! wR
ateied
<
Instituto Alberto Luiz Coimbra de U F RJ
Pés-Graduagéo e Pesquisa de Engenharia

OPTIMAL SELECTION OF SUBSYSTEMS FOR SYNCHRONOUS DIAGNOSIS

Lucas Nelson Ribeiro Reis

Dissertagao de Mestrado apresentada ao
Programa de Pos-graduacao em FEngenharia
Elétrica, COPPE, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessarios a obtencao do titulo de Mestre em

Engenharia Elétrica.

Orientador: Marcos Vicente de Brito Moreira

Rio de Janeiro

Marco de 2022

OPTIMAL SELECTION OF SUBSYSTEMS FOR SYNCHRONOUS DIAGNOSIS

Lucas Nelson Ribeiro Reis

DISSERTACAO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE POS-GRADUACAO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO
PARTE DOS REQUISITOS NECESSARIOS PARA A OBTENCAO DO GRAU
DE MESTRE EM CIENCIAS EM ENGENHARIA ELETRICA.

Orientador: Marcos Vicente de Brito Moreira

Aprovada por: Prof. Marcos Vicente de Brito Moreira
Prof. Lilian Kawakami Carvalho
Prof. Felipe Gomes de Oliveira Cabral
Prof. André Bittencourt Leal

RIO DE JANEIRO, RJ — BRASIL
MARCO DE 2022

Reis, Lucas Nelson Ribeiro
Optimal Selection of Subsystems for Synchronous

Diagnosis/Lucas Nelson Ribeiro Reis. — Rio de Janeiro:
UFRJ/COPPE, 2022.

XV [79 pl 1. 29, 7em.

Orientador: Marcos Vicente de Brito Moreira

Dissertagao (mestrado) — UFRJ/COPPE/Programa de
Engenharia Elétrica, 2022.

Referéncias Bibliograficas: p. [66] - [69

1. Discrete Events Systems. 2. Fault Diagnosis. 3.
Synchronous Diagnosis. 1. Moreira, Marcos Vicente de
Brito. II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Elétrica. III. Titulo.

1l

Agradecimentos

Agradeco primeiramente a Deus por toda forca e satde por me pertmitir chegar
aqui.

Agradego a Mariana Domingues e a meus filhos Emanuel Reis, Elisa Reis e Laura
Reis por todo apoio, incentivo e compreensao pelos muitos momentos de auséncia
necessarios para a conclusao desse trabalho.

Agradego aos meus pais Mara Rocha e Luiz Reis por todo esforgo, dedicacao e
incentivo na minha educagao para que pudesse alcar voos como esse.

Agradeco a toda a equipe do Centro de Projetos de Navios, em especial aos
meus Diretores e Vice-Diretores pelo incentivo e apoio me permitindo estudar e me
dedicar para a conclusao deste trabalho.

Agradeco ao meu orientador Marcos Moreira por toda orientagao e ensinamentos
passados ao longo do trabalho.

Agrade¢o também a COPPE/UFRJ, seu corpo docente e administragao, e a

todos aqueles que, de alguma forma, contribuiram para que eu chegasse até aqui.

v

Resumo da Dissertacdo apresentada & COPPE/UFRJ como parte dos requisitos

necessérios para a obtengao do grau de Mestre em Ciéncias (M.Sc.)

SELECAO OTIMA DE SUBSISTEMAS PARA DIAGNOSE SINCRONA

Lucas Nelson Ribeiro Reis

Margo /2022

Orientador: Marcos Vicente de Brito Moreira

Programa: Engenharia Elétrica

Diagnostico de falhas em sistemas de automagao é uma tarefa muito importante,
visto que falhas podem alterar o comportamento esperado do sistema, danificando
equipamentos e gerando riscos aos operadores. Normalmente, os sistemas sao forma-
dos por diversos subsistemas ou médulos e, portanto, o modelo do sistema completo
pode crescer exponencialmente com o nimero de componentes do sistema. Em
funcao disso, pode ser necessario um espaco de memoria elevado para implementar
diagnosticadores calculados utilizando métodos tradicionais, uma vez que os mes-
mos sao baseados no modelo da planta completa. Recentemente, foi proposto um
novo método para diagnose de falhas, chamado diagnose sincrona. O diagnosticador
calculado por esse método é baseado em estimadores de estados dos comportamen-
tos livres de falha dos modelos dos componentes do sistema, evitando assim que
seja necessario implementar o observador do sistema completo. Na estratégia de
diagnose sincrona, todos os modelos livres de falha do sistema sao utilizados para a
deteccao da ocorréncia da falha. No entanto, na pratica, alguns subsistemas podem
nao adicionar nenhuma informacao tutil para o diagnéstico da falha, ou ainda, a
mesma informagao pode ser obtida em outros moédulos, mostrando que esses subsis-
temas nao sao necessarios para a arquitetura de diagnose sincrona. Neste trabalho,
¢ proposto um algoritmo para calcular todos os conjuntos minimais de modulos
que garantem a diagnosticabilidade sincrona em um Sistema a Eventos Discreto.
A performance do algoritmo é comparada com a performance do método de busca
exaustiva, e ¢ mostrado que usando o método proposto ¢ possivel uma redugao sig-
nificativa no custo computacional para encontrar todos os conjuntos de modulos

minimais que garantem a diagnose sincrona.

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

OPTIMAL SELECTION OF SUBSYSTEMS FOR SYNCHRONOUS DIAGNOSIS

Lucas Nelson Ribeiro Reis

March /2022

Advisor: Marcos Vicente de Brito Moreira

Department: Electrical Engineering

Fault diagnosis of automated systems is a very important task, since faults can
alter the expected behavior of systems, damaging equipment and bringing risk to
operators. In general, systems are composed of several subsystems or modules, and
therefore, the complete system model may grow exponentially with the number of
system components. This fact shows that a large amount of memory space may be
needed to implement diagnosers computed using traditional methods, since they are
based on the complete system model. Recently, a new method for fault diagnosis,
called synchronous diagnosis, has been proposed. The diagnoser computed using
this method is based on the state estimators of the fault-free component models of
the system, avoiding the implementation of the state observer of the composed sys-
tem model. In the synchronous diagnosis strategy it is supposed that all fault-free
subsystem models are used to detect the fault occurrence. However, in practice,
some subsystems may not add useful information regarding the fault diagnosis, or
the same information can be obtained from the other modules, which shows that
these subsystems are not necessary in the synchronous diagnosis scheme. In this
work, an algorithm for computing all minimal sets of modules that ensure the syn-
chronous diagnosability of a Discrete Event System is proposed. The performance of
the proposed algorithm is compared with the performance of the exhaustive search
method, and we show that using the proposed method there is a significant reduc-
tion in the computational cost of finding all minimal sets of modules that ensure

synchronous diagnosability.

vi

Contents

[List of Figures| ix
[List of Tables| xiii
[List of Symbols| Xiv
(1__Introductionl 1
2 Discrete Event Systems| 4
2.1 Languages| 4
[2.1.1 Language Operations| 4

2.2 Automatalo 6
[2.2.1 Operations on automata] 8

[2.2.2 Automata with partially observed events| 10

2.3 Fmal Comments oo 13

[3 Diagnosability and Synchronous Diagnosability of Discrete Event |

14
[3.1 Diagnosability of DES| 14
[3.2 Centralized Synchronous diagnosability ot DES| 20
3.3 Fimal comments oo 30

[4 Optimal Selection of Subsystems for Ensuring Synchronous Diag- |

[nosability] 33
[4.1 Method for the Computation of all Minimal Subsets that Ensure Syn- |
[chronous Diagnosticability| 0. 33
4.2 Results and Discussions] oo 55

[4.2.1 Searching for minimal and minimum SDMB in a system with |

[four modules) 56

[4.2.2 Searching for minimal and minimum SDMB in a system with |
[eight modules.|. 60

vil

viil

List of Figures

[2.1 State transition diagram of Example2.2]| 7
[2.2 Automata G; and G5 of Example[2.3]}. 11
[2.3 Automata G,,oq and G, of Example[2.3lf 11
[2.4 Observer Obs(G,%,) of Example[2.4]] 13
3.1 Automaton A;| 16
[3.2 System automaton G (a), label automaton G; (b), and diagnoser |
| automaton G, (c) from Example3.1}| 17
[3.3 System automaton G (a), automaton Gy (b), and automaton G (c) |
| from bxample[3.2[]o oo 19
3.4 Automaton Gy from Example[3.2] 19
[3.5 Automaton Gy from Example|3.2l{. 20
[3.6 Synchronous diagnosis architecture.| 21
[3.7 Automaton G of Example3.3|o 22
[3.8 Automata G; and G5 of Example[3.3]}. 22
[3.9 Automaton Gy of Example|3.3l| 23
[3.10 Automata that represents the tault-free behavior tor each local diag- |
| noser of Example[3.3l[. o000 23
[3.11 Automata G; and G5 of Example[3.4l}. 24
[3.12 Automaton G of Example[3.4}| 25
[3.13 Automaton Gr of Example|3.4l| 25
[3.14 Automata Gy, and G y,, representing the fault-iree languages of each |
| module of Example[3.4]]. 0000 25
13.15 Automata G and Gy, representing the fault-free languages of each |
| module, with the unobserved events renamed in order to make them |
[particular events of Example|3.4l 25
13.16 Automaton G, representing the augmented fault-free language of of |
[the system considering the renamed unobserved events as particular |
| events of Example|3.4l| Lo 26
13.17 Automaton Gy”, representing the synchronous diagnosis verifier for |
| the system of Example{3.4l|. 26

1X

[3.18 Schematic of the mechatronic system installed in Laboratory of Con- |
trol and Automation of the Federal University of Rio de Janeiro.|. . . 27
[3.19 System components from Example|[3.ol 28
[3.20 Fault-free modules automata from Example[3.5[. 30
[3.21 Automaton G'r from Example[3.5]. 31
[3.22 Automaton Gy from Example|3.5. 31
3.23 Verifier of module 1 from Example [3.5] Gél} =Gp|lGR | 32
3.24 Verifier of module 2 from Example 3.5 G{{,z} = GF||G]}\372. 32
[4.1 Automata that models the system components Gy, Ga, G and Gy |
from Example|d. 1|o oo 36
[4.2 Automaton that models the tfaulty language of the system G trom |
Example 4.1lo 36
[4.3 Automata that models the fault-free modules language of the modules |
of the system from Exampleld. 1}{. 36
[4.4 Automata that represents the fault-free modules with unobservable |
events renamed from Exampled.1{| 37
[4.5 Verifier of module 3 from Example [4.1] highlighting a sequence that |
violates the synchronous diagnosability,| 37
[4.6 Verifier of module 4 from Example [4.1] highlighting a sequence that |
violates the synchronous diagnosability. 38
.7 Verifier of modules {3,4} from Example 4.1} highlighting a sequence |
that violates the synchronous diagnosability.| 38
[4.8 Verifier of module 3 from Example [4.2] highlighting a sequence that |
violates the synchronous diagnosability,| 39
[4.9 Verifier of module 2 from Example}d.2| 40
.10 Verifier of subset {2,3} from Example[d.2| 41
[4.11 Verifier of module 4 from Exampled. 1| 41
.12 Verifier of subset {3,4} from Example 4.2 highlighting a sequence |
that violates the synchronous diagnosability.| 42
[4.13 "Trees architecture that defines the order of adding components.| 42
4.14 Verifier of module 1 of Example |4.3 G;{/l} =GplGE | 45
4.15 Verifier of module 2 of Example [4.3 G;{/Z} =Gp|lGR| 46
4.16 Verifier of module 3 of Example |4.3 G}{f} =Gp|lGR,| .- 46
4.17 Verifier of module 4 of Example 4.3 Gi¥ = Gp||GR | 47
4.18 Automaton G%}, whose generated language is the prefix-closure of
the sequence, that violates the diagnosability, associated with the |
selected path, from Exampleld.3| 47
4.19 Automaton that represents G%}p{l} = G%}HG}{E} of Example |4.3|| 47

4.20

Automaton that represents G:‘a/;){m} = G%’z} ||G;{/?} of Example 4.3 . . 47

4.21 Verifier computed with modules {2,3} from Example|4.3]G%’| 49
4.22 Automaton G}{/i}, whose generated language is the prefix-closure of
the sequence, that violates the diagnosability, associated with the |
selected path, trom Example|d.d3l| 50
14.23 Verifier computed with modules {3,4} from Example[4.3/ G577 50
[4.24 Architecture that defines the order of adding components.| o1
[4.25 Automata that models the system components G, G, G3, G4, G5, |

Gg, G7, and Gg from Exampled.bl 56

[4.26 Automata that represents the tault-free modules with unobservable |
events renamed from Example/d.5(.00 o7
[4.27 Trees architecture that defines the order of adding components.| . . . 58
[4.28 Architecture that defines the order of adding components.| 59
[l Verifier computed with module {1} from Examples |4.3[and 4.4, G| . 70
[2 Verifier computed with module {2} from Examples 4.3/ and [4.4] G5,.| . 71
13 Verifier computed with module {3} from Examples 4.3 and [4.4] Gy,.| . 71
4 Verifier computed with module {4} from Examples |4.3[and 4.4, G5.| . 72
[Verifier computed with modules {1,2} from Examples 4.3 and 4.4, Gi7.| 72
(6 Verifier computed with modules {1, 3} from Examples 4.3 and 4.4, G| 73
[T Verifier computed with modules {1,4} from Examples [4.3|and 4.4, Gi*| 73
8 Verifier computed with modules {2,3} from Examples 4.3 and 4.4, G5 74
[0 Verifier computed with modules {2,4} from Examples 4.3 and 4.4, G7*.| 75
(10 Verifier computed with modules {3,4} from Examples4.3[and 4.4] G5 75
(L1 Verifier computed with modules {1, 2, 3} from Examples }4.3[and |4.4] |
G2l 76
(12 Verifier computed with modules {1,2,4} from Examples }4.3[and |4.4] |
Gy e 76
(13 Verifier computed with modules {1,3,4} from Examples |4.3[and |4.4] |
Gyl 7
14 Automaton Gi{/i}, whose generated language is the prefix-closure of
the sequence, that violates the diagnosability, associated with the |
selected path, from Examplesld.sland4.4{| 7
15 Automaton G%} , whose generated language is the prefix-closure of
the sequence, that violates the diagnosability, associated with the |
selected path, from Examplesld.sland4.4}| 7
16 Automaton G;{,i} , whose generated language is the prefix-closure of

the sequence, that violates the diagnosability, associated with the |

selected path, from Examplesld.sland4.4}| 7

x1

x1i

17 Automaton G%g} , whose generated language is the prefix-closure of
the sequence, that violates the diagnosability, associated with the |
selected path, from Examplesld.sfand|4.4{| 78
18 Automaton G%B}, whose generated language is the prefix-closure of
the sequence, that violates the diagnosability, associated with the |
selected path, from Examplesld.3land|4.4}| 78
19 Automaton that represents G2 A= G%} ||G€/2 b of Example [4.3{and [4.4]| 78
20 Automaton that represents G3 T Gi‘,}o} ||G%,3 " of Example 4.3 and [4.4]| 78
21 Automaton that represents G4 T J{/i} |GV of Example 4.3 and [4.4]| 78
22 Automaton that represents G3 e G:‘Z} ||G$’ " of Example |4.3[and [4.41| 78
23 Automaton that represents Gy, ’{2} G;{Z} ||G%,4 ' of Example 4.3 and [4.4]| 78
24 Automaton that represents G4 BT G{?’JL ||G{4} of Example 4.3/ and 4.4}| 78
25 Automaton that represents G3 Aizipe G{l 2 ||GJ‘3JL of Example [4.3|and
CTAD . c.. .79
26 Automaton that represents G4 b G{1 2 ||G{4} of Example [4.3|and
C AN . S 79
27 Automaton that represents G4 S = G{1 3 ||G{4} of Example (4.3 and
C D . 79

List of Tables

B.1 Statesof Gl 29

4.1 Verifiers G¥ computed using the exhaustive search and the proposed |
[method)o o8
4.2 Number of states and transitions of the verifiers Gy} from Example [4.3]| 59
1.3 Number of states and transitions of the partial verifiers Gy} that are |
| computed in the Example [4.3[using Algorithms |4.1{and [4.2]] 59
4.4 Number of states and transitions of the testing automata G{}f com-
[puted in Example 4.3 using Algorithms 4. 1jand 4.2l 60

[4.5 Total number of states and transitions that are computed using the |

| exhaustive search and the proposed method with Algorithm [4.1] and |

[reduction in the computational cost and execution time in Example |

[4.6 Total number of states and transitions that are computed using the |

[exhaustive search and the proposed method with Algorithm [4.3] and |

[reduction in the computational cost and execution time in Example |

[4.7 "Total number of states and transitions that are computed using the |

[exhaustive search and the proposed method with Algorithms4.1|and |

[[4.3] and reduction in the computational cost and execution time in |
| Example 4.5 61

[4.8 Total number of states and transitions that are computed using the |

| exhaustive search and the proposed method with Algorithm [4.3[and |

| reduction in the computational cost and execution time in Example |
| [4.5] searching directly for the minimum SDMB.. 61

xiil

List of Symbols

Ac(G)
CoAc(G)
Dy,

G

Gn

Gn

k

R
Gy,

SD
GV

Accessible part of G, p.

Coaccessible part of G, p.

Diagnoser for the k-th component of G, p.
Automaton, p. [0]

Automaton that models the nonfailure behavior of the system

G, p. [14

Automaton resultant from the parallel composition of au-
tomata G , p.

Diagnosability verifier automaton, p. [I9

Synchronous diagnosis verifier automaton restricted to mod-
ules associated with B U {j}, p.

Diagnoser automaton, p.

Automaton model of the k-th component of G, p.
Nonfailure behavior moodel of k-th component of G, p.
Automaton Gy, with unobservable events renamed, p.

Subautomaton formed from path p that violates synchronous
diagnosability restricted to modules associated with B, p.

Automaton resultant from the parallel composition of the par-
tial verifier GB and the verifier of the j-th module, p.
p

Synchronous diagnosis verifier automaton restricted to the
modules associated with B, p.

Synchronous diagnosis verifier automaton, p.

Xiv

qo0

Generated language of automaton G, p.

Failure language, p.

Generated language of automaton Gy, p. [14]
Observer automaton of G in X, p.

Projection operation defined as P, : ¥* — X7, p.
Projection operation defined as P! : ¥ — %%, p.
Set of states, p. [6]

Set of marked states, p. [

Unobservable reach of state ¢, p.

Prefix-closure operation on language L,, p.
Feasible event function of automaton G, p.

Set of Events, p.

Set of failure events, p.

Set of events of automaton Gy, p.

Observable event set, p. [1]]

Observable event set of Gy in the synchronous diagnosis
scheme, p.

Unobservable event set of GG in the synchronous diagnosis
scheme, p. [20]

Unbservable event set, p.

Natural number set, including the number zero, p.
Generated language of automaton G, p.

Marked language of automaton G, p.

Empty trace, p.

Transition function, p. [6]

Initial state, p. [0]

Total number of components of a system G, p. 20|

XV

Chapter 1
Introduction

Discrete event systems (DES) are systems whose evolution is given by the occurrence
of events [I], 2]. The act of pushing a button by an operator, starting or ending a
task, or the changing of a sensor state are examples of events. This kind of systems
can be seen in several applications, such as robotic systems, operational systems,
manufacturing systems, and data management.

It is important to remark that, in DES, events are defined as instantaneous occur-
rences, that can change the system state. This avoids the adoption of mathematical
formalism based on differential or difference equations to represent these systems.
Thus, it is necessary to adopt a mathematical formalism capable of dealing with the
characteristics of a DES. In order to model DES, the most common formalisms are
Petri nets and automata [IH5]. Petri nets are bipartite graphs, or bigraphs, in the
sense that it has two types of nodes (places and transitions), where nodes of the
same type cannot be connected. Tokens are assigned to the places of the Petri net,
such that the number of tokens of each place forms the marking of the Petri net,
which also represents the system state modeled by the net. Automata are directed
graphs, in which states and events are represented, respectively, by vertices and arcs.
In this work, automata are used to model DES.

As any other system, DES are subject to the occurrence of faults, 7.e., events
that can alter their expected behavior, reducing its reliability and performance, or,
even in the worst case scenario, leading the system to a halt. Considering this, fault
diagnosis of automated systems is a very important task, since faults can alter the
expected behavior of systems, damaging equipment and bringing risk to operators.
This problem is addressed in several works in the literature [6-22], with different
objectives, such as: robust diagnosis, considering permanent loss of observation in
TOMOLA et al. [I4], CARVALHO et al. [15] and intermittent loss of observation
in CARVALHO et al. [16], 17]; optimizing the sensors that ensure diagnosability in
SANTORO et al. |23]; combining diagnosis and prognosis for safe controllability in
WATANABE et al. [18], 19].

In the seminal work SAMPATH et al. [6], a diagnoser automaton is proposed
to perform fault diagnosis and to verify the diagnosability of the system language,
i.e., to verify if the fault occurrence can be detected within a bounded number of
event occurrences after the fault. The main problem with respect to the solution
presented in SAMPATH et al. [6], is that the diagnoser is constructed based on an
observer automaton, whose state space may grow exponentially with the number of
system states.

In order to overcome the exponential complexity for verifying the diagnosability
of the system language, in MOREIRA et al. [24] it is proposed a different strategy
based on a verifier automaton that can be computed in polynomial time. However,
the verifier cannot be straightforwardly used for online diagnosis.

In order to circumvent the problem of the size of the classical diagnoser, a new
approach is presented in DEBOUK et al. [25] and CONTANT et al. [26] is the
modular diagnosability, where the idea is to infer the occurrence of the fault event
by observing only the local component where the fault is modeled. It is important
to remark that in the modular diagnosis techniques, the following two assumptions
are considered: (¢) all common events between subsystems are observable; and (i)
the component where the fault event is modeled has persistent excitation, i.e., the
component where the fault is modeled must be able to perform events, otherwise, the
observed component may stay in the same state and the complete system continuing
to perform events and the diagnoser will not observe that. Note that, according to
these assumptions, the system modules cannot be synchronized with unobservable
events, which implies that the fault event cannot be modeled in more than one
system module, restricting its applicability. In addition, it is necessary to guarantee
the persistence of excitation property, which requires the previous knowledge of the
system behavior, which is not shown in DEBOUK et al. [25] and CONTANT et al.
[26].

In order to relax all assumptions considered in the modular diagnosis strategy
and avoid the exponential growth with the number of components, a new diagnosis
technique, called synchronous diagnosis, is proposed in CABRAL and MOREIRA
[20]. The method relies on the computation of a diagnoser based on the state ob-
servers of the fault-free component models of the system. This approach avoids
the implementation of the state observer of the composed system model, provid-
ing an online state estimate of each fault-free subsystem model, but deals with an
augmented fault-free language. Another approach is the synchronous decentralized
diagnosis [27], 28], which is based on local diagnosers, each one built considering one
subsystem model with its own set of observable events, meaning that an event can
be observable for a local diagnoser, but unobservable for other. It is important to re-

mark that those diagnosers do not communicate with the other local diagnosers, and

the fault event is diagnosed when at least one local diagnoser identifies its occurrence
and sends that information to a coordinator. Similar to the centralized synchronous
diagnosis, the decentralized deals with an augmented fault-free language. Another
recent scheme is the synchronous distributed diagnosis, where local diagnosers are
allowed to exchange information regarding the observation of events and local state
estimates through a network [22]. This allow the local diagnosers to refine the state
estimate of the fault-free behavior of the system modules, reducing the augmented
fault-free language.

In the synchronous centralized diagnosis strategy it is supposed that all fault-
free subsystem models are used to detect the fault occurrence. However, in practice,
some subsystems may not add useful information regarding the fault occurrence,
or the same information can be obtained from the other modules, which implies
that these modules are not necessary for the synchronous diagnosis scheme. It is
important to remark that finding the minimum number of system modules needed
for diagnosing the fault occurrence reduces the size of the diagnoser and the memory
space required to store it on a computer. A method for the computation of the useful
components or subsystems for synchronous fault diagnosis is not carried out in [20].

The simplest way to find all minimal subsets of modules that ensure language
synchronous diagnosability is to perform an exhaustive search, computing the veri-
fier for all 2" — 1 possible subsets of modules, where r denotes the number of system
modules, and selecting those that have smaller cardinality and do not contain an-
other subset of modules. This procedure has a high computational cost. Thus, in
this work, we present a method to compute all minimal sets of modules that are
necessary to guarantee the synchronous diagnosability of the system language, that,
in general, does not require the computation of the verifier for all subsets of sys-
tem modules. After that, the minimum cardinality sets can be obtained simply by
choosing those that have smaller cardinality. In this work, we considered only the
permanent faults.

This work is organized as follows. In Chapter [2] we present some preliminary
concepts of DES modeled as automata. The notions of diagnosability, considering
the classical approach and the synchronous approach are presented in Chapter [3
In addition, we present an example of a system that is synchronously diagnosable
which motivates the possibility of reducing the number of modules. In Chapter [4]
we present the method to compute the subsystems needed for ensuring synchronous
diagnosability, examples to illustrate the implementation of the method, and dis-

cussions of the results. The conclusions are drawn in Chapter [5]

Chapter 2
Discrete Event Systems

In Section [2.1] we introduce the notion of languages of a system and some operations
with languages, and in Section we present the model of a deterministic and non-
deterministic automaton, the language of these automata and some basic operations

using them.

2.1 Languages

To introduce the concept of languages, it is first necessary to present some notations
and definitions. The set formed of all possible events is the “alphabet” denoted as X.
The concatenation of events forms sequences that can be interpreted as “words” of
a language. The words can be called strings or traces as well, and the language of
a system is the set of traces that the system can execute. The length of a sequence,
denoted as ||s||, is the number of events that form it, considering multiple occurrences

of the same event. The empty sequence ¢ is a sequence with zero length.

Definition 2.1 (Language) A language defined over an event set . is a set of

finite length sequences formed with events in 3.

Example 2.1 Let ¥ = {a,b}. Then L = {¢e,b,ab,ba,bab,baba} is a language de-
fined over 3, where the length of sequence baba is ||baba|| = 4.

Since languages are sets, it is important to remark that all set operations can
be applied to languages, such as union, intersection, difference, and complement.
Some other operations can be applied to languages, such as the ones presented in

the sequel.

2.1.1 Language Operations

Concatenation is an important operation related to the construction of traces from

a set of events X, traces and languages. For example, the trace baba is formed by the

4

concatenation of the trace ba with the trace ba. The trace ba itself is a concatenation
of the event b with event a. It is important to remark that the empty trace ¢ is the

identity element of concatenation operation, meaning that ce = e = cec = e.

Definition 2.2 (Concatenation) Let Ly, Ly C X*, then the concatenation LyLy

1S given by:

LiLy = {s=518y: (51 € L1) and (so € Ly)}

A trace s is in Ly Lo if it is formed by the concatenation of s1 € Ly and sy € Ls.

Let us denote by >* the Kleene-closure of the set of events ¥, which consists
of all sequences of finite length that can be formed using elements of ¥ including
the empty sequence €. Thus, a language L defined over X is a subset of X*. The
Kleene-closure operation can also be applied to languages as presented in definition
2.3

Definition 2.3 (Kleene-clousure) Let L C X*. Then the Kleene-closure opera-

tion L* is given by:

L*={s}ULULLULLLU...

Consider now the trace s = tuv, where t,u,v € ¥*, t is the prefix of s, u is the
subtrace of s and v is the suffix of s. Considering that ¢, u,v € ¥*, then the traces
and s are also prefixes, subtraces and sufixes of s. The Prefix-closure of a language

L is defined as follows.

Definition 2.4 (Prefix-closure) Let L C X*.Then the prefir-closure operation L

1S given by:

L={seX*: (3t eXx")|ste L]}

The prefix-closure of a language L is the set of all prefixes of all traces of L,
consequently L C L. A language is said to be prefix-closed if L = L, i.e., if all
prefixes of all traces of language L are also elements of L.

Other important operation applied to traces and languages is the natural pro-

jection, defined as follows:

Definition 2.5 (Projection) Consider ¥, and %, such that ¥ C %;. The natural

projection Pl : ¥ — ¥ is defined recursively as bellow:

o, if o € X,

Pl(o) = .
e, if o € X\Xs,

Pl(so) = PY(s)P!(c) for all s € ¥}, 0 € %,

where \ denotes set difference.

The projection operation P!(s) erases all events ¢ € ¥;\X, from the traces
s € Xj. This operation can be extended to languages by applying the operation to
all traces of the language.

Another important operation applied to traces and languages is the inverse pro-

jection, defined as follows:

Definition 2.6 (Inverse projection) The inverse projection P~ : X% — 2% is
defined as:

171

P

s

(t) ={s €3 : Pl(s) =t} (2.1)

For a given trace ¢, formed with events from X,, P* ' (t) produces a set formed
with all the traces s that can be constructed with ¥; whose projection P!(s) is equal
to t.

Similarly to the projection operation, the inverse projection can be extended to
languages by applying Equation to all traces t that belong to the language.

The language of a DES is used to model the system behavior by representing all
traces that the system is capable of executing. Nonetheless, the representation of the
system behavior using only their languages is not simple to work with. Considering
this, it is necessary to use another formalism to describe DES to make it easier to

analyse and manipulate DES with more complex behavior.

2.2 Automata

An automaton is a device that is capable of representing a language according to

well-defined rules, and is formally defined in the sequel [T}, 2].
Definition 2.7 (Automaton) An automaton, denoted by G, is a five-tuple

G = (Q727f7QO7Qm)7

where @) is the set of states, X is the set of events, f : Q) X X — ¥ is the transition

function, qq is the initial state, and Q,, is the set of marked states.

For the sake of simplicity, unless otherwise stated, the set of marked states @,,
will be omitted from the automata defined in this work.

I'c(q) is the set of all events o € X for which the transition function f(g,0) is
defined.

Graphically, an automaton can be represented by an oriented graph called state
transition diagram, which can reproduce all characteristics defined in GG. The state
transition diagram is formed of vertices and edges, represented by circles and arcs,
respectively. The states of the system are represented by the vertices and the tran-
sition between states are represented by the edges. The events of X associated with
the transitions appear as labels of the edges. The initial state is represented by an
arc with no origin state, and a marked state is represented by two concentric circles.

Example shows an automaton and its state transition diagram.

Example 2.2 Consider an automaton G = (Q,%, f, qo, Qm) with state set Q) =
{0,1,2,3}, event set ¥ = {b,e,h}, transition function defined as f(0,b) =
L f(1,h) =2, f(2,e) = 3,f(3,h) = 1 and active event function given by I'¢(0) =
{b}, Te(1) = {h}, I'c(2) = {e}, I'c(3) = {h}. The initial state qo is 0, and the set of
marked states is Q,, = {1,3}. The state transition diagram representing automaton
G is depicted in Figure [2.1]

h
Sy
~(O—0O0—0—0
Figure 2.1: State transition diagram of Example .

Another important definition is of a path in automaton G, which is a sequence
(q1,01,G2, - -+ Qn-1,0n-1,qn), where o; € ¥ and ¢;11 = f(qi,04),i=1,2,...,n—1. A
path (¢1,01,q2, ., qn_1,0n_1,qn) is said to be cyclic if ¢; = ¢,, and the set of states
of a cyclic path forms a cycle.

In the following we present the definition of generated and marked languages.

Definition 2.8 (Generated and marked languages) The generated language
of an automaton G = (Q, %, f, qo, @m) is defined as:

L(G)={se X" f(q,s) is defined}

The marked language of G is defined as:

Ln(G) = {s € L(G) : [(q0,5) € Qm}

It is important to remark that, in Definition the domain of the transition
function is extended to @ x X*. Additionally, for any G such that Q # 0, € L(G)

The language L£(G) is composed of all traces that can be generated by following
the transitions of the state transition diagram starting at the initial state. Conse-
quently, knowing that a trace is only feasible if all its prefixes are also feasible, the
generated language £(G) is, by definition, prefix-closed. Furthermore, if f is a total
function over its domain, then £(G) = ¥*. In this work, for the sake of simplicity,
the generated language of G, L(G), is also referred to as L.

The language marked by G, L,,(G), is a subset of L composed of all traces s
that reach a marked state starting at the initial state, 7.e., all traces s such that
f(qo0,8) € Q. In this case, knowing that @), is not necessarily equal to Q, L,,(G)
is not necessarily prefix-closed.

The language of an automaton G = (Q, X, f, qo) is said to be live if Tg(q) # 0
for all ¢ € Q.

In the next section we present some operations that can be applied to automata.

2.2.1 Operations on automata

There are several operations that can be applied to automata, and those can be
separated into two groups: unary and composition operations.

Unary operations

Unary operations are applied to a single automata, altering its state transitions dia-
gram, but keeping its event set the same. In the following we present two examples

of unary operations: accessible part and coaccessible part.

Definition 2.9 (Accessible part) Consider automaton G = (Q,%, f,qo, Qm)-
The accessible part of G, denoted as Ac(G), is defined as:

AC(G) = (Qaca 2, fa07 qo, Qac,m);

where Qac = {q € Q : (ELS‘ € 2*)[f(QO7S) = Q]}afac : Qac X X — Qac and Qac,m =
Qm N Quc. The transition function f,. differs from the transition function f due to

the restricted domain of the accessible states QQqe.

In the operation of taking the accessible part of an automaton G, the states which
are not reachable from the initial state ¢y and its related transitions are erased from

G. Note that this operation does not modify the generated language of G.

Definition 2.10 (Coaccessible part) Consider automaton G = (Q, %, f, qo, Qm)-
The coaccessible part of G, denoted as CoAc(G), is defined as:

8

OOAC(G) - (Qcoaca E; fcoaw QO,coam Qm),

where Qcoac = {q € Q : (35 € E*)[f(Q7 S) € Qm]}7fcoac : Qcoac X X — Qcoac and
40,coac = 40 Zf o S Qcoac and q0,coac s not deﬁned, Zf 4o g Qcoac'

In the operation of taking the coaccessible part of GG, all states ¢ such that a
path from ¢ to a marked state does not exist are deleted.

It is important to remark that although the marked language of the coaccessible
part of G is not modified, i.e., £,,(CoAc(G)) = L,,(G), the generated language of
the coaccessible part can be reduced i.e., L(CoAc(G)) C L(G).

Composition operations

Composition operations applied to DES modeled by automata are those that allow
us to combine automata, and the result of the operation is another automaton. In

the sequel we present two important composition operations.

Definition 2.11 (Product composition) Let Gy = (Q1,%1, fi1.90.1, @m1) and
Gy = (Q2, X2, f2, o2, Qma) be two automata. The product composition of G1 and G

results in automaton:

G x Gy = AC(Q1 X (2,21 U Xg, fixe, (QO,laQO,2)>Qm1 X Qm2>7

where

(fi(q1,0), falge,0)), ifo €Tlg (@) NTa,(g2)

undefined, otherwise.

f1x2((QI;Q2>7U) =

The product composition is known as completely synchronous composition due
to the fact that an event can only occurs in the resulting automaton G; x Gy if it
occurs simultaneously in GG; and Gb.

Another important characteristic of the product composition, as consequence
of the complete synchronization, is that the generated language of G; x G is the
intersection of the languages of the automata used in the composition, i.e., L£(G7 X
Gy) = L(G1) N L(Gy), and if ¥ N Xy =0, then L(G; x Gy) =e.

In general, complex systems are formed of several components, which work to-
gether to accomplish their tasks. The usual way to obtain the global model of the
system from the model of its components is by making the parallel composition of
the component models. Differently from the product composition, the parallel com-

position allows each component to maintain its private behavior and synchronize

only the common events of the components. In the following we present the formal

definition of the parallel composition.

Definition 2.12 (Parallel composition) Let Gy = (Q1,%1, f1,q01,Qm1) and
Gy = (Q2, 22, f2, 902, Qma) be two automata. The parallel composition of Gy and

G4 results in automaton:

Gy H Gy = AC(Ql X Q2,21 U 227f1\\2, (QO,laQO,2>7Qm1 X QmZ)a

where

(filq,0), falgz,0)), ifo €Tlg (@) NTay(g2)
(fi(q1,0),), if o € Lay(q1)\2e
(f2(g2,0), q1), if o € Tay(g2)\2n

\ undefined, otherwise.

fi2((q1, @2),0) =

It is important to remark that in the parallel composition an event o € ¥; U
Y5 can only occur in the composed automaton G || Gs if it is enabled in Gy
and G5 simultaneously, and, consequently, is performed in both at the same time.
The private events, on the other hand, can be executed whenever possible in its
automaton, i.e., events in ¥;\Xy can occur in Gy || Go when possible in G; and
events in Y5 \Y; can occur in Gy || G when possible in Gj.

It is important to remark that in the cases where >; = Y5 the parallel composi-
tion is exactly the same as the product composition, namely G, || Go = G x Ga.

The generated language of the parallel composition GGy || G is obtained by using
the natural projections P; = (X;UX,)* — XF | for ¢ = 1,2. The generated language
of the parallel composition is £(G; || Go) = Py (L(G1))N Py (L(Gy)). In the sequel

we present an example of product and parallel composition.

Example 2.3 Let G; = (Q1,%1, f1,q01) and Go = (Q2,%, f2,q02) be two au-
tomata, with event sets 31 = {a,b,c} and ¥y = {a, b}, whose state transition dia-
grams are presented in Figures and respectively. The automaton Gproq is
obtained by making the product composition of Gi and Ga, Gproa = G1 X Ga, and
the result is shown in Figure[2.3d, and the parallel composition between G and Go
results in automaton Gpe = Gy || Ga,, which is presented in Figure .

2.2.2 Automata with partially observed events

In real word systems, the observation of the occurrence of all events is a very difficult

task. The number of sensors and the position where they must be placed in order

10

a ¢ a

oSG W oyt S—0

(a) Gl. (b) GQ-

Figure 2.2: Automata G and G5 of Example .

)\

_’ <c—
(a) Gprod- (b) Gpar-

Figure 2.3: Automata Gp,oq and G, of Example [2.3]

to provide the information for the occurrence of events usually make it impossible
to observe all events of interest. To represent that, we introduce the notion of
unobservable events, which are those not associated with a sensor or fault events,
that do not cause immediate change in sensor readings. One way to represent this
is that the event set ¥ can be partitioned as ¥ = X,UX,,, where U represents the
disjoint union, a union which the sets do not have any element in common.

One way to obtain the observable language of a system, is by applying the
projection P,(L), where P, : ¥* — X and the unobservable reach of state ¢ € Q.

Definition 2.13 (Unobservable reach) The unobservable reach of a state q € @,
denoted by UR(q), is defined as:

UR(q) ={y € Q: (3t € T,)[f(a.1) = yl}
The unobservable reach can also be defined for a set of states B € 29 as:
UR(B) = | J UR(q)
qeB

The unobservable reach of a state ¢, is the set of states composed of all states
reached from g, by transitions and sequence of transitions with unobservable events.
It is possible to build a deterministic automaton from G that generates the observed
language of G, P,(L), using the unobservable reach. This automaton is called the

observer automaton of GG, denoted as Obs(G,%,), defined as follows.

Definition 2.14 (Observer automaton) The observer of an automaton G with

respect to a set of observable events ¥, denoted by Obs(G,%,), is defined as:

ObS(G7 Eo) - (Qob57 an fobm qo,0bs Qm,obs)7

11

where Gops C 29, fobs, Qo,0bs and Qm ops are obtained following the steps of algorithm.

Algorithm 2.1 Observer automaton

Input: G = (Q,%, f,q0,Qm), and the observable event set ¥, where ¥ = ¥,U%,,
Output: Observer automaton Obs(G,%,) = (Qobss Loy fobss 90.0bs> @m,obs)

1: D@ﬁne q0,0bs = UR(qO), Qobs = {QO,obs} and Qobs = Qobs-
2: Qobs = Qobs and Qobs = ().
3: For each B € Qups -

3.1: Tope(B) := (quB FG(q)) ns,
3.2: For each o € T ys(B),

Jos(B,0) :=UR({q € Q: (3y € B)lg = f(y,0)]}).

3.5: Qobs = Qobs U fobs(Ba U)'
4" Qobs = Qobs U C~gobs-
5: Repeat steps 2 to 4 until all accessible part of Obs(G,%,) is constructed

b: Qm,obs = {B S Qobs BN Qm 7& @}

In the sequel, we present an example of the construction of the observer
Obs(G, %,) of G.

Example 2.4 Consider automaton G shown in Figure [2.4d. The set of states is
Q = {0,1,2,3} and the set of events is X = {e, h,01,02}, where ¥, = {e, h} and
Yuo = {01,02}. The observer automaton of G,0bs(G,%,), computed using Algo-
rithm [2.1], is shown in Figure [2.4Y. Let us suppose that trace s = hoieh has been
executed. In this case, the observed trace is P,(s) = heh, where P, : ¥* — ¥*. After
observed the trace heh, it is impossible to be certain in which state the system 1is,
but it 1s possible to estimate it, and in this case the estimated states are 1, 2 and 3.
This can be seen in Figure[2.]l, where each state represent the state estimate of G

after observing a trace s € P,(L).

12

(a) Automaton G. (b) Obs(G, %,).
Figure 2.4: Observer Obs(G, %,) of Example .

2.3 Final Comments

In this chapter, the background of DES is presented. This background includes the
definition of languages and their operations, the automaton formalism to represent
DES and automata with partially observed events. That background is important
to study the diagnosability of a DES. In the next chapter we introduce the concepts
of diagnosability and synchronous diagnosability of DES.

13

Chapter 3

Diagnosability and Synchronous
Diagnosability of Discrete Event
Systems

Systems are subject to fault events that may alter their expected normal behavior.
If the fault event is observable it can be diagnosed trivially, thus, we focus on the
diagnosis of unobservable fault events. In this chapter, some preliminary results
considering the diagnosis of DES are first presented, and then we introduce the
classical definition of diagnosability of DES (SAMPATH et al. [6]) in Section [3.1]
Then, in Section we introduce the definition of synchronous diagnosability.

3.1 Diagnosability of DES

Let G be the automaton model of the system, and let £(G) = L denote the language
generated by G. The set of fault events is denoted by X, where Xy C ¥,, and,
for the sake of simplicity, in this work, we assume that the set of fault events is
composed of only one fault event ¥y = {o}. This simplification is not restrictive
since, for systems with more than one fault type, each type of fault can be considered
separately [29)].

In order to present the definition of language diagnosability of DES, we will

introduce the notion of faulty and fault-free traces as follows.

Definition 3.1 (Faulty and fault-free traces) A trace s € L is a faulty trace if
of is one of the events that form s, otherwise, the trace is said to be a fault-free

trace.

The fault-free language Ly C L denotes the set of all fault-free traces of L, and
the subautomaton of GG that generates Ly is denoted by G. Thus, the set of all
faulty traces is defined as Lr = L\Ly.

14

After the definition of fault-free and faulty traces, prior to the definition of diag-

nosability, it is necessary to state two assumptions on the system under investigation:

A1) The language L generated by G is live. This means that there is a transition
defined at each state ¢ € @), i.e., the system cannot reach a state at which no

event is possible.

A2) There does not exist in G any cycle of unobservable events, i.e.,
dng € N such that Vst € L,s € £ = |[|s]| < ng

where ||s|| is the length of a trace s.

After the definition of fault-free and faulty traces, and assumptions Al and A2,
the definition of diagnosability of the system language can be stated [6].

Definition 3.2 (Language diagnosability) Let L and Ly C L be the live and
prefiz-closed languages generated by G and Gy, respectively. L is said to be diag-
nosable with respect to projection P, : X% — 3% and X¢ if:

(32 € N)(Vs € Lp)(Vst € Lp)(|[t] = 2) = (Py(st) & P,(Ly)).

According to Definition [3.2] L is diagnosable with respect to projection P, and
Y if, and only if, for all faulty traces st with arbitrarily long length after the
occurrence of the fault event, there does not exist a fault-free trace sy € Ly, such
that P,(st) = P,(sn). As a consequence, if L is diagnosable, then it is always
possible to identify the occurrence of a fault event after the occurrence of a bounded
number of events.

In [I)], [7] an automaton, called diagnoser, that can be used to verify the diag-
nosability of L and also for online fault diagnosis is presented. The procedure to

construct the diagnoser automaton Gy is presented in Algorithm

Algorithm 3.1 Diagnoser automaton of the system [6].

Input: G =(Q,%, f,q0), set of fault events Xy.
Output: Automaton Gy.

1: Define Ay == (Qi, Xy, fi,q01) where Q@ = {N,F},q1 = {N}, fi(N,04) = F
and fi(F,os) = F for all oy € 3y.

2: Compute Gy = G||A;.
3: Construct the diagnoser automaton Gg = (Qa, X0, fa, Go.a) = Obs(G), %,).

15

In Step 1 of Algorithm automaton A; is defined as A; = (Qy, 2y, fi,q04)
where Q; = {N, F}, fi(N,o7) = F, fi(F,o7) = F, qo;, = N. The state transition
diagram of A; is presented in Figure In Step 2, automaton G, is computed
from the plant model G, as G; = G||A;. Such that, if a state of G is reached by
a fault-free trace, then it is labeled with N, otherwise, if the state is reached by a
trace that contains oy, it is labeled with /. In Step 3, the diagnoser automaton G4

is obtained by computing the observer of GG; with respect to its observable events,
i'e'a Gd = (Qda an fd7 qO,d) = ObS(Gl, Eo)'

oy
<) of %)
Figure 3.1: Automaton A;.

It is important to notice that the generated language of G is the natural projec-
tion of L, i.e., L(G4) = P,(L). Furthermore, it is important to notice that the states
of G4 are the state estimates of GG; after the observation of a trace. Consequently, if
G, reaches a state where all labels are I, the fault has occurred and is diagnosed.
On the other hand, if G4 reaches a state where all labels are N, the fault has not
occurred.

In the cases that there are states labeled with F' and N in a state estimate
qq € Qg, then ¢4 is called an uncertain state, since after the observation of a trace,
it is uncertain if this trace is a fault-free trace or a faulty one. A cycle formed of
uncertain states is called an uncertain cycle, and in the cases that an uncertain cycle
can be associated with two cycles in (G;, one with states labeled with F' and another
one with states labeled with NV, it is called an indetermined cycle. In order to verify
the diagnosability of L it is necessary to search for indeterminate cycles in Gy4. If
G4 has an indetermined cycle, L is not diagnosable. On the other hand, if G4 does
not have indeterminate cycles then L is diagnosable [11 6, [7].

In the sequel we present an example showing the construction of the diagnoser

automaton G.

Example 3.1 Consider the system G depicted in Figure |3.2d. The state set is
Q ={0,1,2,3,4}, the event set is ¥ = {e, h,01,09,0¢}, where the observable event
set is ¥, = {e, h}, the unobservable event set is ¥, = {01,09,0¢}, and the fault
event set is Xy = {os}. In Figure automaton Gy = G||A; is presented and the
diagnoser automaton, depicted in Figure|3.2d, is obtained by computing the observer

of G; with respect to its observable event set X.,,.

16

DL
B
(&
h

h
h
ON f——| 1N;2N;3N4F |_€EE|
€ (& h

h

e
3N] [oN;aF f——={3n,4¥]
e

(C) Gd.

Figure 3.2: System automaton G (a), label automaton G, (b), and diagnoser au-
tomaton G (c) from Example [3.1]

Considering that the first observed event is e, we are certain that the fault has
not occurred, since state {3N} is reached. However, if the first observed event is
h, automaton Gy reaches an uncertain state {1N;2N;3N;4F'}. After that, if event
h is observed again, we are certain that the fault has occurred since state {4F'} is
reached. It is important to remark that, in this example, there is an uncertain cycle
{{IN,2N,3N,4F},e,{ON,4F} h,{1N,2N,3N,4F}} which can be associated with
two cycles in Gy, where one is reached after the occurrence of o (hos{eh}*) and
the other without the occurrence of oy (h{o1eh}*). Thus, L is not diagnosable with
respect to P, : X% — 7 and Xj.

Even though the diagnoser automaton G4 can be used for the verification of
the diagnosability of L, the set of states of G; may grow exponentially with the
cardinality of the system states. To avoid this problem, in MOREIRA et al. [24 30],
an algorithm for the construction of a verifier automaton whose cardinality of the set
of states grows polynomially with the set of states of the system is presented. It is
important to remark that the verifier does not require assumptions on the liveness of
the language generated by the system or the nonexistence of cycles of unobservable
events, assumptions A; and A,.

In order to use the method proposed in MOREIRA et al. [24], we first need to
present Algorithm [3.2[to obtain the fault-free and faulty automata [24].

Algorithm 3.2 Fault-free and faulty model of the system [2])].

Input: G =(Q,%, f,qo), set of fault events ¥y.
Output: Automata Gy and Gp.

1: Define ¥ = X\Xy.

17

2: Define Ax = (Qn, XN, fn, qo.n) where Qn = {N},qo.n = {N}, fn(N,0) =N
forallo € Y.

3: Construct the fault-free automaton Gy = G X Ay = (Qn, 2, fN, QoN)-
4: Redefine the event set of Gy as X, i.e., Gy = (Qn, XN, N, Go.n)-

5: Compute automaton G, whose marked language corresponds to the fault be-

havior of the system, as follows:
5.1: Deﬁne Al = (QlazfabeO,l) where Ql = {Na F}7q0,l = {N}afl(N? Uf) =
F and fi(F,o7) = F for all oy € 3.

5.2: Compute G; = G||A; and mark all the states of G, whose second coordi-
nate is equal to F.

5.3: Compute the faulty automaton Gy = CoAc(G)).

With Algorithm [3.2] it is possible to compute automata Gy and Gp, and with
those automata, it is possible to use the method proposed in MOREIRA et al. [24].
This method is used to compute a verifier, and the verifier is used to verify if the

language is diagnosable with respect to P, and Xy, by following Algorithm [3.3]

Algorithm 3.3 Diagnosability verification [27)].

Input: G = (Q,%, f,q), set of fault events Xy, and ¥ = E,U%,,.
Output: Diagnosability decision.

1: Compute Gy and G according to Algorithm [3.3
2: Define function R =Yy — Xg as:

o, if o e,

R(o) = :
OR, ZfO' & EUO\Zf

Construct automaton GN = (QN,ER,fN,qO,N), with fN(qN,R(g)) —
fn(gn, o) for allo € X

3: Compute the verifier automaton Gy = Gy||Gp = (Qv,Zr U, fv, qQo.v)-

4: Verify the existence of a cyclic path cl = (q{s/-,a(;,q?,*l, e ,q?/,av,q{s,), where

v >0 >0, i Gy satisfying the following conditions:
35 €{6,0+1,...,7} s.t. for some qi,, (¢ = F) A (0; € X).

18

If the answer is yes, then L is not diagnosable with respect to P, and Xy.

Otherwise, L is diagnosable.

A state of Gy is given by qv = (qn,qr), where gy and ¢p are the states of
Gy and Gp, respectively, and gp = (¢, q1), where g and ¢, are states of G and A,

respectively.

Example 3.2 Consider, again, the system G of Example depicted in Figure
[5.3d. In Figure automaton Gy is presented and automaton Gg is shown in
Figure . In Figure automaton Gy is presented and the verifier automaton,
depicted in Figure is obtained by computing the parallel composition of G with
Gp, ie., Gy =Gy || Gp.

e h

ot g

01

Figure 3.3: System automaton G (a), automaton Gy (b), and automaton Gg (c)

from Example [3.2]

Figure 3.4: Automaton Gy from Example .

Considering Algorithm it 15 possible to notice that there are two cyclic
paths with events that were not renamed, violating the diagnosability. The first
one is {(ON,4F), e, (3N,4F), e, (ON,4F)}; and the second one is {(1N,4F), o1g,
(2N,4F), e, (ON,4F), h, (IN,4F)}. Thus, the language is not diagnosable.

Example shows the implementation of the verifier presented in MOREIRA

et al. [24]. This verifier advantage is to present a diagnosability decision of the

19

h

0N;0N|—hﬁ1N;1N|ﬂ411{1;4F A oNarFfonar]
elel \e o1 \Q‘IR o rel le
[3n:3N[| [1nv;2n] |2N;1N|;1;|3N;1N|Tf.|3N;4F
01 g1 1R |01

3N2N| \\ [1N;3N] o ON;2N|

O1R
O1R l -

2N;3N

01

Figure 3.5: Automaton Gy from Example .

language in polynomial time in the number of states and events of the system.
However, in the cases where the system is complex, composed of several subsystems,
the plant model may grow exponentially with the number of subsystems, making
the implementation cost of the monolithic diagnoser based on G very high. In these
cases, other schemes have been proposed in the literature, such as the synchronous

diagnosis. In the following we present this architecture.

3.2 Centralized Synchronous diagnosability of DES

In [20], the definition of centralized synchronous diagnosability of a DES is pre-
sented. To do so, it is assumed that the system is composed of r modules
Gr = (Qr, Xk, fr, qor), k= 1,...,7, i.e., the composed plant is given by G = ||;_, Gy.
It is also assumed that the event set of each module G can be partitioned as
Y = EkﬁoUZk’uo, where Y, and Xj,, denote the sets of observable and unob-
servable events of (i, respectively. In this scheme, if an event is observable for
one module G;, and is defined for another module Gj, then it is observable for
G;. In addition, each component has its fault-free behavior modeled by automaton
Gn, = (Qn, 2k \ 2f, Ny, Qo). and it is important to remark that in this approach,
assumptions A; and A, are not required.

Figure presents the synchronous diagnosis architecture. In this strategy,
a state observer Dy is constructed for each module, performing the online state
estimation of each fault-free model Gy, . If an event o € Y, generated by the plant
is observed by Dy, and o is feasible in at least one state of the current state estimate
of G,, then the state estimate is updated. Otherwise, if o is not feasible for all
states of the current state estimate of G, , then D; indicates that the fault has

occurred. This leads to the following definition of synchronous diagnosability [20].

20

Figure 3.6: Synchronous diagnosis architecture.

Definition 3.3 (Synchronous diagnosability) Let Gy = ||;,_,Gn,, and let Ly,
denotes the language generated by Gy, ., for k =1,...,r. Let P, : ¥* — X}, with
Yo = Ui_12ko. Then, L is synchronously diagnosable with respect to P,, Ly,
kE=1,...,r, and Xy if

(3z e N)(Vs € Lp)(Vst € Lg,||t|| > z) = P,(st) € Lu,,

where Ly, = M_1 P2, (Pro(Lyy)), such that P¢,: S5 — S, and Py, ©* — Xf

are projections. 0

Remark 3.1 Since P,(Ly) C ﬂ’];:lP,?:(Pk,O(LNk)) = Ly, [28], then a language

can be diagnosable but not synchronously diagnosable. ([l

According to Definition [3.3] the system language L is synchronously diagnosable
if any occurrence of the fault event oy can be detected after a number z € N of
event occurrences after the fault, by at least one local diagnoser Dj constructed
based on module Gy,. In order to verify the the centralized synchronous diagnos-
ability of a language, two algorithms were proposed in CABRAL and MOREIRA
[20]. Algorithm [3.4]is one approach to compute the fault-free behavior models G,
from the system modules Gj; and Algorithm is used to verify the synchronous

diagnosability of the language of a composed system.

Algorithm 3.4 Fault-free behavior models of the system components [20)].

[nput Gk = (Qkuzlmfk’qo,k) fOT k= 17 <o, T and G = (Q727f7 qO)
Output: GNk. = (QNk’ZNmka?qQNk) fO?“ k= 1, RN

1: Compute G according to Algorithm [24)].

2: For all transitions fx(qn,0) = ¢y in Gy, flag the transitions fiy(qr, o) = g,

in G for k =1,...,r, where q; and g, are the k-th elements of qn and qly,

respectively.

21

3: Obtain G). by erasing from Gy, all transitions that are not flagged.
4: Compute automata G, = Ac(G},) = (Qnys 2Ny, [N Qon,) fork=1,...,r.

5: Redefine the event set X, = Xp\Xy fork=1,... 7.

In the sequel, we present an example to illustrate that, in some cases, even
in modules where the fault event is not modeled, the fault-free behavior may be

restricted, due to the interactions with other modules.

Example 3.3 Consider a system G shown in Figure with event set ¥ =
{a,b,c,d, 01,0}, composed of two subsystems Gi and Gs, shown respectively in
Figures [3.8d and [3.8), Automaton G is obtained by the parallel composition of
G1 and Go, ie., G = Gi||Gy. The event sets of G; and Gy are, respectively,
¥ = {a,b,c,01,0¢} and ¥y = {b,d, 01}, where £, = {a,b,c}, 1.4 = {01,0¢},
Yo, ={b,d}, and g, = {01}. Following step 1 of Algom'thm Gy, showed in
Figure s obtained, which is the automaton that models the fault-free behavior
of G. Notice that according to Gy the transition (0,01,2) of automaton Gy is only

allowed after the occurrence of oy, and, consequently, even when the fault event is
not modeled in Gy, the transition (0,01,2) does not belong to the fault-free behavior
of Go. Automata Gy, and Gy,, obtained by following step 4 of Algorithm are
presented in Figure and [3.108, respectively.

Figure 3.7: Automaton G of Example .

~(O()
OO,
a O'1,b

c d b
0
b
(a) Automaton Gj. (b) Automaton Gj.

Figure 3.8: Automata G; and G5 of Example .

22

~Gonpeforpe o
d d

o

Figure 3.9: Automaton Gy of Example .
—-
-©
;
b E)

(a) Automaton Gy, . (b) Automaton Gy,.

f?

Figure 3.10: Automata that represents the fault-free behavior for each local diag-
noser of Example [3.3]

After computing the fault-free behavior of each module, we can present the

algorithm for the verification of the synchronous diagnosability of the language of a
system proposed by CABRAL and MOREIRA [20].

Algorithm 3.5 Synchronous Diagnosability Verification [20)].

Input: System modules Gy, fork=1,... r

Output: Synchronous diagnosability decision.

1:

2:

Compute automaton G g according to Algorithm[3.3.
Compute automaton Gy, by following the steps of Algorithm [3.4)
Compute automaton G& = (QF, X, f& qo):

3.1: Define function R, = XN, — Zﬁk as:

o, ZfO' € 2]670,
Rk<0') =) .
ORy, U0 € Xkuo-
3.2: Construct automata Gﬁk = (QNk,Eﬁk,fﬁk,qo,Nk), kE = 1,....r with

fll\?k (quv Rk(a)) = ka: (qu’ U) quk € QNk and Vo € ENIC'
8.8: Compute G = [[;_1G}.

- Compute the verifier automaton G{P = (Qv,Sv, fv,q.v) = Gr|GE. Notice

that a state of G{P is given by qv = (qr, q%), where qr and ¢% are states of
Gr and G¥, respectively, and qr = (¢, q), where ¢ € Q and q; € {N, F}.

23

b: Verify the existence of a cyclic path cl = (q{s/,ag,qf/“, e ,q&,av,qé/), where

v >8>0, in GYP such that:

(35 € {6,0 +1,...,7} such that for some ¢,
(g =F)A(0; €X)

If the answer is yes, then L is not synchronously diagnosable with respect to
LNk,P,g’O DX — EZ’O,P;W = Z;O, fork=1,...,r,P,: ¥* = X! and Xy.

Otherwise, L is synchronously diagnosable.

In the following, to show the augmented fault-free language generated in the

process, we present an example of the verification of synchronous diagnosis using

Algorithm

Example 3.4 Consider a system G, composed of two components Gi and G,

presented, respectively, in Figures |3.11dl and |3.110. The automaton that mod-
els the global system G = G1||Gs is shown in Figure the set of events is
Y = {a,b,c,d e 0,0} where ¥, = {a,b,c,d, e}, X, = {oy,0¢}, By = {0y},
Yy =A{a,b,d,oy,0¢}, ¥y = {b,c.d,e,0,}, X1, = {a,b,d} and ¥o, = {b,c,d,e}.
Following Algorithm [3.5 in Step 1 automaton G is constructed, depicted in Figure
[3.13, Continuing to Step 2, automata Gy, and Gy, are computed and presented
wm Figures [3.14d and |3.140], respectively. In the following, in Step 3, by applying
function Ry(0), automata GE and GE are obtained and shown in Figure .
Automaton GE is constructed as the parallel composition of Gﬁl and Gfb, i.e.,
GR = GR ||GR,, presented in Figure . The process to obtain GE generates an

augmented generated language, and in order to represent that, the states that repre-

sents the growth of faulty-free language, which means, the states that does not exist

in G are indicated in gray. Finally, in Step 4 we obtain the synchronous verifier
automaton G, shown in Figure .

© e
~(7¥a o) @) _,(@L
N5 L

(a) Automaton Gj. (b) Automaton Ga.

Figure 3.11: Automata G; and G5 of Example

24

Figure 3.13: Automaton G of Example .

< %y

(a) Automaton Gy, . (b) Automaton Gy,.

Figure 3.14: Automata Gy, and Gy,, representing the fault-free languages of each
module of Example .

b a

o *@

OuR1
d Oy R2 (: ::)

(a) Automaton Gﬁh. (b) Automaton Gfb.

Figure 3.15: Automata GR and GY , representing the fault-free languages of each
module, with the unobserved events renamed in order to make them particular

events of Example [3.4]

25

OG0

Figure 3.16: Automaton G, representing the augmented fault-free language of
of the system considering the renamed unobserved events as particular events of

Example

OuR1
¢ e
O, O Loy or)
—|00N:0:0F—=[20N:2:0—-|40F:2:0] [20N:3:0}—=|40F:3:0]|
/
b c OuR2 OuR1
[11N:1:1F=—12N:1:2}—{12F:1:3]
a a a
L OuwR2_ ¥
41F21|<—-|21N21|——>|22N22|——>|22N23
OuR1 OuR1 OuR1 L OuR1 o
o A
or| 0 iEsa~piNsiFrponaa]
$ af, Tura] Tu
——12F:2:2 —={42F:3:2] [|22N:3:3 [33N:2:2]
- OuR1 UuRQﬁ ou Ou |OuRr1
\

A A
[42F:2:3 F—42F:3:3] [33N:3:3]*+—33N:3;2]

OuR1

9f

Figure 3.17: Automaton G377, representing the synchronous diagnosis verifier for
the system of Example [3.4]

In this example, it is possible to notice that there exists a cyclic path in
GP, ({4,0,F;2,0},¢e,{4,0, F;2,0}) labeled with F such that at least one transition
15 labeled with a non-renamed event, event e, thus, we conclude that L is not syn-

Py, St — %3

2,07

chronously diagnosable with respect to Ly,, Ln,, P, : 35 — X,
Py X" =31, Py X5 =35, Pt X% — X cmd X

2,07

In example [3.4] we presented the implementation of Algorithms[3.4]and that

results in the diagnosability decision for the system. In the example, the system

26

is not synchronously diagnosable with respect to Ln,, Ln,, P, : X5 — X7, B3, :
¥y = 25, Plo i X = X1, Pt X — X5, Pyt X — X7 and 3y In the following,
we present a practical example, presented in [20], composed of two modules that is
synchronously diagnosable using only the second module.

The system is the cube assembly mechatronic system of the manufecturer Chris-
tiani [31], installed at the Laboratory of Control and Automation of the Federal
University of Rio de Janeiro. Figure presents the schematic of the system, and
this mechatronic system is composed of two modules: (i) a conveyor belt with a
sensor testing unit that can be fed with plastic or metallic cube halves; and (ii) a
handling unit composed of a robotic arm, which has a pneumatic mechanism that
activates a suction cup in order to pick up, transport and deliver pieces to a press

used to assemble a cube.

amd

M 1 YX@“&\.\O%

Sl—§i % 5 Sc\
M b

\ U ; Conveyor belt \ u ; *

Pneumatic press

!

S

Figure 3.18: Schematic of the mechatronic system installed in Laboratory of Control
and Automation of the Federal University of Rio de Janeiro.

The automated system was designed to deliver two cube halves to the press, and
then discard this two halves without assembling them. It starts when the conveyor
belt is fed with a cube half that is delivered to the handling unit. Then, the robotic
arm allocates the cube half in the press and wait for the second half. In the sequel, a
plastic half is delivered to the conveyor belt and is transported to the handling unit.
After that, the second cube half is delivered to the press by the robotic arm, and
then, both halves are discarded by the robotic arm, once at a time. The automata
that models the conveyor belt and the handling unit are, respectively G, presented
in Figure [3.19a] and G, presented in [3.19b] In order to understand the automaton
models, the states and events are described, respectively, in Tables and

27

lon Ur, lon

Figure 3.19: System components from Example .

The robotic arm model uses a high speed counter and a inductive sensor. The
high speed counter is triggered when the arm starts to turn, and when the high speed
counter reaches a specific value, representing an angular position, the robotic arm
stops. As a routine to avoid positioning errors, after delivering a piece to the press
or discarding a piece, the robotic arm is rotated to a position where an inductive
sensor is activated and the high speed counter is reseted. This action is modeled by
event s;, meaning that when s; occurs, the process of removing or delivering a cube
half to the press is completed, and then the robotic arm is ready to remove a piece
from the conveyor belt or from the press.

The malfunctioning of the suction cup of the robotic arm is modeled as the fault
event oy. If the fault event occurs, the robotic arm will not be able to pick up the
cube halves. In that case, the pieces will not be removed from the conveyor belt and
event s, does not happen. On the other hand, the robotic arm still tries to pick up
the pieces, and the unsuccessful attempt is modeled as u,..

As there are no sensors in the robotic arm or in the press in order to indicate the
presence of the pieces, the behavior of the (G5 is the same, represented by the parallel
transitions between Hy and Hs, as much as between the states Hg and H7, labeled
with s, and u,. Regarding the automaton that models the conveyor belt, G, the
fault event changes the behavior of the system, once the conveyor belt cannot be
switched on if the cube is not removed from it by the robotic arm.

In order to verify the synchronous diagnosability of the system, it is necessary to
compute the fault free behavior of each component. Notice that for the automaton
that models the fault-free behavior of the handling unit, Gy,, depicted in Figure
the only difference is that event u, is removed. For the automaton that
models the fault-free behavior of the conveyor belt, Gy, , presented in Figure [3.20al,

28

Table 3.1: States of G.

State Meaning
Co Conveyor belt switched off and no cube halves on it
Ch Conveyor belt switched off and one cube halves on it
Cy Conveyor belt switched on and one cube halves on it
Cs Conveyor belt switched on and no cube halves at its end
Cy Conveyor belt switched off and no cube halves at its end
Cs Conveyor belt switched on and no cube halves after fault
Cs Conveyor belt switched off and no cube halves after fault
Hy Robotic arm ready to remove the first cube half
Hy Waiting the command to remove the first cube half
Hy Removing the first cube half from the conveyor belt
Hs Delivering the first cube half to the press
Hy Robotic arm ready to remove the second cube half
H5 Waiting the command to remove the first cube half
Hg Removing the second cube half from the conveyor belt
H; Delivering the second cube half to the press

Hg Robotic arm discarding the first cube half from the press
Hy Robotic arm discarding the second cube half from the press

Table 3.2: Events of GG.

Event Meaning
ap A cube half arrives in the conveyor belt
Son The conveyor belt is switched on
l A cube half reaches the end of the conveyor belt
Soff The conveyor belt is switched off
Sy A cube half is successfully removed from the conveyor belt
lon Cube half at the end of the conveyor belt
Uy Unsuccessful attempt to remove a piece from the conveyor belt
oy The robotic suction cup fails
c Command to remove a piece from the conveyor belt
S; Inductive sensor is activated

the events oy and u, are removed, and the accessible part is a version of a fault-free
behavior of the system. In the sequel we present Example 3.5, showing that it is
possible for a system to be synchronously diagnosable using a subset of modules, in
this case, only the second module. Starting now, in order to let the figures more
comprehensible and avoid the excess of information, for the verifiers automata, we
will omit the label “N” in the components of Gl]\%fw keeping the labels “N” and “F”

for the components of G in the states.

Example 3.5 Consider the mechatronic system G described previously. The
set of events of Gh and Gy are X1 = {ap, Son, s Soffs Srylons Ur, 05} and 3oy =
{¢,si, 8, lon, Uy}, respectively, where the set of observable events are ¥;, =
{ap, Sons L, Soff, Srylon} and 3o, = {c, Si, v, lon}, and the set of unobservable events

are X 4o = {tr, 05} and Yoo = {u,}. The objective is to show that the language is

29

Figure 3.20: Fault-free modules automata from Example .

synchronously diagnosable with a subset of modules, composed only of one module.

The automata that models the fault-free languages and faulty language, G, are
presented in Figures and respectively. In this case, the automata that
models the fault-free languages of each module with renamed events are the same as
the automata that models the fault-free languages. The verifiers Gévl} and G;{f} are
computed as the parallel composition of the renamed fault-free automaton and the
automaton that models the faulty behavior, i.e., G;{/l} = Gr || Gy, NE and G;{f} =
Gr || Gn,NE, presented in |3231 and |324|, respectively. Notice that in verifier Gg}

there does not exist any cyclic path labeled with F' in which at least one transition

18 performed by a non-renamed event. Thus, we conclude that L is synchronously
diagnosable with respect to Ly,, Py, : X5 — 35 ,, Py : X* — X5, and 3.

3.3 Final comments

In this chapter, two notions of fault diagnosability of DES modeled by automata
are introduced, starting with the classical definition of diagnosability presented in
the seminal work of SAMPATH et al. [6]. Due to the difficulty associated with the
growth of the diagnoser with the number of modules and states, a new architecture
was proposed by [20], called centralized synchronous diagnosis, an architecture that
relies on the modularity of the system.

Even with the synchronous diagnosis approach, we notice that in cases with
great number of system components, it is possible that the diagnosability is assured
without computing a verifier with all system components. In the next chapter, an
approach to perform a synchronous diagnosis avoiding using all system components

is proposed.

30

Figure 3.21: Automaton G from Example .

5””

. Si
7,

Figure 3.22: Automaton G from Example .

—

N, CoF+{C1Ho N, CiF+{Co Ho N, C;I’—-|(13H0N, Csp={Cuio N, O

lon

_’l("ﬂHﬂ

lon

Sof.
{CsH N, CFC.H N, C

& Ic
Sof f —
v . = ‘el D
5 Hy N, Co—{C1 H> N, Cf —
[Sr
Si — Si
CoH4N, Cy) CoH3 N, Co| si Si i
ap a,
si
[CL 1N, Cile—C1 13N, C:
Son Son
si
[Co HAN, Col—{CoH3 N, O
P T R ¥ !
- y ; of
[CoHa P, G WO s F, O] [CoHaN, Cae—CsHsN.C| [CoHolV, CF=[Ci Ho N, CiE[Co Ho N, 02|——|l C5 Ho N, C3={Ci Ho N, Ci}—r[Cs Ho F. Cs
T
Soff sofs f YSorf ol si ‘ si Lo . Si i - Si
|C5H,1F.G,1|-§|C(,H4;F,C4| [CaltuN, Cife—CisN. Cl] [CoHsN, Cob—{C1Hs N, C1F{Co Hs N, CoF—ACs Hs N, Csp=+{CuHs N, Cp-{Cs Hs F. Ci |
o . lon s 5 i s sorSi s Soff
o si) o
|CsHs N, Cap=CuHs N, Ol [CoHz N, CoF*{C1 H N, CIF*{Co Ho N, O l(thN,Cg C Ho N, CF4{CoH-F. Ci]
oy c < s Soff
lon ~
S ARA YA CJ—/—]Q Hg N, Cy] of
of
¢
lon s “
Soff, ol s
——for - e Bl e -
[CsHs F.Cs 05 He F.C1| [C5HoF. Cs J+=Cs Hs F, Cs —{C5 H7 F, Cs
U °
of c

[Cs s F, 4]

Si

| A |

S;

= Gr||GE,.

l

\

.

af o7
3

| N ST

[; of
| CarN, He—tN 1) PoHoN, Ho e Ho N, B0 Ho N, HoF el Ho N i Ho N, Ho o Ho P, 1o
T

Si

Si Si 8,

[“]

B

}SUH Sos /‘1
k}ﬁl‘hF. Hy

| 2|

Colts N H PP HoN, B 1o N, 1

U3

Hy N, H—{: Hs N, Ho| s Hs F, Hy

\

Si Si s

i Si Si

)

O H N, H-{CoHoFH |

)
s H:F H;| / [F5HsN. Hef s Ho N, 1]
!
C ‘ff
af

oy

i

| 2 ST |

H-F, Hr

Uy

1

9f

ar

| T S ST o
I

Lon

Soff l

Soff

I

HyF, Ho

s HyF H = Cs HLF, Hy 05

Figure 3.24: Verifier of module 2 from Example

32

Gl = Grl|GE..

Chapter 4

Optimal Selection of Subsystems for

Ensuring Synchronous Diagnosability

The main advantage of the synchronous diagnosis approach is that the size of the
diagnoser grows polynomially with the number of system modules, which reduces
the memory space required to store the diagnoser in comparison with traditional
techniques. This reduction can be, in some cases, even greater since, depending
on the fault and on the system model, the modules needed for diagnosis can be a
subset of the complete set of system modules. In Section [4.1 we present a method
to compute all minimal subsets that ensure the synchronous diagnosability of the

system language. Then, in Section we present the results and discussion.

4.1 Method for the Computation of all Minimal
Subsets that Ensure Synchronous Diagnostica-
bility

Let I, = {1,2,...,r} denote the set of indices of all system components. Thus,
our objective is to find all minimal subsets B € 2%, such that L is synchronously
diagnosable with respect to P,, Ly, , for k € B, and ¥y, i.e., we want to find the

minimal sets B such that

(32 € N)(Vs € Lp)(Vst € Lp, ||t]| > 2) = (P,(st) ¢ Ly,),

where LNa = ﬂkeBPg;l(Pk’O(LNk)). It is important to remark, as it can be straight-
forwardly deduced from Definition [3.3] that if the system language L is syn-
chronously diagnosable with respect to B, then it is synchronously diagnosable with
respect to any subset B’ € 27 such that B C B’, i.e., the monotonicity property is
valid, as stated in Theorem [4.1]

33

Theorem 4.1 If the system language L is synchronously diagnosable with respect
to B, then, the monotonicity property is valid, and the system language is syn-

chronously diagnosable with respect to any subset B' € 2 such that B C B’

Proof: Considering the synchronous diagnosability with respect to a subset of mod-
ules B, if a language is synchronously diagnosable with respect to F,, Ly, , for k € B,

and Xy, it means that

(3z € N)(Vs € Lp)(Vst € Lg, ||t]| > 2) = (P,(st) ¢ Ly,),

where LNa = mkeBP]?;l(Pk,o(LNk))-
Suppose now that 3s € Ly and st € Lp such that (P,(st) € P7,'(Pj.(Ly;)). In

this case,

(3z e N)(Vs € Lp)(Vst € Lp,||t] > z) =
(Po(st) & NienPyy" (Pro(Li,)) NP}, (Pio(Ly,))-

Thus, the language of the system is synchronously diagnosable with respect to
any B’ such that B C B'.
OJ
Thus, if we obtain all minimal subsets B € I, that ensure synchronous diag-
nosability, then we are able to provide all possible subsets of modules that ensure
synchronous diagnosability. In this work, those subsets are called Synchronous Di-
agnosis Modular bases as the Definition [4.1]

Definition 4.1 The subset of indices B € 2" such that the associated modules
ensure the synchronous diagnosability of the system language with respect to P,,
Ly, fork € B, and Xy, is called a Synchronous Diagnosis Modular Basis (SDMB).

O

In Example [3.5] we presented a system in which it is possible to verify the
synchronous diagnosability of a system with a subset of modules, in that case, with
one module. In a more complex system, it is possible to reach a subset B that forms
an SDMB starting with one module and adding modules to it.

A method to verify if B forms an SDMB can be obtained by constructing the
verifier restricted to the modules associated with B, G{} = Grl|/(|lxesGY,), and then
searching for the existence of a cyclic path in GE that violates the synchronous
diagnosability condition. Thus, if an exhaustive search method is used to find all
minimal SDMB, then it is necessary to compute 2" — 1 verifiers GE, for each non-
empty subset S € 2/, and therefore the minimum SDMB will be those with smallest

cardinality. In the exhaustive search method, to compute a new verifier, adding a

34

module to a subset, it is necessary to compute the parallel composition of the verifier
of that subset with the verifier of the module to be added, 7.e., Gg/ = G@HG{}, where
J is the module to be added.

In order to mitigate the exponential complexity problem, we present a test to
avoid the computation of a verifier. The test consists in selecting a path that violates
the synchronous diagnosability in the verifier of subset B, compute an automaton
whose generated language is the prefix-closure of the sequence associated with the
selected path Ggp. Instead of computing the parallel composition of the verifier of
subset B with the module to be added, the test is to compute the parallel com-
position of the path automaton Ggp with the verifier of the module to be added
G,. If exists a sequence that violates the synchronous diagnosability in the parallel
composition G{?p”G{}, the verifier composed by the subset B U j does not need to
be computed because the language is not synchronously diagnosable with respect to
P,,Ly,, for k € BUj, and Xy, as stated in Theorem [4.2]

Theorem 4.2 If there exists a sequence s € L that violates the synchronous diag-
nosability with respect to P,, Ly, , for Vk € B, and X, and s violates the synchronous
diagnosability with respect to P,, Ln;, and Xy then s violates the synchronous diag-
nosability with respect to P,, Ly, , for k € BU{j}, where j ¢ B, and ¥y.

Proof: The proof can be straightforwardly deduced from Definition [3.3, The lan-
guage is not synchronously diagnosable with respect to F,, Ly, , for Yk € B, and
Yy, and the language is not synchronously diagnosable with respect to F,, Ly;,
where j ¢ B, and Xy, the language is not synchronously diagnosable with respect
to P,, Ly,, for k € BU{j}, and X;. O
This avoids computational costs due to the fact that it is possible to avoid the
computation of parallel composition of automata with elevated number of states and
transitions, computing only the parallel composition of a reduced automaton and
the verifier of the module to be added. In the following, we present an example to

illustrate that situation.

Example 4.1 Consider a system G, composed of four modules, G1, Go, G3 and
G4 showed in Figure where their event sets are X1 = {a,c,e,g9,01},%0 =
{e,h,01,09,0},35 = {b,d,h,0¢}, X4 = {e, h,0¢}, with observable event set ¥, =
{a,b,c,d, e, h,g}, unobservable event set ¥,, = {o1,09,07}, and fault event set
Yy = {os}. In order to compute the verifiers of each module, it is necessary to
compute automaton Gp, which is presented in Figure[].2

In Figure[{.5 automata Gn,,Gn,, G, and Gy,, that represent the fault-free be-
havior of each subsystem are depicted. The next step consists in computing automata
Gf,k, the automata of the fault-free behavior of the system modules after applying
the renaming function, i.e., Gﬁl, Gﬁ, Gﬁy and Gﬁ, presented in Figure .

35

h

(C) Gg.

Figure 4.1: Automata that models the system components G, G5, G3 and G4 from

Example

Figure 4.2: Automaton that models the faulty language of the system Gp from

Example

72 T, e o
@ 01 @
(b) GNz

(C) GNB- (d) GN4'

Figure 4.3: Automata that models the fault-free modules language of the modules
of the system from Example [£.1]

Computing the verifier of module 3 it is possible to notice in Figure [{.5 that
the path {(0000N;0), h, (0111N;1), of, (0422F;1), e, (3423F;1), e, (0423F;1), e,

(3423F; 1)} is associated with a sequence that violates synchronous diagnosability

36

(c) GR.. (d) GE..

Figure 4.4: Automata that represents the fault-free modules with unobservable
events renamed from Example

with respect to Ly, Pg, : X5 — 33, Pp : X* — X7, and Xy.

=

b

QOOOON:O)Lq\womv;o | [1o010n8;1 J**—{ ooton;1 § L 1_'32111\/;1 |
h

9

h
h

of h

[012r 1 F{1a2rn | [omns =] uming 1 P 221181 —— 4211N;1 |
|

os

n h

€
h h

|3423€;1 }‘—>| 0123F: 1 f—s] 1423F;1 | q\0424F;1 MM%F;I

e

Figure 4.5: Verifier of module 3 from Example highlighting a sequence that
violates the synchronous diagnosability.

In Figure [{.4 it is possible to notice that the sequence that violates the syn-
chronous diagnosability in module 3 exists in the verifier computed for module
4, consequently, the language is not synchronously diagnosable with respect to
Ly, P, 35— X5, P X = X5, and Y.

Finally, as stated in Theoreml[].Z, it is possible to notice the sequence that violates
the syncrhonous diagnosability in modules 3 and 4 in the verifier computed with the
subset of modules {3,4}. Thus, the language is not synchronously diagnosable with
respect to Ly, P, 0 X5 — X3, Ln,, Py, 0 X5 — X5, P X% — 37, and Y.

Example [4.1] illustrates the cases where the computation of the verifier can be

37

b b
g[\oomw:o |Lq\1000N;0 | [1o10n;0]+ ooton;0] < [3211N;1
h 9
h
h
af h
! ~1./>]
q\0422F:1 — 1420751 | [01N — 111] 221181 =] 4211N;1
oy |
€
d d
d
C|\342‘3F;0 2 q\omaF;o }a—q\1423F;0 |
e

t e |

Figure 4.6: Verifier of module 4 from Example highlighting a sequence that
violates the synchronous diagnosability.

b b
gooow:(m liq\loom\f;oo] [1010n; 10]+— 0010N; 10} < { 3211v: 11
h 9
h
h
of h

1 ~ 175 U
[0s22r 11 [1a22F 11] [0 11— 11y, 11] 2201, 11 ———[4211, 11]
g
|

I

| 5137510 F—> 0423710 |—{ 1423F; 10 |
A
€

Figure 4.7: Verifier of modules {3,4} from Example highlighting a sequence
that violates the synchronous diagnosability.

avoided. On the other hand, in cases where the sequence that violates the syn-
chronous diagnosability G{?p is not possible in the parallel composition with the
verifier to be added ,G%ﬁp |G4,, it is necessary to compute the new verifier. The new
verifier is computed as the parallel composition GZ||GY,. The necessity of computing
this verifier lies in the fact that at least one sequence that violates the synchronous
diagnosability in the subset B is eliminated adding the module j. Thus, with the
new verifier is possible to evaluate if the other sequences are eliminated and conse-
quently if the language is synchronously diagnosable with respect to Ly, k € BUj,
P, and Xy.

In the following, in Example [4.2] we present the two cases, one that the se-

quence that violates the synchronous diagnosability is eliminated and the language

38

is synchronously diagnosable with respect to the new subset. And another that
the sequence is eliminated but the language is not synchronously diagnosable with

respect to the new subset.

Example 4.2 Consider the same system G of Example G1,Gy,Gs and Gy
are shown in Figure and automaton G is presented in Figure[{.Z Automata
Gn,,Gn,,Gn, and Gy,, that represent the fault-free behavior of each subsystem are
depicted in Figure and automata G¥ , GR,, GR., and G§_ are presented in
Figure[{.4)

For this example, computing the verifier of module 3 it is possible to notice in
Figure another path {(0000N;0), h, (0111N;1), oy, (0422F;1), h, (0424F;1),
h, (0424F;1)} that is associated with a sequence that violates synchronous diagnos-
ability with respect to Lyg, Py, : 355 — 33 ,, Po 1 X* — X7, and Xy.

=l

b
goooomo)Lq‘momv;o | [1oton3;1 [#*— oo10n;1 | < 211N;1
h

h

E

of
— ~ 1.0]
012271 [1a22F51 | [oinin; 1 = 1iin; 1 2] 2211851]‘——@
o |
h h

e

h h

[3423F;1 =] 0423F;1] 1423F;1 | Q0424F;1 MM?KLFJ |

e

Figure 4.8: Verifier of module 3 from Example highlighting a sequence that
violates the synchronous diagnosability.

In Figure [{.9 it is possible to notice that the sequence that violates the syn-
chronous diagnosability in module 3 does not exist in the verifier computed for mod-
ule 2, consequently, it is necessary to compute the verifier considering the subset
{2,3}, presented in Figure[{.10

In Figure 1t 1s possible to notice that there is no sequence that violates
the synchronous diagnosability in the verifier computed for subset {2,3}, conse-
quently, the language is synchronously diagnosable with respect to Ly,, Py, : ¥ —
Y5 o g, PYy 1 X — X5, P X% — X5, and ¥y

In Figure [{.4 it is possible to notice that the sequence that violates the syn-
chronous diagnosability in module 3 does not exist in the verifier computed for mod-

ule 4, consequently, it is necessary to compute the verifier considering the subset

{3,4}, presented in Figure[{.19

39

o
b b 12
O2R2,

Wwoow;o | [oton;0 < oo1on;0 | < [32112 |¢3211N 3 |

h O1R2

h

of h

d l 4 \ O2R2
Q 0422F 1 |— g 1422F;1 | OITIN: 1 el 111N 1 Feel 2211V 1 F— |3211]\ 1 |¢4211v 3

T of O1R2

O1R2

O1R2 O1R2 01 R2 01 R2
N ﬂ lnf | > PN
] 0422F;2 |—_>| 1422F 2 | _| 0111N;2 F—= 1111832 == 2211832 | Ll 4211851] 421102

T | | P 1

O1R2
01 R2 1 R2

O1R2 O1R2
a [T
O2R2 d O2R2
2Ry e L
0422F;3 | 1422F;3 omm—» 11]\ 3 2] 221103
tos
€
d d

d O2R2 O2R2

@) O @)
L | 342370 [0423F;3 | 1423F;3 |
Figure 4.9: Verifier of module 2 from Example .

It is possible to notice that there exist a sequence that violates the syncrhonous
diagnosability in subset {3,4}. Thus, the language is not synchronously diagnosable
with respect to Ly, P3, 35 — 33), Ln,, Py, 0 X5 — X, Py X5 = X7, and Y.

Considering this, in REIS and MOREIRA [32], a method to compute all minimal
SDMB for the system language was presented. This method is based on the depth-
first search and implemented by Algorithm [4.1] The sequence that the modules are
added follows the tree architecture, and, for a system composed of 4 modules, the
tree architecture is presented in Figure |4.13

In Step 1 of Algorithm [4.1, M and T, representing the set of all minimal SDMB
and the set of module indices k such that {k} is not a minimal SDMB, respectively,
are defined as the empty set. In Step 2, for each module k, the verifier ch} is
computed as the parallel composition of the renamed fault-free behavior model Gﬁk
and the fault automaton G'r. Then, the indices of the verifiers that do not have
cyclic paths that violate the synchronous diagnosability condition are added to M
as minimal SDMB, and those that have this kind of cyclic path are added to V.
In Step 3, the set B, of verifiers Gi/k}, such that k € T, is created. This step is
important due to the fact that the indices k € M already form minimal SDMB with

40

b

*[0000N;0;0

a

1000N'; 0; 0 |

[1010N;0; 1 [*—0010;0;1 |

J1R2

O2R2
211321 @2111\?;3;1 |
g

=l

h O1R2
h
h
h
O2R2
a
0422F;1; 1 1111N;1;1 Ul_|2211N;1;1 F [B211v: 11] qZZNN;S;l
| 9 O1R2
O1R2 01R2 01R2 O1R2 01R2
C
of
a
——0422F; 2,1 |—“_>11422F;2;1 | —orrin: 21 F—fiinin; 21 i =12211N;2;1] L —Ja211n; 1,1 Frla211v;2;1
of | O1R2 C‘
O1R2 O1R2 01R2
O1R2 O1R2
O2R2 O2R2 O2R2
af 2R2
e, ~Na (\r < PN (\f o1 %
|0422F:3i|(1—>|1422F;3:1 [0111N;3:1 i 3;
tos
€
O92R2 O2R2
L (3423F;0;1

Figure 4.10: Verifier of subset {2,3} from Example .

b

g[\ooo(w;o 'LCFIOOON;O |

[1010n;0 [*—] oo10n;0 |

af

h

d

e

d I
1 a
:| 04221<‘ya—<{\€'1422F; 1| 0111N;1
Los

Gty d
[3423F;0)e—q\o423F;o }a—([\1423F;0 |
L e |

Figure 4.11: Verifier of module 4 from Example .

[32118731

111N; 1 P 22011 < A211N:1

cardinality one, and therefore, are not added to other subsets when searching for

minimal SDMB with cardinality greater than one. In Step 4, the recursive inclusion
of modules using Algorithm is performed. Finally, in Step 5, the SDMB that are

not minimal are removed from M.

41

b
0000V'; 00)Lq‘1000N;00| [1010~ 10[**— 0010N; 10§ < { 3211811
9

h

-

3|

of

l ~ 1.0]
[0a227 11 f—= 14227511 [010iN; 11— 111N 11] 2211N;11|C—>@]
|

g9f

[3423F;10 F—{ 0423F; 10 |—] 1423F; 10|
e |

Figure 4.12: Verifier of subset {3,4} from Example , highlighting a sequence that
violates the synchronous diagnosability.

{1} {2} {3} {4}

N

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

/|

{17273} {172»4} {173a4} {2,3,4}

{1,2,3,4}

Figure 4.13: Trees architecture that defines the order of adding components.

Algorithm [4.2] is responsible for the recursive module inclusions to form the
SDMBs. In Step 1, a path p of verifier GB, associated with a fault sequence that
violates the synchronous diagnosability, is obtained, and in Step 2, the subautomaton
G{Z formed from path p is computed. In Step 3 the loop to add modules is started,
and the addition of modules to B is carried out each module at a time, as described
in the following steps. Firstly, in Step 3.1, if there does not exist an element of
M, E, such that E C B U {j}, the automaton G{}f is computed as the parallel
composition of the partial verifier, G{Z, and the verifier of the j-th module, that is
being checked if it can be added to B, Gg V. If there exists a cyclic path that violates
the synchronous diagnosability in G{}f, it means that module j is not capable of
eliminating the violating cyclic path associated with p, and consequently, it will not
be added to B. Otherwise, if no violating cyclic path remains in the test performed in
Step 3.1.1, j is added to B in Step 3.1.2 and verifier G‘E/}U{j} = G{iHGg} is computed.
In Step 3.1.2.1, it is verified if BU {j} forms an SDMB. If BU {;j} forms an SDMB,

42

then it is added to M, else, a new module is searched to be added to B U {j} by
running function ADD MODULE MINIMAL(GE"Y Bg,).

Algorithm 4.1 Computation of all minimal SDMB

Input: Gﬁk, forkel,, and Gp
Output: Set of all minimal SDMB, M.

1: M:=0,T:=0
2: Fork e,

2.1: Compute G‘{/k} = GFHGﬁk
2.2: If L is synchronously diagnosable with respect to P,, Ly,, and Xy, then
M = MU{{k}}, else T :=T U{k}

3: Ba, ={GY : keT}

A%
4: ForkeT
4.1: ADD_MODULE MINIMAL(G\}*, Bg,)

5: Find all elements of M, E, such that there exists another element E', where
E C F', and eliminate E' from M

Algorithm 4.2 ADD MODULE_MINIMAL(GE Bg,)

1: Find a path p of GB that departs from its initial state with an embedded cyclic

path cl that violates the synchronous diagnosability
2: Compute the subautomaton of GB from path p, denoted as G%
3: ForjeT\ B

3.1: If there does not exist E € M such that E C BU{j} then
3.1.1: Compute G{}f = G%HGé}}
3.1.2: If there does not exist a cyclic path in G{}f associated with the cyclic
path cl of GB then compute GE-VY = GB|| G
3.1.2.1: If there does not exist a cyclic path violating the synchronous
diagnosability in G"S,U{j}, then M = M U {S U {j}}, else :
ADD_MODULE_MINIMAL(G,"Y Bg,,)

43

Theorem 4.3 Algorithm computes all minimal synchronous diagnosis module
basis considering fault-free behavior models of the system modules given by Gy,

k € I., and fault behavior model given by Gp.

Proof: Note that in Algorithm [.1], each element of M is computed recursively by
adding to it only the modules that eliminate a cyclic path violating the synchronous
diagnosability, until there does not exist any violating cyclic path. Thus, all elements
of M are SDMB. In Step 5 of Algorithm [4.1] all elements of M that contains another
element of M are removed, and consequently, all redundant SDMB are eliminated
from M. In addition, note that Algorithm computes all possible subsets of I,
by adding to B, incrementally, each module of I,. that eliminates a cyclic path that
violates the synchronous diagnosability. Thus, the elements of M form all minimal
SDMB of the system. O

Remark 4.1 [t is important to remark that an algorithm for the computation of
all minimal sets of observable events that guarantee the system diagnosability is
proposed in [23]. The main difference in comparison with the method proposed in
this paper is that we are searching for sets of modules, and not sets of events, that

ensure the synchronous diagnosability of the system language. 0

It is important to remark that the minimum SDMB can be obtained by searching
in the set of all minimal SDMB, M, those that have the smallest cardinality.

In order to find all minimal SDMB and all minimum SDMB, applying Algorithm
4.1 we implemented a python program which takes as input only the system mod-
ules. The program calculates the automata required by the algorithms and returns
the minimal and minimum SDMB, in a way that no further knowledge of the system
is required. The python program is available in [33]. In the following, we present
an example of the implementation of Algorithm [4.1] For the sake of comprehension,
some verifiers automata are presented to illustrate Example [£.3] but all the verifiers

automata and auxiliary automata computed are presented in Appendix [5.1}

Example 4.3 Consider the system G presented in Example and consider the
problem of computing all the minimal and minimum SDMB. In order to do so, in
this example we will use Algorithm [{.1]

The automata that model the system components, their fault-free behavior, and

faulty behavior remain the same as in Example[{.1], and are presented in Figures[4.1],

4.3 44 and respectively. In Step 1 of Algorithm the sets M and T are
defined as (). In Step 2 the verifiers G;{,l}, Gy}, Gg)}, G;{f} are computed as the parallel

44

composition of the automaton that models the faulty behavior and the renamed fault-
free automaton, presented in Figures |4.14], 4.1, |4.16| and [4.17, respectively. In
this case, no module can be used alone to diagnose the system language, and the
cycles with events of X are highlighted in each of the verifiers. Thus, M = 0,
T =1{1,2,3,4}, and Bg, = {Gi{/l},G;{f},Gg},Gy}}. Then, Algom'thm starts a
recursive search for the subsets with Algorithm [{.2.

b b b

_gI\OOOON;O |LC|\1OOON;1 mg\looozva ml 0|010N;0 I < [3211N;3

a

no ! h - { 1010N;1 5] 1010832 | g
O1R1 h 01R1

01 R1 1 h

[o111n;0] 1111N51 leOON;:& | [1mwv;2 mjv;s | 4211N;4
I \
o h c

U1R1
d d

oy
I d 9% a
— w1 0422F;0 Iﬂ—€|\1422F;1 IE?FMQQF;Q IU—Hg\1422F;3 |.Uf_| 1111N;3]———\

h & h N h I h "

d d d o1

d o1
C|\0424F;0 |‘Z—C|\1424F;1 |—§|\1424F;2 |£1424F;3 | [envii = Jooning2

O1R1 O1R1

O1R1

&
d d d d d
—(I\ 3423F;3 lE—C|\O423F;O |G—C|\1423F;1 '—CI\1423F;2 @1423&3 | 2211N;3 01
T O1R1 O1R1
&

Figure 4.14: Verifier of module 1 of Example . Gg} = Gp|GY,.

Starting with the subset {1}, attempting to add module 2, Algorithm selected
the path {(0000N;0), h, (0111N;0), o, (0422F;0), d, (0422F;0)}. Automaton
G;{,i}, whose generated language is the prefiz-closure of the sequence associated with
the selected path, is presented in Figure [{.18. To verify if the addition of module
2 eliminates the path {(0000N;0), h, (0111N;0), o, (0422F;0), d, (0422F;0)},
the parallel composition of G%} with Gi{f} 15 computed, presented in Figure |4.19

Notice that the sequence that violates the diagnosability leads to a violating cyclic
path in G%}jl}, and, consequently in GS’Q}. Thus, the language of the system is not
synchronously diagnosable using only modules 1 and 2.

In the sequel, Algorithm attempts to add module 3 to verifier Gg’Q}. As
Gg’Q} is mot computed, it needs to be computed now. The path {(0000N;00), h,
(0111N;01), oy, (0422F;01), d, (0422F;01)} is selected. Automaton G%’Z} is ob-
tained, and the parallel composition of G%Q} with G;{f}, depicted in Figure |4.20, is

computed. Notice that the sequence that violates the diagnosability does not lead to
a violating cyclic path in G?}p{lg}. Considering this, the verifier Gél,li%} 1s computed,

and it can be verified that there does not exist any cyclic path labeled with F in which

45

O1R2

b b m
_goooozv;o |LC|\1000N:0 | [1o10n5;0 = oo10n;0 | < { 3211N;2 |¢3211N:3 |

O1R2 9

p l d \ | O2R2
£|\0422F;1 IG—QMQQF;I | oz e inn Pelnn F— [Bnid |¢4211\ 3
|

of O1R2
O1R2
O1R2 T1R2 O1R2 O1R2
C
laf 'lﬂ e | a~ o1
—1 0422F; 2 |—_>| 1422F;2 | o11iv;2 = 12 el 2omiv2 | L[42111 | 42112
T I | | O1R2 I
C
O1R2 o1 o R
O1R2 O1R2
o5
oo 02R2 O2R2 ¢
WatlaYAWeWaYl Wie a2 e
[0422F;3 fo—| 1422F;3 | | O111N;3] 1111N;3 2] 2211N;3 |—
o |
c
d J2R2 T2R2
d d
_>‘ 3423F;0 | 0423F;3 |—] 1423F;3
Figure 4.15: Verifier of module 2 of Example . Gé/z} = Gr|GY,
b b
a a 1 [&
QFOOOON;O J—CFIOOON;O | [1010N;1 J*—{ 0010N;1 | — 3211311 |
h 9
h
h
Ol ~_] h

[o2r 1 {1a22r1 | [omn;1 =[N P22 —— 211 |
|

9f

h h

h

h
r34231i; 1 | 0423F;1 f—{ 1423F;1 | (F()424F; 1 JTCF1424F; 1|

€

Figure 4.16: Verifier of module 3 of Example . G = Gr|GE,

at least one transition is performed by a non-renamed event. Thus, we conclude that

L is synchronously diagnosable with respect to Ln,, Ly, Lng, P, 35 — X7, P,

46

k=

b

Q[\OOOON;O jLCFmOON;o | [1oton3;0 +*— ooton;0 | < j' 3211N; 1 |
h

gf

g
h
h
. oy h
a 1
| ~. |) N)
0422F; 1 = a22r;1] [omn 1 = vt] 2211801 j—»@
|

d d d
CF3423F;0 JLCP0423F;O jﬁmz:ﬂ?;o |
€

Figure 4.17: Verifier of module 4 of Example . Gy} = Gr[|GF,

SOSROLE0

Figure 4.18: Automaton G;{/i} , whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from
Example

(000N G [Eov

Figure 4.19: Automaton that represents G, {1} G{l} HG{Q} of Example

¥ =85, P58y = X5, Pt ¥ — X%, and Xy, and the subset {1,2,3} is added
to M. As the method provides only minimal SDMB, the computation of verifier
G$’2’3’4} is avoided, since {1,2,3} is already an SDMB.

Figure 4.20: Automaton that represents G3 12} G{1 2 ||G{3} of Example

—|

In the sequel, Algom'thm attempts to add module 4 to verifier Gy’%. The path
{(0000N;00), h, (0111N;01), ¢, (0422F;01), d, (0422F;01)} is selected. The paral-
lel composition of G{1’2 with G{ Vs computed, resulting in automaton G4{ 2 The
sequence that molates the diagnosability leads to a wviolating cyclic path in G4 AL 2},
and, consequently in Gé,l 24} Thus, the language of the system is not synchronously
diagnosable using only modules 1, 2 and 4.

In the following, Algorithm attempts to add module 3 to the verifier Gé}}.

47

Consider again path {(0000N;0), h, (0111N;0), o, (0422F;0), d, (0422F;0)} and
automaton G%}. The parallel composition of G‘{/i} with G‘{/S} 18 computed, resulting
in automaton G:‘)’,’p{l}. In this case, the sequence that violates the diagnosability does
not lead to a violating cyclic path in G%}jl}. Then, the verifier G{{/l’:g} 18 computed,
but there exists cyclic paths labeled with F' in which at least one transition is labeled
with a non-renamed event. Thus, the language of the system is not synchronously
diagnosable using only modules 1 and 3.

In the sequel, Algorithm attempts to add module 4 to the verifier G;{/l’g}.
Consider now path {(0000N;00), h, (0111N;01), ¢, (0422F;01), h, (0424F;01), h,
(0424F;01)}. Automaton G%’?’} is obtained, and the parallel composition of G%B}
with G’;{f Y is computed, resulting in automaton Gf/jl’g}. In this automaton, the se-
quence that violates the diagnosability does mot lead to a wviolating cyclic path in
Gf,;{l’:i}. Considering this, the verifier GQ{} 34 s computed, but there exists cyclic
paths labeled with F in which at least one transition is labeled with a non-renamed
event. Thus, the language of the system is not synchronously diagnosable using only
modules 1, 3 and 4.

Algorithm [{.2, in the sequel, verify the possibility of adding module 4 to verifier
G Consider again path {(0000N;0), h, (0111N:0), oy, (0422F;0), d, (0422F; 0)}
and automaton G%}. The parallel composition of G%} with G;{f} 15 computed, re-
sulting in automaton G;l,;{l}. The sequence that violates the diagnosability leads to a
violating cyclic path in G?}’p{l}, and, consequently, in G3’4}. Thus, the language of
the system is not synchronously diagnosable using only modules 1 and 4.

Starting now with module 2 and verifier G;{f}, Algorithm attempts to add
module 3. In order to do so, the path {(0000N;0), h, (0111N;1), of, (0422F; 1), d,
(0422F; 1)} is selected. Automaton G;{/i} 1s computed. The parallel composition of
G%} with G{{/?’} is obtained, resulting in automaton G%}p{Z}. In this automaton, the

sequence that violates the diagnosability does not lead to a wviolating cyclic path in

G?}p{Q}. Considering this, the verifier Gg’?’} 1s computed, presented in|4.21), and since

there does not exist any cyclic path labeled with F' in which at least one transition is
performed by a non-renamed event, we conclude that L is synchronously diagnosable
with respect to Ly, Lng, Py, + 35 — 35 ,, P9, Xy — X5, P, + X° — X7, and Xy,
and the subset {2,3} is added to M. As the method searches only minimal SDMB,
the computation of verifier G;{f’?”él} is avoided, since {2,3} is already an SDMB.
Then, Algorithm verify the possibility of adding module 4 to verifier Gé?}.
Consider again path {(0000N;0), h, (0111N;1), of, (0422F;1), d, (0422F;1)} and
automaton G;{;}. The parallel composition ongy} with Gy} 15 computed, resulting in
automaton G%/’:Q}. The sequence that violates the diagnosability leads to a violating
cyclic path in Gf)p{Q}, and, consequently, in GgA}. Thus, the language of the system

15 not synchronously diagnosable using only modules 2 and 4.

48

b

b
QOO()N; 0;0 F4=10007; 0;0 |

IMN;O;l |<{I—|MN;O;1I

0'11?,2

h

h

{3211N; 21|

O2R2,
qgm 1N;3;1 |

O1R2

af h
!] ~ |1/ i o2n2
—loa2oF; 151 ==fiazer 1 | Jorivs g =i ot 1 |3211N 1;1] ¢211A 3:1
af | O1R2
O1R2 O1R2 O1R2 O1R2 T1R2
lgf | (]\ U\
—|0422F 21 |—_>|1422F 21 | _|0111N;2:1 1111 2,1 2211821 | L [1211N; 151 |f42118; 2,1
af | | O1R2 01
O1R2 O1R2 01R2
O1R2 O1R2
O2R2 . O2R2 O2R2
N\ O U N S~ O a L N W2R2 o L N 2R2
0422F; 3; 1 1422F;3; 1 0111N;3;1 1111N;3;1 2211N;3; 1
| [| — | 1 —
or
(&

Figure 4.21: Verifier computed with modules {2, 3} from Example G

The last subset to be tested is formed by modules {3,4}, adding module 4 to
the wverifier composed by module 3, Géf}. Consider now the path {(0000N;0), h,
(0111N;1), oy, (0422F;1), h, (0424F;1), h, (0424F;1)}. Automaton GY is pre-
sented in Figure |4.22

The parallel composition of G{3} with G;{,‘L} 15 computed,

resulting in automaton G {3}. In this automaton, the sequence that violates the
diagnosability does not lead to a molatmg cyclic path in G4{ L Thus, the verifier
Gi/ s computed, depicted in but it 1s possible to notice that there exists a
cyclic path labeled with F' in which at least one transition is labeled with a non-
renamed event, in that case, {(3423F;10), e, (0423F';10), e, (3423F;10)}. Thus,
the language of the system is not synchronously diagnosable using only modules 3
and 4.

Thus, the set of candidates of minimal SDMB, M = {{1,2,3}, {2,3}} is formed
in Step 4. In Step 5, the set M is refined leading to M = {{2,3}}.

Notice that in this case, the SDMB {2,3} is the only minimal SDMB, and,

consequently, it is the minimum SDMB. O

49

h

Figure 4.22: Automaton Gé/‘z} , whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from

Example

=

b

Croooozv; OOJLCFMOON; 00] [1010n;10 [« 0010N; 10} < — 3211: 11]
h

g

h
h

af h

! N N .
[[0a22r; 11— 1422F;11] [0tz iifp—] 1|111N; 1 2201 11— ——{ 2211 11|
o

f

[3423F;10 = 0423F; 10 |—{ 1423F; 10|
| € I
Figure 4.23: Verifier computed with modules {3,4} from Example G

In Example we presented a system composed of four modules, which has
one minimum SDMB given by {2,3}. According to this example, a system may be
synchronously diagnosable with a subset of modules. In the following, we present
another approach to find all minimal SDMB, an approach based on the breadth-first
search, implemented by Algorithm [4.3]

In Step 1 of Algorithm .3 M, T and R, representing the set of all minimal
SDMB, the set of module indices k such that {k} is not a minimal SDMB and the
set of module subsets indexes i such that {i} is not a minimal SDMB, respectively,
are defined as the empty set. In Step 2, for each module k, the verifier G;{/k} is
computed as the parallel composition of the fault automaton Gz and the renamed
fault-free behavior model G, . Then, the indexes of the verifiers that do not have
cyclic paths that violate the synchronous diagnosability condition are added to M
as minimal SDMB, and those that have this kind of cyclic path are added to 7" and
R. In Step 3, the recursive inclusion of modules using Algorithm [4.4] is performed.
Note that in this case, every subset with the same cardinality is testes previously to
increment the cardinality, and in a case with 4 modules, the order that the subsets
are formed is presented in Figure This can be comprehended as the indexes
of the subsets that are not SDMB are added to the the set R and the addition of a

module is performed by the modules whose indexes are elements of 7.

20

{1} > {2} > {3} > {4}

{1,2} — {1,3} — {1,4} — {2,3} — {2,4} —> {3,4}

—
{1,2,3} —{1,2,4} — {1,3,4} — {2,3,4}

-

{1,2,3,4}

Figure 4.24: Architecture that defines the order of adding components.

Algorithm is responsible for the module inclusions to form the SDMBs. In
Step 1, a path p of verifier G, associated with a fault sequence that violates the
synchronous diagnosability, is obtained, and in Step 2, the subautomaton G‘Efp formed
from path p is computed. In Step 3 if there does not exist an element of M, E, such
that £ C B U {j}, the automaton G{/’f is computed as the parallel composition of
the partial verifier, G{?p, and the verifier of the subset of modules {j}, that is being
checked if it can be added to B, G;{/j}. If there exists a cyclic path that violates
the synchronous diagnosability in G{}f, it means that module j is not capable of
eliminating the violating cyclic path associated with p, and consequently, it will not
be added to B. Otherwise, if no violating cyclic path remains in the test performed
in Step 3.1, j is added to B in Step 3.2 and verifier Ggu{j} = G@HG;{/” is computed.
In step 3.2.1, it is verified if BU{j} forms a SDMB. If BU{j} forms a SDMB, then
it is added to M, else, it is added to R.

Algorithm 4.3 Computation of all minimal SDMB

Input: Gﬁk, for k € I, and G
Output: Set of all minimal SDMB, M.

I: M=0,T:=0, R:=0
2: Fork € I,

2.1: Compute G‘{/k} = GFHG]I{);]c

2.2: If L is synchronously diagnosable with respect to P,, Ly,, and Xy, then
M = MU{{k}}, else T:=TU{k}, R:= RU{k}

3: Fori € R, where v is a subset with the indexes

3.1: For k € T, such as index related to k is greater than the greater index in

l

51

3.1.1: ADD MODULE MINIMUM(G?, {GIF)

Algorithm 4.4 ADD MODULE MINIMUM(GB,G¥,)

1: Find a path p of GB that departs from its initial state with an embedded cyclic

path cl that violates the synchronous diagnosability
2: Compute the subautomaton of G5 from path p, denoted as G{Z

3: If there does not exist E € M such that E C BU{j} then

3.1: Compute G{}f = G%HGg}

3.2: If there does not exist a cyclic path in G{}f associated with the cyclic path
cl of GB then compute GEV = GB| G}

3.2.1: If there does not exist a cyclic path violating the synchronous diagnos-
ability in G‘E/}U{j}, then M = MU{BU{j}}, else R := RU{BU{j}}

It is important to remark that Algorithm [£.3]searches for the all minimal SDMB
and forms set M. Thus, to find all minimum SDMB, it is necessary to search in M
the sets with the smallest cardinality. However, if the objective is to find only the
minimum SDMB the algorithm can be stop as soon as it finds a SDMB and finishes
the search in its cardinality.

In the following, we present Example that shows the implementation of Algo-
rithm to the same system of Example 1.3 Again, for the sake of comprehension,
some verifiers automata are presented to illustrate Example [£.4] but all the verifiers

automata computed are presented in Appendix [5.1]

Example 4.4 Consider, again, the system G presented in Fxamples and [{.3,
and consider the problem of computing all the minimal and minimum SDMB using
Algorithm [{.5

The automata that model the system components, their fault-free behavior, and
faulty behavior are presented in Figures 4.3, [4-4, and[{.3, respectively. In Step
1 of Algorithm[4.3, the sets M, T and R are defined as (). In Step 2 the verifiers
G;{/l}, Gy}, Géf}, G}{f} are computed as the parallel composition of the automaton that
models the faulty behavior and the renamed fault-free automaton, presented in Fig-
ures [{.14, [4. 17, [{. 16 and [{.17, respectively. As noticed in Example [{.3, no module
can be used alone to diagnose the system language. Thus, M =0, T = {1,2,3,4},

52

R ={1,2,3,4}, and Bg, = {Géfl},Gé—Q},Gé?},Gy}}. Then, Algom'thm starts a
recursive search for the subsets with Algorithm [{.4)

Differently from Algorithm the recursive search tests the verifier with the
same cardinality before increasing the cardinality of the verifiers, following Fig-
ure . Considering this, starting with the subset {1}, attempting to add mod-
ule 2, Algorithm selected the path {(0000N;0), h, (0111N:;0), of, (0422F;0),
d, (0422F;0)}. Automaton G%}, whose generated language is the prefix-closure of
the sequence associated with the selected path, is presented in Figure[{.18. To ver-
ify if the addition of module 2 eliminates the path {(0000N;0), h, (0111N;0), oy,
(0422F;0), d, (0422F;0)}, the parallel composition of G%} with Gg} 18 computed,
presented in Figure[[.19. As in Example[].3, the sequence that violates the diagnos-
ability leads to a wviolating cyclic path in G%}jl}, and, consequently in G}{,M}. Thus,
the language of the system is not synchronously diagnosable using only modules 1
and 2, and the element {1,2} is added to the set R.

In the following, Algorithm attempts to add module 3 to the verifier Gé,l}.
Consider again path {(0000N;0), h, (0111N;0), o, (0422F;0), d, (0422F;0)} and
automaton G%}. The parallel composition of G‘{/i} with G‘{/S} 18 computed, resulting
in automaton G:‘)’,;{l}. In this case, the sequence that violates the diagnosability does
not lead to a violating cyclic path in G%}jl}. Then, the verifier G{{/l’:g} s computed,
but there exists cyclic paths labeled with F' in which at least one transition is labeled
with a non-renamed event. Thus, the language of the system is not synchronously
diagnosable using only modules 1 and 3, and the element {1,3} is added to the set
R.

Algorithm [[.4), in the sequel, verify the possibility of adding module 4 to verifier
G Consider again path {(0000N;0), h, (0111N;0), o, (0422F;0), d, (0422F; 0)}
and automaton G%}. The parallel composition of G%} with G}{f} 1s computed, re-
sulting in automaton G%}p{l}. The sequence that violates the diagnosability leads to
a wviolating cyclic path in G%}p{l}, and, consequently, in G;{}A}. Thus, the language
of the system is not synchronously diagnosable using only modules 1 and 4, and the
element {1,4} is added to the set R.

In the following, Algorithm attempts to add module 3 to the verifier Gg}. In
order to do so, the path {(0000N;0), h, (0111N;1), oy, (0422F;1), d, (0422F;1)}
is selected. Automaton G%} 1s computed. The parallel composition of G%} with
Gé?} 15 obtained, resulting in automaton G%}f}. In this automaton, the sequence
that wviolates the diagnosability does not lead to a wviolating cyclic path in G?}f}.
Considering this, the verifier Gy’g} 1s computed, presented in and since there
does not exist any cyclic path labeled with F wn which at least one transition is
performed by a non-renamed event, we conclude that L is synchronously diagnosable
with respect to Ly, Lng, Py, + 35 — 35 ,, P9, Xy — X3, P, + X° — X7, and Xy,

93

and the subset {2,3} is added to M. As the method searches only minimal SDMB,
the computation of verifiers G€’2’3}, G$’2’3’4} and G?’SA} are avoided, since {2,3}
is already an SDMB.

Then, Algorithm verify the possibility of adding module 4 to verifier G’g}.
Consider again path {(0000N;0), h, (0111N;1), of, (0422F;1), d, (0422F;1)} and
automaton G%}. The parallel composition ofGéi} with G;[,Zl} 15 computed, resulting in
automaton G%}f}. The sequence that violates the diagnosability leads to a violating
cyclic path in Gf}’p{Q}, and, consequently, in G§’4}. Thus, the language of the system
is not synchronously diagnosable using only modules 2 and 4, and the element {2,4}
15 added to the set R.

The last subset with cardinality 2 to be tested is formed by modules {3,4},
adding module 4 to the verifier composed by module 3, Gg’}. Consider now the
path {(0000N;0), h, (0111N;1), of, (0422F;1), h, (0424F;1), h, (0424F;1)}. Au-
tomaton Gg’)} 1s presented in Figure|/.22. The parallel composition of G;{z} with G;{f}

15 computed, resulting in automaton G;’L}p 3V In this automaton, the sequence that vi-
olates the diagnosability does not lead to a violating cyclic path in G%}p{g}. Thus, the
verifier G§’4} 15 computed, depicted in but it is possible to notice that there
exists a cyclic path labeled with F in which at least one transition is labeled with
a non-renamed event, in that case, {(3423F;10), e, (0423F';10), e, (3423F;10)}.
Thus, the language of the system is not synchronously diagnosable using only mod-
ules 3 and 4, and the element {3,4} is added to the set R.

Starting the verifiers of cardinality 3, the verifier composed of modules {1,2,3}
does not need to be computed due to the fact that {2,3} is a SDMB. Thus, in the
sequel, Algorz'thm attempts to add module 4 to verifier G;{}’Q}, and as that verifier
was not computed, now it is necessary to compute it. Then, the path {(0000N;00), h,
(0111N;01), oy, (0422F;01), d, (0422F;01)} is selected. The parallel composition of
G%z} with Gy} s computed, resulting in automaton Gf}jl’z}. The sequence that vi-
olates the diagnosability leads to a violating cyclic path in G?‘/’jl’g}, and, consequently
n G$’2’4}. Thus, the language of the system is not synchronously diagnosable using
only modules 1, 2 and 4, and the element {1,2,4} is added to the set R.

In the sequel, Algorithm attempts to add module 4 to the wverifier G;{/l’g}.
Consider now path {(0000N;00), h, (0111N;01), ¢, (0422F;01), h, (0424F;01), h,
(0424F;01)}. Automaton G%’?’} is obtained, and the parallel composition of G%’?’}
with G;{f} is computed, resulting in automaton Gf/jl’?’}. In this automaton, the se-
quence that violates the diagnosability does mot lead to a wviolating cyclic path in
G;l,’p{l’:i}. Considering this, the verifier G‘{}’3’4} is computed, but there exists cyclic
paths labeled with F in which at least one transition is labeled with a non-renamed
event. Thus, the language of the system is not synchronously diagnosable using only
modules 1, 3 and 4, and the element {1,3,4} is added to the set R.

o4

The wverifiers composed of modules {2,3,4} and {1,2,3,4} do not need to be
computed due to the fact that {2,3} is a SDMB. Thus, the set of minimal SDMB,
M = {{2,3}} is formed in Step 4. Notice that, as expected, the SDMB {2, 3} is the
only minimal SDMB, and, consequently, it is the minimum SDMB. 0

Example [4.4] presents the implementation of Algorithm [4.3] which is based on
the breadth-first search. In order to find all minimal SDMB, the difference between
Algorithms and are not very significant. However, searching for all minimum
SDMB with Algorithm makes possible to stop the search as soon as the cardi-
nality of the first SDMB is found. In the following, in Example [4.5] we present a

system with eight modules that the minimum SDMB is found with three modules.

Example 4.5 Consider a system G, composed of eight modules, Gi, Gz, G3,
G4, G5, Gg, Gy and Gg showed in Figure [[.25, where their event sets are
Y = {a,ce,g,01},20 = {e,h,01,09,07}, 83 = {d,h,0p}, X4 = {e,h, 07}, L5 =
{b,h,0¢},36 = {a,c,g,01}, 27 = {e, h},¥s = {c,e, 9,01}, with observable event set
Y, = {a,b,c,d e, h,g}, unobservable event set ¥,, = {01,02,0¢}, and fault event
set ¢ = {os}. In order to compute the verifiers of each module, it is necessary to
compute automaton G, that is not represented due to the size and complexity of
the figure.

In Figure automata G, GR., GX., GX., GX., GX., GX_, and G¥_, that
represent the fault-free behavior of the system modules after applying the renaming
function are depicted.

In the following, Algorithm[f.5 computes the verifier for each module and starts
the search for all minimum SDMB. In that case, there is only one minimum SDMB,
which is {2,3,5}

In Examples and [4.4] were presented the implementation of Algorithms [.T],
4.2 A3 and [4.4] in order to obtain all the minimal and minimum SDMB. In Example
Algorithms and were implemented in order to find only the minimum
SDMB. The results of the implementation of the proposed method and its discussions

are presented in next Section.

4.2 Results and Discussions

In this section we compare the computational cost of finding all minimal SDMB using

the exhaustive search method with the method proposed in this work, considering

the system worked in Examples [£.1] and [£.4] and Algorithms and [4.3] since
the order that the modules are computed is different.

95

&
>

(g) Gr. (h) Gs.

Figure 4.25: Automata that models the system components Gy, Gs, G3, G4, GS,
Ge, G7, and Gy from Example

Another comparison we present is the comparison between the computational
cost of finding all minimum SDMB using Algorithm and the exhaustive search,
and the computation cost of finding all mininal SDMB with Algorithms [4.1] and
and the exhaustive search related to each one. For that comparison, the system
worked was the one presented in Example 4.5 a system that is composed of eight

modules.

4.2.1 Searching for minimal and minimum SDMB in a system
with four modules.

The order to compute the subsets of modules presented in Algorithm [4.1] follows the

trees architecture, presented in Figure [£.27] In Examples[d.3]and [4.4] there are four

components and the minimal SDMB found was {2, 3}.

Considering the order to compute subsets of modules in Algorithm 4.1} per-

o6

o2r2 Je e

O1R2

O

(8) GF,-

Figure 4.26: Automata that represents the fault-free modules with unobservable
events renamed from Example

forming the exhaustive search to find all minimal SDMB, 13 automata must be
computed, which results in the computation of 368 states and 794 transitions. The
time spent in the process was 1,129.57ms, and the complete information about the
verifiers that are computed using the exhaustive search is presented in Table and
the automata that are computed are presented in table [4.1]

Using the method proposed in this work, following the steps of Algorithm [4.1],
instead of computing several parallel compositions with verifiers with a large number
of states, partial verifiers G{?p, presented in Table are calculated, as those depicted
in Figures and . Since all verifiers GE, such that B is a singleton, have
a cyclic path that violates the synchronous diagnosability, then Algorithm is
recursively repeated until all minimal SDMB are computed. In this procedure, the
verifiers presented in Table are computed. Note that verifiers G$74}, G§’4}, and
Gé/l ’3’4}, that are computed in the exhaustive search method respecting the order
proposed in Algorithm [4.1] are not computed using this proposed method.

The total number of automata that are computed using Algorithm presented
in Tables [4.2] [£.3] and was 24, with total number of states equal to 338 and

o7

{1} /{2}\ {3} {4}
/i1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

Figure 4.27: Trees architecture that defines the order of adding components.

Table 4.1: Verifiers GE computed using the exhaustive search and the proposed

method.
B 1@ [© [@ [(Lo (L3} [(L4] 23
Exhaus. tree X X X X X X X X
Algorithm [4.1] X X X X X X X
Exhaus. cardin. X X X X X X X X
Algorithml@l X X X X X X X
B {2,4} | {3,4} | {1,2,3} | {1,2,4} | {1,3,4}
Exhaus. tree X X X X X
Algorithm X X X
Exhaus. cardin. X X X X
Algorithmlﬁl X X

with total number of transitions 654. The time spent in the process of obtaining the
minimal SDMB, {2, 3}, using Algorithm [4.1] was 804.57ms. This shows a reduction
of 29% in time, 17% in the number of states and 30% in the number of transitions,
as shown in Table in comparison with the exhaustive search method respecting
the order proposed in Algorithm 4.1}

On the other hand, the order to compute the subsets of modules presented in
Algorithm respects the cardinality of the subsets and is presented in Figure
Considering that order, performing the exhaustive search to find all minimal
SDMB, 12 automata must be computed, resulting in the computation of 344 states
and 738 transitions. The time spent in the process was 845.26ms, and the com-
plete information about the verifiers that are computed using the exhaustive search
considering this order to compute the subsets of modules is presented in Table
and the automata that are computed are presented in table Notice that subset
{1,2,3} was not computed due to the fact that the subset {2,3} is a SDMB and
was computed previously.

Using the method proposed in this work, following the steps of Algorithm [4.3]
again, partial verifiers G‘E/’p, presented in Table are calculated. Since all verifiers

o8

Table 4.2: Number of states and transitions of the verifiers G¥ from Example .

B {1} | {2} {3} {4} {1,2y | {1,3} | {1,4} | {2,3}
States 30 28 16 14 52 30 26 28
Transitions 66 65 25 25 135 53 51 56
B {2,4} | {3,4} | {1,2,3} | {1,2,4} | {1,3,4}
States 28 14 52 52 26
Transitions 65 20 118 135 42

Table 4.3: Number of states and transitions of the partial verifiers Ggp that are

computed in the Example using Algorithms and
i 2 3 12 13
CARC A A

States 3 3 4 3 4
Transitions 3 3 4 3 4

GE, such that B is a singleton, have a cyclic path that violates the synchronous
diagnosability, then Algorithm is recursively repeated until all minimal SDMB
are computed. In this procedure, the verifiers presented in Table are computed.
Note that verifiers G;{}A}, G“{,Z ’4}, and Gy ’2’4}, that are computed in the exhaustive
search method respecting the order proposed in Algorithm [4.3] are not computed
using this proposed method. Note that comparing with Algorithm the subset
{1,2,3} was not computed due to the fact that the subset {2,3} is a SDMB and
was computed previously.

The total number of automata that are computed using Algorithm presented
in Tables [4.2] 4.3 and [£.4] was 22, with total number of states equal to 283 and
with total number of transitions 534. The time spent in the process of obtaining the
minimal SDMB, {2, 3}, using Algorithm , was 507.86ms. This shows a reduction
of 40% in time, 17% in the number of states and 28% in the number of transitions,

as shown in Table in comparison with the exhaustive search method respecting
the order proposed in Algorithm [4.3]

{1} {2} (3} {4}

-

{1,2} — {1,3} — {1,4} —> {2,3} —> {2,4} — {3,4}

—
{1,2,3} — {1,2,4} — {1,3,4} — {2,3,4}

{17 2737 4}

Figure 4.28: Architecture that defines the order of adding components.

99

Table 4.4: Number of states and transitions of the testing automata G{}f computed

in Example using Algorithms and

B 2.1} 31T {1} 3127 12} I{3} 31,2} {12} {13}
G{/p G v, G v, G v, G v, G v, G v, G v, G v, G v,
States 7 3 3 3 3 3 3 3 3
Trans. 13 2 3 2 3 2 2 3 2

Table 4.5: Total number of states and transitions that are computed using the
exhaustive search and the proposed method with Algorithm [4.1] and reduction in
the computational cost and execution time in Example .

States | Transitions | Execution Time (ms)
Exhaustive tree 368 794 1,129.57ms
Algorithm [4.1] | 318 613 804.57ms
Reduction 17% 30% 29%

After computing all minimal SDMB, it is possible to obtain all minimum SDMB,
and in the system worked in Examples[4.3|and [4.4] it is equal to {2, 3}. Even with the
increase in the number of automata calculated, the number of states and transitions
were reduced, and the time spent had a relevant reduction due to the fact that the
auxiliary verifiers are simple automata, and the test to verify if a component should
be added to the verifier is performed with this simpler automata.

It is important to remark that with Algorithm[4.3]it is possible to perform a direct
search for the minimum SDMB, finishing the search in the cardinality that the first
SDMB is found. In Example [£.4] Algorithm stops in cardinality 2, computing
only 7 verifiers. The total automata computed was 16, with total number of states
equal to 192 and with total number of transitions 345. The time spent in the process
of obtaining the minimum SDMB, {2,3}, using Algorithm [4.3| was 171ms. The
economy in time lies in the fact that the verifiers with greater cardinality demands

more time to be computed.

4.2.2 Searching for minimal and minimum SDMB in a system

with eight modules.

Considering more complex systems, with a greater number of components the ex-
pected reduction in number of event transitions, states and execution time is even
greater. In order to illustrate it, Example 4.5 was presented. In that Example, a
system composed of eight modules is synchronously diagnosable with three modules,
{2,3,5}. In order to compute the minimal SDMB for this system, Algorithms
and {4.3| were implemented in a python program [33]. The summary of the implemen-
tation of the search for the minimal SDMB is presented in Table [4.7]. It is possible to
notice that the number of automata using Algorithms and is greater than the

60

Table 4.6: Total number of states and transitions that are computed using the
exhaustive search and the proposed method with Algorithm [4.3] and reduction in
the computational cost and execution time in Example .

States | Transitions | Execution Time (ms)
Exhaustive cardinality | 344 738 845.29ms
Algorithm 283 534 507.86ms
Reduction 17% 28% 40%

respective exhaustive search. On the other hand, the number of states, transitions

and execution time are smaller.

Table 4.7: Total number of states and transitions that are computed using the ex-
haustive search and the proposed method with Algorithms[d.Tjand 4.3}, and reduction
in the computational cost and execution time in Example

Automata | States | Transitions | Exec. Time (ms) | Economy
Exhaus. tree 227 8428 19834 72549.00ms -
Algorithm 462 5210 9266 14036.00ms 80%
Exhaus. cardinality 224 8347 19697 78854.00ms -
Algorithm 462 5120 9123 14296.00ms 82%

The advantage of Algorithm is that it is possible to search directly for all
the minimum SDMB. In that case, we performed an exhaustive search stopping in
cardinality 3 in order to compare the results with Algorithm [£.3] The summary of
that comparison is presented in Table [4.8]

Table 4.8: Total number of states and transitions that are computed using the
exhaustive search and the proposed method with Algorithm [4.3] and reduction in
the computational cost and execution time in Example [4.5|searching directly for the
minimum SDMB.

States | Transitions | Execution Time (ms)
Exhaustive cardinality | 2376 o177 9274.00ms
Algorithm 1187 1946 1128.00ms
Reduction 50% 62% 88%

It is possible to notice that Algorithm shows a significant reduction in exe-
cution time in comparison with the exhaustive search for all minimum SDMB. It is
important to remark that the search for all minimum SDMB with Algorithm is
faster than the search for all minimal SDMB with the proposed method in this work
with Algorithms 4.1 or [4.3] The advantage is that it is possible to find all minimum
SDMB with a lower computational cost. On the other hand, the disadvantage is
that other minimal SDMB are not computed.

61

4.3 Final Remarks

In this chapter, we present in Example [1.3] a system that can be synchronously
diagnosable using a subset of modules to compute a verifier. After that, in order to
show that the proposed method can be more effective with more complex systems,
we present a Example (4.5 with eight modules, that is synchronously diagnosable
with three module. Finally, we present the results considering the computational

costs and evaluate its reduction.

62

Chapter 5
Conclusions

In this work, we defined the synchronous diagnosis modular basis and proposed a
method to discover all the minimal and consequently all minimum SDMB. This
method is based on an algorithm and a test. Two algorithms were proposed, one
based on the depth-first search, Algorithm and another based on the breadth-
first search, Algorithm [4.3] Both algorithms can be used to find all minimal SDMB,
and then find all minimum SDMB. However, with Algorithm it is possible to
search directly for all minimum SDMB, since the algorithms searches by cardinality,
and as soon as a SDMB is found, the algorithm stops the search at the end of that
cardinality.

The algorithms define the order the modules will be tested to compose the ver-
ifier. The test consists of building an automaton G‘B;p, whose generated language
is the prefix-closure of the sequence associated with the path that violate the syn-
chronous diagnosability of subset { B}, and compute the parallel composition with
the verifier of the module we want to add Gy}. Thus, it is possible to verify if
the sequence that violates the synchronous diagnosability does lead to a violating
cyclic path in this parallel composition, G{}f = G{ZHG;{}}. This test avoids the
computation of verifiers, reducing the computational cost.

The computational cost of the proposed algorithms is compared with the exhaus-
tive search method respecting the order the modules are added, and we show that,
with the proposed method, there is a significant reduction in the execution time
and in the number of states and transitions of the automata needed to compute the
minimal SDMB as presented in examples [4.3] and The examples shows that the
test with auxiliary verifiers avoid the computation of some verifiers, and that results
in the economy in computational cost.

As the complexity of the systems grows in number of components, the complex-
ity of the verifier grows polynomially. Thus, with a complex system, even with a
synchronous diagnosis approach, the diagnoser will demand an elevated amount of

memory to be stored. With the method presented in this work, finding a subset of

63

modules will need a lower computational cost to be obtained and demand less mem-
ory to store the diagnoser. This can be observed in Example [4.5] where it is possible
to notice as 80% economy in execution time searching for all minimal SDMB. In this
example, using Algorithm [4.3] it is possible to notice a good performance searching
directly for all minimum SDMB, with almost 90% of economy in execution time.

In summary, the main contributions of this work are as follows:

e In order to reduce the computational cost, the first approach is to define the
order the modules are supposed to be added. The proposed orders, Algorithm
and [4.3] guarantee that every combination of subsets will be considered.
Once a SDMB is found, adding modules to this SDMB creates a new SDMB

with no necessary calculation due to the monotonicity property.

e Adding a component to the verifier may cause considerable calculations. In
order to avoid this, a test with a sequence that violates the synchronous diag-
nosability in the current verifier with the verifier that is supposed to be added
is carried out. This test consist in the parallel composition of automaton whose
generated language is the prefix-closure of the sequence associated with the
selected path, and the verifier of the module that is supposed to be added. If
the sequence that violates the diagnosability does not lead to a violating cyclic
path in the parallel composition, the new verifier is computed, otherwise, the

algorithm chooses another module.

5.1 Future works

It is important to remark that this work is focused in reducing the computational
cost to obtain the SDMB, and, consequently, have a reduced synchronous diagnoser
to be stored and used. Considering this, we are currently investigating strategies
to reduce even more the computational cost of the method in order to mitigate the
exponential complexity of computing all minimal SDMB. Initially, we will search for
characteristics of the modules, since that the method is sensitive to the module that
is used in the beginning of Algorithms and [4.3] Depending on the first module,
the reduction in computational cost may be higher. In Examples and [£.4] the
minimal SDMB is {2, 3}. If Algorithm {4.1]started with module 3 and then modules
2, 4 and 1 are chosen, the computational cost would be smaller. Furthermore, other
characteristics of the automata that model the system components will be studied in
order to find any characteristic, such as the number of states, transitions, observed
events and fault events, that help to define which module must be chosen to start
Algorithms[4.T]and[4.3] and the modules that are chosen to continue with Algorithms
4.1l and [4.2

64

Another possibility is to consider the delay of diagnosis. It is a important factor
to consider and, once the minimal SDMB are defined, this is important to con-
sider together with the computational memory required to store the synchronous
diagnoser.

Another possible future work is to extend the method proposed in this work to

the decentralized synchronous diagnosis.

65

References

[1] CASSANDRAS, C., LAFORTUNE, S. Introduction to Discrete Event Systems.
2 ed. Secaucus, NJ, Springer-Verlag New York Inc., 2008.

[2]| HOPCROFT, J. E., MOTWANTI, R., ULLMAN, J. D. Introduction to Automata
Theory Languages and Computation. 3 ed. Boston, Addison Wesley, 2006.

[3] MIYAGI, P. E. Controle Programdvel: Fundamentos do Controle de Sistemas a
FEventos Discretos. Edgard Blucher, 2001.

[4] LAWSON, M. V. Finite Automata. Florida, CRC Press, 2003.

[5] DAVID, R., ALLA, H. Discrete, Continuous and Hybrid Petri Nets. Springer,
2005.

[6] SAMPATH, D., SENGUPTA, R., LAFORTUNE, S., et al. “Diagnosability
of Discrete-Event Systems”, IEFE TRANSACTIONS ON AUTOMATIC
CONTROL, v. 40, n. 9, pp. 1555-1575, set. 1995.

[7] SAMPATH, D., SENGUPTA, R., LAFORTUNE, S., et al. “Failure diagnosis
using discrete-event models”, IEEFE TRANSACTIONS ON CONTROL
SYSTEMS TECHNOLOGY, v. 4, n. 2, pp. 105-124, mar. 1996.

[8] ZAD, S. H., KWONG, R., WONHAM, W. “Fault Diagnosis in Discrete-Event
Systems: Framework and Model Reduction”, IEEE TRANSACTIONS
ON AUTOMATIC CONTROL, v. 48, n. 7, pp. 1199-1212, jul. 2003.

[9] BASILE, F., CHIACCHIO, P., DE TOMMASI, G. “An effcient approach for on-
line diagnosis of discrete event systems”, IEEE Transactions on Automatic
Control, v. 54, n. 4, pp. 748-759, abr. 2009.

[10] FANTI, M. P., MANGINI, A. M., UKOVICH, W. “Fault detection by labeled
Petri nets in centralized and distributed approaches”, IEEE Transactions
on Automation Science and Engineering, v. 10, n. 2, pp. 392-404, abr.
2013.

66

11

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

[21]

GASCARD, E., SIMEU-ABAZI, Z. “Modular Modeling for the Diagnostic
of Complex Discrete-Event Systems”, IEEE Transactions on Automation
Science and Engineering, v. 10, n. 4, pp. 1101-1123, out. 2013.

CABASINO, M. P., GIUA, A., SEATZU, C. “Diagnosability of Discrete-Event
Systems Using Labeled Petri Nets”, IEEE Transactions on Automation
Science and Engineering, v. 11, n. 1, pp. 144-153, 2014.

BASILE, F., CABASINO, M. P., SEATZU, C. “Diagnosability Analysis of La-
beled Time Petri Net Systems”, IEEE Transactions on Automatic Control,
v. 62, n. 3, pp. 1384-1396, 2017.

TOMOLA, J. H. A., CABRAL, F. G., CARVALHO, L. K., et al. “Robust
Disjunctive-Codiagnosability of Discrete-Event Systems Against Perma-
nent Loss of Observations”, IEEE Transactions on Automatic Control,
v. 62, n. 11, pp. 5808-5815, 2017.

CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C., et al. “Robust di-
agnosis of discrete-event systems against permanent loss of observations”,
Automatica, v. 49, n. 1, pp. 223-231, 2013.

CARVALHO, L. K., BASILIO, J. C., MOREIRA, M. V. “Robust diagnosis
of discrete-event systems against intermittent loss of observations”, Auto-
matica, v. 48, n. 9, pp. 2068-2078, 2012.

CARVALHO, L. K., BASILIO, J. C., MOREIRA, M. V. “Diagnosability of
intermittent sensor faults in discrete event systems”, Automatica, v. 79,
pp. 315-325, 2017.

WATANABE, A., SEBEM, R., LEAL, A. B., et al. “Fault prognosis of discrete
event systems: An overview”, Annual Reviews in Control, v. 51, pp. 100—
110, 2021.

WATANABE, A. T. Y., , LEAL, A. B., et al. “Combining Online Diagnosis
and Prognosis for Safe Controllability”, IEEE Transactions on Automatic
Control, pp. 1-1, 2021.

CABRAL, F. G., MOREIRA, M. V. “Synchronous Diagnosis of Discrete-Event
Systems”, IEEE Transactions on Automation Science and Engineering,

v. 17, 1. 2, pp. 921-932, 2020.

CABRAL, F. G., VERAS, M. Z. M., MOREIRA, M. V. “Conditional Synchro-

nized Diagnoser for Modular Discrete-Event Systems”. In: 14th Interna-

67

tional Conference on Informatics in Control, Automation and Robotics
(ICINCO), v. 2, pp. 88-97, Madrid, Spain, 2017.

[22] VERAS, M. Z. M., CABRAL, F. G., MOREIRA, M. V. “Distributed Syn-
chronous Diagnosability of Discrete-Event Systems”, IFAC Papers Online,
v. 51, n. 7, pp. 88-93, 2018.

[23] SANTORO, L. P. M., MOREIRA, M. V., BASILIO, J. C. “Computation of
minimal diagnosis bases of Discrete-Event Systems using verifiers”, AU-

TOMATICA, v. 77, pp. 93-102, 2017

[24] MOREIRA, M. V., JESUS, T. C., BASILIO, J. C. “Polynomial time verification
of decentralized diagnosability of discrete event systems”, IEEE TRANS-
ACTIONS ON AUTOMATIC CONTROL, v. 56, n. 7, pp. 1679-1684,
2011.

[25] DEBOUK, R., MALIK, R., BRANDIN, B. “A modular architecture for diag-
nosis of discrete event systems”. In: /Ist IEEE Conference on Decision
and Control, pp. 417-422, Las Vegas, Nevada USA, 2002.

[26] CONTANT, O., LAFORTUNE, S., TENEKETZIS, D. “Diagnosability of dis-
crete event systems with modular structure”, Discrete Event Dynamic
Systems: Theory And Applications, v. 16, n. 1, pp. 9-37, 2006.

[27] CABRAL, F. G., MOREIRA, M. V. “Synchronous Decentralized Diagnosis of
Discrete-Event Systems”. In: 20th World Congress of the International
Federation of Automatic Control, pp. 7025-7030, Toulouse, France, 2017.

[28] CABRAL, F. G. Synchronous Failure Diagnosis of Discrete-Event Systems.
Tese de doutorado, Programa de Pés-Graduacao em Engenharia Elétrica
- COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 2017.

[29] YOO, T.-S., LAFORTUNE, S. “Polynomial-time verification of diagnosabil-
ity of partially observed discrete-event systems”, IEEE Transactions on
Automatic Control, v. 47, n. 9, pp. 1491-1495, 2002.

[30] MOREIRA, M. V., BASILIO, J. C., CABRAL, F. G. “"Polynomial Time
Verification of Decentralized Diagnosability of Discrete Event Systems"
Versus "Decentralized Failure Diagnosis of Discrete Event Systems": A

Critical Appraisal”, IEFE Transactions on Automatic Control, v. 61, n. 1,
pp. 178-181, 2016.

[31] “Christiani sharpline - automation technology”. [online|. Available http://www.
cstt.in/AutomationTechnology.html.

68

http://www.cstt.in/AutomationTechnology.html
http://www.cstt.in/AutomationTechnology.html

[32] REIS, L. N. R., MOREIRA, M. V. “Optimal Selection of Subsystems for
Synchronous Diagnosis”. In: 15th Simpdsio Brasileiro de Automacgao In-
teligente, pp. 1466-1471, Rio Grande, Brazil, 2021.

[33] “Python Code - developed during this work”. [online|. Available https://
github.com/LCA-UFRJ/0OtimalSelectionSD.

69

https://github.com/LCA-UFRJ/OtimalSelectionSD
https://github.com/LCA-UFRJ/OtimalSelectionSD

Appendices

Automata for Examples and

In this appendix, we present all computed verifier automata for Examples and

.4 In chapter [f] some of those automata were presented in order to illustrated the

examples, but for the sake of comprehension, they were presented here.

b

b b
_gI\OOOON;O |LC|\1000N;1 'O—US\IOOON;Z i [oo10n;0 | <

[|e

W ho { 1010N;1 254 10102 |

O1R1 h l—‘ O1R1

’J o 1 h

[o111nv;0 F—= 1111N;1 q#loomv;?) | [1mv;2 mN;S |

\

Q

of af J1R1
d d d 94 d
_C|\0422F;0 |a_g\1422F;1 '—(I\1422F;2 Ig—q\1422p;3 1111N;3]———\

O1R1 1R1 af

n h L h h h n h

d d d d g1

(|\0424F;0 M1424F;1 '—g|\1424F;2 |—CP1424F;3 | [220vi1
O1R1 O1R1

c

d

O1R1

4
—CI\ 3423F;3 e

d d d
0423F;0 l“—Q\MQBF;l @1423&2 |_£|\1423F;3 |
O1R1 01R1

&

c

2211N;2

O1R1

[3211N:3

[[4211N:4

01

01

Figure 1: Verifier computed with module {1} from Examples 4.3 and , G

70

b

b

J1R2

_C()OOON;() @1000]\/;0 | [1oton;0] oo10n;0 | = { 3211v;2 |¢3211N;3 |
01R2 9
h
or
d l d O2R2
omri - rmr] d (v | (o]
g 9 O1R2
O1R2
O1R2 O1R2 O1R2 O1R2
d c
O lgf a,\ dﬂ | a~ ~
— o422F;2 =l 1422F2 | | o111v;2 2211N;2 L 211N, 1] 421102
of O1R2 ct
O1R2 71 o -
O'f O1R2 O1R2
O2R O2R2 O2R2 y
NOvOd NO O O (e e
0422F;3 1422F;3 0111N;3 1111N;3 2211N; 3
| 1 | 1 = | -] —
O'f
(&
d
0 faY, 0 fay

_.| 3423F;0 F—{ 0423F;3 | 1423F;3 |

Figure 2: Verifier computed with module {2} from Examples and , G

=

b

Qroooozv;o JLCFIOOON;O |1 [1oton;1 [oo1on;1 | < — 32113:1 |

h g
h

af

h
! S
[[0a22r;1] 142271 |

(o 1 =[Nt P{zenn g ——] 2N |
o |
h h

h

h
[3423F;1 F— 0423F;1 |—>{ 1423F;1 | q10424F; 1 Jrqjmzw; 1|

€

Figure 3: Verifier computed with module {3} from Examples and , G3.

71

k=l

b
Q[\OOOON;O JLCFwOON;o 1 [1o10n5;0 J<—] ooton;o | < | 3211N; 1
h

h

h

of h
AT A~ U |
C[\0422F;1 w21 | [onn =N P 2enn i {21 |
Lo |

e

d d g
CF3423F;0]6—CFo4z3F;o #14231«“;0 |
t e 1

Figure 4: Verifier computed with module {4} from Examples and , Gy

b b b

b
CFUUOUN:(J,U JqumoUN;l:u J&qlmoosv;z:o J—”‘-m—qlmuuw;:s:u] oine g

i — 1010N; 1,0 f—f{ 1010N:2:0 A 1010330 | 3201N:3:2 | mq? 3211N:3:3 |
T

O2R2
h h a T"lm P
h b \ 00N 00 Jt—— 521N 31 BN 13
)]
a I1R1 a h . o P Yoim
OLLLN;0; 1 TN L 1 TIIIN; 231 N3 N T e)

| | '
oy o5 ¢
d d d oy d oy o1 Lt o1
O e o] O3 Y (@ - .
[0a22p;01 [1422F 151 = 122Fi20 PR a2eF31 | [2208i510 22020 FRE 001N 30|
[] 1Rz o1 12
oime 01R2 | i o1RL
01 |01R2 01 R2
o1 R2 o1}
~

~
rrmumo;z B I o = S J:l'_rzzlw;lzz | s — 2211N;2;2 FHEo1IN 32|
| | v f [l

o1

I TR | [ST | N e S e
2F;0;2

d
| o2 ol m2ere | B[uzerze FRAL 2232
I : I 1R I I
O1R2 O1R2 o o TR
O2R2 O2R2 2R2 o1 o 2R2 l 2R2
~N— O ~__ O S @} N O O
O11IN:0:3 H——] 111IN: 138 o] 111IN:23 | 2211N;1;3
d O1R2 ! | I 01 R2 O1R2 7irg
om 2p2.d 7R T T | ?
:| 0422F;0;3 = Li22F; 13 1:122t':2;34|—”'-”-‘—c|q71r1221~‘:3;3 s 22118533
.
ﬂgm Oapa,d O2r2,d oap2,d

%zsn 0.3 S TsE L 3%23}": %3 - 1423F;3:3 |
Figure 5: Verifier computed with modules {1,2} from Examples and , Gi?.

72

b b b
{00005 0; ())—CHU()()N, 10 Ia—u_g?()()()N, 2,0/ [ooton;0:1] {3211 3:1
[e
wo ! h {1010n; 1; 1} 5410108 2 1] g
}2/ I i) i)
J1R1 h O1R1

@N'A;l

c

01R1 l h
0111N;0; 1 F—={1111N; 151 qOOON;S; of [rnn;2n m\/; 3;1]
I \
\ h
C1R1

af of

no [P h " h g h g
o1
(I\0424F;0;1 }a—g?424F;1;1 Ql\mw; 21 |—((\1424F; 31 [220183; 151 |<——.@N;2;1
O1R1 O1R1 O1R1
e O1R1

L—+[3423F;3;1 Je—sl0423F; 0,1 |oa1423F;1;1 IET' 1423F;2; 1 IE?I 1423F;3; 1 | |2211N; 3,1«
(&

Figure 6: Verifier computed with modules {1,3} from Examples and , Gi3.

b b b
[0000 0; O'—CHOOON, 1,0 |0_—1Pg?000N, 2,0/ [0010;0;0} {3211¥7;3:1
| a
h I J1R
h h - {10107; 1; 0 1010 2,0
J1R1 h 01R1

@N; 41

01R1 l h
[o111; 0;1 F={1111N; 151 qoomv;s;o[|1111N;2;1m]_\7;3;0|
I \
Kun

7 1111N;3;1]———\

C

af of
d d

d f d
_(]\0422}«“;0; 1 |a_g?422F; 1;1 |—C|\1422F; 2:1 |—C|\1422F; 3;1
T1R1 O1R1

01

2211N;1;1 2211N;2;1

O1R1

c O1R1

d d d d d
J|\3423F;3;0 'S—QEZLQSF;(];() I”’—(I\MQSF; 1;0 I—Q?423F;2;0 IJI\MZ?)F; 3;0 I 2211N;3;1
[.] O1R1 O1R1

Figure 7: Verifier computed with modules {1,4} from Examples and , Gt

@

73

b

~

»0000N;0;0

1000800 |

0'11?2

lmN;O;ll%N;O;li <

af

h

!

|

h

h

—Joaz2r; 11 Ffianor 11

el211N; 151

O1R2

O1R2

9f

SV =" IR RER TS
|

O1R2

'

O1R2

O1R2

—|0422F 21 |—_>|1422F 21 |

O1R2

O2R2

N

O1R2

9f

O1R2

af

O2R2

O2R2

N an o
o111 21 =iy 21 i 21 |
| |

{3211N; 21|

O2R2,
qgm 1N;3;1 |

O1R2

O2R2

|3211N 1;1]

¢211\ 3;1

O1R2

L [1211N; 151 |f42118; 2,1

O1R2
4

2R2

~_ O
[0422F;3; 1 |7—={1422F3:1 |

9s

Al Loee Loy
0111, 3; 1 {1111 3,1 |=[2211N; 3,1 |
|

O2R2

O2R2

. O O
L3423, 0,1 F—{0423F;3;1 |—[1423F;3;1 |

Figure 8: Verifier computed with modules {2, 3} from Examples and , G%.

74

J1R2

b b m

_Q)OOON;O;O :0; N;0; :0; < {3211 Q3211N4|

a

C\ l d \) Y o O2R2 :

woa22F; 151 |azer; 1] Joinin; 11 =i 11 feeeeonin 11 |3211N 1;1] Nd2118;3;1

of | O1R2
O1R2
01R2 O1R2 01R2 O1R2
(&

\a, ﬂ laf ﬂd N | a~n o

——J0422F;2; 1 |—_>l1422F 21| o1 o1 —{1111n; 21 2011 21 L—sl4211N; 151 ld211V; 251
9f | | O1R2 .
O1R2 o1 1o .
O1R2 O1R2
d |9f J
(&
Wa' w6 [Cye Cyere
[0422F;3;1 fz—{1422F 3;1 | |0111N 3; 1|——|1111N 3; 1|—>|2211\ 31—
as |

c

d
—>‘3423F;0:0 F—|

Figure 9: Verifier computed with modules {2,4} from Examples and , G#.

b b
gr\()OOON;O; OJLCﬁOOON;O;(H [1010N; 1; 0]+ 0010N; 1; 0} = —321 [3211N; 1; 1|
h g
h
h
of h
| A

[0a22F;1; 1 —+[1422F;1; 1] F)lllN;1;1J—a>r1111N;1;1JU—1>r2211N;1;1JC—>|71@

Loy |

[3423F; 10 F—{0423F; 1;0 |—{ 1423 F; 10|
L e |

Figure 10: Verifier computed with modules {3,4} from Examples and G

75

J1R1
0000\ 0; nng]—q\Toom 1,0;0 1000
h h o
h 0 , " 0010N;0;0;1 [«
)]

1000 0] gine
g \
—{1010N: 1:0:1 5= 10108 2:0:1 R 10107 21 | (72qu 3211
T

022

TUL R2
11]

rrom.\?:u:];l TN 1 1 el TN 2

1
of af |

o a1
ay,

0422F;0: 51— 1251 el PR unrsnl | [22uvinn a0
I L I

T1R2 I— 01 R2
N N
r|ﬁ11N:n:2;1 H==] nunvin21 e

O1R1

o1 |o1R2 mnz

22117 [321

or| | of o5
O1R2 O1R2 T | o,
e o
1 I3023F3,001 f—— 0122021 | mfuzrnat | Sefumrss PP 2F321
| ¢ | IIR1 | |
oire o112 L o
O2R2 O2R2 O2R2 2R2
~_ (O ~ O 2 e (@)
O11LN; 031 H——[1IIIN: 1811 e 111IN; 2301 ——
[| o
O1R2
of I1R2 o TiR2 oy 01 R2 O1R2
O2R2 O2R2 O2R2 / oR2 / O1R1]|
qlmzzp;o;s;l JqumzzF;l:s:l J&%nw:z;m < 1422F; 3;3; 1%1111\' 3:3; 1J—¢zm\ 331 |
e
O2R2 O2R2

O2R2

QOHSI- 0314]—%1% 1 BLl—q%QM 2314|—m—q\171231< 331 |

Figure 11: Verifier computed with modules {1,2,3} from Examples E and
Gz,

J1R2

b b b b
Chonove, U;MUON; 1 o;oglﬂq\ﬁoow; 2;0:04]—”'-5-‘—%004\": 300 |
21 | nqu 3211N.

h No1.0. e
] N —|T010A*, 1,0:0 5 10108 2:0:0 1010N:3;0:0_|

h h rﬂll'(z 9282
0010N;0:0:0_Jet— 3211N:3; 131
h c fg O1R2
O111N:0;1; =TIV L I; L1 e BN s EPTERN
[
o o c
d d(\' o] o 4 o o 1
0422}‘;0:41:%—“-4 [122F; 11 e TaoaF 211 R 1422F::T;1;Q1:|— 2UN LT e 00N; 211 PR oIN85 1
|] O1R2 O1R2
O1R2 712 1R
| o1 |O1R2 an
~ ~
r'ﬁllN:(]:?;lgl—u—;lillN;I:Z;lglmﬂ 22117 TI1IN;3;2:1

d a o o d 1
Y . I o e} Tl O
1 I3423F3:0,0 J——q0a22F0:2:1 | -::|7422F;1;211 | Leltazr 20 P& 1422F; 3,21 |
| | |

@ O1R1

TiR2 1R2 L
o252 T2R2 u?z ’ ml
N O ~_ O g @}

OLIIN 031 H—— 1IN 1351 m—]ﬁuv
I

O1R2

d oy 01'7 d , O1R2
O2R2 O2R2 (72212
. 7/
:| 0422F;0;3:14|—q‘1722r 1;3; 4|—q‘174221' 2:3:1

e

02ﬂ2 Ozm O2R2 ﬁmz

@)um 0:3; UJ—quUF 1:3; UJ&G]-UJF 23; (JJ—"m—qlM‘?JF‘ 330 |

Figure 12: Verifier computed with modules {1,2,4} from Examples
G4,

and

76

b b

b
0000NN'; 0; 0; o}iq;ooozv; 1;0;0 q?ooozv: 2;0;0 0010N;0; 1;0| L 3211N;3;1;1
owvo ool Sy ool [wiovo] o

| |a

h

n h ; 11010N;1; 1;0 {1010, 21,0

O1R1 h O1R1

01 R1 l h
0111N;051;1 |L’|1111N; 1;1;1 fJ q(]UON:B;O;()l |1111N; 2;1; lm;i’); 1;0|
| \
h

@N;Al;l;ll

o af J1R1
of h
422F:0;1; 1 |F4{1422F:1;1; 1 1422F;2;1;1 1422F;3;1;1 1111N;3; 151
o1
2211N;1;1;1 2211N;2;1;1
O1R1
e O1R1

L—{3423F,3;1;0 |6—>|0423F;O; 1,0 el 1423F1;1;0 |51—RI>|1423F; 2,10 |51—RI-|1423F;3; 10 | 2211N;3;1;1 |01
) , ,

Figure 13: Verifier computed with modules {1,3,4} from Examples and ,
Gt

d
() h {) of %)
Figure 14: Automaton G‘{,i}, whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from

Examples and .

d
() h {) of %)
Figure 15: Automaton G‘{Z }, whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from

Examples and .

h

Figure 16: Automaton Géi }, whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from

Examples and @

77

d
C) h () of %}
Figure 17: Automaton G%’z} , whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from

Examples and [1.4]

h

Figure 18: Automaton G%’g}, whose generated language is the prefix-closure of the
sequence, that violates the diagnosability, associated with the selected path, from

Examples and .

[T o [EN

Figure 19: Automaton that represents G2 A = G{l}HG{z} of Example (4.3 and .

[]

Figure 20: Automaton that represents G3 A G{I}HG{g} of Example |4.3 and .

G000 0} [EN

Figure 21: Automaton that represents Gy, {1} % }||G§{/4} of Example and .

[T} [0

Figure 22: Automaton that represents GY; {2} G{2}||G{3} of Example [4.3 and .

~ [TV o [EoT

Figure 23: Automaton that represents Gé’p{Q} = G%}HGy} of Example [4.3 and .

v —

Figure 24: Automaton that represents G4 A8 = G{3}HG{4} of Example (4.3 and .

78

[T} o]

Figure 25: Automaton that represents G%}p{l’g} = G%Q}HGE)’} of Example and

X

G000 0} [EN T

Figure 26: Automaton that represents G%}p{l’z} = G%’Q}HGy} of Example and

A4

Figure 27: Automaton that represents G%}jl’g} = G%’S} HG&4 } of Example and

A4

79

	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Discrete Event Systems
	Languages
	Language Operations

	Automata
	Operations on automata
	Automata with partially observed events

	Final Comments

	Diagnosability and Synchronous Diagnosability of Discrete Event Systems
	Diagnosability of DES
	Centralized Synchronous diagnosability of DES
	Final comments

	Optimal Selection of Subsystems for Ensuring Synchronous Diagnosability
	Method for the Computation of all Minimal Subsets that Ensure Synchronous Diagnosticability
	Results and Discussions
	Searching for minimal and minimum SDMB in a system with four modules.
	Searching for minimal and minimum SDMB in a system with eight modules.

	Final Remarks

	Conclusions
	Future works

	References

