
EVENT-BASED AUTOMATON MODEL FOR IDENTIFICATION OF
DISCRETE-EVENT SYSTEMS WITH THE AIM OF FAULT DETECTION

Thiago Henrique de Marreiros Cordeiro Machado

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
Elétrica, COPPE, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Mestre em
Engenharia Elétrica.

Orientador: Marcos Vicente de Brito Moreira

Rio de Janeiro
Junho de 2022

EVENT-BASED AUTOMATON MODEL FOR IDENTIFICATION OF
DISCRETE-EVENT SYSTEMS WITH THE AIM OF FAULT DETECTION

Thiago Henrique de Marreiros Cordeiro Machado

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO
PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU
DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientador: Marcos Vicente de Brito Moreira

Aprovada por: Prof. Marcos Vicente de Brito Moreira
Prof. Antonio Eduardo Carrilho da Cunha
Prof. Felipe Gomes de Oliveira Cabral
Prof. Gustavo da Silva Viana

RIO DE JANEIRO, RJ – BRASIL
JUNHO DE 2022

Machado, Thiago Henrique de Marreiros Cordeiro
Event-Based Automaton Model for Identification

of Discrete-Event Systems with the Aim of Fault
Detection/Thiago Henrique de Marreiros Cordeiro
Machado. – Rio de Janeiro: UFRJ/COPPE, 2022.

XV, 63 p.: il.; 29, 7 cm.
Orientador: Marcos Vicente de Brito Moreira
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2022.
Referências Bibliográficas: p. 59 – 61.
1. Fault diagnosis. 2. System identification. 3.

Discrete-event systems. I. Moreira, Marcos Vicente de
Brito. II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Elétrica. III. Título.

iii

Dedico este trabalho à minha
família por todo o suporte

fornecido.

iv

Acknowledgments

Agradeço, em primeiro lugar, à minha mãe Diana Maria de Marreiros Cordeiro
(In Memoriam) por tudo que fez e deixou de fazer. Infelizmente, não conseguirá me
ver concluir mais esta etapa, mas tenho a certeza de que estaria super orgulhosa e
feliz do caminho que tenho traçado. Sempre penso em você!

Ao meu avô Geovah Ubirajara Amaral Machado por todo o suporte. As conversas
diárias, as perguntas (muitas das vezes repetidas), a preocupação com as minhas
decisões e o meu futuro, o suporte total que me deixou numa situação onde pude
sempre focar nos estudos, enfim, tudo o que foi e vem sendo feito são uma parte
fundamental de toda a minha trajetória! Sou muito feliz e agradecido!

À minha avó Darci Michel Cardoso Machado que sempre tornou a minha vida
mais agradável em casa. As conversas no café da manhã e no lanche da tarde
sempre dão aquela energia pro dia. Sempre prezando pela organização da casa (o
que é uma tarefa difícil aqui), cuidando da rotina da mesma e fazendo almoços e
quitutes querendo agradar a todos (o que é impossível). É um trabalho importante
e árduo que as pessoas só se dão conta do valor, em geral, quando não é feito.

Ao meu pai Sergio Alexandre Cardoso Machado que faz de tudo para estar sempre
presente e tentar me ajudar no que for possível. As discussões, os almoços, os lanches
de domingo, os passeios (ou missões?) de bicicleta, enfim, todos os momentos juntos
são sempre importantes.

Aos meus irmãos Alexandre Matheus Cordeiro Machado e Raphael de Marreiros
Cordeiro Machado pela convivência diária. Apesar de não ser do jeito que gostaria
(ainda), a minha vida é muito mais feliz pela presença de vocês!

À Helena Silberman que é a pessoa com o melhor coração que já conheci. Todo o
seu carinho, preocupação, convivência e conversas foram/são de extrema importân-
cia para tornar a minha vida muito mais agradável. Nossas longas conversas por
vídeo sempre alegravam o meu dia. Obrigado!

Ao meu orientador professor Marcos Vicente de Brito Moreira pelo trabalho re-
alizado. Sempre acreditou em mim e me deu liberdade para produzir o que eu

v

imaginava. As discussões foram muito importantes para os aprimoramentos e quali-
dade final do trabalho. Além disso, mesmo quando eu comecei a trabalhar, não teve
problemas em me orientar.

À Compagnie Générale de Géophysique (CGG) por ter me liberado temporari-
amente do trabalho para que eu pudesse focar na escrita. A empresa investe muito
na educação do seu pessoal e isso faz a total diferença.

A todos aqueles que me ajudaram de qualquer maneira ao longo dessa jornada. E,
por fim, à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
pelo apoio financeiro - Código de Financiamento 001 - durante parte da realização
do mestrado.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

MODELO DE AUTÔMATO BASEADO EM EVENTOS PARA
IDENTIFICAÇÃO DE SISTEMAS DE EVENTOS DISCRETOS COM O

OBJETIVO DE IDENTIFICAÇÃO DE FALHAS

Thiago Henrique de Marreiros Cordeiro Machado

Junho/2022

Orientador: Marcos Vicente de Brito Moreira

Programa: Engenharia Elétrica

Neste trabalho, um método para a construção de um modelo obtido via identi-
ficação de sistemas a eventos discretos do tipo caixa-preta, chamado de Modelo em
Autômato Baseado em Eventos (EBAM), e um método para a detecção de falhas
usando esse modelo são apresentados. A maior vantagem do EBAM é que, diferente
dos demais apresentados na literatura, ele é baseado nas mudanças de eventos no
lugar de mudança de status de entrada e saída do controlador. Isso permite que
os caminhos observados para a identificação do modelo possuam estados iniciais
diferentes. Tal vantagem é muito importante para a aplicação prática na indústria,
uma vez que muitos processos possuem estados iniciais e finais diferentes (não nec-
essariamente formam um ciclo) e cada processo pode ter um estado inicial próprio.
Uma outra vantagem é que o EBAM, em geral, é mais compacto do que o seu
equivalente por estados. O modelo representa o comportamento livre de falhas do
sistema (obtido por identidicação) e a detecção de falhas é feita comparando-se o
comportamento atual do sistema com a estimativa do modelo. Caso haja alguma
discrepância, uma falha é detectada através de cinco condições que determinam
quando um evento é viável no modelo. Para cada método proposto é apresentado
seu respectivo algoritmo e exemplos didáticos a fim de ilustrar o procedimento. Em
seguida, para mostrar que é possível aplicar toda a teoria desenvolvida em sistemas
reais, um exemplo prático é apresentado.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

EVENT-BASED AUTOMATON MODEL FOR IDENTIFICATION OF
DISCRETE-EVENT SYSTEMS WITH THE AIM OF FAULT DETECTION

Thiago Henrique de Marreiros Cordeiro Machado

June/2022

Advisor: Marcos Vicente de Brito Moreira

Department: Electrical Engineering

In this work, a method for the construction of a model obtained by black-
box discrete-event systems identification, called Event-Based Automaton Model
(EBAM), and a method for fault detection using this model are presented. The
main advantage of the EBAM is that, unlike the others present in the literature,
it is based on event changes instead of input and output controller status changes.
This allows the observed paths used to the identify the model to have different initial
states. This advantage is an important detail for the practical application in indus-
tries, since many processes have different initial and final states (not necessarily
closing a loop) and each process can have its own initial state. Another advantage
is that the EBAM is, in general, more compact than its equivalent based on state
changes. The model represents the fault-free behavior of the system (obtained by
identification) and the fault detection is done by comparing the current behavior of
the system with the estimated model. If there is any discrepancy, a fault is detected
by using of five conditions that determine when an event is viable in the model. For
each proposed method, its respective algorithm and didactic examples are presented
in order to illustrate the procedure. Then, to show that it is possible to apply all
the theory developed in real systems, a practical example is presented.

viii

Contents

List of Figures xi

List of Tables xii

List of Symbols xiii

List of Abbreviations xv

1 Introduction 1

2 Theoretical Background 5
2.1 Discrete-Event Systems . 5
2.2 Languages . 6
2.3 Automata . 8
2.4 Deterministic Automaton with Outputs and Conditional Transitions . 10

3 Event-Based Automaton Model 18
3.1 Motivating Example . 18
3.2 Presentation of the Model . 21
3.3 Languages . 32
3.4 Properties . 35
3.5 Fault Detection . 36

4 Practical Example 47
4.1 System Description . 47
4.2 Modelling . 49
4.3 Fault Detection . 54

5 Conclusions 57

References 59

ix

A Codes 62
A.1 Data acquisition . 63
A.2 Split the data into paths . 63
A.3 Compute the EBAM . 63
A.4 Online fault detection . 63
A.5 Software with GUI . 63

x

List of Figures

1.1 Signals exchanged between plant (system) and controller (PLC) in a
closed-loop system. 3

2.1 Automaton of the Example 2.1. 9
2.2 DAOCT model for k = 1 of the Example 2.2. 14
2.3 DAOCT model for k = 2 of the Example 2.2. 15

3.1 A box filling system. 18
3.2 EBAM for k = 1 of the Example 3.2. 29
3.3 EBAM for k = 2 of the Example 3.2. 30
3.4 The relation between every language in the EBAM. 33
3.5 Fault detection scheme based on the EBAM model. 37
3.6 EBAM for k = 1 of the Example 3.3. 40
3.7 EBAM for k = 2 of the Example 3.3. 40

4.1 Sorting unit system. 47
4.2 The Siemens PLC S7-1200 used for the practical example. 49
4.3 EBAM for k = 1 of the first 9 paths of the practical example. 52
4.4 EBAM for k = 1 of the first 9 paths of the practical example high-

lighting the transitions of the second path. 53

xi

List of Tables

3.1 Description of each signal of the system in Figure 3.1. 19

4.1 System description. 48
4.2 Model information. 50
4.3 Fault scenarios of the practical example. 54
4.4 Fault detection results of the practical example. 55
4.5 Fault detection results of the practical example considering only the

detectable faults. 56

xii

List of Symbols

k Free parameter for the identification, p. 2

Z+ Set of positive integers, p. 2

‖S‖ Cardinality of the set S, p. 6

|w|s Number of symbols of the word w, p. 6

ε Empty word, p. 6

Σ∗ Kleene-Closure of the set Σ, p. 7

L Prefix-closure of language L, p. 7

:= The notation for "equal by definition", p. 7

! “is defined”, p. 8

Z2 Set of possible values for a binary number, i.e., {0, 1}, p. 10

u[i] i-th element of vector u, p. 10

u(i) i-th observation of vector u, p. 10

x Rising edge of the signal u[x], where u is an I/O vector, p. 10

x Falling edge of the signal u[x], where u is an I/O vector, p. 10

|p|p Length of the path p, p. 11

2S Power set of the set S, i.e., the set formed of all subsets of S,
p. 12

pki i-th modified path p, p. 13

|u|v Length of the vector u, p. 21

σ̃ Codificated event, where σ is an event, p. 23

s̃i EBAM event sequence associated to the path pi, p. 23

xiii

s̃i
k EBAM modified sequence of events associated to the EBAM

event sequence s̃i, p. 24

p̃ EBAM path associated to the path p, p. 28

xiv

List of Abbreviations

DES Discrete Event Systems, p. 1

NDAAO Non-Deterministic Autonomous Automaton with Outputs, p.
2

PLC Programmable Logic Controller, p. 2

I/O Input/Output, p. 2

DAOCT Deterministic Automaton with Outputs and Conditional Tran-
sitions, p. 3

EBAM Event-Based Automaton Model, p. 3

3D Three-Dimensional, p. 4

GUI Graphical User Interface, p. 62

xv

Chapter 1

Introduction

Fault diagnosis is an important problem that has been developed still nowa-
days by the scientific community. The first approach in Discrete Event Systems
(DES) was presented in [1], where the concept of system diagnosability was defined.
Roughly speaking, a system is diagnosable if it is possible to detect and isolate,
within a bounded delay of events, occurrences of faults using the recorded observed
events [1]. Using this concept, several works developed new theories and improve-
ments [2–11]. However, the great majority of the methods proposed in the literature
need the model and the post-fault behavior of the system in order to correctly di-
agnose the fault occurrence.

In general, real systems are large and composed of several subsystems, thus, for
small ones, obtain their models and behaviors after faults by hand is possible, but,
for complex systems it would be almost impossible, since there are a lot of behaviors
to model and the post-fault behavior would lead the system to unpredictable states.
In addition, only known faults would be detected and it is necessary an engineer
who is familiar with DES and knows deeply the plant behavior to handle it. The
modelling process is laborious, time consuming and the obtained model must be
accurate. For these reasons, using the traditional approach for fault diagnosis in
real systems can be a difficult task.

To overcome these problems, identification techniques have been proposed in the
literature [13, 14]. It solves the problem of obtaining the model, but it brings the
problem of how to obtain it in an accurately way. The core ideia is to reproduce the
fault-free system behavior from the observation of the sequences of events generated
by the system. In the DES case, the information from sensors and actuators is binary
and the model can be generated using Petri nets or finite automata, for example. It
is important to remark that the concept of diagnosability cannot be used, since the
observed data corresponds only to the fault-free behavior of the system.

1

Several works proposed in the literature address the problem of DES identifica-
tion using Petri nets [13, 15–22], however, most of them do not address the problem
of fault diagnosis [13, 15, 16, 18, 20, 21] and when it is addressed [17, 19, 22], it is al-
ways necessary some knowledge about the system. In [17] it is assumed that partial
knowledge about the model is known, for example, the cardinality of the subset of
measurable places and an upper bound of the cadinality of the set of places. In [19]
it is assumed that the fault-free system structure and dynamics are known. In [22]
it is assumed that the fault-free behavior of the system is previously known since
only the post-fault behavior is identified. In general, Petri nets are used when some
information about the system is known, because they have more complex structure
than automata and it allows to use this information in the model. For example, if
it is known that there are some parts of the system that works in parallel, it can
be added to the model using a concurrence structure. When there is no informa-
tion about the system behavior or structure it is simpler to perform a black-box
identification using automata due to their more basic structure.

Several methods are proposed in the literature for DES identification with the
aim of fault diagnosis using automata [14, 23–25]. The identified models represent
the fault-free behavior of the system and the main advantages of these methods are
the reduced computacional cost and the identified model can be obtained without
any knowledge of the system (behavior, structure or model). In these works, fault
isolation is carried out from the residual analysis, i.e., comparing the expected
behavior (fault-free) with the observed one and analysing the discrepancy between
them.

In [23, 24] the Non-Deterministic Autonomous Automaton with Outputs
(NDAAO) is presented. The NDAAO was used for the identification of a closed-loop
industrial DES using data read directly from the Programmable Logic Controller
(PLC) and this scheme can be seen in Figure 1.1. The vector composed of the sig-
nals of the system, i.e., sensors and actuators, is called Input/Output (I/O) vector.
The I/O vector replacing the signals for its values, 0 or 1 since they are binary,
at an observation is called I/O status. Paths are production cycles and they are
represented by sequences of consecutives I/O status. The NDAAO is obtained using
paths to generate the fault-free model. To balance size and accuracy of the model, it
is used a free parameter k ∈ Z+, where Z+ denotes the set of positive integers, that
defines the amount of past I/O status that is recorded in each state of the model.
In general, small values of k are used with the objective of obtaining compact mod-
els and high ones are used with the objective of obtaining accurate models. The
simplest model is when k is equal to 1, that assigns only one I/O status to each
state of the model. The accuracy of a model is related to the exceeding language.

2

This language is formed of the sequences that can be reproduced in the model but
cannot occur in the system and a large exceeding language reduces the capability
of detecting faults since there may exist fault sequences that are represented in the
model. The NDAAO satisfies the property of k - completeness (in the sense of [26]),
i.e., all and only all observed subwords of length smaller than or equal to k are
represented in the model. In words, this means that all subsequences of length k

were observed, thus, up to k observed events there are no exceeding language in the
model. Therefore, increasing k increases the accuracy of the model.

Controller

Plant

SensorsActuators

Input signalsOutput signals

Figure 1.1: Signals exchanged between plant (system) and controller (PLC) in a
closed-loop system.

In [23, 24], it is assumed that all paths start with the same I/O status. However,
in several cases, the system may execute different processes starting with distinct
initial I/O status. For these cases, it is not possible to apply the methods in [23, 24]
to obtain the NDAAO of the system.

In [25] the Deterministic Automaton with Outputs and Conditional Transitions
(DAOCT) is presented. It uses the same paths that are used to compute the
NDAAO. In order to reduce the exceeding language, and, consequently, reduce the
number of non-detectable faults, it is introduced the path estimation function. The
number of possible next states in the model is reduced using the path estimation
function, avoiding the model to go through states that are not possible to be exe-
cuted by the system. If DAOCT is acyclic, then, the exceeding language is empty.
In addition, it also holds the k - completeness property. It is important to remark
that, as in the computation of the NDAAO, the DAOCT is computed from the paths
assuming that all of them start with the same I/O status.

In this work, we present the Event-Based Automaton Model (EBAM) for DES
identification with the aim of fault detection [12] which solves the main problem
of the NDAAO and the DAOCT models: the dependence of the same initial I/O
status for all paths. Instead of associating I/O status to the states, the EBAM uses
vectors that represent the events (that are the difference between two consecutives
I/O status). The EBAM, as the DAOCT, has some important properties: (i) it also
uses a free parameter k, leading to a trade-off between model size and accuracy;

3

(ii) it also uses a path estimation function, reducing the exceeding language of the
system model; (iii) the observed language is a subset of the identified language,
i.e., the EBAM simulates the observed fault-free system behavior; (iv) the model is
k-complete, thus, any subword of length k belongs to the EBAM if, and only if, it
has been observed and; (v) the exceeding language is the empty set if the model is
acyclic. In addition, for a given value of k, the EBAM is, in general, more compact
than the other models, which may increase the exceeding language, but we show
that this increase is not significant in some cases. To illustrate the use of the EBAM
we present a practical example using the three-dimensional (3D) simulation software
Factory I/O and a Siemens PLC. In this example, the use of the NDAAO or the
DAOCT is not possible, since the observed paths start with different initial I/O
status.

This work is divided in 5 chapters, described in the sequel.

In Chapter 2− Theoretical Background−, preliminary concepts about DES such
as its definition, languages and automata are presented. At the end, the DAOCT is
also presented to show its properties, limitations and to allow comparisons later.

In Chapter 3 − Event-Based Automaton Model −, an example is shown to
motivate the EBAM creation. Later, the EBAM is formally defined as the procedure
to fully construct it, its languages and properties. Finally, at the end, the theory
and the procedure for fault detection using EBAM are also presented. In addition,
some examples are shown to illustrate the use of the algorithms.

In Chapter 4 − Practical Example −, a practical example using the Factory
I/O, to simulate the system, and the Siemens PLC S7-1200, as the controller, is
presented to illustrate the application of the EBAM in a real situation. The model
is computed and 44 fault scenarios are designed to test the fault detection using the
EBAM. Then, some discussion about the results are presented.

In Chapter 5− Conclusions−, the conclusions of the work and possible directions
for future research are presented.

4

Chapter 2

Theoretical Background

In this chapter, the definition of DES, automata and languages are presented in
Sections 2.1, 2.2 and 2.3, respectively. In addition, at the end of this chapter, in
Section 2.4, the DAOCT model is presented.

2.1 Discrete-Event Systems

Systems can be classified regarding their dynamics as: (i) time-driven or (ii)
event-driven. The first one is ruled by time and it can be modeled by differential
equations, for continuous time systems, or difference equations, for discrete time
systems. Roughly speaking, the passage of time drives the system. The system
formed of a pump and a tank where the tank level is the system state is an example
of a time-driven system. Given the initial condition (state), the system model and
the input of the system, the tank level over the time can be computed for any given
time instant after the initial time.

The dynamics of event-driven systems are governed by the occurrence (in general,
asynchronous in time) of events and it cannot be modeled by differential or difference
equations. There are some formalisms to model event-driven systems, where the
most used are automata and Petri nets. When an event occurs, the model can
evolve (instantaneously to a new state or to itself) or not. An elevator can be
abstracted as an event-driven system. It may change its state (floor) when someone
pushes any button. If the elevator is already in the desired floor, nothing is done,
otherwise, the elevator goes to the desired floor. Since in DES all the events are
discrete, continuous signals are discretized in order to model them. For example, in
the elevator case, the pressing of the button can be considered as an event.

Now that the basic ideas of DES have been presented, its formal definition [27, 28]
is presented in Definition 2.1.

5

Definition 2.1 (Discrete-Event Systems)
Discrete-event systems are dynamic systems such that: (i) the state space is a dis-
crete set (not necessarily finite) and (ii) the evolution of the system is event-driven.

One possibility to study the DES logical behavior is using language theory and
automata. These concepts are presented in Sections 2.2 and 2.3, respectively.

2.2 Languages

Like in any language, such as English or Portuguese, the concatenation of sym-
bols of an alphabet generates words (sequences) and a set of words generates a
language. In the DES case, as an abstraction, symbols are events, alphabets are set
of events, words are sequences of events and subwords are subsequences of events.
The formal definition of an alphabet is presented in Definition 2.2.

Definition 2.2 (Alphabet)
An alphabet Σ is a finite nonempty set of symbols.

For example, Σ = {a, b} is an alphabet with two symbols, a and b, and its
cardinality is ‖Σ‖ = 2.

The definition of a word is presented in the sequel. In the DES case, a word is
a sequence of events.

Definition 2.3 (Word)
A word w is a sequence of symbols and its length |w|s is the number of events
that form w, counting multiple occurrences of the same event. The empty word,
represented by ε, is a special case whose length is |ε|s = 0.

For example, u = ab, v = ba and w = aba are words, but u and v are different
since the order is important. In these cases, |u|s = |v|s = 2 and |w| = 3.

The operation that constructs words is called concatenation and its definition is
presented as follows.

Definition 2.4 (Concatenation)
The concatenation of the words u and v is an operation that generates a new word,
respecting the order, consisting of the symbols of u immediately followed by the sym-
bols of v, thus, uv. The empty word ε is the identity element of the concatenation,
thus, for any word u, εu = uε = u.

For example, the concatenation between u = ab and v = ba is uv = abba, while
the concatenation between v and u is vu = baab.

The next concept is of language, whose definition can be seen in Definition 2.5.

6

Definition 2.5 (Language)
A language L is a set of words of finite length.

For example, L = {a, b, aab, bbb} and K = {a} are languages, whose cardinali-
ties are ‖L‖ = 4 and ‖K‖ = 1, respectively.

The operation over Σ that creates a language formed of all possible finite words
obtained from Σ is called the Kleen-Closure, and its definition is presented in Defi-
nition 2.6.

Definition 2.6 (Kleene-Closure)
Let Σ be a set of events, then, Σ∗ := {ε} ∪ Σ∪ ΣΣ ∪ ΣΣΣ . . . is the Kleene-Closure
of Σ and it is defined as the set of all finite words formed with the elements of Σ,
including ε.

The notation := means "equal by definition". And, a property of the Kleene-
Closure is that Σ∗ is infinite, but countable.

For example, for Σ = {a, b}, we have that Σ∗ =
{ε, a, b, aa, ab, ba, bb, aaa, aab . . . }.

It is important to remark that every language formed of elements of Σ is a subset
of Σ∗, since Σ∗ has all possible words generated from Σ.

Every word w can be decomposed into three parts: (i) prefix, (ii) subword and
(iii) suffix. Let Σ = {a, b, c} be an alphabet and w = abc be a word. Therefore:

• ε, a, ab and abc are all the prefixes of w;

• ε, a, b, c, ab, bc and abc are all the subwords of w;

• ε, c, bc and abc are all the suffixes of w.

Note that ε and w are always a prefix, a subword and a suffix of w.

Since languages are sets, the operations performed on sets are valid in language
theory, such as union, difference and intersection. Another operation that can be
defined for language is called Prefix-Closure and it creates a new language consisting
of all the prefixes of all the words of the original language.

Definition 2.7 (Prefix-Closure)
Let L ⊆ Σ∗ be a language, then, L := {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]} is the prefix-
closure of L.

Notice that L ⊆ L. In addition, if a language L is equal to its prefix-closure,
i.e., L = L, then, L is said to be prefix-closed.

7

For example, let Σ = {a, b, c} be an alphabet and L1 = {ε, a, ab} and
L2 = {a, b, ac, aab} be two languages over Σ. Then, L1 = {ε, a, ab} and
L2 = {ε, a, b, aa, ac, aab}. Note that since L1 = L1, then, L1 is prefix-closed.

2.3 Automata

In computation theory, automaton is a formalism used to represent languages
and it is represented graphically by the state transition diagram. Automaton is
one of the approaches most used to model DES because it can reproduce the DES
behavior using a compact representation. The formal definition of a Deterministic
Finite State Automaton, which will be refered to only as Automaton when the
context is clear, is presented in Definition 2.8 [27].

Definition 2.8 (Deterministic Finite State Automaton)
A Deterministic Finite State Automaton G is a 5-tuple

G := (X, Σ, f, x0, Xm)

where:

• X is the finite set of states;

• Σ is the finite set of events;

• f : X × Σ → X is the transition function (it can be partially defined over its
domain);

• x0 ∈ X is the initial state;

• Xm ⊆ X is the set of marked states.

Let x, y ∈ X and σ ∈ Σ, then f(x, σ) = y means that at state x, after the
occurence of event σ, the automaton will change its state to y. In this case, the
function is defined at x, σ and this can be represented as f(x, σ)!, where ! means
“is defined”. This function can be extended in a natural way as f : X × Σ∗ → X

where
f(x, ε) := x

f(x, sσ) := f(f(x, s), σ), s ∈ Σ∗ ∧ σ ∈ Σ.

The set of marked states is, in general, a set of states whose information is
relevant, such as the accomplishment of a task.

8

Automata are graphically represented by state transition diagrams which are
directed graphs, where the vertices are the states and the edges are the transitions,
labeled with the events that causes the changing in the states. In addition, the
initial state is marked by an arrow (without an origin state). Example 2.1 presents
an automaton and its graphical representation.

Example 2.1 (Example of an Automaton)
Let G = (X, Σ, f, x0, Xm) be an automaton such that:

• X = {x0, x1, x2, x3};

• Σ = {a, b, c, d, e};

• f(x0, a) = x1, f(x1, b) = x3, f(x1, d) = x2, f(x2, b) = x3, f(x2, e) = x0,
f(x3, c) = x1, f(x3, b) = x3;

• x0 = x0;

• Xm = {x3}.

The state transition diagram of G is depicted in Figure 2.1.

x0 x1 x2

x3

a d

b

e

b

c

b

Figure 2.1: Automaton of the Example 2.1.

The language generated by an automaton G is the set composed of all the words
generated by G and it is defined as L(G) := {s ∈ Σ∗ : f(x0, s)!}.

Similarly, the language marked by an automaton G is the set formed of the
words that reach a marked state in G from its initial state and it is defined as
Lm(G) := {s ∈ Σ∗ : f(x0, s)! ∧ f(x0, s) ∈ Xm}.

9

2.4 Deterministic Automaton with Outputs and
Conditional Transitions

In order to define the Deterministic Automaton with Outputs and Conditional
Transitions (DAOCT), it is first necessary to present some notations.

• Z+ is the set of positive integers numbers;

• Z2 = {0, 1} is the set of possible values for a binary number.

The DAOCT [25] model is obtained from observations of the system behavior
whose scheme is shown in Figure 1.1. The sensors are related to the inputs (I) of
the PLC and the actuators are related to the outputs (O) of the PLC. Each sensor
and actuator is represented by a subscribed number (∈ Z+), for example, I1 and O3,
correspond to the first input and the third output, respectively. The observed data
are based on I/O vectors, defined as follows.

Definition 2.9 (I/O Vector)
The I/O vector u ∈ Zn2 is a vector of signals where n ∈ Z+ is the number of sensors
(inputs) and actuators (outputs) of the PLC.

The i-th element of a vector u is denoted by u[i] where i ∈ Z+. For example,
u[2] is the second element of the I/O vector u. The value of the I/O vector u at a
given observation i ∈ Z+ is called I/O status and is denoted as u(i). An observation
is acquired when there is a change in at least one signal of u.

Let u = [I1 I2 O1 O2]T be an I/O vector and u(1) = [1 0 1 1]T ∈ Z4
2 its status

(at the first observation). For example, u[1] is the first element of the I/O vector u,
that is I1. And, u(1)[2] is the second element of the I/O status u(1), that is 0.

A notation used to simplify an I/O status which its elements are just 0 or 1 is to
use tuples which the elements are the indexes (in ascending order) of the 1 values.
For example, u(1) = (1, 3, 4). In particular, if all elements of an I/O status are 0,
it is represented as an empty tuple, i.e., ().

Systems evolve via signal changes in the I/O status which are called events and
their formal definition is presented in Definition 2.10 [25].

Definition 2.10 (Event)
An event of the identified model is any observed instantaneous change in one or
more signals of the I/O status.

To simplify the representation of an event σ, we use to denote a rising edge
and to denote a falling edge plus the index of the signal in the I/O vector. For

10

example, let u = [I1 I2 O1 O2]T be the I/O vector and u(1) = [0 0 1 1]T and
u(2) = [1 1 0 1]T be the first two observed I/O status. Then, the first and the
second element of u are rising edges while the third one is a falling edge, which can
be represented as σ(1) = 1 2 3.

Let u(i) and u(i + 1) where i ∈ Z+ be two consecutive observed I/O status
and σ(i) be the event that caused u(i) be changed to u(i + 1), then, this can be
represented as (u(i), σ(i), u(i + 1)). For example,

(
[0 0 1 1]T , 1 2 3, [1 1 0 1]T

)
.

The extension of this representation leads us to the definition of paths, that can be
seen in Definition 2.11 [25].

Definition 2.11 (Path)
A path is a sequence of I/O status and events. Let u be the I/O vector and σ(i)
be the event that causes the change between two consecutives I/O status u(i) and
u(i+ 1), where i ∈ Z+. Then, for l ∈ Z+ observations, a path p is

p := (u(1), σ(1), u(2), σ(2), . . . , σ(l − 1), u(l)).

Its length |p|p is the number of observations, then, |p|p = l.

To represent several paths in a compact way the subindex notation is intro-
duced, where each path pq represents the q-th path and its notation is pq :=
(uq(1), σq(1), uq(2), σq(2), . . . , σq(lq − 1), uq(lq)), for l, q ∈ Z+. In addition, the
initial I/O status of an I/O vector u is denoted as u0q = uq(1).

A path represents, for example, the prodution cycle in a system and there al-
ways exist a sequence of events associated to it. This sequence is formed of all the
events that were recorded in the path. Let p = (u(1), σ(1), u(2), σ(2), . . . σ(l −
1), u(l)) where l ∈ Z+ be a path, then, the associated sequence of events is
s := σ(1)σ(2) . . . σ(l− 1). Thus, associated with each path pq there is a sequence of
events sq.

In [25], the following assumptions are considered:

A1. Every path has the same initial I/O status, i.e., the system has a unique initial
state;

A2. A sequence of events associated to a path cannot be a prefix of another se-
quence of events associated with a different path.

Assumption A2. is expected to be true in several systems, since each path is a
task in the system, and, in general, a task is not a subtask of another task.

Now the definition of the DAOCT is presented in Definition 2.12 [25].

11

Definition 2.12 (Determinitisc Automaton with Outputs and Conditional Transi-
tions)
The Determinitisc Automaton with Outputs and Conditional Transitions M is a
9-tuple

M := (X, Σ, Ω, f, λ, R, θ, x0, Xf)

where:

• X is the set of states;

• Σ is the set of events;

• Ω ⊆ Zn2 is the set of all observed I/O status where n is the number of signals
of the system;

• f : X × Σ∗ → X is the deterministic transition function;

• λ : X → Ω is the state output function;

• R := {1, 2, . . . , r} is the set of path indexes where r ∈ Z+;

• θ : X × Σ→ 2R is the path estimation function;

• x0 is the initial state;

• Xf ⊆ X is the set of final states.

Set Ω is composed of all observed I/O status. λ is the function that associates
an I/O status to each state of the system. θ is the path estimation function which
avoids the execution of sequences of events in wrong paths and this will be explained
and illustrated in Example 2.3.

Before introducing the language generated by the DAOCT, it is necessary to
extend the path estimation function θ to θs, to allow sequences of events instead of
only events. Therefore, the domain is extended to θs : X × Σ∗ → 2R. Then, the θs
function is defined recursively as:

θs(x, ε) =R,

θs(x, sσ) =

θs(x, s) ∩ θ(x
′, σ), wherex′ = f(x, s), if f(x, sσ)!

Undefined , otherwise.

Finally, the language generated by the DAOCT is given by:

L(DAOCT) := {s ∈ Σ∗ : f(x0, s)! ∧ θs(x0, s) 6= ∅}.

12

The DAOCT is obtained from the observed paths of the system, and depends on
a free parameter k. This parameter assigns at most k I/O status to each state of the
model, that leads to a trade-off between accuracy and model size. High values for
k imply in more accurate models at the cost of the model size increase, while small
values of k imply the opposite. The construction of the modified paths is presented
in Definition 2.13.

Definition 2.13 (Modified Paths)
Let pq be the observed paths, uq be I/O vectors, lq be the length of pq, σq be events
where q ∈ Z+ and k be the free parameter. The modified path pkq is given as

pkq := (yq(1), σq(1), yq(2), σq(2), . . . , σq(lq − 1), yq(lq))

where, for i ∈ Z+:

yq(i) :=

(uq(i− k + 1), . . . , uq(l)), if k ≤ l ≤ lq

(uq(1), . . . , uq(l)) , if l < k.

Note that the free parameter k only changes how many I/O status will be asso-
ciated to each vertex in the path. Thus, for k = 1, the path p1 is equal to path p.
To illustrate the construction of a modified path, an example will be given in the
sequel.

Example 2.2 (Modified Paths Construction)

Suppose that the following paths have been observed:

p1 =




0
0
0
0

, 1,


1
0
0
0

, 2,


1
1
0
0

, 3,


1
1
1
0

, 2 3,


1
0
0
0

, 1,


0
0
0
0





p2 =




0
0
0
0

, 1,


1
0
0
0

, 2,


1
1
0
0

, 4,


1
1
0
1

, 2 4,


1
0
0
0

, 1,


0
0
0
0





p3 =




0
0
0
0

, 1,


1
0
0
0

, 1,


0
0
0
0





13

Let us construct the modified paths considering k = 2. Then, the modified paths
are:

p2
1 =




0
0
0
0

, 1,


0 1
0 0
0 0
0 0

, 2,


1 1
0 1
0 0
0 0

, 3,


1 1
1 1
0 1
0 0

, 2 3,


1 1
1 0
1 0
0 0

, 1,


1 0
0 0
0 0
0 0





p2
2 =




0
0
0
0

, 1,


0 1
0 0
0 0
0 0

, 2,


1 1
0 1
0 0
0 0

, 4,


1 1
1 1
0 0
0 1

, 2 4,


1 1
1 0
0 0
1 0

, 1,


1 0
0 0
0 0
0 0





p2
3 =




0
0
0
0

, 1,


0 1
0 0
0 0
0 0

, 1,


1 0
0 0
0 0
0 0




Note that the initial I/O status is the same for a path p and a modified path

pk. In addition, the i-th I/O status of pk has i columns if i < k, otherwise it has k
columns.

In [25] an identification algorithm is proposed for the construction of the DAOCT
model given the set of observed paths. To ilustrate its application, the model for
the paths of Example 2.2 is presented in Example 2.3.

Example 2.3 (DAOCT Model)
Considering the paths of Example 2.2 and the I/O status [1 1 1 0]T and [1 1 0 1]T as
marked states, let us construct the models for the free parameter k = 1 and k = 2.

For k = 1, the constructed model M1 is shown in Figure 2.2.

x0 x1 x2

x3

x4

1:{1, 2, 3}

1:{1, 2, 3}

2:{1, 2}
3:{1}

4:{2}

2 3:{1}

2 4:{2}

Figure 2.2: DAOCT model for k = 1 of the Example 2.2.

14

Let xa and xb be states, where a, b ∈ Z, e be the event that evolves xa to xb and
I be the set of all allowed path indexes associated with this evolution. Then, in state
transitions, these informations are represented as e : I on the arc that connects xa
to xb.

For k = 2, the constructed model M2 is shown in Figure 2.3.

x0 x1 x2 x3 x4 x5

x6 x7

1:{1, 2, 3} 2:{1, 2}

1:{3}

3:{1}

4:{2}

2 3:{1} 1:{1}

1:{2}2 4:{2}

Figure 2.3: DAOCT model for k = 2 of the Example 2.2.

The DAOCT model of Figure 2.2, obtained for k = 1, has the following attributes:

• X = {x0, x1, x2, x3, x4};

• Σ = { 1, 1, 2, 3, 4, 2 3, 2 4};

• Ω = {[0 0 0 0]T , [1 0 0 0]T , [1 1 0 0]T , [1 1 1 0]T , [1 1 0 1]T};

• f(x0, 1) = x1, f(x1, 1) = x0, f(x1, 2) = x2, f(x2, 3) = x3,

f(x2, 4) = x4, f(x3, 2 3) = x1, f(x4, 2 4) = x1;

• λ(x0) = [0 0 0 0]T , λ(x1) = [1 0 0 0]T , λ(x2) = [1 1 0 0]T , λ(x3) = [1 1 1 0]T ,
λ(x4) = [1 1 0 1]T ;

• R = {1, 2, 3};

• θ(x0, 1) = {1, 2, 3}, θ(x1, 1) = {1, 2, 3}, θ(x1, 2) = {1, 2},
θ(x2, 3) = {1}, θ(x2, 4) = {2}, θ(x3, 2 3) = {1}, θ(x4, 2 4) = {2};

• x0 = x0 (It is important to highlight that x0 is commonly used as the attribute
of the model and as the name of the initial state);

• Xf = {x3, x4}.

The DAOCT model of the Figure 2.2, k = 2, has the following attributes:

15

• X = {x0, x1, x2, x3, x4, x5, x6, x7};

• Σ = { 1, 1, 2, 3, 4, 2 3, 2 4};

• Ω =




0
0
0
0

,


0 1
0 0
0 0
0 0

,


1 1
0 1
0 0
0 0

,


1 1
1 1
0 1
0 0

,


1 1
1 0
1 0
0 0

,


1 1
0 1
0 0
0 0

,


1 1
1 1
0 0
0 1

,


1 1
1 0
0 0
1 0




;

• f(x0, 1) = x1, f(x1, 2) = x2, f(x1, 1) = x5, f(x2, 3) = x3,

f(x2, 4) = x6, f(x3, 2 3) = x4, f(x4, 1) = x5, f(x6, 2 4) = x7,

f(x7, 1) = x5;

• λ(x0) =


0
0
0
0

, λ(x1) =


0 1
0 0
0 0
0 0

, λ(x2) =


1 1
0 1
0 0
0 0

, λ(x3) =


1 1
1 1
0 1
0 0

,

λ(x4) =


1 1
1 0
1 0
0 0

, λ(x5) =


1 0
0 0
0 0
0 0

, λ(x6) =


1 1
1 1
0 0
0 1

, λ(x7) =


1 1
1 0
0 0
1 0

;

• R = {1, 2, 3};

• θ(x0, 1) = {1, 2, 3}, θ(x1, 2) = {1, 2}, θ(x1, 1) = {3}, θ(x2, 3) = {1},
θ(x2, 4) = {2}, θ(x3, 2 3) = {1}, θ(x4, 1) = {1}, θ(x6, 2 4) = {2},
θ(x7, 1) = {2};

• x0 = x0 (It is important to highlight that x0 is commonly used as the attribute
of the model and as the name of the initial state);

• Xf = {x3, x6}.

Notice that despite of the difference in the value of k, M1 andM2 share the same
set of events Σ, the set of path indexes R and the initial state x0.

Now, let s1 = (1, 2, 3, 2 3, 1), s2 = (1, 2, 3, 2 3, 2) and s3 =
(1, 2, 3, 2 3, 2, 4) be sequences of events. The modelsM1 andM2 accept s1,
however, onlyM1 accepts s2 and none of them accept s3. Even s3 being reproducible
in M1, the set of possible path indexes is empty, therefore, there is no path that
reproduces s3. This means s3 is part of the original exceeding language, but with
the path estimation function it does not belong to the model language and it will
be identified as a faulty sequence. The main goal of the path estimation function

16

is to reduce the exceeding language not allowing sequences that have empty sets of
possible path indexes. To exemplify how this works, the evolution of the set of the
possible path indexes θs is shown below. In the beginning, the model is at state x0

with θs = R = {1, 2, 3}. As the system evolves, θs is updated and this is shown
below:

x0, 1⇒ θs = θs ∩ θ(x0, 1) = {1, 2, 3} ∩ {1, 2, 3} = {1, 2, 3}
x1, 2⇒ θs = θs ∩ θ(x1, 2) = {1, 2, 3} ∩ {1, 2} = {1, 2}
x2, 3⇒ θs = θs ∩ θ(x2, 3) = {1, 2} ∩ {1} = {1}
x3, 2 3⇒ θs = θc ∩ θ(x3, 2 3) = {1} ∩ {1} = {1}
x1, 2⇒ θs = θs ∩ θ(x1, 2) = {1} ∩ {1, 2} = {1}
x2, 4⇒ θs = θs ∩ θ(x2, 4) = {1} ∩ {2} = ∅

Since the last θs = ∅, the evolution is not allowed, then, this sequence of events
is not accepted.

In fact, s2 and s3 were not observed in the paths, therefore, they are expected
to be faulty sequences. The model M2 (k = 2) is more accurate than M1 (k = 1),
since it does not accept s2 and s3 while M1 accepts s2. This has happened because
M1 has cycles and this has introduced possible sequences of events that were not
observed. However, the accuracy of M2 is achieved increasing the size of the model
(8 states against 5 states of M1).

The DAOCT model has the following important properties as presented in [25]:

P1. The language of the DAOCT is a subset of the observed language;

P2. The DAOCT model is k-complete;

P3. If the DAOCT model does not have cycles for a given value of the free param-
eter k, then, the exceeding language is the empty set.

Property P1 states that the DAOCT model simulates the observed fault-free
behavior. In words, all the observed language belongs to the language generated by
the model. Property P2 states that for a given value of k, any subword of length
k belongs to the DAOCT model if, and only if, it has been observed, which implies
that the DAOCT model is suitable for fault detection.

In order to achieve the result of Property P3, the value of k is increased to
reduce the cycles. This strategy is shown in Example 2.3, where the DAOCT model
for k = 1 has cycles, differently from the model for k = 2. The main problem of
this trade-off between model size and accuracy is how to obtain the most compact
model that is capable of identifying faults. However, in several practical cases, it
has been observed that small values for k can be chosen [24].

17

Chapter 3

Event-Based Automaton Model

In this chapter, an example to motivate the use of the EBAM is presented in
Section 3.1. Then, in Section 3.2, the EBAM is formally introduced, as well as
the procedure to compute the model and the algorithm to detect and isolate faults.
Finally, the EBAM properties are presented in Section 3.4.

3.1 Motivating Example

Consider the box filling system depicted in Figure 3.1. This system is composed
of a conveyor, a balance, containers to be filled (boxes), a tank and water (to fill
the boxes). Its objective is to fill the boxes with a certain amount of water. There
are four sensors i1, i2, i3 and i4 and three actuators o1, o2 and o3 that control the
system and are described in Table 3.1.

i1

i2

i3

i4o1

o2

o3

Figure 3.1: A box filling system.

18

Table 3.1: Description of each signal of the system in Figure 3.1.

Signal Type Description

i1 P Sensor Detect that the water level reached the maximum level
i2 P Sensor Detect that the water level reached the minimum level
i3 P Sensor Detect that there is a box entering in the balance
i4 P Sensor Detect when a box is filled (by the weight)
o1 Actuator Turn on and off the conveyor
o2 Actuator Open (1) and close (0) the valve that supplies the tank
o3 Actuator Open (1) and close (0) the valve that fills the boxes

Regarding the signal i4, it is important to note that this signal is discretized,
since the balance measures the weight. If the weight measured is greater than or
equal to the amount necessary to fill the boxes, its values is 1, otherwise, its value
is 0.

The general behavior of the system is described in steps as follows:

S1. The conveyor is turned on;

S2. A box arrives in the balance;

S3. The conveyor is turned off;

S4. The tank starts to fill the box;

S5. The box is completely filled;

S6. Back to step S1.

Besides the general behavior, the tank has its own behavior and it is described
as follows:

• Only at the beginning, if the water level is lower than the maximum one, then,
the tank is supplied with water, otherwise it is not.

• If the water level reachs the maximum one, then, the tank supply is inter-
rupted.

• If the water level reachs the minimum level, then, the tank is supplied with
water untill the water level reachs the maximum one.

19

Consider now u = [i1 i2 i3 i4 o1 o2 o3]T as the I/O vector that will be used to
observe the system.

It is important to remark that this sytem may have different initial I/O status,
since the tank has its own behavior, then, at the beginning, the tank may be being
supplied or not. This behavior also may cause different initial and final I/O status
in the paths. Therefore, it is not possible to obtain a unique NDAOO or DAOCT
model.

Let p1, p2 and p3 be three observed paths of the system (splitted after a single
observation). The observation started with the I/O status u(1) = [0 1 0 0 0 0 0]T ,
i.e., the water level was between the minimum and maximum level, in this case, no
box is at the conveyor and all actuators are turned off (conveyor and valves).

p1 =





0
1
0
0
0
0
0


, 5 6,



0
1
0
0
1
1
0


, 3,



0
1
1
0
1
1
0


, 7 3 5,



0
1
0
0
0
1
1


, 4 5 7,



0
1
0
1
1
1
0





p2 =





0
1
0
1
1
1
0


, 4,



0
1
0
0
1
1
0


, 1 6,



1
1
0
0
1
0
0


, 3,



1
1
1
0
1
0
0


, 7 3 5,



1
1
0
0
0
0
1


, 1,



0
1
0
0
0
0
1


, 4 5 7,



0
1
0
1
1
0
0





p3 =





0
1
0
1
1
0
0


, 4,



0
1
0
0
1
0
0


, 3,



0
1
1
0
1
0
0


, 7 3 5,



0
1
0
0
0
0
1


, 4 5 7,



0
1
0
1
1
0
0




Path p1 represents the first task of the system. It starts with the water level

lower than the maximum one, thus, the tank starts to be supplied. In addition, the
conveyor is turned on. After a while, the sensor i3 detects the presence of a box,

20

marked by its falling edge, then, the conveyor is turned off and the box starts to
be filled. Finally, when the rising edge of the sensor i4 occurs, that is, the box is
already filled, then, the filling is interrupted and the conveyor is turned on.

Path p2 represents the second task of the system, which comes right after the first
one. The water level is still lower than the maximum one, thus the supply continues.
After a while, the balance is empty, since the conveyor is on, and it is represented
by the falling edge of sensor i4. Then, the water level reachs the maximum level,
detected by the rising edge of sensor i1, then, the tank supply is interrupted. At a
subsequent time, sensor i3 detects the presence of a new box, marked by its falling
edge, then, the conveyor is turned off and the box starts to be fill. In filling the box,
the water level descreases and it is lower than the maximum one and it is detected
by the falling edge of sensor i1. Finally, the same process of releasing the filled box
from the path p1 is executed.

Path p3 represents the third task of the system, which comes right after the
second one. The difference between p2 and p3 is that in p3 the process of stop the
tank filling is not observed, since it has already stopped.

Note that all the paths have different initial I/O status. Furthermore, the initial
and final I/O status of p1 and p2 are different. Therefore, as mentioned earlier, the
NDAAO and the DAOCT are not suitable to model this system.

Notice that the same event can be associated to different I/O status transititons.
For example, the event 4 is associated to the transition from [0 1 0 1 1 1 0]T to
[0 1 0 0 1 1 0]T (p2) and from [0 1 0 1 1 0 0]T to [0 1 0 0 1 0 0]T (p3).

3.2 Presentation of the Model

Before introducing the EBAM definition, some concepts and notations will be
given. The concept of event, Definition 2.10, is the same used in the DAOCT.
However, differently from the DAOCT that uses I/O status to create the model, the
EBAM uses event vectors, which definition can be seen in the sequel.

Definition 3.1 (Event Vector)
Let u be an I/O vector and u(i) and u(i + 1) be two consecutives I/O status where
i ∈ Z+. Then, an event vector e(i) is given by

e(i) := u(i+ 1)− u(i).

Its length |e(i)|v is the length of u, thus, |e(i)|v = |u|v. In addition, e(i)[j] is its j-th
element, where j ≤ |e(i)|v, j ∈ Z+.

21

Note that each element of an event vector e(i) can assume only three values,
since the I/O vector is formed by discrete signals. These values are: (i) -1, when
e(i)[j] = 1 and e(i)[j + 1] = 0; (ii) 0, when e(i)[j] = e(i)[j + 1] = 0 or 1; (iii) 1,
when e(i)[j] = 0 and e(i)[j + 1] = 1, where i, j ∈ Z+. Now, let 1 be the set formed
by these values, thus, 1 := {91, 0, 1}. Hence, an event vector e(i) ∈ 1|e(i)|v .

The model proposed in this work for the identification of DES aiming fault
detection is called EBAM, which definition can be seen in Definition 3.2.

Definition 3.2 (Event-Based Automaton Model)
An Event-Based Automaton Model M is an 8-tuple:

M := (X, x0, Σ, δ, λ, λ0, Ω, θ)

where:

• X is the finite set of states;

• x0 ∈ X is the initial state;

• Σ is the finite set of events;

• δ : X × Σ→ X is the transition function;

• λ0 : {x0} → 2Zn
2 is the initial state label function;

• λ : X \ {x0} →
⋃k
i=1 2Zni

2 is the state label function;

• Ω is the finite set of path indexes;

• θ : X × Σ→ 2Ω is the path indexes function;

Function λ0 associates the initial state to a set formed of the initial I/O status
of the paths. The λ function associates to each state, except for the initial one, a
modified event sequence, which is later defined in Definition 3.4. Ω is the set formed
by the indexes associated to each path used to construct the model. The θ function
is the same used in the DAOCT. In addition, the θs function is analogously defined.

First, it is necessary to extend the path estimation function, θ to θs, to allow
sequences of events instead of only events. Therefore, the domain is extended to
θs : X × Σ∗ → 2Ω. Then, the θs function is defined recursively as:

θs(x, ε) = Ω,

θs(x, sσ) =

θs(x, s) ∩ θ(x
′, σ), wherex′ = δ(x, s), if δ(x, sσ)!

Undefined , otherwise.

22

It is important to highlight that the model is deterministic, since δ is determin-
istic and there is only one initial state. In addition, the model is based on event
changes (noticed by the event vector), not in I/O status. This can be noted by the
λ function. In DAOCT, it returns the I/O status (modified) associated to the state,
however, in EBAM, it returns the event vector (modified) associated to the state.

An event is a change in one or more signals of an I/O vector and this can be
represented as a vector using the bijective codification function fc, which definition
can be seen in Definition 3.3.

Definition 3.3 (Codification Function)
Given an I/O vector u, the bijective codification function fc is:

fc : Σ→ 1
|u|v

σ 7→ σ̃

where:

σ̃[i] :=


1, if u[i] ∈ σ

91, if u[i] ∈ σ, i ∈ {1, 2, . . . , |u|v}

0, otherwise.

For example, let u = [i1 i2 o1 o2]T be an I/O vector, where i1, i2, o1 and o2

are signals and σ = 1 3 2 be an event. Then, the codified event σ̃ is obtained by
fc(σ). Hence, σ̃ = fc(σ) = [1 91 1 0]T . Now, let σ̃ = [0 0 1 91]T , then, σ is obtained
by f−1

c (σ̃). Hence, σ = f−1
c (σ̃) = 3 4.

The paths used to construct EBAM are the same as those used to construct
DAOCT. To represent several paths is used the same ideia of the DAOCT case.
Hence, the q-th path pq := (uq(1), uq(2), . . . , uq(lq)), where q, lq ∈ Z+.

The sequence of events for the EBAM is a sequence of all codified events that
occurred in the observation. A path represents exactly one prodution cycle in the
system and associated to it there is always a sequence of events. This sequence is
formed of all the events that were recorded in the path and its definition can be seen
in Definition 3.4.

Definition 3.4 (EBAM Event Sequence)
Let p = (u(1), u(2), . . . u(l)) where l ∈ Z+ be a path, then, the sequence of events s̃
is

s̃ := (u(2)− u(1), u(3)− u(2), . . . , u(l)− u(l − 1)).

Its length is the number of differences and s̃[i] is its i-th element, where i ≤ l, i ∈ Z+.
In other words, a sequence of events is a sequence of event vectors.

23

Note that the event sequence has the length reduced in one compared to the
path, since there is l − 1 consecutive differences in it, where l is the length of the
path used to compute the event sequence.

To represent several event sequences is used the same ideia of the paths. Hence,
the i-th event sequence s̃i := (ui(2) − ui(1), ui(3) − ui(2), . . . , ui(ji) − ui(ji − 1)),
where i, j ∈ Z+.

Consider now that there are r ∈ Z+ observed paths, represented as follows.

p1 = (u1(1), u1(2), . . . , u1(l1))
p2 = (u2(1), u2(2), . . . , u2(l2))

...
pr = (ur(1), ur(2), . . . , ur(lr))

For each path is possible to construct an event sequence. Then, it is possible to
represent each path by the initial I/O status and its event sequence, as can be seen
as follows.

p1 ⇒ s̃1 = (u1(2)− u1(1), u1(3)− u1(2), . . . , u1(l1)− u1(l1 − 1)) ∴ (u1(1), s̃1)
p2 ⇒ s̃2 = (u2(2)− u2(1), u2(3)− u2(2), . . . , u2(l2)− u2(l2 − 1)) ∴ (u2(1), s̃2)

...
pr ⇒ s̃r = (ur(2)− ur(1), ur(3)− ur(2), . . . , ur(lr)− ur(lr − 1)) ∴ (ur(1), s̃r)

As the DAOCT, the EBAM has the free parameter k that leads to a trade off
between model size and accuracy. It can be interpreted as how many events are
associated to the state, since the state records the last k events. This feature is
implemented in the model by modifying the sequence of events as can be seen in
Definition 3.5.

Definition 3.5 (Modified Sequence of Events)
Let s̃i be a sequence of events, ui be I/O vectors, li be the length of ui and k be the
free parameter, then, the modified sequence of events s̃ki is

s̃ki := (yi(1), yi(2), . . . , yi(li))

where:

yi(j) :=

(s̃i[j − k + 1], . . . , s̃i[l]), if k ≤ l ≤ li, j ∈ Z+

(s̃i[1], . . . , s̃i[l]) , if l < k.

The elements of s̃ki are called modified event vectors.

24

For k = 1 the sequence of events does not change, therefore, s̃1
1 = s̃. From the

modified sequences of events definition, it is straightforward that each vertex yi(j)
stores the last k− 1 events executed in the path if j > k and the last j − 1 events if
j < k. Example 3.1 illustrates the construction of the modified sequence of events.

Example 3.1 (Construction of the Modified Sequence of Events)
Using the paths p1, p2 and p3 of the motivating example in Section 3.1, let us
construct the event sequence and the modified sequence of events for the free
parameter k = 1 and k = 2:

p1 =





0
1
0
0
0
0
0


, 5 6,



0
1
0
0
1
1
0


, 3,



0
1
1
0
1
1
0


, 7 3 5,



0
1
0
0
0
1
1


, 4 5 7,



0
1
0
1
1
1
0





p2 =





0
1
0
1
1
1
0


, 4,



0
1
0
0
1
1
0


, 1 6,



1
1
0
0
1
0
0


, 3,



1
1
1
0
1
0
0


, 7 3 5,



1
1
0
0
0
0
1


, 1,



0
1
0
0
0
0
1


, 4 5 7,



0
1
0
1
1
0
0





p3 =





0
1
0
1
1
0
0


, 4,



0
1
0
0
1
0
0


, 3,



0
1
1
0
1
0
0


, 7 3 5,



0
1
0
0
0
0
1


, 4 5 7,



0
1
0
1
1
0
0




The first step is to convert the path to the event sequence s̃. This can be done in

two ways: (i) via the consecutives differences; (ii) via the codification function over
the events, since the events are available in this case.

25

s̃1 =





0
0
0
0
1
1
0


,



0
0
1
0
0
0
0


,



0
0

91
0

91
0
1


,



0
0
0
1
1
0

91





s̃2 =





0
0
0

91
0
0
0


,



1
0
0
0
0

91
0


,



0
0
1
0
0
0
0


,



0
0

91
0

91
0
1


,



91
0
0
0
0
0
0


,



0
0
0
1
1
0

91





s̃3 =





0
0
0
0

91
0
0


,



0
0
1
0
0
0
0


,



0
0

91
0

91
0
1


,



0
0
0
1
1
0

91




For the free parameter k = 1 the modified sequences of events do not change,

however, for k = 2 they are different as can be seen as follows:

s̃2
1 =





0
0
0
0
1
1
0


,



0 0
0 0
0 1
0 0
1 0
1 0
0 0


,



0 0
0 0
1 91
0 0
0 91
0 0
0 1


,



0 0
0 0
91 0
0 1
91 1
0 0
0 91





26

s̃2
2 =





0
0
0

91
0
0
0


,



0 1
0 1
0 0

91 0
0 0
0 91
0 0


,



1 0
1 0
0 1
0 0
0 0

91 0
0 0


,



0 0
0 0
1 91
0 0
0 91
0 0
0 1


,



0 91
0 0
91 0
0 0
91 0
0 0
1 0


,



91 0
0 0
0 0
0 1
0 1
0 0
0 91





s̃2
3 =





0
0
0
0

91
0
0


,



0 0
0 0
0 1
0 0

91 0
0 0
0 0


,



0 0
0 0
1 91
0 0
0 91
0 0
0 1


,



0 0
0 0
91 0
0 1
91 1
0 0
1 91





To obtain the original event vector from a modified event vector, it is used the
event function φ, which definition can be seen in Definition 3.6.

Definition 3.6 (Event Function)
Given a modified event vector M , an I/O vector u and the free parameter k, the
event function φ is defined as:

φ : 1|u|v×k → 1
|u|v

M 7→M [∗, |u|v]

where M [∗, |u|v] denotes the |u|v-th column of M .

In addition, to obtain the event associated to an event vector, it is used the
inverse of the codification function. For example, considering e = s̃2

3[4]:

e =



0 0
0 0

91 0
0 1

91 1
0 0
1 91


⇒ φ(e) =



0
0
0
1
1
0

91


⇒ σ = f− 1

c (φ(e)) = 4 5 7.

The last definition is the EBAM path, that is the path used to construct the
model and can be seen in Definition 3.7.

27

Definition 3.7 (EBAM path)
An EBAM path p̃ is a tuple formed by the initial I/O status, as first element, and
the modified sequence of events, as the others elements, of a given path p. Its length
|p̃|p is the same of p, then, |p̃|p = |p|p.

The EBAM is obtained following the steps of Algorithm 1.

Algorithm 1: EBAM Construction

Input: EBAM paths (ui(1), s̃i), ∀i ∈ {1, 2, . . . , r}, r ∈ Z+

Output: EBAM = (X, x0, Σ, δ, λ, λ0, Ω, θ)

1 Ω← {1, 2, . . . , r} // Defining the set of path indexes
2 Create the state x0

3 X ← {x0} // Creating the set of states
4 Σ← λ0(x0)← { } // Creating the set of events and the initial state label
5 for i ∈ Ω do
6 for j ∈ {1, 2, . . . , |s̃i|s} do
7 if j = 1 then
8 xc ← x0 // Updating the current state
9 λ0(x0)← λ0(x0) ∪ {ui(1)} // Updating the initial state label

10 else
11 xp ← xc // Updating the previous state
12 σ ← f−1

c (φ(s̃i[j])) // Event
13 if σ ∈ Σ then
14 xc ← δ(xp, σ) // Updating the current state
15 else
16 Create the state x‖X‖
17 xc ← x‖X‖ // Updating the current state
18 X ← X ∪ {xc} // Updating the set of states
19 Σ← Σ ∪ {σ} // Updating the set of events
20 λ(xc)← s̃i[j] // Defining the state output

21 if δ(xp, σ)! then
22 θ(xp, σ)← θ(xp, σ) ∪ {i} // Updating the allowed index path
23 else
24 δ(xp, σ)← xc // Creating the transition
25 θ(xp, σ)← {i} // Defining the allowed index path

28

In order to elucidate the Algorithm 1, it will be explained line by line. The inputs
are the observed paths and the output is the EBAM. Lines 1 to 4 create the sets Ω,
X, Σ and λ0(x0), that will be filled throughout the algorithm, and the initial state
x0. The for blocks in Lines 5 and 6 run the algorithm for every modified event inside
each EBAM path. The if block in Line 7 is just to pick the first modified event
of a path. Inside of it, the current state now is defined as the initial one and the
initial state label is updated. The else block in Line 10 picks the rest of the modified
events and defines the previous state as the current one and converts the modified
event to the real event. The if block in Line 13 checks if the event is already in the
model. If it is, the current state is updated to following the transition based on the
δ function. If it is not the first time that this event appears, represented in Line
15 in the else block, then, a new state is created and it is defined as the current
one. Besides, the set of states and set of events are updated and the state output
for the current state is defined. The following if block, in Line 21, verifies if the
transition from the previous state with the event is defined. If it is, then, the allowed
index path function is updated, that is, the index of the current path is added to
the possible indexes to this transition. If the transition is not defined, represented
in the else block, in Line 23, then, the transition is created and the allowed index
path function is defined for this transition as the set containing only the index of
the current path.

To illustrate the construction of the EBAM, an example will be given in Example
3.2.

Example 3.2 (EBAM Construction)
Let us construct the EBAM of the motivating example in Section 3.1 for the free
parameter k = 1 and k = 2.

For the free parameter k = 1, the constructed model can be seen in Figure 3.2.

x0 x1 x2 x3 x4

x5 x6 x7

5 6:{1}

4:{2, 3}

3:{1} 7 3 5:{1, 2, 3} 4 5 7:{1, 3}

1:{2}3:{3}

1 6:{2}

3:{2} 4 5 7:{2}

Figure 3.2: EBAM for k = 1 of the Example 3.2.

29

And for the free parameter k = 2, the constructed model can be seen in Figure
3.3.

x0 x1 x2 x3 x4

x10

x6x5 x7

x8

x9

5 6:{1}

4:{2, 3}

3:{1} 7 3 5:{1} 4 5 7:{1, 3}

1:{2}

1 6:{2}

3:{3}

3:{2}

7 3 5:{2}

4 5 7:{2}

7 3 5:{3}

Figure 3.3: EBAM for k = 2 of the Example 3.2.

The EBAM of the Figure 3.2, has the following attributes:

• X = {x0, x1, x2, x3, x4, x5, x6, x7};

• x0 = x0 (It is important to highlight that x0 is commonly used as the attribute
of the model and as the name of the initial state);

• Σ = { 1, 3, 4, 1 6, 5 6, 4 5 7, 7 3 5};

• δ(x0, 5 6) = x1, δ(x0, 4) = x5, δ(x1, 3) = x2, δ(x5, 3) = x2,

δ(x5, 1 6) = x6, δ(x6, 3) = x2, δ(x2, 7 3 5) = x3,

δ(x3, 4 5 7) = x4, δ(x3, 1) = x7, δ(x7, 4 5 7) = x4;

• λ0(x0) =





0
1
0
0
0
0
0


,



0
1
0
1
1
1
0





;

• λ(x1) =



0
0
0
0
1
1
0


, λ(x2) =



0
0
1
0
0
0
0


, λ(x3) =



0
0
91
0
91
0
1


, λ(x4) =



0
0
0
1
1
0

91


, λ(x5) =



0
0
0

91
0
0
0


,

30

λ(x6) =



1
0
0
0
0

91
0


, λ(x7) =



91
0
0
0
0
0
0


;

• Ω = {1, 2, 3};

• θ(x0, 5 6) = {1}, θ(x0, 4) = {2, 3}, θ(x1, 3) = {1}, θ(x5, 3) = {3},
θ(x5, 1 6) = {2}, θ(x6, 3) = {2}, θ(x2, 7 3 5) = {1, 2, 3},
θ(x3, 4 5 7) = {1, 3}, θ(x3, 1) = {2}, θ(x7, 4 5 7) = {2}.

The EBAM of the Figure 3.3, has the following attributes:

• X = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10};

• x0 = x0 (It is important to highlight that x0 is commonly used as the attribute
of the model and as the name of the initial state);

• Σ = { 1, 3, 4, 1 6, 5 6, 4 5 7, 7 3 5};

• δ(x0, 5 6) = x1, δ(x0, 4) = x5, δ(x1, 3) = x2, δ(x2, 7 3 5) = x3,

δ(x5, 3) = x10, δ(x10, 7 3 5) = x3, δ(x5, 1 6) = x6, δ(x6, 3) = x7,

δ(x7, 7 3 5) = x3, δ(x3, 4 5 7) = x4, δ(x3, 1) = x8, δ(x8, 4 5 7) = x9;

• λ0(x0) =





0
1
0
0
0
0
0


,



0
1
0
1
1
1
0





;

• λ(x1) =



0
0
0
0
1
1
0


, λ(x2) =



0 0
0 0
0 1
0 0
1 0
1 0
0 0


, λ(x3) =



0 0
0 0
1 91
0 0
0 91
0 0
0 1


,

31

λ(x4) =



0 0
0 0

91 0
0 1
0 91
0 0
1 91


, λ(x5) =



0
0
0
91
0
0
0


, λ(x6) =



0 1
0 1
0 0
91 0
0 0
0 91
0 0


,

λ(x7) =



1 0
1 0
0 1
0 0
0 0

91 0
0 0


, λ(x8) =



0 91
0 0
91 0
0 0
91 0
0 0
1 0


, λ(x9) =



91 0
1 0
0 1
0 0
0 0

91 0
0 0


,

λ(x10) =



0 0
0 0
0 1
0 0

91 0
0 0
0 0


;

• Ω = {1, 2, 3};

• θ(x0, 5 6) = {1}, θ(x0, 4) = {2, 3}, θ(x1, 3) = {1}, θ(x2, 7 3 5) = {1},
θ(x5, 3) = {3}, θ(x10, 7 3 5) = {3}, θ(x5, 1 6) = {2}, θ(x6, 3) = {2},
θ(x7, 7 3 5) = {2}, θ(x3, 4 5 7) = {1, 3}, θ(x3, 1) = {2},
θ(x8, 4 5 7) = {2}.

3.3 Languages

EBAM is obtained by identification, therefore, the system is observed and the
data is recorded. However, without knowing the system behavior, it is impossible
to know when the behavior is completely recorded. Theoretically, only with infinite
observation this can be assumed to be true. Hence, the observed behavior can be
expected to be a subset of the original fault-free behavior. In order to reduce the
difference between these sets, the observation is, in general, carried out for a long
time. There are six important languages and their relations are shown in Figure 3.4.

32

LONI LExcLObs

LOrig LIden

LOINObs

Figure 3.4: The relation between every language in the EBAM.

In Figure 3.4, the languages are:

• LOrig is the original language of the system, i.e., the language generated by
the fault-free behavior;

• LObs is the observed language;

• LIden is the identified language;

• LONI is the language that is original but not identified;

• LExc is the exceeding language, i.e., part of identified language that is not part
of the original one;

• LOINObs is the original language that is also identified, however it has not been
observed.

The language observed used to generate by the EBAM is LObs := ⋃r
i=1 ¯̃si.

To define the identified language, we need, before, to define some concepts as
the verification function and feasible states from an I/O vector. The verification
function fv can be defined as follows:

fv : Zn2 × 1
n → Z2

fv(u, σ̃) :=

1, if (u+ σ̃) ∈ 1n

0, otherwise.

The verification function returns 0 if any element of the vector u + σ̃ is not 91
nor 0 nor 1, otherwise it returns 1. In words, this function checks if the new vector
(associated to a next state) makes sense for the model.

33

It is possible to extend the verification function in a natural way as follows:

fv : Zn2 × (1n)k → Z2

fv(u, s̃σ̃) := fv(fv(u, s̃), σ̃)

Now it is possible to define the feasible language generated by one I/O vector as
follows:

lfeas(u) := {s̃ ∈ (1n)k, k ∈ N | (δ(x0, s)!, s = f−1
c (s̃)) ∧ (fv(u, t) = 1,∀t ∈ ¯̃s)}.

Therefore, the EBAM feasible language is the union of all feasible languages that
start from the initial states, then:

Lfeas :=
⋃

u0 ∈ λ0(x0)
lfeas(u0)

To proceed to the identified language, it is necessary to extend the transition
function δ to also allow sequences instead of only events, then:

δ : X × Σk → X

δ(x, σ0σ1) := δ(δ(x, σ0), σ1)

Now, instead of expanding the path estimation function θ to allow sequences, a
new function θs is recursively defined as follows:

θs : λ0(x0)× Lfeas → 2Ω

θs(u, ε) := {i ∈ Ω | ui(1) = u}

θs(u, s̃σ̃) := θs(u, s̃) ∩ θ(x, σ̃), where σ = f−1
c (σ̃), x = δ(x0, s), s = f−1

c (s̃)

Now it is possible to define the identified language by the EBAM as follows:

LIden := {s̃ ∈ Lfeas | (∃u0 ∈ λ0(x0)) ∧ (θs(u0, s̃) 6= ∅)}.

The language formed of all subwords of events of length up to n generated by
the EBAM: L≤nIdenS

:= {s̃ ∈ (Zn2)∗ : s̃ ∈ LIden ∧ |s̃|s ≤ n}.

The language original but not identified LONI is defined as LONI := LOrig \LIden.

The language formed of all subwords of events of length up to n generated by
the sequences of a language Ll: L≤nlS := {s̃ ∈ (Zn2)∗ : s̃ ∈ Ll ∧ |s̃|s ≤ n}.

34

The exceeding language LExc is defined as LExc := LIden \ LOrig.

The last language is the original language that is also identified but not observed
LOINObs, that is defined as LOINObs := (LOrig ∩ LIden) \ LOrig.

However, as shown in [23], if a sufficiently large number of I/O status are ob-
served, then, there exists a number n0 ∈ Z+ such that L≤n0

OrigS
\L≤n0

ObsS
≈ 0. In words,

this means that it is assumed that all the fault-free behavior of the system was
observed. Therefore, L≤n0

ONIS
≈ 0, since LObs ⊆ LOrig and LObs ⊆ LIden. In addition,

in this work, it is assumed that L≤n0
ONIS

= 0 in order to reduce the occurence of false
alarms. It is important to remark that the fault detection can be performed even
without this assumption, however, there is a higher risk of raising false alarms.

Considering L≤n0
OrigS

\ L≤n0
ObsS

≈ 0, then, the exceeding language LExc is now also
defined as LExc := LIden \ LObs and the original language that is also identified but
not observed LOINObs is now also defined as LOINObs := (LOrig ∩ LIden) \ LObs.

3.4 Properties

EBAM and DAOCT share several properties as simulate the observed fault-free
language of the system, k-completeness and no exceeding language if there is no
cyclic paths for a given value of k. In addition, EBAM is, in general, more compact
than DAOCT for a given value of k. The EBAM properties are theorems and will
be demonstrated in the sequel.

Theorem 3.1 (Simulation)
EBAM simulates the observed fault-free language of the system, i.e., LObs ⊆ LIden.

Proof. Let s̃i = σ̃i(1)σ̃i(2) . . . σ̃i(li − 1) be a modified sequence of events associ-
ated to an EBAM path p̃i = (ui(1), s̃i), where i ∈ Z+ and li = |p̃i|p. According to
Algorithm 1, there is a path in the EBAM (x1, σ̃i(1), x2, σ̃i(2), . . . , σ̃i(li − 1), xli),
associated with p̃i, where xi is not necessarily distinct from xj, for i, j = 1, 2, . . . , li
such that i 6= j and for m = 1, 2, . . . , li − 1 such that i ∈ θ(xm, σ̃i(m)). Thus,
any prefix of s belongs to the language generated by EBAM, which implies that
LObs ⊆ LIden.

Theorem 3.2 (k-completeness)
For a given value of the free parameter k ∈ Z+, the EBAM is k-complete, i.e.,
L≤nIdenS

= L≤nObsS
, for all n ≤ k.

Proof. Since according to Theorem 3.1, LObs ⊆ LIden, then, L≤nObsS
⊆

L≤nIdenS
, for all n ≤ k. Let us now prove that LnIdenS

⊇ L≤nObsS
, Let p =

(x1, σ̃(1), x2, σ̃(2), . . . , σ̃(n), xn+1) be a feasible path of the EBAM of length n+1,

35

i.e., θs(x1, σ̃(1)σ̃(2) . . . σ̃(n)) 6= ∅. According to Algorithm 1, any transition of p
is associated with a transition in at least one path p̃i, for i = 1, 2, . . . , r, where
r ∈ Z+. Let us consider the last transition of p, i.e., (xn, σ̃(n), xn+1), and assume
that (λ(xn), σn, λ(xn+1) is the transition in path p̃i where i ∈ {1, 2, . . . , r}, associ-
ated with transition (xn, σ̃(n), xn+1). Let λ(xn) = yi(n). Since all suffixes of length
1, 2, . . . , k − 1 of the sequences that reach yx(n) must also belong to p̃i. Conse-
quently, σ̃(1)σ̃(2) . . . σ̃(n) ∈ L≤nObsS

, for all n ≤ k, which implies that L≤nIdenS
⊆ L≤nObsS

,
for n ≤ k.

Theorem 3.3 (Exceeding Language)
If the EBAM does not have cyclic paths for a given value of the free parameter
k ∈ Z+, then, there is no exceeding language, i.e., LExc = ∅.

Proof. Notice, according to Algorithm 1, that each transition of the EBAM
is associated with at least one observed EBAM path pi = (ui(1), s̃i), where i =
1, 2, . . . , r and r ∈ Z+ and u is an I/O vector. Moreover, since all events of the
path pi are observale, then, associated with each path pi there is a number ni < li,
where li ∈ Z+ such that pi can be distinguished from all paths after the observation
of ni events. Consequently, since the EBAM does not have cyclic paths, then,
after the occurance of the observed modified sequence of events s̃i, we have that
θs(x0, s̃i) = {i}. In addition, since the EBAM is acyclic, the intersection of the
path estimates of two transitions leaving the same state of the EBAM must be
empty, which implies that all paths pi are uniquely determined before reaching its
corresponding final state. Thus, if a modified sequence s̃ associated to a sequence
s ∈ Σ∗\LObs is observed, the two possibilities may happen: (i) δ(x0, s̃) is not defined;
(ii) δ(x0, s̃) is defined, however, in this case, θs(x0, s̃) = ∅. Thus, s̃ /∈ LIden, which
implies that LIden ⊆ LObs, and, therefore, LExc = ∅.

3.5 Fault Detection

One of the fault diagnosis based on the identified EBAM goals is to diagnose
faults in real time, i.e., be able to read data from the system online, compare it with
the model prediction and evaluate if a fault occurred. In order to do it, a scheme to
diagnose a fault using the EBAM, which works online and offline, is proposed and it
is inspired by the one presented in [14, 29], where conditions are defined to indicate
if the observed sequence of events does not correspond to the modeled fault-free
behavior of the system. This scheme can be seen in Figure 3.5 and is proposed as
follows:

36

Controller

EBAM

Discrepancy?

Fault-free Behavior

Fault Detected

Observed

Modified

Event

Model

Prediction

No

Yes

Figure 3.5: Fault detection scheme based on the EBAM model.

1) Syncronize the system and the model;
The system must start in one of the possible initial states of the paths (since
it is allowed to have more than one) and the EBAM must start at the initial
state (x0).

2) Observe the system;
Observe every event from the system as it evolves.

3) Compute the modified event for every event;
Since the EBAM uses modified events instead of real events, it is necessary to
convert the events.

4) Play the model.
Check if the modified event is possible at the current state of the EBAM.

• If the modified event is allowed, evaluate the next EBAM state;

– If it is a final state of a path and the number of observed events from
the initial state is equal to the length of this path, its state label
must also be checked;

∗ If it is in the state label of the initial state, the EBAM and the
event counter must be restarted and the scheme returns to Step
2.

∗ Otherwise, a fault is detected (the next sequence of events were
not observed in the paths) and the scheme is finished.

– Otherwise, if the state is not a final state of any path and the number
of events is sufficient to distinguish paths, the behavior is fault-free,
then, there is no fault and the scheme returns to Step 2.

• Otherwise, if the modified event is not allowed and the number of events
is sufficient to distinguish paths, a fault is detected and the scheme is
finished.

37

Two important concepts are the total number of events since the model started
(until it restarts) and the number of events to distinguish paths. The first one
is important because if a path has length l ∈ Z+, it is expected that this path
reaches its final vertex after l− 1 observations. If it reaches after a different number
of observations, then, a fault has occurred, since the path was not executed. In
order to obtain the number of events in an EBAM path, function π is introduced in
Definition 3.8

Definition 3.8 (Number of Events Function)
Let Ω be the finite set of path indexes and p̃i, for i ∈ Ω, be EBAM paths, then, the
number of events function is defined as follows:

π : Ω→ Z+

i 7→ |p̃i|p − 1

Other important function is the last I/O status function. It evaluates the last
I/O status from an EBAM path and it can be seen in Definition 3.9.

Definition 3.9 (Last I/O Status Function)
Let Ω be the finite set of path indexes, p̃i, for i ∈ Ω be EBAM paths and u be the
I/O vector associated to p̃i, then, the last I/O status function is defined as follows:

ψ : Ω→ 1
|u|v

i 7→
|p̃i|p∑
j=1

p̃i[j]

The next concept is the number of events to distinguish paths. The main idea
behind this concept is to be able to identify which path is playing in the model.
Until the path is determined, it is not possible to ensure that a fault has occurred.
For this reason, each path has associated to itself a number, that represents the
minimum number of observations to be sure that the path is determined. Since it
is considered that the sequence sa of a path p̃a cannot be a prefix of a different
sequence sb of another path p̃b, for a, b ∈ Ω that starts with the same I/O vector,
then, there always exists a positive integer number na ≤ π(a), associated with sa,
such that the observation of the prefix of sa with length na is sufficient to distinguish
the path p̃a from all other paths that start with the same I/O vector as p̃b. This
concept is defined as a function and can be seen in Definition 3.10.

38

Definition 3.10 (Minimum Number of Events Function)
Let Ω be the finite set of path indexes and p̃i, for i ∈ Ω be EBAM paths, then, the
minimum number of events function is defined as follows:

ω : Ω→ Z+ ∪ {0}
i 7→ ω(i)

ω(i) := min({l − 1 : p̃i[1 : l] 6= p̃j[1 : l], ∀j ∈ Ω \ {i}, ∀l ∈ {1, 2, . . . , |p̃i|p}})

Where p̃i[a : b], for a, b ∈ {1, 2, . . . , |p̃i|p} and b ≥ a, denotes the tuple
(p̃i[a], . . . , p̃i[b]).

The increase in the value of the free parameter k reduce cycles in the model,
that implies in a reduction of the exceeding language. Another function that also
avoids cycles, is the function that controls the allowed path indexes. Associated to
each transition in the model, it may avoid cycles during the execution of a path. It
is important to remind that in this case, the structural cycle will be in the model,
but a path will not be allowed to go through this type of cycle.

There are 3 types of cycles: (i) the cycles allowed in the model and feasible in
the system; (ii) the cycles allowed in the model and not feasible in the system and
(iii) structural cycles that are not possible in the model due to the path estimation
function.

The Example 3.3 illustrates the concepts discussed above.

Example 3.3 (Example of Basic Concepts)
Let u be an I/O vector such that |u|v = 4 and p̃1, p̃2 and p̃3 be EBAM paths generated
by u.

p̃1 = ((3, 4), 4, 3, 1, 1)

p̃2 = ((), 1, 1, 2, 3, 4, 2 4, 4, 4)

p̃3 = ((3), 1, 1, 2, 3)

To simplify visualization, the following definitions are made:

σ1 = 4, σ2 = 3, σ3 = 1, σ4 = 1, σ5 = 2, σ6 = 3, σ7 = 4, σ8 = 2 4

Replacing the events values in p̃i for i = 1, 2, 3, the representations are now as
follows:

p̃1 = ((3, 4), σ1, σ2, σ3, σ4)

p̃2 = ((), σ3, σ4, σ5, σ6, σ7, σ8, σ7, σ1)

p̃3 = ((3), σ3, σ4, σ5, σ2)

39

Using Algorithm 1 for these paths, the models for k = 1, 2 can be seen in Figures
3.6 and 3.7, respectively.

x0 x1 x2 x3 x4

x5x6x7x8

σ1 :{1} σ2 :{1} σ3 :{1} σ4 :{1, 2, 3}

σ3 :{2, 3}

σ5 :{2, 3}

σ6 :{2}σ7 :{2}

σ8 :{2}

σ7 :{2}

σ1 :{2} σ2 :{3}

Figure 3.6: EBAM for k = 1 of the Example 3.3.

x00 x01 x02 x03 x04

x05

x06x07x08x09x10

x11 x12

σ1 :{1} σ2 :{1} σ3 :{1} σ4 :{1}

σ3 :{2, 3} σ4 :{2, 3}

σ5 :{2, 3}

σ6 :{2}σ7 :{2}σ8 :{2}σ7 :{2}

σ1 :{2} σ2 :{3}

Figure 3.7: EBAM for k = 2 of the Example 3.3.

Let s = σ3σ4σ5σ6σ7σ1. Playing this sequence of events in the model for k = 1
(Figure 3.6), the last state will be δ(x0, s) = x1 and this means that path 2 is the
correct one, since θs(x0, s) = {2}. In addition, note that state x1 is the last state
of the path p̃2. Thus, one may think that it is a valid play, however, if the number
of events is counted, a problem appears, since |p̃2|p − 1 = 9 6= |s|s = 6. Therefore,
s does not represent path 2 and it is a faulty sequence of events. This shows the
importance of counting the events.

Comparing the models for k = 1, 2, one can note that while the model for k = 1
has several cycles, the model for k = 2 is cycle-free. Futhermore, for k = 1, two
types of cycles are present ((ii) and (iii)).

40

The first cycle is a cycle of type (ii), i.e., it is the structural one that allows the
model to play forever but it is not physically feasible. In state x7, it is possible to
play forever the sequence of events σ8σ7. However, looking carefully the events, one
can note that it is physically impossible to happen, since σ7 = 4 and σ8 = 2 4
and after σ8, u[2] = 0. Then, after σ7, u[2] will not change and this is the problem,
once, u[2] = 0, there is no way in the real system to event σ8 happen again.

The second cycle is a cycle of type (iii), i.e., it is the structural one that is not
possible to be executed. In state x2, the sequence of events σ3σ4σ5σ2 closes a loop,
however, this is not a valid sequence, since the θ function differs the paths. Event
σ3 is only possible in state x2 if the index path is 1, otherwise, σ3 is not allowed in
state x4, therefore, it is just a structural cycle. The model for k = 2 does not have
any cycles and it shows how the free parameter k can help avoiding cycles.

It is important to remark that the EBAM must be reinitializable in order to be
used for fault detection, since EBAM may represent several paths and the last I/O
status, after a playing, becomes the initial one for the next path. This concept was
first introduced in [14] and the definition of model reinitializability for the EBAM
case is presented in the sequel.

Definition 3.11 (EBAM Reinitializability)
Let s̃i be the sequence of events associated to the EBAM path p̃i, for i ∈ Ω. Then,
the EBAM is said to be reinitializable if @s̃′ ∈ {s̃i} of length |s̃′|s = π(j), where
j ∈ θs(p̃i[1], s̃′) and π(j) < π(i), such that ψ(j) = p̃i[1] +∑π(j)−1

q=1 s̃i[q].

In words, the EBAM, which initial I/O status is u0, is reinitializable when after
a sequence of events s with length |s|s = π(j) where j ∈ Ω, the actual I/O status
u(π(j)) is the final I/O status of the path pj, un it is an initial I/O status of at least
one path and j is a valid index path, i.e., j ∈ θs(u0, s).

As shown in Figure 3.5, during fault detection, the system is observed and the
observed events are converted to vectors and, then, played in the model. In this
context, an event is said to be viable if it is playable in the model at the current
state. When a event is viable, this means that the actual sequence of events is fault-
free, i.e., it was observed during the observation of the fault-free behavior of the
system. There are some conditions for an event to be considered viable and them
can be seen in Definition 3.12.

41

Definition 3.12 (EBAM Fault Detection Conditions)
Let s ∈ Σ∗ be the previous observed sequence of events generated by the system, u
be the I/O vector and u0 the initial I/O status observed such that θ(u0, s) 6= ∅. Let
xc = δ(x0, s) be the current state, σ be the next observed event and u(n) be the I/O
status after the occurrence of sequence sσ. Then, σ is said to be viable in the current
state xc ∈ X of the EBAM if the following conditions hold true:

C1. σ ∈ γ(xc);

C2. θs(u0, sσ) 6= ∅;

C3. If ‖θs(u0, s)‖ > 1 and θs(u0, sσ) = {i}, for i ∈ Ω, then, |sσ|s ≥ ω(i);

C4. If |sσ|s = π(i), for i ∈ θs(u0, sσ), then, u(n) = ψ(i) or ∃j ∈ θs(u0, sσ) such
that |sσ|s < π(j);

C5. If |sσ|s = π(i) and u(n) = ψ(i), for i ∈ θs(u0, sσ), then, u(n) ∈ λ0(x0).

According to the EBAM identified language, a sequence of events sσ, where
s ∈ Σ∗ and σ ∈ Σ, belongs to the identified language LIden if, and only if, conditions
C1 and C2 are satisfied. If condition C3 is not true, then, the path p̃i, where i ∈ Ω,
can be distinguished from all other paths that start with the same I/O status by
observing the prefix of si with length smaller than π(i), which is not possible in the
fault-free system behavior. If condition C4 is not verified, then, it is not possible
to reach the final I/O status ψ(i) of a path pi such that i ∈ θs(u, sσ), after the
observation of sσ, which implies that a fault has occurred. Finally, if condition C5
is not verified, then, the model after being reinitialized will be in an I/O status
that is not in the initial state label, i.e., it is not the initial state for any path of
the model, which avoids the model to be reinitialized. Thus, the fault detection
is carried out by verifying if the observed event is viable in the current state of
the fault-free system model. If the observed event is not viable, then, the fault is
detected.

With the conditions presented in Definition 3.12, the scheme can be formalized
in an algorithm and it is shown in Algorithm 2.

42

Algorithm 2: EBAM Fault Detection

Input: An EBAM
Output: Fault detection

1 Synchronize the system and the model (same fault-free initial state)
2 up ← Current I/O status read from the system
3 xc ← x0 // Defining the current state
4 Θc ← {i ∈ Ω : p̃i[1] = up} // Path estimation
5 e_c← 0 // Defining the event observations counter
6 while True do
7 Wait the next I/O status observation uc such that uc 6= up

8 σ ← f−1
c (uc − up) // Event

9 e_c← e_c+ 1
10 if σ /∈ γ(xc) then
11 Stop the algorithm, since a fault was detected

12 Θc ← Θc ∩ θ(xc, σ) // Updating the allowed index path
13 for path ∈ Θc do
14 if e_c = π(path) then
15 if uc = ψ(path) then
16 if uc ∈ λ0 then
17 xc ← x0 // Reinitializing the model
18 Θc ← {i ∈ Ω : p̃i[1] = uc} // Reinitializing the model
19 e_c← 0 // Reinitializing the model
20 Break the for loop // The EBAM was reinitialized
21 else
22 Stop the algorithm, since a fault was detected

23 else
24 Θc ← Θc \ {path} // Removing a non-viable path

25 if e_c > 0 then // No break
26 if Θc = ∅ or (‖Θc‖ = 1 and e_c < ω(the only path of Θc)) then
27 Stop the algorithm, since a fault was detected

28 xc ← δ(xc, σ) // Updating the current state

29 up ← uc // Updating the previous I/O status

43

In order to elucidate the Algorithm 2, it will be explained line by line. The input
is just the EBAM and the output is the fault detection. In Line 1, the system and
the model are synchronized. The system must be in one of the initial states of the
paths and the model must be in its initial state. In Line 2 is created the variable up
that will store the previous value of the I/O status. In Line 3 is defined the actual
state of the model xc, that is, at the beginning, the initial one, then, xc is x0. In
Line 4 the set of allowed path indexes of the whole play is defined and it will be
updated along the play. In Line 5 is defined the counter e_c that will be used to
counter the number of events after the initial state. In line 6, the while block, is
to run the loop until a fault is detected without creating a variable just for it. The
first step to detect faults is read the I/O status and this is done in Line 7. The
observation is done until a different I/O status (comparing to uc) appear. After it,
in Line 8, the event that caused this transition is retrieved. And, since a event was
obtained, the event counter e_c is updated in Line 9. In Line 10, the if block is
the condition C1 being applied, i.e., if the event executed in the system was not
possible in the model, a fault is detected and the algorithm ends. After this check,
in Line 12, the allowed indexes path is updated, since associated to each transition,
there is a set of allowed indexes path.

In Line 13, the for block will test every path in Θc. In Line 14, the if block
verifies the conditions C4 and C5. Thus, it starts verifying if ec is equals to the
number of events in the path. If it is not, nothing is done since no information
was obtained. However, if it is, then, the path goes to the next verification, in
Line 15. It checks if the path reached its last vertex. If not, this path is not valid
anymore and it is removed from the allowed index path set in Line 24. If all the
paths are removed, this means that the condition C4 was violated and the fault
will be detected at the end of this for block. However, it the path reached its last
vertex, then, it proceeds to the final verification, in Line 16. The if block checks the
conditions C5 to evaluate if the model is reinitializable by checking if the last I/O
status is an initial I/O status for any path. If it is not, then, a fault is detected and
the algorithms ends. Otherwise, the model is reinitialized in Lines 17 to 20, i.e.,
the current state becomes the initial one, the allowed index paths is evaluated now
considering uc as the initial I/O status and the event counter is set to 0.

After the for block, in Line 25, the if block verifies if the model was reinitialized
by checking the event counter. If it was, e_c should be at least 1. In this case, in
Line 26, the conditions C2 and C3 are verified. If at least one of them failed, then,
a fault is detected and the algorithm ends. Otherwise, in Line 28, the current state
xc is updated, since the event is viable. Finally, in Line 29, the previous I/O status
is updated as the current I/O status.

44

To illustrate the use of the Algorithm 2, an example is given in the sequel.

Example 3.4 (EBAM Fault Detection)
Considering the EBAM for k = 1 of the Example 3.3, let us evaluate, using Algo-
rithm 2, if a fault has occurred according to the following observed paths:


po1 = ((3, 4), (3), (), (1), ())

po2 = ((), (1), (), (3), (4), (3))

po3 = ((3), (1, 3), (3), (2, 3), (2))

The algorithm analyze each event of each path given, so, at the first I/O status
of the first path, there is no event, since a event is defined as the difference between
two consecutive I/O status. Therefore, at the first I/O status of the first path, the
algorithm make some definitions to be able to identify the fault as the current I/O
status, the current state (in this case is the initial one), the path estimation (the set
formed by the possible indexes paths, once it is possible to have more than one initial
state) and the event counter (starts at 0).

Now, analyzing the nexts I/O status is possible to get the events. To clarify the
fault detection, three paths will be analyzed in the sequel.

1) Analyzing the second I/O status of po1:

At this point: up = (3, 4), xc = x0, Θc = {1}, e_c = 0

After waiting the observation (Line 7): uc = (3)

Evaluating the event (Line 8): σ = f−1
c ((3)− (3, 4)) = 4 = σ1

Updating the event counter (Line 9): e_c = e_c+ 1 = 0 + 1 = 1

Checking if the event is active in the actual state (Line 10): σ1 ∈ γ(xc = x0)⇒
No fault

Updating the path estimation (Line 12): Θc = Θc ∩ θ(xc = x0, σ = σ1) =
{1} ∩ {1} = {1}

Checking the paths of ‖Θc‖ (Line 14): e_c = 1 6= π(1) = 4 ⇒
Finish the checking

Verifying some conditions (Line 26): e_c > 0 ∧ ‖Θc‖ = 1 ∧ e_c = 1 > ω(1) =
0⇒ No fault

Updating the current state (Line 28): xc = δ(xc, σ) = δ(x0, σ1) = x1

Updating the previous I/O status (Line 29): up = uc = (3)

45

After the analysis of the second I/O status, no fault was detected and the
algorithm will do the same analysis for the others I/O status. After the last event
of po1, no fault was detected and po1 is a fault-free path that reinitialize the model.

2) Analyzing the fourth I/O status of po2:

At this point: up = (), xc = x4, Θc = {2, 3}, e_c = 2

After waiting the observation (Line 7): uc = (3)

Evaluating the event (Line 8): σ = f−1
c ((3)− ()) = 3 = σ6

Updating the event counter (Line 9): e_c = e_c+ 1 = 2 + 1 = 3

Checking if the event is active in the actual state (Line 10): σ6 /∈ γ(x4)⇒ Fault

A fault was detected since in x4 the only active event is σ5 and the actual event
is σ6. Therefore, po2 is a faulty path.

3) Analyzing the last I/O status of po3:

At this point: up = (2, 3), xc = x5, Θc = {2, 3}, e_c = 3

After waiting the observation (Line 7): uc = (2)

Evaluating the event (Line 8): σ = f−1
c ((2)− (2, 3)) = 3 = σ2

Updating the event counter (Line 9): e_c = e_c+ 1 = 3 + 1 = 4

Checking if the event is active in the actual state (Line 10): σ2 ∈ γ(x5) ⇒
No fault

Updating the path estimation (Line 12): Θc = Θc ∩ θ(xc = x5, σ = σ2) =
{2, 3} ∩ {3} = {3}

Checking the paths of ‖Θc‖ (Line 14): e_c = 4 == π(1) = 4 ⇒
Do the next verification

Checking final I/O status (Line 15): uc = (2) == ψ(3) = (2) ⇒
Do the next verification

Checking if the model is reinitializable (Line 16): uc = (2) /∈ λ0 =
{(3, 4), (), (3)} ⇒ Fault

A fault was detected since the last I/O status is not the initial I/O status for
any path, therefore, the model is not reinitializable. Thus, po3 is a faulty path since
it does not allow the model to be reinitialized.

46

Chapter 4

Practical Example

4.1 System Description

The system used to implement the EBAM theory is a distribution system and it
is shown in Figure 4.1. Its main goal is to sort the boxes (short and tall ones) that
arrive in the distribution module and, then, distribute them to the correct conveyor:
tall boxes to the left conveyor and short boxes to the right conveyor.

FEEDER
CONVEYOR

SHORT BOX
OUTPUT CONVEYOR

TALL BOX
OUTPUT CONVEYOR

DISTRIBUTION
MODULE

S1
S2
S3

S4
S5

S6

A1

A2
A3 A4

Figure 4.1: Sorting unit system.

47

The system was implemented using the 3D simulation software Factory I/O and
controlled by a real PLC (Siemens S7-1200). The system is composed of 6 sensors
and 4 actuators as described as follows in Table 4.1.

Table 4.1: System description.

ID Type Name Description

S1 P Sensor Pallet Sensor Detects a pallet in the entry conveyor
S2 P Sensor Low Sensor Detects short and tall boxes
S3 P Sensor High Sensor Detects tall boxes

S4 P Sensor Loaded Detects if the box reached the end of the
distribution conveyor

S5 N Sensor At Left Entry Detects when the box leaves the distribution
conveyor to the left

S6 N Sensor At Right Entry Detects when the box leaves the distribution
conveyor to the right

A1 Actuator Conveyor Entry The entry conveyor
A2 Actuator Load Moves forward the distribution conveyor
A3 Actuator Transf. Left Moves the distribution conveyor to the left
A4 Actuator Transf. Right Moves the distribution conveyor to the right

The fault-free behavior of the system is described as follows:

• The initial state there is no boxes on the conveyors and all actuators are turned
off (0);

• The system starts after pressing the start button;

• The entry conveyor and the box feeder (which has a random time between
2 up to 5 seconds to feed the system with a random, short or tall, box) are
turned on (1);

• When a box reaches the net sensors (S1, S2 and S3), it is detected if the box
is short or tall;

• The box proceeds to the distribution conveyor that is turned on (moving for-
ward) and the entry conveyor is turned off;

• When the box reaches the loaded sensor (S4) the distribution conveyor is
turned off (stop moving forward);

48

• If the box is short, the distribution conveyor is turned on to the left and the
left conveyor is turned on (if it is turned off), otherwise, if it is a tall box, then,
the conveyor is turned on to the right and the right conveyor is turned on (if
it is turned off);

• As soon as the box leaves the distribution conveyor, the entry conveyor is
turned on again.

4.2 Modelling

In order to identify the model of the system using the EBAM, a crucial step is
the observation. The system was implemented in Factory I/O as a virtual system
and the control was carried out by the Siemens PLC S7-1200, that can be seen in
Figure 4.2.

Figure 4.2: The Siemens PLC S7-1200 used for the practical example.

With the aim of identifying the system reading the data from sensors and ac-
tuators, a Python program was developed to read (and write) data from the PLC
using the S7 protocol.

The computer used to observe the system, generate the model and simulate the
faults was a notebook Dell Inspiron 5458, 1 TB HDD (5400 RPM), 8 GB RAM
(DDR3L 1333 MHz), Intel Core i5-5200 (2.20 GHz) and Windows 10 (build 1903)
OS.

49

To generate the model, three steps must be followed:

1) Observe the system and acquire the data;
To observe the system, it is necessary to create an observation vector, that is,
an I/O vector, u. In this case, u = [S1, S2, S3, S4, S5, S6, A1, A2, A3, A4].
The total time of the acquisition was 10 days and it was saved as text files.
The criterium used was the

2) Convert data to the EBAM format;
The inputs of the EBAM construction algorithm are the EBAM paths (Defi-
nition 3.7). Each EBAM path is a vector whose first element is the initial I/O
status and the others elements are modified events of a given path. As a re-
minder, a path is a task or a cycle of the system. Therefore, before converting
the data, it is necessary to define what are tasks or cycles in this case. It was
defined that a task starts by the rising edge of the conveyor entry actuator
(7) and finishes by the rising edge of the left or right entry (4 or 5). To
convert the acquisition to EBAM paths, another Python program was made
and the total elapsed time was 119 s for 1282 EBAM paths. It is important
to mention that is necessary to verify for each new path created if it already
exists, since each path must be unique. It is important to mention that from
the whole acquisition, if the paths were not verified, the total number of paths
would be 38284.

3) Follow the EBAM construction algorithm.
Another Python program was made to generate the model following the Algo-
rithm 1. The model was generated for k = 1, 2 and their information can be
seen in Table 4.2.

Table 4.2: Model information.

k Paths States Events Transitions
Elapsed Time (ms)

Model Distinguish Paths

1 1282 74 73 265 335 1133
2 1282 266 73 458 374 1142

Since the models (k = 1, 2) are huge, it will be shown here just a part of the
model for k = 1. To avoid the several transitions in the model, the model will be
generated only for the first 9 paths of the system. Their EBAM paths p̃1, p̃2, . . . , p̃9

are as follows:

50



p̃1 = ((5, 6), 7, 1, 8, 2, 2, 1, 4 9 7 8, 5, 4, 5)

p̃2 = ((5, 6, 9), 7 9, 1, 8, 2, 2, 1, 4 9 7 8, 5, 4, 5)

p̃3 = ((5, 6, 9), 7 9, 1, 8, 2 3, 2 3, 1, 4 10 7 8, 6, 4, 6)

p̃4 = ((5, 6, 10), 7 10, 1, 8, 2 3, 2 3, 1, 4 10 7 8, 6, 4, 6)

p̃5 = ((5, 6, 10), 7 10, 1 8, 2, 2, 1, 4 9 7 8, 5, 4, 5 7 9)

p̃6 = ((5, 6, 7), 1 8, 2, 2, 1, 4 9 7 8, 5, 4, 5 7 9)

p̃7 = ((5, 6, 9), 1, 8, 2 3, 2 3, 1, 4 10 7 8, 6, 4, 6)

p̃8 = ((5, 6, 10), 7 10, 1 8, 2, 2, 1, 4 9 7 8, 5, 4, 5)

p̃9 = ((5, 6, 10), 7 10, 1, 8, 2, 2, 1, 4 9 7 8, 5, 4, 5 7 9)

To simplify visualization, the following definitions are made:

σ01 = 7, σ02 = 1, σ03 = 8, σ04 = 2, σ05 = 2, σ06 = 1, σ07 = 4 9 7 8,
σ08 = 5, σ09 = 4, σ10 = 5, σ11 = 7 9, σ12 = 2 3, σ13 = 2 3, σ14 = 4 10 7 8,
σ15 = 6, σ16 = 6, σ17 = 7 10, σ18 = 1 8, σ19 = 5 7 9

ι01 = {1}, ι02 = {1, 2, 3, 4, 7, 9}, ι03 = {1, 2, 9}, ι04 = {1, 2, 5, 6, 8, 9}, ι05 =
{1, 2, 8}, ι06 = {2, 3}, ι07 = {3, 4, 7}, ι08 = {4, 5, 8, 9}, ι09 = {4, 9}, ι10 = {5, 8},
ι11 = {5, 6, 8}, ι12 = {5, 6, 9}, ι13 = {6}, ι14 = {7}

Replacing the events values in p̃i for i = 1, . . . , 9 the representations are now as
follows:

p̃1 = ((5, 6), σ01, σ02, σ03, σ04, σ05, σ06, σ07, σ08, σ09, σ10)

p̃2 = ((5, 6, 9), σ11, σ02, σ03, σ04, σ05, σ06, σ07, σ08, σ09, σ10)

p̃3 = ((5, 6, 9), σ11, σ02, σ03, σ12, σ13, σ06, σ14, σ15, σ09, σ16)

p̃4 = ((5, 6, 10), σ17, σ02, σ03, σ12, σ13, σ06, σ14, σ15, σ09, σ16)

p̃5 = ((5, 6, 10), σ17, σ18, σ04, σ05, σ06, σ07, σ08, σ09, σ19)

p̃6 = ((5, 6, 7), σ18, σ04, σ05, σ06, σ07, σ08, σ09, σ19)

p̃7 = ((5, 6, 9), σ02, σ03, σ12, σ13, σ06, σ14, σ15, σ09, σ16)

p̃8 = ((5, 6, 10), σ17, σ18, σ04, σ05, σ06, σ07, σ08, σ09, σ19)

p̃9 = ((5, 6, 10), σ17, σ02, σ03, σ04, σ05, σ06, σ07, σ08, σ09, σ19)

Using Algorithm 1 for these 9 EBAM paths, the model generated (20 states, 19
events, 26 transitions and 2 ms to be constructed) is shown in Figure 4.3.

51

x00 x01 x02 x03

x04

x05

x06

x07x08x09

x10

x11

x12

x13

x14x15

x16

x17 x18

x19

σ01 : ι01 σ02 : ι01 σ03 : ι02

σ04 : ι03

σ05 : ι04

σ06 : ι04

σ07 : ι04

σ08 : ι04σ09 : ι04

σ10 : ι05

σ11 : ι06 σ02 : ι06
σ12 : ι07

σ13 : ι07

σ06 : ι07

σ14 : ι07

σ15 : ι07

σ09 : ι07

σ16 : ι07

σ17 : ι08 σ02 : ι09

σ18 : ι10

σ04 : ι11

σ19 : ι12

σ18 : ι13

σ02 : ι14

Figure 4.3: EBAM for k = 1 of the first 9 paths of the practical example.

To show that the paths are in the model, the second path will be played in the
model. The transitions of the model that represents the transitions of the second
path are highlighted in red and dashed in Figure 4.4.

52

x00 x01 x02 x03

x04

x05

x06

x07x08x09

x10

x11

x12

x13

x14x15

x16

x17 x18

x19

σ01 : ι01 σ02 : ι01 σ03 : ι02

σ04 : ι03

σ05 : ι04

σ06 : ι04

σ07 : ι04

σ08 : ι04σ09 : ι04

σ10 : ι05

σ11 : ι06 σ02 : ι06
σ12 : ι07

σ13 : ι07

σ06 : ι07

σ14 : ι07

σ15 : ι07

σ09 : ι07

σ16 : ι07

σ17 : ι08 σ02 : ι09

σ18 : ι10

σ04 : ι11

σ19 : ι12

σ18 : ι13

σ02 : ι14

Figure 4.4: EBAM for k = 1 of the first 9 paths of the practical example highlighting
the transitions of the second path.

Once all the transitions are, in fact, in the model, it is necessary now to check if
the path during these transitions is allowed. That is, it is necessary to check every
indexes set associated to these transitions. The index of the second path, 2, must
be in all of these sets. The indexes sets are ιi for i = 2, 3, . . . , 6 and since 2 is in all
of them, the play is valid and the second path is, indeed, represented in the model.

53

4.3 Fault Detection

A Python program was created to do the fault detection online following the
Algorithm 2. The PLC was connected to the Factory I/O to control the system
and connected to the Python program to send the I/O status. So, there were two
connections at the same time and this might cause some delays in the I/O status
acquistion that might miss some event, but this was verified and did not happen.

In order to analyze the efficiency of the fault detection using EBAM, 44 faults
scenarios were designed to be tested in the practical example. A fault scenario
simulates permanent or intermittent faults in sensors (one or more), actuators (one
or more) or both. All the scenarios can be seen in Table 4.3.

Table 4.3: Fault scenarios of the practical example.

Scenario Description
Detected

Scenario Description
Detected

k = 1 k = 2 k = 1 k = 2

1 S10 Y Y 23 S30,1,0 Y Y
2 S11 Y Y 24 S40 ND ND

3 S11 Y Y 25 S41 Y Y
4 S10,1,0 Y Y 26 S41 Y Y
5 S10,1,0 Y Y 27 S40,1,0 Y Y
6 S10, S20 Y Y 28 S40,1,0 Y Y
7 S11, S21 Y Y 29 S51 Y Y
8 S10, S30 Y Y 30 S51,0,1 Y Y
9 S11, S31 Y Y 31 S51,0,1 Y Y
10 S10, S20, S30 Y Y 32 S61 Y Y
11 S11, S21, S31 Y Y 33 S61,0,1 Y Y
12 S20 Y Y 34 S61,0,1 Y Y
13 S21 Y Y 35 A10 ND ND

14 S21 Y Y 36 A11 Y Y
15 S20,1,0 Y Y 37 A11, S40 Y Y
16 S20,1,0 Y Y 38 A20 Y Y
17 S20, S30 Y Y 39 A21 Y Y
18 S21, S31 Y Y 40 A20, S40 Y Y
19 S30 NL NL 41 A30 ND ND

20 S31 Y Y 42 A31 Y Y
21 S31 Y Y 43 A40 ND ND

22 S30,1,0 Y Y 44 A41 Y Y

54

The notation adopted in the “Description” column in Table 4.3 describes the
sensors and actuators used in the fault scenario and the fault type. Let E be a
signal and f a fault associated to E. The fault can be divided in four types: (i)
ON failure (permanent); (ii) OFF failure (permanent); (iii) ON, OFF, ON failure
(intermittent) and (iv) OFF, ON, OFF failure (intermittent). Thus, E1, E0, E1,0,1

and E0,1,0 are the representation of the fault type (i), (ii), (iii) and (iv), respectively.
Each element is separeted by a comma. For example, the description of the scenario
18, S21, S31, means that the fault occurred in the sensors S2 and S3 and both are
ON failure. In addition, when a scenario has failure in several signals, the faults are
not necessarily synchronous in time and when some scenarios have the same signals
to simulate a fault, they were simulated at different states of the system.

The notation adopted in the “Detected” column in Table 4.3 describes if the fault
was detected or not. Y means the fault was detected, NL means the fault was not
detected and the system was in a state with feasible events and, finally, ND means
the fault was not detected and the system was in a deadlock state.

Table 4.3 shows that both models were identically in terms of fault detection.
In all 44 scenarios, they were able to detect 39 fault occurrences. The 5 non-
detected faults can be explained. First, in scenario 19, the High Sensor was always
0, therefore, when a tall box arrives, it was not able to detect and the system
interpreted that the box was a short one, thus, it went to the wrong conveyor. The
other 4 faults leads the system to deadlocks, then, there is no way that these faults
would be detected.

In Table 4.4, all the results are summarized and the efficiency is computed. It
shows that the faults were detected with a 88.63 % efficiency for k = 1, 2.

Table 4.4: Fault detection results of the practical example.

k = 1 k = 2

Detected faults 39 39
Non-detected faults 5 5

Efficiency (%) 88.63 88.63

Since there is no way to detect a non-detectable fault, the efficiency is now
computed considering only the detectable faults and the results can be seen in Table
4.5.

55

Table 4.5: Fault detection results of the practical example considering only the
detectable faults.

k = 1 k = 2

Detected faults 39 39
Non-detected faults 0 0

Efficiency (%) 100 100

In this practical example, considering only the detectable faults, EBAM was able
to detect all of them. Note that it is possible to detect some non-detectable faults if
EBAM uses timing information. For example, if the system is at a deadlock state,
it is possible to detect this fault, since an event is expected to occur within a certain
time interval and, in this case, no event will occur and the timing information would
detect a fault.

56

Chapter 5

Conclusions

In this work, a new model for DES black-box identification with the aim of fault
detection is proposed. The main difference from this model, called Event-Based
Automaton Model (EBAM), to the others proposed in the literature is that the
EBAM is ruled by events instead of states. This difference implies in an advantage
that allows the paths to have different initial I/O status, which is impossible to be
modeled using the the other models proposed in the literature (all paths must have
the same initial and final I/O status).

The EBAM is defined and the identification algorithm is presented. As the other
models, EBAM uses paths observed from the fault-free behavior of the system to
construct the model. Since EBAM is based on events, it is necessary to modify
them to be EBAM paths, i.e., paths where the first element is the initial I/O status
of the paths (the first element of the original paths) and the other elements are
event changes (consecutive difference between the I/O status of the paths). Then,
with the EBAM paths, the identification algorithm can be used and the model is
constructed. To illustrate how the identification works, some examples constructing
the model were given.

In the sequel, it is shown that EBAM holds some important properties: (i) it uses
a free parameter k; (ii) it uses a path estimation function; (iii) the observed language
is a subset of the identified language, i.e., the EBAM simulates the observed fault-
free system behavior, which is crucial for any identified model meant to be used to
detect faults; (iv) it is k-complete; (v) the exceeding language is the empty set if
the model is acyclic. In addition, for a given value of k, the EBAM is, in general,
more compact than the other models, which may increase the exceeding language,
but this increase is not significant in some cases.

It is important to mention that all the paths were observed without adding any
extra code to the PLC. It was done by creating a Python program that communicates

57

to the PLC using the Profinet protocol. Thus, the data was read from the PLC using
an external program, i.e., not using the manufacturer software (Totally Integrated
Automation). The core idea was to simulate a real situation where it is necessary
to observe the data from real PLCs in industry. The only code in the PLC was the
LADDER code to control the system and there is no need to know it.

After proving the EBAM properties, a fault detection scheme and a fault de-
tection algorithm were proposed. As in the DAOCT, the EBAM has conditions
for an event be viable in the fault detection. For both models, the conditions are
all analogous, except for the reinitialization condition, that is new. Since EBAM
reinitializes after the end of a path, it is necessary to verify if it is possible. In
DAOCT, the first and the final vertex of the paths are equal, so, there is no need
to do this verification. To show the algorithm application and some fault detection
ideas behind the EBAM, examples were provided.

Finally, all the theory presented was implemented in a practical example, where
the system is a virtual one implemented in Factory I/O and the control is carried
out by a Siemens PLC S7-1200. The system was automatized, the LADDER was
implemented and, then, the observation was carried out. Even for days of obser-
vation, the model was computed quickly and the fault detection was a successful
with 88.63 % efficiency for the 44 fault scenarios tested if considering all faults and
100 % efficieny considering only the detectable faults. Using other identified models
were not possible in this case, since the paths have different initial I/O status. It is
important to mention that all the faults not detected are, in fact, not detectable, in
this practical example.

The EBAM fills an important gap in industry, because it is usual that the pro-
cesses have different initial and final I/O status for the paths and all the procedure
presented is possible to be implemented in industry. The model is computed quickly
and the fault detection is done online. In case of false alarms, the path that raised
it can be added to the model (no need to recompute the entire model) and this false
alarm will not be raised again.

Possible directions for future research could be: (i) add time information to
EBAM to allow it to detect faults that lead the system to deadlocks (and also other
fault types); (ii) define residue functions to be able to isolate the faults; (iii) use
artificial intelligence to allow the model to classify a new behavior observed as a
fault-free or a faulty one; (iv) extend the model to accept continuous variables such
as temperature and pressure.

58

References

[1] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Diagnosability of
discrete-event systems”, IEEE Transactions on automatic control, v. 40,
n. 9, pp. 1555–1575, 1995.

[2] DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D. “Coordinated decentral-
ized protocols for failure diagnosis of discrete event systems”, Discrete
Event Dynamic Systems, v. 10, n. 1-2, pp. 33–86, 2000.

[3] QIU, W., KUMAR, R. “Decentralized failure diagnosis of discrete event sys-
tems”, IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, v. 36, n. 2, pp. 384–395, 2006.

[4] MOREIRA, M. V., JESUS, T. C., BASILIO, J. C. “Polynomial time verifi-
cation of decentralized diagnosability of discrete event systems”, IEEE
Transactions on Automatic Control, v. 56, n. 7, pp. 1679–1684, 2011.

[5] ZAYTOON, J., LAFORTUNE, S. “Overview of fault diagnosis methods for
discrete event systems”, Annual Reviews in Control, v. 37, n. 2, pp. 308–
320, 2013.

[6] SANTORO, L. P., MOREIRA, M. V., BASILIO, J. C. “Computation of minimal
diagnosis bases of Discrete-Event Systems using verifiers”, Automatica,
v. 77, pp. 93–102, 2017.

[7] RAN, N., GIUA, A., SEATZU, C. “Enforcement of diagnosability in labeled
Petri nets via optimal sensor selection”, IEEE Transactions on Automatic
Control, v. 64, n. 7, pp. 2997–3004, 2018.

[8] CABRAL, F. G., MOREIRA, M. V. “Synchronous Diagnosis of Discrete-Event
Systems”, IEEE Transactions on Automation Science and Engineering,
v. 17, n. 2, pp. 921–932, 2019.

[9] VIANA, G. S., MOREIRA, M. V., BASILIO, J. C. “Codiagnosability analysis
of discrete-event systems modeled by weighted automata”, IEEE Trans-
actions on Automatic Control, v. 64, n. 10, pp. 4361–4368, 2019.

59

[10] VIANA, G. S., BASILIO, J. C. “Codiagnosability of discrete event systems
revisited: A new necessary and sufficient condition and its applications”,
Automatica, v. 101, pp. 354–364, 2019.

[11] HU, Y., MA, Z., LI, Z. “Design of supervisors for active diagnosis in discrete
event systems”, IEEE Transactions on Automatic Control, 2020.

[12] MACHADO, T. H. D. M. C., VIANA, G. S., MOREIRA, M. V. “Event-based
automaton model for identification of discrete-event systems for fault de-
tection”, Control Engineering Practice, 2022. Manuscript submitted for
publication.

[13] EL MEDHI, S. O., LECLERCQ, E., LEFEBVRE, D. “Petri nets design and
identification for the diagnosis of discrete event systems”. In: 2006 IAR
Annual Meeting. Citeseer, 2006.

[14] MOREIRA, M. V., LESAGE, J.-J. “Fault diagnosis based on identified discrete-
event models”, Control Engineering Practice, v. 91, pp. 104101, 2019.

[15] CABASINO, M. P., GIUA, A., SEATZU, C. “Identification of Petri nets from
knowledge of their language”, Discrete Event Dynamic Systems, v. 17,
n. 4, pp. 447–474, 2007.

[16] RAMÍREZ-TREVIÑO, A., RUIZ-BELTRÁN, E., RIVERA-RANGEL, I., et al.
“Online fault diagnosis of discrete event systems. A Petri net-based ap-
proach”, IEEE Transactions on Automation Science and Engineering,
v. 4, n. 1, pp. 31–39, 2007.

[17] DOTOLI, M., FANTI, M. P., MANGINI, A. M. “Real time identification of
discrete event systems using Petri nets”, Automatica, v. 44, n. 5, pp. 1209–
1219, 2008.

[18] ESTRADA-VARGAS, A. P., LOPEZ-MELLADO, E., LESAGE, J.-J. “A com-
parative analysis of recent identification approaches for discrete-event sys-
tems”, Mathematical Problems in Engineering, v. 2010, 2010.

[19] DOTOLI, M., FANTI, M. P., MANGINI, A. M., et al. “Identification of the
unobservable behaviour of industrial automation systems by Petri nets”,
Control Engineering Practice, v. 19, n. 9, pp. 958–966, 2011.

[20] ESTRADA-VARGAS, A. P., LÓPEZ-MELLADO, E., LESAGE, J.-J. “A
black-box identification method for automated discrete-event systems”,
IEEE Transactions on Automation Science and Engineering, v. 14, n. 3,
pp. 1321–1336, 2015.

60

[21] SAIVES, J., FARAUT, G., LESAGE, J.-J. “Automated partitioning of con-
current discrete-event systems for distributed behavioral identification”,
IEEE Transactions on Automation Science and Engineering, v. 15, n. 2,
pp. 832–841, 2017.

[22] CABASINO, M. P., GIUA, A., HADJICOSTIS, C. N., et al. “Fault model iden-
tification and synthesis in Petri nets”, Discrete Event Dynamic Systems,
v. 25, n. 3, pp. 419–440, 2015.

[23] KLEIN, S., LITZ, L., LESAGE, J.-J. “Fault detection of discrete event systems
using an identification approach”, IFAC Proceedings Volumes, v. 38, n. 1,
pp. 92–97, 2005.

[24] ROTH, M., LESAGE, J.-J., LITZ, L. “An FDI method for manufacturing
systems based on an identified model”, IFAC Proceedings Volumes, v. 42,
n. 4, pp. 1406–1411, 2009.

[25] MOREIRA, M. V., LESAGE, J.-J. “Discrete event system identification with
the aim of fault detection”, Discrete Event Dynamic Systems, v. 29, n. 2,
pp. 191–209, 2019.

[26] MOOR, T., RAISCH, J., O’YOUNG, S. “Supervisory control of hybrid systems
via l-complete approximations”, Proc. WODES98, pp. 426–431, 1998.

[27] CASSANDRAS, C. G., LAFORTUNE, S. Introduction to discrete event sys-
tems. Springer Science & Business Media, 2009.

[28] CURY, J. E. R. “Teoria de controle supervisório de sistemas a eventos discre-
tos”, V Simpósio Brasileiro de Automação Inteligente (Minicurso), 2001.

[29] DE SOUZA, R. P., MOREIRA, M. V., LESAGE, J.-J. “Fault detection of
Discrete-Event Systems based on an identified timed model”, Control En-
gineering Practice, v. 105, pp. 104638, 2020.

61

Appendix A

Codes

The main codes used in this master’s thesis were developed to overcome practical
problems that arose during the research. There are four main problems:

1) Data acquisition;
Read data from the PLC without add any extra code to it.

2) Split the data into paths;
Since EBAM uses paths, it is necessary to split the whole acquisition into
paths (or it will be a single path, that it is not the ideia). In addition, the
paths used in EBAM are unique, therefore, it is important to not create a path
if it already exists.

3) Compute the EBAM;
Compute the EBAM using the paths following the Algorithm 1.

4) Online fault detection.
Detect a fault while the system is running following the Algorithm 2.

All the codes were developed in Python 3.8 with the ideia to build a library and
not single scripts. There is also a software with Graphical User Interface (GUI), but
EBAM it not implemented since EBAM was created after this software. All these
codes can be seen in https://github.com/thiagohmcm/Masters-Thesis.git.

At the beginning of each class and function there is an explanation about its
objective and input and output variables. It is important to mention that the whole
code, i.e., variable names, filenames and comments are in Brazilian Portuguese,
however, if needed, an english version can be done in the future.

62

https://github.com/thiagohmcm/Masters-Thesis.git

A.1 Data acquisition

To do the data acquisition it is necessary, first, to create a connection to the PLC
to be able to read data directly from it. Therefore, it was developed a library that
handle connections to some Siemens PLCs (S7-300, S7-400, S7-1200 and S7-1500)
using the S7 protocol based on the library Snap7 (http://snap7.sourceforge.
net/). The code that handle the connection is called clp_siemens_s7.py.

A.2 Split the data into paths

After the acquisition is done, it is necessary to split the paths, since EBAM use
them. The strategy adopted is the usage of hashs. Each path has a hash associated
to it and if two paths share the same hash, then, they are equal. At each path
generated the hash is compared to the others hashs and if it already exists, then,
this path is discarded and the process goes on untill the end of the acquisition file.
The code that create hashs is called obter_hashs.py, the one that compare the paths
is called comparar_caminhos.py and, finally, the code that split the data into paths
is called separar_caminhos.py.

A.3 Compute the EBAM

The code that compute the EBAM using the paths is called modelo_ebam.py.

A.4 Online fault detection

The code that run the online fault detection is called deteccao_de_falhas_-
online.py.

A.5 Software with GUI

This software, called CLPlant, was developed at the beginning of the research
with the purpose of: (i) help the study of some systems in Factory I/O and (ii)
implement something practical. The idea is to maintain this software implementing
other models and features. This software is available in Brazilian Portuguese and
in English, however, to change the language it is necessary to change the main code
(the ideia is to implement a button in the future). It is important to highlight that
the data acquisition was done using this software. The main code to run the software
is called clplanta.py.

63

http://snap7.sourceforge.net/
http://snap7.sourceforge.net/

	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Theoretical Background
	Discrete-Event Systems
	Languages
	Automata
	Deterministic Automaton with Outputs and Conditional Transitions

	Event-Based Automaton Model
	Motivating Example
	Presentation of the Model
	Languages
	Properties
	Fault Detection

	Practical Example
	System Description
	Modelling
	Fault Detection

	Conclusions
	References
	Codes
	Data acquisition
	Split the data into paths
	Compute the EBAM
	Online fault detection
	Software with GUI

