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“Yesterday is history, tomorrow is

a mystery, and today is a gift...

that’s why they call it present.” -
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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

CONTROLE COM REALIMENTAÇÃO DE SAÍDA VIA OBSERVADOR DE ALTO
GANHO VARIÁVEL DE ROBÔ PARA TESTE DE PRÓTESES: UMA RELAÇÃO DE
COMPROMISSO ENTRE ACURÁCIA DE RASTREAMENTO E RUÍDO NO SINAL

DE CONTROLE

Ignácio de Azambuja Midosi Ricart

Março/2020

Orientador: Alessandro Jacoud Peixoto

Programa: Engenharia Elétrica

Este trabalho trata da modelagem e implementação de um controle e um observador
em um robô de testes para próteses simulado composto por quatro juntas: deslocamento
vertical do quadril, movimento de extensão e flexão do quadril, extensão e flexão do joelho
e movimento de dorsiflexão e plantarflexão do tornozelo. O modelo dinâmico completo
é apresentado e um modelo simplificado é utilizado na avaliação do controlador/obser-
vador. Inicialmente, um controlador com realimentação total de estados é implementado
utilizando torque computado e PID, após isso um observador the alto ganho (HGO) é
projetado para estimar os estados do dispositivo. Aqui é proposto uma implementação
de HGO para estimar a velocidade das juntas através de um observador com alto ganho
variante no tempo sintetizado a partir de sinais medidos e desenolvido para reduzir a
quantidade de ruı́do presente no sinal de controle dos motores e manter um erro de ras-
treamento aceitável. Simulações são realizadas para avaliar o desempenho entre utilizar
observador com alto ganho fixo ou o variável proposto. A análise de robustez do controle
em malha fechada é realizada através de simulações numéricas considerando a presença
de ruı́do e incerteza paramétrica.
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This work addresses the modeling, state estimation, and control of a robot/prosthe-
sis system with four joints: vertical hip prismatic joint, thigh, knee, and ankle rotational
joints. The full dynamic model is provided, and a simplified version is considered for
control/estimator evaluation. Initially, a full-state feedback scheme is implemented using
computed torque plus a PID controller, and then a high gain observer is designed to es-
timate the system states. We propose the implementation of a high gain observer (HGO)
to estimate the prosthesis joint velocities with a time-varying HGO gain synthesized from
measurable signals designed to reduce the amount of noise in the control effort while
keeping an acceptable tracking error transient performance. Simulations are conducted to
evaluate the performance using fixed HGO gain in comparison with the proposed variable
HGO approach, in the presence of noise and parametric uncertainties.
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Chapter 1

Introduction

This chapter shows relevant information found in the literature regarding the human gait
cycle, prosthesis technologies, control architectures, and observers for nonlinear systems.
Initially, phases and periods that form one gait cycle are presented, then prostheses and
their types are shown along with their pros and cons. As some kinds of prosthesis require
controllers, attention is also given to describing to the reader the control architectures and
laws implemented according to the literature, as well as the prosthetic velocity and ground
force reaction estimations and state observer’s techniques applied to nonlinear systems in
general. This chapter ends with the author’s motivation to develop this work and the main
objective of this Dissertation.

1.1 Human Gait Cycle

To better understand prosthesis usage and all the upcoming content, it is essential to under-
stand the main task that a prosthesis must perform: the walk/gait. Having this knowledge,
one may design hardware and control algorithms taking into consideration the mechanical
characteristics and details of the gait.

Walking is a natural way of moving our body from one place to another by performing
a sequence of movements from our limbs [1]. This series of actions is also known as gait
and has a customary rate of 80m/min. There are three main categorizations: whether there
is contact with the ground or not, the number of parts touching the ground, or the events’
functional meaning in a gait cycle.

When performing a gait cycle, one may refer to it as stride, which is a composition of
two steps. In the gait cycle, there is a period in which the foot is on the ground, called
stance phase, and another where the foot is in the air for limb advancement, also known as
swing phase. Both lower limbs alternate their roles between stance and swing. Table 1.1
(obtained from [1]) shows the contact duration from each of these periods within a gait,
where the stance accounts for 60% of the gait cycle, while 40% is the swing [1].
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Floor Contact Periods
Stance 60%

Initial Double Stance 10%
Single Limb Support 40%
Terminal Double Stance 10%

Swing 40%

Table 1.1: Duration from each period during a gait cycle. This values change according
to the person’s speed. Walking faster lengthens single stance and shortens the two double
stance intervals.

Floor Contact Periods
Stance 50%

Weight Acceptance 10%
Initial Contact 0-2%
Loading Response 0-10%

Single Limb Support 40%
Mid Stance 10-30%
Terminal Stance 30-50%

Pre-Swing + Swing 50%
Limb Advancement 50%

Pre-Swing 50-60%
Initial Swing 50-73%
Mid Swing 73-87%
Terminal Swing 87-100%

Table 1.2: Duration from each period during a gait cycle according to functional phases
of a gait cycle

Another way to categorize the gait phases is by identifying the number of parts touch-
ing the ground. In this approach, the stance involves periods in which the two feet are
on the ground (start and end of stance phase) and the part in which there is only one foot
in contact with the ground (single-limb support or single stance) [1]. While one limb is
in the single-limb support, the other is in the swing phase. Table 1.1 (obtained from [1])
illustrates the duration from each period in a gait cycle.

The other classification separates into eight functional phases from the gait cycle so
that the movement performs three basic tasks: weight acceptance, single limb support,
and limb advancement [1].

Weight acceptance involves the initial contact and the loading response phases. This
task is responsible for shock absorption, initial limb stabilization, and preservation of the
movement progression.

There are mid-stance and terminal stance in the single limb support task. During
this task, one limb is responsible for lifting the whole body weight. The progression
over the stationary foot along with leg and trunk stabilization happens during mid-stance.
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Then, the terminal stance phase keeps the movement progression of the body beyond the
supporting foot.

Finally, limb advancement encompasses the entire swing phase (pre, initial, mid, and
terminal swing). There is a preparatory phase that begins with the initial contact from
the opposite limb (contralateral foot) and ends with ipsilateral toe-off called pre-swing.
The ankle plantarflexion in this phase generates about 85% of the total energy generated
during the gait cycle [2].

Amputees can only perform the pre-swing phase properly when using an active pros-
thesis, as this requires net power injection. The literature describes the ankle joint re-
quirements to complete this phase adequately [1], which allows the swing phase to use
the whole body momentum. A direct consequence of a proper pre-swing stage is the in-
crease in gait efficiency, as the entire leg swing relies on a passive movement of letting
the leg free to move.

The initial swing begins when lifting the foot of the floor (via knee flexion) and ends
when the ipsilateral foot is opposite to the stance foot. Then, the mid-swing ends when
the limb is forward, and the tibia is vertical. The terminal swing ends with the leg set for
the stance phase, and then the foot strikes the floor.

All these phases compose one gait cycle, which is efficiently performed by healthy
bodies unconsciously. The human body uses minimal joint movements to optimize the
walking process and expand the minimum metabolic energy as possible.

There are studies to obtain this gait data using motion-capture systems [3][4]. With
this information, it is possible to evaluate human gait, assess, and treat individuals with
conditions affecting their ability to walk, improve a high-performance athlete’s technique.

According to [5], the root-mean-square (RMS) standard deviation over the stride is
1.5, 1.9, and 1.8 degrees in the ankle, knee, and at the hip, respectively. This data was
obtained after nine repeat trials of the same subject over three separate days. This data is
necessary in this dissertation to set “acceptable” RMS tracking errors, as these values are
usually hard to obtain in the literature. Despite performing tests with few subjects, these
results are used to evaluate prosthesis tracking performance [6][7].

A study made by [3] with 28 subjects running at three different speeds, gives some
useful information to this dissertation about desired contour conditions: (i) 150 Hz sam-
ple rate for kinematics acquisition, (ii) raw marker-trajectory data are filtered using a
fourth-order, low-pass Butterworth filter with a cut-off frequency of 10 Hz. Then the max-
imum angle from each joint (hip, knee, and ankle) movement (flexion/extension or plan-
tarflexion/dorsiflexion) is displayed in terms of the mean value and the standard deviation.
The lowest standard deviation is 2.49 degrees in the maximum ankle dorsiflexion angle.
With this information, it is possible to define the desired performance regarding tracking
and estimation implemented in the prosthesis. Other studies use root-mean-square-error
to evaluate algorithms and techniques performance in gait analysis [4] [8] [9]. The joints
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hip and knee extension/flexion obtained, and ankle plantarflexion/dorsiflexion, show an
average standard deviation of 12.9, 11.5, and 7.2 degrees, respectively. This data was
obtained with more than 100 subjects and using 150Hz acquisition rate. This information
may be useful for validating the reference signal and defining the desired performance.

1.2 Prosthesis Technologies

Due to vascular disease (54%), including diabetes and peripheral arterial disease, trauma
(45%), cancer (less than 2%), and several other reasons [10], lower limb amputations are
necessary. Nearly 2 million people are living with limb loss in the United States, and there
are more than 30 million worldwide [11]. Using prosthesis may be a way to allow them
to maintain their activities of daily livings (ADLs) and have the mobility partially/wholly
restored.

The lower limb amputation could be at the foot, including toes or only partially, at the
ankle (ankle disarticulation), below the knee (transtibial), at the patella (knee disarticu-
lation), above the knee (transfemoral) or at the hip (hip disarticulation). Depending on
which residual limb remains, mobility could be restored by using an adequate technical
solution.

The solution could be a prosthetic foot or, in a worst-case scenario, the combination
of prosthetic foot/ankle, shin/pylon, prosthetic knee, and a socket interfacing the residual
limb with the prosthetic leg. In some cases, it is also necessary a hip replacement beyond
the whole prosthetic leg.

There are three categories for currently available lower-limb prostheses: purely pas-
sive, semi-active, and active [12].

Purely passive prosthesis relies on locking mechanisms and hydraulic/pneumatic
cylinders with static damping parameters to enable a softer movement and contact with
the ground. They have a robust design and low up-front cost. However, they cannot gen-
erate net power and don’t adapt autonomously to the user’s changing needs. Due to their
simplicity, they also don’t provide sensory feedback regarding states of the limb and the
device [13].

Amputees using passive prostheses expend up to 60% more metabolic energy than
healthy subjects [14] and three times more hip power/torque in the affected side, pre-
sumably due to the lack of powered joints [15]. The passive mechanism works limiting
knee angular velocity in the early and the late swing phase [16] and also during weight
acceptance.

Semi-active prostheses manipulate the joint position by modifying the energy dissi-
pation properties according to the estimated current gait cycle and velocity. It changes
the damping effect parameter via hydraulic/pneumatic cylinders according to the device’s
sensors, such as knee flexion and extension angle or accelerometer [17] [18] [19], improv-
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ing the knee stability and adapting to different walking speeds [20]. This system requires
the use of microprocessors due to signal processing algorithms and the amount of data
gathered by sensors.

When realizing more complex tasks such as walking uphill, it is crucial to generate net
power in prosthetic joints through DC electrical motors, pneumatic or hydraulic actuators
[21], [22], [23]. The active prosthesis provides a way to accomplish these complex tasks
and also enhances performance. This improvement occurs due to a net power injection
in the ankle joint during the pre-swing phase; this allows a more efficient movement
progression and decreases the energy cost of walking and gait asymmetries.

The work in [2] presents the relevance of the ankle in a gait cycle and displays the
prosthetic ankle evolution, from passive to an active prosthesis. The author evaluates the
metabolic costs and biomechanical properties of the ankle prosthesis. Later he shows that,
by the time, pneumatically and electrically driven devices provided from 100 to 200 Nm
torque output and established an ankle range of motion of 30 degrees. The work then
concludes that active components are necessary due to high ankle moments in the late
stance phase and enhance the patient’s gait pattern while also decreasing the metabolic
energy expenditure.

Studies made in [2] and [23] about prosthesis technology evolution compares the pros
and cons. They point out that the main concerns regarding prostheses are safety and
seamless integration of human-device.

1.3 Prosthesis Controllers

Embedded systems are the core components under active prosthesis development. They
enable the amputee to perform the required ADLs via control algorithms that send infor-
mation to the actuators based on measured data from the user, device, or environment.
This section focus on ways to categorize the controllers implemented by the embedded
computers for a lower-limb prosthesis.

One way to categorize control is based on hierarchy [24][13], which resembles the
structure and functionality of the human central nervous systems. The controller archi-
tecture combines three layers: High, mid, and low level.

At a high level, the detection of locomotive intent occurs based on signals from the
user, device, and the environment. The mid-level controller translates the user’s motion
intention to a desired prosthesis’ state, which is used by the low-level layer to track this
desired state. It implements a control law that minimizes the error between the current
and the desired joint states.

The high-level control is responsible for detecting an activity intention, ideally without
the user’s conscious input, and switching between mid-level controllers to perform a task.
When executing cyclical/repetitive tasks, there are two ways to define/create the criteria:
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Hierarchical Controller

High Level
Perception Layer, Intention
Estimation

Mid Level
Translates intention to a desired
device state

Low Level
Implements a control law to
reduce error

Figure 1.1: Hierarchical Control Framework.

heuristic or automated. The heuristic approach requires hard-coded definitions of possible
gait modes and a set of rules to indicate gait mode transition. (i) It initially detects the
current system’s states, (ii) checks the possible gait mode transitions, (iii) evaluate the
rules set with the data acquired from user, device, and environment, (iv) and then changes
the current gait mode triggering mid-level controllers. The main methods used to identify
mode transitions heuristically are Finite State Machines (FSM)[25][26][27] and decision
trees[28]. These methods are simple to implement; however, defining the rules may be
tricky depending on the number of desired modes.

The automated approach is a way to avoid setting/defining manually the rules and
possible gait modes described in steps (ii) and (iii). The classifiers used in prosthesis
are Naive Bayes, Linear or Quadratic Discriminant Analysis, Gaussian Mixture Models,
Support Vector Machine, Dynamic Bayesian Networks, and Artificial Neural Networks
[13]. The rules used to trigger transitions could be based on foot angle change, indicating
a transition from level walking to stair ascent, or differences in ground reaction forces,
indicating a shift from walking to running. In addition to the device’s states, one may
also use physiological signals to compose the rules. This data from surface electromyo-
gram (EMG) could be used alone or combined with electromechanical states from the
prosthesis.

The drawback of automated rule-based is the effort of an adequately classified training
data and the general necessity of the user’s training data, which may be difficult or even
impossible to obtain.

The approaches so far do not use the physiological signal to control the prosthesis
directly. They only serve as a way to trigger gait mode transitions. The direct volitional
control allows the user to consciously modulate the input signal to the device, which is
useful on non-cyclical or irregular tasks such as walking in a crowd or on rough terrain
or execute non-locomotive tasks (e.g., leg repositioning). This high-level control may be
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confused with the mid-layer, but the main difference is that in this top layer, the output is
a mode/user intention, the lowest layer output is an error value between the desired and
current states.

Some critical aspects of the high-level controller are classification latency and mis-
classification. Sometimes this layer may only trigger the mid-level controller on initial
gait phases, and this may happen during the transition from walking and descending a
stair, which could result in an accident. When developing this controller, it is important to
take into account the time necessary to perceive a gait mode transition. Another problem
is the misclassification. However, this situation may be handled to the mid-level layer,
which will somehow indicate that the states are not matching with the desired intention.

The second controller layer is responsible for converting an estimated locomotive in-
tent to a desired device state for the low-level controller to track. As the low-level con-
troller handles one joint actuation, the mid-layer is also responsible for coordinating the
control between multiple actuated joints. Sometimes misclassification from the high-level
controller may occur, so it is essential also to indicate when the errors are with a different
profile than the expected.

In this layer, the control implementations may depend or not on gait information.
Thus, they are categorized as non-phase or phase-based. Complementary Limb Motion
Estimation (CLME) is one approach that does not depend on gait information. It infers the
intended motion based on the residual limb movements, such as those from arms, upper
body, and the residual leg limb. It then maps this to a reference trajectory, which is used
by the low-level controller.

Among the phase-based techniques, the Finite State Controller (FSC) is the most used.
It decomposes the gait cycle into an arbitrary number of distinct phases, such as the ones
described in Section 1.1 [29][30]. The information used to differentiate between aspects
usually is based on foot contact event, and joint velocities [13], but many others could
be deployed. Each phase has its control parameters and objectives (e.g., track position
or impedance). In most of the referenced FSCs implementations, these parameters are
set heuristically and user-specific, meaning that each patient should pass through experi-
ments to fine-tune its device [13]. Thankfully, techniques to overcome this step have been
proposed by automatically setting these parameters[30].

Another approach, called Normalized Trajectory Control, involves adapting a nonspe-
cific joint trajectory to match the user’s pace and anthropomorphic characteristics. This
trajectory is the result of previously recorded paths from many human gait cycles. It may
also be referred to as “dynamic pace control” and uses Fast-Fourier Transform (FFT)
coefficients to fit the trajectory. The output from this control is usually a desired joint
position.

The echo control is also a phase-based controller. This method uses a master-slave
principle, in which the abled leg is a master that has to be followed by the slave (prosthetic
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leg). This control assumes movement symmetry, and sometimes a time delay is necessary
to reproduce the abled leg motion. When executing a sit-to-stand sequence, the slave
must follow the master instantly. When the system is set to some other modes (e.g., as
”walk”), the slave must perform a delayed motion from the master’s. Some drawbacks of
this method are that the slave also reproduces undesired movements from the master. The
echo control is also a problem for the high-level control because it can only change the
gait mode at the beginning of the stride.

All the algorithms implemented by the mid-level controller output a device state,
which has to be tracked by the low-level controller. This state may be comprised of a
combination of joint position, velocities, and torques. Controlling the position or speed
of the device shows great performance when the desired trajectory and perturbations/in-
teraction forces are well characterized. Torque control is possible when the output me-
chanical impedance of the actuator is low relative to the load. This method is useful when
handling interaction forces, which causes a more natural behavior between the prosthesis
and the user.

Most of the works regarding prosthesis use impedance control for knee and ankle
joints, while using position control for the hip joint. When using FSC in a mid-level
controller, one may implement different low-level controls in the same joint, depending
on the gait phase [29].

Another way to categorize control is to divide how the embedded microprocessor
interacts with the user’s will (in the form of neural signal) [23]. This approach suggests
two control classes: Computationally intrinsic control (CIC) and Extrinsic interactive
control (IEC).

CIC stands for a microprocessor system with its sensors and actuators and not in-
teracting with the amputee directly. Therefore, any inconsistency between the desired
user movement and the prosthesis may lead to a fall of something worst. Devices imple-
menting CIC are then responsible for generating the desired gait pattern and also identify
the current user’s state, such as walking, running, or climbing upstairs to provide safety
during ADLs. [23][31][6]

Some examples of computationally intrinsic control are muscle reflex control, finite
state machine impedance control [21][31][25], phase plane control, echo control and com-
plementary limb motion estimation [32].

IEC relies on human efferent signal measurements such as muscle activities acquired
via EMG sensors, pattern recognition systems, and cortical or peripheral nerve feedback.
This control model should also provide feedback information to the brain via afferent
communication (haptic).

Some examples of IEC are control based on residual joints, segments, or organs such
as EMG or surface EMG based control, neuromuscular mechanism fusion, and agonist-
antagonist myoneural interface signal control [33].
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Researches from [23] also showed that most active and semi-active prostheses, by the
time, implemented computationally intrinsic control. They rely on measurements mainly
provided by rotary encoders, force sensors, and strain gauges. The actuators were mostly
hydraulic valves, pneumatic pistons, or electromechanical actuators (DC motor).

1.4 Prosthetic Velocity and Ground Force Reaction Esti-
mations

In general, numerical approaches for velocity estimations are implemented via state ob-
servers or derivative filters, like a lead filter. However, the noise attenuation is a well-
known challenge in those cases. In this direction, state estimation using Kalman Fil-
ter, Sliding Mode Observer (SMO), and High-gain Observer (HGO) are promising ap-
proaches.

The Kalman Filter approaches consider output noise e have many works regarding
prosthetic tracking performance. Researches from [6] and [9] designed Extended Kalman
Filters (EKF) and Unscented Kalman Filters (UKF) to estimate joint position, velocities
and ground reaction forces (GRF). These estimations are used in a test robot for pros-
thesis parameter identification and also for real prosthesis control. Later, [34] compared
four robust model reference adaptive impedance (RMAI) observer/controllers. For this
work, GRFs estimations were obtained via SMO, Adaptive observer, EKF, and UKF in
the presence of parametric uncertainty (30%).

In the absence of measurement noise, a high-gain observer is known as a robust tech-
nique for estimating derivatives of the output signal, while achieving fast convergence
[35]. The study of HGO in nonlinear feedback control started in the late 1980s with
works from [36], [37], and [38]. [39] started one of the study schools, which then covered
a broad class of nonlinear systems and obtained global results under global growth condi-
tions. These investigations propose fixed HGO gains for state estimation in the presence
of parametric error. However, no consideration of noise is made.

The HGO peaking phenomenon was initially showed in [40] and [41]. Later [42]
brought attention to the fact that the peaking could cause a finite escape time. The pro-
posed solution was to use a globally bounded function of the state estimates as control.
This control saturates during the peaking phenomenon, and as this dynamic is faster than
the plants, the actual observed stated would still be closer to its initial value. In [43],
an adaptive output feedback controller for rigid robots using HGO was proposed. It was
possible to recover the performance achieved under state feedback control asymptotically,
while also overcoming the peaking phenomenon using the saturation on the torque inputs.

Output-feedback control strategies using HGOs [44] represent an important design
class, in particular, the schemes based on time-varying techniques (HGO with variable
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gain) [45], [46], [47] ,[48], [49]. In [50], [51], an output-feedback sliding-mode control
design has been proposed for arbitrary relative degree uncertain systems, where the class
of plants encompasses time-varying minimum-phase nonlinear plants, affine in control,
transformable to a normal form and for which a norm state estimator can be implemented.
The main objective in [50] was to use a dynamic observer gain in order to obtain global
results without invoking global Lipschitz-like restrictions.

The problem of measurement noise is addressed by some works that also propose
HGO variable gains. A work [52] showed that one might decrease steady-state estimation
error using a high gain to attenuate the effects o modeling uncertainty. However, the error
also has a component due to measurement noise, which is amplified when increasing
the observer gain. One approach to overcome this trade-off constraint was to design a
nonlinear gain structure with different gains during transient and steady-state response
[53].

In [52], a switched observer gain technique was proposed. The idea is to use a high
gain when the estimation error is mostly increasing the observation accuracy. However,
it is susceptible to more significant measurement noise errors. When dealing with low
output error, the gain switches to a smaller value to balance the error. The problem of
measurement noise on a discretized system composed by controller and HGO has also
already been addressed [54].

Despite this researches about the trade-off constraints, [55] confirmed that this sort
of compromise does not exist when the main goal is the system tracking accuracy. The
results were verified for linear systems; an analysis in nonlinear ones was left as future
work.

1.5 Motivation

Moved by research conducted at Ohio State University regarding prosthesis [31], this
work started as a way to implement in a simulated environment the dynamics and control
of a device, which always was of great interest to the author, a prosthesis. The author
used results by Dan Simon as a guideline through his research. By the time the solution
was a three degree-of-freedom prosthesis test robot. This system is useful to evaluate and
compare prosthesis prototypes because it has improved repeatability when compared to
human trials, and embedding sensors is also easier than in human trials. This method may
accelerate the development of new prosthesis concepts and control algorithms [56].

The test robot depicted in Figure 1.2 is composed of a prismatic joint emulating ver-
tical hip displacement, a revolute joint serving as hip flexion/extension joint, and a trans-
femoral prosthesis attached to it [56]. In [56], a robust controller for motion tracking was
developed and compared with a decoupled sliding mode controller. The control achieved
a good tracking of hip vertical displacement (1.75 mm of root-mean-square-error) and hip
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Figure 1.2: Motivational example.

Figure 1.3: Test robot parameters used for simulations and experiments in Cleveland.

flexion/extension (2.6 deg of RMSE). Then, works regarding the position, velocity, and
ground reaction force estimations were done considering a different number of sensors
(from 4 to 2) [6][9]. In these works, the estimation converges to the true states before
50ms and shows an RMS estimation error of 0.003m, 0.002 rad, 0.003 rad, and 0.005 rad
for hip, thigh, knee, and ankle joints respectively.

Later, in [7], they compared and tested two robust model reference adaptive
impedance controllers for a three degrees-of-freedom (3DOF) powered prosthesis/test
robot. The control magnitudes were similar to abled-bodied averaged hip force (-800
to 200 N), thigh torque (-50 to 100 Nm), and knee torque (-50 to 50 N.m) [5][57][58].
Figure 1.3 shows experimental parameters from [7].

A solution using a high gain observer is proposed in this work to simulate the test robot
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and add a contribution to the research community. This designed observer gain deals with
effort noise measurement while trying to assure an acceptable tracking performance. This
method is an alternative to a Kalman Filter approach, which does not explicitly handles
noise in the effort signal.

1.6 Objective

In this thesis, considering that a robot/prosthesis system has parametric uncertainties and
angle measurement is subject to noise, a time-varying HGO design is proposed, similar to
[50]. This variable gain approach is different from most of the existing techniques, where
the HGO gain is updated either solving a Riccati equation [45][59][60] or via functions
based on measurable signals and norm domination techniques [48], [59], [61] and [50].

While estimating in real-time the noise energy presented in the control effort, an adap-
tation law changes the observer gain to achieve an acceptable trade-off between control
signal noise and tracking performance. It is important to note that, although global results
are not pursued, the proposed technique is easily applicable to practical scenarios, given
that bounds for the system states are known a priori.

Although the literature uses mainly impedance control in low-level control law, a
proportional-integral-derivative (PID) conventional control with feedback linearization is
developed in order to make a robotic prosthetic leg follow the desired walking pattern.
The trajectory was obtained from human gait analysis and could be seen as a normalized
trajectory control in the mid-level.
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Figure 1.4: Coordinate frames used to represent the prosthesis model and calculate kine-
matics and dynamics along the sagittal plane.
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The proposed approach is verified in a simulation environment with a 4-link
robot/prosthesis system (PRRR), with parameters extracted from [31] and motion lim-
ited to the sagittal plane, as depicted in Fig. 1.4.

1.7 Contributions

Motivated by prosthetic technologies, this work tried to simulate a prosthetic robot dy-
namic in a closed-loop system considering the presence of parametric uncertainties and
noise perturbation. Because of that, the important contributions presented in this thesis
are:

1. A prosthesis simplified model developed and validated using Recursive Newton
Euler and Lagrange;

2. A realistic tuning of PID controller for prosthetic control in the presence of para-
metric uncertainties and noise;

3. The main contribution is the design of a variable high gain observer, from a practical
point of view, as a function of the tracking error and the amount of noise in the
control effort. Leading to a publication [62].

1.8 Notation and Terminology

The 2-norm (Euclidean) of a vector x and the corresponding induced norm of a matrix A

are denoted by |x| and |A|, respectively. The symbol λ [A] denotes the spectrum of A and
λm[A] =−maxi{Re{λ [A]}}.

The L∞e norm of a signal x(t)∈ IRn is defined as ‖xt‖ :=sup0≤τ≤t |x(τ)|.
The symbol ”s” represents either the Laplace variable or the differential operator

”d/dt”, according to the context.
As in [63] the output y of a linear time invariant (LTI) system with transfer function

H(s) and input u is given by y=H(s)u. Convolution operations h(t)∗u(t), with h(t) being
the impulse response from H(s), will be eventually written, for simplicity, as H(s)∗u.

Classes of K ,K∞ functions are defined according to [64, p. 144]. ISS, OSS and
IOSS mean Input-State-Stable (or Stability), Output-State-Stable (or Stability) and Input-
Output-State-Stable, respectively [65].

The symbol π denotes class-K L functions. Eventually, we denote by π(t) any ex-
ponentially decreasing signal, i.e., a signal satisfying |π(t)| ≤Π(t), where Π(t) := Re−λ t ,
∀t, for some scalars R,λ > 0.
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Chapter 2

Prosthesis Modelling and Problem
Formulation

In this work, the considered prosthesis is a robot manipulator (a PRRR) kinematic chain
composed of four actuated joints and an attached foot as end-effector. The first two joints
correspond to the hip vertical displacement and flexion/extension, respectively. The two
subsequent represent to the knee and ankle joints.

The hip vertical displacement occurs along an axis perpendicular to the ground. It
refers to an inertial base, instead of being modeled as the obliquity between one anterior
superior iliac spine and the other. The first joint is a prismatic joint (linear actuator), while
the others are revolute joints. For simplicity, the whole system analysis occurs only in the
sagittal plane.

The simulation scenario is composed by a four-link suspended prosthetic leg with
sensors, a controller, and a reference signal generator. There is no contact with the ground,
which can cause divergence from the force/torque input signal found in the literature.

The next section formulates the problem that is addressed to the control. It considers
what data is necessary and available to fulfill the required task.

This chapter presents a prosthesis model considering the plant dynamics and later pro-
pose a simplified model, which is used throughout this work. The last section addresses
the problem formulation.

2.1 System Model

The dynamics of the prosthetic system is obtained via Lagrange formulation applied to a
4-link rigid body robot with prismatic-revolute-revolute-revolute (PRRR) configuration.
Following the notation in [31], [66] and [6], the dynamic equation is given by:

D(q)q̈+C(q, q̇)q̇+B(q, q̇)+P(q̇)+ JT
e Fe +G(q) = Fa , (2.1)
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where q represents the vector of joints positions (q1 represents the hip vertical displace-
ment, q2 is the thigh angle, q3 is the knee angle and q4 represents ankle angle), D(q) is the
inertia matrix, C(q, q̇) is a matrix accounting for centripetal and Coriolis effects, B(q, q̇)

is the joints damper nonlinear matrix, Je is the kinematic Jacobian relative to the point of
application of external forces Fe, G(q) is the vector of gravitational forces, and Fa is the
torque/force produced by the actuators. The term P(q̇) explicitly represents the Coulomb
friction as in [67]. Note that, inertial and frictional effects in the actuators can be included
in this model.

To establish a basis for dynamic model derivations and to verify the leg geometry
during simulations, the set of reference frames used for forward kinematics problems are
the same as the ones assigned in Fig. 1.4 [31].

The analytical Lagrange approach is known for not being computationally efficient
when calculating inertia D(q), Coriolis C(q, q̇) and gravity G(q) terms [68]. Because of
that, the standard Newton-Euler approach has been implemented in simulation environ-
ment with the plant parameters extracted from [31], [6] and [66].

The matrix/vector terms from inertia D(q), Coriolis C(q, q̇) and gravity G(q) are given
as functions of q, q̇ and Θ.

In [68], the Lagrangian formulation is explained, and how D(q), C(q, q̇) and G(q) are
obtained. For implementation purposes, some plant parameters are separated according
to the results obtained in the previous matrices. These terms are represented inside the
vector Θ, which is given by.

Θ1 =m1 +m2 +m3 +m4

Θ2 =c2m2 + l2m3 + l2m4

Θ3 =c4m4

Θ4 =c3m3 + l3m4

Θ5 =I2z + I3z + I4z + c2
2m2 + c2

3m3 + c2
4m4 + l2

2m3 + l2
2m4 + l2

3m4

Θ6 =c4l2m4

Θ7 =c3l2m3 + c2l3m4

Θ8 =c4l3m4

Θ9 =c2
3m3 + c2

4m4 + l2
3m4 + I3z + I4z

Θ10 =c2
4m4 + I4z

Then D(q), C(q, q̇) and G(q) are given by:
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D(1,1) =Θ1

D(1,2) =Θ2cos(q2)+Θ3cos(q2 +q3 +q4)+Θ4cos(q2 +q3)

D(1,3) =Θ3cos(q2 +q3 +q4)+Θ4cos(q2 +q3)

D(1,4) =Θ3cos(q2 +q3 +q4)

D(2,1) =D(1,2)

D(2,2) =Θ5 +2Θ6cos(q3 +q4)+2Θ7cos(q3)+2Θ8cos(q4)

D(2,3) =Θ9 +Θ7cos(q3)+2Θ8cos(q4)+Θ6cos(q3 +q4)

D(2,4) =Θ10 +Θ6cos(q3 +q4)+Θ8cos(q4)

D(3,1) =D(1,3)

D(3,2) =D(2,3)

D(3,3) =Θ9 +2Θ8cos(q4)

D(3,4) =Θ10 +Θ8cos(q4)

D(4,1) =D(1,4)

D(4,2) =D(2,4)

D(4,3) =D(3,4)

D(4,4) =Θ10
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C(1,1) =0

C(1,2) =− q̇3(Θ3sin(q2 +q3 +q4)+Θ4sin(q2 +q3))

− q̇2(Θ2sin(q2)+Θ3sin(q2 +q3 +q4)+Θ4sin(q2 +q3)

− q̇4Θ3sin(q2 +q3 +q4)

C(1,3) =− q̇2(Θ3sin(q2 +q3 +q4)+Θ4sin(q2 +q3))

− q̇3(Θ3sin(q2 +q3 +q4)+Θ4sin(q2 +q3)

− q̇4Θ3sin(q2 +q3 +q4)

C(1,4) =− q̇2Θ3sin(q2 +q3 +q4)

− q̇3Θ3sin(q2 +q3 +q4)

− q̇4Θ3sin(q2 +q3 +q4)

C(2,1) =0

C(2,2) =− q̇3(Θ6sin(q3 +q4)+Θ7sin(q3))

− q̇4(Θ6sin(q3 +q4)+Θ8sin(q4))

C(2,3) =− q̇2(Θ6sin(q3 +q4)+Θ7sin(q3))

− q̇3(Θ6sin(q3 +q4)+Θ7sin(q3))

− q̇4(Θ6sin(q3 +q4)+Θ8sin(q4))

C(2,4) =− q̇2(Θ6sin(q3 +q4)+Θ8sin(q4))

− q̇3(Θ6sin(q3 +q4)+Θ8sin(q4))

− q̇4(Θ6sin(q3 +q4)+Θ8sin(q4))

C(3,1) =0

C(3,2) =q̇2(Θ6sin(q3 +q4)+Θ7sin(q3))

− q̇4(Θ8sin(q4))

C(3,3) =− q̇4(Θ8sin(q4))

C(3,4) =− q̇2(Θ8sin(q4))

− q̇3(Θ8sin(q4))

− q̇4(Θ8sin(q4))

C(4,1) =0

C(4,2) =q̇2(Θ6sin(q3 +q4)+Θ8sin(q4))

+q̇3(Θ8sin(q4))

C(4,3) =q̇2(Θ8sin(q4))

+q̇3(Θ8sin(q4))

C(4,4) =0
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G(1) =−gΘ1

G(2) =−g(Θ2cos(q2)+Θ3cos(q2 +q3 +q4)+Θ4cos(q2 +q3))

G(3) =−g(Θ3cos(q2 +q3 +q4)+Θ4cos(q2 +q3))

G(4) =−gΘ3cos(q2 +q3 +q4)

2.1.1 A Simplified Model

In order to illustrate the observer design proposed in this work, consider a simplified
version of the machine/prosthesis system (2.2) where no external forces are considered
(Fe ≡ 0), the specific leg prosthesis damping matrix is disregarded (B(q, q̇) ≡ 0) and the
Coulomb friction is neglected (P(q̇) ≡ 0). In this case, the machine/prosthesis system is
described by:

D(q)q̈+C(q, q̇)q̇+G(q) = Fa . (2.2)

Where D(q),C(q, q̇) and G(q) are supposed to be uncertain, but the corresponding nomi-
nal matrices Dn(q),Cn(q, q̇) and Gn(q) are assumed to be known. In particular, the inertia
matrix D(q) which is invertible, since D(q) = DT (q) is strictly positive defined.

Introducing the variables x1 := q ∈ IR4 and x2 := q̇ ∈ IR4, the model (2.2) can be
rewritten in the state-space form as:

ẋ1 = x2 ,

ẋ2 = kp(x, t) [u+d(x, t)] , u := Fa ∈ IR4×1 ,

y = x1 ,

(2.3)

or, equivalently,

ẋ = Aρx+Bρkp(x, t)[u+d(x, t)] ,

y = Cρx , (2.4)

where x =
[

x1 x2

]T
is the state vector, kp(x, t) = D(x1)

−1 ∈ IR4×4, d(x, t) :=

−C(x1,x2)x2− g(x1) ∈ IR4×1, Cρ =
[

I4×4 04×4

]
∈ IR4×8, and the pair (Aρ ,Bρ) is in

Brunovskys canonical controllable form:

Aρ =

[
04×4 I4×4

04×4 04×4

]
∈ IR8×8 , (2.5)

and
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Bρ =
[

04×4 I4×4

]T
∈ IR8×4 . (2.6)

For each solution of (2.4) there exists a maximal time interval of definition given by
[0, tM), where tM may be finite or infinite. Thus, finite-time escape is not precluded, a

priori.

Prosthesis Parameters and Simulation
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Figure 2.1: Plant model comparison between Recursive Newton-Euler and Lagrange ap-
proach for hip vertical displacement joint.
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Figure 2.2: Plant model comparison between Recursive Newton-Euler and Lagrange ap-
proach for hip flexion/extension.
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Figure 2.3: Plant model comparison between Recursive Newton-Euler and Lagrange ap-
proach for knee flexion/extension.
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Figure 2.4: Plant model comparison between Recursive Newton-Euler and Lagrange ap-
proach ankle plantarflexion/dorsiflexion.
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The Figures 2.1-2.4 illustrates that both Lagrangian formulation and the Recursive
Newton-Euler approach present close joint torques. However, there are some differences
which produce different results as depicted in Figure 2.3. In this simulation, the system
is in a closed-loop with PID and computed torque controller, responsible for cancelling
non-linearities. Additionally ,the prostheses follows a reference trajectory.

The Lagrangian formulation follows (2.2) and the matrices are given by the terms
mentioned earlier in this chapter. The Recursive Newton-Euler approach calculates a
resulting plant torque.

Parameter Value Unit
m1 21.29 Kg
m2 8.57 Kg
m3 2.29 Kg
m4 1 Kg
I1 0 Kg-m2

I2 0.435 Kg-m2

I3 0.062 Kg-m2

I4 0.018 Kg-m2

l1 0 m
l2 0.5 m
l3 0.4 m
l4 0.1 m
c1 0 m
c2 0.25 m
c3 0.2 m
c4 0.05 m
g 9.81 m/s2

Table 2.1: Parameters from prosthetic leg used in simulation.

Joint Axis
h1 z
h2 -y
h3 -y
h4 -y

Table 2.2: Joint axis in prosthesis model.

The prosthesis parameters necessary to calculate the rigid body dynamics are shown
in Table 2.1. They are (i) link mass mi, (ii) inertia Ii in rotation axis, (iii) link length li,
(iv) link center of gravity ci , and (v) rotation axis hi. Table 2.1 shows the parameters’
values and Figure 2.5 shows the simulated implementation of the robot.
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Figure 2.5: Robotic model plant diagram used in simulation.

2.2 Problem Formulation

The control objective is to design a control signal using only output information (only
the joints position q) which drives the tracking error to zero or to a small vicinity of zero
(practical tracking), while assuring boundedness of all closed-loop signals. The tracking
error is defined as

e(t) := qd−q = qd− x1 (2.7)

where the last equality comes from the plant state representation (2.3)

Figure 2.6: Model reference block implementation in simulation environment.

The reference signal qd is a bounded time series signal obtained from a data set of
healthy people walking on level ground acquired for human gait analysis [69]. However,
the joint angles have a little offset compared to a normative gait curve from Brazilian
subjects. During the simulation, hard-coded gains add a compensating offset to overcome
this problem, as depicted in Fig. 2.6.

Another problem arises from the obtained data; the start and end joint angles don’t
match. In the case of reproducing movements with more than one gait cycle, there would
be a discontinuous value between the end of one gait and the start of the next. To overcome
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this problem, a moving average filter is added to the system.

Figure 2.7: Human gait spectrum according for each joint.

The data obtained from human gait analysis usually have an acquisition sample rate
of 100Hz, and most human gait spectrum information is below 5Hz, according to Fig.
2.7. This data may be valuable when designing a solution to filter measurement noise.
For example, in [3], the raw marker-trajectory data and GRF data were filtered using a
fourth-order, low-pass Butterworth filter with a cut-off frequency of 10 Hz.
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Figure 2.8: Reference hip joint signal evaluation, according to normalized data obtained
from Biocinetica.
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Figure 2.9: Reference knee joint signal evaluation, according to normalized data obtained
from Biocinetica.
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Figure 2.10: Reference ankle joint signal evaluation, according to normalized data ob-
tained from Biocinetica.
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Figures 2.8, 2.9, and 2.10 show the results from the signal conditioning. The blue
signal represents a patient or an average from patients extracted from [69], and red and
yellow set the normative boundaries from human gait.

For this work, a filter (also referred to as model reference) has been designed to
provide the reference trajectory as a filtered version of the conditioned human gait angles
qd from [69], and also the time-varying derivatives q̇d and q̈d . These derivatives help
the control law to achieve better performance in the PID control. Figure 2.11 depicts the
raw signal along with the filter’s output. The difference between them is a delay in every
joint, which wouldn’t compromise the human gait performance. This filter is obtained
implementing the following transfer function:

H(s) =
ω2

n
s2 +2ξ ωn +ω2

n
, (2.8)

which is also illustrated as a block diagram in Fig. 2.6. The parameters used are:
ωn = 40rad/s and ξ = 0.7.
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Figure 2.11: Reference signal and filtered reference signal.

The next sections focus on the controller design to achieve a low tracking error and
its implementations. The first approach is the state feedback control, where all necessary
states are available.

The control via state feedback is feasible in ideal cases where all the required sensors
are present in the system, and thus all states are available for the controller as system
output. In the present case, this means a prosthetic leg with rotary/linear encoders and
tachometers. They are responsible for acquiring joint displacement and joint velocities,
respectively. Initially, all measurements are used without the presence of noise and para-
metric uncertainties. In another section, these perturbations are added to the system to
compare the tracking efficiency.
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Later, another scenario is presented, where only some measurements are available and
state estimations are necessary. This means that the 4DOF robots/prosthesis system would
encompass rotary/linear encoders, for position measurements, and an observer calculates
the joint velocities. In addition, noise and parametric uncertainties are also considered.

We propose an scheme to estimate the prosthesis velocity based on a time-varying
observer gain synthesized from measurable signals. It is designed to reduce the amount
of noise in the control effort while keeping an acceptable tracking error transient perfor-
mance. Numerical simulations analyze the robustness of the closed-loop control.
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Chapter 3

State Feedback Control

In an active prosthesis, the embedded system is responsible for using sensors measure-
ments and a tracking objective to execute a joint control. The tracking could be of an
impedance profile, a torque profile, or a joint position. This signal depends on the mid-
level control implemented on the prosthesis, and in the present case, the reference signal
is a set of joint positions, which are tracked by the controller.

This chapter presents the proportional-integral-derivative controller using computed
torque, and feed-forward to control the 4DOF robot. Additionally, all the plant states are
available as outputs.

The objective of the controller, in this chapter, is to track realistic motion profiles qd(t)

provided by the second-order filter (2.8). Knowing that all required sensors are present,
and thus, all the required states are available, in a model given as:

ẋ1 = x2 , (3.1a)

ẋ2 = kp(x, t) [u+d(x, t)] , u := Fa ∈ IR4×1 , (3.1b)

y = x1 . (3.1c)

where kp(x, t) = D(x1)
−1 ∈ IR4×4, d(x, t) :=−C(x1,x2)x2−G(x1) ∈ IR4×1, and Cρ =[

I4×4 04×4

]
∈ IR4×8.

3.1 Computed Torque with PID Feedback Components
(CTPID)

3.1.1 PID Control

PID control theory is one of the most basic and yet extensively discussed topics in control
literature, and PID controllers are the most common type of controller used in industry.
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They are suitable for solving a great variety of control problems, even for controlling
certain classes of non-linear systems.

The motivation for testing PID control comes from the fact that the inherent non-
linearities in a system’s dynamic equation such as a robot manipulator can be viewed as
input disturbances in an equivalent linear dynamic model in the joint space.

This type of decentralized control is specially suited for low speed/acceleration oper-
ations and for manipulators equipped with high reduction ratio gears [68], because high
speeds/accelerations and low reduction ratio gears increase the amplitude of the signals
associated to the non-linearities of the system.

Taking the input u of the system, the general PID control law can be written as:

u = Kpe(t)+Kd ė(t)+Ki

∫ t

0
e(t)dt , (3.2)

where e = qd−q is the error in the joint angles.

3.1.2 Computed Torque Control with Integral Term

The computed torque framework is based on the complete cancellation of all non-
linearities present on the dynamic equation. Referring to (2.2), it is desired to develop
a control law that transforms the feedback system into a linear model in the joint angles
using u. In general, the computed torque strategy can be used if the following hypothesis
hold:

1. The dynamic model is well-known;

2. High-performance drivers are available for controlling the actuator torques.

However, the geometric and dynamic parameters for a real system can be difficult to
obtain, leading to imperfect cancellations of the non-linear terms in (2.2). In practice, this
will cause a non-zero offset error in the feedback system.

For tackling the problem of imperfect cancellation of the non-linear terms, one must
implement the computed torque plus PID control scheme. This can be done with the
control law:

u(t) = Dn(x1)τ +Cn(x1,x2)x2 +Gn(x1) , (3.3)

τ = q̈d +Kp(qd− x1)+Kd(q̇d− x2)+Ki

∫ t

0
edt . (3.4)

The matrices Kp, Kd , and Ki contain the proportional, derivative, and integral gains, re-
spectively. The corresponding feedback error equation is now given by

...e +Kd ë+Kpė+Kie = ε (3.5)
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Supposing that all gain matrices are diagonal (so that the equations are uncoupled), the
Routh-Hurwitz criterion gives us a sufficient condition for guaranteeing stability of the
closed-loop system:

Kd Kp, and Ki are positive (3.6)

Kd Kp > Ki ,

where the terms above denote the diagonal elements of Kd , Kp and Ki. In the present case,
this gains are represented by Ki := ki(I4×4), Kp := kp(I4×4) and Kd := kd(I4×4).

The inclusion of an integrator in the control law can help to reject the offset error due
to imperfect cancellation of the non-linear terms. On the hypothesis that the closed-loop
system’s response will be similar to the response of a third-order linear system given by:

(s2 +2ξ ωn +ω
2
n )(s+ p) = 0 . (3.7)

where ωn, ξ and p are design constants.
We make use of the analytical approach to choose the system’s closed-loop poles. For

each of the n uncoupled equations in (3.5), proceed as follows.

1. First, choose a pole p in the left-half plane, sufficiently distant from the origin (ob-
viously, here the expression sufficiently distant is relative, dependent on the desired
settling time);

2. With the distant stable pole p, divide the close-loop system characteristic equation
given by (3.5) in the form of (s + p), where s is the Laplace variable, and ob-
tain the corresponding second-order characteristic equation, whose coefficients are
functions of the gains Kp, Kd and Ki;

3. Compute the gains Kp, Kd and Ki by comparing the coefficients of the resulting
second order equation with the reference model (2.8), with ξ as the damping factor
and ωn as the natural frequency of a general second order linear system.

The controller gains ki, kp, and kd are thus calculated as:

ki := ω
2
n p (3.8)

kp := ω
2
n +2ξ ωn p

kd := p+2ξ ωn,

It is important to notice that this kind of strategy for adjusting the gains can lead
to high amplitudes of the control signal. Therefore, the presence of saturation on the
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actuators must be taken into account.

3.2 Simulation Results

This section shows simulation results from a state-feedback closed-loop system using PID
and computed torque controller (3.3 and 3.4), and assuming that all plant states (x1 and
x2) are measured.

The state-feedback simulation aims to find a set of control gains which assures an
acceptable tracking performance with control effort that could be implemented in a real
application, since we have evaluated the simulation under parametric uncertainties and
noise disturbance. In other words, a good trade-off between the magnitude of the control
signal and tracking accuracy. A desirable performance achievement requires root-mean-
square tracking errors lower than 1.8, 1.9, and 1,5 degree for hip, knee, and ankle joints
respectively [5]. A settling time lower than 0.2 seconds while also having feasible control
signals. No value has been found in the literature for the hip vertical displacement.

Initially, the simulation is conducted in an ideal scenario. Later, parametric uncertain-
ties and measurement noise reduce the tracking performance.

Plant
x1(0) =

[
0 24.99 0 0

]T
x2(0) =

[
0 0 0 0

]T
Reference Signal

x1(0) =
[

0.0216 30.51 −1.46 −2.76
]T

x2(0) =
[

0.3342 16.83 −161.82 −38.92
]T

Table 3.1: Initial conditions from Prosthesis Plant and the Reference Model

Gain Value
kp 2337
kd 82.93
ki 23813

Table 3.2: PID control parameters

It is important to notice in Table 3.1 that the plant initial conditions differ little from
the reference signal, which jeopardizes a transitory analysis from the closed loop system.
The author uses these values in order to evaluate only the steady state behavior.

Figure 3.1 shows the simulation block diagram, comprised by a Model Reference
block, responsible for reference signal generation, the prosthesis plant in orange, and the
PID with computed torque controller in green. The plant’s initial conditions are shown

31



Figure 3.1: State feedback block diagram.

in Tables 3.1. The controller gains are shown in Table 3.2, and were obtained using the
parameters ωn = 4π , ξ = 0.9, and p = 1.5ωn in (3.8).

According to Tables 3.1 and 3.2, an initial error of [0.0216,5.5,1.46,2.75] in x1 and
[0.33,16.83,−161.83,−38.92] in x2 is expected. One must be aware of the high initial
error in the knee joint when comparing the simulation results.

In Figure 3.2 (a) and (b), one may see the overall tracking accuracy for a gait cycle of
1s. Figure 3.2 (d) shows that the transient tracking error reaches values lower than 3mm
after 200 ms, and a steady state tracking error lower than 1mm. For that performance, the
required control signal has magnitude ranging from -800 to 200 N, with a peak of 1200 N
in the transient period, according to Figure 3.2 (c).

In Figure 3.3 (a) and (b), one may see the overall tracking accuracy. Figure 3.3 (d)
shows that the transient tracking error reaches values lower than 0.6 degree after 200 ms,
and a steady state tracking error lower than 0.2 degree. For that performance, the required
control signal has magnitude ranging from -140 to 100 N, with a peak of 500 N during
transient, according to Figure 3.3 (c).

In Figure 3.4 (a) and (b), one may see the overall tracking accuracy. Figure 3.4 (d)
shows that the transient tracking error reaches values lower than 0.4 degree after 200 ms,
and a steady state tracking error lower than 0.3 degree. For that performance, the required
control signal has magnitude ranging from -40 to 30 N, with a peak of 120 N during
transient, according to Figure 3.4 (c)

In Figure 3.5 (a) and (b), one may see the overall tracking accuracy. Figure 3.5 (d)
shows that the transient tracking error reaches values lower than 0.4 degree after 200 ms,
and a steady state tracking error lower than 0.3 degree. For that performance, the required
control signal has magnitude ranging from -3 to 4 N, with a peak of 6 N during transient,
according to Figure 3.5 (c). The ankle torques required for a scenario with ground contact
forces demand more torque than the simulation results obtained. This deviation occurs
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Figure 3.2: Comparison between hip linear displacement reference signal provided by
filter and the signal obtained from the plant. (a): tracking result, (b): real × desired joint
velocity, (c) effort signal, (d) tracking error.

because of the ankle impulse necessary in the pre-swing phase.
Figures 3.2, 3.3, 3.4, and 3.5 show the results obtained for each joint in an ideal

scenario. A high error occurs due to initial conditions difference between the reference
signal and the plant’s outputs, as stated in Table 3.1.
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Figure 3.3: Comparison between hip extension/flexion reference signal provided by filter
and the signal obtained from the plant. (a): tracking result, (b): real × desired joint
velocity, (c) effort signal, (d) tracking error.
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Figure 3.4: Comparison between knee extension/flexion reference signal provided by
filter and the signal obtained from the plant. (a): tracking result, (b): real × desired
joint velocity, (c) effort signal, (d) tracking error.
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Figure 3.5: Comparison between ankle dorsiflexion/plantarflexion reference signal pro-
vided by filter and the signal obtained from the plant. (a): tracking result, (b): real ×
desired joint velocity, (c) effort signal, (d) tracking error.
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3.2.1 Noise Effect and Parametric Uncertainties

In this subsection, the simulation scenario is different. There are disturbances caused
by the presence of noise, possibly due to quantization error on sensors, and parametric
uncertainties. Their effect in the system is evident when comparing the control signal and
the overall tracking error.

In the presence of model uncertainties and numerical errors, the prosthetic system can
be described as

ẋ1 = x2 , (3.9)

ẋ2 = f (x1,x2,u, t)+δ f (x1,x2,u, t) , u := Fa , (3.10)

y =

[
x1

x2

]
∈ IR8×1 , (3.11)

where the nominal part of the system dynamics is represented by

f (x1,x2,u, t) := D−1(x1)u−D−1(x1) [C(x1,x2)x2 +G(x1)] , (3.12)

while the uncertainties are concentrated in the term

δ f (x1,x2,u, t):=
[
D−1D−D−1Dn(x1)

]
u+

D−1(x1) [C(x1,x2)−Cn(x1,x2)]x2+

D−1(x1) [G(x1)−Gn(x1)] .

(3.13)

The term δ f (·) can be uniformly bounded (converging or not to a residual set) or can
be unbounded. Thus, stability/convergence analysis must be conducted, carefully.

Using the same error formulation from (3.5), now we obtain:

...e +Kd ë+Kpė+Kie = δ f (x1,x2,u, t) . (3.14)

For these simulations, a band-limited white noise is used to simulate noises distur-
bances caused by sensors, signal interference, and quantization error. The block imple-
ments normally distributed random numbers that are suitable for use in continuous or
hybrid systems with a desired (1× 10−6 W/Hz) noise power. A parametric error of 4%
has also been added as a perturbation.

In Figure 3.6 (a) and (b), one may see the overall tracking accuracy for a gait cycle of
1s. Figure 3.6 (d) shows that the transient tracking error reaches values lower than 3mm
after 200 ms, and a steady state tracking error lower than 1mm. For that performance, the
required control signal has magnitude ranging from -800 to 200 N, with a peak of 1500 N
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Tracking Error
e1 (m) e2 (deg) e3 (deg) e4 (deg)
0.0004 0.0653 0.2064 0.1096

Table 3.3: State feedback RMS steady-state tracking error in the presence of noise and
parametric model uncertainty.
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Figure 3.6: Hip linear displacement reference signal provided by filter and the real signal
in the presence of noise with 1×10−6 W/Hz and model uncertainties. (a): tracking result,
(b): real × desired joint velocity, (c) effort signal, (d) tracking error.

in the transient period, according to Figure 3.6 (c). Table 3.3 shows a joint RMS tracking
error of 3.9mm.

In Figure 3.7 (a) and (b), one may see the overall tracking accuracy. Figure 3.7 (d)
shows that the transient tracking error reaches values lower than 0.6 degree after 200 ms,
and a steady state tracking error lower than 0.2 degree. For that performance, the required
control signal has magnitude ranging from -140 to 100 N, with a peak of 700 N during
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Figure 3.7: Hip angular displacement reference signal provided by filter and the real
signal in the presence of noise with 1×10−6 W/Hz and model uncertainties. (a): tracking
result, (b): real × desired joint velocity, (c) effort signal, (d) tracking error.

transient, according to Figure 3.7 (c). Table 3.3 shows a joint RMS tracking error of 0.89
degree.

In Figure 3.8 (a) and (b), one may see the overall tracking accuracy. Figure 3.8 (d)
shows that the transient tracking error reaches values lower than 0.3 degree after 200 ms,
and a steady state tracking error lower than 0.5 degree.For that performance, the required
control signal has magnitude ranging from -40 to 30 N, with a peak of 160 N during
transient, according to Figure 3.8 (c). Table 3.3 shows a joint RMS tracking error of 0.5
degree.

It is possible to see the influence of parametric error in this joint, as the tracking error
in steady state is higher than in Figure 3.4 (d). The RMS tracking error is also higher.

In Figure 3.9 (a) and (b), one may see the overall tracking accuracy. Figure 3.9 (d)
shows that the transient tracking error reaches values lower than 0.4 degree after 200 ms,
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Figure 3.8: Knee reference signal provided by filter and the real signal in the presence
of noise with 1× 10−6 W/Hz and model uncertainties. (a): tracking result, (b): real ×
desired joint velocity, (c) effort signal, (d) tracking error.

and a steady state tracking error lower than 0.3 degree. For that performance, the required
control signal has magnitude ranging from -3 to 4 N, with a peak of 9 N during transient,
according to Figure 3.9 (c). Table 3.3 shows a joint RMS tracking error of 0.48 degree.
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Figure 3.9: Ankle reference signal provided by filter and the real signal in the presence
of noise with 1× 10−6 W/Hz and model uncertainties. (a): tracking result, (b): real ×
desired joint velocity, (c) effort signal, (d) tracking error.
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3.3 Remarks

Most of the control signal’s magnitude are due to computed torque. More specifically,
because of the term Dn(q)q̈. As the gait cycle has 1Hz frequency in this simulation, one
could decrease the joint acceleration by decreasing the gait cycle frequency. That would
decrease the required torque signal controlling the plant.

The results shown previously suggest a viability to implement this control in a real,
whether with 4 link joints or less. The lack of ground contact caused some joints to require
less torque then found in literature, however the values are close within the magnitude
found in other works [7].

The real prosthesis may, however, only have position measurement, and for that case a
full state-feedback control wouldn’t be a possible approach. It is necessary to estimate the
states previously obtained via tachometers. The next chapter focus on this case, explaining
one possible approach and the implementation.
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Chapter 4

Output Feedback Control

This chapter introduces an observer technique to estimate an unmeasurable state x2. Later,
the controller uses it in a control law that also implements CTPID control. Simulations
are then conducted to test the system’s robustness.

The observation approach chosen in this project is the High-Gain Observer. The simu-
lations implements this technique with three fixed gains and then propose a variable gain,
which is dependent on control signal noise and tracking error.

4.1 High Gain Observer

In some cases, all states variables are measured, allowing a state feedback scheme, as
simulated in Chapter 3. However, the state may not be observable. In this case, estimates
x̂ are required from these sates.

In this section, it is considered that only x1 is available and an approach to estimate
the system’s state x2 via High-Gain Observer (HGO) [70] is shown.

4.1.1 Fixed HGO

One could design an observer as

˙̂x = Aρ x̂+Bρkn
pu+HµLo(y−Cρ x̂) , (4.1)

where kn
p is a nominal value of the plant high frequency gain (HFG) kp. The matrices Lo

and Hµ compose the observer gain and are given by:

Lo =
[

l1I4×4 l2I4×4

]T
∈ IR8×4 (4.2a)

Hµ := diag(µ−1I4×4, µ
−2I4×4) ∈ IR8×8 , (4.2b)

where µ is a design parameter, and l1 and l2 are such that s2 + l1s+ l2 is Hurwitz.
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4.1.2 Variable HGO

In this work, instead of using a constant µ , we use a variable parameter µ = µ(t) 6=
0,∀t ∈ [0, tM) according to what has been proposed in [44]. In this dissertation, we use
the theoretical tools developed in [44] and, in contrast to [44], the proposed time-varying
µ depend on the signal-to-noise ratio of the effort signal and the tracking error. The µ(t)

is of the form
µ(t) :=

µ̄

1+ψµ(ω(t), t)
, (4.3)

where ψµ , named adapting function, is a non-negative function continuous in its argu-
ments and ω(t) is an available signal [44], both to be designed later on. This structure
will be used so that µ ≈ µ̄±δ adapts to a certain criteria.

The parameter µ̄ >0 is a design constant. For each system trajectory, µ is absolutely
continuous and µ≤ µ̄ . Note that µ is bounded for t in any finite sub-interval of [0, tM).
Therefore,

µ(t) ∈ [µ, µ̄] , ∀t∈ [t∗, tM) , (4.4)

for some t∗ ∈ [0, tM) and µ∈(0, µ̄).
The transformation [44]

ζ := Tµ x̃ , Tµ := [µ2Hµ ]
−1 ∈ IR8×8 , x̃ := x− x̂ , (4.5)

is fundamental to represent the x̃-dynamics in convenient coordinates allowing us to show
that x̃ is arbitrarily small, modulo exponentially decaying term (one could also implement
another transformation [71]). First, note that:

(i) Tµ(Aρ −HµLoCρ)T−1
µ =

1
µ

Ao , (ii) TµBρ =Bρ ,

and (iii) ṪµT−1
µ =

µ̇

µ
∆ ,

where Ao :=Aρ−LoCρ and ∆ :=diag(−I4×4, 04×4) ∈ IR8×8. Then, subtracting (4.1) from
(2.4) and applying the above relationships (i), (ii) and (iii), the dynamics of x̃ in the new
coordinates x̂1 (4.5) is given by:

µζ̇ = [Ao + µ̇(t)∆]ζ +Bρ [µν ] , (4.6)

where
ν := (kp− kn

p)u+ kpd , (4.7)

and

µ̇(t)=−µ2

µ̄

[
∂ψµ

∂ω
ω̇ +

∂ψµ

∂ t

]
. (4.8)
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The HGO gain (HµLo) is inversely proportional to the small parameter µ , allowed to be
time-varying.

The Adapting Function ψµ

The adapting function ψµ(ω(t), t) used in the time-varying parameter µ(t) defined in
(4.3), can assume different forms depending on the choice of the signal ω(t) and the
available information about the plant.

As an example, consider the following cases:
From a practical point of view : the adapting function ψµ can be chosen in order to

allow local stability (or only convergence) properties for the closed-loop control system.
Moreover, one can select a time-varying adapting function ψµ to assure an acceptable
level of noise in the control signal while keeping a good transient for the output tracking
error.

1. The system states can be assumed bounded: The plant state, in particular the un-
available state x2, is uniformly bounded. Such assumption of the state boundedness
is true, for example, when (2.4) is BIBS stable, and the control input is bounded.
Moreover, by considering that the acceleration (ẋ2) in the mechanical system is
bounded by a known constant, then a constant upper bound for the velocity x2 can
be found by using the “dirty derivative”:

η :=
τ

τs+1
y . (4.9)

Indeed, by noting that
x2 = η +

τ

τs+1
ẋ2 , (4.10)

one can obtain the following norm bound

|x2| ≤ |η |+O(τ) |ẋ2| . (4.11)

In this case, we can use this rough estimate for ẋ2 and less conservative estimates
for the terms depending on y, so that ω(t) can be implemented.

2. Signal-to-Noise Ratio in |u| × Tracking Error Norm: By using some mea-
surement of the amount of noise in the control signal, for example, the Signal-to-
Noise Ratio (SNR), the adapting function can be implemented as a function of the
SNR and the tracking error, so that µ increases when the SNR in the control ef-
fort increases and µ decreases when the tracking error norm increases. This can
be accomplished, for example, by defining a cost function depending on the con-
trol signal-to-noise ratio and the output tracking error, so that the time-varying µ

reaches an optimum value.
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From a theoretical point of view: the adapting function ψµ can be chosen in order
to allow global/semi-global stability (or only convergence) properties for the closed-loop
control system.

1. Norm Observability: The plant (2.4)–(2.4) admits a norm observer which provides
an upper bound for the plant state norm by using only available signals: plant input
(u) and plant output (y). In this case, global or semi-global results could be obtained
when, for example, a sliding mode based control is employed, as in [50].

More precisely, a norm observer for system (2.4)–(2.4) is a m-order dynamic system
of the form:

τ1ω̇1 =−ω1 +u , (4.12)

τ2ω̇2 = γo(ω2)+ τ2ϕo(ω1,y, t) , (4.13)

with states ω1∈ IR, ω2∈ IRm−1 and positive constants τ1,τ2 such that for t ∈ [0, tM):
(i) if |ϕo| is uniformly bounded by a constant co >0, then |ω2| can escape at most
exponentially and there exists τ∗2 (co) such that the ω2-dynamics is BIBS (Bounded-
Input-Bounded-State) stable w.r.t. ϕo for τ2 ≤ τ∗2 ; (ii) for each x(0),ω1(0),ω2(0),
there exists ϕ̄o such that

|x(t)| ≤ ϕ̄o(ω(t), t)+πo(t) , ω := [ω1 ω
T
2 y]T , (4.14)

where πo := βo(|ω1(0)|+|ω2(0)|+|x(0)|)e−λot with some βo ∈ K∞ and positive
constant λo.

2. Global Stability Properties: when the class of plants are such that a norm observer
can be implemented, then global results can be achieved via Output Feedback Slid-
ing Mode (OFSM) control, as in [50]. This is the case when, for example, the
Coriolis term can be neglected (C(x1,x2)x2 ≡ 0).

3. Semi-Global Stability Properties: it is not a restrictive assumption consider the
existence of a class K∞ function Ψ(·) and a positive constant kψ such that

‖d(x, t)‖ ≤Ψ(‖x‖)+ kψ ,

∀x and ∀t. In other words, the disturbance can always be norm bounded afinelly in
the state norm, when it is norm bounded in the second argument. Thus, given R > 0
and 0 < R0 < R, then for some t∗ ∈ (0, tM) and ‖x(0)‖ < R0 one has ‖x(t)‖ < R

for t ∈ [0, t∗). Assume t ∈ [0, t∗). Since the nonlinear terms in the robot dynamic
equation are usually assumed sufficiently smooth and locally Lipschitz in its argu-
ments, then Ψ(·) can be chosen locally Lipschitz in it argument. In addition, while
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t ∈ [0, t∗), the state x is bounded by the arbitrary constant R. Thus, one has that the
following upper bound holds Ψ(‖x‖)≤ κ(R)‖x‖, where κ(·) being of class K . For
a given R, κ(R) is a positive constant which increases as R→+∞, but is not neces-
sarily unbounded. By noting that R depends on the initial condition (due to R0), then
only semi-global stability properties follows. In fact, this semi-global result can be
obtained via a particular case of the OFSM control given in [50]. This is the case
when, for example, the Coriolis term can not be neglected (C(x1,x2)x2 6= 0). Addi-
tionally, [72] and [73] also proved that global stability properties may be achieved
in the presence of the Coriolis terms using a PD.

One Particular Design for ψµ

In this paper, we are focused in the following particular choice for time varying HGO
parameter µ(t) where noise energy in the control signal and tracking error are taken into
account:

µ(t) :=
αN {u}
1+β |e|

=
µ̄

1+ψµ(ω(t), t)
, (4.15)

where α,β are positive design constants, N {u}> 0 is the noise energy presented in the
control effort u(t) and e is the tracking error. Note that, this choice fits the general format
(4.3) with

ψµ(ω(t), t) = [(1+β |e|)µ̄−αN {u}]/(αN {u})

and µ̄ big enough to assure that ψµ(ω(t), t)> 0.

Noise Energy and Noise Measurement

Figure 4.1: Noise estimator inner block. Calculates four possible values.

The noise energy is obtained by filtering the norm of the difference between the upper
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U+ and lower U− envelopes of the control signal u, which is contaminated by noise. This
scheme is depicted in Figure 4.1. Another approach divides this value by a mean Umean

from the difference between the envelopes.

Figure 4.2: Noise estimator block diagram. The blocks inside the rectangular area imple-
ment the estimator approaches.
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According to Figure 4.1, the noise energy N {u} could be defined as four distinct
equations:

N {u(t)} :=



|U+(t)−U−(t)| ,

1
τns+1 |U

+(t)−U−(t)| ,

|U+(t)−U−(t)|
Umean

,

1
τns+1

|U+(t)−U−(t)|
Umean

(4.16)

where τn > 0 is a design constant and |U+(t)−U−(t)| may be subject to saturation.
Several on-line methodologies for estimation of noise energy in a available signal (Signal-
to-Noise Ratio) can be found in the literature. A fair comparison is left for a future work.

Note that, in this case, the time derivative dN {u(t)}
dt can be norm bounded if the noise

energy is norm bounded, which is reasonable to assume.
After testing the four possibilities presented in (4.16), the formulation

N {u(t)} :=
1

τns+1

∣∣U+(t)−U−(t)
∣∣ ,

was empirically chosen due to its smoothness compared to the others.

4.2 Output Feedback CTPID Control

As the observer has already been introduced, this section focus on implementing it with
different gains in a closed-loop system. The simulation using fixed gains serves as a
way to compare their performances with the proposed variable gain in the presence of
perturbations.

By recalling that matrices Dn(q), Cn(q, q̇), and Gn(q) are known nominal values from
D(q), C(q, q̇), and G(q), the control signal required for this task is now designed as:

u(t) :=Dn(x̂1)τ +Cn(x̂1, x̂2)x̂2 +Gn(x̂1) , (4.17)

τ :=q̈d +Kpe(t)+Kd(q̇d− x̂2)+Ki

∫ t

0
edt , (4.18)

where x̂2 is the estimate for x2 obtained from the HGO. The gains are designed in order
to match the equations used in (3.5), resulting in (3.8).
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4.3 Simulation Results

This section shows simulation results from an output-feedback closed-loop with the same
PID and computed torque controller parameters from Chapter 3. The tracking/observation
performance is undermined by parametric uncertainties (4%) and noise injection (1×
10−6 W/Hz). However, differently than Section 3.2, the feedback uses the estimates x̂1

and x̂2 provided by the HGO.
The closed-loop system simulation aims to compare tracking and observation accu-

racy when using different values for parameter µ (0.0004, 0.001, 0.0019, and variable
gain). The controller performance criteria for tracking are the same as in Section 3.2.

A desirable observer performance requires an estimation error convergence to zero or
a small residual according to values found in the literature [34][9].

Figure 4.3: HGO simulation.

Plant
x1(0) =

[
0 24.99 0 0

]T
x2(0) =

[
0 0 0 0

]T
Reference Signal

x1(0) =
[

0.0216 30.51 −1.46 −2.76
]T

x2(0) =
[

0.3342 16.83 −161.82 −38.92
]T

Observer
x1(0) =

[
0 0 0 0

]T
x2(0) =

[
0 0 0 0

]T
Table 4.1: Initial conditions from Prosthesis Plant, Reference Model and Observer

One of the simulations is conducted under fixed µ parameters. The next test shows the
results when implementing the observer with a variable µ parameter, whose adaptation is
described in Section 4.1.2.
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Gain Value
kp 2337
kd 82.9
ki 23,813

Table 4.2: PID control parameters

Tracking Error
µ e1 (m) e2 (deg) e3 (deg) e4 (deg)

0.0004 0.0007 0.0660 0.2156 0.1137
0.0010 0.0026 0.0683 0.2301 0.1294
0.0019 0.0065 0.0746 0.2521 0.1482

Joint Position Estimation Error
µ x̃1 (m) x̃2 (deg) x̃3 (deg) x̃4 (deg)

0.0004 0.00002 0.0014 0.0014 0.0014
0.0010 0.0001 0.0009 0.0010 0.0010
0.0019 0.0003 0.0011 0.0014 0.0013

Joint Velocity Estimation Error
µ x̃5 (m/s) x̃6 (deg/s) x̃7 (deg/s) x̃8 (deg/s)

0.0004 0.1006 6.2534 6.4175 6.4550
0.0010 0.1348 1.6847 1.8512 1.8582
0.0019 0.2681 1.1532 1.4586 1.3798

Table 4.3: Observer/Controller performance in steady-state with 4% parametric uncer-
tainties over 1 step of walking using 3 HGO µ gains.

Figure 4.3 shows the block diagram from the simulation, comprised by Model Refer-
ence, generating the joint reference signal and its derivatives, the prosthesis plant block
in orange, the PID with computed torque controller block in green, the HGO block in
purple and a noise estimator block in white. The closed-loop system’s initial conditions
and required parameters are shown in 4.1 and 4.2, respectively.

The expected simulation result is that higher values of parameter µ means higher
tracking and estimation errors, and noise rejection in the control signal. Therefore, lower
µ means better estimation and tracking error, but noisier effort signal.

4.3.1 Fixed HGO

This subsection shows simulation results using three different fixed µ parameter values,
which are used in an HGO according to Section 4.1.1.

Figure 4.4 (a) - (f) shows the overall tracking and estimation performance for the hip
vertical displacement joint obtained using three different observer gains. According to
Figures 4.4 (a), (c), and (e), the lowest value of parameter µ produces the best tracking
result. The simulation with the highest HGO parameter shows the worst tracking perfor-

51



Figure 4.4: {Fixed µ} Simulation results from hip vertical displacement in one gait cycle.
(a) performance with µ = 0.0004, (b) performance in the first 50ms, (c) performance
with µ = 0.001, (d) performance in the first 50ms, (e) performance with µ = 0.0019, (f)
performance in the first 50ms.

mance. This result is also shown in Table 4.3. From visual inspection in Figure 4.4 (a)
and (c), it is possible to infer that the transient state happens until 300ms approximately.

Figure 4.5 (a) - (d) shows the position and velocity estimation results. Figure 4.5 (a)
and (c) depicts a peaking error of 0.003 mm and 4 m/s while in transient period of x̂1

and x̂5, respectively. It is possible to see in Figure 4.5 (b) that x̂1 reaches an estimation
error of 0.5, 0.2, and lower than 0.1 mm in steady-state with µ equals to 0.0019, 0.001
and 0.0004, respectively. One may notice that the lower the µ parameter, the better the x̂1

estimation. In addition, x̂5 becomes more sensitive to noise. According to Table 4.3, the
RMS observation errors for µ = [0.0004,0.0010,0.0019] is [0.02,0.1,0.3] mm for x̂1 and
[0.1,0.13,0.27] m/s for x̂5.

The tracking error e1 (in the first joint) is depicted in Figure 4.6. As expected, there
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Figure 4.5: {Fixed µ} Simulation results from hip vertical displacement and velocity
estimation errors. (a) estimation error from x̂1, (b) x̂1 with zoom in X and Y axis. (c)
velocity estimation error from x̂5, (d) x̂5 with zoom in X and Y axis. Curves in blue, red,
and yellow represent the result obtained using µ gain equals to 0.0004, 0.001, and 0.0019,
respectively.

is a higher degradation in the closed-loop tracking accuracy when using higher observer
parameter values. The system shows the worst performance when µ value is equal to
0.0019, presenting a steady-state tracking error lower than 12 mm. This results is almost
twelve times worst than the maximum error value when µ equals to 0.0004.

Figures 4.7 (a) and (b) illustrates the effort signal to control joint q1. The initial con-
dition errors lead to high forces which reach the saturation levels of -4000 and 2000. The
control signal stays between 1000 and -1500 N in a worst case scenario, or approximately
-1000 and 300 with the highest observer gain. It is visible that higher µ parameter values
are less sensitive to noise.

Additionally, one may notice that the lower the µ parameter, the closer state x1 gets
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Figure 4.6: {Fixed µ} Simulation results from hip vertical displacement error. (a) tracking
error e1, (b) e1 with zoom in X and Y axis. Curves in blue, red, and yellow represent the
result obtained using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.
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Figure 4.7: {Fixed µ} Simulation results from hip vertical displacement. (a) effort signal
u1, (b) effort signal with zoom in Y axis. Curves in blue, red, and yellow represent the
result obtained using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.

to qd . This improvement in performance happens because the estimation error converges
faster to zero and, therefore, x adrift less from qd . In counterpart, the control signal
becomes noisier.
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Figure 4.8: {Fixed µ} Simulation results from hip angular displacement in one gait cycle.
(a) performance with µ = 0.0004, (b) performance in the first 50ms, (c) performance
with µ = 0.001, (d) performance in the first 50ms, (e) performance with µ = 0.0019, (f)
performance in the first 50ms.

Figure 4.8 (a)-(f) shows the overall tracking and estimation performance for the hip
extension and flexion joint. The peaking phenomenon is depicted in Figures 4.8(b), (d),
and (f), due to higher initial condition errors than illustrated in Figure 4.4. Additionally,
the joint position estimate converges faster to the desired value with the lowest parameter
µ . The peaking phenomenon takes 2, 5 or 10 ms to settle depending on the gains.

Estimation errors x̃2 and x̃6 are shown in Figure 4.9. Despite presenting the peaking
phenomenon, the estimation error is lower than 0.1 degree by 10 ms. This occurs due to
the addition of a saturation on the input signal, otherwise the performance would be way
worst. These saturation dependency is better explained later. According to Table 4.3 the
best estimation accuracy of x2 occurs when the µ is equal to 0.001, probably a further
analysis would show that this noise power set a lower bound for the parameter µ above
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Figure 4.9: {Fixed µ} Simulation results from hip angular displacement estimation errors.
(a) estimation error from x̂2, (b) x̂2 with zoom in X and Y axis. (c) estimation error from
x̂6, (d) x̂6 with zoom in X and Y axis. Curves in blue, red, and yellow represent the result
obtained using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.

0.0004. Figure 4.9 (d) illustrates the noise measurement affecting the estimation accuracy.
The lowest µ value should have the worst performance, but as shown in Table 4.3, x̃6 is
more accurate when µ is equal to 0.0019.

Figure 4.10 shows the tracking error results. It is possible to see in Figure 4.10(b) that
e2 in approximately 300 ms reaches the steady-state with tracking errors of lower than 0.2
deg.

Figure 4.11 illustrates the difference between µ values regarding the control signal. A
saturation of 250 and -300 is applied to the system, and after this peak the joint requires ef-
fort signal ranging from -200 to 200. The lowest parameter value depicts the lowest noise
sensibility, however presents the worst tracking accuracy (0.074 degrees RMS) according
to Table 4.3.
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Figure 4.10: {Fixed µ} Simulation results from hip angular displacement error. (a) track-
ing error e2, (b) e2 with zoom in X and Y axis. Curves in blue, red, and yellow represent
the result obtained using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.
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Figure 4.11: {Fixed µ} Simulation results from hip vertical displacement. (a) effort signal
u2, (b) effort signal with zoom in Y axis. Curves in blue, red, and yellow represent the
result obtained using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.
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Figure 4.12: {Fixed µ} Simulation results from knee joint in one gait cycle. (a) per-
formance with µ = 0.0004, (b) performance in the first 50ms, (c) performance with
µ = 0.001, (d) performance in the first 50ms, (e) performance with µ = 0.0019, (f) per-
formance in the first 50ms.

Figure 4.12 shows the overall tracking and estimation performance for the knee exten-
sion and flexion joint obtained using as µ parameter values [0.0004,0.0010,0.0019]. This
joint seems to show the same transient state duration than the previous ones, by visual
inspection.

Figure 4.13 (a)-(d) shows the estimation errors x̃3 and x̃7. The measurement seems to
affect equally the observer independently of µ value. According to Table 4.3, the lowest
position estimation error is achieved when µ is equal to 0.001, and x̃7 shows better results
when the estimation is less sensitive to noise.

Figure 4.14 shows the tracking error performance of e3 . It is possible to see in Fig-
ure 4.14(b) that e3 reaches a tracking error lower than 0.75 in steady-state with oscillations
from model uncertainties. The same observations apply here, that the higher parameter
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Figure 4.13: {Fixed µ} Simulation results from knee joint estimation errors. (a) estima-
tion error from x̂3, (b) x̂3 with zoom in X and Y axis. (c) estimation error from x̂7, (d) x̂7
with zoom in X and Y axis. Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.

µ values reject more noise, however shows worst tracking performance, while the lower
noise shows better tracking performance, but is more sensitive to noise.

Interestingly, when considering tracking error, the results are as expected, lower µ

values perform better than higher. This behavior was shown for linear systems by [55],
were tracking error don’t suffer from the same trade-off constraints as estimate error. The
Table 4.3 shows RMS tracking error ranging from 0.21 to 0.25 degrees.

Figure 4.15 illustrates the difference between µ gains regarding the control signal. A
saturation of -200 and 500 is applied to the system, and after this peak the joint requires
effort signal ranging from -80 to 80 or from -40 to 20, if using the highest µ gain.
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Figure 4.14: {Fixed µ} Simulation results from knee joint tracking error. (a) tracking
error e3, (b) e3 with zoom in X and Y axis. Curves in blue, red, and yellow represent the
result obtained using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.
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Figure 4.15: {Fixed µ} Simulation results from knee joint. (a) effort signal u3, (b) effort
signal with zoom in Y axis. Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.
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Figure 4.16: {Fixed µ} Simulation results from ankle joint in one gait cycle. (a) per-
formance with µ = 0.0004, (b) performance in the first 50ms, (c) performance with
µ = 0.001, (d) performance in the first 50ms, (e) performance with µ = 0.0019, (f) per-
formance in the first 50ms.

Figure 4.16 shows the overall tracking and estimation performance for the ankle plan-
tarflexion and dorsiflexion joint. By visual inspection, the estimation transient state takes
approximately 15 ms, while the tracking takes 300ms.

This joint shows similar results when compared to previous 2 ones. The best position
estimation performance happens when µ is equal to 0.001 according to Table 4.3. While
velocity estimation is better when µ value is the highest one. This result is also visible
in Figure 4.17 (d), where the velocity estimation with this parameter is less sensitive to
noise.

Figure 4.18 shows the tracking error results. It is possible to see in plot (b) that e4

after 300 ms reaches a tracking errors lower than 0.5 deg. The RMS tracking error e4

shows the expected results obtained in the previous joints.
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Figure 4.17: {Fixed µ} Simulation results from ankle joint estimation errors. (a) estima-
tion error from x̂4, (b) x̂4 with zoom in X and Y axis. (c) estimation error from x̂8, (d) x̂8
with zoom in X and Y axis. Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.

Figure 4.19 illustrates the difference between µ gains regarding the control signal. A
saturation of 100 and -50 Nm is applied to the system, and after this peak the joint requires
effort signal ranging from -6 to 8 Nm with the lowest observer gain and from -4 to 5 Nm
using the highest one.
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Figure 4.18: {Fixed µ} Simulation results from ankle joint error. (a) tracking error e4,
(b) e4 with zoom in X and Y axis. Curves in blue, red, and yellow represent the result
obtained using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.
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Figure 4.19: {Fixed µ} Simulation results from ankle joint. (a) effort signal u4, (b) effort
signal with zoom in Y axis. Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, 0.001, and 0.0019, respectively.
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Peaking Phenomenon

Figure 4.20: {Fixed µ} Simulation results from knee joint in the lack of saturation in
the control signal in one gait cycle. (a) performance with µ = 0.0004, (b) performance
in the first 50ms, (c) performance with µ = 0.001, (d) performance in the first 50ms, (e)
performance with µ = 0.0019, (f) performance in the first 50ms.

All the simulations so far used saturation on effort signal to prevent the propagation of
initial condition error to Fa. The Figures 4.20- 4.23 show results for the knee joint in the
absence of saturation. The tracking transient state is the same as obtained in with effort
saturation, however the estimation transient state takes almost 20 ms when parameter µ

is equal to 0.0019.
Figure 4.21 shows initial estimation errors 30 times higher for x̂1, and 80 times higher

for x̂2 than in the presence of saturation, after 0.06 seconds the errors reach values similar
to the ones found in Figure 4.13.

Figure 4.22 shows initial estimation errors 10 times higher for e than in the presence
of saturation, after 0.3 seconds the errors reach values similar to the ones found in Fig-
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Figure 4.21: {Fixed µ} Simulation results from knee joint estimation estimation errors in
the lack of saturation in the control signal. (a) estimation error from x̂3, (b) x̂3 with zoom
in X and Y axis. (c) estimation error from x̂7, (d) x̂7 with zoom in X and Y axis. Curves in
blue, red, and yellow represent the result obtained using µ gain equals to 0.0004, 0.001,
and 0.0019, respectively.

ure 4.14. It is important to notice that usually the highest initial error occurs with the
highest observer gain, but in the lack of saturation, the lowest gain is more sensitive to
this error. After 0.4 seconds it is possible to see that the lowest gain also shows the lowest
tracking error.

Figure 4.23 illustrates the effort signal without saturation, reaching for an instant the
values of 50,000 and -18,000 Nm. But showing after that peak the same profile from
Figure 4.15.

The lack of saturation undermine the system’s transient performance, while requiring
effort signals of unfeasible magnitudes. This problem lead to a finite escape time.

One way to mitigate this phenomenon is by adding saturation in the control signal,
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Figure 4.22: {Fixed µ} Simulation results from knee joint tracking error in the lack
of saturation in the control signal. (a) tracking error e3, (b) e3 with zoom in X and Y
axis. Curves in blue, red, and yellow represent the result obtained using µ gain equals to
0.0004, 0.001, and 0.0019, respectively.
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Figure 4.23: {Fixed µ} Simulation results from knee joint in the lack of saturation in the
control signal. (a) effort signal u3, (b) effort signal with zoom in Y axis. Curves in blue,
red, and yellow represent the result obtained using µ gain equals to 0.0004, 0.001, and
0.0019, respectively.

which reduces the peaking phenomenon influence, as suggested in [74]. The saturation
values are proportional to the maximum and minimum values obtained in state-feedback
simulation.
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4.3.2 Variable HGO

After the results obtained in the previous subsection, it is possible to conclude that a trade-
off between tracking error and effort signal noise exists. The variable observer gain µvar

is the proposed approach to reach the required conditions while also reducing the noise
sensibility.

The µvar’s initial value is 0.0019 and it adapts towards a value that increases perfor-
mance between tracking error and noise in control signal. The simulation obtains the
same µvar for all joints, and its implementation in simulation environment is as follows:

Listing 4.1: µvarimplementation

f u n c t i o n [Hmu, Mu, Mu calc ] = f c n (SNR, q e r r o r , c l o c k )

% E m p i r i c a l ga in f o r v a r i a b l e ga in r e s u l t s

K num = 1e−5;
K den = 1 e +0;

% S t a r t v a r i a b l e ga in a f t e r 20e−3 s e c o n d s

i f ( c l o c k > 20e−3)
Mu = K num∗norm (SNR ) / ( 1 + norm ( q e r r o r )∗K den ) ;
Mu calc = Mu;
% S a t u r a t i o n

i f Mu > 1 . 9 e−3
Mu = 1 . 9 e−3;

e l s e i f Mu < 4e−4
Mu = 4e−4;

end

% S t a r t i n g f i x e d ga in v a l u e

e l s e
Mu = 1 . 9 e−3;
Mu calc = 1 . 9 e−3;

end

% H mu m a t r i x

Hmu = [ eye ( 4 ) / Mu z e r o s ( 4 ) ; z e r o s ( 4 ) eye ( 4 ) / Muˆ2

The adapting function has a saturation implemented and adapts depending on the SNR
and the joint tracking error e 4.16.

Figure 4.25(a) illustrates the µvar adaption. According to the code 4.3.2, it start as
0.0019 and after 20ms the adaptation begins. Between 20ms and 1 second, µvar is equal to

67



Tracking Error
µ e1 (m) e2 (deg) e3 (deg) e4 (deg)

0.0004 0.0007 0.0660 0.2156 0.1137
variable 0.0042 0.0706 0.2400 0.1381
0.0019 0.0065 0.0746 0.2521 0.1482

Joint Position Estimation Error
µ x̃1 (m) x̃2 (deg) x̃3 (deg) x̃4 (deg)

0.0004 0.00002 0.0014 0.0014 0.0014
variable 0.0001 0.0009 0.0010 0.0010
0.0019 0.0003 0.0011 0.0014 0.0013

Joint Velocity Estimation Error
µ x̃5 (m/s) x̃6 (deg/s) x̃7 (deg/s) x̃8 (deg/s)

0.0004 0.1006 6.2534 6.4175 6.4550
variable 0.1936 1.1936 1.4276 1.3955
0.0019 0.2681 1.1532 1.4586 1.3798

Table 4.4: Observer/Controller performance with 4% parametric uncertainties over 1 step
of walking using variable HGO µ gain, 0.0019, and 0.0004.

0.0004. After that, its value increases until reaching a value close to 0.013. Figure 4.25(b)
shows the noise estimation N increasing for each joint, which makes µvar increase. The
noise energy N measured in the effort signal of each joint is depicted in Figure 4.24. By
visual inspection one may notice that the N in the variable parameter µ shows results
better than the fixed 0.0004, but worst than 0.0019, as expected.

The expected result throughout these simulations is to obtain initially a noisy u signal
due to the low µvar value and low tracking error. After 100ms, as the value of parameter
µ increases, the observer bandwidth reduces, along with tracking error performance. The
tracking/observation steady-state errors should be closer to the ones achieved when µ was
equal to 0.001 than the other values.

As seen in the previous Section 4.3.1, the estimation error x̃ in steady-state for joints 2,
3 and 4 achieved a better performance when the parameter µ was lower than 0.0019 and
bigger than 0.0004. The same result is expected when implementing the variable HGO.
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Figure 4.24: {µvar} Noise energy N results in effort signal for different values of µ : (a)
in Hip linear joint (b) Hip angular, (c) Knee, and (d) Ankle.
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Figure 4.25: {µvar} Simulation results: (a) µvar, (b) noise energy N in the presence of
noise with power 1×10−6 W/Hz.
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Figure 4.26: {µvar} Simulation results from hip vertical displacement in one gait cycle.
(a) performance with µvar, (b) performance before 50ms.

Figure 4.26 depicts the system performance when tracking the desired trajectory. By
visual inspection one may see that transient state takes approximately 300 ms. In Fig-
ures 4.27(a) and (b), it is possible to see an abrupt change in x̃1 during 100ms in the form
of a straight line going from 0.5 mm to a value closer to 0.1 mm. The same behavior
happens on the other joints, however not visible as in the first joint. Figures 4.27(c) and
(d) illustrates the variation in noise sensitivity for estimation x̂5, while also showing less
estimation error than µ = 0.0019 and 0.0004.

The tracking error is depicted in Figure 4.28, and, as expected, the steady-state track-
ing error performance of the variable approach is in between the other gains. This result
is also present in Table 4.4.

Figure 4.29 depicts the µvar until 100ms showing a noisy profile, similar to the one
from µ = 0.0004, and before 200ms it visibly starts reducing the noise sensibility.
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Figure 4.27: {µvar} Simulation results from hip joint estimations. (a) estimation error
from x̂1, (b) x̂1 with zoom in X and Y axis. (c) estimation error from x̂5, (d) x̂5 with zoom
in X and Y axis. Curves in blue, red, and yellow represent the result obtained using µ

gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.28: {µvar} Simulation results from hip joint error. (a) tracking error e1, (b) e1
with zoom in X and Y axis. Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.29: {µvar} Simulation results from hip joint. (a) effort signal u1 and (b) depicts
a zoomed version of plot (a). Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.30: {µvar} Simulation results from hip angular joint in one gait cycle. (a) per-
formance with µvar, (b) performance in the first 50ms.

The tracking performance for joint 2 is illustrated in Figure 4.30. With a peaking
response equal to the obtained when µ was equal to 0.0019. Figures 4.31(a) and (b),
show the estimation error x̃2 in steady-state before 100 ms with noisy values making it
hard to analyze the results. According to Table 4.4, the observer using variable µ performs
better than the others, which is the same conclusion obtained with µ equals to 0.001 in
Section 4.3.1. The observations regarding x̃6 are also the same as in Section 4.3.1.

The tracking error is depicted in Figure 4.32, and, as expected, the steady-state track-
ing error performance of the variable approach is in between accuracy obtained when
using the other parameter values. This result is also present in Table 4.4.

Figure 4.33 depicts the µvar until 100ms showing a noisy profile, similar to the one
from µ = 0.0004, and before 200ms it visibly starts reducing the noise sensibility. The
noise energy N when using the different parameter values is depicted in Figure 4.24.
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Figure 4.31: {µvar} Simulation results from hip angular joint estimations. (a) estimation
error from x̂2, (b) x̂2 with zoom in X and Y axis. (c) estimation error from x̂6, (d) x̂6 with
zoom in X and Y axis. Curves in blue, red, and yellow represent the result obtained using
µ gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.32: {µvar} Simulation results from hip angular joint error. (a) tracking error e2,
(b) e2 with zoom in X and Y axis. Curves in blue, red, and yellow represent the result
obtained using µ gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.33: {µvar} Simulation results from hip angular joint. (a) effort signal u2, (b)
effort signal with zoom in Y axis. Curves in blue, red, and yellow represent the result
obtained using µ gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.34: {µvar} Simulation results from knee joint in one gait cycle. (a) performance
with µvar, (b) performance in the first 50ms.

Figures 4.34 4.37 show results obtained for joint 3. All the considerations for this
joint tracking/observation performance is similar to the ones from the previous joint. The
Figures present the expected behavior described in the beginning of this Section and RMS
tracking and observation errors are depicted in Table 4.4.

It is interesting to notice that despite parameter µ value shifts from 0.0019 to 0.0004,
according to Figure 4.25 (a), only the estimations present the same “shifting” behavior,
while the tracking error remains with a lower dynamic.
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Figure 4.35: {µvar} Simulation results from knee joint estimations. (a) estimation error
from x̂3, (b) x̂3 with zoom in X and Y axis. (c) estimation error from x̂7, (d) x̂7 with zoom
in X and Y axis. Curves in blue, red, and yellow represent the result obtained using µ

gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.36: {µvar} Simulation results from knee joint error. (a) tracking error e3, (b) e3
with zoom in X and Y axis. Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.37: {µvar} Simulation results from knee joint. (a) effort signal u3, (b) effort
signal with zoom in Y axis. Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.38: {µvar} Simulation results from ankle joint in one gait cycle. (a) performance
with µvar, (b) performance in the first 50ms.

Figures 4.38 4.41 show results obtained for the ankle joint. All the considerations for
this joint tracking/observation performance is similar to the ones from the previous joint.
The Figures present the expected behavior described in the beginning of this Section.

The steady-state tracking error is lower than 0.5 degree, according to Figure 4.40 (a),
and with RMS value equal to 1.381 degree.
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Figure 4.39: {µvar} Simulation results from ankle joint estimations. (a) estimation error
from x̂4, (b) x̂4 with zoom in X and Y axis. (c) estimation error from x̂8, (d) x̂8 with zoom
in X and Y axis. Curves in blue, red, and yellow represent the result obtained using µ

gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.40: {µvar} Simulation results from ankle joint error. (a) tracking error e4, (b) e4
with zoom in X and Y axis. Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, µvar, and 0.0019, respectively.
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Figure 4.41: {µvar} Simulation results from ankle joint. (a) effort signal u4, (b) effort
signal with zoom in Y axis. Curves in blue, red, and yellow represent the result obtained
using µ gain equals to 0.0004, µvar, and 0.0019, respectively.
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4.4 Remarks

The results obtained with these simulations show that the variable parameter µ reaches a
steady sate value of 0.0014. The hip vertical joint presented results standard results, where
more of the measurement noise is attenuated when increasing the value of parameter µ .
However, it shows a worst tracking performance.

The revolute hip, knee, and ankle joints show a different behavior, explained in [70].
According to this work, there is a tradeoff between estimation steady-state error due to
model uncertainties and the measurement noise. It is left as future work, the proof that
the parameter µ was lower than the ultimate bound, imposed by this constraint [70]. With
this phenomenon, it is possible to notice in Table 4.4 that estimation of x1 achieves better
results for µ equal to 0.001 or variable is better than using 0.0004 or 0.0019.

The noise also affected the estimation of x2, where it is possible to see, in Table 4.4,
that the most accurate joint velocity estimation was with the highest parameter µ (0.0019).

The control effort required for trajectory tracking achieved feasible values. Addition-
ally, it uses saturation to prevent state finite escape time.
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Chapter 5

Conclusions

In this work, a variable HGO has been designed to estimate the states of a prosthesis
test robot, reducing the amount of noise in the control effort while keeping an acceptable
tracking error performance when compared to the literature.

A simplified plant model was proposed. This system is composed by a prismatic
joint emulating vertical hip displacement, and three revolute joints representing hip (flex-
ion/extension), knee (flexion/extension), and ankle (plantarflexion/dorsiflexion) motions.
This robot dynamics were validated using Recursive Newton-Euler and Lagrangian ap-
proaches. A conditioned reference joint position trajectory has also been validated using
the provided gait normative curves.

To simulate the prosthetic closed loop, a full state-feedback controller using computed
torque with PID without noise and parametric uncertainties was designed. In sequel, noise
and uncertainties were considered in the simulation and a tracking accuracy of 0.4 mm for
hip vertical displacement, and [0.065,0.2,0.11] degree for hip, knee, and ankle angular
motions (RMS) was obtained. Since, the simulations were carried out by considering that
no contact exists with the ground (no ground forces), it is expected that a better accuracy
is obtained when compared to cases when the ground effect is taken into account, such as
in [56] where the accuracy is four times greater (around 1.75mm for the first joint and 2.6
degrees for the others). Note that, despite of the different experiments, the results here
are consistent with the literature. Additionally, the control magnitudes achieved for the
first three joints were similar to abled-bodied averaged hip force (-800 to 200 N), thigh
torque (-50 to 100 Nm) and knee torque (-50 to 50 Nm) obtained in [5][57][58]. The
differences in the fourth joint control magnitude occurred mainly due to the absence of
ground reaction forces.

The next step was to use state estimates in a velocity free closed-loop system instead
of using the measured ones. Two approaches were implemented with a high gain ob-
server: using fixed and variable gain. The former is important to show basic concepts of
HGO properties such as peaking phenomenon and output feedback controller recovering
performance from state feedback controller (as the observer dynamics become sufficiently
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fast), and also for a benchmark with the proposed variable gain.
The estimation results with the fixed approach were conducted with parameter µ

values equals to 0.0004, 0.0010, and 0.0019. The joint position and velocity estimates
reached steady-state before 40ms and 50ms, respectively. In a worst scenario (under
parametric uncertainties and measurement noise) and with nonzero initial condition for
the estimation error, the RMS estimation errors in steady states obtained were acceptable:
position error around 0.3 mm for the first joint and around 0.0014 degree for the other
joints, while velocity errors of 0.27 m/s and 6.25 degree/s were obtained for the first joint
and for the others joints, respectively.

For the time varying gain approach, the µ value is bounded between 0.0004 and
0.0019 due to results obtained with fixed parameter µ . The obtained steady-state tracking
error is 0.7 mm for the first joint, 0.066 degree/s for the second joint, 0.216 degree/s for
the third, and 0.117 degree/s for the fourth. The lower the µ parameter value, the closer
the results are from state feedback. Which can be verified as the state feedback results are
0.4 mm, 0.065 degree/s, 0.206 degree/s, and 0.11 degree/s for hip vertical displacement
joint, hip joint, knee, and ankle joint, respectively. The best µ parameter value for joint
position estimation is 0.001, and 0.0019 for velocity in joints q̇2, q̇3, and q̇4. This result
indicates that the state feedback performance recovery depends on the noise in effort sig-
nal as noticed in [74]. A lower noise perturbation would probably lead to the expected
result of best estimation performance for the lowest parameter µ value.

As in the state feedback case, the results for the output feedback case propose here
using an HGO with time varying gain are consistent with the literature. In fact, despite
of the differences of the experiments, the estimation and tracking errors achieved are
consistent with the main results found in the literature, even when a real prosthesis robot
is considered and subject to noise with different energy. Indeed, in [6][9], the estimation
root-mean-square errors using Kalman filters are 3 mm, 0.11 degree, 0.172 degree, and
0.287 degree for hip vertical displacement, then hip, knee, and ankle flexion/extension.
In [56] the tracking root-mean-square error obtained was 1.75mm and 2.6 degrees in hip
vertical displacement and hip flexion/extension. In [75] the knee tracking results were
considered acceptable if the root-mean-square error was lower than 1.89 degree, and it
obtained values ranging from 0.0458 to 2.59 degrees. Additionally, knee tracking error
higher than 1.24 degrees (RMS) was obtained in [7], but real prosthetic system experiment
was carried out.

The results obtained with variable gain HGO are promising in the sense that, when
trying to tune the observer for a group of different prosthesis, one could switch the ob-
server gain to the fixed value (which is not know a priori) obtained after the HGO gain
reaches the steady-state. In the simulations, the parameter µ has converged to 0.0013 and
has adapted according to the noise energy in the control effort signal and the magnitude of
the tracking error. In steady- state, the variable gain approach for joint position estimation
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performed better than using a fixed gain with µ equals to 0.0004 or 0.0019. Finally, from
a practical point of view, the HGO can be implemented in a simple fashion by using only
the plant output, being similar to a “dirty derivative” with a time constant varying with
the tracking error and the control effort noise estimation.

5.1 Future Works

This work provides a framework for developing more features for a simulated prosthesis
test robot. The simulation encompasses Recursive Newton-Euler for mechanics compu-
tation and computed torque controller. The stability analysis is left as future work.

So far, the literature showed that other observer techniques (via sliding mode or
Kalman filters) estimate Ground Force Reactions accurately [34]. This estimate helps
define gait phases when using finite state machines as a mid-level controller. To the best
of the author’s knowledge, there is no High-Gain Observer approach for this task, leav-
ing as alternative future work. It would be possible to implement a finite-state-controller
using ground force reactions and state estimates obtained from an augmented HGO.

One could also use an impedance-based tracking controller for some joints initially
(ankle and knee) and position tracking control for the others. Additionally, a comparison
between the proposed approach and a Kalman Filter approach should be realized under
same noise levels and parametric uncertainties.
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[22] BÉDARD, S., ROY, P.-O. “Actuated leg prosthesis for above-knee amputees”. jan. 1
2008. US Patent 7,314,490.

[23] MARTIN, J., POLLOCK, A., HETTINGER, J. “Microprocessor lower limb pros-
thetics: Review of current state of the art”, Journal of Prosthetics and Or-

thotics, v. 22, n. 3, pp. 183–193, 2010.

[24] VAROL, H. A., SUP, F., GOLDFARB, M. “Real-time gait mode intent recognition
of a powered knee and ankle prosthesis for standing and walking”. In: 2008

2nd IEEE RAS & EMBS International Conference on Biomedical Robotics

and Biomechatronics, pp. 66–72. IEEE, 2008.

[25] SUP, F., VAROL, H. A., GOLDFARB, M. “Upslope walking with a powered knee
and ankle prosthesis: Initial results with an amputee subject”, IEEE Transac-

tions on Neural Systems and Rehabilitation Engineering, v. 19, n. 1, pp. 71–
78, 2011.

[26] GRIMES, D. L. An active multi-mode above knee prosthesis controller. Tese de
Doutorado, Massachusetts Institute of Technology, 1979.
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