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O trabalho aqui desenvolvido visa investigar o paradigma de compressao de ima-
gens utilizando recorréncia de padroes em multiplas escalas, também conhecido como
MMP (Multidimensional Multiscale Parser).

A primeira contribuicdo desta tese é uma proposta para reduzir a complexidade
computacional do MMP. Em seguida, foi incorporado ao MMP um preditor adap-
tativo baseado em minimos quadrados através de uma adaptagdo nao-trivial para
blocos, aumentando o seu desempenho taxa-distorcao para a codificacdo com perdas
de imagens naturais.

No ambito desta tese, avaliou-se também o desempenho de compressao sem per-
das do algoritmo. Pela primeira vez, um limite tedrico foi desenvolvido para o MMP,
codificando imagens sem perdas. Mostramos que o algoritmo é capaz de atingir a
entropia de uma fonte ergddica, sem memoria, com alfabeto finito. A partir deste
resultado, desenvolvemos métodos para melhorar a eficiéncia de compressao sem
perdas do MMP.

Por fim, o MMP foi usado para codificar imagens multivistas e seus respectivos
mapas de profundidade. O algoritmo se mostrou particularmente eficaz para os
mapas de profundidade. Nesta tese propomos uma arquitetura de codificacao de
imagens multivistas baseada no MMP, com relativo sucesso para sintese de vistas
virtuais.

Dessa forma, as contribui¢oes desta tese ajudam o MMP a afirmar-se como um
algoritmo de compressao de imagens com desempenho taxa-distorcao estado-da-arte

para varios tipos de imagem e para qualquer taxa desejada.
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The aim of this thesis is to investigate the image compression paradigm using
pattern matching at multiple scales, also known as MMP (Multidimensional Mul-
tiscale Parser).

The first contribution of this thesis is a proposal for reducing MMP’s computa-
tional complexity, a well-known critical part of the algorithm. Next, a non-trivial
adaptation for blocks of an adaptive predictor based on least-squares was incor-
porated into MMP, increasing its rate-distortion performance for lossy coding of
smooth images.

In this thesis, the algorithm’s compression performance for lossless image coding
was also evaluated. For the first time a performance bound for MMP’s lossless
compression capability was developed, showing that the algorithm is able to reach
the entropy of an ergodic, memoryless source, and also providing indication on
how to improve the algorithm’s lossless compression performance. Proposals for
algorithm modifications were made, showing MMP’s efficiency for lossless coding as
well.

At last, MMP was used for coding multiview images and their respective depth
maps. The algorithm proved to be particularly effective for depth map compression.
In this thesis we propose a MMP-based multiview image coding architecture, that
is able to successfully synthesize virtual views.

In this way, contributions of this thesis strengthen MMP’s position as an image
compression algorithm that achieves state-of-the-art rate-distortion performance for

several different kinds of images at any desired rate.

vii



Sumario

[Lista de Figuras| xii
(Lista de labelas| xvii
(Lista de Simbolos| xviii
(1 Introducaog| 1
(1.1 Historia da codificacaol . . . . . . . . . . . . ... ... ... 1
(1.2 Motivacoes|. . . . . . . . . . 3
(1.3 Organizacao da tese|. . . . . . . . . . . . . . . ... 4
(1.4  Contribuicoes da tese| . . . . . . . . . . . . ... ... 5
(1.4.1 Contribuicao para a codificacao de imagens com perdas/ . . . . O

[1.4.2  Contribuicao para codificacao de imagens sem perdas| . . . . . 6

[1.4.3  Contribuicao para a codificacao de imagens 3D[ . . . . . . .. 6

2 Codificador de imagens com casamento de padroes multiescalal 7
2.1 Casamento aproximado de padroes usando multiescalas| . . . . . . . . 7
[2.2  Reduzindo a complexidade computacional . . . . . . . ... ... .. 11
[2.2.1 Resultados experimentais do MMP-FAST| . . . ... ... .. 12

2.3 Conclusoes . . . . . . ... 12

(3 MMP utilizando predicao com critério de minimos quadrados| 16
[3.1 Predicao usando o critério dos minimos quadrados| . . . . . . . . . .. 16
[3.2  Incorporando o LSP ao MMP-FP| . . . . .. ... .. ... ... ... 18
[3.2.1 Adaptando o LLSP para predicao em blocos| . . . . . . . . . .. 18

[3.3  Resultados experimentais{. . . . . . . . . .. ... ... ... ... .. 19
8.4 Conclusoes . . . . . . . . . . 20

4 Compressao sem perdas usando o MMP)| 23
[4.1  Compressao de imagens sem perdas| . . . . . . . . . . . ... ..... 23
[4.2  Modificando o algoritmo MMP para codificacao sem perdas|. . . . . . 24
[4.2.1 Predicao em algoritmos sem perda) . . . . .. ... ... ... 24

viil



[4.2.2  Restricao do histogramal . . . . . . . .. ... ... ... ... 26

[4.2.3  Remapeamento do erro de predicaol . . . . . . . . . ... ... 26

[4.2.4  Malha de realimentacao para o erro de predicaol . . . . . . . . 28

[4.3  Resultados experimentais{. . . . . . . . ... ... ... ... ..... 28
44 Conclusoes . . . . . . . . 30

[ Compressao multivistas usando o MMP| 31

.1 O novo formato para imagens 3D: textura com mapas de profundidade| 31

[>.2  Usando o MMP para codificar mapas de profundidade|. . . . . . . . . 33

[5.2.1 Avaliacao das vistas reconstruidas usando mapas de dispari- |
[ dade codificados|. . . . . .. ..o 33
[5.2.2  Restricao de bordas para codificacao de mapas de disparidade] 36

[>.3  Usando o MMP para codificar conjuntamente textura e mapas de |

| profundidade] . . . . . . ... o 39
[5.3.1 Alocacao otima de bits entre textura e protundidade] . . . . . 39

[5.3.2  Codificacao conjunta de vistas e mapas de disparidade] . . . . 39

b4 Conclusoes . . . . . . . .. 40
6 Conclusaol 42
[6.1  Conclusoes discutidas por contribuicao| . . . . . . . . . . . ... ... 42

[6.1.1 Codificador de imagens com casamento de padroes multiescala] 42

[6.1.2  MMP utilizando predicao com critério de minimos quadrados|. 43

[6.1.3  Compressao sem perdas usando o MMP| . . . . ... ... .. 43

[6.1.4 Compressao multivistas usando o MMP|. . . . . . .. ... .. 44

[6.2  Perspectivas futuras para o MMP e topicos em aberto|. . . . . . . .. 45
[A_Introductionl 47
[A.1 Image compression using multiscale recurrent pattern matching] 47
(A2 Motivations| . . . . . . . . . 47
[A.3 Thesis outlinel . . . . . . . .. .. 48
[A.4 Thesis contributions . . . . . . . . ... 49
[A.4.1 Lossy image coding| . . . . . . . . . . . .. ... ... ... .. 49

[A.4.2 Lossless image Coding| . . . . . . . . ... ... ... ..... 49

[A.4.3 3D image coding| . . . . .. ... 49

(B Multidimensional multiscale parser algorithm| 51
[B.1 Multiscale recurrent pattern matching . . . . . ... ... ... ... 51
B.2 MMP-Intral . . . . ... ... 57
B21 MMPII . ... ... ... 60

B.22 MMP-FPI .. ... ... 62

ix



[B.3 MMP computational complexity analysis| . . . . . ... ... ... .. 64

[B.3.1 Formal derivation of MMP-FP’s computational complexity| . . 65

B4 MMP-FASTI . . . . .. .o 69
(B.4.1 Experimental results| . . . . . ... ... ... ... ... ... 69

(B.5 Conclusionsl . . . . . . . . . 73

[C Least-squares prediction in MMP) 75
[C.1 Image modeling| . . . . .. ... ... .. ... ... ... . 75
[C.1.1 Least-squares predictors| . . . . . . . .. ... ... ... ... 76

(C.2  Block implementation of LSP predictor| . . . . . . . ... .. ... .. 80
[C.3 Incorporating LSP predictor into the MMP encoder| . . . . . . . . .. 82
(C.4  Experimental results tor MMP-LSP . . . . .. ... ... ... ... . 85
[C.5 Conclusions| . . . . . . . . . 89

[D Lossless image compression using MMP| 93
[D.1  Lossless compression| . . . . . .. ... ... ... ... ... . ..., 93
[D.2  Reviews of state-of-the-art lossless compression algorithms| . . . . . . 94
[D.3  Experimental results and benchmarkl . . . . ... ... ... ... .. 105
[D.4" Theoretical bounds on MMP’s lossless performance, . . . . . . . . .. 106
[D.4.1  Proof of the convergence of lim,, o == . . . ... ... ... 113

[D.5 Proposal for enhancing MMP lossless image compression pertormance| 114
[D.5.1 Study on the effects of prediction for MMP lossless codingl . . 115

[D.5.2 Study of the effects of residue coding techniques for the lossless |

[ MMP| . .. 118
[D.5.3 Comparison with state-of-the-art lossless algorithms| . . . . . . 122

(D.6 Conclusions . . . . . . . . . L 125

(F5° Multiview image compression| 126
[E.1  Review of the state-of-the-art in multiview coding| . . . . . . . . . .. 126
[2.1.1  'T'he 3D operation chain: capturing, coding and displayingl . . 127

[E.2  Depth image based rendering| . . . . .. ... ... ... ....... 136
(.3 3D standardizationl . . . . . . . .. Lo 142

(' Depth coding using MMP)| 146
[F.1 Coding depth information with MMP| . . . . . .. ... ... ... .. 146
[F.1.1 Evaluating coded depth maps| . . . . . . . ... .. ... ... 147

[F.2  Edge-aware coding of depth maps| . . . . . . . .. .. ... ... ... 164
[F.2.1 Edge identification algorithm| . . . . . . . ... ... ... .. 164

[F.2.2  Edge coding restriction| . . . . . . . . .. ... ... ... 166

[F.2.3  Experimental results| . . . . . .. .. ... ... ... ... 166




(I Pseudo-codesl

[K_Test setl

(.3 Conclusionsl . . . . . . . . .. . 172

[G Texture and depth coding using MMDP| 173
(G.1 Multiview image coding| . . . . . . . . ... ... L. 173
(G.2  Independent multiview coding using the MMP algorithm| . . . . . . . 174
(G.2.1 'Texture coding with MMP| . . . . . .. .. ... ... ... .. 175

(G.2.2  Optimal bit allocation for independent depth and texture cod- |

| ing with MMP| . . ... ... ... ... ... ... ... 175
(G.3  Encoding texture and depth jointly through warpingl . . . . ... .. 183
(G.3.1 Joint encoding architecture] . . . . . . .. ... ... ... .. 183

(G.3.2  Efficiency of the warped image as a predictor|{. . . . . . . . .. 184

(G.4  Experimental results| . . . . . . ... ... 0000 190
(G.4.1 Coding results|. . . . . . .. ... ... oo 191

(G.4.2 Subjective analysis| . . . . . ... ... 000000 191

(.5 Conclusions . . . . . . . . 196

[H Conclusions and perspectives| 197
.1 Conclusions and discussion for each individual contributionl . . . . . . 197
[(H.1.1 Multiscale multidimensional parser| . . . . . ... .. ... .. 197

[H.1.2  Least-squares prediction in MMP| . . . . . . ... .. ... .. 198

[H.1.3 Lossless image compression using MMP|. . . . . . .. ... .. 199

(H.1.4  Depth coding using MMP| . . . .. ... ... ... ... ... 199

[H.1.5 Joint texture and depth coding using MMP| . . . .. ... .. 200

[H.2  Key issues and open questions| . . . . . . . ... .. ... ... .... 201
[H.3  Future perspectives for image coding| . . . . . . . ... ... ..... 201
203

(L1 Main function of the MMP encoder| . . . . . . .. .. ... ... ... 203
[[.2  Block optimization| . . . . . . .. ... ... ... . 205
(.3 Entropy codingl . . . . . .. .. ... 211
([.4  Dictionary update|. . . . . . . . ... ... 214

[J  List of publications| 216
218

[K.1 Smooth images . . . . . . .. ... ... ... ... 218
[K.2 Compound images| . . . . . . . . . . . .. .. ... ... 224
(K.3 3D images| . . . . . . . . . 225
229

[Referencias Bibliograficas|

X1



Lista de Figuras

[[.1 Sistema de captura de imagens da sonda espacial Kaguya (Selene)| . . 2
[2.1 ~Casamento de padroes multiescala. . . . . . . .. ... .. ... ... 8
[2.2  Segmentacao diadical . . . . . ... ... Lo 9
[2.3  Modos de predigao Intra do H.264/AVC usados no MMP-Intral . . . . 10
[2.4  Resultados experimentais para as imagens LENA e GOLD| . . . . .. 14
2.5 Resultados experimentais para as images PP1205 e PP1209. . . . . . 15
[3.1  Vizinhanca de treinamento usada para a predicao LSP| . . . . . . .. 17
[3.2  Implementacao do LSP em blocos| . . . . . . ... ... ... ... .. 19
[3.3 Curvas taxa-distorcao para imagens suaves| . . . . . . . . . . . . ... 21
[3.4  Curvas taxa-distorcao para imagens compostas|. . . . . . . . . . . .. 22
[4.1 Alteracao dos modos de predicao Intra para compressao sem perdas| . 25
[4.2  Restricao do histogramal . . . . . . . . ... ... ... ... ..... 26
[4.3  Remapeamento do residuo| . . . . . . . ... ... 27
[4.4  Resultados para diversas técnicas de compressao sem perdas| . . . . . 28
[4.5 Compressao sem perdas de imagens suaves| . . . . . . . . . . . . . .. 29
[4.6  Resultados de compressao sem perdas para imagens compostas e com- |

putadorizadas| . . . . . . .. .. 30

5.1

Diversas medidas qualitativas (PSNR e distancia de Hausdorff) para |

mapas de profundidade| . . . . . .. ... 34

52

Diversas medidas qualitativas (AE e SSIM) para mapas de profundidade| 35

[5.3  Desempenho da vista reconstruida com mapas de profundidade codi- |

ficados| . . . . .. 37
[>.4 Algoritmo edge-aware para codificacao de mapas de profundidade| . . 38
[5.5  Desempenho do codificador conjunto multivistas e respectivas pro- |

fundidades . . . . . . . ... 41
[B.1 Selt similar portions of the Lena image] . . . . . . . . ... ... ... 52
[B.2  Multiscale pattern matching.|. . . . . .. ... ... ... ... 53

Xii



[B.3  Dyadic block segmentation . . . . . . . . .. ... ... ... ... .. 54

[B.4  Dictionary update procedure|. . . . . . . . . ... ... 55
[B.5  General pseudo-code tor the MMP algorithm| . . . . . . ... ... .. Y
[B.6 Prediction segmentation| . . . . . . ... ... ... L. 58
[B.7  Prediction modes used in MMP-INTRA algorithm. . . . .. ... .. 59
[B.8  Histogram plot for prediction residues of the Lena image] . . . . . . . 59
[B.9 Dictionary redundancy| . . . . . . . .. ... oL 61
[B.10 Possible block sizes tor the MMP-FP algorithm. . . . . ... ... .. 63
[B.11 Flexible block segmentation for the Lena image| . . . . . . . ... .. 64
[B.12 Generic block segmentation| . . . . .. ... ... ... ... ... .. 65
[B.13 Experimental results for images LENA and GOLD| . . ... ... .. 71
[B.14 Experimental results for images PP1205 and PP1209[ . . . . . . . .. 72
[B.15 Dictionary growthl. . . . . .. . ... ..o 73
(C.1 Training neighborhood for LSP prediction| . . . . . . . ... ... .. 7
(C.2  Edge directed propertyl . . . . . . . ... 78
[C.3 Wiener filter structurel . . . . . . ... ... ... ... ... ... 80
(C.4  LSP block prediction implementation| . . . . . . . .. ... ... ... 81
[C.5 LS5SP block prediction implementation for causal areas| . . . . . . . .. 82
(C.6  LSP parameter optimization| . . . . . . . . . . ... .. ... ..... 83
[C.7  Results for LSP prediction| . . . . . .. ... ... ... ... ..... 84
[C.8  Residue probability distribution| . . . . . . . . ... ... .. ... .. 84
[C.9 Rate distortion curves for smooth images| . . . . . . . . ... ... .. 86
[C.10 Rate distortion curves for compound images| . . . . . . . .. ... .. 87
[C.11 Percentages of choice for each prediction mode for image Barbara] . . 88
[C.12 Percentages of choice for each prediction mode for image Lena] . . . . 88
[C.13 Barbara LSP prediction| . . . . . .. ... ... ... ... .. .... 90
(C.14 Subjective evaluation tor Barbara image| . . . . . . .. ... ... .. 91
[C.15 Lena LSP predictionl . . . . . ... ... ... ... ... ....... 92
[D.1 JPEG-LS block diagram| . . . . ... ... ... .. ... ... .... 95
[D.2  CALIC block diagram| . . . . . ... ... ... ... .. ....... 97
[D.3 GAP neighborhood| . . . . . . ... ... ... ..o 0. 97
[D.4 CALIC context modeling and error teedbackl . . . . . . .. ... ... 99
[D.5 TMW block diagram| . . . . . ... ... ... ... .. ........ 100
[D.6 MRP block classification optimization|. . . . . . . . . . .. ... ... 103
[D.7 Modified prediction mode] . . . . . . .. ... ... 117
[D.8  Histogram restriction| . . . . . . . . . . ... ... 119
[D.9 Residue remapping| . . . . . . . .. ... 121

xiil



[£.1  Chain of operation for a 3D system| . . . . . . .. .. ... ... ... 127

.2 View-geometry representation| . . . . . . . . ... ... L. 128
[F2.3  Acquisition system for kree-Viewpoint of static scenes|. . . . . . . . . 130
[£.4 Camera arrangements|. . . . . . . . . . . . . ... ... 131
(.5 Camera normalizationl . . . . . . . . . ... ... ... ... ..., 131
2.6 Auto-stereoscopic display|. . . . . . . . ... 135
[E.7  Lenticular and parallax barriers| . . . . . . ... ... ... ... ... 136
[E£.8  Advanced 3D video concept| . . . . . . .. ... 136
[E£.9 Pinhole cameramodell . . . . . . ... 000 137
(.10 Epipolar geometry| . . . . . . . ..o 139
[£.11 VSRS general mode{. . . . . . ... ... ... oo 140
(12 VORS 1D model . . . . o 0 0 o oo 141
(13 MPEG visionl . . . . . . . ... 143
(.14 3D rendering capability|. . . . . . . . .. ... 144
(.15 FTV standardizationl . . . . . . . . . . ..o 145

[F'.1 Rate-distortion performance for coded disparity maps with ground |

[F.2  Rate-distortion performance for coded depth maps with non-aligned |

camera arrangement| . . . .. .. 0000000000 oL 149

[F.3  Rate-distortion performance for coded depth maps with horizontal |

alignment| . . . . ... o 150

[F'.4  Percentage of different pixels between the coded disparity maps and |

the ground truth| . . . . . . ... ... oo 152
[F.5 Hausdorff distance of coded depth maps| . . . . .. .. ... ... .. 153
[F.6  SSIM of coded depth maps with horizontal camera alignment|. . . . . 154

[F.7  Rate-distortion performance for reconstructed views using uncoded |

texture and coded depth maps|. . . . . . . . . ... ... ... ... 156

[F'.8  Subjective analysis of reconstructed views using coded depth data] . . 157

[F.9 Reconstruction subjective comparison using two ditterent DIBR algo- |

rithmsl . . . . 159

[F.10 Reconstruction objective comparison using two different DIBR algo- |

rithmsl . . . . . s 160

[F.11 Comparison of coded depth maps used in the reconstruction with |

coded texture for the Microsoft sequences|. . . . . . . . ... .. ... 161

[F.12 Comparison of coded depth maps used in the reconstruction with |

coded texture for the MPEG sequences| . . . . . . ... ... .. ... 162

[F.13 Subjective comparison of coded depth maps used in the reconstruction |

with coded texture for Book Arrival sequence] . . . . . . .. ... .. 163

Xiv



[F'.14 Edge from depth maps detected by the proposed algorithm| . . . . . . 165
[F.15 Optimization of the threshold criteria for edge aware coding ot the |

Microsoft sequences| . . . . . . . .. ..o 167

[F'.16 Optimization of the threshold criteria for edge aware coding ot the |

MPEG sequences| . . . . . . ... ... L oo 168
[F.17 Comparison of reconstructed frames using the edge aware coding pro- |
cedurel . . .. 169

[F.18 Rate distortion pertormance ot edge aware MMP tor the Microsoft |

sequences| . ... L. 170
[F.19 Rate distortion performance of edge aware MMP for the MPEG se- |
QUENCES . . . . e 171

Microsoft sequences| . . . . . . . . ... Lo o 176

IG.2 Rate-distortion curves for the reference view of the first frame of |

MPEG sequences| . . . . . ... .. ... ..o o 177

(G.3  Rate-distortion performance of auxiliary views for the Microsoft se- |

QUENCES . . . . e 178

|G.4  Rate-distortion performance of auxiliary views for the MPEG sequences|179

(G.5 Bitrate allocation optimization for the Microsoft sequences . . . . . . 181

|G.6 Bitrate allocation optimization for the MPEG sequences| . . . . . .. 182

|G.7  Rate-distortion improvement of the auxiliary view for the Microsoft |

SEqUENCES| . . . . .. e 185

|G.8  Rate-distortion improvement of the auxiliary view for the MPEG se- |

QUENCES| . . . . . e 186

(G.9 Quality of the prediction used for encoding the auxiliary view of the |

Microsoft sequences| . . . . . . . . ... Lo 187

(G.10 Quality of the prediction used for encoding the auxiliary view of the |

MPEG sequences| . . . . . ... .. ... oo 188
[G.11 Prediction usage maps for the Breakdancers sequence] . . . . . . . .. 189
(G.12 Prediction usage maps for the Book Arrival sequence] . . . . . . . .. 190

|G.13 Final quality of the reconstruced view from sequences provided by |

Microsoftl . . . . . . . . 192
|G.14 Final quality of the reconstruced view from sequences provided by |
MPEG . . . . . 193
|G.15 Subjective comparison for the first frame of the Ballet sequence] . . . 194

|G.16 Subjective comparison for the first frame of the Book Arrival Sequence/195

([.1 ~ Main function diagram ot the MMP encoder.|. . . . . . . .. ... .. 204

XV



[[.3  Optimization function for prediction| . . . . ... .. ... ... ... 207

[[.4  Optimization diagram for the hierarchical prediction|. . . . . . . . .. 210
(.5 Optimization diagram for the analysis stage] . . . . . . . . ... ... 213
[[.6  Optimization diagram for the dictionary update] . . . . . . . ... .. 215
(k.1 Airplane| . . . . . . ..o 218
K2 Baboonl . . . .« v i 219
K3 Balloon . . . ..« 219
K4 Barbl . . . . . 220
KE Barb2l . . . . .. 220
K6 Cameraman| . . . . . . . .. .. ... 221
K.7 Couple| . . . . . . o 221
KR Goldhilll . . . . . oo 221
KO Tenal . . . . oot 222
[K.10 Lennagrey| . . . . . . . . . . . 222
[K.11 Noisesquare| . . . . . . . . . . . . . 222
< Peppers| . . . . . 223
.13 Shapes| . . . . . . . . 223
.................................. 224
KISPPI200 . . . o o 224
16 SCANQOO2 . . . . . . o 224
KT SCANOOO4] . .« . o o 224
KIS SCANQOQGI. . . . . . o o o 224
(K. 19 Tsukubal . . . . . . . . . 225
20 Teddy] . 0 0 0 0 0 e 225
[K.21 First frames of the Ballet multiview sequencel. . . . . . . . . . . . .. 226
[K.22 First trames of the Breakdancers multiview sequencel . . . . . . . .. 227
[K.23 First frames of selected views of the Book Arrival sequence| . . . . . . 228

[K.24 First frames of selected views of the Champagne Tower sequence| . . . 228

XVvi



Lista de Tabelas

[2.1  Percentual de tempo economizado com o novo algoritmo MMP-FAST| 12

[B.1 Computational complexity for each block{ . . . . . . ... .. ... .. 67
B.2 Call of the search function for each blockl . . . . . .. ... .. .. .. 68
[B.3  Percentage of time saved with the new FAST algorithm|. . . . . . .. 70
B.4 Simulation details for CAMERAMAN|. . . . .. ... ... ... ... 73

[D.1 State-ot-the-art lossless compression algorithms results tor smooth

and compound Images| . . . . . . ... ... 107

[D.2 MMP’s lossless compression performance] . . . . . . ... .. ... .. 113

[D.3 Lossless compression results for several difterent prediction proposals] 117

[D.4 Lossless compression results for several different residue encoding

techniques| . . . . . . . . . 122
[D.5 Results for smooth image lossless compression| . . . . . . . . ... .. 123
[D.6  Results for compound and artificial image lossless compression| . . . . 123
[F.1  Experimental set-up for multiview images| . . . . .. ... ... ... 164
(G.1 Experimental set-up for multiview images joint coding| . . . . . . .. 191

xXvii



Lista de Simbolos

3DAV

AVC

DCT

DIBR

EDP

FIR

GAP

GPU

HDTV

HEVC

JBIG

JPEG

LOCO-I

LSP

MED

MMP

MPEG

MRF

MRP

MSE

3D Audio/Video, p.

Advanced Video Coding, p.

Discrete Cosine Transform, p.

Depth Image Based Rendering, p.
Edge-Directed Prediction, p. (103

Finite Impulse Response, p.
Gradient-Adjusted Prediction, p.
Graphic Processing Unit, p. [74]

High Definition Television, p. [2]

High Efficiency Video Coding, p.

Joint Bi-level Image Experts Group, p.
Joint Photographic Expert Group, p.
LOw COmplexity LOssless COmpression for Images, p. [96]
Least-Square Prediction, p.

Median Edge Detector, p.
Multidimensional Multiscale Parser, p.
Motion Picture Expert Group, p.
Markov Random Fields, p. [76]
Minimum-Rate Predictors, p.

Mean Square Error, p.

xviil



MVC

NSHP

RLS

SSIM

SVD

TSGD

Multiview Video Coding, p.
Non-Symmetric Half Plane, p.
Recursive Least Square, p. [90]
Structural SIMilarity, p. [152
Single Value Decomposition, p.

Two-Sided Geometric Distribution, p.

Xix



Capitulo 1

Introducao

1.1 Histéria da codificacao

A utilizacao de imagens permitiu ao homem expandir a sua visao. Com a chegada
da era digital, difundiu-se o uso das imagens, e estas ficaram ao alcance de todas
as pessoas, de tal modo que hoje podemos ver o funcionamento de érgaos dentro do
corpo humano, podemos passear na lua e ver galaxias distantes. E estas imagens
carregam consigo uma enorme quantidade de informacao. Furacoes podem ser pre-
vistos, doencas detectadas, novas reservas de metais podem ser achadas em planetas
distantes. Porém esta revolugdo nao sé atingiu a comunidade cientifica. Hoje em
dia, a maioria das pessoas carrega uma camera digital, assiste a videos pela Internet,
envia documentos via fax e imprime o seu conteiido em impressoras. Por detras de
atividades corriqueiras e atividades extraordinérias, a compressao de imagens esta
presente.

No inicio, a compressao de imagens foi o fator viabilizador da digitalizacao das
imagens. A capacidade de armazenamento era reduzida e o custo de transmissao
era alto. Por exemplo, para digitalizarmos um segundo de video sem compressao
(usando o formato ITU-R 601), precisamos de mais de 20 MB, o que resulta em
diversos gigabytes para apenas um tunico filme. Outro exemplo é a transmissao de
imagens pela Internet, que sem compressao poderia levar horas, e hoje ocorre em
poucos segundos.

Os primeiros algoritmos de compressao tiveram a dura tarefa de reduzir a quan-
tidade de dados necessarios para representar um conteudo digital, para que este
pudesse ser armazenado/transmitido. Hoje em dia temos muito mais espago para
armazenamento, os canais de transmissao ficaram mais robustos e com maior capaci-
dade, os custos foram reduzidos e as maquinas ficaram mais potentes. Ao mesmo
tempo ficamos mais criticos, queremos imagens mais nitidas, de maior definicao,

até mesmo imagens em trés dimensoes (como por exemplo, as imagens do solo lu-
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Figura 1.1: Exemplo de aplicagdo de compressao usado no sistema de captura de
imagens 3D de alta definigdo da sonda espacial Kaguya (Selene). Duas cameras
capturaram imagens em alta definicdo do solo lunar para formar imagens em 3D.
Devido a enorme quantidade de dados captados e limitado espago de armazena-
mento, o algoritmo de compressao ¢ essencial para viabilizar o mapeamento do solo
lunar em alta defini¢do, com resolucao de até 50 metros.

nar obtidas através da sonda espacial japonesa Kaguya, Fig. . Queremos ver
imagens a qualquer hora e em qualquer dispositivo, desde telas gigantes com ultra
definicao, até as pequenas telas dos celulares enquanto vamos de um lado a outro.

Desta forma, os algoritmos de compressao sempre serao necessarios, pois mesmo
com mais espago e sendo mais barata a transmissao, a demanda aumentara por
sinais mais complexos, com mais informacao. Teremos a demanda também por ima-
gens em diferentes tipos de terminais mais simples, como as telas de celulares, que
apresentam uma capacidade de processamento bem mais limitada. Os algoritmos de
compressao funcionam como um compromisso entre a capacidade de transmissao,
armazenamento e a complexidade computacional para se obter a imagem. Algorit-
mos mais complexos computacionalmente irao produzir imagens mais compactas,
algoritmos mais simples irdo comprimir menos as imagens, porém poderao ser mais
rapidos e computacionalmente mais eficientes.

O objetivo dos algoritmos de compressao ¢ achar uma representagao eficiente
para a fonte a ser comprimida. No caso dos codificadores sem perdas, temos um
limite teérico do quanto podemos comprimir uma imagem. Pela teoria da infor-
magao desenvolvida por Shannon [I], esse limite é a entropia da fonte. Porém a
chave dos algoritmos de compressao sem perdas é saber como chegar nesse valor de
forma eficiente. Muitos dos algoritmos estado-da-arte usam técnicas avancadas de
predicao, com a finalidade de reduzir a informagcao redundante presente na imagem,
seguida de um codificador entrépico.

Ja nos algoritmos de compressao com perdas, os algoritmos de compressao de
maior sucesso sao hibridos e baseados em trés passos: transformada, quantizacao e
codificagao por entropia [2]. Os passos de transformada e codifica¢ao sao reversiveis,

porém o passo de quantizacao nao o é, uma vez que ele introduz uma perda. A quan-



tizagdo ird mapear um intervalo possivel de valores em um tnico valor, por isso é que
temos uma incerteza associada ao valor real e a introduc¢ao de uma perda. Ja o passo
de codificagdo por entropia é geralmente o passo computacionalmente mais intenso.
Ele é usualmente realizado de duas formas: baseado em codificadores aritméticos
(computacionalmente mais complexos, porém geram um resultado mais eficiente,
para aplicagdo com alto desempenho) ou em codificadores Huffman (mais rapidos,
geralmente usam tabelas alocadas em meméria, para aplicagoes mais simples).

Para incentivar o desenvolvimento de softwares e aplicativos baseados em com-
pressao de imagens, padroes foram concebidos. Os padroes geralmente descrevem
como deve funcionar o decodificador, para que diversos produtos diferentes possam
comunicar entre si, usando uma linguagem comum. O primeiro padrdo interna-
cionalmente adotado para compressdo de images foi o JPEG [3], sendo utilizado
largamente na internet ou até mesmo em aplicagdes como impressoras e cameras
digitais. O objetivo do JPEG é a codificagdo de imagens em tom continuo com mais
de um bit de profundidade. Para imagens com apenas dois niveis (preto e branco),
usadas na transmissdo de fax, JBIG-1 [4] e JBIG-2 [5] sdo os padroes mais usa-
dos. Ja o padrao JPEG2000 [6] passou a utilizar wavelets no lugar da transformada
DCT, usada anteriormente pelo JPEG. No caso do video, o padrao MPEG [7], tam-
bém baseado em transformadas e quantizacao, ¢ um dos padrdes mais utilizados no
mundo. Além disso, estamos assistindo nos dias de hoje a criacao de novos padroes,
como o padrao de codificagao avangada de video (H.264/AVC [§], H.264/MVC [9],
H.264/HEVC [10]) ou o padrao para videos 3D (3DAV [L1]).

A grande vantagem da compressdo baseada em transformadas é a baixa com-
plexidade computacional, um item quase essencial quando queremos transmissao
em tempo real. Porém com o passar dos anos temos disponiveis maquinas cada
vez mais potentes, o que nos leva a reavaliar este paradigma, e investir em novas
abordagems, que consigam alcancar patamares de compressao até o momento nao
alcancados. Algoritmos como compressao fractal de imagens [12] j4 vém obtendo
algum relativo sucesso, provando que ainda existe muito o que se explorar quando

falamos de compressao de imagens.

1.2 Motivacoes

Nos ultimos anos, o codificador baseado em casamento de padroes recorrentes em
multiescala, o MMP (Multidimensional Multiscale Parser), tem sido o principal
assunto de muitas linhas de pesquisa [I3H16]. O seu carater universal abriu portas
para que ele fosse utilizado em diversas areas, iniciando com compressao de imagens
compostas [17] (onde ele apresenta um desempenho estado-da-arte), e passando por

areas como compressao de imagens suaves [I8], imagens estereoscopicas [19] e até



eletrocardiogramas [20].

No que diz respeito a codificagao de imagens suaves, o MMP surge como alter-
nativa a um paradigma ja bem estabelecido, a compressao usando transformada-
quantizagao-codificagdo. A maneira inovadora com que o MMP atua, mesclando
essas trés operagoes em uma, abre um leque enorme de possibilidades a serem ex-
ploradas. Algumas das propriedades do MMP para codificar imagens suaves ja vém
sendo exploradas ha algum tempo ([21, 22]), e fizeram com que o MMP recente-
mente superasse os ganhos de compressao de codificadores estado-da-arte, como o
JPEG2000 [6] e o H.264/AVC Intra [23].

A mudanca de paradigma introduzida pelo MMP pode levar-nos a novos pata-
mares de compressao, o que motiva a continuacao do seu uso em diferentes areas,
além do aprimoramento da sua utilizagdo nas areas em que ja atua. A proposta
desta tese é ter o MMP como o algoritmo base de compressao de imagens e dai
explorar técnicas novas, propondo novas soluc¢oes baseadas no codificador, que pos-
sam trazer uma nova perspectiva ao uso do MMP. Um exemplo claro de areas onde
o MMP ainda nao apresentou nenhum resultado é a area de compressao sem per-
das. O MMP tem uma capacidade inata de compressao sem perdas, porém o seu
desempenho nesta area ainda nao foi avaliado. Outra proposta interessante é o uso
do MMP para a codificacao do novo formato de imagens 3D, que incluem multiplas
vistas e seus respectivos mapas de profundidades.

Um grande desafio deste trabalho também sera diminuir o custo computacional
do algoritmo, que vem crescendo bastante com a introdugao de novas técnicas adap-
tativas de codificag@ao. Deficiéncia em areas como a complexidade do algoritmo terao
que ser combatidas, sem comprometer o desempenho taxa-distorcao que o MMP tem
registrado nos ultimos anos. Um dos objetivos das técnicas desenvolvidas nesta tese
devera ser também o de manter a complexidade do MMP a niveis aceitaveis, e sem-
pre que possivel reduzir o tempo de codificacdo, para viabilizar o uso do MMP nas

maquinas de hoje.

1.3 Organizacao da tese

Esta tese estd organizada da seguinte forma. Os Capitulos [1] a [6] foram escritos em
portugués, e tém por objetivo fornecer uma visao geral do trabalho realizado no am-
bito desta tese. Os apéndices, por sua vez, foram escritos em inglés, e correspondem
a uma versao mais detalhada do que sera apresentado nos capitulos da tese.

No Capitulo [2] serd apresentada uma revisao sobre o codificador MMP e suas
evolucoes. A complexidade computacional do algoritmo é formalmente analisada, e
uma proposta de reducao do custo computacional é feita. Simulagoes e resultados

experimentais encontram-se no final deste capitulo. Maiores detalhes sobre os al-



goritmos baseados no paradigma do MMP e detalhes sobre as contribuigoes para a
redugdo da complexidade computacional se encontram no Apéndice [B]

O Capitulo [3] mostra os passos desenvolvidos para incoporar um método de
predigao adaptativo baseado no critério dos minimos quadrados (LSP - Least-square
Prediction) ao MMP. Adaptagoes para codificagoes em bloco e resultados experimen-
tais sao apresentados. Detalhes do método proposto e uma anélise mais abrangente
dos resultados encontram-se no Apéndice [C]

Como o LSP foi uma técnica inicialmente idealizada para compressao sem perdas,
e até o momento o MMP nao foi avaliado neste sentido, no Capitulo 4} os conceitos
usados na compressao sem perdas serao visitados, e um estudo do MMP atuando
como um codificador sem perdas serd realizado. Desta forma, poderemos ver o
MMP atuando em todas as taxas de compressao, indo da compressao com perdas
até a compressao sem perdas. Uma anélise formal dos limites teéricos do MMP para
compressao sem perdas e uma analise mais aprofundada do tema se encontram no
Apéndice D]

O novo formato de imagens 3D é baseado na transmissao de textura e um cor-
respondente mapa de profundidade. Este mapa apresenta caracteristicas muito es-
pecificas [24], o que representa um novo desafio para codificadores de imagens. O
Capitulo [5] explora a atuagdo do MMP na codificagao de mapas de profundidade, e
vai além, ao usarmos o MMP para codificar todos os elementos de uma imagem 3D.
Iremos propor arquiteturas de codificadores 3D, e apresentar propostas para melho-
rias na codificagdo dos mapas de profundidade. Os Apéndices [E] [F] e [G] apresentam
os desafios deste novo formato de imagens 3D, mostram com mais detalhamento
como foram abordados os problemas de codificacao e quais as solu¢oes propostas.

Por fim, o Capitulo[f]ird concluir esta tese e apresentar topicos para a continuagao
deste trabalho de pesquisa.

Os Apéndices|[I}[JJe[K]complementam o trabalho com o pseudo-c6digo dos algorit-
mos usados, a lista de publicagdes geradas por este trabalho e as imagens utilizadas

nos testes, respectivamente.

1.4 Contribuicoes da tese

1.4.1 Contribuicao para a codificacao de imagens com per-

das

Focando na codificacdo de imagens com perdas baseado no codificador MMP com
predigdo, um método de acelera¢ao do algoritmo foi proposto e publicado em [25].
Em seguida, uma adaptagao nao-trivial do método de predi¢ao baseado no critério

dos minimos quadrados foi realizada. O novo método de predi¢ao adaptativo foi



adicionado ao modos de predicao disponiveis, e dessa forma o desempenho taxa-
distor¢ao do MMP foi melhorado. O método foi publicado em [26] e em [27].

1.4.2 Contribuicao para codificacao de imagens sem perdas

A atuacao do MMP como um codificador sem perdas foi explorada. Pela primeira
vez, os limites tedricos do MMP como um codificador sem perdas foram formal-
mente desenvolvidos e o seu desempenho foi avaliado. Os métodos de predicao do
algoritmo foram adaptados para a codificacao sem perdas e modificagoes no codifi-
cador entropico para este caso foram avaliadas. Os resultados desta pesquisa foram

submetidos para publicacao em [2§].

1.4.3 Contribuicao para a codificagao de imagens 3D

A flexibilidade do MMP mostrou-se particularmente eficaz na codificacdo do novo
formato de imagens 3D, que usam textura em conjunto com mapas de profundi-
dade/disparidade. Mapas de profundidade codificados com o MMP foram avaliados,
onde critérios objetivos e subjetivos foram implementados e utilizados na avaliagao
dos artefatos. Em seguida, diversas arquiteturas baseadas no MMP para codificar
imagens 3D foram propostas, onde uma alocac¢ao 6tima de taxa entre a textura e
os mapas de disparidade foi obtida. Neste ambito, o desempenho das arquiteturas
propostas com o MMP foi comparado com outros algoritmos usados para a codifica-
¢ao 3D. Além disso, mudancas no codificador foram propostas, para evitar artefatos
junto as bordas dos objetos representados nos mapas de profundidade. Os resul-
tados do MMP como codificador de mapas de profundidade foram publicados em
[29, 30] e a proposta para um novo codificador de images 3D baseado em MMP estéd

em preparacao para submissao.



Capitulo 2

Codificador de imagens com

casamento de padroes multiescala

2.1 Casamento aproximado de padroes usando

multiescalas

Os algoritmos derivados do paradigma do MMP tém como base o casamento de
padroes recorrentes. Esta técnica é apropriada para codificar elementos que se
repetem frequentemente, usando um dicionario que contém uma lista dos elementos
mais usados, D = {Cy, Cy,...,Cy}. Ao ser identificada a ocorréncia de um padrao
do dicionario na imagem a ser codificada, o seu indice é codificado no lugar do padrao
usando um codigo de tamanho variavel. Atingimos compressao quando os cdédigos
mais curtos sdo usados para codificar padroes mais frequentes. Caso o padrdao nao
exista no dicionario, ele sera codificado de uma outra forma, menos eficiente, geral-
mente usando codigos de escape. Um exemplo de codificacao sem perdas usando
dicionério sdo os algoritmos Lempel-Ziv [31H41]. No caso de codificagdo com perdas
usando o mesmo paradigma, os algoritmos sao conhecidos como Lossy Lempel-Ziv
[T7,[42H44]. O MMP propoe usar blocos de outras dimensoes para fazer o casamento,
comparando blocos com diferentes escalas, uma idéia explorada também em codi-
ficadores fractais [I2]. A vantagem de usarmos o casamento em multiplas escalas
deve-se ao fato de obtermos mais elementos para o dicionario através de contragoes
e expansoes dos elementos atuais, como ¢ mostrado na Figura [2.1]

O algoritmo MMP aplica os conceitos de casamento de padroes em multiescala
da seguinte forma. A imagem de entrada sera dividida em blocos que nao se sobre-
poem, e padroes de um dicionario em diferentes escalas serao usados para aproximar
os blocos da imagem. Se nenhum padrao presente no dicionario aproxima o bloco
da imagem de forma satisfatéria, este é entao iterativamente dividido, primeiro na

vertical, em seguida na horizontal, até atingirmos uma escala onde temos um casa-
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casamento de padroes

” transformacdo de escala .]

&

Figura 2.1: Exemplo de um casamento de padroes multiescala. A transformacao
de escala permite o casamento de elementos de escala diferente, como vemos neste
exemplo, onde o elemento C5 do dicionario D sofre uma mudanga de escala para
codificar o padrao de entrada X.

mento apropriado entre o bloco e um padrao presente no dicionario. A segmentagao
do bloco é sinalizada para o decodificador através de uma flag de segmentacao. Este
por sua vez usa as flags para repetir o processo de segmentagao do codificador e
atualizar os blocos de images com os indices transmitidos do dicionarios. A Figura
2.2 mostra o processo de segmentagao diddica, e a sua respectiva arvore de segmen-
tagdo. Um codificador aritmético adaptativo é usado como codificador entrépico,
para formar o fluxo binario da imagem codificada com o MMP.

Apos a codificagao do bloco, tanto o codificador quanto o decodificador irao
atualizar o dicionario com o novo padrao formado pelas concatenacoes dos diversos
subblocos, sendo que a atualizagao ira ocorrer em diversas escalas, através de expan-
soes e contragoes do novo bloco. Desta maneira, o dicionario cresce com valores da
propria imagem, que provavelmente serao usados para codificar os blocos seguintes,
devido as caracteristicas de auto-similaridade das imagens naturais.

A segmentacao do bloco e os indices escolhidos sdo determinados através de
um algoritmo baseado num custo lagrangeano. A melhor segmentagao do bloco é
escolhida em um passo de otimizagao, que compara o custo da codificacao de cada
segmento do bloco e escolhe a segmentacao que resulta no custo minimo. Associamos

a cada n6 uma distorcao

D(X,Ci) = > _(X(z,y) — Ci(z,y))* (2.1)

I7y
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Figura 2.2: Exemplo de um bloco partido usando uma segmentacao diadica, e sua
correspondente arvore de segmentagao

dada pela soma das diferencas ao quadrado entre o bloco original X e o elemento

no dicionario C;, e a taxa

R(C;) = —logy(Pr(i)) (2.2)

dependente da probabilidade Pr(i) do simbolo i. O custo do né n; sera
onde A é o parametro do custo lagrangeano.

A decisao de segmentacao do bloco é tomada com base na soma dos custos de

cada no, isto é, o bloco sera dividido se
J(TLU) > J(nl) + J(ng) + )\Rseg (24)

onde R, ¢ a taxa necessara para transmitir a flag de segmentacao.

Os resultados iniciais do MMP foram apresentados em [17], onde o excelente
desempenho para imagens compostas se destaca. O MMP ja foi aplicado com sucesso
na codificacao de imagens estéreo [19], eletrocardiogramas [20, 45], [46] e video [47+
50]. No entanto, o seu desempenho para imagens suaves ainda ficava bem abaixo
dos codificadores estado-da-arte, como o JPEG2000 [6] ou até mesmo o H.264/AVC
Intra [51], 52).

Algumas propostas ja apresentadas visaram aumentar a eficiéncia do desempenho
taxa-distorcao do MMP para imagens suaves, através de um critério mais rigoroso de

codificagao entre blocos vizinhos, entre elas técnicas como o MMP-APM (Adaptive
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Figura 2.3: Modos de predicao Intra do H.264/AVC usados no MMP-Intra. Apenas
o modo de predicao DC foi substituido pelo modo de predi¢do que usa o valor mais
frequente (MFV)

Probability Model, [53]). Porém a técnica que apresentou os melhores resultados foi
a desenvolvida em [54], que usa o conceito de predi¢ao, conhecido como MMP-Intra.

O MMP-Intra [15], 21, [54] usa os mesmos oito modos direcionais de predi¢ao
usados no H.264/AVC, como mostra a Figura . Porém no caso do modo DC,
um novo modo mais apropriado para codificar imagens suaves e compostas, o MF'V
(Most Frequent Value), é usado. A diferenca entre o modo DC e o MFV é que no
primeiro o valor predito é a média dos valores da fronteira, enquanto que o outro usa
o valor que ocorreu mais vezes [21],[54]. Assim como no H.264/AVC, a predi¢ao pode
usar blocos de tamanhos variados, limitados até um tamanho de 4 x 4. A grande
vantagem de usarmos a predicao é o fato do residuo apresentar uma conjunto muito
menor de valores diferentes, o que facilita o processo de adaptacao do dicionario. No
mesmo ambito do MMP-Intra, métodos de adaptacao do dicionario foram propostos
e incoporados no algoritmo. Os detalhes encontram-se em [21].

Uma das grandes vantagens de algoritmos de compressao baseados no MMP
¢ a flexibilidade que ele apresenta para codificar diversos tipos de imagens. No
entanto, o MMP ainda apresenta alguns aspectos rigidos no seu algoritmo, como a
segmentacao dos blocos e os modos de predigdo. Em [22], a segmentacao diddica
do bloco foi substituida por uma segmentacao flexivel. Através do uso de flags

diferenciadas, o codificador MMP ira indicar a direcdo de segmentacao do bloco.
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Com os ultimos avancgos no codificador MMP, o seu desempenho taxa-distorcao
passou a atingir patamares estado-da-arte para diversos tipos de imagens. No en-
tanto, o ganho em taxa-distor¢ao surgiu como contrapartida de um aumento signi-
ficativo na complexidade computacional. Mais detalhes sobre as diversas técnicas
aplicadas ao MMP se encontram no Apéndice [Bl Nas proximas segoes iremos apre-
sentar uma proposta que visa reduzir a complexidade computacional e diminuir o
tempo de codificacdo do MMP.

2.2 Reduzindo a complexidade computacional

Embora na maioria dos casos o aumento de complexidade proveniente da predigao
é devido ao aumento de operagoes para o proprio calculo da predi¢ao, no caso do
MMP essa rotina nao foi a principal causa do aumento da complexidade computa-
cional. O método de otimizacao que ird escolher o melhor modo de predicao é o
responsavel pelo aumento do tempo de codificagao, uma vez que é necessario codi-
ficar o residuo com o MMP para determinar o custo de usarmos uma determinada
predicao, e isso implica numa nova busca por um padrao do dicionario. A comple-
xidade computacional do algoritmo original do MMP foi apresentada em [45], e no
Apéndice [B| encontra-se o mesmo desenvolvimento para o algoritmo com predicao e
segmentacao flexivel.

Em métodos tradicionais de codificacao de imagens baseados em transformadas,
uma técnica comum para a reducao do custo computacional é a escolha seletiva de
apenas alguns modos de predi¢do, baseado em algum critério, como por exemplo
o método do gradiente proposto em [55]; porém no dmbito do MMP isso nao iria
reduzir drasticamente a complexidade, uma vez que ainda teriamos de efetuar as
diversas buscas associadas ao calculo do custo de codificagao dos residuos dos modos
de predi¢ao remanescentes.

Uma maneira eficaz de evitar o calculo do custo de codificagao do residuo usando
o MMP é modificar o algoritmo de otimizac¢ao, usando um critério diferente para
a selecao do melhor modo de predi¢cao. Nesta implementacao rapida, o modo de
predicao escolhido é aquele que gera o residuo com uma energia mais baixa, ou
seja, iremos apenas levar em consideracao a distorcao do bloco apds a predicao, e
nao mais a taxa associada com a codificagdo do residuo via MMP. O algoritmo que

incorpora a predicao, a segmentacao flexivel e a escolha rapida do modo de predigao
passou a se chamar MMP-FAST.
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Tabela 2.1: Percentual de tempo economizado com o novo algoritmo MMP-FAST.

Rate 0,4 bpp 0,7 bpp 1,1 bpp

GOLD 87% 88% 85%
LENA 86% 85% 81%
PP1205 87% 81% 84%
PP1209 86% 86% 82%

2.2.1 Resultados experimentais do MMP-FAST

As figuras 2.4(a)| e [2.4(b)| mostram o resultado do MMP-FAST para duas imagens

suaves. Nota-se uma queda contante de 0,2 dB para o PSNR em todas as taxas. No

entanto o desempenho taxa-distor¢ao ainda estda acima do H.264/AVC Intra para
médias e altas taxas, e o ganho computacional deixou o codificador 7 vezes mais
rapido.

Nas imagens compostas, a premissa de suavidade nao se aplica, e as perdas
devido ao modo de predicao escolhido foram ainda maiores, chegando a 1 dB para
a imagem PP1205 que contém somente texto, e 0,4 dB para a imagem composta
PP1209. Mesmo com esta grande perda em termos de qualidade objetiva, ainda

estamos acima dos codificadores usados como base de comparacgao (veja figuras

2.5(a)e[2.5(b)). Equivalente ao que aconteceu com as imagens suaves, também para

imagens compostas o codigo ficou sete vezes mais rapido do que a versao anterior.
A Tabela mostra os ganhos em tempo de codificacao com o uso da nova

técnica de decisao.

2.3 Conclusoes

A grande adaptabilidade do MMP foi o fator que permitiu ao codificador atingir de-
sempenho taxa-distor¢ao ao nivel do estado-da-arte. A flexibilidade e o largo campo
de atuagao que o MMP atinge torna-o uma excelente ferramenta de codificagdo. No
entanto, o aumento de flexibilidade acarretou em um aumento de complexidade com-
putacional, e a técnica de reducao de complexidade aqui apresentada ¢ apenas uma
ferramenta que atua no sentido de diminuir o tempo de codificagdo. Novas técnicas
para reducao da complexidade computacional é um tépico de pesquisa importante
para o MMP.

Outro topico interessante a ser explorado é a paralelizacao do processo de codifi-
cacao com o MMP. Todas as buscas em miltiplas escalas podem ser eficientemente
paralelizadas, aumentando consideravelmente o desempenho computacional do co-

dificador. Essa linha de evolugao esta de acordo com a linha de evolugao dos novos
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processadores, e acompanha a tendéncia de desenvolvimento de hardware para apli-
cagoes de codificacao de imagens, como por exemplo as aplicacoes utilizando GPU’s
(Graphic Processing Unit).

Devido a sua flexibilidade, o MMP pode atuar na compressao de qualquer tipo
de imagem, sejam imagens naturais, ou ainda imagens artificiais, como por exemplo
imagens geradas por computador ou mapas de profundidades, usados em imagens
3D. O uso do MMP para codificar imagens pode ser uma alternativa para codifi-
cadores atuais, baseados em transformadas.

Como podemos ver, existem diversos topicos interessantes a serem explorados no
ambito do codificador MMP. Os préximos capitulos desta tese irdo abordar algumas
vertentes aqui discutidas. Por ser uma abordagem nova, e uma mudanca grande do
paradigma de codificacdo de imagens, o MMP permite-nos explorar caminhos que

conduzam a novos patamares na codificacao de imagens.
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Figura 2.4: Resultados experimentais de taxa-distor¢ao do MMP-FAST para as
imagens LENA e GOLD.
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images PP1205 e PP1209.

15



Capitulo 3

MMP utilizando predicao com

critério de minimos quadrados

3.1 Predicao usando o critério dos minimos

quadrados

O processo de predigdo é andlogo ao processo de inferéncia estatistica. Este consiste
em determinar algum parametro de uma distribui¢ao baseado no conjunto de reali-
zagoes disponiveis, por exemplo, determinar a média ou a variancia de alguma dis-
tribuicao, baseado em um conjunto de dados disponiveis. A validade deste método é
baseada no fato que sendo observada uma certa quantidade de dados, a distribuicao
de interesse se encontrara provavelmente num subconjunto de distribuicoes descritas
por esses dados. Ou seja, as observagoes podem revelar informagoes sobre a ver-
dadeira distribui¢do na qual estamos interessados. Fazendo uma analogia com o
processamento de imagens, se tomarmos um conjunto de realizagoes como sendo a
vizinhanca do pixel que estamos querendo prever, o processo de predigao podera
usar os valores dos pixels vizinhos para estimar o valor do pixel atual.

Iremos entao assumir que a lei de formacao dos pixels vizinhos é a mesma lei
que se aplica ao pixel de interesse. Dessa forma, podemos prever o valor de um
pixel X(g(n)) baseado na lei de formagao obtida com uma vizinhanga local M,
também conhecida como “janela de treinamento”. A funcdo g(n) indica a coordenada
do pixel na imagem, indexado por uma varidvel n. De acordo com LI [56], uma
escolha adequada da janela de treinamento é uma area contendo dois retangulos de
dimensoes T e T + 1, totalizando M = 2T(T + 1) elementos (veja a Figura [3.1)).

Uma forma de estimarmos o valor do pixel é fazendo uma média ponderada
de valores préximos. Geralmente as posigoes escolhidas sdo as N posi¢oes mais

préximas, baseadas no modelo markoviano de ordem N. A predicao é obtida entao

16



T+1

T7+1

coordenada g(n — 1) coordenada g(n — 2)

Y A

. 000 -~
ROIGCICI®
‘ O@‘. » coordenada g(n)

= ¥ ~X(g(n))

Figura 3.1: Vizinhanca e janela de treinamento usado para a predicao LSP. Os
pixels usados para a predigdo situam-se numa regiao causal da imagem. Portanto,
tanto o codificador quanto o decodificador realizam o mesmo treinamento e obtém
os mesmos coeficientes.

com a seguinte equacao:

X(g(n)) = Zl a;X(g(n —1)) (3.1)

onde os coeficientes a; sao os pesos de cada posi¢ao da predicao.

Ao usarmos a janela de treinamento, estamos assumindo que os coeficientes usa-
dos para determinar o proximo pixel ndo variam dentro desta area, e podem ser
usados para determinar a proxima posicao de interesse. Para entao determinar-
mos os melhores coeficientes, teremos que otimiza-los localmente usando a janela
de treinamento causal. O critério de otimizagdo usado é baseado no erro médio

quadratico (MSE - Mean Square Error), dado por

N

1 -N

min(MSE) = min{ ———— > (X(g(n —k)) —

#(M) X(g(n—k))CM i=k—1

a; X(g(n — Z')))

(3.2)
onde o conjunto M denota os pixels dentro da janela de treinamento, e #(M) o

numero de elementos do conjunto M. Em notagao matricial, temos
min {[|y — Cal|2} (3.3)

Onde a seqiéncia de treinamento serd um vetor coluna y = [X(g(n —

1))...X(g(n — M))]T de tamanho M x 1 e a vizinhanga de predi¢io forma uma
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matriz de tamanho M x N, onde

X(gn—1-1)) ... X(gn—1-N))
¢ = : :
X(g(n—M-=1)) ... X(g(n—M —N))

A escolha da norma L, como o critério de otimizacao se deve ao fato da sim-
plicidade de implementagao desta técnica e da maturidade com que esta técnica
ja foi empregada em diversos outros problemas. Os coeficientes 6timos sao os que
minimizam o erro, ou seja, a solugdo de min(||y — Cal|?). Uma conhecida solugao

fechada para este problema é dado por
a=(C"C)(C"y) (3.4)

Aplicagoes para estimacao por minimos quadrados em processamento de sinais
1D assim como alguns algoritmos réapidos podem ser encontrados em [57]. Em
[58] encontram-se diversas implementagoes rapidas de otimizagao usando minimos

quadrados (como fatorizagdo LU e decomposi¢ao SVD) escritas em C padrao.

3.2 Incorporando o LSP ao MMP-FP

A partir da ultima versdao do codificador MMP-FP, adicionamos o modo LSP ao
conjunto de possiveis modos de predicdo a serem escolhidos pelo codificador. Em
analogia com a selecdo dos restantes modos, a escolha do melhor modo de predigao
é realizada através da analise do custo de codificagdo do modo de predigao e de seu

respectivo residuo.

3.2.1 Adaptando o LSP para predicao em blocos

O modo de predicao LSP foi concebido para codificacdo sem perdas. Desta forma,
os pixels da predicao usados sao os pixels mais préximos, o que no caso de uma
varredura raster serao usados os pixels a esquerda ou acima da posigao a ser predita.
No caso da codificacao de uma imagem em blocos, os pixels usados na janela de
treinamento podem ainda nao estar disponiveis, o que torna a implementagao do LSP
para blocos uma tarefa nao-trivial. Em [59], apenas os valores de pixels pertencendo
a blocos acima e a esquerda do bloco atual é que podem ser utilizados no calculo da
predicao do pixel, mesmo para aqueles que estao nas posi¢oes mais afastadas desta
vizinhanga, o que acaba por apresentar uma perda da eficiéncia do preditor para
posicoes distantes da borda do bloco.

Na implementacao aqui proposta, flexibilizamos a restricao da vizinhanca e es-
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(a) LSP sem restri¢ao (b) LSP modificado devido & restri¢ao da viz-
inhanca

Figura 3.2: Implementacao do LSP em blocos. As linhas pretas indicam as bor-
das dos blocos ja codificados, enquanto que a area hachurada indica o bloco a ser
predito com o LSP. Pixels representados pela cor cinza tém o seu valor reconstruido
disponivel para a adaptacao do preditor. Pixels usados na adaptagao que pertencem
ao mesmo bloco usam o valor obtido com a predicao LSP na sua respectiva posicao,
e nao o valor reconstruido. O pixel preto representa a amosta atual.

colhemos sempre os pixels mais proximos para a predicao. Nas posicoes que se
encontram dentro do bloco, os valores dos pixels reconstruidos ainda nao estao pre-
sentes, e para esses casos utilizamos o valor recém calculado na predi¢ao passada com
o LSP, como mostra a Figura . Como ainda podemos ter casos onde pixels a
direita nao estao disponiveis, nestas situagoes a vizinhanca e a janela de treinamento
sdo alteradas conforme a Figura para que a predicio use somente posicoes
ja codificadas ou preditas. Nas bordas superior e esquerda da imagem, onde nao
ha area suficiente para realizar o treinamento do LSP, o modo ¢ desativado, e dessa

forma apenas os modos do H.264/AVC sao usados.

3.3 Resultados experimentais

O principal motivagdo para usar o LSP era melhorar o desempenho das curvas de
taxa-distor¢cao do algoritmo MMP para imagens suaves e com muita textura, sem
provocar perdas no comportamento eficiente do MMP relacionado com a codificagao
de imagens nao-suaves.

De maneira a explorar toda a capacidade de predi¢ao do modo LSP, um modelo
de ordem alta foi utilizado, ou seja, uma vizinhanga fixa de N = 10 elementos. O
tamanho da janela de treinamento escolhido foi 7' = 7. Estudos empiricos realizados
em [60] sugerem que janelas maiores do que 7 ndo melhoram o desempenho do
método de predicao LSP. Testes realizados no ambito do codificador MMP também
sugerem que a combinacao 6tima da ordem do preditor e o tamanho da janela de
treinamento sao dados por N = 10 e T'= 7 (ver detalhes no Apéndice .

As curvas de taxa distorcao para imagens suaves podem ser visualizadas nas
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Figuras [3.3(a)| e 3.3(b)l Outro fato marcante, j& mencionado anteriormente, é que

o ganho do LSP depende da imagem a ser codificada. Para imagens suaves com
textura complexa, como a imagem BARBARA, ganhos de PSNR de até 1,2 dB
foram registrados, enquanto que os ganhos para a imagem Lena sao menores, em
torno de 0,25dB. Podemos também notar que o desempenho das curvas melhora
com taxas médias e altas. Uma vez que o modo LSP depende diretamente da janela
de treinamento utilizada na predi¢ao do pixel, taxas mais altas que contém pixels
reconstruidos mais precisos vao contribuir positivamente no treinamento. Para todas
as imagens, podemos constatar o desempenho acima das curvas de taxa distor¢ao
dos algoritmos estado-da-arte usados para efeito de comparacao, o JPEG2000 e o
H.264/AVC Intra. Mais resultados se encontram no Apéndice [C]

Para imagem compostas e com textos, como as imagens PP1205 e PP1209, as
bordas dos elementos das imagens tém variagoes muito bruscas e ocorrem frequente-
mente, dificultando o processo de predi¢cao do LSP, tornando dificil o aprendizado
de uma borda dentro da janela de treinamento. Pelo mesmo motivo, qualquer outro
tipo de predicao é ineficiente para este tipo de imagem, o que justifica o pior de-
sempenho do MMP-Intra comparado ao MMP-FP para imagens compostas. Mesmo
assim, a adicdo de mais um modo de predi¢ao nao afetou o desempenho das curvas

de taxa-distorcao do algoritmo MMP para as imagens nao-suaves, como podemos

ver nas Figuras|3.4(a)| e [3.4(b)|

3.4 Conclusoes

Neste capitulo um método de predicao baseado no critério dos minimos quadrados
foi proposto. O novo modo de predi¢ao LSP é capaz de gerar boas predi¢des para
areas com bordas de orientagao arbitraria, o que acaba por resultar numa maior
eficiéncia para o codificador MMP. Os ganhos em taxa-distor¢ao chegam a 1 dB em
algumas imagens, para taxas médias e altas, e nao acarretaram perda alguma para
imagens compostas.

Uma desvantagem do método é o aumento da complexidade computacional, de-
vido a operagao de inversao de matrizes necessaria para a adaptacao do preditor de
cada pixel. Perspectivas de trabalhos futuros neste tema incluem implementagoes

mais eficientes do método.
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Figura 3.3: Curvas de desempenho taxa-distor¢ao para imagens suaves.
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Capitulo 4

Compressao sem perdas usando o
MMP

4.1 Compressao de imagens sem perdas

Com a evolucao tecnoldgica, os sinais discretos ganharam importancia, dentro deles
os sinais digitalizados como textos, imagens, audio e videos. Os dispositivos de re-
producao também evoluiram muito, a fidelidade exigida para esses sinais aumenta
cada vez mais, o que nos torna cada vez menos tolerantes a baixa qualidade de
reconstrucdao dos mesmos. A largura de banda para transmissao aumentou, a ca-
pacidade de armazenamento aumentou e ficou mais barata e acessivel. Todos esses
fatores fazem com que a importancia dos algoritmos de compressao sem perdas volte
a crescer relativamente aos algoritmos com perdas, para sinais onde a introducao de
alguma perda nao compromete a aplicagao.

Aplicagoes como compressao de textos, imagens médicas ou ainda imagens de
satélite, nao toleram qualquer diferenca entre o sinal original e o sinal reconstruido.
Um erro de reconstrucdo numa radiografia pode mudar um diagnostico, um artefato
de compressao pode invalidar uma série de imagens de satélites que nao poderao ser
feitas novamente. Nestes casos a compressao sem perdas nao é uma opgao, ¢ um
item obrigatorio.

A maioria dos algoritmos de compressao sem perdas realizam duas tarefas: o
modelamento da imagem e a sua codificacao. O objetivo de um codificador ¢é através
destas duas operagoes atingir a taxa méaxima de compressao de uma fonte, ou seja
o tamanho minimo necessario para representar um sinal, cujo valor minimo é dado
pela entropia da fonte, também conhecido como limite de Shannon [61].

Desde a sua concepcao, o MMP tem a capacidade inata de codificar uma imagem
sem perdas. Para tanto, basta que o dicionario da escala 1 x 1 seja um dicionario

completo. Dessa forma, se o casamento nao ocorrer em escalas maiores, sempre
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poderemos transmitir o valor do pixel através de um bloco de escala 1 x 1. Os ganhos
de codificacao do MMP ocorrem quando temos um casamento em escalas maiores,
e conseguimos codificar um bloco inteiro, ou seja diversos pixels em conjunto, com
apenas um indice.

No Apéndice [D] é obtido pela primeira vez um limite tedrico para o desempenho
do MMP atuando como um codificador de imagens sem perdas. Mostramos que o
MMP é capaz de atingir a entropia de uma fonte estacionaria, ergédica, sem memoria
com um alfabeto limitado. Um aspecto interessante deste resultado é o fato de

explicitar a importancia do passo de predicao para a convergéncia do algoritmo.

4.2 Modificando o algoritmo MMP para codifica-

cao sem perdas

O algoritmo MMP ira escolher os indices do dicionario para representarem a imagem
a ser codificada através de um algoritmo de otimizagao usando multiplicadores de
Lagrange, baseado num critério voraz. O critério é dito voraz uma vez que a decisao
de selecionar o melhor indice leva apenas em conta o bloco que esta sendo codificado
atualmente, e nao considera o efeito dessa codificacao para outros blocos que ainda
serao codificados. Como o dicionério usado para codificar a imagem vai crescendo
a medida que a imagem vai sendo codificada, diferentes valores vao sendo acrescen-
tados ao dicionario. Estes multiplos valores podem representar o mesmo elemento
da imagem de diversas formas diferentes. Ou seja, a base formada pelas palavras
presentes no dicionario do MMP sera uma base overcomplete [62).

Dessa forma podemos ter também diversas formas de alcangar o ponto de dis-
torcao zero. Nesta caso, o algoritmo de otimizacao foi modificado para também
levar em considerac¢ao a taxa necessaria para chegarmos no ponto de distor¢ao zero.
Seguindo um critério voraz, é escolhido a segmentacdo e os indices que levam a
codificacao zero, porém com a menor taxa possivel para o bloco. O algoritmo de
otimizacao ird procurar todas as combinagoes possiveis de palavras-codigos, flags de
segmentacao e modos de predicao que resultam em distor¢ao zero, e dentro destas

possibilidades, escolher a combinagao que necessita de menos bits.

4.2.1 Predicao em algoritmos sem perda

Uma técnica muito utilizada em compressao sem perdas ¢ o uso de um passo de
predicao antes do codificador entropico, com a finalidade de descorrelacionar as
amostras, e dessa forma codificar apenas um residuo da predic¢ao, contendo valores

provavelmente proximos de zero. Porém, vale ressaltar que esta técnica é empregada
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de forma eficiente em imagens com alta correlacao espacial, ou seja, imagens suaves,
porém nao consegue alcancar um bom desempenho para imagens compostas.

Os métodos de predi¢ao sem perdas, como o MED, o GAP ou o LSP, foram
utilizados em conjunto com o MMP (veja Apéndice @[), porém os melhores resultados
foram atingidos ao usarmos uma adaptacao para codificacao sem perdas do esquema
de predigao atual, baseado nos modos de predigdo do H.264/AVC Intra e no LSP
(ver detalhes no Capitulo [3). LEE et al. [63] descrevem a alteracdo dos modos de
predicao intra vertical e horizontal para codificacdo sem perdas, incorporada pelo
padrao H.264/AVC [64]. Analogamente, os modos de predicdo do MMP também

foram alterados para compressao sem perdas.

=
SN Y
Lo | L1 | T2 | XT3 | Ty Lo |T1|X2|X3| T4
(a) Compressao com perdas (b) Compressao sem perdas

Figura 4.1: Exemplo de alteragdo do modo de predi¢ao horizontal Intra para com-
pressao sem perdas. Enquanto que no caso com perdas, a predi¢ao usa sempre o
pixel reconstruido do bloco vizinho, no caso com perdas é usado para predi¢cdo o
pixel original mais préximo.

O método descrito usa para a predicao o pixel mais préximo do pixel a ser predito,
e nao a vizinhancga do bloco, que pode estar longe demais para pixels dentro do bloco.
A Figura [£.] ilustra o processo aplicado ao modo de predigao horizontal. A mesma
operacao é aplicada ao modo vertical, devido a sua semelhanca com o processo
de predicio DPCM (Differential Pulse Code Modulation), onde as diferengas sao
codificadas. O codificador MMP que usa os modos alterados serd chamado de MMP-
DPCM.

Os resultados apresentados em [64] mostram um ganho de desempenho na ca-
pacidade de compressao do codificador sem perdas quando alteramos os modos hori-
zontais e verticais, sem aumento significativo da complexidade. No caso do MMP, os
mesmos modos vertical e horizontal foram alterados de acordo. O mesmo principio
de usarmos os valores originais mais proximos foi aplicado ao modo LSP também. Ao
invés de usarmos os valores recentemente preditos para posicoes de dentro do bloco,
usamos os valores originais. Uma vez que teremos a reconstrugao perfeita dos pix-
els, tanto o codificador quanto o decodificador podem realizar o mesmo treinamento,
bastando apenas que o decodificador atualize os valores preditos com o residuo re-

cebido. Ou seja, é necessario o decodificador receber todos os residuos de um bloco,
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para a partir deles obter a predicao correta.

4.2.2 Restricao do histograma

Podemos refinar ainda mais a estimativa da probabilidade do erro de predicao se
condicionarmos esta probabilidade ao conhecimento da predi¢ao. Devido ao fato de
termos apenas 256 possiveis valores para uma imagem em tons de cinza com 8 bits
de profundidade, conhecida a predicao, sabemos que o residuo s6 pode estar numa
faixa que varia entre [—2pred, 255 — Tpred|. LOgo, se condicionarmos a probabilidade
do erro de predicao ao valor da predicao, iremos zerar os valores de residuo que sao
improvavéis. Assim podemos re-escalonar a probabilidade de ocorréncia do residuo
com um valor ligeiramente maior, levando em consideragao somente os possiveis
valores do residuo. A Figura mostra como fica a distribuicao de probabilidade
do residuo condicionada ao valor da predicao. Note porém que esta técnica é in-
compativel com o modo de predicado DPCM, pois para a restricdo do histograma
precisamos da predi¢ao para obter o residuo, enquanto que nos modos DPCM pre-
cisamos dos residuos para obter a predi¢cao. Detalhes de implementagao desta técnica
no codificador MMP se encontram no Apéndice [D]

Histograma ]

. Histograma com restrigao
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Figura 4.2: Restricao do histograma para o valor de predi¢ao xpreq = 100. O gréfico
ilustra um exemplo de distribuigao laplaciana, um modelo utilizado frequentemente
para modelar a distribuicao do residuo da predicao.

4.2.3 Remapeamento do erro de predicao

Uma imagem de 8 bits pode assumir 256 valores diferentes. A diferenca entre o
pixel real e a sua predigdo resultam valores que variam entre —255 e 255, neces-

sitando de 9 bits para serem representados. Porém como ja mencionado, uma vez
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conhecida a predicao, os possiveis valores de residuo se encontram no intervalo entre
[—Zpred; 255 — Tpred], que contém 256 valores, e podem ser representados com 8 bits.
Um procedimento comumente realizado por codificadores como o CALIC [65] e o
JPEG-LS [66] é o remapeamento do residuo. Uma revisao das diferentes fungoes de

remapeamento podem ser encontrados em [67].

P(z) P(x)

o0 ) ]
oo ) J

-100 0 100 200 -100 0 100 200
(a) Distribuicao tipica de uma image suave (b) Remapeamento para zpreq = 100
P(x) P(x)
A A
® ® ) J

Il el

T
-100 0 100 200 -100 0 10

(¢) Distribui¢ao tipica de uma image com- (d) Remapeamento para Zpreq = 50
posta

Figura 4.3: Exemplo de remapeamento do residuo para dois tipos de distribuigao.
Para areas suaves, onde o residuo de predicao tera uma caracteristica laplaciana,
como visto na Figura (a), o mapeamento nao ird alterar o comportamento da funcao
como mostra a Figura (b). J4 no caso de uma distribuigdo bimodal como o da
Figura (c), como é o caso de imagens compostas, o remapeamento ird atribuir altas
probabilidades para transi¢ao acentuadas, como se pode ver na Figura (d).

O remapeamento do sinal residual ird juntar as probabilidades periféricas com a
probabilidade central, como ¢ mostrado na Figura (mais detalhes se encontram
no Apéndice @ O comportamento da distribuicao residual, que possui valores altos
proximos de zero, nao sera afetado com o remapeamento. Este procedimento é espe-

cialmente adequado para imagens compostas, pois ira atribuir altas probabilidades
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para transi¢oes acentuadas. Detalhes de implementacao desta técnica no codificador
MMP se encontram no Apéndice [D]

4.2.4 Malha de realimentacao para o erro de predicao

Uma vez que o passo de predi¢do nao remove a redundancia estatistica da imagem
por completo, os residuos de predi¢ao ainda mantém uma correlagao espacial entre si.
Os valores dos residuos de posi¢oes vizinhas podem entao ser usados para melhorar
a predicao do pixel atual. Geralmente, a média dos residuos vizinhos é usada como
um fator de correcao do valor predito, e um contexto é utilizado para acelerar a
adaptacao do fator de correcao. Uma vez que o mesmo contexto volte a ocorrer, é
possivel reajustar o valor da predi¢ao através de uma malha de realimentacao, que
ird corrigir o valor predito retirando a média dos residuos passados, pertencentes ao
mesmo contexto. Esta técnica é aplicada em codificadores como o JPEG-LS [66]
e o CALIC [65], e foi também implementada para o MMP. O contexto usado no
caso do MMP foi a dimensao do bloco. Detalhes de implementacgao desta técnica no

codificador MMP se encontram no Apéndice [D]

4.3 Resultados experimentais
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Figura 4.4: Resultados para diversas técnicas de compressao sem perdas. As imagens
abrangem um espectro de imagens suaves e compostas, de diversos tamanhos. Os
resultados mostram a eficiéncia de compressao das propostas descritas, avaliados em
bits por pixel.

A Figura[4.4 mostra os resultados de compressao de diversas imagens usando as
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técnicas propostas anteriormente. Podemos notar que a predi¢ao é benéfica para
imagens suaves e para a imagem geradas por computador, e que a alteragdo nos mo-
dos de predi¢ao ainda proporcionou ganhos ao MMP, atingindo as maiores taxas de
compressao. Ja no caso de imagens compostas, o MMP sem o passo de predigao esta
entre os métodos que atingiu os melhores resultados. Porém os ganhos do método
com predicao foram maiores para as imagens suaves e computadorizadas, o que nos
levou a adotar os modos de predicado DPCM ao MMP, no lugar de outras técni-

cas de codificagao do residuo (note que os métodos mencionados sao mutuamente

exclusivos).
bpp
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Figura 4.5: Comparacao de resultados de compressao sem perdas para imagens
suaves.

As Figuras4.5e[4.6|comparam o resultado do MMP usando os modos de predicao
com a adaptacao DPCM para compressao sem perdas, com o JPEG-LS e o PNG.
O JPEG-LS é o padrao de compressao sem perdas para imagens suaves, enquanto
que o PNG, a semelhanca do MMP, também utiliza um dicionéario de padroes para
codificacao sem perdas. Note que o PNG apresenta bons resultados para imagens
compostas, porém nao consegue ser tao eficiente para imagens suaves. O contrario
acontece com o JPEG-LS. O MMP conjuga o melhor dos dois algoritmos, gerando
resultados competitivos para todos os tipos de imagens. Podemos entao concluir
que o método proposto de codificagdo sem perdas usando o MMP ¢é eficaz para o

uso com qualquer tipo de imagem, sem a necessidade de se alterar o algoritmo.
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Figura 4.6: Comparacao de resultados de compressao sem perdas para imagens
compostas e geradas por computador.

4.4 Conclusoes

Como vimos neste capitulo, o MMP-FP atuando na compressao de imagens sem
perdas com o esquema de predigago DPCM [64] foi o mais eficiente. Isto corrobora o
resultado tedrico obtido no Apéndice [D] que indica que o desempenho do algoritmo
deve melhorar se o passo de predi¢ao conseguir descorrelacionar os pixels da imagem.

No caso das imagens suaves, o MMP apresenta um desempenho mais eficiente do
que o apresentado por outros codificadores baseados em casamento de padroes, como
o formato PNG. Ao usar o passo de predi¢ao, o MMP consegue atingir taxas de com-
pressao maiores, especialmente quando os pixels tém uma alta correlagao espacial.
Ja no caso de imagens compostas, o passo de predi¢ao nao consegue descorrelacionar
os pixels vizinhos tao eficientemente como no caso das imagens suaves. Porém, a
otimizacao da predi¢cao em conjunto com a codificacao do residuo ira fazer com que
o algoritmo escolha modos de predigao simples (geralmente o modo MFV), que néao
irao modificar as caracteristicas da imagem, e os padroes recorrentes poderao ser
codificados de forma eficiente com o uso do dicionario.

Pelos resultados aqui apresentados, e também pelos resultados de codificacao
com perdas apresentados no Capitulo [3| podemos concluir que o MMP apresenta
resultados competitivos para a codificagao de qualquer tipo de imagem, em qualquer

taxa alvo desejada.
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Capitulo 5

Compressao multivistas usando o
MMP

5.1 O novo formato para imagens 3D: textura

com mapas de profundidade

E cada dia mais evidente que chegamos na era do 3D. Novos filmes em formato 3D
sao langados quase todas as semanas, novas televisoes, jogos portéteis (Nintendo
3DS), tablets ou celulares 3D-ready estao disponiveis nos mercados, os operadores
de televisao usam a sua infra-estrutura atual para transmitir video estereoscopico.
A difusao de meios de criagao, transmissao e consumo de material 3D, isto é, de
toda a cadeia de operagdo do 3D, vem fomentar o interesse nesta area [68].

Ainda existem diversos desafios a serem superados para a aceitacdo em massa
do 3D, nao s6 nos cinemas, mas também na casa do usuario. Atualmente, a visu-
alizagdo de contetiddo 3D é na maioria dos casos feita com auxilio de 6culos 3D. As
vistas estereoscopicas sao multiplexadas temporalmente, e os 6culos 3D permitem a
visualizacao de cada imagem apenas por um unico olho, proporcionando uma visao
binocular e criando a impressao de profundidade. No entanto, o efeito prolongado
do uso dos 6culos é causa comum de dores de cabeca e cansago. Porém, os monitores
auto-estereoscopicos oferecem uma solu¢ao para a visualizagdo de video 3D sem a
necessidade de oculos, com a multiplexacao espacial de diversas vistas e o uso de
lentes difusoras. O uso de multiplas vistas permite que o telespectador possa se
movimentar livremente e ainda assim continuar com a impressao de profundidade.
No entanto, ainda nao estd definido o nimero de vistas necessarias para o melhor
efeito 3D. Outro agravante é o fato dos produtores de conteiido nao estarem propen-
sos a aumentar ainda mais os custos de gravacao, para capturarem mais vistas.

Motivados pela crescente demanda deste setor, o MPEG esta finalizando a cri-

acao de um padrao para o novo formato de videos 3D, que é capaz de atender as
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necessidades tanto dos produtores de conteiido quanto dos fabricantes de monitores.
Com o auxilio de técnicas de visao computacional, o novo padrao sera capaz de,
com um numero reduzido de vistas, sintetizar a quantidade de vistas necessarias
ao telespectador, sem a necessidade de se capturar novas vistas. Dessa forma, a
producao de contetido 3D fica independente do seu modo de visualizacao, e o novo
padrao sera eficaz tanto para os produtores quanto para os consumidores [69]. Para
que o novo padrao seja ainda compativel com os padroes vigentes de multivistas [9)]
e video mais profundidade [70] [71], o formato previsto devera ser uma conjugagao
de multiplas vistas com seus respectivos mapas de profundidade, também conhecido
como multivistas mais profundidade. Uma revisao mais detalhada sobre a atividade
de padronizagao em torno do novo formato de video 3D pode ser encontrada no
Apéndice [E]

O uso de multiplas vistas acarreta um aumento significativo na quantidade de
dados para a codificacao. O padrao de codificacdo de multiplas vistas, o MVC,
explora a correlagao entre vistas, porém é conhecido que a sua taxa de compressao
resultante cresce linearmente com o ntimero de cameras [72]. Através de algoritmos
de sintese de video, podem-se gerar vistas intermediarias, com o auxilio das vistas
laterais e de seus respectivos mapas de profundidade. Os algoritmos de renderizacgao
de vistas virtuais usando a profundidade, também conhecidos como algoritmos DIBR
(Depth Image Based Rendering), aplicam os conceitos de geometria projetiva para
obter a textura de uma vista qualquer a partir das vistas adjacentes. Além disso, os
mapas de profundidade requerem menos bits para serem codifados, sendo portanto
uma solucdo eficiente para o problema critico de aumento de taxa em sistemas
multivistas.

Os mapas de profundidade sao imagens que tém caracteristicas bem distintas
de imagens de textura. Eles apresentam geralmente superficias suaves, sem textura
qualquer, com bordas bem definidas [73]. Além da sua construgao particular, os
efeitos dos artefatos introduzidos na codificagao sao diversos, e estao particularmente
relacionados com o software de sintese e de codificacdo usados no processo. Muitas
propostas para codificagdo de mapas de profundidade foram feitas, desde adaptagoes
de codificadores comuns [74H76] até a proposta de novos codificadores especificos
para mapas de profundidade [77H81]. No entanto, a maioria delas tém dificuldade
em preservar o elemento critico dos mapas de profundidade: as bordas bem definidas
dos objetos de uma cena. Os artefatos introduzidos em areas de borda, isto é, com
conteido de alta frequéncia, causa a mistura da textura de elementos no plano
fontral com a textura do plano de fundo da imagem. Isso acarreta uma diluicdo das
bordas dos objetos, e o aparecimento de pixels estranhos a textura de componentes
da imagem, vindos de outras regides da imagem [82].

Nas proximas segdes, vamos propor o uso do MMP como um codificador de
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mapas de profundidade. O MMP ja se mostrou eficaz para codificar imagens suaves
e compostas, e suas capacidades de adaptacao as caracteristicas da imagem podem
ser particularmente eficazes para a codificacdo de imagens com caracteristicas tao

especificas como os mapas de profundidade.

5.2 Usando o MMP para codificar mapas de pro-
fundidade

Como ja foi mencionado anteriormente, as imagens de profundidade apresentam
areas de baixa frequéncia sem textura alguma e bordas muito bem definidas, resul-
tante em areas de alta frequéncia. Essa é uma caracteristica vantajosa para o MMP,
que consegue aprender os poucos padroes rapidamente e codifica-los eficientemente.

O MMP apresenta caracteristicas semelhantes ao codificador de mapas de pro-
fundidade baseado em fungdes platelet apresentado em [78], conhecido como Platelet.
Assim como este codificador, o MMP também utiliza uma segmentagao flexivel para
codificar as bordas dos objetos por aproximagoes de blocos suaves. Porém ao apren-
der o novo padrao através da concatenacao dos padroes suaves utilizados, o MMP
é capaz de reutilizar esse padrao para codificar novas bordas, que venham a ocor-
rer durante a codificacao. Desta forma o MMP evita a nova custosa segmentagao
da imagem, e portanto ¢ mais eficiente que o Platelet, no sentido taxa-distorgao.
Outra vantagem do MMP em relacao ao Platelet é o fato do MMP poder ser usado
diretamente para a codificacao das vistas, o que nao é o caso quando falamos do
Platelet.

5.2.1 Avaliacao das vistas reconstruidas usando mapas de

disparidade codificados

Uma andalise objetiva da qualidade dos mapas de profundidade codificados deve ser
feita. Como os mapas nao serao visualizados, devemos ter cuidados ao utilizarmos
medidas comumente usadas em anélise de imagens suaves. Tais medidas podem nao
ser adequadas para avaliar os artefatos de codificagdo, uma vez que elas nao levam
em conta os efeitos dos artefatos no processo de sintese.

As Figuras e apresentam diversas medidas objetivas para avaliar mapas
de profundidade, desde valores comumente utilizados em analise de imagens, como o
PSNR, assim como medidas propostas em outras publicac¢oes relacionadas com a co-
dificacdo de mapas de profundidade, como a distancia de Hausdorff [78] (usada para
medir distor¢do entre estruturas mesh 3D) ou a percentagem de erros da imagem

[81]. Ainda sugerimos o uso do indice SSIM [83], que é uma medida qualitativa da
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Figura 5.1: PSNR e distancia de Hausdorff, medidas qualitativas para mapas de
profundidade da sequéncia Breakdancers, fornecidos pela Microsoft. O arranjo de
cameras para as sequéncias capturadas forma um meio arco e as cameras nao estao
alinhadas.
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Figura 5.2: Percentagem de erros e SSIM, medidas qualitativas para mapas de
profundidade da sequéncia Breakdancers, fornecidos pela Microsoft.
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imagem, baseada na preservacao da estrutura dos objetos da imagem. Em todas as
medidas podemos ver a clara vantagem de usarmos o MMP, especialmente em taxas
médias e altas. Para taxas baixas, o MMP nao consegue adaptar o seu dicionario
de maneira adequada, e apresenta problemas como um efeito de blocos demasiado.

Mais resultados se encontram no Apéndice

Reconstrucao de vistas usando textura codificada com o MMP

Apesar das medidas objetivas mostrarem a vantagem do uso do MMP, esta carac-
teristica fica clara quando apresentamos o PSNR das vistas reconstruidas utilizando
os mapas codificados, ao compararmos com a reconstrucao usando textura e mapas
de profundidade sem codificacao.

A preservacao das bordas gera imagens sintetizadas com maior qualidade ob-
jetiva e subjetiva. Ja& para taxas muito baixas, todas as propostas testadas nao
apresentam nenhuma solucao viavel para a reconstrucao de vistas, ja que todas
as vistas apresentavam artefatos inaceitaveis. A Figura mostra o desempenho
taxa-distorcao do MMP em duas situagoes: usando a textura original, ou usando
a textura codificada com o H.264/MVC. Em ambos os casos, o MMP apresentou
ganhos relativos aos outros codificadores testados, principalmente para taxas médias

e altas. Mais detalhes e resultados se encontram no Apéndice [F}

5.2.2 Restricao de bordas para codificagao de mapas de dis-

paridade

As bordas dos objetos presentes nos mapas de disparidade representam um desafio
para a codificacdo. A sua preservacao é fundamental para obtermos uma qualidade
final de vistas reconstruidas aceitavel. Diversas propostas foram feitas para a co-
dificacdo de mapas de profundidade com uma atencao diferenciada para as bordas
[76, 84, 85]. Aqui propomos uma alteragdo ao algoritmo do MMP para diminuir
a distorcao nessa regiao critica dos mapas de disparidade, que iremos denominar
MMP edge-aware. Adicionamos uma restricao ao algoritmo de otimizagao, onde
nao ¢ permitido o uso de palavras-cédigo que gerem uma distor¢ao maior que um
limar pré-definido, em regioes de borda marcadas por uma méascara. Mais detalhes
sobre o método se encontram no Apéndice

A Figura[5.4 mostra os resultados obtidos com a proposta. O algoritmo proposto
conseguiu eliminar em grande parte os artefatos da reconstrucao, devido a uma me-
lhor preservacao das bordas dos objetos. No entanto, o desempenho taxa-distorcao
do algoritmo nao foi satisfatorio, uma vez que o gasto com os bits para a codificagao
das bordas foi demasiado. Uma caracteristica interessante de se ressaltar nos resul-

tados ¢é o fato do algoritmo, em altas taxas, ter um comportamento semelhante ao
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(a) Vista reconstruida da sequéncia Ballet (Frame 0, Camera 4), usando
a textura sem codificacao
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(b) Vista reconstruida da sequéncia Book Arrival (Frame 0, camera 9),
usando a textura codificada com o H.264/MVC

Figura 5.3: Desempenho da vista reconstruida com mapas de profundidades codifica-
dos. O MMP proporciona ganhos objetivos e subjetivos (apresentados no Apéndice
, ao preservar a borda de mapas de profundidade codificados.
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(a) Méscara usada para detectar bordas dos objetos da vista 10 da se-
quéncia Book Arrival, Frame 0
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(b) Vista 9 reconstruida da sequéncia Book Arrival, Frame 0

Figura 5.4: Resultados do algoritmo MMP edge-aware para codificagao de mapas
de profundidade.

38



MMP original. Isso indica que o algoritmo original, uma vez que lhe seja garantido
taxa suficiente, é capaz de preservar as bordas dos objetos com alta fidelidae, uma

caracteristica desejada para codificacao de mapas de disparidade.

5.3 Usando o MMP para codificar conjuntamente

textura e mapas de profundidade

Como vimos nas sec¢oes anteriores, o MMP é muito eficiente para a codificagao dos
mapas de profundidade. Além da sintese, os mapas de profundidade podem também
ser usados para descorrelacionar multiplas vistas na etapa de codificagao da textura.
Dessa forma, é realizada uma codificagao conjunta de textura e profundidade. Algu-
mas propostas [86, 87] foram feitas para o uso de vistas projetadas com o auxilio dos
mapas de profundidade como predigao para a codificagdo de imagens multivistas.
Aqui também vamos propor uma solu¢ao conjunta de codificacdo, porém baseada

no algoritmo MMP.

5.3.1 Alocacao 6tima de bits entre textura e profundidade

De forma semelhante a abordagem realizada pelo grupo MPEG, determinamos a
relacdo Otima para o algoritmo MMP entre a taxa reservada para a codificagdo
da textura e dos mapas de profundidade. A nossa analise foi feita codificando as
vistas em separado e o resultado é uma relagao entre os fatores A do algoritmo de
otimizacao da textura e da profundidade. Essa relacao 6tima é entao usada para
avaliar o desempenho do codificador de multivistas e respectivas profundidades,
bem como compara-lo com outras propostas, como a referéncia do MPEG baseada
no padrao H.264/MVC. Os resultados se encontram no Apéndice [G]

5.3.2 Codificacao conjunta de vistas e mapas de disparidade

A proposta de codificacdo conjunta das multiplas texturas e respectivos mapas de
disparidade baseada no MMP é descrita da seguinte maneira. Uma tnica vista e
respectivo mapa de profundidade sao codificados com o A determinado pela alocagao
6tima de bits. Em seguida, com o auxilio dos parametros das cameras, a vista de
referéncia é projetada para a posi¢ao da vista auxiliar, e serd usada como predigao
para a codificacao da textura da vista auxiliar. Note-se que esta vista virtual podera
nao resultar no residuo minimo, uma vez que diversos artefatos provocados por areas
de oclusao, diferenca de iluminacao, entre outros contribuem para o descasamento

entre a vista projetada e a vista original.
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Para lidar com os problemas da sintese, usamos a vista projetada como mais
um possivel modo de predigao disponivel ao MMP. Portanto o MMP ¢é capaz de
alternar entre a vista projetada, ou os modos de predicao intra ja utilizados, e assim
contornar os problemas da reas de oclusao ou erros de sintese. A Figura[5.5 mostra
o desempenho do algoritmo proposto de codificacdo conjunta baseado no MMP. O
MMP supera em termos de qualidade objetiva o algoritmo usado como referéncia
pelo MPEG, o JMVC, em até 4 dB.

5.4 Conclusoes

O novo formato de imagens 3D apresenta muitos desafios. Entre eles, o uso do algo-
ritmo de sintese para a geragao de vistas virtuais, que apresenta diversos problemas
por resolver, e ainda devera ser aperfeicoado. O uso dos mapas de profundidade
proporciona uma independéncia entre producao e visualizacao de contetudos 3D,
sendo muito eficiente no que diz respeito a taxa necessaria para a sua codificagao.
No entanto, a sua caracteristica particular de mistura de areas com altas e baixas
frequéncias cria um desafio para os codificadores atuais.

Aqui apresentamos o MMP como uma alternativa para a codificacdo dos ma-
pas de profundidade e propomos uma solugao hibrida, usando o H.264/MVC para
a codificacdo das vistas e o MMP para a codificacdo dos mapas. Devido a sua
propriedade de preservacao das bordas, o MMP se mostrou particularmente eficaz
nesse cenario, permitindo um aumento no desempenho taxa-distorcao das vistas sin-
tetizadas, nomeadamente por diminuir artefatos nas bordas dos objetos. Além de
mostrar a eficicia do MMP, o resultado ressalta a importancia da preservagao das
bordas nos mapas de profundidade.

Como o MMP ¢ flexivel o suficiente para codificar textura e profundidade com
o mesmo algoritmo, e em diversas taxas desejadas, propomos uma solucao inteira-
mente baseada no MMP. Uma alocagao 6tima de taxa entre a textura e a profundi-
dade foi obtida e, em seguida, codificamos uma vista de referéncia e seu respectivo
mapa de profundidade. A vista entao foi projetada com o auxilio de um algoritmo
de sintese e adicionada ao loop de predicao como mais um possivel modo. Desta
maneira foi possivel melhorar o desempenho do MMP para a codificagao de multiplas
vistas, possibilitando a descorrelacao entre as vistas através da sintese. Os resul-
tados apresentados mostram o eficiente desempenho taxa-distor¢ao do algoritmo
proposto, gerando vistas reconstruidas superiores a vistas geradas com o codificador
de referéncia H.264/MVC. A extensao dos resultados de vistas para sequéncias de

video serd um topico de trabalho futuro.
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(b) Camera 38 reconstruida, da sequéncia Champagne Tower (Frame 0)

Figura 5.5: Comparagao entre o desempenho do codificador conjunto multivistas
e respectivas profundidades, baseado em MMP e baseado no padrao H.264/MVC,
usado como referéncia pelo MPEG.
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Capitulo 6

Conclusao

6.1 Conclusoes discutidas por contribuicao

6.1.1 Codificador de imagens com casamento de padroes

multiescala

As técnicas recentes introduzidas ao MMP permitiram que o algoritmo atingisse
um desempenho taxa-distorcao estado-da-arte para diversos tipos de imagens. No
entanto, mostra-se no Apéndice [B| que as novas técnicas que permitiram melhorar
o desempenho do MMP acarretaram, em sua grande maioria, num aumento signi-
ficativo da complexidade computacional. No Capitulo [2| propusemos o uso de um
critério de decisao para a escolha do modo de predi¢ao que fosse baseado apenas
na energia do bloco residual, e nao no seu custo de codificacao. Desta maneira,
foi possivel reduzir em até 80% o tempo de codificacao de uma imagem. No en-
tanto, perdas de até 0,25 dB para imagens suaves, ou ainda maiores para imagens
compostas, foram reportadas. Mesmo assim, o desempenho taxa-distorcao do MMP
ainda ficou superior ao desempenho de outros codificadores, como o H.264/AVC
Intra e o JPEG2000.

O problema da complexidade computacional para algoritmos que utilizam o
paradigma de casamento de padroes é recorrente, e sempre deve-se buscar um com-
promisso entre o desempenho taxa-distorcao e os ganhos computacionais. No en-
tanto, com o desenvolvimento de novos hardwares e placas graficas, o problema da
complexidade computacional perde cada vez mais a sua importancia. Esses novos
equipamentos possuem uma elevada capacidade de processamento, e estao prontos
para processar grandes quantidades de informagao. Para tal, usam miultiplos pro-
cessadores ou ainda placas dedicadas, baseadas também em computacao paralela,
como as GPU’s (Graphic Processing Unit). Um grande desafio para o MMP neste
momento é verificar as rotinas passiveis de paralelizagao e adaptar o algoritmo para

processamento paralelo.
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6.1.2 MMP utilizando predicao com critério de minimos

quadrados

Com o intuito de flexibilizar ainda mais o passo de predicao, adicionamos um modo
de predicao baseado no critério dos minimos quadrados. Este modo de predicao
foi primeiramente concebido para compressao sem perdas, e no Capitulo |3] uma
adaptacao nao-trivial do modo para predi¢cao de blocos no codificador MMP com
perdas foi proposta. O novo modo é adaptativo e, diferentemente dos modos de
predicao originais usados pelo MMP, é capaz de se adaptar a bordas de objetos
com qualquer dire¢ao e conseguir uma predicao de elementos da imagem com maior
fidelidade. Dessa forma, mostramos que o novo modo de predi¢do é eficaz para
imagens com contetudo de alta frequéncia e também é um dos modos mais usados por
imagens com este tipo de contetiido. No caso de imagens compostas, onde a predigao
nao consegue modelar corretamente o comportamento dos objetos, a adicao de mais
um modo de predi¢do nao veio afetar o desempenho taxa-distorcao. Portanto, o
novo modo de predicao adotado pelo MMP foi eficaz em aumentar o desempenho
taxa-distor¢ao para todos os tipos de imagens, com ganhos de até 1 dB para imagens
com muito conteudo de alta frequéncia.

O método, no entanto, acarreta num aumento da complexidade computacional
do algoritmo, nao s6 por testarmos mais um modo de predi¢cdo como pelo fato do
treinamento exigir uma inversao de matrizes. Técnicas de reducao da complexidade

do treinamento sao interessantes topicos para trabalhos futuros.

6.1.3 Compressao sem perdas usando o MMP

O uso do modo de predigao baseado no critério dos minimos quadrados foi o fator
motivante para usarmos o MMP para codificagdo de imagens sem perdas. Apesar
do MMP ser naturalmente capaz de codificar sem perdas, para tal tendo apenas que
ter um dicionario 1 x 1 completo, o seu desempenho para codificacao de imagens
sem perdas nunca havia sido analisado.

No Apéndice [D] foi derivado pela primeira vez um limite tedrico sobre o desem-
penho do MMP como um codificador sem perdas. Foi mostrado que o MMP ¢é capaz
de atingir a entropia de fontes sem memoria, ergodicas, geradas a partir de um alfa-
beto finito. Um ponto interessante da deducao é a evidéncia do passo de predigao, o
que nos levou a pesquisar solugoes para melhorar ainda mais os passos de predigao,
quando usamos o MMP para codificagao sem perdas.

No Capitulo [, adaptamos para o MMP diversas técnicas comumente usadas
em codificadores sem perdas, como alteragbes no modo de predicao para usarmos
sempre o vizinho mais préximo e o uso de contexto para a codificagdo do residuo de

predicao. Com os diversos testes realizados, mostrou-se que o mais eficaz é otimizar
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o passo de predi¢ao, uma vez que a codificagdo do residuo por casamento de padroes
multiescala usando um dicionério adaptativo ja era eficiente para a codificagao do
residuo. Em seguida, o desempenho do algoritmo MMP de codificagdo sem perdas
com as sugestoes de melhoria da predic¢ao foi comparado ao desempenho de diversos
codificadores considerados estado-da-arte para a codificagao sem perdas. Mostrou-se
que, no caso das imagens suaves, o MMP tem uma maior capacidade de compressao
do que a de codificadores baseados em casamento de padroes, como o formato PNG,
devido ao seu eficiente passo de predicao. Ja no caso de imagens compostas, onde
o passo de predicao nao ¢ eficaz, a otimizacao da predicao em conjunto com a

codificacao do residuo é responsavel pelo excelente desempenho do MMP.

6.1.4 Compressao multivistas usando o MMP

No Capitulo || mostramos que o MMP é uma eficiente ferramenta para a codificagao
de mapas de profundidade, devido a sua caracteristica de preservacao das bordas dos
objetos e elementos de alta frequéncia. Dessa forma, imagens sintetizadas com ma-
pas de profundidade codificados com o MMP apresentaram menos artefatos, sendo
objetivamente e subjetivamente superiores, no sentido taxa-distorcao, as imagens
onde o mapa de profundidade foi codificado com algoritmos baseados em trans-
formadas, como o H.264/AVC Intra ou ainda o H.264/MVC. No entanto, ainda
o desempenho taxa-distorcdo com o MMP, especialmente em baixas taxas, ficou
aquém do desejado.

Baseado nos resultados obtidos com o MMP e na importancia da codificagao das
bordas para o algoritmo de sintese, propomos uma modificagao no MMP para nao
permitir distor¢oes nas regioes identificadas como regioes de borda dos elementos
no plano frontal. Os resultados nao foram satisfatorios, por necessitarem de muitos
bits para a codificagao das bordas, mas mostraram uma propriedade interessante
do MMP, a capacidade de preservagao das bordas para taxas médias e altas, sem a
necessidade de alterar o algoritmo.

Devido a sua capacidade de codificar textura e profundidade em diversas taxas
possiveis com o mesmo algoritmo, propusemos uma soluc¢ao de codificagao de video
3D inteiramente baseada no MMP. Em primeiro lugar codificamos a textura e a
profundidade em separado, e a alocagao 6tima de taxa entre a textura e a profundi-
dade foi obtida. Em seguida propusemos uma arquitetura de codificacdo conjunta,
onde codificamos uma vista de referéncia e o seu respectivo mapa de profundidade.
Usando o algoritmo de sintese de vistas padrao do MPEG, a vista de referéncia é
projetada para a posicdo da vista auxiliar e usada como mais uma possibilidade
para o modo de predi¢cdo. Desta maneira o MMP se tornou mais eficiente para a

codificacao de miultiplas vistas, explorando a correlagao entre vistas para codificar a
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vista auxiliar. As vistas virtuais sintetizadas entre as vistas do par estéreo codificado
mostram o desempenho superior do MMP, contendo menos artefatos e com melhor
qualidade objetiva. Os resultados apresentados levaram em considera¢ao apenas um
unico quadro das sequéncias testadas e o algoritmo proposto serve apenas para a
codificacao de multiplas imagens, e nao sequéncias de video. Uma extensao natural
desta linha de pesquisa ¢ a incorporagao do video e a exploracao da redundancia

temporal em conjunto com a redundancia entre vistas.

6.2 Perspectivas futuras para o MMP e tépicos

em aberto

O MMP representa um paradigma alternativo de codificagdo e com constantes
evolugoes, o algoritmo foi capaz de atingir um desempenho taxa-distor¢ao ao nivel
do estado-da-arte para diversos tipos de imagens em diversas taxas possiveis. Porém,
sera que é mesmo necessario pesquisarmos um novo codificador de imagens ou sim-
plesmente deveriamos continuar a usar os algoritmos baseados em transformadas?
Com a evolugao tecnolégica e a ampla divulgagao de imagens e video digitais, o
usuario passou a ter cada vez mais acesso a contetudos codificados e, com o auxilio de
terminais com alta capacidade e desempenho, passou também a ser critico e a exigir
mais qualidade. Porque precisamos de mais informagao, mais imagens, em qualquer
hora e em qualquer lugar, os codificadores de imagem e video tém também que se
atualizar. Porém, o que antes parecia ser suficiente, hoje em dia podera nao servir
mais, e inclusive comprometer a funcionalidade de um sistema. O novo formato 3D
é um exemplo desta abordagem. Artefatos conhecidos, gerados por codificadores
baseados em transformada, que antes passavam desapercebidos, ao serem sujeitos a
um algoritmo de sintese podem gerar vistas com uma qualidade inaceitavel.
Portanto, o estudo de técnicas alternativas de codificacdo tem como objetivo
ver o problema através de outros olhos, e dessa forma poder contribuir, seja na
proposta de novas técnicas, ou até mesmo para a melhorias das técnicas vigentes. Os
resultados apresentados nesta tese sao um bom exemplo de como podemos encarar
um problema usando outro ponto de vista, e de como isso pode nos levar a contribuir
com novas técnicas ou exaltar caracteristicas distintas de um novo tipo de imagem.
No entanto, a complexidade computacional do MMP pode ser uma barreira para
o seu uso generalizado. Com as maquinas e técnicas atuais, o MMP ainda apre-
senta um desempenho computacional aquém do desejado. Porém, é certo também
que as maquinas estao mais velozes e que cada vez mais temos disponivel hardware
com mais capacidade de memoéria e de processamento. Dessa forma, é crucial que

sejam desenvolvidas técnicas para acelar o MMP, e um tépico em aberto é o desen-
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volvimento de hardware especifico para algoritmos de casamento de padroes, como
o MMP.

Por fim, acreditamos que o MMP podera ser uma alternativa viavel aos codifi-
cadores baseados em transformada, para a codificagdo de novas imagens, que mis-
turam contetidos como textura, objetos criados computacionalmente, textos infor-
mativos, informacao de profundidade, etc. A mistura de diversos tipos de conteido
com caracteristicas distintas é um grande desafio para codificadores baseados em
transformada, mas pode ser facilmente codificada com o MMP, que nao assume

qualquer caracteristica da fonte que esta codificando.
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Apéndice A

Introduction

A.1 Image compression using multiscale recur-

rent pattern matching

In the last couple of years, the image coding algorithm based on multiscale recurrent
pattern matching, the MMP (Multidimensional Multiscale Parser), has been the
main subject of several research projects [I3H16]. MMP’s universal characteristic
has enabled its use in several different areas, from lossy compression of compound
images [17], smooth images [I§], stereoscopic images [19] to ECG signals [20].

Regarding smooth image compression, MMP represents an alternative to the
well-accepted image coding paradigm: the use of transform-quantization-coding.
MMP innovative approach replaces the three mentioned operations, and opens the
path for a new way of thinking image compression. Some contributions have already
been done for smooth image compression using MMP [21], 22], which provided MMP
with a state-of-the-art rate-distortion performance, outperforming encoders such as
JPEG2000 [6] and H.264/AVC Intra [23].

A.2 Motivations

The latest developments of the MMP algorithm [21], 22] have come at a cost of in-
creased encoding time. MMP’s computational complexity has always been a concern
[21, [45], and with the development of any new technique that is incorporated to the
MMP algorithm, efforts to take the computational cost into consideration should
also be made.

Despite the increased complexity, rate-distortion gains were reported when a
more flexible segmentation technique [22] was introduced in the coding algorithm.
Therefore, adaptive coding techniques have the potential to increase MMP’s rate-

distortion efficiency. For example, methods for relaxing the rigid prediction direction
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are able to provide rate-distortion gains and should be investigated.

The evolution of computational power allows the use of more sophisticated tech-
niques for image compression. Also the wide availability and low-prices of storage,
as well as the emergence of high resolution 3D displays creates new demands for
image compression algorithms. What was previously accepted or even ignored, such
as coding artifacts caused by quantization, may now impair the acceptance of new
imaging systems.

The paradigm upon which MMP is based can provide new insights regarding
image compression, and has the potential to achieve significant improvements in
this area. With novel computational resources and new coding challenges, MMP
might become a viable solution for image compression.

The aim of this thesis is to use MMP as the selected algorithm for image com-
pression, and contribute with proposals for reducing the algorithm’s complexity,
enhancing its rate-distortion performance and also evaluating its use in new areas,

such as lossless compression and 3D multiview images.

A.3 Thesis outline

This thesis is organized as follows. Chapters [I] through [6] are written in Portuguese,
and provide an overview of the work done in the scope of this PhD. Thesis. All
the appendices are written in English, and provide comprehensive details about the
developed work.

Appendix [Bl starts with a review of the MMP algorithm and its evolutions. An
analysis of the algorithm coding cost is formally given, and a proposal for acceler-
ating the encoding process along with the obtained results are presented.

The theory of least-squares predictors is presented in Appendix [C] A new predic-
tion mode based on least-square minimization is proposed for the MMP framework.
Details on LSP block implementation and how this new prediction mode was incor-
porated into MMP are also given.

Appendix [D] deals with the usage of MMP as a lossless image encoder. For the
first time, a performance bound for MMP lossless compression is derived, showing
that MMP can asymptotically achieve the entropy rate of any stationary, ergodic,
memoryless source with finite alphabet, and providing insights on how to enhance
MMP lossless capability. Proposals for enhancing MMP’s prediction and residue
coding are presented, and the results are compared with selected state-of-the-art
lossless image encoders.

Due to the novelty of coding 3D images with corresponding depth maps, Ap-
pendix [E] provides an overview of the technologies present in the 3D chain of opera-

tion. The view synthesis process is detailed and the standardization activity on 3D
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is also reviewed.

Appendix [F] focus on coding the depth information of multiview images. It
presents the results of using MMP for coding depth maps, discussing metrics for
depth map evaluation. A proposal for mitigating rendering artifacts by improving
coding of depth map edges is also given.

Then, in Appendix [G] the independent coding of texture and depth map using
the MMP is investigated. The optimal bitrate allocation between texture and depth
maps is found, and the advantages of using MMP for coding mutliview+depth im-
ages are discussed. Also, an architecture of a 3D encoder based on MMP that jointly
encodes texture and depth is proposed, analyzing the advantage of using the warped
frame as prediction.

Finally, Appendix [H] concludes this work.

A.4 Thesis contributions

A.4.1 Lossy image coding

One of the first contributions of this thesis regards lossy image coding. A method
that reduced MMP’s encoding time by 7 times, modifying the criteria for rate-
distortion optimization was proposed, and then published in [25]. Next, a non-
trivial adaptation for block prediction using least-squares optimization criteria was
performed. The new prediction mode was then incorporated into the MMP predic-
tion loop, increasing its rate-distortion performance. These results were published
in [26] and [27].

A.4.2 Lossless image Coding

Since results for MMP acting as a lossless image encoder were never reported, this
area was also investigated in this thesis. A performance bound for lossless com-
pression was derived, showing that MMP algorithm can asymptotically achieve the
entropy rate of any stationary, ergodic, memoryless source with a finite alphabet.
This demonstration provided evidence on how to increase MMP’s lossless compres-
sion performance, and some techniques were incorporated into MMP. The results of

this research were submitted for publication in [2§].

A.4.3 3D image coding

Due to MMP’s flexibility, it was also applied for coding depth/disparity maps of
multiview images, and proved to be very effective because of its high frequency

preservation property. The first encoding results were published in [29]. Then in [30],
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a well-known DIBR (Depth Image Based Rendering) algorithm was used to evaluate
virtual views synthesized with uncoded texture data and coded depth data using
MMP. Objective and subjective results have shown the superiority of the algorithm.
It produced synthesized views with less artifacts, especially at object’s boundaries.
A technique to improve the coding of depth maps by differentially coding object’s
edges was then proposed. However, coding results showed that the best option is
to perform an optimal bitrate allocation between texture and depth maps, and to
just use MMP without any modification. In light of these results, we proposed an
architecture for multiview coding using depth maps coded with MMP and textures
coded with MMP using the warped view as prediction. Results showed that MMP
can outperform multiview encoders such as JMVC, also producing synthesized views
with better quality than other compared methods. The outcome of this research is

being prepared for publication [88].
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Apéndice B

Multidimensional multiscale

parser algorithm

SUMMARY: This appendiz starts with a review of the MMP algorithm and its evo-
lutions in Sections[B.1 and[B.3. In Section[B.3, an analysis of the algorithm coding
cost is formally given. A proposal for accelerating the encoding process along with
the obtained results is presented in Section[B.4] Section[B.J concludes this appendix
discussing future perspectives for MMP-based algorithms.

B.1 Multiscale recurrent pattern matching

Instead of the traditional transform-quantize-encode procedure, MMP-based en-
coders exploit a paradigm based on dictionary search and recurrent pattern match-
ing. This technique is suited for coding frequently recurring elements, where the
list of most used elements is kept in a dictionary structure, D = {C4, Cy,...,Cy}.
Once a codeword C; of the dictionary is found in the input signal, the dictionary
index ¢ is entropy encoded. Therefore, compression is achieved by attributing short
length codes to the index of frequently occurring codewords. Elements that do not
belong to the dictionary also do not have an associated index, so usually a escape
symbol is used and the new pattern is coded in a less efficient manner. Examples
of lossless compression using dictionary techniques are the Lempel-Ziv algorithms
[31H41]. For lossy coding, several algorithms were proposed [17, 42H44], and some
are known as lossy Lempel-Ziv algorithms. There is also an analogy between lossy
pattern matching algorithms and vector quantization [89].

In the above mentioned algorithms, pattern matching is done between blocks
of the same dimension. MMP proposes to waive this restriction by using blocks
with different dimensions for the matching operation, a concept also exploited by

fractal encoders [12]. A matching probability exists between blocks of different scale
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Figure B.1: Self similar portions of the Lena image, taken from [I2]. Part of her
shoulder is similar to the bigger overlapping block (notice the need for scale trans-
formation), and portion of the reflection of her hat in the mirror is also similar to a
smaller part of her hat.

due to the images’ self-similarity property, that is, parts of the images that are
approximately similar to each other, even at different scales. Figure highlights
self-similar parts of the Lena image. The concept of multiscale pattern matching is
illustrated in Figure [B.2] Notice that a scale transformation is necessary, in order
to do the matching between the input pattern and the codewords of the dictionary.

By using contractions and expansions of the dictionary codewords in pattern
matching, we increase the probability of finding a match, due to the fact that more
elements are tested. In [90], it is shown that multiscale pattern matching can outper-
form ordinary pattern matching, when used to lossy compress data from memoryless
Gaussian sources. Nevertheless, the increased number of elements still needs to be
efficiently encoded.

The MMP algorithm uses a block-based approach, dividing the image into non-
overlapping blocks, usually of size 16 x 16. Blocks are encoded in raster scan order,
and each block might be further segmented if no satisfactory match is found at that

scale. Block segmentation is signalled by a segmentation flag, that has a function
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Figure B.2: Example of multiscale pattern matching. Notice that the use of scale
transformation for each element C; of the dictionary D enables the matching between
the input block X and the corresponding codeword.

similar to an escape code. The input block will be divided, and the pattern matching
operation can be recursively done for each segment. This operation goes on, until a
satisfactory match is found for the segments, or the block can no longer be divided.
In this case, the pixel value will be used for entropy coding.

In earlier versions, the block segmentation consisted in dividing the block in a
quadtree structure [44]; later on, it was substituted by a dyadic segmentation [90],
where the segments are divided in halves, alternatively in the vertical and horizontal
directions. That is, a block of scale [, of dimensions (ZWTlJ , ZL%J), is segmented into
two blocks of dimensions (2!z) 2l%" ).

The resulting segmentation of the input block can be represented by a binary
segmentation tree, where the nodes of the tree indicate a block segmentation, and
the tree leaves represent the sub-blocks. On Figure , an example of the dyadic
block segmentation is depicted, and Figure(B.3(b)|, shows its associated segmentation
tree. The tree’s nodes represent a block segmentation, and can be indicated on the
bitstream by a '0’ flag. The tree’s leaves represent no segmentation of the block,
and can also be signalized by a "1’ flag followed by the dictionary index. The only
exception is the 1 x 1 block, that cannot be further divided, and therefore it does
not need any type of segmentation flag. For example, the MMP bitstream for the
block presented in Figure would be 0,0,1,i3,0,0,%19,%20,1,%10, 1,72, where
13,119,120,210,%2 are the indexes of the chosen codeword for each leaf node. Notice that
no segmentation flag was sent for blocks 19 and 20, since their dimensions are 1 x 1,

and they can no longer be segmented.
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Figure B.3: Example of dyadic block segmentation used by the MMP encoder and
corresponding segmentation tree

Decoding the MMP bitstream is relatively simple. According to the received
segmentation flags, the decoder will generate a segmentation tree similar to the one
used by the encoder (and depicted in Figure . Once the segmentation tree is
restored, the indexes are replaced with the respective codewords of the dictionary.
Notice that there is no floating-point operation involved in the decoding process.
Therefore, the decoder has low complexity and is appropriate for asymmetric appli-
cations.

The dictionary is then updated with the recently encoded patterns, inspired
on the works of Lempel and Ziv [31], as shown in Figure [B.4 Once the block is
segmented, the dictionary indexes used to approximate each part of the block are
concatenated and this new pattern is added to the dictionary. Also contractions and
expansions of it are added to the dictionary, improving the dictionary adaptation.
Note that by using recently encoded patterns, the dictionary adapts to the image
statistics and no previous assumption is needed for its encoding.

The elements of the output bitstream are encoded using a context-based adaptive
arithmetic encoder. The context used for the elements is the corresponding level
in the segmentation tree, that is, the block’s dimension. This information does not
need to be explicitly sent to the decoder, since both encoder and decoder replicate
the same segmentation structure. The use of the level information enhances the

performance of the arithmetic encoder, since blocks of different sizes tend to have
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Figure B.4: The dictionary is updated with recently encoded patterns, that are
concatenated and added also to different scales via scale transformation.

different probabilities of being segmented.

One way to help the adaptive arithmetic coder to reach the entropy of the dic-
tionaries’” indexes in a much faster way is to use the segmentation tree level of the
blocks, that originated the codeword as a context for the adaptive arithmetic en-
coder [2I]. This is similar to divide the dictionary in segments, where each segment
only has elements that were formed by a block originally from a certain level lgic seg-
Each dictionary element is then encoded by this level information and the codeword
index within this level. By separating the statistics of the codewords based on the
level of origin, we allow a faster adaptation. This is so because the probabilities
of each level of origin can be very different and thus the entropy for the dictionary
segment may achieve values lower than [log,(Np)| (where Np is the number of
partitions) in the encoding of just few codewords.

In order to encode a block, one can choose many different combinations of seg-
mentation flags and dictionary indexes. Coding decisions are made based on a
Lagrangian cost optimization algorithm. One way to achieve a performance point
on the convex hull of the operational rate-distortion curve is to use the segmen-
tation tree structure with associated Lagrangian cost, and perform a minimization
procedure similar to the one described in [91].

For each node of the segmentation tree, we associate a distortion given by

D(X!,C}) = > _(X'(z,y) - Ci(z,y)) (B.1)

x7y
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where X! is the segment of scale [ of the original block and C! is the codeword

chosen to represent that segment. The associated rate is given by
R(C!) = —log,(Pr(i[level)) (B.2)

and it is dependent of the probability of the i-th codeword, Pr(|level), conditioned
to the knowledge of the block level. The Lagrangian cost of a node n' is then given
by

J(n') = D(X', CY + AR(C)). (B.3)

According to the node scale [, it can be further segmented, so the Lagrangian
cost of each branch of this node (n}™!,n5™') will be calculated. The tree will be
segmented at the node if the sum of nodes’ costs added to A times the rate spent to

send the segmentation flag is lower than the original Lagrangian cost, that is,
J(n') > T + T ) + ARy (B.4)

where R, is the rate necessary for transmitting the segmentation flag.

In this sense, the optimization function will actually test the full segmentation of
the block and prune the nodes until the minimum cost in an RD sense is found [90].
This greedy procedure finds the minimum coding cost if the blocks are independent.
However, due to the dictionary updating procedure, the encoding choices of a block
affects the Lagrangian cost of future blocks. In [92], a rate-distortion optimization
proposal was made, referred to as MMP-RDI, where the dictionary update proce-
dure is taken into consideration when evaluating the coding cost. To this end, a
“draft” dictionary was conceived, in order to estimate the rate necessary to send a
codeword taking into consideration the new inserted codewords obtained from cod-
ing previous segments of the block. Marginal gains were reported at the cost of a
higher computational complexity. More information about the MMP algorithm and
considerations on its RD optimization can also be found in [90].

One of the main advantage of MMP encoders is their “universal" character.
MMP can be efficiently used for a wide range of data signals, from voice and ECG
[20), 145, [46] to stereoscopic images [19], still images |21}, 90] and video [47-50].

In [17], it is presented results for MMP encoding of digital images that included
images resulted from scanned documents or from computer graphics, usually pre-
senting text and graphics (also referred to as compound images). For this sort of
input, the MMP algorithm presented better results than most state-of-the-art en-
coders, such as JPEG2000 [6] or H.264/AVC Intra mode [51, 52]. Nevertheless, a
gap still existed for smooth images. Some proposals aiming to bridge this gap have

been proposed. In [93] and [53], a continuity criteria between blocks is included
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Figure B.5: Brief description of the MMP algorithm in pseudo-code.

in the pattern matching procedure, giving rise to the MMP-APM (Adaptive Prob-
ability Model, [53, 93]) algorithm. It improved MMP’s rate-distortion performance
for smooth image coding, but still did not reach the rate-distortion performance
presented by the state-of-the-art image encoder H.264/AVC Intra. Prediction was
then added to the MMP framework in [54], enhancing its results for smooth images,
and providing state-of-the-art rate-distortion performance.

A general pseudo-code of the MMP algorithm is provided in Figure[B.5 A more
detailed description can be found in Appendix [l This technique will be the base of
all algorithms developed in this thesis, so it will be explained with further details in

the next section.

B.2 MMP-Intra

Prediction was first used in an MMP framework in [94]. Based on the intra-
prediction used in the H.264/AVC standard [51], the first prediction-based algo-
rithm, the PC-MMP algorithm, used block prediction as the first encoding step,
followed by the residual block being coded with a regular MMP algorithm. For this
algorithm, prediction was applied only for a fixed blocks size of 16 x 16 (see Figure
B3a).

MMP-Intra or MMP-I [15] 2], [54], was the next prediction-based proposal. Simi-
lar to the H.264/AVC standard [§], it used adaptive block size prediction, with blocks
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Figure B.6: Here we see two possible prediction usages. Either the whole block is
predicted with one prediction mode (Fixed Block Size), or hierarchical prediction is
applied (where the block and the prediction are both segmented)

of dimensions 16x16 down to 4x4 (see Figure [B.6(b)). In order to implement this

segmentation, the segmentation could assume three distinct values:
e The whole block is segmented (prediction and residue);

e Only the residue block is segmented, the prediction is not segmented. Notice
that if the prediction mode hasn’t been sent before, it will be sent after this

flag;

e No block segmentation. Analogous to the previous case, if the prediction mode
has not been sent yet, it will be inserted in the bitstream after this flag. In
this case, also the codeword index will be sent. It is important to notice that a
block that is not further segmented should be entirely contained in a prediction

window, and a prediction window may contain more than one block.

The prediction modes used by the MMP-I algorithm are shown in Figure [B.7]
Due to the scanning order of the MMP algorithm’s segment coding (top to bottom
and left to right), the left and upper block neighbors are most of the times available.
However, for modes that use the up-right neighborhood (for example, the diagonal
mode), pixels not available are substituted by the closest available neighbor. MMP-I
also uses the most frequent value (MFV) among neighboring pixels for the prediction,
instead of the DC mode [2I]. The MFV mode will choose one value that already
exists in the picture’s histogram, instead of using an average value that might not
even exist in the image. Experiments have shown that for text and graphic images,
the use of the MF'V enhances the overall coding efficiency, and for smooth images
this alternative mode has no effect on the performance [21].

When prediction is successful, it generates residue signals that have a distri-

bution function concentrated in a reduced set of values around zero. The residue
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Figure B.7: Prediction modes used in MMP-INTRA algorithm.
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Figure B.8: Histogram plot for: a) original Lena Image; and for the prediction
residues obtained from coding the Lena image with MMP-Intra with the following

compression rates: b) 0.1 bpp; ¢) 0.5 bpp e d) 1.25 bpp.

statistical distribution is similar to a Generalized Gaussian distribution, and as it

was demonstrated in [I5], this distribution is favorable for the MMP residue encod-

ing. This is so because more regular patterns are generated and the probability of

using patterns already present in the dictionary increases. Figure [B.§] shows the

statistical distribution of Lena’s residue coding. Notice that the use of prediction

concentrates the values around zero, as desired. Also, as the bitrate increases, more

modes are used and the prediction is enhanced, resulting in a better decorrelation,

noticeable in the high-peaked distributions at higher bitrates.
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The prediction mode is chosen based on the Lagrangian R-D cost function that
determines the best trade-off between the prediction accuracy and the additional
overhead introduced by the prediction data. For each prediction mode, the residue
is encoded with the usual MMP encoder, and the cost of encoding that specific
residue is added with the cost for sending the prediction mode is evaluated for all
available modes, choosing the mode with the smallest cost.

Notice that the prediction step dramatically increases MMP’s computational
complexity, since the dictionary search has to be made for each mode, in order
to determine the residue coding cost. A more detailed analysis on the prediction
complexity burden, and also a proposal for reducing this computational cost, will
be done in Section [B.3l

B.2.1 MMP-II

A key factor for the performance of a pattern matching algorithm is the dictionary
adaptation process. For a given stationary ergodic source, the performance of a
pattern matching algorithm approaches the entropy of the source, given an infinite
sequence [61]. But, for image encoding, we are far away from these conditions, so
we have to employ techniques for a faster dictionary adaptation. A study on several
techniques to enhance dictionary adaptation, and their use on MMP was made in
[21]. The following techniques were introduced in the MMP-I algorithm, leading to
the creation of the MMP-II algorithm [I5] 211, O5].

Dictionary Redundancy Control: The introduction of new patterns will in-
crease the dictionary approximation strength, but may also increase the num-
ber of bits necessary to encode an index of the dictionary. An approach to
control the insertion of new elements in the dictionary is based on a distor-
tion level. Once a codeword is present in the dictionary, dependent on the
target distortion level for encoding, there is no need to insert any more new
patterns similar to those patterns represented by that codeword, since in a
rate-distortion sense the codeword on the dictionary is already a good enough
approximation for the block to be encoded. This concept is illustrated in Fig-
ure The relationship between the minimum distance between codewords
in the dictionary (also named minimum radius distortion) and the target rate-
distortion point was heuristically determined. This rule can be found in [21]

and is reproduced here for completeness.

5, if A<15;
d(\) =410, if 15 < A <50; (B.5)

20, otherwise.
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Figure B.9: Dictionary redundancy control technique. New patterns that fall into
the multidimensional area defined by the parameter d will not be inserted into the
dictionary.

Scale Restriction: Another technique to reduce the number of new elements that
will be inserted in the dictionary is the restriction of scales, into which the new
block will be introduced. Scale transformation between too far apart scales
may destroy the blocks’ structure, and be of no use for the image encoding.
A parameter was added to the file header that indicates how many scales will

be updated every time a new codeword is added to the dictionary.

Geometric transforms: In order to increase the dictionary adaptation, the en-
coder needs to introduce more useful patterns in the dictionary. One proposal
for a faster dictionary growth is by adding not only the concatenated patterns
and their scale-transformed relatives, but also to add blocks generated from
geometric transforms, like rotated or symmetric blocks, and also displaced
blocks. The use of this sort of blocks can be signalled in the header of the file,

and improves lossy rate-distortion performance, as indicated in [19] 21].

Norm equalization of scaled blocks: In [2I], a norm-equalization for upscaled
transformed blocks was also proposed. Based on the theory of vector quanti-
zation for Generalized Gaussian sources [96, O7], the norm L® of the residues
modeled by a Generalized Gaussian of shape « will be constant. A norm equal-
ization factor is used for scale transforms that increase the block dimension,
such that the L* norm of such blocks inserted in the dictionary is constant.
The norm L' was used, as it resulted in the best compromise for all images

and also had the advantage of being a simple implementation.

The techniques described in [21I], not only enhance the rate-distortion perfor-
mance, because of the reduction of the dictionaries indexes’ entropy, but they also
have a beneficial side-effect of reducing computational cost. Like Vector Quantiza-

tion schemes, MMP’s major computational burden rely on the dictionary search and
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any technique that reduces the number of elements in the dictionary will also reduce
the encoding time. Moreover, some measures were taken in MMP-II to reduce the
search time, such as early elimination of codewords by means of norm comparison
[98].

In MMP’s scheme, scale transforms add-up to the computational complexity,
since scale transformation needs to be performed for each codeword comparison. In
order to reduce encoding time, a multiple-codebook scheme was used, where several
dictionaries with patterns from the same scale (D™") were stored instead of just one
dictionary with patterns from different scales. By doing this, the transform operation
is avoided during the dictionary search, being used only when adding a new pattern
to the different dictionaries. Other operations can leverage on the same memory
allocation concept, and use previously defined vectors in lookup tables to replace
operations like logarithm and ssd (sum of squared differences). The use of lookup
tables increases memory requirements; however these are tolerable in a standard
personal computer (PC) based implementation. The initial block size was also taken
into consideration. An analysis made in [21] showed that for low compression ratios,
a significant reduction in computational cost was achieved, without any degradation
in rate-distortion performance, by changing the initial block size from 16 x 16 to

8 x &.

B.2.2 MMP-FP

One of MMP’s main characteristic is its adaptive behavior. Nevertheless, MMP-II
algorithm still have two rigid aspects in its encoding procedure: the prediction modes
and the block segmentation. For the MMP-II encoder, a block is first segmented
in the vertical direction, then in the horizontal direction. Results presented in [16]
showed that rate-distortion gains could be achieved for some images, if the order of
segmentation was inverted. So a new algorithm was conceived, where the segmen-
tation direction is explicitly sent to the decoder, namely the MMP-FP algorithm
(Flexible Partition, [22]).

The rigid dyadic block partitioning scheme previously used was relaxed, and now
the block can be segmented in the vertical or horizontal directions, according to the
best RD compromise. An additional flag is sent to indicate the direction of the
segmentation. By doing this, the optimization algorithm now has to consider 25
possible segmentation patterns for a 16 x 16 block (eg. 16 x 1 or 2 x 8). Figure[B.10]
shows the possible block sizes.

The Lagrangian optimization algorithm was also modified in the MMP-FP, in or-
der to choose the best segmentation option. The chosen segmentation orientation is

the one that minimizes the Lagrangian cost (more details can be found in Appendix
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Figure B.10: Possible block sizes for the MMP-FP algorithm.

). With more options for the block segmentation, computational complexity has
also increased, because the algorithm must test several segmentation possibilities
along with different prediction schemes for each block size.

Figure[B.11|shows the effect of flexible segmentation. With the new segmentation
scheme, thin blocks with a dominant orientation can be found, such as the horizontal
blocks at Lena’s lips. The new segmentation scheme allows prediction to choose
thinner block segments. Neighbors that are closer to the position to be predicted
are usually similar, due to the smoothness property of the image. By using thinner
blocks, closer reconstructed values can be used for prediction, instead of far away
pixels. By looking again at Lena’s lips, we can notice that the horizontal orientation
is then in accordance to the object’s structure main orientation. Gains reported in

[22] show the benefits of flexible segmentation, especially for middle to high rates.
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(b) Flexible Segmentation

Figure B.11: Flexible block segmentation for the Lena image. The block orientation
is similar to the object’s orientation in the image, such as the blocks around the lips
and at Lena’s hair.

B.3 MMP computational complexity analysis

Up to now, the focus of research on the MMP algorithm was improving the algo-
rithm’s rate-distortion performance, and little attention has been devoted to the
algorithm’s complexity. Since MMP-based encoders use an approximate pattern
matching scheme, they have a complexity similar to that of standard Vector Quan-
tization methods, that is traditionally higher than transform-based encoders. In ad-
dition, most of the improvements that lead to higher gains (new possible partitions,
increased dictionary cardinality, etc. [21], 22]) also incurred in higher computational
demands.

The biggest computational burden of the MMP algorithm relies on the estima-
tion of the codeword index, similar to the search operation in a vector quantization
operation. In [45], the number of multiplications required by the MMP algorithm
was derived, based on a dyadic segmentation used by the R-D optimization algo-
rithm. That is, when using dyadic segmentation, the full search VQ is performed
log, (V) + 1 times for each block of size N = 16 x 16. For the flexible segmentation
scheme, the number of times the index search optimization is done is increased.
Prediction also contributes to the repetition of the index search operation. Next,
we determine the number of times the full search VQ operation is carried, in order

to determine the computational complexity of the MMP-FP encoder.
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Figure B.12: Flexible block segmentation. The algorithm will inspect both segmen-
tations possibilities, horizontal or vertical block division.

B.3.1 Formal derivation of MMP-FP’s computational com-
plexity

Here we will review the formal derivation for the computational complexity of the
original MMP algorithm, as done in [45]. In a similar fashion, we will determine the
computational complexity of the algorithm with flexible segmentation, and show the
increase in computational complexity that incurs from adding the flexible segmenta-
tion. Still using the flexible segmentation, we will formally derive the computational
complexity for the algorithm with hierarchical prediction, providing evidence on the
increase of complexity achieved with the latest developments.

The computational complexity of an MMP-based algorithm required to find the
best match is closely related to the number of searches the algorithm needs to
perform. This operation is similar to a full search vector quantization, and its
complexity is given by (2™ x 2")S, where (2™,2") is the block dimension, and S is
the number of elements from the dictionary. For the MMP algorithm with dyadic
block segmentation (see Figure [B.12(a)), defining the computational complexity by
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the order of multiplications for coding one block, similar to [45], we obtain
Cyump(2™,2") = (2™ x 2") x S x (m+n+1) (B.6)

The proof of equation can be done by induction. The formula holds for
blocks of size (1 x 1), since the elements of the dictionary will be tested only once,
that is

Cp(2,2°) = (22x 29 x S x (0+0+1)
= S (B.7)

Using the inductive hypothesis, the formula holds for blocks of dimension (2™,2").
Blocks of dimension (2™*1,2") need to perform one vector search for the block with-
out segmentation, then the block is divided horizontally. The total computational
complexity of the block is the sum of the complexity for the block and its two

offsprings after block segmentation. The complexity is then given by

Caep (2711, 27) =

XSx(m+1+n+1) (B.8)

The induction for the other coordinate is entirely analogous.

For the MMP algorithm with flexible block segmentation (MMP-FP, see Figure
, both segmentations options are evaluated at each level, which increases
the number of searches performed by the algorithm. The computational complexity
for coding one block is then given by

max(mn) i /.
Cump—rp(27,2") = >0 > (j) X (2™ x 2") x S x f(i,]) (B.9)

i=0 ;=0

where the function f is given by

1 ifm—(i—j)>0andn—7>0,
HE )= ' = (B.10)

0 otherwise ,
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Table B.1: Computational complexity for a block, given its size, for the MMP and
the MMP-FP algorithms, considering only one element in the dictionary.

Block Size 1x1 2x1 1x2 2x2 4x1 1x4 4%x2 2x4 4x4

MMP 1 2 NA 3 NA NA 4 NA 5
MMP-FP 1 3 3 13 7 7 41 41 165

The formula clearly holds for a 1 x 1 block, since

max(0,0) 4
Cymp_rp(2°,2°) = Z Z() 2" x 2%) x S x £(0,0) (B.11)

=0 7=0 M

=1
= S

Analogous to the deduction done for the dyadic block segmentation, we will also
prove the computational complexity formula by induction. Assuming the formula
holds for blocks of dimension (27,2"). Blocks of dimension (2™*1, 2") need to per-
form one vector search for the block without segmentation, then horizontal and
vertical segmentation is tested. The total computational complexity of the block is
the sum of the complexity for the block, the complexity for its two offsprings after
horizontal block segmentation and the complexity for its two offsprings after vertical

block segmentation. The complexity is then given by

QMMP_FP(Qm-H, 2”) = <2m+1 X 2”) X S + 2 X QMMP—FP(2m7 2”)
+2 X Cypp_pp (27, 277
= (2™ x2S

(E gl

=0 7=0

max(m+1,n—1) 4
o (TR (e s i)

= (@ x 28
max(m,n) ; .
+ > Z()Qm“xQ”)xSxf(i,j)
=0 j=0
max(m+1,n— 7

+ Z Z() (2mT % 2") x S x f(i,§)

mln)@

_ Z Z() (27 % 2 x S x £(i, j)

Again, the induction for the other coordinate is entirely analogous.
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Table B.2: Number of calls of the function that performs the search for the best
codeword, taken from the MMP, MMP-FP and MMP-FP-+INTRA. Notice that code
optimization was implemented in the MMP-FP and MMP-FP+INTRA algorithms,
therefore resulting in less calls than calculated by Equations or [B.12]

Block Size 1x1 2x2 4x4 8x8 16x16
MMP 1 3 5 7 9
MMP-FP 1 8 48 224 960
MMP-FP+INTRA 9 28 500 7604 112340

Table gives a numerical example of the computational complexity. Notice
that, just by relaxing the dyadic block division, we have increased the computational
complexity tremendously. It is important to stress that the value obtained with
Equation is a pessimistic one, and does not reflect the common block sizes as
in Figure B.10] Since the successive segmentations result in blocks with similar
dimensions, complexity cost savings can be achieved by storing the best codeword
per block dimension and reusing this result, once the codeword search for a block
dimensions occurs again. Nevertheless, this incurs in higher memory requirements
for the encoder as well.

If prediction is performed, and the residual block is encoded with dictionary
codewords, the saving time due to the best codewords reuse cannot be used between
predictions residues, since for each prediction the residue might be different. Thus,
in case we have M prediction modes, and considering only prediction at the high-
est block dimension, the computational complexity from Equation would then

become

max(m,n) i

Cuur_rp (272 =M xS % (;) X (2™ x 2 x S x f(i,5)  (B.12)
=0 j=0

If we consider hierarchical prediction, for each block dimension, all the prediction
modes will be tested. Then the block is divided horizontally and again all the predic-
tion modes will be tested for each one of the two segments. The block is also divided
vertically, and the same optimization procedure is done for each half. The formal
derivation for the complexity of the hierarchical prediction will not be provided.
However, Table shows some representative values of the computational com-
plexity of the MMP algorithm, if we consider the use of the 9 prediction modes from
H.264/AVC with hierarchical prediction and flexible segmentation. This measured
values were taken from the MMP software with some implementation optimization,
such as the storage of best values for reuse in recurrent block sizes. Even with the

computational advantages, the computational complexity increase is noticeable.
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B.4 MMP-FAST

The use of prediction does not impose a severe additional computational cost, since it
implies only few extra additions. Nevertheless, the choice of the best prediction mode
is made comparing the cost of encoding the residue obtained after each prediction,
which means that the encoding process has to be repeated M times, one for each
prediction mode. This drastically increases the computational cost in the case of
MMP-FP prediction. This is so because, besides it being done hierarchically, the
number of possible segmentations is greatly increased.

In transform-based methods that use prediction, a common approach towards
reducing the computational cost is by selecting only a few modes according to certain
criteria, like the gradient method proposed in [55]; however in the MMP framework
this would still not avoid the repeated dictionary search for determining the residue’s
cost of the remaining prediction modes. For each remaining prediction mode, the
costly dictionary search would still need to be performed, in order to determine the
prediction mode with the lowest coding cost.

One way to avoid the calculation of the cost of encoding the residue of each pre-
diction is to use a different criterion for selecting the best prediction mode. For our
fast implementation, we decided to use the residue’s energy, instead of the residue’s
coding cost, choosing the mode that results in the minimum energy. Residues with
lower energy tend to be smoother, avoiding block segmentation and reducing bitrate,
since less dictionary indexes are sent. Notice that not necessarily residues with the
minimum energy will also have the lowest coding cost, since the coding cost depends
on the patterns present in the dictionary. If we already have a high energy residue
pattern in the dictionary, it could be more efficiently coded, since only one index
would be sent and block segmentation would be avoided. However, choosing a lower
energy pattern for the prediction’s residue may result in a residual pattern that is
not present in the dictionary. That would eventually lead to block segmentation and
more indexes would be sent, possibly reducing MMP’s rate-distortion performance.

With this simple algorithm modification, we avoid several dictionary searches,
resulting in a significant reduction in computational complexity, although at a cost
in the coding performance, as will be shown in Section

B.4.1 Experimental results

The original algorithm and the fast implementation were both tested under the same
conditions. Gray scale smooth and compound images were used in the simulation,

and they can be found in Appendix [K]

Figures [B.13(a)| and [B.13(b)| show the rate-distortion performance for smooth

images, while Figures|B.14(a)|and |B.14(b)| show the rate-distortion performance for
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Table B.3: Percentage of time saved with the new FAST algorithm.

Rate 0.4 bpp 0.7 bpp 1.1 bpp

gold 87% 88% 85%
lena 86% 85% 81%
ppl205  87% 81% 84%
ppl209  86% 86% 82%

compound images. A small decrease in PSNR sense of about 0.2 dB can be seen in
all available bit rates for smooth images. In the case of compound images, the rate-
distortion penalty is higher, achieving a loss of 1 dB for the text only PP1205 image,
and 0.4 dB for the compound image PP1209. Since the algorithm assumes smooth-
ness of the residues for choosing the best prediction, higher losses are expected in
images where smoothness criteria do not apply, such as compound images. Nev-
ertheless, for all tested images MMP-FAST still outperforms the encoders used for
comparison.

Despite the losses in rate-distortion performance, we have observed a consider-
able gain in encoding time. Figures|B.13(c)| |B.13(d)} [B.14(c)| and |B.14(d)| show a

significant reduction in encoding time for all bitrates. Table [B.3|shows the encoding

time saved with the new decision criterion, reducing it in some cases more than
seven times.

Table [B.4] shows details of encoding image CAMERAMAN with A = 5, that
is, low distortion at the cost of a high rate. Notice that there has been a signifi-
cant decrease in encoding time for the FAST version, and that also this algorithm
produces a prediction with higher quality. Since the choice of prediction modes is
based now on the distortion of the prediction result only, and not on the residue’s
coding cost, there is an increased tendency to use distortion modes that provide
smaller residue. However, this does not translate to a more efficient coding. Instead
of using high-energy codewords and avoiding segmentation, prediction will induce
segmentation and the use of low-energy codewords. Therefore, more bits need to
be spent in segmenting the block, and also for sending the dictionary’s codeword
indexes, as can be seen on the last three lines of Table [B.4]

One of the beneficial side-effects of the FAST algorithm is that the final dic-
tionary size is smaller, which leads to computational gains. Since the prediction
favors the use of residues with smaller energy, the dictionary will be populated with
patterns that have a similar characteristic. This constrained set of patterns is usu-
ally smaller than residue patterns that may appear in the image if the usual MMP
algorithm is used. In figure B.15] the growth of all the dictionaries used by MMP is
shown, when encoding CAMERAMEN image with high quality. Smaller dictionary
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Figure B.13: Experimental results for images LENA and GOLD.
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Figure B.14: Experimental results for images PP1205 and PP1209.
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Table B.4: Simulation details for CAMERAMAN (A = 5), running in an Intel(R)
Xeon(R) CPU X5355 @ 2.66GHz, dual processor, each one with four cores, with
8GB RAM. For H.264/AVC and JPEG2000, time for encoding the same image is
0.232 and 0.04 seconds, respectively.

coding parameters MMP MMP-FAST
total rate 3.769 bpp 3.941 bpp
PSNR 42.369 dB 42.174 dB
PSNR (Prediction) 22.153 dB 23.769 dB
Times 6739.770 s 979.640 s
% rate with dictionary indexes 77.1% 78.6%
% rate with prediction mode 6.4% 4.5%
% rate with segmentation flags 16.5% 17.9%
Imagem Cameraman - Dictionary Size Growth - Slow Imagem Cameraman - Dictionary Size Growth - FAST
60000 ‘ ‘ 60000 ‘ ‘
1x1 4x8 1x1 4x8
1x2 8x4 1x2 8x4
1x4 16x1 1x4 16x1
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Figure B.15: Dictionary growth for CAMERAMAN image, using A = 5.

also implies in lower matching probability. Therefore, MMP-FAST will have to seg-
ment the image more often, in order to improve prediction and use the patterns that
are in the dictionary, spending more bits with the segmentation and the dictionary

indexes, as shown also in Table B.4]

B.5 Conclusions

The MMP algorithm has shown great potential for image encoding and the latest de-
velopments have provided MMP with a state-of-the-art rate-distortion performance
for compound and smooth images. Nevertheless, these developments have focused
only on enhancing the algorithm’s performance and computational complexity has
not been taken into consideration.

With the proposed fast implementation, we showed that we can significantly

reduce the computational complexity and still profit from the good performance of
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the MMP algorithm. There are several other techniques, such as dictionary clean-up
approaches and fast search methods, which can also be incorporated into the MMP
framework. One promising area for encoding time reduction is the use of parallel
processing and GPUs (Graphic Processing Unit). However, still a great effort in
research needs to be done, in order to determine which routines in MMP are critical
and can be parallelized.

One feature that provided enhancement in MMP’s rate-distortion performance is
the modification of the algorithm, in order to make it more adaptive, like for example
the flexible segmentation scheme. One element of the MMP-FP algorithm that is
still rigid is the prediction mode. The 9 prediction modes use a fixed neighborhood
weighting function, and cannot adapt its prediction structure to variations inside
the block. In Appendix [C] we propose to add an adaptive prediction mode, in order

to enhance MMP’s performance even further.
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Apéndice C
Least-squares prediction in MMP

SUMMARY: This appendix starts presenting the theory of least-square predictors in
Section[C. 1l A new prediction mode based on least-square minimization is proposed
for the MMP framework. Details on LSP block implementation and how this new
prediction mode was incorporated into MMP are given in Sections [C- 4 and [C-3,
respectively. Results are presented in Section and Section [C.5 concludes this

topic along with some remarks.

C.1 Image modeling

Image modeling is the analytical representation of an image’s intensity distribution
and can be categorized into probabilistic or deterministic modeling. In probabilistic
models, each image is treated as the realization of an event taken from a source,
that is governed by some pre-defined probabilistic law, such as multivariate Gaussian
models or discrete Markov Random Fields (MRF, [99]). For deterministic models,
the image is considered as a two-dimensional data matrix, or simply a set of discrete
samples that were taken from a continuous 2D function. Examples of global image
representation models include deterministic 2D sinusoidal models, polynomial mod-
els [100] and AM-FM models [I0I]. Local model examples are 2D causal models
[102] and the non-symmetric half plane (NSHP) models [103].

In [56], an efficient image model is characterized by being able to capture funda-
mental features of a natural image, such as edges. For example, H.264/AVC Intra
prediction modes explicitly model the image formation process by using neighboring
pixels considering 9 different directions for block prediction. If the neighbors used
for prediction contain edge pixels, then the edge can be extended inside the block
in any of the chosen directions. Nevertheless, such image model is still not capable
of handling arbitrarily-oriented edges.

For efficient edge representation, the image model has to take into consideration

two fundamental features of an edge:
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1. sharp transitions of the image intensity field occur across the edge orientation;
2. the image intensity is almost homogenous along the edge orientation.

For digital images both properties hold, and are called “geometric constraints of
edges” [50]. The first property is related to the sharpness of an image, an important
visual feature. The second property indicates that estimations should be done along
the edge orientation. Therefore, adaptation to an arbitrarily-oriented edge is a very
desirable property for an image model. Next a technique based on Least-Square
minimization for image prediction is presented. This technique has been successfully

applied for lossless image compression [60] and video compression [104], [105].

C.1.1 Least-squares predictors

The Least-Squares Prediction (LSP) method determines each prediction pixel by
adaptively filtering a selected neighborhood. The set of filter coefficients are de-
termined based on training over a window containing reconstructed data [60]. The
coefficients are selected according to an Nth order Markovian model, and often the
nearest pixels are used. Lets define an indicator function g(n), which provides the
coordinate of a pixel indexed by n in the image. Then, the prediction can be de-

scribed with the following equation

X(g(n)) = >_aiX(g(n — i) (C.1)

where g(n) is the position to be predicted using N neighbors at positions g(n — i),
and a; are the weighting factors of each i-th position. Notice that the positions
indicated by the function g(n — i) are usually neighboring positions of the pixel to
be predicted, as shown in Figure [C.I] and are also known as region of support of the
predictor or the predictor mask [102].

The coefficients used in LSP prediction are locally optimized using a causal
training window in a least-square sense, also known as analysis frame. According
to [56], a convenient choice of a training window is the double-rectangular window
that contains M = 2T(T + 1) elements (see Figure [C.1). The training sequence can
be arranged in a M x 1 column vector y = [X(g(n —1))...X(g(n — M))]". With

the prediction neighbors we form an M x N matrix

X(gn—1-1)) ... X(gln—1-N))
C= : : (C.2)
X(g(n— M —1)) ... X(g(n—M—N))

The coefficients can be determined by LS optimization, minimizing the Mean
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Figure C.1: Selected neighborhood for LSP prediction and training window. The
pixels used for prediction and training are located in the causal part of the image,
considering a raster scanning order. Therefore, reconstructed values are used, and
precisely the same training can be done both in the encoder and in the decoder side.

Square Error (MSE) of the prediction coefficients in the training area M, that is

N

1 -N

min(MSE) = min 200 - Z (X(g(n —k)) -

n—k))CM

a; X(g(n — Z')))

(C.3)
where # (M) denotes the number of elements in the set M. Equation can also

be stated in matrix notation

i=k—1

min {||y — Call|5} (C4)
A well-known closed form solution for this problem is [106]:
a=(C'C)"(Cly) (C.5)

Least-squares estimation of 1D signals as well as fast implementations can be
found in [57]. In [58], several fast implementations for mean-square optimization,
such as Singular Value Decomposition (SVD) or LU decomposition are presented in
standard C code. LSP is well suited for predicting arbitrarily oriented edges, due
to its edge-directed property [60], where the edge pixels play a dominant role in the

LS optimization process.

Edge directed property

Pixels inside the training window can be classified into edge pixels (pixels that belong
to an edge) or non-edge pixels (pixels from smooth areas). In case the training area

contains only non-edge pixels, the matrix C' will be singular, and an infinite number
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Figure C.2: Edge directed property. This example shows how LSP is capable of
determining the best neighbors combination, that is, the optimal coefficents value
a(1) and a(2), according to the edge present in the training area.

of solutions for the predictor’s coefficients are possible. For such case, the set of
solutions can be found in the hyperplane =%, a(i) = 1, and the solution a(i) = 1/N
can be chosen with no performance loss. If the training window has enough edge
pixels, then matrix C' will be non-singular and only one possible solution exists. In
this case, LS prediction will successfully identify the edge direction and also correctly
predict the new pixel.

The optimal solution will correctly determine the coefficients values, without the
need to explicitly determine the edge’s orientation. The following simple example
illustrates the edge directed property of the LSP solution. Figure shows the
pixel to be estimated, which is situated in a part of an image with only two pixel
values, p and q.

The pixel to be predicted, X(g(n)), is found along a sharp vertical edge (|p —
g| >> 0). For simplicity, a second-order predictor will be considered (N = 2),
and the training window has only 12 elements (7' = 2). According to the chosen
predictor, the estimated value will be an weighted average of the left and upper
neighbor, in this case X(g(n)) = a(1)X(g(n—1)) +a(2)X(g(n —2)) = a(1)p+a(2)q.

The following matrices are obtained:

pp N
: p
P p :
c=|P 1 y = (C.6)
P q q
q q :
_q_12><1
_q q_12><2
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The optimal solution will then be given by:

a = (C'C)(C)

- )

replacing o = 8p? + 4¢2,8 = 6p? + 2pq + 4¢* and v = 6p? + 642,

)| _ & am| |8
a(2) = )
[v8—8
_ ay—[3?
cwﬂz]
Lay—p32

6p® + 2pq + 4q>
6p* + 6¢°

8p? + 4¢° 6p% + 2pq + 4¢>

C7
6p* + 2pq + 4¢° 6p* + 6¢° (G-7)

[0
— 1] (C.8)

which shows that the optimal solution is aligned with the upper neighbor, corre-
sponding to the vertical edge orientation. A similar closed-form solution can be
found for horizontal edges. Experiments in [60] show that LSP predictors are able

to adapt to edges with arbitrary orientation.

Filtering interpretation

The same results can be derived from traditional linear prediction theory [57, 102,
107]. The LSP problem can be stated as a linear relationship between two stochastic
process X (k) and X (k), and the linear model is also referred to as Wiener Filter.
The estimation of the present realization of a process is a filtered version of N past
samples, that is, the output of an N-th order FIR filter (see Figure[C.3). Therefore,

X(k) = >~ aiX(k — i) (C.9)

where a; are known as the Wiener filter coefficients.

The filter coefficients can be obtained by minimizing an objective function, given
by the mean square error &(k) = E[e2(k)] = E[(X (k) — X (k))?], where the error is
defined by the difference between the actual pixel value X (k) and the value obtained
after filtering, in vector notation X (k) = a” (k)X (k). A reasonable consideration
for the image’s local characteristics is to consider the image formation model as
a stationary Gaussian source. In this case, the MMSE prediction for a stationary

Gaussian process can be determined by the second-order statistics (that is, the
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Figure C.3: Wiener filter structure. The input source X (k) is considered an stochas-
tic process, where the k-th realization is linearly related to the N-past realizations.
The error between estimation X (k) and the present value X (k) is used to tune the
filter coefficients.

process’ covariance matrix), and is given by
a=Ry7x (C.10)

However, the image source often violates the assumption of stationary Gaussian
process and the statistics of the image formation vary inside an image from region to
region. A practical solution for the non-stationarity behavior is to instantaneously
estimate the local statistics (¥x, Rxx) inside a localized window M. In this sense,
the statistics can be calculated as

1 . 1 .
RXX = MCTC, rx = MCTy (Cl].)

By substituting Equation in Equation [C.10, we obtain again Equation [C.5
More details on Wiener Filter and filter theory can be found in [57] and [107].

C.2 Block implementation of LSP predictor

In [59], a block prediction formulation using LSP was proposed. In its lossy approach
only a set of previously decoded pixels, on the top and to the left of the current

block, are used as the neighborhood for predicting all the pixels inside the block.
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Figure C.4: LSP block prediction implementation. The thick lines indicate block
boundaries, and the gray pixels are positions where the reconstructed pixel value is
available. The black dot corresponds to the pixel to be predicted. Notice that the
neighbor to the left belongs to the same block where prediction is being applied. In
this case, the value used for this pixel will be the predicted value from previous LSP
adaptation, and not the reconstructed value.

This is so even for pixels that are far away from these prediction borders, what
decreases prediction effectiveness.

The above restriction on the neighborhood is used due to the fact that, since the
encoding is block-based, when encoding all the pixels in a block only pixels from the
previous block are available for use in the predictor. In our approach, we decided to
waive such a restriction. The closest neighbors in a pixel-by-pixel basis are always
chosen, even for positions that have not been previously decoded. In such cases, we
replace the unavailable reconstructed pixel value by its predicted value, previously
determined with LSP. Figure shows the neighborhood chosen for prediction,
and Figure [C.4(b)|illustrates the pixels that will be selected for training.

A limiting factor of the proposed method is that it performs the training using
pixels that are to the right of the predicted position, as shown in Figures [C.4]
However, for block prediction, these pixels may not be available for training, since
some of them may belong to a block that still needs to be encoded. Therefore, for

such elements we replace the training window and the available neighborhood by
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Figure C.5: LSP block prediction implementation for causal areas. Here, some pixels
to the right have not been reconstructed or predicted, since they belong to a block
that is still going to be coded. Therefore, training window and predictor support
area are changed in order to use only pixels that have either been reconstructed or
predicted.

one that has only causal elements. Figure shows the modified training window
and the neighborhood used in such cases; notice that elements on the right are not
used for prediction. It is important to note that in both cases (Figures and
, we still need to use the predicted pixels instead of the decoded pixels in order
to predict pixels inside a block.

On the image’s borders, where there are no available pixels for LSP to perform
the training (leftmost and uppermost blocks), the LSP mode is deactivated, and
only the H.264/AVC based prediction modes can be used.

C.3 Incorporating LSP predictor into the MMP

encoder

The first step was to optimize the parameters of the LSP predictor, that is, to
choose the optimal predictor order (N) and the optimal training window (7', as seen
in Figure . Experiments were conducted with several images, and Figure
show results obtained for one of the tested images (CAMERAMAN).

The predictor support area has to be large enough in order to successfully cap-
ture the image characteristics. Figure compares models with different order,
showing their rate-distortion performance. In order to fully exploit the prediction
capability of the LSP mode, a model order equal to N = 10 was chosen. After
choosing the predictor order, the optimal training window size was determined. Ac-

cording to empirical studies conducted in [60] and as can be seen in Figure [C.6(b)],
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Figure C.6: LSP parameter optimization. The MMP encoder uses only the LSP
prediction, and the rate-distortion performance for several target rates is obtained
while varying the LSP parameters. First, the predictor order was optimized based
on the rate-distortion performance. Then with the chosen neighborhood size, the
best training window size was determined.

windows larger than T = 7 do not further improve the prediction performance.
Therefore, the rest of the results presented here will use a predictor model order of
N =10 and a training window size set to T' = 7.

Since the MMP-FP algorithm already uses prediction in its block encoding loop,
the new prediction mode can either replace all the 9 available modes, or it can be
added to existing H.264/AVC intra prediction modes, the choice among them being
made through rate-distortion optimization. Both scenarios were tested, and the
results can be seen in Figure [C.7 Due to its causal training window, LSP might
not be able to capture the image local statistics, which may impair the predictor’s
performance. However, when LSP is added to the prediction modes set, gains of
up to 0.25 dB are achieved for cameraman image. Notice that no extra overhead
is needed for signaling the coefficients, since the decoder simply repeats the same
training process, using the reconstructed data.

The residue’s distribution can be effectively related to a generalized Gaussian
distribution [21], described by two parameters: « (shape parameter, describes the
decaying rate of the distribution) and [ (scale parameter, describes the standard
deviation of the distribution). Known distributions such as uniform, Gaussian or
Laplacian distributions can be described by generalized Gaussian with a = oo,
a = 2 and o = 1, respectively. In the case of the Barbara image, the parameters
for the residue’s distribution, using only the regular H.264/AVC prediction modes,
are a = 0.6890 and # = 17.3640. The effectiveness of adding LSP mode can be
measured by the new GG parameters of the residue distribution, using LSP and the
H.264/AVC intra modes. For the Barbara image the parameters assume the new

values a = 0.6777 and = 13.5646, resulting in a more peaked function with less
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Figure C.7: Results for LSP prediction with optimal parameters (T=7,N=10), for
CAMERAMAN image. The LSP prediction alone presents limitations due to the
causal training. However, adding the LSP prediction mode to the predictors set
increases the rate-distortion performance of MMP.
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Figure C.8: Residue probability distribution for the Barbara image. Notice that the
use of LSP reduces the distribution variance and increases the central peak, that
is, prediction results in more values around zero, increasing encoding rate-distortion
efficiency.
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deviation, as shown in Figure [C.§

As in most pattern-matching based encoders, such as VQ, MMP’s complexity
is mainly affected by the search of each optimum index. Therefore, the impact
of prediction process on the complexity of MMP-FP is negligible. However, when
using LSP prediction a matrix inversion operation needs to be performed for each
pixel, which has a non-negligible impact on the computational complexity. Fast
implementations of LSP have been proposed [60]; however, since the main focus
here is the algorithm’s compression performance, fast implementations will be left
out of the scope of this work. Also, the results were produced without the fast
version of the algorithm, proposed in Appendix [B] since the main objective here is

to evaluate the rate-distortion performance, and not the computational complexity.

C.4 Experimental results for MMP-LSP

The main motivation for using LSP was to improve the efficiency of the MMP
encoder for smooth, textured images, without degrading its performance for non-
smooth images. In this section we present some experimental results that justify
the use of LSP as an additional prediction mode in MMP-FP. Results of two state-
of-the-art image encoding algorithms, JPEG2000 [6] and H.264/AVC High profile

intra encoder [51], are also presented.

The RD curves for different test images are shown in Figures [C.9(a)} (C.9(b)|
|C.10(a)| and [C.10(b). One may notice that the gain achieved by LSP prediction

depends on the input image. For smooth images with complex texture, like Barbara,

gains up to 1.2 dB are achieved, while for other pictures, like Lena, they amount to
about 0.25dB. We can also notice that the performance increase is higher for middle
to high rates. Since LSP is strongly dependent on the training accuracy, it performs
better for those rates, due to the fact that the pixels used in the optimization process
are more accurate. In all cases we may observe the PSNR advantage of MMP over
the transform-based state-of-the-art methods, JPEG2000 and H.264/AVC.

For text and compound images, like images PP1205 and PP1209, the edges
have very steep variations and occur very often, making it difficult for LSP (or
any other prediction method) to “learn” an edge from the training window data.

Nevertheless, adding the extra prediction mode did not affect the algorithm’s rate-

distortion performance, as we can see in Figures|C.10(a){and [C.10(b)l There are no

notable differences between the MMP curves with or without the LSP prediction
mode.

Figure shows the usage of the available prediction modes in the encoding of
the Barbara image, for the original MMP-FP and MMP-FP with LSP, while Figure

shows a similar evaluation for the Lena image. For Barbara image, one may
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Figure C.9: Rate distortion curves for smooth images.

observe the high adoption of the LSP mode in comparison with the other modes
(more than 50%). For images that do not present so many high frequency areas,
such as the Lena image, the LSP prediction is used less often. Nevertheless, LSP is
still one the most used prediction modes, as seen in Figure [C.12]

For the Barbara image, the LSP mode was chosen mainly in areas with strong
edges, specially in the woman’s clothes, as depicted in Figure[C.I3] In such areas, the
presence of strong edges in the training window contribute for the correct prediction

of the pixel during the LS optimization process.
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Figure C.10: Rate distortion curves for compound images.

Figures [C.14(a)| to [C.14(d )| show regions with high frequency detail of the coded
Barbara image. Ringing artifacts of the JPEG encoder affect the high frequency
pattern. In the case of H.264/AVC encoder and MMP-FP, the prediction modes

used cannot correctly capture the orientation of the edge, and artifacts at block

boundaries are noticeable. The best outcome is the image coded using the LSP
predictor, that is able to successfully adapt to the edge’s orientation and reproduce
the edge with higher fidelity.

For the Lena image, the LSP prediction mode is adopted at edge areas, for
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Figure C.11: Percentages of choice for each prediction mode for image Barbara.
When using the LSP mode, the use of the other modes is noticeably reduced.
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Figure C.12: Percentages of choice for each prediction mode for image Lena. Since
Lena image has more smooth areas, the LSP is not adopted as often as it was for
the Barbara image. Nevertheless, it is still one of the most adopted modes, and a
noticeable reduction on the direction modes can be seen.
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example at diagonal pattern at Lena’s hat and at the feathers of her hat, as seen in
Figure LSP is more efficient than the H.264/AVC directional modes at some

edge areas, when the training sequence is correlated to the edge to be predicted.

C.5 Conclusions

In this appendix we proposed an image encoding algorithm where least-squares pre-
diction is used in a multiscale recurrent pattern image encoding framework. The
addition of a LSP prediction mode can successfully estimate local texture features
using linear prediction coefficients, derived on the fly. Due to this fact, LSP predic-
tion mode tends to be predominant over the other ones. The LSP mode is usually
chosen to predict the edges, and in images with large areas of high frequency content
benefit from this adaptive prediction mode. This yields in some cases gains of more
than 1 dB in the range of middle to high rates.

Besides increasing the encoding performance for smooth images, MMP with LSP
prediction presented no rate-distortion performance losses for text and compound
images. The proposed method outperforms state-of-the-art, transform-based com-
pression algorithms for all image types, from smooth to text and compound images.

LSP has shown to be able to increase MMP’s RD performance. Therefore, its
was incorporated into MMP prediction modes set, and will be used for the rest of
this thesis. Topics for future works include alternative methods for fast coefficient

estimation such as Recursive Least Square (RLS).
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(b) Prediction Frame wusing H.264/AVC  (c¢) Prediction Frame using H.264/AVC
modes only modes and LSP

Figure C.13: Barbara LSP prediction.The brighter blocks are in areas where the
LSP mode were used. In Figures [C.13(b)] and [C.13(c)| the resulting prediction
frame can be seen. The resulting rate for the compressed image was 0.947 bpp with
final quality of 38.387 dB. The PSNR value of the prediction frame compared to
image to be encoded is 26.816 dB.
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(¢) MMP-FP - 32.048 dB (d) MMP-FP with LSP - 32.612 dB

Figure C.14: Detail of Barbara image coded at 0.5 bpp. The detail comprises part
of the cloth at the woman’s shoulder, where a high frequency pattern can be found.
The diagonal pattern of the cloth is better preserved with the LSP prediction scheme.
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(b) Prediction Frame using H.264/AVC  (c¢) Prediction Frame using H.264/AVC
modes only modes and LSP

Figure C.15: Lena LSP prediction. The brigther blocks are in areas where the
LSP mode were used. Figures and shows the resulting prediction
frames. The resulting rate for the compressed image was 0.454 bpp with final quality
of 37.215 dB. The PSNR value of the prediction frame compared to image to be
encoded is 28.999 dB.
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Apéndice D

Lossless image compression using
MMP

SUMMARY: This appendiz deals with the usage of MMP as a lossless image en-
coder. Section [D.Z reviews some of the state-of-the-art algorithms used for lossless
image compression. Results for selected lossless coding algorithms are given in Sec-
tion [D.5. In Section a performance bound for MMP lossless compression is
derived, showing that the MMP can asymptotically achieve the entropy rate of any
stationary, ergodic, memoryless source with finite alphabet. Section [D.5 proposes
the adaptation of several well-known typical lossless coding techniques into MMP’s
framework. Proposals for enhancing MMP’s prediction and residue coding are pre-
sented, and the results are compared with state-of-the-art lossless image encoders.

Section [D.G draws some conclusions for this topic.

D.1 Lossless compression

Lossless compression is mainly used in applications where compression artifacts are
unacceptable, as, for example, in the case of medical imaging, preservation of artwork
or satellite images [108]. Several algorithms were developed taking into consideration
the available resources and the final compression performance, like the JPEG-LS
standard [66] and many others [108, 109]. With the increase in computational
power and improved quality of terminals, together with the decrease in prices and
the evolution of editing softwares, it makes sense to reevaluate the role of lossless
coding, and once again consider its application in a broader scenario.

Most lossless algorithms compress an image using two independent steps [110]:
image modeling and image coding. The image modeling process can be regarded as
an inductive inference problem, where one needs to find an appropriate model class,

model order and model parameters to suitably represent the data. If the model is
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successful in guessing the next pixel’s value, then the residual information will have
a skewed probability distribution centered at zero, and can be effectively compressed
in the coding step.

For the coding step variable-length codes such as Huffman code, Rice codes or
Arithmetic codes are usually used [108]. For such algorithms, codewords with high
probability are represented with fewer bits, improving compression results from
highly peaked probability distributions, such as the ones obtained from the pre-
diction residues. For efficient implementation, some algorithms assume a distinct
probability distribution, such as an Exponential or Generalized Gaussian distribu-
tion. Examples of lossless image encoders that use such models for their residue’s
statistics are JPEG-LS [66] and MRP [IT1] algorithms. However, compression ef-
ficiency decreases when the model does not fit the actual probability distribution,
which can occur if the prediction fails and residues have many values distant from
Zero.

One way to avoid assuming a specific model for the sources’ statistics is to use
adaptive methods based on pattern matching. Pattern matching algorithms rely
on the fact that sequences tend to occur repeatedly on the source to be encoded,
and thus the source may be efficiently compressed by detecting and encoding these
repeated patterns using fewer bits. This can be accomplished by using dictionary
entries for the occurring patterns, and adapting the dictionary codewords as the
source is encoded. Investigating the paradigm posed by pattern matching algorithms
may result in a higher coding efficiency than the ones achieved now. Besides that,
dictionary techniques already possess a good rate-distortion performance for non-
smooth images, such as images with text and graphics.

Early versions of pattern matching lossless encoding algorithms were presented
by Lempel and Ziv [31] and focused on text encoding, dealing with 1D data. Its
evolution involved better dictionary updating techniques [37, B8]. There are also
implementations focused on the application of approximate pattern matching for
lossy encoding, also known as Lossy-Lempel-Ziv algorithms [42, [43, 112]. Other
examples of pattern matching-based algorithms are the Grammar Codes [I13] and
the deflate compression algorithm used in the PNG file format [114].

D.2 Reviews of state-of-the-art lossless compres-

sion algorithms

In this section we will review some of the techniques used for well-known lossless
image compression algorithms, for both stages: the image modeling and image cod-

ing. Some of the techniques were later adapted to the MMP algorithm, and will
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Figure D.1: Block diagram of JPEG-LS algorithm, taken from [66].

be explained in the next section. More details on lossless coding algorithm can be
found in the literature [108, 115, 116] or in a survey done in the scope of this thesis,
that is available online [117].

JPEG-LS: Also known as LOCO-I (LOw COmplexity LOssless COmpression for
Images, [66]), JPEG-LS is a lossless image encoder based on a simple fixed

context model followed by an adaptively chosen Golomb-type entropy encoder.

Coding of the pixels can be done in two modes, a run mode, for image regions
that have little variation, and a regular mode. The image local gradient (g, =
d—b, go = b—cand g3 = c— b, represented by the “Gradient” block in Figure

D.1|) will determine the encoding mode.

For the run mode, used in flat regions, blocks of data with equal value are
coded with a run-length encoder (see “Run Counter” and “Run Coder” blocks
in Figure [D.1)). The runs are coded with an adaptive Golomb code.

For the regular mode, each pixel is predicted and the residue is entropy encoded
also with a Golomb code. Prediction in JPEG-LS is constituted by a fixed
part (depicted in Figure as the “Fixed Predictor” block), together with an
adaptive part (depicted in Figure as the “Adaptive Correction” block).

The fixed part performs a primitive test to detect horizontal or vertical edges,
choosing the best prediction in a non-linear fashion, by analyzing pixel neigh-
bors (a, b and ¢). The guessed value can also be interpreted as a median of
three fixed predictors, a, b and a+b-c, that is why the algorithm is also called
“median edge detector” (MED). The criteria for choosing the predictor is the
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following:
min(a,b) if ¢ > max(a,b) ,
TmED max(a,b) if ¢ < min(a,b) , (D.1)

a+b—c otherwise.

The statistics of residues from a fixed-predictor in continuous-tone image are
well modeled by a two-sided geometric distribution (TSGD) centered at zero,
P(e) = 0!, where € is the integer value of the prediction error and 6 € (0, 1).
However, for context-conditioned prediction error signals, a DC offset is also
present, due to integer-value constraints and possible bias in the prediction
step. The DC offset, also called “bias”, can be removed from the fixed pre-
diction value, and this operation is regarded as the “adaptive” part of the
prediction. The fixed prediction offset can be broken into an integer part R
and a fractional part s, where 0 < s < 1. The bias cancellation procedure
eliminates the integer part of the DC offset using a low complexity algorithm,
where the estimate of R is obtained by rounding the average of the last N

residues avoiding division operation.

The prediction residue with bias correction assumes a probability distribution
given by the TSGD

Pus(e) = C(0, 5)0'ts! where e = 0, %1, £2 (D.2)

and C(0,s) = (1—0)/(0'~*+0%) is the normalization factor. A specific Golomb
code will be chosen for entropy encoding of the residue, based on the choice of
parameters ¢ and s. For computational efficiency, Golomb-power-of-2 (GOP2,
Gor) codes are used, and a simple rule is used for determining the best &, in

accordance to the residue’s context [66].

For a given prediction Z, the residue can only take values in the range
-3 < € < a— &, where a = 29 is the largest value of a finite size alpha-
bet of length 3. Based on this fact, the residue will be remapped, which for
the probability means merging the tails of the distribution with their central
part. This procedure does not significantly affect the two-sided geometric be-
havior, and is of great benefit for compound documents, since it assigns a large
probability to sharp transitions. The mapping is easily done just by interpret-

ing the [ least significant bits of € in 2’s complement. The residue remapping
process is detailed in Section [D.5.2]

CALIC: The encoding procedure uses a large number of modeling contexts to

condition a nonlinear predictor and adapt it to various source statistics [65].
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Figure D.2: Block diagram of CALIC encoder, taken from [118].

In Figure [D.2] a block diagram of the CALIC encoding process is shown.
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Figure D.3: Neighborhood labeling used in CALIC’s prediction, taken from [118].

Binary mode is for situations in which the current locality of the input im-
age has no more than two distinct intensity levels. The algorithm checks six
neighboring pixels: Ty, Ly, Tnws In, Ine, Inn (see Figure . If these six pix-
els have no more than two different values, the binary mode is automatically
switched on. In such cases, predictive coding may have a poor performance,
since the smoothness assumption does not hold anymore, and the direct cod-
ing of the pixel values can be more effective than coding the prediction errors.
A context-based adaptive ternary arithmetic coder is used to code three sym-

bols, the two possible levels and an escape code to exit the binary mode. The
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6-order model context is determined by the quantization of a texture pattern

around the pixel.

In the continuous mode, the encoder uses the gradient-adjusted prediction
(GAP), in order to determine the appropriate prediction (f ) that will be used
for the current position. GAP is more robust than traditional DPCM-like
linear predictors, particularly in areas of strong edges. The prediction value is
determined in the following manner. At first, an estimate of the image’s local

horizontal and vertical gradient (dj, and d,, respectively) is given by:

dh = ‘[w - Iww’ + ’[n - [nw’ + |[n - [ne’
dv = |Iw - Inw| + |In - Inn| + |Ine - Inne| (D3>

According to the obtained gradients, the type of edge is empirically estimated

and the respective prediction is given according to the pseudo-code below.

if (d_v - d_h > 80)
{sharp horizontal edge} I_predl[i,jl=I_w;
else
if (d_v - d_h < -80)
{sharp vertical edge} I_pred[i,j]l=I_n;
else
{
I pred[i,jl=(I_w+I_n)/2+(I_ne-I_nw)/4;
if (dv - d_h > 32)
{horizontal edge} I pred[i,j] = (I_pred[i,jl+I_w)/2
else
if (d.v -d_h > 8)
{weak horizontal edge} I pred[i,j] = (3I_predl[i,jl+I _w)/4
else
if (d_v - d_h < -32)
{vertical edge} I_predl[i,j] = (I_pred[i,j]+I_n)/2
else
if (d_v -d_h < -8)

{weak vertical edge} I_pred[i,j] = (3I_pred[i,jl+I_n)/4

Note that most of the operations were chosen with the aim to simplify the
computation. The thresholds and coefficients could be optimized for an image
or class of image, but this procedure is computationally demanding and not

recommended.
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Figure D.4: Details of the context modeling and error feedback procedure for the
two-stage adaptive prediction scheme, taken from [118].

Since the prediction step does not fully remove the statistical redundancy in
the image, we can still observe a strong correlation between the prediction error
variance and the image smoothness. Similar to JPEG-LS, an error feedback
loop is added to the encoder, in order to adjust the GAP prediction, generating
an improved context-sensitive prediction I = I+e (see Figure . The error
correction factor is obtained by estimating the conditional expectations of the
prediction error within each context, eE{e|Q(d), B}. The model used for the
context combines two measurements: an error energy estimator (Q(9)) and
texture contexts, by a local neighborhood of pixel values (B). This results in
a total of 576 compound contexts, where the thresholds were obtained training
the set of all ISO test images. More details on the context creation are provided
by [118]. With this error feedback loop, a new error prediction is calculated
from e = I — I, and its absolute value will be arithmetic encoded conditioned

on the context generated by the error energy estimator.

With this clean separation between context-based prediction and modeling of
image data and entropy encoding of prediction errors, CALIC software can in-
terface with any entropy coding techniques. In the standard, a simple ternary
adaptive arithmetic coder is used for the binary mode, and an adaptive m-ary

arithmetic coder is used for the continuous-tone mode. Besides that, some
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Figure D.5: Block diagram for TMW lossless image compression algorithm, taken
from [119].

techniques were added to the entropy encoder, to increase efficiency: remap-
ping errors (reducing the alphabet size), histogram tail truncation (based on
the fact that most of the error population relies within a small range [-8,8],
error residues will be entropy encoded using an escape code) and dynamic
bit shifting (decomposition of the error in case of frequent occurrence of large
errors, according to an adaptive average magnitude threshold, for sending the
least significant bits of the error using a separate set of contexts or simply as
is). More details can be found in [65].

TMW: This method uses a two stage encoding process [119]. In the 1st stage,
called Image Analysis, a set of model parameters is designed in a way that
minimizes the length of the encoded image. This set of model parameters is
then used in the 2nd stage, the Coding Stage, to perform the encoding step.
The model parameters are sent to the decoder as global information, while the

encoded pixels are sent as local information (see Figure |D.5|).

The model is based on linear predictors. It uses multiple pixel-predictors of

the form

M
pred = Y w; * pixel, (D.4)

i=1
where M is the number of causal neighbors (a value of 12 has found to be
a good choice for images 512x512) and the weights (w;) are calculated in
the image analysis phase. Instead of combining the values obtained by each
prediction, the error probability distribution from each predictor is blended

instead. A probability of error is then calculated based on a variation of a
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t-student distribution.

X 1 N
202N

with N currently hard coded to 23—0, due to implementation issues (the author
uses a look up table and chooses this value for simplicity), and K chosen such

that p(r < 400) = 1. The probability of a residue value being between two

values, X; and Xs, is given by

p(Xi<z<Xy)=plr<Xy)—plr<X) (D.6)

The parameter o is estimated from the sigma-predictor of 30 causal neighbors
in a Manhattan distance window (distance between two points measured along

the axes at right angles). Therefore

30
o’ = Z v * pixelferror? (D.7)

i=0
where pixel error, = 1, and v;s are model parameters, and are included in the

first part of the encoded message (see more details in [119]).

Since the value for this probability may not be trusted, a “certainty” or “trust”
parameter (c) is also sent in the message part of the file, in order to blend
the probability distribution (p(z)) with a distribution that represents total

ignorance:

ﬁ(x:X):c*p(a::X)—l—(lZC) (D.8)

where L is the size of possible range of values for z.

At the coding part, the probability that is used for encoding the prediction
error on the arithmetic encoder is the blending of all the predictors probability

errors:

pan(LE = X) = Z_: bjﬁj(a: = X) (Dg)

where the blending weight b; can be interpreted as the estimation of number
of bits that predictor j would require to encode the current pixel, based on

the number of bits required to encode the causal neighborhood.

% (D.10)

b; =
J M
Zk:1 Ck
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and
Q

In(c;) = teln(p;(zy = pizely)) (D.11)
k=0

where ¢, are model parameters determined during the image analysis phase.
A fast implementation of the TMW algorithm, GLICBAWLS (Grey Level
Image Compression by Adaptive Weighted Least Squares [120]), was also made
available online and will be used for comparison. This algorithm combines
the compression rate equivalent to the rates from complex algorithms with a

moderate computational complexity.

EDP: Edge-directed prediction was proposed in [60], and uses the LSP procedure
for the prediction step (see Appendix [C). The good results achieved by this
encoder rely on the excellent performance of the predictor, in comparison with
other prediction schemes, like CALIC and JPEG-LS, that do not have a flexible
predictor like the EDP algorithm has. Compared to other methods also based
on linear prediction, such as the TMW algorithm, EDP compression gains are
smaller, but this encoder does not perform a two-pass encoding. The gains for
the LSP are conditioned to the training area, and local statistics of the image.
The residue encoder separates the prediction residue in bit planes, and entropy
encode the residue using context modeling based on local error variance, bias

cancelation and also residue remapping.

MRP: MRP (Minimum-rate predictors [121]) is a state-of-the-art lossless codec
that achieves the best compression rates for most of the tested images. This
lossless compression method implements several sophisticated prediction and

entropy coding schemes that are optimized in a multi-pass scheme.

The encoder is also based on linear prediction, and the choice of predictors
are first refined with a multistage image analysis, minimizing the overall bi-
trate. The residue is entropy encoded using a range coder [122], based on the

implementation available on [123], or just a simple Huffman coder.

The image is divided into blocks of 8 x 8 pixels, and every 8x8 block is first
classified according to its variance. The blocks organized in classes will be
used as training sequences for designing linear predictors. The pixels of the
same class are considered realization of an auto-regressive process, and the
linear coefficients are obtained using the Yule-Walker equations [I07]. Once
the coefficients are determined, the prediction for the image can be calculated.
Then the cost for residue encoding is determined, considering a conditional
probability density function modeled by generalized Gaussian functions [124].
The key element of MRP is actually choosing the best model to fit the data
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YA

(a) Initial block classification (b) Block classification after the first optimiza-
tion loop

(c) Block classification with different block (d) Final block classification
sizes

Figure D.6: Block classification optimization for cameraman image. Each luminance
value represents one defined class, that is, one specific linear predictor. In the first
optimization loop, only 8 x 8 blocks are used. In the second optimization loop, block
sizes from 32 x 32 up to 4 x 4 are allowed.

to be encoded, in a set of very different probability distributions, all modeled

by the generalized Gaussian distribution.

The context for the residue’s conditional probability is determined by the quan-
tization of the weighted sum of neighboring residues. As the blocks are being
classified, the context quantization thresholds are optimized targeting the rate
reduction via dynamic programming. With the new prediction coefficients

and context quantization levels, the blocks are reclassified, and the optimiza-
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tion is performed until a satisfactory compression level is accomplished or the

maximum number of iterations is achieved.

After this first optimization loop, the fixed block dimension is relaxed, and
from this point on block sizes can vary from 32 x 32 up to 4 x 4. A quad-
tree segmentation structure is used for block division, and once again the
optimization loop will refine the prediction coefficients, context thresholds and
block classification. Notice that this process might even lead to the reduction
of the available classes. Figures |D.6(a)| to [D.6(d)| show the classification of

image blocks for different stages in the optimization loops. Notice in this

example that, by the end of the optimization loop, the number of classes
used are reduced, and the same predictor is used in smooth areas, with larger

block sizes, as can be seen at the background behind the cameraman in Figure

D.6(d)}

Other methods Other methods for lossless image compression are methods used
for bi-level images, but can also be used for gray scale images, such as JBIG
[4] e o JBIG2 [5], dictionary-based methods, such as the image formats GIF
[125] and PNG [126], and the wavelet-based method JPEG2000 [6].

The JBIG standard (Joint Bilevel Image Experts Group) is used for lossless
compression of bi-level images and was initially designed for fax transmission
and document storage and distribution. For gray scale images, JBIG divides
the pixel values into bit planes, and encode each bit plane as a bi-level image.
The evolution of JBIG standard, JBIG2 [127-129], uses dictionary techniques
to encode parts of the image, usually text, while smooth image areas are coded

with an arithmetic or a Huffman encoder [108| T15].

The GIF image format was widely used for image transmission at the beginning
of the internet. It is based on the LZW algorithm [37], which uses recurrent
patterns from the image to update its dictionary, coding their symbols accord-
ing to their occurrence frequency. This method is particularly effective for

computer images, where all pixels in a smooth region have the same value.

The PNG format [126] was created in order to avoid the licensing issues of
the GIF file format. It uses only license-free encoding techniques, such as a
variation of the LZ77 method, known as deflate [130]. The format also has
support for color and transparency. Details on the algorithm can be found in
[108].

A different paradigm for image compression is the use of transform instead of
prediction. JPEG2000 [6] uses wavelet transform, and does not suffer from

the causality issues of the prediction based encoders. It also has an interesting
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scalability property, where the same bitstream is able to describe the image
with different levels of accuracy, providing lossy and lossless compression in
a single bitstream. More details can be found in the literature [6] or online
[131].

D.3 Experimental results and benchmark

This section presents the encoding results for several lossless compression algorithms,
some of them considered to be the state-of-the-art in lossless compression. Table
D.1] summarizes the results of lossless compression of two groups of images: smooth
images and compound images .

The chosen lossless encoders are:

e JPEG-LS?, standard for lossless image compression, has an excellent perfor-

mance for smooth images and also a good performance for compound images.

e CALIC? is more efficient than JPEG-LS due to a better prediction. However,

it shows a higher computational cost.

o GLICBAWLS?, fast implementation of the TMW algorithm, usually outper-

forms CALIC, but the predictors are even more complex.

e EDP? is a lossless encoder based on LSP prediction mode, recently incorpo-
rated into the MMP algorithm (see Appendix [C]).

e MRPSis an algorithm with high computational complexity, due to predictor
optimization and residue coding. It achieves the best results in the literature

for lossless compression.

e JBIG" is usually used for coding bi-level images, but can also be used for

coding gray-scale images.

Lall images can be found in the Appendix

2Results obtained with software [I32], using the command ./locoe -i<input>.pgm
-o<output>.loco

3Results obtained with software [I33], using the command ./enCALICh <input>.pgm width
height depth > <output>.calic

“Results obtained with software [I34], using the command ./glicbawls <input>.pgm
<output>.glic

®Results obtained with software [135], using the command ./edp <input>.pgm

6Results obtained with software [I36], using the command ./encmrp -o <input>.pgm
<output>.mrp

"Results obtained with software [137], using the command ./pnmtojbig <input>.pgm
<output>. jbig
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e GIF® is an algorithm based on pattern matching and has a good performance

for compound images.

e PNG? is an algorithm that is also based in pattern matching, however it does

not have the same licensing issues as GIF.

e JPEG2000™ is a state-of-the-art lossy image encoder that presents an hierar-
chical coding structure (from lossy to lossless, in the same bitstream), therefore

it can also be used for lossless compression.

D.4 Theoretical bounds on MMP’s lossless per-

formance

In this section we show how the MMP algorithm can asymptotically achieve the
entropy rate of any stationary, ergodic, memoryless source with finite alphabet,
following a similar chain of ideas to the ones developed for the Grammar Codes in
[139]. The results are derived first for the MMP algorithm presented in [90], without
considering the prediction step and using a dyadic block segmentation. Later on,
we show how prediction can contribute to improve its convergence rate.

Let us consider a two-dimensional data input z, with symbols from an alphabet
A. Tt is first divided into L blocks of size N x N (where the total number of
image pixels is |x| = n = L * N?). Then each block will be encoded by the MMP
algorithm, where an N x N pattern gets converted into a sequence of flags and
indexes, dependent on MMP’s dictionary.

The dictionary used for coding is the union of two sets: D = S U A. The set A,
the pixel’s alphabet, contains 1 x 1 patterns, while the set S contains all the other
multiscale patterns, different from 1 x 1 ones. Set A is initialized with all possible
1 x 1 patterns (for example, for an 8-bit gray-scale image, all values from 0 to 255),
while set § is initialized with patterns generated from scale transformation of some
elements present in set 4. This initialization may generate in & a non-uniform
distribution of constant-value patterns. If we consider a dyadic block-segmentation,
then we have a total of 2log(NN) + 1 scales (including the 1 x 1 scale). The log
operation stands for logarithm with base 2. The same base will be used throughout

this deduction, and therefore it is suppressed for clarity reasons. Then, the set S is

8Results obtained with software [I38], using the command ./convert <input>.pgm
<output>.gif

9Results obtained with software [I38], using the command ./pnmtopng <input>.pgm
> <output>.png and optimized using the command ./pngcrush -brute <input>.png
<output>.png

10Results obtained with software [I31], using the command java JJ2KEncoder -i input.pgm
-0 output.j2k -lossless on
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initialized with less than 2log(N) * |A| elements, since not all 1 x 1 patterns (e.g.,
non-uniformly spaced levels) may be used for pattern generation. During encoding,
the dictionary grows with patterns generated from multiscale transformations of
concatenations of reconstructed codewords.

Each block is coded with a sequence of flags and dictionary indexes, that are
encoded by an arithmetic encoder. Supposing zero-order contexts [108] are used,

the rate spent to encode each symbol is given by:

rate(;) = — log (D.12)

where ¢(3;) stands for the frequency counter for symbol 3; of dictionary D.

All the counters ¢([3;) are initialized with zero, except the ones that account for
the patterns that are already present in the dictionary, which are initialized with
one. Once the symbol (; is used, its counter is updated by adding 1; then if a new
symbol is inserted in the dictionary, its counter increases from 0 to 1. In addition,
we assume that a block is partitioned until a perfect match is found. The dictionary
is then updated after the encoding of the block N x N finishes.

Suppose that, for the first block, we have to divide it in such a manner that n;

indexes are used. So the rate spent for encoding the first block is given by:

_ S (i)
rate(block;) = rate(flags) + Z —log =————

i=1 ZBED C(ﬂ)

ni D .
= rate(flags) + Z log D] + (D.13)
i=1 c(5:)

< rate(flags) + ) _log | Al (2105(%) F1) 4
=1 i

After encoding the first block, the dictionary grows with (n; — 1) concatenations
of elements, and its expansions and contractions, which leads to the addition of at
most (n; — 1) * (2log(N)) new elements, considering all scales. Assuming that for
the second block we have n, matches, and following a similar development, we can

calculate the rate spent for encoding the second block, that is given by:

rate(blocke) < rate(flags)+ (D.14)
"i‘ log (AL (21 = 1))  2108(N) + |A| +i
i=nj+1 c(f)
Therefore the total rate (n * rMP(z), where 7™MP () is the compression rate

in bits per pixel and n is the number of pixels) spent for encoding the input image
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x, is the sum of the rate spent for each block, given by:

nsrMMP () = rate(block;) + - - - + rate(blocky) (D.15)
N2 o MALE Jiotal +

< fl 1
< rate(flags) + ; og 3

where nigta =n1 +no + - -+ +nyp, and

jtotal S(’A‘ + Nytotal — L) * 210g(N> (D16)

In this development, ni.. represents the number of indexes used to encode the
image, Jjiotal is the number of new elements introduced in the dictionary due to the
concatenation of the encoded codewords and the multiscale update routine, and L
is the total number of N x N blocks in the image. Similarly to what is done in
[139], we divide the rate into two terms, one that accounts for the growth of the
dictionary and another that expresses the unnormalized empirical entropy of the

symbols, yielding

"B AL+ Jiotal +
rate(flags) + log g G
Ntotal!
[Ti25 e(8i)
log <|A| + jtotal.“‘ ntotal)

| Al + Jrotal
(2) Niotal!
rate(flags) + log T (3)

|~A| + Jtotal T Mtotal

rate(flags) + Y _ (cg)log Dtotal |
s
BeD

|-A| + Jtotal T Mtotal (D.l?)
< rate(flags) + Hp(z) + [A| + jiotal + Ntotal

IN

n * rMMP(:L')

A
IN=

rate(flags) + log +

_l’_

IN

where steps (1) and (2) follows from [T}, (a + i) = <a - n)n! and the inequality
a

on the size of a type class, see [61]. In this reasoning, cg is the number of times
the element 3 appears in the sequence x, and % is the zero-order entropy of the
sequence of indexes, since element (3 has a probability of %.

Now we derive an upper-bound for the above mentioned zero-order entropy by
assuming that the same sequence will be encoded coordinate-by-coordinate using

a k-context arithmetic encoder. Since the dictionary is multiscale, we have that
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Bi = y1ys---y € Al. Then the probability of each codeword, as given for the
hypothetical arithmetic encoder, is given by the formula [139]:

!
P (Bi) = Quk~'r™? max > e clei) (D.18)

0€C  cpepeC i=1
where ¢; are the possible contexts of the arithmetic encoder and (), is a constant
value so that p* is a probability distribution on A. More details on the development
of the k-context probability can be found in [139)].
From the information inequality formula [61], we relate both entropies in the

following manner:

Ntotal

Hy(x) < - Z log p* () (D.19)

Now substituting the value of p* indicated in Equation (D.18]), and considering
that Qp, < 1/2 and [ < N?, we get

H,(x) < ngotar * (1 + log(k) + 2log(N * N)) + nry(x) (D.20)

where 77(z) is the rate using a k-context arithmetic encoder for each letter of the
sequence x, given by the log of the right-hand side of equation (D.18]).

Now we define R)/M"” as the difference between the rate given by the MMP
algorithm and the rate of the k-context arithmetic encoder previously defined. We

have

R%%P — pMMP )
- rate(flags) + Hy(x) + [A| + jrotal + Ntotal
= n
Hp('r) — Ntotal * (1 + IOg(k) + 2 IOg(N * N))
n
< rate(flags) 4+ niotal * (C) + |A| + Jrotal (D.21)
n

where C'is a constant value defined as 2 4 log(k) + 2log(N * N)).

It is known that, as the length of the sequence grows, the rate of the k-context
arithmetic encoder approximates the entropy of the source [I39]. So if we analyze
how close we are from this rate, we can also give a bound on how close the MMP
algorithm approaches the source’s entropy, once the length of the sequence grows.
As can be seen from equation , the performance bound for the MMP may
approach the source’s entropy depending on the behavior of the total number of
indexes used and the size of the dictionary. So we need to analyze the terms ™tal,

Jtotal and ra‘te(ﬂa‘gs)
n n

Let us then express the average number of indexes used to encode a block ¢

as n — Q.
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(n;), according to a given probability of match at scale (ZLHTW ,2L2)) (we will use the
notation p( ;) for the probability of match at scale I of the ¢-th block, considering
[ € {2log(N),2log(N) —1,---,1,0}). Notice that the number of indexes doubles

as we decrease the scale by one.

2log N—1 2log N
n; = P(21log(N),i) + Z P(m,i) H 2 1- P(k,i) (D22)
k=m+1

By applying Equation (D.22)) to every block, the average total number of indexes
used (Total) 1S given by the sum of the average number of encoded indexes for each
block, that is

Ntotal = N1 + - + N,

L 2logN-1 2log N
= ZP (2log(N),i) T Z Z Py 1] 20— Py (D.23)
k=m+1

It is reasonable to state that pu.;y < p), it & > [,Vi, that is, it is less probable
to find a match at larger scales. Knowing that p(; ;) is a probability (pq) < 1,Vk, 1),
and that p(o;) = 1 (since for the lossless case, the dictionary at scale 1x 1 is complete,

so we will always have a match at this scale), we can derive an upper-bound for 74oga1,

given by
L L 2logN-1 2log N
Ntotal < Z 1+ Z Z P(o,i) H 2(1 - p(ZIOgN,i))
=1 i=1 m=0 k=m+1

L 2logN—1 2log N

L+Z Z H 2(1 = p210g N,i))

i=1 m=0 k=m+1
A(d)

IN

L 2logN—-1

L+Z Z A(i)QlogN—m

- L+Z (Z)QlogN—l—ll A(Z) (D.24)

IN

Now assuming that the source is memoryless, it can be shown (the proof can be
found in the Section |D.4.1)) that the limit for *<tl can be given by

L 2log N+1 ;
1 g —A
lim Ntotal — lim ( 72 ) (2))
n—oo n n—oo n — -1
1
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From Equation (D.25)) and Equation (D.16)), we can also derive

. Jtotal
lim

n—oo n

=0 (D.26)

This is reasonable because, after encoding a large number of blocks, the dic-
tionary has almost all the probable patterns of the image, so it stops growing and
becomes infinitely small when compared to the sequence’s size. Likewise, the flags
encoding process will have a similar behavior, since a match will occur in the largest
scale, avoiding further segmentation and the further use of flags, and then we also
have that

te(fl
iy ate(flags) o (D.27)
n—o00 n
Then from equation ((D.21]), we have that
- MMP 1
A (D-28)

We can see that the convergence is dependent on the block size. So the larger
the block size, the closer we are to the entropy rate, that is, we approximate the
entropy rate by increasing the block size. Then, for the MMP, we can make the
block size as large as needed, to achieve an encoding rate as close as desired to the
source’s entropy.

Notice that by using the scale transformation, we actually increase the chances of
a match, since we have more patterns on the dictionary. So the benefit of using scale
transformations can be perceived in the transitory convergence of the algorithm,
which is faster than the one of the algorithm without update at different scales.

For the convergence proof above we use the fact that the source is memoryless.
This is not true for images, but may be approximately accomplished by using pre-
diction. If the prediction step is successful in inferring the value of the next block of
pixels, it will then decorrelate the source, and as we have seen from the convergence
point of view, we converge to the source’s entropy.

Table shows some compression results for the MMP without using predic-
tion. The results for the PNG algorithm [126] were also displayed for comparison.
We can see that MMP performs well for images where prediction cannot fully decor-
relate the image, such as scanned documents (e.g. pp1205 and scan_ 004), but for
smooth images MMP is still outperformed by PNG, since it does not profit from
the prediction step. This indicates the importance of the prediction step also for
lossless encoding. In the next section we investigate ways to enhance prediction for
the MMP in the lossless case.
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Table D.2: MMP’s lossless compression performance (without prediction). Results
in bits-per-pixel. Best results are highlighted in bold.

Images MMP PNG

airplane 5.403 4.220
barb 6.331 5.199
lennagrey  6.043  4.577
pp1205 2.385 2.550
scan 004 2.285 2.404
shapes 1.841 1.154

D.4.1 Proof of the convergence of lim,, ., ™2l

In this subsection, we will prove Equation (D.25)), repeated here for convenience.

L 210 N+1 .
. MNiotal 1 g — A(i)
lim —— = lim [ —+ — E D.2

The first term on the right-hand side generates the result since n = L * N2

Nz )
This term can be identified as the steady-state rate of the encoder, dependent on the
largest scale, that is, on the chosen block size. The second term can be identified as
a transitory behavior of the encoder, and is linked to the smaller scales. We see that
the convergence depends on the matching probability, which in turn depends on the
source’s probability distribution. Consider a memoryless source X and a word of
size s (i.e., z € A®). Suppose that k segments of size s have been encoded. After
encoding the k segments, the k£ encoded segments will be added to the dictionary.

Then, the matching probability of x is

Pr(z € D) = Pr{z occurred at least once in k segments}

= 1— Pr{z did not occur in k segments} (D.30)
Notice that the number of segments £ for a sequence of size n is given by k = 2.
Since we divide the image into blocks of size N x N, the same correspondence can
be made taking the block size into account, that is k = 2= after encoding ¢ blocks
(n =i * N?). Considering all possible values for the mput x, and the fact that X
is memoryless, we can rewrite the matching probability for scale [ after encoding ¢
blocks, in the following manner

i*N2

puy = D (L= (1 —p(x)) 2" |p(z) (D.31)

zeA2

where p(x) is the probability of the sequence .
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We have that, as the sequence grows, the matching probability for any scale
tends to 1. This is so because the dictionary contains most of the possible patterns

of the image in all scales. Then, we have that

lim > [1 = (1= p(a) ¥ p(a) = 1 (D.32)

n—oo !
e A2

This implies that the term A(7) = 2(1 —p10g v,5)) of the summation in Equation
(D.29)) has the following properties:

(i) A +1) < A(9)
(i) lim; oo A7) =0
Considering the general term of the series in Equation (D.29))

A(Z')2logN -1
Al —1

we can show that this is a convergent series by applying the ratio test, that is, the

r(i) = A() (D.33)

series is convergent if

r(i+1)
r(i)

lim

1—00

‘ <1 (D.34)

Therefore, we have

iy |AG+1) AG + 1)2leeN 1 A(i) -1
Bl AG)  A@@)2eN 1 A(i+1) -1

_ ‘A(z’+1)‘ A(i 4 1)2leN 1 ‘ A(i) —1 ‘
T AR A(i)2oeN —1 ||AG+1) 1
A+ 1)
llgglo‘ AQ) ‘ <1 (D.35)

Since this is a convergent series, the limit of this series divided by the sequences’

size (n) tends to zero, and thus lim, .. 2= = lim,_.. £ = §5, which concludes

our proof.

D.5 Proposal for enhancing MMP lossless image

compression performance

In order for MMP to perform lossless compression, some pre-requisites must be
fulfilled by the algorithm. MMP must be able to provide at least one zero-distortion
representation of the image, even if the representation does not provide compression.

Since MMP uses a set of multidimensional dictionaries, a requirement for lossless
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coding is that the 1 x 1 dictionary is complete, that is, it contains all possible values
for a pixel residue. In case a matching in higher scales cannot be done, due to the
completeness of the 1 x 1 dictionary, the lossless representation of the input image
is assured.

MMP multidimensional dictionary can be considered also as an overcomplete
basis, that is, there are many possibilities of representing the input signal using el-
ements of the dictionary. MMP uses a greedy approach for choosing the codewords
that will represent the input, where the encoding choices are made considering the
block only, and not the whole image. The choices are based on a Lagrangian cost cri-
teria, where the A\ factor determines the relationship between the accepted distortion
and the required bitrate. When setting this factor to zero, only the distortion will
be considered, and the optimization function will eventually choose one of the zero-
distortion representation for the input signal. Nevertheless, there might be more
than one possible zero-distortion representation. Therefore, the rate-distortion op-
timization algorithm was also modified to choose the codewords that minimize the
bitrate, in case the lossless distortion was chosen (that is, in case A factor of the
Lagrangian cost is zero).

Both of the above mentioned pre-requisites were implemented in the MMP algo-
rithm, without any rate-distortion losses for the lossy version. The complete 1 x 1
dictionary is rarely used for lossy coding, and the new criteria of minimum rate
for the codeword choice just moved the rate-distortion point over the convex hull
curve towards less bits. In the next subsections we will propose some modifications
in the image modeling stage of the algorithm, that is, in the prediction stage, and
also in the residue coding stage, based on common techniques used in lossless image

compression algorithms.

D.5.1 Study on the effects of prediction for MMP lossless

coding

A common technique for lossless image compression is to apply prediction, in order
to decorrelate the neighboring pixels and obtain a skewed high-peaked distribution
for the residue. Higher peaked distribution can be efficiently entropy encoded using
a variable-length entropy encoder, such as Huffman encoder or arithmetic coding.
Therefore, many methods for image prediction targeting lossless compression have
been proposed [140, [141].

Lossless image prediction models

Some of the most well-known prediction methods were incorporated in the MMP
framework. Three lossless predictors were chosen: MED, used in JPEG-LS [66],
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GAP, used in CALIC [I09], and the least-square adaptive predictor used in EDP [60].
MED is a simple, but effective predictor for smooth images. GAP is more complex
than MED, however it is able to better capture characteristics of the surrounding
texture and provides a more efficient prediction. Nevertheless, it still uses a fixed
set of predictors for image modeling. LSP does not use fixed predictor coefficients,
instead it adapts the prediction coefficients using a training window. This results in
a more efficient prediction than the former mentioned algorithms.

All three methods tested will replace the intra block prediction of the MMP
algorithm, and perform first prediction in the whole image, using the raster scanning
order. Then the residual image will be entropy coded using the MMP algorithm.
No prediction mode information will be sent, since only one predictor is used. As
MMP does not rely on the smoothness constraint, its residue coding might be able
to cope with the inefficiencies of using only one single predictor.

For a more complete comparison, we also provide results for MMP with no predic-
tion at all, and with the MMP-FP algorithm, that uses the intra prediction modes
of the H.264/AVC algorithm (see Appendix [B). Notice that the intra-prediction
modes are not constrained to a half non-symmetric plane, like the other predictors,
and might profit from the use of a blocking prediction structure. Since perfect re-
construction is obtained with lossless coding, the block prediction modes can also
be modified to use prediction neighborhood closest to the position to be predicted,
therefore enhancing the intra prediction capability. In the next subsection, a more
detailed explanation of enhanced intra block prediction modes for lossless compres-

sion is given.

Enhanced intra prediction modes

High-performance lossless image coding algorithms usually perform image encoding
on a pixel-by-pixel basis, using a small set of prediction neighbors. The H.264/AVC
lossless video coding standard adopted a modification to its horizontal and vertical
Intra prediction modes to enhance compression performance [63]. For the horizontal
and vertical prediction modes, the closest pixels are used for prediction, instead of
the ones adjacent to the upper and left block edges. This results in better coding
efficiency, since an adjacent sample to the pixel to be predicted is usually a better
prediction than a pixel closer to the block edge. Figure[D.7]depicts the adaptation for
the horizontal prediction mode. This procedure is similar to a DPCM (Differential
Pulse Code Modulation) procedure [63].

In the lossless compression case, MMP also adopts this intra residual DPCM
process for the horizontal and vertical prediction modes, therefore the MMP al-
gorithm that uses the adapted prediction modes for lossless coding will be called
MMP-DPCM. With this modification, the algorithm tends to use larger block-sizes
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Figure D.7: Adaptation for the horizontal mode in the lossless case. In previous
implementation, the neighboring block provides the value for prediction, which is
spatially distant from some elements of the block. By using the residue information,
both encoder and decoder are able to update the last predicted value with the
original value. Then for the next position, the closest original value is available for
prediction and can be used instead.

in the prediction step, saving bits associated with the prediction information. Fur-
thermore, such enhanced prediction favors the narrowing of the residue’s histogram,
which also helps the dictionary adaptation process [21].

The same concept can also be applied to the LSP mode, that can use the original
pixel values for the training instead of the predicted values, as was done for the
lossy version (see Appendix [C]). At the decoder side, the LSP prediction needs to
be performed after receiving all the codewords related to the residue of the block
prediction. Then for each pixel position, where the LSP is optimized, the predicted

value can later be added to the residue, in order to reconstruct the original value.

Experimental results

Table D.3: Lossless compression results for several different prediction proposals,
given in bits-per-pixel. Best results are highlighted in bold.

Images NO PRED MED GAP LSP MMP-FP MMP-DPCM
Barbara 6.331 5.452 5339 4.451 4.519 4.352
Cameraman 6.582 4.933 4.905 4.788 4.772 4.570
Gold 6.544 5.020 4.853 4.805 4.947 4.505
Lena 6.043 4.546  4.506 4.220 4.297 4.212
PP1205 2.385 3.421  4.745 5.715 2.809 2.736
PP1209 2.709 2997 4.856 5.418 2.692 2.567
Shapes 1.841 1.104 1.458 2.174 1.056 0.916
Average 4.634 3.925 4.380 4.510 3.585 3.408

Table shows the results of compression achieved with the MMP algorithm,
when using different prediction models. MED, GAP and LSP are suited for smooth

images, and give higher compression results than using no prediction at all. How-
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ever, for compound and computer generated images, the prediction cannot capture
the texture of the image appropriately, and the algorithm that uses no prediction
outperforms the proposed methods, achieving higher compression gains.

For the MMP algorithm that uses the prediction methods based on the
H.264/AVC modes and LSP (the MMP-FP method), compression rates for smooth
images are comparable to ones achieved by the LSP predictor. Moreover, compres-
sion of compound and computer images achieves a higher gain due to the use of the
MFYV prediction mode, providing evidence that the set of prediction modes avail-
able for the MMP-FP algorithm is appropriate for smooth and compound lossless
image coding. Consistent gains were also reported by applying the DPCM modifi-
cation, achieving the best compression results for the tested images. Therefore, the
DPCM adaptation of the intra prediction modes was adopted by the lossless MMP

algorithm.

D.5.2 Study of the effects of residue coding techniques for
the lossless MMP

For the residue coding, MMP uses pattern matching with an adaptive dictionary
updating scheme, which has proved to be very efficient when lossy coding smooth
and compound images. Nevertheless, the context used for entropy coding is not
related to the neighboring residual information, a common procedure adopted for
several lossless image compression. Also techniques for improving the probability
model used for entropy coding, such as histogram truncation or error feedback were
not adopted by the MMP algorithm yet, since they are usually applied for pixel
coding, and not for block coding.

Some of the techniques used for lossless pixel entropy coding are adapted for
block coding and integrated into the MMP framework. The effectiveness of such

techniques is also evaluated.

Histogram restriction

Due to the finite dimensionality of the input alphabet, when applying prediction
only a limited range of possible residues are allowed. Then it is possible to remove
the probability attributed to these forbidden values, once the prediction is known,
and fine-tune the residue probability that is going to be used for residue coding.
This technique is successfully applied in many lossless encoders, such as CALIC and
MRP. This is similar to use a residue probability conditioned to the predicted value,
that is, the residue histogram is restricted to values conditioned on the prediction

value. The conditional probability of a residue e, given the predicted value pred,
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Figure D.8: Histogram restriction for a prediction value equal to zpreq = 100. In this
example, a Laplacian distribution is used to illustrate the probability distribution
of the residue. This model is widely used to represent prediction residue of smooth
image areas.

can be obtained in the following manner.

P e
Pr(e|aped) = m (Bayes’ rule)
pre
Pr(zpredle) * Pr(e)
Pr(Zpred)

__Pr(e) (D.36)

Pr(:vpred)
Pr(xpred‘e)

Which is equivalent to state that the residue can only be found between values
—Tpred a0 255 — T preq. Therefore, the probability of the prediction peq in Equation
can be replaced by the probability of the error assuming values —Zpeq < € <

255 — Zpred, and we have:

Pr(e)
P"‘(_xprcd Se§255_xprcd)
Pr(fxpred Se§25571pred|e)

(D.37)

Once the residue value e is known, we have that Pr(—zp.eq < e < 255—2p,cql€) =
1, and the conditional probability of Equation [D.37 becomes:
Pr(e)

= D.38
Ziiso P?"(l’ - xpred) ( )

which indicates that the probability of the forbidden residues assume a zero value

and the remaining probabilities are rescaled, so that the sum of residue probabilities
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is equal to one. The process is also illustrated in Figure [D.8]

The same principle was implemented for the MMP residue encoding. Given the
block prediction value, the codewords of the dictionary that resulted in forbidden
residue patterns assumed a zero value probability, in order to use a probability distri-
bution that takes into account only the possible residue patterns. The new adjusted
probability distribution is used by the arithmetic encoder for entropy coding of the
chosen dictionary codeword. Notice however that the use of this technique requires
the knowledge of the predicted value for residue encoding, which is the contrary of
what is required by the DPCM technique, described in Section[D.5.1} Therefore, this

technique is mutually exclusive with the DPCM enhancement prediction method.

Residue remapping

An image with 8-bit pixel can have 256 different values. The difference between
prediction and the actual pixel can assume values between -256 to 256, which needs
9 bits for its representation. However, as already stated, the possible values assumed
by the residue are found in the interval [—Zpred, 255 — Zpred], that contains 256 values,
and can be represented by 8 bits only. A common procedure used in lossless encoders,
such as CALIC [65] or JPEG-LS [60] is the residue remapping. A typical residue

remapping function for a residue § = z — Zpyeq is as follows:

20 ifo<s<o,
M (2, Tprea) = $2/6] =1 if—<65<0,
0+ 0] otherwise.

where 6 = min(Zpred; 255 — Tpred)

Residue remapping reduces the alphabet size for entropy coding, by merging the
tails of distributions with their central part. For a high-peaked distribution centered
at the predicted value, the remapping function does not alter the two-sided geometric
behavior of the residue distribution. For the bimodal distribution, the remapping
function will merge the probability tails, enhancing the probability of an edge value.
Both cases are illustrated in Figure[D.9 A revision of different remapping functions
can also be found in RICE [67]. In the case of the MMP algorithm, the residue
remapping was applied to each coordinate of the multidimensional residue block

after block prediction. The new remapped block was then used for pattern matching.

Error feedback

The error feedback technique is used in JPEG-LS and CALIC encoder, and consist

of adaptively adjust the predicted value in accordance to the residue neighborhood.

120



111 T

-100 0 100 200 -100 0 100 200
(a) Typical distribution for smooth images (b) Remapping for zpreq = 100
P(x) P(x)
A A
® ® ) ]

e, . ol

T
-100 0 100 200 -100 0 10

(c¢) Typical distribution for compound images (d) Remapping for zpreq = 50

Figure D.9: Example of residue remapping for two kinds of residue distribution: for
smooth images or for compound images. For smooth images, the residue distribution
has a Laplacian characteristic, as shown in Figure (a). The remapping will not alter
the behavior of the distribution, as shown in Figure (b). In the case of compound
images, the residue distribution can be modeled by a bimodal function, as seen in
Figure (c). The residue remapping will merge the tail of the distribution, resulting
in a high probability for edge values, as seen in Figure (d).

The value that is used for updating is usually an average value of the neighboring
residues, and a context is also used to increase adaptation speed of the mean value.

For the MMP algorithm, the same principle was applied. The average values of
the residues were kept in a structure, that was later used for updating the block
prediction value. The block dimension was used as context, as well as the chosen
prediction mode. For example, a horizontal prediction block value was updated with
average values of residues, obtained from the same block dimension after horizontal

prediction.
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Experimental results

Table D.4: Lossless compression results for several different residue encoding tech-
niques, given in bits-per-pixel. Best results are highlighted in bold.

Tmages Histogram Residue Error MMP-FP
Restriction Remapping Feedback DPCM
Barbara 4.427 4.423 4.587 4.352
Cameraman 4.631 4.640 4.707 4.570
Gold 4.711 4.833 4.914 4.505
Lena 4.347 4.227 4.317 4.212
PP1205 2.696 2.706 2.7117 2.736
PP1209 2.623 2.724 2.678 2.567
Shapes 1.040 0.970 0.907 0.916
Average 3.496 3.503 3.547 3.408

The tested techniques did not provide any consistent gains over the MMP-FP
algorithm using the DPCM enhancement on the intra prediction modes, as can be
seen in Table [D.4] Since these techniques are mutually exclusive, the DPCM en-
hancement technique was adopted, instead of the residue enhancement techniques.
With a multiscale dictionary, the MMP algorithm already exploits a common neigh-
borhood for residual encoding. Also the adaptive update of the dictionary already
introduces only patterns that rely inside the restriction of predicted values, which
are patterns close to zero.

By restricting the adaptation of MMP’s dictionary, we may also be hindering
the dictionary adaptation process, which may impact the global compression capa-
bility of MMP. Many other techniques for restricting the behavior of the dictionary
adaptation, such as histogram truncation, were also tested, with a similar outcome.
Therefore, no entropy adaptation technique was adopted by the MMP lossless algo-
rithm, and the arithmetic encoder in the lossless version is used exactly the same
as in the lossy version. This is also advantageous, since the encoding procedure for

lossless and lossy coding is also the same.

D.5.3 Comparison with state-of-the-art lossless algorithms

In the lossless case, we chose three different algorithms to compare with MMP:
JPEG-LS [110], MRP [I1I] and PNG [I08]. JPEG-LS is a benchmark for lossless
compression and uses implicit prediction and adaptive Golomb codes for residue en-
coding to efficiently compress the image in a single pass. The used codec is available
at [I32]. It allows an overall good compression for smooth images with relatively
small computational cost. MRP uses explicit prediction and adaptive residue encod-

ing on a multiple-pass optimization routine. Although computationally intensive,
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Table D.5: Lossless compression for smooth images. Results in bits-per-pixel. Best
results are highlighted in bold.

Image JPEG-LS MRP PNG MMP
airplane 3.817 3.591 4.220 3.943
baboon 6.037 5.663 6.210 6.028
balloon 2.904 2.579 3.238 2.830
barb 4.691 3.815 5.199 4.352
barb2 4.686 4.216 5.132  4.659
camera 4.314 3.949 4.674 4.570
couple 3.699 3.388 4.061 3.915
goldhill 4.477 4.207 4.662  4.505
lena 4.607 4.280 4.888  4.489
lennagrey 4.238 3.889 4577 4.212
noisesquare 5.683 5.270 5.671  5.365
peppers 4.513 4.199 4.887 4.500
Average 4.472 4.087 4.785  4.447

Table D.6: Lossless compression for compound and artificial images. Results in
bits-per-pixel. Best results are highlighted in bold.

Image JPEG-LS MRP PNG MMP

pp1205 1472 4.039 2.550 2.736
pp1209 4616  3.903 2785 2.567
scan 002 3.429  3.029 3.729 3.471
scan 004  2.370  2.041 2404 2224
scan_ 006 3.202  2.844 3.037 2.943
shapes 1214  0.685 1.154 0.916
Average 3217 2757 2610 2.476

this algorithm produces one of the best compression rates reported for a large set
of images, outperforming most of other lossless algorithms. The presented results
were obtained with the optimization flag for the predictors set, using the codec
available at [I36]. PNG uses a combination of prediction and pattern matching,
which produces relatively good results, specially for compound images, when com-
pared to other algorithms. It was selected because, as MMP, it is dictionary-based,
resembling the LZ77 algorithm [31]. However, one should bear in mind that, unlike
MMP, that employs a block-based approach, PNG employs a pixel-based approach.
We used the PNG software implementation available at [142], and the results were
further optimized with the pngcrush tool [143].

Tables and show the compression results, in bits per pixel, for all four

encoders.
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In the case of smooth images, the residue after prediction has a probability
distribution that is well fitted by an exponentially decaying model. JPEG-LS and
MRP use this assumption, being able to capture the residues structure using models,
such as Generalized Gaussian models and obtaining good compression results for
smooth images, as we can see in Table[D.5] PNG, on the other hand, does not explore
this smoothness property and cannot compress such images as efficiently. Since PNG
codes its residue using a dictionary approach, despite being asymptotically optimum,
it takes too long to adapt its dictionary to the image statistics. MMP also uses a
dictionary approach for residue encoding. However, as can be seen from Table [D.5]
its compression performance is compatible to JPEG-LS and MRP, due to its faster
dictionary adaption to the image statistics [21].

Algorithms that model the residue using an specific probability function, like the
exponential distribution in JPEG-LS, usually have a good performance for smooth
images. The exponential assumption fits relatively well the residue distribution af-
ter prediction for these type of images. But in the case of compound images, the
smoothness assumption generally does not hold, and thus prediction is not effective.
Therefore, for compound images, the residues distribution does not match an expo-
nentially decaying function. Then, the compression efficiency of MRP and JPEG-LS
is much lower than the one of pattern matching algorithms like PNG, which does
not assume any distribution for the residual data, and adapts itself as the image is
being coded. In Table we can see that dictionary-based encoders such as PNG
and MMP outperform the other algorithms when encoding some of the compound
images of the chosen testset. Those images have a sparse histogram also, which is
well exploited by the dictionary based approaches. If a palletization tool is used in
JPEG-LS algorithm, a much higher compression efficiency can be achieved (namely
2.53 and 2.29 bpp for PP1205 and PP1209 images, respectively). Nevertheless, all
approaches had either to pre-analyze the entire image for coding optimization or
perform multi-pass encoding, while MMP does only a block optimization, and is
able to achieve competitive compression rates for any kind of image, without any
previous knowledge of the source to be encoded.

The MMP prediction step, combined with flexible partitioning, is able to leverage
its dictionary adaptation process and provide a competitive performance for smooth
images, while maintaining a good performance for compound images. Our results
suggest that, on the average, MMP has a very efficient performance for compound
images and a competitive compression efficiency for smooth images, thus having a

good overall performance, when a wide range of image types is considered.
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D.6 Conclusions

In this appendix we evaluated the performance of MMP acting as a lossless en-
coder. A theoretical bound on its redundancy was provided, showing that its rate
converges to the source’s entropy for large enough blocks. The theoretical results
obtained suggest that enhancing the prediction step may lead to an increase in its
lossless coding performance. Based on these results, we propose modifications in its
prediction modes. The experimental results in this appendix and in Appendix [C|
show that the same algorithm, when applied to lossy or lossless encoding, achieves
state-of-the-art PSNR, performance for a wide range of image types, from smooth
to textual images, outperforming in most of the cases state-of-the-art encoders such
as JPEG-LS, H.264/AVC Intra and JPEG2000. Therefore, MMP can be viewed as
an universal tool for image encoding, that can be used for both lossy and lossless
compression. All the code used for the simulations and the results are available

online and can be found in [144].

125



Apéndice E
Multiview image compression

SUMMARY: Due to the novelty of this topic, this appendix provides an overview of
the technologies present in the 3D chain of operation. Section|E. 1| reviews the state-
of-the-art technology that enables the production, coding and display of 3D video
content. Due to its importance, the view synthesis process is detailed in Section[E.2

The standardization activity that has been going on is reviewed in Section [E.5

E.1 Review of the state-of-the-art in multiview
coding

Lately we have been witnessing a growing interest in 3D-media related production,
delivery and displays. A number of major studios have announced releases in 3D.
Broadcasters are starting to offer channels with stereo content using their estab-
lished mono video infra-structure. There are several 3D-ready displays available
in the market, which allow the visualization of 3D content using several different
techniques. The push from production, delivery and display side, that is, all the
elements in the chain of operation of a 3D-video system, is fueling this renewed
interest in 3D [6§].

The present 3D technology incorporates two important concepts: 3DTV and
Free-viewpoint TV (FTV). These are similar technologies, but for historical reasons
are dealt with separately, based on the main focus of each activity [145]. 3DTV is the
perception of depth information from a scene, which is accomplished by providing
clues obtained from binocular parallax! or motion parallax?. FTV allows the user to
change his viewpoint freely, being able to navigate within real world visual scenes.

Both technologies require the capture of multiple views and the rendering of virtual

!The ability to provide depth sensation by showing two slightly different images to each eye.
2The ability to provide depth sensation by showing occluded parts of the scene, when the
spectator moves its viewpoint.
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Figure E.1: Complete chain of operation for a 3D system.

scenes. They are expected to revolutionize the way we watch television nowadays,
providing an innovative immersive experience [146].

Many advanced techniques are used to accomplish 3D-vision. Next we will review
the state-of-the-art technology used in the various stages of a complete chain of
operation for 3D video, as depicted in Figure

E.1.1 The 3D operation chain: capturing, coding and dis-
playing
Representation of 3D media

There are several different ways of representing a 3D data format. The choice of a
certain format will determine both the complexity and the capability of the system,
and is of central importance for its design. In [I46], data representation is classified
according to the number of views (image-based representation) and the number of
depths (geometry-based representation), as depicted in Figure [E.2]

3D computer graphics use a geometry-based representation, where the scene is
described by 3D meshes, with associated texture mapped onto them. View synthe-
sis usually requires sophisticated computational resources, and the rendering quality
may suffer from error prone image processing algorithms, such as object segmenta-
tion and 3D geometry reconstruction. Over the last few years, technological evo-
lution has been able to bridge this gap, but still high-quality productions demands
costly human intervention [145].

Image-based approaches, like the 4D ray-space representation [146], 5D McMil-
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Figure E.2: View-geometry representation, taken from [146].

liam and Bishop’s plenoptic modeling [147] or lightfields [148] have low computa-
tional requirements and can provide a high quality view synthesis. However, a dense
camera setting is mandatory, in order to avoid poor rendering results, which may
occur due to the presence of occlusion, depth quantization and geometry distor-
tion. This implies also increased complexity in terms of data acquisition and data
compression.

Legacy 2D systems use only one view and no geometry information is required.
Image-based stereoscopic perception can be achieved by using two or more views.
The process of transmitting them separately is called simulcast and requires at
least double the data-rate compared to conventional stereo video. According to
the binocular suppression theory [149], stereo vision quality is dominated, to some
extent, by the quality of the higher fidelity view. Therefore, an uneven bitrate
allocation may be used to compress the stereo pair more efficiently.

In order to use the well established 2D video codecs and delivery infrastructure,
two views may be packed into a single frame, using a process called stereo inter-
leaving [I50]. This format describes how the stereo signal may be multiplexed into
a single frame, for example by horizontal or vertical decimation and/or storing in a
side-by-side or top-bottom format. Additional signaling is used to inform the chosen
Frame Packing method. For this purpose, new SEI messages have been specified as
an amendment of the AVC standard [I5I]. This method can be quickly deployed,
but on the other hand spatial and temporal resolution may be lost.

In the case of multiview, such as the 9-view configuration used in autostereo-
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scopic displays, a 9-fold increase in data rate is expected if simulcast is used. More
efficient approaches that exploit the interview dependency have been proposed and
the Multiview Video Coding (MVC) standard, an extension of H.264/AVC, emerged
[152]. However MVC still presents a linear relationship between the data required
and the number of transmitted views [I52], and does not provide a continuum of
output views.

A hybrid approach is the use of 2D+Depth format, that was standardized by
ISO/IEC 23002-3, also referred to as MPEG-C Part 3 [70] [71]. 2D+Depth signals
enable a display independent solution, which can generate an increased number of
views, if needed, being also backward compatible with legacy 2D systems. This
format is also more efficient than the multiview format, since depth data can be
compressed at 10-20% of the bitrate spent to encode the color video. However, this
format is only capable of rendering a limited depth range, adds complexity to the
decoder (that now needs to perform view synthesis) and cannot handle occlusions
appropriately.

Advanced 3D video formats are being considered by the MPEG group. MPEG
envisions a new format that is capable of handling high-quality auto-stereoscopic
displays, is suited for free-viewpoint TV, enables a variable baseline in stereoscopic
displays and decouples the creation from the display of 3D content [69].

Multiple views with associated depth maps (MVD) can be regarded as an exten-
sion of the Video+Depth format. This approach is backward compatible with 2D
and 2D+Depth standards and is flexible enough to implement Free-viewpoint TV.
Structures for efficient representation of the N View 4+ N Depth approach have also
been proposed, like the limited view selection approach by [I53] or the FTV Data
Unit from [154].

An alternative approach to MVD is the use of layers to separate objects in a scene,
and separately sending texture and depth from each layer [155, [156]. However, the
extraction of layer utilizes unreliable depth data, which can result in artifacts at the
reconstructed view.

Following the trend in industry for using stereo content in the production phase,
another format compatible to the present stereo configuration is the depth enhanced
stereo (DES) format. This format proposes the use of the usual stereo pair video,
along with its corresponding depth map information, for an enhanced view syn-
thesis. It is backward compatible with conventional stereo, and still fulfills MPEG

requirements for data rate constraint and high quality view reconstruction [I57].

Capturing

A big challenge in multiview coding is the appropriate capture of a 3D scene. For

image-based data representation, the number of views is directly proportional to
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Figure E.3: Acquisition system for Free-Viewpoint of static scenes, taken from [146].

the quality of the decoded image. However, a tradeoff between costs (number of
cameras, processors, etc.) and quality (navigation range, quality of virtual views)
needs also to be considered.

In the case of static scenes, usually just one single camera is used, where multiple
images of the object are captured with the help of robotic arms, turn tables or a
camera gantry. Figure shows an example of acquisition system that is able to
capture all-around convergent views of an object. For dynamic scenes, an array
of cameras is used. The camera arrangement can vary. Typically, horizontally
aligned cameras are used, but also 1D half-arch, 2D or even dome-based camera
arrangements can be found in the literature, such as the ones seen in Figure [E.4]

In a multi-camera arrangement many issues have to be considered. Cameras
need to be synchronized, the amount of data involved in such systems is huge, and
a post-processing of the acquired images may still be needed. Solutions consider the
external synchronization of the cameras, the use of cluster PCs for real-time process-
ing of the captured multiple video, lens distortion adjustments and color correction
algorithms to cope for differences between the cameras and also improvement of
interview decorrelation [I61]. Another post-processing step includes the centraliza-
tion of the principal point and the equalization of the focal lengths, which aims to
eliminate misalignments between the cameras. This process, depicted in Figure[E.5]
is called normalization.

In both scenarios it may be necessary to synthesize virtual views at space po-
sitions where there is no captured view. For such operation the scene geometry
contained in the depth data, is used to improve the quality of the rendered view.
In order to use the depth data and the texture of different views to synthesize an

image, the pinhole camera model is used [162]. Knowledge of camera’s intrinsic
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Figure E.4: Horizontal camera arrangement at HHI [I58], 2D camera arrangement
at Nagoya [159] and eight cameras placed along a 1D arc spanning about 30° from
one end to the other, at Microsoft [160].

lens
distortion

chromatic
aberration

distorted images corrected images

Figure E.5: The normalization process contains a correction of lens distortions, a
correction of chromatic aberration, a centralization of the principal point and an
equalization of the focal length. Figure taken from [I58].

131



(focal distance, pixel aspect ratio, principal point, etc.) and extrinsic parameters
(position and rotation) is assumed. The process of estimating those parameters is
called camera calibration [163].

Depth information can be obtained in three different ways. For geometry-based
models, it can be extracted directly from the camera position and the geometry
model information. Another approach is the use of active depth range cameras,
which use techniques such as time-of-flight, structured light or light coding, to mea-
sure the distance between objects and the camera. Depth camera usage is limited
to nearby objects, and it usually captures depth of a scene at a slightly different
position and with lower resolution. It is expected that new cameras will come to the
market being able to provide color and pixelwise depth information simultaneously
[82].

A very common method of depth estimation is the use of stereo matching algo-
rithms to extract depth information from a pair of images. This class of algorithms
does a search for corresponding points of the same object across different views. Once
the corresponding points are found, depth information can be extracted by trian-
gulation. Several algorithms have been proposed for both static [73] and dynamic
images [160]. Although there has been a remarkable evolution in stereo matching
algorithms, mismatch at smooth areas and occluded or partially occluded areas may
still cause errors in the depth estimation.

One way to reduce the dimensionality of the search for stereo matches is to
align cameras horizontally, so that the disparity between images occurs only in the
horizontal direction (vertical disparity is null). This is achieved by using an image
rectification process, which corresponds to a virtual rotation of the cameras, until
they are all aligned [162].

Coding

From all the presented formats for 3D video representation, one common character-
istic stands out: the increased amount of data. The straightforward independent
encoding of each view requires low complexity and enables backward compatibility
with 2D systems, but storage and channel capacity limits the use of this solution.
Efficient compression of this great amount of data is then crucial for the deployment
of 3D systems [72].

Video encoders exploit the temporal redundancy in a video sequence to achieve
compression. Therefore, it is expected that higher compression may be achieved for
multiview sequences if the interview redundancy is also used for view decorrelation.
Since cameras capture the same scene from different viewing angles, there is a high
probability that significant interview statistical dependency exists.

To exploit the interview dependencies, disparity compensation techniques are
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used. Similar to motion compensation, a block-based search can be done between
views at the same temporal instant, therefore providing interview decorrelation. So
by inserting the decoded neighboring view in the reference picture list, the encoder
is able to choose between temporal prediction and interview prediction, through the
use of flexible reference picture management. The best prediction mode is selected
in a block-by-block-basis [164].

The standard for Multiview Video Coding (MVC) has been specified as an
amendment of the H.264/AVC standard [9]. It is able to exploit the redundancy
among views with just a minor change in syntax. A backward compatible view is
included in a base layer stream and encapsulated in Network Abstraction Layers
(NAL) units defined for single view video. The other enhancement views are en-
capsulated in a new NAL unit type for multiview video [68]. It is important to
emphasize is that the decoder does not need to be aware of whether the reference
picture is a time or multiview reference, which implies no change of low-level syntax,
and allows it to be compatible with existent H.264/AVC codecs.

A drawback of MVC encoder is the complex structure that arises from temporal
and interview prediction. This limits random access, increases system delay, memory
requirements and adds complexity to the encoding procedure. The limitation of
interview dependency and the omission of interview-prediction for pictures that
already have temporal references can significantly decrease the complexity with only
a small rate penalty, since major gains occur mostly at anchor positions [72].

Coding gains of up to 3.2dB were achieved, but they can be strongly related to
the type of sequence that is being encoded. Problems with large disparities, occluded
areas and color differences between frames can compromise the coding efficiency of
a disparity-based prediction approach. Also a linear relationship exists between the
resulting data rate and the number of views. So there is a practical limitation in
the use of MVC for coding multiple views.

Color and illumination inconsistencies can be corrected by pre-processing the in-
put sequence. Depth-based view synthesis prediction can solve the problem of large
disparities. YEA e VETRO [86] used depth data to warp pixels from neighboring
views and create a synthetic view that is added to the frame buffer structure of the
H.264/MVC encoder. The encoder may choose this new View Synthesis Prediction
(VSP) mode in a rate-distortion sense. KITAHARA et al. [87] presented a differ-
ent approach. The encoder compresses an anchor view and enhancement layers,
obtained from the residual frames between the original neighboring views and the
synthesized view, generated by an anchor view and its corresponding depth data.
Both methods proposed by YEA e VETRO [86] and KITAHARA et al. [87] were not
adopted by the MVC standard due to a change requirement in macroblock decoding

level, but might be revisited for a new 3D coding format. A structure that uses

133



a depth-based prediction was proposed for the MPEG group, the FTV Data Unit
[154].

Another focus of 3D video coding research is the compression of depth maps.
Depth map images are usually piecewise-smooth images, where sharp edge informa-
tion indicates the boundaries of objects at different viewing distances [73]. These
grey scale images can be fed into the luminance channel of a video signal and coded
as luminance-only signals with state-of-the-art video encoders, such as H.264/AVC
or H.264/MVC. However, video encoders are highly optimized for visual content
coding, whereas depth maps are used for rendering only. Coding artifacts (e.g.
depth edge smoothing) may affect the 3D rendering, causing errors such as color
displacement artifacts around foreground objects [82].

A common way to avoid edge artifacts and still profit from transform-based
encoder is to use a Region of Interest (ROI), and code the depth map by parts.
In [77], JPEG2000 is used, together with a ROI that is determined based on the
edge information and encoded separately, using different bit planes. In [I65], edges
are encoded near-losslessly in a separate layer, while the rest of the depth map can
be encoded with any other lossy encoder. Kim et al [I66] propose to use a new
distortion measurement, by deriving a relationship between artifacts in the depth
map and distortion in the rendered view. Bitrate savings can be achieved by heavily
quantizing areas that are immune to depth variations, but are directly related to the
target view position. Similar results are also obtained with a multipass approach,
like the one presented in [167].

Several filtering techniques have also been proposed, that aim to preserve edge
information. In [I68], a low-resolution map is used. The up-sampling filter uses
information from the high resolution color texture to correct and sharpen the edge
information. OH et al. [I69] propose an inloop reconstruction filter that eliminates
coding artifacts in the depth maps and improves the reconstructed images. The
same technique is applied to an up sampling function in [I70], for lower resolution
depth maps.

Another approach is to code the depth using specific-purpose algorithms, based
on geometric representation of the data. In [78] a platelet-based coding algorithm
is proposed. The algorithm employs a quad-tree decomposition of the image, and
approximates each block segment by a piecewise-linear function. Due to its ability
to preserve sharp object boundaries and edges, it presents a high rendering quality.
A drawback of the platelet-based approach is that it appears difficult to extend this
scheme to video.

Other proposals have been presented for depth map compression, which are based
on different encoding tools, such as the combination of non-uniform sampling and

adaptive meshing of images or compressive sensing, as in the work presented by
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Sarkis et al [80} [81]. In [I71], multiple views are warped to a central view and then
encoded using a 3D-DCT scheme, in order to exploit the interview correlation using

the depth data and view synthesis.

Displaying

Lately we have witnessed a remarkable evolution on display technology, and 3D-
ready high definition television is now the newest hit on consumer markets every-
where. The acronym 3D-ready relates to televisions that can identify uncompressed
3D content that was sent using frame packing methods, and appropriately transmit
the respective content for each eye, usually with the help of glasses [172].

Glasses used in 3D systems have the purpose of separating the images for each
eye and providing stereoscopic vision. This separation can be done by wavelength-
division multiplexing (e.g. anaglyphs), by light polarization (e.g., linear polarization
or circular polarization) or by light shuttering (e.g. the widely used shutter glasses)

[173].

Figure E.6: Auto-stereoscopic display requiring 9 views (N = 9), taken from [I73].

Another promising technology for 3D displays is the autostereoscopic display (see
Figure [E.G), which does not require the use of glasses. The multiplexing of left and
right images is done spatially, followed by a light-directing mechanism. The views
can be separated with the use of parallax barriers (e.g, a very thin sheet of aluminum
or inked screen) or lenticular lens (e.g., thin cylindrical microlenses), see Figure .
Nevertheless, this technology usually presents a blurred image due to pixel crosstalk,
requiring high-resolution displays. Moreover, many views are necessary in order to
provide depth cues for motion parallax.

Multiview 3D displays require a greater number of views, but are able to provide
motion parallax. They can be active displays, where the head position is tracked,
or passive, where a large number of views are displayed simultaneously by spatial
multiplexing. An emerging class of multiview displays use scalable multi-projectors.

Those systems offer very high resolution, flexibility, excellent cost-performance, scal-
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Figure E.7: Comparison of lenticular and parallax barriers for 3D displays. Figure
taken from [I74].
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Figure E.8: Advanced 3D video concept based on a multiview plus depth format;
Pos: viewpoint, R: right eye, L: left eye, V: view/image, D: depth. Figure taken
from [145].

ability, and large-format images. Examples of the use of such displays are the mul-
tiprojector displays using lenticular sheet at MERL [175] and joint MIT/Cambrigde
work [176].

E.2 Depth image based rendering

The need for sending a larger number of views for a multiview display may be
suppressed by the use of depth-image base rendering algorithms (DIBR). Figure
shows how DIBR can be used in multiview displays.

DIBR is the process of synthesizing an arbitrary “virtual” view from the refer-
ence images and associated pixel-wise depth information. It uses the framework of
)T

projective geometry, where a 3-element vector (x,y,z)" can be described using a
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Figure E.9: Pinhole Camera Model. Notice that all coordinates are taken with
origin at the optical center, that coincides with the camera position defined by the
coordinate (Xeam, Yeam; Zeam) . -

4-element vector (z',y', 2/, w’)T such that

~

X
y/

y= W (E.2)
P

where w’ # 0. The coordinates (z,y,2)? and (2,4, 2, w')T are called inhomoge-
neous and homogeneous coordinates, respectively.

By perspective projection, a 3D point can be projected onto an image plane
using the so-called pinhole camera model. The center of the perspective projection
is called optical center or camera center. Optical axis is the line perpendicular to the
image plane that passes through the optical center and intersects the image plane
at the principal point (see Figure [E.9).

The projection of a 3D world point (X,Y,Z)T onto the image plane at pixel
)T

position (u,v)" can be determined by the projection mapping (using homogenous

coordinates), given by
p = [K|0s| P (E.4)
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where P = (XY, Z,1)T corresponds to the 3D point and p = (u, v,1)T corresponds
to its 2D projection, both defined with homogeneous coordinates. 03 denotes the
all zero element vector. The projection matrix K is also known as the camera’s

intrinsic matrix, and is given by

fon O: 0
K=10 7f 0, 0 (E.5)
0 1

where f denotes the focal length, (O,, 0,)" corresponds to the principal point co-
ordinate, n models the pixel aspect ratio and 7 the skew of the pixels.

Equation assumes the camera position at origin of the world coordinate
system, which does not necessarily need to be true. Once the camera’s position and
orientation are known, translation and rotation operations can be incorporated into
Equation . The camera’s rotation is modeled by a 3 x 3 matrix R, and its
position is modeled by a 3 x 1 vector C. Their concatenation is a matrix known as

extrinsic matrix. Hence, Equation (E.4]) results in:

" :
R 0] [I; -C
Mol = [K|0s] 0.T 1] or 1 |P
(R -RC
= [KJo P
0, 057 1
X
= KR |Y| - KRC (E.6)
Z

With the help of depth data, a captured image from a reference camera can
be projected into the 3D world, and then reprojected into a target camera viewing
point, a process also called 3D image warping [162], which is depicted in Figure
[E.1I0] At first, the 2D point from the reference view is back-projected into the 3D
space, and will fall at a ray P(\) connecting the 2D point and the camera center
C = (C,,C,,C,)". The 3D coordinate is given by

=C+ AR 'K''p (E.7)

ray P(\)

N <

In the case the depth Z is known, the coordinates X and Y are obtained by calculat-

ing A using the relation A = Z;—SCZ, where (21, 22, 23)7 = R7'K~1(u,v,1)T. Next, the
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Figure E.10: The 3D warping operation is governed by the epipolar geometry. The
epipolar plane is defined by the 3D point P and the camera centers C; and Cs. The
baseline is the line going through the two camera centers, and the epipole is the
image-point determined by the intersection of the image plane with the baseline.
The epipolar line is the intersection of the image plane with the epipolar plane, and
the projection of point P for both planes will be along their respective epipolar lines.

projection onto the target camera is obtained by using Equation [E.6|and the intrinsic
and extrinsic matrices of the corresponding camera. When pixels from the reference
view are reprojected, an occlusion-compatible warp order has to be respected, that
is if multiple pixels warp to the same location in the virtual view, then the pixel
closest to the virtual camera has to assume the warped position. Notice that errors
in the warping operation, such as holes, cracks or ghost contours may occur due
to round-off errors, sampling or ill-defined depth boundaries. Nevertheless, these
projection artifacts may be removed with a post-processing technique.

A warping operation is usually conducted to reconstruct virtual views that are
located between camera positions. So it is possible to have two references and blend
the projected image from both cameras onto the virtual camera view. The remaining
disoccluded parts of the virtual image (that is, the newly exposed image that could
not be visualized by the other two reference cameras) are filled with an inpainting
process.

Different proposals to perform virtual view rendering have been made. ZINGER
et al. [I77] performs forward warping for both texture and depth. A median filter is
applied to the warped depth image, and the modified positions are inverse-warped
with the altered depth value, in order to remove cracks and holes. Ghost contours
are removed by omitting warping of edges at high discontinuities and the occluded
regions are filled by an inpainting algorithm that explicitly uses depth information.

In [I53], an edge detector identifies objects’ borders, and a 7-pixel wide area along
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Figure E.11: Diagram for VSRS general mode, from [I7§].

the detected borders is considered as boundary area. The remaining area is called
the main layer. The extended boundary area is further divided into background
and foreground layer, obtaining a total of three layers. First the main layer is
warped, where pixels that have similar depth from both reference views are linearly
weighted. For pixels with very different depth values (determined using a pre-defined
threshold), than the closest pixel (the one with lowest depth) is chosen. Next the
foreground boundary layer is warped and merged with the main layer, where the
front-most pixel from either layer is chosen directly. At last the remaining holes are
filled with the background layer, or inpainted if no texture information is available.
For an improved subjective quality, foreground objects’ borders are low-pass filtered
to provide a more natural appearance.

MPEG's reference software for view reconstruction (VSRS) enables two possible
reconstruction modes: general mode (Figure[E.11]) and 1D mode (Figure[E.12) [I78].
The general mode is based on the work published by Mori et al [I79]. First, the depth
maps of the reference cameras are warped to the virtual viewpoint with the aid of a
homography transform [I80]. Then the empty pixels are filled with a median filter.
The textures are retrieved by performing an inverse warping from the projected
depth maps back to the reference cameras, a process called "reverse warping". After
that, the texture images are blended, depending on the blending mode choice. The
blending-on mode is a weighted blending based on the baseline distance. So pixels

from the reference camera that is closer to the virtual view are assigned a higher
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Figure E.12: Diagram for VSRS 1D mode, from [I78].

weight, based on the baseline ratio. In blending-off mode, all pixels visible in the
closer reference view are copied to the virtual view, and areas are filled from only
the farther reference view if there is no other view available. At last, the remaining
disocclusions are inpainted using a method similar to the one proposed by TELEA
[181].

Additionally, VSRS also contains a Boundary Noise Removal algorithm [182].
In this mode, the holes caused by occlusion are used to identify object boundaries.
After identifying the background side of the holes based on their depth values, the
holes are expanded into the background, that is, background information is erased
from the warped views and considered as holes. At the same time, noise around
object boundaries is reduced, since the ghost effect is also reduced or removed in
this process. These new holes are filled either with information from the opposite
reference views, or with the inpainting algorithm.

The 1D mode is implemented assuming that the optical axes of the cameras
are parallel to each other and the views are rectified, such that no vertical dispar-
ities exist. Omnly horizontal pixel shifting is necessary for the warping operation.
At first, chrominance information is upsampled to 4:4:4 format and depth infor-
mation is temporally filtered using a simplified algorithm proposed in [I83]. The
color video may also be upsampled, depending on the chosen sub-pixel precision

(half-pel or quarter-pel). Warping of depth and texture is performed with the use

141



of an enhancement technique [I84], which limits the artifacts caused by texture-
depth misalignment (where foreground pixels are scattered to the background) and
miscategorized holes in the foreground (causing leakage of the background texture
in foreground objects). The warped references are merged into one single picture,
where three merging options are available: take the pixel closest to the camera,
average the values proportional to the baseline distance, or perform adaptive merg-
ing, choosing one of the two mentioned merging methods, depending on a given
threshold. At last, the remaining hole areas are filled with background texture in-
formation, by propagating the background boundary pixels horizontally inside the
holes. The image is then downsampled to its original size, and the color format 4:2:0
is restored. Additionally, VSRS 1D mode can also use the Boundary Noise Removal
algorithm [I82].

As pointed out by DO et al. [I85], the inpainting task is responsible for most
of the rendering artifacts and can even decrease the final quality of the image.
Notice that holes in the new view are caused when a foreground object disoccludes a
background area, so missing texture is always present on the background of the scene.
Several proposals were made for this stage (solving the hole filling problem), taking
into account the depth information as well. In [I86], the border that belongs to the
background is reflected to the other side of the hole, and the boundary of the hole will
contain only elements from the background. Therefore, any hole-filling method that
uses color information propagated inward from the region boundaries will correctly
fill the holes with patterns from the background only. ZINGER et al. [I77] uses a
weighted combination of the boundary pixels that belong to the background only,
inversely proportional to the distance of the infilling position and the boundary

neighbor position.

E.3 3D standardization

Standards are an important element of a technical concept, since they enable the
interoperability between different systems of a content delivery chain, by defining
the formats in which data will be handled. These interchangeable formats are typ-
ically specified by international standardization bodies such as I'TU-T Video Cod-
ing Experts Group (VCEG) or the ISO/IECJTC 1 Moving Picture Experts Group
(MPEG). The success of a standard relies on its ability to allow the introduction
of new devices with enhanced capability, but also accounting for the existence of
legacy devices [172].

The 3D area is a clear evidence of the need for standardization. Many differ-
ent formats are in use, but still no predominant technology is in place. Just to

name a few, new standards will be required for 3D video formats aimed at the
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Figure E.13: Target of 3D Video format illustrating limited camera inputs and
constrained rate transmission according to a distribution environment. The 3DV
data format aims to be capable of rendering a large number of output views for
auto-stereoscopic N-view display. Figure appeared in [69].

next-generation of 3D displays, transmission of 3D data, synchronization of eye-
wear shutter glasses, etc. Ongoing standardization efforts are being made by Digital
Cinema Technology Committee (DC28) of the Society of Motion Picture and Tele-
vision Engineers (SMPTE), by the Society of Cable Telecommunications Engineers
(SCTE), by the Consumer Electronics Associations (CEA) and the MPEG society
in a group called 3DAV (for audio-visual) [68].

The standardization activities in the 3DAV group aim to develop a new 3D data
format focused on the next generation of 3D displays. The new format will enable
baseline adjustment for a more comfortable depth perception and also facilitate
support for high-quality autostereoscopic displays [69]. This will allow the decou-
pling of content creation and display requirements, providing a higher number of
high-quality views at the decoder side, without the need to increase the number of
cameras in the production or to increase the data rate for transmission. Figure[E.13]
shows the scope of MPEG’s standardization work on the new 3D format.

MPEG also envisions a data format that is backward compatible with the existent
standards, and also with 2D television (see Figure . A natural evolution of the
available formats would be based on multiview video and depth, but other proposals
should also be taken into consideration (such as the transmission of auxiliary data,
segmentation information, transparency or specular reflection, occlusion data, etc.)
[187].

To develop the new 3D standard, MPEG is up to issue a "Call for Proposals'
(CfP) [11] on 3D Video Coding Technology. Proponents can send video content

coded with their coding scheme, which will be evaluated using the Single Stimulus
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Figure E.14: Illustration of 3D rendering capability versus bit rate for different
formats, where 3D Video aims to improve rendering capability of 2D+Depth format
while reducing bit rate requirements relative to simulcast and MVC. Figure appeared
in [69].

MultiMedia (SSMM) test method. This subjective evaluation will be done in a dark
room using stereoscopic displays (with the help of polarized or shutter glasses) and
also autostereoscopic displays.

For its experimental framework, MPEG selected an appropriate set of test data.
Eleven multiview sequences have been chosen. They all share common characteris-
tics: linear camera arrangement, rectified video, per-pixel depth data for each view
and available camera parameters. All recorded video is progressive and the test data
set covers a representative range of scene content complexity (e.g. in- and outdoor
scenes), resolutions (720x540 - 1280x960 pixel), frame rates (16.7 - 30 fps), and num-
ber of cameras (3 - 80 cameras with 3.5 - 20 cm spacing between two neighboring
cameras) [18§].

The 3D video coding processing chain also comprises a depth estimation step
and a view synthesis stage. In contrast to all previous coding approaches, interde-
pendencies between the pure coding approach and the depth estimation and view
synthesis exist, and need to be considered for the overall 3D video solution. Refer-
ence softwares for both activities are supplied by the MPEG group: DERS (depth
estimation reference software) and VSRS (view synthesis reference software) [178].

MPEG includes the provision of anchors to be used for comparison. These are
being developed in the context of 4 Exploration Experiments (EE): depth map
generation (EE1), view synthesis (EE2), coding experiments (EE4) and 4-View test
scenario (EE5) [I88]. The results will provide a suitable reference technique based
on already known encoders. The anchor coding is carried out for different quality

levels and will serve as a reference for future novel coding proposals.
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Figure E.15: FTV standardization in MPEG, taken from [146].

After the evaluation of the Call for Proposals the collaborative phase of the
standard will start. This will include improvement, extension, or replacement of
algorithms in comparison to the actual reference until best possible technology is
defined. Further detailed textual specifications, performance evaluations, reference
software and conformance bitstreams will be developed. Typically, the collaborative

phase takes 2-3 years, so that the 3DV standard can be expected in 2012 or later

(see Figure [E.15)).

145



Apéndice F

Depth coding using MMP

SUMMARY: The new format for 3D images comprises the transmission of multiple
texture and depth signals. In this appendiz, the encoding of depth maps with MMP
will be investigated. Section[F.1] presents the results of using MMP for coding depth
maps. A discussion on metrics for depth map evaluation is also done and several
results are presented. A proposal for reducing rendering artifacts by improving coding
of depth map edges is given in[F.2 Section presents some conclusions on this
topic.

F.1 Coding depth information with MMP

In this work we propose the use of the MMP algorithm for depth map coding.
Edge information plays a fundamental role in DIBR algorithms, as it is specially
sensitive to coding artifacts. A minor error may cause disturbing visual effects on
the reconstructed image, such as sample scattering and color bleeding. Therefore,
it is expected from depth maps algorithms to preserve this edge information, that
is, its high frequency content.

MMP shares some similarities with the recently proposed platelet-based depth
map coding [78], also being able to preserve edges through a flexible segmentation
and therefore suited for depth/disparity map encoding. It has though an advantage
over Platelet encoders, that is, its coding procedure can be used without any modi-
fication for depth and texture, whereas in the case of platelet encoders this does not
seem to be the case.

MMP also benefits from its dictionary update routine when coding depth maps.
Once a pattern, say a sharp edge, is sliced into several uniform pieces, it can be
efficiently encoded by codewords of the dictionary. The new encoded pattern is
incorporated in the dictionary through an adaptation process. Since an edge usually
spans over several blocks, the recently added edge pattern may be used to efficiently

encode future segments, without further recurring to expensive block segmentation,
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while still being able to represent the sharp edge with high fidelity.

F.1.1 Evaluating coded depth maps

The coded depth maps are objectively evaluated. The depth map images used (or
for some images the equivalent disparity map images used) were taken from the
Middlebury test set! (Teddy and Tsukuba, [24, [73]), from Microsoft? (Ballet and
Breakdancers, [I60]) and from MPEG’s set of reference anchor sequences (Book
Arrival and Champagne Tower, [I58, [159]).

Depth maps from the stereo pairs Tsukuba and Teddy are representative of
depth maps without any errors, that is, they are the ground truth. For the other
sequences, the estimated depth map provided by the sources were used, and they
do not represent the ground truth. Depths maps from the Microsoft group are
related only to the first frame, from two selected viewpoints that are aligned in a
1-D half arch arrangement. Likewise, depth maps from MPEG’s sequences use only
the first frame. However, the camera arrangement for those sequences are aligned
horizontally. Notice that for all tests, we are working with an instantaneous texture,
and not with the video sequence as a whole.

All depth maps were compressed with JPEG2000, H.264/AVC INTRA and
MMP. Furthermore, results for the Platelet encoders of the Ballet and Breakdancers
sequences® are also presented. For the H.264/AVC rate-distortion results, software
JM 16.2 [I89] was used with the high profile. The images were intra encoded, with
a QP varying from 10 to 50. For the JPEG2000, the Kakadu software was used,
with Qstep parameter varying from 15 to 0.005. MMP’s results for lossless encoding
are also presented and compared with lossless coding standard JPEG-LS [66]. This
provides us an attainable bound of the compression capability of our algorithm.

The PSNR results for depth map coding are depicted in Figures to[F.3 For
the encoding of depth values, MMP exhibits an outstanding performance, reaching
almost 10dB of gain over the other tested encoders. Moreover, MMP is also a
good alternative for lossless coding of depth map, providing better results than the
standard lossless encoder, JPEG-LS. MMP is able to efficiently preserve the PSNR
of the high-frequency structures present in the depth values images, which represent
the boundaries of the objects. Since inside the object there is no or little fluctuation
of the depth value, several smooth structures can be found, resulting in a low variety
of patterns in the image. MMP dictionary adaptation scheme benefits from this low
variety of patterns, providing a very efficient encoding of the depth images, as can

be seen on the presented results.

Thttp://vision.middlebury.edu/stereo/
Zhttp:/ /research.microsoft.com/en-us/um/people/sbkang/3dvideodownload/
3http://vca.ele.tue.nl/demos/mvc/PlateletDepthCoding.tgz
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Figure F.1: Rate-distortion for several encoders using disparity maps with ground
truth. The vertical lines represent the rate achieved with lossless compression.
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Figure F.2: Rate-distortion performance for coded depth maps with non-aligned
camera arrangement.
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Figure F.3: Rate-distortion performance for coded depth maps with horizontal align-
ment.

150



Alternative objective depth map measurements

The PSNR value is a common measurement used for image evaluation, since it
is related to the human visual perception. Nevertheless, depth maps will not be
visualized, but yet will be used for the rendering process. Therefore, the PSNR
values can be deceiving and do not always reflect how the algorithm will reconstruct
the image [78, [80]. Here we present other objectives measurements, that aim to
evaluate depth map compression and are not based on the human visual system.
Three different distortion criteria were used: the percentage of wrong disparity
values [81], the Hausdorff distance [78], and the SSIM index [83].

As can be seen in Figure [F.4] the percentage of disparity errors shows that
disparity maps coded with MMP have fewer errors. The total number of errors
decrease are more rapidly when coding disparity maps with MMP, than with the
other two approaches. At very low bitrates, all algorithms have a bad performance,
however from middle to higher bitrates, MMP presents a clear advantage, producing
around half the total errors of JPEG2000 and H.264/AVC.

The Hausdorff Distance is an MSE-like measurement for 3D models, that defines
the distance between two nonempty sets. The depth maps represent the vertices of
3D meshes, and two surfaces can be defined: one using uncoded depth data and the
other with coded depth data. The geometrical distortion between these two meshes
can be given by the average RMS value of the Hausdorff distance over the complete
mesh surface. Therefore, the lower the Hausdorff Distance, the closer the coded
depth map is to the reference value. A tool name MESH [190] was used to obtain
the values for the coded depth maps.

Figure shows the Hausdorff Distance for the first frame of the Microsoft
sequences. The efficiency of the platelet approach is explicit, especially at low or
medium bitrates. MMP also performs well at middle rates, and even outperforms
all the tested encoders at higher rates. However, the Hausdorff Distance indicate
a weakness of MMP’s dictionary-based approach: the relatively bad performance
at low bitrates. At such rates MMP is not able to grow its dictionary with many
patterns, therefore suffering from serious blockiness.

Beyond the mentioned measurements, we propose here the use of the Structural
Similarity Index (SSIM) as a depth map quality assessment tool. The SSIM indicates
if the structure of the image is preserved, since the structural component of an image
is a factor that draws the attention of a human being. In the case of depth maps,
structures are also important, since they are usually related to the objects on the
scene, that will shift position during the warping operation.

For the case of the depth maps from horizontally aligned camera arrangement,

the conclusion that can be drawn analyzing Figure|F.6|is similar to the ones made for

151



100

JPEG2K —%—
o | H264/AVC |
x MMP —e—
80 d

ol B
60 \

Disparity Error (%)
(&)
o

N

40 ;\ K
* \\
20 ~
10
0 0.2 0.4 0.6 0.8 1 1.2
[bpp]

(a) Teddy disparity map

100

JPEG2K —x—
H264/AVC

9% 3\& MMP —e— |
80

— 70

g Nl

5 60r \

] .

> 50 \
©

g A
0 3

ol 8

0 0.2 0.4 0.6 0.8 1 1.2
[bpp]

(b) Tsukuba disparity map

Figure F.4: Percentage of different pixels between the coded disparity maps and the
ground truth. The noisy measurement for the Tsukuba image is due to the sparse
histogram characteristic of the depth map.
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Figure F.5: Measurement of the Hausdorff distance of coded depth maps with non-
aligned camera arrangements.
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Figure F.6: SSIM of coded depth maps with horizontal camera alignment.
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the other measurements. Due to its efficient encoding scheme, flexible segmentation
and high frequency preservation property, MMP is able to code depth maps with
higher fidelity, preserving the structure of the objects in the depth map, as indicated
by the high SSIM value.

Reconstructed images using coded depth map and uncoded texture

It is still recommended to always evaluate not the coded depth maps’ artifacts, but
the rendering artifacts resulted from coded depth data [78, 80]. In our tests we
have used uncoded texture and the respective coded depth maps of both views to
synthesize a central view. Objective measurements were done by comparing the
rendered view with coded depth with the same rendered view with uncoded depth.
Subjective analysis were also made. To measure the quality of the rendered virtual
view with encoded depth maps, a synthetic image was rendered at the same location
and orientation of a selected camera.

In Figure [F.7] an objective measurement is performed by showing the PSNR
values between the virtual view reconstructed with uncoded depth data and the
rendered views with encoded depth maps. MMP suffers from blockiness artifacts,
and performs similar to H.264/AVC in low bitrates, but at medium to high bitrates
it is able to capture the images structure efficiently and outperforms all the tested
algorithms.

Figure|F.8 show artifacts generated by each encoder. JPEG’s ringing artifacts se-
riously compromise the reconstructed view, and all around the ballerina’s boundary
a mixture of background and foreground information can be seen. A better recon-
struction can be achieved with the H.264/AVC encoder, but still many artifacts can
be seen around the ballerina’s finger and along her limits, due to the quantization
of high frequency information. In the case of the Platelet encoded depth maps, we
notice a better preservation of the objects boundaries, although we can still see some
artifacts, such as the lump on the ballerina’s back and the dislocated finger. MMP
encoded depth maps generate rendered views with fewer artifacts than H.264/AVC-
Intra and JPEG2000, better preserving shapes and object boundaries, similar to the
Platelet encoder, but achieving the highest PSNR. Although we can still see some
boundaries issues, MMP is the algorithm that came closest to the synthesized view,
due to its high frequency preservation property, that is, the preservation of edge

information.

Evaluating the reconstruction software with coded depth data

One important issue with evaluating the performance of a system using recon-

structed views is that the DIBR algorithm directly influences the final result. Ac-
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(b) Reconstructed View for Breakdancers sequence (Frame 0, Camera 1)

Figure F.7: Rate-distortion performance for reconstructed views using uncoded tex-
ture and coded depth maps.
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(a) Reconstructed Frame (b) Detail of the reconstructed

frame using original depth maps

) JPEG2000 (30.87dB) (d) H.264 (31.85dB)

) PLATELET (31.76dB) (f) MMP (32.18dB)

Figure F.8: Reconstruction of the first frame of the 4th camera of Ballet sequence,
using the original views of the 3rd and 5th cameras and their respective encoded
depth maps. Figures (¢)-(f) show details of the reconstruction with each depth map
encoded at 0.075bpp.
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tually, the synthesis algorithm creates an interdependency between several elements
of the 3D chain of operation. If the coding stage takes into consideration how the
information will be used for view synthesis, savings can be achieved by modifying
the algorithm accordingly. For instance, KIM et al. [75] use an approximation of
the warping error using specific camera parameters in the rate-distortion algorithm,
instead of the depth distortion. The presented results show an improvement of al-
most 1 dB on average for several sequences. SILVA et al. [167] also use the synthesis
algorithm to determine the distortion of the encoding options, and then optimize
the encoding parameter selection using a genetic algorithm.

The effects of the synthesis algorithm are explicit in Figure The PSNR
values were obtained comparing the obtained virtual views with the actual view
captured by the camera at the synthesis position. One can notice that the VSRS
software shows a higher PSNR value, although it still presents some reconstruction
artifacts, such as the noticeable ghost effect behind the ballerina and some occlusion
problems at the bottom right corner of the frame. Nevertheless, software parameters
can be changed to mitigate this problems, and configuration files are provided by
the MPEG group for their test sequences [188].

Figure shows the rate-distortion performance for the same coded depth
map, only using different synthesis algorithms. This graphic illustrates that the
choice of synthesis algorithm can influence the analysis of the obtained results for
the encoding algorithm, and must be taken into consideration, when evaluating

depth maps.

Reconstructed images using coded depth map and coded texture

The impact of the coded depth data in reconstructing virtual views with coded
texture data is evaluated. For our experiments, we use the texture coded with the
H.264/MVC algorithm. MPEG provides the best combination of QP parameters
for an optimal bitrate allocation between texture and depth in several documents
[191], 192], and the chosen values are reproduced in Table for clarity. The rates
designated for the depth coding used by the MVC software are the target rates used
for the MMP algorithm. An appropriate A is chosen so that both depth maps coded
with MMP do not exceed the total bitrate available.

Figures and show the clear advantage of using MMP instead of
H.264/MVC for coding depth maps. Gains of more than 2 dB were reported. Notice
that the bitrate allocation done by MPEG was already focused on the quality of the
synthesized view, that is, the bitrate allocation was done to improve the synthesized
view, so usually a fair amount of bits were reserved for depth coding. MMP improves
even further the results presented by the MVC software, notably enhancing the edge
information, as can be seen in Figure [F.13] Notice also that the encoding of depth
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(a) 33.245 dB - DIBR algorithm from Zinger et al [177]

(b) 33.557 dB - MPEG’s View Synthesis Reference Software [178]

Figure F.9: Reconstruction of the view of the first frame from camera 4, for the
Ballet sequence.
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(b) First frame of the Breakdancers sequence

Figure F.10: Rate-distortion performance of coded depth maps reconstructing view 4
of the Ballet sequence, using different synthesis algorithms. This example illustrates
the interdependency between the synthesis algorithm and the coding procedure for
depth maps.
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Figure F.11: Comparison of coded depth maps using in the reconstruction with
coded texture as well. The rates used for this experiment were similar to the rates
obtained from the Book Arrival sequence [192], since both sequences’ frame have
the same size.
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Figure F.12: Comparison of coded depth maps using in the reconstruction with
coded texture as well.
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(a) Detail of the reconstructed frame using texture and
depth coded with MVC. The resulting quality is 37.790 dB
at 0.256 bits per pixel

(b) Detail of the reconstructed frame using texture coded
with MVC and depth coded with MMP. The resulting qual-
ity is 38.046 dB at 0.250 bits per pixel

Figure F.13: Subjective comparison of coded depth maps using in the reconstruction
with coded texture as well, for view of camera 9 from Book Arrival sequence (frame
0). The high frequency details of the chair (legs and arms) are better preserved with
MMP.
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Table F.1: Experimental set-up for multiview image coding, taken from the MPEG
documents [I88], 191], [192]. Since Ballet and Breakdancers Sequence have the same
resolution as the Book Arrival sequence, the same rate-distortion points were used,
and a similar optimization for the best QP combination was performed for those
sequences. The table also shows the chosen cameras, left and right views, and the
central view, which will be used for reconstruction

Sequences View(L-C-R) Target Bitrate (Mbps) QPT QPD

Ballet (3-4-5) 03 05 075 125 |38 34 30 24(36 26 22 22
Breakdancers (0-1-2) 03 05 075 125 |36 32 30 26|34 26 22 22
Book Arrival (10-9-8) 03 05 075 125 |36 34 28 26|42 34 34 26
Champagne Tower — (39-40-41) 0.3 0.5 0.8 Lh |42 38 34 28[44 36 24 22

information with MMP is done independently, while the MVC software exploits the
inter-view correlation, being able to compress even further the depth information.
However, the introduced artifacts compromise view reconstruction, something that

the MVC algorithm does not take into consideration.

F.2 Edge-aware coding of depth maps

Edges in the depth map represent object’s boundaries and are usually well-defined.
Coding of depth maps usually introduces artifacts at such edges, and even encoders
such as MMP may, eventually, alter the depth values at objects border reconstruc-
tion. Many proposals have been made for depth map coding, that take special care
at edge areas around objects [76], 84 [85].

We propose a method to improve visual reconstruction of synthesized views that
use coded depth maps by adding a restriction to the compression of the depth
information. A process of edge detection identifies the critical areas of a depth map
that can generate the boundary artifacts on the reconstructed view. Then these

areas are marked as areas where its distortion cannot exceed a given threshold.

F.2.1 Edge identification algorithm

The first step of the proposed solution is to identify the boundaries of objects that
are in the foreground. A 3 x 3 analysis window is used, and the distribution of
the pixels inside this window is analyzed. If the population set of the analysis
window contains only elements of the same object, their depth values are probably
very similar (since we do not have high variations of depth inside the same object),

so the standard deviation of the statistical distribution is small. On the other
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hand, if the window contains both elements from foreground and background, their
statistical distribution should reveal a large standard deviation, since we would
have a distribution with two peaks, centered at the background mean depth and the
foreground mean depth. By comparing the standard deviation with a pre-determined
threshold, we can identify if the window contains an edge or not. We then mark the
central pixel of the window as an edge pixel, but at this point we still don’t know
whether the pixels belongs to the foreground or to the background.

Then, afterwards, we determine if the edge pixel belongs to the background (it
has a larger depth) or the foreground (it has a smaller depth), by comparing the
pixel value with the distribution mean. We then mark all the foreground pixels
that belong to an edge and analyze their 8 closest neighbors, adding neighbors with

similar depths to the foreground object boundary mask. In this manner, we increase

the mask by one pixel, but only in the foreground direction.

(a) Mask for view 0 of the Ballet se- (b) Mask for view 0 of the Breakdancers
quence, frame 0 (Threshold used was 10) sequence, frame 0 (Threshold used was 5)

(c¢) Mask for view 10 of the Book Arrival (d) Mask for view 37 of the Champagne
sequence, frame 0 (Threshold used was 5) Tower sequence, frame 0 (Threshold used
was 7)

Figure F.14: Edge masks obtained with the proposed edge detection algorithm.

Figure shows the mask generated by the edge detection algorithm and the
captions indicate the respective threshold used to obtain the masks. The threshold
was selected as a compromise between the number of detected objects and the rate

spent to encode them.
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F.2.2 Edge coding restriction

Once the objects’ edges are identified, the pixel positions that mark those edges will
have an added restriction in the rate-distortion cost calculation. In those regions,
distortion values larger than a given threshold are forbidden, forcing the algorithm
to encode a block either using a codeword that introduces distortion up to an allowed
level at the marked positions, or segmenting the block and coding each half with
the according allowed distortion level.

We performed several experiments with different thresholds. By setting the al-
lowed distortion to 0, we perform lossless coding of the edges. However, as can be
seen in Figures [[.15] and [F.16], the added restriction demands an increased bitrate,

and a decrease in the overall quality of the depth map. Furthermore, strong blocking

artifacts can be seen in the coded depth maps. This condition is alleviated if the
allowed distortion threshold is increased. However, thresholds too high do not pre-
serve the borders of foreground objects as desired. We found the difference between
the coded value and the original value at the marked edges equal to 5 as a good

compromise between added bitrate and allowed distortion.

F.2.3 Experimental results

Subjective results shown in Figure confirm that views generated with such
coded depth maps present very few boundary artifacts, considerably improving the
synthesized view. However, the added bitrate does not make up for the use of the
technique, in a rate-distortion sense. Figures[F.18 and [F.19|show the rate-distortion

curves for both methods. The low PSNR values from the edge aware procedure are

mainly caused by the blocking artifacts of the coded depth maps. Slanted surfaces
are coded with smooth blocks with different mean value. This causes an uneven block
shift when performing warping with the coded depth values, which results in parts
of the image slightly displaced. Although subjectively this might not be a problem,
objectively, the PSNR values are affected by the block shift. Nevertheless, one
interesting conclusion can be drawn by analyzing the graphics in Figures and
[F.19 The performance of both methods are equivalent for high rates. This means
that the original algorithm is preserving the edge information, given the amount
of bitrate available. It is yet another evidence of the high frequency preservation
property of the MMP algorithm, and also that MMP is an appropriate encoder for
depth map coding.
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(b) Coded depth maps from the Breakdancers sequence, view 0, frame 0

Figure F.15: Optimization of the allowed distortion for the marked edge pixels, in
the edge aware coding of depth maps.
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(a) Coded depth maps from the Book Arrival sequence, view 10, frame 0

70
65 /,
60
g 55
>
I 50
@
5
a 45
40
D=0
35 v D=2 i
D=5 —e—
D=10 ~-v--
30 1 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
[bpp]
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Figure F.16: Optimization of the allowed distortion for the marked edge pixels, in
the edge aware coding of depth maps.
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(a) Details of reconstructed view of (b) Details of reconstructed view of

camera 9 from Book Arrival sequence, camera 9 from Book Arrival sequence,
using MMP to code the depth maps using MMP to code the depth maps
with A = 2500 (39.263 dB @ 0.022 bpp) with A = 300 (43.594 dB @ 0.062 bpp)

(c) Details of reconstructed view of camera 9 from Book
Arrival sequence, using the edge aware version of MMP to
code the depth maps with the same A (42.665 dB @ 0.061

bpp)

Figure F.17: Comparison of reconstructed frames using the edge aware coding pro-
cedure. Notice that the edges of the objects in the view reconstructed with edge

aware coded depth data are well preserved.
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(b) Reconstructed view 1 from Breakdancers sequence, frame 0

Figure F.18: Rate distortion performance of edge aware MMP for the Microsoft
sequences.
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(b) Reconstructed view 38 from Champagne Tower sequence, frame 0

Figure F.19: Rate distortion performance of edge aware MMP for the MPEG se-
quences.
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F.3 Conclusions

In this appendix, MMP coding results for depth maps were presented. MMP has
proved to be an effective tool for coding depth data. It is very efficient for middle
to high rates, showing an acceptable reconstruction. However, for low bitrates it
presents some reconstruction problems due to blockiness. Nevertheless, we advocate
that most of the tested algorithms severely compromise the reconstruction at such
rates, and that the image synthesis procedure is more effective encoding depth data
at higher bitrates.

The proposed technique for edge aware coding of depth maps using MMP pre-
sented good subjective results. On the other hand, the edge aware encoding was not
rate-distortion efficient, since it spent too much bits coding the edge information.
Nevertheless, the results pointed out the importance of edge information of depth
maps for the reconstruction algorithm, and is a strong indication that encoders
that preserve edge information are well suited for depth map coding. The results
confirmed also that the original algorithm indeed preserves the edge information
from middle to high bitrates, reassuring MMP’s position as an efficient depth map
encoder.

MMP also has the advantage of its flexible encoding scheme, being ready to
code both texture and depth. In the next appendix, we will conceive a full encoding
system for 3D images, where MMP is used to code the depth maps and the texture
views. Due to its universal character, MMP is ready to be used for base view and

depth map coding, and at all bit rates, from lossy to lossless.
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Apéndice G

Texture and depth coding using
MMP

SUMMARY: This chapter deals with a multiview coding scenario using only MMP.
Section [G.9 explores the independent coding of texture and depth map using the
MMP. The advantages of using MMP and an optimization scheme for the coding
parameters is also described in the corresponding subsections. Section [G.5 presents
the architecture of a 3D encoder based on MMP that jointly encodes texture and
depth, providing an analysis of the advantage of using the warped frame as prediction.
The experimental results are presented in Section [G.4 Section [G.5 concludes this
appendix.

G.1 Multiview image coding

Regarding the MPEG “Call for Proposals on 3D Video Coding” (3DVC) technol-
ogy [I1], the present standards such as 2D+depth (MPEG-C Part 3, [70, [71]) and
Multiview Video Coding (MVC, as specified by ISO/IEC 14496-10 | ITU-T Rec-
ommendation H.264 [9]), do not provide a solution as they cannot give support for
N-view auto-stereoscopic displays. They either lack the ability to resolve occlusions
or the bitrate requirement for such a large number of views is unacceptable [69].
The new 3D format must be able to transmit an increased number of views
and supplementary material (depth maps) through a constrained channel, thus de-
manding high compression rates. In addition, it has to guarantee that eventual
compression artifacts should inflict minimal visual distortion on the final quality of
the synthesized views [I87]. The development of this new video format will enable
the realization of Free Viewpoint TV (FTV), considered one of the most challenging
3D applications [I54]. The use of multiple texture and depth signals, together with

metadata (e.g., camera parameters), and possibly some additional data (e.g. spec-
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ular and transparency surfaces), is considered for the new 3D data format reference
model by the MPEG [193].

A large number of new algorithms have been proposed for depth-map coding
[77-81], and several adaptations in current video standards, such as H.264/AVC or
H.264/MVC, have been investigated [74H76]. They all aim at the coding of video and
depth maps, targeting the high quality synthesis of virtual views. Most proposals
for depth map coding are suited for depth maps only and can not be easily applied
to texture coding. On the other hand, adaptations of the common texture coding
algorithms, such as in H.264/AVC or in H.264/MVC, for depth map coding do not
fully avoid the introduction of coding artifacts that affect the rendering algorithm.

Proposals that try to jointly encode video and depth data have also been pub-
lished. YEA e VETRO [86] used depth data to warp pixels from neighboring views
and to create a synthetic view that is added to the frame buffer structure and used
for prediction by the H.264/MVC encoder. The proposed prediction is called View
Synthesis Prediction (VSP) mode. Gains have been reported, especially for low to
middle bitrates. A different scheme was presented by KITAHARA et al. [87], that
codes just the residual frame obtained from the difference between the original view
and the synthesized view, generated by an anchor view and its corresponding depth
data. A structure that uses a similar approach was even proposed by the MPEG
group, referred to as the FTV Data Unit [I54]. In [I71], multiple views are warped
to a central view and then encoded using a 3D-DCT scheme, in order to exploit the

inter-view correlation using the depth data and view synthesis.

G.2 Independent multiview coding using the
MMP algorithm

Multiview sequences based on the upcoming 3D format contain multiple texture
and associated depth maps. Regarding independent texture coding, the flexible
segmentation and sophisticated intra prediction scheme of MMP produces results
that outperform state-of-the-art image coders, such as JPEG2000 or H.264/AVC,
in a rate-distortion sense [26]. The high frequency preservation feature of MMP is
a great advantage for depth map coding, as shown in Appendix [F] MMP’s flexible
segmentation and advanced intra prediction provide state-of-the-art results for depth
map compression. In [30], the effectiveness of reconstructing intermediate views with
coded depth data and uncoded texture is shown. Reconstructed views using MMP’s
coded depth data were objectively and subjectively superior to those of the other
tested encoders.

In this section we propose a full MMP-based 3D encoder for both texture and
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depth, where multiple views and associated depth maps are coded independently
with MMP. It will be referred as MMP-standalone. Notice that only static images
are used, not video sequences. The exploitation of temporal correlation will be a
subject of further investigation. We evaluate the compression artifacts using the
same target rates defined by the MPEG group for its anchor sequences [I88] and

compare our proposal with an MVC-based solution.

G.2.1 Texture coding with MMP

For multiview sequences, compression can be achieved by exploiting not only the
temporal redundancy, but also the inter-view redundancy. The inter-view decorre-
lation is performed using a view as reference to the other views and coding only
the residual information. Since the views tend to be similar to each other, a high
compression ratio can be achieved by inter-view decorrelation. Due to MMP’s state-
of-the-art rate-distortion performance for image coding [26], it is expected that the
use of MMP in a multiview coding scenario will provide higher compression gains,
since inter-view decorrelation can benefit from the use of a higher quality reference
view.

Table shows the experimental set-up, such as the selected cameras for the ref-
erence view and the target bitrates. Figures and show MMP’s performance
when coding one of the views, that can be regarded as reference view, of selected
multiview sequences. For medium to high bitrates, MMP outperforms JMVC en-
coder, achieving gains up to 1 dB. Results for other smooth images can be found in
221, 26].

Results are also given for the coding of auxiliary view in Figures and [G.4]
Since the MMP-based algorithm does not exploit the inter-view correlation, its rate-
distortion performance is usually lower than the one of JMVC. However, for se-
quences that were obtained with a non-parallel camera arrangement and possess
geometric distortion from one view to another, such as the Ballet sequence, the
disparity-based prediction used by the JMVC algorithm cannot appropriately model
the correlation between views, resulting in a lower rate-distortion performance than
MMP independent coding.

G.2.2 Optimal bit allocation for independent depth and tex-
ture coding with MMP

For its anchor sequences, MPEG needs to provide the best rate allocation between
depth and texture coding for a pre-defined target rate. Under this context, ex-

periments have been conducted in order to determine the optimal combination of

quantization parameters (QP) to encode the stereo texture and depth [I88].
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Figure G.1: Rate-distortion curves for the first frame of the stereo pair sequences’
reference view.
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reference view.

177



N
w

N
S

I
'—\

A
o

PSNR - Y [dB]
w
o

w
(oo}

w
by}

JMVC 8.3.1
MMPI—standannle

0 0.05 0.1 0.15 0.2 0.25 0.3
[bpp]

(a) Texture used as auxiliary view from Ballet sequence, first frame of
camera b

36

40 T

39

w
[e¢]

PSNR - Y [dB]
w
~

w
»

W
&)

JMVC 8.3.1
MMPI—standannle

0 0.05 0.1 0.15 0.2 0.25 0.3
[bpp]
(b) Texture used as auxiliary view from Breakdancers sequence, first frame
of camera 2

34

Figure G.3: Rate-distortion curves for the auxiliary view of the stereo pair sequences
from Microsoft.
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Figure G.4: Rate-distortion curves for the auxiliary view of the stereo pair sequences

179



In a similar manner, an optimization of the rate allocation parameter A (see
Appendix was performed for the MMP-based encoder. Like the quantization
parameter, this value determines the fidelity level achieved by the encoding process.
A higher A\ will allow more distortion for a lower bitrate, while a smaller A will not
tolerate distortion, at the cost of a higher bitrate usage. The goal is to find the outer
convex hull of the RD points generated by coding texture and depth with MMP,
at different compression levels. The chosen points, in our case, have similar target
rates, as indicated by the MPEG group [I8§].

Figures and [G.0] show the reconstructed view’s PSNR, with the sum of the
rates spent to code both texture and depth. The outer curve is marked, and the
optimal lambda combinations for the target rates are also indicated in Figures
and [G.6] The leftmost value of each pair is the A used for texture coding, whereas
the rightmost is used for depth coding. Similar to [194], we also noticed that the
final quality is very sensitive to the depth fidelity. Therefore, the rate allocation
provides an indication that is more efficient to code depth data with higher quality
than using this bitrate for texture coding.

As a result of this extended analysis, a heuristic method for establishing the
relationship among As that give the optimal rate-distortion performance for the
reconstructed virtual view was derived by DE OLIVEIRA [195]. This results in a
relationship between the A parameter that should be used when encoding texture

(Atexture) and depth (/\depth)a given by

0.75, if 10 < Atexture < 35;
1Oa if 35 < Atexture S 7Oa
Adepth = 3 50, if 70 < Mexture < 250; (G.1)

100, if 250 < Atexture < 500;

500, if 500 < Agexture < 1000;

025, if Atexture < 107

1000, otherwise.

As can be seen also in Figures and [G.6] the heuristic determined is closely
related to the optimal curve at the convex hull of the rate-distortion points. The
only exception is the Book Arrival sequence, which has a higher level of details in the
texture. Therefore, the bitrate requirements for the texture is higher, demanding

more bits for coding.
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Figure G.5: Finding the optimal A combination for coding depth and texture inde-
pendently with MMP for the sequences provided by Microsoft.
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G.3 Encoding texture and depth jointly through
warping

The separate coding of each view does not exploit the inter-dependencies between
them. Thus, coding gains can be achieved if information of one view is used to
code the other view. The use of texture and depth information of one reference
view can generate an estimate of another view, and inter-view decorrelation can be
performed, therefore obtaining compression gains for the auxiliary view.

DIBR (Depth Image Based Rendering) algorithms are able to synthesize a view
at any desired position, under the limitations of the available texture and depth.
Therefore, for multiview coding, it is possible to use a depth/disparity-based syn-
thesized view as prediction for inter-view decorrelation. This inter-prediction is also
known as View Synthesis Prediction (VSP). Nonetheless, until now only marginal
gains have been reported [72]. In this section, we will use the View Synthesis Pre-
diction concept to shape an MMP-based encoder.

In the following subsections, we propose an architecture for joint texture and
depth map coding, named MMP-estimation. The proposed architecture adds the
warped reference in the predictive coding loop to optimize the residue coding, an ap-
proach similar to [86]. For comparison we also show results for the MMP-standalone
architecture, using the optimal A combinations shown in Figures and This
independent coding approach shows the potential of our encoder regarding the edge

preservation feature.

G.3.1 Joint encoding architecture

In our proposal, we use a prediction frame obtained from warping the reference
view camera position to the auxiliary view camera position, using the respective
camera parameters, and the coded depth information of the reference camera. This
prediction is called view synthesis prediction (VSP). For our experiments we have
used the VSRS software [178] to generate the VSP. Since VSRS is able to perform
image extrapolation, the generation of the VSP using one view and its respective
depth map is straightforward. The depth data used for the warping operation was
compressed by MMP, using the same optimal A combinations obtained for the MMP-
standalone case.

We added the warped frame in the prediction loop as an additional prediction
mode. The warped prediction is chosen whenever it results in the lowest Lagrangian

cost:

mode = min(Jyeqe/mode € {H.264/AVC, LSP, VSP}) (G.2)

where H.264/AVC are the intra prediction modes based on the homonymous stan-
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dard, the LSP mode is the prediction mode introduced in [26], and VSP is the new
view synthesis prediction mode.

Figures [G.7 and show the rate-distortion curves of the auxiliary view coded
using the proposed techniques, and also compare them with the MMP-standalone
architecture and JMVC encoder. In camera arrangements that cause geometric dis-
tortions, the advantage of using prediction obtained from view synthesis is notable.
MMP outperforms JMVC encoder for the Ballet and Breakdancers sequences. For
horizontal camera arrangement, where disparity-based prediction is more suitable,
MMP results are very similar to JMVC results, indicating that the prediction is
effective in reducing inter-view correlation and improving the rate-distortion perfor-
mance of the auxiliary view coding.

Since the VSP uses only one view for view generation, this may result in large
occluded areas that must be inpainted by the VSRS software, generating many
rendering artifacts. These artifacts compromise the performance of the prediction
process using the VSP frame. However, at these occluded areas, the encoder may

avoid the artifacts by choosing one of the intra-prediction modes.

G.3.2 Efficiency of the warped image as a predictor

The warping function is an image operation that does not target the reduction
of differences between two views. Indeed, it aims the good reconstruction of a
target view using information from a reference view, which may not necessarily
match what the target camera might be capturing in reality. This task can be very
challenging, specially in the presence of problems, such as occluded areas and depth
maps inaccuracies.

In some cases, it might be appropriate to create a new depth data that has the
purpose of reducing the differences between the auxiliary view and the reference
view, as was done in [86]. However, the rate penalty incurred in sending the depth
data twice might not make this option viable.

Figures and display the PSNR of the images used as prediction consid-
ering three cases: only the prediction modes from the original MMP algorithm [26]
are used (INTRA ONLY), only the VSP mode is used (VSP) or the combination of
MMP’s prediction modes and the VSP mode is used (INTRA+VSP). The predic-
tion image constructed with only intra prediction modes uses information from the
image itself to form the prediction. The VSP prediction uses inter-view information,
that is, information from a different reference view to form the prediction. Finally,
the combination of VSP and intra prediction modes may use information from the
image itself and from the reference view to form the prediction. Notice that the

use of VSP alone has a lower reconstruction quality result, when compared to the
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Figure G.7: Rate-distortion curves for the auxiliary view of the stereo pair sequences
provided by Microsoft.
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Figure G.9: Rate-distortion curves for the prediction for the auxiliary view of the
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(¢c) 0.394 bpp (d) 0.588 bpp

Figure G.11: Prediction efficiency for Breakdancers |G.11(a)HG.11(d)| sequence. The
white areas represent the blocks that used the warped view as prediction.

other two prediction methods. The inpainting of large occluded areas contributes to
the decrease in the PSNR value, even when using higher fidelity texture and depth
data. In the case of combining both intra and inter-view prediction methods, the
intra prediction mode can be used at the areas where the warping operation fails.
Figures and depict the usage maps of the VSP prediction mode for
two different sequences, at several bitrates (lower to higher bitrates are positioned
from left to right), indicated by the white area. Since horizontal camera arrange-
ments usually have less geometrical distortion, the warped prediction presents less
reconstruction artifacts and is better suited for inter-view decorrelation, justifying
the higher adoption of the VSP mode for the Book Arrival sequence in comparison
to the Breakdancers sequence. This mode is particularly useful at low bitrates. As
no extra information is sent, we can obtain an acceptable prediction that is useful for
coding the auxiliary view with no rate penalty. At higher bitrates, other prediction
modes are used, specially in the areas where the warped view does not match the
real view, for example at object boundaries or occluded areas. One suggestion for
improvement of the VSP prediction mode, and also the reconstructed synthesized

view, is the use of depth maps with higher precision and better inpainting algorithms

189



m J4 ;-..F.l:--.l
.\"I n .l n

Ve T ..
" .—a:—. | I | - I

(b) 0.193 bpp

L.l' Y -'L_- '.l'.;-

[ ! - :'LI I .. .r- !I |'|-_|l _-T'_:I--I' -I_l"'l -'_'I-’“ ;

(c) 0.325 bpp (d) 0.561 bpp

Figure G.12: Prediction efficiency for Book Arrival [G.12(a){G.12(d)] sequence. The
white areas represent the blocks that used the warped view as prediction.

[185).

G.4 Experimental results

In this experiments we used two sequences with a 1-D half-arch camera arrangement:
Ballet and Breakdancers sequences from Microsoft [I60], and two sequences with
horizontal camera arrangement, from MPEG’s set of reference anchor sequences:
Book Arrival and Champagne Tower sequences [158, [159]. Both texture and related
depth maps were encoded with JMVC 8.3.1 software, using the coding parameters
and QP combinations obtained from MPEG’s Experimental Experiences [191], [192]
and also described in Table [G.I] The rates reported account for the sum of the
bitrates spent for coding texture and depth of both views. The PSNR values were
obtained comparing the reconstructed view using coded data with the same recon-
structed view using original non-coded data. The camera position where views are
to be synthesized was also obtained from MPEG’s experiments [I8§].

The optimal bitrate allocation, that determined the relationship between A pa-

rameters for depth and texture, was done only for the independent coding of texture
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Table G.1: Experimental set-up for multiview image coding, taken from the MPEG
documents [I88], 191], [192]. Since Ballet and Breakdancers Sequence have the same
resolution as the Book Arrival sequence, the same rate-distortion points were used,
and a similar optimization for the best QP combination was performed for those
sequences. The table also shows the chosen cameras, left and right views, and the
central view, which will be used for reconstruction

Sequences Reference View(L) Auxiliary View(R) Virtual View(C) Target Bitrate (Mbps) QPT QPD

Ballet 3 4 5 0.3 05 075 125 (38 34 30 24136 26 22 22
Breakdancers 0 1 2 0.3 05 075 125 {36 32 30 2634 26 22 22
Book Arrival 10 9 8 0.3 05 075 125 |36 34 28 26142 34 34 26
Champagne Tower 3 40 4 03 05 08 15 |42 38 34 28|44 36 M4 22

and depth. To reduce the scope of our work, the same optimal lambda combination
used for MMP-standalone (relative to the independent coding described in Section
, see Figures and was also used for joint coding. Note that a better
rate-distortion point can be found for the MMP-estimation (relative to the joint cod-
ing described in Section , namely by performing a local search only at nearby
points in the RD plane. On the account of the smooth monotonic properties of the

rate-distortion surface, an extensive search would not be necessary [196].

G.4.1 Coding results

Figures [G.13| and |G.14] show the rate-distortion curves of the view synthesized from
data coded by JMVC 8.3.1 software and the two MMP encoding architectures.

MMP efficiently codes the depth data, as well as texture information. Hence, for

all sequences, the high fidelity of the coded depth map, despite the low bitrate
requirement, allows the generation of the highest quality virtual views. We can
notice up to 4 dB gain for luminance in the Champagne Tower Sequence at high
bitrates (see Figure [G.14(D)). In addition, the PSNR gains vary from 1 dB to 3
dB for the Microsoft sequences at similar rates (see Figures [G.13(a)| and [G.13(b)]).
Both tested versions of MMP (MMP-estimation and MMP-standalone algorithms)

outperform JMVC encoder at all bitrates, for all sequences tested.

G.4.2 Subjective analysis

We show the reconstructed virtual views from Ballet (Figure and Book Ar-
rival (Figure sequences to illustrate the subjective performance. The former
has a non-aligned camera arrangement, causing several geometrical distortions in
the stereo pair. This contributes to the decrease of efficiency of the H.264/MVC

scheme, which performs only disparity-based inter-view decorrelation, and cannot
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Figure G.13: Rate-distortion curves for the reconstructed virtual view of the stereo
pair sequences provided by Microsoft.
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cope with the non-translational motion between cameras. Hence, the advantage of
using the warping function becomes clear, since the view synthesis approach can
compensate non-translational disparities by using the projection model. For the
latter sequence, a horizontal camera alignment is used, reducing geometry-related
effects. Nevertheless, it is advantageous to jointly code texture and depth, since

inter-view prediction can drastically reduce the required bitrate.

) Reconstruction with uncoded data ) JMVC (37.38dB@0.412bpp)
) MMP-standalone (39.80dB@0.421bpp) ) MMP-estimation (39.77dB@0.404bpp)

Figure G.15: Subjective comparison for the reconstructed virtual view of the first
frame of the Ballet Sequence (Camera 4, frame 000).

In Figure it is possible to spot artifacts of depth and texture coding for
the JMVC software and the proposed MMP encoders. The edges of the objects are
specially affected by the H.264/MVC coding, noticeable on the mixture of foreground
and background texture around the ballerina. As for the MMP-based encoders, we

can see a more accurate preservation of the edges, which may be noted specially
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in finer detailed areas, such as the ballerina’s hand. With the MMP-estimation
encoder, the final quality of the reconstructed view is similar to the case when
all the elements are coded independently, but its encoding is more rate-efficient,

spending less bits to code both views and related depth maps.

) Reconstruction with uncoded data ) JMVC (40.346dB@0.4283bpp)
) MMP-standalone (40.335db@0.402bpp) ) MMP-estimation (39.758dB@0.325)

Figure G.16: Subjective comparison of the reconstructed virtual view for the first
frame of Book Arrival sequence (Camera 9).

For the Book Arrival sequence, the usage of the warped frame as prediction for
the MMP demands less bits to generate intermediate views with equivalent fidelity
than the usage of intra modes alone in prediction, as depicted in Figures
and Visual inspection of the details of the reconstructed view in Figure
shows that the ringing artifacts of depth data encoded with the JMVC en-
coder generate sample scattering at the boundaries of the back of the man’s head,

as well as the front part of his nose. These reconstruction artifacts are not present
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at the uncoded reconstructed view, nor at the MMP-encoded reconstructed views.
The preservation of depth edges or discontinuities presented at images reconstructed
after MMP algorithms, assures that synthesized views shall not suffer from typical
artifacts inflicted by transform-based encoders. However, blocking artifacts are vis-
ible in the reconstructed views using texture coded with the MMP. This effect can

be minimized with the usage of deblocking filters, as proposed in [18].

G.5 Conclusions

In this appendix, the performance of a 3D encoder based on the MMP algorithm
was analyzed. At first, results for coding both texture and depth independently were
presented, and also an optimal rate-distortion allocation for both texture and depth
was found. Then, in order to exploit the inter-view dependency, an architecture
was proposed, which uses a warping function and predictive coding for inter-view
decorrelation.

The proposed architecture uses MMP to encode the residues that are obtained
from the difference between the original image and either the warped view or an
intra-predicted image. This architecture is very tolerant to synthesis errors, such
as artifacts resulting from inpainting occluded areas. The view synthesis prediction
mode is used quite frequently, mainly at low bitrates, causing the reduction of the
bitrate burden to code the auxiliary view.

At last, we compared the reconstructed view using the MMP-based encoders and
the JMVC encoder, and we showed that MMP-based encoders outperform JMVC
at all target rates, for all sequences. The MMP algorithm presents less artifacts in
the synthesized views due to its edge preservation property, and views reconstructed
with MMP-coded data show better objective and subjective quality.

This research still has some open topics that can be dealt with in the future.
Methods for enhancing the View Synthesis Prediction, focusing on the auxiliary
view coding, can contribute to the improvement of the encoder. The use of al-
ternative view synthesis methods instead of the VSRS, such as the ones presented
in [I53] [I77], may lead to improved predicted views and more efficient inter-view
decorrelation. The inpainting algorithm has also shown to be able to influence the
result of the residual encoder. Thus, schemes that implement better hole-filling al-
gorithms, specially for large occluded areas, such as the ones proposed in [186], [197],
may also improve this particular encoder architecture. Finally, it is foreseen also an
MMP-based encoder for video sequences, that includes all the evolutions mentioned

so far and also explores temporal correlations.
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Apéndice H
Conclusions and perspectives

SUMMARY: This thesis has presented several proposals for image coding using the
Multiscale Multidimensional Parser algorithm. The techniques presented here suc-
cessfully accomplished their tasks in either decreasing the algorithms complexity, en-
hancing its rate-distortion performance or even developing new coding techniques for
other areas, such as lossless image coding and 3D multiview coding. In this appendiz,
the achievements are summarized and possible extensions of the proposed algorithms
are mentioned. Finally, some perspectives of image coding using the MMP will be

discussed.

H.1 Conclusions and discussion for each individ-

ual contribution

H.1.1 Multiscale multidimensional parser

Latest developments in the MMP algorithm have provided it with a better rate-
distortion performance, at the cost of increased computational complexity. As was
shown in Appendix [B] the addition of flexible segmentation in conjunction with an
hierarchical prediction has dramatically increased the encoding time.

The computational cost of the algorithm was addressed in this thesis. A proposal
for fast decision making of the choice of best prediction mode considering only
the distortion of the residual block, instead of its coding cost was implemented.
The modification allowed a decrease in computational complexity of about 80%.
However, the rate-distortion performance also suffered losses of around 0.25 dB for
smooth images, or even larger losses for compound images.

MMP computational complexity is a critical point and must be addressed. The
proposed technique was one effort in this direction, but many other methods can be

implemented or adapted for the MMP encoding scheme. For example, dictionary
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clean-up approaches and fast search methods for early block decision can also be
incorporated into the MMP framework. Nevertheless, the trade-off between com-
putational gains and rate-distortion performance losses needs to be evaluated. One
promising area for encoding time reduction is the use of parallel processing and
GPUs (Graphic Processing Unit). However, still a great effort in research needs
to be done, in order to determine which routines in MMP are critical and may be

parallelized.

H.1.2 Least-squares prediction in MMP

One feature that provided enhancement in MMP’s rate-distortion performance was
the modification of the algorithm, in order to make it more adaptive, like for example
the flexible segmentation scheme. One element of the MMP-FP algorithm that was
still rigid was the prediction mode. The 9 prediction modes use a fixed neighborhood
weighting function, and cannot adapt its prediction structure to variations inside
the block.

The Least Squares Prediction mode was first proposed for lossless coding, and
assumed a raster scan encoding order of the image. The neighborhood used for
prediction and training used the closest pixels from a non-symmetric half plane, and
presented excellent edge adaptation properties, appropriate for image modeling.

In Appendix [C] we proposed the use of an adaptive least-squares prediction mode
in a multiscale recurrent pattern image encoding framework. At first, a non-trivial
adaptation of the prediction mode for block coding was done. The prediction cal-
culation was modified in order to use pixels positions closer to the position to be
predicted, instead of always using pixels from neighboring blocks.

The technique proved to be very efficient, especially for images with spatial high
frequency content. Gains reported for such images were more than 1 dB, in the
range of middle to high rates. For images with less high frequency content, the new
prediction mode still reported some gains, and the LSP mode was one of the most
used modes for smooth image coding. MMP with LSP prediction also presented
no rate-distortion performance losses for text and compound image. The proposed
method outperforms state-of-the-art, transform-based compression algorithms for
all image types, from smooth to text and compound images.

Despite the increased rate-distortion performance, adding one more prediction
mode also increased the computational complexity, since now one more mode needs
to be tested, involving several dictionary searches. LSP adds another concerning
factor to this problem. Unlike the other fixed prediction modes, the adaptation of
the predictors coefficients has a non-negligible complexity, since it involves an inverse

matrix operation. A future topic for investigation is the use of faster techniques for
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coefficient adaptation.

H.1.3 Lossless image compression using MMP

For the first time, MMP algorithm was evaluated for lossless coding. In Appendix
D] a theoretical bound on its redundancy was derived, proving that MMP lossless
coding rate achieves the entropy of any stationary, ergodic, memoryless source with
finite alphabet. This also indicates how important the prediction stage is, in acceler-
ating MMP dictionary adaptation and improving MMP’s compression performance.

Several lossless coding techniques were adapted and validated in the MMP frame-
work. As indicated by the theoretical results, the improvement of the prediction
stage is beneficial for the algorithms compression capability, and a modification was
adopted in order to use original values closer to the position to be predicted, instead
of far away values from block neighborhood. Techniques to improve residue coding
were also tested, but not adopted, since MMP’s residue encoding, using arithmetic
encoder and an adaptive dictionary, is already efficient enough.

The proposed enhancements were incorporated into the same algorithm used for
lossy coding. Now MMP is able to perform lossless and lossy coding, achieving

state-of-the-art results at all rates, for several types of images.

H.1.4 Depth coding using MMP

The new 3D image format is an interesting challenge for image compression. The
depth data of a scene can be viewed as a luminance only signal, and also encoded as
such. However, the specific characteristics of this type of image make it especially
difficult for encoding. The image presents a mixture of very low frequency signals
with high frequency edge information.

Due to its edge preservation feature, result of all the improvements added to the
MMP algorithm (flexible segmentation and edge adaptive prediction mode), MMP
is an adequate tool for depth map coding. Results provided in Appendix [F| show
that MMP is very efficient for coding depth maps at middle to high rates and also
allows an acceptable reconstruction.

A proposition to add an edge-aware feature in MMP’s encoding loop was made.
Although not rate-distortion effective, the edge-aware technique added showed an
interesting property of the original MMP algorithm: the high quality edge repro-
duction at middle to high rates. An interesting conclusion on this topic is the
importance of edges for depth maps. Coding artifacts at edges compromise view
reconstruction. By preserving edge information, MMP is suited for coding depth

information that will be used for view synthesis.
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However, for low bitrates MMP presents some reconstruction problems due to
blockiness. Since the algorithm does not have enough rate for dictionary adaptation,
the encoded depth images are too heavily quantized, and the view synthesis stage is
particularly affected by the coding artifacts. However, no viable solution is known
at such low bitrates.

MMP also has the advantage of its flexible encoding scheme, being ready to
code both texture and depth. A natural extension of the work presented here is
the development of a full encoding system for 3D images, where MMP is used to
code the depth maps and the texture views. Due to its universal character, MMP
is ready to be used for base view and depth map coding, and at all bit rates, from

lossy to lossless.

H.1.5 Joint texture and depth coding using MMP

In Appendix [G] a proposal for a full MMP-based 3D image encoder was made.
Coding both texture and depth with MMP demanded an efficient bitrate allocation
between the two, and this was also done under the framework of this topic. Our
results have shown the importance of depth coding, and the benefits of using MMP
for coding both elements of the new 3D format. Efficient texture coding and state-
of-the-art results for depth coding were obtained, and view reconstruction using
MMP-coded data was also superior than other encoders.

The first results presented coded texture views independently. However, inter-
view correlation can be exploited by the coding stage of multiple views. In Appendix
[G] we also presented an architecture that jointly exploits the inter-view dependency
using the warping function and predictive coding. The proposed architecture coded
the residues that were obtained from the difference between the original image and
either the warped view or an intra-predicted image. Moreover, we also showed that
the bitrate spent to code multiple views was reduced and that the reconstructed view
using the MMP-based encoder presented fewer artifacts than the ones obtained with
coded data using the JMVC encoder. We showed that rate-distortion performance
of the reconstructed virtual views using the MMP-coded data outperforms rate-
distortion performance of views using data coded with JMVC at all target rates.
The MMP algorithm presents less artifacts in the synthesized views due to its edge
preservation property, and views reconstructed with MMP-coded data have better
objective and subjective quality.

Future developments of this topic include the use of improved warped views, to

increase view decorrelation, and the extension of the proposed technique for video.
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H.2 Key issues and open questions

Though MMP has already demonstrated to be a very effective tool for image coding
and has achieved state-of-the-art performance in several coding scenarios, a number
of open questions still remains.

Do we really need a new image coding procedure, or should we stick to transform-
based schemes? The point of using a different technique for a known-problem is the
ability to think “out of the box”, which allows a disruptive way of dealing with a
problem. This has a great potential of achieving new solutions or even improve the
current ones. The knowledge acquired with MMP can be useful for transform-based
coding techniques as well. MMP can help us understand how images are formed and
how we can represent them more efficiently. Therefore, investigation on methods
such as the ones proposed by the MMP should continue.

Nevertheless, a trade-off between theory and praxis should be reached for the
MMP algorithm. At the actual stage, MMP is still far away from being a practical
solution for image coding, due to its large complexity. However, the developments of
machines with more computational power is a certainty. Computational complexity
burden seems to be less and less important as time goes by. Also, the development
of hardware specific for image processing, such as the GPUs, might pave the way
for making MMP a practical solution too.

This leads us also to another open issue, which is to analyze the impact of the
proposed encoding algorithm using different hardware. How MMP can be modified
to leverage on the potential of hardware specific solutions is a very interesting open
question. Due to MMP’s flexibility, it can be used with different types of images. The
first results published showed a state-of-the-art performance for compound images.

Due to its high frequency preservation feature, MMP is able to encode such
images with more efficiency than transform-based encoders. We have also seen that
the new 3D format benefits tremendously with the MMP approach. With the ever
increasing use of computer graphics mixed with real-life information, with increased
resolution and detailed information, new image formats could arise. MMP has the
potential to be a viable solution for encoding new types of images, or even helping

to understand the critical issues when encoding them.

H.3 Future perspectives for image coding

It is a certainty that in the future we will experience images with greater detail,
videos with higher resolution, 3D images, all due to the evolution of new displays
and the wide spread digital education that we experience nowadays. The easy-access

to digital information through the use of laptops, handheld devices and many other
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technological new gadgets that are coming into the market year by year will enable
access to image and video content by the consumer. This also puts an increased
pressure on image encoding algorithms, that need to cope with the higher standards
for quality acceptance that are being developed by the users.

One typical solution for increasing quality is to decrease the compression, which
may not be a viable solution for some cases. The other solution is to develop
algorithms that are more efficient, that achieve higher compression gains at better
final quality levels. Such proposed algorithms also incur in increased computational
complexity. However, gadgets with increased computational capability will be ever
more available, with accessible prices and tremendous computational power. Parallel
processing is the hardware evolutionary tendency. Multiple cores, specific graphic
processing units with shared memory and multiprocessors will enable solutions that
could not even be realized some years ago.

Finally, it is the author’s opinion that the MMP algorithm can be of great use
for new image formats. The presence of digital manipulation of images and video
through computer vision creates new challenges and also new possibilities for image
coding. The increased mixture of digital content and real content, images and
computer graphics, is propitious for an algorithm that does not assume any typical

behavior of the source’s statistic.

202



Apéndice 1
Pseudo-codes

SUMMARY: This appendix outlines pseudo-codes for the MMP algorithm used in
this thesis. The following subsections analyze each routine of the algorithm with

greater details.

I.1 Main function of the MMP encoder

MMP’s main function can be divided into three local routines:

e Block optimization (block 1). In this routine the optimal coding parameters
will be chosen. After a complete analysis of all the coding combinations, the
segmentation flags, prediction modes and dictionary indexes that result in the
lowest cost will be saved in a tree-like structure, to be passed on to the next

routine. More details are given in Section

e Block coding (block 2). The optimal parameter combination passed on by the
previous routine will be entropy encoded here. The generated bitstream, that
will be later interpreted by the decoder, is the output of this routine. Further

details are discussed in Section [[3]

e Dictionary update (block 3). The coded segments are concatenated and this
new pattern is added to the dictionary in this routine. More details can be
found in Section [L.4l
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{XMXN TMxN J} _
optimize_block and_ pred(XM*N)

{XM S next_block} |’E analyze(7 M*N)

|’B D « update_dictionary(7 M)

NO Last YES
Block? \

Figure 1.1: Main function diagram of the MMP encoder.

X(0,3) | X(1,3)

X(02) | Xt1,2)

X(0,1) 1 X(1,1)

X(0,0) | x (9,

Scam=-

Figure 1.2: Example for clarifying the notation used in the pseudo-code.
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1.2 Block optimization

{XM XN pMxN g } — optimize_block and_pred(X**M)

Step 1 Estimate the M possible block predictions for block X**¥  Notice that

due to lack of neighborhood, some prediction modes might not be allowed.

Step 2 For each prediction m € M, obtain the residual block, that is, the differ-
Rn]\;[ XN __

ence between the original block and the corresponding prediction,
XMxN _ XMxN
Rt

Step 3 Call the optimize_block(RM*") function to code the residual block. The
output will be the reconstructed residue f{% *N " the analogous segmentation

TM><N

tree and the corresponding Lagrangian residue coding cost Je.

Step 4 The total coding cost Jpeq(m, noseg|XM*N) will be given by the sum of

TMXN|R%[XN)

the Lagrangian residue coding cost, Jyes( , with A times the rate

spent to code the prediction mode.

Step 5 If the recently calculated Lagrangian cost is lower than the best Lagrangian
cost so far, then this will assume the new value, Jyest = Jprea(m, noseg| XM *V)

and the reconstructed block will be given by the sum of the coded residue and
the predicted block XM*N = RMxN | X MxN

Step 6 If there is still one prediction mode to evaluate, go back to Step 2.

Step 7 If the block can be divided vertically (that is, either the block vertical
dimension is divisible by two, or the next dimension is larger than the minimum
dimension allowed for prediction, M x N > 4 x 4), go to Step 8, otherwise go
to Step 12.

Step 8 Call the optimize block and pred(Xleft ) function for the left subblock

and keep the Lagrangian cost Jpred (’Zfé\f/éx ), the reconstructed subblock Xleft

and the segmentation tree Zeft

Step 9 Call the optimize block and pred(Xrlght ) function for the right sub-

block, and keep the Lagrangian cost Jpred(’]' fghxt ), the reconstructed subblock

I
S M X % .
X ight- and the segmentation tree ’];lght

Step 10 Calculate the Lagrangian cost for wvertical prediction segmentation

N
Jprea (Vert| XM*N) as the sum of the Lagrangian of each half, Jpred(']ﬁfix ’)+
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N
Jpred (7 i]ghxt 2), with A times the rate spent to indicate that the block (and its

T

prediction) was divided vertically (flag_V_ pred).

Step 11 If the recently calculated Lagrangian cost is lower than the best La-
grangian cost so far, update the best Lagrangian cost with this value Jyest =

Jprea(m, vert| X*N) " and keep the reconstructed block and the segmenta-

. . . S o MxZ
tion tree as the vertical concatenation of both segments (XM*N = [XleftX 2
MG 1. T MxN Mx%  Mx%

X ne t]’ T = [ﬂeft : Tight ])

T

Step 12 If the block can be divided horizontally (that is, either the block horizontal
dimension is divisible by two, or the next dimension is larger than the minimum
dimension allowed for prediction, M x N > 4 x 4), go to Step 13, otherwise
go to Step 17.

M

Step 13 Call the optimizeiblockiandipred(XugpXN) function for the upper sub-
M

block, and keep the Lagrangian cost Jpred(Zup XN), the reconstructed subblock

o My N . Mo
X and the segmentation tree 7y

M
Step 14 Call the optimizeiblockiandipred(Xdi)‘;iv ) function for the lower sub-
M

dzviN), the reconstructed subblock

block, and keep the Lagrangian cost Jpred(

M
7><N

M
o5 XN
- .
Xiwn and the segmentation tree 7,2 .

Step 15 Calculate the Lagrangian cost for horizontal prediction segmenta-
tion  Jprea(hor|XM>*N) as the sum of the Lagrangian cost of each half,
My N
2

M
Jored(Tag =) + Jprea (732 XN), with A times the rate spent to indicate that

down

the block (and its prediction) was divided horizontally (flag_ H_pred).

Step 16 If the recently calculated Lagrangian cost is the lowest achieved so far, up-
date the best Lagrangian cost with this value Jpest = Jprea(m, hor|XM*N) and

keep the reconstructed block and the segmentation tree as the horizontal con-

S ~ Mo N ~ Mo N MoN
catenation of both segments (XM*VN = [X2," : X2 [ TMN = [T27
%XN
down D

Step 17 Return the best cost J = Jyest, the reconstructed block XMxN and the
segmentation tree 7>V Notice that the reconstructed block may be used as
neighborhood of the next block to be coded.
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{RMN TN J 4 = optimize_block(RM*Y)

Step 1 If the block dimension to be optimized is 1 x 1, go to Step 2, otherwise go
to Step 4

Step 2 Search for the best index in the dictionary of patterns with dimension 1 x 1,
that results in the minimum Lagrangian cost, given by the distortion between
the residue value and the chosen codeword (that is, the squared difference
between the residue and the dictionary codeword), added with A lambda times
the rate spent to send the index from the dictionary (Jyes = [|[RY™ — Cil|o +
Arate(C;|C; € DY)

Step 3 Return the reconstructed residue, the segmentation tree and the associated
cost (f{% XN TMXN ' J ). Note that the residue will be used for block re-
construction, adding its value to the prediction in the prediction optimization

function.

Step 4 Search the best index in the dictionary of scale M x N, that is divided in J
segments, where each dictionary segment represents the level of origin of the
codeword. To represent the index, it is necessary to indicate the codewords
respective dictionary segment (j), and which element belonging to that seg-
ment was chosen (Ci(j )). The best index is the one that results in the lowest
cost, that is given by the distortion of the residue being represented by the
dictionary pattern (that is, the Ly norm of the difference between the residue
pattern and the chosen dictionary element, added with A times the rate nec-
essary to send the index (that now will be the sum of rates spent to send the
segment of the dictionary to which the codeword belongs along with the respec-
tive index of the dictionary segments and the flag signalizing that the block
will not be further divided (Jies = ||[RM*N — Ci||2 + Arate(j) + Arate(C;|C; €
DMXN (7)) + Arate(flag_ NOSEG)).

Step 5 If the block can be divided vertically (that is, if the block vertical dimension
is divisible by two), go to Step 6, otherwise go to Step 12.

Step 6 Call the optimize block(RM X%) function for the segment residue to the

N
left, and keep the coding cost of the subblock J (’]Ié\ftx ?), the reconstructed
N

. ~ M x % . . M x 5
residue subblock (R 2 and its segmentation tree 7,

Step 7 Call the optimize_block(R¥* %) function for the segment residue to the

N
right, and keep the coding cost of the subblock J (’];f\gh: 2, the reconstructed
- Mx N N
residue subblock (R?fg;ﬁ and its segmentation tree ’Z;i]\ghi ?
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Step 8 Calculate the Lagrangian cost for vertical segmentation J. as the sum of
the Lagrangian cost of each half, J(7'%) + J(7™) added to A times the
rate necessary to indicate block vertical segmentation (flag V), valid for the

residue only, not for the prediction).

Step 9 If the recently calculated Lagrangian cost is the lowest achieved so far, up-
date the best Lagrangian cost with this value Jyest = Jyer, and keep the recon-

structed residual block and the Segmentation tree as the vertical concatenation

_ N
of both segments (RM*N = [Rleft : Ri\fgﬁt |, TMXN = [’Z}é\fix 2. ’Z;?ght 7))

Step 10 If the block can be divided horizontally (that is, if the block horizontal
dimension is divisible by two), go to Step 11, otherwise go to Step 15.

Step 11 Call the optimize block(RgIXN ) function for the upper segment residue,
and keep the Codlng cost of the subblock J (’Zﬁp ) the reconstructed residue

subblock (Rup N and its segmentation tree

Step 12 Call the optimize block(R%XN ) function for the lower segment residue,
M
and keep the codlng cost of the subblock J( dOWiN) the reconstructed residue
]V[

subblock (RdOwn and its segmentation tree 7,2

Step 13 Calculate the Lagrangian cost for horizontal segmentation Jhor as the sum
of the Lagrangian cost of each half, J(T") + J(T,2 ), added to A times the
rate necessary to indicate block horizontal segmentation (flag_ H, valid for the

residue only, not for the prediction).

Step 14 If the recently calculated Lagrangian cost is the lowest achieved so far, up-
date the best Lagrangian cost with this value Jyest = Jhor, and keep the recon-
structed residual block and the segmentation tree as the horizontal concatena-
tion of both segments (RM*N = [Rup f{down J; TMN = | ﬁw : %ﬁi]\[])

Step 15 Return the best Lagrangian cost Jyes = Jpest, the reconstructed residue

block RM*N and its respective segmentation tree TM*N.
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1x1? NO

YES

Y
[C;Xl = best__index(R1*1, D1x1) ] [ CM*N = best_index(RM*N DM*N (j)) ]

| !

Jres:
‘ Jres = IRXL — Cilfa + "

MxN :
. e [IR — Cil|2 + Arate(j) + Arate(C;|C; €
*rate(mcf €D DMXN (5)) + Arate(flag_ NOSEG)

[ return RM XN TMXN . ]

YES O

N2 e NDY

A,

- Mx N Mmx N L. Mx N
{Rleft g Tgs ,Jres} = optimize_block(R, ;, * ) '

: M/2$\ NO

N
Mx 5

~SMxN  Mx N .
{Rrig:t2 ’Trigl: 2 ,Jres} = optlmlzeiblock(R]rlght )
v YES
Jres(vert| RM*N) =
Mx N Mx X Y
J(T . 2)+ J(T. ., %)+ Arate(flag_ V) _ M M N
left right {Ru‘g N 13N, Jres} — optimize_block(R.2 <)

!

Y e .. O xN
R T2 Jres} = optimize block(R, o )
v
Jres(h0r|RMXN) =
My N My N
J(Tp )+ J(7,2 ) + Arate(flag H)

down

Jbest = Jres (Vert“iM x N)

N N
RMxN — RM*2 . jgM* 2
— left * “right
Mx X Mx X
MXN _ Z . 2
T - [IZEeft . ,Tright ]

l

Jbest = Jres(h0r|RMXN)

M M
RMxN _ [ﬁTXN . RTXN]
vy e
MxN _ (2 XN 5 xN
T - [71113 "Z—down ]

|

Y
_ return
{RMXN’TMXN’ Jres}

Figure 1.4: Diagram for optimization of the residue encoding.
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1.3 Entropy coding

analize(7T M)

Step 1 If the block level to be analyzed is equal to 1 x 1, go to Step 2, otherwise
go to Step 3

Step 2 Encode the dictionary index code index(C;|C; € D'*1) and return.

Step 3 In case the block has been divided vertically, go to Step 4, otherwise go to
Step 9

Step 4 Encode the flag that indicates vertical segmentation of the block. In case
prediction hasn’t been sent yet, use the flag that indicates both segmentation
of the prediction and the block (flag V_ pred), otherwise use the flag that
indicates segmentation of the block only (flag V)

Step 5 In case prediction hasn’t been sent yet, encode the prediction mode.

Step 6 Recursively analyze the subblock to the left, encoding all flags, possible

N
prediction modes, and subblock indexes (aunalize(’]]é\f{X 2))

Step 7 Recursively analyze the subblock to the right, encoding all flags, possible
N

prediction modes, and subblock indexes (analize(’]}f\ghf7))

Step 8 Return

Step 9 In case the block has been divided horizontally, go to Step 10, otherwise go
to Step 15

Step 10 Encode the flag that indicates horizontal segmentation of the block. In
case prediction hasn’t been sent yet, use the flag that indicates both segmen-
tation of the prediction and the block (flag_ H pred), otherwise use the flag
that indicates segmentation of the block only (flag H)

Step 11 In case prediction hasn’t been sent yet, encode the prediction mode.

Step 12 Recursively analyze the upper subblock, encoding all flags, possible pre-
N
)

Step 13 Recursively analyze the lower subblock, encoding all flags, possible pre-

M
diction modes, and subblock indexes (anahze(’];kfwiN))

M
diction modes, and subblock indexes (analize(Za? "

Step 14 Return

Step 15 Encode the flag that indicates that the block (and also the prediction) has
not been divided (flag_ NOSEG)
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Step 16 In case prediction hasn’t been sent yet, encode the prediction mode.

Step 17 Encode the dictionary segment (j) that indicates the level of origin of the
block (code_ dic_segDM*N(4))

Step 18 Encode the index of the chosen codeword (code_index(C;|C; € DM*N(4)))

Step 19 Return
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I.4 Dictionary update
D « update_ dictionary(7M*¥)

Step 1 In case the block has been divided vertically, go to Step 2, otherwise go to
Step 5

Step 2 Update the dictionary  with  the subblock to the left
N
(updateidictionary(’]Ié\f{X 2)), and keep the codeword index that indicates the
subblock that was added to the dictionary (Ciest)

Step 3 Update the dictionary with the subblock to the right
N
(updatefdictionary(Ti]\ghi 2)), and keep the codeword index that indicates the

T

subblock that was added to the dictionary (C,ignt)

Step 4 Update the dictionary with the concatenation of both subblocks
(dic_update(Ciest, Crignt)), and return the new index (D;). Note that this
function is related to the update of several scales, and also the super update
routine, adding symmetric blocks (—C;), rotated blocks (T{C;}) or dislocated
blocks (C;(x + 9)).

Step 5 In case the block has been divided horizontally, go to Step 6, otherwise go
to Step 9

Step 6 Update the dictionary with the upper subblock
MX
(update_ dictionary(7u3 N)), and keep the codeword index that indicates the
subblock that was added to the dictionary (C,,)

Step 7 Update the dictionary with the lower subblock

M
5 X N
,deOWIl

(update_ dictionary( )), and keep the codeword index that indicates the

subblock that was added to the dictionary (Cuown)

Step 8 Update the dictionary with the concatenation of both subblocks
(dic_ update(Cyp, Caoun)), and return the new index (C;). Note that this func-
tion is related to the update of several scales, and also the super update routine,
adding symmetric blocks (—C;), rotated blocks (T{C;}) or dislocated blocks
(Ci(x +9)).

Step 9 Return the chosen index that represents the block (C;)

214



ournolI vyepdn A1euor}dIp oy} I0j WRISRI(] Q'] 9INSI]

/™ N N

ﬁ 'q uangad g
ﬁ Aﬁasﬁo r&§Ov®€m@Q5|U_ﬁ — sU g
(e+2)=q w ﬁ ( Zmﬁgvbgoﬁo%\ﬁmwm: — 1By g
W
t
{}1L=a w ﬁ AZX mﬂﬁvhmdﬁoﬁowﬁ\wpdﬁaﬁ —an, g
D—-=>a w ﬁ (#ubr4 44215 )egepdn orp = *) w
t
[fo:1l=a u ﬁ Ahpxquvbgoso%lﬁmgs — b g
N
ayepdn  oIp »
ﬁ (g xw,wwwv%pdcoﬂo%|®uﬁvaz — f\ED Q
N

ON

215



Apéndice J

List

of publications

SUMMARY: This appendix presents the published work, resulted from the investiga-

tion done during this thesis. The scientific contributions appeared in international

and national conference proceedings and international journals.

e Proceedings in Conferences

i)

ii)

iii)

iv)

GRAZIOSI, D. B., RODRIGUES, N. M. M., DA SILVA, E. A. B., DE
FARIA, S. M. M., SILVA, V. M. M., “Fast Implementation for Multiscale
Recurrent Pattern Image Coding”, In: 7th Conference on Telecommuni-

cations, Santa Maria da Feira, Portugal, May 2009

GRAZIOSI, D. B., RODRIGUES, N. M. M., DA SILVA, E. A. B., DE
FARIA, S. M. M., DE CARVALHO, M. B., “Improving Multiscale Re-
current Pattern Image Coding with Least-squares prediction mode”, In:

Proceedings of the IEEE International Conference on Image Processing,
Cairo, Egypt, pp. 2813-2816, November 2009

GRAZIOSI, D. B., N. M. M., DA SILVA, E. A. B., DE FARIA, S. M.
M., DE CARVALHO, M. B., SILVA, V. M. M., “Codificacao de Imagens
com Predicao Adaptativa Baseada no Critério de Minimos Quadrados”,

In: Anais XXVII do Simposio Brasileiro de Telecomunicacoes, Blumenau,
SC, Brasil, September 2009

GRAZIOSI, D. B., RODRIGUES, N. M. M., PAGLIARI, C. L., DA
SILVA, E. A. B.,, DE FARIA, S. M. M., PEREZ, M. M., DE CAR-
VALHO, M. B., “Multiscale Recurrent Pattern Matching Approach for
Depth Map Coding”, In: Proceedings of the 29th Picture Coding Sympo-
stum - PCS2010, Nagoya, Japan, pp. 294-297, December 2010

e Articles in Journals

216



i) GRAZIOSI, D. B., RODRIGUES, N. M. M., PAGLIARI, C. L,
DA SILVA, E. A. B., DE FARIA, S. M. M., DE CARVALHO, M.
B.,“Compressing Depth Maps using Multiscale Recurrent Pattern Image
Coding”, In: FElectronics Letters, Vol. 46, No. 5, pp. 340-341, March,
2010

e In preparation or submitted

i) GRAZIOSI, D. B., RODRIGUES, N. M. M., PAGLIARI, C. L., DA
SILVA, E. A. B., DE FARIA, S. M. M., PEREZ, M. M., DE CARVALHO,
M. B.,“Joint coding of texture and depth using multiscale recurrent pat-

tern matching”, in preparation for submission

ii) GRAZIOSI, D. B., RODRIGUES, N. M. M., DA SILVA, E. A. B., DE
FARIA, S. M. M., DE CARVALHO, M. B., SILVA, V. M. M., “On the
performance of lossless image compression using multiscale recurrent pat-

tern matching”, in preparation for submission

iii) GRAZIOSI, D. B., PAGLIARI, C. L., RODRIGUES, N. M. M.,
DA SILVA, E. A. B., DE FARIA, S. M. M., DE CARVALHO, M.
B.,“Codificacao de mapas de profundidade usando casamento de padroes
multiescalas”, submitted to : SBrT 2011

217



Apéndice K
Test set

SUMMARY: Available in this appendix are the original images used in simulations
throughout the thesis. The same images can be downloaded from MMP’s website
(http: //www. lps. ufrj. br/profs/ eduardo/ mmp ).

K.1 Smooth images
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Figure K.1: Airplane (512 x 512).
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http://www.lps.ufrj.br/profs/eduardo/mmp

Figure K.2: Baboon (512 x 512).

Figure K.3: Balloon (720 x 576).
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Figure K.4: Barb (720 x 576).

Figure K.5: Barb2 (720 x 576).
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Figure K.6: Cameraman (256 x 256). Figure K.7: Couple (256 x 256).

Figure K.8: Goldhill (720 x 576).
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Figure K.9: Lena (512 x 512). Figure K.10: Lennagrey (512 x 512).

Figure K.11: Noisesquare (256 x 256).
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Figure K.12: Peppers (512 x 512).

Figure K.13: Shapes (512 x 512).
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K.2 Compound images
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K.3 3D images

(a) Texture (b) Disparity

Figure K.19: Tsukuba (384 x 288).

) Left Disparity

SRt E——

(c ) nght Texture d) Right Disparity

Figure K.20: Teddy (450 x 375).
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Figure K.21: First Frame of the Sequence Ballet (Luminance-only, 1024 x 768) and
respective depth maps, from cameras 0 to 7, from left to right.
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Figure K.22: First Frame of the Sequence Breakdancers (Luminance-only, 1024 x
768) and respective depth maps, from cameras 0 to 7, from left to right.
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(b) Cam 8 Depth

e

(¢) Cam 10 Texture (d) Cam 10 Depth

Figure K.23: First Frame of the Sequence Book Arrival (Luminance-only, 1024 x

768).

) Cam 39 Depth

(¢) Cam 41 Texture ) Cam 41 Depth

Figure K.24: First Frame of the Sequence Champagne Tower (Luminance-only,
1260 x 960).
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