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Daniel Rodrigues Pipa

Tese de Doutorado apresentada ao Programa de

Pós-graduação em Engenharia Elétrica, COPPE,

da Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do
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Agradeço a Stanley Chan, com quem trabalhei na UCSD e tive ricas conversas

e discussões que geraram trabalhos e despertaram entendimentos mais profundos

sobre o tema desta tese.

Agradeço aos autores do template CoppeTEX v2.2, que preparam essa maneira

efetiva e eficaz de gerar teses nos padrões exigidos pela UFRJ/COPPE.
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Durante a aquisição de imagens e v́ıdeos, ocorrem com frequência degradações que

comprometem a qualidade da imagem. As degradações mais comuns são: borramento

causado pela resposta óptica do sistema ou point spread function (PSF); redução

da resolução ou resolução abaixo do desejado para a cena; rúıdo aditivo; e rúıdo de

padrão fixo (comum em sistemas de imageamento infravermelho). Em geral, essas

degrações causam perda de informação a prinćıpio irreverśıvel.

Este trabalho apresenta um estudo sobre algumas técnicas modernas de recu-

peração de imagens e v́ıdeo que sofreram tais degradações, além de propor extensões.

Para suprir a falta de informação, são exploradas caracteŕısticas de imagens naturais

através de modelos (p. ex. deconvolução por total variation (TV), interpolação

direcional, modelos autorregressivos) e observações adicionais da cena obtidas pelos

diversos quadros consecutivos de um v́ıdeo (p. ex. super-resolução e remoção de

rúıdo de padrão fixo).

Os métodos propostos geram resultados encorajadores, indicando que a linha de

pesquisa seguida tem grande potencial. Finalmente, reavaliando-se a literatura mais

atual, novas direções e trabalhos futuros são delineados, inspirados em descobertas

recentes na área de problemas inversos em processamento de imagens.

vi
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requirements for the degree of Doctor of Science (D.Sc.)
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Daniel Rodrigues Pipa

November/2012

Advisor: Eduardo Antônio Barros da Silva

Department: Electrical Engineering

During the acquisition of images and videos, degradation often corrupts image

quality. The most common types of degradation are: blurring, caused by the optics

of the system; reduction of resolution or resolution below desired quality; additive

noise and fixed pattern noise, the latter being very common in infrared imaging

systems.

This work presents a study and extensions of some modern techniques for re-

construction of images and videos which have undergone such types of degradation.

Since degradation often implies in loss of information, clues are obtained by exploiting

natural image characteristics through image models and by considering consecutive

frames of a video as different views of the same scene.

The proposed methods show encouraging results, attesting the potential of the

approaches used. Finally, future works and new directions are drawn based on recent

works and new discoveries related to inverse problems in image processing.
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Resumo da Notação
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• Coordenadas cont́ınuas: x, y ou x = [x1, x2]T.
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• Quadros de um v́ıdeo: {fk}1≤k≤K .

• Função custo: J(f).

• Atualizações em algoritmos recursivos: f q+1 = f q − µ∇fJ(f).
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Caṕıtulo 1

Introdução

Sistemas de imageamento, como qualquer aquisição de sinais, introduzem distorções

e rúıdos no sinal adquirido. Quando essas degradações são impercept́ıveis, em

geral não há nenhum problema1. Porém, quando a imagem foi comprometida e

por qualquer motivo soluções triviais2 para a melhoraria de sua qualidade foram

descartadas, pode-se recorrer a técnicas de processamento de imagem para se estimar

uma imagem hipotética adquirida por um sistema de aquisição perfeito. Em sistemas

de imageamento digital, especialmente, destacam-se como degradações t́ıpicas: rúıdo

aditivo, borramento (blurring) e redução de resolução ou resolução abaixo do esperado

para a cena.

Uma primeira simplificação que comumente se adota, e que também será adotada

neste trabalho, é considerar apenas problemas lineares [1]. Dois motivos justificam

tal simplificação: problemas lineares, ou eventualmente problemas não-lineares que

foram linearizados, surgem de modelos lineares que são considerados suficientes

para a maioria das aplicações. Além disso, existem diversos algoritmos eficientes e

bem-estabelecidos para solução problemas lineares, fruto de décadas de estudos e

desenvolvimentos na área. Felizmente, as degradações t́ıpicas listadas acima podem

ser razoavelmente representadas por modelos lineares.

Usando o ferramental de álgebra linear, pode-se modelar a aquisição de uma

imagem por

g = Wf + ν, (1.1)

onde

• f representa uma imagem hipotética (original, sem degradação, indispońıvel e

que se deseja estimar). f é vetor coluna em que cada elemento representa a

1Mesmo que degradações não comprometam a qualidade de imagem em um primeiro momento,
elas podem se tornar viśıveis se for necessário algum processamento posterior, p. ex. melhoramento
de contraste pode acentuar rúıdo.

2Efetuar nova aquisição de imagem ou v́ıdeo, substituir e/ou corrigir o sensor/camera por um
superior, mais moderno, etc.
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Degradação Modelo Efeito sobre a imagem

Rúıdo aditivo g = f + ν Flutuações aleatória nos pixels
Rúıdo de padrão fixo g = Af + b Flutuações fixas nos pixels
Borramento blurring g = Hf Atenuação e posśıvel eliminação de certas

frequências (componentes)
Subamostragem g = Rf Aliasing

Tabela 1.1: Degradações t́ıpicas em sistemas de imageamento digital

intensidade luminosa de um pixel da imagem em sua forma digital. Usualmente,

as colunas da imagem são “empilhadas” para se formar o vetor.

• g é um vetor, usando a mesma lógica de formação de f , que representa a

imagem adquirida e potencialmente degradada.

• W é uma matriz, portanto uma operação linear em f ou ainda um operador

convolucional, que modela degradações na imagem que podem ser combinadas,

p. ex. W = RHM, onde

– M representa posśıveis movimentos na imagem, como rotações, translações,

etc.

– H representa a operação de borramento (blurring), que nada mais é que

redução do conteúdo em frequência. Tal efeito é normalmente causado

pela resposta óptica do sistema, chamada de point spread function (PSD).

– R representa uma operação de subamostragem, ou seja, alguns pixels são

eliminados em um grid regular.

• ν representa rúıdo aditivo que pode contaminar a imagem durante a aquisição.

Esse rúıdo pode ser proveniente da eletrônica de aquisição, perturbações

atmosféricas, entre outros.

A Tabela 1.1 resume as degradações t́ıpicas, os modelos observação e seus efeitos

na imagem final.
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Geralmente, essas degradações causam perda de informação irreverśıvel. Por

exemplo no caso do rúıdo aditivo, sua natureza aleatória impede sua descrição

determińıstica e, portanto, dada uma aquisição que gere g, a operação de remoção

de rúıdo

f̂ = g − ν (1.2)

não é posśıvel.

Um outro tipo de rúıdo comum em sistemas de imageamento na faixa do infraver-

melho é o rúıdo de padrão fixo ou fixed-pattern noise (FPN) com observação descrita

por

g = Af + b, (1.3)

onde A é uma matriz diagonal que representa um rúıdo multiplicativo, ou seja, um

ganho não desejado e individual em cada pixel e b representa um desvio ou off-set

também individual e não desejado.

Diferentemente do rúıdo aleatório, no rúıdo de padrão fixo os parâmetros ganho

A e desvio b são constantes ou variam lentamente, podendo ser aproximados por

constantes. Logo, a imagem poderia ser recuperada por

f̂ = A−1(g − b). (1.4)

Contudo, normalmente não se conhecem A e b e seus valores devem ser estimados

a partir das observações degradadas que, além disso, incluem com frequência rúıdo

aleatório.

No caso de borramento (blurring), pode ocorrer atenuação e mesmo eliminação

de certas componentes de frequência, o que torna imposśıvel sua recuperação. Final-

mente, se a imagem for subamostrada pode ocorrer aliasing, processo sabidamente

irreverśıvel.

Embora fundamentalmente irreverśıveis, existem diversas técnicas para reverter

tais processos. Em geral, recorre-se a outras fontes para suprir e auxiliar na recu-

peração da informação que foi perdida. A informação extra pode estar, por exemplo,

em um conhecimento prévio do tipo de imagem t́ıpica que se espera adquirir.

Este trabalho apresenta um estudo sobre algumas técnicas modernas de recu-

peração de imagens e v́ıdeo que sofreram tais degradações, além de propor extensões.

Para suprir a falta de informação, são exploradas caracteŕısticas de imagens naturais

através de modelos (p. ex. deconvolução por total variation (TV), interpolação

direcional, modelos autorregressivos) e observações adicionais da cena obtidas pelos

diversos quadros consecutivos de um v́ıdeo (p. ex. super-resolução e remoção de

rúıdo de padrão fixo).

Os métodos propostos geram resultados encorajadores, indicando que a linha de
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pesquisa seguida tem grande potencial. Finalmente, reavaliando-se a literatura mais

atual, novas direções e trabalhos futuros são delineados, inspirados em descobertas

recentes na área de problemas inversos em processamento de imagens.

1.1 Sobre termos em inglês

Diversos termos em inglês serão usados nesta tese, como pixel, patch, aliasing, blurring,

denoising, etc. Para alguns deles, não há um equivalente em português e/ou não é

de costume a tradução. Para outros, considerados palavras chaves, optou-se por não

traduzir, pois a vasta maioria da literatura está em inglês e consultas futuras a esses

trabalhos poderiam gerar confusão.

1.2 Organização da tese

Ainda sobre questões de ĺıngua, boa parte do texto foi escrita em inglês durante

doutorado sandúıche na Universidade da Califórnia e também visando a artigos em

periódicos e congressos internacionais. Infelizmente, as normas atuais de confecção de

trabalhos da COPPE/UFRJ não permitem que o corpo da tese esteja em inglês. Fez-

se necessária, então, a escrita do corpo da tese em português. De modo a aproveitar

texto já escrito e evitar laboriosas traduções, trechos em inglês se encontram nos

anexos, onde são permitidos.

Em termos de conteúdo, a seguinte divisão foi adotada. O corpo da tese em

português contém ideias essenciais, discussões e resumos dos anexos. Os anexos em

inglês contêm, em geral, detalhes dos desenvolvimentos e as contribuições geradas.

Tentou-se escrever os anexos em formato de artigos cient́ıficos, ou de maneira que

pudessem ser facilmente transformados em artigos.

Embora tal mistura de ĺınguas possa gerar incômodo à leitura, tentou-se minimizar

esse efeito conduzindo-se o leitor aos anexos quando necessário e indicando o retorno

ao corpo da tese.

1.2.1 Divisão dos caṕıtulos

O Caṕıtulo 2 discute algumas ferramentas clássicas para resolução de problemas

inversos e analisa suas aplicação para reconstrução de imagens. São apontadas as

limitações dessas abordagens e os priors são identificados como as peças que podem

ser lapidadas para gerar reconstruções melhores.

No Caṕıtulo 3 (juntamente com Apêndice B, referenciado quando necessário)

é apresentado o método de deconvolução de imagens por total variation. São

apresentadas evidências que suportam seu uso e são discutidos métodos eficientes
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Ano 2009 2010 2011 2012

Atividade\Semestre 2 1 2 1 2 1 2

Caṕıtulo 7 e Apêndice F: Extensão dos algoritmos
de remoção de FPN e confecção do artigo [2].

X

Caṕıtulo 4 e Apêndices C, G, C.4: Estudos iniciais
com modelos PAR e defesa do tema de tese

X X

Caṕıtulo 3 e Apêndice B: Doutorado Sandúıche -
estudo de algoritmos TV e confecção do artigo [3].

X X

Caṕıtulo 5 e Apêndices D e E: Estudo e experimen-
tos com priors.

X X X

Caṕıtulos 1, 2, 6, 8 e Apêndice A: Confecção final
da tese.

X X

Tabela 1.2: Ordem cronológica dos estudos e escrita dos caṕıtulos.

de solução. São propostas extensões que melhoram a qualidade da estimativa final,

porém visando à manutenção da eficiência computacional.

No Caṕıtulo 4 (e Apêndice C), modelos autorregressivos por partes (PAR) são

apresentados como uma alternativa de regularização localmente adaptativa. A partir

de algoritmos de interpolação do estado-da-arte que utilizam modelos PAR, extensões

são propostas e começa-se a discutir generalizações dos modelos PAR.

Ainda no Caṕıtulo 4 (e Apêndice C) são efetuados estudos preliminares de

aplicações de modelos PAR em super-resolução. A motivação é obter um algoritmo

que explore, ao mesmo tempo, regularidades geométricas dentro dos quadros e

relações entre quadros que provejam informação adicional sobre a cena.

À luz de novas descoberta na área de problemas inversos, modelos para imagens

naturais e priors são revisitados no Caṕıtulo 5 e Apêndice E. Por ser uma área de

pesquisa muito ativa, são identificadas novas tendências e a linha de pesquisa deste

trabalho é realinhada através de propostas de trabalhos futuros no Caṕıtulo 6.

O Caṕıtulo 7 trata de um outro tipo de degradação que tem maiores aplicações em

v́ıdeos infravermelhos. Trata-se do rúıdo de padrão fixo (FPN) que requer métodos

distintos de estimação. Por ter sido um trabalho de extensão do mestrado e ser

menos relacionado aos outros assuntos desta tese, escolheu-se colocá-lo como último

caṕıtulo.

Tentou-se organizar os caṕıtulos numa ordem que privilegiasse a leitura mantivesse

o fluxo de ideias mais ou menos constante. Porém, a t́ıtulo de curiosidade, a Tabela

1.2 mostra cronologicamente quando as atividades foram realizadas.
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1.3 Contribuições

Destacam-se abaixo as contribuições geradas durante o peŕıodo de doutorado do

candidato.

1. Extensão do trabalho realizado no mestrado sobre correção de rúıdo de padrão

fixo (FPN) [4] com o desenvolvimento do algoritmo Affine Projection para

estimação e remoção de rúıdo, detalhado no Apêndice F. Foi submetido e aceito

artigo cient́ıfico a periódico internacional conforme item 1, Seção A.1.

2. Extensão do algoritmo de deconvolução de imagens por Total Variation base-

ado na abordagem Augmented Lagrangian e Alternating Direction Method of

Multipliers. Foi submetido e aceito artigo em congresso internacional conforme

item 1, Seção A.2.

3. Extensão do algoritmo de interpolação por modelos autorregressivos e soft-

decision (SAI: soft-decision autoregressive interpolation) para considerar ima-

gem completa e interdependência entre pixels distantes, conforme Seção C.2.

4. Extensão do algoritmo descrito no item 3 para realizar super-resolução, ou seja,

combinar informações de outros quadros de um v́ıdeo, conforme Seção C.4.

5. Proposta de uso de modelos autorregressivos como regularização localmente

adaptativa para problemas de deconvolução de imagem (deblurring e inter-

polação), conforme Seção C.3.
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Caṕıtulo 2

Ferramentas clássicas

Este caṕıtulo descreve brevemente o problema de reconstrução de imagens e v́ıdeos,

mencionando algumas soluções clássicas e apontando seus problemas. Duas boas

referências para o assunto são [5] e [1].

É considerado apenas o caso não-cego, ou seja, o operador direto que gerou a

degradação na imagem é, por suposição, conhecido.

2.1 Interpolação bicúbica

Seja uma imagem ou v́ıdeo que teve sua resolução reduzida ou cuja aquisição não

tinha a resolução desejada. Representando-se essa operação por

g = Rf (2.1)

não é posśıvel a recuperação da imagem original por

f = R−1g (2.2)

pois R não é inverśıvel.

Uma sáıda é considerar os pixels da imagem como amostras de um sinal cont́ınuo e

utilizar técnicas de interpolação para aumentar a quantidade de pixels na quantidade

desejada.

Polinômios são amplamente utilizados para esse fim. A noção mais elementar de

interpolação é quando um polinômio é forçado a passar através dos pontos existentes

e, após estimar os coeficientes desse polinômio, dados para preencher as lacunas são

extráıdos da curva cont́ınua. [6].

No entanto, colocar um polinômio de alto grau por todos os pontos não produz

bons resultados. Um pequeno movimento de um único ponto pode produzir uma

grande alteração no polinômio fazendo-o oscilar violentamente, efeito conhecido como
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(a) Imagem original (b) Imagem subamostrada
por 2 nas direções vertical
e horizontal

(c) Imagem interpolada por
spline cúbica

Figura 2.1: Exemplo de aliasing causado na subamostragem de uma imagem. Os
contornos perdem a definição e a interpolação bicúbica não é capaz de recuperá-los
pois assume que a imagem é homogênea, ou seja, não possui estruturas locais.

fenômeno de Runge. Para evitar este problema, pode-se usar uma interpolação

por partes, onde diferentes polinômios de baixo grau são usados a cada dois pontos

existentes com o cuidado de garantir uma conexão adequada entre eles [7].

Este requisito é atingido pelas splines. Os pontos de junção dos polinômios

por partes são chamados de nós. Para uma spline de grau n, cada segmento é um

polinômio de grau n, o que sugere que sejam necessários (n + 1) coeficientes para

descrever cada sub-polinômio. No entanto, há restrição adicional de suavidade, o

que impõe continuidade nos nós até (n − 1)-ésima derivada, de maneira que haja

apenas um grau de liberdade por segmento [8]. Esta restrição garante que a curva

resultante será suave.

A interpolação bicúbica, largamente utilizada, emprega superf́ıcies descritas por

splines de terceiro grau para unir os pixels de uma imagem. Desta maneira, é posśıvel

se estimar o valor de um pixel faltante ou intermediário.

Entretanto, esta forma de interpolação assume que a imagem é homogênea e,

portanto, não é capaz de se adaptar a estruturas locais. Com frequência, o resultado

final possui contornos mal definidos e borrados, como mostra a Figura 2.1.

Outro problema é que a formulação da spline cúbica não leva em conta posśıvel

rúıdo na observação, o que pode afetar negativamente o resultado final da interpolação.
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2.2 Filtro inverso e filtro de Wiener

Se não há redução de resolução na observação da imagem, mas há influência da

óptica do sistema, borramento, ou outra operação que possa ser modelada por um

operador convolucional, i.e.

g = Wf , (2.3)

a recuperação da imagem poderia ser obtida por

f = W−1g (2.4)

se a matriz W não for singular. Caso W seja circulante por blocos, ou seja, represente

uma operação de convolução circular de um sistema linear invariante no espaço, a

solução por inversa W−1 é equivalente ao filtro inverso.

Neste caso, W é diagonalizada pela matriz DFT 2-D, ou seja, os autovetores

são senóides e seus autovalores representam a resposta em frequência do sistema. A

inversa de W é calculada invertendo-se os autovalores, que equivale à resposta em

frequência inversa, ou seja, o filtro inverso.

Caso W seja singular, pode-se usar a pseudo-inversa, ou inversa generalizada, que

é equivalente ou filtro inverso generalizado [5]. Neste caso, os autovalores iguais a

zero, ou zeros do filtro, são mantidos, invertendo-se apenas os autovalores diferentes

de zero.

O problema desta solução é a instabilidade. Supondo uma observação que

contenha rúıdo, i.e.

g = Wf + ν (2.5)

e que alguns autovalores de W sejam muito pequenos, o que é muito comum na

prática, a inversa terá ganhos muito elevados e qualquer rúıdo será demasiadamente

amplificado.

Por outro lado, o rúıdo pode ser combatido por um filtro suavizador que nor-

malmente é um passa-baixas. Porém, como a observação através de W geralmente

atenua altas frequências, não é posśıvel recuperar f por um filtro passa-baixas.

Essas limitações podem ser solucionadas pelo filtro de Wiener, caso se tenha algum

conhecimento sobre o rúıdo. Basicamente, o filtro de Wiener é um compromisso ótimo

entre um filtro suavizador de rúıdo (passa-baixas) e um filtro inverso (passa-altas).

2.3 Problemas inversos e regularização

Embora o problema direto seja trivial, ou seja, simular uma observação a partir de

uma imagem hipotética, o problema inverso normalmente não o é, ver Figura 2.2.

A Figura 2.3 ilustra o problema. Com frequência, o problema inverso de recuperar
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Convolução

Fácil

Deconvolução

Dif́ıcil

Figura 2.2: O problema direto, que é a simulação de uma observação, é facilmente
obtido pela operação de convolução, já que o operador é supostamente conhecido.
Neste caso, foi simulada a aquisição de uma imagem fora de foco. Porém, o problema
inverso, ou deconvolução, ou recuperação da imagem em foco, é normalmente dif́ıcil
já que é comum haver perda de informação durante a aquisição do sinal.

a imagem original admite infinitas soluções. Pela interpretação do ponto de vista da

álgebra linear, a matriz do operador direto é singular ou mal condicionada. Portanto,

é preciso de algum critério para se escolher uma solução entre as infinitas posśıveis.

2.3.1 Abordagem bayesiana

Um tipo de resposta a esse problema muito usada na literatura é fornecida pela

abordagem bayesiana. Suponha-se que a imagem original é uma variável aleatória

com função densidade de probabilidade (PDF) p(f). Dada uma observação g de f ,

deseja-se a estimativa f̂ que seja a mais provável, ou seja,

f̂ = arg max
f

p(f |g). (2.6)

Usando a regra de Bayes, tem-se

p(f |g) =
p(g|f)p(f)

p(g)
, (2.7)

sendo que p(g) pode ser eliminada já que é constante (a variável é f).

Esse problema de maximização pode ser transformado em um problema de

minimização

f̂ = arg min
f

{
− log p(g|f)− log p(f)

}
(2.8)

que é conhecido como estimador MAP (maximum a posteriori).
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Conv. Conv. Conv.

Figura 2.3: Exemplo de três imagens (acima) que quando convolúıdas com um
operador linear de blurring geram a mesma observação (abaixo). Caso só essa
observação estivesse dispońıvel, qualquer uma das imagens do topo seria solução
para o problema inverso.

O primeiro termo de (2.8), − log p(g|f), é facilmente obtido. Como o operador

direto é conhecido, g é facilmente calculado quando f é dado. Esse termo é chamado

de data fidelity term, pois mede a probabilidade de uma posśıvel solução f ter g

como uma observação.

É comum supor que durante a observação a imagem foi contaminada por rúıdo

branco aditivo com distribuição gaussiana (AWGN) com média zero e desvio padrão

σν e com componentes IID (independent and identically distributed). Neste caso,

usa-se

p(g|f) =
1

σν
√

2π
exp
{
−‖Wf − g‖2

2σ2
ν

}
(2.9)

quando o modelo de observação é dado por g = Wf + ν, pois ‖Wf − g‖2 = ‖ν‖2 é

apenas rúıdo. Portanto, é coerente se utilizar uma distribuição normal com o desvio

padrão do rúıdo σν .

Aplicando-se o logaritmo, o termo que deve ser minimizado é

− log p(g|f) =
‖Wf − g‖2

2σ2
ν

+ C, (2.10)

onde C é uma constante.

Caso não se tenha nenhuma informação a priori sobre a solução, p(f) é constante

pois todas as respostas são equiprováveis. Neste caso, a solução obtida por simples

mı́nimos quadrados, conhecida também como solução por ML (maximum likelihood)

f̂ = (WTW)−1WTg. (2.11)
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O segundo termo, − log p(f), mede a probabilidade de um dado f ser solução,

independentemente (ou antes) da observação. Neste termo é posśıvel acrescentar

algum conhecimento prévio que se tem sobre o problema. Por exemplo, ao se tentar

reconstruir imagens naturais1, deseja-se que p(f) forneça um valor alto se f for uma

imagem natural e baixo caso contrário. Esse termo é comumente chamado de prior.

2.3.2 Regularização em problemas inversos

Uma maneira prática de se usar o termo p(f) é obtido pela regularização na termi-

nologia de problemas inversos. Caso W seja mal-condicionada ou singular (como

descrito anteriormente), pode-se acrescentar um termo de regularização

ϕ(f), (2.12)

que retorna valores baixos caso f seja uma resposta provável, e altos caso contrário.

A formulação do problema é, então, dada por

f̂ = arg min
f

µ

2
‖Wf − g‖2 + ϕ(f), (2.13)

onde µ é chamado de fator de regularização. Alterando-se µ é posśıvel controlar

na resposta final a importância entre fidelidade às observações (data fidelity) e

concordância com modelos prévios (prior).

Outra maneira comum de se escrever 2.13 é

f̂ = arg min
f

‖Wf − g‖2 + λϕ(f), (2.14)

que é equivalente a (2.13) quando λ = 2/µ.

Fazendo ϕ(f) = ‖Γf‖2 obtém-se a regularização Tikhonov, com a solução dada

por

f̂ = arg min
f

1

2σ2
ν

‖Wf − g‖2 +
1

2
‖Γf‖2 , (2.15)

onde Γ é conhecida como matriz de Tikhonov. Embora a definição de Γ seja

bem flex́ıvel podendo acomodar vários tipos de regularização, para o caso especial

Γ = (1/σf)I tem-se

f̂ = (WTW + α2I)−1WTg, (2.16)

onde α = σν/σf .

Do ponto de vista bayesiano, a escolha Γ = (1/σf)I equivale a supor que f pode

1Considera-se imagem natural toda aquela onde os motivos representam alguma faceta da
realidade: natureza, pessoas, animais, cidades, etc.
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ser descrita por uma distribuição gaussiana com componentes IID tal que

p(f) =
1

σf

√
2π

exp
{
− fTf

2σ2
f

}
, (2.17)

com desvio padrão σf e média zero. Com isso, quando menor ‖f‖2, mais provável é

que f seja solução. Portanto, (2.16) resulta na solução mı́nimos quadrados de norma

mı́nima. Comparada a (WTW)−1 que pode não existir, a inversa (WTW + α2I)−1

é bem definida, já que α2I elimina os autovalores iguais a zero.

A solução dada por (2.16) é relacionada ao filtro de Wiener. Supondo que W

tenha a decomposição por valores singulares (SVD)

W = USVT (2.18)

com valores singulares si, (2.16) pode ser re-escrita como

f̂ = VS′UTg, (2.19)

sendo S′ diagonal com elementos

[S′]ii =
si

s2
i + α2

. (2.20)

Finalmente, os coeficientes do filtro de Wiener são dados por [9]

wi =
s2
i

s2
i + α2

. (2.21)

2.3.3 Interpolação como problema inverso

O processo de interpolação descrito na Seção 2.1 pode ser interpretado pela abordagem

de regularização. Lembremos que a subamostragem pode ser definida por

g = Rf (2.22)

que não tem solução trivial, pois R não tem inversa. Usando a solução regularizada

f̂ = arg min
f

‖Rf − g‖2

2σ2
ν

+ ‖Γf‖2 , (2.23)

tem-se

f̂ = (RTR + α2ΓTΓ)−1RTg, (2.24)

onde RT aumenta a dimensão de g para a dimensão de f acrescentado zeros (zero

padding) e RTR atua como uma máscara, zerando os mesmos elementos que são
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eliminados por R, porém sem alterar a dimensão do vetor em que atua. Portanto,

o termo α2ΓTΓ seria responsável por efetivamente preencher os pixels faltantes na

interpolação.

Usando o conceito de B-splines cardinais [8], que são uma generalização da

função sinc para graus menores, pode-se determinar Γ de tal forma que o termo

(RTR+α2ΓTΓ)−1 preencha os pixels iguais a zero após RTg respeitando as restrições

de continuidade das derivadas exigida pelas splines.

Entretanto, essa abordagem seria ineficiente. Pode-se, por exemplo, utilizar

uma combinação de filtros recursivos causal e não-causal para o cálculo rápido dos

coeficientes das B-splines [8].

2.4 Conclusão

Para problemas de reconstrução de imagem, a suposição

p(f) =
1

σf

√
2π

exp
{
− fTf

2σ2
f

}
(2.25)

é muito limitada, pois supõe média zero e matriz de autocovariância de f igual a

Σf = I. Ou seja, nenhuma estrutura ou dependência entre os pixels de uma imagem

é considerada. Por outro lado, é sabido que imagens naturais têm conteúdo em

frequência passa-baixas [5, 10–13].

Uma opção seria considerar a matriz de covariância e modelar a imagem como

p(f) =
1

|Σf |1/2
√

2π
exp

{
−1

2
(f − µf )

TΣ−1
f (f − µf )

}
, (2.26)

que tem solução

f̂ = arg min
f

‖Wf − g‖2

2σ2
ν

+

∥∥∥Σ−1/2
f (f − µf )

∥∥∥
2

2
, (2.27)

podendo ser obtida por

f̂ =
(
WTW + σ2

νΣ−1
f

)−1 ·
(
WTg + Σ−1

f µf

)
. (2.28)

Mas como será visto, imagens têm comportamento não-gaussiano e tal solução tende

a gerar resultados pobres.

Em suma, abordagens clássicas não são boas alternativas para reconstrução de

imagens, seja no caso de interpolação, deblurring ou denoising, pois não modelam p(f)

adequadamente. Estruturas t́ıpicas de imagens naturais, como contornos, texturas,
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etc., são ignoradas, já que se supõe que as imagens são homogêneas.

A pesquisa de problemas inversos em processamento de imagens tem o foco numa

melhor definição de p(f) aliada a métodos eficientes de otimização. Um bom modelo

para imagens pode implicar soluções impraticáveis em termos de otimização; soluções

eficientes podem gerar resultados pobres. Logo, o compromisso entre ambos os

aspectos é a resposta.

Nos próximos caṕıtulos serão abordadas alternativas de priors, ou seja, modelos

mais adequados para imagens naturais.
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Caṕıtulo 3

Deconvolução por Total Variation

Um dos priors de maior sucesso para solução de problemas inversos em processamento

de imagens é através do uso de Total Variation (TV) como regularização. O sucesso de

abordagem por TV é atribúıdo a um bom compromisso entre habilidade de descrever

imagens suaves por partes (sem penalizar descontinuidades) e complexidade dos

algoritmos [12, 14, 15].

Este caṕıtulo descreve sua formulação, aponta métodos eficientes de cálculo e

propõe alterações que melhoram a qualidade da imagem final sem comprometer a

rapidez do algoritmo.

Introdução

Como já mencionado, é posśıvel melhorar a solução de problemas inversos com uma

melhor descrição ou modelo do sinal em questão. Tomando-se como exemplo um

problema de deblurring e lembrando que imagens naturais têm conteúdo passa-baixas,

pode-se querer penalizar altas frequências durante o processo de reconstrução através

de filtros passa-altas tipo derivadas, ou seja,

f̂ = arg min
f

µ

2
‖Hf − g‖2 + βx ‖Dxf‖2 + βy ‖Dyf‖2 , (3.1)

onde as matrizes Dx e Dy são constrúıdas para realizar derivadas horizontais e

verticais e as constantes βx e βy controlam o teor de regularização na horizontal e

vertical respectivamente.

Através de (3.1), imagens com grande variação entre os pixels e altas frequências

serão preteridas. Embora conceitualmente interessante, tal abordagem gera, infeliz-

mente, resultados pobres com imagens demasiadamente suaves (oversmoothed) ou

com comportamente oscilatório. O problema, como será visto, está na estat́ıstica do

termo de regularização.

Diversas imagens foram consideradas em um estudo estat́ıstico em [16, 17]. O
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Figure 2.1: log(pdf) of single pixel intensity.Left: van Hateren Database; Right: Sowerby

Database. Red, Green, Blue, Black and Yellow for scale 1,2,4,8 and 16 respectively
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Figure 2.2: Comparison of single pixel statistics calculated from two databases. Red: van

Hateren data base. Black:Sowerby data base

2.1.2 Single Pixel Statistics of di�erent categories

As mentioned in the introduction, images in the Sowerby database are segmented, this allows

us to make a study of statistics of di�erent categories. Figure 2.3 shows the distributions

of the single pixel statistics of di�erent categories at di�erent scales and table 2.2 shows

some constants associated to the distributions. For each category, the single pixel statistics

is roughly scale invariant.

12

Figura 3.1: Logaritmo da PDF dos pixels considerados individualmente, de diferentes
banco de dados (diferentes figuras) em diferentes escalas (cores) [16]

objetivo foi examinar como os parâmetros estat́ısticos variavam entre diferentes

bancos de dados de imagens e em diferentes escalas1.

A primeira conclusão foi que, quando considerados individualmente, os pixels

de imagens naturais têm uma distribuição não-gaussiana. Os parâmetros avaliados

(média, desvio padrão, curtose, etc.) permanecem relativamente invariantes para

diferentes escalas da mesma imagem. Porém, comparando resultados de diferentes

bancos de dados de imagens, a conclusão foi que os parâmetros são muito instáveis e

podem ser consideravelmente diferentes entre diferentes banco de dados, ver Figura

3.1.

Por outro lado, quando os mesmos parâmetros foram avaliados nas derivadas

horizontais e verticais das imagens2, os parâmetros estat́ısticos permaneceram subs-

tencialmente mais consistentes entre diferentes bancos de dados e entre diferentes

escalas, ver Figura 3.2.

É de suma importância que parâmetros estat́ısticos variem pouco entre diferentes

grupos de imagens, pois deseja-se ultimamente um prior que seja o mais genérico

posśıvel (em termos de imagens naturais) ao mesmo tempo que forneça uma boa

descrição do sinal.

Reanalisando, agora, a solução proposta na equação (3.1), percebe-se que a

limitação está na suposição de que as derivadas da imagem têm distribuição gaussiana,

enquanto que na realidade possuem distribuição não-gaussiana.

Outra interpretação é que o prior adotado penaliza demasiadamente os contornos

(edges), uma caracteŕıstica fundamental de imagens naturais que nos possibilita

distinguir diferentes objetos. Isso ocorre pois a PDF gaussiana não possui caudas

suficientemente longas, o que faz que as grandes variações de intensidade presentes

1Duas maneiras de se obter outra escala foram consideradas no estudo: (1) extraindo-se a parte
central das imagens e (2) subamostrando as imagens após filtros anti-aliasing.

2No caso de imagens digitais, as derivadas são aproximadas pelas diferenças entre pixels adja-
centes.
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Figura 3.2: Logaritmo da PDF das derivadas das imagens de diferentes banco de
dados (diferentes figuras) em diferentes escalas (cores) [16]

nos contornos sejam consideradas muito improváveis, quando não verdade não são.

Para se estudar distribuições ditas não-gaussianas, pode-se utilizar a distribuição

gaussiana generalizada (GG) dada por

p(x;µ, σ, φ) =
1

Z
exp

{
−
∣∣∣∣
x− µ
A(φ, σ)

∣∣∣∣
φ
}

, (3.2)

com

A(φ, σ) =

[
σ2Γ(1/φ)

Γ(3/φ)

]1/2

(3.3)

e

Z = 2Γ (1 + 1/φ)A(φ, σ), (3.4)

onde Z é chamada de partition function e tem a função de normalização tal que∫
p dx = 1, x é a variável aleatória e φ é o parâmetro que controla o formato da

distribuição de maneira independente da média e da variância. Quando φ = 2, por

exemplo, tem-se a distribuição gaussiana clássica. Para φ = 1 a distribuição se torna

laplaciana e quando φ→∞ obtém-se a distribuição uniforme. A Figura 3.3 mostra

alguns exemplos da distribuição gaussiana generalizada para alguns valores de φ.

Um método prático para se estimar o valor de φ a partir de uma amostra é descrito

no Apêndice H.

Em [16], os parâmetros de formato (shape parameter) φ estimados para os diversos

banco de dados e diversas escalas variam entre 0,58 e 0,73, ou seja, a distribuição

das derivadas está mais próxima da laplaciana. Outros estudos também indicam

valores de φ entre 0,5 e 0,8 [18, 19].

Duas caracteŕısticas da distribuição laplaciana se adequam ao resultado obtido:

(1) pico em torno do zero, que está de acordo com o fato de imagens serem suaves,

logo derivadas com valor baixo e (2) cauda longa (mais longa que a gaussiana),

provenientes dos contornos onde há descontinuidades, ou seja, derivadas com valores
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Figura 3.3: Exemplos de PDF da distribuição gaussiana generalizada para diferentes
valores do parâmetro de formato φ.

altos. Em suma, a distribuição laplaciana caracteriza bem funções suaves por partes

com posśıveis e permitidas descontinuidades.

Seguindo essa linha de racioćınio, Rudin et al. [20] propuseram o uso de Total

Variation como prior em problemas inversos envolvendo imagens. Em sua forma

cont́ınua multivariável é definido como

TV(f) =

∫

Ω

|∇f(x)| dx, (3.5)

onde x ∈ Rn e Ω ⊆ Rn é o domı́nio de integração. Intuitivamente, quanto mais

oscilante for a função, maior será sua “variação total”. Para imagens naturais que

têm conteúdo em frequência passa-baixas, é esperado que essa medida seja baixa.

No caso de imagens digitais, é adotada uma versão discreta, chamada de TV

isotrópico, e o termo de regularização é dado por

ϕ(f)→ ‖f‖TV2 =
∑

i

√
β2
x [Dxf ]2i + β2

y [Dyf ]2i . (3.6)

Note-se que ‖f‖TV2 6= ‖Df‖2, com D = [βxD
T
x , βyD

T
y ]T um operador composto de

dois suboperadores. Será usada a definição ‖f‖TV2

def
= ‖Df‖ISO por ser uma notação

mais compacta.
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3 · 105 9 · 103 2 · 105

TV TV TV

Figura 3.4: Exemplo do uso de TV como medida de seleção da reposta mais apropriada
para o problema da Figura 2.3. Sem a regularização, as três imagens são solução
para o problema. Porém, a imagem central possui o menor valor de “variação total”.

Usando-o como prior, a solução do problema é dada por

f̂ = arg min
f

µ

2
‖Hf − g‖2 + ‖Df‖ISO . (3.7)

Assim, a solução final será um balanço entre o mı́nimo de TV e o mı́nimo de

desacordo às observações. A Figura 3.4 ilustra o funcionamento do uso do TV para

o exemplo de deblurring apresentado na Figura 2.3.

Um das limitações do TV isotrópico, inicialmente proposto em [20], é o arredon-

damento de cantos e quinas (corners) quando usado como prior. Uma alternativa é

usar no seu lugar o TV anisotrópico, definido como

‖f‖TV1 =
∑

i

βx |[Dxf ]i|+ βy
∣∣[Dyf ]i

∣∣ = ‖Df‖1 , (3.8)

que neste caso tende a manter cantos horizontais e verticais. Em [21], por exemplo,

este tipo de prior foi usado para deblurring e denoising de imagens de códigos de

barras 2-D. Outros usos e extensões de TV anisotrópico podem ser encontradas em

[22–24].

As Figuras 3.5, 3.6 e 3.7 ilustram as diferenças entre a norma `2, TV anisotrópico

e TV isotrópico. Pode-se perceber que no TV isotrópico todas as direções são

igualmente penalizadas e, por esse motivo, tende a fornecer melhores resultados para

imagens genéricas. Neste trabalho será adotado TV isotrópico.

Do ponto de vista bayesiano, TV isotróprico supõe

p(f) =
1

Z
exp

{
−
∑

i

√
β2
x [Dxf ]2i + β2

y [Dyf ]2i

}
. (3.9)
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Figura 3.5: Gráfico da norma `2: ‖·‖2

Figura 3.6: Gráfico do TV isotrópico: ‖·‖TV2

Figura 3.7: Gráfico do TV anisotrópico: ‖·‖TV1
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3.1 Solução por Augmented Lagrangian

A suposição que as variáveis podem ser descritas por distribuições gaussianas implica

que a solução é dada por um estimador linear com soluções rápidas e bem conhecidas

[25].

Infelizmente, o regularizador TV supõe distribuição laplaciana que, por envolver

norma `1 e não ser diferenciável, dificulta a solução do problema por métodos

convencionais, p. ex. gradiente. É preciso, então, recorrer a alternativas. Diversas

estratégias já foram propostas para superar esse fato [14, 20, 26–32].

Recentemente, diversos algoritmos rápidos que compartilham a mesma idéia

foram propostos com nomes distintos [33, 34]: split Bregman iterations [35], iterative

shrinkage algorithm [36, 37], alternating direction method of multipliers [31] e majori-

zation–minimization algorithm [14, 38]. Neste trababalho será adotada a abordagem

Augmented Lagrangian, também conhecida como Method of Multipliers [31, 39–42].

3.1.1 Descrição do método

Basicamente, a rapidez na solução é atingida dividindo-se o problema da equação

(3.7) em uma série de problemas mais simples e que possuem solução rápida.

Primeiramente, introduz-se a variável intermediária u e transforma-se o problema

de otimização sem restrições em um problema equivalente com restrições dado por

minimizar
f ,u

µ

2
‖Hf − g‖2 + ‖u‖ISO

sujeito a u = Df .
(3.10)

Em seguida, define-se o augmented Lagrangian (AL) [31, 42, 43]

L(f ,u,y) =
µ

2
‖Hf − g‖2 + ‖u‖ISO − yT(u−Df) +

ρ

2
‖u−Df‖2 , (3.11)

onde ρ é o fator de regularização associado à penalização quadrática ‖u−Df‖2, e y

é o multiplicador de Lagrange associado à restrição u = Df .

A ideia do método é achar um ponto estacionário em L(f ,u,y) que também

seja solução do problema original (3.7). Para tanto, o alternating direction method

of multipliers (ADMM) pode ser usado para resolver iterativamente os seguintes

sub-problemas [31, 42, 44]:
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f̂ q+1 = arg min
f

µ

2
‖Hf − g‖2 − ŷT

q (ûq −Df) +
ρ

2
‖ûq −Df‖2 (3.12)

ûq+1 = arg min
u

‖u‖ISO − ŷT
q (u−Df̂ q+1) +

ρ

2

∥∥∥u−Df̂ q+1

∥∥∥
2

(3.13)

ŷq+1 = ŷq − ρ(ûq+1 −Df̂ q+1). (3.14)

Finalmente, o subproblema f em (3.12) tem solução fechada e pode ser calculado

eficientemente por FFT [42], pois só envolve norma `2 e matrizes circulantes por

blocos.

O subproblema u em (3.13) pode ser resolvido usando shrinkage formula [45–47]

com baixo consumo computacional. Finalmente, o subproblema y consiste de uma

mera atualização. Detalhes e provas do algoritmo serão apresentadas na Seção B.7

do Apêndice B.

3.1.2 Entendendo a abordagem por Augmented Lagrangian

Em geral, problemas de otimização sem restrições são mais fáceis de resolver que

problemas com restrições. Logo, reescrever (3.7) como (3.10) não parece ser uma

boa alternativa.

Considere-se, a prinćıpio, a abordagem por penalização quadrática sem multipli-

cadores de Lagrange

L(f ,u) =
µ

2
‖Hf − g‖2 + ‖u‖ISO +

ρ

2
‖u−Df‖2 . (3.15)

A vantagem dessa abordagem comparada à otimização sem restrições definida

inicialmente em (3.7) é que o termo que envolve norma `1 não diferenciável (prior)

foi isolado do termo de data fidelity [43]. Dessa maneira, de posse de uma primeira

estimativa para u, é posśıvel estimar f por algoritmos de otimização convencionais.

O passo seguinte seria estimar u, o que envolveria um problema de mı́nimos

quadrados com restrição na norma `1 dos coeficientes, que poderia ser resolvido pelo

algoritmo LASSO [48], e repetir iterativamente o esquema até a convergência. A essa

técnica, que foi usada recentemente em vários trabalhos envolvendo processamento

de imagens [35, 49–53], dá-se o nome de variable splitting.

O problema dessa abordagem é que o coeficiente de penalização ρ teria de ser

incrementado sucessivamente de modo que o peso fosse suficiente para garantir que a

restrição de igualdade u = Df fosse satisfeita, podendo ter que atingir valores muito

elevados. A escolha da sequência de valores para ρ não é uma tarefa fácil, pois pode

levar à instabilidade e não-convergência do problema [43].

Considerando agora a abordagem por multiplicadores de Lagrange sem penalização
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quadrática, tem-se o Lagrangiano de (3.10) como

L(f ,u,y) =
µ

2
‖Hf − g‖2 + ‖u‖ISO − yT(u−Df). (3.16)

O problema dessa abordagem é que uma solução para (3.16) é um ponto esta-

cionário de (3.7) e não necessariamente um mı́nimo. Para ser um mı́nimo, condições

envolvendo derivadas segundas teriam que ser levadas em conta.

A abordagem por augmented Lagrangian (repetida por conveniência)

L(f ,u,y) =
µ

2
‖Hf − g‖2 + ‖u‖ISO − yT(u−Df) +

ρ

2
‖u−Df‖2 , (3.17)

por outro lado, combina as abordagens por penalização quadrática e por multiplica-

dores de Lagrange de modo a superar suas limitações individuais, fornecendo duas

maneiras de melhorar a acurácia da resposta. Como consequência, é posśıvel obter

boas aproximações para resposta do problema sem ter de aumentar indefinidamente

o termo de penalização quadrática ρ.

O uso conjugado das duas técnicas permite, a cada iteração, estimar explicitamente

os multiplicadores de Lagrange y que, de fato, indicam o peso correto para balancear

os gradientes da função objetivo e da restrição de igualdade u = Df . Também é

posśıvel, e recomendado, atualizar o valor de ρ para acelerar ainda mais a convergência

[40–43].

Em relação ao método tradicional de multiplicadores de Lagrange, teoremas

garantem que uma solução para o augmented Lagrangian é, de fato, um mı́nimo de

(3.7) e não apenas um ponto estacionário. Provas e justificativas mais detalhadas

do uso dessa abordagem podem ser encontradas em [43] e [54]. A convergência do

esquema ADMM é estudada em [35, 55].

3.2 Método proposto: deconvolução por Total Va-

riation através de decomposições direcionais

Uma caracteŕıstica importante não é levada em conta pelo TV convencional: o fato

de imagens naturais não serem estacionárias. Basicamente, isso indica que seria mais

apropriado aplicar diferentes priors em diferentes regiões das imagens.

Uma opção seria dividir a imagens em blocos e resolver o problema por partes, já

que pequenos blocos de imagens naturais têm conteúdo aproximadamente estacionário.

Quando isso é feito, entretanto, há problemas nas fronteiras dos blocos, podendo o

resultado final ficar com o aspecto quadriculado.

Embora existam alternativas para evitar esse fenômeno, p. ex. utilizar blocos

maiores com sobreposição (overlap), propõe-se aqui considerar a imagem como um
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todo, porém tentando adaptar o tipo de prior a diferentes regiões da imagem.

Conduz-se o leitor, neste momento, ao Apêndice B, página 49, onde o método

proposto é apresentado. A motivação é atenuar os problemas do TV tradicional sem

comprometer demasiadamente o desempenho do algoritmo. O apêndice é uma versão

estendida do artigo [3].
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Caṕıtulo 4

Regularização por modelos

autorregressivos

Neste caṕıtulo será investigado o uso de modelos autorregressivos por partes (PAR -

piece-wise autoregressive) como regularização em problemas inversos. A ideia é ter

uma descrição localmente adaptativa de modo a melhorar o prior para problemas de

reconstrução de imagens.

4.1 Introdução

Como mencionado anteriormente, imagens possuem conteúdo rico e altamente não-

estacionário. Porém, é comum aproximá-las para um processo estacionário em sentido

amplo (WSS - wide-sense stationary) localmente ou quando dividida em pequenos

blocos.

Umas das vantagens dessa aproximação é poder descrever imagens por modelos

autorregressivos (AR), que por serem locais e variarem espacialmente ao longo da

imagem, são denominados “por partes”, ou piece-wise autoregressive (PAR).

Basicamente, assume-se que é posśıvel estimar o valor de um determinado pixel

através de uma combinação linear de seus vizinhos1, ou seja,

f(n) =
∑

m∈T

αm(n)f(n + m) + ν(n), (4.1)

onde n é a coordenada de um determinado pixel, T define sua vizinhança, αm(n)

são os coeficientes do modelo, m é o ı́ndice de m ∈ T e ν(n) é rúıdo aditivo.

1Considera-se que, para imagens, as denominações “causal” e “não-causal” são irrelevantes, já
que todos os pixels estão dispońıveis.
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A vizinhança pode ser definida, por exemplo, como

T = { [−1,−1]T, [−1, 0]T, [−1, 1]T,

[0,−1]T, [0, 1]T,

[1,−1]T, [1, 0]T [1, 1]T }.
(4.2)

Supondo que se tem acesso à imagem original, pode-se estimar os parâmetros do

modelo através de

α̂(n) = arg min
α

∑

w∈W

[
f(n + w)−

∑

m∈T

αmf(n + w + m)

]2

(4.3)

com, por exemplo,

W = { [−1,−1]T, [−1, 0]T, [−1, 1]T,

[0,−1]T, [0, 0]T [0, 1]T,

[1,−1]T, [1, 0]T [1, 1]T }
, (4.4)

chamada de vizinhança, ou janela de treinamento, onde os coeficientes do modelos

são treinados.

Uma maneira compacta e conveniente de escrever (4.1), que será adotada quando

posśıvel, é

f = Af + ν, (4.5)

onde A é uma matriz com diagonal igual a zero que engloba todos os coeficientes

dos modelos autorregressivos, potencialmente diferentes para cada pixel da imagem,

e ν é um vetor aleatório chamado, na nomenclatura de modelos AR, de excitação do

processo. Um modelo semelhante foi usado recentemente em [56] e [57].

Supondo que os coeficientes do modelo são conhecidos, pode-se definir um prior

como

p(f) =
1

Z
exp

{
−
‖f −Af‖φφ

S

}
(4.6)

=
1

Z
exp

{
−
‖(I−A) f‖φφ

S

}
, (4.7)

onde φ é o tipo da norma usada e S é um coeficiente de ajuste. Esse prior mede,

portanto, a probabilidade de uma dada imagem f ser bem modelada por A.
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4.2 Estudos e desenvolvimentos preliminares

Modelos PAR foram empregados com sucesso em interpolação de imagens em [58]

onde o objetivo foi privilegiar contornos. Esse trabalho foi, de certa forma, estendido

em [59], onde um esquema mais robusto foi adotado. Esse último, por sua vez,

foi estendido em [60] que considera o uso de weighted least squares para estimar

os parâmetros do modelo e melhorar os resultados ainda mais. Outros algoritmos

inspirados em [59] podem ser encontrados em [61–65].

De uma maneira genérica, a solução de um problema inverso utilizando-se modelos

PAR como prior é simples e pode ser dada por

f̂ = arg min
f

‖Wf − g‖2 + λ ‖(I−A) f‖φφ . (4.8)

Contudo, o desafio maior está em como a matriz A é obtida, e o sucesso ou

fracasso de um método está na qualidade da estimativa do modelo.

Os estudos iniciais utilizando modelos PAR para interpolação de imagens foram

realizados durante o exame de qualificação do candidato e basearam-se no algoritmo

descrito em [59]. Embora proposto em 2008, esse método, denominado SAI (Soft-

decision Autoregressive Interpolation) ainda produz resultados considerados estado-

da-arte em termos de interpolação de imagens [66].

O método SAI foi estudado e extensões foram propostas de modo a melhorar os

resultados do algoritmo original e aplicá-lo a outros tipos de problemas.

Super-resolução

Também foi estudado o uso de modelos PAR para realizar super-resolução. Neste

trabalho, será usado o termo “super-resolução” para a técnica de reconstrução de

quadros de um v́ıdeo supondo que os quadros são diferentes observações da mesma

cena [67]. O termo multi-frame super-resolution também será usado para enfatizar o

uso de vários quadros.

Basicamente, tem-se

gk = RHMkf + ν, (4.9)

onde gk são várias observações de f e Mk são matrizes que modelam tanto desloca-

mentos globais em f , como rotação e translação, como movimentos locais de objetos

na cena.

Em relação à reconstrução de imagens únicas, a super-resolução emprega um

termo data fidelity estendido, onde a imagem estimada deve estar de acordo não

apenas com uma observação, mas com várias observações. Se os deslocamentos entre

as observações (p. ex. translações) forem em números inteiros de pixels, a informação
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contida em diferentes quadros é a mesma, pois isso equivale a amostrar a cena

nas mesmas posições com atraso. Por outro lado, se os deslocamentos contiveram

frações de pixels, há de fato informação adicional e o número de posśıveis soluções ao

problema é reduzido, portanto, tornando o problema mais bem-posto.

De forma genérica, a solução é dada por

f̂ = arg min
f

λϕ(f) +
∑

k

‖gk −RHMkf‖2 . (4.10)

Ainda no âmbito dos estudos preliminares de modelos PAR, propôs-se uma

extensão do algoritmo SAI para realizar super-resolução. A motivação foi usar um

mesmo framework para considerar regularidades geométricas na imagem (como fazem

os algoritmos de interpolação) e informação adicional presentes em outros quadros

de um v́ıdeo, que algoritmos tradicionais de super-resolução obtêm através da matriz

de movimentos Mk.

Conduz-se o leitor, neste momento, ao Apêndice C, página 73, onde os estudos e

desenvolvimentos preliminares são descritos. Opcionalmente, o Apêndice G fornece

uma revisão bibliográfica e mais detalhes sobre métodos de super-resolução.
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Caṕıtulo 5

Modelos revisitados

Os experimentos iniciais descritos no Apêndice C demonstraram o potencial do uso

de modelos autorregressivos por partes (PAR) como um regularização localmente

adaptativa para problemas inversos em imagens. O passo seguinte, e natural, seria o

uso de modelos PAR como regularização em problemas de super-resolução explorando-

se, por exemplo, a seguinte solução

f̂ = arg min
f

λ ‖(I−A) f‖φφ +
∑

k

‖gk −RHMkf‖2 . (5.1)

Entretanto, antes de avançar, sentiu-se a necessidade de um estudo mais aprofun-

dado sobre priors e estat́ısticas de imagens naturais. De maneira geral, a qualidade

da solução em problemas inversos depende fortemente da capacidade do modelo

descrever bem a resposta desejada. Neste caṕıtulo serão abordadas algumas questões

envolvendo modelos, de modo a prover uma base mais sólida para desenvolvimentos

futuros.

5.1 Experimento com modelos PAR

Inicialmente, foi realizado um experimento com o intuito de verificar o desempenho

de diferentes estratégias de estimação na qualidade de modelos PAR. A influência no

reśıduo de diversas variáveis, como por exemplo, ordem do modelo, tamanho da janela

de treinamento, uso de mı́nimos quadrados ponderados (weighted least-squares), entre

outros, foi analisada.

As métricas foram calculadas a partir do reśıduo

e = f −Agf , (5.2)

onde a matriz do modelo Ag é estimada a partir de uma observação degradada (com

rúıdo e blurring) g de f .
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Para cada combinação de variáveis, foram calculados erro médio, erro absoluto

máximo e formato da distribuição do reśıduo para um grupo de imagens. Além disso,

foi analisada a variância dessas medidas, ou seja, sua consistência entre diferentes

imagens.

5.2 Estudo sobre priors

Uma pergunta pertinente é se modelos PAR são realmente boas opções como priors em

problemas inversos de processamento de imagens. Para tentar responder, mesmo que

parcialmente essa pergunta, foram analisadas algumas metodologias de modelagem

de imagens usadas na literatura. O enfoque foi no uso dos modelos em problemas

inversos e as metodologias consideradas relacionadas aos modelos PAR são descritas

com mais detalhes. Conduz-se o leitor, neste momento, aos Apêndices D e E,

iniciando na página 118, onde detalhes sobre os experimentos e estudos sobre priors

são desenvolvidos.
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Caṕıtulo 6

Trabalhos futuros e novas direções

Após os experimentos e estudos sobre novos algoritmos e tendências no campo

de problemas inversos, serão delineados, neste caṕıtulo, trabalhos futuros e novas

direções de pesquisa.

6.1 Análise versus śıntese

No que tange análise versus śıntese, apesar do boom inicial no uso de representações

esparsas em problemas inversos de imagens, novas descobertas vêm apontando para

a superioridade da abordagem por análise sobre a por śıntese [68–76]. Neste sentido,

acredita-se que o uso de modelos autorregressivos por partes (PAR) e da abordagem

via análise utilizada neste trabalho estão alinhados com essas descobertas, justificando,

então, que se mantenha a linha de pesquisa.

6.2 Potencial apropriado

Como visto na Seção 5.1 e Apêndice D, o reśıduo e = f −Agf tende a ter parâmetro

de formato p = 1 quando aproximado por uma distribuição gaussiana generalizada.

De fato, simulações (não descritas nesta tese) mostraram melhoras substituindo

a norma `2 por `1 nos algoritmos dos experimentos iniciais apresentados no Caṕıtulo

4 e Apêndice C, ou seja, utilizando-se

f̂ = arg min
f

‖Wf − g‖2 + λ ‖(I−A) f‖1 . (6.1)

Embora o uso da norma `1 no lugar de `2 dificulte a solução (que é em geral lenta

por métodos tradicionais de minimização `1-`2 [77]), novas estratégias via algoritmos

iterative-shrinkage, como o método augmented Lagrangian apresentado no Caṕıtulo

3 e Apêndice B, podem ser usadas para acelerar os cálculos.
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O método augmented Lagrangian não poderia ser aplicado diretamente, pois a

matriz A não é circulante por blocos e não permitiria solução por FFT. Uma opção

seria usar o método BiCGstab(`) [78] no sub-problema que envolve a matriz A ou

uma abordagem por forward-backward splitting, que é semelhante porém não requer

inversão, somente gradientes [52, 79] (neste caso, multiplicações por AT).

6.2.1 Classes e potenciais

Métodos como FoE (Field of Experts [80]) permitem que a importância do potencial,

representado pelo parâmetro α, seja aprendido e controlado para cada classe.

Porém, FoE é genérico para qualquer imagens e o seu uso é “off-line”. Primei-

ramente, os parâmetros são treinados para um conjunto grande de patches e em

seguida, sem iteração entre os processos, as imagens são reconstrúıdas usando o

modelo.

No caso de classes que são iterativamente adaptadas à imagem sendo recons-

trúıda (BM3D [81], PLE [66]), pode-se argumentar que a iteração EM (expectation-

minimization) produz classes com importâncias equivalentes, e portanto o parâmetro

α se torna desnecessário.

6.3 Treinamento de modelos PAR orientado a clas-

ses

Ao se atribuir um modelo diferente para cada pixel de uma imagem (como foi feito

nos experimentos apresentados), teve-se a intenção de permitir o máximo grau de

liberdade para o modelo. Porém, a literatura tem indicado que abordagens não

locais (nonlocal), que exploram repetições de estruturas na imagem, obtêm resultados

melhores.

A estratégia seria fixar um número de classes muito menor que o número de

pixels da imagem (C �MN), sendo que cada patch pertence a somente uma classe.

Pelos algoritmos revistos, o número de classes ideal varia entre C = 15, · · · , 18. Isso

apresenta algumas vantagens.

A primeira seria que o número de patches dispońıveis para a estimação dos

parâmetros do modelo PAR seria maior que somente os patches semelhantes da

vizinhança. Isso tornaria a estimativa mais estabilizada e permitiria aumentar a

ordem do modelo de modo a capturar estruturas mais complexas.

O problema de overfitting, causado por modelos de ordens maiores, seria atenuado,

pois os modelos seriam menos espećıficos mesmo que adaptados às caracteŕısticas

locais da imagem. O uso de classes também captura uma dependência entre diferentes
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locais da imagem (nonlocal), pois as mesmas são treinadas e adaptadas ao conteúdo

da imagem, implementando o dito collaborative filtering.

Em [57], essas ideias foram usadas para resolver um problema de compressive

sensing. Experimentos demonstraram que os resultados usando classes foram consis-

tentemente superiores. Como argumentado, embora as estat́ısticas de segunda ordem

variem ao longo das imagens (ou seja, imagens são estacionárias apenas localmente),

essa mudança pode ser periódica de forma que o sinal se repita em diferentes locais

da imagem.

6.4 Remoção da componente DC

Dois patches distintos na imagem podem ter as mesmas caracteŕısticas, diferenciando

apenas pelo valor DC. Isso pode ser considerado comum, já que uma posśıvel causa são

variações de iluminação da cena. Tais patches poderiam, portanto, ser considerados

da mesma classe, enriquecendo, assim, o conteúdo da mesma e estabilizando a

estimação do modelo.

Para que o mesmo modelo sirva para patches com componentes DC distintas,

uma restrição adicional deve ser imposta: que a soma dos coeficientes do modelo

seja 1, pois

f =
∑

i

aifi (6.2)

f + DC =
∑

i

ai(fi + DC) = f + DC
∑

i

ai ⇒
∑

i

ai = 1. (6.3)

Desta maneira, uma equação extra é acrescentada e os graus de liberdade são

reduzidos. Isso pode ter efeitos benéficos sobre a estimação do coeficientes. Em

[13] há uma discussão sobre os efeito da remoção do DC na estat́ıstica de imagens

naturais. Acredita-se que seja interessante alguma investigação nesse sentido.

6.5 Expectation-Maximization

Dependendo do ńıvel de rúıdo, borramento e subamostragem de imagem, a estimação

dos parâmetros do modelo pode se tornar dif́ıcil (ver Seção 5.1 e Apêndice D). Uma

estratégia que pode ser empregada, e que foi usada com sucesso em [66], é expectation-

minimization. Trata-se de um processo iterativo que alterna entre estimação da

resposta (passo E - expectation) e estimação dos parâmetros de um modelo que

descreva a resposta (passo M - maximization). Nas primeiras iterações é posśıvel que

a qualidade dos parâmetros do modelo não permita ao passo E chegar à resposta
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desejada. Porém, se o modelo for suficiente para aproximar a resposta ótima, o passo

M reestimará o modelo, melhorando sua qualidade para as próximas iterações.

Um problema viśıvel de tal abordagem é a convergência, que depende fortemente

da inicialização. Caso o modelo inicial esteja muito longe do ideal, é posśıvel que

a sequência dos passos não venha a convergir. Uma análise de convergência, assim

como exemplos que não convergem, podem ser encontradas em [82].

Em [66] foi observado que, para os casos de interpolação, a inicialização do modelo

é de suma importância para convergência. Experimentos indicaram que as bases

PCA iniciais que levam à convergência são aquelas que descrevem bem contornos.

Foram usadas C = 18 classes e cada uma representava um ângulo de um contorno.

Nos 180◦ de ângulos posśıveis, isso significa uma discretização de 10◦. Contornos são

também o foco de outros algoritmos de interpolação do estado da arte [56, 60, 83].

6.6 Modelos para pixels faltantes

Em problemas de interpolação e super-resolução, quando um prior genérico é utilizado,

como por exemplo TV, todos os pixels (os existentes e os que serão estimados) já

têm a priori o mesmo modelo que os descreva. Neste trabalho, porém, a cada pixel é

atribúıdo um modelo distinto que depende da sua vizinhança. É preciso, portanto, um

procedimento para atribuir modelos aos pixels não existentes na imagem observada.

Nos experimentos aprestados, a heuŕıstica usada foi atribuir aos pixels faltantes

um modelo cujos parâmetros são calculados a partir da média dos parâmetros dos

modelos dos pixels vizinhos. Contudo, reconhecidamente, essa estratégia tem falhas.

A mais clara acontece em quinas, onde dois pixels vizinhos são descritos por dois

modelos totalmente diferentes.

Na classe de algoritmos que contém o algoritmo SAI de [59], é assumido que os

modelos estimados em LR se aplicam aos pixels em HR. Como isso nem sempre é

válido, algumas estratégias heuŕısticas são usadas para tornar o processo robusto.

Em [60], por exemplo, mı́nimos quadrados ponderados são adicionalmente usados

para melhorar a robustez.

Outros métodos partem de uma imagem piloto que é estimada com um algoritmo

tradicional, por exemplo interpolação bicúbica, para em seguida calcular e atribuir

os modelos a todos os pixels [57, 84, 85].

Acredita-se que uma abordagem mais adequada a ser seguida é aquela usada

em [66]. Os modelos iniciais para qualquer pixel são aqueles que descrevem bem

contornos em diversos ângulos. Em seguida, pelo algoritmo EM, os modelos são

iterativamente adaptados ao conteúdo da imagem.
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6.7 Seleção do parâmetro de regularização

Na literatura em geral, o parâmetro de regularização λ que controla a importância

entre prior e fidelidade às observações é selecionado empiricamente e de forma manual.

Basicamente, testa-se o algoritmo para diversos valores de λ e seleciona-se aquele que

fornece a melhor qualidade de reconstrução. Contudo, tal abordagem não é prática,

pois em casos reais não se tem acesso à imagem original.

Intuitivamente, o valor de λ depende

• do ńıvel de rúıdo da observação, pois quanto mais ruidosa a imagem, mais

importância deve ser dada ao prior ;

• do teor de degradação ou blurring, com a mesma filosofia;

• da qualidade do prior, pois se ele descreve bem a imagem, deve receber mais

peso;

• da energia da imagem quando comparada à energia do rúıdo.

O método mais utilizado na literatura é através da curva-L ou L-curve [86]. Um

método relacionado é através da U-curve [87], que soluciona algumas limitações

da L-curve. Outros métodos que abordam seleção de λ podem ser encontradas em

[38, 79, 88, 89].

Como aparentemente não há nenhum trabalho que ataque esse problema do ponto

de vista de priors por modelos PAR, acredita-se que este seja um campo onde há

espaço para pesquisa.

6.8 Super-resolução

Inspirando-se nos desenvolvimentos apresentados no Apêndice C.4 e nos trabalhos

[88–90], pretende-se estudar a seguinte abordagem para super-resolução simultânea

f̂1, · · · , f̂K = arg min
f1,··· ,fK

K∑

k=1

‖RkHkfk − gk‖2 +
K−1∑

k=1

L∑

l=0

‖Λk,k+l(fk −Ak,k+lfk+l)‖1

(6.4)

onde

Ak,k+l →




l 6= 0, Matriz A modela movimento entre quadros

l = 0, Matriz A modela regularidade dentro do quadro
(6.5)

Em suma, pretende-se num mesmo framework levar em conta o movimento

relativo entre os quadros e priors para imagens individuais.

Considerem-se as situações posśıveis em um v́ıdeo:
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1. Movimento entre quadros bem definido e facilmente estimável: é posśıvel aplicar

estimação por super-resolução;

2. Quadros consecutivos totalmente diferentes, como numa mudança de cena: não

é posśıvel super-resolução, porém é posśıvel interpolação e deblurring usando

priors adequados;

3. Situações combinadas, por exemplo com movimentos locais.

Para levar em conta todos esses casos, pode-se usar uma matriz de pesos Λk,k+l

controla a importância entre a informação de movimento relativo entre quadros e

regularidade dentro da imagem. A matriz de pesos pode ser gerada a partir da

confiança que se tem na estimação de movimento.

Neste caso, Λk,k+l seria uma matriz diagonal e

L∑

l=0

Λk,k+l = I. (6.6)

Em algoritmos de super-resolução, movimentos entre quadros envolvendo números

inteiros de pixels são considerados sem valia, pois não provêm uma visão diferente

da cena e, portanto, nenhuma informação extra. Por outro lado, tais movimentos

inteiros fornecem mais patches e, portanto, enriqueceriam as classes, melhorando a

estimação dos modelos para priors.

Como em [90], pretende-se estudar uma abordagem simultânea, onde todos os

quadros são estimados de maneira paralela. Em notação vectorial, fazendo

f = [fT
1 , · · · , fT

K ]T (6.7)

g = [gT
1 , · · · ,gT

K ]T (6.8)

R = diag(R1, · · · ,RK) (6.9)

H = diag(H1, · · · ,HK) (6.10)

pode-se reescrever (6.4) como

f̂ = arg min
f

‖RHf − g‖2 + ‖Λ (I−A) f‖1 . (6.11)

Uma opção de simplificação é considerar apenas os quadros dois a dois e, fazendo

L = 1, tem-se

A =




A1,1 A1,2 0 0 · · · 0 0 0

0 A2,2 A2,3 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 0 AK−1,K−1 AK−1,K




(6.12)
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e

Λ =




Λ1,1 Λ1,2 0 0 · · · 0 0 0

0 Λ2,2 Λ2,3 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 0 ΛK−1,K−1 ΛK−1,K




(6.13)

6.8.1 Expectation-Minimization

Pode ser interessante iterar algumas vezes entre estimação do modelo e estimação da

resposta seguindo a filosofia EM. Matematicamente, ter-se-ia

f̂ q+1 = arg min
f

‖RHf − g‖2 + ‖Λq(f −Aqf)‖1 (6.14)

Âq+1 = arg min
A

‖RHf q+1 − g‖2 + ‖Λq(f q+1 −Af q+1)‖1 (6.15)

Λ̂q+1 = arg min
Λ

‖RHf q+1 − g‖2 + ‖Λ(f q+1 −Aq+1f q+1)‖1 (6.16)

6.9 Conclusão

Este caṕıtulo apresentou delineamentos de trabalhos futuros envolvendo tanto mu-

danças na estimação dos modelos PAR quanto o uso deles em esquemas de super-

resolução. Tais mudanças foram inspiradas em trabalhos recentes e novas tendências

na área de problemas inversos em processamento de imagens.
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Caṕıtulo 7

Correção de rúıdo de padrão fixo

Neste caṕıtulo, outro tipo de rúıdo é abordado, o dito rúıdo de padrão fixo (FPN

- fixed pattern noise), muito comum em v́ıdeos na faixa do infravermelho. Por ter

caracteŕısticas peculiares, a remoção de FPN requer diferentes abordagens, que são

apresentadas a seguir.

7.1 Introdução

Na atualidade, câmeras infravermelhas e v́ıdeos na faixa do infravermelho são usados

em inúmeras áreas como ensaios não-destrutivos para verificação da integridade de

equipamentos, visão noturna, segurança, reconhecimento e vigilância aeroespacial,

imagens térmicas astronômicas e aplicações militares [91].

No que tange aos sensores, as últimas décadas presenciaram o aparecimento de

dispositivos cada vez mais precisos e baratos. As FPA’s, ou focal plane arrays, são

sensores de imagem que consistem de uma matriz de sensores ópticos localizada no

plano focal de um sistema de lentes. A sua aparição possibilitou a construção de

dispositivos para aquisição de imagens e v́ıdeos que são registrados diretamente em

formato digital.

Na faixa do infravermelho, as IRFPA’s (infrared focal plane arrays) têm se tornado

o mais proeminente detector usado em sistemas de imagens nos últimos anos. Seu

vasto uso é atribúıdo aos avanços na tecnologia de sensores de estado sólido, que

permitiram compacidade, baixo custo e alto desempenho.

Sabe-se que um problema comum a todos os sensores IRFPA é o rúıdo de padrão

fixo (fixed-pattern noise ou FPN), também chamado de não-uniformidade espacial.

De fato, o FPN continua sendo um sério problema, apesar dos avanços recentes nessa

tecnologia. A origem deste rúıdo é atribúıda ao fato de cada detector da matriz,

ou seja, cada pixel possuir uma variação no processo de fabricação. Em outras

palavras, cada pixel do detector responde de maneira diferente à mesma quantidade

de radiação incidente. O rúıdo FPN se manifesta aleatoriamente no espaço e está
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Figura 7.1: Vı́deo real com rúıdo de padrão fixo.

presente em todos os quadros de um v́ıdeo infravermelho independentemente da cena

ou movimento [91]. A Figura 7.1 mostra um v́ıdeo real contaminado com rúıdo de

padrão fixo. Nota-se que o FPN degrada consideravelmente a qualidade da imagem.

Outra caracteŕıstica do rúıdo FPN é sua lenta variação temporal durante o

funcionamento do sensor. Ele pode se tornar significativo numa ordem de grandeza

de 30 segundos após uma calibração [92]. Esse desvio temporal é atribúıdo a variações

na temperatura do sensor, material de fabricação, rúıdo eletrônico de leitura, controle

automático de ganho, entre outros. Portanto, uma única calibração é ineficaz

e o problema requer estimativa e compensação cont́ınuas durante a operação da

câmera [91].

Embora a verdadeira resposta das IRFPA’s seja não-linear, ela é em geral mode-

lada linearmente como função da radiância, um ganho e um desvio (bias) [91, 93]

como

gk(n1, n2) = a(n1, n2)fk(n1, n2) + b(n1, n2), (7.1)

onde gk(n1, n2) é a sáıda da câmera referente ao pixel (n1, n2) no instante k, a(n1, n2)

é o ganho associado ao pixel (n1, n2), fk(n1, n2) é a radiância incidente no elemento

sensor (n1, n2) no instante k e b(n1, n2) é desvio ou bias associado ao pixel (n1, n2).

A Figura 7.2a ilustra um quadro de um v́ıdeo infravermelho sintético onde não

existe FPN. A Figura 7.2b mostra o mesmo quadro contaminado com FPN segundo

o modelo da equação (7.1).
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(a) Quadro original de um v́ıdeo infraver-
melho.

(b) Quadro contaminado com rúıdo de
padrão fixo.

Figura 7.2: Exemplo de rúıdo de padrão fixo sintético.

Dando prosseguimento ao trabalho realizado no mestrado do candidato [94], foi

desenvolvido durante o peŕıodo do doutorado o algoritmo Affine Projection para

correção de rúıdo de padrão em v́ıdeos infravermelhos. A partir desse desenvolvi-

mento, foi submetido e aceito um artigo [2] em periódico internacional. Conduz-se

o leitor, neste momento, ao Apêndice F, página 145, onde os desenvolvimentos são

apresentados.
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Caṕıtulo 8

Conclusão e sumário

Esta tese apresentou um estudo sobre algumas técnicas para resolver problemas

inversos em processamento de imagem e v́ıdeo. As contribuições geradas foram

resumidas na Seção 1.3.

Problemas inversos

Nos Caṕıtulos 1 e 2 o conceito de problema inverso em processamento de imagens foi

introduzido. Foi visto que métodos tradicionais, como interpolação bicúbica e filtro

de Wiener, não geram boas respostas, pois não modelam bem imagens naturais e,

portanto, não fornecem priors adequados para suprir a falta de informação perdida

durante o processo de degradação.

Total variation

Como um primeiro passo para uma melhor modelagem de imagens naturais, foi

estuda a técnica de deconvolução por total variation no Caṕıtulo 3. Foi ilustrado

como as estat́ısticas de imagens naturais justificam o uso de TV. Mais especificamente,

embora a estat́ıstica de pixels individuais não seja consistente entre diferentes imagens,

a estat́ıstica das derivadas horizontal e vertical é mais bem comportada. O fato

de tais estat́ısticas terem distribuições Laplacianas justifica o uso da norma `1.

Outra interpretação é que o prior TV promove respostas suaves por partes, fato

observado em imagens naturais. Aliada a isso, a existência de métodos rápidos torna

a abordagem por TV bastante atrativa.

Foi apresentada a abordagem por augmented Lagrangian, um método particular-

mente eficiente para resolver problemas envolvendo TV. Basicamente, a parte não

diferenciável é separada (via variable splitting) e atacada por métodos de shrinkage.

Por combinar penalização quadrática com multiplicadores de Lagrange, que são ex-

plicitamente estimados durante o processo, a abordagem por augmented Lagrangian

atinge uma ótima taxa de convergência quando comparada a outras abordagens.
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Uma modificação desse método foi proposta no Apêndice B, onde o operador

de gradiente foi substitúıdo por filtros direcionais seguidos de derivadas direcionais.

A motivação foi de selecionar regiões de uma imagem mais apropriadas para um

determinado tipo de penalização antes de aplicá-la. O algoritmo proposto produz

resultados superiores ao TV tradicional em termos de PSNR, além de possuir outras

vantagens, como fornecer maior PSNR para uma faixa mais ampla de coeficientes

de regularização. Esses desenvolvimentos tiveram publicação aceita em anais de

congresso internacional [3].

Modelos PAR

Sem uma preocupação inicial com algoritmos rápidos, como foi o caso de TV, mas

com enfoque em uma melhor descrição de imagens, começou-se a estudar a partir do

Caṕıtulo 4 regularizações localmente adaptativas. Em particular, foram estudadas

aplicações de modelos autorregressivos por partes (PAR) em interpolação de imagens.

O algoritmo SAI [59] foi estendido de modo a considerar a imagem como um todo em

vez de dividi-la em blocos. A partir disso, o prior foi generalizado para ‖(I−A) f‖pp,
que fornece modelos individuais para cada pixel da imagem. Vale mencionar que

trabalhos posteriores também começaram a usar esse formato de prior [56, 57].

No Apêndice C, estudos preliminares mostraram ser posśıvel melhorar a PSNR da

interpolação de imagens usando o prior generalizado. O caso de imagens pré-filtradas

antes da subamostragem também foi considerado de maneira acoplada e experimentos

mostraram melhoras sutis, porém consistentes, em relação a abordagens desacopladas

(interpolação seguida de deblurring).

Outra extensão do algoritmo SAI, agora para efetuar super-resolução, também

foi proposta no Apêndice C. O método foi inspirado em algoritmos que não usam

estimação de movimento explicitamente, como [84] e [85]. No esquema proposto, tanto

regularidades geométricas quanto movimento relativo entre quadros são capturados

através dos modelos PAR. Em seguida, a confiança em cada modelo, medida pelo

MSE, é usada para combinar as estimativas.

Embora acredite-se que os resultados inicias tenham sido encorajadores, algumas

questões relacionadas à ordem do modelo a ser usada, estratégias de estimação do

modelo e posśıvel inferioridade da abordagem via modelos PAR a outras, conduziram

os estudos a uma reanálise da literatura de problemas inversos.

Modelos revisitados

Antes de partir diretamente para o uso do prior ‖(I−A) f‖pp para realizar super-

resolução, escolheu-se dar uma passo atrás: um estudo mais aprofundado sobre

estat́ısticas de imagens naturais e priors foi realizado e apresentado no Caṕıtulo 5.
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A ideia foi revisitar a abordagem via modelos PAR à luz de novos desenvolvimentos

e descobertas na área de problemas inversos. A intenção inicial do estudo foi

reunir informações para sustentar uma escolha: manter ou abandonar a abordagem

via modelos PAR, com posśıvel adoção em trabalhos futuros de técnicas como

representações esparsas.

Inicialmente, no Apêndice D, foi realizado um experimento para avaliar o efeito de

diversas variáveis (como tamanho do modelo, janela de treinamento) na qualidade de

representação dos modelos PAR. Várias combinações de tais variáveis foram usadas

para estimar os parâmetros do modelo a partir de imagens corrompidas com diversos

ńıveis de rúıdo e blurring.

As conclusões do experimentos indicaram, por exemplo,

• que o reśıduo tem distribuição gaussiana generalizada com parâmetro de forma

φ ≈ 1.1, portanto mais próxima da Laplaciana;

• que o treinamento do modelo usando mı́nimos quadrados ponderados (WLS -

weighted least squares), dando mais peso a patches com vizinhança semelhante,

é mais robusto;

• que modelos de ordens maiores tem desempenho melhor, provavelmente pela

flexibilidade fornecida por um maior número de coeficientes;

Embora os resultados obtidos nos experimentos tenham melhorado a intuição

sobre os modelos PAR, pontos importantes não foram investigados. Por exemplo,

como mencionado na literatura [56, 57, 59], modelos de ordem maior tendem a causar

overfitting e gerar respostas com oscilações não desejadas, e tal fato não foi avaliado.

No Apêndice E, vários modelos para imagens naturais e abordagens de problemas

inversos foram apresentados. Inicialmente, as abordagens por análise e śıntese,

tipicamente usadas em problemas inversos, foram revisadas, apontando-se suas

semelhanças e diferenças. Salientou-se o resultado de [68], que apontou que para

o caso overcomplete (śıntese via dicionários redundantes ou análise com “muitos”

analisadores) as abordagens deixam de ser equivalentes.

Modelos generativos, que têm uso tradicionalmente na abordagem por śıntese,

foram recapitulados. A compactação de energia da DCT e esparsidade das transfor-

madas Wavelet e descendentes foram relembradas com o enfoque no seu uso como

priors. A obtenção de dicionários a partir de bancos de dados de imagens naturais

também foi analisada. Algoritmos para treinamento de dicionários redundantes,

como o K-SVD [95], foram rapidamente mencionados.

Modelos baseados em energia, especialmente os inspirados em campos aleatórios

de Markov (MRF - Markov random fields), foram revisados na Seção E.3.1. Atenção

especial foi dada à técnica Field of Experts (FoE), que fornece um dos melhores

resultados de reconstrução de imagem das técnicas baseadas em MRF. FoE, de certa
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forma, generaliza a abordagem por TV, substituindo a norma `1 por potenciais

Student-t e o gradiente D por filtros. Tanto os parâmetros dos potenciais quanto os

filtros, são treinados a partir de um conjunto amplo de imagens naturais.

Em seguida, três métodos, BM3D [81], PLOW [96] e PLE [66] foram apresentados.

São técnicas que exploram a repetição de estruturas dentro da imagem e são considera-

das estado-da-arte em termos de denoising, interpolação e deblurring. Esses métodos

superam os anteriores, como FoE, que pretende ser um modelo genérico para imagens,

treinado a partir de um banco de dados, porém não adaptado particularmente à

imagem que está sendo reconstrúıda.

As caracteŕısticas marcantes dessas três técnicas são:

• Abordagem por análise;

• Paradigma não nocal (nonlocal): supõe que, embora somente localmente

estacionárias, estat́ısticas de segunda ordem podem se repetir dentro da imagem;

• Collaborative filtering : todos os patches identificados como semalhantes, serão

usados para estimar o filtro que os filtrará.

• Structured sparsity : assume que a imagem é esparsa em um dicionário re-

dundante, porém a seleção dos átomos durante a reconstrução é restrita a

um subconjunto pré-selecionado do dicionário, tornando a reconstrução mais

estável.

Ilustrou-se a semelhança da abordagem por modelos PAR a outros algoritmos do

estado-da-arte, como PLE, em termos de função custo. Embora tal fato indique o

mantenimento da abordagem, a parte cŕıtica do problema, que envolve a estimação

dos modelos, deve ser revista em trabalhos futuros.

Finalmente, foi discutido intuitivamente por que a abordagem via análise é em

geral superior à śıntese. Tal fato, inicialmente observado e provado em [68], tem

recebido maior atenção e vem sendo corroborado em trabalhos recentes [69–76].

Trabalhos futuros e novas direções

Uma vez posicionados em relação a outros priors, foram levantadas posśıveis mo-

dificações nas estratégias de estimação de modelos PAR usadas no Apêndice C e

D. Entre elas estão: classificação de patches com estimação de modelos dentro das

classes e iterações entre cálculo dos parâmetros do modelo e cálculo da resposta

(algoritmo EM).

Na Seção 6.8, foram propostos esquemas de super-resolução usando modelos PAR

inspirados nos desenvolvimentos da Seção 5 e em [90]. Trabalhos futuros incluem

implementação dessas ideias e avaliação de desempenho dos algoritmos.
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Rúıdo de padrão fixo

Outro tipo de reconstrução de v́ıdeo, agora corrompido com rúıdo de padrão fixo

(FPN), foi considerada no Caṕıtulo 7. Foi desenvolvida, durante o doutorado, uma

extensão dos métodos de remoção FPN em v́ıdeos infravermelhos inicialmente de-

senvolvidos em [4, 97]. A partir de modificações no algoritmo RLS, foi elaborado

um esquema AP (affine projection) que resultou em uma convergência mais rápida e

menor erro de estado estacionário quando comparado à abordagem RLS. Tais desen-

volvimentos, apresentados no Apêndice F, tiveram publicação aceita em periódico

internacional [2].
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Apêndice A

Publicações

Segue abaixo a lista de publicações até a presente data do candidato ao doutorado.

A.1 Artigos em periódicos internacionais

Total de artigos aceitos em periódicos internacionais: 3.

1. PIPA, D. R., DA SILVA, E. A. B., PAGLIARI, C. L., DINIZ, P. S. R. “Re-

cursive Algorithms for Bias and Gain Nonuniformity Correction in Infrared

Videos”, Aceito para publicação em 28/08/2012 na revista IEEE Transacti-

ons on Image Processing, http://dx.doi.org/10.1109/TIP.2012.2218820,

Fator de Impacto: 3.042, Classificação Qualis: A1, ISSN: 1057-7149, [2].

2. OKAMOTO, J., GRASSI, V., AMARAL, P., PIPA, D. R., et al. “Develop-

ment of an Autonomous Robot for Gas Storage Spheres Inspection”, Jour-

nal of Intelligent and Robotic Systems, 2012, http://dx.doi.org/10.1007/

s10846-011-9607-z, Fator de Impacto: 0.829, Classificação Qualis: A2, ISSN:

0921-0296, [98].

3. PIPA, D., MORIKAWA, S., PIRES, G., et al. “Flexible Riser Monitoring

Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive

Filtering”, EURASIP Journal on Advances in Signal Processing, 2010, http:

//dx.doi.org/10.1155/2010/176203, Fator de Impacto: 1.012, Classificação

Qualis: A1, ISSN: 1687-6172, [99].
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A.2 Artigos em congressos internacionais

Total de artigos publicados em anais de congressos internacionais: 5.

1. PIPA, D., CHAN, S. H., NGUYEN, T. “Directional Decomposition Based Total

Variation Image Restoration”. In: 20th European Signal Processing Conference,

2012, [3].
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4. PIRES, G. P., PIPA, D. R. “Classificação de Rúıdos em Emissão Acústica
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Appendix B

Total variation deconvolution

using directional decompositions

In this chapter, we present an extension of total variation (TV) image deconvolution

technique that enhances image quality over classical TV while preserving algorithm

speed. Enhancement is achieved by altering the regularization term to include

directional decompositions before the gradient operator. Such decompositions select

areas of the image with characteristics that are more suitable for a certain type of

gradient than another. Speed is guaranteed by the use of the augmented Lagrangian

approach as basis for the algorithm. Experimental evidence that the proposed

approach improves TV deconvolution is provided, as well as an outline for a future

work aiming to support and substantiate the proposed method.

This chapter is an extended version of the conference paper [3].

B.1 Introduction

Image deconvolution/restoration is a classic inverse problem that has been extensively

studied in the literature. In such problems, one aims to recover a clean, sharp image

from a noisy, blurred and/or degraded observation. The challenge of most inverse

problems is that they are ill-posed, i.e., either the direct operator does not have an

inverse, or it is nearly singular. Thus, regularization is required to deal with noise

and ensure a unique solution [1].

Since its introduction in 1992 by Rudin, Osher and Fatemi [20], Total Variation

(TV) regularization has been successfully applied to a variety of deconvolution-

related image problems [1]. The success of TV regularization relies on a good balance

between the ability to describe piecewise smooth images (without penalizing possible

discontinuities) and the complexity of the resulting algorithms [14].

To go on with the idea, let f be a vector representing an unknown image (to be
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predicted) lexicographically ordered, which is observed through the model

g = Hf + ν (B.1)

giving rise to a blurred and noisy image g. The blur operator is represented by H

and ν is the noise term such that ν ∼ N (0, σ2I). We are interested in estimating f

given g and H.

To solve (B.1) we apply the total variation (TV) approach

f̂ = arg min
f

µ

2
‖Hf − g‖2 + ‖f‖TV2 , (B.2)

where µ is the regularization parameter, ‖f‖TV2 =
∑

i

√
β2
x [Dxf ]2i + β2

y [Dyf ]2i is the

isotropic total variation norm on f and, by definition, we set ‖f‖TV2

def
= ‖Df‖ISO,

with D being the classical gradient operator such that

D =

[
βxDx

βyDy

]
, (B.3)

with matrices Dx and Dy built to perform convolution with the kernels dx = [−1, 1]

and dy = [−1, 1]T respectively. Here, βx and βy, sometimes grouped as β = [βx, βy]
T,

are constants that control the amount of horizontal and vertical regularization,

respectively. For instance, if the real image f is expected to have some “vertical”

pattern, i.e. Figure B.1, the reconstruction process should penalize preferably vertical

frequencies by choosing βy > βx.

As an example, we simulated an observation of Figure B.1 by blurring it with a

9× 9 Gaussian kernel with σ = 3 and adding noise up to BSNR1= 25 dB. Then, we

deblurred it using the approach on (B.2) for different choices of the regularization

parameter µ. Figure B.2 shows the evolution of the PSNR for some choices of β.

The choice β = [0.5, 1.5], based on previous knowledge about the real image, forces

the solution to have more horizontal than vertical frequency content, resulting in

better image quality and higher PSNR.

However, when the real image does not have a preferable orientation pattern, as

in Figure B.3, no substantial PSNR increment is achieved by altering β, as shown

on Figure B.4. In this chapter, we address this issue.

The rest of this chapter is organized as follows: Section B.2 reviews previous

work on extending TV deconvolution for images. In Section B.3 we briefly describe

the augmented Lagrangian approach with focus on the characteristics that yields

efficient implementation. Section B.4 sketches the strategy to be used. The proposed

1Blurred Signal to Noise Ratio = 10 log (Blurred signal variance / Noise variance) [dB].
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Figure B.1: A toy example showing
that classical TV can be improved by
choosing appropriate βx and βy.

Figure B.2: PSNR is maximized when β is
biased towards the vertical direction.

Figure B.3: A less simple toy example.
Altering βy and/or βx does not yield
better PSNR.

Figure B.4: Since the figure has a mixed
pattern, the best result is achieve using a
balanced β.
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Figure B.5: Example of original (top) and blurred and noisy (bottom) images used
in the experiments in Section B.1. The images were first blurred with a Gaussian
kernel (σ = 3) then white Gaussian noise was added to BSNR = 25 dB.

method is explained in details in Section B.5 and results are provided in section B.6.

Algorithmic details are presented in Section B.7 and a conclusion is drawn in Section

B.9.

B.2 Related work

Many extensions of TV have been reported in the literature [29]. Most of them

[26, 106, 107] deals with the staircase effect, namely the transformation of smooth

regions (ramps) into piecewise constant regions (stairs). Such a phenomenon tends

to appear when trying to reconstruct, say, a piecewise smooth image (rather than a

piecewise constant image) using classical TV.

For this purpose, Chambolle and Lions proposed the use of a second order

variation along with the traditional TV in [26]. In [106] Chan et al. improved the

approach of [26] by considering texture and structure as separate components of an

image. Stefan et al. used a variable order total variation approach in [107]. The

order is chosen after an edge detection procedure.

In [108] Farsiu et al. introduced a technique called Bilateral TV, which they

apply to solve a super-resolution problem [67]. Basically, rather than calculating

only first-order finite differences, which is often used to approximate the gradient

operator [20], they use a weighted mean of combinations of horizontal and vertical
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differences. As a result, not only horizontal and vertical differences are computed,

but also diagonal differences.

Kiriyama et al., in [109], proposed to speed up the Chambolle’s projected method

[27] by adding diagonal differences to the TV regularization term. They reported a

reduction in computational time around 56% (as a result of fewer iterations).

In [110] Karahanoğlu et al. proposed the use of a general differential operator L

instead of the derivative D for 1-D signal processing. Specifically, L can be tuned

according to the expected signal and the presence of a linear system.

Differently from the previously proposed techniques, our approach uses directional

filters to decompose the image into directional components. Then, we apply the

appropriate gradient operator on each component, thus penalizing only the undesired

directional patterns.

B.3 Augmented Lagrangian method

The problem in (B.2) can be solved efficiently using the augmented Lagrangian

approach [31, 42]. The idea consists of introducing intermediate variables u and

transforming the unconstrained optimization problem in (B.2) into the equivalent

constrained problem

minimize
f ,u

µ

2
‖Hf − g‖2 + ‖u‖ISO

subject to u = Df .
(B.4)

The resulting problem is then solved using an augmented Lagrangian (AL) scheme

[31, 42, 43]

L(f ,u,y) =
µ

2
‖Hf − g‖2 + ‖u‖ISO − yT(u − Df) +

ρ

2
‖u−Df‖2 , (B.5)

where ρ is a regularization parameter associated with the quadratic penalty term

‖u−Df‖2, and y is the Lagrange multiplier associated with the constraint u = Df .

The idea of the augmented Lagrangian method is to find a saddle point of

L(f ,u,y) that is also the solution of the original problem (B.2). To this end,

the alternating direction method of multipliers (ADMM) can be used to solve the

following sub-problems iteratively [42]:
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f̂ q+1 = arg min
f

µ

2
‖Hf − g‖2 − ŷT

q (ûq −Df) +
ρ

2
‖ûq −Df‖2 (B.6)

ûq+1 = arg min
u

‖u‖ISO − ŷT
q (u−Df̂ q+1) +

ρ

2

∥∥∥u−Df̂ q+1

∥∥∥
2

(B.7)

ŷq+1 = ŷq − ρ(ûq+1 −Df̂ q+1). (B.8)

Now, the f -subproblem in (B.6) has a closed-form solution and can be efficiently

calculated through FFT [42]. The u-subproblem in (B.7) can be solved using the

shrinkage formula [45] at very low cost, as well as the y-subproblem in (B.8), which

consists of a mere update. For algorithmic details refer to Section B.7.

B.4 Problem Statement

We seek a method to improve the performance of traditional TV image deconvolution.

If we know a priori that the image has some directional pattern, as in the case of

Figure B.1, we can unbalance the amount of horizontal and vertical regularization

towards the image content and thus we will get a better estimate. On the other

hand, if the image does not exhibit a preferred pattern, e.g. Figure B.3, changing β

does not provide any enhancement.

Still, the fact that different regions of Figure B.3 do possess directional patterns

instigates us to use a similar method to enhance the results. Although Figures B.1

and B.3 are oversimplified and unrealistic, we will use them as didactic examples

throughout this chapter. In fact, we can see them as exaggerated examples of the

edges and patterns that occur in real images.

As a starting point for our developments, we will use the augmented Lagrangian

method described in [42] for its state-of-the-art results, both in terms of image quality

and speed.

B.4.1 Masking

A näıve attempt to solve this problem would be to mask different regions of the

image and only then apply the appropriate regularization. This may be accomplished

by introducing a masking operator M into the regularization term of (B.2) resulting

in

f̂ = arg min
f

µ

2
‖Hf − g‖2 + ‖DMf‖ISO (B.9)
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(a) Mx: mask to be applied to Figure B.3
before using gradient operator Dx.

(b) Result of the mask Mx applied to
Figure B.3.

Figure B.6: Example of a tailor-made mask, which selects regions for horizontal
gradient penalization.

with

DM =

[
βxDxMx

βyDyMy

]
. (B.10)

Figure B.6a shows an example of mask which could be used when restoring an

observed version of Figure B.3. Figure B.6b shows the masked image Mxf , on which

only the horizontal gradient operator Dx should be applied.

Although this approach may yield good results, the effect on how (B.2) can be

solved is quite negative. Specifically, the resulting matrix DM in (B.9) and (B.10)

is no longer block circulant and thus fast FFT-based algorithms cannot be used.

Due to large size of the variables involved, such consequence makes this approach

impractical.

B.5 Pre-filtering/decomposing approach

Rather than using masks to select regions of the image that are better suited for

a certain gradient operator, we will use pre-filters to perform such a task. The

advantage of the proposed approach is that it maintains the block-circulant structure

of the matrices involved allowing the use of fast algorithms.

Any image f can be decomposed as

f = fx + fy, (B.11)
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Classical TV penalizes vari-
ations over the whole im-
age in vertical (top) and hor-
izontal (bottom circles) direc-
tions. For numbers with same
colour, gradient is zero (null
penalization), whereas differ-
ent colours cause penaliza-
tion. Thus, image patterns
such as stripes are penalized.

Fig. 5. An illustration of gradient calculation in classical TV
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Fig. 6. Gradients applied to image components in the pro-
posed method. Penalization of image features is minimum
since gradient is close to zero.

[16] at very low cost, as well as the y-subproblem in (8),
which consists of a mere update.

4. PRE-FILTERING/DECOMPOSING APPROACH

The algorithm we have just described uses classical TV ap-
proach, where the gradient operator D is applied to all re-
gions of the image (Figure 5). As a consequence, variations
are penalized in all directions.

As observed in Section 1, however, we can improve TV
deconvolution by using a tuned gradient operator. Rather than
using masks to select regions of the image that are better
suited for a certain gradient operator, we will use pre-filters
to perform such a task. The advantage of the proposed ap-
proach is that it maintains the block-circulant structure of the
matrices involved allowing the use of fast algorithms.

Any image f can be decomposed as

f = fx + fy , (9)

where fx represent the “horizontal” content or component of
f and fy “vertical” component. The components fx and fy
are computed as

fx = Bxf and fy = Byf , (10)

where Bx and By are block-circulant matrices with the prop-
erty that I = Bx +By . Therefore,

Fig. 7. Proposed method
(α = 0.5) provides results
comparable to tuned classi-
cal TV restoration for the toy
example of Figure 1.

Fig. 8. For the mixed pat-
tern of Figure 3, the pro-
posed method outperforms
any combination of β in the
classical TV.

Df = D(Bx +By)f (11)

=

([
βxDxBx

βyDyBx

]
+

[
βxDxBy

βyDyBy

])
f . (12)

We observe in (12) that the gradient operators are now
applied to filtered versions of f , though the effect has not
changed due to identity I = Bx +By . Since we want Dx to
operate on the “horizontal” portion of f and Dy on its “verti-
cal” counterpart, we replace βx and βy which yields

D2Df =

([
(1+α)

2 DxBx
(1−α)

2 DyBx

]
+

[
(1−α)

2 DxBy
(1+α)

2 DyBy

])
f (13)

with
0 ≤ α ≤ 1 (14)

α controls the “adaptiveness”. Now, when α = 0 we have
the traditional TV regularization equivalent to βx = βy = 1,
whereas when α = 1, Dx is applied only to Bxf and Dy only
to Byf .

Simulations have shown that the choice of α should take
into account the noise level. When noise is high, for instance,
regularization should be less “adaptive” and setting α close
to 1 will produce poor results. The intuition is that noise cor-
rupts direction patterns, making it hard to select/filter for the
use of a specific gradient in restoration.

Finally, the proposed algorithm is obtained by replacing
Df in equations (4) through (8) by D2Df in (13). Refer to
[17] for algorithmic details.

4.1. Choice of filters

Since we want horizontal and vertical image components, a
straightforward solution is to split the 2-D spectrum in hori-
zontal (|ωx| > |ωy|) and vertical (|ωx| < |ωy|) frequencies

Figure B.7: An illustration of gradient calculation. Classical TV penalizes variations
over the whole image in vertical (top) and horizontal (bottom circles) directions. For
numbers with same colour, gradient is zero (null penalization), whereas different
colours cause penalization. Thus, image patterns such as stripes are penalized.

where fx represent the “horizontal” content or component of f and fy “vertical”

component. The components fx and fy are computed as

fx = Bxf and fy = Byf , (B.12)

where Bx and By are block-circulant matrices.

Combining (B.11) and (B.12) gives

f = (Bx + By)f (B.13)

I = Bx + By (B.14)

and substituting (B.13) in (B.3) results in

D = D(Bx + By) (B.15)

=

([
βxDxBx

βyDyBx

]
+

[
βxDxBy

βyDyBy

])
. (B.16)

We observe in (B.16) that the gradient operators are now applied to filtered

versions of f , though the effect has not changed due to identity I = Bx + By. Since

we want Dx to operate on the “horizontal” portion of f and Dy on its “vertical”
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counterpart, we replace βx and βy which yields

D2D =

([
(1+α)

2
DxBx

(1−α)
2

DyBx

]
+

[
(1−α)

2
DxBy

(1+α)
2

DyBy

])
(B.17)

with

0 ≤ α ≤ 1, (B.18)

where α controls the “adaptiveness”. Now, when α = 0 we have the traditional TV

regularization equivalent to βx = βy = 1, whereas when α = 1, Dx is applied only to

Bxf and Dy only to Byf .

Simulations have shown that the choice of α should take into account the noise

level. When noise is high, for instance, regularization should be less “adaptive” and

setting α close to 1 will produce poor results. The intuition is that noise corrupts

direction patterns, making it hard to select/filter for the use of a specific gradient in

restoration.

Finally, the proposed algorithm is obtained by replacing D in equations (B.4)

through (B.8) by D2D in (B.17). Refer to Section B.7 for algorithmic details.

B.5.1 Choice of filters

So far, we have introduced the idea of pre-filtering before applying regularization

but have not defined the filters themselves. Following our initial assumptions, we

know by (B.14) that the filters are complementary, i.e. their Fourier transforms add

up to a constant.

According to Section B.1 and Figures B.1 and B.2, enhancement is possible

when images have either horizontal or vertical orientation pattern. Therefore, we

can design the filters by splitting the 2-D spectrum in horizontal (|ωx| > |ωy|) and

vertical (|ωx| < |ωy|) frequencies and define the Fourier transforms of the filters from

this partition as

∣∣Bx(e
jωx , ejωy)

∣∣ =





0 if |ωx| > |ωy|
1
2

if |ωx| = |ωy|
1 if |ωx| < |ωy|

(B.19)

and |By(e
jωx , ejωy)| = 1− |Bx(e

jωx , ejωy)|. Then, the filters can be designed through

Matlab function fwind1, which uses the window method [111].

Figure B.9 illustrates the idea of the proposed method. After selecting regions of

the image with filters, only the appropriate gradient is applied. Thus, image features

are minimally penalized.
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(a) Bx(ejωx , ejωy) (b) By(e
jωx , ejωy)

Figure B.8: Spectra of directional filters for the 2-direction deconvolution algorithm

(a) Bxf (b) Byf

Figure B.9: Gradients applied to image components in the proposed method. Penal-
ization of image features is minimum since gradient is close to zero.
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B.5.2 4-direction TV deconvolution

Simulations have shown that the approach we have just described is insufficient to

enhance TV deconvolution for real images. We now extend the idea to incorporate

diagonal gradients in addition to horizontal and vertical gradients by the definitions

that follow.

The D4D operator in the regularization term becomes

D4D =







γDxBx

δDyBx

δDwBx

δDzBx




+




δDxBy

γDyBy

δDwBy

δDzBy




+




δDxBw

δDyBw

γDwBw

δDzBw




+




δDxBz

δDyBz

δDwBz

γDzBz







(B.20)

with

γ = 1 + α, δ = 1− α and 0 ≤ α ≤ 1. (B.21)

The gradient matrices Dx through Dz perform the differences defined respectively

by the kernels (filter coefficients)

dx =
[
−1 1

]
dy =

[
−1

1

]
(B.22)

dw =

[
0 1

−1 0

]
dz =

[
−1 0

0 1

]
. (B.23)

The filters can be easily defined by partitioning the spectrum similarly to (B.19)

and are summarized in Table B.1. As observed, the filters are more selective than

those defined in Section B.5.1. Figure B.10 shows the spectra of the directional

filters.

|Bx| = 0 if |2ωx| > |ωy|, |Bx| = 1 otherwise
|By| = 0 if |ωx| < |2ωy|, |By| = 1 otherwise
|Bw| = 1 if ωx < 2ωy < 4ωx or ωx > 2ωy > 4ωx

|Bw| = 0 otherwise
|Bz| = 1 if ωy < 2ωx < 4ωy or ωy > 2ωx > 4ωy

|Bz| = 0 otherwise

Table B.1: Filters for the 4-direction TV deconvolution. Additionally, |B| = 1/2 on
the boundaries for all filters.

B.6 Results

In order to evaluate our method, we compared it to classical TV when deconvolving

several blurred and noisy images. Figure B.11 shows our TV2D method applied to
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Figure B.10: Spectra of directional filters Bx, By, Bw and Bz used in the 4-direction
algorithm

noisy and blurred versions of images on Figures B.1 and B.3 respectively. Figures

B.12 and B.13 show the PSNR evolution of the proposed algorithm versus the

classical approach.

Figures B.14 to B.17 show the PSNR evolution of the reconstructed image versus

the regularization parameters µ for the classical TV and the proposed methods 2D

and 4D. It is interesting to note that for Figure B.15 where vertical and horizontal

orientations are pronounced, both 2-direction and 4-direction proposed algorithms

provide similar results outperforming classical TV. For the other images which do not

exhibit vertical/horizontal patterns, it is necessary to consider diagonal regularization

in order to improve reconstruction, which is attained by the 4-direction method.

Figures B.18 through B.25 (zoomed-in versions of Cameraman, Mandrill and Lena,

respectively) show real image results of the proposed 4-direction TV deconvolution

algorithm compared to traditional TV deconvolution. Prior to restoration, the images

were blurred with a 9× 9 Gaussian kernel with σ = 1.8 and corrupted with noise

N (0; 3× 10−5) (image dynamic range is 0 ∼ 1). The parameter α was empirically

set to 0.5.

Table B.2 present some statistics of the penalization operators for the classical

TV and the 4D proposed method. Calculations were performed over the 24 images

of Kodak dataset. The proposed approach provides a better model for images, since
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β = [1.5 .5]18.2dB β = [.5 1.5]24.5dB Adaptive:23.9dB

β = [1.5 .5]20.2dB β = [1 1]21.0dB Adaptive:22.5dB

Figure B.11: Zoomed-in results of the proposed method (right column) compared with
classical TV (left and center column). When the images are simple (top), choosing
correct β is sufficient to improve reconstruction. For mixed patterns, changing β
will improve only the appropriate regions (bottom left image).

Figure B.12: Proposed method (α = 0.5)
provides results comparable to tuned
classical TV restoration for the toy ex-
ample of Figure B.1.

Figure B.13: For the mixed pattern of Fig-
ure B.3, the proposed method outperforms
any combination of β in the classical TV.
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Figure B.14: Left: image used in the experiment - cameraman. Right: PSNR of
the reconstructed image versus regularization parameter µ for Classical TV and
proposed methods. TV2D uses two directional decomposition filters. TV4D uses
four directional decomposition filters.
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Figure B.15: Left: image used in the experiment - Kodak dataset 01. Right: PSNR
of the reconstructed image versus regularization parameter µ for Classical TV and
proposed methods. TV2D uses two directional decomposition filters. TV4D uses
four directional decomposition filters.
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Figure B.16: Left: image used in the experiment - Kodak dataset 07. Right: PSNR
of the reconstructed image versus regularization parameter µ for Classical TV and
proposed methods. TV2D uses two directional decomposition filters. TV4D uses
four directional decomposition filters.
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Figure B.17: Left: image used in the experiment - Kodak dataset 13. Right: PSNR
of the reconstructed image versus regularization parameter µ for Classical TV and
proposed methods. TV2D uses two directional decomposition filters. TV4D uses
four directional decomposition filters.
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Figure B.18: Classical TV best result:
83.15 dB

Figure B.19: Proposed 4D best result:
84.23 dB

Figure B.20: Classical TV best result:
80.86 dB

Figure B.21: Proposed 4D best result:
82.01 dB
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Figure B.22: Classical TV best result:
76.92 dB

Figure B.23: Proposed 4D best result:
77.35 dB

Figure B.24: Classical TV best result:
77.74 dB

Figure B.25: Proposed 4D best result:
78.31 dB

65



Regularization σ̂2 avg 103 σ̂2 var 106 φ̂ avg φ̂ var 103

Dxf 3.7095 9.5098 0.4390 8.3591
Dyf 4.5040 9.5982 0.4552 11.1578

DxBxf 0.1778 0.0214 0.5338 18.0484
DyByf 0.1105 0.0086 0.5627 23.9752
DwBwf 0.1332 0.0102 0.5155 20.8042
DzBzf 0.0955 0.0056 0.5832 19.8638

Table B.2: Statistics of traditional TV compared to directional filters + directional
derivatives computed over the images from Kodak dataset.
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Figure B.26: Speed comparison of traditional TV and the directional decomposition
TV approach

the average variance (model error) and variance of variance (consistency through

different images) are lower. Moreover, the sample shape parameter φ̂ is closer to

1 in the proposed method, which indicates that the use of Laplacian prior is more

appropriate than it is in classical TV.

Figure B.26 shows results of simulations performed to evaluate the speed of the

algorithms. The same setup was used, but images were cropped to match the number

of pixels desired. The results shown were obtained by averaging the time of 10 runs

for each size under evaluation (images presented in the results were randomly selected

to this experiment).
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B.7 Algorithm details

First, we repeat here the pseudocode for the classical TV deconvolution described in

[42].

Algorithm 1 Algorithm for TV/L2 minimization

Input data g and H
Input parameters µ and β

1: Set parameters ρ (default=2), θ (default=0.7) and ζ (default=2)
2: Initialize f0 = g, u0 = Df0, y = 0, k = 0
3: Compute the matrices F [Dx], F [Dy] and F [H]
4: while not converge do
5: Solve the f -subproblem (B.24) using (B.27).
6: Solve the u-subproblem (B.25) using (B.28).
7: Update the Lagrange multiplier y using (B.26).
8: Update ρ according to (B.29).
9: if ‖f q+1 − f q‖ / ‖f q‖ ≤ tol then

10: break . Checking convergence
11: end if
12: end while

The related sub-problems and the individual update equations are2

f̂ q+1 = arg min
f

µ

2
‖Hf − g‖2 − ŷT

q (ûq −Df) +
ρ

2
‖ûq −Df‖2 (B.24)

ûq+1 = arg min
u

‖u‖ISO − ŷT
q (u−Df̂ q+1) +

ρ

2

∥∥∥u−Df̂ q+1

∥∥∥
2

(B.25)

ŷq+1 = ŷq − ρ(ûq+1 −Df̂ q+1). (B.26)

f = F−1

[
F
[
µHTg + ρDTu−DTy

]

µ |F [H]|2 + ρ
(
|F [Dx]|2 + |F [Dy]|2

)
]

(B.27)

vx = βxDxf + (1/ρ)yx

vy = βyDyf + (1/ρ)yy

v = max

{√
|vx|2 + |vy|2, ε

}
ε = 10−6

ux =





max {v − 1/ρ, 0} ·
(

vx
v

)
isotropic TV

max {|vx| − 1/ρ, 0} · sign(vx) anisotropic TV

(B.28)

2The Hadamard or element-wise division p =

(
q
r

)
will be used and is given by [p]i =

[q]i
[r]i

.
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ρ =




ζρ, if ‖uq+1 −Df q+1‖ ≥ θ ‖uq −Df q‖
ρ, otherwise

(B.29)

B.7.1 Proof of shrinkage formula

We provide here a proof of shrinkage formula (B.28) used to solve (B.25) for the

case of anisotropic TV. For isotropic TV, similar approach can be used to derive the

formula [45]. Proof of (B.27) is trivial and is omitted here. Updating ρ is suggested

to accelerate convergence in [40] and is used in [42]. The proof for the convergence

of the ADMM is shown in [44].

First we simplify (B.25) to

u∗ = arg min
u

‖u‖1 − yT(u−Df) +
ρ

2
‖u−Df‖2 . (B.30)

We define the subdifferential of ‖u‖1 given component-wise by [45, 112]

[∂ ‖u‖1]i =





sign(ui), if ui 6= 0

{h : |h| ≤ 1, h ∈ R}, otherwise.
(B.31)

From (B.30) and (B.31), each component u∗i must satisfy





sign(u∗i )− yi + ρ(u∗i − [Df ]i) = 0, if u∗i 6= 0

|yi + ρ[Df ]i| ≥ 1, otherwise.
(B.32)

For u∗i 6= 0, we have

u∗i +
sign(u∗i )

ρ
= [Df ]i +

yi
ρ

(B.33)

and

|u∗i |+
1

ρ
=

∣∣∣∣[Df ]i +
yi
ρ

∣∣∣∣ . (B.34)

Setting

vi = [Df ]i +
yi
ρ

(B.35)

and dividing both equations we get

u∗i + sign(u∗i )/ρ

|u∗i |+ 1/ρ
= sign(u∗i ) =

vi
|vi|

= sign(vi). (B.36)

Therefore,

u∗i =

(
|vi| −

1

ρ

)
sign(vi). (B.37)
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From (B.32) we know this is valid only when

|vi| −
1

ρ
≥ 0, (B.38)

otherwise we know that u∗i = 0. Therefore

u∗i = max

{
|vi| −

1

ρ
, 0

}
sign(vi). (B.39)

Since all operations are done component-wise, we can group them in a vector-form

u∗ = max

{
|v| − 1

ρ
, 0

}
sign(v), (B.40)

which is computationally very cheap.

B.8 Extension to directional filters

As previously mentioned, the proposed method replaces the classical operator D =

[Dx, Dy]
T in the previous equations by the directional operator

D4D =







γDxBx

δDyBx

δDwBx

δDzBx




+




δDxBy

γDyBy

δDwBy

δDzBy




+




δDxBw

δDyBw

γDwBw

δDzBw




+




δDxBz

δDyBz

δDwBz

γDzBz





 (B.41)

with

γ = 1 + α, δ = 1− α, 0 ≤ α ≤ 1. (B.42)

The gradient matrices Dx through Dz perform the differences defined respectively

by the kernels (filter coefficients)

dx =
[
−1 1

]
dy =

[
−1

1

]
(B.43)

dw =

[
0 1

−1 0

]
dz =

[
−1 0

0 1

]
. (B.44)

To save computer memory, we usually avoid the full construction of the matrices

D. Rather, we use the kernels to perform the convolutions in the frequency domain,

which is advantageous in terms of speed and memory requirement.

Finally, what differs the proposed method from classical TV is how the direct

69



operators D4D(·) and DT
4D(·) are calculated.

B.8.1 Direct operator

For classical TV, the operation D(·) can be achieved by forward differences using,

for instance, function diff in MATLAB.

In the proposed method, the operand has to be pre-filtered before the gradient

operator application. Since both gradient operators and filters are fixed, we can

combine them into new operators to save computational time. Thus, DDf is obtained

by

D4Df =




∆xf

∆yf

∆wf

∆zf




(B.45)

with

∆x = γDxBx + δDxBy + δDxBw + δDxBz

∆y = δDyBx + γDyBy + δDyBw + δDyBz

∆w = δDwBx + δDwBy + γDwBw + δDwBz

∆z = δDzBx + δDzBy + δDzBw + γDzBz.

(B.46)

Since the convolutions are performed in the frequency domain, only the Fourier

versions of the matrices ∆ are stored.

B.8.2 Transposed operator

Since we need to use transpose operators, e.g. DT
4D(·), but want to avoid dealing

with full matrices, the effect of transposing a matrix on its defining kernel must be

elucidated.

Simple matrix manipulation can show that transposing the kernels, e.g. dx → dT
x ,

is not enough to correctly build DT
x . In fact, it can be easily shown that the operation

DT
xu can be obtained by a convolution using a 180-degree rotated version of dx

followed by a spatial shift proportional to the size of the kernel dx, i.e.

DT
xu ≡ (u ∗ ∗ rot180(dx))(x+ nc − 1, y + nr − 1), (B.47)

where nr is the number of rows and nc is the number of columns of dx.
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Therefore, we can define

DT
4Du =




∆T
xu

∆T
y u

∆T
wu

∆T
z u




(B.48)

where the transposition of the filter matrices B is obtained from the same recipe

used in (B.47).

B.9 Conclusion

In this chapter, we proposed and showed results of an extension of the augmented

Lagrangian approach [31, 42] for the problem of image deconvolution.

We started our development by noting that unbalancing the amount of horizontal

and vertical regularization enhances classical TV deconvolution if the original image

has a preferred frequency content, although the same is not true for more complex

images.

In order to deal with a wider range of images, we recognized that different regions

of the image require different regularizations. Rather than using masks to achieve

this selection, we introduced directional decompositions/filters to perform this task.

The advantage of the latter is that it permits the use of fast FFT-based algorithms

due to block-circulant nature of matrices involved.

Even for images with a great deal of vertical or horizontal detail, our method has

advantages because it does not require any previous knowledge about the image. For

classical TV, on the other hand, one has to set the amount of horizontal and vertical

regularization accordingly to the image.

In practical situations where the best regularization parameter µ is not available

and has to be estimated, the proposed method presents another advantage of yielding

better results for a wider range of µ. Specifically, even when the estimate of µ is not

accurate, the proposed method has higher probability of generating better results

than classical TV (see curves in Figures B.14 to B.17).

We presented experiments showing better PSNR and visual quality of the proposed

method over the classical TV deconvolution.

We believe that increment in the running time of the proposed method can be

reduced by avoiding “for” loops in our implementation in MATLAB. Interpreted

languages are known to execute loops very slowly. One option is to write time-critical

parts of the code in a compiled language like C.

Future work includes:

• Provide a deeper analysis of our method;
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• Study computational complexity increment caused by increasing number of

filters (e.g. more than 4 filters);

• Include a procedure for automatic parameter selection (parameters µ and α);

• Take advantage of the directional nature of our method and add an interpolation

step/operation for extension to the problem of super-resolution/interpolation.

• Design the filters on-the-fly depending on the image content to privilege repeti-

tive structures.

• Study the incorporation into our method of well-known directional decomposi-

tion, such as curvelets and counterlets.

�3

3Conduz-se o leitor de volta ao corpo da tese no Caṕıtulo 4, página 26.
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Appendix C

Preliminary studies on

auto-regressive models

This chapter describes some preliminary studies and proposals for the use of piecewise

autoregressive (PAR) models in inverse problems. The proposed methods consist

of extensions of the Soft-decision Adaptive Interpolation (SAI) algorithm, which is

described next.

C.1 Auto-regressive Modelling Approach

Zhang and Wu [59] proposed an image interpolation scheme that preserves spatial

details. The technique adapts to varying scene structures using a 2-D piecewise

autoregressive model. The model parameters are estimated in a moving window in

the input low-resolution image. The algorithm is referred to as Soft-decision Adaptive

Interpolation (SAI).

The SAI algorithm doubles the image resolution in both vertical and horizontal

directions. It interpolates the missing pixels in HR (high resolution) image in two

passes. Supposing an N1 × N2 input image (Figure C.1), the first pass generates

(N1 − 1)× (N2 − 1) pixels. These generated pixels along with the known LR (low

resolution) pixels form a quincunx sublattice of the HR image (Figure C.2).

For the second pass, we first rotate the image obtained in the first pass by 45

degrees (Figure C.3). Then, we essentially reapply the first pass and complete

the reconstruction of the HR image by interpolating the other quincunx sublattice

(Figure C.4).

First, let’s consider a PAR model of an image

g(n) =
∑

m∈T H

αm(n)g(n + m) + ν(n), n = [n1, n2]T, m = [m1,m2]T, (C.1)
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Figure C.1: Pixels of the LR original image in white.

Figure C.2: Result of the first pass of SAI algorithm. Original pixels in white and
estimated pixels in gray form a quincunx sublattice.

Figure C.3: Preparation for the second pass. If the image in Figure C.2 is rotated 45
degrees, we can reapply the first pass.

Figure C.4: Result of the second pass of SAI algorithm. Original pixels in white and
gray and estimated pixels in black form a quincunx sublattice if the image is rotated
45 degrees.
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g(1) g(4) g(7)

g(2) g(5) g(8)

g(3) g(6) g(9)

Figure C.5: Observed LR image pixels lexicographically ordered and placed on an
HR grid

α1 α4 α6

α2 g(n) α7

α3 α5 α8

Figure C.6: Auto-regressive model of order 8

where αm(n) are the model parameters, n and m are spatial coordinates, ν(n) is a

random noise, and T H is a spatial neighborhood template on the HR grid, which

can be defined as

T H = { [−2,−2]T, [−2, 0]T, [−2, 2]T,

[0,−2]T, [0, 2]T,

[2,−2]T, [2, 0]T [2, 2]T }.
(C.2)

Figure C.5 shows the LR observed image placed on an HR grid. From now on,

all the pictures will be shown in an HR grid unless otherwise specified.

Figure C.6 shows how a given pixel g(n) can be modeled as a linear combination

of its neighbors. The parameters αm(n) remain constant or nearly constant in a

small neighborhood, though they may and often do vary significantly in different

segments of a scene.

Instead of considering a model of order 8 as in (C.1), the SAI algorithm breaks it
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a1 b2 a3

b1 g(n) b4

a2 b3 a4

Figure C.7: Two auto-regressive models of order 4

in two parts. A given pixel g(n) is estimated by two models, i.e.,

g(n) =
∑

m∈T H
b

bmg(n + m) + ν(n), (C.3)

and

g(n) =
∑

m∈T H
a

amg(n + m) + ν(n), (C.4)

with
T Hb = { [−2, 0]T,

[0,−2]T, [0, 2]T,

[2, 0]T },
(C.5)

and
T Ha = { [−2,−2]T, [−2, 2]T,

[2,−2]T, [2, 2]T }.
(C.6)

The two models are a diagonal cross (parameters ai in Figure C.7 in lighter gray)

and a vertical-horizontal cross (parameters bi in Figure C.7 in darker gray). As an

example, Figure C.8 shows the neighbors of pixel g(5) according to each part of the

model.

If we stack the parameters bi and ai we can form respectively two parameters

vectors b and a. Thus, these parameter vectors can be estimated in a training

window W1 of size typically 3× 3 pixels by minimizing

(C.7)
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g(1) g(4) g(7)

g(2) g(5) g(8)

g(3) g(6) g(9)

Figure C.8: Neighbors of pixel g(5) according to the two models of SAI algorithm

b̂ = arg min
b

∑

n∈W1


g(n)−

∑

m∈T H
b

bmg(n + m)




2

, (C.8)

and

â = arg min
a

∑

n∈W1


g(n)−

∑

m∈T H
a

amg(n + m)




2

. (C.9)

For instance, the window can be composed, on the HR grid, by (see Figure C.9)

W1 = { [3, 3]T, [3, 5]T, [3, 7]T,

[5, 3]T, [5, 5]T [5, 7]T,

[7, 3]T, [7, 5]T [7, 7]T }.
(C.10)

Once the parameters a and b are obtained, we can proceed to the first pass of

the SAI algorithm. The values for f1(·) (number 1 stands for first pass) shown in

Figure C.9, are obtained by minimizing

J(λ) = min
f1

{ ∑

n∈W2

∥∥∥∥∥∥
f1(n)−

∑

m∈T L
a

amg(n + m)

∥∥∥∥∥∥

2

+

∑

n∈W1

∥∥∥∥∥∥
g(n)−

∑

m∈T L
a

amf1(n + m)

∥∥∥∥∥∥

2

+

λ
∑

n∈W3

∥∥∥∥∥∥
f1(n)−

∑

m∈T H
b

bmf1(n + m)

∥∥∥∥∥∥

2}

(C.11)
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1 2 3 4 5 6 7 8 9

1 g(1) g(6) g(11) g(16) g(21)

2 f1(1) f1(5) f1(9) f1(13)

3 g(2) g(7) g(12) g(17) g(22)

4 f1(2) f1(6) f1(10) f1(14)

5 g(3) g(8) g(13) g(18) g(23)

6 f1(3) f1(7) f1(11) f1(15)

7 g(4) g(9) g(14) g(19) g(24)

8 f1(4) f1(8) f1(12) f1(16)

9 g(5) g(10) g(15) g(20) g(25)

Figure C.9: A typical window of the SAI algorithm. The LR pixels, represented by
g(·), are lexicographically ordered. The HR pixels generated in the first pass f1(·)
are in lighter gray.
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subject to
∑

n∈W3

∥∥∥∥∥∥
f1(n)−

∑

m∈T H
b

bmf1(n + m)

∥∥∥∥∥∥

2

≈

≈
∑

n∈W3

∥∥∥∥∥∥
g(n)−

∑

m∈T H
b

bmg(n + m)

∥∥∥∥∥∥

2
(C.12)

where the parameter λ is chosen in (C.11) so that the approximation in (C.12) is

satisfied.

The low-resolution template is given by

T La = { [−1,−1]T, [−1, 1]T,

[1,−1]T, [1, 1]T }.
(C.13)

The windows are given by

W2 = { [2, 2]T, [2, 4]T, [2, 6]T, [2, 8]T,

[4, 2]T, [4, 4]T [4, 6]T, [4, 8]T,

[6, 2]T, [6, 4]T [6, 6]T, [6, 8]T,

[8, 2]T, [8, 4]T [8, 6]T, [8, 8]T, }.

(C.14)

W3 = { [4, 4]T, [4, 6]T,

[6, 4]T, [6, 6]T }.
(C.15)

Experiments in [59] have shown that good results are obtained by simply choosing

λ = 0.5. The cost function, therefore, becomes

f̂1 = arg min
f1

{ ∑

n∈W2

∥∥∥∥∥∥
f1(n)−

∑

m∈T L
a

amg(n + m)

∥∥∥∥∥∥

2

+

∑

n∈W1

∥∥∥∥∥∥
g(n)−

∑

m∈T L
a

amf1(n + m)

∥∥∥∥∥∥

2

+

0.5
∑

n∈W3

∥∥∥∥∥∥
f1(n)−

∑

m∈T H
b

bmf1(n + m)

∥∥∥∥∥∥

2}

(C.16)

Although all f1(·) are obtained in Figure C.9 by minimizing (C.16), only the values

for f1(6), f1(7), f1(10) and f1(11) are kept. Then, the window moves horizontally

and vertically by 4 pixels for the next calculation and overlaps the previous step’s

window location. Zhang [59] argues that this overlapping procedure avoids undesired
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artifacts in the final image.

By analyzing (C.16), we notice that the models in (C.8) and (C.9) and their

parameters are assumed to be valid for the HR interpolated image, even though they

are calculated from the LR image. For the parameter b in (C.8), this assumption is

generally true for most natural images [59], since we use them to estimate pixels in

the same scale, i.e., we use the values in the grid of f1 to estimate the pixels in the

same f1.

On the other hand, the assumption that parameters a remain unchanged in

different scales is more problematic, since the distance between the pixels used in

(C.9) is twice the distance between the pixels used in (C.8). As argued in [58] this

assumption holds if the window in question has edge(s) of a fixed orientation and of

sufficiently large scale. However, experiments in [59] show that previous edge-based

interpolation methods are prone to artifacts on small-scale spatial features of high

curvature, for which the second order statistics may differ from LR to HR images. In

such cases, the soft-decision estimation strategy of (C.11), i.e., minimizing estimation

error for f(·) and g(·) from each other, can moderate those artifacts, making the

proposed SAI approach considerably more robust and achieving unprecedented

interpolation accuracy.

In [60], the property of a PAR model estimated in a LR grid be valid for the HR

grid is referred to as geometrical duality, i.e., consistency of geometric structures

across resolutions.

C.2 Proposed method: Modification in the Stan-

dard SAI Algorithm

In this section, we propose a modification in the standard SAI algorithm which

enhances the results of the interpolation. We repeat the models and the objective

function of SAI algorithm by convenience (g(n) are the LR pixels and f(n) are the

HR pixels).

g(n) =
∑

m∈T H
b

bmg(n + m) + ν(n), (C.17)

g(n) =
∑

m∈T H
a

amg(n + m) + ν(n), (C.18)
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f̂1 = arg min
f1

{ ∑

n∈W2

∥∥∥∥∥∥
f1(n)−

∑

m∈T L
a

amg(n + m)

∥∥∥∥∥∥

2

+

∑

n∈W1

∥∥∥∥∥∥
g(n)−

∑

m∈T L
a

amf1(n + m)

∥∥∥∥∥∥

2

+

0.5
∑

n∈W3

∥∥∥∥∥∥
f1(n)−

∑

m∈T H
b

bmf1(n + m)

∥∥∥∥∥∥

2}

(C.19)

T Hb = { [−2, 0]T,

[0,−2]T, [0, 2]T,

[2, 0]T },
(C.20)

T Ha = { [−2,−2]T, [−2, 2]T,

[2,−2]T, [2, 2]T }.
(C.21)

T La = { [−1,−1]T, [−1, 1]T,

[1,−1]T, [1, 1]T }.
(C.22)

W1 = { [3, 3]T, [3, 5]T, [3, 7]T,

[5, 3]T, [5, 5]T [5, 7]T,

[7, 3]T, [7, 5]T [7, 7]T }.
(C.23)

W2 = { [2, 2]T, [2, 4]T, [2, 6]T, [2, 8]T,

[4, 2]T, [4, 4]T [4, 6]T, [4, 8]T,

[6, 2]T, [6, 4]T [6, 6]T, [6, 8]T,

[8, 2]T, [8, 4]T [8, 6]T, [8, 8]T, }.

(C.24)

W3 = { [4, 4]T, [4, 6]T,

[6, 4]T, [6, 6]T }.
(C.25)

Conversely, we propose a modification that considers the whole image at once,

rather than separated windows. Instead of using the same model parameters for all

pixels within the window, we assign to each pixel in the image its own parameters,

i.e.,

g(n) =
∑

m∈T H
b

bm(n)g(n + m) + ν(n), (C.26)

and

g(n) =
∑

m∈T H
a

am(n)g(n + m) + ν(n), (C.27)

i.e., now bm(n) and am(n) have the pixel index n (confront to (C.17) and (C.18)).
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Figure C.10: Interdependence between top-left HR pixel and bottom-right HR pixel
(in gray) through the various pixels of the image.

The justification is twofold: first, the auto-regressive parameters might slightly

change within a window, and second, since we are obtaining the HR pixels minimizing

the estimation error from their neighbors and to their neighbors (see (C.19)), the

interdependence between LR and HR pixels is image-wide. In other words, the HR

estimated pixel on the top-left of the image is related to the pixel located on the

bottom-right of the image through the various auto-regressive models of the image.

The first step of the modification is to estimate the parameters b and a for all

existing pixels in the LR image through equations (C.28) and (C.29), using a window

of 3× 3 pixels. That is, given a pixel g(n), we obtain its related parameters through

b(n) = arg min
b

∑

q∈W4


g(n + q)−

∑

m∈T H
b

bm(n)g(n + q + m)




2

, (C.28)

and

a(n) = arg min
a

∑

q∈W4


g(n + q)−

∑

m∈T H
a

am(n)g(n + q + m)




2

. (C.29)

with
W4 = { [−2,−2]T, [−2, 0]T, [−2, 2]T,

[0,−2]T, [0, 0]T [0, 2]T,

[0, 2]T, [2, 0]T [2, 2]T }.
(C.30)

The vector b(n) is obtained lexicographically ordering the values bq(n). Then,

the window shifts vertically and horizontally by 1 pixel to calculate the parameters

for the next pixel.

Once we have the parameters b and a for all existing pixels in the LR image, we

obtain b and a for all HR pixels by simply averaging their LR neighbors. Figure C.11

shows an example of this calculation. The parameters obtained from the original

pixels are referred to as bg(·) and the parameters for the HR pixels to be estimated

in the first pass are referred to as bf (·). Figure C.12 shows the positions of original
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bg(1) bg(5) bg(9) bg(13)

bf (1) bf (4) bf (7)

bg(2) bg(6) bg(10) bg(14)

bf (2) bf (5) bf (8)

bg(3) bg(7) bg(11) bg(15)

bf (3) bf (6) bf (9)

bg(4) bg(8) bg(12) bg(16)

Figure C.11: Estimation of model parameters for the unknown HR pixels of the first
pass.

pixels g(·) and estimated pixels in the first pass f(·).
In this example, we have

bf (1) =
bg(1) + bg(2) + bg(5) + bg(6)

4
, (C.31)

bf (2) =
bg(2) + bg(3) + bg(6) + bg(7)

4
(C.32)

and so forth. The parameters af(·) are also obtained by averaging their neighbors

just as we do for bf (·).
We specify the parameters as bpm(n) and apm(n), where n = 1, 2, · · · , N1N2 denotes

the pixel to which the parameter is related, p = g denotes that the parameter was

estimated from the original image and is related to it, p = f denotes that the

parameter was obtained by averaging and is related to the HR pixels and m = 1, 2, 3, 4

denotes the parameter number.

Suppose that the original image pixels are given by g(n). If we lexicographically

order the image, we get the vector representation g. The pixels obtained in the first

pass are also lexicographically arranged in the vector f .
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Figure C.12: Original pixels g(·) and pixels to be estimated in the first pass of
interpolation f(·).

We can use matrix notation to write (C.19) for the whole image as

f̂ = arg min
f

{∥∥f −Afg
∥∥2

+ ‖Cgg −Agf‖2 + 0.5
∥∥Cf f −Bf f

∥∥2}
(C.33)

If we take the example in Figures C.11 and C.12, the matrices become

Ag =




ag1(6) ag2(6) 0 ag3(6) ag4(6) 0 0 0 0

0 ag1(7) ag2(7) 0 ag3(7) ag4(7) 0 0 0

0 0 0 ag1(10) ag2(10) 0 ag3(10) ag4(10) 0

0 0 0 0 ag1(11) ag2(11) 0 ag3(11) ag4(11)




(C.34)
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(Af )T =




af1(1) 0 0 0 0 0 0 0 0

af2(1) af1(2) 0 0 0 0 0 0 0

0 af2(2) af1(3) 0 0 0 0 0 0

0 0 af2(3) 0 0 0 0 0 0

af3(1) 0 0 af1(4) 0 0 0 0 0

af4(1) af3(2) 0 af2(4) af1(5) 0 0 0 0

0 af4(2) af3(3) 0 af2(5) af1(6) 0 0 0

0 0 af4(3) 0 0 af2(6) 0 0 0

0 0 0 af3(4) 0 0 0 0 0

0 0 0 af4(4) af3(5) 0 af1(7) 0 0

0 0 0 0 af4(5) af3(6) af2(7) af1(8) 0

0 0 0 0 0 af4(6) 0 af2(8) af1(9)

0 0 0 0 0 0 af3(7) 0 af2(9)

0 0 0 0 0 0 af4(7) af3(8) 0

0 0 0 0 0 0 0 af4(8) af3(9)

0 0 0 0 0 0 0 0 af4(9)




(C.35)

(Bg)T =




0 0 0 0

bg1(6) 0 0 0

0 bg1(7) 0 0

0 0 0 0

bg2(6) 0 0 0

0 bg2(7) bg1(10) 0

bg3(6) 0 0 bg1(11)

0 bg3(7) 0 0

0 0 bg2(10) 0

bg4(6) 0 0 bg2(11)

0 bg4(7) bg3(10) 0

0 0 0 bg3(11)

0 0 0 0

0 0 bg4(10) 0

0 0 0 bg4(11)

0 0 0 0




(C.36)

Bf =
[

0 bf1(5) 0 bf2(5) 0 bf3(5) 0 bf4(5) 0
]

(C.37)
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Cg =




0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0




(C.38)

Cf =
[

0 0 0 0 1 0 0 0 0
]

(C.39)

For larger images, one has just to follow the same pattern to construct the

matrices.

We can rearrange equation (C.33) by stacking the matrices and, then, we get

f̂ = arg min
f

‖Kf − Lg‖2 (C.40)

with

K =




I

Ag

0.5(Cf −Bf )


 and L =




Af

Cg

0


 (C.41)

which can be easily solved in a least-squares sense by

f̂ =
(
KTK

)−1
KTLg. (C.42)

Since we will later extend the Modified SAI algorithm to incorporate information

from other frames, we simplify matrices K and L and the cost function to

f̂ = arg min
f

‖Kf − Lg‖2 (C.43)

with

K =

[
I

Ag

]
and L =

[
Af

Cg

]
. (C.44)

The reason for this simplification will become clear in Section C.4.1.

Due to the large size of the matrices K and L, the direct least-squares solution in

(C.42) is not efficient because of matrix inversion. Instead, since the matrices are also

sparse, we adopt the biconjugate gradient stabilized method (BiCGstab(`))[78, 113],

thus avoiding matrix inversion. This method is widely used for solving large sparse

unsymmetric linear systems and has provided good results in our experiments.

C.2.1 Results of the Modified SAI Algorithm

In order to assess the performance of the modified SAI algorithm, we blurred and

decimated some frames from common videos and then applied four methods of
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Image\Method Cubic spline GISD[114] SAI[59] Modified SAI
Carphone 29.6453 29.8620 29.8432 29.9672
Foreman 29.7510 29.9362 30.2352 30.0097

Miss america 38.2466 37.8825 37.9431 37.9738
Suzie 34.4888 34.4243 34.4902 34.5941

Table C.1: PSNR results of interpolation methods

Image\Method Cubic spline GISD[114] SAI[59] Modified SAI
Carphone 30.1728 30.5259 30.5350 30.6120
Foreman 30.6514 30.9595 31.0396 31.2311

Miss america 38.9363 38.5988 38.7313 38.5876
Suzie 35.0976 35.1027 35.2343 35.2690

Table C.2: PSNR results of interpolation methods after deblurring via BTV

interpolation: Cubic spline, GISD ([114]), SAI (see Section C.1) and the modified

SAI. We used the following blurring kernel

h =
1

16




1 2 1

2 4 2

1 2 1


 . (C.45)

The PSNR’s1 between the original HR image and the estimated HR image for

each method are shown in Table C.1. Note that no deblurring was performed for

this experiment.

Table C.2 shows the results of interpolation with post deblurring via BTV method

(a technique related to TV, see Appendix J). The parameters used were It = 100

(number of iterations), µ = 0.1, λ = 0.03, α = 0.5 and P = 2.

Figures C.13, C.14, C.15 and C.16 show the evolution of PSNR for the BTV

deblurring of the selected frames.

C.3 Proposed method: Autoregressive Model In-

terpolation and Deblurring: Fusion and De-

blurring in One Step

In this section, we propose a new algorithm which can perform interpolation and

deblurring in one step and, thus, can achieve better results than other methods

presented so far in this work.

1PSNR(f1,g2) = 10 log10
2552

MSE(f1,f2)
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Figure C.13: Deblurring of Carphone video frame via BTV
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Figure C.14: Deblurring of Foreman video frame via BTV
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Figure C.15: Deblurring of Miss America video frame via BTV. Both SAI and
Modified SAI are worse than cubic spline, probably because the large dark and
almost flat area of the image. Imposing geometrical regularity to this area may have
led to the failure.
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Figure C.16: Deblurring of Suzie video frame via BTV
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C.3.1 Autoregressive Model Interpolation: AMI

First, we introduce an alternative method of interpolation, which is competitive with

the traditional SAI algorithm. The proposed method is iterative and solves one sole

cost function, rather than two cost functions as in the SAI and the Modified SAI

algorithms. Then, we show how this method can be extended to perform deblurring.

We will call this interpolation method Autoregressive Model Interpolation (AMI).

We return to the 8-element complete autoregressive model of a given image, say

g(n), repeated here by convenience

g(n) =
∑

m∈T H

am(n)g(n + m) + ν(n), n = [n1, n2]T, m = [m1,m2]T, (C.46)

where am(n) are the model parameters, n and m are spatial coordinates, ν(n) is a

random noise, and T H is a spatial neighborhood template on the HR grid, which

can be defined as

T H = { [−2,−2]T, [−2, 0]T, [−2, 2]T,

[0,−2]T, [0, 2]T,

[2,−2]T, [2, 0]T [2, 2]T }.
(C.47)

As previously, we calculate the model parameters for all the pixels in the LR

observed image by minimizing

a(n) = arg min
a(n)

∑

q∈W4

[
g(n + q)−

∑

m∈T H

am(n)g(n + q + m)

]2

. (C.48)

with
W4 = { [−2,−2]T, [−2, 0]T, [−2, 2]T,

[0,−2]T, [0, 0]T [0, 2]T,

[0, 2]T, [2, 0]T [2, 2]T }.
(C.49)

Since we can only calculate the parameters for the LR pixels, we estimate the

model parameters for the HR pixels by averaging their neighbors. For example,

consider Figure C.17 where the parameters are placed on the HR grid. The LR pixels

are in white, whereas the HR pixels are in gray. To obtain the HR parameter we do

a(2) =
a(1) + a(3)

2
(C.50)

a(6) =
a(1) + a(11)

2
(C.51)

a(7) =
a(1) + a(3) + a(11) + a(13)

4
(C.52)
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Figure C.17: Estimating model parameters for HR pixels (gray) from the LR
parameters (white)

and so forth. Thus, we obtain the model parameters for all pixels on the HR grid.

Now consider the following equation.

f(n) =
∑

m∈T L

am(n)f(n + m), (C.53)

with
T L = { [−1,−1]T, [−1, 0]T, [−1, 1]T,

[0,−1]T, [0, 1]T,

[1,−1]T, [1, 0]T [1, 1]T }.
(C.54)

Equation (C.53) calculates a pixel value f(n) based on its neighbors. We can,

thus, construct a matrix A that performs the calculations of equation (C.53) for all

pixels in the pilot image by applying it to the vector f , i.e.,

f ′ = Af . (C.55)

Suppose we want to measure how much the image f respects or is represented by

the model A. Therefore, we can calculate the following norm

εa = ‖f −Af‖ (C.56)

= ‖(I−A) f‖ . (C.57)

91



We can now define a cost function as

f̂ = arg min
f

1

2
ε2
a

= arg min
f

1

2
‖(I−A) f‖2 .

(C.58)

As the SAI and the Modified SAI algorithms, we are assuming that the model

A, which is computed based on the LR pixels, remains valid for the HR pixels,

mainly along edges. However, as shown by experiments, considering only the model

A render the refinement of f prone to artifacts. Therefore, we add an extra term in

the minimization.

Consider the equation

f(n) =
∑

m∈T H

am(n)f(n + m), (C.59)

with
T H = { [−2,−2]T, [−2, 0]T, [−2, 2]T,

[0,−2]T, [0, 2]T,

[2,−2]T, [2, 0]T [2, 2]T }.
(C.60)

Comparing to the equation (C.53), we changed the spatial template from its LR

version T L to its HR version T H .

Then, we construct a matrix B which performs the calculation of equation (C.59)

as we did for matrix A, i.e.,

f ′′ = Bf , (C.61)

and the following norm measures how much the image f respects the model B

εb = ‖f −Bf‖ (C.62)

= ‖(I−B) f‖ . (C.63)

We can now redefine the cost function as

f̂ = arg min
f

λa
2
ε2
a +

λb
2
ε2
b

= arg min
f

λa
2
‖(I−A) f‖2 +

λb
2
‖(I−B) f‖2 ,

(C.64)

where λa and λb are weighting factors.

We obtain an initial or pilot estimate for the interpolated image through a

interpolation algorithm such as the SAI algorithm [59]

f̂0 = SAI{g}. (C.65)
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Note that the pilot estimate is a lexicographically ordered image f̂0. Then, we solve

(C.64) by gradient descent, i.e.,

f̂ q+1 = f̂ q − µ∇f εq (C.66)

with

εq =
λa
2
‖(I−A) f q‖2 +

λb
2
‖(I−B) f q‖2 (C.67)

Applying the gradient to equation (C.67), we get the iterative formula

ea = (I−A) f̂ q

eb = (I−B) f̂ q

f̂ q+1 = f̂ q − µM
[
λa
(
I−AT

)
ea + λb

(
I−BT

)
eb
]

,

(C.68)

where µ is the update step and the matrix M is a mask which restricts the updates

to the HR pixels only. Since we are performing interpolation only, we do not want

that the original LR pixels change theirs values.

The weighting factors λa and λb are chosen heuristically through the formulae

λa =
1

εa
, λb =

1

εb
. (C.69)

Although we do not mathematically prove the choice of the weighting factors, we

give an intuitive justification: each factor is inversely proportional to the estimation

error, resulting in a degree of confidence in the model. If one model, say A, has a

small error, then f is well estimated and is in accordance with A. Since we aim to

maintain the characteristics of the image, we give more importance in (C.64) to the

term which provides the smaller error. On the other hand, if the error εa is large, it

means that the image cannot be well represented by A. Therefore, the term will be

given less importance in the cost function.

Results of AMI Algorithm

Since we are evaluating the performance of algorithms in terms of interpolation only,

we generate LR images g(n) from the original image f(n) by simply decimating it,

i.e.,

g(n) = f(2n) n = [n1, n2]T. (C.70)

Initial results of the AMI algorithm showed that it suffers from overfitting. Figures

C.18, C.19, C.20 and C.21 show that the PSNR starts to decrease after a certain

number of iterations. Those figures also show the evolution of the Total Variation

(TV) of the image with the number of steps.

Based on experiments, we propose a stop criteria based on the TV of the image.
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Method\Video Carphone Foreman Miss America Suzie
SAI 30.5299 33.3421 39.0789 35.3770

Modified SAI 29.3178 32.0757 37.7048 34.3597
AMI max 30.5466 33.3652 39.0900 35.4196

AMI TV stop 30.5465 33.3651 39.0856 35.4192

Table C.3: PSNR results of AMI algorithm (interpolation only)
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Figure C.18: PSNR of AMI algorithm evolution for Carphone video frame along
with TV stop criteria

Unlike the PSNR which needs the real image as reference, TV can be measured

directly from the f̂ q. Thus, when the TV changes its derivative from negative to

positive, we stop the algorithm.

Table C.3 shows comparative results of four interpolation methods. We show the

best result for the AMI algorithm and the PSNR obtained with the TV stop criteria.

C.3.2 Adding Deblurring Term: AMID

So far, we have presented the AMI algorithm as a refinement for interpolation

methods. However, we did not consider blurring before decimation of the images in

the formulation of the problem. We propose now a new algorithm for interpolation

and deblurring in one step, which will be called Autoregressive Model Interpolation

and Deblurring (AMID).

Since most images and video sequences are blurred before decimation, we add an
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Figure C.19: PSNR of AMI algorithm evolution for Foreman video frame along with
TV stop criteria
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Figure C.20: PSNR of AMI algorithm evolution for Miss America video frame along
with TV stop criteria
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Figure C.21: PSNR of AMI algorithm evolution for Suzie video frame along with
TV stop criteria

extra term to the equation (C.64) resulting in

f̂ = arg min
f

‖RHf − g‖2 +
λ

λa + λb

[
λa ‖(I−A) f‖2 + λb ‖(I−B) f‖2

]
. (C.71)

The extra term, ‖RHf − g‖2 accounts for the conformity or agreement between the

observed image g and the estimate f through the observation operators RH. The

multiplier λ balances the amount of regularization desired.

What we are actually proposing in (C.71) is a deblurring method based on a

regularization term which is calculated according to the image content. Unlike Total

Variation or Bilateral Total Variation which aim to minimize the total energy of

image gradients, our regularization term aims to minimize the disaccordance between

the estimated image and the autoregressive models A and B.
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Method\Video Carphone Foreman Miss America Suzie
SAI & BTV 31.6304 33.2643 39.1750 35.9866

Modified SAI & BTV 30.9434 31.7586 37.9344 34.9883
BTV reconstruction 31.6278 33.1783 39.7281 36.0959

AMID 31.8205 33.9584 40.0099 36.3040
AMID gain over SAI+BTV 0.1901 0.6941 0.8349 0.3174

Table C.4: PSNR results of AMID algorithm (interpolation and deblurring)

Solving equation (C.71), we have the iterative formula

eh = RHf̂ q − g

ea = (I−A) f̂ q

eb = (I−B) f̂ q

f̂ q+1 = f̂ q − µ
{

HTRTeh+

+
λ

λa + λb

[
λa
(
I−AT

)
ea + λb

(
I−BT

)
eb
]}

.

(C.72)

Results of AMID Algorithm

In order to assess the performance of the AMID algorithm, we blurred and decimated

several frames of well-known videos and applied several methods of interpolation

and deblurring.

We empirically adjusted the parameters of BTV deblurring algorithm to achieve

the best performance in terms of PSNR. The new parameters are It = 150 (number

of iterations), µ = 0.1, λ = 1e− 5, α = 0.5 and P = 2. For the AMID algorithm the

parameters used were: λ = 5e− 3 and µ = 2.

We also compared the performance of AMID algorithm to the BTV reconstruction

algorithm given by

f̂ = arg min
f

{
‖RHf − g‖+ λ

P∑

l=−P

P∑

m=0︸ ︷︷ ︸
l+m≥0

α|m|+|l|
∥∥f − SlxS

m
y f
∥∥

1

}
. (C.73)

Table C.4 shows the PSNR results for some deblurring strategies. Figures C.22,

C.23, C.24 and C.25 shows the PSNR evolution with the iteration number. Note

that we also show the TV of the image. Although the TV increases at first iterations,

it tends to stabilize or increase less rapidly with the iteration number.

Figures C.26, C.27, C.28 and C.29 show comparative results for SAI+BTV

deblurring and our AMID algorithm.
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Figure C.22: PSNR of AMID algorithm evolution for Carphone video frame with TV
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Figure C.23: PSNR of AMID algorithm evolution for Foreman video frame along
with TV

98



0 100 200 300 400 500
38

40

42

 

 

0 100 200 300 400 500
20

40

60
PSNR[dB]
TV(x)

Figure C.24: PSNR of AMID algorithm evolution for Miss America video frame
along with TV
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Figure C.25: PSNR of AMID algorithm evolution for Suzie video frame along with
TV
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C.4 SAI-SR: Soft-Decision Adaptive Interpolation

Super-Resolution

The SAI algorithm [59] presented in Section C.1 along with the GISD algorithm

[114] provide state-of-the-art results in terms of interpolation accuracy and visual

quality. Our approach to the problem of super-resolution will be to extend the SAI

algorithm to incorporate information presented in other frames of a video than the

reference frame.

A great advantage of the SAI algorithm is its formulation. By breaking the

interpolation process in two steps, it transforms an ill-posed problem into two well-

posed problems. Specifically, if we wish to double the resolution of an image, say

N1×N2 = N1N2 pixels, we need to obtain (2N1−1)(2N2−1) = 4N1N2−2N1−2N2+1

pixels, which is almost four times the number of pixels in the original image.

The first step of the SAI algorithm produces (N1−1)(N2−1) = N1N2−N1−N2+1

pixels from the original N1N2 pixels. Due to the formulation of the problem and

since the dimensions are compatible, we do not need a regularization term. That is,

the input dimension (N1N2) is larger than the output dimension ((N1 − 1)(N2 − 1))

and, therefore, we solve a stable least-squares problem.

For the second step, we use the original pixels plus the pixels generated in the

first step, which corresponds to 2N1N2 −N1 −N2 + 1. From these pixels, we need

to generate 2N1N2 − N1 − N2 in order to complete the interpolation. Again, the

dimensions are compatible and we have another well-posed problem which does not

need regularization. For a description of the SAI algorithm refer to Section C.1.

C.4.1 SAI-SR: Extension to Incorporate Information from

other Frames

In section C.2, we proposed a change in the SAI algorithm, the Modified SAI, in

order to consider the whole image at once. This change enhances, in most cases, the

quality of the estimated HR image in terms of PSNR with or without post deblurring.

In this section, we will describe an extension of the Modified SAI algorithm to

incorporate information in other frames about the reference image. We will call our

algorithm Soft-decision Adaptive Interpolation Super-Resolution (SAI-SR).

Suppose we have a sequence of images or a video of K frames given by

gk, k = 0, 1, · · ·K − 1, (C.74)

where g0 is referred to as reference frame.
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The observation model used is

gk = RHMkf + vk, (C.75)

where gk are the observed and degraded LR images, R is a decimation operator, H

is a blurring operator, Mk are the warping or geometric motion matrices, f is the

original HR image and v is a noise vector.

As suggested in [115] and [108], in case of pure translational motion, the matrices

H and Mk are block-circulant and thus they commute [116]. We can write the

observation model as

gk = RMkz + vk, (C.76)

where z = Hf is a blurred version of the HR image. Then, the problem can be

broken in two parts: a fusion step, which estimates z from gk and a deblurring step,

which estimates f from z.

Although we aim to develop an algorithm for arbitrary motion (not only transla-

tional motion), we will use a similar approach to the one used in [85] and [84]. In

the case of arbitrary motion, the separation of super-resolution in two steps is not

optimal, since it does not respect the non-commutativity of matrices H and Mk, and

leads to inferior results. However, the separation allows for a much simpler algorithm

(both conceptually and implementation-wise), so the sub-optimality is the price to

be paid for this simplicity.

In equations (C.28) and (C.29) we perform linear regressions to model a pixel

value from its spatial neighbors. We now extend those equations to consider other

frames, that is

bk,l(n) = arg min
bk,l(n)

∑

q∈W4


gk(n + q)−

∑

m∈T H
b

bk,l,m(n)gl(n + q + m)




2

, (C.77)

and

ak,l(n) = arg min
ak,l(n)

∑

q∈W4


gk(n + q)−

∑

m∈T H
a

ak,l,m(n)gl(n + q + m)




2

. (C.78)

Specifically, equations (C.77) and (C.78) describe linear regressions that model

the pixels of frame k from the pixels of frame l. The estimation error of the n-th

pixel given by the parameters a is
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ek,l(n) =


gk(n)−

∑

m∈T H
a

ak,l,m(n)gl(n + m)


 . (C.79)

Considering all pixels of the image, we can lexicographically order the results to

obtain the error vector ek,l(n).

This approach is reasonable if the relative motion between frames, whether local

or global motion, is small, i.e., less then 1 pixel in both vertical and horizontal

directions. The idea is that, if we have a slight displacement between frame k = 0

and k = 1, we could better estimate the pixels in the frame k = 0 from their

neighbors in the frame k = 1, i.e., their temporal neighbors. If the estimation error

obtained through the temporal neighborhood is higher than the one from the spatial

neighborhood, we can somehow “prefer” the latter.

However, if the relative motion between frames is large, i.e., higher than 1, we must

compensate it. The reason is that the SAI algorithm, which our SAI-SR algorithm is

based on, only considers a neighborhood of size 1 and therefore large motion have

to be neutralized. In other words, we neutralize large motion by estimating it and

adding this information to the relation between frames. We describe this procedure

next. A similar approach was used in [85].

Suppose that we detect a large motion between the reference frame and frame

number k, represented by the vector field ok(n) = [o1, o2]T. The motion in the vector

field ok(n) is only the integer part. Then, the parameters should be estimated by

b0,k(n) = arg min
b0,k(n)

∑

q∈W4


g0(n + q)−

∑

m∈T H
b

b0,k,m(n)gk(n + q + m + ok(n))




2

,

(C.80)

and

a0,k(n) = arg min
a0,k(n)

∑

q∈W4


g0(n + q)−

∑

m∈T H
a

a0,k,m(n)gk(n + q + m + ok(n))




2

.

(C.81)

Conversely, if we are trying to estimate the pixels of the k-th frame from the

pixels of the reference frame, we must use the negative of the motion estimation

vector field, i.e.,

bk,0(n) = arg min
bk,0(n)

∑

q∈W4


gk(n + q)−

∑

m∈T H
b

bk,0,m(n)g0(n + q + m− ok(n))




2

,

(C.82)
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and

ak,0(n) = arg min
ak,0(n)

∑

q∈W4


gk(n + q)−

∑

m∈T H
a

ak,0,m(n)g0(n + q + m− ok(n))




2

.

(C.83)

In our experiments, we used the optical flow [117] approach to obtain the motion

vectors. The algorithm used was the Hierarchical Lucas-Kanade using pyramids

[118, 119]. The algorithm provides motion vectors to each pixel of reference frame,

i.e., the most likely position of the pixel in another frame.

Now suppose a reference frame, say k = 0. We compute the pixel-wise models for

all combinations between the reference frame and the other frames in the video, i.e.,

{k = 0, l = 0, 1, ..., K}, {k = 1, l = 0}, {k = 2, l = 0}, · · · , {k = K, l = 0}.
We can rewrite equation (C.33) taking into account the various models obtained

from equations (C.77) and (C.78)

f̂k = arg min
f

{∥∥∥f −Af
0,kgk

∥∥∥
2

+
∥∥Cggk −Ag

k,0f
∥∥2
}

(C.84)

To construct matrix Ag
k,0 we use the parameter vectors agk,0(n). These vectors are

obtained from the observed image (superscript g), regard the pixel n and are used

to estimate the pixels of the k-th frame from the pixels of the reference frame

(superscript {k, 0}).
On the other hand, we construct matrix Af

0,k from the parameter vectors af0,k(n).

This vector is obtained by averaging the parameter vectors from the neighbors of the

n-th pixel (subscript x) and are used to estimate the pixels of the reference frame

(0) from the pixels of the k-th frame (superscript {0, k}).
It is important to note that the construction of the matrices Ag

k,0 and Af
0,k take

into account the neutralization of large motion as previously mentioned and shown

in (C.80) and (C.81).

Solving equation (C.84) as we did with equation (C.33), we obtain

f̂k =
(
KT
kKk

)−1
KT
kLkgk k = 0, ..., K. (C.85)

The above equation represents the first pass (see SAI algorithm in section C.1 and

C.2) estimate of the HR pixels of the reference frame using information contained in

the k-th frame.

C.4.2 Combining Estimates

So far, we have obtained estimates regarding the first pass of SAI algorithm consid-

ering not only the spatial neighborhood of each pixel in the reference frame, but also
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their spatial-temporal neighborhood. The estimates are represented by f̂k, where for

k = 0 we have the result from the Modified SAI algorithm (see Section C.2) and for

k = 1, · · · , K− 1 we have estimates of the reference frame obtained from information

presented in other frames. Here, we address how to combine these various estimates.

In [120], Li proposes a scheme for video processing using mixture models. Each

model tries to estimate a pixel value in a reference by a linear combination of neighbor

pixels both in space (within the reference frame) and time (other frames). The

models are mixed according to their confidence in terms of estimation, that is, the

estimation error.

In [84], Protter et al. generalized the Nonlocal Means filter to super-resolution.

The technique basically consists in combining several images patches from the

reference frame and from other frames according to their mean-square errors to the

reference image patch.

Based on the spirit of these criteria, we propose a scheme to combine the estimates

of equation (C.85) as

f̂ =

∑K−1
k=0 f̂k ◦ exp (−e2

k)∑K−1
l=0 exp (−e2

l )
, (C.86)

where ek is the pixel-wise estimation mean-square error vector of the reference frame

from the k-th frame (see equation (C.79)). A more appropriate notation would be

e0,k, but we dropped the index 0 for simplicity. The symbol “◦” stands for Hadamard

or element-wise product and
a
b stands for Hadamard or element-wise division.

Unfortunately, experiments have shown that the estimation error itself is not

enough to properly combine the estimates. Occlusions and updates in subsequent

frames, which cannot be modeled by relative motion, negatively affect the final

results. The problem is that motion estimation algorithms produce motion outputs

independently of the relation between frames. Even if one frame contains no in-

formation about another, i.e., two completely different frames, motion estimation

algorithm will yield motion vectors between them.

It turns out that occlusions and updates can occasionally provide lower estimation

error between frames. Thus, the mixture based on equation (C.86) erroneously

combine the several estimates, giving more weight to wrong estimates and reducing

the quality of final result. We propose two extra weighting factors to contemplate

such issue.

The first weighting factor is obtained by analyzing the motion vectors. This term

prevents erroneously consideration of eventual occlusions and updates. Suppose that

we are estimating motion between the reference frame k = 0 and the frame k = 1. If

two or more motion vector point to the same location in the frame k = 1, the motion

field close to that location is complex. So is the case where there is a pixel in frame
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k = 1 to which no motion vector is pointing from the reference frame k = 0.

In both cases, the information in frame k = 1 is not useful to perform estimation

in the reference frame, since there is a change in the image. Therefore, we create a

mask vector mk to avoid the incorrect use of information. The mask is 0 where a

complex motion field was detected, and 1 where there is no occlusion or update, i.e.,

true motion.

For the second weighting factor, we calculate the radiometric (gray-level) proximity

between windows in both frames after neutralizing large motion, using a similar

approach from the one in [84]. Additionally, we use small motion (smaller than 1

pixel) obtained from the motion estimation algorithm to shift the windows. The

second proposed mixture term is given by

dk(n) = ‖P(n)g0 −O(n)gk‖ , (C.87)

where P(n) extracts a patch from the reference frame g0 around the position n and

O(n) extracts a patch from the frame gk. Additionally, matrix O(n) neutralizes

large motion and compensates for small motion.

The compensation for small motion is achieved by applying sub-pixel shifts on the

patches. The amount of sub-pixel shift was previously estimated through the motion

estimation algorithm. This procedure enhances the accuracy of the radiometric

distance calculation and experiments have shown increased performance in final

results.

We can group the results from equation (C.87) in a vector, resulting in dk. Finally,

taking into account the three weighting factors proposed, we have as the combination

formula

f̂ =

∑K−1
k=0 f̂k ◦ exp (−e2

k) ◦mk ◦ exp
(
−d2

k

)
∑K−1

l=0 exp (−e2
l ) ◦ml ◦ exp

(
−d2

l

) . (C.88)

C.4.3 Results of the SAI-SR Algorithm

As we have done with the Modified SAI algorithm, we applied the SAI-SR to well-

known video sequences. The sequences were firstly blurred and decimated and then

submitted to the algorithm the results are shown in Tables C.5 and C.6. PSRN

evolution is shown in Figures C.30, C.31, C.32 and C.33. Final image estimates are

also shown in Figures C.34, C.35 and C.36.
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Method\Video Carphone Foreman Miss America Suzie
Cubic spline 29.6453 29.7510 38.2466 34.4888
SAI 29.8432 30.2352 37.9431 34.4902
SAI-SR 1 29.9672 30.0097 37.9738 34.5941
SAI-SR 2 29.9989 30.0040 37.9894 34.5996
SAI-SR 5 30.0108 29.9208 37.9696 34.6047
SAI-SR 10 29.9900 29.7816 37.9764 34.5579
Max gain of K-frame
SAI-SR over 1 frame

0.0436 −0.0057 0.0156 0.0106

Table C.5: PSNR results of SAI-SR algorithm without deblurring

Method\Video Carphone Foreman Miss America Suzie
Cubic spline 30.1728 30.6514 38.9363 35.0976
SAI 30.5350 31.0396 38.7313 35.2343
SAI-SR 1 30.6120 31.2311 38.5876 35.2690
SAI-SR 2 30.6427 31.2321 38.5916 35.2608
SAI-SR 5 30.6587 31.1836 38.5830 35.2790
SAI-SR 10 30.6399 31.1053 38.5910 35.2579
Max gain of K-frame
SAI-SR over 1 frame

0.0467 0.0010 0.0040 0.0100

Table C.6: PSNR results of SAI-SR algorithm with deblurring
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Figure C.30: Deblurring of Carphone video frame via BTV
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Figure C.31: Deblurring of Foreman video frame via BTV
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Figure C.32: Deblurring of Miss America video frame via BTV. As with AMID
algorithm seen in Figure C.15, both SAI and SAI-SR are worse than cubic spline,
probably because the large dark and almost flat area of the image. Imposing
geometrical regularity to this area may have led to the failure.
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Figure C.33: Deblurring of Suzie video frame via BTV

C.5 Conclusion

AMI and AMID

We first proposed, in Section C.2, a modification in the traditional SAI algorithm

[59] in order to consider the whole image at once, rather than separated independent

windows. This modification enhanced the PSNR for 3 out of 4 test images. As shown

in Figure C.15, however, the results were worse than SAI for Miss America. We

believe this occured probably because of the large dark and almost flat area of most

of frames. Imposing geometrical regularity to this area may have led to the failure.

Section C.3 presented a new approach to image interpolation and deblurring

considering autoregressive modeling. The aim was to perform interpolation and

deblurring in one step based on autoregressive models of the image. The motivation

was a further extension of the method for performing multi-frame super-resolution

in one step.

Before considering the blur, we introduced the Autoregressive Model Interpolation

(AMI) algorithm. Starting from an initial interpolated image, the algorithm iteratively

refines the estimate. A stop criteria, based on a Total Variation measure, was proposed

and showed good agreement with the iteration number of the best estimate. The

results for interpolation (as inputs, the images were not blurred before decimation)

showed a gain of around 0.3 dB over the traditional SAI method.
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Then, we added an extra term to the cost function of the AMI algorithm to take

into account the blurring, what resulted in the Autoregressive Model Interpolation

and Deblurring method (AMID). The extra term forces the conformity of the estimate

and the observed image.

Finally, we presented results of the AMID algorithm. Unlike Total Variation

or Bilateral Total Variation deblurring which do not take into account the image

characteristics, the AMID algorithm performs a regularized deblurring based on

autoregressive models obtained from the observed image. The average gain of AMID

over the best setting of parameters for the state-of-the-art SAI and BTV deblurring

was 0.5 dB.

SAI-SR

We also presented the development of a new algorithm for super-resolution without

the need of sub-pixel motion estimation. Our motivation, aligned with recent devel-

opments in this field, is to broaden the applicability of super-resolution algorithms

to real videos, specially those containing complex and arbitrary motion. Specifi-

cally, early approaches to super-resolution require accurate sub-pixel (HR) motion

information, narrowing the usage of the technique.

From the modification of SAI algorithm, presented in Section C.2, we introduced

the temporal axis by modeling pixel values in the reference frame from the pixels in

other frames. Then, we proposed a mixture formula to combine several estimates of

the reference frame.

Section C.4.3 presented some experiments performed with the SAI-SR algorithm

and compared the results to other state-of-the-art techniques for image interpolation

and deblurring. The results show a coherent behavior, i.e., the image quality in term

of PSNR increases when more frames are considered, supporting the multi-frame

super-resolution concept.

Although the gain of SAI-SR in terms of PSNR from 1 image to K images could

be considered marginal (from 0.0010 to 0.0467 dB), it is compatible with the recent

exploratory literature in the field. If we consider the overall gain over the Cubic

Spline interpolation and BTV deblurring (a very common practice in the literature),

the gain becomes around 0.3 dB, which is already visually noticeable.

Wrap-up

Piece-wise autoregressive models provide a powerful and interesting mechanism for

regularization in inverse problems. More recent works [56, 57, 121] have been using

PAR models in other areas, such as compressed sensing.

116



We can, however, perceive some deficiencies and artifacts in our experiments,

notably in Figures C.28 and C.29. We believe that this deficiency can be explained

by two reasons:

1. model overfitting, caused by an excessive number of coefficients or by a exces-

sively specific model;

2. a flaw in the model estimation for missing pixels, where we simply averaged

the parameters obtained from the neighbors. The failure is clear, for instance,

near a corner, where neighboring pixels are very likely to have different models.

�2

2Conduz-se o leitor de volta ao corpo da tese no Caṕıtulo 5, página 30.
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Appendix D

Experiments with PAR models

In order to improve the local description of the image, we carried out some experiments

with piecewise autoregressive (PAR) models. Basically, we wish to evaluate how well

some estimation strategies perform under the influence of blur and noise.

We calculate the model matrix A from a blurred and noisy observation g and

compute the residual vector

e = f −Agf , (D.1)

where Ag is the model matrix estimated from the observation g and f is the clean

image.

D.1 The variables

D.1.1 Model order

The model order N×N dictates how many neighboring pixels will be used to estimate

a certain pixel. Although it is clear that higher orders are able to model a larger

class of image features, we want to evaluate if the gain is significant.

Additionally, the more parameters we have to estimate, the more ill-posed becomes

the estimation process and usually we have to consider a larger training set.

D.1.2 Training window size

Enlarging the training window M ×M has the effect of increasing the number of

equations available and, thus, provides a more stable estimation. When noise level is

high, it is expected that larger windows will result in a better model estimation.

On the other hand, larger windows may include regions of the image with different

characteristics. Therefore, the training set may not be representative for the feature

we are trying to model.
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Fig. 2. (a) Some typical dictionary atoms learned from the image Lena [see Fig. 3(a)] with K-SVD [1]. (b)–(d) A numerical procedure to obtain the initial direc-
tional PCAs. (b) A synthetic edge image. Patches (8 8) that touch the edge are used to calculate an initial PCA basis. (c) First eight atoms in the PCA basis with
the largest eigenvalues. (d) Typical eigenvalues.

flops for translation-invariant degradation operators such as uni-
form subsampling and convolution, and flops for trans-
lation-variant operators such as random masking, where is
the number of PCA bases. The overall complexity is therefore
tightly upper bounded by or , where
is the number of iterations. As will be shown in Section IV, the

algorithm converges fast for image inverse problems, typically
in to iterations. On the other hand, the complexity of
the minimization with the same dictionary is , with
typically a large factor in front as the converges slowly in
practice. The MAP-EM algorithm is thus typically one or two
orders of magnitude faster than the sparse estimation.
To conclude, let us come back to the recoverability property

mentioned in the previous section. We see from (18) that if an
eigenvector of the covariance matrix is killed by the operator
, then its contribution to the recovery of is virtually null

while it pays a price proportional to the corresponding eigen-
value. Then, it will not be used in the optimization (18) and,
thereby, in the reconstruction of the signal following (17). This
means that the wrong model might be selected and an inaccurate
reconstruction obtained. This further stresses the importance of
a correct design of dictionary elements, which from the descrip-
tion just presented, is equivalent to the correct design of the co-
variance matrix, including the initialization, which is described
next.

C. Initialization of MAP-EM

The PCA formulation just described not only reveals the con-
nection between PLE and structured sparse estimations, but it is
crucial for understanding how to initialize the Gaussian models
for MAP-EM as well.
1) Sparsity: As explained in Section III-A, for the sparse in-

verse problem estimations to have the super-resolution ability,
the first requirement on the dictionary is to be able to provide
SRs of the image. It has been shown that capturing image direc-
tional regularity is highly important for SRs [1], [11], [54]. In
dictionary learning, for example, most prominent atoms are sim-
ilar to local edges good at representing contours, as illustrated
in Fig. 2(a). Therefore, the initial PCAs in our framework that,
following (16), will lead to the initial Gaussians are designed to
capture the image directional regularity.
The initial directional PCA bases are calculated following a

simple numerical procedure. Directions from 0 to are uni-
formly sampled to angles, and one PCA basis is calculated
per angle. The calculation of the PCA at an angle uses a syn-

thetic black-and-white edge image following the same direction,
as illustrated in Fig. 2(b). Local patches that touch the contour
are collected and are used to calculate the PCA basis [following
(10) and (16)]. The first atom, which is almost dc, is replaced
by dc, and a Gram–Schmidt orthogonalization is calculated on
the other atoms to ensure the orthogonality of the basis. The
patches contain edges that are translation invariant. As the co-
variance of a stationary process is diagonalized by the Fourier
basis, unsurprisingly, the resulting PCA basis has first few im-
portant atoms similar to the cosines atoms oscillating in the di-
rection from low to high frequency, as shown in Fig. 2(c).
Comparing with the Fourier vectors, these PCAs enjoy the ad-
vantage of being free of the periodic boundary issue so that they
can provide SRs for local image patches. The eigenvalues of all
the bases are initiated with the same ones obtained from the syn-
thetic contour image that have fast decay, as shown Fig. 2(d).
These, following (16), complete the covariance initialization.
The Gaussian means are initialized with zeros.
It is worth noting that this directional PCA basis not only pro-

vides SRs for contours and edges, but it captures well textures of
the same directionality as well. Indeed, in a space of dimension
corresponding to patches of size , the first about
atoms illustrated in Fig. 2(c) absorb most of the energy in

local patterns following the same direction in real images, as in-
dicated by the fast decay of the eigenvalues [very similar with
Fig. 2(d)].
A typical patch size is , as selected in

previous works [1], [24]. The number of directions in a local
patch is limited due to the pixelization. The DCT basis is also
included in competition with the directional bases to capture
isotropic image patterns. Our experiments have shown that, in
image inverse problems, there is a significant average gain in
the PSNR when grows from 0 to 3 (when , the dictio-
nary is initialized with only a DCT basis, and all the patches are
assigned to the same cluster), which shows that one Gaussian
model or, equivalently, a single linear estimator is not enough
to accurately describe the image. When increases, the gain
reduces and gets stabilized at about . Compromising
between performance and complexity, , which corre-
sponds to a angle sampling step, is selected in all the future
experiments.
Fig. 3(a) and (b) illustrates the Lena image and the corre-

sponding patch clustering, i.e., the model selection , obtained
for the above initialization, calculated with (7) in the E-step de-
scribed in Section II. The patches are densely overlapped, and

Figure D.1: When training the model for a pixel located on an edge (center of the
figure), using a large square window is not representative. A better idea is to use
other patches on the same edge for the training set, as shown by the red squares.

D.1.3 Weighted least squares estimation

Figure D.1 illustrates a case where considering a training set distributed along the

edge is more representative than using a square window.

We can take this into account by considering a weighted least squares strategy to

give more importance to similar patches. Thus, we can enlarge the training window,

or more precisely the search window, and give higher weights to pixels that have a

similar neighborhood. Similar to [84], we propose to calculate the weights through

w(i) = exp

{
−
‖p0 − pi‖φφ

S

}
, (D.2)

where p0 is a P × P patch around the center pixel, pi is a patch around the pixel

under evaluation, φ is the type of norm used and S is a controlling factor.

D.1.4 Elimination of dissimilar patches

Even using weights, we might want to discard pixels which are very dissimilar and

keep only L equations. This approach is equivalent to block-matching L patches in

a window around the pixel under training.

D.1.5 Summary

Table D.1 summarizes the values of the variables used in the experiment. All the

combinations, which can be grouped in a variable vector θ = [M ;L;P ;S;φ;N ], are

indexed and shown in Section D.1.6. Appendix I shows the images from the Kodak

dataset used in the experiment.
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Variable Values

Model order N ×N N = {3, 5, 7}
Training window size M ×M M = {7}

Patch size P × P for WLS P = {3, 5, 7}
Correction factor for WLS S = {0.1, 1, 2}

Norm used for WLS φ = {1, 2}
Number of equations to be used L = {8, 12, 16, 20}

Blur levels σb = {0, 1.67, 3.33, 5}
Noise levels σν = {0, 2, 5, 15}

Image set 24 images from Kodak dataset

Table D.1: Summary of variables evaluated in the PAR experiment. Number of
combinations = 28880.

D.1.6 Indexes for variable vectors

• M : Training window size

• L: Number of patches used in training

• P : Size of patches for WLS

• S: Controlling factor for WLS

• φ: Norm for WLS

• N : Model order

index: [M ;L;P ;S;φ;N ]

1[7; 8; 3; 0.1; 2; 3]

2[7; 8; 3; 0.1; 2; 5]

3[7; 8; 3; 0.1; 2; 7]

4[7; 8; 3; 1.0; 2; 3]

5[7; 8; 3; 1.0; 2; 5]

6[7; 8; 3; 1.0; 2; 7]

7[7; 8; 3; 2.0; 2; 3]

8[7; 8; 3; 2.0; 2; 5]

9[7; 8; 3; 2.0; 2; 7]

10[7; 8; 5; 0.1; 2; 3]

11[7; 8; 5; 0.1; 2; 5]

12[7; 8; 5; 0.1; 2; 7]

13[7; 8; 5; 1.0; 2; 3]

14[7; 8; 5; 1.0; 2; 5]

15[7; 8; 5; 1.0; 2; 7]

16[7; 8; 5; 2.0; 2; 3]

17[7; 8; 5; 2.0; 2; 5]

18[7; 8; 5; 2.0; 2; 7]

19[7; 8; 7; 0.1; 2; 3]

20[7; 8; 7; 0.1; 2; 5]

21[7; 8; 7; 0.1; 2; 7]

22[7; 8; 7; 1.0; 2; 3]

23[7; 8; 7; 1.0; 2; 5]

24[7; 8; 7; 1.0; 2; 7]

25[7; 8; 7; 2.0; 2; 3]

26[7; 8; 7; 2.0; 2; 5]

27[7; 8; 7; 2.0; 2; 7]

28[7; 12; 3; 0.1; 2; 3]

29[7; 12; 3; 0.1; 2; 5]

30[7; 12; 3; 0.1; 2; 7]

31[7; 12; 3; 1.0; 2; 3]

32[7; 12; 3; 1.0; 2; 5]

33[7; 12; 3; 1.0; 2; 7]

34[7; 12; 3; 2.0; 2; 3]

35[7; 12; 3; 2.0; 2; 5]

36[7; 12; 3; 2.0; 2; 7]

37[7; 12; 5; 0.1; 2; 3]

38[7; 12; 5; 0.1; 2; 5]

39[7; 12; 5; 0.1; 2; 7]

40[7; 12; 5; 1.0; 2; 3]

41[7; 12; 5; 1.0; 2; 5]

42[7; 12; 5; 1.0; 2; 7]

43[7; 12; 5; 2.0; 2; 3]

44[7; 12; 5; 2.0; 2; 5]

45[7; 12; 5; 2.0; 2; 7]

46[7; 12; 7; 0.1; 2; 3]

47[7; 12; 7; 0.1; 2; 5]

48[7; 12; 7; 0.1; 2; 7]

49[7; 12; 7; 1.0; 2; 3]

50[7; 12; 7; 1.0; 2; 5]

51[7; 12; 7; 1.0; 2; 7]

52[7; 12; 7; 2.0; 2; 3]

53[7; 12; 7; 2.0; 2; 5]

54[7; 12; 7; 2.0; 2; 7]

55[7; 16; 3; 0.1; 2; 3]

56[7; 16; 3; 0.1; 2; 5]

57[7; 16; 3; 0.1; 2; 7]

58[7; 16; 3; 1.0; 2; 3]

59[7; 16; 3; 1.0; 2; 5]

60[7; 16; 3; 1.0; 2; 7]

61[7; 16; 3; 2.0; 2; 3]

62[7; 16; 3; 2.0; 2; 5]

63[7; 16; 3; 2.0; 2; 7]

64[7; 16; 5; 0.1; 2; 3]

65[7; 16; 5; 0.1; 2; 5]

66[7; 16; 5; 0.1; 2; 7]

67[7; 16; 5; 1.0; 2; 3]

68[7; 16; 5; 1.0; 2; 5]

69[7; 16; 5; 1.0; 2; 7]

70[7; 16; 5; 2.0; 2; 3]

71[7; 16; 5; 2.0; 2; 5]

72[7; 16; 5; 2.0; 2; 7]

73[7; 16; 7; 0.1; 2; 3]

74[7; 16; 7; 0.1; 2; 5]

75[7; 16; 7; 0.1; 2; 7]

76[7; 16; 7; 1.0; 2; 3]

77[7; 16; 7; 1.0; 2; 5]

78[7; 16; 7; 1.0; 2; 7]

79[7; 16; 7; 2.0; 2; 3]

80[7; 16; 7; 2.0; 2; 5]

81[7; 16; 7; 2.0; 2; 7]

82[7; 20; 3; 0.1; 2; 3]

83[7; 20; 3; 0.1; 2; 5]

84[7; 20; 3; 0.1; 2; 7]

85[7; 20; 3; 1.0; 2; 3]

86[7; 20; 3; 1.0; 2; 5]

87[7; 20; 3; 1.0; 2; 7]

88[7; 20; 3; 2.0; 2; 3]

89[7; 20; 3; 2.0; 2; 5]

90[7; 20; 3; 2.0; 2; 7]

91[7; 20; 5; 0.1; 2; 3]

92[7; 20; 5; 0.1; 2; 5]

93[7; 20; 5; 0.1; 2; 7]

94[7; 20; 5; 1.0; 2; 3]

95[7; 20; 5; 1.0; 2; 5]

96[7; 20; 5; 1.0; 2; 7]

97[7; 20; 5; 2.0; 2; 3]

98[7; 20; 5; 2.0; 2; 5]

99[7; 20; 5; 2.0; 2; 7]

100[7; 20; 7; 0.1; 2; 3]

101[7; 20; 7; 0.1; 2; 5]

102[7; 20; 7; 0.1; 2; 7]

103[7; 20; 7; 1.0; 2; 3]

104[7; 20; 7; 1.0; 2; 5]

105[7; 20; 7; 1.0; 2; 7]

106[7; 20; 7; 2.0; 2; 3]

107[7; 20; 7; 2.0; 2; 5]

108[7; 20; 7; 2.0; 2; 7]

109[7; 8; 3; 0.1; 2; 3]
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D.2 The measurements

Depending on the noise and blur level of the observed image, we want to find which

variable vector yields the best model estimation. In order to evaluate the performance

of each of the models obtained, the following measurements were performed on the

residual vector e:

1. Mean, which was confirmed to be zero on average and will not be further

mentioned.

2. Variance, which is the mean squared error. A model which gives low variance

provides a good description of the image.

3. Maximum absolute error, in order to check for outliers. Low maximum absolute

error implies that the model is flexible and adaptable to image structures.

4. Shape parameter of a Generalized Gaussian distribution, see Appendix H and

next section.

Shape parameter in Generalized Gaussian distribution

From a Bayes perspective, the cost function

f̂ = arg min
f

‖Hf − g‖2 + λ ‖(I−A) f‖2 , (D.3)

which was used earlier in this work, assumes that the residuals are Gaussian. For the

term ‖Hf − g‖2 the assumption is coherent since we assumed an observation model

where the additive noise was Gaussian.

The assumption was extended to ‖(I−A) f‖2 in order to simplify the calculations.

However, this may not be the case since nothing was assumed for the PAR model.

By determining the shape of the residuals (Gaussian, Laplacian, etc), we can

alter the prior norm in the cost function to a more adequate one. For instance, if the

residuals are Gaussian distributed, `2 norm should be used; if they are Laplacian, `1

norm is more appropriate.

In fact, the average shape parameter of the distribution of residuals was p = 1.1

considering all runs. This indicates that `1 norm should be used for the residuals, i.e.

‖(I−A) f‖1 instead of ‖(I−A) f‖2. A recent work [57] also uses `1 norm for this

term.

D.2.1 Consistency throughout image data set

We also calculated the variance of the measurements within the image dataset. This

evaluates the consistency given by a combination of variables.
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Blur\Noise 0 2 5 15

0 5 48 48 48
1.67 12 66 48 48
3.33 12 30 30 12

5 12 48 30 12

(a) Minimum variance

Blur\Noise 0 2 5 15

0 5 58 4 58
1.67 12 66 30 37
3.33 12 12 12 30

5 12 48 30 30

(b) Max variance consistency

Table D.2: Evaluation of the variance

Blur\Noise 0 2 5 15

0 31 10 28 19
1.67 12 40 40 1
3.33 12 40 58 37

5 15 4 4 55

(a) Minimum
∣∣∣φ̂− 1

∣∣∣

Blur\Noise 0 2 5 15

0 16 2 3 3
1.67 2 16 16 16
3.33 6 8 8 3

5 16 6 6 8

(b) Max
∣∣∣φ̂− 1

∣∣∣ consistency

Table D.3: Evaluation of shape parameter

D.2.2 Summary

Summarizing, we want to find which variable vector produces the minimum variance

with maximum consistency for each combination of blur and noise. Additionally, it

is desired that the shape parameter be close to 1.

D.3 The results

Table D.2a shows the index of the simulation (see Section D.1.6 for indexes) which

resulted in the minimum variance considering all images of the dataset. Table D.2b

shows the index of the run which provided the best consistency of this measurement

(minimum variance of the measurement between images).

Table D.3a shows the index which provided residuals with shape format closest

to 1 and Table D.3b shows the consistency of this measurement. Table D.4 shows

the average minimum maximum error.

Table D.5 shows the number of appearances of some indexes in the Tables D.2a,

D.2b, D.3a, D.3b and D.4.

D.4 Conclusions

It was not possible to draw a definite conclusion from the experiments, because none

of variable vectors satisfied at the same time the desired characteristics, namely:
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Blur\Noise 0 2 5 15

0 5 48 66 48
1.67 12 30 48 48
3.33 12 66 30 48

5 12 66 66 12

Table D.4: Minimax absolute error: min max
i

|[e]i|

Index Frequency Variable vector
[M ;L;P ;S;φ;N ]

12 20 [7; 08; 5; 0.1; 2; 7]
48 13 [7; 12; 7; 0.1; 2; 7]
30 12 [7; 12; 3; 0.1; 2; 7]
66 7 [7; 16; 5; 0.1; 2; 7]
16 5 [7; 08; 5; 2.0; 2; 3]

Table D.5: Number of appearances of some indexes as best option in the experiment.

minimum variance, minimum maximum absolute error, maximum consistency and

shape parameter closest to 1.

Nevertheless, the experiment provided some insights about model training, which

are described next.

1. Shape parameter of the distribution of residuals is on average φ = 1.1.

2. When using WLS, `2 norm should be used when comparing patches, i.e. φ = 2,

which was also used in [84, 122].

3. Although the search window size was fixed at 7 × 7, discarding pixels with

different neighborhood from the training set seems to be a good practice. The

ideal total number of pixels L is between 8 and 16.

4. The model order N×N which yielded the best results was 7×7 = 49. Obviously,

we used a minimum-norm WLS because we had much fewer equations than

parameters. This result is reasonable because higher orders provides more

flexibility. However, in [56, 57, 59] it is mentioned that models of high order

might cause overfitting during reconstruction, fact that was not considered in

the experiment.

5. The correction factor S should be set to 0.1, which is around the value suggested

in [84].

Rigorously, a more meaningful experiment would be evaluating the average PSNR

of reconstructed images using the model estimated with the variables of each index

and for each combination of blur and noise.
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Later, given a degraded image and estimates of blur and noise levels, one would

simply select the best combination of variables for model estimation. In other words,

the index which produces the best reconstruction PSRN on average. Clearly, though,

the number of runs would dramatically increase and would render the experiment

intractable.
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Appendix E

Models revisited

A pertinent question is whether piece-wise autoregressive (PAR) models are really a

good option as priors to inverse problems in image processing. We try to answer

this question, at least partially, by reviewing some modeling methodologies used in

the literature. The focus will be on the use of models in inverse problems and the

techniques considered related to PAR models will be described in more detail.

E.1 Analysis and synthesis in inverse problems

Before digging into the models, we highlight and clarify the two approaches that are

commonly used in the literature of inverse problems.

E.1.1 Analysis

Although not mentioned before, we have used so far in this work the analysis

approach, which can be written as

f̂ = arg min
f

‖Wf − g‖2 + λ ‖Ωf‖φφ , (E.1)

where Ω is referred to as analysis operator and φ is the norm used in the prior.

In the analysis approach we choose, among all possible solutions1 to the problem,

the one that possess the least amount of certain undesired characteristics. Those

characteristics are extracted from the image through the analysis operator, i.e., Ωf .

The analysis approach is quite common in inverse problem, encompassing Tikhonov

regularization, Total Variation and many others [1]. In the case of anisotropic TV,

for instance, the gradient matrix D along with the `1 norm are used as analysis

operator. Thus, when TV is used as prior, we select the image with the minimum

total variation which also maintains fidelity to the observations.

1Solutions that are consistent with the observations.
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E.1.2 Synthesis

More recent and supposedly stimulated by the basis pursuit method [123], the

synthesis approach initially assumes that the signal f can be represented by a linear

combination of “few” vectors, which are referred to as atoms [68]. The atoms would

be the basic structures from which the image can be built.

Mathematically, we could construct an image through

f =
∑

i

uiψi (E.2)

or, using vector notation,

f = Ψu, (E.3)

where the coefficients {ui}, are often grouped in the vector u. The atoms {ψi} are

usually arranged in columns to form a matrix Ψ which is then called a dictionary.

If the dictionary has more columns than rows, Ψ is denominated a redundant

dictionary2.

If Ψ is sufficiently representative of some signal (and possibly redundant, with

many choices of basic structures), we expect to need only few atoms to generate

the signal and, therefore, the elements of u are mostly zero. This concept is termed

sparse representations.

The key idea is to recover the original image through

f̂ = Ψ arg min
u

‖WΨu− g‖2 + λ ‖u‖φφ , (E.4)

where φ < 2 is used to promote sparsity in u, i.e., maximize its number of zero

elements.

In the synthesis approach we chose, among all the possible solutions to the

problem, the one that can be formed with the lowest number of atoms from a certain

dictionary. It is clear that this approach is effective only if the initial assumption

that f has a sparse representation in Ψ is valid.

E.1.3 Analysis versus synthesis - I

In the synthesis approach, the focus is on the design of good dictionary, because the

final answer will be necessarily in the column space of Ψ. Moreover, only few atoms

should be used.

On the other hand, the analysis approach focuses on undesired features. Such

features will be penalized during the reconstruction, i.e., the solution is not expected

2Additionally, the matrix Ψ must be full rank. When it is square and full rank, it is simply called
a linear basis. Redundant dictionaries are also called frames using linear algebra nomenclature.
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Fig. 9.2 The matrix T for the 1D Total-Variation (left) and the corresponding synthesis operator
A, the Heaviside basis (right).

es, and the first diagonal to the right containing (−1)-es. We compute its inverse,
A = T−1, and the resulting matrix gives the Heaviside basis. Its columns are simple
step functions in all possible n locations. Figure 9.2 presents these two matrices,
both of size 100 × 100.

The equivalence between these two operators is natural since in analysis terms,
we seek a piecewise smooth signal that shows little energy in the sum of the ab-
solute derivatives. In a generative way, this implies that such a signal is built as a
linear combination of few step functions. This way, we see that our proposed model
can cover known Markov-Random-Field (MRF) models that are extensively used in
signal and image processing.

The above may suggest that analysis and synthesis based modelings may become
equivalent in the general case, where A is a full-rank matrix of size n×m with n < m,
with the following two presumably equivalent formulations for denoising:

(PS ynthesis) ŷs = A · arg min
x
‖x‖0 subject to ‖y − Ax‖2 ≤ ε + δ

(PAnalysis) ŷa = arg min
z
‖Tz‖0 subject to ‖y − z‖2 ≤ ε + δ,

for A = T+ = (TT T)−1TT . In fact, starting from the analysis formulation, we define
Tz = x and thus we can replace the term ‖Tz‖0 by the simpler, ‖x‖0. Multiplying this
equation by TT , we obtain the relation TT Tz = TT x. Based on the full-rank assump-
tion made above regarding A (and thus T), this implies that z = (TT T)−1TT x = Ax,
and therefore the `2-term in the constraint can be replaced to from ‖y − z‖2 to
‖y − Ax‖2.

While this seems like a perfect transfer from the analysis to the synthesis formu-
lation, it is in fact missing a key element. From the two equations we got, Tz = x and
z = (TT T)−1TT x, immediately follows the requirement on x, T(TT T)−1TT x = x.
This requirement simply states that x must reside in the range of T. Adding this as a
constraint to the synthesis formulation, we get an exact equivalence, and otherwise,
the synthesis gets a larger number of degrees of freedom, and thus its minimum is
deeper (in fact, it is upper-bounded by the analysis formulation).

(a) Analysis matrix for the 1D TV
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es, and the first diagonal to the right containing (−1)-es. We compute its inverse,
A = T−1, and the resulting matrix gives the Heaviside basis. Its columns are simple
step functions in all possible n locations. Figure 9.2 presents these two matrices,
both of size 100 × 100.

The equivalence between these two operators is natural since in analysis terms,
we seek a piecewise smooth signal that shows little energy in the sum of the ab-
solute derivatives. In a generative way, this implies that such a signal is built as a
linear combination of few step functions. This way, we see that our proposed model
can cover known Markov-Random-Field (MRF) models that are extensively used in
signal and image processing.

The above may suggest that analysis and synthesis based modelings may become
equivalent in the general case, where A is a full-rank matrix of size n×m with n < m,
with the following two presumably equivalent formulations for denoising:

(PS ynthesis) ŷs = A · arg min
x
‖x‖0 subject to ‖y − Ax‖2 ≤ ε + δ

(PAnalysis) ŷa = arg min
z
‖Tz‖0 subject to ‖y − z‖2 ≤ ε + δ,

for A = T+ = (TT T)−1TT . In fact, starting from the analysis formulation, we define
Tz = x and thus we can replace the term ‖Tz‖0 by the simpler, ‖x‖0. Multiplying this
equation by TT , we obtain the relation TT Tz = TT x. Based on the full-rank assump-
tion made above regarding A (and thus T), this implies that z = (TT T)−1TT x = Ax,
and therefore the `2-term in the constraint can be replaced to from ‖y − z‖2 to
‖y − Ax‖2.

While this seems like a perfect transfer from the analysis to the synthesis formu-
lation, it is in fact missing a key element. From the two equations we got, Tz = x and
z = (TT T)−1TT x, immediately follows the requirement on x, T(TT T)−1TT x = x.
This requirement simply states that x must reside in the range of T. Adding this as a
constraint to the synthesis formulation, we get an exact equivalence, and otherwise,
the synthesis gets a larger number of degrees of freedom, and thus its minimum is
deeper (in fact, it is upper-bounded by the analysis formulation).

(b) Synthesis matrix of step functions.

Figure E.1: The matrices in (a) and (b) are inverse. Reconstruction through 1D
TV promotes piecewise constant signals. The same signals can be synthesized from
shifted step functions (Heaviside) [70].

to possess them.

Despite these fundamental differences, in some cases both approaches are indeed

equivalent. Suppose the analysis operator Ω is a nonsingular squared matrix. We

can define u = Ωf and write f = Ω−1u. Combining this with (E.1) yields

f̂ = Ω−1 arg min
u

∥∥WΩ−1u− g
∥∥2

+ λ ‖u‖φφ , (E.5)

which is equivalent to (E.4). Specifically, the dictionary is simply the inverse of the

analysis operator, i.e., Ψ = Ω−1. Figure E.1 shows a classic example of a pair of

matrices representing two related analysis and synthesis operators.

For the undercomplete case, Ω ∈ RM×N , Ψ ∈ RN×M , M < N , the equivalence

still holds and is demonstrated in [68]. Since only few atoms in the dictionary and

few “analyzers” in the analysis operator are available, the correspondence is obtained

through generalized inverse.

However, for the overcomplete case, M > N , where dictionaries and analyzers

are redundant, the approaches diverge and yield distinct solutions [68]. This subject

will be revisited in Section E.5.

E.2 Generative models

The synthesis approach is considered the most intuitive. It is more natural to think

of constituent structures of the images (atoms) than non-constituents or forbidden

structures (“analyzers”). Therefore, we will initially review generative models that

have been traditionally used when solving inverse problems through the synthesis
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Figure E.2: Atoms of a 2D DCT used in the JPEG image compression format.

approach.

E.2.1 DCT - Discrete cosine transform

When restricted to local small blocks, e.g. 8×8, natural images can be approximated

by stationary processes. This implies that cosines are eigenvectors of their autocor-

relation matrices. In addition, natural images are highly correlated. These facts

explain why the discrete cosine transform (DCT) is a good model natural images.

Figure E.2 shows an example of the two-dimensional DCT used in the JPEG format.

The difference between the DCT and the DFT stems from boundary conditions.

While the DFT imposes a periodic repetition of the signal beyond its support,

the DCT implies in a mirroring, or an even extension. Because images are highly

correlated, this mirroring property of DCT produces a greater energy compaction

when applied to image blocks, i.e., most of the signal information tends to concentrate

in a few low-frequency components.

Because of its interesting properties, DCT has been used, as well as variants such

as the redundant DCT [68], in many inverse problems. Examples of algorithms for

denoising, deblurring and interpolation using DCT can be found in [68, 70, 124–129].

E.2.2 Wavelets and descendants

Wavelets [130], curvelets [131–133], ridgelets [134, 135] contourlets [136] are some

examples of vast family of multi-resolution decompositions that have been extensively

applied to image processing problems.

Such transforms provide efficient ways to decompose images. In this case, ef-
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ficiency means the ability to represent a signal using just few atoms. Unlike the

DCT coefficients, which are concentrated near the origin, wavelet transforms and

descendants promote sparsity of the coefficients. Specifically, it is expected that

most of the coefficients are zero, though there is no predetermined location in the

transform domain.

Using `0 norm3, we can solve an inverse problem through

f̂ = Ψ arg min
u

‖WΨu− g‖2 + λ ‖u‖0 . (E.6)

A tractable alternative to `0 norm is the `1 norm, which also promotes sparsity

[137]. Examples of algorithms that use wavelets for solving inverse problems can be

found in [70, 138–141].

E.2.3 Redundant dictionaries - I

In order to create a richer and more representative dictionary for images with mixed

characteristics, one can combine atoms from different dictionaries. In [142], for

example, DCT vectors were used to represent textures, whereas wavelet, curvelet

and ridgelet atoms were used to represent smooth areas and contours.

E.2.4 Natural image elements

The methods presented so far employ elements of harmonic analysis that, heuristically,

provide good results in image representation. However, one can question whether

those elements are indeed the real basic components of images, like pieces of a puzzle

from which any natural image could be generated.

This idea has been explored in several works [13, 143, 144], where interesting

parallels with mammals’ visual system are drawn. The basic supposition is that if

animals have evolved to interpret natural images, then their visual systems should

be formed by structures specialized to process natural images components.

Analysis on the primary visual system of mammals demonstrated that its struc-

tures and cells are characterized by spatial location, orientation and band-pass

response. In [143], it was found that decompositions of natural images that promote

sparsity also generate atoms with those characteristics. Contrasting to previous

approaches that had not yielded results of such significance, the success of [143] was

attributed to a greater statistical independence afforded by sparsity.

In [13], similar results were obtained using ICA (independent component anal-

ysis) [145]. Although the name of the technique emphasizes the independence of

3`0 is not a norm in the strict sense (it does not satify norm axioms). However, it is often used
as a count of nonzero elements of a vector.
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11.7 Topographic ICA of natural images 259

Fig. 11.5: The whole set of vectorsAi obtained by topographic independent component analysis.

tion is very strongly skewed: most linear features are tunedto high frequencies.
However, the distribution of frequencies is a bit closer to uniform than in the cases
of ICA (Fig. 6.9) or ISA (Fig. 10.9).

The connection of the model to ISA suggests that the local energies can be in-
terpreted as invariant features. What kind of invariances do we see emerging from
natural images? Not surprisingly, the invariances are similar to what we obtained
with ISA, because the neighbourhoods have the same kinds of parameters correla-
tions (Figure 11.6) as in ICA; we will not analyze them in moredetail here. The
main point is thatlocal energies are like complex cells. That is, the topographic ICA
model automatically incorporates a complex cell model.

Basically, the conclusion to draw from these results is thatthe topographic ICA
model produces a spatial topographic organization of linear features that is quite
similar to the one observed in V1.

Figure E.3: Example of atoms generated by topographic ICA from a set of 50.000
natural image patches (32× 32). The layout of the components is related to their
statistical dependence (the closer, the more dependent). Moreover, these components
have similar characteristics to the cells of the primary visual system of mammals
[13].

components generated, it was observed that the results obtained by ICA were not

really independent, and better results were obtained with topographic ICA [146, 147]

(see Figure E.3) and ISA (independent subspace analysis) [148–150].

Both approaches share the following idea: the components (atoms) are supposed

to belong to different classes or clusters. Then, the optimization is driven towards

the maximization of independence between classes, rather than between the atoms

themselves.

The atoms of a certain class obtained by this procedure are, in fact, rotated

and translated versions of the same feature, i.e., the feature represented by the

class. In other words, such approaches yield rotational and translational-invariant

representations.

E.2.5 Redundant dictionaries - II

Although pre-constructed dictionaries (from DCT, wavelets and descendants, as seen

in Section E.2.3) provide fast implementations, such approaches are limited to the

signals for which they were designed and have no direct connection with natural

images [70]. An alternative approach is to design redundant dictionaries directly

from natural image patches.

A widely used method for this purpose is the K-SVD algorithm [95], which bears

resemblance to clustering and vector quantization techniques. K-SVD is a two-step

iterative algorithm: given an initial dictionary Ψ, the first step encodes a set of I
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of the de�nition, any subset c is either a singleton or composed of mutually
neighboring sites: C is a set of cliques for G .

When variables are attached to the pixels of an image, the most common
neighborhood systems are the regular ones where a site away from the border
of the lattice has four or eight neighbors. In the �rst case (�rst-order neighbor-
hood system, like in Figure 1.a) subsets c have at most two elements, whereas,
in the second-order neighborhood system cliques can exhibit up to 4 sites. How-
ever, other graph structures are also used: in segmentation applications where
the image plane is partitioned, G might be the planar graph associated to the
partition (Figure 1.b); and hierarchical image models often live on (quad)-trees
(Figure 1.c).

(a) (b) (c)

Figure 1. Three typical graphs supporting mrf-based models for image
analysis: (a) rectangular lattice with �rst-order neighborhood system; (b)
non-regular planar graph associated to an image partition; (c) quad-tree. For
each graph, the grey nodes are the neighbors of the white one.

The independence graph conveys the key probabilistic information by absent
edges: if i and j are not neighbors, PX(x) can obviously be split into two parts
respectively independent from xi and from xj . This su�ces to conclude that
the random variables Xi and Xj are independent given the others. It is the
pair-wise Markov property [29, 39].

In the same fashion, given a set a � S of vertices, PX splits intoQ
c:c\a6=� fc�

Q
c:c\a=� fc where the second factor does not depend on xa. As

a consequence PXajXS�a
reduces to PXajXn(a)

, with:

PXajXn(a)
(xajxn(a)) /

Y
c:c\a6=�

fc(xc) = expf�
X

c:c\a6=�

Vc(xc)g; (3)

with some normalizing constant Za(xn(a)), whose computation by summing
over all possible xa is usually tractable. This is the local Markov property.
The conditional distributions (3) constitute the key ingredients of iterative
procedures to be presented, where a small site set a (often a singleton) is
considered at a time.

It is possible (but more involved) to prove the global Markov property ac-
cording to which, if a vertex subset A separates two other disjoint subsets B
and C in G (i.e., all chains from i 2 B to j 2 C intersect A) then the random
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Figure E.4: Three typical graphs of MRF-based models used in image processing
[152]. The gray nodes are neighbors of each white node. (a) Rectangular grid of first
order. (b) Non-rectangular graph associating partitions of an image. (c) Tree graph.

patches obtaining a set of coefficient vectors {ui}1≤i≤I . The second step uses these

coefficient vectors to update the dictionary atoms in order to better represent the

set of patches. The process is repeated iteratively until some convergence criterion is

attained. The equation (E.7) summarizes the procedure.

Ψ = arg min
Ψ,u

I∑

i=1

{∥∥f (i) −Ψui
∥∥2

+ λ ‖ui‖0

}
(E.7)

Examples of inverse problems using dictionaries obtained by K-SVD can be found

in [95].

E.3 Energy-based models

Traditionally, when the analysis approach is used in inverse problems, energy-based

models are employed. These are inspired in statistical models of mechanical systems.

Gray levels and contours of images are linked to states of atoms and molecules in

physical systems. We present next some examples of such approaches.

E.3.1 MRF - Markov Random Fields

The theory of Markov random fields (MRF) is a branch of probability that studies

spatial dependence between physical phenomena. The first use of MRF in image

processing was in [151] and description that follows takes this approach.

MRF are based on the theory of undirected graphs. A graph G = (S,N ) is

ordered pair comprising a set of vertices, sites or nodes S and a set of edges N
linking the nodes, see Figure E.4. Although several analogies are possible, we will use

here the correspondence where each node represents a pixel and each edge represents

some dependency between two pixels.
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Besides being undirected graphs, MRF have the Markovian property, where the

conditional probability of future states depends only on the current state. For the

case of images, this idea is translated into the assumption that a particular pixel

intensity i ∈ S depends only on the statistics of its neighbors i′ ∈ Ni which can

be first-order (only adjacent pixels) or higher order dependencies, involving farther

pixels.

For regular neighboring systems, we can use the following definition

Ni = {i′ | ‖ni − ni′‖ < r, i′ 6= i}, (E.8)

where ni and ni′ are pixel coordinates and r is the neighborhood radius.

Fixing the neighborhood, we call cliques, denoted by c, pixel indexes which are

grouped in the sets

I1 = {i} (E.9)

I2 = {{i, i′} | i′ ∈ Ni} (E.10)

I3 = {{i, i′, i′′} | i′, i′′ ∈ Ni} (E.11)

... (E.12)

IN = {{i, i′, · · · , i(N)} | i′, i′′, · · · i(N) ∈ Ni}, (E.13)

which comprise individual pixels, pair of pixels, triples and so on [153]. We call

maximal cliques IN the sets encompassing a certain pixel index i and all its neighbors.

From now on, we will use I for the set of all maximal cliques.

Using MRF, the probability of an image can be given by

p(f) =
1

Z
exp

{
−
∑

i∈I

U(f (i))

}
, (E.14)

where U(·) is referred to as potential function and f (i) are the pixels of the maximal

clique c or, equivalently, an image patch around the pixel i.

Although MRF can be quite generic, the maximal cliques are commonly restricted

to the direct neighbors and the model is simplified to [80, 151]

p(f) =
1

Z
exp



−

∑

(i,j)∈E

U(fi, fj)



 , (E.15)

where the potential is usually defined for pixel differences, i.e.,

U(fi, fj) = ρ(fi − fj) (E.16)

132



Roth and Black

−10 −5 0 5 10
0

2

4

6

8

10

(a) (b) (c)

Figure 2: Typical pairwise MRF potential and results: (a) Example of a common robust potential function (negative
log-probability). This truncated quadratic is often used to model piecewise smooth surfaces. (b) Image with
Gaussian noise added. (c) Typical result of denoising using an ad-hoc pairwise MRF (obtained using the method
of Felzenszwalb and Huttenlocher (2004)). Note the piecewise smooth nature of the restoration and how it lacks
the textural detail of natural scenes.

Figure 3: Filters representing first and second order
neighborhood systems (Geman and Reynolds, 1992).
The left two filters correspond to first derivatives, the
right three filters to second derivatives.

2.1 High-order Markov random fields

There have been a number of attempts to go beyond
these very simple pairwise models, which only model
the statistics of first derivatives in the image structure
(Geman et al., 1992; Zhu and Mumford, 1997; Zhu et al.,
1998; Tjelmeland and Besag, 1998; Paget and Longstaff,
1998). The basic insight behind such high-order models
is that the generality of MRFs allows for richer mod-
els through the use of larger maximal cliques. One ap-
proach uses the second derivatives of image structure.
Geman and Reynolds (1992), for example, formulate
MRF potentials using polynomials determined by the
order of the (image) surface being modeled (k = 1, 2, 3
for constant, planar, or quadric).

In the context of this work, we think of these polyno-
mials as defining linear filters, Ji, over local neighbor-
hoods of pixels. For the quadric case, the corresponding
3× 3 filters are shown in Figure 3. In this example, the
maximal cliques are square patches of 3 × 3 pixels and
their corresponding potential for clique x(k) centered at
pixel k is written as

U(x(k)) =
5∑

i=1

ρ(JT
i x(k)), (5)

where the Ji are the shown derivative filters. When ρ
is a robust potential, this corresponds to the weak plate
model (Blake and Zisserman, 1987).

The above models are capable of representing richer
structural properties beyond the piecewise spatial
smoothness of pairwise models, but have remained

largely hand-defined. The designer decides what might
be a good model for a particular problem and chooses
a neighborhood system, the potential function, and its
parameters.

2.2 Learning MRF models

Hand selection of parameters is not only somewhat ar-
bitrary and can cause models to only poorly capture
the statistics of the data, but is also particularly cum-
bersome for models with many parameters. There ex-
ist a number of methods for learning the parameters
of the potentials from training data (see (Li, 2001) for
an overview). In the context of images, Besag (1986)
for example uses the pseudo-likelihood criterion to learn
the parameters of a parametric potential function for a
pairwise MRF from training data. Applying pseudo-
likelihood in the high-order case is, however, hindered
by the fact that computing the necessary conditionals
is often difficult.

For Markov random field modeling in general (i. e.,
not specifically for vision applications), maximum like-
lihood (ML) (Geyer, 1991) is probably the most widely
used learning criterion. Nevertheless, due to its of-
ten extreme computational demands, it has long been
avoided. Hinton (2002) recently proposed a learning
rule for energy-based models, called contrastive diver-
gence (CD), which resembles maximum likelihood, but
allows for much more efficient computation. In this pa-
per we apply contrastive divergence to the problem of
learning Markov random field models of images; details
will be discussed below. Other learning methods in-
clude iterative scaling (Darroch and Ratcliff, 1972; della
Pietra et al., 1997), score matching (Hyvaärinen, 2005),
discriminative training of energy-based models (LeCun
and Huang, 2005), as well as a large set of variational
(and related) approximations to maximum likelihood
(Jordan et al., 1999; Yedidia et al., 2003; Welling and
Sutton, 2005; Minka, 2005).

In this work, Markov random fields are used to model

4

Figure E.5: Filters that perform first and second derivatives used in [154].

with ρ(·) being some truncated quadratic function or simply ρ(x) = |x|. The latter,

for instance, can be used to described the total variation (TV) prior. In [154], TV

was extended to include second derivatives, see Figure E.5.

In short, MRF provides a very general scheme for image modeling. Examples

of MRF in image processing can be found in [153, 155–158]. In terms of image

denoising and deblurring, we describe next the approach often assumed the most

successful among the MRF-based algorithms.

E.3.2 FoE - Field of Experts

The `1 norm and the gradient operator D used in the TV prior can be considered

somewhat arbitrary. Although this pair provides interesting results, the idea of

using another type of filter and other norms or potentials have been explored in

several works [159–161]. We present here the technique called Field of Experts (FoE)

developed in [80], which generalizes filters and potentials from a MRF perspective.

The derivative operators Dx and Dy are replaced by vectors jc over which the

image is projected or filtered, i.e., jT
c f , and the `1 norm is replaced by experts, which

are functions such as

ϕ(x;α) =

(
1 +

1

2
x2

)−α
(E.17)

which is the Student-t distribution used in [162] or

ϕ(x;α) = exp
{
−α
√

1 + x2
}

, (E.18)

referred to as Charbonnier expert [163], a differentiable equivalent of the `1 norm.

Using FoE, the probability of an image given by

p(f) =
1

Z

∏

i∈I

C∏

c=1

ϕ(jT
c f (i);αc). (E.19)

We note in (E.19) that the image patches are projected on the C vectors jc and,

afterwards, these inner products are evaluated by the experts. Then, the values

returned by the experts are multiplied in the double product. To an image f is given

high probability if the double product returns a value close to 1. FoE also defines

procedures to train the filters jc and the expert parameters αc from a large set of
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rameter updates are stochastic and thus exhibit a cer-
tain degree of variation due to sampling. To stabilize the
learning procedure, we introduce a momentum term as
suggested by Teh et al. (2003); each parameter update
is a weighted sum of the previous update (weight 0.9)
and the intended update (weight 0.1) as determined by
the current samples. The stochastic character of the
updates also makes it difficult to establish automated
convergence criteria. We thus manually monitor con-
vergence. The learning algorithm can furthermore be
stabilized by ensuring that the expert parameters αi
are positive. Positive expert parameters are required to
make each expert have a proper probability density, but
we should note that due to the “overcompleteness” of
the FoE model, not all the αi have to be positive for the
FoE to represent a proper probability density. In most
of our experiments, we ensure positivity of the expert
parameters by updating their logarithm.

As we will discuss in some more detail alongside the
experiments in Section 5.3, we investigated representing
the filter vectors in 3 different bases. In other terms, in-
stead of learning the filters J directly, we represented
the filters as J = ATJ̃, where A is the basis in which
the filters are defined, and learn the basis representation
J̃ using contrastive divergence. It is important to note
that this does not change the learning objective in any
way, but due to the fact that we use a local stochas-
tic learning rule, it may still lead to different learned
parameters. For most of our experiments we use an
inverse whitening transformation as the basis (see Sec-
tion 5.3.1). Furthermore, we also make the model in-
variant to global changes in gray level by removing the
basis vector that represents uniform patches.

Fig. 6 shows the filters learned by training a FoE
model with 5× 5 pixel cliques, 24 filters, and Student-t
experts. These filters respond to various edge and tex-
ture features at multiple orientations and scales and,
as demonstrated below, capture important structural
properties of images. They appear to lack, however,
the clearly interpretable structure of the filters learned
using the standard PoE model (cf. Fig. 4). We conjec-
ture that this results from the filters having to account
for the statistical dependency of the image structure in
overlapping patches, and show in Section 5.3 that these
somewhat unusual filters are important for application
performance.

Despite the stochastic gradient procedure and the use
of efficient sampling techniques, learning is still compu-
tationally intensive. Training a 3×3 model with 8 filters
on 15×15 patches takes 8 CPU hours on a single PC (In-
tel Pentium D, 3.2 GHz). Training a 5 × 5 model with
24 filters requires roughly 24 CPU hours. We should
note though that training occurs offline ahead of appli-
cation time, and is done only once per kind of data to
be modeled.

0.162 0.156 0.155 0.148 0.113

0.112 0.102 0.100 0.089 0.088

0.085 0.050 0.050 0.046 0.038

0.034 0.026 0.020 0.019 0.013

0.013 0.012 0.011 0.009

Figure 6: 5× 5 filters obtained by training the Field-of-
Experts model with Student-t experts on a generic im-
age database. Each filter is shown with the correspond-
ing αi, which can be viewed as weights multiplying the
log experts in the energy formulation of the model.

3.5 Inference

There are a number of methods that can be used for
probabilistic inference with the Field-of-Experts model.
In most of the applications of the model, we are inter-
ested in finding the solution that has the largest pos-
terior probability (MAP estimation). As already dis-
cussed in Section 2.3 in the context of general MRF
models, inference with FoEs will almost necessarily have
to be approximate, not only because of the loopy graph
structure, but also because of the high dimensionality of
images, and the large state space (large number of gray
levels, even when discretized). In principle, sampling
techniques, such as Gibbs sampling, can be employed
in conjunction with the FoE model. Due to the cost of
sampling the posterior model, they are computationally
very intensive.

Recently, work on approximate inference in graphical
models has focused on belief propagation (BP) (Yedidia
et al., 2003), a message passing algorithm that typ-
ically leads to very good approximations (if it con-
verges). Efficient variants of belief propagation have
been recently applied to image restoration problems,
which were previously infeasible due to the large num-
ber of states (gray values) in images (Felzenszwalb and
Huttenlocher, 2004). For these efficient methods sim-
ple pairwise Markov random fields are used to model
images. In the case of the FoE model on the other
hand, applying belief propagation is unfortunately not

10

Figure E.6: Example of filters learned with FoE from a set of generic natural images
patches with the associated α shown on top [80].

natural image patches.

A very intuitive description of FoE is provided in [164]. First, let’s take a look at

some filters (Figure E.6) and some experts (Figure E.7) obtained from a training

using a generic set of image patches.

The filters are high-pass, although natural images are low-pass. Therefore, the

product jT
c f (i) tends to yield low values, which will produce values close to 1 when

evaluated by the experts. These, in turn, enter the double product of (E.19) finally

assigning high probability to f .

On the other hand, if f is not a natural image, e.g. noise, the inner products

jT
c f (i) are expected to yield high energy which will ultimately assign low probability

to the image. In other words, the filters are trained so as they fire rarely on natural

images but frequently on all other images. Rather than modeling natural image

features, the filters represent “forbidden” characteristics, i.e., features that are not

thought as natural [165].

This interpretation is coherent with TV, for example, where we penalize the

total variation of the image because we know a priori that natural images should

have low variation. Similar to the Laplacian distribution used in TV, which “allows”

some outliers (the edges of images), the Student-t distribution also has long tails.

Conversely, though, the parameter α used in FoE provides an extra flexibility since

we can fine-tune the importance of each filter in a general description of images.

Interestingly, if we use Gaussian potentials instead of Student-t ones, the optimal

filters are given by the latest vectors of the PCA basis of the patches, the so-called

minor components [166]. The rationale is that the minor components are the least

representative of the data and, therefore, should be avoided in the solution. In

the FoE framework, the minor components get higher weights (higher values of α),
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Figure E.7: Example of Student-t distributions for some α corresponding to filters
in Figure E.6. The distribution exhibits longer tails for smaller values of α, which
indicates lower importance of the correspondent filter. The long tails allow more
outliers, signaling a weaker penalization.

meaning that such features should be more severely penalized during reconstruction.

The FoE model developed in [80] uses parametric potentials (Student-t distribu-

tions) while the filters are trained from data. A variation developed in [159] adopts

fixed filters which are selected from a set of directional derivatives, whereas the

potential functions have arbitrary shape and are trained from a set of natural images.

However, the approach in [80] generates better reconstruction.

E.4 Nonlocal models

Although parametric models are interesting in terms of versatility, theoretical foun-

dation and generalization ability, the most successful approaches nowadays are those

that exploit another aspect of natural images: structures of an image repeat within

the same image [167]. In this case, the information that we have a priori would

not be the structures themselves, but the fact that whatever these structures are,

they should appear at different locations. Often, such an approach is referred to as

nonlocal.

Several methods exploiting this aspect have been proposed lately [84, 122, 168,

169]. We will review here three noteworthy state-of-the-art techniques.
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Fig. 1. Illustration of grouping blocks from noisy natural images corrupted by white Gaussian noise with standard deviation 15 and zero mean. Each fragment
shows a reference block marked with “R” and a few of the blocks matched to it.

Block-matching (BM) is a particular matching approach that
has been extensively used for motion estimation in video com-
pression (MPEG 1, 2, and 4, and H.26x). As a particular way of
grouping, it is used to find similar blocks, which are then stacked
together in a 3-D array (i.e., a group). An illustrative example of
grouping by block-matching for images is given in Fig. 1, where
we show a few reference blocks and the ones matched as similar
to them.

C. Collaborative Filtering

Given a group of fragments, the collaborative filtering of
the group produces estimates, one for each of the grouped
fragments. In general, these estimates can be different. The term
“collaborative” is taken literally, in the sense that each grouped
fragment collaborates for the filtering of all others, and vice
versa.

Let us consider an illustrative example of collaborative fil-
tering for the estimation of the image in Fig. 2 from an observa-
tion (not shown) corrupted by additive zero-mean independent
noise. In particular, let us focus on the already grouped blocks
shown in the same figure. These blocks exhibit perfect mutual
similarity, which makes the elementwise averaging (i.e., aver-
aging between pixels at the same relative positions) a suitable
estimator. Hence, for each group, this collaborative averaging
produces estimates of all grouped blocks. Because the corre-
sponding noise-free blocks are assumed to be identical, the esti-
mates are unbiased. Therefore, the final estimation error is due
only to the residual variance which is inversely proportional to
the number of blocks in the group. Regardless of how complex
the signal fragments are, we can obtain very good estimates pro-
vided that the groups contain a large number of fragments.

However, perfectly identical blocks are unlikely in natural
images. If nonidentical fragments are allowed within the same
group, the estimates obtained by elementwise averaging be-
come biased. The bias error can account for the largest share
of the overall final error in the estimates, unless one uses an
estimator that allows for producing a different estimate of each

Fig. 2. Simple example of grouping in an artificial image, where for each ref-
erence block (with thick borders) there exist perfectly similar ones.

grouped fragment. Therefore, a more effective collaborative
filtering strategy than averaging should be employed.

D. Collaborative Filtering by Shrinkage in Transform Domain

An effective collaborative filtering can be realized as
shrinkage in transform domain. Assuming -dimensional
groups of similar signal fragments are already formed, the
collaborative shrinkage comprises of the following steps.

• Apply a -dimensional linear transform to the group.
• Shrink (e.g., by soft- and hard-thresholding or Wiener fil-

tering) the transform coefficients to attenuate the noise.
• Invert the linear transform to produce estimates of all

grouped fragments.
This collaborative transform-domain shrinkage can be partic-
ularly effective when applied to groups of natural image frag-
ments, e.g., the ones in Fig. 1. These groups are characterized
by both:

• intrafragment correlation which appears between the
pixels of each grouped fragment—a peculiarity of natural
images;

• interfragment correlation which appears between the cor-
responding pixels of different fragments—a result of the
similarity between grouped fragments.

The 3-D transform can take advantage of both kinds of correla-
tion and, thus, produce a sparse representation of the true signal

Figure E.8: Block-matching in BM3D. Red squares are reference blocks, whereas
blue squares are matched blocks, figure from [81].

E.4.1 BM3D - Block-matching and 3D transform denoising

The algorithm BM3D (block-matching 3D collaborative filtering) produces the best

results so far in terms of image denoising [33, 81] and will be described below.

First, the image is divided into overlapping blocks. For each block (called

reference block) the block-matching technique is used to select similar blocks in a

given neighborhood, as illustrated in Figure E.8.

The selected blocks are stacked, along with the reference block, onto a 3D

structure, called group. Then, a 3D transform (e.g. 3D DCT, analogous to 2D

DCT) is applied to the group in order to decorrelate its components. The resulting

coefficients are hard-thresholded and an inverse transform is performed. Finally, the

blocks are replaced in their original locations generating a first estimate of the original

image, which is called pilot estimate. As the blocks overlap each other, a weighted

average is employed during the recombination. What has been just described is the

first step of the algorithm, which is summarized in Figure E.9.

Using the block indexes from the block-matching in the first step, new 3D

structures are formed, but now with blocks from the pilot estimate. Supposing

that this new 3D structure is an approximation of the original image, its 3D power

spectrum density (PSD) is calculated and then used to design a Wiener filter. The

original 3D noisy structures are filtered again, but instead of hard thresholding of

transform coefficients, the Wiener filter is used, producing the final estimate. The

second step of the algorithm is summarized in Figure E.10.

In a recent work [33], the BM3D method is formalized and analysis and synthesis

operators, as described in Section E.1, are derived and used in a decoupled variational

136



2084 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 8, AUGUST 2007

Fig. 3. Flowchart of the proposed image denoising algorithm. The operations surrounded by dashed lines are repeated for each processed block (marked with
“R”).

that is the set of its grouped blocks’ coordinates, e.g., is a
3-D array composed of blocks located at . In
order to distinguish between parameters used in the first and in
the second step, we respectively use the superscripts “ht” (hard-
thresholding) and “wie” (Wiener filtering). For example, is
the block size used in Step 1 and is the block size used in
Step 2. Analogously, we denote the basic estimate with
and the final estimate with .

The following subsections present in detail the steps of the
proposed denoising method.

A. Steps 1a and 2a: Block-Wise Estimates

In this step, we process reference image blocks in a
sliding-window manner. Here, “process” stands for per-
forming grouping and estimating the true signal of all grouped
blocks by:

• collaborative hard-thresholding in Step 1aii;
• collaborative Wiener filtering in Step 2aii.

The resultant estimates are denominated “block-wise
estimates.”

Because Steps 1a and 2a bear the same structure, we re-
spectively present them in the following two sections. Therein,
we fix the currently processed image block as (located at
the current coordinate ) and denominate it “reference
block.”

1) Steps 1ai and 1aii: Grouping and Collaborative Hard-
Thresholding: We realize grouping by block-matching within
the noisy image , as discussed in Section II-B. That is, only
blocks whose distance (dissimilarity) with respect to the refer-
ence one is smaller than a fixed threshold are considered similar
and grouped. In particular, we use the -distance as a measure
of dissimilarity.

Ideally, if the true-image would be available, the block-
distance could be calculated as

(1)

where denotes the -norm and the blocks and are
respectively located at and in . However, only the
noisy image is available and the distance can only be calcu-
lated from the noisy blocks and as

(2)

If the blocks and do not overlap, this distance is a non-
central chi-squared random variable with mean

and variance

(3)
The variance grows asymptotically with . Thus, for rela-
tively large or small , the probability densities of the dif-
ferent are likely to overlap heavily and this re-
sults in erroneous grouping.2 That is, blocks with greater ideal
distances than the threshold are matched as similar, whereas
blocks with smaller such distances are left out.

To avoid the above problem, we propose to measure the
block-distance using a coarse prefiltering. This prefiltering is
realized by applying a normalized 2-D linear transform on both
blocks and then hard-thresholding the obtained coefficients,
which results in

(4)

where is the hard-thresholding operator with threshold
and denotes the normalized 2-D linear transform.3

Using the -distance (4), the result of BM is a set that contains
the coordinates of the blocks that are similar to

(5)

where the fixed is the maximum -distance for which two
blocks are considered similar. The parameter is selected
from deterministic speculations about the acceptable value of
the ideal difference, mainly ignoring the noisy components of
the signal. Obviously , which implies that

, where denotes the cardinality of . After
obtaining , a group is formed by stacking the matched noisy
blocks to form a 3-D array of size ,

2The effect of this is the sharp drop of the output-PSNR observed for two of
the graphs in Fig. 9 at about � = 40.

3For simplicity, we do not invert the transform T and compute the distance
directly from the spectral coefficients. When T is orthonormal, the distance
coincides with the ` -distance calculated between the denoised block-estimates
in space domain.

Figure E.9: First pass of the BM3D algorithm, figure from [81].
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Fig. 3. Flowchart of the proposed image denoising algorithm. The operations surrounded by dashed lines are repeated for each processed block (marked with
“R”).

that is the set of its grouped blocks’ coordinates, e.g., is a
3-D array composed of blocks located at . In
order to distinguish between parameters used in the first and in
the second step, we respectively use the superscripts “ht” (hard-
thresholding) and “wie” (Wiener filtering). For example, is
the block size used in Step 1 and is the block size used in
Step 2. Analogously, we denote the basic estimate with
and the final estimate with .

The following subsections present in detail the steps of the
proposed denoising method.

A. Steps 1a and 2a: Block-Wise Estimates

In this step, we process reference image blocks in a
sliding-window manner. Here, “process” stands for per-
forming grouping and estimating the true signal of all grouped
blocks by:

• collaborative hard-thresholding in Step 1aii;
• collaborative Wiener filtering in Step 2aii.

The resultant estimates are denominated “block-wise
estimates.”

Because Steps 1a and 2a bear the same structure, we re-
spectively present them in the following two sections. Therein,
we fix the currently processed image block as (located at
the current coordinate ) and denominate it “reference
block.”

1) Steps 1ai and 1aii: Grouping and Collaborative Hard-
Thresholding: We realize grouping by block-matching within
the noisy image , as discussed in Section II-B. That is, only
blocks whose distance (dissimilarity) with respect to the refer-
ence one is smaller than a fixed threshold are considered similar
and grouped. In particular, we use the -distance as a measure
of dissimilarity.

Ideally, if the true-image would be available, the block-
distance could be calculated as

(1)

where denotes the -norm and the blocks and are
respectively located at and in . However, only the
noisy image is available and the distance can only be calcu-
lated from the noisy blocks and as

(2)

If the blocks and do not overlap, this distance is a non-
central chi-squared random variable with mean

and variance

(3)
The variance grows asymptotically with . Thus, for rela-
tively large or small , the probability densities of the dif-
ferent are likely to overlap heavily and this re-
sults in erroneous grouping.2 That is, blocks with greater ideal
distances than the threshold are matched as similar, whereas
blocks with smaller such distances are left out.

To avoid the above problem, we propose to measure the
block-distance using a coarse prefiltering. This prefiltering is
realized by applying a normalized 2-D linear transform on both
blocks and then hard-thresholding the obtained coefficients,
which results in

(4)

where is the hard-thresholding operator with threshold
and denotes the normalized 2-D linear transform.3

Using the -distance (4), the result of BM is a set that contains
the coordinates of the blocks that are similar to

(5)

where the fixed is the maximum -distance for which two
blocks are considered similar. The parameter is selected
from deterministic speculations about the acceptable value of
the ideal difference, mainly ignoring the noisy components of
the signal. Obviously , which implies that

, where denotes the cardinality of . After
obtaining , a group is formed by stacking the matched noisy
blocks to form a 3-D array of size ,

2The effect of this is the sharp drop of the output-PSNR observed for two of
the graphs in Fig. 9 at about � = 40.

3For simplicity, we do not invert the transform T and compute the distance
directly from the spectral coefficients. When T is orthonormal, the distance
coincides with the ` -distance calculated between the denoised block-estimates
in space domain.

Figure E.10: Second pass of the BM3D algorithm, figure from [81].
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scheme for denoising and deblurring.

E.4.2 PLOW - Patch-based locally optimal Wiener denois-

ing

Theoretical limits for image denoising were investigated in [170] using an extended

version of the Cramér-Rao lower bound [25]. These limits were compared to different

state-of-the-art algorithms and the conclusion was that, for some types of images,

there is still room for improvement.

For “complex” images, where structures do not tend to repeat throughout the

image (eg non-uniform textures), the results indicate that the existing denoising

methods approach the theoretical limit.

For “simple” images, on the other hand, where repetition of structures are common,

the study has indicated some room for improvement. Basically, the conclusion was

that the paradigm of repetitive structures (nonlocal), though already used in many

other methods, seems to have an unexplored potential.

In [96, 171], a denoising algorithm inspired in such theoretical analysis was

developed. Basically, it is assumed that the patches that form an image may be

categorized into a small number of classes, typically C = 15, where each class may

represent a particular geometrical structure (corners, contours, flat areas, etc.).

The final estimate of a certain patch is given by the sum of two terms: the first

is provided by NLM algorithm (Nonlocal means [122, 168]), which is basically a

weighted average of all patches belonging to the same class. However, this method is

prone to produce oversmoothed results.

The second term is obtained from the residual between the first term estimate

and the original patch. The residual is filtered by Wiener filters, which are designed

from the mean and covariance of each class. Finally, the filtered residual is added

back to the first term estimate. The rationale is that geometric details that were

removed by the weighted average of the NLM algorithm are basically reinserted into

the patches.

E.4.3 PLE - Piecewise linear estimation

Another recent work that produces state-of-the-art results in many inverse problems

is described in [66]. Using the same idea of patch classification, the algorithm uses

piecewise linear estimators (PLE) that actually arise from the assumption that

patches can be modeled by Gaussian mixture models. Some previous works that use

this technique can be found in [139, 172–174].
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Figure E.11: Illustration of a Gaussian mixture. The color dashed curves represent
Gaussian distributions. The black curve is the resultant mixture, figure from [176].

We can define a mixture model by [175]

p(f) =
C∑

c=1

αcp(f ;θc), (E.20)

where {αc} are the weights of each component and {θc} are the parameters of each

distribution. Figure E.11 illustrates this concept.

The method in [66] starts by dividing the image into overlapping patches of√
N ×
√
N (typically 8× 8), forming a set {f (i)}1≤i≤I . Then, it is assumed that there

are C Gaussian distributions {N (µc,Σc)}1≤c≤C , typically C = 18, parameterized by

their means µc and covariance matrices Σc, which together form a Gaussian mixture

that describes the patches. It is further assumed that each patch belongs to (or was

sampled from) one of these distributions, initially with unknown index ci ∈ [1, C],

and that the probability of a patch belong to either distribution is uniform.

Mathematically, the probability density function of a patch is, then, given by

p(f (i)) =
1

(2π)N/2 |Σci |1/2
exp

{
−1

2
(f (i) − µci)TΣ−1

ci
(f (i) − µci)

}
, (E.21)

provided that the patch was sampled from the distribution (or class) ci.

As in practice the class is initially unknown, we choose the distribution yielding

the highest likelihood, i.e.,

ĉi = arg min
c

∥∥Wf (i) − g(i)

∥∥2

σν
+ (f (i) − µc)TΣ−1

c (f (i) − µc). (E.22)
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Once the most appropriate class ĉi is identified, the patch estimate is given by

f̂ (i) = arg min
f

∥∥Wf − g(i)

∥∥2

σν
+ (f − µĉi)TΣ−1

ĉi
(f − µĉi). (E.23)

The method proceeds by using the expectation-maximization (EM) technique

[177], where given an initial estimate of the solution, the model parameters are

re-estimated and the process continues alternating solution estimation and model

parameter estimation until some convergence criterion is reached.

Let Ic = {i : ĉi = c} be the set of indexes of all patches belonging to the class c.

The class mean and covariance are estimated by

µ̂c, Σ̂c = arg max
µc,Σc

log p
({

f (i)

}
i∈Ic

∣∣∣µc, Σc) (E.24)

which are obtained through

µ̂c =
1

|Ic|
∑

i∈Ic

f̂ (i) (E.25)

Σ̂c =
1

|Ic|
∑

i∈Ic

(̂f (i) − µ̂c) · (̂f (i) − µ̂c)T, (E.26)

where |Ic| is the cardinality of the class c.

Although images are known to be highly non-Gaussian, this study shows that

the use of Gaussian mixtures is effective and produces state-of-the-art results in

denoising, deblurring and interpolation of images. The key to success, as argued

in [66], would be the non-linearity introduced by the selection of best distribution

(class) for each patch.

E.5 Discussion

Analysis versus synthesis - II

As mentioned earlier, the analysis and synthesis approaches are not equivalent for

the overcomplete case, though they produce the same results for the squared and

undercomplete cases. Until the the work by Elad et al. in [68], this difference was

often considered as a superiority of the synthesis over the analysis.

However, an experiment has revealed the opposite. Using the redundant DCT4

as prior for both cases, the reconstruction PSNR of images using the analysis

scheme consistently provided superior results, as shown in Figure E.12. Besides the

4The redundancy in the DCT transform is achieved by overlapping the blocks. Depending on
how many pixels are shifted, the transform becomes more or less redundant.
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Figure 5. Image denoising using the redundant DCT transform. Solid lines (left to right): MAP-
analysis with block shifts of 1, 2 and 4 pixels; dashed lines (left to right): MAP-synthesis with
block shifts of 1, 2 and 4 pixels; dotted line: MAP-analysis/MAP-synthesis with a block shift
of 8 pixels (unitary transform). Images are of size 128 × 128. (a) Results for Lenna; (b) results
for Barbara. Images downloaded from http://www.wikipedia.com, and downscaled using bilinear
interpolation.

MAP-analysis prior to a given set of MAP-synthesis signals is bound to give rise to an
enormous number of additional (unwanted) favourable signals.

4.2. Real-world experiments

In this section we present some comparative denoising results obtained for actual image data.
For these experiments we selected the overcomplete DCT transform; this transform partitions
the image into overlapping blocks, and applies to each block a unitary DCT transform. The
overcomplete DCT transform constitutes a tight frame when all image pixels are covered by
an equal number of blocks. Our experiments used 8 × 8 blocks, with a shift of either 1, 2 or 4
pixels between neighbouring blocks. We also used shifts of 8 pixels (i.e. no overlap, leading
to a unitary transform) as reference. Boundary cases were handled by assuming periodicity,
ensuring the tight frame condition.

Since the transform is tight, the synthesis dictionary was simply taken as the transpose of
the analysis operator, leading to a dictionary constructed of 8 × 8 DCT bases in all possible
shifts over the image domain. Motivations for choosing this transform include: (1) the
transform is widely used in image processing, and has been employed in both analysis and
synthesis frameworks; (2) it is a tight frame, and has an efficient implementation; and (3) it is
highly redundant, whilst offering a convenient way for controlling its redundancy (specifically,
4× for a shift size of 4, 16× for a shift size of 2 and 64× for a shift size of 1).

We ran the experiments on a collection of standard test images, including Lenna, Barbara
and Mandrill. Each of these was downscaled to a size of 128 × 128 to reduce computation
costs. We added white Gaussian noise to each source image, producing 25 dB PSNR inputs.
Each input was denoised using both MAP-analysis and MAP-synthesis with varying λ values,
and the output PSNR was determined for each value.

The results for Lenna and Barbara are shown in figure 5. The results for Mandrill
were similar. As can be seen in the figures, the results are quite surprising: MAP-
analysis actually beats MAP-synthesis—in a convincing way—in every test. Compared
to the baseline unitary transform (dotted line), where both methods coincide, MAP-analysis
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for Barbara. Images downloaded from http://www.wikipedia.com, and downscaled using bilinear
interpolation.
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an equal number of blocks. Our experiments used 8 × 8 blocks, with a shift of either 1, 2 or 4
pixels between neighbouring blocks. We also used shifts of 8 pixels (i.e. no overlap, leading
to a unitary transform) as reference. Boundary cases were handled by assuming periodicity,
ensuring the tight frame condition.

Since the transform is tight, the synthesis dictionary was simply taken as the transpose of
the analysis operator, leading to a dictionary constructed of 8 × 8 DCT bases in all possible
shifts over the image domain. Motivations for choosing this transform include: (1) the
transform is widely used in image processing, and has been employed in both analysis and
synthesis frameworks; (2) it is a tight frame, and has an efficient implementation; and (3) it is
highly redundant, whilst offering a convenient way for controlling its redundancy (specifically,
4× for a shift size of 4, 16× for a shift size of 2 and 64× for a shift size of 1).

We ran the experiments on a collection of standard test images, including Lenna, Barbara
and Mandrill. Each of these was downscaled to a size of 128 × 128 to reduce computation
costs. We added white Gaussian noise to each source image, producing 25 dB PSNR inputs.
Each input was denoised using both MAP-analysis and MAP-synthesis with varying λ values,
and the output PSNR was determined for each value.

The results for Lenna and Barbara are shown in figure 5. The results for Mandrill
were similar. As can be seen in the figures, the results are quite surprising: MAP-
analysis actually beats MAP-synthesis—in a convincing way—in every test. Compared
to the baseline unitary transform (dotted line), where both methods coincide, MAP-analysis

(b)

Figure E.12: Analysis versus synthesis in redundant DCT denoising. Solid lines show
analysis results. Dashed lines show synthesis results. The three curves (from left
to right) correspond to 1, 2 and 3 pixel-shift redundant DCT. Dotted lines show
analysis/synthesis PSRN ratio for 8 pixel shift (as block size is 8× 8, this means no
overlap), figure from [68].

experiment, mathematical support for the claim was also provided in [68]. More

empirical evidence can be found in [69, 178]. Recent works [71, 76, 179] have also

compared both approaches in different applications. In general, the gap between

analysis and synthesis tends to widen up as the redundancy of operators increases.

In sparse representations, the individual importance of each atom is high, since

one expects to synthesize signals using few atoms. As argued in [68], if a “wrong”

atom is selected in the beginning of a reconstruction process, this could lead to a

domino effect, where subsequent “wrong” atoms would keep being chosen to attenuate

the first bad choices, resulting in a poor overall performance.

A different argument is that the high overcompleteness in synthesis, rather than

positively enriching its descriptiveness, leads to a reverse effect where the dictionary

becomes “too descriptive”, representing a wide range of undesirable signals. This

effect does not apply to analysis where increasing the number of filters still requires

the signal to agree with all existing ones [68, 70].

Structured sparsity

As argued in [66], in sparse reconstructions there are too many degrees of freedom,

because any atom combination is possible (see Figure E.13a). Since there is no

restriction on which atoms can be used, this freedom might lead to an unstable and

imprecise estimation [180] due to dictionary coherence5.

5Coherence of a dictionary is defined as the greatest absolute inner product between any two
atoms.
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learned dictionaries of image patches have generated good
interpolation results [51], [84]. In some recent works, sparse
super-resolution algorithms with a learned dictionary have
been studied for zooming and deblurring [48], [76]. As shown
in Sections VI and VII, although they sometimes produce good
visual quality, they often generate artifacts and the resulting
PSNRs are not as good compared with standard methods.
Another source of instability of these algorithms comes from

their full degree of freedom. The nonlinear approximation space
is estimated by selecting the approximation support , with

basically no constraint. A selection of atoms from a dictio-
nary of size thus corresponds to a choice of an approximation
space among possible subspaces. In a local-patch-based
sparse estimation with 8 8 patch size, typical values of

and lead to a huge degree of freedom ,
further stressing the inaccuracy of estimating from .
These issues are addressed with the proposed PLE framework

and its mathematical connection with structured sparse models
described next.

B. Structured Sparse Estimation in PCA Bases

The PCA bases bridge the GMM/MAP-EM framework pre-
sented in Section II with the sparse estimation described above.
For signals following a statistical distribution, a PCA basis
is defined as the matrix that diagonalizes the data covariance
matrix :

(16)

where is the PCA basis and is a di-
agonal matrix, whose diagonal elements
are the sorted eigenvalues. It can be shown that the PCA basis
is orthonormal, i.e., , and each of its columns ,
with , being an atom that represents one prin-
cipal direction. The eigenvalues are nonnegative; and
measure the energy of the signals in each of the principal
directions [53].
Transforming from the canonical basis to the PCA basis

, one can verify that the MAP estimate (4)–(6) can
be equivalently calculated as

(17)

where, following simple algebra and calculus, the MAP esti-
mate of the PCA coefficients is obtained by

(18)

By comparing (18) with (14), the MAP-EM estimation can
thus be interpreted as a structured sparse estimation. As illus-
trated in Fig. 1, the proposed dictionary has the advantage of the
traditional learned overcomplete dictionaries being overcom-
plete and adapted to the image under test due to the Gaussian
model estimation in the M-step (which is equivalent to updating
the PCAs), but the PLE is more structured than the traditional
nonlinear sparse estimation. The PLE is calculated with a linear
estimation in each basis and a nonlinear best basis selection as
follows.

Fig. 1. (left) Traditional overcomplete dictionary. Each column represents an
atom in the dictionary. The nonlinear estimation has the full degree of freedom
to select any combination of atoms (marked by the columns in red). (right) Un-
derlying structured sparse piecewise linear dictionary of the proposed approach.
The dictionary is composed of a family of PCA bases whose atoms are pre-
ordered by their associated eigenvalues. For each image patch, an optimal linear
estimator is calculated in each PCA basis, and the best linear estimate among
the bases is selected (marked by the basis in red).

• Nonlinear block sparsity. The dictionary is composed of
a union of PCA bases. To represent an image patch,
the nonlinear model selection (3) in the E-step restricts the
estimation to only one basis ( atoms out of selected
in group), and has a degree of freedom equal to , sharply
reduced from that in the traditional sparse estimation that
has the full degree of freedom in atom selection.

• Linear collaborative filtering. Inside each PCA basis,
the atoms are preordered by their associated eigenvalues
(which decay very fast as we will later see, leading to
sparsity inside the block as well). In contrast to the non-
linear sparse estimation (14), the MAP estimate (18)
implements the regularization with the norm of the
coefficients weighted by the eigenvalues
and is calculated with a linear filtering (5) (6). The eigen-
values are computed from all the signals in the
same Gaussian distribution class. The resulting estima-
tion therefore implements a collaborative filtering, which
incorporates the information from all the signals in the
same cluster. The weighting scheme privileges the coef-
ficients corresponding to the principal directions
with large eigenvalues , where the energy is likely
to be high, and penalizes the others. For the ill-posed
inverse problems, the collaborative prior information
incorporated in the eigenvalues further sta-
bilizes the estimate.Note that this collaborative weighting
is fundamentally different than the standard one used in
iterative weighted approaches to sparse coding [20].
This collaborative filtering is also fundamentally different
than the “collaborative Wiener filtering” in [17], both in
signal modeling (the GMM in this paper and the nonlocal
self-similarity models in [17]) and in patch clustering and
signal estimation (in this paper, the patch clustering and
signal estimation are jointly calculated by maximizing a
MAP probability (3), which is optimal under the GMM
model, whereas in [17], they are calculated respectively
by the block matching and the empirical Wiener filtering).
The collaboration in [17] follows from the spectral repre-
sentation for the whole cluster, whereas here, it is obtained
via the eigenvalues of the cluster’s PCA.

Note that, although PLE can be interpreted and connected
with structured sparse modeling via PCA, the algorithm can
be implemented, as described in Section II, without the PCA
transform. As described in Section II, the complexity of the
MAP-EM algorithm is dominated by the E-step. For an image
patch size of (typical value 8 8), it costs

(a)
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Figure E.13: Redundant dictionary and collection of PCA bases. (a): Redundant
dictionary, where each column is an atom. Reconstruction through synthesis has
full degree of freedom in choosing atoms (red atoms, for instance). (b) Collection of
PCA bases B1, · · · ,B5. Considering all bases, we still have a redundant dictionary,
however the reconstruction through the structured sparsity approach restrict the
allowed atoms to the selected basis (shown in red). This stabilizes the reconstruction.
Figure from [66].

Conversely, in the structured sparsity paradigm, the allowed atoms belong to

a smaller subgroup, which reduces the degrees of freedom and guarantees a more

stable reconstruction. In [66], for instance, the atoms are restricted to the PCA basis

which represents the class that was selected as the best Gaussian distribution for the

patch, see Figure E.13b.

Nonlocal and collaborative filtering

Also in [66], the concept of structured sparsity is combined to the nonlocal paradigm.

Starting from a fixed number of classes, their means and covariances are iteratively

adapted to the image content. As the iteration progresses, the classes are more and

more customized to the image. All the patches of a certain class profit from this

adaptation. This approach, also used in the BM3D method described in Section

E.4.1, is often designated as collaborative filtering.

Co-sparsity: sparsity after analysis operator

Another kind of sparsity that has been given attention in recent works is the so-called

co-sparsity, i.e., sparsity after the analysis operator. Dictionary design methods,

such as K-SVD, has also been extended to produce “analysis” atoms, or “analyzers”.

References can be found in [72, 73, 75, 178, 181–184]. An overview of co-sparsity is
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presented in [74].

Nevertheless, we consider that co-sparsity is not a true new concept. It is actually

related to previous approaches, such as Field of Experts and Total Variation. The

analyzers produced by the analysis version of K-SVD are high-pass filters. FoE and

TV also employ high-pass filters and sparsity on the results through the `1 norm or

Student-t distributions.

PAR models versus other models

Piecewise autoregressive (PAR) models can be viewed as a realization of the Markov

Random Fields concept. The dependency between pixels are explicitly estimated

when PAR coefficients are calculated. PAR models are also related to the PLE

(piecewise linear estimators) algorithm, described in Section E.4.3, as will be shown

below.

The solution of an inverse problem using PAR models as prior can be given by

(`2 norm will be used in the prior)

f̂ = arg min
f

‖Wf − g‖2 + λ ‖(I−A) f‖2 . (E.27)

The solution using the PLE algorithm can be written as (setting6 µĉi = 0 in

(E.23) and cleaning up the notation)

f̂ = arg min
f

‖Wf − g‖2 + σν
∥∥Σ−1/2f

∥∥2
. (E.28)

Setting λ = σν in (E.27), all we have to show is the connection between (I−A)

and Σ−1/2 to demonstrate that the approaches can be equivalent. The demonstration

that follows has no intention to be rigorous, but only to present intuitive arguments

to link the approaches.

Let f be a natural image patch that can be approximated by a wide-sense

stationary (WSS) process with zero mean and covariance matrix Σ. According to

the Wiener–Khintchine theorem [185], Σ is diagonalized by the DFT matrix with

eigenvalues representing the power spectrum density of the process, i.e.,

FΣFH = S (E.29)

where S = diag(s2
1, · · · , s2

N) is the eigenvalue matrix.

Multiplication by Σ−1/2 is equivalent to the inverse filter defined by process

6This simplification does not cause loss of generality, as the DC component of the patch can be
always reinserted.
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spectrum, since

Σ−
1/2 = FHS−

1/2F (E.30)

with S−1/2 = diag(s−1
1 , · · · , s−1

N ). Additionally, if f ∼ N (0,Σ), then Σ−1/2f ∼ N (0, I)

[186], that is, f is decorrelated by Σ−1/2.

Let A be a circulant matrix, with zeros in its main diagonal, built from the

coefficients of an AR model of f . From A, we can define a transfer function in the

z-transform domain by

H(z) =
1

1− A(z)
(E.31)

and the multiplication by (I−A) is equivalent to

H−1(z) = 1− A(z), (E.32)

which is also the inverse filter, demonstrating the connection between the approaches.

One could also show the connection using the Yule-Walker equations [25], which

links AR coefficient estimation to the covariance matrix of a WSS process.

E.6 Conclusion

We reviewed in this chapter some common and new approaches to inverse problems

in image processing.

We started by highlighting differences and similarities between analysis and

synthesis methodologies. We mentioned that, although both approaches are equivalent

for the squared and undercomplete cases, they diverge for the overcomplete case.

Noteworthy generative models and methodologies of dictionary design were

revised, as well as some important energy-based approaches. More recent nonlocal

algorithms were presented as state-of-the-art methods for denoising, deblurring and

interpolation.

Finally, new trends and concepts such as the superiority of analysis over synthesis,

structured sparsity and collaborative filtering were presented as potential alternatives,

and links between PAR models and other approaches were drawn.

�7

7Conduz-se o leitor de volta ao corpo da tese no Caṕıtulo 6, página 32.
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Appendix F

Dealing with fixed-pattern noise

Infrared (IR) focal-plane array (FPA) detectors suffer from fixed-pattern noise (FPN),

also known as spatial nonuniformity, which degrades image quality. In fact, FPN

remains a serious problem despite recent advances in IRFPA technology. This chapter

presents new scene-based correction algorithms to continuously compensate for bias

and gain nonuniformity in focal-plane array sensors. The proposed schemes use

recursive least square (RLS) and affine projection (AP) techniques that jointly com-

pensate for both bias and gain for each image pixel, presenting rapidly convergence

and robustness to noise. Experiments with synthetic and real IRFPA videos have

shown that the proposed solutions are competitive with the state-of-the-art in FPN

reduction, while presenting recovered images with higher fidelity.

F.1 Introduction

Nowadays, most infrared imaging sensors use Infrared Focal Plane Arrays (IRFPA).

Each IRFPA is formed by an array of infrared detectors aligned at the focal plane of

the imaging system. Due to the fabrication process, each detector presents unequal

responses under the same infrared (IR) stimulus [187]. This spatially nonuniform

response produces corrupted images with a fixed-pattern noise (FPN) that has a slow

and random drift requiring constant compensation [91]. Hence, the output signal of

IR detectors needs to be corrected to produce an image with the quality required by

the application. Figure F.1 shows a real-life infrared image corrupted with real FPN.

An accepted approach to FPN correction is to model the pixel responses as

affine, that is, a multiplicative term added to a constant [93]; we thus define for each

detector (pixel) an offset, or bias, and a gain. By correcting these offsets and gains

one aims to obtain a uniform response for the entire FPA. In addition, since these

FPA parameters drift over time, such correction has to be performed periodically or

even on a frame-by-frame basis.

In most sensors, as the bias nonuniformity dominates the gain nonuniformity, many
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Figure F.1: Image corrupted with real FPN

nonuniformity correction methods do not compensate for the latter [188]. However,

better results are achieved when both parameters are corrected. This chapter

proposes new adaptive scene-based nonuniformity correction (NUC) algorithms that

jointly compensate for bias and gain parameters on a frame-by-frame basis while

progressively improving registration. The key contribution of this work is to show

how to formulate the bias and gain corrections for NUC using the adaptive filtering

framework, particularly those related to the RLS (Recursive Least Squares) and AP

(Affine Projection) algorithms. The proposed solutions produce competing reduction

in FPN in comparison to the available techniques, while generating perceptually

better images.

The rest of the chapter is organized as follows. Section F.2 provides a review of the

nonuniformity problem on IRFPA’s, as well as the most used correction techniques.

Section F.3 is devoted to discuss the NUC techniques pointing out in which class of

solution fall the proposed NUC methods. In Section F.4, we briefly provide the signal

description. Section F.5 proposes the RLS solution to the NUC which is followed by

the corresponding solution employing the AP algorithm in Section F.6. In Section

F.7 the experimental results with real and synthetic infrared videos are presented,

along with a comparison to other techniques. Section F.9 contains the final remarks

and conclusions.

The terms fixed-pattern noise and spatial nonuniformity are used interchangeably.
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F.2 IRFPA and fixed-pattern noise models

Although the response of each pixel of an IRFPA is nonlinear, a largely used and

accepted model for a FPA sensor is the bias-gain linear model [91, 93, 97, 188–193],

given by

gk(n1, n2) = a(n1, n2)fk(n1, n2) + b(n1, n2) (F.1)

where gk(n1, n2) is the response (measured signal) of the pixel at position (n1, n2) of

the IR camera at frame k, a(n1, n2) is the gain associated to the (n1, n2)-th pixel,

fk(n1, n2) is the uncorrupted image, that is, the incident infrared radiation collected

by the respective detector at pixel coordinates (n1, n2) at frame k, b(n1, n2) is the

bias associated to the pixel at coordinates (n1, n2), and k = 1, 2, · · · represents the

frame number associated to its time instant.

Nonuniformity correction (NUC) algorithms target to estimate the actual infrared

radiation fk(n1, n2) by estimating the gain and offset parameters from the readout

values gk(n1, n2). Once the bias b̂(n1, n2) and gain â(n1, n2) are estimated, an estimate

of the real and uncorrupted infrared image is given by:

f̂k(n1, n2) =
gk(n1, n2)− b̂(n1, n2)

â(n1, n2)
. (F.2)

Note that, although bias and gain drift over time, we have dropped their de-

pendency on frame k. This can be done because the drift presented by FPN varies

rather slowly. This favors the use of time-invariant parameters modeled together

with some tracking of their slow variation.

F.3 Nonuniformity Correction Techniques

If we write equation (F.1) for every pixel (n1, n2) and two values of k, we can solve

the system of equations and compute â(n1, n2) and b̂(n1, n2), as shown in equation

(F.2). However, this solution requires the knowledge of fk(n1, n2). The NUC methods

can be categorized in two classes according to the way the values of a(n1, n2) and

b(n1, n2) are estimated: calibration-based (or reference-based), and scene-based.

Reference-based calibration methods for NUC use uniform infrared sources (black-

body radiators) so that fk(n1, n2) is precisely known for all (n1, n2). The most

widespread technique is the Two-Point Calibration method [93], which employs two

blackbody radiation sources at different temperatures to calculate both gain and

bias parameters. Despite providing radiometrically accurate corrected imagery, such

kind of method interrupts the normal operation of the system during the calibration

stage, which is inconvenient in many applications.

Scene-based NUC techniques can overcome this drawback by exploiting motion-
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related features in IR videos in order to estimate the gain and bias. In general, these

techniques are classified as statistical and registration-based. Registration-based

techniques track pixel (or pixel-block) motion between frames, and calculate the

associated parameters for the detectors related to the estimated displacements.

Statistical algorithms rely on the assumption that all detectors in the array are

exposed to the same range of irradiance (i.e. same statistics) within a sequence of

frames. This assumption is valid only if the scene content does not vary significantly

from frame to frame. Correction is achieved by adjusting gain and bias parameters

of each pixel in order to obtain the same mean and variance for every pixel in

the array. Statistical algorithms have been reported by Harris [194], Hayat [195],

Torres [189, 190], Scribner [196] and others.

Registration-based algorithms use the idea that each detector should have an

identical response when observing the same scene point over time (i.e. same radiance).

These algorithms often need a motion-estimation stage to align consecutive frames

and compare the responses of two different pixels to the same radiance. Bias and gain

are estimated so as the responses become similar. In this case, it is also assumed that

the scene does not change considerably between consecutive frames. Registration-

based algorithms have been proposed by Sakoglu et al. [193], Hardie [188, 191],

Ratliff [91, 197], Averbuch [192], and others. Our methods differ from the previously

proposed methods, e.g. Sakoglu et al. [193], because we consider both gain and bias

jointly and use a more flexible and general motion model.

A RLS NUC method was presented in [198] by Torres et al. As they point out,

the validity of the method is based on the assumption that the scene is constantly

moving with respect to the detector, which may not always be true.

Differently, our RLS method assumes only global motion and does not make any

assumption on how it varies. Rather, we estimate motion from the frames and use it

explicitly when defining the error. Thus, our method can handle a wider class of IR

videos.

F.4 Problem statement

As previously mentioned, the key idea is to estimate the bias and the gain associated

to each pixel in the image, and then use equation (F.2) to estimate the real and

uncorrupted image. First, we write equation (F.1) in vector notation as

gk = Afk + b, (F.3)

where gk is an N -dimensional vector representing the observed image at time k, A

is an N ×N diagonal matrix whose elements are the gain factors associated to the
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image pixels, fk is an N -dimensional vector representing the real image at time k

and b is a vector representing the bias of the acquired data, with all vectors in a

lexicographical order. N is the number of pixels in the image. The gain and the bias

(offset) factors are considered time invariant due to their slow drift [190].

If Â and b̂ are estimated values of the gain and bias, respectively, an estimation

of the real image is given by:

f̂k = Â−1
(
gk − b̂

)
. (F.4)

As this work proposes the estimation of the bias and gain parameters continuously,

we model the variation of the frames in time using a motion equation between two

consecutive frames of an IR image sequence as follows:

fk = Mkfk−1 + νk, (F.5)

where Mk is the matrix that implements the displacement between consecutive

frames k − 1 and k, and νk is the vector that models the next frame updates that

cannot be obtained by a simple displacement.

We suppose that the motion between two successive frames as being obtained by

a motion estimation algorithm, and also that vector νk containing the updates is

negligible. In this work we perform motion estimation using the LIPSE algorithm

described in Section F.8. For more detailed information on the LIPSE algorithm,

the reader is referred to [91].

By combining equations (F.3), (F.4) and (F.5), it is possible to write the estima-

tion error vector of frame k based on frame k − 1, the shift matrix Mk, gain and

bias estimates as:

εk = gk − ĝk

= gk − ÂMkÂ
−1
(
gk−1 − b̂

)
− b̂,

(F.6)

where εk is the estimation error vector. The mean square error is given by

εk =
1

N

N∑

i=1

[εk(i)]
2 =

εT
k εk
N

, (F.7)

where N is the total number of pixels in the image.
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F.5 RLS algorithm

RLS algorithms aim to minimize a weighted sum of square errors [199, 200], that is

ξRLSk =
k∑

l=0

λk−lεl, (F.8)

where 0� λ ≤ 1 is referred to as forgetting factor.

After some manipulation, it can be shown that the update equation for the RLS

algorithm may be written as [199, 201]:

b̂k+1 = b̂k − Ĥ−1
k ∇bεk, (F.9)

where Ĥk is an estimate of the Hessian matrix and ∇bεk is the a priori error gradient.

The following relations hold for the Hessian matrix [202]:

Hk , ∇2
bξ

RLS
k =

∂2ξRLSk

∂b∂bT
= λĤk−1 +

∂2εk

∂b∂bT
. (F.10)

The above equations show how to update the Hessian matrix at each step.

F.5.1 Bias correction by RLS method

It can be shown that the term ∇bεk in equation (F.9) is given by (k index will be

hidden for simplicity)

∇bε =
2

N

∂ε

∂b
ε. (F.11)

With this definition, we have that:

∂ε

∂b
=
(
AMA−1

)T − I. (F.12)

The last term of equation (F.10) can be computed as:

∂2ε

∂b∂bT
=

1

N

N∑

i=1

∂2

∂b∂bT
[ε(i)]2

=
2

N

∂ε

∂b

∂ε

∂bT

(F.13)

Since the term 2
N

is constant, we define Ĥ = 2
N

Ĥ′. The complete RLS algorithm

for bias correction is given by Table F.1.

The BCGSTABL symbol from the algorithm in Table F.1 represents the solution

of the equation Ĥ′kvk = uk by the so-called BiCGstab(`) – Biconjugate Gradient

Stabilized (`) Method [78] in order to avoid the inversion of matrix Ĥ′k. This method
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Do for k ≥ 0

εk = gk −AMkA
−1
(
gk−1 − b̂k

)
− b̂k

Rk =
[
(AMkA

−1)
T − I

]
· [(AMkA

−1)− I]

Ĥ′k = λĤ′k−1 + Rk

uk =
[
(AMkA

−1)
T − I

]
εk

vk = BCGSTABL(Ĥ′k,uk)

b̂k+1 = b̂k − vk

Table F.1: RLS algorithm for bias correction

is widely used for solving large sparse unsymmetric linear systems and has provided

good results in our experiments.

F.5.2 Why BCGSTABL instead of matrix inversion lemma?

Adaptive filtering literature [199, 200] suggests, for the computation of the Hessian

inverse, the use of the matrix inversion lemma

[A + BCD]−1 = A−1 −A−1B
[
DA−1B + C−1

]−1
DA−1, (F.14)

where A, B, C and D are matrices of appropriate dimensions, and A and C are

nonsingular. Through this lemma it is possible to update (Ĥ′k)
−1 with O(N2)

multiplications instead of O(N3) multiplications needed for direct inversion of Ĥ′k.

However, this reduction in complexity is achieved when B and D are chosen

to be vectors, i.e. B = DT = f and C = α is chosen to be a scalar. In this case,

the middle term [DA−1B + C−1]
−1

is easily inverted as it becomes a scalar, that is,[
fTA−1f + α−1

]−1
.

In our case, B and D have to be matrices, i.e. B = DT =
[
(AMkA

−1)
T − I

]

and C = I. Thus, the middle term [DA−1B + C−1]
−1

in equation (F.14) is a matrix,

which has to be inverted. Therefore, in this case, no complexity reduction is obtained.

For this reason, we have chosen to use the BCGSTABL algorithm to avoid matrix

inversion as it is suitable to solve large sparse unsymmetric linear systems and tends

to converge in few steps (less than 30 iterations).

F.5.3 Gain correction by Tensorial-RLS method

If we apply here a similar procedure used for bias correction in subsection F.5.1, we

can write the update equation as

Ak+1 = Ak − Ĝ−1
k ∇Aεk, (F.15)
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where Ĝk is a Hessian matrix estimate and ∇Aεk is the a priori error gradient[199].

As in equation (F.11), the error gradient is given by (k index hidden)

∇Aε =
2

N

∂ε

∂A
ε. (F.16)

The last equation needs the evaluation of the derivative of vector ε with respect to

matrix A. This operation is achieved by differentiating each element of vector ε with

respect to the full matrix A [202]. The result is a row-vector in which each element

is a matrix, that is, a 3-dimensional tensor. As a result, we refer to the algorithm

that we have developed to solve this problem as Tensorial-RLS algorithm.

An approach to the development of these algorithms would be to use tensorial

notation and define tensorial operations. Instead, in this work we opted to develop

the gain correction by firstly deducing a pixel-by-pixel gain estimator. Then, in

section F.5.3, we further develop the method by grouping pixel-by-pixel operations

in vectors and matrices, resulting in a compact representation algorithm which is

more easily implemented.

The update equation for gain estimation of each pixel by Tensorial-RLS can be

written as

âk+1(i) = âk(i)− Ĝ−1
k ∇a(i)εk, (F.17)

where Ĝk is a Hessian matrix estimate and ∇a(i)εk is the a priori error gradient[199].

The gains associated to the pixels of the image are lexicographically ordered and

their individual values are accessed through index i (that is, a(i) = [A]ii).

Strictly speaking, ∇a(i)εk is a scalar, as it is defined as ∂εk
∂a(i)

. Consequently, Ĝk is

not a matrix, but a simple scalar which represents the second-order partial derivative

of εk with respect to a(i). Thus, the symbol gk(i) will be used instead of Ĝk.

When the gradient is applied to the error defined in equation (F.7), one gets the

following (k index avoided for simplicity):

∇a(i)ε =
∂ε

∂a(i)
ε

= −zT

[
∂A

∂a(i)
MA−1 + AM

∂A−1

∂a(i)

]T

ε,

(F.18)

where z = (g − b). The partial derivatives will be expressed in equations (F.22)

and (F.23).

The Hessian matrix is given by [202]:

Gk , ∇2
a(i)ξ

RLS
k =

∂2ξRLSk

∂a2(i)
= λĜk−1 +

∂2εk
∂a2(i)

. (F.19)
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The second order gradient of the error needed above is obtained as:

∂2ε

∂a2(i)
=

2

N

{[
∂2ε

∂a2(i)

]T

ε+
∂ε

∂a(i)

[
∂ε

∂a(i)

]T
}

. (F.20)

Applying the second order gradient to the estimation error, one obtains:

∂2ε

∂a2(i)
= −zT

[
2
∂A

∂a(i)
M
∂A−1

∂a(i)
+ AM

∂2A−1

∂a2(i)

]T

. (F.21)

In order to aid the visualization of the equations, we will use Ā = A−1. Moreover,

the higher order derivatives of the gain matrix A and its inverse are presented as:

Ȧ(i) =
∂A

∂a(i)
=




0

1

0


 (F.22)

˙̄A(i) =
∂A−1

∂a(i)
=




0

−a−2(i)

0


 (F.23)

and

¨̄A(i) =
∂2A−1

∂a2(i)
=




0

2a−3(i)

0


 , (F.24)

where only the ii-th elements differ from zero. Then, equation (F.18) can be written

more compactly as

∇a(i)ε = −zT
[
Ȧ(i)MĀ + AM ˙̄A(i)

]T

ε. (F.25)

The Tensorial-RLS algorithm for gain estimation is shown in Table F.2. The

“tensorial” denomination comes from the fact that the solution for whole image

needs tensorial notation, as the solution for individual pixels uses matrix-vector and

matrix-matrix multiplications.

Vectorization of Tensorial-RLS Algorithm for Gain Correction

Due to sparse structure of matrices in the Tensorial-RLS algorithm, it is possible to

group the calculations in order to transform the loop (in the Tensorial-RLS algorithm

of table F.2) into matrix operations. This can lead to a significant improvement in

the speed of the algorithms when implemented in a matrix-oriented programming

language such as MATLABR© .
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Do for k ≥ 0

zk =
(
gk−1 − b

)

εk = gk −AkMkĀkzk − b

Do for 1 ≤ i ≤ N

uk(i) =
[
Ȧk(i)MkĀk + AkMk

˙̄Ak(i)
]

zk

wk(i) =
[
2Ȧk(i)Mk

˙̄Ak(i) + AkMk
¨̄Ak(i)

]
zk

vk(i) = wT
k (i)εk + uT

k (i)uk(i)

gk(i) = λgk−1(i) + vk(i)

âk+1(i) = âk(i)− g−1
k (i)uT

k (i)εk

Table F.2: Tensorial-RLS algorithm for gain correction

First, we define a matrix Z = diag (z) and we redefine (k index hidden to aid

visualization)

˙̄A = −diag
(
a−2(1), a−2(2), · · · , a−2(N)

)
(F.26)

¨̄A = 2diag
(
a−3(1), a−3(2), · · · , a−3(N)

)
, (F.27)

which are calculated at each iteration.

Let’s first analyze the term uk(i) in table F.2. Its squared norm will be used

to calculate vk(i). However, we can compute uk(i) for all i in one step, store the

results in the columns of a matrix Uk and then compute their squared norms. The

latter operation will be represented by
∑N

i [Uk ◦Uk]ij, meaning that the norms of

the columns are calculated and stored in a row-vector. The symbol ’◦’ represents

Hadamard or element-wise product, that is, p = q ◦ r is given by [p]i = [q]i [r]i.

The same idea can be applied to the term wk(i) in table F.2. The results for all

i will be calculated in one step and stored in the matrix Wk, which will be further

multiplied by εk. It is important to note that the conception of matrices Uk and Wk

is possible owing to the special sparsity of the matrices Ȧk(i),
˙̄Ak(i) and ¨̄Ak(i). They

have only the ii-th element different from zero, thus a post-multiplication by a matrix

(e.g. Ȧk(i)MkĀk) will conserve only the i-th row, whereas a pre-multiplication (e.g.

AkMk
˙̄Ak(i)) will keep only the i-th column.

The vector version of Tensorial-RLS algorithm for gain correction is shown

in Table F.3, where Hadamard or element-wise division p =

(
q
r

)
is given by

[p]i =
[q]i
[r]i

.
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Do for k ≥ 0

zk =
(
gk−1 − b

)

εk = gk −AkMkĀkzk − b

Zk = diag (zk)

Uk = diag
(
MkĀkzk

)
− ZkAkMk

˙̄Ak

Wk = Zk

(
2Mk

˙̄Ak −AkMk
¨̄Ak

)

vk = Wkεk +
[∑

i [Uk ◦Uk]ij

]T

gk = λgk−1 + vk

αk =
UT
k εk
gk

Ak = Ak−1 + diag (αk)

Table F.3: Tensorial-RLS algorithm for gain correction (vector form)

F.6 Affine Projection algorithms

Affine projection (AP) is a class of adaptive-filtering algorithms which recycles

the old data signal in order to improve the convergence as compared to stochastic

gradient-type of algorithms. Also referred to as data-reusing algorithms, the AP

algorithms are known to be viable alternatives to the RLS algorithms by achieving

lower computational complexity in situations where the input signal is correlated.

The penalty to be paid when increasing the number of data reuse is a slight increase

in algorithm misadjustment [203].

Due to memory limitations in the implementation of AP algorithm, we introduce

here a different approach from the one usually found in the literature [199, 204, 205].

We define the objective function as

ξAPk =
k∑

i=k−L

εi =
k∑

i=k−L

εT
i εi, (F.28)

where L corresponds to the amount of reused data. By minimizing (F.28) we minimize

the estimation error squared over a window of size L. The main difference between

RLS and AP algorithm is that the former considers the whole past of errors weighted

by the forgetting factor, whereas the latter considers only a window of past errors,

giving the same weight to all errors.

The AP algorithm usually requires less computational complexity than the RLS

algorithm brought about by the reduction in the dimension of the information matrix

that is inverted. In addition, the finite memory of the AP algorithm reduces the

noise enhancement and the negative effects of the slow variations of the FPN, both

inherent to the RLS algorithm, see [199] for details.
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Do for k ≥ 0

εk = gk −AMkA
−1
(
gk−1 − b̂k

)
− b̂k

Rk =
[
(AMkA

−1)
T − I

]
· [(AMkA

−1)− I]

Keep Rk,Rk−1, · · · ,Rk−L−1 in memory.

Ĥ′k = λĤ′k−1 + Rk −Rk−L−1

uk =
[
(AMkA

−1)
T − I

]
εk

vk = BCGSTABL(Ĥ′k,uk)

b̂k+1 = b̂k − vk

Table F.4: AP algorithm for bias correction

Following a similar procedure to the one used in Section F.5, it can be shown

that the Hessian matrix can be estimated by

Hk , ∇2
bξ

AP
k =

∂2ξAPk
∂b∂bT

= Ĥk−1 +
∂2εk

∂b∂bT
− ∂2εk−L−1

∂b∂bT
.

(F.29)

The matrix Ĥk accumulates information about the last L errors. When new infor-

mation comes, the oldest error contribution has to be subtracted. In short, RLS and

AP algorithms differ from the way the Hessian matrix is estimated. Apart from that,

the algorithms are basically the same (e.g. a priori error gradient, etc).

F.6.1 Bias correction by AP algorithm

The update equation for the Affine Projection algorithm is the same as equation (F.9),

repeated here for convenience:

b̂k+1 = b̂k − Ĥ−1
k ∇bεk, (F.30)

where Ĥk is an estimate of the Hessian matrix and ∇bεk is the a priori error

gradient[199].

It is straightforward to show, by substituting equations (F.12) and (F.13) into

equation (F.29), that

Ĥ′k = λĤ′k−1 + Rk −Rk−L−1, (F.31)

where Rk =
[
(AMkA

−1)
T − I

]
· [(AMkA

−1)− I]. Past values of Rk, up to the

(k − L− 1)-th, must be kept in memory.

The complete affine projection bias correction algorithm is summarized in Ta-

ble F.4.
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Do for k ≥ 0

zk =
(
gk−1 − b

)

εk = gk −AkMkĀkzk − b

Uk = diag (MkAkzk)− ZkAkMk
˙̄Ak

Wk = Zk

(
2Mk

˙̄Ak −AkMk
¨̄Ak

)

vk = Wkεk +
[∑

i [Uk ◦Uk]ij

]T

Keep vk,vk−1, · · · ,vk−L−1 in memory.

gk = λgk−1 + vk − vk−L−1

αk =
UT
k εk
gk

Ak = Ak−1 + diag (αk)

Table F.5: Tensorial-AP algorithm for gain correction (vector form)

F.6.2 Gain correction by Tensorial-AP algorithm

For the gain estimation, the vector gk in Table F.3 plays the role of Hessian matrix.

Strictly speaking, as seen in Section F.5.3, the second-order partial derivatives become

scalars and we have only to worry about one value per pixel. The values of gk can

be regarded as variable step sizes for each pixel. Their update rule follows the same

idea of Section F.6.1: the newest vk of L values will be added to the accumulator gk,

whereas the oldest (i.e. vk−L−1) will be subtracted from the accumulator.

In the experiments described in Section F.7, we use the vector form of the

Tensorial-RLS algorithm (Table F.3) as a basis to Tensorial-AP algorithm. The

difference is in how the vector gk is updated. The complete Tensorial-AP algorithm

for gain correction is shown in Table F.5.

F.6.3 Handling dead pixels, leaking pixels and algorithm

breakdown

In this section we address problematic conditions which can lead to an algorithmic

breakdown. We base our analysis primarily on equations (F.1) and (F.2). A break-

down would occur if we could not use equation (F.2) for FPN correction, repeated

here for convenience:

f̂k(n1, n2) =
gk(n1, n2)− b̂(n1, n2)

â(n1, n2)
. (F.32)

Suppose we apply our FPN correction method to an IR video sequence obtained by

a camera with dead pixels, i.e. a(n1, n2) = 0 for some {i, j}. The gain estimation

algorithm would eventually converge to â(n1, n2) = 0 and equation (F.32) could not
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be used. Thus, we could set a minimum accepted gain, say amin, and monitor all

â(n1, n2) to ensure that their values are at least amin.

Another situation where the video acquisition does not agree with the observation

model in (F.1), is the case of leaking pixels, i.e. gk(n1, n2) = a(n1, n2)f(n1, n2) +

b(n1, n2) + a(i+ δi, j + δj)f(i+ δi, j + δj) + b(i+ δi, j + δj) for some {i, j, δi, δj}. In

this case, divergence of â(n1, n2) and b̂(n1, n2) estimates may occur.

Ideally, in order to take into account these particularities, the camera sensor

should be studied and its model used to derive the algorithms. However, we can

prevent breakdowns by adequately choosing {amin, amax} and {bmin, bmax} and simply

forcing â(n1, n2) and b̂(n1, n2) to lie within these ranges.

F.7 Results

This section presents the results obtained with the proposed algorithms and compares

their performances to the state-of-the-art NUC algorithms. First, the performance –

meaning fidelity of estimated video to the uncorrupted video – of the algorithms is

assessed through simulated data. Synthetic FPN and random noise are introduced

in simulated infrared video obtained from a static image. Then, we apply the

algorithms to real FPN-corrupted infrared video, where the performance of the

methods is subjectively evaluated. In the experiments pixel values can only range

from 0 to 255 (image dynamic range).

F.7.1 Simulation Results

For image quality evaluation, we use two measures: PSNR1, for its frequent use

in image quality assessment, and SSIM (Structural SIMilarity) [206], for its good

consistency with subjective assessment compared to other measures. Both PSNR

and SSIM indicate how close the estimated image f̂k is from the real uncorrupted

image fk. When the two images are identical the PSNR will tend to infinite, whereas

SSIM will be one. Thus, the higher both measures are, the better is the image’s

fidelity. We will use log10(SSIM) to emphasize the numerical differences between the

methods.

We compared four algorithms: LMS-based NUC developed in [4], Kalman-Filter-

based [192], Tensorial-RLS [97] (described in detail in Section F.5) and the proposed

Tensorial-AP described in Section F.6. We have chosen the Kalman-Filter-based

method described in [192] as the reference method for our comparisons since it

provides state-of-the-art results without any assumptions about the scene content or

motion behavior. Other methods may provide similar results, but they often rely on

1PSNR(x,y) = 10 log10
2552

MSE(x,y)

158



Figure F.2: Original image (left) and image corrupted with synthetic FPN – fixed-
pattern noise (right)

motion constraints (i.e. only 1D in [91] or non-subpixel in [191]), which restricts the

gamut of videos they can be applied to. Also, Zuo et al. [207] proposed a gradient

descent NUC algorithm which considers motion explicitly. The method is similar to

the LMS-based one developed in [4].

We generated 50 videos from portions of static images. An example can be seen

in Figure F.2. Each video contained 250 frames with resolution 128 × 128 pixels.

Between consecutive frames there were translational shifts defined by random real

numbers from −2 to 2. Synthetic FPN was inserted and corrupted all frames of

the videos. We remind that FPN (fixed-pattern noise), as the name suggests, is

time-invariant. We inserted FPN according to equation (F.1) with gain standard

deviation randomly selected from the interval 0 ≤ σA ≤ 0.1 and bias standard

deviation randomly selected from the interval 0 ≤ σb ≤ 0.5. Additive noise, with

standard deviation randomly selected from the interval 0 ≤ σn ≤ 0.05, was also

added to each frame. We used normal distribution for the random selection of the

bias and the gain.

We have used µ = 0.1 as step size in the LMS-based algorithm, λ = 0.999 as

forgetting factor in the RLS algorithm and L = 3 as the number of reused inputs in

the AP algorithm.

The videos were processed with the four algorithms, and the fidelity of the

reconstructed video in reference to the uncorrupted one was evaluated through PSNR

and SSIM measures. Figures F.3 and F.4 show the average of the 50 generated

videos. The frame number axis was not averaged in order to show the convergence

of all methods. Table F.6 shows the average results.

Additionally, the experiments have shown that the order that gain and bias FPN

correction are performed (i.e. first bias then gain or first gain then bias) does not

affect the final result. As at each iteration (i.e. each new frame) the bias and gain

estimates are only slightly refined, the final result does not depend on the order of
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Figure F.3: Mean PSNR results from simulated data
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Figure F.4: Mean SSIM results from simulated data
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PSNR [dB] log(SSIM)[×10−4]

LMS 34.7043 -0.1226

Kalman 34.9060 -0.1242

Tensorial-RLS 35.0844 -0.1234

Tensorial-AP 36.1221 -0.0989

Table F.6: Average results for 50 synthetically FPN-corrupted videos. Higher values
of PSNR and SSIM denote better results.
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Figure F.5: Tensorial-AP performance using true motion information, shift estimation
by LIPSE algorithm and by Brox [208] algorithm

corrections.

F.7.2 Errors in Shift Estimation

In this section, we assess the performance of the Tensorial-AP algorithm in terms

of shift estimation errors and shift estimation algorithms. We generated 100 videos

from portions of static images with known vertical and horizontal shifts. Then, we

fed the Tensorial-AP algorithm with true motion information, motion estimated by

LIPSE algorithm described in Section F.8 and motion estimated by Brox’s algorithm

described in [208]. Since the FPN estimation and removal improves according to the

frame number, we applied a pre-correction before estimating shifts between each pair

of frames. Therefore, shift estimation error also tends to improve with time for the

noise level tends to decrease. Figure F.5 shows this behavior and the evolution of

image quality and motion estimation mean squared error (MSE) with time.

As expected, the best performance is attained when true motion is available.

However, LIPSE algorithm performed better than Brox’s [208], which is one of a
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LMS Step size µ = 0.3

Kalman Forgetting factor λ = 0.9

Tensorial-RLS Forgetting factor λ = 0.9

Tensorial-AP Reuse order & step size L = 2 & µ = 2

Table F.7: Parameters used for each algorithm in the experiments with real infrared
videos.

family of optical-flow-based algorithms [118, 208–211].

Although optical-flow-based algorithms provide excellent results for most real

videos, when strong fixed-pattern noise is present the averaging nature of LIPSE (see

Section F.8) attenuates the FPN and provides better results, mainly in the beginning

of the simulations, when the FPN level is high, as argued in [91, 212]. Moreover,

in our studies we have focused on pure translational motion, justifying the use of

LIPSE algorithm. For complex non-global motion, a differential coarse-to-fine motion

estimation method should be used [118, 208–211].

Figure F.5 also shows the performance of Tensorial-AP algorithm in presence of

errors in shift estimation. The convergence speed is slowed down when motion is not

accurately estimated. However, since we use only one iteration of the recursive algo-

rithm for each new incoming frame, each update is only slightly affected. Moreover,

when the noise level lowers with time, the shift estimation tends to become more

accurate.

F.7.3 Real IR Videos Results

We shot video sequences using a FLIR SYSTEMS model ThermaCAM P65 in-

frared camera, with a focal plane array uncooled microbolometer detector. Each

infrared sequence consists of 200 frames with picture size of 320 × 240 pixels at

60 frames/second. The “Noise Reduction” option was switched off, as well as the

“Shutter Period” option. The latter refers to the FPN correction provided by the

camera manufacturer. When active, the camera shutter receives a periodic signal

closure (varying from 3 to 15 minutes) to perform a two-point calibration.

The FPN contamination was very clear in the acquired video. In order to assess

the performance of each FPN reduction method, we applied the four algorithms under

evaluation to the captured videos. The algorithms had some of their parameters

empirically adjusted in order to achieve the best result from each method. The new

parameters are shown in Table F.7.

Figures F.6 to F.9 show the 133-th frame of the observed video “telephone”

alongside the corrected videos by each of the four algorithms under evaluation.

Figures F.10 to F.13 show the 190-th frame of the observed video “tube segment”
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Figure F.6: Telephone observed IR video (left) and FPN corrected video by LMS
algorithm

Figure F.7: Telephone observed IR video (left) and FPN corrected video by Aver-
buch/Kalman algorithm

alongside the corrected videos by each of the four algorithms under evaluation.

We also applied the Tensorial-AP algorithm to a infrared video sequence obtained

on the internet (http://www.youtube.com/watch?v=lHw_JWLkqOo). The sequence

shows aerial images of a truck and another vehicle. The images are corrupted with

FPN, though one can notice that it is a different type of FPN. Specifically, the stripe

pattern is horizontal rather vertical. The 69-second original frame (on the left) along

with the processed image (on the right) are shown in Figure F.14 as an example of

the Tensorial-AP algorithm output.

We can observe on the real images that the algorithms were able to remove the

FPN more or less efficiently depending on each one’s characteristics. Interestingly,

the video on Figure F.14 showed originally overlaid helping information and target

lines which were also removed by the Tensorial-AP algorithm. Considering that

those artifacts are constant throughout the entire sequence, they match the FPN

definition and their removal is consistent.

From a mathematical perspective, the results obtained are reasonable since we

do not assume in our models any vertical or horizontal pattern for the FPN. Rather,

each pixel has its own gain and bias and no correlation between pixels is imposed.

As can be observed, the best perceptual results are achieved by the AP and RLS

algorithms with the former having a much smaller computational complexity, as

detailed in the next subsection.

163

http://www.youtube.com/watch?v=lHw_JWLkqOo


Figure F.8: Telephone observed IR video (left) and FPN corrected video by Tensorial-
RLS algorithm

Figure F.9: Telephone observed IR video (left) and FPN corrected video by Tensorial-
AP algorithm

Figure F.10: Tube segment observed IR video (left) and FPN corrected video by
LMS algorithm

Figure F.11: Tube segment observed IR video (left) and FPN corrected video by
Averbuch/Kalman algorithm
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Figure F.12: Tube segment observed IR video (left) and FPN corrected video by
Tensorial-RLS algorithm

Figure F.13: Tube segment observed IR video (left) and FPN corrected video by
Tensorial-AP algorithm

Figure F.14: Observed ”truck“ IR video (left) and FPN corrected video by Tensorial-
AP algorithm

LMS Kalman Tensorial-RLS Tensorial-AP

26.7441 315.7993 334.2236 76.3300

Table F.8: Average time (in seconds) of execution for 50 synthetically FPN-corrupted
videos. Lower values are better.

F.7.4 Computational load

The computational complexity of each algorithm has also been assessed by measuring

their execution times. Table F.8 shows the average results in seconds for the 50

videos mentioned in Section F.7.1. As expected, LMS-based algorithm was the fastest

due to its simplicity. Tensorial-AP outperformed the others because BCGSTABL

converged in less steps.
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F.8 LIPSE motion estimation algorithm

LIPSE stands for “linear interpolation projection-based shift estimator”. The ad-

vantages of projection-based algorithms are speed and noise robustness, specially

the FPN which can severely affect motion estimation reliability [212]. For detail

information on LIPSE, see [91, 212].

Let gk−1 and gk be two consecutive frames of a video presenting only translation

shifts. Each pixel of the image is represented by gT (n1, n2), and the projections

of rows and columns are respectively defined as gR(n2) = 1
N1

∑N1

n1=1 gT (n1, n2) and

gC(n1) = 1
N2

∑N2

n2=1 gT (n1, n2).

The solution will be given only to the projection of columns (yC(n1), referred

to as y(n) from now on), since it is analogous to the projection of rows. Suppose

that there is only subpixel motion between consecutive frames (as integer shifts are

compensated – see algorithm below). Each element of the projection of the k-th

frame is estimated by

ĝk(n) = (1− δk)gk−1(n) + δkgk−1(n+ 1), (F.33)

where 0 ≤ δk < 1 is the subpixel shift. The MSE (mean-square error) is defined as

ϕk = 1
N

∑N
n=1 [gk(n)− ĝk(n)]2.

The value of δk which minimizes the MSE is such that ∂ϕk

∂δk
= 0 and the solution

is given by δk = ψk

ζk
, where

ψk =
N−1∑

n=1

{
gk(n) [gk−1(n)− gk−1(n+ 1)] + gk−1(n) [gk−1(n+ 1)− gk−1(n)]

}
(F.34)

and

ζk =
N−1∑

n=1

{
g2
k−1(n)− 2gk−1(n)gk−1(n+ 1) + g2

k−1(n+ 1)
}

. (F.35)

In summary, the LIPSE algorithm is given by the following steps:

1. Compute δk = ψk

ζk
through equations (F.34) and (F.35) for all possible integer

shifts ∆k between the projections of consecutive frames yR(j) and yC(j);

2. Find MSE’s ϕk for all combination produced in the previous step;

3. Select the ∆k which produces the smallest MSE ϕk;

4. Form the total shift estimate dk = ∆k + δk;

5. Repeat previous steps for the projections of the rows yR(j) and then obtain

the complete shifts (columns and rows) dk.
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F.9 Conclusion

This chapter presented two new algorithms for NUC (bias and gain nonuniformity

correction) in infrared videos. The proposed methods, called Tensorial-RLS and

Tensorial-AP, are based on Recursive Least-Squares and Affine Projection adaptive

filters. They received the “Tensorial” denomination due to the fact that their

derivation includes the concept of tensors.

Although the notion of tensors was employed, it has not been necessary to

use tensorial notation. Instead, a pixel-by-pixel version was developed, which was

further grouped into a compact vectorial version. This version is easier to implement

and faster when matrix-oriented programs are used (e.g. in MATLAB, matrix

multiplications are faster than loops).

Section F.7 showed the results when comparing the proposed algorithms to

state-of-the-art NUC proposed by Averbuch in [192]. Although Averbuch named his

algorithm “Kalman-filter-based”, it is rather an RLS-based method, as Averbuch

himself observed. In fact, when only bias FPN is present, the performances of

Tensorial-RLS and Averbuch/Kalman algorithm are quite equivalent.

However, when also gain FPN exists, Tensorial-RLS outperforms Kalman-based

methods, as the former corrects both gain and bias FPN whereas the latter corrects

bias only. The affine projection algorithm (Tensorial-AP), on the other hand, showed

the best results of video quality for both image quality measures (PSNR and SSIM).

Concerning speed of convergence and final misadjustment, the experiments showed

the following:

• LMS (only bias): slow convergence and low misadjustment;

• Kalman (only bias): fast convergence and high misadjustment;

• RLS (bias and gain): fast convergence and high misadjustment;

• AP (bias and gain): fast convergence and low misadjustment.

Both RLS and Kalman presented high misadjustment probably due to the additive

random noise incorporated (i.e. convergence and final misadjustment trade-off).

Affine projection algorithm showed good speed of convergence and low misadjustment

compared with RLS and had the best combined results of the compared methods.

Observing the results from the experiments using real infrared video, we can

subjectively rank each method according to image quality as (informal subjective

tests have been carried out): Tensorial-RLS and Tensorial-AP (best results), Kalman

and LMS-based (worst result). The Tensorial-RLS and the Tensorial-AP algorithms

were considered equivalent in terms of subjective quality.

�2

2Conduz-se o leitor de volta ao corpo da tese no Caṕıtulo 8, página 42.
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Appendix G

Survey of multi-frame

super-resolution methods

The aim of multi-frame super-resolution is to recover HR images from a set of LR

observed images. The LR observed images can be, for instance, several pictures of

an object or frames of a video. In this work, we will consider the latter case.

In most real videos, it is possible to find mathematical relations between frames.

Many video coding schemes adopt relative motion models between frames in order to

describe local motion of objects in the scene or global motion of the whole scene. In

the simplest case, the differences between the LR observations are due to translational

motion of the camera. The motion parameters, that is, the amount of vertical and

horizontal displacement of camera, are assumed to be known in most cases. Although

these parameters can also be obtained by motion estimation algorithms, this is a

serious drawback since the motion parameters in HR have to be estimated from

the LR observed frames. Specifically, the motion estimation must have sub-pixel

accuracy.

Multi-frame super-resolution methods aim to enhance the resolution of a reference

frame by exploiting relationships between frames. Other frames can contain additional

information about the reference frame. In this case, the additional information was

lost in the reference frame due to acquisition process, but it is distributed in other

frames.

This chapter presents a survey of the literature on multi-frame super-resolution.

We present some classical approaches to the problem and conclude by introducing

more recent approaches.
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G.1 Frequency Domain Super-resolution

Frequency domain approaches are the earliest attempts to solve the problem of

super-resolution [213–217]. They are based on the shifting property of the Fourier

transform and on the aliasing relationship between the continuous Fourier transform

(CFT) and the discrete Fourier transform (DFT). A system of equations is formulated

relating the aliased DFT coefficients of the LR observed images to the samples of the

CFT of the unknown HR image. These equations are solved yielding the frequency

domain coefficients of the original image, which may then be recovered by IDFT.

The formulation of the system of equations requires knowledge of the translational

motion between frames with subpixel accuracy.

We present now an overview of frequency domain approaches. Let fa(x, y) be

a real image, still in continuous domain with horizontal coordinate x and vertical

coordinate y, and let

ga,k(x, y) = fa(x+ hk, y + vk) k = 1, · · · , K (G.1)

be the K observations of fa(x, y) subject to horizontal and vertical translational

shifts hk and vk respectively. If Fa(jΩx, jΩy) is the Fourier transform of f(x, y), then

we have

Ga,k(jΩx, jΩy) = Fa(jΩx, jΩy) exp {j2π(hkΩx + vkΩy)} (G.2)

as the Fourier transforms of each observation. As the observed images are actually

sampled and supposing the sampling periods T1 and T2 in the horizontal and vertical

directions, respectively, the observed images can be rewritten as

gk(n1, n2) = ga,k(n1T1, n2T2), (G.3)

with n1 = 1, · · · , N1 and n2 = 1, · · · , N2 and N1 and N2 being the number vertical

and horizontal pixels.

Now we write the DFT of gk(n1, n2) as

Gk(m1,m2) =

N1−1∑

n1=0

N2−1∑

n2=0

gk(n1, n2) exp

{
−j2π

(
m1n1

N1

+
m2n2

N2

)}
. (G.4)

We can relate the spectrum of the sampled observed image with the spectrum of

continuous observed images through

Gk(m1,m2) =
1

T1T2

∞∑

l1=−∞

∞∑

l2=−∞

Ga,k

(
2π

T1

[
m1

N1

+ l1

]
,
2π

T2

[
m2

N2

+ l2

])
. (G.5)

If we suppose that Fa(jΩx, jΩy) is band-limited, that is, |Fa(jΩx, jΩy)| = 0,
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|Ωx| > L1
2π
T1

and |Ωy| > L2
2π
T2

, then each Ga,k(jΩx, jΩy) is also band-limited and the

infinite summation in (G.5) can be reduced to

Gk(m1,m2) =
1

T1T2

L1−1∑

l1=−L1

L2−1∑

l2=−L2

Ga,k

(
2π

T1

[
m1

N1

+ l1

]
,
2π

T2

[
m2

N2

+ l2

])
. (G.6)

Now we want to write the DFT coefficients Gk(m1,m2) as a function of the

spectrum Fa(jΩx, jΩy) of the continuous image. First, we substitute (G.2) on the

right-hand side of (G.6) and we have

Gk(m1,m2) =
1

T1T2

L1−1∑

l1=−L1

L2−1∑

l2=−L2

Fa

(
2π

T1

[
m1

N1

+ l1

]
,
2π

T2

[
m2

N2

+ l2

])
·

· exp

{
j2π

[
hk
T1

(
m1

N1

+ l1

)
+
vk
T2

(
m2

N2

+ l2

)]}
(G.7)

To simplify the notation, we put ω1 = 2π
T1

m1

N1
and ω2 = 2π

T2

m2

N2
and divide the

spectrum Fa(·) in parts according to the indexes l1 and l2. That is, for l1 = −L1 and

l2 = −L2 we have the first portion which we call Fa,1(ω1, ω2). For l1 = L1 − 1 and

l2 = L2 − 1 we have the last portion of the spectrum, which we call Fa,4L1L2(ω1, ω2).

The double summation in (G.7) represents the aliasing taking place, when different

portions of the continuous image spectrum are mixed, according to the shifts hk and

vk, due to the sampling process.

Rewriting (G.7) in matrix notation and dividing the continuous image spectrum

in parts, we can write the following system of equations




G1(m1,m2)

G2(m1,m2)
...

Gp(m1,m2)




︸ ︷︷ ︸
pM1×M2

=
1

T1T2

H




Fa,1(ω1, ω2)

Fa,2(ω1, ω2)
...

Fa,4L1L2(ω1, ω2)




︸ ︷︷ ︸
4L1L2M1×M2

(G.8)

with

[H]k,m,l = exp

{
j2π

[
hk
T1

(
m1

N1

+ l1

)
+
vk
T2

(
m2

N2

+ l2

)]}
. (G.9)

By solving G = 1
T1T2

HFa we can retrieve the spectrum of the original image

without aliasing and consequently the original image by an IDFT. The shifts between

the observations must ensure that the matrix H is non-singular. The solution is

given by

f̂(n1, n2) = IDFT{Fa}. (G.10)

Particularly, if the sampling frequency Fs of original image is between Fmax/2 ≤
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Fs < Fmax, the aliasing will be confined within the interval ±2π. In this case we will

have L1 = L2 = 1 and the matrix H becomes square with 4 observations.

G.2 Nonuniform Interpolation Approach

Another very intuitive approach is the interpolation on a nonuniform grid. A sequence

of images of the same scene containing translational shifts are first aligned resulting

in a combined image composed of samples on a nonuniformly spaced sampling

grid. The alignment is obtained by estimating the relative motion, i.e., registration,

between frames. These nonuniformly spaced sample points are, then, interpolated

and resampled on an HR sampling grid. The final stage is usually a deblurring

process, depending on the observation model.

Alam et al. [218] utilize a gradient-based registration algorithm to estimate the

shifts between the acquired frames and then use a weighted nearest-neighbor approach

for placing the frames onto a uniform grid to form a final HR image. Finally, Wiener

filtering is applied to reduce effects of blurring and noise caused by the system.

First, each observed frame is modeled as a reference frame ga,0(x, y) with horizontal

and vertical shifts as

ga,k(x, y) = ga,0(x+ hk, y + vk). (G.11)

An approximation of (G.11) considering the first three terms for the Taylor series

expansion is given by

ga,k(x, y) ≈ ga,0(x, y) + hk
∂ga,0(x, y)

∂x
+ vk

∂ga,0(x, y)

∂y
. (G.12)

The registration parameters hk and vk are obtained by solving a least-squares

problem considering a discrete version of (G.12) given by

εk(hk, vk) =
1

N1N2

N1−1∑

n1=0

N2−1∑

n2=0

[
gk(n1, n2)−

− g0(n1, n2)− hk
∂g0(n1, n2)

∂n1

− vk
∂g0(n1, n2)

∂n2

]2

. (G.13)

Once the relative shifts are determined, the frames are placed on the HR grid

forming a draft fd(n1, n2) of the HR image. However, some pixels will be missing

since they do not have a direct correspondence from LR frames. These missing pixes

are filled using a weighted nearest neighbor technique, which consists in averaging the

three nearest available pixels giving weights inversely proportional to their distance

from the desired point.

Kaltenbacher and Hardie [219] used a similar approach to determine the relative
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shifts in LR images. Then, the frequency domain algorithm proposed by Tsai and

Huang [213] was used to determine the HR image.

Komatsu et al. [220, 221] developed a scheme of acquiring HR images from

multiple LR cameras. They employ the block-matching technique to measure relative

shifts and utilize the Landweber algorithm [222] to reconstruct an improved resolution

image. Suppose we model the nonuniform sampling process as

fd(n1, n2) = A{f(n1, n2)}, (G.14)

where A is a linear operator representing the nonuniform sampling process, f(n1, n2)

is the desired HR image and fd(n1, n2) is a version of HR image where the samples

are nonuniformly spaced. Since A is a linear operator, we can use matrix notation

and rewrite (G.14) as

fd = Af . (G.15)

As mentioned earlier, fd is obtained by aligning the LR frames on an HR grid

forming a draft of HR image. Since the samples in fd are nonuniformly spaced, there

might be missing pixels when considering a uniform grid.

The Landweber algorithm described in [220, 221] aims to estimate the HR image

by minimizing the cost function

f̂ = arg min
f

‖fd −Af‖ (G.16)

using a gradient-based recursion

f̂ q+1 = f̂ q + µAT(fd −Af), (G.17)

where the index q indicates the refinement level of the estimate.

Following the same idea of interpolation on nonuniform grid, Nguyen and Milanfar

[223, 224] proposed a wavelet-based method for super-resolution. As the previous

methods, the frames have first to be aligned and placed on a nonuniform grid.

Then, the nonuniformly spaced samples are used to estimate the wavelet expansion

coefficients of the desired image. Finally, the pixels of the HR image are obtained

through the wavelet expansion equation.

For simplicity, we describe here the wavelet interpolation for nonuniformly sampled

1D signals. Based on the same idea, the method is extended to 2D data (i.e. images)

in [223, 224].

The wavelet theory [130, 225] states that any function f(t) ∈ L2(R) can be

decomposed in a set of orthonormal basis functions called scaling functions along
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with wavelet functions through the equation

f(t) =
∑

k∈Z

aJ,kφJ,k(t) +
∑

j≥J

∑

k∈Z

bj,kψj,k(t), (G.18)

where φJ,k(t) are the scaling functions and ψj,k(t) are the wavelet functions.

The first term on the right-hand side of (G.18) provides a coarse approximation,

determined by J , for f(t), whereas the second term adds the “details” to complete

the representation of f(t).

The functions {φ(t − k)}k∈Z form an orthonormal basis for a vector space V0,

whereas their dilatations and translations {φj,k(t) = 2j/2φ(2jt − k)}k∈Z form an

orthonormal basis for Vj. The approximation becomes more accurate as j increases.

The difference in successive approximations zj(t) = fj+1(t)− fj(t) is a detail signal

that lives in a wavelet subspace Wj. In fact, we can decompose the approximation

space Vj+1 as

Vj+1 = Vj ⊕Wj, (G.19)

where the direct sum of subspaces is defined as H ⊕K = {u + v |u ∈ H, v ∈ K}.
Finally, any function in L2(R) can be written as a sum of its approximation at

some scale J along with the subsequent detail components at scale J and higher,

that is,

L2(R) = VJ ⊕
⊕

j≥J

Wj, (G.20)

which shows a vector-space representation of equation (G.18).

Suppose that we have a function f(t) for which we want to compute N uniformly

spaced values at t = 0, 1, · · · , N − 1. We are given P nonuniformly sampled data

points of f(t) at t = t0, t1, · · · , tP−1, 0 ≤ ti ≤ N , where typically P < N . We take

the unit-time spacing grid (the values of f(t) for t = 0, 1, · · · , N − 1) to be the

representation of f(t) at the resolution level V0. Thus, we can write

V0 = VJ ⊕
−1⊕

j=J

Wj, J ≤ −1. (G.21)

Since the function φ(t) and ψ(t) have a finite support interval, we can eliminate

from (G.18) the summation terms which are zero for a given ti. Let SJ be the set of

shifts of k where the contribution of φ(t) and ψ(t) are nonzero. Then, we can write

f(ti) =
∑

k∈SJ

aJ,kφJ,k(ti) +
−1∑

j=J

∑

k∈SJ

bj,kψj,k(ti), i = 0, · · · , P − 1. (G.22)
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In vector form, equation (G.22) becomes

f = ΦJaJ +
−1∑

j=J

Ψjbj, (G.23)

where

f = (f(ti))i=0,··· ,P−1, aJ = (aJ,k)k∈SJ
, bj = (bj,k)k∈Sj

,

ΦJ = (φJ,k(ti))
k∈SJ

i=0,··· ,P−1 , Ψj = (ψj,k(ti))
k∈Sj

i=0,··· ,P−1 .

To construct ΦJ and Ψj , we need to know the basis functions values at sampling

points {ti}. For most wavelet bases, there are no closed-form expressions for basis

functions. However, basis function values at dyadic points can be calculated efficiently

by recursion [223, 224].

From equation (G.23), we can approximate the coarse-scale coefficients aJ by

ignoring the detail components and considering just

f ≈ ΦJaJ . (G.24)

Choosing J appropriately, we can solve the above system in a least-squares sense,

that is,

âJ = (ΦT
JΦJ + λI)−1ΦT

J f , (G.25)

for some regularization parameter λ. The least-squares estimate âJ yields a coarse-

scale approximation of f . The remaining details can be obtained by

zJ = f −ΦJ âJ

≈ ΨJbJ ,
(G.26)

which, being solved in the least-squares sense, yields b̂J . The desired vales of f(t) at

the HR grid points t = 0, 1, · · · , N − 1 can then be computed using the estimated

coefficients:

f(t) ≈
∑

k∈SJ

âJ,kφJ,k(ti) +
∑

k∈SJ

b̂J,kψJ,k(ti), t = 0, · · · , N − 1. (G.27)

G.3 POCS: Projection onto Convex Sets

According to the method of POCS [67, 226], incorporating a priori knowledge into

the solution can be interpreted as restricting the solution to be a member of a

closed convex set Cj that is defined as a set of vectors, or images, which satisfy

a particular property. If the constraint sets have a nonempty intersection, then a
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solution that belongs to the intersection Cs =
⋂J
j=1Cj, which is also a convex set,

can be found by alternating projections onto these convex sets. Indeed, any solution

in the intersection set is consistent with the a priori constraints and therefore it is

a feasible solution. The method of POCS can be applied to find an image which

belongs in the intersection by the recursion

f̂q+1(n1, n2) = PJPJ−1 · · ·P2P1f̂q(n1, n2), (G.28)

where, for q = 0, f̂0 is an arbitrary starting estimate, and Pj is the projection operator

which projects an arbitrary signal f̂ onto the closed, convex sets, Cj (j = 1, ..., J).

As we are talking about sets and projection, it is interesting to use vector notation

and rewrite (G.28) as

f̂ q+1 = PJPJ−1 · · ·P2P1f̂ q. (G.29)

Stark and Oskoui [226] proposed a method to solve the problem of super-resolution

using POCS. As convex sets, they use data constraint sets Cj, which assure that

the estimated HR image is consistent with the observed data, along with additional

constraints that are imposed from prior knowledge concerning the HR image, such

as amplitude constraint, energy constraint and reference-image constraint.

Tekalp et al. [227] extended the above approach to take into account the presence

of both sensor blurring and observation noise. Patti et al. [228] adopted an alternative

formulation which also takes into account the nonzero aperture time of the sensor.

Later in [229], Patti et al. improved his POC-based method by modifying the

constraint sets to reduce the amount of edge ringing present in the HR image

estimate. Through this modification, a better regularization of inversion process was

achieved.

Altunbasak et al. [230] studied the application of a super-resolution method to

MPEG-coded video. The algorithm is a motion-compensated, transform-domain

(DCT) super-resolution procedure that incorporates the transform-domain quantiza-

tion information.

G.4 Regularized Approaches

G.4.1 Deterministic Approach

Peleg et al. [231] proposed an early simple scheme to super-resolution. Given a set of

K LR observed images gk(n1, n2), the algorithm starts with an initial guess for the

desired HR image f̂(n1, n2), and simulates the imaging process to get a initial set of

simulated LR images ĝk(n1, n2). The error between this set and the set of observed
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images is defined as

ε =
∑

k

∑

n1,n2

|ĝk(n1, n2)− gk(n1, n2)| . (G.30)

All pixels of the guess are examined. If the current gray level is f̂(n1, n2) = l,

three possible updates are considered: {l−1, l, l+ 1}. The value which minimizes the

error in (G.30) is chosen as update for f̂(n1, n2). The process is continued iteratively

until no further improvement can be obtained or until the maximum number of

allowed iterations is reached.

Irani and Peleg [232] modeled the acquisition process as blurred LR observations

of an HR image subject to rotations and translations. The iterative back-projection

(IBP) SR reconstruction approach, similar to the back projection used in tomography,

was developed. In this approach, the HR image is estimated by back projecting the

error (difference) between simulated LR images via imaging blur and the observed

LR images. This process is repeated iteratively to minimize the energy of the error.

Hardie et al. [233] also considered blurred LR observations of an HR image subject

to rotations and translations. However, the HR image was estimated via gradient

descent optimization. The cost function used considered data consistency (or data

matching term), which ensures that the solution agrees to the observed images, and

a regularization term, which is minimized when the estimated HR image is smooth.

Elad and Feuer [234, 235] proposed a method based on adaptive filtering the-

ory for super-resolution restoration of continuous image sequences. The proposed

methodology suggests least squares (LS) estimators which adapt in time, based on

adaptive least mean squares (LMS) or recursive least squares (RLS) filters. The

observed images are assumed to be driven from a source image through the following

equation

gk = RHMkf + vk, (G.31)

where gk are indexed vectors representing the observed images with the columns

lexicographically ordered, R represents the decimation operator, H represents the

blur matrix, Mk represents the geometric warp matrix, f is a vector representing the

desired HR image with the columns lexicographically ordered and vk represents an

additive random noise.

The decimation, the blur and the warp matrices are assumed to be known. The

super-resolution estimated image can be obtained by minimizing

f̂ = arg min
f

{
‖Sf‖2 +

∑

k

‖gk −RHMkf‖2

}
(G.32)

where the first term penalizes for the nonsmoothness of the obtained estimation.
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This term is a regularization mechanism, which algebraically regularizes the problem

so that it has a unique optimal solution, and physically forces the estimation result

to satisfy a priori knowledge about the smoothness of the ideal desired image.

Elad and Feuer [234, 235] derived two algorithms: a pseudo-RLS, which uses the

steepest descent method to avoid matrix inversions, and an LMS algorithm, which

is obtained by a simplification in the pseudo-RLS algorithm using instantaneous

approximations.

Later in [115], Elad and Hel-Or exploited previous results to develop a new

efficient super-resolution reconstruction algorithm which separates the treatment

into de-blurring and measurements fusion. The fusion part is a simple noniterative

algorithm.

In order to improve the convergence of the conjugate gradient method, Nguyen et

al. [236] proposed efficient block circulant preconditioners for solving the Tikhonov-

regularized super-resolution problem. Preconditioning is a technique used to trans-

form the original system into one with the same solution, but which can be solved

by the iterative solver more quickly.

G.4.2 Probabilistic Methods

Since super-resolution is an ill-posed inverse problem, techniques which are capable

of including a priori constraints are well suited to this application. Bayesian methods

inherently include a-priori constraints in the form of prior probability density

functions. The Bayesian approach is sometimes used as a synonymous of maximum

a-posteriori (MAP) estimation [237].

Given the general observation model

gk = Wkf + vk, (G.33)

where Wk is a matrix which performs decimation, blur and geometric warping. The

MAP estimator of f maximizes the a posteriori PDF p(f |gk) with respect to f [67]

f̂ = arg max
f

p(f |g1, · · · ,gK). (G.34)

Applying Bayes’ rule yields,

f̂ = arg max
f

p(g1, · · · ,gK |f)p(f)

p(g1, · · · ,gK)
(G.35)

and since the maximum is independent of gk we have,

f̂ = arg max
f

p(g1, · · · ,gK |f)p(f). (G.36)
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Since the logarithm is a monotonic increasing function, this is equivalent to

finding,

f̂ = arg min
f

{
− log p(g1, · · · ,gK |f)− log p(f)

}
, (G.37)

where log p(g1, · · · ,gK |f) is the log-likelihood function and log p(f) is the log of

the a-priori density of f . Both the a-priori image model p(f) and the conditional

probability p(g1, · · · ,gK |f) will be defined by a-priori knowledge concerning the HR

image f and the statistical information of noise. Since MAP optimization in (G.37)

includes a-priori constraints (prior knowledge represented by p(f)) essentially, it

provides regularized (stable) SR estimates effectively. Markov random field (MRF)

prior is often adopted for prior image model since it provides a powerful method for

image prior modeling [67].

Schultz and Stevenson [238] developed a super-resolution image reconstruction

algorithm using a Huber-Markov Random Field (HMRF) prior. Schultz considered

HMRF a more reasonable prior assumption since the digitized data is piece-wise

smooth, i.e., image data consists of smooth regions, with these regions separated by

discontinuities. The Huber-Markov random field (HMRF) model is a Gibbs prior

that represents piecewise smooth data, with the probability density defined as

p(f) =
1

Z
exp

{
− 1

2β

∑

c∈C

ρ
(
dT
c f
)
}

, (G.38)

where Z is a normalizing constant, β is the “temperature” parameter for the Gibbs

prior, c is a local group of pixels contained within the set of all image cliques C, ρ(·)
is the energy function and dc is a spatial activity measure within the clique c, with a

small value in smooth image locations and a large value at edges.

The likelihood of edges in the data is controlled by the Huber edge penalty

function

ρ(x) =




x2, |x| ≤ α

2α |x| − α2, |x| > α,
(G.39)

where α is a threshold parameter separating the quadratic and linear regions. A

quadratic edge penalty,

ρ(x) = x2 (G.40)

characterizes the Gauss-Markov image model. Edges are severely penalized by the

quadratic function, making discontinuities within the Gaussian image model unlikely.

The threshold parameter α controls the size of discontinuities modeled by the prior

by providing a less severe edge penalty.

A MAP framework for the joint estimation of image registration parameters and

the HR image was presented by Hardie et al. in [239]. The registration parameters,
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horizontal and vertical shifts in this case, are iteratively updated along with the HR

image in a cyclic optimization procedure.

Farsiu et al. [108] proposed an approach to super-resolution reconstruction using

`1norm minimization and robust regularization based on a bilateral prior to deal

with different data and noise models. The method is claimed to be robust to errors

in motion and blur estimation and to result in images with sharp edges. Farsiu et

al. considered the popular acquisition model defined as

gk = RHMkf + vk, (G.41)

where gk are indexed vectors representing the observed images with the columns

lexicographically ordered, R represents the decimation operator, H represents the

blur matrix, Mk represents the geometric warp matrix, f is a vector representing the

desired HR image with the columns lexicographically ordered and vk represents an

additive random noise.

The problem is broken in two steps: finding a blurred HR image z = Hf , called

fusion step, and estimating the deblurred HR image f from z, called deblurring step.

The fusion step is performed by minimizing

J = min
z

{∑

k

‖RMkz− gk‖1

}
. (G.42)

Note that the order of H and Mk was changed. It turns out that H and Mk are

block-circulant matrices since Farsiu et al. [108] considered only translational motion.

And since they are block-circulant matrices, they commute [116].

An approximation of the gradient of (G.42) is given by

∇zJ =
∑

k

MT
kRT sign(RMkz− gk), (G.43)

The minimization (G.42) is done by the noniterative Shift-and-Add algorithm,

which is described next: the term MT
kRT copies the values from the LR grid to the

HR grid after proper shifting and zero filling, whereas RMk copies a selected set of

pixels in HR grid back on the LR grid. Neither of these two operations changes the

pixel values. Therefore, each element of g1, which corresponds to one element in z,

is the aggregate of the effects of all LR frames. The effect of each frame in z has one

of the following three forms:

1. addition of zero, which results from zero filling;

2. addition of +1, which means a pixel in z was larger than the corresponding

contributing pixel from frame gk;
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3. addition of −1, which means a pixel in z was smaller than the corresponding

contributing pixel from frame gk.

The deblurring step is obtained by minimizing

f̂ = arg min
f

{
‖Hf − z‖1 + λ

P∑

l=−P

P∑

m=0︸ ︷︷ ︸
l+m≥0

α|m|+|l|
∥∥f − SlxS

m
y f
∥∥

1

}
, (G.44)

where the matrices Slx and Smy perform shift by l and m pixels the image f in the

horizontal and vertical directions respectively. The scalar weight 0 < α < 1 is applied

to give a spatially decaying effect to the summation of the regularization terms. The

regularization term on the right-hand side of (G.44) is referred to as Bilateral Total

Variation (BTV).

G.5 Super-resolution without Motion Estimation

This section describes some new multi-frame super-resolution algorithms which do

not require motion estimation. Classic super-resolution techniques strongly rely on

the availability of accurate motion estimation for this fusion task. When motion is

inaccurately estimated, as often happens for local motion fields, annoying artifacts

appear in the super-resolved outcome [84].

Additionally, the need for precise motion estimates in conventional super-resolution

has limited its applicability to only video sequences with relatively simple motion

such as global translational or affine displacements. The goal of the techniques

presented in this section is to overcome this drawback and expand the applicability

of super-resolution to a broader range of video sequences [84, 85, 240].

G.5.1 Generalizing Nonlocal-Means to Super-resolution Re-

construction

Protter et al. [84] proposed a super-resolution scheme based on a generalization of

the Nonlocal-Means (NLM) algorithm. The idea was to overcome the need of explicit

motion estimation. The NLM filter is based on the assumption that image content is

likely to repeat itself within some neighborhood. Therefore, denoising of each pixel

is done by averaging all pixels in its neighborhood, that is,

f̂(n) =

∑
m∈N (n) w(n,m)g(m)
∑

m∈N (n) w(n,m)
, n = [n1, n2]T, m = [m1,m2]T, (G.45)
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where f̂(n) is the filtered image, y(m) is the input image, w(n,m) are the filter

weights and N (n) stands for the neighborhood of n.

Defining Pn as an operator that extracts a patch of a fixed and predetermined

size (say q × q pixels) from an image around the position n, and lexicographically

ordering the columns of the image into a vector g, the expression Png results with a

vector of length q2 being the extracted patch. Thus, the NLM weights are given by

w(n,m) = exp

{
−‖Png −Pmg‖2

2σ2

}
· γ (‖n−m‖) , (G.46)

where the function γ(·) takes the geometric distance into account, and as such, it

is monotonically nonincreasing. In other words, the weights for the NLM filter are

computed based both on radiometric (gray-level) proximity and geometric proximity

between the pixels.

The NLM filter described in (G.45) and (G.46) can be deduced by minimizing a

properly defined penalty function [84, 241, 242]

f̂ = arg min
f





1

2

∑

n

∑

m∈N (n)

w(n,m) · ‖Pnf −Pmg‖2



 . (G.47)

Before turning to super-resolution, the temporal axis can be introduced into the

penalty function, so as to process a sequence of images and not just a single one.

Thus, we get

f̂ = arg min
f





1

2

∑

n

∑

k

∑

m∈N (n)

w(n,m, k) · ‖Pnf −Pmgk‖2



 . (G.48)

Considering the problem of super-resolution, the LR observed images gk are

blurred and decimated versions of the HR image f . We have, therefore, to apply a

blurring operator and a decimation operator into HR image, that is, RHf . Protter

et al. [84] divided the solution into two steps: defining z = Hf , the first step is

to estimate z from the measurements gk. This is done by minimizing the energy

function

ẑ = arg min
z





1

2

∑

n

∑

k

∑

m∈N (n)

w(n,m, k) ·
∥∥RpP

H
n z−PL

mgk
∥∥2



 , (G.49)

where Rp is a decimation matrix applied to the patch, PH
n is the image patch

extraction operator at high resolution around the position n and PL
m is the image

patch extraction operator at low resolution around the position m. The idea
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of breaking the super-resolution task into two parts (fusing the inputs and then

deblurring) has been suggested previously in [108, 115].

Once the fusion step is completed, the deblurring step, which results in the HR

image, is done by minimizing

f̂ = arg min
f

{
‖z−Hf‖+ λTV(f)

}
, (G.50)

where λTV(f) is the Total Variation (TV) regularization [20].

G.5.2 Super-resolution through Multidimensional Kernel Re-

gression

Takeda et al. [85] proposed a super-resolution algorithm, based on 3D Steering

Kernel Regression, to handle complex and arbitrary motion on general sequences,

while avoiding explicit (subpixel-accurate) motion estimation. First, we describe the

classical kernel regression, and then we extend the idea to the 3D Steering Kernel

Regression technique. The Kernel Regression framework defines its data model as

gi = f(ni) + vi, i = 1, · · · , N n = [n1, n2]T, (G.51)

where gi is a noisy sample at position ni, f(·) is the regression function to be

estimated and vi is random noise. While the particular form of f(·) may remain

unspecified, we can develop a generic local expansion of the function about a sampling

point ni. Specifically, if n is near the sample ni, the Taylor series are given by

f(ni) ≈ f(n) + [∇f(n)]T (ni − n) +
1

2
(ni − n)T [Hf(n)] (ni − n) + · · ·

≈ β0 + βT
1 (ni − n) + βT

2 vech
[
(ni − n)(ni − n)T

]
+ · · · ,

(G.52)

where ∇ and H are the gradient and Hessian operators respectively, and vech(·)
is the half-vectorization operator that lexicographically orders the lower triangular

portion of a symmetric matrix into a column-stacked vector. Furthermore, β0 is

f(n), which is the signal (or pixel) value of interest, and the vectors β1 and β2 are

β1 =

[
∂f(n)

∂n1

,
∂f(n)

∂n2

]T

β2 =

[
∂2f(n)

∂2n2
1

,
∂2f(n)

∂n1∂n2

,
∂2f(n)

∂n2
2

]T

.

(G.53)

Since this approach is based on local signal representations, we give the nearby

samples higher weights than samples farther away. A (weighted) least-square formu-
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lation of the fitting problem capturing this idea is

min
{βj}Pj=1

N∑

i=1

[
gi − β0 − βT

1 (ni − n)

− βT
2 vech

[
(ni − n)(ni − n)T

]
− · · ·

]
QHi

(ni − n), (G.54)

with

QHi
(ni − n) =

1

det(Hi)
q(H−1

i (ni − n)), (G.55)

where P is the regression order, q(·) is the kernel function (a radially symmetric

function such as a Gaussian), and Hi is the smoothing matrix which dictates the

“footprint” of the kernel function. The least-squares solution is given by

b = (ATQA)−1ATQg, (G.56)

where

g = [g1, g2, · · · , gN ]T

b = [β0,β1, · · · ,βP ]T

Q = diag[QH1(n1 − n), · · · , QHP
(nP − n)]

A =




1 (n1 − n)T vechT[(n1 − n)(n1 − n)T] · · ·
1 (n2 − n)T vechT[(n2 − n)(n2 − n)T] · · ·
. . . . . . . . . . . .

1 (nP − n)T vechT[(nP − n)(nP − n)T] · · ·




.

(G.57)

The steering kernel framework is based on the idea of robustly obtaining local

signal structures by analyzing the radiometric (pixel value) differences locally, and

feeding this structure information to the kernel function in order to affect its shape

and size. Thus, the smoothing matrix Hi is given by

Hi = hC
−1/2
i , (G.58)

where Ci is estimated as the local covariance matrix of the neighborhood spatial

gradient vectors. In other words, the steering kernel regression is adapted to local

signatures of the data.

We can add a time coordinate and extend the steering kernel framework to

gi = f(ni) + vi, i = 1, · · · , N n = [n1, n2, k]T, (G.59)

where the additional coordinate k corresponds to the k-th video frame. Following a
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similar procedure to the one presented above, we can derive all the equation with

the extra coordinate [85]. This results in the so-called 3D steering kernel regression.

The extension of 3D steering kernel for super-resolution [85] is done by first

interpolating or upscaling using some reasonably effective low-complexity method

(say the “classic” KR method [243]) to yield what is called a pilot initial estimate.

The pilot estimate is a video sequence with higher resolution than the observed

sequence.

The next step is the estimation of the gradients β̂
(0)

1 by (G.56) and the smoothing

matrices H
(0)
i by (G.58). With H

(0)
i , the pixels’ values of the HR image are updated

and the gradients are recalculated by (G.56) resulting in β̂
(1)

1 . Then, with the new

gradients, the smoothing matrices are updated to H
(1)
i . The iteration continues until

the convergence is reached.
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Appendix H

Generalized Gaussian distribution

The Generalized Gaussian distribution is a flexible distribution defined by

p(x;µ, σ, φ) =
1

2Γ(1 + 1/φ)A(φ, σ)
exp

{
−
∣∣∣∣
x− µ
A(φ, σ)

∣∣∣∣
φ
}

, (H.1)

where

A(φ, σ) =

[
σ2Γ(1/φ)

Γ(3/φ)

]1/2

, (H.2)

x is a random variable and φ a parameter that controls the shape of the distribution

independently of its mean or variance. For φ = 2 we have the classical Gaussian,

for φ = 1 the Laplacian distribution and so forth. Figure H.1 shows examples of

Generalized Gaussian probability density functions for several values of φ.

Estimating the shape parameter φ is not, in general, an easy task. Some examples

of methods can be found in [244–246]. We will use the procedure by Domı́nguez-

Molina et al. [246], for which we give a simple description.

First, two functions are defined:

M(φ) =
Γ2 (2/φ)

Γ (1/φ) Γ (3/φ)
(H.3)

referred to as generalized Gaussian function ratio reciprocal and

M̂(x) =

(
1
N

∑N
n=1 |xn − µ|

)2

1
N

∑N
n=1 |xn − µ|

2
, (H.4)

referred to as sampled generalized Gaussian function ratio reciprocal.

First, M̂(x) is calculated from the sample through (H.4). Then, we set M(φ) =

M̂(x) and solve (H.3). Because the latter expression does not have a closed-form

solution, we can use table lookup/interpolation to obtain the shape parameter φ.

Proofs and details can be found in [246].
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Figure H.1: Example of Generalized Gaussian probability density functions for
several values of the shape parameter φ
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Appendix I

Full-size images

I.1 Classical image dataset

cameraman512.png lena512.png

barbara512.png mandril12.png
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I.2 Kodak image dataset

kodim01.png kodim02.png

kodim03.png kodim04.png

kodim05.png kodim06.png

kodim07.png kodim08.png
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kodim09.png kodim10.png

kodim11.png kodim12.png

kodim13.png kodim14.png

kodim15.png kodim16.png
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kodim17.png kodim18.png

kodim19.png kodim20.png

kodim21.png kodim22.png

kodim23.png kodim24.png
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I.3 Movies

carphone.png foreman.png

miss-america.png suzie.png
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Appendix J

Deblurring via Bilateral Total

Variation (BTV)

Based on the spirit of TV criterion and a related technique called the bilateral

filter [247], Farsiu et al. [108] proposed a generalization called bilateral TV. The

regularizing function looks like

ϕBTV (f) =
P∑

l=−P

P∑

m=0︸ ︷︷ ︸
l+m≥0

α|m|+|l|
∥∥f − SlxS

m
y f
∥∥

1
, (J.1)

where matrices Slx and Smy shift f by l and m pixels in horizontal and vertical

directions respectively. The scalar weight α, 0 < α < 1 is applied to give a spatially

decaying effect to the summation of the regularization terms.

If we limit m and l to the two cases of m = 1, l = 0 and m = 0, l = 1 with

α = 1, and define operators Dx and Dy as representatives of the first derivative

(Dx = I− Sx and Dy = I− Sy) then (J.1) results in

ϕBTV (f) = ‖Dxf‖1 + ‖Dyf‖1 , (J.2)

which is exactly the anisotropic Total Variation regularization, see Chapter 3 and

Appendix B.
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pońıvel em: <http://www.math.lsa.umich.edu/~esedoglu/Papers_

Preprints/aniso_esedoglu_osher.pdf>. 20

[25] KAY, S. M. Fundamentals of statistical signal processing: Estimation theory.

Upper Saddle River, NJ, USA, Prentice-Hall, Inc., 1993. ISBN: 0-13-

345711-7. 22, 138, 144

[26] CHAMBOLLE, A., LIONS, P. L. “Image recovery via total variation minimiza-

tion and related problems”, Numerische Mathematik, v. 76, pp. 167–188,

1997. 22, 52

[27] CHAMBOLLE, A. “An Algorithm for Total Variation Minimization and Appli-

cations”, Journal of Mathematical Imaging and Vision, v. 20, pp. 89–97,

2004. ISSN: 0924-9907. doi:10.1023/B:JMIV.0000011325.36760.1e. 53

195

http://dx.doi.org/10.1023/A:1021889010444
http://dx.doi.org/10.1109/ICIP.1996.559512
http://www.math-info.univ-paris5.fr/~lomn/Cours/ECE/PhysicaRudinOsher.pdf
http://www.math-info.univ-paris5.fr/~lomn/Cours/ECE/PhysicaRudinOsher.pdf
http://www.math.mcgill.ca/rchoksi/pub/2dbarcode.pdf
http://dx.doi.org/10.1016/j.cam.2010.11.003
http://dx.doi.org/10.1007/s11075-008-9182-y
http://dx.doi.org/10.1007/s11075-008-9182-y
http://www.math.lsa.umich.edu/~esedoglu/Papers_Preprints/aniso_esedoglu_osher.pdf
http://www.math.lsa.umich.edu/~esedoglu/Papers_Preprints/aniso_esedoglu_osher.pdf
http://www.worldcat.org/search?q=bn:0-13-345711-7
http://www.worldcat.org/search?q=bn:0-13-345711-7
http://www.worldcat.org/search?q=n2:0924-9907
http://dx.doi.org/10.1023/B:JMIV.0000011325.36760.1e


[28] CHAMBOLLE, A. “Total Variation Minimization and a Class of Binary MRF

Models”. In: Rangarajan, A., Vemuri, B., Yuille, A. (Eds.), Energy

Minimization Methods in Computer Vision and Pattern Recognition,

v. 3757, Lecture Notes in Computer Science, Springer Berlin / Hei-

delberg, pp. 136–152, Augustine, FL, 2005. ISBN: 978-3-540-30287-2.

doi:10.1007/11585978_10.

[29] CHAN, T., ESEDOGLU, S., PARK, F., et al. “Total Variation Image Restora-

tion: Overview and Recent Developments”. In: Handbook of Mathematical

Models in Computer Vision, cap. 2, New York, Springer, 2005. ISBN:

978-0387263717. 52
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cessor Research Labs, 2000. OpenCV Document. 107

[120] LI, X. “Video Processing Via Implicit and Mixture Motion Models”, Circuits

and Systems for Video Technology, IEEE Transactions on, v. 17, n. 8,

205

http://www.worldcat.org/search?q=n2:1053-587X
http://www.worldcat.org/search?q=n2:1053-587X
http://dx.doi.org/10.1109/TSP.2011.2164399
http://www.worldcat.org/search?q=bn:978-3-642-02431-3
http://www.worldcat.org/search?q=n2:0196-5204
http://dx.doi.org/10.1137/0913035
http://www.worldcat.org/search?q=n2:1057-7149
http://dx.doi.org/10.1109/83.935034


pp. 953–963, ago. 2007. ISSN: 1051-8215. doi:10.1109/TCSVT.2007.

896656. 108

[121] WU, X., ZHANG, X., WANG, J. “Model-guided adaptive recovery of com-

pressive sensing”. In: Data Compression Conference, 2009. DCC’09., pp.

123–132. IEEE, 2009. 116

[122] BUADES, A., COLL, B., MOREL, J. M. “A Review of Image Denoi-

sing Algorithms, with a New One”, Multiscale Modeling & Simula-

tion, v. 4, n. 2, pp. 490–530, 2005. doi:10.1137/040616024. Dis-
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Press. Dispońıvel em: <http://www-stat.stanford.edu/~candes/

papers/Curvelet-SMStyle.ps.gz>.

[133] STARCK, J.-L., CANDES, E., DONOHO, D. “The curvelet transform for image

denoising”, Image Processing, IEEE Transactions on, v. 11, n. 6, pp. 670–

684, jun. 2002. ISSN: 1057-7149. doi:10.1109/TIP.2002.1014998. 128
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[149] HYVÄRINEN, A., HOYER, P. “Emergence of Phase- and Shift-Invariant

Features by Decomposition of Natural Images into Independent Feature

Subspaces”, Neural Computation, v. 12, n. 7, pp. 1705–1720, jul. 2000.

doi:10.1162/089976600300015312.
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