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Ávila, Frederico Wegelin, Prof. Gabriel Araujo (Baiano), Guilherme Pinto, Hugo

Carvalho, Dr. Iker Sobron, Isabela Apolinário, Prof. João Dias, Jonathan Gois,
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
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FILTROS ADAPTATIVOS COM CONSUMO EFICIENTE DE ENERGIA

Markus Vińıcius Santos Lima

Dezembro/2013

Orientador: Paulo Sergio Ramirez Diniz

Programa: Engenharia Elétrica

Filtros adaptativos são usados em muitas aplicações, tais como cancelamento de

eco, identificação de sistema, redução de rúıdo, predição de sinal e equalização de

canal. Assim, encontramos filtros adaptativos em vários dispositivos, que podem

ser tão comuns quanto fones de ouvido e smartphones, ou tão complexos quanto

estações rádio-base e sistemas de teleconferência. Portanto, a redução do consumo

de energia dos filtros adaptativos é de suma importância.

Neste trabalho, a teoria de estimação de conjunto, em particular o conceito de

set-membership filtering (SMF), é empregado a fim de gerar filtros adaptativos com

a propriedade de seleção de dados, o que possibilita uma redução significativa no

consumo de energia. Esta tese proporciona uma melhor compreensão dos algoritmos

baseados em SMF, explicando como configurar corretamente os parâmetros de tais

algoritmos a fim de explorar plenamente as suas capacidades. Em seguida, através

da combinação do conhecimento adquirido sobre algoritmos com seleção de dados e

de uma forma alternativa de modelar a esparsidade, dois algoritmos são propostos.

De fato, esses dois algoritmos promovem esparsidade a cada iteração através de uma

aproximação da norma l0, ao invés de empregar a norma l1 comumente utilizada.

Os algoritmos propostos superam, tanto em acurácia quanto em redução da carga

computational, os algoritmos estado-da-arte que exploram a esparsidade dos sinais.

Além disso, o conceito de SMF é estendido para o domı́nio da frequência e dois

novos algoritmos com seleção de dados são propostos: o primeiro é um algoritmo

para equalização semi-cega para sistemas de comunicações baseados em OFDM que

permite uma grande redução na quantidade de pilotos transmitidos, enquanto o

segundo é um algoritmo para cancelamento de eco acústico que usa critérios psi-

coacústicos a fim de atualizar os coeficientes do filtro adaptativo apenas quando o

eco residual for aud́ıvel.
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Markus Vińıcius Santos Lima

December/2013

Advisor: Paulo Sergio Ramirez Diniz

Department: Electrical Engineering

Adaptive filters are used in many applications, such as echo cancellation, system

identification, noise reduction, signal prediction, and channel equalization. Thus, we

find adaptive filters in several devices, which can be as common as headphones and

smartphones, or as complex as antenna base stations and teleconference systems.

Therefore, reducing the energy consumption of adaptive filters is of paramount im-

portance.

In this work, set estimation theory, in particular the set-membership filtering

(SMF) concept, is employed in order to generate adaptive filters featuring the data

selection property, which enables a significant reduction in energy consumption.

This thesis provides a better understanding of SMF-based algorithms, explaining

how to properly set the parameters of such algorithms in order to fully exploit their

capabilities. Then, by combining the acquired knowledge about data-selective al-

gorithms with an alternative form of modeling sparsity, two novel sparsity-aware

data-selective algorithms are proposed. Indeed, these two algorithms promote spar-

sity at each iteration through an approximation to the l0 norm, instead of employing

the commonly used l1 norm. The proposed algorithms overcome the state-of-the-

art algorithms designed to exploit sparsity both in accuracy and in reduction of

computational burden. In addition, the SMF concept is extended to the frequency

domain and two new data-selective algorithms are proposed: the first is a semi-

blind equalization algorithm for OFDM-based communications systems that allows

a large reduction in the amount of pilots transmitted, whereas the second is an

acoustic echo cancellation algorithm that uses psychoacoustics criteria in order to

update the adaptive filter coefficients only when the residual echo becomes audible.
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Chapter 1

Introduction

In recent years, mainly due to lower prices of sensors and storage devices, we have

seen a huge increase in the amount of data to be processed and/or stored. For

example, multiple antennas have been used to increase the capacity of wireless

communications systems, multiple microphones have been employed in multime-

dia applications such as sound source localization and speech/sound enhancement,

multiple sensors have also been deployed in networks to monitor faults in nodes and

to control data traffic, as well as the databases are constantly growing.

In a world where data are so abundant, the capability of evaluating data auto-

matically is of paramount importance. Such a capability, herein called data selection,

gives rise to data-selective filters, which can be regarded as automatic tools for eval-

uation and selection of data. These filters are responsible for discarding unwanted

data, such as redundancy and outliers, providing the end user with the portion of

the data that contains information of his interest. An example of data-selective filter

is the widely used Google Search.

If we add the ability of self-tuning to the data-selective filters, then we obtain

the so-called data-selective adaptive filters and, in the context of adaptive signal

processing, such a self-tuning is known as learning process. Thus, data-selective

adaptive filters are filters that learn as data are evaluated and processed. Since

these filters discard irrelevant data, only the relevant portion of the data are used in

their learning process, a key feature of data-selective adaptive filters. Indeed, such a

feature yields adaptive filters that are superior to the classical adaptive filters, both

in performance and in reducing the total number of arithmetic operations performed,

which enables the reduction in energy consumption.

The energy-efficient adaptive filters addressed in this thesis are data-selective

adaptive filters that employ the set-membership filtering (SMF) concept [1]. This

concept is fairly recent since it was proposed in 1998, and has given rise to adaptive

filters that exhibit lower computational burden and estimation error, as compared to

the classical adaptive filters [2]. The literature on set-membership (SM) algorithms
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still lacks contributions, both in applications and analyses, and this thesis aims at

reducing this gap.

This chapter is organized as follows. In Section 1.1, we present the main moti-

vations and possible impact of this thesis. The goals are presented in Section 1.2.

Section 1.3 presents an outline of this thesis and the notation is introduced in Sec-

tion 1.4.

1.1 Motivations and Impact

Adaptive filters are employed in many devices, such as smartphones, modern head-

phones, and teleconference systems, and appear in applications like acoustic echo

cancellation, noise reduction, equalization, and signal prediction.

An adaptive filter adjusts itself according to an algorithm, consisting of a set

of instructions that determines how the filter coefficients shall be updated. The

algorithms used in adaptive filtering are closely related to optimization techniques,

since these algorithms are iterative solutions to optimization problems. However,

unlike optimization techniques [3], adaptive filtering algorithms do not possess a

stopping criterion, i.e., they keep running until the application or device is shut

down.1 Therefore, the development of energy-efficient adaptive filtering algorithms

is an important issue, especially in the case of algorithms that run on battery-

operated devices.

In addition, the classical algorithms used in adaptive filtering perform coefficient

updates at every iteration, consuming a fixed amount of energy per iteration. This is

very counterintuitive! Indeed, as the number of iterations increases and the adaptive

filter learns from the observed data, it is expected that the adaptive filter could

reduce its energy consumption since there is less to be learned. This is exactly what

data-selective adaptive filters do: they evaluate the input data to check how much

innovation is conveyed and, based on this evaluation, the algorithm decides whether

an update is required or not.

As an example, one data-selective algorithm that we propose was able to achieve

a better estimation performance and also reduce the number of arithmetic operations

in 85%, as compared to a classical algorithm (the details are shown in Chapter 4).

In summary, the widespread use of adaptive filters together with the absence of a

stopping criterion in adaptive filtering algorithms make us believe that data-selective

algorithms have great potential to reduce energy consumption. Therefore, this topic

has relevant practical appeal, especially in a moment when there is a growing concern

in developing technologies that have a reduced environmental impact, the so-called

1The absence of a stopping criterion in adaptive filtering algorithms is justified by the fact that
the filter specifications, in addition to being unknown, can also be time-varying.
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green technologies.

1.2 Goal

The goal of this thesis is twofold:

� To develop data-selective adaptive filtering algorithms that exhibit competitive

to better performance and lower computational burden, as compared to the

classical adaptive filtering techniques;

� To obtain a deeper understanding of the data-selective algorithms through

analytic tools and also considering the geometric viewpoint. Some of the

aspects discussed are: stability criteria, mean-squared error (MSE), and up-

dating scheme.

In summary, in this thesis we develop and analyze data-selective adaptive filtering

algorithms.

1.3 Thesis Outline

In this thesis, we address data-selective adaptive filters for: (i) general applications

involving filtering, see Chapters 3 and 4; and (ii) specific applications, such as echo

cancellation and equalization, see Chapter 5. In addition, background material is

condensed in Chapter 2, whereas Chapters 3 to 5 include all contributions of this

work. This thesis is organized as follows.

Chapter 2 addresses set estimation theory in adaptive signal processing aiming

at presenting the set-membership filtering (SMF) concept and its advantages over

the classical algorithms used in adaptive filtering. It also provides a brief review

of adaptive signal processing and presents some of the classical algorithms, among

which we focus on the affine projection (AP) algorithm due to its importance to

the subsequent chapters. Indeed, in Chapters 3 and 4 we present some SM-versions

of the AP algorithm. Chapter 2 basically constitutes background material to the

following chapters.

Chapter 3 presents the set-membership affine projection (SM-AP) algorithm,

which is one of the most general SMF-based algorithms. This chapter begins with an

explanation of how the SM-AP algorithm manages to estimate a member of the exact

membership set using a finite number of constraint sets, i.e., using only a portion

of the observed data. Such an explanation motivates the optimization problem

related to the SM-AP algorithm and also explains how to set properly one of its

parameters, which is known as constraint vector (CV), in order to improve accuracy.
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In addition, two novel CVs are described and analyzed from both geometric and

analytic viewpoints. Then, an expression for the steady-state MSE of the SM-AP

algorithm using a specific CV is derived. This theoretic expression matches the

simulation results very well. Moreover, using such an expression we prove that the

steady-state MSE of the SM-AP algorithm can always be lower than the MSE of

the AP algorithm. In other words, by properly setting the SM-AP algorithm, it

exhibits better accuracy with a reduced number of updates (i.e., saving energy), as

compared to its non-SM counterpart. Most of the mathematical derivations and

proofs are left to Appendix A.

Chapter 4 presents sparsity-aware data-selective adaptive filters, i.e., we pro-

pose data-selective algorithms capable of exploiting the sparse nature of signals and

systems. Based on the literature on classical adaptive filtering algorithms, it is

widely known that their convergence speed degrades as the impulse response of the

involved systems/filters become longer, even when most of their energy is concen-

trated in few coefficients. The goal of sparsity-aware algorithms is to overcome this

issue by exploiting the sparsity of such filters. In order to do that, these algorithms

rely on sparsity-promoting functions, usually the l0 and l1 norms. In Chapter 4,

we follow a different approach by using an approximation to the l0 norm as the

sparsity-promoting function, and we explain the advantages of such a function over

the l0 and l1 norms. We devise two sparsity-aware data-selective adaptive algorithms

and study some of their properties, such as their updating schemes, stability, and

number of operations per iteration. Simulation results considering sparse and com-

pressible signals show that the proposed algorithms outperform the state-of-the-art

algorithms designed to exploit sparsity. Some mathematical derivations and proofs

are left to Appendix B.

Chapter 5 addresses set-membership filtering in the frequency domain.

Frequency-domain algorithms are very appealing to applications involving filters

with very-high orders, such as the ones required in acoustic echo cancellation, since

convolutions in time domain are replaced by scalar multiplications in the frequency

domain [2]. On the other hand, such algorithms require block-processing and, there-

fore, they introduce latency, which might be unacceptable for some applications. In

Chapter 5, we develop two new algorithms. The first is a semi-blind equalization

algorithm for communications systems based on orthogonal frequency-division mul-

tiplexing (OFDM). Many technologies and standards employ OFDM as their core

modulation scheme [4] and the proposed algorithm allows a significant reduction on

the amount of pilots transmitted. The second algorithm is designed for acoustic

echo cancellation and uses psychoacoustics criteria in order to update the adaptive

filter coefficients only when the residual echo becomes audible.

The conclusions and future works are addressed in Chapter 6.
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1.4 Notation

In this section, we define most of the notation used throughout this thesis. We

prefer not to include here definitions that are not extensively used. Such definitions

are introduced only at the moment they are necessary so that the reader does not

have to return to this section every time he/she finds a new symbol.

Equalities are represented by =, but when they represent a definition we use ,.

We use R to denote the real field, R+ to denote the set of nonnegative real numbers,

and the set of integer and natural numbers are denoted by Z and N, respectively.

The natural numbers are defined as N , {0, 1, 2, . . .}, i.e., 0 is included.

In addition, scalars are denoted by lowercase letters (e.g., x), vectors by lowercase

boldface letters (e.g., x), and matrices by uppercase boldface letters (e.g., X). The

symbol (·)T denotes transposition and all vectors are column vectors so that the

inner product between two vectors x,y ∈ R
n is xTy ∈ R.

We define E[·], tr{·}, and P [·] as the expected value, the trace, and the probability

operators, respectively, and define I as the identity matrix and 0 as a vector (or

matrix) whose elements are all zeros. In addition, diag{x} is a diagonal matrix

having x on its main diagonal.
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Chapter 2

Set Estimation Theory in

Adaptive Signal Processing

For a long time, machine learning mechanisms have been based on the classical

theory of point estimation [5, 6]. Nevertheless, the importance of set estimation

theory is growing as the advantages of such a paradigm become clearer. Set theo-

retic optimization is the proper approach to tackle problems in which uncertainty is

unavoidable since, instead of searching for a unique point within the feasible region

that minimizes or maximizes some objective function, it searches for a set of points

which are acceptable solutions given the inherent uncertainty of the problem [7].

Hence, set estimation theory has a great appeal to practical applications [7].

Indeed, since most applications present some sources of uncertainty, like imprecision

due to measurements and modeling, noise, and interference effects, it makes more

sense to search for acceptable solutions rather than a single solution that one would

find using the traditional point estimation theory.

From the practitioner viewpoint, it is quite common to have some knowledge

about the uncertainties of the phenomenon being studied. For instance, we usually

know the precision of the instruments used for measuring, we know how much a

signal is distorted due to quantization, as well as we can estimate or measure noise

and interference. The set estimation theory provides means to incorporate such

knowledge into the estimation problem by properly defining the set of acceptable

solutions.

The inclusion of a priori information into the optimization problem results in

additional degrees of freedom that one can exploit in order to obtain an estimation

technique with interesting properties, such as better accuracy, robustness against

noise, and data selection. The set-membership filtering (SMF) concept is a repre-

sentative of set estimation theory that yields data-selective adaptive filters.

This chapter presents a brief review of adaptive signal processing aiming at

presenting the SMF concept. We present just what we consider essential to follow
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the remaining chapters. The reader should refer to the books [2, 6, 8, 9] for a

thorough discussion of the principles of adaptive filtering. Section 2.1 presents the

essential elements in adaptive filtering and discusses the differences between point

estimation theory and set estimation theory. In Section 2.2 we present some classical

adaptive filtering algorithms focusing on the affine projection (AP) algorithm. Such

a focus is justified by the generality of the AP algorithm and also by the fact that

the next two chapters present set-theoretic versions of the AP algorithm. Then, in

Section 2.3 we address the set-theoretic adaptive filtering and the SMF.

2.1 Adaptive Signal Processing

In this section we present the basics of adaptive signal processing. We describe

the operation of an adaptive filter in a general setup in Subsection 2.1.1. Then, in

Subsection 2.1.2, we address the differences between point estimation theory and

set estimation theory.

2.1.1 Basics

Figure 2.1 depicts a general adaptive filter configuration. At a given iteration k, the

coefficients of the adaptive filter, herein called coefficient vector, are represented by

w(k) ∈ R
N+1, where

w(k) , [w0(k) w1(k) . . . wN(k)]
T (2.1)

and N ∈ N is the order of the adaptive filter, which is assumed to be a finite-duration

impulse response (FIR) adaptive filter [2, 10]. The adaptive filtering algorithm

requires two signals: d(k) ∈ R, which is the desired signal (also known as reference

signal), and x(k) ∈ R
N+1, which is the input vector (also called regressor [8]). The

input vector has the following structure:

x(k) , [x(k) x(k − 1) . . . x(k −N)]T , (2.2)

i.e., the adaptive filter has a transversal structure (also known as tapped-delay

line [2, 6]).

The output of the adaptive filter y(k) ∈ R due to a given input vector x(k) is

defined as

y(k) , wT (k)x(k). (2.3)

It is expected that y(k) becomes closer to d(k) as k grows. In order to measure the
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w(k)

d(k)

x(k) y(k)

e(k)

−

Figure 2.1: General adaptive filter configuration.

discrepancy between these two variables, we define the error signal e(k) ∈ R as

e(k) , d(k)− y(k) = d(k)−wT (k)x(k). (2.4)

The error signal is used by the algorithm during the update of the coefficient vector.

It is worth mentioning that, in many practical applications, d(k) is usually corrupted

by some kind of noise, which we denote as n(k) ∈ R.

The variables depicted in Figure 2.1 and defined in this section are extensively

used in Chapters 3 and 4, which correspond to the core material of this thesis. In

Chapter 5 we deal with complex-valued variables, and a slight modification on the

definition of the output signal y(k) will be necessary. In addition, in that chapter

we also deal with the case in which the desired signal d(k) is not always available,

which is denominated as semi-supervised or semi-blind setup. Such particularities

are introduced only when necessary.

2.1.2 Adaptive Filtering: Point vs. Set Estimation Theories

In the adaptive filtering context, the algorithms can be classified according to their

estimation procedure into two groups: the point estimation and the set estimation

techniques.

The point estimation group contains the majority of the adaptive filtering al-

gorithms, including the classical ones, such as the least-mean-square (LMS), the

normalized LMS (NLMS), the binormalized LMS (BNLMS), the affine projection

(AP), and the recursive least-squares (RLS) [2, 6, 8]. These algorithms try to find

a single solution that is optimal with respect to a given objective function, usually

a quadratic function of the parameters to be estimated, i.e., the coefficient vector.

The group of set estimation techniques, on the other hand, has fewer repre-

sentatives. Some examples are the set-membership NLMS (SM-NLMS) [1], the

set-membership binormalized LMS (SM-BNLMS) [11], and the set-membership AP

(SM-AP) [12] algorithms. Unlike the point estimation techniques, these algorithms
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search for any acceptable solution. In addition, these algorithms employ the SMF

concept, which confers them the data selection property. Thus, these algorithms

evaluate data before performing an update and, as a result, they are able to operate

in an economic mode, in which most of the time they are not updating the filter co-

efficients. In addition to this reduction of energy consumption due to fewer updates,

these algorithms have proven to be superior to their classical counterparts [2, 13].

2.2 Classical Adaptive Filtering

In the classical adaptive filtering, the algorithms are devised so that a function of

the error signal e(k), defined in Eq. (2.4), is minimized. Two widely used objective

functions are [2, 6]:

� Weighted Least Squares (WLS):
k∑

i=0

λie2(k − i), where λ ∈ R+ is a constant

that should be chosen as 0 < λ ≤ 1;

� Mean-squared error (MSE): E [e2(k)];

The WLS can be interpreted as a generalization of the standard least squares

(LS). Indeed, by choosing λ = 1, the WLS becomes the LS. Adaptive filtering

algorithms that minimize the WLS belong to the family of LS algorithms, which

has the RLS algorithm as its most popular member.

The family of algorithms that minimize the MSE is known as minimum MSE

(MMSE). Among the MMSE adaptive filtering techniques, we must highlight the

importance of one of its subgroups of algorithms which is known as stochastic gra-

dient algorithms. The stochastic gradient algorithms are characterized by updating

the coefficient vector w(k) following the opposite direction of an approximation to

the gradient of the MSE function. These algorithms are very important due to their

low computational complexity and the LMS algorithm is certainly the most famous

of them. Some modifications of the LMS algorithm have also been proposed and,

therefore, the term LMS-based algorithms is also used. Examples of such algorithms

are the NLMS, the BNLMS, and the AP [2, 6].

In the following subsections we present a brief review of the LMS, NLMS, RLS,

and AP algorithms.

2.2.1 Least-Mean-Square (LMS) Algorithm

The field known as adaptive signal processing (or simply adaptive filtering) emerged

in 1960, when Bernard Widrow and his Ph.D. student Marcian E. Hoff proposed

the LMS algorithm [14]. In the LMS algorithm, the coefficient vector is updated
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according to the following recursion:

w(k + 1) = w(k) + 2µe(k)x(k), (2.5)

where µ ∈ R+ is the step size, also known as convergence factor, and should be

chosen as [2]

0 < µ <
1

tr{E [x(k)xT (k)]} , (2.6)

where E
[
x(k)xT (k)

]
is the autocorrelation matrix of the input signal.

Observe that (2.6) does not provide a practical way of computing the upper

bound for µ. Indeed, even if we assume that the input signal is wide-sense stationary

(WSS), it might be unfeasible to have an accurate estimate for such a matrix (or its

trace). In practice, however, (2.6) states that we can choose a small µ and, if it is

not enough to guarantee stability, then we reduce it even further.

2.2.2 Normalized LMS (NLMS) Algorithm

The NLMS algorithm was independently proposed in [15] and [16], both in 1967, and

is probably the most widely used algorithm nowadays. This algorithm overcomes

two major problems in the LMS algorithm [6]:

1. Choice of µ;

2. Gradient noise amplification.

The problem related to the choice of µ was already explained in the previous sub-

section. The gradient noise amplification occurs because the gradient (and thus, the

updating rule) of the LMS algorithm depends on the input vector x(k), which may

have a high norm. Thus, when the observed data is corrupted by some kind of noise,

a large gradient will amplify this noise leading to a higher MSE.

The NLMS algorithm solves these problems by normalizing the energy of the

input vector, which leads to the following updating rule:

w(k + 1) = w(k) +
µ

‖x(k)‖2 e(k)x(k), (2.7)

where ‖ · ‖ stands for the 2-norm of a vector, also known as Euclidean norm. Such

a modification eliminates the problems due to input vectors with high ‖x(k)‖2, and
also allows the step size to be chosen as:

0 < µ < 2. (2.8)
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Figure 2.2: Updating scheme of the NLMS algorithm with µ = 1.

The range of µ in (2.8) guarantees the convergence of the algorithm in noiseless

scenarios. In practice, it is recommended to set µ as 0 < µ ≤ 1.

In addition, the NLMS algorithm is usually implemented as:

w(k + 1) = w(k) +
µ

‖x(k)‖2 + δ
e(k)x(k), (2.9)

where δ ∈ R+ is the regularization factor, which is used to avoid numerical problems

that may occur when ‖x(k)‖2 is close to 0.

Let us define the hyperplane Πk as

Πk ,
{
w ∈ R

N+1 : d(k)−wTx(k) = 0
}
, (2.10)

i.e., Πk is the hyperplane where the a posteriori error (i.e., the error computed using

the coefficient vector after the update) is equal to 0. Then, Figure 2.2 provides an

interesting interpretation of the updating process of the NLMS algorithm. In this

figure, we consider that w(k) ∈ R
3, thus Πk−1 and Πk are actually planes, and we

also consider µ = 1. In such a setup, the NLMS algorithm generates w(k + 1) as

a projection of w(k) onto Πk.
1 Vector wo represents the optimal coefficients of the

adaptive filter given by the Wiener solution, which belongs to the intersection of Πk

and Πk−1 considering the noiseless case.

2.2.3 Recursive Least-Squares (RLS) Algorithm

The RLS algorithm for transversal adaptive filters was first proposed in [18]. Later,

alternative implementations have been proposed. These different versions of the

RLS algorithm were proposed to reduce the complexity of the algorithm, or due to

stability issues. Here, we follow the approach of [2, 18].

The RLS algorithm aims at minimizing the sum of the weighted squared-errors,

1A projection of a point z on a set Z is any point zp ∈ Z which is closest to z [17].
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i.e., its objective function is the WLS. It uses an approximation to the correlation

matrix in order to “whiten” the input signal and, consequently, increase the conver-

gence speed. Therefore, in stationary scenarios, the RLS algorithm is much faster

than the LMS and NLMS algorithms. However, its computational complexity is also

much higher due to several matrix-vector multiplications.2

The RLS algorithm is characterized by the following recursion:

w(k) = SD(k)pD(k), (2.11)

where SD(k) ∈ R
(N+1)×(N+1) and pD(k) ∈ R

N+1 are called the inverse of the de-

terministic autocorrelation matrix of the input signal and the deterministic cross-

correlation vector between input and desired signals, respectively, and they are de-

fined as:

SD(k) ,
1

λ

[

SD(k − 1)− SD(k − 1)x(k)xT (k)SD(k − 1)

λ+ xT (k)SD(k − 1)x(k)

]

, (2.12)

pD(k) , λpD(k − 1) + d(k)x(k), (2.13)

where λ ∈ R+ is the forgetting factor and should be chosen as 0 < λ ≤ 1. In

practice, we usually choose λ ∈ [0.9, 1.0).

2.2.4 Affine Projection (AP) Algorithm

The AP algorithm was developed in [19], in 1984, aiming at increasing the conver-

gence speed of stochastic gradient algorithms. In particular, the target of the AP

algorithm was to solve an issue related to the NLMS algorithm: the degradation of

its convergence speed when the input signal is colored.

Motivated by Figure 2.2, Ozeki and Umeda noticed that the convergence speed

of the NLMS algorithm could be increased if the update were a projection of w(k)

onto Πk−1

⋂
Πk. Since x(k) is orthogonal to Πk, for each k, they figured out that

the perturbation applied to w(k) that yields w(k + 1) ∈ Πk−1

⋂
Πk had to be a

linear combination of the current input vector x(k) and the previous input vector

x(k − 1), as shown in Figure 2.3.

Figure 2.3 depicts the updating process of w(k) ∈ R
3 considering an AP algo-

rithm with µ = 1 and reusing one previous input vector. Observe that due to the

data reuse, the AP algorithm was able to get close to wo faster than the NLMS algo-

rithm did. Such an idea can be generalized to (N+1)-dimensional spaces in which L

previous input vectors are used simultaneously with the current input vector, where

2This comment considers the standard transversal RLS algorithm. As already mentioned, there
exist alternative versions of the RLS algorithm that are less complex, but these implementations
are usually affected by stability issues [2].
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direction
updating

w(k)

wo

Πk−1x(k − 1)

w(k + 1)

x(k)

Πk

Figure 2.3: Updating process of the AP algorithm considering L = 1 and µ = 1.

L is known as data reuse factor.

The updating equation of the AP algorithm is given by:

w(k + 1) = w(k) + µX(k)
[
XT (k)X(k)

]−1
e(k), (2.14)

but like the NLMS algorithm, we usually include a regularization factor δ to avoid

numerical issues due to matrix inversion, and we actually implement the following

recursion:

w(k + 1) = w(k) + µX(k)
[
XT (k)X(k) + δI

]−1
e(k), (2.15)

where X(k) ∈ R
(N+1)×(L+1) is the input matrix defined as

X(k) , [x(k) x(k − 1) . . . x(k − L)] , (2.16)

and the error vector e(k) ∈ R
L+1 is defined as

e(k) , d(k)− y(k). (2.17)

The desired vector d(k) ∈ R
L+1 and the output vector y(k) ∈ R

L+1 are, respectively,

given by

d(k) = [d(k) d(k − 1) . . . d(k − L)]T , (2.18)

y(k) = XT (k)w(k). (2.19)

The geometric interpretation of Figure 2.3 also reveals the objective function that

is actually minimized by the AP algorithm with µ = 1. Indeed, the optimization
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problem is:

minimize ‖w(k + 1)−w(k)‖2

subject to d(k)−XT (k)w(k + 1) = 0, (2.20)

i.e., we want to find w(k + 1) which is as close as possible to w(k) such that

w(k + 1) ∈ Πk

⋂
Πk−1

⋂
. . .
⋂
Πk−L.

Similarly to the NLMS algorithm, in order to guarantee the convergence of the

AP algorithm we should choose the step size as 0 < µ < 2, considering noiseless

scenarios. Once again, in practice we should choose 0 < µ ≤ 1.

In this section, we focused on the AP algorithm because it is not as complex as the

RLS algorithm and because it generalizes the NLMS algorithm. The AP algorithm

has the data reuse factor L, which controls the trade-off between complexity and

convergence speed. The AP algorithm with L = 0 and L = 1 becomes the NLMS and

the BNLMS algorithms, respectively. It is already known that as L increases, the

convergence speed increases as well, but the steady-state MSE of the AP algorithm

also increases [2, 20].

2.3 Set-theoretic Adaptive Filtering and the Set-

Membership Filtering

As previously mentioned, set estimation theory is very appealing due to its addi-

tional degrees of freedom that enable one to take into consideration the uncertainties

inherent to the problem.

Despite its advantages, set estimation theory is rarely found in the adaptive

filtering literature. An important example of set estimation theory in adaptive signal

processing is the set-membership filtering (SMF). Indeed, the SMF is remarkable

because it connects set-theoretic estimation with data selection, enabling a reduction

of the required computational burden and, consequently, saving energy. In addition

to the reduction of the computational burden, SMF-based algorithms are also more

robust against noise [13].

The SMF concept appeared in [1] and is suitable to adaptive filtering problems

that are linear-in-parameters, i.e., given the input vector x ∈ R
N+1 and the filter

coefficients w ∈ R
N+1, the output of the filter is given by y = wTx ∈ R.

The SMF criterion aims at estimating the parameter w that leads to an error

signal e , d − y ∈ R whose magnitude is upper bounded by a constant γ ∈ R+,

for all possible pairs (x, d), where d ∈ R is the desired (or reference) signal [1]. The

variable γ determines how much error is acceptable and is usually chosen based on
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a priori information about the sources of uncertainty. Most of the time, we assume

that such uncertainty is caused by a noise signal n whose variance is σ2
n, and γ is

chosen as a function of σ2
n.

Alternatively, denoting by S the set comprised of all possible pairs (x, d), we can

state the SMF criterion as finding w that satisfies |e| = |d−wTx| ≤ γ, ∀(x, d) ∈ S.
That is, by defining the feasibility set (the set of acceptable solutions) Θ as

Θ ,
⋂

(x,d)∈S

{
w ∈ R

N+1 : |d−wTx| ≤ γ
}
, (2.21)

then the SMF criterion can be summarized as finding a w ∈ Θ.

Considering online applications, Eq. (2.21) does not provide a practical way

of determining Θ or a point in it since we do not have S. So, it is important

to develop iterative techniques, which are referred to as set-membership adaptive

recursive techniques (SMARTs) [1].

Clearly, the best we can do to iteratively estimate Θ is to use all data available up

to the current iteration k, i.e., use the pairs (x(0), d(0)), (x(1), d(1)), . . ., (x(k), d(k)).

Indeed, defining the set

Ψk2
k1

,

k2⋂

k=k1

H(k), (2.22)

where k1, k2 ∈ N and H(k) denotes the kth constraint set given by

H(k) ,
{
w ∈ R

N+1 : |d(k)−wTx(k)| ≤ γ
}
, (2.23)

then Θ can be iteratively estimated via the exact membership set Ψk
0 since

limk−→∞Ψk
0 = Θ.

Fig. 2.4 depicts the geometrical interpretation of the SMF criterion. The con-

straint sets correspond to regions between parallel hyperplanes in the parameter

space, whereas the exact membership set is a convex polytope. The hypervolume

of Ψk
0 decreases for each k in which the pairs (x(k), d(k)) bring some innovation.

Clearly Θ ⊂ Ψk
0, ∀k.

2.4 Conclusion

In this chapter we introduced the SMF concept. Our goal was to define some of

the involved sets, especially the constraint set H(k). Other important sets are the

feasibility set Θ, the intersection of the constraint sets from iteration k1 to k2 which

is given by Ψk2
k1
, and the exact membership set Ψk

0. These sets are extensively used
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Θ

d(0)−wTx(0) = −γ̄

d(0)−wTx(0) = γ̄

d(1)−wTx(1) = −γ̄

d(1)−wTx(1) = γ̄

H(0)

H(1)

Ψ1
0

Figure 2.4: SMF geometrical interpretation in the parameter space: Ψ1
0 = H(0)

⋂H(1).

in the beginning of the next chapter.

In addition, the next two chapters present SMF-based algorithms and, as it

will be shown, these algorithms are superior to their classical counterparts, having

two very attractive features: robustness against noise and reduced computational

burden [2].
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Chapter 3

The Set-Membership Affine

Projection Algorithm

The affine projection (AP) algorithm [19] is a widely used and studied adaptive

filtering algorithm due to its fast convergence, when compared to the popular least-

mean-square (LMS) algorithm, and its low computational complexity as compared

to the recursive least-squares (RLS) algorithm [2, 19–22]. The fast convergence of

the AP algorithm, especially for highly correlated input signals, originates from the

data reuse, as explained in Chapter 2. In other words, the convergence speed of the

AP algorithm can be increased by reusing more data. The price to be paid is an

increase in both the computational complexity and steady-state mean-squared error

(MSE) [2].

The set-membership (SM) algorithms [1, 11, 12, 23–29] rely on the concept of set-

membership filtering (SMF), which allows the reduction of computational burden

by updating the filter coefficients only in the cases where the error is greater than a

prescribed threshold, i.e., the innovation in the observed data is checked before the

data are used in the learning process. This SMF property, known as data selection, is

responsible not only for the reduction of computational burden, thus saving energy,

but also for the robustness against noise of the SM algorithms.

Therefore, the set-membership affine projection (SM-AP) algorithm is an inter-

esting alternative to the AP algorithm because it combines the data reuse, which

increases the convergence speed, with the data selection, which makes the algorithm

less sensitive to noise and also reduces the computational burden. This combination

results in a computationally efficient algorithm with low steady-state MSE and high

convergence speed.

Another reason that makes the SM-AP algorithm interesting is the fact that it

generalizes many algorithms. Indeed, the set-membership normalized LMS (SM-

NLMS), the set-membership binormalized LMS (SM-BNLMS), and their non-SM

counterparts (i.e., the NLMS, BNLMS, and AP algorithms) with step size µ = 1 are
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all particular cases of the SM-AP algorithm. Hence, the results presented in this

chapter can also be applied to the aforementioned algorithms.

Almost the entire chapter constitutes contributions of this thesis. The only

exception is Section 3.2. The contributions of this chapter are listed below:

1. We connect the theory of the SM-AP algorithm with the SMF concept, i.e.,

we explain how a finite number of constraint sets H(k) shall be used in order

to obtain an estimate of the exact membership set Ψk
0.

2. We describe the role played by the constraint vector (CV) in the updating

process, which explains why a general choice of the constraint vector does not

lead to accurate estimates.

3. Based on what the SM-AP algorithm should do, i.e., based on its original

optimization problem, we propose a guideline for setting the CV.

4. We propose two new CVs: one presents very high convergence speed, whereas

the other represents a trade-off between convergence speed and steady-state

MSE.

5. By analyzing different CVs from both geometrical and analytical viewpoints,

some properties of these CVs are revealed and then confirmed via simulation.

6. We present an analysis of the steady-state MSE of the SM-AP algorithm using

one of the CVs, which results in a closed-form expression that matches the

experimental MSE results and also agrees with the analysis of the standard

AP algorithm.

7. We show, mathematically and via simulation, that the SM-AP algorithm can

always achieve lower steady-state MSE than the AP algorithm with µ = 1,

provided the error-bound parameter γ is properly set.

The content of this chapter was published mostly in [13, 30] and also in [31, 32].

This chapter is organized as follows. Section 3.1 provides an interpretation of the

SM-AP algorithm based on the sets involved in the SMF concept, which culminates

in the original optimization problem corresponding to the SM-AP algorithm. Sec-

tion 3.2 describes the SM-AP algorithm and presents one of its key components: the

CV. In Section 3.3, we provide a comprehensive study of the CV, which encompasses:

a guideline for setting the CV, proposition of two new CVs, properties of the updat-

ing process, and simulation results that corroborate our expectations. Section 3.4

presents an analysis of the steady-state MSE of the SM-AP algorithm employing a

specific CV. Appendix A presents material that is related to Section 3.4. Indeed, it

contains most of the mathematical derivations, the model used for some variables,

as well as the assumptions required throughout the steady-state MSE analysis.
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H(k)

d(k − 1)−wTx(k − 1) = −γ̄

d(k − 1)−wTx(k − 1) = γ̄

d(k)−wTx(k) = −γ̄

d(k)−wTx(k) = γ̄

H(k − 1) Ψk
k−1 w(k)

w(k + 1)

Figure 3.1: Geometrical interpretation of the updating scheme of the SM-NLMS algo-
rithm in the parameter space. Observe that the updating process generated w(k + 1) /∈
H(k − 1).

3.1 Relation with the SMF Concept

The different SMF-based online algorithms in the literature choose distinct forms

of working with a finite number of constraint sets H(k) in order to approximate

the exact membership set Ψk
0, which converges to the feasibility set Θ as k −→ ∞,

as explained in Section 2.3. For instance, at a given iteration k, the SM-NLMS

algorithm works only with the current constraint set H(k), whereas the SM-BNLMS

algorithm considers Ψk
k−1 = H(k)

⋂H(k − 1).

The set-membership affine projection (SM-AP) algorithm generalizes both the

SM-NLMS and SM-BNLMS algorithms. Indeed, the SM-AP algorithm works with

the last L + 1 constraint sets Ψk
k−L, where L is known as data reuse factor. This

basically means that, at a given iteration k, the SM-AP algorithm finds a new

parameter vector w(k + 1) that belongs to Ψk
k−L.

As L increases, more previous data are reused at every iteration resulting in an

increase of convergence speed at the cost of increasing the computational complexity.

In addition, by progressing from w(k) ∈ Ψk−1
k−L−1 to w(k+1) ∈ Ψk

k−L, it may happen

that w(k + 1) /∈ Ψk−1
k−L−1, or equivalently w(k + 1) /∈ H(k − L − 1). Figure 3.1

depicts an example of a valid updating scheme for the SM-NLMS algorithm (i.e.,

L = 0) in which the updating process generates w(k + 1) ∈ Ψk
k = H(k), but

w(k + 1) /∈ Ψk−1
k−1 = H(k − 1). Therefore, in order to mitigate this issue it is

important to employ the minimum disturbance principle so that the updating of the

parameter vector is performed to minimize ‖w(k+1)−w(k)‖2, where ‖·‖ stands for

the 2-norm of its argument. Intuitively, by constraining w(k+1) to be close to w(k),
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there is a lower probability of w(k+1) /∈ Ψk−1
k−L−1 and, consequently, the probability

of w(k+1) /∈ Ψk
0 decreases as well. In other words, the SM-AP algorithm alleviates

the fact that it uses only L+1 constraint sets at every iteration by constraining the

length of the perturbation applied to w(k) that generates w(k + 1) to be small.

Therefore, the SM-AP algorithm aims at finding a w(k + 1) that solves the

following optimization problem:

minimize ‖w(k + 1)−w(k)‖2

subject to w(k + 1) ∈ Ψk
k−L. (3.1)

This means that if w(k) ∈ Ψk
k−L, i.e., the data does not bring enough innovation,

then no update is performed and w(k + 1) = w(k). On the other hand, an update

is required when w(k) /∈ Ψk
k−L. Note that in order to check if w(k) ∈ Ψk

k−L, it

suffices to check if w(k) ∈ H(k), because the iterative process already ensures that

w(k) ∈ Ψk−1
k−L−1 ⊂ Ψk−1

k−L.

We call the optimization problem in (3.1) as the original optimization problem

of the SM-AP algorithm because it is based on the principles of the SMF theory.

We show in the next section that the SM-AP algorithm was derived/proposed as

the solution to a different optimization problem.

3.2 The Algorithm

The SM-AP algorithm was proposed in [12] and encompasses many other algorithms

such as the SM-NLMS algorithm [1], the SM-BNLMS algorithm [11], and the stan-

dard AP algorithm with step size µ = 1. The SM-AP algorithm combines the data

selection of the SMF with the data reuse of the AP algorithm. These two features

make the SM-AP a powerful algorithm that converges fast, like an AP algorithm,

but requires fewer computations since it does not update very often, especially after

convergence [2].
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3.2.1 Summary of the Main Variables

Assuming we have available the last L + 1 data-pairs of input vectors and desired

signals, we define, for a given iteration k, the main variables of the SM-AP algorithm:

x(k) = [x(k) x(k − 1) . . . x(k −N)]T (input vector)

X(k) = [x(k) x(k − 1) . . . x(k − L)] (input matrix)

w(k) = [w0(k) w1(k) . . . wN(k)]
T (coefficient vector)

d(k) = [d(k) d(k − 1) . . . d(k − L)]T (desired vector)

γ(k) = [γ0(k) γ1(k) . . . γL(k)]
T (constraint vector)

e(k) = [e0(k) e1(k) . . . eL(k)]
T (a priori error vector)

ε(k) = [ε0(k) ε1(k) . . . εL(k)]
T (a posteriori error vector).

(3.2)

The input matrixX(k) ∈ R
(N+1)×(L+1) contains the last L+1 input vectors x(k−l) ∈

R
N+1 for l = 0, . . . , L. The adaptive filter coefficient vector is given by w(k) ∈

R
N+1, the desired output vector d(k) ∈ R

L+1 contains the last L+1 desired signals

d(k − l) ∈ R for l = 0, . . . , L, the constraint vector (CV) is given by γ(k) ∈ R
L+1,

and e(k), ε(k) ∈ R
L+1 defined as

e(k) , d(k)−XT (k)w(k) (3.3)

ε(k) , d(k)−XT (k)w(k + 1) (3.4)

are the a priori and the a posteriori error vectors, respectively. Observe that the a

priori error vector e(k) is sometimes called error vector.

The noise vector is n(k) = [n(k), . . . , n(k−L)]T ∈ R
L+1. The parameter γ ∈ R+

defines an upper bound for the entries of the CV, i.e., |γl(k)| ≤ γ for l = 0, . . . , L,

and is commonly chosen as γ =
√

5σ2
n [1, 2, 11, 12], where σ2

n is the variance of

the noise. Later on, in this chapter, we address the problem of choosing γ, which

depends on the choice of the CV γ(k).

3.2.2 The SM-AP Algorithm

The SM-AP algorithm is characterized by the following recursion [2, 12]:

w(k+1) =







w(k) +X(k)S(k) [e(k)− γ(k)] if |e0(k)| > γ,

w(k) otherwise,
(3.5)

where in order to keep a compact notation we define

R(k) , XT (k)X(k), (3.6)

S(k) , [R(k) + δI]−1 =
[
XT (k)X(k) + δI

]−1
, (3.7)

21



where R(k),S(k) ∈ R
(L+1)×(L+1) and the parameter δ is the regularization factor,

a small constant used to avoid numerical instability due to the inversion of an ill-

conditioned matrix. It is important to keep in mind that, in addition to being very

close to 0, δ is also an artificial solution to a numerical problem.1 Therefore, for

the purpose of theoretical analysis we can consider δ = 0. For instance, the SM-

AP algorithm, given in (3.5), with δ = 0 was derived in [12] as the solution to the

following optimization problem:

minimize ‖w(k + 1)−w(k)‖2

subject to d(k)−XT (k)w(k + 1) = γ(k). (3.8)

Observe that the optimization problem in (3.8) is very similar to the original

optimization problem given in (3.1), but they are not equivalent. This aspect is

explored in Section 3.3.

3.2.3 Geometric Interpretation

The equality constraint in (3.8) defines, in the space of the coefficient vectors, L+1

hyperplanes. Therefore, the SM-AP algorithm maps w(k) to the w(k + 1) ∈ R
N+1

that belongs to the intersection of these L + 1 hyperplanes given by εl(k) = γl(k),

i.e.,

d(k − l)− xT (k − l)w(k + 1) = γl(k), for l = 0, 1, . . . , L, (3.9)

and is as close as possible to w(k).

Figure 3.2 illustrates the updating process of the SM-AP algorithm for L = 1

considering the most general form of the constraint vector [2, 12], i.e., the only

constraint applied to each of its element γl(k) is |γl(k)| ≤ γ.

3.3 The Role of the Constraint Vector

Now, we have all the tools to fully understand the role of the CV γ(k) in the SM-AP

algorithm.

3.3.1 The Optimization Problems

In the SM-AP algorithm, the entries of γ(k) are employed to define a subset of

Ψk
k−L where w(k + 1) will lie. Indeed, as observed in Figure 3.2, the equality

1Indeed, regularization corresponds to a process in which additional information/constraints
are introduced in order to solve an ill-posed problem. The regularization factor δ used in (3.7) is
related to the Tikhonov regularization.
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H(k)

w(k)

d(k − 1)−wTx(k − 1) = −γ̄

d(k − 1)−wTx(k − 1) = γ̄

d(k − 1)−wTx(k − 1) = γ1(k)

d(k)−wTx(k) = γ0(k)

d(k)−wTx(k) = −γ̄

d(k)−wTx(k) = γ̄

w(k + 1)
H(k − 1)

Ψk
k−1

Figure 3.2: Geometrical interpretation of the updating scheme of the SM-AP algorithm
in the parameter space for L = 1.

constraints in the optimization problem given in (3.8) represent an intersection

of L + 1 hyperplanes, which is guaranteed to be a subset of Ψk
k−L by making

|γl(k)| ≤ γ for l ∈ L , {0, 1, . . . , L}, and w(k + 1) is the projection of w(k) onto

such an intersection/subset.

However, in the original optimization problem, which is described in (3.1), it is

clear that the the SM-AP algorithm should generate w(k + 1) as a projection2 of

w(k) onto Ψk
k−L. This means that w(k + 1) should be the closest point onto Ψk

k−L,

and that is not what the SM-AP algorithm with an arbitrary/random choice of the

CV generally does, as depicted in Figure 3.2.

In addition, if we consider the SM-NLMS and SM-BNLMS algorithms, which

are particular cases of the SM-AP algorithm, then we observe that their updating

rules satisfy the original optimization problem. Indeed, at a given iteration k, the

SM-NLMS algorithm generates w(k + 1) as a projection of w(k) onto Ψk
k = H(k),

see [1] or [2]. For the SM-BNLMS algorithm, there are two commonly used forms to

generate w(k+1): (i) as a projection of w(k) on the set Ψk
k−1 = H(k)

⋂H(k−1) and

(ii) as a projection of w(k) on the set Ψk
k−1 constrained to keep the a posteriori error

at iteration k − 1 constant, see [11] or [2]. Regarding the SM-BNLMS algorithm,

observe that its updating rule explained in (i) satisfies (3.1), but the other rule

explained in (ii) does not.3 However, for all possible forms of update performed by

the SM-NLMS and SM-BNLMS, one must notice that they generate a new estimate

w(k + 1) that lies on the closest boundary of their corresponding sets.

2A projection of a point z on a set Z is any point zp ∈ Z which is closest to z [17].
3In fact, (ii) was probably the motivation behind the simple choice CV (SC-CV), which is

explained in the next subsection.
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3.3.2 Choosing the CV

So far, we have seen that the SM-AP algorithm solves the optimization problem

in (3.8). On the other hand, in Section 3.1 we explained the importance of solving

the original optimization problem given in (3.1). Indeed, in that section we explained

that small steps are important to increase the probability of w(k) ∈ Ψk
0, which is the

exact membership set, which in turn converges to the feasibility set Θ as k grows.

Here, we explain how to set the CV in order to reduce the discrepancy between these

two optimization problems. The term “reduce” was used because sometimes we may

prefer to set the CV so that w(k + 1) lies on the closest boundary of Ψk
k−L, i.e., we

might be interested in alleviating the original optimization problem by replacing

“the closest point” with “a point belonging to the closest boundary”.4 Observe

that the solution to the original optimization problem is also a solution to this

“alleviated problem”, whose motivation is found in the already explained updating

schemes of the SM-NLMS and SM-BNLMS algorithms. Indeed, by extending the

observations valid for the SM-NLMS and SM-BNLMS algorithm, two algorithms

that yield accurate estimates, we can determine a guideline for setting the CV.

Thus, in the SM-AP algorithm, we are interested in generating w(k + 1) on the

border of Ψk
k−L that is closest to w(k) whenever an update occurs. Such an updating

scheme, in addition to being closer to the original optimization problem, also has

the advantage of keeping numerical errors (more specifically, the noise enhancement

effect5) under control [30].

In order to update w(k) towards the closest border of Ψk
k−L, one should notice

that the CV must use some information about the error signal. In fact, just the sign

of the error is necessary to discover which hyperplanes are closer to w(k), as can

be verified in Figure 3.2 and also in Figure 3.3. Therefore, the main guideline for

setting the CVs is: γ(k) must be a function that takes into account the sign of the

components of the error vector e(k).

The first CV that was proposed following this guideline was the simple choice

CV given in Definition 1.

Definition 1 (Simple choice — SC). The SC constraint vector (SC-CV) is defined

as

γl(k) ,







γ sign [el(k)] if l = 0,

el(k) for l ∈ L \ {0}.
(3.10)

4One possible reason for that is the complexity of defining the CV. Indeed, we will present some
CVs with nice properties that demand low computational burden in their calculation.

5Noise enhancement occurs when the observed data is corrupted by some kind of noise. Since
the step applied to w(k) to generate w(k + 1) uses the observed data, if we update using large
steps, then the noise is amplified accordingly.
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The SC-CV was proposed in [12] and its MSE performance was studied in [33].

Similarly to the updating scheme (ii) of the SM-BNLMS algorithm, when an up-

date occurs the SM-AP with SC-CV generates w(k + 1) such that only the 0th

error component is changed (i.e., it reduces |e0(k)| to γ), keeping the other L error

components unaltered.

After some experiments with the SM-AP algorithm employing the SC-CV, we

observed that its convergence speed exhibited only a slight increase as L grows.

For example, the convergence speed of the AP algorithm increases much faster with

L than the convergence speed of the SM-AP algorithm with SC-CV does. This

observation led us to propose another CV, which is given in Definition 2.

Definition 2 (Fixed modulus error-based — FMEB). The FMEB constraint vector

(FMEB-CV) is defined as

γl(k) , γ sign [el(k)] , for l ∈ L. (3.11)

The FMEB-CV was proposed in [32] and its steady-state MSE was analyzed

in [13]. When an update occurs, the FMEB-CV yields w(k+1) such that all errors

due to the last L+1 data pairs are modified so that their absolute values become γ.

Figure 3.3 illustrates the updating process of the SM-AP algorithm employing

the SC-CV and the FMEB-CV for L = 1. In the SC-CV, w(k) is mapped to a

w(k + 1) that lies on the closest border of H(k) constrained not to modify the

previous error components (i.e., it follows a line that is parallel to the hyperplanes

d(k− 1)−wTx(k− 1) = ±γ), whereas the FMEB-CV maps w(k) to w(k+ 1) that

lies on the intersection of the two closest hyperplanes. Figure 3.3 also reveals some

important characteristics of the updating process. For example, the cyan arrow

is usually longer than the blue arrow, especially during the early iterations, which

suggests that the FMEB-CV converges faster than the SC-CV. On the other hand,

as previously mentioned, since the SM-AP works with a finite number of constraint

sets, by using small steps the SC-CV reduces the chance of generating w(k + 1)

disrespecting the constraints prior to iteration k − L. This indicates that, although

the SC-CV is slower than the FMEB-CV, it is capable of achieving both lower MSE

and lower probability of update.

Figure 3.3 also illustrates that there are infinitely many solutions between the

FMEB-CV and SC-CV. In what follows, we show some analytical interpretations in

order to obtain a novel CV that enjoys the good characteristics of both SC-CV and

FMEB-CV.

Assuming that |e0(k)| > γ, then the updating formula of the SM-AP algorithm
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H(k − 1)

H(k)

d(k − 1)−wTx(k − 1) = −γ̄

d(k − 1)−wTx(k − 1) = γ̄

d(k)−wTx(k) = γ̄

d(k)−wTx(k) = 0

d(k − 1)−wTx(k − 1) = 0
w(k)

d(k)−wTx(k) = −γ̄

Ψk
k−1

Figure 3.3: SM-AP updating scheme in the parameter space for L = 1. The blue, cyan,
and green arrows correspond to the step/perturbation p(k) applied to w(k) during the
update considering the SC-CV, FMEB-CV, and ED-CV, respectively. Thus, the head of
these arrows depict w(k + 1).

given in (3.5) can be rewritten as

w(k + 1) = w(k) +X(k)S(k)[e(k)− γ(k)]. (3.12)

Now, by using the particular forms of the aforementioned CVs, one can write

w(k + 1) = w(k) +X(k)S(k)D(k)e(k)
︸ ︷︷ ︸

,p(k)

, (3.13)

where D(k) ∈ R
(L+1)×(L+1) is a diagonal matrix containing weights applied to the

columns of matrix X(k)S(k), and p(k) ∈ R
N+1 is the step/perturbation added to

w(k) to implement the update. The analytic definitions of D(k) and p(k) for the

SC-CV and FMEB-CV are, respectively,

DSC(k) = diag

{(

1− γ

|e0(k)|
, 0, . . . , 0

)}

,

pSC(k) =

(

1− γ

|e0(k)|

)

e0(k) [X(k)S(k)]0 , (3.14)

DFMEB(k) = diag

{(

1− γ

|e0(k)|
, 1− γ

|e1(k)|
, . . . , 1− γ

|eL(k)|

)}

,

pFMEB(k) =
∑

l∈L

(

1− γ

|el(k)|

)

el(k) [X(k)S(k)]l , (3.15)

where [X(k)S(k)]l denotes the lth column of matrix X(k)S(k) and diag {z} is a
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diagonal matrix with z on its main diagonal.

According to (3.13), the SM-AP algorithm with SC-CV or FMEB-CV can be

thought as a standard AP algorithm featuring data selection through the innovation

check that decides whether an update is necessary or not, and employing a variable

step-size matrix D(k), whose diagonal entries represent the step-sizes applied to

each column of X(k)S(k). Observe that, for the SC-CV, only the first column of

X(k)S(k) is employed in the update, whereas the FMEB-CV yields a perturbation

vector that is a linear combination of all columns of X(k)S(k), thus featuring more

degrees of freedom. Therefore, it is expected that the SM-AP using the FMEB-CV

has higher convergence speed.

Both the SC-CV and the FMEB-CV could be thought as two extreme cases

regarding the level of importance given to past data pairs. Indeed, the SC-CV

considers only the current error e0(k) to define the perturbation vector employed

in its related update equation. On the other hand, the FMEB-CV gives similar

weights to all the last L + 1 errors el(k) to define its corresponding perturbation

vector. However, since w(k + 1) = w(k) + p(k) and w(k) has already taken into

account past error signals, then giving similar weights to all error components when

defining p(k) corresponds to giving more importance to previous error signals (i.e.,

el(k) with l relatively large) in the definition ofw(k+1), since those signals were used

in w(k). Therefore, it makes sense to look for a solution that gives less importance

to past error signals in the definition of p(k). A simple way of doing that is inspired

by the RLS algorithm, which applies an exponential decaying to the error signal.

We propose the novel CV of Definition 3 [30, 31], which is represented in Figure 3.3

as the green arrow.

Definition 3 (Exponential decay — ED). The ED constraint vector (ED-CV) re-

quires that γ ≤ 1 and is given by

γl(k) , γ l+1 sign [el(k)] , for l ∈ L. (3.16)

By utilizing the constraint vector definition above in (3.13), one has

DED(k) = diag

{(

1− γ

|e0(k)|
, 1− γ2

|e1(k)|
, . . . , 1− γL+1

|eL(k)|

)}

,

pED(k) =
∑

l∈L

(

1− γ l+1

|el(k)|

)

el(k) [X(k)S(k)]l . (3.17)

3.3.3 Simulation: Comparing the CVs

In this subsection, some aspects of the SM-AP algorithm using different choices for

the CV are studied. These aspects are:
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1. Steady-state MSE level in stationary and nonstationary environments.

2. Convergence speed.

3. Influence of γ in the steady-state MSE.

The CVs considered are the SC-CV, FMEB-CV, ED-CV (see Definitions 1, 2, and 3),

and the general-choice CV (GC-CV), which is defined as γl(k) , γ for l ∈ L, i.e.,
it satisfies |γl(k)| ≤ γ for every l, but it does not use any information regarding the

error vector (i.e., it does not follow the proposed guideline for setting the CV).6

Scenario

We consider the problem of identifying an unknown system whose impulse response is

h(k) = wo for all k, where wo , [0.1 0.3 0 − 0.2 − 0.4 − 0.7 − 0.4 − 0.2]T .

When evaluating the nonstationary behavior, which happens only in Figure 3.5, the

impulse response of the unknown system is given by h(k + 1) = λhh(k) + nh(k),

where h(0)=wo, λh=0.99, and nh(k) is white and Gaussian with variance 0.0015.

The input signal is drawn from a standard normal distribution and the noise

variance is σ2
n = 10−2. Most of the results were obtained by repeating the experiment

5 × 103 times except for the results in Figure 3.7, in which we took an average of

the last 104 samples from each of the 100 experiments, and then averaged over the

experiments, as done in [13]. In addition, the adaptive filter order is N = 7, which

is the same order of the unknown system, and is initialized with w(0) = 0. The

regularization factor is δ = 10−12.

Results

Figures 3.4 to 3.6 depict the MSE learning curves for the SM-AP algorithm with

different CVs. The standard AP algorithm with µ = 1 is used as benchmark.

Figure 3.7 depicts steady-state excess MSE (EMSE) as a function of γ.

In Figures 3.4 and 3.5, the steady-state MSE in stationary and nonstationary

environments is evaluated, respectively. In order to allow a fair comparison, the

algorithms were set so that they have similar convergence speeds in the early iter-

ations. In addition, the parameter γ is chosen as γ =
√

τσ2
n with τ = 3, which

is a recommended value for both the SC-CV [33] and FMEB-CV [13] in order to

achieve a balance between low steady-state MSE and low probability of update.

Figures 3.4(a) and 3.5(a) consider L = 1 (binormalized version of the algorithms),

whereas L = 4 in Figures 3.4(b) and 3.5(b).

6We have also tested γl(k) as a random number drawn from a uniform distribution in the range
of [0, γ] and obtained similar results.
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Figure 3.4: MSE learning curves considering τ = 3 in γ =
√

τσ2
n. Algorithms were set

so that they have similar transient responses, i.e., SM algorithms use the same γ, whereas
µ = 1 for the AP algorithm.
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Figure 3.5: MSE learning curves in nonstationary environment using τ = 3 in γ =
√

τσ2
n. Algorithms were set so that they have similar transient responses, i.e., SM algo-

rithms use the same γ, whereas µ = 1 for the AP algorithm.

Comparing Figures 3.4(a) and 3.4(b), despite the higher convergence speed and

also a bit higher steady-state MSE exhibited by the algorithms using L = 4, these fig-

ures follow the same pattern. Indeed, the GC-CV led to the worst steady-state MSE,

while the FMEB-CV led to a steady-state MSE level similar to the one achieved by

the AP algorithm. The SC-CV led to the lowest steady-state MSE level, while

the ED-CV reached an intermediate (i.e., between the SC-CV and the FMEB-CV)

MSE level. In addition, using Figure 3.4(a) as example, the SM-AP employing the

GC-CV, SC-CV, FMEB-CV, and ED-CV updated only about 45%, 20%, 30%, and

21% of the iterations, respectively. Figure 3.4 illustrates the importance of a proper

choice for the CV and also shows that the SM-AP can achieve similar to better

results compared to the AP algorithm besides saving computational power.

In Figure 3.5 the nonstationary behavior of the SM-AP algorithm is assessed.

Once again, the GC-CV led to the worst results, while the results obtained using
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Figure 3.6: MSE learning curves considering L = 4. Algorithms were set so that they
reach a similar steady-state MSE, i.e., different values of γ were used.

the SC-CV, FMEB-CV, and ED-CV are similar to the one of the AP algorithm. In

fact, we observed that the ED-CV was a bit better than the others since it achieved

the lowest steady-state MSE and also had the lowest probability of update. In

Figure 3.5(b), e.g., the SM-AP employing the GC-CV, SC-CV, FMEB-CV, and

ED-CV updated about 70%, 62%, 63%, and 60% of the iterations, respectively.

In Figure 3.6 the convergence speed is studied. Hence, the algorithms were set

so that they reach a similar steady-state MSE level. Figure 3.6 shows that, for an

arbitrarily given steady-state MSE level, the SM-AP with SC-CV was the slowest

algorithm but also had the lowest probability of update. The highest convergence

speeds were achieved by the SM-AP with FMEB-CV and the AP algorithms, but

the former has the advantage of not updating at every iteration. Interestingly, the

convergence speed provided by the ED-CV was very close to the one of the FMEB-

CV, but the ED-CV requires fewer updates. In this particular setup, the SM-AP

employing the SC-CV, FMEB-CV, and ED-CV updated about 8%, 65%, and 11%

of the iterations, respectively.7

Figure 3.7 depicts the steady-state excess MSE (EMSE) as a function of τ , a

parameter that determines γ =
√

τσ2
n, for different values of L. Observe that when

τ = 0, i.e., γ = 0, the SM-AP employing the FMEB-CV and the ED-CV become

the standard AP algorithm (i.e., AP with step size equal to 1). In Proposition 2

introduced in the next section, we show that by judiciously choosing τ the SM-AP

with FMEB-CV can always achieve a steady-state MSE lower than the one of the

standard AP algorithm in stationary environments, a fact that is corroborated by

Figure 3.7(b) (because the EMSE for τ close to 0 is lower than the EMSE for τ = 0).

7In Figure 3.6, we fixed the steady-state MSE level obtained by the algorithms. However, each
of the SM-AP algorithms could be made faster at the cost of increasing their percentage of updates.
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Figure 3.7: Steady-state Excess MSE vs. τ , where γ =
√

τσ2
n. For the SM-AP employing

the FMEB-CV or ED-CV, τ = 0 corresponds to the standard AP algorithm.

Figure 3.7(c) indicates that the same result should be valid for the SM-AP with ED-

CV (because it exhibits many values of τ that yield lower EMSE, as compared to

the EMSE for τ = 0), but the ED-CV has an advantage: a wider range of values

of τ leading to low EMSE, which means that it is easier to set the SM-AP with

ED-CV. Finally, Figures 3.7(a) and 3.7(c) show that the SM-AP algorithm using

the SC-CV and the ED-CV, respectively, can use high values of τ and still achieve

low steady-state MSE. Recall that higher τ implies lower probability of update, i.e.,

more energy/computational saving.

3.4 Steady-State MSE Analysis

Although the SM-AP algorithm has been successfully employed in many applica-

tions, see [29] and references in Chapter 6 of [2], analytical results for this algorithm

are so far lacking in the open literature. Simpler SM algorithms were analyzed

in [11, 33, 34]. In this section, the SM-AP algorithm with FMEB-CV is analyzed

leading to useful closed-form expressions for its EMSE and misadjustment. The
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analysis result encompasses a number of algorithms such as the SM-NLMS and SM-

BNLMS, and can also be seen as a generalization of the steady-state analysis of the

AP algorithm.

The proposed analysis has the attractive feature of not assuming a specific

model for the input signal and relies on energy conservation concepts previously

employed to derive analytical results related to a number of adaptive filtering algo-

rithms [35, 36]. These analytical results explain some observed experimental results

and provide tools to properly choose the algorithm parameters for a given appli-

cation. Particularly important is the role of the probability of coefficient update

controlled by the deterministic threshold parameter inherent to the SM algorithms.

3.4.1 Preliminaries

In this section we use the energy conservation method to derive expressions for

two common performance measures, namely the excess mean-squared error (EMSE)

and the misadjustment (M), in order to describe the steady-state mean-squared per-

formance of SM-AP algorithms in stationary environments. Assumptions required

throughout the analysis are labeled as As-i, i ∈ N, whereas the label St-i denotes

statements/facts. Both assumptions and statements are discussed in Section A.6 of

Appendix A.

We start by considering the signal model described in Definition 4.

Definition 4. The sequences/random processes {d(k)}, {x(k)}, {n(k)} satisfy the

following conditions:

(a) ∃wo ∈ R
N+1 : d(k) = wT

o x(k) + n(k);

(b) The random variables (RVs) d(k),x(k) have zero mean, ∀k;
(c) n(k) is a zero-mean white Gaussian noise with variance σ2

n = E[n2(k)];

(d) n(k1) is independent of x(k2), ∀k1, k2;
(e) The initial condition w(0) is independent of the RVs d(k),x(k), n(k).

Result 1. As a consequence of Definition 4, the noise n(k) is independent of the

noiseless a priori error signal ẽ(k), which is defined as ẽ(k) = (wo −w(k))Tx(k).

Considering Definition 4, we can write the a priori error signal as

e(k) = d(k)− y(k) = wT
o x(k) + n(k)−wT (k)x(k)

= n(k) + ẽ(k). (3.18)

Squaring both sides of the equation above, then taking the expected value, and using
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Definition 4 and Result 1 we have

E[e2(k)] = E[n2(k)] + E[ẽ2(k)] = σ2
n + E[ẽ2(k)]. (3.19)

Assuming the algorithm converges, we can study its steady-state MSE perfor-

mance by analyzing limk→∞ E[e2(k)] = σ2
n + EMSE where

EMSE = lim
k→∞

E[ẽ2(k)] (3.20)

and the misadjustment is given by

M =
EMSE

σ2
n

. (3.21)

Now that we have introduced the quantities we aim to calculate, we can start

the analysis of the SM-AP algorithm by employing a unified framework based on

energy conservation arguments [20, 35].

Here we will consider a slight generalization of the SM-AP algorithm which

adopts a step size factor µ.8 We will refer to this algorithm as GenSM-AP algorithm

to distinguish it from the SM-AP algorithm introduced in [12].

The updating equation of the GenSM-AP algorithm is given by

w(k + 1) =

{

w(k) + µX(k)S(k) [e(k)− γ(k)] if |e0(k)| > γ,

w(k) otherwise.
(3.22)

The nonlinearity presented in (3.22) due to the innovation check (also called

information evaluation) step [11] turns the analysis more difficult. Therefore we will

use a simple model, introduced in Section IV of [11], to overcome this problem by

representing (3.22) as

w(k + 1) = w(k) + Pup(k)µX(k)S(k) [e(k)− γ(k)] , (3.23)

where Pup(k) ∈ [0, 1] is a function that represents the probability of updating the

filter coefficients at a given iteration k, i.e., Pup(k) , P [|e0(k)| > γ]. Note that

Eq. (3.23) is still much more complex than the AP updating rule, since γ(k) is any

RV satisfying |γl(k)| ≤ γ.

3.4.2 The Analysis Model

The goal of this section is to determine under which conditions the proposed analysis

model is accurate.

8The motivation is to highlight the similarities between the SM-AP and AP algorithms.
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Let p(k) ∈ R
N+1 be a RV representing the update applied tow(k) when |e0(k)| >

γ, i.e,

p(k) = µX(k)S(k) [e(k)− γ(k)] . (3.24)

We can write (3.22) as

w(k + 1) =

{

w(k) + p(k) if |e0(k)| > γ,

w(k) otherwise.
(3.25)

Now, let p̄(k) be a random vector defined as

p̄(k) =

{

p(k) if |e0(k)| > γ,

0 otherwise.
(3.26)

With this definition, (3.25) can be rewritten as

w(k + 1) = w(k) + p̄(k). (3.27)

Then, by applying the expected value operator to (3.27), we obtain

E[w(k + 1)] = E[w(k)] + E[p̄(k)]. (3.28)

Computing E[p̄(k)] we get

E [p̄(k)] = E
[

p̄(k)
∣
∣ {|e0(k)| ≤ γ}

]

(1− Pup(k)) + E
[

p̄(k)
∣
∣ {|e0(k)| > γ}

]

Pup(k)

= 0+ E
[

p(k)
∣
∣ {|e0(k)| > γ}

]

Pup(k), (3.29)

where Pup(k) = P [|e0(k)| > γ]. Assuming that the RV p(k) is independent of the

event {|e0(k)| > γ}, see assumption As-1, we can write

E [p̄(k)] = E[p(k)]Pup(k). (3.30)

As a result, it is straightforward to verify that the expected value of (3.22), see (3.28)

and (3.30), leads to the same result as the expected value of (3.23). Consequently,

provided p(k) and {|e0(k)| > γ} are independent, (3.23) approximates (3.22) on

average. Since we are interested in the average behavior of the algorithm, our main

concern is to maintain the averages correct (in the sense of expected values).
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3.4.3 Energy Conservation Approach

Subtracting wo, the optimal filter coefficients, from both sides of (3.23) we have

∆w(k + 1) = ∆w(k) + Pup(k)µX(k)S(k) [e(k)− γ(k)] , (3.31)

where ∆w(k) = w(k)−wo is the coefficient error vector.

Premultiplying Eq. (3.31) by XT (k) and using (3.6) we have

−ε̃(k) = −ẽ(k) + Pup(k)µR(k)S(k) [e(k)− γ(k)] , (3.32)

where

ε̃(k) = −XT (k)∆w(k + 1) = ε(k)− n(k) (3.33)

ẽ(k) = −XT (k)∆w(k) = e(k)− n(k), (3.34)

i.e., ε̃(k) = [ε̃0(k) ε̃1(k) . . . ε̃L(k)]
T , ẽ(k) = [ẽ0(k) ẽ1(k) . . . ẽL(k)]

T ∈ R
L+1

are the noiseless a posteriori error vector and the noiseless a priori error vector,

respectively. Note that ẽ0(k) = ẽ(k), and the subscript 0 is used to emphasize that

ẽ0(k) is the first component of vector ẽ(k).

Assuming X(k) has full column rank, see statement St-1, then R(k) is invertible

and we can write Eq. (3.32) as

R−1(k) [ẽ(k)− ε̃(k)] = Pup(k)µS(k) [e(k)− γ(k)] . (3.35)

Using Eq. (3.35) in Eq. (3.31) follows

∆w(k + 1)−X(k)R−1(k)ẽ(k) = ∆w(k)−X(k)R−1(k)ε̃(k). (3.36)

Proposition 1. By evaluating the energies at both sides of Eq. (3.36) one can prove

the following relation

‖∆w(k + 1)‖2 +
[
ẽT (k)R−1(k)ẽ(k)

]
= ‖∆w(k)‖2 +

[
ε̃T (k)R−1(k)ε̃(k)

]
, (3.37)

which involves the energies of the coefficient-error (also called weight-error) vectors,

and the a priori and a posteriori error vectors.

Proposition 1 is an energy conservation relation for GenSM-AP algorithms. Its

proof is left to Section A.1 of Appendix A.

Applying the expected value operator to (3.37), assuming the algorithm is prop-

erly set, and considering a sufficiently large k, we can assume the algorithm con-
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verges. In this case, E [‖∆w(k + 1)‖2] = E [‖∆w(k)‖2], so that

E
[
ẽT (k)R−1(k)ẽ(k)

]
= E

[
ε̃T (k)R−1(k)ε̃(k)

]
(3.38)

holds in the steady-state.

According to the mathematical derivations given in Section A.2 of Appendix A,

the following relation involving correlation matrices is valid

(2− Pup(k)µ)tr
{
E
[
ẽ(k)ẽT (k)

]
E [S(k)]

}

+ 2(1− Pup(k)µ)tr
{
E
[
ẽ(k)nT (k)

]
E [S(k)]

}

− Pup(k)µtr
{
E
[
γ(k)γT (k)

]
E [S(k)]

}

+ Pup(k)µtr
{
E
[
ẽ(k)γT (k)

]
E [S(k)]

}

− (2− Pup(k)µ)tr
{
E
[
γ(k)ẽT (k)

]
E [S(k)]

}

− 2(1− Pup(k)µ)tr
{
E
[
γ(k)nT (k)

]
E [S(k)]

}

= Pup(k)µtr
{
E
[
n(k)nT (k)

]
E [S(k)]

}
− 2tr

{
E
[
n(k)γT (k)

]
E [S(k)]

}
. (3.39)

In order to derive closed-form expressions for the EMSE of the GenSM-AP al-

gorithm, in the next subsection we will assume that the correlation matrices pre-

sented in the equation above are diagonally dominant, assumption As-3. This as-

sumption is important to maintain the mathematical tractability, as it will become

clear in the next subsection, and it also allows the approximations E
[
ẽ(k)γT (k)

]
≈

E
[
γ(k)ẽT (k)

]
and E

[
γ(k)nT (k)

]
≈ E

[
n(k)γT (k)

]
so that (3.39) is simplified to

(2− Pup(k)µ)tr
{
E
[
ẽ(k)ẽT (k)

]
E [S(k)]

}

+2(1− Pup(k)µ)tr
{
E
[
ẽ(k)nT (k)

]
E [S(k)]

}

−Pup(k)µtr
{
E
[
γ(k)γT (k)

]
E [S(k)]

}

−2(1− Pup(k)µ)tr
{
E
[
ẽ(k)γT (k)

]
E [S(k)]

}

+2Pup(k)µtr
{
E
[
γ(k)nT (k)

]
E [S(k)]

}

= Pup(k)µtr
{
E
[
n(k)nT (k)

]
E [S(k)]

}
. (3.40)

The energy relation discussed so far is valid for the GenSM-AP algorithm with

any possible choice of γ(k). In the next subsections we will address some specific

choices for γ(k).

3.4.4 EMSE for the SM-AP Algorithm with FMEB-CV

In this subsection, we use γ(k) as the FMEB-CV, see Definition 2. The next task is

to derive expressions for the correlation matrices in Eq. (3.40) in order to compute

the EMSE. Due to the definition of the FMEB-CV, note that these correlations
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involve a nonlinear function of the error. Therefore, Result 2, in the following, plays

a very important role in the analysis since it enables us to eliminate this nonlinearity.

Result 2 (Price’s Theorem). Consider two RVs a and b. If we assume that these

variables are jointly Gaussian, the following approximation holds [37, 38]

E [sign[a]b] ≈
√

2

πσ2
a

E [ba] , (3.41)

where σ2
a is the variance of the random variable a.

Expression for E[ẽ(k)ẽT (k)]:

As explained in Section A.3 of Appendix A, E
[
ẽ(k)ẽT (k)

]
can be written as

E
[
ẽ(k)ẽT (k)

]
= A1E

[
ẽ20(k)

]
+A2b (Pupµ)

2 (3.42)

where A1 = diag
{
1, a, a2, · · · , aL

}
, A2 = diag

{

0, 1, 1 + a, · · · ,∑L−1
l=0 al

}

,

b = [σ2
n + γ2 − 2γρ0(k)σ

2
n], a = [1− Pupµ+ 2Pupµγρ0(k)] (1− Pupµ), and

ρ0(k) =
√

2
πE[e20(k)]

.

Expression for E[n(k)nT (k)]:

According to Definition 4, we can write E
[
n(k)nT (k)

]
as

E
[
n(k)nT (k)

]
= σ2

nIL+1. (3.43)

Expression for E[ẽ(k)nT (k)]:

Considering that E[ẽ(k)nT (k)] is a diagonally dominant matrix, assumption As-

3, its diagonal entries can be neglected using statement St-3 leading to

E
[
ẽ(k)nT (k)

]
≈ 0. (3.44)

Expression for E[γ(k)nT (k)]:

Using the diagonally dominant assumption, see assumption As-3, for the matrix

E[γ(k)nT (k)], Definition 2 and Result 2, the relation e(k) = ẽ(k) + n(k), and the

approximation given in (3.44), we have by direct computation of the diagonal terms

that

E
[
γ(k)nT (k)

]
≈ γσ2

nC+ γE
[
ẽ(k)nT (k)

]
C ≈ γσ2

nC, (3.45)

where C = diag {ρ0(k), ρ1(k), · · · , ρL(k)}, and ρl(k) =
√

2
πE[e2

l
(k)]

, as given in
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Eq. (A.17). Using assumption As-5, we can simplify the expression above as follows

E
[
γ(k)nT (k)

]
≈ γσ2

nρ0(k)IL+1. (3.46)

Expression for E[γ(k)γT (k)]:

Using the diagonally dominant assumption, see assumption As-3, for the matrix

E[γ(k)γT (k)], and since E [γ2
l (k)] = γ2, for l = 0, 1, . . . , L, then

E
[
γ(k)γT (k)

]
≈ γ2IL+1. (3.47)

Expression for E[ẽ(k)γT (k)]:

Invoking the diagonally dominant assumption, see assumption As-3, for the ma-

trix E[ẽ(k)γT (k)], utilizing Definition 2, Result 2, the relation e(k) = ẽ(k) + n(k),

and assumption As-5, we have

E
[
ẽ(k)γT (k)

]
≈ γCE

[
ẽ(k)ẽT (k)

]
+ γE

[
ẽ(k)nT (k)

]
C

≈ γρ0(k)
{
A1E

[
ẽ20(k)

]
+A2b (Pupµ)

2} . (3.48)

EMSE of the SM-AP Algorithm:

Considering that the algorithm has converged, in order to replace Pup(k) by Pup,

and substituting (3.42), (3.43), (3.44), (3.46), (3.47), and (3.48) in Eq. (3.40), we

have

(2− Pupµ)E
[
ẽ20(k)

]
tr {A1E [S(k)]}+ (2− Pupµ)b (Pupµ)

2 tr {A2E [S(k)]}
− Pupµγ

2tr {E [S(k)]} − 2(1− Pupµ)γρ0(k)E
[
ẽ20(k)

]
tr {A1E [S(k)]}

− 2(1− Pupµ)γρ0(k)b (Pupµ)
2 tr {A2E [S(k)]}+ 2Pupµγσ

2
nρ0(k)tr {E [S(k)]}

= Pupµσ
2
ntr {E [S(k)]} . (3.49)

Considering that Pup ≪ 1, or µ ≪ 1, or the product Pupµ ≪ 1, see assumption

As-6, so that the terms depending on (Pupµ)
2 are much smaller than the others and

can be neglected, then

[(2− Pupµ)− 2(1− Pupµ)γρ0(k)] tr {A1E [S(k)]}E
[
ẽ20(k)

]

= Pupµ
[
σ2
n + γ2 − 2γσ2

nρ0(k)
]
tr {E [S(k)]} . (3.50)

Rearranging the equation above and considering that the elements on the main

diagonal of E [S(k)] are equal, see assumption As-7, we get an expression for the
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EMSE of the GenSM-AP algorithm

EMSEGenSM-AP = E
[
ẽ20(k)

]
=

[σ2
n + γ2 − 2γσ2

nρ0(k)]Pupµtr {E [S(k)]}
[(2− Pupµ)− 2(1− Pupµ)γρ0(k)] tr {A1E [S(k)]}

=
(L+ 1) [σ2

n + γ2 − 2γσ2
nρ0(k)]Pupµ

[(2− Pupµ)− 2(1− Pupµ)γρ0(k)]

(
1− a

1− aL+1

)

,

(3.51)

where a = [1− Pupµ+ 2Pupµγρ0(k)] (1− Pupµ) as defined in Eq. (A.20). The mis-

adjustment of the GenSM-AP algorithm is given by

MGenSM-AP =
EMSEGenSM-AP

σ2
n

=
(L+ 1)

[

1 + γ2

σ2
n
− 2γρ0(k)

]

Pupµ

[(2− Pupµ)− 2(1− Pupµ)γρ0(k)]

(
1− a

1− aL+1

)

.

(3.52)

By choosing µ = 1, (3.51) becomes the EMSE of the SM-AP algorithm with the

fixed modulus error-based constraint vector

EMSESM-AP = E
[
ẽ20(k)

]

µ=1
=

(L+ 1) [σ2
n + γ2 − 2γσ2

nρ0(k)]Pup

[(2− Pup)− 2(1− Pup)γρ0(k)]

(
1− a

1− aL+1

)

,

(3.53)

where a = [1− Pup + 2Pupγρ0(k)] (1− Pup).

The misadjustment of the SM-AP algorithm is given by

MSM-AP =
(L+ 1)

[

1 + γ2

σ2
n
− 2γρ0(k)

]

Pup

[(2− Pup)− 2(1− Pup)γρ0(k)]

(
1− a

1− aL+1

)

(3.54)

and, since we considered µ = 1, the accuracy of the approximations given by (3.53)

and (3.54) will improve as Pup approaches zero, see assumption As-6.

In Sections A.4 and A.5 of Appendix A, we address the problem of modeling

the variables ρ0(k) and Pup, respectively, in such a way that one can regard (3.53)

and (3.54) as closed-form expressions.

3.4.5 EMSE for the Affine Projection Algorithm

Definition 5. The trivial constraint vector is defined as

γ(k) = 0. (3.55)

When γ = 0, γ(k) must be a trivial constraint vector, since the condition

|γl(k)| ≤ γ is met, for l = 0, 1, . . . , L. In this case, the GenSM-AP algorithm

given by (3.22) becomes the AP algorithm with step-size µ [2].
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Note that the steady-state results derived in the last subsection can be directly

applied to the AP algorithm by making γ = 0, see Definition 2. Note also that when

γ = 0 we have Pup = 1, see Section A.5 of Appendix A, and (3.51) becomes

EMSEAP = E
[
ẽ20(k)

]

γ=0,Pup=1
=

(L+ 1)µ

(2− µ)

(
1− (1− µ)2

1− (1− µ)2(L+1)

)

σ2
n (3.56)

which is the EMSE of the AP algorithm for small values of µ, see Eq. (4.123) of [2].

The misadjustment of the AP algorithm for small µ is given by

MAP =
(L+ 1)µ

(2− µ)

(
1− (1− µ)2

1− (1− µ)2(L+1)

)

(3.57)

which also agrees with Eq. (4.124) of [2].

3.4.6 SM-AP vs. AP

We now discuss how MSM-AP relates to MAP with µ = 1. Recall that for γ = 0, the

SM-AP algorithm becomes the AP algorithm with µ = 1.

Proposition 2. By choosing τ satisfying (3.59) we generate γ =
√

τσ2
n in such a

way that we can guarantee that the steady-state MSE of the SM-AP algorithm is

lower than the one of the AP algorithm with µ = 1.

Proof. First, rewriting MSM-AP considering γ =
√

τσ2
n, τ ∈ R+, and ρ0(k) =

√
2

πE[e20(k)]
as defined in Eq. (A.17), Eq. (3.54) becomes

MSM-AP = (L+ 1)

t1
︷ ︸︸ ︷
[

1 + τ − 2
√
2√
π

√

σ2
n

E[e20(k)]

√
τ

]

Pup

[

2− Pup − (1− Pup)
2
√
2√
π

√

σ2
n

E[e20(k)]

√
τ

]

︸ ︷︷ ︸

t2







t3
︷ ︸︸ ︷

1− a

1− aL+1

︸ ︷︷ ︸

t4







.

If τ ≤ 2
√
2√
π

√
σ2
n

E[e20(k)]

√
τ , i.e., if τ ≤ 8

π
σ2
n

E[e20(k)]
, then t1 ≤ Pup. Since τ > 0, then

Pup < 1, thus t1 < 1. In addition, in order to have t2 ≥ 1 we must satisfy

(1− Pup) ≥ (1− Pup)
2
√
2√
π

√

σ2
n

E[e20(k)]

√
τ (3.58)

which leads to the condition τ ≤ π
8

E[e20(k)]

σ2
n

.
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Figure 3.8: Experimental EMSE vs. τ , where γ =
√

τσ2
n, for L ∈ {1, 2, 3, 4} — Basic

Scenario.

So, if we choose τ satisfying

0 < τ ≤ min

{
8

π

σ2
n

E[e20(k)]
,
π

8

E[e20(k)]

σ2
n

}

, (3.59)

we have t1 < 1 and t2 ≥ 1. Therefore, t1/t2 < 1.

Expanding a we obtain

a = (1− Pup)
2 + Pup(1− Pup)

2
√
2√
π

√

σ2
n

E[e20(k)]

√
τ

≤ (1− Pup)
2 + Pup(1− Pup) = (1− Pup),

where the inequality follows due to (3.58). For τ satisfying (3.59), we have 0 <

1 − Pup < 1, thus a ∈ (0, 1). For these values of a we have t3 ≤ t4 (the equality

occurs when L = 0).

Since t1/t2 < 1 and t3/t4 ≤ 1, we have proven that for τ satisfying (3.59) we

guarantee MSM-AP < (L+1) = MAP

∣
∣
µ=1

. Additionally, since 0 < σ2
n ≤ E[e20(k)] < ∞,

then the upper bound given in (3.59) is well defined.

Figure 3.8 shows the experimental EMSE for different values of L considering

the Basic Scenario, to be defined in Subsection 3.4.7. This figure illustrates that

τo, the value of τ that minimizes the steady-state MSE, is shifted (slightly) to the

left as L increases. In this figure, the values of τo for L = 1, 2, 3, and 4 are 0.7,

0.6, 0.55, and 0.5, respectively. Another important observation is that, regardless

the value of L, the EMSE, and consequently the misadjustment, first decreases and
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then increases, as τ increases.9 This corroborates Proposition 2.

3.4.7 Simulation Results

In this section, we present simulation results in order to confirm the validity of the

theoretical steady-state MSE expressions derived for the SM-AP algorithm. We con-

sider a system identification configuration where the unknown system h is modeled

as an FIR filter of order N .

In what follows, we present simulation results considering different scenarios. We

start with a Basic Scenario (BS) and then we apply changes to this scenario in order

to test the robustness of the proposed analysis.

Figures 3.9 to 3.11 depict the excess MSE (EMSE) versus τ , where τ is an

auxiliary variable such that γ =
√

τ × σ2
n, for each scenario. Values of L greater

than 4 are not addressed here since they lead to higher EMSE and usually require

updates more often, as it was experimentally observed.

The experimental EMSE results were computed in the following way. For each

realization of the stochastic process we let the algorithm run for 20× 103 iterations.

For the proposed scenarios the SM-AP algorithm converged in fewer than 2 × 103

iterations, for all tested values of L. The experimental steady-state MSE results

were obtained by computing a time-average of the squared-error over the last 104

iterations, and then computing an ensemble-average over 100 independent runs.

Subtracting the corresponding noise variances σ2
n from the experimental steady-

state MSE yields the experimental EMSE. In addition, the theoretical EMSE was

computed via Eq. (3.53).

Scenarios

There are four simulation scenarios. They are:

1. Basic Scenario (BS): The unknown system impulse response h was generated

using the MATLAB command randn(N+1,1) with N = 9, and then normal-

izing it to obtain the following unitary-energy impulse response

h = [−0.0520 −0.1228 0.1624 0.1592 −0.4400

−0.0153 −0.0839 0.3193 0.5561 0.5643]T .

The input signal is a white noise drawn from a standard Gaussian distribution.

The adaptive filter order is also N and the initial coefficient vector is w(0) = 0.

9The same behavior is also valid for L = 0. The only reason we did not plot a curve for L = 0
is because the point τo in which such a curve changes its inclination is out of the range of τ shown
in Figure 3.8. In addition, if we were to increase the range of τ to accommodate the case L = 0,
it would become harder to distinguish the other values of τo for 1 ≤ L ≤ 4.
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Figure 3.9: EMSE vs. τ , where γ =
√

τσ2
n, for L ∈ {0, 1, 2, 3, 4} — Basic Scenario

(BS).

In addition, the variance of the additive white Gaussian noise is σ2
n = 10−2.

2. Scenario 2: This scenario is similar to the BS, but with a correlated input

signal. This input signal has eigenvalue spread equal to 20 and is obtained as

the output of a first-order autoregressive process to a white noise signal drawn

from a standard Gaussian distribution [2].

3. Scenario 3: This scenario corresponds to the BS, but with a lower noise vari-

ance σ2
n, i.e., σ

2
n = 10−3.

4. Scenario 4: This scenario corresponds to the BS, but with a different unknown

system given by:

h2 = [0.0809 0.2760 −0.3399 0.1297 0.0480

−0.1968 −0.0652 0.0516 0.5385 0.4167

−0.2031 0.4567 0.1092 −0.0095 0.1076]T .

Once again the adaptive filter order is the same of the unknown system, i.e.,

N = 14.

Results

Figures 3.9, 3.10, and 3.11 depict the excess MSE (EMSE) versus τ considering

different values of L for the BS, Scenario 2, and Scenario 3, respectively. The ex-

perimental and theoretical curves were generated as explained in the beginning of

Subsection 3.4.7. The range of the variable τ is justified by assumption As-6. As

can be observed in these figures, the proposed theoretical expression provides accu-
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Figure 3.10: EMSE vs. τ , where γ =
√

τσ2
n, for L ∈ {0, 1, 2, 3, 4} — Scenario 2.
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Figure 3.11: EMSE vs. τ , where γ =
√

τσ2
n, for L ∈ {0, 1, 2, 3, 4} — Scenario 3.

rate estimates of the experimental EMSE for different scenarios, corroborating the

proposed analysis. The results for the scenarios where the input signal is white (BS

and Scenario 3) are slightly more accurate than the results considering a correlated

input signal (Scenario 2).

In addition, the results show that the popular choice γ =
√

5σ2
n [1, 2, 11, 12],

i.e. τ = 5, leads to low steady-state MSE only for L = 0. In practice, for L = 0, low

EMSE is achieved by choosing τ ∈ [4, 5]. For L 6= 0, however, the results show that

τ = 5 does not yield low EMSE. In such cases, one should choose τ ∈ [0.5, 1] in order

to achieve low EMSE, see Figure 3.8. The drawback of choosing a small value for

τ , and thus γ, is that it reduces the probability of the constraint set H(k) contain

the optimum filter coefficients wo, which increases the computational burden. In

practice, for L 6= 0, choosing τ ∈ [1.5, 4] provides a fine balance between achieving
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Table 3.1: Experimental and theoretical EMSE — Scenario 4.

L τ = 3 τ = 4
experimental theoretical experimental theoretical

0 0.00209 0.002232 0.001722 0.001694
1 0.01214 0.01257 0.01563 0.01688
2 0.01981 0.0195 0.02624 0.02705
3 0.025 0.255 0.03342 0.03496
4 0.02916 0.03325 0.0395 0.04404

low steady-state EMSE and low computational burden (see also Figure A.1).

Table 3.1 presents EMSE results for Scenario 4 considering two values of τ that

are particularly interesting because they represent a compromise between low EMSE

and high probability that wo = h2 ∈ H(k), which is related to the probability of

update. Specifically, higher probability that wo ∈ H(k) implies lower probability

of update, which in turn leads to lower computational burden. Observe that the

theoretical values approximate quite well the experimental EMSE.

3.5 Conclusion

In this chapter we performed a thorough study of the SM-AP algorithm, which can

be seen as an iterative method based on the intersection of constraint sets whose

aim is to estimate a member of the feasibility set.

We started explaining the relation between the SM-AP algorithm and the SMF

concept in order to motivate the original optimization problem, i.e., the optimization

problem that expresses what the SM-AP algorithm should do. Then, we described

the SM-AP algorithm following the article in which it was proposed. We observed

that the SM-AP algorithm was proposed as the solution to an optimization problem

which, in general, is different from the original optimization problem. Indeed, the

constraint vector (CV) provides additional degrees of freedom that, if not properly

set, they can deteriorate the accuracy of the estimates.

We explained the role played by the CV in the updating process. It is interesting

to notice that although any point in the set Ψk
k−L is an acceptable solution, due to

the presence of noise and also because of the finite number of constraint sets used

per iteration, some points of this set are better than the others for a given w(k).

More specifically, we show that the CV should take the error signal (at least the

sign of the error signal) into account so that w(k + 1) lies on the border of Ψk
k−L

which is closest to w(k). In this part, it becomes clear why the general choice for

the CV exhibits inaccurate results.

Next, we present a guideline explaining how to set the CV and also showed three

types of CV: the simple choice CV (SC-CV), the fixed-modulus error-based CV
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(FMEB-CV), and the exponential decay CV (ED-CV). The properties of such CVs

were discussed and we focused on the ED-CV because it makes the SM-AP algorithm

almost as fast as the FMEB-CV, but with steady-state MSE and probability of

update as low as the SC-CV. In addition, the ED-CV as well as the SC-CV enable

one to use high values of γ, which means that these CVs achieve accurate results

and require few updates.

Then, we presented a steady-state MSE analysis for the SM-AP algorithm em-

ploying the FMEB-CV. The proposed analysis relies on energy conservation argu-

ments and is robust to changes in the input-signal model. The results encompass

a number of algorithms such as the SM-NLMS, the SM-BNLMS, and the AP al-

gorithms. The mathematical derivations presented here are general enough to be

applied to the analysis of the SM-AP algorithm with other choices for the con-

straint vector. The theoretical expressions for the excess MSE and misadjustment

predict well the MSE performance of the SM-AP algorithm in stationary environ-

ments. Moreover, it has been shown that the SM-AP algorithm can always have

lower steady-state MSE than the AP algorithm. Simulation results corroborate the

accuracy of the proposed analysis and validate Proposition 2.
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Chapter 4

Sparsity-Aware Data-Selective

Adaptive Filters

Many signals of different nature might have an interesting common feature: they

admit a representation in which most of their components are null (sparse signal) or

have a negligible magnitude (compressible signal). Indeed, such signals are usually

found in a redundant representation so that they can be transformed to a domain

where most of their energy is concentrated in few samples. This is the case of image

and audio signals after sampling, for example.

Sparse signals and systems are found in many scenarios, such as echo cancella-

tion, channel equalization, and system identification. The practical appeal of such

applications has driven the development of many adaptive filtering algorithms aim-

ing at exploiting the sparse nature of the involved signals. However, traditional

algorithms such as the least-mean-square (LMS), normalized LMS (NLMS), affine

projection (AP), and recursive least-squares (RLS) do not take advantage of sparsity

in the signal models, thus disregarding the inherent structure of the problem that

could be employed to improve convergence speed and steady-state error.1

In the adaptive filtering context, the most widely used approach to exploit

sparsity is by performing coefficient updates that are proportional to the mag-

nitude of the related coefficient, leading to the so-called proportionate family of

algorithms. This family includes the proportionate NLMS (PNLMS) [41], the

PNLMS++ [42], improved PNLMS (IPNLMS) [43], IPNLMS-l0 [44], improved

µ−law PNLMS (IMPNLMS) [45], among others [46] [47]. In addition, the set-

membership PNLMS (SM-PNLMS) [48] [49] can be interpreted as a data-selective

version of the IPNLMS algorithm. In comparison to the original PNLMS algorithm,

the SM-PNLMS has higher convergence speed, lower steady-state mean-squared er-

ror (MSE), and reduced computational burden due to data selection, which leads to

1For instance, it is widely known that the convergence speed of the classical algorithms degrades
as the impulse response of the involved system becomes longer [39, 40].
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sparse updates.

In addition to the proportionate algorithms based on NLMS, different adapta-

tions of the affine projection algorithm employing the proportionate idea have been

proposed, leading to the proportionate AP algorithms (PAPAs). Among the moti-

vations for such algorithms we may mention that: (i) they include their PNLMS

counterparts as a particular case when there is no data reuse, i.e., when L = 0;

(ii) they can accelerate convergence by reusing previous data. The PAPA and im-

proved PAPA (IPAPA) algorithms were proposed in [50]. In [49], the proposed

set-membership PAPA (SM-PAPA) was shown to have faster convergence than the

PAPA.

Recently, a different approach to deal with sparsity has been exploited, where

a penalty function accounting for the sparsity is added to the original objective

function and a gradient-based algorithm is derived. Examples of resulting algorithms

are the zero-attracting AP algorithm (ZA-APA) and reweighted ZA-APA (RZA-

APA) [40], whose penalty functions are related to the l1 norm of the coefficient

vector.

In this chapter, we present sparsity-aware data-selective solutions that bring to-

gether some advantageous properties of the aforementioned algorithms, while yield-

ing low computational burden. Unlike most of the methods that tackle sparsity

by minimizing the l1 norm of the coefficient vector, the proposed algorithms use

a penalty function based on an approximation to the l0 norm. In summary, the

contributions of this chapter are:

1. We present a comprehensive material explaining how to approximate the l0

norm and the advantages of such an approach (Section 4.1). Although the

approximations used are widely known functions, we establish for the first

time connections with the l1 norm and the commonly used reweighted tech-

nique [51]. In addition, the content of this section is not restricted to the

adaptive filtering context and, therefore, it can find applications in other ar-

eas involving sparse/compressible signals and systems.

2. We verify the advantages of the approximation to the l0 norm over the widely

used approach that consists of minimizing the l1 norm. These advantages are

confirmed through simulation of simple algorithms that allow us to focus only

on the effect of the sparsity-promoting scheme (Section 4.2).

3. We propose two data-selective algorithms that exploit the sparsity of the sig-

nals (Section 4.3), provide geometric interpretations to their updating schemes

and prove two theorems regarding the stability of the proposed algorithms

(Section 4.4).
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4. We calculate the number of operations required by the proposed and competing

algorithms (Section 4.6).

5. We quantify the reduction of computational burden as compared to traditional

algorithms and show simulation results proving that the proposed algorithms

outperform the other adaptive filtering algorithms designed to exploit sparsity

(Section 4.7).

The content of this chapter was published mostly in [31], but also in [52, 53].

This chapter is organized as follows. Section 4.1 addresses the problem of mod-

eling sparsity. In this section, we explain and motivate the approach we used by

showing its advantages over the l0 and l1 norms. In Section 4.2, we provide some

simulation results that corroborate these advantages. Next, in Section 4.3, two novel

data-selective algorithms tailored to exploit the sparsity of the involved signals are

proposed, and some of their properties are addressed in Section 4.4. A literature re-

view regarding adaptive filtering algorithms designed to exploit sparsity is presented

in Section 4.5. Section 4.6 discusses the computational burden of the aforementioned

algorithms. Section 4.7 presents simulation results considering an extensive set of

scenarios and the conclusions are drawn in Section 4.8. Appendix B provides some

proofs related to the properties of the proposed algorithms.

4.1 Modeling Sparsity

In this chapter, sparse signals are vectors of a finite-dimensional vector space which

can be represented as a linear combination of a small amount of basis vectors of the

related space [54]. Usually, algorithms that are originally developed to deal with

sparse signals are also employed in the context of compressible signals, which are

not—strictly speaking—sparse signals, but can be well approximated as such [54].

We shall first develop the proposed algorithms for sparse signals and then describe

some implications of using them with compressible signals.

It is well known that the sparsity of a parameter vector can be promoted by

minimizing its l0 norm. However, working directly with such a norm is a very difficult

task since it leads to an NP-hard problem, which turns its use prohibitive in online

applications [54]. In this section, we show how to approximate the l0 norm by using

almost everywhere (a.e.) differentiable functions, which allows the related (non-

convex) optimization problem to be solved by using stochastic gradient methods, a

key feature of our proposal. In addition, we explain the advantages of minimizing

such functions over minimizing the l0 and l1 norms. The material presented in this

section is key to address some properties of the proposed algorithms, which are

discussed in Section 4.4.
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4.1.1 Approximating the l0 norm

Let us define the set of indexes N , {0, 1, . . . , N} ⊂ N. The l0 norm of a vector

z = [z0 z1 . . . zN ]
T ∈ R

N+1 is defined as the number of nonzero elements of z, i.e.,

‖z‖0 , #{n ∈ N : zn 6= 0} ∈ N, in which # denotes the cardinality of a finite set.

Therefore, by recalling the definition of sparse signals adopted in this chapter, one

can observe that the sparsity of a vector is directly revealed by its l0 norm.2

In many practical applications it is desirable to find the sparsest approximation

of corresponding compressible signals, which is related to minimizing their l0 norm.

In addition to difficulties inherent to combinatorial searches for minimum l0-norm

solutions, the resulting optimization problems are also ill-conditioned, since small

perturbations on z may yield large changes on ‖z‖0. These facts hinder the attempt

to directly minimize the l0 norm in many practical cases, especially when noise is

present.

These difficulties are due to the discontinuity of the l0 norm. Thus, they could be

overcome by approximating the l0 norm using a continuous function Fβ : RN+1 −→
R+, in which β ∈ R+ is a parameter responsible for controlling the compromise

between quality of the approximation and “smoothness” of Fβ [55]. A common

practice is to analytically define a continuous function Fβ so that

lim
β−→∞

Fβ(z) = ‖z‖0. (4.1)

In order for Fβ to satisfy this property for all z, one must have, in particular,

Fβ(znen) −→ 1 as long as β −→ ∞ and the real number zn 6= 0, where en is the

nth vector3 of the canonical basis of RN+1. If zn = 0, then Fβ(0) −→ 0, as long as

β −→ ∞. This means that, ∀n ∈ N , Fβ must satisfy

lim
β−→∞

[1− Fβ(znen)] =







0 if zn 6= 0,

1 if zn = 0.
(4.2)

As a rule of thumb, we can analytically define Fβ so that

1− Fβ(znen)







≈ 0 if zn 6= 0,

= 1 if zn = 0,
(4.3)

where the approximation above becomes more accurate as β increases. Besides

continuity, we want to work with functions Fβ that are also differentiable (at least,

a.e. differentiable), since this will allow us to employ gradient-based optimization

2Observe that the l0 norm is not truly a norm, because in general we have ‖cz‖0 6= |c|‖z‖0, for
c ∈ R. However, the term “l0 norm” is widely accepted/used in the literature.

3That is, it has only 0 elements, except for a 1 in its nth coordinate, with n ∈ N .
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methods. Next subsection presents some examples of Fβ.

4.1.2 Standard Approximations

There is a variety of functions Fβ that can be used to approximate the l0 norm of a

vector. Four examples of such functions are [44, 52, 56, 57]:

Fβ(z) =
∑

n∈N

(
1− e−β|zn|) , (4.4a)

Fβ(z) =
∑

n∈N

(

1− e−
1
2
β2z2n

)

, (4.4b)

Fβ(z) =
∑

n∈N

(

1− 1

1 + β|zn|

)

, and (4.4c)

Fβ(z) =
∑

n∈N

(

1− 1

1 + β2z2n

)

. (4.4d)

By carefully observing Eqs. (4.4a)-(4.4d), one can verify that all of them satisfy

the expressions in (4.2) and (4.3). For instance, by considering z = znen (i.e., only

the nth component of z can be nonzero), then Eq. (4.4a) tells us that 1−Fβ(znen) =

e−β|zn|, which is approximately equal to 0, when zn 6= 0 and β is large, whereas it

is equal to 1, when zn = 0. Note also that e−β|zn| −→ 0, when β −→ ∞ and

zn 6= 0. Besides, e−β|zn| is differentiable with respect to zn, for any zn 6= 0 (a.e.

differentiable). The same properties hold for the other approximations.

Eq. (4.4a), denominated as multivariate Laplace function (LF) [56, 58], is prob-

ably the most widely used approximation to the l0 norm. In addition, Eq. (4.4c)

describes the multivariate Geman-McClure function (GMF) [56, 59]. Eqs. (4.4b)

and (4.4d) are modifications of the LF and GMF, respectively, so that their deriva-

tives are also continuous functions (see Eq. (4.5)).

Figure 4.1 depicts the univariate LF and GMF for different values of β. Notice

that these functions are not convex and that β trades off smoothness for quality of

approximation as it increases. Figure 4.2 illustrates the bivariate GMF for β = 5.

Observe that such a function has only one global minimum at z = 0 and that an

optimization method following the opposite direction of the gradient will converge

to this minimum regardless the initial point due to the smoothness of the depicted

Fβ. Clearly, the same observations are valid for the other functions Fβ.

Defining fβ(zn) ,
∂Fβ(z)

∂zn
, the derivatives corresponding to Eqs. (4.4a)-(4.4d) are,
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Figure 4.1: Univariate functions Fβ(x), with x ∈ [−1, 1] ⊂ R, for different values of β.
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Figure 4.2: Bivariate GMF for β = 5 and z ∈ [−1, 1]× [−1, 1] ⊂ R
2.

respectively,

fβ(zn) = βsign(zn)e
−β|zn|, (4.5a)

fβ(zn) = β2zne
− 1

2
β2z2n , (4.5b)

fβ(zn) =
βsign(zn)

(1 + β|zn|)2
, and (4.5c)

fβ(zn) =
2β2zn

(1 + β2z2n)
2 , (4.5d)

where the function sign : R −→ {−1, 0, 1} maps negative real numbers into −1,

positive real numbers into 1, and 0 into 0.

Finally, we can define the gradient of Fβ(z) with respect to z as

∇Fβ(z) , fβ(z) , [fβ(z0) fβ(z1) . . . fβ(zN)]
T . (4.6)
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4.1.3 Choosing β

We have already seen that the parameter β represents a trade-off between smooth-

ness and quality of approximation. Here we show that this characteristic is very

useful to incorporate a priori knowledge about the nature of the involved signals.

High values of β lead to steep declines in Fβ(z) for z very close to 0, whereas

Fβ(z) is almost constant for the remaining values of z. Taking the univariate case

depicted in Figure 4.1 as example, high values of β, such as β = 20, imply that

Fβ(x) presents a small zero-attraction interval (around 0) in which any x belonging

to this interval is strongly pushed to 0. As β decreases toward 0, Fβ(z) becomes

less steep (see β = 2 in Figure 4.1) and the zero-attraction interval expands, but

the strength with which z is attracted to 0 decreases.

Therefore, when dealing with sparse signals we could use high values of β be-

cause we only need to attract the values which are really close to 0. In practice,

it is preferable to use moderate values of β because smoothness is important to

guarantee the effectiveness of gradient-based optimization methods, as previously

explained. On the other hand, we must reduce β even further when dealing with

compressible signals. Indeed, we must enlarge the zero-attraction interval so that

small components of the compressible signal lie on such an interval. Section 4.7

shows some choices for β considering both sparse and compressible signals.

4.1.4 Comparing Fβ to the l1 norm

In Subsection 4.1.1, the difficulties of working directly with the l0 norm were ex-

plained and the function Fβ, a continuous and a.e. differentiable function that ap-

proximates the l0 norm, was introduced to circumvent such issues. Here, we discuss

the most widely used approach to promote sparsity, which consists of minimizing

the l1 norm rather than the l0 norm, and then we connect the minimization of the

l1 norm with the proposed approach based on Fβ.

In addition to continuity and a.e. differentiability, the l1 norm is also convex,

which turns gradient-based methods very suitable to its minimization.4 Indeed,

the l1 norm of the vector z is given by ‖z‖1 =
∑N

n=0 |zn| and its derivative is

g(zn) ,
∂‖z‖1
∂zn

= sign(zn) so that its gradient is ∇‖z‖1 , [g(z0) g(z1) · · · g(zN)]
T .

Clearly, the facility of working with such a norm explains why it has been extensively

used, as can be seen in [60–63] and references therein. On the other hand, there

are two major issues related to minimizing the l1 norm: (i) the conditions that

guarantee equivalence between minimizing the l0 and l1 norms may not be satisfied

in practical applications [52, 64] and (ii) its derivative g(zn), and thus the gradient

4In fact, interior point methods are also a common choice in other contexts and are out of the
scope of this thesis.
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∇‖z‖1, does not take into account how close zn is to 0.

Observe that one expects a good sparsity-promoting scheme to push zn to 0 for

small |zn|, whereas zn should be less attracted to 0 as |zn| increases. Intuitively,

if a component zn has large |zn|, then the sparsity-promoting scheme should not

waste energy in an attempt to make it equal to 0. Indeed, by giving priority to

components which are close to 0, the numerical method is able to reduce ‖z‖0 (the

original problem) rapidly and, as a result, we can perform updates using small

step sizes, keeping numerical errors under control. Hence, to cope with issue (ii)

mentioned above, the sparsity-promoting scheme using gradient-based minimization

of the l1 norm could be improved by employing a technique known as reweighted

l1 minimization proposed in [51] and used in adaptive filtering algorithms such as

those in [40, 65]. In this heuristic approach, the functions g(zn) that compose ∇‖z‖1
are replaced by ĝ(zn), which are defined as

ĝ(zn) ,
sign(zn)

1 + ǫ|zn|
, (4.7)

where ǫ is a predefined positive real constant. Observe that expressions (4.7)

and (4.5c) are very similar in the way they consider the information regarding the

proximity of zn to 0. Nevertheless, besides being formally justified, expression (4.5c)

also has the advantage of employing a parameter β which has a clear meaning, mak-

ing its choice easier.

4.2 Validation

Before we move on to the development of sparsity-aware data-selective adaptive

filters employing Fβ, it is wise to check if the advantages of using an approximation

to the l0 norm over using the l1 norm are really verified in practice. That is, since

data-selective algorithms introduce a nonlinearity due to the innovation check, then

it would be difficult to draw conclusions about the scheme used to promote sparsity.

Indeed, due to such nonlinearity we would observe a combined/coupled effect that

would prevent us from drawing any conclusions regarding the sparsity-promoting

scheme. Therefore, in this section we consider the classical AP algorithm and we

add different sparsity-promoting schemes to it. Another reason that justifies this

choice is the existence of AP algorithms using the l1 norm to promote sparsity, i.e.,

the competing algorithms were already available in the literature.

In Subsection 4.2.1 we present these AP algorithms tailored for applications

involving sparse signals, which we call sparsity-aware affine projection algorithms.

Then, in Subsection 4.2.2 we compare these algorithms via simulation considering

scenarios with different degrees of sparsity.
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4.2.1 Sparsity-Aware Affine Projection Algorithms

In this subsection we present four affine projection algorithms that were designed

for applications involving sparse signals. First, we present two algorithms that we

proposed in [52], viz. the affine projection algorithm for sparse system identification

(APA-SSI) and the quasi APA-SSI (QAPA-SSI). These algorithms were analyzed

regarding their stability and steady-state MSE in [53]. Then, we present two algo-

rithms, which were proposed in [40], viz. the zero-attracting affine projection algo-

rithm (ZA-APA) and the reweighted ZA-APA (RZA-APA). These four algorithms

have been derived by adding to the objective function of the AP algorithm a penalty

function based on a sparsity-promoting function of the coefficient vector. Indeed,

the APA-SSI and QAPA-SSI use a penalty function based on an approximation to

the l0 norm, i.e., based on the Fβ explained in the previous section, whereas the

penalty function of the ZA-APA and RZA-APA are related to the l1 norm.

The APA-SSI and ZA-APA are dual algorithms, in the sense that they are almost

identical, but the penalty function used in the APA-SSI is Fβ(w(k+1)), whereas the

ZA-APA uses ‖w(k+ 1)‖1 as penalty function. Therefore, we are mainly interested

in the comparison between these two algorithms.

It is worth highlighting that although we have proposed the APA-SSI and QAPA-

SSI, we opted for a succinct introduction of these two algorithms in this thesis

because they are not our focus and also because they can be regarded as particular

cases of the data-selective algorithms that we propose in the following section. Thus,

we present all the mathematical steps to derive these data-selective algorithms as

well as some of their properties, which can be easily mapped to corresponding results

for the APA-SSI and QAPA-SSI. Alternatively, the reader may refer to [52, 53] for

more details about APA-SSI and QAPA-SSI.

APA-SSI

As previously mentioned, the APA-SSI adds a penalty function based on an approx-

imation to the l0 norm of w(k + 1) to the AP optimization problem in order to

promote sparsity at each iteration. Thus, the optimization problem from which the

APA-SSI originates is given by

minimize ‖w(k + 1)−w(k)‖22 + αFβ(w(k + 1))

subject to d(k)−XT (k)w(k + 1) = 0, (4.8)

where α ∈ R+ is a nonnegative parameter that determines the weight given to the

penalty function.
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The updating equation for the APA-SSI is

w(k + 1) = w(k) + µX(k)S(k)e(k)

+ µ
α

2

[
X(k)S(k)XT (k)− I

]
fβ (w(k)) , (4.9)

in which S(k) ,
(
XT (k)X(k) + δI

)−1
, δ is a regularization factor, and µ is the step

size.

QAPA-SSI

The QAPA-SSI is characterized by the following updating rule:

w(k + 1) = w(k) + µX(k)S(k)e(k)− µ
α

2
fβ (w(k)) . (4.10)

The QAPA-SSI has a reduced computational complexity, in comparison with

the APA-SSI. In addition, the QAPA-SSI also generalizes the l0-NLMS algorithm

proposed in [44]. Indeed, the l0-NLMS algorithm can be achieved by setting the

QAPA-SSI in the following way: (i) L = 0, (ii) fβ (zn) as a first-order approximation

via Taylor series of the exponential function in Eq. (4.5a). On the other hand,

the QAPA-SSI does not satisfy the equality constraint present in the optimization

problem related to AP algorithm and, therefore, it is not truly an affine projection

algorithm.

ZA-APA

The ZA-APA was derived by directly minimization of the AP cost function plus a

penalty function based on the l1 norm of w(k+1). That is, its optimization problem

is given by:

minimize ‖w(k + 1)−w(k)‖22 + α‖w(k + 1)‖1
subject to d(k)−XT (k)w(k + 1) = 0, (4.11)

where α ∈ R+ is a nonnegative parameter that determines the weight given to the

penalty function.

In order to highlight the similarities between the APA-SSI and the ZA-APA, we
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write the updating equation of the ZA-APA as5

w(k + 1) = w(k) + µX(k)S(k)e(k)

+ µ
α

2

[
X(k)S(k)XT (k)− I

]
sign (w(k)) , (4.12)

where sign (w(k)) , [g(w0(k)) g(w1(k)) · · · g(wN(k))]
T is the element-wise sign

function and the definition of g is in Subsection 4.1.4.

RZA-APA

The RZA-APA uses the reweighted technique explained in Subsection 4.1.4 leading

to the following recursion:

w(k + 1) = w(k) + µX(k)S(k)e(k)

+ µ
α

2

[
X(k)S(k)XT (k)− I

]
P (w(k)) , (4.13)

where P (w(k)) , [ĝ(w0(k)) ĝ(w1(k)) · · · ĝ(wN(k))]
T , see Subsection 4.1.4 for the

definition of ĝ.

4.2.2 Comparing methods

Here, we present simulation results for the aforementioned algorithms considering

scenarios with different degrees of sparsity.

We first present the simulation scenarios and evaluate the APA-SSI and QAPA-

SSI considering different functions Fβ. Then, using the approximation function Fβ

that leads to the best results, we compare the proposed algorithms based on Fβ

versus the algorithms based on the l1 norm.

Scenarios

The simulation scenarios that we consider are the same three experiments proposed

in [40]. Those scenarios allow us to assess the performance of the proposed al-

gorithms for different degrees of sparsity. The experiments consist of identifying

an unknown system composed of 16 coefficients, whose taps are set as follows: (i)

Exp. 1: 4th tap equal to 1, others equal to 0; (ii) Exp. 2: odd taps equal to 1, even

taps equal to 0; and (iii) Exp. 3: all taps equal to 1.

Regarding the adaptive filter parameters, the number of coefficients is 16 and the

following algorithms are tested: the proposed ones (APA-SSI and QAPA-SSI), the

5The only difference between Eq. (4.12) and the ZA-APA of [40] is a regularization factor δ
which appears in the definition of S(k). In addition, we incorporated the step size µ in every term
that is added to w(k), which essentially implies that our α is a scaled version of the α in [40].
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Figure 4.3: Comparing the performances of the APA-SSI and QAPA-SSI for different
functions Fβ considering Exp. 1. The curve obtained using (4.4d) is omitted, but it
coincides with the curve obtained using (4.4b).

proposals of [40] (ZA-APA and RZA-APA), and the classical ones (AP and NLMS)

to serve as benchmarks for comparisons. The algorithms were set so that they have

a similar convergence speed.6 Thus, we use step-size µ = 0.9, regularization factor

δ = 10−12, data reuse factor L = 4, β = 5 (following the suggestion of [44]), and, in

accordance with the suggested values in [40] we use α = 5 × 10−3 and ǫ = 100. In

addition, the reference signal d(k) is assumed to be corrupted by an additive white

Gaussian measurement noise with variance σ2
n = 0.01.

Results for different approximations

The APA-SSI and QAPA-SSI were tested in several scenarios using the functions

Fβ given in Eqs. (4.4a) to (4.4d). Throughout all scenarios we tested, the following

observations always held: (i) convergence speed was indeed similar for all functions;

(ii) Eqs. (4.4b) and (4.4d) led to the worst results in terms of steady-state MSE;

and (iii) approximations based on Eqs. (4.4a) and (4.4c) exhibited almost identical

steady-state MSE performances.

Figure 4.3 depicts an example of such comparison considering Exp. 1. For the

sake of clearness, the curve corresponding to Fβ given in Eq. (4.4d) was omitted,

but such Fβ yielded results very similar to the ones obtained when using Eq. (4.4b).

In what follows, we consider that both the APA-SSI and QAPA-SSI employ

the GMF given in Eq. (4.4c). We opted for the GMF rather than the LF because

the former is cheaper to compute since the latter requires the computation of an

exponential, i.e., the computation of (4.5c) requires fewer arithmetic operations than

the computation of (4.5a).

6This observation is valid for the AP-based algorithms. By using the same step-size µ of the
AP algorithm, the NLMS algorithm will be slower.
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Figure 4.4: MSE learning curve for experiments involving different degrees of sparsity.

Results for different degrees of sparsity

Figure 4.4 depicts the MSE results for Exps. 1, 2, and 3. It can be observed that the

convergence speeds are similar for all AP-based methods. Figure 4.4(a) shows that

by exploiting the sparsity of the underlying unknown system, all four algorithms

(APA-SSI, QAPA-SSI, ZA-APA, and RZA-APA) outperformed the AP algorithm.

Actually, the proposed APA-SSI and QAPA-SSI achieved the best results. As de-

picted in Figures 4.4(b) and 4.4(c), as the unknown system becomes less sparse, the

performance of the algorithms which explicitly take sparsity into account in their

formulations become worse and converge to the performance of the AP algorithm

when there is no sparsity, as shown in Figure 4.4(c). In fact, the result obtained by

the ZA-APA in a dispersive environment was worse than the one obtained by the

AP algorithm. In addition, one may note that when the sparsity factor is 50% (Exp.

2), the performance of the methods based on l1 norm is not very different from that

of the AP algorithm, whereas the proposed APA-SSI and QAPA-SSI are still able

to take advantage of this somewhat low degree of sparsity.

Now that we have confirmed the advantages of using an approximation to the l0

norm, we can proceed to propose sparsity-aware data-selective algorithms.
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4.3 Sparsity-Aware Data-Selective Algorithms

In this section, we propose two algorithms that exploit the sparsity of the involved

signals/systems in order to achieve higher convergence speed and lower computa-

tional burden than traditional algorithms. In addition, the proposed algorithms

combine data reuse and data selection mechanisms, as the SM-AP algorithm does.

The first proposal, abbreviated by SSM-AP, is a sparsity-aware version of the SM-

AP algorithm, whereas the second, viz. quasi SSM-AP (QSSM-AP), is a simplified

version of the former designed to reduce the computational burden even further.

4.3.1 SSM-AP Algorithm

The SSM-AP algorithm updates whenever |e0(k)| > γ, following an updating recur-

sion that is an approximation of the solution to the optimization problem:

minimize ‖w(k + 1)−w(k)‖22 + α‖w(k + 1)‖0
subject to d(k)−XT (k)w(k + 1) = γ(k), (4.14)

where α ∈ R+ denotes the weight given to the l0 norm penalty. We used the word

“approximation” since we actually “solve” the following problem:

minimize ‖w(k + 1)−w(k)‖22 + αFβ (w(k + 1))

subject to d(k)−XT (k)w(k + 1) = γ(k), (4.15)

In order to solve this optimization problem, we form the Lagrangian L as

L =‖w(k + 1)−w(k)‖22 + αFβ (w(k + 1)) + λT (k)
[
d(k)−XT (k)w(k + 1)− γ(k)

]
,

(4.16)

differentiate it with respect to w(k+1) and λ(k), and equal the resulting expressions

to zero (i.e., ∇L = 0), thus yielding

w(k + 1) = w(k) +X(k)
λ(k)

2
− α

2
∇Fβ (w(k + 1)) , (4.17)

XT (k)w(k + 1) = d(k)− γ(k), (4.18)

respectively. Then, the left-multiplication of Eq. (4.17) by XT (k) and the substitu-

tion of Eq. (4.18) into the resulting equation generates

λ(k)

2
=
(
XT (k)X(k)

)−1
[e(k)− γ(k)] +

α

2

(
XT (k)X(k)

)−1
XT (k)∇Fβ (w(k + 1)) ,

(4.19)
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where we assumed that XT (k)X(k) is invertible. Substituting Eq. (4.19) into

Eq. (4.17) leads to the following updating equation of the SSM-AP algorithm:

w(k + 1) =w(k) +X(k)S(k) [e(k)− γ(k)] +
α

2

[
X(k)S(k)XT (k)− I

]
fβ(w(k)),

(4.20)

where we replace fβ(w(k+1)) with fβ(w(k)), defined in Subsection 4.1.2, in order to

form the recursion and the term
(
XT (k)X(k)

)−1
was replaced by S(k) to incorporate

the regularization factor δ.

4.3.2 QSSM-AP Algorithm

In Eq. (4.20), the term fβ(w(k)), which is responsible for promoting sparsity, is

left-multiplied by a (N +1)× (N +1) matrix whose rank is N −L. Therefore, such

a matrix-vector multiplication restricts the influence of fβ(w(k)) to an (N − L)-

dimensional space, thus losing L+1 degrees of freedom. In order to benefit from these

degrees of freedom and also to reduce the computational complexity, the proposed

QSSM-AP algorithm is characterized by the following recursion:

w(k + 1) =w(k) +X(k)S(k) [e(k)− γ(k)]− α

2
fβ(w(k)). (4.21)

4.4 Properties of the Proposed Algorithms

In this section, we address some geometric characteristics of the proposed algorithms

and prove two theorems regarding their stability, a property that is related to the

choice of α.

4.4.1 Interpreting the gradient fβ

From the discussion presented in Section 4.1, we know that fβ(w(k)) takes into

account the distance from each component wn(k) to 0. This means that if we have

w0(k) = w1(k) = · · · = wN(k) (i.e., components equidistant to 0), then each wn(k)

is pushed to 0 with equal strength. Hence, if we represent −fβ(w(k)) by an arrow

with its tail at w(k), then such an arrow points to 0. On the other hand, if we have

one component wn(k) closer to 0 than the others, then wn(k) will be forced to 0 with

more strength. These aspects are illustrated in Figure 4.5 for the R2 space and two

different w(k), one given by [1/2 1/2]T and the other by [1/2 1/4]T . The red arrow

represents the vector −αf5(w(k)) and, just to make such an example reproducible,

we used the GMF presented in Subsection 4.1.2 and α = 1/5. However, note that the
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Figure 4.5: Arrows illustrate vector −αfβ(w(k)) ∈ R
2.

discussion presented is this subsection is not dependent on the choices of parameters

and function Fβ.

4.4.2 Updating process

Let us consider the SSM-AP algorithm and rewrite its updating process given in

Eq. (4.20):

w(k + 1) =w(k) +X(k)S(k) [e(k)− γ(k)]
︸ ︷︷ ︸

,p1

+
α

2

[
X(k)S(k)XT (k)− I

]
fβ(w(k))

︸ ︷︷ ︸

,p2

.

(4.22)

It is easy to show that p1 is orthogonal to p2 (see Section B.1 of Appendix B).

Hence, in order to generate w(k+1), the SSM-AP first applies the perturbation p1,

which is exactly the same perturbation used by the SM-AP algorithm, that moves

w(k) to the closest point lying on the intersection of the hyperplanes described by

d(k) − XT (k)w(k + 1) = γ(k) [2, 52]. Then, p2 is applied yielding w(k + 1) that

still lies on the intersection of hyperplanes,7 but with components wn(k + 1) closer

to zero than the components of w(k).

Now, let us examine the updating equation of the QSSM-AP algorithm given in

Eq. (4.21):

w(k + 1) =w(k) +X(k)S(k) [e(k)− γ(k)]
︸ ︷︷ ︸

,p1

−α

2
fβ(w(k))

︸ ︷︷ ︸

,p3

. (4.23)

The term p1 was explained in the previous paragraph, whereas the term p3, as

7Following the same reasoning shown in Section B.1 of Appendix B, one can prove that this
w(k + 1) satisfies the constraints d(k)−XT (k)w(k + 1) = γ(k).
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w(k)
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Figure 4.6: Updating process of SSM-AP and QSSM-AP algorithms for L = 0 (normal-
ized LMS version) yielding w(k + 1) and wq(k + 1), respectively. It is assumed that w∗,
the filter modeling the unknown system, is sparse.

explained in the previous subsection, aims at forcing the components of w(k) to 0.

It is important to notice that, unlike the SSM-AP algorithm, p3 is not orthogonal

to p1. Hence, the QSSM-AP algorithm generates w(k + 1) that does not belong to

the intersection of hyperplanes.

So far, we addressed the direction of p2 and p3, which are related to the up-

dating process of the SSM-AP and QSSM-AP algorithms, respectively. Now let us

analyze the length of these vectors, i.e., how strong the proposed algorithms push

the components of w(k) to 0. It is not difficult to verify that p2 is the projection of

p3 onto a space that is orthogonal to the column space of X(k). Therefore, we have

‖p2‖2 ≤ ‖p3‖2.
Figure 4.6 illustrates the updating process of the SSM-AP and QSSM-AP for

L = 0, in which w(k + 1) and wq(k + 1) are the updated parameter vectors of

the SSM-AP and QSSM-AP algorithms, respectively, and w∗ denotes the actual

coefficients of the sparse unknown system. Observe that p1 is orthogonal to p2,

which is the projection of p3 on the corresponding hyperplane.

4.4.3 Stability

Theorems 1 and 2 below guarantee the existence of α that yields estimates w(k +

1) which are always closer to w∗ than w(k) when the SSM-AP and QSSM-AP

algorithms update their coefficient vectors.

Theorem 1. For the SSM-AP algorithm, there exists α so that ‖w∗ −w(k)‖2 is a

monotonically nonincreasing sequence.

Proof. Proof is left to Section B.2 of Appendix B.

Theorem 2. For the QSSM-AP algorithm, there exists α so that ‖w∗ −w(k)‖2 is

a monotonically nonincreasing sequence.

Proof. Proof is left to Section B.3 of Appendix B.
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Sections B.2 and B.3 of Appendix B exhibit such values of α. Indeed, we

found that α ∈ [αmin, αmax] for the SSM-AP algorithm (Section B.2), whereas

α ∈ [αq,min, αq,max] for the QSSM-AP algorithm (Section B.3). In addition, α = 0

belongs to both intervals, i.e., αmin, αq,min < 0 and αmax, αq,max > 0.

Even though Sections B.2 and B.3 provide closed-form expressions for αmin, αmax,

αq,min, and αq,max, these expressions are not practical for choosing α because they de-

pend on w∗, which is not known.8 In addition, these bounds for α depend implicitly

on k, i.e., they must be calculated at every iteration, which goes in the opposite way

of reducing the number of operations required by the proposed algorithms. Hence,

in practice, it is preferable to set α as a small nonnegative number that is constant

for all k. The nonnegativity ensures that the algorithms are following a direction

that promotes sparsity in the coefficient vector as shown in Figure 4.5, whereas α

should be small enough to guarantee α < αmax (SSM-AP) or α < αq,max (QSSM-AP)

for all k.

4.5 Related Algorithms

In this section, we provide an overview of the subclass of online9 adaptive filtering

algorithms designed to exploit sparsity.

As mentioned before, the so-called proportionate family of algorithms finds

widespread use in the context of sparse systems/signals. The first algorithm of

this family is the PNLMS [41] whose updating rule is:

w(k + 1) = w(k) + µG(k)
e(k)

xT (k)G(k)x(k) + δ
x(k), (4.24)

where µ ∈ R+ is the step-size and G(k) , diag{[g0(k) g1(k) . . . gN(k)]
T} is a

diagonal matrix whose entry gn(k) is proportional to the magnitude of its associated

filter coefficient |wn(k)|.
Many algorithms based on Eq. (4.24) have been proposed in order to achieve

a better model for sparsity, and they differ from each other just on the choice of

G(k). For example, the choice of G(k) in the PNLMS algorithm makes it very

sensitive to the sparsity degree. Indeed, PNLMS is very efficient when the spar-

sity degree is high, but its convergence becomes slower as the sparsity degree de-

creases. Since the sparsity degree usually varies in most applications, other al-

gorithms that mitigate this issue have been proposed. Examples of algorithms

include PNLMS++ [42], improved PNLMS (IPNLMS) [43], IPNLMS-l0 [44], im-

8In fact, for the QSSM-AP algorithm, one can use the expressions in Section B.3 to safely set
α as α = −bq/2aq, where aq and bq can be computed at every iteration using (B.10) and (B.11).

9That is, algorithms that do not use block processing and, therefore, do not introduce latency.
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proved µ−law PNLMS (IMPNLMS) [45], among others [46] [47]. In addition, SM-

PNLMS [48] [49] can be interpreted as a data-selective version of the IPNLMS

algorithm.

Moreover, proportionate data-reuse algorithms, such as PAPA and improved

PAPA (IPAPA) [50], were also proposed. In [49], the proposed set-membership

PAPA (SM-PAPA) was shown to have faster convergence than the PAPA algorithm.

The updating rule of the SM-PAPA generalizes almost all the PNLMS- and PAPA-

based algorithms, depending on the proper set-up of the algorithm parameters, as

shown in the following,

w(k + 1) =







w(k) +G(k)X(k)[XT (k)G(k)X(k) + δI]−1[e(k)− γ(k)] if |e0(k)| > γ,

w(k) otherwise.
(4.25)

With respect to those algorithms that include a penalty function accounting for

the sparsity in the original objective function, the already explained ZA-APA and

RZA-APA [40] (which are based on the l1 norm), as well as the APA-SSI and QAPA-

SSI [52] (which use a penalty function based on Fβ) are remarkable examples. Here

we recall their updating recursions for convenience. The updating rule employed by

the ZA-APA is

w(k + 1) =w(k) + µX(k)S(k)e(k) + µ
α

2

[
X(k)S(k)XT (k)− I

]
sign (w(k)) ,

(4.26)

where sign (w(k)) , [g(w0(k)) g(w1(k)) · · · g(wN(k))]
T is the element-wise sign

function and the definition of g is in Subsection 4.1.4. The RZA-APA uses the

reweighted technique explained in Subsection 4.1.4 leading to the following recursion:

w(k + 1) =w(k) + µX(k)S(k)e(k) + µ
α

2

[
X(k)S(k)XT (k)− I

]
P (w(k)) , (4.27)

where P (w(k)) , [ĝ(w0(k)) ĝ(w1(k)) · · · ĝ(wN(k))]
T (see Subsection 4.1.4 for the

definition of ĝ).

The updating equation corresponding to the APA-SSI is

w(k + 1) =w(k) + µX(k)S(k)e(k) + µ
α

2

[
X(k)S(k)XT (k)− I

]
fβ (w(k)) , (4.28)

whereas the updating process of QAPA-SSI is described by

w(k + 1) =w(k) + µX(k)S(k)e(k)− µ
α

2
fβ (w(k)) . (4.29)

Both APA-SSI and QAPA-SSI with µ = 1 are particular cases of the SSM-AP and
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QSSM-AP algorithms, respectively.

4.6 Number of Operations

In this section, we determine the number of (arithmetic and bitwise) operations

performed by the following algorithms: SSM-AP, QSSM-AP, and SM-PAPA.

Compared to traditional algorithms, set-membership (SM) algorithms present

reduced computational burden due to data-selective updates. Indeed, for SM algo-

rithms there are two types of iteration. The first corresponds to the iterations where

no update is performed, which requires Cnup ∈ N operations, while the second one

accounts for the iterations where an update is performed, requiring Cup ∈ N opera-

tions. Thus, denoting by Fup ∈ [0, 1] the fraction of the iterations in which updates

occur, the average number of operations Cav ∈ R+ per iteration is expressed by:

Cav = FupCup + (1− Fup)Cnup. (4.30)

In addition, there are two important facts: (i) Cnup ≪ Cup and (ii) Fup is a small

number, especially in stationary environments. These facts together imply that

for most of the iterations the SM algorithms perform only Cnup operations, while

non-SM algorithms perform Cup operations at every iteration.

In addition to being SM algorithms, the SSM-AP, QSSM-AP, and SM-PAPA can

accelerate convergence and reduce the average number of operations even further

when dealing with sparse signals. For these three algorithms, Table 4.1 presents the

number of operations required in both types of iterations. This table discriminates

each type of operation, which can be an arithmetic operation (addition, subtraction,

multiplication, and division), a comparison operation (the “if” statement), and bit-

wise operations (sign and absolute value). Thus, one can compute Cup and Cnup for

one of the algorithms by summing the values along a column of Table 4.1.

When calculating the number of operations we had to make some choices so that

a fair comparison could be established. Hence, we are not claiming that the results

in Table 4.1 represent the lowest number of operations. Some examples of choices

we made are: (i) all quantities that do not vary with k (e.g., α/2) are precomputed

and stored in memory, requiring no operation; (ii) Gauss-Jordan elimination is used

for the inversion of the (L + 1) × (L + 1) matrices; and (iii) multiplications by 0

or ±1 (so-called trivial multiplications) are not taken into account. In addition,

Table 4.1 does not take the computation of γ(k) into consideration. Thus, the use

of the SC-CV requires 1 extra sign operation, whereas the ED-CV requires L + 1

extra sign operations. In addition to the aforementioned choices that affect all

three algorithms, for the SSM-AP and QSSM-AP we consider that fβ(w(k)) follows
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Table 4.1: Number of operations for the SM-PAPA, SSM-AP, and QSSM-AP algorithms.

Update (Cup) No Update (Cnup)
Operation \ Algorithm SSM-AP QSSM-AP SM-PAPA For all three algorithms

N
2+

Addition (L2 + 6L + 6)N+ (L2 + 4L + 4)N+ (L2 + 4L + 4)N+ N

(2L3 + 6L2 + 7L + 4) (2L3 + 5L2 + 5L + 3) (2L3 + 5L2 + 5L + 2)

Subtraction N + (2L + 3) N + (2L + 3) N + (2L + 3) 1

Multiplication (L2 + 6L + 9)N+ (L2 + 4L + 6)N+ (L2 + 5L + 7)N+ N+

(2L3 + 7L2 + 12L + 11) (2L3 + 6L2 + 8L + 7) (2L3 + 6L2 + 9L + 8) 1

Division N + (2L2 + 4L + 3) N + (2L2 + 4L + 3) 2N + (2L2 + 4L + 4) 0

Comparison 1 1 1 1

Bitwise N
2+

2N + 3 2N + 3 2N + 2 1

Eq. (4.5c). In order to facilitate comparisons, since it is common practice to have

N ≫ L, the number of operations are represented by polynomials in N with the

dominant terms per operation being highlighted in boldface.

From Table 4.1, we observe that the number of operations for iterations with no

update is equal for all three algorithms, since they evaluate new data in the same

manner. Therefore, we can focus on the iterations where an update occurs. In this

case, the QSSM-AP algorithm presents the lowest number of operations for all kinds

of operation, thus being the least computationally demanding algorithm among

the three. Although the SSM-AP requires more multiplications than SM-PAPA,

the N2 additions and bitwise operations required by the SM-PAPA dominate the

computational burden, making the SM-PAPA’s update the most computationally

demanding one.

4.7 Results

In this section we compare the performance of the proposed algorithms, viz. SSM-

AP and QSSM-AP, with an extensive list of algorithms designed to exploit sparsity,

mentioned in Section 4.5. The competing algorithms are: the ZA-APA and RZA-

APA [40], the APA-SSI and QAPA-SSI [52], and the SM-PAPA [49] representing the

proportionate family of algorithms.10 For each of the SM algorithms we use both the

SC-CV and the ED-CV and, whenever we mention an SM algorithm employing a

specific constraint vector (CV) we abbreviate as “algorithm (CV-type)”. Thus, SSM-

AP (SC-CV) stands for the SSM-AP algorithm using the simple-choice constraint

10The SM-PAPA was chosen because: (i) most proportionate algorithms are special cases of the
SM-PAPA, and (ii) it was shown in [49] that, in addition to reducing computational burden, the
SM-PAPA also has better MSE performance than their non-SM special cases, such as the PAPA
and IPNLMS algorithms.
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vector (SC-CV). It is worth highlighting that the SM-PAPA (ED-CV) is actually

a contribution of this thesis that has faster convergence speed, in comparison with

the SM-PAPA (SC-CV) proposed in [49].

The algorithms are evaluated via three figures of merit: the percentage of up-

dates, the MSE, and the normalized misalignment M which is defined as

M ,
‖w(k)−w∗(k)‖22

‖w∗(k)‖22
, (4.31)

where w∗(k) is the actual impulse response of the unknown system to be identified.

We considerw∗(k) representing both a sparse impulse response (Subsection 4.7.1)

and a compressible impulse response (Subsection 4.7.2). In each case we perform

different experiments to assess the robustness of the algorithms against the sparsity

degree of w∗(k). Indeed, we use impulse responses that are very sparse (one or two

“nonzero” coefficients), sparse (“nonzero” coefficients are equispaced), block-sparse

(“nonzero” coefficients are adjacent), and dispersive (all coefficients are “nonzero”).

The quotation marks in “nonzero” were used to address both the sparse and com-

pressible cases, i.e., the cases where we do have coefficients equal to 0 and the cases

where we have coefficients close to 0. Therefore, in the compressible case, “nonzero”

coefficient actually means a coefficient whose magnitude is much greater than the

magnitude of the coefficients which are close to 0. In addition, in order to investi-

gate how fast the algorithms can readapt, we perform an abrupt change in w∗(k) at

k = 1000.

4.7.1 Sparse Impulse Response

Scenario

We consider four experiments (Exp.) consisting of the identification of an unknown

system w∗(k) = [w∗,0(k) w∗,1(k) · · · w∗,15(k)]
T ∈ R

16 whose coefficients are set as:

� Exp. 1 (very sparse):

– For k < 103: w∗,3(k) = 1 and w∗,n(k) = 0, for the other indices n;

– For k ≥ 103: w∗,3(k) = w∗,10(k) = 1 and w∗,n(k) = 0, for the other indices

n.

� Exp. 2 (sparse):

– For k < 103: w∗,n(k) = 1, for n ∈ {0, 4, 8, 12}, and w∗,n(k) = 0, for the

other indices n;

– For k ≥ 103: w∗,n(k) = 1, for n ∈ {1, 5, 9, 13}, and w∗,n(k) = 0, for the

other indices n.
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� Exp. 3 (block-sparse):

– For k < 103: w∗,n(k) = 1, for n ∈ {5, 6, 7, 8}, and w∗,n(k) = 0, for the

other indices n;

– For k ≥ 103: w∗,n(k) = 1, for n ∈ {7, 8, 9, 10}, and w∗,n(k) = 0, for the

other indices n.

� Exp. 4 (dispersive):

– For k < 103: w∗,n(k) = 1, for n ∈ {0, 1, . . . , 15};
– For k ≥ 103: w∗,n(k) = 2, for n ∈ {0, 1, . . . , 7}, and w∗,n(k) = 1, for

n ∈ {8, 9, . . . , 15}.

In order to identify the unknown system w∗(k), we use an adaptive filter w(k) ∈
R

16 that is initialized as w(0) = [0 · · · 0]T . The reference signal d(k) is assumed

to be corrupted by an additive white Gaussian measurement noise with variance

σ2
n = 10−2.

The input signal x(k) is a real-valued random sequence generated as follows.

First, a white Gaussian real-valued noise sequence nx(k), uncorrelated with n(k),

is filtered by an IIR filter defined by the following equation x(k) = 0.95x(k − 1) +

0.19x(k − 2) + 0.09x(k − 3)− 0.5x(k − 4) + nx(k), and then the variance of x(k) is

normalized to 1. This corresponds to a 4th order autoregressive (AR) process and

x(k) can be seen as a colored noise sequence. AR processes are very useful to model

some signals found in practice, such as speech signals. The IIR filter used here is

exactly the same used in [49].

The simulation results are generated as follows. We let each algorithm run during

4000 iterations and repeat this procedure 2000 times, forming the ensemble. Then,

we perform an ensemble average to generate estimates of our figures of merit for each

iteration k. The results in steady-state are generated by averaging these figures of

merit over the last 1000 iterations.

Algorithm’s parameters

The updating process of the adaptive filter is governed by one of the following

algorithms: ZA-APA, RZA-APA, APA-SSI, QAPA-SSI, SM-PAPA (SC-CV), SM-

PAPA (ED-CV), SSM-AP (SC-CV), SSM-AP (ED-CV), QSSM-AP (SC-CV), and

QSSM-AP (ED-CV). Their updating rules can be found in Sections 4.3 and 4.5,

whereas the constraint vectors are defined in Chapter 3.

These algorithms are set so that they yield similar convergence speed at the

early iterations, except for the algorithms employing the SC-CV, which are naturally

slower. The following parameters were used: step-size µ = 0.9, regularization factor
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Figure 4.7: Misalignment evolution for different experiments involving sparse systems
(β = 5).

δ = 10−12, data-reuse factor L = 4, penalty-function weight α = 5 × 10−3 [40, 52],

β = 5 with Fβ chosen as the GMF [52], γ =
√

5σ2
n [30], and ǫ = 100 for the

RZA-APA [40]. Such choices agree with the recommended values for the competing

algorithms.

Results

Figure 4.7 depicts the misalignment evolution for the ten aforementioned algorithms,

whereas Table 4.2 summarizes their results (percentage of update, MSE, and mis-

alignment) during steady-state.

Observing Figure 4.7, we can classify the algorithms into two categories according

to the speed in which their related misalignments converge: the “slow” algorithms,

which require more than 1000 iterations to converge, and the “fast” algorithms,

which converge in less than 250 iterations. The category of “slow” algorithms is

formed by the SM-PAPA (SC-CV), SSM-AP (SC-CV), and QSSM-AP (SC-CV),

whereas the other seven algorithms belong to the group of “fast” algorithms. In

what follows, we shall establish comparisons among algorithms within the same

group before comparing algorithms of different groups.
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Table 4.2: Results during steady-state. The proposed algorithms are shadowed.

Exp. 1 Exp. 2 Exp. 3 Exp. 4
Algorithms Updates MSE [dB] M [dB] Updates MSE [dB] M [dB] Updates MSE [dB] M [dB] Updates MSE [dB] M [dB]

ZA-APA 100% -13.76 -32.90 100% -13.69 -32.69 100% -13.69 -35.48 100% -13.31 -38.53
RZA-APA 100% -13.40 -37.04 100% -13.39 -40.25 100% -13.39 -40.08 100% -13.38 -50.04
APA-SSI 100% -13.83 -37.53 100% -13.76 -40.17 100% -13.74 -40.34 100% -13.36 -49.54
QAPA-SSI 100% -13.83 -37.56 100% -13.75 -40.10 100% -13.74 -40.32 100% -13.36 -49.40
SM-PAPA (SC-CV) 15.8% -15.84 -40.65 16.0% -15.78 -41.84 16.1% -15.78 -44.29 17.0% -15.57 -55.77
SSM-AP (SC-CV) 8.7% -17.62 -44.89 9.6% -17.37 -43.32 9.5% -17.40 -48.87 17.1% -15.54 -54.71
QSSM-AP (SC-CV) 9.1% -17.50 -43.96 10.7% -17.09 -42.71 10.5% -17.13 -47.14 17.1% -15.55 -54.56
SM-PAPA (ED-CV) 24.2% -14.18 -37.73 24.6% -14.10 -39.06 24.5% -14.12 -39.58 25.1% -14.00 -50.31
SSM-AP (ED-CV) 23.4% -14.33 -39.64 23.7% -14.27 -42.87 23.6% -14.29 -41.77 25.1% -14.01 -51.57
QSSM-AP (ED-CV) 23.2% -14.35 -39.40 23.6% -14.30 -41.64 23.5% -14.30 -41.75 25.1% -14.00 -51.05

Considering the group of “slow” algorithms, we can observe that the misalign-

ment results of the SSM-AP (SC-CV) and QSSM-AP (SC-CV) algorithms are lower

than the misalignment of the SM-PAPA (SC-CV) for the experiments in which the

unknown system is sparse, i.e., experiments 1, 2, and 3. In addition, the proposed

algorithms also achieved better steady-state results than SM-PAPA (SC-CV) in such

experiments, as shown in Table 4.2. Indeed, they yielded a misalignment that is 1

to 4.5 dB lower, MSE around 2 dB lower, and they updated w(k) only a little more

than a half the times that SM-PAPA (SC-CV) updated. In the dispersive case, on

the other hand, these three algorithms yielded similar performance, with a small

advantage for the SM-PAPA (SC-CV), see Exp. 4 in Table 4.2.

Considering the group of “fast” algorithms, we can see that the SSM-AP (ED-

CV) and QSSM-AP (ED-CV) algorithms achieved the lowest misalignments for all

the four experiments. In addition, these two proposed algorithms also achieved

better steady-state results than the other five algorithms, as shown in Table 4.2. In

this group of algorithms, the SM-PAPA (ED-CV) also deserves attention since its

MSE and percentage of updates is almost as low as the ones of the two proposals,

while its misalignment is about 1 to 4 dB higher.

Comparing the two best algorithms of each of the two categories, we observe

that the steady-state results of the “slow” algorithms are better. On the other hand,

the SSM-AP (ED-CV) and QSSM-AP (ED-CV) have the advantage of converging

almost four times faster.

Finally, observing Figure 4.7 and Table 4.2 we notice that the results of the APA-

SSI are superior to the results of the ZA-APA, which shows the practical benefits of

using an approach based on approximating the l0 norm over using the l1 norm.11 In

addition, observe that the results corresponding to the RZA-APA are almost as good

as the results of the APA-SSI, corroborating the connections between our approach

based on Fβ and the reweighted technique.

11Indeed, recall that the only difference between these two algorithms is that the ZA-APA uses
l1 norm, whereas the APA-SSI uses Fβ .
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4.7.2 Compressible Impulse Response

Scenario

In this subsection we consider almost the same scenario presented in Subsec-

tion 4.7.1. The only difference is that now our impulse response w∗ is a compressible

version of the w∗ shown in Subsection 4.7.1. Indeed, here we redefine Exp. 1, Exp.

2, Exp. 3, and Exp. 4 so that every coefficient w∗,n(k) that was equal to 0 is now

replaced by a nonzero value that is drawn from a zero-mean Gaussian distribution

with variance σ2
c .

Algorithm’s parameters

Here we consider the same choices of parameters shown in Subsection 4.7.1, but we

will make β vary as σ2
c increases, as it will be explained.

Results

Initially, for small values of σ2
c such as σ2

c = 10−6, we used β = 5 (as in the sparse

case) and obtained results similar to the ones presented in Subsection 4.7.1. We

also observed that β should decrease as σ2
c increases, corroborating the comments

in Subsection 4.1.3. For instance, using a high value such as σ2
c = 10−2, we used

β = 0.0625 in order to obtain the results shown in Figure 4.8. Once again we

observe that there is a group of “slow” algorithms, comprised by the three algorithms

using the SC-CV, while the remaining seven algorithms belong to the group of

“fast” algorithms. In summary, within each group, the proposed algorithms achieved

lower misalignments than the competing algorithms. The steady-state MSE and

percentage of updates are not mentioned here because they are very similar for the

SM-PAPA, SSM-AP, and QSSM-AP algorithms employing the same CV. Note that,

similarly to the sparse scenario, the APA-SSI also achieved better results than the

ZA-APA in the compressible case.

4.7.3 Additional Remarks

We have tested the proposed algorithms in many other scenarios which are not

included in this chapter. Thus, in this subsection we summarize some of our obser-

vations.

Firstly, we have always observed the two clusters: “fast” and “slow” algorithms.

Considering the group of “fast” algorithms, the SSM-AP (ED-CV) and QSSM-AP

(ED-CV) have always exhibited very similar performances, which were better than

the competing algorithms. In addition, the number of operations required by QSSM-

AP is much lower than for the other algorithms. For instance, considering Exp. 1 in
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Figure 4.8: Misalignment evolution for different experiments involving compressible sys-
tems (β = 0.0625;σ2

c = 10−2).

Subsection 4.7.1, the average number of operations per iteration of the QSSM-AP

(ED-CV) is Cav = 0.232 × Nup + (1 − 0.232) × Nnup ≈ 447.1, which is almost 30%

less than for the SM-PAPA (ED-CV) and about 85% less than for the traditional

AP algorithm with the same data reuse factor (L = 4). Therefore, the QSSM-AP

(ED-CV) has the best cost-effectiveness among the group of “fast” algorithms.

The group of “slow” algorithms, which employ the SC-CV, are much more sen-

sitive to the choice of β and to the sparsity degree of the unknown system than the

algorithms using the ED-CV. For instance, Table 4.2 shows that the figures of merit

of the algorithms using the ED-CV are more robust to the sparsity degree than

the algorithms using the SC-CV. This characteristic facilitates the specification of

a hardware.

4.8 Conclusion

In this chapter, we proposed two algorithms that can be regarded as generalizations

of the SM-AP algorithm to exploit the sparsity of the involved signals in order to

increase the accuracy of the estimates or accelerate convergence speed. Thus, such
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algorithms rely on two independent parts: (i) models to reveal/promote sparsity

and (ii) the SM-AP algorithm, which combines the data selection and data reuse

properties. In part (i), we compare and establish connections between the approach

we used, which is based on approximations to the l0 norm, and the approaches

based on l0 and l1 norms in order to motivate our choice. We also show that our

approach is more effective than the other based on the l1 norm considering both

sparse and compressible signals. In part (ii), we use the results of the SM-AP

algorithm, which were presented in the previous chapter. In addition, we analyze

the proposed algorithms in order to properly set their parameters. Indeed, we show

some geometric properties of the proposed algorithms as well as a proof of stability

for each of them. Finally, the number of operations performed by the proposed

algorithms is addressed and simulation results show that the proposed algorithms

outperform the state-of-the-art algorithms designed to exploit sparsity.
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Chapter 5

Frequency-Domain Data-Selective

Algorithms

Frequency-domain adaptive filters are able to reduce the computational complex-

ity of adaptive filters, since convolutions in the time domain are exchanged by

scalar multiplications in the frequency domain [10], and to increase convergence

speed [2]. In addition, there is a computationally efficient algorithm that converts

time-domain representation to frequency-domain representation: the fast Fourier

transform (FFT) algorithm.

Therefore, an adaptive filter can dramatically decrease its complexity for high

values of M by operating in the frequency domain. Indeed, for high values of M ,

the complexity of time-domain adaptive filters may turn their use prohibitive. On

the other hand, working in the frequency domain has a major drawback: latency

due to block processing. This is the reason why frequency-domain adaptive filters

are not as widely used as time-domain filters.

In this chapter we address frequency-domain adaptive filters which also have

the data-selection property. After introducing the frequency-domain version of the

set-membership filtering concept, we tackle two applications: channel equalization

and acoustic echo cancellation.

In summary, the contributions of this chapter are:

1. We propose a semi-blind equalization algorithm which can increase the

throughput of communications systems employing the orthogonal frequency-

division multiplexing (OFDM) as their core modulation scheme (Section 5.2).

2. We propose a data-selective algorithm employing psychoacoustics criteria for

acoustic echo cancellation (Section 5.3). The main idea of our proposal is to

eliminate the residual signal/echo only in the cases when a person would be

capable of perceiving them.
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The content of this chapter was partially published in [66, 67].

This chapter is organized as follows. Section 5.1 presents the frequency-domain

set-membership filtering (F-SMF) concept and introduces the frequency-domain SM-

NLMS (F-SM-NLMS) algorithm. Sections 5.2 and 5.3 address applications of the F-

SMF concept where the F-SM-NLMS is used as the basic structure for the algorithms

proposed in these two sections. In Section 5.2, we present a semi-blind equalization

algorithm for OFDM-based systems, whereas a perception-based acoustic echo can-

cellation was proposed in Section 5.3. Conclusions are drawn in Section 5.4.

Notation: The complex field is represented by C. The length of the adaptive filter

is denoted as M , thus M can be interpreted as the number of frequency bins. In

addition to the previously established notation, we represent the discrete Fourier

transform (DFT) matrix as F ∈ C
M×M , in which its entry on the mth row and nth

column is given by

[F]m,n ,
1√
M

e− 2π
M

mn, for m,n = 0, . . . ,M − 1, (5.1)

where  is the imaginary unit so that 2 = −1 and e ≈ 2.718 is the Euler’s number.

The inverse DFT (IDFT) is represented by FH , where the superscript H denotes

Hermitian transposition. Operators ◦ and ÷ denote element-wise multiplication and

division of two vectors, respectively.

5.1 Frequency-domain Set-Membership Filtering

(F-SMF)

In this section we present the frequency-domain SMF (F-SMF) proposed in [28].

This concept uses a block-based processing and is applicable to adaptive filtering

problems that are linear-in-parameters and which involve circular convolutions.

Figure 5.1 depicts a general frequency-domain filtering. In this figure, we have the

following time-domain vectors: x,d,y, e ∈ C
M , which represent the input vector, the

desired vector, the output vector, and the error vector, respectively. The frequency-

domain vectors corresponding to x,d,y, e are x̄, d̄, ȳ, ē ∈ C
M . Thus, superscript (̄·)

denotes the frequency-domain representation of vector (·). In addition, the adaptive

filter coefficients are represented by vector w̄ ∈ C
M .

As shown in Figure 5.1, the input vector x is first mapped to x̄ , Fx through

an M -point FFT, which is then filtered by w̄ yielding the output ȳ , w̄ ◦ x̄. Next,
this output is transformed back to the time-domain leading to y , FH ȳ. Then, the

error vector e , d−y is computed, transformed to the frequency-domain generating

ē , Fe = Fd− Fy = d̄− ȳ, and fed back to the adaptive filter.
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Figure 5.1: General frequency-domain filtering.

Denoting by S the set comprised of all possible pairs (x,d) and representing its

frequency-domain version by S̄, i.e., S̄ is the set containing all possible pairs (x̄, d̄),

the F-SMF criterion aims at finding w̄ such that ‖e‖2 ≤ γ2, for all (x,d) ∈ S, where
γ ∈ R+ is an upper bound representing the amount of error that is acceptable. Since

F is a unitary matrix so that ‖ē‖2 = ‖Fe‖2 = eHFHFe = eHe = ‖e‖2, then we can

restate the F-SMF criterion as finding w̄ satisfying:

‖ē‖2 ≤ γ2, for all (x̄, d̄) ∈ S̄. (5.2)

Similarly to the feasibility set of the SMF concept, we can define its frequency-

domain counterpart as

Θ̄ ,
⋂

(x̄,d̄)∈S̄

{
w̄ ∈ C

M : ‖d̄− w̄ ◦ x̄‖2 ≤ γ2
}
, (5.3)

where Θ̄ is denominated as frequency-domain feasibility set.

In order to iteratively estimate Θ̄ or a point in it, we define the frequency-domain

constraint set as

H̄(k) ,
{
w̄ ∈ C

M : ‖d̄(k)− w̄ ◦ x̄(k)‖2 ≤ γ2
}
. (5.4)

Hence, H̄(k) represents the set of adaptive filter coefficients w̄ whose squared norm

of the error is upper bounded by a constant γ2 considering the kth data pair

(x̄(k), d̄(k)). In addition, we can also define the frequency-domain exact mem-

bership set as

Ψ̄k
0 ,

k⋂

k1=0

H̄(k1). (5.5)

Clearly, lim
k−→∞

Ψ̄k
0 = Θ̄.
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5.1.1 Adaptive F-SMF Algorithms

One of the main advantages of subband adaptive filtering is the possibility of treating

each subband independently. In this chapter we are considering a particular version

of subband adaptive filtering, which is known as frequency-domain adaptive filtering,

and we would also like to treat each frequency bin independently. However, the

definition of H̄(k) in (5.4) hinders our attempt to decouple the coefficients of w̄ and

x̄(k) due to the existence of a single parameter γ for all frequency bins, i.e., we have

a single prescribed scalar threshold.

Such an issue can be circumvented by replacing the scalar threshold γ with a

vector threshold γ̄ ∈ R
M
+ defined as γ̄ ,

[
γ0 γ1 . . . γM−1

]T
, where the upper bound

associated with the mth frequency bin is γm ∈ R+, for m = 0, 1, . . . ,M − 1. Then,

we can define the modified constraint set as

H̄mod(k) ,
M−1⋂

m=0

H̄m(k) (5.6)

where

H̄m(k) ,
{
w̄ ∈ C

M : |d̄m(k)− w̄mx̄m(k)|2 ≤ γ2
m

}
. (5.7)

That is, H̄m(k) is comprised of the coefficients w̄ that lead to an error in the mth

frequency bin em(k) such that |em(k)|2 ≤ γ2
m, considering the kth data pair/block.

In addition, H̄mod(k) is the intersection of H̄m(k) for all frequency bins, i.e., for

m = 0, 1, . . . ,M − 1.

In addition, the entries of γ̄ should be defined so that γ̄T γ̄ = γ2. Observe

that with such a definition we have H̄mod(k) ⊂ H̄(k), which means that if we find

w̄ ∈ H̄mod(k), then we have w̄ ∈ H̄(k), but the converse is not true in general

(except when γ = 0).

5.1.2 F-SM-NLMS Algorithm

Here we define the frequency-domain counterpart of the SM-NLMS algorithm,

namely F-SM-NLMS algorithm [28].

The objective function is analogous to that of the SM-NLMS algorithm. Indeed,

the goal is to find the new coefficient vector w̄(k + 1) that solves the following

optimization problem

minimize ‖w̄(k + 1)− w̄(k)‖2

subject to w̄(k + 1) ∈ H̄mod(k). (5.8)
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From the definition of H̄mod(k) in (5.6), and observing that the property that defines

the set H̄m1(k) is independent from the property that defines H̄m2(k) for m1 6= m2,

we can decouple and solve such an optimization problem in the following way. If

a component of w̄(k), say w̄m(k), already belongs to H̄m(k), then no update is

performed and w̄m(k + 1) = w̄m(k). Otherwise, w̄m(k + 1) should be generated as

the projection of w̄m(k) on H̄m(k). Thus, the F-SM-NLMS is characterized by the

following recursion:

w̄(k + 1) = w̄(k) + µ̄(k) ◦ ē(k)÷ x̄(k), (5.9)

where µ̄(k) = [µ̄0(k) µ̄1(k) . . . µ̄M−1(k)]
T ∈ R

M
+ is the vector containing the step

sizes corresponding to each frequency bin, which are defined as

µ̄m(k) ,







1− γm

|ēm(k)| if |ēm(k)|2 > γ2
m,

0 otherwise.
(5.10)

Observe that if w̄m(k) /∈ H̄m(k), then the error in the mth frequency bin after

the update of the coefficient vector (a posteriori error) is given by

|d̄m(k)− w̄m(k + 1)x̄m(k)|2 =
∣
∣
∣
∣
d̄m(k)−

[

w̄m(k) + µ̄m(k)
ēm(k)

x̄m(k)

]

x̄m(k)

∣
∣
∣
∣

2

=
∣
∣d̄m(k)− w̄m(k)x̄m(k)− µ̄m(k)ēm(k)

∣
∣
2

= |ēm(k)− µ̄m(k)ēm(k)|2

=

∣
∣
∣
∣
ēm(k)−

(

1− γm

|ēm(k)|

)

ēm(k)

∣
∣
∣
∣

2

= γ2
m, (5.11)

i.e., w̄m(k + 1) ∈ H̄m(k).

It is worth mentioning that the recursion in (5.9) is very sensitive to x̄(k), espe-

cially when one of its entries approaches 0. There are many ways of mitigating this

issue. Here, we use a regularization 1 ≫ δ ∈ R+ and vector u , [1 . . . 1]T ∈ R
M ,

and the F-SM-NLMS recursion that we actually implement is

w̄(k + 1) = w̄(k) + µ̄(k) ◦ ē(k)÷ (x̄(k) + δu) . (5.12)
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5.2 Frequency-Domain Data-Selective Algorithm

for Semi-Blind Equalization of OFDM-based

transmissions

In this section, we present a data-selective algorithm that operates in the frequency

domain and is suitable to semi-blind equalization of communications systems based

on the orthogonal frequency-division multiplexing (OFDM) employing the quadra-

ture phase-shift keying (QPSK) as digital modulation. The proposed algorithm

combines the standard equalizers used in OFDM with a data-selection algorithm

based on the F-SM-NLMS presented in Subsection 5.1.2. Its data-selection scheme

utilizes an idea that we proposed in [68].

In this section, a modest background in OFDM systems is assumed. Such a

background can be found in Chapter 2 of [4].

5.2.1 Equalizers and OFDM-based Systems

Equalizers are widely used in communications and their task is to reverse the harmful

effects of the channel on the transmitted signal. Basically, equalizers can be of the

following three types: supervised, blind, and semi-blind.

In a supervised equalization, the equalizer is adjusted based on a reference or de-

sired signal, which is known as pilot signal in the communication literature. These

pilots correspond to data that are already known at the receiver side so that its

transmission carries no information. Indeed, these pilots are used at the receiver to

perform channel estimation, and this estimate is then used in the equalization pro-

cessing of subsequent transmissions. Since the channel is usually time-varying, su-

pervised equalizers require periodic transmissions of pilots so that it has a somewhat

accurate information about the channel state. However, sending pilots decreases the

system throughput since no new information is actually transmitted.

Unlike supervised equalizers, blind equalization (also called unsupervised equal-

ization) algorithms do not use pilots and, therefore, they can be employed to increase

the system throughput. In addition, these algorithms allow tracking of channel vari-

ations, which is a useful feature since real channels are usually time-varying, espe-

cially the wireless channel. On the other hand, blind algorithms usually require a

proper initialization and can lose track in nonstationary environments, deteriorating

the channel equalization process [2].

Algorithms for semi-blind equalization [29, 68] represent a trade-off between

the gains of using blind equalization techniques and supervised (i.e., pilot-based)

schemes. Indeed, such algorithms sometimes operate with pilot signals and some-

times operate without them. Therefore, semi-blind equalizers allow the communica-
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tion system to send pilots less often, increasing the system throughput while keeping

the channel equalization effective.

The majority of current communications systems use supervised equalization due

to its improved results. By using pilot signals, the receiver is able to estimate the

channel state, which is then used to set the equalizer coefficients properly, i.e., the

equalizer is set so that it can reverse the channel effects on the next transmitted

signals, assuming that the channel is time-invariant or slowly varying. However, as

already explained, channels are time-varying and, as a consequence, these commu-

nications systems have to send pilots periodically, thus wasting radio resources.

Therefore, our aim is to develop an algorithm that can track channel variations

even when no pilot is transmitted, i.e., we use the equalizer obtained when pilots are

transmitted as the initial estimate (supervised part) and then we track small channel

variations without using pilots (blind part) until a new pilot symbol is transmitted

and the equalizer is re-initialized, as will be explained in Section 5.2.2. By doing so,

we expect that pilots can be sent less frequently leading to an increase in system

throughput.

We have chosen to work with OFDM-based systems due to many reasons. OFDM

is the modulation scheme of some important communications standards such as the

Wi-Fi [69], WiMAX [70], and the LTE (Long Term Evolution) [71]. OFDM already

employs block processing so that latency is acceptable. In addition, by considering

the standard implementation of OFDM, which employs a cyclic prefix, and also

assuming that the length of such a prefix is properly set, then the mathematical

model corresponding to an OFDM transmission is completely decoupled [4], as will

be explained in the next subsection.

In addition, just to give an example of a current standard, the LTE transmits

an entire OFDM symbol (data block) containing only pilots once at each 6 or 7

transmitted OFDM symbols, depending on the size of the cyclic prefix [71, 72].

5.2.2 Semi-Blind Equalization Scheme

Figure 5.2 illustrates a frequency-domain block representation of an OFDM-based

system connected to the proposed semi-blind equalization (SBE) algorithm. In this

figure, we considered perfect synchronization and that the cyclic-prefix length is

greater than the channel memory so that we have a decoupled transmission, i.e., the

symbols within a given OFDM symbol (block) do not interfere with each other. See

[4] for further details on the mathematical modeling of OFDM systems.

In this section all vectors are in C
M , where M ∈ N represents the number of

subcarriers of the OFDM system. This number corresponds to the length of every

vector in Figure 5.2. The kth transmitted OFDM symbol is denoted as s̄(k), whose
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sign

n̄(k)

s̄(k)
h̄(k)

x̄(k) = h̄(k) ◦ s̄(k) + n̄(k)
w̄(k)

ȳ(k) = w̄(k) ◦ x̄(k)

ē(k)

ȳd(k)

ȳs(k)

Figure 5.2: Frequency-domain representation of an OFDM transmission using the pro-
posed semi-blind equalization scheme at the receiver. The blocks perform element-wise
operations.

entries are symbols belonging to a QPSK modulation. The M -point FFT of the

channel impulse response is represented by h̄(k), and n̄(k) is the additive white

Gaussian noise (AWGN) vector with variance σ2
n.

The vector x̄(k) corresponds to the received version of the OFDM symbol s̄(k),

and they are related by:

x̄(k) = h̄(k) ◦ s̄(k) + n̄(k), (5.13)

i.e., a component of the received signal x̄(k), say x̄m(k) with m = 0, 1, . . . ,M − 1,

depends only on the mth symbol of the OFDM symbol s̄(k), say s̄m(k), and on the

mth frequency bin of h̄(k), say h̄m(k).

The received vector x̄(k) is used as the input of the adaptive filter w̄(k) so that

the output vector is ȳ(k) = w̄(k) ◦ x̄(k), which contains the equalized received

symbols. In addition, ȳd(k) = QPSK decision{ȳ(k)} contains the QPSK symbols

which are most likely to had been transmitted, whereas ȳs(k) = sign{y(k)} contains

the equalized received symbols projected on the unit circle, i.e., each of its entries

corresponds to a projection of an entry of ȳ(k) (a complex number) on the unit-

radius circle. The main idea of our proposal is to compensate only phase variations,

since the magnitude is not important in the QPSK demodulation. The error vector,

defined as ē(k) = ȳd(k) − ȳs(k), determines whenever an update in the adaptive

filter w̄(k) is needed.

The SBE algorithm is summarized in Table 5.1. Its updating scheme is based on

the F-SM-NLMS algorithm, but its error signal ē(k) is defined in a different way since

the desired signal is not available. The idea is very intuitive. We assume that ȳd(k)

is correct, i.e., no errors were made in the QPSK hard decision, and we use ȳd(k) to

replace the desired signal. In addition, since we are using a QPSK modulation, then
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Table 5.1: Semi-Blind Equalization (SBE) Algorithm.

SBE Algorithm

Initialization
{
Choose δ as a small constant
Choose γ̄ (usually as a function of σ2

n)
}
For k = 1:(Number of OFDM symbols) do
{
If pilot was sent, then
{
Do channel estimation
Initialize the equalizer, e.g., ZF equalizer: w̄(k + 1) = u÷

(
Estimated version of h̄(k)

)

}
Else
{
ȳ(k) = w̄(k) ◦ x̄(k)
ȳs(k) = sign{ȳ(k)}
ȳd(k) = QPSK decision{ȳ(k)}
ē(k) = ȳd(k)− ȳs(k)
For m = 0 : M − 1 (i.e., for all subcarriers) do
{

µ̄m(k) =







(

1− γ
m

|ēm(k)|

)

if |ēm(k)| > γm,

0 otherwise.

}
w̄(k + 1) = w̄(k) + µ̄(k) ◦ [ē(k)÷ (x̄(k) + δu)]

}
w̄(k + 1) =

w̄(k + 1)

|w̄(k + 1)|
}

the amplitude of the received signals is not important in the decision process. More

specifically, we should design an equalizer that tracks the phase of the time-varying

channel, whereas the modulus of the channel is not important. Therefore, we use

ȳs(k) because both ȳs(k) and ȳd(k) have the same magnitude so that the error signal

ē(k) can focus on the phase distortions introduced by the channel. In addition, the

adaptive filter coefficients are re-initialized every time a pilot OFDM symbol is

transmitted. Whenever this occurs, the receiver performs channel estimation and

uses such an estimate to set w̄(k). In Table 5.1, for example, the equalizer w̄(k) is

set according to a zero forcing (ZF) criterion [4].

The vector γ̄ ∈ R
M
+ contains decision thresholds for the errors associated with

each subcarrier, i.e., the algorithm updates only if the modulus of the mth entry of
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ē(k), viz. |ēm(k)|, is greater than the mth entry of γ̄, viz. γm. The vector µ̄(k)

contains the step sizes for each of the filter coefficients and u =
[

1 1 . . . 1
]T

∈
R

M . In addition, the regularization parameter δ must be chosen as a small constant

used to prevent numerical instabilities due to small entries of x̄(k). Most of these

variables were already addressed in Subsection 5.1.2.

5.2.3 Results

Here, it is assumed that the length of the cyclic prefix is appropriately chosen in

such a way that the transmission scheme in equation (5.13) is valid. The simulation

setup follows closely the configuration of the physical-layer downlink connection of

the LTE system [71, 73]. Each OFDM symbol is comprised of M = 512 subcarriers,

each subcarrier corresponding to 15 kHz carries one symbol belonging to a QPSK

constellation whose symbols are normalized to have unity variance.1 The channel is

time varying. For the first OFDM symbol of each simulation, the channel h(0) is

generated according to the Extended Typical Urban-LTE (ETU-LTE) model [72].

The channels observed by the other OFDM symbols were generated following a

random-walk model [2] applied only to the phase of the frequency response of the

channel, i.e., given that h̄(k) = |h̄(k)|ejθ̄(k), then h̄(k + 1) is generated as

h̄(k + 1) = |h̄(k)|ejθ̄(k+1), (5.14)

θ̄(k + 1) = λcθ̄(k) + κnc(k), (5.15)

where h̄(k) is the frequency response of the channel during the kth OFDM symbol,

|h̄(k)| and θ̄(k) are vectors containing the magnitude and the phase components of

h̄(k), respectively. The other parameters are λc = 0.99, κ = (1 − λc)
p/2, p = 2,

and nc(k) is a random vector drawn from a zero-mean Gaussian distribution with

standard deviation σnc
= 5.

In addition, the regularization factor was chosen as δ = 10−12 and the upper

bounds for the error in each subcarrier were set as γm =
√

τσ2
n, form = 0, 1, . . . ,M−

1, with τ = 1 and σ2
n is the variance of the additive white Gaussian measurement

noise, which is used to control the signal-to-noise ratio (SNR). The bit-error rate

(BER) results were generated considering 104 transmitted OFDM symbols and then

averaging the results over 100 independent simulations.

Figure 5.3 depicts BER results for different values of SNR considering a chan-

nel that varies at every OFDM symbol. The magnitude of the channel frequency

response is constant for each simulation and it was generated in such a way that

its minimum value is 0.5. This particularization on the channel is justified by our

1The symbols must have unity variance so that ȳd (decided) and ȳs (projected on the unity-
radius circle) have the same magnitude.
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Figure 5.3: BER versus SNR. In the first plot (top) we consider |hm(k)| > 0.5 for all m
(subcarriers) and k (OFDM symbols), whereas the second plot (bottom) is just a zoom of
the previous one.

SBE process, which is very sensitive to the SNR at a given subcarrier. Indeed, from

the transmission scheme in (5.13) we observe that the symbol received at the mth

subcarrier is given by x̄m(k) = h̄m(k)s̄m(k) + n̄m(k), and the SNR at this subcarrier

is given by |h̄m(k)s̄m(k)|2/|n̄m(k)|2, and thus, for low values of |h̄m(k)|2 we might

have a signal power much lower than the noise power at the receiver.

In Figure 5.3, there are two types of equalizers: the MMSE equalizer and the

Adaptive equalizer. The MMSE equalizer is a supervised equalizer that uses the

pilot-OFDM symbol to set w̄(k) at a given iteration/block k and uses the same

w̄(k) to equalize the next OFDM-symbols transmitted until a new pilot-OFDM

symbol is transmitted. The Adaptive equalizer uses the proposed SBE algorithm,
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i.e., it employs the MMSE equalizer when a pilot-OFDM symbol is transmitted and

it tracks the channel variations when pilot-OFDM symbols are not transmitted. In

addition, the number next to the type of equalizer corresponds to the frequency (how

often) with which a pilot OFDM-symbol is transmitted. For instance, “MMSE 6”

stands for the MMSE equalizer in which a pilot-OFDM symbol is transmitted once

at every 6 OFDM-symbols, which corresponds to one of the actual configurations of

the LTE system.

Figure 5.3 shows that the SBE algorithm can dramatically increase the system

throughput provided a minimum SNR is guaranteed. For instance, at an SNR of 20

dB, the proposed Adaptive equalizer that transmits a pilot-OFDM symbol once at

every 60 OFDM symbols achieves almost the same BER as the one achieved by the

traditional OFDM retransmitting pilot-OFDM symbols at each 6 OFDM symbols.

In this case, the usage of the SBE technique would yield an increase of 18% in the

throughput as compared to the traditional OFDM transmission.

5.2.4 Final Remarks

In this section, we proposed a semi-blind equalization algorithm that can signifi-

cantly improve the throughput of OFDM-based systems employing QPSK modula-

tion. However, the proposed algorithm still lacks a mechanism to sense the magni-

tude of the channel at a given subcarrier h̄m(k). Indeed, as previously explained,

when h̄m(k) is very small, the symbol s̄m(k) is strongly attenuated so that it is better

not to update our adaptive filter component w̄m(k).

In addition, it is worth mentioning that there are other types of block transceivers

that have the same transmission model of (5.13), such as the single-carrier with

frequency-division equalization (SC-FD) [4]. The proposed semi-blind equalization

algorithm is also applicable to such systems and that explains why we are using the

term “OFDM-based systems” rather than just “OFDM systems”.

5.3 Perception-Based Acoustic Echo Cancellation

Perceptual signal processing is a paradigm within the general field of signal process-

ing whose target is aligned with the goal of the so-called green technologies. Indeed,

by processing only perceptible signals we gain some degrees of freedom which can be

exploited in order to increase the efficiency with which the computational resources

are used, thus enabling a reduction of energy consumption.

In acoustic echo cancellation systems, for example, there is room for further

improvements if we take into account psychoacoustics criteria. Echo cancellers mit-

igate the acoustic echoes produced by a loudspeaker-enclosure-microphone (LEM)
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system by using an adaptive filter whose target is to estimate the impulse response

of the LEM system [74, 75]. Nevertheless, such an approach does not exploit the

fact that some distortions introduced by the LEM system may be inaudible. Hence,

instead of searching for a unique adaptive filter whose coefficients match perfectly

the LEM’s impulse response, we can actually look for any adaptive filter that reduces

the related echoes/distortions to levels at which one cannot perceive them anymore.

This way, the set estimation framework is more appropriate than the traditional

point estimation.

In this section, a frequency-domain set-membership filtering algorithm for acous-

tic echo cancellation is proposed. This algorithm takes psychoacoustics effects into

account in order to update the filter coefficients only in the cases where the residual

echo becomes audible.

5.3.1 Echo Cancellation Setup

Acoustic echoes appear when there exists an acoustic coupling between loud-

speaker(s) and microphone(s), e.g., in hands-free communications and teleconference

systems. Indeed, in such cases, the signal emitted by a loudspeaker reflects in some

objects and walls and reaches a microphone, forming the loudspeaker-enclosure-

microphone (LEM) system.

The state-of-the-art solution to this problem is to use an acoustic echo canceller

based on simple adaptive filters, such as the NLMS and BNLMS [74, 75]. The

inconvenience is that such an application usually requires long-length adaptive filters

and, consequently, the computational complexity required by these algorithms may

turn their use prohibitive. In addition, as mentioned in Chapter 4, the convergence

speed of such algorithms deteriorate as the filter order increases.

On the other hand, frequency-domain adaptive filters have lower computational

complexity and higher convergence speed, as compared to their time-domain coun-

terparts. However, since they utilize block processing, then latency is always intro-

duced.

The reader should refer to [74] for more details about echo cancellations systems.

5.3.2 Set-Membership Constrained Frequency-Domain Al-

gorithm

The F-SMF concept presented in Section 5.1 uses frequency-domain processing so

that it requires M -point FFT/IFFT modules, whereas the computation of the adap-

tive filter output requires only a multiplication between two scalar variables per

frequency bin, totaling M scalar multiplications. At a given block k, the output

signal represented in the frequency domain ȳ(k) corresponds to the multiplication
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of the DFT representations of the input signal x(k) and the impulse response of

the adaptive filter w(k), i.e., ȳ(k) corresponds to the element-wise multiplication of

two DFT representations, viz. x̄(k) and w̄(k). From the digital signal processing

(DSP) literature, we know that the multiplication of two length-M DFT represen-

tations associated with two length-M signals correspond to the circular convolution

between such signals in time domain [10]. Thus, the F-SMF concept is suitable to

applications involving circular convolutions, i.e., it assumes that the desired vector

d(k) originates from a circular convolution.

For applications involving linear convolutions, such as echo cancellation, we need

to adapt the F-SMF concept. Indeed, in order to emulate a linear convolution using

a circular convolution, we can employ one of the following widely-used approaches:

the overlap-and-add and the overlap-and-save [10]. Such approaches have already

been used in the adaptive filtering literature, see [76] and the books [2, 74].

Here, we follow the overlap-and-save approach and we use the constrained

frequency-domain (CFD) algorithm, see Chapter 12 of [2], as the basis for the pro-

posed algorithm. In addition, we incorporate a data-selection scheme following the

same reasoning used when the F-SM-NLMS algorithm was introduced. This com-

bination leads to the proposed algorithm, which we call set-membership constrained

frequency-domain (SM-CFD). The SM-CFD algorithm is capable of taking psychoa-

coustics effects into account, as will be explained in the next subsection.

The proposed algorithm still follows the configuration depicted in Figure 5.1,

but with some minor changes due to the overlap-and-save, as we now explain. First,

instead of having a single block x(k) ∈ C
M , we have an augmented vector xaug(k) ∈

C
2M defined as

xaug(k) ,

[

IM

z−1IM

]

x(k) =

[

x(k)

x(k − 1)

]

, (5.16)

i.e., xaug(k) is the concatenation of the current block x(k) with the previous

block x(k − 1).2 Then, a (2M)-point FFT is applied to xaug(k) yielding x̄(k) =

F2Mxaug(k) ∈ C
2M . Next, the adaptive filter w̄c(k) ∈ C

2M is applied to x̄(k) gen-

erating as output ȳ(k) = w̄c(k) ◦ x̄(k) ∈ C
2M . This output is transformed back

to the time domain, but only half of its entries actually correspond to the linear

convolution. Therefore, we generate the augmented output signal yaug(k) ∈ C
2M

by applying a (2M)-point IFFT to ȳ(k), and then we discard the undesired entries

2The subscript of a matrix indicates its size. For example, IM stands for the M ×M identity
matrix, whereas F2M represents the (2M)× (2M) DFT matrix.
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generating y(k) ∈ C
M as

y(k) , [IM 0M ]yaug(k)

= [IM 0M ]FH
2M ȳ(k). (5.17)

Then, the error signal is computed as e(k) , d(k) − y(k) ∈ C
M . Since we are

interested in updating the coefficients w̄c,m(k) for m = 0, 1, . . . , 2M−1, i.e., for each

frequency bin, then we must take a (2M)-point FFT of the error signal e(k), leading

to ē(k) ∈ C
2M defined as

ē(k) , F2M eaug(k)

= F2M

[

IM

0M

]

e(k). (5.18)

This ē(k) is fed back to the adaptive filter and used in its updating process.

In addition, the updating scheme of the SM-CFD algorithm is very similar to the

F-SM-NLMS algorithm. In the SM-CFD algorithm we have w̄c(k) ∈ C
2M , which

is a vector containing the adaptive filter coefficients in the frequency domain, and

an auxiliary vector w̄(k) ∈ C
2M , which is the vector that we actually update. The

updating rule of w̄(k) is given by

w̄(k + 1) = w̄(k) +Λ(k)Σ−2(k)diag (ē(k)) x̄∗(k), (5.19)

where Λ(k),Σ−2(k), diag (ē(k)) ∈ C
2M×2M are diagonal matrices. Λ(k) is a matrix

containing the step sizes corresponding to each frequency bin, i.e.,

Λ(k) , diag (µ̄(k)) , (5.20)

with µ̄(k) = [µ̄0(k) µ̄1(k) · · · µ̄2M−1(k)]
T . The matrix Σ2(k) is defined as

Σ2(k) , diag
(
σ2(k)

)
, (5.21)

where σ2(k) =
[
δ + σ2

0(k) · · · δ + σ2
2M−1(k)

]T
, and σ2

m(k) = (1 − α)σ2
m(k − 1) +

α|x̄m(k)|2, for m = 0, 1, . . . , 2M − 1.

Using (5.20) and (5.21), one can rewrite (5.19) as

w̄(k + 1) = w̄(k) + µ̄(k) ◦ ē(k) ◦
(
x̄∗(k)÷ σ2(k)

)
(5.22)

≈ w̄(k) + µ̄(k) ◦ ē(k)÷ x̄(k). (5.23)

It is straightforward to obtain (5.22) from (5.19). In addition, by considering δ −→ 0

and α −→ 1, i.e., by eliminating two parameters that are introduced to increase the
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Table 5.2: Set-Membership Constrained Frequency-Domain (SM-CFD) Algorithm.

SM-CFD Algorithm

Initialization
{
Choose δ as a small constant
Choose η such that 0 < η ≤ 1
Choose α such that 0 < α ≤ 0.1
Compute K (number of blocks of length M to be processed)
x(0) = 0

σ2
m(0) = 0, for m = 0, 1, · · · , 2M − 1

}
For k = 1 : K (i.e., for each block of length M) do
{
x̄(k) = F2M xaug(k) = F2M

[
IM

z−1IM

]

x(k) = F2M

[
x(k)

x(k − 1)

]

y(k) = [IM 0M ]FH
2M ȳ(k) = [IM 0M ]FH

2M








w̄c,0(k)x̄0(k)
w̄c,1(k)x̄1(k)

...
w̄c,2M−1(k)x̄2M−1(k)








e(k) = d(k)− y(k)

ē(k) = F2M eaug(k) = F2M

[
IM
0M

]

e(k)

For m = 0 : (2M − 1) (i.e., for each frequency bin) do
{
Compute Γ̄m and Γ†

m according to the desired data-selection mechanism (to be explained)

µ̄m(k) =







η

(

1− Γ†
m

|ēm(k)|

)

if |ēm(k)| > Γ̄m,

0 otherwise.
σ2
m(k) = (1− α)σ2

m(k − 1) + α|x̄m(k)|2
}
µ̄(k) = [µ̄0(k) µ̄1(k) · · · µ̄2M−1(k)]

T

Λ(k) = diag (µ̄(k))

σ2(k) =
[
δ + σ2

0(k) · · · δ + σ2
2M−1(k)

]T

Σ2(k) = diag
(
σ2(k)

)

w̄(k + 1) = w̄(k) +Λ(k)Σ−2(k)diag (ē(k)) x̄∗(k)

w̄c(k + 1) = F2M

[
IM
0M

]

[IM 0M ]FH
2M w̄(k + 1)

}

robustness of the CFD algorithm against small entries of x̄(k), then we obtain (5.23).

Observe that (5.23) is essentially the same updating equation given in (5.9).

Finally, since we are interested in performing linear convolutions using FFTs,

then we should constrain our adaptive filter generating w̄c(k + 1) as follows [2]:

w̄c(k + 1) = F2M

[

IM

0M

]

[IM 0M ]FH
2Mw̄(k + 1). (5.24)

Table 5.2 summarizes the proposed SM-CFD algorithm. In this algorithm, δ is
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a regularization factor used to avoid ill-conditioning of the matrix Σ−2(k), (1 − α)

can be seen as a forgetting factor for the variance σ2
m(k) of x̄m(k), IM and 0M stand

for the identity and all-zero matrices of size M . The step size relative to the mth

frequency bin is denoted as µ̄m(k).

In addition, Γ̄m represents the upper bound in which the magnitude of the error

corresponding to the mth bin, namely |ēm(k)|, is acceptable, i.e., no update is per-

formed for errors lower than Γ̄m. The threshold Γ†
m, usually chosen as a function of

the noise standard deviation, is related to the level of residual error that will be left

after update (a posteriori error).

The possible choices for the data-selection mechanisms Γ̄m and Γ†
m are addressed

in the following section.

5.3.3 Data-Selection Mechanisms

Here, we present three different data-selection mechanisms for the proposed SM-

CFD algorithm, viz. the constant bound, the perceptual bound, and the hybrid bound.

Constant Bound

For the constant bound, we have Γ̄m = Γ†
m, for m = 0, 1, . . . , 2M − 1, and Γ̄m

should be chosen as a function of the noise variance σ2
n. Thus, like in time-domain

SM algorithms, we choose Γ̄m =
√

τσ2
n, where τ ∈ R+. Observe that this bound

is constant for all frequency bins within a block. We denominate the SM-CFD

algorithm using the constant bound as C-SM-CFD algorithm.

Perceptual Bound

For the perceptual bound we also have Γ̄m = Γ†
m, for m = 0, 1, . . . , 2M − 1. Unlike

the constant bound, the perceptual bound may use different thresholds for different

frequency bins, i.e., we can have Γ̄m 6= Γl for k 6= l. The entries Γ̄m are chosen

based on psychoacoustics criteria, such as masking and just-noticeable changes [77].

Figure 5.4 depicts the perceptual model used as well as the phenomena that are

considered. The inputs of the perceptual model are the input vector x(k) and desired

vector d(k), both represented in time domain. These signals are transformed to the

frequency domain, then they are weighted with a transfer function that corresponds

to the human ear (the so-called loudness curve). Next, these signals are transformed

to a domain in which frequency masking can be taken into consideration. Finally,

these signals are compared in a bin-by-bin basis, where the resulting bins related

to the input signal form the bound Γ̄m. The perceptual model in Figure 5.4, is a

simplified version of the psychoacoustics models used in some codecs and perceptual
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Figure 5.4: Perceptual model.

evaluators, such as the perceptual evaluation of speech quality (PESQ). The SM-

CFD algorithm employing the perceptual bound is denoted as P-SM-CFD algorithm.

Hybrid Bound

The hybrid bound exploits the best of the two bounds previously mentioned.

Thus, the hybrid bound uses two distinct bounds, i.e., we have Γ̄m 6= Γ†
m, for

m = 0, 1, . . . , 2M − 1, which are chosen as:

1. Γ̄m is chosen as the perceptual bound in order to have a reduced number of

updates;

2. Γ†
m is chosen as the constant bound in order to accelerate convergence of the

proposed algorithm.

The SM-CFD algorithm employing the hybrid bound is denoted as H-SM-CFD

algorithm.
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5.3.4 Results

Scenario Description

In order to evaluate the quality of the echo cancellers, a set of 24 signals was pre-

pared, each of them containing two distinct phonetic balanced sentences [78] with

a silence gap of 300 ms between them as recommended in [79]. The sentences are

in Brazilian Portuguese and were recorded by native people (2 males and 1 female),

resulting in a database of 8 signals recorded by each person. The duration of the

signals ranges from 4 to 7 seconds.

Since the duration of the signals is insufficient to achieve the convergence for all

tested adaptive filtering algorithms, each of the 24 signals was repeated 32 times

inserting a gap of 500 ms of silence between repetitions. This procedure generated

the 24 extended signals with durations ranging from 100 to 170 seconds that were

further contaminated with echo and white Gaussian noise.3

The echo signals were generated by using the gain levels of {−20, −30, −40,

−50} dB with respect to the reference signal and delays of {50, 100, 150, 200, 250,
300} ms, in all possible combinations. The contamination model includes the room

impulse responses (RIRs) that were randomly chosen from a set of RIRs obtained

from [80]. After convolving the extended signals with the RIRs, a white Gaussian

noise was added to the resulting signal so that the SNR assumes one of the following

three values {30, 40, 50} dB, with respect to the level of the echo signal.

Table 5.3 summarizes the signal characteristics. In this table m1, m2, and f1

are related to the persons who recorded the sentences: male 1, male 2, and female

1, respectively. Studio identifiers are the ones presented in [80] and the location

identifiers are related to the position of the loudspeaker used to measure the RIR.

The loudspeaker locations were represented in that table as ‘R’ for right position,

‘L’ for left position, and ‘C’ for center position. Moreover, the ‘r’ letter is used to

identify if a rear speaker were used instead of a front speaker. In Table 5.3, the

signals are organized in ascending order of the noise variance σ2
n.

Results

Here, we provide simulation results for the C-SM-CFD, P-SM-CFD, and H-SM-

CFD in order to compare the different data-selection mechanisms. More specifically,

we are interested in comparing the number of times they update. In addition,

the perceived results using the C-SM-CFD, P-SM-CFD, H-SM-CFD, NLMS, and

BNLMS algorithms are identical during the steady-state, i.e., all of these algorithms

reduce the echoes to levels at which one could not hear them.

3These extended signals allow us to take averages of some variables after the transient part,
i.e., considering only the steady-state.
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Table 5.3: Characteristics of each degraded signal

ID speaker Delay (ms) Gain (dB) SNR (dB) Studio Location σ2
n (dB)

1 m2 150 −50 50 B rR −126.2
2 m2 300 −50 50 B rL −124.2
3 m1 150 −40 50 B R −115.2
4 m2 100 −50 40 A rL −114.7
5 m1 300 −40 50 D1 rL −113.6
6 f1 250 −50 40 A rL −112.8
7 m1 100 −40 40 B R −105.6
8 m2 200 −50 30 D1 rR −104.3
9 m2 250 −40 40 A R −102.7
10 f1 300 −30 50 B R −102.2
11 f1 50 −50 30 B rR −100.4
12 f1 150 −30 50 B rL −98.0
13 m1 200 −40 30 D1 R −94.2
14 m2 300 −20 50 D1 rL −93.3
15 m1 150 −20 50 A rL −92.8
16 f1 100 −30 40 B rR −92.8
17 f1 250 −30 40 A C −92.5
18 f1 50 −40 30 D1 C −90.7
19 m1 250 −20 40 A C −84.9
20 m1 100 −20 40 B R −83.8
21 m2 200 −30 30 879 rL −83.5
22 f1 50 −30 30 B rL −80.2
23 m1 50 −20 30 D1 rL −75.1
24 m2 200 −20 30 B R −71.8

Figure 5.5 depicts the squared error averaged over time, considering only the

steady-state, for each of the 24 signals. In addition to the three proposed tech-

niques, we also plot the corresponding curves for the BNLMS algorithm and for

the noise variance associated with each signal. It is interesting to observe that the

curves corresponding to the BNLMS and the C-SM-CFD are similar to the curve

representing the noise variance. On the other hand, the P-SM-CFD and H-SM-CFD

yielded an error level that is almost constant, i.e., that do not depend on the noise

variance.

Intuitively, Figure 5.5 indicates that the P-SM-CFD and H-SM-CFD accept

higher values of error, as compared to the C-SM-CFD. As a consequence, such

a result suggests that the former two techniques are capable of performing fewer

updates than the C-SM-CFD. Indeed, Figures 5.6 and 5.7, which depict the per-

centage of updates per signal considering the entire signal and considering only the

steady-state, respectively, corroborate our expectations. In these figures we observe

that the P-SM-CFD and H-SM-CFD perform much fewer updates, when compared

to the C-SM-CFD. Moreover, the H-SM-CFD perform even fewer updates than the
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Figure 5.6: Percentage of updates per signal considering the entire signals.

P-SM-CFD.

Figure 5.8 illustrates how the percentage of updates varies with time, i.e., per

block. Once again we can observe that the P-SM-CFD and H-SM-CFD are much

better than the C-SM-CFD. Indeed, their percentage of updates are approximately

half of the percentage of updates corresponding to the C-SM-CFD.

5.3.5 Final Remarks

In this section we proposed a data-selective algorithm for acoustic echo cancellation

that can employ three different data-selection mechanisms. The simulation results

show that the proposed algorithm can reduce significantly the number of updates
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Figure 5.8: Percentage of updates per block averaged over the 24 signals (computed up
to the last block of the shortest signal).

performed, thus reducing energy consumption, while being perceptually equivalent

to competing techniques. In addition, we observed that the hybrid bound constitutes

the best data-selection mechanism, among the three that we proposed.

5.4 Conclusion

In this chapter we proposed two algorithms, one for semi-blind equalization, and the

other for acoustic echo cancellation. The semi-blind equalization algorithm is able

to reduce significantly the amount of pilots transmitted by OFDM-based communi-

cations systems. However, this algorithm is very sensitive to channels that strongly
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attenuate some frequency bins. Therefore, there is room for the development of

mechanisms to sense the channel in order to make the proposed algorithm more

robust.

Regarding the acoustic echo cancellation, the proposed algorithm innovates by

taking the perception/psychoacoustics into account. This strategy enables an even

further reduction of the number of updates performed. In addition, such an algo-

rithm calls for simpler psychoacoustics models so that these models do not impact

the computational burden of frequency-domain algorithms.
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Chapter 6

Conclusions, Contributions, and

Future Works

In this thesis, energy-efficient adaptive filters were investigated. The combination

of set estimation theory and data-selection mechanisms through the so-called set-

membership filtering (SMF) concept was key to the design of such algorithms. In-

deed, set estimation theory allows one to take into consideration prior information

about the involved signals. In addition, since most applications usually present some

source of uncertainty, it makes more sense to search for acceptable adaptive filters

rather than searching for a single solution that is optimal with respect to a given

criterion/optimization problem. Following this reasoning, data-selective adaptive

filters are able to significantly reduce the computational burden, and thus energy

consumption, by evaluating the input data and updating the adaptive filter only in

the cases where the input signal conveys enough innovation.

6.1 Summary of Contributions

In this work, SMF-based algorithms for adaptive filtering problems were addressed.

We revisited the SMF concept as well as the set-membership affine projection (SM-

AP) algorithm, which is one of the most general SMF-based algorithms. As a result,

some questions related to the SM-AP algorithm were answered. Indeed, we explained

why and how to set the parameters of the SM-AP, in particular the constraint vector

(CV), in order to obtain accurate estimates. In addition, we proposed two new CVs,

among which the proposed exponential-decay CV (ED-CV) is worth of mention

because it yields faster convergence speed, as compared to the already published

simple-choice CV (SC-CV), while also achieving low computational burden and low

steady-state mean-squared error (MSE). Besides, like the SC-CV, the ED-CV allows

one to use high values of γ, which means that the percentage of updates of the
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SM-AP algorithm employing the ED-CV is very low. Moreover, we analyzed the

steady-state MSE performance of the SM-AP algorithm, resulting in closed-form

expressions for its excess MSE and misadjustment.

After a detailed study of the SMF concept and the SM-AP algorithm, new al-

gorithms were proposed. We started considering problems involving sparse signals,

which led us to propose two data-selective algorithms for applications involving

sparse signals and systems. Such algorithms promote sparsity at each iteration

through an approximation to the l0 norm, rather than minimizing the widely used

l1 norm. The advantages of this approach were explained and verified via simula-

tion. In addition, the proposed algorithms exhibited better MSE and misalignment

results, as compared to the state-of-the-art algorithms designed to exploit sparsity,

considering both sparse and compressible signals. Besides, the computational com-

plexity and percentage of updates related to the proposed algorithms are also lower.

Finally, we also proposed two frequency-domain data-selective algorithms, one

for semi-blind equalization of OFDM-based systems employing a given modulation

scheme, and the other is an acoustic echo cancellation that takes psychoacoustics

criteria into consideration in order to eliminate only the residual echoes that are

audible.

6.2 Future Works

In this section, we list some of the possible future works:

� Improve the robustness of the semi-blind equalization algorithm proposed in

Chapter 5 by introducing some kind of “channel sensing” so that the proposed

algorithm could be employed even in channels with high attenuation at a given

subcarrier.

� Verify the possibility of implementing some of the proposed algorithms in a

distributed fashion, possibly using a diffusion or consensus average scheme.

In addition to the aforementioned future works, which are still related to adap-

tive filtering, we would like to apply the set estimation paradigm in other contexts.

For instance, considering the problem of sound source localization using microphone

arrays, it is widely known that computational complexity is a major issue. Indeed,

the family of localization methods known as steered-response power (SRP) pro-

vide techniques that are more robust against reverberation than other families of

methods. However, the accuracy of SRP techniques depend on the number of mi-

crophones and spatial sampling and, therefore, its required computational burden

may be prohibitive. The works [81, 82] reduce the complexity of the SRP by using
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a different functional or by using a different search method (hierarchical search, in-

stead of performing an exhaustive search across all points of the solution space as

usually happens). Since complexity is the major problem, we feel that if we could

add a data-selection scheme to such methods we could dramatically decrease their

complexity, as we did with adaptive filters.
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Appendix A

Proofs Related to Chapter 3

This appendix contains most of the mathematical derivations related to Section 3.4

of Chapter 3. In addition to the mathematical derivations, it also shows how to

model some of the variables. In Section A.6 we present and discuss the assumptions

and statements invoked during the analysis of the steady-state MSE of the SM-AP

algorithm.

A.1 Proof of Proposition 1

Proof. Squaring the Euclidean norm of both sides of Eq. (3.36), we have

[
∆w(k + 1)−X(k)R−1(k)ẽ(k)

]T [
∆w(k + 1)−X(k)R−1(k)ẽ(k)

]
=

[
∆w(k)−X(k)R−1(k)ε̃(k)

]T [
∆w(k)−X(k)R−1(k)ε̃(k)

]
,

and since ε̃(k) = −XT (k)∆w(k + 1) and ẽ(k) = −XT (k)∆w(k), it follows that

‖∆w(k + 1)‖2 + ε̃T (k)R−1(k)ẽ(k) + ẽT (k)R−1(k)ε̃(k) + ẽT (k)R−1(k)ẽ(k) =

‖∆w(k)‖2 + ẽT (k)R−1(k)ε̃(k) + ε̃T (k)R−1(k)ẽ(k) + ε̃T (k)R−1(k)ε̃(k).

Then, removing the equal terms on both sides of the last equation we get

‖∆w(k + 1)‖2 + ẽT (k)R−1(k)ẽ(k) = ‖∆w(k)‖2 + ε̃T (k)R−1(k)ε̃(k).
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A.2 Correlation Expression

Utilizing Eq. (3.32) we can eliminate ε̃(k) from Eq. (3.38), and since R(k) and S(k)

are symmetric matrices, after some manipulations, it follows that

Pup(k)µE
[
[e(k)− γ(k)]TS(k)R(k)S(k)[e(k)− γ(k)]

]
=

2E
[
ẽT (k)S(k)[e(k)− γ(k)]

]
. (A.1)

Using e(k) = ẽ(k) + n(k), see Eq. (3.34), and defining

ẽ(k) = ẽ(k)− γ(k), (A.2)

Eq. (A.1) can be rewritten as

Pup(k)µE
[

[ẽ(k) + n(k)]T S(k)R(k)S(k) [ẽ(k) + n(k)]
]

=

2E
[

[ẽ(k) + γ(k)]T S(k) [ẽ(k) + n(k)]
]

. (A.3)

Expanding the equation above and considering S(k) ≈ R−1(k), see statement St-4,

we get

Pup(k)µE
[
ẽT (k)S(k)ẽ(k) + nT (k)S(k)n(k) + 2nT (k)S(k)ẽ(k)

]

= 2E
[
ẽT (k)S(k)ẽ(k) + ẽT (k)S(k)n(k) + γT (k)S(k)ẽ(k) + γT (k)S(k)n(k)

]
.

Using the relation ẽT (k)S(k)n(k) = nT (k)S(k)ẽ(k), applying the trace to the equa-

tion above, and using the property tr{AB} = tr{BA}, we can write

(2− Pup(k)µ)E
[
tr
{
ẽ(k)ẽT (k)S(k)

}]
+ 2(1− Pup(k)µ)E

[
tr
{
ẽ(k)nT (k)S(k)

}]

+ 2E
[
tr
{
ẽ(k)γT (k)S(k)

}]

=Pup(k)µE
[
tr
{
n(k)nT (k)S(k)

}]
− 2E

[
tr
{
n(k)γT (k)S(k)

}]
. (A.4)

Assuming that at steady-state S(k) is uncorrelated with the random matrices

ẽ(k)ẽT (k), ẽ(k)nT (k), ẽ(k)γT (k), n(k)nT (k), and n(k)γT (k), see assumption As-2,

we get

(2− Pup(k)µ)tr
{
E
[
ẽ(k)ẽT (k)

]
E [S(k)]

}
+ 2(1− Pup(k)µ)tr

{
E
[
ẽ(k)nT (k)

]
E [S(k)]

}

+ 2tr
{
E
[
ẽ(k)γT (k)

]
E [S(k)]

}

=Pup(k)µtr
{
E
[
n(k)nT (k)

]
E [S(k)]

}
− 2tr

{
E
[
n(k)γT (k)

]
E [S(k)]

}
. (A.5)

It is possible to eliminate the dependence on ẽ(k) by substituting (A.2) in the
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equation above as follows

(2− Pup(k)µ)tr
{
E
[
ẽ(k)ẽT (k)

]
E [S(k)]

}
+ 2(1− Pup(k)µ)tr

{
E
[
ẽ(k)nT (k)

]
E [S(k)]

}

− Pup(k)µtr
{
E
[
γ(k)γT (k)

]
E [S(k)]

}
+ Pup(k)µtr

{
E
[
ẽ(k)γT (k)

]
E [S(k)]

}

− (2− Pup(k)µ)tr
{
E
[
γ(k)ẽT (k)

]
E [S(k)]

}
− 2(1− Pup(k)µ)tr

{
E
[
γ(k)nT (k)

]
E [S(k)]

}

=Pup(k)µtr
{
E
[
n(k)nT (k)

]
E [S(k)]

}
− 2tr

{
E
[
n(k)γT (k)

]
E [S(k)]

}
. (A.6)

A.3 Calculating E
[
ẽ(k)ẽT (k)

]

Examining the (i+ 1)th row of Eq. (3.33) and Eq. (3.34) we have

ε̃i(k) = −xT (k − i)∆w(k + 1) (A.7)

ẽi(k) = −xT (k − i)∆w(k) = ei(k)− n(k − i) (A.8)

for i = 0, . . . , L. Since R(k)S(k) ≈ I, see statement St-4, the (i + 1)th row of

Eq. (3.32) is

ε̃i(k) = ẽi(k)− Pup(k)µ [ei(k)− γi(k)] . (A.9)

Using Eq. (A.8) to replace ei(k) in the equation above it follows that

ε̃i(k) = (1− Pup(k)µ)ẽi(k)− Pup(k)µ (n(k − i)− γi(k)) . (A.10)

Squaring the equation above, we get

ε̃2i (k) =(1− Pup(k)µ)
2ẽ2i (k) + (Pup(k)µ)

2 (n(k − i)− γi(k))
2

− 2Pup(k)µ(1− Pup(k)µ)ẽi(k) (n(k − i)− γi(k)) . (A.11)

Note that the noiseless a posteriori error vector is related to the noiseless a priori

error vector through the following relation

ε̃i(k − 1) = −xT (k − (i+ 1))∆w(k) = ẽi+1(k). (A.12)

Now, considering Eq. (A.11) at iteration k − 1, substituting Eq. (A.12) in

Eq. (A.11), and taking the expected value, we get

E
[
ẽ2i+1(k)

]
=(1− Pupµ)

2E
[
ẽ2i (k − 1)

]
+ (Pupµ)

2E
[
(n(k − 1− i)− γi(k − 1))2

]

− 2Pupµ(1− Pupµ)E [ẽi(k − 1) (n(k − 1− i)− γi(k − 1))] , (A.13)

where we considered that at steady-state Pup(k) is a constant Pup.
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Expanding Eq. (A.13) we get

E
[
ẽ2i+1(k)

]
=(1− Pupµ)

2E
[
ẽ2i (k − 1)

]
+(Pupµ)

2E
[
n2(k − 1− i)

]
+(Pupµ)

2E
[
γ2
i (k − 1)

]

− 2(Pupµ)
2E [n(k − 1− i)γi(k − 1)]

− 2Pupµ(1− Pupµ)E [ẽi(k − 1)n(k − 1− i)]

+ 2Pupµ(1− Pupµ)E [ẽi(k − 1)γi(k − 1)] (A.14)

which can be simplified using (3.11), the relation E [γ2
i (k − 1)] = γ2, for i =

0, 1, . . . , L, and E [n2(k)] = σ2
n, ∀k (see Definition 4), leading to

E
[
ẽ2i+1(k)

]
=(1− Pupµ)

2E
[
ẽ2i (k − 1)

]
+ (Pupµ)

2σ2
n + (Pupµ)

2γ2

− 2(Pupµ)
2γE

[
n(k − 1− i)sign[ei(k − 1)]

]

− 2Pupµ(1− Pupµ)E [ẽi(k − 1)n(k − 1− i)]

+ 2Pupµ(1− Pupµ)γE
[
ẽi(k − 1)sign[ei(k − 1)]

]
. (A.15)

Assuming that at steady-state ẽi(k−1) is a zero-mean Gaussian RV, see assump-

tion As-4, we can apply Result 2 to Eq. (A.15) leading to the following relation

E
[
ẽ2i+1(k)

]
=(1− Pupµ)

2E
[
ẽ2i (k − 1)

]
+ (Pupµ)

2σ2
n + (Pupµ)

2γ2

− 2(Pupµ)
2γρi(k − 1)E [n(k − 1− i)ei(k − 1)]

− 2Pupµ(1− Pupµ)E [ẽi(k − 1)n(k − 1− i)]

+ 2Pupµ(1− Pupµ)γρi(k − 1)E [ẽi(k − 1)ei(k − 1)] , (A.16)

where

ρi(k) =

√

2

πE[e2i (k)]
. (A.17)

Utilizing the relation ei(k − 1) = ẽi(k − 1) + n(k − 1− i) in order to remove the

dependence on the a priori error signal, and rearranging the terms we get

E
[
ẽ2i+1(k)

]
= [1− Pupµ+ 2Pupµγρi(k)] (1− Pupµ) E

[
ẽ2i (k)

]

+
[
σ2
n + γ2 − 2γρi(k)σ

2
n

]
(Pupµ)

2, (A.18)

where we have used E [e2i (k − 1)] = E [e2i (k)] and E [ẽ2i (k − 1)] = E [ẽ2i (k)], see state-

ment St-2, and we neglected the terms depending on E [n(k − 1− i)ẽi(k − 1)], see

statement St-3.

Assuming ρi(k) ≈ ρ0(k) , for i = 0, 1, . . . , L , see assumption As-5, in order to

simplify the mathematical manipulations, we can rewrite the recursion given by

(A.18) as

E
[
ẽ2i+1(k)

]
= aE

[
ẽ2i (k)

]
+ b (Pupµ)

2 , (A.19)
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where

a = [1− Pupµ+ 2Pupµγρ0(k)] (1− Pupµ) (A.20)

b =
[
σ2
n + γ2 − 2γρ0(k)σ

2
n

]
. (A.21)

By induction, for 0 ≤ i ≤ L− 1 one can prove that

E
[
ẽ2i+1(k)

]
= a(i+1)E

[
ẽ20(k)

]
+

(
i∑

l=0

al

)

b (Pupµ)
2 . (A.22)

Assuming E
[
ẽ(k)ẽT (k)

]
is diagonally dominant, see assumption As-3, we can

write

E
[
ẽ(k)ẽT (k)

]
= A1E

[
ẽ20(k)

]
+A2b (Pupµ)

2 (A.23)

with A1 = diag
{
1, a, a2, · · · , aL

}
, and A2 = diag

{

0, 1, 1 + a, · · · ,∑L−1
l=0 al

}

.

A.4 Modeling ρ0(k)

Eq. (A.17) shows that ρ0(k) is completely specified by E[e20(k)]. Therefore, we

propose the following approximation for E[e20(k)]

E[e20(k)] = ασ2
n + β

1

L+ 1
γ2, (A.24)

where

α =

{

10 if L = 0,

2 otherwise.
β =

{

10 if L = 0,

1 otherwise.

The approximation above originates from experimental observations, and is a

refinement of the approximation used in [33] for a simplified version of SM-AP algo-

rithm, the SM-AP algorithm with simple choice constraint vector (SC-CV). Observ-

ing the SC-CV, see [2, 12], it is clear that the SM-AP algorithm with fixed modulus

error-based constraint vector (FMEB-CV) is more sensitive to the data reuse fac-

tor L, since the SC-CV is chosen in such a way that many degrees of freedom are

discarded. This dependence is represented in the approximation for E[e20(k)].

A.5 Modeling Pup

Using arguments based on the central limit theorem [38] we can consider that, for a

sufficiently large k, the error signal e0(k) = d(k)−wT (k)x(k) will have a Gaussian

distribution. This can also be observed in practice by plotting the histogram of
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e0(k), as done in [8]. In addition, due to the signal model, see Definition 4, the error

signal is a zero-mean random variable.

The probability of updating the filter coefficients at a certain iteration k is given

by Pup(k) = P [|e0(k)| > γ] . After convergence it can be written as

Pup = 2Q

(
γ

σe

)

, (A.25)

where σ2
e is the variance of e0(k), and Q (·) is the Gaussian complementary function,

defined as Q (x) =
∫∞
x

1√
2π
e−t2/2dt .

If we use the independence assumption, the variance of the error could be written

as σ2
e = σ2

n + E
[
∆wT (k)R∆w(k)

]
, and utilizing the Rayleigh quotient [2] we can

determine the region of possible values for σ2
e

σ2
n + λminE

[
‖∆w(k)‖2

]
≤ σ2

e ≤ σ2
n + λmaxE

[
‖∆w(k)‖2

]
, (A.26)

where λmin and λmax are the smallest and the largest eigenvalues of the autocorre-

lation matrix R, respectively. Since both λmin, λmax ≥ 0 [2], and at steady-state we

expect that E [‖∆w(k)‖2] is small, then we can consider σ2
e to be close to σ2

n. So,

the following model seems reasonable

σ2
e = (1 + η)σ2

n, (A.27)

where η is a small positive constant that must be chosen as

η =

{

0.10 if input signal is uncorrelated,

0.25 otherwise.
(A.28)

These values of η were empirically determined and tested in many simulation sce-

narios. In fact, the results are not very sensitive to the choice of η. Any choice of

η ∈ [0.1, 0.3] leads to good results. If some information about the autocorrelation

of the input signal is available, one should choose η as in Eq. (A.28) in order to

enhance the theoretical approximations.

Figure A.1 depicts the steady-state probability of update Pup for different values

of L, considering the Basic Scenario of Subsection 3.4.7. As can be observed the

theoretical curve follows closely the experimental one, for L = 0. When L 6= 0,

however, we observe that the minimum value of Pup stabilizes at a value different

from 0.

The formula for Pup given in Eq. (A.25) does not take into account that the

Gaussian assumption is not valid for L > 0. As can be seen in Figure A.1, the

steady-state probability of updating of the SM-AP algorithm increases with L, and
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for L > 0 the tail of the curve does not fall to 0. So, in order to properly estimate

Pup we need to add a constant, leading to the following expression

Pup = 2Q

(
γ

σe

)

+ Pmin, (A.29)

where Pmin is a rough estimate of the smallest value that Pup assumes, as a function

of γ. Table A.1 summarizes the values of Pmin that were used in our experiments.

These values provided good steady-state MSE results in different scenarios, espe-

cially for values of τ that yield low steady-state probability of update, which agrees

with assumption As-6 used to simplify the expression for the EMSE of the SM-AP

algorithm. Moreover, the approximation given by Eq. (A.29) has the attractive

feature of not being very sensitive to small variations in Pmin.
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Figure A.1: Probability of updating vs. τ , where γ =
√

τσ2
n, for different values of L,

considering the Basic Scenario (BS).

Table A.1: Values of Pmin as a function of L.

L \ input signal uncorrelated correlated
0 0 0
1 0.20 0.30
2 0.30 0.40
3 0.35 0.45
4 0.40 0.50
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A.6 Assumptions and Statements

Now we discuss the assumptions and statements used in the steady-state MSE anal-

ysis. The assumptions are:

As-1 The RV p(k) is independent of the event {|e0(k)| > γ}: This assumption is

reasonable at steady-state, when it is expected that the algorithm updates in dif-

ferent directions but always maintaining w(k) close to wo, no matter the value of

|e0(k)|.
As-2 At steady-state S(k) is uncorrelated with the random matrices ẽ(k)ẽT (k),

ẽ(k)nT (k), ẽ(k)γT (k), n(k)nT (k), and n(k)γT (k): Uncorrelation assumptions are

required in all adaptive filtering analyses in order to maintain the mathematical

tractability. The RVs S(k) and n(k)nT (k) are uncorrelated due to Definition 4.

The other uncorrelation assumptions are motivated by the fact that S(k) varies

slowly with k, especially for high values of N .

As-3 Diagonally dominant assumption: Since E
[
ẽ(k)ẽT (k)

]
, E
[
γ(k)γT (k)

]
, and

E
[
n(k)nT (k)

]
are autocorrelation matrices, they have higher values on the main

diagonal. In addition, from Definition 2 and Result 2, the cross-correlation matri-

ces presented in Eq. (3.39) can be written as a sum of one of the autocorrelation

matrices with the cross-correlation matrix E
[
ẽ(k)nT (k)

]
≈ 0, see Eq. (3.44).

As-4 At steady-state ẽi(k− 1) is a zero-mean Gaussian RV: By using this assump-

tion together with the distribution of n(k) given in Definition 4, then n(k − 1 − i)

and ei(k − 1) as well as ẽi(k − 1) and ei(k − 1) are jointly Gaussian RVs [38]. So,

we can apply Result 2 to Eq. (A.15).

As-5 At steady-state ρi(k) ≈ ρ0(k), for i = 0, . . . , L: This is reasonable for small

values of L, e.g., for L = 0, the relation given by assumption As-5 is an equality

rather than an approximation.

As-6 Pup ≪ 1, or µ ≪ 1, or Pupµ ≪ 1: Since µ = 1 for the SM-AP algorithm,

then we must have Pup ≪ 1. This is not true for small values of γ. For exam-

ple, in the limiting case where γ → 0 we have Pup → 1. This implies that the

proposed theoretical MSE expressions of the SM-AP algorithm are not so accurate

for small values of γ. However, from Chebyshev’s inequality [8, 38] we know that

P [wo ∈ H(k)] = P [|d(k) − wT
o x(k)| ≤ γ] = 1 − P [|n(k)| > γ] ≥ 1 − (σn/γ)

2 , i.e.,

in order to have wo ∈ H(k) with high probability we must choose γ ≫ σn (in fact,

we know that Chebyshev’s inequality provides a conservative lower bound; for n(k)

satisfying Definition4(c), e.g., choosing γ = 2σn makes P [wo ∈ H(k)] ≈ 95%). On

the other hand, for too large values of γ, the algorithm may not update at all, thus

not converging to a point close to wo.

As-7 The elements on the main diagonal of E [S(k)] are equal: This assumption on

the input-signal model is required to maintain the mathematical tractability of the
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problem at hand. Note that, for L = 0 this is always true (i.e., not an assumption),

and for L = 1 this is equivalent to satisfy E [‖x(k)‖2] = E [‖x(k − 1)‖2], which is

very likely to be a good approximation, especially for long vectors (since the differ-

ence between the terms on the left-hand side and right-hand side corresponds to just

one sample/element), or for well behaved input signals (e.g., stationary signals). In

addition, since A1 is a diagonal matrix, the ratio tr{A1E[S(k)]}
tr{E[S(k)]} represents a weighted

mean of the elements on the main diagonal of A1, whose weights are the diagonal

elements of E [S(k)]. This assumption enables us to exchange the weighted mean by

an arithmetic mean, which is much easier to solve and also avoids the problem of

determining the weights.

The statements used in the analysis are:

St-1 X(k) has full column rank: This guarantees the existence of R−1(k) and is

usually true for a tapped-delay-line structure with a random input signal during

steady-state. An example of exception would be a signal that is constant during a

long interval, but this is not likely to occur with random input signals.

St-2 At steady-state E [e2i (k − 1)] = E [e2i (k)] and E [ẽ2i (k − 1)] = E [ẽ2i (k)]: Since

the starting point of the analysis is to assume that the algorithm converged in order

to analyze its steady-state behavior, then the sequence {E [e2i (k)]}k∈N converges

and, therefore, the first equality in St-2 always holds at steady-state. The second

equality follows by a combination of the first equality and the noise model given in

Definition 4.

St-3 At steady-state E [n(k − 1− i)ẽi(k − 1)] can be neglected: This statement

implies that E [n(k − 1− i)ẽi(k − 1)] ≈ 0, for all i. Recalling Result 1 and

Definition 4, we know that, for i = 0, E [n(k − 1)ẽ0(k − 1)] = 0. Note that St-3

becomes less accurate as i grows (or equivalently, for large values of L).

St-4 S(k) ≈ R−1(k): Follows from St-1 and the fact that δ is chosen as a small

constant used to avoid numerical instability problems that may occur especially in

the first iterations, i.e., δ ≪ 1 as described in Subsection 3.2.2.
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Appendix B

Proofs Related to Chapter 4

In this appendix we provide demonstration to some of the facts and theorems invoked

in Chapter 4.

B.1 Proof that p1 is orthogonal to p2

Here we show that p1 is orthogonal to p2. One must remember that the regular-

ization factor δ in S(k) = [XT (k)X(k) + δI]−1 was artificially added just to avoid

numerical issues and, therefore, should be chosen as 0 < δ ≪ 1, which means that

δI ≈ 0. In the following derivation we consider δ = 0:

pT
1 p2 = [e(k)− γ(k)]T ST (k)XT (k)

α

2

[
X(k)S(k)XT (k)− I

]
fβ(w(k))

= [e(k)− γ(k)]T ST (k)
α

2

[
XT (k)X(k)S(k)XT (k)−XT (k)

]
fβ(w(k))

= [e(k)− γ(k)]T ST (k)
α

2

[
XT (k)−XT (k)

]
fβ(w(k)) = 0. (B.1)

B.2 Proof of Theorem 1

We prove Theorem 1 using an approach that is somewhat indirect, but has the

advantages of highlighting geometric interpretation while avoiding cumbersome ex-

pressions. In what follows we prove two lemmas that facilitate the proof of the

theorem.

First, let us define wα as the w(k+1) corresponding to the SSM-AP algorithm,

i.e., wα , w(k+1) given in Eq. (4.20). Thus, w0 represents the SSM-AP’s w(k+1)

using α = 0. In addition, ‖ · ‖ denotes the 2-norm and recall that w∗ is the impulse

response of the unknown system.
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d(k)−wTx(k) = γ̄
wαmax

H(k)
w∗ w⊥

wα w0 wαmin

w(k)

d(k)−wTx(k) = −γ̄

Figure B.1: Geometric interpretation of the SSM-AP algorithm considering L = 0 aiming
at explaining how to choose α properly. The choice of L = 0 allows for a clear figure, but
we highlight that the same relations and angles are also valid for general L (the only
difference is that instead of a single hyperplane, when L 6= 0 we have an intersection of
the last L+ 1 hyperplanes).

Lemma 1. ‖w∗ −w0‖2 ≤ ‖w∗ −w(k)‖2.

Proof. Consider the geometric construction shown in Figure B.1, which depicts the

updating process of the SSM-AP algorithm. Observe that ‖w∗ − w0‖ and ‖w∗ −
w(k)‖ are the lengths of the hypotenuses of the two right triangles exhibited in this

figure. Using the Pythagorean theorem it follows that

‖w∗ −w0‖2 = ‖w∗ −w⊥‖2 + ‖w⊥ −w0‖2

< ‖w∗ −w⊥‖2 + ‖w⊥ −w(k)‖2

= ‖w∗ −w(k)‖2, (B.2)

where the inequality follows from the fact that we are assuming that an update

occurs, i.e., |e0(k)| = |d(k)−wT (k)x(k)| > γ implying that w(k) /∈ H(k) and hence

does not belong to the intersection of the last L + 1 constraint sets. Therefore,

‖w∗ −w0‖2 < ‖w∗ −w(k)‖2 in such cases. On the other hand, when the algorithm

does not update we have w0 = w(k), thus ‖w∗ −w0‖2 = ‖w∗ −w(k)‖2, completing

the proof.

Lemma 2. Let us define c , [e(k)− γ(k)]T S(k) [e(k)− γ(k)] +

2∆wT (k)X(k)S(k) [e(k)− γ(k)], where ∆w(k) , w(k) − w∗. Then, Lemma 1

implies c ≤ 0.

Proof. From Lemma 1 we know that ‖w∗ − w0‖2 − ‖w∗ − w(k)‖2 ≤ 0, where

the equality holds only when there is no update, i.e., w0 = w(k). Otherwise, an

update takes place and w0 can be related to w(k) via Eq. (4.20) employing α = 0.
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Expanding the first term of the inequality ‖w∗−w0‖2−‖w∗−w(k)‖2 < 0 we obtain

‖w∗ −w0‖2 =‖w∗‖2 − 2wT
∗ w0 + ‖w0‖2

=‖w∗‖2 − 2wT
∗ {w(k) +X(k)S(k) [e(k)− γ(k)]}

+
{
‖w(k)‖2 + 2wT (k)X(k)S(k) [e(k)− γ(k)]

+ [e(k)− γ(k)]T ST (k)XT (k)X(k)S(k) [e(k)− γ(k)]
}

=‖w∗ −w(k)‖2 − 2wT
∗ X(k)S(k) [e(k)− γ(k)]

+ 2wT (k)X(k)S(k) [e(k)− γ(k)] + [e(k)− γ(k)]T S(k) [e(k)− γ(k)]

=‖w∗ −w(k)‖2 + 2∆wT (k)X(k)S(k) [e(k)− γ(k)]

+ [e(k)− γ(k)]T S(k) [e(k)− γ(k)] ,

=‖w∗ −w(k)‖2 + c , (B.3)

where in the third equality we used S(k) =
[
XT (k)X(k)

]−1
, (i.e., δ = 0, as explained

in B.1), in the fourth equality we used the definition of ∆w(k), and in the last

equality the definition of c was used. By substituting Eq. (B.3) into ‖w∗ −w0‖2 −
‖w∗ −w(k)‖2 < 0 it follows that c < 0. In addition, c = 0 when no update occurs.

Therefore, c ≤ 0 .

Now we are ready to prove the theorem by obtaining the values of α that satisfy

the inequality ‖w∗ −wα‖2 ≤ ‖w∗ −w(k)‖2. First, we define f(α) , ‖w∗ −wα‖2 −
‖w∗ −w(k)‖2. Then, similarly to what we have done in Lemma 2, we expand wα

using Eq. (4.20), but now considering any real-valued α. As a result we obtain:

f(α) = aα2 + bα + c, (B.4)

where

a =
‖P⊥fβ(w(k))‖2

4
, (B.5)

b = ∆wT (k)P⊥fβ(w(k)), (B.6)

c = [e(k)− γ(k)]T S(k) [e(k)− γ(k)] + 2∆wT (k)X(k)S(k) [e(k)− γ(k)] , (B.7)

and P⊥ , X(k)S(k)XT (k)− I.

Eq. (B.4) shows that f(α) is a second-order polynomial in α. Since a > 0

(except for P⊥fβ(w(k)) = 0, which does not occur in practice due to floating point

arithmetic), f(α) corresponds to a convex parabola. In addition, its discriminant is
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d ≥ 0 because

d = b2
︸︷︷︸

≥0

− 4ac
︸︷︷︸

≤0

≥ 0, (B.8)

where we have used Lemma 2. In fact, if an update occurs and P⊥fβ(w(k)) 6= 0,

then a > 0 and c < 0, implying that ac < 0 ⇒ d > 0. This means that f(α) has

two distinct roots, viz. αmin and αmax, which are given by α = (−b ±
√
d)/(2a).

Therefore, we should choose α satisfying αmin < α < αmax in order for the SSM-AP

algorithm to produce estimates w(k+1) (or equivalently, wα) that are closer to w∗

than w(k). This completes the proof of Theorem 1.

Finally, observe that this theorem matches our geometric intuition. Indeed, in

Figure B.1 we draw part of the circle with center in w∗ and radius ‖w∗−w(k)‖. The
points where this circle intersects the closest hyperplane are the wαmin

and wαmax .

B.3 Proof of Theorem 2

Here we use the same idea and Lemmas of Appendix B.2. First, let us define wα

as the w(k + 1) corresponding to the QSSM-AP algorithm, i.e., wα , w(k + 1)

given in Eq. (4.21). Thus, w0 represents the QSSM-AP’s w(k+1) using α = 0 and,

in this case, it coincides with the expression of the SSM-AP algorithm in the same

condition. In addition, ‖ · ‖ denotes the 2-norm and recall that w∗ is the impulse

response of the unknown system.

We define fq(α) , ‖w∗−wα‖2−‖w∗−w(k)‖2. By expandingwα using Eq. (4.21)

we obtain

fq(α) = aqα
2 + bqα + cq, (B.9)

where

aq =
‖fβ(w(k))‖2

4
, (B.10)

bq = − [e(k)− γ(k)]T S(k)XT (k)fβ(w(k)), (B.11)

cq = [e(k)− γ(k)]T S(k) [e(k)− γ(k)] + 2∆wT (k)X(k)S(k) [e(k)− γ(k)] , c.

(B.12)

So, fq(α) is a second-order polynomial in α. Since aq > 0 (except for fβ(w(k)) =

0, or equivalently, w(k) = 0, which does not occur in practice due to floating point

arithmetic), fq(α) corresponds to a convex parabola. In addition, its discriminant
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is dq ≥ 0 because

dq = b2q
︸︷︷︸

≥0

− 4aqcq
︸ ︷︷ ︸

≤0

≥ 0, (B.13)

where we have used Lemma 2. In fact, if an update occurs and w(k) 6= 0, then

aq > 0 and cq < 0, implying that aqcq < 0 ⇒ dq > 0. This means that fq(α) has two

distinct roots, viz. αq,min and αq,max, which are given by α = (−bq ±
√
dq)/(2aq).

Therefore, we should choose α satisfying αq,min < α < αq,max in order for the QSSM-

AP algorithm to produce estimates w(k + 1) (or equivalently, wα) that are closer

to w∗ than w(k). This completes the proof of Theorem 2.
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