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O problema da diagnose de falha em sistemas a eventos discretos consiste na

capacidade de se detectar e isolar a ocorrência de eventos de falhas. Neste trabalho,

são propostos múltiplos algorítimos para, a partir da rede de Petri do sistema a

ser diagnosticado, criar uma rede de Petri diagnosticadora rotulada com prioridades

cujas transições são rotuladas apenas por eventos observáveis e cujos estados alcan-

çáveis possuem informações necessárias para que o diagnosticador possa ter certeza

da ocorrência de falha. Assim como em trabalhos em anteriores, supõe-se que a rede

de Petri do sistema a ser diagnosticado não possui ciclos envolvendo lugares e tran-

sições não observáveis. Além disso, sob uma hipótese mais restritiva envolvendo os

estados alcançáveis da rede de Petri diagnosticadora, o diagnosticador proposto terá

uma estrutura que não terá crescimento inde�nido em decorrência das observações

de eventos, fazendo com que o diagnosticador aqui proposto seja capaz de executar

o diagnóstico online de classes de redes de Petri que trabalhos anteriores somente

são capazes de diagnosticar com estruturas passíveis de crescimento inde�nido para

determinadas sequências de observações de eventos.
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The problem of fault diagnosis of discrete event systems concerns the capacity to

detect and isolate the occurrence of fault events. In this work, we propose multiple

algorithms to create a labeled priority diagnoser Petri net from the Petri net of

the system to be diagnosed. The diagnoser Petri net transitions are labeled only

by observable events and its reachable states have enough information to allow

the diagnoser to be sure about the fault occurrence. As in previous works, we

assume that the Petri net of the system to be diagnosed does not possess cycles

involving places and unobservable transitions. In addition, under a more restrictive

assumption regarding the reachable states of the diagnoser Petri net, the diagnoser

will have a structure that does not grow inde�nitely due to event observations,

making the diagnoser proposed here able to execute the online diagnosis of a class

of Petri nets that previous works were only able to diagnose with structures that

are likely to grow inde�nitely for speci�c sequences of event observations.
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Chapter 1

Introduction

Discrete event system (DES) is a special class of systems whose state space is discrete

and the dynamic evolution is ruled by the asynchronous occurrence of events [1].

This type of system can be used to model various applications, such as manufacturing

systems, operational systems, robotics and logistics.

Among the formalisms used to model DESs, automata and Petri nets are the

most commonly used [1, 2]. The states and events of DESs are directly represented,

respectively, by the nodes and arcs of automata, whereas Petri nets have two types

of nodes, places and transitions. The places are associated with numbers of tokens

whose possible combinations model the states of the DES, whereas the transitions

represent the events. The structure of automata facilitates the analysis of the behav-

ior of the DES it models, but it cannot be used to model DESs with in�nite numbers

of states. In contrast, the analysis of a DES modeled by a Petri net is harder, but

since its structure uses places and tokens to represent the states of DESs, it can be

used to represent a DES with an in�nite number of states.

A few decades ago, Lin [3] and Sampath et al. [4] introduced the notion of

fault diagnosis of DESs, where it is shown how to infer the occurrence of some

unobservable events, the so-called fault events, through the observation of other

events that are observable. This notion has shown to have great potential due to

its capacity to allow the detection of the occurrence of unobservable events without

the need to directly detect them, thus, reducing the cost of implementing sensors for
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the fault events. As DESs become more complex, the detection of their fault events

becomes less straightforward, increasing the di�culty of doing the fault diagnosis

of particular systems. In order to solve this issue, recent works address the general

problem of fault diagnosis of DESs, where each work solves the problem for a class

of DESs.

The problem of fault diagnosis can be divided into two main problems: diagnos-

ablity and diagnosis. The diagnosability problem with respect to a given DES is

associated with the capacity to assert whether it is possible of infer the occurrence

of a fault event of the DES, and the diagnosis is related to the construction of an

online diagnoser that follows a procedure in order to determine the occurrence of

fault events during the DES operation.

Since the structure of automata are simpler, several works studied the diagnos-

ability and the online diagnosis of DESs modeled by automata have been proposed,

such as [4�13]. Although a large number of aspects regarding fault diagnosis are

approached by those works, their contribution are limited to DESs modeled by au-

tomata, which means that their �ndings are not applicable to DESs that can only

be modeled by more complex models such as Petri nets.

The complex structure of Petri nets, on the other hand, allows the study of DESs

that contain in�nite numbers of states. In this regard, some works that approach

the problem of diagnosability and online diagnosis of DESs modeled by Petri nets

appear in the literature [14�23]. Although some of these works assume that the

Petri net model only have a �nite number of states, they are still relevant due to

the known space explosion when using automaton models.

In [14], necessary and su�cient conditions for the diagnosability and K-

diagnosability of bounded and unbounded Petri net systems based on event ob-

servations are presented. It is also proposed an algorithm that is able to verify

language diagnosability using linear programming and a veri�er Petri net, which

is constructed from the Petri net system whose diagnosability is being tested. Al-

though [14] contributes to the studies of diagnosability of DESs modeled by Petri

2



nets, its scope regarding online diagnosis is rather limited.

Liu et al. (2017) [15] claims that all of the problems of diagnosability, K-

diagnosability and online diagnosis for bounded Petri nets can be solved by the

on-the-�y construction of two graphs, named fault marking graph and fault mark-

ing set graph. The nodes of the latter enumerate the set of states that are consis-

tent with the events that are observed on-the-�y, being each node associated with a

number that indicates the fault occurrence. Additionally, to the whole graph there

corresponds a value that represents the maximum length of the sequences of nodes

that are associated with the occurrence of the fault event. Those components al-

low the solution of the aforementioned problems without the need to completely

construct the fault marking set graph.

In [16], it is proposed an online diagnoser for ordinary Petri nets that is based

on the observation of the number of tokens of some of their places. In addition, an

algorithm capable of de�ning the minimal set of places that need to be observed in a

Petri net for the diagnosis to be possible is also proposed in [16]. The approach of [17]

for the online diagnosis is similar to [16] in the sense that it also uses the observation

of the number of tokens of some places of the Petri net. Nevertheless, [17] also takes

into account partial observation of event occurrences, and combines both types of

observations in order to diagnose the occurrence of fault events in interpreted Petri

nets using the solution of linear programming problems. It is worth mentioning that

among the works cited here, [16] and [17] are the only approaches that consider the

observation of tokens of some places. All of the others, including the one considered

in this dissertation, only rely on the observation of event occurrences.

In [18], it is proposed an online diagnoser that stores all of the states that a Petri

net may reach that are consistent with the observation of a sequence of events, where

each state is associated with labels that indicate the occurrence of fault events. Even

though [18] does not impose any restrictions regarding the Petri net that models

the DES, the number of states of the diagnoser consistent with an event sequence

observation may be either in�nite or grow with respect to the length of the observed

3



sequence; the former would cause the online diagnoser to attempt to store an in�nite

number of states, whereas the latter would cause the online diagnoser to compute an

undetermined number of states as the observed event sequence grows, which would

slow down the online diagnosis process after each event observation.

Inequalities that are obtained from the Petri net together with the Fourier-

Motzkin elimination method are deployed in [19] and [20] to execute the online

diagnosis of Petri net systems. If, on one hand, the use of inequalities increases the

speed of the fault events diagnosis, on the other, the online diagnosers proposed in

[19] and [20] are only suitable to acyclic and reversible Petri nets, respectively.

The approaches presented in [21] and [22] use online diagnosers that detect the

occurrence of fault events by solving linear problems, whose variables and constraints

are de�ned by the Petri net systems. They both require that the Petri net to be

diagnosed does not contain any cycles of unobservable transitions. Furthermore, the

online diagnosers presented in [21] and [22] require that each observable event must

not be associated with more than two transitions of the Petri net.

Finally, [23] uses the notion of basis markings and justi�cations to implement the

online diagnoser associated with the Petri net systems. The work proposed an online

diagnoser for Petri nets that do not contain cycles of unobservable transitions and a

more optimized online diagnoser for bounded Petri nets. Although [23] presents the

computation of a general online diagnoser, the proposed diagnoser must store both

the basis markings and justi�cations that are consistent with the event observations;

therefore, similar to what may occur with the online diagnoser proposed in [18], the

number of basis markings and justi�cations may grow inde�nitely as the observed

event sequence increases, which may slow down the online diagnosis computation

process required after each observation.

1.1 Objective of this work

The aforementioned works sometimes fail to diagnose the fault occurrences of di-

agnosable DESs modeled by labeled Petri net using limited structures. In order to

4



increase the class of labeled Petri nets systems whose fault events can be diagnosed

with limited structures, we propose, in this work, a new approach for the online

diagnosis of Petri net system that consists of using the Petri net to be diagnosed to

create a diagnoser Petri net whose structure is a λ-free (no unobservable transitions)

labeled priority Petri net that is able to replicate the behavior of the original Petri

net. Furthermore, the states of the diagnoser Petri net that may be reached with the

observed transition sequences of the original Petri nets contain enough information

to allow the diagnoser to be sure about the occurrence of the fault events of the sys-

tem. It is worth remarking that, in order for the diagnoser Petri net to be built, it

is required that the Petri net system does not have any cycles of unobservable tran-

sitions, which is a common assumption among works on online diagnosers of DESs

[15, 21�23]. One of the advantages of the proposed diagnoser Petri net is that, for

some classes of Petri net systems, its structure does not grow inde�nitely with the

growth of observed event sequences, as it is the case of all existing diagnosers of

previous works that can diagnose these classes.

Notice that it is possible for observable events of the diagnoser Petri net to be

associated with multiple transitions, which may cause one event observation to be

able to generate multiple possible states, which requires the analysis of multiple

states in order to determine the fault occurrence. In order to circumvent this issue,

we propose an algorithm that modi�es a previously obtained diagnoser Petri net by

replacing those transitions that can model the same event occurrence with new ones

in order to make the diagnoser Petri net always generate only one possible state

after each event observation. Finally, it will be shown that, under an additional

assumption, it will be possible to move to the o�ine computation all modi�cations

on the diagnoser Petri net to solve the aforementioned problem, therefore ensuring

that the diagnoser Petri net will be able to diagnose the fault occurrence of a Petri

net system without the need of a structure that grows inde�nitely with the event

observations. It is worth remarking that our approach will also be able to diagnose

the fault occurrence of Petri nets where the aforementioned assumption does not hold
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by doing the modi�cations on the diagnoser Petri net during the online diagnosis.

1.2 Dissertation structure

This work is organized as follows. Chapter 2 presents a review on DESs, the struc-

tures of the Petri nets that will be considered in this work and an algorithm that

�nds the coverability trees of Petri nets. In Chapter 3, we explain with more detail

the de�nition of fault diagnosability and diagnosis of DESs and Petri net systems,

and we brie�y explain the online diagnoser proposed in [23]. After that, in Chapter 4

our approach for online diagnoser of Petri net systems using a λ-free labeled prior-

ity diagnoser Petri net is presented. Chapter 5 summarizes all of the contributions

of this work to the problem of online diagnosis of Petri net systems and indicates

possible future directions that may be taken from this work.
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Chapter 2

Theoretical background

In this chapter, we present the basic concepts of DESs and the structures of the

Petri nets that are used in this work. Additionally, we present the algorithm that

obtains the coverability trees of Petri nets. Section 2.1 introduces the main concepts

of discrete event systems and how it operates. In Section 2.2, we present languages

and their operations and properties, which are commonly used to describe the event

occurrences of discrete event systems. After that, in Section 2.3, we present all

the Petri net structures and their properties that are used in this work, where the

structures that we use are the following: Petri nets, marked Petri nets, labeled Petri

nets and labeled priority Petri nets. Finally, in Section 2.4, we present an algorithm

for the construction of the coverability tree of Petri nets.

2.1 Discrete event systems

A discrete event system is a system whose states are described by a discrete set and

the dynamic evolution is ruled by event occurrences, i.e., a transition from one state

of the system to another occurs given the occurrence of an event [1]. Due to the

nature of DESs, two main concepts exist in this type of system: states and events.

The states of a DES, which are contained into a discrete set, are able to represent

the system current situation through symbols. For example, a switch that can be

turned on or o� may have two states, one that models that the system is on, and
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another one that models that it is o�. Those states can be grouped into the set of

states X = {On,O�}. Although in this example the state set has two states only,

the set of states of a DES may contain in�nite states, such as an in�nite queue,

whose states may be modeled by the number of occupants, which may vary from 0

to in�nity.

An event, on the other hand, is associated with some occurrence that may cause

a state of the DES to change. Regarding the example of the switch, the action of

someone pressing the switch may be considered an event labeled by σ. If someone

were to press the switch while its state is On, its state would change to O�. Notice

that the change of state from O� to On may also be caused by the occurrence of

event σ. Thus, when it occurs, the same event may be able to cause di�erent state

changes on the DES. In the DESs considered in this work, all events will be presumed

to be instantaneous and their occurrence will not depend on time; thus, the notion

of the system dynamics being ruled by time, as usually used in time-driven systems,

will not be used in this work, since an event-driven approach, where the dynamic of

the system is described by the occurrence of events, will be the approach adopted

here.

Although DESs are based on a discrete approach, as illustrated by the example of

the switch, most systems, including time-driven systems, can be modeled by a DES

given the correct abstraction. Therefore, analyzing tools developed for DESs can be

bene�cial to all kinds of systems, which motivates the ongoing study on DES. Those

studies are mainly developed based on the two kinds of event driven formalisms:

Automaton and Petri net. Although the approach of this work will be based on

Petri nets, it will also use the concept of language, which is commonly regarded

in DESs studies with the aim of listing all event sequence occurrences during the

system operation.
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2.2 Language

A language is de�ned over a set of events Σ and is a set of �nite event sequences

constructed with the events of Σ [1]. For example, if Σ = {a, b, c} is a set of

three events, L1 = {abc, bc, ca, cac} is a possible language of Σ that contains four

sequences composed by events of Σ. Although every sequence of a language must

be �nite, a language may contain an in�nite number of sequences. For example,

language L2 = {Every possible sequence of events of Σ that contains cb}, which is

also de�ned over Σ, has an in�nite number of �nite length sequences.

The length of a sequence s is denoted by |s| and a sequence that does not

contain events is referred to as an empty sequence, being denoted by ε; thus, |ε| = 0.

Sequences may also be concatenated into larger sequences; for example, sequence

s = abcd may be considered the result of a concatenation between sequences t = ab,

u = c and v = d in such way that s = tuv. The empty sequence when concatenated

with another sequence does not add any events to the sequence; for example, for a

sequence s, εs = sε = s. Finally, we will use sC t to denote that sequence s can be

obtained from sequence t by removing some events from t; for example, considering

sequences s1 = abcb, s2 = ab, s3 = bcb and s4 = bb, it can be inferred that s2 C s1,

s3 C s1 and s4 C s1.

The language that contains all �nite sequences that can be gener-

ated by Σ, including the empty sequence, is denoted by Σ∗ and is

named Kleene-closure of Σ. If Σ = {a, b}, for example, then Σ∗ =

{ε, a, b, aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb, . . . }. Notice that every lan-

guage L created from the events of Σ must satisfy L ⊆ Σ∗.

2.2.1 Language operations and properties

Since languages are sets of sequences, all operations de�ned over sets, such as union,

intersection and complement with respect to Σ∗ are applicable to languages. Besides

those operations, the following operations and properties of languages are also used

in this work:
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• Concatenation: Given two languages L1, L2 ⊆ Σ∗, the concatenation of L1

with L2 is L1L2 = {s ∈ Σ∗ : (∃s1 ∈ L1) ∧ (∃s2 ∈ L2)[s = s1s2]}.

Example 2.1. Let Σ = {a, b, c} be the set of events of languages L1 =

{a, c, ac, bca} and L2 = {ε, c}. The concatenation of both languages is L1L2 =

{a, c, ac, bca, cc, acc, bcac}.

• Pre�x-closure: Given a language L ⊆ Σ∗, the pre�x-closure of L is L, where

L = {s ∈ Σ∗ : (∃t ∈ Σ∗)[st ∈ L]}.

Additionally, a language L ⊆ Σ∗ is said to be pre�x-closed if L = L.

Example 2.2. Let Σ = {a, b, c} be the set of events of languages L1 = {a, c, ac, bca}

and L2 = {ε, a, b, ab}. Notice that L1 is not pre�x-closed, due to L1 being di�erent

than L1 = {ε, a, b, c, ac, bc, bca}. On the other hand, every pre�x of each element of

L2 is contained in itself, which makes L2 = L2. Therefore, L2 is pre�x-closed.

• Post-language: Given a language L ⊆ Σ∗ and a sequence s ∈ Σ∗, the post-

language L after s is

L/s = {t ∈ Σ∗ : st ∈ L}.

Example 2.3. Let Σ = {a, b, c} be the set of events of language L =

{a, b, c, bc, ac, abc, bac}. The post-language of L after sequence b is L/b = {ε, c, ac}.

• Natural projection: The natural projection, also known simply as projection,

is the mapping of a sequence from a larger set of events Σl to a smaller set of events

Σs. This mapping is represented by the function P : Σ∗l → Σ∗s and can be de�ned

by the following recursion:

P (ε) = ε

P (σ) =

 σ, if σ ∈ Σs

ε, if σ ∈ Σl\Σs
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P (sσ) = P (s)P (σ),∀s ∈ Σ∗l ,∀σ ∈ Σl.

Notice that the projection operation removes the events of s ∈ Σ∗l that do not

belong to Σs. The projection function can also be inverted, resulting in the inverse

mapping. The inverse function, named inverse projection P−1 : Σs → 2Σl , is de�ned,

for a sequence s ∈ Σ∗s, as P
−1(s) = {t ∈ Σ∗l : P (t) = s}. Notice that the result of

the inverse projection is a set of sequences generated by all possible additions in s

of events of Σl that are and not Σs.

The projection operation can also be extended to languages L ⊆ Σ∗l by applying

the projection operation on all sequences of L. Therefore, P (L) = {s ∈ Σ∗s : (∃t ∈

L)[P (t) = s]}. Likewise, the inverse projection of a language L ⊆ Σ∗s is de�ned as

P−1(L) = {s ∈ Σ∗l : (∃t ∈ L)[P (s) = t]}.

Example 2.4. Let Σl = {a, b, c} be the set of events of language L1 =

{a, b, c, ac, acbc}, Σs = {a, b} be the set of events of language L2 = {ab, b} and

P : Σ∗l → Σ∗s be a projection from Σl to Σs. By applying the projection P to L1, we

obtain P (L1) = {a, b, ε, ab}, whereas by applying the inverse projection P−1 on L2,

we obtain P−1(L2) = {{c}∗a{c}∗b{c}∗} ∪ {{c}∗b{c}∗}.

• Liveness: A language L ∈ Σ∗ is said to be a live language if (∀s ∈ L)(∃σ ∈

Σ) : (sσ ∈ L). In words, for every sequence s ∈ L, there is another sequence in L

that is s concatenated with an event σ ∈ Σ.

Example 2.5. Let Σ = {a, b, c} be the set of events of language L1 = {a}{c}∗ =

{a, ac, acc, accc, . . . } and language L2 = {a, ab, abb}. Notice that L1 is live, since for

every sequence s ∈ L1, sc ∈ L1, whereas L2 is not live, since there does not exist an

event σ ∈ Σ such that abbσ ∈ L2.

2.3 Petri net

One of the formalisms capable of representing DES is the Petri net. Its structure

allows a graphic representation of the relation between the states and events of a

great variety of DES, including DESs with an in�nite number of states [1].
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2.3.1 Petri net structure

A Petri net is a bipartite graph with two types of vertices that are connected by

weighted arcs: places and transitions. Places are represented by circles and they are

related to the Petri net states, whereas transitions are represented by line segments

and, in most cases, are associated with events. Arcs are represented by arrows and

they represent the relation between places and transitions; therefore, they never

connect vertices of the same type, i.e. the arcs of a Petri net can only connect

places to transitions and transitions to places. Notice that each arc has an associated

weight that represents the amount of resources that will either be removed from the

places where the arcs start or be added to the places whose arcs start from some

transition. Weights appears alongside each arc, if their values are greater than 1.

Formally, Petri nets are de�ned as follows [2].

De�nition 2.1 (Petri net). A Petri net is a quadruple

N = (P, T,Pre,Post),

where:

� P = (p1, p2, ..., pnP
) is the �nite set of places;

� T = (t1, t2, ..., tnT
) is the �nite set of transitions;

� Pre is a (nP × nT ) matrix whose element of the i-th row and j-th column is a

positive integer equal to the weight of the arc connecting place pi to tj, if such

arc exists, or zero, otherwise;

� Post is a (nP × nT ) matrix whose element of the i-th row and j-th column is

a positive integer equal to the weight of the arc connecting transition tj to pi,

if such arc exists, or zero, otherwise.

When an arc originates from a place pi ∈ P (resp. transition ti ∈ T ) and is

connected to a transition tj ∈ T (resp. place pj ∈ P ), pi (resp. ti) is an input
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p1 p2

2

t1

Figure 2.1: Petri net example.

place of tj (resp. input transition of pj). The set of input places of tj (resp. input

transitions of pj) are denoted by I(tj) (resp. I(pj)). Likewise, tj (resp. pj) is an

output transition of pi (resp. output place of ti), while the set of output transitions

of pi (resp. output places of ti) are denoted by O(pi) (resp. O(ti)).

Example 2.6. A simple Petri net graph is shown in Figure 2.1. Its structure is

de�ned by P = {p1, p2}, T = {t1}, Pre(p1, t1) = 2 and Post(p2, t1) = 1. Notice that

O(p1) = I(p2) = {t1}, I(t1) = {p1} and O(t1) = {p2}

2.3.2 Petri net markings

In order to represent the state that a DES modeled by a Petri net is currently in,

each place of the net is associated with a number of tokens, which are represented by

small dots inside their associated places. Each possible combination of the number

of tokens in each place is considered a single state of the DES, and whenever an

event occurs, a transition associated with it changes the number of tokens of places

according to the weights of the arcs that connect those places with the associated

transition.

The current number of tokens of a place p ∈ P is called place marking and

is represented by the function m : P → ZnP
+ , while the Petri net current state,

also known as current marking vector, is represented by the column vector #�m =

[m(p1),m(p2), . . . ,m(pnP
)]T . Notice that the current marking vector represents the

Petri net state, and thus, whenever the Petri net state changes, the marking vector

also changes. Therefore, the importance of a marking vector for the description of

the DES dynamic justi�es the de�nition of marked Petri net, as shown below.
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Figure 2.2: Marking Petri net example.

De�nition 2.2 (Marked Petri net). A marked Petri net is a quintuple

N = (P, T,Pre,Post, #�m0),

where:

� (P, T,Pre,Post) is a Petri net and

�
#�m0 ∈ ZnP

+ is the initial marking vector.

Example 2.7. By adding tokens to the places of the Petri net of Example 2.6, we

obtain the marked Petri net depicted in Figure 2.2, in which #�m0 = [2, 1]T

2.3.3 Petri net dynamics

In order to model the change of state caused by the occurrence of events of a DES,

the Petri net dynamic makes an enabled transition �re, changing the net current

state based on a set of rules that adds and removes tokens from places. A transition

t ∈ T is enabled whenever the current numbers of tokens of each place p ∈ I(t) is

greater than or equal to their respective arc weight connecting p to t. Thus, the

formal de�nition of enabled transition is as follows.

De�nition 2.3 (Enabled transition of a Petri net). A transition t ∈ T of a Petri

net N = (P, T,Pre,Post, #�m0) with the current marking vector #�m is enabled if the

following is true

(∀p ∈ I(t)), (m(p) ≥ Pre(p, t))

Given two vectors of the same length #�a and
#�

b , let #�a ≥ #�

b (resp. #�a >
#�

b )

denote that the i-th element of #�a is greater than or equal to (resp. greater than)
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the i-th element of
#�

b . Additionally, since Pre and Post are matrices, we may denote

the j-th column of matrix Pre as Pre(:, tj). Thus, another possible way to verify if

transition tj is enabled is by checking if each element of #�m is greater than or equal

to the corresponding element of Pre(:, tj), which is equivalent to checking whether

#�m ≥ Pre(:, tj).

Whenever a transition t ∈ T is enabled, it may �re, removing tokens from its

input places and adding tokens to its output places according to the weight of the

arcs connecting each place and t. Therefore, when t �res, the new number of tokens

of each input place pi ∈ I(t) is:

m′(pi) = m(pi)− Pre(pi, t),

whereas the new number of tokens of each output place po ∈ O(t) is:

m′(po) = m(po) + Post(po, t).

Thus, the new marking of each place p ∈ P of the Petri net, given that t has �red,

can be described as:

m′(p) = m(p) + Post(p, t)− Pre(p, t).

The new marking vector #�m′ after the �ring of t can also be described either by

matrices Pre and Post, or by the incidence matrix A = Post− Pre, as follows:

#�m′ = #�m+ Post(:, t)− Pre(:, t) = #�m+ A(:, t).

Finally, the fundamental equation that describes the Petri net dynamic evolution

after through multiple transition �rings is given by:

#�m′ = #�m+ A #�r k,

where #�r k is a column vector whose j-th component corresponds to the number of
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times transition tj has �red. Notice that #�r k can either represent transitions that

�re simultaneously or transitions that �re sequentially, the former requires that all

transitions in #�r k must be able to �re simultaneously, i.e. there must be enough

tokens in #�m in order to �re all transitions, whereas the latter requires a marking #�m

that enables the �rst transition of the sequence, and after that enables the second

transitions with the marking #�m′, which is generated after the �rst transition �res,

and so forth. In this work, we will assume that only one transition can �re at a

time.

Let r = t1t2t3 . . . tn be a sequence of n transitions enabled by #�m, i.e. t1 is enabled

by #�m, t2 is enabled by the marking generated after the �ring of t1, and so on. The

sequential �ring of the transitions of r starting from the marking #�m that results in

#�m′ is denoted by #�m[r〉 #�m′; #�m[r〉 is used to denote that the sequence r is enabled by

#�m, meaning that all transitions from r can �re sequentially starting from #�m.

Let T ∗ be all possible transition sequences that can be generated by the tran-

sitions of a set T . The set of all �nite sequences that are enabled in a Petri net

N = (P, T,Pre,Post, #�m0) is denoted by:

LT(N ) = {r ∈ T ∗ : #�m0[r〉}.

Notice that LT (N ) also contains the empty sequence of transitions, denoted by λ

and we can use r1Cr2 to denote that the the transition sequence r1 can be obtained

by removing transitions from the transition sequence r2.

A marking #�m is reachable in a Petri net N = (P, T,Pre,Post, #�m0) if there exists

a transition sequence r such that #�m0[r〉 #�m. The set of all makings that are reachable

from #�m0 in N , called reachability set, is denoted by:

R(N ) = { #�m ∈ ZnP
+ : (∃r ∈ T ∗)[ #�m0[r〉 #�m]}.

It is straightforward from the de�nition of R(N ) that #�m0 ∈ R(N ). In addition,

notice that the reachability set can be in�nite if there exists a transition sequence
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that, after �ring, does not decrease the number of tokens of any place of the Petri

net current marking and adds at least one token to any place, thus adding tokens

inde�nitely to the net.

Example 2.8. Consider the Petri net N of Figure 2.2. Notice that transition t1 is

enabled, since m(p1) = 2 ≥ Pre(p1, t1). If it �res, the new marking will be

#�m = #�m0 + Post(:, t1)− Pre(:, t1) = [2, 1]T + [0, 1]T − [2, 0]T = [0, 2]T .

Notice that LT(N ) = {λ, t1} and R(N1) = {[2, 1]T , [0, 2]T}.

2.3.4 Petri net operations and properties

The following Petri net operation and properties will be used in this work:

•T ′-induced subnet of N : given a Petri net N = (P, T,Pre,Post, #�m0) and a

subset of transitions T ′, the T ′-induced subnet of N is N ′ = (P, T ′,Pre′,Post′, #�m0),

where Pre′ = Pre(:, T ′) and Post′ = Post(:, T ′), with Pre(:, T ′) and Post(:, T ′) de-

noting the matrices composed by the columns of Pre and Post that are associated

with the transitions in T ′. The T ′-induced subnet N ′ is also denoted as N ′ ≺T ′ N .

•Bounded Petri net: a Petri net N is bounded if R(N ) is �nite, meaning that

all states of the Petri net can be enumerated. If R(N ) is in�nite, then the Petri net

is unbounded instead, rendering it impossible to enumerate all possible states.

•Deadlock-free Petri net: a Petri net N = (P, T,Pre,Post, #�m0) is deadlock-

free when the following is true:

(∀ #�m ∈ R(N ))(∃t ∈ T )[ #�m[t〉].

In words, every state has at least one enabled transition, guaranteeing that the Petri

net will always have an enabled transition during its operation.

•Acyclic Petri net a Petri net N is acyclic if it does not include a directed

circuit formed by places and transitions. Among the properties acyclic Petri nets

have, we will use the following two: (i) the positive elements of A are equal to the
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p1 p2t1

t2 p3

Figure 2.3: Cyclic, unbounded and
deadlock-free Petri net

p1 p2t1

p3

Figure 2.4: Acyclic, bounded Petri net
that posseses a deadlock and is the
{t1}-induced Petri net of the one

depicted in Figure 2.3

elements of Post, whereas the negative elements of A are equal to the elements of

−Pre, meaning that an element of Pre that is di�erent from zero is zero in Post and

vice-versa; (ii) given a Petri net current marking #�m and vector #�r k, which may have

components greater than 1 and satis�es the condition #�m + A #�r k ≥
#�

0 , then there

exists a transition sequence s ∈ T ∗ composed by the repetitions of the transitions

of #�r k, if they exist, such that #�m[s〉.

Example 2.9. Consider the Petri net N of Figure 2.3. As t1 and t2 �re sequentially,

tokens are added inde�nitely to p3, which means that R(N1) is in�nite and that the

Petri net is unbounded. The Petri net is also cyclic, since it is possible to describe

the cycle p1t1p2t2p1 from the net. Finally, since every marking of the Petri net

always has a token in either p1 or p2, there won't be a marking in which t1 and t2

are both not enabled; therefore, the Petri net is deadlock-free.

Let T ′ = {t1}. The T ′-induced Petri net N ′ of the net depicted in Figure 2.3 is

shown in Figure 2.4. Notice that t1 only �res once in N ′, moving the token from

p1 to p2. After the �ring of t1, no transitions are enabled by the current marking,

meaning that the Petri net has a limited number of reachable states and possesses

a deadlock; thus, the Petri net is bounded and is not deadlock-free. Finally, notice

that N ′ is acyclic, since there are no transitions connecting p2 to p1.

2.3.5 Labeled Petri net

A labeled Petri net is a Petri net whose transitions are associated with the events of

a set of events Σ. This addition allows us to de�ne the language L ⊆ Σ∗ generated

18



by the Petri net, in which every sequence s ∈ L is associated with a transition

sequence t ∈ LT (N ) that may be �red from the initial state of the Petri net. The

de�nition of labeled Petri nets is as follows [1].

De�nition 2.4 (Labeled Petri net). A labeled Petri net is a septuple

LN = (P, T,Pre,Post, #�m0,Σ, `),

where:

� (P, T,Pre,Post, #�m0) is a marking Petri net;

� Σ is the set of events and

� ` : T → Σ is the transition labeling function.

Since the �ring of a transition in a labeled Petri net is associated with the

occurrence of an event, whenever event σ ∈ Σ occurs, a transition t ∈ T , such that

`(t) = σ, �res as well. In this regard, we make the following assumption.

A1. If multiple transitions that are associated with a same event σ are enabled

and σ occurs, only one of the enabled transitions associated with σ �res.

It is worth remarking that Assumption A1 is usually made in works that use

labeled Petri net with multiple transitions labeled by a same event, as seen in [14, 17,

18, 23, 24]. A possible consequence of this assumption is that it becomes necessary to

determine which transition �red given that an event has occurred. Such a situation

will be referred to as an event con�ict, whose de�nition is inspired by the de�nition

of con�icts for simple Petri nets [2], as follows.

De�nition 2.5 (Event con�ict). Let LN = (P, T,Pre,Post, #�m0,Σ, `) be a labeled

Petri net, σ ∈ Σ an event of LN , #�m ∈ R(LN ) the current marking vector of LN .

An event con�ict is a triple 〈σ, Te, #�m〉, where Te = {t1, t2, . . . , tk} ∈ 2T is a set of k

transitions enabled by #�m such that (∀t ∈ Te)(`(t) = σ).
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The sequences of events of a labeled Petri net can be associated with sequences

of transitions by extending function ` : T → Σ into ` : T ∗ → Σ∗. The labeling

function ` can be further extended to ` : 2T
∗ → 2Σ∗ in order to associate a set of

sequences of transitions with a set of sequences of events. This extension allows

the de�nition of the pre�x-closed language L(LN ) composed of all �nite sequences

of events that can occur on a labeled Petri net LN = (P, T,Pre,Post, #�m0,Σ, `), as

follows:

L(LN ) = `(LT(LN )).

Given that the events of a DES are associated with occurrences within the sys-

tem, they can be classi�ed as events that can be observed and events that cannot

be be observed. This implies that an external observer can only acknowledge the

occurrence of observable events, missing the occurrence of unobservable events. In

order to divide these events, the set of events Σ is partitioned as Σ = Σo∪̇Σuo, where

Σo is the set of observable events, and Σuo is the set of unobservable events. Based

on that, we can de�ne the projection Po : Σ∗ → Σ∗o, which projects the sequences of

some language L ⊆ Σ∗ into Σ∗o in order to obtain the observed behavior. With that

in mind, the observed language of a Petri net LN is given by Po(L(LN )).

Since the transitions of a labeled Petri net are associated with events, the con-

cept of observability can also be applied to transitions. Thus, the set of transitions

T can be partitioned into T = To∪̇Tuo, where to and tuo are the set of observable

and unobservable transitions, respectively. In order to distinguish between the two

types of transitions, observable transitions are graphically represented by solid bars,

whereas unobservable transitions are represented simply by line segments. If a la-

beled Petri net is such that Tuo is empty, it can also be called a λ-free labeled Petri

net, since it only contains observable transitions.

Similar to the projection Po : Σ∗ → Σ∗o, it is also possible to de�ne a mapping of

the transition sequences of a set of transitions T into a set of observable transitions

To by using the mapping function PTo : T ∗ → T ∗o , which is refereed to as a transition

20



projection. The de�nition of a transition projection PT is similar to the de�nition

of natural projection of events in such a way that a projection PT : T ∗l → T ∗s of a

transition sequence r ∈ T ∗l into the set T ∗s is de�ned by the recursion:

PT(λ) = λ

PT(t) =

 t, if t ∈ Ts

λ, if t ∈ Tl\Ts

PT(rt) = PT(r)PT(t),∀r ∈ T ∗l , ∀t ∈ Tl.

Finally, the extension of transition projection to a set of transition sequences TS is

similar to the extension of natural projection on events, i.e., PT(TS) = {r ∈ T ∗s :

(∃s ∈ TS)[PT(s) = r]}.

Notice that the transition projection PTo : T ∗ → T ∗o can be applied to the set

LT(LN ) in order to obtain the set of all observed sequences of transitions s ∈ T ∗o . It

is not di�cult to see that the resulting set of sequences of transitions PTo(LT(LN ))

is such that `(PTo(LT(LN ))) = Po(L(LN )).

Example 2.10. Consider the labeled Petri net N = (P, T,Pre,Post, #�m0,Σ, `) de-

picted in Figure 2.5, where, Σ = {a, b, y, w}, `(t1) = `(t2) = a, `(t3) = y, `(t4) = w

and `(t5) = b. Additionally, the sets of observable and unobservable events of the

Petri net are Σo = {a, b} and Σuo = {y, w}, respectively. At �rst, both observ-

able transitions t1 and t2 are enabled. Since both are associated with event a, the

Petri net currently possesses the event con�ict 〈a, {t1, t2}, [1, 1, 0, 0, 0, 0]T 〉. In other

words, if the occurrence of event a is observed, then either t1 or t2 �res. If t1 �res,

for example, the token of p1 moves to p3, enabling transition t3 that is labeled by the

unobservable event y. Since y is unobservable, the �ring of t3 cannot be realized by

an observer, which means that the observer would not be able to directly infer if t3

has �red.
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Figure 2.5: Example of a labeled Petri net.

2.3.6 Labeled priority Petri net

A possible approach that may be used to solve the problem of event con�icts pre-

sented in Section 2.3.5 is to extend labeled Petri nets to labeled priority Petri nets.

This new structure allows the assignment of priorities between transitions associated

with the same event so that whenever the Petri net current marking enables those

transitions simultaneously, only the transition with the highest priority is allowed to

�re when its corresponding event occurs. The de�nition of labeled priority Petri nets

used in this work will be adapted from the de�nition of priority system presented in

[25], as shown below.

De�nition 2.6 (Labeled priority Petri net). A labeled priority Petri net is an octuple

LPN = (P, T,Pre,Post, #�m0,Σ, `, ρ),

where:

� (P, T,Pre,Post, #�m0,Σ, `) is a labeled Petri net;

� ρ ⊆ T × T is a set of pairs of transitions called priority relation.

Each priority relation is represented by the pair of transitions (t, u) ∈ ρ that indicates

that transition t has lower priority than transition u; therefore, if the Petri net

current marking has enough tokens to �re both t and u, only u would actually

be enabled. Based on that idea, the de�nition enabled transition, as presented in

De�nition 2.3, changes as follows.
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Figure 2.6: Example of a labeled priority Petri net, assuming the priority relation
ρ = {(t1, t2)}.

De�nition 2.7 (Enabled transition of a labeled priority Petri net). A transition

t ∈ T of a labeled priority Petri net LPN = (P, T,Pre,Post, #�m0,Σ, `, ρ) with the

current marking vector #�m is enabled if the following are true

(∀p ∈ P )(m(p) ≥ Pre(p, t)) and

(∀tu ∈ T\{t})(∃p ∈ P ) [(t, tu) ∈ ρ =⇒ m(p) < Pre(p, tu)]

In words, De�nition 2.7 states that for a transition t to be enabled, not only the

Petri net current marking must have enough tokens to �re t, but also the current

marking cannot allow any other transition tu that has higher priority than t to �re.

Example 2.11. By adding the priority relation ρ = {(t1, t2)} to the Petri net

presented in Example 2.10, we obtain the labeled priority Petri net depicted in

Figure 2.6. Notice that the new Petri net no longer has the event con�ict

〈a, {t1, t2}, [1, 1, 0, 0, 0, 0]T 〉, due to the fact that when both transitions t1 and t2 are

enabled, the priority relation (t1, t2) forces t2 to be the only enabled transition. Thus,

if event a is observed, then t2 �res.

2.4 Coverability tree of Petri nets

The coverability tree (CT) [2] of a Petri net is a tree whose nodes represent the

possible reachable states of the Petri net, and whose edges are arcs connecting those

states and represent transitions that may �re from their origin (or parent) states,
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changing the Petri net state to the destiny (or child) states. This tree allows us

to get a good grasp of the state evolution of a Petri net caused by the �ring of

transitions.

It is worth remarking that even though an unbounded Petri net has an in�nite

number of states, it is still possible to generate an associated CT with a �nite number

of nodes. In this case, whenever the number of tokens of a place p ∈ P grows

inde�nitely, the value of #�m(p) in the marking vector is replaced by the symbolic

marking ω, indicating that the number of tokens of place p can be as large as

required. The symbol ω has the following proprieties with respect to integers: n < ω

and ω + n = ω, ∀n ∈ Z. This means that a place p for which #�m(p) = ω will

always have enough tokens to enable any of its output transitions t ∈ O(p) since

Pre(p, t) ∈ Z+, which implies that ω > Pre(p, t). In addition, the Petri net dynamic

will not a�ect this place marking since ω + Post(p, t)− Pre(p, t) = ω.

Algorithm 1 presents a pseudocode for the construction of a CT for labeled

priority Petri nets, whose outputs are the matrices Nodes and Arcs. Each column of

matrix Nodes is formed with the marking vector of a node of the tree. Element (i, j)

of matrix Arcs corresponds either to the transition t ∈ T that labels the edge that

starts at the node de�ned by the i-th column and ends at the node de�ned by the

j-th column of matrix Nodes, or zero, otherwise. The central idea of the algorithm is

that is starts by assigning the initial marking vector #�m0 to the �rst node of the tree.

After that, for each transition t enabled by #�m0, the algorithm creates a new node as

a child of #�m0, and associates the created node with the marking #�m′, where #�m0[t〉 #�m′.

In order to verify if the number of tokens of a place of #�m′ is growing inde�nitely,

the algorithm compares #�m′ with each marking vectors of its predecessors to check

whether the number of tokens of each place of the former is greater than or equal

to the number of tokens of each corresponding place of the latter, whenever both

places are di�erent from ω. Let #�mp denote the marking vector of a predecessor of

#�m′. We say that #�m′ ≥ #�mp when, ∀p ∈ P , the following is true:
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( #�m′(p) ≥ #�mp(p)) ∨ ( #�m′(p) = ω ∧ #�mp(p) = ω).

Based on the above comparison, if the CT algorithm �nds a predecessor #�mp of #�m′

such that #�m′ ≥ #�mp, then, for all places p ∈ P such that #�m′(p) > #�mp(p), the algorithm

replaces #�m′(p) with ω, preventing the number of tokens of that place from growing

inde�nitely on the generated tree. Lastly, if all of the predecessors of #�m′ are di�erent

from #�m′, the steps described for the creation of the children of #�m0 are repeated for

#�m′ in order to �nd the nodes that may be generated from the node of #�m′, otherwise,

#�m′ is a terminal node (a node that has no children).

Algorithm 1 Algorithm CT to obtain the coverability tree of a labeled priority Petri net

Inputs:

� N = (P, T,Pre,Post, #�m0,Σ, `, ρ) : labeled priority Petri net model

Outputs:

� Nodes: nP × l matrix whose columns are the l nodes of the tree

� Arcs: l × l matrix whose element (i, j) corresponds either to the transition t ∈ T that

labels the edge that starts at the node de�ned by the i-th column and ends at the node

de�ned by the j-th column of matrix Nodes, or zero, otherwise

1: Set Nodes← [ #�m0]
2: Set l← 1
3: Set Arcs← [0]
4: Set nodesToCheck← [1]
5: Set parents← [0]
6: While nodesToCheck is not empty do

7: Set currentNode← nodesToCheck(1)
8: Remove nodesToCheck(1) from nodesToCheck

9: For each t such that Nodes(:, currentNode)[t〉 do
10: Set newNode← Nodes(:, currentNode) + Post(:, t)− Pre(:, t)
11: Set currentParent← currentNode

12: While (currentParent 6= 0) do
13: If newNode ≥ Nodes(:, currentParent)
14: For each p ∈ P such that newNode(p) > Nodes(p, currentParent)
15: Set newNode(p)← ω
16: Set currentParent← parents(currentParent)
17: Set Nodes← [Nodes,newNode]
18: Set parents← [parents, currentNode]
19: Set Arcs← [[Arcs,

#�

0 l×1]T ,
#�

0 l+1×1]T

20: Set l← l + 1
21: Set Arcs(currentNode,l)← t
22: Set �ag← True

23: While (currentParent 6= 0) and �ag is True do

24: If (Nodes(:, currentParent) = newNode)
25: Set �ag← False

26: Set currentParent← parents(currentParent)
27: If �ag is True

28: Set nodesToCheck← [nodesToCheck, l]
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Figure 2.7: Petri net considered in Example 2.12.

Example 2.12. Consider the Petri net N of Figure 2.7. If we execute Algorithm 1

with N as an input, we obtain the CT of N described by the output matrices Nodes

and Arcs, given by

Nodes =


1 0 0 0 0 0 0 0 0

0 1 0 1 1 0 1 1 0

0 0 1 0 0 1 0 0 1

0 5 4 0 ω ω ω ω ω

 and

Arcs =



0 t1 0 0 0 0 0 0 0

0 0 t2 t4 0 0 0 0 0

0 0 0 0 t3 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 t2 t4 0 0

0 0 0 0 0 0 0 t3 t4
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


.

Furthermore, we are able to graphically represent the CT, as shown in Figure 2.8

Notice from Figure 2.7 that after transition t1 �res, the transition sequence t2t3

can �re inde�nitely, adding a token to p4 after the �ring of the sequence. Since the

number of tokens of p4 grows inde�nitely in this case, N is an unbounded Petri net.

However, even though N is unbounded, the resulting CT of N is �nite. This happens

because after the occurrence of the transition sequence t1t2t3, which would normally

result in the marking vector #�m′ = [0 1 0 6]T , the algorithm �nds the predecessor

#�m = [0 1 0 5]T of #�m′, which is such that #�m′ ≥ #�m and #�m′(p4) > #�m(p4), which causes
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Figure 2.8: Tree generated by the CT algorithm of the Petri net of Figure 2.7.

the marking of p4 to be replaced by ω, preventing the tree from growing inde�nitely.
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Chapter 3

Fault diagnosis of discrete event

systems

Fault diagnosis of DESs consists in the study of the capability to infer the occurrence

of some event of interest of the system, usually the fault event [4]. Notice that if the

fault event is not observable, its occurrence can only be inferred by analyzing the

occurrence of other events that are observable. In this regard, one of the reasons

why this study is important is because it allows the detection of malfunctions during

the operation of a system without the need of sensors that directly detects it.

Let Σ = Σo∪̇Σuo be a partition of the set of events into the observable and

unobservable event sets, respectively, and let Σf ⊆ Σuo be the set of fault events

associated with a language L. It can be assumed, without the loss of generality,

that there is only one fault event, i.e., Σf = {σf} [10]. Let L denote the language

generated by the system and let Ψ(Σf ) = {s ∈ L : (∃u ∈ Σ∗)[s = uσf ]} be the set of

all sequences of L that end with fault event σf . We say that language L is diagnosable

with respect to the fault event σf if, for every sequence sf ∈ Ψ(Σf ), the fault event

can be detected without any doubt after the occurrence of an arbitrarily long event

sequence sa by analyzing the observable events of sequences sf and sa. Notice that,

for the detection of σf to be successful, there cannot exist another sequence sn ∈ L

that does not possess a fault event and generates the same sequence of observation
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as sequence sy = sfsa. The formal de�nition of language diagnosability is as follows

[4].

De�nition 3.1 (Diagnosability of a language). A pre�x-closed and live language L

is diagnosable with respect to Σf and the projection Po : Σ∗ → Σ∗o if the following

condition holds true:

(∀s ∈ Ψ(Σf ))(∃ns ∈ N)(∀t ∈ L/s)

((|t| ≥ ns)⇒ ((∀ω ∈ P−1
o (st) ∩ L)(σf ∈ ω))).

In the upcoming sections of this chapter, we elaborate the problem of fault diag-

nosability and online diagnosis of DESs modeled by labeled Petri nets. In Section 3.1,

we present the changes that we must consider in order to de�ne the diagnosability of

Petri net systems. Section 3.2 introduces the concept of online diagnosis of Petri nets

systems, and we also elaborate the online diagnoser of Petri nets system proposed

by [23].

3.1 Fault diagnosability of DESs modeled by la-

beled Petri nets

In the context of labeled Petri nets, the language L(N ), generated by a labeled

Petri net N , is the language to be diagnosed. However, when De�nition 3.1 is

used to determine whether language L(N ) is diagnosable, some problems may oc-

cur. Even when L(N ) is live and diagnosable with respect to De�nition 3.1, the

dynamics governed by the transitions of N may prevent the fault event from being

diagnosed. For example, consider the Petri net N1 depicted in Figure 3.1, whose

generated language is L(N1) = {ε, w, wb, wbb, . . . , σf , σfa, σfaa, . . . }, and let the

sets of observable, unobservable and fault events be Σo = {a, b}, Σuo = {wσf} and

Σf = {σf}, respectively. It is trivial to conclude that language L(N1) is both live

and diagnosable, since events a and b can occur inde�nitely after events w and σf
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Figure 3.1: Labeled Petri net that generates a language that is live and
diagnosable, but is not deadlock-free and prevents the diagnosability of event σf .

occur and we are always able to assert that the fault event σf has occurred after

event a is observed. However, the Petri net N1 is not deadlock-free, since the �ring

of transition t1 moves the token from place p1 to p2, which does not enable any

transition. Furthermore, notice that transition t1 models the occurrence of the fault

event σf ; therefore, when t1 �res, we are not able to diagnose the occurrence of σf ,

since no transitions �re in the sequel.

Thus, in order to be able to refer to the diagnosability of systems modeled by

labeled Petri nets without the occurrences of problems such as the aforementioned

one, a new de�nition of diagnosability that is used speci�cally for systems modeled

by labeled Petri nets has been proposed [14]. In [14], the event sequences s and t of

De�nition 3.1 are replaced by transition sequences r and u, as follows [14].

De�nition 3.2 (Diagnosability of a Petri net). A pre�x-closed and live language

L(N ) generated by a deadlock-free labeled Petri net N = (P, T,Pre,Post, #�m0,Σ, `)

is diagnosable with respect to Σf and the projection Po : Σ∗ → Σ∗o if the following

condition holds true:

(∀r ∈ LT (N ))(∃nr ∈ N)(∀u ∈ T ∗)

(((`(r) ∈ Ψ(Σf )) ∧ (ru ∈ LT (N )) ∧ (|u| ≥ nr))⇒ D),

where D = ((∀ω ∈ P−1
o (`(ru)) ∩ L(N ))(σf ∈ ω)).

In words, De�nition 3.2 states that a labeled Petri net system is diagnosable if the

following condition is true: for every transition sequence r of the labeled Petri net
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Figure 3.2: Example of a labeled Petri net that is not deadlock-free, but can be
diagnosed.

that can be �red from the initial marking and that ends with a fault event, there is

a natural number nr such that for all sequences of transitions u longer than or with

the same length as nr that can be �red after r, is such that all event sequences ω

that have the same projection over Σ∗o as event sequence `(ru) have event σf inside

it.

Remark 3.1. Although De�nition 3.2 requires the labeled Petri net to be deadlock-

free, it does not imply that a labeled Petri net with deadlocks cannot be diagnosed.

Consider the labeled Petri net N depicted in Figure 3.2, in which σf is the fault

event. After the observation of event a, it is not possible to be sure whether the

fault event σf has occurred or not, since it cannot be con�rmed which one of the

transition sequences t1t3 or t2t4 �red. However, if either events b or c are observed,

we become certain of which one of the above transition sequences �red before the

occurrence of events b or c. If event c is observed, it means that a token was added

to place p5 by the �ring transition sequence t2t4 to enable transition t6, whereas if b

is observed, it means that a token was added to place p4 by the transition sequence

t1t3 to enable transition t5. Therefore, since the occurrence of the fault event can be

inferred without doubt after the occurrence of a �nite number of event observations,

N is diagnosable. With this remark, we can conclude that for a Petri net with

deadlocks to be diagnosable, the parts of the Petri net that do not contain deadlocks

must satisfy the properties of De�nition 3.2 and the situations in which the deadlock

occur must be such that we are able to con�rm whether the fault event has occurred

or not.
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The problem of verifying whether a fault event of a labeled Petri net is diag-

nosable has been studied by several works such as [14], in which is proposed a

computational procedure based on linear programming to solve the problem of di-

agnosability for potentially unbounded labeled Petri nets. Notice, however, that the

focus of the present work is to develop of an online diagnoser that detects the fault

event of DESs modeled by diagnosable labeled Petri nets; therefore, the online diag-

noser proposed here will not verify if the Petri nets to be diagnosed are diagnosable.

We will thus assume diagnosability a priori.

3.2 Online diagnosis of labeled Petri nets

Whenever a labeled Petri net is diagnosable, we may be able to infer the occurrence

of a fault event during its operation by using an online diagnoser, where it is an

algorithm that is able to detect whether a fault event has occurred by observing the

occurrence of each observable event of the DES modeled by the labeled Petri net

during its operation.

Since the online diagnoser runs simultaneously with the physical plant, it is

imperative that the online computation involved in the decision process to detect

the occurrence of the fault event given the occurrence of an observable events runs

as fast as possible in order to keep up with the occurrence of events in the plant.

To this end, online diagnosers usually move most of their burdensome computation

to the o�ine part of the algorithm.

Between the works mentioned in Chapter 1 that computes the online diagnosis

of Petri net systems, notice that the online diagnosers of [16, 17] consider the obser-

vation of the number of tokens of some of the places of the Petri net, whereas the

online diagnosers of [19, 20] are limited to the diagnosis of acyclic or reversible Petri

net systems, [15] is limited to bounded Petri nets and [21, 22] require that the Petri

net system to be diagnosed does not have two or more observable events that share

the same label. Therefore, among the works [15�23], only [18, 23] propose online

diagnosers that are able to diagnose the language of any Petri net system that does
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not possess cycles of unobservable transitions, i.e., the Tuo-induced Petri net of the

Petri net system is acyclic.

Since the online diagnoser to be proposed in this work has the same assumptions

as [18, 23], the online diagnoses of both works are better suited to be compared to the

one to be implemented here. However, the online diagnoser proposed in [23] is more

advanced that the one proposed in [18], since the online diagnoser of [18] detects the

fault events of a Petri net system by enumerating all possible marking vectors that

may be reached in the Petri net with the �ring of all possible transition sequences

labeled by the observed event sequence, whereas the online diagnoser of [23] only

considers the basis markings and justi�cations that are consistent with the event

observation, which results in less elements to be analyzed by the online diagnoser.

Therefore, we choose the online diagnoser presented in [23] to be compared with

the online diagnoser to be proposed here. For this comparison to be successful, we

present a brief explanation about the online diagnoser designed for unbounded Petri

net systems proposed by [23].

The method for the construction of an online diagnoser capable of diagnosing

fault events on Petri nets proposed in [23] is based on the notion of basis markings

and justi�cations. Two types of diagnosers are proposed in [23]: the �rst one that is

able to diagnose unbounded Petri nets whose Tuo-induced Petri nets are acyclic and

another one that is limited to bounded Petri nets. Although the latter moves most

of the burdensome part of the procedure to o�ine computation, which increases the

speed of the online diagnosis, the former is able to diagnose a wider class of Petri

net, including unbounded Petri nets. Since the diagnoser proposed here is also able

to diagnose unbounded Petri nets, we will only review the online diagnoser designed

in [23] for unbounded Petri nets.

Let N = (P, T,Pre,Post, #�m0,Σ, `) be a Petri net whose sets of observable and

unobservable events are Σo and Σuo, respectively. Given a sequence of observable

events so ∈ Po(L(N )) observed during the dynamic evolution of N , we say that a

basis marking #�mb is a marking that may be reached from the initial marking #�m0
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after the �ring of a transition sequence s ∈ LT(N ) whose event observation is so and

unobservable transitions are strictly necessary to enable the observable transitions

of s. The group of unobservable transitions of s forms a so-called justi�cation
#�

j , which is a minimal group of unobservable transitions that explains how the

observable transitions labeled by the events of so are able to change the Petri net

marking from #�m0 to #�mb. In this regard,
#�

j is a vector whose components are either

the number of repetitions of each unobservable transition in the sequence, or zero,

if the unobservable transition does not appear in the sequence. Notice that so and

#�mb may be associated with multiple justi�cations, due to the Petri net being able

to possess multiple transitions associated with the same label and the possibility of

multiple sets of unobservable events justifying the �ring of the same transition.

Since the Tuo-induced Petri net of the Petri net to be diagnosed is assumed to

be acyclic, we are able to enumerate the groups of unobservable transitions that

may strictly justify each observable sequence of the Petri net. Therefore, the online

diagnosis of a Petri net may consist of computing the possible pairs of basis markings

and justi�cations that the Petri net may reach after each event observation, so that

the online diagnoser is able to verify the occurrence of a fault event by checking

whether those justi�cations contain fault transitions.

Before the occurrence of any observable events, the online diagnoser considers

that the only possible basis marking that the Petri net may be in is the initial mark-

ing #�m0, and the justi�cation for that basis marking is associated with an empty

transition sequence λ. After the observation of an observable event σo, for each

current possible basis marking #�mb and its associated justi�cation
#�

j that the diag-

noser is currently in, the diagnoser computes all possible basis marking #�m′b that may

be reached after �ring a sequence of transitions suoto, where suo is an unobservable

transition sequence that strictly justi�es the change from marking #�mb to #�m′b after the

�ring of a transition to labeled by σo. The diagnoser considers that all markings #�m′b

are the new possible basis markings that the Petri net may be in after the �ring of

σo, and the justi�cation
#�

j ′ associated with #�m′b is equal to the previous justi�cation
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Figure 3.3: Petri net of Example 3.1.

#�

j , which is associated with #�mb, with the addition of the transitions of suo.

After computing a new set of basis markings and justi�cations based on the

observation of an event σo, the algorithm veri�es if the fault event has certainly

occurred by verifying whether every justi�cation contains a fault transition.

The following example illustrates the operation of the online diagnoser proposed

in [23].

Example 3.1. Consider the Petri net of Figure 3.3, where Σo = {a, b}, Σuo =

{w, σf} and Σf = {σf}. Before the observation of any events, the only basis marking

that the Petri net may be in is #�m1, and the corresponding justi�cation is
#�

j 1, which

are shown in Tables 3.1 and 3.2, respectively.

After the observation of event a, either transitions t1 or t2 could have �red from

#�m1 without the need of the �ring of any unobservable transition. Therefore, the

diagnoser changes its current basis markings to #�m1 and #�m2, both of which are asso-

ciated with justi�cation
#�

j 1, since both markings may be reached without the need to

�re any unobservable transitions. If event a is observed again, we obtain, from basis

marking #�m1, basis markings #�m1 and
#�m2, which are associated with

#�

j 1. However, we

also obtain, from #�m2, basis markings #�m2,
#�m3 and #�m4, also associated with

#�

j 1, since

#�m2 enables transitions t1, t2 and t6. Therefore, the basis markings to be considered
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Table 3.1: The basis markings considered in the example.

Label Basis marking
#�m1 [1 0 1 0 0 0 0 0 0 0 0]T

#�m2 [2 1 1 0 0 0 0 0 0 0 0]T

#�m3 [3 2 1 0 0 0 0 0 0 0 0]T

#�m4 [2 0 0 0 0 1 0 0 0 0 0]T

#�m5 [1 0 0 1 0 0 0 0 0 0 0]T

#�m6 [2 1 0 1 0 0 0 0 0 0 0]T

#�m7 [3 2 0 1 0 0 0 0 0 0 0]T

#�m8 [0 0 0 0 0 0 2 1 1 0 1]T

#�m9 [0 0 0 0 0 0 0 1 2 0 1]T

#�m10 [1 0 0 0 1 0 0 0 0 0 0]T

#�m11 [2 1 0 0 1 0 0 0 0 0 0]T

#�m12 [3 2 0 0 1 0 0 0 0 0 0]T

Table 3.2: The justi�cations considered in the example.

Label t4 t7 t8 t9
#�

j 1 0 0 0 0
#�

j 2 0 2 1 0
#�

j 3 0 2 0 1
#�

j 4 1 0 0 0
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by the diagnoser changes to #�m1,
#�m2,

#�m3 and #�m4, all of which are associated with

#�

j 1.

Remark 3.2. As shown in Example 3.1, the number of possible basis markings that

the diagnoser considers after each observation of event a grows with respect to the

previous number of possible basis markings, since the �ring of transition t2 does

not change the Petri net marking, whereas the �ring of transition t1 adds tokens to

places p1 and p2. Therefore, if the diagnoser keeps observing event a, the number of

basis markings that the diagnoser has to consider will grow inde�nitely, forcing the

diagnoser to evaluate a considerable amount of basis markings. As a consequence,

there will be an increase in the computational time of the online diagnoser after each

observation. This drawback that occurs with the Petri net of Figure 3.3 will not be

present in the approach we will propose in Chapter 4.

If we consider that the currently possible basis markings are #�m1,
#�m2,

#�m3 and

#�m4, all of them associated with
#�

j 1, and event b is observed, then either transition

t3 has �red from #�m1,
#�m2 or #�m3, resulting in the basis markings #�m5,

#�m6 or #�m7, all

of them associated with
#�

j 1, or sequences t7t7t8t10 or t7t7t9t10 has �red from #�m4.

Sequence t7t7t8t10 results in the basis marking #�m8 associated with justi�cation
#�

j 2

and t7t7t9t10 results in the basis marking #�m9 associated with justi�cation
#�

j 3. Notice

that justi�cation
#�

j 2 (resp.
#�

j 3) is created by adding the unobservable transitions t7,

t7 and t8 (resp. t7, t7 and t9) to
#�

j 1. It is worth remarking that if the current marking

is either #�m5,
#�m6 or #�m7, transition t4, which is associated with the fault event σf , is

enabled; therefore, the fault event may occur between the �rst observation of event

b and the next event observation. The diagnoser proposed in [23] is able to detect if

transition t4 could have �red from those markings before another event observation by

analyzing the unobservable transition sequences that are enabled by them, therefore

allowing the diagnoser to conclude that the fault event could have occurred before

the next event observation. For a more complete explanation on the aforementioned

procedure, readers are referred to [23].

Based on the above discussion, #�m5,
#�m6,

#�m7,
#�m8 are the current possible basis
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markings after the �rst observation of event b, where the �rst three basis markings

are associated with
#�

j 1,
#�m8 is associated with

#�

j 2 and #�m9 is associated with
#�

j 3. In

this case, two scenarios are possible: (i) if event b is observed again, then t4t5 is

the only sequence that could have �red; (ii) if event a is observed, then the only

transition that could have �red is t11. Notice that, in case (i), sequence t4t5 can

only �re from #�m5,
#�m6 or #�m7, updating the current basis markings to #�m10,

#�m11 or

#�m12, all of them associated with the justi�cation
#�

j 4 that contains the transition

t4. Since all current justi�cations contain transition t4, which is associated with

the fault event, the diagnoser is sure that the fault event has occurred. In case

(ii), transition t11 could only have �red from the basis markings #�m8 and #�m9, and

since t11 does not change the Petri net marking after �ring, the new possible basis

markings are reduced to #�m8 and #�m9, which are associated with justi�cations
#�

j 2 and

#�

j 3, respectively. Notice that both
#�

j 2 and
#�

j 3 do not contain a transition associated

with a fault event, and together with the fact that it is not possible to �re transition t4

from the markings #�m8 or #�m9, the diagnoser is sure that no fault events has occurred

in this scenario.
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Chapter 4

Online diagnoser of labeled Petri

nets based on λ-free labeled priority

Petri nets

This work approaches the computation and usage of online diagnosers of labeled

Petri nets by creating a λ-free labeled priority Petri net, called diagnoser Petri

net, that has a similar behavior as the Petri net to be diagnosed without using

unobservable transitions, i.e., whenever an observable transition to of the Petri net

to be diagnosed �res after the �ring of an unobservable transition sequence suo whose

added tokens contributed to the �ring of to, one of the transitions t′o of the diagnoser

Petri net that has the same label as to also �res, causing the same exchange of tokens

in the diagnoser Petri net as the �ring of sequence suoto does in the Petri net to be

diagnosed. By analyzing the resulting reachable markings of the diagnoser Petri net

of the sequences of transitions consistent with the event observation of the Petri net

to be diagnosed, we will be able to give a verdict about the fault occurrence.

Let N = (P, T,Pre,Post, #�m0,Σ, `) be the labeled Petri net to be diagnosed,

where T = To∪̇Tuo and Σ = Σo∪̇Σuo. In order for the computation of the diagnoser

Petri net ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) proposed in this work to be

successful, the following assumptions are made besides Assumption A1:
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A2. The Petri net is diagnosable;

A3. The Tuo-induced subnet of N is acyclic.

Notice that assumption A2 is important because the computation of the diagnoser

does not verify the diagnosability of the Petri net, and assumption A3 is a con-

sequence of one of the algorithms used to create the diagnoser Petri net, which is

unable to compute cycles of unobservable transitions.

In order for to analyze multiple reachable markings of the diagnoser Petri net

ND to give a verdict about the fault occurrence, we will propose a new approach

for the state estimation of λ-free labeled Petri nets, where we modify the diagnoser

Petri net to solve the event con�icts of ND in such a way that each sequence of

events of ND will only label one sequence of transitions, and by �ring this transition

sequence, we obtain a marking vector that is able to represent multiple markings that

ND could be in after the �ring of transitions consistent with the event observations

before the solution of the event con�icts. Therefore, after solving the event con�icts

of ND, we will only require the analysis of one marking vector in order to infer the

fault occurrence. It is worth remarking that we can either solve the event con�icts of

ND during the online diagnosis, where the event con�icts are solved as they occur

due to the event observations, or we can solve all event con�icts of ND during the

o�ine computation of the diagnoser. Although the former approach results in a

slower online diagnosis, it may not be possible to solve all event con�icts of ND

using our approach, whereas the latter approach can only be used for a class of

diagnoser Petri nets, as will be shown in Section 4.3.

In Section 4.1, we propose two algorithms that obtain the initial diagnoser Petri

net. After that, Section 4.2 presents algorithms that modify the diagnoser Petri net

in order to solve its event con�icts, which allows us to estimate multiple states of

the original diagnoser Petri net by analyzing a single state of the modi�ed diagnoser

Petri net and, based on that state, make some conclusion about the occurrence of a

fault event. Lastly, in Section 4.3, we make an additional assumption with respect

to the diagnoser Petri net that allows us to solve all event con�icts of the diagnoser
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Petri net during the o�ine computation of the diagnoser Petri nets, thus optimizing

the online diagnosis of the original Petri net using the diagnoser Petri net.

4.1 Obtaining the diagnoser Petri net

Given a labeled Petri net N = (P, T,Pre,Post, #�m0,Σ, `) to be diagnosed and the sets

Σo, Σuo, Σf of observable, unobservable and fault events, respectively, the �rst step

in the construction of the diagnoser Petri net is to generate a λ-free labeled priority

Petri net ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD), whose behavior is similar

to N , but instead of having unobservable transitions, ND has multiple instances of

each observable transition of N in such a way that the set of sequences of transitions

that may �re in ND are equivalent to the set of observable transition sequences that

may �re in N . The algorithm also creates a special set of transitions Tfv, which are

labeled by a new event σfv and allows the diagnoser to verify whether a fault event

could have occurred before the occurrence of another observable event that con�rms

it by checking whether one of the transitions of Tfv is enabled.

The computation of the transitions of the diagnoser Petri net relies on the com-

putation of special markings of Petri net N , termed minimal markings, which are

presented in the following subsection.

4.1.1 Minimal markings

We de�ne a marking vector #�mmin of a labeled Petri net N =

(P, T,Pre,Post, #�m0,Σ, `), whose set of unobservable events is Σuo, as a minimal

marking of a given transition t ∈ T if #�mmin only has the tokens strictly necessary to

enable transition t after the �ring of a minimal sequence of unobservable transitions,

which is formally de�ned as follows.

De�nition 4.1 (Minimal marking). Let N = (P, T,Pre,Post, #�m0,Σ, `) be a labeled

Petri net, where T = To∪̇Tuo, and let t ∈ T be a transition. A marking vector

#�mmin ∈ ZnP
+ of N is a minimal marking of t if there exists a minimal unobservable
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transition sequence suo ∈ T ∗uo such that #�mmin [suot〉 and the following is true:

(∀ #�mb ∈ ZnP
+ )(∀sb ∈ T ∗uo),

((( #�mb ≤ #�mmin) ∧ (sb C suo) ∧ ( #�mb[sbt〉)) =⇒ ( #�mb = #�mmin ∧ sb = suo))

In words, each minimal marking #�mmin is associated with a minimal unobservable

transition sequence suo whose �ring enables t. Additionally, #�mmin and suo are such

that for all marking vectors #�mb that are less than or equal to #�mmin and all unob-

servable transition sequences sb that are equal to suo except for some or none of its

transitions removed, with #�mb enabling t through the �ring of sb, then, either #�mb and

sb are equal to #�mmin and suo, respectively. Additionally, notice that a minimal mark-

ing does not necessaryly need to be a reachable marking of the Petri net, meaning

that minimal markings are only associated with the structures of the Petri nets, i.e

the places and transitions of the Petri nets.

In order to make the de�nition of minimal markings cleaner, we present the

following example.

Example 4.1. Consider the Petri net of Figure 4.1, whose observable and unobserv-

able events are Σo = {a, b} and Σuo = {w, σf}, respectively. Both marking vectors

#�m1 = [1 0 0 0 0 0]T and #�m2 = [0 1 0 0 0 0]T are minimal markings of the observ-

able transition t2, being associated with unobservable transition sequences t1 and λ,

respectively. Notice that marking vector #�m3 = [1 1 0 0 0 0]T cannot be considered a

minimal marking of transition t2, since its minimal unobservable transition sequence

whose �ring enables t2 is λ, and the marking vector #�m2, which is less than #�m3, is

already a minimal marking associated with λ.

Remark 4.1. Since #�mmin is de�ned over Z∗+ instead of R(N ), it is possible that a

minimal marking of a transition is not in the reachable markings of a Petri net. For

example, marking #�m = [0 0 0 0 1 1]T is a minimal marking that enables transition

t5 of the Petri net of Figure 4.1 and is associated with the empty sequence λ, but #�m

is not a reachable marking of the Petri net.
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Figure 4.1: Petri net considered in Example 4.1.

If we �nd all minimal markings that enables a transition t after the �ring of

minimal unobservable transition sequences, those minimal markings will represent

all possible minimal combinations of tokens that allows us to �re transition t after

the �ring of minimal unobservable transition sequences. This allow us to compute

all combinations of tokens that can be used to �re the observable transitions of

the Petri net to be diagnosed, which is an information that can be used along the

unobservable transition sequences associated with the minimal markings to create

the transitions of the diagnoser Petri net.

We now propose algorithm FAM (Algorithm 2) to compute all minimal markings

and their corresponding unobservable transition sequences for a given transition

t ∈ T of a Petri net N . Since function FAM has a complex structure, readers may

prefer to follow Example 4.2 to have a better understanding about the way function

FAM works.

All possible minimal markings #�mmin found by the function are stored in matrix

markC , where each column represents a possible minimal marking of t and each row

represents each place p ∈ P . The function also creates matrix markS, whose i-th

column is associated with the i-th column of markC , and whose rows are associated

with the transitions of T . For each minimal marking stored in the i-th column of

markC , the function stores the number of repetitions of each transition tuo ∈ T in the

minimal unobservable transition sequence suo associated with the minimal marking

by making markS(tuo, i) equal to the number of times that tuo �res in suo. It is worth

remarking that, although the function does not directly process suo, we are able to
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Algorithm 2 Algorithm for the function FAM that obtains all possible minimal markings that

eventually enable transition t together with the groups of transitions of the minimal unobservable

transition sequences that enable t after �ring from the minimal markings

Inputs:

� N = (P, T,Pre,Post, #�m0,Σ, `) : labeled Petri net model

� Σuo: set of unobservable events

� t: transition t ∈ T
Outputs:

� markC : matrix whose columns represent all minimal markings that eventually enable t
after the �ring of unobservable transitions

� markS : matrix whose columns are associated with the columns of markC and represent

the minimal groups of transitions that compose the minimal unobservable transition se-

quences suo that enable t after �ring from their associated minimal markings represented

in markC . Each element of a column of markS is associated with a transition of T and

is equal to the number of times that transition �res in suo

1: Set markC ← [Pre(:, t)]
2: Set markS ← [

#�

0 nT×1]
3: Set Tb,t ← {tuo ∈ T : (`(tuo) ∈ Σuo) ∧ (O(tuo) ∩ I(t) 6= ∅)}
4: Set

#    �

mulmax as a vector that initially associates each transition of Tb,t with zero

5: For each tuo ∈ Tb,t do
6: Set Pcom ← O(tuo) ∩ I(t)
7: Set mul← 0
8: Do

9: Set mul← mul + 1
10: For each possible combination of the repetitions of each transition tb ∈ Tb,t varying from

zero to
#    �

mulmax(tb), whose repetitions are represented by vector #   �repb that associates each

element of Tb,t with a non negative integer, do

11: Set #�r b ←
#�

0 nT×1
12: Set #�r b(tuo)← mul

13: For each tb ∈ Tb,t\{tuo}, set #�r b(tb)← #   �repb(tb)
14: Set �ag← True

15: For each tb ∈ Tb,t such that ( #   �repb(tb) > 0) ∨ (tb = tuo) do
16: Set #�r −tb ← #�r b

17: Set #�r −tb(tb)← #�r −tb(tb)− 1
18: If positive(Pre(:, t)− positive((Post− Pre) #�r b)) = positive(Pre(:, t)−

positive((Post− Pre) #�r −tb)), set �ag← False and break from the for loop

19: If �ag is True

20: Set NT = (P, TT ,PreT ,PostT ,
#�m0,ΣT , `T )← N

21: Create transition tN and add it to TT
22: Set PreT (:, tN )← positive((Pre− Post) #�r b)
23: Set PostT (:, tN )← #�

0 nP×1
24: Set Σuo,T ← Σuo

25: Create new event σN and add it to Σuo,T and ΣT

26: Set `T (tN )← σN
27: Set [∼,markTS ]← FAM(NT ,Σuo,T, tN)
28: For each column i of markTS do

29: Set markTS(tuo, i)← markTS(tuo, i) + mul

30: For each tb ∈ Tb,t, set markTS(tb, i)← markTS(tb, i) + #   �repb(tb)
31: Set markC ← [markC , positive(Pre(:, t)− (Post− Pre)markTS(T, i))]
32: Set markS ← [markS ,markTS(T, i)]
33: While min(mul× Post(Pcom, tuo)− Pre(Pcom, t)) < 0

34: Set
#    �

mulmax(tuo)← mul

35: For each column i of markC and markS do

36: If there exists a column j of markC and markS such that markC(:, j) ≤ markC(:, i) and
markS(:, j) ≤ markS(:, i), remove column i from markC and markS
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assert that there is an unobservable transition sequence enabled by the minimal

marking that may be composed of the transitions represented in the columns of

markS since the Tuo-induced Petri net of N is acyclic and a i-th column of markS

is such that markC(:, i)− (Post−Pre)markS(:, i) ≥ 0. It is also important to notice

that matrix markC can have two or more identical columns depending on whether

there exists more than one unobservable transition sequence that leads the minimal

marking to transition t.

In steps 1�2 of Algorithm 2, the function �nds the trivial minimal marking #�mmin

associated with sequence λ, which represents the case in which transition t is enabled

without the �ring of any other unobservable transitions. In order to directly enable

transition t, the minimal marking #�mmin must be equal to Pre(:, t).

In order to �nd the other minimal markings that enable transition t, the function

analyzes all transitions whose �rings directly add tokens to the input places of t,

which are grouped into the set Tb,t in step 3. Notice that all minimal unobservable

transition sequences whose �rings contribute to the �ring of t must end with transi-

tions of Tb,t, since the �ring of others transitions afterwards would not contribute to

the �ring of t; therefore, in the steps 4�36, the function �nds all minimal markings

that enable transition t that are associated with unobservable transition sequences

suo ∈ T ∗uo that end with sequences sb ∈ T ∗b,t. It is worth remarking that function

FAM only analyzes the sequences sb ∈ T ∗b,t whose transitions directly contribute to

the �ring of transition t, meaning that sb does not have a transition whose �ring does

not contribute to the �ring of t after the �ring of other transitions of the sequence.

Furthermore, the function analyzes each unobservable transition sequence sb using

the vector #   �repb, which is created in step 10 and whose elements are associated with

the transitions of T and indicate the number of occurrences of each transition in sb.

For each sequence sb, the function �nds, in steps 11�32, all marking vectors

that enable transition t after the �ring of unobservable transition sequences that

end with sb by �nding all transition sequences sa ∈ T ∗uo whose �ring contribute to

the �ring of sequence sb, where the transitions of each sequence sa is denoted in

45



the function by a column of matrix markTS. In order to �nd the sequences sa,

function FAM creates, in steps 20�26, a temporary Petri net NT that is a copy

of N but containing a sink transition tN 1, whose �ring consumes the same tokens

as the �ring of sequence sb would. Using Petri net NT , the function makes a

recursion call of itself in step 27 to �nd all minimal marking and their associated

minimal unobservable transition sequences sa that enable transition tN after �ring,

which are also minimal unobservable transition sequences whose �ring contributes

to the �ring of sequence sb; therefore, by combining sequences sa and sb, we �nd the

unobservable transition sequences suo = sasb whose �ring contribute to the �ring

of transition t. Finally, the function computes the minimal marking #�mmin as the

marking vector that contains the tokens strictly necessary to enable transition t

after the �ring of the unobservable transition sequence suo.

In the last two steps 35 and 36, the function �nds and deletes every marking

vectors and their associated sequences of the outputs of the function that either

are repeated in the output or are not minimal when compared with others elements,

ensuring that all the elements of both outputs are minimal and are valid with respect

to De�nition 4.1.

We now present example 4.2, which uses function FAM to compute all minimal

markings of a given transition of a Petri net.

Example 4.2. Consider the Petri net of Figure 4.2, whose observable and unob-

servable events are Σo = {a, b} and Σuo = {w, σf}, respectively. We will show how

function FAM �nds all the minimal markings and groups of unobservable transition

sequences associated with the observable transition t6. The minimal markings and

their corresponding sequences found by the function are listed in Table 4.1.

Function FAM �rst executes steps 1 and 2 to directly compute the trivial minimal

marking #�m1, which is associated with the empty unobservable transition sequence λ,

meaning that no unobservable transitions �re to enable transition t6. In order to

enable transition t6 without the �ring of other transitions, #�m1 must contain the

1A sink transition does not have any output places.
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Figure 4.2: Petri net considered in Example 4.1.

Table 4.1: List of minimal markings and their corresponding unobservable
transition sequence associated with transition t6 that are found by function FAM.

Label Minimal marking (markC) Unobservable transition sequence (markS)
#�m1 [0 0 0 1 0 1]T λ = [0 0 0 0 0 0]T

#�m2 [1 0 0 0 0 1]T t4 = [0 0 0 1 0 0]T

#�m3 [0 0 0 2 1 0]T t5 = [0 0 0 0 1 0]T

#�m4 [1 0 0 0 0 0]T t4t5 = [0 0 0 1 1 0]T

tokens necessary to directly enable transition t6, i.e.,
#�m1 must be equal to Pre(:, t6).

After that, the function detects that places p4 and p6 are input places of transi-

tion t6 and are also output places of unobservable transitions t4 and t5, respectively.

Since transitions t4 and t6 are the only unobservable transitions whose �ring directly

contribute to the �ring of t6, then all minimal markings other than the trivial min-

imal marking must be associated with unobservable transition sequences that ends

with either transition t4, t5 or with a combination of both. In order to �nd those

minimal markings, the function execute step 3 to add transitions t4 and t5 to the

set of transition Tb,t to analyze them, and then it executes steps 11�32 to compute

all minimal markings associated with sequences of unobservable transitions that end

with sequences composed by the combinations of transitions t4 and t5.

In order to analyze the minimal markings associated with the sequences that end

with transition t4, the function executes steps 11�27 to �nd all minimal unobservable

transition sequences whose �ring contributes to the �ring of transition t4, since their

�ring would also indirectly contribute to the �ring of transition t6 by �ring transition
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t4. To �nd those sequences, the function creates a temporary Petri net NT 1, which

is equal to N except for an additional sink transition tN1 that consumes the same

tokens as t4, which consumes one token from place p1. Since tN1 requires the same

tokens as t4 to be enabled, then all minimal unobservable transition sequences whose

�ring enable tN1 also enable t4; therefore, the function �nds all minimal unobservable

transition sequences that enable transition t4 by making a recursive call of itself in

step 27 to �nd all the minimal markings and their associated minimal unobservable

transition sequences whose �ring enable transition tN1, which also enable transition

t4. The function �nds that the only minimal unobservable transition sequence that

enables transition t4 is the empty sequence λ; thus, the only minimal marking that

the function can generate that enables transition t6 after the �ring of a minimal

unobservable transition sequence that ends with t4 is t4 itself. After the execution of

steps 28�32, the function �nds that the minimal marking associated with t4 is equal

to #�m2, since
#�m2 has one token in place p1 to enable t4 and another token in place

p6 to enable transition t6 after the �ring of t4.

Although, according to Algorithm 2, the function would analyze minimal mark-

ings associated with sequences that end with transition t5 after analyzing t4, for the

sake of clarity, we will, in the example, �rst show how it generates the minimal

markings associated with unobservable transition sequences that end with both tran-

sitions t4 and t5. In order to generate those minimal markings, the function will �nd

the minimal unobservable transition sequences whose �ring contribute to the �ring

of both transitions t4 and t5. However, notice that the �ring of transition t4 adds

tokens to places p4 and p5, which can be consumed by transition t5; therefore, we

only require one token in place p1 to enable the �ring of both transitions t4 and t5.

To �nd the minimal unobservable transition sequences whose �ring contribute to the

�ring of both transitions t4 and t5, the function again create a temporary Petri net

NT 2 that contains an additional transition tN2, where Pre(:, tN2) models the tokens

required to �re transitions t4 and t5 by consuming one token from place p1. Since tN2

is equal to tN1 from the previously created temporary Petri net NT 2, the recursion
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call of function FAM with respect to NT 2 and tN2 results in the same output as the

one for NT 1 and tN1, which is a minimal marking associated with sequence λ, which

means that there are no other minimal unobservable transition sequences whose �r-

ing contribute to the �ring of transitions t4 and t5. Therefore, the only minimal

marking that enables t6 after the �ring of an unobservable transition sequences that

ends with both transitions t4 and t5 that the function �nds is the marking vector #�m4,

which has only one token in place p1, which is enough to enable sequence t4t5t6.

If we execute the aforementioned steps in order to analyze transition t5, we will

�nd that the the minimal markings that enables t6 after the �ring of minimal unob-

servable transition sequences that end with transition t5 are #�m3 and #�m4, which are

associated with sequences t5 and t4t5, respectively. Notice that the second minimal

marking #�m4 was already found during the analysis of the combination of transitions

t4 and t5. In order to prevent function FAM from adding repeated or invalid minimal

markings and their associated sequences to its output, steps 35 and 36 removes all

minimal markings and their associated sequences of the output that are either re-

peated or are not valid with respect to De�nition 4.1 when comparing it to the other

minimal markings found by the function.

Remark 4.2. Although it is di�cult to �nd all minimal markings associated with

a transition t of a Petri net N with function FAM, the idea behind the function

is intuitive. If we want to �nd the minimal markings that enable transition t6 of

the Petri net depicted in Example 4.2, the �rst one that can easily be found is the

trivial minimal marking #�m1, which is associated with the empty transition sequence

λ and models the tokens required in places p4 and p5 to directly enable t6. In order

to �nd the other minimal markings, we need to �nd the unobservable transitions

whose �ring add tokens to both places p4 and p5, since their �ring add tokens that

are required to �re transition t6.

Among the unobservable transitions of the Petri net, only the �ring of transitions

t4 and t5 add tokens to places p4 and p5; therefore, we can obtain the other minimal

markings of t6 by analyzing the minimal markings that enable transitions t4 and t5.
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Since the minimal marking #�mt1 = [1 0 0 0 0 0]T enables t4 without the need to �re

another transition, it also enables transition t6 after the �ring of transition t4 with

the addition of a token of place p6 that the �ring of t4 does not generate, resulting in

the minimal marking #�m2. We would also need to verify if there are other unobservable

transitions that enable transition t4 after �ring. However, there are no transitions

that add tokens to place p1, which means that there are no unobservable transition

whose �ring contributes to the �ring of transition t4.

The same veri�cation can be executed for the combination of transitions t4 and

t5, which require one token from place p1 to �re since the tokens that are added by

the �ring of t4 can be consumed by the �ring of transition t5. Thus, we �nd that

the minimal marking #�mt2 = [1 0 0 0 0 0]T enables both transitions t4 and t5, and

since the �ring of both transitions generate enough tokens to enable transition t6,

the marking vector #�m4, which is equal to
#�mT

t2, is also a minimal marking of transition

t6.

Finally, if we do the same aforementioned steps for transition t5, we will also

�nd that the marking vector #�m3 is a minimal marking of transition t6.

4.1.2 Obtaining the diagnoser Petri net

Let N = (P, T,Pre,Post, #�m0,Σ, `) be the Petri net to be diagnosed, which

is associated with the set of observable events Σo, unobservable events Σuo

and fault events Σf . The λ-free labeled priority diagnoser Petri net ND =

(PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) is computed by following the steps of Al-

gorithm 3, which uses function FAM to compute all minimal markings and their

corresponding unobservable transition sequences associated with every observable

transition of the Petri net, which are used by the algorithm to compute all the tran-

sitions of the diagnoser Petri net ND that are required to model the behavior of N

without the use of unobservable transitions. The algorithm also uses the minimal

markings of every fault transition obtained by function FAM to create the transi-

tions associated with event σfv, which allows the diagnoser to infer that the fault
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event could have occurred before the observation of another event by being enabled.

Algorithm 3 Algorithm that obtains the diagnoser Petri net of a labeled Petri net

Inputs:

� N = (P, T,Pre,Post, #�m0,Σ, `) : labeled Petri net model

� Σo, Σuo, Σf : sets of observable, unobservable and fault events, respectively

Outputs:

� ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD): Diagnoser Petri net

1: Set ND ← (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) as an empty labeled priority Petri net

2: Set PD ← P ∪ {pf}
3: Set ΣD ← Σo ∪ {σfv}
4: Set #�m0,D(P )← #�m0

5: Set #�m0,D(pf )← 0
6: For each to ∈ T s.t. `(to) ∈ Σo do

7: Set [markC ,markS ]← FAM(N ,Σuo, to)
8: For each corresponding i-th column of markC and markS do

9: Create transition t′o and add it to TD
10: Set PreD(P, t′o)← markC(:, i)
11: Set PreD(pf , t

′
o)← 0

12: Set PostD(P, t′o)← markC(:, i) + Post(:, to)− Pre(:, to) + (Post− Pre)markS(:, i)
13: Set PostD(pf , t

′
o) as 1, if (∃tf ∈ T )[(`(tf ) ∈ Σf ) ∧ (markS(tf , i) > 0)], or 0, otherwise

14: Set `D(t′o)← `(to)
15: If (∃t ∈ TD\{t′o})[(PreD(:, t′o) = PreD(:, t)) ∧ (PostD(:, t′o) = PostD(:, t)) ∧ (`(t′o) = `(t))]
16: Remove t′o from ND
17: For each tf ∈ T s.t. `(tf ) ∈ Σf do

18: Set [markf,C ,∼]← FAM(N ,Σuo, tf )
19: Remove all repeated columns of markf,C
20: For each i-th column of markC do

21: Create transition tfv and add it to TD
22: Set PreD(P, tfv)← markC(:, i)
23: Set PreD(pf , tfv)← 0
24: Set PostD(:, tfv)← PreD(:, tfv)
25: Set `D(tfv)← σfv

The resulting Petri net ND contains of all the places and their initial number

of tokens of N and a new place pf , whose marking indicates that a fault event has

occurred, i.e., the diagnoser will be able to con�rm the occurrence of a fault event

during the system operation whenever #�mD(pf ) > 0. We will assume that place pf is

the last place of the matrices associated with the places of the diagnoser Petri net.

The Algorithm 3 starts by creating in steps 1�5 the diagnoser Petri net ND =

(PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) as a Petri net that has all the places and their

initial marking of the Petri net N , with the addition of a special place pf , whose

initial marking is zero. Additionally, the set of events of the diagnoser Petri net ΣD

has all the observable events of Σo and an additional special event σfv, i.e.,

51



ΣD = Σo ∪ {σfv}.

In order to compute the transitions of the diagnoser Petri net that model the

behavior of N , the algorithm executes steps 6�16, where, for each observable tran-

sition to, the algorithm �nds all minimal markings and their associated sequences

that enable to. Then, for each minimal marking #�mmin associated with a minimal un-

observable transition sequence suo that enables to after �ring, Algorithm 3 creates

a transition t′o in the diagnoser Petri net, that is labeled by the same event that

labels transition to and whose �ring causes the same exchange of tokens in ND as

the �ring of sequence suoto causes in N . After iterating every observable transition

of N , notice that the �ring of the transitions of the diagnoser Petri net ND are able

to model the �ring of every possible minimal sequence suoto of N , where suo ∈ T ∗uo

and to ∈ To; therefore, after each �ring of an observable transition in N after the

occurrence of a minimal unobservable transition sequence suo, it is possible to �re a

transition of ND that models the occurrence of suoto, causing ND to have a similar

behavior to N after the �ring of observable transitions. Furthermore, since the �ring

of each transition t′o of ND models the �ring of an unobservable transition sequence

suo and an observable transition to of N , whenever suo has a fault event and t′o �res,

we would be able to infer that the fault event has occurred. In order for the �ring

of t′o to �ag the fault occurrence, the algorithm makes the �ring of transition t′o add

a token to place pf whenever its associated sequence suo has a fault transition.

Although the transitions of ND are able to infer the occurrence of a fault event

of N by adding tokens to place pf after �ring, they are unable to assert whether a

fault transition could have occurred before the occurrence of a transition t′o ∈ TD

that is associated with an unobservable transition sequence that contains the afore-

mentioned fault transition. In order to allow ND to infer the above possibility,

the algorithm executes steps 17�25 to create the special transitions tfv, which are

labeled by the special event σfv and are such that whenever they are enabled, we are

able to assert that a fault transition could have �red after the �ring of a minimal
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Figure 4.3: Petri net considered in Example 4.3(a) and its resulting diagnoser Petri
net(b).

unobservable transition sequence and before the �ring of an observable transition

that consumes tokens generated by the fault transition. In order to create those

transitions, the algorithm �nds all of the minimal markings that enables the fault

transitions of N , and for each minimal marking #�mmin, the function creates a tran-

sition tfv that is labeled by σfv and consumes as many tokens as #�mmin. Notice that

transitions tfv will never �re, since we are only creating them to check if they are

enabled; therefore, in order to facilitate the analysis of ND with other tools such as

the coverability tree, the algorithm prevents the �ring of tfv from changing the Petri

net marking by making its �ring add the same tokens it consumes.

To further elucidate the construction of the diagnoser Petri net using Algo-

rithm 3, we present the following example.

Example 4.3. Let N = (P, T,Pre,Post, #�m0,Σ, `) be the Petri net depicted in

Figure 4.3(a), whose observable, unobservable and fault events are Σo = {a, b},

Σuo = {w, σf} and Σf = {σf}, respectively, and let the Petri net ND =

(PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) of Figure 4.3(b) be the resulting diagnoser

Petri net of N .

In order to generate the λ-free labeled priority Petri net ND from N , Algorithm 3

�rst executes steps 1�5 to create the diagnoser Petri net ND as a labeled priority
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Table 4.2: List of minimal markings, their corresponding unobservable transition
sequences and the transition generated in ND with each minimal marking

associated with transition t2.

Label Minimal marking Associated sequence Generated transition
#�m1 [0 1 0 0 0 0]T λ t′1
#�m2 [1 0 0 0 0 1]T t1 t′2

Table 4.3: List of minimal markings, their corresponding unobservable transition
sequences and the transition generated in ND with each minimal marking

associated with transition t3.

Label Minimal marking Associated sequence Generated transition
#�m3 [0 0 1 0 0 0]T λ t′3

Petri net that contains all the places of N and an additional place pf . Notice that

the places of ND that are copies of the places of N have the same initial tokens,

i.e. place p1 has one token, and place pf starts with zero tokens.

After step 5, the algorithm executes steps 6�16 to process each observable tran-

sitions to ∈ T of the N in order to create multiple transitions t′o in the diagnoser

Petri net, where each transition t′o does the same exchange of tokens in ND as the

�ring of a possible minimal sequence suoto, such that suo ∈ T ∗uo, does in N . In order

to create those transitions, the algorithm executes function FAM (Algorithm 2) to

compute all minimal markings #�mmin that enable to after the �ring of minimal un-

observable transition sequences suo, which can be used to compute the transitions

t′o in ND that model the �ring of sequence suoto in N . All the minimal markings,

their corresponding unobservable transition sequences and each transition generated

in ND with each minimal marking associated with transitions t2, t3 and t6 are shown

in Tables 4.2, 4.3 and 4.4, respectively.

Notice that each di�erent pair of minimal markings and sequences generates each

transition of the diagnoser Petri net. In order to exemplify the construction of

those transitions, we present the constructions of transitions t′2 and t′5, which are
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Table 4.4: List of minimal markings, their corresponding unobservable transition
sequences and the transition generated in ND with each minimal marking

associated with transition t6.

Label Minimal marking Associated sequence Generated transition
#�m4 [0 0 0 1 0 1]T λ t′4
#�m5 [1 0 0 0 0 1]T t4 t′5
#�m6 [0 0 0 2 1 0]T t5 t′6
#�m7 [1 0 0 0 0 0]T t4t5 t′7

constructed from the minimal markings #�m2 and #�m5, respectively.

In order to construct transition t′2 from the minimal marking #�m2 to model the

�ring of t1t2, the algorithm makes the �ring of t′2 consume the same number of tokens

as #�m2 and makes it add the same number of tokens as the �ring of transition t1t2

from the marking #�m2, which results in a marking that contains one token in place

p3. The algorithm also de�nes the label of transition t′2 as the label of transition

t2, which is event a. Finally, since transition t1 is labeled by the fault event, the

algorithm makes the �ring of t′2 add a token to place pf to �ag the fault occurrence.

The process of constructing transition t′5 is similar to the construction of t′2. The

algorithm labels t′5 with event a, which is the same label of t6, and makes the �ring

of t′5 consume the same tokens that are in #�m6 and add the tokens of the resulting

marking vector #�m′ = [0 0 0 2 1 1]T after �ring sequence t4t6 from
#�m5. Since t4 is not

labeled by the fault event, transition t′5 does not add a token to place pf .

After iterating every observable transition of N , Algorithm 3 executes steps 17�

25 to iterate all transitions associated with fault events in order to create transitions

that, when enabled, indicate that a fault transition may have �red before it contributed

to the �ring of an observable transition. As such, the algorithm iterates the only

fault transition t1 and �nds all minimal markings that enable t1 after the �ring of

an unobservable transition sequence by using function FAM (Algorithm 2). Since

there are no unobservable transitions that contribute to the �ring of t1, the only

minimal marking that enables t1 is #�m8 = [1 0 0 0 0 0]T , which is associated with
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λ; therefore, Algorithm 3 creates transition t′8, whose �ring consumes and adds the

same number of tokens as #�m8 in order to prevent the �ring of t′8 from changing the

Petri net marking, since we will only check if t′8 is enabled instead of �ring it. Notice

that t′8 is labeled by the event σfv in order to di�erentiate it from other transitions.

The diagnoser Petri net ND generated by Algorithm 3 possesses several proper-

ties that contributes to the fault diagnosis of a Petri net N . Since those properties

relate the behavior of both nets N and ND, we will de�ne the mapping function

MT : T ∗D → T ∗o , which is de�ned by the following recursion:

MT(λ) = λ

MT(t′o) =

 to, if t
′
o was generated by the observable transition to ∈ To

λ, if `(t′o) = σfv

MT(sot
′
o) = MT(so)MT(t′o),∀so ∈ T ∗D,∀t′o ∈ TD.

In words, function MT transforms each transition t′o of a transition sequence of ND

in either the corresponding observable transition to that generated it, or an empty

transition sequence, if t′o is associated with the event σfv. Similar to the projection

operation, we also extendMT to set of transition sequences by applying the function

to each sequence of the set.

With the mapping MT de�ned, we are able to establish that the set of observ-

able transition sequences and observed language of N are equivalent to the set of

transition sequences and language of ND, as shown in the following lemmas.

Lemma 4.1. Let N = (P, T,Pre,Post, #�m0,Σ, `) be a Petri net . Then, the diagnoser

Petri net ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) obtained in accordance with

Algorithm 3 is such that PTo(LT(N )) = MT(LT(ND)).

Proof. The equality PTo(LT(N )) = MT(LT(ND)) is proven by induction on the

length of sequence so ∈ T ∗o

(Basis step) For the empty transition sequence so = λ, it is trivial that so ∈
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PTo(LT(N )) and so ∈ MT(LT(ND)).

(Inductive step) Assuming that there is a sequence so ∈ T ∗o such that so ∈

PTo(LT(N )) and so ∈ MT(LT(ND)), it will be proven that, for every observ-

able transition to ∈ To, if soto ∈ PTo(LT(N )), then soto ∈ MT(LT(ND)) and if

soto ∈ MT(LT(ND)), then soto ∈ PTo(LT(N )), which proves that PTo(LT(N )) =

MT(LT(ND)).

If so = to,1, to,2, . . . to,k is such that so ∈ MT(LT(ND)) and so ∈ PTo(LT(N )),

then, for each observable transition to,i, where i = 1, 2, . . . , k, there is a minimal

sequence of unobservable transitions si ∈ T ∗uo and a minimal marking vector #�mmin,i ∈

ZnP
+ such that #�mmin,i[sito,i〉. Additionally, due to step 12 of Algorithm 3, for a

marking vector #�m ≥ #�mmin,i, the �ring of sito,i generates the same number of tokens

in every place of N as the transition t′o,i ∈ TD associated with sito,i generates in ND,

with the exception of place pf ∈ PD, which does not a�ect the Petri net dynamic

since it does not possess output transitions. Therefore, since the corresponding

places of N and ND have the same amount of initial tokens, the �ring of sequence

s1to,1s2to,2 . . . skto,k in N generates the same marking vector #�mf as the �ring of

sequence t′o,1t
′
o,2 . . . t

′
o,k in ND generates, with the exception of pf .

If the �ring of to is observed after N reached the marking vector #�mf , then there

is a minimal marking vector #�mmin,f ≤ #�mf and a minimal sequence of unobservable

transitions suo ∈ T ∗uo such that #�mmin,f[suoto〉. Since #�mmin,f is a minimal marking

that enables suoto, ND has a transition t′o associated with suoto that is also enabled

by #�mmin,f. Therefore, since both nets can be at the same marking #�mf after the

observation of so and transition t′o, such that MT(t′o) = to, is enabled in ND, then

soto ∈ MT(LT(ND)) whenever soto ∈ PTo(LT(N )).

If ND current marking is #�mf and t′o, such that MF(t′o) = to, is enabled, then

there is a minimal marking #�mmin,f ≤ #�mf and a sequence of unobservable transitions

suo such that #�mmin,f[suoto〉. Thus, #�mf [suoto〉, which implies that soto ∈ PTo(LT(N ))

whenever soto ∈ MT(LT(ND)).

Therefore, it was proven that, for every observable transition to ∈ To, if soto ∈
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PTo(LT(N )), then soto ∈ MT(LT(ND)) and if soto ∈ MT(LT(ND)), then soto ∈

PTo(LT(N )), which proves, by induction, that PTo(LT(N )) = MT(LT(ND)). �

Lemma 4.2. Let N = (P, T,Pre,Post, #�m0,Σ, `) be a diagnosable Petri net and let

ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) be the diagnoser Petri net obtained in

accordance with Algorithm 3. Then ND is such that Po(L(N )) = Pσfv(L(ND)),

where Pσfv : Σ∗D → Σ∗o.

Proof. It is trivial that the observed language of N , Po(L(N )), is equal to

`(PTo(LT(N ))), since both projections Po and PTo remove the unobservable events

and transitions from the language and the set of transition sequences of N , respec-

tively.

Since each mapping executed by MT associates the transitions labeled by σfv

with empty transitions and transitions that are not labeled by σfv with the tran-

sitions of N that generated them in such a way that the label of the generated

transition in ND is equal to the label of the original transition in N , the labels of

the transition sequences of MT(LT(ND)) are equal to the labels of the transition

sequences of LT(ND) when disregarding event σfv. Therefore, we can assert that

Pσfv(L(ND)) = `(MT(LT(ND))).

In Lemma 4.1, it was proven that PTo(LT(N )) = MT(LT(ND)); thus, we

can also assert that `(PTo(LT(N ))) = `(MT(LT(ND))). Finally, based on this

equality and the equalities Po(L(N )) = `(PTo(LT(N ))) and Pσfv(L(ND)) =

`(MT(LT(ND))), we are able to a�rm that Po(L(N )) = Pσfv(L(ND)). �

Lemma 4.2 shows that the observed generated language of the original Petri

net N is equal to the language generated by the diagnoser Petri net ND when

special event σfv is disregarded; therefore, for each sequence of observable events

so ∈ Po(L(N )) that may occur in N , there is always a sequence of transitions

s′ ∈ LT(ND) that can �re in ND and is labeled by so. Furthermore, the possible

sequences s′ model all possible minimal sequences of transitions s ∈ LT(N ) that

could have �red in N to model the observation of so, and if s contains a fault event,
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then s′ adds at least one token to the special place pf . Based on the aforementioned

notion, we may state the following theorem.

Theorem 4.1. Let N = (P, T,Pre,Post, #�m0,Σ, `) be a diagnosable Petri net and

let ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) be the diagnoser Petri net obtained

in accordance with Algorithm 3. Then, for all sequences of observable events so ∈

Po(L(N )) such that (∀s ∈ P−1
o (so) ∩ L(N ), σf ∈ s), the �ring of any transition

sequence sD ∈ LT(ND) in ND, where `D(sD) = so, results in a marking vector in

ND for which place pf ∈ PD has at least one token.

Proof. Let so ∈ Po(L(N )) be a sequence of observable events such that (∀s ∈

P−1
o (so) ∩ L(N ), σf ∈ s) . Since Lemma 4.2 states that Po(L(N )) = Pσfv(L(ND)),

there may be multiple sequences of transitions sD ∈ LT(ND) such that `D(sD) = so,

in which each sequence sD is associated with a transition sequence sc ∈ LT(N ) such

that Po(`(sc)) = so. If (∀s ∈ P−1
o (so)∩ L(N ))(∃sc ∈ LT(N ))[(σf ∈ s)∧ (Po(`(sc)) =

so)], then we can also say that σf ∈ `(sc). Furthermore, all sequences sc must con-

tain at least one fault transition whose �ring is necessary to enable an observable

transition, otherwise, we would be able to create a transition sc ∈ LT(N ) that would

have the observation so and would not have any fault transitions; therefore, since sc

is associated with sD, then, due to the execution of step 13 on Algorithm 3, at least

one of the transitions t′o ∈ sD has place pf ∈ PD as an output place. Since place

pf has no output transitions, the �ring of sD in ND results in a marking in which

pf has at least one token; thus, the �ring of any possible corresponding sequence

sD ∈ LT(ND), such that `D(sD) = so, results in a marking in ND such that place

pf ∈ PD has at least one token.

�

Due to the result of Theorem 4.1, we are able to con�rm the occurrence of a fault

event during the operation of N by checking whether the observed event sequence

so ∈ Po(L(N )) is such that all transition sequences s′ ∈ LT(ND) of the diagnoser

Petri net that have the same observation as so results in a marking in ND such that

place pf ∈ PD contains at least one token.
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It is also desirable for the diagnoser to be able to infer that the fault event could

have occurred before the observation of an event that con�rms its occurrence. When

analyzing the transition sequences of the diagnoser Petri net that are consistent with

the observation of the event sequence so ∈ Po(L(N )) in the original Petri net, there

are two possible scenarios that allow us to infer that the fault event could have

occurred:

� (i) There is a transition sequence s ∈ LT(ND) such that `D(s) = so and whose

�ring results in a marking vector that enables a transition labeled by σfv.

� (ii) There are two possible transition sequences s1, s2 ∈ LT(ND) such that

`D(s1) = `D(s2) = so and the �ring of s1 results in a marking vector that

contains a token in pf whereas the �ring of s2 results in a marking that does

not.

In case (i), the fault event could have occurred because a transition labeled by σfv is

enabled whenever it is possible to �re a fault transition after the �ring of a minimal

unobservable transition sequence, whereas in case (ii), the fault event could have

occurred because sequences s1 and s2 models two di�erent scenarios of transition

sequences that could have �red in the original Petri net, where the fault event only

occurred in one of them. In order to prove that those cases allow the diagnoser to

infer that the fault event could have occurred, we present the following results.

Lemma 4.3. Let N = (P, T,Pre,Post, #�m0,Σ, `) be a diagnosable Petri net and let

ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) be the diagnoser Petri net obtained in

accordance with Algorithm 3. Then, for all transition sequences s ∈ LT(N ) such

that `(s) ∈ Ψ(Σf ), there is a transition sequence s′ ∈ LT(ND) in ND such that

PTo(s) = MT(s′), σfv /∈ `D(s′) and the �ring of s′ in ND results in a marking vector

for which a transition tfv ∈ TD labeled by event σfv is enabled.

Proof. Let s ∈ Ψ(Σf ) be such that s1to,1s2to,2 . . . skto,ksftf , where, for i = 1, 2, . . . , k,

si ∈ T ∗uo and to,i ∈ To, whereas sf ∈ T ∗uo and tf ∈ Tuo is such that `(tf ) = σf .
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Notice that each unobservable transition sequence si may contain transitions that

do not directly or indirectly contribute to the �ring of to,i, i.e., transitions whose

�rings do not add tokens that are spent by to,i or another transition of si whose

generated tokens contribute to the �ring of to,i. Let sun,i be the sequence of the

transitions of si that do not contribute to the �ring of to,i in the same order as they

appear in si, and let suo,i be the sequence of the transitions of si that contributes to

the �ring of to,i. Since the tokens generated by the �ring of the transitions of sun,i are

not used by the �ring of either suo,i or to,i, it is possible to �re sun,i after the �ring of

sequence suo,ito,i without changing the resulting marking; therefore, sequence sito,i

may be changed to sequence suo,ito,isun,i. Additionally, by concatenating sun,i with

si+1 to s′i+1, we may repeat the same process for sequence s′i+1to,i+1, resulting in the

sequence suo,i+1to,i+1sun,i+1.

If the process described above were repeated for all i = 1, 2, . . . , k, we would

obtain sequence suo,1to,1suo,2to,2 . . . suo,kto,ksun,ksftf , whose �ring results in the same

marking vector as s. The unobservable transition sequences sun,k and sf may also

be concatenated into sequence s′f, which can be separated into sequences sf,uo and

sf,un, in which the former transitions contributes to the �ring of tf , whereas the

latter transitions do not contribute to the �ring of tf . Thus, we are able rearrange

s further in to obtain sequence smin = suo,1to,1suo,2to,2 . . . suo,kto,ksf,uotfsf,un.

Since smin is such that each sequence suo,i, for i = 1, 2, . . . , k, contains only tran-

sitions that contribute to the �ring of the observable transition to,i, each sequence

suo,i is associated with a minimal marking that enables to,i after �ring it. Due to

all transitions of ND being created to model the �ring of each observable transition

after the �ring of a sequence of unobservable transitions associated with minimal

markings, there is a sequence s′ ∈ LT(ND) such that s′ = t′o,1t
′
o,2 . . . t

′
o,k, where, for

i = 1, 2, . . . , k, to,i is associated with suo,i, which makes PTo(smin) = MT(s′) and

is such that σfv /∈ `D(s′). Since the order in which the observable transitions of s

and smin are organized are the same, PTo(smin) = PTo(s). Thus, s′ is also such that

PTo(s) = MT(s′)
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Given the way that ND was constructed and by excluding place pf of ND, the

�ring of s′ in ND results in the same marking vector #�mf as the �ring of sequence

suo,1to,1suo,2to,2 . . . suo,kto,k in N , with the exception of place pf .

Due to the steps 17�25 of Algorithm 3, if sf,uo is associated with a minimal mark-

ing that enables the fault transition tf after �ring, then ND contains a transition

tfv associated with the event σfv that is enabled whenever sequence sf,uotf is enabled

in N . Therefore, since smin is such that sequence sf,uotf is enabled after the �ring

of suo,1to,1suo,2to,2 . . . suo,kto,k on N , which results in the same marking vector as the

�ring of s′ in ND, with the exception of place pf , then there is a transition tfv ∈ TD

associated with the event σfv that is enabled after the �ring of s′.

�

Theorem 4.2. Let N = (P, T,Pre,Post, #�m0,Σ, `) be a diagnosable Petri net and

let ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) be the diagnoser Petri net obtained

in accordance with Algorithm 3. Then, for all sequences of observable events so ∈

Po(L(N )) such that (∃s ∈ P−1
o (so)∩L(N ))[σf ∈ s], there exists a transition sequence

sD ∈ LT(ND) in ND such that `D(sD) = so and whose �ring results in a marking

vector that either enables a transition tfv ∈ TD labeled by event σfv or is such that

place pf has at least one token.

Proof. If the transition sequence s ∈ LT(N ) is such that `(s) = so and σf ∈ `(s),

then there is a fault transition tf ∈ T such that (σf ∈ `(tf )) ∧ (tf ∈ s), which may

be in one of the following situations:

� (i) tf does not contribute to the �ring of any observable transition of s.

� (ii) tf contributes to the �ring of an observable transition to ∈ s.

If the situation of tf is (i), then tf and all unobservable transitions whose �rings

are justi�ed by the tokens added by the �ring of tf may be moved within sequence

s in a similar manner that transitions were moved in Lemma 4.3, creating an equiv-

alent transition sequence s′ whose �ring results in the same marking vector and

observation as s, but is such that tf and all unobservable transitions that �red due
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to the �ring of tf are located after the last observable transition. Notice that s′ can

be further modi�ed into a new transition sequence s′′ by removing the unobservable

transitions that �re in s′ after tf , in which PTo(s
′) = PTo(s

′′). Since s′′ last tran-

sition is tf , which is a fault transition, the label of s′′ is such that `(s′′) ∈ Ψ(Σf ).

Therefore, since PTo(s) = PTo(s
′) = PTo(s

′′) and s′′ ∈ Ψ(Σf ), according to Theo-

rem 4.3, there is a transition sequence sD ∈ LT(ND) such that PTo(s) = MT(sD)

and σfv /∈ `D(sD), which implies that `D(sD) = so, and its �ring in ND results in a

marking vector that enables a transition tfv ∈ TD associated with the event σfv.

If the situation of tf is (ii), then tf contribute to the �ring of at least one

observable transition to of s. Thus, similar to the conclusions shown in theorem

4.1, there is a transition sequence sD ∈ LT(ND) such that `(sD) = so, in which sD

contains a transition t′o associated with to and an unobservable transition sequence

suo that contains the fault transition tf , which means that t′o adds a token to pf ,

according to Algorithm 3.

Finally, in both cases, it was proved that, for the transition sequence s ∈ LT(N )

with a fault transition, there is a transition sequence sD ∈ LT(ND) such that

`D(sD) = so and its �ring in ND results in a marking vector that either enables a

transition tfv ∈ TD associated with the event σfv or is such that place pf has at least

one token.

�

Using the results of Theorem 4.2, we can con�rm that the fault event could have

occurred during the operation of the system that N models if the observed event

sequence so ∈ Po(L(N )) is such that there is a sequence s′ ∈ LT (ND) labeled by

so whose �ring results in a marking vector that either enables a transition labeled

by event σfv or has a token in place pf . Finally, if the observed event sequence

so ∈ Po(L(N )) of N does not satisfy the conditions of both Theorems 4.1 and 4.2,

then we are able to assert that no fault event has occurred, since there would not

exist a transition sequence s ∈ LT(N ) that would be labeled by so and have a fault

transition in it.
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In order to summarize the online diagnosis of a system modeled by a Petri net

N that we may do using the diagnoser Petri net ND, we enumerate the possible

scenarios of the diagnoser, given the observation of an event sequence so ∈ Po(L(N )):

� CF : The diagnoser is sure that a fault event has occurred if, for all transition

sequences s′ ∈ LT(ND) such that `D(s′) = so, the marking #�mf reached at

ND after �ring s′ is such that #�mf (pf ) > 0.

� CD: The diagnoser is sure that a fault event may have occurred before another

event observation after so if the condition described in CF is false and if there

is at least one transition sequence s′ ∈ LT(ND) such that `D(s′) = so and

the marking #�mf reached at ND after �ring s′ is such that #�mf (pf ) > 0 or #�mf

enables a transition in ND labeled by event σfv.

� CN : The diagnoser is sure that no fault events have occurred if both conditions

described in CF and CD are false.

In order to show how the diagnoser Petri net can be used for the fault diagnosis,

we present the following example that does the online diagnosis of the Petri net

presented in Example 4.3.

Example 4.4. Let N = (P, T,Pre,Post, #�m0,Σ, `) be the Petri net depicted in

Figure 4.4(a), whose observable, unobservable and fault events are Σo = {a, b},

Σuo = {w, σf} and Σf = {σf}, respectively, and let the Petri net ND =

(PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) of Figure 4.4(b) be the resulting diagnoser

Petri net of N .

Let both Petri nets N and ND have initial states where place p1 has a token.

Notice that the transition t′8 of ND labeled by σfv is enabled. This means that a fault

event could have occurred before any observations, which is true, since transition t1

may �re in N . Therefore, in this case, the diagnoser state is equal to CD.

If event a is observed, then either sequences t1t2 or t4t5t6 �red in N , where the

former generates the marking vector #�m1 = [0 1 0 0 0 0]T and the latter generates

the marking vector #�m2 = [0 0 0 1 0 1]T . Observe that if t′2 �res in ND to justify
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Figure 4.4: Petri net considered in Example 4.4(a) and its resulting diagnoser Petri
net(b).

the observation of event a, the resulting marking is equal to #�m1 with the addition

of a token in place pf , i.e.
#�m′1 = [0 1 0 0 0 0 1]T , which replicates the behavior

of the �ring of sequence t1t2 and indicates the occurrence of the fault event σf . If

t′7 �res instead, the generated marking vector is equal to #�m′2, which is equal to #�m2

with the exception of place pf , which has zero tokens in #�m′2. Therefore, both possible

transition sequences that explain the occurrence of event a in N can be explained by

transitions of ND. Since both marking vectors are consistent with the observation

of event a, the diagnoser is not able to assert whether the fault event occurred or not

because one of them has a token in place pf , whereas the other does not, meaning

that the diagnoser is still at state CD.

If event b is observed after the observation of event a, the only possible sequence

of transitions that could have �red in N to justify the observation of event sequence

ab is transition sequence t1t2t3, which contains a fault transition. Furthermore, the

only transition sequence that we can �re in ND to justify sequence ab is transition

sequence t′2t
′
3, which generates a marking in ND that has a token in place pf . Since

the only marking vector that can be reached in the diagnoser Petri net that is con-

sistent with the observation of sequence ab has a token in place pf , the diagnoser is

able assert that a fault event has occurred; thus, the state of the diagnoser changes

to CF . The reverse case happens when event a is observed again instead of event
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b, where the only consistent marking vector of ND does not contain any tokens in

place pf , meaning that the fault event has not occurred and that the diagnoser state

changes to CN .

Since the fault diagnosis with the diagnoser Petri net ND proposed here consists

of checking every possible marking vector it may reach from an observed sequence of

events, we reduce the problem of diagnosability to the problem of state estimation

of the λ-free diagnoser Petri net ND. This problem will be addressed in Section 4.2,

where we will further modify the diagnoser Petri net so that each event sequence

will only be associated with one transition sequence in ND while maintaining the

main properties of ND that are required for the fault diagnosis.

4.2 State estimation of the λ-free diagnoser Petri

net ND by solving its event con�icts

In order to diagnose the occurrence of a fault event after the observation of a sequence

of observable events so ∈ Σ∗o in a labeled Petri net N = (P, T,Pre,Post, #�m0,Σ, `)

with the λ-free diagnoser Petri net ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD)

that was generated in Section 4.1, we need to estimate the states that ND may

reach after �ring transition sequences labeled by so in such a way that we can verify

if those states are such that place pf ∈ PD contains tokens or enable a transition

tfv ∈ TD such that `D(tfv) = σfv.

According to the �ndings in [26], a possible approach to estimate the markings

that a λ-free labeled Petri net may archive is to check every possible marking that

is consistent with the observed event sequence. The work also proves that the max-

imum number of possible markings that may be reached after the observation of an

event sequence grows polynomially with the length of the transition. However, since

the number of feasible marking may grow inde�nitely during the system operation

while using this approach, we will not use it.

Another work that involves the state estimation of λ-free labeled Petri net is
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the one proposed in [24], where the set of markings consistent with an observed

event sequence is described by a linear system with a �xed structure that does not

depend on the length of the sequence. Although this approach avoids the problem

of a structure that grows inde�nitely, it assumes that the λ-free labeled Petri net is

such that every set of transitions labeled by the same event is contact-free, which

means that two transitions labeled by the same event cannot have a place that is in

the input or output place of both transitions, i.e., for two transitions t1, t2 ∈ T such

that `(t1) = `(t2), we have that (I(t1) ∪ O(t1)) ∩ (I(t2) ∪ O(t2)) = ∅. However, the

requirement for all transitions that share labels in the diagnoser Petri net ND to be

contact-free is too restrictive for this work, since multiple transitions t′o ∈ TD of ND

may be created from a single transition to ∈ T of N during the construction of the

Petri net ND in Algorithm 3, and those transitions have the same output places and

label as to, which usually renders the resulting Petri net ND as not contact-free.

Since the state estimation of previous works are not suitable for the generated

diagnoser Petri netND, we propose a new approach for the state estimation of λ-free

labeled Petri nets. Starting from the diagnoser Petri net generated by Algorithm 3,

which from now on will be referred to asND0, this new approach alters the diagnoser

Petri net to solve its event con�icts in such a way that each sequences of events

so ∈ L(ND) ∩ Σ∗o that may occur in the diagnoser Petri net will only label a single

transition sequence s′ ∈ LT(ND), which can �re from the initial marking vector

of diagnoser Petri net and result in a marking vector that may represent multiple

possible marking vectors of the original diagnoser Petri net ND0 that may be obtain

by �ring transition sequences labeled by so in it. The resulting diagnoser Petri

net ND also has the properties shown in Theorems 4.1 and 4.2 with respect to

the original Petri net N , which ensures that ND can be used to diagnose the

fault occurrence after the modi�cations. In order to modify ND so that it has

the aforementioned properties, we use the function NOC, which solves every event

con�ict involving a given set of transitions that share the same label.
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4.2.1 Function NOC

Function NOC is an algorithm that adds new places and transitions to the diagnoser

Petri net ND so that all event con�icts that exclusively involve all transitions of a

given set of transitions TC ⊆ TD and are labeled by the same event σC ∈ Σo are

solved, i.e., those event con�icts never occur during the modi�ed diagnoser Petri

net operation. It is worth remarking that each iteration of function NOC only

solves the event con�icts involving the set of transitions TC ; therefore, in order to

solve multiple event con�icts involving di�erent set of transitions, function NOC is

executed multiple times for each set.

The main idea of function NOC is that it creates a new transition tC that has a

higher priority to �re than the transitions of TC and whose �ring models that one of

the transitions of TC �red without specifying which one actually �red. Furthermore,

the �ring of tC consumes the tokens required to enable all transitions of TC ; therefore,

since tC also has a higher priority to �re than the transitions of TC , whenever the

Petri net marking has enough tokens to enable all transitions of TC , only transition

tC will be enabled, solving the event con�ict.

Remark 4.3. Although creating transition tC solves the events con�icts involving a

set of transitions TC, it does not necessarily prevent the transitions of TC from �ring

for all reachable markings of the diagnoser Petri net. Some of the transitions of TC

could be enabled by the Petri net without enabling all of the transitions of TC, and

since tC is only enabled by a marking vector that enables all the transitions of TC,

it would not be enabled in this case, allowing the �ring of transitions of TC.

Since transition tC models the �ring of multiple transitions whose �rings can

result in di�erent marking vectors, function NOC also creates places that represent

multiples possibilities of tokens that could have been generated after the �ring of one

of the transitions of TC in ND0. In order to record the places created by function

NOC, after each execution, the new places that were created by the function are

stored into the set of places Pp ⊂ PD, and the possible group of tokens that the tokens

of the places of Pp represent are stored into the list Posscache, wherein each element
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is associated with a place of Pp and is a matrix in which each row is associated with

each place of ND0 and each column represents a possible scenario of tokens in ND0

that one token in a place of Pp models.

The pseudocode of function NOC is shown in Algorithm 4, where the inputs

are: the diagnoser Petri net ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD), the event

σC ∈ ΣD, the set of transitions TC ⊆ TD that compose the event con�icts that the

function is going to solve, the set of places Pp and its list of possibilities Posscache

that were created by previous iterations of function NOC. The output of the function

returns the modi�ed diagnoser Petri net ND and the elements related to the places

created by the function, i.e., Pp and Posscache. It is worth remarking that we consider

the elements Pp and Posscache as empty for the �rst iteration of function NOC. As

function FAM, function NOC also has a complex structure; therefore, readers may

prefer to follow Example 4.6 in order to better understand about the main ideas of

function NOC.

In steps 1�7, function NOC creates transition tC for the diagnoser Petri net as

a transition that is labeled by σC and is involved in the priority relation (t, tC) for

all transitions t ∈ TC . Since transition tC models the �ring of one of the transitions

of TC , the function makes tC have the same priority relations as other transitions of

the Petri net have with the transitions of TC . The function further de�nes that the

�ring of transition tC consumes the same tokens required to enable all transitions

of TC .

In order to de�ne the tokens that the �ring of transition tC adds, the function

must �rst compute the possible tokens of ND0 that the �ring of each one of the

transitions of TC would add after �ring from a marking that has the same number

of tokens that transition tC consumes, which would indicate the possible resulting

tokens after the �ring of one of the transitions of the event con�icts. The function

does this computation by executing steps 8�33, where the function initially creates

the element Poss as a matrix whose rows are associated with the places of PD and

whose columns represent each possibility of tokens added by each transition of TC .
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Algorithm 4 Algorithm for the function NOC that solves event con�icts caused by a set of

transitions associated with a same event of the diagnoser Petri net

Inputs:

� ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) : diagnoser Petri net of N

� σC and TC : Event and set of transitions, respectively, of the event con�icts that are

solved by the function

� Pp: set of places created for each group of possibilities

� Posscache: list in which each element is a matrix associated with a place of Pp and

represents the possible group of markings that the associate place of Pp models

Outputs:

� ND : diagnoser Petri net of N that does not have the event con�ict 〈σC , TC〉
� Pp: same meaning as the input Pp

� Posscache: same meaning as the input Posscache

1: Create transition tC and add it to TD
2: Set `D(tC)← σC
3: For all t ∈ TC , add (t, tC) to ρD
4: For each t ∈ TD\(TC ∪ {tC}) do
5: If (∃tc ∈ TC)[(tc, t) ∈ ρD], add (tC , t) to ρD
6: Else if (∃tc ∈ TC)[(t, tc) ∈ ρD], add (t, tC) to ρD
7: Set PreD(:, tC)← max(PreD(:, TC), column)
8: Set Poss← PostD(:, TC) + PreD(:, tC)− PreD(:, TC)
9: For each place pp ∈ Pp do

10: While there is a column i such that Poss(pp, i) ≥ 1 do

11: Set Poss(pp, i)← Poss(pp, i)− 1

12: Expand Poss(:, i) to
[
(Poss(PD\Pp, i) + Posscache(pp))T , (Poss(Pp, i)

#�

1 1×col(Posscache(pp)))
T
]T

13: Remove every row of Poss that is associated with a place of Pp

14: Remove all repeated columns of Poss

15: For each place pp ∈ Pp do

16: Do

17: Set Posscom as an empty matrix

18: For each i-th column of Posscache(pp) do
19: Set Possi ← Poss− Posscache(pp)(:, i)
20: Remove all columns of Possi that contain at least one negative element

21: If Posscom is empty

22: Set Posscom ← Possi
23: Else

24: Set Posscom as a matrix that contains the columns that are both in Posscom and Possi
25: Remove the repeated columns of Posscom
26: Set Possre as an empty matrix

27: For each column i of Posscom and each column j of Posscache(pp) do
28: Set Possre ← [Possre,Posscom(:, i) + Posscache(pp)(:, j)]
29: Remove the repeated columns of Possre
30: If Possre contains the same columns as Poss

31: Set Poss← Posscom
32: Set PostD(pp, tC)← PostD(pp, tC) + 1
33: While Poss = Posscom
34: Set PostD(PD\Pp, tC)← min(Poss, column)
35: Set Poss← Poss−min(Poss, column)
36: Remove the repeated columns of Poss

37: If Poss contains an element greater than zero

38: Create place pp and add it to PD and Pp

39: Set #�m0,D(pp)← 0
40: Set Posscache(pp)← Poss

41: Set PostD(pp, tC)← 1
42: Set ND ← AOT(ND, pp,Poss)
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Since we are trying to �nd the possibilities of tokens in the initial diagnoser Petri

net ND0, which does not have the places of set Pp, for each token of a place pp ∈ Pp

in each possibility, the function removes that token from the possibility and expands

the possibility using matrix Posscache(pp), expanding the column of the possibility

into multiple columns that are the result of the sum of the possibility with the

possibilities modeled by the columns of matrix Posscache(pp).

After computing matrix Poss, the function veri�es, by executing steps 15�33,

if it is possible to reduce the possibilities of Poss with each matrix of possibilities

Posscache(pp) associated with a places of pp ∈ Pp that previous iterations of function

NOC created. In order to verify if Poss can be reduced by Posscache(pp), the function

generated a candidate for reduction Posscom. Then, it checks if it is possible to obtain

matrix Poss by adding the columns of Posscache(pp) with the columns of Posscom. If

this combination results in matrix Poss, then we can use matrices Posscache(pp) and

Posscom to represent the possibles tokens generated by the transitions of the event

con�ict instead of using Poss. Furthermore, since each token of place pp represents

the possibilities of Posscache(pp), instead of creating a new place to represent the

possibilities of Posscache(pp), the function makes the �ring of transition tC add a

token to place pp, causing Posscom to be the only remaining matrix of possibilities

that still requires to be modeled by a place. In order to verify if Posscom can

be further reduced by other possibilities of Posscache, the function de�nes Poss as

Posscom.

After doing all the reductions of matrix Poss with respect to the matrices of

Posscache, if there is a place p ∈ PD\Pp such that each column of matrix Poss has a

number of tokens that is greater than or equal to a positive number x ∈ N, then no

matter which transition of TC �red, all of them would have added x tokens to place

p, meaning that we would be sure that place x would receive x tokens after �ring tC .

Based on the previously mentioned idea, the function executes steps 34�36, where,

for each place p ∈ PD\Pp, the function removes the number of tokens of place p

of each column of Poss by the minimum number of tokens in place p among the
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columns of Poss and adds this same number to PostD(p, tC), which makes the �ring

of transition tC directly add those tokens to place p.

If matrix Poss still has tokens after the aforementioned reductions, i.e., Poss has

at least one element di�erent from zero, then the function executes steps 38�42 to

create a new place pp, where each token in pp indicates that the Petri net has the

tokens of one column of Poss. The function also adds pp to the set Pp and de�nes

Posscache(pp) as Poss. Since the tokens of place pp represent the possibilities of Poss

that were generated by the event con�ict between the transitions TC , the function

makes the �ring of transition tC add a token to place pp. Finally, function NOC

executes function AOT to compute the output places of place pp.

The pseudocode of function AOT is shown in Algortihm 5. Although function

AOT is large, its execution simply creates the output transitions of a place pp that

was recently created by function NOC to represent the possibilities of matrix Poss.

In steps 1�6, function AOT veri�es if there are two columns in matrix Poss where

one has tokens in place pf and the other does not. If there are two columns that

satis�es this condition, then a token in place pp indicates that there could be a token

in place pf in the diagnoser Petri net, which means that we are able to infer that

the fault event could have occurred whenever place pp has a token. In order to �ag

this occurrence to the online diagnoser, function AOT creates a transition tfv, which

is labeled by the special event σfv and whose �ring consumes and adds a token to

place pp.

Since each token in place pp represents that the diagnoser Petri net has the

tokens of one column of matrix Poss, some transitions of the diagnoser Petri net

may be able to �re by consuming some tokens from the columns of matrix Poss,

where those transitions would consume tokens from place pp to indicate that they

are consuming tokens from the possibilities of matrix Poss. In order to make the

diagnoser Petri net able to �re those transitions by consuming tokens from place pp,

function AOT executes steps 7�42, where, for each possible group of possibilities

of Poss and each transition tr ∈ TD that may �re by consuming tokens from this
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Algorithm 5 Algorithm for the function AOT that creates all possible output transitions of

place pp

Inputs:

� ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) : diagnoser Petri net

� Pp : set of places created for each group of possibilities

� pp : place of Pp that models multiple possibilities that are depicted in Poss

� Poss : matrix in which each column represents a possible marking that pp models

Outputs:

� NR = (PR, TR,PreR,PostR,
#�m0,R,ΣR, `R, ρR) : diagnoser Petri net that contains pp and

its output transitions

1: Set NR = (PR, TR,PreR,PostR,
#�m0,R,ΣR, `R, ρR)← ND

2: If Poss has two columns i and j such that Poss(pf , i) = 1 and Poss(pf , j) = 0
3: Create transition tfv and add it to TR
4: Set PreR(pp, tfv)← 1
5: Set PostR(pp, tfv)← 1
6: Set `R(tfv)← σfv
7: For each tr ∈ TD do

8: Set
#    �

mulmax as a vector that initially associates each column of Poss with 0

9: For each column j of Poss do
10: Set Pcom ← {p ∈ PD\Pp : (Poss(p, j) > 0) ∧ (PreD(p, tr) > 0)}
11: If Pcom 6= ∅
12: Set mul← 0
13: Do

14: Set mul← mul + 1
15: For each possible combination of the repetitions of each column k of Poss, each varying

from zero to
#    �

mulmax(k), whose repetitions are represented by vector #   �repPoss that

associates each column of Poss with a non negative integer, do

16: Set �ag← True

17: Set #�c ← #�

0 |PD\Pp|×1
18: Set #�c (Pcom)← min([mul× Poss(Pcom, j),PreD(Pcom, tr)], column)
19: Set #�c extra ← PreD(PD\Pp, tr)− #�c
20: Set #�r ← mul× Poss(:, j)− #�c
21: For each column l of Poss s.t. #   �repPoss(l) ≥ 1 do

22: Set PcomL ← {p ∈ PD\Pp : (Poss(p, l) > 0) ∧ ( #�c extra(p) > 0)}
23: Set #�c L ←

#�

0 |PD\Pp|×1
24: Set #�c L(PcomL)← min([ #   �repPoss(l)× Poss(PcomL, l),

#�c extra(PcomL)], column)
25: If #�c L(PcomL) = min([( #   �repPoss(l)− 1)× Poss(PcomL, l),

#�c extra(PcomL)], column)
26: Set �ag← False and break from the for loop

27: Set #�c extra ← #�c extra − #�c L

28: Set #�r ← #�r + #   �repPoss(l)× Poss(:, l)− #�c L

29: If �ag is True

30: Create transition tR and add it to TR
31: Set `R(tR)← `R(tr)
32: Add (tt, tR) and (tR, tt) to ρR for all (tt, tr) and (tr, tt) in ρR, respectively
33: Set PreR(PR\Pp, tR)← #�c extra
34: Set PreR(Pp\{pp}, tR)← PreD(Pp\{pp}, tr)
35: Set PreR(pp, tR)← sum( #   �repPoss) +multi
36: If `R(tr) = σfv
37: Set PostR(:, tR)← PreR(:, tR)
38: Else

39: Set PostR(:, tR)← PostD(:, tr)
40: Set PostR(PR\Pp, tR)← PostR(PR\Pp, tR) + #�r
41: While min(mul× Poss(Pcom, j)− PreD(Pcom, tr)) < 0

42: Set
#    �

mulmax(j)← mul
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Figure 4.5: Petri net of Example 4.5.

group of possibilities, the function creates a copy transition tR, which models the

�ring of tr, but instead of consuming the same tokens as tr when �ring, transition tR

consumes some tokens required to enable transition tr that are not in the group of

possibilities and other tokens from place pp to indicate that it is consuming tokens

from the group of possibilities instead of other places of the diagnoser Petri net.

Notice that transition tR has the same label and priority relations as tr, and if tR

is labeled by event σfv, then its �ring adds the same tokens as it consumes, since

the �ring of transitions labeled by σfv should not change the diagnoser Petri net

marking. If tR is not labeled by σfv, then its �ring adds the same tokens as the

�ring of transition tr plus the tokens of the group of possibilities that would not be

consumed by the �ring of transition tr.

We present the following example to show how function NOC solves two event

con�icts of a diagnoser Petri net.

Example 4.5. Consider the Petri net N of Figure 4.5 and its resulting diagnoser

Petri net ND0 of Figure 4.6 after the execution of Algorithm 3. We will �rst use

function NOC to solve the event con�ict 〈a, {t′1, t′2}, #�m0,D〉 of ND0. Since this is the

�rst execution of function NOC, we assume that the set of places Pp and the list of

matrices Posscache are initially empty.

In order to change ND0 into a new Petri net ND =

(PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) in which t′1 are t′2 cannot be simultane-

ously enabled, function NOC creates a new transition tC, also named t′10, which

has a higher priority to �re than t′1 and t′2, i.e. both priority relations (t′1, t
′
10) and

(t′2, t
′
10) are added to ρD. Furthermore, since the �ring of transition t′10 is supposed
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Figure 4.6: Diagnoser Petri net of the Petri net of Figure 4.5.

to model the �ring of one of the transitions of TC without specifying which one

�red, it should consume the same number of tokens that either t′1 or t′2 consumes;

therefore, the �ring of transition t′10 also consumes a token from place p1. Notice

that whenever place p1 has a token, only transition t′10 will be enabled, since it has

a higher priority to �re than transitions t′1 and t′2; thus, the event con�ict between

transitions t′1 and t′2 will never occur in the modi�ed diagnoser Petri net.

Since t′10 models multiple transitions, function NOC creates matrix Poss to store

the possible tokens that either transition t′1 or t
′
2 generates after �ring from a marking

vector that has a token in p1. Notice that the �ring of t′1 generates a token in place

p2, whereas the �ring of t′2 generates a token in place p4; thus, the resulting matrix

Poss that models both cases is as follows:

Poss =



1 0

0 0

0 0

0 1

0 0

0 0

0 0


.

Notice that Poss cannot be reduced by other elements of Posscache due to it being

empty. Additionally, there are no rows of Poss whose minimal values are di�er-

ent from zero; therefore, the aforementioned Poss is the resulting matrix after the

execution of step 36 of function NOC.

Since the resulting matrix Poss represents di�erent possibilities of tokens, we

cannot use the current places of the diagnoser Petri net to represent that we either
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have one token in place p2 or place p4 with a single marking vector after the �ring of

t′10. In order for ND to have a place whose tokens indicates that we either have one

token in place p2 or p4, the function creates a new place p7 for ND, where each token

of p7 indicates that we either have one token in place p2 or p4, and the function also

makes the �ring of transition t′10 add a token to place p7. Additionally, the function

adds place p7 to the set of places Pp and matrix Poss to the list Posscache so that

future iterations of function NOC may reduce their matrices Poss with the current

matrix Poss.

Notice that a token in place p2 of ND0 enables the transitions t′3, t
′
5 and t′9,

whereas a token in place p4 enables the transitions t′6 and t′8. Since place p7 models

two possibilities wherein one has a token in p2 and the other has a token in p4,

a token in p7 may contribute to the �ring of one of the �ve previously mentioned

transitions. Therefore, function AOT creates transitions t′11, t
′
12, t

′
13, t

′
14 and t′15

as copies of transitions t′3, t
′
5, t

′
6, t

′
8 and t′9, respectively, as shown in the resulting

Petri net ND Figure 4.7. Notice that they all share place p7 as their input place

and their �ring generates the same tokens as the transitions that generated them,

with the exception of transition t′15, whose �ring adds a token to place p7, since it is

a transition labeled by σfv, which means that its �ring cannot change the Petri net

marking.

Now we show that we can execute function NOC again to solve the event con-

�ict between transitions t′11 and t′13, where both are labeled by event a. It is worth

remarking that for this execution of function NOC, the set of places Pp has place

p7 and Posscache(p7) is equal to the matrix Poss of the previous iteration of function

NOC.

In order to model the �ring of both transitions t′11 and t′13, function NOC creates

transition t′16, which has a higher priority than both transitions t′11 and t′13 and

consumes a token from place p7. Additionally, the function calculates the possible

tokens that the �ring of each transition may result, which is equal to the following

matrix:
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Figure 4.7: Resulting diagnoser Petri net after the execution of function NOC with
respect to event a and the set of transitions TC = {t′1, t′2}, where

ρD = {(t′1, t′10), (t′2, t
′
10)}.

Poss =



1 0

0 0

0 0

0 1

0 0

1 1

0 0

0 0


.

Di�erent from the previous iteration of function NOC, the elements Pp and

Posscache are not empty during this execution of NOC, which means that matrix

Poss may be reduced by matrix Posscache(p7). In order to check whether that re-

duction is possible, the function creates a candidate for reduction matrix Posscom,

wherein each column is obtainable by reducing any column of Poss by a column

of Posscache(p7). The only column that we are able to obtain in this manner is

Posscom = [0, 0, 0, 0, 0, 1, 0, 0]T , which is the result of either the di�erence between the

�rst columns of Poss and Posscache(p7) or the di�erence between the second columns

of Poss and Posscache(p7). Notice that if we sum each column of Posscache(p7) with

Posscom, we obtain Poss again. In other words, if we combine the possibilities of

Posscom with the possibilities of Posscache(p7), we are able to obtain the possibilities

modeled in Poss; therefore, we are able to reduce Poss to Posscom by making the
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Figure 4.8: Diagnoser Petri net after the second iteration of function NOC, where
ρD = {(t′1, t′10), (t′2, t

′
10), (t′11, t

′
16), (t′13, t

′
16)}.

�ring of transition t′16 add a token to place p7 and replace Poss with Posscom for the

remainder of the function.

If Poss = [0, 0, 0, 0, 0, 1, 0, 0]T , then we are sure that the �ring of either transitions

t′11 or t′13 adds a token to place p6. The function detects and solves this behavior by

making the �ring transition t′16 add the tokens that are common among the columns

of Poss, and since there is only one column in the matrix, the function makes the

�ring of transition t′16 add a token to place p6. Additionally, since the �ring of t′16

already adds a token to p6, the function removes this token from Poss, making Poss

equal to a vector of zeros. Since Poss only contain zeros after those operations, it

does not model any possibilities of tokens, which means that the function does not

need to create a new place to model it; therefore, the function ends its iteration

without creating a new place, and the resulting diagnoser Petri net is depicted in

Figure 4.8.

4.2.2 Using the diagnoser Petri net ND after the execution

of function NOC to diagnose a labeled Petri net N

As stated in Section 4.2.1, function NOC changes the diagnoser Petri net ND =

(PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) in such a way that the event con�icts that
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are related to a given set of transitions TC are solved. Furthermore, the Petri net

marking is able to model multiple markings of the original diagnoser Petri net ND0.

In this section, we formally describe the properties of the resulting diagnoser Petri

net ND with respect to a previous diagnoser Petri net NDb after one execution of

function NOC with NDb as an input, which are similar to the Theorems 4.1 and

4.2 and are shown below.

Theorem 4.3. Let NDb = (PDb, TDb,PreDb,PostDb,
#�m0,Db,ΣDb, `Db, ρDb) be a diag-

noser Petri net obtained from a diagnosable Petri net N = (P, T,Pre,Post, #�m0,Σ, `)

and let ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD), Pp and Posscache be obtain-

able from Algorithm 4 assuming the diagnoser Petri net NDb, the set of transi-

tions TC ⊆ TDb labeled by event σC, the previous set of places Ppb that were cre-

ated by previous iterations of function NOC and its associated list Posscache,b are

the inputs. If, for all sequences of observable events so ∈ Po(L(N )) such that

(∀s ∈ P−1
o (so)∩L(N ), σf ∈ s), the �ring of every transition sequence sDb ∈ LT(NDb)

in NDb, satisfying `Db(sDb) = so, results in a marking vector in NDb for which

place pf ∈ PDb has at least one token, then the �ring of every transition sequence

sD ∈ LT(ND) in ND, satisfying `D(sD) = so, results in a marking vector at ND

for which place pf ∈ PD has at least one token.

Proof. If the property described in Theorem 4.1 is valid for the Petri net NDb, then

for all sequences of observable events so ∈ Po(L(N )) such that (∀s ∈ P−1
o (so) ∩

L(N ), σf ∈ s), the �ring of any possible corresponding transition sequence sDb ∈

LT(NDb), where `Db(sDb) = so, results in a marking vector in NDb where place pf ∈

PDb has at least one token. If those possible transition sequences sDb labeled by so are

such that they do not contain a transition of TC whose event observation σC causes

an event con�ict involving all transitions of TC , then those transition sequences

dynamics are the same as the dynamics of the transition sequences sD ∈ LT(ND)

that are also labeled by so, since the transition tC ∈ TD created in function NOC to

solve event con�icts between the transitions of TC is never used. This means that

the transition sequences sD are equal to the transition sequences sDb and result in
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the same marking in both Petri nets. Therefore, in this case, the property described

in Theorem 4.1 also applies to the Petri net ND.

Whenever the possible transition sequences sDb contain transitions of TC and

the observation of event σC causes event con�icts involving all transitions of TC ,

the transition tC that was created in ND by function NOC may �re in transition

sequences sD labeled by so, resulting in a marking vector that may be di�erent

from the one generated by sDb by sequence sDb. However, if the transition of sDb

that added a token to place pf is such that it either was not involved in the con�ict

involving the transitions of TC or was not enabled by a token that a transition of the

event con�ict generated, then the same transition �res in sequence sD, meaning that

sD also adds a token in pf . In order to demonstrate that the property of Theorem 4.1

is also true for the cases in which the transition of sDb that adds a token to place pf is

either a transition of the event con�ict involving the transitions TC or is a transition

that �res by consuming tokens generated by one of those transitions of the con�ict,

we separate them into two cases: (i) the event con�icts involving the transitions of

TC occur during the last event observation of so; (ii) the event con�icts involving

the transitions of TC occur before the last event observation of so.

During the last event observation of case (i), if transition tC is the last transition

of the transition sequence sD labeled by so, then its �ring in ND may add tokens

to the places of Pp to model di�erent markings changing that each transition of TC

may cause with their �ring. Furthermore, in step 34, the function makes it so that

the �ring of tC directly generates the common tokens that all the transitions of TC

generate with their �ring. Therefore, if all the transitions of TC add tokens to place

pf ∈ TD, then the �ring of tC also adds tokens to pf ; thus, in case (i), the property

of Theorem 4.1 also applies to ND.

In case (ii), other transitions may �re in sD after the �ring of transition tC .

If those transitions were not created by the last iteration of function NOC, then

their dynamic would be the same in both Petri nets NDb and ND, making their

�ring cause the same change of tokens, including place pf . However, if a transition
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tR ∈ TD, which is di�erent from tC and was created during the last iteration of

NOC, �res after tC , then this transition was created by function AOT, whose �ring

consumes at least one token from the place pp ∈ PD that was created by function

NOC to model di�erent markings that the �ring of the transitions of TC may result.

Due to the way transition tR was created in Algorithm 5, it is a copy of a transition

tr ∈ TDb of NDb that consumes at least one token of the possibilities that place pp

models. Since tR is a copy of tr, its �ring adds the same tokens to ND that tr adds

to NDb; thus, if tr adds a token to place pf , then tR also adds a token to place pf .

Additionally, while creating transition tR, function AOT assumes that each token

that the �ring of tR consumes from place pp is associated with a possibility that pp

models, and the tokens that tr do not consume from that possibility are added to

ND by tR; therefore, if this possibility contains a token in pf , then tR also adds

a token to pf . Therefore, in case (ii), the property of Theorem 4.1 also applies to

ND.

Since the property of Theorem 4.1 applies to all cases of sD, then the property

of Theorem 4.1 is also valid with respect to ND. �

Theorem 4.4. Let NDb = (PDb, TDb,PreDb,PostDb,
#�m0,Db,ΣDb, `Db, ρDb) be a diag-

noser Petri net obtained from a diagnosable Petri net N = (P, T,Pre,Post, #�m0,Σ, `)

and let ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD), Pp and Posscache be obtain-

able from Algorithm 4 assuming the diagnoser Petri net NDb, the set of transi-

tions TC ⊆ TDb labeled by event σC, the previous set of places Ppb that were cre-

ated by previous iterations of function NOC and its associated list Posscache,b are

the inputs. If, for all sequences of observable events so ∈ Po(L(N )) such that

(∃s ∈ P−1
o (so)∩L(N ))[σf ∈ s], there exists a transition sequence sDb ∈ LT(NDb), for

which `Db(sDb) = so and whose �ring results in a marking vector in NDb that either

enables a transition tfv ∈ TDb associated with event σfv or is such that place pf ∈ PDb

has at least one token, then there exists a transition sequence sD ∈ LT(ND), for

which `D(sD) = so and whose �ring results in a marking vector in ND that either

enables a transition tfv ∈ TD associated with event σfv or is such that place pf ∈ PD
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has at least one token.

Proof. If the property described in Theorem 4.2 is valid for the Petri net NDb, then

for all sequences of observable events so ∈ Po(L(N )) such that (∃s ∈ P−1
o (so) ∩

L(N ))[σf ∈ s], there is a corresponding transition sequence sDb ∈ LT(NDb) in

NDb, where `D(sDb) = so and whose �ring results in a marking vector at NDb that

either enables a transition tfv ∈ TDb associated with the event σfv or is such that

place pf ∈ PDb has at least one token. Given the sequence of observable events so

that also satis�es the aforementioned condition, if there is a corresponded transition

sequence sDb ∈ LT(NDb) labeled by so that satis�es the aforementioned condition

and is such that it does not contain a transition of TC involved in an event con�ict

that contains all transitions of TC , then there is a transition sequence sD ∈ LT(ND)

that is equal to sDb. Therefore, sD is also such that its resulting marking at ND

either enables a transition tfv ∈ TDb labeled by event σfv or is such that place pf has

at least one token.

If all corresponded transition sequences sDb of NDb that satis�es this theorem

condition and are labeled by so contain transitions of TC that are involved in event

con�ict composed of all transitions of TC , then all associated transition sequences sD

of ND contain the transition tC , which was created by the last iteration of function

NOC. However, if one of those transition sequences sDb is such that the resulting

marking at NDb after �ring it either contains a token in place pf or contain enough

tokens to enable a transition labeled by event σfv, in which those tokens were not

generated by a transition involved in the event con�ict or a transition that consumes

the tokens generated a transition of the event con�ict, then those tokens are also

generated in the associated transition sequence sD of ND by transitions that were

originally from NDb; therefore, in such a case, the condition of this theorem also

applies to sD.

If all the aforementioned transition sequences sDb are such that either the tran-

sitions associated with the event con�ict or the transitions whose �rings consume

tokens that a transition of the event con�ict generates are the ones that cause the
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condition of the theorem to be true, then those sequences may be divided into two

cases that vary according to the position of the event con�ict in the sequence: (i)

the event con�icts involving the transitions of TC occur during the last event obser-

vation of so; (ii) the event con�icts involving the transitions of TC occur before the

last event observation of so.

Consider case (i). If transition tC is the last transition of the transition sequence

sD labeled by so, then it models the �ring of multiple possible transition sequences

sDb, in which each ends with a di�erent transition t ∈ TC . Those modeled sequences

may satisfy this theorem condition in three ways: (i.i) the �ring of every transition

of TC adds a token to place pf ; (i.ii) the �ring of at least one transition of TC adds a

token to place pf and the �ring of another transition of TC does not; (i.iii) although

the �ring of any transitions of TC does not add a token to place pf , their resulting

marking after the �ring of a transition of TC enables a transition labeled by event

σfv. The case (i.i) is explained in Theorem 4.3, wherein all associated transitions

sD that ends with transition tC have a token in pf . Conversely, in case (i.ii), the

�ring of tC in sD does not add a token to place pf . Notice, however, that the �ring

of transition tC in sD models the �ring of both transitions mentioned in such a way

that the resulting marking models a possibility in which place pf has a token and

another possibility in which it does not. Therefore, due to steps 3�6 of the function

AOT of Algorithm 5, the �ring of transition tC adds a token to a place pp ∈ Pp such

that pp has an output transition whose �ring only consumes a token from it and is

associated with event σfv. Lastly, in case (i.iii), notice that the �ring of transition tC

in place of a transition of TC adds tokens to the places of Pp in such a way that ND

has a copy transition for every transition of NDb whose �ring consumes tokens that

could have been generated by transitions of TC , which are modeled by the tokens of

the places of Pp. Therefore, if the last transition of sDb is a transition of TC whose

�ring results in a marking vector that enables a transition tfv ∈ TDb labeled by event

σfv, then function AOT created a transition t′fv ∈ TD, which is a copy of tfv and

is enabled after the �ring of sequence sD by the resulting marking vector after the
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�ring of tC . Observe that, in all three cases, sequence sD satis�ed the property of

this theorem; thus, for case (i), the property of this theorem applies to sD.

For case (ii), if the �ring of a transition tr ∈ TDb in sequence sDb after the �ring

of another transition t ∈ TC that is part of the event con�ict consumes tokens from

the tokens generated by t, then a similar process occurs in the associated transition

sequence sD, wherein transition tC �res in place of t and a transition tR ∈ TD, which

is a copy of transition tr, �res in its place. Notice that the �ring of transition tr

generates the same number of tokens as the �ring of tR, and those tokens are such

that either place pf has a token, or they contribute to make a transition tfv ∈ TDb

enabled, in which `Db(tfv) = σfv. Therefore, the tokens that the �ring of transition

tR generates either add a token to place pf , enables the same transition tfv, but in

ND, or enables a transition which is a copy of tfv, which is also labeled by event σfv.

Therefore, in case (ii), the condition of this theorem also applies to sD.

It was shown that, for all cases of transition sequences sDb ∈ LT(NDb) that

satis�es the theorem condition, there is a transition sequence sD ∈ LT(ND) that

also satis�es the condition. �

If the original diagnoser Petri net ND0 contain the properties of Theorems 4.1

and 4.2, which are needed for the fault diagnosis, then the resulting Petri net ND

after the execution function NOC contain similar properties due to Theorems 4.3

and 4.4, which means that we are still able to diagnose the occurrence of the fault

event using the resulting diagnoser Petri net. Additionally, if we further change ND

with function NOC in order to solve more event con�icts, those properties remain

valid for the resulting diagnoser Petri net. Therefore, a possible way of doing the

online diagnosis using the diagnoser Petri net is use function NOC to solve the event

con�icts of ND as they occur in ND while we try to �re the transitions of ND that

are consistent with the event observations of the original Petri net N , reducing the

number of reachable states of ND that are consistent with the event observations

of N to a single state.

After Algorithm 3 generates the initial diagnoser Petri net ND0, we are able to
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start the online diagnosis of N , where, for each observed event σo ∈ Σ∗o, we �re a

transition tD ∈ TD of ND labeled by σo that is enabled. If we are able to �re more

than one transition labeled by σo in ND, it means that ND current marking causes

an event con�ict involving transitions of a set of transitions TC ⊆ TD and an event

σo ∈ Σo, which we solve by executing function NOC; therefore, if σo causes an event

con�ict in ND, we modify ND in such a way that this event con�ict does not occur

in the modi�ed diagnoser Petri net. If we do that for all event con�icts that occur

during the event observations, the event sequence so ∈ Σ∗o that was observed will

label only one transition sequence sD ∈ LT(ND), whose �ring results in a single

marking vector #�mD. Since the resulting diagnoser Petri net contains the properties

described in Theorems 4.3 and 4.4, we are able to enumerate the possible cases of the

diagnoser after the observation of sequence so by analyzing the resulting marking

vector #�mD, such that #�m0,D[so〉 #�mD, as follows:

� CF : The diagnoser is sure that a fault event has occurred if #�mD(pf ) > 0.

� CD: The diagnoser is sure that a fault event may have occurred before the next

event observation after so if there is a transition tfv ∈ TD such that `(tfv) = σfv

and #�mD[tfv〉.

� CN : The diagnoser is sure that no fault event has occurred if both conditions

described in CF and CD are false.

Finally, we proposed the pseudocode of Algorithm 6 that does the diagnosis of

the fault event of a Petri netN using the diagnoser Petri netND that was generated

by Algorithm 3. Notice that the algorithm shows the case in which the diagnoser

currently is during its execution through the output C, whose value changes to one

of the three cases CF , CD and CN after each event observation. Furthermore, if

one of the observed events causes an event con�ict, the algorithm solves it by using

function NOC, which makes the same observation result in the �ring of only one

transition.
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Algorithm 6 Algorithm that executes the diagnosis of fault events of a Petri net using the

diagnoser Petri net that was generated by Algorithm 3

Inputs:

� ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) : diagnoser Petri net

Outputs:

� C: Indicates the current case of the fault occurrence, whose values can be CF , CD or

CN

1: Create Pp as an empty set

2: Create Posscache as an empty list of matrices

3: Set #�m← #�m0,D

4: If (∃t ∈ TD)[(`(t) = σfv) ∧ ( #�m[t〉)]
5: Set C ← CD

6: Else

7: Set C ← CN

8: Do

9: Wait for the observation of an event σC ∈ ΣD\σfv
10: Set TC ← {t ∈ TD : (`D(t) = σC) ∧ ( #�m[t〉)}
11: If |TC | ≥ 2
12: Let [ND, Pp,T ,Posscache]← NOC(ND, σC , TC , Pp,Posscache)
13: If |Pp,T | > |Pp|
14: Set pp as the only place of Pp,T \Pp

15: Set #�m(pp)← 0
16: Set Pp ← Pp,T

17: Set TC ← {t ∈ TD : (`D(t) = σC) ∧ ( #�m[t〉)}
18: Set tC as the only transition of TC
19: Set #�m← #�m+ Post(:, tC)− Pre(:, tC)
20: If #�m(pf ) > 0
21: Set C ← CF

22: Else if (∃t ∈ TD)[(`(t) = σfv) ∧ ( #�m[t〉)]
23: Set C ← CD

24: Else

25: Set C ← CN

26: While the online diagnoser is running

86



p1

p6

t1 a

t3

a

t4

σf

p2p3

t5 b

at2

t6

a

t7

W

p4 p5

ct8

Figure 4.9: Petri net of Example 4.6.

p1

p6

t1' a

t3'

a

p2p3

t4' b

at2'

t6'

a

p4 p5

ct7'

t8'

c

t5'

b

pf
σfv

t9'

Figure 4.10: Diagnoser Petri net of the Petri net of Figure 4.9.

In order to show how the online diagnosis using the diagnoser Petri net and

function NOC works, we present the following example.

Example 4.6. Consider the Petri net N of Figure 4.9 and its resulting diagnoser

Petri net ND0 of Figure 4.10 after the execution of Algorithm 3, which are the same

Petri nets as the ones of Example 4.5.

If event a is observed in N while the current marking vector of ND0 is equal to

its initial marking vector #�m0,D, either transitions t′1 or t′2 could �re to justify this

observation, which means that the event con�ict 〈a, {t′1, t′2}, #�m0,D〉 occurs in ND0.

As shown in Example 4.5, we can use function NOC to solve this event con�ict,

modifying the diagnoser Petri net to the Petri net of Figure 4.11. After solving

the above event con�ict, the only transition of ND that we can �re to model the

occurrence of event a is transition t′10, which moves the token of place p1 to place

p7. Since a token in place p7 enables transition t′15, which is labeled by σfv, we are

able to conclude that the fault event could have occurred.

If we observe event a for a second time, the transitions of ND that are enabled

by a token in place p7 and whose �rings can justify this observation are transitions

t′11 and t′13, which means that the Petri net is in another event con�ict. In order to
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Figure 4.11: Resulting diagnoser Petri net after the execution of function NOC
with respect to event a and the set of transitions TC = {t′1, t′2}, where

ρD = {(t′1, t′10), (t′2, t
′
10)}.

solve such con�ict, we execute function NOC which changes the diagnoser Petri net

to the one of Figure 4.12

After solving the event con�icts involving transitions t′11 and t′13, the only tran-

sition that can justify the second observation of event a is transition t′16, which adds

one token to place p6.

If the event b is observed after the �rst two occurrences of event a, the only

transition of ND that can �re to correspond to this observation is t′12, whose �ring

results in a marking vector that contains a token in place pf , meaning that we are

able to conclude that the a fault event has occurred. If the observed event is c instead,

the corresponding transition that �res in ND is t′14, whose �ring results in a marking

vector that does not contain a token in place p5 and p6. Since this marking vector

does not have a token in place pf and does not enable a transition labeled by event

σfv, we are sure that no fault event has occurred after this event observation.

4.2.3 Boundness of function NOC

We are able to diagnose the occurrence of a fault event of a Petri net N by analyzing

the marking vectors that the diagnoser Petri net ND reaches after the �ring of a

transition sequence associated with the observed event sequence that occurs in N .
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Figure 4.12: Diagnoser Petri net after the second iteration of function NOC, where
ρD = {(t′1, t′10), (t′2, t

′
10), (t′11, t

′
16), (t′13, t

′
16)}.

Furthermore, in order to limit the number of marking vectors that we analyze to

one, whenever the observed event sequence causes an event con�ict in ND, function

NOC solves this con�ict by adding places and transitions to the diagnoser Petri net.

However, the places and transitions that NOC adds to ND may cause more event

con�icts, and, in some cases, by solving each event con�ict that occurs due to event

observations with function NOC, the number of places and transitions of ND may

grow inde�nitely.

To exemplify the aforementioned issue, consider the diagnoser Petri net ND that

contains the places and transitions of Figure 4.13(a). The initial marking of ND

causes the event con�ict involving event a and transitions t1 and t2. If we execute

execute function NOC with respect to this event con�ict, we obtain the Petri net

depicted in Figure 4.13(b), in which transitions t1 and t2 are hidden since they have

lower priority than transition t5 and are never enabled by the new Petri net reachable

marking.

Although the �rst execution of function NOC solves the event con�icts between

transitions t1 and t2, it also creates the event con�ict involving transitions t6 and t7,

which occurs after transition t5 �res. If we solve the new event con�ict with function

NOC, we obtain the diagnoser Petri net of Figure 4.14, wherein transitions t6 and

t7 are hidden. Notice that the resulting diagnoser Petri net contains a structure
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Figure 4.14: Part of a diagnoser Petri net ND after two executions of function
NOC.

similar to the Petri net of Figure 4.13(b), but with the addition of one place and

three transitions. Furthermore, the dynamics of transitions t9 and t10 are similar to

the dynamics of t6 and t10, which means that if we execute function NOC to solve

the event con�ict between t9 and t10, the resulting Petri net will have another event

con�ict similar to t9 and t10; therefore, this part of the diagnoser Petri net will grow

inde�nitely as we solve their event con�icts with function NOC.

It is worth remarking that the reason why this diagnoser Petri net grows inde�-

nitely after each execution of function NOC is because each iteration has to create a

new place to model di�erent possibilities that cannot be reduced by other possibili-

ties of the places that were created by previous iterations of NOC, and the output

transitions of the created place cause more event con�icts, which causes the creation

of more places. A token in place p6 of the Petri net in Figure 4.14 models that the

Petri net has a token in either p2 or p3, whereas p7 is such that the �rst possibility
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has a token in p2 and p4, and the second possibility has a token in p3 and p5. Notice

that the function is not able to reduce the possibilities modeled by place p7 with

the possibilities of place p6 during the execution of steps 15�33, and the possibilities

that future iterations of NOC cannot be reduced either.

Even though the structure of the Petri net of Figure 4.13(a) causes the diagnoser

Petri net to grow inde�nitely, there is a class of diagnoser Petri nets in which this

growth does not occur due to the number of places that can be created by several

iterations of function NOC being limited. Thus, in this section, we propose an addi-

tional assumption with respect to the diagnoser Petri net that allows the assertion

that the diagnoser Petri net will not grow inde�nitely as function NOC solves the

event con�icts that may occur by the possible event observations.

In order to de�ne the new assumption, letMso be a matrix in which each column

is a marking vector #�m such that there is a transition sequence s ∈ LT(ND) labeled

by the event sequence so ∈ Po(L(N )) such that #�m0,D[s〉 #�m, i.e, each column ofMso is

a marking vector that may be reached after the �ring of a transition sequence whose

observation is equal to so. Furthermore, letMred,so beMso after the execution of the

steps 35�36 of Algorithm 4, in which each row is reduced by their minimum value

and all repeated columns of Mso after the above operation are removed.

Notice that Mso depicts the possible marking vectors the diagnoser Petri net

may be in after the observation of event sequence so, whereas Mred,so only models

the tokens that we are not certain that are in the resulting marking vector. Since

the places created by function NOC also model these uncertain tokens, if we execute

function NOC to solve the event con�icts caused by the observation of sequence so,

all the tokens of Mred,so will be modeled by the places created by function NOC.

Furthermore, the columns of matrix Mred,so may be reduced by matrices Mred,s,

where sequence s ∈ {so}\{so}, i.e., sequence s is a pre�x of so di�erent from so, in

a similar manner that matrix Poss is reduced in steps 15�33 and step 35 of function

NOC, and if this reduction results in a matrix of zeros, then the possibilities of

Mred,so may be modeled by dividing it between previous possibilities that occurs

91



before the occurrence of the last event of so.

If the aforementioned reduction is possible, then function NOC is also able to

reduce the possibilities it considers in matrix Poss after the observation of the last

event of so to a matrix of zeros, since matrix Mred,s may modeled by places of Pp.

If the function is able to completely reduce Poss, then, according to step 37, this

iteration of the function does not create a new place; therefore, if there exists a

natural number k ∈ N such that all event sequences so ∈ Po(L(N )) that contain

k events or more result in matrices Mred,so that can be completely reduced by the

matrices associated with the pre�xes of so, then the execution of function NOC with

respect to the diagnoser Petri net ND can only create a limited number of places.

With this last conclusion, we are able to express an additional assumption that we

can consider in order to be able to optimize the fault diagnosis, as follows:

A4. The diagnoser Petri net ND of N is such that there is a number k ∈ N such

that for all event sequences so ∈ Po(L(N )), if |so| ≥ k, then matrix Mred,so can be

completely reduced by matrices Mred,s, where s ∈ {so}\{so}.

If we consider that Assumption A4 is valid for the diagnoser Petri net, then the

number of places that may be created by multiple iterations of function NOC is

�nite, which means that the number of transitions created by function AOT, which

is only executed after the creation of a place, is also limited. Furthermore, each

transition tC that the function NOC creates to solve an event con�ict is such that

it does not increase the number of event con�icts in the Petri net, since its �ring

only replaces the �ring of the transitions involved in a con�ict; thus, AssumptionA4

guarantees that multiple iterations of function NOC are only able to create a limited

number of places and transitions in the diagnoser Petri net ND.
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4.3 Using Assumption A4 to optimize the online di-

agnosis

If we consider that the generated diagnoser Petri net ND of a Petri net N satis�es

Assumption A4, then we are able to solve all the event con�icts of ND during the

o�ine computation of the diagnoser by using function NOC to solve those event

con�icts before the observation of any events in N . This allows the online diagnosis

of N by using a diagnoser Petri net that does not require the execution of function

NOC to solve the event con�icts during the online diagnosis.

In order to �nd all event con�icts ofND, we use Algorithm 7, which is a modi�ed

version of Algorithm 1 that �nds the extended coverability tree (ECT) ofND, which

allows the enumeration of all event con�icts within its input Petri net through its

arcs. Notice that we are not able to use the CT of ND to enumerate all events

con�icts because of two issues: (i) by replacing the number of tokens of a place

within a node of CT with the symbol ω, an event con�ict that only occurs when

the number of tokens of that place is less than a threshold may be hidden; (ii)

although a transition may remove tokens from a place whose number of tokens is ω

after �ring multiple times, the CT is not able to reduce the number of tokens from

a place associated with ω, which means that an event con�ict that occurs due to

this reduction may be hidden. In order to show those issues and how Algorithm 7

solve them, we present two examples.

With respect to issue (i), consider the Petri net of Figure 4.15(a) and its resulting

CT of Figure 4.15(c). If transition t1 �res once, then place p1 gains a token, which

enables transitions t1 and t2, and since both transitions are labeled by event a, the

event con�ict 〈a, {t1, t2}, [1]T 〉 occurs. However, this event con�ict is not present in

the resulting CT, since Algorithm 1 replaces the marking vector [1]T with [ω]T , which

enables transitions t1, t2 and t3 and hides the aforementioned event con�ict. In order

to solve this issue in the generated tree, Algorithm 7 executes the steps 15�21, in

which, before the function replaces the value of the number of tokens of a place p of a
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Algorithm 7 Algorithm ECT to obtain the extended coverability tree of a labeled priority

Petri net

Inputs:

� N = (P, T,Pre,Post, #�m0,Σ, `, ρ) : labeled priority Petri net model

Outputs:

� Nodes: nP × l matrix whose columns are the l nodes of the tree

� Arcs: l × l matrix, wherein each element from the i-th row and j-th column is equal to

the transition of N or the symbol r, which is associated with the connection between the

i-th node and the j-th node, if such connection exists, or zero, otherwise

1: Set Nodes← [ #�m0]
2: Set l← 1
3: Set Arcs← [0]
4: Set nodesToCheck← [1]
5: Set parents← [0]
6: While nodesToCheck is not empty do

7: Set currentNode← nodesToCheck(1)
8: Remove nodesToCheck(1) from nodesToCheck

9: For each t such that Nodes(:, currentNode)[t〉 do
10: Set newNode← Nodes(:, currentNode) + Post(:, t)− Pre(:, t)
11: Set newNodeReg← newNode

12: Set currentParent← currentNode

13: While (currentParent 6= 0) do
14: If newNode ≥ Nodes(:, currentParent)
15: Set Tenab ← {tn ∈ T : newNode[tn〉}
16: For each p ∈ P such that newNode(p) > Nodes(p, currentParent)
17: Set newNodeW← newNode

18: Set newNodeW(p)← ω
19: Set Tenab,W ← {tn ∈ T : newNodeW[tn〉}
20: If Tenab = Tenab,W
21: Set newNode(p)← ω
22: If (Post(p, :) ≥ Pre(p, :))
23: Set newNodeReg(p)← ω
24: Set currentParent← parents(currentParent)
25: Set Nodes← [Nodes,newNode]
26: Set parents← [parents, currentNode]
27: Set Arcs← [[Arcs,

#�

0 l×1]T ,
#�

0 l+1×1]T

28: Set l← l + 1
29: Set Arcs(currentNode,l)← t
30: Set �ag← True

31: While (currentParent 6= 0) and �ag is True do

32: If (Nodes(:, currentParent) = newNode)
33: �ag← False

34: If (Nodes(:, currentParent) = newNodeReg)
35: Set newNodeReg← newNode

36: Set currentParent← parents(currentParent)
37: If �ag is True

38: Set nodesToCheck← [nodesToCheck, l]
39: If newNode 6= newNodeReg

40: Set Nodes← [Nodes,newNodeReg]
41: Set parents← [parents, currentNode]
42: Set Arcs← [[Arcs,

#�

0 l×1]T ,
#�

0 l+1×1]T

43: Set l← l + 1
44: Set Arcs(l-1,l)← r
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Figure 4.15: Petri nets of the examples of the �rst (a) and second (b) issues of
Algorithm 1, and the resulting CT (c) of both Petri nets.
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Figure 4.16: Resulting ECT (a) and (b) of the Petri nets of Figures 4.15(a) and
4.15(b), respectively.

node with ω, the function veri�es if the marking vector of the new node enables the

same transitions as the resulting marking vector after altering the number of tokens

of p with ω. If the set of transitions enabled by the two are equal, then replacing

the number of tokens of p with ω does not hide an event con�ict; therefore, the

algorithm replaces the number of tokens of p with ω. The resulting ECT of the

Petri net is depicted in Figure 4.16(a), wherein the event con�ict 〈a, {t1, t2}, [1]T 〉

is present. This event con�ict occurs because even though the marking vector [1]T

that is generated after the �ring of t1 from the �rst node is greater than [0]T , which

should cause [1]T to change to [ω]T , the algorithm veri�es that [1]T does not enable

transition t3, which is enabled by [ω]T ; therefore, the algorithm does no change [1]T

to [ω]T .

For the issue (ii), consider the Petri net of Figure 4.15(b) and its resulting CT of

Figure 4.15(c). If transition t1 �res, two tokens are added to place p1, which enables
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transition t1, t2 and t3. If transition t2 �res after the �ring of t1, a token is removed

from place p1, changing its marking to one, which only enables transitions t1 and

t2. Since all transitions are labeled by event a, after the �ring of sequence t1t2,

the Petri net is in the event con�ict 〈a, {t1, t2}, [1]T 〉. Although this event con�ict

occurs, it is not present in the CT of the Petri net due to Algorithm 1 replacing the

marking of p1 with ω after the �ring of t1, which prevents the �ring of transition t2

from removing tokens from it. In order to circumvent this issue, Algorithm 7 does

a regression process through steps 11, 22�23, 34�35 and 38�42.

Before verifying if a newly created node associated with the marking vector

newNode needs to have one of its markings replaced by ω, Algorithm 7 creates the

vector newNodeReg as a copy of it, which will possibly be a regression of newNode.

Whenever the algorithm changes a marking of a place p in newNode to ω and Post(p, :

) ≥ Pre(p, :), the algorithm also changes the corresponding marking in newNodeReg

to ω. If the comparison Post(p, :) ≥ Pre(p, :) is false, then it is possible that the

�ring of a transition reduces the number of tokens of p; therefore, the algorithm does

not change the marking of p in newNodeReg. If the resulting newNode is di�erent

from newNodeReg and newNodeReg is not equal to a predecessor of newNode, then,

after the creation of the node with respect to newNode, the algorithm creates an

additional node with respect to newNodeReg, whose parent is newNode and the arc

connecting newNode to newNodeReg is labeled by the symbol r. Notice that the

addition of newNodeReg after newNode allows a transition to remove tokens from a

place whose tokens were replaced by ω in newNode, which can reveal event con�icts

that were hidden in the CT. If we execute Algorithm 7 with respect to the Petri

net of Figure 4.15(b), we obtain the ECT of Figure 4.16(b), in which a regression

occurs after the �rst �ring of transition t1. Notice that the regression changes the

marking of p1 from ω to two, which is the resulting marking after the �ring of

t1. Furthermore, after �ring transition t2 from node [2]T , we obtain the marking

vector [1]T , which shows the occurrence of the event con�ict 〈a, {t1, t2}, [1]T 〉 that

was hidden in the CT. It is worth remarking that the marking vector [1]T was not
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replaced by [ω]T because both marking vectors enable di�erent set of transitions,

which is a problem related to the issue (i), whose solution was already shown.

Since both issues (i) and (ii) are solved in Algorithm 7, we are able to �nd

the event con�icts of ND by analyzing the groups of arcs of the ETC of ND that

originate from a same node, in which each group is represented in a column of

matrix Arcs. Therefore, we are able to enumerate an event con�ict by selecting all

the transitions of a column of Arcs that are labeled by a same event σ ∈ ΣD\σfv.

Based on this logic, we execute Algorithm 8 to make all modi�cations with respect

to the diagnoser Petri net ND during the o�ine computation, so that the resulting

diagnoser Petri net does not contain any event con�icts involving the events of

ΣD\σfv.

Algorithm 8 Algorithm that solves all event con�ict of a diagnoser Petri net

Inputs:

� ND = (PD, TD,PreD,PostD,
#�m0,D,ΣD, `D, ρD) : diagnoser Petri net of N

Outputs:

� ND : diagnoser Petri net of N that does not have any event con�ict involving events

that are di�erent from σfv

1: Create Pp as an empty set

2: Create Posscache as an empty list of matrices

3: Do

4: Let [Nodes,Arcs]← ETC(ND)
5: For each i-th column of Arcs do

6: For each σ ∈ ΣD\{σfv}
7: Create TC as an empty set

8: For each j-th row of Arcs do

9: If Arcs(j, i) ∈ TD\TC ∧ `(Arcs(j, i)) = σ
10: Add Arcs(j, i) to TC
11: If |TC | ≥ 2
12: Break from the for loop

13: If |TC | ≥ 2
14: Break from the for loop

15: If |TC | ≥ 2
16: Let [ND, Pp,Posscache]← NOC(ND, σC , TC , Pp,Posscache)
17: While |TC | ≥ 2

If we execute Algorithm 6 after solving the event con�icts of the diagnoser Petri

net with Algorithm 8, the steps 12�17 are never executed in Algorithm 6 during

the online diagnosis, due to the diagnoser Petri net not having any event con�icts

involving the events that may be observed during the system operation. By never

executing those steps, the speed of the online diagnosis increases considerably, since
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the algorithm only does simple Petri net operations, such as changing and verifying

the marking vector of the Petri net.

Remark 4.4. Notice that the algorithms that are used to compute the diagnoser

Petri net ND and solve its event con�icts can cause some of the transitions of ND

to never be enabled by the reachable markings of ND. However, we cannot remove

those transitions after each execution of function NOC because some of them may

be enabled by the reachable markings of ND after the execution of more iterations

of function NOC. On the other hand, if we solve all event con�icts of ND during

the o�ine computation using Algorithms 8, then there will not be another execution

of function NOC; therefore, in this case, we can remove those transitions that are

never enabled by the reachable markings of ND, which can be found by verifying the

transitions that are never enabled by the nodes of the extended coverability tree of

ND.

In order to show that we can use Algorithms 8 and 6 to do the online diagnosis

of a Petri net system using a limited structure that other works, such as the one of

Cabasino et al.[23], can only diagnose using structures that may grow inde�nitely,

we present the following example.

Example 4.7. Consider the Petri net N of Figure 4.17, which is the same Petri net

of Example 3.1, wherein the Petri net was diagnosed using the online diagnoser pro-

posed by [23]. In the Example 3.1, the number of considered markings that justi�ed

the observed event sequences could grow inde�nitely, which means that the structure

of the diagnoser could also grow with respect to the observed event sequence.

If we execute Algorithm 3 with respect to N , we obtain the initial diagnoser Petri

net ND0 of Figure 4.18. Notice that ND0 is unbounded, since t′1, which is labeled

by event a, may �re inde�nitely from the initial marking, increasing the number of

tokens in place p1. Furthermore, those marking vectors that cause the Petri net to

be unbounded compose event con�icts involving event a and transitions t′1, t
′
2 and t′6.

Consider the values of Mred,ε, Mred,a, Mred,aa and Mred,aaa with respect to ND0,

whose values are, respectively, as follows:
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Figure 4.17: Petri net N of Example 4.7.
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Figure 4.18: Initial diagnoser Petri net ND0 of the Petri net of Figure 4.17.
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

0

0

0

0

0

0

0

0

0

0

0

0



,



0 1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0



,



0 1 1 2

0 0 1 2

1 0 1 1

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



,



0 1 1 2 2 3

0 0 1 1 2 3

1 0 1 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



.

By reducing Mred,aaa with Mred,aa while executing the steps 15�33 and step 35 of

function NOC, we obtain the same matrix as Mred,a, which can also be completely

reduced by Mred,a, i.e., if we reduce Mred,aaa with Mred,aa and Mred,a, we obtain a

matrix with one column of zeros. Similar to the reduction of Mred,aaa, Mred,so can

be completely reduced by its previous reduced set of markings for so ∈ {aaa}{a}∗.

In addition, if event b is observed afterwards, the diagnoser Petri net marking can

change to two possibilities: (i) the Petri net marking has a token in place p4; (i) the

Petri net marking has a token in place p11, where, in both cases, neither place p3

nor place p6 have tokens. In case (i), only transition t′5, which is labeled by event b,

is enabled, and if it �res, it moves the token from place p4 to p5, which only enables

transition t′4, whose �ring does not change the Petri net marking and is also labeled

by event b. In the case (ii), the only transition that is enabled is t′10, whose �ring also

does not change the Petri net marking and is labeled by event a. In both cases, the

number of reachable markings is limited and they cannot be considered for the same

observation, since cases (i) and (ii) occur due to the observations of events b and a,

respectively, which means that they can be completely reduced after the observation

of either events a or b. Therefore, since there is a value k for which all Mred,so can

be completely reduced, in which so ∈ {ΣD\{σfv}}∗ and |so| > k, Assumption A4

applies to ND0, which means that we are able to solve all of its event con�icts of

ND0 with Algorithm 8.
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Figure 4.19: Diagnoser Petri net ND of the Petri net of Figure 4.17 after the
execution of Algorithm 8.

The resulting diagnoser Petri net ND after the execution of Algorithm 8 to solve

all of its event con�icts has a total of 18 places and 707 transitions. However, if we

remove the places whose markings never change and transitions that never �re, the

numbers of places and transitions are reduced to 14 and 19, respectively, as shown

in Figure 4.19. Furthermore, the priority relations of ρD are shown below.

ρD = {(t′12, t
′
13), (t′19, t

′
13), (t′17, t

′
14), (t′24, t

′
14), (t′25, t

′
14),

(t′12, t
′
16), (t′19, t

′
16), (t′17, t

′
24), (t′17, t

′
25), (t′24, t

′
25)}

If event a is observed an undetermined number of times, the transition sequence

s ∈ {t′12t
′
13t
′
19}{t′16}∗ �res in ND to correspond to it. After the �ring of sequence

t′12t
′
13t
′
19, ND reaches a marking vector #�m in which places p1, p12 and p13 have one

token each, which enables transition t′16. Notice that the �ring of transition t′16 only

adds a token to place p12; thus, if transition t′16 �res multiple times to correspond

to the multiple observations of event a, place p12 gains multiple tokens while the

Petri net structure remains the same, which allows the diagnoser to observe an

undetermined number of observations of event a without the growth of the diagnoser
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Petri net structure.

If event b is observed after the �ring of an undetermined number of observations

of event a that is greater than 5, transition t′14 �res in ND to correspond it, removing

token from places p1, p12 and p13 and adding a token to place p14. Notice that the

transition t′15, whose label is σfv, becomes enabled by the token in p14; therefore,

the diagnoser is able to assert that the fault event could have occurred after the

observation of event b. If event b is observed again, transition t′20 �res to model it.

Notice that the �ring of t′20 adds a token to place pf ; thus, we are sure that the fault

event has occurred after the second observation of event b. If event a is observed

after the �rst observation of event b instead, transition t′21 �res in ND, removing

a token from place p14 and adding one token to places p8, p9, p11 and p17. Observe

that all tokens of the resulting marking vector do not enable transitions labeled by

event σfv, and since place pf does not have a token, we are able to con�rm that the

fault event has not occurred.
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Chapter 5

Conclusion and future works

We have presented in this work a new approach for the online diagnosis of fault

events of discrete event systems modeled by labeled Petri net, which is able to use

the reachable marking vectors of a diagnoser labeled priority and λ-free Petri net to

determine the occurrence of fault events concurrently with the operation of a labeled

Petri net system.

The presented approach is able to perform the online diagnosis of fault events

of diagnosable labeled Petri net systems that do not contain cycles of unobservable

transitions. Additionally, when Assumption A4 is satis�ed for the diagnoser Petri

net, all computations regarding the diagnoser Petri net can be performed o�ine,

allowing the execution of the online diagnosis of a Petri net with a structure that

does not grow inde�nitely. To the best of our knowledge, our approach is the �rst

one in the literature that is able to execute the online diagnosis of systems modeled

by labeled Petri nets such as the one of Example 4.7 without requiring structures

that can possibly grow with respect to the observed event sequences, as it was shown

to be the case for the online diagnoser of Cabasino et al.[23] in Examples 3.1.

Although the main objective of this work is online diagnosis of labeled Petri net

systems, we have also indirectly contributed to other �elds of studies. By using the

extended coverability tree that is generated by Algorithm 7, instead of the normal

coverability tree that is generated by Algorithm 1, we are able to obtain more

information about the transitions that may �re in an unbounded labeled priority
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Petri net. Furthermore, in order to use the diagnoser Petri net to diagnose the fault

occurrences in systems, we proposed in Section 4.2 a new approach for the state

estimation of λ-free labeled Petri nets that consists of solving the event con�icts

of the Petri net using functions NOC and AOT. Although the approach for the

state estimation proposed here is personalized for the fault diagnosis, it can also be

adapted to a more general state estimation of λ-free labeled Petri nets. Finally, we

have introduced the concept of event con�icts and shown possible solutions for it,

which can be used in other problems of DESs, such as the supervisory control of

Petri net systems.

Regarding future works, we list the following possible continuations of this work:

1. Further studies involving the diagnoser Petri nets may show that it is possible

to use them to solve the problem of diagnosability of Petri net systems. A

possible approach for deciding the diagnosability of a Petri net, for example,

is to verify if there is a cycle of reachable markings in the diagnoser Petri net

that causes the diagnoser to always conclude that the fault event could have

occurred.

2. The construction of the diagnoser Petri net can be optimized to avoid the

addition of transitions that are never enabled by the reachable markings.

3. The state estimation of the diagnoser Petri net using function NOC can be

further improved by changing the type of the Petri net of the diagnosed Petri

net to a more complex structure, such as labeled priority Petri net with variable

arc weights. Preliminary work has shown that this change may allow the

increase on the class of Petri nets whose event con�icts may be solved during

the o�ine computation of the diagnoser.

4. Find a di�erent approach for the state estimation of λ-free labeled Petri nets,

which could be directly used to estimate the states of the diagnoser Petri net

generated by Algorithm 3.
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5. The same ideas presented in this work regarding the conversion of a Petri net

to a λ-free labeled priority Petri net and the state estimation of λ-free labeled

priority Petri nets can be applied to other studies involving DESs modeled by

Petri nets, such as the study of opacity, fault prediction, and so forth.
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