µ = 0.1s and an output disturbance of d = 1.

Fig. 4.17 shows the tracking error with a disturbance with the regular regressor.

Performance is fairly improved with the augmented regressor as shown in Fig. 4.18.

Similarly, prediction error does not converge with the regular regressor, as seen in

Fig. 4.19. Convergence is obtained with the modification, see Fig. 4.20

4.5.3 Effect of knom

For the SSC in [71], the case where kp is unknown can be dealt if an upper bound

is known, such that knom is chosen to overestimate k∗. To the eBMRAC, this is still

an open topic of research. However, simulations show that it is possible to obtain a

stable behavior with kp unkown without modifying the controller. The results with

unmodeled dynamics is shown for different values of knom.
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Figure 4.14: Tracking error with eBMRAC in the presence of unmodeled dynamics
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Figure 4.15: Tracking performance with eBMRAC in the presence of unmodeled
dynamics
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Figure 4.16: Control signal with eBMRAC in the presence of unmodeled dynamics
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Figure 4.17: Tracking error with the regular regressor
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Figure 4.18: Tracking error with the augmented regressor
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Figure 4.19: Prediction error with the regular regressor
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Figure 4.20: Prediction error with the augmented regressor

We consider the plant (4.28) with µ = 0.05s with τ = 0.03s and γ = 10, with the

input r(t) = sin(0.8t)+0.5sin(t). Convergence is not obtained setting knom = k∗ as

seen in Fig. 4.21.

If knom = 2k∗, convergence is obtained, as seen in Fig. 4.22–4.24. This can be

explained by the predominance of a SPR loop formed by the plant and prediction

error. This forces the prediction error to zero even in the presence of unmodeled

dynamics if knom is sufficiently large. However, too large values may lead to larger

tracking errors.

4.5.4 Transient and steady-state behavior properties

According to Theorem 5, the prediction error ε tends asymptotically to zero, but

exponential convergence is only guaranteed to a residual set of order O(γ−1). Also,

the tracking error tends exponentially to a residual set of order O(τ). Simulations

are used to illustrate these properties in the next subsections.

Effect of increasing gain in tracking and prediction errors

Comparison of transient and steady-state behavior of the eBMRAC for different

values of adaptive gains is seen in Figs. 4.25–4.28, for γ = 1, 5, 10. In this example,

the plant has the unmodeled delay given by Eq.(4.27) with µ = 0.05s and τ = 0.02s.

Initial plant output is set to y = 4. The reference signal is r(t) = sin(0.8t) +

1/2sin(t).
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Figure 4.21: Tracking performance with unmodeled dynamics with knom = k∗
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Figure 4.22: Tracking performance with unmodeled dynamics with knom = 2k∗
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Figure 4.23: Tracking error with unmodeled dynamics with knom = 2k∗
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Figure 4.24: Prediction error with unmodeled dynamics with knom = 2k∗

82



0 100 200 300 400 500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
prediction error

time(s)

 

 

γ = 1
γ = 5
γ = 10

Figure 4.25: Prediction error for different values of γ

It is possible to note in Fig. 4.25 that the prediction error tends to zero asymptot-

ically, as expected, irrespective of the value of the adaptation gain. Note, however,

that convergence takes longer for lower values. It is also expected the exponential

convergence to a residual set of order γ, which can be seen in Fig. 4.26.

Exponential convergence of the tracking error is also observed in Fig. 4.27 while

Fig. 4.28 shows that it converges to a residual value that depends on τ irrespective

of the adaptation gain.

It is also interesting to note that the control input is free of chattering, as seen

in Fig 4.29

Effect of decreasing time constant of the averaging filter

The effect of the averaging filter can be further illustrated by Fig. 4.30. The aver-

aging filter is switched among τ = 0.002s, 0.02s, 0.2s with γ = 10. Note that the

tracking error decreases with τ . The figure indicates errors of amplitude or order

0.001, 0.01 and 0.1, respectively.

4.5.5 Second order unstable plant with time delay

Finally, a second order plant is used to illustrate the controller behavior. The follow-

ing example is an unstable plant with relative degree one and time delay µ = 0.02s.

G(s) =
s+ 1

(s+ 2)(s− 2)
e−µs (4.29)
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Figure 4.26: Detail of Fig. 4.25
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Figure 4.27: Tracking error for different values of γ
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Figure 4.28: Steady state tracking errorfor different values of γ
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Figure 4.29: Control input with different values of γ
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Figure 4.30: Tracking errors obtained for different values of τ showing residual
convergence

The controller is desgined with γ = 10, τ = 0.01s, Λ(s) = 1/(s+1) and knom = 0.5.

Reference input is r(t) = sin(0.8)t.

Convergence of prediction error is seen in Fig. 4.32, while tracking error converges

to a residual set in Fig. 4.31. Tracking performance is seen in Fig. 4.33 and the

control signal is free of chattering according to Fig. 4.34.

4.6 Limitations with L1-AC

Since the L1-AC presented in Section 1.5 shares common features with our proposed

eBMRAC, we devote this section to a comparison of both architectures. The L1-

AC achieves good regulation properties with guaranteed transient and robustness,

but fails to track time varying references. Also, its architecture has to be modified

to fit different applications. With our newly proposed technique, robustness and

guaranteed transient behavior is also obtained and it is possible to overcome some of

the L1-AC limitations. It is also interesting to note that in the L1-AC formulation,

error states are uniformly bounded but initial conditions are assumed as zero. In the

eBMRAC, tracking error is exponentially driven to a small residual set. Moreover,

if the initial conditions are sufficiently small, trajectories would also stay in this set

for all times.

Despite reports of successful applications as mentioned in Section 1.5, some recent

work question the efficiency of the L1-AC such as [66] and [67]. Criticisms include

the use of excessively high adaptation gains, the inability to track a time-varying

reference and the coincidence of L1-AC control signal with a full state PI controller,
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Figure 4.31: Tracking error for second order unstable plant
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Figure 4.32: Prediction error for second order unstable plant
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Figure 4.33: Tracking performance for second order unstable plant
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Figure 4.34: Control signal for second order unstable plant
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which shows that adaptation is unnecessary in such scheme [74], [75]. It should

also be noted that the L1-AC scheme is different according to the application. For

instance, if the plant input gain is unknown, the algorithm has to be modified to a

more complex architecture [58] (pp.35). This difficulty is similar for output feedback.

This can be illustrated using a first order stable LTI filter in L1-AC scheme,

although it is also true for general filters according to [74]. Note that the filtered

input can be rewritten as

u̇ = −k(u− θ̂Tx) (4.30)

the control signal generated by (4.30) coincides with the output of a perturbed LTI

PI controller

v̇ = kb†Amx− µkθ̃Tx; u = v − kb†x (4.31)

where b† is the pseudo-inverse of b, given by b† = (bT b)−1bT . This means that if

the parameter error converges to zero, the obtained controller converges to an LTI

controller that could be obtained without adaptation.

It is also important to note that L1-AC analysis does not guarantee zero tracking

error for time-varying reference signals, as shown in [58]. The same applies to

parameter error, such that only the prediction error is assured to be uniformly

bounded.

Note that this controller requires knowledge of input gain. Even though the L1-

AC theory is able to extend the idea shown above to contour this limitation, it is

important to note that this is achieved by changing the control architecture.

The proposed controller is able to overcome these difficulties, since it does not

require knowledge of input gain and is able to track a time-varying reference with

residual error using output feedback without the need to modify the control scheme.

4.6.1 First Order Plant

In order to show the efficiency of the proposed controller in comparison with L1-AC,

we use a simple first order example. Consider the following plant, state predictor

and filter:

ẋ = 3x+ u+ θx; ˙̂x = −2x̂+ u; C(s) =
c

s+ c
(4.32)

It is desired to track a sinusoidal reference signal, given by r(t) = 10 sin(0.5t). High-

gain is used as suggested by [58]. In this case, Γ = 104 and c = 160. The unknown

parameter is assumed to be in the set θ = [−10, 10]. For θ = −5 the result is seen

in Fig. 4.35, note that the system output does not track the reference input. The

same plant, reference model and filter is used for the eBMRAC, that is

G(s) =
1

s− 3− θ
; Wm(s) =

1

s+ 1
; Fav =

1

τs+ 1
(4.33)
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Figure 4.35: L1-AC performance for Example 1

Design parameters are chosen as γ = 10; Mθ = 10 and τ = 0.02s. The result is

shown in Fig. 4.36, where it is possible to note a good tracking performance.

4.6.2 Second Order Plant

L1-AC:

To further compare the two schemes, the simulation results in this section consider

the second order plant used in [33, 57], already including the unknown parameter θ

of (1.75), that is:

[

ẋ1

ẋ2

]

=

[

0 1

−1 −1.4

]

+

[

0

1

]

u; y = [1 0]

[

x1

x2

]

(4.34)

The reference signal is r(t) = 100cos(0.2t) and the filter is designed as C(s) =

160/(s + 160). Adaptation gain is Γ = 104 and θ is assumed to be in the set

θi = [−10, 10], i = 1, 2.

The plant transfer function has relative degree ρ = 2. However, when dealing

with state feedback, one can obtain an output of relative degree ρ = 1 . The results

of Figs. 4.37 reproduce the results shown in [57] and it is possible to note a poor

tracking performance as well as oscillatory parameter values.

The limitations of L1-AC can be more clearly shown in two different scenarios:

i) if the frequency is increased, which severely impairs the performance as seen in

Fig. 4.38 when reference signal is r(t) = 100cos(t); and ii) if the input gain is not

known. In this case, the whole L1-AC scheme has to be redesigned, which is a
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Figure 4.36: eBMRAC performance for for first order plant

restrictive constraint. Fig. 4.38 shows that it is not even possible to track a unit

step input

eBMRAC:

The same plant of Eq. (4.34) is used assuming there is prior knowledge on the

system states such that it is possible to obtain an output of relative degree ρ = 1.

Considering both states are measurable, an output of relative degree one is obtained

by combining the states such that the output is ȳp = Pbpxp.

It is important to note that this is done for the sole purpose of providing a fair

comparison, since the L1-AC is designed as state feedback. A more general version of

the eBMRAC that would able to deal with systems of higher relative degree could be

derived following the same steps as in [71]. For the sake of simplicity and for a more

intuitive illustration of this comparison, we choose to deal with output feedback of

a system with relative degree ρ = 1 in this example.

The averaging filter is designed with τ = 0.02s, and I/O state variable filters

are Λ(s) = 1/(s + 1). Projection adaptation parameters are γ = 10 and Mθ = 10.

Results show good tracking performance with residual error, as seen in Figs. 4.40,

and a similar result when the frequency is increased, showing in Fig. 4.41. Zero

tracking error is still obtained if kp is unknown. The result when knom = 1.2 is

shown in Fig. 4.42 Note that an excessively large gain is not needed and that the

error can be made smaller choosing a smaller τ . It is important to stress that the

eBMRAC inherits the robustness of the SSC to unmodeled dynamics such as delays
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Figure 4.37: L1-AC: Second order plant with r(t)=100cos(0.2t)
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Figure 4.38: L1-AC: Second order plant with r(t) = 100cos(t)
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Figure 4.39: L1-AC step response for unknown input gain in Second order plant
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Figure 4.40: eBMRAC: Second order plant with r(t) = 100cos(0.2t)
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Figure 4.41: eBMRAC: Second order plant with r(t) = 100cos(t)
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Figure 4.42: eBMRAC step response for unknown kp for second order plant
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and nonminimum phase dynamics.

4.7 Preliminary Results on the MIMO eBMRAC

The similarity with the BMRAC provides a bottom line to a MIMO version of the

eBMRAC. We consider the same problem description as used for the BMRAC in

Section 1.2 and use the idea to provide the MIMO counterpart to auxiliary errors.

The error equation in input-output form is repeated below for convenience.

e = Wm(s)kp [u− u∗] (4.35)

The MIMO version of the predicted error can be chosen as

ê = Wm(s)K
nom[u− u0] (4.36)

where Knom is an estimate of Kp.

If Kp is assumed known, as in the SISO case, the prediction error is similar and

the result can be extended using similar steps.

ε = Wm(s)Kp[u0 − u∗] (4.37)

If we use K̄ to account for uncertainties in Knom, such as

Knom = KpK̄ (4.38)

we obtain the following prediction error

ε = Wm(s)Kp [u0 − ū] (4.39)

where

ū = (I − K̄)u+ K̄u∗ (4.40)

It is conjectured that prediction error converges to zero if Kp os overestimated,

however, tracking error increases with the estimative. This is an open problem in

the present moment.

4.7.1 Simulation Results for the MIMO eBMRAC

We consider an unstable plant of uniform relative degree one

Gp(s) =

[

1
s−2

0

0 1
(s+1)

]

Kp; Kp =

[

4 1

1 2

]

(4.41)
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Figure 4.43: Tracking errors obtained for the MIMO example

Note that Kp is PDJ. We use the following reference model

Wm(s) =

[

3
s+3

0

0 3
s+3

]

(4.42)

And averaging filter

Fav(τs) =

[

1
τs+1

0

0 1
τs+1

]

(4.43)

Tracking errors converge to a residual set, as seen in Fig. 4.43. Tracking performance

is shown in Fig. 4.45 and Fig. 4.44 shows that prediction errors converge to zero, as

expected. The control signal is free of chattering, according to Fig. 4.46.
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Chapter 5

Conclusions and Future Work

This work proposed new solutions to Multivariable Model Reference Adaptive Con-

trol (MIMO MRAC) for plants of nonuniform arbitrary vector relative degree. Nei-

ther of these techniques are impaired by stringent assumption of symmetry or sym-

metrization of the plant high frequency gain (HFG). The proposed controllers are

based on a PDJ condition related to the unknown HFG, which is a generic and

less restrictive condition, particularly for uncertain systems. The augmented con-

trol parametrization of matrix factorization approaches is not necessary, making the

new controller simpler.

A new technique based on the Bilinear error formulation was proposed consid-

ering both continuous-time and discrete-time cases. In contrast to conventional

solutions, the new adaptive controller is simpler and we have also shown that, under

certain circumstances, the symmetry condition can be relaxed even for the conven-

tional design.

We also proposed the non-uniform arbitrary relative degree extension to the

Multivariable Binary Model Reference Adaptive Control (BMRAC). Global exact

output tracking for uncertain linear plants is obtained without requiring stringent

symmetry assumptions on the High Frequency Gain and transient performance that

outperforms standard MRAC techniques. To overcome the relative degree obstacle,

we employed the multivariable version of the Global Robust Exact Differentiator

(GRED) scheme, which achieves uniform global practical stability and exact track-

ing by switching a linear lead filter with a nonlinear one based on robust exact

differentiators. The control signal is continuous and free of chattering.

A further extention to the BMRAC is proposed, namely the Extended BMRAC,

obtained by a combination of the Smooth Sliding Control (SSC)and the BMRAC. It

presents robustness and guaranteed transient behavior in the presence of unmodeled

dynamics and time-delays, which is an advantage in comparison to standard BM-

RAC. It is based on high gain adaptation with projection, input filtering and the use

of a prediction loop, which are features also used by the L1-AC controller. We show
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that the eBMRAC is able to overcome fundamental limitations of the L1-AC, such

as poor tracking performance to time varying reference and the use of excessively

large gain. Our new controller is simpler and its architecture does not need to be

structurally redesigned in order to be applied to problems of different complexity.

Numerical simulations are presented to verify the analysis and show the effec-

tiveness of the proposed techniques.

5.1 Future Work

5.1.1 Bilinear MRAC

The robustness issue is not yet addressed for this technnique, as well as its adaptation

transient. The new algorithm is similar to conventional MRAC, so it is expected

that robustness can be addressed using the same tools applied to the conventional

case, such as projection adaptation laws or σ-modification.

5.1.2 GRED-BMRAC

Different architectures could be used to employ the GRED estimator in the BMRAC

framework, such as estimating the error derivatives instead of the plant outputs.

This is currently subject of ongoing work. The use of alternative differentiator

topologies are worth of interest, such as the non-homogeneous version of the RED.

The use of High Gain Observers is also a possible topic of future reserach

5.1.3 eBMRAC

The results obtained for the SISO case were only proved to relative degree one and

known high frequency gain, such that these extensions are natural sequels to the

present work. Also, a MIMO extension to this analysis is still an open research

topic. Practical implementation of this algorithm is also an interesting issue.

5.1.4 General issues on MRAC

During the development of these techniques, it was possible to note how easily the

number of parameters can grow in the conventional MRAC framework. For instance,

a 4×4 with observability index ν = 2 would need 64 parameters. This seems to be a

complicating obstacle to quick convergence. To develop alternatives to the standard

MRAC parametrization that would decrease the need of parameters is currently a

challenging and interesting research topic.
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Campina Grande, 2012.

107



[80] BATTISTEL, A., NUNES, E. V. L., HSU, L. “Multivariable BMRAC Extension

to Arbitrary Relative Degree Using Global Robust Exact Differentiators”.

In: 13th Workshop on Variable Structure Systems, Nantes, 2014.

[81] BATTISTEL, A., NUNES, E. V. L., HSU, L. “Extensão de Grau Relativo Ar-

bitrário para o BMRAC Multivariável Utilizando Diferenciador Robusto

Global e Exatos”. In: Congresso Brasileiro de Automática, Belo Horizonte,
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Appendix A

Robust Exact Differentiators

(RED)

In the previous section, a BMRAC using a MIMO lead filter to estimate ξy was

analyzed. From Theorem 3 the convergence of the error state is only guaranteed to

a residual set.

Real-time differentiation of signals is an old and well-studied problem [69]. The

output of an ideal differentiator is the exact derivative of any input signal, which is a

considerably difficult task in practice since signals are corrupted by noise. High fre-

quency components will result in high amplitude derivatives, corrupting the deriva-

tive of the signal of interest.

Even though robust estimates of derivatives can be obtained by a lead filter even

in the presence of high frequency noise, for instance, these estimates are not exact.

We are interested in a class of differentiators that are not only exact, but also able

to reject small high frequency noise.

In [69],[76], a class of differentiators is proposed based on High Order Sliding

Modes (HOSM). Considering an input signal f(t), a function defined in [0,∞) con-

sisted of an unknown base signal f0(t) whose nth-order derivative has a Lipschitz

constant Cn+1, exact derivatives are obtained in finite time in the absence of noise.

If the signal is corrupted by a bounded Lebesgue-measurable noise with unknown

features, it is shown that asymptotically optimal performance is obtained.

In [76] it is shown that the best possible accuracy obtained by a differentiator to

a i-th order derivative is proportional to

C
i/(n+1)
n+1 ǫ(n−i+1)/(n+1), i = 0, . . . , n

where Cn+1 is the Lipschitz constant of the n-th order derivative and ǫ is the maxi-

mum noise magnitude.

The RED therefore solves the problem of obtaining robust derivatives in the
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presence of noise, and exact in the absence of noise. This is a useful tool to cir-

cumvent relative degree obstacles, such as done in [36]. In this work, we use the

RED as a part of a scheme to obtain an arbitrary relative degree extension to the

Binary-MRAC of [30].

A.1 First Order Differentiator

Consider the following auxiliary system

ż = v (A.1)

and define the error variable e = z − f0. The objective is to keep e = 0 in a second

order sliding mode such that e = ė = 0. This implies that z = f0 and v = ḟ0. It is

then possible to write

ė = −ḟ0(t) + v,
∣

∣

∣
f̈0(t)

∣

∣

∣
≤ C2∀t (A.2)

The following Super-Twisting controller is then employed [76, 77]

{

v = −λ0|e|1/2sgn(e) + z1

ż1 = −λ1sgn(e)
(A.3)

where λ0 and λ1 are positive constants. The first order differentiator presented in

[76] is written in the following form:

{

ż = v, v = −λ0|z − f(t)|1/2sgn(z − f(t)) + z1

ż1 = −λ1sgn(z − f(t))
(A.4)

where v and z1 may be used as the output of the differentiator with f(t) being

the input signal. If the parameters λ0 and λ1 are properly chosen, the following

equalities are established in finite time in the absence of noise:

z = f0, z1 = v = ḟ0 (A.5)
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A.2 Arbitrary Order Differentiators

The first order differentiator proposed in [76] was generalized to arbitrary order in

[69] as follows















































































































ζ̇0 = v0,

v0 = −λ0|ζ0 − f(t)|n/(n+1)sgn(ζ0 − f(t)) + ζ1

ζ̇1 = v1,

v1 = −λ1|ζ1 − v0|(n−1)/nsgn(ζ1 − v0) + ζ2
...

ζ̇i = vi,

vi = −λi|ζi − vi−1|(n−i)/(n−i+1)sgn(ζi − vi−1) + ζi+1

...

ζ̇n−1 = vn−1,

vn−1 = −λn−1|ζn−1 − vn−2|1/2sgn(ζn−1 − vn−2) + ζn

ζ̇n = −λnsgn(ζn − vn−1)

(A.6)

where λ1, . . . , λn are positive constants and f(t) is the input signal. It is possible to

write the differentiator in a non-recursive form as follows:











































ζ̇0 = −κ0|ζ0 − f(t)|n/(n+1)sgn(ζ0 − f(t)) + ζ1

ζ̇1 = −κ1|ζ0 − f(t)|(n−1)/(n+1)sgn(ζ0 − f(t)) + ζ2
...

ζ̇i = −κi|ζ0 − f(t)|(n−i)/(n+1)sgn(ζ0 − f(t)) + ζi+1

...ζ̇i = −κnsgn(ζ0 − f(t))

(A.7)

where the constants κi, i = 0, . . . , n are calculated from λ0, . . . , λn.

The following theorem, presented in [69], characterizes the convergence properties

the RED.

Theorem 7 ([69]) Consider system (3.27). Let the input signal f0(t) be a function

defined on [0,∞) with the nth derivative having a known Lipschitz constant Cn+1 >

0. If the parameters λi, i = 0, . . . , n are properly chosen, then in the absence of

input noise the following equalities are true after a finite time transient process:

ζ0 = f0(t); ζi = vi−1 = f
(i)
0 (t), , i = 1, . . . , n

Proof: see [69]

The following result is also of great importance
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Lemma 11 Consider the system (A.6) and assume that the signals

f(t), ḟ(t), . . . , f (n)(t) are bounded. If |f (n+1)(t)| ≤ Kn+1∀t for some positive

constant Kn+1, then the system state does not escape em finite time.

Proof: see [68].

Examples of RED tunning

In [69], guidelines to choose parameters λi are given. For a first order RED, consid-

ering |f̈(t)| ≤ C2, one has

{

ζ̇0 = v, v = −1.5C
1/2
2 |ζ0 − f0(t)|1/2sgn(ζ0 − f0(t)) + ζ1

ζ̇1 = −1.1C2sgn(ζ1 − v0)
(A.8)

Which is easily extended to a second order differentiator as follows, considering

|f (3)(t)| ≤ C3















ζ̇0 = v, v = −3C
1/3
3 |ζ0 − f0(t)|2/3sgn(ζ0 − f0(t)) + ζ1

ζ̇2 = v, v = −1.5C
1/2
3 |ζ1 − v0|1/2sgn(ζ1 − v0) + ζ2

ζ̇2 = −1.1C3sgn(ζ1 − v0)

(A.9)
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Appendix B

GRED-BMRAC proofs

In what follows, all ki and κi are positive constants.

B.1 Proof of Theorem 3:

Firstly we show that ||ϑ(t)|| ≤Mϑ if ||ϑ(0)|| ≤Mϑ is bounded, such that Mϑ > ||ϑ∗||.
Consider the following Lyapunov function

2Vϑ = ϑTϑ = ||ϑ||2 (B.1)

The derivative is

2V̇ϑ = ϑ̇Tϑ+ ϑT ϑ̇ (B.2)

Recalling Eq. (3.34)

2V̇ϑ =
(

−ϑσ − γΩL̄(ξ̂g − ξm)
)T

ϑ+ ϑT
(

−ϑσ − γΩL̄(ξ̂g − ξm)
)

(B.3)

Which leads to

2V̇ϑ = −2σϑTϑ− γ
(

ΩL̄(ξ̂g − ξm)
)T

ϑ− γϑT
(

ΩL̄(ξ̂g − ξm)
)

(B.4)

Noting that
(

ΩL̄(ξ̂g − ξm)
)

is scalar and recalling Eq. (3.36)

2V̇ϑ = −2σ ||ϑ||2 + 2σeqϑ
2 (B.5)

V̇ϑ = (σeq − σ) ||ϑ||2 (B.6)

and (σeq − σ) ≤ 0 for ||ϑ|| ≥Mϑ. Thus, the set ||ϑ|| ≤Mϑ is positively invariant and

thus ϑ̃T ϑ̃ is uniformely bounded by a constant.

Consider the following Lyapunov candidate, where P1, P2 and WN are SPD,
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WN = W ⊗ IN and ϑ̃ = ϑ− ϑ∗.

V = xTe P1xe +
1

γ
ϑ̃TWN ϑ̃+ xTε P2xε (B.7)

the derivative is

V = xTe P1(Acxe + BcKpΩ
Tϑ) + (Acxe + BcKpΩ

Tϑ)TP1xe +

+
1

γ

[

(−ϑσ − γΩ(ˆ̄eL + βα))
TWN ϑ̃+ ϑ̃TWN(−ϑσ − γΩ(ˆ̄eL + βα))

]

+

+ xTε P2

(

1

τ
Aεxε +Bεξ̇y

)

+

(

1

τ
Aεxε + Bεξ̇y

)T

P2xε

Since Ac and Aε are Hurwitz and noting that P1BcKp = (L̄H0)
TW and ēL = L̄H0xe

it simplifies to

V̇ = −xTeQ1xe + 2(ˆ̄eL)
TWΩT ϑ̃− 1

τ
xTεQ2xε − 2

σ

γ
ϑTWN ϑ̃+

− 2ϑ̃WNΩ
[

L̄(ξy + εl − ξm) + βα
]

+ 2xTε P2Bεξ̇y (B.8)

Where we used the fact that ˆ̄eL = L̄(ξ̂l − ξm) and ξy = ξ̂l − εl. From Eq. (3.15),

and knowing that WNΩ = ΩW and ēL = ξy − ξm we have that

V̇ = −xTeQ1xe −
1

τ
xTεQ2xε − 2

σ

γ
ϑTWN ϑ̃− ϑ̃WNΩ(L̄εl + βα) +

+2xTε P2BεH̄AcX + 2xTε P2BεH̄BcKpΩ
T ϑ̃+ 2xTε P2BεH̄Bcr

Knowing that ΩT ϑ̃ = θ̃Tω, xe = X − Xm, ωr = W0(xe + Xm) where ωr =

[ωu ωy yp]
T , θ∗r = [θ∗1 θ

∗
2 θ

∗
3]

Tand

W0 =







0 I 0

0 0 I

H0 0 0






(B.9)

one has

V̇ = −xTeQ1xe −
1

τ
xTεQ2xε − 2

σ

γ
ϑTWN ϑ̃− (L̄εl + βα)

TWΩT ϑ̃+

+2xTε P2BεH̄Acxe + 2xTε P2BεH̄AcXm+

+2xTε P2BεH̄BcKpθ̃
T
r W0xe + 2xTε P2BεH̄BcKpθ̃

T
r W0Xm+

+2xTε P2BεH̄BcKpθ̃
T
4 r + 2xTε P2BεH̄Bcr
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Which can be simplified

V̇ = −xTeQ1xe −
1

τ
xTεQ2xε − 2

σ

γ
ϑTWN ϑ̃− (L̄εl + βα)

TQ6[xe +Xm] +

+(L̄εl + βα)
TQ7r + 2xTε [Q3xe +Q4Xm +Q5r]

with

Q3 = P2BεH̄BcKpθ̃
T
r W0 + P2BεH̄Ac;

Q4 = P2BεH̄BcKpθ̃
T
r W0+P2BεH̄Ac;

Q5 = P2BεH̄BcKpθ
T
4 +P2BεH̄Bc;

Q6 = Wθ̃TW0;

Q7 = WθT4

Since θ is bounded and recalling that βα is uniformly bounded by εM = τKR,

and ||εl|| ≤ ||xε||,

V̇ ≤ −k1(Q1) ||xe||2 −
k2
τ
||xε||2 − 2

σ

γ
ϑTWN ϑ̃+ k3 ||xε|| ||xe||+

+ k4 ||xε||+ τk5

Noting that from (3.10), the term −2σ
γ
ϑTWN ϑ̃ is non-positive since ϑ̃ = ϑ− ϑ∗ and

Mϑ ≥ ||ϑ∗||, we have

V̇ ≤ −k1 ||xe||2 −
k2
τ
||xε||2 + k3 ||xε|| ||xe||+ k4 ||xε||+O(τ)

We use the following equality to complete the squares:

−
(√

k2√
2τ

||xε|| −
k3
√
2τ

2
√
k2

||xe||
)2

= − k2
2τ

||xε||2 + k3 ||xε|| ||xe|| −
k23
2k2

τ ||xe||2

which leads to

V̇ ≤ −
(√

k2√
2τ

||xε|| −
k3
√
2τ

2
√
k2

||xe||
)2

−
(

k1 −
k23
2k2

τ

)

||xe||2 −
k2
2τ

||xε||2 + k4 ||xε||

and, consequently

V̇ ≤ −k1
2
||xe||2 −

k2
2τ

||xε|| −
(

k1
2

− k23
2k2

τ

)

||xe||2 + k4 ||xε||
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We proceed to complete the squares one more time using the following equation

−
(
√
k2

2
√
τ
||xε|| −

√
τ√
k2
k4

)2

= − k2
4τ

||xε||2 + k4 ||xε|| − τk5

And then we arrive at

V̇ ≤ k1
2
||xe||2 −

k2
4τ

||xε|| −
(

k1
2

− k23
2k2

τ

)

||xe||2 +O(τ)

Assuming that τ ≤ k1k2
2k23

, it follows that

V̇ ≤ −k1
2
||xe||2 −

k2
4τ

||xε||2 +O(τ)

Since ||ϑ|| is uniformly bounded, we have that

V ≤ [xe xε]
T

[

P1 0

0 P2

][

xe

xε

]

+O(γ−1) (B.10)

Such that we can write, with z = [xe xε]
T

V −O(γ−1) ≤ zTPz ≤ λmax(P )z
T z (B.11)

and

V̇ −O(τ) ≤ −zTQz ≤ −λmin(Q)z
T z (B.12)

V̇ ≤ −λ
[

V −O(γ−1)
]

+O(τ) (B.13)

with λ = λmin(Q)/λmax(P ). Using a comparison lemma it possible to show that

there exist constants cz, a > 0 such that ||z(t)|| ≤ cze
−a(t−t0) ||z(t0)|| + O(

√
τ) +

O(
√

1/γ) ∀z(t0), ∀t ≥ t0 > 0

B.2 Proof of Corollary 2:

From (3.6) and (3.15), one has y
(i)
j = hTj A

(i)
c X, i = 1, . . . , ρi−1, j = 1, . . . ,m. Since

the augmented state X is uniformly bounded, then there exist positive constants,

such that: |y(i)j | ≤ Ki, ∀t ≥ t0 ≥ 0, i = 0, . . . , ρi − 1, j = 1, . . . ,M . Moreover,

the uniformly boundedness of y
(ρj)
j , j = 1, . . . ,M follows from the fact that the

augmented state X(t), and the signals u(t) and u∗, are uniformly bounded. The

signals y
(ρj)
j (t), j = 1, . . . ,M are given by:

y
(ρj)
j = hTj A

ρj
c X
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Eq. (B.9) allows us to establish that |wr| ≤ κ1 |xe| + κ2, since Xm, r and θ̃ are

bounded. Hence y
(ρj)
j (t) can be upper bounded by

∣

∣

∣

∣

∣

∣
y
(ρj)
j (t)

∣

∣

∣

∣

∣

∣
≤ κ3 ||xe(t)||+ κ4

. Since ||xe(t)|| ≤ R ∀t ≥ T , inequalities

∣

∣

∣

∣

∣

∣
y
(ρj)
j[T,t]

∣

∣

∣

∣

∣

∣

∞
≤ C [j]

ρj
, j = 1, . . . ,M

can be established since the projection law ensures boundedness of ϑ̃.

B.3 Proof of Theorem 4

The estimate given by the MIMO lead filter and the MIMO RED could be related

to ξy in (3.15) as follows:

ξ̂l = ξy + εl, ξ̂r = ξy + εr , (B.14)

where εl and εr are estimation errors. From (B.14), equation (3.32) can be rewritten

as

ξ̂g = ξy + εg, (B.15)

εg = α(ν̃rl)εl + [1− α(ν̃rl)] εr . (B.16)

The estimation error εg can be considered as an output disturbance. Thus, the

GRED-BMRAC closed-loop error system (1.21), (3.1)–(3.3) can described by:

ẋe = Acxe +BcKp [u− θ∗Tω], e = H0xe, (B.17)

Note that {Ac, Bc, H0} is a nonminimal realization of

Wm(s) =
Km

s+ am
,

and therefore is SPR. From (3.33), the estimation error εg(t) can be rewritten as:

εg = εl + βα(ν̃rl(t)) , (B.18)
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where by design βα(ν̃rl(t)) is uniformly bounded by

||βα(ν̃rl(t))|| < εM , with εM = τKR .

Substituting (B.15),(B.18) into (3.34)–(3.36), it can be seen that GRED adaptive

law is equivalent to lead adaptive law (3.24)–(3.26) with an output disturbance

||βα(ν̃rl(t))|| ≤ εM .

Therefore, Theorem 3 holds if all signals of the GRED-BMRAC system belong

to L∞e. In order to demonstrate that the condition is true, we only have to show

that all signals in the MIMO RED system are L∞e. This property can be proved

by contradiction. Suppose that the maximal interval of finiteness of the signals

in the MIMO RED is [0, TM ). During this interval, all conditions of Theorem 3

hold and thus all signals of the remaining subsystems of the GRED-BMRAC are

bounded by a constant, and in particular
∣

∣

∣
y
(i)
j (t)

∣

∣

∣
, i = 0, . . . , ρj, j = 1, . . . ,M , from

Corollary 2. This leads to a contradiction with Lemma 10, whereby, the signals in

the MIMO RED could not diverge unboundedly as t → TM . As a consequence of

the continuation theorem for differential equations (in Filippov’s theory), TM must

be ∞, which means that all signals are defined ∀t ≥ 0. Thus, Theorem 3 is valid for

the GRED-MRAC system and the closed-loop error system with state z is GEpS

with respect to a residual set.

Now, we will analyze the ultimate convergence of the GRED-BMRAC. According

to Corollary 1, for sufficiently small τ and sufficiently large γ the error state z is

steered to an invariant compact set DR := {z : |z(t)| < R} in some finite time

T1 ≥ 0. Consider the following Lyapunov candidate

V = xTε P2xε (B.19)

whose time derivative is

V̇ = −1

τ
xTεQ2xε + 2xTε P2Bεξ̇y

following the previous steps

V̇ = −1

τ
xTεQ2xε + 2xTεQ3xe + 2xTεQ4Xm + 2xTεQ5r (B.20)

V̇ ≤ −k2
τ
||xε||2 + k3 ||xε|| ||xe||+ k4 ||xε|| (B.21)
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Within DR xe can be upper bounded by ||xe|| ≤ R such that

V̇ ≤ −k2
τ
||xε||2 + τk5 (B.22)

Following similar steps to the proof of Theorem 1

||xε(t)|| ≤ cεe
−a(t−t0) ||xε(t0)||+ τk6 (B.23)

Since ||εl|| ≤ ||xε||, it is straightforward to show that for some finite T2 ≥ T1, ||εl|| ≤ ε̄l,

where ε̄l = τKl.

Since the MIMO RED is time invariant, its initial conditions can be considered

to be at t = T1. From Lemma 10 the initial conditions are finite. If the parameters

λji are adjusted properly, then from Theorem 7 the estimation error εr(t) converges

to zero in some finite time T3 > T1.

Since KR is chosen such that εM > ε̄l +∆ and from (3.33), it follows that after

some finite time T̄ = max{T2, T3} the estimation of σ becomes exact and being made

exclusively by the MIMO RED (α(ν̃rl) = 0), which implies that εg(t) = 0, ∀t ≥ T̄ .

In this case, the overall error system can be described by

ẋe = Acxe + BcKp[u− u∗] , eL = L̄H0xe , (B.24)

since this system has uniform relative degree one we can apply the result obtained

in [31]. Thus, it is possible to conclude that z(t), e(t) → 0.
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Appendix C

eBMRAC proofs

C.1 Proof of Theorem 5

Property (i) is derived by considering the Lyapunov candidate: 2Vθ = θT θ. The

derivative is:

V̇ = (σeq−σ) ||θ||2=(σeq−σ)V/2 (C.1)

from (3.10) it follows that (σeq−σ) ≤ 0 for ||θ|| ≥ Mθ, such that ||θ(t)|| ≤ Mθ is

positively invariant and therefore θ̃T θ̃ is uniformly bounded.

Property (ii) is obtained using the following Lyapunov candidate:

V = xTε Pxε +
1

γ
θ̃T θ̃

The time derivative is

V̇ = −xTεQxε −
2σ

γ
θ̃T θ (C.2)

Since ||θ|| is uniformly bounded

V ≤ xTε Pxε +O(γ−1) (C.3)

From which is possible to establish that

V̇ ≤ −λ1
[

V −O(γ−1)
]

(C.4)

where λ1 = λmin(Q)/λmax(P ), with λmin(Q) and λmax(P ) being the minimum and

maximum eigenvalues of Q and P, respectively. The proof of (ii) is completed using

a comparison lemma.

Finally, property (iii) is established noting that without the projection, we would

have V̇ = −xTǫ Qxǫ. Consequently, V̇ ≤ −xTεQxε ≤ 0.

Since the term −2σ
γ
θ̃T θ is non-positive due to the projection law it can only make
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V̇ more negative, such that it does not affect the obtained result. Furthermore, the

L2 property is not affected by projection, since
∣

∣

∣
θ̇
∣

∣

∣

2

≤ κ |γeoω|2, where κ > 0 is a

constant. Further details can be seen in [2] (pp. 205). Since ε→ 0. Thus,

ε = k∗Wm(s)[u0 − u∗], (C.5)

it is possible to establish that u0 → u∗. Consequently, referring to the tracking error:

e = k∗Wm(s)

[

u∗

τs+ 1
− u∗

]

(C.6)

Which is equivalent to

e = k∗Wm(s)

[ −τs
τs+ 1

]

u∗ (C.7)

Following similar steps presented in the proof of Theorem 2 in [71], it can be shown

that ω is bounded and hence u∗ is also bounded. Since Wm(s) is minimum-phase,

it follows that1
∣

∣

∣

∣

∣

∣

∣

∣

k∗Wm
−τs
τs+ 1

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ τK1 (C.8)

thus ||e|| ≤ τK + c2e
−λ2t for some positive constants c2 and λ2.

C.2 Proof of Theorem 6

Similarly to [71], we consider knom = k∗ = 1 for simplicity and write plant and

disturbance as

y = Gp(s)u+Wd(s)d (C.9)

where Wd is the transfer function from d to e with u = ū∗, where ū∗ is the control

that achieves perfect matching with d = 0. It is then possible to write the output

error as

e = y − ym (C.10)

= Wm(s)[−u0 − u∗] +Wm(s)Wd(s)d+Wm(s)[u0 − u] (C.11)

The prediction error is then

ε = e− ê (C.12)

= Wm(s) [u0 − u∗] +Wm(s)Wd(s)d (C.13)

1The L1 norm of the operator h(t) corresponds to ||h||
1
=
∫

∞

0
|x(τ)|dτ
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If the smooth saturation is used, the modified control signal is

u0 = θTω − d̄
ε

||ε||+ δ
. (C.14)

We rewrite as the prediction error as

ε = Wm(s)
[

θTω − ū∗
]

+Wm(s)Wd(s)d−Wm(s)d̄
ε

||ε||+ δ
(C.15)

Using the following Lyapunov candidate

V = xTε Pxε +
1

γ
θ̃T θ̃ (C.16)

Calculating its derivative, we have

V = 2 (Ac xε + bc [u0 − u∗])T Pxε +
2

γ
(−σθ − γeω)T θ̃ (C.17)

which leads to

V̇ ≤ −xTεQxε + 2xTε Pbc [u0 − u∗]− 2σ

γ
θT θ̃ − 2εθ̃Tω + 2xTε Pbc||Wd||d (C.18)

If it is possible to cancel εθ̃Tω with xTε Pbc [u0 − u∗]

V̇ ≤ −xTεQxε −
2σ

γ
θT θ̃ + 2xTε Pbc||Wd||d+ 2xTε Pbcd̄

ε

||ε||+ δ
(C.19)

or, since the model is chosen SPR

V̇ ≤ −xεQxε −
2σ

γ
θT θ̃ + εT ||Wd||d+ d̄

εT ε

||ε||+ δ
(C.20)

The rest of the proof follows closely to [73].
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Appendix D

Publications

Until the present moment, this work is related to the following publications

Regarding the Direct MRAC:

• Transactions on Automatic Control regarding the Direct MRAC [56]

• 2013 American Control Conference [78]

• XIX Congresso Brasileiro de Automática, presented in 2012 [79]

• XX Congresso Brasileiro de Automática, presented in 2014 [56]

Regarding the GRED-BMRAC

• 13th Workshop on Variable Structure Systems [80]

• XX Congresso Brasileiro de Automática [81]

Regarding the eBMRAC

• 19th IFAC World Congress [82]

• XX Congresso Brasileiro de Automática [83]

Related topics

• XI Simpósio Brasileiro de Automação Inteligente [84]

• XX Congresso Brasileiro de Automática [85]
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