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MARÇO DE 2020



Sampaio, Olavo Argôlo Batista
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CONSTRUÇÃO SEMI-AUTOMÁTICA DE BASES DE DADOS PARA

INSPEÇÃO SUBMARINA USANDO REDES NEURAIS CONVOLUCIONAIS

PROFUNDAS

Olavo Argôlo Batista Sampaio

Março/2020

Orientador: José Gabriel Rodŕıguez Carneiro Gomes

Programa: Engenharia Elétrica

A inspeção de dutos submarinos requer que especialistas analisem muitas horas

de v́ıdeos buscando eventos relevantes nos dutos, uma tarefa demorada e cara. Us-

ando modelos de aprendizado profundo para classificação de imagens, pode-se acel-

erar a busca por eventos em v́ıdeos, substituindo ou reduzindo o trabalho necessário

dos especialistas. Para treinar tais modelos, que podem ter milhões de parâmetros

treináveis, bases de dados com muitos exemplos são necessárias. Elas devem ser

constrúıdas através da anotação de eventos nos v́ıdeos. Essa tarefa, se feita manual-

mente por anotadores humanos, é lenta, requer muito esforço humano e é de dif́ıcil

escalabilidade. Este trabalho adapta e utiliza um método de anotar imagens usando

força de trabalho humana em conjunto com redes neurais profundas de uma forma

sequencial e iterativa. Esse método é usado para anotar 146 v́ıdeos de inspeção

submarina e construir uma base de dados com 457 mil imagens para uma tarefa de

classificação hierárquica de três ńıveis. Essa base de dados é comparada com uma

constrúıda apenas usando anotadores humanos, usando ambas para treinar e avaliar

modelos classificadores, onde a nova base permite que modelos tenham melhor de-

sempenho em 10 de 14 testes, se comparados aos treinados pela base concorrente. O

método também produz uma amplificação de esforço de anotação de 45:1, no melhor

caso, e 13:1, no pior, além de ser estimado que ele permita uma que imagens sejam

anotadas 4,3 vezes mais rápido do que o método manual anterior.

Palavras-chave: base de dados, aprendizado profundo, anotação automática, an-

otação semi-automática, ferramenta de anotação.
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Undersea pipeline inspection requires that specialists analyze many hours of

video searching for relevant events, a time-consuming and expensive task. Using

deep neural models for image classification can accelerate event discovery in videos,

substituting or reducing the work required from the specialists. To train such models

with millions of parameters, large labeled datasets are required. The datasets must

be built by annotating the events on videos. If that is done by human annotators,

it becomes a task that is slow, time-consuming and difficult to scale. This work

explores and adapts a method of annotating images using human effort in tandem

with deep neural networks in an sequential, iterative manner. The method is used

to annotate 146 videos of undersea inspection and builds a dataset of 457 thousand

images to solve a hierarchical classification task with three levels. This dataset is

compared to a dataset built using only human effort by using both to train and eval-

uate classifier models. The new dataset allows a model to achieve best performance

in 10 out of 14 tests in comparison to the performance of models trained from the

previous dataset. The method also produces an annotation effort amplification of

45:1 in the best case and 13:1 in the worst, and is estimated to allow the new dataset

to be annotated 4.3 times faster than the previous, manual method.

Keywords: dataset, deep learning, automatic annotation, semi-automatic anno-

tation, annotation tool.
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Chapter 1

Introduction

Modern deep neural networks can achieve state-of-the-art results on classification

tasks over many different fields. However, the models used have millions of param-

eters and require training on large labeled datasets. The creation of such datasets

is an expensive process that requires many hours of often specialized human effort.

This annotation cost grows linearly with the dataset size, but the cost of building a

larger dataset is offset by allowing models to achieve better performance.

The experience of developing deep learning models applied to undersea pipeline

inspection, detailed in Section 1.4, showed that the most time-consuming task in

the project pipeline is the construction, correction, and maintenance of the dataset

required to train the models. It demanded the concerted effort of several annotators

over several months to annotate each part of the dataset.

Thus, this work explores a method to facilitate the annotation of image datasets

applied to the task of image classification on pipeline inspection, using deep neural

networks in tandem with human effort. In particular, the dataset is sourced from

groups of videos and the associated classes have hierarchical relationships. These

characteristics must be taken into consideration during the development of the an-

notation procedure.

1.1 Motivation

Pipeline inspections are done by oil companies to survey a predetermined extension

of a pipeline, searching for relevant features for a given inspection. These features

can be known markers such as pipe connectors, riser floaters, oil well “Christmas

trees” or written markings on the pipe. They can also be features that characterize

problems in the pipeline. For example, damage to the pipe structure, a leakage,

previously-made repairs, a corroded electrolytic anode, a pipe torsion, kink or knot.

Anything that indicates current or future degradation of pipeline integrity may be

identified in an inspection. However, such inspections are carried out remotely and
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must be later analyzed by company specialists. The inspections produce a large

amount of video footage, which must be analyzed in search for the relevant features

or events that the company deems interesting. This means encumbering several

highly specialized workers: an expensive and inefficient solution.

For this reason, creating a method to quickly identify which video segments

harbor relevant events would allow the experts to use their time more efficiently,

focusing their attention only on preselected videos or video segments. This procedure

would facilitate the creation of classification datasets for this task, thus improving

their availability and size which, in turn, tends to improve model performance.

Thus, it is beneficial to explore methods for facilitating image labeling and dataset

creation.

This project was developed using the Python programming language and the

code is available at github.com/olavosamp/semiauto-video-annotation.

1.2 Objectives

This work seeks to apply a method of fast image annotation to create a classification

dataset. To this end, it adapts the iterative labeling procedure described by [1], that

uses deep-neural-networks-based annotation with humans in the loop, to annotate

an image dataset for the task of pipeline inspection. This procedure is expected

to amplify the labeling work done manually, by humans, and create a dataset that

can achieve equivalent or better performance than a baseline dataset built using

only human annotation while requiring less human effort to create. This allows the

creation of bigger datasets in less time and for a smaller cost than the traditional

solution of manually annotating all samples.

This semi-automatic annotation procedure using humans and classifier models

is an iterative process that involves annotating a small number of difficult images

of the dataset with humans, and annotating a large number of easy images with a

neural network.

The process begins with a human annotating a small number of images of the

dataset, that are then used to train a model. The model evaluates the remaining

unlabeled images and separates the images with a high confidence score from the

images with low confidence. Those with high confidence are considered annotated,

while the remaining examples compose the new unlabeled set. Another batch of

images is manually annotated from the unlabeled set and the model is trained from

scratch with a larger training set. This loop iterates over the dataset until the set

of unlabeled images is small enough to be manually annotated.

The automatic labeling done by the neural network tends to be of inferior quality

than human labeling. It has a higher labeling error - the percentage of mislabeled

2
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examples - and often selects less representative images than annotations made by

human experts. However, the use of classifier models facilitates an increase in dataset

size. It is expected that a large, but weakly annotated, dataset performs better

than a smaller but carefully annotated one. This performance can be evaluated by

training a model using each dataset and evaluating its performance in a common

validation set. The superior dataset is the one that allows a model to perform better

in a given measure when trained in that dataset.

Thus, this work seeks to adapt a procedure for faster dataset creation using

human annotators and deep neural network models. It also seeks to create a dataset

for the task of pipeline inspection using this procedure and compare it against a

baseline dataset previously annotated. It is expected that a model trained in the

new dataset can achieve performance comparable to one trained in the baseline

dataset while requiring less time and human effort to build.

Figure 1.1: A sequence of nine sequential video frames. The time interval between
each sequential pair of frames is 1 s.

However, a disadvantage is that each example of a semi-automatically annotated

dataset is less valuable than an example of a manually annotated one. One factor

is that they are often very similar, because of the constant-rate sampling used to

obtain the video frames, as exemplified in Fig. 1.1. Therefore, it is expected that

the former needs to be larger than the latter to achieve the same performance.

A remark about dataset availability: since the source videos are proprietary and

often contain classified information about the nature of the pipelines or pipeline

operations, the dataset created in this work is not made available to the public.
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1.3 Classification Task

The classification task studied in this project is the identification of events in un-

dersea pipeline inspections via image classification.

Related tasks are to identify whether a video frame contains a duct, whether

a duct contains an inspection event or event features, and the classification of a

given event in a set of five classes. These tasks are organized in three sequential,

hierarchical, levels. Each level classifies its inputs and feeds the positive examples

to the next level.

1.4 Previous Work

The classification task tackled in this work was already subject of (unpublished)

research made on a previously developed project, whose results are used in this

work as a baseline for comparison. The previous project’s goal was to build a

classifier system to identify events in pipeline inspections. The system receives a

video as input and identifies which frames depict a relevant event. This resulted

in the development of a labeling tool, the annotation of image datasets, and the

training of classifier models for several tasks.

In the current work, a dataset is created for the same tasks, and the same classifier

model architecture is used. The difference is that a new method for building the

dataset is explored. It uses the same set of videos as an image source but selects

which images will compose the dataset and annotates them differently.

In the previous work, an image dataset – the reference, or baseline dataset –

was annotated largely by hand using two methods over a period of two years. Part

of the dataset was sampled using variable-rate sampling that prioritizes interesting

video segments flagged by human annotators. Another part was sampled uniformly

and then human annotators labeled and selected which images would be included in

the dataset. Each of these methods was used to annotate part of the source videos

or used for the correction of already labeled videos. These methods are described

in Section 2.1, and the dataset, in Section 3.2.

1.5 Description

This work is organized in four more chapters. Chapter 2 introduces the theoretical

basis of the methods and techniques used in this work, as well as contextualizes the

methods used in previous projects that led up to the current work; Chapter 3 details

the classification task, iterative annotation process, classifier training, creation of

the validation set, and how the dataset comparison is carried out; in Chapter 4 the

4



results of the iterative annotation, created dataset, model comparison, labeling error

analysis, and annotation speed estimates are discussed; and Chapter 5 contains the

discussion of results, achieved and missed goals, final remarks, and ideas for future

work. Appendix A contains additional data about the iterative annotation process

that would take too much room in the previous chapters.

5



Chapter 2

Concepts of Data Annotation

This chapter briefly discusses select topics that are used in this work. It aims to be

an introduction to those themes, and to allow the reader to have an understanding

of the methods used and a starting point for further study, if desired. Throughout

this work, it is assumed that the reader has basic familiarity with machine learning,

particularly deep neural networks. If not, [2] and [3] are good learning materials.

2.1 Annotation Methods

There are different ways to annotate examples and register the data during the

process of building a dataset. As this project deals with the construction of image

datasets sourced from videos, two methods used to build the reference dataset are

discussed in this section. They should allow a human annotator to easily analyze and

classify groups of images spending as little effort as possible, as well as registering

this information in an accessible way.

The methods are discussed according to the chronological order in which they

were used in this and preceding projects. The goal of this section is to contextualize

the construction of the reference dataset, used as a baseline for the new dataset.

The methods are: the annotation of video intervals and the sorting of image folders.

The use of annotation tools is discussed, briefly, in this section, and in detail in

Section 2.2.

The first method, video interval annotation, consists in associating video time in-

tervals with labels. The annotator analyzes the source video and identifies a relevant

class feature. Then, they determine the initial and final video timestamps where

the desired feature lies. The defined time interval must be continuous and represent

well the target class. When the annotator is done registering the desired intervals,

this information is used to sample images from the video, with each annotated time

interval associated with a class (or group of classes) and yielding images labeled in

the same way. Figure 2.1 represents the result of this annotation method saved to

6



Figure 2.1: Example a file used to register image labels. This CSV file holds infor-
mation of video interval annotations and their corresponding labels. The second to
fourth columns represent the video interval’s label (class), start time, and end time,
respectively.

a CSV file.

This method is flexible as it allows the image sampling rate to be chosen inde-

pendently from the class labeling, and it helps the annotator label groups of similar

images that share a temporal immediacy. Its disadvantages include a slow annota-

tion speed and relatively high mislabeling chance. The first is due to requiring the

annotator to register subjectively and precisely the time interval, the second arises

from the medium used to register the labeling data in the project. The annotator

is required to manually register the information of each time interval on a file, thus

writing several fields of information in a time-consuming and error-prone process.

This method was used to build part of the reference dataset described in Sec-

tion 3.2 but was later discarded in favor of manual sorting of image folders. The

main reason for this is that the former method was harder to re-annotate since the

individual images are undefined until video sampling is performed. Besides, dataset

creation is more cumbersome (than in the latter method), since it relies on auxiliary

programs to interpret the annotation data and sort the images into classes.

The second method explored consists simply in labeling each example individu-

ally. This method requires sampling the videos before the annotation, obtaining a

set of unlabeled images. A human annotator then analyzes each image individually

and assigns it to a class. The labeling information must then be registered in some

way for sharing or use in other steps.

It is a way of annotating images that consists in organizing the dataset examples

in folders according to their class. Each image is moved to a folder corresponding

to its associated label after annotation. This is advantageous because the medium

used to register the annotations is also a common way to organize the examples in

a dataset for sharing or model training. However, if the images are moved after

annotation, their class information may be lost.

The folder file structure can be saved in a separate file after the dataset is an-

notated. This “manual sorting of image folders” method was used to annotate part

of the reference dataset and required minimal setup, which allowed annotators to

contribute more easily, and made the annotation process more interpretable.

7



Annotation tools may be used to enhance either method. They can be any soft-

ware that helps human annotators label data. They may promote faster annotation,

less labeling error, standardized annotations or any other benefit to the annotation

process.

2.2 Annotation Tools

Annotation tools are widely used to help annotate datasets. They are designed to

assist a human annotator label data, and to use one in a project, it must either be

designed for a specific problem or be selected among one of several existing, freely

available options. Some examples are discussed in this section, and then the tool

used in this project is described.

Designed for image and object annotation, LabelMe [4] is a simple web-based

tool that allows collaborative labeling and label sharing in a freely accessible online

platform. It displays one image at a time and the user is able to annotate objects

in the scene using a polygonal drawing tool. The platform was used to create the

dataset of same name.

Chimera [5] is an image annotation tool that combines machine learning and

rule-based classifiers to help the annotator handle large amounts of retail product

images. Crowd-sourced annotation evaluation is used to analyze and give feedback

to the hand-crafted classification rules. It tackles the challenges of variable human

resources scale, uneven annotation loads, and changing data distributions.

In [6], a video annotation tool named interactive Video Annotation Tool (iVAT)

is presented. It supports manual, semi-automatic and automatic annotation, inte-

grating computer vision algorithms in an incremental learning framework to facili-

tate annotation. The tool is designed for object segmentation and allows a user to

track objects throughout a video segment. It includes annotation quality statistics,

annotation timeline visualization, video segment overview, labeling categorization,

and three bounding box drawing options.

A web-based open-source system for video annotation that supports image,

bounding box and polygon annotation with several drawing options is detailed in [7].

It also uses an R-CNN based object detection model to track objects along frames

and propagate bounding box annotations to help the user. The tool is applied to

create a driving dataset, the BD100k dataset.

In the previous project, a labeling tool was developed and used to annotate part

of the reference dataset. Developing a tool customized for the project allowed more

control over its characteristics. It is a desktop program for the Windows operating

system, developed using the Python module PyQt5. It displays images individually

to the user and allows them to assign a class to the image, skip to the next image,
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Figure 2.2: Screen capture of the labeling interface in use. The top and bottom por-
tions of the image are omitted. The rightmost portion of the screen displays buttons
used to assign labels for the three classification levels described in Section 3.2. The
user selected the classes Duct, for level 1, and Not Event, for level 2.

save and load annotation progress, jump to a specific image, and move annotated

images to folders according to their assigned classes. The user can interact with

the tool through a visual interface, using mouse, keyboard, and perform navigation

and labeling using hotkeys. It saves annotations in CSV files to allow multiple

labeling sessions, and for easy sharing. This automates part of the annotation

process, thus reducing the cognitive load of each annotation task, and focusing the

annotator attention on a single, straightforward task of labeling the image among

a pre-selected list of classes. The labeling is made for all three hierarchical levels

at the same time. The interface suggests, but it does not enforce, the hierarchical

relationships for the user. Figure 2.2 shows a view of the labeling interface during

use. It allows the user to annotate more labels than the nine classes used in the

current work (They are duct, event, anode, buried, damage, flange, and repair.),

among all levels. This allows more flexibility to select only the relevant labels and

discard classes that are ambiguous or have too few annotated examples.

As detailed in Section 4.3.2, it is estimated that using the interface led to an

increase of up to 100 times in annotation speed during the construction of the

reference dataset.
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2.3 Class Imbalance Treatment

When dealing with a dataset with an unbalanced class distribution, a situation with

one class with many examples and another with a few ones, attempting to train a

classifier using that dataset encounters difficulty. The model has to learn adequate

parameters to define class separators, but the larger class has a greater effect on

the loss function and influences the learning process to favor itself. The trained

model is then not able to discriminate between examples from both classes as well

as if it was trained with samples of the same size. In this case, the best solution

would be to obtain more examples for the smaller class. However, this is not always

feasible. Discarding examples from the larger class also results in the two classes

being balanced, but, since obtaining training examples is hard, discarding them is

not ideal. Two other main solutions are available: sampling each class differently so

that each training mini-batch is balanced, and modifying the way the cost function

weights examples of each class.

The first option (sampling differently) changes the way the dataset is presented

to the model. If each mini-batch is made to harbor a balanced dataset sample, with

the same number of examples for each class, none influences the learning process to

the detriment of the others and the problem is solved. Usually, to select examples for

a mini-batch during training, the training set is sampled randomly and uniformly.

Selected examples are either taken out of the set or not, and the process is repeated

to select the next mini-batch of examples until all images in the training set are

seen by the model. To balance class contributions, the sampling is changed so that

each element of a class has a probability inversely proportional to the class size.

Therefore, on average, each mini-batch has the same number of examples of each

class.

The second option (cost function weighing) consists of weighing each class dif-

ferently as their examples are evaluated by the cost function. If the weights are

selected as to counteract the ratio in class size, the larger class numerical advantage

is eliminated.

Both solutions are mathematically equivalent and neither completely solves the

problem, as there is still a class with few examples. From the point of view of the

training process, if either one of the above methods is implemented, then each of

the rarer examples are worth more. But the class still lacks diversity and the model

may not be able to generalize well on other samples.

The method used in this work is the cost function weighing, as it is simpler to

implement. It is described in this section. The other method can be used inter-

changeably with minimal impact on the model’s parameters.

The error loss function, or cost function, is calculated during model training for
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each mini-batch (of size M) as the sum of the values of the cost function J , given

as

J(X) =
M∑
i=1

J(xi) (2.1)

where X = [x1,x2, . . . ,xM ] ∈ RN×M is the input matrix with M examples and

J(xi) is the cost function applied to a single example.

To change the impact of each training example on the model’s parameters, the

error is modified to a weighted sum,

J(X) =
M∑
i=1

wiJ(xi) (2.2)

where wi is the class weight associated with xi such that, if Mj is the number of

examples of class Cj,

wi =
1

Mj

, if xi ∈ Cj. (2.3)

However, for significant differences in class size, this method can lead to weights

that are too small and impair learning of the larger classes. In this work, a modified

version of the original formula is used, to avoid large differences in class weights.

The weights are given by

wi =

√
1

Mj

, if xi ∈ Cj. (2.4)

The most evident benefit of this method is smaller variance of the model classi-

fication results. Discouraging the class weights from achieving extreme values miti-

gates abrupt variations on the model parameters brought by changes in mini-batch

order or initialization during training.
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Chapter 3

Semi-Automatic Annotation

In this chapter, the methods used to create and evaluate the semi-automatically

annotated (also referred to as semi-automatic, or semiauto) dataset are discussed.

This project annotates a dataset with a combination of human and computational

effort. The classification task tackled is the identification and sorting of a set of

inspection events in an undersea pipeline. Examples of inspection events are a

damaged or repaired pipe segment, and a bolt flange that is part of the pipe. In

this work, duct, pipe segment or pipe section are used interchangeably to represent

a part of a larger pipeline contained in a captured image.

The dataset was derived from a set of videos of undersea pipeline inspection.

Each video was sampled at a rate of one frame per second. These sampled images

formed an initial unlabeled dataset, upon which an iterative annotation process was

applied. The process uses manual and automatic annotation to label all samples

in classes, following a hierarchical relationship. The manual annotation is made by

human effort, while the automatic annotation is provided by a deep neural network

classifier. This system allows fast labeling of large numbers of samples, thus re-

ducing the required time and human effort while maintaining an acceptable level of

annotation precision and performance on the validation set.

3.1 Video Dataset

The existing video dataset contains 143 videos of undersea pipeline inspections

recorded over several years. They are recorded in color but vary in location, na-

ture of the activities carried out, lighting, sand occlusion, presence of interfering

sea life, presence of occluding machinery, pipeline condition and type, blur, video

quality, resolution, and format. Table 3.1 shows the variation in resolution among

the dataset images.

The recordings were made by a subsea Remotely Operated Vehicle (ROV). Each

ROV has a single camera of varying characteristics and records a set of videos. The
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vehicle hovers over the target pipeline and records the entire inspection run. It

eventually stops on pipe segments that the remote operator deems relevant for the

inspection, but can also record the undersea floor, empty water, and otherwise

uninteresting features.

Table 3.1: Source video count according to resolution. Resolution is represented in
pixels, as (width × height).

Resolution Number of videos
352 × 240 2
352 × 288 1
352 × 480 49
640 × 480 18
704 × 576 30
720 × 480 29
720 × 576 14

The videos are treated only as a source of still images. Each frame in a video is

regarded independently and their time-related nature is not exploited in this work.

Images extracted from the same video tend to be similar and may thus contain the

same kind of target feature or event. As such, images from a single video, or a set of

similar videos, are allocated together in a single training or validation set to avoid

bias.

3.2 Previously Developed Image Dataset

This classification task has been the subject of previous work. In [8], a supervised

dataset was annotated for a similar task, but on another type of pipeline with a

somewhat different domain. In [9], a supervised dataset was annotated through a

combination of variable-rate sampling and manual image annotation and selection.

This approach tackled a simpler task than the current work: identifying whether

an image contained a pipe segment or not. In this, it the approach yielded 81.7%

average class accuracy. Further work approached the task of classifying an image,

already tagged as a pipe segment, as containing or not an inspection event, and then

classifying the event type. This three-stage hierarchical approach has yielded good

results and is the process used in this project.

This work benefits from the previously devised approach for three-stage hierar-

chical image classification. It splits the classification task into three simpler tasks

or levels, following a sequential structure where the outputs of a given level are the

inputs of the next one.

First, an input image is classified as containing a pipe segment or not. The

positive outputs of that level, duct images, are then fed into the second level, which
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classifies them as either containing inspection events or not. Finally, the last level

receives images of events and classifies them into one of five possible classes: galvanic

anode, duct damage, duct repair, bolt flange, and buried duct.

Figure 3.1: Examples of negative examples at hierarchical Level 1.

Figure 3.2: Examples of negative examples at hierarchical Level 2.

The following list describes the classes at all three levels, and Figs. 3.1 and 3.2

present image examples for levels 1 and 2.

• Level 1 (binary):

– Duct : positive class. Presence of a recognizable portion of a single pipe

segment in the image;
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– Not Duct : absence or images from scenes with confusing information, or

many cluttered objects, are included in this class.

• Level 2 (binary):

– Event : positive class. Presence of an inspection event on a pipe segment.

The event corresponds to a particular class at Level 3 or, otherwise, it

may correspond to another interesting event set that has not yet been

defined as a class at the next hierarchical level;

– Not Event : absence of an inspection event on a pipe segment. The duct

does not have any interesting or relevant features.

• Level 3 (multiclass):

– Anode: presence of a galvanic anode on the pipe segment. This is usually

a white thick band over the duct, often near a bolt flange;

– Buried : the pipe segment present on the image is partially buried (oc-

cluded by sand), but still recognizable as part of the pipeline. A segment

that is completely buried is not detectable in the image and thus not

included in this class;

– Damage: presence of any significant damage to the pipe. It may be a

scratch or tear of the outer rubber coating, a segment with its outer

coating scraped off and so that the inner metallic layer is exposed, an

instance of the metallic layer pushed to the outside of the duct or any

other apparent damage;

– Flange: presence of a bolt flange on the pipe segment;

– Repair : presence of a repair previously made on the duct. Repairs are

usually characterized by a tape wrapped over a part of the pipe, but

they can appear in other forms. What problem was being repaired is not

important in this case.

This hierarchical procedure splits a single, difficult task, that is, multiclass clas-

sification on a broad domain, into easier tasks. Each subsequent level must solve a

classification problem inside a smaller domain than the immediately previous one.

The second level receives only images of pipe segments, thus skipping the effort of

determining whether unrelated machinery is part of the duct or not. The third

classification level processes images of inspection events only. The procedure is

represented in Table 3.2.

In previous work, one dataset for each level was created through manual anno-

tation, for use in a hierarchical procedure as described. Each dataset was used to
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Table 3.2: Diagram of the three-level class hierarchy. Classes in bold are the positive
or multiclass options at their respective levels.

Level 1 Level 2 Level 3
Not Duct

Duct

Not Event

Event

Anode
Buried
Damage
Flange
Repair

train one deep neural network responsible for the classification of images on a single

level. This achieved acceptable results, which are discussed in Section 3.6, and will

be used as a baseline performance.

Dataset size and class distribution for each level are detailed in Table 3.3. Each

level may benefit from images that have been already annotated at a previous level,

and it also adds new images to the dataset. This means Level 2 and 3 image counts

do not necessarily match up with the positive image counts at their immediately

previous levels, as would be expected if all datasets were derived from the same

group of images.

Table 3.3: Reference (manually annotated, baseline) dataset class distributions for
all three classification levels. Total counts for each level are in bold.

Class Image Count

L
ev

el
1 Duct 1794

Not Duct 784
Total 2578

L
ev

el
2 Event 1020

Not Event 1169
Total 2189

L
ev

el
3

Anode 480
Buried 1109
Damage 505
Flange 771
Repair 458
Total 3323

The annotation process is different for this reference dataset and the new semi-

automatically annotated dataset. There are two main differences. First, the video

sampling rate is different. In the case of the reference dataset, the images are hand-

sampled by human annotators, using the annotation interface or not. In the semi-

automatic dataset’s case, the videos are sampled uniformly and, then, all images of

a given class are selected by the classifier model. This may lead to many images
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being very similar, which is generally not desirable but is an acceptable trade-off.

Second, the manual annotation criteria are different: for the reference dataset,

the annotators were generally instructed to annotate an image as part of a class if

its main element is an object or feature of that class; for the semi-automatic dataset,

an image is labeled as part of a class if that class is identifiable within the image,

even if it is not the principal element. This difference occurs because each image

in the reference dataset is annotated only once and is not subject to the multiclass

translation process, described in Section 3.5. The different tools and methods used

to annotate the datasets may also exacerbate the differences between them.

3.3 Iterative Annotation

To quickly annotate the 457 thousand images extracted from the video dataset, a

semi-automatic iterative annotation procedure is proposed. It is an adaptation from

the procedure used in [1] to annotate a large number of unlabeled images obtained

from web searches and to create the Large Scene UNderstanding, or Large SUN

(LSUN), Dataset [10]. The main differences between [1] and the present work are:

• Classification Task: [1] annotates a dataset for binary classification tasks, while

the current work annotates two datasets for binary and one for multiclass

classification. In the latter case, this difference is reconciled by annotating

each class separately as binary tasks and then merging them into a multiclass

dataset;

• Image sources: the unlabeled images used in [1] are obtained from bulk Internet

searches using image search engines, while the present work obtains its images

from frames sampled from a specialized, proprietary, video dataset;

• Image relationships: the classes in the LSUN dataset are composed of un-

related images that are independently sampled from available search engine

image results. Images used in the current work are sampled from videos and

are thus intrinsically related. Frames sampled in short sequence and from the

same video tend to be very similar, while frames sampled from different videos

tend to be less similar;

• Scale: while [1] tackles a large-scale problem of 59 million images to be

mapped into 20 classes, this project starts with 457 thousand images and

builds datasets of equal or smaller size.
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3.3.1 Iteration Step-by-Step

The procedure starts with the creation of an unlabeled set of images to be annotated.

To this end, each one of the 143 available videos was sampled at a rate of one frame

per second. The resulting images compose an unlabeled dataset of 457 372 images

detailed in this subsection. Figure 3.3 illustrates the iterative annotation process.

The iterative loop starts with the manual annotation of a small fraction of the

unlabeled dataset, such as 1%. In this case, 4 676 images were manually annotated, a

little over 1%. Every instance of manual annotation labels each image for every level

of classification. As the classifier models used are independent, an image annotated

at one level can also be used in the following. After the manual annotation, the

currently annotated set is split into training and validation datasets. This is done

with a uniform random split of 80%/20%. Then, a classifier is trained in the training

dataset and is, then, used to evaluate every image of the validation set. Each

validation image is presented to the trained classifier, which gives a score to the

input image.

Next, these scores are normalized and two thresholds are defined for the evalu-

ation scores: an upper threshold, above which images are considered positive class

examples and a lower threshold, below which they are considered negative class ex-

amples. Images scored between these thresholds are still considered unlabeled. The

thresholds are selected on the validation set. The upper threshold is selected such

that 99% of the images above it are true positives. The lower threshold is selected

such that only 1% of all positive images are below it.

Then, all unlabeled images are evaluated by the trained classifier and classified as

positive examples, negative examples or unlabeled, if their scores are above the upper

threshold, below the lower threshold or between the two thresholds, respectively.

The images labeled by this process are considered already annotated and are removed

from the unlabeled set. They are not used to augment the training set, as the size

of the automatically labeled images set can become much larger than the size of the

manually annotated ones, which might introduce or increase classifier bias. Also,

the class distribution of the annotated images is different from the distribution of

the images remaining in the unlabeled set, which could further skew the classifier.

Finally, a new iteration begins. The remaining unlabeled images of the last

iteration make up the unlabeled set for the current iteration, and a fraction (typically

1%) of the images in the unlabeled set is manually annotated. All images manually

annotated in all iterations so far form the labeled set, which is used to train the

classifier again from scratch.

The process ends when the remaining unlabeled set is small enough to be com-

pletely annotated through manual labeling. In this work, the iteration loop ended
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dataset
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Evaluate
examples
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thresholds

Automatic
annotation
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Labeled
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Unlabeled
dataset Unlabeled examples
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(5b)

Figure 3.3: Diagram of the iterative annotation process. (1) The process starts with
an initially annotated set of images; (2) then, a classifier model is trained on the
annotated set; (3) the yet unlabeled examples are given a score by the trained model
and, (4) based on the validation set, decision thresholds are selected to ensure 99%
precision and 99% recall; (5) unlabeled images with scores greater than the upper
or smaller than the lower threshold are considered labeled and compose the labeled
dataset (5b), images with scores lying between thresholds are still unlabeled (5a);
a sample of the unlabeled set is manually annotated (6) and incorporated to the
dataset used for training (2).
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if the unlabeled set size reached 4 thousand images or less.

3.3.2 Details

Other implementation details of the iterative annotation are discussed in this sub-

section.

Classifier

The classifier used for automatic image annotation is a deep neural network using

an adapted version of the Resnet18 architecture [11] and using cross-entropy loss

function, weighted as to mitigate class imbalance, as discussed in Section 2.3. The

network architecture adaptation consists of changing the fully-connected layer to

two neurons, corresponding to the positive and negative classes. The model was

initialized with available pre-trained weights, obtained by [11] by training the model

on the ImageNet dataset [12] [13]. The initialized network is then trained on the

manually annotated dataset. All network layers are trained, including the convo-

lutional and fully-connected layers. In each new iteration, the model weights are

reset to their pre-trained values, so that each trained model is not dependent on the

previous one(s).

The training and validation set are split at random, selecting 80% and 20% of

the dataset for each set, respectively. As the dataset is composed of frame captures

from a group of videos, images sourced from the same video and potentially very

similar may end up in different sets. Usually, this is undesirable, as the classifier is

evaluated for its capability of generalization outside of the training set. Overfitted

models would be unfairly well evaluated because of the contamination of the training

set with validation set examples. However, in this case, it does not matter if the

results are misreported, because the classifier goal is to correctly label the given set

of examples, instead of being able to generalize on the entire dataset.

The first five iterations of the first hierarchical level trained the model for 500

epochs, with a mini-batch size of 256. This number of epochs is higher than nec-

essary. It is used in order to gauge the model behavior during training. In the

following iterations of that and subsequent levels, 150 epochs are used for training

as, in the first-level training runs, the model stops improving before that point. The

mini-batch size used made the process slightly faster than lower values. The opti-

mizer used is the Adam optimizer [14] with learning rate α = 10−3 and β1 = 0.9,

β2 = 0.99. The model that yields the smallest validation loss among all epochs is

selected to be used in the next stages.

An image is evaluated by the network by passing it as input to the selected model

and obtaining an output vector, which is an input vector for the cross-entropy loss
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function. In this case, it is a two-dimensional vector, as all annotation procedures

are transformed into binary classification problems, as discussed in Section 3.5. This

vector is given as input to a softmax function, whose output is a score value for each

class. The value for the positive class is recorded as the image evaluation score,

which is used for annotation in the next stage.

The model was implemented using the Pytorch [15] framework. It provided the

computational framework for model training and evaluation, deep neural network

model implementations, and data augmentation utilities. The hardware used for

training the network was a local machine with the following specifications: 64 GB

of RAM DDR4/3000 Kingston HyperX, NVidia GeForce GTX1080/11 GB Ti video

card, 3.6 GHz Intel Extreamer X99M Core i7 6850 CPU with 12 cores, SSD M2

Samsung EVO and HD WD REd SATA III hard drives.

Image Preprocessing

Input images are preprocessed and subject to data augmentation using some of the

transformations used in [11], as follows. In the training phase, images are subjected

to a random crop of resolution 224 × 224 pixels, then they are flipped horizontally

with a 50% chance and, finally, normalized with the mean and standard deviation

of ImageNet images, per channel. For the validation phase, images are resized to a

resolution of 256× 256 pixels, center cropped to 224× 224 pixels and normalized in

the same way as in the training phase.

Threshold Selection

To perform the automatic image classification, upper and lower thresholds must be

selected. These are used to classify the unlabeled images into positive and negative

examples and must be chosen based on a sample that follows the same class distribu-

tion as the unlabeled set. The sample used is the same validation set selected from

the 80/20% random split used for training the model. If the unlabeled set follows

the validation set distribution, the model is able to correctly label its images with

high confidence. If not, it will have difficulty classifying the unlabeled examples.

Having selected the validation set, its images pass through the inference process

of the trained network and each is assigned a score. The images are ordered by

their scores and classified as a labeled positive, a labeled negative or an unlabeled

class example. Images with an evaluation score higher than the upper threshold are

classified as positive examples and images with a score lower than the lower threshold

are classified as negative examples. These labeled images are then aggregated to the

automatically labeled set, but not used in future iterations.

Images with a score between both thresholds are still considered unlabeled and
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compose the unlabeled set for the next iteration. Selecting adequate thresholds

makes it so only images that the model classifies with high confidence are automat-

ically labeled, while images that are still challenging to the classifier move on to

the next iterations. However, high model confidence does not guarantee a correct

classification, as the network can, for example, attribute high score to an image

belonging to a negative class, if it cannot generalize well enough for that family of

images.

The threshold selection step is as follows. The upper threshold is a value

Tupper ∈ (0, 1) such that Pupper

Iupper
≥ 99%, where Pupper is the number of true positives

images with a score greater than Tupper and Iupper is the total number of images

with a score greater than Tupper. This means that the precision of the automatically

labeled images is made to be greater than 99%. Likewise, the lower threshold is a

value Tlower < Tupper, Tlower ∈ (0, 1) such that Plower

Ptotal
≤ 1%, where Plower is the

number of true positives images with a score lower than Tlower and Ptotal is the total

number of true positives in the validation set. In this case, this selection guarantees

that the recall of the automatically labeled set is greater than 99%. The labeling

precision and recall metrics can be modified by choosing different thresholds. This

carries a trade-off, as stricter thresholds will result in better labeling metrics, but

will annotate a smaller number of images each iteration, requiring more iterations to

annotate the dataset. In [1], the upper threshold was selected aiming for an anno-

tation precision of 95%, allowing for faster annotation while maintaining acceptable

precision and recall. In the current project, a precision of 99% is chosen because the

smaller dataset size allows for it to be annotated in a reasonable time frame, even

while using stricter labeling thresholds.

The algorithm used to select the thresholds is a simple brute force sweep of

possible values. To select the upper threshold, values are tested starting from 1.0

and descending until the condition of 99% or more ground truth positives above the

upper threshold is satisfied or the bound 0.0 is reached. Likewise, to select the lower

threshold, the sweep starts from 0.0 and tests values for the greater threshold that

still satisfies the condition of less than 1% ground truth positives under the lower

threshold or the 1.0 bound is reached. In both cases, the step size is 0.001. As speed

is not a concern, in this case, this simple method suffices.

3.4 Manual Annotation

In this work, the manual annotation of the images during the semi-automatic anno-

tation procedure was done by two human annotators. A verification step was carried

out after the development of the dataset, using annotations made by another three

human annotators to evaluate labeling error, described in Section 4.3.1. These vol-

22



unteers are not the same workers as the annotators for the semi-automatic labeling

part. No annotator that participated in this project is an expert on undersea ducts,

but they are trained to classify the data according to domain and project-specific

demands.

All manual annotation in this project was done through a previously developed

labeling interface to speed up human annotation, described in Section 2.2, and is

used with minimal adaptation in the current work. This interface displays the images

to be labeled sequentially, presenting the possible classes at each hierarchical level.

The reference dataset used in this project for comparison against the semi-

automatic dataset, described in Section 3.2, was annotated using different methods,

using slightly different criteria and by different annotators than the semi-automatic

dataset. This may cause differences in class characterization, as some images that

may be labeled as one class, following given criteria, may be labeled as another if

following different ones. As detailed further in Section 3.6, two validation sets are

used during dataset comparison to mitigate this.

3.5 Binary and Multiclass Treatment

As discussed in Section 3.2, the datasets for hierarchical levels 1 and 2 are anno-

tated for binary classification tasks, while the dataset for Level 3 is annotated for

a multiclass classification task. However, the semi-automatic annotation procedure

is done through binary annotation. It creates one binary dataset for hierarchical

Level 1, one for Level 2 and one for each of the five Level 3 classes. While Level 1

and Level 2 datasets are ready to be used for evaluation, a procedure to create a

multiclass dataset from the Level 3 binary datasets becomes necessary.

A simple prioritization scheme is carried out. A ranking of the five Level 3 classes

is established, and then, if a given image is annotated with multiple labels through

the five binary datasets, it is labeled as the highest-ranked annotated class.

The priority ranking is chosen according to technical criteria. The most impor-

tant inspection events in terms of urgency of identification and technical interest are

ranked higher. The class priority list is:

1. Damage

2. Anode

3. Buried

4. Flange

5. Repair (for details on this low priority, the reader is referred to the comments

about Table 4.4 in Section 4.1.3)
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As an example, assume a given image has been labeled as belonging to the buried,

flange and repair classes during the semi-automatic annotation. In the conversion

to a multiclass coding, this image would be labeled as an example of the buried

class, as it is the highest-ranking label in the priority list.

Note that this is only necessary for images automatically annotated by the clas-

sifier model. Manually annotated images are assigned a single class at hierarchical

Level 3 and do not need to be converted to a multiclass coding.

3.6 Dataset Evaluation

Once the dataset is annotated in a semi-automatic fashion following the procedure

described in Section 3.3, it must be evaluated in a comparison with the reference

dataset. Each dataset is used to train a deep neural network classifier and is then

evaluated by testing the trained network in a common validation set. The classifier’s

metrics in the validation set are used to compare the datasets. It is hoped that

the semiauto dataset provides data necessary for the classifier model to be trained

and then to achieve performance equal or acceptably worse than the performance

obtained by training the same model in the reference dataset.

This evaluation classifier may use the same network architecture as the classifier

used in the automatic labeling phase, but it neither uses their weights as a starting

point nor is trained for the same task. The model used in this step is initialized using

ImageNet pre-trained weights. The task of the classifier used in the semi-automatic

annotation step is to correctly label a fixed set of images, generalization to other

image sets is not required. However, the task of the classifier used in the current

evaluation step is to classify images of a group, given a small sample of that group.

Generalization outside the training set is required at this step, unlike in the labeling

step. Thus, the training and validation sets must be carefully selected in this step

as to not unfairly boost the models results.

Each hierarchical level is evaluated independently, involving a pair of semiauto

and reference datasets. Thus, three comparisons are made, one for each of Level 1,

Level 2, and Level 3.

3.6.1 Validation Set

The validation set is selected following the split of the reference dataset. This split

into training and validation sets was selected in a previous project by assigning im-

ages to each set according to their source videos. As each video produces images

that tend to be similar, images sourced from the same video are assigned to the

same set. If this precaution is not made, a video can be used in both sets, con-
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taminating the validation set with samples that are too similar to training samples,

unfairly boosting the evaluation results. The videos composing the validation set

were chosen to maintain a reasonable class distribution balance at the last hierar-

chical classification level and, also, to supply the most representative images to the

training set. Thus, this split is assumed to be reasonable for the semi-automatic

labeled dataset as well.

As both datasets are sourced from the same set of videos, the same criteria used

to choose the training and validation split into the reference dataset can be applied

to the semiauto dataset. The validation set images of the semi-automatic dataset

are sourced from the same videos used to compose the reference dataset’s validation

set. Thus, two validation sets are available, even though they are sourced from

the same group of videos: a validation set derived from the reference dataset and

a validation set derived from the semi-automatic dataset. As they are subsets of

the same pool of available frames from the same set of videos, they differ in what

images are selected to compose each set. The semi-automatic dataset’s validation

set has more images, but they are selected less carefully than those in the reference

dataset.
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Chapter 4

Evaluation of Datasets and

Methods

In this chapter, the results of the iterative annotation and dataset comparison are

discussed. The annotation process produces labeled examples that are used to create

a new dataset, which is evaluated and compared to an existing baseline, reference

dataset. It is expected that a model trained in the new dataset can achieve perfor-

mance comparable to a model trained in the reference dataset.

4.1 Semi-Automatically Annotated Dataset

In this section, we describe the results of the annotation process, the resulting image

datasets, the split into training and validation sets, and resulting class distributions.

4.1.1 Iterative Annotation

Following the procedure described in Section 3.3, the entire video dataset is an-

notated at three hierarchical levels. This procedure is carried out by two human

annotators: one labeled the initial set of 4 675 images and the other, the remaining

images.

Each iteration labels a different number of images, but a recurring trend is that

the first iteration automatic labeling step annotates the vast majority of the unla-

beled dataset, while the remaining images are labeled in the remaining iterations.

A likely explanation is that, since the unlabeled dataset is sampled uniformly from

videos, the majority of its images are very similar among themselves, and thus, easy

to classify. It follows that, in the first labeling iteration, the classifier is able to

annotate these easy images, and the remaining unlabeled images are more difficult

examples of the set. The results of Level 1 annotation are discussed here, while

Levels 2 and 3 are left for Appendix A.
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The results of each labeling iteration for hierarchical Level 1 are shown in Ta-

ble 4.1. Each row represents one iteration of the process, indicated by the first

column, while the first row, iteration zero, indicates its the initial, unlabeled, state.

The manual, auto, and unlabeled columns represent, respectively, the number of

images annotated manually by humans, automatically by a classifier model, and

of images still not annotated that will be carried over to the next iteration. The

percentage columns indicate the relative percentages of each row: manual and auto

percentages indicate the percentage of annotated images over the previous itera-

tion’s unlabeled set; the annotated percentage indicates the percentage of images

annotated in the row over the initial number of unlabeled images, 457 thousand.

The total row shows the sum of manual and annotated images over all iterations for

the manual and auto columns; for the percentage columns, it shows the percentage

of each column’s sum of images over the initial unlabeled dataset. This means that

a little over 2% of the annotated images were manually annotated, and almost 98%

were automatically annotated.

Table 4.1: Level 1 iterative annotation results. The process took 9 iterations to
complete. The Manual column does not indicate 100% annotated images because
duplicated images were discarded during the annotation.

It Manual Auto Unlabeled Manual % Auto % Annotated %
0 0 0 457372 0.00 % 0.00 % 0.00 %
1 4675 408685 44012 1.02 % 89.36 % 90.38 %
2 440 16844 26917 1.00 % 38.27 % 3.78 %
3 269 7410 19306 1.00 % 27.53 % 1.68 %
4 193 8319 10898 1.00 % 43.09 % 1.86 %
5 108 2618 8204 0.99 % 24.02 % 0.60 %
6 100 1661 4677 1.22 % 20.25 % 0.39 %
7 100 872 5518 2.14 % 18.64 % 0.21 %
8 100 1428 4032 1.81 % 25.88 % 0.33 %
9 4031 0 0 99.98 % 0.00 % 0.88 %
Total 10016 447839 - 2.19 % 97.92 % 100,11 %

Observing the annotated percentage column, over 90% of the unlabeled set is

annotated in the first iteration and the remaining images are labeled over the re-

maining eight. This reinforces the idea that the majority of the unlabeled images are

classified easily. Indeed, this seems to be a strength of model-assisted annotation:

the model can quickly label the easy images, directing the efforts of the human an-

notators to the harder examples. The data also shows that the manually annotated

images represent only 2.2% of all annotated examples. This shows the need to train

the models using only the manual set, as the automatic set would overwhelm the

more valuable manually annotated set’s contributions during training.

The iterative annotation data of Levels 2 and 3 follows the same trend as Level
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1 and is available in the Appendix A, in Tables A.1 and A.2.

The data for Levels 1 and 3 indicate values over 100% annotated images, in

relation to the initial unlabeled set. This occurs for the following reasons: the

initial manually annotated image set contains duplicate images that were discarded

in later stages; part of the starting manually annotated set contains images carried

over from previous levels, which may not be useful to the next task; some images may

be annotated twice, having manual and automatic annotations. These are oversights

or artifacts from the annotation process implementation that do not affect the final

results. Annotations that are duplicated or not relevant to a given level are discarded

after the iterative annotation process, with manual labels taking precedence over

automatic ones.

4.1.2 Automatic Image Classification

This subsection exemplifies the process of automatic image classification carried on

by the model during the iterative annotation process, discussed in Section 3.3.1,

through output histograms, and shows the results of the first iteration of the Level

1 dataset annotation.

Figure 4.1 shows a histogram of image scores of the validation set after being

evaluated by the trained model. These are the positive class values of the network

after passing through the softmax function. The values are normalized between 0

and 1 and displayed as two overlapping 100-bin histograms, one for positive and the

other for negative outputs. The red and blue vertical lines, respectively, represent

the upper and lower threshold values. The chosen upper threshold, in this case, is

Tupper = 0.89 and the lower one, Tlower = 0.09. These values achieve 99.09% ground

truth positive examples above the upper threshold (over examples above the upper

threshold) and 0.96% ground truth examples under the lower threshold (over all

ground truth positive examples), thus satisfying the desired threshold conditions.

The validation set in this iteration is composed of a set of 20% randomly selected

examples of the manually annotated dataset obtained up until this point. In this

case, there is only one iteration of labeling.

In each iteration, all manually annotated examples up until the current point

are used to train the model. These examples are randomly split 80/20% in training

and validation sets for model training. This validation set is also used for threshold

selection. As per the data on Table 4.1, 4 675 images are available for training in

the first iteration. In this case, duplicate images were discarded and the dataset

size is reduced to 4 310 images. Thus, the training set is composed of 3 448 (80% of

total) images, and the validation set, of 862 images (20% of total). The latter is the

number of examples in Fig. 4.1.
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These thresholds are applied to the unlabeled set, as shown in Fig. 4.2. Images

above the upper threshold calculated on the validation set are classified as positive,

while those below the lower threshold are classified as negative. In the case, there

are 452 697 examples in the unlabeled set, that also is the number of examples in the

histogram. Of this total, 408 655 examples were labeled, with 366 196 positive and

42 459 negative labeled images. 44 042 images were left unlabeled and proceeded

to the next iterations. This matches the number of unlabeled images left after the

first iteration, in the second row of Table 4.1 (30 images were duplicates and thus

discarded).
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Figure 4.1: Histogram of positive and negative output scores for the first iteration
of annotations of the Level 1 dataset, with 100 bins each. The data comprises only
the validation set. The vertical axis is in logarithmic scale.

4.1.3 Dataset

With the results of Section 4.1.1, annotated examples for the three hierarchical

classification levels are available. These examples are compiled and used to build

a new image dataset for the desired tasks. Note that, since the video dataset is

proprietary, and the images are sourced from these videos, the dataset is not made

publicly available. In this section, it will be discussed as a product of the annotation

process adapted for this work.

The annotated images are then transformed into binary datasets, according to

the procedure detailed in Section 3.5. This only applies to hierarchical Level 3, a

multiclass task, as Levels 1 and 2 are binary tasks annotated in a binary fashion,

and thus need no further treatment to compose their datasets.

The class distributions for the annotations of hierarchical Levels 1 and 2 are
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Figure 4.2: Histogram of output scores for the first iteration of annotations of the
Level 1 dataset, with 100 bins. The data comprises the unlabeled set. The vertical
axis is in logarithmic scale.

described in Table 4.2. The data also corresponds to the class distribution for these

levels corresponding datasets. The class distributions for Level 3 annotations are

shown in Table 4.3.

Table 4.2: Semi-automatic class distributions of annotations for hierarchical Levels
1 and 2. These are the same as the distributions for the corresponding datasets.

Automatic Manual Total
Count % Count % Count % Diff

Duct
Positive 388642 87 % 7885 79 % 396243 87 % 8%
Negative 59195 13 % 2117 21 % 61115 13 %
Total 447837 100 % 10002 100 % 457358 100 %

Event
Positive 123457 32 % 7119 49 % 130576 33 % 17%
Negative 258232 68 % 7274 51 % 265506 67 %
Total 381689 100 % 14393 100 % 396082 100 %

In both tables, the rows are grouped by class, and each row has the count of

positive, negative and total examples for that class. They also show the percentages

of each row count in relation to the total amount of examples of the corresponding

class. The data is further split by the automatic and manual columns. The Total

column is the sum of both manual and automatic examples, as well the final result

of the annotation process. For Levels 1 and 2, it also indicates the dataset’s class

distributions. The Diff column indicates the difference between manual and auto-

matic positive percentages. The percentages of the Automatic and Manual columns

are in relation to the sum of examples in each category. The percentages of the Total

column are in relation to the number of images available to the iterative annotation
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Table 4.3: Semi-automatic dataset class distributions for the annotations of hierar-
chical Level 3 classes.

Automatic Manual Total
Count % Count % Count % Diff

Anode
Positive 5080 4 % 557 7 % 5637 4 % 3%
Negative 117697 96 % 7164 93 % 124861 96 %
Total 122777 100 % 7721 100 % 130498 100 %

Buried
Positive 37339 31 % 5501 63 % 42840 33 % 32%
Negative 83879 69 % 3234 37 % 87113 67 %
Total 121218 100 % 8735 100 % 129953 100 %

Damage
Positive 16674 14 % 4288 41 % 20962 16 % 27%
Negative 103266 86 % 6281 59 % 109547 84 %
Total 119940 100 % 10569 100 % 130509 100 %

Flange
Positive 10336 9 % 3251 33 % 13587 10 % 25%
Negative 110388 91 % 6492 67 % 116880 90 %
Total 120724 100 % 9743 100 % 130467 100 %

Repair
Positive 109203 90 % 1547 17 % 110750 85 % 75%
Negative 11548 10 % 7789 83 % 19337 15 %
Total 120751 100 % 9336 100 % 130087 100 %

for that level. For Table 4.2, the percentages of the Total column are calculated in

relation to the number of starting images for that level. These numbers are 457 358

images for Level 1, 396 243 for Level 2 and 123 457 for Level 3.

A measure of how effective the annotation method is in reducing human effort

is the ratio between automatically and manually annotated images. For the hierar-

chical Level 1, this ratio is 44.77 automatically annotated images for every manual

image, or 44.77:1. For Level 2, the ratio is 26.52:1 and, for Level 3, the average

ratio between all five classes is 13.29:1. These results agree with the idea that each

hierarchical level is progressively more difficult than the previous, which is reflected

in the smaller automatic labeling ratio of higher levels.

The manual class distributions are obtained from uniform sampling of the source

images and are annotated by a method with low annotation error: human specialist

annotators. Thus, they can be assumed to be a good approximation of the dataset’s

class distribution. If the difference between the automatic and manual distributions

is too large, it may be indicative of a problem in the automatic annotation process

for that class. However, the difference in class distributions percentages is not a

precise indicator of difference in class distribution, in some cases. A small percent-

age difference can still be significant if the percentage of positive annotations is also

small. Measures that directly evaluate difference in sample distribution would be

more informative in identifying divergences between manual and automatic annota-

tions, but they were not further explored in this work.

After the annotation of Level 3, the Level 3 multiclass dataset was composed
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according to the procedure and class priority list described in Section 3.5. The

result is a multiclass dataset with unbalanced class distributions. The dataset is

also smaller than the total number of images annotated at Level 3. This occurs

because some images have not been labeled as any of the five relevant classes, but

as other types of events not relevant for this task and, thus, are not included in the

dataset.

Since the annotations for the Repair class flag 85% of the dataset as positive

examples, it is left as the lowest priority class in the binary conversion process

(Section 3.5). Even then, it is the second largest class in the Level 3 dataset, as

detailed in Table 4.4.

Table 4.4: Class counts and percentages for Level 3 multiclass dataset. Percentages
are relative to the total image count.

Count Percentage
Anode 5637 4,76 %
Buried 42774 36,16 %
Damage 20962 17,72 %
Flange 13282 11,23 %
Repair 35649 30,13 %
Total 118304 100,00 %

4.1.4 Validation Sets

With the semi-automatic dataset ready, its validation set can be separated following

the procedure of Section 3.6.1. In the reference dataset, 17 videos are used as a source

for the validation set images. The images in the semiauto dataset associated with

those videos are selected to build its validation set. The resulting class distribution

between training and validation sets for the semi-automatic dataset is shown in

Table 4.5. The same information about the reference dataset is shown in Table 4.6.

Each table shows the number and percentage of images for the training set,

validation set, and the entire dataset. The percentages are over the total amount of

images in each group.

The foremost difference between the two datasets (semiauto and reference) is

their size. The semi-automatic dataset is much larger, with 454 thousand more im-

ages, or 177 times more images, than the reference dataset at Level 1; 393 thousand

more images, or 181 times more, at Level 2; and 115 thousand more images, or 37

times more, at Level 3. Its greater size tends to confer an advantage over training

models on the smaller dataset, as explored in Section 4.2.

Both validation sets have class imbalances. The reference dataset was assembled

by hand with the general goal of obtaining the same proportion of image contri-
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butions from each video, selecting images that harbor unique and different events,

selecting most kinds of events from the dataset and maintaining class balance. These

goals are achieved partially with the data and annotations available at the time. The

reference dataset suffers from a very small number of examples in some classes, more

so in the validation set, and some class imbalance, especially at Level 1.

The semiauto dataset is split into training and validation sets following the guide-

line of the reference dataset. The lack of examples is mitigated, as the dataset is

larger, but the class imbalance becomes more pronounced. At Level 1, its training

set has a distribution of positive examples of 88%, an imbalance which is reversed

for Level 2, but that is also undesirable. The class distribution at Level 3 is also

worsened, with Anode and Flange classes corresponding to 6% and 5% of the total

number of examples, respectively.

These problems are mitigated by training with the weighted cost function and

chosen performance measures, but the harshest cases cannot be fully compensated.

These deficiencies may reduce the classifier’s performance or make it more difficult

to be evaluated.

Table 4.5: Class distributions for train and validation sets of the semi-automatic
dataset.

Train Validation Total
Semiauto Dataset Count % Count % Count %

Level 1
Duct 367492 88 % 28751 74 % 396243 87 %
Not Duct 51060 12 % 10055 26 % 61115 13 %
Total 418552 100 % 38806 100 % 457358 100 %

Level 2
Event 122374 34 % 8202 21 % 130576 33 %
Not Event 234641 66 % 30865 79 % 265506 67 %
Total 357015 100 % 39067 100 % 396082 100 %

Level 3

Anode 4370 4 % 1267 6 % 5637 5 %
Damage 15549 16 % 5413 27 % 20962 18 %
Buried 34540 35 % 8234 42 % 42774 36 %
Flange 12353 13 % 929 5 % 13282 11 %
Repair 31661 32 % 3988 20 % 35649 30 %
Total 98473 100 % 19831 100 % 118304 100 %

4.2 Dataset Evaluation

This section shows the results of the evaluation process detailed in Section 3.6. The

measures used for comparison were the cross-entropy loss and the average accuracy

score of each class, both obtained on the validation set. The models were trained

and evaluated five times. The resulting statistics are shown in Table 4.7. Columns

Dataset and Val (for validation) indicate, respectively, the dataset used to train
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Table 4.6: Class distributions for train and validation sets of the reference dataset.

Train Validation Total
Reference Dataset Count % Count % Count %

Level 1
Duct 1430 71 % 362 65 % 1792 70 %
Not Duct 584 29 % 198 35 % 782 30 %
Total 2014 100 % 560 100 % 2574 100 %

Level 2
Event 873 47 % 145 47 % 1018 47 %
Not Event 1003 53 % 164 53 % 1167 53 %
Total 1876 100 % 309 100 % 2185 100 %

Level 3

Anode 366 14 % 92 15 % 458 14 %
Damage 359 14 % 124 20 % 483 15 %
Buried 881 35 % 197 31 % 1078 34 %
Flange 618 24 % 117 19 % 735 23 %
Repair 324 13 % 99 16 % 423 13 %
Total 2548 100 % 629 100 % 3177 100 %

the model, and the validation set used to evaluate the trained model. On the Val

column, the letter R indicates that the reference set was used for validation, and

the letter S indicates that the semiauto set was used. The columns Loss and Loss

std indicate the mean and standard deviation of the cross-entropy loss. Columns

avg acc and avg std indicate the mean and standard deviation of the class-average

accuracy.

Table 4.7: Evaluation statistics for reference and semi-automatic datasets on both
validation sets over five evaluation runs. The best results of each validation set and
level are shown in bold.

Dataset Val Loss Loss Std Avg Acc Acc Std

L
e
v
e
l

1 Reference R 0.269 0.015 89.10 % 1.2 %
Semiauto R 0.199 0.009 91.35 % 0.9 %
Reference S 0.268 0.029 88.34 % 1.5 %
Semiauto S 0.159 0.010 93.70 % 0.6 %

L
e
v
e
l

2 Reference R 0.140 0.032 94.45 % 1.1 %
Semiauto R 0.291 0.013 88.94 % 0.7 %
Reference S 0.424 0.039 78.88 % 5.3 %
Semiauto S 0.144 0.009 94.30 % 0.6 %

L
e
v
e
l

3 Reference R 1.157 0.085 63.20 % 3.4 %
Semiauto R 1.528 0.098 54.88 % 5.3 %
Reference S 1.640 0.228 53.09 % 4.1 %
Semiauto S 0.493 0.055 68.20 % 3.6 %

Comparing the evaluation results, it seems that the model trained in the semiauto

dataset has an advantage over the reference-trained model at Level 1, but otherwise

performs similarly. Training in the semiauto dataset allows the model to achieve

better average accuracy and loss at Level 1, and when evaluating on the semiauto
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validation sets at Levels 2 and 3. However, at these levels, the reference model

(i.e. model trained on the reference dataset) performs better in loss and accuracy

on the reference validation set. The semiauto model also achieves a lower standard

deviation than the baseline model for both measures on all validation sets except at

Level 3 on the semiauto validation set.

A trend at all levels is that each model performs better on its own validation set.

That is to be expected, as the datasets were annotated differently. This is caused

by the video sample rate, which is different between the two, but also by slightly

different criteria for class annotation, as described in Section 3.2.

Table 4.8: F1 scores for Level 3 task classes of the best models selected from five
evaluation runs. Best results of each validation set are shown in bold.

Dataset Val Anode Damage Buried Flange Repair
Reference R 0.764 0.619 0.797 0.601 0.597
Semiauto R 0.697 0.413 0.811 0.729 0.247
Reference S 0.509 0.826 0.601 0.252 0.217
Semiauto S 0.786 0.852 0.966 0.665 0.651

The Level 3 results elicit a more detailed analysis. Table 4.8 contains the F1

scores 1 of the best models in each dataset-validation combination for Level 3 task,

while their confusion matrices are shown in Figs. 4.3 and 4.4. Note that the results

of the confusion matrices tend to be better from those reported in Table 4.7 because

they are obtained only from the best runs, while Table 4.7 reports the average results

of five runs. However, they still allow general dataset trends to be observed. Also

note that the best results from the confusion matrices and Table 4.8 may differ, as

while the table shows the F1 scores, the matrices show class accuracy.

Each figure shows the results of the two models – trained on the reference and

semiauto datasets – and evaluated in the same validation set. Observing the results

on the reference validation set in Fig. 4.4 and on Table 4.8, the reference-trained

model performs better on all classes, except Buried and Flange. On the Buried class,

it performs similarly to the competing model, but on the Flange class, the semiauto

model achieves a significantly higher F1 score than the reference. It seems that

the reference dataset does not have images in sufficient numbers or representative

quality to allow the model to learn to identify this class as well. The semi-automatic

dataset appears to have an advantage simply because its larger size contributes more

examples to the training set, which may allow the model to better learn to distinguish

these classes.

The hardest class for both models is Repair. The reference-trained model clas-

sifies with an F1 score of 0.60, a passable performance, but the semiauto model

1The F1 Score is a measure of accuracy for binary classification that corresponds to the harmonic
mean of precision and recall and is defined as F1 = 2P×R

P+R , where R is recall and P is precision.
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fails, with an F1 score of 0.25. This situation is mirrored on the semi-automatic

validation set, with the reference model performing very poorly, and the semiauto

model, passably well. This points to a difference in labeling criteria: the Repair

class may have been annotated differently in each dataset. Thus, a model trained

with the examples of one dataset cannot learn to classify the examples on another.

The Damage class appears to be difficult for both models. Both misclassify a

large fraction of examples as belonging to the Repair class. This makes sense, as

both classes present similar features on the pipe surface in some cases. Some types

of pipe damage are accompanied by attempted repairs. However, the classes are

still discernible on the majority of circumstances where this overlap does not occur.

This suggests that the reference validation set contains examples that are poorly

selected or too different from those on the training sets. The fact that both models

perform well on the semiauto validation set also suggests this.

Observing the semiauto validation set results on Fig. 4.3 and Table 4.8 shows

that the semiauto model wins on all classes, in this set. The combination of a larger

number of examples than the reference set and evaluation on its own validation set

may have conferred an advantage to the semiauto-trained model.

On the Flange class, the reference model performs very poorly when evaluated

on the semiauto validation set. Since other combinations between dataset and vali-

dation all achieve a reasonable F1 score of 0.6 and higher, this may indicate a poor

selection of training examples on the reference dataset.

Overall, on the semi-automatic dataset, the Anode, Buried, and Flange classes

appear to be well-annotated. The Repair class shows strong indications that the

network could not adequately label this class. While the task may be more difficult

by its overlap with the Damage class, the Anode and Flange classes have a stronger

overlap, but both models perform reasonably well on them. The reason for the poor

performance on the Repair class may be simply because it is harder to classify than

the other classes, and the network needed more manually annotated examples to be

able to label the dataset well.

Accounting for all levels, the results meet the desired performance standards

for the semi-automatically annotated dataset. The model trained on it achieves

reasonable performance on all levels, surpassing the reference dataset on Level 1

and attaining equivalent performance on Levels 2 and 3, with each model performing

on its own validation set, as expected. Since the goal was for the semi-automatic

dataset to reach, at least, equivalent performance as the baseline dataset, these

results satisfy that goal.
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(a) Results of the semiauto dataset, evaluated on the semiauto validation set. Mean and
standard deviation of class accuracy: 80.2± 10.9%
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(b) Results of the reference dataset, evaluated on the semiauto validation set. Mean and
standard deviation of class accuracy: 59.3± 24.6%

Figure 4.3: Confusion matrices for the Level 3 task, evaluated on the semiauto
validation set, row normalized. The values shown are the results of the best model
selected over five runs.
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(a) Results of the semiauto dataset, evaluated on the reference validation set. Mean and
standard deviation of class accuracy: 58.6± 21.7%
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(b) Results of the reference dataset, evaluated on the reference validation set. Mean and
standard deviation of class accuracy: 68.3± 12.5%

Figure 4.4: Confusion matrices for the Level 3 task, evaluated on the reference
validation set, row normalized. The values shown are the results of the best model
selected over five runs.
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4.3 Annotation Measures

This section details efforts to measure the quality of the automatic labeling car-

ried out in this project. These measures are subjective, as they rely on human

annotation, but they are still informative when coupled with those on Section 4.2.

4.3.1 Labeling Error

To evaluate the quality of the dataset created by the iterative process, its labeling

error is estimated. A human annotator labels samples of the dataset and these labels

are compared to the labels given by the model. If the labels agree, the example is

counted as correctly labeled, else it is counted as an error.

Two specialists participated in this error check annotation. They did not par-

ticipate in the annotation of the semi-automatic dataset. This avoids perpetuating

annotator bias, but disagreement on labeling criteria may increase error counts. Two

annotators is a small sample, and it would be better to perform this procedure with

more independent human annotators, none of which would have taken part in the

construction on the evaluated dataset. Only two annotators participated because of

time and manpower constraints.

The same annotation interface and procedure used in the iterative annotation

step is used in this stage. The human annotator is asked to label each sample without

regard to what dataset it was sampled from. The images are presented without

label identification as to not inform to the annotator which label was assigned by

the model.

A random sample of 1% of each level is obtained for labeling. Levels 1 and 2

datasets produced one sample each, while the Level 3 dataset produced five sam-

ples, one for each class. Each is evaluated separately, as this measure is about the

annotation process and not the dataset. Thus, each Level 3 class is annotated and

evaluated independently. These class labels are interpreted as binary for the purpose

of calculating the labeling error. The images evaluated in this step are only those

automatically annotated by the annotator model, and not those manually labeled

as part of the iterative annotation process. This is done to evaluate only the quality

of the annotation done by the model, as the manually labeled images are assumed

to be well-annotated. Also, since the majority of the semi-automatic dataset exam-

ples are automatically annotated, it is more important to analyze this group. The

analysis of the manual images would also be relevant as a baseline comparison, to

assert the extent of the criteria difference impacts the perceived labeling error. This

is not explored in this work because of time constraints.

For each dataset, an example is counted as correctly labeled if both the dataset’s

and the annotator’s labels match the target label – they agree on a positive label –
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or if both do not match – they agree on a negative label. If neither case occurs, the

example is counted as incorrectly labeled. The target label is a positive example for

Levels 1 and 2 and, for Level 3, each of its five classes.

Table 4.9: Labeling error of semi-automatic dataset samples for each level and F1
scores of the semiauto model on reference validation set. F1 values come from the
best models over five evaluation runs. The data shows a correlation of−0.80 between
labeling error and F1 score.

Level Class Labeling error F1 Score
1 Duct 7.6 % 0.94
2 Event 12.1 % 0.88
3 Anode 3.8 % 0.70

Buried 21.0 % 0.41
Damage 13.9 % 0.81
Flange 6.9 % 0.73
Repair 94.5 % 0.25

This procedure is carried out for each annotator to obtain two sets of labeling

errors. The reported results are the mean between both annotators results. Table 4.9

shows the labeling error for the semi-automatic dataset and correlated measures.

Each row displays, for each class, the labeling error percentage and F1 score of the

semiauto dataset evaluated on the reference validation set. The score is obtained

from the best model out of five runs. This combination of training and validation is

chosen because, first, the dataset samples that are evaluated at this step are taken

from the semiauto dataset. Second, the human annotator took part in the labeling of

the reference dataset, so using the corresponding validation set to evaluate allows the

same criteria to be used to measure labeling error and model performance. Indeed,

calculating the Pearson’s correlation between those two measures yields a result of

-0.80, strong correlation.

These results indicate that, when a class is poorly labeled by the model, the

latter’s performance in the reference dataset is also poor. The most evident example

is the Repair class. Its labeling error is 94.5%, a value that shows that the model

fails to correctly label this class, and, as such, its F1 score on the reference validation

set is of 0.25, a low value. Similarly, well-annotated classes such as Duct (Level 1

positive class), Event (Level 2 positive class), and Anode also performs well on the

reference dataset.

4.3.2 Annotation Speed

This subsection discusses the measure of dataset annotation times, including hu-

man labeling and model training. The numeric figures presented are estimates and

averages, as only some annotators rigorously timed their work. Presented here are
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annotation times for the previous dataset, the manual annotation required in the

iterative annotation procedure, and the automatic annotation performed by deep

neural networks. The first case concerns the labeling work made in a previous

project to build the reference dataset, while the latter two concern the annotations

made in this project to build the semi-automatically annotated dataset.

The measure used for annotation speed is frames per minute of annotation

(frames/min). Using this measure instead of annotation time removes the need

to report exact time estimates for the labeling work carried out, as the data is

not informative without context, is dependent on video frame rate, and is often

incomplete.

The annotation times of the labeling work done to build the reference dataset are

scarce. Consistent records were not maintained at that time, so the available figures

are based on limited data. Only two human annotators out of the five that worked on

the project recorded their annotation times. Even then, they vary greatly between

videos, stage of the project, and whether the annotation interface is used. The latter

is the main factor in variations in annotation speed. The average reported speed

without the interface – that is, using one of the methods described in Section 2.1

without tool assistance – is 47 frames/min. The average reported speed using the

interface is 4 700 frames/min, a hundred-fold increase. The average speed of all

annotations is 2 370 frames/min. Note that, when using the annotation interface to

label the reference dataset, the annotator visualizes all frames from a given video

and chooses only a fraction of those to actually label and include in the dataset.

Thus, the high annotation speeds reported are masked, as they consider frames that

are skipped and not included in the dataset as annotated.

The annotation work done for the semiauto dataset is better recorded. Four

human specialists recorded their times. Two were involved in the creation of the

dataset and two, in its evaluation after creation. The reported annotation speeds

ranged from 14.7 to 120 frames/min, with the average being 42.7 frames/min over all

annotators. This value is lower than the interface-assisted annotation of the reference

dataset because, in that case, videos are labeled individually, by sampling its frames

sequentially and labeling those images. This sequential presentation allows human

annotators to easily label groups of images belonging to the same class. In contrast,

the manual annotation work done to build the semi-automatic dataset requires the

annotators to evaluate a set of randomly sampled images from different videos, which

may vary in respect with class, scene, contrast, resolution, portrayed objects, among

other visual features. Thus, each image requires an individual evaluation from the

human annotator and cannot be analyzed as part of a group of images. This slows

down the labeling work significantly, as reflected by the reported figures.

The automatic annotation is done entirely by the classifier models. The process
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being measured in this case is a part of the iterative annotation process described

in Section 3.3. The steps 2, 3, 4, and 5 of Fig. 3.3 are measured, that is, from model

training to the selection of labeled and unlabeled examples. Of these steps, only

the model training and evaluation is be considered, as the other parts of the process

consume a negligible amount of time in comparison. In this case, not only the speed

with which examples are processed by the model but also the time spent per epoch

is reported, as the latter measure is informative about the network training process.

Using the hardware described in Section 3.3.2, for the Level 1 semiauto dataset,

the model spent 19.6 minutes on training and 2.0 minutes on validation. This

amounts to an annotation speed of a bit over 21 170 frames/min. This shows exactly

how much faster automatic annotation is, in comparison to manual annotation. This

process occurs at the same speed for the other hierarchical levels. From Tables 4.2

and 4.3, the fraction of manual and automatically annotated images in relation to

total semi-automatic dataset size, averaged along all levels, is 4% manual and 96%

automatic images. Thus, the average annotation speed of the process, considering

both manual and automatic annotation steps, is 20 270 frames/min.

However, manually labeled examples tend to be more valuable than automat-

ically annotated ones. The former are more likely to be correctly annotated, and

the annotator can select only the most representative examples to include in the

dataset.
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Chapter 5

Conclusion

This work succeeded in creating a new dataset from the proprietary source videos

available. It demonstrated the use of an adapted version of the iterative annotation

used in [1], using humans and neural networks to annotate a group of images to

solve a set of hierarchical classification tasks. Finally, it favorably compared the

new dataset with the existing reference dataset, both created from the same source

but using different methods for image annotation and selection.

It was shown that an image dataset for classification can be created from a

set of videos using the iterative annotation method. This iterative, model-assisted,

dataset construction process is faster and requires less human effort than if carried

out using only human annotation, and produced a dataset that is 131 times larger

than the reference, on average. The new, semi-automatically annotated, dataset

was evaluated on classification tasks alongside the existing reference dataset, which

had been constructed intermittently over two years using only human labeling. The

semi-automatic dataset achieved a lower validation loss than the reference dataset

in all tasks when evaluated on its own validation set, as can be seen in Section 4.2.

When evaluated on the reference dataset’s validation set, the results were mixed, but

acceptable: the semi-automatic dataset led to a lower validation loss on one task,

and higher on the other two. Furthermore, in the multiclass task, the new dataset

allowed for a higher F1 score on two out of five classes in comparison to the reference

dataset, when evaluated on the latter’s validation set. On its own validation set,

the semi-automatic-dataset-based neural network scored higher on all classes. When

comparing both validation set’s results on each level and considering Level 3 classes

results individually, the model trained on the semi-automatic dataset achieved better

performance in 10 out of 14 tests.

These results show that the semi-automatically annotated dataset is capable of

leading to performance that is superior than, or comparable to, the one obtained

from the manually annotated dataset.

The labeling error verification of Section 4.3.1 suggests that some classes could
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not be correctly annotated by the neural network. The labeling error of the Repair

class was 94% when measured by an independent human annotator. Each dataset-

trained model also performed poorly on this class when evaluated on its cross-

validation set, that is, the validation set of the competing dataset. These factors

point to a discrepancy in the annotation of the Repair class. The semi-automatic

labelling models were not able to correctly label images of this class. The class

may be more difficult than the others, and thus the model may need more manually

annotated examples on each labeling iteration to be able to learn to classify it

correctly. A difference in annotation criteria between the reference and the semi-

automatic datasets would also explain poor cross-set performance and high perceived

annotation error.

The set goal of reducing human effort was also achieved. Comparing the effort

amplification ratio, the proportion of automatically annotated to manually anno-

tated images on each level, yields favorable results. In the process of annotating

the first hierarchical level, a ratio of 45:1 automatic to manual images was achieved,

while the second, a ratio of 26:1. The average ratio for the five classes of the third

level is 13:1. The original method described in [1] reported a ratio of 40:1 automatic

to manually annotated images, so the ratios obtained are within reasonable range.

It is expected that successive levels present more difficult tasks than the previous,

which is reflected in the diminishing ratios of levels 2 and 3 when compared to the

first level. The results are also masked by the fact that each hierarchical level utilizes

the previous level’s annotated examples, so that levels 2 and 3 start the iteration

process with a number of annotated examples. While it is beneficial to avoid anno-

tating images a second time, they are counted twice on this evaluation. However,

it is also not entirely honest to discard these examples when calculating the effort

amplification ratio, as each level uses the previous dataset as a starting point in the

annotation process, and more images would need to be labeled otherwise.

Another strength of this method is its high annotation speed. Consider-

ing both the manual and automatic parts of the annotation process, it can la-

bel around 20 270 frames/min, while human annotators were estimated to reach

120 frames/min. This allows the combined human and computer efforts to label a

great number of images quickly, reducing the time, human effort, and cost to build a

dataset. This speed comes at a cost in the lower quality of annotations, in compar-

ison to manual labeling, but this downside seems to be compensated by the greater

number of available examples. The model performance on the new dataset shows

that this trade-off may lead to better datasets.

Further work includes exploring modifications and improvements of the iterative

annotation method. The set of examples used to train the model in each iteration

could be modified by discarding the examples from the manually annotated set that
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falls within the thresholds. Since the unlabeled set to be annotated in the following

iteration is composed by images whose scores fall between the thresholds, using only

training examples that also fulfill these criteria may be beneficial. It would allow

the model to train using examples that follow more closely the distribution of the

unlabeled set and may improve automatic annotation quality. However, discard-

ing manually annotated examples may deprive the model of valuable information

without providing enough benefit. Thus, it remains an approach to be explored.

More binary to multi-label conversion methods could also be explored. The

project currently handles the transformation of five binary sets of annotation into

a single multiclass dataset by ranking the classes according to project specifications

(that may be subjective) and keeping the highest-ranking class label whenever an

example has more than one. Changing this priority list also changes the final class

distribution of the multiclass dataset, and the priority list thus becomes a parameter

of the project. This ranking could also be selected using an objective measure, such

as the proportion of positive examples a class labels. If a class that labels the

majority of the dataset is ranked high enough on the priority list, then the final

dataset will likely be very unbalanced in its favor. Ranking the classes in inverse

proportion to the percentage of positive examples would contribute to class balance

in the final dataset.

It would be informative to verify labeling error percentages for reference dataset

and for the manually annotated portion of the semi-automatic dataset. Currently,

only the automatic images of the latter are labeled by independent annotators to

check the number or labeling errors. Without having the same done for the manu-

ally annotated images, the automatic classification error counts must be evaluated

without a baseline for comparison. Having such a baseline would help understand

whether the classes for which the classifier has poor performance, such as Repair,

also have high labeling error percentages in the manual set, or whether this is a

phenomenon brought by the automatic annotation process.

It would also be valuable to verify labeling error percentages on a known, labeled,

dataset. Applying the iterative annotation method to a dataset that is already anno-

tated, with a known labeling error, would allow the method to be better evaluated.

Using data with known labels, the semi-automatic annotation is carried out, ignor-

ing the labels and treating the data as if it were unlabeled. After the annotation,

the new labels are compared with the existing ones, thus allowing the annotation

error to be measured at each step of the process. This would help understand which

stages of the annotation method need most improvement.

Other neural network architectures could be used to annotate images. The larger

size of the semi-automatic dataset could benefit from models with a higher number

of trainable parameters than the currently used ResNet-18 network. Deeper ver-
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sions of the ResNet network are good candidates, but other architectures such as

InceptionNet v4 [16] or ResNeXt [17] could also be tested.

An evaluation of the automatic images contribution could be made. The auto-

matically annotated images are the majority of the dataset, but they may contribute

comparatively less than the manually annotated images. To verify this difference,

those two sets of images could be used to train a model and evaluate a model in the

same way that this project did for the semi-automatic dataset. If the model trained

using only the manual images performs as well as if trained on the semi-automatic

dataset, that could mean that the automatic images are not contributing to its per-

formance, only increasing dataset size and training time. Evaluating this would help

better understand the question.
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ningbook.org/>.

[4] RUSSELL, B. C., TORRALBA, A., MURPHY, K. P., et al. “LabelMe: A

Database and Web-Based Tool for Image Annotation”, International

Journal of Computer Vision, v. 77, n. 1-3, pp. 157–173, may 2008.

ISSN: 0920-5691. doi: 10.1007/s11263-007-0090-8. Dispońıvel em:
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[17] XIE, S., GIRSHICK, R., DOLLÁR, P., et al. “Aggregated residual transforma-

tions for deep neural networks”, Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017, v. 2017-Janua,

pp. 5987–5995, 2017. doi: 10.1109/CVPR.2017.634.

49



Appendix A

Additional Results

This appendix contains results that were too lengthy or not essential to the discus-

sion on Chap. 4, but should still be made available.

A.1 Iterative annotation details

Tables A.1 and A.2 show the results of the iterative annotation process for levels

2 and 3. The it column indicates the iteration number for that row; manual and

auto columns indicate the number of manually and automatically annotated images,

respectively; the unlabeled column shows the number of images still not annotated at

the end of the iteration; manual and auto percentage columns show the percentage of

manually and automatically annotated images over the number of unlabeled images

of the previous iteration; annotated percentage indicates the percentage of annotated

images over the initial amount of unlabeled images. In Table A.2, the first column

indicates the class of the row group. The presence of values over 100% is discussed

in Section 4.1.1.

A.2 Confusion Matrices for Levels 1 and 2

Figures A.1 and A.2 show the confusion matrices for the level 1 task on both vali-

dation sets. Figures A.3 and A.4 show the same for the level 2 task. These results

are obtained from the best models out of five evaluation runs. The values shown

are the percentage of images predicted correctly for each class. The diagrams are

row-normalized.
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(a) Results of the semiauto dataset, evaluated on the reference validation set.
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(b) Results of the reference dataset, evaluated on the reference validation set.

Figure A.1: Confusion matrices for the level 1 task, evaluated on the reference
validation set, row normalized. The values shown are the results of the best model
selected over five runs.
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(a) Results of the semiauto dataset, evaluated on the semauto validation set.
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(b) Results of the reference dataset, evaluated on the semiauto validation set.

Figure A.2: Confusion matrices for the level 1 task, evaluated on the semiauto
validation set, row normalized. The values shown are the results of the best model
selected over five runs.
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(a) Results of the semiauto dataset, evaluated on the reference validation set.
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(b) Results of the reference dataset, evaluated on the reference validation set.

Figure A.3: Confusion matrices for the level 2 task, evaluated on the reference
validation set, row normalized. The values shown are the results of the best model
selected over five runs.

53



Event Not Event
Predicted Label

Ev
en

t
No

t E
ve

nt
Tr

ue
 L

ab
el

0.93 0.07

0.04 0.96

Level 2 | Dataset Semiauto | Val Semiauto

0.0

0.2

0.4

0.6

0.8

1.0

(a) Results of the semiauto dataset, evaluated on the semauto validation set.
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(b) Results of the reference dataset, evaluated on the semiauto validation set.

Figure A.4: Confusion matrices for the level 2 task, evaluated on the semiauto
validation set, row normalized. The values shown are the results of the best model
selected over five runs.
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Table A.1: Level 2 iterative annotation results. The process took 16 iterations to
complete.

It Manual Auto Unlabeled Manual % Auto % Annotated %
0 0 0 396.243 0.00% 0.00% 0.00%
1 7.755 342.259 46.204 1.96% 86.38% 88.33%
2 462 5.973 39.770 0.12% 1.51% 1.62%
3 397 5.410 33.963 0.10% 1.37% 1.47%
4 338 9.459 24.170 0.09% 2.39% 2.47%
5 241 4.586 19.393 0.06% 1.16% 1.22%
6 193 3.890 15.260 0.05% 0.98% 1.03%
7 151 2.037 13.072 0.04% 0.51% 0.55%
8 130 1.586 11.356 0.03% 0.40% 0.43%
9 112 1.761 9.483 0.03% 0.44% 0.47%
10 100 1.342 8.041 0.03% 0.34% 0.36%
11 100 1.347 6.594 0.03% 0.34% 0.37%
12 100 406 6.088 0.03% 0.10% 0.13%
13 100 479 5.510 0.03% 0.12% 0.15%
14 100 381 5.029 0.03% 0.10% 0.12%
15 100 773 4.157 0.03% 0.20% 0.22%
16 4.157 0 0 1.05% 0.00% 1.05%
Total 14.536 381.689 - 3.67% 96.33% 100.00%
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Table A.2: Level 3 iterative annotation results. Results for each of the 5 classes are
displayed in row groups. Rows in bold indicate totals for that group.

It Manual Auto Unlabeled Manual % Auto % Annotated %

A
n
o
d

e 0 0 0 123.457 0.0% 0.0% 0.0%
1 7.119 122777 680 5.8% 99.4% 105.2%
2 680 0 0 0.6% 0.0% 1.1%

7.799 123457 - 6.3% 99.4% 105.8%

B
u
ri

e
d

0 0 0 123.457 0.0% 0.0% 0.0%
1 7.119 118699 4.758 5.8% 96.1% 101.9%
2 100 2519 4.658 0.1% 2.0% 2.1%
3 2.139 0 2.519 1.7% 0.0% 1.7%

9.358 121218 - 7.6% 98.2% 105.8%

D
a
m

a
g
e

0 0 0 123.457 0.0% 0.0% 0.0%
1 7.119 112501 10.957 5.8% 91.1% 96.9%
2 108 998 9.860 0.1% 0.8% 0.9%
3 100 5227 4.533 0.1% 4.2% 4.3%
4 100 1227 3.209 0.1% 1.0% 1.1%
5 3.209 0 0 2.6% 0.0% 2.6%

10.636 119953 - 8.6% 97.2% 105.8%

F
la

n
g
e

0 0 0 123.457 0.0% 0.0% 0.0%
1 7.119 117567 5.490 5.8% 95.2% 101.0%
2 100 663 4.727 0.1% 0.5% 0.6%
3 100 2097 2.533 0.1% 1.7% 1.8%
4 2.533 0 0 2.1% 0.0% 2.1%

9.852 120327 - 8.0% 97.5% 105.4%

R
e
p
a
ir

0 0 0 123.457 0.0% 0.0% 0.0%
1 7.119 113406 10.051 5.8% 91.9% 97.6%
2 100 7345 2.606 0.1% 5.9% 6.0%
3 2.606 0 0 2.1% 0.0% 2.1%

9.825 120751 - 8.0% 97.8% 105.8%
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