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Aprovada por:
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10. Frames de Weyl-Heisenberg 11. Dici-
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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D. Sc.)

REPRESENTAÇÕES DE SINAIS USANDO DICIONÁRIOS REDUNDANTES

Lisandro Lovisolo

Agosto/2006

Orientadores: Eduardo Antônio Barros da Silva

Paulo Sérgio Ramirez Diniz

Programa: Engenharia Elétrica

Nesta tese, representações de sinais usando dicionários redundantes são em-

pregadas a sinais de distúrbios elétricos. O processo de decomposição baseia-se num

algoritmo iterativo e voraz conhecido como Matching Pursuit e utiliza um dicionário

de senóides amortecidas. A cada iteração ele seleciona um átomo do dicionário para

ser adicionado à representação. As representações obtidas são empregadas em tare-

fas de processamento de sinais como filtragem e compressão com perdas. Quando

algoritmos de decomposição como o Matching Pursuit são empregados em esquemas

de compressão com perdas, faz-se necessária a quantização eficiente dos coeficien-

tes na representação. Apresentamos o projeto de quantizadores de Lloyd-Max para

esses coeficientes. Tal projeto utiliza um modelo estat́ıstico do ângulo entre o si-

nal a ser decomposto e o átomo escolhido pelo critério voraz. Os quantizadores de

Lloyd-Max projetados apresentam bom desempenho taxa×distorção. Apresentamos

um teorema que mostra que se o dicionário empregado no Matching Pursuit contém

uma base ortonormal, então o Matching Pursuit possui uma probabilidade não-nula

de produzir uma representação exata do sinal com um número finito de iterações.

Definimos ainda o conteúdo tempo-freqüência de um frame como o somatório das

distribuições de Wigner-Ville de seus elementos. Tal definição permite determinar

se um dado conjunto de elementos em um espaço de Hilbert é um frame deste es-

paço. A análise de frames de Weyl-Heisenberg gerados a partir de uma função par

permite povoar efetivamente dicionários formados por elementos de frames de Weyl-

Heisenberg, fornecendo dicionários que obtêm bons desempenhos em algoritmos de

decomposições vorazes.
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Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements

for the degree of Doctor of Science (D. Sc.)

SIGNAL REPRESENTATIONS USING OVERCOMPLETE DICTIONARIES

Lisandro Lovisolo

August/2006

Advisors: Eduardo Antônio Barros da Silva

Paulo Sérgio Ramirez Diniz

Department: Electrical Engineering

In this thesis, signal representations using overcomplete dictionaries are ap-

plied to the representation of electric disturbance signals. The decomposition process

is based on an iterative greedy decomposition algorithm known as Matching Pur-

suit and employs a dictionary of damped sinusoids. At each iteration, it selects a

new atom from the dictionary to be summed up in the signal representation. The

signal representations obtained are then employed for signal processing tasks inclu-

ding filtering and lossy compression. When Matching-Pursuit-like decompositions

algorithms are used for lossy signal compression, efficient quantization of the coef-

ficients employed in the signal representation is required. We present the design of

Lloyd-Max quantizers for these coefficients. This design uses a statistical model for

the angle between the signal to be decomposed and the atom selected in the gre-

edy loop. The Lloyd-Max quantizers designed are shown to perform very well in a

rate×distortion sense. We provide a theorem showing that if the dictionary includes

an orthonormal basis then the Matching Pursuit has a non-zero chance of obtaining

exact signal expansions using a finite number of dictionary atoms. We also define

the time-frequency content of a frame as the summation of the individual Wigner-

Ville distributions of the elements in the frame. This definition allows to determine

if a given set of elements in a Hilbert space is a frame in this space. The analy-

sis of Weyl-Heisenberg frames generated from even prototype functions allows to

effectively populate dictionaries formed by elements of Weyl-Heisenberg frames, yi-

elding dictionaries with good rate×distortion performance in greedy decomposition

algorithms.
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5 Conteúdo Tempo-Freqüência de Frames 40
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busca da quantização da freqüência e da procura do suporte temporal. 20

3.5 Desempenho da heuŕıstica de discriminação de senóides no primeiro

passo das decomposições dos sinais S2 e S3. . . . . . . . . . . . . . . 22

3.6 Primeiras três componentes identificadas no sinal S4. . . . . . . . . . 23

3.7 Compressão do sinal R1 através da quantização do parâmetros dos
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Caṕıtulo 1

Introdução

1.1 Representação Atômica de Sinais

Os gregos nos legaram o conceito de átomo – unidades indiviśıveis de maté-

ria. Uma metodologia largamente utilizada pela humanidade é: primeiro, dividir o

mundo natural em pedaços ou partes - átomos; a seguir, escolher um subconjunto

dessas partes (desprezando outras) e utilizá-lo para construir um modelo aproxi-

mado do mundo natural. Os impactos dessa metodologia na evolução da ciência

são enormes; por exemplo, a idéia originalmente apresentada por Erwin Schrödinger

em 1943 de que caracteŕısticas hereditárias estariam armazenadas por combinações

limitadas de cristais foi confirmada ao desvendar-se a estrutura do DNA. Represen-

tações atômicas de sinais assemelham-se a tal metodologia, pois objetivam extrair

partes do sinal que permitam construir uma boa aproximação do mesmo.

A representação atômica de sinais consiste da utilização de formas de onda

pré-definidas (átomos) para expressar sinais. Desta forma, um sinal x deverá ser

representado por uma combinação linear de poucas formas de onda selecionadas a

partir de um conjunto pré-definido, o dicionário D. Os sinais gi, que estão inclúıdos

em D, são as formas de onda que podem ser utilizadas na combinação linear, e são

chamados de átomos ou elementos. Algoritmos que obtêm representações atômi-

cas de sinais escolhem um subconjunto de M elementos gi(m) do dicionário D que

aproxima um sinal x via

x ≈ x̂ =

M
∑

m=1

γmgi(m), gi(m) ∈ D. (1.1)
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Cada átomo gi(m), indexado por i(m), utilizado na aproximação de x pode ser inter-

pretado como uma caracteŕıstica intŕınseca do sinal x de “peso” γm, possibilitando

assim tanto a codificação compacta como a estimação de caracteŕısticas do sinal.

Essa situação encontra paralelo na linguagem oral e escrita. Um dicioná-

rio contém as palavras de uma ĺıngua, e ĺınguas são redundantes, pois permitem

expressar uma idéia de diferentes formas. Um dicionário redundante contém uma

quantidade de elementos maior que a necessária para gerar o espaço de sinais. A

redundância permite representar um sinal de várias formas e escolher uma delas

para expressar um sinal.

Os átomos (elementos da “tabela periódica”) compõem todas as moléculas

conhecidas. Apesar de os elementos da molécula de benzeno serem conhecidos,

somente após Kekulé sonhar com uma cobra comendo o próprio rabo o ciclo hexa-

carbono foi compreendido. As propriedades de compostos qúımicos dependem em

grande parte de como seus elementos estão ligados. Similarmente, em decomposições

atômicas de sinais, não só os elementos selecionados são relevantes, mas também a

forma como eles estão combinados; isto é, procura-se uma combinação linear, como

a da equação (A.1), que forneça um boa representação do sinal.

Freqüentemente, classificamos as coisas hierarquicamente. Ao olhar o céu no-

turno, é raro não pensar sobre as constelações ou aglomerados de estrelas, a seguir

sobre as estrelas em si, e depois, talvez, sobre os posśıveis planetas que orbitam

as estrelas. Utilizamos a Classificação Taxonômica das Espécies para classificar as

formas de vida a partir do reino até a espécie. Sistemas de classificação hierárquica

agrupam coisas conforme caracteŕısticas comuns ou proximidade f́ısica, e o agru-

pamento de coisas a partir de caracteŕısticas comuns pode ser interpretado como

agrupamento por proximidade f́ısica num modelo/espaço conceitual. Decomposi-

ções atômicas permitem as duas formas de agrupamento. A proximidade f́ısica entre

caracteŕısticas do sinal pode ser obtida utilizando-se um dicionário que contenha

a mesma forma de onda em diversas escalas geométricas. A classificação de sinais

conforme suas caracteŕısticas comuns pode ser obtida comparando as representações

atômicas (os átomos e os pesos) de diferentes sinais.

Atualmente, pesquisas em neurociência e psicologia estão mapeando áreas

especializadas do cérebro utilizadas para fins distintos e espećıficos. Quiçá a atomi-
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zação, o particionamento e a classificação do mundo natural sejam inatos à nossa

organização cerebral. Nestas tarefas duas questões recorrentes são: i) Quais são os

blocos constituintes das coisas naturais? ii) Como esses blocos estão combinados?

Representações atômicas utilizam combinações lineares de elementos pré-definidos

para representar sinais. Os posśıveis blocos constituintes são determinados pelos ele-

mentos do dicionário, enquanto algoritmos de decomposição atômica visam a obter

tanto os blocos constituintes de um sinal quanto a forma como eles estão combinados.

Bases são freqüentemente constrúıdas para salientar caracteŕısticas espećıfi-

cas de sinais, e possuem uma miŕıade de aplicações. Entretanto, não há flexibilidade

e tampouco liberdade na escolha da representação de um sinal em uma base; como a

representação é única, se desejarmos expressar um sinal de maneira diferente, então

outra base deverá ser empregada; em outras palavras, quando bases são utilizadas

para representar sinais, os elementos utilizados na representação estão previamente

determinados. Além disso, algumas aplicações podem requerer a expressão de sinais

utilizando elementos que sejam linearmente dependentes (um dos elementos é uma

combinação linear dos outros), o que as bases não permitem. Quando uma estra-

tégia de decomposição usando um dicionário redundante é empregada, os átomos

na representação do sinal podem ser escolhidos a posteriori, isto é, dependendo do

sinal; e os átomos utilizados na representação podem ser linearmente dependentes.

Representações atômicas têm sido empregadas na filtragem e remoção de

rúıdo de sinais [76,84] e na análise de fenômenos f́ısicos (reconhecimento de padrões

e modelagem de sinais [58, 59, 64, 69, 72, 84, 107]), bem como em análises tempo-

freqüência [84,85] e harmônica [37,58] de sinais. Representações atômicas são empre-

gadas também em esquemas de compressão de sinais [2,9,37,44,88]. Recentemente,

elas foram utilizadas para discriminar processos Gaussianos [63].

1.2 Expansões em Frames

O cérebro é uma grande rede de neurônios, e há grande evidência de que

essa rede opera em paralelo. Vários neurônios recebem o mesmo est́ımulo simulta-

neamente, produzindo diferentes respostas que são entregues a outros neurônios em

diferentes pontos da rede. No fim, a excitação ativa alguns neurônios que determi-
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nam a resposta ao est́ımulo recebido. Ao invés de selecionar alguns átomos, todos

os elementos de um dicionário poderiam ser utilizados para representar sinais. Isto

traria uma flexibilidade similar à da rede neuronal cerebral, pois o padrão de entrada

seria, assim, comparado a (projetado sobre) todos os elementos do dicionário. Tal

abordagem leva ao conceito de frame.

Duffin e Schaeffer introduziram o conceito de frame em seu trabalho sobre

séries de Fourier não harmônicas [38]. Nas duas últimas décadas, frames tornaram-

se uma área de pesquisa muito ativa, que tem produzido diversos resultados teóricos

e aplicações [17, 26, 27, 84]. Frames podem ser descritos como “bases” redundantes

ou sobre-completas; um frame de um espaço H é um conjunto de elementos que gera

H. Logo, um frame G = {gk}k∈K de H pode ser utilizado para expressar qualquer

x ∈ H via

x =
∑

k∈K
ckgk, (1.2)

onde ck são chamados de coeficientes do frame. Como G é sobre-completo o conjunto

de coeficientes do frame não é único. Uma forma de obter os coeficientes ck é através

da utilização do frame inverso ou dual G̃ = {g̃k}k∈K, que fornece as fórmulas de

reconstrução

x =
∑

k∈K
〈x, gk〉g̃k =

∑

k∈K
〈x, g̃k〉gk. (1.3)

Como G é sobre-completo, G̃, em geral, pode assumir diversas formas [17].

A projeção de um sinal em um frame fornece quanto de cada elemento do

frame há no sinal, permitindo inferir caracteŕısticas do sinal. Como os elementos

de um frame não são obrigatoriamente linearmente independentes e, portanto, tam-

pouco ortogonais, caracteŕısticas parecidas entre si podem ser observadas a partir

da expansão de um sinal em um frame. Quando os elementos de um frame são li-

nearmente dependentes, o conjunto de coeficientes do frame pode ser alterado para

destacar ou enfatizar determinadas caracteŕısticas do sinal. Além disso, podemos

projetar frames para aplicações espećıficas, dependendo das caracteŕısticas que de-

sejamos extrair dos sinais ou analisar neles.

Quando representamos um sinal x utilizando um frame, os elementos da

representação estão selecionados a priori; entretanto, a expansão em frames permite

utilizar elementos com propriedades especiais. O teorema Balian-Low [26] mostra

4



que não é posśıvel construir uma base com elementos que sejam bem localizados no

domı́nio do tempo e no da freqüência simultaneamente. Como a representação de

sinais em um frame não necessita ser única, as imposições à definição dos elementos

de um frame são menos restritivas que para os elementos de bases. Isso permite

que frames possuam elementos melhor localizados no domı́nio do tempo e no da

freqüência simultaneamente, quando comparados aos elementos de uma base.

As aplicações de frames, para citar algumas, estendem-se desde codificação

de sinais [84], incluindo a amostragem de sinais [17,38,84], análise de sinais [27,84] e

detecção de transitórios [51, 52], até o projeto de sistemas de comunicações [17, 99].

1.3 Estrutura da Tese

Esta tese trata de decomposições atômicas e de expansões em frames – repre-

sentações de sinais usando dicionários redundantes. O Caṕıtulo 2 revisa conceitos

básicos sobre representações atômicas e frames.

O Caṕıtulo 3 apresenta representações coerentes de sinais adquiridos em sis-

temas de distribuição de energia. Representações coerentes visam à obtenção de

uma aproximação do sinal relacionada aos fenômenos f́ısicos representados no sinal

observado.

O Caṕıtulo 4 realiza um estudo estat́ıstico do algoritmo de decomposição

de sinais conhecido como Matching Pursuit, que constrói a representação do sinal

selecionando um elemento a cada iteração. O modelo estat́ıstico é empregado no

projeto de quantizadores para representações obtidas com o Matching Pursuit.

O Caṕıtulo 5 introduz o conceito de conteúdo tempo-freqüência de frames.

A partir deste, uma nova condição suficiente para que uma famı́lia de elementos

seja um frame é apresentada. O conceito de conteúdo tempo-freqüência de frames

é então aplicado na análise de frames de Weyl-Heisenberg.

O Caṕıtulo 6 apresenta as conclusões.

Os caṕıtulos 2 a 6 apresentam resumidamente o conteúdo dos apêndices A a

F. Os apêndices (escritos em inglês) apresentam mais detalhes, deduções, explicações

e resultados. Assim, a leitura desta tese pode restringir-se aos apêndices.
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Caṕıtulo 2

Conceitos Básicos

Neste caṕıtulo são discutidos alguns aspectos relativos à representação de

sinais utilizando dicionários redundantes. Começa-se pela apresentação de funcio-

nalidades e caracteŕısticas tanto importantes como desejáveis de representações atô-

micas. Depois, foca-se no algoritmo de Matching Pursuit, um algoritmo que constrói

representações de sinais selecionando um átomo a cada iteração. A seguir, são discu-

tidos dicionários para decomposições atômicas. Então, revisam-se aspectos básicos

da teoria de frames. Discute-se ainda a utilização de frames como dicionários.

2.1 Representações Atômicas

A decomposição atômica de sinais pretende obter um subconjunto de M ele-

mentos gi(m) de um dicionário D que aproxima um sinal x através da representação

de M termos:

x ≈ x̂ =

M
∑

m=1

γmgi(m), gi(m) ∈ D. (2.1)

2.1.1 Distorção da Aproximação

Podemos definir a distorção em que incorremos ao utilizar uma representação

de M termos para aproximar um sinal x como

d(x, M,D) = ‖x − x̂‖ =

∥

∥

∥

∥

∥

x −
M

∑

m=1

γmgi(m)

∥

∥

∥

∥

∥

. (2.2)

Tal distorção depende de três fatores: i) a quantidade de elementos M utilizados na

aproximação; ii) os átomos gi(m) usados para expressar o sinal; iii) e os pesos γi dos
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átomos na representação de M termos. Como os átomos utilizáveis na representação

de M termos são especificados por D a distorção depende de D.

2.1.2 Completude do Dicionário

Dicionários devem ser completos. Para que combinações lineares de M ter-

mos formadas com átomos de um dicionário D sejam capazes de representar qualquer

sinal x ∈ X com distorção d(x, M,D) arbitrariamente pequena, D tem que ser com-

pleto em X. Assim, deverá existir pelo menos uma combinação linear de elementos

de D que produza x̂ = x, ∀ x ∈ X, ou seja, D tem que gerar o espaço X. Dici-

onários são normalmente ditos sobre-completos ou redundantes, já que, em geral,

eles possuem mais elementos que os necessários para gerar o espaço. A redundância

do dicionário permite usar diferentes combinações lineares de elementos de D para

expressar um dado x ∈ X.

2.1.3 Adaptabilidade

É desejável que os átomos utilizados na representação de um sinal sejam es-

colhidos de acordo com o sinal, ou seja, adaptativamente. Por isso, algoritmos que

obtêm representações por M termos são chamados de algoritmos de decomposição

adaptativa de sinais [1,29,59,62,72,84,85,105]. O uso de um dicionário redundante

é um pré-requisito para obter representações adaptativas, pois assim pode-se esco-

lher uma dentre diferentes combinações lineares dos elementos do dicionário para

representar um dado sinal. O algoritmo empregado na decomposição influencia a

representação por M termos obtida, pois diferentes critérios podem ser usados para

selecionar os seus átomos.

2.1.4 Aproximações e Estimações

Aproximações adaptativas discriminam (ou separam) a informação relevante

do rúıdo. A informação relevante é definida pelos elementos que podem ser utilizados

na representação, ou seja, pelo dicionário. Assim, decomposições atômicas podem

ser entendidas como estimadores de sinais que retêm somente a informação presente

no sinal relacionada aos átomos selecionados para expressá-lo.
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2.1.5 Compacidade ou Esparsidade

A representação mais compacta ou esparsa de x é aquela que utiliza o menor

número de átomos [36, 59, 66, 105] com distorção nula. Na prática, não se busca

necessariamente o menor número de átomos; um pequeno conjunto de átomos que

aproxima o sinal com uma distorção aceitável pode ser suficiente. Assim, a espar-

sidade de uma representação está relacionada ao número de termos M , e à medida

que M cresce, menos compacta ou esparsa é a representação.

2.1.6 Representações Coerentes

Quando lidamos com processos f́ısicos, o sinal observado é uma mistura de

componentes pm, que representam fenômenos f́ısicos, dada por

x =
∑

m

βmpm + n, (2.3)

onde n é o rúıdo inerente à observação. Quanto mais parecidos forem os átomos gi(m)

e seus pesos γm utilizados na representação de um sinal x com as componentes pm e

seus pesos βm presentes em x, melhor será a representação obtida para modelagem

do sinal e reconhecimento de padrões; tais decomposições são ditas coerentes.

2.1.7 O Algoritmo de Matching Pursuit

O algoritmo de Matching Pursuit (MP) [84,85] é um algoritmo voraz [32,104]

que aproxima sinais iterativamente. Seja D = {gk} com k ∈ {1, . . . , #D}, tal que

‖gk‖ = 1 ∀k e #D é a cardinalidade de D, isto é, a quantidade de elementos em D. A

cada iteração n ≥ 1, o MP procura pelo átomo gi(n) ∈ D, que possui maior produto

interno com o sinal residual rn−1
x

[84, 85], por isso este algoritmo é dito voraz. O

átomo selecionado é subtráıdo do reśıduo, obtendo-se

rn
x

= rn−1
x

− γngi(n); com γn = 〈rn−1
x

, gi(n)〉, (2.4)

o produto interno entre o reśıduo a ser decomposto e o átomo selecionado gi(n). O

reśıduo inicial é r0
x

= x. O MP obtém então uma representação/aproximação de x

dada pela representação de M termos

x ≈ x̂ ≈
M

∑

n=1

γngi(n). (2.5)
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O erro ou distorção após M iterações do MP é o M-ésimo reśıduo rM
x

= x − x̂.

Na prática as iterações do MP (o cálculo de γn, i(n) e rn
x
) prosseguem até que um

critério de distorção pré-estabelecido como ‖rn
x
‖, um número máximo de passos n,

ou um dado valor para uma medida de aproximação sejam atingidos.

O critério de seleção voraz garante a convergência do MP [29, 84, 112], i.e.,

lim
n→∞

‖rn
x
‖ = 0. Defina o ângulo máximo entre um sinal qualquer x pertencente ao

espaço de sinais X e o elemento mais próximo de D

Θ(D) = arccos

(

min
x∈X

[

max
i∈{1,...,#D}

( |〈x, gi〉|
‖x‖

)])

. (2.6)

Mostra-se, ver seção B.2.2, que Θ(D) fornece um limitante superior para a distorção,

num dado passo n do MP, dado por

en = ‖rn
x
‖ ≤ ‖x‖ sinn (Θ(D)). (2.7)

2.2 Dicionários

Conceitualmente, o dicionário mais simples é um conjunto finito de elementos

D = {gi}i∈I . Neste caso, gi ∈ D pode ser indexado através de i ∈ I = {1, . . . , #D},
onde #D é o número de elementos em D, a sua cardinalidade.

Um dicionário completo permite representar qualquer sinal com um erro de

aproximação arbitrariamente pequeno. Entretanto, o emprego de um dicionário

completo não garante a obtenção de uma representação compacta, tampouco coe-

rente.

A probabilidade de encontrar um átomo no dicionário possuidor de grande

semelhança com o sinal a ser decomposto aumenta com #D [54, 62, 84]. Logo, a

utilização de dicionários com #D grande é desejável em algumas aplicações, possibi-

litando que D contenha átomos semelhantes a todas as componentes potenciais dos

sinais a serem decompostos.

2.2.1 Dicionários Parametrizados

Os próprios átomos, além de #D, também influenciam a probabilidade de

encontrar um átomo em D possuidor de grande semelhança com as posśıveis com-

ponentes de um sinal. Assim, um aspecto importante no projeto de D é a forma de
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onda de seus elementos. Se a classe de componentes que podem estar representadas

no sinal é conhecida então uma boa estratégia é utilizar átomos que se assemelhem

a essas componentes [54,62,84]. Uma estratégia largamente empregada é a definição

dos elementos de um dicionário a partir de funções protótipos. Tais dicionários são

ditos parametrizados pois cada elemento gσ é definido pelo valor de um conjunto de

parâmetros

σ = (σ0, σ1, . . . , σK−1) ∈ S, (2.8)

onde K é a quantidade de parâmetros que definem gσ e S é o conjunto de todos os

valores posśıveis de σ. Se S possui um número finito de pontos então o dicionário

é indexável. Nesse caso, a codificação de uma representação em M termos (os

átomos gi(m) e seus pesos γm, 1 ≤ m ≤ M) consiste na codificação dos pesos e dos

parâmetros σ dos átomos.

Parâmetros Cont́ınuos Em algumas casos é interessante utilizar parâmetros con-

t́ınuos. Isso permite adaptar, a cada passo de decomposição n, o conjunto de pa-

râmetros definidor do átomo σ(n) ao reśıduo a ser decomposto rn−1
x

. Dessa forma,

σ(n) pode assumir qualquer valor dentro de uma região do espaço S. O algoritmo

de decomposição apresentado no Caṕıtulo 3 obtém parâmetros cont́ınuos para os

átomos.

2.2.2 Compromissos de Dicionários

A cardinalidade do dicionário impacta:

i – A complexidade computacional: em geral, o custo computacional dos algorit-

mos que obtêm representações atômicas está relacionado a #D, de forma tal

que quanto maior for #D, maior será, em geral, o custo computacional dos

algoritmos.

ii – A taxa de codificação: a taxa necessária para codificar cada um dos átomos

utilizados nas representações cresce com #D.

Em decomposições vorazes, como o MP, alguns dos fatores que influenciam

o erro máximo e a taxa de convergência do algoritmo são:

• Θ(D), ver equação (2.6), que limita a norma do erro em cada passo.
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• O ângulo médio Θ(D), entre os vetores provenientes de uma fonte X , que

possui densidade uniforme na superf́ıcie da esfera (a função de densidade de

probabilidade de x ∈ X depende somente de ‖x‖, ou seja, x possui a mesma

função densidade de probabilidade em qualquer direção do espaço), e os átomos

mais próximos em D, isto é

Θ(D) = E

{

arccos

[

max
i∈{1,...,#D}

(|〈X , gi〉|)
]}

. (2.9)

Utilizaremos tanto Θ(D) como Θ(D) para avaliar o desempenho de dicionários

em algoritmos vorazes de decomposição de sinais.

2.3 Frames

O conceito de frame foi introduzido por Duffin e Schaeffer num estudo sobre

séries de Fourier não harmônicas [38] em 1952. Frames só chamaram a atenção da

comunidade cient́ıfica em 1986, quando Daubechies, Grossman e Meyer [28] perce-

beram que frames podem ser entendidos de maneira semelhante à de expansões em

bases e a relação entre frames e wavelets foi estabelecida [26, 27, 68].

Uma seqüência de elementos {gk}k∈K em um espaço H é um frame de H se

existirem constantes A, B > 0 tais que [7, 17, 27, 84]

A‖x‖2 ≤
∑

k∈K
|〈x, gk〉|2 ≤ B‖x‖2, ∀x ∈ H. (2.10)

Os números A e B são chamados de limitantes inferior e superior do frame,

respectivamente. Diz-se que um frame está normalizado se ||gk|| = 1, ∀k ∈ K [27].

Um problema recorrente é como determinar se um conjunto de elementos gk em H

é um frame de H, isto é, como caracterizar frames [17].

O frame inverso {g̃k}k∈K ao frame {gk}k∈K fornece as fórmulas de reconstru-

ção

x =
∑

k∈K
〈x, g̃k〉gk =

∑

k∈K
〈x, gk〉g̃k. (2.11)

É comum a definição de justeza ou aperto de um frame a partir de seus

limitantes: quão mais próximos A e B forem entre si mais justo ou apertado é o

frame. A justeza do frame indica qual a variação do escalamento das energias de

sinais representados a partir de suas projeções sobre os elementos do frame.
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2.3.1 Frames em Espaços de Dimensão Finita

Num espaço vetorial N -dimensional, em geral, utilizamos frames com um

número finito de elementos K e a equação (2.10) torna-se

A‖x‖2 ≤
K

∑

k=1

|〈x, gk〉|2 ≤ B‖x‖2, x ∈ H
N . (2.12)

É comum definir o operador do frame [17]

S : H
N → H

N , S{x} =
K

∑

k=1

〈x, gk〉gk. (2.13)

Em espaços vetoriais, S é uma matriz quadrada [17]. Se ρi são os auto valores de S,

então os limitantes do frame são dados por A = mini ρi, e B = maxi ρi [17]. Logo,

se S = AIN (IN é a matriz identidade de ordem N) teremos A = B e Sx = Ax,

neste caso o frame é dito justo ou apertado (do inglês tight).

2.3.2 Frames de Weyl-Heisenberg

Um frame de Weyl-Heisenberg ou de Gabor é um frame de L2(R) obtido

através de operações {EmbTnag(t)}m,n∈Z, sobre uma função fixa g(t), com a, b > 0.

As operações Embg(t) e Tnag(t) são definidas como

Translação por a ∈ R, Ta : L2 (R) → L2 (R) , (Tag) (t) = g (t − a) ; (2.14)

Modulação por b ∈ R, Eb : L2 (R) → L2 (R) , (Ebg) (t) = g(t)e2πbt. (2.15)

Os requisitos de a, b e g(t) para que {EmbTnag}m,n∈Z seja um frame de L2(R) e a

obtenção de frames em espaços discretos e vetoriais são discutidos na seção B.4.4.

2.3.3 Dicionários a Partir de Frames

Podemos usar um frame como dicionário em algoritmos de decomposição

adaptativa de sinais. Considerando que {gk}k∈K é um frame normalizado de HN ,

para todo x ∈ HN existe ao menos um gk tal que 〈x, gk〉 6= 0. Desta forma, sendo

θ(x, gk) o ângulo entre x e gk, para todo x tem-se que (ver seção B.5)

A‖x‖2 ≤ ‖x‖2
∑

k∈K
| cos (θ(x, gk)) |2 ≤ B‖x‖2, (2.16)

A ≤
∑

k∈K
| cos (θ(x, gk)) |2 ≤ B. (2.17)
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Quanto maior for o valor de
∑

k | cos (θ(x, gk)) |2, maior será a “concentração” de

elementos do dicionário em direções similares à de x. Quanto mais próximos forem

A e B, mais parecidas serão as “concentrações” de elementos do frame em todas as

direções de HN .

2.4 Contribuições da Tese

Decomposições atômicas de sinais podem permitir representações eficientes

e coerentes de sinais, reconhecimento de padrões e compressão de sinais, entre ou-

tras tarefas. A consecução dessas tarefas depende tanto do projeto do dicionário

utilizado como do algoritmo que obtém a decomposição. No Caṕıtulo 3 apresenta-

mos representações coerentes de distúrbios em sistemas de distribuição de energia

elétrica. Para obter uma representação significativa, do ponto de vista do sistema

f́ısico, um algoritmo que gera decomposições coerentes usando senóides amortecidas,

relacionadas aos fenômenos f́ısicos observáveis, é desenvolvido. A efetividade do mé-

todo de decomposição apresentado é validada via testes em sinais artificiais e reais.

Posteriormente mostra-se como utilizar a representação obtida para compressão de

sinais com altas taxas de compressão conjugadas a boas razões sinal-rúıdo.

No Caṕıtulo 4 projetam-se quantizadores para coeficientes de decomposições

obtidas via Matching Pursuit. Para isso, os coeficientes são modelados a partir dos

ângulos entre os reśıduos e os átomos selecionados a cada iteração do algoritmo. Um

estudo estat́ıstico desses ângulos permite modelá-los, aproximadamente, como inde-

pendentes e identicamente distribúıdos a cada iteração. Esta modelagem permite

estimar as estat́ısticas dos ângulos em iterações do Matching Pursuit a partir das

estat́ısticas do ângulo na primeira iteração de decomposições de sinais provenientes

de uma fonte Gaussiana sem memória. O modelo estat́ıstico é aplicado no pro-

jeto de quantizadores de Lloyd-Max para coeficientes de decomposições obtidas via

Matching Pursuit. As curvas operacionais de taxa×distorção obtidas para os quanti-

zadores projetados são similares às do estado da arte em quantização de coeficientes

do Matching Pursuit.

O Caṕıtulo 5 define o conteúdo tempo-freqüência de frames a partir da dis-

tribuição de Wigner-Ville. Tal definição fornece uma nova condição suficiente para
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que uma famı́lia de elementos seja um frame. A definição apresentada é utilizada

para analisar frames de Weyl-Heisenberg gerados a partir de uma função protótipo

simétrica. Tal análise mostra como“entrelaçar” frames de Weyl-Heisenberg de forma

a gerar frames mais “justos”. Este resultado é empregado para gerar dicionários a

partir de frames de Weyl-Heisenberg “entrelaçados” que obtêm bom desempenho no

Matching Pursuit.
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Caṕıtulo 3

Representações Coerentes e

Eficientes de Sinais Elétricos

O entendimento dos distúrbios ocorridos em sistemas de distribuição de ener-

gia é uma necessidade crescente. A legislação exige a monitoração do sistema em

diversos pontos. Na monitoração, utilizam-se equipamentos que digitalizam e arma-

zenam medições, em particular das grandezas de corrente e tensão, o que se denomina

oscilografia, para posterior análise por especialistas. Com a crescente quantidade de

pontos monitorados, a quantidade de oscilogramas também cresce e provoca uma

sobrecarga de informação. Neste contexto, surgem dois problemas:

1. Como lidar com a sobrecarga de informação?

2. Como projetar sistemas capazes de fornecer rapidamente ind́ıcios e análises

sobre os distúrbios e falhas?

Este caṕıtulo apresenta um método para a decomposição e representação de sinais

elétricos que objetiva enfrentar as questões acima. O algoritmo de decomposição

apresentado obtém uma representação coerente com as componentes do sinal, o que

facilita a identificação do fenômeno, além de permitir a compactação dos arquivos

de oscilografia com expressiva qualidade.
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3.1 Modelo de Sinais Elétricos

Um bom modelo para representar sinais elétricos é uma soma de senóides

(harmônicas de uma freqüência fundamental F ) amortecidas [94]

x(t) =

M
∑

m=1

γm cos (2πkmFt + φm)e−ρm(t−t0m ) × [u(t − t0m
) − u(t − tfm

)]. (3.1)

Cada componente m, utilizada para representar x(t), é determinada por uma sêx-

tupla (γm, kmF , ρm, φm, t0m
, tfm

), onde γm é a amplitude da componente, kmF a

sua freqüência (em múltiplos da freqüência fundamental F ), ρm o amortecimento da

exponencial, φm a fase da senóide, e t0m
e tfm

são, respectivamente, os instantes de

ińıcio e fim da componente (u(t) é a função degrau unitário). Um conjunto formado

por M dessas sêxtuplas pode permitir uma representação compacta e acurada do

sinal.

Apresentamos um algoritmo, baseado no Matching Pursuit (MP), que identi-

fica as diferentes componentes senoidais amortecidas, dadas por sêxtuplas (γm, kmF ,

ρm, φm, t0m
, tfm

) presentes em um sinal.

3.2 Algoritmo de Decomposição

A Figura 3.1 apresenta o diagrama em blocos do algoritmo de decomposição

(nele estão indicadas as seções do Apêndice C onde cada um dos blocos é descrito). A

cada iteração do algoritmo de decomposição encontra-se um átomo em conformidade

com o modelo de sinal, equação (3.1). O processo de decomposição divide o problema

de obtenção dos 5 parâmetros dos átomos (kmF , ρm, φm, tsm
, tem

) e seus pesos Aq de

forma a obtê-los com um esforço computacional praticável. A seguir, descrevemos

os objetivos e o funcionamento de cada um dos blocos.

Matching Pursuit com Átomos Gaussianos de Parâmetros Cont́ınuos A

primeira etapa de cada iteração é a decomposição do reśıduo corrente usando um

dicionário de átomos de Gabor

gσ(t) =
Kσ√

s
g

(

t − τ

s

)

cos (ξt + φ), com g(t) = 2
1
4 e−πt2 (3.2)

de parâmetros σ = (s, τ, ξ, φ) cont́ınuos e fase φ ótima. Kσ normaliza o átomo, ou

seja, Kσ impõe ‖gσ(t)‖ = 1. Para obter átomos de parâmetros cont́ınuos, a cada
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Figura 3.1: Diagrama em blocos do algoritmo de decomposição de sinais elétricos.

passo da decomposição, primeiro faz-se uma procura num dicionário de parâmetros

quantizados [85]; os parâmetros quantizados são, então, utilizados como palpites

iniciais na procura pelo melhor conjunto de parâmetros cont́ınuos. Os átomos en-

contrados possuem fase φ ótima, esta é a que maximiza o produto interno do átomo

com o reśıduo para um dado valor do conjunto de parâmetros σ. Para encontrar

a fase ótima a implementação emprega átomos complexos, e não reais como os da

equação acima; a fase ótima do átomo real é obtida a partir das projeções do reśıduo

sobre as partes real e imaginária do átomo complexo. Os processos de obtenção de

átomos com parâmetros cont́ınuos e da respectiva fase ótima são descritos na seção

C.2.

Procura do Melhor Suporte Temporal Devido à voracidade do MP, os átomos

selecionados, em cada passo, podem introduzir artefatos de pré-eco e pós-eco (rúıdos

que aparecem antes e após a região de interesse do sinal, respectivamente). Por

exemplo, a Figura 3.2 apresenta o sinal sintético S1 (ver Apêndice C), e a Figura

3.3.(b) apresenta a aproximação obtida após 4 iterações do MP fazendo a procura do

melhor átomo senoidal amortecido a cada iteração (a obtenção do átomo senoidal
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será descrita a seguir). Nas Figuras 3.3.(a) e 3.3.(c) podemos observar o pré-eco

(principalmente) e o pós-eco que surgem no sinal reconstrúıdo. Para eliminar esses

efeitos indesejados janelam-se os átomos via

gσl
= Kσl

gσ(t) [u(t − t0) − u(t − tf)] , (3.3)

onde t0 e tf são, respectivamente, os instantes de ińıcio e término do átomo, σl =

(σ, t0, tf) (com σ = (s, τ, ξ, φ)) e Kσl
normaliza o átomo. Desenvolvemos um proce-

dimento rápido para encontrar os valores dos parâmetros t0 e tf . O procedimento

baseia-se numa métrica de erro na região de suporte do átomo [t0, tf ]. O algoritmo

de procura do melhor suporte temporal é descrito na seção C.2.2. Conforme mos-

tram as Figuras 3.3.(c) e 3.3.(d), esse procedimento é eficaz na redução dos artefatos

de pré-eco e pós-eco.

Figura 3.2: Sinal sintético S1.

Procura por Átomos Senoidais Amortecidos O átomo de Gabor encontrado

é utilizado para procurar a senóide amortecida que mais se aproxima do reśıduo cor-

rente. Os parâmetros do átomo Gaussiano são utilizados para obter uma estimativa

inicial dos parâmetros do átomo senoidal amortecido

g(t) = Kge
−ρ(t−t0) cos (ξt + φ)[u(t − t0) − u(t− tf )]. (3.4)

Os parâmetros do átomo senoidal amortecido ρ, ξ, φ, t0 e tf são otimizados utilizando-

se um processo similar ao utilizado para encontrar os parâmetros cont́ınuos para o

átomo de Gabor. Os detalhes deste procedimento são descritos na seção C.3.
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Figura 3.3: Śıntese do sinal S1 (Figura C.2) e erro de reconstrução após 4 passos

de decomposição com o MP com dicionário de Gabor de parâmetros cont́ınuos: (a)

e (c) sem procura do melhor suporte temporal; (b) e (d) com procura do melhor

suporte temporal.

Quantização da Freqüência O átomo senoidal amortecido não possui, em geral,

uma freqüência múltipla da fundamental. De forma a obter-se uma freqüência múl-

tipla da fundamental e átomos em concordância com o modelo da equação (3.1), a

freqüência do átomo encontrado é quantizada, isto é, a freqüência encontrada para

o átomo é aproximada pelo o múltiplo da freqüência fundamental mais próximo a

ela. Após isso, os parâmetros dos átomos são otimizados mantendo-se a freqüência

quantizada. Esse procedimento é descrito na seção C.3.2.

A Figura 3.4 ilustra o funcionamento dos procedimentos até aqui descritos

para os sinais sintéticos S2 e S3, veja Tabela 3.1. Nessa figura, temos: nas sub-

figuras (a) e (d) os sinais originais; nas sub-figuras (b) e (e) os átomos de Gabor

encontrados e as senóides amortecidas encontradas a partir dos mesmos; e nas sub-

figuras (c) e (f) os átomos resultantes da procura pelo melhor suporte temporal para

as senóides amortecidas, bem como os átomos resultantes após a quantização de suas
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freqüências e a subseqüente otimização dos parâmetros.
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Figura 3.4: Primeiro passo da decomposição dos sinais sintéticos S2 e S3 usando

átomos senoidais amortecidos, freqüência quantizada e procura do melhor suporte

temporal para o átomos. As sub-figuras (a) e (d) apresentam os sinais originais, as

sub-figuras (b) e (e) os átomos de Gabor e átomos senoidais amortecidos encontrados

no primeiro passo de decomposição e as sub-figuras (c) e (f) os átomos resultantes

da busca da quantização da freqüência e da procura do suporte temporal.

Heuŕıstica para Obter Decomposições Coerentes Os sinais cujas decompo-

sições foram apresentadas na Figura 3.4 foram gerados sinteticamente utilizando-se

o modelo da equação (3.1). Os parâmetros utilizados na geração desses sinais são

apresentados na Tabela 3.1. Comparando os átomos encontrados no primeiro passo

do processo de decomposição, Figura 3.4, com os átomos utilizados na geração dos

sinais, Tabela 3.1, podemos ver que, apesar de os átomos encontrados possúırem um

bom casamento com os sinais (propriedade intŕınseca ao MP devida à maximização

do produto interno entre o reśıduo e o átomo escolhido), os átomos encontrados

não são exatamente coerentes com as componentes presentes nos sinais. Tais con-

fusões do algoritmo de decomposição, ou seja, a escolha de átomos diferentes dos
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Tabela 3.1: Geração dos sinais sintéticos S2 e S3.

Sinal Fs (Hz) F (Hz) m γm km φm (o) ρm tsm
(Seg.) tem

(Seg.) nsm
nem

S2 1200 60

1 1,000 1 0 0 0 0,0333 0 40

2 0,500 1 90 0 0,0333 0,0917 40 110

3 0,200 6 -90 0,100 0,0500 0,1059 60 127

4 0,050 3 -67 0 0,0417 0,0833 50 100

S3 1200 60

1 1,000 1 -90 0 0,0625 0,1059 75 127

2 1,000 1 -90 0 0 0,0308 0 37

3 1,000 1 135 0 0,0308 0,0625 37 75

empregados para gerar os sinais, são basicamente de dois tipos (ver seção C.3.2):

1. Sinais formados por segmentos de senóides de mesma fase e amplitudes distin-

tas concatenados são identificados pelo algoritmo de decomposição como uma

única senóide amortecida, como no caso do sinal S2, Figuras 3.4.(a)-(c).

2. Sinais formados por segmentos de senóides de mesma freqüência e fases distin-

tas são aproximados pelo algoritmo de decomposição por uma única senóide,

conforme se observa nas Figuras 3.4.(d)-(f) para o sinal S3.

De forma a corrigir as decomposições e obter decomposições coerentes, foi

introduzida uma heuŕıstica dentro do laço de decomposição. Para desenvolver a

heuŕıstica foram decompostos diversos sinais reais que por sua vez apresentaram

problemas na identificação de componentes similares aos recém descritos para os

sinais sintéticos. A heuŕıstica está representada no diagrama da Figura 3.1 pelo

bloco “discriminação de senóide pura”; sua função é decidir se é conveniente utili-

zar uma senóide pura ao invés da senóide amortecida encontrada pelo algoritmo de

decomposição. A heuŕıstica é explicada na seção C.3.4 e baseia-se no seguinte fato:

mesmo se o produto interno não for o maior a cada passo de decomposição, ainda

assim podemos aproximar o sinal. Entretanto, para decidir se é vantajoso utilizar

uma senóide pura, a heuŕıstica utiliza uma medida de erro por amostra do reśıduo

resultante. Desta forma, só será utilizada uma senóide pura ao invés da amortecida

quando determinadas condições do produto interno entre a senóide pura e o reśıduo
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e determinadas condições do erro por amostra do reśıduo resultante da utilização

da senóide pura forem satisfeitas quando comparadas às obtidas com o átomo senoi-

dal amortecido. A Figura 3.5 apresenta o resultado da aplicação da heuŕıstica na

primeira iteração das decomposições dos sinais S2 e S3, onde podemos notar que a

heuŕıstica obteve átomos coerentes com as componentes dos dois sinais.

Os átomos encontrados pelo algoritmo de decomposição com a heuŕıstica atu-

ando dentro do laço de decomposição são coerentes com as componentes dos sinais.

A Figura 3.6.(a) apresenta o sinal sintético S4 ; as componentes encontradas nos três

primeiros passos de sua decomposição são apresentadas na Figura 3.6.(b); e o sinal

reconstrúıdo utilizando-se essas três componentes pode ser visto na Figura 3.6.(c).

A Tabela 3.2 apresenta os parâmetros das componentes identificadas pelo algoritmo

de decomposição no sinal S4, Figura 3.6.(a), bem como as estruturas utilizadas na

geração do mesmo. A Tabela 3.2 apresenta também os parâmetros das componentes

identificadas pelo algoritmo de decomposição e também os utilizados para gerar o

sinal S3. Podemos ver, a partir desses resultados, que o algoritmo de decomposição

identifica de forma satisfatória as componentes presentes nos sinais S3 e S4.
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Figura 3.5: Desempenho da heuŕıstica de discriminação de senóides no primeiro

passo das decomposições dos sinais S2 e S3.

Critério de Parada O processo de decomposição cessa quando o sinal não possuir

informação coerente com o modelo de sinal adotado. Isso acontece quando os átomos

contidos pelo dicionário não puderem fornecer uma boa aproximação do reśıduo.
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Tabela 3.2: Parâmetros das componentes encontradas pelo algoritmo de decompo-

sição nos sinais S3 e S4.

Sinal
Parâmetros dos átomos em S3 Parâmetros dos átomos em S4

ξ
2π

(Hz) φ ρ ns ne
ξ
2π

(Hz) φ ρ ns ne

Decomposição

60,00 270,00 0,00 0 36 50,00 0,00 0,00 0 30

60,00 171,00 0,00 38 74 300,00 292,67 -0,029423 67 127

60,00 270,00 0,00 75 127 100,00 90,00 0,100022 31 80

Geração

60,00 -90,00 0,00 0 37 50,00 0,00 0,00 0 30

60,00 135,00 0,00 37 75 300,00 68,00 -0,03 67 127

60,00 -90,00 0,00 75 127 100,00 90,00 0,1 30 80
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Figura 3.6: Primeiras três componentes identificadas no sinal S4.

Para implementar um critério de parada considerando o exposto, foi utilizada a

taxa de aproximação [29, 85]

λ(m) =
|〈rm−1

x
, gσ(m)〉|

‖rm−1
x

‖ . (3.5)

A taxa de aproximação mede quanto do reśıduo rm−1
x

é aproximado no passo m. A

magnitude do coeficiente 〈rm−1
x

, gσ(m)〉 depende da energia do sinal pois os átomos

possuem norma unitária. Assim, se o produto interno 〈rm−1
x

, gσ(m)〉 fosse utilizado

como critério de parada, este dependeria da energia dos reśıduos. A utilização da

taxa de aproximação elimina tal dependência.

A taxa de aproximação depende do dicionário empregado. Para dicionários

parametrizados ela depende fortemente da dimensão [30]. Por esse motivo, para
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estabelecer um critério de parada estimamos a taxa de aproximação para uma fonte

Gaussiana sem memória com coordenadas independentes e identicamente distribúı-

das (rúıdo branco Gaussiano), obtendo a estimativa λN – onde N é a dimensão do

espaço de sinais. Devido a oscilações que ocorrem na taxa de aproximação, utilizou-

se uma média móvel desta para implementar o critério de parada. O processo de

decomposição pára quando a taxa de aproximação média for suficientemente próxima

a λN , ou seja, quando a decomposição dos reśıduos assemelhar-se à decomposição de

rúıdo branco Gaussiano. A seção C.4 descreve os pormenores do critério de parada

e a sua implementação. Os estudos estat́ısticos sobre o MP apresentados na seção

4.1 indicam que a escolha da fonte Gaussiana sem memória para esse propósito é

uma boa opção.

Limiar de Ceifamento Como o sinal amostrado pode ultrapassar a faixa dos

medidores, em alguns casos pode ser desejável ceifar o sinal recomposto. Antes do

processo de decomposição, o maior valor absoluto entre os valores das amostras do

sinal a ser decomposto é identificado. Este valor poderá ser ou não aplicado para

ceifar o sinal reconstrúıdo. O procedimento de identificação do limiar de ceifamento,

bem como a sua aplicação, são descritos na seção C.3.5.

3.3 Aplicações

A decomposição apresentada foi empregada em diversas aplicações. Na seção

C.4.3 mostra-se como o processo de decomposição pode ser utilizado para a redução

de rúıdo. A redução de rúıdo é inerente ao critério de parada utilizado no processo

de decomposição. Processos de filtragem tradicionais, seletivos em freqüência, não

podem ser aplicados nos sinais de perturbações de sistemas de distribuição de energia

elétrica, pois pode haver informação relevante sobre o distúrbio em toda a banda

(de freqüência) operacional dos medidores.

Na seção C.3.7, apresentamos como eliminar a chamada componente “DC”

que pode aparecer em algumas perturbações ocorridas na rede de distribuição de

energia elétrica. A existência da componente “DC” prejudica a localização da falta

na linha de transmissão por métodos fasoriais. Para eliminar a componente “DC”fil-

tramos diretamente os átomos obtidos pelo processo de decomposição, isto é, átomos

24



são descartados na reconstrução do sinal em função de suas caracteŕısticas. Faz-se,

assim, uma filtragem não linear em função dos parâmetros dos átomos.

Outra aplicação das decomposições coerentes obtidas é na compressão de si-

nais. Para este fim, os parâmetros dos átomos são quantizados e codificados. A

quantização dos parâmetros é descrita na seção C.5.1, e consiste basicamente da

aplicação de um quantizador uniforme a cada um dos parâmetros, independente-

mente dos outros parâmetros. Este esquema de compressão difere fortemente dos

tradicionais, pois a compressão é realizada quantizando-se não somente os coeficien-

tes mas também os parâmetros do modelo de sinal. Desta forma, o sinal reconstrúıdo

é gerado via

x̂ =
M

∑

m=1

Q[γm]gQ[σ(m)], (3.6)

onde Q[γm] é o valor quantizado do coeficiente γm, Q[σ(m)] é o valor quantizado

do conjunto de parâmetros σ(m) e M é o número de termos da representação do

sinal. Isso faz com que as estruturas utilizadas na recomposição difiram das obtidas

pelo algoritmo de decomposição. Embora seja simples, o processo de quantização

empregado mostrou bom desempenho, permitindo verificar a capacidade do esquema

de compressão proposto.

A avaliação do esquema de compressão é realizada em função da razão sinal-

rúıdo

SNR = 10 log10

‖x‖2

‖x − x̂‖2
dB, (3.7)

onde x é o sinal original, e o acrônimo SNR vem do termo inglês Signal-to-Noise

Ratio. Apresentamos resultados para dois sinais reais R1 e R2 adquiridos por um

sistema de monitoração, originalmente representados com 16 bits por amostra. O

sinal R1, à esquerda na Figura 3.7, foi comprimido utilizando 1,035 bit/amostra com

SNR de 28,11 dB; já o sinal R2, à direita na Figura 3.7, foi comprimido utilizando

0,584 bit/amostra com SNR de 31,13 dB. Podemos ver o bom desempenho do es-

quema de compressão a partir do pequeno erro dos sinais reconstrúıdos apresentados

na Figura 3.7.
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Figura 3.7: Compressão do sinal R1 através da quantização do parâmetros dos

átomos a 1,035 bit/amostra com SNR de 28,11 dB, e do sinal R2 a 0,584 bit/amostra

com SNR de 31,13 dB
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Caṕıtulo 4

Quantização Lloyd-Max de

Coeficientes Matching Pursuit

O desempenho do algoritmo de Matching Pursuit (MP), seção 2.1.7, em apli-

cações de compressão de sinais depende mormente de dois aspectos:

i) Dicionário – ele deverá incluir átomos que sejam similares às posśıveis com-

ponentes dos sinais a serem comprimidos. Além disso, a cardinalidade do

dicionário influencia a taxa necessária para codificar a representação do sinal.

ii) Quantização – para compressão, os coeficientes γn têm que ser quantizados.

Considerando uma regra de quantização Q[·] dos coeficientes γn o sinal é

reconstrúıdo através de

x̂q =

M
∑

n=1

Q[γn]gi(n). (4.1)

Para o projeto de quantizadores Q[·] eficientes faz-se necessário um modelo estat́ıs-

tico dos coeficientes MP. Davis, Mallat e Avellaneda observaram que reśıduos MP

possuem um comportamento caótico [30]. Ao invés de modelar diretamente os co-

eficientes MP, modelaremos estatisticamente os ângulos em iterações do MP. Isto

é realizado a partir da observação emṕırica que os ângulos entre os reśıduos e os

átomos selecionados possuem estat́ısticas muito similares, a cada iteração do MP.

O ângulo entre o reśıduo rn−1
x

e o átomo selecionado gi(n) na n-ésima iteração

do MP é

θn = arccos

(〈rn−1
x

, gi(n)〉
‖rn−1

x
‖

)

. (4.2)
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Verificou-se experimentalmente que as estat́ısticas de θn são aproximadamente in-

dependentes de n. Assim, os ângulos entre os reśıduos e os átomos selecionados em

iterações do MP podem ser modelados como estatisticamente independentes e iden-

ticamente distribúıdos (iid). Utilizamos um modelo iid de ângulos em iterações MP

para modelar estatisticamente coeficientes MP. Tal modelo permite projetar quan-

tizadores de Lloyd-Max para coeficientes MP. Os quantizadores obtidos apresentam

desempenho similar ao do estado da arte.

4.1 Ângulos em Iterações do Matching Pursuit

Utilizando a definição de θn, equação (4.2), os coeficientes produzidos pelo

MP são

γ1 = ‖x‖ cos (θ1), (4.3)

γ2 = ‖x‖ sin (θ1) cos (θ2), (4.4)

...

γn = ‖x‖
[

n−1
∏

i=1

sin (θi)

]

cos (θn). (4.5)

Se D contém os elementos gk e −gk para todo k ∈ {1, . . . , #D}, obtêm-se sempre

coeficientes positivos. Consideraremos que gk e −gk pertencem a D; se D não contém

−gk para algum k, então −gk é inclúıdo em D e #D (a cardinalidade do dicionário)

é atualizada de acordo.

4.1.1 Estat́ıstica dos Ângulos no Matching Pursuit

Em [30], foi observado que reśıduos MP possuem um comportamento caó-

tico; assim, é razoável assumir que, após algumas iterações MP, os reśıduos podem

ter qualquer orientação. Mais precisamente, podemos assumir que a densidade de

probabilidade dos reśıduos depende somente de suas magnitudes. Assim, podeŕıa-

mos assumir que os reśıduos normalizados possuem uma função de densidade de

probabilidade uniforme sobre a superf́ıcie da esfera unitária, ou seja, assumir que a

orientação dos reśıduos está uniformemente distribúıda.

Considere uma fonte Gaussiana sem memória, independente e identicamente

distribúıda (iid), ou simplesmente uma fonte Gaussiana. Sendo
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x = [x[1], x[2], . . . , x[N ]]T uma realização dessa fonte, todos os x[j] possuem a mesma

distribuição normal N (0, σ2). A densidade de probabilidade dessa fonte depende so-

mente de ‖x‖ e sua orientação possui uma densidade de probabilidade uniforme

sobre a esfera unitária. Assim, apesar da fonte Gaussiana poder não corresponder

a fontes reais ou aos reśıduos em iterações MP, ela possui a mesma função de den-

sidade de probabilidade para qualquer orientação do sinal, isto é, ela não privilegia

nenhuma orientação.

Podemos considerar que a orientação dos reśıduos do MP possui uma densi-

dade de probabilidade uniforme sobre a superf́ıcie da esfera tal qual a fonte Gaussiana

iid sem memória. Assim, espera-se que as estat́ısticas dos ângulos em iterações MP

ao decompor quaisquer reśıduos sejam similares às obtidas para a decomposição de

sinais provenientes de uma fonte Gaussiana iid sem memória.

A Figura 4.1 mostra os histogramas das variáveis aleatórias (VAs) Θn, cor-

respondentes aos ângulos θn, resultantes da decomposição de uma fonte Gaussiana,

utilizando um dicionário composto por 16 átomos aleatórios normalizados. Os áto-

mos deste dicionário são obtidos a partir de realizações de uma fonte Gaussiana em

R4 e posteriormente normalizados. Dicionários deste tipo, formados por #D sinais

sorteados de uma fonte Gaussiana N -dimensional e normalizados, são aqui referidos

por DFGN(#D, N); e logo, o dicionário empregado é denotado por DFGN(16, 4).

Esse dicionário tem a sua cardinalidade dobrada para que o MP obtenha sempre coe-

ficientes positivos (incluem-se vetores de modo que g e −g pertençam ao dicionário).

Os histogramas na Figura 4.1 foram obtidos a partir da decomposição MP de 50.000

sinais sorteados de uma fonte Gaussiana. Na Figura 4.1 nota-se que os histogramas

de Θn são muito semelhantes. Assim modelaremos a fdp (função de densidade de

probabilidade) dos ângulos fΘn
(θn) como independentes e identicamente distribúı-

das a cada iteração. Os resultados apresentados em [30], acerca do comportamento

caótico dos reśıduos MP em determinadas condições, corroboram tal assunção.

A Figura 4.2 apresenta a média e a variância de Θn para vários valores de n,

além das covariâncias entre ângulos MP. Nela observa-se que Cov[ΘiΘk] = 0, ∀i 6= k,

isto é, os ângulos em diferentes iterações do MP são descorrelatados. Assim, assumir

que as VAs Θn são independentes é razoável já que tal assunção não contradiz o

comportamento observado na Figura 4.2.
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Figura 4.1: Histogramas de Θn para uma fonte Gaussiana em R
4 usando um dicio-

nário DFGN(16, 4).
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Figura 4.2: Média, variância e covariância de Θn para uma fonte Gaussiana em R4

usando o DFGN(16, 4).

Os resultados apresentados até aqui foram obtidos utilizando um dicionário

de cardinalidade e dimensão relativamente pequenas. Na prática, o MP é geralmente

empregado em espaços de dimensão elevada com dicionários como o de Gabor [84,85].

Analisaremos, então, o comportamento dos ângulos MP para um dicionário de Gabor
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de elementos reais com fases em múltiplos de π
V

, V inteiro. Os valores das amostras

gj,p,v[m] de cada átomo gj,p,v do dicionário são dadas por [84]

gj,p,v[m] =



























δ[m − p], j = 0

K(j,p,v)f

[

m − p2j

2j

]

cos
[

mkπ21−j +
πv

V

]

, j ∈ (0, L)

1√
N

, j = L

, (4.6)

onde f [m] = 2
1
4 e−πm2

, m ∈ [0, N −1] é a coordenada, K(j,p,v) normaliza os átomos, e

v ∈ [0, . . . , V − 1]. Quanto aos parâmetros dos átomos tem-se que: j define a escala

do átomo, p define a sua translação, e k a modulação do átomo. Para L = log 2(N)

escalas, suas faixas de valores serão [85]: j ∈ [0, L], p ∈ [0, N2−j), k ∈ [0, 2j), e

v ∈ [0, V ).

A Figura 4.3 apresenta fΘn
(θn) (os histogramas dos ângulos), em alguns pas-

sos do MP, para um conjunto de 128.000 decomposições de sinais Gaussianos no

R64 utilizando um dicionário de Gabor de 4 fases. A Figura 4.4 apresenta os mes-

mos gráficos mas para uma fonte cujas coordenadas possuem fdps Gama. Nota-se

que para as fontes de sinais apresentadas as estat́ısticas dos ângulos diferem razo-

avelmente somente na primeira iteração do MP, sendo visualmente muito similares

aos de outras iterações. Podemos notar também que: à medida que n aumenta

os ângulos do MP possuem estat́ısticas similares mesmo para fontes de sinais dis-

tintas. Embora as estat́ısticas de Θn para n > 1 não sejam exatamente iguais às

obtidas no primeiro passo de decomposição de realizações de uma fonte Gaussiana,

elas são razoavelmente parecidas; logo fΘn
(θn), para n > 1, pode ser razoavelmente

aproximada por fΘ1(θ1) obtida para uma fonte Gaussiana iid sem memória. Esta

assunção é razoável pois a fonte Gaussiana iid sem memória não privilegia nenhuma

orientação, o que parece ser o caso também dos reśıduos rn−1
x

para n > 1.

4.1.2 Discussão dos Resultados

Verificamos que as estat́ısticas dos ângulos, após a primeira iteração do MP,

podem ser consideradas invariantes à iteração. Para alguns dicionários, como o de

Gabor, as fdps dos ângulos diferem ligeiramente da fdp do ângulo para uma fonte

Gaussiana iid sem memória, o que sugere que os reśıduos não possuem exatamente

uma orientação uniformemente distribúıda com a da fonte Gaussiana iid sem memó-
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Figura 4.3: Histogramas normalizados dos ângulos MP para uma fonte Gaussiana

no R64, utilizando 100 intervalos, para n = {1, 8, 16, 32, 64, 72}, para o dicionário de

Gabor de 4 fases em R64.

ria. Entretanto, as estat́ısticas do ângulo no primeiro passo do MP para uma fonte

Gaussiana iid sem memória são estimativas razoáveis das estat́ısticas dos ângulos em

iterações do MP. Na seção D.1.4 é demonstrado que quando um dicionário contém

ao menos uma base ortogonal as estat́ısticas dos ângulos mudam após um número de

passos igual à dimensão do espaço de sinais. Isso ocorre porque para esse dicionário

haverá uma probabilidade diferente de zero de se obter reśıduos nulos rn−1
x

= 0,

quando n = N (N é a dimensão do espaço).

Utilizamos o modelo iid de ângulos MP para projetar quantizadores de Lloyd-

Max para coeficientes MP. As estat́ısticas do ângulo na primeira iteração do MP,

e portanto do primeiro coeficiente, dependem mais da fonte de sinais do que as

obtidas em iterações subseqüentes. Logo, para utilizar o modelo iid de ângulos

MP apropriadamente, o primeiro coeficiente (γ1) será transmitido como informação

lateral com erro despreźıvel.
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Figura 4.4: Histogramas normalizados dos ângulos MP para uma fonte de co-

ordenadas com distribuição Gama no R64, utilizando 100 intervalos, para n =

{1, 8, 16, 32, 64, 72}, para o dicionário de Gabor de 4 fases em R64.

4.2 Quantização da Decomposição em M Termos

Em aplicações de compressão, codificam-se versões quantizadas dos coefi-

cientes. Uma estratégia comum é a quantização dos coeficientes fora do laço de

decomposição, isto é, primeiro toda a decomposição é obtida e depois os coeficien-

tes são quantizados. Tal estratégia permite realizar uma otimização taxa×distorção

(RD, do inglês rate×distortion) muito simples, que consiste no teste de diferentes

quantizadores e escolha daquele que satisfaz um critério RD pré-estabelecido.

Para projetar quantizadores de Lloyd-Max [73] (ótimos no sentido do erro

quadrático médio) para os coeficientes utilizamos o modelo iid de ângulos MP. Os

quantizadores que projetamos possuem o primeiro ńıvel de reconstrução igual a

zero; assim, coeficientes relativamente pequenos são quantizados como zero e não

necessitam ser transmitidos, o que permite economizar taxa [54].

Se algum coeficiente ou ı́ndice da representação em M termos for perdido na

transmissão, o decodificador deverá ser capaz de ignorar o termo perdido. Para que

isto seja posśıvel, o quantizador utilizado para um dado γn deverá ser independente
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dos valores quantizados de outros γm (m 6= n).

4.2.1 Distorção devida à Quantização

Quando representações por M termos são quantizadas fora do laço de de-

composição, cada coeficiente é substitúıdo pela sua versão quantizada, e o sinal é

reconstrúıdo através da equação (4.1). Neste caso, podemos definir dois sinais de

erro:

i) o erro relativo ao sinal original

d = x − x̂q; (4.7)

ii) o erro relativo ao M-termo

dM = x̂ − x̂q =

M
∑

n=1

(γn − Q[γn])gi(n). (4.8)

Como rM
x

= x−x̂, tem-se que d = dM+rM
x

; logo, se dM é nulo então teremos d = rM
x

.

Assim, utilizaremos dM como critério de distorção no projeto de quantizadores, pois

não se espera reduzir o reśıduo a partir da quantização dos coeficientes.

A energia por amostra da distorção da representação por M termos quanti-

zada é

d2
M =

1

N
‖dM‖2 =

1

N

M
∑

n=1

M
∑

m=1

(γn − Q[γn])(γm − Q[γm])〈gi(n), gi(m)〉, (4.9)

onde N é o comprimento do sinal. Como os elementos de D possuem norma unitária,

definindo-se

eq(γn) = γn − Q[γn] (4.10)

tem-se que

d2
M =

1

N

[

M
∑

n=1

e2
q(γn) +

M
∑

n=1

M
∑

m=1, 6=n

eq(γn)eq(γm)〈gi(n), gi(m)〉
]

. (4.11)

A partir da equação (4.7) podemos obter

d2 =
1

N
‖d‖2 =

1

N
‖x − x̂q‖2. (4.12)
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Distorção para uma Fonte de Sinal Para uma fonte de sinal X , podemos

definir o valor esperado de d2
M

E[d2
M ] =

1

N

{

M
∑

n=1

E
[

e2
q(Γn)

]

+
M

∑

n=1

M
∑

m=1,m6=n

E
[

eq(Γn)eq(Γm)〈gi(n), gi(m)〉
]

}

. (4.13)

Acima, Γn é a variável aleatória (VA) correspondente ao coeficiente γn, com 1 ≤ n ≤
M , quando se decompõem sinais originários de X . Na equação (4.13), E

[

e2
q(Γn)

]

corresponde ao valor esperado do quadrado do erro de quantização da VA Γn; este

erro está definido na equação (4.10).

4.2.2 Quantização de Coeficientes a partir dos Ângulos

Na equação (4.5), ‖x‖ é necessário para calcular os coeficientes MP. Se utili-

zamos o primeiro coeficiente γ1, ao invés de ‖x‖, temos

γn = γ1δn, δn = tg(θ1)

[

n−1
∏

i=2

sen(θi)

]

cos (θn), n ≥ 2. (4.14)

Se γ1 é conhecido, a fdp de Γn, para n ≥ 2, é dada por fΓn
(γn|γ1) = fΓn

(γ1δn|γ1) =

f∆n
(δn|γ1), onde ∆n é a VA correspondente a δn, equação (4.14). A VA ∆n depende

de Θi, 1 < i ≤ n, logo, pode-se calcular a fdp de γn a partir das fdps de Θi, 1 < i ≤ n.

Dado γ1, o valor esperado da distorção por amostra devida à quantização é

E[d2
M |γ1] =

γ1
2

N

{

M
∑

n=2

E
[

e2
q(∆n)

]

+

M
∑

n=2

M
∑

m=2,m6=n

E
[

eq(∆n)eq(∆m)〈gi(n), gi(m)〉
]

}

,

(4.15)

com eq(∆n) = ∆n −Q[∆n]. Se as fdps das VAs ∆n são conhecidas podemos calcular

E[d2
M |γ1] para qualquer regra de quantização aplicada às VAs ∆n. Salientamos que

como a quantização é aplicada a δn em vez de a γn, o valor de γ1 precisa ser informado

ao decodificador.

4.3 Quantização Lloyd-Max de Coeficientes MP

Quando o primeiro coeficiente γ1 é conhecido, o projeto dos quantizadores

dos coeficientes γn para n ≥ 2 deverá objetivar a minimização da distorção da

equação (4.15), projetando, assim, quantizadores para ∆n, n ≥ 2. Se somente um
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quantizador for empregado para todos os coeficientes, deveremos projetá-lo para a

VA gerada pela união das VAs ∆n, isto é, para

∆ = ∪M
n=2∆n. (4.16)

Como iterações MP são disjuntas, a fdp de ∆ é dada por

f∆(δ) =
1

M − 1

M
∑

n=2

f∆n
(δn). (4.17)

A distorção definida na equação (4.15) possui dois termos. O primeiro é a

soma dos quadrados dos erros de quantização de ∆n, e o segundo é a soma dos

produtos internos entre os átomos do dicionário multiplicados pelos produtos dos

respectivos erros de quantização. Na seção D.3.2 mostramos que a equação (4.15)

pode ser simplificada para

E[d2
M |γ1] =

M − 1

N

∫

(δ − Q[δ])2f∆(δ)dδ, f∆(δ) =
1

M − 1

M
∑

n=2

f∆n
(δn). (4.18)

Esta expressão indica que o projeto de um quantizador ótimo aplicável a todos os

coeficientes de representações por M termos, supondo γ1 conhecido, equivale ao pro-

jeto de um quantizador ótimo para ∆ = ∪M
n=2∆n, o que é obtido por quantizadores

de Lloyd-Max [73].

4.3.1 Projeto dos Quantizadores de Lloyd-Max

O projeto de quantizadores de Lloy-Max (QLM) requer f∆n
(δn), para 2 ≤ n ≤

M ; como vimos, o modelo iid permite obter estas fdps a partir de fΘ1(θ1). Por sua vez

fΘ1(θ1) é estimada aplicando-se uma iteração MP a um conjunto de sinais sorteados

de uma fonte Gaussiana sem memória (sorteamos #DN2 sinais para este fim). As

fdps f∆n
(δn) estimadas são usadas para obter f∆(δ) que é utilizada para projetar

QLMs de bcoef bits (L = 2bcoef ńıveis de reconstrução). Os ńıveis de reconstrução e

de decisão dos quantizadores são obtidos por um algoritmo iterativo [73]. Como a

mesma lei de quantização é aplicada a todos os coeficientes e f∆(δ) depende de M ,

cada valor de M implicará um quantizador distinto.

O projeto dos quantizadores independe de γ1, sendo suficiente projetá-los

para γ1=1. Cópias dos quantizadores são armazenadas tanto no codificador como no

decodificador. O codificador envia γ1, o número de bits do quantizador, e o número
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de termos M para o decodificador, em um cabeçalho. O valor de γ1 é utilizado para

escalar os ńıveis de decisão e de reconstrução do quantizador no codificador e no

decodificador.

4.3.2 Desempenho da Quantização Lloyd-Max

O estado da arte em termos de quantização de coeficientes MP fora do laço

de decomposição utiliza quantizadores uniformes nos quais o número de ńıveis de

quantização e a faixa de quantização são adaptados após a quantização de cada

coeficiente da representação por M termos [54]. Nos referiremos a este esquema

por quantizador uniforme limitado adaptativamente (QULA). O QULA aloca um

número diferente de bits para cada coeficiente. O QULA utiliza um quantizador

uniforme de faixa dinâmica e número de ńıveis distinto para cada coeficiente; a faixa

do quantizador para o l-ésimo coeficiente depende do valor quantizado do coeficiente

anterior (Q[γl−1]), e o número de ńıveis do quantizador de cada coeficiente é obtido

a partir de um procedimento de alocação de bits baseado em um multiplicador de

Lagrange. Para aplicar o QULA, antes da quantização, os coeficientes são ordenados

em ordem decrescente de magnitude. Como informação lateral, o QULA envia o

valor do primeiro coeficiente e o número de ńıveis do quantizador utilizado para o

segundo coeficiente.

Podem-se codificar facilmente os ı́ndices dos átomos de representações por M

termos de forma que a taxa total do M-termo seja

R = S [log2 (#D)] + rcoef, (4.19)

onde S é o número de termos que restam a ser transmitidos após a quantização

(alguns coeficientes são quantizados para zero) e rcoef é a taxa gasta para codificar

os coeficientes. Desta forma, a taxa em bits/amostra é dada por R/N , sendo N a

dimensão do espaço de sinais. No QULA a diferença entre os ı́ndices de coeficientes

sucessivos é utilizada para estimar a taxa do fluxo de bits das representações por

M termos quantizadas [54]. Nas comparações entre o QULA e os quantizadores de

Lloyd-Max (QLM), empregamos essa estratégia para estimar a taxa dos coeficientes

quantizados do QULA e do QLM.

A Figura 4.5 mostra curvas RD de expansões MP quantizadas para três fontes
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aleatórias distintas no R
10 (uma fonte Gaussiana, uma fonte com fdp uniforme e

uma com fdp Gama em cada coordenada – todas sem memória) para os QLMs e

o QULA utilizando um dicionário DFGN(128, 10) (gerado a partir de realizações

de uma fonte Gaussiana normalizadas). Para cada taxa, o resultado apresentado

corresponde à média sobre um conjunto de 100 realizações da fonte decompostas via

MP e quantizadas. Para este experimento foram projetados QLMs com profundidade

de bits variando de 1 a 8. A distorção utilizada é a da equação (4.12), ou seja, o erro

por amostra da representação quantizada em relação ao sinal original. Podemos ver

na Figura 4.5 que os dois esquemas de quantização possuem um desempenho similar

para as três fontes; entretanto, os QLMs têm um desempenho ligeiramente superior

a baixas taxas (abaixo de 8 bits/amostra).

A Figura 4.6 mostra as curvas RD para as três fontes de sinais do parágrafo

acima em R
64, para os QLMs e o QULA, para o dicionário de Gabor de 4 fases,

equação (4.6). Para obter essas curvas, foram projetados QLMs com profundidade

de bits entre 1 e 6 e permitiram-se no máximo 256 termos na representação. Os

resultados apresentados são médias sobre 200 decomposições MP quantizadas de

cada fonte.

As Figuras 4.5 e 4.6 mostram que o desempenho dos quantizadores de Lloyd-

Max para coeficientes MP projetados a partir do modelo estat́ıstico iid para ângulos

MP possuem desempenho similar ao do estado da arte, independentemente do dici-

onário e da fonte de sinal. Nessas figuras, vê-se, ainda, que o QLM permite codificar

sinais usando uma taxa menor (em bits por amostra) que a obtida utilizando o

QULA.
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Figura 4.5: Curvas taxa×distorção para o QLM e o QULA para três fontes aleatórias

utilizando um DFGN(128, 10).
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Figura 4.6: Curvas taxa×distorção para o QLM e o QULA para três fontes aleatórias

utilizando um dicionário de Gabor com 4 fases em R64.
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Caṕıtulo 5

Conteúdo Tempo-Freqüência de

Frames

Neste caṕıtulo definimos o conteúdo tempo-freqüência de frames a partir

da distribuição de Wigner-Ville. Mostramos que o conteúdo tempo-freqüência de

um conjunto de sinais ser maior que zero é suficiente para que esse conjunto seja

um frame. Analisamos, então, o conteúdo tempo-freqüência de frames de Weyl-

Heisenberg, mostrando como intercalar ou entrelaçar no plano tempo-freqüência

frames de Weyl-Heisenberg gerados a partir de uma função par, obtendo assim

frames mais “justos”. Os frames gerados por entrelaçamento são, então, avaliados

como dicionários para algoritmos de decomposição vorazes.

5.1 Conteúdo Tempo-Freqüência de Frames

A distribuição de Wigner-Ville (WD) de um sinal x(t) é definida como [84]

WDx (t, f) =

∫ +∞

−∞
x

(

t +
τ

2

)

x
(

t − τ

2

)

e−2πjfτdτ, (5.1)

onde x(t) denota a conjugação complexa de x(t). A WD é provavelmente uma das

ferramentas mais utilizadas e conhecidas para a análise tempo-freqüência de sinais,

já que WDx (t, f) pode ser interpretada como uma medida da“densidade”da energia

de x(t) no tempo e na freqüência [84].

Definamos o conteúdo tempo-freqüência da expansão de um sinal x(t) em um
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frame G = {gk}k∈K como

WDx(t) em G(t, f) =
∑

k∈K
〈x(t), gk(t)〉WDgk

(t, f) = ‖x(t)‖
∑

k∈K
αkWDgk

(t, f). (5.2)

Se os elementos do frame possuem norma unitária, teremos que

αk =

〈

x(t)

‖x(t)‖ , gk(t)

〉

≤ 1, (5.3)

e portanto, neste caso,

WDx(t) em G(t, f) ≤ ‖x(t)‖
∑

k∈K
WDgk

(t, f). (5.4)

Definição 5.1 Definimos o conteúdo tempo-freqüência de um frame G = {gk}k∈K

via

WDG(t, f) =
∑

k∈K
WDgk

(t, f). (5.5)

Teorema 5.1 Seja G = {gk}k∈K uma famı́lia de elementos e

WDG(t, f) =
∑

k∈K
WDgk

(t, f) (5.6)

seu conteúdo tempo-freqüência. Uma condição suficiente para que G seja um frame

de L2(R) é

0 < WDG(t, f) < ∞, ∀ (t, f), (5.7)

A prova pode ser vista na seção E.1. O Teorema 5.1 mostra que se o somatório

das WDs de todos os elementos de um conjunto {gk}k∈K for limitado e positivo,

então este conjunto é um frame de L2(R). Como este resultado surge diretamente

das propriedades da WD e da definição de frames, ele é também válido em espaços

de dimensão finita, ver seção E.1.

Exemplo 5.1 Considere um frame do RN formado pelos vértices “do cubo”

N-dimensional. Isto é, seus elementos são gk = [gk[0], . . . , gk[N−1]] = [±1, . . . ,±1].

Pode-se mostrar que para estes frames WDG(n, k) = N2, ou seja, seu conteúdo

tempo-freqüência é constante; este frame é justo. Podemos ver ainda que, para

estes frames, S = N2IN , o que também mostra que este é um frame justo com

limitantes A = B = N2.

No Apêndice E alguns resultados conhecidos sobre frames são desenvolvidos

utilizando a definição de conteúdo tempo-freqüência de frames e o Teorema 5.1.
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5.2 Conteúdo Tempo-Freqüência de Frames Weyl-

Heisenberg

Para um frame de Weyl-Heisenberg (WH) G = {EqbTpag(t)}p,q∈Z (ver seção

2.3.2), teremos

WDG (t, f) =
∑

m∈Z

∑

n∈Z

WDg (t − pa, f − qb). (5.8)

Logo, para encontrar

max
(t,f)

WDG (t, f) e min
(t,f)

WDG (t, f) (5.9)

de um frame WH e portanto caracterizá-lo, basta analisar WDG (t, f) na região

(t, f) ∈ [0, a) × [0, b). Na seção E.2.3 mostra-se que para g(t) par tem-se

max
t,f

WDG(t, f) = WDG(pa, qb) e (5.10)

min
t,f

WDG(t, f) = WDG

((

p +
1

2

)

a,

(

q +
1

2

)

b

)

. (5.11)

Se desejarmos aumentar a capacidade de localização de sinais no plano tempo-

freqüência a partir da sua projeção em um frame WH, podemos aumentar a densi-

dade do frame no plano tempo-freqüência. Para um frame WH gerado a partir de

uma função simétrica g(t), tem-se duas opções para aumentar a sua densidade no

plano tempo-freqüência: ou i) alterar os valores de a e/ou de b que geram o frame,

o emprego de a′ < a gera um frame {EqbTpa′g(t)}p,q∈Z mais denso no plano tempo-

freqüência que {EqbTpag(t)}p,q∈Z (o mesmo ocorre se utilizamos b′ < b); ou ii) em-

pregar uma união de frames – uma possibilidade neste caso é unir os frames gerados

por {EqbTpag(t)}p,q∈Z e por {Eqb+ b
2
Tpa+ a

2
g(t)}p,q∈Z. A segunda abordagem garante

a obtenção de um frame mais apertado/justo que o original {EqbTpag(t)}p,q∈Z. Tal

estratégia é aplicável para gerar frames a partir de átomos exponenciais bilaterais

ou átomos Gaussianos.

Ao situarmos os máximos dos novos elementos de um frame nos pontos de

mı́nimo do frame original, minimizamos os produtos internos entre os elementos do

frame original e do frame entrelaçado, quando a mesma função protótipo é utilizada

para gerar ambos os frames. A idéia de intercalação de frames é apresentada na

Figura 5.1. A Figura 5.1.a) mostra a localização dos máximos de WDG(t, f) no plano

tempo-freqüência, a Figura 5.1.b) o deslocamento do frame através da translação de

42



a/2 e da modulação por b/2 de todos os seus elementos, e a Figura 5.1.c) a união

do frame original e de sua versão “entrelaçada”.

Empregando a união de um frame WH e de sua versão “entrelaçada” sugerida

acima obteremos

WDG(pa, qb) = WDG

(

pa +
a

2
, qb +

b

2

)

. (5.12)

Se pudermos gerar frames WH {EqbTpag(t)}p,q∈Z e {Eqb+ b
2
Tpa+ a

2
g(t)}p,q∈Z tais que

sua união G = {EqbTpag(t)}p,q∈Z ∪ {Eqb+ b
2
Tpa+ a

2
g(t)}p,q∈Z possui conteúdo tempo-

freqüência WDG(t, f) com “oscilação” menor que a obtida para o frame original

{EqbTpag(t)}p,q∈Z, ou seja, se

max
t,f

WDG(t, f) − min
t,f

WDG(t, f) (5.13)

é menor para o frame formado pelo entrelaçamento que para o frame original, então

um frame mais apertado/justo é obtido. Como vimos nas equações (5.10) e (5.11)

quando g(t) é par a união descrita sempre produzirá um frame mais apertado/justo.

Exemplo 5.2 A Figura 5.2 apresenta WDG(t, f), na região (t, f) ∈ [0, 2a)× [0, 2b),

para um frame G formado pela união de dois frames de WH entrelaçados gerados a

partir de uma função-protótipo g(t) = e−β|t|, com β =5, e parâmetros do frame WH

original a =0,2 e b =2,5 (os resultados apresentados foram obtidos considerando-se

100 amostras por unidade de tempo). O frame WH original e sua versão entrelaçada

são tais que seus conteúdos tempo-freqüência possuem máximos e mı́nimos iguais a

2,4564 e a 0,2274, respectivamente. Já o frame formado pela união dos dois possui

conteúdo tempo-freqüência limitado por 1,5659 e 2,6838, sendo mais justo.

5.3 Dicionários Parametrizados Formados por Fra-

mes Entrelaçados

Na seção 2.3.3 discutiu-se que frames podem ser usados como dicionários no

Matching Pursuit (MP), e que quanto mais apertado ou justo for um frame mais

parecida é a concentração de elementos do frame em todas as direções do espaço. O

entrelaçamento de frames é eficiente no sentido de: (i) minimizar o produto interno

entre os elementos acrescidos ao frame e os previamente existentes no frame; e
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Figura 5.1: Intercalando frames WH.

(ii) gerar frames mais justos/apertados. O ı́tem (i) é relevante para a construção de

dicionários para algoritmos de decomposição vorazes de sinais, pois nestes, não basta

simplesmente aumentar #D (a cardinalidade do dicionário); devemos aumentá-la

inserindo átomos correspondentes aos pontos com maior distância relativamente aos

elementos já contidos no dicionário. Desta forma, sinais que eram mal-decompostos,

que possuem um ângulo grande com o elemento mais próximo a ele no dicionário,

serão melhor decompostos. Ao usar esta abordagem, o entrelaçamento de frames

WH, os dicionários obtidos contêm elementos gerados a partir de um protótipo pré-

definido, isto é, são parametrizados.

Como os dicionários obtidos pelo entrelaçamento de frames de WH se compor-

tam quando utilizados no Matching Pursuit (MP)? Verificamos esse comportamento

empiricamente através da análise dos ângulos em iterações MP obtidos por esses di-

cionários, seções 2.2.2 e 4.1.1. Para este experimento utilizaremos a decomposição

de sinais provenientes de uma fonte Gaussiana sem memória em R64 utilizando 5 di-

cionários distintos que contêm elementos gerados a partir de frames WH de um sinal

protótipo Gaussiano, ver seção 4.1.1 em escala um (s = 1) e com variância unitária

(σ2 = 1). Os elementos do dicionário são as partes reais (átomo Gaussiano de fase
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Figura 5.2: WDG(t, f) com g(t) = e−5|t|, a =.2 e b =2.5, ab=1/2, ver exemplo 5.2,

(t, f) ∈ [0, 2a) × [0, 2b).

zero) e imaginárias (átomo Gaussiano de fase π/2) normalizadas de Eq 1
Q
Tp N

P
g[n].

Para gerar o dicionário A, P e Q são escolhidos de forma a fornecerem 16

pontos tanto no eixo do tempo como no da freqüência (os átomos são definidos

no R64). O dicionário C é composto da união de A com sua versão deslocada no

tempo por N/2P e na freqüência por 1/2Q, ou seja a união de A com o frame

“entrelaçado” a A. O dicionário F é gerado de forma semelhante à de A, mas com

parâmetros de deslocamento no tempo e na freqüência divididos por dois; assim, F
tem cardinalidade quatro vezes maior que a de A. O dicionário G é gerado a partir

da união de F e sua versão “entrelaçada”, como C em relação a A. O dicionário

M corresponde ao caso de amostragem máxima dos parâmetros de deslocamento no

tempo e na freqüência, provendo, assim, 64 pontos em cada eixo. As cardinalidades

dos dicionários são, então, #A = 512, #C = 1024, #F = 2048, #G = 4096, #M =

8192.

A Figura 5.3 apresenta os histogramas (utilizando 250 intervalos) do ângulo

Θ = arccos

{

max
gi∈ Dicionário

(〈x, gi〉
‖x‖

)}

(5.14)

para sinais x provenientes de uma fonte Gaussiana iid sem memória (ver caṕıtulo
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4). Esses resultados foram obtidos a partir de 10.000 decomposições de 40 passos de

realizações da fonte Gaussiana – vimos no Caṕıtulo 4 que para uma fonte Gaussiana

podemos assumir que os ângulos em iterações MP são aproximadamente estacioná-

rios. Conforme vimos na seção 2.2.2, Θ(D) (o valor médio de Θ) e Θ(D) (o valor

máximo de Θ) são relevantes no desempenho de dicionários no MP. Os histogramas

de Θ para os dicionários C e G mostram que para ambos o entrelaçamento é capaz

de melhorar razoavelmente a distribuição do ângulo e obter Θ(D) e Θ(D) menores

do que os obtidos para, respectivamente, A e F . Vê-se ainda que M não obtém

grande melhora em relação a G. Observe que G é um subconjunto de M e G contém

metade dos elementos presentes em M (assim como ocorre com C em relação a F).
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Figura 5.3: Histogramas dos ângulos entre os reśıduos e os átomos selecionados no

MP para aproximá-los para os dicionários A, C, F , G e M em R64.

Para melhor avaliar os desempenhos dos dicionários devemos considerar tam-

bém suas cardinalidades. Para esse fim realizamos um estudo taxa×distorção. Na

análise taxa×distorção ignoraremos a quantização dos coeficientes e consideraremos

que não são gastos bits para enviá-los. Tal suposição permite um bom estudo das
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tendências e do comportamento das decomposições obtidas para dicionários distin-

tos. Assim, a taxa gasta na codificação das decomposições obtidas via MP cresce

linearmente com o número de termos da decomposição M , e podemos encontrar

facilmente um código para codificar as decomposições com taxa

R = M⌈log2(#D)⌉. (5.15)

A Figura 5.4 apresenta, à esquerda, a média da norma do erro em função do

passo M e, à direita, a média da norma do erro em função de R = M⌈log2(#D)⌉. Os

dicionários gerados por entrelaçamento no plano tempo-freqüência sempre possuem

erros menores em função do passo, relativamente, como se vê nas curvas erro×passo

para A e C e para F e G. Um comportamento similar pode ser observado paras

curvas erro×taxa. Entretanto, no último caso o ganho em utilizar G ao invés de F
não é tão significativo como o de utilizar C no lugar de A. Apesar de G não obter

um ganho significativo no compromisso taxa×distorção de F , como C consegue em

relação a A, G não tem desempenho taxa×distorção pior que o de F . Assim, vemos

que o entrelaçamento no plano tempo-freqüência é efetivo para gerar dicionários a

partir de frames WH.
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Figura 5.4: Erro no passo (esquerda) e erro×taxa (direita) para os dicionários A, C,

F , G e M em R64.
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Caṕıtulo 6

Conclusão

Nesta tese tratou-se de alguns aspectos relativos a representações de sinais

usando dicionários redundantes. No Caṕıtulo 2 apresentou-se uma rápida revisão

teórica do tema. No Caṕıtulo 3 vimos uma aplicação prática dessa estratégia na

decomposição de sinais de distúrbios elétricos. A seguir projetamos quantizadores

para coeficientes de representações adaptativas de sinais no Caṕıtulo 4. Já no Ca-

ṕıtulo 5 tratou-se de frames e seu conteúdo tempo-freqüência e vimos como gerar

dicionários efetivos a partir de frames.

O esquema de decomposição de sinais apresentado no Caṕıtulo 3 obtém re-

presentações coerentes utilizando átomos parametrizados e robustas a rúıdo, e além

disso permite obter boas taxas de compressão de sinais aliadas a boa qualidade dos

sinais comprimidos. O algoritmo, baseado no Matching Pursuit, decompõe o sinal

adaptativamente utilizando senóides amortecidas. O sinal é representado por uma

seqüência de coeficientes e de conjuntos de parâmetros que definem as estruturas

identificadas no sinal. Procedimentos computacionalmente realizáveis e efetivos fo-

ram apresentados para encontrar os valores dos parâmetros.

Algoritmos de decomposição vorazes, como o Matching Pursuit, normalmente

desviam-se da obtenção de representações fisicamente representativas. Para evitar

tal desvio, foi dada “inteligência” ao algoritmo, de forma a permitir-lhe obter de-

composições coerentes de sinais de distúrbios elétricos. Isso foi conseguido com a

introdução de uma heuŕıstica dentro do laço de decomposição, a qual instrui o algo-

ritmo a escolher um átomo apropriado. O critério de parada empregado no algoritmo

de decomposição obtém automaticamente a quantidade de termos necessários às re-
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presentações dos sinais.

As decomposições obtidas foram comprimidas quantizando não somente os co-

eficientes, mas também os parâmetros do modelo de sinal, isto é, o sinal comprimido

reconstrúıdo utiliza átomos diferentes dos obtidos pelo algoritmo de decomposição.

Apesar de sua simplicidade, o processo de quantização aqui empregado mostrou um

desempenho satisfatório.

Como na prática sinais de distúrbios elétricos são analisados por especia-

listas, como continuação do trabalho desenvolvido devemos submeter os sinais re-

constrúıdos a processos de análises subjetivos. Assim poderemos avaliar melhor o

desempenho do sistema de compressão proposto.

O projeto de quantizadores de Lloyd-Max para coeficientes MP foi apresen-

tado no Caṕıtulo 4. Esses quantizadores são projetados a partir das estat́ısticas dos

ângulos entre reśıduos e átomos selecionados em iterações do Matching Pursuit.

A análise emṕırica do ângulo entre o reśıduo e o átomo selecionado em itera-

ções do Matching Pursuit indicou que estes ângulos podem ser modelados como esta-

tisticamente independentes e identicamente distribúıdos. Assim, aproximadamente,

tais ângulos podem ser considerados como possuidores de estat́ısticas invariantes

à iteração do algoritmo. Desta forma, as estat́ısticas de ângulos em iterações do

Matching Pursuit podem ser obtidas a partir das estat́ısticas do ângulo no primeiro

passo do Matching Pursuit para fontes de sinais Gaussianas.

O modelo estat́ıstico independente do passo de decomposição e identicamente

distribúıdo para os ângulos no Matching Pursuit foi empregado para projetar quan-

tizadores de Lloyd-Max para coeficientes de decomposições obtidas via Matching

Pursuit. O projeto desses quantizadores só necessita de uma estimativa da função

de densidade de probabilidade do ângulo no primeiro passo do Matching Pursuit.

Os quantizadores de Lloyd-Max obtidos apresentaram desempenho similar ao do es-

tado da arte em termos de quantização fora do laço de coeficientes Matching Pursuit.

Além disso, os quantizadores de Lloyd-Max possuem intrinsecamente resiliência a

erros, que resulta da aplicação da mesma regra de quantização sobre todos os coefici-

entes da representação. Vimos que quantizadores de Lloyd-Max obtidos para fontes

Gaussianas podem ser utilizados também para fontes que não sejam Gaussianas.

Os quantizadores projetados para coeficientes de decomposições vorazes obti-
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veram bom desempenho. Resta-nos testá-los embutidos em sistemas de codificação

de sinais, como, por exemplo, áudio e v́ıdeo, baseados em decomposições vorazes.

O conteúdo tempo-freqüência de um frame foi apresentado no Caṕıtulo 5.

Ele é definido como a soma das distribuições de Wigner-Ville dos elementos que

compõem o frame. A análise do conteúdo tempo-freqüência de um frame permite

caracterizá-lo. Apresentamos uma nova condição suficiente que diz que: se a soma

das distribuições de Wigner-Ville de um conjunto de elementos for maior que zero,

então o conjunto é um frame.

Assim como encontramos uma forma de caracterizar frames no domı́nio

tempo-freqüência, conjecturamos ser posśıvel fazer o mesmo no domı́nio escala-

temporal, o que seria útil na caracterização de frames de wavelets.

A análise do conteúdo tempo-freqüência de frames de Weyl-Heisenberg gera-

dos a partir de funções pares mostrou como definir os elementos de um segundo frame

de Weyl-Heisenberg H em relação aos elementos de um frame de Weyl-Heisenberg

G de forma a construir um frame “tipo” Weyl-Heisenberg H ∪ G mais apertado. O

frame mais apertado é obtido através do entrelaçamento dos dois frames H e G no

plano tempo-freqüência. Isso equivale à utilização de um reticulado losangular para

gerar o frame, ao invés do retangular, no plano tempo-freqüência.

O entrelaçamento de frames de Weyl-Heisenberg foi utilizado para construir

dicionários. Os dicionários foram avaliados usando as estat́ısticas dos ângulos pro-

duzidos pelos dicionários quando utilizados no Matching Pursuit para fontes Gaussi-

anas. Os resultados experimentais indicam que para dicionários de mesma cardina-

lidade, aqueles formados por elementos de frames de Weyl-Heisenberg entrelaçados

possuem um desempenho melhor que os dicionários constitúıdos pelos elementos de

um único frame de Weyl-Heisenberg.
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Apêndice A

Introduction

A.1 Atomic Signal Representations

A legacy of Greek thinking is the idea of atoms – indivisible units of matter.

In science, in many different manners, we use the approach of dividing the natural

world into pieces or parts. The methodology of partitioning the real-world, into small

(sometimes not so small) pieces and parts or atoms, then selecting a subset of these

parts (sometimes disregarding others), and concentrating on this subset to construct

an approximation of the real-world has being largely employed. The impact of this

methodology in science evolution is enormous. An example is the prime and original

idea presented by Erwin Schrödinger in 1943, that goes as hereditary characteristics

should be stored by combinations of a limited set of crystals. That was later realized

by the discovery of the DNA structure. Atomic signal representations resemble the

aforementioned methodology, since they focus on extracting relevant signal parts to

construct a good signal approximation.

Atomic representation of signals is the idea encompassing the expression of

signals using pre-defined waveforms. That is, signal x shall be represented by a

linear combination of few waveforms selected from a pre-defined set, the dictionary

D. The signals gi, that are included in D, are the waveforms allowed to be used

in the linear combination that expresses x, and are also called atoms or elements.

Atomic signal decomposition algorithms select a subset of M dictionary elements
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gi(m) that approximate x as

x ≈ x̂ =

M
∑

m=1

γmgi(m), gi(m) ∈ D. (A.1)

Note that i(m) indexes gi(m) in the dictionary and γm is the weight of gi(m). Each

atom used to express x can be understood as an intrinsic signal feature, allowing for

compact signal coding and estimation. A dictionary includes the words of a language.

Languages are redundant as they allow us to express an idea in many different ways.

An overcomplete dictionary is a redundant collection of elements, that is, it contains

more elements than necessary to span the signal space. Redundancy allows us to

select one among various signal representations.

The atoms in the periodic table, compose all the known molecules. However,

the properties of chemical composites heavily depend on how their elements are

interconnected. Although the elements in the benzine molecule were known, it was

not until Kekule dreamed about a snake biting its own tail that the hex-carbon

cycle was realized. Similarly, in atomic decompositions, not just the elements are

relevant, but also how they are combined and interconnected. That is, one should

seek a linear combination of atoms as in equation (A.1) that provides a good signal

representation. Different atomic signal decomposition algorithms exist, all aim at

finding a good linear combination to represent signals.

Humans, very frequently, classify things using hierarchical approaches. When

looking at the night sky it is not rare to think about the constellations, then about

the stars, and after, maybe, one wanders about planets orbiting the stars. The

Taxonomic Classification of Species classifies live organisms, in a top-down appro-

ach, starting by kingdom down to the species. Hierarchical systems group things

according to common characteristics or to physical proximity, but grouping things

according to characteristics can be viewed as the grouping of things by proximity

in a conceptual model/space. Atomic decompositions allow to group signals. The

proximity between signal features can be accomplished by letting the dictionary in-

clude features in different geometric scales. The classification of signals according

to common characteristics can be accomplished by comparing the atoms and their

weights in the representation of different signals.

Currently, there is research in neuroscience and psychology to map specialized
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areas in the brain that are used for different tasks. Atomizing, partitioning and

classifying the natural world and its things seem to be innates to human kind. In

these tasks, two common questions are: what or who are the building blocks of

natural things; and how do these blocks combine? Atomic signal representations

use linear combinations of pre-defined elements to represent signals. The possible

building blocks are defined by the dictionary elements and atomic decomposition

algorithms aim to find the building blocks composing a signal.

Bases have being largely employed to express vectors in a unique and conve-

nient way. Bases are frequently constructed to highlight specific signal features and

have an astonishing number of applications. However, there is neither freedom nor

flexibility in the selection of the representation using a basis. Since the represen-

tation is unique, if one wants to express the signal in a different way then another

basis must be used; that is, when bases are used to represent signals the elements are

selected a priori. In addition, some applications may require signal representations

using linearly dependent elements, which is a feature that is not allowed with bases.

When an atomic decomposition strategy using a redundant dictionary is employed,

the atoms in the signal representation can be chosen a posteriori, i.e., according to

the signal. Further, the atoms used to represent the signal may be linearly depen-

dent. These properties allow for a more appropriate and application oriented signal

representation.

Atomic representations have been used for: signal filtering and denoising [76,

84]; analysis of the physical phenomena behind the observed signal together with pat-

tern recognition and signal modelling [58,59,64,69,72,84,107]; and time-frequency [84,

85], and harmonic analyses [37,58]. Atomic representations can also provide for good

signal compression tools [2,9,37,44,88]. Recently, atomic representations were pro-

posed to discriminate outcomes from different Gaussian processes [63].

A.2 Frame Expansions

The brain is a large network of interconnected neurons, and great evidence

exists that this network works in parallel. Several neurons receive the same stimulus

simultaneously and deliver different responses to it, which are fed to other neurons
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in different points in the network. At the end, the excitation activates some neurons

that determine the response given to the stimulus provided. Instead of using a few

dictionary elements to express signals, as in atomic representations, all the elements

could be used to express signals. This approach gives raise to a flexibility that is

similar to the one in the brain’s neural network, since the input pattern can be

compared to all the elements in the dictionary. The use of all the elements in the

signal expression leads to the frame concept.

The frame concept remounts to Duffin and Schaeffer work on non-harmonic

Fourier series [38]. In the last two decades, frames have been an active area of

research that is producing many new theoretical results and applications [17, 26,

27, 84]. Frames can be regarded as redundant or overcomplete bases. A frame of a

space H is a set of elements that spans H. Therefore, a frame G = {gk}k∈K (a set of

elements gk indexed by k ∈ K), can be used to express any x ∈ H by means of

x =
∑

k∈K
ckgk, (A.2)

where ck are called the frame coefficients. Since G is overcomplete, the set of frame

coefficients is not unique. There are several strategies to compute the frame co-

efficients. One strategy is the use of the inverse or dual frame, that provides the

reconstruction formulas

x =
∑

k∈K
〈x, gk〉g̃k =

∑

k∈K
〈x, g̃k〉gk, (A.3)

where G̃ = {g̃k}k∈K is the inverse or dual frame. Note that, since G is overcomplete,

G̃ is, in general, not unique [17].

A frame expansion of a signal provides “how much” of the signal is present in

each frame element. This may allow to infer signal characteristics. Since the frame

elements are not obligated to be linearly independent and therefore also not ortho-

gonal, characteristics that are similar one to another can be observed by projecting

the signal into different frame elements. These characteristics can be confused if

the signal projection into a basis is used. Therefore, the set of frame coefficients

can be altered in order to highlight desired signal features. In addition, frames can

be designed for specific applications depending on the features that one desires to

extract or analyze in the signal.
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Although the elements used to express x are selected a priori, frame ex-

pansions allow for the use of elements with special properties. The Balian-Low

theorem [26] shows that it is not possible to construct a basis with elements that are

well localized in both time and frequency domains simultaneously. Frames do not

impose uniqueness to the signal representation, therefore the definition of the frame

elements is less restrictive than it is for basis elements. Hence, better localization of

the frame elements simultaneously in time and frequency domains is achievable.

Frames applications range from signal coding [84], signal sampling [17,38,84],

signal analysis [27, 84] and transient detection [51, 52], to communication systems

design [17, 99].

A.3 Outline of the Thesis

This thesis is concerned with atomic decompositions and frame expansions

– signal representations using redundant dictionaries. Appendix B treats signals

representations using both frameworks. In general, atomic representations are said

to be adaptive since the elements employed can be chosen according to the signal

being decomposed. The main purpose of Appendix B is to provide a theoretical

background on both atomic decompositions and frames.

Appendix C presents coherent representations of signals from electric power

plants. These representations are obtained by employing an adaptive signal decom-

position algorithm that obtains atomic signal representations. The main objective of

a coherent decomposition is to provide a signal representation related to the physical

phenomena represented in the measured signal.

Appendix D provides a statistical study of the Matching Pursuit algorithm,

consisting of an iterative algorithm that builds atomic representations using a per-

element selection criterion. The statistical model derived from the study is then

employed to design quantizers for the coefficients of atomic decomposition obtained

using Matching Pursuits for signal compression applications

Appendix E studies the time frequency content of frames. It provides a novel

sufficient condition for a family of elements to be a frame.

Appendix F presents the conclusions.
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Apêndice B

Background

This appendix discusses several aspects of signal representations using re-

dundant dictionaries. It begin by presenting relevant features and characteristics of

atomic decompositions. Then, it goes towards the algorithms that obtain atomic

decompositions, in special the so-called Matching Pursuit algorithm, which is an ite-

rative algorithm that selects the atoms of the atomic representation in a per-element

fashion. Dictionaries to be used for atomic decompositions are then discussed. Then,

this appendix also reviews basic aspects of frame theory, and discusses the problem

of frame characterization. Further, methods commonly employed to construct fra-

mes from a prototype signal are addressed. It is also discussed, from an intuitive

viewpoint, the connections between a frame and the dictionary composed using the

elements of the frame. At the end, the review material is related to the remainder

of this thesis.

B.1 Atomic Representations of Signals

The aim of atomic signal decomposition algorithms is to select a subset of M

dictionary elements gi(m) that approximates x using a linear combination such as

x ≈ x̂ =
M

∑

m=1

γmgi(m), gi(m) ∈ D. (B.1)

Equation (B.1) is also referred to as an M-term representation or expansion.

Atomic representations differ from classical transform based approaches used

for signal representation, since the atoms used to represent a signal may be linearly
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dependent and may not span the signal space. In addition, since, in general, D has

more elements than necessary to span the signal space, the selection of the atoms

may be signal dependent, leading to an adaptive signal decomposition. That is,

while representations using basis utilize atoms that one defined a priori, adaptive

signal representations select the atoms a posteriori. As previously discussed, this

scheme can provide meaningful and compact approximations.

B.1.1 Distortion of the Approximation

The distortion of the M-term expansion of a signal x can be defined by

d(x, M,D) = ‖x − x̂‖ =

∥

∥

∥

∥

∥

x −
M

∑

m=1

γmgi(m)

∥

∥

∥

∥

∥

. (B.2)

The distortion of the M-term representation of x depends on three factors: i) the

number of elements used in the signal representation M ; ii) the atoms gi(m) used to

express the signal; iii) and the coefficients γi that weight the atoms in the M-term

representation. Since the atoms that can be used in the M-term representation are

limited by the elements that belong to the dictionary D, the distortion also depends

on D.

B.1.2 Dictionary Requirement: Completeness

The most basic dictionary requirement is completeness. For M-terms using

atoms from a dictionary D being capable of representing any signal x ∈ X with

an arbitrary distortion d(x, M,D), D must be complete in X . That is, there shall

be at least one linear combination of elements from D that gives x̂ = x, ∀ x ∈ X,

i.e. D must span X. Dictionaries are often said to be overcomplete or redundant

since, in general, they have more elements than necessary to span the signal space.

Dictionary redundancy allows the use of distinct sets of dictionary elements to span

X, and the same applies, a priori, to any x ∈ X.

B.1.3 Adaptivity

It is desirable to select the atoms used in the representation according to the

signal, allowing thus an adaptive representation. When the atoms used in the M-

term expansion depend on the signal the decompositions are said to be adaptive. The
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algorithms that produce the M-term representation are also referred to as adaptive

signal decomposition algorithms [1, 29, 59, 62, 72, 84, 85, 105].

Since an overcomplete dictionary allows expressing the same signal using dif-

ferent M-term representations (meaning that the representation is not unique), an

overcomplete or redundant dictionary is a requirement if adaptive signal decomposi-

tions are desired. Different decomposition algorithms may obtain signal expansions

subject to distinct objectives or adapting criteria. Several adapting criteria have

been used: i) the distortion defined in equation (B.2), ii) the smallest value of the

peak error between x and its approximation x̂, iii) the smallest number of terms

M for a given distortion, iv) the set of smallest energy coefficients using a given

number of terms, v) the selection of a basis to represent the signal, among others.

Mixtures of these criteria have also been applied. In general, the number of terms

M , the atoms used in the representation, and the atoms weights depend on the em-

ployed criteria. Therefore, the algorithm used to obtain the M-term representation

influences the linear combination obtained and the distortion of the representation.

Several algorithms capable of obtaining M-term expansions are briefly described in

subsection B.2.

B.1.4 Approximations and Estimations

Adaptive approximations can also be understood as discrimination strategies.

Discrimination separates relevant information from noise, the relevant information

is defined by the elements that are allowed to be used in the representation, the

dictionary atoms. Therefore, the atomic representation can also be understood as

signal estimators that retain just the relevant information, the information that is

similar to the atoms used in the signal representation.

B.1.5 Compactness or Sparsity of Representations

The most compact or sparse representation of x is the one using the smallest

number of atoms [36,59,66,105] such that the distortion is null. In practice, not the

smallest subset of dictionary elements, but rather a small number of terms providing

an acceptable distortion may be enough. Hence, the sparsity of a representation is

related to the number of terms M . As M grows, the less compact or sparse the
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representation is.

The atomic signal representation is a linear combination of M elements, and,

if the signal dimension is N , one may have: i) M > N – a redundant signal repre-

sentation; ii) M = N – non-redundant and non-compact; iii) M < N – fewer atoms

than the necessary to span the signal space are used – a compact representation.

For coding applications, compact representations (M < N) are often desirable since

they allow for compacting the data.

B.1.6 Coherent Representations

Most signal processing applications deal with outcomes from physical proces-

ses. In these cases, the observed signal x is a mixture of components pm, representing

physical phenomena, given by

x =
∑

m

βmpm + n, (B.3)

where n is the noise, inherent to any physical measurement. From the perspective of

signal modelling, it is interesting for the atoms gi(m) used to approximate the signal

to be similar to the phenomena pi that are represented in the signal x. The more

the selected dictionary elements gi(m) and weights γm are similar to the physical

phenomena pm and weights βm, the better is the signal expansion for modelling and

pattern recognition purposes. In this work, expansions such that the gi(m) are similar

to the components that are represented in the decomposed signal are said to be

coherent. That is, if the signal expansion is a meaningful model, the representation

is said to be coherent to the signal. Appendix C exemplifies and solves problems

encountered when trying to obtain coherent decompositions by presenting efficient

coherent representations of disturbance signals acquired in power systems.

B.1.7 Super Resolution

In general, the computational burden of obtaining atomic signal representa-

tions surpasses the computational demands of traditional expansions into basis, as,

for example, the fast Fourier transform (FFT). Therefore, it is desirable to obtain a

separation or resolution of signal features and of atom characteristics that is much

higher for atomic decompositions than the one possible with traditional approaches.
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B.2 Adaptive Signal Decomposition Algorithms

Practical signal processing applications and algorithms are often implemented

in digital machines and the signal is considered to be a vector x that belongs to an

N -dimensional vector space. Note that, in an N -dimensional vector space, the M-

term can also be expressed, in matrix form, as

x̂ ≈ G~γ =
[

g1 · · · gj · · · gM

]
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From equation (B.5) the best M-term representation can be obtained by a

massive optimization. The massive optimization would try all possible combinations

with M or less elements from D to find the linear combination that minimizes a

prescribed error criterion. The generation of an atomic decomposition consists,

thus, in finding the matrix G and the coefficient vector ~γ that provide a reasonable

signal approximation according to a distortion criterion as the l2 or the l1 norm.

However, massive optimization is not feasible. Even for a constrained D, with finite

cardinality, the solution of equation (B.5) is an NP-hard problem [29], that is, its

complexity is not bounded by a polynomial of degree N .

Another possibility is to consider the dictionary to be a frame [17, 27, 84]

(frames are discussed in section B.4). Using the frame concept, G in equation (B.5)

has size N ×#D. If G is a frame, the pseudo-inverse of G [17,84], GINV can be used

to find the coefficients. Several algorithms exist to calculate ~γ = GINV x [17, 84].

However, the frame expansion ~γ = GINV x does not allow to select the atoms used in

the representation. For that purpose, the coefficients of the frame expansion could

be ordered, for example in decreasing magnitude, and the expansion could use just
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the M larger coefficients. However, limiting the number of terms changes G and

implies a different set of coefficients. In addition, in some cases, the “pruned” G

may not admit inversion.

The impracticability of massive optimization was exposed, and also the diffi-

culty to select atoms (to adapt) using frame expansions. In order to obtain atomic

representations several algorithms have been proposed. The decomposition algo-

rithms presented to date can be classified into three different classes, irrespective of

the interplay among the atoms selected by the algorithms. The first class is compo-

sed by algorithms that deliver a basis to represent the signal. The algorithms of the

second class deliver a sequence of dictionary elements, that is, they employ a per-

element selection criterion, such that the distortion of the approximation is reduced

as the number of elements used increases. The algorithms in the third class impose

that if a new atom is added to the M-term it can not be a linear combination of pre-

viously selected atoms, thus delivering subspaces that expand as the number of terms

increases. Although the principles and objectives of the three classes of algorithms

are different, the algorithms are said to be adaptive since their outcomes depend on

the signal being decomposed. In what follows, some algorithms capable of obtaining

atomic decompositions, from the three classes, are conceptually described. In broad

sense, such algorithms have been classified as non-linear [29, 32, 84, 104] since the

decomposition obtained for the sum of two given signals is not, in general, the sum

of the decompositions of the two signals. It should also be pointed out that specific

implementations are often proposed and employed considering the dictionary as an

algorithmic constraint.

B.2.1 Basis Selection Algorithms

For selecting bases to represent signals two different strategies can be distin-

guished. The first strategy employs a dictionary composed of a union of bases and

the algorithm selects one of the bases in the dictionary to express the signal [22,84].

The second strategy builds a basis using dictionary elements [1,15,16,84]. In general

dictionaries are specially designed for each strategy; examples are wavelet packets

or local cosine bases dictionaries [15, 84].

The Best Ortho Basis (BOB) algorithm [22] employs a dictionary that is
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a union of K orthogonal basis D = {B1, . . . ,Bi, . . . ,BK}. The algorithm works

roughly as follows. Let ~γi be the projection of x into the basis Bi and define an

entropy ε (~γi). The BOB selects the basis Bb that has the minimum entropy, that is,

b = arg
(

minBi⊂[1,...,K] ε (~γBi
)
)

, to represent the signal. BOB was proposed using a

dictionary of wavelet packets [22,27,84] that have a special tree-structure that allows

for a fast algorithm. Since BOB searches for the minimum entropy coefficient vector

it might obtain compact representations, that is, with few non-zero coefficients.

However, BOB does not obtain compact representations when x is composed of

non-orthogonal signals [84].

The Basis Pursuit (BP) is presented in [15,16], and, according to the authors,

BP is a principle rather than an algorithm. The main idea of BP is to construct a

basis, not necessarily orthogonal, to represent x. In essence, the idea of BP is to

search for the coefficient vector ~γ with minimum l1 norm. One of the algorithms

proposed to accomplish that is the BP-simplex [16]. The BP-simplex starts using a

full rank representation of the signal, i.e., the projection of the signal into a basis,

and iteratively minimizes the l1 norm by swapping useless elements (those that do

not have significant information respective to the signal being represented) by new

ones.

In the basis selection algorithms above, specific and fast implementations are

often proposed considering specific dictionary characteristics. Comparisons among

several existent basis selection methods can be found in [1, 16, 84]. Although BOB

and BP obtain an exact signal representation they are restricted to the selection

of a basis to represent signals. In some applications this is undesirable, since the

representation of a signal using a basis does not permit accurate signal modelling as

the different phenomena represented in the signal are, in general, linearly dependent.

B.2.2 Atom Selection Algorithm – Matching Pursuit

The Matching Pursuit algorithm (MP) [84, 85] approximates signals iterati-

vely. The basic idea of the MP is to find the best possible approximation at each

iteration. This strategy is also called the Pure Greedy Algorithm (PGA) [32, 104].

Due to advances in computer resources, greedy algorithms have emerged in several

scientific fields, for example, for signal processing [112], in statistics [53, 77] (where
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they are also known as Projection Pursuits) and in control theory applications [14].

Let D = {gk} and k ∈ {1, . . . , #D} such that ‖gk‖ = 1 ∀k, where #D is the

dictionary cardinality, i.e. the number of elements in D. In each decomposition step

or iteration n ≥ 1, the MP searches for the atom gi(n) ∈ D, i.e. i(n) ∈ {1 . . .#D},
with largest inner product with the residual signal rn−1

x
[84, 85], and the initial

residue is set to be r0
x

= x. The selected atom gi(n) is then subtracted from the

residue to obtain a new residue rn
x

= rn−1
x

− γngi(n), where γn = 〈rn−1
x

, gi(n)〉 is the

inner product between the residue and the selected atom gi(n). Thus, at each step

n, the resulting residue rn
x

is orthogonal to gi(n). The MP obtains the M-term signal

representation/approximation

x̂ ≈
M

∑

n=1

γngi(n). (B.6)

The approximation error or distortion is given by the M th residue rM
x

= x − x̂. In

practice, the decomposition step (the calculation of γn, i(n), and the residue rn
x
)

is iterated until a prescribed distortion (‖rn
x
‖), a maximum number of steps, or a

minimum for an approximation metric is reached [29, 84] (see subsection C.4.1).

The MP algorithm converges [29, 84, 112], i.e. lim
n→∞

‖rn
x
‖ = 0. The maximum

angle between any signal x, that belongs to the signal space X, and its closest atom

in D
Θ(D) = arccos

(

min
x∈X

[

max
i∈{1,...,#D}

( |〈x, gi〉|
‖x‖

)])

(B.7)

determines the maximum error at a given MP step. If the angle between rn−1
x

and

gi(n) is Θ(D) then the smallest possible reduction of the residue norm occurs at step

n. If, at every step, the worst possible reduction of the residue norm after n MP

steps occurs, therefore |rn
x
| is upper bounded by

en = ‖rn
x
‖ ≤ ‖x‖ sinn (Θ(D)). (B.8)

Note, however, that this bound is weak since there is no guarantee that exists a signal

such that the angle between its residuals and the atoms selected at each iteration

are always Θ(D), when decomposed using the MP. In finite dimensional spaces the

residue norm ‖rn
x
‖ has an exponential decay rate as a function of n. However, in

infinite dimensional spaces the convergence can be slow.

The choice of the atom with the largest inner product with the residue at

each iteration may be suboptimal when the overall representation is considered.
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The greedy selection criterion guarantees the reduction of the error at each step;

however, this criterion can reintroduce components into the signal, examples are

given in subsection C.2.2. In brief, there is no guarantee that the MP finds the

best possible set of coefficients. In some cases, for the same atoms, a distinct set of

coefficients can be found that leads to smaller distortion.

B.2.2.1 Variants of the MP Framework

A variant of the MP is the Weak Greedy Algorithm (WGA). The WGA [103]

uses, instead of i(n) = arg
{

maxk∈{1,...,#D}〈rn
x
, gk〉

}

, the selection criterion given by

i(n) = argk∈{1,...,#D}
{

〈rn
x
, gk〉 > tn sup

gk∈D〈rn
x
, gk〉

}

. The thresholds tn may change

or not with the iteration n and are optimality criteria. The WGA may reduce the

computational demands since the search of the atom does not need to be exhaustive

in D. However, the thresholds tn must be set-up and sup
gk∈D〈rn

x
, gk〉 needs to be

calculated. The Probabilistic MP (PMP) [46] is another variant of the MP. In

the PMP, the atom choice depends not just on the inner product but also on the

suitability (measured by a probability weight) of the atom to be used to approximate

the signal at each step.

Quantized MP-like Decompositions MP resembles successive approximation

vector quantization (SAVQ) [25, 81]. The difference is that, in MP, the coefficient

can assume any value while, in SAVQ, the coefficients are given by γn = α0
n−1 being

α0 a constant and n the iteration. Therefore, SAVQ uses exponentially quantized

coefficients. The so called Matching Pursuits using Generalized Bit Planes (MP-

GBP) [8, 9] employs coefficients γn = α0
kn, where kn can be any integer value at

each iteration n. The α-expansions [24,49] permit only one coefficient value, a preset

value α. The three algorithms cited (SAVQ, MP-GBP, α-expansions) quantize the

coefficient prior to computing the residue, and is referred as in-loop quantization.

As for computing the residue the decomposition loop uses quantized coefficients.

Local Fitting The High Resolution Pursuits algorithm (HRP) [65, 72] was in-

troduced in order to allow a better fitting between the atom and the signal for

time-frequency atom dictionaries. Time-frequency atoms are designed to have their

energies concentrated in specific time intervals and bandwidths. The MP searches

65



for the atom that best matches the overall signal what may provide a bad local

fitting. The HRP multiplies the time-frequency atom found by the MP by B-spline

windows in order to find the best local fitting with the residue. The local “fitting”

strategy of the HRP tries to reconcile the overall match of the MP and localized

signal features. In subsection C.2.2 a fast algorithm to accomplish local fitting in

order to eliminate pre-echo and post-echo artifacts that often appear in MP-like

algorithms is presented.

B.2.3 Subspaces Selection Algorithms

Two different approaches can be found to obtain subspace-based signal re-

presentations. The first strategy is to restrict G in equation (B.5) to have a fixed

dimension N ×M [59], with M < N , and to optimize G by trying different subsets

of M elements from D in order to represent the signal. This optimization is feasi-

ble when G can be constructed from orthogonal vectors [59]. The second approach

uses an MP-like algorithm but orthogonalizes the atom selected at each step with

respect to the atoms previously used. That is, as each new atom is delivered by

the algorithm, the dimension of the subspace generated by the atoms selected by

the algorithm to represent the signal increases until the whole signal space dimen-

sion is reached [29, 90, 105]. Note that in these approaches if the number of terms

used equals the signal space dimension, then a basis is used to represent the signal.

However, these are placed apart form the basis selection algorithms since they may

not use a basis.

In the Orthogonal Matching Pursuits algorithm (OMP) [29, 90] the atom

chosen at each step is made orthogonal to the previously selected atoms using a

Gram-Schmidt orthogonalization procedure. The orthogonalization procedure does

not produce any new information to be transmitted. The subspaces generated by

the atoms selected up to the nth iteration Vn (the space generated by all linear

combinations of the atoms selected up to step n) is such that Vn ⊃ Vn−1; that is the

dimension of the subspace generated by the atoms selected by the OMP increases

at each iteration. Thus, if the number of steps or terms equals the signal space

dimension, then a basis is used to represent the signal. Note that this basis is

such that its elements are given by linear combinations of dictionary atoms. The
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orthogonalization procedure is, in general, not useful for phenomena identification

and pattern recognition. In addition, the OMP may not lead to the smallest possible

residue; to obtain the smallest residue using orthogonalized atoms, the Optimized

OMP algorithm (OOMP) has been proposed [3, 93].

B.3 Dictionaries

Dictionary completeness allows to represent any signal with arbitrarily small

reconstruction error, however, it does not guarantee the obtainment of neither

a compact nor coherent representation. Dictionaries are constantly proposed for

specific applications. A very commonly employed dictionary is the Gabor dictio-

nary [27, 84, 85]. The Gabor dictionary is composed by Gaussian shaped atoms in

different scales, with varying centers in time and multiplied by different complex

sinusoids, the so-called time-frequency atoms [27,84,85]. Other dictionary examples

are wavelet packets [8, 50, 84], local cosine bases [1, 16, 84] and curvelets dictiona-

ries [8, 50]. Ridgelets [11] dictionaries have also been used to accomplish atomic

representations of natural scenes [35]. Dictionaries composed by outcomes of ran-

dom processes have also been used [54, 60, 62] mainly to investigate properties of

decomposition algorithms. Training process have being employed to generate dicti-

onaries [42,43,78]. For example, in [2,87] training was used to find good dictionaries

for representing video frame differences, after motion compensation for MPEG-4

coders. Mixtures of the dictionary construction approaches previously cited have

also been used.

The impact of the dictionary definition, i.e., the atoms that belong to the dic-

tionary, for atomic decompositions algorithms is tremendous. It was discussed that

the dictionary has a direct influence on the distortion. In addition, the dictionary

must contain atoms that are similar to the actual phenomena that may appear in

the observed signal to allow for coherent expansions. Meanwhile, in order to provide

compact representations, the dictionary may have to contain a very large number of

elements allowing the selection of just a few elements to represent the signal with

small distortion.

Conceptually, the most simple dictionary is a finite set of elements D =
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{gi}i∈I . In this case, each gi ∈ D can be indexed by i ∈ I = {1, . . . , #D}, where

#D is the number of elements in D, the dictionary cardinality.

Intuitively, the probability of having an atom in the dictionary that is a good

match to the signal being decomposed, a priori, increases with #D, as mentioned

in [54,62,84]. Therefore, in some applications a large cardinality dictionary is conve-

nient such that the dictionary may contain atoms that are similar to all the potential

components in the signals to be decomposed.

B.3.1 Parameterized Dictionaries

The probability of finding an atom in the dictionary that is a good match

to the signal does not rely only on #D, it depends also on the shape of the atoms.

Thus, another relevant aspect in the definition of D is the actual waveform or shape

of the atoms composing D. If the class of components that may be represented

in the observed signals to be decomposed is known a priori then it would be wise

to use atoms that look like these components [54, 62, 84]. The use of atoms that

resemble the possible signal components would augment the probability of finding a

dictionary atom that matches well the signal being decomposed.

A strategy commonly used is to define the dictionary elements from a set

of prototype functions/signals. In such dictionaries the actual waveforms of the

dictionary atoms depend on a set of parameters that modifies the prototype signal.

These dictionaries are said to be parameterized since each dictionary element gσ is

defined by a given value of the parameter set

σ = (σ0, σ1, . . . , σK−1) ∈ S, (B.9)

where K is the number of parameters that define gσ and S is the set of all pos-

sible parameters. The Gabor dictionary previously mentioned is a parameterized

dictionary.

If the set of possible atom parameters S has finite cardinality then the dicti-

onary is therefore indexable. In this case the coding of the M-term representation,

the storage or transmission of the atoms gi(m) and weights γm 1 ≤ m ≤ M , is

accomplished by coding the weights of the atoms together with the σ or indices to

the atoms. The atoms of parameterized dictionaries are often referred to as structu-
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res [84, 85] and are unequivocally defined by the value of the parameter set σ. The

stored parameters of the structures of the decomposition of a given signal compose

the so-called structure book [84, 85, 94]. Thus, the structure book expresses the

M-term signal representation in the parameter space.

Parameterized dictionaries are a good and natural choice when one intends

to represent signals from a given class. This is so because one can define prototype

signals according to the phenomena that are expected to be represented in signals

from a given class. Parameterized dictionaries allow to look for the structures that

best match to the signal being decomposed. These structures are derived from pro-

totype signals which actual characteristics as band, center frequency, scale, phase,

start time, attack, decay rate, etc depending on the parameter set values defining the

dictionary atoms. Therefore, the use of a parameterized dictionary allows for estima-

ting the signal and obtaining coherent decompositions. For example, parameterized

dictionaries were employed for pattern recognition [72] and signal modelling [45,107]

using atomic decompositions.

In addition, the values of the parameters that define the atoms in the dicti-

onary can also be adapted to the signal source. In [29] a training process based on

the Lind-Buzo-Gray algorithm [57] was used to reduce the number of elements in

Gabor dictionaries for the specific task of representing chirp signals. In [39] a similar

training algorithm is employed to both reduce the algorithm complexity and unbias

the structure book for electroencephalogram data representation.

Summarizing, application oriented dictionaries are often used. However, in

some applications finite cardinality parameter set dictionaries are not enough and

the capability do adapt the atoms to the signal may be required.

Continuous Parameters Dictionaries In some cases it is interesting to change,

adapt or fit the structures used in the signal representation, to the actual signal

being decomposed. For that purpose, the value of the parameter set of an atom is

allowed to be any point inside a region of the parameter set space. For example,

if all the parameters are real then S ⊂ RK , S is nondenumerable and #D = ℵ1

(ℵ1 is the cardinality of the real numbers). In this case we say that the parameters

of the atoms are continuous. In general, to obtain continuous parameter atoms

one uses optimization algorithms that find the values of the parameter sets defining
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each atom in the M-term representation. When this occurs the structure book

is densely quantized. In some cases this may require specialized quantization of

the parameter set. Appendix C shows a strategy to obtain decompositions using

continuous parameter atoms in the MP algorithm and also discusses the quantization

of the parameter set.

B.3.2 Dictionary Trade-offs

The dictionary cardinality has a direct impact on:

i – Computational complexity: in general, the computational demands of the al-

gorithms that provide atomic representations is related to #D. The larger that

#D is the higher is, in general, the computational demands of the decomposi-

tion algorithm;

ii – Coding cost: the rate needed to code each atom used in the atomic decompo-

sition increases with #D.

Therefore, in addition to the design of the atoms gi ∈ D, a key problem is to

control the value of #D while guaranteeing acceptable distortion at low data rate

and reduced computational complexity.

Suppose that M-term representations of signals from a source X are obtained

using a dictionary Di, then it is easy to find a code such that the total length of

each coded representation is given by

Ri = Rcoef + M ∗ log2 (#Di
) in bits, (B.10)

where Rcoef is the number of bits used to code the M coefficients in the M-term

representation. For coding purposes, it is worth using another dictionary Dk to

represent signals from the source X instead of Di if and only if the average distortion

for the source of the representations using Dk is smaller than the average distortion

using Di at the same data length. Note that for fair comparison the same data

length N should be considered rather than the same number of terms M . The

computational burden of obtaining the decompositions using dictionaries Di and Dk

should also be compared.
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For a continuous parameter dictionary D one has that #D = ℵ1. In this

case the parameters of the structures should be quantized for coding the M-terms

and the term M ∗ log2 (#Di
) in equation (B.10) is replaced by the data length used

to transmit/store the quantized structures. However, even when atom parameters

adaptation takes place, it is still needed to design initial dictionaries that allow for

this adaptation with reduced computational complexity.

B.3.3 Dictionary Evaluation Metrics

In greedy decomposition algorithms, some of the factors that determine both

the minimum error obtainable at a given number of steps and the convergence rate

of the approximation process are:

• The maximum angle Θ(D) between any signal in the space and its closest

atom in D (see equation (B.7)) that bounds the error norm.

• The average of the angle among vectors drawn from a source X , whose reali-

zations have an uniformly distributed orientation, and their closest atoms in

D
Θ(D) = E

{

arccos

[

max
i∈{1,...,#D}

(|〈X , gi〉|)
]}

. (B.11)

The optimal dictionary must have the minimum attainable Θ(D) for a given cardi-

nality #D; subsection D.1.2 provides more discussions and examples on this topic.

Another dictionary metric is the coherence of a dictionary [105]

µ(D) = max
γj∈Γ

(

max
γk∈Γ−{γj}

|〈gγj
, gγk

〉|
)

. (B.12)

which measures the largest similarity between two dictionary atoms. As dictionary

atoms are normalized µ(D) ≤ 1. If µ(D) is “close” to 1 it is said that the dictionary

is coherent and for µ(D) small it is said that the dictionary is incoherent [105].

In [105] it is shown that µ(D) is related to the exact sparse problem. That is, if p

elements of D are linearly combined to generate a signal x, then the OMP [29] and

the BP [16] can recover any such x if p ≤ 1
2
(µ(D)−1 + 1) [105].
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B.4 Frames

Frames were introduced by Duffin and Schaeffer for the study of non-harmonic

Fourier series [38] in 1952. The basic idea is the use of more “points” or coefficients

than the necessary to represent the signals from a given space. This idea is used in

modern analog-to-digital converters (ADC) that sample signals at rates higher than

the Nyquist rate with low resolution, the so-called sigma-delta ADC. Since the signal

is sampled at high rate, the requirement on the sample precision can be relaxed.

It took a long time until frames came into play. The first book concerning the

topic was written by Young in 1980 [111]. However, once Daubechies, Grossman and

Meyer [28] in 1986 perceived the fact that frames can be understood in a way similar

to expansions using orthonormal bases, and the link among frames and wavelets

was established [26,27,68], new breath was given to the research on frames. Frames

have been an active area of research producing a plethora of theoretical results and

applications. Good surveys on frames can be found in [7, 26, 27, 84], and a recent

book dedicated to this topic is [17].

B.4.1 Definition of Frames

Definition B.1 A sequence of elements {gk}k∈K in a space H is a frame for H if

there exist constants A, B > 0 such that [7, 17, 27, 84]

A‖x‖2 ≤
∑

k∈K
|〈x, gk〉|2 ≤ B‖x‖2, ∀x ∈ H. (B.13)

The numbers A and B are called the lower and upper frame bounds, respec-

tively, and are not unique. The optimal lower frame bound is the supremo on all A

and the optimal upper frame bound is the infimo on all B [17]. It is said that the

frame is normalized if ||gk|| = 1, ∀k ∈ K [27].

A commonly addressed problem, related to frames, is how to determine if

a given sequence of elements gk in H is a frame of H, the frame characterization

problem [17]. This characterization is commonly accomplished by the frame bounds.

Note that if for any signal A = 0 then the signal is orthogonal to all the elements

{gk}k∈I and the signal can not be represented using these elements. That is the

reason for the requirement that A > 0. If for a given signal there is no upper bound

in equation (B.13) then this means that the elements are too “dense” for that signal.
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An important concept is the inverse frame, that provides the reconstruction

formulas

x =
∑

k∈K
〈x, g̃k〉gk =

∑

k∈K
〈x, gk〉g̃k. (B.14)

The set {g̃k}k∈K is composed by the inverse frame elements.

Definition B.2 Define the frame operator S{·} as

S : H → H, S{x} =
∑

k∈K
〈x, gk〉gk. (B.15)

A direct consequence of this definition is that any x can be synthesized by

x =
∑

k∈K
〈x, gk〉S−1{gk} (B.16)

and S−1 is called the inverse frame operator. Note that g̃k = S−1{gk} are the

elements of the inverse frame or the so-called canonical dual.

When A = B the frame is said to be tight [17] and

S−1{·} = S{·}/A. (B.17)

Frames for which A ≈ B are said to be snug and for these S−1{·} ≈ S{·}/A.

B.4.2 Frame Bounds and Frame Tightness

Frames are often characterized in terms of their frame bounds. It is very

common to define frame bounds ratio A/B [26]. It is also possible to define the

“tightness” of a frame from its frame bounds ratio: the closer A and B are, the

tighter the frame is. The frame bounds provide limits for the energy scaling of

signals when represented using the projections into the frame elements.

Daubechies [27] shows that the frame operator gives

x =
2

A + B

∑

k∈K
〈x, gk〉gk + R{x}, (B.18)

where R{x} is the error incurred in reconstructing x from the projections of x into

the frame elements instead of into the inverse frame elements (valid for discrete and

vector spaces as well). In addition, she also shows that

R{·} = I{·} − 2

A + B
S{·}, (B.19)
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where I{·} is the identity operator. Therefore one has that

−B − A

B + A
I{x} ≤ R{x} ≤ B − A

B + A
I{x} −→ ‖R{x}‖ ≤ B − A

B + A
‖x‖. (B.20)

Hence, one sees that if B/A is close to one, then the error incurred in the reconstruc-

tion by equating the inverse frame to the direct frame is small. This error is smaller

as A and B become closer. Therefore, from an analysis-synthesis perspective if the

frame is tight there is no need to find the inverse. Tight frames are self-dual [62],

that is, the inverse frame to a tight frame is a scaled version of the frame itself.

For normalized frames, Daubechies calls
A + B

2
the frame redundancy. Seve-

ral studies have been developed on normalized tight frames. For example [86] shows

that these frames have noise reduction property. That is, if a given reconstruction

distortion is required one can use less bits to represent the frame coefficients in com-

parison to the precision required to represent basis coefficients. Tight frames became

a very popular and important class of frames [12,40,41,48,61,62,106]. Among other

applications, tight frames are the most resistant to coefficients erasures [61]. Tight

frames can also provide sparse signal decompositions [66, 106]. Due to these and

other desirable properties a lot of attention has been given to the construction of

tight frames [4, 12, 40, 41, 106].

If two families of elements {gk}k∈K and {hl}l∈L are frames of a space then

the union of these families is also a frame. From the assumptions

A1‖x‖2 ≤
∑

k∈K
|〈x, gk〉|2 ≤ B1‖x‖2, and A2‖x‖2 ≤

∑

l∈L
|〈x, hl〉|2 ≤ B2‖x‖2, ∀x ∈ H,

(B.21)

then

(A1 + A2)‖x‖2 ≤
∑

k∈K
|〈x, gk〉|2 +

∑

l∈L
|〈x, hl〉|2 ≤ (B1 + B2) ‖x‖2, ∀x ∈ H. (B.22)

If the families of {gk}k∈K and {hl}l∈L are carefully chosen the union of two frames can

give rise to a tighter frame. However, defining the elements of the sequence {hl}l∈L

with respect to sequence {gk}k∈K to achieve this goal is not trivial. Subsection

B.4.4.1 introduces Weyl-Heisenberg frames that are constructed from translations

and modulations of a prototype signal, and section E.3 shows an approach to define

{gk}k∈K with respect to {hl}l∈L for the specific case of Weyl-Heisenberg frames in

order to obtain tighter frames.
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B.4.3 Frames in Finite Dimensional Spaces

In an N -dimensional vector space HN one in general restricts the frame to

have K elements; and thus equation (B.13) becomes

A‖x‖2 ≤
K

∑

k=1

|〈x, gk〉|2 ≤ B‖x‖2, x ∈ H
N . (B.23)

Let the synthesis operator be

T{·} : C
K → H

N , T{ck}k=K
k=1 =

K
∑

k=1

ckgk, (B.24)

where CK is a K-dimensional complex vector space. Let the analysis operator T∗{·}
(adjunct operator of T{·}) be given by

T∗{·} : H
N → C

K , T∗{x} = {〈x, gk〉}k=K
k=1 . (B.25)

The operator T{·} synthesizes x from the frame coefficients ck that are obtained by

the analysis operator of a dual frame given by

T̃∗{·} : H
N → C

K , T̃∗{x} = {〈x, g̃k〉}k=K
k=1 . (B.26)

Using the analysis and synthesis operators the frame operator is then given by

S : H
N → H

N , S{x} = T{T∗{x}} =

K
∑

k=1

〈x, gk〉gk. (B.27)

In vector spaces the operators T{·} and T∗{·} can be interpreted as matri-

ces [17], being x a column vector, one has S = TT∗. Let ρi be the eigenvalues of

S, then the frame bounds are given by A = mini ρi, and B = maxi ρi [17]. Thus if

TT∗ = AIN (IN is the identity matrix of size N) the frame is tight (A = B). Hence,

for a tight frame S−1S = IN .

Note that in a vector space if the lower frame bound A were zero for a signal

x then the frame elements would all be orthogonal to x, and the frame would not be

capable of representing x. If the frame has a finite set of elements then necessarily,

due to the Cauchy-Schwartz inequality, the upper frame bound condition will never

be violated.

75



B.4.4 Frames from a Prototype Signal

If a given signal has to be analyzed or synthesized using a set pre-defined

signals derived by operations over a prototype signal one should guarantee this set

to be a frame. Since this frame can be used as dictionary, this may be used to

generate parameterized dictionaries. There are several ways to construct frames

from operations on a prototype signal, some of them are based on translations,

modulations and dilations of a function g(t) [17]:

Definition B.3

Translation by a ∈ R, Ta : L2 (R) → L2 (R) , (Tag) (t) = g (t − a) ; (B.28)

Modulation by b ∈ R, Eb : L2 (R) → L2 (R) , (Ebg) (t) = g(t)e2πbt; (B.29)

Dilation by c ∈ R − {0}, Dc : L2 (R) → L2 (R) , (Dcg) (t) =
1√
c
g

(

t

c

)

. (B.30)

The most common approaches to construct frames from a prototype are:

• A frame constructed by translations of a given function g(t) through operations

{Tnag(t)}n∈Z is called a frame of translates [17];

• A Weyl-Heisenberg (WH) or Gabor frame is a frame in L2(R) obtained through

operations {EmbTnag(t)}m,n∈Z, where a, b > 0 and g(t) is a fixed function.

These frames are also called Gabor Systems or Windowed Fourier Frames [27,

84, 85];

• A frame constructed by dilations and translations of a prototype (mother)

function g(t) by {TnacjDcjg}j,n∈Z = {c−j

2 g (c−jt − na)}j,n∈Z, with c > 1, a > 0

and g ∈ L2(R), is called a wavelet frame [27, 84, 85].

B.4.4.1 Gabor Frames

While the introduction of the frame concept remounts to 1952 [38]; accor-

ding to Christensen [17], the first mention of what are now called Gabor of Weyl-

Heisenberg frames can be traced back to the work of Gabor on communications [55]

in 1946 and to the book of von Neumann on quantum mechanics originally published

in 1932 [109].
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Definition B.4 A Gabor frame is a frame for L2(R) obtained through operations

{EmbTnag(t)}m,n∈Z, on a fixed function g(t) with a, b > 0.

Paraphrasing Christensen [17]: which conditions should hold on g(t) in order

to {EmbTnag(t)}m,n∈Z being a frame? The answer depends on a complicated interplay

between g(t), a and b. For example in [74] a set of non-intuitive conditions was

shown to hold on a and b to generate a Gabor System based on the characteristic

function. In what follows, several results collected from the frame literature are

presented, which provide either sufficient or necessary conditions for {EmbTnag}m,n∈Z

to constitute a frame.

For {EmbTnag}m,n∈Z to compose a frame it is necessary that ab ≤ 1 [17,27,84].

That is, if ab > 1 a frame will not be obtained; however, the assumption ab ≤ 1 does

not guarantee the generation of a frame for any g(t), see for example [74]. It should

be observed that ab is a measure of the density of the frame in the time-frequency

plane [21, 27, 71, 84, 85]; the smaller ab is the denser is the frame.

If {EmbTnag}m,n∈Z constitutes a frame the frame bounds necessarily satisfy [17]

∀t ∈ R, A ≤ 1

b

∑

n

|g (t − na)|2 ≤ B (B.31)

∀ω ∈ R, A ≤ 1

b

∑

k

∣

∣

∣

∣

ĝ

(

ω − k
b

2π

)
∣

∣

∣

∣

2

≤ B. (B.32)

A well known sufficient condition for {EmbTnag}m,n∈Z to be a frame is presented

in [68]. Let a, b > 0, g(t) ∈ L2(R), denote g(t) the complex conjugate of g(t) and

suppose that ∃ A, B > 0 such that

A ≤
∑

n∈Z

|g (t − na) |2 ≤ B ∀t ∈ R and (B.33)

∑

k 6=0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

n∈ Z

TnagTna+ k
b
g

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

< A, (B.34)

then {EmbTnag}m,n∈Z is a Gabor frame for L2(R).

A more general sufficient condition for the generation of a frame {EmbTnag}m,n∈Z

for a, b > 0 given and g(t) ∈ L2(R) is [13, 17]: if

B :=
1

b
sup

t∈[0,a]

∑

k∈Z

∣

∣

∣

∣

∣

∑

n∈Z

g (t − na) g

(

t − na − k

b

)

∣

∣

∣

∣

∣

< ∞, and (B.35)

A :=
1

b
inf

t∈[0,a]

[

∑

n∈Z

|g (t − na)|2 −
∑

k 6=0

∣

∣

∣

∣

∣

∑

n∈Z

g (t − na) g

(

t − na − k

b

)

∣

∣

∣

∣

∣

]

> 0 (B.36)
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then {EmbTnag}m,n∈Z is a frame for L2(R) with frame bounds A, B. Note that this

result shows that if g(t) has a limited support [0, 1/x] then for any set ab ≤ 1 and

b < x a Gabor frame is obtained.

Other conditions for the generation of Gabor frames exist (see for example [17,

27, 84, 113]). In [100] an extension of the results in equations (B.35) and (B.36) for

irregularly sampled time-frequency parameters (when the set (an, bm) is replaced

by any pair (an,m, bn,m) ∈ [na, (n + 1) a] × [mb, (m + 1) b]) is provided.

B.4.4.2 Wavelet Frames

Definition B.5 For c > 1, a > 0 and g ∈ L2(R), a frame constructed by dilati-

ons and translations as {TnacjDcjg}j,n∈Z = {c j

2 g (cjt − na)}j,n∈Z is called a wavelet

frame.

In [27] both necessary and sufficient conditions are provided to construct

wavelet frames. For example, if {TnacjDcjg}j,n∈Z = {c j

2 g (cjt − na)}j,n∈Z is a frame

with frame bounds A and B then necessarily [18]

A ≤ 1

a

∑

j∈Z

∣

∣ĝ
(

cjω
)
∣

∣

2 ≤ B, (B.37)

where ĝ (ω) is the Fourier transform of g(t).

A sufficient condition to generate a wavelet frame [17] is: suppose that c > 1,

a > 0 and g(t) ∈ L2(R) are given, if

B :=
1

b
sup

|ω|∈[1,c]

∑

j,n∈Z

∣

∣

∣
ĝ

(

cjω
)

ĝ
(

cjω +
n

a

)
∣

∣

∣
< ∞, and (B.38)

A :=
1

b
inf

|ω|∈[1,c]

[

∑

n∈Z

∣

∣ĝ
(

cjω
)
∣

∣

2 −
∑

n 6=0

∑

j∈Z

∣

∣

∣
ĝ

(

cjω
)

ĝ
(

cjω +
n

a

)
∣

∣

∣

]

> 0 (B.39)

then {TnacjDcjg}j,n∈Z is a frame for L2(R) with bounds A, B given by the ex-

pressions above. In [100] an extension of this condition for irregularly sampled

time-scale parameters, when the set (an, cj) is replaced by any pair (an,j, cn,j) ∈
[cjan, cja (n + 1)] × [cj, cj+1], is provided.
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B.4.4.3 Discrete Spaces

Frames in discrete spaces (l2(Z)) can be obtained by time-sampling the ele-

ments of frames in L2(R) [17]. If g(t) ∈ L(R), if g(t) is such that

lim
t→0

∑

k∈Z

1

ǫ

∫ 1
2
ǫ

− 1
2
ǫ

|g(k + t) − g(k)|2dt = 0, (B.40)

and if {Em/QTn/P g}m,n∈Z with Q, P ∈ N is a frame for L2(R) with frame bounds

A and B then {Em/QTn/PgD}n∈Z, m=0,1,...,M−1, where gD is the discretized version

of g(t) with one sample per time unit, i.e. gD = g(j)j∈Z
, is a frame for l2(Z) with

frame bounds A and B [17].

B.4.4.4 N-Dimensional Vector Spaces

In vector spaces HN the simpler solution is to truncate or box-window the

elements of a frame in the discrete space; however, this simple approach alters the

frame bounds [98]. An alternative is to consider that the vector space is generated

from an N -length section of an N -periodic l2(Z) space, where the translation opera-

tor is a circular shift. The circular shift of a signal does not change the signal norm;

this way the frame in HN has the same frame bounds as the frame in the N -periodic

l2(Z).

B.5 Dictionaries From Frames

The initial requirement for atomic decompositions being capable of decom-

posing any signal x ∈ HN is that D must be complete in HN [84]. Since frames

are complete, they can be used to generate dictionaries for adaptive signal decom-

positions [17, 26, 40, 41, 84]. When generating dictionaries from frames, any signal

is guaranteed to be represented by at least one linear combination of dictionary

elements.

Greedy algorithms are executed in digital machines, meaning that the space

in question is finite dimensional. In a vector space HN any finite dictionary D, i.e.

#D < ∞, is also a frame in HN . The argument for that is very simple. Let D be

composed of elements gk, such that ||gk|| = 1 ∀k. Suppose that the set of elements
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that compose D does not satisfy the frame definition of equation (B.23), then either

#D
∑

k=1

|〈x, gk〉|2 = 0 (B.41)

or
#D
∑

k=1

|〈x, gk〉|2 = ∞ (B.42)

for at least one x ∈ H
N . Equation (B.41) is in contradiction with D being a dictio-

nary in HN , since in this case for all x shall exist at least one element gk ∈ D such

that 〈x, gk〉 6= 0, otherwise x could not be decomposed using D. Equation (B.42)

also does not hold, if ‖x‖2 < ∞, since all gk have unit norm, then necessarily

#D
∑

k=1

|〈x, gk〉|2 ≤ #D‖x‖2 < ∞. (B.43)

Therefore, any finite dictionary D in HN is also a frame in HN .

Although a dictionary must have a lower frame bound A in equation (B.23), it

does not need to have an upper frame bound B. In real vector spaces the dictionary

that arise when continuous parameterized atoms are employed has an unbounded

cardinality (#D = ℵ1), and the frame built by the atoms in such dictionaries will

never have an upper frame bound. Since a dictionary has unit norm elements one

has that
#D
∑

k=1

‖gk‖2 =

#D
∑

k=1

N
∑

i=1

gk[i]
2 = #D, (B.44)

where gk[i] is the ith sample of gk. Define the canonical basis of RN by means of

B = {e0, . . . , eN−1}, such that the values of the coordinates n ∈ [0, . . . , n− 1] of the

ei are given by ei[n] = δ[i − n], i.e. each ei is a unit impulse at coordinate i. One

can express each dictionary element using the canonical basis by means of

gk =
N−1
∑

i=0

ei,kei, ei,k = 〈gk, ei〉 = gk[i]. (B.45)

Then, the frame definition (see equation (B.23)) gives

A‖x‖2 ≤
#D
∑

k=1

|〈x,
N−1
∑

i=0

ei,kei〉|2 ≤ B‖x‖2, (B.46)

A‖x‖2 ≤
#D
∑

k=1

|
N−1
∑

i=0

ei,k〈x, ei〉|2 ≤ B‖x‖2, (B.47)

A‖x‖2 ≤
#D
∑

k=1

|
N−1
∑

i=0

ei,kx[i]|2 ≤ B‖x‖2. (B.48)
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Supposing that x is non-zero just at coordinate i one has that

A‖x‖2 ≤
#D
∑

k=1

|x[i]ei,k|2 ≤ B‖x‖2, (B.49)

A‖x‖2 ≤
#D
∑

k=1

x[i]2e2
i,k ≤ B‖x‖2, (B.50)

A‖x‖2 ≤ ‖x‖2

#D
∑

k=1

e2
i,k ≤ B‖x‖2. (B.51)

Therefore, for the upper frame bound B one must have that

#D
∑

k=1

e2
i,k =

#D
∑

k=1

gk[i]
2 ≤ B. (B.52)

Equation (B.44) is valid for any frame. Therefore, when #D is unbounded it is

necessary for the summation
∑#D

k=1 g2
k[i] to be unbounded for at least one coordinate

i, leading to an unbounded equation (B.52). This result means that continuous

parameter dictionaries in RN are not frames of RN .

One way to generate finite cardinality dictionaries for adaptive signal decom-

position algorithms is to consider a frame to be the dictionary. Consider that {g}k∈I

is a frame of HN , such that ‖gk‖ = 1, ∀k. For any vector x ∈ HN there is at least

one frame element such that 〈x, gk〉 6= 0. This means that any signal will be appro-

ximated, by the greedy approach, using a frame as dictionary. Let θ(x, gk) be the

angle between x and gk, that is

θ(x, gk) = arccos

(〈x, gk〉
‖x‖

)

, (B.53)

remind that ‖gk‖ = 1. Then, for any vector x one has that

A‖x‖2 ≤
∑

k

|‖x‖‖gk‖ cos (θ(x, gk))|2 ≤ B‖x‖2 (B.54)

A‖x‖2 ≤ ‖x‖2
∑

k

| cos (θ(x, gk)) |2 ≤ B‖x‖2. (B.55)

Therefore, one has that

A ≤
∑

k

| cos (θ(x, gk)) |2 ≤ B. (B.56)

Larger
∑

k | cos (θ(x, gk)) |2 leads to concentrations of dictionary elements in the

directions of the space that are similar to the direction of x. The closer that A and
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B are (the“tighter”the frame is) the more similar are the“densities”of the frame (the

concentrations of frame elements) in all directions of HN . In general, tight frames do

not provide the minimum Θ(D), however they indicate a reasonable approximation

for all x ∈ HN . For example, equiangular normalized tight frames [4, 12, 40] can

achieve the lower bound on the dictionary coherence [99, 105] that is given by

µ(D) ≤
√

#D − N

N(#D − 1)
. (B.57)

B.6 Contributions of the Thesis

Adaptive decompositions have a large number of features that allow for effici-

ent and coherent signal representations, pattern recognition, signal compression and

other signal processing tasks. Because of that, adaptive decomposition algorithms

are being used in a large range of applications. The key to accomplish the aforemen-

tioned tasks relies on both the design of the dictionary to be used and the algorithm

used to obtain the representation. Appendix C presents coherent representations of

signals from electric power plants. These representations are obtained by employing

an adaptive signal decomposition algorithm. The main objective of a coherent de-

composition is to provide a signal representation related to the physical phenomena

involved in the production of the measured signal. The algorithm presented, ba-

sed on the Matching Pursuits, represents a signal from its identified components.

The dictionary employed is composed of damped sinusoids, in order to obtain signal

components closely related to power systems phenomena. However, the use of a

dictionary of damped sinusoids alone does not ensure that the decomposition will

be meaningful in physical terms. To obtain a meaningful representation, a techni-

que leading to efficient coherent damped-sinusoidal decompositions, that are closely

related to the physical phenomena being observed, is developed. The effectiveness

of the proposed method for compression of synthetic and natural signals is tested,

obtaining high compression ratios along with high signal-to-noise ratio.

Appendix D studies the quantization of Matching Pursuit coefficients ba-

sed on a statistical model for the angles in Matching Pursuit iterations. From the

study of the angles between the residues and the selected atoms in Matching Pur-

suit iterations, it is conjectured that these angles can be modelled statistically as
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approximately independent and identically distributed. This approximation permits

the statistics of the angles in Matching Pursuits to be estimated from the statistics

of the angles in the first decomposition step for a Gaussian source. The approxi-

mate statistical model of the angles presented is then employed to perform off-loop

Lloyd-Max quantization of Matching Pursuit coefficients, where the quantization

is performed outside the decomposition loop, for compression applications. The

Lloyd-Max quantizer presented is compared to the state-of-the-art off-loop Mat-

ching Pursuit quantization scheme from [54]. Results show that the two quantizers

have similar rate×distortion operational performance.

Appendix E studies the time frequency content of frames. It provides a novel

sufficient condition for a family of elements to be a frame. The time-frequency

content of frames is defined there using the Wigner-Ville distribution (WD), and it

allows to characterize frames in the time-frequency domain. A theorem is provided,

that shows that the summation of the WDs of the elements in a set of functions

being greater than zero is sufficient for this set to be a frame. The condition is

used to characterize the construction of frames of damped sinusoids. The main

motivation for that arises from the close relation between damped sinusoids and

the phenomena represented in actual signals, since damped sinusoids are solutions

to ordinary differential equations. Then the analysis of frames constructed from

translations and modulations of a symmetric signal is held. It is shown how to

interlace such frames in both time and frequency in order to obtain new frames such

that the new frame and its dual are more similar than the original frame is to its

dual, thus obtaining tighter frames.

From the relations between frames and dictionaries one has the tendency

to think that it may be effective to use normalized tight frames as dictionaries.

The only known case of parameterizable normalized tight frames is the maximal

oversampled WH frame in [113]. Nevertheless, this frame construction approach

does not allow the control of the dictionary cardinality (#D), as in this case #D will

be unequivocally defined by the space dimension N and equal to N2. The Weyl-

Heisenberg frames interlacing approach presented is used to generate dictionaries

in Appendix E. The resulting dictionaries are evaluated in terms of distortion,

data rate incurred by their use and computational complexity when used in the
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Matching Pursuit algorithm. The results show that the dictionaries constructed

using the interlacing approach have good rate×distortion×complexity compromise

when dictionaries composed by Weyl-Heisenberg frames are to be used.
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Apêndice C

Efficient Coherent Representations

of Power System Signals

Disturbance monitoring is increasingly being required in contemporaneous

top-quality power plants. This monitoring permits the post-event analysis of dis-

turbance signals. This analysis allows for the identification of patterns and charac-

teristics of faults [95], in order to improve the knowledge of the system behavior

and prevent future problems. The information is acquired by digitizing the signals

corresponding to the voltage and/or current quantities with digital fault recorders

at several points of the network. The acquired signals are stored for future transmis-

sion and analysis, in order to identify the different natural phenomena represented

in the signal that took place in the course of the disturbance. In a broad sense, these

techniques are called oscillography and can be divided into two categories [95]:

• Short-Time or Transient Oscillography – used for monitoring transient pheno-

mena, protection systems and equipment malfunctions, as well as for locating

faults in time and space and also for power quality assessment. Sampled ver-

sions of the voltage and/or the current waveforms at points of the network are

used for these purposes;

• Long-Time Oscillography – monitoring of low frequency oscillations and slow

transients, used to gather information about the dynamic behavior of the in-

terconnected network. In this case, the power flow and the oscillations of the

fundamental frequency of the system are of interest.
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The number of points monitored by oscillographic systems is increasing rapi-

dly because: a) The power system operation performance gets more critical as de-

mand increases; b) At an interconnected system, with various players, it is necessary

to establish precisely the causes of the disturbance as well as the parts responsible

for the resulting effects. The storage and transmission of oscillographic signals may

generate an information overload; even though storage cost is decreasing, the general

tendency is to sample signals at higher rates and using longer windows. In addi-

tion, the number of signals acquired is also increasing. Thus, storage capacity and

transmission bandwidth problems persist, demanding good compression schemes. In

order to obtain high compression ratios, lossy compression must be used. However,

the compression must be such that the loss of quality involved does not impair the

signal analysis. Also, the information overload is a serious problem to disturbance

analysis, as human experts (that perform the analysis) have in general difficulty to

analyze a very large amount of data. This creates a demand for computational tools:

i) That aid in the analysis of the phenomena; ii) That allow efficient transmission

and storage of the information. Therefore, a technique that decomposes a signal

in components that are coherent to power system phenomena modelling, would be

welcome in automated analysis (for example using expert systems techniques [95]).

This appendix proposes a procedure aiming at efficient representation of

power systems signals for short-time oscillography such that their analyses are not

impaired. In order to achieve this goal it is used a damped sinusoid signal model

that is related to the phenomena typically observed at power system plants. The

different components of a signal, each one associated to a different phenomenon, are

identified through an algorithm based on the Matching Pursuit (MP) algorithm, lea-

ding to an efficient representation of all relevant information. In this representation

no important phenomenon is lost or distorted by the compression process, achieving

high compression ratios allied to high signal to noise ratio (SNR).

The MP is capable of obtaining compact and efficient representations; the key

to this lies in the choice of the dictionary D, that should be coherent to the signal

components. However, due to the greedy nature of MP, pre and post-echo artifacts

may appear (see section C.2.2), along with inefficiencies with respect to phenomena

identification (see sections C.3.2 and C.3.4). The dictionary is composed of damped
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sinusoidal atoms which some parameters may assume values in a continuous range.

In this work, a method is proposed to reduce the complexity of the search for σ(n)

in the case of damped sinusoid structures.

Two important aspects of signal representations obtained here need to be

pointed out:

1. Are the structures used to represent the signal coherent? That is, are they

related to the possible phenomena composing the signal? A coherent dictio-

nary would be one in which the atoms gk are good models for the phenomena

inherent to a given signal, see subsection B.1.6. Section C.3 proposes the use

of a dictionary of damped sinusoids for the representation of electric signals.

2. Are atoms being spent just to represent noise? Coherent representations re-

tain only the significant atoms in the decomposition, those related to useful

phenomena and not to noise. How to define which atoms correspond to cohe-

rent components and which ones correspond to noise? This idea is developed

in subsection C.4.1.

Another important aspect concerns the signal compression scheme:

1. Is the representation consistent [62]? In [62] a consistent reconstruction is

defined as: given a signal x ∈ X and a function f : X → Y, y = f(x), if

f(x̂) = y (C.1)

then x̂ is a consistent estimate of x. Supposing the function f as an expert (hu-

man or system), a consistent reconstruction is obtained if the characteristics

observed by an expert in the original signal and in its quantized representa-

tion are the same. Thus, consistency is related to how precisely the parameters

representing the phenomena should be measured and/or quantized. Consis-

tency of the electrical signal decomposition developed here, in the above sense,

is addressed in sections C.3.7 and C.5, through real-world (natural) examples.

The power system signal model employed was proposed in [94]. A first version

of the decomposition algorithm presented was implemented in [80]. However, the al-

gorithm presented, in section C.4, is novel, as well as the qualitative and quantitative

results of sections C.3.7 and C.5.
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C.1 A Model for Signals From Power Systems

Regardless of the quantities measured, the net result of oscillography is the

study of phenomena evolution in time. These phenomena are represented, in gene-

ral, as sinusoidal oscillations of increasing or decreasing amplitudes, and are highly

influenced by circuit switching, as well as non-linear power systems components and

loads. In order to analyze and compress signals from power systems it is important

to use a model capable of precisely representing the components that may compose

those signals. Xu [110] discusses common phenomena in power systems:

• Harmonics – low frequency phenomena ranging from the system fundamental

frequency (50/60 Hz) to 3000 Hz. Their main sources are semiconductor ap-

paratuses (power electronic devices), arc furnaces, transformers (due to their

non-linear flux-current characteristics), rotational machines, and aggregate lo-

ads (a group of loads treated as a single component).

• Transients – observed as impulses or high frequency oscillations superimposed

to the voltages or currents of fundamental frequency (60/50 Hz) and also

exponential DC and modulated components. The more common sources of

transients are lightnings, transmission line and equipment faults, as well as

switching operations, although, transients are not restricted to these sources.

Their frequency range may span up to hundreds of thousands of Hz, although

the measurement system (and the power line) usually filters components above

few thousands of Hz, yielding frequency limited data.

• Sags and Swells – increments or decrements, respectively, in the RMS voltage

of duration from half cycle to 1 minute (approximately).

In oscillography it is interesting to be capable of modelling and identifying

these phenomena. A comparison between several methods of modelling and iden-

tification can be seen in [6]. Some of them are: Fourier filtering [97]; Prony

analysis [79, 101]; auto regressive moving average models [6]; state space tracking

methods [6]; Wavelets [19, 56, 79, 91]. These methods are normally employed along

with expert systems, neural networks or any other artificial intelligence approach.

In a very simplistic way, power systems can be considered as built from

transmission lines, sources and loads. Transmission lines can be modelled by a series
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of distributed inductances, capacitances and resistances. In these circuits, currents

or voltages follow closely the solutions of differential equations. To this model should

be added the possibility to represent discontinuities due to circuit switching caused

by operative maneuvers and by the protection system. The proposal here is to use a

model for power system signals based on the solutions of linear differential equations

that also considers these discontinuities. This model is given by an appropriate

set of concatenated and superimposed damped sinusoids, each one having a well

defined region of support. Therefore, the employed model is based on damped

sinusoids [82, 94] and is given by

f(t) =

Q−1
∑

q=0

γq cos (2πfqt + φq)e
−ρq(t−tsq )[u(t − tsq

) − u(t − teq
)], (C.2)

where each component is a damped sinusoid represented by a 6-tuple (γq, fq, ρq, φq,

tsq
, teq

). In the 6-tuple γq is the component amplitude, fq is its frequency, ρq is the

damping factor of the exponential, φq is the phase of the component, and tsq
and

teq
are respectively the component starting and ending times.

The well known Prony method [6,79,101] used in the analysis of power system

signals (as well as in numerous other applications) employs a similar model. The

Prony method obtains a representation of the signal as

f(t) =

Q−1
∑

q=0

γq cos (2πfqt + φq)e
−ρqt. (C.3)

A drawback of the Prony method is that it does not take into account the discon-

tinuities due to circuit switching. This is so because it does not consider that the

damped sinusoids representing different components can start at different instants.

Therefore, the proposed model can be seen as a generalization of the Prony model

by adding a time localization feature. The algorithm employed here also avoids the

numerical instabilities inherent to the Prony method, that might appear due to the

matrix inversions required to compute the damping factors in it.

In this work, the analysis of power system signals will be restricted to frequen-

cies which are integer multiples of a fundamental frequency F (fq = KqF ). Such

harmonic analysis is appropriate for pseudo-periodic signals such as power systems

signals in question and, for example, audio signals. It also simplifies the model, and
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therefore the algorithm used to obtain it, leading to

f(t) =

Q−1
∑

q=0

γq cos (2πkqFt + φq)e
−ρq(t−tsq )[u(t − tsq

) − u(t − teq
)]. (C.4)

Now, the 6-tuple is given by (γq, kq, ρq, φq, tsq
, teq

), where kq = fq/F is an integer.

This model can effectively describe the relevant phenomena in electric power systems

signals that are worth analyzing. Therefore, the model of equation (C.4) is able to

represent signals compactly and accurately in terms of the 6-tuples, and it would be

a powerful tool for analysis.

Using a dictionary of unit norm vectors, the structures of equation (C.4)

are uniquely determined by the 5-tuples (kqF , ρq, φq, ts, te). Observe that this

dictionary contains a basis of impulses in time (5-tuples (0, 0, 0, t, t)), as well as

a basis of sinusoids, that is impulses in frequency (5-tuples (kqF , 0, 0, −∞, ∞)),

being thus overcomplete. However, in order to implement the MP algorithm, the

parameters of the 5-tuple (kqF , ρq, φq, ts, te) must be quantized. One dictionary for

which parameters quantization processes are well known and have been extensively

used is the Gabor dictionary [27,84,85]. Then, at each step, it was decided to adopt

the strategy of decomposing the signal using the MP with the Gabor dictionary, as

an intermediate solution, and then, from the parameters of the chosen Gabor atom,

searching for the damped sinusoid that best matches the signal at that step. This

approach gives an MP based decomposition with good performance and feasible

computational complexity. In section C.2, the MP using the Gabor dictionary is

described. In section C.3, we describe how the damped sinusoid that best matches

the residue is searched, at each step, starting from a Gabor atom.

A block diagram of the whole algorithm is shown in Figure C.1 (where the

sections of this appendix in which each topic is treated are also indicated). The

process breaks the problem of finding the parameters in a 5 dimensional space (kqF ,

ρq, φq, ts, te) into several smaller-dimensional problems, each demanding less com-

putational effort, and thereby reduces the overall complexity. The first part of the

algorithm is the decomposition of the current residue into a dictionary of Gabor

atoms. The result of the decomposition at each step is used to match the current

residue to a damped sinusoid instead of the Gabor atom. Then, for the damped

sinusoid a frequency quantization is applied and so is an heuristic to select between
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Figure C.1: Block diagram of the decomposition algorithm.

damped or pure sinusoids. Then the parameters of the resulting damped sinusoid

structure are stored. The approximation sufficiency procedure is implemented to

estimate whether the approximation already obtained is good enough or the decom-

position must continue. The parameters are quantized and encoded at the end of

the decomposition process using different quantizers for each parameter.

Note that the model in equation (C.4) by no means compactly represents

“all” possible phenomena in power systems signals, as for example, inrush currents

or inter-harmonic oscillations (for fq 6= kqF ). However, since the proposed dictionary

is complete, then any signal can be represented as a linear combination of the atoms,

although this representation may not be compact.

C.2 Matching Pursuit with the Gabor Dictionary

To obtain signals decompositions according to the model proposed the Mat-

ching Pursuits algorithm (discussed in subsection B.2.2) was employed. The first

step of the decomposition algorithm carries out the MP using a Gabor dictionary.

The Gabor dictionary is generated by time shifting, scaling and modulation of a

91



Gaussian window g(t) = 2
1
4 e−πt2 [84]. Each Gabor Dictionary atom is given by

gσ(t) =
Kσ√

s
g

(

t − τ

s

)

cos (ξt + φ), (C.5)

where σ = (s, τ, ξ, φ) defines the atom, and each atom is a well localized time-

frequency component [85]. The phase φ ∈ [0, π) and Kσ are such that ||gσ(t)|| =

1. For this g(t), the parameters defining the atoms can be sampled obtaining a

finite dictionary with discrete parameters which is complete, and indeed, capable of

representing any signal [85]. The sampling of σ gives [85] σs = [2j, p2j, kπ21−j, φ],

j, p, k ∈ Z. Thus, σs can be represented uniquely by σs = [j, p, k, φ] ∈ Z
3 × R (note

that the phase remains continuous). The index j defines the atom scaling, p defines

the time shift of the atom, and k the atom modulation.

Gabor Dictionary in R
N In order to implement the algorithm one needs to

generate discrete atoms gσs
. Being N the dimension of the signal space, define

L = log 2(N), L is the number of scales in the dictionary, and the parameters ranges

are given by j ∈ [0, L], p ∈ [0, N2−j), k ∈ [0, 2j) [85]. Thus, each discrete atom gσs

has its samples gσs
[m] given by

gσs
[m] = gj [m − p2j] cos [mkπ21−j + φ],

gj [m] =



























δ[m], if j = 0

Kσs
g

[

m
2j

]

, if j ∈ (0, L)

1√
N

, if j = L

, with g[m] = 2
1
4 e−πm2

, (C.6)

where Kσs
is equivalent to Kσ. Note that the total number of elements in the

dictionary is N log2(N); also, the optimum phase φ can be derived analytically from

the triplet (s, τ, ξ).

Optimum Phase Computation Once the parameters (s, τ, ξ) = σ are found

using the MP, the optimum phase for the atom can be computed [47,59]. The result

presented in [47] is for continuous time atoms, but can be generalized to discrete

ones. Any unit norm atom depending on a set of parameters σ = (η, ξ, φ), is given

by

gσ(t) =
gη(t) cos (ξt + φ)

||gη(t) cos (ξt + φ)|| , (C.7)
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where gη(t) can be any real function that depends on the set η (for Gabor atoms

η = (s, τ), see equation (C.5) and for the damped sinusoids η = (ρ, ts, te), see

equation (C.2). The function gσ(t) can be regarded as the real part of a complex

function Gσ(t) = gη(t)e
ξt+φ normalized to have unit energy. Defining Pσ(t) =

Re{Gσ(t)} and Qσ(t) = Im{Gσ(t)}, at the n-th step of the MP the optimum phase

φo ∈ [0, 2π) (obtaining always positive inner products), for the atom, is given by:

1. if ξ 6= 0 and a 6= 0, and
〈rn−1

x(t) , Pσ(n)(t)〉
||Pσ(n)(t)||















> 0 then φo = arctan

(

− b

a

)

< 0 then φo = arctan

(

− b

a

)

+ π

;

2. if ξ = 0, and −
〈rn−1

x(t) , Qσ(n)(t)〉
||Qσ(n)(t)||











> 0 then φo = 0

< 0 then φo = π

;

3. if a = 0, and
〈rn−1

x(t) , Pσ(n)(t)〉a + 〈rn−1
x(t) , Qσ(n)(t)〉b

||aPσ(n)(t) + bQσ(n)(t)||











> 0 then φo = π
2

< 0 then φo = 3π
2

.

where:

a = 〈rn−1
x(t) , Pσ(n)(t)〉‖Qσ(n)(t)‖2 − 〈rn−1

x(t) , Qσ(n)(t)〉〈Pσ(n)(t), Qσ(n)(t)〉

b = 〈rn−1
x(t) , Qσ(n)(t)〉‖Pσ(n)(t)‖2 − 〈rn−1

x(t) , Pσ(n)(t)〉〈Pσ(n)(t), Qσ(n)(t)〉
(C.8)

Allowing φo ∈ [0, 2π), the phase can be adjusted to provide always a positive inner

product between the atom and the residue, unlike the approach in [47].

C.2.1 Continuous Parameters

From the discrete parameters of the atom found by the MP iteration, a local

search using a pseudo-Newton method [92] can be applied to find the continuous

parameters set σ that once used to generate gσ produces the best match to the

residue being decomposed. This achieves an MP using a Gabor dictionary with

densely sampled parameters. For obtaining the continuous-parameters Gabor atom,

there is a problem related to the application of the Newton method: Since there is no

closed form for the inner product 〈x, gσ〉, inner products ought to be calculated for

each new update of the atom parameters. Directed by this observation, the strategy

employed for the pseudo-Newton method was:
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I. Independently increment each parameter of the atom by half of its value;

II. If the inner product increases then the parameter is updated, otherwise the

increment is negated and halved (multiplied by -0.5) for the next iteration;

III. At each iteration the three parameters [s, τ, ξ] are tested, sequentially for up-

dates;

IV. The iterations take place until the inner product increase is less then 1%, or

the parameters increment is less then 10% of their actual values.

Note that when implementing an MP with a dictionary of continuous parameters,

the fast MP algorithm [85] (based on correlation updates) is not applicable. We have

implemented and tested both the discrete and “continuous-parameters” versions of

the MP. The coefficients found were around 10% larger for the continuous case,

providing thus a better match between the structure and the residue.

C.2.2 Pre-echo and Post-echo Reduction

When using the MP to decompose signals, undesirable artifacts of pre-echo

and post-echo in general arise. As an example consider the decomposition of the

synthetic signal S1, that is just the atom corresponding to the 6-tuple (1.000, 8,

0.080, -90, 0.0312, 0.1059), with fundamental frequency F = 60Hz and sampling

frequency Fs = 1200Hz, see equation (C.4). The decomposition of S1 using the

discrete-parameters Gabor Dictionary with optimal phase, is shown at Figure C.2,

with different number of steps (2, 4, and 8), where pre-echo and post-echo artifacts

can be observed.

One way to suppress those artifacts is to include in the dictionary atoms

having all possible temporal supports. This is equivalent to box-windowing the

atoms by means of

gσl
(t) = Kl

1√
s
g

(

t − τ

s

)

cos(ξt + φ)[u(t − ts) − u(t − te)], (C.9)

where g(t) = 2
1
4 e−πt2 and u(t) is the step function. Defining σl = (s, τ, ξ, φ, ts, te),

with ts < te, where ts is the starting time of the atom and te is its ending time, Kl is

chosen such that ‖gσl
(t)‖ = 1. Finding ts and te that minimize the error norm in the
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support region of the atom would cope with the pre-echo and post-echo artifacts.

Since this work restricts the attention to digitized signals, the error norm in the

support region, at step n, is given by

e[ms,me] = ||(rn−1
x

− 〈rn−1
x

, gσl(n)〉gσl(n))[u[m − ms] − u[m − me]]||, (C.10)

where ms is the signal sample corresponding to ts and me corresponds to te (note

that, initially, for all the atoms ms = 0 and me = N−1 where N is the signal length).

Actually, minimizing the norm of the error is the same as finding the support interval

that gives the largest inner product (the atoms with new time support must be scaled

to unity norm). Then, a new support interval [m′
s, m

′
e] is considered for the atom

only if

〈rn−1
x

, gσl′ (n)〉 ≥ 〈rn−1
x

, gσl(n)〉 and m′
e − m′

s < me − ms, (C.11)

where σl′(n) = (s, τ, ξ, φ, m′
s, m

′
e). That is, the best time-support for the atom is

the one yielding the largest inner product between the atom and the signal for the

parameters subset (s, τ, ξ, φ).

Being σl(n) = (s, τ, ξ, φ, ms, me), it is easy to show that, if σl′(n) = (s,τ ,

ξ,φ,ms,me − 1), then

〈rn−1
x

, gσl′ (n)〉 =
〈rn−1

x
, gσl(n)〉 − rn−1

x
[me]gσl(n)[me]

√

1 − g2
σl(n)[me]

, (C.12)

where rn−1
x

[me] is the mth
e sample of rn−1

x
and gσl(n)(me) the mth

e sample of gσl(n).

Thus, if 〈rn−1
x

, gσl(n)〉 is known for a given value of me then the inner products

for smaller values of me can be computed recursively, and, consequently, with low

computational complexity. A similar result tells that an inner product for an atom

starting at ms+1 can be computed from the one of the atom starting at ms. Also, in

order to further simplify this procedure, the search can be performed independently

for m′
s and m′

e, leading to a fast algorithm for finding the best time support.

Figure C.3 shows the reconstruction of synthetic signal S1 for a 4 step de-

composition without and with temporal support search in the continuous-parameters

Gabor dictionary. In this example, when temporal support search is applied, the

reconstructed signal is visibly more similar to the original one, and the pre-echo

and post-echo artifacts vanish; differences are noticed only after the 80th sample,
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(a) Original (b) 2 Steps (c) 4 Steps (d) 8 Steps

Figure C.2: Reconstructed versions of the synthetic signal S1 with the MP of con-

tinuous parameters and optimum phase with 2, 4 and 8 steps.
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Figure C.3: Synthesis of synthetic signal S1 (Figure C.2.(a)) after decomposition

using 4 steps of the MP with densely sampled Gabor dictionary: (a) and (c) without,

and (b) and (d) with the temporal support search of subsection C.2.2.

where the signal has little energy. When decomposing this signal with the Gabor

dictionary of discrete parameters and optimum phase the inner product at the first

step is 1.643, whereas using the continuous parameters it jumps to 2.0874 (a 27% in-

crease). Further performing the search for the best time support the result becomes

2.145 (around 3% increase to the second and 30% increase to the former). Since the

energy of the signal is equal to the sum of the energies of the inner products [84],
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a larger inner product means a smaller reconstruction error. This shows that the

closer visual similarity corresponds to a closer match in a mean-squared sense.

Unlike standard MP algorithms where the set of structures is static (discrete

parameters and fixed dictionary), here, a dictionary of continuous parameters is used

in the MP, allowing to fit the atoms to the signal, see subsection B.3.1. Also, the

structures found have the best time support computed, in a fast fashion, eliminating

pre and post-echo artifacts.

C.3 Damped Sinusoid Atomic Decompositions

In the proposed approach, an indirect search for the damped sinusoids was

implemented. First the continuous parameters Gabor atom that maximizes the inner

product is found. Then, the parameters of the Gabor atom are used to generate a

guess for the best damped sinusoid. This guess is used as seed in a pseudo-Newton

algorithm to find the parameters of the best damped sinusoid. The process is detailed

in the sequel. Note that when such indirect damped sinusoid search is performed

one can not use correlation updates (as in [85]), and therefore can not implement

a fast MP algorithm because the dictionary being effectively used has continuous

parameters, and thus infinite cardinality. Therefore, the computational complexity

of the proposed method is increased when compared to the one of the classical MP;

however, the good results obtained justify the increase in complexity.

C.3.1 Search for the Damped Sinusoids

The procedure to obtain the damped sinusoid that best represents the signal

in a given step of the MP is as follows

1. Find the Gabor atom index σ(n) = [s, τ, ξ, φo] such that σ(n) =

arg{maxσ∈S |〈rn−1
x

, gσ〉|} using the MP with optimum phase φo (see section

C.2).

2. Obtain the initial guess for the damped sinusoid:

(a) Find the half of the Gabor atom selected by the greedy search that has

larger inner product with the signal:
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– The right half (defined as the points to the right of the Gaussian

window center τ) implies a decreasing exponential to be searched

for;

– The left half (defined as the points to the left of the Gaussian window

center τ) implies an increasing exponential to be searched for.

That is, the best half of the Gabor atom is the one that has larger inner

product with the current residue.

(b) Having found the scale s, compute the initial guess for the damping factor

ρ that best matches the half of the Gabor atom identified above. This

initial value is given by ρ =
√

π/2s3 for a decreasing exponential, and

−
√

π/2s3 for an increasing exponential. This value of ρ leads to the

damped sinusoid having the same sample value of the Gaussian at its

inflection point. As the signals have limited time support, this value

needs to be corrected. This is done iteratively by a closed-form fast

Newton algorithm.

(c) With the obtained ρ, τ and ξ as initial guesses, a pseudo-Newton method

is applied to search for the atom

g[m] = Kge
−ρ(m−ms) cos [ξm + φ][u[m−ms]−u[m−me]], m ∈ [0, . . . , N−1]

(C.13)

where Kg is a normalization factor. As the modulated exponential can

be increasing or decreasing (ρ > 0 or ρ < 0), strategies to search for

the start and end samples of the damped sinusoid are needed. In the

case of a decreasing exponential, it is assumed that ms = τ and me

equal to the signal size N . In the case of an increasing exponential,

ms = 0 and me = τ . The pseudo-Newton algorithm is applied to obtain

one of the 5-tuples σ(n) = [ρ, ξ, φ, τ, N − 1] for a damped sinusoids or

σ(n) = [ρ, ξ, φ, 0, τ ] for an increasing sinusoid (τ can represent either

the start or end time). The phase is obtained through the procedure of

section C.2.

The pseudo-Newton method applied is similar to that presented for the

Gabor atom (see section C.2) but for four parameters [ρ, ξ, φ, τ ].
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3. Search for the best time support, as in subsection C.2.2, obtaining the 5-tuple

σ(n) = [ρ, ξ, φ, ms, me] that characterizes the atom. Note that:

a) If ρ > 0 then a decreasing atom occurs and only me is searched;

b) If ρ < 0 then the atom is an increasing one and the time support search

must be done for ms.

4. For the best time support found above, apply a new local search for ρ and ξ

using the pseudo-Newton method, and compute φ.

5. With the 5-tuple σ(n) = [ρ, ξ, φ, ms, me], the inner product of the correspon-

ding atom with the current residue 〈rn−1
x

, gσ〉 and then the resulting residue

rn
x

= rn−1
x

− 〈rn−1
x

, gσ(n)〉gσ(n) are computed , and the process is finished.

In the search process one ends up with damped sinusoids, as in equation (C.4),

that can have any phase φ. These atoms are called dereferenced [59] as the atoms

start time and phase are not related. The identification of damped sinusoids using

this approach performed effectively. Illustrations of this effectiveness are given in

section C.5, where results with natural signals are shown.

C.3.2 Frequency Quantization

The algorithm presented so far represents a signal as a sum of damped sinu-

soids; however, unlike the model of equation (C.4) frequencies that are not multiple

integers of a fundamental frequency are allowed. To obtain the signal model of equa-

tion (C.4) the frequencies of the structures must be quantized as integer multiples

of the fundamental frequency. It is also important to take into account in the quan-

tization process the sampling frequency Fs (the maximum possible frequency in the

signal is Fs/2). The frequency quantization can then be performed as follows:

1. Compute the ratio between the sampling frequency and the fundamental, rf =
Fs

F
. With this ratio design a quantizer for the frequency of the atom ξ using

a linear quantizer of bq(ξ) = ⌈log2 rf⌉ bits and step ∆q(ξ) =
π

2bq(ξ)
.

2. The quantized frequency for an atom is ξq =

⌊

ξ+
∆q(ξ)

2

∆q(ξ)

⌋

×∆q(ξ), where ξ is the

original frequency of the atom.
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3. After quantizing the frequency, a local optimization using the pseudo-Newton

method is performed for the damping factor ρ.

Thus the frequency quantizer is designed a priori (points 1) and 2) above) and at

each new atom the quantization is applied to its frequency.
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Figure C.4: First step decomposition of synthetic signals S2 and S3 with time

support search and frequency quantization.

Some examples are shown in order to point out problems regarding the iden-

tification of structures. Figure C.4 shows the behavior of the described process beha-

vior at the first step of the decomposition of synthetic signals S2 (Figure C.4.(a))

and S3 (Figure C.4.(d)), whose parameters are given in Table C.1 (where msq
and

meq
are the samples indexes of tsq

and teq
, respectively, and q is the component

number). These synthetic signals were chosen as they are representative of com-

mon phenomena in power systems [19, 56, 79, 94, 95, 101,110]. Indeed, they indicate

both the limitations of the MP algorithm and the effectiveness of the procedures

presented for the desired application. In Figure C.4.(b) it can be observed the dam-
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Table C.1: Generation of the synthetic signals S2 and S3 according to the model of

equation (C.2).

Signal Fs (Hz) F (Hz) q γq kq φq (Deg.) ρq tsq
(Sec.) teq

(Sec.) msq
meq

S2 1200 60

1 1.000 1 0 0 0 0.0333 0 40

2 0.500 1 90 0 0.0333 0.0917 40 110

3 0.200 6 -90 0.100 0.0500 0.1059 60 127

4 0.050 3 -67 0 0.0417 0.0833 50 100

S3 1200 60

1 1.000 1 -90 0 0.0625 0.1059 75 127

2 1.000 1 -90 0 0 0.0308 0 37

3 1.000 1 135 0 0.0308 0.0625 37 75

ped sinusoid obtained from the Gabor atom guess, that best matches the signal S2

(Figure C.4.(a)). In Figure C.4.(c) the result of the time support search for the

damped sinusoid atom and frequency quantization can be observed. The same is

presented for signal S3 in Figures C.4.(e) and C.4.(f) respectively. Note that prior to

frequency quantization the frequency of the decomposing structure is different from

the original one used to generate the signal component. The frequency quantization

effectively corrects this error, that is caused by the greediness of the MP iteration

together with the particularities of the dictionary used. Although this behavior may

seem odd, the atom found prior to quantization is the one with higher inner product

with the signal under decomposition. That is, this structure is the one that best

represents the concatenation of the three structures in the signal. In simulations, it

was observed that even if the frequency of the decomposing structure is forced to

be equal to the one used in generating the atom, the inner product obtained is still

smaller than the one found by the decomposition algorithm presented so far. In the

present case, ideally, it is wanted to find the three structures composing the signal

and not the one obtained by the decomposition algorithm presented so far.

From these examples, we see that the search for damped sinusoids and fre-

quency quantization perform well. However, some false phenomena identification

occur:

1. Signals formed by two or more sinusoids of same phases but different amplitu-
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des are confused as one damped sinusoid as is the case of the decomposition of

signal S2 in Figure C.4.(b). Signal S2 is formed by two sinusoids with same

phases, one of them being corrupted by higher frequency components. Howe-

ver, the MP chooses damped sinusoid with full time support that is almost in

phase with the higher energy sinusoid to represent the signal. Note that the

phenomena switch (amplitude decrease) at the 40th sample is not identified;

2. Sinusoids of same frequency and amplitude but different phase are identified as

one sinusoid with phase that maximizes the inner product. The case of signal

S3, with two phase discontinuities which are usually caused by switching, for

which the 90o phase change (around the 70th sample) is located by the time

support search but the smaller phase change (around the 40th sample) is not;

The false phenomena identification that takes place when decomposing signals

with MP-like algorithms have previously been described in [33]. There, the authors

give an example of a signal composed by a sum of two dictionary structures, in

which these structures are not found by the greedy decomposition. In subsection

C.3.4 an algorithm is proposed which obtains better structure identification for the

signal model presented here, addressing the limitations presented above.

C.3.3 Complexity Issues

Since a dictionary with densely sampled parameters is employed, the accurate

establishment of the computational complexity is a hard task. This subsection tries

to address the computational complexity of the employed decomposition method.

Due to the nature of the problem at hand, frequency quantization, see equation

(C.4), can be used. This contributes to decreasing the computational complexity,

since it represents a significant decrease in size of the search space, and the sinusoids

generated by these quantized frequencies can either be previously precomputed or

generated on the fly using efficient algorithms as the FFT.

One important point affecting the computational complexity is that the re-

current formula for fast computation of the MP [84,85]

〈rn+1
x

, gσ〉 = 〈rn
x
, gσ〉 − 〈rn

x
, gσ(n)〉〈gσ(n), gσ〉 (C.14)
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where σ(n) is the parameter set of the atom selected by the MP at the nth step and

all the products 〈gσi
, gσj

〉 (σi 6= σj), are not applicable to the present case. This

is so because at the end of each MP step the signal is further decomposed using a

continuous parameter atom. A dictionary with continuous parameters has infinite

cardinality, and it is impossible to pre-store all the inner products between the

dictionary atoms (〈gσ(n−1), gσ〉). The continuous parameters dictionary requires the

use of a Newton method at each iteration, leading to more computational demands.

Actually, the Newton method in a multivariate space is used twice, one for finding the

best Gaussian atom, and the other for finding the best damped sinusoid. Note that,

for signals of length N , if a dictionary with discrete-parameter damped sinusoids

was used, its cardinality would be, approximately, 2bq(ξ) × F × N2/2, where 2bq(ξ)

is the number of quantized frequency levels, F is the number of different possible

damping factors ρ and N2/2 refers to all the possible time-support intervals. On the

other hand, the number of elements in the Gabor dictionary is given by N log2(N).

However, note that the use of a dictionary with a cardinality of 2bq(ξ) × F × N2/2

if not being prohibitive, is at least much more costly than using a dictionary of

cardinality equal to N log2(N); therefore, taking into consideration the fact that the

continuous parameter dictionary has superior performance (see end of subsection

C.2.2), the use of the Newton method is clearly a viable alternative for obtaining

good decompositions with controlled computational burden.

C.3.4 Pure Sine Substitution

The structures found in the examples in subsection C.3.2, despite being the

ones with largest inner product with the signals, do not exactly match the pheno-

mena represented in the signal. This problem is inherent to any greedy decompo-

sition algorithm [33]. Previous works have shown that a successful representation

relies on a detailed analysis or on an appropriate distortion model in order to select

the atoms [69,70]. The proposal is similar to the criterion of subsection C.2.2, with

extra conditions on the inner product. In order to obtain the selection of more ap-

propriate component, either a damped or a pure (or plain) sinusoid will be tried as

atoms and the one that gives smaller error in the region of support of the atom (this

is closer to a shape similarity measure than the inner product) is selected. There are
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two cases in which a pure sinusoid atom will be tested to model the signal instead

of a damped one of same frequency. The pure sinusoids tried may have an inner

product with the residue that is a fraction, smaller than one, of the inner product of

the original damped sinusoid with the residue. However, in our case, we will accept

the pure sinusoid to approximate the signal only if a shape similarity measure (the

error per sample in a given region) is satisfied. This strategy is supported by the

convergence of weak greedy algorithms [103].

Considering two sets of parameters σ(n) = (k, ρ, φ, ms, me) (damped sinu-

soid) and σ′(n) = (k, 0, φ, m′
s, m

′
e) (pure sinusoid), being rn−1

x
the current residue,

the two cases are:

i – If the inner product of the pure sinusoid with the signal is at least a fraction

p1 (0 < p1 < 1) of the inner product obtained with the damped sinusoid, then

use the pure sinusoid. That is, if |〈rn−1
x

, gσ′(n)〉| ≥ p1|〈rn−1
x

, gσ(n)〉| then use

gσ′(n) instead of gσ(n) to represent the current residue.

ii – If the inner product of the pure sinusoid with the signal is greater than a

fraction p2 (0 < p2 < p1 < 1) of the inner product obtained with the original

damped sinusoid, then it is tested if a pure sinusoid should be used to represent

the signal instead of the damped sinusoid (see 1 and 2 below). More precisely:

If case i above is not satisfied and |〈rn−1
x

, gσ′(n)〉| ≥ p2|〈rn−1
x

, gσ(n)〉| then it is

verified if it is worth to use gσ′(n) instead of gσ(n) to represent the residue.

Obviously, p1 is larger than p2. Simulations, on natural and synthetic signals,

have suggested for p1 the value 0.99 and for p2 the value 0.75. In brief, if case i is

met, a pure sinusoid will be used; otherwise, a pure sinusoid will be tried to represent

the current residue if case ii holds. Case i is straightforward since the use of a pure

sinusoid will be only slightly worse, in terms of residue energy reduction, than the

use of the damped one. In case ii, the use of the pure sinusoid is significantly worse

than the damped one, but it is still valuable to verify the possibility of using a pure

sinusoid instead of the damped one. This is done as follows:

1) From the frequency and the temporal limits (in samples) of the structure, a

region where to search for a possible pure sinusoid to represent the signal is
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computed by defining ∆T = Fs

F
(F is the fundamental frequency, see equa-

tion (C.4). The limits of the region where the pure sinusoid may be located

are then given by m′
s = ms − ∆T

2
and m′

e = me + ∆T

2
. This range yields a pos-

sible region of support one cycle larger than the one of the original atom (half

cycle before the start and half cycle after the end of the structure).

2) A pure sinusoid gσ′(n) (ρ = 0), of same frequency as the damped one gσ(n),

will be a candidate to represent the signal at the current step, in the region of

support [ms − ∆T

2
, me + ∆T

2
], if the two conditions below hold simultaneously:

a) The error per sample in the region of support for the pure sinusoid is

smaller than the error per sample for the damped sinusoid in the region

of support of the pure sinusoid. That is

||(rn−1
x

− 〈rn−1
x

, gσ′(n)〉gσ′(n))[u[m − m′
s] − u[m − m′

e]]||
m′

e − m′
s − 1

<

||(rn−1
x

− 〈rn−1
x

, gσ(n)〉gσ(n))[u[m − m′
s] − u[m − m′

e]]||
m′

e − m′
s − 1

,

(C.15)

where the primed variables correspond to the pure sinusoid and the non-

primed ones to the damped sinusoid. Equation (C.15) compares the pure

to the damped sinusoid in the region where the first is defined, providing

a shape similarity measure in this region. As in the case of the pre-echo

and post-echo suppression, described in section C.2.2, the expression in

equation (C.15) can be computed recursively, leading to a fast algorithm.

b) The error per sample for the pure sinusoid is smaller than or equal to half

of the error per sample obtained with the damped sinusoid in its original

region of support, that is

||(rn−1
x

− 〈rn−1
x

, gσ′(n)〉gσ′(n))[u[m − m′
s] − u[m − m′

e]]||
m′

e − m′
s − 1

≤

1

2

||(rn−1
x

− 〈rn−1
x

, gσ(n)〉gσ(n))[u[m − ms] − u[m − me]]||
me − ms − 1

.

(C.16)

This procedure compares the overall shape similarity of the two possible

atoms in their respective regions of support. It is also imposed for the

inner product of the current residue with the pure sinusoid to be at least

50% of what is obtained with the damped sinusoid, this constraint forces

a reasonable and acceptable approximation ratio in the step.
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Note that the search for the best time support can be performed independently

for ms and me. If ρ > 0, then it is expected that the start time of the atom is

well defined since this is the region of the structure with largest energy. Thus,

we first search for me applying the two conditions above and then we search

for ms using the same conditions. In the case ρ < 0, since me is expected to

be well defined and then we first search for ms and then for me.
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Figure C.5: Sine substitutions at the first step decomposition of synthetic signals

S2 and S3.

In Figure C.5 the pure sine substitution is verified when applied to the first

step of the decompositions of signals S2 and S3. Figure C.5 presents the sine dis-

crimination together with the quantized frequency damped sinusoid identified so far

(Figure C.4). Note that the pure sinusoidal structures found are coherent to the

structures used to generate the atoms. Thus, the proposed sine discrimination pro-

cedure succeeded in correcting the erroneous decisions made by the MP algorithm.

It was verified that this procedure does not impact the cases where the damping is

representative of the phenomenon, as will be seen in examples to be shown.

C.3.5 Clipping Threshold

Power system oscillographic signals can be clipped mainly due to currents

that surpass the range of the measurement device. However, this situation should

not happen when the real-world monitoring takes place, i.e., ratings of measuring

equipment should not be surpassed.
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To model the effects of clipping, a clipping threshold, that is given by the

maximum absolute value of the samples of x, Tc = max
m

|x[m]| for m ∈ [0 . . . N − 1],

is identified. After the reconstruction of the signal from the structures, the signal

samples are clipped if their absolute values are larger than the threshold, that is,

x̂[m] =











x̂[m], if |x̂[m]| ≤ Tc,

sign(x̂[m])Tc, if |x̂[m]| > Tc

(C.17)

where x̂[m] is the mth sample of the reconstructed signal x̂ and sign(x̂[m]) is the

polarity of the m-th sample of x̂ (+ or -). Despite its simplicity, this procedure

drastically improves the results in terms of signal to noise ratio for clipped signals

and does not alter the results obtained for signals that are not clipped.

An example of the effectiveness of this procedure is depicted at Figure C.6

that shows the clipping of signal S4 at 70% of the maximum sample value of the

original signal. In this case all the 3 structures that compose S4 are well identified,

see Table C.2 for the generating structures, giving (k, ρ, φ, ms, me) = (1, 0, 0, 0, 30)

for the first structure (the other two structures are not relevant in this case as they

are not clipped). The reconstructed signals can be evaluated also in using the SNR

defined as

SNR = 10 log10

‖x‖2

‖x − x̂q‖2
dB, (C.18)

where x is the original signal while x̂q is the reconstructed signal using q structures.

The signal S4 clipped at 70% of the maximum sample value of the original

signal is reconstructed with an SNR of 19.43 dB. When clipping is more restrictive,

the identification of the parameters becomes more difficult and the suggested method

does not perform as well as in the previous case. For example, clipping signal S1

Table C.2: Generation of the synthetic signal S4 according to the model of equa-

tion (C.2).

Signal Fs (Hz) F (Hz) q γq kq φq (Deg.) ρq tsq
(Sec.) teq

(Sec.) msq
meq

S4 1500 50

1 1.000 1 0 0 0 0.0200 0 30

2 0.250 2 90 0.1 0.0200 0.0533 30 80

3 0.100 6 68 -0.03 0.0447 0.0847 67 127
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Figure C.6: Clipping of Signal S4 and its decomposition.

with a threshold of 0.5 and then decomposing the clipped signal using, for example,

1, 2, 3, 8 and 20 structures, give reconstructed signals with SNR of 17.95, 20.54,

22.84, 36.26 and 45.03 dB, respectively. This example, with an 8 step decomposition,

is depicted in Figure C.7. Just for comparison, the decomposition of the original

signal S1 is accomplished with just one structure with an SNR of 86.45. Note that

despite the longer and worse decomposition, since the dictionary used is complete,

the convergence of the decomposition is guaranteed, and it still gives an effective

way to decompose clipped signals, as can be seen from the increase of the SNR as a

function of the number of steps.

C.3.6 Results

From the details explained above the full decomposition algorithm (see the

block diagram in Figure C.1) can be summarized as:

1. Identify the clipping threshold for the signal, section C.3.5.
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2. Apply one step of the decomposition:

(a) Apply the greedy iteration with the Gabor Dictionary;

(b) From the parameters of the Gabor atom obtained in (a), search for a

damped sinusoid as explained in section C.3.1;

(c) Quantize the structure frequency, as in section C.3.2;

(d) Apply the sine discrimination heuristic, as in section C.3.4.;

3. Repeat (2) iteratively until some stop criterion such as a fixed number of

steps or a prescribed error is met (a better criterion to halt the decomposition

process will be presented in section C.4).

4. At the end of these procedures we have a decomposition of the signal in terms

of damped sinusoids. A reconstructed signal can be obtained from these struc-

tures. Then, we apply the clipping threshold procedure to it, as in subsection

C.3.5.
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Figure C.7: Clipping of Signal S1 and its decomposition.

109



Using the procedures described, the atoms found are physically meaningful

(refer to Figures 4-6). This can be confirmed by the decomposition of signal S4 (Fi-

gure C.8.(a)). The structures identified for that signal, using a three step decomposi-

tion, are presented in Figure C.8.(b), and the reconstructed signal in Figure C.8.(c).

In Table C.3 the parameters of the structures extracted by the decomposition al-

gorithm for signals S3 and S4 are shown together with the parameters used to

generate them (repeated here for reader convenience). Signal S4 is reconstructed

with an SNR of 29.81 dB and signal S3 with an SNR 88.58 dB (the SNR is defined in

section C.5, equation (C.18)), implying that the estimation of the structure parame-

ters is very good for these signals. Despite the good results obtained, a convincing

validation of the proposed method can only be performed by decomposing natural

signals [67] held in section C.5. The results shown just aim to verify the behavior of

the proposed method with completely known signals.

Table C.3: Decomposed structures parameters of signals S3 and S4.

Signal
Atoms Parameters for S3 Atoms Parameters for S4

ξ (Hz) φ ρ ns ne ξ (Hz) φ ρ ns ne

Decomposition

60.00 270.00 0.00 0 36 50.00 0.00 0.00 0 30

60.00 171.00 0.00 38 74 300.00 292.67 -0.029423 67 127

60.00 270.00 0.00 75 127 100.00 90.00 0.100022 31 80

Generation

60.00 -90.00 0.00 0 37 50.00 0.00 0.00 0 30

60.00 135.00 0.00 37 75 300.00 68.00 -0.03 67 127

60.00 -90.00 0.00 75 127 100.00 90.00 0.1 30 80

C.3.7 Application to the Filtering of DC Components

This subsection shows a study on the capability of the MP for filtering the

exponential decay that sometimes appears in current quantities after disturbances,

commonly known as the “DC Component” [97]. The exponential decay (“DC Com-

ponent”) appears added to the sinusoid and can be modelled as

Ae−ρt[u(t − ts) − u(t − te)] + B sin(2πft + φ) (C.19)
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Figure C.8: Three steps decomposition of synthetic signal S4.

where ts and te are the start and end times of the phenomenon (for simplicity

the start and end times of the sinusoidal component were not presented) and ρ

expresses the exponential decay constant. Observe that as equation (C.19) is a

particular case of equation (C.4), it is expected for the decomposition developed

to be capable of extracting/identifying the “DC Component”. Therefore, once the

signal is decomposed, the “DC Component” can be filtered out at the reconstruction

process.

To accomplish the filtering of the“DC Component”, all the low pass structures

resulting from the signal decomposition and that are not of impulsive nature (time

support not smaller than 10% of the fundamental frequency period), are eliminated

in the reconstruction process. This filtering has shown to be effective when applied

to synthetic and natural signals as well as signals obtained through the ATP-EMTP

(Alternative Transient Program – Electromagnetic Transient Program) [10].

Most analysis of oscillographic signals are based on comparisons of the values

of current and voltage quantities, often in phasor form. For that the signal is filtered

to obtain just the fundamental frequency contribution [97]. Therefore, this measure

was used to evaluate the proposed filtering. In all cases the proposed filtering worked

very well and the modulus and angle of the phasor have been correctly estimated.

This process was applied initially to synthetic signals (Figure C.9), generated using

components as in equation (C.4). The components of the original signal were two

sinusoids of 60Hz with amplitudes 1.0 and 2.0 and phases 0o and 90o, respectively,

starting and ending at samples 0 and 50 for the first, and 50 and 100 for the last

component. To this signal a “DC Component” was added from sample 50 to 100

111



0 20 40 60 80 100
−2

−1

0

1

2

3

4

5

Samples

A
m

pl
itu

de

Original Signal

0 20 40 60 80 100
−2

−1

0

1

2

3

4

5

Samples

A
m

pl
itu

de

Signal with DC Component Added

0 20 40 60 80 100
−2

−1

0

1

2

3

4

5

Samples

A
m

pl
itu

de

Filtered Signal

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Samples

A
m

pl
itu

de

Modulus of the Phasor of the Original Signal

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Samples

A
m

pl
itu

de

Modulus of the Phasor of the Signal with DC Component

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Samples

A
m

pl
itu

de

Modulus of the Phasor of the Filtered Signal

0 20 40 60 80 100

0

20

40

60

80

100

Samples

D
eg

re
es

Angle of the Phasor of the Original Signal

0 20 40 60 80 100

0

20

40

60

80

100

Samples

D
eg

re
es

Angle of the Phasor of the Signal with DC Component

0 20 40 60 80 100

0

20

40

60

80

100

Samples
D

eg
re

es

Angle of the Phasor of the Filtered Signal

Figure C.9: Fourier filter applied after “DC Component” filtering of a synthetic

signal.

with decay equal to 0.05 and amplitude 3.0 (see Figure C.9). In Figure C.9 it is

seen that in the filtered signal (using the proposed decomposition and filtering) this

component was eliminated. The results for an ATP-EMTP generated signal are

shown in Figure C.10. Note that the only significant difference appears in the angle

of the phasor after the elimination of the fault; however in this region the phasor is

null, and this difference is not meaningful. Thus, it can be seen that the modulus

variation due to the “DC Component” has been filtered without compromising the

angle analysis.

C.4 Stopping Criterion for the Decomposition

In previous sections was presented a method to obtain coherent representa-

tions of electric signals. However, an important question remains to be answered:

Is a given structure really necessary to represent the signal? Does the structure

represent signal or noise? This question is now addressed.
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Figure C.10: Fourier filter applied after “DC Component” filtering of a signal simu-

lated with the ATP-EMTP.

C.4.1 Approximation Ratio

The approximation ratio [29, 85] is defined as

λ(n) =
|〈rn−1

x
, gσ(n)〉|

‖rn−1
x

‖ . (C.20)

It is a measure of how much of the signal residue is approximated at step n. Fi-

gure C.11.(a) shows the behavior of the approximation ratio λ(n) in the MP algo-

rithm, with a Gabor dictionary of discrete parameters and continuous phase (section

C.2), for signals of 128 samples. The values shown are for synthetic signals and for

a noise signal (denoted as g-128 ) generated with independent identically distributed

(i.i.d.) random Gaussian variables. The approximation ratio tends to be inside a

neighborhood of a fixed value λ0 for a sufficiently large number of steps (although

the behavior around this neighborhood is quite irregular) [84]. It should be noted

that λ0 is independent of the signal being decomposed, it depends only on the dictio-

nary [29,31,84]. The dictionary, in turn, depends only on the signal space dimension

(length) in our algorithm, as the parameter space of the structures that compose the

dictionary is parameterized based only on the signal length. It is also noticeable that
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for the noise signal (i.i.d. Gaussian noise) the approximation ratio wanders around

λ0 even at the initial steps. Davis [29, 31] defines the structures with large λ(n) as

the coherent structures, since they are highly correlated with the signal. Therefore,

one can assume that the residues of the signal being decomposed behave as noise

after their approximation ratio is in the vicinity of λ0. Thus, if the approximation

ratio of the residues behaves like the one of noise, then there are no more coherent

components to the dictionary in the residue, and the decomposition/approximation

process can be stopped.

Note in Figure C.11.(a) that λ(n) oscillates around the same value for all the

signals for sufficiently large values of the step n. To filter out the oscillations around

λ0, we can consider the L steps forward mean approximation ratio

λmeanf
(M) =

1

L

M+L−1
∑

n=M

|〈rn−1
x

, gσn
〉|

‖rn−1
x

‖ . (C.21)

At a given step M , if the moving mean approximation ratio in the next L steps is

similar to the value of the noise signal mean approximation ratio, we can assume

that we are approximating noise. The number of forward steps L, that are used

to compute the moving mean approximation ratio, was set to be log2(N). In other

words, to avoid modelling such noise, the decomposition should be carried out only

while

λmeanf
(M) ≥ λ0 + ε, (C.22)

where λ0 is obtained for i.i.d. Gaussian noise signals and ε is a confidence constant.

Thus, we need to compute, for each dictionary, the mean approximation ratio of

the i.i.d Gaussian noise. In Figure C.11.(b) we see the behavior of the mean ap-

proximation ratio for different length i.i.d Gaussian noise signals of zero mean and

unit variance. One can see that the value of λ0 depends on the dictionary (that

in this case is completely specified by the signal dimension), which is in agreement

with [29, 31, 85]. When the time support search is applied (see section C.2.2), the

approximation ratio changes because it is an intrinsic characteristic of the dictionary

for a given signal dimension N . Time support search is equivalent to using a much

larger dictionary, composed by the original Gabor dictionary and all its atoms with

all possible time supports. Therefore, the time-support search increases the appro-

ximation ratio in the step (the search for best time support implies a greater than
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or equal to inner product). However, it should be observed that with time support

search the values obtained for λ0 without this search can still be used as a lower

limit for the approximation ratio as a halting criterion. In the results presented in

this work ε was set to be 10% of λ0.
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(a) Approximation ratio for signals of size 128.
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(b) Moving mean approximation ratio for different signal lengths N (L = log2 N).

Figure C.11: Approximation ratio behavior, of the MP using the discrete Gabor

parameters dictionary with continuous phase, as a function of the step.

C.4.2 Stopping the Decomposition into Damped Sinusoids

The MP is carried out while the approximation ratio satisfies equation (C.22).

This guarantees that the MP yields a model consisting of the structures that are

coherent to signal phenomena and not to noise. Table C.4 shows the values of

λ0 for the dictionary of damped sinusoids that are used as the stopping criterion.
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Note that the damped sinusoids dictionary employed here is fully specified by its

dimension, and therefore the approximation ratio is a function only of the dimension

of the signal space. Note that this a priori is independent of the fact that we use

the Gaussian to damped sinusoid fitting and the procedure to decide to use either a

pure or a damped sinusoid, since every outcome of the 5-tuple (kqF , ρ, φ, ms, me))

is possible.

Table C.4: Moving mean approximation ratio for different size noise signals in the

MP with the damped sinusoids dictionary of continuous parameters obtained indi-

rectly from the MP with Gabor atoms.

Signal Dimension 64 128 256 512 1024

λ0 0.41 0.30 0.22 0.17 0.07

The values in Table C.4 are for the decomposition using the dictionary of

damped sinusoids without frequency quantization and sine discrimination. As these

operations decrease the inner products, they tend to reduce the approximation ra-

tio. Therefore, a small modification in the computation of the approximation ratio

in the iteration was performed: the approximation ratio is computed before the

frequency quantization and pure sinusoid discrimination. Experimental results did

show that this strategy performs well in identifying the coherent structures of the

signal. For example, for signals S2 and S3 this procedure identified 4 and 17 struc-

tures respectively, with an SNR for the reconstructed signals of 83.42 dB and 109.33

dB respectively, using L = log2 N steps to compute the mean approximation ratio.

Nevertheless, it is important to point out that most of the structures found have

amplitude near zero (γq ≈ 0), that tend to be eliminated during quantization, as

will be discussed in section C.5. Note that finding a large number of structures is

inherent to the decomposition of most signals, either synthetic or natural, with the

MP algorithm. This is so because, since the dictionary is overcomplete, each addi-

tional step of the MP, can reintroduce components removed in a previous iteration.

This tends to generate decompositions with many small energy structures.
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C.4.3 Noise Immunity

In order to assess the effectiveness of the proposed stop criterion we studied

its performance to represent signals with different levels of added noise. This allows

assessing the capability of the method for discriminating signal from noise. Table C.5

shows the energy of the added noise – Gaussian, i.i.d, noise signals of zero mean and

energy values shown in Table C.5 were generated. It is also included in Table C.5

the SNR of the reconstructed signal and the number of structures identified by the

algorithm. The algorithm identifies successfully and precisely the structures whose

energy is larger than the noise energy. The corresponding signals can be observed

in Figures C.12.(a) and C.12.(b).

Table C.5: Decomposition of synthetic signal S2, using a damped sinusoids dictio-

nary, with addition of noise.

Noise

Energy Norm Signal Energy
Noise Energy

Number of Structures SNR dB Figure

0.0238 0.1543 1,277.4 6 36.60 C.12.(a)

0.3237 0.5689 93.92 3 19.73 C.12.(b)

From these results we see that:

1. Small energy noise does not influence the choice of the atoms used to represent

the signal. However, they influence the number of structures used, based on the

mean approximation ratio, i.e., more added noise leads to earlier occurrence

of noise like representation;

2. The algorithm is capable of sensing the presence of noise in the signal. This

can be used to perform signal denoising by synthesis [84] – For example, if

noise is added in the sampling process of power systems signals, we can use

the damped sinusoids dictionary in the MP framework to represent the noisy

signal and reconstruct it, from the adaptive decomposition, with much less

noise, as can be seen in Figure C.12.
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Figure C.12: Decomposition of synthetic signal S2 with noise addition, in the dam-

ped sinusoids dictionary. For characteristics of the signal refer to Table C.5. The

noisy signal is in dashed line while the reconstructed one is in continuous line.

C.5 Compression of Natural Signals

As mentioned, this decomposition is meant to represent the signals by obtai-

ning their coherent structures, yielding good compression ratios with low distortion.

Oscillographic signals are often post-analyzed by experts (human or system) in or-

der to gain knowledge about the fault event. Thus, the compression must allow an

accurate signal analysis, that is, the analysis made on the reconstructed signal must

give the same results as the ones held on the original measured signal. This refers to

the consistency concept, see equation (C.1). We present below a simple method to

quantize and encode the parameters of the structures. This procedure is such that

high SNR, high compression and accurate analysis are possible. Results confirming

these conjectures for signals acquired from power systems are presented.
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C.5.1 Structures Quantization

The damped sinusoids structure obtained by the decomposition proposed, at

each step n, is characterized by the 6-tuple σ(n) = [γ(n), ρ(n), ξ(n), φ(n), ts(n), te(n)].

We present a simple scheme to quantize this 6-tuple:

• The starting and ending times (or samples) of the structures are quantized by

a scalar quantizer of log2 N bits, where N is the signal length.

• The frequency ξ(n) is quantized with respect to the sampling frequency Fs

and the fundamental frequency, as shown in subsection C.3.2.

• The inner product at a given step n of the decomposition, γn, the damping

factor ρ(n), and the phase φ(n) can be quantized by simple and independent

fixed rate scalar quantizers.

Those quantizers are designed according to the dynamic range (minimum and

maximum values) of each parameter for all the structures found in the signal.

This is done by setting up a number of bits for each of these parameters.

The number of bits used to quantize the inner product (coefficients) of the

structures is referred as bcoef ; the number of bits for the damping factor is

referred as bρ; and the number of bits for the phase is referred as bφ. Given

these number of bits, scalar quantizers can be designed for each parameter.

• As we store/transmit the signal we need to inform the models of the quantizers

in a header, together with the signal size, the sampling frequency Fs and the

fundamental F . In the experiments presented next, the header size is 183 bits

long, when carrying also the clipping threshold to be applied to the signal.

As stated in section C.3.5 the use of the clipping threshold may not be of

practical use. Therefore, we present results for the compression ratio without

considering it, what leads to a 150 bits long header.

C.5.2 Results

Measured signals collected from fault events in the Brazilian power system

were decomposed and compressed using the scheme presented. Those signals are

shown in Figures C.13.(a) (neutral current during a real fault – R1 ) and C.14.(a)
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(voltage phase during a real fault – R2 ). Prior to quantization R1 was decomposed

using 19 structures and R2 using 20 structures, see Table C.6. It is relevant to say

that the first structure extracted from signal R1 is σ(1) = [ 7.451844, 0.004455,

956.947205, 11.489659, 432, 1023] where ts and te are in samples, the fundamen-

tal frequency is 50 Hz and the sampling frequency 1000 Hz. After quantization

it becomes σ(1) = [ 7.440485, 0.004839, 950 , 10.683165, 432, 1023]. Table C.5.2

presents the ten structures that represent signal R2 after quantization. The com-

pression ratio is defined as the overall bit rate of the original signal divided by the

total number of bits used to represent the structures of the signal and the header.

The original signals were stored in single precision floating point (using 16 bits per

sample - bps) and with no header, and the compression ratios were computed with

respect to this format. The quality of the compressed signal R1 can be verified

visually in Figure C.13.(b) and from its reconstruction error in Figure C.13.(c). The

same can be observed for signal R2 in Figure C.14. Note that in these examples the

reconstruction error is computed after the quantization of the structures and it can

be diminished as the quantization is improved or the compression ratio is reduced.

Table C.6: Quantization of natural signals decompositions.

Signal bcoef bρ bφ Number of Structures SNR (dB) Compression Ratio

R1 6 7 7 19 28.10 15.00

R1 6 6 4 19 15.43 16.13

R2 5 4 4 7 28.32 36.01

R2 6 6 6 10 31.13 25.97

From these figures we see that the results obtained are promising in that

high compression ratios can be achieved along with high SNR. In addition, the

important phenomena represented in the signal (according to the damped sinusoids

model of section C.1), are preserved. Since we use quantizers with a dead zone [96],

the number of bits used to quantize the amplitude has a direct influence on the

number of structures used to represent the signal after the quantization process.

In addition, since bρ and bφ determine the quantization error of the parameters ρ

and φ, the representations improve as they are increased. Therefore, they yield
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Figure C.13: Compression of signal R1 by quantizing the atom parameters with

bcoef = 6, bρ = 7 and bφ = 7, the compression ratio is 15.46 and the SNR is 28.11

dB at 1.035 bps.

a compromise between compression ratio and reconstruction quality. The optimal

selection of the number of bits used to quantize each of the three parameters is not

straightforward and deserves further study. In addition, vector quantization [57]

and context coding schemes [96] and content-based bit-allocation [108] could be

investigated. For example, it is expected that frequency and damping factor have
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Figure C.14: Compression of signal R2 by quantizing the atom parameters with

bcoef = 6, bρ = 6 and bφ = 6, the compression ratio is 27.40 and the SNR is 31.13dB

at 0.584 bps.

some correlation between them, and exploitation of such correlation may lead to

further rate-distortion improvements.

Note that for the proposed compression method if the sampling rates of the

signal and of the dictionary change by the same amount, then the signal decompo-

sition will undergo little change. In other words the bit stream obtained would be
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Table C.7: Ten structures obtained after decomposing signal R2 and quantizing the

structures with bcoef = 6 , bρ = 6 and bφ = 6 (see Fig C.14).

Structure Amplitude Freq. (Hz) ρ Phase (Deg.) ts (sample) te (sample)

1 19.489243 60 0.000000 303.383514 0 1023

2 0.609039 0 0.000000 0.000000 0 1023

3 0.609039 2040 0.007807 113.768814 380 841

4 0.609039 600 0.000000 200.449829 397 1018

5 0.304519 3240 0.023422 92.098564 386 408

6 0.304519 2640 0.007807 281.713257 428 959

7 0.304519 900 0.000000 195.032257 395 973

8 0.304519 1680 0.003904 232.955185 378 919

9 0.304519 6960 0.238121 59.593189 379 382

10 0.304519 3900 0.000000 335.888855 389 472

the same (the only difference would be in the number of bits used to quantize the

frequency – implying the addition of a small number of bits per structure). Thus

the compression ratio increases almost linearly as a function of the sampling rate of

the signal.

In Figure C.15 we present another natural signal, a voltage V from a trans-

mission line where a fault has occurred. In Figure C.15.(a) is presented the origi-

nal signal, in Figure C.15.(b) the compressed one (after quantization) and in Fi-

gure C.15.(c) the reconstruction error. In order to objectively assess the proposed

compression algorithm, when used in a signal analysis framework, we have analyzed

the fundamental frequency contribution in the original and the compressed signal of

Figure C.15. For that purpose, the signals corresponding to the phasor before and

after quantization are presented in Figure C.16. The maximum percentile errors

in these computations where 1.25% and 4.75% for modulus and angle, respectively,

which are indeed good results. One should note that the largest angle errors are ir-

relevant, as they occur near the modulus transition, which is not useful when using

phasors for analysis. Figure C.17 shows the reconstruction obtained for all the three

phases that compose the transmission line for the fault waveform of Figure C.15.
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This shows that the decomposition behaves well, obtaining good reconstructions for

all the three phases.

C.6 Chapter Summary

In this chapter, it was presented a signal decomposition scheme that yields

a representation that is related to the phenomena represented in the signal, that is

robust to noise, and that can be quantized effectively while maintaining signal cha-

racteristics normally extracted in automatized analysis. That is, the work presented

finds a decomposition that is coherent with the signal phenomena. The algorithm

decomposes a signal into a set of damped sinusoids through an adaptive algorithm

based on the Matching Pursuit. That is, it represents a signal x as a sequence of

inner products γn = 〈rn−1
x

, gσ(n)〉 and indexes σ(n), where n is the component num-

ber. Each damped sinusoid gσ(n) is represented by a set of parameters σ(n) = (f(n),

ρ(n), φ(n), ts(n), te(n)). Procedures to accomplish the search in this 5-parameter

space in a computationally feasible and effective fashion were developed. In addi-

tion, it was presented a fast procedure to eliminate post-echo and pre-echo errors,

that often appear when Matching Pursuit is employed, was presented. The decom-

position algorithm that was presented obtains a signal representation based on a

parameterized waveform model.

A set of novel heuristics that prevent MP from deviating from a physically

meaningful decomposition was also presented. Since greedy algorithms deviate from

obtaining meaningful decompositions, “intelligence” was given to the algorithm to
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Figure C.15: Compression and reconstruction of the waveform of a fault. Compres-

sion Ratio = 68.27 and SNR = 26.13 dB.
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Figure C.16: Fundamental frequency contribution in the voltage signal of the com-

pressed fault in Figure C.15.

keep it on track. This was accomplished by introducing a set of heuristics in the MP

loop that instruct the MP for correct atom selection. These heuristics correct false

phenomena identification which occurs when the standard MP algorithm is used.

The stopping criterion used for the decomposition process can also be un-

derstood as an estimator. This estimator tells when the decomposition is to be

halted using the criterion that the residue behaves as Gaussian white noise, that

is, there is no more representative information, in accordance to the signal model,

to be extracted. In other words, it is decided how many atoms to use in order to

decompose a signal by employing the statistics of the approximation ratio at the

step. This allows to obtain an automatic coherent representation.

A filtering by synthesis application was presented. This is accomplished by

using a pruned subset of the atoms found by the analysis process in the recons-

truction of the signal. Many works have used the idea of filtering by thresholding,

retaining just components that have energy above a pre-defined threshold [76, 84],

for signal denoising. However, the filtering employed here differs from these in the
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Figure C.17: Compression and reconstruction of voltage channels of a fault. (a)

present the original signal, (b) the reconstructed signal decomposition, (c) the re-

constructed signal after quantization of the atoms parameters, (c) the approximation

error, (d) the approximation error after the parameter quantization and (e) the error

due to parameter quantization.

sense that it selects the structures used in the synthesis not by their energy but by

their characteristics, allowing an adaptive non-linear filtering. This approach was

employed to eliminate “DC components” that often appear in oscillograms.

Almost all compression systems based on Transforms or on Matching Pur-

suit achieve signal compression by quantizing just the coefficients. The compression

scheme presented strongly differs from other compression systems since the com-

pression is achieved by quantizing the parameters of the signal model. That is, the

reconstructed signal, after compression, is given by

x̂ =

M
∑

m=1

Q[γm]gQ[σ(m)], (C.23)

and the structures used to rebuild the signal are different from the ones obtained

by the decomposition algorithm. Despite its simplicity, the quantization proce-
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dure employed presented a satisfactory performance enabling the assessment of the

compression capability of the proposed method. This compression obtains good

compression ratios while preserving important features for signal analysis. In [102]

a rate-distortion optimization procedure that can be applied to the compression

scheme proposed here has been investigated.

The signal decomposition algorithm presented and the compression scheme

that is applied to the resulting decompositions were evaluated with both synthetic

and natural signals. The results with natural signals were very good. We often have

more control of synthetic data than we have of natural data, and several algorithms

have the performance diminished with natural data; however what was not the case

for the proposed algorithm and compression scheme.

To accomplish an even more appropriate modelling of oscillographic signals

it might be worthy to include into the model parameterized functions that represent

inrush currents, as well as an approach using non quantized frequency to model

inter-harmonic frequency components. This would enable the elimination of sub-

synchronous components from the oscillograms, that are components of frequency

near to the fundamental that are not multiples of it, which impair the analysis of

oscillographic signals. In addition, a truly relevant continuation would be to submit

the compressed signals to the analysis by system experts. This would enable a

subjective assessment of the proposed compression method.
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Apêndice D

Lloyd-Max Quantizer for

Matching Pursuit Decompositions

The Matching Pursuit algorithm approximates a signal using a linear combi-

nation of pre-defined atoms from a dictionary. The linear combination is obtained

using an iterative algorithm. The performance of the MP for signal compression

applications depends heavily on two aspects:

i) Dictionary – it should include atoms that are good matches to the possible

components of the signals to compress. In addition, the dictionary cardinality

affects the data rate.

ii) Quantization – for compression the coefficients γn must be quantized.

Using a coefficient quantization rule Q[·] the compressed signal is retrieved by the

quantized M-term representation

x̂q =

M
∑

n=1

Q[γn]gi(n). (D.1)

In order to design efficient quantizers Q[·], one needs a statistical model for

MP coefficients. However, MP coefficients are difficult to model. For example,

in [30] it has been observed that MP residues have a chaotic behavior. Here, instead

of searching for a good model for MP coefficients, our modeling approach is based

on the angles in Matching Pursuit iterations.
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At each iteration of the MP angle between the residue rn−1
x

and the selected

atom gi(n) is

θn = arccos

(〈rn−1
x

, gi(n)〉
‖rn−1

x
‖

)

. (D.2)

Experimentally, for a signal source x ∈ X whose probability density function de-

pends just on the signal norm ‖x‖, the statistics of θn seem to be independent of n.

Here it is conjectured that the angles between the residues and the atoms in Mat-

ching Pursuit iterations can be statistically modeled as independent and identically

distributed. Although this statistical model is an approximation, it is works well for

a large class of dictionaries.

We show also that if the dictionary contains at least one orthonormal basis,

then the use of a statistical model for the angles that is independent and identically

distributed at each iteration is valid only if the number of the iterations is smaller

than or equal to the signal space dimension. More specifically, dictionaries that

include an orthonormal basis have a non-zero probability to produce residues such

that rn
x

= 0, whenever the number of decomposition steps n is greater than or

equal to the signal dimension. The proposed statistical model can be adapted for

dictionaries including orthonormal basis by employing two sets of statistics, one set

models the statistics whenever the step number is smaller than the signal dimension

and another for the remaining cases.

The statistical model of the angles derived is employed to perform Lloyd-

Max quantization of Matching Pursuit decompositions. The Lloyd-Max quantizer

presented is compared to the state-of-the-art off-loop Matching Pursuit quantization

scheme. Results show that both quantizers have similar rate-distortion performance.

The good rate-distortion performance of the Lloyd-Max quantizer designed corro-

borates that the statistical model for MP angles proposed here is appropriate to be

used in practice.
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D.1 Angles in Matching Pursuit Iterations

Using the definition of θn, equation (D.2), the coefficients delivered by MP

algorithm are given by

γ1 = ‖x‖ cos (θ1),

γ2 = ‖x‖ sin (θ1) cos (θ2),

...

γn = ‖x‖
[

n−1
∏

i=1

sin (θi)

]

cos (θn). (D.3)

In this work we assume that the atom and its negative belong to the dictionary

D without any loss of generality. In this case, the coefficients γn can be made

always positive without impacting the signal approximation. For that purpose, if

D does not include −gk then −gk is included in D and #D is updated accordingly,

obtaining then always positive coefficients. Note that, the data rate remains the

same. Although it may be required one more bit to index the atoms in the M-term

representation since at most we double #D to include every −gk in D, since there is

no need to code any coefficient sign information saving thus one bit per coefficient

in the M-term representation the rate remains the same.

D.1.1 Magnitude Decay of Matching Pursuits Coefficients

The maximum angle between any signal in the space and its closest atom in

D, defined in equation (B.7), bounds the error of the M-term representation, see

equation (B.8). It should be noted that Θ(D) is the arc-cosine of the minimum of the

approximation ratio, which has been discussed in subsection C.4.1, with respect to all

signals in the space. However, subsequent MP coefficients may not be decreasing in

magnitude, see equation (D.3). Theorem D.1 uses Θ(D) to find an upper bound for

the number of MP iterations required for the decrease of the coefficient magnitude.

Theorem D.1 After

m =

⌈

log [cos (Θ(D))]

log [sin(Θ(D))]

⌉

steps, (D.4)

the MP always produces coefficients γn+m < γn.
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Proof: Since

γn = ‖x‖
[

n−1
∏

i=1

sin (θi)

]

cos (θn) (D.5)

and

γn+m = ‖x‖
[

n+m−1
∏

i=1

sin (θi)

]

cos (θn+m) (D.6)

it follows that

γn+m = γn tan (θn) sin (θn+1) . . . sin (θn+m−1) cos (θn+m). (D.7)

Suppose ‖rn−1
x

‖ is known, the smallest value of γn occurs if θn = Θ(D) and is given

by γn = ‖rn−1
x

‖ cos (Θ(D)). Meanwhile, the largest possible value of γn+m is obtained

if θi = Θ(D) ∀ i ∈ [n, . . . , n + m − 1] and θn+m = 0. Thus, the largest number of

steps m after which γn+m < γn, that is γn+m

γn
< 1, is such that

tan (Θ(D)) [sin (Θ(D))]m−1 > 1, (D.8)

what gives
sin (Θ(D))m

cos (Θ(D))
> 1 (D.9)

and thus

m >
log [cos (Θ(D))]

log [sin (Θ(D))]
. (D.10)
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Figure D.1: Number of steps m that guarantees that |γn+m| < |γn| in the MP as a

function of Θ(D).

From Theorem D.1 one can predict, once Θ(D) is known, how many iterations

m are needed to generate a coefficient that is guaranteed to be smaller than the

coefficient of the current step. Note, however, that the bound provided by Theorem

D.1 is weak since there is no guarantee that even exists a signal such that, when
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decomposed using the MP, gives θn = Θ(D) ∀ n. Therefore, in general, the number

of steps m after which the magnitude decrease is smaller than the one provided by

Theorem D.1.

Figure D.1 shows m as a function of Θ(D). If the dictionary is such that

Θ(D) ≤ π/4 then the magnitude of the coefficients decreases at each step. Such

small Θ(D) can only be reached by dictionaries with large cardinality #D [23, 81]

with respect to the space dimension N . For example, the first shell of the D4

lattice [23] has 24 vectors (taking into account the two opposite vectors gk and −gk)

with Θ(D) = π/4. Raising the dimension to 8 the first dictionary that gives such a

small Θ(D) is the first shell of the ǫ8 lattice [23] that has 240 vectors (this dictionary

also includes gk and −gk). From these dictionaries one sees that #D does not grow

linearly with N [23] if it is desired that Θ(D) = π/4. On the other hand, in order for

the norm of MP residues to decay it is just necessary that Θ(D) < π/2, a condition

met by any set of vectors spanning RN . There is no known solution to find Θ(D) for

any given D, actually this is a very difficult task. However, for practical applications

estimates of Θ(D) may suffice.

D.1.2 Statistics of the Angles in MP Iterations

In [30], it has been observed that MP residues have a chaotic behavior, thus

it would be reasonable to assume that, after some MP iterations, the residues can

have any orientation. In more precise terms, it means that one can assume their

probability distribution to be dependent just on their magnitudes. This implies

that one could assume that the orientation of the residues may have an uniform

probability density function on the unit-ball.

Consider now a memoryless independent and identically distributed (iid)

Gaussian source (or simply, a Gaussian source). Being x = [x[1], x[2], . . . , x[N)]T

an outcome from this source, it is such that all the x[j] have the same Gaussian

distribution N (0, σ2). The probability distribution of this source depends just on

the outcome magnitude and the orientation of this source has a uniform probability

density function on the unit-ball. Although the Gaussian source may not match

some actual signal sources or residues in MP iterations, it provides the same proba-

bility density function for any signal orientation and therefore does not exclude any
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possible signal, i.e. it does not privilege any signal orientation.

Since the residues can be assumed to have a probability distribution that

depends just on their norms and the Gaussian source also has this property, one

may expect the angles in MP iterations arriving from the decomposition of MP

residues to have a distribution that is similar to the distribution of the angle in the

first iteration of the MP for a Gaussian source.

Figure D.2 shows the normalized histograms of the RVs (Random Variables)

Θn of the angles at the nth MP step or iteration for several values of n. They

result from decompositions of realizations of a Gaussian source using a dictionary

composed of 16 normalized Gaussian random atoms drawn from a Gaussian source

in R4. Dictionaries of this kind, composed of #D normalized signals drawn from

an N -dimensional Gaussian source, are referred here as GSND(#D, N) and thus

the former dictionary is denoted by GSND(16, 4). Figure D.3 shows the mean and

the variance of Θn for several n and the covariance among some Θn for the same

dictionary and source. The results in these figures were obtained using an ensemble

of 50,000 MP decompositions of random signals drawn from a Gaussian source. In

Figure D.2 one notes that the pdfs of the RVs Θn have a similar shape for all n. This

leads to the conjecture that the pdfs fΘn
(θn) are independent of the iteration number

n and are identically distributed, i.e., their pdfs are the same, at each iteration. The

results presented in [29,30] corroborate this supposition. In these works it is shown

that, under specific conditions, the MP angles θn have a chaotic behavior, i.e. the

residue in step n maps, chaotically, to the residue in step n + 1.

Residues may have any orientation. Therefore, for a source with uniformly

distributed angles, that is, with outcomes whose pdf depend only on their magni-

tudes, the angle RV, in the first MP step, Θ1 may have a pdf that is similar to the

ones of subsequent decomposition steps. That is, Θ1 may have a pdf that is similar

to the Θn for n > 1. Thus, it would be reasonable to assume that the angles at

each step are statistically independent. Figure D.3 depicts the covariances between

MP angles in different steps. From it we see that Cov[ΘiΘk] = 0, ∀ i 6= k, that is,

the angles are uncorrelated. In this chapter we use the hypothesis that the angles

are independent RVs. This is not an unreasonable assumption, since it does not

contradict the behavior observed in Figure D.3.
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Figure D.2: Relative frequency histograms of Θn for a Gaussian source of R
4 using

the GSND(16, 4).
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Figure D.3: Mean, variance and covariance of Θn for a Gaussian source in R4 using

the GSND(16, 4).

D.1.3 Angle Statistics for the Gabor Dictionary in R
64

The results presented so far use dictionaries of relatively low dimension and

cardinality. In practice the MP is commonly used in large dimensional spaces using
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parameterized dictionaries as the Gabor dictionary, discussed in subsection C.2. The

elements of this dictionary are defined by translations, modulations and dilations

of a prototype signal. The most common choice for the prototype signal f [n] is

the Gaussian window. The atoms of the Gabor dictionaries are complex, and the

optimal phase for the atom can be computed, see subsection C.2. However, for

compression applications, a quantized phase is required. Therefore, we analyze here

a Gabor dictionary composed of atoms with phases being multiples of π
V

. Each atom

is then given by

g[n] =



























δ[n], if j = 0

K(j,p,v)f

[

n − p2j

2j

]

cos
[

nkπ21−j +
πv

V

]

, if j ∈ (0, L)

1√
N

, if j = L

, (D.11)

where f [n] = 2
1
4 e−πn2

, n is the sample, K(j,p,v) provides a unit-norm atom, and

v ∈ [0, . . . , V − 1]. In the definition above j defines the atom scaling, p defines the

time shift, and k defines the atom modulation. For L = log 2(N) scales the atom

parameters ranges are j ∈ [0, L], p ∈ [0, N2−j), k ∈ [0, 2j), and v ∈ [0, V − 1].
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Figure D.4: Normalized histograms of MP angles for a Gaussian source in R64, using

100 bin, at n = {1, 8, 16, 32, 64, 72}, for the 4-phase Gabor dictionary in R64.
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Figure D.5: Normalized histograms of MP angles for a source with coordinates

driven from a gamma distribution, using 100 bin, at n = {1, 8, 16, 32, 64, 72}, for the

4-phase Gabor dictionary in R64.

Figure D.4 shows fΘn
(θn), the probability density function of the RVs Θn –

the normalized histograms of Θn, for some n, obtained for an ensemble of 128,000

decompositions of Gaussian signals in R64 using the Gabor dictionary with four

phases. Figure D.5 shows fΘn
(θn), for some n, obtained for an ensemble of 128,000

decompositions of signals driven from a memoryless source that has gamma distri-

buted coordinates in R
64 for the same dictionary. Note that the angles’ statistics

shown for each signal source differ only at the first MP iteration, being visually very

similar for the other iterations. It can be noted that for this dictionary the angles

in different MP steps n ≥ 2 have similar statistics even for very different sources.

Note that, although these statistics are not exactly equal to the statistics that are

obtained for the first decomposition stage of Gaussian source, they are reasonably

similar and therefore fΘn
(θn) for n > 1 can be approximated by the fΘ1(θ1) obtained

for a memoryless white Gaussian source. This is a reasonable assumption, since the

memoryless white Gaussian source does not privilege any orientation, what seems

to be the case for the residues rn−1
x

for n > 1.
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Figure D.6 presents the average value of the angle in MP iterations, the

standard deviation of these angles and the largest value of the angle in MP iterations

Θi(D) for the memoryless white Gaussian source. Figure D.7 presents the same

results but for a memoryless gamma distributed source. It can be noted that for

both sources that as n increases the angle statistics converge, E[Θi] and var[Θi], to

fixed values, it can also be noted that these values are source independent although

the speed of the convergence is faster for the Gaussian source than for the Gamma

distributed one. In addition, note that Θi(D) seems to be constant. Figure D.8

presents the correlation and covariance between the angles in MP iterations for the

decomposition of an ensemble from a Gaussian source. As one can observe the same

behavior for the covariance than the one observed for the dictionary composed of 16

normalized outcomes of a Gaussian source in R4 – the GSND(16, 4).

It should be noted, from the results presented, that for the R
64 Gabor dictio-

nary the value of Θ(D) is larger and fΘ1(θ1) is narrower than they are, for example,

for the GSND(16, 4). These observations indicate that the decay rate of the mag-

nitude of MP coefficients for the R64 Gabor dictionary is not as fast as it is for the

GSND(16, 4).
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Figure D.6: Statistics of the angles in MP iterations for a Gaussian source in R64 as

a function of the iteration for the Gabor dictionary in R64 of four phases.
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Figure D.7: Statistics of the angles in MP iterations for a Gamma distributed source

in R64 as a function of the iteration for the Gabor dictionary in R64 of four phases.

D.1.4 Dictionaries Including Orthonormal Bases

The iid model for MP angles is well suited for a large number of dictionaries.

Nevertheless, when the dictionary includes an orthonormal basis, the iid model re-

quires a slight modification. We address this aspect now. An important contribution

of the present work is the proof of the following proposition:

Null Residue Proposition If the dictionary includes an orthonormal basis, then,

under very general conditions, the MP algorithm has a non-zero probability of gene-

rating null residues in a finite number of steps.

The proof of the “null residue proposition” is presented in Appendix G. In

Appendix G it is shown that if D includes an orthonormal basis then the MP has

a non zero chance of trapping the residuals of the MP decomposition of a given

vector into successive subspaces that are orthogonal to the previous selected atoms.

Therefore, since for any n it is known that rn
x
⊥ gi(n), if the source is iid Gaussian

then there is a non-zero probability to produce a null residue, that is, to obtain

rn
x

= ~0, in a finite number of steps n ≥ N .

Experimentally we observed that when a GSND(20, 4) is used to decompose
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Figure D.8: Correlation and covariance between angles in MP iterations for a Gaus-

sian source in R64 as a function of the iteration for the Gabor dictionary in R64 of

four phases.

an ensemble of 25,600 signals drawn from a four dimensional memoryless Gaussian

source, allowing at most 100 decomposition steps, none of the signal decomposition

produces a null residue in a finite number of steps. However, when a set of 4

elements of the same GSND(20, 4) is replaced by the canonical basis of R4 exact

signal expansions with finite number of terms are obtained. Figure D.9 shows the

histogram of the number of null residues produced by the MP in function of the MP

iteration for an ensemble of 25,600 signals drawn from a four dimensional memoryless

Gaussian source when the GSND(20, 4) is modified to include the 4 vectors of the

canonical basis. The last bin of the histogram accounts for the realizations that did

not produce null residues in any of the 100 steps of the MP.

Corollary G.1 tells that for the iid Gaussian source the MP produces null

residues after N (the signal space dimension) iterations. Figure D.9 shows that

the MP has also a non zero probability to produce null residues when the source
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is composed by outcomes of MP residues of the Gaussian source at any iteration.

Therefore, it is reasonable to assume that MP residues may have any orientation

what gives support to the analyses previously held on the distributions of MP angles.
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Figure D.9: Incidence of null residues using a GSND(20, 4) with 4 elements replaced

by the canonical basis of R
4.

As stated by the Null Residue Proposition (see its proof in Theorem G.1) the

modified GSND(20, 4) produces null residues after 4 decomposition steps. In order

to confirm that the null residues appear due to the modification of the GSND(20, 4),

by including a basis in it, we consider now what happens for the original GSND(20, 4).

Figure D.10 shows on its left-hand side the angle histograms at steps 1, 4, 7 and

10 for the decomposition process aforementioned using the original GSND(20, 4).

On its right-hand side, Figure D.10 presents the same graphs for the modified

GSND(20, 4). To compute the percentage histogram of the Θi in Figure D.10

(using 100 bins) at each step i only the angles generated by decompositions that did

not produce null residues, i.e., that did not yield rn−1
x

= ~0, for n < i, are considered.

One observes in the left-hand side of Figure D.10 that for the original GSND(20, 4)

null angles do not occur, i.e. the residue and the selected atom never have the same

direction. However, it is possible to verify in the right-hand side of Figure D.10

that for the modified GSND(20, 4) when n ≥ 4 null angles often occur. It is also

interesting that the percentage of such angles as well as the whole histograms are
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very similar across the iterations that are greater than or equal to 4.

The exact calculation of the probability of producing a null residue at a gi-

ven step is a difficult task since its value depends on both D and the signal source.

However, it is possible to estimate this probability from simulations since the per-

centage of null angles at a given step is a measure of the probability of producing

null residues at that step. When n ≥ N steps, in the case N = 4, this probability

seems to remain constant.
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Figure D.10: Histograms of the angles at the MP steps 1, 4, 7 and 10 using the origi-

nal GSND(20, 4) (left) and the modified GSND(20, 4) (right) – the GSND(20, 4)

with 4 of its elements replaced by the canonical basis of R4.

One may have dictionaries including several distinct orthonormal bases. For

these dictionaries the probability of MP convergence in finite number of steps is

expected to be larger than it is for a D that includes only one orthonormal basis.

Another strategy is to generate dictionaries that are unions of orthonormal bases [66,

76,84,105]. An example of a dictionary composed by a union of bases is the D4,sh1,

which is obtained by normalizing the elements of the first shell of the D4 lattice [23,

25]. The D4,sh1 has 24 elements in 12 directions with two opposite phases.

The dictionary formed by the normalized elements of the first shell of the
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ǫ8 lattice (the ǫ8,sh1 dictionary) is composed by 240 elements (in 120 directions)

in dimension 8, and for each of its elements there are either 126 or 110 orthogonal

dictionary elements. Actually, the ǫ8,sh1 can be shown to be the union of 30 bases for

R8. However, the elements of the ǫ8,sh1 can be grouped in order to provide a larger

number of orthonormal bases than the original 30 bases, i.e., for a given dictionary

element it is possible to select more than one subset of 7 elements from ǫ8,sh1 that

forms an orthonormal basis for R8, and these subsets are not just changes of sign

of the elements (as was the case for the D4,sh1). Figure D.11 shows the histograms

of the MP angles Θi, for i ∈ [1, . . . , 10], for the ǫ8,sh1 obtained using an ensemble of

25,000 MP decompositions of Gaussian source signals. In this figure, it is possible

to see that histograms of Θi, i ∈ [1, . . . , 7] are quite similar. Note also that, after a

number of steps i greater than or equal to 8 (the space dimension) the histograms of

the different Θi are also quite similar and have a large incidence of zero angles. In

fact, the incidence of angles that equal zero remains constant, that is, the zero-angle

incidence does not vary with i, implying a similar probability of convergence for i ≥ 8

if the MP approximation did not converge previously. If we call the percentage of

null angles p0 then the total probability of the MP producing null residues at steps

n ≥ N is given by

P (rn
x

= ~0) = (1 − p0)
n−N−1p0. (D.12)

It is important to point out that the results presented show that the first MP angle

statistics for a memoryless Gaussian source are appropriate to model the angles in

the first seven decomposition steps for the ǫ8,sh1. However, after the eighth step,

they are not appropriate anymore. Nevertheless, from the results shown only two

distinct pdfs are needed to model the MP angle for the ǫ8,sh1: one pdf being valid

up to the seventh step and another being valid for step 8 and beyond.

D.1.5 Discussion

In [29, 30] the average value of the approximation ratio was studied. This

value corresponds to the cosine of the MP angle at step n as defined in equations

(C.20) and (D.2). In those works it is argued that the first order statistics of the

approximation ratio (its mean) converge to a fixed value that depends on the signal

space dimension N . Nevertheless, we have seen that the whole statistics of the angles
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Figure D.11: Relative frequency histograms of Θn for a Gaussian source in R8 using

the ǫ8,sh1 dictionary.

in MP iterations can be considered to be invariant with respect to the step number.

An exception occurs when the dictionary includes an orthonormal basis, when two

different pdfs must be used to model the angles in MP iterations one valid at steps

whose number are smaller than the signal dimension and another for the remaining

steps.

The analysis of Figure D.4 shows that for the Gabor dictionary the angle pdf,

after some steps, is slightly different from the angle pdf obtained for a memoryless

Gaussian source. Visual inspection still indicates that one could use a Gaussian

source to obtain good estimates of the pdf of the angle in MP iterations, that is the

iid statistical model is not a bad assumption. In the sequel, this model is used to

design Lloyd-Max quantizers of MP coefficients. This permits to verify the validity

of the statistical model for the angles in MP iterations. It should be noted that

the statistics of the first MP angle, and therefore of the first coefficient, are much

more source dependent than they are at further MP steps. Therefore, in order, to

make an appropriate use of the presented angle model, the first coefficient, γ1, will
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be quantized with negligible error and encoded as side information. The value of

γ1 can then be used instead of the value of the signal norm ‖x‖ which is usually

transmitted as side information in practical MP based compression schemes [54,88].

In the sequel, before using the statistical model for MP angles proposed for the design

of Lloyd-Max quantizers for MP coefficients, we discuss some problems involved in

their quantization.

D.2 Quantization of MP Coefficients

D.2.1 In-loop and Off-loop Quantization

In chapter C, the MP coefficients were quantized after the decomposition was

carried out. We refer to this as off-loop. Another option would be to use in-loop

quantization, that is, an atom coefficient γn is quantized before the corresponding

residue is computed. This scheme is shown in Figure D.12 with switch B at the lower

position (switch A is placed at the upper position only at the first MP iteration to

make r0
x

= x, being moved to the lower position from then on). In the in-loop

quantization scheme the coefficient γn and corresponding atom gi(n) are found using

the greedy iteration, then the coefficient is quantized obtaining Q[γn], and Q[γn] is

used to compute the residue by means of

rn
x

= rn−1
x

− Q[γn]gi(n). (D.13)

As a result, the quantization error is fed back into the decomposition algorithm

allowing the quantization error to be compensated in subsequent MP steps [88].

Nevertheless, there is no guarantee that the quantization error will be corrected

since the coefficients of subsequent steps will also be quantized. This is further

complicated by the fact that the MP decomposition is non-linear, that is, the MP

decomposition of a sum of signals x = x1 + x2 is not, in general, the sum of the

MP decompositions of x1 and x2 obtained separately. Another important fact about

in-loop quantization is that it destroys a fundamental property of the MP: the ortho-

gonality between gi(n) and rn
x
. Therefore, since the greedy iteration is non-linear,

quantizing the coefficient in-loop may result in M-term representations that are

influenced by the quantizer used. This is particularly undesirable when signal mo-
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deling is required since each distinct in-loop quantizer may generate a different signal

model, that is, different atoms can be selected to express the same x depending upon

the in-loop quantizer used.

Quantized Greedy Decomposition

γ̃n

Quantize γnA
B

n = 1

n 6= 1

Greedy Mat
h
i(n)

x

rn
x = rn−1

x − γ̃ngi(n)

Find i(n) and γn

Compute Residue

{i(n)}n∈[1,...,M ]

{Q[γn]}n∈[1,...,M ]

O�-Loop Quantization
In-Loop Quantization

Figure D.12: In-loop and off-loop quantization of greedy decomposition coefficients.

Suppose a fixed quantizer is used for in-loop quantization of MP coefficients.

Then, if the coefficient of step n is quantized to zero, all the subsequent coefficients

are also quantized to zero even if without in-loop quantization the coefficient of a

future step n + m would had been larger than the coefficient of step n. This occurs

because the residue is not updated. To guarantee the residue updating, a quantizer

without a dead-zone could be used not allowing any coefficient to be quantized to

zero. However, quantizers without dead-zone are not effective in a rate–distortion

sense [54] as they can lead to a reconstruction error x − x̂q that increases as M

increases. Another possibility is the use of multiple-pass quantized MP decompo-

sitions [88], in which the MP algorithm is applied twice: the first pass trains the

quantizer, and the second obtains the quantized M-term representation. Yet another

way to secure the residue update could be based on the known result that MP co-

efficient magnitudes are upper bounded by a decaying exponential function of the

iteration [32, 54, 104], although the coefficients may not be monotonically decrea-

sing (see section D.1.1). Using this magnitude decay property, one could change

the dynamic-range of the quantizer at each decomposition step; this dynamic-range-

changing quantizer was proposed in [54] for off-loop quantization and is explained in

section D.2.4. In addition to the schemes above, MP-like quantized decompositions
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have also been proposed [8, 9], see subsection B.2.2.

In off-loop quantization the residues are computed without knowledge of the

quantizer used (as in Figure D.12 with switch B placed at the upper position). For

a given D, this scheme always provides the same signal model for a given signal,

independently of the quantizer used. This happens because the off-loop quantiza-

tion scheme preserves the orthogonality between rn
x

and gi(n), not affecting the MP

iteration. As opposed to in-loop quantization, the main drawback of off-loop quan-

tization is that the quantization errors can not be compensated in subsequent steps.

In this work, we minimize the quantization errors due to off-loop quantization of MP

coefficients by designing Lloyd-Max quantizers using the iid model for MP angles.

D.2.2 On-line and Off-line Coding of Quantized M-Term

Representations bits per 
oe�
ient ortotal distortionbitrate budget and/or
bits per 
oe�
ient ordistortion per 
oe�
ient

||x||

n

||x||

M {Q[γ1], . . . , Q[γn], . . . , Q[γM ]}

Q[γn]

O�-Line Quantizer
On-Line Quantizer{γ1, . . . , γn}

{γ1, . . . , γn, . . . , γM}

Figure D.13: Off-line (upper) and on-line (lower) quantization of M-term represen-

tations.

Off-loop quantization may be used in two different coding paradigms, see

Figure D.13. In on-line coding each γn is quantized and transmitted as soon as it is

available, that is, the coefficients are quantized without considering the coefficients of

the following steps. In contrast, off-line coding is performed just after the whole M-

term representation is available and can take into consideration the coefficients of all

the M terms in the representation. Thus, on-line coding delivers the quantized coef-

ficients earlier than off-line does. In addition, the on-line scheme outputs the bit-rate
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of the quantized decomposition as the quantization of each coefficient occurs. Thus,

in the on-line coding paradigm, if a coefficient is quantized to zero or the available

rate is achieved then a halting order can be issued to the decomposition algorithm.

Meanwhile, off-line coding allows for the conceptually simple rate–distortion (RD)

optimization procedure which consists of trying different quantizers in order to find

one quantizer meeting a prescribed RD criterion. For transmission applications, it is

common practice to pre-store the signal decomposition and then quantize it in order

to meet a desired RD criterion. A priori off-line coding of MP decompositions seems

to have a larger computational cost than on-line coding since it requires all the M

terms, i.e., M iterations of the MP need to be performed. However, MP iterations

have a much larger computational complexity than commonly used coefficient quan-

tization processes. In effect, if several versions of a signal need to be transmitted at

different rates there is no need to apply the MP repeatedly when off-line coding is

used thus reducing the computational complexity as compared to on-line coding.

D.2.3 Uniform Quantizer Examples

Some gain in RD performance can be achieved by quantizing the small co-

efficients to zero [54, 88] (that is, the quantizer has a dead-zone), because these

coefficients do not need to be transmitted thus reducing the data size. Therefore

the quantizer examples presented here have this property and the quantizers are

designed just for positive coefficients as we consider that both the atom gk and −gk

belong to the dictionary (see the beginning of section D.1).

A simple quantization approach is to utilize a uniform dead-zone quantizer

(UDZQ), for which the quantized coefficients are given by

Q[γn] = round

(

γn

stepQ

)

stepQ. (D.14)

For rate–distortion optimization, different values of stepQ can be tried in order to

choose the one that meets an RD criterion, including the selected stepQ in a header.

The ‖x‖-UDZQ (‖x‖ dependent uniform dead-zone quantizer) considers that

the largest possible value of γn is the signal norm ‖x‖, this leads to

stepQ =
‖x‖

2bcoef − 1
(D.15)
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(here, bcoef is restricted to be a natural number). For ‖x‖-UDZQ quantized MP

decompositions retrieval, two kinds of information need to be coded/stored: the

quantized coefficients Q[γn] and the atom indices i(n). Thus, the total data rate

depends on the number of bits spent to send the coefficients added to number of

bits used to send the atom indices. Due to the dead-zone, some coefficients are

quantized to zero, and thus instead of M terms only S ≤ M terms are sent, where

S is the number of coefficients that are not quantized to zero. Thus, it is easy to

find a code such the total bit rate of the coded M-term representation is

R = S [log2(#D) + bcoef] + bheader, (D.16)

where bcoef is the number of bits of the quantizer and #D is the dictionary cardinality

(since all the coefficients are assumed to be positive gk and −gk should belong to

D). The header includes any relevant decoding information, and bheader is the header

length (in bits). Assuming that 32-bit precision is used for ‖x‖, that bcoef can vary

from 1 to B, and that the number of coded terms S varies from 1 to M , the header

length is 32 + ⌈log2(B)⌉ + ⌈log2(M)⌉ bits.

We now introduce the max(γ)-UDZQ, a uniform dead-zone quantizer, that

employs in its design the largest coefficient value of the M-term representation of

the signal x instead of the signal norm. Thus, the max(γ)-UDZQ employs

stepQ =
maxn∈[1,...,M ] γn

2bcoef − 1
. (D.17)

The largest coefficient does not need to be quantized but is sent in the header with

negligible error instead. Therefore, when the max(γ)-UDZQ is used to quantize an

M-term representation, the total bit rate is given by

R = S [log2(#D)] + (S − 1)bcoef + bheader, (D.18)

which is smaller than the rate of the ‖x‖-UDZQ. This is so because the header of the

max(γ)-UDZQ coded decomposition has the same length as the ‖x‖-UDZQ, with

‖x‖ replaced by max(γ) as side information. The max(γ)-UDZQ has a better RD

performance than the ‖x‖-UDZQ, because the largest energy atom is reconstructed

exactly, and no data rate is spent to send its quantized coefficient. In addition,

the dynamic range of the max(γ)-UDZQ is smaller than the dynamic range of the

‖x‖-UDZQ, reducing the quantization errors for every coefficient γn, in average, and
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thus the overall distortion. The simple trick of using max(γ) to define the quantizer

dynamic range instead of ‖x‖ improves the RD performance, as can be seen in

subsection D.4.1.

Delayed On-Line Coding Using Off-loop Quantization The max(γ)-UDZQ

is applicable only after all the M terms of the representation are obtained since

the maximum absolute value among the coefficients of the M-term representation

is required. Thus, while the ‖x‖-UDZQ can be used in both on-line and off-line

coding schemes, the max(γ)-UDZQ would be only applicable for off-line coding. For

a given dictionary, Theorem D.1 gives the number of MP iterations m guaranteeing

that |γn+m| < |γn|. With this result an m-delayed on-line coding scheme using the

max (|γ|)-UDZQ is possible: since after m steps the largest coefficient is already

available one can design the max(γ)-UDZQ based just on the first m coefficients

and start the quantization process.

D.2.4 State-of-the-art for MP Coefficients Quantization

The state-of-the-art for off-loop quantization of MP coefficients is presented

in [54]. There, uniform quantizers whose number of quantization levels and range

adapt according to the coefficients of the M-term representation are used. Here, this

quantization scheme is referred to as adaptive bounded uniform quantizer (ABUQ).

The ABUQ implements a bit-allocation per coefficient that relies on the known

result that MP coefficient magnitudes decrease on average at each MP iteration.

In the ABUQ, previous to quantization all the coefficients need to be sorted in

decreasing magnitude order and the ABUQ is fed with the coefficients in this order.

For each coefficient, the ABUQ employs a uniform quantizer of different range and

number of levels; the quantizer range for the lth coefficient depends on the actual

quantized value of the (l−1)th coefficient, and the number of levels of each coefficient

quantizer is decided using a criterion based on a Lagrangian multiplier – a bit-

allocation procedure. For decoding the quantized decomposition the number of bits

used to quantize the second coefficient in the decreasing magnitude order as well as

the larger coefficient are sent as side information.
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Delayed On-Line Coding Note that the result in Theorem D.1 can also be

applied in the ABUQ, as was employed before for the UDZQ, in order to permit

delayed on-line coding using the ABUQ.

Improvements The bit-allocation scheme of the ABUQ fails for dictionaries that

have a large Θ(D) as is often the case for dictionaries in spaces of large dimension,

i.e., N ≥ 64. Section D.4.3 discusses this behavior. We propose a simple modifica-

tion to improve the rate–distortion performance of the ABUQ. The modification is to

allow the bit-stream generated by the ABUQ to be cut at any point, corresponding

to any number of coded terms, what can provide precise rate control.

D.2.5 Error Resilience

For transmission, it is important that if coefficients and/or atom indices are

lost, the decoder can just successfully ignore the lost terms when reconstructing

the signal. Some MP coefficient quantization schemes depend on the value of the

quantized coefficient Q[γn] to derive the quantizer applied to the coefficient γn+1, as

for example the ABUQ (see section D.2.4). In such cases, a lost coefficient would

impair the recovery of all the subsequent coefficients. Therefore, in order to improve

error resilience, it would be highly desirable that the quantizer for a given γm be

independent of the quantized values of another γn (m 6= n).

D.2.6 Proposed Quantizer

In this work, off-loop quantization is used as it does not influence the signal

model, that is, the atoms employed to represent the signal are independent of the

quantization employed. In addition, in off-loop quantization, the quantization rule

can be easily optimized for RD constraints. Also, if a signal needs to be sent several

times with different distortions and/or rates then distinct quantizers can be used to

obtain different compressed signal versions. This avoids the necessity to compute

several signal decompositions, one for each quantized signal version, as would be

the case for in-loop quantization. Also, the same quantization rule is applied to all

coefficients of the M-term representation, that is the quantization of γm+1 does not

depend on the quantization of γm. This provides some error resilience capability
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indeed.

D.2.7 Distortion Due to Off-Loop Quantization

When the M-term representation is quantized off-loop each coefficient γn is

replaced by its quantized version Q[γn] and the signal approximation is retrieved

using

x̂q =

M
∑

n=1

Q[γn]gi(n). (D.19)

There are alternatives for the distortion criterion to use in MP quantizer design:

i) the quantization error relative to the actual signal

d = x − x̂q; (D.20)

That leads to the energy distortion per sample (where N is the signal dimen-

sion)

d2 =
1

N
‖d‖2 =

1

N
‖x − x̂q‖2. (D.21)

ii) the quantization error relative to the M-term representation

dM = x̂ − x̂q =

M
∑

n=1

(γn − Q[γn])gi(n). (D.22)

In this work the second error measure is considered since it depends only on the

quantization of the coefficients. The energy distortion per sample of the quantized

M-term representation is given by

d2
M =

1

N
‖dM‖2 =

1

N

M
∑

n=1

M
∑

m=1

(γn − Q[γn])(γm − Q[γm])〈gi(n), gi(m)〉, (D.23)

where N is the signal length. Noting that D is composed of unit norm vectors

(‖gi(n)‖ = 1), and defining the quantization error as

eq(γm) = γn − Q[γn], (D.24)

it follows that

d2
M =

1

N

[

M
∑

n=1

e2
q(γn) +

M
∑

n=1

M
∑

m=1,m6=n

eq(γn)eq(γm)〈gi(n), gi(m)〉
]

. (D.25)

If equation (D.25) is equal to zero, i.e., if ‖dM‖ = 0 then d = x − x̂ becomes the

M th residue rM
x

, and d2 (equation (D.21)) is given by d2 = ‖rM
x
‖2/N .
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Distortion for a Given Source For a given signal source X , one may consider

the expected value of d2
M

E[d2
M ] =

1

N

{

M
∑

n=1

E
[

e2
q(Γn)

]

+
M

∑

n=1

M
∑

m=1,m6=n

E
[

eq(Γn)eq(Γm)〈gi(n), gi(m)〉
]

}

.

(D.26)

Each Γn is a random variable (RV) that corresponds to γn, for 1 ≤ n ≤ M , for

signals drawn from X , and thus E
[

e2
q(Γn)

]

stands for the expected value of the

squared quantization errors of the RV Γn.

D.3 Lloyd-Max Quantizers for MP Coefficients

D.3.1 Quantizer Design Using the Angles in MP Iterations

In equation (D.3) the value of ‖x‖ is required to compute the coefficients.

Alternatively, one can express the coefficients as a function of the first coefficient

(γ1) instead of as a function of ‖x‖. This way, equation (D.3) can be rewritten as

γn = γ1δn, δn = tan(θ1)

[

n−1
∏

i=2

sin (θi)

]

cos (θn), n ≥ 2. (D.27)

Thus, the pdfs of the coefficients γn can be computed from the pdfs of the angles

θn. For a known γ1, the pdf of the RV Γn, for n ≥ 2, is given by

fΓn
(γn|γ1) = fΓn

(γ1δn|γ1) = f∆n
(δn|γ1), (D.28)

where ∆n is the RV whose outcome is δn (defined in equation (D.27)). If an optimal

quantizer Q is designed for the RV Y , then the optimal quantizer for Z = cY (c is a

constant) is simply a scaled version of Q. Therefore, considering that δn is quantized

instead of γn and that γ1 is known, from equation (D.27) it follows that equation

(D.26) becomes

E[d2
M |γ1] =

γ1
2

N







M
∑

n=2

E
[

e2
q(∆n)

]

+

M
∑

n=2

M
∑

m=2,m6=n

E
[

eq(∆n)eq(∆m)〈gi(n),gi(m)〉
]







.

(D.29)

Thus, assuming γ1 to be known, if the pdfs of the RVs ∆n are known then E[d2
M |γ1]

can be computed for any quantization rule applied to ∆n. Since the quantization
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is applied to δn instead of γn, the value of γ1 is required at the decoder. Indeed, in

this work γ1 is used to define γn, for n ≥ 2. Note that the use of γ1 to compute γn

(n 6= 1) guarantees its correct value at the decoder and also reduces the data rate

(assuming that the same number of bits would be spent to transmit both ‖x‖ or

γ1).

For designing a quantizer using equation (D.29) the pdfs of ∆n are needed,

these can be computed from the RVs Θi, i ∈ [1, . . . , n], corresponding to the angles

between the residues and the atoms selected in MP steps.

For a given γ1 the quantization of MP coefficients should aim to minimize the

distortion per sample of the quantized M-term representation defined in equation

(D.29). As stated above, in this case, one should design quantizers for ∆n, n ≥ 2.

An interesting property is that if the same quantizer is applied to all the coefficients

then we can have error resilience to coefficient losses as compared to the ABUQ (see

section D.2.4), where the quantization of one coefficient depends on the quantization

of the previous one. Taking this into consideration, in this work, we design a single

Lloyd-Max quantizer for ∆ = ∪M
n=2∆n, the RV given by the union of the ∆n (n ≥ 2).

This way, the designed quantizer will minimize the quantization error of the ensemble

of all M terms. Since MP iterations are disjoint events, the pdf of ∆ = ∪M
n=2∆n is

given by

f∆(δ) =
1

M − 1

M
∑

n=2

f∆n
(δn). (D.30)

D.3.2 Distortion for an Optimal Quantizer

The distortion per sample in equation (D.29) has two terms. The first term

is the sum of the squared quantization errors of ∆n, whereas the second contains

a sum of inner products between dictionary atoms weighted by the products of the

quantization errors of the atoms involved in the inner products. As verified, in

section D.1, the RVs of the angles Θn can be assumed to be uncorrelated. Although

∆n and ∆m may be correlated, when designing a quantizer for ∆ = ∪M
n=2∆n the

assumption that the quantization errors

eq(∆n) = ∆n − Q[∆n] (D.31)
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are uncorrelated is reasonable. It is also reasonable to assume that the quantization

errors products eq(∆n)eq(∆m) are not correlated to the inner products 〈gi(n), gi(m)〉.
Using these assumptions the second term in equation (D.29) becomes

M
∑

n=2

M
∑

m=2,m6=n

E [eq(∆n)]E [eq(∆m)] E
[

〈gi(n), gi(m)〉
]

(D.32)

The atoms selected at different MP steps may be correlated. But due to

the invariant nature of the angles statistics in different MP steps, it is plausible

consider the expected value of the inner product between the atoms selected in any

two different MP steps n and m to be also invariant. More specifically, we consider

that E
[

〈gi(n), gi(m)〉
]

= c. Therefore, from equation (D.30) and (D.31) one has that

E [eq(∆)] =
1

M − 1

M
∑

n=2

E [eq(∆n)] , (D.33)

and equation (D.32) yields

M
∑

n=2

E [eq(∆n)]
M
∑

m=2,m6=n

E [eq(∆m)] c = (M − 1)E [eq(∆)]
M
∑

m=2,m6=n

E [eq(∆m)] c. (D.34)

Since Lloyd-Max quantizers are unbiased estimates of the input then the Lloyd-Max

quantizer for ∆ leads to E[eq(∆)] = 0, making the expression above to vanish. As a

result equation (D.29) becomes

E[d2
M |γ1] =

γ1
2

N

M
∑

n=2

E[(∆n − Q[∆n])2], (D.35)

The above result is a sum of terms E[(∆n − Q[∆n])2], thus

E[d2
M |γ1] =

γ2
1

N

M
∑

n=2

∫

(δn − Q[δn])2f∆n
(δn)dδn. (D.36)

Since the same rule Q[·] is applied to all ∆n, 2 ≤ n ≤ M , and ∆ = ∪M
n=2∆n

E[d2
M |γ1] =

M − 1

N

∫

(δ − Q[δ])2f∆(δ)dδ, (D.37)

where f∆(δ) = 1
M−1

∑M
n=2 f∆n

(δn) and the M − 1 multiplying the integral takes into

account that M − 1 coefficients are quantized. With the simplification above, ap-

plying the same quantization rule to MP coefficients entails the design of the optimal

quantizer for ∆ = ∪M
n=1∆n, what is accomplished by Lloyd-Max quantizers [73].
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D.3.3 Lloyd-Max Quantizer for MP Coefficients

From the simplification above, the aim of the quantizer design is to minimize

E[d2
M |γ1] =

γ1
2(M − 1)

N
MSE(∆), (D.38)

where MSE(∆) = E
[

(∆ − Q[∆])2
]

, (D.39)

subject to f∆(δ) =
1

M − 1

M
∑

n=2

f∆n
(δn), i.e. ∆ = ∪M

n=2∆n; (D.40)

where ∆n = tan(Θ1)

[

n−1
∏

i=2

sin (Θi)

]

cos (Θn). (D.41)

The minimization of equation (D.38) is obtained by a Lloyd-Max quantizer [73]. The

quantizer design requires f∆n
(δn), for 2 ≤ n ≤ M , these are obtained from fΘ1(θ1).

In turn, from section D.1, we see that fΘ1(θ1) can be estimated by applying one

MP step to a large set of signals drawn from a Gaussian source. Then f∆n
(δn) are

estimated from fΘ1(θ1), which is an acceptable procedure since all Θn have similar

statistics. The estimated f∆n
(δn) are then used to calculate f∆(δ), and f∆(δ) is then

used to obtain the Lloyd-Max quantizer of bcoef bits (L = 2bcoef levels).

The reconstruction levels rk (1 ≤ k ≤ L) and thresholds tk (1 ≤ k ≤ L + 1)

of the L-level Lloyd-Max quantizer are given by [73]

tk =
(rk + rk−1)

2
, and rk =

∫ tk+1

tk

δf∆(δ)dδ

∫ tk+1

tk

f∆(δ)dδ

. (D.42)

The thresholds and reconstruction levels of the LMQ are calculated using an iterative

algorithm [73]. In the calculation, it is imposed that r1 = 0, t1 = 0 (just positive

coefficients), and tL+1 = ∞. The pdf f∆(δ) required in equation (D.42) is given

by equation (D.40) and it is obtained from an estimate of fΘ1(θ1), which in turn is

obtained using the angle in the first MP step for an ensemble of #DN2 realizations

from Gaussian source.

The same quantizer law is used for all coefficients γn, therefore f∆(δ) varies

with M , as consequence each M leads to a different quantizer. The quantizer design

is independent of γ1 and it suffices to design quantizers for γ1=1, storing copies of

the quantizers in both encoder and decoder. The encoder sends γ1, the number

of bits of the quantizer, and the number of terms of the decomposition (M), in a
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header, to the decoder. The parameter γ1 is used to scale the quantizer in both

coder and decoder, a simple strategy that makes good use of resources.

D.3.4 Validation of the Distortion Simplification

In the derivation of the Lloyd-Max quantizer for MP coefficients above, the

quantization errors were assumed to have no correlation, and E[gi, gk] to be constant.

Those allowed for an approximate expression for the distortion per sample, that in

turn is used to design Lloyd-Max quantizers. For the proposed quantizer e2
q(γ1) =

γ1 − Q[γ1] ≈ 0. Also, we have the simplification from equation (D.29) to equation

(D.38) to be valid. Therefore, for a given source, the expected distortion per sample

for M coded terms is given by the sum of the mean squared quantization errors

(MSE) of the coefficients divided by the signal length

MSE

N
=

1

N

M
∑

i=2

E
[

γ2
1e

2
q(∆i)

]

=
1

N

M
∑

i=2

E
[

e2
q(Γi)

]

=
1

N

M
∑

i=1

E
[

e2
q(Γi)

]

. (D.43)

In equations (D.20) and (D.22), we defined d = x − x̂q and dM = x̂ − x̂q.

Since the MP is such that x = x̂ + rM
x

, therefore

d = x̂ + rM
x

− x̂q, and

lim
M→∞

d2 = lim
M→∞

‖d‖2 = lim
M→∞

‖x̂ + rM
x

− x̂q‖2. (D.44)

Noting that

‖x̂ + rM
x

− x̂q‖2 = 〈x̂, x̂〉 + 2〈rM
x

, x̂〉 − 2〈x̂, x̂q〉 − 2〈rM
x

, x̂q〉 + 〈x̂q, x̂q〉 + 〈rM
x

, rM
x
〉

and that limM→∞ rM
x

= ~0 one obtains that

lim
M→∞

d2 = lim
M→∞

‖d‖2 = lim
M→∞

‖x̂ − x̂q‖2. (D.45)

Therefore, if the simplification from equation (D.29) to equation (D.38) is valid,

then one should obtain

1

N
E

[

lim
M→∞

d2
]

=
1

N
E

[

lim
M→∞

‖d‖2
]

=
1

N
E

[

lim
M→∞

‖x̂ − x̂q‖2
]

=
1

N
E

[

lim
M→∞

e2
q [Γ]

]

.

(D.46)

That is,

lim
M→∞

E
[

d2
]

= lim
M→∞

MSE

N
. (D.47)
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If equation above is true then the second term in equation (D.29), equation (D.32),

can be considered to be null. We have assumed this condition for computing the

distortion due to quantization of MP coefficients and the Lloyd-Max quantizer de-

sign.

Figure D.14 presents the distortion per sample d2 of the reconstructed signal

with respect to the original one (equation (D.21)) and MSE/N (equation (D.43))

against the number of coded terms M . The results shown are averages over a

set of 20,000 MP decompositions of signals drawn from a Gaussian source, using

the GSND(16, 4) dictionary. It is possible to verify that as M increases the total

distortion approximates the distortion due to the quantization of coefficients. When

M is sufficiently large, this distortion is solely due to quantization as the residuals

rM
x

become very small. The graph indicates that, in this case, equation (D.47) is

valid as both curves are the same, E[d2] and MSE/N . The same behavior was

observed for other dictionaries and for different numbers of quantizer levels. These

results corroborate the assumptions made in the simplification of the distortion due

to off-loop quantization of MP coefficients.

2 4 6 8 10 12 14

10
−4

10
−3

10
−2

10
−1

6 bits

step

E[d²]
MSE/N

Figure D.14: Expected total distortion per sample (d2) and coefficient quantization

error (MSE
N

) for a Gaussian source in R4 using a 6 bit Lloyd-Max quantizer, and M

ranging from 2 to 15, for decompositions obtained using the GSND(16, 4).

D.3.5 Practical Design of Lloyd-Max Quantizers

Since f∆(δ) changes with M , therefore the bcoef-bits Lloyd-Max quantizer is

expected to change with M . However, after a sufficiently large M the quantizer
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Figure D.15: Coefficients quantizer for a dictionary of 16 vectors uniformly distri-

buted on the 4-dimensional hyper-sphere, for γ1 = 1, for different number of terms

for the M-term decomposition (2, 4, 8 and 16 terms).

remains almost the same. Figure D.15 shows the Lloyd-Max quantizers obtained

for bcoef ranging from 1 to 4 bits and decomposition steps M = {2, 4, 8, 16}, for the

GSND(16, 4). Observe that the quantizer thresholds and reconstruction levels seem

to be almost invariant after a given number of decomposition steps which depends on

bcoef. That is, each L-level Lloyd-Max quantizer can be considered to be fixed after

a sufficiently large M . Therefore, for practical applications the bcoef-bits quantizer

does not need to be obtained for each value of M , but just on a range from 2 to J .

For M > J the quantizer obtained for M = J can be used without major impacts

on the quantizer performance. We justify this claim below.
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The Lloyd-Max quantizer design aims to minimize

M − 1

N

∫

(δ − Q[δ])2f∆(δ)dδ =
1

N

M
∑

n=2

∫

(δn − Q[δn])2f∆n(δn)dδn =
1

N

M
∑

n=2

E[e2
q(∆n)].

(D.48)

From the definition of δn, see equation (D.27), and considering that the Θi are

iid, it can be seen that as n increases the spread of the pdfs of the successive

RVs ∆n becomes smaller and E[∆n] tends to zero. In other words, the pdfs of

successive RVs ∆n get narrower and their centers approximate zero as n increases.

This occurs because ∆n is a product of n − 2 terms of the form sin (Θi) multiplied

by cos (Θn) tan (Θ1), thus the expected value (the Θi are considered to be iid)

E[∆n] = E[tan(Θ1)]

{

n−1
∏

i=2

E[sin(Θi)]

}

E[cos(Θn)] = E[tan(Θ)]E[sin(Θ)](n−2)E[cos(Θ)]

(D.49)

decreases with n since E[sin(Θ)] < 1 (actually, note that δn ≤
sin (Θ(D))n−1/ cos (Θ(D)), see equation (D.5) and Theorem D.1). Therefore, the

overall probability of each ∆n being small increases as n increases. Since ∆ =

∪M
n=2∆n, the probability of ∆ belonging to a given interval is the sum of the proba-

bilities of each ∆n belonging to that interval divided by M−1. Thus, the probability

of ∆ being close to zero increases with M . Sufficiently small δ are quantized to zero

due to the quantizer dead-zone, thus for sufficiently large n, the quantization error

of δn equals the value of δn itself. Therefore, as n increases, the contribution of

E[e2
q(∆n)] in equation (D.48) diminishes, that is limn→∞ E[e2

q(∆n)] = E[∆2
n] = 0.

As a result the distortion due to coefficient quantization
∑M

n=2 E[e2
q(∆n)] changes

very little after a given M = J , as Figures D.14 and D.17 illustrate. Therefore, after

a given n ≥ J the RVs ∆n do not largely contribute to the distortion in equation

(D.48), and almost do not influence the quantizer design.

The number of terms M = J for which the quantizer remains almost the same,

depends on the pdf of fΘ1(θ1) (as the Θi are considered to be iid and uncorrelated),

which in turn depends on the dictionary D. The number of quantization levels L also

influences this value of M , because a larger L results in a smaller dead-zone reducing

the coefficient range mapped to the first reconstruction level (zero). In addition, as

is further discussed in subsection D.4.2, there is little gain by indefinitely increasing

the number of decomposition terms in the quantizer design. Therefore, to improve
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the quantizer performance the number of quantization levels should be augmented.

Figure D.16 shows 3-bit quantizers obtained for different number of terms M

for the Gabor dictionary in R64. In this figure the quantizer “convergence”, discussed

above, can also be observed.
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Figure D.16: 3-bit coefficient quantizers found for the Gabor dictionary with 4 phases

in R64 for different number of terms for the M-term decomposition.

D.4 Performance of the Lloyd-Max Quantizers

D.4.1 Comparison to Other Fixed Quantizers

The Lloyd-Max quantizer is designed to be applied to all the coefficients of

an M-term decomposition, i.e., it is the same (fixed) for all the coefficients of an M-

term representation. Therefore, the first evaluation that will be held is to compare

the Lloyd-Max quantizers to other fixed quantizers. For that purpose the Lloyd-Max

quantizer performance is compared to the performances of both the ‖x‖-UDZQ and

the max(γ)-UDZQ which were described in subsection D.2.3. Figure D.17 shows the

expected total distortion per sample E[d2], defined in equation (D.21), and also the

mean squared error per sample (MSE
N

= 1
N

[

∑M
n=1 e2

q(γn)
]

) for 4-bit quantizers as a

function of the number of terms of the quantized representation. The results presen-

ted are averages over an ensemble of 20,000 signals from a Gaussian source, using

the GSND(16, 4). As can be seen, the max(γ)-UDZQ has superior performance

than the ‖x‖-UDZQ, and the Lloyd-Max quantizer yields the best results.
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Figure D.18 presents E[d2] against the number of coded terms M for quan-

tizers using 2, 4, 6 and 8 bits, where it is also shown the expected distortion of the

unquantized M-term representation. Since for small number of decomposition terms

the residues are large there is not much difference among the three quantizers for

small values of M . However, as the number of terms increases the residues decre-

ase and the Lloyd-Max quantizer has better performance. Figure D.19 shows the

same graphs for quantized M-term representations obtained using the ǫ8sh1
utilizing

quantizers with bit depth varying from 1 to 6; the results are averages over 50,000

signals from a memoryless Gaussian source. It is possible to note a similar behavior

for the distortions there presented to the ones observed in Figure D.18. Quantizers

designed with various number of levels for different dictionaries have all produced

similar results. This leads to the conclusion that the max(γ)-UDZQ always out-

performs the ‖x‖-UDZQ, an expected result – see subsection D.2.3, and that the

Lloyd-Max outperforms both. As the number of coded terms increases the Lloyd-

Max quantizer has an average distortion around 50% lower than the one obtained

for the max(γ)-UDZQ, providing an average gain in the signal to noise ratio of 3dB

for the Lloyd-Max quantizer as compared to the max(γ)-UDZQ.

Figure D.20 shows E[d2] and MSE
N

for the 4-bit Lloyd-Max quantizer, the 4-bit

max(|γ|)-UDZQ, and the 4-bit ‖x‖-UDZQ. Again, it is noticeable that the Lloyd-

Max quantizer has a distortion that is below 50% of the distortion of the max(γ)-

UDZQ. Note that due to the shape of fΘ1(θ1) the number of steps for which E[d2]

equals MSE/N increases as compared to the results obtained for the GSND(16, 4).

D.4.2 Rate–Distortion Optimization

The number of terms M and the number of bits bcoef define the Lloyd-Max

quantizer. It is easy to find a code such that the data rate of the Lloyd-Max quantized

MP decomposition is

R = M [log2 (#D)] + (M − 1) bcoef + bheader. (D.50)

For optimizing the overall RD performance, once the signal decomposition is obtai-

ned, several number of quantization levels 2bcoef and decomposition terms M can be

tried in order to meet a prescribed RD criterion. In other words, for each rate R one
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Figure D.17: Expected values of the distortion and of the sum of coefficient quanti-

zation errors, for 4-bit quantizers for the Lloyd-Max quantizer, the max(γ)-UDZQ

and the ‖x‖-UDZQ, for M ranging from 2 to 15, for the GSND(16, 4).

finds the (M, bcoef) pair that leads to the lowest distortion. This procedure can be

applied off-line, searching for the pairs (M, bcoef) that lead to the best average RD

performance for an ensemble of signals from a given source. This procedure is pre-

sented in Algorithm D.1. A graphical view of the expected result of this procedure

is depicted in Figure D.21.
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Figure D.18: Comparison of the expected distortion of the ‖x‖-UDZQ, max(γ)-

UDZQ, and Lloyd-Max quantizers for the GSND(16, 4).

Algorithm D.1 RD optimization algorithm.

1. Design the quantizers for a set of pairs (M, bcoef);

2. Create an empty table T indexed by (M, bcoef);

3. For each pair (M, bcoef) compute the rate R(M, bcoef) and associated

expected distortion D(M, bcoef) and include them in T ;

4. Sort T in increasing rate order keeping the quantizer specifications,

that is the pair (M, bcoef), and its correspondent distortion D(M, bcoef);

That is, index T as function of the pairs (R, D);

5. For each rate R in T , retain in T only the quantizer

(M, bcoef) leading to the smallest distortion D.

6. For each (R, D) ∈ T if exists (R′, D′) ∈ T such that

R′ ≤ R and D′ ≤ D eliminate (R, D) from T ;

7. T contains the quantizer specifications (M, bcoef) leading

to the best RD performance.
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Figure D.19: Comparison of the expected distortion of the ‖x‖-UDZQ max(γ)-

UDZQ and Lloyd-Max quantizers for the ǫ8sh1
dictionary.
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rithm D.1.
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Figure D.22: RD performance for the 16 Gaussian elements dictionary in R4 expli-

citly showing the numbers of terms selected after the RD procedure (M) and the

expected values of the residue norms (in dashed lines).

Analysis of the RD Optimization Figure D.22 shows the resulting RD ope-

rational curve for the GSND(16, 4) for a Gaussian Source resulting from the RD

optimization in Algorithm D.1. Figure D.22 shows also the average values of the MP

residue norms at the steps (plotted in dashed lines), and the number of coded terms

M in each point of the RD curve. Note that for M = 7 the quantization proposed

achieves an E[d2] that is similar to the expected residue norm of the unquantized

7-step decompositions. However, after M = 8 none of the quantizers employed can

achieve the expected value of the residue norm. That is, for M ≥ 8 it would have

been wiser to augment the quantizer bit depth. That is, as M increases bcoef should

also increase, what is indeed quite obvious. For example, the results indicate that

for M = 4 a 6-bit quantizer is enough to achieve a distortion that is similar to the

expected norm of the residue after 4 decomposition steps, however the same results

indicate that for M = 6 an 8-bit quantizer is required for obtaining a distortion close

to the residue norm. This is quite obvious, since, in general, the coefficient values
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decrease as the step increases, and to be capable of representing smaller coefficient

values a higher quantizer resolution is required.

Table D.1: Number of bits of the quantizer (bcoef) and coded terms (M) selected by

the RD optimization using the Lloyd-Max quantizer, for the GSND(16, 4).

Total Rate - bheader M bcoef Total Rate - bheader M bcoef Total Rate - bheader Steps Bits

5 1 0 27 3 6 71 7 6

11 2 1 29 4 3 77 7 7

12 2 2 32 4 4 83 7 8

13 2 3 35 4 5 89 8 7

14 2 4 38 4 6 96 8 8

15 2 5 41 5 4 101 9 7

16 2 6 45 5 5 109 9 8

17 2 7 49 5 6 122 10 8

18 2 8 53 5 7 135 11 8

19 3 2 55 6 5 148 12 8

21 3 3 60 6 6 161 13 8

23 3 4 65 6 7 174 14 8

25 3 5 70 6 8 – – –

Table D.1 shows the values of bcoef and M that arise from the RD optimization

of the GSND(16, 4) as a function of the total bit-rate (not counting the header

length) for bcoef varying from 2 to 8 and M varying from 1 to 20. Note that, in

general, the pairs (S, bcoef) selected for the source RD are such that increments on

the bit depth are selected only if the resulting increase in the data rate is smaller

than the one incurred in augmenting the number of terms. For example, the pair

(3, 6) corresponds to the rate of 27 bits. If the quantizer resolution is increased to

7 bits then the rate is 3 [log2 (16) + 1] + (2) 7 = 29. However, note that the RD

procedure chooses the (4, 3) pair instead of the (3, 7) pair, preferring to increase

the number of coded terms rather than the quantization resolution. However, this

is not always the case. The pair (4, 2) leads to a data rate in between the data

rates corresponding to the pairs (3, 5) and (3, 6). However the pair (4, 2) is not

selected by the RD optimization; why this choice does not occur? The average

energy of the quantization errors of the second, third and fourth coefficients using a

2-bit quantizer is obviously larger than the average energy of the second and third
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coefficients when the 5-bit or the 6-bit quantizer are used. If the total distortion of

coding the second, the third and the fourth coefficients using the 2-bit quantizer had

been larger than the total distortion of coding the second and third coefficients using

the 6-bit quantizer then the pair (4, 2) would have been selected. However, the sum

of the energies of the second and third coefficients’ quantization errors for the 2-bit

quantizer is larger than the average energy of the non-quantized fourth coefficient.

This explains why the pair (4, 2) is not selected by the RD optimization. Observe

that for the range allowed for bcoef (2 to 8) the RD procedure does not select any

pair (M ,bcoef) with M > 14 because the coefficients after the 14th step are quantized

to zero for all the bcoef allowed and these coefficients would just waste rate.

Table D.2 shows the pairs (S, bcoef) that result from the RD optimization pro-

cedure for bcoef ∈ [1, . . . , 6] and steps ranging from 1 to 100 for the Gabor dictionary

of 4 phases in R
64. This dictionary has a large cardinality and thus the impact

in the data rate due to the increase of M is larger than for the GSND(16, 4). In

addition, the coefficients decay slower for this dictionary than for the GSND(16, 4),

as discussed in the end of section D.1.3. In some cases, these aspects make the RD

optimization procedure, for this dictionary, to decrease the number of terms M used

from one point of the RD curve to the next while bcoef is increased, as can be seen in

Table D.2. Note that, due to the slow decay rate of the coefficients for the R64 Gabor

dictionary the resulting RD pairs occupy all the allowed range for M differently of

what occurs for the GSND(16, 4).

On-line Quantization The (M, bcoef) pairs that give the best points in the RD

curve for the Gaussian source can be stored in both coder and decoder. Then, for

transmission of a given signal, the coder can simply choose the pair that meets the

desired RD criterion. This allows on-line quantization of MP coefficients, i.e., the

quantizer can be selected prior to the signal decomposition to meet an RD criterion

and each coefficient can be quantized as soon as it is available.
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Table D.2: Number of bits of the quantizer (bcoef) and coded terms (M) selected

by the RD optimization using the Lloyd-Max quantizer, for the Gabor dictionary in

R64 of 4 phases.

Total Rate - bheader M bcoef Total Rate - bheader M bcoef Total Rate - bheader Steps Bits

13 1 0 279 20 2 877 49 6
26 2 1 283 19 3 895 50 6
27 2 2 293 21 2 913 51 6
28 2 3 298 20 3 931 52 6
29 2 4 307 22 2 949 53 6
30 2 5 313 21 3 967 54 6
31 2 6 328 22 3 985 55 6
39 3 1 343 23 3 1003 56 6
41 3 2 358 24 3 1021 57 6
43 3 3 373 25 3 1039 58 6
45 3 4 388 26 3 1057 59 6
47 3 5 397 25 4 1075 60 6
49 3 6 403 27 3 1093 61 6
52 4 1 413 26 4 1111 62 6
55 4 2 418 28 3 1129 63 6
58 4 3 429 27 4 1147 64 6
61 4 4 433 29 3 1165 65 6
64 4 5 445 28 4 1183 66 6
65 5 1 448 30 3 1201 67 6
69 5 2 461 29 4 1219 68 6
73 5 3 477 30 4 1237 69 6
77 5 4 493 31 4 1255 70 6
78 6 1 509 32 4 1273 71 6
83 6 2 525 33 4 1291 72 6
88 6 3 541 34 4 1309 73 6
91 7 1 557 35 4 1327 74 6
97 7 2 573 36 4 1345 75 6
103 7 3 589 37 4 1363 76 6
104 8 1 605 38 4 1381 77 6
111 8 2 621 39 4 1399 78 6
117 9 1 637 40 4 1417 79 6
125 9 2 642 38 5 1435 80 6
130 10 1 653 41 4 1453 81 6
139 10 2 659 39 5 1471 82 6
148 10 3 669 42 4 1489 83 6
153 11 2 676 40 5 1507 84 6
163 11 3 693 41 5 1525 85 6
167 12 2 710 42 5 1543 86 6
178 12 3 727 43 5 1561 87 6
181 13 2 744 44 5 1579 88 6
193 13 3 761 45 5 1597 89 6
195 14 2 778 46 5 1615 90 6
208 14 3 795 47 5 1633 91 6
209 15 2 812 48 5 1651 92 6
223 16 2 829 49 5 1669 93 6
237 17 2 841 47 6 1687 94 6
251 18 2 846 50 5 1705 95 6
265 19 2 859 48 6 1723 96 6
268 18 3 863 51 5 1795 100 6

D.4.3 Comparison to the State of the Art

It is easy to find a code such that the total rate of MP quantized decompo-

sition is given by

R = S [log2 (#D)] + rcoef (D.51)
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where S is the number of terms that remain after quantization (i.e., that have

quantized coefficients that are not zero), and rcoef is the rate incurred in coding the

quantized coefficients. Therefore, the rate in bits per sample is given by R/N , where

N is the signal space dimension. The strategy employed to generate the ABUQ

(see section D.2.4) coded bit-stream is to entropy code the differences between the

quantization indices of successive coefficients. In the comparisons between Lloyd-

Max quantization and ABUQ presented in the sequel, this strategy is also employed

to code Lloyd-Max quantized M-term representations. Figure D.23 shows the RD

curves of quantized MP expansions originated from three different random sources

in R10 (a memoryless Gaussian, a memoryless uniform and a memoryless Gamma

distributed sources) using both the Lloyd-Max quantization and the ABUQ for a

GSND(128, 10). For each distinct source the results are averages over an ensemble

of 100 quantized MP decompositions of signals from each source. For this experiment

the LMQs were designed with bit-depth ranging from 1 to 8. It can be seen in Figure

D.23 that both quantizers have similar performance for all the three signal sources;

however the LMQ tends to be better at low rates (below 8 bits/sample). In addition

it can be noted that the LMQ is able to work at lower data rates as show their RD

plots.

Figure D.24 shows the RD curves of three different realizations of a Gaussian

source when their MP expansions are quantized using the Lloyd-Max quantization

and the ABUQ for the GSND(128, 10). For this experiment the Lloyd-Max quan-

tizers were designed with bit-depth ranging from 1 to 8 bits and number of terms

ranging from 1 to 16. The ABUQ was set so that its header info has the same

length as the Lloyd-Max quantizer, that is, the second coefficient can use from 1

to 128 quantization levels. Note that, in the experiments presented, the ABUQ

decompositions are not restricted to use 16 terms as in the Lloyd-Max quantized de-

compositions are. It can be seen in Figure D.24 that at rates below 12 bits/sample

both methods achieve similar distortion; however, the Lloyd-Max quantizer allows

more accurate and finer rate control at these rates, as it is demonstrated by the

larger number of points at low R for the LMQ than for the ABUQ in the RD plots

of the signals. For rates above 12 bits/sample, for some signals, the ABUQ outper-

forms the Lloyd-Max quantizer. However, for other signals (see the third one) the
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Figure D.23: LMQ and ABUQ RDs for three different random sources using the

GSND(128, 10).

ABUQ is not capable of obtaining smaller distortion by increasing the rate.
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Figure D.24: Lloyd-Max quantizer compared to the ABUQ for the GSND(128, 10)

– RD curves for three different signals drawn from a Gaussian source.

Figure D.25 shows the RD curves of quantized MP expansions originated

from the three different random sources above in R64 for the LMQ and the ABUQ

for the Gabor dictionary of 4 phases in R64, see equation (D.11). For that purpose

the LMQs were designed with bit-depth ranging from 1 to 6. The decompositions

to be coded allowed a maximum of 256 terms. For each distinct source the results

are averages over an ensemble of 200 quantized MP decompositions of signals from

each source. The decompositions quantized with the ABUQ require a larger bit-rate

because its bit-allocation scheme is not capable of controlling the rate. The reason
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Figure D.25: LMQ and ABUQ RDs for three different random sources using the

4-phase Gabor dictionary in R64.

for that is further discussed next.

Figure D.26 presents the RD plots for three random Gaussian signals for the

Gabor dictionary of 4 phases in R64. For that purpose the Lloyd-Max quantizers

were designed with bit-depth ranging from 1 to 8 and number of terms ranging from

1 to 64. The ABUQ was set to allow a number of bits ranging from 1 to 256 for the

second coefficient. The decompositions were set to allow a total of 1000 terms. Note

that for this dictionary the ABUQ is not capable of implementing the rate control.

This happens because the shape of fΘ1(θ1), see Figure D.4, for this dictionary implies

a lower decay rate of the coefficients magnitudes when this dictionary is employed

than when the GSND(128, 10) is employed in the MP framework. If the bit-stream

generated by the ABUQ is allowed to be truncated at any given number of terms,

that is, the coding process can be stopped at any coefficient even if the number of

quantization levels of the current coefficient is not null, then the RD curve obtained

is shown in Figure D.27, where it is possible to observe that both the modified

ABUQ and the Lloyd-Max quantizer have similar RD performance at low bit-rate.
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Figure D.26: Lloyd-Max quantizer compared to the ABUQ for the 4 phases Gabor

dictionary in R64 – RD curves for three different signals drawn from a Gaussian

source.
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Figure D.27: Lloyd-Max quantizer compared to the ABUQ for the 4 phases Gabor

dictionary in R
64 – RD curves for three different signals drawn from a Gaussian

source.

D.5 Chapter Summary

We have started this appendix by discussing the application of Matching Pur-

suits decompositions for signal compression. We have observed that an important

point to compress signals using Matching expansions, besides the dictionary, is the

quantization of the Matching Pursuit expansion coefficients.

The angle between the residue and the selected atom in Matching Pursuit

iterations was defined. The empirical analysis of this angle led to a conjecture that

these angles may be statistically modeled as independent and identically distributed

(iid). Therefore, the angles in Matching Pursuit steps can approximately be consi-

dered statistically invariant with respect to the decomposition step. This way, the

statistics of Matching Pursuit angles can be obtained from the statistics of the first

Matching Pursuit angle for signals drawn from a Gaussian source. This model has

shown to be adequate for a large class of dictionaries.

However, if the dictionary includes orthonormal bases the identical indepen-

dent distributed statistical model is not appropriate after a number of steps greater
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than or equal to the signal space dimension. In Appendix D, it was shown that if the

dictionary includes at least one orthonormal basis then the Matching Pursuit has a

finite non-null probability of convergence when the number of decomposition steps

is greater than or equal to the signal space dimension. This result explains why the

statistical model does not apply to these step numbers when the dictionary includes

at least one orthonormal basis. However, it was verified that for dictionaries inclu-

ding orthonormal bases the independent identically distributed statistical model can

be adapted by using two different statistical sets; one set applies whenever the step

number is smaller than the signal dimension and the other applies when the number

of the step is greater than or equal to the signal dimension.

The histograms of Matching Pursuits angles for the four-phases Gabor dic-

tionary in R64 have shown to be very similar. However, this dictionary presents an

intriguing aspect, that deserves to be mentioned: the histograms of Matching Pursuit

angles, at step numbers that are larger than one, slightly differ from the histogram

of the first angle for a Gaussian source. Therefore, one can see that the residues of

Matching Pursuit iterations, for the particular dictionary, are not exactly uniform

distributed on the hyper-sphere surface. Note that the residues for this dictionary

seem to have approximately invariant statistics with respect to the decomposition

step, however these statistics are a bit different from the ones obtained at the first

decomposition step a Gaussian source. However, the Gaussian source still provides

a very good approximate model for obtaining the aforementioned statistics.

The iid statistical model of MP angles was used to design Lloyd-Max quan-

tizers for Matching Pursuit coefficients. This design is based only on the estimate

of the probability density function of the first Matching Pursuit angle when an iid

Gaussian signal source is decomposed. Each L-level quantizer designed changes with

the number of terms in the signal representation M . However, it was observed that

for practical purposes there is no need to design L-level quantizers for all values of

M , since for each value of L, after a given number of terms in the representation,

there is no gain in designing new quantizers.

The Lloyd-Max quantizers obtained were compared to two simple uniform-

dead-zone quantizers (UDZQ), namely the ‖x‖-UDZQ and the max (|γ|)-UDZQ.

The dynamic range of the ‖x‖-UDZQ is defined by the signal modulus whereas for
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the max (|γ|)-UDZQ it is defined by the magnitude of the largest coefficient of the

signal decomposition. As was observed the max (|γ|)-UDZQ has better performance

than the ‖x‖-UDZQ, but, the Lloyd-Max quantization presented performs better

than both providing a reconstruction distortion that is below 50% of the one ob-

tained by the max (|γ|)-UDZQ at high data rates. It was also discussed how to

apply the max (|γ|)-UDZQ to on-line quantization, enabling for m-delayed on-line

quantization.

The Lloyd-Max quantization presented was also compared to the state-of-

the-art off-loop quantization scheme. Both quantization schemes presented similar

rate–distortion performance. However, for some dictionaries the Lloyd-Max quanti-

zer presented here provides more accurate rate control. In addition, the Lloyd-Max

quantizers can be easily configured for on-line quantization of Matching Pursuit de-

compositions, and intrinsically provide error resilience that results from the use of

the same quantization rule for all the coefficients of the Matching Pursuit decompo-

sition.

If the source is not Gaussian the assumption that the first MP angle has

similar statistics to the MP angles of other steps is not appropriate. One can not

assume the first MP angle to be similar to the others MP angles because a source that

is different from the Gaussian source does not have a uniform distributed projection

on the hyper-sphere surface. However, for coding sources that are not Gaussian, since

a priori the residues may have any direction, the Lloyd-Max quantizers obtained for

the Gaussian source, as well as the pairs (S, bcoef) arriving from the Gaussian source

RD optimization presented, can still be employed. In addition, the Lloyd-Max

quantizers performance can be improved for any source by designing the appropriate

quantization rule for the random variable Γ1 corresponding to the first MP coefficient

for the source being considered.
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Apêndice E

Time-Frequency Content of

Frames

Frames have been largely studied in the literature. In general, these studies

rest on two approaches. In one of them, frames are considered as a branch of

functional analysis, and general results are provided for frames in Hilbert spaces. In

the other, frames are studied in view of special applications. In this chapter, results

concerning both approaches are presented.

This chapter investigates the time-frequency content of frames. The time-

frequency content of frames is defined using the Wigner-Ville distribution, and it

allows the characterization of frames in the time-frequency domain. A theorem

shows a sufficient condition for a set of elements being a frame using the sum of

the time-frequency contents of the elements. The result is derived for L2(R), and is

extensible for the l2(Z) as well as for finite vector spaces.

Special attention is given to the analysis of the time-frequency content of

Weyl-Heisenberg frames. Using these results, Weyl-Heisenberg frames of damped

sinusoids are characterized by means of their time-frequency content. Then, it is

presented a strategy to generate “tighter” frames from a symmetric prototype signal

through the “interlacing” of Weyl-Heisenberg frames in the time-frequency domain.

The frames that result from the “interlacing” of Weyl-Heisenberg frames are

evaluated when generating dictionaries to be used in greedy decomposition algo-

rithms. The results show that the “interlacing” of Weyl-Heisenberg frames as a

dictionary generation method allows for good rate×distortion tradeoff in signal com-
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pression applications.

E.1 Time-Frequency Content of Frames

The Wigner-Ville distribution (WD) is probably one of the most well-known

and widely used tools for time-frequency analysis of signals. The WD of a signal

x(t) is defined as [20, 71, 84]

WDx (t, f) =

∫ +∞

−∞
x

(

t +
τ

2

)

x
(

t − τ

2

)

e−2πfτdτ, (E.1)

where the x(t) denotes the complex conjugate of x(t). Some applications have used

the WD of signal decompositions in order to analyze the time-frequency content

of signals [71, 84]. The Wigner-Ville distribution of a signal x(t), WDx (t, f), is a

“measure” of the energy density in the signal in both time (t) and frequency (f)

simultaneously. However, it is just meaningful when regions of the time-frequency

plane are considered, that is as local averages, and it can not be considered at a

given time-frequency point (t′, f ′) due to uncertainty principle [71, 84]. In addition,

the WD of a signal has another drawback since it is not restricted to be positive, a

mandatory characteristic for an energy density.

In Section B.4, we have seen that a signal x can be decomposed into a frame

{gk}k∈I or into its dual {g̃k}k∈I , and reconstructed by means of

x =
∑

k∈I
〈x, g̃k〉gk =

∑

k∈I
〈x, gk〉g̃k. (E.2)

Once x is decomposed into the frame coefficients 〈x, g̃k〉, its time-frequency content

can be analyzed using

WDx̃(t, f) =
∑

k∈I
〈x(t), g̃k(t)〉WDgk

(t, f) . (E.3)

Using approaches like this, the inference of signal characteristics from signal

decompositions is a common and powerful tool for signal analysis, detection and

estimation. For instance, in [85] the time-frequency content of signals is estima-

ted using the Matching Pursuits (MP) signal decomposition algorithm (see section

B.2.2). For that purpose, the so-called Gabor dictionary is employed in the MP.

This dictionary is formed by Gaussian functions in different scales with different
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time and frequency shifts. From the MP expansion of signal x(t) into the Gabor

dictionary

x(t) ≈
M

∑

n=1

γngi(n)(t), (E.4)

the time-frequency content of x(t) is analyzed by means of

M
∑

n=1

γnWDgi(n)
(t, f). (E.5)

In [89] the same approach is used, but using a modified version of the MP to obtain

the signal expansion. Note the resemblance between the approach in equation (E.3)

and the ones in equations (E.4) and (E.5).

In Section B.4, we have defined the frame operator as

S{x} =
∑

k∈I
〈x, gk〉gk. (E.6)

If instead of the coefficients obtained using the inverse frame, the signal projection

into the frame elements gk is considered, as is done in the frame operator, one can

define

WDx(t) in G(t, f) =
∑

k

〈x(t), gk(t)〉WDgk
(t, f) . (E.7)

Equation (E.7) is sum of the time-frequency contents of the projections of a

signal x(t) into the elements of the frame G = {gk}k∈I . This is totally different than

WDx̃(t, f) defined in equation (E.3). In addition, note that equation (E.7) does

not provide an estimate of the signal time-frequency content. For that purpose the

frame coefficients 〈x(t), g̃k(t)〉 should be used instead of the projections 〈x(t), gk(t)〉,
as in equation (E.3).

E.1.1 Definition and Relevance

Definition E.1 The time-frequency content of a frame G = {gk}k∈I is defined as

WDG(t, f) =
∑

k∈I
WDgk

(t, f). (E.8)

The theorem below shows a condition on WDG(t, f) that guarantees that a

set of functions {gk(t)}k∈I is a frame in L2(R).
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Theorem E.1 A sufficient condition for a set of elements G = {gk(t)}k∈I to be a

frame for L2(R) is that

0 < WDG(t, f) < ∞, ∀ (t, f), (E.9)

where WDG(t, f) is defined in equation (E.8).

Proof: The WD satisfies the Moyal relation [84]

〈WDx(t, f), WDg(t, f)〉 =

∫

t

∫

f

WDx(t, f)WDg(t, f)dfdt = |〈x(t), g(t)〉|2. (E.10)

Also, the WD preserves the energy, since [84]
∫

t

∫

f

WDx(t, f)dfdt =

∫

t

|x(t)|2dt = ‖x(t)‖2. (E.11)

Applying the properties above in the frame definition

A‖x(t)‖2 ≤
∑

k∈I
|〈x, gk〉|2 ≤ B‖x(t)‖2, ∀x ∈ H, (E.12)

see section B.4, it can verified that

A

∫

t

∫

f

WDx(t, f)dfdt ≤
∑

k∈I
〈WDx, WDgk

〉 ≤ B

∫

t

∫

f

WDx(t, f)dfdt. (E.13)

Therefore,

A

∫

t

∫

f

WDx(t, f)dfdt ≤
∫

t

∫

f

WDx(t, f)WDG(t, f)dfdt ≤ B

∫

t

∫

f

WDx(t, f)dfdt.

(E.14)

A sufficient condition for equation (E.14) to hold for any signal x(t) is that

A ≤ WDG(t, f) ≤ B ∀ (t, f). (E.15)

Hence, if

0 < WDG(t, f) < ∞, ∀(t, f), (E.16)

then the set G = {gk(t)}k∈I is a frame in L2(R).

Note that if the time-frequency content of a frame G satisfies equation (E.15)

then
∫

t

∫

f
WDx(t, f)WDG(t, f)dfdt ≥ min

t,f
WDG(t, f)

∫

t

∫

f
WDx(t, f)dfdt = min

t,f
WDG(t, f)‖x(t)‖2,

(E.17)
∫

t

∫

f
WDx(t, f)WDG(t, f)dfdt ≤ max

t,f
WDG(t, f)

∫

t

∫

f
WDx(t, f)dfdt = max

t,f
WDG(t, f)‖x(t)‖2.

(E.18)
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Therefore, although mint,f WDG(t, f) and maxt,f WDG(t, f) do not provide the exact

frame bounds of frame G, they bound the lower A and upper B frame bounds of G,

respectively. �

Corollary E.1 The time-frequency content of a frame being constant is a sufficient

condition for the frame to be tight (A = B).

Proof: If

WDG(t, f) = C (E.19)

then from equation (E.14) we have that

A

∫

t

∫

f

WDx(t, f)dfdt ≤ C

∫

t

∫

f

WDx(t, f)dfdt ≤ B

∫

t

∫

f

WDx(t, f)dfdt. (E.20)

The above equation implies that

A = C = B. (E.21)

�

E.1.2 Extension to Discrete Spaces

In discrete spaces, the WD [20] of a signal is defined as

WDx (l, ω) =2
∞

∑

i=−∞
e−ω2ix [l + i] x [l − i]. (E.22)

Actually [20] presents several Wigner-Ville distribution definitions that satisfy both

the Moyal and the energy preservation properties of the WD in L2(R). The last

equation provides the time-frequency content of a signal in l2(Z). The aliasing due

to the sampling operation can be overcome by oversampling the signal with a factor

greater than 2 [20]. Since the WD definition in equation (E.22) satisfies the Moyal

and the energy preservation properties, the result in Theorem E.1 is also valid in

l2(Z).

E.1.3 Extension to Finite Dimensional Vector Spaces

In an N -dimensional vector space HN , the computation of the time-frequency

content of signals can be done by considering that HN is an N -length section of a N -

periodic space l2(Z); as pointed out in section B.4.4.4 and in this case the frequency
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is restricted to multiples of 2π
N

, i.e. Ω = 2πk
N

, k ∈ [0, . . . , N − 1]. However, the

assumption of an N -periodic space produces infinite summations in equation (E.22).

To avoid these infinite summations, the signal samples can be considered to be zero

outside the N samples that define the finite dimensional vector space HN . In doing

so, for x ∈ HN , the WD definition becomes

WDx (l, Ω) =2
N−1
∑

i=−N

e−
2π2Ωi

2N x [l + i] x [l − i]. (E.23)

This WD definition also suffers from aliasing, that can be overcome as shown in [20]

or [84]. For instance, this WD definition, in its fast version [84], is employed in this

work to compute the numerical results presented on the time-frequency content of

frames. The WD definition above, equation (E.23), also satisfies the Moyal and the

energy conservation properties and thus Theorem E.1 is also valid to represent the

time-frequency content of frames in RN .

Example E.1 Let the vertices of the N-dimensional cube form a frame G in the

N-dimensional space. That is, the frame G is composed by the elements that are

given by

gk = [gk[0], . . . , gk[N − 1]] = [±1, . . . ,±1]. (E.24)

Using the definition in equation (E.23) it can be shown that for these frames

WDG(l, Ω) = 2N . They have constant time-frequency content implying that these

frames are tight. To confirm that, one can see that for these frames TT∗ = 2NIN .

Therefore, since the frame operator S (see equation (B.27)) is an identity matrix of

size N multiplied by A = 2N these frames are tight.

E.2 Time-Frequency Content of Weyl-Heisenberg

Frames

As seen in Section B.4.4.1 a Weyl-Heisenberg (WH) frame is a frame for

L2(R) obtained from a fixed function g(t) with a, b > 0 through

{EmbTnag(t)}m,n∈Z; (E.25)
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where the translation by a a (Ta) and modulation by b (Eb) operations are given by

Tag(t) = g (t − a) ; (E.26)

Ebg(t) = g(t)e2πbt. (E.27)

Since it is known that [21, 71, 84]

WDTag(t, f) = WDg(t − a, f) and WDEbg(t, f) = WDg(t, f − b), (E.28)

we can say that the elements of a Weyl-Heisenberg frame have the same time-

frequency “shape” and “spread” and each one of the elements time-frequency con-

tent is located at a point (na, mb) of the time-frequency plane. Therefore, Weyl-

Heisenberg (WH) frames are specially suited for time-frequency analysis of sig-

nals [84, 85].

Weyl-Heisenberg (WH) frames were also used for transient detection using

the Gaborgram [51,52, 114]. The Gaborgram is the plot of the coefficients

cm,n = 〈x(t), EmbTnag̃(t)〉, (E.29)

that obtain the signal synthesis using a WH frame {EmbTnag(t)}, as a function of

the time-shift and frequency-shift indices n and m that generate the WH frame. The

time-frequency content of Weyl-Heisenberg frames is addressed in what follows.

From equations (E.26) and (E.27) and the WD definition in equation (E.1)

one has that

WDEmbTnag(t)(t, f) = WDg(t − na, f − mb) (E.30)

Therefore, for a WH frame G = {EmbTnag(t)}m,n∈Z one has that

WDG (t, f) =
∑

m∈Z

∑

n∈Z

WDg (t − na, f − mb). (E.31)

Therefore

WDG (t, f) =
∑

m∈Z

∑

n∈Z

WDEmbTnag(t)(t, f)

=
∑

m∈Z

∑

n∈Z

∫ +∞

−∞
g

(

t +
τ

2
− na

)

g
(

t − τ

2
− na

)

e−2πjmbτe−2πjfτdτ.

=
∑

n∈Z

∫ +∞

−∞
g

(

t +
τ

2
− na

)

g
(

t − τ

2
− na

)

e−2πjfτ
∑

m∈Z

e−2πjmbτdτ

(E.32)
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Using the Poisson summation, one obtains that

WDG (t, f) =
1

b

∑

m∈Z

∑

n∈Z

∫ +∞

−∞
g

(

t +
τ

2
− na

)

g
(

t − τ

2
− na

)

e−2πjfτδ
(

τ − m

b

)

dτ,

WDG (t, f) =
1

b

∑

m∈Z

e−2πf m
b

∑

n∈Z

g
(

t − na +
m

2b

)

g
(

t − na − m

2b

)

. (E.33)

Equation (E.33) is simpler to compute than equation (E.31) since there is no

need for integrations in the calculation of each WDgk
. It can also be noted from

equation (E.31) or (E.33) that WDG(t, f) is 2D-periodic, with period a over t and b

over f .

Since the term

∑

n∈Z

g
(

t − na +
m

2b

)

g
(

t − na − m

2b

)

, (E.34)

in equation (E.33), is a-periodic over t, then we have that

∑

n∈Z

g
(

t − na +
m

2b

)

g
(

t − na − m

2b

)

=
∑

k∈Z

eke
j 2π

a
kt, (E.35)

(E.36)

where

ek =
1

a

∫ a

0

∑

n∈Z

g
(

t − na +
m

2b

)

g
(

t − na − m

2b

)

e−j 2π
a

ktdt

ek =
1

a

∑

n

∫ (n+1)a−m
2b

na+ m
2b

g (τ) g
(

τ − m

b

)

e−j 2π
a

k(τ+na−m
2b)dτ

ek =
1

a

∫ ∞

−∞
g (τ) g

(

τ − m

b

)

e−j 2π
a

k(τ−m
2b)dτ

ek =
1

a

∫ ∞

−∞
g

(

τ +
m

2b

)

g
(

τ − m

2b

)

e−j2π k
a
τdτ. (E.37)

Note that each ek is the ambiguity function [71, 84]

AFg(τ, ν) =

∫ ∞

−∞
g

(

u +
τ

2

)

g
(

u − τ

2

)

e−j2πνudu (E.38)

at τ = m/b and ν = k/a. Therefore,

WDG(t, f) =
1

ab

∑

m

∑

k

e−2π(f m
b

+tk
a)AFg

(

m

b
,
k

a

)

. (E.39)

In this way, WDG(t, f) can be obtained from the summation of samples of the ambi-

guity function of the prototype signal AFg(τ, ν) multiplied by complex exponentials.
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E.2.1 Change of Scale

A well known result regarding WH frames is that if {EmbTnag(t)}m,n∈Z is a

WH frame with frame bounds A and B then the WH frame generated using a dilated

version of the window g(t)

{EmbTnaDcg(t)}m,n∈Z, Dcg(t) =
1√
c
g

(

t

c

)

(E.40)

is also a WH frame with the same frame bounds [17]. This result is readily indicated

from the time-frequency content of frames defined in equation (E.8). Since

WD 1√
c
g( t

c)
= WDg

(

t

c
, cf

)

, (E.41)

although the time-frequency content of {EmbTnaDcg(t)}m,n∈Z is a time-expanded

frequency-contracted (c > 1) version of {EmbTnag(t)}m,n∈Z the maximum and mi-

nimum of the time-frequency contents of the original and the scaled frames are the

same. Therefore, the time-frequency content of a WH frame and the one of its scaled

version provide the same bounds on the upper and lower frame bounds.

E.2.2 Weyl-Heisenberg Frames from a Causal Prototype

As is shown by equation (E.31), a Weyl-Heisenberg frame has a 2D-periodic

time-frequency content with period a in the time axis and period b in the frequency

axis. The WD definition is such that if

g(t) = 0, for t ∈ [t0, t1] (E.42)

then

WDg(t, f) = 0, for t ∈ [t0, t1]. (E.43)

If g(t) is right sided, i.e. g(t) = 0 ∀t < 0, then since the WD has bounded time

support equation (E.31) becomes

WDG (t, f) =
∑

m∈Z

∑

n≤t/a

WDg (t − na, f − mb). (E.44)

As equation (E.33) was derived from equation (E.31) one can derive, for a causal

function, that for t ∈ [0, a)

WDG (t, f) =
1

b

∑

m∈Z

e−2πf m
b

∑

n≤0

g
(

t − na +
m

2b

)

g
(

t − na − m

2b

)

. (E.45)

This result is used in the next section to evaluate the frame bounds of WH frames

generated from a decaying exponential.
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E.2.2.1 Example: Frames of Damped Sinusoids

How can one generate sets of functions

fk(t) =
√

2λke
−λk(t−t0k)e+ξktu (t − t0k

) , (E.46)

while guaranteeing that any signal can be synthesized using

x(t) =
∑

k

αkfk(t) =
∑

k

αk

√

2λke
−λk(t−t0k)e+ξktu (t − t0k

)? (E.47)

In Appendix C, this model, a damped sinusoids signal expansion, was used to re-

present electric oscillographic signals. Damped sinusoids were also employed for the

detection of transient signals using Gaborgrams [51,52]. The large amount of poten-

tial applications of such signal model is further motivated by the fact that damped

sinusoids are solutions for ordinary differential equations that often appear in phy-

sical system models, for examples of similar signal models see [59,64,75,83]. Hence,

it is interesting and of practical relevance to investigate how the set of parameters

σ = [λ, t0, ξ] can be sampled, i.e. how to define the mapping

σ(k) = [λ(k), t0(k), ξ(k)], k : N 7→ R
3, (E.48)

while still providing a set of functions, generated from the application of the pa-

rameter mapping above into equation (E.46), that is capable of representing any

signal. That is, the selection of the possible parameters that can be used for each

signal component in equation (E.47) should permit both signal analysis and synthe-

sis, what is accomplished by frames. If the parameters t0k
and ξk using a regular

lattice, that is using a linear “sampling” mapping

σ(k) = [λ, k∆t, k∆ξ], (E.49)

where λ, ∆t, k∆ξ are constants, and generating damped sinusoids accordingly, one

may obtain a WH frame

{

EmbTna

(

e−λktu(t)
)}

m,n∈Z
, a = ∆t, b =

∆ξ

2π
. (E.50)

Therefore, the question in equation (E.47) can be restated as: for the function

g(t) =
√

2λe−λtu(t), which values of a and b allow for the construction of a WH

frame from equation (E.50)? Next, we analyze these frames using the time-frequency

content of frames.
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Time-Frequency Content of Decaying Exponentials Gabor Frames The

decaying exponential function

g(t) =
√

2λe−λtu(t) (E.51)

is zero for t < 0. Since the time-frequency content of a Weyl-Heisenberg frame

WDG (t, f) is a-periodic in t one just needs to compute it at t ∈ [0, a). Therefore,

for a WH frame G generated using a damped sinusoid as the one in equation (E.51)

one obtains that its time-frequency content is given by

WDG (t, f) =
2λ

b

∑

m∈Z

∑

n≤0

e−2πf m
b e−λ(t−na+ m

2b )e−λ(t−na−m
2b)u

(

t − na +
m

2b

)

u
(

t − na − m

2b

)

.

(E.52)

Separating the summation in m ∈ Z, in equation (E.52) above, into m ≤ 0, m ≥ 0,

eliminating the duplicity at m = 0, and changing the sign of the summation for

m ≥ 0, one has that equation (E.52) can be expressed as

WDG (t, f) =
2λ

b

∑

m≤0

∑

n≤0

e−2πf m
b e−λ(t−na+ m

2b)e−λ(t−na−m
2b )u

(

t − na +
m

2b

)

u
(

t − na − m

2b

)

+

+
2λ

b

∑

m≤0

∑

n≤0

e2πf m
b e−λ(t−na−m

2b )e−λ(t−na+ m
2b )u

(

t − na − m

2b

)

u
(

t − na +
m

2b

)

+

− 2λ

b

∑

n≤0

e−λ(t−na)e−λ(t−na)u (t − na)u (t − na). (E.53)

Therefore, one has that equation (E.52) turns into

WDG (t, f) =
2λ

b





∑

m≤0

∑

n≤0

(

e−2πf m
b + e2πf m

b

)

e−2λ(t−na)u
(

t − na +
m

2b

)

u
(

t − na − m

2b

)

−
∑

n≤0

e2λ(t−na)



 . (E.54)

The unit steps in equation (E.54) imposes that n must be such that

t − na +
m

2b
≥ 0 → n ≤ t

a
+

m

2ab

t − na − m

2b
≥ 0 → n ≤ t

a
− m

2ab
.
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Since t ∈ [0, a), n ≤ 0 and m ≤ 0 then

WDG (t, f) =
2λ

b





∑

m≤0

2 cos
(

2πf
m

b

)

∑

n≤ t
a
+ m

2ab

e−2λ(t−na) − e−2λt

1 − e−2λa





WDG (t, f) =
2λ

b






e−2λt

∑

m≤0

2 cos
(

2πf
m

b

)

⌊ t
a
+ m

2ab⌋
∑

n=−∞
e2λna − e−2λt

1 − e−2λa







WDG (t, f) =
2λe−2λt

b

[

∑

m≤0

2 cos
(

2πf
m

b

)e2λa⌊ t
a
+ m

2ab⌋
1 − e−2λa

− 1

1 − e−2λa

]

WDG (t, f) =
2λe−2λt

b (1 − e−2λa)

[

∑

m≤0

2 cos
(

2πf
m

b

)

e2λa⌊ t
a
+ m

2ab⌋ − 1

]

(E.55)

For 1
ab

= q, q ∈ N one has that

⌊

1

2

(

2t

a
+

m

ab

)⌋

=

⌊

1

2
(2tbq + mq)

⌋

. (E.56)

Let
⌊

1

2
(2tbq + mq)

⌋

= Q, (E.57)

then

(2tbq + mq) = 2Q + r, with 0 ≤ r < 2. (E.58)

Therefore,

⌊

1

2
(2tbq + mq)

⌋

= Q =
1

2
(2tbq + mq) − r

2

=
1

2
(2tbq + mq) − 1

2
(2tbq + mq) mod2. (E.59)

Since t ∈ [0, a) then 2tbq ∈ [0, 2). In addition, mq is an integer smaller than or equal

to zero. Therefore, for q even we have that

⌊

1

2
(2tbq + mq)

⌋

=
1

2
(2tbq + mq) − 1

2
2tbq =

1

2
mq. (E.60)

Using the above result, valid for q even, the time-frequency content of a Weyl-

Heisenberg frame of damped sinusoids is given by

WDG (t, f) =
2λe−2λt

b (1 − e−2λa)

[

∑

m≥0

2 cos
(

2πf
m

b

)

e−
λ
b
m − 1

]

=
2λe−2λt

b (1 − e−2λa)

[

2
1 − e−

λ
b cos

(

2π f
b

)

1 − 2e−
λ
b cos

(

2π f
b

)

+ e−
2λ
b

− 1

]

. (E.61)
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From equation (E.61) one can see that the maximum of WDG(t, f) occurs at

(t, f) = (0, 0) and the minimum at f = b/2 and t → a. At those points one has that

2λ

b (1 − e−2λa)

1 − e−λ/b

1 + e−λ/b
≤ WDG(t, f) <

2λe−2λa

b (1 − e−2λa)

1 + e−λ/b

1 − e−λ/b
. (E.62)

Friedlander and Zeira showed in [52], using a condition for Gabor frames

derived by Zibulski and Zeevi [113], based on the Zak transform [5,17,52,113], that

for an integer oversampling factor q ≥ 1, the decaying exponential generates a frame

with frame bounds [52]:

B =
2λ

b (1 − e−2λa)

1 + e−
λ
b

1 − e−
λ
b

, (E.63)

A =
2λe−2λa

b (1 − e−2λa)

1 − e−
λ
b

1 + e−
λ
b

. (E.64)

These are exactly the same bounds presented in equation (E.62). Numerical expe-

riments using equation (E.55) suggest that equation (E.62) also holds for an odd

value of q, this result is still to be derived.

Decaying Exponential Gabor Frames in Discrete Spaces Note that both the

decreasing and the increasing exponential satisfy the condition in equation (B.40).

In this case the oversampling factor, see section B.4.4.3, that is given by

1

ab
=

1

MN
, M, N ∈ N, (E.65)

will define the frame bounds.

E.2.3 Weyl-Heisenberg Frames from Even Prototypes

From the WDG of a WH frame, equation (E.33), it is possible to obtain

∂WDG(t, f)

∂t
=

1

b

∑

m∈Z

e−2πf m
b

∑

n∈Z

∂g
(

t − na + m
2b

)

∂t
g

(

t − na − m

2b

)

+

+ g
(

t − na +
m

2b

) ∂g
(

t − na − m
2b

)

∂t
(E.66)

∂WDG(t, f)

∂f
=

1

b

∑

m∈Z

−2π
m

b
e−2πf m

b

∑

n∈Z

g
(

t − na +
m

2b

)

g
(

t − na − m

2b

)

(E.67)

In order to obtain max(t,f) WDG (t, f) and min(t,f) WDG (t, f) it suffices to

analyze WDG (t, f) in the region (t, f) ∈ [0, a) × [0, b). As previously discussed,
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for a WH frame G one has that WDG is 2D-periodic with period a × b. If g(t) is

symmetric then it can be shown from equations (E.66) and (E.67) that

∂WDG(0, 0)

∂t
= 0,

∂WDG(0, 0)

∂f
= 0,

∂WDG
(

a
2
, b

2

)

∂t
= 0 and

∂WDG
(

a
2
, b

2

)

∂f
= 0.

(E.68)

Note that

WDG

(

a

2
,
b

2

)

=
1

b

∑

m∈Z

e−2πı b
2

m
b

∑

n∈Z

g
(a

2
− na +

m

2b

)

g
(a

2
− na − m

2b

)

=
1

b

∑

m∈Z

(−1)m
∑

n∈Z

g

(

a

(

1

2
+ n

)

+
m

2b

)

g

(

a

(

1

2
+ n

)

− m

2b

)

,

WDG (0, 0) =
1

b

∑

m∈Z

∑

n∈Z

g
(

na +
m

2b

)

g
(

na − m

2b

)

, (E.69)

and therefore

WDG (0, 0) − WDG

(

a

2
,
b

2

)

=
1

b

∑

m∈Z

∑

n∈Z

[

g
(

na +
m

2b

)

g
(

na − m

2b

)

(E.70)

−(−1)mg

((

n +
1

2

)

a +
m

2b

)

g

((

n +
1

2

)

a − m

2b

)]

.

If g(t) is decreases with |t|, as is the case for the Gaussian and two-sided exponential

atoms, it is easy to see that WDG (0, 0) − WDG
(

a
2
, b

2

)

≥ 0. This suggests that:

• the maximum of WDG occurs at (t = na, f = mb), ∀ m, n ∈ Z2;

• and the minimum of WDG occurs at (t = na+a/2, f = mb+b/2), ∀ m, n ∈ Z2.

E.3 Interlacing Weyl-Heisenberg Frames

If a frame G is used to analyze a signal that has time-frequency content

localized in regions around the points of minimum of WDG(t, f), since

|〈g(t), f(t)〉|2 =

∫

t

∫

f

WDx(t, f)WDg(t, f)dfdt, (E.71)

then the inner products among the frame elements and the signal are small. This

happens because the frame has small time-frequency content around its points of

minimum.

To improve the analysis of the time-frequency content of signals using a WH

frame one could increase the time-frequency density, using smaller time-shift and
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time-frequency parameters a and b. One could also increase the frame “tightness”,

what is equivalent to populate the frame (put elements in the frame) with new

elements placed near/at the points of minimum of the time-frequency content of the

frame. One way to do this population is to “interlace” two WH frames generated

from the same prototype. The resulting “interlaced” frame F is the union of two

WH frames

F = G ∪H, (E.72)

G = {EmbTnag(t)}m,n∈Z and H = {Emb+ b
2
Tna+ a

2
g(t)}m,n∈Z. (E.73)

Frames G and H are then defined, from the same prototype, in a way that the

former is placed at the points of the time-frequency plane where the latter has

poor localization capabilities and vice-versa. The “interlaced” frame provides more

“similar” coefficients for any signal for both the analysis and the synthesis operators

of a frame.

The idea of frames “interlacing”, see Figure E.1, is applicable for constructing

frames based on any symmetric prototypes. In [99] using the affine function it is

shown that this approach leads to Grassmannian frames, which are unit norm frames

whose elements are chosen such that their inner products are minimized.

For a symmetric prototype function g(t) the minima of WDG(t, f) occur at

WDG
(

na +
(

a
2

)

, mb +
(

b
2

))

and the maxima at WDG (na, mb). By employing the

union of frames presented in Figure E.1 one obtains

WDF(na, mb) = WDF

(

na +
a

2
, mb +

b

2

)

. (E.74)

The obvious byproduct of frame interlacing is that if two Gabor systems G =

{EmbTnag(t)}n,m∈Z and H = {Emb+ b
2
Tna+ a

2
g(t)}n,m∈Z are generated such that their

union gives a frame F = G ∪ H for which WDF(t, f) has smaller oscillations than

WDG(t, f) and WDH(t, f) have themselves, then a “tighter” frame F is obtained.

Experiments indicate that similar results can be derived for g(t) anti-symmetric,

although this is not explored in this work.

Example E.2 Figure E.2 presents on the left the time-frequency content WDG(t, f)

of a WH frame {EmbTnag(t)}n,m∈Z, in the region [0, 2a) × [0, 2b), generated using

a Gaussian prototype function g(t) = 1√
2πσ2

e−t2/2σ2
, while Figure E.2.(b) presents
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Figure E.1: Population of WH frames by “interlacing”.
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Figure E.2: Example of the “interlacing” of Weyl-Heisenberg frames in the interval

(t, f) ∈ [0, 2a) × [0, 2b) – the horizontal axis represents time while the vertical one

represents frequency.
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Figure E.3: WDG(t, f) for g(t) = e−5|t|, a =.2 and b =2.5, ab=1/2, (t, f) ∈ [0, 2a)×
[0, 2b).

the time-frequency content of the frame {Emb+b/2Tna+a/2g(t)}n,m∈Z. Figure E.2.(c)

shows the time-frequency content of the frame resulting from the union of the two

frames. All three graphs shown in Figure E.2 were plotted using the same range. Note

that for the frame G formed by the union of two interlaced frames the maximum and

minimum of WDG(t, f) become closer and a tighter frame is obtained.

Example E.3 Figure E.3 shows WDG(t, f) in the region [0, 2a)×[0, 2b) for a frame

G composed by the union of two interlaced WH frames of two-sided damped sinusoids

g(t) = e−β|t|, with β =5, time-shift parameter a =.2 and frequency-shift parameter

b =2.5 (the data presented were obtained at a sampling rate of 100 samples per time

unit). For each original frame the minima and maxima of WDG are 0.2274 and

2.4564, however the frame formed by the union of the two frames the time-frequency

content is bounded by 1.5659 and 2.6838. Thus, as predicted, the frame generated

by the union of “interlaced” frames is tighter.
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E.3.1 Interlaced Weyl-Heisenberg Frames in N-Dimensional

Spaces

Table E.1: Design of Weyl-Heisenberg frames in N -dimensional spaces.

Frame Generation n range m range number of elements

A Em 1
Q
Tn N

P
g [0, 1, . . . , P − 1] [0, 1, . . . , Q − 1] PQ

B Em 1
Q

+ 1
2Q

Tn N
P

+ N
2P

g [0, 1, . . . , P − 1] [0, 1, . . . , Q − 1] PQ

C A ∪ B 2PQ

D Em 1
Q
Tn N

2P
g [0, 1, . . . , 2P − 1] [0, 1, . . . , Q − 1] 2PQ

E Em 1
2Q

Tn N
P
g [0, 1, . . . , 2P − 1] [0, 1, . . . , Q − 1] 2PQ

F Em 1
2Q

Tn N
2P

g [0, 1, . . . , 2P − 1] [0, 1, . . . , 2Q − 1] 4PQ

G Em 1
Q

+ 1
2Q

Tn N
2P

+ N
2P

g [0, 1, . . . , 2P − 1] [0, 1, . . . , Q − 1] 2PQ

H Em 1
2Q

+ 1
2Q

Tn N
P

+ N
2P

g [0, 1, . . . , P − 1] [0, 1, . . . , 2Q − 1] 2PQ

In order to achieve a better evaluation of the“interlacing”method to generate

“tighter” frames, 8 different WH frames in N -dimensional spaces are now addressed.

These are referred to by the calligraphic letters A–H. The designs of the 8 frames are

presented in Table E.1. Frames A and B are given by EmbTnag and Emb+b/2Tna+a/2g

respectively, that is the structures of B are centered in the points of minimum of

WDA and vice-versa. The values of a and b were chosen to give rise to P points

in the time axis and Q points in the frequency axis for both A and B, this leads to

a = N/P and b = 2π/Q, allowing to construct A and B with the same number of

elements (PQ). Frame C is the union of A and B, that is C = A ∪ B. Frames D
and E are generated from A by doubling its cardinality in order to be the same of

C (2PQ), to construct D the time-shift parameter a is halved, while to construct

E the frequency-shift parameter b is halved. Frame F is generated simultaneously

halving the time-shift parameter a and the frequency-shift parameter b, hence it has

a time-frequency density and number of elements four times larger than the ones

of A and B, and two times larger than the ones of C, D and E . Frames G and H
are generated from B doubling its cardinality as is done for D and E with respect

to A. To generate G the time-shift parameter a is halved and to generate H the

frequency-shift parameter b is halved. Figure E.4 shows were the elements of frames
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A, B, D, E , G and H are placed in the time-frequency plane. It is easy to see that

all the elements of dictionaries A–E , G and H are contained in F . Note from Figure

E.4 that D is equivalent to G as E is to H. All the frames are generated considering

a periodic space (circular time shifts) and had their elements normalized. Since the

elements are defined in CN the normalization procedure does not change the frame

bounds ratio A/B although it affects the frame bounds. The normalization of the

elements will alter both frame bounds by the same amount: 1) let the elements norm

be g, all the elements of the frame have the same norm as the space is periodic; 2)

let the frame bounds to be A and B; 3) after normalizing the frame elements, the

frame bounds become A/g2 and B/g2 and the frame bounds ratio remains the same.

Table E.2: Characteristics of Weyl-Heisenberg and interlaced Weyl-Heisenberg fra-

mes with N=32, P=8, and Q=8.

Frame A B C D E F G H

σ2 number of elements 64 64 128 128 128 256 128 128

1/2

A 0.0042 0.0042 1.7032 1.7032 0.0084 3.4064 1.7032 0.0084

B 6.2926 6.2926 6.2968 6.2968 12.5851 12.5936 6.2968 12.5851

A/B 0.0007 0.0007 0.2705 0.2705 0.0007 0.2705 0.2705 0.0007

1

A 0.1653 0.1653 3.3216 3.3216 0.3306 6.6433 3.3216 0.3306

B 4.5131 4.5131 4.6784 4.6784 9.0261 9.3567 4.6784 9.0261

A/B 0.0366 0.0366 0.7100 0.7100 0.0366 0.7100 0.7100 0.0366

2

A 0.8633 0.8633 3.9425 3.9398 1.7277 7.8849 3.9398 1.7277

B 3.1958 3.1958 4.0591 4.0603 6.3874 8.1151 4.0603 6.3874

A/B 0.2701 0.2701 0.9713 0.9703 0.2705 0.9716 0.9703 0.2705

4

A 1.6001 1.6001 3.9756 3.8531 3.3220 7.9992 3.8531 3.3220

B 2.4251 2.4251 4.0253 4.1470 4.6789 8.0008 4.1470 4.6789

A/B 0.6598 0.6598 0.9877 0.9291 0.7100 0.9998 0.9291 0.7100

8

A 1.4390 1.4390 3.9871 2.9200 3.9398 7.9946 2.9200 3.9398

B 2.5793 2.5793 4.0183 5.0854 4.0603 8.0054 5.0854 4.0603

A/B 0.5579 0.5579 0.9922 0.5742 0.9703 0.9987 0.5742 0.9703

In Table E.1 along with the design of the frames are also shown the ranges of
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the indices n and m that generate each of them and the resulting number of elements

in the frames. The construction structures in Table E.1 were employed to generate

frames for C32 from a prototype

g = [g[0], g[1], . . . g[N − 1]], with g[k] =
1√

2πσ2
e−k2/2σ2

(E.75)

for different values of σ2. Table E.2 shows the frame bounds A and B and their ratio

A/B for the 8 frames in Table E.1 for various σ2 with P and Q set equal to 8. Table

E.3 shows the same measures for various σ2 with P and Q set equal to 16. When

P = Q = 16 frame F has N (32) points in both time and frequency axes, that is

a = 1/N and b = 2π/N , it is a maximally oversampled WH frame and it is shown

to be a tight [113]. The values in Tables E.2 and E.3 were obtained numerically.

When they are obtained by computing the eigenvalues of the frame operator or by

the time-frequency content of the frame they are very close (differing in the 12th

significant digit). From these figures one can see that the construction C = A ∪ B
provides frames with frame bounds ratio very close to the one of F for all σ2, with

half the number of frame elements.

Figure E.4 answers why for low σ2 frames D and G have frame bounds that

are similar to the ones of C (as is seen in Tables E.2 and E.3) and for larger σ2

E and H are other? The smaller σ2 leads to larger time-support of the elements

resulting in shorter frequency-support. As the densities of D and G are smaller in

the frequency-axis than in the time-axis they generate tighter frames for small σ2.

A similar reasoning explains why the frames E and H give rise to tighter frames

when σ2 is large.

We have seen that the interlacing of WH frames is good for generating frames

that are tighter than the non-interlaced ones. In some cases, the interlaced frames

are tight, as can be seen for frame C in Table E.3.

Some effort has been spent toward finding “structured” tight frames. Actu-

ally, these frames have a broad definition. For example, in [48] these are defined

to have some desired symmetry properties and in [106] to have previously defined

norms. Here structured frames are considered to have the same prototype “shape”.

In [113] the generation of tight structured WH frames from one prototype is shown

to be possible by employing the largest possible parameter oversampling, that is,

by making the time-shift parameter of the WH frame equal to the dimension of the
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signal space (P = N); the same should be done with the frequency-shift parameter,

i.e., making Q = N . Although we have no formal proof, the results obtained nume-

rically show that this can be achieved with parameter values halved with respect to

the maximally oversampled ones, that is, with P = Q = N/2.

Table E.3: Characteristics of Weyl-Heisenberg and interlaced Weyl-Heisenberg frame

for N=32, P=16, and Q=16.

Frame A B C D E F G H

σ2 number of elements 256 256 512 512 512 1024 512 512

1/8

A 0.0107 0.0107 16.0000 16.0000 0.0215 32.0000 16.0000 0.0215

B 15.9893 15.9893 16.0000 16.0000 31.9785 32.0000 16.0000 31.9785

A/B 0.0007 0.0007 1.0000 1.0000 0.0007 1.0000 1.0000 0.0007

1/2

A 3.4064 3.4064 16.0000 16.0000 6.8129 32.0000 16.0000 6.8129

B 12.5936 12.5936 16.0000 16.0000 25.1871 32.0000 16.0000 25.1871

A/B 0.2705 0.2705 1.0000 1.0000 0.2705 1.0000 1.0000 0.2705

1

A 6.6433 6.6433 16.0000 16.0000 13.2865 32.0000 16.0000 13.2865

B 9.3567 9.3567 16.0000 16.0000 18.7135 32.0000 16.0000 18.7135

A/B 0.7100 0.7100 1.0000 1.0000 0.7100 1.0000 1.0000 0.7100

2

A 7.8849 7.8849 16.0000 16.0000 15.7699 32.0000 16.0000 15.7699

B 8.1151 8.1151 16.0000 16.0000 16.2301 32.0000 16.0000 16.2301

A/B 0.9716 0.9716 1.0000 1.0000 0.9716 1.0000 1.0000 0.9716

4

A 7.9992 7.9992 16.0000 16.0000 15.9983 32.0000 16.0000 15.9983

B 8.0008 8.0008 16.0000 16.0000 16.0017 32.0000 16.0000 16.0017

A/B 0.9998 0.9998 1.0000 1.0000 0.9998 1.0000 1.0000 0.9998

8

A 7.9946 7.9946 16.0000 15.9893 16.0000 32.0000 15.9893 16.0000

B 8.0054 8.0054 16.0000 16.0107 16.0000 32.0000 16.0107 16.0000

A/B 0.9987 0.9987 1.0000 0.9987 1.0000 1.0000 0.9987 1.0000

E.3.2 Fast Analysis and Synthesis Operators

WH frames in N -dimensional spaces are interesting because one can find fast

algorithms to compute their analysis and synthesis operators when the number of
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“points” of the Weyl-Heisenberg frame in the frequency axis is such that Q = N/r,

r ∈ N. Note that

cn,m = 〈x, Em 1
Q
Tn N

P
g〉 =

N−1
∑

l=0

x[l]e
−2πlm

Q Tn N
P
g[l]. (E.76)

Defining

fn N
P

[k] = x[k]Tn N
P
g[k] = x[k]g

[(

k − n
N

P

)

modN

]

(E.77)

fn N
P

=
[

fn N
P

[0], . . . , fn N
P

[N − 1]
]

(E.78)

we obtain

cn,m = 〈x, Em 1
Q
Tn N

P
g〉 =

N−1
∑

l=0

fn N
P

[l]e
−2πlm

Q . (E.79)

For Q = N/r, r ∈ N we obtain

cn,m = 〈x, Em 1
Q
Tn N

P
g〉 =

N−1
∑

l=0

fn N
P

[l]e
−2πl

N
mr = DFT{fn N

P
}[mr], (E.80)

where DFT{x}[k] is the kth sample of the Discrete Fourier Transform of x, which

can be computed using fast algorithms (FFT) [34].

Using the result in equation (E.80) the analysis operator (which was discussed

in section B.4.3) of such WH frames is given by

T∗{·} : H
N → C

PQ, (E.81)

T∗{x} : cn,m = {〈x, Em 1
Q
Tn N

P
g〉}, n ∈ [0, P − 1], m ∈ [0, Q − 1] (E.82)

cn,m = FFT{fn N
P
}[mr], fn N

P
[k] = x[k]g

[(

k − n
N

P

)

modN

]

(E.83)

Similarly, for the synthesis operator of such frames we have that

T{·} : C
PQ → H

N ,

T{cn,m} = [t[0], . . . , t[N − 1]] =

P−1
∑

n=0

Q−1
∑

m=0

cn,mEm 1
Q
Tn N

P
g. (E.84)

The last equation is the sum of PQ N -length vectors and can be computed using

the Inverse Discrete Fourier Transform as below

t[l] =
P−1
∑

n=0

Q−1
∑

m=0

cn,me 2πml
Q fn N

P
[l] =

P−1
∑

n=0

fn N
P

[l]

Q−1
∑

m=0

cn,me 2π
N

lmr. (E.85)
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Denoting cn(m) = cn,m we can define

cn = [cn[0], cn[1], . . . , cn[Q − 1]] , (E.86)

and its up-sampled version

U(cn)[k] =











cn[k/r], k/r ∈ {0, 1, . . . , Q − 1}

0, otherwise

. (E.87)

Thus, the synthesis operator is such that

t[l] =
P−1
∑

n=0

fn N
P

[l]

Q−1
∑

m=0

U(cn)[mr]e 2π
N

lmr

=

P−1
∑

n=0

fn N
P

[l]IFFT{U(cn)}[l]. (E.88)

Figure E.5 presents a way to compute the expansion coefficients or the recons-

tructed signal when a frame is used either as an analysis or as a synthesis operator.

Note that in the outputs of each FFT block, in Figure E.5, there is a serial to parallel

converter, while in the IFFT inputs a parallel to serial converter exists. Figure E.5

shows that all the frame coefficients can be obtained using PN(1 + log2(N)) ope-

rations, which can be reduced if one takes into account that just Q FFT/IFFT

coefficients need to be computed at each FFT/IFFT branch.

E.3.3 Weyl-Heisenberg Frames with Real Elements

The preceding frames have complex elements. In some practical applications,

instead of complex elements one may need to construct a frame with real elements

with the same frame bounds.

In order to do so, we first define the “real” modulation operator

Emb,φg(t) = g(t) cos (2πmb + φ) (E.89)

and generate the sequences

H1 = {Emb,φ1Tnag(t)}m,n∈Z (E.90)

H2 = {Emb,φ2Tnag(t)}m,n∈Z. (E.91)
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In the sequel we show that if the phase difference between φ1 and φ2 is π/2 then

H = H1 ∪ H2 is a frame with frame bounds that are equal to the frame bounds of

the complex elements WH frame {EmbTnag(t)}m,n∈Z.

The Wigner-Ville distribution is a non-linear operator and therefore when

applied to a sum of signals x = x1 +x2 it produces interference terms [84]. This way

we have that

WDx1+x2(t, f) = WDx1(t, f) + WDx2(t, f) + WDx1,x2(t, f) + WDx2,x1(t, x)

(E.92)

where

WDx1,x2 (t, f) =

∫ +∞

−∞
x1

(

t +
τ

2

)

x2

(

t − τ

2

)

e−2πfτdτ and (E.93)

WDx2,x1 (t, f) =

∫ +∞

−∞
x2

(

t +
τ

2

)

x1

(

t − τ

2

)

e−2πfτdτ (E.94)

Therefore, the elements of a phase-shifted real frame are given by

hna,mb,φ(t) = g(t − na) cos (mbt + φ) = Re{EmbTnag(t)ejφ} =

=
1

2
Tnag(t)

(

ej2πmbteφ + e−j2πmbte−φ
)

. (E.95)

From the interference terms that appear in the WD of the sum of two signals it can

be derived that

WDhna,mb,φ
(t, f) =

1

4
[WDg(t − na, f − mb) + WDg(t − na, f + mb)] +

+
1

2
WDg(t − na, f) cos (2πmbt + 2φ). (E.96)

Suppose a frame H1 is generated with elements hna,mb,φ1(t), then the time frequency

content of H is given by

WDH1(t, f) =
1

4

∑

n

∑

m

[WDg(t − na, f − mb) + WDg(t − na, f + mb)] +

+
1

2

∑

n

∑

m

WDg(t − na, f) cos (2πmbt + 2φ1)

WDH1(t, f) =
∑

n

∑

m

1

2
WDg(t − na, f − mb)+

+
1

2

∑

n

∑

m

WDg(t − na, f) cos (2πmbt + 2φ1). (E.97)
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Suppose another frame H2 is also generated whose elements are hna,mb,φ2(t). Now,

the frame generated by the union of elements H = H1 ∪ H2 will have the time-

frequency content WDH(t, f) = WDH1(t, f) + WDH2(t, f) that is given by

WDH(t, f) =
∑

n

∑

m

WDg(t − na, f − mb)+ (E.98)

+
1

2

∑

n

∑

m

WDg(t − na, f) [cos (2πmbt + 2φ1) + cos (2πmbt + 2φ2)]

To obtain WDH = WDG (where G stands for the original WH frame, which has

complex elements due to the modulation operator Embg(t) = e−2πmbg(t)) it suffices

that

1

2

∑

n

WDg(t − na, f)
∑

m

[cos (2πmbt + 2φ1) + cos (2πmbt + 2φ2)] = 0, (E.99)

If
∑

m [cos (2πmbt + 2φ1) + cos (2πmbt + 2φ2)] = 0 then equation (E.99) holds. If

for each individual m one has

cos (2πmbt + 2φ1) + cos (2πmbt + 2φ2) = 0, (E.100)

then equation (E.99) is true. Therefore, either φ2 = φ1 + π/2 or φ1 = φ2 + π/2 are

sufficient to ensure that WDH = WDG. It should be noted that this result is valid

for any ranges of n and m in Z.

Normalized Real Weyl-Heisenberg Frames As discussed in subsection E.3.1

when normalizing the elements of a frame composed of complex elements for R
N ,

if the time-shifts are circular, A/B remains unchanged. When the frame has real

elements defined solely from the sine or the cosine functions multiplied by the trans-

lated prototype the normalization of the elements changes the frame bounds; howe-

ver, they do not change by the same amount anymore. This is so as, although the

real WH frame will have the same frame bounds that the complex elements frame

does, the elements of the real frame will have different norms, and then the resulting

normalized frame will have frame bounds that are different than the ones of the

original real frame.

Fast Analysis and Synthesis Operators If the phases used to generate fra-

mes with real elements are φ1 = 0 and φ2 = π/2, the analysis operators for real
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WH frames can be computed using the same architecture used for complex elements

real WH frames, see Figure E.5. Note that for these phases, to compute the real

WH frame coefficients it suffices to take the real and complex parts of the outputs of

the block diagram in Figure E.5. If the phases are not as above or the elements are

normalized the simple modification of multiplying by the correct scaling constants

the outputs (analysis operator) or the inputs (synthesis operator), also allows for

fast computations. Hence, the analysis and synthesis operators of real WH frames

also have a fast implementation algorithm.

E.4 Parameterized Dictionaries from Interlaced

Weyl-Heisenberg Frames

It was discussed that, when it is desired to effectively represent a given class of

signals using adaptive decompositions, parameterizable dictionaries are a good and

natural choice. Parameterizable dictionaries have their elements gi defined by a set

of parameters, as in the Weyl-Heisenberg or wavelet frames construction approaches.

Sections B.3.2 and B.3.3 discussed dictionaries trade-offs and evaluation me-

trics, respectively. These discussions raise the question: How can one introduce new

parameterizable atoms into a parameterizable dictionary D (“populate”D) in order

to improve the performance of the greedy decomposition algorithm, i.e., to obtain

smaller reconstruction errors as the number of steps increases when compared to

the original D? The optimal solution would be to find all the vectors leading to the

largest angles with their closest dictionary structures and incorporate these vectors

in the dictionary. However, finding these vectors is a non-trivial task. Furthermore,

supposing that one finds these vectors, it is most likely that they will not have the

same parameterizable-shape as the structures that compose a parameterized dictio-

nary.

Preferably, when new atoms introduced in a dictionary, not just the distortion

at the step should be reduced but rather the rate×distortion tradeoff of signal repre-

sentation is to be improved. If for example, #D is an exact power of two (#D = 2W ),

then the maximum increase in the dictionary cardinality, that has the lower impact

on the coding rate, is to double #D (ignoring the coding rate of the coefficients).
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Also, one can assume that, for each dictionary element gγ there exists at least one

vector x (and most likely more than one) among all the vectors that are coded using

gγ, that produces the lower inner product 〈x, gγ〉 (this signal is actually on the fron-

tier of the Voronoi cell [23,57], see Definition G.1 in Section D.1.4). Then, in order to

achieve an overall improvement of a dictionary in a rate×distortion sense, it would

be interesting to introduce at least #D atoms in the dictionary. The introduction

of #D elements can lead to an overall improvement of the rate×distortion if the new

elements are correctly placed in the space.

It can be noted that the “frames interlacing” presented is efficient not just in

the sense of generating “tighter” frames, but also in minimizing the inner product

between each new element included in the dictionary and the elements already in the

dictionary. The minimization of the inner product is relevant for the construction

of dictionaries to be used in greedy signal decomposition algorithms. For these

algorithms it is not enough to just enlarge #D, it is interesting to do so while placing

the new structures in the points having the largest distances from the elements

already in the dictionary, what is actually related to the coherence metric of a

dictionary

µ(D) = max
k∈[1,...,#D]

(

max
j∈]1,...,#D]−{k}

|〈gk, gj〉|
)

. (E.101)

New elements to be included in the dictionary must be designed should not impact

the dictionary coherence substantially. Doing that, signals that were ill-decomposed

using the original dictionary can be better decomposed (producing smaller residues

at the MP steps) using the populated dictionary. Therefore, the “frame interlacing”

approach presented in section E.3 is employed here to construct dictionaries, pro-

ducing dictionaries composed of atoms that are parameterized and derived from a

given predefined prototype signal.

In section E.3.1 we have seen that other two important metrics of dictionaries

to be used in the MP algorithm are

Θ(D) = max
x∈X

[

max
i∈[1,...,#D]

(|〈x, gi〉|)
]

and (E.102)

Θ(D) =E

{

arccos

[

max
i∈[1,...,#D]

(|〈X , gi〉|)
]}

, (E.103)

where D is the dictionary and X is an N -dimensional iid Gaussian source (see section

D.1.2). Table E.4 shows estimates of Θ(D) and Θ(D) for the 9 frames presented
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in Table E.1. The estimates in Table E.4 were obtained using the MP algorithm

with 200 step decompositions of 1000 Gaussian noise signals (their orientations are

uniformly distributed on the surface of the N -dimensional hyper-sphere, see section

D.1.2). Table E.4 also shows the coherence of each of the 9 dictionaries. From the

results in Table E.4 it can be seen that the dictionary C has a performance similar to

the one of F with half the cardinality. Also, C has coherence measure very similar

to the ones of A and B. Note that C always has dictionary performance metrics

Θ(D) and Θ(D) close to the ones of F . In some cases D, E , G and H may also

lead to dictionary performance metrics close to the ones of F (depending on the

Gaussian “spread”σ2). Note that for “average” values of σ2 (4 and 8) all dictionaries

have similar performance metrics. However for these values of σ2, C has lower µ(D)

than D–H. The dictionary C has half of the elements of F and obtains performance

metrics very close to the ones of F with lower coherence among its atoms.

Table E.4: Dictionary Performance Metrics.

Metric/D A B C D E F G H M
σ2 #D 64 64 128 128 128 256 128 128 1024

2

Θ(D) 79.0158 78.7032 73.3615 73.3568 77.8107 72.7166 73.6985 78.1283 71.6059

Θ(D) 74.7854 74.8859 67.2579 67.2414 73.1671 66.0883 67.2687 73.2057 63.8499

µ(D) 0.7346 0.7346 0.7346 0.7346 0.9258 0.9258 0.7346 0.9258 0.9809

4

Θ(D) 75.0269 75.1191 73.5461 73.3922 74.4701 72.5942 73.7046 73.7399 72.5339

Θ(D) 69.3317 69.3767 67.2123 67.3755 67.7916 65.5194 67.4083 67.7818 63.5583

µ(D) 0.5396 0.5396 0.6675 0.7788 0.8571 0.8571 0.7788 0.8571 0.9622

8

Θ(D) 75.3206 75.0785 73.5876 73.7056 73.6926 73.5054 74.6438 74.2956 72.7682

Θ(D) 69.3851 69.4531 67.2077 67.7792 67.2629 65.6424 67.8601 67.2451 63.6146

µ(D) 0.6065 0.6065 0.6483 0.8825 0.7346 0.8825 0.8825 0.7346 0.9692

16

Θ(D) 80.6769 80.9047 74.1242 79.6347 73.9346 73.5657 80.7496 74.1546 72.7616

Θ(D) 77.1270 77.8409 67.3896 75.7875 67.3841 66.4020 77.1300 67.3803 64.0668

µ(D) 0.7788 0.7788 0.7788 0.9394 0.7788 0.9394 0.9394 0.7788 0.9845

One can gain further insight on the performances of the dictionary construc-

tion approaches discussed by changing P and Q (the time shift and frequency shift

parameters of the WH frame) while maintaining the dictionary cardinality. Table
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E.5 addresses this aspect where the dictionaries were generated using a Gaussian

prototype function with σ2 = 4 (this value was used as it led to dictionaries with

similar performance, see Table E.4). The results in Table E.5 were estimated with

the same procedure used to obtain the figures in Table E.4. The figures in Table E.5

show that C is more effective than the other dictionary generation structures as it

leads to lower Θ(D) and Θ(D) in average. It is worth noting that, in average, Θ(D)

and Θ(D) are lower for C than for D, E , G and H when P , Q and the dictionary

cardinality are altered.

Table E.5: Dictionary evaluation changing P and Q while maintaining #D.

P = 2, Q = 32 P = 4, Q = 16 P = 8, Q = 8 P = 16, Q = 4

Θ(D) Θ(D) Θ(D) Θ(D) Θ(D) Θ(D) Θ(D) Θ(D)

C 85.7066 83.1632 73.7664 67.7781 73.5461 67.2123 73.4896 67.3727

D 85.7207 83.1723 73.9342 67.7929 73.3922 67.3755 80.5967 76.1845

E 89.7691 88.6939 85.6877 83.2296 74.4701 67.7916 73.2987 67.3596

G 85.6583 83.1490 74.0510 67.8011 73.7046 67.4083 80.7627 77.2277

H 89.8024 88.6631 85.7173 83.1736 73.7399 67.7818 73.5004 67.3918

It is easy to see from Figure E.4 that A ⊂ C, B ⊂ C as well as C ⊂ F .

Moreover, all the elements of dictionaries A–E , G and H are contained in F . Each

of the dictionaries A, B, D, E , G and H contains half of the elements that are in

C. On the other hand the other half of the elements of C are located at points that

provide the smaller inner products, in the time-frequency plane, with the elements

of dictionaries A and B. This explains why C in general obtains better performance

metrics than the others.

Table E.4 shows also the dictionary performance metrics for the dictionary

M. This dictionary is the maximally oversampled one, that is, it is generated when

setting P = Q = N what implies #(M) = N2. It is noticeable that the dictionary

evaluation metrics Θ(D) and Θ(D) for dictionaries C, F are reasonably close to ones

of dictionary M for all values of σ2. A natural question that arises is if dictionaries

generated by C can provide better results in rate×distortion sense than F and M
do.
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Rate×Distortion Performance Now the performance of the “interlaced” dicti-

onary is evaluated in a rate×distortion sense. For that we assume that the quanti-

zation errors of the coefficients are zero and that no bits are spent for sending them.

Although this assumption is not practical, it allows for an investigation of the ten-

dencies and behavior of the obtained decompositions. As a result, one can assume

that the coding rate increases linearly with the number of elements M employed.

Then, a trivial coding procedure gives a rate of

R = M⌈log2(#D)⌉, (E.104)

where s is the number of atoms used in the decomposition. For this rate×distortion

experiment Gaussian signals in R64 are coded using 5 distinct dictionaries. Dic-

tionary A is composed of the real and imaginary parts of the elements given by

EmbTnag[k], as discussed in section E.3.3. The prototype function g is a Gaussian

with σ2 = 4, and with a and b being set to give 16 points in both time and frequency

axes. In addition, the elements of A were also normalized. Dictionary C is formed

by the union of A and its time- and frequency-shifted version by a/2 and b/2 respec-

tively. Dictionary F is generated like A but with halved time- and frequency-shift

parameters. G is generated from the union of F and its shifted version, that is,

similarly to C with respect to A. Dictionary M is the maximally oversampled with

a and b set to provide N points in both time and frequency axes. The cardinalities

of the designed dictionaries are then #(A) = 512, #(C) = 1024, #(F) = 2048,

#(G) = 4096, #(M) = 8192.

Figure E.6 shows the histograms, with 250 bins, of the angle between an

ensemble of signals drawn from an iid Gaussian source and their closest structures

in the dictionary. These results were obtained using an ensemble of 10000 signals

drawn from an iid Gaussian source as well as their residues in the first 40 iterations

of their MP decompositions. The histograms of C and G show that, in both cases,

the proposed scheme succeeds by improving the angle distribution, that is, they

manage to reduce Θ(D) as well as Θ(D) with respect to A and F .

Figure E.7 shows on the left the mean error norm as a function of the step,

while on the right it shows the mean error norm as a function of the rate – assumed

here as the number of bits needed to code the dictionary element index multiplied by

the number of steps. One can see that the dictionaries generated using the “interla-
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Figure E.6: Histograms of the angles between the residues and the structure used

to approximate them for dictionaries A, C, F , G and M in R64.

cing” approach produce smaller residues as a function of the step when compared to

the“non-interlaced”cases. Note that G does not produce a rate×distortion gain with

respect to F as large as C obtains with respect to A. This can be readily observed

from the histograms in Figure E.6. From these histograms we can see that G does

not obtain considerably lower Θ(D) and Θ(D) with respect to the ones obtained

by F . In addition, in Figure E.7 we can see that M has a worse rate×distortion

performance than C, F and G have. Note that although G does not improves largely

the rate×distortion characteristics of F as C does with respect to A, G does not

deteriorates the rate×performance.

E.5 Chapter Summary

In this chapter we presented the time-frequency content of frames, which is

defined by the sum of the time-frequency content of the frame elements, where the

time-frequency content of signals are measured using the Wigner-Ville distribution.
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Figure E.7: Distortion at the step (left) and error×rate (right) for dictionaries A,

C, F , G and M in R64.

A novel condition for frame characterization was presented that ensures that if the

sum of the time-frequency content of the functions in a given set is positive definite

then this set is a frame. The analysis of the time-frequency content of frames permits

to characterize frames. The time-frequency content of frames was applied to study

the generation of Weyl-Heisenberg frames from damped sinusoids.

The analysis of the time-frequency content of Weyl-Heisenberg frames gene-

rated from symmetric prototypes suggested ways to define the elements of a Weyl-

Heisenberg frame H with respect to the elements of another Weyl-Heisenberg frame

G in order to construct tighter Weyl-Heisenberg-like frames. This construction is

accomplished by interlacing frames H and G in the time-frequency plane. This in-

terlacing corresponds to a rhombus like lattice instead of a rectangular one in the

time-frequency plane. Using the interlacing of Weyl-Heisenberg frames several fra-

mes were generated and evaluated in terms of their frame bounds. The results of
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these evaluations show that the interlacing approach is effective for generating tigh-

ter frames. Experimental results have indicated that, when this interlacing is held in

finite dimensional vector spaces, if the time- and frequency-shift parameters produce

a number of points that equals half of the space dimension in each axis, then the

interlaced frame is tight. This is still an unproven conjecture.

Although dictionaries do not need to satisfy the upper frame bound condition,

any frame can be employed as a dictionary. It was conjectured that if two frames in

an N -dimensional vector space have the same number of elements, then the tighter

of the two frames is expected to provide the better results when used as a dictionary.

The interlacing of Weyl-Heisenberg frames was used to generate dictionaries, and

the experimental results, that evaluated dictionaries in terms of the statistics of

the angle in Matching Pursuit decompositions for Gaussian sources, support this

conjecture.

Indeed, the conjecture above suggests that the time-frequency interlacing of

Weyl-Heisenberg frames permits to “populate” dictionaries constructed from Weyl-

Heisenberg frames. The dictionaries then obtained using the rhombus like time-

frequency parameters lattice (“interlaced”) have a better performance, measured by

the histograms of angle in Matching Pursuit steps, than the dictionaries of same

cardinality constructed using a rectangular lattice.
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Apêndice F

Conclusion

In this thesis some aspects related to signal decompositions using overcom-

plete dictionaries were addressed. In Chapter B a brief review of the theory behind

these representations was presented. A practical application of signal representations

using overcomplete dictionaries was developed and presented in Chapter C for the

specific case of electric disturbance signals. When these signal representations are

used for compression efficient quantization of the coefficients is required. In Chapter

D we presented the design of Lloyd-Max quantizers for those coefficients. The time-

frequency content of frames was defined and studied in Chapter E. The analysis

of Weyl-Heisenberg frames using the the time-frequency content concept allowed to

populate dictionaries formed by elements of Weyl-Heisenberg frames efficiently in

terms of the rate×distortion performance.

The signal decomposition scheme presented in Chapter C provides coherent

decompositions using a dictionary of parameterized atoms. These representations

are robust to noise and achieve good signal compression ratios allied to an acceptable

quality. The signal decomposition algorithm is based on the Matching Pursuits and it

adaptively decomposes the signal using damped sinusoids. The signal representation

provided by the algorithm is a sequence of coefficients and associated parameter sets

which together define the structures identified in the signal. Feasible and effective

computing procedures were presented to identify a signal structure at each algorithm

iteration. In addition, a fast algorithm to eliminate pre-echo and post-echo artifacts

that often appear in decomposition algorithms that are based on the Matching

Pursuit was presented.
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Greedy decomposition algorithms as the Matching Pursuit, often deviate from

a physically meaningful (coherent) decomposition. In order to avoid such detour,

that is, to obtain coherent decompositions, “intelligence”was included inside the de-

composition loop. We included a heuristic inside the decomposition loop specifically

designed for electric disturbance signals which instructs the greedy loop to select

an appropriate atom according to the physical model of electric disturbance signals

employed. The criterion employed to halt the decomposition process automatically

detects the number of terms that should be employed to represent the signal using

the damped sinusoids signal model.

The signal decompositions, obtained using the decomposition algorithm pre-

sented in Chapter C, are then used for lossy signal compression by quantizing both

the coefficients of the signal representation and the parameter sets defining the

structures in the signal representation. We should note that the compressed signal

is reconstructed using parameter sets that differ from the ones that were obtained by

the decomposition algorithm. Despite being very simple, this quantization procedure

performed satisfactorily.

Since, in practice, electric disturbance signals are in general analyzed by

system experts, as continuation we should submit the compressed signals to a sub-

jective analysis. This way, we will be able to better evaluate the performance of the

compression scheme presented.

Due to the nature of the signal model obtained by the decomposition al-

gorithm in Chapter C, a weighted sum of damped sinusoids, it seems that these

decompositions may be employed for other signal sources. This is another aspect

to be investigated in the future, however, in this case, specific heuristics for the

signal source must be designed and placed inside the decomposition loop, in order

to obtain coherent decompositions.

In Chapter D, we addressed the design of Lloyd-Max quantizers for Mat-

ching Pursuit coefficients. This quantizers are designed using the statistics of the

angles between the residue to be decomposed and the atom selected by the Matching

Pursuit in each algorithm iteration. The empirical analysis of these angles using a

Gaussian memoryless signal source indicated that they can be modeled as being in-

dependent and identically distributed across the Matching Pursuit iterations. In this

212



sense, we can consider that the statistics of these angles do not change in function

of the Matching Pursuit iteration. Therefore, such angle statistics can be obtained

from its statistics in the first Matching Pursuit iteration for the decomposition of

signals drawn from a Gaussian memoryless signal source.

By observing the angles between the residue to be decomposed and the atoms

selected in Matching Pursuit iterations one notes that when the dictionary includes

a basis the Matching Pursuit may produce zero angles. This is equivalent to stating

that the Matching Pursuit may obtain an exact signal representation using a finite

number of terms. We provided a theorem proving the last claim.

The independent and identical distributed statistical model for Matching Pur-

suit angles was employed to design Lloyd-Max quantizers for Matching Pursuit co-

efficients. The design of these quantizers requires only an estimate of the probability

density function of the Matching Pursuit angle for signals drawn from a Gaussian

memoryless signal source. One should note that this requirement implies a dictio-

nary dependent quantizer. The Lloyd-Max quantizers designed were shown to have

a very good rate×distortion performance. In addition, the Lloyd-Max quantizer de-

signed has error resilience intrinsically as a result of the use of the same quantization

law for all the coefficients of the signal expansion.

The results obtained suggest that the Lloyd-Max quantizers designed using

the statistics of Matching Pursuit angles for a Gaussian source can be also applied

to other signal sources with very good rate×distortion performance. As suggestion

for future work one could embed these quantizers in more specialized compression

schemes that use greedy decompositions, such as the one presented in Chapter C or

audio and video ones which abound in the literature.

In Chapter E we have defined the time-frequency content of a frame as the

sum of the Wigner-Ville distributions of the frame elements. The time-frequency

content of a frame permits to bound both the upper and the lower frame bounds.

Applying this time-frequency content definition to a set of elements we can determine

if this set is a frame. This is possible because we present a novel sufficient condition

for knowing if a set of functions is a frame of a Hilbert space, which is: if the sum

of the Wigner-Ville distributions of the elements in the set is greater than zero at

any point of the time-frequency plane then the set is a frame of the space.
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From the analysis of the time-frequency content of a Weyl-Heisenberg frame

G generated from an even prototype function we envisioned a way to define another

Weyl-Heisenberg-like frame H with respect to G such that the union of the elements

of frames G and H is a tighter frame. This is accomplished by interlacing H and G
in the time-frequency plane. The frame formed by the union of the two interlaced

frames is equivalent to the use of a rhombus-like lattice for the time-frequency shift

parameters that generate the frame instead of the rectangular one used to generate

Weyl-Heisenberg frames.

The Weyl-Heisenberg frames interlacing procedure was employed to generate

dictionaries to be employed in the Matching Pursuit. The dictionaries generated

were evaluated using the statistics of the angle between signals drawn from a Gaus-

sian source and the closest atom in the dictionary. In essence, we considered in

the evaluation the largest and the average of that angle. The experimental results

indicated that for dictionaries of same cardinality, the ones formed by the elements

of interlaced Weyl-Heisenberg frames have better performance than the ones that

are built up using the elements of a single Weyl-Heisenberg frame.

We conjecture that it is possible to find a similar definition and condition of

frames content on a time-scale domain. This would provide a novel procedure to

characterize wavelet frames. In addition, we are also in the quest for a procedure

to “interlace” wavelet frames in a time-scale domain. This procedure could be used

together with the interlacing of Weyl-Heisenberg frames to construct more efficient

Gabor like dictionaries.

Another aspect that is to be investigated is the connection of the synthesis

operator of Weyl-Heisenberg frames to multi-carrier modulation systems. This con-

nection is suggested naturally in the derivation of the fast and efficient computation

method for Weyl-Heisenberg frames analysis and synthesis operators in Chapter E,

via the resemblance of the frame syntheses operator to Frequency Division Multi-

plexing systems.
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Apêndice G

Proof of the Null Residue

Proposition

Before proving the“null residue proposition”(see section D.1.4) we need some

relevant definitions:

1. MP algorithm and dictionary set-up:

(a) The MP algorithm is employed to decompose x ∈ R
N .

(b) The dictionary cardinality #D is finite.

(c) The dictionary is given by D ≡ {gk}k∈{1,...,#D} and its elements have unit

norms, i.e. ‖gk‖ = 1 ∀ k ∈ {1, . . . , #D}.

(d) All dictionary atoms are different, i.e. |〈gk, gj〉| < 1, ∀ j 6= k ∈ {1, . . . , #D}.

(e) Since the atom selected at the nth step gi(n) and the resulting residue

rn
x

are orthogonal, i.e., rn
x
⊥ gi(n), then necessarily i (n) 6= i (n + 1), i.e.,

gi(n) 6= gi(n+1).

2. Voronoi cells:

Definition G.1 The Voronoi region [57] associated to each dictionary ele-

ment gk is defined as

Vk =
{

x ∈ R
N | 〈x, gk〉 > 〈x, gj〉, j ∈ {1, . . . , #D} − {k}

}

. (G.1)

(a) Since gk 6= gj for j 6= k, ‖gk‖ = 1 and #D is finite the Voronoi region of

each dictionary atom is not empty, that is,
∫

Vk
dx > 0, ∀ k ∈ {1, . . . , #D}.
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(b) Let

d = min
gj , gk∈D

‖gj − gk‖, (G.2)

then

if ‖x‖ <
d

2
then gj + x ∈ Vj , ∀gj ∈ D. (G.3)

(c) If x ∈ Vk then ax ∈ Vk, a ∈ R
∗
+. This means that, the Voronoi regions

generated by a dictionary of unit norm atoms are “conic” shaped with

their vertexes at the origin ~0.

(d) At the mth MP step:

i. if rm−1
x

∈ Vk then the MP selects gi(m) = gk, i.e. i(m) = k, for

approximating rm−1
x

;

ii. if rm−1
x

belongs to the boundary between two Voronoi regions any

of the gk defining these Voronoi regions can be used to approximate

rm−1
x

.

3. Probability Distributions:

(a) The pdf of an outcome x from the source X is given by fX (x).

(b) The pdf of the nth residue is denoted using fRn
x

(rn
x
).

Definition G.2 Let P (n, k) = P
(

rn−1
x

∈ Vk

)

denote the probability of the

residual to be decomposed in the nth MP iteration being inside the Voronoi cell

Vk.

P (n, k) can be computed by means of

P (1, k) =

∫

Vk

fX (x) dx, (G.4)

P (2, k) =

∫

Vk

fR1
x

(y) dy, (G.5)

...

P (n, k) =

∫

Vk

fRn−1
x

(y) dy. (G.6)

4. Hyper-spheres:
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Definition G.3 Let α > 0, ǫ > 0, BQ to be a set of Q vectors spanning a

Q-dimensional hyper-plane PQ ⊂ RN and g ∈ PQ, we define

SQ(αg, ǫ, N,BQ) (G.7)

as a Q-dimensional hyper-sphere of radius ǫ centered at αg ∈ RN (α ∈ R)

contained in PQ.

That is, any x ∈ PQ is given by

x =

Q
∑

i=1

βigi, gi ∈ BQ and gi ∈ R
N such that 〈gi, gj〉 = δi,j, ∀ i, j ∈ [1, . . . , Q].

(G.8)

For α > 0 and g ∈ RN ∩ PQ,

if ‖x − αg‖ < ǫ then x ∈ SQ(αg, ǫ, N,BQ). (G.9)

(a) Note that if BQ ⊂ BQ+1 and g ∈ PQ then

SQ(αg, ǫ, N,BQ) ⊂ SQ+1(αg, ǫ, N,BQ+1) (G.10)

(b) We use SQ(~0, ǫ, N,BQ) to denote a Q-dimensional hyper-sphere of radius

ǫ centered at the origin.

After these definitions, we can state the “null residue proposition” as in the

theorem below.

Theorem G.1 Let a dictionary D include an orthonormal basis of RN

BN = {gl1, . . . , glN} ∈ D, that is, there exists IN = {l1, . . . , lN} such that 〈gli, glj〉 =

δ(i − j), for i and j ∈ {1, . . . , N}.
If the signal source X has the following property: ∃ glk , lk ∈ I, such that

∃ αlk , ǫlk > 0 with

SN(αlkglk , ǫlk , N,BN) ⊂ Vlk and fX (x) > 0, ∀ x ∈ SN(αlkglk , ǫlk , N,BN). (G.11)

Then

A. the MP has a non-zero probability of selecting only atoms that belong to BN in

the first m ≤ N steps, that is

P (i(1) ∈ IN , i(2) ∈ IN , . . . , i(m) ∈ IN) > 0. (G.12)
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B. There is a non-zero probability of the residue being null after the N th MP

iteration, that is,

P (rN
x

= ~0) > 0. (G.13)

In order to prove this theorem we need some auxiliary results.

Lemma G.1 Let a dictionary D include an orthonormal basis of RN ,

BN = {gl1, . . . , glN} ∈ D, that is, there exists IN = {l1, . . . , lN} such that 〈gli, glj〉 =

δ(i − j), for i and j ∈ {1, . . . , N}.
Let the outcomes of the source X belong to an (N − m) dimensional hyper-

plane PN−m ⊂ RN , with 0 < m < N , which is generated by BN−m ⊂ BN and

represent the indices of the elements in BN−m using IN−m. This means that

x =
∑

li∈IN−m

βligli. (G.14)

If ∃ ǫ > 0 such that

fX (x) > 0, ∀ x ∈ SN−m(~0, ǫ, N,BN−m), (G.15)

then if the atom selected at the 1st MP step is glk , i.e., i(1) = lk ∈ IN−m, then

A. ∀ li ∈ IN−m − {lk} there exists a hyper-sphere SN−m−1(~0, ǫlk , N,BN−m−1),

where BN−m−1 = BN−m − {glk}, such that

fR1
x

(y) > 0, ∀ y ∈ SN−m−1(~0, ǫlk , N,BN−m−1). (G.16)

B. Therefore,

P (2, li | i(1) = lk) > 0, ∀ li ∈ IN−m − {lk}. (G.17)

Proof:

1. First we show that

Vli ∩ SN−m(~0, ǫ, N,BN−m) 6= ∅. (G.18)

(a) Note that

Vli ∩ PN−m 6= ∅ and ~0 ∈ Vli ∩ PN−m. (G.19)

(b) Note also that

if x ∈ Vli ∩ PN−m then ax ∈ Vli ∩ PN−m. (G.20)
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(c) Let x ∈ Vli ∩ PN−m,

if a ≤ ǫ

‖x‖ then ax ∈ SN−m(~0, ǫ, N,BN−m). (G.21)

�

2. We now show that for each li ∈ IN−m there is an (N −m) dimensional hyper-

sphere SN−m(αligli, ǫli , N,BN−m) such that

SN−m(αligli , ǫli, N,BN−m) ∩ Vli = SN−m(αligli , ǫli, N,BN−m) and

SN−m(αligli, ǫli , N,BN−m) ⊂ SN−m(~0, ǫ, N,BN−m).
(G.22)

(a) From Definition D.1 property (b) we have that for each gli ∈ BN−m exists

d > 0 such that

SN−m(gli , d, N,BN−m) ∩ Vli = SN−m(gli , d, N,BN−m). (G.23)

(b) From Definition D.1 property (c), we know that if (G.23) holds then

∀ a > 0, SN−m(agli , ad, N,BN−m) ∩ Vli = SN−m(agli , ad, N,BN−m).

(G.24)

(c) It is known that ∀ y ∈ SN−m(agli , ad, N,BN−m), ‖y‖ is such that

|a(1 − d)| ≤ ‖y‖ ≤ |a(1 + d)| . (G.25)

(d) Therefore, if we select

a <
ǫ

|1 + d| (G.26)

then

SN−m(agli , ad, N,BN−m) ⊂ SN−m(~0, ǫ, N,BN−m). (G.27)

(e) Therefore, if we select 0 < αli < a and 0 < ǫli < ad then equation (G.22)

is valid.

�

3. From item 1 we have that

Vli ∩ SN−m(~0, ǫ, N,BN−m) 6= ∅ (G.28)
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and from item 2 we know that ∃ SN−m(αligli, ǫli , N,BN−m) such that

SN−m(αligli , ǫli , N,BN−m) ⊂
[

Vli ∩ SN−m(~0, ǫ, N,BN−m)
]

. (G.29)

Therefore, from equation (G.15) we have that

fX (y) > 0, ∀ y ∈ SN−m(αligli , ǫli , N,BN−m). (G.30)

4. Equation (G.30) implies that ∀ li ∈ IN−m

P (1, li) =

∫

Vli
∩PN−m

fX (y)dy ≥
∫

SN−m(αli
gli

,ǫli
,N,BN−m)

fX (y)dy > 0. (G.31)

5. Since BN−m = {gl1 , . . . , glN−m
} is an orthonormal basis of PN−m ⊂ R

N , any

x ∈ PN−m can be expressed as

x =

N−m
∑

i=1

γligli (G.32)

This way, any x ∈ SN−m(αlkglk , ǫlk , N,BN−m) can be expressed as

x = αlkglk +
N−m
∑

i=1

βligli and then ǫlk
2 ≥ ‖x − αlkglk‖2 =

N−m
∑

i=1

βli
2. (G.33)

6. If the MP iteration selects glk , i.e., i(1) = lk, to approximate x then the

resulting residue is r1
x

= x − γlkgk. From equation (G.33) it follows that

γlk = 〈x, glk〉 = αlk + βlk then

r1
x

=
∑

li∈IN−m−{lk}
βligli → ‖r1

x
‖ =

√

∑

li∈IN−m−{lk}
βli

2 ≤ ǫlk . (G.34)

Therefore, r1
x

is contained in an (N−m−1)-dimensional hyper-plane generated

by the basis BN−m−1 = BN−m − {glk}.

7. Equation (G.34) shows that r1
x

is inside an (N − m − 1)-dimensional hyper-

sphere of radius ǫlk , i.e., r1
x
∈ SN−m−1(~0, ǫlk , N,BN−m−1). Therefore, from

equation (G.15) we have that

fR1
x

(y | i(1) = lk) > 0, ∀ y ∈ SN−m−1(~0, ǫlk , N,BN−m−1). (G.35)

This proves claim A.
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8. As explained in items 1-3 above, for each li ∈ IN−m − {lk},
∃ SN−m−1(αligli , ǫli, N,BN−m−1) such that

SN−m−1(αligli, ǫli , N,BN−m−1) ∩ Vli = SN−m−1(αligli , ǫli , N,BN−m−1)

and SN−m−1(αligli , ǫli, N,BN−m−1) ⊂ SN−m−1(~0, ǫlk , N,BN−m−1).
(G.36)

9. Therefore,

P (2, li | i(1) = lk) =

∫

Vli

fR1
x

(y | i(1) = lk) ≥

≥
∫

SN−m−1(αli
gli

,ǫli
)

fR1
x

(y | i(1) = lk) > 0.

(G.37)

This proves claim B. �

Lemma G.2 Let a dictionary D include an orthonormal basis of RN ,

BN = {gl1, . . . , glN} ∈ D, that is, there exists IN = {l1, . . . , lN} such that 〈gli, glj〉 =

δ(i − j), for i and j ∈ {1, . . . , N}.
If the signal source X has the following property: ∃ glk , lk ∈ IN , such that

∃ αlk , ǫlk > 0 with

SN(αlkglk , ǫlk , N,BN) ⊂ Vlk and fX (x) > 0 ∀ x ∈ SN(αlkglk , ǫlk , N,BN), (G.38)

then:

A. If the atom selected at the 1st MP step is glk , i.e., i(1) = lk, then ∀ li ∈
IN − {lk}, i.e., ∀ gli ∈ BN−1 = BN − {glk}, there exists a hyper-sphere

SN−1(αligli , ǫli , N,BN−1) such that

fR1
x

(y) > 0, ∀ y ∈ SN−1(αligli, ǫli , N,BN−1). (G.39)

B. Therefore,

P (2, li) > 0, ∀ li ∈ IN − {lk}. (G.40)

Proof: The proof is a particular case of the proof of Lemma G.1.

1. The assumption in equation (G.38) is equivalent to equation (G.30). We can

then apply the proof of Lemma G.1, from step 4, showing that claim A is valid

and also that the claim B of Lemma G.1 also holds for the source considered

in the current Lemma.
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2. Since li, li ∈ IN − {lk} can be chosen in the second pass of the MP even if lk

has not been chosen in the first one, we have that ∀ li ∈ IN − {lk}

P (2, li) ≥ P (1, lk)P (2, li | i(1) = lk) > 0. (G.41)

This proves claim B. �

Proof of Theorem G.1:

• Preliminaries: The MP algorithm is such that gi(n) ⊥ rn
x
; therefore if the

atoms selected in m successive MP steps, i.e., from steps 1 to m belong to the

basis BN then the residue rm
x

is orthogonal to all the atoms selected in steps

1 to m. Therefore, if i(1), i(2), . . . , i(m) ∈ IN then necessarily i(m + 1) ∈/
{i(1), . . . , i(m)}.

Defining

IC
m = {i(1), . . . , i(m)} and IN−m = IN − IC

m (G.42)

the left side in equation (G.12) can be expressed as

P (i(1) ∈ IN , i(2) ∈IN , . . . , i(m) ∈ IN ) =

= P (i(1) ∈ IN , i(2) ∈ IN−1, . . . , i(m) ∈ IN−m−1).
(G.43)

To prove the result in equation (G.12), that is, to prove

P (i(1) ∈ IN , i(2) ∈ IN , . . . , i(m) ∈ IN) > 0, (G.44)

it suffices to prove that

P (i(1) ∈ IN) > 0 (G.45)

P (i(1) ∈ IN , i(2) ∈ IN−1) = (G.46)

P (i(2) ∈ IN−1 | i(1) ∈ IN )P (i(1) ∈ IN) > 0

...

P (i(1) ∈ IN , i(2) ∈ IN−1, . . . , i(m + 1) ∈ IN−m) = (G.47)

= P (i(m) ∈ IN−m | i(1), . . . , i(m) ∈ IN)P (i(1), i(2), . . . , i(m) ∈ IN) > 0

• Proof: The proof will be by induction.

222



1. From Lemma G.2 we have that

P (i(1) ∈ IN , i(2) ∈ IN−1) ≥ P (i(1) = lk, i(2) ∈ IN−1) =

= P (1, lk)
∑

li∈IN−{lk}
P (2, li | i(1) = lk) > 0.

(G.48)

That is, equation (G.12) is valid for m = 2.

2. Now we prove that if

P (i(1), i(2), . . . , i(m) ∈ IN ) > 0 (G.49)

then

P (i(m + 1) ∈ IN−m | i(1), . . . , i(m) ∈ IN) > 0. (G.50)

(a) Applying Lemma G.2 once and Lemma G.1 (m − 1) times we have

that

∀ li ∈ IN−m, ∃ SN−m(αligli , ǫli , N,BN−m) such that

SN−m(αligli , ǫli , N,BN−m) ∩ Vli = SN−m(αligli, ǫli , N,BN−m).

(G.51)

(b) Therefore, if i(1), i(2), . . . , i(m) ∈ IN then

P (i(m + 1) ∈ IN−m | i(1), . . . , i(m) ∈ IN) > 0. (G.52)

(c) Since

P (i(1), i(2), . . . , i(m + 1) ∈ IN ) = (G.53)

P (i(m+1) ∈ IN−m | i(1), i(2), . . . , i(m) ∈ IN )P (i(1), i(2), . . . , i(m) ∈ IN ),

then, from equation (G.52), we have that if

P (i(1), i(2), . . . , i(m) ∈ IN ) > 0 (G.54)

then

P (i(1), i(2), . . . , i(m + 1) ∈ IN ) > 0. (G.55)

3. Equation (G.53) shows that if the result in equation (G.12) is valid for m

then it is also valid for m+1. Since equation (G.48) shows that equation

(G.12) is true for m = 1 then equation (G.12) is true for any m.

This proves claim A.
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4. If i(1), i(2), . . . , i(N − 1) ∈ IN then I1 = IN − IC
N−1 = {gl̂} and the

resulting residue is

rN−1
x

= αgl̂. (G.56)

That is, rN−1
x

lies on the space generated by gl̂, that is, rN−1
x

has the

same direction as gl̂. Therefore, the MP makes i(N) = l̂ yielding a null

residue. Therefore,

P (rN
x

= ~0) = P (i(1), i(2), . . . , i(N) ∈ IN) =

= P (i(1), i(2), . . . , i(N − 1) ∈ I2) > 0.
(G.57)

This proves claim B. �

Corollary G.1 Let the dictionary include an orthonormal basis of R
N

BN = {gl1, . . . , glN} ∈ D, that is, there exists IN = {l1, . . . , lN} such that 〈gli, glj〉 =

δ(i − j), for i and j ∈ {1, . . . , N}. If the signals to be decomposed using the MP

come from an iid Gaussian source then

P (rn
x

= ~0) > 0, n = N. (G.58)

Proof:

1. The N-dimensional iid Gaussian source is such that any x ∈ RN has a non

null pdf. That is,

fX (x) > 0, ∀ x ∈ R
N . (G.59)

Inside RN we can place a hyper-sphere of radius ǫk centered at any αkgk,

k ∈ {1, . . . , #D} such that (this is a straightforward result from equation (G.3))

Vk ∩ SN(αkgk, ǫk, N,BN) = SN(αkgk, ǫk, N,BN), (G.60)

therefore

∀ k ∈ {1, . . . , #D}, ∃ SN(αkgk, ǫk, N,BN) ∈ Vk,

such that fX (x) > 0, ∀ x ∈ SN (αkgk, ǫk, N,BN).
(G.61)

2. Since IN ⊂ {1, . . . , #D} for any lk ∈ IN one can find a hyper-sphere satisfying

equation (G.61). This implies that the iid Gaussian source satisfies equation

(G.11).
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3. Therefore,

P
(

rN−1
x

= ~0
)

> 0. (G.62)

�
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[1] Adler, J., Rao, B. D., and Kreutz-Delgado, K. Comparison of basis

selection methods. In Proceedings of the 30th Asilomar Conf. on Signals,

Systems and Computers (November 1996), vol. 1, pp. 252–257.

[2] Al-Shaykh, O. K., Miloslavsky, E., Nomura, T., Neff, R., and

Zakhor, A. Video compression using matching pursuits. IEEE Trans. on

Circuits and Systems for Video Technology 9 (February 1997), 123–143.

[3] Andrle, M., Rebollo-Neira, L., and Sagianos, E. Backward-

optimized orthogonal matching pursuit approach. IEEE Signal Processing

Letters 11 (2004), 705 – 708.

[4] Benedetto, J. J., and Fickus, M. Frame potentials. Advances in Com-

putational Math 18 (2003), 357–385.

[5] Bölcksei, H., Hlawatsh, F., and Feichtinger, H. G. Frame-theoretic

analysis of oversampled filter banks. IEEE Trans. on Signal Processing 46, 12

(August 1998), 3256–3268.

[6] Bujanowski, B., Pierre, J., Hietpas, S., Sharpe, T., and Pierre,

D. A comparison of several system identification methods with application

to power systems. In Proceedings of the 36th Midwest Symposium on Circuits

and Systems (1993).

[7] Burrus, C. S., Gopinath, R. A., and Guo, H. Introduction To Wavelets

and Wavelets Transforms A Primer, 1 ed. Prentice Hall, Upper Saddle River,

New Jersey 07458, USA, 1998.

226



[8] Caetano, R. Codificação de v́ıdeo usando planos de bits generalizados. D.

Sc. Thesis, COPPE/UFRJ, Rio de Janeiro, RJ, 2004.

[9] Caetano, R., da Silva, E. A. B., and Ciancio, A. G. Matching pursuits

video coding using generalized bit-planes. In IEEE Inter. Conf. on Image

Processing (Rochester, NY, USA, September 2002).

[10] Canadian-American EMTP User Group. EMTP Rule Book, Alternative

Transients Rule Book. Canadian-American EMTP User Group, 1987-1992.

[11] Candes, E. J., and Donoho, D. L. Ridgelets: a key to higher-dimensional

intermittency? Philosophical Transactions: Mathematical, Physical and En-

gineering Sciences 357 (1999), 2495–2509.

[12] Casazza, P., and Kovacevic, J. Equal-norm tight frames with erasures.

Advances in Computational Mathematics–Especial Issue on Frames (2002),

387–430.

[13] Casazza, P. G., and Christensen, O. Weyl-heisenberg frames for subs-

paces of L2(R). Proc. Amer. Math. Soc. 129 (2001), 145–154.

[14] Chen, S., Billings, S. A., and Luo, W. Orthogonal least squares methods

and their application to non-linear systems identification. International Jour-

nal of Control 50, 5 (1989), 1873–1896.

[15] Chen, S., and Donoho, D. Basis pursuit. In Proceedings of the 28th

Asilomar Conf. on Signals, Systems and Computers (September 1994), vol. 1,

pp. 41–44.

[16] Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic decomposi-

tion by basis pursuit. SIAM J. Sci. Comput 20 (1998), 33–61.

[17] Christensen, O. An Introduction To Frames And Riesz Bases, 1 ed. Applied

and Numerical Harmonic Analysis. Birkhäuser, Boston, Basel, Berlin, 2002.
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