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TRANSCEPTORES EM BLOCO COM REDUNDANCIA REDUZIDA

Wallace Alves Martins

Dezembro/2011

Orientador: Paulo Sergio Ramirez Diniz

Programa: Engenharia Elétrica

A presente tese contém propostas de transceptores lineares e invariantes no tempo
que empregam uma quantidade reduzida de redundancia para eliminar a interferén-
cia entre blocos. Tais propostas englobam sistemas multiportadoras e monopor-
tadora com equalizadores do tipo zero-forcing (ZF) ou de minimo erro quadrético
médio (MSE). A primeira contribui¢ao deste trabalho é uma analise matematica que
indica que a reducao na quantidade relativa de redundancia através do aumento do
tamanho do bloco de dados, M, leva a uma perda de desempenho.

Propomos também novos transceptores que transmitem com uma quantidade
menor de elementos redundantes em cada bloco, no lugar de aumentar o tamanho
do bloco, M. E proposta uma modificacio dos ja conhecidos sistemas com redun-
dancia minima. Além disso, propomos solu¢oes MMSE subdtimas que requerem a
mesma quantidade de operagoes de uma solucao ZF. Transceptores praticos baseados
em transformadas discretas de Hartley (DHTS), matrizes diagonais e antidiagonais
também sao propostos.

Além de sistemas com redundancia minima, a tese apresenta propostas cuja
quantidade de redundéancia pode variar desde a minima, [L/2], até a mais comu-
mente utilizada, [, assumindo uma resposta ao impulso do canal com ordem L. Os
transceptores resultantes permitem a equalizacao eficiente dos blocos de dados rece-
bidos, uma vez que eles utilizam apenas transformadas discretas de Fourier (DFTs) e
equalizadores com um tnico coeficiente, ou DHTS e equalizadores com até dois coefi-
cientes. Além disso, provamos matematicamente que quanto maior for a quantidade
de elementos redundantes transmitidos, menor sera o MSE de simbolos no receptor.
As simulacoes indicam que nossas propostas podem alcancar taxas de transmissao
maiores do que sistemas multiportadoras e monoportada tradicionais, mantendo a

mesma complexidade assintdtica para o processo de equalizagao, O(M log, M ).
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This work proposes novel linear time-invariant block transceivers which employ
a reduced amount of redundancy to eliminate interblock interference. The propos-
als encompass both multicarrier and single-carrier systems with either zero-forcing
(ZF) or minimum mean-square error (MSE) equalizers. The first contribution is a
mathematical analysis which indicates that the reduction in the relative amount of
redundancy by increasing the block size, M, leads to loss in performance in terms
of MSE and mutual information.

The work also proposes transceivers which enable transmission of a smaller
amount of redundant elements in each block, instead of increasing M. It is proposed
a simplification to the already known optimal MMSE-based minimum-redundancy
systems. Furthermore, the work proposes suboptimal MMSE solutions requiring the
same amount of computations of ZF-based ones. Practical transceivers using discrete
Hartley transform (DHT), diagonal, and antidiagonal matrices are also proposed.

In addition to minimum-redundancy systems, the thesis presents practical pro-
posals whose amount of redundancy ranges from the minimum, [L/2], to the most
commonly used value L, assuming a channel-impulse response of order L. The
resulting transceivers allow for superfast equalization of the received data blocks,
since they only use discrete Fourier transform (DFT) and single-tap equalizers, or
DHTs and two-tap equalizers in their structures. Moreover, it is proved mathemat-
ically that larger amounts of transmitted redundant elements lead to lower MSE
of symbols at the receiver end. Computer simulations indicate that our proposals
can achieve higher throughputs than the standard superfast multicarrier and single-
carrier systems, while keeping the same asymptotic computational complexity for

the equalization process, viz. O(M log, M).
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Capitulo 1
Introducao

Uma parte significativa das pesquisas relacionadas as camadas fisica e de enlace de
sistemas de comunicagdo concentra-se em desenvolver novos métodos para aumentar
as taxas de transmissdo de dados [1-4]. Do ponto de vista prético, tais pesquisas
levam em consideragdo compromissos entre melhorias de desempenho e custo das
solugoes. A complexidade computacional esta entre os fatores que determinam di-
retamente o custo de novos avancos na area de comunicacao. Tal fato é evidenciado
na escolha de transceptores lineares em vérias aplicagoes praticas [5, 6].

Atualmente, a maior parte das especificagoes técnicas em comunicagoes reco-
menda a segmentacao dos dados em blocos antes de comegar a transmissao propria-
mente dita. Os blocos de dados resultantes sao transmitidos separadamente naquilo
que é denominado transmissao em blocos (ou por blocos). Devido & caracteristica de
seletividade em frequéncia propria de sistemas de comunicagdao em banda larga, ha
sempre a superposicao de versdes atenuadas dos sinais transmitidos. Tal superpo-
si¢ao, também conhecida como interferéncia entre simbolos (ISI, da sigla em inglés,
intersymbol interference) é induzida entre os simbolos que compoem um determi-
nado bloco de dados. Esta superposi¢ao indesejada de sinais também gera o efeito
de interferéncia entre blocos (IBI, da sigla em inglés, interblock interference).

O OFDM (do inglés, orthogonal frequency-division multiplezing) é o transcep-
tor LTI (do inglés, linear time-invariant) sem memoria e em blocos mais popular
atualmente. Ele consegue eliminar o problema da IBI introduzindo redundancia na
transmissao. Além disso, tal redundancia também age de forma a facilitar o projeto
do equalizador com o intuito de eliminar ou reduzir a ISI no receptor [7-13]. A re-
dundancia pode ser inserida de varias formas, como por exemplo através de prefixo
ciclico (CP, da sigla em inglés, cyclic prefiz) ou simplesmente, pela inser¢ao de zeros
(ZP, da sigla em inglés, zero padding). Porém, o OFDM possui algumas desvanta-
gens, como alto PAPR (do inglés, peak-to-average power ratio), alta sensibilidade ao
CFO (do inglés, carrier-frequency offset) e, possivelmente, alta perda da eficiéncia

espectral em razao da inser¢ao de redundancia. O SC-FD (do inglés, single-carrier



with frequency-domain equalization) é uma forma eficiente de reduzir ambos o PAPR
e o CFO, quando comparado ao OFDM. Tais redugoes sao atingidas sem modificar
drasticamente a complexidade computacional do transceptor [14, 15].

Quanto ao uso dos recursos espectrais, a quantidade de redundancia empregada
nos sistemas OFDM e SC-FD sao as mesmas, dependendo apenas do espalhamento
do canal (do termo em inglés, delay spread of the channel), o que implica que am-
bos transceptores gastam a mesma quantidade de banda para transmissao de dados
redundantes. Entretanto, ha varias formas de aumentar a eficiéncia espectral de
sistemas de comunicacao, tais como diminuindo a probabilidade de erro de simbolos
na camada fisica de tal forma que se faga menos necessaria a protecao implementada
por codificadores de canais em camadas superiores. Em geral, tal abordagem au-
menta os custos associados a camada fisica, uma vez que para alcancar tal redugao
na probabilidade de erro de simbolos é necessaria a utilizacao de transceptores mais
complexos, o que pode acabar por inviabilizar suas utilizagoes em sistemas praticos
atuais.

Outros meios para aumentar a eficiéncia espectral sao, portanto, altamente dese-
javeis. Reduzir a quantidade de redundancia transmitida é uma solugao possivel. De
fato, apenas poucos trabalhos propuseram a diminui¢ao da redundancia mantendo
o custo computacional em niveis comparéaveis aos sistemas praticos atuais (OFDM
e SC-FD), através do emprego de algoritmos répidos [16, 17]. Uma das propostas
mais promissoras até entao esta presente no artigo pioneiro de Chung e Phoong [16].
A abordagem adotada em [16] lida com técnicas do tipo ZP-ZJ (do inglés, zero-
padding, zero-jamming) para eliminar a IBI empregando uma quantidade reduzida
de redundancia associadas ao emprego de algoritmos do tipo FFT (do inglés, fast
Fourier transform). Entretanto, o projeto resultante ndo possui uma estrutura bem
definida e a sua complexidade computacional possui uma dependéncia quadratica
sobre a ordem do modelo de canal. Para canais longos, o transceptor em [16] pode
requerer muito mais calculos do que aqueles propostos nesta tese. Além disso, as
propostas em [16] sdo originalmente multiportadoras apenas. Por outro lado, a es-
tratégia adotada em [17] é transmitir informacao redundante em subportadoras nao
utilizadas, isto é, subportadoras que deverao ser descartadas no caso de channel lo-
ading. Através da exploragao de tais subportadoras, é possivel alcancar equalizagao
do tipo zero-forcing sem enviar dados redundantes em subportadoras tteis. Usual-
mente, o nimero de subportadoras nao utilizadas deve ser ao menos do tamanho da
ordem do canal, restringindo a aplicacao de tal técnica.

Ha ainda outros trabalhos que propuseram a transmissao de dados com redun-
dancia reduzida, mas sem focar na simplicidade computacional de suas propostas.
Por exemplo, o transceptor proposto em [18] requer um alto custo computacional

para a equalizacao e para o projeto do transceptor devido a utilizagao de algoritmos



do tipo SVD (do inglés, singular-value decomposition,).

Além disso, alguns trabalhos aplicaram a teoria de displacement rank com sucesso
no contexto de processamento digital de sinais [19]. Em sistemas de comunicagoes,
algoritmos rapidos foram aplicados em esquemas de estimacgao de canal empregando
L (ordem do canal) elementos redundantes [20]. Os algoritmos resultantes sao ade-
quados para a detecao e a estimacao dos elementos nao-nulos de uma determinada
resposta ao impulso de um canal de comunicagao [20, 21]. Vale a pena ressaltar
que, apesar da decomposi¢ao da inversa de uma matriz de Toeplitz, hermitiana [22]
utilizada em [20] ser equivalente a decomposi¢ao descrita no Teorema 1 de [23], para
o caso particular de uma matriz de Toeplitz hermitiana, tais decomposi¢oes nao po-
dem ser aplicadas aos receptores do tipo MMSE (do inglés, minimum mean-squared
error) com redundancia minima. A razao é porque os transceptores propostos com
redundancia minima nao induzem uma estrutura de Toeplitz na matriz de correlacao
do canal, conforme ocorre em [20]. Tal fato, levou-nos a propor novas decomposigoes
de bezoutianos generalizados no Teorema 2 de [23]. Conforme mencionado em [23],
essas novas decomposigoes sao fruto de adaptacoes realizadas em resultados descritos
em [24].

1.1 Propésito deste Trabalho

O objetivo deste trabalho é propor novas estruturas para transceptores em bloco
com redundancia reduzida. Essas novas estruturas devem permitir a equalizacao
dos dados recebidos de forma eficiente. Em outras palavras, tais estruturas devem
empregar algoritmos répidos [25]. De fato, nés empregamos apenas algoritmos ra-
pidos para a implementagao das transformadas discretas (de Fourier e de Hartley),
juntamente com a utilizacao de equalizadores com no maximo dois coeficientes com
o intuito de satisfazer as restrigoes de baixa complexidade computacional.

Vale ressaltar também que hé ainda muito trabalho a ser continuado, tendo
em vista que uma quantidade significativa de questdes relevantes relacionadas as
estruturas propostas nao foram amplamente estudadas. Na verdade, nés focamos
no processo de equalizacao ao invés de outros aspectos igualmente importantes, tais
como estimacao de canal, projeto do equalizador, desbalanceamento 1/Q), estimagao

de CFO, apenas para mencionar alguns dos principais itens.

1.2 Organizacao

A presente tese esta dividida em trés partes principais: Parte I (que inclui os Capitu-
los 3, 4 e 5) descreve as novas contribuigoes feitas aos transceptores com redundancia

minima; Parte I (que inclui os Capitulos 6 e 7) descreve algumas contribuigoes aos



sistemas com redundancia reduzida; e Parte III (que inclui os Capitulos 8, 9 e 10) lida
com algumas contribuigoes adicionais que, embora tenham suas relevancias praticas,
nao fazem parte do foco principal desta tese.

No Capitulo 2, os principais conceitos relacionados a modelagem de transceptores
através de banco de filtros sao revisados antes de comecgarmos a descrever as novas
contribuigoes desta tese (Partes I, IT e III).

No Capitulo 3, analisamos o desempenho de transceptores ZP com redundén-
cia completa em termos de MSE e informagdao mitua. Nés demonstramos que o
MSE/informacao mutua relacionados a tais transceptores sao: (i) fungdoes mond-
tonas crescentes/decrescentes do nimero de simbolos transmitidos por bloco; (ii)
fungoes monodtonas decrescentes/crescentes do niimero de simbolos redundantes uti-
lizados na equalizacdo de um dado bloco; (iii) acrescidos/decrescidos sempre que
canais de fase nao-minima sao utilizados, no lugar dos correspondentes canais de
fase minima, assumindo que apenas uma parte do bloco recebido é utilizado na
equalizacao.

O Capitulo 4 contém novas estruturas para solu¢bes MMSE de transceptores com
redundancia minima baseados em DFT (do inglés, discrete Fourier transform). Tais
estruturas sao mais simples do que as propostas em [23] dado que elas precisam de
apenas quatro ramos paralelos no equalizador, no lugar dos cinco ramos utilizados
em [23]. O capitulo também descreve solugoes MMSE subétimas que permitem
ainda mais a redugao no nimero de operagoes aritméticas utilizadas para equalizar
um determinado bloco de dados.

A extensao dos resultados baseados em DFT para solugoes que utilizem trans-
formadas reais, tais como a DHT (do inglés, discrete Hartley transform), é descrita
no Capitulo 5.

O Capitulo 6 apresenta novos transceptores LTI que empregam uma quantidade
reduzida de redundancia para eliminar a IBI. As propostas podem ser multiporta-
doras ou monoportadora, com solugao ZF ou MMSE. A quantidade de redundéancia
pode variar desde a quantidade minima, [L/2], até a mais utilizada na préatica, L,
assumindo um canal com resposta ao impulso de ordem L.

No Capitulo 7, nés deduzimos novos transceptores LTI com redundancia reduzida
que empregam a DHT e equalizadores com dois coeficientes em suas estruturas.
Os resultados deste capitulo sdo extensoes naturais dos resultados propostos nos
Capitulos 5 e 6.

O Capitulo 8 propoe um método 6timo para alocagao de poténcia que minimiza
os ganhos de ruido quando hé acesso a informagoes sobre o estado do canal (CSI,
do inglés, channel-state information) no transmissor.

O Capitulo 9 mostra como reduzir a quantidade de redundancia em transceptores

nao-lineares do tipo DFE (do inglés, decision-feedback equalizer). O capitulo também



inclui resultados que permitem quantificar o desempenho de tais transceptores.

No Capitulo 10, nos concentramos no projeto dos equalizadores relacionados aos
sistemas com redundancia minima, sem assumir o conhecimento prévio do canal.

As conclusoes da tese estdao presente no Capitulo 11.

Vale ressaltar porque escolhemos esta ordenacao de capitulos para a tese. Na
verdade, poderiamos comegar tratando com transceptores com redundancia redu-
zida e, a partir de tais resultados, concluir sobre os transceptores com redundancia
minima. Isso faria com que o texto da tese fosse um pouco mais conciso, mas si-
multaneamente esconderia o trajeto que percorremos ao longo de nossa pesquisa.
De fato, comecamos atacando os transceptores com redundancia minima, buscando
resolver pendéncias bem como melhorar os resultados descritos na dissertacao de
mestrado [23]. Apds esta fase ser concluida, nos concentramos nos transceptores
com redundancia reduzida. Portanto, optamos por esta ordenacao de capitulos para
deixar claro este trajeto de pesquisa.

Encorajamos o leitor desta tese a ler os Apéndices A a L diretamente, pois eles
contém o texto na integra e em detalhes de toda a tese, enquanto os Capitulos 1

a 11 possuem apenas um resumo de tais apéndices.’

INa verdade, os Capitulos 1 e 2 estdo reproduzidos praticamente na integra.



Capitulo 2
Transceptores Multicanais

Juntamente com as técnicas modernas de codificagoes de fonte e de canal, além dos
avancgos na area de projeto de circuitos integrados, o processamento digital de sinais
aplicado as telecomunicagoes tem viabilizado o desenvolvimento de novos sistemas
que atendam as crescentes demandas por taxas de transmissao cada vez maiores.
Nesse contexto, operagoes tipicas de filtragem digital possuem um papel fundamental
para processar os sinais de um ou varios usuarios para que compartilhem o meio fisico
em questao e sejam recuperados de forma confiavel no receptor.

Os filtros digitais que compoem os sistemas de comunicagoes podem ser fixos ou
adaptativos, lineares ou nao', com resposta ao impulso de duragao finita (FIR, do
inglés Finite Impulse Response) ou infinita (IIR, do inglés Infinite Impulse Response),
etc [26]. Dentre essas categorias, os filtros fixos, lineares, FIR sdo os que possuem
o maior apelo pratico por admitirem uma implementacao simples, sempre estavel, e
com um baixo custo computacional para a filtragem quando comparados as demais
opgoes.

Porém, em véarias ocasioes, os sistemas modernos de processamento de sinais
exigem mais do que tais filtros (fixos, lineares, FIR) podem oferecer. Uma forma
de disponibilizar mais graus de liberdade para o projetista de processamento de
sinais ¢é utilizar sistemas que trabalhem em miltiplas taxas, pois, internamente, tais
sistemas comportam-se como sistemas periodicamente variantes no tempo devido a
presenca da operacao de diminuicao da taxa de amostragem.

Por isso, os sistemas que utilizam bancos de filtros tém se alastrado em varias
areas do conhecimento, especialmente em sistemas de codificacao de fonte [27], [26].
Em comunicagoes, utilizam-se sistemas que podem ser vistos como duais dos bancos
de filtros: os transceptores multicanais ou TMUXs [28], [29], [11], [30], [31]. Varios
sistemas praticos podem ser modelados através da utilizagao de TMUXs.

Na pratica, os transceptores multicanais mais comuns sdo os que empregam

'Estritamente falando, todo filtro adaptativo é nao-linear [26].



filtros de comprimentos curtos quando comparados aos fatores empregados nas mu-
dancas de taxa de amostragem. Tais transceptores sao genericamente chamados
de transceptores em bloco ou sem memoéria [32]. Os sistemas modernos mais co-
muns que podem ser modelados por transceptores em bloco sao os sistemas OFDM
e SC-FD [30], [31], [11], [33].

A principal vantagem do sistema OFDM reside em sua capacidade de eliminar a
interferéncia entre simbolos (ISI, do inglés InterSymbol Interference) mantendo uma
complexidade computacional relativamente baixa. Recentemente, o sistema SC-FD
tem emergido como uma solucao alternativa ao OFDM que é capaz de diminuir
algumas de suas desvantagens, tais como altos picos de poténcia (PAPR, do inglés
Peak-to-Average Power Ratio) e alta sensibilidade a deslocamentos de frequéncia das
portadoras (CFO, do inglés Carrier-Frequency Offset) [14], [15]. Além disso, para
alguns tipos de canais seletivos em frequéncia, a BER de um sistema SC-FD pode
ser menor do que a BER de um sistema OFDM, especialmente se alguns subcanais
possuirem alta atenuacao [15]. A BER maior do OFDM se origina do fato de que
a informacao que é transmitida por um dado subcanal esta espalhada no dominio
do tempo, mas concentrada no dominio da frequéncia. Se a qualidade do canal for
pobre naquela faixa de frequéncia em particular, entao a informagao sera perdida.

No presente capitulo, sao revistos brevemente os principais resultados da litera-
tura a respeito de processamento em multiplas taxas que possuem aplicacao neste
trabalho (Secao 2.1). Os transceptores multicanais sdo brevemente estudados na
Secao 2.2. O caso particular de transceptores multicanais sem memoria ¢ modelado
na Secao 2.3, destacando-se os sistemas OFDM e SC-FD, além da exposicao de al-
guns resultados conhecidos sobre transceptores em bloco que empregam redundancia

reduzida.

2.1 Processamento de Sinais com Miultiplas Taxas

Sao varias as aplicagoes em processamento digital de sinais nas quais é extrema-
mente comum coexistirem sinais e/ou filtros cujas taxas de amostragem sejam dife-
rentes [26], [27].

Basicamente, um sistema de processamento em miultiplas taxas opera utilizando
dois blocos fundamentais: o interpolador e o decimador. O processo de interpo-
lacao consiste no aumento da taxa de amostragem de um dado sinal, enquanto que o
processo de decimagao consiste na diminuicao da taxa de amostragem. Apenas com
tais definigoes, é possivel perceber que o processo de decimagao deve ser realizado
com mais cuidado para que se evite perdas de informacao originadas do efeito de
sobreposicao de espectros mais conhecido pelo termo em inglés, aliasing [26], [27].

A interpolacao por um fator N € N consiste na inser¢do de N — 1 zeros entre



cada duas amostras do sinal original, gerando, assim, um novo sinal cuja taxa de
amostragem é N vezes maior do que a anterior. Em termos matematicos, dado um
sinal s(n) € C, onde n € Z, entao o sinal interpolado i, (k), com k € Z, é dado por
Sint (k) = s(n), sempre que k = nN e sp(k) = 0, em caso contrario.

Por outro lado, a decimagao por um fator N consiste no descarte de N — 1
amostras a cada bloco de N amostras do sinal original, gerando, assim, um novo
sinal cuja taxa de amostragem ¢ N vezes menor do que a anterior. Matematicamente,
dado s(n), entao o sinal decimado sgec(k) é definido por sqec(k) = s(n), sempre que
n = kN, para todo k € Z.

As Figuras 2.1 e 2.2 mostram o comportamento nos dominios do tempo e da
frequéncia de um sinal que passa por um interpolador e um decimador, respectiva-
mente, em que N = 2. Os sinais dessas figuras sao apenas ilustrativos de forma que
nao ha uma correspondéncia valida entre os respectivos pares sinal-transformada.

Através da andlise de tais figuras, é possivel verificar que, para que as operagoes

|15 (e)] | Sint ()]

Figura 2.1: O bloco interpolador (N = 2).

[5(e)] [ Saee(e*)
SO VR T WL L W — PR RS S N
—= {Nt—
s(n) Sdec(k)
'"Mlhﬂﬂh@VW'"%L@uthh'm

Figura 2.2: O bloco decimador (N = 2).



de decimacao e interpolagao sejam utilizadas de maneira efetiva em um sistema de
processamento de sinais, é necessaria a utilizagao de filtros digitais com o intuito de,
no caso da interpolacao, obter uma versao suave do sinal interpolado ou, de maneira
equivalente, eliminar as imagens espectrais que surgiram apds a insercao de zeros;
e para que, no caso da decimacao, nao ocorra o aliasing, limitando-se o sinal em
frequéncia antes de suas amostras serem descartadas [26], [27].

No caso da interpolagao, obtém-se uma versao suave do sinal sy, (k) processando-
o com um filtro que elimine as repeti¢oes de espectro que aparecem centradas nas
frequéncias 277, com ¢ € {1,--- , N —1} C N. Semelhantemente, ¢ necessério que
se garanta que o sinal original nao tera sobreposicao de espectros apds a sua decima-
¢ao, ou seja, no caso de um sinal real passa-baixas, por exemplo, é necessario filtrar

N'N
como as operacoes de interpolacao e decimacao sao implementadas na pratica.

o sinal para que o mesmo fique limitado a banda (—l i). A Figura 2.3 mostra

Existem formas especificas para se manipular os blocos de decimacao e interpola-
¢ao em um sistema com miiltiplas taxas. Tal manipulagao pode ser particularmente
interessante quando ha interesse de comutar as operagoes de filtragem com as opera-
¢oes de mudanca de taxa de amostragem. Essas formas especificas de manipulagao
baseiam-se nas chamadas identidades nobres [26], [27].

A Figura 2.4 contém uma descri¢ao por diagrama de blocos dessas identidades.
Em termos da interpolagao, no lugar de primeiro interpolar um dado sinal para
entao filtra-lo por um filtro que esteja numa taxa mais alta, é interessante primeira-
mente filtrar o sinal em uma taxa mais baixa para entao interpola-lo. Essa estratégia
permite uma economia de operagoes aritméticas e de memoria. Em relagao a de-
cimagao, no lugar de primeiro filtrar o sinal por um filtro que esteja em uma taxa
mais alta para entdao decimar o resultado, é possivel primeiro decimar a entrada do
filtro para que este trabalhe a uma taxa inferior, permitindo assim a economia de
recursos computacionais.

A maior parte das aplicagoes de sistemas com multiplas taxas de amostragem

s(n) —= AN = f(k) — sin(k) s(n)—= g(k) = §N— sacc(k)

Figura 2.3: Operagoes gerais de interpolagao e decimagao no dominio do tempo.

S(z)—= F(z2) —=INF-=U(z) = S(z)—=IN—~F:")—U(z)

Y(2)—= y N~ G(2) — S(2)

Il
=
&
|

G(N) = |N|— S(2)

Figura 2.4: Identidades nobres no dominio Z.



Analysis Bank

§ golk) = 4N - AN [ k) (D
el e gy AN e A |
i = g1 (k)= yN %’ 4%’ dN = fara(k) i

Figura 2.5: Bancos de filtros de analise e de sintese no dominio do tempo.

refere-se aos bancos de filtros [26],[27]. Um banco de filtros é um conjunto de fil-
tros que compartilham uma entrada comum ou uma saida comum [27]. Ambos
os casos sao exibidos na Figura 2.5. Os filtros do conjunto {gm(k)}mer, onde
me M =1{0,1,--- ,M — 1} C N, compoem o chamado banco de anilise, en-
quanto que os filtros do conjunto {f,,(k)}mesm compoem o chamado banco de
sintese. Como ¢é possivel verificar, um banco de filtros aplica os blocos basicos
gerais de decimagao e de interpolagao para dividir o sinal original em sub-bandas
com o intuito de processar individualmente cada um dos subsinais resultantes na
etapa de andlise e, apds tal processamento, recompor o sinal resultante através do
banco de sintese. Mais informacoes a respeito de bancos de filtros e processamento

em multiplas taxas podem ser encontradas nas referéncias [26], [27].

2.2 Transceptores Baseados em Banco de Filtros

Considere o modelo de um transceptor multicanal [30], [27] conforme é descrito na
Figura 2.6, em que um sistema de comunicagao é modelado como um sistema de mul-
tiplas entradas e multiplas saidas (MIMO, do inglés multiple-input multiple-output).
As amostras de cada sequéncia s,,(n) pertencem a uma determinada constelagao
C C C (por exemplo, PAM, QAM ou PSK [34], [35]) e representam a m-ésima en-
trada do transceptor, onde m € M e n € Z. A saida correspondente do transceptor
é denotada por §,(n) € C. Idealmente, §,,(n) deve ser uma estimativa confidvel
de s(n — ), em que 6 € N é o atraso introduzido pelo processo de transmis-
sdo/recepgao.

Um transceptor multicanal que modela um sistema de comunicacao requer um
projeto apropriado para o conjunto de filtros causais de transmissao { f,, (k) }mer €

para o conjunto de filtros causais de recep¢ao { g, (k) }menm. Tais filtros operam com
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so(n u(k z(k i k So(n
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Figura 2.6: Transceptor multicanal no dominio do tempo.

uma taxa de amostragem N vezes maior do que a taxa associada a cada sequén-
cia $,,(n). Note que n representa o indice de tempo para a entrada e a saida do
transceptor, enquanto que um indice de tempo distinto k£ € Z ¢ utilizado para as
respostas ao impulso dos subfiltros e para os sinais internos entre interpoladores e
decimadores. Ademais, considera-se que os filtros de transmissao e recepgao sao
fixos, isto é, ndo sao variantes no tempo.

Os subfiltros tém como objetivo processar as sequéncias de entrada s,,(n), para
cada m € M, com o intuito de reduzir as distor¢oes introduzidas pelo canal, de
forma que as sequéncias §,,(n) sdo tidas como boas estimativas de s,,(n — J) em
algum sentido previamente definido. Usualmente, o objetivo final é reduzir a BER
ou maximizar o throughput.

O modelo do canal é representado por um filtro FIR h(k) € C cuja ordem é
L € N. Esse modelo representa a propriedade de seletividade em frequéncia do canal.
Além disso, ha também um ruido aditivo v(k) € C, o qual modela a interferéncia
total do ambiente, como por exemplo, a interferéncia multiusuario (MUI, do inglés
multi-user interference) e o ruido térmico.

Dependendo do contexto, os sinais envolvidos no modelo serao considerados como
deterministicos ou estocasticos. Entretanto, nao sera utilizada uma notacao dife-
rente para distingui-los, assim como é feito em varios textos técnicos [36]. Assim,
apenas como um exemplo, em um contexto estocastico, poderdo ser associadas a
v(k) ou s,,(n) estatisticas de segunda ordem, tais como fungoes de autocorrelagao

roo(l, k), 75,5, (p,n) ou outros tipos de estatisticas.
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2.2.1 Representacao no Dominio do Tempo

De acordo com a Figura 2.6 o sinal de entrada do canal u(k) é dado por:

u(k)y=" Y. sm(i)fm(k —iN). (2.1)

(i,m)EZx M

A relag@o de entrada e saida do canal é representada por:

y(k) =2 h(G)ulk — j) + v(k). (22)
JEL
No receptor, o transceptor processa o sinal y(k) objetivando gerar as estimativas

dos sinais transmitidos:

$n(n) = 3 g (YN — 1), 2.3
lez
Assim, combinando as Egs. (2.1), (2.2) e (2.3) é possivel descrever a relacao

entre os sinais de entrada s,,(n) e as estimativas §,,(n), conforme se segue:

Sm) = D2 gmDh(§)sm(D) fn(nN =1 = j —iN) + > gn(l)v(nN —1).

(i,5,l,m)€Z3 x M leZ
(2.4)

A andlise das expressoes anteriores pode ser um tanto dificil. Porém, ha algumas
ferramentas alternativas de analise, tais como expressar o sistema no dominio do
tempo em forma matricial [31]. Entretanto, para os propdsitos deste trabalho, é
mais conveniente utilizar uma descricao no dominio da transformada Z, através da

decomposi¢ao em componentes polifasicas dos sistemas envolvidos [26], [27], [32].

2.2.2 Representagao Polifasica

Uma vez que as taxas de interpolacao e decimacao sao dadas por N, é mais apropri-

ado representar os filtros de transmissao e de recepc¢ao utilizando suas decomposicoes

12



em componentes polifasicas de ordem N, conforme se segue [32]:

Fou(2) = fu(k)2™

keZ
=2 2 fulGN + 1)
ieN JEZ
=) T Fum(2Y), (2.5)
ieN
Gm(2) = Z Gm(k)z"
keZ
=3 2> gn(GN — i)z
ieEN  JEZ
=D ZGmi(z"), (2.6)
ieN
em que m € M, e F,(z) e G(z) sao as transformadas Z de f,,(k) e gm(k),
respectivamente. Sendo assim, pode-se reescrever os sistemas de Eqgs. (2.5) e (2.6)
da seguinte forma [32]:
FO,O(ZN) F07]\,1_1(ZN)
Fo(s) + Faa(a)] =1 2t o a0 : : :
ar(z) Fyoio(zY) - Fnoima(2V)
e (2.7)
Go(2) Goo(zN) - Gon-1(zN) 1
Gr-1(2) Gruo10(zY) - Guoin_1(ZN)| | 2D
————
G(zN) d(z—1)

A Figura 2.7 mostra a representagdo do transceptor multicanal utilizando-se

as componentes polifasicas dos filtros envolvidos. Agora, utilizando as identidades

U(f)

so(n u(k x(k k So(n

o L Ly 10 0, [y ot

s1(n) ‘N N s1(n)
F(ZN) 271 z G(ZN)

sar-1(n) ‘N . : Iy 8ar-1(n)
\ /

Figura 2.7: Representacao polifasica do transceptor multicanal.
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nobres, pode-se redesenhar o transceptor da Figura 2.7 para a forma ilustrada na
Figura 2.8.

E possivel mostrar que a drea destacada na Figura 2.8, a qual engloba as linhas
de atrasos/adiantamentos e os interpoladores/decimadores ao modelo de canal, pode
ser representada por uma matriz pseudocirculante H(z) de dimensao N x N, definida
analiticamente por [11], [27], [32]:

Ho(2) 2 'Hy 1(2) z'Hy o(2) --- 27 Hy(2)
H) = | 1 T e ROy
HN_.l(z) HN_.Q(Z) HN_;;(Z) - HO'(Z)
em que [11], [27], [32]
H(z)zgﬂi(ﬂ)z—i e Hi(z)= J% h(jN + i)z, (2.9)
0<jN i<

A Figura 2.9 descreve o sistema através das matrizes polifasicas do transceptor

v(ik)
so(n o wk) T 2(k) 1y oo | So(n
N R N CN e ECN U A EC
e tv IV i)
FG) || : e
sM?@ i Z_lPseudo-Circulant Channel ’ 3 iM;l(m
Ity t H(2) Wi

Figura 2.8: Representacao polifasica modificada do transceptor multicanal.

v(ln)
B O R ot B TR

Figura 2.9: Transceptor multicanal no dominio da frequéncia (representacao polifa-
sica).
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multicanal, incluindo a matriz pseudocirculante de canal. Essas matrizes foram
definidas de forma que haja uma equivaléncia completa entre os sistemas modelados
pelas Figuras 2.6 e 2.9.

Nesta tese, assume-se que N > L, isto é, que o fator de interpolagao/decimagao
¢ maior ou igual a ordem do canal. Essa hipdtese é razoavel para diversas aplica-
¢oes [32]. Para o caso em que N < L, o leitor pode verificar os resultados em [11].
Assim, quando N > L, cada um dos elementos H;(z), com i € N, serd um filtro sim-
ples com apenas um coeficiente, ou seja, H;(z) = h(i), caso i < L, e H;(z) = 0, em
caso contrario. Portanto, a matriz pseudocirculante de canal pode ser representada

como uma matriz FIR de primeira ordem [32]:

[ 1(0) 0 | 0 0 k(L) h(1)]
h(1)  h(0) 0 0 0
: h(L)
H(z) = |h(L) h(L—1) +27 0
0 h(L) 0
0 0 A@ ) Joo 0 0 - o
(2.10)

Além disso, os vetores de simbolos transmitidos e recebidos presentes na Fi-

gura 2.9 sao respectivamente denotados por:

s(n) =[s0(n) si(n) -+ sy-(n)]" (2.11)
8(n) = [50(n) 5:(n) --- Sp_1(n)]". (2.12)

A partir da Figura 2.9 nao é dificil inferir que a matriz de transferéncia T(z) do

transceptor multicanal pode ser expressa como:
T(z) = G(2)H(2)F(2), (2.13)

onde foi considerado o caso particular em que v(k) = 0, motivado pelo projeto zero-
forcing de sistemas [32]. O transceptor possui a propriedade zero-forcing sempre que
T(z) = 27y, em que d € N.

2.3 Sistemas sem Memodria Baseados em Blocos

O caso de transceptores sem memoria, em que F(z) = F e G(z) = G, é analisado
nesta segao. Esse caso engloba os conhecidos transceptores em bloco [32] (em inglés,

block-based transceivers), ja que esses sistemas nao utilizam informagoes de outros
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blocos durante o processo de transmissao e recepc¢ao. Isso é possivel apenas se os
comprimentos dos filtros {fi.(k)}mert € {gm (k) }merm s@o menores que ou iguais a

N. Os sistemas OFDM e SC-FD tradicionais sao transceptores em bloco.

2.3.1 CP-OFDM

O sistema OFDM que emprega prefixo ciclico como redundéancia (CP-OFDM, do
inglés Cyclic Prefix OFDM) caracteriza-se pelas seguintes matrizes de transmissao

e recepgao, respectivamente [37]:

F—

Opviaspy I
Ix(M-L) L] wi | (2.14)
Iy

AcpeCNxXM

G =EWy [Oarr Tul, (2.15)
em que Wy, € CM*M & 3 matriz de DFT normalizada de dimensdo M x M, I, é
a matriz identidade de dimensao M x M, Oxyy é uma matriz de zeros de dimensao
X xY e E € CM*M ¢ a matriz responsavel pela equalizacio dos sinais apés a
remocao do prefixo ciclico e a aplicacao da DFT. Note que o bloco de dados que se
deseja transmitir possui comprimento M, mas, na verdade, transmite-se um bloco
de comprimento N = M + L pois os dltimos L elementos do sinal resultante da
aplicagao da IDF'T sao repetidos no inicio do bloco, utilizando-se, assim, um prefixo

ciclico como redundancia.
As matrizes Acp e Rep sdo as matrizes responsaveis pela adicao e pela remocao

do prefixo ciclico, respectivamente. Note que o produto RepH(2)Agp € CMXM ¢

dado por:
[ 1(0) 0 0 h(L) h(1) |
K1) h(0) 0 0
: : h(L)
RepH(2)Acp = | h(L) h(L—1) 0o |, (2.16)
0 h(L) ;
' 0
L 0 0 h(L) h(0) |

ou seja, Rop remove a interferéncia entre os blocos, enquanto que Acp opera so-
bre a matriz de Toeplitz sem memdria resultante RepH(z) € CM*N de forma a
transformé-la em uma matriz circulante de dimensao M x M.

Uma vez que a matriz de canal resultante da adig¢ao e posterior remocao do pre-
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fixo ciclico é uma matriz circulante, entao ela se torna diagonal apds a multiplicagao
pelas matrizes de IDFT e de DFT no transmissor e receptor, respectivamente [22].

Assim, tem-se que o modelo equivalente de uma transmissao CP-OFDM é dado por:
§=EAs+EV (2.17)

onde, por simplicidade, nao foi denotada a dependéncia com o tempo dos sinais

envolvidos e [22]

A = diag{\,,}M=5 = Wy RcpH(2)Acp W, (2.18)
h
= diag { VMW, : (2.19)
(M—L-1)x1

em que h = [h(0) h(1) -+ hW(L)]T e v/ = WyRcpv.
O equalizador E pode ser definido de varias formas, dentre as quais se destacam
os projetos ZF e MMSE [5]. No caso do projeto ZF, assume-se que a matriz A é

inversivel, de forma que
Ezr = A" (2.20)

No caso do projeto MMSE, nao ha necessidade de assumir que a matriz A é

inversivel pois a mesma nao serd invertida. A solugdo MMSE linear é dada por [38]:

2 -1
Envvise = arg{ min E [Hs — E(As +V')H§]} _ AH (AAH + UUI)

VEG(CIMX M O_g

)\* M-—1
) oo

2
P

onde foi considerado que os simbolos transmitidos e o ruido na saida do canal sao in-
dependentes e identicamente distribuidos (i.i.d, do inglés independent and identically
distributed), provenientes de um processo estocéstico branco com média zero e mu-

tuamente independentes?. Além disso, considerou-se que E[ss*] = 02 e E[vv*] = o2

2.3.2 ZP-OFDM

O sistema OFDM que utiliza zeros como elementos de redundancia (ZP-OFDM, do

inglés Zero Padding OF DM) caracteriza-se pelas seguintes matrizes de transmissao

2Note que se v possui tais caracteristicas, entdo v/ = W ;Rcpv também as possui.
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e recepgao, respectivamente [37]:

I

F=| M | wi, (2.22)

Orxm

—_——

AypeCN XM

I
G=EWy | I, : (2.23)
Onv—ryxL
RZPE((:JMXN

onde, mais uma vez, sdo adicionados L elementos de redundancia e N = M + L.
As matrizes Azp e Ryp sao as matrizes responsaveis pela adi¢ao e pela remocao
do intervalo de guarda nulo, respectivamente. O produto RzpH(2)Azp € CM*M ¢

dado por:

[ R(0) 0 o 0 R(L) -+ h(1) ]

h(1)  h(0) - 0 0

h(L)
RzpH(2)Azp = | W(L) h(L-1) 0 | =RepH(2)Acp,
0 h(L)
: . . ) 0

0 0 h(L) --- h(0) |

(2.24)

ou seja, Ayzp remove a interferéncia entre os blocos, enquanto que Ryzp opera so-
bre a matriz de Toeplitz sem memoria resultante H(2)Azp € CV*M de forma a
transformé-la em uma matriz circulante de dimensao M x M.

Deve-se ressaltar que o ZP-OFDM considerado aqui® é um caso simplificado de
um sistema ZP-OFDM genérico proposto em [37]. O caso mais geral de sistemas ZP-
OFDM permite que se recuperem os simbolos transmitidos independentemente da
localizagao dos zeros do modelo de canal. Porém, tal sistema é computacionalmente
mais custoso do que o ZP-OFDM descrito aqui, ja que a matriz equivalente de canal
nao é transformada em uma matriz circulante, inviabilizando sua diagonalizagao
através de matrizes de DFT e de IDFT.

2.3.3 CP-SC-FD

O sistema SC-FD que emprega prefixo ciclico como redundancia (CP-SC-FD, do
inglés Cyclic Prefiz SC-FD) é inteiramente andlogo ao CP-OFDM e caracteriza-se

3Este sistema também é conhecido como ZP-OFDM-OLA, em que OLA provém do inglés
overlap-and-add [37].
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pelas seguintes matrizes de transmissao e recepcgao, respectivamente:

- Orxv-ry 1 (2.95)
Iy ’

2.3.4 ZP-SC-FD

O sistema SC-FD que adiciona zeros como redundéancia (ZP-SC-FD, do inglés Zero
Padding SC-FD) é anédlogo ao ZP-OFDM, sendo definido pelas seguintes matrizes

de transmissao e recep¢ao, respectivamente:

I
F=| "1, (2.27)
Orxm
I
G=WIEW, | 1 g . (2.28)
Ovi—1)xL

2.3.5 Transceptores ZP-7J

Lin e Phoong [2], [3], [32] mostraram que a quantidade de redundéncia K € N de
um transceptor em bloco livre de IBI deve satisfazer a desigualdade 2K > L, em
que K = N — M. Eles apresentaram uma parametrizacao geral de um transceptor
DMT (do inglés Discrete Multi-Tone) sem memoria, bem como um caso particular
interessante que sera utilizado neste trabalho. Esse caso particular é caracterizado

pelas seguintes matrizes de transmissao e recepgao, respectivamente [32]:

F
F=| " : (2.29)
OrxM | s
G = {OMX(L—K) GO}MX]V? (2.30)

em que Fy € CM*M ¢ G, € CM*(M+2K-L),

Assim sendo, a matriz de transferéncia do transceptor multicanal é dada por:

onde a matriz de canal resultante apds a insercao e remocao de redundancia é
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definida por [32]:

ML—K) -+ h(0) 0 0 - 0
hK) 0
H : BO) | sy (232)
h(L) :
0 WL — K)
0 0 0 h(L) hK) |

Nesse caso, considerando v(k) = 0,Vk € Z, tem-se que:
s(n) = GoHoFys(n) = Ts(n). (2.33)

H& algumas restrigoes sobre a resposta ao impulso do canal para que exista a
solugdo ZF'. Tais restrigdes estao relacionadas ao conceito de zeros congruos (em in-
glés, congruous zeros) [32], [33]. Os zeros congruos de uma funcao de transferéncia
H(z) sao os zeros distintos zp, 21, - -+ , 2,1 € C dessa funcdo que respeitam a se-
guinte propriedade: z;¥ = 2}Y,Vi,j € {0,1,--- , u—1}. Note que y é uma fungao de
N. Conforme é mostrado em [32], [33], o modelo do canal deve respeitar a restri¢ao
u(N) < K, onde pu(N) denota a cardinalidade do maior (em termos de nimero de
elementos) conjunto de zeros congruos em relagao a N.

Assim, é claro que se um transceptor em bloco com redundancia minima existir,
ou seja, se u(N) < L/2 = K € N, entdo sua solucio ZF é tal que, dado Hy € CM*M

e uma vez projetado/definido Fy, deve-se ter
GO = (HoFo)il = FalHal (234)

Obviamente, tal solugdo para o receptor é computacionalmente intensiva em

geral por dois motivos principais:

e O problema de projeto do receptor: o processo de inversao de uma dada
matriz M x M geralmente requer O(M?) operagoes aritméticas. Essa comple-
xidade é demasiadamente alta quando comparada a de sistemas praticos, tais
como OFDM e SC-FD. De fato, os projetos dos equalizadores ZF e MMSE para
tais sistemas possuem complexidade O(M log M), uma vez que suas respecti-
vas solugoes sao baseadas na aplicacao da DFT sobre a resposta ao impulso
do canal (vide Egs. (2.18), (2.20) e (2.21)).

e O problema de equalizagao: em geral, o processo de multiplicar o ve-
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tor recebido pela matriz receptora possui complexidade O(M?). Novamente,
essa complexidade é considerada muito mais alta do que O(M log M), que
é a complexidade de equalizacao nos sistemas OFDM e SC-FD tradicionais.
Esse processo simples de equalizacao dos sistemas OFDM e SC-FD deve-se ao

calculo eficiente da DFT, bem como a multiplicagbes por matrizes diagonais.

2.4 Conclusoes

Este capitulo tratou da modelagem de sistemas de comunicacao através de transcep-
tores multicanais ou TMUXs. Foi dada uma énfase especial para os transceptores
fixos e sem memoria. Dentre esses, os transceptores que implementam os sistemas
CP-OFDM, ZP-OFDM, CP-SC-FD e ZP-SC-FD foram revistos, destacando-se suas
solugoes ZF e MMSE. Por fim, os resultados da literatura a respeito de transceptores
que empregam redundancia reduzida foram descritos.

Uma questao que se levanta naturalmente a respeito das discussoes deste ca-
pitulo é: por que os sistemas OFDM e SC-FD tradicionais sao tao simples? A
resposta encontra-se no fato de que, em ambos os casos (no problema de projeto do
receptor e no problema de equalizagdo), a matriz efetiva de canal é transformada
em uma matriz circulante através do processo de insercao e remocao da redundan-
cia. Isso permite explorar a propriedade de que toda matriz circulante quadrada é
diagonalizavel por um par de matrizes de DFT e IDFT. Essa decomposi¢ao espec-
tral simples é de extrema importancia para implementagoes praticas dos sistemas

OFDM e SC-FD.
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Capitulo 3

Analise de Transceptores ZP com

Redundancia Completa

Antes de comecarmos a descrever nossas propostas de transceptores com redun-
dancia minima, primeiro iremos buscar responder o seguinte questionamento ex-
tremamente pertinente: por que pesquisar transceptores com redundancia mi-
nima/reduzida, quando ja dispomos de transceptores com redundancia “completa”
eficientes, tais como OFDM e SC-FD? Tal questionamento ¢ motivado pelo seguinte
raciocinio: a eficiéncia espectral pode ser melhorada simplesmente aumentando o
nimero de elementos nao-redundantes, M, transmitidos em um bloco de dados,
considerando um canal de ordem fixa L. De fato, se definirmos tal eficiéncia pela
razao M /(M + K), em que K é o ntimero de elementos redundantes em um bloco,
entdao M/(M + £) = 2M/(2M + L), ou seja, a eficiéncia de um transceptor com re-
dundancia minima seria a mesma de um transceptor com redundancia completa que
transmita o dobro de elementos nao-redundantes em cada bloco de dados. Embora
tal raciocinio seja teoricamente valido, varios sistemas praticos possuem restrigoes
severas quanto ao valor de M, particularmente aqueles utilizados em aplicacoes que
nao podem ter um atraso relativamente grande no processamento de um bloco de
dados. Entretanto, se a aplicacao permitir o aumento de M, serd que existe al-
guma desvantagem adicional em fazé-lo? A resposta é sim, conforme descrito neste
capitulo.

A modelagem de sistemas de comunicagoes utilizando TMUXes é uma ferra-
menta bem conhecida, conforme descrito no capitulo anterior. Filtros FIR sao mais
utilizados que filtros IIR devido a dificuldades inerentes ao projeto e analise de TMU-
Xes ITR [39]. Nesse contexto, transceptores multicanais FIR capazes de eliminar a
ISI inerente as transmissdes em banda-larga podem ser projetados desde que sinais
redundantes sejam propriamente inseridos antes da transmissao [7, 31, 32, 40, 41].
O tipo de redundancia (prefixo/sufixo ciclico, zero-padding, etc) colocada antes da

transmissao dos sinais desempenha um papel central no processo de comunicacao.
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Em aplicagoes praticas, transceptores em bloco e sem memoria sao os mais utili-
zados. Para tais transceptores, o zero-padding (ZP) é uma das formas de redundancia
mais eficientes para eliminar a IBI. De fato, em varios cenarios diferentes, sistemas
do tipo ZP s@o tidos como solugoes 6timas no sentido de MSE [40]. Tal carac-
teristica de optimalidade leva a um desempenho melhor de tais transceptores ZP,
quando comparados aos transceptores baseados em prefixo ciclico (CP), em vérias
situagoes [37, 42]. Além disso, sistemas baseados em ZP requerem uma poténcia de
transmissao menor do que outros que adicionam elementos redundantes nao-nulos.

Entretanto, transceptores redundantes possuem algumas desvantagens também,
uma vez que a inser¢ao de elementos redundantes (dados que nao possuem infor-
macoes adicionais) reduz a taxa de transmissao efetiva (throughput) do sistema. A
redundéncia é empregada pelo processo de transmissao/recepcao com o objetivo de
suplantar as distor¢oes introduzidas pelo canal seletivo em frequéncia. Como um
exemplo, para um canal FIR com ordem L, um sistema ZP classico introduz ao
menos L zeros antes da transmissao. Essa caracteristica reduz o throughput de tais
transceptores, especialmente quando o canal é muito dispersivo.

A tendéncia atual de aumento da demanda por transmissoes sem fio nao mostra
indicios de parada. A quantidade de servigos de dados wireless esta mais do que
dobrando a cada ano, fazendo com que a escassez de espectro seja um evento certo
nos proximos anos. Como consequéncia, todos os esfor¢os no sentido de maximizar
a utilizagdo do espectro de radio-frequéncia sao altamente justificaveis neste ponto.
Uma alternativa para tentar superar a reducao de throughput relacionada aos trans-
ceptores redundantes é aumentar o nimero de simbolos, M, transmitidos em um
bloco. De fato, quando M aumenta, a razao L/M diminui, o que significa que a
quantidade relativa de redundancia diminui.

Entretanto, o tamanho de bloco M nao pode ter qualquer valor desejado, uma
vez que diversos fatores afetam a escolha de M. Um desses fatores é a restri¢ao
quanto ao atraso associado ao processamento de sinais de um dado bloco de dados.
Além disso, ha alguns estudos na literatura aberta indicando uma certa degradacgao
de desempenho de transceptores zero-padded sempre que M aumenta [40, 42, 43].!
Por exemplo, em [42] mostrou-se matematicamente que varias figuras de mérito que
quantificam o desempenho de sistemas monoportadoras que utilizam ZP degradam
com o aumento de M. Em [40], verificou-se empiricamente um comportamento se-
melhante para uma classe ainda maior de transceptores ZP 6timos, incluindo aqueles
baseados em DFE.

Conforme os autores em [40] destacam, nao ha provas mateméticas de como

a quantidade relativa de redundancia influencia o desempenho dos transceptores

!Tal comportamento nao se aplica a sistemas do tipo CP, conforme descrito em [42], por exem-
plo.
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ZP 6timos, embora haja simulagoes indicando algumas tendéncias. Este capitulo
fornece algumas dessas provas matematicas nao existentes na literatura. De fato,
nés provamos que ambos o MSE médio de simbolos e a informacao mutua entre
os sinais transmitidos e estimados degradam sempre que a quantidade relativa de
redundancia decresce, isto é, sempre que M aumenta (para um canal de ordem fixa).

Uma outra caracteristica interessante de transceptores ZP é o comportamento
de seus desempenhos em relacao a quantidade de redundancia descartada no recep-
tor. O autor em [43] mostra que os ganhos de ruido relacionados aos transceptores
ZP monoportadora aumentam sempre que alguns elementos redundantes sao des-
cartados do vetor recebido com o intuito de diminuir a quantidade de operacoes
matematicas realizadas no processo de equalizacao. Este capitulo também estende
o resultado de [43] para uma classe ainda maior de transceptores ZP, lineares e DFE.
Mais especificamente, nés demonstramos que o MSE e a informacao mutua relaci-
onada aos transceptores ZP 6timos também sdo fungdes monodtonas do niimero de
elementos redundantes empregados na equalizacao.

Além disso, como uma contribuicao final deste capitulo, nés mostramos que para
uma classe grande de transceptores ZP lineares e DFE, o desempenho degrada sem-
pre que um zero do canal que esteja dentro do circulo unitario é substituido por
um zero fora do circulo unitario, sem que essa substituicao modifique a resposta de
magnitude do canal. Na verdade, tal resultado s6 ¢ valido quando nao utilizamos
todos os elementos presentes no vetor recebido durante a equalizacdao (ou seja, al-
guns elementos redundantes sdo descartados antes da equalizagdo). Caso o bloco
recebido seja inteiramente utilizado na equalizagao, entao o MSE e a informagao
mutua relacionados a tais transceptores nao serao sensiveis a localizagdo dos zeros
do canal em relagao ao circulo unitario. Vale a pena destacar que tais resultados sao
extensoes de resultados similares de [43] para uma classe grande de transceptores

7P 6timos.

3.1 Modelo e Definicoes de Transceptores ZP

3.1.1 Equalizadores Lineares Otimos

Conforme indicado na Figura 3.1, foram considerados os seguintes transceptores
lineares: CI-UP (ZF e Pure), UP (ZF e Pure), ZF e Pure. Neste caso, CI vem
do termo em inglés channel indepedent, enquanto que UP vem do termo em inglés
unitary precoder. Tais siglas indicam que tipo de restricao foi imposta para se obter
a solucdo MMSE-6tima. Por exemplo, um transceptor linear CI-UP Pure é obtido
minimizando-se o erro quadratico médio de simbolos no receptor, sujeito a restri¢ao

de que a matriz de precodificacdo nao dependa do canal e seja, simultaneamente,
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unitaria. Além disso, o termo Pure indica que nao foi imposta a restricao de zero-
forcing.

Na Figura 3.1, M denota a quantidade de simbolos e L denota a quantidade
de zeros inseridos. Assim, sao transmitidos N = M + L elementos. A defini¢do
exata das matrizes de precodificacao e equalizagao depende do tipo de transceptor

utilizado. Para mais informagoes, o leitor pode consultar a Subsegao C.1.1.

3.1.2 Equalizadores com Realimentacio de Decisdo Otimos

Conforme indicado na Figura 3.2, foram considerados os seguintes transceptores

DFE: ZF e Pure. Para mais informagoes, o leitor pode consultar a Subsecao C.1.2.

Diagonal Unitary Channel Unitary Diagonal
Matrix Matrix Matrix Matrix Matrix
M M N H N M M
z ~
s B Vi g Y > S [H>8
H
7 Hgr Un
0 |i:> oo s Ignore
Padding] > Hip;
L v I
——— Precoder ——— —— Equalizer ——

Figura 3.1: Estrutura dos transceptores lineares ZP: UP-ZF, ZF, UP-Pure e Pure.

Precoder Channel Feedforward
Matrix Matrix Matrix

Detector
M N N M §
H(z) +~_8 -
s> F o T e ¢ Fo0O—> + s
Hig; ﬁE
i: > Zer
0 Pac‘led;)ng Zfl_I"—IIBI B

Feedback
Matrix

Figura 3.2: Estrutura do transceptor DFE.
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3.2 Desempenho de Transceptores ZP Otimos

Com relacao ao desempenho dos transceptores ZP 6timos, é possivel quantificar o

MSE de simbolos da seguinte forma:

1Mt tr {Sn}
UpP _ oCI-UP N — g2 M
EgF (M) = ESFUP (M) = o ( TR M)> O (3.1)
£UP (1) = 5P () — o [ 1 M 1 2t {Sy (3.2)
= =0, | 77 52 o] T % ) :
\M &7 1 o200 M
2
1 M=1 1 2 tr{\/SM}
N S [
gZF(M) =0, (M mZ:O O'm(M>> Ty ( M ’ (33>
DFE 2 g 1 " 2
Ex (M) = o (H 02(M)> = o, \/det{Su}, (3.4)
m=0 “m

em que Sy; = R]Tj, com Ry, = HAH/[HM € CM*M ¢ H,,; é a matriz de convolucdo do
canal efetiva. Analogamente, S, = (R},)™!, com R}, = HI/H,, + Z—’;IM e CMxM,
Por fim, ¢,,(M) é o m-ésimo valor singular de H,.

Ja para a informagao mutua entre os sinais transmitido e estimado, tem-se:

TYF (M) = T80, (M) = TGP (M) = 785,77 (M)

_ tr {ln [IM +]W(Z§SM)1] } | (35)
T (M) — tr {ln [IM + g\/jf\/ﬂ)l] }7 (36)

0-3 M —
IPFE(M) = In [1 + 3 v/ det {le}] . (3.7)

Para mais informacoes, o leitor pode consultar a Secao C.2.

3.3 Efeito do Aumento do Tamanho do Bloco

Em termos de MSE de simbolos médio, &, foi possivel mostrar que para todo inteiro

positivo M, tem-se:
E(M) < EM +1), (3.8)

conforme indicado na Figura 3.3.

J& para a informagao mutua média entre simbolos transmitidos e estimados, Z,
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Figura 3.3: MSE de simbolos médio para os transceptores ZP 6timos em fung¢ao do
tamanho do bloco de dados, M.

foi possivel mostrar que para todo inteiro positivo M, tem-se:
I(M)>I(M+1), (3.9)

conforme indicado na Figura 3.4.

Para mais informagoes, o leitor pode consultar a Se¢ao C.3.

3.4 Efeito do Descarte de Dados Redundantes

Em relacao a quantidade de simbolos redundantes utilizados na equalizagao, K,

pode-se mostrar que, para todo inteiro K entre 0 e L — 1, tem-se:
EK+1)<EK) e I(K+1)>I(K), (3.10)

conforme indicado na Tabela 3.1.

Para mais informagoes, o leitor pode consultar a Se¢ao C.4.

28



5 T T T T

= = = ZF-CI-UP, Pure-CI-UP, ZF-UP, Pure-UP
ZF

——— ZF-DFE

=

(9]

- —
|

N
T
|

bt
n

>
o3

[\

Average mutual information per symbol [nats]
w

—_
(9}

Block size

Figura 3.4: Informagdo mitua média entre simbolos transmitidos e estimados para
os transceptores ZP 6timos em fungao do tamanho do bloco de dados, M.

Tabela 3.1: MSE de simbolos médio e informac¢ao muitua média para transceptores
ZP em funcao de K € L.

K=0 K=1 K=2 |K=3|K=4]|K=5|K=6] K=1
LU 1364 x 107 [ 2.99 x 10° | 1.80x 103 [ 14.91 | 11.69 | 837 | 7.55 | 6.50
eSO 0.41 0.39 0.37 035 | 034 | 034 | 033 | 033
Ezr | 116 x 10° | 22464 87.90 387 | 299 | 226 | 207 | 1.85
EDFE 1.02 0.53 0.38 0.26 0.23 0.21 0.20 0.19
K=0|K=1]|K=2 | K=3]| K=4 | K=5| K=6 | K=17

708 P ] 216 2.23 2.29 2.34 2.38 2.40 2.43 2.45

Izp 0.00 | 025 | 037 | 098 | 1.06 | 1.5 | 1.18 | 1.23

IDTE 0.67 1.05 1.28 1.55 1.64 1.73 177 1.81

3.5 Efeito dos Zeros do Canal

Com relagao ao efeito dos zeros do canal, nés demonstramos que o MSE de simbo-
los/informagao mutua associado/a aos transceptores ZP 6timos diminui/aumenta
sempre que ao menos um zero fora do circulo de raio unitario de um canal de fase
nao-minima é substituido por um zero correspondente dentro do circulo unitario,
assumindo que a equalizacao descarta alguns elementos redundantes para estimar o

sinal transmitido.
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As Tabelas 3.2 e 3.3 (vide também a Figura 3.5) ilustram este efeito dos zeros
do canal.

Para mais informagoes, o leitor pode consultar a Secao C.5.

Tabela 3.2: Ffeito dos zeros do canal: MSE de simbolos
K=0 | K=1]|K=2 | K=3 | K=4 | K=5| K=6 | K=7 | K=8 | K=
Eon P Hi(z) | 2746 | 2133 | 931 [ 664 | 462 [ 379 | 317 [ 243 [ 219 | 201
Eqp UV Ha(z) | 17.32 | 957 | 654 | 454 | 344 [ 301 | 250 [ 227 [ 212 | 201

)
)

&g O Hs(2) | 8.01 610 | 424 | 3.22 2.51 2.25 2.17 2.14 208 [ 2.01

o UF Hi(2) | 043 [ 039 [ 036 [ 033 | 031 [ 031 | 030 [ 030 [ 029 [ 0.29

eS=UP "hh(2) | 0.39 0.36 0.33 0.31 0.30 0.30 0.30 0.29 0.29 0.29

Pure

eS=UP "ha(2) | 0.36 0.33 0.31 0.30 0.30 0.30 0.29 0.29 0.29 0.29

Pure

Ezr, Hi(z) 8.74 6.03 2.96 2.04 1.40 1.20 1.05 0.88 0.80 0.75
Ezr, Ha(z) 5.15 2.99 2.00 1.40 1.11 1.01 0.89 0.83 0.78 0.75
Ezr, H3(z) 2.55 1.86 1.31 1.06 0.90 0.83 0.80 0.79 0.77 0.75

EDTE Hi(2) 0.53 0.38 0.26 0.21 0.17 0.16 0.15 0.14 0.13 0.13
EDIE s (2) 0.38 0.28 0.21 0.18 0.16 0.15 0.14 0.13 0.13 0.13
ELFE H3(2) 0.28 0.22 0.17 0.16 0.15 0.14 0.14 0.13 0.13 0.13

H(z) H(z)
1 ' O- ' | il ' O- '
OO OO
g 05 G E 0.5 O,’
2 e .
3 0 QO e S § ot - - O o SRRRERE
g -0.5 o f O g -0.5 o Q
, O. , . O .
-1 0 1 -1 0 1
Real Part Real Part
Hy(z2) H3(2)
oo [clie}
© : O O : O
g 05 : g 05f
[ ‘. =¥ .
2 of o B ]
g 03 o A o E 05 A
. o o} O: _O
L 0. | a2
-1 0 1 -1 -05 0 0.5 1
Real Part Real Part

Figura 3.5: Zeros dos canais H(z) e H;(z), em que i € {1,2,3}, com o circulo
unitario como referéncia. Todos os canais possuem a mesma resposta de magnitude.
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Tabela 3.3: Efeito dos zeros do canal: informacao mitua

K=0|K=1|K=2| K=3 | K=4| K=5|K=6| K=7| K=8| K=9

Z00 9P Hi(z) | 206 [ 220 | 232 | 240 [ 246 | 249 [ 253 | 256 | 259 | 2.60

Top UF Ha(z) | 214 2.27 2.38 2.44 2.48 251 2.54 2.57 2.60 2.60

(

z (
Tyn ', Hs(z) | 2.22 2.34 2.43 2.47 2.50 2.53 2.56 2.58 2.60 2.60

)

)

)

Izr, H1(z 0.69 0.81 1.03 1.17 1.32 1.39 1.45 1.52 1.57 1.60
Tzr, Ha(z 0.83 1.01 1.17 1.31 1.40 1.45 1.51 1.55 1.58 1.60
Tzr, H3(z 1.04 1.18 1.33 1.42 1.49 1.53 1.55 1.57 1.58 1.60
IDTE H)(2) 1.04 1.27 1.55 1.73 1.89 1.95 2.01 2.07 2.12 2.15
IDIE Hy(z) 1.27 1.51 1.72 1.87 1.96 2.00 2.05 2.09 2.13 2.15
IDIE Hs(z) 1.51 1.70 1.88 1.96 2.02 2.06 2.09 2.11 2.13 2.15

3.6 Conclusoes

Este capitulo abordou a anélise de transceptores 6timos lineares e com realimentagao
de decisao, os quais empregam redundancia completa. A classe de transceptores
discutida aqui inclui sistemas ZF e MMSE, com precodificadores unitarios ou nao.
As figuras de mérito utilizadas para aferir o desempenho de tais transceptores foram
o MSE e a informagao mitua entre os blocos estimado e transmitido. As analises
propostas indicam que a reducao na quantidade relativa de redundancia em um bloco
de dados leva a perdas em desempenho das referidas figuras de mérito. Mostramos
também como a tentativa em diminuir o niimero de elementos redundantes utilizados
na equalizacao com o intuito de reduzir a quantidade de operagoes matematicas no
receptor pode levar a perda de desempenho dos sistemas envolvidos. Além disso,
provamos que zeros do canal fora do circulo unitario degradam o desempenho dos
sistemas ZP, quando comparados a zeros relacionados dentro do circulo unitario,
a menos que todo o bloco de dados recebidos seja utilizado na equalizagdo. Os
resultados das simulagoes corroboram com tais resultados teéricos.

Pelo o que acabamos de mostrar neste capitulo, vale a pena desenvolver trans-
ceptores que sao capazes de aumentar a eficiéncia espectral de sistemas ZP, sem
aumentar o tamanho do bloco de dados. Em outras palavras, podemos buscar
transceptores em bloco praticos com redundancia reduzida. Na verdade, nos des-
creveremos algumas propostas praticas na primeira parte desta tese e, depois disso,
descreveremos o caso geral de sistemas com redundéancia reduzida na segunda parte

da tese.
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Capitulo 4

Transceptores com Redundancia

Minima Baseados em DFT

Uma das principais caracteristicas que ajudou na adog¢ao ampla de sistemas baseados
em OFDM e SC-FD é a insercao de redundancia para a transmissao em bloco. Tal
redundancia elimina a IBI e permite a implementacao computacionalmente eficiente
de equalizadores ZF e MMSE baseados na transformada discreta de Fourier (DFT)
e em matrizes diagonais [31].

Entretanto, é sabido que a redundancia minima exigida para eliminar a IBI
e transceptores em bloco fixos e sem memoria é apenas a metade da quantidade
empregada em sistemas tradicionais baseados em OFDM [32]. O uso de redundancia
minima pode levar a solu¢oes com taxas de transmissao maiores. Entretanto, a taxa
de transmissao nao é a unica figura de mérito que é levada em consideragao, uma vez
que os custos envolvidos nas solugoes obtidas sao também de extrema importancia.
De fato, transceptores praticos com redundancia minima com a restricao de serem
tao simples quanto os sistemas OFDM (pelo menos do ponto de vista assint6tico)
ja foram propostos em [23].

Em geral, os novos transceptores possuem taxas de transmissao maiores do que
sistemas tradicionais baseados em OFDM e SC-FD, especialmente para canais muito
dispersivos no tempo. Além disso, eles sao eficientes em termos de custo computacio-
nal, uma vez que utilizam transformadas discretas rapidas e matrizes diagonais [23].
Solugoes do tipo ZF e MMSE estao disponiveis e elas diferem entre si no niimero de
ramos paralelos no receptor: dois ramos paralelos para a solucao ZF e cinco ramos
paralelos para a solucao MMSE, conforme descrito nas Figuras 4.1, 4.2, 4.3, 4.4 e
4.5 de [23].

Embora equalizadores ZF e MMSE com redundancia minima exijam um tempo
de processamento de um vetor recebido equivalente (devido ao paralelismo inerente
as estruturas propostas), as solugoes MMSE utilizam mais do que o dobro do ni-

mero de computacoes relacionadas as solugoes ZF'. Isto ¢ uma desvantagem 6bvia do
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ponto de vista computacional, o que pode dificultar o emprego de solugoes MMSE
com redundancia minima em alguns sistemas praticos, apesar de solu¢oes MMSE ob-
terem taxas maiores que as ZF em diversos ambientes, especialmente em ambientes
ruidosos [23].

A desvantagem acima motivou-nos a buscar simplificar os equalizadores MMSE
otimos, reduzindo o niimero de ramos paralelos no receptor de cinco para quatro.
Além disso, nés também investigamos solugoes MMSE subdtimas neste capitulo.
De fato, nés propomos novos transceptores multiportadoras e monoportadora com
redundancia minima que mantém exatamente a mesma estrutura da solucao ZF,
enquanto se mantém o mais préximos o possivel da soluggo MMSE 6tima. Essa
proximidade é medida pela norma 2 de matrizes [44]. Como consequéncia, novos
transceptores MMSE subdtimos levam a taxas de transmissao mais altas do que
as relacionadas aos sistemas ZF, com exatamente a mesma complexidade para o
processo de equalizacao.

Para derivar os transceptores propostos, nés primeiros derivaremos novamente os
transceptores MMSE 6timos com redundéncia minima de uma forma ligeiramente di-
ferente daquela descrita em [23]. Em relagao as solugdes subétimas, nds comegamos
com a solucao MMSE 6tima que acabamos de descrever e aplicamos a abordagem por
displacement rank junto com decomposicoes SVD eficientes baseadas em fatoracgoes
de Householder e QR [44, 45]. A aplicacdo dessas técnicas permite o desenvolvi-
mento de solu¢goes MMSE subdtimas que apresentam complexidade computacional
comparavel aos sistemas OFDM e SC-FD. Em geral, tais propostas possibilitam a
transmissao através de canais bastante dispersivos com altos ganhos de throughputs,
sendo assim uma boa solucao de compromisso em termos de desempenho e custo

computacional.

4.1 Transceptores ZP-ZJ Revisitados

Sabemos que os transceptores ZP-ZJ (vide Figura 4.1) s@o caracterizados pela se-

guinte relagao:
S = GH(Z)FS -+ Gv = GOHoFos + Vo. (41)

Dada uma matriz de transmissao Fy e a matriz equivalente de canal Hg, nosso
objetivo sera projetar a matriz de recepcao Gg. A principal ideia é utilizar o fato de

a matriz de canal Hy ser estruturada para obtermos solu¢ées mais simples do ponto
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Figura 4.1: Modelo do transceptor ZP-ZJ.

de vista computacional. De fato, Hy é uma matriz de Toeplitz dada por

WL — K) h(O) 0 0 0
h(K) 0
H, = : h(()) e C(M—&-QK—L)XM7 (4‘2)
h(L) :
0 hL — K)
0 o0 0 R(L) h(k) |

onde h(0),h(1),---

Para mais informagoes, o leitor pode consultar a Secao D.1.

,h(L) sao os coeficientes do modelo FIR de canal.

4.1.1 Sistemas com Redundancia Minima

No caso de sistemas com redundancia minima, sabemos que a matriz de recepcao é
dada por [23]:

Gihin = Fo'Hy (4.3)
2 —1
Gg?rl\rﬁE £F,'H] <H0H51 + Z;}IM> : (4.4)

supondo L par, de forma que L/2 elementos redundantes sao adicionados em cada
bloco transmitido.

Tais matrizes admitem as seguintes decomposigoes:

1 2
G uin = §F51W1\H4 <Z Df’rWMDWMDc_lr> wiiD", (4.5)
r=1
1 5
Gomn = 5Fo Wit (Z D;—)TWMDWMDQJ WD, (4.6)
r=1
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onde Dp, e Dg, sao matrizes dependentes do modelo de canal, enquanto que D é uma
matriz independente do modelo de canal (veja [23] para mais detalhes). Um sistema
monoportadora é obtido quando Fy £ I,;, enquanto um sistemas multiportadoras é
obtido quando Fy = WH.

Para mais informacoes, o leitor pode consultar a Subsecao D.1.1.

4.1.2 Projeto de Transceptores com Redundancia Minima

A ideia do projeto de transceptores com redundancia minima é decompor de forma
eficiente a matriz inversa de canal, assim como realizado nos sistemas OFDM e SC-
FD. Com efeito, sistemas baseados em SC-FD, por exemplo, induzem uma matriz de
canal equivalente com estrutura circulante. Como toda matriz quadrada circulante
pode ser diagonalizada facilmente utilizando-se matrizes de DFT e IDFT, entao a
inversa de tal matriz ¢é facilmente diagonalizada também utilizando-se matrizes de
DFT e IDFT, além da inversa da matriz de autovalores original.

No caso de sistemas com redundancia minima, a matriz de canal equivalente
nao é circulante, mas sim de Toeplitz. Mesmo assim, ainda é possivel valer-se de
transformadas rapidas e matrizes diagonais para decompor (nao mais diagonalizar)
a inversa de tal matriz.

Para mais informacoes, o leitor pode consultar a Subsecao D.1.2.

4.1.3 Abordagem via Displacement Rank

Dadas duas matrizes X, Y € CM*M | as transformagdes lineares [25]

VX,Y . (CMXM N (CMXM

U~ Vxy(U) £ XU - UY (4.7)
AX,Y . CMXM N (CMXM
U+— Axy(U) £ U -XUY (4.8)

sao chamadas de displacements de Sylvester e de Stein, respectivamente. Quando
tais transformacoes sao devidamente aplicadas sobre matrizes estruturadas, tem-se
como resultado uma matriz esparsa que depende de poucos elementos nao nulos. No
caso de uma matriz de Toeplitz, por exemplo, pode-se passar de uma representagao
com M? elementos ndo nulos para uma representacao com apenas 2M elementos

nao nulos. Para mais informagcodes, o leitor pode consultar a Subsecao D.1.3.
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4.2 Equalizadores MMSE Otimos com Redun-
dancia Minima

Aplicando-se a abordagem via displacement rank, é possivel desenvolver decompo-
sicoes eficientes para a matriz de recepgao associada a sistemas com redundancia

minima. Por exemplo, para um transceptor monoportadora, é possivel mostrar que
a solucao MMSE é dada por:

Fo = L, (4.9)

m=0 ">

1 4 _ )
G’O = 5 “’ ﬁ [Z Df)r VV M (dlag{ejﬁm}%:—ol) V\/ MDflr‘| v‘/ ﬁdjag{e_ﬂﬁm M-1
r=1

(4.10)

enquanto que um transceptor multiportadoras possui uma estrutura descrita na
Figura 4.2.

Para mais informagoes, o leitor pode consultar a Se¢ao D.2.

4.3 Equalizadores MMSE Subétimos com Redun-
dancia Minima

Os equalizadores MMSE subo6timos sao obtidos quando ficamos com apenas dois
ramos de equalizagao do receptor MMSE 6timos, no lugar dos quatro indicados
na Figura 4.2. Na verdade, ndao ha um simples descarte. O que se tem é uma
transformacao que leva a ficarmos com apenas dois ramos, mas com coeficientes de
equalizacao diferentes dos originais. Tal transformacao consiste em determinar a
decomposi¢ao em valores singulares da matriz de displacemet associada a matriz de
canal. Esta decomposicao em valores singulares pode ser feita com complexidade
O(M), uma vez que a matriz de displacement depende de poucos coeficientes. De-
pois de determinar os valores singulares, descartamos os que contribuem menos na
formagao da matriz (os menores valores singulares) e ficamos com apenas dois deles
(num total de quatro).

Para mais informacoes, o leitor pode consultar a Secao D.3.

4.4 Resultados das Simulacoes

Equalizadores MMSE Otimos com Redundéincia Minima

Como exemplo de desempenho de nossas propostas em termos de throughput, con-

sidere a transmissao de 200 blocos contendo M = 32 simbolos BPSK por um canal
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Rayleigh com L = 30. Assuma que 10.000 simulac¢ées de Monte-Carlo foram rea-
lizadas e que a frequéncia de amostragem é f, = 1,0 GHz. Além disso, assume-se
também que o canal através do qual os sinais sao transmitidos trabalha na mesma
taxa de amostragem.

Neste exemplo, busca-se ilustrar uma aplicacao cuja restricao em relagao a atra-
sos seja predominante. Além disso, assume-se também que o canal modela um
ambiente extremamente dispersivo. Por isso a resposta ao impulso do modelo de
canal (complexo) é longa, sendo sua ordem dada por L = 30. Tanto a parte real
como a parte imaginaria sao realizagoes de processos estocasticos gaussianos bran-
cos, com média zero e independentes. Todos os taps do canal possuem a mesma
poténcia média e o canal ¢ sempre normalizado, ou seja, E[||h||3] = 1. Uma nova
realizacao do canal é gerada para cada uma das dez mil simulagoes. Devido a alea-
toriedade na escolha dessas realizacoes, € muito provavel que a quantidade de zeros
congruos do canal seja menor do que o comprimento da redundancia, garantindo-se,
assim, a existéncia de solugoes ZF.

A defini¢ao de razao sinal-ruido (SNR, do inglés Signal-to-Noise Ratio) adotada
nas simulagoes ¢é a razao entre a poténcia média de um simbolo do sinal transmitido
(sinal de entrada do canal) e a poténcia média do ruido aditivo na entrada do
receptor.

A defini¢ao de throughput é

Throughput = brcjwj\fK(l — BLER) fs, (4.11)
onde K =L/2=15er.=1/2.

Os sistemas utilizados na transmissao sao o tradicional ZP-OFDM-OLA, além
dos sistemas propostos, a saber: MC-MRBT (do inglés, multicarrier minimum-
redundancy block transceiver). Para cada um desses sistemas utilizam-se as solugoes
ZF e MMSE. O ZP-OFDM e ZP-SC-FD foram escolhidos porque possuem um mo-
delo mais préximo dos sistemas propostos, ja que estes utilizam a adicao de zeros
como redundancia e também empregam transformadas rapidas.

A Figura 4.3 contém os resultados relacionados a um sistema multiportadoras.
E possivel verificar, neste caso em particular, que o sistema proposto MMSE-MC-
MRBT possui um desempenho melhor do que a sua contraparte, MMSE-OFDM, o
qual obteve exatamente o mesmo desempenho do ZF-OFDM. J4 para os sistemas

com redundancia minima do tipo ZF, eles sdo bastante vantajosos para SNRs acima
de 12 dB.
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Figura 4.3: Throughput [Mbps| em fungao da SNR [dB], considerando transmissoes
multiportadoras (canal Rayleigh) baseadas em DFT (M = 32 e L = 30).

Equalizadores MMSE Subétimos com Redundancia Minima

Como exemplo de desempenho de nossas propostas subétimas em termos de through-
put, considere a transmissao de 100.000 blocos contendo M = 8 simbolos QPSK por
um canal fixo com L = 4. Assuma que a frequéncia de amostragem é f; = 450 MHz.

A Figura 4.4 contém os resultados relacionados a um sistema monoportadora. E
possivel verificar que, com excecao do sistema ZF monoportadora com redundancia
minima, os transceptores MMSE com redundancia minima obtiveram desempenho
comparavel ao MMSE-SC-FD ou até melhor (SNRs a partir de 25 dB). O mais
importante é verificar que as solugoes Otima e subdtima obtiveram desempenho
praticamente idéntico. O leitor deve lembrar que a solugao subdtima utiliza apenas
dois ramos de equalizadores no receptor, no lugar dos quatro ramos utilizados pela
solucao MMSE 6tima.

Para mais informagoes, o leitor pode consultar a Se¢ao D.4.
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monoportadora baseadas em DFT (M =8¢ L =4).

4.5 Conclusoes

Neste capitulo, descrevemos o modelo ZP-ZJ que é a base para os sistemas utili-
zados ao longo de toda o restante da tese. Através da aplicacao dos conceitos de
displacement rank nés fomos capazes de propor uma estrutura mais simples para
os equalizadores MMSE 6timos baseados em DFT com redundancia minima. Além
disso, novos equalizadores MMSE subotimos que requerem quase a metade do nu-
mero de operagoes de um equalizador MMSE 6timo foram propostos. As simulagoes
confirmam as melhorias em termos de taxa de transmissao efetiva, quando compa-
ramos as novas propostas com sistemas OFDM e SC-FD tradicionais, especialmente
quando o canal é bastante dispersivo. Uma caracteristica chave dos sistemas pro-
postos é a complexidade computacional assintdtica para o processo de equalizacao, a
qual é dada por O(M log, M), a mesma complexidade de sistemas OFDM e SC-FD.
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Capitulo 5

Transceptores com Redundancia
Minima Baseados em DHT

O desempenho de transceptores baseados em transformadas reais que utilizam L
elementos redundantes ja foi estudado em diversos trabalhos, tais como [46, 47].
Algumas das vantagens em se empregar tais transceptores sao provenientes dos se-
guintes trés fatos: [46, 47]: (i) transformadas reais, tais como transformadas dis-
cretas de seno e cosseno (DST e DCT, respectivamente) possuem lébulos laterais
mais atenuados, quando comparadas a DFT. Isso implica que menos interferéncia
entre subportadoras (ICI, do inglés intercarrier interference) ocorre em sistemas
multiportadoras; (i7) Sistema multiportadoras podem se beneficiar com o uso de
transformadas reais associado ao uso de constelagdes reais (PAM, por exemplo),
uma vez que a transmissao de dados em fase e quadratura (I/Q) nao é requerida;
e (i17) DST, DCT e DHT possuem algoritmos rapidos!, mantendo uma complexi-
dade computacional assintética competitiva, sendo dada por O(M log, M), para M
simbolos de dados.

Ao lidar com sistemas com redundancia minima, a primeira proposta de trans-
ceptores com transformadas reais em [23] mostrou a possibilidade de implementar
sistemas de comunicagao usando apenas matrizes DHT e diagonais. Entretanto, tais
transceptores requeriam uma resposta ao impulso do canal simétrica. Esta condicao
pode ser atendida com a introducao de um pré-filtro no primeiro estagio de recep-
¢ao. O pré-filtro ficaria assim responsavel por fazer com que a resposta ao impulso
efetiva do canal fosse simétrica. Tal abordagem foi adotada também em [46].

O objetivo deste capitulo é propor uma forma de eliminar a restri¢ao de simetria
sobre o canal mencionada acima. Para tanto, alguns novos transceptores fixos e
sem memoria sao propostos. Tais transceptores nao impoem nenhuma restricao de

simetria sobre a resposta ao impulso do canal. Eles podem ser multiportadoras

sto é, transceptores que requerem O(M log? M) operacdes, para d < 3 [25].
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ou monoportadora, com receptores ZF ou MMSE. Os transceptores usam apenas
matrizes DHT, diagonais e antidiagonais em suas estruturas. Por esta razao, os
sistemas propostos sdo computacionalmente tao simples quanto os sistemas OFDM e
SC-FD, e, simultaneamente, podem ser muito mais eficientes com relagao a utilizacao
de banda disponivel para transmissao.

A abordagem por displacement rank [25] é aplicada com o intuito de derivar os
novos transceptores propostos usando novas representacoes de matrizes estrutura-
das. Tais representagdes novas sdo baseadas nas decomposigoes propostas em [48].
As diferencgas entre este capitulo e [48] estdao no fato de que a restrigdo de se traba-
lhar apenas com matrizes reais, bem como a necessidade de se estender as matrizes
envolvidas com zeros nao estao presentes nas dedugoes do presente capitulo. Tais
fatores nos possibilitam trabalhar com canais complexos (canais em banda-base,
por exemplo), bem como projetar sistemas multiportadoras, o que nao era possivel

empregando diretamente as decomposigoes presentes em [48].

5.1 Definicoes das Matrizes DHTs e DFTs

Neste capitulo, consideramos as seguintes defini¢bes de matrizes DHTs e DFTs,

respectivamente [48, 49]:

_ sin[0x(4, )] + cos[0x (i, j)]

Holi = - 7 (5.1)
cos[0x(i,7)] — ssin[0x (7, j)]

[(Wilij = Navi ’ 5-2)

em que X € {I,IL,III,IV} e os dngulos sao definidos como se segue:

0t j) = 227, 5.3
(s, g) = "D (5.9
bun(in ) = T (55)
O (i f) = (20 + 1;5\24; + 1)7r7 (5.6)

para todo (i,7) € {0,1,--- ,M — 1}

Para mais informacoes, o leitor pode consultar a Secao E.1.
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5.2 Transceptores Eficientes com Redundancia
Minima Baseados em DHT

Aplicando-se a abordagem via displacement rank, é possivel desenvolver decompo-
sicoes eficientes para a matriz de recepgao associada a sistemas com redundancia
minima baseados em DHT. Por exemplo, para um transceptor monoportadora, é

possivel mostrar que a solugao ZF é dada por:
Fo=1y (5.7)

Y 2
Gy = E'Hm (Z XﬁTHHHIVer> Huv, (5-8)
r=1

enquanto que um transceptor ZF multiportadoras possui uma estrutura descrita na

Figura 5.1. Para mais informacoes, o leitor pode consultar a Secao E.2.
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Figura 5.1: Transceptores multiportadoras em bloco com redundancia minima ba-
seados em DHT.

5.3 Resultados das Simulacoes

Como exemplo de desempenho de nossas propostas em termos de throughput, con-
sidere a transmissao de 500 blocos contendo M = 32 simbolos QPSK por um canal
de Rayleigh com L = 20. Assuma que 10.000 simulagoes foram realizadas e que a
frequéncia de amostragem é f, = 500 MHz. Além disso, assume-se também que o
canal através do qual os sinais sao transmitidos trabalha na mesma taxa de amos-
tragem.

Tanto a parte real como a parte imaginaria sao realizagoes de processos esto-
casticos gaussianos brancos, com média zero e independentes. Todos os taps do

canal possuem a mesma poténcia média e o canal é sempre normalizado, ou seja,
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E[|[h]|2] = 1. Uma nova realizacio do canal ¢ gerada para cada uma das dez mil
simulagoes. Devido a aleatoriedade na escolha dessas realiza¢oes, é muito provavel
que a quantidade de zeros congruos do canal seja menor do que o comprimento da
redundancia, garantindo-se, assim, a existéncia de solugoes ZF.

A definicao de SNR adotada nas simulagoes é a razao entre a poténcia média de
um simbolo do sinal transmitido (sinal de entrada do canal) e a poténcia média do
ruido aditivo na entrada do receptor.

A definicao de throughput é mesma qua ja adotamos anteriormente, isto é

Throughput = br, (1 — BLER) fs, (5.9)

M+ K

onde K = L/2 = 10 (em sistemas com redundancia minima) ou K = L = 20 (em

sistemas com redundancia completa) e r. = 1/2.
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Figura 5.2: Throughput [Mbps| em fungao da SNR [dB], considerando transmissoes
multiportadoras (canal Rayleigh) baseadas em DHT (M = 32 e L = 20).

Os sistemas utilizados na transmissao sao o tradicional ZP-OFDM-OLA, além
dos sistemas propostos, a saber: MC-MRBT (do inglés, multicarrier minimum-

redundancy block transceiver). Para cada um desses sistemas utilizam-se as solugoes

ZF e MMSE.
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A Figura 5.2 contém os resultados relacionados a um sistema multiportadoras.
E possivel verificar um comportamento similar ao que foi obtido na caso de sistemas
baseados em DFT. Com efeito, o sistema proposto MMSE-MC-MRBT possui um
desempenho melhor do que a sua contraparte, MMSE-OFDM, o qual obteve exata-
mente o mesmo desempenho do ZF-OFDM. J& para os sistemas com redundancia
minima do tipo ZF, eles sdo bastante vantajosos para SNRs acima de 20 dB.

Para mais informagoes, o leitor pode consultar a Se¢ao E.3.

5.4 Conclusoes

Neste capitulo nés propomos a utilizacao de transformadas discretas de Hartley em
sistemas de transmissao em blocos com redundancia minima. As solugoes ZF e
MMSE empregam matrizes DHT, diagonais e antidiagonais, o que faz com que os
novos transceptores sejam computacionalmente eficientes. Nossa abordagem baseia-
se nas propriedades de matrizes estruturadas e utiliza os conceitos de displacement
de Sylvester e de Stein. Foram derivadas novas representagoes baseadas em DHTs
para inversas e pseudo-inversas de matrizes de Toeplitz. Uma caracteristica mar-
cante dos sistemas propostos é o fato de nao haver restrigbes de simetria sobre a
resposta ao impulso do canal, ao contrario do que ocorre em [23]. Os resultados das
simulagoes demonstram que as solugoes encontradas viabilizam a transmissao com

taxas maiores.
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Capitulo 6

Transceptores com Redundancia
Reduzida Baseados em DFT

Este capitulo apresenta novos transceptores lineares invariantes no tempo que em-
pregam uma quantidade reduzida de redundancia para eliminar a interferéncia entre
blocos. Tais propostas englobam sistemas multiportadoras e monoportadora com
equalizadores ZF e MMSE. A quantidade de redundéancia varia desde a minima,
[L/2], até a mais comumente utilizada, L, assumindo um canal com resposta ao
impulso de ordem L. Os transceptores resultantes permitem a equalizacao eficiente
dos blocos de dados recebidos, uma vez que eles utilizam transformadas rapidas de
Fourier e equalizadores com um tnico coeficiente em suas estruturas. O capitulo
também inclui uma anéalise do MSE associado aos transceptores propostos com res-
peito a quantidade de redundancia. De fato, ndés demonstramos que, quanto maior
for a quantidade de redundancia transmitida, menor serd o MSE de simbolos na re-
cepcao. Diversas simulacoes indicam que, se escolhermos uma quantidade adequada
de redundancia, entao os transceptores propostos podem alcancar taxas de transmis-
sao maiores do que os transceptores multiportadoras e monoportadora tradicionais.
Tais ganhos sao obtidos sem sacrificar a complexidade computacional assintética
associada ao processo de equalizacao.

Neste capitulo, nés consideramos o modelo ZP-ZJ [16, 41| que permite a trans-
missao com uma quantidade menor de redundancia, mais ainda evitando a IBI. Na
verdade, os transceptores ZP-ZJ com redundancia minima propostos em [23] podem
ser considerados como o estado da arte neste topico particular, o que naturalmente
nos leva ao questionamento: por que investigar transceptores com redundancia redu-
zida quando transceptores com redundancia minima ja estao disponiveis? A resposta
a tal questionamento bem como a estratégia para projetar esses novos transceptores

sao os topicos centrais deste capitulo.
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6.1 Redundancia Reduzida versus Redundancia
Minima

Considerando M + K dados transmitidos com K zeros redundantes, temos os se-

guintes MSE de simbolos:

AMSEMMSE(f¢ 17) = ﬁtr { (B} (5, MYHL (K, M) + pL| 1} (6.1)

_03 Z 1
M S 0% (K M) +p]
2

AMSE?" (K, M) = %tr { [HY (K, M)Hy(K, M)] _1}

o? 1
M 2 o2 (K, M)

meM “m

(6.3)

Sendo assim, é possivel mostrar que, para todo inteiro positivo K entre L/2 e L,

tem-se:

AMSEMMSE(K 1, M) < AMSEMMSE(K M), (6.4)
AMSE? (K 4 1, M) < AMSE? (K, M). (6.5)

O resultado acima mostra que o aumento de elementos redundantes transmiti-
dos permite a redugao do erro quadratico médio de tais transceptores. Para mais

informagoes, o leitor pode consultar a Secao F.1.

6.2 Novas Decomposicoes de Matrizes Estrutura-

das Retangulares

6.2.1 Abordagem do Displacement-Rank

De forma similar & descrita na Subsecdo 4.1.3, se assumirmos que X € CM>M
e Y € CM2*M2 30 duas matrizes de operacdo dadas, onde M; e M, sdo inteiros

positivos, as transformagoes lineares [25]

VXY : CM1><M2 N CMlng
U +— Vxy(U) £ XU - UY, (6.6)
AXY : C]\/[1><M2 N (C]\/[1><]\/[2

U Axy(U) 2 U - XUY (6.7)
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sao extensoes dos displacements de Sylvester and Stein para lidar com os casos
de matrizes retangulares. Para mais informagoes, o leitor pode consultar a Subse-
cao F.2.1.

6.2.2 Displacement das Matrizes de Receptores ZF e
MMSE

Dadas as matrizes de operacdo Zg € CM*M e Z,, € CMF2E-L)x(M+2K-L) " 4
matriz Kynvsg = (HYHo + ply) "THE possui a seguinte matriz de displacement

Vz.z,,, (Kause) = PQT, em que

—1 A A
P = {P (HgHo + pIM) P - KMMSEP] it (6.8)

T A A
Q= |(HHY + o) @ KliyseQ) S (69)

(M+2K—L)x4

com (P, Q) € CAMH2E-L)x2 5 CMx2 o (Pr () € CM*2 x CM+2K-L)x2 gondo 0s pares
geradores de displacement Vg, , 7.(Ho) e Vz.z,, (H{T), respectivamente. Para mais

informagoes, o leitor pode consultar a Subsecao F.2.2.

6.2.3 Representacao de Bezoutianos Retangulares Baseada
em DFT

Dados dois niimeros complexos nao-nulos 7 e &, e dados dois niimeros naturais
My e M, assuma que B é uma matriz de Bézout de dimensdao My x M; tal que
Vzz,,B)= PQ?. O par gerador (P, Q) est4 no conjunto CM2x% x CM1xE onde
o numero natural R é o posto da matriz de displacement de Sylvester. Assim, se
M, > M, entao

R
B = \/MlM2V€_1 [2_:1 diag{p, } W, [diag{(foﬁo)m}%;;é Ong(Ml—Mg)} X

X WMldlag{(_lr}] V;T7 (610)
onde o vetor n de dimensao M; X 1 contém as raizes M;-ésimas de 7, i.e., para
cada fndice my € My = {0,1,---, My — 1}, tem-se [0}, = N, = noWjj', com

27 Zn
A —yEE A 7 - = A
Wi, £ e 73 ey £ |n|Y/*1e! ™ | enquanto que o vetor € de dimensdo M, x 1 contém

’ Yo . z . A
as raizes My-ésimas de ¢, i.e., para cada indice mg € My = {0,1,--- , My—1}, tem-se
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[€lmy = &my = EW)2, com & = |§|1/M2e‘71%. Além disso, temos que
P2 [P, - pr]=—-VP (6.11)

21(q - Gr] = (djag{l} - ) V.,Z,Q, (6.12)

1— 5777]%12 m1=0

o]

onde assumimos que 577%12 # 1, para todo m; € M.

Para mais informacoes, o leitor pode consultar a Subsecao F.2.3.

6.3 Transceptores Eficientes com Redundéancia
Reduzida Baseados em DFT

Noise
Data GAdd i Remove
IDFT uard L Channel—=(})—=| Guard Phase
Block :\'> Period anne e :"> . :"> IDET
Shift
P/S S/P
One-Tap Phase
Equalizer<’\: DFT <l\: Shift <,\: DFT <,\: Onefliap ¢
Equalizer
Ignore
One-Tap Phase
Equalizer<’\: DFT <l\: Shift <,\: DFT <,\: OIle*T&P ¢
Data Equalizer
Block Tanore
Estimate
One-Tap Phase
Equalizer<’\: DFT <l\: Shift <,\: DFT <,\: One—TdP ¢
Equalizer
Ignore
One-Tap Phase
Equalizer<): DFT <l\: Shift <,\: DFT <,\: One—Tap <,:
Equalizer
Ignore <,‘:

Figura 6.1: Transceptores multiportadoras em bloco com redundancia reduzida ba-
seados em DF'T.

Aplicando-se a abordagem via displacement rank, é possivel desenvolver decom-
posicoes eficientes para a matriz de recepgao associada a sistemas com redundancia

reduzida baseados em DFT. Por exemplo, para um transceptor monoportadora, é
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possivel mostrar que:

Fo =1y (6.13)

4
Gy =W [Z Ds Wy, [DM Onrx(2x-1) W(M-}—QK—L)DQT] W(HJ\4+2K7L)D5\/[+2K7L)7

r=1

(6.14)

enquanto que para um transceptor multiportadoras, tem-se conforme descrito na

Figura 6.1. Para mais informagdes, o leitor pode consultar a Secao F.3.

6.4 Resultados das Simulacoes

Como exemplo de desempenho de nossas propostas em termos de throughput, con-
sidere a transmissao de 50.000 blocos contendo M = 16 simbolos 64-QAM por um

canal fixo com L = 4. Assuma que a frequéncia de amostragem é f, = 100 MHz.

300 . . .
250 -8--8--8--8--B--0
- &—8 80— &

— 200 i

Q'+ MMSE-OFDM
=\ MMSE-MC-RRBT (K=2) |
- B- MMSE-MC-RRBT (K = 3)
—%—  MMSE-MC-RRBT (K = 4)

Throughput [Mbps
>
S

100 -
PR Gt At At ¢
A
5 - -
PAY

0 | | |

15 20 25 30 35
SNR [dB]

Figura 6.2: Throughput [Mbps| em fungao da SNR [dB], considerando transmissoes
multiportadoras com redundancia reduzida baseadas em DFT (M = 16 e L = 4).

Os sistemas utilizados na transmissao sao o tradicional ZP-OFDM-OLA, além
dos sistemas propostos, a saber: MC-RRBT (do inglés, multicarrier reduced-

redundancy block transceiver). Para cada um desses sistemas utiliza-se a solugao
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MMSE.

A Figura 6.2 contém os resultados relacionados a um sistema multiportadoras.
E possivel verificar que o sistema com redundancia minima (K = 2) néo obteve um
bom desempenho neste cenario de simulagao. Entretanto, ao transmitirmos apenas
um elemento redundante adicional, obtivemos uma melhora significativa, conforme
ilustrado na figura (K = 3).

Para mais informagoes, o leitor pode consultar a Se¢ao F.4.

6.5 Conclusoes

Neste capitulo, nés propomos novos transceptores em bloco lineares e invariantes
no tempo com redundancias variando desde a minima até a usualmente utilizada na
prética, a qual coincide com o méaximo delay-spread (em amostras) esperado para
o modelo de canal. As propostas incluem solugoes praticas de transceptores mul-
tiportadoras e monoportadora. As solugoes ZF e MMSE requerem apenas DFTs,
IDFTs e matrizes diagonais, de forma que os transceptores se tornam computacio-
nalmente eficientes. As solugoes foram obtidas novamente adequando os conceitos
de displacement de Sylvester e Stein para lidar com matrizes estruturadas retangula-
res. Resultados tedricos mostraram pela primeira vez que o aumento na quantidade
de redundancia associada a sistemas ZP-ZJ pode trazer beneficios em termos de
desempenho de MSE, mas, ao mesmo tempo, piora a eficiéncia espectral.

As simulagoes confirmam os resultados tedricos e mostram também que o de-
sempenho relativo dos transceptores com redundancia reduzida pode variar muito
dependendo das caracteristicas do modelo de canal. Nés acreditamos que os resul-
tados deste capitulo respondem diversas questoes em aberto relacionadas a inser¢ao

de redundancia em sistemas em bloco.
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Capitulo 7

Transceptores com Redundancia
Reduzida Baseados em DHT

Conforme mencionado no Capitulo 5, ha varias vantagens em se utilizar transfor-
madas reais em sistemas multiportadoras e monoportadora, quando comparados a
sistemas que utilizam transformadas complexas. O Capitulo 6 introduziu os trans-
ceptores com redundancia reduzida baseados em DFT, que é uma transformada
complexa. Os resultados do Capitulo 6 podem ser utilizados juntamente com os
resultados do Capitulo 5 com o intuito de derivar os transceptores com redundancia
reduzida baseados na transformada discreta de Hartley, que é uma transformada
real.

Neste capitulo, nés propomos algumas possiveis estruturas para transceptores
baseados em DHT com redundancia reduzida. Comecando a partir das derivagoes
dos transceptores com redundancia minima baseados em DHT e dos transceptores
com redundancia reduzida baseados em DF'T, nés podemos conceber as estruturas
propostas para transceptores com redundancia reduzida baseados em DHT através

de adaptagoes dos resultados dos Capitulos 5 e 6.

7.1 Transceptores Eficientes com Redundancia
Reduzida Baseados em DHT

Mais uma vez, aplicando-se a abordagem via displacement rank, é possivel desen-
volver decomposicoes eficientes para a matriz de recepgao associada a sistemas com

redundancia reduzida baseados em DHT. Por exemplo, para um transceptor mono-
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portadora, é possivel mostrar que
Fo =1y (7.1)

4
Go=Hunu [Z Xp, My | I Onrxer—1) H(M+2K—L),IX61T] Hvv2x-1),15

r=1

(7.2)

enquanto que um transceptor multiportadoras possui a estrutura descrita na Fi-

gura 7.1. Para mais informacdes, o leitor pode consultar a Secao G.1.

Noise
Data Add i Remove
DHT-11 = > Guard | \Channel—=(1)—»| Guard
Block Period Period — pur
P/S S/P
Two-Tap j j
Equalizer <’l:DHT_HI DHT-I TWO_Tap ¢
Equalizer
Ignore <;:
Two-Tap
Equalizer <’l:DHT_HI<’l: DHT-I <’l: Two—Tap ¢
Data Equalizer
Block Ignore
Estimate
Two-Tap
Equalizer <’l:DHT_HI<’l: DHT-I <’l: Two—Tap ¢
Equalizer
Ignore <;:
Two-Tap
Equalizer <’l:DHT_HI<’l: DHT-I <’l: Two—r.I‘ap <’:
Equalizer
Ignore <;:

Figura 7.1: Transceptores multiportadoras em bloco com redundancia reduzida ba-
seados em DHT.

7.2 Resultados das Simulacoes

Como exemplo de desempenho de nossas propostas em termos de throughput, con-
sidere a transmissao de 50.000 blocos contendo M = 16 simbolos 64-QAM por um
canal fixo com L = 4. Assuma que a frequéncia de amostragem ¢é f; = 100 MHz.
Os sistemas utilizados na transmissao sao o tradicional ZP-OFDM-OLA, além
dos sistemas propostos, a saber: MC-RRBT (do inglés, multicarrier reduced-

redundancy block transceiver). Para cada um desses sistemas utiliza-se a solugao
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Figura 7.2: Throughput [Mbps| em fungao da SNR [dB], considerando transmissoes
multiportadoras com redundancia reduzida baseadas em DHT (M = 16 e L = 4).

MMSE.

A Figura 7.2 contém os resultados relacionados a um sistema multiportadoras.
E possivel verificar que o sistema com redundéncia minima (K = 2) ndo obteve
um bom desempenho neste cenario de simulacao. Entretanto, assim como ocorreu
no caso de transceptores baseados em DF'T, ao transmitirmos apenas um elemento
redundante adicional, obtivemos uma melhora significativa, conforme ilustrado na
figura (K = 3).

Para mais informacoes, o leitor pode consultar a Secao G.2.

7.3 Conclusoes

Neste capitulo, propomos transceptores com redundancia reduzida para transmissoes
em bloco. Mais especificamente, estendemos os resultados do Capitulo 7 utilizando
agora transformadas discretas de Hartley no lugar de transformadas discretas de
Fourier. As solugoes ZF e MMSE empregam apenas matrizes DHTs e matrizes
diagonais/antidiagonais. Tal caracteristica faz com que os transceptores resultantes

sejam computacionalmente eficientes. A abordagem adotada no capitulo passou por
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adaptar os resultados relacionados a matrizes estruturadas descritos nos Capitulos 5
e 6. Os resultados das simulac¢oes reafirmam as boas propriedades em termos de taxa

de transmissao dos transceptores propostos.
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Capitulo 8

Alocacao de Poténcia em
Transceptores com Redundancia

Minima

Observamos que, depois do processo de equalizacao, os transceptores com redun-
dancia reduzida poderiam eventualmente sofrer mais com ganhos de ruido do que
transceptores tradicionais, tais como OFDM e SC-FD. (veja o Capitulo 4 de [23]).
Isso ocorre por conta da dificuldade adicional em equalizar a matriz de Toeplitz
efetiva de canal, a qual é induzida pelos transceptores com redundancia minima,
quando comparada a matriz circulante associada aos sistemas OFDM e SC-FD [23].
Este fato nos motivou a realizar pesquisas neste toépico para minimizar esses ganhos
de ruido.

Neste capitulo, consideramos um esquema onde transceptores em bloco com re-
dundancia minima possuem conhecimento do canal no transmissor. Nos utilizamos
tal conhecimento para distribuir a poténcia de transmissao disponivel entre os sim-
bolos. A alocacao de poténcia é realizada objetivando minimizar os ganhos de ruido
no receptor.

O método de alocagao de poténcia proposto ¢ implementado multiplicando cada
simbolo a ser transmitido por um numero real positivo. Tais ntimeros reais sao
solugoes de um problema de otimizacao com restrigdes: minimizar a poténcia do
vetor de ruido depois do processamento no receptor, sem modificar a poténcia média

transmitida.

8.1 Alocacdo Otima de Poténcia

Conforme ja foi dito, queremos minimizar os ganhos de ruido no receptor sem au-

mentar de forma significativa o custo computacional na transmissao. Isso pode ser
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traduzido no seguinte problema de otimizagcao:
M-1 M-1
min Y 17 |lgnll3, sujeitoa Y 2= M, (8.1)
m=0 m=0

em que g,, ¢ a m-ésima linha da matriz de recepgao Gy.
O método de alocagao 6tima de poténcia que propomos é descrito na Figura 8.2,

onde

vm e {0,1,--+, M — 1}, (8.2)

é a solu¢ao do problema de otimizacao descrito acima.

Para mais informagoes, o leitor pode consultar a Secao H.1.

8.2 Resultados das Simulacoes

Como exemplo de desempenho das propostas em termos de throughput, considere a
transmissao de 100.000 blocos contendo M = 16 simbolos 16-QAM por um canal fixo
com L = 4. Assuma que a frequéncia de amostragem ¢é f; = 100 MHz. A Figura 8.1
contém os resultados relacionados a um sistema multiportadoras. E possivel verificar
uma melhora significativa dos transceptores que utilizam a alocagao de poténcia
proposta (indicados pela letra “P” na legenda da figura).

Para mais informagoes, o leitor pode consultar a Secao H.2.

8.3 Conclusoes

Neste capitulo, apresentamos um método de alocacao de poténcia especialmente
projetado para minimizar os ganhos de ruidos presentes em sistemas em bloco com
redundancia minima. Os transceptores resultantes ainda requerem O(M log, M)
operagoes numéricas para equalizar um vetor recebido. Além disso, o desempe-
nho em termos de taxa de transmissao apresenta melhoras, conforme indicado nos
resultados das simulagoes.

O problema de alocar poténcia objetivando maximizar a capacidade do canal

ainda é um problema em aberto e deve ser abordado em um trabalho futuro.
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Figura 8.1: Throughput [Mbps| em fungao da SNR [dB], considerando transmissoes
multiportadoras com redundancia minima baseadas em DFT e com alocacao de
poténcia (M = 16 e L = 4).
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Capitulo 9

DFE em Blocos com Redundancia
Reduzida

A equalizacao desempenha um papel importante em qualquer esquema moderno de
transmissao digital. Equalizadores lineares sao ainda a escolha preferida em sistemas
praticos devido as suas simplicidades computacionais. Entretanto, a melhora cons-
tante no desempenho de processadores digitais possibilitou o uso de equalizadores
nao-lineares também. As nao-linearidades induzem certos graus de liberdade que
nao sao explorados na equalizacao linear. Entre os receptores nao-lineares, o DFE
(do inglés, decision-feedback equalizer) [40, 50-52] estd entre os mais populares de-
vido ao bom compromisso atingido entre melhoria em desempenho e complexidade
computacional.

Em comunicagoes modernas, ¢ pratica comum a segmentacao dos dados em blo-
cos que sao transmitidos separadamente na transmissao em bloco. Tal separagao em
blocos ¢ bastante ttil em DFEs em blocos, uma vez que qualquer erro de detegao
em um simbolo nao é propagado por diferentes blocos de dados. Entretanto, a su-
perposicao indesejada de sinais inerente as comunicagoes em banda larga gera a IBI
entre blocos adjacentes. A IBI pode ser eliminada transmitindo sinais redundan-
tes, tais como sinais zero-padded ou prefixo ciclico [7, 40]. Entretanto, é necessario
otimizar o uso de recursos espectrais em transmissoes em banda larga. Uma pos-
sibilidade é atacar este problema reduzindo a quantidade de redundancia requerida
por transmissoes em bloco para eliminar a IBI. Uma solugao eficiente é empregar
transceptores ZP-7J, os quais permitem a transmissao com redundancia reduzida.
Entretanto, apenas alguns poucos trabalhos empregam transceptores ZP-ZJ e todos
consideram apenas equalizadores lineares.

Este capitulo mostra que técnicas ZP-ZJ podem ser aplicadas com sucesso no
contexto de sistemas DFEs. Nés descrevemos como aplicar solugoes MMSE e ZF co-
nhecidas para sistemas DFEs em bloco dentro do contexto de redundancia reduzida.

O capitulo também inclui alguns resultados matematicos que descrevem o compor-
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tamento monétono de figuras de mérito relacionadas aos sistemas DFEs ZP-ZJ (tais
como MSE de simbolos, informagao mutua, probabilidade de erro de simbolos, etc).
As andlises propostas indicam que a reduc¢ao na quantidade de redundéancia pode
levar a uma degradacao de desempenho de tais figuras de mérito, as quais nao in-
cluem o throughput. De fato, throughput pode aumentar ao reduzirmos a quantidade

de sinais redundantes, conforme ficara claro nos resultados das simulagoes.

9.1 DFE com Redundancia Reduzida

Nossa proposta para sistemas DFEs com redundancia reduzida esta ilustrada na

Figura 9.1, em que

F = VS, (9.1)
G =RS"Sg' I Onrver—1))Un, (9.2)
B=R -1, (9.3)

onde as matrizes acima provém de decomposi¢coes SVD da matriz de canal efetiva

H e de decomposigdes QRS [40] de Xy, como se segue:

WL—K) - h(0) 0 0 - 0
h(EK) 0
o : h(0) c CM+2K—L)xM
h(L) ‘
0 WL - K)
0 0 0 h(L) hK) |
>
= Uy v, (9.4)
~ Opk-—Lyxm| >~
(M+2K—L)x(M+2K—L)  MxM

(M+2K—L)xM

M-1
Su =1} [[ onQRS". (9.5)
m=0

Neste caso Xy = XH > O é uma matriz diagonal M x M contendo os M valores
singulares de H. Além disso, Q e S s@o matrizes unitarias de dimensao M x M,
enquanto que R é uma matriz triangular superior M x M contendo apenas 1s em
sua diagonal.

Para mais informagoes, o leitor pode consultar a Secao I.1.

63



S

0

E}
I

Precoder Channel Feedforward

Matrix Matrix Matrix Detector
N N L - K 8
H(z Zero + S
F i |(| ) i{> Jamminéi{>lgnored jj
His M W,
Zero + G //
Padding] 2 Hip; / B
v Feedback
Matrix
Figura 9.1: Estrutura geral dos sistemas DFFE ZP-ZJ propostos.
9.2 Analise de Desempenho
Em termos de desempenho, para cadam € {0,1,--- , M —1}, assuma que exista uma

funcao f,, : R, — R tal que o desempenho dos transceptores DFEs com redundancia
reduzida possa ser quantificado pela fungao J : {[L/2],[L/2] +1,--- ,L} — R
definida por

TU) £ 47 3 fulon(K)) on T(K) 2 J [T fn(on(K). (99

Se f,, ¢ mondtona crescente para todo m, entdao J(K + 1) > J(K), para todo K.
Analogamente, se f,,, ¢ mondtona decrescente para todo m, entao J(K+1) < J(K),
para todo K.

Para mais informagoes, o leitor pode consultar a Secao I1.2.

9.3 Resultados das Simulacoes

Como exemplo de desempenho de nossas propostas em termos de throughput, con-
sidere a transmissao de 10.000 blocos contendo M = 16 simbolos 16-QAM por um
canal fixo com L = 5. Assuma que a frequéncia de amostragem é f, = 400 MHz. A
Figura 9.2 contém os resultados relacionados a um sistema multiportadoras.

Para mais informagoes, o leitor pode consultar a Secao 1.3.

9.4 Conclusoes

Neste capitulo, propomos transceptores ZP-ZJ com realimentacao de decisao (DFE).
Tais transceptores possuem um bom compromisso entre desempenho e taxa de trans-
missao, viabilizando a otimizacao dos recursos espectrais em sistemas de banda larga.
A redundéncia presente em tais transceptores pode variar da minima, L/2, até a
méxima, L. Algumas ferramentas para a analise de desempenho (em termos de

MSE, informag¢ao mutua, probabilidade de erro de simbolos, etc) tais transceptores
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Figura 9.2: Throughput [Mbps| em fungao da SNR [dB] para sistemas DFEs.

também foram propostas.

A principal conclusao deste capitulo é que transceptores ZP-7J do tipo DFE per-
mitem o aumento do throughput, conforme indicado nas simulagoes. Esta pesquisa
ainda esta em seu estado inicial, consistindo apenas de resultados preliminares. Uma
linha interessante de pesquisa futura é o desenvolvimento de algoritmos eficientes

para implementar as solugdes nao-lineares propostas.
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Capitulo 10

Projeto de Transceptores com

Redundancia Minima

Na Parte I desta tese, propomos transceptores multiportadoras e monoportadora em
blocos com redundancia minima, os quais podem ser boas alternativas aos tradicio-
nais sistemas OFDM e SC-FD. Conforme ressaltado anteriormente, tais transcepto-
res com redundancia minima podem alcancar taxas de transmissao maiores do que
sistemas OFDM e SC-FD, requerendo a mesma complexidade computacional para
a equalizacao, O(M log, M), para M simbolos. Entretanto, as propostas de tais
transceptores se baseavam na hipotese de que o canal ja era conhecido no receptor.
Além disso, eles também assumiam que os equalizadores ja haviam sido previamente
projetados, focando no problema de equalizacao apenas.

O proposito deste capitulo é apresentar alguns resultados teodricos relacionados
ao projeto de equalizadores com redundancia minima, sem assumir o conhecimento
prévio do canal. Mais precisamente, neste capitulo mostramos como estimar o canal
quando sistemas com redundancia minima sao empregados e como utilizar tal esti-
mativa para resolver os sistemas de equacoes lineares que definem os equalizadores.
O resultado principal deste capitulo mostra que é possivel projetar tais equalizado-
res com base em informagoes de piloto e usando algoritmos iterativos que requerem
O(M log, M) operagoes por iteracao. Vale a pena ressaltar que as propostas deste
capitulo sao resultados preliminares de uma pesquisa que ainda estd em processo,

mas que nao é o foco principal desta tese.
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10.1 Estimacao de Canal Assistida no Dominio do

Tempo

No caso monoportadora, a estimacao de canal no dominio do tempo pode ser feita

utilizando a expressao
» H 1o
h=(R"R+pl.) Ry, (10.1)

em que R € CM*(+D) & yma matriz de Toeplitz contendo os sinais piloto. A
primeira linha de R é [r(L/2) r(L/2—1) --- 1(0) O1xr/2] e a primeira coluna
é[r(L/2) -+ r(M—1) 01x12]". Além disso, o vetor h € CEFD*! contém os
coeficientes da resposta ao impulso do canal. O vetor y contém os sinais recebidos
no receptor.!

Para mais informagoes, o leitor pode consultar a Secao J.1.

10.2 Projeto do Equalizador Utilizando Iteracoes

de Newton

O projeto do equalizador esta intimamente ligado a inversoes de matrizes, as quais

podem ser implementadas utilizando iteracoes de Newton. De fato, defina a fun¢ao

fX . CMXM%CMXM

U—U-X1 (10.2)

onde X € CM*M & yma matriz inversivel, cuja inversa queremos determinar. I
possivel mostrar que as iteragoes de Newton melhoram uma aproximacgao inicial

Uy € CM*M para a inversa de X utilizando a seguinte recursao [25, 53]:

para i € N.

Para mais informagoes, o leitor pode consultar a Secao J.2.

TA estimacdo descrita nesta secdo é uma alternativa & forma usual de estimacdo utilizando
sinais piloto, no dominio da frequéncia, em sistemas (CP, por exemplo) que induzem uma matriz
de canal circulante.
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10.3 Heuristicas Alternativas para o Projeto de

Equalizadores

10.3.1 Algoritmo PCG

A ideia de algoritmos PCG (do inglés, preconditioned conjugate gradient) é soluci-
onar problemas da forma Hyp = P resolvendo o problema equivalente P~ 'Hyp =
PP, que é melhor condicionado que o problema original, usando algoritmos de
gradiente conjugado [54]. A matriz P é a matriz de precondicionamento e deve ser
mais facil de inverter do que a matriz Hy e, ao mesmo tempo, deve ser uma boa
aproximacao para Hg?, isto ¢, P~ Hy ~ I [54]. Como todas as matrizes envolvidas
sao estruturadas, tais algoritmos podem ser implementados de forma eficiente.

Para mais informagoes, o leitor pode consultar a Subsecao J.3.1.

10.3.2 Algoritmo Dividir-e-Conquistar

A ideia de aplicar algoritmos dividir-e-conquistar no contexto de projeto dos equa-
lizadores é simplificar a inversao de matrizes do tipo Toeplitz. De fato, dada uma
matriz de Toeplitz T € CM*M  temos [19, 25, 55]:

I 0
ST vl |

0 S

Too To
Ty Tu

I Ty To
0 I

, (10.4)

em que S = Ty — T1gToy Ty € C**% éo complemento de Schur da matriz Tgg
na matriz T [19]. E possivel verificar que [19, 25, 55]:

Too To
Ty Tn

I —Ty Ty
0 I

Ty O

T ' =
0 S

I 0
.. (105)
—Tyo Tyl 1

Podemos trabalhar de forma recursiva com tais expressoes para calcular a in-
versa de T de forma eficiente. Para mais informagoes, o leitor pode consultar a
Subsecao J.3.2.

10.4 Conclusoes

Neste capitulo, propomos novos métodos para o projeto dos coeficientes dos equa-
lizadores presentes em sistemas com redundancia minima. As novas propostas sao
baseadas em transmissdo de sinais piloto e requerem apenas O(M log, M) para es-
timar o modelo de canal no dominio do tempo. Além disso, as novas propostas

também empregam algoritmos iterativos que requerem O(M log, M) operagdes por
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iteragao. Estes sao resultados tedricos preliminares de uma pesquisa que ainda esta

em progresso, mas que nao € a linha central de investigagao da presente tese.
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Capitulo 11
Conclusao

Neste trabalho, propomos solugoes praticas e efetivas para transceptores multiporta-
doras e monoportadora usando redundancia minima, ou mais geralmente, redundan-
cia reduzida. As respectivas solugoes ZF e MMSE empregam apenas DFTs, IDFTs
e matrizes diagonais, ou DHTs e matrizes diagonais e antidiagonais. Tais caracte-
risticas fazem com que os novos transceptores sejam computacionalmente eficientes.
A abordagem adotada baseia-se nas propriedades de matrizes estruturadas usando
os conceitos de displacement de Sylvester e Stein. Tais conceitos tem como objetivo
explorar as propriedades estruturais de representacoes tipicas de matrizes de canais,
tais como matrizes de Toeplitz, de Vandermonde e de Bézout. Utilizando propri-
edades adequadas inerentes a abordagem de displacement rank, fomos capazes de
derivar novas decomposigoes de bezoutianos generalizados baseadas em DFT e DHT.
Essas novas decomposicoes foram a chave para as propostas de transceptores multi-
portadoras e monoportadora em bloco que utilizam redundancia minima/reduzida.

Simulagbes mostraram que os transceptores propostos podem alcancar taxas de
transmissao maiores do que sistemas baseados em OFDM e SC-FD, especialmente
quando canais longos sao utilizados. A complexidade computacional utilizada no

processo de equalizagdo permanece sendo O(M logy M).

11.1 Contribuicoes

Segue-se uma lista mais especifica contendo as inovagoes desta tese:

o Foi desenvolvida uma analise matematica completa sobre o MSE e a informa-
¢ao mutua presente em transceptores em bloco com redundancia completa que

empregam zero-padding;

o Foi proposta uma modificagao nas solugoes MMSE com redundancia minima
descrita em [23]. De fato, as novas estruturas propostas sdo mais simples do

que aquelas propostas em [23], uma vez que elas empregam apenas quatro
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ramos de equaliza¢ao paralelos, enquanto que as propostas de [23] utilizam

cinco ramos;

o Foram propostos novos equalizadores MMSE sub6timos com redundancia mi-

nima que requerem a mesma quantidade de operagoes de equalizadores ZF';

e Foram propostos novos transceptores com redundancia minima baseados em
DHT. Tais transceptores nao impoem nenhuma restricdo de simetria sobre a

resposta ao impulso do canal, ao contrario do que foi feito em [23];

o Foram apresentados novos transceptores com redundancia reduzida baseados
em DFTs;

o Foram apresentados novos transceptores com redundancia reduzida baseados
em DHTS;

» Foi desenvolvida uma anéalise do MSE relacionado aos transceptores propostos
com redundancia reduzida com respeito a quantidade de redundancia. De fato,
nos demonstramos que quantidades maiores de redundancia levam a MSEs de

simbolos menores;

o Foi desenvolvido um método de alocacao de poténcia que permite minimizar os

ganhos de ruido quando ha conhecimento do modelo de canal no transmissor;
o Foram propostos novos sistemas DFEs em blocos com redundéancia reduzida;

o Foram propostos alguns métodos de projeto dos equalizadores com redun-
dancia minima com base em pilotos e usando algoritmos iterativos efici-
entes [25, 53, 56] que utilizam O(M log, M) operagoes por iteragao. Ou-
tra abordagem proposta foi a aplicacao de algoritmos do tipo dividir-e-

conquistar [25, 55| para o projeto dos equalizadores.

11.2 Sugestoes de Trabalhos Futuros

Segue-se uma lista de possiveis trabalhos futuros:

e Desenvolver transceptores variantes no tempo que sigam as mesmas linhas dos
sistemas com redundancia reduzida propostos nesta tese. Transceptores vari-
antes no tempo permitem a transmissao com apenas um elemento redundante,

independentemente da ordem do modelo de canal, conforme descrito em [57];

e Desenvolver versoes MIMO de transceptores com redundéancia reduzida para
lidar com sistemas com diversidade espago-temporal, conformacao de feixes e

multiplexacao espacial;
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Desenvolver esquemas de multiplo acesso baseados nas propostas desta tese;

Estudar problemas de desbalanceamento /() em transceptores com redundan-

cia reduzida;

Estudar o efeito de CFO, bem como formas de diminuir tais efeitos em trans-

ceptores com redundancia reduzida.
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Apéndice A
Introduction

A significant part of physical- and link-layer research in communication systems
focuses on either developing new methods or enhancing the existing ones in order
to increase throughput [1-4]. From a practical point of view, these investigations
should always take into account the fundamental trade-off between performance
gains and cost effectiveness.! The computational complexity? is amongst the factors
that directly affects the cost effectiveness of new advances in communications. This
explains why linear transceivers are still preferred in several practical applications [5,
6].

Nowadays, most telecommunication specifications recommend the segmentation
of data in blocks before starting the transmission. The resulting data blocks are
usually transmitted separately in the so-called block-based transmission. Due to
the characteristic of frequency selectivity inherent to broadband communications,
there is a superposition of attenuated versions of the transmitted signal. This super-
position, called intersymbol interference (ISI), is induced among the symbols that
compose a given data block. The undesired superposition of signals also generates
interblock interference (IBI) between adjacent transmitted data blocks.

The orthogonal frequency-division multiplexing (OFDM) is the most popular
memoryless linear time-invariant (LTI) block-based transceiver that circumvents
the IBI problem by inserting redundancy in the transmission. In addition, the re-
dundancy leads to the elimination of ISI or the minimization of the mean-square
error (MSE) of symbols at the receiver end [7-13]. Whether the redundancy con-
sists of cyclic prefix (CP) or zero padding (ZP), simple equalizer structures can
always be induced. However, the OFDM has some drawbacks, such as high peak-
to-average power ratio (PAPR), high sensitivity to carrier-frequency offset (CFO),

and (possibly) significant loss on spectral efficiency due to the redundancy inser-

Tn this work, performance improvements mean higher throughputs, whereas low costs mean
low power consumption and easy-to-implement characteristics.
2Total amount of complex-valued additions and multiplications.
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tion. The single-carrier with frequency-domain (SC-FD) equalization technique is
an efficient way to reduce both PAPR and CFO as compared to the OFDM sys-
tem. These advantages are attained without changing the overall complexity of the
transceiver [14, 15].

Regarding the spectral-resource usage, the amount of redundancy employed in
both OFDM and SC-FD systems depends on the delay spread of the channel, im-
plying that both transceivers waste the same bandwidth on redundant data. Nev-
ertheless, there are many ways to increase the spectral efficiency of communication
systems, such as by decreasing the overall symbol-error probability in the physical
layer, so that less redundancy needs to be inserted in upper-layers by means of chan-
nel coding. In general, this approach increases the costs in the physical layer, since
it leads to more computationally complex transceivers, hindering its implementation
in some practical applications.

Other means to improve spectral efficiency are, therefore, highly desirable. Re-
ducing the amount of transmitted redundancy inserted in the physical layer is a
possible solution. Just few works had proposed decreasing the redundancy while
constraining the transceiver to employ superfast algorithms [16, 17]. One of the
most successful proposals comes from the pioneering paper [16]. The approach
adopted in [16] relies on both the zero-padding (ZP) and the zero-jamming (ZJ)
techniques to eliminate IBI employing a reduced amount of redundancy along with
fast Fourier transform (FFT) algorithms. Nonetheless, the resulting designs do not
have well-defined structures and their computational complexity associated with the
equalization process depends quadratically on the channel order. For long channels,
the transceivers in [16] may require much more computations than those proposed in
this work, as will be clearer later on. Besides, the proposals from [16] are originally
multicarrier systems only. On the other hand, the strategy in [17] is to transmit
redundant information in the unused subcarriers, that is, the subcarriers that will be
discarded in the case of channel loading. By exploiting these unused subcarriers it is
possible to achieve zero-forcing equalization without sending redundant information
in useful subcarriers. Usually, the number of unused subcarriers should be at least
as large as the channel order, restricting its application.

There are other works that had also proposed to transmit data incorporating re-
duced redundancy, without focusing on the computational simplicity. The capacity-
approaching block-based transceivers with reduced redundancy proposed in [18], for
instance, entail high computational burden, since they are based on general singular-
value decompositions (SVDs) of the involved matrices.

Besides, some works had applied the displacement rank theory successfully in
the context of digital signal processing [19]. In communication systems, superfast

algorithms were applied to pilot-based channel estimation schemes employing L
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(channel order) redundant elements [20]. The resulting algorithms are suitable for
detection and estimation of the nonzero taps of a given channel impulse response [20,
21]. Tt is worth mentioning that, even though the decomposition for the inverse of
a given nonsingular Hermitian Toeplitz matrix [22] used in [20] is equivalent to
the decomposition found in Theorem 1 of [23], for the particular case of Hermitian
Toeplitz matrix, such decompositions cannot be applied to the minimum redundant
MMSE-based receivers. The reason is that the proposed transceivers with minimum
redundancy do not induce a Toeplitz structure in the channel correlation matrix,
as in [20]. This property originated the proposals of new generalized-Bezoutian
decompositions in Theorem 2 of [23]. As indicated in [23], these new decompositions

stem from adaptations of results taken from [24].

A.1 Purpose of This Work

This work aims at proposing new structures for block-based transceivers with re-
duced redundancy. Such new structures must allow one to equalize the received data
blocks efficiently. In other words, the structures are constrained to use only super-
fast algorithms [25]. Indeed, we employ only discrete Fourier transforms and discrete
Hartley transforms along with one/two-tap equalizers in the transceiver structures
in order to satisfy the aforementioned computational-complexity constraints.?

It is worth highlighting that there are plenty of work to be continued, since a
number of relevant issues related to the proposed structures are not fully addressed
yet. In fact, we focus on the equalization process rather than on other practical as-
pects, such as channel estimation, equalizer design, I/Q imbalance, CFO estimation,

just to mention a few.4

A.2 Organization

We have divided the contributions of this thesis into three main parts: Part I
(which includes Chapters C, D, and E) describes novel contributions to minimum-
redundancy transceivers; Part II (which includes Chapter F and G) describes some
key contributions to reduced-redundancy systems, whose amount of redundancy is
greater than the minimum; and Part III (which includes Chapter H, I, and J) deals
with some additional proposals which are rather important in practical systems, but

that are not on the main research stream of this thesis.

3The only exception is the proposed DFE system with reduced redundancy, for which we have
not developed superfast structures (see Chapter I).

4Even though such issues are not our focus, we did develop some algorithms for channel esti-
mation and equalizer design, as one can verify in Part III.
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In Chapter B, the main concepts related to the modeling of transceivers using
filter banks are revised before starting with the novel contributions of this thesis
(Parts I, II, and III). In order to do that, we first describe briefly both multirate
and filter-bank systems. After that, the transmultiplexer (TMUX) is mathemati-
cally modeled in time-domain and through polyphase decompositions. The chapter
ends with a description of memoryless TMUXes, highlighting the particular cases
of OFDM and SC-FD systems, as well as the block-based transceivers with reduced
redundancy.

Chapter C analyzes both the MSE and the mutual information in block-based
transceivers with full-redundancy that employ zero-padding. We consider both lin-
ear transceivers and decision-feedback equalizers (DFEs) that minimize the MSE of
symbols. These systems may enjoy the zero-forcing property or not, and may use
unitary precoder or not. We demonstrate mathematically that the MSE/mutual
information related to these transceivers are: (i) monotone increasing/decreasing
functions of the number of transmitted symbols per block; (ii) monotone decreas-
ing/increasing functions of the number of redundant data used in the equalization
process of a block; and (iii) increased /decreased whenever non-minimum phase chan-
nels are utilized, instead of their minimum phase counterparts, assuming that one
does not use the whole received data block to estimate the transmitted signal. As
consequence of the former results, we also prove that, for both DFE and minimum
error-probability systems, the average error-probability of symbols maintains the
same monotonic behavior as the average MSE of symbols.

In [23], we have proposed practical zero-forcing (ZF) and linear minimum MSE
(MMSE) solutions for fixed and memoryless block-based transceivers with minimum
redundancy, using only half the amount of redundancy employed in standard sys-
tems. Their equalization processes require only O(M log, M) operations. Chapter D
contains a new structure for linear MMSE-based minimum-redundancy transceivers
using DFTs. Such a structure is simpler than the one proposed in [23], since it
employs only four parallel branches at the receiver end instead of the previous five
branches. However, it may still be difficult to apply MMSE equalizers with mini-
mum redundancy in some practical systems, given their higher number of operations.
This chapter also proposes novel suboptimal MMSE equalizers with minimum re-
dundancy that require the same amount of computations of ZF equalizers, with a
mild decrease in the throughput performance when compared to the optimal MMSE
solution.

The extension of the aforementioned DFT-based solutions to real transforms,
such as the discrete Hartley transform (DHT), is not straightforward. The only
known solution imposes a symmetry on the channel model that is unlikely to be

met in practice [23]. Chapter E proposes transceivers with practical ZF and MMSE
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receivers using DHT, diagonal, and antidiagonal matrices as building blocks. The
resulting systems are asymptotically as simple as OFDM and SC-FD equaliza-
tion transceivers. In addition, they do not enforce constraints on the channel
model. Several computer simulations indicate the higher throughput of the pro-
posed transceivers as compared to the standard solutions.

Chapter F presents new LTI block-based transceivers which employ a reduced
amount of redundancy to eliminate the interblock interference. The proposals en-
compass both multicarrier and single-carrier systems with either ZF or MSE equal-
izers. The amount of redundancy ranges from the minimum, [L/2], to the most
commonly used value, L, assuming a channel-impulse response of order L. The
resulting transceivers allow for superfast equalization of the received data blocks,
since they only use fast Fourier transforms and single-tap equalizers in their struc-
tures. The chapter also includes an MSE analysis of the proposed transceivers with
respect to the amount of redundancy. Indeed, we demonstrate that larger amounts
of transmitted redundant elements lead to lower MSE of symbols at the receiver end.
Several computer simulations indicate that, by choosing an appropriate amount of
redundancy, our proposals in this chapter can achieve higher throughputs than the
standard superfast multicarrier and single-carrier systems, while keeping the same
asymptotic computational complexity for the equalization process.

In Chapter G, we deduce new LTI reduced-redundancy transceivers which em-
ploy only discrete Hartley transforms and two-tap equalizers in their structures. The
results of this chapter are natural extensions of the results proposed in Chapter E
and Chapter F. The simulation results of Chapter G also indicate that the real-
transform-based transceivers with reduced redundancy can outperform OFDM and
SC-FD systems with respect to the throughput performance.

Block-based transceivers with minimum redundancy induce a Toeplitz effective
channel matrix that may lead to higher noise gains than circulant channel matri-
ces. This occurs due to the additional difficulty in equalizing the Toeplitz effective
channel matrix induced by the minimum-redundancy transceivers, as compared to
the circulant channel matrix associated with OFDM and SC-FD systems [23]. This
fact motivated us to perform research on methods to minimize these noise gains.
Chapter H proposes an optimal power-allocation method that minimizes the noise
gains when channel-state information (CSI) is available at the transmitter end. Sim-
ulation results demonstrate that the design approaches allow higher throughputs in
a number of situations, revealing the potential usefulness of the proposed solutions.

Chapter I shows how one can reduce the amount of transmitted redundancy in
block nonlinear decision-feedback equalization. Some performance analyses based
on the resulting mean-square error of symbols, mutual information between trans-

mitted and estimated symbols, and average error probability of symbols are included
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to assess the effects of the reduction in the amount of redundancy. Simulation re-
sults illustrate that data throughput can be increased without affecting the system
performance, for a certain level of signal-to-noise ratio at the receiver.

In Chapter J, we concentrate on the equalizer-design problem related to the
minimum-redundancy systems proposed in the first part of the thesis, without as-
suming CSI. We do so by first adapting recently proposed pilot-based channel es-
timation methods [20] to these minimum-redundancy transceivers. After that, we
apply three iterative algorithms to invert structured matrices in order to design
the equalizers, namely: Newton’s iteration, homotopic Newton’s iteration [25, 53],
and preconditioned conjugate gradient (PCG) [54] methods. A key feature of
the proposed designs is that they employ superfast algorithms that require only
O(M log, M) complex-valued operations. This is achieved by using the displace-
ment approach [25, 58] in association with all the utilized algorithms.

The concluding remarks of this thesis as well as some suggestions for future works
are in Chapter K.

Chapter L contains a complete list of publications and invited lectures related
to this thesis.

It is worth mentioning at this point why we have chosen such ordering for the
chapters. One could argue that, as reduced-redundancy systems include minimum-
redundancy systems as special cases, why we have not described only reduced-
redundancy systems and derived minimum-redundancy systems as subproducts?
This would led us to a simpler and more concise text. However, this would also
hide the path that we have followed throughout the entire research which we have
been conducting since the master thesis [23]. We therefore have chosen this chapter

ordering to keep the same historical development of this research.’

A.3 Notation and Terminology

Scalars are denoted by italic letters, while vectors and matrices are denoted by
boldface letters (lowercase for vectors and uppercase for matrices). All vectors are
column vectors. The notations [-]%, []*, []¥, []T, and E[] stand for transpose,
conjugate, Hermitian transpose, pseudo-inverse, and expectation operations on [-],
respectively. We shall denote the sets of natural, real, positive real, and complex
numbers as N, R, R, and C, respectively. The set CM1**2 denotes all M; x M,
matrices comprised of complex entries, whereas C*1*M2[z] denotes all polynomials in
the variable z with M; x My complex-valued matrices as coefficients. The (mq, my)th

element of an M; x M, matrix X may be denoted as [X],,, m,. The operator diag{-}

5The exception is Part III since Chapters H and J were developed before the chapters that form
Part II.
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represents a diagonal matrix whose elements are the entries of the argument vector.
The operator tr{-} outputs the trace of a given matrix. In addition, the operator
toeplitz{c,r?} denotes a Toeplitz matrix whose first column is ¢ and whose first row
is r”. The symbols 0y, 2z, and Ip; denote an M; x M, matrix with zero entries and
the M x M identity matrix (sometimes we may drop the index M without loss of
clarity). Moreover, the following matrices will be used: J = [ey ey 1 -+ €2 e1],
J =le ey -+ e3 e, andJ’ =[—e ey -+ e3 ey], where the vector
e, € CM*1 with m € {1,2,---, M}, has its mth element equal to 1 and all the
others equal to 0. Given a real number x, [x] stands for the smallest integer greater
than or equal to x. When we refer to computational complexity, we mean the total
amount of complex operations (additions and multiplications). In this context, an
algorithm is O(f(M)) when it is possible to implement it with at most cf(M)
complex operations, for some positive real constant ¢. The differential entropy of a
random vector 7 is denoted as H(r), whereas the mutual information between the
random vectors 7, and rs is denoted as Z(rq,73). Given two sets A and B, the set
A\ B contains the elements of A that are not elements of B and the set A x B denotes
the usual Cartesian product. The notation || - |2 denotes the standard norm-2 of a
vector (when the argument is a matrix such a notation denotes the induced Euclidean
norm of matrices), whereas || - || denotes the standard Frobenius norm of a matrix.
The notation A > B, means that A — B > O, i.e., A — B is a positive semidefinite
matrix. Similarly, the notation A > B, means that A—B > O, ie., A—Bis a
positive definite matrix. The set Hy(a, b) denotes all M x M positive semidefinite
Hermitian matrices whose eigenvalues are within the open interval (a,b) C R. Given
a function f : (a,0) — R and a matrix A € Hjy/(a,b), then one can define the
mapping f(A) = Uf(A)U in which A = UAU? is the eigendecomposition of A.
In this context, a function f : (a,b) — R is matrix-monotone on Hy,(a, b) if f(A) >
f(B), for all A, B € Hy(a,b) such that A > B. Moreover, a function f : (a,b) — R
is matrix-concave on Hy,(a, b) if f(aA + (1 —a)B) > af(A)+ (1 —a)f(B), for all
A,B € Hy(a,b) and for all « € [0, 1].

79



Apéndice B
Transmultiplexers

The proposals of novel schemes for channel and source coding, allied with the de-
velopment of integrated circuits and the use of digital signal processing (DSP) for
communications, have allowed the deployment of several communication systems
to meet the demands for increasing data-transmission rates. Indeed, common DSP
tools, such as digital filtering, are crucial to retrieve at the receiver end reliable es-
timates of signals associated with one or several users that share the same physical
channel.

There is a variety of classes of digital filters. In communication systems, for
instance, they can be either fixed or adaptive, linear or nonlinear, with finite impulse
response (FIR) or with infinite impulse response (IIR), etc. When compared to
the other possibilities, fixed, linear, and FIR filters are the most common ones in
practice, due to their simpler implementation, stability properties, and low costs.

However, modern communication systems usually require more features than
fixed, linear, and FIR filters can offer. In this context, multirate signal processing
adds some degrees of freedom to the standard linear time-invariant (LTI) signal
processing through the inclusion of decimators and interpolators. These degrees
of freedom are key to develop some important representations of communication
systems based on filter banks.

Filter-bank representations are widely employed in spectral analysis and source
coding [26, 27]. In communications, the transmultiplexer (TMUX) configuration
can be employed to represent multicarrier or single-carrier transceivers, and can be
considered a system dual to the filter-bank configuration [1, 28-31]. Indeed, several
practical systems can be modeled using TMUXes.

Differently from sharp frequency-selective filter banks, practical multicarrier and
single-carrier transceivers can be modeled as TMUXes which employ short length
subfilters. Most of such practical cases are implemented as memoryless block-based
transceivers [32]. As previously mentioned, the most commonly used block-based
transceivers are OFDM and SC-FD systems [30, 31|, which are memoryless LTI
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systems.

The main feature related to OFDM-based transceivers is the elimination of in-
tersymbol interference (ISI) with low computational complexity. An alternative to
OFDM is the SC-FD transceiver, which presents lower peak-to-average power ratio
(PAPR) and lower sensitivity to carrier-frequency offset (CFO) [14, 15]. In addition,
for frequency-selective channels, the BER of SC-FD can be lower than for its OFDM
counterpart, particularly for the cases in which the channel has high attenuation at
some subchannel central frequencies [15].

In this introductory chapter some important multirate signal-processing tools are
revised aiming at their use in the modeling of communication systems. These tools
will be employed to represent OFDM and SC-FD systems, as well as to introduce

some results related to block-based transceivers using reduced redundancy.

B.1 Multirate Signal Processing

It is rather common that signals with distinct sampling rates coexist in many signal-
processing applications [26, 27]. In general, multirate signal-processing systems in-
clude as building blocks both the interpolator and the decimator. The interpolation
consists of increasing the sampling rate of a given signal, whilst the decimation
entails a sampling-rate reduction of its input signal. The loss of data inherent to
decimation may generate aliasing in the decimated signal spectrum [26, 27].

The interpolation by a factor N € N consists of including N — 1 zeros between
each pair of adjacent samples, creating a signal whose sampling rate is N times larger
than the original signal. Indeed, given a complex-valued signal s(n), where n € Z,
the interpolated signal sy, (k), with & € Z, is given by sy (k) = s(n), whenever
k = nN, otherwise siy (k) £ 0. In the frequency domain, the effect of interpolation
can be described as [26, 27]:

Sint (61) = S(eN), (B.1)

where X (e/) £ F{z(n)} is the discrete-time Fourier transform of the sequence z(n).

The decimation by a factor N consists of discarding N — 1 samples from each
block of N samples of the input signal. The resulting signal has a sampling rate N
times lower than the original signal. Indeed, given the signal s(n), the decimated
signal Sgec(k) is defined by sgec(k) = s(n), whenever n = kN, for all k € Z. In the

frequency domain, it is possible to show that the decimated signal is represented
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by [26, 27]:

oy L o2

Saeel@) = %ZNS (7)., (B.2)
in which A" = {0,1,---, N — 1} ¢ N. Unlike the interpolation, the decimation is a
periodically time-varying operation [26, 27].

The effects of interpolation and decimation in both time and frequency domains
of a signal interpolated and decimated by N = 2 are respectively depicted in Fig-
ures B.1 and B.2. Those signals in time and frequency domains are only for illus-
tration purposes since they do not represent a true time-frequency pair. The careful
examination of Figures B.1 and B.2 shows that a digital filtering operation is re-
quired before the decimation and after the interpolation in order to avoid aliasing

due to decimation and in order to eliminate the spectrum repetition due to inter-

1S (e)] SERW)
o rp—— Y or w E\ E\ 0 E\ E\ v
— - IN
s(n) Sint (k)
-6 -4 =2 0 2 6 -6 -4 -2 0 2 4 6
Figure B.1: Interpolation (N = 2).
1S(e™)] | Saec(€”)]
I — o or w i r— = or w
— “\fa
s(n) Sdec(k)
BninEE AR
-6 —4 =2 0 6 -6 —4 -2 0
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polation [26, 27]. The decimation filter narrows the spectrum of the input signal in
order to avoid that aliasing corrupt the spectrum of the resulting decimated signal.
For a lowpass real signal, for instance, we have to maintain the input signal infor-
mation only at the lower frequencies in the range (—%, %), so that the spectrum at
this range is not corrupted after decimation. The interpolation filter smooths the
interpolated signal s;,(k), eliminating the abrupt transition between nonzero and
zero samples, which is the source of the spectrum repetition. The central frequencies
of the spectrum repetitions are located at j:%”n, with n € N. Figure B.3 illustrates
how the decimation and interpolation operations are implemented in practice.

There are useful ways to manipulate the interpolation and decimation blocks
in multirate systems. We are particularly interested in manners to commute the
decimation and interpolation operations with LTI filters. Some forms of commuting
are based on the so-called noble identities [26, 27].

Figure B.4 illustrates the building-block representations of the noble identities.
In the interpolation process, instead of first filtering the input signal and then up-
sampling it, one can first upsample the input signal and then perform a filtering
operation with a filter whose impulse response is upsampled. This strategy allows
one to reduce the number of operations required by the process. For decimation,
the decimator followed by a filter is equivalent to filter the input signal by the
interpolated filter followed by decimation. These operations can be described math-

ematically as [26, 27]:

[S()F(2)]; £ Ulz) = [S(2)]; F(2Y), (B.3)
Y ()l G(2) £ 5(2) = [Y(2)GEY)]
in which [(-)];5 and [(-)] 5 denote the interpolation and decimation by N applied
to (-), respectively.

A widespread application of multirate systems is the filter-bank design [26, 27].

s(n)—= AN == f(k) — sint(k) s(n)—= g(k) | §N— saec(k)

Figure B.3: Interpolation and decimation operations in time domain.

S(z)— F(z) —=INF-=U(z) = S(z)—= ‘N~ F:")—=U(z)

Y(z2)—= {N= G(z) —= S(z) = Y(2)—GE")— yN— S(z)

Figure B.4: Noble identities in Z-domain.
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Analysis Bank

§ golk) = 4N - AN [ k) (D
el e gy AN e A |
i = g1 (k)= yN %’ 4%’ dN = fara(k) i

Figure B.5: Analysis and synthesis filter banks in time domain.

A filter bank consists of a set of filters with the same input signal, or a set of filters
whose outputs are added to form the output signal [27], as depicted in Figure B.5.
The set of filters {g, (k) }merr, where M £ {0,1,--- /M — 1} C N, is the so-called
analysis filter bank, whereas the set of filters {f,,(k)}mer is the synthesis filter
bank. It is possible to verify that the analysis filter bank divides the input signal in
subbands of narrowband frequencies, so that their outputs can be decimated. The
subband signal can be employed for analysis and manipulations according to the
particular application. For reconstruction, the subband signals are interpolated and
combined by the synthesis filter bank [26, 27, 29].

Filter-bank transceivers, also known as transmultiplexers, are considered systems
dual to the filter-bank configurations, since the roles of analysis and synthesis banks
are interchanged in transmultiplexers. Indeed, the input of a transmultiplexer is first
synthesized by the synthesis bank and, after some processing stages, the outputs are

obtained as a result from the analysis bank.

B.2 Filter-Bank Transceivers

Further improvements in communication systems may call for sophisticated trans-
multiplexer designs in which the transmitted signal is filtered by a precoder with
memory consisting of a multiple-input multiple output (MIMO) FIR filter. The
inherent memory at the transmitter can be viewed as a kind of redundancy since
a given signal block is transmitted more than once along with neighboring blocks.
Sophisticated transmitters may call for more complex receivers, but they might also
allow a reduction in the amount of prefix signals necessary to attain zero-forcing
solution, for example.

Let us consider the model of a transceiver [27, 29, 30] as depicted in Figure B.6,
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Figure B.6: TMUX system in time domain.

in which a communication system is modeled as a MIMO system. The data samples
of each sequence s,,(n) belong to a particular constellation C C C, such as PAM,
QAM, or PSK! [34]. The sequence s,,(n) represents the mth transceiver input,
where m € M and n € Z. The corresponding transceiver output is denoted as
8m(n) € C, which should be a reliable estimate of s,,(n —9), where ¢ € N represents
the delay introduced by the overall transmission/reception process.

A communication system can be designed by choosing carefully the set of causal
transmitter filters with impulse responses represented by { f,, (k) }mear, and the set
of causal receiver filters represented by {g,, (k) }merr. These filters operate at a sam-
pling rate N times larger than the sampling rate of the sequences s,,(n). Note that
the index n represents the sample index at the input and output of the transceiver,
whereas k € 7Z is employed to represent the sample index of the subfilters and of
the internal signals between the interpolators and decimators. In our discussions,
we shall consider that the transmitter and receiver subfilters are LTT.

The input signals s,,(n), for each m € M, are processed by the subfilters aiming
at reducing the channel distortion, so that the output signals §,,(n) can give rise
to good estimates of the corresponding transmitted signals. The usual goal in a
communication system is to produce estimates of s,,(n — d) achieving low bit-error
rate (BER) and/or maximizing the data throughput.

The channel model can be represented by an FIR filter whose impulse response
is h(k) € C of order L € N. The FIR transfer function accounts for the frequency-
selective behavior of the physical channel. The additive noise v(k) € C accounts for

the thermal noise from the environment and for the multi-user interference (MUI).

IPulse-amplitude modulation, quadrature-amplitude modulation, or phase-shift keying, respec-
tively.

85



B.2.1 Time-Domain Representation

Based on Figure B.6, one can deduce that the channel input signal is given as

wk) 2 S spli) fnlk — iN). (B.5)

(i,m)EZLXM

The channel input to output relation is described by:

y(k) £ > h(j)ulk —j) +v(k). (B.6)

JEZ

The signal y(n) is processed at the receiver end to generate estimates of the

transmitted data according to:

() 23 gu(Dy(nN —1). (B.7)

leZ

By using Egs. (B.5), (B.6), and (B.7) we can describe the relation between the

input signal s,,(n) and its estimate §,,(n), as follows:

Sm) = D2 gmDh(§)sm(D) fn(nN — 1= j —iN) + > gn(l)o(nN —1).

(i,5,1,m) EZ3 x M leZ

(B.8)

The description above is not the easiest one to analyze the system and draw
conclusions. For example, a polyphase approach in the Z-domain is much more

appropriate in this context [26, 27, 32].

B.2.2 Polyphase Representation

By assuming that the interpolation and decimation factors are equal to NV, it is

convenient to describe the transmitter and receiver filters by their polyphase de-
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compositions of order NNV, according to the expressions [32]:

Fin(z) £ Z fn(k)z 7"

keZ
=D 2 fmGN + i)z
ieN JEZ
== Z Zﬁiﬂ,m('ZN) ) (B9>
ieN
Gn(2) 2> gm(k)z*
keZ
=2 Y gm(GN — i)z~
ieN  JEZ
= 2'Gy(2Y), (B.10)
ieN
so that m € M, F,,(2) 2 Z{fn(k)}, and G, (2) = Z{gm(k)} are the Z-transforms
of fn(k) and g,,,(k), respectively. In such a case, we can rewrite Egs. (B.9) and (B.10)
as follows [32]:

FO,O(ZN) T FO,MA(ZN)
[Fo(z) - 'FMfl(Z)} = [1 Zh o Z_(N_l)] : : ;
d7(z) FN71,0(2N> T FN71,M71(ZN)
F(zN)
(B.11)
Go(2) Goo(zN) -+ Gona(2V) 1
: _ : : : : (B.12)
Gu-1(2) Gru-10(z") -+ Guoinaa(zY)] [N
G(zV) d(z-1)

Now, by defining S,,(2) £ Z{sn(n)}, U(z) = Z{u(k)}, X(z) & Z{z(k)},
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Vi(z) 2 Z{v(k)}, Y(2) £ Z{y(k)}, and S,,(z) £ Z{3,,(n)}, then one can write

So(2N)
U(z) = d" (2)F(zY) : : (B.13)
Sy-1(zY)
s(z)
X(2) = H(z)U(z), (B.14)
Y(2) = X(2)+V(z), (B.15)
go(z)
: = [G(ﬂ)d(z—l)z/(z)}w. (B.16)
Sn_1(2)

The transceiver model utilizing the polyphase decompositions of the transmitter
and receiver subfilters is illustrated in Figure B.7. By employing the noble identities
described in Section B.1, it is possible to transform the transceiver of Figure B.7
into the equivalent transceiver of Figure B.8.

The highlighted area of Figure B.8 that includes delays, forward delays, decima-
tors, interpolators, and the SISO channel model can be represented by a pseudo-

circulant matrix H(z) of dimension N x N, given by [27, 32]:

Ho(z) 2z 'Hy_1(2) z7'Hy_o(2) -+ 2z71Hy(2)
H(:) 2 Hl(z) HO.(Z) zlf{N_l(z) 271]-.]2(2) | (B.17)
HN_l(Z) HN_Q(Z) HN_3(Z) cee HQ(Z)
U(f)
so(n u(k z(k k So(n
o(n) in ®() H(z) ()@y() IN o(n)
Lol i . Jov o
F(ZN) 27! z G(ZN)
sp—1(n) fN a - #N Sp-1(n)
\ /

Figure B.7: Polyphase representation of TMUX systems.
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Figure B.8: Equivalent representation of TMUX systems employing polyphase de-
compositions.

in which [27, 32]

H(z) £ Y Hi(zM)z"" and Hi(z)= > h(iN+i)z . (B.18)
ieN JEZL
0<jN+i<L

Figure B.9 describes the transceiver through the polyphase decomposition of
appropriate matrices, including the pseudo-circulant representation of the channel
matrix. It is worth noting that the descriptions of Figures B.6 and B.9 are equivalent.

Moreover, let us consider that N > L, i.e., the interpolation/decimation factor
is greater than or equal to the channel order, a common situation in practice [32].
For N > L, each element of matrix H;(z), for i € N, will consist of filters with a
single coefficient so that H;(z) = h(i), for i < L, and H,;(z) = 0, for ¢ > L. In this

case the pseudo-circulant channel matrix is represented by a first-order FIR matrix

Figure B.9: Block-based transceivers in Z-domain employing polyphase decompo-
sitions.
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described by [32]:

h(0) 0 0 0 h(L) h(1)
h(1)  h(0) 0 0 0
: h(L)
H(z) = (n(L) h(L—1) + 27t 0
0 h(L)
0 0 h(L) -+ h(0) 00 0 0 - 0
_ _ _ (B.19)

As Figure B.9 illustrates, the transmitted and received vectors are denoted as:

s(n) = [so(n) si(n) - sua(n)], (B.20)
s(n) 2 [50(n) 51(n) -+ Sp_1(n)]". (B.21)

Based on Figure B.9, we can infer that the transfer matrix T(z) of the transceiver

can be expressed as:
T(z) = G(2)H(2)F(2), (B.22)

where we considered the particular case in which v(k) = 0, inspired by the zero-

forcing (ZF) design [32]. A transceiver is zero forcing whenever T(z2) = 271, with
d e N.

B.3 Memoryless Block-Based Systems

The particular and very important case where the transceivers are LTI and mem-
oryless, that is, F(z) = F and G(z) = G, is addressed in this section. This case
encompasses the memoryless block-based transceivers [32], since these systems do
not use data from previous or future blocks in the transmission and reception pro-
cessing of the current data block. That is, only the current block takes part in
the transceiver computations. This non-overlapping behavior is only possible if the
length of the subfilters { f,,(k)}merm and {gm (k) }mem are less than or equal to N.
The traditional OFDM and SC-FD transceivers are examples of memoryless block-

based systems.
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B.3.1 CP-OFDM

The cyclic-prefix OFDM, or just CP-OFDM, is a transceiver which employs cyclic
prefix as redundancy. It is described by the following transmitter and receiver

matrices, respectively [37]:

F £
Iy

0 ) I
Lx(M~L) L] wH (B.23)

ACPE(CNX M

G2EWy Ourr Inl, (B.24)

~—_————
RCPE(C}MXN

where W, is the normalized M x M DF'T matrix, I, is the M x M identity matrix,

Oarxn is an M x N matrix whose entries are zero, and E € CM*M

is the equalizer
matrix placed after the removal of the cyclic prefix and the application of the DF'T
matrix. Observe that the data block to be transmitted has length M, however, due
to the prefix, the transceiver actually transmits a block of length N = M + L. The
first L elements are repetitions of the last L elements of the IDFT output in order
to implement the cyclic prefix as redundancy.

Matrices Acp and Rep include and remove the related cyclic prefix, respectively.

Note that the product RepH(2)Acp € CM*M is given by:

h(0) 0 0 R(L) h(1)
h(1)  h(0) 0 0
: : h(L)
RepH(2)Acp = | B(L) h(L—1) 0o |, (B.25)
0 h(L) :
' 0
0 0 h(L) h(0) |

where we can observe that Rgp removes the interblock interference, whereas matrix
Acp pre-multiplies the resulting memoryless matrix RepH(2) € CM*N 50 that the
overall matrix product is a circulant matrix of dimension M x M. Indeed, one can
observe that each row of matrix RcpH(z)Acp can be obtained by right-rotating the
related previous row.

After inclusion and removal of the cyclic prefix, the resulting circulant matrix
can be diagonalized by its pre-multiplication by the IDFT and post-multiplication

by the DFT matrices, with these matrices placed at the transmitter and receiver,
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respectively [22]. Therefore, the model of a CP-OFDM transceiver is described by:
§ =EAs+ EV/, (B.26)

with v/ & Wy Repv and, for the sake of simplicity, the time dependency of the
expressions was omitted [22]. As can be noted, the estimates of the transmitted
symbols are uncoupled, that is, each symbol can be estimated independently of any
other symbol within the related block, avoiding intersymbol interference.
Matrix A includes at its diagonal the distortion imposed by the channel on each
symbol of the data block. This eigenvalue matrix can be described by [40, 41]:
A = diag{\,, }M;

m S m=0

= WMRCPH(Z)ACPW]I;I/[

:diag{\/MWM[ h ]} (B.27)

(M—L-1)x1

in which h = [h(0) h(1) --- h(L)]%.
The equalizer E for this transceiver can be defined in several ways, where the
most popular ones are the ZF and MMSE equalizers [5]. In the ZF solution, it is

assumed that matrix A can be inverted, such that
E;r £ AL (B.28)

As for the MMSE solution, there is no requirement that matrix A be invertible

since this latter operation is not needed. The linear MMSE solution is given by:

Ennise < arg {VEé?cif\?XM E [HS —E(As + V/)Hg}}

H H ‘712; !
=A" | AAY + —21
08

\ M-1
= diag {m } ; (B.29)

o3
’/\m‘z T 0'7% m=0
where the derivation assumes that the transmitted symbols and environment noise
are independent and identically distributed (i.i.d.), originating from white stochastic
processes with zero means and mutually independent. In the derivation above it was

also considered that E[ss*] = 02 € R, and E[vv*] = 62 € R,.
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B.3.2 ZP-OFDM

An alternative OFDM system inserts zeros as redundancy and is called zero-padding
OFDM (ZP-OFDM). There are many variants of ZP-OFDM. One possible choice is
the ZP-OFDM-OLA (overlap-and-add) whose transmitter and receiver matrices are
given as [37]:

I
Fe | M| wi (B.30)
Orxnm
—_——
AypcCNxM
I
G2EWy | L, = © : (B.31)
(M—L)xL
RyzpeCMxN

where, as in the CP-OFDM case, L elements are inserted as redundancy, and N =
M+ L.
Matrices Azp and Ryzp perform the insertion and removal of the guard period of

zero redundancy, respectively. The matrix product RzpH(2)Azp € CM*M g given
by:

| h(0) 0 0  h(L) h(1) |
h(1)  h(0) 0 0
: : : h(L)
RzpH(2)Azp = | h(L) h(L —1) 0 | =RcpH(2)Acp.
0 h(L)
' 0
| 0 0 A(L) h(0) |

(B.32)

As can be verified, matrix Ayp removes the interblock interference, whereas
matrix Ryp post-multiplies the resulting memoryless Toeplitz matrix H(z)Azp €

CN*M g0 that the overall product becomes a circulant matrix of dimension M x M.

The reader should note that RzpH(z)Azp = RepH(2)Acp.

The ZP-OFDM-OLA transceiver discussed here is a simplified version of a more
general transceiver proposed in [37].2 In fact, the general transceiver allows the
recovery of the transmitted symbols using zero-forcing equalizers independently of
the locations of the channel zeros, unlike the ZP-OFDM-OLA or CP-OFDM that
might have zero eigenvalues under certain channel conditions. Unfortunately the

general ZP-OFDM implementation is computationally complex since the equivalent

2There are other variants of ZP-OFDM, such as the ZP-OFDM-FAST [37].
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channel matrix is not circulant, turning its diagonalization through fast transforms

such as FFT impossible.?

B.3.3 CP-SC-FD

The cyclic-prefix single-carrier frequency-domain transceiver (CP-SC-FD) employs
cyclic prefix as redundancy and it is closely related to the CP-OFDM transceiver.
The CP-SC-FD system is described by the following transmitter and receiver ma-
trices [37]:

Orxrer I
F 2 [Tl L] , (B.33)
Iy
G2 WHEWy [0y Ll (B.34)

respectively.

B.3.4 ZP-SC-FD

The zero-padding single-carrier frequency-domain (ZP-SC-FD) transceiver inserts
zero redundancy to the transmitted block as in the ZP-OFDM transceiver. The ZP-
SC-FD-OLA version may be modeled through the following transmitter and receiver

matrices [37]:

I
Fa| M|, (B.35)
Orxnm
I
G 2 WIEW,, [ Ty g ] : (B.36)
Ov-rnyxL

respectively.

B.3.5 ZP-7ZJ Transceivers

Lin and Phoong [2, 3, 32] had shown that the amount of redundancy K = N — M €
N required to eliminate IBI in memoryless block-based transceivers must satisfy
the inequality 2K > L. They proposed a family of memoryless discrete multi-
tone transceivers with reduced redundancy. A particular transceiver of interest

for our studies here is the zero-padding zero-jamming (ZP-ZJ) system, which is

3 Actually, it is possible to implement ZP-OFDM systems using FFTs, but without diagonalizing
the equivalent channel matrix.
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characterized by the following transmitter and receiver matrices [32]:

F
F&| °° : (B.37)
Ok | o
G= [OMX(L—K) GO:|M><N’ (B.38)
where Fy € CM*M and G, € CM*(M+2K-L)
The transfer matrix related to this transceiver is given by:

where, after removing the redundancy, the effective channel matrix is defined as [32]:

ML—K) --- h(0) O 0 - 0
h(K) 0
Hoﬁ : h(O) EC(M+2K7L)><M. <B40)
h(L) :
0 WL — K)
0 0 0 h(L) WEK) |

Considering v(k) = 0,Vk € Z, we have:

For this transceiver there are some constraints to be imposed upon the channel
impulse response model so that a zero-forcing solution exists. These constraints are
related to the concept of congruous zeros [32]. The congruous zeros of a transfer
function H(z) are the distinct zeros zo, 21, - -+ , z,-1 € C which meet the following
condition: 2z = sz,Vi,j €{0,1,--- ,u— 1} C N. Note that p is a function of N.
As shown in [32], the channel model must satisfy the constraint u(N) < K, where
p(N) denotes the cardinality (number of elements) of the larger set of congruous
zeros with respect to V.

Therefore, assuming the existence of minimum-redundancy solutions for a given
channel, i.e., considering that p(N) < L/2 € N, then the ZF solution is such that

its associated receiver matrix is given by:

Go = (HoFy) ' = F,'H, 1, (B.42)
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where Hy € CM*M ig given and F is predefined.

This solution is computationally intensive since it requires the inversions of M x
M matrices, requiring O(M?3) arithmetic operations. The conventional OFDM and
SC-FD transceivers need O(M log M) operations for the implementation of ZF and
MMSE equalizers. The equalizer associated with the minimum-redundancy solution
consists of multiplying the received vector by the receiver matrix entailing, O(M?)
operations. This complexity is high as compared to that of O(M log M) required
by traditional OFDM and SC-FD transceivers. This efficient equalization originates
from the use of DF'T matrices as well as the multiplication by memoryless diagonal
matrices.

More details about ZP-ZJ transceivers will be given in Section D.1.

B.4 Concluding Remarks

This chapter has briefly reviewed the modeling of communication systems using
the transmultiplexer framework. The LTI memoryless transceivers were the main
focus of our presentation. Among these transceivers we particularly addressed the
CP-OFDM, ZP-OFDM, CP-SC-FD, and ZP-SC-FD transceivers, highlighting their
corresponding ZF and MMSE designs. Some results taken from the open literature
related to transceivers with reduced redundancy were also discussed.

A lesson learned from this chapter is that the conventional OFDM and SC-FD
transceivers are rather simple since the receiver and the equalizer have very simple
implementations. These systems take advantage of the related circulant structure
of the effective channel matrix. The circulant matrices can be diagonalized using a
pair of DFT and IDFT transformations.

A further query is if it is possible to derive similar transceivers to the OFDM
and SC-FD employing minimum redundancy, whose implementations rely on fast

transforms as well. In fact, this is the focus of this thesis.
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Part 1

Minimum-Redundancy Systems
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Apéndice C

Analysis of Zero-Padded
Transceivers with
Full-Redundancy

Before addressing the proposals of practical minimum-redundancy systems, one
should first answer the relevant question: why investigating minimum //reduced-
redundancy transceivers when efficient full-redundancy systems, such as OFDM
and SC-FD, are already available? Such a question is related to the following rea-
soning: one may argue that the spectral efficiency can be enhanced by increasing
the number M of transmitted data elements in a block, for a fixed channel or-
der L. Let us define the bandwidth efficiency of a block-based transmission as
M/(M + K), in which K denotes the number of redundant elements in a block. No-
tice that M/(M + %) = 2M/(2M + L), i.e., the bandwidth efficiency of a minimum-
redundancy transceiver is the same of a full-redundancy system that uses twice as
much the number of data symbols. Even though this approach is theoretically valid,
several practical systems have strict requirements with respect to the value of M,
particularly those dealing with delay-constrained applications. Nevertheless, if the
particular application allows us to increase M, are there any additional drawbacks
in doing so? The answer is yes, as described in this chapter.

The modeling of communication systems by using transmultiplexers is a well-
known analysis tool [26-31, 40, 59]. Finite impulse-response (FIR) filters are pre-
ferred to infinite impulse-response (IIR) filters due to the difficulties inherent to
both the design and analysis of IIR transmultiplexers [39]. In this context, FIR
transmultiplexers capable of eliminating the intersymbol interference (ISI) intrinsic
to broadband transmissions can be designed when redundant signals are properly
inserted [7, 31, 32, 40, 41]. The type of redundancy (cyclic-prefix/suffix, zero-

padding/jamming, etc) appended before transmitting the signals plays a central
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role in the whole communication process.

In practical applications, memoryless block-based transmultiplexers are the
prevalent choice. For such transceivers, zero-padding (ZP) is a quite effective way
to eliminate the interblock interference (IBI) that pervades block-based transmis-
sions. Indeed, in several different setups, ZP systems are optimal solutions in the
mean-square error (MSE) sense [40]. This optimality characteristic leads to better
performance of ZP-based transceivers, as compared to cyclic-prefix-based systems
in a number of situations [37, 42]. Besides, ZP-based systems require lower trans-
mission power than nonzero-padded solutions.

Nevertheless, redundant transceivers have some drawbacks, given that the in-
sertion of redundant elements (data that, a priori, do not contain any additional
information) reduces the effective data rate or throughput. The redundancy is em-
ployed by the transmission/reception processing to overcome the distortion effects
introduced by frequency-selective channels. As an example, for an FIR-channel
model with order L, a classical ZP-based system introduces at least L zeros before
the transmission. This requirement reduces the throughput of these transceivers,
especially when the channel is very dispersive.

The current trend of increasing the demand for radio transmissions shows no
sign of settling. The amount of wireless data services is more than doubling each
year leading to spectrum shortage as a sure event in the years to come. As a
consequence, all efforts to maximize the spectrum usage are highly justifiable at this
point. A possible way to cope with the throughput reduction related to redundant
transceivers is to increase the number of data symbols, M, in a block. Indeed, as
M increases, the ratio L/M decreases, which means that the relative amount of
redundancy diminishes.

However, the block size M cannot have any desired value, since there are many
factors that affect the choice of M. One of them is the delay constraint associated
with the signal processing of a data block. Besides, there are some studies in the lit-
erature indicating a performance degradation of zero-padded transceivers whenever
M increases [40, 42, 43]." The author in [42], for instance, has theoretically proved
that several figures of merit that quantify the performance of ZP-based single-carrier
optimal linear transceivers (either zero-forcing or minimum MSE optimal solutions)
degrade as M increases. The authors in [40] have empirically verified a similar per-
formance behavior for a wide class of zero-padded optimal transceivers, including
DFE-based systems.

As the authors in [40] point out, for most of the available solutions there is
no mathematical proof of how the relative amount of redundancy influences the

transceiver performance, although in some cases there are simulation results that

1Such a behavior does not appear in CP-based transceivers, as described, for example, in [42].
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indicate some trends. This chapter provides some of these missing mathematical
proofs. Indeed, we prove that both the average MSE of symbols and the average
mutual information between transmitted and estimated signals degrade whenever
one decreases the relative amount of redundancy in the system, i.e., whenever M
increases (for a fixed channel order).

Another interesting feature of the ZP-based transceivers is the performance be-
havior when one discards redundant data at the receiver side. The author in [43] has
proved that the noise gains related to ZP-based single-carrier linear systems increase
when one removes some redundant elements from the received vector in the attempt
to diminish the amount of numerical operations in the equalization process. This
chapter also extends the results from [43] to a wider class of ZP-based linear and
DFE transceivers. More specifically, we demonstrate that the MSE and the mutual
information related to ZP-based optimal transceivers are also monotone functions
of the number of redundant elements employed in the equalization.

Moreover, as a final contribution, this chapter shows that, for a wide class of ZP-
based linear and DFE systems, the performance degrades whenever a channel zero
inside the unit circle is replaced by a related zero outside the unit circle, without
changing the magnitude response of the channel. Actually, this result holds when
one does not use the whole received data block in the equalization, i.e., when some
redundant elements are discarded. If the whole received data block is employed,
then the MSE and the mutual information related to such transceivers are not
sensitive to whether the channel zeros are inside or outside the unit circle. It is
worth mentioning that these results are extensions of similar results from [43] to a
wider class of ZP-based optimal transceivers.

The organization of the chapter is as follows: Section C.1 gives the background
of zero-padded optimal transceivers (linear and DFE). In Section C.2, some results
that quantify the performance of zero-padded optimal transceivers are described.
Section C.3 shows the monotonic behavior of the performance metrics described in
Section C.2 when the block size varies. Section C.4 contains the results that charac-
terize the monotonic behavior of the performance metrics described in Section C.2
when the number of redundant symbols used in the equalization process varies. The
effect of the zero locations of the channel on the performance of zero-padded optimal
transceivers is analyzed in Section C.5. The concluding remarks are described in
Section C.6.

C.1 Model and Definitions of ZP Transceivers

Let s € CM*1 ¢ CM*! be a vector containing M € N symbols of a constellation

C. This vector is transmitted through a frequency-selective channel, whose matrix
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model is
H(z) = Hig; + 2~ 'Higr € CVV[2 71, (C.1)

where M < N € N and CM¥[27!] denotes all polynomials in the variable z~*
with N x N complex-valued matrices as coefficients. The matrix Hig; models the

intersymbol-interference (ISI) characteristic of the channel, being defined as [31, 40]

1(0) 0
h(1)  h(0)
Higi = ((L) W(L-1) - ... 0 | €CY, (C.2)
0 h(L)
0 0 h('L) h(0),

whereas the matrix Hyg models the presence of interblock interference (IBI) inherent

to all block-based transmissions, being defined as [31, 40]

0 -~ 0 RW(L) -+ h(1)]
- ; . h(L)

Hgi=10 0 0 --- 0 0 |€CYW (C.3)
00 0 0 - 0|

The previous channel matrices have dimensions N x N since, in general, some
sort of redundant signals (whose amount is N — M) are inserted before transmitting
s. This redundancy aims at eliminating the IBI. In this chapter, we shall consider
zero-padded transceivers, i.e., the redundant signals are zeros that are inserted at
the end of each data block.

Thus, by assuming an FIR-channel model {h(l)};c, with complex-valued taps
h(l), for each I € £L ={0,1,--- , L} C N, one can define the effective channel matriz
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as (31, 40]

(h(0) 0 |
h(1)  h(0)
H= h(‘L) | o € CMFLXM, (C.4)
0 h(L)
i o 0 - h(.L)_

in which the IBI effect has already been eliminated by means of the insertion of L
zeros in the transmitted data block. Notice that, in this case, N = M + L. In some
situations, we shall also denote the effective-channel matrix in Eq. (C.4) as Hy, in
order to highlight that M symbols are transmitted per block.

Before starting the transmission, a pre-processing is implemented at the trans-
mitter side through the multiplication of the vector s by the transmitter matrix
F ¢ CM*M_ The resulting data vector x = Fs is the input of the effective chan-
nel. Hence, the received vector y = Hx + v € CM+L)x1 js used to estimate the
transmitted data, where v models the additive channel noise. The particular way
the symbols are estimated at the receiver end depends on the transceiver structure.
In this chapter, we shall consider only linear (see Subsection C.1.1) and DFE-based

(see Subsection C.1.2) structures.

C.1.1 ZP Optimal Linear Equalizers

The symbol estimation in ZP optimal linear transceivers is implemented by means

CM*(M+L) - Thus, we

of a multiplication of the vector y by the receiver matrix G €
have the estimate § = GHFs + Gv.

There are many ways to design the transmitter and receiver matrices F and G. In
this chapter we shall focus mainly on minimizing the MSE of symbols, Eyse € R,
The minimum MSE (MMSE) designs are very common in practical systems and

their solutions are well-known [40]. The overall MSE of symbols is given by [40]

Evse = E{||8 — 3“3}
= tr {(GHF — 1,/)R.o(GHF — I,))"} + tr {GR,,G" }, (C.5)

in which we have assumed that the transmitted vector s and the channel-noise
vector v are respectively drawn from the zero-mean jointly wide-sense stationary

(WSS) random processes s and v.? In addition, we have assumed that s and v are

2We have omitted the time-index for the sake of simplicity.
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uncorrelated, i.e. Ry, = E{sv} = E{s}E{v} = 03/101xnx = Orrxn-
Furthermore, let us assume that R, = E{ss”} = ¢%I); and R,, = E{vvf} =
021y, with 02,02 € R,. The authors in [40] (pp. 399-400) show that the assumption
R,, = JgIN is not a loss of generality. On the other hand, the assumption Rgss =
021y, is adequate only in the cases of single-user systems employing neither bit nor

power loading.® We therefore have
Evse = 02 |GHF — Iy | + 07| G|?. (C.6)

Let us formulate the problem of designing the matrices F and G as an optimiza-

tion problem:

win {0} GHF — Ly + 07| GIf; | (C.7)
subject to:

(GHF — 1) izp = 0, (C.8)

(FF" — 1) ivp =0, (C.9)

(171 =25 ) 0= iur) =0, (©10)

(FOFH — IM) ici_up = 0, (C.11)

where izp € {0,1} is an indicator variable: the zero-forcing constraint is enforced
whenever izp = 1. For izp = 0, one has a pure MMSE-based solution. Similarly,
ivp € {0, 1} is also an indicator variable: a unitary-precoder (UP) system is designed
whenever iyp = 1. Note that, for iyp = 0, the only restriction on the precoder
matrix is to satisfy the power constraint. In this context, pr € R, denotes the

total-power input to the channel. It is common to assume that pr = pr(M) =
Mo? 2

CR s*

i.e., the average transmitted power per symbol is oZ. Likewise, ici_yp €
{0,1} is also an indicator variable: a channel-independent unitary-precoder (CI-
UP) transceiver is designed whenever ic;_yp = 1. In general, the precoder matrix
is a predefined unitary matrix F, € CM*M_ Two of the most useful examples of
such a matrix are Fy = I); (single-carrier transmission) and Fo = W, (multicarrier
transmission), in which W1 is the M x M normalized discrete Fourier transform
(DFT) matrix [40, 41].

Note that the aforementioned optimization problem has six possible solutions.
Each solution is associated with a choice of the indicator variables izp, iyp, and

ici—up. Thus, we have the following transceiver types (see Table C.1):

1. CI-UP ZF system: an MMSE-based solution under both the zero-forcing and

3That is, equal-energy symbols.
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channel-independent unitary-precoder constraints;

2. CI-UP Pure system: an MMSE-based solution under the channel-independent

unitary-precoder constraint;

3. UP ZF system: an MMSE-based solution under both the zero-forcing and

unitary-precoder constraints;

4. UP Pure system an MMSE-based solution under the unitary-precoder con-

straint;

5. ZF system an MMSE-based solution under both the zero-forcing and

transmitter-power constraints;

6. Pure system an MMSE-based solution under the transmitter-power con-

straint.*

The solutions to the above optimization problem related to the first two
transceiver types (CI-UP ZF® and CI-UP Pure) are given by [40] (p. 479 and p.
483):°

For " =Fpu. ' =Fo, (C.12)
-1
Gy P =F{ (H"H) H" =F{H, (C.13)

(C.14)

Pure

2 —1
GEL-UP — A (HHH + "21> H".
The other four linear solutions (whether UP-ZF, ZF, UP-Pure, or Pure MMSE-
based solutions) to the above optimization problem share the same structure de-
picted in Figure C.1. The unitary matrices appearing in this figure stem from the

singular-value decomposition (SVD) of the N x M effective channel matrix H; that

4Note that CI-UP Pure and UP Pure transceivers do not meet the ZF constraint.

SEven though the CI-UP ZF transceiver does not depend upon any information about the
statistics of the noise v, it is a solution to the optimization problem defined in Egs. (C.7)-(C.11)
anyway. Thus, we shall still refer to it as a particular type of MMSE-based transceiver for the sake
of conciseness.

6We shall assume that the matrix H has full column rank.

Table C.1: Six different choices of MMSE-based linear transceivers.

MMSE-based transceivers izp = 1 izrp = 0
(ivp,ici_up) = (1,1) | CI-UP ZF | CI-UP Pure
(iup,ici-up) = (1,0) UP ZF UP Pure
(iUp, Z‘CIfUP) = (0, 1) CI-UP ZF | CI-UP Pure
(tup, ici—up) = (0,0) ZF Pure

1
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is

)
H=Uy | 7| VE (C.15)
~~ |0pxnm | >~
NXN , M x M

where ¥y = ¥ > O is an M x M diagonal matrix containing the M nonzero
singular values of H. The mth diagonal element of 3§ is denoted as ¢,,. In addition,
the M x M diagonal matrices g and g depend on the particular design. Note
that the optimal transmitter and receiver matrices are respectively given by [40] (p.
814):

F = VuZy, (C.16)
G = Xg[ly Ouxz|UR. (C.17)

Furthermore, let us observe that if one substitutes F by FU and G by UG,
where U is an M x M unitary matrix, the resulting MSE remains unchanged. Indeed,

this occurs since

use = 0,||GHF — Iyl + o7 l|G|I;
= o}|[U"(GHF — I,)U||¢ + 07| U"G]7
= 02||(U"G)H(FU) — Ly |7 + o3| (U"G) |, (C.18)

for any unitary matrix U. We therefore can insert a unitary matrix U at the
transmitter (before the precoding process) and its inverse U at the receiver (after
the equalization process) without changing the ZF-property, the transmitter power,
or the MSE of symbols. Nevertheless, the additional unitary matrix U can be used
to further minimize the average error-probability of symbols [40] (pp. 494-499).

Diagonal Unitary Channel Unitary Diagonal
Matrix Matrix Matrix Matrix Matrix
M M N H N M M
z ~
s B 0 Vi T D B s
H
Zero Hisi UH
_l’_
0 ;k: >Pa dding T, i{> Ignore
L v L
——— Precoder ——— ——— Equalizer ———

Figure C.1: Structure of the zero-padded UP-ZF, ZF, UP-Pure, and Pure MMSE-
based transceivers.
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C.1.2 ZP Optimal DFEs

Figure C.2 depicts the general structure of the DFE system. In this figure, § € CM*!
denotes the vector containing the detected symbols at the receiver end. The detected
symbols are nonlinear functions of the estimated symbols. The estimation in ZP-
DFE systems is implemented by means of a subtraction of the vector BS from the
vector Gy. The M x (M + L) complex-valued matrix G is the so-called feedforward
matrix, whereas the M x M complex-valued matrix B is the feedback matrix. Thus,
we have the estimate § = GHFs + Gv — BS. Note that, since the detection is
implemented based on the estimate § itself, the matrix B is chosen to be strictly
upper triangular, so that the symbol estimation within a data block is sequentially
performed, guaranteeing the causality of the process [40].

The presence of a nonlinear function in the basic DFE model hinders the search
for optimal solutions, even within the simple MMSE approach. A key hypothesis
that helps one simplify the mathematical deduction of optimal solutions is the as-
sumption of perfect decisions [40]. Thus, we shall assume that § = s from now on.
It is rather intuitive that this assumption is suitable only when the error-probability
of symbols is small. Note that, by assuming perfect decisions, the estimate can be
rewritten as § = (GHF — B)s + Gv.

As in the linear case, there are many ways to design the transmitter, feedforward,
and feedback matrices F, G, and B. Once again, we will focus on minimizing the
MSE of symbols, E4EE. Using the same hypotheses of the linear case, the overall
MSE of symbols is given by [40]

Etss = 02|GHF — B — Iy} + 07| G||%. (C.19)
Precoder Channel Feedforward
Matrix Matrix Matrix Detector

M N [H)] N M 1+ g

scE B T ¢ 0> F
Hig; .

0 ;/:(>Pach§iong 2714}—11131 g B

Feedback
Matrix

Figure C.2: General structure of an MMSE-based optimal DFE employing zero-
padding.

Let us formulate the problem of designing the matrices F, G, and B as an
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optimization problem:

Juin {o2|GHF — B — Ly} + o2[|GI}} . (C.20)
subject to:

(GHF — B — 1) izr = 0, (C.21)

Pl =05 = M. (C.22)

Bl =0, Vm > n, (C.23)

where izp € {0,1} is an indicator variable: the zero-forcing constraint is enforced
whenever izp = 1. For izp = 0, one has a pure MMSE-based solution. Hence, for
the DFE system, we have only two distinct solutions: ZF and Pure MMSE-based
solutions. We do not consider other solutions since they are all related to each
other. The ZF solution, for instance, is also a unitary-precoder solution and it also
minimizes the error-probability of symbols [40] (pp. 619-621).

The solutions to the above optimization problem related to the two DFE systems
are given by [40] (p. 816):

F = VuZpS, (C.24)
G = (I+B)S"A[ly 0y..]Ug, (C.25)
B=R-1I, (C.26)

in which A and X are diagonal matrices, whereas S is an M x M unitary matrix, and
R is an M x M upper triangular matrix containing only 1s in its main diagonal.
In fact, the exact definitions of the diagonal matrices A and g, as well as the
unitary matrices S and R depend on the particular design, whether a ZF or a Pure
MMSE-based solution is chosen. However, the matrices S and R always come from
QRS decompositions of diagonal matrices for both designs [40] (pp. 646-656). In
the ZF case, for instance, the related QRS decomposition is g = cQRS, where
Q and S are unitary matrices, whereas R is upper triangular with diagonal elements
[R];nm = 1. In addition, 0 € R, is the geometric mean of the diagonal elements of

Y. See [40] and references therein for further detailed information.

C.2 Performance of Optimal ZP Transceivers

This section characterizes the performance of zero-padded optimal transceivers by
using some appropriate figures of merit. We shall focus mainly on the MSE of
symbols and the mutual information between transmitted and estimated signals.

In addition, we shall also describe the error-probability of symbols associated with
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some of these transceivers, namely: minimum error-probability and DFE MMSE-
based systems.

The MSE of symbols is a widely used figure of merit since it allows one to
quantify the overall amount of symbol errors throughout the estimation process.
The mathematical simplicity inherent to MSE-based analyses is perhaps the main
reason for their overwhelming adoption [60]. Nonetheless, the conclusions taken from
an MSE analysis must be regarded with care, since the MSE does not necessarily
capture all the aspects of the transceiver performance. The error-probability of
symbols, for instance, may be different for systems with the same MSE of symbols.

In order to characterize the MSE performance of the ZP transceivers, let us first
define S;; = R]Tj, in which Ry, = HEH,), € CM*M i5 the deterministic channel-
correlation matrix, considering the transmission of M data symbols. Similarly, let us
assume that S%, = (R},)™!, where R, = H{H,, + Z—’;IM € CM*M enjoys the same
structure as Rj;. Moreover, we shall denote explicitsly that the singular values of
H); depend on M. Thus, 0,,(M) is the mth singular value of Hy,. By using these
definitions, we have the following result concerning the average MSE of symbols

related to each ZP optimal transceiver.

Proposition 1. The zero-padded MMSE-based optimal transceivers have the follow-
ing average MSE of symbols:”

1 M=t tr{S
0 =t (57 3 i) =t 2
e an—o2 (LSS 1) etriSud (C.28)
Pure — Yo Mm:0%+03n(M) - Yo M ) .
B 1 M=t tr{S
Egp VP (M) = o? (M D (M)> = o2 {MM}, (C.29)
i 1 tr {Sh,}
CI-UP _ 2 = _ 2 M
gPure (M) - 01} (M = %é + U%(M)) Uv M ) (CBO)
2
1M tr {v/Sur}
o2 _ 2
(S'ZF(M) = Jv (M P O’m(M)> UU ( M s (031)

DFE _ 02 Mt 1 M — 02 M e
00 =t (11 sz 3] =2 Viar(Su) (32

Proof. We have just rewritten the results from Tables 1.1, 1.2, and 1.3 in Appendix
I of [40] (pp. 814-816).8 m

"When the block size is M, we set £(M) = ghj’{% (see Egs. (C.5) and (C.6)).
8The notation v/S means UV AU | considering the eigendecomposition S = UAUH . The
square root of a diagonal matrix A = diag{\,, }}Z3 is VA = diag{v/ A }M 1.

m=0
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The reader should notice the close relationship between the MSE of symbols and
the singular values of the effective-channel matrix. Indeed, smaller singular values
of the effective-channel matrix lead to larger average MSE of symbols. With respect
to the average MSE of symbols related to Pure MMSE-based systems (linear and
DFE), we did not include them in Proposition 1 since the exact expressions for
Epure(M) and EPFE(M), without assuming that the transmitted power is large, are
too complicated to be analyzed here (see Egs. (13.50) and (19.113) from [40]). For
this reason, we shall refer to zero-padded optimal transceivers without including
Pure MMSE-based systems (linear and DFE) from now on.

Another very useful figure of merit is the mutual information between the trans-
mitted and estimated signals. Mutual information allows one to quantify the mutual
statistical dependence related to these two random variables. This dependence can
be thought as the statistical information that the transmitted and the estimated
signals share. For example, a really poor transmission/reception process is such
that the transmitted vector s is not strongly related to the estimate §. In this case,
the related mutual information between s and § is close to zero, revealing some sta-
tistical independence. On the other hand, a perfect transmission/reception process
is such that § = s. In this particular case, the mutual information between s and §
is maximum (i.e., it is equal to the entropy of s).

By taking this fact into account, we have developed the following result con-
cerning the average mutual information between the transmitted vector s and its

estimate § related to each ZP optimal transceiver.

Theorem 1. For the zero-padded MMSE-based optimal transceivers, the average
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mutual information between the transmitted vector s and its estimate 8 is given by

] , e
oy - U () )
1% (M) = } Wi s (0'33)
] p E
tr {ln Iy + (U—gSM) }
i on = ————* 1L (C34)
] p e
tr{ln Iy + (?%SM) }
gy = = AL (C.35)
] p e
tr{ln Iy + (U—’éSM) }
ZlgireUP(M> - B M ) (036)
I 1
tr {ln Iy + (,OM M) ]}
o2
IPFE(M) = In [1 + 03 M det {s;;}] : (C.38)

where p%f is a positive number that depends on M. In addition, we have assumed
that s and v are independent zero-mean circularly symmetric complex Gaussian

random vectors.

Proof. Let us first consider the two channel-independent unitary-precoder linear
transceivers. Recalling that the differential entropy of a random vector r is denoted
as H(r), then from the hypotheses of Theorem 1 and by considering that § =
GHFys + Gv = GHFys + v’, we can write

(C.39)

where Cz; = c2GHHY GH + UgGGH and Cy = agGGH. One therefore has

2
1+ 2 (GG")'GHH"G".
O-’U

—1
C / C§§ —

v'v’

(C.40)

9When the block size is M, we set Z(M) = I(Iff’), where Z(s; §) is the mutual information
between the complex-valued vectors s and 8.
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Using Egs. (C.13) and (C.14), it is possible to verify that

2
C,LCs =T+ %Fgf (HYH)F,

v

Oy

o2 !
- (gsM>
o

s

0.2
=F[ (I + ;RM> Fy

=F] Fo, (C.41)

where, in the case of CI-UP-Pure transceivers, we have used the fact that

2 —1 2 —1
H"H (HHH + "21> - (HHH + "21> H'H, (C.42)
08 O-S
which yields
GHH”G" = (GG")(FI'H"HF,). (C.43)

Hence, by substituting Eq. (C.41) into Eq. (C.39), we finally arrive at

.

1
TGO (M) = TSP (M) = - T(s:9)

1 o? -
= oo det {Fé’ Ly + (C;SQ’SM>
9 -1
In + (UgSM> }
O—S
tr {ln {IM + (ZéSM)_l} }

M

1
= Mh’l det

(C.44)

Considering the other three linear solutions (UP-ZF, UP-Pure, or ZF MMSE-
based linear transceivers), we know from Eqgs. (C.16) and (C.17) that

b
$=([Zc Our]UH) (UH " Vg) (VuZr) s + ([Za a0 JUH) v
LxM
= EGzHEFS + Egﬁ, (045)
where T = [I; Opx L]Uﬁv. Note that there is no interference among symbols

within a block in these ZP-MMSE-based optimal transceivers. In other words, the

resulting transceivers are comprised of M parallel complex Gaussian channels. The
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SNR for the mth channel is given by

SNR,, (M) = 02, (M)o2,,(M)>

—5 (C.46)
O-U

in which og ,,(M) is the mth diagonal element of 3, assuming the transmission of
M data symbols. Thus, whenever a unitary-precoder system is designed, one has

orm(M) =1 for all m [40]. In this case,

(’% o2 (M). (C.47)

v

SNR, (M) =

If the ZF MMSE-based design is employed, then o, (M) = —=2

L [40], where
Ezp (M) om
Ezr(M) is defined in Eq. (C.31). Hence,

Oy

Ty \/Ezp(M)

Q
[ RGN

SNR, (M) = Ton. (C.48)

All these three cases yield

I(s;8)= Agl In[1+ SNR,,,(M)]. (C.49)

m=0

Thus, for unitary-precoder systems, we finally arrive at

Izr (M) = Tpye(M) =

Pure

Z(s;8)

= ‘73 2
= n;o In [1 + Ugam(M)]
tr {ln {IM + (ZéSM)l]}

- = , (C.50)

whereas for the ZF MMSE-based systems, we arrive at

Iyp(M) =

= : (C.51)

112



in which
o
por o Verrti) (C.52)

With respect to the ZF-DFE system, we know from [40] that ¥y = cQRS”,

where Q and S are unitary matrices. In addition, we also know from [40] that
§=s+RS"Sy 'w=5+0""'Q"7, (C.53)

where © is also a zero-mean circularly symmetric complex Gaussian random vec-
tor. In addition, we still have that s and v are jointly WSS random vectors, with
Ry = 021y and R = 0y7.pr. Hence, by using the same reasoning that we have
just employed to derive the results related to channel-independent unitary-precoder

transceivers, one has

2
Os -1
~=In ll 5 V/det {3/ }1 : (C.54)
where we have used the fact that [40]

0® = N/det {Ry} = Y/det {S3/}. (C.55)

The authors in [40] have derived the above result in a distinct way. O

Once again, the average mutual information is a figure of merit which is strongly
related to the singular values of the effective-channel matrix. Indeed, the smaller the
singular values of the effective-channel matrix are, the smaller the average mutual
information is.

The ultimate goal of a transmission /reception process is to allow one to transmit
symbols that, ideally, could be perfectly detected at the receiver end. The error-
probability of symbols is, therefore, a very appealing figure of merit to quantify the
performance of communication systems. For the case of both the minimum error-
probability and the DFE MMSE-based systems (see Section C.1), the resulting error-
probability of symbols are directly associated with the average MSE of symbols.
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Indeed, it is possible to show that, for such transceivers, the average error-probability
of symbols is a monotone increasing function of the corresponding average MSE
of symbols [40] (p. 579 and p. 619). This close relationship between these two
important figures of merit is quite useful, since any monotonic behavior associated
with the MSE of symbols is automatically transferred to the error-probability of
symbols associated with both the minimum error-probability and the DFE MMSE-

based systems. !’

C.3 Effect of Increasing the Block Size

This section analyzes the behavior of both the MSE and the mutual information
associated with the optimal ZP transceivers as the number of transmitted symbols,
M, increases. With such an analysis we aim at evaluating the effect of increasing
the bandwidth efficiency upon the performance of optimal ZP transceivers. Indeed,
when we consider the transmission of signals through an Lth-order channel, the
percentage of redundant signals in the whole data block always decreases when one
increases the number of data symbols from M to M + 1. On the other hand, one
is not allowed to increase M substantially due to delays introduced by the signal-
processing building blocks of the transceivers.

The block size M does interfere in the performance of the optimal ZP
transceivers, in addition to its drawbacks in delay-constraint applications. As a
matter of fact, the performance of optimal ZP transceivers tends to degrade as the
block size increases. The author in [42] has proved that several figures of merit
that quantify the performance of single-carrier ZP transceivers present a monotone
behavior with respect to M. For example, the average MSE and the average error-
probability of symbols are monotone increasing functions of M. A similar behavior
has also been reported in [40] for the other optimal ZP transceivers after performing
thorough simulation experiments. Nonetheless, as highlighted in [40] (p. 590), no
theoretical proof of this monotonic behavior is known for the case of jointly optimized
transceivers (linear or DFE), except for the single-carrier ZP transceiver [40, 42].

The following results are the first attempt to bridge this gap.

Theorem 2. The average MSE of symbols associated with the zero-padded MMSE-
based optimal transceivers is a monotone increasing function of the number of

transmitted symbols per block. Mathematically, for all positive integer M, one has
EM)<EM+1).

10The reader should remember from the discussions in the last paragraph of Section C.1 that
minimum error-probability systems can be designed by introducing a unitary matrix U at the
transmitter side and its inverse, U, at the receiver end aiming at minimizing the overall average
error-probability of symbols (see pp. 494-499 in [40]).
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Proof. Before proving Theorem 2, we shall state two important auxiliary results, as

follows.

Lemma 1. Given two sets of real numbers {ag, a1, ,ap—1} and {bg, b1, -+ by},
if their elements respect the following inequalities: b, > a, and by > ap, for all
m € {0,1,--- .M — 1}, then one always has

1 M 1 M-1
by > — m- C.56
NESRESS TP .
Proof. See [40, 42]. O

Lemma 2. For any positive semidefinite Hermitian matriz S, the function v/S is
monotone, i.e., \/S, > /Sy, whenever S, > S, > O.

Proof. See [61]. O

Now, we are able to demonstrate Theorem 2. First of all, note that the (M +

1) x (M + 1) complex-valued matrix Ry = HY,;Hp/41 can be partitioned as

Rt = {Rj}f uM] - [ ‘ WM] . (C.57)

uy, c wir Ry

Now, by defining both 6, = /¢ — ufl,Syuy, and §,, = \/c — wh Sy wiy, and by

using the formula for inverse of matrices in partitioned form [40], one gets

[ ) [ Saruns Sypupy a
SM 0M><1 5 5
Syi1 = + ‘Y ‘Y
_01><M 0 ] L _E _E
S
- 1 H
1 1
_0M><1 Sy | i n{stM ]\/(ISZM
Sy

These identities imply that Sp;o1 > Sy and Sy > S,,. In other words, we
can state that the diagonal elements of S;;11 and Sj; respect the hypotheses of
Lemma 1. This, in turn, implies that the arithmetic mean of the diagonal elements

of Sys4q is, at least, as large as the arithmetic mean of the diagonal elements of S,;.
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We therefore arrive at our first result:

Uztr {SM} (‘:CI UP( )

v M
7x (M)
< 5 (M +1)
CI UP QtY{SMH}
= (M+1) = ”7]\4 T (C.59)

It should be mentioned that, for the CI-UP system employing the precoder Fy =
I/, the inequality expressed in (C.59) is not a new result [40, 42]. Nevertheless, it
has fundamental importance for the derivation of the subsequent novel contributions.

Indeed, by using Lemma 2 along with the inequality expressed in (C.58), we get

[ 0 01><M] \/>< /SM+1>\/7 |:\/E 0M><1]' (CGO)

OM><1 01><M 0

Thus, we can apply Lemma 1 once again, since the diagonal elements of \/Spy;4
and /Sy respect the hypotheses of the lemma. Hence, the arithmetic mean of the
diagonal elements of \/Sjy;.1 is, at least, as large as the arithmetic mean of the

diagonal elements of v/S,;. We therefore arrive at our second result:

2

r{vVSuis ? VS

Now, observe that

—RM + 08Iy uy

Ry =Ry + By = ol ot 8
M

[ W)s
- , .62
wil R?u] (C.62)

where ¢ = ¢+ 3. Hence, our third result follows directly from the observation that

this is exactly the same type of problem we have already solved to prove our first

116



result. It is then possible to reach our third result:

/
012; tr {Sh,} CI—UP(M)

M Pure
= (M)

— “Pure

<& (M +1)

ure

/

=& F(M +1) = 03%. (C.63)

Let us recall some important definitions [62]: the notation A > B, means that

A —-B > 0, ie., A — B is a positive semidefinite matrix. Similarly, the notation

A > B, means that A — B > O, i.e., A — B is a positive definite matrix. The set

Hys(a,b) denotes all M x M positive semidefinite matrices whose eigenvalues are

within the open interval (a,b) C R. Given a function f : (a,b) — R and a matrix

A € Hy(a,b), then one can define the mapping f(A) = Uf(A)U in which A =

UAU? is the eigendecomposition of A. In this context, a function f : (a,b) — R

is matrix-monotone on Hy(a,b) if f(A) > f(B), for all A, B € Hj,(a,b) such that

A > B. Moreover, a function f : (a,b) — R is matrix-concave on Hy(a,b) if

flaA+ (1 —a)B) > af(A) + (1 — «)f(B), for all A,;B € Hy(a,b) and for all
a € [0,1].

Now, in order to prove that EXYE(M) < EDYE(M + 1), we will first state three

important results:

Lemma 3. A nonnegative continuous function on [0, 00) is matriz-monotone if and

only if it is matriz-concave.
Proof. See [62, 63]. O
It is worth highlighting a fact described in Corollary 3.1 from [62]:

“Every matrix-monotone function is monotonic (increasing or de-
creasing) whereas not every monotonic function is matrix-monotone. Ev-
ery matrix-convex function is convex whereas not every convex function

is matrix-convex.”

In other words, the properties of a matrix function can be transferred to the related
scalar function, but not vice-versa. For example, A~! is a strictly decreasing matrix-
function, whilst A? is not a matrix-monotone function on the set of positive definite

matrices (see Lemma 3.1 and Remark 3.3 in [62]).

Lemma 4. Given a twice-differentiable function f : R, — R, let us define G(t) =
f(tA+ (1—1)B), in which A and B are any positive semidefinite matrices, whereas

t is a real number within the interval (0,1). Then, f is matriz-concave if and only
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2

if the matrix > is negative semidefinite for all positive semidefinite matrices
A and B, and for allt € (0,1).

Proof. See [62, 64]. O

Lemma 5. Given a constant kg € R, the function f(z) = In(x) + ko, with x € R,

1S malrir-concave.

Proof. For all positive semidefinite Hermitian matrices X and Y and for all ¢ € (0, 1),

let us consider the following derivative [62, 65]

d?

7 EX-Y)+Y)+kll=-X-Y)t(X-Y)+Y]*(X-Y). (C.64)

Note that the former expression can be seen as a product, let us say —Z”Z, in which
Z=[tX-Y)+Y] H(X-Y). As a result, for G(t) = f(tA + (1 — t)B), one has

d*G(t)
dt?

<0, (C.65)

for all positive semidefinite Hermitian matrices A and B, and for all t € (0,1). From

Lemma 4, we have that f is matrix-concave. O]

Now we can prove that EPEE(M) < EPFE(M + 1). Indeed, for each natural

number n, one can always define the function

fn: (1, oo) — R,
n
x+— fu(z) = f(x) +1In(n), (C.66)
where f(z) = In(xz). Note that f,(x) = In (l/in) > 0, since x > 1/n. Now,
let us define the set Hy,(1/n,00) of all M x M positive semidefinite Hermitian
matrices whose eigenvalues are within the open interval (%, oo). Thus, based on
Lemma 5, it is rather straightforward to verify that f, is a matrix-concave function
on Hy,(1/n,00). Hence, f, satisfies all the hypotheses present in Lemma 3. There-

fore, the function f,, is also matrix-monotone on Hj;(1/n,00). This means that for
all A > B > O in Hy(1/n,00), one has

fn(A) = f(A) +In(n) Ly

F(B). (C.67)
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Note that, from Proposition 1, one gets

(2

M—-1

m=0

(M) =1 (2) + 37 3 In [o—m<1M>]

2) + 4t (S}

(C.68)

Since Sp;+1 > Sy and Sp4q > Sy, then, from the above results, we have
f(Sar1) > f(Su) and f(Sa1) > f(Sy). In other words, we can state that the
diagonal elements of f(Sy;41) and f(Sys) respect the hypotheses of Lemma 1. This,

in turn, implies that the arithmetic mean of the diagonal elements of f(Sy;.1) is, at

least, as large as the arithmetic mean of the diagonal elements of f(Sy,). This result
yields f (S?FF B(Mm )) <f <S]Z3FF B(M + 1)) As f is a strictly monotone increasing real

function, we arrive at our last result:

oy Nfdet{Sy} = Ezx “(M) < Ep B(M + 1) = o) “/det{Sp 11},  (C.69)
as desired. O
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Figure C.3: Average MSE of symbols of optimal ZP transceivers as a function

block size M.
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Figure C.3 illustrates the monotonic behavior of the average MSE of symbols as
a function of the block size, M, for ZP-based optimal transceivers, namely: CI-UP-
ZF, CI-UP-Pure, UP-ZF, UP-Pure, ZF, and ZF-DFE systems. For this experiment,
we have used 02 = 1, 02 = 0.01, and the channel transfer function, H(z), given
by [40] (p. 580)

H(z) =0.0986 + 0.26642 " + 0.4192272 + 0.45352° + 0.31292*
+0.246427° +0.26282° 4+ 0.4139277 + 0.32752° + 0.178227%,  (C.70)

where ||H(2)||2 = 1 (i.e., the channel is normalized). Figure C.4 depicts the magni-
tude response of this channel. Notice that, for this case, L = 9, which means that
9 zeros are inserted at the end of each data block before transmitting them. Other
experiments with different setups are quite well-documented in [40].

Moreover, a straightforward corollary from Theorem 2 is that the average error-
probability of symbols is also a monotone increasing function of M, for the case
of both the minimum error-probability and the DFE MMSE-based systems. Such

a result follows from the fact that the average error-probability of symbols is a
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0
-10
=
D,
0 =20
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o
2
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(9]
he]
E
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<
>
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Normalized frequency [rad/sample]

Figure C.4: Magnitude frequency response of the channel H(z) defined in Eq. (C.70).

120



monotone increasing function of the average MSE of symbols for both the minimum
error-probability and the DFE MMSE-based systems [40]. Note, however, that such
analysis does not relate the performance among different systems, i.e., we are not
making any comparisons between different systems. In fact, we are fixing one system

and analyzing the performance behavior of this predefined system.

Theorem 3. The average mutual information between transmitted and estimated
symbols of the zero-padded MMSE-based optimal transceivers is a monotone decreas-
ing function of the number of transmitted symbols per block. Mathematically, for all
positive integer M, one has T(M) > T(M + 1).

Proof. Before demonstrating Theorem 3, let us state the following auxiliary result.

Lemma 6. Given a constant ko € R, the function f(z) = In(z) — In(x + 1) + ko,

with v € Ry, is matriz-concave.

Proof. For all distinct positive definite Hermitian matrices X and Y and for all
t € (0,1), one has

dQ

7o X -Y)+Y) +kll=-X-Y)HX-Y)+Y]*X-Y), (C.71)

2

o MtX-Y)+Y+I} = - X-Y)t(X-Y)+Y+I*(X-Y). (C.72

Now, observe that

X-Y) "t X-Y)+Y+IP*X-Y)'=X-Y)'t(X-Y)+YP(X-Y)"!
+2X-Y) '"HX-Y)+Y](X-Y)!
+(X-Y)?
>SX-Y)'HX-Y)+YP(X-Y) !,

(C.73)

where the last inequality comes from the fact that 2(X — YY) '[¢{(X - Y) + Y](X —
Y) '+ (X-Y) 2> O, since [((X-Y)+Y] > O (remember that 0 < ¢t < 1). Now,
by using the fact that A=' < B! whenever A > B > O [61], we get

X-Y)tX-Y)+Y+I?*X-Y) < X-Y)t(X-Y)+Y]*(X-Y).
(C.74)

This implies

d2

S U+ (1= Y]} = (X = V)X = Y) + Y + ] (X - Y)

- X-Y)tX-Y)+Y]*X-Y)<O. (C.75)
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As a result, for G(t) = f(tA + (1 — ¢)B), one has i’t < O, for all positive
semidefinite Hermitian matrices A and B, and for all ¢ € (0,1). From Lemma 4, we

have that f is matrix-concave. O]

Now we can prove Theorem 3. Let us first note that, from Theorem 1, the
average mutual information related to the linear transceivers is nothing but the
normalized trace of a matrix In (I + X™!), where the specific matrix X depends on
the particular type of transceiver. For instance, if the transceiver is a UP-Pure
MMSE-based system, then X = Z—’zS m- One therefore can write the average mutual
information between the transmitt?ed and estimated vectors as the normalized trace
of the matrix —[In (X) —In (I + X)] = — f(X), in which f is as defined in Lemma 6,
with kg = 0. We already know that f is a matrix-concave function. In addition,
f is also a matrix-monotone function. Indeed, for each natural number n one can

always define the function

fn: (1, n) — R,
n
r+— fo(z) = f(x)+1n (n2 + n) : (C.76)
Note that f,(z) = In (x+1 X ’{7;) > 0, since n+1>ax+1and x > 1/n. Now, let
us define the set Hy,(1/n,n) of all M x M positive semidefinite Hermitian matrices
whose eigenvalues are within the open interval (%7 n) Thus, based on Lemma 6, it is
rather straightforward to verify that f, is a matrix-concave function on Hy(1/n,n)
and therefore satisfies all the hypotheses present in Lemma 3. Hence, the function

fn is also matrix-monotone on Hy,(1/n,n). This means that for all A > B > O in
Hy/(1/n,n), one has

f(A) +In (n2—|—n) Iy > f(B)+1n (n2 —|—n) Iy

0
f(A) > f(B). (C.77)

Now, let us remember from the proof of Theorem 2 that

Sai1 > Sy (C.78)
Surer > Sus (C.79)
VSua > /Sy (C.80)
VS = /S (C.81)
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Thus, these inequalities yield

0'2 0'2—

S+ > —2Sw (C.82)
US O_S

O'2 0'2

;;SM+1 > ;ZSM (C.83)

pr+1\ Sas1 > puy/ Sm (C.84)
PM+1\/Sm+1 = pary/Sar, (C.85)

for any increasing sequence {pys}yen of positive real numbers. Furthermore, we
know that there always exists a sufficiently large natural number ny such that

2 2— 2 —
o8Snr+1, 58Snr, GESars Pr+1VSutts v/ S puv/Sy € Harga(1/no,mo).  Hence,
from what we have just proved, one has

2 2

f (ZQSMH> > f (ZQSM) (C.86)
2 2

f (ngMH> > f (Z";SM> (C.87)

f (pMﬂ\/%) > f (pM\/@> (C.88)
f (PM—H\/%) > f <[)M\/$). (C.89)

Now, one can apply Lemma 1 once again, since the diagonal elements of
f (g—éS M+1) and f (Z—éS M) respect the hypotheses of such a lemma. Hence, the
arithmetic mean of the diagonal elements of f (Z—g S M+1) is, at least, as large as the
arithmetic mean of the diagonal elements of f (g—’zS M). Similarly, the arithmetic
mean of the diagonal elements of f (pM+1 S M+1) is, at least, as large as the arith-

metic mean of the diagonal elements of f (pM\/S M). We therefore arrive at our
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desired results:

R

— ICI_UP(M)

Pure
= Izp (M)
— IUP (M)

Pure

> Tl (M +1)

Pure
= T8 (M +1)
— ICI_UP(M + 1)

Pure

tr{/ (5Sar)}

=T 1) = -l

(C.90)

whereas

ol /5

tr{f (P%/IFH SM—H)}
M +1 ’

=Zzp(M) > Izp(M + 1) = —

(C.91)

Ezr (M)

in which we have used the fact that p%F = % =

Theorem 2).
Now, from the proof of Theorem 2, we know that o2 Y¥/det{Sy} <

o2 M+D/det{Sys11}, which implies 1 + j—§ Ndet{S;}} > 1+ Z—S @0/ det{Sh/ 1 -

Since In(+) is a strictly monotone increasing real function, one has

increases as M increases (see

@

2
Oy

In [1 + p ”(/det{S;j}] = TOYE(M)
o? -
> I (M +1) =1In [1 +3 <M*?/det{sﬂj+1}] . (C.92)

v

as desired. 0

Figure C.5 confirms the monotonic behavior of the average mutual information
between transmitted and estimated symbols as a function of the block size, M, for
ZP-based optimal transceivers. In this experiment, we have used the same scenario
previously described. Once again, it is rather clear that such a figure of merit also

degrades as M increases.
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Figure C.5: Average mutual information between transmitted and estimated symbols
as a function of block size M.

C.4 Effect of Discarding Redundant Data

Throughout this section, let us assume that both the order of the FIR-channel model,
L, and the number of transmitted data symbols, M, are two fixed natural numbers.!!
As previously described, the task of the receiver is to generate an estimate § of the
transmitted vector s by processing the received vector y = Hx + v, with x = Fs.
The received vector y has M + L elements due to the redundancy that is inserted
at the transmitter side. In order to decrease the number of samples to be processed,
one can discard up to L elements of the received vector y, yielding a new vector
y(K) = H(K)x + v(K) € CM+E>XM " where K € £ = {0,1,---,L} denotes the
amount of redundancy used in the equalization process.

As a particular example, if K = 0 (which means that L elements are removed
before starting the equalization), one could discard, for instance, the first L/2 ele-
ments of y as well as the last L/2 elements of y to generate the new vector y(0).
Observe that, in this case, y(0) = H(0)x 4+ v(0) € CM*M_ The matrix H(0) is
generated from H by discarding the first L/2 rows of H, as well as the last L/2 rows

We therefore shall omit any dependence on these variables.
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of H. Alternatively, one could simply discard the last L elements of y in order to
generate y(0). Note that the adopted notations for y(K), H(K), and v(K) do not
specify which elements/rows are discarded, for the sake of notation simplicity. The
choice of the rows of H to be discarded is such that H(K) can be obtained from
H(K + 1) by removing a given row of H(K + 1), without mattering which row is
discarded. In addition, the resulting matrix H(K) must keep the full-column-rank
property. The full-column-rank property guarantees that H(K) € CM+E)*M fag
exactly M nonzero singular values, for all K € L.

Thus, given both an Lth-order channel-impulse response and a fixed rule for dis-
carding a row of H( K +1) to generate H(K) (e.g., to remove the first row of H(/K +1)
to yield H(K)), we can generate L + 1 distinct matrices H(K), for K € £.'2 All
these matrices with reduced redundancy are constructed from their related effective-
channel matrix H as previously described. Once again, in the case of single-carrier
ZP zero-forcing linear transceiver, the authors in [40, 43] have proved theoretically
that the MSE performance improves as K € L increases, i.e., larger amounts of
samples used in the equalization lead to better MSE performance. Nevertheless, not
even similar empirical results had been reported for the other ZP transceivers yet.

The following theorem is an important result towards the clarification of this point.

Theorem 4. For each K € L, let oo(K) > 01(K) > -+ > op—1(K) > 0 be the M

nonzero singular values of H(K'). Thus, one always has
om(K +1) > 0, (K), V(K,m) € (L\ {L}) x M, (C.93)

where M ={0,1,--- M — 1}.

Proof. Before starting the proof of Theorem 4, we shall state a very useful supporting

result.

Lemma 7. Let X € CM>*Mz2 pe ¢ rectangular matriz whose SVD is X

Uy Zanxar, Vi, where Uy and Vg, are unitary matrices, and X, xar,

[diag{am}%igl 0M2><(M1—M2)]T; with My > Ms,. By assuming that o > o >
e >05.9 > 05=-=o0p,_1 =0, and rank{X} = S € N, one has

i ANX =Y} =X = Xlo = on, (C.94)
YGCMIXI\/IQ

in which X = UM12M1><M2V]\H427 with 2_]]\41><]\42 = [dlag{(_fm}%?:f)l OMQX(M17M2)]T' In

addition, 6, = oy, for allm € {0, 1, ---, R—1}, and 7, = 0 otherwise.

Proof. See [44]. O

121n fact, H(L) = H.
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Now, note that oo(K + 1) = |[|[H(K + 1)|2 = max||H(K + 1)x||2, in which
x € CM*! is a unit vector, i.e., ||x||s = 1. Since, for each K € (£ \ L), the matrix
H(K) can be obtained from H(K + 1) by discarding a predefined row of H(K + 1),
denoted as h{(K + 1), then one has

oo(K +1) = [H(K + 1|2

= ”max |IH(K + 1)x||2

= max VOO, + [ (5 + 1)x]

> max [H(K)x]l

= [[H(EK)|2 = 0o(K). (C.95)

Now, by taking into account the SVD decomposition of the matrix H(K + 1),

one has

H(K+1)= Y ou(K+ Du,(K + 1)vE(K + 1), (C.96)
meM

where M ={0,1,--- , M — 1}.
In addition, one can also define a reduced-rank approximation for H(K + 1) as

follows:

Hi(K+1) = ER:O'T(K + Du (K + 1)v(K +1), YRe M\ {M -1}, (C.97)

r=0
where Hi(K + 1) is a rank-(R + 1) matrix. By using Lemma 7, we have
o(r+n) (K +1) = [[H(K + 1) — Hr(K + 1)

= max
[[x[[2=1

(H(K +1) — i o (K + Du (K + 1)v (K + 1)) X

r=0

2

2

+ 10x[?
2

- maxJ( ZUTK+1)UT(K+1)VH(K+1)>X

[[x[l2=1

<H Z o (K + 1)a,. (K + 1)v (K + 1)) X

r=0

> max.
Il ,

_ HH(K) - ZR: o (K +1)a.(K + 1)v;/ (K + 1)

2

> [|[H(K) — Hr(K)|, =
= o(r+1)(K), (C.98)

where, for each r € {0,1,---, R}, the column vector u,(K + 1) is obtained from
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the column vector u,(K + 1) by discarding a given element. In addition, |0x| is a
nonnegative real number that depends on x. As R can assume any value within
the set M \ {M — 1}, we have therefore proved that o,,(K + 1) > 0,,(K), for all
m e M. O

All figures of merit that we presented in Section C.2 depend crucially on the
singular values of the effective-channel matrix. Theorem 4 shows the monotonic
increase of these singular values with respect to K € £. Hence, Theorem 4 sums up
the monotonic behavior of any figure of merit that directly depends on the singular
values of the effective-channel matrix. Such a monotonic behavior does not depend
on which row of H(K + 1) is discarded to generate H(K'). Corollary 1 gives a
more formal and complete description of the utility of Theorem 4 in the analysis of

ZP-based systems.

Corollary 1. Let us assume that, for each m € M, there exists a function f,, :
R, — R such that a performance measure J : L — R associated with each ZP

transceiver can be defined as

TE) = 23 fulon(K) or T(K) = J I1 fulom(K).  (C.99)

If f is monotone increasing for all m € M, then J is monotone increasing on L,
ie. J(K+1) > J(K), forall K € L\{L}. Likewise, if fn is monotone decreasing
for allm € M, then J is monotone decreasing on L, i.e. J(K +1) < J(K), for
al K € £\ {L}.

Proof. This is a straightforward application of Theorem 4. m

Corollary 1 is a quite generic result that characterizes the monotonic behavior of
several figures of merit associated with the performance of optimal ZP transceivers.

A particular application of the former corollary is the next result.

Corollary 2. For all K € L\{L}, one has E(K+1) < E(K) and Z(K+1) > I(K),
for zero-padded MMSE-based optimal transceivers.

Proof. This is a consequence of Theorem 4 along with both Proposition 1 and The-

orem 1. O]

Table C.2 exemplifies the monotonic behavior of the average MSE of symbols as
a function of the number of redundant elements, K, used in the equalization. To
obtain such results, we have used the same scenario previously described, except for
the block size that we have fixed at M = 32. Once again, it is rather clear that

such a figure of merit also degrades as K decreases. Note that we have omitted the
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results for EJF and EYL . since they are respectively equal to EgpUF and 51 YF

Pure Pure
(see Proposition 1). Likewise, Table C.3 exemplifies the monotonic behavior of the
average mutual information between the transmitted and estimated symbols as a
function of the number of redundant elements used in the equalization. Note that
we have omitted the results for Zy¢, Z8F and Zg- "Y' since all of them are equal
to Zyp " (see Theorem 1). One can observe that this figure of merit also degrades
as K decreases.

It is important to note that, as a consequence of Corollary 1, the average error-
probability of symbols associated with both the minimum error-probability and the

DFE MMSE-based systems also increases whenever K decreases.

C.5 Effect of Zeros of the Channel

The FIR-channel model associated with some particular applications may be either
a minimum or a non-minimum phase channel. For the single-carrier ZP zero-forcing
linear transceiver, the authors in [40, 43] have empirically shown that the MSE per-
formance gets worse whenever non-minimum phase channels are utilized, as com-
pared to their minimum phase counterparts. Nonetheless, an analogous empirical
result had not been reported for the other ZP transceivers yet. In this section, we
shall mathematically clarify this point by proving that, for both linear and DFE
optimal ZP transceivers, several figures of merit degrade in the transmissions with
non-minimum phase channels, when some redundant elements are discarded. On the
other hand, if the whole received data block is employed to estimate the transmitted
symbols, then the figures of merit related to such transceivers are not sensitive to
whether the channel zeros are inside or outside the unit circle.

Hence, we shall verify the effect of the locations of the zeros of the channel on
the performance of ZP transceivers. Let us assume that the FIR channel-impulse

response {h(l)}e. is such that its associated transfer function
H(z) =h(0)+h(1)z" +---+ h(L)z" " (C.100)

has at least one zero within the unit circle. The [th zero of H(z) is denoted as
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z € C, where l € {0,1,--- ,L —1} = L\ {L}. Suppose we create a new channel

hnew(DZ?l

-1 L-1

[Ta- 2 1z)

=0

I
™=

Hyew(2)

-~
i
o

*

1 (0)

1— 271z
* —1
=———H(2). C.101
L (©101)
Thus, Hyew(2) is an FIR channel transfer function with the Oth zero, zy, replaced
by 1/z§. Note that |Hyey(e?)| = |H(e?)] for all real w, since the factor

* _ o—1
A(z)— ) V4

= C.102
1—271% ( )

is an all-pass filter, i.e., [A(e™)| = 1, for all real w. In addition, let us define

Snew(K) = Ry (K), where Ryew(K) = HE (K)H,oo(K) € CM*M and K € L.
Moreover, we will restrict ourselves to the cases in which H(K) is generated from
H(K + 1) by discarding the last row of the former matrix, as performed in [40, 43].

Thus, the following key result holds.

Theorem 5. Let us assume that the Oth zero of H(z), zo, is such that |z| < 1.
Thus,

Spew(K) > S(K) > O, VK € L. (C.103)

Proof. First of all, observe that proving that Se(K) > S(K) is equivalent to
proving that O < Rpew(K) < R(K). The former matrix-inequality, however, is

equivalent to demonstrating that
[Hpew (K)W]|2 < [[H(K)w||2, Yw € CM*1, (C.104)

One can interpret the elements of the vector H(K)w as the first M + K samples
of the signal resulting from the linear convolution (h % w)(n), where {w(m)}mem
is a finite causal signal whose samples are the elements of w (see Eq. (C.4)). By
using this interpretation, we shall adapt the ideas present in the demonstration of
Lemma 4.5 from [66] in order to arrive at the desired result. Hence, from Parseval’s

theorem, one can rewrite inequality (C.104) as

I[A() H (™ )W ()]t om0 llo < NI[H (€)W ()]t ar4.10) |25 Y{w(m) bme,
(C.105)

in which [T'(2)]s,(v+k) denotes the first M + K terms of the polynomial 7'(z) = (0)+
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t()z7 e+t (M + L—1)z~MFL=D for K € £.13 In other words, [T(2)]¢ (1) =
t(0) +t(1)z"  + - + (M + K — 1)z~ M+E=1)_ Note that for a given sequence t(n)

whose Fourier transform is T'(e?), the Parseval’s identity holds, i.e.,

3= 3l = -

n=—oo

[ () e = 7)1 (C.106)

Now, assuming that [T'(2)],(z— k) denotes the last L — K terms of the polynomial
T(z), one has

H(e™)W (e) = [H ()W (e™)]s,arr) + [H ()W ()], -k, (C.107)
yielding

A(e™)H(e™)W (™) = A(e™)[H (™ )W (e")] (ar+x)
+A(e™)[H (W)W(e””)]

D (4 AW
+A(®)[H ()W ()] k) » (C.108)
in which we have
[H ()W () rrrey = €MD H ()W ()]s 410 (C.109)
[H ()W () p-k) = M VH ()W ()], (C.110)

where NC stands for noncausal signal, whereas SC stands for strictly causal signal
(all coefficients of the discrete-time Fourier transform multiply a power of e=).1

Let us observe that, since |z < 1, then A(e’) is the discrete-time
Fourier transform of a causal sequence a(n). This means that the product
A(e™)H (ejw)W(ejw)]f(CL_K) represents the discrete-time Fourier transform of a
strictly causal signal. This implies that e*JW(M”{*l)A(eJ‘“)[H(GJW)W(GJW)]E?L_K)
only has powers of e ™ higher than or equal to M + K. On the other hand,

A(e™)H (ej“’)W(er)]fl\fSW +x) may have causal and noncausal parts. We therefore

13Remember that, since {w(m)}mem and {h(l)}cs are causal signals, then H(z)W(z) is a
polynomial in the variable z~!.

“Indeed, due to the definition of [H (e’*)W (e’*)]¢ (nr+k), we have that [H(ej“’)W(eJ“’)]g(CMJrK)
is a polynomial in e/, which means that the associated time-domain sequence is noncausal. On
the other hand, as [T'(2)]),(—k) denotes the last L — K terms of the polynomial T'(z) = ¢(0) +
t(D)z7 4t (M+L—1)z= M+ for K € L, ie., [T(2)),(n-k) = t(M+K)2z~ M+ 4 ¢(M +
KA41)zMFEFD o (M + L — 1)z~ M+L=1) then [H(eJ“)W(eJ"’)]E(CL_K) is a polynomial in
e~ 7% whose independent coefficient equals to zero, which means that the associated time-domain
sequence is a strictly causal signal.
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have

[A(e™) H (e )W (e*)]e ars 1) = [e_Jw(MH(_l)A(e]w)[H(€]w>W(6]w)]f1\,18w+K)}f7(M+K)

— [A(eaw)[H(@aw)W(ewHﬁ(Mw}WM{). (C.111)

Remember that our aim is to prove inequality (C.105). From the former identity,
it follows that
A HE)W (e ls = | [AE)HE)W ) eorao]
< A=) H )W (@) arem)
= [[E @)W ()]s o0

f,(M+K)

2

- Y)Y e,
(C.112)

where the last inequality is a consequence of the fact that A(e’) is a filter that does
not modify the magnitude of discrete-time Fourier transform of signals (all-pass

filter). O

Theorem 5 plays a central role in the characterization of the monotonic behavior
associated with the MSE and mutual information in ZP-based systems. This occurs
since both of these figures of merit are directly related to the matrix S(K) (or
S'(K)), as can be readily seen in Proposition 1 and Theorem 1. In fact, we can be

more specific in this matter by stating the following corollary.

Corollary 3. The average MSE/mutual information associated with the zero-padded
MMSE-based optimal transceivers is decreased/increased whenever at least one zero
outside the unit circle of a non-minimum phase channel is replaced by the related
zero inside the unit circle, assuming that one does not use the whole received data

block to estimate the transmitted signal.

Proof. We know that S,e(K) > S(K) implies that the diagonal elements of
Siew(K) are at least as large as the diagonal elements of S(K). Moreover, we
also know that Spew(K) > S(K) > O implies that Ryew(K) < R(K). The former

expression yields

2 2

Rl (K) = Ruew(K) + 221 < R(K) + 21 = R(K). (C.113)
Thus, we also have
R (K)] 7" =S (K) > S'(K) = [R/(K)] . (C.114)
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These facts eventually yield that the normalized trace of Spew(K) (or S!.,(K))

is at least as large as the normalized trace of S(K) (or S'(K)). Due to Lemma 2,
it is also true that \/SneW(K) > \/S(K) and \/S;eW(K) > \/S’(K). From Lemma 5,
we know that In{Spew(K)} > In{S(K)}. Such fact implies that the normalized trace
of In{S,ew(K)} is at least as large as the normalized trace of In{S(K’)}. The former

sentence can be rewritten as

In < ”(/det{snew(K)}> > In ( M\/det{S(K)}) , (C.115)

which yields

V/det{Spen(K)} > Y/det{S(K)}. (C.116)

In summary, all these facts show that the average MSE associated with the new
channel, H,, (K), is larger than or equal to the average MSE associated with the
original channel, H(K).

Regarding the average mutual information (see Theorem 1), the aforementioned
arguments along with Lemmas 3 and 6 allow one to show that the average mutual
information associated with the new channel, He (K), is smaller than or equal to

the average mutual information associated with the original channel, H(K). ]

Table C.4 exemplifies the results contained in Corollary 3 related to the average
MSE of symbols. In order to obtain these data, we have used o2 = 1, 62 = 0.01,
and channels H;(z), with ¢ € {1,2,3}. The previously described channel H(z) (see
Eq. (C.70) and Figure C.4) has three zeros outside the unit circle. Channel H;(z)
is obtained from H(z) by replacing one of these zeros outside the unit circle, let us
say z1, by 1/z7, in such a way that the magnitude responses of channels H;(z) and
H(z) are the same. Likewise, Hs(z) is generated from H;(z) by substituting one
zero that is outside the unit circle by a zero inside, in such a way that the magnitude
responses of channels Hy(z) and Hy(z) are the same. The same procedure has been
applied to generate the minimum phase channel H;(z) from Hs(z). Thus, one should
read Table C.4 in a per-column basis. As an example, for K = 2, the average MSE
decreases whenever we substitute a zero outside the unit circle by a related zero
inside the unit circle, irrespective of the transceiver type. One can also notice that
the average MSE does not change whenever one uses all the redundant elements
(K =L =29) to estimate the symbols. This occurs since Ryew(L) = R(L) [43].

Table C.5 exemplifies the results contained in Corollary 3 related to the average
mutual information between transmitted and estimated symbols. To obtain such
results, we have used the same scenario previously described. Once again, one can

verify that the mutual information increases when one substitutes a zero outside the
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Figure C.6: Zeros of channels H(z) and H;(z), where ¢ € {1,2,3}, with the unit
circle for reference. All of these channels have the same magnitude response.

unit circle by a related zero inside the unit circle.

Another consequence of Corollary 3 is that the average MSE of symbols associ-
ated with the zero-padded MMSE-based optimal transceivers is increased whenever
non-minimum phase channels are utilized, instead of their minimum phase counter-
parts. Similarly, the average mutual information between transmitted and estimated
symbols of the zero-padded MMSE-based optimal transceivers is decreased whenever
non-minimum phase channels are utilized, instead of their minimum phase counter-
parts. It is worth mentioning that such conclusions are valid assuming that some
redundant elements are not used in the equalization.

Moreover, as a consequence of Corollary 3, the error-probability of symbols asso-
ciated with both the minimum error-probability and the DFE MMSE-based systems
also decreases whenever a zero outside the unit circle is replaced by a related zero

inside the unit circle. Once again, such a monotonic behavior takes place since the
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error-probability of symbols related to these particular transceivers is a monotone
increasing function of the average MSE of symbols in many scenarios [40]. In fact,
if the entire received data block is employed in the equalization, then the error-
probability of symbols related to such transceivers is not sensitive to whether the

channel zeros are inside or outside the unit circle.

C.6 Concluding Remarks

This chapter addressed the analysis of zero-padded optimal linear and DFE
transceivers with full-redundancy. The class of transceivers discussed here includes
zero-forcing and minimum mean-square-error systems, with unitary or non-unitary
precoders. The figures of merit utilized to assess the performance of the various
transceivers analyzed in this chapter were the MSE and the mutual information
between the transmitted and received blocks. The proposed analyses indicated that
the reduction in the relative amount of redundancy leads to loss in performance in
terms of MSE and mutual information, which ultimately may lead to an increase
in the bit-error rate. It is also shown how an attempt to decrease the number of
redundant elements in the equalization in order to reduce the amount of compu-
tations might lead to loss in performance. Moreover, we also proved that channel
zeros outside the unit circle degrade the performance as compared to related channel
zeros inside the unit circle, unless the whole received data block is employed in the
equalization process. Simulation results corroborate the theoretical findings.

From what we have proved in this chapter one can conclude it is worth devel-
oping transceivers which are capable of enhancing the bandwidth efficiency of ZP
transceivers without increasing the data block length. In other words, it is worth-
while searching for practical block-based transceivers with reduced redundancy. In
fact, we shall describe some practical minimum-redundancy proposals in the first
part of this work and, after that, we will address the general reduced-redundancy

systems in the second part of the work.
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Apéndice D

DFT-Based Transceivers with

Minimum Redundancy

One of the key features that enables the widespread adoption of both OFDM and
SC-FD systems is the insertion of redundancy for the block-based transmission. This
redundancy eliminates the IBI and allows computationally efficient implementations
of ZF and MMSE equalizers based on discrete Fourier transform (DFT) and diagonal
matrices [31].

Nonetheless, it is known that the minimum redundancy, required to eliminate IBI
in fixed and memoryless block-based transceivers, is only half the amount employed
in standard OFDM and SC-FD systems [32]. Minimum redundancy may lead to
solutions with higher throughputs. However, throughput is not the only figure
of merit to be considered, since cost effectiveness is an important issue. Indeed,
practical transceivers with minimum redundancy, constrained to be asymptotically
as simple as OFDM and SC-FD systems, have already been proposed [23].

In general, these new transceivers feature higher throughputs than standard
OFDM and SC-FD systems, especially for channels with a large delay spread. In
addition, they are cost effective, since they require either DF'T, inverse DFT (IDFT),
and diagonal matrices, or discrete Hartley transforms (DHT) and diagonal matri-
ces [23]. Both ZF and MMSE solutions are available and they differ from each other
in the number of parallel branches at the receiver end: two parallel branches for
the ZF solutions and five parallel branches for the MMSE solutions, as depicted in
Figures 4.1, 4.2, 4.3, 4.4, and 4.5 from [23].

Even though those ZF- and MMSE-based equalizers with minimum redun-
dancy [23] may require equivalent time for processing a received vector (due to
the inherent parallelism of the receiver structures), the MMSE solutions perform
more than twice the number of computations related to the ZF solutions. This is an
obvious drawback from a cost effectiveness (power consumption) perspective, and

may hinder the use of MMSE-based equalizers with minimum redundancy in some
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practical systems, despite the fact that MMSE-based solutions achieve much higher
throughputs than ZF-based ones, especially for noisy environments [23].

The aforementioned drawback motivated us to further simplify the optimal
MMSE-based equalizers, reducing the number of parallel branches at the receiver
from five to four. In addition we also investigate suboptimal MMSE solutions in this
chapter. Indeed, we propose novel multicarrier and single-carrier transceivers with
minimum redundancy that keep the structure of the ZF solutions, while remaining
as “close” to the optimal MMSE solution as possible. This closeness is measured
by the standard 2-norm of matrices [44]. As a result, the new suboptimal MMSE
transceivers lead to higher throughputs than the related ZF systems, with exactly
the same complexity for the equalization process.

In order to derive the proposed transceivers, we first re-derive the optimal MMSE
equalizers with minimum redundancy in a slightly different manner of that per-
formed in [23]. As for the suboptimal solutions, we start from the brand-new opti-
mal MMSE equalizers with minimum redundancy and apply the displacement ap-
proach [25] along with computationally simple singular-value decompositions (SVD)
based on Householder-QR factorizations [44, 45]. The application of these tech-
niques allows the development of suboptimal MMSE solutions that present com-
parable computational complexity to OFDM and SC-FD systems. In general, the
proposals enable transmissions through long channels with higher throughputs than
these traditional systems, achieving a good trade-off between performance and cost
effectiveness.

This chapter is organized as follows: Section D.1 contains the mathematical
description of the memoryless LTI transceiver model adopted in this work: the
ZP-7J model. By stating some mathematical results, we also present the minimum-
redundancy systems in Subsection D.1.1. This section also includes a description of
the strategy to devise low complexity ZP-ZJ transceivers with minimum redundancy
in Subsection D.1.2. In order to introduce the new decompositions of structured
matrices, Subsection D.1.3 briefly presents the main ideas of the displacement theory.
The simplification of the optimal MMSE equalizers proposed in [23] is described in
Section D.2. The proposed suboptimal MMSE solutions are derived in Section D.3.
Several simulation results are presented in Section D.4. The chapter includes some

concluding remarks in Section D.5.

D.1 Zero-Padded Zero-Jammed Transceivers

As any other communication model, the ZP-ZJ system is comprised of five compo-
nents, namely: channel, transmitter, receiver, input (or message), and output (or

estimated message). As performed in Section C.1, we assume an FIR baseband-
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channel model {h(l)}iez, with h(l) € C for each [ € £ = {0,1,--- , L} C N. As long
as the channel order L is not greater than the length of the transmitted message
N € N, the ISI and IBI effects are respectively modeled by the N x N matrices
Hig; and Hyg; defined in Egs. (C.2) and (C.3), respectively. The transmitter is re-
sponsible for linearly processing the input vector s € CM*! ¢ CM*!, where M € N
is the number of symbols pertaining to a given constellation C. Such a processing
is defined by the matrix F = [FT 05,47, with Fy € CM**M . The number of re-
dundant elements inserted in this transmission is K £ N — M € N. In order to
generate an estimate § € CM*! of the input message, the receiver also processes the
received vector through a linear transformation [67, 68] represented by the matrix
G £ [0nx(1—x) Gol, with Gy € CM*(M+2K-1) [16],

Figure D.1 depicts the ZP-ZJ model, including an additive noise v € CV*!

at the receiver front-end. Note that this model yields the following input-output

relationship:
§ £ GH(2)Fs + Gv = GoHoFgs + vy, (D.1)
in which Hy is the effective channel matrix defined as
(L — K) h(0) 0 0 0 |
h(K) 0
HO _ : h(O) c (C(M—I—QK—L)XM' (DQ)
h(L) :
0 hL — K)
i 0 e« 0 0 h(L) hK) |

Hence, the way the redundancy is padded at the transmitter and jammed at

the receiver end is such that the IBI effect is completely eliminated. The amount

|: 0 :|
Orxnr
SM—1

Figure D.1: ZP-ZJ transceiver model.
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of redundancy, however, cannot be arbitrarily small, as discussed in the following

proposition.

Proposition 2. Assuming that the matrices ¥ and G are full-rank, the ZP-ZJ
transceiver is IBl-free, i.e. GHigF = 0, only when the number of redundant ele-
ments K is such that 2K > L.

Proof. See Lemma 5.1 in [32]. O

Let us consider that we insert at least [L/2] zeros before the transmission takes
place. Thus, assuming both that channel-state information (CSI) is available at
the receiver and that the transmitter uses a channel-independent unitary precoder
Fy, the designer task is to define the rectangular matrix Gy. The most widely
used techniques minimize either the ISI or the MSE of symbols at the receiver end.
The ZF and the MMSE receivers are the respective solutions to such problems.

Analytically, one has

G £ (HoFo)! = [(HoFo)" (HoF,)] ' (HoFo)" = Fy' (HYHy) 'HY = F'H],

(D.3)
2 -1 o2 -1
GMMSE 2 | (H F) (H,Fy) + O%IM (HoFo)" = Ff <H£{Ho + O_ZIM> HY,

S S

(D.4)

where, for the MMSE solution, the vectors s and vy are drawn from zero-mean un-

correlated wide-sense stationary (WSS) random processes s and vo.! Note that

E[svll] = E[s]E[vl] = Omxyr = E[vo]E[s?] = E[vgs]. We also assume that
E[ss] = 021, and E[vgvl] = 021, for some 02,02 € R,. Observe that the

definition of GZ' only makes sense when Hj is full-rank. We shall consider that
{h(l) }icr induces a matrix Hy with rank M.

Assuming the adoption of a more traditional methodology of first estimating
the channel-impulse response and then detecting the symbols, we now proceed to
define two distinct problems: equalization and receiver design. The equalization
problem is simply the processing of the received and jammed vector through the
multiplication by Gy. As a result, the computational complexity of the equalization
is O(M?) complex-valued numerical operations for general unstructured matrices.
Nevertheless, the equalizer matrix depends on the knowledge of Hy and its (possibly
regularized) pseudo-inverse. This knowledge is acquired during the receiver design.
As a consequence, the computational complexity of the receiver design is O(M?)

complex-valued numerical operations for general unstructured matrices. It is worth

IThe time index was omitted for the sake of conciseness.
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mentioning that CP-OFDM and CP-SC-FD solve both the receiver-design and the
equalization problems using only O(M log, M) complex-valued operations [41].
With respect to the ZP-ZJ transceivers, the minimum-redundancy systems [23]
are the state of the art. They only use L/2 redundant elements, considering an even-
order FIR channel model. Besides their high throughput gains in delay constrained
applications in very dispersive environments (L/M = 1), the minimum-redundancy
transceivers are also computationally efficient, since they require only O(M log, M)

complex-valued operations for the equalization [23].

D.1.1 Minimum-Redundancy Systems

The ZF- and the MMSE-equalizer matrices of minimum-redundancy ZP-ZJ systems

are nonsingular square matrices given by [23]

Gihin = Fo'Hy (D.5)
2 —1
G £ Fy'HY <H0H6q + Z;IM> ; (D.6)

in which we have considered that L is even, yielding only L/2 redundant elements
for each data block.
These matrices admit decompositions that employ only DFT, IDFT, and diag-

onal matrices, as described in the following proposition.

ZF and GMMSE

0,min 0,min

Proposition 3. The matrices G can be expressed as

1 2
Gff = 3F5' Wi (S Dp WaDWuD, | WEDY. (07
r=1
1 5
Gomin = 5F0 Wiy (Z Dr—,TWMDWMDqJ wWiaDH, (D.8)
r=1

where Dg, and Dg, are channel-dependent diagonal matrices, whereas D is a
channel-independent diagonal matriz (see [23] for further details). A single-carrier

system is obtained when Fy = I,;, while a multicarrier system is obtained when
Fo 2 Wi

Proof. See Chapter 4 in [23]. O

This proposition indicates the low computational complexity of the minimum-
redundancy transceivers. The decompositions of GE¥, and GYM3F are not lim-
ited to DFT-based representations. Indeed, real-transform-based representations
are also available [23]. Such alternative decompositions use discrete Hartley trans-

form (DHT), which can also be implemented in a superfast way.
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D.1.2 Strategy to Devise Transceivers with Minimum Re-

dundancy

It is well-known that OFDM-based systems enjoy several good properties due to their
structural simplicity. The use of DF'T and IDFT in order to decouple the estimation
of the symbols at the receiver end are paramount to the success of such systems.
Unfortunately, we cannot decouple so easily the estimation of the symbols in a ZP-
7J system with minimum redundancy. Indeed, such decoupling process requires the
computation of singular-value decompositions (SVD), hindering its implementation
in several practical problems.

Despite this potential drawback, we show that there are low complexity ZP-7J
system with minimum redundancy. As a motivating example, let us consider how
a zero forcing SC-FD system using cyclic prefix is implemented. The insertion of
the cyclic prefix turns the linear convolution into a circular convolution between
the transmitted data symbols and the channel impulse response. Using the vector
notation for a noiseless channel, we can write y £ Cs, where C is a circulant matrix
that contains the channel coefficients. From linear algebra, we know that all circulant
matrices may be diagonalized by using the same set of orthonormal eigenvectors.
These eigenvectors are the columns of the normalized DFT matrix. In addition, the
eigenvalues of circulant channel matrices are easily computed by means of the DFT
of the first column of the circulant matrix. Thus, we have y = WZAWs & s =
WHA "Wy = C 'y, considering that A" is computable, i.e., all eigenvalues of C
are nonzero. Hence, the ZF-SC-FD system that employs cyclic prefix decomposes
the inverse of the effective channel matrix using DFT and diagonal matrices. In
fact, this decomposition is quite special since it is a diagonalization of the inverse of
the effective channel matrix.

Our aim is to propose a similar approach: to look for an efficient decomposition
of the “inverse” of the effective channel matrix associated with ZP-ZJ systems with
minimum redundancy. In such systems, the effective channel matrix Hy is no longer
circulant, in fact, it is an M x M Toeplitz matrix. Nevertheless, we still can take
into account the Toeplitz structure in order to decompose the generalized inverse of
H, using only DFT and diagonal matrices. Our approach conveys the same basic
ideas present in OFDM-based systems, except for two main features present only
in OFDM-based systems: (i) the inverse of the effective channel matrix has exactly
the same structure of the effective channel matrix (circulant structure); and (ii) the
efficient decomposition of the inverse of the effective channel matrix corresponds to

its diagonalization.
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D.1.3 Displacement-Rank Approach

Intuitively, a matrix is said to have structure when its coefficients follow a given
formation rule regarding either their relative position in the matrix or their mutual
relationship. This implies that the matrix entries are defined by few parameters
according to a compact formula.

A useful tool for exploiting the structure of a matrix is the displacement ap-
proach [58]. In order to introduce the main concepts of this theory, let us start with
a particular example: consider a nonsingular square Toeplitz matrix T € CM*M
whose ijth entry is defined as [T];; = t;,_j), for all pair of integers 7, j between 0
and M — 1. Note that, when this matrix is either multiplied by a vector or inverted,
all its M? entries are used in such operations. However, this matrix is completely
defined by up to 2M — 1 elements, since the vector [t1_p; -+ to -+ ta—1] defines
the entire matrix T. This way, it would be quite reasonable to expect that matrix
operations may be performed faster by using a reduced amount of parameters. For
instance, instead of using M? additions to add two Toeplitz matrices, the same re-
sult can be achieved by adding 2(2M — 1) = 4M — 2 elements and then rearranging
them accordingly.

This simple discussion motivates the definition of linear displacement operators:

given two matrices X,Y € CM*M the linear transformations [25]

VX,Y . (CMXM N (CMXM

U~ Vxy(U) £ XU -UY (D.9)

AX,Y . (CMXM N (CMXM

U~ Axy(U) 2 U - XUY (D.10)

are the so-called Sylvester and Stein displacement operators, respectively.

With these displacement operators, one can choose the operator matrices X and
Y in a clever way in order to compress a given structured matrix U. The resulting
matrix Vx y(U) or Ax y(U) is the compressed form of U if its displacement rank is
small, i.e., R =rank{Vx y(U)} < M or R = rank{Ax v(U)} < M, where R is not
a function of M. The idea behind the displacement approach is that the compressed
form of a structured matrix contains all the information of the original matrix, but
with a reduced amount of elements. Besides, with some rather mild constraints on
X and Y, it is possible to decompress the matrix Vx v(U) or Axy(U) in order
to recover the original matrix U. Thus, operations with the original matrix can be
directly translated into operations with its compressed forms [25].

As an example, it is easy to verify that, given the operator matrix Z, =

[ex -+ ey Aei], for some A € C, the Sylvester operator Vg, z, applied to a
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Toeplitz matrix T yields

vZn,Zf (T) - Z77T - TZ§

ntai1 mta—s oo nto ty o tim o
| o toy oty : : 137)
: : : taeg -t :
| tv—2 v et ty—o -+ to  Ety—1
Nt —to1 -t —tia nt — &t
0 e 0 v — &l
i 0 e 0 to1— &t
1
0
= 1. {ntM—l —lor s oMty —tionm 77?50}
0 ar
——
p1
—&to
Li—y — &t
+ , 00 - 1
. —_————
AT
b1 — &ty 4
———
p2
al | sa
= P1a] + P2y = [D1 D2] | ., | = PQ". (D.11)
q>
Hence, for n = —1 and € = 1, Vz_, 7 (T) = PQT = p,a7 + p.a7, with
pr=1[1 0 - 0", @ = —[(tmo1+to1) - (bh+tim) to)', P2 =
[—to (tlfM - tl) tee (t,1 — thl)]T, and (Alg = [O 0o --- 1]T The pair of

matrices (f’, Q) € CM*2 x CM*2 i5 the so-called displacement-generator pair. From
this example, it is obvious that a Toeplitz matrix can be compressed, whenever
M > R <2.

The operations with a compressed form of a given matrix may be efficiently

performed if some well-known results are applied, for instance (see Theorems 1.5.1,
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1.5.3, and 1.5.4 in [25]):

Vyx (U~ 1) U~ 1VXY(U)U_l, ( )
Axy-1(U) = -Vxy(U)Y !, (D.13)
Vxz(UV) =Vxy(U)V +UVyz(V), ( )
Vxy(aU+ BV) = OlVX y(U) + 8Vxy(V), ( )

for any scalars a, (3, and any 5-tuple {U,V,X|Y,Z} of complex-valued matrices

with compatible dimensions and, when necessary, nonsingular.

D.2 Optimal MMSE Equalizers with Minimum
Redundancy

Even though the existence of practical ZF solutions is important, most real-world
systems work in environments where noise cannot be considered null. In such sce-
narios, the MMSE designs are more suitable. In this section we develop a novel
DFT-based structure for linear MMSE block-based transceivers with minimum re-
dundancy. Such a new result is distinct from the one described in Eq. (D.8), since
it employs only four parallel branches at the equalizer, instead of five branches.
The result of this section exemplifies the operation stage associated with the
displacement-rank approach Indeed, let us define the transmitter-independent re-
ceiver matrix K £ FyGiMsE € CM*M. From Eq. (D.6), one can easily verify
that K = HY (HoHY + pIp)~'. Note that for the MMSE solution, the related
transmitter-independent receiver matrix K is obtained from operations upon the
effective channel matrix Hy. One may therefore argue if there is any relationship
between the displacement-generator pair of K and the displacement-generator pair
of Hy. Theorem 6 contains a result which shows how to operate on the displacement-

generator pairs of Hy and H{ in order to derive the displacement-generator pair of
K.

Theorem 6. For all (£,n) € C?, with n # 0, one has Vz.z,, (K)= PQ”, where

0-2 0-2 -1 A A
P = [2 (Hngo + gI) P - KP] : (D.16)
o g
s s M x4
_T A A
Q= {(HOHOH +21) Q K'Q| | (D.17)
s M x4

with (P, Q) € CM*2 x CM*2 gpd (P', Q') € CM*2 x CM*2 being the displacement-
generator pairs of Vg, , z.(Ho) and st’zl/n(Hé{), respectively. These generators

are easily found by using Fq. (D.11).
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Proof. By using the result expressed in Eq. (D.14), we have

Q"H{!

AT
/

vzl/mzun (HOH(I){> = [P HOIS/} = PQT- (D.18)
—_—

ﬁ —_

QT

Now, define A = (HOH(IJ{ + Z—él) Since V2,2, (I) = Ounxnr, then
Vz,,,.2,,(A) = PQ”. From Eq. (D.12), it follows that

Vay,z, (A1) = ~AVa,, 0, (A AT = [FAP][ATQ] = P

B aqr
(D.19)
Thus, by again using Eq. (D.14), one has
R . Q/TA—I

Vizez, (HIA™) =[P BHIP||™ . | =PQ" (D.20)

— Q

P -
QT

P=[P -KP -—KHZP| (D.21)
Q=[A"Q K'Q ATQ|, . (D.22)
By applying the matrix inversion lemma [16], it is possible to show that
o’ o2 \ ' s s A
PQT = P (H{fHD + 021> P'Q A!'-KPQ'K, (D.23)

resulting in a more compact definition for (P, Q) € CM*4 x CM*4 as in Egs. (D.16)
and (D.17). O

Hence, by using the result of Theorem 1 from [23], combined with Theorem 6 of
this chapter, and considering that (§,7) = (1, —1), we have

m=0 ">

1 4 ﬂ )
K= §W1\H/[ lz Df’rWM (diag{eﬂﬁm}%:—ol> WMDQT] Wﬁdiag{e‘ﬂﬁm M-1
r=1

(D.24)

with P = [Py -+ pu] and Q = [§; --- G4] defined as in Theorem 1 from [23].

Note that we have introduced the notation D,, = diag{v}, for any vector v.
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Thus, in the multicarrier transmission, we can define
F,= W1, (D.25)

2 m=0>

1[d . .
Gy == [Z Dy, W (diag{e/Fm140) wMDqT] Wi diag{e ™41 (D.26)
r=1

in order to achieve the linear MMSE solution. Similarly, in the single-carrier trans-

mission, we can define
Fo =1, (D.27)

m=0 ">

1 4 i )
Gy = §W1\H/[ [Z Ds Wy (diag{ejﬁm}f‘é’:_ol) WMDQT] W diag{e7arm ) M-1
r=1

(D.28)

in order to achieve the linear MMSE solution.

Note that the equalization process of the linear MMSE solution requires almost
the same processing time of the ZF solution, since the structures of the receivers
are very similar and it is also possible to take advantage of the inherent parallel
structures (see Figure D.2). Nevertheless, the MMSE solution entails four parallel
branches instead of only two employed in the ZF solution.

In order to illustrate the computations related to the proposed decompositions
of Fy and Gy, especially concerning the definitions of the one-tap equalizers, let
us consider a toy example of a minimum-redundancy single-carrier transmission

through an FIR baseband channel model
Hiz)=1-7)+ 2+ + (B -2 (D.29)

In addition, assume that M = 3 innovative data symbols are transmitted per block.
In such a case, we have L = 2, implying that only one redundant element is trans-
mitted per block. Under these conditions, one can set Fy = I3 while Gq is defined

as in Eq. (D.28), considering an MMSE-based equalizer, in which

. 1 1 1
Wy =-—— |1 75 %], (D.30)
\/g 6_34?” 6_]27”
1 0 0
diag{e’s™}2 ;= [0 e/5 0 (D.31)
0 0 &F
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As for the diagonal matrices Dp, and Dg,, they depend on the channel model.

Indeed, we have the following matrices for the chosen channel model:

2+ 1=y 0
Ho=|B-y @2+ (1-9], (D.32)
0 (B-y 2+
L (=147 (=3+)) (-4-29)
Vz .z, (H) =PQ" = 0 0 (=347 |, (D.33)
.0 0 (1—7)
| (=2=y)
P=10 (-347)], (D.34)
0 (1-y)
(~1+7) 0
Q=|(-3+ 0. (D.35)
(=2—-) 1]

With the help of such matrices, one can compute the equalizer matrices Dy, and
Dg,, with r € {1,2,3,4}, by first determining the matrices P = [p; --- P4] and

Q =[q; -+ Qs defined as in Theorem 1 from [23]. In the case of linear MMSE-
based equalizers, assuming an SNR of 10 dB, one has the following matrices:

K = HY (HH +107'13)7!

[ (0.2285 — 70.1811)  (0.0920 + 70.0752) (—0.0631 + 70.0362)
(0.0998 + 70.2335)  (0.0682 — 70.1677)  (0.0920 + 50.0752) | , (D.36)
|(—0.3299 — 70.1315)  (0.0998 4 70.2335)  (0.2285 — 50.1811)

Vz,z_,(K)=PQ"

(—0.4219 — 50.2067)  (0.1630 + 70.1973)  (0.4570 — 70.3621)
(0.1604 — 50.0134) 0 (0.0367 + 70.2696) |,  (D.37)
0 (—0.1604 + 70.0134)  (—0.2379 — 70.0563)

Q

Q
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in which

0.0107 0.0009 (—0.2285 + 70.1811)  (1.0163 — 50.0993)
P ~ [(—0.0030 + 70.0045) (—0.0112 — 70.0056) (—0.0998 — 70.2335) (—0.1643 + 70.0123)| ,
| (—0.0048 — 0.0076)  (0.0528 4+ 70.0154)  (0.3299 + 50.1315)  (—0.0427 + 70.4172)|

(D.38)

(—1.1875 — 70.4174)  (—0.0477 — 0.0762) (—0.0522 + 70.4020) (—0.3299 — 70.1315)
Q~ | (0.3116 4 70.5233)  (—0.0296 + 70.0448) (—0.1702 + 70.0213)  (0.0998 + 70.2335) | ,

| (0.4478 — 50.3621) 0.1067 (—0.9623 — 50.0993)  (0.2285 — 50.1811) |
(D.39)
[(—0.0029 + 70.0031)  (—0.0425 — 70.0098) (—0.0015 — 70.0791) (—0.8094 — 70.3302)]
P~ —0.0250 (0.0381 — 50.0505)  (0.6596 — 70.6042)  (—0.7691 + 70.2088) | ,
| (—0.0040 — 0.0031)  (0.0016 + 70.0603)  (0.0274 + 50.1401)  (—1.4704 + 70.4194) |
(D.40)

(—1.2890 — 70.8668) (—0.0885 — 70.1275) (0.6548 + 70.0970) (—0.5317 — 70.2007)

(—1.1057 + 70.6504)  (—0.1429 + 70.0064) (1.3879 + 70.4822) (—0.3551 + 70.1978)

| (1.0513 4 71.3028)  (—0.0886 +70.1211) (0.8444 — 50.2814)  (0.2012 + 70.5461)
(D.41)

O
X

By observing the elements of the vectors p, and q,., with r € {1,2,3,4} (see the
column vectors in Egs. (D.40) and (D.41)), it is hard to see any relationship between
pairs of such vectors (there are a total of eight distinct column vectors). Actually,

these vectors come from the relations [23]

P = —V3W;P, (D.42)
Q= V3W;, (diag{eﬂgm}fnzo) Z_.Q, (D.43)

in which P and Q are defined in Eqgs. (D.38) and (D.39), respectively. In other words,
in order to compute the equalizer taps, one might first determine the matrices P and
Q. After that, the equalizer taps are calculated employing O(M log, M) operations.

Now, with the exception of q4 = —J3ps (see the column vectors in Egs. (D.38)
and (D.39)), with

Js = (D.44)

_ o O
o = O
o O =

it is still hard to see any relationship between pairs of column vectors in matrices
P and Q. In fact, such an observation is not new. In [24], p. 161, the authors
state that the coefficient vectors which define the displacements related to general-

ized Bezoutians? are solutions of certain “fundamental equations.” These coefficient

2The inverse of a Toeplitz matrix, T, is also known as a Toeplitz-Bezoutian matrix, or simply,
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vectors are related to each other in a quite complicated manner, with exception of
centrosymmetric Bezoutian matrices [24]. A similar remark is pointed out in The-
orem 3.1 of [49], in which eight linear systems have to be solved in order to define

the generator pair (P, Q).

Nevertheless, in the case of ZF receiver, in which the receiver matrix is essentially
the inverse of the Toeplitz effective channel matrix, the relationship between pairs
of column vectors within the resulting matrices P and Q is rather simple [24]. This
fact simplifies the determination of the equalizer taps associated with ZF minimum-
redundancy systems. Indeed, in the case of ZF equalizers, one has the following
matrices for the chosen channel model:

(0.2345 — 50.1862)  (0.0897 + 0.0759)  (—0.0634 + 0.0386)
Hy'~ | (0.1034 4 70.2414)  (0.0690 — 0.1724)  (0.0897 4+ 70.0759) |,  (D.45)
| (—0.3448 — 0.1379)  (0.1034 + 70.2414)  (0.2345 — 40.1862)

Vz,z_,(Hy') =PQ"

(—0.4345 — 50.2138)  (0.1669 + 70.2028)  (0.4690 — 70.3724)
(0.1655 — 70.0138) 0 (0.0400 + 70.2800) |, (D.46)
0 (—0.1655 4 70.0138)  (—0.2552 — 70.0621)

Q

in which

(—0.2345 + 50.1862)  (1.0248 — 50.1021)
P~ |(—0.1034 — 50.2414) (—0.1655 + 70.0138) | , (D.47)
| (0.3448 4 70.1379)  (—0.0483 + 70.4207) |

[(—0.0483 + 70.4207)  (—0.3448 — 70.1379)

Q =~ |(—0.1655 4 0.0138)  (0.1034 + 70.2414) | , (D.48)
|(—0.9752 — 50.1021)  (0.2345 — 50.1862) |
[(—0.0069 — 70.0828) (—0.8110 — 70.3324)]

P~ | (0.6837 — 70.6261)  (—0.7793 + 70.2178)| , (D.49)
| (0.0267 + 70.1503)  (—1.4841 + 70.4208) |
[(0.6575 + 70.1204)  (—0.5482 — 70.2125)

Q ~ |(1.4101 + 70.4907)  (—0.3690 + 70.2056) | . (D.50)

(0.8579 — 50.3048)  (0.2138 + 0.5655)

Note that in the ZF case, there are four distinct vectors which define the equalizer
matrices Dg, and Dyg,, with r € {1,2}, (two column vectors in Eq. (D.49) and two
column vectors in Eq. (D.50)), being very hard to see any relationship which is able
to link such vectors. However, by using Eqs. (D.42) and (D.43), the distinct vectors
that compose the matrices P and Q can be calculated from Eqs. (D.47) and (D.48),
which could be summarized using two distinct vectors only, since q; = Jp,—[0 0 2]7

and q2 = —Jp;. It is worth mentioning that the computation of matrices D, and

a T-Bezoutian matrix. It is possible to show that rank{Vz, z, (T~1)} < 2. In general, a matrix B
which respects rank{Vz, z (B)} < R is a (generalized) Bezoutian matrix. See, for example, [23,
24]. The MMSE-based receiver matrix pertains to this class of matrices.
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Dy, is performed in the equalizer design stage (see Chapter J). If the channel does

not vary, then matrices Dy, and Dg, are constant matrices as well.

D.3 Suboptimal MMSE Equalizers with Mini-

mum Redundancy

An interesting fact concerning the MMSE and the ZF solutions in the case of stan-
dard OFDM and SC-FD systems is that both induce the same equalizer structure
at the receiver end. For example, in an SC-FD system, the process of “inserting
and discarding” redundancy induces an effective circulant channel matrix. For such
a matrix, the related MMSE- and ZF-receiver matrices are both circulant as well.
Note that this resemblance does not happen in the case of minimum-redundancy
systems, since the effective channel matrix Hy is Toeplitz. Indeed, for the single-
carrier solution, the related ZF-receiver matrix is a T-Bezoutian matriz, whereas
the related MMSE-receiver matrix is a (generalized) Bezoutian matriz.

These facts, along with the practical necessity of designing simpler equalizers,
led us to investigate the “best” T-Bezoutian matrix that still takes into account the
presence of noise. Thus, instead of using a generalized Bezoutian matrix K as in
the optimal MMSE solution [23], we shall describe how to design another matrix K,
which is the “closest” T-Bezoutian matrix to K. An additional constraint is that
the method to achieve this new suboptimal solution must be computationally cheap.

The low-complexity requirement motivated us to work with the compressed form
of K and K. This means that we will operate on at most 4M coefficients per
matrix, instead of M?. Hence, we now derive a pair (P, Q) € CM*® x CM*E with
R € {2, 3}, from a known pair (P, Q) € CM** x CM** where Vg, z_,(K) = PQ”
and Vz, z_, (K) = PQT. In order to do this, we will employ the useful result stated
in Lemma 7 (see Chapter C), which shows how one can choose the closest (in the
Euclidean-norm sense) matrix to a predefined matrix, using the knowledge about
the SVD associated with such a predefined matrix.

Thus, by applying Lemma 7, we can use a similar reasoning as in [25, 45] in
order to derive a new generator pair (f’, Q) € CMxE y CM*E related to a matrix K
based on the SVD of PQT. Therefore,

P = first R columns of{Ui} and Q = first R columns of {V}, (D.51)

where PQT = UX VT and R € {2, 3} (for T-Bezoutian matrices, R = 2). This is
a suboptimal MMSE solution in the sense that the resulting displacement matrix
is the closest one to the displacement matrix of the optimal MMSE solution, where

the closeness is measured by the induced Euclidean norm of matrices.
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However, this solution is based on SVD of M x M matrices, which, in general,
requires O(M?) computations [44]. We now describe a way to simplify these SVD
computations by taking into account the structure of the matrices. The resulting
computational complexity for this specific SVD process is only O(M) operations.

The aforementioned SVD computations may be efficiently performed by first
computing QR decompositions of the matrices P and Q [45]. The QR algorithm
decomposes a given matrix X into a unitary matrix @ and an upper triangular ma-
trix R [44]. There are several versions for the QR algorithm [44]. Among them, the
Householder-based QR factorization is one of the most popular. Thus, by applying
a complex version of Algorithm 5.2.1 described in [44] (see also Sections 5.1.2, 5.1.3,
and 5.1.4 of this reference), it is possible to calculate four matrices Qp, Rp, Qq,
and Rq, such that QpRp = P and QqRq = Q. All these computations require
only O(M) operations since they are based on computationally efficient Householder
reflections [44].

In addition, as P and Q are M x 4 matrices, then PQ? = QP(RPRS) g is
such that

(D.52)

RoR :[ R, 045 (rr—2) ]

Ovi—ayxa Or—ayx(ni—1)

The resulting matrix Ry is 4 x 4. Thus, a general SVD algorithm may be applied
now to this reduced-dimension matrix. This can be done using O(4%) numerical
operations [44]. Hence, assuming that R, = U2,V with Uy and Vy being

unitary matrices, we have
> \ '
4 4
Qq . (D.53)
Onr—sa | By

=U =3 =VT

IM—4

PQT = QP [U4

Therefore, we can apply Eq. (D.51) to derive the proposed solutions. The number
of operations to obtain the generator pair (P, Q) from the generator pair (P, Q) is
around (72 + R)M. In our case, R = 2, which means that the actual number of
operations is around 74 M.

We have assumed that (P, Q) is known. In fact, these matrices completely define
the MMSE equalizer, since they are the only ones that contain information about the
channel. Nevertheless, these matrices must be previously computed in the so-called
receiver-design stage [23]. This task can be performed using up to O(M logs M)
operations [23]. We have shown that the design of (P, Q) does not increase sub-
stantially the complexity of the receiver-design stage, since M logi M > M, for all

M > 2 . Besides, there are many applications in which the equalizer-design problem
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is not frequently solved. In wireline communications systems, the channel model is
not updated so often. This means that the main problem is the equalization. Tak-
ing these facts into account, this chapter proposes suboptimal MMSE solutions that
considerably reduce the computational effort during the MMSE-based equalization
process.

It is worth mentioning that the proposed suboptimal solution is not the optimal
T-Bezoutian-MMSE solution. Indeed, we had attempted to design a T-Bezoutian
matrix K', such that [|s — 8|2 is minimized, where § = K'(HoFos + v'). However,
after lengthy calculations, we verified that the solution to such a problem requires
the use of optimization techniques that employ more than O(M) operations. Even
though our proposals are not the optimal T-Bezoutian-MMSE solution, the simula-
tions indicate that suboptimal solutions perform rather close to the optimal MMSE

solutions (generalized Bezoutians) in a number of situations.

D.4 Simulation Results

This section aims at evaluating the performance of the DFT-based transceivers with
minimum redundancy in some particular scenarios. The figures of merit adopted
here are the uncoded BER and the throughput. The uncoded BER is defined as the
bit-error rate without considering the protection of channel coding. The throughput

is defined as

Throughput = br, (1-BLER)fs bps, (D.54)

M+ K

in which b denotes the number of bits required to represent one constellation symbol,
r. denotes the code rate considering the protection of channel coding, K denotes the
amount of redundancy, fs denotes the sampling frequency, where symbol and channel
models use the same sampling frequency, and stands for block-error rate, assuming
that a data block is discarded when at least one of its original bits is incorrectly
decoded at the receiver end. In addition, the definition of the signal-to-noise ratio
(SNR) used throughout the simulations is the ratio between the mean energy of the
transmitted symbols at the input of the multipath channel and the power-spectral
density of the additive noise at the receiver front-end. Besides, we also consider that
both synchronization and channel estimation are perfectly performed at the receiver

end.

Optimal MMSE Equalizers With Minimum Redundancy

In this example, we transmit 200 blocks, each one containing M = 32 BPSK [34, 35,

69] data symbols (without taking redundancy into account), and compute the un-
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coded BER and throughput by using a Monte-Carlo averaging process with 10, 000
simulations. Consider these symbols are sampled at a frequency f; = 1.0 GHz and
that they are transmitted through a channel with a model operating at the same
frequency as the symbols and with long impulse response of order L = 30. All the
channel taps have the same variance, and the channel model is always normalized,
that is, E[||h||3] = 1. Both the imaginary and real parts of the channel are indepen-
dently drawn from a white and Gaussian sequence (random Rayleigh channel) [70].
For each simulation a new channel is generated. Due to the randomness in the
choice of these realizations, it is very likely that the amount of congruous zeros re-
lated to the channel is smaller than the amount of redundancy, which guarantees
the existence of ZF solutions [33, 57, 71, 72].

Furthermore, since the proposed transceivers use zeros as redundant elements,
the adopted OFDM and SC-FD systems in the simulations are the ZP-OFDM-OLA
and ZP-SC-FD-OLA [37], where ZP and OLA stand for zero-padding and overlap-
and-add, respectively (see Subsections B.3.2 and B.3.4). Like the traditional cyclic-
prefix-based systems, these ZP-based transceivers also induce a circulant channel
matrix. We have chosen these transceivers as benchmarks since they are superfast
transceivers that transmit L redundant zeros for each M data symbols. In sum-
mary, from now on we shall consider that OFDM means ZP-OFDM-OLA
and SC-FD means ZP-SC-FD-OLA in all results throughout the entire
text.

Figure D.3 and Figure D.4 show the uncoded BER curves® for the OFDM,
the SC-FD, the multicarrier minimum-redundancy block transceiver (MC-MRBT),
and the single-carrier minimum-redundancy block transceiver (SC-MRBT), using
both ZF and MMSE designs. By observing these figures it is possible to ver-
ify that the MMSE-MC-MRBT outperforms its counterpart, the MMSE-OFDM.
As expected [73], the MMSE-OFDM has the same performance as the ZF-OFDM.
On the other hand, the MMSE-SC-FD outperforms the MMSE-SC-MRBT for the
whole SNR range. As expected, for the ZF solutions, the BER performances of the
transceivers are only comparable with the MMSE when the SNR is large.

3The uncoded BER is the bit-error rate computed before the channel-decoding process at the
receiver end.
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Figure D.3: Uncoded BER as a function of SNR, [dB] for random Rayleigh channels,
considering DFT-based multicarrier transmissions.
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Figure D.4: Uncoded BER as a function of SNR [dB] for random Rayleigh channels,
considering DFT-based single-carrier transmissions.
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As observed in Figure D.5 and Figure D.6, the throughput performances of the
proposed transceivers are much better than the traditional ones, except for SNRs
lower than 12 dB in the ZF solutions. In this example, we use a convolutional code
with constraint length 7, 7. = 1/2, and generators go = [133] (octal) and g; = [165]
(octal). This configuration is adapted from the 3G-LTE specifications [74]. In addi-
tion, for the BLER computation, we consider that a block (16 bits) is lost if, at least,
one of its received bits is incorrect. We have employed a MATLAB implementation
of a hard-decision Viterbi decoder. We do not make any restriction on the channel
model in terms of condition number of the effective channel matrix. Note that such
favorable result stems from the choices for M and L (delay constrained applica-
tions in very dispersive environments). These types of applications are suitable for
the proposed transceivers. In the cases where M > L, the traditional OFDM and
SC-FD solutions are more adequate.

In fact, for M > L, it was observed that the noise enhancement is even higher
in the proposed transceivers. For example, consider the results depicted in Fig-
ure D.7 and Figure D.8, where M = 64, L. = 6, and the throughput is computed
as previously. The ZF-MC-MRBT and ZF-SC-MRBT have poor throughput per-
formance due to the noise enhancement. However, the MMSE-MC-MRBT and
MMSE-SC-MRBT may be used when the designer is willing to pay the price of a

higher computational complexity.

Suboptimal MMSE Equalizers With Minimum Redundancy

In order to evaluate the performance of the proposed suboptimal solutions, four

channel models were considered:

o Channel A [32], whose transfer function is

Ha(z) = 0.1659 + 0.30452 1 — 0.11592 2 — 0.07332 — 0.00152*. (D.55)

o Channel B [12], whose transfer function is

Hg(z) = — (0.3699 + 70.5782) — (0.4053 + 50.5750)z~" — (0.0834 — 70.0406)z >
+ (0.1587 — 50.0156) 22 + 0z % (D.56)

o Channel C'[75], whose transfer function is

Ho(2) =1+05271 07272409273 + 274 (D.57)

o Channel D [31], whose zeros are 1,0.97, —0.97, and 1.3 exp(j%”).
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Figure D.5: Throughput [Mbps| as a function of SNR [dB] for random Rayleigh
channels, considering DFT-based multicarrier transmissions (M = 32 and L = 30).
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Figure D.7: Throughput [Mbps| as a function of SNR [dB] for random Rayleigh
channels, considering DFT-based multicarrier transmissions (M = 64 and L = 6).
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Figure D.8: Throughput [Mbps| as a function of SNR [dB] for random Rayleigh
channels, considering DFT-based single-carrier transmissions (M = 64 and L = 6).
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We transmitted 100,000 blocks containing 16 data bits (8 data bits for Channel
A) that generates 32 bits (16 bits for Channel A) after passing through a convolu-
tional encoder with constraint length 7, r. = 1/2, and generators go = [133] (octal)
and g, = [165] (octal) [74]. These bits are then mapped into M = 16 QPSK sym-
bols using a Gray-mapping scheme (8 symbols for Channel A). After the redundancy
insertion, the resulting block is transmitted through Channels A, B, C, and D, whose
orders are* L = 4. At the receiver end, a data block is discarded when at least one
of the original 16 bits (8 bits for Channel A) is incorrectly decoded.

Figures D.9, D.10, D.11, D.12, D.13, D.14, D.15, D.16 depict the obtained
results. For each setup, we compare four transceivers: the MMSE-OFDM or
MMSE-SC-FD systems, the multicarrier or single-carrier minimum redundant block
transceivers (MC-MRBT or SC-MRBT) proposed in Section D.2, and the subopti-
mal MMSE proposals, which discard the two smallest single-values of PQ?, yielding
a T-Bezoutian matrix.

From Figure D.9 one can observe that the suboptimal MMSE solution for this
transmission is as good as the optimal one, being both of them much better than
the MMSE-OFDM system. One can verify in Figure D.10 that our proposal is again
very efficient with respect to the throughput, especially for large SNRs. It is possible
to verify that the T-Bezoutian-ZF solution (see Eq. (D.7) and Chapter 4 in [23])
should not be used in the setup of Figure D.11, but the proposed T-Bezoutian-
MMSE solution is a good choice. A similar observation applies to Figure D.12,
except for the fact that none of the minimum-redundancy transceivers are better
than the MMSE-SC-FD system. Figures D.13, D.14, D.15, D.16 also illustrate the
fact that the proposed T-Bezoutian-MMSE solutions enhance the T-Bezoutian-ZF
proposed originally in [23].

Table D.1 contains the relative importance (in percentage) of the singular-values
related to the compressed form of the optimal MMSE solution PQ? for Channels
A, B, C, and D. The last row of each table shows how much we are discarding of
the total sum of singular-values to get the suboptimal solution. Let us consider
Channel A, for instance, for an SNR of 20 dB, we discard 9.1% of the total sum
of the singular-values, i.e., 9.1% ~ (03 + 03)/(0f + 0} + 05 + 0%). Note that the
first two singular-values are extremely important for the representation of PQ? for
all SNRs, confirming the fact that a T-Bezoutian is a good choice for a suboptimal
MMSE solution.

4These setups exemplify delay constrained applications in very dispersive environments since
L=M/2or L=DM/4.
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Table D.1: Relative importance (percentage) of the singular-values of PQT.

Channel A
SNR[dB] | 0 | 10 | 20 | 30 | 40 |
o2 61.8 [ 57.8 [ 72.6 [ 55.9 [ 51.4
07 34.4(35.0 183 |44.0 | 48.6
03 28 [ 57179101100
03 1.0 1512100700
o2+o2 [ 3817291017100

Channel B
SNR[dB] | 0 | 10 [ 20 [ 30 [ 40 |
ol 56.6 | 58.1 | 57.0 | 56.3 | 56.4
ol 38.8 [ 32.9 | 34.8 | 36.4 | 36.5
03 45 | 87 | 7.8 | 69 | 6.7
o3 01 ]03]04]04]04
os+o05 | 46 | 90 | 82 | 7.3 | 7.1

Channel C
SNR[dB] | 0 | 10 | 20 | 30 | 40 |
02 57.0 | 47.6 [ 56.4 | 59.0 | 59.1
07 285 | 24.2 [ 34.1]40.2 ] 40.8
03 87 1186 62 | 0.5 | 0.1
03 58 1 9.6 | 331031 0.0
o +o2 [ 145]282] 95 | 0.8 | 0.1

Channel D
SNR[dB] | 0 | 10 [ 20 [ 30 [ 40 |
ol 61.0 | 54.3 | 56.9 | 59.9 | 60.4
o2 24.8 [ 20.9 | 31.3 | 38.3 | 39.4
o3 107168 7.2 | 1.1 | 0.1
o3 35 | 80 | 46 [ 0.8 | 0.1
os+o05 [ 142248 |11.8] 1.9 | 0.2

D.5 Concluding Remarks

In this chapter we described the basic zero-padded zero-jammed model to be used
throughout this text. By using the displacement-rank concepts we were able to
propose a simpler structure for the DFT-based optimal MMSE equalizer with mini-
mum redundancy. In addition, new suboptimal MMSE equalizers requiring only half
the amount of redundancy used in standard OFDM and SC-FD systems were pro-
posed. Compared to previous proposals, the obtained multicarrier and single-carrier
transceivers have the same structure of the ZF solutions with minimum redundancy,
which perform around half the computations of the related optimal MMSE solutions.

We presented some simulation results that confirm the throughput improvements of
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the proposed solutions over the traditional OFDM and SC-FD systems for delay con-
strained applications in very dispersive environments. A key feature of the proposals
refers to the computational complexity for the equalization, requiring O(M log, M)

operations, which is the same asymptotic complexity of OFDM and SC-FD systems.
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Figure D.9: Throughput [Mbps] as a function of SNR [dB] for Channel A, considering
DFT-based multicarrier transmissions.
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Figure D.14: Throughput [Mbps| as a function of SNR [dB] for Channel C, consid-
ering DFT-based single-carrier transmissions.
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Figure D.15: Throughput [Mbps| as a function of SNR [dB] for Channel D, consid-
ering DFT-based multicarrier transmissions.
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Apéndice E

DHT-Based Transceivers with

Minimum Redundancy

The performance of real transform-based transceivers using L redundant elements
has been studied in some works [46, 47]. Some key advantages of employing these
transceivers rely on the following three facts [46, 47]: (i) real transforms, such as,
discrete sine and discrete cosine transforms (DST and DCT, respectively) have larger
sidelobe attenuation than DFT. This implies less intercarrier interference (ICI) leak-
age to adjacent subcarriers for MC-based transceivers; (ii) MC systems may bene-
fit greatly from using real transforms along with real baseband modulations, such
as PAM, since the transmission of inphase/quadrature (I/Q) data is not required,
avoiding I/Q-imbalance problems; and (z7i) DST, DCT, and DHT have superfast!
implementations, keeping a competitive asymptotic computational complexity for
the number of numerical operations, O(M log, M), for M data symbols.

When dealing with minimum-redundancy systems, the first proposal of real
transform-based transceivers in [23] has shown the possibility of implementing com-
munications systems using only DHT and diagonal matrices. However, the proposed
transceivers require a symmetric channel impulse response. This condition may be
met with the introduction of a prefilter at the receiver front-end in order to turn
the effective channel impulse response symmetric. This approach was also adopted
in [46].

The aim of this chapter is to propose a technique that eliminates the aforemen-
tioned symmetry requirement on the FIR channel model. For this purpose, some new
fixed and memoryless block-based systems are proposed. These new transceivers do
not constrain the channel impulse response to have any kind of symmetry. They may
be multicarrier or single-carrier, with either ZF or MMSE receivers. The transceivers

only use DHT, diagonal, and antidiagonal matrices in their structures. For this rea-

IThat is, transceivers that require O(M log® M) operations, for d < 3 [25].
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son, the proposed designs are computationally as simple as OFDM and SC-FD
systems, while being much more efficient with respect to the bandwidth usage.

The displacement rank theory [25] is applied in order to derive such new
transceivers, using new representations of structured matrices. These new represen-
tations are heavily based on the decompositions proposed in [48]. The differences
between this chapter and [48] rely on the fact that the restriction of only working
with real matrices, as well as the necessity of extending the involved matrices with
zeros are no longer present in this chapter. These features eventually allow us to
work with channel models comprised of complex-valued taps and to design multi-
carrier transceivers, which are not possible by using the same formulation proposed
in [48].

This chapter is organized as follows. Section E.1 contains the definitions of all
types of DHTs and DFTs that will be used throughout this chapter. Section E.2
describes the two main results of this chapter related to the development of new
ZF and MMSE superfast transceivers based on DHTs, diagonal, and antidiagonal
matrices. Simulation results are described in Section E.3, whereas the concluding

remarks of the chapter are in Section E.4.

E.1 Definitions of DHT and DFT Matrices

Before introducing the superfast transceivers based on discrete Hartley transforms,
it is necessary to define other three transforms, which are slight modifications of
the traditional DHT and, for this reason, are also called DHTs. These DHTs are
directly associated with modifications of the traditional DFT, as follows.

Let us define the following angles

0u(i, §) = 2}? (E.1)
(s, g) = "D (©.2)
(i) = 2T (©3)
O (i) = (20 + 135\24; + )7 (E.4)

for all (i,5) € {0,1,---, M — 1}?. Thus, the orthogonal DHT-X matrix is defined
as [48, 49]:
o sin[@x(i, j)] + COS[QX(iv J)]

[Hxlij = NiTi : (E.5)
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whereas the unitary DFT-X matrix is defined as [48, 49]:

cos|0x (i, 7)] — ssin[fx (i, j)]

Nivi :

[(Wxlij = (E.6)
with 9> = —1 and X € {11, III,TV}.
With such definitions we can describe the proposed DHT-based systems employ-

ing minimum redundancy.

E.2 DHT-Based Superfast Transceivers with

Minimum Redundancy

This section contains the main contributions of this chapter: new structures for

DHT-based transceivers with minimum redundancy. Consider the MMSE receiver
GMMSE

0,min

described by the matrix in Eq. (D.6). As pointed out before, in general

the transmitter matrix Fy is first chosen in such a way that FoFZ = I, (unitary

MMSE

precoder). In this case, Go'hi® = F{ Kyusg, in which

o2 \
Kyuse = HY <HOH§I + UQI) : (E.7)

The matrix Kynsg can be efficiently compressed as proved in Theorem 6. Indeed,
Vz,z_, (Kuuse) = PQT, where

0—2 0_2 _lA A
P=\- (HOHHO + §I> P’ — KyuseP ; (E.8)
I O Mx4
0'2 _TA A
Q= [(HOH({{ + UQI) Q’ K{AMSEQ] : (E.9)
s M x4

with (P, Q) € CM*2 x CM*2 and (P’, Q') € CM*2 x CM*2 heing the displacement
generator pairs of Vz_, z, (Ho) and Vg, z_, (H{), respectively, i.e., Vz_, z,(Hy) =
PQT and Vz, 7 (HY) = IS’Q’T.

Now, let us define J' = [e; ey -+ e3 ex]and J' =[—e; ey -+ e3 ey
By performing operations on the compressed representation of Kynsg it is possible

to show the following result:

Theorem 7. Given a unitary or an orthogonal transmitter matriz ¥y, the related

MMSE-receiver matriz is
M 4
Ggflnl\fiiE = ?F(IJ{HHI (Z Xf)rHHHIVXQT> Hiv, (E.10)
r=1
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where X5, = (aDg, — 31"Dp,), Xg, = (aDg, —DgJ), a = (1+)/2, 8 =
(1—-7)/2, Dp, = diag{p,}, Dg, = diag{q,}, P = [p1 --- Pa] = Hi()P, + P_),
and Q = [q -+ Qu] = Hm(—1Q4 + Q_). The matrices P+ and Qi are defined
as P = (P+£JP)/2, Qe = (Z_1Q+J"Z_,Q)/2, with (P,Q) given as in (E.8)
and (E.9).

Proof. Before demonstrating Theorem 7, it will be helpful to state some supporting

results, as follows:

Lemma 8 ([23]). The four DFT matrices defined in Section E.1 obey the following

identities:

Z, = WI'D;W; = W{{D; Wy, (E.11)
Z_=WiD Wy = WED Wy, (E.12)
where Dy = diag {WEIYM"0 contains all the Mth wunit roots, and D_; =

: m T M1 . . 27
diag {WM exp (—jﬁ) }m:o contains all the Mth roots of —1, with Wiy = exp(—337).

Proof. First, consider that j € {0, 1, --- ;M —2}. Thus,

1 Ny
[Dlwl]ij = WWJZ\/[WJ\ZI

L iG+)

= ﬁ I
= [Wl]z‘(j—',-l)
= [WiZ4];; . (E.13)

Second, consider that j = M — 1. In this case, it follows that
1

[Dlwl]i(Mfl) - VM
1

Wi, Wi
Wi

VM
1
VM

WI]iO
WiZi]; 01y - (E.14)

[
=

The other three identities can be analogously proved. O]

A vector v € CM*L is even if J'v = v, it is odd if J'v = —v, it is quasi-even if
J'v = v, and it is quasi-odd if J'v = —v. The definitions of quasi-even and quasi-
odd were necessary in order to fix a related lemma stated in [49]. The authors of the

referred paper did not distinguish between quasi-even/odd and even/odd vectors.
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Lemma 9 ([23, 49]). Given an even vector v, € CM>x1 " an odd vector v, € CM*1,

a quasi-even vector v, € CM*1 and a quasi-odd vector vy, € CM*! it follows that:

VVIV6 = Hﬂ/e (E15)

WIVO = —jHIVO (E16)

WIHqu = _jHIIIqu (E17)

Wimiv o = HiuVgo- (E.18)

Proof. See [49]. O
Lemma 10 ([23]). Given (P,Q) € CM*# x CM*E with R € N, then

JWP = H;(JP. +P_) =P (E.19)

WinZ_1Q = Hu(—Q: +Q-) = Q, (E.20)

where Po. = (P £ J'P)/2 and Qs = (Z_1Q + J"Z_1Q)/2.

Proof. Since PL = (P +£J'P)/2 and Q1 = (Z_,Q + J"Z_,Q)/2, then each column
vector of P, is an even vector, whereas each column vector of Q, is a quasi-even
vector. In addition, the columns of P_ and Q_ are odd and quasi-odd vectors,

respectively. By applying Lemma 9, one has

]WIP = jHIP+ + HIP_
=Hi(yP++P_)
=2 (E.21)

and

WmZ 1Q = —yHmQ4 + Hm Q-
=Hm(—1Q+ +Q-)
=Q (E.22)

]

Lemma 11 ([48, 49]). The Hartley transforms My and Hyy obey the following

relationship:

1 1

i = M sin ((2i+2213\'/;rl)7r)'

[HuHv (E.23)
Proof. See [48, 49]. O
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In addition to these results, one can use Eq. (E.6) in order to verify that [48, 49]:

M—-1

Wi = diag {exp (—]Wm>} Wi, (E.24)
M m=0
T M-1
WIV = diag {exp <—j(2m + 1))} WIH- (E25)
2M m=0

It is now possible to prove Theorem 7. As shown in Lemma 8, Z; = Wﬁ[ Di{Wy
and Z_; = WHED_;Wyy. By using these facts while applying the Stein displace-
ment Ap, p_, to the matrix K= WiuKyvvsg Wiy, it follows that:

ADLD,l(K) - K - D]_KD,]_
=K — (WuZ, WIHK(W;, 27 W)
— WII(KMMSE - ZIKMMSEZTJWIV- (E26>

But, we know that
Kynse — ZiKavseZl, = Az, 77 (Knvise)- (E.27)

Thus, by using the result Axy-1(U) = —Vxy(U)Y ! (see Eq. (D.13)) and the
fact that Z”, = Z~7, one gets

Ap,p_,(K) = -WuVz, 7z, (Kuuse) Z", Wiy (E.28)
As Vz,z , (Kuuse) = PQY, one has
Ap,p_,(K) = (-WuP)(WrZ_,Q)". (E.29)

Similarly as done in [23], it is straightforward to verify that:

[K} N [(_WHP)(WIVZ—].Q)T]’L]
iy ( B (2i+2j+1)7r>
1l—e7
(2j+1)7

63%[(—WHP)(WIVZ—lQ)T}UeJ 2M
- @it2j 1) NCIEYENNE
el am —e ) aMm
WiP)(WiZ_1Q)T];
_ [(GWIP)( 111 1Q) ]37 (E.30)
2in (M)

2M

where we employed the identities in Eq. (E.24) and in Eq. (E.25).
As shown in Lemma 10, yW;P = H;(J)P, + P_) = P and Wz _1Q =
Hin(—/Q+ +Q-) = Q, where Py = (P £ J'P)/2 and Qs = (Z.,Q+J'Z,Q)/2.
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Then, it follows that:

- [PQ"];
[Kl]ij = 9sin ((2i+2213\'/;rl)7r) : (E.31)
This equation along with Lemma 11 yield:
M 4
WiKynse Wiy = > (Z DI—,T’HH’HIVDQJ , (E.32)
r=1

where P =[Py -+ Pu], Q=[@ -+~ Qu], Dp, = diag{p,}, and Dg, = diag{q,}.
Since it is easy to verify that:?

1— I+ (14 )7 1+ I+ (1=7J]"

Wy — L) 2( NI _ [( 7) 2( 7) 1 | (£.33)

1—NI—(1+)J 1+ )I—(1—)J3]"

Wi Hpy — L) 2( NI _ [( 7) 2( 7) ] | (E.34)
and by taking into account the fact that JHm = —HmJ” and that HyyJ =
JHy [48, 49], then

M 4
Kynse = ?HIH (Z X[‘)THIIHIVXQT> Hiv, (E.35)
r=1

where X5, = (aDjs, — 3J"Ds,), X5, = (aDg, — DgJ), a = (1 + 3)/2, and
8 = (1 —7)/2. Hence, the result of Theorem 7 follows. O

Theorem 7 is the first contribution of this chapter related to the design of prac-
tical block-based transceivers with minimum redundancy using DHTs. It is based
on a similar mathematical result of [48]. Unlike the polynomial approach adopted
in [48], a matrix approach was used based on the Sylvester and Stein displacement
operators. This approach allowed us to derive transformations without requiring
extension with zeros of the involved matrices as in [48], leading to efficient designs
of multicarrier transceivers, which is not possible by using the same formulation
presented in [48]. Another key feature that distinguishes Theorem 7 from the re-
sults in [48] is that the adopted approach allows us to work with complex-valued
matrices. This is important for baseband channel models that have complex-valued
taps. Moreover, Theorem 7 does not assume a centro-symmetry structure of the
involved matrix as in [23].

Note that, when 02/0% — 0 and HyF is invertible, then G}MSE — G2F

0,min 0,min (see

Eq. (D.5) and Eq. (D.6)). Thus, Vz, z_ , (Kyuse) = PQT — (—Hy'P)(H;7Q)”

2A similar relationship between the standard DHT and DFT matrices was verified in [47].
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(see Eq. (E.8) and Eq. (E.9)). These facts, along with Theorem 7, justify the

following new contribution:

Theorem 8. Given a unitary or an orthogonal transmitter matriz ¥y, the related

ZF-recetver matriz is

M 2
G%Eﬂin = ?F(I){HHI (2:1 X}‘)THHHIVXQT> Hrv, (E.36)

where all matrices are analogously defined as in Theorem 7, except for the generator

pair (P,Q) = (-Hy'P, H;" Q). with Vz_, z,(Ho) = PQT.

Noise
Data GrAddd i Remove
—— >DHT-III—, uar > Channel——")—— Guard — >DHT-IV
Block Period anne Period
P/S S/P
Equalizer| 1| L ___ |Equalizer
(2 taps) —IDHT-II K ——DHT-IVK —1 2 taps) <=
Data
Block <;: Scaling
Estimate
Equalizer| 1| L | L |Equalizer
(2 taps) [N DHT-II K< —/DHT-IVK —/] (2 taps) K

Figure E.1: DHT-based zero-forcing multicarrier minimum-redundancy block
transceiver: ZF-MC-MRBT.

Based on Theorems 7 and 8, the single-carrier solution can be designed by setting
Fo = I, whereas the multicarrier solution can be designed by setting Fy = Hyyp for
both MMSE and ZF designs.

Figure E.1 depicts the resulting multicarrier transceiver structure for the zero-
forcing receiver. In this transceiver, the guard period consists of L/2 zeros. After
removing the guard period, the DHT-IV is applied to the received vector. The
first equalization step is performed on the data vector, that is, the resulting data
vector is simultaneously processed by two different branches of the transceiver. The
equalizers at this stage are the matrices Xg, and Xg,. These matrices contain at
most two nonzero elements in each row (2-tap equalizers). Figure E.2 depicts the
structure of these equalizer matrices, where all matrix entries are zero, except the
ones placed at the gray entries. A final equalization step is performed in each branch,
after the application of the DHT-IV and DHT-II. Once again, the equalizers at this
stage (X5, and X'5,) have a special structure depicted in Figure E.2.
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Figure E.2: Equalizer-matrix structures.

Note that the overall equalization process has an asymptotic complexity of
O(M log, M), as the standard OFDM transceiver. Obviously, the proposals require
more numerical operations than OFDM transceivers in the practical non-asymptotic
case. In fact, both the proposed solution and OFDM entail numerical complexities
in the order of M log, M, however, the former requires about 3 times the amount of
computation of OFDM. Nevertheless, as illustrated in Figure E.1, it is possible to
take advantage of the inherent parallel structure in order to reduce the processing

time.

E.3 Simulation Results

The aim of this section is to compare the throughput performance of the proposed
DHT-based transceivers against the traditional OFDM and SC-FD systems through
simulations. In order to do so, we transmit 500 blocks with M = 32 QPSK data
symbols, without taking into account the redundant zeros required. The trans-
mitting process is repeated 10,000 times and a new channel is generated for each
transmission. All channels have order L = 20, representing delay constrained appli-
cations in very dispersive environments. The real and imaginary parts of the channel
coefficients are independently drawn from a white and Gaussian stochastic process,
resulting in a Rayleigh channel with constant-power profile [16]. The sampling fre-
quency is fs = 500 MHz. Moreover, the adopted figure of merit is the throughput

achieved by each technique, whose definition was given in Section D.4.
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Figure E.3: Throughput [Mbps| as a function of SNR [dB] for random Rayleigh
channels, considering DHT-based multicarrier transmissions (M = 32 and L = 20).
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Figure E.4: Throughput [Mbps] as a function of SNR [dB] for random Rayleigh
channels, considering DHT-based single-carrier transmissions (M = 32 and L = 20).
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As observed in Figures E.3 and E.4, the throughput performances of the proposed
multicarrier and single-carrier minimum-redundancy block transceivers (MC-MRBT
and SC-MRBT, respectively) are better than the traditional systems, except for
SNRs lower than 21 dB in the ZF solutions. The proposed ZF solutions are effective
only for high SNRs, since most of the Toeplitz matrices, such as Hy, induce larger
noise enhancements than circulant matrices, for the same channel model.®* This
implies that, even though the proposed ZF solutions use only half the amount of
redundancy of standard ZF-OFDM and ZF-SC-FD systems, more data blocks are
discarded due to bit errors after channel decoding. Nonetheless, the advantages
of using the proposed MMSE transceivers is remarkable in both multicarrier and
single-carrier transmissions.

The proposals presented in this chapter are suitable for delay constrained trans-
missions in very dispersive environments, i.e., setups where the assumption L < M
is not reasonable. The above example can be cast as delay constrained applica-
tion in dispersive environment, since L ~ 0.6M. For those transmissions where
L < M, one may prefer to use the traditional OFDM or SC-FD systems for two
main reasons: (i) it may not be worth increasing the non-asymptotic computational
complexity of the transceiver in order to decrease the redundancy that is already
small; and (77) the noise enhancement associated with the proposed transceivers is
larger when L < M. In order to give an example, consider a transmission with
all parameter values equal to the previous example, except for the fact that now
M =32 and L =6.

Figures E.5 and E.6 depict the results for both multicarrier and single-carrier
transmissions, respectively. Once again, the proposed MMSE transceivers are more
efficient than the standard MMSE systems. However, it is clearer now that the
proposed ZF solutions is more sensitive to the presence of noise than the standard
ZF-OFDM and ZF-SC-FD systems, whenever L < M.

As a final example, we transmit 100,000 data blocks, each one of them with
M =16 QPSK symbols, through a channel whose transfer function is [75]:

H(z)=1+05z"" =072+ 0.9 + 2% (E.37)

In this case, L = 4 and all the other parameter values are the same as in the previous

examples.*

3We have observed this fact empirically.

4We do not consider random channels here since they are considered in the previous examples.
In this case, our aim is to verify the performance in a slow-variant channel (modeled as a fixed
channel), a typical setup of practical wireline applications.
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Figure E.5: Throughput [Mbps| as a function of SNR [dB] for random Rayleigh
channels, considering DHT-based multicarrier transmissions (M = 32 and L = 6).
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Figures E.7 and E.8 contain the obtained results. One may observe a similar be-
havior of the proposed transceivers for this particular channel. The proposed MMSE
solutions with minimum redundancy are always better than their traditional counter-
parts, whereas the proposed ZF-MC-MRBT transceiver achieves higher throughputs
than the traditional ZF-OFDM system for SNRs greater than 15 dB (see Figure E.7).
On the other hand, the proposed ZF-SC-MRBT transceiver always outperforms the
ZF-SC-FD system in this example, as depicted in Figure E.8. In order to illustrate
the BER performance of the proposed transceivers, we also include here Figures E.9
and E.10.

E.4 Concluding Remarks

In this chapter we proposed transceivers using real discrete Hartley transforms with
minimum redundancy for block data transmission. The ZF and MMSE solutions
employ only DHT, diagonal, and antidiagonal matrices, making the new transceivers
computationally efficient. Our approach relied on the properties of structured matri-
ces using the concepts of Sylvester and Stein displacements. These concepts aimed at
exploiting the structural properties of typical channel matrix representations. New
DHT-based representations of Toeplitz inverses and pseudo-inverses were derived.
Such new representations were the key tools to reach the proposed solutions for the
multicarrier and single-carrier systems. A key feature of the proposed schemes is
that no constraint is imposed on the channel model. Simulation results demonstrate
that the solutions allow higher throughput in a number of situations, revealing the

potential usefulness of the DHT-based transceivers.
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Figure E.7: Throughput [Mbps] as a function of SNR [dB] for the channel in
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Figure E.9: Uncoded BER as a function of SNR [dB] for the channel in Eq. (E.37),

considering DHT-based multicarrier transmissions (M = 16 and L = 4).
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Part 11

Reduced-Redundancy Systems
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Apéndice F

DFT-Based Transceivers with
Reduced Redundancy

This chapter presents new linear time-invariant (LTI) block-based transceivers which
employ a reduced amount of redundancy to eliminate the interblock interference.
The proposals encompass both multicarrier and single-carrier systems with either
zero-forcing or minimum mean-square error (MSE) equalizers. The amount of re-
dundancy ranges from the minimum, [L/2], to the most commonly used value, L,
assuming a channel-impulse response of order L. The resulting transceivers allow for
superfast equalization of the received data blocks, since they only use fast Fourier
transforms and single-tap equalizers in their structures. The chapter also includes
an MSE analysis of the proposed transceivers with respect to the amount of re-
dundancy. Indeed, we demonstrate that larger amounts of transmitted redundant
elements lead to lower MSE of symbols at the receiver end. Several computer simula-
tions indicate that, by choosing an appropriate amount of redundancy, our proposals
can achieve higher throughputs than the standard superfast multicarrier and single-
carrier systems, while keeping the same asymptotic computational complexity for
the equalization process.

In this chapter, we shall consider the zero-padding zero-jamming (ZP-ZJ)
model [16, 41] that allows one to transmit with smaller amount of redundancy,
while avoiding IBI. In fact, the minimum-redundancy ZP-ZJ transceivers proposed
in [23] may be regarded as the state of the art in this particular topic, which nat-
urally lead us to the question: why investigating reduced-redundancy transceivers
when minimum-redundancy transceivers are already available? The answer to this
question and the strategy to devise such new superfast transceivers will be key
contributions of this chapter.

This chapter is organized as follows. Section F.1 discusses why reduced redun-
dancy may be better than minimum redundancy. In order to introduce the new

decompositions of rectangular structured matrices, Section F.2 briefly presents the
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main ideas of the displacement theory applied to rectangular matrices. By applying
the displacement-rank theory, we describe the two main results of this chapter re-
lated to the development of new ZF and MMSE superfast transceivers in Section F.3.
The simulation results are described in Section F.4, whereas the concluding remarks

of the chapter are in Section F.5.

F.1 Is Reduced Redundancy Better than Mini-

mum Redundancy?

The performance of reduced-redundancy transceivers has been assessed by simula-
tions in some works [16, 57]. By comparing the BER among systems with different
amounts of redundancy, the authors in [16, 57] verify that transmitting using larger
amounts of redundancy leads to lower the BER of such systems. In addition, the au-
thor in [43] also shows that, even when one transmits in a single-carrier system with
full-redundancy (K = L), if not all the redundant elements are used at the receiver
end during the equalization process, then the mean-square error of the symbols is
also a monotone decreasing function of the number of redundant symbols used for
the equalization. In fact, such behavior is present in a broader class of ZP optimal
transceivers, as proved in Chapter C.

If on one hand we want to reduce the transmitted redundancy in order to save
bandwidth, on the other hand we need to use as much redundancy as possible in
order to have a good BER or MSE performance. The throughput is a good figure
of merit to study the tradeoff between bandwidth usage and error performance. In
general, however, throughput is also a function of the bit-error protection that is
implemented at higher layers of a given communication protocol, entailing a sort
of cross-layer design. The focus of our work is on the physical-layer design, rather
than on the cross-layer design. Consequently, we shall analytically evaluate the
performance of the ZP-ZJ systems based on the MSE of symbols only, since this
figure of merit does not depend upon neither the particular constellation used (as
in the BER case), nor the channel-coding scheme used (as in the throughput case).

With this in mind, consider a ZP-ZJ system that employs K € Kp
{IL/2],[L/2] +1,---, L} redundant symbols in order to transmit M data symbols

through an Lth-order FIR channel. Given the received vector after the jamming

A

processing

y(K, M) 2 Hy(K, M)Fo(M)s(M) + vo(K, M) € CMT2K=L)x1, (F.1)
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we define the error vector e(K, M) after the receiver processing as

e(K,M)=38M)—s(M)
= GO(K7 M)Y(K7 M) - S<M)
= [Go(K, MYHo(K, M)Fo(M) — Ip/]s(M) + Go(K, M)vo(K, M), (F.2)

where in all variables the dependency on L is omitted, since the channel order will
remain constant throughout this chapter. In addition, the average MSE (AMSE) of

symbols is defined as

AMSE(K, M) £ ]\ZE{eH(K, M)e(K, M)}
= o tr{Ele(K, M)e (KK, M)}

Azaztr {[Go(K, MYHo(K, M)Fo(M) — T)/]
x [Go (I, M)Ho(K, M)Fo(M) — Ty}
+ ]\14012,tr {Go(K, M)G{/ (K, M)}
0:l|Go(K, M)Ho(K, M)Fo(M) = Il | oullGo(E, M)
M M

= (11Go (K, M)H (K, M)Fo(M) = Ty + pl| Go (K, M)|[3),
(F.3)

i\w

where p £ 02/0% > 0 is the reciprocal of the SNR and || - || is the Frobenius norm.
Considering such definitions, we are now able to state the first contribution of this

chapter in Theorem 9.

Theorem 9. The MMSE receiver defined in Eq. (D.}) yields the following average
MSE of symbols:

2

AMSEMMSE (K M) = L r{[HH(K M)Hy(K, M) +pIM] 1}

o2
1
— F.4
Mmze;\/l(j?n(KM)—l—p (F4)
where M = {0,1,--- M — 1} and each o?(K,M) € R, is an eigenvalue of

HI (K, M)Ho(K, M).

Proof. For the sake of simplicity, we shall omit from all variables the dependency on
K and M. Assume that the singular-value decomposition of the effective channel
matrix is Hy = UXV# where both the (M + 2K — L) x (M + 2K — L) matrix
U and the M x M matrix V are unitary. In addition, the (M + 2K — L) x M
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matrix X has zero entries except for the main-diagonal entries [X],,,, = o, > 0,
with m € M. From Eq. (D.4) one has

Go=FJV (S7S 1 pLy)  STUY, (F.5)
which implies that
GoHoF, = F'V (S7S 4 4I,)  £TSVIF,, (F.6)
yielding

GoHoFy — I, = Fi'vV

(572 +4Ly)  E7E - IM} VIF,
_ iV [—p (572 + pIM)l} VIT,, (F.7)

Hence, by substituting both Egs. (F.5) and (F.7) into Eq. (F.3), and by taking
into account that the Frobenius norm of a given matrix is the sum of its square

singular values, we have

2 2
AMSEMMSE _ %5 P Om
D e W

_ tr{ H§H0+pIM)_1}, (F.8)

as desired. ]

The reader should notice the close relationship between the average MSE of
symbols and the singular values of the effective-channel matrix. Indeed, the smaller
the singular values of the effective-channel matrix are, the larger the average MSE
of symbols is. In addition, a direct consequence of such a result is the description
of the average MSE of symbols associated with the ZF-based ZP-ZJ transceivers, as
described in Corollary 4.

Corollary 4. The ZF receiver defined in Eq. (D.3) yields the following average MSE
of symbols:

2

AMSE? (K, M) = %tr { Y (K, M)H, (K, M) _1}

o2 1
=7 > 2 (K ) (F.9)

meM ~m
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Proof. As the mapping of a nonsingular matrix into its inverse is a continuous map-
ping, then GY™MSE — GZF when p — 0. Thus, by considering that o2 is constant

while p — 0, then the result follows from Theorem 9 straightforwardly. m

Now that we have an explicit expression for the average MSE of symbols, we can
compare the performance of systems that use different amounts of redundancy in a
given environment. For that, we shall first state a very useful result in Lemma 12,

as follows.

Lemma 12. Given two fized integer numbers L and M, let us assume that each
matriz Ho(K, M) € CM+2E=L)xM s constructed from the same Lth-order channel-

impulse response, with K € K. Then
omn(K+1, M) > 0,,(K,M), V(m,K) e M x (K. \{L}), (F.10)

where each 0, (K, M) € Ry is a singular value of Ho(K, M), for each pair (m, K) €
M X ,CL-

Proof. For the sake of simplicity, we shall omit from all variables the dependency on
M. Let us focus on the structure of Ho(K + 1). By assuming that K € (K \ {L}),
the relationship between Ho(K + 1) and Hy(K) is given by

hi (K +1)
Hy(K +1)= | Hy(K) | € CMH2KT2=LpM (F.11)
h (K +1)
where
h(K+1)2[h(L—-K—-1) h(L-K~—-2) --- h(0) 0 --- 0], (F.12)
h'(K+1)2[0 -+ 0 h(L) --- h(K+2) h(K+1)], (F.13)

in which the subscript f stands for first row, whereas the subscript 1 stands for last
row, both of them associated with the matrix Ho(K +1). We know that the 2-norm
of a matrix X € CM>*M2 ig defined as || X||; = max||Xy||2, for y in the set CM2x1

and such that |ly|l = 1. In addition, we also know that || X|lz = omax(X). We
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therefore have

IHo(K + 1)|]2 = oo(K + 1)

hH (K +1)
= ||| Ho(K)
h# (K + 1) )
(K +1)
= |l Ho(K) Jx
hT(K+1)| |
i (K + 1)x
= e, ||| Ho(F)x
_h{I(K + 1)x

= max /[ Ho(K)x|; + b (i + x| + [hff (K + 1)x]?

lIxl[2=

> max |[Ho(K)x,

T Ix]l2=1
= [[Ho(£)]],
= 00 (K). (F.14)

Now, by taking into account the SVD decomposition of the matrix Ho(K + 1),

one has

Ho(K+1)= Y 0u(K+1Du,(K+1)vI(K+1). (F.15)
meM

In addition, one can also define a reduced-rank approximation for Ho(K + 1) as

follows:

R
Hop(K+1) £ 0, (K + Du, (K +1)v (K +1), VR € M, (F.16)
r=0

where Hy—p_1)(K + 1) is a rank-(R + 1) matrix.
Moreover, let us assume that R € (M \ {M — 1}) and that each eigenvector
u, (K + 1) can be written as

u.(K+1) =[[u.(K+ 1)) il (K+1) [u.(K + D], (F.17)

where [u, (K + 1)] is the first element of u, (K + 1), [u,(K + 1)]; is the last element

of u,(K + 1), and @,(K + 1) € CMFT2K=L)x1 contains the remaining elements of
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u, (K + 1). Thus, by using Lemma 7 (see Chapter C), one has

o(r+1) (K + 1) = [[Ho(K +1) = Hoyo 1) (K + 1)||2

- R -
hi(K+1) =Y o (K + D) (K + 1)]v/ (K + 1)
r=0
5
R
B Hy(K) =Y o, (K +1)u,. (K + 1)v/(K +1)
- r=0
Amn,
R
h(K+1) =Y o (K + 1) (K + 1)vi (K +1)
r=0
L 6{{ ELD]
- o
= || Ag,
o ]|
- o
= max | |Ag,| X
[xllz=1 I
| 0 2
of'x
o'x )

2
= max /]| Ay x| + 8 x|? + 16{'x]?

2=

> max ||Ag,x|,

T x[l2=1
= [[Am,|l,
R
= HHO(K) = > o (K + 1) (K + 1)vI (K +1)
r=0 2
> [Ho(K) = Hoy-pon(K)|
- U(R+1)(K)7 (F18>
as desired. O

Note that Lemma 12 guarantees that the singular values associated with the
effective channel matrix is a monotone increasing function of the number of trans-
mitted redundant elements, which can vary from the minimum value, [L/2], to
the limit value, L. With the help of Lemma 12, we can now state another key

contribution of this chapter.

Theorem 10. The average MSE of symbols related to both the MMSE and ZF
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receivers are monotone decreasing functions of K € (K \ {L}), i.e.

AMSEMMSE(K + 1, M) < AMSEMMSE (K M), VK € (K \ {L}) (F.19)
AMSE? (K + 1, M) < AMSE*F (K, M), VK € (K. \ {L}). (F.20)

Proof. This result is a direct consequence of Theorem 9, Corollary 4, and Lemma 12.
O

Theorem 10 states that if one aims to reduce the bandwidth usage on redundant
data by decreasing the amount of transmitted redundant elements, then the resulting
AMSE performance will degrade (or will be at most the same). On the other hand,
we have proved in Chapter C that if one tries to enhance the spectral efficiency of a
full-redundancy ZP transceiver by increasing the block size M, one ends up loosing
performance as well. Indeed, the AMSE of a full-redundancy ZP system follows a

similar pattern presented in Theorem 10, as described in the following proposition.

Proposition 4. The average MSE of symbols related to both the MMSE and ZF

full-redundancy block transceivers are monotone increasing functions of M, i.e.

AMSEMMSE(L M) < AMSEMYSE(L, M +1), VM € (N\ £) (F.21)
AMSE?" (L, M) < AMSE?" (L, M + 1), VM € (N\ £). (F.22)
Proof. See [40, 42| and Chapter C. O

Theorem 10 and Proposition 4 show that, whenever one tries to increase the
bandwidth efficiency of a block-based transmission, whether reducing the number of
transmitted redundancy or increasing the amount of transmitted data symbols in a
traditional full-redundancy system, one will end up losing performance with respect
to the MSE of symbols. Based on these facts, it is key to look for the adequate
system that allows one to achieve the target bandwidth efficiency and MSE (or
BER) performance. As the analytical results indicate, the adopted transceiver,
either reduced-redundancy or full-redundancy with larger block sizes, depends on
the particular type of application. Hence, different channel models may call for
distinct transceiver choices.

Now, let us assume that the ZP-ZJ system with full-redundancy using a large
amount of data symbols is the best option® for achieving a target throughput perfor-
mance. In this case, superfast implementations of this system are readily available
and there is no additional challenge to the designer. On the other hand, if the best

choice is the ZP-7J system with reduced-redundancy, how should we implement such

!Considering only the transceivers treated in this chapter.
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systems? Do they have superfast implementations as well? This chapter proposes

some answers to these questions, as described in the next section.

F.2 New Decompositions of Rectangular Struc-

tured Matrices

Many engineering models induce structural patterns in their matrix-based mathe-
matical descriptions. Such structural patterns may bring about efficient means for
exploiting features of the related problems. Besides, computations involving struc-
tured matrices can be further simplified by taking into account these structural
patterns. As we have pointed out in Section D.1, the effective channel matrix asso-
ciated with ZP-7ZJ systems is a rectangular Toeplitz matrix. It is therefore natural
to expect that linear equalizers, such as linear MMSE or ZF equalizers, can take
advantage from the structure of this channel matrix. In this context, three questions
arise: (i) How to recognize a structured matrix by using analytical tools? (ii) How
to represent the linear optimal solutions (either MMSE or ZF) by employing such
analytical tools? and (iii) How to effectively take advantage of such representations?

This section describes the answers to those questions in the context of rectangular
structured matrices. Subsection F.2.1 describes the extension of the displacement-
rank approach when one is dealing with rectangular structured matrices instead
of square matrices. Subsection F.2.2 shows how to represent ZF- and MMSE-based
receiver matrices by using the displacement approach. Subsection F.2.3 contains the
results demonstrating how to decompose a wide class of structured matrices, the so-
called Bezoutian matrices, using only DFT and diagonal matrices. Such results are
relevant since the Bezoutian matrices encompass both the ZF- and MMSE-based

receiver madtrices.

F.2.1 Displacement-Rank Approach

Similarly as performed in Subsection D.1.3, let us assume that X € CM>*M and
Y € CM2xMz are two given operator matrices, where M, and M, are positive integers.

Thus, the linear transformations [25]

VXY : CM1><M2 N (CM1><M2
U+~ Vxy(U) £ XU - UY, (F.23)

AXY . CM1><M2 N (CM1><M2

U Axy(U)2U - XUY (F.24)
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are the extensions of Sylvester and Stein displacement operators to the rectangular-
matrix case.

As we have already highlighted in Chapter D, the displacement approach is
comprised of compression, operation, and decompression stages [25]. In order to
illustrate the compression capability of the displacement operators dealing with
rectangular matrices, let us consider the application of the Sylvester displacement
operator Vzl/ng, in which Z,/, € CMixMi gnd Z¢ € CM2xMzon an My x M,

complex-valued Toeplitz matrix T, with [T, my = timi—ms), as follows:

V2., 2(T) = Z1,,T — TZ; (F.25)
(I/mtar - (Un)tan—2 -+ (1/n)tan—n,
B to t 4 e b1,
Ly —2 Lo -1 R 5 Vo V|
t_1 - o &to
: : t
- 5'1 (F.26)
tay—3 - ta—mp1 :
Ia—2 0t ftMl—l_
1
0
= : {(1/77)75M1—1 - t—l e (1/n)tM1—M2+1 - tl—M2 (1/77)tM1—M2}
0 =af
-
2p,
—&to
t1_ — &t
1 Mg. g 1 [0 0 o 1} (FQ?)
—_——
éqQT

tar —my—1 — &t —1

A A

=Pp2

AT
qi

A2 DBAT
Jpt =PQ". (F.28)
q>

141+ Db = (D1 D2 ]

o

|

Note that the resulting displacement matrix Vz, /mzs(T) can be represented by
the displacement generator pair of matrices (15, Q) € CM1x2 5 CM2x2 Thus, if one
assumes that M; and M, are integer numbers much larger than 2, then the former
example shows that rectangular Toeplitz matrices can always be compressed, since

the matrix Vg, 7 (T) has rank at most 2.
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F.2.2 Displacement of ZF- and MMSE-Receiver Matrices

This subsection exemplifies the operation stage associated with the displacement-
rank approach applied to rectangular matrices. In order to do that, let us define
the transmitter-independent receiver matrix K £ FyG, € CM*x(M+2K-L) = From
Egs. (D.3) and (D.4), one can easily verify that Kyp = Hg, whereas Kynsg =
(Hi™H, + pI)'H{. Observe that, for both the ZF and the MMSE solutions, the
related transmitter-independent receiver matrix K is obtained from operations upon
the effective channel matrix Hy. Theorem 11 contains a result for the MMSE case
that shows how to operate on the displacement-generator pairs of Hy and HY in

order to derive the displacement-generator pair of Kynsk.

CM*M gnd Zy, €

the MMSE-based transmitter-independent receiver matrix

Theorem 11. Given the operator matrices Z¢ €
C(M+2K—L)x(M+2K—L)

Kawse yields the displacement matrix Vz&zl/n (Kyse) = PQT, in which

-1 A N
P = [P (H6{H0 + PIM) P - KMMSEP} it (F.29)

(F.30)

_T A A
= |[(HHY 1 _ " KL
Q {( oy + plvyok L)) Q MmseQ (2K L)
with (P, Q) € CMH2E-L)x2 5 CM*2 g g (P Q) € CM*2 5 CMF2E-L)X2 poing the
displacement-generator pairs of Vg, , z.(Ho) and Vz&zl/n(Hé{), respectively. These
generator pairs are easily determined by using Eqs. (F.25), (F.26), (F.27), (F.28).

Proof. In this proof we shall refer to several known results from the literature [25],
which are the extensions of the results expressed in Eqs. (D.12), (D.13), (D.14),
and (D.15) to deal with rectangular matrices.

Thus, let us compute the Sylvester displacement Vz&zg(HOH H,), as follows:

VZ@Zg(HgIHO) - [P/ H(])qP} QQT o = PQT, (F?)l)
2p —_———
AQT

in which we have employed Eq. (D.14) adapted to rectangular matrices.
As the Sylvester displacement Vg, z, (L) is an M x M all-zero matrix, then the
related displacement of the term HYHy + (02/02)I,; present in Eq. (D.4) is PQT

as well. In other words, if one defines

A2 HIH + (0202, (F.32)
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then Vz, z. (A) = PQ”. Now, by applying Eq. (D.12) one gets:

Vieze (A7) = ~A"'Vg 2 (A)A™ = [-A'P| [A7Q] =PQ".  (F33)

Lp LAQT

Now, by applying Eq. (D.14) adapted to rectangular matrices, one has

. L1 | QTHY
Vzez,, (ATHY) =[P AP | 1" | =PQ". (F.34)
~—————
Zp N ——
£QT

Hence, the displacement generator of the MMSE solution is given by the pair

P=|-A"'P —KuusP AP

Q= [KﬁMSEHoTQ' KinseQ Q’] (

Mx6’

M+2K—L)x6

Now, let us compute the product PQ” as follows:

o2 - T o? -
PQT = — (H(?HO + J;IM> P'Q" H, (HngO + UgIM> H{/

S S

2 -1 2 -1
- (H{;’HO + ngM> HIPQT (Hgf H, + ng) HY

S S

2 —1
+ (Hgf H, + Z;IM> PQ
2

—1
g
Livrox—1) — Ho (Hglﬂo + GZIM> Héq]

2 —1
_ (Hgf H, + UgIM> PQ’
g

s

2 -1 2 -1
- (H(?Ho + ZgIM> HIPQ! (Hgf H, + ZgIM> HY. (F.37)

S S

Thus, by applying the matrix inversion lemma, it is possible to show that

o o2 NS o2 -
o2 <H(I){Ho + 021M> P'Q" |HH{ + ;I(MJrZKfL)

S S

S )

PQ’ =

2 -1 2 -1
- (HgIHO + ZgIM> HIPQT (H{?HO + Z;IM) HY.  (F.38)

S S

One can therefore redefine the matrix-generator pair (P, Q) in a more compact

manner, in such a way that each generator matrix has four columns, instead of six,
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as follows:

_1 A A
P = [Zz (H(I){Ho + %;IM) P - KMMSEP} ; (F.39)
s s M x4
A H 0_12) —T A T A
Q2 (R + o) @ Wi, 0
as desired. ]

Theorem 11 describes the compressed form for the MMSE-based transmitter-
independent receiver matrix. This compressed representation will be very useful
in the design of superfast transceivers with reduced-redundancy. The ZF-based
transceivers are obtained when one considers that p — 0. In this particular case,

the following Corollary 5 holds.

Corollary 5. Given the operator matrices Z¢ € C"M and Z,, €
C(M“K_L)X(M”K_L), the ZF-based transmitter-independent receiver matriz Kyp

yields the displacement matriz VZ&»ZUn (Kzr) = PQ”, in which

P

[(Hgf Hy)) P —KguP| | (F.41)

T A A
Q= “I(M—i—QK—L) - HOKZF} Q Kl ; (F.42)

}(M+2K—L)><4
with (P, Q) € CM+2E-L)x2 o CMx2 g (P/ Q') € CM*2 x CMT2K-D)%2 peing the

displacement-generator pairs of Vz,, z.(Ho) and VZEvZI/W(Hé{)7 respectively.

Proof. First of all, as the mapping of a nonsingular matrix into its inverse is a
continuous mapping, then Kynsg — Kzp, when g—é — 0. In addition, all the
operations employed to compute the displacement—ger:erator pair of Kynsg are also
continuous. Hence, in order to determine the displacement-generator pair of Ky,
we can evaluate the generator pair of Kynsg when Z—§ — 0. Thus, by making g—é — 0
in Eq. (F.37), we get: S S

PQ’ = (H/H,) PG’

-1
Lvrvor—r) — Ho (HSIHO) H(I)q]

- (HyH) HIPQT (HIH,) HY
1

A A T A A
(HHo) P'Q [Liriax-1) — HoKye| — KzePQ Kyp,  (F.43)
as desired. ]

Theorem 11 and Corollary 5 show that, for both ZF and MMSE receivers, one
always has Vg, z,, (K) = PQ", where (P, Q) € C*** x CWM+2K-L)x4 " Thys, the

transmitter-independent receiver matrix K can be regarded as a particular kind of
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rectangular Bezoutian matrix, since a rectangular Bezoutian matrix is any matrix
B such that Vg, z,, (B) = PgQg”’, where (Pg,Qg) € CMi*ft x CM2x1 | with
M1 > R and M2 > R [25]

F.2.3 DFT-Based Representations of Rectangular Be-

zoutians

Let v 2 [vy vy --- var1]7 be a given complex-valued vector. An M x M matrix V,,
is a Vandermonde matrix when [V, ], m, = (Vm,)™2, for all ordered pair (my,ms)
within the set M?2.

Now, we have all the required tools for stating the main mathematical results of
this chapter aiming at decomposing rectangular Bezoutian matrices employing only

DFT, diagonal, and Vandermonde matrices.

Theorem 12. Given two nonzero complex numbers n and &, and given two natural
numbers My and My, let us assume that B is an My x My complex-valued Bezoutian
matrix such that VZg,Zl/n<B> = PQT, where the operator matrices have compatible
dimensions. The generator pair (P, Q) is within the set CM2>T x CMiXE in which
the natural number R is the rank of the related Sylvester displacement matriz. Thus,
if My > My, then

R
B = MM,V [Zl diag{p, } Wz, [diag{(foﬁo)m 2 0M2><(M17M2)} X

x Wy, diag{q,}] V, 7, (F.44)

where the My x 1 vector m contains the Mith roots of n, i.e., for each index m; €
27
Ml = {07 17 o 7M1 - 1}7 one has [n]m1 = Nm, = TIOWJT\T/[1117 with WMl < e_JTIl and
2
no = |77|1/M16Jv{’ whereas the My X 1 vector €& contains the Mayth roots of &, i.e.,
for each index my € My £ {0,1,---, My — 1}, one has [€], = &y, = QW2 with

e
o = ’f‘l/MQe]%. Moreover, one also has

>

P2 [P, - prl=—-VP (F.45)

(@1 -+ ar] = (diag{ ! }Ml_l) V., Z,Q, (F.46)

1- 577%12 m1=0

QO
(>

in which we have assumed that 577%12 # 1, for all my € M.

Proof. In order to prove that the decomposition proposed in Theorem 12 is valid,
let us first verify the structure of the My x M; matrix B2 VgBVg. We shall follow
the same steps employed in Section 3.3 of [23]. Thus, let us consider the Stein
displacement Ap, p, applied to B. Note that D¢ is an My x M, diagonal matrix,
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whereas Dy, is an M; x M, diagonal matrix. From Lemma 1 of [23], we know that
D, = VngVgl and D,, = V;TZng. Hence, by using these results, one has

AD&:DTI(B) - A(nggvgl),(V;ngvg;)<B)

= VBV — (V{Z: V) (VeBV])(V, 2] V]

= V¢ (B-ZBZ]) V)

= VﬁAzg,z{(B)Vg

= —VVz.z,,B)ZV]

- (_V£P> (VnZnQ)T
N—_— e N——
APpcCM2xR éQTecRxl\Jl

= PQ7, (F.47)

where in the last line we have used the fact that Az, zr(B) = _VZg,Zl/n(B)ZZ
(see Eq. (D.13)). On the other hand, by the definition of the Stein displacement

operator, one has

[ADg,Dn (B)]mzﬂm = (1 - §m277m1)[]~3]m2,m17 (F-48)

for each pair (mg, m;) within the set My x M. Thus, by using Eq. (F.47), we get

R

B, [f)QT]mz mi [f)qu}mg mi
B mo,mi : - - : s s . F.4
[Blom,, T ; T V(mg,m) € My x My, (F.49)

Note that the term 1/(1 —&,,,7mm, ) appears in all of the components of the above
summation. It is therefore convenient to verify whether this term can be efficiently
decomposed. We know that &,,, = {Wyy? is an Math root of &, for all my € Ms,
whereas 7,,, = noWy;! is an M;th root of n, for all m; € M;. From Remark 2 in
Chapter 3 of [23], we also know that

Ve = /Mo W,diag {5} 525, (F.50)
V= MyW y, diag{ng" } 17125 (F.51)
Now, let wus compute the (mg,mq)th coefficient of the matrix
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VE |:I]\/[2 0M2><(M17M2)j| Vg

{Vs {IMZ Osz(Ml—Mz)} Vﬂm,ml =/ MM, [WMQ [diag{(ﬁono)m}%i;é Ong(Ml—Mz)} X

_ Z 5677, mzm mlm
1 — (EomoWi2Wiph) M
L — (&oWar ) (mWar!)

= 1_7&7%12 (F.52)
1- 5m277m1
Hence, if we assume that 1 — {77 # 0, the above expressions imply
1 \/M M, m _
Mo [WMz [dlag{(&ﬂ]o) 2}m2 é OMQX(MI Mz)} WMJ :
gmznvm 577 M2,
(F.53)

By using Eq. (F.53), we can rewrite Eq. (F.49) as follows
B =VBV]

<Z DPTWMz {dlag{(foﬁo)mz}ﬁ ) 0M2X(M1—M2)i| VVM1 X

r=1

Myp—1
MM

é.,r]nj\gf m1=0

R
= \/MZDI_)TWMQ [diag{<£0n0>m2 7]\:{22;(% 0M2><(M1—M2)] WMlDﬁw (F54)
r=1

in which, by using Eq. (F.47), we have

P=[p,  Pr]=P=-VP "
_ ! o :
Q=[a - a4r]= diag{l—&nj‘ff}mlﬂ) °
T R
- (diag {wwrzf}m) s o
U]
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F.3 DFT-Based Superfast Transceivers with Re-
duced Redundancy

This section presents the proposals of new transceivers with reduced redundancy
that employ FFT-based algorithms. We shall tailor the previously proposed efficient
decompositions of Bezoutian matrices (see Section F.2) to the particular cases of
MMSE and ZF receiver matrices. As a result, a novel family of superfast multicarrier
and single-carrier linear transceivers are proposed with their respective structures.
As we have already pointed out in Subsection F.2.2, the transmitter-independent
receiver matrix K is a Bezoutian matrix for both MMSE- and ZF-based solutions.
Thus, if one carefully chooses both parameters £ and 7, then one can apply Theo-
rem 12 in order to design the referred matrices. Indeed, let us assume that £ = 1
and 1 = e™73. Thus, by considering the compressed form of the Bezoutian matrix
K described in Theorem 11 for the MMSE solution or in Corollary 5 for the ZF

solution, one can use Theorem 12 to demonstrate the following general result.

Theorem 13. The transmitter-independent recetver matriz K can be represented as

follows:

4
K= Wﬁ lz DﬁrWM {DM OMX(2K—L) W(M+2K—L)Dc‘1r] WZ\4+2K7L)D5\4+2K7L)

r=1

(F.57)

in which Dy = diag{e%},ﬁ\f:})1 is an N x N diagonal matriz, for any given natural
number N. The pair of matrices (P, Q) € CM*4 x CM+T2K=L)x4 ¢qn be determined
using Theorem 12 along with either Theorem 11 (for the MMSE-based system) or

Corollary 5 (for the ZF-based system), considering that ¢ =1 and n = e 931,

Proof. From either Theorem 11 or Corollary 5, note that K is an M x (M +2K — L)
Bezoutian matrix, where 2K > L. Thus, Theorem 13 is a straightforward conse-

quence of Theorem 12. Indeed, if one chooses € = 1 and 1 = /37, then

o =& MeT =1x e =1 (F.58)
and
o = ||/ MK -D TR — | x oWOTIRT] = oWOIPIR=T) (F.59)
These facts imply that
Ve = VMW, (F.60)
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whereas
\/‘77 =vVM+2K — L x W(M+2K_L)diag{eMWH‘WQE—”}%J(;QK—L‘U_ (Fﬁl)

We can therefore apply the decomposition presented in Theorem 12 to obtain the
desired result.

Note that the choices of ¢ and n were quite arbitrary. We have chosen § = 1,
since we would like to cancel out the last IDFT matrix employed at the receiver end
in the case of multicarrier systems. Indeed, in the multicarrier systems, the receiver
matrix is Gog = Wy K. If £ # 1, one would not be able to cancel out the DFT
matrix with the last IDF'T matrix presented in the decomposition of K. After fixing
¢ =1, we have chosen 7 in such a way that 1 —&nM =1 —nM £ 0, for all m within
the set {0,1,--- ,M 4+ 2K — L — 1}. There are infinite possible choices for n and
we have arbitrarily chosen 7 = e™7% (when M is very large, then this choice yields
n ~ 1). Note that, for this choice of 7,

M = (MW ok 1))

— g7 —12mmM
= e (M+2K—L) e (M+2K—L)

—gm(2mM+1)
— ¢ (MT2K-L)

£1, (F.62)
for all m within the set {0,1,--- M + 2K — L — 1}, since % is not an even
number. O]

A multicarrier system can be designed by setting Fg = W1, and Gy = F;'K =
W K, yielding

4
Go = lz D5, W [DM 0MX(2K*L)} W(M+2KL)D617-] W5\4+2K—L)D(HJ\/I+2K—L)7

r=1

(F.63)

where the definitions of the vectors p, and q, depend on whether the ZF or the
MMSE is chosen (see Theorem 11 or Corollary 5). In any case, the resulting multi-
carrier structure is depicted in Figure F.1.

By comparing Figure F.1 with the scheme depicted in Figure D.2 of Chapter D,
one can observe that the reduced-redundancy transceivers always use four equalizer
branches (instead of two branches in the minimum-redundancy ZF system first pro-
posed in [23]), no matter whether the ZF or MMSE solution is chosen. Another
important difference between those schemes is the fact that reduced-redundancy

systems require two distinct DF'T sizes, instead of only one size as in Figure D.2
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Figure F.1: DFT-based multicarrier reduced-redundancy block transceiver (MC-
RRBT).

of Chapter D. Nevertheless, it is possible to verify that the structure depicted in
Figure F.1 coincides with the scheme in Figure D.2 of Chapter D when minimum-
redundancy is employed.

A single-carrier system can be designed by setting Fy = I; and Gy = F;'K =
K, yielding

4
Go = Wy [Z D5, W {DM Onrx(erx—1) W(M+2K—L)D§r] WZV[+2K—L)D5\4+2K—L)7

r=1

(F.64)

in which, once again, the definitions of the vectors p, and q, depend on whether
the ZF or the MMSE is chosen.

The superfast multicarrier and single-carrier proposals of this chapter yield an
additional degree of freedom in the ZP-ZJ-based transmissions, for the amount of re-
dundancy can vary from the minimum value, [L/2], to the limit value, L. Nonethe-
less, one must deal with two distinct DF'T sizes, M and M + 2K — L. When M is a
power of 2, then M + 2K — L is not necessarily a power of two. Thus, a radix-2 FF'T
algorithm could only be applied to implement those DF'Ts with size M. As for the
DFTs with size M + 2K — L, one could implement the operations using a radix-2
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FFT of size 2M (which is assumed to be larger than M + 2K — L), along with
zero-padding of the related signals. Another possibility is to choose the amount of
redundant elements in such a way that M 42K — L can be decomposed as a product
of small prime numbers, leading to fast implementations as well. We shall address

this topic in future works.

F.3.1 Complexity Comparisons

Let us assume that an FF'T algorithm requires % logy, M — % + 2 complex multi-
M
)
as performed in [37]. Thus, it is possible to derive the results of Table F.1, which

plications [26] for size-M data blocks. In addition, we shall assume that L =

contains the number of complex-valued multiplications required by the proposed
multicarrier reduced-redundancy system, as well as both the overlap-and-add (OLA)
and fast proposals of zero-padded OFDM systems described in [37].

In the MC-RRBT, it is possible to implement part of the receiver side us-
ing parallel processing (see Figure F.1). In this case, if we consider that the re-
quired time to perform a generic complex-valued multiplication is 7" seconds, then
the MC-RRBT requires T'(3M logy, M 4+ 2(2K — L) + 8) seconds, whereas the ZP-
OFDM-OLA requires T'(M logy, M —2M +4) seconds and ZP-OFDM-FAST requires
T (% logy M — 5M + 20) seconds.

We have assumed that the pair of matrices (P, Q) is known. In fact, these ma-
trices completely define the reduced-redundancy equalizers, since they are the only
ones that contain information about the channel. These matrices, however, must be
previously computed in the so-called receiver-design stage, which can be performed
using up to O(M logs M) operations. Besides, there are many applications in which
the receiver-design problem is not frequently solved. In wireline communications
systems, the channel model is not updated so often. In this case, the main problem

is the equalization itself.

F.4 Simulation Results

This section aims at evaluating the performance of the transceivers with reduced
redundancy in some particular scenarios. The figures of merit adopted here are the
uncoded BER and the throughput.

In [23], we have shown that minimum-redundancy systems may significantly
improve the throughput performance of multicarrier and single-carrier transmissions.
Nevertheless, we have pointed out in [23] that the minimum-redundancy transceivers
may incur in high noise enhancements induced by the “inversion” of the Toeplitz

effective channel matrix in the equalization process. In our first example here, we
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Table F.1: Number of complex-valued multiplications.

’ System H Arithmetic Complexity ‘
7ZP-OFDM-OLA Mlogy, M —2M + 4
ZP-OFDM-FAST 2 log, M — 5M + 20

MC-RRBT Bl ogy M — 2L 420+ 52K — L)

chose a fourth-order channel model (see [41], pp. 306-307)
Ha(z) £ 0.1659 + 0.30452 1 — 0.115922 — 0.07332° — 0.00152* (F.65)

for which the performance of the minimum-redundancy systems proposed in [23]
is poor. For this channel (Channel A), we transmit 50,000 data blocks carrying
M = 16 symbols of a 64-QAM constellation (b = 6 bits per symbol). In fact,
each data block stems from 48 data bits that, after channel coding, yield 96 bits
to be baseband modulated. The channel coding has constraint length 7, code rate
r. = 1/2, and octal generators go = [133] and g; = [165] [74]. We assume that the
sample frequency is fs = 100 MHz.

Figures F.2, F.3, F.4, F.5 depict the obtained uncoded-BER results. For multi-
carrier transmissions, we compare four different transceivers, as shown in Figure F.2
and Figure F.3: the ZP-OFDM-OLA and the three possible multicarrier reduced-
redundancy block transceivers (MC-RRBT). There are three possible MC-RRBT
systems since the amount of redundant elements respects the inequality % <K<LL
(i.e., K € {2,3,4}). In addition, for single-carrier transmissions, we also compare
four different transceivers, as shown in Figure F.4 and Figure F.5: the traditional
SC-FD and the three possible single-carrier reduced-redundancy block transceivers
(SC-RRBT). From Figure F.2, one can observe that the minimum-redundancy mul-
ticarrier system (MC-RRBT for K = 2) that employs a ZF equalizer is not able
to produce a reliable estimate for the transmitted bits. However, if just one addi-
tional redundant element is included in the transmission, the resulting MC-RRBT
system (K = 3) is enough to outperform the ZF-OFDM. Moreover, adding another
redundant element in the transmission (MC-RRBT for K = 4) does not contribute
to substantially improving the uncoded-BER performance in this case. Similar con-

clusions can be drawn from the analyses of Figure F.3, Figure F.4, and Figure F.5.
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Figure F.2: Uncoded BER as a function of SNR [dB] for Channel A, considering
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Figure F.4: Uncoded BER as a function of SNR [dB] for Channel A, considering
ZF-based single-carrier transmissions employing DF'T.
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Figures F.6, F.7, F.8, F.9 depict the obtained throughput results. Figure F.6
shows considerable throughput gains of using, for instance, an MC-RRBT system
with K = 3, as compared to the traditional OFDM system. One should bear in
mind that such throughput gains are attained without increasing substantially the
computational complexity related to OFDM-based systems. Moreover, the MC-
RRBT system with K = 3 also outperforms the MC-RRBT system with K = 4
in terms of throughput, especially for large SNR values. This occurs since both
reduced-redundancy systems have similar uncoded-BER performances, but the MC-
RRBT system with K = 3 saves bandwidth as compared to MC-RRBT system with
K = 4. Similar conclusions can be drawn from the analyses of Figure F.7, Figure F.8,
and Figure F.9.
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In our second experiment, we shall consider an FIR-channel model (Channel
B) whose zeros are 0.8, —0.8,0.57, —0.57, and —0.87. The values of all simulation
parameters are equal to the previous experiment, except for the fact that now M =
32, b = 4 (16-QAM constellation), and L = 5, which implies that K € {3,4,5}.
In addition, we only present the MMSE-based results for both multicarrier and
single-carrier transmissions.

Figures F.10, F.11 contain the uncoded-BER and Figures F.12; F.13 contain the
throughput results. For the multicarrier systems one can observe in Figure F.10
that neither MC-RRBT with K = 3 nor with MC-RRBT with K = 4 yield reliable
data estimates. As can be verified in Figure F.12, it is much better to use the
traditional OFDM system for this channel model when the SNR values are large,
since the performances of both the ZP-OFDM-OLA and the proposed MC-RRBT
with K = 5 are equivalent, but the ZP-OFDM-OLA performs less computations. An
analogous observation also applies to the single-carrier case as seen in Figure F.11
and Figure F.13. The aim of this example is to show that the number of redundant
elements required to yield a reliable transmission is strongly dependent on the type
of channel. In this example, an additional redundant element (MC-RRBT with
K = 4) is not enough to have good uncoded-BER and throughput performances, as
in the experiment previously presented.

Note that, when the ZP-ZJ transceiver employs full redundancy (K = 5) in the
transmission, the receiver defined in Eq. (D.4) is the well-known minimum norm
ZF receiver [37]. Such type of transceiver enjoys several performance improvements
as compared to ZP-OFDM-OLA and ZP-SC-FD-OLA, even though all of these
transceivers transmit with the same amount of redundancy (see [37] for an in-depth

description).
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Figure F.10: Uncoded BER as a function of SNR [dB] for Channel B, considering
MMSE-based multicarrier transmissions employing DFT.
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In our third example, we shall consider an FIR-channel model (Channel C) whose
zeros are 0.999, —0.999, 0.7y, —0.7y, and —0.4). This channel has zeros very close to
the unit circle. Apart from the channel model, all simulation parameters are the
same of the previous experiment. We therefore expect that the performances of the
traditional OFDM and SC-FD systems should be rather poor. Figures F.14, F.15
depict the uncoded-BER and Figures F.16, F.17 depict the throughput results. One
can observe that both the MC-RRBT and the SC-RRBT systems always outperform
the traditional OFDM and SC-FD systems. Another important fact is that even
though the uncoded-BER performance always improves as one increases the number
of transmitted redundant elements, the throughput performance does not follow the
same pattern. For example, for low SNR values, it is better to use a reduced-
redundancy system that transmits with a larger amount of redundant elements,
whereas for large SNR values, it is better to use a reduced-redundancy system that
transmits with a smaller amount of redundant elements. Once again, it is important
to highlight that the proposals of this chapter aim at showing how to transmit with
a smaller amount of redundant elements while using superfast transforms and single-

tap equalizers.

F.5 Concluding Remarks

In this chapter, we have proposed new linear time-invariant block-based transceivers
with redundancies ranging from the minimum to the usual amount, which is in turn
related to the channel-impulse response order. The proposals included practical
solutions for multicarrier and single-carrier transceivers using varying redundancy.
The transceivers ZF and MMSE solutions require only DFTs, inverse DFTs, and
diagonal matrices, turning the new transceivers computationally efficient. The so-
lutions were obtained by employing the framework of structured matrices using the
concepts of Sylvester and Stein displacements. By using adequate displacement con-
cepts applied to rectangular structured matrices we were able to derive the proposed
solutions for the multicarrier and single-carrier block-based transceivers requiring re-
dundancy ranging from the minimum to the channel order. Theoretical results have
been derived proving for the first time that increase in the redundancy associated
with zero-padding zero-jamming systems brings about performance benefits while
decreasing bandwidth efficiency. In particular, for all proposed transceivers, by in-
creasing the amount of redundancy we can witness a reduction in the average MSE
as well as in the bit-error rate.

Simulations have confirmed these theoretical results, and have shown that the
relative performance of the reduced-redundancy transceivers is highly dependent on

the channel model characteristics. We believe that the results of this chapter answer,
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for the first time, several open questions related to the insertion of redundancy in

block-based transceivers.
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Figure F.16: Throughput [Mbps| as a function of SNR [dB] for Channel C, consid-
ering MMSE-based multicarrier transmissions employing DF'T.
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Apéndice G

DHT-Based Transceivers with
Reduced Redundancy

As mentioned in Chapter E, there are some applications where employing real-
transform-based multicarrier and single-carrier systems bring about many ad-
vantages over complex-transform-based transceivers. Chapter F introduced the
reduced-redundancy transceivers based on discrete Fourier transform, which is a
complex-value transform. The results of Chapter F can be used along with the
results of Chapter E in order to derive reduced-redundancy transceivers based on
discrete Hartley transform, which is a real-value transform.

In this chapter, we propose some possible structures for DHT-based transceivers
with reduced redundancy. Starting from the derivations of both minimum-
redundancy transceivers based on DHT and reduced-redundancy transceivers based
on DFT, we can conceive the proposed structures for DHT-based transceivers with
reduced redundancy by just adapting the results from Chapters E and F. As a
result, this chapter is shorter than the previous two.

The proposed DHT-based superfast multicarrier and single-carrier transceivers
with reduced redundancy is derived in Section G.1. The simulation results are in

Section G.2, and the concluding remarks are in Section G.3.

G.1 DHT-Based Superfast Transceivers with Re-
duced Redundancy

We already know that the optimal linear solutions associated with block transceivers
are particular types of Bezoutian matrices (see Subsection F.2.2). It is possible to
derive DHT-based solutions by starting from a known efficient decomposition of a

given Bezoutian matrix. Theorem 12 from Chapter F states that a given Bezoutian
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matrix B of dimension My x M;, with M; > M, admits the following decomposition
R
B = /MM, V¢! [Z diag{P,} W, | diag{(&am0)™ 220 Ontyars—1s) | X
r=1
X WMldlag{(_l'r}:| V;T7 (Gl)

in which, from Eqgs. (F.50) and (F.51), we have

/ . fema Ma— - L\ Mae
Vg - MQWMleag{§O 2}%22:3 < V§ = \/Mdlag{éo 2}%2223“7]\1{427 (GQ)

1

V, = MiWydiag{ng"} ' 25 < V, T = L

Wi, diag{ng ™}, 20, (G.3)

m1=0"

assuming that n # 0 # &, ny = |7]|1/Mle]1%, and & 2 ’£|1/M2€]%.

Now, let us recall the definitions of the normalized DF'T matrices Wy, x given
in Eq. (E.6), in which the sub-index X € {I,II,III,IV} indicates the type of the
modified DFT matrix, whereas M denotes the dimension of the matrix (M x M
DFT matrix).! Using these definitions, the following identities (see Eq. (E.24))

follow:

M—-1

. T

W = qun = diag {exp <—]Mm>} » W
)

. T M-1

WM,III = WM,Idlag {exp (—ij>}
T
= T M-l
Wi m = diag {exp (JMm)} 70 Wi, (G.4)
where Wy 1 = Wy = W?\}

Now, we can set some values for & and 7, for instance, by considering that

¢ =—1=exp(—ym) and n = 1, we have £, = exp (—jj\;) and 7y = 1, yielding
2

1
vVil= —wWi G.5
-1 \/m Mo 111> ( )

_ 1
V]_T - ﬁwﬁlvl' (G’G)

In Chapter E, we omitted the sub-index M, since we were dealing only with M x M matrices
in that chapter. In this chapter, since we also deal with rectangular matrices, the sub-index is
required.
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We therefore can rewrite Eq. (G.1) as

R
B = Wi, | diag{P, }Waruur | Tn,  Oary(ar,—an) WMI,Idiag{QT}l Wi

r=1

(G.7)

In order to describe the previous relation as a function of the Hartley transform,
let us take into account the following facts (see also Eqs. (E.33) and (E.34)):

(1 - ])IM2 + (1 +.7>JM2
2

Wi, i Hoa, 1 =

Wi, = l

)
1+ )y, + (1= 9)J
W]\H@JH = HM2,II l( j) Mo 2( ]) M2] ’

(1 - j)IMl + (1 +]>J,M1
2

(1 — j)IM2 + (1 +])JM2
2

] Has 1

(G.8)

Wi Han 1 =
(i

W1 = [

1— I 14+ )Y
(1—7) M1+2( +7) MWHMLI

(1 - j)IMl + (1 + j)']/Ml_
2

= HMl,I

0

H
WMl,I - HM1,I

—(1 +j)IM1 + (1 - j)J/Ml_

| 2

[(1 +])IM1 + (1 _ ])J/Ml
2

1 ’HM;I, (G.9)

in which we have used the identity H;J' = J"H; [48]. Hence, we can rewrite
Eq. (G.7) as

R
B = Hap,u [Z X, Mo [T, Onsyxar—an) | HMI,IX(—%] Hanp  (G.10)
r=1

where, for each r € {1,2,--- , R}, we have

X(_lr _ [(1 _])IMI —;(1 +])J/M1] dlag{qr} [(1 +])IM1 —;(1 _])J,M1] .

(G.12)
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Now, let us consider the transmitter-independent receiver matrix K = FoGq €
CM>x(M+2K=L) a5 the Bezoutian matrix (see Subsection F.2.2 for more detailed in-
formation). We already know that Kzp = H{ and Kynse = (HIH, + pIy ) 'HE.

We can therefore sum up all previous developments in Theorem 14 as follows.

Theorem 14. The transmitter-independent receiver matriz K can be written as

R
K=Hun [Z X5, Harm {IM OMX(QK—L)} H(M+2K—L),1er] Hvs2k-1)1,

r=1

(G.13)

where X5, and Xg, are defined in Eqs. (G.11) and (G.12). In addition, we consider
thatP =[Py --- Ps] and Q = [qy --- @u | are defined as in Eqs. (F.55) and (F.56).

Note that, in Egs. (F.55) and (F.56), we must consider that R =4, { = —1, and
nM = e%, for all m within the set {0,1,--- , M + 2K — L — 1}, following our
aforementioned hypotheses of ¢ = —1 and n = 1. In fact, in this case, Eq. (F.56)
only makes sense when eﬁf?i% # —1. In other words, %
number, for all possible m. We know that M < M +2K — L < M + L < 2M, since
L/2 < K < Land L < M. Now, if one assumes that M = 2% for some natural
number k, and if L < M = 2*, then one has that M?ﬁﬁ{ 7 is an integer number
, Mi’;[]y_ 7 = 2m, which is an even number.

Thus, we shall assume from now on that M is a power of 2 and that L is strictly

cannot be an odd

only when K = L/2, and, for this case

smaller than M, since these conditions are sufficient to guarantee that Eq. (F.56) is
well defined.?

Furthermore, the definition of the pair of matrices (P, Q) € CM** x C(M+2K-L)x4
that appears in the definition of (P, Q) in Eqgs. (F.55) and (F.56) depends on whether
the ZF (see Eqs. (F.41) and (F.42) from Corollary 5) or MMSE (see Egs. (F.29)
and (F.42) from Theorem 11) solution is chosen.

Now that we have an efficient decomposition for the transmitter-independent re-
ceiver matrix K, we can easily devise multicarrier and single-carrier systems. Indeed,
a multicarrier system can be designed by setting Fo = Hy i and Gy = Fy K =

HM,HIK, yleldlng

4
Go = [Z Xf’rHM,IH I OMX(QK—L) H(M+2K—L),IXF1T H(M.;_QK_L),I. (G.14)

r=1

As for the single-carrier system, one can set Fy = I; and Gy = F;'K = K,

2 Actually, one could also take into account the case in which L = M as long as full-redundancy
is not employed (K < L), as can be noted from the discussions above.
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yielding

4
Go = Hun [Z Xs. Horm | I Opxer—r1) | Mvsex—1)1X G, | Hvs2x—1)1

r=1

(G.15)

In any case, the definitions of the vectors p, and q, depend on whether the ZF
or the MMSE solution is chosen. As an illustrative example, Figure G.1 depicts the
resulting multicarrier structure. The reader should notice the similarities between
Figure G.1 and Figure F.1 (note, however, that the DHT-based transceivers require

two-tap equalizers in their structures).

Noise
Data Add i Remove
C— >{DHT-II[— > Guard L iChannel H(:>—> Guard —
ok Period Period DHT-I
Two-Tap| 1| L |
Equalizer —PHT-II — DHT-I >~ ;WO‘FE%P <;
qualizer
Ignore <¥
Two-Tap L L L
Equalizer —PHT- — DHT-I >N TWO-Tap <;
Data Equalizer
Block Ignore <;:
Estimate
Two-Tap | 1| L |
Equalizer —(PHT-II — DHT-I N ;WO‘EELP ¢
qualizer
Ignore <¥
Two-Tap L L |
Equalizer —(PHT-II — DHT-I I ;WO'FaP <,:
qualizer
Ignore <;:

Figure G.1: DHT-based multicarrier reduced-redundancy block transceiver.

It is worth mentioning that, when both K = L/2 and the zero-forcing solution
is adopted, then the number of equalizer branches at the receiver end in Figure G.1
reduces to only two, instead of four (see Eqgs. (F.41) and (F.42) from Corollary 5).
Nevertheless, even in this minimum-redundancy case, we end up with a structure
which does not coincide with the proposal depicted in Figure E.1. This occurs since

we have deduced the DHT-based reduced-redundancy systems in a different manner
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from that in Chapter E.

G.2 Simulation Results

The aim of this section is to assess the performance of the proposed DHT-based
transceivers with reduced redundancy, considering the same scenarios described in
Section F.4. As in Chapter F, the figures of merit adopted here are the uncoded
BER and the throughput. For the sake of clarity, we shall describe once again the

channel models:

o Channel A, whose transfer function is 0.1659 + 0.3045z7! — 0.1159272 —
0.0733273 — 0.0015z=%. We transmitted 50,000 data blocks carrying M = 16
symbols of a 64-QAM constellation (b = 6 bits per symbol);

o Channel B, whose zeros are 0.8, —0.8,0.57, —0.57, and —0.87. We transmitted
50,000 data blocks carrying M = 32 symbols of a 16-QAM constellation (b = 4
bits per symbol);

e Channel C, whose zeros are 0.999, —0.999,0.77, —0.77, and —0.4). We trans-
mitted 50,000 data blocks carrying M = 32 symbols of a 16-QAM constellation
(b = 4 bits per symbol).

The channel coding employed in all throughput-based simulations has constraint
length 7, code rate r. = 1/2, and octal generators go = [133] and g; = [165] [74].
We assume that the sample frequency is f; = 100 MHz.

Figures G.2, G.3, G.4, G.5 depict the obtained uncoded-BER results for DHT-
based transmissions through Channel A. For multicarrier transmissions, four differ-
ent transceivers are compared, as shown in Figure G.2 and Figure G.3: the tradi-
tional OFDM and the three possible DHT-based multicarrier reduced-redundancy
block transceivers (MC-RRBT). There are three possible DHT-based MC-RRBT
systems since the amount of redundant elements respects the inequality % <K<L
(i.e., K € {2,3,4}). In addition, for single-carrier transmissions, we also compare
four different transceivers, as shown in Figure G.4 and Figure G.5: the traditional
SC-FD and the three possible DHT-based single-carrier reduced-redundancy block
transceivers (SC-RRBT). The reader should notice in Figure G.2 that the DHT-
based minimum-redundancy multicarrier system (MC-RRBT for K = 2) that em-
ploys a ZF equalizer is not able to produce a reliable estimate for the transmitted bits
(the same conclusion was drawn for DFT-based systems in Section F.4). However,
when additional redundant elements are included in the transmission, the resulting
DHT-based MC-RRBT systems (K = 3 and K = 4) outperform the ZF-OFDM.
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Figure G.2: Uncoded BER as a function of SNR [dB] for Channel A, considering
ZF-based multicarrier transmissions employing DHTs.
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Figure G.3: Uncoded BER as a function of SNR [dB] for Channel A, considering
MMSE-based multicarrier transmissions employing DHTs.
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Figure G.4: Uncoded BER as a function of SNR [dB] for Channel A, considering
ZF-based single-carrier transmissions employing DHTs.
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Figure G.5: Uncoded BER as a function of SNR [dB] for Channel A, considering
MMSE-based single-carrier transmissions employing DHTs.
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Figures G.6, G.7, G.8, G.9 depict the obtained throughput results. Figure G.6
shows that using a DHT-based MC-RRBT system with K = 3 is the best option
from a throughput point of view, as compared to the other three options, including
OFDM. Similar conclusions can be drawn from the analyses of Figure G.7, Fig-
ure G.8, and Figure G.9.

Figures G.10, G.11 contain the uncoded-BER and Figures G.12, G.13 contain
the throughput results when Channel B is considered (only MMSE-based solutions).
For the multicarrier systems one can observe in Figure G.10 that neither DHT-
based MC-RRBT with K = 3 nor with DHT-based MC-RRBT with K = 4 yield
reliable data estimates. This behavior was also observed in the results described in
Section F.4 of this thesis. As can be verified in Figure G.12, it is much better to use
the traditional OFDM system for this channel model when the SNR values are large
(> 27 dB). Nevertheless, for low SNR values, both the reduced-redundancy system
with K = 4 and the full-redundancy system with K = 5 outperform the throughput
results related to OFDM.

Figures G.14, G.15 depict the uncoded-BER and Figures G.16, G.17 depict the
throughput results when Channel C is considered (only MMSE-based solutions).
One can observe that both the DHT-based MC-RRBT and the DHT-based SC-
RRBT systems always outperform the traditional OFDM and SC-FD systems. An-
other important fact is that even though the uncoded-BER performance always im-
proves as one increases the number of transmitted redundant elements, the through-
put performance does not follow the same pattern. For example, for low SNR values,
it is better to use a DHT-based reduced-redundancy system that transmits with a
larger amount of redundant elements, whereas for large SNR values, it is better to
use a reduced-redundancy system that transmits with a smaller amount of redun-

dant elements. Once again, such a behavior was also observed in Chapter F.

G.3 Concluding Remarks

In this chapter we proposed transceivers with reduced redundancy for block data
transmission. More specifically, we extended the results from Chapter F by using
Hartley transforms, instead of Fourier transforms. The ZF and MMSE solutions
employ only DHTs, diagonal, and antidiagonal matrices. This feature makes the
new transceivers computationally efficient. Our approach exploited the structural
properties of typical channel matrix representations described in Chapter E and
Chapter F. The obtained results corroborate the good throughput properties inher-

ent to the new proposals.
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Figure G.6: Throughput [Mbps] as a function of SNR [dB| for Channel A, consid-
ering ZF-based multicarrier transmissions employing DHTs.
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Apéndice H

Power Allocation in Transceivers

with Minimum Redundancy

It has been observed that, after the equalization process, minimum-redundancy
transceivers may suffer from noise gains more than traditional OFDM and SC-FD
systems do (see Chapter 4 in [23]). This occurs because of the additional diffi-
culty in equalizing the Toeplitz effective channel matrix induced by the minimum-
redundancy transceivers, as compared to the circulant channel matrix associated
with OFDM and SC-FD systems [23].! This fact motivated us to perform research
on methods to minimize these noise gains.

In this chapter, we consider a scheme where minimum-redundancy block
transceivers have CSI available at the transmitter end. We use this information
to distribute the available transmitter power among the symbols. The power allo-
cation is performed in order to minimize the noise gains at the receiver end.

The proposed power-allocation method is implemented by multiplying each sym-
bol to be transmitted by a positive real number. These real numbers are the solutions
of a constrained optimization problem: to minimize the power of the noise vector
after the receiver processing, without changing the average transmission power of
the transmitted data block.

The proposed power-allocation method is derived in Section H.1. Numerical
examples are presented in Section H.2. The chapter ends with some concluding

remarks in Section H.3.

H.1 Optimal Power Allocation

The multicarrier transceivers with minimum redundancy proposed in [23] were not

designed to take into account channel-state information at the transmitter end.

Tt is common that Toeplitz matrices are more ill-conditioned than circulant matrices, consid-
ering the same channel model.
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Hence, they do not apply any kind of bit and/or power loading to the subchan-
nels. Rather, they transmit equal-power signals on every subchannel. In fact, the
problem of power loading aiming at maximizing the channel capacity has not been
addressed in the context of practical minimum-redundancy transceivers. This prob-
lem appears to be more complex than in the traditional DMT schemes (employing
full-redundancy), since the effective channel matrix is not diagonalized in minimum-
redundancy transceivers.

This section describes mathematically the proposal of this work. The idea is
simple: to include at the transmitter and receiver ends two real-valued diagonal
matrices T~! and T, respectively (see Figure H.1 and consider now that T # I).
The matrix T is designed in order to minimize the mean-square value of the noise
after the processing at the receiver end, while keeping the same overall transmitter
power.> Note that this is not a unitary-precoder problem [40], since T is not a
unitary or an orthogonal matrix. An analogous problem was proposed and solved
in [39] for cyclic-prefix-based OFDM systems. This work, however, considers only a
diagonal matrix T in order to avoid increasing the computational complexity of the
transceiver significantly.

Given a noise vector vy drawn from a zero-mean white process containing M
independent and identically distributed (i.i.d.) elements, the resulting processed
noise at the receiver end is TGovy. Thus, the average noise power (ANP) after the

receiver processing is given by:
1
ANP £ E {tr [TGovov( G¢'T"]}
2
- %tr{THTGOGgl 1, (H.1)

where E{vov}} = 021, with 02 € R, . Hence, by defining the mth diagonal element
of T as t,,, and the mth row-vector of Gy as g,,, we have the following optimization

problem:
M—1 M-1
min > ¢ |lgmll3, subject to > 2= M. (H.2)
m=0 m=0

The constraint in Eq. (H.2) models the fact that, for a zero-mean white input s

such that E{ss”} = o1, with 02 € R, , the average transmission power (ATxP) is

2 A more appropriate figure of merit would be throughput. Nevertheless, throughput is a rather
complicated function of T and we were not able to deal with such a figure of merit.
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kept constant, that is

ATxP £ ]\ZE {tr [FoT 'ss" T-HF{]}

2
O

— Mtr{T—lT—HFgf Fo}
0.2 0_2 M-1
= Stp{T 2} = = 2
atT Mmz::0 m
1
_ 2 _ - H
=o0; = ME{tr {ss }}, (H.3)

since F'Fy = I and tr{T~2} is constrained to be M. By applying the Lagrange-

multiplier method, we have the following cost-function (see also [39]):

M—1 M—-1
oo ta) 2 3 22 g2+ A (Z . M) | (H.4)
m=0 m=0

which can be optimized by finding its associated extreme points, as follows:

8J(i:Ov o 7tM—1)

= 2,2 — 203 . H.5
o I I3 = 22, (H.5)

Thus, for m € {0,1,--- , M — 1}, we have

aJ(th"'at;a"'vthl):O@t* :F (H.6)
Ot om " lgmll5

in which we only considered the positive real root. Now, we can substitute the values

tf, into the constraint described in Eq. (H.2) in order to determine A. Hence, we

have

M—1
M1 > lgmll2

ZO Hg\;nXH? =M & \/X: m=0M ' (H?)

Now, by using Eq. (H.7) in Eq. (H.6), we obtain the optimal solution

M—1
> lgmll2
m’=0

w0 yme{0,1,--,M—1}. (H.8)
M||gml[2

Note that this solution is associated with the minimization of the cost-function
J:RM™ — R defined in Eq. (H.4). In fact, from (H.5), we have

82J(t07 e 7tM71)

= 6At,0[m —m” H.
Bt 6L 0[m’ —m"], (H.9)
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where 6[z] = 1 when z = 0, and §[z] = 0 otherwise. Thus, the Hessian matrix
associated with the cost-function J is a diagonal matrix. From (H.7), we know that
A > 0. Each diagonal element of the Hessian matrix is, therefore, positive, yielding
a positive-definite Hessian matrix.

Figure H.2 depicts the detailed structure of the zero-forcing multicarrier
transceiver with minimum redundancy. This transceiver employs the optimal power-
allocation scheme that we have just derived. The first step of the transmitter pro-
cessing is to multiply each symbol in a data block by a real number (optimal weight
1/tf,, for the mth symbol in the data block). After that, the entire block is trans-
formed through the application of the IDFT and the L/2 guard-zeros are introduced.
At the receiver end, a prefilter may be included in order to shorten the channel. Af-
ter removing the guard period, M parallel phase shifts are performed, where the
mth phase shifter, or rotator, is defined as e 73™. The first equalization step is
performed after the application of the IDFT on the data vector. Then, the resulting
data vector is simultaneously processed by two different branches of the transceiver.
The 1-tap equalizers in this stage are the elements of the vectors q; and qy. After
the application of the DFT, phase shifts are performed again, but now the mth
rotator is defined as e/3™. Another equalization step is performed in each branch,
after the application of the DFT on the phase-shifted data vectors. The 1-tap
equalizers in this stage are the elements of the vectors p; and ps. The last step of
the receiver processing is to equalize the power throughout the whole data block.
This is implemented by multiplying the mth symbol estimate by ¢’ . The related
MMSE transceiver has a similar structure, except for the four parallel branches at

the receiver end.
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H.2 Simulation Results

We transmit 10,000 data blocks carrying M = 16 symbols of a 16-QAM constella-
tion. In fact, each data block stems from 32 data bits that, after channel coding
(with constraint length 7, code rate r. = 1/2, and octal generators go = [133] and
g1 = [165]) [74], yield 64 bits to be baseband modulated. We assume that both
symbol and channel models use the sample frequency f; = 100 MHz. In addition,
we only consider multicarrier systems, since we verified that the proposals are not
effective for single-carrier systems.

In our first experiment, we assess the uncoded-BER and throughput perfor-
mances of the multicarrier minimum-redundancy block transceivers (MC-MRBT) in
two configurations: without precoding and with per-symbol precoding (each 1/t
in Eq. (H.8) multiplies an element of the vector s), which is always indicated by
the letter P. In addition, we also depict the results for the OFDM-based systems
as a reference. The channel model used here (Channel A [76]) has zeros 1.2, —1.2,
0.79, and —0.79, implying that L = 4. From Figure H.3 and Figure H.4, one can
verify that, in the SNR range above 15 dB, the gain from using the power-allocation
method proposed in this work is noticeable. The throughput results are depicted in
Figure H.5 and Figure H.6.
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Figure H.3: Uncoded BER as a function of SNR [dB] for Channel A, considering
ZF-based multicarrier transmissions.
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Figure H.4: Uncoded BER as a function of SNR [dB] for Channel A, considering
MMSE-based multicarrier transmissions.
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In our second experiment, we assess the performance of the same transceivers

previously discussed. The channel model (Channel B [75]) is
H(z)=14+052""—0.722409273 + 2% (H.10)

From Figures H.7, H.8, H.9, H.10, one can verify the throughput gains due to the

proposed power allocation.
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Figure H.7: Uncoded BER as a function of SNR [dB] for Channel B, considering
ZF-based multicarrier transmissions.

10°

107

Uncoded BER
=

d
10 ;
- \ -
105l O+ MMSE-OFDM W -
. =% - MMSE-MC-MRBT \ '
— £1- - P-MMSE-OFDM M
[ —— P-MMSE-MC-MRBT
10_ 1 1 1 1 1
10 15 20 25 30 35 40

SNR [dB]
Figure H.8: Uncoded BER as a function of SNR [dB] for Channel B, considering
MMSE-based multicarrier transmissions.

242



180 T T

T—y—y
160 - \/,“E—-E'—'Bf‘.'."&""e:
140 0 -

’ o

— 120 , 1

:

= 100 O 1

‘5 N

(¥

=

280 i

o

=

=
60 -
40 -

...Q - ZF-OFDM
.=\ - ZF-MC-MRBT
20 — E1- P-ZF-OFDM
—%— P-ZF-MC-MRBT
10 15 20 25 30 35 40
SNR [dB]

Figure H.9: Throughput [Mbps]| as a function of SNR [dB] for Channel B, considering
ZF-based multicarrier transmissions.

180 . T

160} 2l
V/ - O
B 7] () i
140 , S
/ 7

— 120} ;s 0 -
& g .-
= / 7
2 100 F 7,70 .
= s
£ s |
g 80} ‘/// - ]
= s 0O
= .

60 ﬁ .

401 0O .

' O+ MMSE-OFDM
. =%# ' - MMSE-MC-MRBT
20 — £1- - P-MMSE-OFDM
—3%— P-MMSE-MC-MRBT
10 15 20 25 30 35 40
SNR [dB]
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The third experiment is equal to the previous one, except for the channel
model (Channel C [31]), whose zeros are 1, 0.97, —0.97, and 1.3¢?™/8.  Once
again, the new proposals outperform the existing systems, as depicted in Fig-
ures H.11, H.12, H.13, H.14. Moreover, the performances of the minimum-
redundancy systems are much better than the performances of both the traditional
OFDM system and the precoded OFDM system. This occurs since OFDM-based
systems have poor performances when the channel model has zeros on the unit
circle [31, 40].

H.3 Concluding Remarks

We presented in this chapter a power-allocation method specially designed to mini-
mize the noise gains inherent to block-based transceivers with minimum redundancy.
The resulting transceivers still require O(M log, M) complex-valued numerical op-
erations to equalize a received vector. In addition, the throughput performance is
enhanced as the simulation results illustrate.

The problem of power allocation aiming at maximizing the channel capacity

remains open and should be addressed in a future work.
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Apéndice 1

Block-Based DFEs with Reduced
Redundancy

Equalization plays an important role in any modern digital transmission scheme.
Linear equalizers are still the preferred choice in practical systems due to their com-
putational simplicity. However, the constant performance improvements of digital
processors have enabled the use of nonlinear equalizers as well. The nonlinearities
induce certain degrees of freedom which are not exploited in linear equalization.
Among the nonlinear receivers, decision-feedback equalizers (DFE) [40, 50-52] are
the most popular since they feature good tradeoff between performance improve-
ments and computational complexity.

In modern communications, it is common practice to segment the overall data
string into smaller blocks that are transmitted separately in the so-called block-
based transmission. Such separation in blocks is rather useful in block-based DFEs,
since any symbol error within a given data block is not propagated across different
blocks. Nonetheless, the undesired superposition of signals inherent to broadband
communications generates interblock interference (IBI) between adjacent transmit-
ted data blocks. IBI can be eliminated by transmitting redundant signals, such as
zero-padded or cyclic-prefixed signals [7, 40]. However, one should optimize the use
of the spectral resources in broadband transmissions. A possible way to address
this problem is to reduce the amount of redundancy required by block transmissions
to avoid interblock interference. An efficient solution is to employ zero-padding
zero-jamming (ZP-ZJ) transceivers, which allow the transmission with reduced re-
dundancy. Nevertheless, just few works have employed ZP-ZJ transceivers and all
of them consider only linear equalizers.

This chapter shows that ZP-ZJ techniques can also be successfully applied in
the context of DFE systems. The chapter describes how to apply known minimum
mean-square error (MMSE) solutions with zero-forcing (ZF) constraints to block-

based DFEs within the context of reduced-redundancy systems. The chapter also
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includes some mathematical results which describe the monotone behavior of several
figures of merit related to ZP-ZJ DFE systems (such as MSE of symbols, mutual
information, error probability of symbols, etc.) The proposed analyses indicate that
the reduction in the amount of redundancy leads to loss in performance of these
figures of merit, not including the throughput. In fact, throughput may increase
by reducing the amount of redundant signals, as will be clearer in the simulation
results.

This chapter is organized as follows: Section 1.1 contains the description of the
proposed block-based DFE with reduced redundancy. In Section 1.2 we state some
mathematical results which describe formally the monotone behavior of several fig-
ures of merit associated with the proposed DFEs. The simulation results are in

Section 1.3, whereas the concluding remarks are in Section I.4.

I.1 DFE with Reduced Redundancy

As we have been doing throughout this thesis, let us assume that we want to transmit
a vector s € CM*t ¢ CM*! with M € N symbols drawn from a given constellation

C, through an FIR channel whose transfer function is
H(z) 2 h(0)+h(1)z  + -+ h(L)27 T, (I.1)

with h(l) € C, for each [ € {0,1,---,L} C N. We already know that the matrix

representation of such block-transmission scheme is given as
H(z) £ Hyg + 2~ 'Hygp € CVV[z 71, (I.2)

in which N 5 N > max{M, L} is the number of transmitted elements in a block,
while Higr and Hygp are Toeplitz matrices.

The first row of Hisr is [k(0) Ofy_yy,,], whereas the first column is
[h(0) A(1) -+ A(L) Ofy_p 1]~ In matrix Higy, the first row is
[0y _1)x1 P(L) R(L —1) --- h(1)], whilst the first column is O ;.

In order to eliminate the IBI effect modeled by matrix Hygr, one can append
K & N — M zeros to the transformed vector Fs at the transmitter end, in which
F € CM*M jg a precoder matrix. The received vector of size N will still suffer from
IBI effects in its first L — K elements. The receiver thus ignores these first L — K
signals, working only with the remaining N — (L — K) = (M + K) — (L — K) =
M + 2K — L elements. These elements are first transformed into M signals by the

CM X (M+2K—L

feedforward matrix G € ), as depicted in Figure I.1.1

IFor a more detailed alternative explanation, the reader should refer to Section D.1.
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Figure I.1: General structure of the proposed ZP-ZJ block-based DFE.

As illustrated in Figure 1.1, after the multiplication by the feedforward matrix,
the received vector passes through a usual decision-feedback processing [40, 50-52].
In this figure, § € CM*! denotes the vector containing the detected symbols and
B € CM*M g the feedback matrix. As pointed out in Subsection C.1.2, this matrix
is chosen strictly upper triangular, so that the symbol estimation within a data block
is sequentially performed, guaranteeing the causality of the process [40].

The ZP-7ZJ structure of the DFE proposed in Figure 1.1 can be simplified if
one incorporates the ZP-ZJ processing into the channel model, yielding an effective
channel matrix H,* which is Toeplitz and has dimension (M + 2K — L) x M. In
this case, the first row of H is [A(L — K) h(L — K — 1) --- h(0) O{N[+K_L_1)X1],
whereas the first column is [A(L — K) h(L — K 41) -+ (L) 0y, e 1 1y51]"- The
equivalent structure is depicted in Figure 1.2.

Under the common simplifying assumption of perfect decisions [40], one has
§ = s, yielding § = (GHF — B)s + GV (see Figure 1.2). Hence, the overall MSE of

symbols, &, is given as (see Subsection C.1.2)
€ = E{]l3 - 5|2} = oZ|IGHF — B — Iylf + 7| Gy, (L.3)

where we have assumed that the transmitted vector s and the channel-noise vector v
are respectively drawn from zero-mean jointly wide-sense stationary (WSS) random
processes s and v. In addition, we have assumed that s and v are uncorrelated, i.e.,
E{sv!} = E{s}E{0} = Opxn, and that 02,02 € R,.

Now, the design of matrices F, G, and B can be formulated as an MSE-based

2Sometimes, we shall denote H as H(K) in order to emphasize that the related effective channel
matrix is built considering the transmission of K redundant zeros.
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Figure 1.2: Equivalent structure of the proposed ZP-ZJ block-based DFE.

optimization problem, as follows [40]:

guin {02 GHF — B — Ly|f; + o}|G7} (14)
subject to:

(GHF —B — 1)) =0, (L5)

IE|[E = M, (L.6)

Bl =0, Vm >mn, (L.7)

where, in order to simplify the forthcoming mathematical descriptions, we focus
only on MMSE solutions that meet the ZF constraint.

The equivalent structure of the proposed ZP-ZJ block-based DFE illustrated
in Figure 1.2 matches the general block-based DFE model described, for instance,
in [40]. Therefore, the solutions to the above optimization problem are already
known and can be described as [40] (p. 816):

F = VS, (1.8)
G =RS"SH' [Ty Onrver—1)] Ut (1.9)
B=R -1, (1.10)

in which the above matrices come from the SVD decomposition of H and the QRS

decomposition [40] of X g, as follows:

>
H = Uy . H v (L11)
~— NI
(M42K—L)x(M+2K—1) L CE=EXM] oo

(M+2K—L)xM

M-1
=} [[ cnQRS”, (1.12)
m=0

where ¥y = ¥ > O is an M x M diagonal matrix containing the M nonzero

singular values of H. The mth diagonal element of 3§ is denoted as ¢,,. In addition,
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Q and S are M x M unitary matrices, whereas R is an M x M upper triangular
matrix containing only 1s in its main diagonal. See [40, 77] and references therein
for further detailed information on QRS decompositions.

It is worth mentioning that other optimal solutions® can be derived for ZP-ZJ

DFE systems whose equivalent building-block description is given in Figure I.2.

1.2 Performance Analysis

As in the case of full-redundancy ZP-based transceivers described in Chapter C,
several physical-layer figures of merit related to the proposed ZP-ZJ DFE have close
connections with the singular values of the effective Toeplitz channel matrix H. The
following lemma characterizes the monotone behavior of all of these singular values

with respect to the number of transmitted redundant elements, K.

Lemma 13. Given two fized natural numbers L and M, let us assume that each
effective channel matriz H(K) € CM+2K=L)xM js constructed from the same Lth-

order channel-impulse response, with K € {[L/2],[L/2] +1,---,L}. Then
om(K +1) > 0,(K), (L.13)

where each 0,(K) € Ry is a singular value of H(K).

Proof. See Lemma 12 in Chapter F. [

By using Lemma 13, we can derive a very general result (Theorem 15) that en-
compasses as particular cases the majority of the popular figures of merit of practical

interest (e.g., MSE of symbols, mutual information, error probability of symbols).

Theorem 15. Let us assume that, for each m € {0,1,--- M — 1}, there exists
a function f,, : Ry — R such that a performance measure J : {[L/2],[L/2] +
1,---, L} — R associated with the proposed ZP-ZJ DFE transceiver can be defined

as

TU) £ 7 X fulou(K) or T(K) 2 fd [T fulon(K). (114)

If fm is monotone increasing for all m, then J(K+1) > J(K), for all K. Likewise,
if fm is monotone decreasing for all m, then J(K + 1) < J(K), for all K.

Proof. This is a straightforward application of Lemma 13. O]

3For instance, MMSE-based solutions with channel-independent unitary precoder or Pure
MMSE-based solutions [40].
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Since the resulting MSE of symbols, £(K), the overall mutual information be-
tween transmitted and estimated symbols, Z(K'), and the average error probability

of symbols, P(K), are respectively given by (see [40] and Chapter C):

E(K) = Ma> ¥ 11) p EK)’ (1.15)
I(K)=MIn (1 + Zz iy Mf[l a?n(K)) : (1.16)
P(K) = cQ (A S(Kl)/M> | (1.17)

in which ¢ and A are positive real constants that depend on the particular con-
stellation C, whereas Q(-) is a decreasing function of its argument, being defined

as
Oz) & — [ /s, (1.18)

then, the following corollary holds.

Corollary 6. Given the definitions in Lemma 13, we have
EK+1)<€&(K), Z(K+1)>I(K), P(K+1) <P(K), (1.19)

with K € {[L/2],[L/2] +1,--- ,L —1}.

Proof. The inequalities come from the application of Theorem 15, along with the
fact that £(K) is monotone decreasing, Z(K') is monotone increasing, and P(K) is

monotone decreasing with respect to each singular value o,,(K). O

Corollary 6 may lead us to a wrong conclusion that it is not worth reducing the
amount of transmitted redundant elements. Nevertheless, if on one hand we need to
use as much redundancy as possible in order to achieve lower probability of error or
MSE of symbols (as described in Corollary 6), on the other hand we must reduce the
transmitted redundancy to save bandwidth, which is paramount in high data-rate
systems. In order to take both effects into account, one should consider throughput
as figure of merit.

Section [.3 shows some setups where the proposed reduced-redundancy DFE
outperforms the traditional full-redundancy zero-padding DFE with respect to the

throughput performance.
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I.3 Simulation Results

The aim of this section is to assess the throughput performance of the proposed
DFE with reduced redundancy through a numerical example. We consider the
transmission of 10,000 data blocks containing M = 16 16-QAM symbols through a
Sth-order channel whose zeros are placed at 0.999, —0.999, 0.75, —0.77, and —0.4;.
In this case, K € {3,4,5}.

In order to generate each data block, we produce 32 random bits that, after
passing through a convolutional channel-coding process with code rate r. = 1/2, are
transformed into 64 bits, which are mapped into 16 16-QAM symbols. The channel
coding has constraint length 7 and octal generators go = [133] and g; = [165]. We
assume that the sampling frequency is f;, = 400 MHz. In order to compute the
BLER, we assume that a data block is discarded when at least one of the original
bits is incorrectly decoded at the receiver end.

Figure 1.3 depicts the obtained results. There are four curves in this figure
which describe the performance of the following systems: (i) minimum-redundancy
DFE (K = 3), (ii) reduced-redundancy DFE (K = 4), (iii) full-redundancy DFE
(K =5), and (iv) full-redundancy DFE (K = 5) with no error propagation, in which
the exact symbols are fed back. This last system will be used as a benchmark for

our COIDp&I'iSOIlS.
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Figure 1.3: Throughput [Mbps| x SNR [dB].
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By observing Figure 1.3, one can verify that, in this setup, the error propagation is
critical since the already known full-redundancy DFE (or, simply, ZP DFE) without
error propagation achieves much higher throughputs than the other transceivers
for SNRs smaller than 16 dB. In this low SNR range, the proposed DFEs do not
perform as well as the traditional full-redundancy DFE (K = 5). On the other
hand, for SNRs larger than 16 dB, the proposed reduced-redundancy DFE (K = 4)
can outperform the benchmark transceiver in up to 31 Mbps, whereas the proposed
minimum-redundancy DFE (K = 3) can outperform the benchmark transceiver in
up to 64 Mbps.

Other simulation results have shown that is possible to have better through-
put performance with reduced-redundancy DFEs, rather than minimum-redundancy

DFEs, for some particular channels.

I.4 Concluding Remarks

In this chapter we proposed the ZP-ZJ block-based transceivers with decision-
feedback equalization. These transceivers allowed the tradeoff between transmission-
error performance and data throughput, enabling the optimization of the spectral
resources in broadband transmissions. This was possible by choosing the amount of
redundancy ranging from the minimum to the channel order, which is usually em-
ployed. Some tools to analyze the transceivers were proposed based on the resulting
MSE of symbols, mutual information between transmitted and estimated symbols,
and average error probability of symbols.

The main conclusion from this chapter is that, for ZP-ZJ-based DFE transceivers,
it is possible to increase the data throughput for a certain level of SNR at the receiver,
without affecting the system performance, as confirmed by the simulation results.
These are preliminary results from investigations that are in progress. An interesting
future research direction is the development of efficient algorithms to implement the

proposed optimal nonlinear solutions.
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Apéndice J

Design of Transceivers with

Minimum Redundancy

In Part I of this thesis, we have proposed multicarrier and single-carrier block-based
transceivers with minimum redundancy which have proved to be an alternative to
classical OFDM and SC-FD systems. As previously highlighted, these minimum-
redundancy transceivers may have superior throughput performance than OFDM
and SC-FD systems, requiring the same asymptotic complexity, viz. O(M log, M),
for M data symbols. However, the proposals of such transceivers rely on the CSI as-
sumption. In addition, they also assume that the equalizer was previously designed,
focusing on the equalization problem only.

The aim of this chapter is to present some theoretical results related to the design
of the equalizers that employ minimum redundancy, without assuming CSI. More
precisely, in this chapter we show how to estimate the channel when minimum-
redundancy transceivers are employed and how to use this estimate in order to
solve the linear systems of equations that define the equalizers. The key result of
this chapter is to show that it is possible to design those equalizers based on pilot
information and using fast-converging iterative algorithms that require O(M log, M)
operations per iteration. It must be pointed out that the proposals of this chapter are
preliminary theoretical results of an ongoing research, which is not the mainstream
of this thesis.

We organized this chapter in the following manner: the problem of estimating the
channel-impulse response related to minimum-redundancy transceivers is addressed
in Section J.1. The proposed equalizer designs are described in Sections J.2 and J.3.
A numerical example is presented in Section J.4. The concluding remarks are in
Section J.5. The chapter ends with some specific guidelines for further research in

the design of minimum-redundancy transceivers.
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J.1 Pilot-Aided Channel Estimation in The Time

Domain

Traditional OFDM systems use the fact that, after the transmitter-receiver pro-
cessing, the channel model is diagonalized and estimation of the channel-frequency
response is much easier. Based on this fact, practical systems estimate only some
bins in the frequency domain and, after that, perform an interpolation in order to
estimate the whole channel-frequency response [20].

As highlighted in [20], an efficient technique is to estimate the channel-impulse
response using least-squares (LS) estimation. Considering that L + 1 < M, we
have that the number of coefficients to be estimated in the time domain, L + 1, is
smaller than the number M in the frequency domain. In addition, we shall use the
same reasoning developed in [20] in order to employ superfast algorithms for the
implementation of the channel estimator.

Let us start with the single-carrier system with minimum redundancy. From
Eq. (D.1), we have that, after discarding L/2 redundant elements,' the received

vector y € CM*! is given by:
y = Hgs + v/, (J.1)

where v/ € CM*! contains the last M elements of v. Thus, assuming that the set
M={0,1,---, M — 1} is partitioned in three disjoint sets

Mo={0,1,--- ,L/2}, (J.2)
My ={L/2+1,L/2+42,- M—2—1LJ2}, (J.3)
My ={M—1-L/2,M—LJ2,--- ,M—1}, (J.4)

then, the mth element of y can be expressed as:

L

ztm
S h(&4m—1)s(l) +v'(m), Ym € M,
=0
L
y(m) = Zh(L—l)s(H—m—%)—i—v’(m), Vm e My . (J.5)
=0
(%Jerlfm)
S h(L=Ds(l+m—%)+v'(m), Yme M,
=0

After a change of variables and considering that the vector r = s (single-carrier

transmission) or r = Ws (multicarrier transmission) contains only pilot signals,

1Tt is assumed that L is even.
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the former equation can be rewritten as:

(b m = V)R + o (m), ¥m € Mo
I’'=0
L
y(m) = Pt (g +m— z') h(l') 4+ v'(m), VYm e M, , (J.6)
=0
L
Sy gg +m =) h(l') +v'(m), Ym € M;
UV=(L—M+1+m

which yields the following identity:
y = Rh + v/, (J.7)

where R € CM*(+1) is a Toeplitz matrix containing the pilot signals. The first
row of R is [r(L/2) r(L/2—-1) --- 7(0) Oixzs2] and the first column is
[7(L/2) -+ r(M —1) 01x1/2]". Moreover, the vector h € CEHD*1 contains the
channel-impulse-response coefficients. The LS solution for the problem described in
Eq. (J.7) is given by [20]:

A -1
h=(RR+pleey) Ry, (7.8)

in which the regularization parameter p € R, may be chosen in a similar way as
performed in MMSE-based solutions, i.e., it is possible to use the a priori knowledge
about the signal-to-noise ratio (SNR) at the receiver front-end in order to set p =
1/SNR.

Note that, unlike in [20], the product R¥R is not a Toeplitz matrix. This
implies that we cannot use the Gohberg-Semencul formula [20, 25] to implement
the product of the rectangular matrix (RH R + oI L+1> “'RH by the received vector
in a superfast way. This occurs since the traditional Gohberg-Semencul formula
describes a superfast decomposition of inverses of Toeplitz matrices only. However,
we still can adapt? the results of Theorem 13 from Chapter F in order to produce a
superfast decomposition for the resulting rectangular matrix (RH R+ pl L+1) - R,
Hence, even though the pilot matrix does not induce a Toeplitz correlation-pilot
matrix as in [20], we have verified that it is still possible to recover an estimate for
all channel taps in the time-domain using up to O(M log, M) operations, assuming
that M > L + 1 is a power of 2.

This discussion did not take into account the fact that, in order to apply Theo-
rem 13 from Chapter F |, we need to solve some structured linear systems of equa-
tions. A reasonable assumption is to consider that such linear systems of equations

were previously solved [20] since they are related to pilot symbols only, which do not

2The adaptation consists in substituting Hy by R (see Chapter F).
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have to be time-variant. In this case, 8( L+ 1) coefficients might be stored, since the
minimum amount of pilots which guarantees that the matrix R” R is nonsingular is
L+1 and, in addition to this, we need eight vectors (p1, P2, P3, P4, Q1, G2, 43, and qq
defined in Theorem 13 from Chapter F) that are the solutions to the linear systems
of equations. However, these linear systems can also be solved using the techniques
described in Sections J.2 and J.3. As previously mentioned, these techniques also

employ superfast algorithms.

J.2 Equalizer Designs Using Newton’s Iteration

The equalizer-design problem consists in solving some linear systems of equations.
We could solve such linear systems by employing Gaussian elimination [44]. How-
ever, the resulting computational complexity is higher than other methods that take
into account the structure of the related matrices. In fact, the solutions of the linear
systems can be achieved by using, for instance, Newton’s iteration [25, 53].

The idea behind Newton’s iteration is to generalize the traditional Newton’s
method to find zeros of a given function to the case in which the domain and the

range of the function are comprised of matrices [25]. Thus, let us define the function

fX . (CMXM—>(CMXM

U—U-—X", (1.9)

where X € CM*M 5 a nonsingular matrix, whose inverse we want to compute.
It is possible to show that Newton’s iteration improves an initial approximation
Uy € CM*M 6 the inverse of X by using the following iteration step [25, 53]:

Ui = U;(2I — XU,), (J.10)

for © € N. A sufficient constraint to guarantee convergence of the algorithm is that

the initial approximation Uy must respect the following inequality [25, 53]:

where || - ||2 stands for the induced Euclidean norm of matrices [25, 53]. As all the
involved matrices can be compressed using the displacement approach, it is possible
to implement each recursion step using only O(M log, M) operations [25, 53]. In
addition, this algorithm features quadratic convergence rate, which is a very high
speed of convergence when dealing with these types of problems [25, 53].

We now propose the following application of Newton’s iteration method: consider

that we have a previous estimate for the inverse of the effective channel matrix
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Hy(k — 1) at the time instant indexed by £ — 1 € N. Consider that, after applying
the channel estimation method proposed in Section J.1, we also know the actual
effective channel matrix Ho(k) at the current time instant k. The problem is to find
H, ' (k), given that we know Hy(k—1), Hy'(k—1), and Hy(k). If the channel varies
slowly with time, Hy'(k—1) is a good estimate for the inverse of Hy(k), in the sense
that [|[I-Ho(k)Hy ' (k—1)||2 < 1. Thus, by setting Uy = Hy ' (k—1), we have that the
application of Newton’s iteration according to Eq. (J.10) has guaranteed (quadratic)
convergence. The reader should refer to [25, 53| in order to verify the details related
to the implementation of this recursion using only O(M log, M) operations.

A fundamental assumption of the aforementioned method is that the channel
varies slowly with time. However, this is a strong assumption in several applications,
such as wireless systems. A possible solution to this case is to employ the homotopic
Newton’s iteration [25]. Once again, we assume that we know the matrices Ho(k—1),
H,'(k — 1), and Hy(k), but now we define the homotopic transformation [25]:

HY (k) = Ho(k — 1) + [Ho(k) — Ho(k — 1)]m, (J.12)

fori e Z=4{0,1,---,I —1} C Nand 7; € (0, 1] C R. In addition, it is assumed
that 0 < 79 < 71+ < 77-1) = 1. In particular, we can choose 7; = (i +1)/1. In
such a case, the number I should be chosen as the smallest natural number that

yields:
HI—H&“(k) [Hg"‘”(k)]_lH <1, VieT\{o}. (J.13)
2

Consequently, if I is properly chosen, we can apply Newton’s iteration method for
each i € 7\ {0}, where we assume that we know HY Y (k), [ = (k)]~t, and HY (k)
in order to compute [Héi)(k:)]_l. At the end, we have that [H[()I_l)(k)]_l ~ Hy (k).
Nonetheless, this approach is much more complex than a direct approach that does
not rely on the application of homotopic transformations.

There are other alternatives to solve the linear systems of equations that define
the ZF and MMSE equalizers. Among them, the preconditioned conjugate gradient
(PCG) algorithms play an important role.

J.3 Alternative Heuristics for Equalizer Designs

As the reader may have observed, there is a large number of superfast methods
to compute inverses of structured matrices [25] that could be used to design the
equalizers related to the proposed transceivers. The aim of this section is to describe

two of them, as well as their applications to the problems at hand: preconditioned
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conjugate gradient algorithm [54] and Pan’s divide-and-conquer algorithm [25].

J.3.1 Preconditioned Conjugate Gradient Algorithm

The idea of PCG methods is to solve the problem Hop = p by solving the equivalent
problem P~ 'Hyp = P~'p, which is better conditioned than the original problem,
using conjugate gradient algorithms [54]. The matrix P is the so-called precondi-
tioner matriz and should be much easier to invert than matrix Hy and, simultane-
ously, should be a good approximation for Hy?', that is, P~'"Hy ~ I [54]. As all
involved matrices are structured, this type of algorithm can also be implemented
using only O(M log, M) operations per iteration.

The PCG method (see [54] and references therein) features superlinear conver-
gence rate (slower than Newton’s iteration). Nonetheless, it can be very useful when
associated with Newton’s iteration method. In fact, when the channel varies rapidly
with time, the PCG approach can be used to refine the crude initial approximation
U, = Hy'(k—1) for the inverse of Hy(k) and, after that, to apply Newton’s iteration

or the homotopic Newton’s iteration method [25].

J.3.2 Pan’s Divide-and-Conquer Algorithm

Given a nonsingular Toeplitz matrix T € CM*M and a pair of vectors x,y € CM*1,
the linear system of equations Tx = y can be efficiently solved through Pan’s divide-
and-conquer algorithm [25, 55]. In fact, assuming both that M = 2!  for some
I € N, and that the leading principal submatrix Tqy € C5*% is nonsingular, then
the original Toeplitz matrix T may always be represented as a 2 x 2 block matrix,
as follows [19, 25, 55]:

TOO TOl
TlO Tll

I 0
T, Ty 1

TOOO
0 S

I T,y Ty
0 I

, (J.14)

where S = Ty — T1gToy To1 € C%*% is the Schur complement of the block Ty in
the matrix T [19]. By using this decomposition, it is possible to verify that [19, 25,
55]:

TOO TOl
TlO Tll

I —Ty Ty
0 I

T,y O
0 S!

T ' =

I 0
R PG A L)
—Ty Ty 1

The main idea of Pan’s divide-and-conquer algorithm is to apply such decompo-
sitions recursively up to the point where the matrix inversions reduce to inversions
of nonzero scalars. This first step is the so-called descending process [25]. After

that, a bottom-up procedure starts. Thus, the previously computed 1 x 1 matrices
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are used to calculate the related 2 x 2 matrices, which are also used to compute
the associated 4 x 4 matrices, and so forth. This second step is the so-called lifting

process [25]. Accordingly, the following recursive iteration is implemented:

' i+ T(i+1) ;
TO = | (i T € CiXi (J.16)
T T
where in this recursive iteration, ¢ € {0, 1, --- , I — 1} indicates the recursion level.

(1)

0 = T is the original Toeplitz matrix, whereas T is a scalar number.

Moreover, T

Furthermore, the recursive version of Eq. (J.15) is

T&]-i-l) T&—H)

(TO)~t = (J.17)

in which

Too ) = (To )~ + (T ) T (ST Mg (Tge™)
1

T(z-‘rl)_ ( (H— z+1)( z+1))—1

00 )

(

) : (J.
T(z+1 _ (S(H-l) I z+1( (z+1))_1 (
1 (

T(1+1) (S(Hl))

Regarding the computational complexity, consider the matrices (Tg(;rl))*l,
(S+0)=1 it (el ang T already known before computing (T®)~1, at
the ith recursion level. In this case, the number of multiplications to calculate
(T@)~! reduces to five matrix multiplications. In addition, assuming that these five
matrix multiplications have an overall asymptotic complexity of M (%), then the

inversion of the original matrix T® = T requires [55]

:222”1/\/( (2 +1) operations, (J.22)
since the algorithm must be applied recursively to calculate the inverse of T®, as
well as the inverse of its related Schur complement.

As in each recursion step there are several multiplications of structured matrices,
these multiplications may be performed with less numerical operations by using the
compressed form of the resulting block matrices. A key result that helps in such a
task is (see Theorem 1.5.6 in [25]):

) )

Vx..y,,(Uij) = Vi; — Rij (J.23)
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in which

XO,O XO,I
X = (Xij)im0 = < x| (J.24)
| A10 11
Yoo Yo
Y = (Yi))ijo0 = v v..|’ (J.25)
Y10 11
Uoo Upy|
U:(Ui,j)il,jzoz U Ul (J.26)
| Y10 11|
VOO V01
Vxy(U) = (V)i _o= ’ o, J.27
x,y(U) = (Vi) =0 |:V1,0 v, (J.27)

and R;; = U; 1Y

where vZf1,Z1( )

—

1-5).; — Xi,1-i) U4, for 4,7 € {0,1}. For the particular case

PQT, the partitions of the operator matrix Zy = (Zy), ;i

1,5=0"
for any A\ € C, are:
0 0] 0 N
1 - 0 .
(Zx)oo = S v (Zn)y = o (J.28)
I 1 0] Mo I 0 0] vy
0 1 0 0
0 . 1 -,
(Zx),o = ) ) , (Zy)y, = _ ' , (J.29)
L0 Uy L Uy

where the blank entries contain zeros.

These partitions of Zy-type operator matrices imply that R;; can always be
computed very fast, since Xg 1, X0, Yo,1, and Y, have at most one nonzero coef-
ficient. Thus, by using Eq. (J.23), it is possible to induce a compressed form into
the block matrices of the partition, at each recursion. Hence, with this result, along
with the application of Egs. (D.12), (D.14), and (D.15), the inverse of T can be
computed in an efficient way. In fact, as multiplications of M x M matrices using
their generator pairs (with operator matrices of Zy-type) can be calculated with
M(M) = O(Mlog, M) operations (see Theorems 3.4 and 2.3 in [53]), the asymp-
totic computational complexity is M (22%) =0 (21+1 10g2(2f‘ff1 )) operations, at the
ith recursion level. Substituting this complexity in Eq. (J.22), one can verify that the
overall asymptotic computational complexity to invert T is O(M log; M) [25, 55].

Table J.1 contains a pseudo-code description of Pan’s divide-and-conquer algo-

rithm. Some important points must be highlighted:
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Table J.1: Pseudo-code of Pan’s divide-and-conquer algorithm to invert structured
matrices.

Pan’s Divide-and-Conquer Algorithm (PDCA)

[Vz.z,(T 1), IsEud | = pdca(T, Vg, 7. (T), IsEnd);

M = dimension{T};
Define T, To1, T10, and T as in Eq. (J.14);
Define (Zx)oo, (Zx)o1, (Zx)10, and (Zy)1;1 as in Eq. (J.28) and Eq. (J.29), VA;
Define V(Zn)oo,(zﬁ)oo(TOO) Viz )00, (Zg)ll(T()l)
V(Z,)11,(Ze)0o (T10), and V sz (T11) as in Eq. (J.23);
If (M = 2), then do

{
Too = 1/Too;
S™! =1/(T11 — T10Ty5 Tor);
IsEnd = TRUE;

if (IsEnd = FALSE), then do
[ V(Ze)00.(Z)oo (T601)7 IsEnd | = pdca(Top, V(Z.))00,(Ze)oo (Too), IsEnd);

if (M # 2) and (IsEnd = TRUE), then do

V(Zn)n,(zn)oo(TloTaOl) = V(Zn)n,(zg)oo (TlO)TO_O + Tlov(zs)oo,(zn)oo( _1)
V1,2 (T10To0 To1) = Viz,)11,(2,)00 (T10Tg0 ) Tor + (TloToo WV (z,)00.(2) (Tor);
V(Zn)n,(zg)n(s) = V(Zy,)u,(zg)n(Tll) V(Z,,)u, Zg)n(TloTOO TOI)

} [v(zs)n,(zn)u (Sfl), “don’t care” ] = pdca(S V(Z )117(25)11( ) FALSE)7

v(zs)ll (Z,,)u(Tll) V(Zé)lh(z )11(S 1);

Vize)n, (Zn)oo(Tl ) = V@ z,)n (8 )(TloTo_()) 871V (2,110 (T10Tg )

v (Z¢)oo, 1(_6 1) - v (Ze)oo,(Zy)oo (TOO )TOI + TOO V(Zn)oo, Zs)n(TOl)v

v (Z¢)oo, )11(!:‘ ) = _v(zs)oo, Zg)n(TOO TOl)S ! (TOO TOl)V(ZE)u (Z, )11(S_1);
V(Zs )00:(Zy)oo (TOlTlOTOOI) = V(Zs)oo, Z,)11 (TOl)(TloTOO ) + TOlv n)11,(Zy)oo (TlOTOO )
v (Z¢)oo,(Zy)oo ( ) V(Zs)no,(zn)oo( 1) V(Zs)oo Z,)o0 (TOlTlOTOO )7

Define Vz z,(T~") using both Eq. (J 23) and Eq. (J 27)

o All multiplications of displacements by matrices can be performed in a su-
perfast way by using decompositions similar to the one in Theorem 13 from
Chapter F. This explains why the algorithm does not calculate the inverse of
the input matrix, but only the displacement of the inverse of the input ma-
trix. For example, the product Tpog V (2,)00.Ze)11 (To1) is implemented without
using the matrix Tg, since the displacement V(z)o,,(z,)00(To0) is the only

information required to compute this product in a superfast manner;

o After successive applications of Eq. (D.14), the generator-pair matrices may
have more columns than their rank, eventually increasing the computational
complexity. Nonetheless, this difficulty can be overcome by applying Theorem
4.6.4 of [25], which states that a generator pair (P, Q) € CM*5 x CM*3 where
rank{PQ”} = R < S, may be transformed into a generator pair (P,Q) €
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CM*E 5 CM*E with only O(S?M) operations, where PQT = PQ”;

In order to apply Pan’s algorithm to the ZF-based receiver design, the input of
the algorithm must be the matrix Hy and its associated displacement matrix,
whereas the output is Vz, z_, (Ha 1). With the knowledge of the displacement
of the channel matrix inverse, one may compute all vectors related to the

equalizer design using only O(M log, M) numerical operations;

In order to use this algorithm to the MMSE-based receiver design, one may
adapt Pan’s algorithm and set [HyHY + (02/02)I] as the input matrix. The
MMSE solution is calculated by applying the result of Eq. (D.14), with
U = HY and V = [HHY + (62/0%)1]7'. Once again, after running Pan’s
divide-and-conquer algorithm, all vectors related to the equalizer design may

be computed employing O(M log, M) operations.

One may argue that the computation of the input, [HoHY + (¢2/02)1], of the
Pan’s divide-and-conquer algorithm may be costly. However, both matrices
H, and HY can be represented using their displacements Vz_, 7z, (Hy) € CM*2
and Vgz, z_,(Hf) € CM*2 In addition, Theorem 4.7.2 of [25], p. 142, states
that the maximum number of operations required for multiplying such types

of structured matrices is?

O (2 x2[0(Mlogy, M)+ O(Mlogy, M)]) = O(M log, M); (J.30)

Note that there are several practical applications where the equalizer-design
problem is seldom solved. For instance, in many wireline communications
systems, the channel model does not need to be updated often. This even-
tually means that the dominant problem is the equalization. The minimum-
redundancy proposals in Part I solve the equalization problem in a very effi-
cient way, requiring only O(M log, M) computations. The aim of this section
was to elucidate an application of Pan’s divide-and-conquer algorithm to the
situations where the equalizer design is also a concern. The described solution

for the equalizer-design problem employs O(M log; M) operations.

J.4 Simulation Results

Some experiments were included to verify the performance of some superfast al-

gorithms previously described when applied to the design of minimum-redundancy

transceivers. There are many different configurations to be tested, however, we as-

sess the performance only when a PCG method is first employed in order to refine

3See also Theorems 3.4 and 2.3 in [53].
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a crude initial approximation for the inverse of Hy and then Newton’s iteration
method is employed.

The channel model is a 3G-LTE-based extended typical urban (ETU) channel,
whose power-delay profile is described in [74]. The resulting impulse response has
order L = 22. We consider that M = 32. We generate 6000 distinct channels and
each new channel used the inverse of the previous effective channel matrix as an
initial approximation to the current inverse of the channel matrix. The performance
assessment is based on the normalized error associated with the estimation of matrix
P in a ZF solution (see Eq. (D.7)), i.e., the performance of the algorithms was verified
based on the quantity (||[P — P||g)/||P||¢, where || - ||¢ is the usual Frobenius norm
of matrices [25] and P is the related estimate.

Figure J.1 depicts the empirical cumulative distribution function (CDF) of the
variable 10log,, [(HP — I_DHF)/HPHF} The number of iterations of the PCG algo-
rithm to achieve this performance is around 14 + 3. We verified that the PCG algo-
rithm would take much more iterations to further decrease the resulting normalized
error. This justifies the use of a more sophisticated method, such as Newton’s itera-

tion. From Figure J.1, one may conclude that with just two or three Newton’s itera-

e e e 14
(@) ~ e e) Ne)
T T T T

Percentage of channels
S
()}
T

04r

0.3f

021 /". ) """" Initial approximation (PCG)7
| i ST == First Newton’s iteration

0.1r, ‘,"" — — = Second Newton’s iteration
o .= - e —— Third Newton’s iteration
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Figure J.1: Percentage of channels versus normalized error [dB]: CDF.

265



tions, the percentage of channels whose associated value 101log;, [(HP - I_’HF)/HPHF}
is, e.g., lower than —100 dB is much higher than that when using the initial estimate
obtained with the PCG method (blue line).

J.5 Concluding Remarks

In this chapter, we proposed new methods to design the channel-dependent parame-
ter which define memoryless block-based equalizers with minimum redundancy. The
new proposals are based on pilot transmission and require only O(M log, M) to esti-
mate the related time-domain model of the channel. In addition, the new proposals
also employ iterative algorithms that require only O(M log, M) operations per it-
eration. These are preliminary theoretical results from investigations that are in

progress.

J.6 Guidelines for Further Research

All proposed methods to design block-based equalizers with minimum redundancy
rely on the assumption that the channel is first estimated and, after this step, the
equalizer is designed. In other words, the adopted approaches have three well-
defined stages: channel estimation, equalizer design, and equalization. Nonetheless,
channel estimation along with equalizer design could be addressed simultaneously.
In fact, we could try to bypass the channel-estimation stage by directly designing
the equalizer taps. This is a challenging open problem in the context of minimum-
or reduced-redundancy transceivers. In this last section, we share some ideas about
how one may attack this problem in future works.
Using Eq. (D.1) and the results from Section D.2, one has

S = GO (HoFos + Vo) = Goyo, (J31)
~— ———

A
=Yo

in which the exact definition of the receiver matrix Gy depends on whether the ZF
or MMSE solution is chosen. Let us focus on the MMSE solution, which takes the

form

1 4
Go = §F51W1\H4 (Z DI—,TWMDWMDQJ wHDH. (J.32)

r=1
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One can rewrite Eq. (J.32) as follows:

Go=A|[D;, D;, D, Dp,]x
£X,
W, DW 0 0 0 D,
y 0 W, DWW, 0 0 Da |
0 0 W, DW 0 D,,
0 0 0 Wy DW ;| [Dg,
A e
S A%,
— AX,CX,B,
1

where A = 5F51W{\{4 and B & WHD#. Note that the matrices X; and X,
contain the equalizer taps and can be considered the independent variables that
must be updated in order to minimize the mean-square error E [||s — §]|3], while all
the remaining matrices are constant. In other words, we know the current matrices
X, and Xy and we want estimate new matrices X% and X35V, as we shall describe
in the following developments.

Now, let S & A~'s = 2W,Fs be a known vector at the receiver end (a type

of pilot signal). Note that we can define an estimate of S as:

S2 A 8= A"'Ggy) = A (AX;CX,B)y,
X (CX2Byo) = X1y1 = Yixy, (J.33)
————

where Y1 is a known M x 4M matrix with the same structure of X, whereas x; is
a vector containing 4M elements for which we want to determine a new estimate.

We can estimate a new vector xJ¢% € C**1 as follows:
3V = YH (Y, YI)!S. (J.34)

Note that Y;Y# is an M x M diagonal matrix. Hence, if we already know S
and Y, then we can estimate a new vector xi*V by employing 10/ complex-valued
multiplications. This means that we can update the final stage of equalizer taps
(see vectors pi, P2, P3, and py in Figure D.2) using only O(M) operations, while
we keep constant the first stage of equalizer taps (see vectors qi, Qs,qs, and Q4 in
Figure D.2).

Now, define t £ X5 (By,) = Xay2 = YoXy, where y, = By,. Note that Yy is a

AM x 4M known diagonal matrix, whereas x5 is a vector containing 4M elements.
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We can generate a reference t € C*M*1 for the vector t as follows:
t L CH(XTew)H[XrllewCCH(XrlleW>H]—ls — CH(X?eW)H[X?QW(X?eW)H]_IS. (J35)

Thus, we can estimate a reference vector t by employing 14M complex-valued mul-
tiplications plus 8 DFTs.

new

The third step is to estimate a new vector x5" as follows:

x50 = (YEY,) 'Yt = Y, 't (J.36)
Thus, if we already know t, we can estimate a new vector x5V by employing 4M
complex-valued multiplications. The total asymptotic complexity needed to deter-
mine x5V is therefore O(M log, M).

The aforementioned process can be implemented iteratively, i.e., we can initiate
once again the process by generating another estimate for X; using the previous
estimates for X; and X,. After that, we can generate another estimate for X,, and
so forth.

These theoretical guidelines give rise to several relevant practical questions:

o Is it possible to update only X; without sacrificing the BER or throughput

performances of the transceivers? In which situations this can be done?

o If the channel does not vary significantly from one block to another, then one
could use a decision-direct scheme to generate S and, after that, using this
vector to update the matrices X; and X,. How fast the channel can vary
without sacrificing significantly the BER or throughput performances of such

transceivers?

o How many iterations are necessary to obtain good updates for X; and X,

considering a given channel and SNR?
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Apéndice K
Conclusion

In this work, we have proposed effective and practical solutions for multicarrier
and single-carrier transceivers using minimum, or more generally, reduced redun-
dancy. Their related ZF and MMSE solutions employ only DFTs, inverse DFTs,
and diagonal matrices, or DHTS, diagonal, and antidiagonal matrices. This feature
makes the new transceivers computationally efficient. The adopted framework re-
lied on the properties of structured matrices using the concepts of Sylvester and
Stein displacements. These concepts aimed at exploiting the structural properties
of typical channel matrix representations, such as Toeplitz, Vandermonde, and Be-
zoutian matrices. By using adequate displacement properties we were able to derive
DFT and DHT decompositions of generalized Bezoutians, which were the key tools
to reach the proposed solutions for the multicarrier and single-carrier block-based
transceivers requiring minimum /reduced redundancy.

Simulations had shown that the proposed transceivers can achieve substantially
higher throughput (especially for long channels), as compared with the standard
block-based systems, such as OFDM and SC-FD, while maintaining competitive
asymptotic complexity for the equalization process, O(M logs M).

K.1 Contributions

We now list in a more specific way the innovations presented in this work:

o A complete mathematical analysis of the MSE and the mutual information in
block-based transceivers with full-redundancy that employ zero-padding was

developed,;

« A modification to the MMSE minimum-redundancy solution described in [23]
was proposed. Indeed, the new proposed structure is simpler than the one
proposed in [23], since it employs only four parallel branches at the receiver

end instead of the previous five branches;
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o Novel suboptimal MMSE equalizers with minimum redundancy that require

the same amount of computations of ZF equalizers were proposed;

o New transceivers with practical ZF and MMSE receivers using DHT, diago-
nal, and antidiagonal matrices as building blocks were proposed. Such new
transceivers do not impose a symmetry on the channel model as required
in [23];

o New LTI transceivers with reduced redundancy based on DFTs were presented;
o New LTI transceivers with reduced redundancy based on DHTs were presented;

o An MSE analysis of the proposed reduced-redundancy transceivers with re-
spect to the amount of redundancy was derived. Indeed, we demonstrated
that larger amounts of transmitted redundant elements lead to lower MSE of

symbols at the receiver end;

o An optimal power-allocation method that minimizes the noise gains when CSI

is available at the transmitter end was conceived;
o Block-based DFE systems with reduced redundancy were proposed;

e Designs of minimum-redundancy equalizers based on pilot information and us-
ing fast-converging iterative algorithms [25, 53, 56| that require O(M log, M)
operations per iteration were proposed. Another proposed approach was: the
application of Pan’s divide-and-conquer algorithm [25, 55] to design the equal-

1zers.

K.2 Future Works

We now list some possible future works:

o To develop time-varying transceivers following the same lines of the reduced-
redundancy systems proposed in this thesis. Time-varying transceivers can
use just one redundant element, regardless of the channel model, as described

in [57];

o To develop MIMO versions of reduced-redundancy transceivers in order to deal

with space-time diversity, beamforming, and spatial-multiplexing systems;
e To develop a multiple-access scheme based on the proposals of this thesis;

o To study I/Q imbalance problems in transceivers with reduced redundancys;
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o To study the CFO effects and how to mitigate them in transceivers with re-

duced redundancy;

o To study the tradeoff between the insertion of redundant symbols (physical
layer) and the insertion of redundant bits (channel coding implemented in the

link layer, for example);

o To study the robustness of the proposed transceivers to errors in the channel-
model estimation, which include errors in the values of the channel taps and/or

errors in the delay spread of the channel.
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