
K-LOSS ROBUST CODIAGNOSABILITY OF DISCRETE-EVENT SYSTEMS

Vinicius de Souza Lima Oliveira

Dissertação apresentada ao Corpo Docente

do Departamento de Engenharia Elétrica da

Escola Politécnica da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre.

Orientador: Marcos Vicente de Brito Moreira

Rio de Janeiro

Setembro de 2022

K-LOSS ROBUST CODIAGNOSABILITY OF DISCRETE-EVENT SYSTEMS

Vinicius de Souza Lima Oliveira

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO DEPARTAMENTO

DE ENGENHARIA ELÉTRICA DA ESCOLA POLITÉCNICA DA

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE.

Examinada por:

Prof. Marcos Vicente de Brito Moreira, Ph.D.

Prof. João Carlos dos Santos Baśılio, Ph.D.

Prof. Marcelo Teixeira, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

SETEMBRO DE 2022

de Souza Lima Oliveira, Vinicius

K-Loss Robust Codiagnosability of Discrete-Event

Systems / Vinicius de Souza Lima Oliveira. – Rio de

Janeiro: UFRJ/Escola Politécnica, 2022.

IX, 46 p.: il.; 29, 7cm.

Orientador: Marcos Vicente de Brito Moreira

Dissertação – UFRJ/Escola Politécnica/ Departamento

de Engenharia Elétrica, 2022.

Referências Bibliográficas: p. 43 – 46.

1. Discrete Event Systems. 2. Fault Diagnosis. 3.

Communication Networks. I. Vicente de Brito Moreira,

Marcos. II. Universidade Federal do Rio de Janeiro, Escola

Politécnica, Departamento de Engenharia Elétrica. III. K-

Loss Robust Codiagnosability of Discrete-Event Systems.

iii

”Rather than love, than money,

than fame, give me truth”

Henry David Thoreau

iv

Agradecimentos

Gostaria de agradecer primeiramente à Deus por me dar saúde e a oportunidade de

concluir mais esta etapa em minha vida.

Agradeço à minha mãe Marta Maria por todo sacŕıficio, esforço e amor dedicado a

mim durante sua vida e a todo incentivo a minha educação.

Agradeço ao meu orientador Marcos Moreira por todos os ensinamentos passados,

pelas horas investidas e por acreditar em mim ao longo dos anos de graduação e pós

graduação.

Agradeço ao Felipe Cabral por toda contribuição em meus trabalhos, pelos conselhos

e suporte.

Agradeço à Maynara Aredes pela parceria e apoio ao longo do peŕıodo letivo da pós

graduação.

Agradeço também à COPPE-UFRJ, seu corpo docente e administração, e a todos

aqueles que contribúıram para que eu finalizasse esta importante etapa.

v

Resumo da Dissertação apresentada à Escola Politécnica/UFRJ como parte dos

requisitos necessários para a obtenção do grau de Mestre

K-LOSS ROBUST CODIAGNOSABILITY OF DISCRETE-EVENT SYSTEMS

Vinicius de Souza Lima Oliveira

Setembro/2022

Orientador: Marcos Vicente de Brito Moreira

Departamento: Engenharia Elétrica

O problema de diagnóstico robusto contra perda de observações tem sido fre-

quentemente estudado e diversas abordagens tem sido propostas na literatura, con-

siderando arquiteturas centralizadas e descentralizadas. Nos métodos de diagnóstico

robustos propostos atualmente, assume-se que alguns canais de comunicação entre

sensores e diagnosticadores são confiáveis e as leituras dos sensores são sempre comu-

nicadas aos diagnosticadores, enquanto os demais sensores, ou canais de comunicação

entre sensores e diagnosticadores, estão sujeitos a falhas. Nesses trabalhos, são con-

sideradas falhas permanentes ou intermitentes, e são obtidos os respectivos modelos

das plantsa sujeitas à essas falhas. Uma caracteŕıstica do método de diagnóstico

robusto considerando falhas intermitentes é que o sensor ou canal de comunicação

defeituoso pode ou não se recuperar da falha, e falhas permanentes também são

representadas no modelo da planta sujeita a falhas intermitentes. No entanto, em

alguns casos, a falha de comunicação é temporária, i.e., o canal de comunicação

sempre se recupera da falha após um número limitado de perdas consecutivas de ob-

servação, como falhas devido a congestionamento de tráfego de dados ou perda tem-

porária de conexão. Neste artigo, formulamos um problema de diagnóstico robusto

onde assumimos que após um determinado número máximo de perdas consecutivas

de observação de eventos em um canal de comunicação, ele deve se recuperar da

falha e comunicar a observação dos eventos. A nova formulação leva a uma noção

diferente de codiagnosabilidade robusta, chamada de codiagnosabilidade robusta à

K-perdas. Apresentamos também um método para a verificação desta propriedade.

vi

Abstract of Dissertation presented to POLI/UFRJ as a partial fulfillment of the

requirements for the degree of Master

GRADUATION PROJECT TITLE

Vinicius de Souza Lima Oliveira

September/2022

Advisor: Marcos Vicente de Brito Moreira

Department: Electrical Engineering

Recently, the problem of robust diagnosis against loss of event observations has

been proposed in the literature, considering centralized and decentralized architec-

tures. In the robust diagnosis methods proposed in the literature it is assumed

that some communication channels between sensors and diagnosers are reliable and

the sensor readings are always communicated to the diagnosers, while the other

sensors, or communication channels between sensors and diagnosers, are subject

to failures. In these works, permanent or intermittent failures are considered, and

models of the plant subject to these failures are obtained. One characteristic of the

robust diagnosis method considering intermittent failures is that the faulty sensor

or communication channel may or may not recover from the failure, and perma-

nent failures are also represented in the model of the plant subject to intermittent

failures. However, in some cases, the communication failure is temporary, i.e., the

communication channel always recovers from the failure after a bounded number

of consecutive observation losses, such as failures due to data traffic congestion or

temporary connection loss. In this paper, we formulate a different problem of robust

diagnosis where we assume that after a given maximum number of consecutive event

observation losses in a communication channel, it must recover from the failure and

communicate the observation of an event. The new formulation leads to a different

notion of robust codiagnosability, called K-loss robust codiagnosability. We also

present a method for the verification of this property.

vii

Sumário

Lista de Figuras ix

1 Introduction 1

2 Fundamental Concepts of Discrete-Event Systems 5

2.1 Languages . 6

2.1.1 Languages Operations . 6

2.2 Automata . 8

2.2.1 Operations on automata . 9

2.2.2 Automata with partially observable events 13

2.3 Fault Diagnosis of DES . 15

2.3.1 Centralized Diagnosis . 16

2.3.2 Decentralized Diagnosis . 19

2.3.3 Codiagnosability Verification 20

2.4 Robust diagnosis against intermittent loss of observations 22

2.5 Final Remarks . 25

3 K-Loss Robust Codiagnosability 27

3.1 Problem formulation . 27

3.2 Definition of K-loss robust codiagnosability 29

3.2.1 Model of the plant subject to temporary event communication

failures . 32

3.3 K-loss robust codiagnosability verification 35

3.4 Concluding Remarks . 40

4 Conclusion 41

Referências Bibliográficas 43

viii

Lista de Figuras

2.1 State transition diagram of automaton G of Example 2.2. 9

2.2 automaton G1 of Example 2.3. 12

2.3 automaton G2 of Example 2.3. 13

2.4 automaton Gprod of Example 2.3. 13

2.5 automaton Gpar of Example 2.3. 13

2.6 Automaton G of Example 2.4 . 15

2.7 observer automaton of G, Obs (G,Σo) of Example 2.4 15

2.8 Automaton G of Example 2.5 . 18

2.9 Parallel composition between G and Al of Example 2.5 18

2.10 Automaton Gd = Obs(G ∥ Al) of Example 2.5 19

2.11 Decentralized arcquitecture . 19

2.12 Automaton G of Example 2.6 . 21

2.13 Automaton GN of Example 2.6 . 21

2.14 Automaton GF of Example 2.6 . 21

2.15 Automaton GV of Example 2.6 . 22

2.16 Automaton G1 of Example 2.7 . 24

2.17 Automaton G2 of Example 2.7 . 24

2.18 Automaton G1dil of Example 2.7 . 25

2.19 Automaton G2dil of Example 2.7 . 25

3.1 Decentralized diagnosis scheme. 28

3.2 Automaton G of Example 3.1. 29

3.3 Automaton ∆1,1 of Example 3.3. 33

3.4 Automaton ∆1,2 of Example 3.3. 33

3.5 Automaton ∆2,1 of Example 3.3. 34

3.6 Automaton model Gt1 = G∥∆1,1∥∆1,2 of the system subject to loss

of observations of Example 3.4. 35

3.7 Automaton model Gt2 = G∥∆2,1 of the system subject to loss of

observations of Example 3.4. 36

3.8 A fault path of verifier V = V1∥V2 of the system subject to loss of

observations of Example 3.5. 39

ix

Caṕıtulo 1

Introduction

Automation systems are subject to several types of faults that can affect their expec-

ted behavior and reduce their reliability and performance. Therefore, the implemen-

tation of a fault diagnosis system of DESs is fundamental to identify the occurrence

of a fault event in those types of system. In DES, events are defined as instanta-

neous occurrences, that can change the system state. In order to model DES, the

most common formalisms are Automata and Petri nets [1–4]. Automata are directed

graphs, in which states and events are represented by vertices and arcs. Petri nets

are bipartite graphs, or bigraphs, in the sense that it has two types of nodes, defined

as places and transitions, where nodes of the same type cannot be connected. In

this work, automata are used to model DESs. In order to identify that a fault event

has occurred, it is necessary to build a DES model of the faulty-free and post-fault

behaviors of the system. Then, the fault occurrence can be diagnosed by tracking

the observed traces generated by the system. Several works in the literature address

the problem of fault diagnosis of DES modeled by automata [4–16].

Although fault diagnosis of DESs can be carried out using different types of ar-

chitectures [4, 7, 17, 18], in the present work we consider only two of them: (i) the

centralized architecture, where the occurrence of all observable events are commu-

nicated to a monolithic diagnoser and (ii) the decentralized architecture composed

of several local diagnosers, where it is considered that the observation of the system

events is distributed, and each local diagnoser observes part of the system events.

The diagnosis methods presented in SAMPATH et al. [4], CARVALHO et al.[10, 11],

CABRAL et al. [13], SANTORO et al. [14], consider that all system information

regarding fault diagnosis, is available in a centralized architecture. However, there

is a large number of systems where the diagnosis information is only available lo-

cally [7], which makes the decentralized [7–9, 19] more suitable for such systems.

In DEBOUK et al. [7], different protocols for decentralized diagnosis are presen-

ted. The notion of diagnosability introduced in SAMPATH et al. [4] is extended

to decentralized architectures, consisting of local diagnosers that communicate with

1

a coordinator, in order to detect fault event occurrences. Several protocols for de-

centralized diagnosis, that determine the diagnostic information generated at each

local site, the communication rules used by the local sites, and the decision rule for

fault diagnosis applied by the coordinator are presented in DEBOUK et al. [7].

In the aforementioned works, the observations of the system events are commu-

nicated to diagnosers that detect and isolate the faults that have occurred in the

system, within a bounded number of event observations. This communication can

be carried out by using wired or wireless networks, which are susceptible to external

interferences or malfunctioning. In addition, sensors may fail and the occurrence of

events may not be transmitted to the diagnoser. When the fault to be detected is

not the failure in the communication of the occurrence of system events, and infor-

mation regarding event observations is lost, the diagnoser constructed based on the

plant model can get stuck or provide an incorrect diagnosis decision [20]. Thus, for

systems subject to loss of event observations, it is important to modify the diagnoser

in order to be capable of diagnosing the system faults.

The problem of robust diagnosis, where the objective is to detect the occurrence

of unobservable fault events using a set of sensors that themselves are subject to

failures, such as, intermittent or permanent communication malfunction, has been

addressed in [10, 11, 20–26]. The sensor communication failures can be divided

into three types [27, 28]: (i) permanent failures; (ii) intermittent failures; and (iii)

transient failures. Permanent failures are continuous and stable in time, and are, in

general, related to hardware faults [27]. Intermittent failures are in general related to

hardware faults or software malfunctioning [28]. This type of failure may eventually

become permanent over time if the cause of the problem is not fixed by the main-

tenance staff. Different from the permanent and intermittent fault, the transient

failures are not caused by an internal problem in the sensor or network. Transient

failures are caused by external interferences, such as electromagnetic radiation, heat,

weakness of wireless connections, data traffic congestion, and other environmental

interferences [28–32]. They are often due to transient adverse conditions (e.g., a

tunnel for GPS) but usually disappear quickly and are not considered a threat for

the system’s security. The main characteristic of this type of failure is that it is

temporary and disappears after a short period of time. Thus, transient failures are

part of the normal operation of sensors [30], and, when they occur, the diagnoser

constructed based on the plant model can get stuck or provide an incorrect diagnosis

decision. This shows that if it is not possible to guarantee that an external interfe-

rence will not occur in the communication network, then the diagnoser constructed

based on the plant model without taking into account transient failures cannot be

used for diagnosis.

Several works address the problem of robust diagnosis of DESs against permanent

2

or intermittent loss of observations [11, 20, 22, 33–36]. In [20], the problem of

robust diagnosis of DES against permanent loss of event observations, considering

a centralized architecture, is introduced, where it is supposed that any permanent

sensor failure takes place prior to the first occurrence of the event recorded by this

sensor. In [34], the same assumption is considered, and the robust diagnosis against

permanent loss of observations is extended to the decentralized case. With a view to

relaxing the assumption considered in [20, 34], allowing the sensor failure occurrence

at any time, in [33], a new model of the plant subject to permanent sensor failures

is proposed, leading to a different notion of diagnosis of DES subject to permanent

sensor failures. The case of decentralized diagnosis of DES subject to permanent

sensor failures, which also allows sensor failures at any time, is presented in [36].

In [11], the problem of robust diagnosis against intermittent loss of observations

(RDILO) is formulated first for the centralized case, and then, extended to the

decentralized case considering protocol 3 of [7], i.e., the fault is diagnosed by at

least one of the local diagnosers that infer the occurrence of the fault event based on

their own observations. As in [20, 33, 34, 36], in [11], it is assumed that some of the

system sensors are reliable and are always capable of communicating their readings to

the diagnosers, while the other sensors, or communication channels between sensors

and diagnosers, are subject to failures. In addition, it is assumed that if the sensor

or communication channel fails, then it can or cannot recover from the failure, i.e.,

the model proposed in [11] represents both the intermittent and permanent loss of

event observations. The notions of robust diagnosability and robust codiagnosability

against intermittent loss of observations are presented in [11].

Since the model proposed in [11] also represents the permanent loss of event ob-

servations, then, if we assume that the communication channel always recovers from

failures after a bounded number of consecutive observation losses, i.e., if we consider

only temporary communication failures such as failures due to data traffic conges-

tion, interference, or temporary connection loss, the notion of robust diagnosability

proposed in [11] becomes very conservative. In addition, the case of unreliable com-

munication of all observable events cannot be addressed using the method proposed

in [11].

In this work, we formulate the problem of robust diagnosis against transient

sensor communication failures. Since transient failures last for a short time, we

assume that after a given maximum number of consecutive event observation losses

in a communication channel, it must recover from the failure and communicate the

observation of an event. The new formulation leads to a different notion of robust

codiagnosability, called K-loss robust codiagnosability. A model of the plant subject

to loss of observations is presented, and, based on this model, a method for the

verification of K-loss robust codiagnosability is proposed. It is important to remark

3

that it is the first work that addresses the effects of transient sensor communication

failures in the fault diagnosis of DES. It is also important to remark that two papers

have been published with the results of this work. In [37] we present the K-Loss

robust diagnosability method and in [38] we extend it to the decentrilized case.

The present work is organized as follows: In Chapter 2 we present the notation

and some background on fault diagnosis of DES. In Chapter 3, we present the notion

of K-loss robust codiagnosability of DES, and propose a model of the plant that

represents only temporary loss of observation of the system events. Finally, the

conclusions are drawn in Chapter 4.

4

Caṕıtulo 2

Fundamental Concepts of

Discrete-Event Systems

This chapter presents theoretical foundations of discret event systems (DES) neces-

sary for the understanding and elaboration of this work. The chapter is structured

with the objective of dealing with the modeling and mathematical formalisms used

to describe discrete-event systems.

In general, a system is defined as a set of elements combined by nature, or by

man, in order to form a complex whole, performing a function that could not be

performed by any of the components individually. The type of systems considered

in this work are discrete event systems whose state space is a discrete set and whose

state transitions are governed by the occurrence of events [1]. Events can be a specific

action (such as someone pressing on a software button), a spontaneous occurrence

(such as a system shutting down for unknown reason), or the result of a condition

that is satisfied (such as the level of a temperature in a room exceeding a certain

value).

Thus, DES is a dynamic system that evolves according to the occurrence of

events and, in this way, a mathematical formalism capable of describing this type

of system is necessary. This formalism must be able to determine the current state

of the system and must have an evolution rule based on the occurrence of an event,

or, more generally, a sequence of events.

Analogously, the set of events of a DES can be considered as the alphabet of the

system. Thus, sequences of events form words and a set of words forms a language:

in this sense, the set formed of all possible sequences generated by a system is called

the generated language of the system. Languages determine the evolution of states

in a DES from the occurrence of events and, therefore, have a function similar to

that of differential equations to describe dynamic continous -time systems.

5

2.1 Languages

Before we introduce the concept of languages, we first present some notations. The

set of events of a DES is represented by symbol Σ. The concatenation of events

forms a trace, and the language of a system consists of the set of bounded length

traces that can be executed by the system. A trace that does not contain any event

is called the empty trace and is denoted by ε. The length of a trace s is represented

by ∥s∥ and, the length of the empty trace is equal to zero. In the sequel, we present

the formal definition of a language [1].

Definition 2.1 (Language) A language L defined over Σ, is a set of finite length

traces formed with events of Σ.

Example 2.1 Consider a system with event set Σ = {a, b}. The language L =

{ε, a, ab, aab, abb} is composed of five traces, and the length of the traces of L are

∥ε∥ = 0, ∥a∥ = 1, ∥ab∥ = 2, ∥aab∥ = 3 and ∥abb∥ = 3.

Since languages are sets, the usual operations of sets such as union, intersection,

difference, and complement, can be applied to languages. Moreover, there are other

important operations that can be applied to languages and are presented in the

sequel.

2.1.1 Languages Operations

The Kleene-closure operation over the event set Σ is represented as Σ⋆, and consists

of all finite length traces that are constructed with elements of Σ, including the

empty trace ε. Therefore, any language L defined over Σ is a subset of Σ⋆. This

operation can also be applied to languages and is defined as follows.

Definition 2.2 (Kleene-closure) Let L ⊆ Σ⋆, the Kleene-closure operation L⋆ is

given by:

L⋆ = {ε} ∪ L ∪ LL ∪ LLL ∪ . . .

An important operation applied to traces and, consequently, to languages is

the concatenation. A trace s = abba, for example, can be constructed by the

concatenation of two traces ab and ba. Moreover, the empty trace ε is considered

the identity element of the concatenation operation and, therefore, the trace ab is

the concatenation of ε and ab, i.e., εab = abε = ab. This operation can also be

formally defined for languages.

Definition 2.3 (Concatenation) Let La, Lb ⊆ Σ⋆. The concatenation operation

LaLb is defined as:

LaLb = {s = sasb : (sa ∈ La) and (sb ∈ Lb)}

6

The concatenation operation, when applied to languages La and Lb, generates a

set containing the concatenation of each trace of set La with each trace of set Lb.

Consider a trace s = abc, where a, b, c ∈ Σ⋆, a is a prefix of s, b is a subtrace of

s and c if a suffix of s. Notice that, since a, b, c ∈ Σ⋆, then ε is always a prefix, a

subtrace and a suffix of s. Now, the definition of prefix-closure of a language L can

be stated.

Definition 2.4 (Prefix-closure) Let L ⊆ Σ⋆, the prefix-closure operation L̄ is given

by:

L̄ = {s ∈ Σ⋆ : (∃t ∈ Σ⋆) [st ∈ L]} .

The prefix-closure of a language L is the set composed of all prefixes of all traces

of L, thus L ⊆ L̄. If L = L̄, i.e., if all prefixes of all traces of language L are also

elements of L, this language is said to be prefix-closed.

Other important operations applied to traces and languages are the natural

projection and the inverse projection, presented in the sequel.

Definition 2.5 (Projection) Consider Σs and Σl, such that Σs ⊂ Σl. The natural

projection P l
s : Σ⋆

l → Σ⋆
s is defined recursively as follows:

P l
s(ε) = ε,

P l
s(σ) =

σ, if σ ∈ Σs

ε, if σ ∈ Σl\Σs

P l
s(sσ) = P l

s(s)P
l
s(σ), for all s ∈ Σ⋆

l , σ ∈ Σl

Where the operator \represents set difference. The projection operation P l
s(s) erases

all events σ ∈ Σl\Σs from the traces s ∈ Σ⋆
l · This operation can be extended to

languages by applying the operation to all traces of the language.

The inverse projection operation is defined as follows.

Definition 2.6 (Inverse projection) The inverse projection P l−1

s : Σ⋆
s → 2Σ⋆

l is

defined as:

P l−1

s (t) =
{
s ∈ Σ⋆

l : P l
s(s) = t

}
.

For a given trace t ∈ Σ⋆
s, the inverse projection operation P l−1

s (t) generates a set

formed of all traces s that can be constructed with the events of Σl whose projection

P l
s results in the trace t. This operation can also be extended to languages by

applying the operation to all traces that belong to the language.

The language of a DES represents all traces that the system is capable of exe-

cuting, i.e., it can be used to represent the system behavior. However, mainly in

7

large and complex systems, the representation of the behavior of systems using only

their languages is not easy and viable to work with. Therefore, it is necessary to use

another formalism to describe DESs to facilitate the manipulation and analysis of

systems with complex behavior. In this work we use automata to represent DESs,

which are detailed in the next section.

2.2 Automata

An automaton is a device that is capable of representing a language according to

well-defined rules [1, 2], and is formally defined as follows.

Definition 2.7 (Automaton) A deterministic automaton, denoted by G, is a five-

tuple:

G = (Q,Σ, f, q0, Qm)

where Q is the set of states, Σ is the finite set of events, f : Q × Σ → Q is the

transition function, q0 is the initial state, and Qm is the set of marked states.

For the sake of simplicity, when the set of marked states Qm is the empty set,

i.e., Qm = ∅, it will be omitted in the representation of the automaton.

We can also define ΓG : Q→ 2Σ as the function of active events of a state of G,

i.e., ΓG(q) is the set of all events σ ∈ Σ for which the transition function f(q, σ) is

defined.

Automata can be represented by state transition diagrams, which are oriented

graphs capable of reproducing all characteristics defined in G. The state transition

diagram is formed of vertices, represented by circles, and edges, represented by

arcs. The vertices represent the states of the system, and the edges represent the

transitions between these states, which are labeled with events of Σ in order to

represent which event correspond to each state transition. The initial state of the

automaton is represented by an arc without an origin state. Example 2.2 shows an

automaton and its state transition diagram.

Example 2.2 Consider automaton G with state set Q = {0, 1, 2} and event set

Σ = {a, g}. The transition function of G is defined as: f(0, a) = 1, f(0, g) =

0, f(1, g) = 2, f(2, a) = 1 and, therefore, the active event function is given by:

ΓG(0) = {a, g},ΓG(1) = {g},ΓG(2) = {a}. The initial state q0 is 0 and the set of

marked states is Qm = {1}. The state transition diagram of automaton G is shown

in Figure 2.1.

We can also define a path in an automaton G as a sequence

(q1, σ1, q2, . . . , qn−1, σn−1, qn), where σi ∈ Σ, qi+1 = f (qi, σi) , i = 1, 2, . . . , n− 1 .

8

Figura 2.1: State transition diagram of automaton G of Example 2.2.

A path (q1, σ1, q2, . . . , qn−1, σn−1, qn) is said to be cyclic, if q1 = qn. The set of states

of a cyclic path forms a cycle.

Another important definition is the generated and marked languages of an au-

tomaton, presented as follows.

Definition 2.8 (Generated and marked languages) The generated language of an

automaton G = (Q,Σ, f, q0, Qm) is defined as

L(G) = {s ∈ Σ⋆ : f (q0, s) is defined }

The marked language of G is defined as

Lm(G) = {s ∈ L(G) : f (q0, s) ∈ Qm} .

Notice that, in Definition 2.8, the domain of the transition function is considered

to be extended, i.e., f : Q× Σ⋆ → Q. In addition, notice that for any G such that

Q ̸= ∅, ε ∈ L(G).

In general, the language generated by G,L(G), is composed of all traces that,

starting from the initial state, can be concatenated by following the transitions of

the state transition diagram. Therefore, since a trace in L(G) is only feasible if all its

prefixes are also feasible, the generated language L(G) is prefix-closed by definition.

Moreover, if f is a total function over its domain, then L(G) = Σ⋆. In this work,

the language generated by G,L(G), is also referred to as L.

The marked language of G,Lm(G), is a subset of L, which contains all traces s

that reach a marked state, i.e., all traces s such that f (q0, s) ∈ Qm. In this case,

Lm(G) is not necessarily prefix-closed, since Qm is not necessarily equal to Q.

The generated language of an automaton G = (Q,Σ, f, q0) is said to be live if

ΓG(q) ̸= ∅ for all q ∈ Q.

In the following, we introduce some operations that can be applied to automata.

2.2.1 Operations on automata

There are several operations that can be used to modify the state transition diagram

of a single automaton, or compose two or more automata [1]. These operations are

9

separated into two groups: unary and composition operations [1].

Unary Operations

Unary operations are applied to a single automaton, in order to alter appropriately

its state transition diagram, without change the automaton event set. In the sequel

we present the definition of two unary operations.

Definition 2.9 (Accessible part) Consider automaton G = (Q,Σ, f, q0, Qm).

The accessible part of G,Ac(G), is defined as:

Ac(G) = (Qac,Σ, fac, q0, Qac,m) ,

where Qac = {q ∈ Q : (∃s ∈ Σ⋆) [f (q0, s) = q]} , Qac,m = Qm ∩Qac, and fac : Qac ×
Σ → Qac. The transition function fac corresponds to f restricted to the smaller

domain of the accessible states Qac.

The operation of taking the accessible part of an automaton G erases the states

that are not reachable from the initial state q0 and its related transitions.

It is important to remark that the generated language of an automaton G is not

modified with this operation. The formal definition of the coaccessible part of an

automaton G is presented as follows [1].

Definition 2.10 (Coaccessible part) Consider automaton G = (Q,Σ, f, q0, Qm).

The coaccessible part of G,CoAc(G), is defined as:

CoAc(G) = (Qcoac ,Σ, fcoac , q0, coac , Qm) ,

where Qcoac = {q ∈ Q : (∃s ∈ Σ⋆) [f(q, s) ∈ Qm]} , q0, coac = q0 if q0 ∈ Qcoac and

q0, coac is not defined if q0 /∈ Qcoac , and fcoac : Qcoac × Σ → Qcoac . The operation

of taking the coaccessible part of automaton G deletes all states q such that a path

from q to a marked state does not exist.

It is important to notice that the generated language of G can be reduced by

applying the coaccessible part, i.e., L(CoAc(G)) ⊆ L(G), while the marked language

is not modified.

Composition Operations

Composition operations applied to DESs modeled by automata allow us to combine

two or more automata, resulting in a single automaton. Moreover, using composition

operations it is possible to construct the model of a global system from the models of

10

its individual components. In the following, we present two important composition

operations [1].

Definition 2.11 (Product composition) Let G1 = (Q1,Σ1, f1, q0,1, Qm1) and G2 =

(Q2,Σ2, f2, q0,2, Qm2) be two automata. The product of G1 and G2 results in the

automaton

G1 ×G2 = Ac (Q1 ×Q2,Σ1 ∪ Σ2, f1×2, (q0,1, q0,2) , Qm1 ×Qm2)

where

f1×2 ((q1, q2) , σ) =

(f1 (q1, σ) , f2 (q2, σ)) if σ ∈ ΓG1 (q1) ∩ ΓG2 (q2)

undefined, otherwise.

In the product composition an event can only occurs in the resulting automaton

G1 × G2 if it occurs simultaneously in G1 and G2. For this reason, the product

operation is also known as a complete synchronous composition operation.

Due to the complete synchronization of the product operation, the generated

language of G1 ×G2 is the intersection of the generated languages of the automata

used in the composition, i.e., L (G1 ×G2) = L (G1) ∩ L (G2). If Σ1 ∩ Σ2 = ∅, then

L (G1 ×G2) = {ε}.
In general, systems are formed of several components that work together and

whose event sets have private events, representing the internal behavior of each

component, and common events, that represent the coupling behavior between com-

ponents. The common way to obtain the global model of a system from the models of

its components is applying the parallel composition, in which it is possible to main-

tain the private behavior of each component and capture the synchronism between

the components. The formal definition of parallel composition operation is presented

in the sequel.

Definition 2.12 (Parallel composition) Let G1 = (Q1,Σ1, f1, q0,1, Qm1) and G2 =

(Q2,Σ2, f2, q0,2, Qm2) be two automata. The parallel composition of G1 and G2 results

in automaton

G1∥G2 = Ac
(
Q1 ×Q2,Σ1 ∪ Σ2, f1∥2, (q0,1, q0,2) , Qm1 ×Qm2

)

11

where

f1×2 ((q1, q2) , σ) =



(f1 (q1, σ) , f2 (q2, σ)) if σ ∈ ΓG1 (q1) ∩ ΓG2 (q2) ;

(f1 (q1, σ) , q2) if σ ∈ ΓG1 (q1) \Σ2;

(q1, f2 (q2, σ)) if σ ∈ ΓG2 (q2) \Σ1;

undefined, otherwise.

The parallel composition synchronizes the common events of components, i.e.,

an event σ ∈ Σ1 ∩ Σ2 can only occur in the resulting automaton G1∥G2 if it occurs

in G1 and G2 simultaneously. On the other hand, private events of each automaton,

i.e., the events in (Σ1\Σ2) ∪ (Σ2\Σ1), can be executed whenever possible in G1 and

G2.

It is important to notice that if Σ1 = Σ2, then G1∥G2 = G1×G2, since all transiti-

ons can only occur synchronously. In order to correctly define the language generated

by G1∥G2, it is necessary to consider the natural projections Pi = (Σ1 ∪ Σ2)
⋆ → Σ⋆

i ,

for i = 1, 2. Based on these projections, the generated language of G1∥G2 is equal

to L (G1∥G2) = P−1
1 (L (G1)) ∩ P−1

2 (L (G2))

An example of the product and parallel composition operations is presented in

the sequel.

Example 2.3 Consider automata G1 and G2 presented in Figure 2.2 and 2.3, res-

pectively. The event set of G1 and G2 are, respectively, Σ1 = {a, b} and Σ2 = {a, c}.
Computing the product and parallel compositions of automata G1 and G2, we obtain

automata Gprod = G1 × G2 and Gpar = G1∥G2, respectively, presented in Figure

2.4 and Figure 2.5. Notice that since the only common event of G1 and G2 is event

a, i.e., Σ1 ∩ Σ2 = {a}, automaton Gprod has only transitions labeled with event a,

while in automaton Gpar it is possible to observe the concurrent behavior of G1 and

G2, represented by transitions labeled with events b and c.

Figura 2.2: automaton G1 of Example 2.3.

In the following, we present an important characteristic that must be taken into

account when we use automata for modeling real systems.

12

Figura 2.3: automaton G2 of Example 2.3.

Figura 2.4: automaton Gprod of Example 2.3.

Figura 2.5: automaton Gpar of Example 2.3.

2.2.2 Automata with partially observable events

In real systems it is not always possible to detect the occurrence of all events, due to

limitations of the sensors used in the system. Events that do not have an associated

sensor, such as fault events that do not cause immediate change in sensors readings,

are called unobservable events. With the view to representing this, the event set Σ

can be partitioned as Σ = Σo ∪ Σuo, where Σo is the set of observable events and

Σuo is the set of unobservable events. The observed language of an automaton G

can be defined as Po(L(G)), where Po : Σ⋆ → Σ⋆
o is the natural projection.

In order to analyze a system with unobservable events, it is important to define

the concept of unobservable reach of a state q, denoted as UR(q). The unobservable

reach of a given state q ∈ Q represents the set of states that can be reached from q

after the occurrence of a trace formed only of unobservable events, and it is formally

defined as follows.

Definition 2.13 (Unobservable reach) The unobservable reach of a state q ∈ Q,

represented by UR(q), is defined as:

UR(q) = {y ∈ Q : (∃t ∈ Σ⋆
uo) [f(q, t) = y]} .

13

The unobservable reach can also be defined for a set of states B ∈ 2Q as:

UR(B) =
⋃
q∈B

UR(q).

From the definitions of observed language and unobservable reach, it is possible to

compute a deterministic automaton that generates the observed language of G with

respect to Σo, Po(L(G)). This automaton is called observer of G and is denoted by

Obs (G,Σo).

Definition 2.14 (Observer automaton) The observer of automaton G with respect

to the set of observable events Σo,Obs (G,Σo), is given by:

Obs (G,Σo) = (Qobs,Σo, fobs, q0,obs, Qm,obs)

where qobs ⊆ 2Q. fobs, q0,obs and Qm,obs are obtained by following the steps of Algo-

rithm 1 [6, 39]

Algorithm 1: Construction of Observer automaton.

Input : G = (Q,Σ, f, q0, Qm)
Output: Obs (G,Σo) = (Qobs,Σo, fobs, q0,obs, Qm,obs)

1 Define q0,obs ← UR (q0) .Qobs ← {q0,obs} and Q̃obs ← Qobs .;

2 Q̄obs ← Q̃obs and Q̃obs ← ∅;
3 for B ∈ Q̄obs do

4 Γobs(B)←
(⋃

q∈B ΓG(q)
)
∩ Σo;

5 for σ ∈ Γobs(B) do
6 fobs (B, σ)← UR({q ∈ Q : (∃y ∈ B)[q = f(y, σ)]});
7 Q̃obs ← Q̃obs ∪ fobs(B, σ);

8 end

9 end

10 Qobs ← Qobs ∪ Q̃obs;
11 Repeat steps 2 to 4 until all acessible part of Obs (G,Σo) is constructed.

We present now an example with the observer Obs (G,Σo) of a system modeled

by automaton G.

Example 2.4 Consider automaton G presented in Figure 2.6 . The set of events

is given by Σ = {a, b, σuo}, where Σo = {a, b} and Σuo = {σuo}, and the set of states

of G is Q = {0, 1, 2, 3}. The observer of G, Obs (G,Σo), is shown in Figure 2.7.

Let us assume that the system has executed trace s = aσuob, then the observed trace

is Po(s) = ab, where Po : Σ⋆ → Σ⋆
o. Notice that the state reached in Obs(G∗,Σo)

after the observation of trace ab is {2, 3}, which is the state estimate of G after

14

observation of trace s. As it can be seen in Figure 2.7, each state of the observer

Obs(G,Σo) is the state estimate of G after the observation of a trace.

Figura 2.6: Automaton G of Example 2.4

Figura 2.7: observer automaton of G, Obs (G,Σo) of Example 2.4

2.3 Fault Diagnosis of DES

Systems are subject to faults that can alter their expected behavior. Thus, it is

necessary to define mechanisms that are capable of diagnosing the occurrence of fault

events. In this section we present some preliminary concepts regarding diagnosis for

DESs that will be important for the develpment of the following this work.

Let Σf ⊆ Σuo be a set of events associated with faults of the system. In general,

the set Σf =
⋃

Σfi , i = 1, 2, . . . , n, where i means the types of fault that can occur

in the plant and each set Σfi is formed of events that model faults that are somehow

correlated.

For the sake of simplicity, in this work we assumed that there is only one fault

event, i.e., Σf = σf . There is no loss of generality in the results presented in this

work by making this assumption since, for systems with more than one fault type,

each fault type can be considered separately.

In the sequel, we present the definition of fault-free and fault traces of a system.

Definition 2.15 (Fault and Faulty-free traces) A fault trace is a trace of events s

such that σf is one of the events that form s. A faulty-free trace, on the other hand,

does not contain the event σf .

We present below the formal definition of language diagnosability L [4].

15

Definition 2.16 (Language Diagnosability)Let L be a language generated by an

automaton G and suppose that L is live. Thus, L is diagnosable with respect to

projection Po : Σ⋆ → Σ⋆
o and Σf = {σf} if the following condition holds true [4]:

(∃n ∈ N) (∀s ∈ L\LN) (∀t ∈ L\s)(∥t∥ ≥ n⇒ D)

where the diagnosis D is

(∄ω ∈ L) [Po(st) = Po(ω) ∧ (Σf /∈ ω)] .

According to definition 2.16, the language generated by an automaton G will be

diagnosable with respect to the set of observable events Σo, projection Po and the

set of fault events Σf = {σf}, if the occurrence of event σf can be detected after

a finite number of transitions after the occurrence of σf using traces of observable

events only.

Depending on how the information about the dynamic evolution of the system is

available, the diagnosis system can be divided in different classes [40]: Centralized,

Decentralized, Distributed, Modular and Synchronous. In the present work, we will

consider two of those possible classes: Centralized and Decentralized diagonis. We

present the definition of this classes of automata in the sequel [7].

• Centralized, when there is only one diagnoser that has access to all observable

events of the system;

• Decentralized, when the reading of the sensors are not centralized, but distri-

buted in different modules. Each module observes the behavior of some part

of the system using a subset of the observable event set of the system.

2.3.1 Centralized Diagnosis

The centralized diagnoser of a plant G is an automaton that can be used to verify the

diagnosability of L and also for fault diagnosis, and it is presented in [4] and [1]. This

diagnoser is constructed based on automaton Gl computed from the plant model G,

where Gl is obtained by labeling the states of G according to the traces generated

by the system, such that if a state of G is reached by a trace that contains the fault

event σf , then it is labeled with F , otherwise it is labeled with N . After Gl has been

obtained, the diagnoser automaton Gd is computed by making the observer of Gl

with respect to its observable events, Gd = Obs (Gl,Σo). The diagnoser automaton

Gd is formally defined as follows.

16

Definition 2.17 (Diagnoser automaton) The diagnoser automaton Gd obtained for

system G with respect to the fault set Σf and observable events set Σo is given by:

Gd = (Qd,Σo, fd, q0,d)

where Qd ⊆ 2Q×{N,F}.

The transition function fd, and the initial state q0,d are defined according to

Algorithm 2, presented below.

Algorithm 2: Construction of Diagnoser Automaton.

Input : G = (Q,Σ, f, q0)
Output: Diagnoser Automaton Gd

1 Define automaton Al = (Ql,Σl, fl, q0,l) where Ql = {N,F}, fl(N, σf) = F ,
fl(F, σf) = F and q0,l = N ;

2 Compute Automaton Gl = G ∥ Al;
3 Compute the diagnoser automaton Gd = Obs(Gl,Σo)

It is important to notice that automaton Gl generates the same language as

automaton G. Moreover, the states of Gl are of the form ql = (q,N), such that

q ∈ Q, if q is reached by a faulty-free trace, and ql = (q, F) if q is reached by a

fault trace. The generated language of Gd is the natural projection of the generated

language of G,L, i.e., L (Gd) = Po(L).

Since Gd is constructed from the observer automaton of Gl, the states of Gd are

state estimates of Gl after the observation of a trace. If Gd reaches a state labeled

only with the label F , the fault event has certainly occurred and it is diagnosed. A

state of Gd labeled only with N indicates that the fault has not been executed by

the system. States of Gd that have the labels N and F are called uncertain states,

indicating that after the observation of a trace, a fault trace or a faulty-free trace

with the same projection has been executed by the system.

In order to use Gd to verify the diagnosability of L, it is necessary to search

for indeterminate cycles in Gd. An indeterminate cycle is an uncertain cycle, i.e., a

cycle formed by uncertain states, that is associated with at least two cycles in Gl,

one that has only states labeled with N , and one that has only states labeled with

F . If there is an indeterminate cycle in Gd, then the language generated by G,L, is

not diagnosable, otherwise, L is diagnosable.

Example 2.5 Consider a plant represented by automaton G, where Σo = {a, b, c}
and Σuo = {σf}, shown in Figure 2.8. In order to obtain its diagnoser, the parallel

composition G∥Al is first computed, which is shown in Figure 2.9. After that, we

obtain the observer automaton of G∥Al. The diagnoser of plant G,Gd, is shown

17

in Figure 2.10. Notice that the initial state of Gd, {1N, 3F}, has both labels Y and

N. This happens because event σf is unobservable and, if it occur, the diagnoser

will not realize its occurrence; then the system can either be in states 1N or 3F .

As a consequence, the diagnoser cannot state, for sure, whether the fault event has

occurred, i.e., it is uncertain with respect to the occurrence of the fault event. On

the other hand, another event that can occur when the system is in the initial state

is the observable event b; thus, if event b occurs, the diagnoser must indicate that

the system is in state {2N} and, thus, it will be certain that the fault event has

not occurred. Supposing that from the initial state event σf has occurred in the

plant, the diagnoser will remain in state {1N, 3F}, but, when event a occurs, then

the diagnoser changes the current state, {1N, 3F}, to state {4F}, meaning that the

diagnoser is now certain that event σf occurred.

Figura 2.8: Automaton G of Example 2.5

Figura 2.9: Parallel composition between G and Al of Example 2.5

Notice that, by the construction of automaton Gd, Gd = Obs (G∥Al), once the

diagnoser is sure of the occurrence of the fault event, all the following states will

indicate the fault occurrence. However, it is possible for the diagnoser to change

from a normal to an uncertain state.

18

Figura 2.10: Automaton Gd = Obs(G ∥ Al) of Example 2.5

2.3.2 Decentralized Diagnosis

In order to solve the problems associated with the distributed nature of some sys-

tems, in [7] the decentralized structure preseted in Figure 2.11 has been proposed. In

this structure, the reading of sensors is decentralized. Each diagnoser module obser-

ves part of the system events based on the information from the sensors connected to

it, i.e., based on the observable events of each diagnoser Σoi where i = {1, 2, . . . , n},
where n is the number of diagnosers. Each diagnoser processes the received infor-

mation and communicates the result to the coordinator. The coordinator receives

the information from the diagnosers and processes it according to well defined rules

and makes a decision with respect to the fault occurrence.

Figura 2.11: Decentralized arcquitecture

The diagnosis of a language L depends on a set of elements called protocol,

which is composed of rules used to generate local diagnosis, communication rules

between the module and the coordinator, decision rules used by the coordinator to

diagnose the fault, and the projections Poi : Σ⋆ → Σ⋆
oi
, i = 1, 2, . . . , n, associated

with each diagnoser. In protocol 3 of [7], a fault is diagnosed when, at least, one

local diagnoser identifies its occurrence. In the sequel, we present the definition of

codiagnosability of a language L, but, before it, we will review the notion of normal

and fault traces.

According to Definition 2.15 a fault trace is a trace of events s such that σf is

one of its events and a normal trace, on the other hand, does not contain event σf .

19

The set of all normal traces generated by the system is the prefix-closed language

LN ⊂ L. Thus, the set of all fault traces is given by L\LN . Let GN be the

subautomaton of G that models the normal language of the system with respect to

the fault event set Σf . Then, L (GN) = LN .

Definition 2.18 (Language codiagnosability) Let L and LN ⊂ L be prefix closed

languages generated by G and GN , respectively, and Poi : Σ⋆ → Σ⋆
oi
, i = 1, . . . , n

projection operations. Then, L is codiagnosable with respect to the projections Poie

Σf if

(∃z ∈ N) (∀s ∈ L\LN) (∀st ∈ L\LN , ∥t∥ ≥ z)→

(∃i ∈ {1, 2, . . . , n}) (Poi(st) ̸= Poi(ω),∀ω ∈ LN)

According to Definition 2.18 L is codiagnosable with respect to Poi and Σf if,

and only if, for all fault traces sF = st of arbitrarily long length after the occurrence

of the fault event, there do not exist traces sNi
∈ LN , where sNj

is not necessarily

different from sNk
for j ̸= k, such that Poi (sNi

) = Poi (sF), for all i ∈ {1, 2, . . . , n}.

2.3.3 Codiagnosability Verification

Codiagnosability verification of the language of a discrete event system is the first

step to develop a fault diagnosis system for a DES. Some works in literature have

addressed the problem of codiagnosability verification of a DES [8][39]. In the pre-

sent work, we will adopt the algorithm presented in [39] as the basis for the problem

of robust diagnosability against intermittent loss of observation to be considered

later in this work. We use algorithm below, originally presented in [39]

We present the necessary and sufficient condition for codiagnosability of DES

proposed in [39] as follows.

Theorem 2.1 Let L and LN be (LN ⊂ L) the prefix closed languages generated

by G and GN , respectively, and let Σf be the set of fault events. Then, L is not

diagnosable with respect to Poi : Σ⋆ → Σ⋆
oi
, i = 1, . . . , n, and Σf if, and only if, there

exists a cyclic path cl :=
(
ykV , σk, y

k+1
V , . . . , ylV , σl, y

k
V

)
, where l ≥ k > 0, in V , that

satisfies the following condition:

∃j ∈ {k, k + 1, . . . , ℓ} s.t. for some yjV ,
(
yjl = F

)
∧ (σj ∈ Σ) ,

The construction of verifier automaton is illustrated in the next example.

Example 2.6 Consider the system G depicted in Figure 2.12 and suppose we want

to verify the codiagnosability of L with respect to Poi : Σ⋆ → Σ⋆
oi
, i = 1, 2 and

20

Σf , where Σ = {a, b, c, σf} ,Σo1 = {a, c},Σo2 = {b, c}, and Σf = {σf}. In steps

1 and 2, automata GN and GF presented in Figure 2.13 and 2.14, respectively,

are computed. In the sequel, automata GN,1 and GN,2 are built in Step 3. In this

example, automata GN,1 and GN,2 are equal to automaton GN and, thus, are omitted.

Finally, the verifier automaton GV is shown in Figure 2.15. Notice that there are

no cycles in GV satisfying conditions (2.7). Therefore, the language generated by G

is codiagnosable with respect to Poi and Σf .

Figura 2.12: Automaton G of Example 2.6

Figura 2.13: Automaton GN of Example 2.6

Figura 2.14: Automaton GF of Example 2.6

21

Figura 2.15: Automaton GV of Example 2.6

2.4 Robust diagnosis against intermittent loss of

observations

The problem of robust diagnosis against intermittent loss of observations, conside-

ring the decentralized diagnosis architecture proposed in Protocol 3 of [7], is intro-

duced in [11], where it is considered that sensors, or the communication between

sensors and local diagnosers, may fail intermittently. In this case, the set of obser-

vable events is partitioned as Σo = Σilo∪̇Σnilo, where Σilo is the set of events subject

to intermittent loss of observations, and Σnilo is the set of observable events that

are not subject to loss of observations. It is important to remark that, in [11], if

the communication of an event σ ∈ Σilo to a local diagnoser fails, then the com-

munication of σ to the other local diagnosers that also observe σ will also fail. In

order to characterize the intermittent loss of observations, set Σ′
ilo = {σ′ : σ ∈ Σilo}

is created, where σ′ is an unobservable event that models the loss of observation of

event σ due to sensor malfunction or communication fault.

The following definition is presented in [11] to obtain the language observed by

the local diagnosers, in the decentralized architecture, due to the intermittent loss

of observations of the events in Σilo.

Definition 2.19 (Dilation) Let Σ = Σilo∪̇Σnilo∪̇Σuo, Σ′
ilo = {σ′ : σ ∈ Σilo}, and

Σdil = Σ ∪ Σ′
ilo. Then, the dilation function is the mapping D : Σ⋆ → 2Σ⋆

dil where

D(ε) = ε,

D(σ) =

{
σ, if σ ∈ Σ\Σilo,

{σ, σ′}, if σ ∈ Σilo,

D(sσ) = D(s)D(σ), s ∈ Σ⋆, σ ∈ Σ.

□

The dilation operation D can be extended from traces to languages by applying it

to all traces in the language, that is, D(L(G)) =
⋃

s∈L(G) D(s). Language D(L(G))

describes the behavior of plant G, subject to intermittent loss of observations of the

events in Σilo, under the assumptions considered in [11].

22

According to Definition 18, the language observed by the local diagnosers, when

the communication of the sensors associated with Σilo are subject to intermittent

faults, is given by Pdil,oi(D(L(G))), for i = 1, 2, . . . , n, where Pdil,oi : Σ⋆
dil → Σ⋆

oi

is a projection. In the sequel, we present the definition of robust codiagnosability

against intermittent loss of observations presented in [11].

Definition 2.20 (Robust codiagnosability of DES against intermittent loss of ob-

servations) The live language L(G) is robustly codiagnosable with respect to dilation

D, projections Pdil,oi : Σ⋆
dil → Σ⋆

oi
, i = 1, 2, . . . , n, and Σf , if the following holds

true:

(∃z∈N)(∀s∈L(G)\LN)(∀st∈L(G)\LN , ∥t∥ ≥ z)⇒ RI ,

where the robust codiagnosability condition RI is

(∃i ∈ {1, 2, . . . , n})

[Pdil,oi(D(st)) ∩ Pdil,oi(D(ω)) = ∅,∀ω ∈ LN].

□

According to Definition 2.20, a system is said to be robustly codiagnosable with

respect to D, Pdil,oi , i = 1, 2, . . . , n, and Σf if, and only if, there do not exist an

arbitrarily long length fault trace st, and fault-free traces ωi ∈ LN , i = 1, 2, . . . , n,

such that the dilation of st, represented by D(st), generates a trace with the same

local observation as a trace in the dilation of ωi, D(ωi), for all i ∈ {1, 2, . . . , n}.
It is important to remark that, according to Definition 18, D(σ) = {σ, σ′} for

all events σ ∈ Σilo. Thus, after any occurrence of an event σ ∈ Σilo, it is possible

to observe this event, or to not observe it, which is represented by event σ′ ∈ Σ′
ilo,

i.e., the observation of event σ can be, at any time, permanently lost or eventually

recovered after losing it. This shows that the dilation function proposed in [11]

models intermittent and permanent loss of observations. However, in some cases,

only temporary losses may occur in the system. In these cases, the method propo-

sed in [11] leads to a conservative result, and cannot be used. We propose in the

next section a new definition of robust diagnosis that does not encompass the case

of permanent fault of communication. The following example illustrates the con-

cepts of robust diagonosability against intermittent loss of observations, presented

in definition 2.20.

Example 2.7 Consider automata G1 and G2 whose state transition diagrams are

depicted in Figure 2.16 and 2.17, respectively, and assume, for both automata, that

Σ0 = {a, b, c},Σilo = {a} and Σf = {σf}. The objective here is to verify if the

23

Figura 2.16: Automaton G1 of Example 2.7

Figura 2.17: Automaton G2 of Example 2.7

languages generated by G1 and G2 (L1 and L2, respectively) are robustly diagnosable

with respect to D,Po and Σf = {σf}.
Consider, initially, automaton G1. From Figure 2.16, we see that the faulty

traces of L1 are s′Y = bσfc
n, n ∈ N. Following the steps in the robust diagnosability

condition RD given in Definition 21, we may conclude that D (s′Y) = {bσfc
n} ⇒

Pdil,o [D (s′Y)] = {bcn} .
Let L1, dil denote the language generated by automaton G1, dil , shown in Figure

2.18. It is not difficult to see that, since L1, dil = {bσf} {c}∗ ∪ {ac}{b}∗ ∪ {a′c} {b}∗,
then P−1

dil,o {Pdil,o [D (s′Y)]} ∩L1, dil = {bσfc
n}. Since P−1

dil,o {Pdil,o [D (sY)]} ∩L1, dil

has only the fault traces s′Y , we may conclude that L1 is robustly diagnosable with

respect to D,Po and Σf = {σf}.
Consider now the automaton G2 depicted in Figure 2.17. In this case, the unique

faulty traces of L2 are s′′Y = σfbac
n, n ∈ N. Following the robust diagnosability

condition RD, we have D (s′′Y) = {σfbac
n, σfba

′cn} ⇒ Pdil,o [D (s′′Y)] = {bacn, bcn}.
From automaton G2, dil, , shown in Figure 2.19, we obtain L2dil =

{a}{c}∗ ∪ {σfba} {c}∗ ∪ {σfba′} {c}∗. Then, we have P−1
dil ,o {Pdil,o [D (s′′Y)]} ∩

L2, dil = {σfbac
n, σfba

′cn, bcn}.
Since there is a normal trace in P−1

dil, , {Pdil ,o [D (s′′Y)]}∩L2, dil , we may conclude

that L2 is not robustly diagnosable with respect to D,P0 and Σf = {σf}. The lack

of robust diagnosability of L2 with respect to D,Po and Σf = {σf} can be explained

24

Figura 2.18: Automaton G1dil of Example 2.7

Figura 2.19: Automaton G2dil of Example 2.7

as follows: it is not possible to assure if the normal traces bcn occurred or the faulty

traces s′′Y = σfbac
n have occurred and, somehow, the observable event a has not been

recorded by the diagnoser.

2.5 Final Remarks

In this chapter, the background of DESs, such as the definition of language, ope-

rations and the automaton formalism used to represent DESs were presented. Di-

agnoser Automata, which is used to verify the diagnosability of a language L was

also presented, along with the concept of centralized and decentralized diagnosis

and codiagnosability verification .

After presenting the background needed, we presented the concept of robust

diagnosis against interminttent loss of observation [10], as a basis for the work pre-

sented in the following chapter, in wich we introduce the concept of K-loss robust

codiagnosability that aims to address the problem decentralized diagnosis of DES

against temporary faults in the communication.

25

Algorithm 3: Codiagnosability Verification

1 Input: G = (X,Σ,Γ, f, x0);
2 Output: V = (XV ,ΣV ,ΓV , fV , x0V);
3 Compute automaton GN that models the normal behavior of G.

3.1 Define ΣN = Σ\Σf

3.2 Build the single state automaton AN
l =

(
{N},ΣN , f

N
l , x0,N

)
, where

fN
l (N, σ) = N , for all σ ∈ ΣN , and x0,N = N

• Build the automaton GN = G× AN
l

• Redefine the set of events of GN as ΣN , i.e., GN = (XN ,ΣN , fN , (x0, N));

4 Compute automaton GF that models the fault behavior of automaton G.

• Build the label automaton Al =
(
{N,F},Σf , f

NF
l , x0,NF

)
where x0,NF =

N, fNF
l (N, σf) = F , and fNF

l (F, σf) = F , for all σf ∈ Σf

• Compute Gl = G∥Al and mark all states labeled with F .

• Compute GF = CoAc (Gl). 3. Rename the unobservable events of GNi
, as

follows.

5 Rename the unobservable events of GNi
, as follows.

• Define the following set:

Σ′
Ri

= {σRi
: σ ∈ Σuoi\Σf}

• Define ΣRi
= Σoi ∪ Σf ∪ Σ′

Ri
.

• Define the following renaming function

Ri : ΣN → ΣRi

where

Ri(σ) =

{
σ, if σ ∈ Σoi

σRi
, if σ ∈ Σuoi\Σf

6 Compute automaton GRi
= (XN ,ΣRi

, fNi
, (x0, N)) obtained from GN , by

renaming its unobservable events according to equation (2.5), for
i = 1, . . . , n, i.e., fNi

(xN , Ri(σ)) = fN (xN , σ), for all xN ∈ XN and
σ ∈ ΣN .

7 Compute the verifier automaton GV = GR1 ∥GR2∥ . . . ∥GRn∥GF

8 Verify the existence of a cyclic path cl =
(
ykV , σk, y

k+1
V , σk+1, . . . , σℓ, y

k
V

)
,

where ℓ ≥ k > 0 in GV , that satisfy the following condition:

•
∃j ∈ {k, k + 1, . . . , ℓ} such that, for some

yjV ,
(
yjl = F

)
∧ (σj ∈ Σ)

• If the answer is yes, them L is not codiagnosable with respect to Poi and Σf .

26

Caṕıtulo 3

K-Loss Robust Codiagnosability

In the robust diagnosis methods proposed in the literature [10, 11, 16, 20, 23–25, 34]

it is assumed that some communication channels between sensors and diagnosers are

reliable and the sensor readings are always communicated to the diagnosers, while

the other sensors, or communication channels between sensors and diagnosers, are

subject to failures. In these works, permanent or intermittent failures are considered,

and models of the plant subject to these failures are obtained. One characteristic of

the robust diagnosis method considering intermittent failures proposed in [11, 20]

is that the faulty sensor or communication channel may or may not recover from

the failure, and permanent failures are also represented in the model of the plant

subject to intermittent failures. However, in some cases, the communication failure

is temporary, i.e., the communication channel always recovers from the failure after

a bounded number of consecutive observation losses, such as failures due to data

traffic congestion or temporary connection loss. In this work, we formulate a dif-

ferent problem of robust diagnosis where we assume that after a given maximum

number of consecutive event observation losses in a communication channel, it must

recover from the failure and communicate the observation of an event. The new for-

mulation leads to a different notion of robust codiagnosability, called K-loss robust

codiagnosability. We also present a method for the verification of this property.

3.1 Problem formulation

In this work we consider the decentralized diagnosis scheme proposed in Protocol 3

of [7], and assume that each local diagnoser LDi, i = 1, . . . , n, receives information

about the occurrence of observable events of the plant through different communi-

cation channels, as shown in Figure 3.1. Let Σoi be the set of observable events of

local diagnoser LDi, and let chi,j, j = 1, . . . , ηi, denote the communication channels

that transmit the observation of the events belonging to Σoi to diagnoser LDi, where

ηi is the number of channels that communicate the observation of events to LDi.

27

Plant

LD1 LD2 LDi

ch1,1 ch1,η1... ch2,1 ch2,η2 chn,1 chn,ηn... ...

...

Figura 3.1: Decentralized diagnosis scheme.

Let Σoi,j ⊂ Σoi denote the set of observable events that are communicated through

channel chi,j. Assume that each event σo ∈ Σoi is transmitted through a unique

communication channel to LDi, i.e., all sets Σoi,j , for j = 1, . . . , ηi, are disjoint.

Thus, Σoi = Σoi,1∪̇Σoi,2∪̇ . . . ∪̇Σoi,ηi
.

We assume, in this work that all communication channels chi,j may be subject

to temporary loss of observations, i.e., after a bounded number of consecutive event

observation losses in channel chi,j, it must recover from the failure and communicate

the observation of an event in Σoi,j . Let ki,j denote the maximum number of conse-

cutive losses of observation in channel chi,j, and form tuple Ki = (ki,1, ki,2, . . . , ki,ηi).

Thus, the languages that are observed by local diagnosers LDi, i = 1, 2, . . . , n,

depend on the maximum number of consecutive losses of observation described in

K = (K1, K2, . . . , Kn). It is also important to remark that, differently from [11],

an event observation can be successfully communicated to a local diagnoser, and

not communicated to a different local diagnoser due to a temporary communication

failure. The reason for this is that, in this work, we associate the temporary failures

with the communication channels that are used to transmit the event observations

to the local diagnosers, and not to faulty sensors.

The following example illustrates the observations of a trace of L(G) by two local

diagnosers subject to temporary failures in the communication channels.

Example 3.1 Consider the plant automaton depicted in Figure 3.2, where the set of

events is given by Σ = {a, b, c, d, σf} and the fault event set is Σf = {σf}. Consider
that the decentralized diagnosis scheme is composed of two local diagnosers LDi, i =

1, 2, that detect the occurrence of the fault event σf based on their own observations.

Assume that two channels ch1,1 and ch1,2 are used to communicate the occurrence of

the events in Σo1,1 = {a} and Σo1,2 = {c}, respectively, to local diagnoser LD1, and

only one channel ch2,1 communicates the occurrence of the events in Σ2,1 = {b, c, d}
to local diagnoser LD2. Thus, Σo1 = {a, c} and Σo2 = {b, c, d}. Let us also suppose

that K1 = (k1,1, k1,2) = (1, 0) and K2 = (k2,1) = (1), i.e., the communication of at

most one event through channel ch1,1 may be consecutively lost, no event is lost in

channel ch1,2, and the communication of at most one event through channel ch2,1

28

may be consecutively lost. It is important to remark that, in this example, if no loss

of observation is considered in the communication channels, then the language of

the system L(G) is codiagnosable with respect to Poi, i = 1, 2, and Σf .

Let us consider now that trace s = abcad is executed by the system. Then, the

following three traces may be observed by diagnoser LD1: aca, ca, and ac. Trace aca

is observed when there is no loss of observation in channel ch1,1; trace ca is observed

when the first occurrence of event a is not transmitted through channel ch1,1; and

trace ac is observed when the second occurrence of a is not transmitted through

channel ch1,1. Note that event c is always transmitted through channel ch1,2, since

k1,2 = 0. In addition, the following four traces may be observed by local diagnoser

LD2 due to communication failures in channel ch2,1: bcd, cd, bd, and bc. □

Then, if the system executes trace s = aσubc, the following six traces may be

observed by the diagnoser: abc, ab, bc, ac, a, c. Sequence abc is observed when there

is no loss of observation in both channels; trace ab (resp. bc) is observed when event

c (resp. a) is not transmitted in channel ch1; trace ac corresponds to the case that

the observation of event b is lost in channel ch2; trace a is observed when both b and

c are lost; and trace c corresponds to the case that the observation of event b is lost

in ch2, event a is lost in ch1, but since k1 = 1, then event c must be transmitted

through ch1. □

1 2

5

3 4

6

a

bc

a

σf

σfd

c b

Figura 3.2: Automaton G of Example 3.1.

3.2 Definition of K-loss robust codiagnosability

In order to distinguish the occurrence of an event σ ∈ Σoi in the plant from its

observation by local diagnoser LDi, we create event σsi that represents the successful

observation of σ by LDi. In this regard, let Σsi,j = {σsi : σ ∈ Σoi,j} be the

set of events that are successfully communicated through channel chi,j, and let

Σsi = ∪ηij=1Σsi,j denote the set of events successfully communicated to diagnoser

LDi. In addition, to represent the failure in the communication of an event σ ∈ Σoi ,

let us create event σli . Thus, the set of events whose observation is lost in channel

29

chi,j is defined as Σli,j = {σli : σ ∈ Σoi,j}. Thus, the set of events that represents

the loss of observation by diagnoser LDi can be defined as Σli = ∪ηij=1Σli,j . Then,

the following set can be defined:

Σi = Σ ∪ Σli ∪ Σsi , (3.1)

where the events in Σ∪Σli are unobservable to local diagnoser LDi, and the events

in Σsi are observable.

In order to obtain all possible observations of a trace s ∈ L(G) by diagnoser LDi,

it is necessary first to introduce the insertion function Ii : Σ⋆ → 2Σ⋆
i , where Ii(ε) = ε,

Ii(σ) = {σσli , σσsi}, if σ ∈ Σoi , Ii(σ) = {σ}, if σ ∈ Σuoi , and Ii(sσ) = Ii(s)Ii(σ), for

all s ∈ Σ⋆ and σ ∈ Σ. Let us also consider the projection operations Pi : Σ⋆
i → Σ⋆

and P i,j
s,l : Σ⋆

i → (Σli,j ∪ Σsi,j)
⋆, for j = 1, . . . , ηi. Then, we can define the following

function.

Definition 3.1 A function that models the temporary failure in communication

channels chi,j, j = 1, . . . , ηi, from plant G to local diagnoser LDi, such that the

maximum number of consecutive losses of observation of each channel chi,j is ki,j,

is a mapping

Ψi : Σ⋆ → 2Σ⋆
i

s 7→ Ψi(s)

where w ∈ Ψi(s), if w satisfies the following conditions:

(i) Pi(w) = s;

(ii) w ∈ Ii(s);

(iii) For all j ∈ {1, 2, . . . , ηi}, we have that for all µ′
j, µ

′′′
j ∈ (Σli,j ∪ Σsi,j)

⋆ and

µ′′
j ∈ Σ⋆

li,j
, such that P i,j

s,l (w) = µ′
jµ

′′
jµ

′′′
j , then ∥µ′′

j∥ ≤ ki,j. □

The domain of function Ψi can be extended to consider languages as usual, i.e.,

Ψi(L) = ∪s∈LΨi(s), for all languages L ⊆ Σ⋆.

In Condition (i), Pi(w) removes from w ∈ Ψi(s) all events inserted by function

Ii to represent the successful or unsuccessful communication of an event to local

diagnoser LDi. If Pi(w) = s, then we know that w has been obtained from s.

Condition (ii) ensures that w has been obtained using function Ii. Thus, only after

the occurrence of an observable event σ ∈ Σoi , event σli ∈ Σli or σsi ∈ Σsi can be

generated.

Finally, Condition (iii) establishes that the maximum number of consecutive

events of Σli,j in w is ki,j, for all j ∈ {1, 2, . . . , ηi}, which shows that the maximum

30

number of consecutive losses in each channel chi,j represented in Ψi is ki,j. Thus, the

language observed by diagnoser LDi is given by Psi(Ψi(L(G))), where Psi : Σ⋆
i → Σ⋆

si

projects a trace from Ψi(L(G)) to a trace in Σ⋆
si

, observable by diagnoser LDi.

Example 3.2 Let us consider the same plant presented in Example 3.1, where

Σo1 = {a, c} and Σo2 = {b, c, d}. In addition, let us consider, as in Exam-

ple 3.1, that K1 = (1, 0) and K2 = (1). Consider that the system executes

trace s = abcad. Then, according to Definition 3.1, the following traces can

be generated due to the temporary communication losses in channel ch1,1,

Ψ1(s) = {aas1bccs1aas1d, aal1bccs1aas1d, aas1bccs1aal1d}, whose projection to Σ⋆
s1

is

Ps1(Ψ1(s)) = {as1cs1as1 , cs1as1 , as1cs1}, which corresponds to the possible observa-

tions of LD1. In addition, due to temporary losses in channel ch2,1, the following

traces can be generated Ψ2(s) = {abbs2ccs2adds2 , abbl2ccs2adds2 , abbs2ccl2adds2 ,
abbs2ccs2addl2}, whose projection to Σ⋆

s2
is Ps2(Ψ2(s)) =

{bs2cs2ds2 , cs2ds2 , bs2ds2 , bs2cs2}, which corresponds to the possible observations

of LD2. □

In the sequel, we present the definition of K-loss robust codiagnosability.

Definition 3.2 Let L(G) be the live language generated by G, and let chi,j, for

i = 1, 2, . . . , n and j = 1, . . . , ηi, be the communication channels between plant and

local diagnosers LDi, subject to the maximum consecutive losses of observation ki,j.

Then, L(G) is robustly codiagnosable with respect to K = (K1, . . . , Kn), Ψi, Psi,

i = 1, . . . , n, and Σf , if

(∃z∈N)(∀s∈L(G)\LN)(∀st∈L(G)\LN , ∥t∥ ≥ z)⇒RK

where the K-loss robust codiagnosability condition RK is

(∃i∈{1, 2, . . . , n})[Psi(Ψi(st)) ∩ Psi(Ψi(ω))=∅,∀ω∈LN].

□

According to Definition 3.2, language L(G) is not robustly codiagnosable with

respect to K, Ψi, Psi , i = 1, . . . , n, and Σf , if there exist a fault trace st with

arbitrarily long length after the occurrence of the fault event, and fault-free traces

ωi, i = 1, . . . , n, such that the temporary loss of observations create ambiguous

observations for all local diagnosers LDi, i = 1, . . . , n.

Remark 3.1 It is important to remark that the concept of K-Loss robust diagno-

sability, introduced in [37] is a particular case of the K-Loss robust codiagnosability

method presented in this chapter, when we consider the monolithic architecture di-

agnosis scheme or, equivalently, considering j = 1 in definition 3.1.

31

3.2.1 Model of the plant subject to temporary event com-

munication failures

We present in this section an automaton model of the plant subject to tempo-

rary loss of observations. In order to do so, we first model the behavior of each

communication channel chi,j considering the maximum number of consecutive los-

ses ki,j. The automaton model of the communication channel chi,j is denoted as

∆i,j = (Qij,Σ ∪ Σsi,j∪ Σli,j , fij, qij,0, Qij,m), and is computed using Algorithm 4.

Algorithm 4: Construction of automaton ∆i,j.

Input : ki,j,Σ,Σsi,j ,Σli,j

Output: ∆i,j =(Qij,Σ ∪ Σsi,j∪ Σli,j , fij, qij,0, Qij,m)
1 qij,0 ← (ε, 0);
2 c← 0, Qij ← ∅, Qij,m ← ∅;
3 while c ≤ ki,j do
4 Qij ← Qij ∪ {(ε, c)}, Qij,m ← Qij,m ∪ {(ε, c)};
5 for σ ∈ Σ do
6 if σ ∈ Σoi,j then
7 Qij ← Qij ∪ {(σ, c)};
8 fij((ε, c), σ) = (σ, c);
9 fij((σ, c), σsi) = (ε, 0);

10 end
11 if σ ∈ Σuoi ∪ (Σoi \ Σoi,j) then
12 fij((ε, c), σ) = (ε, c);
13 end

14 end
15 c← c + 1;

16 end
17 c← 0;
18 while c < kij do
19 for σ ∈ Σoi,j do
20 fij((σ, c), σli) = (ε, c + 1);
21 end
22 c← c + 1;

23 end

Each state of Qij is a tuple formed of the last event σ ∈ Σoi,j generated by

the plant or ε, and a counter c, that indicates the number of consecutive losses of

observation of σ. Thus, the initial state defined in line 1 of Algorithm 4 is equal

to (ε, 0) indicating that no event belonging to Σoi,j has been generated and the

counter is set to 0. Then, in line 8, if an event σ ∈ Σoi,j is generated by the plant,

a transition from state (ε, c) to state (σ, c) is created to indicate the occurrence of

σ. To represent that σ is successfully transmitted to the diagnoser, in line 9 a new

transition labeled with σsi is created from (σ, c) to (ε, 0), and the counter is reset.

32

In lines 11 to 13, self-loops are introduced in the states (ε, c), labeled with events

in Σuoi ∪ (Σoi \ Σoi,j), to allow the occurrence of these events only in these states.

By doing so, after the occurrence of an event σ ∈ Σoi,j in the plant, its observation

represented by event σsi , or the loss of observation of σ represented by σli , must be

generated before another event occurrence in the plant. In lines 19 to 21, the loss

of observation of event σ is represented by increasing counter c with the transition

from state (σ, c) to (ε, c + 1), labeled with event σli . The maximum number of

consecutive occurrences of σσli , without the occurrence of trace σσsi is, as it can be

seen in lines 18 to 23, equal to ki,j. It is important to remark that only the states

of the form (ε, c) are marked in line 4.

Since, according to Algorithm 1, (ki,j + 1) states of the form (ε, c), and |Σoi,j | ×
(ki,j + 1) states of the form (σ, c), for σ ∈ Σoi,j , are created in ∆i,j, then the number

of states of ∆i,j is (|Σoi,j |+1)×(ki,j +1). In addition, since there are transitions from

states (ε, c) labeled with all events in Σ, and only two transitions at most leaving

states (σ, c) labeled with σli and σsi , then the maximum number of transitions of

∆i,j is bounded by (ki,j + 1) × |Σ| + |Σoi,j | × 2. Thus, the overall complexity of

Algorithm 4 is O(ki,j × |Σ|).

Example 3.3 Consider the plant presented in Example 3.1, with Σo1 = {a, c},
Σo2 = {b, c, d}, K1 = (1, 0) and K2 = (1). Then, ∆1,1, ∆1,2, and ∆2,1, obtained

using Algorithm 4, are depicted in Figures 3.3, 3.4, and 3.5, respectively. □

ε, 0
as1

a al1

σf , b, c, d

a, 0 ε, 1 a a, 1

σf , b, c, d

as1

Figura 3.3: Automaton ∆1,1 of Example 3.3.

ε, 0
cs1

c
c, 0

σf , a, b, d

Figura 3.4: Automaton ∆1,2 of Example 3.3.

After computing the communication channel models ∆i,j, for j = 1, 2, . . . , ηi,

the model of the plant that generates the observation of the system events for

local diagnoser LDi, due to communication failures in the channels chi,j, can

33

ε, 0
cs2

c
c, 0

σf , a

ε, 1
cl2 c, 1c

b, 0

d, 0

b, 1

d, 1

b

d

bl2

dl2

σf , a

b

bs2

ds2

d

bs2

ds2
cs2

Figura 3.5: Automaton ∆2,1 of Example 3.3.

be obtained in two steps: (i) mark all states of the plant G; and (ii) compute

Gti = (Qti ,Σi, fti , qti,0, Qti,m) = G∥∆i,1∥∆i,2∥ . . . ∥∆i,ηi . The following theorem

shows that the marked language of Gti is equal to Ψi(L(G)).

Theorem 3.1 Lm(Gti) = Ψi(L(G)).

Proof. According to Algorithm 4, after the occurrence of an event σ ∈ Σoi,j , com-

municated through channel chi,j, an unmarked state of Gti is reached, and then,

event σsi or σli must be generated, reaching a marked state of Gti . In addition, if

an unobservable event σ ∈ Σuoi occurs, a marked state of Gti is also reached. Thus,

all traces w reaching a marked state of Gti belongs to Ii(s), where s ∈ Σ⋆ is the

corresponding trace executed by the system. Moreover, for the same reason, we

have that Pi(w) = s. Thus, Conditions (i) and (ii) of Definition 3.1 are satisfied.

Finally, since, according to lines 18 to 23 of Algorithm 4, the maximum number of

consecutive occurrences of subsequence σσli , where σ ∈ Σoi,j , counting only traces

σσli ∈ (Σoi,j ∪Σli,j)
⋆, is equal to ki,j for all traces w ∈ Lm(Gti), then Condition (iii)

of Definition 3.1 is also satisfied. Thus, Lm(Gti) ⊆ Ψi(L(G)).

Let w ∈ Ψi(L(G)). Then, according to Definition 3.1, w is formed of the conca-

tenation of traces of the form: (i) σ, if σ ∈ Σuoi ; and (ii) σσsi and σσli , if σ ∈ Σoi . In

addition, there exists a trace s ∈ Σ⋆ such that Pi(w) = s, and the maximum number

of consecutive occurrences of subsequence σσli in w, where σ ∈ Σoi,j , counting only

traces σσli ∈ (Σoi,j ∪ Σli,j)
⋆, is ki,j. Let us consider that trace s is executed by the

system. According to Algorithm 4, after the occurrence of an event σ ∈ Σoi,j , event

σsi or σli must be generated, and only after that, a marked state of Gti is reached.

In addition, after the occurrence of an unobservable event σ ∈ Σuoi , no event in

Σsi ∪Σli is generated, and a marked state of Gti is reached. Moreover, according to

lines 18 to 23 of Algorithm 4, the number of consecutive occurrences of σσli , where

34

σ ∈ Σoi,j , is limited to ki,j. Thus, any trace w ∈ Ψi(Lm(G)) belongs to the marked

language of Gti , which implies that Ψi(L(G)) ⊆ Lm(Gti). ■

Theorem 3.1 shows that Gti can be used to obtain the language observed by

diagnoser LDi due to the loss of observations in the communication channels chi,j,

for j = 1, 2, . . . , ηi. Since Gti = G∥∆i,1∥ . . . ∥∆i,ηi , the worst-case computational

complexity of Gti is O(|Q| × 2ηi × |Σ|ηi+1 ×
∏ηi

j=1 ki,j).

Example 3.4 The model of the plant G of Example 3.1 subject to temporary loss

of observations for local diagnosers LD1 and LD2, Gt1 = G∥∆1,1∥∆1,2 and Gt2 =

G∥∆2,1, respectively, are presented in Figures 3.6 and 3.7. □

1, (ε, 0), (ε, 0) 2, (a, 0), (ε, 0)
a

2, (ε, 1), (ε, 0)
al1

5, (ε, 1), (ε, 0)
b

3, (ε, 1), (ε, 0)1, (ε, 0), (c, 0) 1, (ε, 1), (c, 0)
c

cd

1, (ε, 1), (ε, 0)

cs1

4, (ε, 1), (ε, 0)

σf b

2, (a, 1), (ε, 0)

a

5, (a, 1), (ε, 0)

6, (ε, 1), (ε, 0)

6, (ε, 0), (ε, 0)

as1

5, (a, 0), (ε, 0)a
al1

2, (ε, 0), (ε, 0)
as1

3, (ε, 0), (ε, 0)
d

cs1

c

4, (ε, 0), (ε, 0)

b

σf

5, (ε, 0), (ε, 0)

b

σfc

as1

σf

a

as1

Figura 3.6: Automaton model Gt1 = G∥∆1,1∥∆1,2 of the system subject to loss of
observations of Example 3.4.

3.3 K-loss robust codiagnosability verification

In order to present the K-loss robust codiagnosability verification method, it is first

necessary to define the renaming function ρi : Σi \ Σf → Σρi , where

ρi(e) =

{
eρi , if e ∈ (Σ ∪ Σli) \ Σf

e, otherwise.
(3.2)

The domain of ρi can be extended to (Σi \ Σf)⋆ as ρi(se) = ρi(s)ρi(e), for all

s ∈ (Σi \ Σf)⋆ and e ∈ Σi \ Σf , and ρi(ε) = ε. Function ρi can be applied to a

language M ⊆ (Σi \ Σf)⋆ as ρi(M) = ∪s∈Mρi(s).

In Algorithm 5 we present the construction of the verifier automaton V for

the verification of K-loss robust codiagnosability based on the verifier proposed

in [39]. Note that, since, according to line 5 of Algorithm 5, V = ∥ni=1Vi and,

acccording to line 4, Vi = Gρi∥GFi
, then each state of verifier V has the following

35

1, (ε, 0) a 2, (ε, 0)

b

5, (b, 0)

bs2

5, (ε, 0)1, (c, 0) c

cs2

6, (ε, 0)

bl2 5, (ε, 1)

σf

6, (ε, 1)

c 1, (c, 1)

d 3, (d, 0)
dl2 3, (ε, 1)

c

3, (ε, 0)

ds2

σf
4, (ε, 0)

σf
4, (ε, 1)

4, (b, 0)
b

bs2

b 4, (b, 1)

bl2

bs2
1, (ε, 1)

cl2

a 2, (ε, 1)

3, (d, 1)

d ds2

5, (b, 1)

b

bs2

cs2

c

a

a
σf

Figura 3.7: Automaton model Gt2 = G∥∆2,1 of the system subject to loss of obser-
vations of Example 3.4.

Algorithm 5: Construction of Verifier V .

Input : Gti = (Qti ,Σi, fti , qti,0, Qti,m), i = 1, . . . , n
Output: V = (QV ,ΣV , fV , qV,0, ∅)

1 Compute the fault-free automata GNi
= (QNi

,Σi \ Σf , fNi
, qNi,0, ∅),

i = 1, . . . , n, by eliminating all transitions of Gti labeled with σf , and
taking its accessible part;

2 Compute automata GFi
= (QFi

,Σi, fFi
, qNi,0, ∅) that model the fault

behavior of automata Gti , for i = 1, . . . , n, as presented in [39];
3 Compute the renamed fault-free automata Gρi = (QNi

,Σρi , fρi , qNi,0, ∅),
i = 1, . . . , n, with fρi(qN , e

ρi) = fNi
(qN , e), where eρi = ρi(e), for all

e ∈ Σi \ Σf and qN ∈ QNi
;

4 Compute automata Vi = Gρi∥GFi
, i = 1, . . . , n;

5 Compute verifier V = ∥ni=1Vi.

36

form qV = ((qN1 , qF1), (qN2 , qF2), . . . , (qNn , qFn)), where qNi
∈ QNi

and qFi
∈ QFi

, for

i = 1, . . . , n. In addition, according to [39], each state of GFi
, computed in line 2 of

Algorithm 5, has the form qFi
= (qti , ℓ), where qti is a state of Gti , and ℓ ∈ {N,F}

is a label that is assigned to state qFi
. If qti is reached after the occurrence of the

fault event σf , then label F is assigned to qFi
. Otherwise, label N is assigned to qFi

.

If state qFi
of a state qVi

= (qNi
, qFi

) has label F , then qVi
is said to be a fault state

of Vi, and if all states qFi
, i = 1, . . . , n, of a state qV have label F , then qV is said to

be a fault state of V .

In the following lemma, we present a necessary and sufficient condition for the

diagnosability of the language generated by the i-th local model, L(Gti), with respect

to Psi and Σf .

Lemma 3.1 L(Gti) is diagnosable with respect to Psi and Σf if, and only if, there

does not exist a cyclic path cli = (qxVi
, σx, q

x+1
Vi

, σx+1, . . . , q
y
Vi
, σy, q

x
Vi

), y ≥ x > 0, in

verifier Vi, that satisfies the following condition:

qpVi
is a fault state ∀p ∈ {x, . . . , y}, and for some

p ∈ {x, . . . , y}, σp ∈ Σ. (3.3)

Proof. The proof is presented in [39] for a generic plant G, projection Po, and

set of fault events Σf . ■

Note that, since Vi = Gρi∥GFi
, and Gρi is obtained from GNi

by renaming the

events in Σ∪Σli , then each trace of Vi is associated with a fault-free trace ωi ∈ L(GNi
)

and a fault trace si ∈ L(GFi
) such that Psi(ωi) = Psi(si) [41]. Thus, the existence of

a cyclic path cli in Vi satisfying condition (3.3) is a necessary and sufficient condition

for the existence of an arbitrarily long length fault trace si that cannot be diagnosed

by local diagnoser LDi.

The necessary and sufficient condition for K-loss robust codiagnosability, based

on verifier V computed in Algorithm 5, is presented as follows.

Theorem 3.2 L(G) is robustly codiagnosable with respect to K, Ψi, Psi, i =

1, . . . , n, and Σf if, and only if, there does not exist a cyclic path cl =

(qxV , σx, q
x+1
V , σx+1, . . . , q

y
V , σy, q

x
V), y ≥ x > 0, in verifier V , that satisfies the fol-

lowing condition:

qpV is a fault state, ∀p ∈ {x, . . . , y}, and for some

p ∈ {x, . . . , y}, σp ∈ Σ. (3.4)

Proof. (⇐) Let us assume that L(G) is not robustly codiagnosable with respect

to K, Ψi, Psi , i = 1, . . . , n, and Σf . Then, according to Definition 3.2, there

37

exist a fault trace s and a continuation t with arbitrarily long length, and fault-

free traces ωi, such that Psi(Ψi(st)) ∩ Psi(Ψi(ωi)) ̸= ∅, for all i = 1, 2, . . . , n. This

implies, according to Lemma 3.1, that all verifiers Vi have a cyclic path cli satisfying

condition (3.3), associated with the same fault trace st. Since V = ∥ni=1Vi, and the

events that synchronize all verifiers Vi are only those belonging to Σ, then there is an

arbitrarily long length trace in V , sV , such that the projection PV (sV) = st, where

PV : Σ⋆
V → Σ⋆. Since V is a finite automaton, and s is a fault trace, then there

exists in V a cyclic path cl, associated with trace sV , satisfying condition (3.4).

(⇒)Let us assume now that V has a cyclic path cl =

(qxV , σx, q
x+1
V , σx+1, . . . , q

y
V , σy, q

x
V) satisfying condition (3.4). Let tV =

(σxσx+1 . . . σy)
r, where r is an arbitrarily large natural number, and sV ∈ L(V) be

the trace executed from the initial state of V until reaching state qxV . Since the

states of cl are fault states, then σf belongs to sV . Let s = PV (sV) and t = PV (tV).

Since all events in Σ are common to all verifiers Vi and V = ∥ni=1Vi, then there

is in each verifier Vi, i = 1, . . . , n, a trace sVi
tVi

such that PV (sVi
tVi

) = st. Since

s is a fault trace, t has arbitrarily long length, and Vi are finite automata, then

each Vi has a cyclic path cli satisfying condition (3.3), which shows that there exist

fault-free traces ωi ∈ L(GNi
) and fault traces si ∈ L(GFi

), i = 1, 2, . . . , n, associated

with sVi
tVi

, such that Psi(ωi) = Psi(si). Thus, the robust codiagnosability condition

of Definition 3.2 is violated.□

Note that, since V i = Gρi
N∥Gi

F , and Gρi
N is obtained from Gi

N by renaming the

events in Σ∪Σi
l, then each path of V i is associated with a fault-free path ωi ∈ L(Gi

N)

and a fault trace si ∈ L(Gi
F) such that P i

s(ω
i) = P i

s(s
i). Thus, as shown in [39], the

existence of a cyclic path in V i is a necessary and sufficient condition for the existence

of an arbitrarily long length fault trace si that cannot be diagnosed by local diagnoser

LDi, which implies in the existence of a fault trace s ∈ L(G), where si ∈ Ψi(s),

that cannot be diagnosed by LDi. In order to L(G) be robustly codiagnosable with

respect to K = (K1, K2, . . . , Kn), Ψi, P
i
s , i = 1, . . . , n, and Σf , all fault traces that

cannot be diagnosed by a local diagnoser LDi, must be diagnosed by at least another

local diagnoser LDj, where j ̸= i and j ∈ {1, 2, . . . , n}. Let us firstly assume that

L(G) is not robustly codiagnosable with respect to K, Ψi, P
i
s , i = 1, . . . , n, and Σf .

Then, according to Definition 3.2, there exists a fault trace st ∈ L(G), and fault-

free traces ωi ∈ L(G), that generate in all verifiers V i, i = 1, . . . , n, cyclic paths cli

satisfying. Since V = ∥ni=1V
i, P i(si) = st, and only the events in Σ are common to

all V i, then st generates a cyclic path cl in V satisfying the conditions presented in

(3.4).

The verification of K-loss robust codiagnosability can be carried out constructing

verifiers Vi for each local diagnoser LDi, i = 1, . . . , n, using the method proposed in

[39], considering automaton Gti as the plant model, and Σi
s as the set of observable

38

events. Then, a verifier V = V1∥V2∥ . . . ∥Vn can be computed.

An important characteristic of verifier V is that the fault-free traces sρi ∈ L(Gρi)

and the fault traces sFi
∈ L(GFi

), associated with a trace sV ∈ L(V), can be easily

obtained as sρi = PV,sρi(sV) and sFi
= PV,i(sV), where PV,sρi : Σ⋆

V → (Σsi ∪ Σρi)
⋆

and PV,i : Σ⋆
V → Σ⋆

i .

Example 3.5 According to Algorithm 5, verifier V is computed using automata

Gt1 and Gt2. Firstly, automata GNi
and GFi

are obtained from automata Gti,

for i = 1, 2. Then, verifiers Vi = Gρi∥GFi
are computed. Finally, automaton

V = V1∥V2 is computed. In Figure 3.8, a fault path of verifier V is presented.

Note that in Figure 3.8 there is a cyclic path cl that satisfies condition (3.4). Thus,

L(G) is not robustly codiagnosable with respect to K, Ψi, Psi, i = 1, 2, and Σf .

Note that the trace associated with the fault path shown in Figure 3.8 is sV =

aρ1aas1ddl2σfba
ρ2bρ2(bs2c

ρ2cρ2l2 a
ρ2bρ2b)m, where m ∈ N. Trace sV is associated with

the following traces: (i) sρ1 = PV,sρ1(sV) = aρ1as1 ∈ L(Gρ1); (ii) sF1 = PV,1(sV) =

aas1dσfb
m+1 ∈ L(GF1); (iii) sρ2 = PV,sρ2(sV) = aρ2bρ2(bs2c

ρ2cρ2l2 a
ρ2bρ2)m ∈ L(Gρ2);

and (iv) sF2 = PV,2(sV) = addl2σfb(bs2b)
m ∈ L(GF2). Traces sρ1 and sF1 are ob-

served as as1 by local diagnoser LD1, and traces sρ2 and sF2 are observed as bms2 by

local diagnoser LD2. Thus, since traces sF1 and sF2 are obtained from the same

fault trace sF = adσfb
m+1 executed by the system, then L(G) is indeed not robustly

codiagnosable according to Definition 3.2. □

((1, (ε, 0), (ε, 0)), ((1, (ε, 0), (ε, 0)), N)), ((1, (ε, 0)), ((1, (ε, 0)), N))

((2, (a, 0), (ε, 0)), ((1, (ε, 0), (ε, 0)), N)), ((1, (ε, 0)), ((1, (ε, 0)), N))

aρ1

((2, (a, 0), (ε, 0)), ((2, (a, 0), (ε, 0)), N)), ((1, (ε, 0)), ((2, (ε, 0)), N))

a

((2, (ε, 0), (ε, 0)), ((2, (ε, 0), (ε, 0)), N)), ((1, (ε, 0)), ((2, (ε, 0)), N))

as1

((2, (ε, 0), (ε, 0)), ((3, (ε, 0), (ε, 0)), N)), ((1, (ε, 0)), ((3, (d, 0)), N))

d

((2, (ε, 0), (ε, 0)), ((3, (ε, 0), (ε, 0)), N)), ((1, (ε, 0)), ((3, (ε, 1)), N))

dl2

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((1, (ε, 0)), ((4, (ε, 1)), F))

σf

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((1, (ε, 0)), ((4, (b, 1)), F))

b

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((2, (ε, 0)), ((4, (b, 1)), F))aρ2
bρ2

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((5, (b, 0)), ((4, (b, 1)), F))

bs2

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((5, (ε, 0)), ((4, (ε, 0)), F))

cρ2

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((1, (c, 0)), ((4, (ε, 0)), F))

cρ2l2

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((1, (ε, 1)), ((4, (ε, 0)), F))

aρ2

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((2, (ε, 1)), ((4, (ε, 0)), F))

bρ2

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((5, (b, 1)), ((4, (ε, 0)), F))

b

((2, (ε, 0), (ε, 0)), ((4, (ε, 0), (ε, 0)), F)), ((5, (b, 1)), ((4, (b, 0)), F))

bs2

Figura 3.8: A fault path of verifier V = V1∥V2 of the system subject to loss of
observations of Example 3.5.

Since, as shown in [39], the number of states of Vi, i = 1, 2, . . . , n, is, in the

worst case, 2 × |Qti |2, then the complexity of computing verifier V = ∥ni=1Vi, is

O (2n × (
∏n

i=1 |Qti|2)× (
∑n

i=1 |Σi|)).

39

3.4 Concluding Remarks

In this chapter, we start by formulating the problem of robust diagnosis against

temporary loss of observation, in which we associate the temporary failures with

the communication channels that are used to transmit the event obsvations to the

local diagnosers. In the sequel, we proceed to present the definition of K-loss robust

codiagonosability and an automaton model of the plant subject to temporary event

communication failures, with the respective alogrithm used to model the behavior

of each comunication channel chi,j. In the sequel, we presented the K-loss robust

codiagnosability verification method and the algorithm used to construct the verifier

V . We finish this chapter by presenting the complexity computing the verifier V .

In all the steps aforementioned, examples were used to demonstrate the proposed

methods and algorithms presented in this work.

40

Caṕıtulo 4

Conclusion

In this work, we introduced the notion of K-loss robust codiagnosability to address

the problem of robust decentralized diagnosis of Discrete-Event Systems against

temporary failures in the communication of the observation of system events to the

local diagnosers, where it is considered that the communication always recovers from

the failure after a given maximum number of observation losses. Differently from

[11], we assume in this work that an event observation can be successfully communi-

cated to a local diagnoser, and not communicated to a different local diagnoser due

to temporary communication failure, as we associate the temporary failures with

the communication channels that transmit the events observations and not to faulty

sensors.

The proposed method of K-loss robust codiagnosability differently from other

methods proposed in the literature, allows considering the case that all communica-

tion channels between plant and local diagnosers are not reliable. In definition 3.1 we

present a function that models the temporary failure in the communication channels

and in the sequel we present the definition 3.2 of K-loss robust diagnosability.

Models of the plant for each local diagnoser, subject to temporary loss of ob-

servations, are also presented. Finally, by using these models, a K-loss robust

codiagnosability verification method is proposed.

In summary, the main contributions of this work are as follows:

• The K-loss robust diagnosability method address a problem that is closer to

reality of industrial plant operations when compared to the other methods

proposed in the literature, as it models the temporary failure in the commu-

nication channels, considering that the communication always recovers after a

maximum number of observation losses.

• Algorithms to compute the automaton that models the communication channel

behavior.

41

• A method for verification of the K-loss robust diagnosability of DESs, the

algorith that computethe verifier automaton for the verification of the proposed

method and its computational complexity.

42

Referências Bibliográficas

[1] CASSANDRAS, C. G., LAFORTUNE, S. Introduction to Discrete Event Sys-

tems. Secaucus, NJ, Springer-Verlag New York, Inc., 2008.

[2] HOPCROFT, J. E., MOTWANI, R., ULLMAN, J. D. Introduction to automata

theory, languages, and computation. Boston, Addison Wesley, 2006.

[3] LAWSON, M. V. Finite automata. CRC Press, 2003.

[4] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Diagnosability of

discrete-event systems”, IEEE Transactions on Automatic Control, v. 40,

n. 9, pp. 1555–1575, 1995.

[5] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Failure diagnosis

using discrete-event models”, IEEE Trans. on Control Systems Techno-

logy, v. 4, n. 2, pp. 105–124, 1996.

[6] LIN, F. “Diagnosability of discrete event systems and its applications”, Journal

of Discrete Event Dynamic Systems, v. 4, n. 2, pp. 197–212, 1994.

[7] DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D. “Coordinated decentra-

lized protocols for failure diagnosis of discrete event systems”, Discrete

Event Dynamic Systems: Theory and Applications, v. 10, n. 1, pp. 33–86,

2000.

[8] QIU, W., KUMAR, R. “Decentralized failure diagnosis of discrete event

systems”, IEEE Transactions on Systems, Man, and Cybernetics Part

A:Systems and Humans, v. 36, n. 2, pp. 384–395, 2006.

[9] WANG, Y., YOO, T.-S., LAFORTUNE, S. “Diagnosis of discrete event sys-

tems using decentralized architectures”, Discrete Event Dynamic Systems:

Theory And Applications, v. 17, pp. 233–263, 2007.

[10] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C. “Generalized robust

diagnosability of Discrete Event Systems”, v. 44, n. 1, pp. 8737–8742,

2011.

43

[11] CARVALHO, L. K., BASILIO, J. C., MOREIRA, M. V. “Robust diagnosis

of discrete-event systems against intermittent loss of observations”, Au-

tomatica, v. 48, n. 9, pp. 2068–2078, 2012.

[12] BASILIO, J. C., LIMA, S. T. S., LAFORTUNE, S., et al. “Computation of

minimal event bases that ensure diagnosability”, Discrete Event Dynamic

Systems: Theory And Applications, v. 22, pp. 249–292, 2012.

[13] CABRAL, F. G., MOREIRA, M. V., DIENE, O., et al. “A Petri Net Diagnoser

for Discrete Event Systems Modeled by Finite State Automata”, IEEE

Transactions on Automatic Control, v. 60, n. 1, pp. 59–71, 2015.

[14] SANTORO, L. P. M., MOREIRA, M. V., BASILIO, J. C. “Computation of

minimal diagnosis bases of Discrete-Event Systems using verifiers”, Auto-

matica, v. 77, pp. 93–102, 2017.

[15] ZAD, S., KWONG, R., WONHAM, W. “Fault diagnosis in discrete-event

systems: framework and model reduction”, IEEE Trans. on Automatic

Control, v. 48, n. 7, pp. 1199–1212, 2003.

[16] BASILE, F., CHIACCHIO, P., DE TOMMASI, G. “An efficient approach

for online diagnosis of discrete event systems”, IEEE Transactions on

Automatic Control, v. 54, n. 4, pp. 748–759, 2009.

[17] QIU, W., KUMAR, R. “Distributed Diagnosis Under Bounded-Delay Commu-

nication of Immediately Forwarded Local Observations”, IEEE Transac-

tions on Systems, Man, and Cybernetics - Part A: Systems and Humans,

v. 38, n. 3, pp. 628–643, 2008.

[18] CABRAL, F. G., M. M. V. “Synchronous Diagnosis of Discrete-Event Systems”,

Transactions on Automation Science and Engineering, 2018.

[19] SCHMIDT, K. “Abstraction-based verification of codiagnosability for discrete

event systems”, Automatica, v. 46, n. 9, pp. 1489–1494, 2010.

[20] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C., et al. “Robust diag-

nosis of discrete-event systems against permanent loss of observations”,

Automatica, v. 49, n. 1, pp. 223–231, 2013.

[21] ATHANASOPOULOU, E., L. L. H. C. “Probabilistic failure diagnosis in fi-

nite state machines under unreliable observations”, 8th In- ternational

Workhop on Discrete Event Systems, Ann Arbor, Michigan, USA, pp.

301–306, 2010.

44

[22] BASILIO, J. C., LAFORTUNE, S. “Robust codiagnosability of discrete event

systems”. In: Proc 2009 American Control Conference, pp. 2202–2209,

St. Louis, MO, 2009.

[23] TAKAI, S. “Robust failure diagnosis of partially observed discrete event sys-

tems”, 10th Word Congress International Federation of Automatic Con-

trol, p. 1158–1165, 2010.

[24] LIMA, S. S., B. J. C. L. S. E. A. “Robust diagnosis of discrete-event systems

subject to permanent sensor failures”, IFAC Proceedings Volumes, v. 43,

n. 12, pp. 90–97, 2010.

[25] TAKAI, S. “Verification of robust diagnosability for partially observed discrete

event systems”, Automatica, v. 48, n. 8, pp. 1913–1919, 2012.

[26] THORSLEY, D., Y. T. S. G. H. E. “Diagnosability of stochastic discrete event

systems under unreliable observations”, American Control Conference,

Seattle, Washington, USA, pp. 1158–1165, 2008.

[27] ASIM, M., MOKHTAR, H., MERABTI, M. “A fault management architecture

for wireless sensor network”. In: International Wireless Communications

and Mobile Computing Conference, pp. 779–785, 2008.

[28] MAHAPATRO, A., KHILAR, P. M. “Transient fault tolerant wireless sensor

networks”, Procedia Technology, v. 4, pp. 97–101, 2012.

[29] MUHAMMED, T., SHAIKH, R. A. “An analysis of fault detection strategies

in wireless sensor networks”, Journal of Network and Computer Applica-

tions, v. 78, pp. 267–287, 2017.

[30] PARK, J., IVANOV, R., WEIMER, J., et al. “Security of cyber-physical sys-

tems in the presence of transient sensor faults”, ACM Transactions on

Cyber-Physical Systems, v. 1, n. 3, pp. 1–23, 2017.

[31] TRAPP, M., SCHURMANN, B., TETTEROO, T. “Failure behavior analy-

sis for reliable distributed embedded systems”, International Parallel

and Distributed Processing Symposium, 2002. doi: 10.1109/ipdps.2002.

1016486.

[32] KAR, P., MISRA, S. “On the Effects of Transfaulty Sensor Nodes in Stationary

Wireless Sensor Network Systems”, IEEE Sensors Journal, v. 19, n. 13,

pp. 5022–5029, 2019.

45

[33] KANAGAWA, N., TAKAI, S. “Diagnosability of discrete event systems subject

to permanent sensor failures”, International Journal of Control, v. 88,

n. 12, pp. 2598–2610, 2015.

[34] TOMOLA, J. H. A., CABRAL, F. G., CARVALHO, L. K., et al. “Robust

disjunctive-codiagnosability of discrete-event systems against permanent

loss of observations”, IEEE Transactions on Automatic Control, v. 62,

n. 11, pp. 5808–5815, 2017.

[35] NUNES, C. E. V., MOREIRA, M. V., ALVES, M. V. S., et al. “Codiagnosabi-

lity of networked discrete event systems subject to communication delays

and intermittent loss of observation”, Discrete Event Dynamic Systems,

v. 28, n. 2, pp. 215–246, 2018.

[36] WADA, A., TAKAI, S. “Verification of Codiagnosability for Decentralized Di-

agnosis of Discrete Event Systems Subject to Permanent Sensor Failures”.

In: 18th European Control Conference (ECC 2019), pp. 1726–1731, Na-

poli, Italy, 2019.

[37] OLIVEIRA, V. S. L., CABRAL, F. G., MOREIRA, M. V. “K-loss Robust

Diagnosability of Discrete Event Systems”, 2020.

[38] OLIVEIRA, V. S. L., CABRAL, F. G., MOREIRA, M. V. “K-loss Robust

Codiagnosability of Discrete Event Systems”. 2022.

[39] MOREIRA, M. V., JESUS, T. C., BASILIO, J. C. “Polynomial time verifi-

cation of decentralized diagnosability of discrete event systems”, IEEE

Transactions on Automatic Control, v. 56, n. 7, pp. 1679–1684, 2011.

[40] CABRAL, F. G., MOREIRA, M. V. “Synchronous Diagnosis of Discrete-Event

Systems”, IEEE Transactions on Automation Science and Engineering,

v. 17, n. 2, pp. 921–932, 2020.

[41] CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C. “Diagnosability of

intermittent sensor faults in discrete event systems”, Automatica, v. 79,

pp. 315–325, 2017.

46

	Lista de Figuras
	Introduction
	Fundamental Concepts of Discrete-Event Systems
	Languages
	Languages Operations

	Automata
	Operations on automata
	Automata with partially observable events

	Fault Diagnosis of DES
	Centralized Diagnosis
	Decentralized Diagnosis
	Codiagnosability Verification

	Robust diagnosis against intermittent loss of observations
	Final Remarks

	K-Loss Robust Codiagnosability
	Problem formulation
	Definition of K-loss robust codiagnosability
	Model of the plant subject to temporary event communication failures

	K-loss robust codiagnosability verification
	Concluding Remarks

	Conclusion
	Referências Bibliográficas

