
DIAGNOSABILITY OF MODULAR DISCRETE EVENT SYSTEMS WITH

UNOBSERVABLE COMMON EVENTS

Thiago Cabral de Souza

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: João Carlos dos Santos Basilio

Rio de Janeiro

Abril de 2022

DIAGNOSABILITY OF MODULAR DISCRETE EVENT SYSTEMS WITH

UNOBSERVABLE COMMON EVENTS

Thiago Cabral de Souza

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO

PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU

DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientador: João Carlos dos Santos Basilio

Aprovada por: Prof. João Carlos dos Santos Basilio, Ph.D.

Prof. Gustavo da Silva Viana, D.Sc.

Prof. Patŕıcia Nascimento Pena, D.Eng.

RIO DE JANEIRO, RJ – BRASIL

ABRIL DE 2022

Souza, Thiago Cabral de

Diagnosability of modular Discrete Event systems with

unobservable common events/Thiago Cabral de Souza. –

Rio de Janeiro: UFRJ/COPPE, 2022.

IX, 63 p.: il.; 29,7cm.

Orientador: João Carlos dos Santos Basilio

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2022.

Referências Bibliográficas: p. 61 – 63.

1. Discrete event systems. 2. Distributed systems.

3. Modular diagnosability. I. Basilio, João Carlos

dos Santos. II. Universidade Federal do Rio de Janeiro,

COPPE, Programa de Engenharia Elétrica. III. T́ıtulo.

iii

À minha avó, Sônia Cabral (In

memoriam); à Pandora (In

memoriam).

iv

Agradecimentos

Agradeço e dedico essa dissertação à Sônia Cabral Pessanha (In memoriam), minha

avó. Obrigado por todo o suporte e amor, obrigado por ter me incentivado na área

da matemática, nada disso seria posśıvel sem você. Obrigado por ter compartilhado

todo o seu amor e por ter dividido tudo isso comigo, essa conquista é nossa. Eu te

amo.

Obrigado ao meu melhor amigo, Mikael Mesquita Gualdi. Você é um irmão para

mim, sou muito grato por tudo que a gente já passou e pelo que passaremos juntos.

Sem você ao meu lado, esse trabalho não estaria aqui.

Obrigado à Isabella Valadares Silveira por todo o carinho e companherismo.

Obrigado pelo que estamos vivendo, por estarmos um pelo outro, lado a lado nos

momentos tristes e felizes, não somente nessa jornada, mas na vida.

Obrigado aos meus familiares, Rafael Cabral e Fernando Cabral pelo suporte,

que me incentivaram e ajudaram a seguir esse caminho, em um momento triste para

todos nós. O que fica aqui é a alegria e o nosso amor, conseguimos.

Obrigado ao meu orientador, João Carlos Basilio, que é um dos responsáveis pela

conclusão deste trabalho. Obrigado por sempre acreditar em mim, por me conceder

tantas oportunidades durante a pandemia. Compartilhar com você os momentos

em conjunto, empolgados por estarmos fazendo e produzindo algo que amamos foi

muito importante. Trabalhar ao seu lado foi e sempre será uma honra.

Obrigado aos meus amigos do Instituto Federal Fluminense, que estiveram co-

migo nessa caminhada. Obrigado ao Alexandre Leite por todos os seus ensinamen-

tos, ao Paulo Victor Padrão por sua mentoria e ao Wladimir Pinheiro por ter sido um

companheiro no mestrado, nas viagens semanais, matérias e trabalhos em conjunto.

Obrigado aos meus amigos e colegas do Laboratório de Controle e Automação

(LCA), especialmente ao Lucas Antunes Floriano, Raphael Julio, Ryan Pitanga,

Braian Igreja e ao Thiago Henrique.

Obrigado aos professores da COPPE/UFRJ, que sempre mostraram uma paixão

v

pelo que fazem e o prazer de pensar junto e ensinar. Obrigado Celina Miraglia,

Lilian Kawakami, Marcos Vicente, Gustavo Viana, Alessandro Jacoud.

Obrigado ao programa de Programa de Excelência Acadêmica - Brasil (CAPES),

por ter apoiado esse trabalho.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

DIAGNOSABILITY OF MODULAR DISCRETE EVENT SYSTEMS WITH

UNOBSERVABLE COMMON EVENTS

Thiago Cabral de Souza

Abril/2022

Orientador: João Carlos dos Santos Basilio

Programa: Engenharia Elétrica

Abstract:

Previous works on modular diagnosability of discrete event systems assume that

different modules can only share observable events. In this thesis, we remove this

assumption and presents a general formulation for the modular diagnosability

problem. The main contributions of the thesis are a necessary and sufficient

condition for modular diagnosability of regular languages, and an automaton-based

algorithm for modular diagnosability verification.

Resumo:

Trabalhos anteriores em diagnosticabilidade modular de sistemas modelados por

eventos discretos, assumem que módulos podem somente compartilhar eventos ob-

serváveis. Nessa dissertação, essa suposição é removida e é apresentada uma for-

mulação para o de diagnosaticabilidade modular. As principais contribuições dessa

dissertação são uma condição necessária e suficiente para diagnosticabilidade modu-

lar com linguagens regulares, e um algoritmo, baseado em autômatos diagnostica-

dores, para verificação de diagnosticabilidade modular.

vii

Contents

List of Figures ix

1 Introduction 1

2 Theoretical Background 6

2.1 Discrete Event Systems . 6

2.1.1 Language . 7

2.1.2 Operations on Languages . 8

2.2 Automata . 10

2.2.1 Operations on Automata . 13

2.2.2 Nondeterministic Automata . 18

2.2.3 Deterministic Automata With Unobservable Events 19

2.2.4 Strongly Connected Components 21

2.3 Fault Diagnosis of Discrete Event Systems 22

2.3.1 Diagnosability of DES . 22

2.3.2 Diagnoser Automaton . 23

2.4 Diagnosability Verification of Discrete Event Systems in different ar-

chitectures . 26

2.4.1 Discrete Event Systems Architectures for Fault Diagnosis . . . 28

2.4.2 Diagnosability verification for DES with decentralized archi-

tecture . 30

3 Methodology 36

3.1 Modular Discrete Event Systems . 36

3.2 An automaton-based algorithm for modular diagnosability verification 44

4 Conclusion and future works 60

Bibliography 61

viii

List of Figures

2.1 State transition diagram for Example 2.4 12

2.2 Automaton G (a); Ac(G) (b); CoAc(G) (c), and, Trim(G) (d) of

Example 2.5 . 15

2.3 Automaton G1 (a) and Automaton G1 (b) of Example 2.6. 18

2.4 Automaton G1 ×G2 (a) and Automaton G1∣∣G2 (b) of Example 2.6. . 18

2.5 State transition diagram of Example 2.5. 19

2.6 Label automata A`. 24

2.7 State transition diagram of G of example 2.8. 26

2.8 State transition diagram of G` of example 2.8. 26

2.9 State transition diagram of Gd of example 2.8. 27

2.10 Block Diagram of a Decentralized Architectured System. 29

2.11 Block Diagram of a Modular Architecture System. 31

2.12 State transition diagram of G of example 2.9. 33

2.13 Automata A` (a) and G` (b) of Example 2.9. 34

2.14 State transition diagram of Gd of example 2.9. 34

2.15 State transition diagram of Gscc = Gd ∥ G` of example 2.9. 35

3.1 Automaton models G1 (a), G2 (b), G3 (c), and G = G1∥G2∥G3 (d). . . 40

3.2 Test automata Gscc1 for faulty module G1. 41

3.3 Test automata Gscc for the monolithic system G. 42

3.4 Test automata Gscc1 for faulty module G1. 51

3.5 Test automata Gtest12 of Example 3.2. 52

3.6 Test automata Gtest123 of Example 3.2. 53

3.7 Automaton models G1 (a), G2 (b), and G3 (c) of Example 3.3 55

3.8 Test automata scc1 of Example 3.3 . 56

3.9 Test automata Gtest123 of Example 3.3 57

3.10 G = G1∥G2∥G3 of Example 3.3 . 57

3.11 Modular diagnoser of Example 3.2. 58

ix

Chapter 1

Introduction

Since it was first introduced in the literature (LIN, 1994; SAMPATH et al., 1995),

fault diagnosis of discrete event systems (DES) has been an active area of research

(see ZAYTOON e LAFORTUNE (2013) and the references therein). The tricky

aspect of fault diagnosis, which has motivated a plethora of research works, is that

a fault, when it happens, does not lead the system to an immediate halt, but may

spoil a whole production, before it has been noted, or, when, not timely detected,

may cause serious financial losses and harmful accidents. Saying that a fault can

be diagnosed means that, after a finite number of event observations, the diagnosis

system is undoubtedly sure that the fault has occurred. However, applying this idea

to real DES is not so simple, and, as such, throughout these years, the two main

issues in the research of fault diagnosis are: (i) on-line diagnosis (SAMPATH et al.,

1995; GENC e LAFORTUNE, 2007; RAMIREZ-TREVINO et al., 2011; CABRAL

et al., 2015); and (ii) offline diagnosability analysis of the system (SAMPATH et al.,

1995; YOO e LAFORTUNE, 2002; QIU e KUMAR, 2006; MOREIRA et al., 2011;

CLAVIJO e BASILIO, 2017; VIANA e BASILIO, 2019)

Early research works considered diagnosability analysis and on-line diagnosis

assuming a monolithic (also referred to as centralized or global) architecture (SAM-

PATH et al., 1995; YOO e LAFORTUNE, 2002; SAMPATH et al., 1996). The main

advantage of centralized diagnosis is the conceptual simplicity and the diagnosis ve-

racity. On the other hand, its main disadvantages are the computational complexity

1

and the combinatorial explosion, because a monolithic diagnoser may become too

large when dealing with a large-scale system.

In order to overcome the aforementioned problems associated with the monolithic

approach, the architectures of decentralized diagnosis (DEBOUK et al., 2000), mod-

ular diagnosis (CONTANT et al., 2006) and distributed diagnosis (SU et al., 2002)

were proposed. Their main objective is similar, which is to achieve the same di-

agnosis performance with the monolithic approaches without building a monolithic

diagnoser. It is meaningless to discuss which architecture is better, since each one

has its own scope of use based on different assumptions and different types of models.

The main differences between these architectures are as follows:

• Decentralized architecture. In this architecture, the input system model

is still the monolithic system model. The system is partitioned into several

sites, each site having full knowledge of the global model but has only local

observation of the system. A local diagnoser is built based on the local ob-

servation of the whole system. One of the protocols proposed in DEBOUK

et al. (2000) has led to a generalization of the monolithic approach, leading

to the notion of codiagnosability. In that approach, local diagnosers cannot

communicate directly with each other, but they provide their local decision

to a coordinator, which issues the final diagnostic decision: a fault is issued

when at least one of the local diagnosers is sure that the fault has occurred,

and remains quiet otherwise.

• Modular architecture. In this architecture, the input system model is a

collection of module models. Different modules can have common events, and

the monolithic model can be obtained by building the parallel composition of

all modules. The idea is to see if an apparently non-diagnosable monolithic

system can be diagnosable (modularly) by leveraging the synchronization pro-

vided by the common events to identify the non-existing ambiguous traces

responsible for the apparent non-diagnosability. If the system is found modu-

larly diagnosable, it is enough to build a diagnoser for the module that contains

2

the fault.

In this dissertation, we focus on the modular architecture and address the prob-

lem of modular diagnosability verification. The concept of modular diagnosability,

as proposed in CONTANT et al. (2006), considers a DES with m modules, each

module being modeled by an automaton Gk, k ∈ H = {1,2, . . . ,m}, satifying the

following assumptions: (i) the whole systems is GH =∥k∈H Gk; (ii) for any subset

I = {i1, i2, . . . , in} ⊆H, where n ≤m, the language L(GI) generated by GI ∶=∥ik∈I Gik

is live; (iii) the common events of different modules are observable. In CONTANT

et al. (2006), the local diagnosability of each module is analyzed by using the di-

agnoser approach, and, for each module k ∈ I that is not locally diagnosable with

respect to its own set of fault events Σfk , and observable events, there must exists

an F -indeterminate cycle (SAMPATH et al., 1995) in the local diagnoser Gdk . The

idea of CONTANT et al. (2006) is to perform parallel compositions of diagnoser Gdk

and the local diagnosers of other modules in order to verify if the F -indeterminate

cycle survives. If there exists a set of local diagnosers such that, after building the

parallel composition of Gdz and those diagnosers, the F−indeterminate cycle does

not survive, the system is modularly diagnosable.

Let us now analyze the computational complexity of the Modular Diagnosabil-

ity Algorithm (MDA) proposed in CONTANT et al. (2006). Assuming that ∣Xz ∣

is the maximal number of states of one module and ∣Πfz ∣ is the maximal number

of fault classes in one module, in the worst case, the complexity of constructing

the local diagnoser is O(2∣Xz ∣×2
∣Πfz ∣). Notice that, in the worst case, the paral-

lel composition of all the local diagnosers are built, and thus, the computational

complexity of the approach in CONTANT et al. (2006) is O((2∣Xz ∣×2
∣Πfz ∣)m), or,

equivalently, O(2m∣Xz ∣×2
∣Πfz ∣). Thus, the worst case computational complexity is

exponential, which justifies the search for a new algorithm that has polynomial

computational complexity.

In MYADZELETS e PAOLI (2013) and SCHMIDT (2013), two approaches were

proposed for specification-based modular diagnosability analysis, i.e., when the sys-

3

tem has a modular structure and the fault is modeled by a set of a specific language.

These approaches are also applicable for event-based modular diagnosability anal-

ysis, i.e., the fault of the system is modeled by a set of unobservable fault events.

One problem of these two approaches is that a monolithic model is necessarily built.

In MYADZELETS e PAOLI (2013), the idea is similar to the approach in CON-

TANT et al. (2006), but the verifier approach in YOO e LAFORTUNE (2002) is

applied. In the worst case, the whole system must be built. Assuming that the

number of states of the monolithic model is ∣Xz ∣m, the number of the events is

at most ∣Σ∣ = ∣ ∪z∈H Σz ∣, the number of fault classes of the monolithic system is

∣ΠfH ∣, then, the complexity of the approach in MYADZELETS e PAOLI (2013) is

O(∣Xz ∣2m × ∣Σ∣ × ∣ΠfH ∣). In SCHMIDT (2013), the module models are simplified by

using an abstraction-based technique before analyzing the modular diagnosability.

In the worst case, the complexity to analyze an event-based modular diagnosabil-

ity is linear in the number of states and second order polynomial in the number

of transition of monolithic model. Therefore, the complexity of this approach is

O(∣Xz ∣m × (∣Xz ∣m × ∣Σ∣)2), i.e., O(∣Xz ∣3m × ∣Σ∣2).

More recently, LI et al. (2017) has proposed a modular verification algorithm

based on the algorithm developed by MOREIRA et al. (2011). Although the com-

putational complexity of the algorithm proposed in LI et al. (2017) has been found to

be O(∣Xz ∣m+1 × ∣Σ∣), thus polynomial, the algorithm still assumes, as in CONTANT

et al. (2006), that common events between modules are observable.

In this dissertation, we remove all assumptions regarding the observability of

common events and presents a general approach for modular diagnosability. The

main contributions of this dissertations are as follows:

(i) we present a necessary and sufficient condition for modular diagnosability of

regular languages;

(ii) we propose an automaton-based algorithm for modular diagnosability verifi-

cation, and;

4

(iii) we develop a diagnoser that relies on the observation of the events of faulty

module.

The methodology proposed here relies on the test automaton proposed in VIANA e

BASILIO (2019) and therefore has the advantage of searching for strongly connected

components, which is polynomial, but requires the construction of a diagnoser for

the faulty module, therefore it is exponential on the state size of the faulty module;

see also CLAVIJO e BASILIO (2017) for a comparison between the average state

sizes of diagnosers and verifiers.

This thesis is structured as follows. In Chapter 1, we present some preliminary

notions used throughout this thesis. In Chapter 2, we presents some background

on Discrete Event System necessary for the remaining chapter. In Chapter 3, we

present a new approach for modular diagnosability analysis. Finally, in Chapter 4,

we present the conclusion and outline some future perspectives for this work.

5

Chapter 2

Theoretical Background

This chapter intends to present a brief review of Discrete Event Systems (DES)

theory, and to recall the basic concepts for the reader to have a better understanding

of the dissertation. Thus, we present the neccessary background on DES, which is

based on CASSANDRAS e LAFORTUNE (2009), and the theoretical background

on fault detection and modular diagnosability. Chapter 2 is structured as follows.

In Section 2.1 we present the basic background on Discrete Event Systems. In

Section 2.2, we show and define different types of automata, and operations regarding

them. In Section 2.3, we present some background on fault diagnosis of discrete

event systems. Finally, in Section 2.4, we present diagnosability verification and its

relation in different architectures.

2.1 Discrete Event Systems

Discrete Event Systems (DES) are dynamical systems whose dynamic evolves on

asynchronous occurrence of events over time. This implies that the system states,

usually denoted by X, can be described by either numerical values belonging to set N

or Z e.g. X = {0,1,2, ...}, or even symbolical values, such X = {open, closed, stuck}.

On the other hand, the system events are described by instantaneous actions that

are responsible for triggering the evolution of the system, passing from one state

to the next one, or to a collection to states. The system behavior is driven by the

6

ocurrence of events. All possible sequences of the events that can be generated by a

given DES describe the language of this system, which is defined over a set of events

(alphabet) of the system. These concepts and more, are described in detail in the

next sections.

2.1.1 Language

One formal way to study the logical behavior of a DES is through the theories

of language and automata. The starting point is the fact that any DES has an

associated event set Σ, whose cardinality, denoted as ∣Σ∣, is assumed to be finite.

The set Σ is thought of as the “alphabet” of a language and event sequences are

thought of as “words” in that language. In the literature, the sequences of events σ

of Σ are also called traces, strings or sequences; the term sequences will be adopted

throughout the thesis. The length of a sequence s is the number of events of s,

and is denoted as ∣s∣. The set of all sequences formed with the events of Σ is called

Kleene-closure of Σ and is denoted as Σ∗. By definition, ε is a sequence that does

not contain events, being refered to as the empty sequence, and ∣ε∣ = 0. In addition,

σ ∈ s means that event σ belongs to sequence s. We denote as 2Σ the power set of

Σ or, namely the set that contains all the subsets of Σ; including the empty set ∅

and Σ itself.

Definition 1 (Language). A language L defined over an event set Σ is a set of

sequences with finite length formed with events of Σ.

From Definition 1, since a language of a DES belongs to the set of all the finite

length sequences of elements of Σ, we may say that L ⊆ Σ∗. Notice that, ∅ , Σ

and Σ∗ are also languages defined over Σ. In addition, ε may be an element of L,

although ε ∉ Σ.

Example 2.1. Let Σ = {a, b, c} be a set of events. We may define over Σ,

the following languages L1 = {a, ab, ac} consists of only three sequences; language

L2 = {ε, a, aa, ab, abc} which contains five sequences; and L3 = {s ∈ Σ∗ ∶ ∣s∣ ≤ 2} =

{ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}.

7

2.1.2 Operations on Languages

The usual set operations, such as union, intersection, difference, and complement

with respect to another language, are applicable to languages, since languages are

sets. In addition, the following operations can be defined for languages: concate-

nation, Kleene-closure, prefix-closure, post-language, natural projection and inverse

projection.

Definition 2. (Concatenation) Let La, Lb ⊆ Σ∗. Then, the contatenation LaLb is

defined as:

LaLb = {s ∈ Σ∗ ∶ (s = sasb), (sa ∈ La) and (sb ∈ Lb)}.

According to Definition 2 sequence s is in LaLb if it is formed by the concatena-

tion of a sequence sa ∈ La and sb ∈ Lb in this order.

Definition 3 (Kleene-closure). Let L ⊆ Σ∗. Then, the Kleene-closure of L, denoted

by L∗, is defined as:

L∗ ∶= {ε} ∪L ∪LL ∪LLL . . .

.

Before we introduce some operations on language we will define the prefix of a

sequence. Given a sequence s ∈ Σ∗, we say that a sequence t ∈ Σ∗ is prefix of a

sequence s ∈ Σ∗ if there exists a sequence v ∈ Σ∗ such that tv = s. Also, both s and

ε are prefixes of s.

Definition 4 (Prefix-closure). The prefix-closure of a language L consists of all

prefixes of all sequences in L. The prefix-closure of L, denoted as L̄, is defined as:

L̄ = {s ∈ Σ∗ ∶ (∃t ∈ Σ∗)[st ∈ L]}.

The language L is considered prefix closed if L = L̄. Thus, the language L is prefix-

closed if all prefixes of every sequence in L are also elements of L.

8

Example 2.2. Let Σ = {a, b, c}, and consider languages L1 = {ε, a, ab, abc} and

L2 = {b} defined over Σ. Note that L2 is not prefix-closed, since L̄2 = {ε, b} ≠ L2, but

L1 is prefixed-closed, since L1 = L̄1.

Definition 5 (Post-Language). Let L ⊆ Σ∗, and s ∈ L. Then the post-language of

L after s, denoted by L/s, in the language:

L/s ∶= {t ∈ Σ∗ ∶ st ∈ L}.

By definition, if s ∉ L, then L/s = ∅.

Another type of operation performed on sequences and languages is the so-called

natural projection, or simply projection.

Definition 6 (Projection). The projection takes a sequence formed from the larger

event set Σl and erases the events in it that do not belong to the smaller event set

Σs. We start by defining the projection P for sequences:

PΣl,Σs ∶ Σ∗
l → Σ∗

s .

where

PΣl,Σs(ε) ∶= ε

PΣl,Σs(e) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e if e ∈ Σs

ε if e ∉ Σs

PΣl,Σs(se) ∶= PΣl,Σs(s)PΣl,Σs(e) (for s ∈ Σ∗
l , e ∈ Σl.)

As can be seen from the Definition 6, the projection operation takes a sequence

formed from the larger event set (Σl) and erases events in it that do not belong to

the smaller event set (Σs). We will also be working with the corresponding inverse

map, P −1
Σs,Σl

∶ Σ∗
s → 2Σ∗

, defined as the following.

P −1(t) ∶= {s ∈ Σ∗ ∶ P (s) = t}.

9

The projection PΣl,Σs and its inverse P −1
Σs,Σl

are extended to languages by simply

applying them to all sequences in the language. Let L ⊆ σ∗`

PΣl,Σs(L) = {t ∈ Σ∗
s ∶ (∃s ∈ L)[P (s) = t]}.

For Ls ⊆ Σ∗
s

P −1
Σl,Σs

(Ls) ∶ {s ∈ Σ∗ ∶ (∃t ∈ Ls)[P (s) = t]}.

In order to demonstrate these operations, consider the following example.

Example 2.3. Let us consider the set of events Σ = {a, b, c} and the language

L1 = {ε, b} and the language L2 = {a, bb, c}. :

L∗1 = {ε, b, bb, bbb, ...}

L1L2 = {a, bb, c, ba, bbb, bc}

L2L1 = {a, ab, bb, bbb, c, cb}

If we define the projection PΣl,Σs ∶ Σ∗
l → Σ∗

s , such that Σl = {a, b, c} and Σs = {a, b},

then:

P (abc) = ab

P −1(ab) = {c}∗{a}{c}∗{b}{c}∗

P −1(ε) = {c}∗

P (L2) = {a, bb, ε}

P −1(P (L2)) = {{c}∗a{c}∗,{c}∗b{c}∗b{c}∗,{c}}

2.2 Automata

Automata are devices that are capable of representing a language according to well-

define rules, using a state transition structure, that determines events can occur

10

at each state of the system. The simplest representation of automaton is its di-

rected graph, or state transition diagram. In the following, we formally define a

deterministic automata:

Definition 7 (Deterministic Automata). A deterministic automaton, denoted by G,

is a six-tuple:

G = (X,Σ, f,Γ, x0,Xm),

where:

• X is the set of states of the automata;

• Σ is the finite set of events associated with G;

• f ∶X ×Σ→X is the state transition function of the states, f(x,σ) = y means

that there is a transition rotulates by event σ from state x to state y; generally,

f is a partial function in its own domain;

• x0 is the initial state of the system;

• Γ ∶ X → 2Σ such that Γ(x) = {σ ∈ Σ ∶ f(x,σ)!}, where f(x,σ)! denotes that σ

is defined in x, i.e., there exists y ∈X such that f(x,σ) = y;

• Xm ⊆X is the set of marked states.

The transition function, f is a partial function in its own domain, as can be seen

in the following example

Example 2.4. Let G be an automaton whose state transition diagram is depicted

in Figure 2.1. Based on the diagram, we have that:

• X = {x0, x1, x2};

• Σ = {a, b, c, d};

11

• The state transition function ofG is given by f(x0, a) = f(x2, d) = x0, f(x0, b) =

f(x1, b) = x1, f(x1, a) = f(x1, c) = f(x2, b) = x2;

• The feasible event sets of each state are given by Γ(x0) = {a, b}, Γ(x1) =

{a, b, c},Γ(x2) = {b, d};

• The initial state of G is x0 = {x0};

• The set of marked states of G is Xm = {x0, x1}

x0 x2

x1

x3

a

b

b

d

c

a,c

b

b

Figure 2.1: State transition diagram for Example 2.4

The transition function f has its domain extended from X × Σ to X × Σ∗ as

follows:

• f(x, ε) = x;

• f(x, sσ) = f(f(x, s), σ)(∀x ∈X)(∀s ∈ Σ∗)(∀σ ∈ Σ) [(f(x, s) = z)(f(z, σ)!)].

Thus, the language generated and marked by an automaton, can be define as

follows.

Definition 8 (Generated and marked language). The language generated by au-

tomaton G is defined as L(G) ∶= {s ∈ Σ∗ ∶ f(x0, s)!} and the language marked by

automaton G is defined as Lm(G) ∶= {s ∈ L(G) ∶ f(x0, s) ∈Xm}.

Note that Lm(G) will always be a subset of L(G), since Lm(G) is composed by

all sequences s such that f(x0, s) ∈Xm, and L(G) is prefix-closed. Languages L(G)

and Lm(G) always satisfy the following relation:

Lm(G) ⊆ Lm(G) ⊆ L(G).

12

2.2.1 Operations on Automata

In order to analyze DES modeled by automata, we first need to review the set of

operations capable of properly modifying the state transition diagram of an au-

tomaton, usually refered to as unary operation: accessibility or accessible part. The

product and the parallel compositions, which are fundamental to obtain the fault

diagnosers, that we intend to propose in this work will also be presented.

Unary Operations

• Accessible Part

A state x ∈ X of an automaton G is accessible if ∃s ∈ Σ∗ such that f(x0, s) = x.

From the definitions of L(G) and Lm(G), one may notice that we can erase all the

states of G that are not accessible or reachable, starting from x0, by some sequence

in L(G), without affecting not only the generated language of G, but also its marked

language. When we remove a state, we also remove all transitions linked to that

state. The accessible part of an automaton is defined as:

Definition 9 (Accessible Part). Let G = (X,Σ, f, x0,Xm) be an automaton. The

accessible parte or accessibility of G, denoted by Ac(G), is defined as

Ac(G) ∶= (Xac,Σ, fac, x0,Xac,m).

where:

(i) Xac = {x ∈X ∶ (∃s ∈ Σ∗)[f(x0, s) = x]};

(ii) Xac,m =Xm ∩Xac;

(iii) fac = f ∣Xac×Σ→Xac

Item (iii) means that we are restricting f to the smaller domain of the accessible

states Xac. Note that the event set of Ac(G) remains equal to the original event set

of G, even if some event of the set no longer appears in the state transition diagram

of Ac(G). Thus, the accessible does not changes L(G) and Lm(G).

13

• Coaccessible Part

A state x ∈ X of an automata is coaccessible if ∃s ∈ Σ∗ such that f(x, s) ∈ Xm.

Otherwise, x is a non-coaccessible state. We denote the operation of deleting all the

states of G that are not coaccessible by CoAc(G), where CoAc stands for “coacces-

sible” part. The automaton denoted by CoAc(G), is defined as

CoAc(G) ∶= (Xcoac,Σ, fcoac, x0,coac,Xm),

where:

(i) Xcoac = {x ∈X ∶ (∃s ∈ Σ∗)[f(x, s) ∈Xm]},

(ii) x0,coac ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x0 if, x0 ∈Xcoac,

undefined, otherwise,

(iii) fcoac = f ∣Xcoac×→Xcoac .

Notice that, the coaccessible part of an automaton may generate an different lan-

guage, but the marked language remains the same.

• Trim Operation

An automaton that is both accessible and coaccessible is said to be trim. We define

the Trim operation to be

Trim(G) ∶= CoAc[Ac(G)] = Ac[CoAc(G)].

Example 2.5. Let the state transition diagram of automaton G1 depicted in Figure

2.2a. To obtain Ac(G), it suffices to delete state 2 and the transitions (f(2, c) ∶

[c ∈ Γ(2)]); the resulting automaton is depicted in Figure 2.2b. In order to obtain

CoAc(G), we need to identify the states of G that are not coaccessible to the marked

state 0, which is state 3. We, then, delete this state and the transition labeled by

event c and a Γ that satisfy: c ∈ Γ(3) and c ∈ Γ(x) ∶ f(x,Γ) = 3, to obtain CoAc(G)

14

depicted in Figure 2.2c. Finally the trim automaton, Trim(G), is depicted in Figure

2.2d.

0 1

2

3
a

cb

a
c

(a)

0 1 3
a

cb

(b)

0 1

2

a
b

a

(c)

0 1
a
b

(d)

Figure 2.2: Automaton G (a); Ac(G) (b); CoAc(G) (c), and, Trim(G) (d) of
Example 2.5

Operations with two or more automata

• Product Composition

The product composition, denoted by ×, is a composition of two automata that al-

lows only the occurrence of events that are common to both. The following definition

describes this operation mathematically [13].

Definition 10 (Product composition). Consider the following automata:

G1 = (X1,Σ1, f1, x0,1, xm1),

G2 = (X2,Σ2, f2, x0,2, xm2).

15

The product composition between G1 and G2 leads to the following automaton:

G1 ×G2 = Ac(X1 ×X2,Σ1 ×Σ2, f1×2,Γ1x2, (x0,1, x0,2),Xm1 ×Xm2).

where f1×2, and Γ1×2 is defined as:

(i) f((x1, x2), σ) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2),

undefined, otherwise;

(ii) Γ1×2(x1, x2) = Γ1(x1) ∩ Γ2(x2) is the feasible event function of G1 ×G2,

Considering the righthand side of the definition 10 of G1 ×G2, it can be noted that

we are only interested in the accessible part of the automaton. In other words,

an event only occurs in G1 × G2 if it occurs in both G1 and G1. In the product

operation, the transitions of two automata should always be synchronized with a

common event. Then, we can say that both generated and marked languages by the

product G1 ×G2 can be given by:

L(G1 ×G2) = L(G1) ∩L(G2),

Lm(G1 ×G2) = Lm(G1) ∩Lm(G2).

• Parallel Composition

As stated in [13], the more commonly method to building the complete model of a

system from its individual components is through parallel (or synchronous) compo-

sition of automata, being each automaton a local component (or subsystem) of the

global system. The definition of parallel composition is as follows.

Definition 11 (Parallel Composition). Consider automata G1 =

(X1,Σ1, f1, x0,1, xm1),G2 = (X2,Σ2, f2, x0,2, xm2). The product composition be-

16

tween G1 and G2 will be given by the following automaton:

G1 ∥ G2 = Ac(X1 ×X2,Σ1 ∪Σ2, f1∣∣2,Γ1∣∣2, (x0,1, x0,2),Xm1 ×Xm2),

where f1∣∣2 is defined as follows:

(i) f((x1, x2), σ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2),

(f1(x1, σ), x2), if σ ∈ Γ1(x1) ∖Σ2,

(x1, f2(x2, σ)), if σ ∈ Γ2(x2) ∖Σ1,

undefined, otherwise.

It can be noted that a common event of the automata G1 and G2 can only occur

when the event is in both active event sets of the states that compose, the new state

of G1 ∥ G2. Private events, i.e., σ ∈ (Σ1 ∖ Σ2) ∪ (Σ2 ∖ Σ1), are able to be executed

as long as possible. Therefore, the parallel composition synchronizes only common

events to both G1 and G2. In order to define the generated and marked languages

of automaton G1∣∣G2, let Σ = Σ1 ∪Σ2 and define the following projection:

PΣ,Σi
∶ (Σ1 ∪Σ2)∗ → Σ∗

i for i = 1,2.

Considering the use of projections, we now can obtain the resulting languages of the

parallel composition between G1 and G2 that are given by:

L(G1∣∣G2) = P −1
Σ,Σ1

[L(G1)] ∩ P −1
Σ,Σ2

[L(G2)],

Lm(G1∣∣G2) = P −1
Σ,Σ1

[Lm(G1)] ∩ P −1
Σ,Σ2

[Lm(G2)].

Example 2.6. Consider automaton G1 and G2 depicted in Figures 2.3a and 2.3b,

with Σ1 = {a, b, c} and Σ2 = {a, c}. As can be seen in Figure 2.4a the product

composition didn’t allow the event σ = {b} to occur, since b ∉ Σ2; however in the

parallel composition depicted in Figure 2.4b, the transition from state (0,0) to (2,0)

is defined.

17

0 1

2

a

b

c

(a)

0 1
a

c

(b)

Figure 2.3: Automaton G1 (a) and Automaton G1 (b) of Example 2.6.

(0,0) (1,1)a
c

(a)

(0,0) (1,1)

(2,0)

b

a
c

(b)

Figure 2.4: Automaton G1 ×G2 (a) and Automaton G1∣∣G2 (b) of Example 2.6.

2.2.2 Nondeterministic Automata

A nondeterministic automaton, denoted by Gnd, is a six-tuple Gnd =

(X,Σnd, fnd,Γnd,X0,Xm), where the elements of Gnd have the same meaning as in

the deterministic automaton G, with the exception that the transition function can

be nondeterministic, i.e., (i) Σ is a set of events , (ii) ε ∈ Σnd, (iii) fnd ∶X×Σnd → 2X ;

and the initial state can be defined as a set x0 ⊆X.

In order to define languages generated and marked by a nondeterministic automa-

ton, it is necessary to extend fnd to the domain X × Σ∗, resulting in the extended

transition function f e
nd. To this end let εR(x) denote the ε-reach of a state x, i.e.,

the set of states reached from x by following transitions labeled with the empty

string ε, including state x. The ε-reach can be extended to a set of states B ⊆X as

εR(B) = ∪x∈BεR(x).

The extended nondeterministic transition function f e
nd ∶X×Σ∗ → 2X , can be defined

18

recursively as follows: f e
nd(x, ε) = εR(x), and f e

nd(x, sσ) = εR(x)[{z ∶ z ∈ fnd(y, σ) ∶

[(y ∈X) ∧ (y ∈ f e
nd(x, s))]. Thus, the language generated by Gnd can be defined as:

L(Gnd) = {s ∈ Σ∗ ∶ (∃x ∈ x0)[f e
nd(x, s)!]},

and the language marked by Gnd can be defined as:

Lm(Gnd) = {s ∈ Σ∗ ∶ (∃x ∈ x0)[f e
nd(x, s) ∩Xm ≠ ∅]}.

Example 2.7. Consider the state transition diagram of the nondeterministic au-

tomaton G1nd
depicted in Figure 2.5:

0 1

23

a

ad

c

d

b,c

bb
ε

Figure 2.5: State transition diagram of Example 2.5.

The nondeterministic automaton G1nd
depicted in Figure 2.5, has two initial

states X0 = {0,1}. Note that the transition function assumes values in 2x, for x ∈X,

for example fnd(0, a) = {0,2}, fnd(2, b) = {1,2}; also fnd(3, bεb) = fnd(3, bb) = {3,2,1}

which suggests an uncertainty in the dynamic evolution of the system.

2.2.3 Deterministic Automata With Unobservable Events

In some cases, there might exist some events in a given system whose occurrence

cannot be recorded by a sensor or because the event occurs at a remote location but is

not communicated to the site where they must be processed, in this case, the system

is said to be a partially-observed DES. An assumption needed for a deterministic

automata nth unobservable events, is to identify which events are observable, and

19

those that are not. To this end, we partition the set of events as:

Σ = Σo ∪̇ Σuo,

where:

• Σo is the set of observable events of the system;

• Σuo is the set of unobservable events of the system.

We can build from the automaton with unobservable an automaton, with only ob-

servable events, called observer, which describes the behavior of G, denoted as

Obs(G,Σo). The construction of Obs(G,Σo) requires the notion of unobservable

reach of an state x ∈X, which can be defined as:

UR(x,Σuo) = {y ∈X ∶ (∃t ∈ Σ∗
uo)[f(x, t) = y)]}.

From the above definition, it is clear that x ∈ UR(x,Σuo). The unobservable reach

can be extended to a set of states A ∈ 2X as:

UR(A) = ⋃
x∈A

UR(x),

with that in mind, the observer of G, Obs(G,Σo), can be defined as follows:

Obs(G,Σo) = (Xobs,Σo, fobs,Γobs, x0obs , xmobs
),

where:

• Xobs ∈ 2X ;

• fobs(xobs, σ) = UR({y ∈X ∶ (∃x ∈ xobs)[f(x,σ) = y]},Σuo);

• Γobs(xobs) = ⋃x∈xobs
Γ(x);

• Xmobs
= {xobs ∈Xobs ∶ xobs ∩Xm ≠ ∅}.

20

Algorithm 1: Construction of automaton Obs(G; Σo)

Input: G = (X,Σ, f,Γ, x0, xm),Σo

Output: Obs(G,Σo) = (Xobs,Σo, fobs,Γobs, x0obs , xmobs
)

Step 1: Set:

Step 1.1: Σuo ∶= Σ ∖Σo

Step 1.2: x0obs ∶= UR(x0,Σuo)
Step 1.3: Xobs ∶= {x0obs}
Step 1.4: X̃obs ∶=Xobs

Step 2 Set:

Step 2.1 X̂obs ∶= X̃obs

Step 2.2 X̃obs ∶= ∅

Step 3: For B ∈ X̂obs

Step 3.1 Γobs(B) = ⋃x∈B Γ(x)) ∩Σ0

Step 3.2 For σ ∈ Γobs(B):
Step 3.2.1 fobs(B,σ) ∶= UR({x ∈X ∶ (∀y ∈ B)[x = f(y, σ)]},Σuo)
Step 3.2.2 X̃obs ∶= X̃obs ∪ fobs(B,σ)

Step 4 Set Xobs ∶=Xobs ∪ X̃obs

Step 5 Repeat Step 2 to 4 until the entire accessible part of Obs(G; Σo) has been
constructed

Step 6 Set Xmobs
∶= {B ∈Xobs ∶ B ∩Xm ≠ ∅}

The construction of Obs(G,Σ0) can be made in accordance with Algorithm 1.

Using Algorithm 1, it can be concluded that the resulting language generated by

Obs(G,Σo) is:

L(Obs(G,Σo)) = PΣ,Σo[L(G)].

2.2.4 Strongly Connected Components

Definition 12 (Strongly Connected Components). strongly connected component

of an automaton G1 = (X,Σ, f,Γ, x0, xm) is a maximal set of states Xscc ⊆ X such

that for every pair of states u, v ∈Xscc,there is a path formed by events in Σ from u

21

to v and from v to u; that is, every states u and v in Xscc are reachable from each

other, and Xscc is maximal.

The search for strongly connected components has a simpler computational com-

plexity than the search for cycles, since the complexity of the search for SSCs

is O(∣n∣ + ∣E∣) (CORMEN et al., 2009), where E is the number of transitions;

meanwhile, the search for cycles is, in the worst case, worse than exponencial,

Σn−1
n=1 = (n−i+1

n
)(n − 1)!.

2.3 Fault Diagnosis of Discrete Event Systems

In many applications where the system model contains unobservable events, we may

be interested in determining if certain unobservable events could have occurred or

must have occurred in the sequence of events executed by the system. If these

unobservable events of interest model faults of system components, then knowing

that one of these events has occurred is very important when monitoring the per-

formance of the system. The main objective in the process of detection and fault

diagnosis is to identify the cause of poor system functioning, i.e., the occurrence of

these unobservable events (SAMPATH et al., 1995).

2.3.1 Diagnosability of DES

Diagnosability is a property of a system related with the capacity of the language

being able to distinguish faulty sequences, sequences that contains at least one fault

event, from normal ones. In order to define language diagnosability (SAMPATH

et al., 1995, 1996), the following assumptions are made: (i) Language L is live, i.e.,

Γ(x) ≠ ∅, ∀x ∈ X; (ii) let Σf ⊆ Σuo be a set of events associated with failures of the

system; (iii) There exists only one fault event, i.e., Σf = {σf}.

The third assumption, (iii), has been made for the sake of simplicity, since meth-

ods developed regarding diagnosability are the same applied to one fault event. In

order to understand and define the concept of fault behavior, the definition of the

22

fault-free behavior, which is presented as follows;

Definition 13 (Fault-free behavior). Let L(G) = L be the language generated by

automaton G and LN the prefix-closed language formed by all the sequences of L

that do not have any fault event from the set Σf . Then, the fault-free behavior of

the system given by G, with respect to Σf = {σf}, will be modeled by subautomaton

of G, GN , that generates language LN .

The definition of diagnosabiliy is as follows (SAMPATH et al., 1995):

Definition 14 (Diagnosability). Let L be the live and prefix-closed language gener-

ated by the system, and LN ∈ L be the fault-free language of L. Po = PΣ,Σo = Σ∗ → Σ∗
o

be a projection operation. Then, L is said to be diagnosable with respect to projection

Po and Σf , if

(∃z ∈ N)(∀s ∈ L ∖LN)(∀st ∈ L ∖LN , ∣t∣ ≥ z)⇒ (∀ω ∈ P −1
o (Po(st)) ∩L,ω ∈ L ∖LN).

According to Definition 14, L is not diagnosable with respect to Po and Σf if,

and only if, there exists an arbitrarily long length faulty sequence st with the same

observation than a fault-free sequence ω in LN , i.e., Po(st) = Po(ω).

2.3.2 Diagnoser Automaton

A diagnoser, in the context of DES, is an automaton that performs the detection of

the fault event of a diagnosable language. In order to build a diagnoser, let A` be

the automaton depicted in Figure 2.6, which can be defined as follows:

A` = (X`,Σf , f`, x0,`),

where: X` = {N,Y }, x0,` = N , f`(N,σf) = Y , and f`(Y,σf) = Y .

Then, the diagnoser automaton is obtained as follows:

Gd = Obs(G`,Σo) = Obs(G ∥ A`,Σo) = (Xd,Σo, fd, xod).

23

N Y
σf

σf

Figure 2.6: Label automata A`.

From the construction of the diagnoser, which is an observer, it can be con-

cluded that L(Gd) = PΣ,Σo(L(G ∥ A`)) = PΣ,Σo(P −1
Σ,Σ(L(G)) ∩ P −1

Σ,Σf
(L(A`))) =

PΣ,Σo(L(G) ∩Σ∗) = PΣ,Σo(L(G)). In addition, notice that all states of Gd have the

form xd = {(x1, `1), . . . , (xn, `n)}, and so, regarding fault indication, they can be

classified as:

● Faulty state, if `i = Y, for i = 1, . . . , n

● Normal state, if `i = N, for i = 1, . . . , n

● Uncertain state, if (∃i ≠ j)[(`i = N) ∧ (`j = Y)]

When the diagnoser is in a faulty state, it is certain that a fault has oc-

curred. On the other hand, if the diagnoser is in a normal state, it is sure that

the fault has not occurred. However, if the diagnoser is in a uncertain state, it

is not sure if the fault event has occurred or not. In order to better understand

further concepts about fault diagnosis of discrete event systems, some definitions

are required as follows:

Definition 15 (Path). A path in G is a sequence (x1, σ1, x2, . . . , xn), where xi ∈X,

σi ∈ Σ, and f(xi, σ1) = xi+1, i = 1,2, . . . , n − 1.

Definition 16 (Cycle). A cycle of G is the set formed of the states of a cyclic path

(xk, σ1, xk+1, σ2, . . . , σ1, xk+1), where xk+1 = xk.

Definition 17 (Indeterminate Cycle). An indeterminate cycle of Gd is a set of

states {xd1 , xd2 , . . . , xdp} ⊆ Xd formed of uncertain states, satisfying the following

conditions:

(i) xd1 , xdw , . . . , xdp form a cycle in Gd;

(ii) for all ` ∈ {1,2, . . . , p}, there exists states (xk`` , Y), (x̃r`` , Y) in xd` , with xk`` not

necessarily distinct from x̃r`` , where; k` = 1,2, . . . ,m` and r` = 1,2, . . . , m̃l in

24

such a way that the sequence of states {xk`` }, ` = 1,2, . . . , p, k` = 1,2m. . . ,m`

and {x̃r`` }, ` = 1,2, . . . , p , r` = 1,2, . . . , m̃` form cycles in G;

(iii) there exist two sequences s = s1s2 . . . sp ∈ Σ∗ and s̃ = s̃1s̃2 . . . s̃p ∈ Σ∗, such that

Po(s) = Po(s̃), where s` = σ`,1σ`,2 . . . σ`,m`−1, f(xj`, σ`,j) = x
j+1
` , j = 1,2, . . . ,m` −

1, f(xm`

` , σ`+1,0) = x1
`+1, and f(xmp

p , σ`,0) = x1
1, and similarly for s̃`.

In SAMPATH et al. (1995), the authors make the following assumptions on the

system under investigation:

H1. The language L generated by G is live. This means that there is at least

one transition defined at each state x ∈ X, i.e., the system cannot reach a point at

which no event ocurrence is possible.

H2. There does not exist in G any cycle of unobservable events. In SAM-

PATH et al. (1995), a necessary and sufficient condition for diagnosability of regular

languages is presented as follows.

Theorem 2.1. (SAMPATH et al., 1995) The language L generated by automaton

G is diagnosable with respect to projection Po and Σf = {σf} if, and only if, its

diagnoser Gd has no indeterminate cycles.

According to Theorem 2.1 if there exists a cycle formed only with uncertain

states, where the diagnoser can remain forever, it will be impossible for it to diagnose

the fault occurrence. On the other hand, if it is possible for the diagnoser to leave

this uncertain states cycle, then this cycle is not indeterminate. Therefore, in order

to verify the system diagnosability using a diagnoser, it is necessary to search for

indeterminate cycles in Gd (SAMPATH et al., 1995, 1996).

Example 2.8. Consider the DES modeled by automaton G, shown in Figure 2.7,

where Σo = {a, b, c} is the set of observable states, and Σuo = {σuo, σf} is the set

of unobservable states, and Σf = {σf} is the set of fault event. In order to check

the language diagnosability, we first compute the parallel composition between au-

tomaton G of Figure 2.8 and label automaton A` depicted in Figure 2.6, and thus,

we obtain automaton G` depicted in Figure 2.8. Using automaton G`, we can

25

now compute diagnoser automaton Gd = Obs(G`,Σo), depicted in Figure 2.9. If

we examine Gd, we can check that its state set is formed with two normal state

({0N},{2N}); three uncertain states ({2N,3Y,1N},{2N,3Y }, {2N,2Y }); and two

fault states ({3Y },{2Y }). In addition, Figure 2.9 shows an indeterminate cycle in

diagnoser state {2N,2Y }. This cycle corresponds to the presence of two cycling

traces in the automaton G ∶ (i) a normal trace sN = aσuo(bc)n, i.e., a trace without

fault event; (ii) a fault trace sY = aσf(bc)∗, i.e., a trace that has a fault event. Since

they have the same observation PΣ,Σo(sY) = PΣ,Σo(sN) = a(bc)∗. Thus, according to

Theorem 2.1, language L(G) is not diagnosable with respect to projection PΣ,Σo and

Σf = {σf}.

0 1 2

3

a
σuo

σf

a

b,c

a

b

Figure 2.7: State transition diagram of G of example 2.8.

0N 1N 2N

3Y 2Y

a
σuo

σf

a

b,c

b,ca
b

Figure 2.8: State transition diagram of G` of example 2.8.

2.4 Diagnosability Verification of Discrete Event

Systems in different architectures

Diagnoser automaton can be used either off-line to check diagnosability or online

by connecting it to the system to provide on-line diagnosis upon the occurrence of

26

{0N}

{2N,3Y,1N}

{2N,3Y }

{3Y }

{2Y }

{2N,2Y } {2N}

a

b

c

a

a
b

c

b,c

a

bb,c b,c

Figure 2.9: State transition diagram of Gd of example 2.8.

observable events. Nevertheless, since the construction of an entire diagnoser is in

the worst case, exponential in the number of states of the plant automaton G, its

use in diagnosability verification, according to Theorem 2.1, becomes harder. This

limitation can be overcome by the use of verifier a automata (YOO e LAFORTUNE,

2002; QIU e KUMAR, 2006; MOREIRA et al., 2011; JIANG et al., 2001), whose

corresponding verification algorithm requires polynomial time in the cardinality of

the state space and the event set of G. Broadly speaking, the verifier automaton

is built through the parallel composition of the system behavior with faults and

the system behavior without faults, with a synchronization on the observable events.

27

2.4.1 Discrete Event Systems Architectures for Fault Diag-

nosis

Saying that a fault can be diagnosed (SAMPATH et al., 1995; GENC e LAFOR-

TUNE, 2007; RAMIREZ-TREVINO et al., 2011; CABRAL et al., 2015), means

that, after a finite number of event observations (LIN, 1994; SAMPATH et al.,

1995; ZAYTOON e LAFORTUNE, 2013), the diagnosis system is undoubtedly sure

that the fault has occurred. In this regard, the two main issues in the research of

fault diagnosis are: (i) on-line diagnosis (SAMPATH et al., 1995; GENC e LAFOR-

TUNE, 2007; RAMIREZ-TREVINO et al., 2011; CABRAL et al., 2015); and (ii)

offline diagnosability analysis of the system

Early research works consider diagnosability analysis and on-line diagnosis assum-

ing a monolithic (also referred to as centralized or global) architecture (SAMPATH

et al., 1995; YOO e LAFORTUNE, 2002; SAMPATH et al., 1996) The main advan-

tage of centralized diagnosis is its conceptual simplicity and the diagnosis veracity.

On the other hand, the computational complexity and the combinatorial explosion

are its main disadvantages since, because a monolithic diagnoser may become too

large when dealing with a large-scale system. In order to overcome the aforemen-

tioned problems, decentralized (DEBOUK et al., 2000) and modular (CONTANT

et al., 2006) diagnosis architectures were proposed. Their main objectives of the

proposed architectures are similar, namely is to achieve the same diagnosis perfor-

mance as the monolithic approaches without building a monolithic diagnoser. It

is meaningless to discuss which architecture is better, since each one has its own

scope of use based on different assumptions and different types of models. The

main features of each one of the above architectures are now presented.

1) Decentralized architecture

In this architecture, the input system model is still the monolithic system model.

The system is partitioned into several sites, each site having full knowledge of the

global model but has only local observation of the system. A local diagnoser is built

28

based on the local observation of the whole system, as seen in Figure 2.10. Local sites

Si, i = 1,2, . . . ,Ns, observe the system behavior based on the information provided

by sensors connected to it; therefore, forming sets Σoi , i = 1,2, . . . ,Ns, of observable

events for each site, and so, all events σ ∈ Σ∖Σoi are considered unobservable for site

Si. In the decentralized structure of Figure 2.10, each site processes the information

received (an event observation) and can only communicate their diagnosis decision to

the coordinator, which processes this information according to a predetermined rule

and makes a decision regarding the fault occurrence; this process is called protocol.

One of the protocols proposed in DEBOUK et al. (2000) has led to a generalization

of the monolithic approach, being referred to as co-diagnosis. In this approach, local

diagnosers cannot communicate directly with each other, but they provide their local

decision to a coordinator, which issues the final diagnostic decision, namely a fault

is issued when at least one of the local diagnosers is sure that the fault has occurred,

and remains quiet otherwise.

Σo1 Σo2
ΣoNs

...

Coordinator

Site S1
Site S2 Site SNS

System

Local
observations

Local
Diagnosis

Fault information

Figure 2.10: Block Diagram of a Decentralized Architectured System.

29

2) Modular architecture

In this architecture, the input system model is a collection of the models, which can

be composed together via parallel composition to obtain the monolithic model. The

different module behaviors are synchronized by the common events. It is assumed

that the fault event under consideration appears in one module only.

Figure 2.11 shows a block diagram for a modular architecture, where it is as-

sumed that each module k may only “observe” (has sensors) for one part of the

system behavior only based on the information provided by the sensors connected

to it; therefore, forming sets, Σok , k = 1,2, . . . ,Ms, of observable events for each

module, which implies that all events σ ∈ (Σ ∖ Σok) are considered unobservable

for module k. The diagnosis decision in the modular architecture shown in Figure

2.11, is made in two levels. The first level is composed by a coordinator, which is

responsible for deciding if the system is locally or modularly diagnosable. If the

system is locally diagnosable, the coordinator sends the events from the module

which posses a fault event, the first module by assumption, to the local diagnoser,

which issues a diagnoser decision. Otherwise, the coordinator sends the information

to the modular diagnoser together with the modules that are necessary in the syn-

chronization with the local diagnoser. This information is determined by means of

an off-line diagnosability analysis, in which the coordinator decides which modules

present necessary information in order to built an effective modular diagnoser. The

modular diagnoser is built by the information received from the coordinator and

the necessary modules, and is responsible for determining if the system is either

operating in normal or faulty mode.

2.4.2 Diagnosability verification for DES with decentralized

architecture

Suppose that there are m local diagnosers, each one with observable event set

Σoi , i = 1,2, . . . ,m. Let us initially assume, without loss of generality, that L is

live. Additionally, let L(GN) = LN be the language associated with the non faulty

30

Local Observations

Module 1 Module 2

Σ1 ,Σo1

... Module ∣I ∣

Monolithic System

Σ2,Σo2 Σ∣I ∣,Σo
∣I∣

Coordinator

Local Diagnoser Modular Diagnoser

Figure 2.11: Block Diagram of a Modular Architecture System.

behavior of the system,i.e., LN is a prefix-closed language formed with all traces of

L that do not contain any fault event from the set Σf .

Definition 18 (Codiagnosability). Language L if codiagnosable with respect to pro-

jections PΣ,Σoi
∶ Σ∗ → Σ∗

oi
and fault event σf if

(∃n ∈ N)(∀s ∈ L ∖LN)(∀st ∈ L ∖LN)(∣t∣ ≥ n⇒D)

Where the diagnosability condition D is as follows:

(∃i ∈ IM)[∀ω ∈ P −1
Σ,Σoi

(PΣ,Σoi
(st)) ∩L,ω ∈ L ∖LN]). (2.1)

According to Definition 18, L is codiagnosable with respect to PΣ,Σoi
, and Σf if

there exists a trace st with arbitrarily long length after the occurrence of the fault

event, and a trace ω ∈ LN , such that PΣ,Σoi
(si) = PΣ,Σoi

(st) for all i ∈ Im. When L is

a regular language, codiagnosability can be verified using the following automata:

A diagnoser-based automaton with exponential time computacional complex-

31

ity(VIANA e BASILIO, 2019).

Codiagnosability Verification using Diagnoser-based Automaton

In this section, we first state a necessary and sufficient condition for verification of co-

diagnosability of a system using a diagnoser-based automaton (VIANA e BASILIO,

2019), and in the sequel, we present an algorithm to verify the stated condition and

provides a result for the diagnosability verification of a decentralized DES. The nec-

essary and sufficient condition for verification, proved in VIANA e BASILIO (2019).

The definition of the test automaton is present as follows:

• AutomatonGNs
scc =∥Ns

i=1 Gd1 ∥ G` = (Xscc,Σ, fscc, x0,scc), such that for all x ∈Xscc,

the states x presents the following structure x = (xd1 , xd2 , . . . , xds).

Theorem 2.2. The language L generated by automaton G is codiagnosable with re-

spect to projections Poi ∶ Σ∗ → Σ∗
oi
, i = 1,2, . . . ,Ns and Σf = {σf}, if, and only if, GNs

scc

does not have any nontrivial strictly connect components (SCC) formed with states

(x1
d1
, x1

d2
, . . . , x1

ds
, x1

`), (x1
d1
, x1

d2
, . . . , x1

ds
, x1

`), . . . , (xmd1
, xmd2

, . . . , xmds , x
m
`), such that, ∀j ∈

Im, x
j
di
, i = 1,2, . . . ,Ns, is uncertain, and xj` is a Y-labeled state.

The work developed in VIANA e BASILIO (2019) has also proved that language

generated by L(Gscc) = L(G`) = L(G), this fact can be proved straightforwardly

since:

Gscc = Gd ∥ G` = Obs(G`,Σ0) ∥ G` (2.2)

is a state partition automaton (CHO e MARCUS, 1989).

Example 2.9. Consider a system modeled by automaton G, shown in Figure 2.12,

where Σo = {a, b, c} is the set of observable states, and Σuo = {σuo, σf} is the set of

unobservable states, and Σf = {σf}. In order to check the language diagnosability,

we first compute the parallel composition between automaton G of Figure 2.12 and

label automaton A` depicted in Figure 2.13a, and thus, we obtain automaton G` =

G ∥ A` depicted in Figure 2.13b. Using automaton G`, we can now compute the

diagnoser automaton Gd = Obs(G`,Σo), depicted in Figure 2.14. Then, we compute

32

Algorithm 2: Diagnosability Verification using automaton GNs
scc

Input: G,Σoi ,i = 1,2, . . . ,Ns, and Σf = {σf}
Output: Codiagnosability Decision: Yes or No.

Step 1: Compute automaton GNs
scc = (∥Ns

i=1 Gdi) ∥ G`.

Step 2: Find all nontrivial SCCs of GNs
scc

Step 3: Verify if there exists at least one nontrivial SCC formed with states
(x1

d1
, x1

d2
, . . . , x1

ds
, x1

`), (x2
d1
, x2

d2
, . . . , x2

ds
, x2

`), . . . , (xmd1
, xmd2

, . . . , xmds , x
m
`), such

that, ∀j ∈ Im, xjdi , i = 1,2, . . . ,Ns, is uncertain, and xj` is a Y-labeled state.

Step 4: If the answer is yes, then L is not codiagnosable with respect to projections
Poi ∶ Σ∗ → Σ∗

oi
, i = 1,2, . . . ,Ns, and, Σf = {σf}. Otherwise, L is codiagnosable.

Gscc = Gd ∥ G`, which is shown in Figure 2.15. Since Gscc has a nontrivial SCC

formed with state ({2Y,2N},2Y), then, language L, generated by automaton G, is

not diagnosable with respect to projections PΣ,Σo and Σf .

0 1 2

3

a
σuo

σf

a

b,c

a

b

Figure 2.12: State transition diagram of G of example 2.9.

33

N Y
σf

σf

(a)

0N 1N 2N

3Y 2Y

a
σuo

σf

a

b,c

b,ca
b

(b)

Figure 2.13: Automata A` (a) and G` (b) of Example 2.9.

{0N}

{2N,3Y,1N}

{2N,3Y }

{3Y }

{2Y }

{2N,2Y } {2N}

a

b

c

a

a
b

c

b,c

a

bb,c b,c

Figure 2.14: State transition diagram of Gd of example 2.9.

34

({0N},0N)

({2N3Y 1N},1N)

({3Y 2N},2N)

({2Y 2N},2N)

({2N3Y 1N},2N)

({2N},2N)

({2N3Y 1N},3Y)

({3Y 2N},3Y)

({3Y },3Y)

({2Y },2Y)

({2Y 2N},2Y)

a

σ1
a

σf

b

c

b, c

b

c

b, c

b

a

ba

b

a

b, c

b, c

Figure 2.15: State transition diagram of Gscc = Gd ∥ G` of example 2.9.

35

Chapter 3

Methodology

3.1 Modular Discrete Event Systems

Most of discrete event fault diagnosis methodologies build “monolithic” models of

system under consideration for diagnosability analysis and implementation; and

almost all systems posses a modular structure, which can be composed of several

modules, local components or even subsystems that could be formed by various

smaller individual modules. If only one module is being analyzed, the modular

diagnosability problem emerges and we define as:

Definition 19. (Local Diagnosability) Let Im ∶= {1,2,⋯,m} and take z ∈ I. The

language L(Gz) is locally diagnosable with respect to Σfz = {f} and Σzo, if ∀s ∈

L(Gz) that ends with f , ∃n ∈ N s.t. ∀t ∈ L(Gz)/s, ∣t∣ ≥ n⇒ DL(st) = 1, where

DL(st) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if ∀ω ∈ P −1
Σz ,Σzo

[PΣz ,Σzo
(st)] ∩L(Gz)⇒ f ∈ ω

0, otherwise

In other words, a module is locally diagnosable, if every sequence that ends with

the fault event is distinguishable in a finite number of local observable events after

the occurrence of the fault. Notice that if the subscript z in Definition 19 is replaced

with Im, the definition of local diagnosability becomes identical to the monolithic

diagnosability definition presented in CONTANT et al. (2006) for the monolithic

36

model GIm . We will now review the definition of modular diagnosability, which

extends the definition of local diagnosability by taking into account the possibil-

ity that a faulty sequence of is locally indistinguishable in one module to become

distinguishable due to the concurrency with other modules.

Definition 20 (Modular Diagnosability). Given a subset I ⊆ IM and z ∈ I, language

L(GI) is modularly diagnosable w.r.t. PΣI ,Σzo
∶ Σ∗

I → Σ∗
zo, and Σf , if

(∃n ∈ N)(∀s ∈ LN(GI))(∀st ∈ L(GI) ∖LN(GI))

(∣PΣI ,Σz(t)∣ ≥ n⇒MD)

where the modular diagnosability condition MD is as follows:

MD ∶ ∀ω ∈ P −1
ΣI ,Σzo

(PΣI ,Σzo
(st)) ∩L(GI),

ω ∈ L(GI) ∖LN(GI)).

Notice that the above definition of modular diagnosability differs from that pre-

sented in CONTANT et al. (2006) in the sense that we use ∣PΣI ,Σz(t)∣ ≥ n rather than

∣PΣI ,Σzo
(t)∣ ≥ n since we have not posed any restriction regarding the non-existance

of cycle of states connected by unobservable events only, as assumed in SAMPATH

et al. (1995) and CONTANT et al. (2006). Definition 20 also differs from Contant’s

since in MD, we take P −1
ΣI ,Σzo

(PΣI ,Σzo
(st))∩L(GI) whereas CONTANT et al. (2006)

takes P −1
ΣI ,ΣIo

(PΣI ,ΣIo
(st))∩L(GI) since the former provides a more intuitive idea of

the “persistent excitation condition”, which requires the occurrence of some event

of local module z after every sequence in the language continuation after the fault

occurrence. In addition, by considering P −1
ΣI ,Σzo

(PΣI ,Σzo
(st)) ∩ L(GI), we are able

to identify those existing ambiguities in local module z that carry over the system

formed with all modules in I. Finally, it is worth remarking that Definition 20

generalizes Definition 14, since when I = {z}, then PΣI ,Σz(t) = t.

As in CONTANT et al. (2006), the following result can be stated.

37

Theorem 3.1. Let z ∈ I be the index of the module containing the fault event. If

language L(Gz) is monolithically diagnosable with respect to PΣz ,Σzo
∶ Σ∗

z → Σ∗
zo and

Σf , then L(GI) is modularly diagnosable with respect to PΣI ,Σzo
∶ Σ∗

I → Σ∗
zo, and Σf .

Proof. Let I = {i1, i2, . . . , ip}, where p ≤ m, and assume, without loss of generality,

that z = i1. Therefore, GI = Gz∥Gi2∥ . . . ∥Gip , ΣI = Σz ∪Σi2 ∪ . . . ∪Σip and

L(GI) = P −1
ΣI ,Σz

(L(Gz)) ∩ P −1
ΣI ,Σi2

(L(Gz)) ∩ . . .

∩P −1
ΣI ,Σip

(L(Gz)) (3.1)

If L(GI) is not modularly diagnosable with respect to PΣI ,Σzo
and Σf , there must

exist two sequences sY , sN ∈ L(GI), where sY ∈ L(GI) ∖ LN(GI), PΣI ,Σz(sY) of

unbounded length, and sN ∈ LN(GI) such that PΣI ,Σzo
(sY) = PΣI ,Σzo

(sN). Therefore,

from Eq. (3.1), sY , sN ∈ P −1
ΣI ,Σz

(L(Gz)), which implies that there exist szY , szN ∈

L(Gz) such that szY = PΣI ,Σz(sY) and szN = PΣI ,Σz(sN), respectively.

Notice that

PΣz ,Σzo
(szY) = PΣz ,Σzo

(PΣI ,Σz(sY)) = PΣI ,Σzo
(sY)

and

PΣz ,Σzo
(szN) = PΣz ,Σzo

(PΣI ,Σz(sN)) = PΣI ,Σzo
(sN)

which implies that PΣz ,Σzo
(szY) = PΣz ,Σzo

(szN). In addition, since PΣI ,Σz(sY) is of

unbounded length, so is szY . Therefore, Gz is not monolithically diagnosable. ∎

Example 3.1. Let us consider a DES composed of three modules G1, G2

and G3, shown in Fig. 3.1(a)–(c), respectively, whose event sets are Σ1 =

{a, b, c, σ1, σ2, σ3, σf}, Σ2 = {b, g, σ2} and Σ3 = {a, σ1}. The unobservable events

are σ1, σ2, σ3 and the fault event σf .

Notice that L(G1) is not diagnosable with respect to PΣ1,Σo1
and σf . This is so

because of the existence of the sequences sY = bσfan and sN = bσ1aan−1, n ∈ Z∗
+ (the

former trace of unbounded length that has the fault event σf , while the latter does not

38

have the fault event) with the same projection, i.e., PΣ1,Σo1
(sY) = PΣ1,Σo1

(sN) = ban.

In addition, after the fault occurrence, the module evolution persists with the occur-

rence of event a. This result can also be obtained by inspecting Fig 3.4, which shows

the test automaton Gscc1 computed for automaton G1 in accordance with Eq. (2.2).

Notice that Gscc1 has two nontrivial SCCs {{6Y 4N,6Y }} and {{2N4N2Y,2Y }}

whose second (resp. first) state component is a Y (resp. uncertain) state; thus

showing that L(G1) is not diagnosable with respect to PΣ1,Σo1
and σf .

Fig. 3.1(d) shows the monolithic system obtained by the synchronization of

the three modules (G = G1∥G2∥G3). From the state diagram of Fig. 3.1, it can

be concluded that L(G) is not diagnosable since there are at least two sequences,

sY = bgpσfgn and sN = bgpσ3gn, p, n ∈ Z+, sY with unbounded length and containing

the fault event σf with the same projection PΣ,Σo(sY) = PΣ,Σo(sN) = bgp+n, where

Σ = Σ1 ∪Σ2 ∪Σ3 = {a, b, c, g, σ1, σ2, σ3, σf} and Σo = Σo1 ∪Σo2 ∪Σo3 = {a, b, c, g}. The

same conclusion can be drawn by inspecting the test automaton Gscc constructed

for the monolithic system G since it has a non trivial SCC = {{4N5Y 1N2Y,5Y }}

whose second (resp. first) state component is a Y (resp. uncertain) state.

39

0

1

2

3

4

5

6

b

σ2

σf

σ1

σ3

a

a

a, b, c

σf

c

(a)

0 1 2 3
b σ2

g

b

b

(b)

0 1 2
a σ1

g a

(c)

0 1

2 3

4 5

b

σf

σ3

g

a

g g

σf

g c, g

(d)

Figure 3.1: Automaton models G1 (a), G2 (b), G3 (c), and G = G1∥G2∥G3 (d).

40

(4
N

0N
,0
N

)

(4
N

0N
,4
N

)

(3
N

4N
1N

5N
2Y

6Y
,4
N

)

(6
Y

4N
,4
N

)
(2
N

4N
2Y
,4
N

)

(2
N

4N
2Y
,4
N

)

(3
N

4N
1N

5N
2Y

6Y
,1
Y
)

(3
N

4N
1N

5N
2Y

6Y
,2
Y
)

(2
N

4N
2Y
,2
Y
)

(3
N

4N
1N

5N
2Y

6Y
,3
N

)

(2
N

4N
2Y
,2
N

)

(3
N

4N
1N

5N
2Y

6Y
,5
N

)

(3
N

4N
1N

5N
2Y

6Y
,6
Y
)

(6
Y

4N
,6
Y
)

σ
2

b

b

b,
c

c
a

b
c

a
,b

a

b,
c

a
,b
,c

σ
f

σ
1

σ
3

a

a

a

a

σ
f

c

c

F
ig

u
re

3.
2:

T
es

t
au

to
m

at
a
G

sc
c 1

fo
r

fa
u
lt

y
m

o
d
u
le
G

1
.

41

({0N},{0N}) ({4N,5Y,1N,2Y },{1N})

({4N,5Y,1N,2Y },{4N}) ({4N,5Y,1N,2Y },{5Y })

({4N,5Y,1N,2Y },{2Y }) ({3Y },{3Y })

({5Y },{5Y })b

σf

σ3

g

a

g g

c

σf

g c, g c, g

Figure 3.3: Test automata Gscc for the monolithic system G.

Remark 3.1. (Differences and similarities between monolithic and modular diag-

nosabilities) From the definitions of monolithic and modular diagnosabilities (Defi-

nitions 14 and 20, respectively)), it is clear that both definitions are concerned with

language diagnosability of the overall system, namely, the system G formed with all

modules. As Example 3.1 shows, if the diagnosability decision is made based on the

overall composition of the modules (monolithic diagnosability), one may conclude

that the language generated by the whole system is not diagnosable due to the ex-

istence of ambiguous sequences1 sY = bgpσfgn and sN = bgpσ3gn, where p, n = Z+.

However, as will be clear later on in the thesis, if you take into account the structure

of the system, and analyze how the behavior of the module where the fault occurs

synchronizes with the behavior of the other modules, you will conclude that the am-

biguous sequences that occur in the overall system do not exist since they do not

represent sequences that can actually occur in the faulty module. In this case, build-

ing a diagnoser for the overall system does not work; instead, it suffices to build a

diagnoser based on the relevant events to the diagnosability of the language generate

by the fault module.

Remark 3.2. (particularities on CONTANT et al. (2006))

1Two sequences sY , sn ∈ L(G), σ ∈ sY but σ ∉ sN , if PΣ,Σo(sY) = PΣ,Σo(sN).

42

The definition of monolithic diagnosability 21 provided by (CONTANT et al.,

2006) differs from the diagnosability definition introduced in (SAMPATH et al.,

1995), since:

• The equation PΣ,Σo(∣t∣) > n instead of ∣t∣ > n. This modification implies that

cycles of unobservable events are not taken into account when verifying the

diagnosability properties of a system.

• The order of the quantifiers allows one natural number n for each trace s that

ends with a fault event, instead of requiring one natural number for each fault

event σf , i.e., for all traces s ending with σf .

Definition 21 (Monolithic Diagnosability). Let L be the live and prefix-closed

language generated by the system, and LN ∈ L be the fault-free language of L.

PΣ,Σo = Σ∗ → Σ∗
o be a projection operation. Then, L is said to be diagnosable with

respect to projection Po and Σf , if

((∃n ∈ N)(∀s ∈ L ∖LN)(∀st ∈ L ∖LN , PΣ,Σo(∣t∣) ≥ n)⇒D)

where the diagnosability condition D is as follows:

(∀ω ∈ P −1
Σ,Σo

(PΣ,Σo(st)) ∩L,ω ∈ L ∖LN).

Another remarkable particularity presented is a detailed statement of our Modular

Diagnosability Algorithm (MDA), in three parts. Part one is the core of MDA; it

calls the part two to perform preliminary steps involving indeterminate cycles that

could lead to a violation of modular diagnosability. The goal of the part two is to

identify all the indeterminate cycles that are present in the modules and yield a

list of sequences of states and events that is used in the other algorithms. After

the second part, part one also the part three where the incremental analysis of each

indeterminate cycle is performed CONTANT et al. (2006).

43

3.2 An automaton-based algorithm for modular

diagnosability verification

In order to present a new necessary and sufficient condition for modular diagnos-

ability based on an extension of the test automaton given in Eq. (2.2), the following

result, which is a direct consequence of the diagnosability condition proposed in

VIANA e BASILIO (2019) and reviewed in Section 2 is required.

Lemma 3.1. If the language L(G) generated by the automaton G is diagnosable

with respect to projection PΣ,Σo and Σf = {σf}, then, each nontrivial strongly con-

nected component SCCY = {(XY N1 ,XY1), (XY N2 ,XY2), ..., (XY Np ,XYp)}, has no cor-

responding strongly connected component SCCN = {(X ′
Y N1

,XN1), (X ′
Y N2

,XN2), ...,

(X ′
Y Nq

,XNq)}, either trivial or nontrivial, such that XY N = ∪p
i=1{{XY Ni

}}, and

X ′
Y N = ∪p

i=1{{X ′
Y Ni

}} satisfying XY N =X ′
Y N .

Proof. (⇒) Supose that exists a SCCY = {(XY N1 ,XY1), (XY N2 ,XY2), ..., (XY Np ,XYp)},

and exists a corresponding SCCN = {(X ′
Y N1

,XN1), (X ′
Y N2

,XN2), ..., (X ′
Y Nq

,XNq)},

since L(Gtest) = L(G`) = L(G) = L, then ∃st ∈ L ∶ s ∈ Σf , ∣t∣ > n. Two possibili-

ties exists:

• XY N1 = XY N2 = XY N2 = ⋅ ⋅ ⋅ = XY Np . It means that states

(XY N1 ,XY1), (XY N2 ,XY2), ..., (XY Np ,XYp) are connected by events σ,

such that σ ∉ Σo, since these events are strictly from `. Also, since

XYi
∈ XY Ni

, i = 1,2, . . . , n, then exists an indeterminate cycle in XY Ni
,

which leads to the existence of an SCCN .

• Exists {i1, i2, . . . , in} ⊆ {1,2, . . . , p} such that XY Nik
≠ XY Nil

, k ≠ l, k, l ∈

{1,2, . . . ,m}. Since XYi
, i = 1,2, . . . , p are not indeterminate states, and

L(G) = L, then exists a indefinitely long sequence sY = st ∈ L, and

the s ends with a faulty event, and ∣t∣ ≥ n,∀n ∈ N. Also, since XY Nik
, i =

1,2, . . . ,m, are uncertain states, there exists sN ∈ L, such that PΣ,Σo(sY) =

PΣ,Σo(sN), then, the sequence sN leads to an SCCN

44

(⇐) Consider that L is not diagnosable with respect to projection PΣ,Σo and Σf =

{σf}. Thus, there must exist two indefinitely long sequences sY andsN , such

that PΣ,Σo(sY) = PΣ,Σo(sN), such that σf ∉ sN sY = st ∈ L, and the s ends

with the σf event, and ∣t∣ ≥ n,∀n ∈ N. Considering ∣XY N ∣∣XY ∣ = q, and n >

q, then if εGtest(x0, sY) = X = (xd, x`) = (XY N ,XY), a strongly connected

component is formed in Gtest. If we consider the first component of the state

xd is composed only by certain components, once xd is in an cycle, it can

never become uncertain again, then any sequence s ∈ L, such that PΣ,Σo(s) =

PΣ,Σo(sN) is going to lead to an SCCY , which contradicts the hypothesis that

exists an sN , σf ∉ sN , such that PΣ,Σo(sY) = PΣ,Σo(sN). Thus, εGtest(x0, sN) =

(xd, x`) = (XY N ,XN) = SCCN .

∎

Lemma 3.2. If the language L(G) generated by the automaton G is not diagnosable

with respect to projection PΣ,Σo and Σf = {σf}, then, each nontrivial strongly con-

nected component SCCY = {(XY N1 ,XY1), (XY N2 ,XY2), ..., (XY Np ,XYp)}, has at least

one corresponding strongly connected component SCCN = {(X ′
Y N1

,XN1), (X ′
Y N2

,

XN2), ..., (X ′
Y Nq

,XNq)}, either trivial or nontrivial, such that XY N = ∪p
i=1{{XY Ni

}},

and X ′
Y N = ∪p

i=1{{X ′
Y Ni

}} satisfying XY N =X ′
Y N .

Proof. The proof is straightforward and comes from the fact that for a language to

be nondiagnosable it is necessary to exist an unbounded length faulty sequence sY

and a not necessary unbounded normal sequence sN with the same projection, i.e.,

PΣ,Σo(sY) = PΣ,Σo(sN). ∎

The importance of this result is that if there exist observable or unobservable

events that prevent ambiguous sequences to reach strongly connected components

SCCY or SCCN , therefore removing either of them, then the language of the com-

posed module becomes diagnosable.

In order to further develop this idea, let us assume, without loss of generality,

that z = 1, i.e., the first module is the faulty module, and denote the composite

45

module built with M modules as

GM = ∣∣Mi=1Gi. (3.2)

Let

Gscc1 = G1d∥G1` , (3.3)

GsccM = GMd
∥GM`

, (3.4)

be Viana and Basilio’s test automata for the faulty and for the composite module

GM , respectively, as reviewed in Eq. (2.2), and define the following test automaton:

GtestM = Gscc1∥Mi=2Gi` (3.5)

The following result can be stated.

Lemma 3.3. The language L(GM) generated by the composite module GM is modu-

larly diagnosable with respect to PΣM ,Σz and Σf if, and only if, the language L(GtestM)

generated by the test automaton GtestM is modularly diagnosable with respect to

PΣM ,Σz and Σf .

Proof. In order to prove this result, it is enough to prove that the languages gener-

ated by GtestM and GM are equal, i.e., L(GtestM) = L(GM). Notice that

GtestM = Gscc1∥Mi=2Gi` = G1d∥G1`∥Mi=2Gi` = Gscc1∥Mi=1Gi` ,

and thus:

L(GtestM) = P −1
ΣM ,Σ1

L(Gscc1) ∩M
i=1 P

−1
ΣM ,Σi

(L(Gi`)).

According to VIANA e BASILIO (2019, Fact 1), L(Gscc1) = L(G1) = L(G1`). There-

46

fore

L(GtestM) = ∩M
i=1P

−1
ΣM ,Σi

(L(Gi`))

= ∩M
i=1P

−1
ΣM ,Σi

(L(Gi)) = L(GM).

∎

According to Lemma 3.3, in order to ascertain whether a centralized system

whose modular structure is known is modularly diagnosable diagnosability, it is not

necessary to build the composed module each time modular diagnosability needs

to be verified; instead, all that has to be done is to check if the language gener-

ated by the automaton obtained by performing the parallel composition between

Gscc1 and the other plant modules. Based on this rational, we propose an algo-

rithm (Algorithm 3) for modular diagnosability verification. In Algorithm 3, it is

assumed that the language generated by the faulty module is nondiagnosable, and

therefore after computing Gscc1 in accordance with Eq. (2.2), two sets of SCCs,

S = {(SCCY1 ,SCCN1), (SCCY2 ,SCCN2), . . . , (SCCYp ,SCCNp)}, where p is the num-

ber of pairs of SCC that satisfy the condition imposed by Lemma 3.1 have been com-

puted; it is worth remarking that it is possible that besides pair (SCCYk
,SCCNk

),

other pairs (SCCYl
,SCCNl

), k ≠ l, can be formed.

The basic idea behind Algorithm 3 is, at each step, to add each module Gi to

Gtesti−1
so as to verify if all pairs of SCCs responsible for the non-diagnosability of

the faulty module survive or not. If for some value of i set S becomes empty, then

all existing ambiguities have been removed, and thus the language is diagnosable.

On the other hand, if all modules are added to Gtest and some SCC does survive,

then it is clear that the language is not diagnosable. The algorithm correctness is

ensured by the following result.

Theorem 3.2. Let S = {(SCCY1 ,SCCN1), (SCCY2 ,SCCN2), . . . , (SCCYp, SCCNp)}

be the set of SCC of Gscc1 computed according to Lemma 3.1 and Lemma 3.2, and

let S1,i1,...,ik ({i1, i2, . . . , ik} ∈ {2,3, . . . ,m}) be the set of SCC pairs of S that remains

47

Algorithm 3: Modular Diagnosability Verification

Input: Gscc1 , G = {G2, . . . ,GM}, Σf = {σf},
S = {(SCCY1 ,SCCN1), (SCCY2 ,SCCN2), . . . , (SCCYp , SCCNp)}: set of SCC of
Gscc1 computed according to Lemma 3.1.
Output: (MD,J)
MD ∈ {Y es,No}: modular diagnosability decision
J ⊆ (IM ∪ {1}) (set of plant module indexes Gi to ensure modular
diagnosability); J = ∅, if ∪M

i=1 is not modularly diagnosable
1 Gtestold ← Gscc1 ; flag← T
2 J ← {1}; I ← {2,3, . . . ,M}, while flag do
3 for k ∈ I do
4 CEk ← ∣Σk ∩Σtesti−1

∣
5 CEmax ←maxk∈I CEk

6 j ←mink ∈ I,CEk = CEmax

7 if CEmax ≠ 0 then
8 Gtest ← Gtestold∥Gj

9 J ← J ∪ {j}
10 I ← I ∖ {j}
11 Compute all SCCs of Gtest and remove from set S all pairs

(SCCY ,SCCN) that appear in Gtestold but not in Gtest

12 if S == ∅ then
13 flag← F ; MD ← Yes;

14 else
15 if I == ∅ then
16 flag ← F ; MD ← No; J ← ∅;

17 else
18 flag← F ; MD ← No; J ← ∅;

19 Gtestold ← Gtest

20 return MD, J

48

in Gtest1,i1,...,ik
. Then G1,i1,...,ik = G1∥(∥k∈{1,i1,...,ik}Gi) will be modularly diagnosable

with respect to PΣ1,i1,...,ik
,Σo1

and Σf = {σf} if, and only if, S1,i1,...,ik = ∅.

Proof. Consider S = {(SCCY1 ,SCCN1), (SCCY2 ,SCCN2), . . . , (SCCYp , SCCNp)}, and

according to Lemma 3.2, for each nontrivial strongly connected component SCCY =

{(XY N1 ,XY1), (XY N2 ,XY2), ..., (XY Np ,XYp)}, has at least one corresponding strongly

connected component SCCN = {(X ′
Y N1

,XN1), (X ′
Y N2

,XN2), ..., (X ′
Y Nq

,XNq)}, either

trivial or nontrivial, such that XY N = ∪p
i=1{{XY Ni

}}, and X ′
Y N = ∪p

i=1{{X ′
Y Ni

}}

satisfying XY N =X ′
Y N . Since Algorithm 3 builds automaton Gtest with all possible

modules that are able to build an modular diagnosable composition, if the search

for new modules to compose Gtest is null, then there are not enough information to

clarify if the system is in a faulty state or normal state, then the algorithm is going

to return a negative diagnosability result. Otherwise, using the criteria, according

to Lemma 3.1 and Lemma 3.2, if there are a number of modules p, such that

p ∈ {2, . . . ,M}, where M is the number of modules in the system, that are able to

empty the set S, then Algorithm 3 is going to return a set of modules, J , that

reaches an empty set S. And also, since in the worst case scenario, all modules are

going to be added to the composition, hence J = {1,2, . . . ,M}, it assures that if

there is a set of modules H that return S = {}, H ⊆ J .

∎

The following example illustrates the verification algorithm proposed in the the-

sis.

Example 3.2. Let us consider, again, the same system whose model has the modular

structure given in Fig. 3.1(a)–(c). As shown in Example 3.1, G1 is not locally

diagnosable, i.e., L(G1) is not diagnosable with respect to PΣ1,Σo1
and σf . Therefore,

in accordance with Lemma 3.1, to each SCCY strongly connected component there

must exist a SCCN strongly connected component whose first state components have

the same states as the corresponding SCCY . Indeed, from Fig. 3.4, the following set

49

of pairs (SCCY ,SCCN) can be formed:

S = {({{6Y 4N,6Y }},{{6Y 4N,4N}}),

({{2N4N2Y,2Y }},{{2N4N2Y,4N}}),

({{2N4N2Y,2Y }},{{2N4N2Y,2N}})} (3.6)

50

({
4N

0N
},

{0
N

})
({

4N
0N

},
{4
N

})

({
6Y

2Y
1N

4N
5N

2N
3N

},
{4
N

})

({
6Y

4N
},

{4
N

})

({
4N

},
{4
N

})

({
6Y

2Y
1N

4N
5N

2N
3N

},
{1
N

})

({
6Y

2Y
1N

4N
5N

2N
3N

},
{2
Y
})

({
6Y

2Y
1N

4N
5N

2N
3N

},
{3
N

})

({
6Y

2Y
1N

4N
5N

2N
3N

},
{2
N

})

({
6Y

2Y
1N

4N
5N

2N
3N

},
{5
N

})

({
6Y

2Y
1N

4N
5N

2N
3N

},
{6
Y
})

({
6Y

4N
},

{6
Y
})

σ
2

b

a

b

c
c

a

b
c

a

b

b,
c

a

σ
f

σ
1

σ
3

a

a

a

σ
f

c

c

F
ig

u
re

3.
4:

T
es

t
au

to
m

at
a
G

sc
c 1

fo
r

fa
u
lt

y
m

o
d
u
le
G

1
.

51

({
4N

,0
N

},
{0
N

},
0)

({
6Y
,2
Y
,4
N
,5
N
,1
N
,3
N

},
{1
N

},
1)

({
6Y
,2
Y
,4
N
,5
N
,1
N
,3
N

},
{5
N

},
1)

({
6Y
,2
Y
,4
N
,5
N
,1
N
,3
N

},
{6
Y
},

1)

({
4N

,6
Y
},

{6
Y
},

1)

({
6Y
,2
Y
,4
N
,5
N
,1
N
,3
N

},
{2
Y
},

1)

({
4N

,2
Y
,2
N

},
{2
Y
},

1)

({
6Y
,2
Y
,4
N
,5
N
,1
N
,3
N

},
{3
N

},
1)

({
4N

,2
Y
,2
N

},
{2
N

},
1)

b

σ
3

σ
f

σ
1

σ
f

g

g

c

c,
g

a

a
,g

a

g

a
,g

F
ig

u
re

3.
5:

T
es

t
au

to
m

at
a
G

te
st

1
2

of
E

x
am

p
le

3.
2.

52

({4N,0N},{0N},0,0)

({6Y,2Y,4N,5N,1N,3N},{1N},1,0)

({6Y,2Y,4N,5N,1N,3N},{5N},1,0)

({6Y,2Y,4N,5N,1N,3N},{6Y },1,0)

({4N,6Y },{6Y },1,0)

({6Y,2Y,4N,5N,1N,3N},{2Y },1,0)

({4N,2Y,2N},{2Y },1,1)

b

σ3

σf

σf

g

c, g

c

c, g

g

a

g

Figure 3.6: Test automata Gtest123 of Example 3.2.

Notice that since Σ1 ∩ Σ2 = {b, σ2} and Σ1 ∩ Σ3 = {a, σ1} have the same car-

dinality, any one of the modules can be chosen to synchronize with G1. When

module G1 synchronizes with module G2, the unnobservable common event σ2

can only occur after the occurrence of observable event b, which is also common

to the first two modules. Therefore, event σ2 will never occur in G12 = G1∥G2.

As a consequence, Gtest12 = Gtest1∥G2. It removes in Gtest1 model all event se-

quences starting with σ2 as shown in Fig. 3.5. The only pair of S that survives

is ({{2N4N2Y,2Y }},{{2N4N2Y,2N}}). Finally, by performing the synchroniza-

tion of Gtest12 with G3, test automaton Gtest123 shown in Fig. 3.6 is obtained, from

53

which we can see that S = {}, meaning that G is modularly diagnosable with respect

to PΣ,Σo1
and Σf = {σf}.

Example 3.3. Let us consider, a similar system from the one proposed in CON-

TANT et al. (2006),whose model has the modular structure given in Fig. 3.7(a)–

(c). It can be seen that, G1 is not locally diagnosable, i.e., L(G1) is not di-

agnosable with respect to PΣ1,Σo1
and σf , since sY = σfa∗, and sN = a∗ where

PΣ1,Σo1
(sY) = PΣ1,Σo1

(sN) . Therefore, in accordance with Lemma 3.1, to each SCCY

strongly connected component there must exist a SCCN strongly connected compo-

nent whose first state components have the same states as the corresponding SCCY .

Indeed, from Fig. 3.8, the following set of pairs (SCCY ,SCCN) can be formed:

S = {({{1Y 2N,2N}},{{1Y 2N,1Y }}),

({{5Y 6N,5Y }},{{5Y 6N,6N}})} (3.7)

Notice that since Σ1 ∩ Σ2 = {a, c} and Σ1 ∩ Σ3 = {a, c} have the same cardinal-

ity, any one of the modules can be chosen to synchronize with G1. By performing

the synchronization of Gscc1 with G2 and with G3, test automaton Gtest123 shown

in Fig. 3.9 is obtained, can be seen that the pair ({{5Y 6N,5Y }},{{5Y 6N,6N}})

is no longer appearing in automaton Gtest123 , and although the pair of states

{({{1Y 2N,2N}},{{1Y 2N,1Y }}) is still represented in automaton Gtest123 , it no

longer represents a diagnosability violation, since it only contains events σ such that

σ ∉ Σ1. Thus, since S = {}, then G = G1∥G2∥G3, depicted in 3.10 is modularly

diagnosable with respect to PΣ,Σo1
and Σf = {σf}.

54

0

1

2

3

4 5

6

7

σf

a

c

a

d

a

a

σf

a

d

a

a

d

(a)

0

1

2

3

x

b

y

b

a, c

(b)

0

1

2

3

y

b

x

b

a, c

(c)

Figure 3.7: Automaton models G1 (a), G2 (b), and G3 (c) of Example 3.3

55

({
0N

1Y
},

{0
N

},
)

({
2N

1Y
},

{2
N

})

({
0N

1Y
},

{1
Y
})

({
2N

1Y
},

{1
Y
})

({
3Y

},
{3
Y
})

({
4N

5Y
},

{4
N

})

({
4N

5Y
},

{5
Y
})

({
5Y

6N
},

{5
Y
})

({
7Y

},
{7
Y
})

((
{5
Y

6N
},

{6
N

})
a

c

σ
f

a

a
d

a

d
d

a

σ
f

a
d d

a

d

a

F
ig

u
re

3.
8:

T
es

t
au

to
m

at
a

sc
c 1

of
E

x
am

p
le

3.
3

56

({0N,1Y },{0N},0,0)

({0N,1Y },{0N},2,2)

({0N,1Y },{1Y },2,2)

({0N,1Y },{1Y },0,0)

({3Y },{3Y },0,0)

({3Y },{3Y },2,2)

b

σf

b

σf

b

d

b
d

d

b

b, d

Figure 3.9: Test automata Gtest123 of Example 3.3

0

3 4

1 2

5

b

σf

b

σf

b

d

b

d

d

b

b, d

Figure 3.10: G = G1∥G2∥G3 of Example 3.3

57

Remark 3.3 (Diagnoser automaton). Notice that if we compute obs(Gtest123 ,Σo1)

with respect to the second state component we obtain the automaton shown in

Fig. 3.11. This automaton can be regarded as the modular diagnoser for the sys-

tem. Notice that after the first occurrence of events a or c, the diagnoser is sure that

the fault has occurred. Therefore, as this picture suggests, online fault diagnosis of

DES whose component modules are known can be performed solely by following the

event occurrences in the faulty module.

{0N}

{1N,5N,6Y,2Y }

{2Y } {6Y }

b

a
c

c

Figure 3.11: Modular diagnoser of Example 3.2.

In CONTANT et al. (2006), the local diagnosability of each module is analyzed

by using the diagnoser approach, and, for each module i ∈ H that is not locally

diagnosable with respect to its own set of fault events Σfk , and observable events,

there must exists an F-indeterminate cycle (CONTANT et al., 2006) in the local

diagnoser Gdk . The idea of CONTANT et al. (2006) is to perform parallel com-

positions of diagnoser Gdk and the local diagnosers of other modules in order to

verify if the F-indeterminate cycle survives. If there exists a set of local diagnosers

such that, after building the parallel composition of GdI and those diagnosers, the

F-indeterminate cycle does not survive, the system is modularly diagnosable. Let us

now analyze the computational complexity of the Modular Diagnosability Algorithm

58

(MDA) proposed in CONTANT et al. (2006). Assuming that ∣Xz ∣ is the maximal

number of states of one module and ∣Πfz is the maximal number of fault classes

in one module, in worst case, the complexity of constructing the local diagnoser is

O(2∣Xz ∣×2
∣Πfz). In the worst case, the parallel composition of all the local diagnosers

are built, and thus, the computational complexity of the approach in CONTANT

et al. (2006) is O((2∣Xz ∣×2
∣Πfz)m), or, equivalently, O(m(2∣Xz ∣×2

∣Πfz)) Thus, the worst

case computational complexity is exponential, which justifies the search for a new

algorithm that has polynomial computational complexity.

Remark 3.4 (Computational complexity). Notice that, in the worst case, it will

be necessary to synchronize all non faulty modules with Gtest1, i.e., Gtest1,...,m =

Gtest1∥mi=2Gi. Assuming that the ∣X ∣ is the largest cardinality among all module state

sets, then, in the worst case, the cardinality of the state set of Gtest1,...,m will be

2∣X ∣ × 2∣X ∣ × ∣X ∣m−1. Thus, the computational complexity to perform the verification

proposed here will be O(2∣X ∣ × ∣X ∣m). It is worth noticing that all searches involved

in the verification algorithm can be performed in polynomial time.

59

Chapter 4

Conclusion and future works

We have presented in this work a new approach for the modular diagnosability

problem that has no constraints regarding the observability of the common events,

therefore, providing a general formulation for the modular diagnosability problem.

In this regard, we have presented a necessary and sufficient condition for modular

diagnosability based on a test automaton.

The main contributions of this work as as follows: (i) we remove the assump-

tion regarding the need for the events that are common to two or more modules to

be observable; (ii) we present necessary and sufficient condition for modular diag-

nosability of regular languages; (iii) we propose an automaton-based algorithm for

modular diagnosability verification, and; (iv) a diagnoser that relies on the observa-

tion of the events of the faulty module.

Regarding future works, we list the following possible continuations of this work:

(i) Further studies involving the modular diagnoser, the development of lemmas

and theorems in order to provide a complete overview of the area;

(ii) Polynomial-time algorithm for the verification of modular diagnosability using

Gv (MOREIRA et al., 2011), (in development).

(iii) Search of a minimal module basis, i.e., a set with smallest cardinality formed

by the system modules required to ensure modular diagnosability.

60

Bibliography

LIN, F. “Diagnosability of discrete event systems and its applications”, Discrete

Event Dynamic Systems, v. 4, n. 2, pp. 197–212, 1994.

SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Diagnosability of

discrete-event systems”, IEEE Transactions on automatic control, v. 40,

n. 9, pp. 1555–1575, 1995.

ZAYTOON, J., LAFORTUNE, S. “Overview of fault diagnosis methods for discrete

event systems”, Annual Reviews in Control, v. 37, n. 2, pp. 308–320, 2013.

GENC, S., LAFORTUNE, S. “Distributed diagnosis of place-bordered Petri nets”,

IEEE Transactions on Automation Science and Engineering, v. 4, n. 2,

pp. 206–219, 2007.

RAMIREZ-TREVINO, A., RUIZ-BELTRAN, E., ARAMBURO-LIZARRAGA, J.,

et al. “Structural diagnosability of DES and design of reduced Petri net

diagnosers”, IEEE Transactions on Systems, Man, and Cybernetics-Part

A: Systems and Humans, v. 42, n. 2, pp. 416–429, 2011.

CABRAL, F. G., MOREIRA, M. V., DIENE, O., et al. “A Petri net diagnoser for

discrete event systems modeled by finite state automata”, IEEE Trans-

actions on Automatic Control, v. 60, n. 1, pp. 59–71, 2015.

YOO, T.-S., LAFORTUNE, S. “Polynomial-time verification of diagnosability of

partially observed discrete-event systems”, IEEE Transactions on auto-

matic control, v. 47, n. 9, pp. 1491–1495, 2002.

QIU, W., KUMAR, R. “Decentralized failure diagnosis of discrete event systems”,

IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems

and Humans, v. 36, n. 2, pp. 384–395, 2006.

MOREIRA, M. V., JESUS, T. C., BASILIO, J. C. “Polynomial time verification

of decentralized diagnosability of discrete event systems”, IEEE Transac-

tions on Automatic Control, v. 56, n. 7, pp. 1679–1684, 2011.

61

CLAVIJO, L. B., BASILIO, J. C. “Empirical studies in the size of diagnosers and

verifiers for diagnosability analysis”, Discrete Event Dynamic Systems,

v. 27, n. 4, pp. 701–739, 2017.

VIANA, G. S., BASILIO, J. C. “Codiagnosability of discrete event systems re-

visited: A new necessary and sufficient condition and its applications”,

Automatica, v. 101, pp. 354–364, 2019.

SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Failure diagnosis using

discrete-event models”, IEEE transactions on control systems technology,

v. 4, n. 2, pp. 105–124, 1996.

DEBOUK, R., LAFORTUNE, S., TENEKETZIS, D. “Coordinated decentralized

protocols for failure diagnosis of discrete event systems”, Discrete Event

Dynamic Systems, v. 10, n. 1, pp. 33–86, 2000.

CONTANT, O., LAFORTUNE, S., TENEKETZIS, D. “Diagnosability of discrete

event systems with modular structure”, Discrete Event Dynamic Systems,

v. 16, n. 1, pp. 9–37, 2006.

SU, R., WONHAM, W., KURIEN, J., et al. “Distributed diagnosis for qualitative

systems”. In: Sixth International Workshop on Discrete Event Systems,

2002. Proceedings., pp. 169–174. IEEE, 2002.

MYADZELETS, D., PAOLI, A. “Virtual Modules in Discrete-Event Systems:

Achieving Modular Diagnosability”. In: arXiv preprint arXiv:1311.2850,

2013. Dispońıvel em: <http://arxiv.org/abs/1311.2850>.

SCHMIDT, K. “Verification of Modular Diagnosability with Local Specifications

for Discrete-Event Systems”, IEEE Transactions on Systems, Man, and

Cybernetics Part A:Systems and Humans, v. 43, n. 5, pp. 1130–1140, 2013.

LI, B., BASILIO, J. C., KHLIF-BOUASSIDA, M., et al. “Polynomial time

verification of modular diagnosability of discrete event systems”, IFAC-

PapersOnLine, v. 50, n. 1, pp. 13618–13623, 2017.

CASSANDRAS, C. G., LAFORTUNE, S. Introduction to discrete event systems.

New York, NY, Springer Science & Business Media, 2009.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., et al. Introduction to

algorithms. Cambridge, MA, MIT press, 2009.

JIANG, S., HUANG, Z.AND CHANDRA, V., KUMAR, R. “Codiagnosability of

discrete event systems revisited: A new necessary and sufficient condition

62

http://arxiv.org/abs/1311.2850

and its applications”, IEEE Transactions on Automatic Control, v. 46,

pp. 1318–1321, 2001.

CHO, H., MARCUS, S. I. “Supremal and maximal sublanguages arising in supervi-

sor synthesis problems with partial observations”, Mathematical Systems

Theory, v. 22, n. 1, pp. 177–211, 1989.

63

	List of Figures
	Introduction
	Theoretical Background
	Discrete Event Systems
	Language
	Operations on Languages

	Automata
	Operations on Automata
	Nondeterministic Automata
	Deterministic Automata With Unobservable Events
	Strongly Connected Components

	Fault Diagnosis of Discrete Event Systems
	Diagnosability of DES
	Diagnoser Automaton

	Diagnosability Verification of Discrete Event Systems in different architectures
	Discrete Event Systems Architectures for Fault Diagnosis
	Diagnosability verification for DES with decentralized architecture

	Methodology
	Modular Discrete Event Systems
	An automaton-based algorithm for modular diagnosability verification

	Conclusion and future works
	Bibliography

