
DATA-SELECTION IN LEARNING ALGORITHMS

Jonathas de Oliveira Ferreira

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do título de Mestre em

Engenharia Elétrica.

Orientador: Paulo Sergio Ramirez Diniz

Rio de Janeiro

Março de 2020

DATA-SELECTION IN LEARNING ALGORITHMS

Jonathas de Oliveira Ferreira

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO

PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU

DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientador: Paulo Sergio Ramirez Diniz

Aprovada por: Prof. Paulo Sergio Ramirez Diniz

Prof. João Baptista de Oliveira e Souza Filho

Prof. Gabriel Matos Araújo

RIO DE JANEIRO, RJ � BRASIL

MARÇO DE 2020

Ferreira, Jonathas de Oliveira

Data-Selection in Learning Algorithms/Jonathas de

Oliveira Ferreira. � Rio de Janeiro: UFRJ/COPPE, 2020.

XIX, 95 p.: il.; 29,7cm.

Orientador: Paulo Sergio Ramirez Diniz

Dissertação (mestrado) � UFRJ/COPPE/Programa de

Engenharia Elétrica, 2020.

Referências Bibliográ�cas: p. 84 � 92.

1. Data Selection. 2. Filter Adaptive. 3. Kernel

Method. 4. Neural Network. I. Diniz, Paulo Sergio

Ramirez. II. Universidade Federal do Rio de Janeiro,

COPPE, Programa de Engenharia Elétrica. III. Título.

iii

To my Family and Friends

iv

Agradecimentos

Agradeço à minha família, principalmente aos meus pais Francisco Ferreira e

Irlanda de Oliveira e ao meu irmão João Pedro, que sempre estiveram ao meu lado

desde o meu nascimento. Boa parte do que eu sou hoje como pessoa devo a eles.

Agradeço também à minha vó Joana e as minhas tias Hildene, Filoca e Tunica,

que me ajudaram bastante em vários momentos e �zeram os meus dias mais felizes.

Quero agradecer também a minha madrinha e meu padrinho, Ilma e Paulinho, por

serem pessoas tão legais e boas comigo.

Quero fazer um agradecimento aos meus amigos: Aloizio Macedo, Baby, Barata,

Benice, Daphne Poll, Diogo Lemos, Fael, Guilherme, Ian Martins, Ivani Ivanova,

Jéssica Richards, Juliana Pessin, Karina Livramento, Ligeiro, Leo Vasconcelos, Leo

Gama, Mangelli, Pedro Gil, Pacheco, Presida, Produção, Raphael 04, Rodrigo Lima,

Turano. Essas pessoas me ajudaram de alguma forma no mestrado e/ou graduação

e também me �zeram companhia nesse período de aprendizado da faculdade.

Agradeço também ao pessoal da Atlética, principalmente ao Alexandre e a Krissy,

por terem começado essa atlética tão maravilhosa onde eu pude passar alguns

momentos da minha vida. Isso também inclui o time de handebol, onde mesmo

não sabendo jogar nada por lá (risos), eles sempre me acolheram.

Um salve especial ao pessoal que foi representante comigo, Ian, Baby, Karina,

Barata, Produção, Mesquita por esses momentos que a gente passou junto tentando

melhorar a ABC, saiba que aprendi bastante durante esse período e que levarei para

o resto da minha vida esses dias de governança.

Quero agradecer a todo pessoal da ABC 116, até as pessoas que eu não conheço

muito bem, por vivenciar seus dias nesse local tão bom que é a ABC. Espero que

as pessoas do presente e do futuro de nosso laboratório cuidem dele, assim como eu

tive o cuidado de gerenciá-lo para vocês que são a geração atual da ABC.

Quero agradecer a dois professores que foram importantes na minha jornada

durante o mestrado: Paulo Diniz e Fábio Ramos. Fábio Ramos, obrigado por ter

me orientado durante o tempo que �quei na Matemática Aplicada no mestrado,

por ter me dado forças para seguir adiante, mesmo depois daquele acontecimento,

mostrando que ali não era o �m. Paulo Diniz, obrigado por me orientar durante

esses anos, eu sei que você sentirá bastante saudades de mim depois que eu sair da

v

faculdade. Em muitos momentos você foi como um segundo pai, sempre me dando

forças e mostrando qual caminho eu deveria seguir.

Quero agradecer a minha irmã de orientador, Marcele. Por ter sido a minha

dupla em vários momentos nessa faculdade, seja nos artigos ou nos trabalhos que o

Diniz passava para a gente fazer. E também por me ajudar a �nalizar essa minha

dissertação.

Quero agradecer ao pessoal do SMT: Vinicius, Wesley, Domenica, Rafael Padilla,

Cinelli, Matheus, Gabriel, Markus, Tadeu, pois mesmo não conhecendo vocês a

fundo, sempre gostei de conversar com vocês.

E por último, quero agradecer ao pessoal da Elogroup, principalmente ao pessoal

de Analytics, por terem me acolhido tão bem nesses últimos 6 meses, saibam que

com vocês eu obtive bastante aprendizado.

En�m, obrigado a todos por deixarem eu fazer parte de duas vidas, pois se hoje

estou escrevendo essa dissertação foi graças a vocês.

Agradeço também ao Conselho Nacional de Desenvolvimento Cientí�co e

Tecnológico (CNPq) pelo suporte �nanceiro durante o mestrado.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

SELEÇÃO DE DADOS EM ALGORITMOS DE APRENDIZAGEM

Jonathas de Oliveira Ferreira

Março/2020

Orientador: Paulo Sergio Ramirez Diniz

Programa: Engenharia Elétrica

Nos últimos anos, a quantidade de informação armazenada em dispositivos

de aquisição de dados tem aumentado exponencialmente, em virtude das antenas

massive multiple-input multiple-output (MIMO), redes sociais e redes distribuídas.

Nesta era do Big Data, enfrentamos o desa�o de utilizar com e�ciência uma grande

quantidade de dados para extrair informações importantes. Portanto, é essencial

de�nir critérios para decidir se o dado é relevante ou não durante o processo de

aprendizagem. Este trabalho propõe uma estratégia de seleção de dados para duas

áreas: �ltragem adaptativa e redes neurais. Em ambas as situações, os dados podem

ser descartados, reduzindo o custo computacional e, em alguns casos, a acurácia

da estimativa. As aplicações analisadas neste trabalho incluem dados sintéticos e

reais, estas veri�cam a e�cácia dos algoritmos propostos que podem obter reduções

signi�cativas nos custos computacionais sem sacri�car a acurácia da estimativa

devido à seleção dos dados.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial ful�llment of the

requirements for the degree of Master of Science (M.Sc.)

DATA-SELECTION IN LEARNING ALGORITHMS

Jonathas de Oliveira Ferreira

March/2020

Advisor: Paulo Sergio Ramirez Diniz

Department: Electrical Engineering

In recent years, the amount of information stored in data acquisition devices has

increased exponentially, due to the massive multiple-input multiple-output (MIMO)

antennas, social networks, and distributed networks. In this era of Big Data, we

face the challenge of e�ciently utilizing a large amount of data to extract valuable

information. Therefore, it is essential to de�ne criteria to decide if the data is

relevant or not during the learning process. This work proposes a data selection

strategy for two areas: adaptive �ltering and neural networks. In both situations,

data could be discarded, reducing the computational cost and, in some cases, the

accuracy of the estimate. The applications analyzed in this work include synthetic

and real data, these verify the e�ectiveness of the proposed algorithms that may

achieve signi�cant reductions in computational costs without sacri�cing estimation

accuracy due to the selection of the data.

viii

Contents

List of Figures xi

List of Tables xiv

List of Symbols xv

1 Introduction 1

1.1 Why Do We Select Data? . 1

1.2 General Considerations . 2

1.3 Dissertation Goals . 3

1.4 Organization . 4

1.5 Notation . 5

2 Data Selection in Conjugate Gradient Algorithm 7

2.1 Introduction to Adaptive Filtering . 7

2.2 Conjugate Gradient . 9

2.2.1 The Online Conjugate Gradient 10

2.2.2 Problem Statement . 12

2.2.3 Simulation Results . 20

2.3 Concluding Remarks . 25

3 Data Selection in Kernel Conjugate Gradient Algorithm 26

3.1 Kernel Conjugate Gradient . 26

3.1.1 Concepts of the Kernel Method 27

3.1.2 Online Kernel Conjugate Gradient 31

3.1.3 Simulation Results . 41

3.2 Concluding Remarks . 46

4 Data Selection in Neural Networks 47

4.1 Introduction to Arti�cial Neural Networks 47

4.1.1 Perceptron Learning . 48

4.1.2 Feed-Forward Multilayer Neural Network 50

ix

4.2 Formulation of the Modi�ed Data Selection in NN 56

4.3 Simulations . 65

4.3.1 Regression - Problem 1: Superconductivity Dataset 65

4.3.2 Regression - Problem 2: Online News Popularity Dataset . . . 67

4.3.3 Regression - Problem 3: Facebook Comment Volume Dataset . 68

4.3.4 Regression - Problem 4: FIFA 19 Complete Player Dataset . . 70

4.3.5 Classi�cation - Problem 5: MNIST Handwritten Digit

Recognition Dataset . 73

4.3.6 Classi�cation - Problem 6: EMNIST Letters Dataset 74

4.3.7 Problem 7: Deep Neural Network (Transcoding Time and

MNIST Datasets) . 76

4.4 Concluding Remarks . 81

5 Conclusions 82

5.1 Final Remarks . 82

5.2 Future Works . 82

Bibliography 84

A Appendix 93

A.1 Dropout . 93

A.2 Number of Flops . 94

x

List of Figures

1.1 Scheme of a learning algorithm. 3

2.1 The general con�guration of an adaptive �lter 8

2.2 Common applications in adaptive �ltering. 9

2.3 Data selection strategy. 13

2.4 Simulation A: Fourth-order AR input signal, (a) Learning curves for

the data selection and (b) Comparison between the desired Pup and

achieved P̂up. 21

2.5 Simulation A: First-order AR input signal, (a) Learning curves for

the data selection and (b) Comparison between the desired Pup and

achieved P̂up. 21

2.6 Simulation B: (a) Comparison between the desired Pup and achieved

P̂up by the DS-CG algorithm and (b) Comparison between the desired

signal and the predicted by the DS-CG algorithm for Pup = 0.4. . . . 23

2.7 Simulation B: Learning curves for data selection in Pup = 0.4 and

Pup = 1. 23

2.8 Simulation C: (a) Frequency response of the channel and the data-

selective �lter (b) Comparison between the desired Pup and achieved

P̂up by the algorithm. 24

2.9 Simulation C: Comparison between the transmitted and the recovered

signals by the DS-CG algorithm for (a) Pup = 0.4 and (b) Pup = 1. . . 24

2.10 Simulation C: Learning curves for data selection in Pup = 0.4 and

Pup = 1. 25

3.1 Kernel mapping representation . 28

3.2 Simulation A1: (a) MSE learning curves for the data selection and

(b) Comparison between the desired Pup and the achieved P̂up. 42

3.3 Simulation A2: (a) MSE learning curves for the data selection and

(b) Comparison between the desired Pup and the achieved P̂up. 42

xi

3.4 Simulation B: (a) Comparison between the desired Pup and achieved

P̂up by the DS-CG algorithm and (b) Comparison between the desired

signal and the predicted by the DS-CG algorithm for Pup = 0.4. . . . 44

3.5 Simulation B: MSE learning curves for data selection in Pup = 0.4

and Pup = 1. 44

3.6 Simulation C: (a) Equalized signal of the channel and the data-

selective �lter (b) Comparison between the desired Pup and achieved

P̂up by the algorithm. 45

3.7 Simulation C: MSE learning curves for data selection in Pup = 0.4

and Pup = 1. 45

4.1 The vector x is misclassi�ed by the hyperplane Hold (in red). The

update rule adds x to the weight vector, wnew = wold + x, where

in this case µ = 1. The new hyperplane Hnew (in blue) classi�es

correctly the vector x. 49

4.2 Two classes (ω1,ω2) are formed by the union of polyhedral regions.

The con�guration in this image is related to the Boolean XOR function. 50

4.3 In this �gure, the neural network has L = 3 layers (2 hidden and the

output). 51

4.4 Epoch Scheme in neural network. 61

4.5 Data selection neural network diagram. 62

4.6 Superconductivity simulation: (a) Test MSE curves comparing the

case when the algorithm is always updated Pup = 1 (b = 256 and b =

80) and with the probability of update Pup ∈ {0.005, 0.1, 0.3, 0.5, 0.7}
(b) Comparison between the desired Pup and achieved P̂up. 67

4.7 Online news popularity simulation: (a) Test MSE curves comparing

the case when the algorithm is always updated Pup = 1 (b =

256 and b = 80) and with the probability of update Pup ∈
{0.005, 0.1, 0.3, 0.5, 0.7} (b) Comparison between the desired Pup and

achieved P̂up. 69

4.8 Facebook Comment Volume simulation: (a) test MSE curves

comparing the case when the algorithm is always updated Pup = 1

(b = 256 and b = 80) and with the probability of update Pup ∈
{0.005, 0.1, 0.3, 0.5, 0.7} (b) Comparison between the desired Pup and

achieved P̂up. 71

xii

4.9 FIFA 19 Complete Player simulation: (a) Test MSE curves comparing

the case when the algorithm is always updated Pup = 1 (b =

256 and b = 80) and with the probability of update Pup ∈
{0.005, 0.1, 0.3, 0.5, 0.7} (b) Comparison between the desired Pup and

achieved P̂up. 72

4.10 Sample images from MNIST dataset. 74

4.11 MNIST Handwritten Digit Recognition simulation: Test classi�cation

error (%) comparing the case when the algorithm is always updated

Pup = 1 (b = 256 and b = 32) with the probability of update Pup ∈
{0.1, 0.3, 0.5, 0.7} when (a) the output activation function is softmax

and objective function is cross-entropy error and when (b) the output

activation function is linear function and the objective function is MSE. 75

4.12 Sample images from EMNIST letters dataset. 76

4.13 EMNIST letters simulation: Test classi�cation error (%) comparing

the case when the algorithm is always updated Pup = 1 with the

probability of update Pup ∈ {0.1, 0.3, 0.5, 0.7} when (a) the output

activate function is softmax and objective function is cross-entropy

error and when (b) the output activate function is linear function and

objective function is MSE. 77

4.14 Transcoding time simulation: test MSE curves comparing the case

when the algorithm is always updated Pup = 1 (b = 512 and b = 64)

and with the probability of update Pup ∈ {0.005, 0.1, 0.3, 0.5, 0.7}. . . 79

4.15 Transcoding time simulation: (a) Probability distribution for the

samples selected in the 100-th epoch and (b) Comparison between

the desired Pup and achieved P̂up. 79

4.16 MNIST Handwritten Digit Recognition simulation: Test classi�cation

error (%) comparing the case when the deep learning algorithm

utilizes the dropout technique, and when the data selection method is

applied, varying the probability of update Pup ∈ {0.1,0.3,0.5,0.7,1}.
The output activation function is given by softmax, and objective

function is the cross-entropy error. 80

A.1 (a) The neural network with two hidden layers and (b) Dropout

applied in the network producing a thinned net 93

A.2 (a) The training node present in process with probability p and (b)

The test phase with node always present and weight multiplied by p. 94

xiii

List of Tables

1.1 Operators used throughout this work 6

2.1 Data-Selective Conjugate Gradient algorithm 19

2.2 Misalignment with outliers, in dBs. 22

3.1 Basic Conjugate Gradient algorithm 32

3.2 Conjugate Gradient Least Squares algorithm 33

3.3 O�ine Kernel Conjugate Gradient algorithm 36

3.4 Online Kernel Conjugate Gradient algorithm 38

3.5 Data Selection Kernel Conjugate Gradient algorithm 39

3.6 MSE (dB) for simulations with outliers 43

4.1 Perceptron algorithm . 49

4.2 Con�guration of an arbitrary neural network. 51

4.3 Gradient descent back-propagation algorithm 55

4.4 Data Selection Feed-Forward Multilayer Neural Network algorithm in

a regression problem . 58

4.5 Data Selection Feed-Forward Multilayer Neural Network algorithm in

classi�cation problem . 63

4.6 Comparison between the regression problems in the test error varying

the probability of update Pup (blue is the best and red is the worst

for each problem) . 73

4.7 Approximated number of �ops in one epoch varying the probability

of update Pup . 73

4.8 Comparison in test error between the classi�cation problems varying

the probability of update Pup (blue is the best and red is the worst

for each problem) . 78

4.9 Approximated number of �ops in one epoch varying the probability

of update . 78

4.10 Approximated number of �ops in one epoch varying the probability

of update . 81

xiv

List of Symbols

ξexc excess MSE (chapters 2 and 3)

(ω1, ω2) linearly separable two-classes (chapter 4)

α step size in the coe�cient �lter (chapters 2 and 3)

β step size in the conjugate direction (chapters 2 and 3)

∆l Matrix representing the sensitivity vector of layer l (chapter 4)

δl sensitivity vector for the layer l (chapter 4)

∆l
C Matrix representing the sensitivity vector of layer l computed from data

selection for classi�cation problem (chapter 4)

∆l
R Matrix representing the sensitivity vector of layer l computed from data

selection for regression problem (chapter 4)

εl multiplication between the weigth matrix and sensitivity vector (chapter 4)

φ kernel function vector (chapter 3)

Υ mapping of the input matrix into the Hilbert Space (chapter 3)

υ feature function (chapter 3)

∆w error in the coe�cients (chapters 2 and 3)

η constant in step size (chapters 2 and 3)

γ small constant for regularization (chapters 2 and 3)

Ŷ Matrix of estimated outputs (chapter 4)

ŷ estimated output (chapter 4)

ŶC Matrix of estimated outputs selected from data selection for classi�cation

problem (chapter 4)

xv

ŶR Matrix of estimated outputs selected from data selection for regression

problem (chapter 4)

d̂ estimated desired signal (chapters 2 and 3)

P̂up estimated probability of update (chapters 2 and 3)

λ forgetting factor (chapters 2 and 3)

c conjugate direction (chapters 2 and 3)

d desired vector (chapter 3)

g negative gradient of the objective function (chapters 2 and 3)

H �nite impulse response (FIR) channel convolution matrix (chapters 2 and 3)

h impulse response (chapters 2 and 3)

K Gram matrix (chapter 3)

p cross-correlation between input �lter and desired signal (chapters 2 and 3)

R autocorrelation matrix of the input �lter (chapters 2 and 3)

s input signal (chapters 2 and 3)

v Multiplication between input transpose matrix and conugate direction vector

(chapter 3)

W all weight matrices in the neural networks framework (chapter 4)

w adaptive coe�cient update (chapter 2 and 3)

Wl weight matrix between layers l − 1 and l (chapter 4)

X input data matrix (chapter 3)

x �lter input (chapters 2 and 3)

x input in Neural Network (chapter 4)

xl input vector of layer l (chapter 4)

XI input matrix with I input vectors added in the data dictionary (chapter 3)

xi the i-th input included in the data dictionary (chapter 3)

y output in Neural Network (chapter 4)

xvi

yl output vector of layer l (chapter 4)

Z Residual gradient matrix (chapter 3)

z residual gradient for CGLS algorithm (chapter 3)

C set related to the indexes of E values greater or equal to the tbin-th largest

value (chapter 4)

E vector error in regression Neural Network for data selection (chapter 4)

Ek vector error in classi�cation Neural Network for the data selection in the n-th

class (chapter 4)

H Hilbert Space (chapter 3)

H∗ dual space of H (chapter 3)

R set selected to update the weights at iteration (chapter 4)

X subset of Hilbert Space (chapter 3)

µ step size in Neural Network (chapter 4)

π inner product between of g(k) and g(k) (chapter 3)

ρ constant for misadjustment (chapters 2 and 3)

σe error variance (chapters 2 and 3)

σy output variance (chapters 2 and 3)

σte error variance in Neural Network (chapter 4)

σn noise variance (chapters 2 and 3)

τ threshold for the data selection (chapters 2, 3 and 4)

τmax threshold for outliers (chapters 2 and 3)

ξ steady state MSE (chapters 2 and 3)

ξmin Minimum MSE (chapters 2 and 3)

ζi kernel coe�cient (chapter 3)

ai eigenvalue of the reproducing kernel κ(·,·) (chapter 3)

b mini-batch size (chapter 4)

xvii

d desired signal (chapters 2 and 3)

E sum total of error vector in Neural Network (chapter 4)

e error signal (chapters 2 and 3)

f activation function in Neural Network

fL output activation function in Neural Network

hW parametric nonlinear function in Neural Network (chapter 4)

Hnew new hyperplane (chapter 4)

Hold old hyperplane (chapter 4)

I number of input vectors included in the data dictionary (chapters 2 and 3)

iter number of iteration in Neural Network (chapter 4)

J objective function (chapters 2, 3 and 4)

Jtest objective function in test dataset (chapter 4)

Jtrain objective function in training dataset (chapter 4)

Jkm objective function in the output node k for the m-th input signal (chapter 4)

kup number of updates at each iteration to the KCG algorithm (chapter 3)

L+ 1 total number of layers in Neural Network (chapter 4)

M Total number of examples in a o�ine dataset (chapter 3)

n noise signal (chapters 2 and 3)

nep number of epochs in Neural Network (chapter 4)

ol total number of nodes in the layer l without the bias node (chapter 4)

Pup prescribed probability of update (chapters 2, 3 and 4)

qi(·) eigenfunction of the reproducing kernel κ(·,·) (chapter 3)

r autocorrelation between input (chapters 2 and 3)

tbin value obtained from binomial distribution with n = b and p = Pup (chapter

4)

xviii

wlij weight communication between the i-th node of a layer l− 1 to the j-th node

of the next layer l (chapter 4)

y �lter output (chapters 2 and 3)

wo optimal coe�cient (chapters 2, 3 and 4)

e error vector in Neural Network for data selection (chapter 4)

X l Input matrix of layer l in Neural Network (chapter 4)

X(t,i) Inputs signal selected in training dataset in iteration i and epoch t (chapter

4)

X l
C Input matrix of layer l in classi�cation Neural Network selected from data

selection (chapter 4)

X l
R Input matrix of layer l in regression Neural Network selected data selection

(chapter 4)

Y l Output matrix of layer l in Neural Network (chapter 4)

Y(t,i) Outputs signal selected in training dataset in iteration i and epoch t (chapter

4)

YC Outputs signal in training dataset selected from data selection for

classi�cation problem (chapter 4)

Y l
C Output matrix of layer l in classi�cation Neural Network selected from data

selection (chapter 4)

YR Outputs signal in training dataset selected from data selection for regression

problem (chapter 4)

Y l
R Output matrix of layer l in regression Neural Network selected from data

selection (chapter 4)

xix

Chapter 1

Introduction

Learning algorithms are tools to acquire knowledge from data using statistical

methods and optimization. These algorithms can solve speci�c tasks based on

patterns and inferences obtained from a dataset, known as training dataset [1�3].

Examples of such tasks include image recognition [4], spam email identi�cation [5],

diagnoses in medicine [6] and other pattern recognition tasks in biology, economics,

astronomy, etc [7, 8].

This scienti�c area started to �ourish around the 90's, when the �eld of arti�cial

intelligence started to handle problems using statistics and probability theory.

This growth occurred mainly due to the increase in computer capacity to process

information and the discovery of signi�cant mathematical results [9�11].

Learning algorithms are intimately linked with optimization: most problems

in our main �eld contain a loss function (that captures the adequacy of the

current model) that should be minimized utilizing the training dataset [1�3]. The

minimization problem requires optimization methods.

1.1 Why Do We Select Data?

Most subareas of learning algorithms require enormous computational costs due

to the complexity of the related problems [12, 13]. As a consequence, a huge amount

of resources, such as power consumption, might be needed in order to produce

important results in these scienti�c areas. If we were able to reduce, even if by a

small amount, data volume, we would also reduce the computational time to solve

the problems. Therefore, our main goal is to save energy by properly managing

technological issues.

The growth in the amount of available information in data acquisition devices can

result in faulty systems, malicious agents, or input data that are irrelevant or/and

1

redundant. Among these, the outliers1 that impair the performance of inferences

stand out and are not related to the postulated problem. Therefore, it is important

to rigorously mine the data before considering the full training dataset as the �nal

dataset.

One of the objectives of this study is to identify whether the subset generated

by some data selection method [14�23], called the data dictionary, leads to

approximately the same result as using the full training dataset. In this case, the

reduction of the amount of data can be bene�cial.

Besides helping improving algorithm's speed, the use of some data selection

method incurs in other advantages. In some cases, if we have a signi�cant amount

of irrelevant information and eliminate it, we would obtain better inference results.

Also, reducing the amount of data might decrease the possibility of over�tting.

1.2 General Considerations

Roughly, the learning process mainly consists of two parts: training (learning)

and test (inference), taken in a set of disjoint data, as illustrated in Figure 1.1.

The data selection method mentioned in the previous subsection is included in the

training phase, where an optimization algorithm acts as feedback in the process. In

the test phase, we do not use the data selection, because in this case we merely apply

the inferred model obtained from the training phase. This small amount of data can

re�ect on all the possible data, i.e., it provides an overview of the entire sample

space. In both phases, Data Preprocessing is the step in which data is transformed,

to bring it to a state where the interpretability of the data becomes more accessible

to the algorithm with the new coding. As an example, we can mention handling

null values Min-Max Normalization2 [2, 24].

In the applications presented in this dissertation, we only consider examples with

an extensive amount of data when compared to the number of variables, justifying

the use of the data selection. Another relevant factor when dealing with learning

algorithms is the choice of parameters, which in this text are made according to

usual settings recommended for each area leading to a better performance of the

model.
1An outlier is a data point that di�ers signi�cantly from other values in a random sample from

a population.
2Min-Max Normalization consists of normalizing the input variables in the range 0 to 1.

2

Model Problem
(Adaptive Filter, Neural Network)

+
Data Selection

Preprocessing*
Training Algorithm

(Learning)

Training
Dataset Input Output

Feedback

Preprocessing*

Test
Dataset Result

Inferred Model

TEST

TRAINING

“*” it means optional

Figure 1.1: Scheme of a learning algorithm.

1.3 Dissertation Goals

The main goal of this work is to propose a procedure for managing and saving

the available computing resources. The strategy proposed is a new data selection

method constructed from a statistical point of view. This procedure is explored in

threes areas of this dissertation that are connected to each other in several ways:

• Adaptive Filtering (linear systems) [1, 25, 26];

• Kernel Adaptive Filtering (nonlinear systems) [27, 28];

• Neural Networks [3, 24, 28].

Several application areas retain a considerable amount of data and one way of

managing the excess of redundant information is to apply a selection method. This

procedure is important due to the increasing amount of irrelevant or redundant

information available for processing.

In linear and nonlinear adaptive �ltering, there are many important applications

in which data arrive in real-time, one sample at a time. At each iteration, the

parameters for the model established in the learning algorithm is updated. This

procedure is considered expensive because it is an online learning and also depends

on the optimizer algorithm chosen. Furthermore, some data may be regarded as

unnecessary by not bringing new information to the algorithm. The data selection

method proposed in this work aims to detect this redundant data so that the

algorithm is not updated when this sort of information arrives. The notion of

kernel in adaptive �ltering was explored to deal with applications where an unknown

nonlinear regression modeling is required.

3

The Neural Networks (NNs) is a model used mainly in datasets with a large

amount of information available, considering an o�ine learning. In this case, the

issue we intend to address is the same as in the adaptive �ltering, that is, which

data are relevant to the learning process at each iteration of the parameter update

phase. With some modi�cations, we adapted the previously data selection proposals

for adaptive �ltering (linear and nonlinear) to obtain a new approach applicable to

NN.

1.4 Organization

This dissertation is organized in �ve chapters. Chapter 1 provides an

introduction to the subjects presented. In addition, it highlights and motivates

the main points of each unit studied subsequently.

The data selection in linear adaptive �lters is introduced in Chapter 2. The

concepts of adaptive �ltering are detailed in the �rst part of the chapter. The

applications considered are prediction, system identi�cation, and equalization. The

learning algorithm chosen is the online conjugate gradient (CG) with exponentially

decaying window. The simulations for the proposed Data Selection CG (DS-CG)

algorithm are performed in di�erent scenarios.

In the Chapter 3, we introduce the kernel method with the goal of proposing the

kernel conjugate gradient (KCG) and its joint use with the data selection method.

The conjugate gradient least-squares (CGLS) is presented in Section 2.2, showing

the di�erences from the method concerning the conjugate gradient presented in

Chapter 2. The data selection kernel conjugate gradient (DS-KCG) is introduced

and then di�erent applications are performed to show the bene�ts of applying the

data selection method during the learning process.

In Chapter 4, we de�ne some concepts of NNs. Then, a concept similar to data

selection is applied in NN aiming to reduce the computational cost while achieving

results as good as to the standard NN, but with the bene�t of eliminating irrelevant

or redundant data. The simulations are performed on classi�cation and regression

problems with di�erent datasets. In addition, we quantify the computational

complexity by counting the number of �ops showing the advantage on performing

data selection in NNs.

Finally, some conclusions are included in Chapter 5 alongside possible future

work.

4

1.5 Notation

Vectors are denoted by characters in bold type with lower-case letters, whereas

non-bold lower-case letters correspond to scalar variables. The kth component of

vector b is represented as bk. In the same way, the notation employed in matrices is

a bold type with upper-case letters. The entries of a matrix A are of the form amn

in which m represents the row and n the column of A. We represent a column of

the matrix A as an where n is the nth column of A. Similarly, the notation aT
m is

used to represent the mth row of A. Therefore, the representation of a matrix and

a vector can be written as

A =


a11 a12 . . . a1N

...
...

. . .
...

aM1 aM2 . . . aMN

 =
[
a1 a2 . . . aN

]
, b =


b1

...

bK

 (1.1)

When the elements of a vector (or matrix) represent random variables, the

representation is a character in bold italic type, i.e., b (A). The distributionN (0, R)

is a real multivariate Gaussian distribution with zero mean and covariance matrix

R. The expected value and variance are represented respectively as E[·] and Var[·].
In most cases, we use subscripts in vectors and matrices just to represent the

variable name. However, subscripts in parentheses refer to the size of a square

matrix. For example, I(N) is the identity matrix with size N ×N .

The real, complex and natural sets are represented by the following symbols

R, C and N. For example, we can state that matrix A ∈ RM×N and b ∈ RK in

equation (1.1).

In the List of Symbols, we indicate in which chapters these nomenclatures will

be used. In some cases, we have the same symbol for two di�erent notations, but

with similar meaning. In these circumstances, we chose to use the nomenclature

according to the area, causing this duality in the symbol.

The operators used throughout the text are organized in Table 1.1.

5

Table 1.1: Operators used throughout this work

Operator Argument Output

(·)T vector or matrix input vector or matrix with transposed elements

(·)H vector or matrix
input vector or matrix with

transposed and conjugated elements

(·)−1 matrix inverse of input matrix

‖x‖p vector p-norm,
(∑K

k=1 |xk|p
)1/p

bH1 b2 two vectors inner product in the Euclidean space

〈·,·〉H two vectors inner product in the feature space

| · | scalar absolute value

Q(·) scalar complementary Gaussian cumulative distribution

κ(·,·) two vectors kernel function

⊗ two matrices matrix multiplication element by element

ones(·,·) two scalars matrix composed only of values ones

6

Chapter 2

Data Selection in Conjugate

Gradient Algorithm

The �rst part of this chapter introduces the concepts of adaptive �ltering. Also,

it explains the scheme of some classical applications, including input and output

settings. Then, properties and de�nitions of Conjugate Gradient (CG) algorithm

are presented with the purpose of investigating the advantages of using data selection

in adaptive algorithms.

2.1 Introduction to Adaptive Filtering

Over the last decades, adaptive �ltering has achieved considerable success, being

incorporated into many technologies, such as mobile phones, radio communication,

and medical equipment[1, 25].

Adaptive �ltering is a system that models in real time the relationship between

an input signal and the desired signal by changing the �lter coe�cients through an

optimization algorithm, such as Conjugate Gradient [29�33], Least Mean Squares

(LMS) [1, 34�36] or Recursive Least Squares (RLS) [1, 37, 38]. Basically, the

adaptive algorithm updates the �lter coe�cients over time, using the current error

signal. The adaptive �lter performs a data-driven approximation step.

In the loop process, an objective function quanti�es the performance of the �lter

in each iteration. The derivative of this objective function shows how much the

�lter coe�cients should be changed according to the current information, aiming at

achieving the convergence to an optimal solution. We consider the mean squared

error (MSE) as the objective function throughout this chapter.

The input applied to the adaptive �lter is denoted by x(k), where k is the

iteration index, and y(k) is the �lter output. The desired signal is de�ned by d(k)

and the error is calculated as e(k) = d(k)−y(k). The error signal plays an important

7

role in the adaptive algorithm, determining the update of the �lter coe�cients. If

the adaptive �lter achieves the convergence in the learning process, it means that the

output signal is matching the desired signal according to some measure, depending

on the objective function assumed. The general con�guration of an adaptive �lter

is illustrated in Figure 2.1.

Adaptive

Filter

Adaptive

Algorithm

d(k)

e(k)

y(k)x(k)

Figure 2.1: The general con�guration of an adaptive �lter

The input and output signals depend on the application task. The number of

di�erent applications in which the adaptive �lters are employed has increased during

the last decades. Some examples of applications are:

• System identi�cation: here, the desired signal consists of the output of an

unknown system when submitted to a known signal. The known signal is also

used as input in the adaptive �lter.

• Prediction: in this case, the desired signal is de�ned as a forward version of

the adaptive �lter inputs. Its output will correspond to a forecast of the input

signal. Mainly, after convergence, the adaptive �lter can be considered as a

predictor model for the input signal.

• Channel equalization: now, the desired signal is produced from a delayed

version of an input signal. The known signal is transmitted through a channel

and then corrupted by an environment noise to de�ne the inputs of the

adaptive �lter. In the noiseless case, the �nal adaptive �lter represents an

inverse model of the channel.

• Signal enhancement: a signal s(k) corrupted by a noise n1(k) is considered

as the desired signal. Another signal x = n2(k) correlated with the previous

noise is used in the adaptive �lter. As result, after convergence, the error

signal will represent an enhanced version of the signal s(k).

8

In the prediction and system identi�cation frameworks, the �lter input x(k) is

equal to the input signal s(k). In our other applications, these values can be di�erent.

The schemes for each one of the pointed cases are shown in Figure 2.2.

Unknown
system

Adaptive
filter

x(k)

d(k)

y(k)

e(k)

(a) System identi�cation

z−L Adaptive
filter

x(k)
y(k)

e(k)

(b) Signal prediction.

z−L

Channel Adaptive
filter

s(k)

n(k)

y(k)

d(k)

e(k)

(c) Channel equalization.

Adaptive
filter

n2(k)

s(k) + n1(k)

e(k)

(d) Signal enhancement.

Figure 2.2: Common applications in adaptive �ltering.

2.2 Conjugate Gradient

The history of the conjugate gradient began in the 1950s, as an iterative

method proposed by Hestenes and Stiefel to solve linear systems with positive-

de�nite matrices. Around 1960, the �rst nonlinear conjugate gradient method was

introduced by Fletcher and Reeves. Over the years, many variants of the original

algorithm have been proposed and some are widely used.

A popular algorithm in adaptive �ltering is the RLS, which has a faster

convergence than the LMS algorithm, but presents a higher computational cost. One

possible solution is to replace the RLS algorithm by the CG algorithm [39, 40]. The

CG algorithm has remarkable characteristics that determine its choice as optimizer

in this text. Among these characteristics, we can mention fast convergence, low

computational cost, small misadjustment and non-requirement of Hessian matrix

inversion. One of the main points of CG optimization is the ability to minimize

quadratic functions by reducing the cost function through line searches in conjugated

directions.

In this section, we propose the Data Selection Conjugate Gradient (DS-CG)

algorithm, which accepts only innovative data in the iteration process, avoiding

irrelevant and redundant information. This criterion is established from the

9

distribution of the error signal, such that we de�ne a threshold level to determine if

the data quality is su�cient to modify the coe�cient of the adaptive �lter. Further,

an additional threshold level can be utilized to verify if the data represents an outlier.

The data selection method has already been proposed in several previous works

incorporated in other algorithms (LMS, RLS), showing its e�ciency in applications

of adaptive �lters [19�21, 41, 42].

2.2.1 The Online Conjugate Gradient

In CG method, a natural starting point is to derive the algorithm by looking at

the minimization of the objective function

min
w

1

2
wH(k)Rw(k)− pHw(k), (2.1)

where R = E[x(k)xH(k)] is the autocorrelation matrix of the �lter input, p =

E[d(k)x(k)] is the cross-correlation between �lter input and desired signal, w(k) is

the adaptive coe�cient update. The minimization problem (2.1) is equivalent to

solve the following system of linear equations

Rw(k) = p. (2.2)

In this method, one distinguishing characteristics is the conjugate property, that

is, a set of nonzero vectors {u0, · · · ,uM−1} is said to be conjugate with a symmetric
positive de�nite (SPD) matrix A if

uHi Auj = 0, for all i 6= j. (2.3)

Given an initial point w(0) and a set of conjugate directions {c(0),..., c(k)}
obtained at each iteration, we can express the coe�cient update as

w(k) = w(k − 1) + α(k)c(k), (2.4)

where α(k) is the minimizer of the objective function along w(k − 1) + α(k)c(k).

As a result, we obtain

α(k) =
cH(k)g(k − 1)

cH(k)Rc(k)
, (2.5)

where g(k) = p−Rw(k) is the negative gradient of the objective function (residual).

The iterative equation for g(k) can be obtained by algebraic manipulations using

10

the equation (2.4) and the residual equation

g(k) = g(k − 1)− α(k)Rc(k). (2.6)

Another important characteristic that we should mention is related to the

set of conjugate vectors: each new conjugate vector c(i) is generated only using

the previous vector c(i − 1) without the need of knowing the previous elements

{c(1), · · · ,c(i− 2)}. The iterative equation for c(k + 1) is composed by the current

negative gradient g(k) plus the current conjugate vector c(k) corrected as:

c(k + 1) = g(k) + β(k)c(k), (2.7)

where β(k) is used as in equation (2.8) to ensure the conjugate property and the

convergence of the algorithm. One way of computing β(k) is called the Polak-Ribiere

method:

β(k) =
(g(k)− g(k − 1))Hg(k)

gH(k − 1)g(k − 1)
. (2.8)

As can be seen in [40], the correlation matrix R and the cross-correlation p can

be estimated using an exponentially decaying window. Since the RLS algorithm also

uses both estimates, we expect that the performance of the CG and RLS algorithms

to be similar.

The correlation and cross-correlation estimation functions are given by

R(k) = λR(k − 1) + x(k)xH(k), (2.9)

p(k) = λp(k − 1) + d(k)x(k), (2.10)

wherein λ is the forgetting factor.

From these changes in equations, we can obtain another expression for the

negative gradient g(k), using only equations (2.4), (2.9) and (2.10):

g(k) = p(k)−R(k)w(k) = λp(k − 1) + d(k)x(k)

− [λR(k − 1) + x(k)xH(k)][w(k − 1) + α(k)c(k)]

= λ[p(k − 1)−R(k − 1)w(k − 1)]− α(k)[λR(k − 1)

+ x(k)xH(k)]c(k) + x(k)[d(k)− xH(k)w(k − 1)]

= λg(k − 1)− α(k)R(k)c(k) + x(k)e(k),

(2.11)

where e(k) = d(k)− xH(k)w(k − 1).

As following described, the step size in equation (2.5) can be substituted by a

new equation, computed by an inexact line search scheme. The descent property

11

valid in the CG algorithm ensures the convergence if [43]:

0 ≤ cH(k)g(k) ≤ 0.5cH(k)g(k − 1). (2.12)

Multiplying equation (2.11) by cH(k), we obtain

cH(k)g(k) = λcH(k)g(k − 1)− α(k)cH(k)R(k)c(k) + cH(k)x(k)e(k). (2.13)

By applying the expected value in both sides of equation (2.13), we have

E[cH(k)g(k)] = λE[cH(k)g(k−1)]−E[α(k)]E[cH(k)R(k)c(k)]+E[cH(k)]E[x(k)e(k)],

(2.14)

where in the last term c(k) was considered uncorrelated with x(k) and e(k) and the

input and error are orthogonal in mean when the algorithm converges. Using the

Wiener-Hopf equation Rw∗ = p and assuming that the algorithm converges, the

last term tends to zero. Then, the expected value of the step size can be isolated as

E[α(k)] =
λE[cH(k)g(k − 1)]− E[cH(k)g(k)]

E[cH(k)R(k)c(k)]
. (2.15)

Therefore, using the inequality (2.12) and equation (2.15), we have

(λ− 0.5)
E[cH(k)g(k − 1)]

E[cH(k)R(k)c(k)]
≤ E[α(k)] ≤ λ

E[cH(k)g(k − 1)]

E[cH(k)R(k)c(k)]
. (2.16)

Finally, from inequalities (2.16), the modi�ed step size in the coe�cient update

is obtained

α(k) = η
cH(k)g(k − 1)

cH(k)Rc(k)
, (λ− 0.5) ≤ η ≤ λ. (2.17)

2.2.2 Problem Statement

In this subsection, the proposed data selection method is explained in more

detail, and hence the Data Selective Conjugate Gradient algorithm is proposed [21,

42]. The main goal of the data selection technique is to reduce the computational

cost and to show that the use of all available information may not be necessary. In

many applications based on adaptive �ltering, updating the �lter coe�cients with

a certain probability produces almost the same results as when the coe�cients are

updated 100% of the time. Therefore, some coe�cient updates can be avoided.

This method presents di�erent con�gurations depending on the application we

are dealing with. But regardless of the application, the �lter output is formulated

as

y(k) = wH(k − 1)x(k), (2.18)

12

where x(k) = [x0(k) x1(k) . . . xN−1(k)]T is the input applied to the adaptive �lter

and w(k− 1) = [w0(k− 1) w1(k− 1) . . . wN−1(k− 1)]T represents the adaptive �lter

coe�cients. The error is given by

e(k) = d(k)− y(k) = d(k)−wH(k − 1)x(k), (2.19)

where d(k) is the desired signal.

As illustrated in Figure 2.3, the data selection method uses the error signal e(k)

to determine if the current data carries innovative information, and depending on

the result, the �lter coe�cients will be updated. The center interval (in light blue)

corresponds to non-informative values, whereas the edge intervals (in red) represent

possible outliers. Both regions are discarded throughout process iterations. The

probability Pup de�nes the threshold established for deciding whether we update

the algorithm coe�cients, this value is explained in more detail shortly.

Figure 2.3: Data selection strategy.

In the previously mentioned applications, the error distribution is assumed as

Gaussian,

e ∼ N (0, σ2
e) (2.20)

where σ2
e is the error variance. By normalizing the error distribution, we obtain

e

σe
∼ N (0, 1). (2.21)

The objective function plays a crucial role in performing the coe�cient update.

One of the most common objective functions is the instantaneous squared error

J(w(k − 1)) =
1

2
|e(k)|2, (2.22)

13

where | · | denotes the absolute value.
Using the normalized error (2.21) and objective function (2.22), the update rule

for the adaptive �lter coe�cients can be established. The decision criteria for not

updating the coe�cients are as follows: if the |e(k)|
σe

is greater than a given threshold√
τ(k) (explained in more detail soon) or if the |e(k)|

σe
is below another threshold

√
τmax. In equation (2.22) these rules are incorporated by

J ′(w(k − 1)) =

1
2
|e(k)|2, if

√
τ(k) ≤ |e(k)|

σe
<
√
τmax

0, otherwise.
(2.23)

Since the update depends of the objective function, the update rule for the

coe�cients is written as

w(k) =

w(k − 1) + u(k),
√
τ(k) ≤ |e(k)|

σe
<
√
τmax

w(k − 1), otherwise,
(2.24)

where the term u(k) depends on the adaptive algorithm employed. Since we want

to represent how often the data are updated, we describe the desired probability of

update Pup(k) as

Pup(k) = P

{
|e(k)|
σe

>
√
τ(k)

}
− P

{
|e(k)|
σe

>
√
τmax

}
. (2.25)

By considering the distribution in (2.21), equation (2.25) in steady-state becomes

Pup = 2Qe

(√
τ
)
− 2Qe (

√
τmax) , (2.26)

where Qe(·) is the complementary Gaussian cumulative distribution function, given

by Qe(x) = 1/(2π)
∫∞
x
exp(−t2/2)dt [44]. The probability P

{
|e(k)|
σe

>
√
τmax

}
is

omitted as a result of this value being too small, even when outliers are present in

the dataset. Therefore, the parameter
√
τ can be obtained from the equation (2.26)

as
√
τ = Q−1

e

(
Pup

2

)
, (2.27)

where Q−1
e (·) is the inverse of the Qe(·) function. We point out that in the system

identi�cation application, the minimum MSE in steady-state is σ2
n, the variance of

the measurement noise n(k). Furthermore, σ2
e is expressed as a function of the noise

variance

σ2
e = (1 + ρ)σ2

n, (2.28)

so the excess MSE is rewritten as ρσ2
n. Consequently, the update of coe�cients is

performed according to a scaled power noise, τ(k)σ2
n [19�21], since the term of the

14

excess MSE is negligible. Therefore an equivalent expression to equation (2.25) for

the identi�cation system application is derived as

Pup(k) = P

{
|e(k)|
σn

>
√
τ(k)

}
− P

{
|e(k)|
σn

>
√
τmax

}
(2.29)

resulting in the following modi�cations in equations (2.26) and (2.27)

Pup = 2Qe

(
σn
√
τ

σe

)
− 2Qe

(
σn
√
τmax

σe

)
(2.30)

√
τ =

√
(1 + ρ)Q−1

e

(
Pup

2

)
. (2.31)

The threshold for outliers, τmax, is planned from a statistical concept, called

empirical rule [45]. The values exceeding the threshold are identi�ed as outliers.

Initially, in the �rst 20% of data, the threshold is not taken into account, hence

obtaining an estimate of the error behavior. For the remaining iterations, it is

calculated by
√
τmax = E[|e(k)|/σe] + 3Var[|e(k)|/σe]. (2.32)

Since the expression (2.21) represents a Gaussian distribution, the empirical rule

is used in this problem to detect outliers.

An estimate to variance error is

σ2
e = (1− λe)e2(k) + (λe)σ

2
e , (2.33)

where λe is a forgetting factor.

Under our assumptions regarding the error distribution, E[e(k)] = 0 and thus

σ2
e = E[e2(k)] = ξ(k), (2.34)

where ξ(k), as k →∞, is the steady-state MSE obtained by the algorithm employed.

The �lter application and the employed algorithm play fundamental role in the

expression of ξ(k). In the following pages, the steady-state MSE is computed for

some adaptive �lter applications.

A. System identi�cation

System identi�cation is one of the most important applications in adaptive

�ltering. The desired signal can be formulated as

d(k) = wo
Hx(k) + n(k), (2.35)

15

where wo is the optimal coe�cient, x(k) is the input vector and n(k) is the Gaussian

noise with zero mean and variance σ2
n. Therefore, replacing (2.35) in (2.19), the

expression for the MSE can be expressed as

ξ(k) = E[e2(k)] = E[n2(k)]− 2E[n(k)∆wH(k − 1)x(k)]

+ E[∆wH(k − 1)x(k)xH(k)∆w(k − 1)],
(2.36)

in which ∆w(k − 1) = w(k − 1) − wo. Assuming that the noise and inputs are

uncorrelated, the second term in (2.36) is zero and we obtain the following result

ξ(k) = σ2
n + ξexc(k), (2.37)

where ξexc(k) is the excess MSE and E[n2(k)] = σ2
n. Since the excess MSE is a

function of the additional noise:

ξ(k) = σ2
e = (1 + ρ)σ2

n. (2.38)

The expression suitable for ρ in the CG algorithm case is the same as in the RLS

algorithm. This result is due to the equivalence between CG and RLS algorithms

in steady state [1], as discussed below in more detail.

The �lter coe�cients in steady state satisfy w(k) ≈ w(k − 1). Thus, one can

obtain α(k)c(k) ≈ 0 in (2.4). Therefore, multiplying both sides in equation (2.17)

by α(k), it is possible to yield α(k) ≈ 0. Thereby, equation (2.6) becomes g(k) ≈
g(k − 1) and, in equation (2.8) we have β(k) ≈ 0. Following the theory, by using

equation (2.7), we can verify that c(k + 1) ≈ g(k) and replacing this result in

(2.17), one can show that g(k) ≈ 0. Since g(k) is de�ned as the negative gradient

of the objective function, we are led to infer that w(k) ≈ R−1(k)p(k), which is

the same result obtained in RLS algorithm. In addition, CG and RLS algorithms

estimate matrix R and vector p by using equations (2.9) and (2.10), respectively.

As a result, it can be stated that the CG and RLS algorithms are equivalent in

steady-state, giving rise to the following expression for misadjustment [1]:

ρ =
ξexc

ξmin

≈ (N + 1)
Pup(1− λ)

2− Pup(1− λ)
, (2.39)

where ξmin is the minimum MSE.

As established above, w(k) = R−1(k)p(k) = R−1p = wo, when k tends to

in�nity and equations (2.9) and (2.10) are used to estimate R and vector p. Using

these conclusions, the derivation of the equation (2.40) follows the same steps as the

16

RLS algorithm, see [1] (pp. 226):

∆w(k) = λR−1(k)R(k − 1)∆w(k − 1) + R−1(k)x(k)e(k) (2.40)

where ∆w(k) = w(k)−wo.

Considering that the DS-CG updates take place only when there is informative

data, we can apply an analytical model containing the desired probability of update

Pup:

∆w(k) = ∆w(k − 1)

+Pup[λR−1(k)R(k − 1)− I]∆w(k − 1)

+PupR
−1(k)x(k)eo(k). (2.41)

Using the equation above and a similar derivation of the excess MSE in [1], pp.

226-229, we obtain the equation (2.40).

B. Signal Prediction

In the signal prediction application, the desired signal d(k) is an advanced version

of the input signal x(k). Therefore, from the error signal,

e(k) = x(k + L)−wH(k − 1)x(k), (2.42)

and the MSE expression

ξ(k) = E[e2(k)] = E[(x(k + L)−wH(k − 1)x(k))2], (2.43)

it is possible to derive an expression for the minimum MSE [1]:

ξmin(k) = r(0)−wH
o


r(L)

r(L+ 1)
...

r(L+N)

 , (2.44)

where wo is the optimal coe�cients of the predictor and r(l) = E[x(k)x(k − l)]

for a stationary process. In the prediction case, equation (2.44) can estimate σ2
e at

iteration k, simply by replacing wH
o by w(k− 1), since in steady-state this is a good

estimate. We estimate r(l) through r(l) = λpredr(l− 1) + (1− λpred)x(k)x(k− l), in
which 0 < λpred < 1 is a forgetting factor.

17

C. Equalization

In the equalization case, the desired signal is a delayed version of the input signal

and the adaptive �lter input is composed by the received signal applied in a channel

plus a noise as seen at the end of Subsection 2.1. Thus, the error signal can be

written as

e(k) = d(k)−wH(k − 1)x(k) = s(k − L)−wH(k − 1)(Hs(k) + n(k)), (2.45)

where H ∈ CN×L is the �nite impulse response (FIR) channel convolution

matrix, s(k) = [s0(k) s1(k) . . . sL−1(k)]T ∈ RL is the input signal and n(k) =

[n0(k) n1(k) . . . nN−1(k)]T ∈ RN is the noise drawn from an independent Gaussian

distribution with zero mean and variance σ2
n. Therefore, we can compute the MSE

as

ξ(k) = E[e2(k)] = E[(d(k)− y(k))2] = E[(s(k − L)−wH(k − 1)(Hs(k) + n(k)))2]

= σ2
s − 2E[sH(k − L)(wH(k − 1)(Hs(k) + n(k)))] + E[(wH(k − 1)(Hs(k) + n(k)))2]

= σ2
s − 2wH(k − 1)HE[sH(k − L)s(k)] + wH(k − 1)HE[sH(k)s(k)]HHw(k − 1)

+ wH(k − 1)E[nH(k)n(k)]w(k − 1) = σ2
s − 2wH(k)Hrl

+ wH(k − 1)(HHRH + INσ
2
n)w(k − 1)

≈ σ2
s(1− 2wH(k − 1)hl + wH(k − 1)HHHw(k − 1)) + σ2

nw
H(k − 1)w(k − 1),

(2.46)

where R is the autocorrelation matrix of the signal received in the input, rl is the

l-th column of the autocorrelation matrix, and we denote hl = Hrl. Furthermore,

we are assuming that the inputs and the additional noise are uncorrelated.

When the channel model is unknown, a practical way of computing the data-

selection threshold is estimating the output error variance by (2.33).

D. Signal enhancement

In the signal enhancement case, the desired signal is a signal corrupted by a noise

d(k) = s(k) + n1(k). (2.47)

Using another noise correlated with the noise established in (2.47) as being the

adaptive �lter input

x(k) = n2(k), (2.48)

the error signal e(k) will be an enhancement version of d(k) and the adaptive �lter

output y(k) will be the actual error. For this reason, in this signal enhancement

application, the MSE is calculated based on the variance of y(k) instead of e(k).

18

Hence, the MSE expression for signal enhancement is obtained as

ξ(k) = σ2
y = E[y2(k)] = E[(wH(k − 1)n2(k))2] = σ2

n2
(k)||w(k − 1)||22. (2.49)

Table 2.1: Data-Selective Conjugate Gradient algorithm

DS-CG algorithm

Initialize

λ, η with (λ− 0.5) ≤ η ≤ λ, w(0) = random vectors or zero vectors

R(0) = I, g(0) = c(1) = zeros(N + 1,1), γ = small constant for regularization

Prescribe Pup, and choose τmax
√
τ =

√
(1 + ρ)Q−1(Pup

2
)

For system identi�cation use ρ = (N + 1) Pup(1−λ)

2−Pup(1−λ)
and σ2

e = (1 + ρ)σ2
n.

For prediction, equalizer and enhancement use σ2
e = (1− λe)e2(k) + (λe)σ

2
e ,

where λe is chosen.

Do for k > 0

acquire x(k) and d(k)

e(k) = d(k)−wH(k − 1)x(k)

δ(k) =


0, if −

√
τ ≤ |e(k)|

σe
≤
√
τ

0, if |e(k)|
σe
≥ √τmax

1, otherwise

if δ(k) = 0

w(k) = w(k − 1)

if |e(k)|
σe
≥ √τmax

e(k) = 0, d(k) = 0

end if

else

R(k) = λR(k − 1) + x(k)xH(k)

α(k) = η cH(k)g(k−1)
[cH(k)R(k)c(k)+γ]

g(k) = λg(k − 1)− α(k)R(k)c(k) + x(k)e(k)

w(k) = w(k − 1) + α(k)c(k)

β(k) = [g(k)−g(k−1)]Hg(k)
[gH(k−1)g(k−1)+γ]

c(k + 1) = g(k) + β(k)c(k)

end if

end

19

We can observe from in Table 2.1 that in the DS-CG algorithm the error signal

e(k) is calculated before the coe�cient update, avoiding extra computations in

equations (2.9), (2.4), (2.11), (2.8) and (2.7). Moreover, the parameter ρ is null in

prediction, equalizer and enhancement applications and de�ned in equation (2.39)

for the system identi�cation cases.

2.2.3 Simulation Results

In this subsection, in order to illustrate our contributions, the data selection

method is applied in some examples, using both synthetic and real-world data to

verify the performance of the DS-CG algorithm. The probability of update varies

from 0% to 100% and it is compared to the estimated probability of update P̂up to

verify the e�ciency of the estimate. All simulations presented in this chapter are

obtained by the average of 200 independent Monte Carlo runs. The algorithms in

this chapter are implemented in MATLAB and available online on GitHub [46]. The

simulations are performed in a computer with Intel Core i7-7500U CPU 2.70GHz

x4 processor and 15.5 GB of memory.

A. System identi�cation

In this application, our goal is to identify an unknown system, described as:

h = [0.1010 0.3030 0 − 0.2020 − 0.4040 − 0.7071 − 0.4040 − 0.2020]T . (2.50)

The desired output is written as d(k) = hTx(k)+n(k), wherein the input x(k) is

obtained from a Gaussian distribution with zero mean and unit variance, and n(k)

consists of a Gaussian noise with zero mean and variance σ2
n = 10−3. Two cases are

considered in the experiment: �rst-order and fourth-order AR processes, given by

x(k) = 0.88x(k − 1) + n1(k),

x(k) = −0.55x(k − 1)− 1.221x(k − 2)− 0.49955x(k − 3)

− 0.4536x(k − 4) + n2(k),

where n1(k) and n2(k) are Gaussian noises with zero mean and uncorrelated with

each other and with the additional noise n(k). The variances σ2
n1

and σ2
n2

are

chosen so that the input variance is unitary. The �lter order is N = 7 to ensure

the convergence of the �lter coe�cients. The parameters chosen for the system

identi�cation are λ = 0.98, η = 0.48 and γ = 10−4.

The results for the learning curves in the fourth-order and the �rst-order AR

20

processes are presented in Figure 2.4a and 2.5a, respectively. We can observe that

the CG algorithm present fast convergence to the steady-state. In particular, the

order increase of the input signal does not interfere with the result of the fourth-

order case. The estimated probability of update depicted in Figures 2.4b and 2.5b,

is closer to the prescribed probability of update.

0 1000 2000 3000 4000 5000
-35

-30

-25

-20

-15

-10

-5

(a)

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2.4: Simulation A: Fourth-order AR input signal, (a) Learning curves for the
data selection and (b) Comparison between the desired Pup and achieved P̂up.

0 1000 2000 3000 4000 5000
-40

-30

-20

-10

0

10

(a)

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2.5: Simulation A: First-order AR input signal, (a) Learning curves for the
data selection and (b) Comparison between the desired Pup and achieved P̂up.

In another example, using the fourth-order input signal, we consider that the

outliers are present in the desired signal d(k). The outlier signal is included in

1% of the reference signal with an amplitude equal to �ve. The misalignment in

the adaptive �lter coe�cients is measured and it is de�ned as ||w(k)−wo||
||wo|| , where wo

represents the optimal coe�cients for the system identi�cation problem. As observed

in Table 2.2, the misalignment is greater when outliers are present but ignored. The

21

level of misalignment achieved when considering outliers for Pup = 0.3 approaches

the one in which no outliers are present with Pup = 1. As a result, we obtain a

satisfactory average misalignment for Pup = 0.1 when compared with the case that

no outliers are present and Pup = 1.

Table 2.2: Misalignment with outliers, in dBs.

Outlier yes yes yes no

τmax on yes no yes no

Pup 0.3 0.3 0.1 1

Average Misalignment (dB) DS-CG −33.29 −15.25 −30.47 −33.37

B. Signal Prediction

The speci�cation of the data considered in this subsection is provided by Google

RE<C Initiative in [47]. The data consists of the wind speed recorded by �ve sensors

on May 25th, 2011. The data are divided into 40 sets of size 8192 in order to use

the Monte Carlo method.

The parameters chosen for the application are λ = 0.98, η = 0.48 and γ = 10−4.

The �lter order employed is N = 7. Figure 2.6a illustrates the comparison between

the estimated probability of update P̂up and the prescribed probability of update

Pup. We can observe that the estimation obtained in the CG algorithm always

achieves a value close to the prescribed probability. The comparison between the

predicted signal y(k) and reference signal d(k) is shown in Figure 2.6b for Pup = 0.4.

Indeed, a good performance is achieved even if the number of updates is reduced,

thus it is not necessary to use all data to obtain an accurate prediction.

The evolution of the MSE can be seen in Figure 2.7. It is noted that the algorithm

attains a fast convergence to the steady state.

C. Equalizer

In this subsection, �nite impulse response (FIR) channel provided by The Signal

Processing Information Base repository [48] are considered. Also, the complex

channel taps were obtained from digital microwave radio systems measurements.

The FIR model frequency response is illustrated in Figure 2.8a (in black).

A random Gaussian variable is attributed to the transmitted signal s(k) with

zero mean and unitary variance. The signal traverses the complex channel and it is

corrupted by a Gaussian noise with variance σ2
n = 10−3. The parameters chosen in

22

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(a)

8000 8050 8100 8150
0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 2.6: Simulation B: (a) Comparison between the desired Pup and achieved P̂up

by the DS-CG algorithm and (b) Comparison between the desired signal and the
predicted by the DS-CG algorithm for Pup = 0.4.

0 2000 4000 6000 8000
-15

-10

-5

0

5

10

15

Figure 2.7: Simulation B: Learning curves for data selection in Pup = 0.4 and
Pup = 1.

the con�guration of the algorithm were λ = 0.9995, η = 0.49 and γ = 10−4. In this

case, we need a �lter with higher order, so that we set N = 100. The error variance

was estimated as in equation (2.33) for b = 0.9999.

As we are in a complex signal case, after the coe�cients �lter converge to

their steady-state, the probability of update for white circularly-symmetric Gaussian

input signals is modeled as Rayleigh probability distribution function given by

1− Pup = FE(x) =

[
1− exp−

x2

2σe

]
u(x), (2.51)

where the u(x) is the unit step function and x =
√
τσn. Assuming that σe ≈ σn,

23

the formula to the threshold is obtained as

τ = 2 ln

(
1

Pup

)
, (2.52)

where ρ = 0. In Figure 2.8a the performance of the DS-CG algorithm is shown,

for Pup = 1 and Pup = 0.4, and the �lter output is an equalized version of the

transmitted signal s(k), i.e., the algorithm tries to invert the channel frequency

response. The estimated probability of update P̂up is quite close to the real

probability of update Pup as can be noticed in Figure 2.8b.

0 0.2 0.4 0.6 0.8 1

Frequency (rad/sample)

-60

-40

-20

0

20

40

M
a
g

n
it

u
d

e
 (

d
B

)

(a)

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2.8: Simulation C: (a) Frequency response of the channel and the data-
selective �lter (b) Comparison between the desired Pup and achieved P̂up by the
algorithm.

4535 4540 4545 4550 4555 4560
-2

-1

0

1

2

3

4

(a)

4535 4540 4545 4550 4555 4560
-2

-1

0

1

2

3

4

(b)

Figure 2.9: Simulation C: Comparison between the transmitted and the recovered
signals by the DS-CG algorithm for (a) Pup = 0.4 and (b) Pup = 1.

By comparing Figure 2.9a and 2.9b, it is possible to obtain the transmitted signal

from only 40% of the input data with almost the same accuracy obtained as when

24

100% of the input data is used. Again we note that the data selection method is

bene�cial when jointly used in the CG algorithm. The result in Figure 2.10 further

highlights the power of the data selection method since the learning curve in DS-CG

with Pup = 0.4 yields similar results to the DS-CG algorithm with Pup = 1.

0 1000 2000 3000 4000 5000

-9

-7

-5

-3

-1

1

Figure 2.10: Simulation C: Learning curves for data selection in Pup = 0.4 and
Pup = 1.

2.3 Concluding Remarks

In this chapter, the proposed data selection method is tested in the main adaptive

�ltering applications. The method was applied to the CG algorithm with some

modi�cations depending on the application. In all the simulations, data selection

achieves excellent performance even when less than 50% of times the coe�cients are

updated, leading to consistent results.

25

Chapter 3

Data Selection in Kernel Conjugate

Gradient Algorithm

As seen in the previous chapter, the classical adaptive �ltering algorithms consist

of adapting the coe�cients of linear �lters in real-time. However, some applications

includes phenomena that cannot be well modeled with linear adaptive systems.

Although linear models may perform reasonable in some of these cases, the demand

for high-speed communications and the improvements in the computer capacity in

processing information drives the exploration of more sophisticated techniques.

Currently, one popular method used to improve performance in these applications

is the kernel adaptive �lter. In this chapter, the main concepts concerning

kernel adaptive �ltering are presented. Subsequently, the performance of the data

selection method is veri�ed in some applications exploiting the kernel conjugate

gradient (KCG) algorithm. The data selection KCG (DS-KCG) algorithm is

proposed originally in this work.

3.1 Kernel Conjugate Gradient

In the last two decades, the interest on applying kernel methods to nonlinear

problems tackled by the Machine Learning and Signal Processing areas has been

growing. In addition to adaptive �ltering studied in this dissertation, we can name

other nonlinear algorithms capable of operating with kernels, such as Support Vector

Machines, Gaussian Processes, Kernel Principal Component Analysis (KPCA) and

many others [2, 3, 28, 49, 50].

In this work, we propose the Kernel Conjugate Gradient (KCG) algorithm [51�

54], in which the output �lter consists of the linear combination of a function of the

input vectors, applying a technique called kernel trick. This approach, in simple

words, consists of employing an arti�ce to avoid the need for explicit mappings

26

that, when mapping a linear algorithm is transformed to work in a non-linear space

by kernels (kernelization process). Our interest in high-dimensional (or in�nite-

dimensional) space is connected to Hilbert Spaces [55, 56], denoted by H, the

equivalent of Euclidean Space (�nite-dimensional vector space) with its operations.

One advantage of using the KCG algorithm is that it converges faster than the

kernel least mean squares (KLMS) algorithm [57, 58]. When compared to the kernel

recursive least squares (KRLS) algorithm [59�61], in most applications both are

equally fast. However, the computational cost of the KCG algorithm is lower than

for the KRLS algorithm.

In this section, we study the KCG algorithm in online mode without the inclusion

of the exponential decaying method. When working with online applications, we are

concerned about the increase in the number of coe�cients as the amount of samples

grows. In order to mitigate this e�ect, the data selection method is employed in this

chapter along with the possible application of some online sparsi�cation method

[59, 60, 62].

We introduce the Data Selection Kernel Conjugate gradient (DS-KCG)

algorithm, which resembles the DS-CG algorithm by considering only relevant and

non-redundant data to update the �lter coe�cients, thus reducing the computational

cost. Before presenting the DS-KCG, we introduce the theory related to the kernel

functions and Hilbert Spaces. Then, to verify the performance of the proposed

DS-KCG algorithm, we perform simulations in various applications.

3.1.1 Concepts of the Kernel Method

There are cases where the canonical inner product of the Euclidean Spaces is

not suitable to measure the resemblance between two vectors. One possible solution

is to apply nonlinear transformations on the input vector. The strategy consists

of mapping the entries into a generalization of a Euclidean Space which might be

in�nite-dimensional, known as the Hilbert Space. In the function below, the input

vector is mapped into the Hilbert Space H, called feature space

υ : X → H (3.1)

where X is a subset of RN and υ is known as feature function (Figure 3.1).

In the kernel method, we make use of a function, κ(·,·) : X × X → R, where
two vectors are mapped to a real value. This operation is known as the kernel

function whose main task is to provide a measure of the similarity between two

vectors mapped into H, i.e.,

κ(x1,x2) = 〈υ(x1),υ(x2)〉H (3.2)

27

υ(·)

Input Space Feature Space

X H

(a)

Figure 3.1: Kernel mapping representation

where 〈·,·〉H is the inner product in the Hilbert Space H. A useful kernel function

should present analogous properties of the inner product in Euclidean Spaces:

• Symmetry: κ(x1,x2) = κ(x2,x1), for ∀x1,x2 ∈ X ;

• Positive-de�niteness: κ(x1,x1) ≥ 0, for ∀x1 ∈ X ;

• Cauchy-Schwarz inequality: |κ(x1,x2)| ≤
√
κ(x1,x1)κ(x2,x2), for ∀x1,x2 ∈

X .

Additionally, the kernel function is called reproducing kernel if it satis�es:

1. ∀x ∈ X , κ(x,·) ∈ H, meaning that all real valued functions of x are generated

by this kernel;

2. The reproducing property, de�ned as

De�nition: For each function f(·) ∈ H and each x ∈ X , we have

f(x) = 〈f(·),κ(·,x)〉H. (3.3)

Particularly, if f(·) = κ(·,x), then

κ(x,x′) = 〈κ(·,x′),κ(·,x)〉H. (3.4)

A Hilbert Space H is considered a reproducing kernel Hilbert Space (RKHS) if

it ful�lls these two properties. We also may conclude that υ(x) = κ(·,x).

28

Similarly to the correlation matrix in the classic adaptive �ltering, the Gram

matrix is de�ned as

K(k) =



κ(x(k − I),x(k − I)) κ(x(k − I),x(k − I + 1)) . . . κ(x(k − I),x(k))

κ(x(k − I + 1),x(k − I)) κ(x(k − I + 1),x(k − I + 1)) . . . κ(x(k − I + 1),x(k))

...
...

. . .
...

κ(x(k),x(k − I)) κ(x(k − I),x(k − 1)) . . . κ(x(k),x(k))


,

(3.5)

wherein I+1 is the number of input vectors included in the data dictionary until the

iteration k. The Gram Matrix plays an important role in kernel adaptive �ltering,

since it assembles the similarity among I + 1 input signal vectors. A Mercer Kernel

[63] is a function κ(·,·) whose Gram matrix is continuous, symmetric and positive-

de�nite. In this text, any Gram matrix should be positive-de�nite. One of the

main theorems in this area is the Mercer Theorem [63, 64]; it establishes that any

reproducing kernel κ(x,x′) can be rewritten as

κ(x,x′) =
∞∑
i=1

aiqi(x)qi(x
′), (3.6)

where the ai and qi(·), for i = 1,2, · · · , correspond to the eigenvalues and

eigenfunctions of the Gram matrix K, respectively. Since the eigenvalues are non-

negative, there exists a map φ de�ned as

φ(x) = [
√
a1q1(x),

√
a2q2(x), · · ·], (3.7)

where φ can be in�nite-dimensional. Therefore, it is possible to conclude that

κ(x,x′) = φ(x)Tφ(x′) = 〈φ(x),φ(x′)〉H. (3.8)

Furthermore, the function φ de�ned above is identical to the one introduced in

equation (3.1), i.e., φ(x) = υ(x). Equation (3.8) is the fundamental key to the

success of kernel methods. We use a technique known as kernel trick, in which

the input data is mapped into a high-dimensional space (Figure 3.1) through a

reproducing kernel, such that the inner product in the Hilbert Space is computed

using this equation. The advantage is avoiding more complex computations in the

high-dimension space while implementing the algorithm.

In our optimization problem related to Kernel Adaptive �ltering, given the data

samples {(x(1), d(1)), (x(2), d(2)), · · · , (x(I + 1), d(I + 1))}, the main goal is to �nd

the optimal solution for a linear functional ϕ by seeking to minimize the mean

29

squared errors (MSE):

min
ϕ∈H∗

I+1∑
i=1

|d(i)− 〈υ(x(i)),ϕ〉H|2, (3.9)

whereH∗ is the dual space ofH. It is shown by the representer theorem [65] that the

optimal solution can be expressed as a linear combination of the functions mapped

in the input data:

ϕo =
I+1∑
i=1

ζiυ(x(i)), (3.10)

where ζi are the kernel coe�cients.

By replacing the optimal solution (3.10) in equation (3.9), we obtain a modi�ed

optimization problem
min

ζ∈RI+1
‖d−K(I + 1)ζ‖2

2 (3.11)

where d = [d(1), · · · , d(M)]T is the desired vector, ζ = [ζ1, ζ2, · · · , ζI+1] are the

coe�cients to be minimized and K(I + 1) is the Gram matrix de�ned in equation

(3.5) whose (k,l)-th element is κ(x(I + 1− k),x(I + 1− l)).
Some examples of kernel functions used in applications are shown below:

• Cosine similarity kernel:

κ(x,x′) =
xTx′

‖x‖2 ‖x′‖2

, (3.12)

where this kernel function measures the angle between the vectors x and x′.

• Sigmoid kernel:

κ(x,x′) = tanh(axTx′ + b), (3.13)

with a and b real numbers. This sigmoid kernel function does not have a

positive-de�nite Gram matrix but is used in some situations such as Neural

Networks.

• Polynomial kernel:

κ(x,x′) = (axTx′ + b)n, (3.14)

where a ∈ R, b ≥ 0, and n ∈ N. If b 6= 0, this kernel is called inhomogeneous

polynomial kernel. The value b is non-negative to guarantee that the Gram

matrix is positive-de�nite.

30

• Gaussian kernel:

κ(x,x′) = e
1
2

(x−x′)TΣ−1(x−x′) = e
1
2

∑I
i=0

1

σ2
i

(xi−x′i)2
, (3.15)

where Σ is a diagonal matrix whose diagonal values are equal to σ2
i , for i =

0, 1, · · · , I. In some situations, σ2
i = σ2 is used. The feature space for the

Gaussian case is in�nite dimensional.

3.1.2 Online Kernel Conjugate Gradient

In this subsection, to simplify mapping operations and computation of the inner

product in the feature space, we introduce the Kernel Conjugate Gradient (KCG)

solution based on a least squares solution, called Conjugate Gradient Least Squares

(CGLS) [66]. In this case, the optimization problem consists of minimizing of the

following least squares problem

min
w

∥∥d−XTw
∥∥2

2 (3.16)

where X = [x(1),x(2), · · · ,x(M)] is the input data matrix and w is the vector

containing the adaptive �lter coe�cients. These algorithms work o�ine, that is, all

information {X,d} is available from the start. However, before applying the data

selection method, we will formulate the algorithm so that the available information

is updated at each iteration, deriving an online algorithm.

This version of the CG algorithm is derived through an algebraic rearrangement

in basic conjugate gradient [29, 67, 68]. Hence, we start by formulating the basic

CG algorithm and then the CGLS algorithm to �nally arrive at the KCG algorithm.

In the CG algorithm presented in the previous chapter, the modi�cations performed

to obtain the basic CG algorithm are in the equations de�ning α(k), β(k) and g(k).

The �rst one is obtained in equation (3.17) using equation (2.7),

α(k) =
cT (k)g(k − 1)

cT (k)Rc(k)
=

(gT (k − 1) + β(k − 1)cT (k − 1))g(k − 1)

cT (k)Rc(k)

=
gT (k − 1)g(k − 1)

cT (k)Rc(k)

(3.17)

where we de�ne η = 1 and cT (k−1)g(k−1) = 0, since the negative gradient g(k−1)

is orthogonal to the directions c(i) for 1 ≤ i ≤ k−1. In the second step factor β(k),

equation (3.18) has the following form,

β(k) =
g(k)Tg(k)

gT (k − 1)g(k − 1)
. (3.18)

31

The gradient equation adopted in this algorithm was introduced in the expression

(2.6). Utilizing the derived equations (3.17), (2.4), (2.6), (3.18) and (2.7), the basic

CG algorithm is illustrated in Table 3.1.

Table 3.1: Basic Conjugate Gradient algorithm

Basic CG algorithm

Initialize

X = [x(1),x(2), · · · ,x(M)], d = [d(1), · · · ,d(M)], R = XXT , p = Xd

w(0) = random vectors or zero vectors

g(0) = c(1) = zeros vectors or (p−Rw(0)), γ = small constant for regularization

Do for k > 0

α(k) = gT (k−1)g(k−1)
[cT (k)Rc(k)+γ]

w(k) = w(k − 1) + α(k)c(k)

g(k) = g(k − 1)− α(k)Rc(k)

β(k) = gT (k)g(k)
[gT (k−1)g(k−1)+γ]

c(k + 1) = g(k) + β(k)c(k)

end

As mentioned earlier, the CGLS algorithm is formulated from a small algebraic

rearrangement in the basic CG algorithm. These modi�cations are performed in

equations (3.19) and (3.20),

α(k) =
gT (k − 1)g(k − 1)

cT (k)Rc(k)
=

gT (k − 1)g(k − 1)

(cT (k)X)(XTc(k))
=

gT (k − 1)g(k − 1)

vT (k)v(k)
(3.19)

g(k) = g(k − 1)− α(k)Rc(k) =⇒ z(k) = z(k − 1)− α(k)v(k) (3.20)

where R = XXT , v(k) = XTc(k) and g(k) = Xz(k). The CGLS algorithm is

outlined below in Table 3.2.

These o�ine algorithms converge to the optimal solution in at most N iterations,

but in some applications, it is desirable to �nish the procedure before the N -th

iteration. One of the stopping criteria for the basic CG and CGLS algorithms is

the condition ‖α(k)c(k)‖2 ≤ ε, where ε is a norm tolerance such that when this

condition is satis�ed, the algorithm stops [29].

Since both algorithms solve equivalent optimization problems, the main

properties related to the CGLS algorithm are the same as the basic CG algorithm,

as listed below [29]:

• Conjugate property: vT (i)v(j) = cT (i)Rc(j) = 0 for all i 6= j and R = XXT ;

32

Table 3.2: Conjugate Gradient Least Squares algorithm

CGLS algorithm

Initialize

X = [x(1),x(2), · · · ,x(M)], d = [d(1), · · · ,d(M)], w(0) = random vectors or zero vectors

z(0) = (dT − XTw(0)), g(0) = Xz(0), c(1) = g(0)

Do for k > 0

v(k) = XTc(k)

α(k) = gT (k−1)g(k−1)
vT (k)v(k)

w(k) = w(k − 1) + α(k)c(k)

z(k) = z(k − 1)− α(k)v(k)

g(k) = Xz(k)

β(k) = gT (k)g(k)
gT (k−1)g(k−1)

c(k + 1) = g(k) + β(k)c(k)

end

• Orthogonality of the gradient vector g(k) to the previous gradient vectors:

gT (k)g(i) = 0 for 0 ≤ i ≤ k − 1;

• The gradient vector g(k) is orthogonal to the directions vectors c(i) previously

obtained: gT (k)c(i) for 0 ≤ i ≤ k;

• The spaces spanned by {g(0),g(1), · · · ,g(k−1)} and {c(1),c(2), · · · ,c(k)} are
the same linear space.

As shown above, the CGLS and the basic CG algorithms have the same

properties, and henceforth the CGLS will be referred to as CG.

The next step is to derive the o�ine KCG algorithm. The coe�cient vector w(k)

is transformed into the form
∑M

i=1 ζix(i), before we apply the mapping to the feature

space to achieve the kernel approach in the CG algorithm and support the use of

the kernel trick. Using the equations (2.4) and (2.7), we can rewrite the coe�cient

vector as a linear combination of the input vectors X in the following form:

w(1) = α(1)c(1) = α(1)g(0), (3.21)

w(2) = w(1) + α(2)c(2) = α(1)g(0) + α(2)(g(1) + β(1)c(1))

= (α(1) + α(2)β(1))g(0) + α(2)g(1), (3.22)

w(3) = w(2) + α(3)c(3) = w(2) + α(3)[g(2) + β(2)(g(1) + β(1)g(0))]

= (α(1) + α(2)β(1) + α(3)β(1)β(2))g(0)

+ (α(2) + α(3)β(2))g(1) + α(3)g(2). (3.23)

33

To simplify the notation, we de�ne the auxiliary variable

bji =

j∏
l=i

β(l) = β(i)β(i+ 1) · · · β(j) (3.24)

with bi−1
i = 1. By induction, the general form of the coe�cient vector is

w(k) = (α(1)b0
1 + α(2)b1

1 + · · ·+ α(k)bk−1
1)g(0)

+ (α(2)b1
2 + α(2)b2

2 + · · ·+ α(k)bk−1
2)g(1)

+ · · ·+ α(k)bk−1
k g(k − 1)

=
k∑
i=1

(
k∑
j=i

α(j)bj−1
i

)
g(i− 1)

= X

[
k∑
i=1

(
k∑
j=i

α(j)bj−1
i

)
z(i− 1)

]

= X

(
k∑
i=1

si(k)z(i− 1)

)
= X(zr(k)s(k)) = Xζ(k) (3.25)

where Z(k) = [z(0), z(1), · · · , z(k − 1)] and s(k) = [s1(k), s2(k), · · · , sk(k)]. In

addition, the expression si(k) =
∑k−1

j=i α(j)bj−1
i + α(k)bki = si(k − 1) + α(k)bki can

follow from the derivation of equation (3.25).

In the next step, we de�ne Υ as the mapping of input matrix X into the feature

space H through the function de�ned by equation (3.1),

Υ = υ(X) = [υ(x(1)), υ(x(2)), · · · , υ(x(M))]. (3.26)

Therefore, the coe�cient vector based on the kernel approach in the feature space

is,

w(k) = υ(X)ζ(k) (3.27)

In addition to the equation (3.25), other expressions in the Table 3.2 require to

be modi�ed, since the dimension of the feature space is high, and possibly in�nite

as in the case of the Gaussian kernel. Therefore, it is not feasible to work with

some expressions used in the input space. One of the equations is v(k), the strategy

performed to deal with this obstacle consists of some algebraic manipulations and

34

thus derive a recursive relation in terms of v(k − 1) and z(k − 1),

v(k) = υ(X)Tc(k) = υ(X)T (g(k − 1) + β(k − 1)c(k − 1))

= υ(X)Tυ(X)z(k − 1) + β(k − 1)υ(X)Tc(k − 1)

= Kz(k − 1) + β(k − 1)v(k − 1) (3.28)

where K = υ(X)Tυ(X) is the Gram matrix de�ned in equation (3.5) when the

algorithm has the complete data dictionary from the beginning, i.e., if the iteration

is k = i then I = i. The next expression to be modi�ed is the inner product of g(k)

and g(k),

π(k) = gT (k)g(k) = (υ(X)z(k))T (υ(X)z(k)) = zT (k)Kz(k). (3.29)

Due to the modi�cations performed in equations (3.25) and (3.28), the equation

(2.7) is no longer required in the algorithm. The remaining equations (3.18), (3.19)

and (3.20), arise slightly di�erent variables,

β(k) =
gT (k)g(k)

gT (k − 1)g(k − 1)
=

π(k)

π(k − 1)
(3.30)

α(k) =
gT (k − 1)g(k − 1)

vT (k)v(k)
=

π(k − 1)

vT (k)v(k)
(3.31)

r(k) = r(k − 1)− α(k)v(k) (3.32)

35

Table 3.3: O�ine Kernel Conjugate Gradient algorithm

O�ine KCG algorithm

Initialize

Choose kernel function (K), z(0) = dT = [d(1), · · · ,d(M)]T

v(1) = Kz(0), π(0) = zT (0)Kz(0), β(0) = 1, ζ(0) = 0

Do for k > 0

α(k) = π(k−1)
vT (k)v(k)

b = 1

sk(k − 1) = 0

Do for i = k,k − 1, · · · ,1
si(k) = si(k − 1) + α(k)b

b = bβ(i)

end

z(k) = z(k − 1)− α(k)v(k)

π(k) = z(k)TKz(k)

β(k) = π(k)
π(k−1)

v(k + 1) = Kz(k) + β(k)v(k)

ζ(k) =


| | |

z(1) · · · z(k)

| | |



s1(k)
...

sk(k)


end

The online version of the KCG algorithm can be derived from the o�ine KCG

algorithm outlined in Table 3.3. At iteration k, we consider that the information

available is

X(k) = [x(1),x(2), · · · ,x(k)] and d(k) = [d(1), d(2), · · · , d(k)]T . (3.33)

By mapping this matrix X(k) into the feature space H through the feature

function υ,

Υ(k) = υ(X(k)) = [υ(x(1)), υ(x(2)), · · · , υ(x(k))]. (3.34)

The matrix K(k) can be obtained from a recursive relation with K(k − 1) and

other factors, as follows

K(k) = ΥT (k)Υ(k) =

K(k − 1) φ(k)

φT (k) q(k)

 (3.35)

36

where q(k) = κ(x(k),x(k)) and φ(k) is de�ned as

φ(k) = [κ(x(1),x(k)), κ(x(2),x(k)), · · · , κ(x(k − 1),x(k))]T . (3.36)

Therefore, utilizing the kernel trick and equation (3.36), the error signal is computed

in this case as

e(k) = d(k)−wT (k − 1)υ(x(k)) = d(k)− ζT (k − 1)υ(X(k − 1))Tυ(x(k))

= d(k)− ζT (k − 1)φ(k). (3.37)

The main issue related to the online KCG algorithm is how to update the

coe�cients ζ(k), which is the vector of weights assigned to the kernel elements

in equation (3.25). It should be noticed that whenever x(k) is added to the data

dictionary, the vector ζ(k) increases in size and also it updates each coe�cient,

resulting in a di�erent approach when compared to the o�ine KCG algorithm. The

proposal chosen to solve this problem begins by selecting the vector [ζT (k−1), 0]T as

the initial value at the iteration k, and then kup updates are performed with a �xed

matrix Gram K(k) in order to achieve a satisfactory convergence in the coe�cients

of ζ(k). At each iteration k, this initial vector is inserted into the residual z(0),

z(0) = d(k)−K(k)

ζ(k − 1)

0

 . (3.38)

After performing kup updates according to the KCG in iteration k, we obtain

matrix Z(k) = [z(0), · · · , z(kup)] and vector s(k) de�ned in equation (3.25), and

hence we achieve the �nal value of the coe�cients as

ζ(k) =

ζ(k − 1)

0

+


| | |

z(1) · · · z(kup)

| | |



s1(k)

...

skup(k)

 =

ζ(k − 1)

0

+ (Z(k)s(k)) .

(3.39)

The second term in the above equation is calculated from kup updates at the

iteration k and then added to the initial value [ζT (k − 1), 0]T . The complete

procedure for Online KCG is shown in Table 3.4.

Once we introduce the online KCG algorithm, we will incorporate the data

selection method into the process. The data selection in the KCG is based on

the same methodology explained in the subsection 2.2.2, such that we obtain a

37

Table 3.4: Online Kernel Conjugate Gradient algorithm

Online KCG algorithm

Initialize

X(1) = x(1), q(1) = κ(x(1),x(1)), K(1) = [q(1)], ζ(0) = d(1)/q(1), e(1) = 0

Do for k > 1

q(k) = κ(x(k),x(k))

φ(k) = [κ(x(1),x(k)), κ(x(2),x(k)), · · · , κ(x(k − 1),x(k))]T

e(k) = d(k)− ζT (k − 1)φ(k)

K(k) =

K(k − 1) φ(k)

φT (k) q(k)


z(0) = d(k)−K(k)

ζ(k − 1)

0


v(1) = K(k)z(0)

π(0) = zT (0)K(k)z(0)

β(0) = 1

Do for i = 1, · · · , kup

α(i) = π(i−1)
vT (i)v(i)

b = 1, si(k − 1) = 0

Do for j = i,i− 1, · · · ,1
sj(k) = sj(k − 1) + α(i)b

b = bβ(j)

end

z(i) = z(i− 1)− α(i)v(i)

π(i) = zT (i)K(i)z(i)

β(i) = π(i)
π(i−1)

v(i+ 1) = K(i)z(i) + β(i)v(i)

end

ζ(k) =

ζ(k − 1)

0

+


| | |

z(1) · · · z(kup)

| | |



s1(k)
...

skup(k)

 =

ζ(k − 1)

0

+ (Z(k)s(k))

end

threshold level from the error signal to determine if current data is relevant to modify

the coe�cients of the kernel problem. As the error distribution also is assumed as

38

Gaussian in this problem, we can conclude that the threshold is the same as in

equation (2.27),
√
τ = Q−1(Pup

2
).

For the estimation error variance σ2
e , to simplify the computations, the chosen

method is based on the equation (2.33), also repeated here for convenience,

σ2
e = (1− λe)e2(k) + (λe)σ

2
e , (3.40)

where λe is the forgetting factor. The threshold
√
τmax to detect the outliers in

dataset is de�ned as in equation (2.32), being repeated here for convenience as

√
τmax = E[|e(k)|/σe] + 3Var[|e(k)|/σe]. (3.41)

The data dictionary established from the data selection method is de�ned as

XI(k) = [x1(k),x2(k), · · · ,xI(k)] (3.42)

where xi(k) is the i-th input included in the data dictionary until the iteration k

and I is the number of input vectors added in this set. The Data selection Kernel

Conjugate Gradient (DS-KCG) algorithm is illustrated in Table 3.5

Table 3.5: Data Selection Kernel Conjugate Gradient algorithm

DS-KCG algorithm

Initialize

X1(1) = x(1), q(1) = κ(x(1),x(1)), K(1) = q(1), ζ(0) = d(1)/q(1), e(1) = 0

Prescribe Pup, and choose τmax
√
τ = Q−1(Pup

2
), I = 1

Do for k > 1

q(k) = κ(x(k),x(k))

φ(k) = [κ(x1(k − 1),x(k)), κ(x2(k − 1),x(k)), · · · , κ(xI(k − 1),x(k))]T

e(k) = d(k)− ζT (k − 1)φ(k)

δ(k) =


0, if −

√
τ ≤ |e(k)|

σe
≤
√
τ

0, if |e(k)|
σe
≥ √τmax

1, otherwise

if δ(k) = 0

K(k) = K(k − 1)

ζ(k) = ζ(k − 1)

XI(k) = XI(k − 1)

39

if |e(k)|
σe
≥ √τmax

e(k) = 0

d(k) = 0

end if

else

I = I + 1

XI(k) = [XI−1(k − 1),x(k)]

K(k) =

K(k − 1) φ(k)

φT (k) q(k)


z(0) = dT (k)−K(k)

ζ(k − 1)

0


v(1) = K(k)z(0)

π(0) = zT (0)K(k)z(0)

β(0) = 1

Do for i = 1, · · · , kup

α(i) = π(i−1)
vT (i)v(i)

b = 1

si(k − 1) = 0

Do for j = i,i− 1, · · · ,1
sj(k) = sj(k) + α(i)b

b = bβ(j)

end

z(i) = z(i− 1)− α(i)v(i)

g(i) = K(i)z(i)

π(i) = zT (i)K(i)z(i)

β(i) = π(i)
π(i−1)

v(i+ 1) = g(i) + β(i)v(i)

end

ζ(k) =

ζ(k − 1)

0

+


| | |

z(1) · · · z(kup)

| | |



s1(k)
...

skup(k)

 =

ζ(k − 1)

0

+ (Z(k)s(k))

end if

end

40

In addition to the data selection, other methods can be used in online mode

to avoid the expensive computational cost due to the increase in the amount of

data. In some situations, other methods of sparsi�cation may be applied, targeting

to disregard data considered as signi�cant. The coherence criterion, approximation

linear dependency (ALD) and angle criterion are examples of these sparsi�cation

methods[1, 69�71].

3.1.3 Simulation Results

In this subsection, the results for the DS-KCG algorithm in some popular

nonlinear adaptive �ltering applications are presented. The prescribed probabilities

of update are varied from 0% to 100% and compared to the estimated probability

P̂up to verify the performance of the algorithm when the data selection is employed.

The MSE is obtained as the average of 100 independent Monte Carlo runs. The

algorithms in this chapter are implemented in MATLAB and available online on

GitHub [46]. The simulations are performed in a computer with Intel Core i7-

7500U CPU 2.70GHz x4 processor and 15.5 GB of memory. In all problems the

error variance was estimated as in equation (2.33) using λe = 0.99 and the number

of updates in each iteration is kup = 2.

A. System identi�cation

In this example, we employ the online DS-KCG algorithm in the system

identi�cation problem. The input signal x(k) is drawn from a uniform distribution

(0,1) with variance σ2
x = 0.1, �ltered by �nite impulse response (FIR) �lters speci�ed

by h1 = [1, −0.5]T in the simulation A1 and h2 = [1, −0.5, 0.3, 0.7, − 0.3]T in the

simulation A2. The reference signal is then built as the following nonlinear system

d(k) = −0.76x(k)− 1.0x(k − 1) + 1.0x(k − 2) + 0.5x2(k)

+ 2.0x(k)x(k − 2)− 1.6x2(k − 1) + 1.2x2(k − 2)

+ 0.8x(k − 1)x(k − 2) + n(k),

(3.43)

where the input noise n(k) is an additional Gaussian distribution with zero mean

and variance σ2
n = 10−2.

In simulation A1, the �lter order is N=10, whereas N = 15 in simulation A2

aiming at matching the linear �lter and the nonlinear map. Using a polynomial

kernel of order 3 in the simulation A1 and one of order 4 in simulation A2, we can

obtain a suitable model for the problem.

In Figures 3.2a and 3.3a are shown the learning curves for the input signal �ltered

by h1 and h2, respectively. The comparison between the performances for Pup = 1

41

and Pup = 0.4 leads us to conclude that data selection is an useful tool in nonlinear

system identi�cation. The estimated probability of update is presented in Figures

3.2b and 3.3b, where a result close to the prescribed probability of the update is

observed.

0 200 400 600 800 1000

-14

-13

-12

-11

-10

-9

-8

(a)

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(b)

Figure 3.2: Simulation A1: (a) MSE learning curves for the data selection and (b)
Comparison between the desired Pup and the achieved P̂up.

0 200 400 600 800 1000

-10

-8

-6

-4

-2

(a)

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(b)

Figure 3.3: Simulation A2: (a) MSE learning curves for the data selection and (b)
Comparison between the desired Pup and the achieved P̂up.

In the following example, we use the �lter impulse response h1 to obtain the

input signal and we also consider that the outliers are present in the desired signal

d(k) In Table 3.6, we verify how the MSE is a�ected when outliers are present in

the reference signal. The outlier signal is inserted in 2% of the output signal with

an amplitude equal to �ve. Comparing the two �rst columns, we can conclude

that when there is the presence of outliers and these are being ignored the result is

42

worse. There is an improvement in the MSE values for Pup = 0.4 and Pup = 1 when

considering the presence of outliers.

Table 3.6: MSE (dB) for simulations with outliers

Outlier yes yes yes no

τmax on yes no yes no

Pup 0.4 0.4 1 1

Average MSE (dB) DS-KCG −8.1207 −5.0197 −10.5748 −13.2229

B. Signal Prediction

In this application, the example considered is the Mackey-Glass time-delay

di�erential equation [72],

dx(t)

dt
= −α1x(t) +

α2x(t− t0)

1 + x10(t− t0)
, (3.44)

with α1 = 0.1, α2 = 0.2 and t0 = 17. The di�erential equation solution is corrupted

by Gaussian noise with zero mean and variance σ2
n = 10−3. The �lter order used is

N = 10 and prediction parameter is L = 3.

The estimated probability of update P̂up is somewhat close to the prescribed

probability of update Pup, as can be observed in Figure 3.4a. In �gure 3.4b the

prediction results is illustrated using the Gaussian kernel with σ = 0.5 and with

Pup = 0.4. One can observe that even when the number of updates is reduced, we

still can obtain accurate results.

The performance of the MSE can be analyzed in �gure 3.5. Just as in the

previous section of the CG algorithm, a fast convergence is observed for the data

selection, but there is a slight advantage for the full dataset at the steady state.

This disadvantage can be explained by the trade-o� between computational cost

and algorithm performance when we apply the data selection method.

C. Channel Equalization

The problem chosen to represent the equalization is a digital channel modeled

by the following system of equations:

x(k) = s(k) + 0.5s(k − 1), (3.45)

y(k) = x(k) + 0.2x2(k) + 0.1x3(k) + n(k), (3.46)

43

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(a)

800 850 900 950 1000
0

0.5

1

1.5

(b)

Figure 3.4: Simulation B: (a) Comparison between the desired Pup and achieved P̂up

by the DS-CG algorithm and (b) Comparison between the desired signal and the
predicted by the DS-CG algorithm for Pup = 0.4.

0 200 400 600 800 1000

-50

-40

-30

-20

Figure 3.5: Simulation B: MSE learning curves for data selection in Pup = 0.4 and
Pup = 1.

where the input signal s(k) consists of independent binary random samples {−1,1},
the linearity and nonlinearity of the channel are modeled using the x(k) and y(k) and

the channel is corrupted by a Gaussian distribution with zero mean and variance

σ2
n = 10−3. The order N = 5 is su�cient to achieve a good performance in the

problem. In this problem, the standard deviation for the Gaussian kernel is σ = 5.

The delayed step for the channel equalization considered is L = 3.

Figure in 3.6a presents the result for the Pup = 0.4 aiming to verify the

performance of the adaptive algorithm by carrying out inverse �ltering of the

received signal to recover the input signal. As we can see, this result is satisfactory

when using data selection. In Figure 3.6b is veri�ed that the estimated probability

44

of update P̂up is quite close to the probability of update Pup set beforehand.

900 910 920 930 940 950
-2

-1

0

1

2

(a)

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(b)

Figure 3.6: Simulation C: (a) Equalized signal of the channel and the data-selective
�lter (b) Comparison between the desired Pup and achieved P̂up by the algorithm.

0 200 400 600 800 1000

-40

-30

-20

-10

0

10

Figure 3.7: Simulation C: MSE learning curves for data selection in Pup = 0.4 and
Pup = 1.

In terms of MSE, one can see in Figure 3.7 that an adaptive �ltering problem

using data selection method gets a result close to the simulation using 100% of the

data.

45

3.2 Concluding Remarks

In this chapter, we proposed a data selection version of KCG algorithm. We

observed a good performance when we updated the coe�cients by less than 50%

of the iterations, reducing the computational cost. The algorithm is also capable

of identifying and discarding outliers and hence improving the �lter performance.

Therefore, data selection is an excellent tool in kernel adaptive �ltering, mainly to

reduce the computational cost.

46

Chapter 4

Data Selection in Neural Networks

Inspired by the good performance of the data selection method in linear and

nonlinear adaptive �ltering, the next goal is to adapt this method to the machine

learning context. The technique chosen to explore data selection is the neural

network (NN) learning due to its e�ciency when dealing with large amounts of

data.

In this chapter, we provide a brief introduction to the neural network for

regression and classi�cation problems by describing how the perceptron and back-

propagation algorithms work. Then, the data selection method in neural network is

formulated and tested with some datasets.

4.1 Introduction to Arti�cial Neural Networks

Neural networks arose from multidisciplinary e�orts targeting to understand how

the human brain works. In the human neural circuit, the main component in the

structure is the neuron. A human brain has an average of 100 billion of neuron.

Each neuron may be connected to up to 10.000 neurons, via synaptic connections.

These links have the function of transferring information from one neuron to another

[73].

In 1943, the neurophysiologist Warren McCulloch and the logician Walter Pitts

created a computational model capable of behaving like a human brain. This paper

is considered the beginning of the neural networks �eld [73].

An arti�cial neural network consists of several layers, each one with a speci�c

number of neurons. The connection between its elements is made through the

weights related to the synapses that provide the communication between the output

of one neuron and the input of another. In this section, we begin by explaining

the algorithm known as Perceptron [3, 28, 74], a simpler version for the neural

network. Afterward, we describe the theoretical concepts and details of the learning

algorithm to train a feed-forward neural network [2, 3, 28]. In this system, we

47

will propose a new data selection method in classi�cation and regression problems.

Then, we perform simulations in various applications to verify the performance of

the proposed algorithm.

4.1.1 Perceptron Learning

In linearly separable two-classes (ω1, ω2), there exists at least one hyperplane,

de�ned by the normal vector wo, such as wT
o x = 0, which divides the

dataspace in two regions useful for classifying the set of training samples correctly,

{(x(1), y(1)),(x(2), y(2)), · · · , (x(M), y(M))}, such as

y(m) = sign(wTx(m)) =

−1, if x(m) ∈ ω1,

+1, if x(m) ∈ ω2,
(4.1)

where sign(·) is the sign function.

The bias term of the hyperplane has been included in weight vector w to simplify

the notation. Due to the above de�nition of the sign function, y(m)(xT (m)w) > 0

if only if {x(m), y(m)} is correctly classi�ed. One of the most popular examples

of application of this algorithm is the credit scoring model [75], whose goal is to

identify if a person can receive credit based on the information stored in a database.

The perceptron learning algorithm aims at achieving the previously mentioned

hyperplane. The algorithm is initialized so that the value parameter w is a random

or zero vector. The update rule per iteration is

w =

w + µy(m)x(m) if x(m) is misclassi�ed by w,

w otherwise,
(4.2)

where µ > 0 is the step size parameter, which controls the convergence of the

algorithm. A good way to understand this operation is by using its geometric

interpretation, as depicted in Figure 4.1. Since x(m) is misclassi�ed by w, the term

µy(m)x(m) is added and the hyperplane moves so that the weight vector w classi�es

x(m) correctly.

After a �nite number of iterations, an optimal solution wo is reached. This result

holds regardless of which criterion is chosen to select the data at each iteration and

also how the weight vector in the algorithm is initialized [76]. The perceptron

algorithm is outlined in Table 4.1.

48

x2

x1

wold

wnew

x

Hold

Hnew

Figure 4.1: The vector x is misclassi�ed by the hyperplane Hold (in red). The update
rule adds x to the weight vector, wnew = wold + x, where in this case µ = 1. The
new hyperplane Hnew (in blue) classi�es correctly the vector x.

Table 4.1: Perceptron algorithm

Perceptron algorithm

Initialize

w = random vectors or zero vectors,

set µ > 0,

Do for t > 0 (epoch)

count = 0

Do for m = 1 : M (for iteration m, select the data {x(m), y(m)})
if y(m)(xT (m)w) < 0

w = w + µy(m)x(m)

count = count + 1

end if

end

if count = 0

break; (If count = 0, then all data is classi�ed correctly)

end if

end

49

4.1.2 Feed-Forward Multilayer Neural Network

The classi�cation illustrated in Figure 4.2 cannot be implemented by the

perceptron, even though this function is considered simple. For this problem, we

can apply the algorithm known as Multi-layer Perceptron (MLP), a version of the

perceptron with more layers. The layers added between input and output are called

hidden layers. Each layer is composed of neurons, also known as nodes in this kind

of problem. In each of the nodes belonging to the hidden and output layers, a sign

function is calculated, as in the perceptron algorithm.

ω1

ω1

ω2

ω2

Figure 4.2: Two classes (ω1,ω2) are formed by the union of polyhedral regions. The
con�guration in this image is related to the Boolean XOR function.

In MLP, the process of learning the weights is challenging, since we are dealing

with a nonlinear problem. One solution is the soft and di�erential approximation

of the sign function that allow to use of numerical optimization methods to �nd

the weights. These are called activation functions, which end up introducing a

di�erentiability in the network. Some examples of activation functions that we can

adopt here are the ReLU function, sigmoid logistic function, and the hyperbolic

tangent function [77�79]. These models of networks are known as feed-forward

because the data move forward from the initial layer to the last layer [80]. In

addition, the larger is the number of layers and nodes, the greater is the complexity

of the model.

Figure 4.3 illustrates the neural network scheme. The layers are denoted by

l = 0, 1, 2, · · · , L, where l = 0 is the input layer and l = L is the output layer. The

layers between them, 0 < l < L, are known as hidden layers. In all layers, except in

the output one, the �rst node is considered the bias node and its value is set to 1. In

each layer, we have ol nodes without counting the bias node, labeled as o1, · · · , ol.
The communication between the i-th node of a layer l − 1 to the j-th node of the

next layer l is made through the weight wlij. It is important to point out that there

50

is no other type of communication between the layers. In each node of the hidden

layers, except for the bias nodes, there is an activation function f applied to the

weighted input values. In the output layer, the activation function is fL.

Input Layer Hidden Layer Output Layer

1 1

1

x1

x2

xN

f

f

f

f

f

f

f

f

f

f

fL

fL

fL

ŷ1

ŷ2

ŷdL

Figure 4.3: In this �gure, the neural network has L = 3 layers (2 hidden and the
output).

In regression problems, the number of nodes in the output layer is oL = 1,

returning a continuous numerical number ŷ to be compared with the true value y.

In classi�cation problems, the value oL is equal to the number of classes. In this

case, the desired signal y is one-hot-encoded, meaning that if c is the correct class,

yc = 1 and yi = 0 for i 6= c. Moreover, when the activation function at the output is

softmax, the output signal ŷ returns a probability distribution on the classes, that

is to say ŷi = P (c = i), and this implies that
∑

i ŷi = 1.

In order to simplify the computations, we introduced vector and matrix notation

for the network con�guration. In each layer l, the input vector is denoted as xl and

the output vector is denoted as yl. In the data transfer from the layer l − 1 to the

layer l, we apply the weight matrix Wl. This structure is shown in the Table 4.2,

Table 4.2: Con�guration of an arbitrary neural network.

Input vector of layer l xl ol-dimensional vector

Output vector of layer l yl (ol + 1)-dimensional vector

Weight Matrix between layers l − 1 and l Wl (ol + 1)× (ol+1)-dimensional matrix

Since all the de�nitions and notations were introduced, we can present the feed-

forward process that computes a parametric nonlinear function, hW(x) = ŷ, where

51

W = {W1,W2, · · · ,WL}. The whole process is based on the repetition of two

steps in each hidden layer, the sum of the weighted outputs of the previous layer

and an activation function applied at a layer l to obtain the output vector,

xl = (Wl)Tyl−1, yl =

 1

f(xl)

 , for 1 < l < L− 1, yL =

[
fL(xL)

]
(4.3)

where the expression f(xl) is a vector whose components are f(xlj) with xlj =∑ol−1

i=0 w
l
ijy

l−1
i , for j = 1, · · · , ol. Initializing the input layer as y0 = [1; x], the

feed-forward process consists of the following chain

y0 W1

−−→ x1 f−→ y1 W2

−−→ x2 f−→ y2 · · · WL

−−→ xL
fL−→ yL = ŷ. (4.4)

After obtaining the output value in the last layer, the next step is the back-

propagation [81], in order to update the weights W. Since we need a criterion to

perform the weights update, the de�nition of an objective function, J(W), is then

required. Some examples of the objective function are Least-squares, Cross-Entropy,

and Relative Entropy. Research works in the neural network has shown that a good

combination of the activation function in the last layer and the objective function

can lead to a better performance.

In the back-propagation step, the goal is to minimize the objective function

with respect to the parameter W, assuming the that set of training samples

{(x(1),y(1)), (x(2),y(2)), · · · , (x(M),y(M))} is available, where M is the number

of examples in this set. Here, the algorithm chosen for minimizing the objective

function is the gradient descent. In this case, the weights W are iteratively adapted

by using the negative gradient direction,

Wl(k + 1) = Wl(k)− µ

b

∂J(W)

∂Wl

∣∣∣
W(k)

, (4.5)

where µ is the step size and b is the sample size of the data selected in each iteration.

Here, the objective function assumed as the sum of the point-wise square error

related to each training sample,

J(W) =
1

M

M∑
m=1

Jm(W) =
1

M

oL∑
k=1

M∑
m=1

Jkm(W), (4.6)

where Jkm is the objective function related to the output node k for the sample x(m).

The back-propagation process deals with the di�culty of calculating all derivatives

in (4.5) using a simple procedure. The method starts by calculating the derivative

in the last layer obtaining the other values in other layers recursively in a backward

52

fashion, so that the value obtained in layer l in�uences in the one of the layer l− 1,

so the process is called back-propagation. In the partial derivative, the chain rule is

applied so that the value obtained is partitioned into two new expressions,

∂Jm
∂Wl

=
∂xl

∂Wl

∂Jm
∂xl

= yl−1(δl)T (4.7)

where the �rst term is computed using equation (4.3) and the second term is obtained

from the back-propagation process. Vector δl is known as sensitivity vector for the

layer l, which represents the gradient (sensitivity) of the cost Jm with respect to

input xl.

The back-propagation has a process similar to feed-forward, but with some

di�erences when calculating the value δl. The sensitivity vector δl+1 is multiplied by

the weights Wl+1 and the bias component is excluded. In the following, the applied

transformation is the multiplication element by element of εl = [Wl+1δl+1]o
l

1 and

the derivative of the activation function f in xl:

δl = f ′(xl)⊗ εl. (4.8)

The chain below shows how the procedure works:

[δL
×WL]

∣∣oL−1

1−−−−−−−→ εL−1 ⊗f
′(xL−1)−−−−−−→ · · · [δ2

×W2]

∣∣o1
1−−−−−→ ε1 ⊗f

′(x1)−−−−→ δ1. (4.9)

where “
∣∣ol
1

” means that only the components 1, 2, · · · , ol of the vector Wl+1δl+1 are

selected.

Since the derivation of the algorithm is complete, the gradient descent back-

propagation algorithm is shown in Table 4.3.

Remarks related to the algorithm [3, 28]:

• At each epoch, one can compute the objective function established in the

algorithm for the training dataset Jtrain and the validation dataset Jtest, if this

set is previously de�ned.

• The joint choice of the output activation function and objective function is

signi�cantly important for NN learning tasks. In addition to simplifying

the computations in updating weights, we can also improve algorithm

performance. The most used combination in regression problems is the linear

function with mean squared error; for multi-class classi�cation problems is the

softmax function with cross-entropy.

• For some time, the most widely used activation function was the sigmoid

function, but it had some disadvantages, such as saturation in the tails and

53

centering on a nonzero value. Currently, the most widely employed functions

are the tangent hyperbolic (tanh) and the �recti�ed linear unit� (ReLU).

• Gradient descent is the algorithm chosen in this text, but lately, more �exible

optimizers were developed, such as Adagrad, Adam, RMSProp, among others

[29, 82�85]. Some of these methods use adaptive step sizes that usually result

in better and smoother convergence.

• The step size µ is a crucial parameter in the NN. De�ning a value for the

step size requires some care, since setting it too high or too low can cause the

function to never converge to a (local) minimum. A widely used solution for

this type of problem is to decrease gradually the rate after each iteration.

• The default procedure for initializing the weights W is by randomly selecting

the values. If the weights are too large or too small numbers, the activation

function will be saturated, resulting in low gradients and then a slower

convergence. The current procedure for dealing with this drawback is to

initialize the weights with uniform or normal distribution.

• A possible stopping criterion consists of training the model up to a certain

epoch nep, and after that period, verify if the value of the objective function

is less than a prescribed threshold. An alternative is to check if the

objective function is decreasing from iteration to iteration in the validation

set. Otherwise, the process may be interrupted.

• For each iteration i in the algorithm, only a sample of data of size b (mini-

batch) is considered. Depending on how the algorithm draws these samples in

the dataset, randomly or deterministically, the convergence can be faster.

• When selecting the number of hidden layers and neurons in a training network,

the criterion used is to add layers and neurons until the validation error shows

no improvement.

54

Table 4.3: Gradient descent back-propagation algorithm

Gradient descent back-propagation algorithm

Initialize

{(x(1),y(1)), (x(2),y(2)), · · · , (x(M),y(M))},
W = {W1,W2, · · · ,WL} (random vectors),

Select : step size µ > 0, number of epoch nep, mini-batch size b, number of layers L+ 1,

number of nodes (o1, · · · , oL), activation function f , output activation function fL,

objective function J

iter = M/b

Do for t = 1 : nep

Do for i = 1 : iter (for each iteration, randomly select b examples

in training dataset → X(t,i) = [x̄(1), x̄(2), · · · , x̄(b)], Y(t,i) = [ȳ(1), ȳ(2), · · · , ȳ(b)])

[Forward Propagation]:

Y0 = [ȳ0(1), · · · , ȳ0(b)] = [ones(1, b); X(t,i)] (ones(1, b) are the bias term)

Do for l = 1 : L− 1

Xl = (Wl)TYl−1

Yl = [ones(1, b); f(Xl)]

end

XL = (WL)TYL−1

Ŷ(t,i) = [ŷ(1), · · · , ŷ(b)] = YL = g(XL)

[Back-propagation]:

∆L = [δL(1), · · · , δL(b)] = ∂J
∂XL

Do for l = L− 1 : −1 : 1

∆l = f ′(Xl)⊗ [Wl+1∆l+1]o
l

1

end

[Updating the weights]:

Do for l = 1 : L

Wl = Wl − µ
b
Yl−1(∆l)T

end

end

Jtrain(W) = 1
M

∑oL

k=1

∑M
m=1 J

k
m(W) (and Jtest if this set is previously de�ned)

end

55

4.2 Formulation of the Modi�ed Data Selection in

NN

In this section, a similar method to the data selection in adaptive �ltering is

modeled in NN for the regression and classi�cation problems [86�88]. In the previous

chapter, the decision criterion applied to update the coe�cients is directly related

to the objective function (2.22). As a rule, the closer this e(k) value is to zero, the

less informative or relevant will be the contribution of (x(k),y(k)) if it is included in

the data dictionary. In the neural networks framework, we have an error measure e

for each output neuron, which depends on the desired and estimated outputs, these

values are de�ned according to the objective function (4.6). Therefore, the following

error vector for the data (x,y) is obtained as

e(ŷ,y) = [e(ŷ1,y1), e(ŷ2,y2), · · · , e(ŷoL ,yoL)] (4.10)

where y = [y1, y2, · · · , yoL] is the desired value and ŷ = [ŷ1, ŷ2, · · · , ŷoL] is the target

value in the neural network. The total sum of this error in all classes of the problem

is expressed as

E(ŷ,y) =
oL∑
k=1

e(ŷk,yk). (4.11)

The next step is to formulate how the data selection method applies to each

problem, regression, and classi�cation.

Regression

The approach in this subsection is quite similar to the one explained in the

previous chapter for adaptive �ltering. The objective function chosen in this case is

the same, namely the mean squared error (MSE), and the output activation function

is the linear function,

J(W) =
1

M

M∑
m=1

[
1

2
(ŷ(m)− y(m))2

]
, (4.12)

where ŷ(m) = yL1 (m) = xL1 (m). In this approach, since the output has only one

dimension, equation (4.11) can be rewritten as

E(ŷ, y) = e(ŷ, y) = y − ŷ, (4.13)

where y is the desired value and ŷ is the target value.

56

At each epoch t, the Gaussian distribution is assumed for the error signal,

e ∼ N (0, (σte)
2) (4.14)

where (σte)
2 is the error variance. By normalizing this error distribution, we obtain

e

σte
∼ N (0, 1). (4.15)

In this case, the error variance is calculated using all the training examples

included in the mini-batch corresponding to the iteration. Therefore, proceeding

with the same idea used in equation (2.23), at the epoch t, the decision criterion

to update the coe�cients W regarding the data (x, y) associated to iteration i is

modi�ed in the objective function as follows

J1
i (W) =

1
2
(e(ŷ, y))2, if

√
τ ≤ |e(ŷ,y)|

σte

0, otherwise.
(4.16)

The data selection method proposes to detect the non-informative values at each

iteration after the feed-forward propagation process, eliminating the irrelevant data

before the back-propagation process, thus reducing the computational cost in the

NN algorithm. Since we are selecting an estimated portion P̂up from the training

dataset, the update equation of the weights (4.5) is modi�ed to

Wl(i+ 1) = Wl(i)− µ

b
yl−1(δl)T →Wl(i+ 1) = Wl(i)− µ

bP̂up

yl−1
R (δlR)T , (4.17)

where R is the set selected to update the weights at iteration i. The prescribed

probability of update Pup, can be computed as follows

Pup = P

{
|e|
σte

>
√
τ

}
= 2Qe(

√
τ), (4.18)

where Qe(·) is the complementary Gaussian cumulative distribution function, given

by Qe(x) = 1/(2π)
∫∞
x
exp(−t2/2)dt [44]. Therefore, the parameter

√
τ can be

obtained from equation (4.18) as

√
τ = Q−1

e

(
Pup

2

)
, (4.19)

where Q−1
e (·) is the inverse of the Qe(·) function.

57

At iteration i in the epoch t, the estimated error variance is calculated by

(σte(i))
2 = (1− λe)σ2

e + (λe)(σ
t
e(i− 1))2, (4.20)

where σ2
e is the error variance related to the data in the i-th iteration, and λe is

the forgetting factor. At the each start of the epoch t, the estimated error variance

depends on the last error variance (σt−1
e (b))2 from the previous epoch, thus the

equation for this dependence is established by

(σte(0))2 = Pup(σt−1
e (b))2. (4.21)

The main goal of this application in NN is to reduce the computational cost,

with the possibility of improving algorithm performance. The NN algorithm for a

regression problem is outlined in Table 4.4.

Table 4.4: Data Selection Feed-Forward Multilayer Neural Network algorithm in a
regression problem

DS Feed-Forward Multilayer Neural Network algorithm in regression

Initialize

{(x(1),y(1)), (x(2),y(2)), · · · , (x(M),y(M))},

W = {W1,W2, · · · ,WL} (random vectors),

Select : step size µ > 0, number of epoch nep, mini-batch size b, number of layers L,

number of nodes (o1, · · · , oL), activation function f , output function fL, forgetting factor λe

Objective function J = Mean Squared Error

De�ne iter = M/b, σ0
e(b) = 0 and prescribe Pup

√
τ = Q−1

e

(
Pup

2

)
Do for t = 1 : nep

(σte(0))2 = Pup(σt−1
e (b))2

Do for i = 1 : iter (for each iteration, randomly select b examples

in a training dataset → X(t,i) = [x̄(1), x̄(2), · · · , x̄(b)], Y(t,i) = [ȳ(1), ȳ(2), · · · , ȳ(b)])

[Forward Propagation]:

Y0 = [ȳ0(1),ȳ0(2), · · · , ȳ0(b)] = [ones(1, b); Xt
i] (ones(1, b) are the bias term)

58

Do for l = 1 : L− 1

Xl = (Wl)TYl−1

Yl = [ones(1, b); f(Xl)]

end

XL = (WL)TYL−1

Ŷ(t,i) = [ŷ(1), ŷ(2), · · · , ŷ(b)] = YL = g(XL)

[Data Selection]:

e(ŷ(k), ȳ(k)) = (ŷ(k)− ȳ(k)), for k = 1, · · · , b

E = [e(ŷ(1), ȳ(1)), · · · , e(ŷ(b), ȳ(b))] = Ŷ(t,i) −Y(t,i)

σ2
e = Var(E)

(σte(i))
2 = (1− λe)σ2

e + (λe)(σ
t
e(i− 1))2

R →

 j /∈ R, if |e(ŷ(k),ȳ(k))|
(σte(i))

≤
√
τ

j ∈ R, otherwise
, for j = 1, · · · , b

R = [j1, j2 · · · , jp]

YR = [ȳ(j1), ȳ(j2), · · · , ȳ(jp)]

ŶR = [ŷ(j1), ŷ(j2), · · · , ŷ(jp)]

P̂up = |R|
b

[Back-propagation]:

∆L
R = [δL(j1),δL(j2), · · · , δL(jp)] = g′(XL

R)⊗ (ŶR −YR)

Do for l = L− 1 : −1 : 1

∆l
R = f ′(Xl

R)⊗ [Wl+1∆l+1
R]o

l

1

end

[Updating the weights]:

Do for l = 1 : L

Wl = Wl − µ

bP̂up
Yl−1
R (∆l

R)T

end

end

Jtrain(W) = 1
M

∑M
m=1 J

1
m(W) (and Jtest if this set is previously de�ned)

end

59

Classi�cation

In the classi�cation problem, the performance of a NN can be is veri�ed using

two objective functions, the mean squared error

J(W) =
1

M

oL∑
k=1

M∑
m=1

[
1

2
(ŷk(m)− yk(m))2

]
, (4.22)

and the cross-entropy (CE),

J(W) =
1

M

oL∑
k=1

M∑
m=1

[−yk(m) ln(ŷk(m))− (1− yk(m)) ln(1− ŷk(m))] , (4.23)

where we adopts as outputs the 0, 1 values. The equation (4.22) is one of the most

widely used in signal processing and NN, and the equation (4.23) obtains the best

results in more recent research when combined with the softmax activation function

in the output layer,

ŷk(m) = yLk (m) =
exp(xLk (m))∑oL

j=1 exp(xLk (m))
, for k = 1, · · · , oL. (4.24)

The value e in equation (4.10) is de�ned for the mean squared error and cross

entropy, respectively, as

e(ŷk,yk) = (ŷk − yk)2, (4.25)

e(ŷk,yk) = −yk ln(ŷk)− (1− yk) ln(1− ŷk) (4.26)

where ŷk is the estimated output for the k-th class and yk is the k-th desired value

for the output y.

As in classi�cation problems, the last layer has multiple outputs, and it is di�cult

to infer a distribution for the error signal, as occurred in the regression problem,

equation (4.14). We do not normalize the variance and directly use the equation

(4.11).

Also due to this di�culty in obtaining this probabilistic function, as it happens

in the regression problem, we formulated another procedure with a similar idea to

obtain the threshold. This approach for the classi�cation problems aims to detect the

values smaller than a given threshold in the equation (4.11) such that the related

errors are disregarded in the process of updating the coe�cients. This proposal

requires the selection of a threshold for each mini-batch per iteration, chosen from

60

a binomial distribution with n = b and p = Pup,

tbin ∼ Bin(n, p). (4.27)

The data associated with measures smaller than the tbin-th largest value of E,

equation (4.11), are eliminated before the back-propagation process. De�ning C as
the set related to the indexes of E values greater or equal to the tbin-th largest value,

we obtain

C = [j1, j2, · · · , jtbin]. (4.28)

Figure 4.4 illustrate the full process in one epoch from the entry of the training

samples to veri�cation of the performance of the weights update in the test samples

(Test error). The �gure 4.5 present the schematic strategy of the data selection in

regression and classi�cation problems to a determined mini-batch. At each iteration

per epoch, a sample of size b (mini-batch) is selected to update the weight vector,

this input sample (yellow color) is inserted in forward propagation. Then we apply

data selection, eliminating non-informative data (white color) and proceeding with

the remainder (blue color) in back-propagation to update the weight vector.

Figure 4.4: Epoch Scheme in neural network.

61

input data used in forward

input data used in back

input data ignored in back

forward propagation

back-propagation

1

2

3

4

b

Figure 4.5: Data selection neural network diagram.

Again, this data selection method aims to identifying the non-informative values

after the feed-forward propagation process at each iteration, eliminating some of

the data before the back-propagation process. Therefore, as we are selecting an

estimated portion P̂up of data in each iteration, the update equation is rewritten as

Wl(i+ 1) = Wl(i)− µ

b
yl−1(δl)T →Wl(i+ 1) = Wl(i)− µ

bP̂up

yl−1
C (δlC)

T , (4.29)

The complete procedure for Data Selection Feed-Forward Multilayer Neural

Network is described in algorithm 4.5.

62

Table 4.5: Data Selection Feed-Forward Multilayer Neural Network algorithm in
classi�cation problem

DS Feed-Forward Multilayer Neural Network algorithm in classi�cation

Initialize

{(x(1),y(1)), (x(2),y(2)), · · · , (x(M),y(M))},

W = {W1,W2, · · · ,WL} (random vectors),

Select : step size µ > 0, number of epoch nep, mini-batch size b, number of layers L,

number of nodes (o1, · · · , oL), activation function f

Option 1 : Objective function J = Mean Squared Error, output function fL = Linear

or Hyperbolic tangent;

Option 2 : Objective function J = Cross-Entropy, output function fL = Softmax;

De�ne iter = M/b, prescribe Pup

Do for t = 1 : nep

Do for i = 1 : iter (for each iteration, randomly select b examples

in training dataset → X(t,i) = [x̄(1), x̄(2), · · · , x̄(b)], Y(t,i) = [ȳ(1), ȳ(2), · · · , ȳ(b)])

[Forward Propagation]:

Y0 = [ȳ0(1),ȳ0(2), · · · , ȳ0(b)] = [ones(1, b); X(t,i)] (ones(1, b) are the bias term)

Do for l = 1 : L− 1

Xl = (Wl)TYl−1

Yl = [ones(1, b); f(Xl)]

end

XL = (WL)TYL−1

Ŷ(t,i) = [ŷ(1), ŷ(2), · · · , ŷ(b)] = YL = g(XL)

63

[Data Selection]:

e(ŷk(j), ȳk(j)) =

(ŷk(j)− ȳk(j))2, if Mean Squared Error

−ȳk(j) ln(ŷk(j))− (1− ȳk(j)) ln(1− ŷk(j)), if Cross Entropy

for j = 1, · · · , b and k = 1, · · · , oL

Ek = [e(ŷk(1), ȳk(1)), · · · , e(ŷk(b), ȳk(b))], for k = 1, · · · , oL

E =
[∑oL

k=1 e(ŷk(1), ȳk(1)),
∑oL

k=1 e(ŷk(2), ȳk(2)), · · · ,
∑oL

k=1 e(ŷk(b), ȳk(b))
]

tbin ∼ Bin(n,p),

C = [j1, j2 · · · , jtbin], where C is the index set related to the tbin largest values

in the vector E

YC = [ȳ(j1),yj2 , · · · ,ytbin]

ŶC = [ŷ(j1), ŷ(j2), · · · , ŷ(tbin)]

P̂up = |C|
b

[Back-propagation]:

∆L
C = [δL(j1),δL(j2), · · · , δL(tbin)] =

g′(XL
C)⊗ (ŶC −YC), if is chosen the option 1

(ŶC −YC), if is chosen the option 2

Do for l = L− 1 : −1 : 1

∆l
C = f ′(Xl

C)⊗ [Wl+1∆l+1
C]o

l

1

end

[Updating the weights]:

Do for l = 1 : L

Wl = Wl − µ

bP̂up
Yl−1
C (∆l

C)
T

end

end

Jtrain(W) = 1
M

∑oL

k=1

∑M
m=1 J

k
m(W) (and Jtest if this set is previously de�ned)

end

64

4.3 Simulations

In this section, the performance of the data selection method in the neural

network is veri�ed in di�erent datasets. The proposed method is evaluated

considering classi�cation and regression problems. All algorithms in this chapter

were implemented in MATLAB and are available online on the GitHub [46]. The

simulations were performed in a computer with Intel Core i7-7500U CPU 2.70GHz

x4 processor and with 15.5 GB of memory.

The activation function chosen for both problems was the ReLU function. As

previously mentioned, the algorithm was tested in two combinations of the objective

function and the output function: 1) cross-entropy error and softmax function for

classi�cation problems; 2) mean square error and linear function for regression and

classi�cation problems. The number of layers and the number of units per layer in

the hidden layers varies according to the problem. The parameters in this section

were established from the main neural network references followed by this text [2,

3, 28]. We vary the probability of update so that Pup ∈ {0.005, 0.1, 0.3, 0.5, 0.7} and
compare with the case where the data is always updated, Pup = 1, in order to infer

the performance of the data selection method.

The reduction on the computational cost is the main bene�t of the decrease of

update probability. To verify whether there is also an improvement in the algorithm

performance, an additional simulation is included in each problem, considering for

each dataset an approximate mini-batch for the best performance. For example, in

most cases, the best accuracy was observed when setting Pup = 0.3 and b = 256.

Therefore, we compared this result with an alternative simulation assuming Pup = 1

and b = 80, as this value corresponds to approximately 30% of 256.

There are advantages and disadvantages of using a smaller mini-batch size (b)

or applying the data selection to obtain a small batch size (P̂upb) in the back-

propagation process. Both require less memory during the process, as we consider a

small number of samples. On the other hand, we can say that a smaller mini-batch

results in a less accurate estimate (stochastic), i.e., a larger variance.

In the next simulations, the data selection method is applied to the neural

network to verify its performance in the testing set. We quantify the computational

complexity of the proposed algorithms by counting the number of �ops required to

perform the NN computation in appendix A.2.

4.3.1 Regression - Problem 1: Superconductivity Dataset

The UC Irvine (UCI) Machine Learning Repository provides superconducting

material dataset, which is considered in this subsection [89, 90]. This type of

material has zero resistance and several practical applications. However, to reach

65

this property, the temperature (T) must be at or below its critical temperature (Tc).

Moreover, the scienti�c model and theory that predicts the value (Tc) is an open

problem. In this subsection using a neural network, a model for this superconducting

critical temperature (Tc) is formulated from features extracted based on thermal

conductivity, atomic radius, valence, electron a�nity, and atomic mass.

This dataset has no missing values and contains 81 features (input of the NN),

among which two are categorical variables. The One hot encoding1 is used on the

two categorical variables and, as a result, we replace them by 14 features in the

dataset. When selecting the features, a basic criterion adopted is to eliminate a

portion of the attributes which are not correlated enough to the output. Thus, we

eliminate 6 attributes that correlate less than 0.05 to the output value, amounting

a total of 89 features in the dataset. The last step in data preprocessing consists of

normalizing the attributes in the range 0 to 1, which is also known as the min-max

normalization. This procedure is useful in neural networks to scale the dataset that

has columns with di�erent magnitude of values. The output value also is scaled into

the range from 0 to 1.

The superconductivity dataset has 18000 training examples and 3000 test

examples. We use a step size of µ = 0.01, the mini-batch size has b = 256 examples

per iteration, and the epoch is equal to nup = 200. The number of hidden layers is 2

and each hidden layer has exactly 128 nodes. The forgetting factor used in the data

selection process to update the estimated error variance is evaluated as λe = 0.9.

The test MSE curves obtained by using di�erent probabilities of update Pup,

as shown above, are presented in Figure 4.6a. We may notice that there is always

an improvement in two-layer NN performance (b = 256) when we decrease the

amount of updates per epoch, but from a certain value Pup, the test curve acquire

a stochastic behavior (high variance) and the algorithm performance decreases. We

can also observe that between the values Pup = 0.3 and Pup = 0.1, we can achieve a

minimum value for MSE by selecting a speci�c amount of data. The performance of

Pup = 1 and b = 80 has a slight advantage in the accuracy of results over simulations

using data selection, but with greater variance in some cases and highest number

of �ops (see Tables 4.6 and 4.7 at the end of the subsection 4.3.4). As one can see

in the Figure 4.6b, the estimated probability of update are close to the prescribed

probability of update.

1One hot encoding is a process by which categorical variables are converted into a format so
that Machine Learning algorithms can do a better job of predicting. For example, suppose the
values in a categorical variable are from 0 to N − 1 categories. We replace this column with other
N columns and apply the following rule: 1 indicates occurrence of the related category and 0
otherwise [2].

66

50 100 150 200

-2.15

-2.05

-1.95

-1.85

-1.75

-1.65

(a)

1 2 3 4 5 6

0.1

0.3

0.5

0.7

0.9

(b)

Figure 4.6: Superconductivity simulation: (a) Test MSE curves comparing the case
when the algorithm is always updated Pup = 1 (b = 256 and b = 80) and with the
probability of update Pup ∈ {0.005, 0.1, 0.3, 0.5, 0.7} (b) Comparison between the
desired Pup and achieved P̂up.

4.3.2 Regression - Problem 2: Online News Popularity

Dataset

Due to the widespread use of the web, the number of news shares is increasing

each year. This number indicates how popular the news is. In this subsection, we

propose to �nd a model to predict the popularity of online news using neural network

and data selection. The dataset used in this subsection has a total of 39644 articles

67

published by Mashable website [91] in two years. This dataset is provided by UCI

Machine Repository [89], originally acquired and preprocessed by K.Fernandes et al.

[92]. The 60 features are extracted concerning di�erent aspects such as words, links,

and publication time. The goal is to help media companies to predict the number

of shares on the web before the news becomes published.

The dataset has no missing values, and all categorical variables are already

processed. The columns related to the URL of the article and time delta (days

between the article publication and the dataset acquisition) are excluded in this

process. As in the previous subsection, we employ the basic criterion, in which

all attributes that correlate less than 0.05 with the output value are eliminated,

amounting a total of 50 features for the input in the dataset after exclusion. The

min-max normalization is also used on features and output signal such that the

values are in the range of [0,1].

The dataset is divided into 35000 examples for the training dataset and 4644

examples for the test dataset. The parameters chosen for this simulation are the

µ = 0.01, b = 256 and nup = 200. The number of hidden layers is 2 and the number

of nodes in each hidden layer is equal to 128. The forgetting factor for data selection

in estimating error variance is equal to λe = 0.99.

The evolutions of the MSE by varying the probability of update Pup are

illustrated in Figure 4.7a. We can note an improvement in the evolution of MSE

(b = 256) as we decrease the amount of update per epoch. With exception for

the case Pup = 0.005 that obtain a result worse than Pup = 1 and with a high

variance. Again the network with Pup = 1 and b = 80 presents a slightly better

performance when compared with simulations using data selection, but with larger

number of �ops (see Tables 4.6 and 4.7 at the end of the subsection 4.3.4). Figure

4.7b shows the result of the estimated probability of update P̂up when compared

to the prescribed probability of update Pup. We can observe that the estimation

obtained in NN always achieves a value close to the prescribed probability.

4.3.3 Regression - Problem 3: Facebook Comment Volume

Dataset

In this subsection, we consider the Facebook comment volume dataset which

is provided by UCI Machine Learning Repository [89]. Currently, the amount of

data on social networking services is increasing exponentially day by day. So it is

important to verify the dynamic behavior of users in media services. We propose a

neural network model to the dataset to predict how many comments the post will

receive. This dataset contains features extracted from Facebook posts, as page likes,

page category, publication day, among others.

68

50 100 150 200

-4

-3.5

-3

-2.5

-2

(a)

1 2 3 4 5 6

0.1

0.3

0.5

0.7

0.9

(b)

Figure 4.7: Online news popularity simulation: (a) Test MSE curves comparing the
case when the algorithm is always updated Pup = 1 (b = 256 and b = 80) and with
the probability of update Pup ∈ {0.005, 0.1, 0.3, 0.5, 0.7} (b) Comparison between
the desired Pup and achieved P̂up.

The dataset consists in the union of 2700 facebook pages for 57000 posts. The

data cleaning was already performed by Kamaljot Singh and Dinesh Kumar [93].

After cleansing 5.892, posts are omitted and 51.108 posts are kept. This dataset

was divided into two subsets, the training dataset with 40.988 examples and the test

dataset with 10.120 examples.

Facebook dataset has no missing values. The categorical variables were already

69

preprocessed. The criterion correlation is the same as the one used in previous

simulations, eliminating three variables that correlate less than 0.05 with the output

value, subsequently amounting a total of 50 variables in the input. We also use the

min-max normalization applied on features and output signal so that the values are

in the range of [0,1].

The parameter chosen in this subsection are µ = 0.01, b = 256 and nup = 200.

The number of hidden layers is 2 and the number of nodes in each hidden layer is

equal to 128. The forgetting factor in the error variance estimation is λe = 0.99.

The evolutions of the MSE are illustrated in �gure 4.8a, each curve represents a

result for the probability of update Pup by varying its values to compare when all

data are selected (Pup = 1). In this �gure, we notice an improvement in algorithm

performance (b = 256) each time we decrease the probability of update Pup. In

addition, the Pup = 0.3 presents a better performance when compared to the Pup =

1 and b = 80 (see Tables 4.6 and 4.7 at the end of the subsection 4.3.4). The

comparison between the estimated of probability P̂up and the prescribed probability

of update Pup is presented in Figure 4.8b, where we can conclude that the estimated

of probability is close to the prescribed probability.

4.3.4 Regression - Problem 4: FIFA 19 Complete Player

Dataset

The dataset considered in this subsection is the FIFA 19 Complete Player,

provided by the site kaggle [94]. This dataset contains all statistics and playing

attributes of all players in the version of FIFA 19.

The dataset has no missing values. Initially it contains 89 features. In this set

of data, it was necessary to do a simple preprocessing. The columns referring to

the goalkeepers attributes are eliminated due to low correlation with the output.

Excluding a few more insigni�cant variables like url photos, ID, and among others,

we obtain a total of 73 features for the input. These variables are normalized using

the min-max normalization on features and output signal.

The dataset considered in this simulation has a total of 12000 training examples

and 2743 test examples. We chose the parameters as µ = 0.01, b = 256 and nup =

200. The number of hidden layers is 2 and the number of nodes in each hidden layer

is 128. The forgetting factor chosen in this subsection to estimate the error variance

online is equal to λe = 0.9.

The results of the performance for test MSE curves varying the probability of

update Pup are shown in Figure 4.9a. We may note that the MSE improves (b = 256)

when the number of updates in the learning process decreases, achieving an optimal

value between Pup = 0.3 and Pup = 0.1. In this problem, the result with Pup = 1 and

70

50 100 150 200

-2.7

-2.5

-2.3

-2.1

-1.9

(a)

1 2 3 4 5 6

0.1

0.3

0.5

0.7

0.9

(b)

Figure 4.8: Facebook Comment Volume simulation: (a) test MSE curves comparing
the case when the algorithm is always updated Pup = 1 (b = 256 and b = 80)
and with the probability of update Pup ∈ {0.005, 0.1, 0.3, 0.5, 0.7} (b) Comparison
between the desired Pup and achieved P̂up.

b = 80 yields slightly better performance, but the value is close to the probability

of update Pup = 0.3. The estimated probability of update for this simulation is

presented in Figure 4.9b, where a result close to the prescribed probability of the

update is observed.

71

50 100 150 200

-3.5

-3

-2.5

-2

-1.5

-1

(a)

1 2 3 4 5 6

0.1

0.3

0.5

0.7

0.9

(b)

Figure 4.9: FIFA 19 Complete Player simulation: (a) Test MSE curves comparing
the case when the algorithm is always updated Pup = 1 (b = 256 and b = 80)
and with the probability of update Pup ∈ {0.005, 0.1, 0.3, 0.5, 0.7} (b) Comparison
between the desired Pup and achieved P̂up.

In Table 4.6, the performance of the data selection method applied in regression

problems inferred as the MSE average over the last 10 epochs. As noted in the table,

using the data selection method the average MSE achieves a better result between

Pup = 0.3 and Pup = 0.1 with mini-batch b = 256, leading us to conclude that

using a small portion of the samples, the model prediction improves considerably in

the �nal result. Comparing the best results in data selection and simulations with

72

Pup = 1 and b = 80, the values are close, but with a considerable reduction in the

computational cost for the proposed method, Table 4.7.

Table 4.6: Comparison between the regression problems in the test error varying the
probability of update Pup (blue is the best and red is the worst for each problem)

Problem 1 Problem 2 Problem 3 Problem 4

Pup = 1 0.0086±2.79e-5 6.12e-04±7.52e-6 0.0031±1.06e-5 0.0021±3.91e-5

Pup = 0.7 0.0082±3.02e-5 4.41e-4±5.89e-6 0.0027±1.8e-4 0.0014±2.74e-5

Pup = 0.5 0.0079±5.76.e-5 4.12e-04±5.38e-6 0.0029±1.07e-5 0.0012±2.93e-5

Pup = 0.3 0.0079 ±9.96.e-5 3.20e-4±8.72e-6 0.0024±8.49e-6 0.0010±1.41e-4

Pup = 0.1 0.0088±3.18e-4 3.56e-04±1.50e-4 0.0023±1.43e-5 0.0011± 2.74e-4

Pup = 0.005 0.0132±6.4e-4 0.0014±0.0017 0.0024± 1.19e-4 0.0013± 2.84e-4

Pup = 1, b = 80 0.0073±3.97e-5 2.96e-4±2.79e-6 0.0025±6.79e-6 0.0009±3.34e-5

Table 4.7: Approximated number of �ops in one epoch varying the probability of
update Pup

Problem 1 Problem 2 Problem 3 Problem 4

Pup = 1 2599× 106 43549× 106 50999× 106 16349× 106

Pup = 0.7 2119× 106 35269× 106 41309× 106 13299× 106

Pup = 0.5 1799× 106 2974× 106 3483× 106 1125× 106

Pup = 0.3 1479× 106 2422× 106 2837× 106 922× 106

Pup = 0.1 1159× 106 1870× 106 2190× 106 719× 106

Pup = 0.005 1007× 106 1608× 106 1883× 106 622× 106

Pup = 1, b = 80 2598× 106 4354× 106 5099× 106 1634× 106

4.3.5 Classi�cation - Problem 5: MNIST Handwritten Digit

Recognition Dataset

The Modi�ed National Institute of Standards and Technology (MNIST) [95]

database is a large data set containing digits hand written by students and employees

of the United States Census Bureau, Figure 4.10. This dataset consists of 60,000

and 10,000 in training and test examples, respectively. The input of this set is a

matrix 28×28, where each value represents a pixel of the image. The input signal is

normalized to the range 0 to 1. The output dataset has integer values between 0 and

9, widely used in the �eld of machine learning, and it is one of the most commonly

used in NN to explore learning techniques.

This dataset has been previously preprocessed and therefore has no missing

values. Since we are modeling an image classi�cation problem, there are no

73

Figure 4.10: Sample images from MNIST dataset.

categorical variables, and we have not eliminated any variables before the learning

process.

The step size chosen for this simulation is µ = 0.1 when the objective function is

the cross-entropy error and the softmax function is the output activation function,

while for MSE in the objective function and linear function on output activation,

the step size is equal to 0.01. The other parameters are b = 256 and nup = 100

in the two cases. With the number of hidden layers equal to 2 and the number of

nodes in each hidden layer equal to 1024.

The �gures 4.11a and 4.11b show the results with cross-entropy as the objective

function and softmax as the output activation function, and results with MSE as the

objective function and linear function as the output activation function, respectively.

Again, the data selection method achieves a good performance in the NN, showing

that when we decrease the amount of update per epoch it occurs an improvement in

two layer NN performance (b = 256). Also, when compared with simulation Pup = 1

and b = 32, the best result in data selection achieves a better performance with the

bene�t of requiring a reduced number of �ops. The test classi�cation error curve for

Pup = 0.005 is not depicted in �rst �gure, because it has a higher value compared

to other probabilities, approximately equal to 0.20 in the last epochs.

4.3.6 Classi�cation - Problem 6: EMNIST Letters Dataset

The EMNIST letter dataset considered in this subsection is provided by the

National Institute of Standards and Technology (NIST) [96]. This dataset can

represent the 26 letters of the alphabet at the output, Figure 4.12. The letters

EMNIST contain 120000 training examples and 25000 test examples, and the

examples have been normalized between 0 and 1. The input is a 28 × 28 matrix,

where each input represents a pixel in the image. It has no categorical variables, so

74

20 40 60 80 100

1

2

3

4

5

6

(a)

20 40 60 80 100

0

5

10

15

20

(b)

Figure 4.11: MNIST Handwritten Digit Recognition simulation: Test classi�cation
error (%) comparing the case when the algorithm is always updated Pup = 1 (b = 256
and b = 32) with the probability of update Pup ∈ {0.1, 0.3, 0.5, 0.7} when (a) the
output activation function is softmax and objective function is cross-entropy error
and when (b) the output activation function is linear function and the objective
function is MSE.

it does not need any transformation in the variables. This dataset has already been

preprocessed [97].

The choice of the objective function and the output activation function in�uences

the choice of the µ parameter, thus if we choose MSE as the objective function

and the linear function as the output function, the parameters in this NN will be

75

Figure 4.12: Sample images from EMNIST letters dataset.

µ = 0.01, b = 256 and nup = 100. However, if the objective function is cross-entropy

and the output function is softmax, the parameters will be µ = 0.1, b = 256 and

nup = 100. The number of hidden layers is equal to 2. Also, the number of nodes in

the hidden layers in this simulation is 1024.

The results regarding the test classi�cation error when the probability of update

is varied are shown in the Figures 4.13a and 4.13b for cross-entropy and MSE,

respectively. The performance of simulation by setting Pup = 1 and b = 32 in CE

as objective function and Pup = 1 and b = 128 in MSE as objective function have

a slight advantage in the accuracy of results over simulations using data selection.

Again, the test classi�cation error curve for Pup = 0.005 is not included in the �rst

�gure due to higher classi�cation errors, approximately 96% in the last epochs.

In Table 4.8, we show the performance for the data selection method in the

classi�cation problem. The value in each table entry is the averaged MSE over the

last 10 epochs corresponding to a speci�c probability Pup and simulation problem.

In all cases for b = 256, except in the last simulation, the method achieves the best

result for Pup = 0.1. Also, we can note that the combination: cross-entropy as

objective function combined with the softmax as output activation function achieve

better results. In the Table 4.9, we conclude that the data selection reduces the

computational cost. Comparing the best results in data selection and simulations

with Pup = 1 and b = 32 (b = 128 in last column), the values of percentage in the

test error are close.

4.3.7 Problem 7: Deep Neural Network (Transcoding Time

and MNIST Datasets)

The UCI Machine Learning Repository [89] provides the dataset considered in

this subsection. In this subsection, we propose a deep neural network (number

76

20 40 60 80 100

8

10

12

14

16

18

20

(a)

20 40 60 80 100

10

20

30

40

50

60

(b)

Figure 4.13: EMNIST letters simulation: Test classi�cation error (%) comparing
the case when the algorithm is always updated Pup = 1 with the probability of
update Pup ∈ {0.1, 0.3, 0.5, 0.7} when (a) the output activate function is softmax and
objective function is cross-entropy error and when (b) the output activate function
is linear function and objective function is MSE.

of hidden layers greater than 2) model to predict the transcoding time of videos

given some basic characteristics as the set of features, including bit rate, frame rate,

resolution, codec, among others. The basic idea of video transcoding is to convert

unsupported video formats into supported ones.

This dataset has no missing values. Initially contains 20 columns, two of which

are categorical variables (input and output coding, with 4 categories each), and using

77

Table 4.8: Comparison in test error between the classi�cation problems varying the
probability of update Pup (blue is the best and red is the worst for each problem)

Problem 5 (CE) Problem 5 (MSE) Problem 6 (CE) Problem 6 (MSE)

Pup = 1 1.87±0.023 2.97±0.037 9.99±0.069 15.95±0.163

Pup = 0.7 1.78±0.020 2.70±0.038 9.88±0.056 14.39±0.149

Pup = 0.5 1.72±0.021 2.39±0.04 9.72±0.059 13.8±0.151

Pup = 0.3 1.69±0.05 1.98±0.03 9.48±0.042 13.84±0.166

Pup = 0.1 1.50±0.014 1.86±0.035 9.19±0.034 23.82±0.493

Pup = 0.005 22.61±4.65 1.93±0.071 96.12±0.047 96.3±0.487

Pup = 1, b = 32 1.60±0.009 1.84±0.031 9.13±0.142 12.96±0.118

Table 4.9: Approximated number of �ops in one epoch varying the probability of
update

Problem 5 Problem 6

Pup = 1 566× 109 1145× 109

Pup = 0.7 462× 109 935× 109

Pup = 0.5 393× 109 794× 109

Pup = 0.3 324× 109 654× 109

Pup = 0.1 254× 109 514× 109

Pup = 0.005 221× 109 447× 109

Pup = 1, b = 32 566× 109 1145× 109

the One Hot Encoding (OHE) results in 8 new columns. We also use the min-max

normalization applied on features and output signals so that the values are in the

range of [0,1].

The transcoding time dataset is divided into two subsets, training dataset with

55000 examples and test dataset with 13378 examples. The number of hidden layers

is 4, and the number of nodes in each layer is 128. The parameters chosen in this

subsection are µ = 0.01, b = 256 and nup = 200. The forgetting factor in the error

variance estimation is λe = 0.995.

The test MSE curves are illustrated in �gure 4.14, each curve represents the

evolution of the MSE in relation to the �xed probability of update Pup. We may

notice an improvement (b = 256) in the deep neural network performance when

we decrease the amount of updates, but from a certain value Pup below 0.1, the

algorithm performance degrades. The proposed methods performance is close to the

case where Pup = 1 and b = 80, with the bene�t of reduced computational complexity

(Table 4.10). However, the proposed method has the advantage of requiring a

reduced number of �ops. The �gure 4.15a shows the probability distribution for all

the mini-batches size in 100-th epoch, which is similar to the Gaussian distribution

78

reinforcing our hypothesis of the equation (4.15). The comparison between the

estimated probability P̂up and the prescribed probability of update Pup is presented

in Figure 4.15b, where we can conclude that the estimated of probability is close to

the prescribed probability of update.

50 100 150 200

-3

-2.8

-2.6

-2.4

-2.2

-2

Figure 4.14: Transcoding time simulation: test MSE curves comparing the case
when the algorithm is always updated Pup = 1 (b = 512 and b = 64) and with the
probability of update Pup ∈ {0.005, 0.1, 0.3, 0.5, 0.7}.

(a)

1 2 3 4 5 6

0.1

0.3

0.5

0.7

0.9

(b)

Figure 4.15: Transcoding time simulation: (a) Probability distribution for the
samples selected in the 100-th epoch and (b) Comparison between the desired Pup

and achieved P̂up.

The next example veri�es the performance of the data selection method in

classi�cation deep learning. For this, we use the MNIST dataset detailed in

subsection 4.3.5. The framework parameters are de�ned as: the number of hidden

79

layers equals 3, and the number of nodes in each layer is 1024. The other parameters

are chosen as µ = 0.1, b = 128 and nup = 100. Moreover, we compared the data

selection with another method called dropout [98] (explained in more detail in the

appendix A.1), which purpose to make node selection in each epoch of the neural

network, in both cases the main role is to reduce the computational cost. The results

of this deep learning example is illustrated in 4.16, where the data selection with

update probability Pup beat the dropout. In addition, a simulation with Pup = 1 and

b = 16 is performed and compared to simulations with data selection, the results

show that our proposed algorithms achieve a performance level close to the standard

neural network, but with a reduction in computational cost when applying the data

selection method in NN algorithm (Table 4.10).

20 40 60 80 100

1

1.5

2

2.5

3

3.5

4

Figure 4.16: MNIST Handwritten Digit Recognition simulation: Test classi�cation
error (%) comparing the case when the deep learning algorithm utilizes the dropout
technique, and when the data selection method is applied, varying the probability
of update Pup ∈ {0.1,0.3,0.5,0.7,1}. The output activation function is given by
softmax, and objective function is the cross-entropy error.

80

Table 4.10: Approximated number of �ops in one epoch varying the probability of
update

MNIST Dataset Transcoding Time Dataset

Pup = 1 944× 109 16966× 106

Pup = 0.7 764× 109 13604× 106

Pup = 0.5 645× 109 11362× 106

Pup = 0.3 525× 109 9120× 106

Pup = 0.1 405× 109 6879× 106

Pup = 0.005 348× 109 5814× 106

Pup = 1, b = 16 944× 109 �

Pup = 1, b = 80 � 16966× 106

4.4 Concluding Remarks

In this chapter, it was formulated a new method for data selection in neural

selection. This method was applied in several dataset for classi�cation and regression

problems. In all simulation, the data selection achieves good performance even when

only 30% of the data is considered, leading to consistent results. Therefore, data

selection in NN is an excellent tool, mainly with the advantage of requiring a lower

computational cost.

81

Chapter 5

Conclusions

5.1 Final Remarks

In this work, we proposed some data selection methods in signal processing and

machine learning. The criterion employed is based on selecting only the innovative

data in the iteration process, avoiding irrelevant and redundant information. The

proposed theory was carefully constructed from a statistical point of view.

In signal processing, we veri�ed the performance method in Conjugate Gradient

(CG) and Kernel Conjugate Gradient (KCG) algorithms. Both algorithms achieve

a good performance when the coe�cients are updated less than 50% of times.

Moreover, the simulations including outliers present satisfactory results when

compared with the cases that no outliers are present.

In the neural network (NN), we evaluated the performance of the data selection

method in regression and classi�cation problems. The data-selective algorithms

designed for neural networks have a similar result in most simulations where the

updates are done 100% of times. Moreover, when the data selection method was

incorporated into the algorithm, the computational cost decreased substantially.

The number of �ops is used to quantify this advantage. In addition, when compared

to the dropout method, considering a Deep Neural Network (DNN), a better result

was obtained.

5.2 Future Works

In adaptive �ltering, the next goal is to apply the data selection to other

algorithms, including linear and nonlinear problems.

As we concluded in the Chapter 4, the data selection method proposed in this

dissertation is a promising technique for Machine Learning, the next step is to

compare it other selection methods, as occurred with dropout. Then, we aim

82

at extending it to other neural architectures, such as the Convolutional Neural

Networks (CNN), which is more suitable for image processing. Also, there is a

possibility to improve the proposed method and establish new approaches in the

NN learning methods.

83

Bibliography

[1] DINIZ, P. S. R. Adaptive Filtering: Algorithms and Practical Implementation.

4th ed. New York, Springer, 2013.

[2] BISHOP, C. M. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, 2007.

[3] ABU-MOSTAFA, Y. S., MAGDON-ISMAIL, M., LIN, H.-T. Learning From

Data. AMLBook, 2012.

[4] DURGESH, K. S., LEKHA, B. �Data classi�cation using support vector

machine�, Journal of theoretical and applied information technology, v. 12,

n. 1, pp. 1�7, 2010.

[5] LAI, C.-C., TSAI, M.-C. �An empirical performance comparison of machine

learning methods for spam e-mail categorization�. In: Fourth International

Conference on Hybrid Intelligent Systems (HIS'04), pp. 44�48. IEEE,

2004.

[6] KONONENKO, I. �Machine learning for medical diagnosis: history, state of

the art and perspective�, Arti�cial Intelligence in medicine, v. 23, n. 1,

pp. 89�109, 2001.

[7] SWAN, A. L., MOBASHERI, A., ALLAWAY, D., et al. �Application of machine

learning to proteomics data: classi�cation and biomarker identi�cation

in postgenomics biology�, Omics: a journal of integrative biology, v. 17,

n. 12, pp. 595�610, 2013.

[8] BAJARI, P., NEKIPELOV, D., RYAN, S. P., et al. �Machine learning methods

for demand estimation�, American Economic Review, v. 105, n. 5, pp. 481�

85, 2015.

[9] RUSSELL, S., NORVIG, P. Arti�cial Intelligence: A Modern Approach. 3rd ed.

USA, Prentice Hall Press, 2009. ISBN: 0136042597.

84

[10] MCCORDUCK, P. Machines Who Think: A Personal Inquiry into the History

and Prospects of Arti�cial Intelligence. AK Peters Ltd, 2004. ISBN:

1568812051.

[11] KURZWEIL, R. The Singularity is near: When Humans Transcend Biology.

New York, Viking, 2005. ISBN: 978-0-670-03384-3.

[12] BOTTOU, L., BOUSQUET, O. �The tradeo�s of large scale learning�. In:

Advances in neural information processing systems, pp. 161�168, 2008.

[13] PAPADIMITRIOU, C. H. �Computational Complexity�. In: Encyclopedia of

Computer Science, p. 260�265, GBR, John Wiley and Sons Ltd., 2003.

ISBN: 0470864125.

[14] WERNER, S., DINIZ, P. S. R. �Set-membership a�ne projection algorithm�,

IEEE Signal Process. Lett., v. 8, n. 8, pp. 231�235, Aug. 2001. ISSN:

1070-9908. doi: 10.1109/97.935739.

[15] DINIZ, P. S. R., WERNER, S. �Set-membership binormalized data-reusing

LMS algorithms�, IEEE Trans. Signal Process., v. 51, n. 1, pp. 124�134,

Jan. 2003. ISSN: 1053-587X. doi: 10.1109/TSP.2002.806562.

[16] GALDINO, J. F., APOLINÁRIO, J. A., DE CAMPOS, M. L. R. �A set-

membership NLMS algorithm with time-varying error bound�. In: IEEE

Int. Symposium Circuits and Syst. (ISCS, pp. 4 pp.�280, May 2006. doi:

10.1109/ISCAS.2006.1692576.

[17] BERBERIDIS, D., KEKATOS, V., GIANNAKIS, G. B. �Online Censoring for

Large-Scale Regressions with Application to Streaming Big Data�, IEEE

Trans. Signal Process., v. 64, n. 15, pp. 3854�3867, Aug. 2016. ISSN:

1053-587X. doi: 10.1109/TSP.2016.2546225.

[18] WANG, Z., YU, Z., LING, Q., et al. �Distributed recursive least-squares

with data-adaptive censoring�. In: IEEE Int. Conf. Acoust. Speech Signal

Process. (ICASSP), pp. 5860�5864, March 2017. doi: 10.1109/ICASSP.

2017.7953280.

[19] DINIZ, P. S. R. �On Data-Selective Adaptive Filtering�, IEEE Trans. Signal

Process., v. 66, n. 16, pp. 4239�4252, Aug. 2018. ISSN: 1053-587X. doi:

10.1109/TSP.2018.2847657.

[20] TSINOS, C. G., DINIZ, P. S. R. �Data-Selective Lms-Newton And Lms-Quasi-

Newton Algorithms�. In: ICASSP 2019 - IEEE International Conference

85

on Acoustics, Speech and Signal Processing, pp. 4848�4852, Brighton, UK,

May 2019.

[21] DINIZ, P. S. R., MENDONÇA, M. O. K., FERREIRA, J. O., et al. �Data-

Selective Conjugate Gradient Algorithm�, Eusipco: European Signal

Processing Conference, pp. 707�711, 2018.

[22] GHADIKOLAEI, H. S., GHAUCH, H., FISCHIONE, C., et al. �Learning and

Data Selection in Big Datasets�, v. 97, pp. 2191�2200, 09�15 Jun 2019.

[23] COLEMAN, C., YEH, C., MUSSMANN, S., et al. �Selection Via Proxy:

E�cient Data Selection For Deep Learning�, CoRR, v. abs/1906.11829,

2019. Available at http://arxiv.org/abs/1906.11829.

[24] GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. The MIT

Press, 2016.

[25] HAYKIN, S. Adaptive Filter Theory. 4th ed. Upper Saddle River, NJ, Prentice

Hall, 2002.

[26] SAYED, A. Fundamentals of Adaptive Filtering. 1st ed. Hoboken, NJ, Wiley,

2003.

[27] LIU, W., PRINCIPE, J. C., HAYKIN, S. Kernel Adaptive Filtering: A

Comprehensive Introduction. 1st ed. Hoboken, NJ, Wiley Publishing,

2010.

[28] THEODORIDIS, S. Machine Learning: A Bayesian and Optimization

Perspective. 1st ed. Orlando, FL, USA, Academic Press, Inc., 2015.

[29] ANTONIOU, A., LU, W. S. Practical Optimization - Algorithms and

Engineering Applications. New York, NY, Springer, 2007.

[30] FLETCHER, R. Practical methods of optimization. 2nd ed. Cornwall, UK,

John Wiley & Sons, 2013.

[31] APOLINÁRIO, J. A., DE CAMPOS, M. L. R., BERNAL O, C. P. �The

constrained conjugate gradient algorithm�, IEEE Signal Processing

Letters, v. 7, n. 12, pp. 351�354, 2000.

[32] HULL, A. W., JENKINS, W. K. �Preconditioned conjugate gradient

methods for adaptive �ltering�. In: Circuits and Systems, 1991., IEEE

International Sympoisum on, pp. 540�543. IEEE, 1991.

86

http://arxiv.org/abs/1906.11829

[33] CHEN, Z., LI, H., RANGASWAMY, M. �Conjugate gradient adaptive matched

�lter�, IEEE Transactions on Aerospace and Electronic Systems, v. 51,

n. 1, pp. 178�191, 2015.

[34] WIDROW, B., MCCOOL, J. M., LARIMORE, M. G., et al. �Stationary

and nonstationary learning characteristics of the LMS adaptive �lters�,

Proceedings of the IEEE, v. 64, pp. 1151�1162, Aug 1976.

[35] WIDROW, B., WALACH, E. �On the statistical e�ciency of the LMS algorithm

with nonstationary inputs�, IEEE Trans. Information Theory, v. 30, n. 2,

pp. 211�221, Mar 1984. doi: 10.1109/TIT.1984.1056892.

[36] SLOCK, D. �On the Convergence Behavior of the LMS and the Normalized

LMS Algorithms�, Trans. Sig. Proc., v. 41, n. 9, pp. 2811�2825, Sep 1993.

doi: 10.1109/78.236504.

[37] ELEFTHERIOU, E., FALCONER, D. D. �Tracking properties and steady-state

performance of RLS adaptive �lter algorithms�, IEEE Trans. Acoustics,

Speech, and Signal Processing, v. 34, n. 5, pp. 1097�1110, Mar 1986. doi:

10.1109/TASSP.1986.1164950.

[38] SLOCK, D. T. M., KAILATH, T. �Numerically stable fast transversal �lters for

recursive least squares adaptive �ltering�, IEEE Trans. Signal Processing,

v. 39, n. 1, pp. 92�114, Jan 1991. doi: 10.1109/78.80769.

[39] BORAY, G. K., SRINATH, M. D. �Conjugate gradient techniques for adaptive

�ltering�, IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, v. 39, n. 1, pp. 1�10, January 1992.

[40] CHANG, P. S., WILLSON JR, A. N. �Analysis of conjugate gradient algorithms

for adaptive �ltering�, IEEE Transactions on Signal Processing, v. 48, n. 2,

pp. 409�418, Feb 2000.

[41] J. A. APOLINÁRIO, S. W., DINIZ, P. S. R. �Conjugate Gradient Algorithm

with Data Selective Updating�, 2001.

[42] MENDONCA, M. O. K., FERREIRA, J. O., TSINOS, C. G., et al. �On Fast

Converging Data-Selective Adaptive Filtering�, Algorithms, v. 12, n. 1,

pp. 4, Jan 2019. doi: 10.3390/a12010004.

[43] AL-BAALI, M. �Descent Property and Global Convergence of the Fletcher�

Reeves Method with Inexact Line Search�, IMA Journal of Numerical

Analysis, v. 5, Jan 1985. doi: 10.1093/imanum/5.1.121.

87

[44] PAPOULIS, A., PILLAI, S. U. Probability, random variables, and stochastic

processes. Tata McGraw-Hill Education, 2002.

[45] GRAFAREND, E. Linear and Nonlinear Models: Fixed E�ects, Random

E�ects, and Mixed Models. Springer, Jan 2006.

[46] FERREIRA, G. J. �Code Repository for Dissertation in GitHub�.

https://github.com/Jonathasof/Dissertation. Accessed: 2019-12.

[47] GOOGLE. �RE<C: Surface level wind data collection, Google Code, [Online]

�. http://code.google.com/p/google-rec-csp/. Accessed: 2018-11.

[48] SPIB. �Signal Processing Information Base, [Online]�.

http://spib.linse.ufsc.br/microwave.html. Accessed: 2018-11.

[49] SCHOLKOPF, B., SMOLA, A. J. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA,

USA, MIT Press, 2001. ISBN: 0262194759.

[50] MURPHY, K. P. Machine Learning: A Probabilistic Perspective. The MIT

Press, 2012. ISBN: 0262018020, 9780262018029.

[51] ZHANG, M., WANG, X., CHEN, X., et al. �The Kernel Conjugate Gradient

Algorithms�, IEEE Transactions on Signal Processing, v. 66, pp. 4377�

4387, Jun 2018. doi: 10.1109/TSP.2018.2853109.

[52] RATLIFF, N. D., BAGNELL, J. A. �Kernel Conjugate Gradient for Fast Kernel

Machines�. In: Proceedings of the 20th International Joint Conference on

Arti�cal Intelligence, IJCAI'07, pp. 1017�1022, San Francisco, CA, USA,

2007. Morgan Kaufmann Publishers Inc.

[53] BLANCHARD, G., KRÄMER, N. �Optimal Learning Rates for Kernel

Conjugate Gradient Regression�. In: Proceedings of the 23rd International

Conference on Neural Information Processing Systems - Volume 1,

NIPS'10, pp. 226�234, Vancouver, Canada, 2010. Curran Associates Inc.

[54] LIN, J., CEVHER, V. �Kernel Conjugate Gradient Methods with Random

Projections.� CoRR, v. abs/1811.01760, 2018.

[55] STONE, M. H. �Linear Transformations in Hilbert Space and their

Applications to Analysis�, COLLOQUIUM PUBLICATIONS (AMER

MATHEMATICAL SOC) (Book 15), v. 40, pp. A25�A26, Dec 1932. ISSN:

1436-5081.

88

[56] SANSONE, G. Orthogonal Functions. Dover Books on Mathematics. Dover,

1959. ISBN: 9780486667300.

[57] LIU, W., POKHAREL, P., PRINCIPE, J. �The Kernel Least-Mean-Square

Algorithm�, Trans. Sig. Proc., v. 56, n. 2, pp. 543�554, fev. 2008. ISSN:

1053-587X. doi: 10.1109/TSP.2007.907881.

[58] PARREIRA, W., CARLOS M. BERMUDEZ, J., RICHARD, C., et al.

�Stochastic Behavior Analysis of the Gaussian Kernel Least-Mean-Square

Algorithm�, IEEE Transactions on Signal Processing - TSP, v. 60,

pp. 4116 � 4119, Jun 2011. doi: 10.1109/ICASSP.2011.5947258.

[59] ENGEL, Y., MANNOR, S., MEIR, R. �The Kernel Recursive Least-squares

Algorithm�, Trans. Sig. Proc., v. 52, n. 8, pp. 2275�2285, ago. 2004. ISSN:

1053-587X. doi: 10.1109/TSP.2004.830985.

[60] LIU, W., PARK, I., WANG, Y., et al. �Extended Kernel Recursive Least

Squares Algorithm�, Trans. Sig. Proc., v. 57, n. 10, pp. 3801�3814, out.

2009. ISSN: 1053-587X. doi: 10.1109/TSP.2009.2022007.

[61] VAN VAERENBERGH, S., VIA, J., SANTAMANA, I. �A Sliding-Window

Kernel RLS Algorithm and Its Application to Nonlinear Channel

Identi�cation�, Acoustics, Speech, and Signal Processing, 1988. ICASSP-

88., 1988 International Conference on, v. 5, pp. V � V, Jun 2006. doi:

10.1109/ICASSP.2006.1661394.

[62] RICHARD, C., BERMUDEZ, J., HONEINE, P. �Online Prediction of Time

Series Data With Kernels�, Signal Processing, IEEE Transactions on,

v. 57, pp. 1058 � 1067, 04 2009. doi: 10.1109/TSP.2008.2009895.

[63] ARONSZAJN, N. �Theory of Reproducing Kernels�, Transactions of the

American Mathematical Society, v. 68, pp. 337�404, Mar 1950.

[64] BURGES, C. J. C. �A tutorial on support vector machines for pattern

recognition�, Data Mining and Knowledge Discovery, v. 2, pp. 121�167,

1998.

[65] SCHÖLKOPF, B., HERBRICH, R., SMOLA, A. J. A Generalized Representer

Theorem. COLT '01/EuroCOLT '01. London, UK, UK, Springer-Verlag,

2001. ISBN: 3-540-42343-5.

[66] PAIGE, C. C., SAUNDERS, M. A. �LSQR: An Algorithm for Sparse Linear

Equations and Sparse Least Squares�, ACM Trans. Math. Softw., v. 8,

n. 1, pp. 43�71, Mar 1982. ISSN: 0098-3500. doi: 10.1145/355984.355989.

89

[67] FLETCHER, R. Practical Methods of Optimization; (2Nd Ed.). New York,

NY, USA, Wiley-Interscience, 1987. ISBN: 0-471-91547-5.

[68] NOCEDAL, J., J. WRIGHT, S. Numerical Optimization. Springer Series, 01

2006.

[69] RICHARD, C., BERMUDEZ, J. C. M., HONEINE, P. �Online prediction of

time series data with kernels�, IEEE Transactions on Signal Processing,

v. 57, n. 3, pp. 1058�1067, 2008.

[70] SMALE, S., ZHOU, D.-X. �Estimating the approximation error in learning

theory�, Analysis and Applications, v. 1, n. 01, pp. 17�41, 2003.

[71] CHEN, B., ZHAO, S., ZHU, P., et al. �Quantized kernel least mean

square algorithm�, IEEE Transactions on Neural Networks and Learning

Systems, v. 23, n. 1, pp. 22�32, 2011.

[72] HONEINE, P. �Approximation errors of online sparci�cation criteria�, IEEE

Trans. Signal Process, v. 63, 2015.

[73] MCCULLOCH, W. S., PITTS, W. �A logical calculus of the ideas immanent

in nervous activity�, The bulletin of mathematical biophysics, v. 5, n. 4,

pp. 115�133, 1943.

[74] MINSKY, M., PAPERT, S. Perceptrons. Cambridge, MA, MIT Press, 1969.

[75] WEST, D. �Neural network credit scoring models�, Computers & Operations

Research, v. 27, n. 11-12, pp. 1131�1152, 2000.

[76] NOVIKOFF, A. B. On convergence proofs for perceptrons. Relatório técnico,

STANFORD RESEARCH INST MENLO PARK CA, 1963.

[77] GLOROT, X., BORDES, A., BENGIO, Y. �Deep sparse recti�er neural

networks�. In: Proceedings of the fourteenth international conference on

arti�cial intelligence and statistics, pp. 315�323, 2011.

[78] LECUN, Y., BOTTOU, L., ORR, G. B., et al. �E�cient BackProp.� In:

Montavon, G., Orr, G. B., Müller, K.-R. (Eds.), Neural Networks: Tricks

of the Trade (2nd ed.), v. 7700, Lecture Notes in Computer Science,

Springer, pp. 9�48, 2012. ISBN: 978-3-642-35288-1.

[79] RAMACHANDRAN, P., ZOPH, B., LE, Q. V. �Searching for Activation

Functions�, ArXiv, v. abs/1710.05941, 2017.

90

[80] SCHMIDHUBER, J. �Deep learning in neural networks: An overview�, Neural

networks, v. 61, pp. 85�117, 2015.

[81] HECHT-NIELSEN, R. �Theory of the backpropagation neural network�. In:

Neural networks for perception, Elsevier, pp. 65�93, 1992.

[82] RUDER, S. �An overview of gradient descent optimization algorithms�, ArXiv,

v. abs/1609.04747, 2016.

[83] C. DUCHI, J., HAZAN, E., SINGER, Y. �Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization�, Journal of Machine

Learning Research, v. 12, pp. 2121�2159, Jul 2011.

[84] ZEILER, M. D. �ADADELTA: an adaptive learning rate method�, arXiv

preprint arXiv:1212.5701, 2012.

[85] KINGMA, D., BA, J. �Adam: A Method for Stochastic Optimization�,

International Conference on Learning Representations, Dec 2014.

[86] BLUM, A. L., LANGLEY, P. �Selection of relevant features and examples in

machine learning�, Arti�cial intelligence, v. 97, n. 1-2, pp. 245�271, 1997.

[87] MACKAY, D. J. �Information-based objective functions for active data

selection�, Neural computation, v. 4, n. 4, pp. 590�604, Jul 1992.

[88] COHN, D. A., GHAHRAMANI, Z., JORDAN, M. I. �Active learning with

statistical models�, Journal of arti�cial intelligence research, v. 4, pp. 129�

145, Mar 1996.

[89] DHEERU, D., KARRA TANISKIDOU, E. �UCI Machine Learning

Repository�. 2017. Available at http://archive.ics.uci.edu/ml.

[90] HAMIDIEH, K. �A data-driven statistical model for predicting the critical

temperature of a superconductor�, Computational Materials Science,

v. 154, pp. 346�354, 2018.

[91] MASHABLE. �Site Mashable�. https://mashable.com/. Accessed: 2019-09.

[92] FERNANDES, K., VINAGRE, P., CORTEZ, P. �A proactive intelligent

decision support system for predicting the popularity of online news�. In:

Portuguese Conference on Arti�cial Intelligence, pp. 535�546. Springer,

2015.

[93] SINGH, K., SANDHU, R. K., KUMAR, D. �Comment Volume Prediction

Using Neural Networks and Decision Trees�. In: IEEE UKSim-AMSS

91

h

17th International Conference on Computer Modelling and Simulation,

UKSim2015 (UKSim2015), Cambridge, United Kingdom, mar 2015.

[94] KAGGLE. �FIFA 19 Complete Player dataset�.

https://www.kaggle.com/karangadiya/�fa19. Accessed: 2019-09.

[95] YANN LECUN, CORINNA CORTES, C. J. B. �MNIST dataset of handwritten

digit�. http://yann.lecun.com/exdb/mnist/. Accessed: 2019-09.

[96] OF STANDARDS, N. I., (NIST), T. �Emnist Letters dataset�.

https://www.nist.gov/node/1298471/emnist-dataset. Accessed: 2019-09.

[97] COHEN, G., AFSHAR, S., TAPSON, J., et al. �EMNIST: an extension of

MNIST to handwritten letters�, arXiv preprint arXiv:1702.05373, 2017.

[98] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., et al. �Dropout: A Simple

Way to Prevent Neural Networks from Over�tting�, J. Mach. Learn. Res.,

v. 15, n. 1, pp. 1929�1958, jan. 2014. ISSN: 1532-4435. Available at

http://dl.acm.org/citation.cfm?id=2627435.2670313.

[99] GOLUB, G. H., VAN LOAN, C. F. Matrix Computations. The Johns Hopkins

University Press, 1996.

92

h

Appendix A

Appendix

A.1 Dropout

Dropout is a stochastic technique to avoid the over�tting during the training

and provides a way of combining exponentially many di�erent neural network

architectures. The idea is based on dropping out nodes in the network, including

all its connections as it is showed in Figure A.1. In the standard case, the node is

retained with probability p (Bernoulli Distribution) independent of other nodes, that

is, their values are temporarily set to zero in each iteration. This process is applied

at each layer. Furthermore, the derivatives of the loss function are backpropagated

through the network.

(a) (b)

Figure A.1: (a) The neural network with two hidden layers and (b) Dropout applied
in the network producing a thinned net

At test procedure, it is unfeasible to average all combinations of many thinned

models. The solution is to use neural network without dropout but with a reduced

version of the trained weights. If a node is dropped with probability p during

training, the weights are multiplied by p at test as shown in Figure A.2.

93

Present with
probability p

w

(a)

Always
present

pw

(b)

Figure A.2: (a) The training node present in process with probability p and (b) The
test phase with node always present and weight multiplied by p.

A.2 Number of Flops

A �op is a �oating point operation [99]. There are several di�culties associated

with calculating a precise count of �oating points operations. The addition and

subtraction is always counted as a �op. The multiplication is usually counted as a

�op. The division and exponential are more complicated because we are instructed

to consider each one as a �op, but in some cases the values is de�ned as 4 �ops

for division and 8 for exponential (HPC community). In this text, we consider all

operations as a �op, including division and exponential.

We compute the number of �ops in two steps, for forward and back-propgation

algorithms. As example, we compute the number of �ops for a Neural Network with

4 layers (two hidden layers), where i denotes the number of nodes of the input layer,

j the number of nodes in the second layer, k the number of nodes in the third layer

and l the number of nodes in the output layer. The parameters are denoted as nep

(epoch), b (mini batch size), iter (iteration), Pup (probability of update).

At each iteration for a certain epoch, we have b training examples. In the forward

process, the following operations are performed from the layer to the next layer

Xl = (Wl)TYl−1,

Yl = [ones(1, b); f(Xl)].
(A.1)

From the �rst layer to the second layer, the number of �ops for a �rst operation,

product between two matrices W1 ∈ Ri×j and Y0 ∈ Ri×b, consist of jb inner

products between vectors of size i. This inner product involves i− 1 additions and

i multiplications. Then, the resulting number of �ops is (2i− 1)jb. The activation

function (ReLU) applied in second equation has 0 �ops. Then, we have (2i − 1)jb

�ops.

Using the same logic from the second layer to third layer, we have (2j−1)kb �ops.

While in the propagation from the third layer to last layer, the matrix multiplication

results in (2k− 1)lb �ops. In the last part, we obtain the estimated value in NN. In

regression problem the output activation function is linear resulting in 0 �ops. In

94

classi�cation problem, the softmax funtion has l − 1 additions, 1 division and l + 1

exponential for b training examples, resulting a total of (2l + 1)b.

Therefore, the total number of �ops for feedforward propagation depends on the

problem, for regression problem it is (2ij + 2jk + 2kl − j − k − l)b �ops and for

classi�cation problem it is (2ij + 2jk + 2kl + l + 1)b �ops.

In the back-propagation, the data selection is considered in the procedure of

counting the �ops. To not include the proposed method in process, simply set

probability of update Pup = 1. Starting from the last layer to third layer, we

compute the sensitivity vector in forth layer. To obtain ∆3 = Ŷ(t,i) − YL, it is

required l(Pupb) �ops. In the remainder layers, we compute the sensitive weights

from the vectors previously obtained. For example, from the third layer to second

layer, we have ∆2 = f ′(X2) ⊗ [W3∆3]o
2

1 . The number of �ops in the derivative

of activation function is zero. The multiplication matrix W3∆3 results in k(Pupb)

inner products that involves l− 1 additions and l multiplications. The element-wise

operation has k(Pupb) �ops. Then, the resulting number of �ops is 2lk(Pupb) in this

propagation. Finally, from second to �rst layer, we have the same procedure and

the number of �ops required is 2kj(Pupb).

The last step is the weight updating, for example from forth to third layer, we

have the update W3 = W3 − µ
b
Y2(∆3)T . The multiplication matrix results in a

total of (2(Pupb)−1)kl �ops, beyond the sum of the matrices, with a number of �ops

equal to kl. By summing the multiplication and addition, we end-up with 2(Pupb)kl

�ops. The same process is performed in third to second layer, 2(Pupb)jk, and second

to �rst layer, 2(Pupb)ij. Then, the total number of �ops in back-propagation is

2(Pupb)ij + 2(Pupb)jk + 2(Pupb)kl + 2kj(Pupb) + 2kl(Pupb) + l(Pupb)

= (Pupb)(2ij + 2jk + 2kl + 2kj + 2kl + l).
(A.2)

In the back-propagation, the number of �ops is a function of the probability of

update, reducing the computational cost.

95

	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	1.1 Why Do We Select Data?
	1.2 General Considerations
	1.3 Dissertation Goals
	1.4 Organization
	1.5 Notation

	2 Data Selection in Conjugate Gradient Algorithm
	2.1 Introduction to Adaptive Filtering
	2.2 Conjugate Gradient
	2.2.1 The Online Conjugate Gradient
	2.2.2 Problem Statement
	2.2.3 Simulation Results

	2.3 Concluding Remarks

	3 Data Selection in Kernel Conjugate Gradient Algorithm
	3.1 Kernel Conjugate Gradient
	3.1.1 Concepts of the Kernel Method
	3.1.2 Online Kernel Conjugate Gradient
	3.1.3 Simulation Results

	3.2 Concluding Remarks

	4 Data Selection in Neural Networks
	4.1 Introduction to Artificial Neural Networks
	4.1.1 Perceptron Learning
	4.1.2 Feed-Forward Multilayer Neural Network

	4.2 Formulation of the Modified Data Selection in NN
	4.3 Simulations
	4.3.1 Regression - Problem 1: Superconductivity Dataset
	4.3.2 Regression - Problem 2: Online News Popularity Dataset
	4.3.3 Regression - Problem 3: Facebook Comment Volume Dataset
	4.3.4 Regression - Problem 4: FIFA 19 Complete Player Dataset
	4.3.5 Classification - Problem 5: MNIST Handwritten Digit Recognition Dataset
	4.3.6 Classification - Problem 6: EMNIST Letters Dataset
	4.3.7 Problem 7: Deep Neural Network (Transcoding Time and MNIST Datasets)

	4.4 Concluding Remarks

	5 Conclusions
	5.1 Final Remarks
	5.2 Future Works

	Bibliography
	A Appendix
	A.1 Dropout
	A.2 Number of Flops

