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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

DATA-DRIVEN PROCESSING OF GRAPH SIGNALS FOR ANOMALY
DETECTION AND FORECASTING

Gabriela Lewenfus

Setembro/2020

Orientador: Wallace Alves Martins

Programa: Engenharia Elétrica

Processamento de sinais em grafos (GSP) é uma nova área que busca estender
a teoria e as técnicas clássicas de processamento de sinais para analisar e processar
dados definidos sobre grafos. Nesta dissertação, apresentamos uma revisão sobre
tópicos fundamentais de GSP tais como análise de Fourier, amostragem e análise
vértice-frequência (VFA), e propomos duas aplicações distintas de GSP. Na pri-
meira, aplicamos VFA no problema de detecção de anomalias em sinais em grafos
(GSs) variantes no tempo. No caso particular de localizar uma estação climática
defeituosa, a acurácia obtida na detecção de pequenas variações de temperatura por
algoritmos de detecção de outliers aumenta quando VFA é utilizado para extração
de atributos. A segunda aplicação proposta nesta dissertação combina GSP e re-
des neurais recorrentes para prever e interpolar GSs simultaneamente. O modelo
proposto, spectral graph gated recurrent unit, superou métodos do estado-da-arte,
especialmente quando se tem acesso apenas a uma pequena fração do sinal de in-
teresse, considerando dois conjuntos de dados distintos: temperatura nos Estados
Unidos e velocidade do tráfego em Seattle.
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Department: Electrical Engineering

Graph signal processing (GSP) is an emerging field that extends traditional signal
processing theory and techniques to analyze and process data defined over graphs.
This dissertation presents fundamental topics of GSP, such as Fourier analysis, sam-
pling graph signals, and vertex-frequency analysis (VFA), and proposes two different
applications. In the first one, we apply VFA to the problem of anomaly detection
in time-varying graph signals. In the particular example of localizing a malfunc-
tioning weather station, the accuracy achieved by outlier detection algorithms is
improved when fed with VFA-extracted features to detect small drifts in tempera-
ture measurements. The second GSP application proposed in this dissertation com-
bines GSP and recurrent neural networks in order to jointly forecast and interpolate
graph signals. The proposed learning model, namely spectral graph gated recurrent
unit, outperforms state-of-the-art deep learning techniques, especially when only a
small fraction of the graph signals is accessible, considering two distinct real world
datasets: temperatures in the US and speed flow in Seattle.
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ūn nth row of U.

1N constant vector with all entries equal to 1.

V set of graph nodes.

wn,k windowed graph Fourier transform atom localized in vertex vn and in the kth

graph frequency.

xwn,k windowed graph Fourier transform coefficient associated with wn,k.

Vhh weight matrix mapping the hidden state h to itself.

Whx weight matrix mapping the input x to the hidden state h.
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Capítulo 1

Introduction

1.1 Graph Signal Processing

Many current practical problems can be modeled via data signals defined on the
nodes of a weighted graph. Social media [1], transportation networks [2], wireless
networks [3], genetic networks [4], and functional relationship across brain regions [5]
are instances of this kind of abstract data structure. Graphs could also describe
similarities between high dimensional data points in statistical learning, a capability
that has been considered by some machine learning algorithms [6, 7].

Graph signal processing (GSP) extends both harmonic analysis theory and classi-
cal digital signal processing techniques in order to reveal relevant information about
unstructured data by exploring the underlying topology of their domain. Some of
the initial works of graph-based signal processing focused on sensor networks and wi-
reless sensor networkss (WSNs) [8–12], which are still application areas of intensive
research. Particular topics of great interest in this context are both how to recover
the original WSN data from only a small subset of transmitted samples [12, 13] as
well as how to design graph filters to detect anomalies in WSNs [14].

In fact, GSP has been applied to a large variety of application fields, for exam-
ple, to analyze the environmental impact of burning different types of heating oil in
New York City [15], to monitor the environment in smart cities [16], and to reveal
mobility patterns [17]. Since functional resonance magnetic imaging (fMRI) and
electroencephalography (EEG) data can be seen as signals defined over a network
composed by brain regions [18, 19], GSP has been used to analyze [5, 20–24], and
classify these brain signals [25], for example, finding sources of dementia in neuro-
degenerative diseases [26].

Most of the aforementioned applications were already tackled before the deve-
lopment of algorithms and frameworks based on graphs, then one may ask “Why
using GSP?” The main motivation behind GSP is that the relationship between
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data instances can be informative about some phenomenon of interest. For exam-
ple, consider an fMRI signal over a graph in which the nodes represent a set of
cortical areas and the edges represent the physical connections between them. The
correlation of the fMRI signal between two connected areas of the brain may have
a different meaning from the correlation between two distant cortical areas, then
taking the anatomical substrate into account may reveal some important informa-
tion. Intuitively speaking, considering the topology of data as a prior information
to algorithms can be seen as a sort of regularization and, therefore, may improve
the generalization of a given algorithm by restricting its space of feasible solutions.

Another common example of GSP application is collaborative filtering for recom-
mendation systems. Consider, for instance, the problem of recommending movies
for consumers in which the ratings of some movies per person are available and one
wants to predict the rating that a person would attribute for an unseen movie. If
two people A and B give similar ratings for movies, then if person A likes movie C,
it is likely that person B will also like it. This can be seen as a prior information
and, in order to translate this problem to GSP, a graph can be built with nodes re-
presenting consumers and edges representing the similarity of ratings between each
pair of people [27].

In this dissertation, a distinction is made between GSP based on the Laplacian
matrix (GSPL) and GSP based on the adjacency matrix (GSPA), following the no-
menclature of [28]. The first one relies on the structure and spectral properties of
the Laplacian matrix. Although spectral methods had already been used in many
data analysis/processing approaches, the first extension of theory and methods from
classical signal processing to graphs using the Laplacian matrix can be attributed to
the works of Antonio Ortega and David Hammond [29, 30]. The origin of GSPA, on
the other hand, can be referred to the development of the algebraic signal processing
(ASP) [31] in 2006. ASP provided a new interpretation for signal processing based
on a triple: an algebra of filters,1 a module over the algebra of filters2 and a ge-
neralization of the z-transform. This new interpretation allowed the generalization
of the traditional signal processing tools to analyze and process data residing on a
large variety of irregular domains. By ASP, the adjacency matrix is a natural buil-
ding block for developing signal processing analysis over graphs. Although some of
the GSP results in the literature relies on mathematical properties of the Laplacian
matrix, there is no consensus on which is one better, GSPL or GSPA, and choosing
one of them depends on each application.

This dissertation employs GSP to two different applications. The first one,
uses the vertex-frequency analysis (VFA), analogous to the classical time-frequency

1Vector space where multiplication of filters is defined.
2Vector space whose elements can be multiplied by the elements of the algebra of filters.
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analysis, to detect and localize anomalous nodes in a sensor network. The second
application concerns the estimation of the state of a sensor network based only on
a few samples, which can be seen as a problem of simultaneously interpolating and
forecasting of graph signals. To tackle this problem, the GSP-sampling theory is
combined with recurrent neural networks (RNNs).

1.2 GSP Applied to Anomaly Detection

Anomalies are instances of data that significantly deviate from the common behavior.
Anomalies arise in many different fields, such as frauds in credit cards, intruders
in a computer network, and abnormal patterns in medical imaging. Anomalies
can also occur in data residing on graphs [32]. For instance, in [33], the authors
employ GSP to detect anomalies in a sensor network of weather stations in the
United States. Since weather stations close to each other are expected to have
similar temperature measurements, the graph signal defined by the temperature
in each station is expected to be smooth in the GSP sense. Thus, the presence of
malfunctioning sensor in the system can be detected by the emergence of unexpected
high frequency components. Nonetheless, this approach does not provide any clue
about the spatial localization of the detected fault(s). In order to localize potential
anomalies in the vertex domain, Chapter 7 presents a framework in which VFA is
used to extract features to be fed into an anomaly-detection algorithm.

Other works have also employed VFA to anomaly detection. In [34], graph-
wavelet atoms are used to detect abnormal carpal bones. First, the graph nodes
are obtained from a triangular mesh applied to each bone, then, the graph-wavelet
atoms are used as features for the classification. Note that each graph corresponds
to a carpal bone, thus the classification is performed in the graph level. In [14],
a graph-based filtering framework was developed for anomaly detection in WSN.
Basically, ideal and complementary low-pass and high-pass graph filters are designed
to project data into the normal subspace (where normal data lie) and the anomalous
subspace (where normal data should not lie), respectively. The cutoff frequency of
the filter design is obtained by minimizing the projection error of the normal data
into the normal space and the projection error of the anomalies into the anomalous
space. In [35], time-varying graph signals are analyzed by graph wavelets. Authors
also proposed a visual analytic tool to easily reveal interesting events from data
and in [36], the aforementioned framework is extended to dynamic networks (time-
varying-topology graphs) in which the classification is based on the torque of feature
vectors. In order to deal with temporal information, VFA is performed on the
cartesian product between the spatial graph and a path graph representing the
temporal line. This construction does not scale well for both network size and time-
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dependency range. In order to detect anomalies in time-varying graphs, a VFA-
based framework is proposed in Chapter 7. Unlike [33], this specific application
considers each graph node as an instance of data to be classified as anomalous or
normal. Moreover, different from [35], VFA is independently applied to the historical
information of the network, which could be implemented in parallel.

1.3 Joint Forecasting and Interpolation of Graph

Signals

Spatiotemporal (ST) prediction is a fundamental abstract problem featuring in
many practical applications, including climate analyses [37], transportation ma-
nagement [38], neuroscience [39], electricity markets[40], and several geographical
phenomenon analyses [41]. The temperature in a city, for instance, is influenced by
its location, by the season, and even by the hour of the day. Another example of
data with ST dependencies is the traffic state of a road, since it is influenced by ad-
jacent roads and also by the hour of the day. ST prediction boils down to forecasting
(temporal prediction) and interpolation (spatial prediction). The former refers to
predicting some physical phenomenon using historical data acquired by a network of
spatially-distributed sensors. The latter refers to predicting the phenomenon with
a higher spatial resolution. In this context, ST data can be seen as a network sig-
nal in which a time series is associated with each network element; the dynamics
(time-domain evolution) of the time series depends on the network structure (spatial
domain), rather than on the isolated network elements only. The interpolation is
useful to generate a denser (virtual) network. Classical predictive models assume
independence of data samples and disregard relevant spatial information [42], [43].
Vector autoregressive (VAR) [44], a statistical multivariate model, and machine le-
arning (ML) approaches, such as support vector regression (SVR) [45] and random
forest regression [46], can achieve higher accuracy than classical predictive models;
yet, they fail to fully capture spatial relations.

Many artificial intelligence (AI) solutions rely on extracting the right features
from a given set of data and feeding them to an appropriate machine learning al-
gorithm. More recently, some progress has been made by applying NNs to predict
ST data [37, 38, 47–50]. NNs have the capacity of not only mapping an input data
to an output, but also of learning a useful representation to improve the mapping
accuracy [51]. Nonetheless, the fully-connected architecture of these NNs, without
any prior regularizer, may fail to extract simultaneous spatial and temporal features
from data.

In order to learn spatial information from these multivariate time series,
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some works have combined CNNs with RNNs, such as long short term memory
(LSTM) [52–56]. However, CNNs are restricted to grid-like uniformly structured
data, such as images and videos. To overcome this issue, the graph convolution NNs
introduced by Section 6.3 [57–60], have been used in combination with either RNN,
time convolution, and/or attention mechanisms to make predictions in a variety of
applications. These works are summarized in Table 8.1.

GSP theory has been applied to analyze/process many irregularly structured
datasets in several applications [6, 61]. An import task addressed by GSP is inter-
polation on graphs, i.e., (spatially) predicting the signals on a subset of graph nodes
based on known signal values from other nodes [62]. In general, graph interpolation
is based on local or global approaches. Local methods, such as k-nearest neigh-
bors [63], compute the unknown signal values in a set of network nodes using va-
lues from their closest neighbors, being computationally efficient. Global methods,
on the other hand, interpolate the unknown signal values at once and can pro-
vide better results by taking the entire network into account at the expense of a
higher computational burden [62, 64]. Many GSP-based interpolation techniques
have been proposed [62, 65–68, 68–71]. Due to the irregular structure of graph
signals, the interpolation problem may become ill-conditioned, calling for efficient
selection strategies for obtaining optimal sampling sets [72, 73]. In fact, the pro-
blem of interpolating a graph signal (GS) can also be addressed as semi-supervised
classification [74–78] or regression [79–81] tasks. More recently, DL solutions have
also been developed [60, 82].

In many applications, affording to work with large networks may be impractical;
for example, placing many electrodes at once in the human cortex may be unfea-
sible. Installation and maintenance costs of devices can also limit the number of
sensors deployed in a network [81]. Thus, developing a predictive model capable of
forecasting (temporal prediction) and interpolating (spatial prediction) time-varying
signals defined on graph nodes can be of great applicability. This problem can be
regarded as a semi-supervised task, since only part of the nodes are available for
training. Other works have addressed this problem: in [83] the graph is extended to
incorporate the time dimension and a kernel-based algorithm is used for prediction;
this approach, therefore, relies on the assumption of smoothness in the time domain,
which is not reasonable for many applications, such as traffic flow prediction. In [84],
the ST wind speed model is evaluated in a semi-supervised framework in which only
part of the nodes are used for training the model, while interpolation is performed
only in test phase. Therefore, the parameters learned during the training phase do
not take into account the interpolation aspect. In Chapter 8, a neural network (NN)
architecture is proposed to handle ST correlations by employing GSP in conjunc-
tion with an RNN. Thus, the inherent nature of ST data is addressed by jointly
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forecasting and interpolating the underlying network signals. A global interpolation
approach is adopted as it provides accurate results when the signal is smooth in the
GSP sense, whereas an RNN forecasting model is adopted given its prior success in
network prediction. Herein, not only the sampled GS is input to a predictive model
but also its spectral components, which carry spatial information on the underlying
graph. The major contribution of the proposed model is, therefore, the ability to
learn ST features by observing a few nodes of the entire graph.

1.4 Contributions

The main contributions of this work are:

• Providing a deep review of fundamental topics of GSP such as GFT, VFA,
and graph sampling-upsampling using a unified notation.

• Proposing an anomaly-detection framework based on VFA. The framework is
employed to detect anomalous nodes in a time-varying graph signal of a static
graph.

• Proposing a model that combines RNNs with GSP-based interpolation for join-
tly forecasting and interpolating time-varying graph signals. This framework
is evaluated in two datasets in both supervised and semi-supervised scenarios.3

1.5 Publications

The aforementioned contributions were dissiminated as follows:

• Lewenfus, G., Alves Martins, W., Chatzinotas, S., & Ottersten, B. (2019). On
the Use of Vertex-Frequency Analysis for Anomaly Detection in Graph Signals.
Anais do XXXVII Simpósio Brasileiro de Telecomunicações e Processamento
de Sinais (SBrT 2019), 1-5.

• Lewenfus, G., Martins, W. A., Chatzinotas, S., & Ottersten, B. (2020). Joint
Forecasting and Interpolation of Graph Signals Using Deep Learning. arXiv
preprint arXiv:2006.01536. (Submitted to a journal.)

Further, a book on GSP (“Processamento de Sinais sobre Grafos: Fundamentos
e Aplicações”, Sociedade Brasileira de Matemática Aplicada e Computacional– in
Portuguese) is currently under preparation.

3Code available at https://github.com/gabilew/Joint-Forecasting-and-Interpolation-of-GS.
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1.6 Organization

Given the large applicability of GSP, this dissertation aims to provide a deep review
on some of the fundamental aspects of GSP (Part I, covering Chapters 2-6) as well
as to tackle two different real world applications (Part II, covering Chapters 7-8).

Chapter 2 starts by introducing some theoretical concepts of graph theory that
will be used throughout the dissertation, including graph signal (GS), graph Fourier
transform (GFT) and graph filtering. This chapter presents the distinction between
GSPL and GSPA. Chapters 3 and 4 present the so-called vertex-frequency analysis
(VFA), which is a graph version of the time-frequency analysis. In discrete signal
processing (DSP), both wavelet transform and windowed Fourier transform (also
termed short time Fourier transform, STFT) are well-known frequency-analysis tools
that also provide localized information in time/space. GSs can also have different
localized spectral properties across nodes and VFA approaches have been developed
in the past decade to deal with GS [85]. The windowed graph Fourier transform
(WGFT), introduced in Chapter 3, generalizes the STFT by computing the GFT
of windowed GSs centered at each node of the graph. The localization analysis
shows that some properties of the classical signals do not hold for GSs due to the
irregularity of the underlying domain. Chapter 4 presents the spectral graph wavelet
transform (SGWT) in which the mother wavelet kernels are designed in the spectral
domain [6].

One of the main challenges of transferring signal processing approaches to graphs
is that downsampling-upsampling operation on general GSs is not as straightforward
as on regular signals. Chapter 5 presents strategies for sampling and interpolating
bandlimited graph signals. Most of the results presented in this chapter derives
from the work of Isaac Pesenson [86], which introduced the Paley Wiener space
on graphs and provided theoretical substrate for extending the Shannon-Nyquist
sampling theorem for graphs.

Due to the success of machine learning (ML), especially deep learning (DL), in a
large variety of applications, it did not take so long for GSP and ML to be combined.
Part II of this dissertation proposes two different approaches for problems dealing
with time-varying GSs over static graphs, that is, the signal of interest dynamically
changes over time whereas the topology of the data remain the same. The first
approach, presented in Chapter 7, is a VFA-based framework for anomaly detection
on graphs, as introduced in Section 1.2, whereas the second one, presented in Chap-
ter 8, proposes a model combining GSP and DL to deal with the problem presented
in Section 1.3. Since this second work employs a DL model, Chapter 6 provides a
brief review of DL applied to multivariate time-series forecasting. Moreover, due to
the growing interest in applying DL to graphs, many GSP-based neural networks
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have been developed in the literature to deal with different problems. Therefore,
Chapter 6 also introduces the pioneer graph convolutional networks (GCNs), which
aim to extend the convolutional neural networks (CNNs) to graph-structured data.
A review on recent deep learning approaches tailored to graphs is addressed by [87].

It is worth mentioning that there are other signal processing concepts and tools
successfully extended to deal with signals residing on graphs that are not covered
by this dissertation, such as filter banks and adaptive filtering.
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Theory
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Capítulo 2

Graph Signal Processing

This chapter introduces GSP as well as establishes some of the GSP notations. Sec-
tion 2.1 presents the notations and definitions of graph theory that will be used
throughout this theses. Section 2.2 introduces the fundamental concepts of GSP:
Subsection 2.2.1 and Subsection 2.2.2 present the GFT of GSPL and GSPA, res-
pectively; the convolution and filtering operations are presented in Subsection 2.2.3
and the polynomial approximation of graph filters is presented in Subsection 2.2.4.
Finally, Section 2.3 presents a numerical experiment in which GSP is employed to
compress GSs.

2.1 Notation and Basic Definitions

Graphs are mathematical structures that represent relations between pairs of ob-
jects. These objects are represented by a set of nodes (or vertices) V , {v1, . . . , vN}
and the relation between each pair of them is represented by an edge. Thus, a graph
G is a tuple (V , E) where E is the set of edges connecting nodes in V . If the rela-
tion between two nodes vn and vm is binary, then G is said to be an unweighted
graph, otherwise it is called a weighted graph. Another important classification
of graphs concerns the direction of the edges. If there is a relation that flows from
node vn to node vm but not necessarily from node vm to node vn, the graph is said
to be directed, otherwise, if the relations are all symmetric, the graph is said to
be undirected. For simplicity of notation, node vn will also be represented by its
index n.

A graph can also be represented by one of the following two matrices: incidence
matrix or adjacency matrix. Consider a graph G with N nodes and define |E| ≤
N2 as the number of edges in G,1 the incidence matrix I is an N × |E| matrix with
rows representing the vertices and columns representing the edges. If I21 = 1 and

1Note that all the nodes in G are not necessarily connected to each other, then |E| ≤ N2.
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I31 = 1 in an undirected graph, for example, then the edge indexed by 1 connects
node v2 and node v3. The adjacency matrix A, on the other hand, is an N × N

matrix with rows and columns representing the input and output nodes, respectively.
If A23 = A32 = 1, then there is an edge with weight 1 connecting nodes 2 and 3.
Figure 2.1 depicts an undirected weighted graph with 6 nodes.

v1

v2

v3

v4

v5

v6

5

3

4

3

3 3

3

5

Figura 2.1: Example of an undirected graph with 6 nodes. Edges are denoted by
the red arrows and edge weights are shown in the middle of the arrow. (Adapted
from [88]).

The incidence and adjacency matrices associated with the graph in Figure 2.1
are given, respectively, by

I =




5 4 3 0 0 0 0 0

5 0 0 3 0 0 0 0

0 0 0 3 3 0 0 0

0 4 0 0 3 5 3 3

0 0 3 0 0 0 3 0

0 0 0 0 0 5 0 3




and A =




0 5 0 4 3 0

5 0 3 0 0 0

0 3 0 3 0 5

4 0 3 0 3 3

3 0 0 3 0 0

0 0 5 3 0 0




.

Remark 2.1.1. The adjacency matrix of an undirected graph is symmetric. This
property will be important for the construction of the graph Fourier basis that will
be described in the next section.

2.1.1 Elements of Graph Theory

Before introducing the GSP theory, we list some concepts of graph theory that will
be relevant to understand many parts of this text.
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• The degree of node vn, denoted as dn, is the sum of the edge weights connec-

ting vn and its neighboring nodes, i.e. dn =
N∑
m=1

Anm.

• A path is a sequence of edges connecting a sequence of distinct vertices. In the
graph of Figure 2.1, there is a path between nodes v1 and v6 passing through
the (finite) sequence of nodes (v2, v3).

• The shortest path distance, or path length, between vertices vm and vn on
the graph G, denoted as dG(n,m), is the minimum number of edges connecting
vn to vm. In Figure 2.1, the shortest path distance between nodes v1 and v6

is 2 (passing only through v4). Note that dG does not take edge weights into
account.

• A connected component C of a undirected graph G is a subset of the graph
G such that, for each pair of nodes in C, there exists a path between them.

• An undirected graph is said to be connected if it is composed by only one
connected component (there is a path connecting each pair of nodes in the
graph).

• Let a hop be one unit of the shortest path distance (e.g. nodes v1 and v6

in Figure 2.1 are 2 hops apart, and the distance dG(n,m) is also called hop-
distance). Given a graph distance dG(n,m), the analogous concepts of the ball
and sphere from the Euclidean plane to the graph G are defined as follows:

Definition 2.1.2. The h-hop neighborhood (ball) of node vm is the set of nodes
Nh(m) , {vn ∈ V | dG(n,m) ≤ h}.

Definition 2.1.3. The h-hop ring (sphere) around node vm, , is the set of
nodes exactly h-hops apart from node vm, N ′h(m) , {vn ∈ V | dG(n,m) = h}
or equivalently N ′h(m) = Nh(m) \ Nh−1(m).

For weighted graphs in which the adjacency is a matrix of similarity between
pairs of nodes, it could be more appropriate to use the weighted distance

dwG (n,m) = min
P∈Π(n,m)

∑

e∈P

Ie,

where

Π(n,m) , {eni1ei1i2 . . . eiKm|
eni1
vn vi1

ei1i2
vi1 vi2 . . .

eikm

viK vm , K ∈ N}
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is the set of paths from n to m, Ie = 1/Aij, and e = eij is the edge con-
necting nodes i and j [89]. Therefore, using this distance, nodes with strong
connections are closer to each other.

Assumption 2.1.4. This dissertation assumes that all graphs are undirected and
connected with no self-loops (Ann = 0∀n).

2.1.2 Laplacian Matrix

Another matrix that is mainly used to represent an undirected graph G is the La-
placian matrix. First, define the degree matrix D as a diagonal matrix containing
each node degree dn. The Laplacian matrix of graph G is defined as:

L , D−A. (2.1)

Some properties of the Laplacian matrix of undirected graphs are:

(P1) The Laplacian matrix is symmetric and has orthonormal eigenvectors;

(P2) The smallest eigenvalue is zero with multiplicity equal to the number of con-
nected components of the graph. If the graph is connected, the multiplicity of
the zero eigenvalue is 1 and it is associated with the constant eigenvector [90];

(P3) Given any pair of nodes n and m, (Lt)nm = 0 for any positive integer t <
dG(n,m). Indeed, first note that Lnm , (L)nm = 0, if nodes vn and vm are not
connected; then considering

(Lt)mn =
∑

Lm,p1Lp1,p2 ...Lpt−1,n

with the sum taken over all the length t−1 sequences of graph nodes (excluding
n and m), if, for contradiction, (Lt)nm 6= 0 then there would exist a sequence
p1, p2, ..., pt−1 such that Lpi,pi+1

6= 0, for all 1 ≤ i ≤ t−2. This means that there
exists a path of size at least t from n to m which contradicts the hypothesis
that t < dG(n,m).

2.2 GSP

GSP can be seen as an extension of the concepts and techniques from traditional
signal processing to analyze and process signals lying on graphs. Several of the
signal processing techniques rely on representing the underlying signals in a domain
which makes the signal’s properties under scrutiny more evident. For example, au-
dio signals are composed by (windowed) sinusoidal waves with different frequencies
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and can be better analyzed in the frequency domain instead of the original time do-
main. The Fourier transform, which is able to decompose a signal into its frequency
components, and its variants, such as the discrete cosine transform (DCT) and the
STFT are some of the most fundamental tools in signal processing. Similarly, the
first step to process signals lying on graphs is developing the concepts of frequency
domain (also called spectral domain) and GFT.

A GS is a function x : V → C that assigns scalar values to the graph nodes, and
it will be represented by the N -dimensional vector x. To simplify, only real-valued
vectors x ∈ RN will be considered in this text. It is worth mentioning that the order
of arrangement of the nodes in the vector is arbitrary and does not have any impact
on the frequency representation of the GS. Figure 2.2 shows an example of a GS.

v1

v2
v3

v4

Figura 2.2: GS example for a graph with 4 nodes; in this case, x = [1 1 − 1 − 1]T.

The GSP literature is basically divided into two approaches concerning the
GFT building block: Laplacian-based GSP, (GSPL) and adjacency-based GSP
(GSPA) [33].

2.2.1 Laplacian-based GSP

In GSPL, the Laplacian eigenvectors and eigenvalues are chosen as the Fourier ba-
sis and the spectrum, respectively. The motivation behind this approach is that
the Laplacian matrix, L, can be seen as a discrete version of the Laplace-Betrami
operator [91], whose eigenfunctions correspond to the Fourier basis elements in clas-
sical signal processing. Some variants of the Laplacian matrix can also be used as
building block for GSP, such as the normalized Laplacian Lnorm , D−1/2LD−1/2.

The eigenfunctions of the one-dimensional Laplacian operator, ∂2

∂t2
, are ejξt, since

−∂2ejξt

∂t2
= ξ2ejξt.

In DSP, the discrete Fourier transform (DFT) of a signal x ∈ RN and its res-
pective inverse transform are

x̂k =
N−1∑

n=0

xn(ωkn)∗ and xn =
N−1∑

k=0

x̂nω
k
n, (2.2)

where ωkn =
(

ej 2π
N
k
)n

and [ω0 ω1 . . .ωN−1] is the Fourier basis, with ωn =
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[ω0
n ω

1
n . . . ωN−1

n ]T.
To derive the GFT in GSPL from equation (2.2), let u1, ...,uN denote the ortho-

normal eigenvectors of the Laplacian matrix L = UΛUT. Denoting the rows of U

as ūT
n for n ∈ {1, . . . , N}, the GFT of a GS x is given by:

x̂k ,
N∑

n=1

xnUnm (2.3)

or in vector notation x̂ , UTx (vector notation). The spectrum is given by the
Laplacian eigenvalues 0 = λ1 < ... ≤ λN = λmax. The vector x̂ in (2.3) is also called
the GS frequency content. In DSP, the spectrum is ordered so that low and high
frequencies are well defined. For instance, if k = 0, the associated ωk is the constant
vector and if, for even N , k = N/2, ωk is a highly oscillating signal. Similar to DSP,
the ordering of the graph spectrum can also be associated with the oscillation of the
respective eigenvectors. Each Laplacian eigenvalue satisfies [74]:

λk = uT
kLuk =

∑

m,n

Amn(Unk − Umk)2, (2.4)

and, therefore, a low λk is associated with an eigenvector with small variations
between nodes, assuming Amn ≥ 0, as shown in the following example.

Example 2.2.1. Figure 2.3a depicts a graph with 10 nodes and a GS x =∑9
k=0 2−kuk + η, where η is a realization of a zero mean Gaussian noise with vari-

ance 0.01. The frequency components of the signal x are shown in Figure 2.3b. It
can be seen that the components associated with the smaller eigenvalues are larger
than the components associated with the larger eigenvalues, as expected by construc-
tion. Figure 2.3c depicts some of the Laplacian eigenvectors and it can be seen that
the eigenvectors oscillate faster as long as k increases. Note that u1 = 1√

10
1, that

is, the eigenvector associated with λ1 = 0 is a constant vector.

For specific graph structures, the same results can be obtained from GSPL and
DSP. For instance, for an undirected cyclic graph as depicted in Figure 2.4, the GFT
from GSPL is equivalent to the DFT, whereas for an undirected path as depicted
in Figure 2.5, the GFT from GSPL is equivalent to the DCT. These two cases are
explained in Example 2.2.2 and Example 2.2.3, respectively.

Example 2.2.2. Consider the cyclic undirected path graph with six nodes as shown
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Figura 2.3: Example of GSPL elements. (a) depicts a GS. The GS values are
represented by the colors of the graph nodes; (b) shows the spectral components of
the GS in (a); and (c) shows the Laplacian eigenvectors associated with λ1, λ3, λ5, λ7

and λ9.
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in Figure 2.4. The Laplacian matrix corresponding to this graph is

L =




2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1 2




,

and the Laplacian eigenvalues are λk = 2− 2cos
(

2πk
N

)
. A possible choice for ortho-

normal eigenvectors is uk = 1√
N
ωk, leading to a GFT, UT, that coincides with the

normalized DFT matrix from DSP.

v1 v2 v3 v4 v5 v6

Figura 2.4: Undirected cyclic graph with N = 6.

Example 2.2.3. Consider the undirected path graph with six nodes in Figure 2.5.
The Laplacian matrix corresponding to this graph is

L =




1 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 1




,

and the Laplacian eigenvalues are λk = 2−2cos
(
πk
N

)
. The orthonormal eigenvectors

can be chosen as Unk =
√

2
N

cos
(
πk(n−0.5)

N

)
, k ∈ {1, ..., N − 1}, u1 = 1√

N
1N , leading

to a GFT, UT that coincides with the DCT-II.

v1 v2 v3 v4 v5 v6

Figura 2.5: Undirected path-graph with N = 6.

2.2.2 Adjacency-based GSP

In GSPA, the adjacency matrix is used as the shift operator (i.e. x̃ = Ax is the
shifted signal x). In DSP, advancing a signal xn by m samples is the same as doing
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xn ∗ δm ,where ∗ denotes the linear convolution operator and δn is the Kronecker
delta function. As the Fourier transform of hn = δn+m is H(jξ) = ejξm, the Fou-
rier basis and spectrum in GSPA are defined by the adjacency eigenvectors and
eigenvalues, respectively. The notation for adjacency eigenpairs will be the same as
Laplacian’s eigenpairs, then GFT is also expressed as in (2.3). Similarly to GSPL,
the adjacency matrices of undirected graphs are symmetric and therefore has ortho-
normal eigenvectors and real eigenvalues. Unlike GSPL, the adjacency eigenvalues
of an undirected graph can assume any value along the real line and are not ne-
cessarily non-negatives. The GSPA theory also encompasses directed graphs, whose
adjacency matrices are not symmetric or not even diagonalizable. If the adjacency
matrix is diagonalizable, the GFT operator is given by U−1.2 If the adjacency ma-
trix is not diagonalizable, on the other hand, it has not enough linear independent
eigenvectors to compose the Fourier basis.

In order to derive a GFT for GS defined over graphs whose adjacency matrices
are non-diagonalizable, the eigenvectors and the generalized eigenvectors of the ad-
jacency matrix are concatenated in the matrix V such that A = VJV−1 and J is an
upper triangular matrix composed by the Jordan normal blocks [92]. In this case,
the GFT of a GS x is given by V−1x [93]. In practice non-diagonalizable matrices
are not used. If the adjacency matrix A of a graph model is not diagonalizable,
then A can be perturbed by ε sufficiently small such that Ã = A + εIN is diagona-
lizable [94]. In [95], another approach, based on optimization, is developed to deal
with directed graphs. In this text, only undirected graphs will be addressed, hence
both the Laplacian and adjacency matrices will be symmetric and the GFT will be
UT.

In GSPA it is common to normalize the adjacency matrix as Anorm = 1
|λmax|A,

where, in this case, λmax is the eigenvalue with maximum absolute value. The
normalized adjacency matrix provides more stable numerical results [33].

Unlike Laplacian spectrum, ordering frequencies in GSPA is not straightforward,
that is, the magnitudes of the adjacency eigenvalues are not correlated with the
degree of oscillation of the corresponding eigenvectors. To obtain ordered frequencies
in GSPA, first consider the total variation (TV) of a GS defined by

TV(x) , ‖Anormx− x‖1 (2.5)

The graph frequency λ` associated with the eigenvector u` is higher than the
graph frequency λk associated with uk if TV(u`) > TV(uk) [33]. The following
theorem provides an ordering for the adjacency spectral elements.

Theorem 2.2.4. Let (λk,uk) and (λ`,u`) be two eigenpairs of the adjacency matrix.
2If the adjacency matrix is symmetric, U−1 = UT.
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For now, it is not necessary to consider Anorm symmetric (thus λk and λ` are allowed
to be complex valued). Then, for ‖uk‖1 = ‖u`‖1, TV(uk) > TV(u`) if and only if
|λk − |λmax|| > |λ` − |λmax||.

Demonstração.

TV(uk) > TV(uk) ⇐⇒
‖Anormuk − uk‖1 > ‖Anormu` − u`‖1 ⇐⇒∣∣∣∣∣
λk
λmax

− 1

∣∣∣∣∣‖uk‖1 >

∣∣∣∣∣
λ`
λmax

− 1

∣∣∣∣∣‖u`‖1 ⇐⇒
∣∣∣∣∣
λk
λmax

− 1

∣∣∣∣∣ >
∣∣∣∣∣
λ`
λmax

− 1

∣∣∣∣∣ ⇐⇒

|λk − |λmax|| > |λ` − |λmax||.

Corollary 2.2.5. If λk, λ` ∈ R, then TV(u`) > TV(uk) if and only if λk < λ`.

Demonstração.

TV(uk) > TV(uk) ⇐⇒
|λk − |λmax|| > |λ` − |λmax|| ⇐⇒
− λk + |λmax| > −λ` + |λmax| ⇐⇒
λk < λ`

as |λmax| ≥ λk ∀k.

Therefore, in GSPA, contrary to GSPL, the smallest λk’s are associated with high
oscillating eigenvectors whereas the largest eigenvalues are associated with smooth
eigenvectors. Example 2.2.6 describes the Fourier analysis of the graph signal in
Example 2.2.1 in the GSPA context.

Example 2.2.6. Consider the graph and the GS in Figure 2.3, its Fourier co-
efficients are shown in Figure 2.6 and the odd indexed eigenvectors (according to
an increasing order of the corresponding Laplacian eigenvalues) are shown in Fi-
gure 2.6b. It can be seen that the eigenvectors associated with smaller eigenvalues
oscillate faster, as stated in Corollary 2.2.5. Moreover, the largest frequency content
is associated with the smoothest eigenvector (largest magnitude eigenvalue).
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Figura 2.6: Example of GSPA elements on the GS from Figure 2.3. (b) eigenvectors
associated with λ1, λ3, λ5, λ7, and λ9 depicted as graph signals.
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2.2.3 Convolution and Filtering

Convolution is a very important operation in DSP since it is the mathematical
operation that models linear filtering. The convolution of a continuous signal x(t)

with a continuous filter h(t) is

y(t) =

∫ ∞

−∞
x(τ)h(t− τ)dτ. (2.6)

In DSP, the integral in (2.6) is replaced by summation:

yn =
∑

m∈Z

xmhn−m. (2.7)

The signal h is generally called impulse response and carries the main properties
of a shift-invariant linear system. One of the main properties of convolution is the
convolutional theorem which states that, under certain conditions, the convolution
of two signals in the time-domain is equivalent to the element-wise multiplication of
their frequency-domain representations. In DSP, the convolutional theorem can be
stated as follows:

DFTN(x ∗ h) = (DFTNx)� (DFTNh), (2.8)

where x = [x1 x2 . . . xn]T, h = [h1 . . . hQ]T is the vector of filter taps, and DFTN is
the normalized DFT matrix.

In both GSPA and GSPL, the convolution between the GS x and the GS y is
inspired by the classical convolution theorem in (2.8), being defined in the frequency
domain as the element-wise multiplication [30]:

x ∗ y = U(x̂� ŷ), (2.9)

where � is the element-wise multiplication operator. Thus filtering is defined in
the frequency domain as follows: consider the function h : [λmin, λmax]→ R and let
H̃ = h(Λ) be a diagonal matrix with diagonal entries h(λk); the output signal y is

y = Uŷ = UH̃x̂ = UH̃UTx = Hx, (2.10)

in which H , UH̃UT is the graph-domain representation of filter h. Remembering
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Example 2.2.1, consider the ideal GSPL low-pass filter

h(λ) =

{
1 λ < λ5

0 elsewhere.
(2.11)

Figure 2.7 depicts the GS from Figure 2.3 filtered by h. The ideal low-pass filter
removes the frequency content associated with Laplacian eigenvalues larger than λ4

(high frequencies) whereas the frequency content associated with the other Laplacian
eigenvalues (low frequencies) remain unchanged.

−0.6

−0.4

−0.2

0.0

(a) Filtered frequency content

0 2 4 6
λk

0.0

0.2

0.4

0.6

0.8

1.0

h(
λ k
)

(b) Ideal low-pass filter

0 2 4 6
λk

0.00

0.25

0.50

0.75

1.00

x̂ k

(c) Filtered signal

Figura 2.7: GS filtering.

Note that the low-pass filter in (2.11) requires the knowledge of λ5. Although,
filters can be designed regardless of the graph spectrum, developing graph filters in
this way can lead to undesirable results due to the irregular distribution of general
Laplacian (and adjacency) eigenvalues. For example, consider a graph with 4 nodes
and Laplacian eigenvalues 0, 2, 2.5, 3, and define the scalar indicator function:

1[λ<α] =

{
1, λ < α

0, otherwise,
(2.12)

the low-pass filter 1[λ<1.5](λ) will vanish at all the frequencies of a GS except for the
DC component x̂1.
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2.2.4 Polynomial Graph Filters

If H = h(L) is a (Q + 1)-order polynomial on L, then H is a linear shift-invariant
filter (HL = LH) when the shift of x on G is Lx [33]:

HL =

(
Q∑

q=0

cqL
q

)
L =

Q∑

q=0

cqL
q+1 = L

Q∑

q=0

cqL
q = LH

The following theorem states a necessary and sufficient condition on the graph shift
A and filter H such that H is linear shift invariant on G.

Theorem 2.2.7. (Theorem 1 in [96]) Let A be the shift operator of a graph signal
model such that the characteristics and minimal polynomials are equal, then the
graph filter H is linear-shift invariant if and only if it is a polynomial in A.

Polynomial filters take some advantages:

• It can be computed without accessing the entire eigendecomposition of the shift
operator. To compute the graph filter H illustrated in Figure 2.7, for example,
the Laplacian matrix was decomposed as L = UΛUT and the low-pass filter
h was evaluated on each Laplacian eigenvalue to obtain H = Uh(Λ)UT.

• Filtering a GS by aQ-degree polynomial filter requiresQ|E| operations whereas
a general filter requires N2 operations for matrix vector multiplication plus
O(N3) for eigendecomposition.

• Polynomial filters are localized in the vertex domain depending on the sparsity
level of the shift operator and also on the polynomial degree Q (Property 3 in
Section 2.1.2). This property will be explored by VFA in Chapter 4.

Polynomial filters can be used to approximate general filters. The following
example shows the implementation of an ideal low-pass filter using least squares
approximation.

Example 2.2.8. Consider a random connected sensor graph G with 200 nodes and
whose Laplacian matrix is normalized by its largest eigenvalue. Also consider an
ideal low-pass filter h(λ) = 1[λ<λmax/2](λ). The coefficients {c0, c1, ..., cQ} of the
polynomial approximation h̃(λ) =

∑Q
q=0 cqλ

q of filter h is obtained by solving the
following linear system:
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


1 λ1 . . . λQ1

1 λ2 . . . λQ2
...

... . . . ...
1 λM . . . λQM







c0

c1

...
cQ




=




h(λ1)

h(λ2)
...

h(λM)



, (2.13)

where 0 = λ1, λ2, ..., λM = 1 are distinct Laplacian eigenvalues and Q < M ≤
200. The normalization of the Laplacian matrix is necessary to promote numerical
stability of the matrix on the left-hand side of equation (2.13). This linear system
is overdetermined and can be solved by least square. Figure 2.8 shows a low-pass
filter h approximated by polynomials h̃ of degrees Q = 10 and Q = 50 (top and
bottom, respectively). The graph filter in the vertex domain is implemented as H̃ =

Uh̃(L)UT.

2.2.5 Chebyshev Polynomial Approximation

Chebyshev polynomials Cq(x) are defined on the interval [−1, 1] and are generated
by the following recursion:

Cq(x) = 2xCq−1(x)− Cq−2(x), x ∈ [−1, 1]

Given a function f in the space of square-integrable functions in the interval
[−1, 1], denoted by L2

(
[−1, 1], 1√

1+x2

)
, with respect to the measure 1√

1+x2 , its Q-

order Chebyshev approximation is given by f̃(x) = 1
2
c0 +

∑Q
q=1 cqCq(x), where

cq =

∫ 1

−1

Cq(x)f(x)√
1 + x2

dx =
2

π

∫ π

0

cos(qθ)f(cos(θ))dθ

The matrix H = h(L) can be approximated by a Chebyshev polynomial on
the Laplacian. First, in order to encompass the entire Laplacian spectrum, it is
necessary to map the interval [0, λmax] into [−1, 1], giving the following construction
of Chebyshev polynomials on L:

Cq(L) = 2LCq−1(L)− Cq−2(L) (2.14)

where L ,
2

λmax

L− I, C0(L) , I, and C1(L) , L , (2.15)
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and the coefficients for approximating H = h(L) via

h̃(L) ,
1

2
c0 +

Q∑

q=1

cqCq(L) (2.16)

are

cq ,
2

π

∫ π

0

cos(qθ)h

(
λmax

2
(cos θ + 1)

)
dθ . (2.17)

This polynomial approximation is still valid for any real symmetric matrix with
λmin not necessarily zero such as the adjacency matrix of an undirected graph. In
this case, L , 2

λmax−λmin
(L− λminI)− I and

cq ,
2

π

∫ π

0

cos(qθ)h

(
λmax

2
(cos θ + 1) + λmin

)
dθ .

The coefficients of the Chebyshev polynomial can be adapted to approximate the
graph filter H by the Jackson-Chebyshev polynomial [97] as H̃ =

∑Q
q=0 aqL

q with
a0 = 1

2
c0 and aq = γq,Qcs,q and

γq,Q =

(
1− q

Q+2

)
sin
(

π
Q+2

)
cos
(
qπ
Q+2

)
+ q

Q+2
cos
(

π
Q+2

)
sin
(
qπ
Q+2

)

sin
(

π
Q+2

) . (2.18)

This approximation is able to cancel the ripples at the cost of expanding the transi-
tion band and is useful to enhance the stop-band attenuation. The Chebyshev and
the Jackson-Chebyshev polynomial approximations of the ideal low-pass filter built
on the graph described in Example 2.2.8 are illustrated in Figure 2.8. In comparison
with the Chebyshev polynomial approximation, the Jackson-Chebyshev polynomial
approximation of degree Q = 10 has a larger transition band which is narrowed as
long as the polynomial degree increases.
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(b) Q = 50

Figura 2.8: Ideal low pass filter and polynomial approximations. The stars represent
the Laplacian eigenvalues.

2.2.6 Parseval’s Identity

If the graph G is undirected, the Fourier basis is orthonormal, and then Parseval’s
identity holds for Laplacian- and adjacency-based GFT:

xTy = x̂Tŷ (2.19)

for GS x and y on G. Since U is unitary, xTy = 〈Ux̂,Uŷ〉 = 〈UTUx̂, ŷ〉 = x̂Tŷ

The interpretation of Parseval’s identity is that the energy of the GS is conserved
when passing from vertex to frequency domain.

Most of the theoretical results presented in Chapters 3-4 assumes the eingenvalue
structure of the Laplacian matrix of connected graphs.
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2.3 Numerical Experiment: GS Compression

A common application of signal processing is signal compression [98, 99]. This
section presents a numerical experiment of GS compression using GSPA on different
graph topologies. Consider the GS from Figure 4.1. The adjacency matrix associated
with this set of nodes (Brazilian weather stations) can be built as follows: the node
vn is in the neighborhood N1(m) of vm if vn represents one of the L nearest weather
stations to the station represented by node vm or if vm represents one of the L
nearest weather stations to vn. The resulting matrix is symmetric and its nonzero
coefficients are

Amn ,
γmn√√√√

( ∑
i∈Nn

γin

)( ∑
j∈Nm

γjm

) , (2.20)

where γmn = e−(d2
mn+whh

2
mn)/σ2 , with dmn and hmn respectively denoting the geodesic

distance and the height difference between stations m and n, wh ≥ 0 weights the
contribution of the altitude, and σ > 0 is a free parameter. Note that L is the
minimum number nodes connected to a single node in the graph.

For signal compression, we make the prior assumption that the GS x illustrated
in Figure 4.1 is smooth with respect to the underlying graph G. Since the adjacency
A was built upon the geodesic distance between stations, close weather stations
may achieve similar temperature values. Therefore, it is expected that most of the
information of x is concentrated on a restricted spectral support F = {N − K +

1, N−K+2, ..., N} associated with the K largest adjacency eigenvalues (associated
with the smoothest eigenvectors) and the compressed signal y can be obtained as
follows:

yk =

{
uT
k x k ≤ K

0 otherwise.
(2.21)

Note that y is a spectral representation of the original GS x with loss of information.
An efficient compression reduces the number of bits required to represent the data
while not losing much information. In order to evaluate the loss of information,
we pull the compressed signal back to the vertex domain x̃ = Uy and compute the
error ‖x̃−x‖2‖x‖2 . Figure 2.9 shows the error of compression for different spectral support
sizes and 4 different adjacency matrices: L = 15 and wh = 0; L = 15 and wh = 1;
L = 25 and wh = 0; and L = 25 and wh = 1.
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Figura 2.9: Compression error.

In Figure 2.9, the adjacency with L = 25 and wh = 1 provided smaller recons-
truction error than the other adjacency matrices. Although the latitude and the
longitude can explain the temperature, the altitude can also be highly influential.
Moreover, for small support size K, L = 25 provided better results then L = 10.
The veracity of the smoothness assumption on the GS regards the topology of the
underlying graph, thus some GSP approaches can be sensitive to the design of the
adjacency or Laplacian matrices. Therefore some efforts have been made in order
to optimize this design by developing algorithms able to learn the graph structure
from data [100].

2.4 Conclusion

This chapter introduced the fundamentals of GSP based on both the Laplacian,
GSPL, or the adjacency, GSPA, eigenvectors (or their variants). In GSPA, the
columns of the GFT are given by the adjacency eigenvectors, whereas, in GSPL, the
columns of the GFT are given by the Laplacian eigenvectors. The main difference
between these two approaches is the ordering of the graph frequencies with respect
to the ordering of the associated eigenvalues. In GSPL, the eigenvectors associated
with the smallest eigenvalues correspond to the low frequency Fourier elements,
whereas the eigenvectors associated with the largest eigenvalues correspond to the
high frequency Fourier elements. In GSPA, on the other hand, the eigenvectors
associated with the largest magnitude eigenvalues correspond to the low frequency
Fourier elements, whereas the eigenvectors associated with the smallest eigenvalues
correspond to the high frequency Fourier elements. Graph filters can be implemented
in the frequency domain, as element-wise multiplication, or in the vertex domain,
using polynomial approximations of the desired graph filter, such as the Chebyshev
polynomial approximation, which allows the implementation of graph filters without
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computing the eigendecompostion of the building block matrix.
The Fourier transform is a global operation and does not capture the locali-

zed spectral pattern of non-stationary GSs. Chapters 3-4 present the WGFT and
the SGWT, respectively, which are strategies to compute the frequency content of
a GS locally in the vertex domain.
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Capítulo 3

Windowed Graph Fourier Transform

Many real-world signals are transient and have time-varying frequency contents. No-
netheless, the Fourier transform provides a global analysis of the frequency content
of a signal and does not reveal transitions in the spectral pattern. To avoid this
issue and extract the frequency content of local sections of a non-stationary signal
as it changes over the time, the classical STFT divides the signal into segments, via
a sliding window, before applying the DFT. This tool was extended to GSs [101]
as the windowed graph Fourier transform (WGFT) and was used, for example, to
estimate the gyrification index of the brain [102]. In order to describe the WGFT,
it is necessary to first generalize the concepts of translation and modulation.

The translation and modulation of GSs are presented in Section 3.1 and Sec-
tion 3.2. Section 3.3 presents the WGFT atoms and Section 3.4 provides numerical
experiments.

3.1 Translation on Graphs

In DSP, centering a signal x into sample n, for example, is the same as convolving x

with the Kronecker delta signal δn ( vector of zeros except for the nth entry, which is
1). In the GSP framework, the GFT of δn is given by the nth row of the eigenvector
matrix, UTδn = ūn. The translation of the GS x to node n over a graph G is

txn ,
√
NU (x̂� ūn) . (3.1)

There are some desirable properties of conventional translation that also hold for
translations on graphs. Given the graph signals x1 and x2 over G, the following
properties of the translation operator hold:

(P1) tx1∗x2
n = tx1

n ∗ x2 = x1 ∗ tx2
n ;

(P2) tt
x1
m
n = tt

x1
n
m ;

30



(P3)
N−1∑
m=0

(tx1
n )m =

N−1∑
m=0

(x1)m.

The factor
√
N is included in definition (3.1) in order to preserve the DC component

of the original GS. Note that property (P2) does not have the same interpretation
as in the classical case. The translation of a GS to node n means concentrating x

on node n and not necessarily shifting the x by n nodes across the graph. For most
of the graphs, t

txm
n 6= txn+m, that is, translating a GS to node m and after to node

n is not equivalent to translate the original GS to node n + m. In the case of the
regular ring and other graphs such that the respective GFTs coincide with the DFT,
t
txm
n = tx(n−1)+(m−1)−1 mod N . Moreover, this definition of translation on graphs does
not preserve signal energy (i.e. ‖txn‖2

2 6= ‖x‖2
2 ).

The translation defined in (3.1) will be used to slide a window function, defined
on the spectral domain, through a GS, therefore, in the rest of this chapter, the
graph translation operator will be applied to a window vector w associated with a
spectral graph function w : [0, λmax]→ R. Common choices for w are the heat kernel
w(λ) = Ce−λκ and the Gaussian kernel w(λ) = Ce−κλ

2 , where C and κ are design
parameters. The goal of translating a spectral window vector w over a graph is to
segment the GS as in the STFT, then it is important to analyze the concentration of
the window w in the vertex-domain. The following lemma [101] provides lower and
upper bounds for the energy of the translated spectral window concentrated around
a node and Theorem 3.1.2 bounds the energy spread of the GS twn .

Lemma 3.1.1. For any window function w : [0, λmax] → R, define the window
vector w = [w(λ1) . . . w(λN)]T, then

w2(0) ≤ ‖twn ‖2
2 ≤ Nµ2‖w‖2

2, (3.2)

where µ is the largest magnitude entry of U, also called graph coherence.

To prove this lemma, denote the largest absolute value of ūn by

νn = ‖ūn‖∞ = max
k
|Unk|

and the graph coherence by µ = maxn νn.

Demonstração. [101] The proof of the second inequality relies on the orthogonality
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of U:

‖twn ‖2
2 = N

N∑

m=1

(twn )2
m = N

N∑

m=1

(
N∑

k=1

w(λk)UnkUmk

)2

= N
N∑

m=1

N∑

k=1

w(λk)UnkUmk

N∑

`=1

w(λ`)ūlnUm`

= N
N∑

k=1

N∑

`=1

w(λk)Unkw(λ`)Un`

N∑

m=1

UmkUm`

= N
N∑

k=1

N∑

`=1

w(λk)Unkw(λ`)Un`δ`−k (3.3)

= N

N∑

k=1

w2(λk)U
2
nk ≤ N

N∑

k=1

w2(λk)ν
2
n ≤ µN‖w‖2

2 (3.4)

where (3.3) follows from the orthonormality of the Fourier basis. To obtain the first
inequality, remember that u1 = 1√

N
1N , since the Laplacian eigenvector associated

with the zero eigenvalue is a constant vector. Substituting Un1 by 1√
N

in (3.4):

N∑

k=1

w2(λk)U
2
nk = w2(λ1) +

N∑

k=2

w2(λk) ≥ w2(λ1) = w2(0).

If µ = 1√
N
, then ū2

kn = 1
N
, ∀k ∈ {1, . . . , N}, in (3.4) and ‖twn ‖2 = ‖w‖2. This is

the case for graphs whose GFT matrices coincide with the matrix of DFT, such as
the ring graph but not for a general graph. In fact, graphs can have µ very close to
1. Table 3.1 shows the value of µ for some deterministic and random graphs.

Tabela 3.1: Coherence µ of some deterministic and random graphs. All graphs have
120 nodes, except for the Minnesota road which has 2642 nodes [103]. The regular
graph has nodes with degree d = 8. The random clustered graph is composed by
3 clusters with nodes being connected with probability 0.5 if they are in the same
cluster and 0.05 otherwise. The resulting µ of random graphs is the mean of the
graph coherence obtained from 100 simulations

Deterministic µ Random µ std
Path graph 0.129 Random regular 0.347 0.022
Ring graph 0.128 Random Sensor 0.892 0.047
Comet graph 0.960 Random clustered 0.849 0.074

Minnesota road graph 0.834 - - -

Theorem 3.1.2. Given nodes m and n with minimum path dG(n,m) = dnm and
a dnm-times continuously differentiable window function w : [0, λmax] → R with
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w(0) 6= 0, then

|(twn )m|
‖twn ‖2

≤
[

2
√
N

dnm!|w(0)|
(λmax

4

)dnm
]

sup
λ∈[0,λmax]

|w(dnm)(λ)|. (3.5)

(The proof is given in the Appendix A).

If λmax is sufficiently small, the upper bound (3.5) suggests that the energy of the
translated GS twn may be reduced in nodes faraway from node n. It is worth men-
tioning that the bound provided by Theorem 3.1.2 considers only the hop distance
between nodes n and m and does not take edge weights into account.

3.2 Modulation on Graphs

In order to achieve localization in the frequency domain, the convolution theorem
is used in its dual form: to concentrate the window GS w on a graph frequency λk,
one has to multiply w element-wise by the Laplacian eigenvector uk. This operation
is called modulation and is defined as

mk(w) ,
√
Nw � uk. (3.6)

Note that, since u1 = 1√
N

1N , modulating a GS to the zero eigenvalue of a connected
graph is the identity operator: m1(w) = w.

If the window vector w is localized around λ1 = 0, then the modulated window
mk(w) is guaranteed to be localized around λk in the spectral domain as stated by
the following theorem:

Theorem 3.2.1. (Proof in [101]) Let w : [0, λmax]→ R be a window localized around
λ1. If for some γ > 0 the window w satisfies

√
N

N∑

`=2

µ`|w(λ`)| ≤
|w(0)|
1 + γ

, (3.7)

then

|m̂k(w)k| ≥ γ|m̂k(w)`| ∀ ` 6= k. (3.8)

and

|m̂k(w)k|2
‖mk(w)‖2

2

≥ γ2

N − 3 + 4γ + γ2
. (3.9)

Thus, the modulated window in the frequency domain m̂k(w) is likely to localize
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its energy on the kth spectral component. Note that Theorem 3.1.2 compares the
energy on λk with the energy on the remaining spectral components λ` and does
not take the distance in the spectral domain λk − λ` into account. When w(0) is
considerably larger then w(λ`), ` > 1, large γ’s satisfy condition (3.7) and the energy
of the window w is guaranteed to be localized on k by Theorem 3.2.1. The spectral
components of the modulated window kernel w(λ) = Ce−τλ on the path graph are
shown in Figure 3.1 for k ∈ {10, 30, 50} and τ ∈ {10, 50}. Figure 3.2 shows the
spectral components of the same modulated window kernel on the Minnesota road
graph [103], a real world graph, for k ∈ {10, 1000, 2000} and τ ∈ {2, 10}. Note that
for an irregular graph, although the peak of the modulated window occurs in λk,
m̂k(w) is not as concentrated as in the case of the path graph. In both examples, the
larger the τ , the more concentrated the modulated window function. Nonetheless, a
large τ provides poor localization on the vertex-domain. This is a case of uncertainty
principle and selecting the best window width τ depends on the application.
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Figura 3.1: Modulation operator on the path graph. Window kernel w(λ) = Ce−τλ.

34



0 1000 2000
0.000

0.005

m̂
k(

w
) ℓ

τ = 2 k = 10

0 1000 2000
0.000

0.005

0.010

τ = 2 k = 1000

0 1000 2000
0.0000

0.0025

0.0050

τ = 2 k = 2000

0 1000 2000
λℓ

0.00

0.02

m̂
k(

w
) ℓ

τ = 10 k = 10

0 1000 2000
λℓ

0.00

0.02

0.04

τ = 10 k = 1000

0 1000 2000
λℓ

0.00

0.02

0.04
τ = 10 k = 2000

Figura 3.2: Modulation operator on the Minnesota road graph [103]. Window kernel
w(λ) = Ce−τλ.

3.3 WGFT Atoms and Spectrogram

Putting together (3.1) and (3.6), WGFT atoms and coefficients corresponding to a
GS x are respectively defined as

wn,k , mk (twn ) and xwn,k , 〈x,wn,k〉. (3.10)

The matrix of WGFT coefficients Xw can be computed by first filtering the GS x by
T = Uw(Λ)UT and then multiplying each entry of Tx element-wise by each column
of U. The computational cost of this process is N2 for matrix vector multiplication
plus N2 for element-wise multiplication, yielding an overcomplete representation
composed by N2 coefficients.

The spectrogram of the GS x is an N × N matrix denoted by Swx with nodes
represented by columns and the spectrum represented by the rows. Each entry is
(Swx )kn = |xwn,k|2, n ∈ {1, . . . , N}, k ∈ {1, . . . , N}. In classical signal processing,
spectrograms are used to analyze the spectral pattern of a signal as it varies across
time. In GSP the time domain is replaced by the vertex domain.

Figure 3.4 shows the spectrogram of a continuous by part function over a path
graph with N = 60 nodes (top) and a clustered graph with N = 60 nodes (bottom).
In the clustered graph, the first 20 vertices are within the first cluster, the second 20

nodes in the second cluster, and the last 20 nodes are within the last cluster. Nodes
within the same cluster are connected with each other with probability p1 = 0.5

whereas nodes in different clusters are connected with each other with probability
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Figura 3.3: Graph with 3 clusters. The colors correspond to a continuous by part
function.

p2 = 0.05. This graph is shown in Figure 3.3. For both path and clustered graphs,
the constructed continuous by parts signal is the combination of the eigenvector
u15 on the first 20 nodes, u30 restricted to the middle nodes and u45 restricted
to the last vertices. In both graphs, the window used to build WGFT atoms is
w(λ) = Ce−τλ, where constant C = (

∑N
k=1 e−2τλk)−1/2 with τ = 300 in the path

graph and τ = 5 in the clustered graph. If τ increases, the localization in the
frequency domain is improved whereas the atoms get spread in the vertex domain.
However the property of vertex-frequency localization depends on the structure of
the graph and may change across nodes. Indeed, given a window graph w, twn will
be concentrated around node n but if |Umk| is close to zero for an m ∈ N1(n),
wn,k = twn � uk may not be localized around node n. Similarly, mk(w) is localized
around λk but if ūn` is close to zero for many `’s close to k, then wn,k will not be
simultaneously localized around node n in the vertex domain and spectral element
λk in the frequency domain.

If the window function w has nonzero mean, the original GS x is perfectly reco-
vered from its WGFT coefficients by [101]

xn =
1

‖twn ‖2
2

N∑

m=1

N∑

k=1

xwm,k(wm,k)n. (3.11)

In DSP, tight frames allow the interpretation of spectrograms as an energy density
function, improve stability in recovering signals from noisy measurements, and also
provide faster computations [104]. It is worth pointing out that the dictionary of
WGFT atoms {wn,k}Nn,k=1 rarely defines a tight frame, except if µ = 1√

N
. Appen-

dix C briefly reviews the concept of frames and presents a theorem that provides
frame bounds for the WGFT atoms [101].
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Figura 3.4: The squared magnitude of the spectrogram of the continuous by part
signal on the path graph and on the 3-clustered graph in Figure 3.3.

37



3.4 Numerical Experiment: Spectrogram of the

Brazilian Temperature Network

Consider Figure 3.5, which uses the graph structure in (2.20) to convey an artificially
generated continuous by parts GS x defined as

xn =

{
2(u10)n + ε, if n ∈ N ,
(u100)n + ε, if n ∈ S,

(3.12)

where N (north) and S (south) are subsets of vertices highlighted in different co-
lors in Figure 3.5(a), and ε is drawn from a zero-mean Gaussian distribution with
variance 0.01. The Gaussian kernel w(λ) = e−λ

2/10 is used as the spectral window
for computing WGFT coefficients. Figure 3.5(b) depicts the resulting GS x, whe-
reas Figure 3.5(c)-(d) show the absolute values of WGFT coefficients corresponding
to the two frequencies with largest coefficients’ energies. As expected, nodes in the
north region present larger WGFT coefficient magnitudes for frequencies around the
10th Laplacian eigenvalue, whereas nodes in the south region present larger WGFT
coefficient magnitudes for frequencies at the 100th eigenvalue.

Many nodes in the Brazilian north region in Figure 3.5(c) achieve very small
values because the eigenvector u11 is concentrated on the northeast of the graph.
WGFT atoms wn,k are not always jointly well-localized around n in vertex domain
and λk in frequency domain, for some eigenvectors can be too much concentrated
on certain vertexes. The simultaneous localization in both vertex and frequency
domains is limited by the graph coherence µ , max

n,k
|Unk| ≤ 1. The sensor graph in

Figure 3.5 has µ = 0.94 (a large value) meaning that some of its WGFT atoms will
not be well-localized, which is a limitation of the WGFT representation.

3.5 Conclusion

The WGFT presented in this chapter computes the GFT of a kernel window func-
tion, defined in the frequency domain, translated to each vertex of the graph. This
approach has some disadvantages, for instance, the dimension of the transformed
signal increases from N to N2 and the modulation of the translated window kernel
cannot be approximated by a polynomial on the Laplacian, depending on compu-
ting the Laplacian eigenvectors. Next chapter introduces the SGWT, which allows
a more compact representation and can be implemented without the computation
of the GFT.
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(a) Graph partition (b) Original signal
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Figura 3.5: Brazilian weather station graph: (a) graph divided into two sets of nodes
(N and S); (b) original GS x in (3.12); and (c)-(d) WGFT coefficients xwn,k in (3.10)
at 11th and 100th frequencies, respectively.
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Capítulo 4

Wavelets on Graphs

The WGFT introduced in the previous chapter has some disadvantages: (i) it in-
creases the number of coefficients to represent a GS from N to N2; (ii) it is compu-
tationally expensive and has poor scalability; indeed, WGFT atoms depend on the
computation of Laplacian eigendecomposition, being prohibitive for large graphs.
Actually, translation can be approximated by a Chebyshev polynomial on the La-
placian matrix (see Section 4.2), however, to the best of our knowledge, there is
no method for approximating the modulation operation in (3.6); (iii) it does not
provide a tight frame for irregular graphs [101]; (iv) the resolution in the frequency
domain is uniform, just like in the classical DSP.

Wavelets, on the other hand, can: (i) have a more compact representation with
N · (R+ 1) coefficients, with the number of scales satisfying R < N ; (ii) be fully im-
plemented without resorting to Laplacian eigendecomposition; (iii) provide a tight
frame, depending on the choice of the mother/scale functions; (iv) have adaptive
resolution in accordance with Heisenberg’s theorem [104]. Therefore, this chapter
introduces VFA using wavelets. Wavelets are extremely useful to extract informa-
tion from data and have been used in a diverse range of applications such as data
compression, denoising and transformations in general. When considering data resi-
ding on graphs, wavelet theory have also been used to extract patterns in data. The
pioneers works are the diffusion wavelets [105, 106], defined on the spectral domain
and the graph wavelets from [2], where authors designed a wavelet transform on
graphs based on the hop distance in order to understand the behavior of a traffic
network. The spectral graph wavelet transform (SGWT) [30] have been applied to
pattern analysis and classification in conjunction with machine learning tools.

Although this dissertation focuses on VFA based on kernel functions built on
the frequency domain, it is worth mentioning that there are also wavelet approaches
developed in the vertex-domain in the literature. For instance, in [2], wavelet atoms
gn,r are constructed with respect to the r-hop neighborhood and r-hop ring around
a node n and, in [107], wavelets are designed using a lifting-based scheme.
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Before introducing the SGWT, we briefly review the classical wavelet theory. The
classical CWT on L2(R)1 is generated by translating and scaling a single wavelet
mother function g.

gτ,r(t) =
1

r
g

(
t− τ
r

)
, r > 0. (4.1)

For a given continuous signal x(t) ∈ L2(R), the CWT is given by [108]:

xg(τ, r) =

∫ ∞

−∞
x(t)g∗τ,r(t)dt. (4.2)

This CWT can be inverted if, and only if, the following admissibility condition holds

∫ ∞

−∞

|ĝ(ξ)|2
ξ

dξ = Γg <∞. (4.3)

In this case, the inverse CWT is given by [108]:

x(t) =
1

Γg

∫ 0

−∞

∫ ∞

−∞
xg(τ, r)gτ,r(t)

dτdr
r

(4.4)

The outline of this chapter is as follows: Section 4.1 presents the SGWT, the
reconstruction formula, the frame analysis of the SGWT atoms, and some examples
of wavelet kernels. Section 4.2 shows how to approximate the SGWT atoms by
Chebyshev polynomials and Section 4.3 shows a numerical experiment in which the
spectral graph wavelet transform (SGWT) is employed to recover a continuous by
part GS in a semi-supervised learning (SSL) setup.

4.1 Spectral Graph Wavelet Transform

The wavelet construction in (4.1) cannot be applied to graphs, therefore, as in
the WGFT definition, the SGWT is defined by a basic function, called wavelet
mother/kernel, g : R+ → R+ in the frequency domain [30]. This mother function
must be a band-pass signal satisfying g(0) = 0 and limz→∞ g(z) = 0. The translation
of the mother wavelet is given by element-wise multiplication in frequency domain as
in the WGFT. In practice, the SGWT will be computed only for a finite set of scales
αr, r ∈ {1, 2, ..., R}, thus the SGWT can be defined by finite set of wavelet atoms.
Wavelet atoms gn,r, with (n, r) ∈ {1, . . . , N} × {1, . . . , R}, are GS constructed by
dilating the mother function g by a factor αr ∈ R+, and then translating it to vertex

1The space of squared integrable functions f : R→ R.
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n, as follows:

gn,r , Ug(αrΛ)ūn =
(
Ug(αrΛ)UT

)
δn. (4.5)

Although the mother wavelet is defined on a continuous interval, the SGWT
depends on g(αrz) evaluated in the Laplacian spectrum, which means that the
spectral properties of the Laplacian matrix, such as eigenvalue distribution, will
influence the appropriate selection of scales αr and the general properties of the
transformation.

Given a GS x, just as in (4.2), SGWT coefficients are defined as

xgn,r , xTgn,r , (4.6)

and collecting all coefficients in a vector xg, one can write xg = GTx, where G ∈
RN×RN has columns gn,r.

Wavelet atoms are orthogonal to the eigenvector u1 associated with λ1 = 0,

gT
n,ru1 =

N∑

m=1

(
N∑

k=1

g(αrλk)UnkUmk

)
Um1 =

N∑

k=1

g(αrλk)Unk

N∑

m=1

UmkUm1

=
N∑

k=1

g(αrλk)Unk

N∑

m=1

δk−1 = g(αrλ1)Un1 = g(0)U1n = 0

where the last equality follows from g(0) = 0. Furthermore, the atoms are nearly
orthogonal to the eigenvectors associated with the smallest eigenvalues. Therefore,
in order to represent low frequencies, it is necessary to introduce a scaling function,
as in classical DSP. The scaling function h : R+ → R+ must be a low-pass filter,
satisfying h(0) > 0 and limz→∞ h(z) = 0. It is worth mentioning that the scaling
function is fundamental to achieve stable recovery of the original GS x from the
SGWT coefficients, as long as scales αr are restricted to few samples. It is also
important to point out that the scaling function is introduced to the SGWT to
handle the representation of low frequencies and has no impact on the choice of the
wavelet mother function.

If the wavelet mother g is concentrated in the spectral domain, then the spectral
graph wavelet atoms will be concentrated in each element of the Laplacian spectrum.
The localization in the graph domain, on the other hand, requires a more carefully
analysis. If g is sufficiently smooth in the vicinity of 0, then gn,r will be concentrated
in node n (i.e. gn,r

‖gn,r‖2 will vanish on nodes far from n) as stated by the Theorem 4.1.1.

Theorem 4.1.1. ([30]) Let g be a (Q+1)-continuous differentiable function such
that g(0) = 0, g(q)(0) = 0 for all q < Q and g(Q) = C 6= 0. Suppose also that there
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exist constants r′ and B such that

|g(Q+1)(λ)| < B ∀λ ∈ [0, r′λmax],

then there exist constants r′′ and D such that

gn,rm
‖gn,r‖2

< αrD ∀αr < min(r′, r′′) (4.7)

if dG(n,m) > Q.2

(Proof is given in Appendix A.)

4.1.1 GS Recovery

Many applications in signal processing require recovering the original signal from the
transformed coefficients (i.e.: SGWT coefficients) such as denoising and compres-
sion. The SGWT admits a reconstruction formula analogous to (4.4) for continuous
scales α ∈ R+ [30], provided the mother wavelet g satisfies an admissibility condition
equivalent to (4.3) as stated by the following theorem:

Theorem 4.1.2. Let g : R+ → R+ be a mother wavelet function, that is, g(0) = 0

and lim
z→∞

g(z) = 0, also satisfying

∫ ∞

0

g2(z)

z
dz < Γg (4.8)

for some positive constant Γg, then

xm − x̂1Um1 =
1

Γg

N∑

n=1

∫ ∞

0

xgn,α(gn,α)m
dα

α
. (4.9)

Theorem 4.1.2 provides a reconstruction formula for the continuous graph wavelet
transform. Despite not being of practical use, since wavelet scales are generally
discrete, the reconstruction formula in (4.9) provides a theoretical interesting result.
Different from the classical CWT, the reconstruction formula in (4.9) recovers the

centralized original signal, since x̂1 =
N∑
n=1

Un1xn = 1
N

N∑
n=1

xn. Therefore, only zero

mean signals can be perfectly recovered.
When the scales of the SGWT are composed by a finite set α1, ..., αr, a signal

x̃ is recovered from the overcomplete set of SGWT coefficients xg by solving the
2this theorem also holds for SGWT built on the adjacency eigenvectors
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least-squares problem .

x̃ , argmin
y
‖xg −GTy‖2 , (4.10)

over y. It is worth mentioning that the stability of the reconstruction formula
depends on some properties of the wavelet mother g and h and also on appropriate
choice of scales α1, ..., αR. Next section discusses these properties.

4.1.2 Frame Analysis

As introduced in Chapter 3, tight frames provide more stable reconstructions, there-
fore, since many applications require the transformed coefficients to be pulled back
to the original domain, it is important to find conditions on g and h such that
the SGWT atoms provide a tight frame. Theorem 4.1.3 provides frame bounds for
SGWT atoms.

Theorem 4.1.3. ([30]) Given the set of functions {gr}Rr=1 and h, the set of graph
wavelets {gn,r}N R

n=1,r=1 ∪ {hNn=1} is a frame with frame bounds

A = min
λ∈[0,λmax]

G(λ) (4.11)

B = max
λ∈[0,λmax]

G(λ) (4.12)

where G(λ) = |h(λ)|2 +
∑S

r=1 |gr(λ)|2.
If G(λ) is constant for λ ∈ [0, λmax], then {gn,s}N R

n=1,r=1 ∪ {hNn=1} is tight.

(Proof is given in the Appendix C.)

4.1.3 Wavelet Functions

This section presents some scaling functions h and wavelet mothers g that have been
used in the literature:

(a) cubic spline [30];

g(λ; a, b, λ1, λ2) =





λ−a1 λa, λ < λ1

p(λ), λ≤λ ≤ λ2

λb2λ
−b, λ > λ2

(4.13)

where p(λ) is a cubic polynomial satisfying p(λ1) = p(λ2) = 1, p′(λ1) = a/λ1

and p′(λ2) = −b/λ2. Setting a = b = 2, λ1 = 1 and λ2 = 2 leads to p(λ) =

−5 + 11λ− 6λ2 + λ3. Note that g is a monic polynomial for small frequencies
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and power decaying for high frequencies. The constraints in the definition of
p(λ) guarantee continuity of g and g′ in λ.

The wavelet scales αr are chosen to be logarithmically equispaced between
αR = λ2/λmin and α1 = λ2/λmax where λmin = λmax/K and and K is a
design parameter. In this setting, g(αRλ) has a monic polynomial behavior
for λ < λmax as desired.

The scaling function is set as h(λ) = γe−( λ
0.6λmax

)
4

where γ = maxλ∈[0,λmax] g(λ).

(b) Meyer [109], with parameters

g(λ) =





sin
(
π
2
p
(
λ
a
− 1
))
, a < λ ≤ 2a

cos
(
π
2
p
(
λ
2a
− 1
))
, 2a < λ ≤ 4a

0 elsewhere.

(4.14)

h(λ) =





1 0 < λ ≤ a

cos
(
π
2
p
(
λ
a
− 1
))
, a < λ ≤ 2a

0 elsewhere.

(4.15)

where p(λ) = λ4(35− 84λ+ 70λ2 − 20λ3). Here we take (a,M) = (2
3
, 2).

(c) Hann [110], with parameters (K, a0, a1, T ) = (1, 1
2
, 1

2
, 3);

define

g(λ) =

{ ∑K
k=0 akcos

(
2πk

(
R+1−T
Tλmax

))
, − Tλmax

R+1−T < λ < 0

0 elsewhere
(4.16)

with 2 < T < R and K < T/2. For each scale index r ∈ {0, . . . , R} dilated
wavelets are given by

gr

(
λ) = g(λ− r λmax

R + 1− T

)
(4.17)

(d) ideal filter [111]. for r ∈ {1, ..., R− 1},

gr(λ) =

{
1, cr < λ < cr+1

0, elsewhere
(4.18)

h(λ) =

{
1, 0 < λ < c1

0, elsewhere
(4.19)
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where c1, ..., cR are the cut frequencies of the ideal filters. The ideal filters and
the Hann kernel do not follow the construction of dilatation as in the proposed
SGWT definition but they were included in this section because they can be
used in the same applications as the other kernels. Other SGWT mother
wavelets and scaling functions are described in [109].

Figures 4.2, 4.3, and 4.4 depict the normalized SGWT coefficients of the GS in
Figure 4.1 using as kernels the cubic spline, Meyer and Hann, respectively. Note
that each vector of coefficients |xgr |∑

n |x
g
n,r|

is a GS and is depicted over the graph from
Figure 4.1 instead of the real line, in order to visualize the localization in the vertex
domain. Note that there are contrasting temperatures in the Northeast, resulting
in high-valued coefficients for larger scales using all three kernels. The three kernels
provide different representations for the same GS x specially due to the width of
each kernel and consequently, the vertex-domain localization of the SGWT atoms.

Figura 4.1: Average temperature in December on the Brazilian weather station
graph.
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Figura 4.2: SGWT with kernel cubic spline on the Brazilian weather station graph.

Figura 4.3: SGWT with kernel Meyer on the Brazilian weather station graph.
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Figura 4.4: SGWT with kernel Hann on the Brazilian weather station graph.

4.2 Chebyshev Polynomial Approximation

Designing the wavelet atoms in (4.5) depends on computing the Laplacian eigen-
decomposition, which may be prohibitive for large graphs. Filters can actually be
approximated by Chebyshev polynomials on the graph Laplacian and the filtering
procedure can be performed directly in the vertex domain, as described in Sec-
tion 2.2.5.

Fixing a wavelet scale r, the matrix Gr with gn,r, n ∈ {1, . . . , N}, in its co-
lumns can be approximated by the Chebyshev polynomials on the Laplacian defined
in (2.14). The coefficients for approximating gr(L) , Ugr(Λ)UT in (4.5) via

g̃r(L) ,
1

2
c0 +

Q∑

q=1

cr,qCq(L) (4.20)

are

cr,q ,
2

π

∫ π

0

cos(qθ)gr
(
λmax

2
(cos θ + 1)

)
dθ . (4.21)

The Chebyshev polynomials in (2.14) allow faster computations and each Cq(L)

needs to be computed once for all filters. Only the coefficients in (4.21) need to be
updated. Furthermore the computation of g̃r(L)x with the sum in equation (4.20)
is dominated by the matrix vector multiplication Lx, then the computational cost is
proportional to the number of edges |E|. Figure 4.5 depicts the approximation
of cubic splines, Meyer kernels, Hann kernels, and ideal filters by a 50th-order
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Figura 4.5: Wavelets and their approximations in frequency domain with R = 5.
One low-pass filter (in blue) and five band-pass filters (in yellow, green, red, purple,
and magenta) are shown. Dashed lines correspond to the true wavelet kernel in the
range [0, λmax]. Solid lines show the corresponding 50th-order polynomial approxi-
mation of the wavelet kernels: (a) cubic spline; (b) Meyer kernel; (c) Hann kernel;
and (d) ideal filter. Solid black lines show G(λ) for the approximations and dashed
gray lines, for the actual wavelet kernels. The four sets of wavelet kernels were built
on the Laplacian eigenvalues of the Brazilian weather station graph with adjacency
entries given by (2.20).

Chebyshev polynomial. Ideal filters are approximated by the Jackson-Chebyshev
polynomial [97] in (2.18).

As can be seen in Figure 4.5, the cubic spline in (a) provides higher localiza-
tion for low frequencies, however, it does not generate a tight frame, since G(λ)

from Theorem 4.1.3, shown in gray dashed line, is not constant within the interval
[0, λmax], whereas Meyer, Hann, and ideal kernels do form tight frames. The Meyer
wavelet [109] and the ideal filters require a high-degree polynomial to achieve good
approximations. The Laplacian matrix is usually sparse but the higher the degree
of approximation the denser is the approximated filters. If the graph is extremely
large, a high degree approximation may be infeasible not only for matrix multipli-
cation but also for storage. In order to have a better approximation by low-order
Chebyshev polynomials, one may construct wavelet kernels based on sinusoidal wa-
ves [110, 112] as the graph wavelet based on Hann kernel shown by Figure 4.5(c).
These wavelets have uniform frequency width and can be warped with a function
ω(λ) = log(λ) to achieve finest resolutions at low frequencies [110] .
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4.2.1 Distributed Computation

Consider the Q-order Chebyshev polynomial approximation H̃ of a graph filter H,
then H̃nm = 0 for all node m 6∈ NQ(n), then, the approximated SGWT coefficients
can be computed locally on each node. A distributed framework is proposed in [113].
Each node n knows:

(1) The GS restricted to the neighborhood NQ(n);

(2) Edge weights connecting to each of its neighbors (Anm,m ∈ NQ(n));

(3) The Q Chebyshev coefficients cr,q that can either be precomputed centrally
and then sent to each node or be computed locally by each node;

(4) An upperbound to the Laplacian spectrum.

Each node computes (H̃x)n by iteratively exchanging information with local neigh-
bors.

4.3 Numerical Experiment: Wavelets in Semi-

Supervised Learning

Semi-supervised learning (SSL) is a class of machine learning techniques that can
use both the labeled and the unlabeled data in training and lies between the un-
supervised learning, that does not make use of any labeled data, and supervised
learning, that uses only labeled data for training. The SSL is suitable for problems
in which a small amount of labeled data is available in comparison with the amount
of unlabeled available data. In most of the applications the labeling process is per-
formed by a human being (i.e.: defining if a picture is a dog or a cat) and may
require many time and resources.

Consider the set of data points X = {x1, ...,xN} and the corresponding label set
Y = {y1, ..., yN} where each xn is a vector with Q attributes (numerical continuous,
discrete, binary or categorical) Each yn can also be numerical continuous, discrete,
binary or categorical. The dataset X is composed by labeled points XL = {x1, ...,x`}
(with ` << N) associated with the corresponding labels YL = {y1, ..., y`} and by the
unlabeled points XUL = {xL+1, ...,xN} whose labels YUL should be predicted.3 The
difference between this approach and the supervised-learning is that the unlabeled
set XUL is used in training. Assume that each pair (xn, yn) is i.i.d. and sampled
from a distribution P(x, y), then the goal of SSL is to make inference about P(y|x).
The unlabeled data points, thus, provide some knowledge about P(x) that can be

3This class of techniques is called transductive learning.
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useful to infer P(y|x). Typical SSL algorithms make the following assumptions [114,
Section 11.6]:

1. if points x1 and x2 in a high density region are close to each other, then the
corresponding labels y1, y2 should also be close (smoothness assumption);

2. if points are in the same cluster, they are likely to be in the same class (clus-
tering assumption);

3. the high dimensional data lie (roughly) in a low dimensional space (manifold
assumption).

Note that assumption (1) is more related to regression problems whereas assumption
(2) is more related to classification problems. In order to translate the SSL into a
GSP problem, it is necessary to define a graph and a GS. A graph G with nodes
V corresponding to each data point is built using the feature vectors in X . The
Gaussian kernel f(xn,xm) = Ce−κ‖xn−xm‖

2
2 , where C and κ are design parameters,

is commonly used to compute adjacency matrix entries Amn but other functions such
as cosine similarity can also be used. It is worth mentioning that, in order to satisfy
conditions 1 and 2 of SSL, the adjacency matrix should be a similarity matrix such
that nodes with strong connections should be in the same class (1) and corresponding
labels should be close to each other (2). The resulting adjacency matrix can be
thresholded to promote sparsity. The GS is a vector y ∈ RN with labels y` in its
entries. The smoothness assumption is equivalent to requiring smoothness of y,
that is, the energy of y is concentrated on low frequencies in the spectral domain.
This assumption is related to the Definition 5.1.2 (bandlimited GS) introduced in
Chapter 5.

Smooth GSs are also more aligned with SGWT atoms gn,r corresponding to
small frequencies, therefore, a smooth GS is expected to have relatively small SGWT
coefficients xgn,r, n ∈ {1, . . . , N}, r = {1, . . . , R} for r close to R.

The multiresolution analysis provided by the SGWT can be used to label a
piecewise continuous GS x in an SSL setup [74]. One method to determine the labels
for the unlabeled data is to incorporate the sparsity on the wavelet coefficients:

min
xg

1

2
‖y −ΨG∗xg‖2

2 +
R∑

r=1

γr‖xgr‖1 (4.22)

where y ∈ RN is a vector with labels yn at all entries corresponding to YL zero
elsewhere; Ψ is an N × N matrix with Ψnn = 1, if xn ∈ XL, zero elsewhere; G∗

is the adjoint of the SGWT operator; and xg = [xh,xg1, ...,x
g
R] ∈ RNR is the vector

of wavelet coefficients. One problem in this approach is that the support of high
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frequency atoms may highly intersect the vertices associated with unlabeled data.
Thus most of the coefficients corresponding to high frequency atoms are set to zero
and the optimization problem fails to approximated the boundaries of piecewise
linear functions. For example, consider the following semi-supervised classification
problem: let G denote a random sensor graph [103] with 100 nodes as shown by
Figure 4.6a. Consider the label GS x given by the sign of the Fiedler vector:

xn =

{
1 if Un2 ≥ 0

−1 otherwise.
(4.23)

Suppose that only a percentage p = 0.15 of the labels on the graph sensor is available.
Figure 4.6b shows the resulting prediction, x̃, obtained solving (4.22) with γr = 0.2,
r = 1, 2, 3, 4 and the cubic spline kernel and Figure 4.6c shows the binary result
sign(x̃). As a drawback promoted by the sparsity of SGWT coefficients, nodes
around the discontinuity of the original GS were misclassified.

(a) Original GS (b) Resulting GS (c) Resulting binary GS

Figura 4.6: Semi-supervised classification over a sensor graph.

The capability of the SGWT of dealing with the both the smoothness and clus-
tering assumptions will be further explored in Chapter 7 in order to build both
supervised and unsupervised anomaly detection frameworks.

4.4 Conclusion

The SGWT is a useful tool to analyze and process vertex-varying GSs and it can
be efficiently implemented without computing the Laplacian eigenvectors. The pro-
perty of localization of the SGWT atoms depends on the magnitude of the GFT
entries, which are related to the topology of the graph. The use of SGWT in anomaly
detection will be further explored in Chapter 7. Next chapter presents downsam-
pling and upsampling operators for GSs, which are other fundamental tools of signal
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processing.
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Capítulo 5

Sampling on Graphs

Downsampling and upsampling are common operations in multirate signal proces-
sing; yet it is not straightforward how to generalize those operations for GSP, since
nodes are not ordered. Downsampling a discrete time signal by a factor 2 , for
example, means dropping every odd sample, but an “odd node"is not a well-defined
concept on a general graph. Because of this difficulty, a large variety of graph sam-
pling approaches have been developed focusing on many different applications, such
as filterbanks, active learning, semi-supervised learning (SSL), data interpolation,
etc [61].

Section 5.1 presents the theory of sampling/interpolating GS based on the ban-
dlimited assumption [68]. This section also presents theoretical results for approxi-
mated bandlimited GS and sampling strategies to optimize the reconstruction error
in the presence of noise or modeling mismatch. Section 5.2 presents an interpolation
method based on the cutoff frequency of the bandlimited GS.

5.1 Sampling Bandlimited Signals

In classical signal processing, Shannon-Nyquist sampling theorem states that a sam-
pled bandlimited signal can be perfectly recovered by a sinc1 interpolation if the
sampling rate is at least twice the bandwidth.

Theorem 5.1.1. (Sampling theorem, [115]) Let f(t) be a continuous square-
integrable function such that f̂(ξ) = 0 for all |ξ| > ξm. If the sampling frequency
ξs ≥ 2ξm, then f(t) can be recovered by the following interpolation formula

f(t) =
∞∑

n=−∞

f

(
nπ

ξs

)
sin(ξst)

ξst
. (5.1)

1The sinc function is defined as sinc(x) = sin(x)
x .
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The set of functions {f(t) ∈ L2(R); f̂(ξ) = 0 ∀ξ, |ξ| > ξs} (square-integrable
bandlimited functions) is called a Paley-Wiener space denoted by PWξs(R).

In order to extend sampling theory to graph signals, let S , {s1, ..., sM} ⊂ V be
a subset of nodes with M ≤ N nodes; the vector of measurements xS ∈ RM is given
by xS = ΨSx, where the sampling operator

[ΨS ]mn =

{
1, if vn = sm

0, otherwise
(5.2)

selects from V the nodes in S. The interpolation operator ΦS is an N ×M matrix
such that the recovered signal is x̃ = ΦSΨSx. If x̃ = x, the pair of sampling and
interpolation operators (ΦS ,ΨS) can perfectly recover the signal x from its sampled
version. As the rank of ΦSΨS is smaller or equal to M , this is not possible for all
x ∈ RN when M < N .

In order to develop a graph sampling method based on Theorem 5.1.1, it is first
necessary to define a concept of bandlimited GS.

Definition 5.1.2. (Bandlimited GS) The GS xb is said F-bandlimited if (x̂b)n =

0 ∀n such that λn 6∈ F ⊂ {λ1, . . . , λN}, that is, the frequency content of xb is
restricted to the set of frequencies F . The space of F-bandlimited GS on the graph
G with GFT U will be denoted as BLF(U).

Some works also restrict the support of the frequency content and consider that
a GS xb is K-bandlimited if (x̂b)k = 0 and 0 < k ≤ K (the columns of U are ordered
so that the associated eigenvalues are increasingly sorted, in the case of GSPL, or
decreasingly sorted, in the case of GSPA) or ξ-bandlimited if (x̂b)k = 0 ∀k such that
λk > ξ [29]. In the second case, the space of ξ-bandlimited GS, BLξ(U), is the graph
equivalent of the PWξ(RN) from classical signal processing. Theoretical results for
ξ-bandlimited GS will be presented in Section 5.2.

Given the set of bandlimited GSs BLF(U), designing a pair of sampling and
interpolation operators (ΦS ,ΨS) relies on finding a subset of nodes S ⊂ V able to
keep all the information about any GS x ∈ BLF(U).

Definition 5.1.3. (Uniqueness set) Let S be a subset of V and x,y ∈ BLF(U) two
GSs such that xS = yS (the two GSs restricted to the subset of nodes S are equal).
If y = x, then S is called a uniqueness set for BLF(U).

In this text, a bandlimited signal is a sparse vector in the GFT domain as in
Definition 5.1.2. The following theorem guarantees the perfect reconstruction of an
F -bandlimited GS for some sampling sets.
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Theorem 5.1.4. ([68]) If the sampling operator ΨS satisfies

rank(ΨSU:,F) = |F| = K, (5.3)

then xb = ΦSΨSxb as long as ΦS = U:,FΣ, with Σ satisfying ΣΨSU:,F = IK

and U:,F a submatrix of U with columns restricted to the indices associated with the
frequencies in F .

The condition in (5.3) is also equivalent to

SVmax(US,F) ≤ 1, (5.4)

where SVmax(.) stands for the largest singular value [116] and S = V/S. This means
that no F -bandlimited signal over the graph G is supported on S.

In order to have ΣΨSU:,F = IK we must have M ≥ K, since rank(U:,F) = K.
If M ≥ K, Σ is the pseudo-inverse of ΨSU:,F and the interpolation operator is

Φ = U:,F(UT
:,FΨSU:,F)−1UT

S,F . (5.5)

Before the proof of Theorem 5.1.4, note that since U is non-singular, there is always
at least a subset S such that the condition in (5.3) is satisfied. Nonetheless, for
many choices of S, ΨSU:,F can be full rank but ill-conditioned, leading to large
reconstruction errors, especially in the presence of noisy measurements or in the
case of approximately bandlimited GS (presented in Section 5.1.1). To overcome
this issue, optimal sampling strategies, in the sense of minimizing reconstruction
error, can be employed [68]. Note that Φ depends on both S and F , but this
dependence is omitted in order to simplify the notation.

Demonstração. To prove Theorem 5.1.4 it is necessary to show that (i) the columns
of Φ spans BLF(U) and (ii) x = ΦΨSx for all x ∈ BLF(U) meaning that ΦΨS is
a projection operator on BLF(U). Therefore, if the original GS x already belongs
to BLF(U), ΦΨS is an identity operator.

(i) first, by condition (5.3), rank(ΨSU:,F) = K, and by definition,
rank(ΣΨSU:,F) = K, which means that Σ spans BLF(U). Therefore, Φ = U:,FΣ

also spans BLF(U). To prove (ii), ΦΨS is a projection operator, it is sufficient to
show that it is an idempotent matrix:

(ΦΨS)2 = ΦΨSΦΨS = U:,FΣΨSU:,FΣΨS = U:,FIKΣΨS = ΦΨS .
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5.1.1 Approximately Bandlimited GS

In practice, most GSs are only approximately bandlimited [76]. A GS is approxi-
mately (F , ε)-bandlimited if [116]

x = xb + η, (5.6)

where xb is an F -bandlimited GS and η is an F -bandlimited GS such that ‖η‖2 < ε.
If signal x is sampled on the subset S and recovered by the interpolator in (5.5),
the error energy of the reconstructed signal is upper bounded by

‖x̃− x‖2 ≤
‖η‖2

cos(θS,F)
, (5.7)

where θS,F is the maximum angle between the subspace of signals supported on S
and the subspace of F -bandlimited GS [116]:

cos(θS,F) = inf‖z‖=1 ‖ΨSz‖2

subject to U:,FUT
:,Fz = z

(5.8)

Therefore, the error bound (5.7) is minimized when the subspace of signals in
BLF(U) supported on S are more aligned as possible. From (5.8), it is clear that
cos(θS,F) = SVmin(ΨSU:,F); therefore, in order to minimize the upper bound of
the reconstruction error in (5.7), the set S should maximize SVmin(ΨSU:,F). This
optimal sampling strategy will be further discussed in the next section.

5.1.2 Optimal Sampling Strategies

Due to irregular topology of graphs, not only the sample size can influence the re-
construction error when sampling and interpolating a GS by ΨS and Φ, respectively,
but also the nodes in S themselves. Therefore, whenever possible, it is favorable to
select where to sample in addition to how many nodes. It is also worth remembering
that not all set S with cardinality |S| = M ≥ K is a uniqueness set for BLF(U).
In the previous section, it was shown that the reconstruction `2 error of an appro-
ximately bandlimited GS is minimized when the chosen sampling set S maximizes
SVmin(ΨSU:,F). Therefore, the optimal sampling set Sopt in the presence of model
mismatching is:

Sopt = arg max
S∈AM

SVmin(ΨSU:,F), (5.9)
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where AM is the set of sampling sets S with |S| = M and satisfying the admissibility
condition in Theorem 5.1.4.

Besides model mismatching, reconstruction errors can also arise due to measure-
ment noise. Consider a zero mean and uncorrelated Gaussian vector η that is added
to the sampled F -bandlimited GS, x, as follows:

xS = ΨSx + η, (5.10)

then the recovered signal x̃ is

x̃ = ΦxS = ΦΨSx + Φη = x + Φη.

Since ‖Φη‖2 = ‖U:,FΣη‖2 ≤ ‖U:,F‖2‖Σ‖2‖η‖2 and ‖U:,F‖2 and ‖η‖2 are fixed,
to minimize the error effect of ‖Φη‖2, it is necessary to minimize ‖Σ‖2. Since
ΣΨSU:,F = I, minimizing the largest singular value of Σ, its spectral norm, is
equivalent to maximizing the the smallest singular value of ΨSU:,F , leading to the
optimization problem in (5.9). This problem is equivalent to the E-optimal design
problem from experimental design theory.

Finding the optimal set Sopt is a combinatorial optimization problem that can
require an exhaustive search in all possible subsets of V with size M . A suboptimal
solution can be obtained by the greedy2 search Algorithm 1. If a set function f

(i.e.: f(S) = SVmin(U[S+n]:,F) in (5.9) is submodular, then a greedy algorithm
such as Algorithm 1 provides near optimal solution. Nonetheless, the set function
from Algorithm 1 is not submodular, and there is no theoretical guarantee that the
resulting sampling set S̃ from Algorithm 1 is close to a solution Sopt from (5.9).
There are other sampling strategies derived from experimental design that can also
be used in this context. For instance, if the covariance matrix of the random vector η
in (5.10) is known, the interpolation operator can take this knowledge into account.
Other sampling criteria for GS, optimization designs and greedy algorithms are
reviewed in [116].

A common concern in the extension of classical DSP methods to GSP is that,
depending on the application, graphs can become very large and the GFT, a fun-
damental component of GSP, is computed globally. Therefore, the aforementioned
sampling method, that requires the computation of at least K Laplacian eigen-
vectors, becomes prohibitive as the size of the graph increases. To deal with the
computational cost problem, inspired by compressed sensing, a different sampling
strategy based on random sampling was proposed in [117] and which is addressed

2A greedy algorithm searches a local optimal solution at each stage of the algorithm. For
a general greedy algorithm, there is no guarantee of finding a global optimal solution or even
near-optimal solution.
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Algorithm 1 E-optimal greedy sampling algorithm [68]
Input: U:,F and M , the size of the sampling set
Output: a subset of nodes S

1: procedure
2: while |S| < M :
3: m← argmaxnf(S) = SVmin(U[S+n]:,F)
4: S ← S + [m]
5: end
6: return S.

in Appendix B.

5.2 Interpolation of Bandlimited GS

Definition 5.1.2 concerns only on the sparsity of the GS. Moreover, the previous
sections of this chapter present a combined design for sampling and interpolation
operators. In this section, we briefly introduce an interpolation approach, indepen-
dent of the sampling method, based on a different definition for bandlimited signals
that takes into account which frequencies are nonzero.

Definition 5.2.1. (Bandlimited GS 2, [86]) The signal x is said to be ξ-band-limited
if x̂k = 0 for all k such that λk > ξ. The space of ξ-band-limited signals on the graph
G with GFT UT will be analogous to the Paley-Wiener space and denoted by BLξ(U).

Different from BLF(U), BLξ(U) takes the values of the Laplacian eigenvalues
into account. Given an ξ-bandlimited GS, we aim to recover the full original GS x

from few samples [27]. Theorem 5.2.3 provides a condition on a subset S to be a
uniqueness set for subspace BLξ(U). Note that ξ1 < ξ2 =⇒ BLξ1(U) ⊂ BLξ2(U)

Before Theorem 5.2.3, we introduce the definition of a Λ-set.

Definition 5.2.2. The subset S ⊂ V is a Λ-set if

‖x‖2 ≤ Λ‖Lx‖2 (5.11)

holds for all GS x supported on S, Λ > 0.

Theorem 5.2.3. ( [86]) The set S ⊂ V is a uniqueness set for BLξ(U) if and only
if its complement S is a Λ-set with 0 < ξ < 1

Λ
.

Demonstração. Let x,y ∈ BLξ(U); it is enough to show that if xS = yS , then
y = x. Note that if x ∈ BLξ(U), then uT

k x = 0 ∀k such that λk > ξ

‖Lx‖2 = ‖UTΛx̂‖ ≤ max
λk<ξ

λk‖x̂‖ ≤ ξ‖x‖. (5.12)
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Suppose xS = yS but y 6= x, then x− y ∈ BLξ(U) is supported on S and, since S

is a Λ-set and ξ < 1
Λ
:

‖x− y‖ ≤ Λ‖L(x− y)‖ ≤ Λξ‖x− y‖ < ‖x− y‖, (5.13)

where the second inequality follows from (5.12), contradicting that x 6= y.

The following Theorem proved in [27] provides a cutoff frequency ξ∗ for GSs
supported on S, that is, the maximum ξ such that any signal in BLξ(U) can be
perfectly recovered given a known subset of samples S.

Theorem 5.2.4. Given a subset S, let (L2)S denote the submatrix of L2 containing
only rows and columns corresponding to nodes in S. Then the set S is a uniqueness
set for BLξ(U) with 0 < ξ ≤ ξ∗ = λmin, where λ

2

min is the smallest absolute eigenvalue
of (L2)S .

Demonstração. Let z be a GS supported on S, then

‖Lz‖2
2

‖z‖2
2

=
zT
S (L2)SzS
‖zS‖2

2

= R(zS , (L
2)S) (5.14)

is the Rayleigh quotient of (L2)S . Since λ
2

min = min
zS∈RN−M

R(zS , (L
2)S):

‖Lz‖2
2

‖z‖2
2

≥ λ
2

min ⇐⇒
1

λmin

‖Lz‖2
2 ≥ ‖z‖2

2, (5.15)

which means that S is a 1√
λmin

-set and by Theorem 5.2.4, S is a uniqueness set for

BLξ(U) with 0 < ξ ≤ ξ∗ = λmin.

On the guarantee of existence of a reconstruction formula for a sampled GS, [86,
Theorem 4.1] states that, if S is a uniqueness set for BLξ(U), then there exists a
frame {vm}m∈S ⊂ BLξ(U) such that

xn =
∑

m∈S

xmvmn, ∀x ∈ BLξ(U).

Therefore, once a cutoff frequency ξ∗ is obtained, the reconstruction of any signal
restricted to a uniqueness set is obtained by least square projection. Any bandlimi-
ted signal in BLξ(U), ξ < ξ∗, can be written as a linear combination of the Laplacian
eigenvectors corresponding to eigenvalues smaller than ξ∗. Let us denote by F∗ the
index set of the Laplacian eigenvectors corresponding to eigenvalues smaller than ξ∗,
then x = UF∗x̂ ∀x ∈ PWξ∗(U). Because S is a uniqueness set for BLξ(U), it con-
tains all the spectral information of any GS in x ∈ BLξ(U) and then x = US∗x̂F∗ .
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Therefore, given a subset of nodes S, and S the remaining unknown samples, let
(L2)S be the submatrix of L2 with rows and columns corresponding to nodes in S,
then S is a uniqueness set for BLλ∗min

(U), where λ2

min is the smallest singular value
of (L2)S . SV∗min is the largest bandwidth such that a GS can be perfectly recovered
from S. The unknown GS supported on S can be recovered by

xS = USF∗(U
T
S,F∗US,F∗)

−1UT
S,F∗xS . (5.16)

The interpolator (5.16) is equivalent to (5.5), except for the definition of the set
F .

5.3 Conclusion

This chapter presented sampling/interpolation strategies for bandlimited GSs. Two
different definitions of bandlimited GSs were considered: the first one concerns the
cardinality of the support of the GS in the spectral domain, whereas the second one
concerns the cutoff frequency. In both cases, the interpolation is performed by least
mean square. The chapter also considered the case of approximately bandlimited
GSs and presented a sampling strategy, analogous to the E-optimal design, that
minimizes the reconstruction mean-squared error.

The sampling method presented in Section 5.1 will be used in the application
proposed in Chapter 8 in combination with DL to jointly interpolate and forecast
time-varying GSs. Next chapter presents a brief review on DL models to forecast
multivariate time series.
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Capítulo 6

Deep Learning Applied to
Forecasting Review

Due to advances in many positioning technologies such as remote sensors, mobile
devices, drones, and the global positioning system (GPS), spatiotemporal (ST) data
have been broadly generated. Mining and extracting knowledge from this kind of
data can contribute to a variety of tasks in climate analysis, transportation mana-
gement, internet of things, and other geographical phenomenon analysis. ST data
can be seen as a network in which each of its elements is associated with a time
series. Time varying networks can also be built upon data other than geographical,
for example, the signal of fMRI measured across many brain regions.

One of the most common problems associated with ST data is forecasting. Clas-
sical predictive models generally assume independence of data samples and bypass
relevant spatial information. Vector autoregressive (VAR), an statistical multivari-
ate model, and ML approaches such as support vector regression (SVR) [45] and
random forest regression [46] can achieve higher accuracy than the more traditional
methods but still fail to capture spatial relation. Many artificial intelligence (AI)
solutions rely on extracting the right features from a given set of data and feeding it
to an appropriate ML algorithm. In speech recognition, for example, an estimation
of the speaker’s vocal tract provides a good idea about the gender of the speaker [51].
Nonetheless, in many tasks it is highly impractical to determine a good representa-
tion of data, for example, determining the pixels suitable to discriminate images of
dogs and cats. Beyond mapping an input into an output, neural network (NN) have
the capacity to learn useful representations of data that improve the mapping accu-
racy [51]. The growing of computational power, the advances in graphics processing
units (GPU) and the large amount of available data in a highly variety of fields have
empowered even more the use of DL on a wide range of technological research areas
such as data mining, speech recognition, image analysis, computer vision , recom-
mendation systems, and signal processing in general [118]. Other sciences have also
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benefited from DL: predicting the way molecules will interact with each other in
order to help pharmaceutical companies design new drugs [119], predicting atomic
forces in solid [120], modeling the brain [121], and return forecasting, risk modeling
and portfolio construction in financial sciences [122].

This chapter introduces forecasting DL techniques that, combined with graph
filtering and the sampling and interpolation methods presented in Chapter 5, will
be used in the algorithm proposed in Chapter 8. This chapter also presents 3 graph
convolutional neural networks (GCNs) that mark the intersection between DL and
GSP. A good review on graph neural networks can be found in [87]. The prior
background of neural networks and backpropagation required by this chapter can
be found in [51, Chapter 6].

6.1 Forecasting with Neural Networks

Although both the input and output of a forecasting model can be a multivariate
time series, consider, for simplicity, the problem of predicting the univariate value
xt+1 based on its past values xt−τ+1 , xt−τ+2 , . . . , xt, then each pair of data sample
is (xt, yt) with xt = [xt−τ+1 xt−τ+2 . . . xt]

T and yt = xt+1. A general fully connected
(FC) NN architecture for this forecasting problem is represented in Figure 6.1. The
input layer corresponds to the vector xt, the output layer corresponds to the output
yt, and the hidden layers correspond to the intermediate vectors of this learning
model. Each hidden vector h` = [h`1, h`2, ..., h`J` ]

T is obtained by:

h` = α`(W`h`−1 + b`), (6.1)

where the weight matrix W` ∈ RJ`×J`−1 and and the bias vector b` ∈ RJ` are the
learnable parameters of layer ` and α` is an activation function. In order to learn
the appropriate weight matrices and bias vectors of the model, let L(y, ỹ) denote
the loss function, then gradients are computed as

∂L(y, ỹ)

∂W`

=
∂L(y, ỹ)

∂ỹ

∂ỹ

∂h`

∂h`
∂z`

∂z`
∂W`

(6.2)

∂L(y, ỹ)

∂b`
=
∂L(y, ỹ)

∂ỹ

∂ỹ

∂h`

∂h`
∂z`

∂z`
∂b`

(6.3)
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with z` = W`h`−1 + b`. The parameters are then updated at each iteration i by a
gradient descent algorithm with learning rate η:

W
(i)
` = W

(i−1)
` − η∂L(y, ỹ(i))

∂W`

(6.4)

b
(i)
` = b

(i−1)
` − η∂L(y, ỹ(i))

∂b`
. (6.5)

Common loss functions L(y, ỹ) are the negative log likelihood L(y, ỹ) =
Tb∑
t=1

yt log ỹt

and the mean squared error (MSE) L(y, ỹ) = 1
Tb

Tb∑
t=1

(yt−ỹt)2, where Tb is the training

batch size.

x1 x2

yτ

xτ−1

h11 h12 h13 h1J1· · ·

· · ·

· · ·

... ...

... ...

hL1 hL2 hL3 hLJL

h`1 h`2 h`J`

Input layer

Output layer

Hidden layers

Figura 6.1: General NN architecture. This picture omits the bias added at each
hidden layer

The architecture in Figure 6.1 has separate weight parameters for each time step,
which impairs the generalization to sequences of variable lengths that are unseen
in the training data. Moreover, consider the sentences “I am going to dance today”
and “Today, I am going to dance”. Both sentences have the same meaning, although
deliver the information in different ordering. To answer questions such as “When am
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I going to dance?” or “What am I going to do?” based on the sentences above, a feed
forward NN should learn all the meaning of words for each feature position (time
position in the forecasting problem) separately. An RNN, on the other hand, avoids
these problems by sharing parameters across feature positions [51, Chapter 10].

6.2 Recurrent Neural Networks

An RNN can be seen as a directed acyclic graph in which each neuron in the hidden
layers represents a state. Figure 6.2 shows an RNN with a recursive connection,
which loops τ times, on the left and the corresponding unfolded scheme with ti-
mestamp length τ = 3 on the right. In a basic RNN with a single layer, for each
timestamp t ∈ {1, 2, . . . , τ}, the hidden state ht ∈ RJ1 and the output yt ∈ RJ2 are
computed as:

ht = α1(Whxx
t + Vhhh

t−1 + b1) (6.6)

ỹt = α2(Vyhh
t + b2), (6.7)

where α1 and α2 are activation functions, Whx ∈ RJ1×N , Vhh ∈ RJ1×J1 , and Vyh ∈
RJ2×J1 are weight parameters and b1 ∈ RJ1 and Vyh ∈ RJ2 are bias parameters.
Note that the hidden state and the output do not necessarily have the same size
as the input vector. Different from the previous section, we assume that both the
input and the output are multivariate time series.

Xt

Yt

x1

y1

x2

y2

x3

y3

h1 h2 h3

ht

Figura 6.2: Basic RNN architecture. The vectors Xt = [xt−τ xt−τ+1 ...xt−1]T.

The network structure illustrated by Figure 6.2 is a many-to-many RNN, since
both the input and the output have length lager than 1. Let x1, ...,xτx and y1, ...,yτy

be the input output sequences of an RNN, respectively, then the RNN structure can
be classified as:

• one-to-one: if τx = τy = 1;
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• many-to-one: if τx > 1 and τy = 1;

• one-to-many : if τx = 1 and τy > 1;

• many-to-many : if τx > 1 and τy > 1 (τx = τy or τx 6= τy).

This dissertation focus on themany-to-one structure and considerations on the other
structures can be accessed in [51].

The main difference between RNNs and feedforward NNs is that an RNN can
share parameters across the model. Sharing parameters is a key idea to deal with
sequential data, since it allows the model to capture each piece of information regar-
dless of where it occurs in the sequence [51, Chapter 10]. In Figure 6.2, each node
has an output ỹt, which is used to compute the gradients of the learning model.
Given a loss function L the gradients of the unfolded RNN with respect to Whx and
Vyh are:

∂L(yt, ỹt)

∂Whx

=
∂L(yt, ỹt)

∂ỹt
∂ỹt

∂ht
∂ht

∂Whx

, (6.8)

and

∂L(yt, ỹt)

∂Vyh

=
∂L(yt, ỹt)

∂ỹt
∂ỹt

∂Vyh

. (6.9)

The gradient with respect to Vhh, following the product rule, is computed by diffe-
rentiating each timestamp t and summing all together:

∂L(yt, ỹt)

∂Vhh

=
t∑

k=1

∂L(yt, ỹt)

∂ỹt
∂ỹt

∂ht
∂ht

∂hk
∂hk

∂Vhh

. (6.10)

Sharing parameters across timestamps allows the complexity of the model to not
increase with the input length. Nonetheless, there are some drawbacks related to the
recursive computation used by RNNs: computation can be slow for long historical
data (large τ); failing to capture long range dependencies due to multiplicative
gradients. This last one is also known as the vanishing/explosion gradient problem.
By the chain rule in backpropagation through time (BPTT),1 the gradient associated
with weight parameters at the top of the RNN is a multiplicative chain of the
derivatives in each state as illustrated by Figure 6.3. For example, unfolding the
chain rule in equation (6.10) as:

1Backpropagtion through time is the optimization technique for training RNNs. It consists on
a backpropagation algorithm applied to the unfolded RNN
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∂L(yt, ỹt)

∂Vhh

=
t∑

k=1

∂L(yt, ỹt)

∂ỹt
∂ỹt

∂ht

(
t∏

j=k+1

∂hj

∂hj−1

)
∂hk

∂Vhh

, (6.11)

then, for large t and small k, the term

(
t∏

j=k+1

∂hj

∂hj−1

)
= (Vhh)

t−k
t∏

j=k+1

α′(zj), with

zj = Whxx
j + Vhhh

j−1 + bj, can be a long multiplicative chain and may vanish of
explode due to the term (Vhh)

t−k.
To deal with this problem, gating mechanisms have been used in the literature

since they control the flow of information in the network. The two main gated RNNs,
long short term memory (LSTM) [123] and gated recurrent unit (GRU) [124] will
be presented in the following of this section. Besides RNNs, 1D convolution have
been largely used to forecast multivariate time series and, for some datasets, may
provide results on pair with RNNs with less computational time [125].

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

h1 h2 h3 h4 h5

∂L5
∂h5∂h5

∂h4
∂h4

∂h3
∂h3

∂h2
∂h2

∂h1

Figura 6.3: Basic RNN BPTT.

6.2.1 Long Short Term Memory

An LSTM is an RNN in which each blue box in Figure 6.2 is replaced by the
cell in Figure 6.4. The first step of an LSTM is the forget gate layer given by
equation (6.12), that decides which information will be erased or not. The forget
gate vector is 0 � f t � 1, thus if f tn is close to zero, then the current state ctn is likely
to be forgotten, if f tn is close to 1, on the other hand, then ctn is likely to be kept to
the following recursion step.

The next step, the input gate layer, decides which new information will be stored
in the current cell state ct. The equation corresponding to the input gate is shown
by equation (6.13). Equation (6.14) shows the candidate c̃t for the current state and
equation (6.15) combines the gated previous current state and candidate state,ct−1

and c̃t, respectively, to update the new current state ct.
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The last step of an LSTM, the output gate layer, represented by vector ot, regu-
lates the information to be update to the hidden state ht:

f t = σ(Wfx
t + Vfh

t−1 + bf ) (6.12)

it = σ(Wix
t + Vih

t−1 + bi) (6.13)

c̃t = tanh(Wcx
t + Vch

t−1 + bc) (6.14)

ct = f t � ct−1 + it � c̃t (6.15)

ot = σ(Wox
t + Voh

t−1 + bo) (6.16)

ht = ot � tanh(ct) (6.17)

where f t, it,ot ∈ RJ1 are the vectors corresponding to the forget gate, input gate,
and output gate, respectively; matrices W ∈ RJ1×N and V ∈ RJ1×J1 are the weight
parameters; and b ∈ RJ1 are the bias vectors.

×
element-wise
multiplication

+

element-wise
addition

σ σ Tanh σ

× +

× ×
Tanh

ct−1

ht−1

xt

ct

ht

ht

Figura 6.4: LSTM cell. Adapted from [126].

Although the BPTT of an LSTM depends on many little derivatives, we only
present the derivatives necessary to understand how LSTMs deal with the va-
nishing/explosion gradient problem. In the BPTT of an LSTM, the gradients asso-
ciated with V ∈ {Vf ,Vc,Vi} are computed similar to equation (6.11):

∂L(yt, ỹt)

∂V
=

t∑

k=1

∂L(yt, ỹt)

∂ỹt
∂ỹt

∂ht
∂ht

∂ct

(
t∏

j=k+1

∂cj

∂cj−1

)
∂ck

∂V
, (6.18)
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then by equation (6.15):

∂ct

∂ct−1
= ct−1 ∂f t

∂ct−1
+ f t + c̃t

∂it

∂ct−1
+ it

∂c̃t

∂ct−1

= ct−1 ∂f t

∂ht−1

∂ht−1

∂ct−1
+ f t + c̃t

∂it

∂ht−1

∂ht−1

∂ct−1
+ it

∂c̃t

∂ht−1

∂ht−1

∂ct−1
. (6.19)

In order to compute the gradients in ∂ct

∂ct−1 , define Ωt
κ = Wκx

t + Vκh
t−1 + bκ,

κ ∈ {i, f, o, c}, then:

∂ct

∂ct−1
=(ct−1 � σ′(Ωt

f )�Vf )(o
t−1 � tanh′(ct−1)) + f t+

(c̃t � σ′(Ωt
i)�Vi)(o

t−1 � tanh′(ct−1))+

(it � σ′(Ωt
c)�Vc)(o

t−1 � tanh′(ct−1)), (6.20)

where σ′(Ω) = (1−σ′(Ω))2 and tanh′(ct−1) = 1−tanh2(ct−1). Note that, like (6.11),
the derivative ∂ct

∂ct−1 also depends on matrices V which could also lead to the problems
of vanishing or explosion. Nonetheless, the gates in (6.20), that are set throughout
the model’s learning, may control the values of this derivative as convenient. For
instance, suppose that ∂ct

∂ct−1 starts to converge to zero, then if the training data
presents long range dependencies, the forget gate f t may take values close to 1 and
avoid the gradient from vanishing [127].

6.2.2 Gated-Recurrent Unit

Different from the LSTM, the GRU cell is composed by only two gates qt and rt,
which modulate the flow of information inside the cell unit. Figure 6.5 depicts the
architecture of a GRU. The gates are given by:

qt = σ(Wqx
t + Vqh

t−1 + bq), (6.21)

rt = σ(Wrx
t + Vrh

t−1 + br), (6.22)

where {Wq,Wr} ⊂ RJ1×N and {Vq,Vr} ⊂ RJ1×J1 are matrices whose entries are
learnable weights, {bq,br} ⊂ RJ1 are the bias parameters.

The update of the hidden state ht is a linear combination of the previous hidden
state and the candidate state ct:

ct = σ(Wcx
t + Vc(h

t−1 � rt) + bc), (6.23)

ht = qt � ct + (1− qt)� ht−1, (6.24)

with � being the element-wise multiplication. Similar to LSTM [128], the additive
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update of the hidden state can handle long-term dependencies by avoiding a quick
vanishing of the errors in BPTT, and by not overwriting important features. The rt,
called reset gate,controls how much of the previous information should be ignored
before combining with xt and qt, called update gate, controls how much of the past
information will be kept to the next hidden state.

×
element-wise
multiplication

+

element-wise
addition

σ σ
Tanh

× +

× ×
−1

ht−1

xt

ct
qtrt

xt+1

ht

Figura 6.5: GRU cell.

6.2.3 RMSprop

Once the gradients are computed, the optimization of the parameters follows the
same update rule from equation (6.4). Another common optimization algorithm
broadly used to train models of sequential data is the RMSprop [129] which can be
seen as an adaptation of the resilient backpropagation algorithm (Rprop) to deal
with mini-batches. The Rprop uses only the sign of the gradient and adapt the step
size of the update equation for each parameter separately. The RMSprop forces
the normalization factor of the Rprop to be similar across adjacent mini-batches in
order to combine the robustness of Rprop and the efficiency of min-batches. Let
E(∇i

WL)2 denote the average of the squared gradients with respect to parameter W

over a mini-batch at iteration i, then

E[∇i
WL]2 = βE[∇i−1

W L]2 + (1− β)(∇i
WL)2 (6.25)

Wi = Wi−1 − η√
E[∇i

W]
∇i

WL (6.26)

The term E[∇i
WL]2 is a moving average of the squared gradient and allows efficient

learning from sequential data. The learning model proposed in Chapter 8 uses this
algorithm for optimizing its parameters.
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6.3 Graph Convolutional Neural Networks

Due to the widespread usage of graph-structured data in many applications, there
is a growing interest in applying DL to this kind of data. Alongside RNNs, the
convolutional neural network (CNN) is a successfully and broadly used class of NNs.
The 2D-CNN is commonly used to capture spatial features but is restricted to grid-
like uniformly structured data, such as images and videos. To extend CNNs to data
defined on graphs, and inspired by GSP, some works have developed convolutions on
GS [57–60, 130, 131]. This section presents three graph convolutional neural network
(GCN) that have been adapted and combined with other methods in order to deal GS
taking the underlying graph structure into account. The spectral graph convolution
(SGC) proposed in [130] was the first attempt to extent CNNs to graphs using
GSP. The spectral domain filters proposed by [130] are then replaced by polynomial
approximation in [58] and a graph convolutional neural network (GCN) built in the
vertex-domain based on the adjacency matrix is proposed by in [60].

CNNs are typically followed by global or local pooling layers, which reduce the di-
mension of the output after the convolution with the aim of reducing the complexity
as the network become deeper. A local pooling, for example, uses statistical functi-
ons such as average and maximum value to aggregate small clusters in the 2D grid.
In graphs, the notion of clusters is not straightforward then graph theoretical tools
must be employed such as multi-resolution spectral clustering [132] used in [57].
In [58] the coarsening phase of the Graclus multilevel clustering algorithm [133] is
used to coarsen the graph in each level of the network before pooling the GS. More-
over, in order to avoid unnecessary storage and improve the computational cost of
the implementation, the nodes are sorted so that graph pooling becomes as efficient
as conventional 1D pooling. Although pooling is a fundamental component of many
deep NNs, it will not be covered by this dissertation.

6.3.1 Spectral Graph Convolution

A 2D-CNN consists of a 2D kernel, with width and height as hyperparameters,
that slides through a 2-dimensional data. This convolution can be extended to 3

dimensional data with a 2D or a 3D kernel. The SGC replaces the 2D kernel by a
graph filter and the convolution by the graph filtering in equation (2.10). The graph
filter is built on the Laplacian matrix, although matrices based on the adjacency
could be used as well. Each layer ` of the SGC transforms an input GS x`,i ∈ RN×I`

into an output GS x`,f ∈ RN×I` :
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x̃`+1,f = U

(
I`−1∑

i=1

W`,f,i

)
UTx`,i, (6.27)

x`+1,f = α(x̃`+1,f + b`,f,i), f ∈ {1, . . . , I`}, i ∈ {1, . . . , I`−1} (6.28)

where W`,f,i ∈ RN×N is a diagonal matrix (graph filter in the spectral domain), b`,f,i

is the bias parameter ,α is an activation function, and I` is the number of filters
in layer `. Therefore, each layer ` has N × I` × I`−1 learnable parameters. Since
smoothness is a common assumption for GSs, only the d first Laplacian eigenvalues
are generally needed and the number of weight parameters becomes d × I` × I`−1.
The choice of the cutoff frequency λd depends on the application as, in some cases,
high frequencies may carry meaningful information.

To compute the gradients, denoting by (w`,f,i)k the kth diagonal entry of W`,f,i,

note that

(x̃`+1,f )n =
d∑

k=1

Unk(w`,f,i)k

N∑

m=1

Umk(x`,i)m, (6.29)

then, denoting by L the loss of the entire network,

∂L
∂(w`,f,i)k

=
∂L

∂x̃`+1,f

∂x̃`+1,f

(w`,f,i)k
= (ūT

k x`,i)u
T
k

[
∂L

∂x̃`+1,f

]
(6.30)

∂L
∂x `,f

= U

(
I`−1∑

i=1

W`,f,i

)
UT

[
∂L

∂x̃`+1,f

]
(6.31)

In [57] an algorithm to forward this network and compute gradients with com-
plexity O(1) is proposed. The computational drawback of this implementation is
the multiplication by UT and U in each layer.

6.3.2 Spectral Graph Convolution in the Vertex Domain

In order to avoid the computation of the GFT, the graph convolution filters in [58]
are approximated by the Chebyshev polynomials introduced by Section 2.2.5. The
update equation of layer ` in (6.27) becomes:

x̃`+1,f =

I`−1∑

i=1

Q∑

q=0

cq,`,f,iCq(L)x`,i, f ∈ {1, . . . , I`}, i ∈ {1, . . . , I`−1}, (6.32)
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where the Chebyshev coefficients cq,`,f,i are the parameters to be learned. Therefore,
for each layer, there are (Q+ 1)× I` × I`−1 parameters to learn and gradients are

∂L
∂c`,f,i

= [x̄0,`,i x̄1,`,i . . . x̄Q,`,i]
T ∂L
∂x̃`+1,f

(6.33)

∂L
∂x`,i

=

I∑̀

f=1

(
Q∑

q=0

cq,`,f,iCq(L)

)
∂L

∂x̃`+1,f

, (6.34)

where x̄q,`,i = Cq(L)x`,i.

6.3.3 Low Order Approximation GCN

In the previous convolution neural network, the number of parameters per layer
depends on the order of the approximation of the Chebyshev polynomial. In [60],
low order approximation is proposed. Consider the normalized Laplacian matrix
Lnorm = D−1/2LD−1/2, then the largest eigenvalue of Lnorm is bounded by 2 and
L in equation (2.15) becomes Lnorm ≈ Lnorm − I, then approximating (6.32) with
degree Q = 1 without the bias term is:

x̃`+1,f =

I`−1∑

i=1

c1,`,f,i(Lnorm − I)x`,i + c0,`,f,ix`,i

=

I`−1∑

i=1

−c1,`,f,iD
−1/2AD−1/2x`,i + c0,`,f,ix`,i, (6.35)

The number of learnable weights can be reduced to c`,f,i = c0,`,f,i = c1,`,f,i and the

layer equation (6.35) becomes
I`−1∑
i=1

c`,f,i(I+D−1/2AD−1/2)x`,i. In order to have more

stability of the GCN, the term I + D−1/2AD−1/2 is normalized as follows:

Ã = A + I and D̃nn =
N∑

m=1

Ãnm,

then graph convolutional layer ` can be expressed as

X̃`+1 = D̃−1/2ÃD̃−1/2X`C`, (6.36)

where X` ∈ RN×I`−1 is the input matrix and C` ∈ RI`−1×I` is the matrix of weight
parameters from layer `.

73



6.3.4 Implementation Aspects

Due to the recent increasing interest in the application of learning algorithms to
graph structured data, some useful libraries have been developed. The PythorchGe-
ometric [134] is a library in PyTorch implementing a diverse range of DL methods
on graphs and irregular structures in general. The library provides tools for dealing
with giant graphs and some benchmark datasets. The deep graph library [135] is
also a DL library developed to deal with data residing on graphs. This library is
agnostic to the DL framework and provides a back-end adapter interface. In [136],
an overview of 120 datasets, available at [137], of varying sizes from a wide range of
applications is analyzed.

6.4 Conclusion

Part I of this dissertation presented the fundamentals of GSP as well as the VFA
and sampling/interpolation strategies for bandlimited or approximately bandlimited
GSs. Part II employs the presented GSP tools to deal with time-varying GS in two
different applications: the SGWT, in combination with machine learning algorithms,
will be used in the task of anomaly detection of individual graph nodes; and the
sampling/interpolation methods, in combination with the forecasting-DL approaches
reviewed in this chapter, will be used to simultaneous forecast and interpolate GSs.
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Parte II

Applications
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Capítulo 7

Anomaly Detection in Graph Signals

Anomaly detection is the identification of instances of data differing significantly
from the majority of the dataset and is applied in a variety of problems, such
as fraud and intrusion detection, medical imaging, and event detection in sensor
networks [138]. These different instances of data are also called outliers and are
defined by Hawkings [139] as

“An outlier is an observation which deviates so much from the other
observations as to arouse suspicious that it was generated by a different
mechanism.”

It is important to point out that in many applications data may present a large
amount of noise that may not be of any interest to the analyst. As noisy data can
deviate significantly from the rest of data, it can sometimes be considered an outlier.
Thus, in this chapter we will consider, as an outlier, a point that can be generated
by a different process of the majority of data and an anomaly will only refer to
the outlier that is interesting to the analyst. Detecting these anomalies may be
extremely important and provides useful insights to many applications, including
graph structured data. For example, an unusual behavior in computer networks
can be generated by a malicious activity and its recognition is indispensable for the
integrity of the system [32].

Common approaches to detect anomalies rely on defining a space for normal
data and label as anomalies all the data points that lies out of this space. Although
these methods seems simple, there are some difficulties: (i) the space of normal
data can be hard to define and may not have precise boundaries, specially in the
presence of noise. Moreover, the space of normal data may change over time so
that algorithms need to be frequently adapted; (ii) if the anomaly is generated by a
malicious mechanism, it will be always adapted to mimic the normal data, making
even more difficult to define the normal space; (v) since anomalies are rare events,
usually there are not enough anomalous data to develop some kind of algorithms;
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Figura 7.1: Collective anomaly: premature atrial contraction [140].

(iv) the notion of anomaly varies across different applications and algorithms may
not be directly transferred from one application to another one [138].

Beyond these difficulties, there are some aspects of the data that should be
taken into account when employing an anomaly detection algorithm, such as the
nature of the data, the availability of labels, and the type of the anomaly to be
detected. Data can be categorized in multiple ways, for example, data can be
univariate, multivariate or multivariate with mixed types of variables. The types
of variables are binary, discrete numerical, continuous numerical or categorical and
different methods should be applied to deal with each of this kind of data. Moreover,
there may exist some relation between instances of data (i.e.: sequential or spatial)
requiring different treatment from the one used for independent data instances.
Regarding the anomalies themselves, they can be categorized into 3 main classes:

1. Point anomaly: point anomalies are the most common anomalies and refer to
data points that differs from the rest of the data. For example, consider a fraud
card detection problem: if a client makes transactions of at most $100.00 using
a credit card, and suddenly appears a transaction of $1000.00 in the credit card
recordings, this transaction is highly likely to be a fraud (an point anomaly),
since it totally deviates from the common behavior of the consumer. Thus, a
anomaly detection algorithm would detect this potential fraud and report it
to the client.

2. Collective anomaly: a collection of related data points deviates from the rest
of the dataset is called collective anomaly. This type of anomaly is related
to dependent data and, individually, each instance of data is not anomalous.
T. A common example of collective anomaly is the premature atrial contrac-
tion detected in the electrocardiogram (ECG). Figure 7.1 illustrates a human
ECG [140]. The blue box highlights a premature atrial contraction, that is, the
heart P wave (small wave) corresponding the the atrial contraction occurred
earlier so that the highlighted region is shorter than expected. The highlighted
region is a collective anomaly because although each temporal instance has an
acceptable value for an ECG, together they are abnormal.

3. Contextual anomaly: a contextual anomaly corresponds to data instances that
are abnormal conditional to a given context. This type of anomaly is related
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to data having two different information: the context (i.e: day of the year)
and the behavior (i.e: average temperature in a day). For example, suppose it
is 40oC in July at Rio de Janeiro, the behavior itself, 40oC, is not abnormal for
Rio de Janeiro, but taking the context (winter), into account, this temperature
can be considered anomalous.

The third aspect to be considered by an anomaly detection algorithm is the avai-
lability of data. As aforementioned, anomalous data are typically rare, impairing,
for example, the use of supervised learning algorithms. The algorithms for anomaly
detection can be (i) supervised, examples of both inliers1 and abnormal points are
available. These algorithms usually see the anomaly detection as a classification
problem in which one class is composed by normal data whereas the other class is
composed by anomalies; (ii) semi-supervised if only normal data or anomalous data
are available. In this case, a common approach is to use the normal data points to
define the normal space and points falling out of this region are labeled as anomalies.
For example, a predictive learning model can be trained on the normal data and
the label of anomaly can be assigned to data points whose observed values largely
deviated from the prediction; (iii) unsupervised if there is no labeled data. A great
review on anomaly detection algorithms can be found in [138].

Anomalies can also occur in data residing on graphs. This chapter focus on
contextual anomalies in which the GS is the behavior and the underlying graph
is the context. The proposed framework applies VFA concepts to the problem of
anomaly detection in graphs. We also consider each graph node as an instance of
data and applications in which the entire GS is considered as a single data point
will not be covered. The idea behind using VFA to detect abnormalities in GS is
that the spectral pattern of the data may provide some information on the expected
behavior of each graph node. Section 7.3 provides experimental results with real
data.

In [33], the authors employs GSP to detect anomalies in a sensor network of
weather stations in the United States. In the absence of malfunctioning sensors in
the system, it is expected that stations close to each other have similar tempera-
ture measurements and, therefore, the temperature GS is supposed to be smooth
(F -bandlimited with F corresponding to the smallest frequencies). Based on this
hypothesis, high frequency components of the signal are extracted by a high-pass
filter. If the maximum absolute value of the Fourier coefficients of the resulting fil-
tered signal exceeds a threshold, an anomaly is detected in the whole network. The
threshold is chosen as the maximum GFT absolute value of the high-pass filtered
signals in the previous three days. This approach detects malfunctioning in the
network but does not provide any clue about where is the corrupted measurement.

1The inliers correspond to the common data points
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7.1 VFA-based Anomaly Detection

Aligned with the work in [33], a VFA-based classification method to detect and
localize point anomalies in GS is proposed by this chapter [141]:

(i) define the adjacency matrix A of the graph based on a similarity measure
across nodes. Section 7.3 provides an example of a possible choice for A in
sensor graphs. An important assumption to this approach is that connected
nodes have similar measurements.

(ii) compute a VFA representation of the raw input data. For instance, SGWT
provides RN coefficients, which can all be used as new features, or just a
subset of scales (e.g., coefficients of a single specific scale r ∈ {1, ..., R}).

(iii) feed a machine-learning-based or statistics-based classifier with the new trans-
formed features.

In the case of sensor graphs, features can be chosen as a range of previous mea-
surements (i.e. previous 6 months or previous 3 days). If vertex n is corrupted,
xgn,r of the current feature is expected to be different from the previous transformed
features xgn,r.

7.2 Outlier Detection Algorithms

The third step of the methodology described above can involve a machine-learning
classifier. This section introduces three machine-learning algorithms commonly used
for outlier detection: local outlier factor (LOF), isolation forest (IF) and one class
support vector machine (OCSVM). These algorithms are implemented in the sci-
kit learn library and can be used for both unsupervised outlier detection or semi-
supervised detection, also called novelty detection.

7.2.1 Local Factor Outlier

LOF [142] is an unsupervised algorithm that provides a score of how likely a data
point is to be anomalous based on its k-nearest neighbors. More precisely, it compa-
res the density of data points around a certain point to the density of points around
its nearest neighbors. First, consider the set of k-nearest neighbors from a point p
denoted by Nk̄(p) (do not confuse with the k-hop ball Nk(n) from definition 2.1.2,
the purpose of this section is introducing some algorithm detection algorithms and
is not directly related to GSP) and the k-distance dk(p) that is the distance d (i.e.
Euclidean distance) from point p to its kth nearest neighbor. Figure 7.2 shows an
example of a 3-distance, d3̄(A), based on the Euclidean distance. Note that point B
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Figura 7.2: A 3-distance example.

is the third nearest point to A, then points B, C, and E are in N3̄(A) but point D
is not. Second, define the reachability distance between two points p and q

reach-distk(p, q) = max {dk(p), d(p, q)} .

If point q is one of the k-nearest neighbors of p, then reach-distk(p, q) is equal to
the k-distance, otherwise it is the proper distance d(p, q). Note that the reach-dist
is not symmetric since point q can be in Nk̄(p) but the converse may not hold.
The reach-dist is used to introduce the concept of local reachability density, lrdk(p),
which is the inverse of the average reach-dist value of points in Nk̄(p):

lrdk(p) =
k∑

q∈Nk̄(p)

reach-distk(q, p)

The lrd of each point is then compared to the lrd of each of its k-nearest neighbors:

lofk(p) =
1

klrdk(p)

∑

m∈Nk̄(p)

lrdk(q).
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Figura 7.3: Comparison of 3-distance of normal data points and outliers.

If lrdk(p) > 1, point p is considered anomalous. In some applications, it is expected
to have a given contamination rate rc ∈ [0, 0.5]. In this case, a sample p is considered
anomalous if lrdk(p) < percrc(lofk) where percrc(lofk) is the percentile rc of the lofk
of all data points. Figure 7.3 shows the 3-distance of a dataset composed by 22

points. The red dots are outliers and have a large k-distance, represented by the
circles centered at each data point, compared to common points, meaning that it is
necessary to “walk” more through the data space until finding another data point.
Dashed circles corresponds to the 3-distance of outliers. A disadvantage of LOF
is that normal data points with not enough close neighbors may be misclassified.
furthermore, the performance of the algorithm depends on the chosen distance d
and have computational complexity O(N2).

7.2.2 Isolation Forest

This approach constructs an ensemble of tree structures to “isolate” each single
instance of data. As anomalies are rare in a dataset and have values of features very
different from those of common instances, anomalies are expected to be isolated
closer to the root of the trees than normal instances of data [143]. An isolation
tree (iTree) is a binary structure where each node has exactly zero or two daughter
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nodes, the last one is called test node. Each test node of the tree has a randomly
selected feature f and a threshold tf to separate data points into tow sets xf ≤ ft of
xf > ft until each tree node has exactly one instance of data. For each data point,
the anomaly score of the iTree is taken as the path length (Section 2.1), denoted
by `(i), from the current leaf to the root of the tree, thus anomalies tends to have
lower scores than normal data; .

In the IF, before the computation of each iTree, data is sampled and since the
majority of data (normal) do not need to be separated, small sampling size is gene-
rally acceptable. The final score of data instance is taken as the average score for
all the iTree’s in the ensemble. In order to have comparable scores across the trees
in the IF, the scores need to be normalized. Nonetheless, both the maximum and
the average height of a iTree, grows as N and logN , where N is the number of data
instance. An approximation for the average path length, ˜̀(i), was then borrowed
from binary search three (BST) analysis:

˜̀(i) = 2(ln(i− 1) + e)− 2
i− 1

i
, (7.1)

where e is the Euler’s constant. Therefore, the outlier score of an instance n in a
dataset with size N provided by an ensemble of Ntrees is:

s(n,N) = 2
−

∑Ntrees
m=1 `n(n)

˜̀(N) . (7.2)

Then, if `(n) is low on average, that is, point n is isolated near to the root of the
iTree, then score s(n,N) is close to 1 and n is classified as abnormal. If, on the
other hand, `(n) tends to ˜̀(N), then s(n,N) tends to 0.5 and n is classified as
normal. When the percentage of contamination is provided, the data points are
sorted according to the isolation score. Points at the top of the list (low score) are
likely to be anomalies.

As the LOF, IF can also be employed to unsupervised and semi-supervised sce-
narios. Furthermore, IF takes some advantages: (i) it does not depend on computing
any distance function between each pair of data points, having complexity O(N);
(ii) it scales well with the number of instances of data; (iii) its performance may not
be impaired by high dimensional data points if some of the features (dimensions)
are not informative [143].

7.2.3 One Class SVM

The main problem of applying support vector machine (SVM) to anomaly detection
is that a simple SVM is designed to separate two classes of data by a decision
boundary. In the anomaly detection problem, data is not labeled and all points are
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assumed to belong to a unique class. The OCSVM is an SVM algorithm addressed
to anomaly detection [144].

Consider a transformation Φ(.)2 associated with a kernel K(., .)

K(xn,xm) = Φ(xn)TΦ(xm) (7.3)

mapping the feature space to another representation. The decision boundary that
separates normal points and anomalies is

wTΦ(xn)− b = 0, (7.4)

where w and b are learnable parameters. The optimization problem should be
formulated in a way that Φ(xn) = wTΦ(x)− b is positive for most of the data. The
strategy is, then, to maximize the margin that separates the feature space provided
by the feature map Φ from the origin:

min
w,b,ξ

1
2
‖w‖2 + 1

cN

N∑
n=1

ξn − b

subject to wTΦ(xn) ≥ b− ξn, n = 1, ..., N.

(7.5)

, where ξ ∈ RN
+ is a vector of slack variables, N is the number of training data points,

and c ∈ (0, 1) can be seen as the balance weight between normal and anomaly points.
If c is small, then the second term of the objective function is more penalized and
training data points tends to be classified as inliers. the Using (7.3), the decision
function can be expressed in terms of the solution of the dual problem α ∈ RN and
the support vectors:

sign
{
wTΦ(xn)− b

}
= sign

{
N∑

m=1

αmK(xm,xn)− b
}
. (7.6)

7.3 Experiments

In this section, we describe a numerical example on the Brazilian temperature
network [145] in order to illustrate the framework for anomaly detection proposed
in Section 7.1. The example employs both supervised and unsupervised scenarios.

2Despite similar notation, this section is not related to the interpolation operator from Chap-
ter 5.
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7.3.1 Graph Description

Data from [145] provides monthly average temperatures recorded by 296 Brazilian
weather stations during the period of 1961-1990. The adjacency matrix A is cons-
tructed as equation (2.20). Unlike [33], the difference in altitude hmn is taken into
account because it is strongly correlated with temperature. In addition, all entries of
A are divided by the largest eingenvalue in order to provide more stable operations.

7.3.2 Representation Using SGWT

(a) Cubic spline r =5 (b) Meyer r =4

(c) Hann r =4 (d) Ideal r =3
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Figura 7.4: Magnitude difference between SGWT coefficients of non-corrupted and
corrupted December temperatures for each wavelet kernel. Each r corresponds to
the scale with the highest magnitude difference.

To illustrate the localization property of SGWT and its capability to detect
deviating data, we use the actual temperature measurements of December for the
GS x. We also generated a disturbed GS by introducing an anomaly to a single
vertex in the northeast region by adding 2oC, a mild drift, to its value. Each graph in
Figure 7.4 depicts the energy per node of the absolute difference between the SGWT
coefficients of the original signal, xgn,r, and the corrupted one, x̃gn,r, for a given scale r
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and with n varying in {1, . . . , N}. Wavelet atoms were constructed from the wavelet
approximation in Figure 4.5. Each wavelet scale r is chosen such that the magnitude
difference between coefficients of the corrupted node is the largest one. In fact, each
SGWT detected a very localized variation in the transformed coefficients, but the
largest magnitude differences appear in different scales of detail. For instance, the
corruption of the vertex measurement was better detected by the scale of detail
r = 5 when an SGWT with cubic spline kernel is applied, and by the scale r = 3

when an SGWT with ideal kernel is used.

7.3.3 SGWT-Based Anomaly Detector

Now, we showcase the methodology described in Section 7.1. We started from the
original dataset in [145] to create a new dataset containing some malfunctioning
weather stations. Then the usual division into training and test sets is considered
to design and assess the performance of a VFA-based classifier.

To generate training anomaly/corrupted data, a Gaussian noise with variance
4oC2, truncated for absolute values smaller than 0.5, was added to the temperature
in June in a quarter of the nodes, which were randomly selected. The set of non-
corrupted training data was generated using another quarter of nodes, but now
without modifying its corresponding temperature measurements. The test set was
composed by the remaining nodes, and 50% of these nodes had their measurements
corrupted, in December, by the same (truncated) Gaussian distribution as in the
training set.

Following the general methodology in Section 7.2, the SGWT was applied to the
six months before the current month (first semester for training and second semester
for test) for each node in training and test sets in order to feed a Gaussian process
classifier (GPC) [146] with radial basis function (RBF) kernel [147].3

For example, suppose node n is in the training dataset, then SGWT was applied
to the signals of temperature in January, February, March, April, May and, June.
The transformed coefficients xgn,r for a predefined scale r were the extracted feature
that fed GPC. The underlying hyperparameters are: kernel function, number of
neighbors L in the adjacency matrix, number of wavelet scales R, wavelet coefficients
used in feature extraction for a given scale r (we are using only one SGWT scale as
features), and the order Q of the Chebyshev approximation. Table 7.1 contains the
chosen hyperparameters for each kernel function and the respective f1-score.4

3A Gaussian process is collection of random variables in which each subset of the collection has
a Gaussian distribution. GPC replaces the Gaussian prior on the weights of a logistic regression
w by a Gaussian process prior in order to find P{y = +1|x,w} = σlog(x

Tw), where (x, y) is the
tuple of feature vector and respective label and σlog is the logistic function.

4f1-score is a measure of accuracy that combines the precision p, which is the number of actual
positive samples classified as positives divided by the total number of samples classified as positives,
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Feeding GPC with raw vertex-domain data provided an average f1-score of 51%,
much worse than using SGWT; the four VFA-based classifiers achieved an f1-score
greater than 85% even with low-oder approximations.

Tabela 7.1: Hyperparameters of the VFA-based classifiers and corresponding f1-
score

Kernel L R r Q f1-score
Cubic spline 3 10 3 10 88%

Meyer 20 5 4 10 87%
Hann 20 5 3 3 86%

Ideal filter 10 5 5 3 85%

Unlike the scenario described in the previous experiment, where a balanced da-
taset was used, practical problems of anomaly detection have to deal with a small
percentage of corrupted data. In order to evaluate the performance of the proposed
VFA-based methodology from Section 7.1 in unbalanced scenario, a new dataset
was generated for an unsupervised learning setup. This time, only 10% of the no-
des from the entire dataset were corrupted by a Gaussian noise with variance 4oC2

in the month of December. The SGWT was applied to the new dataset as in the
supervised experiment and the transformed features fed the algorithms described
in Section 7.2: LOF, IF and OCSVM with implementations available by the scikit-
learn library. In order to report an average trend of the algorithm behavior without
being biased by the particular choice of the corrupted nodes, the entire process (da-
taset definition and outlier detection) was repeated 50 times. Figure 7.5 depicts the
boxplot of the overall performance achieved by each anomaly detection algorithm
from Section 7.2 combined with the SGWT. The Evaluation metric is the receiver
operating characteristic (ROC) curve, that measures true positive rate against false
positive rate The boxplot shows the area under the ROC curve (AUC ROC). We
also evaluated the score of the outliers detectors fed with raw data in vertex domain.
Red lines represent the median of distributions, boxes represent the quartiles, and
vertical lines extend to the most extreme non-outlier data point. Parameters in LOF
and IF are default except for contamination (set as 0.2).

Most of the VFA-based classifiers outperformed the respective classifier fed with
raw input, especially the LOF kernel. Low-order polynomial approximations of the
graph filters were employed to achieve this good accuracy in detection. Although a
low-order polynomial poorly approximates the Meyer SGWT, for example, it provi-
des well-localized filters in the vertex domain (4.5), improving the specificity of the
detector.

and recall r, which is the number of actual positive samples classified as positive divided by the
number of actual positive samples. f1-score is then given by 2 p.r

p+r .
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Figura 7.5: Boxplot of AUC of ROC for each combination of SGWT kernel and
anomaly detection algorithms from Section 7.2.

An important concern in the unsupervised setting is the sensitivity to hyperpara-
meters since a test set is not available for tuning. Figure 7.6 Shows the performance
of these algorithms for different degrees of polynomial approximations of the wavelet
kernels. The performance of the Cubic-spline-based classifier is more robust to the
parameter Q whereas Meyer, Hann and the ideal kernels decrease the performance
as Q increases. This is probably due to the bad localization in the vertex domain:
for instance, for small Q, the Hann kernel got a better result when R = 5 and r = 3.
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Figura 7.6: VFA-based classifiers performance for different approximation degrees.
The other hyperparameters are set as in the previous experiments.
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7.4 Final Remarks on the Results

This chapter employed the SGWT atoms to detect very small drifts of temperature
in a sensor network, which is a type of contextual anomaly. The SGWT was used as
feature extractor to feed a GPC, in a supervised experimental setup, or unsupervised
anomaly detection algorithms, such as LOF, OCSVM, and IF. The results of this
chapter showed that the VFA-based classifiers outperformed the classifiers fed with
raw data. The low-order-polynomial approximations of the SGWT provided better
results since their atoms are more localized in the vertex domain than the non-
approximated atoms.
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Capítulo 8

Joint Forecasting and Interpolation
of GSs

This Chapter proposes a model for jointly forecasting and interpolating time-varying
GSs. As introduced in Chapter 6, classical predictive models generally assume
independence of data samples and disregard relevant spatial information [42], [43].
In the literature, In order to learn spatial information from multivariate time series,
some works have combined CNNs [52–56] or the graph convolution NNs presented
in Section 6.3 [57–60] with RNNs, such LSTM. These works are summarized in
Table 8.1.

Two straightforward solutions to deal with the problem of forecasting and in-
terpolating sampled GSs are:1 (i) applying a forecasting model to the input GS
and then interpolating the output; or (ii) interpolating the sampled GS and then
feeding it to the forecasting model. These solutions tackle the ST prediction task
separately and may fail to capture the inherent coupling between time and space
domains. In this chapter, a graph-based NN architecture is proposed to handle ST
correlations by employing GSP in conjunction with a gated-recurrent unit (GRU).
Thus, we address the inherent nature of ST data by jointly forecasting and interpo-
lating the underlying network signals. A global interpolation approach is adopted
as it provides accurate results when the signal is smooth in the GSP sense, whereas
an RNN forecasting model is adopted given its prior success in network prediction.
Herein, not only the sampled GS is input to a predictive model but also its spectral
components, which carry spatial information on the underlying graph. The major
contribution of our proposed model is, therefore, the ability to learn ST features by
observing a few nodes of the entire graph.

Considering the proposed learning framework, we introduce four possible classes
of problems:

1We can regard a GS that will be interpolated as a sampled version of a GS defined over a
denser set of nodes belonging to a virtual graph.
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Tabela 8.1: Summary of recent works that use deep learning to predict ST data.
First column defines the application. Second and third columns refer to the spatial
and temporal techniques employed, respectively. “Conv.” means temporal convo-
lution; AE means auto encoder; RBM means restricted Boltzman machine; “other”
encompasses other predictive strategies, such as attention mechanisms

Application GSP Temporal Paper

traffic

Yes

RNN [131], [148–153]

Conv. [154–159]

other [160], [161]

No
RNN [53], [56], [162–166],

other [38] ,[55], [167–171]

wind

Yes RNN [84]

No
RNN [50]

Other [172–174]

meteorological

Yes AE [175]

No
RNN [52]

Other [41, 176]

body-motion Yes RNN [177–179]

neuroscience
Yes Conv. [180]

No RBM [181]

semantic Yes RNN [182]

• supervised applications, where the labels of all nodes are available for training
but only a fixed subset of graph nodes can be used as input to the model in
the test phase;

• semi-supervised application, wherein only data associated with a subset of
nodes are available for training and computing gradients;

• noise-corrupted application, in which all nodes are available during the entire
process, but additive noise corrupts the network signals;

• missing-value application, where a time-varying fraction of nodes are available
for testing, but all nodes can be used for training.

The proposed approach achieves the best results in most tested scenarios related to
the aforementioned applications, as compared to DL-based benchmarks.
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The chapter is organized as follows: Section 8.1 describes the new learning fra-
mework. Section 8.2 describes four classes of applications that can benefit from the
proposal. Section 8.3 presents the numerical results and related discussions.

8.1 Joint Forecasting and Interpolation of GSs

This Section proposes an ST neural network to jointly interpolate graph nodes and
forecast future signal values. More specifically, the task is to predict the future state
xt+p of a network given the history Xt

S = {xtS , ...,xt−τ+1
S }.2 Thus, the input signal

is a GS composed by M nodes and the output GS is a network-signal snapshot
composed by N ≥M nodes. For now, to describe the learning model’s architecture,
we shall assume p = 1.

The proposed learning architecture employs a GRU cell [183] as the basic buil-
ding block. The GRU structure, shown in Figure 6.5, was chosen to compose the
forecasting module of the proposed method because its performance is usually on
par with LSTM, shown in Figure 6.4, but with a lower computational burden [124];
nonetheless, it could be replaced by an LSTM or any other type of RNN or 1D
convolutional layer.

8.1.1 Forecasting Module

The proposed learning model, named spectral graph GRU (SG-GRU), combines a
standard GRU cell applied to the vertex-domain GSs comprising Xt

S with a GRU
cell applied to the frequency-domain versions of the latter GSs comprising X̂t

F . The
GRU acting on frequency-domain signals is named here spectral GRU (SGRU), and
has the same structure as the standard GRU, except for the dimension of weight
matrices and bias vectors, which are K ×K and K, respectively. The dimension of
the hidden state in the SGRU is therefore K whereas the dimension of the hidden
state in GRU applied to the vertex-domain is M .

Assuming that the entire GSx is (F , ε)-bandlimited, most of the information
about it is expected to be stored in x̂F . Then, given an admissible operator ΨS ,
one has

‖x−ΦSΨSx‖2 ≤
ε

SVmin(ΨSU:,F)
. (8.1)

The choice of F will be further discussed in the experiments described in Section 8.3.
The SGRU module in the proposed learning framework is able to predict the

(possibly time-varying) graph-frequency content of the network signals. This is key
2The GS at timestamp t is denoted by bold lowercase letter, xt, whereas the history set con-

taining the sampled GSs in previous timestamps is denoted by bold capital letter, Xt
S .
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Figura 8.1: Proposed SG-GRU model. The input GS follows two routes in parallel:
in the upper route, the GRU followed by interpolation is applied to the GS; in the
bottom route, the GS is transformed to frequency-domain before being processed
by the SGRU module and thereafter being interpolated. The outputs of these two
parallel processes are stacked into a single vector, represented by operation “Vec”,
and fed to an FC layer.

to fully grasping the underlying spatial information embedded in the graph frequency
content. Besides, it is worth pointing out that the proposed SGRU is slightly diffe-
rent from simply combining the SGC [130] described in Section 6.3 with a GRU: in
both cases, the input signal is previously transformed to the Fourier domain, but in
the SGRU a standard GRU, composed by matrix-vector multiplications, is applied
to the transformed signal, whereas in the latter case, the SGC computes the graph
convolution, which is an element-wise vector multiplication. Thus, the SGRU is able
to better capture the temporal relations among different spectral components.

8.1.2 GS Interpolation

The outputs from the GRU, yt+1
S , and from the SGRU ,ẑt+1

F , are interpolated by
ΦS and Φ̂S = ΦSU:,F , respectively. The resulting N -dimensional vectors yt+1 and
zt+1 are stacked in a single vector of size 2N which is processed by a fully connected
(FC) layer to yield

x̃t+1 = Θ(yt+1, zt+1), (8.2)

as illustrated in Figure 8.1.

8.1.3 Loss Function

The loss function employed is the (empirical) mean square error (MSE). In a super-
vised scenario, the signal from all nodes are available for training, thus enabling the
use of the entire GSxt+1 as label to compute the loss function. Given the batch size
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Tb, the loss function for the supervised training Ls is

Ls =
1

TbN

Tb∑

t=1

‖x̃t+1 − xt+1‖2
2. (8.3)

In the semi-supervised task, on the other hand, only the sampled ground-truth
signal xt+1

S can be accessed. In order to achieve better predictions on the unknown
nodes, we propose to interpolate the sampled ground-truth signal by ΦS before
computing the MSE, yielding

Lss =
1

TbN

Tb∑

t=1

‖x̃t+1 − I(xt+1
S )‖2

2, (8.4)

where

[I(xS)]n =

{
xn, if vn ∈ S[

ΦSx
t+1
S
]
n
, otherwise.

(8.5)

8.1.4 Computational Complexity

The SG-GRU consists of two GRU cells, refereed as GRU and SGRU, which compute
6 matrix-vector multiplications each. The dimensions of the weight matrices in these
recurrent modules applied on the vertex and frequency domains are M2 and K2,
respectively, whereK was set to M

3
in this paper (this choice will be further discussed

in Section 8.3). The input of the SGRU is the sampled GS in the frequency domain,
obtained by applying the truncated GFT, which is a K×M matrix. This transform
can be pre-computed, avoiding the matrix vector multiplication during the loop
recurrence. In this case the input of the network becomes a signal with dimension
M + K. The output of the GRU and the SGRU are, thereafter, interpolated by
N ×M and N ×K matrices, respectively, which are pre-computed before running
the model. Finally, an FC layer is applied to the interpolated signals, costing 2N2

flops. Note that the truncated GFT, the interpolations, and the FC layers are out of
the recurrence loop and do not increase the computational cost if a larger sequence
length τ is used. Thus, the computational cost per iteration of the SG-GRU is

KM + 6τ(M2 +K2) +N(K +M) + 2N2 [flops]. (8.6)

8.2 Applications

The proposed learning architecture in Figure 8.1 can handle both supervised and
semi-supervised scenarios. In the supervised case, measurements from the N
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network nodes are available in the training step but not necessarily for testing.
This supervised scenario covers many different applications; a case in point is a we-
ather station network wherein the temperature sensors are working during a period
of time, but then, suddenly, some of them are shut down due to malfunctioning or
maintenance cost reduction. In the semi-supervised case, on the other hand, only
part of the nodes appear in the training set and can, therefore, be used to compute
gradients. Again, the semi-supervised scenario also covers many practical applicati-
ons; for instance, when a sensor network is deployed with a limited number of nodes
to reduce the related costs, but a finer spatial resolution is desirable, which can be
obtained by a virtual denser sensor network.

Considering these two basic scenarios, we can conceive four specific types of
applications:

8.2.1 Supervised Application

Input GS is composed by M ≤ N nodes but labels of all N nodes are used to
compute the loss function in (8.3). As mentioned before, this learning model can
be applied to situations in which all the N sensors are temporarily activated and,
afterwards, N −M sensors are turned off.

8.2.2 Semi-supervised Application

Both input GS and labels are composed by M < N . Thus, only the M in-sample
are available to train the model using the loss function in (8.4). In this application,
it is desired to predict the state of a static network with N nodes, considering that
only M < N sensors are deployed.

8.2.3 Noise-corrupted Application

Input GS is composed by all the N nodes with signals corrupted by uncorrelated
additive noise, and the labels are the entire ground-truth GS. This application allows
working with the proposed learning model when the sensors’ measurements are
not accurate. In this case, only the denoising capacity of the proposed model is
evaluated, hence no sampling is performed over the input data.

8.2.4 Missing-value Application

Input GS is composed by all the N nodes but, at each time instant, a fraction of
the N values measured by the sensor network are randomly chosen to be replaced
by NaN (not a number). It is worth highlighting that this application is different
from the (pure) supervised application in Section 8.2.1. In the supervised scenario,
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the set of known nodes, S, is fixed across time, whereas the application of missing
values considers different sets of known signal values at each time instant t. In
other words, we have a supervised scenario with a time-dependent sampling set St.
The labels are the entire ground-truth GS. This setup evaluates the performance of
the proposed SG-GRU when some of the sensors’ measurements are missing, which
could be due to transmission failures in a wireless network.

8.3 Numerical Experiments

In this section, we assess the performance of the proposed SG-GRU scheme in two
real datasets. The simulation scenarios are instances of the four applications descri-
bed in Section 8.2.

8.3.1 Dataset Description

The proposed learning model was evaluated on two distinct multivariate time-series
datasets: temperatures provided by the Global Surface Summary of the Day Dataset
(GSOD), which can be accessed at [184], and the Seattle Inductive Loop Detector
Dataset (SeattleLoop) [162].

Global Surface Summary of the Day Dataset

The GSOD dataset consists in daily temperature measurements in oC from 2007

to 2013, totalling 2, 557 snapshots, in 430 weather stations distributed in the con-
tinental United States.3 The source provides more weather stations but only 430

worked fully from 2007 until 2013. These stations are spatially represented by a
10-nearest-neighbor graph with nonzero edge weights given by:

Anm=
e−(d2

nm+h2
nm)

√∑
j∈Nn e

−(d2
nj+h

2
nj)
√∑

j∈Nm e
−(d2

mj+h
2
mj)

, (8.7)

in which Nn is the set of neighboring nodes connected to the node indexed by
n, whereas dnm and hnm are, respectively, the geodesic distance and the altitude
difference between weather stations indexed by n and m. The adjacency matrix is
symmetric and the diagonal elements are set to zero.

Seattle Inductive Loop Detector Dataset

The SeattleLoop dataset contains traffic-state data collected from inductive loop
detectors deployed on four connected freeways in the Greater Seattle area. The 323

3Weather stations in the Alaska and in Hawai were not considered.
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sensor stations measure the average speed, in miles/hour, during the entire year
of 2015 in a 5-minute interval, providing 105, 120 timesteps. This dataset is thus
much larger than GSOD. The graph adjacency matrix provided by the source [162]
is binary and the GS snapshots are barely bandlimited with respect to the graph
built on this adjacency matrix. To build a network model in which the SeattleLoop
time series is (F , ε)-bandlimited with a reasonably small ε, the nonzero entries of
the binary adjacency matrix were replaced by the radial-basis function

Anm = e−
‖xn−xm‖2

10 , (8.8)

where xn and xm are time series, containing 1000 time-steps, corresponding to nodes
vn and vm, respectively.

8.3.2 Choice of Frequency Set F
The larger the set F the more information about the input signal is considered
in the model. However, the interpolation using (5.5) is admissible only if |F| =

K ≤ M [68]. Moreover, if K increases, the smaller singular value of US,F tends
to decrease, leading to an unstable interpolation. Since the GSs considered in this
paper are approximately bandlimited, using K close to M accumulates error during
the training of the network. Based on validation loss, K was set to M

3
.

When all nodes are available for training, that is, in the applications described
in Sections 8.2.1, 8.2.3, and 8.2.4, F is chosen as the K Laplacian eigenvalues cor-
responding to the dominant frequency components (the ones with highest energy) of
signals measured at the first 100 days. In the semi-supervised approach, on the other
hand, the spectral content of the entire GS is unknown. Since the GSs considered in
these experiments are usually smooth, in the sense that most of their frequency con-
tent is supported on the indices associated with the smaller Laplacian eigenvalues,
the set F was chosen as the K smallest eigenvalues λn in this scenario. The set F
used in the application described in Section 8.2.2 is, therefore, slightly different from
the set F used in the scenarios related to the applications of Sections 8.2.1, 8.2.3,
and 8.2.4.

8.3.3 Competing Learning Techniques

Recently many DL-based models were shown to outperform classical methods in the
task of predicting ST data. Nonetheless, to the best of our knowledge, only [84]
addresses the problem of predicting ST data by training a learning model with
M < N nodes, with the aim of reducing the training time duration. Therefore, the
performance of our proposed method is here compared with DL-based models from
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the literature that do not actually handle sampled input GSs. Thus, we adapted
the DL-based models from the literature by combining them with an interpolation
strategy, such as k-NN and the GSP-based interpolator ΦS . In this context, the
interpolation can be performed either: (i) before running the forecasting technique,
so that the input of the competing DL-based model will be the entire GS; or (ii)
after running the forecasting technique, so that the input of the competing DL-based
model will be a sampled GS, thus requiring fewer learnable parameters.

We use as benchmark some LSTM-based NNs, which were shown to perform
well in the strict forecasting task (i.e., time-domain prediction) on the SeattleLoop
dataset in comparison with other baseline methods, such as ARIMA and SVR [153].
In addition, we also consider the spatiotemporal graph graph convolution network
(STGCN) proposed in [154] as benchmark. In summary, the competing techniques
(adapted to deal with sampled GSs) are:

(i) LSTM: simple LSTM cell;

(ii) C1D-LSTM: a 1D convolutional layer followed by an LSTM cell;

(iii) SGC-LSTM: the SGC from [130] (see Section 6.3.1)followed by an LSTM;

(iv) TGC-LSTM: a traffic graph convolution based on the adjacency matrix com-
bined with LSTM [153];4

(v) STGCN: a combination of the graph convolution from [58] with a gated-
temporal convolution [154]; Hyperparameters were set as in [154] since they
lead to smaller MSE in the validation set (filter sizes were evaluated from the
set {16, 32, 64}).5

As mentioned before, the above competing techniques do not tackle joint forecasting
and interpolation tasks. Thus, they were combined with an interpolation technique.
The output of methods (i)-(iv) were interpolated by ΦS , whereas a 1-hop neigh-
borhood interpolation was applied before the method (v), that is, each unknown
value xtn was set as

[xtn]unknown =
1

|Nn|
∑

m∈Nn

xtm . (8.9)

Unlike LSTM-based methods, the interpolation in (8.9) provided better results when
combined with STGCN to handle the sampled input GS. The TGC-LSTM was only
applied to the SeattleLoop dataset since it uses a free-flow reachability matrix, being
specifically designed for traffic networks.

4Code from https://github.com/zhiyongc/Graph_Convolutional_LSTM .
5Code from https://github.com/VeritasYin/Project_Orion.
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Table 8.2 summarizes the competing learning techniques along with the corres-
ponding interpolation methods. “GSP interpolation” stands for interpolation by ΦS

and “1-hop interpolation” stands for interpolation by averaging records on the 1-hop
neighborhood. Also the order followed by each procedure is indicated: “interpolation
first” stands for interpolating the data before running the learning model, whereas
“model first” refers to running the model and then interpolating its output.

Tabela 8.2: Summary of competing techniques

Model Interpolation Order of procedures

LSTM GSP interpolation model first

C1D-LSTM GSP interpolation model first

SGC-LSTM GSP interpolation model first

TGC-LSTM GSP interpolation model first

STGCN 1-hop interpolation interpolation first

8.3.4 Figures of Merit

The prediction performance was evaluated by the root mean squared error (RMSE)
and the mean absolute error (MAE):

RMSE =
1

Tt

Tt∑

t=1



√√√√ 1

N

N∑

n=1

(etn)2


 , (8.10)

MAE =
1

Tt

Tt∑

t=1

(
1

N

N∑

n=1

|etn|
)
, (8.11)

where Tt is the number of test samples and etn is the prediction error of the tth

test sample and nth node. In the noisy setup, the mean absolute percentate error
(MAPE) was also evaluated:

MAPE =
1

Tt

Tt∑

t=1

(
1

N

N∑

n=1

|etn|
|xtn|

)
× 100% . (8.12)
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The error metrics MAE and RMSE have the same units as the data of interest, but
RMSE is more sensitive to large errors, whereas MAE tends to treat more uniformly
the prediction errors.

8.3.5 Experimental Setup

In the applications described in Sections 8.2.1 and 8.2.2, 75%, 50%, and 25% from
the N nodes in V were selected to compose the set S using a greedy method of [185],
called E-optimal design, with the set F corresponding to the first M smallest La-
placian eigenvalues. This choice of F relies on the smoothness of the underlying
GS, that is, nodes near to each other are assigned with similar values. The same
sampling sets were used for both supervised and semi-supervised training. All the
experiments were conducted with a time window of length τ = 10. The prediction
length was p = 1 and p = 3 samples ahead for the GSOD dataset, that is, 1 day and
3 days, respectively, and p = 1 and p = 6 samples to SeattleLoop, that is 5 and 30

minutes, respectively.
The datasets were split into: 70% for training, 20% for validation, and 10% for

test. Batch size was set to Tb = 40 and the learning rate was 10−4, with step decay
rate of 0.5 after every 10 epochs. Training was stopped after 100 epochs or 5 non-
improving validation loss epochs. The input of the model was normalized by the
maximum value in the training set. The model was trained by the RMSprop [186]
with PyTorch default parameters [129]. The network was implemented in PyTorch
1.4.0 and experiments were conducted on a single NVIDIA GeForce GTX 1080.

8.3.6 Results: Supervised Application

Table 8.3 and Table 8.4 show the MAE and RMSE in the supervised application. The
proposed method outperformed all competitors in virtually all scenarios. When the
sample size decreases, the performance gap increases compared to the benchmarks.
On the GSOD dataset, the SG-GRU performed much better than the other strate-
gies. We can see that, as the temperature GS is approximately (F ,ε)-bandlimited
with small ε, the SG-GRU successfully captures spatial correlations by predicting
the GSs’ frequency content.

8.3.7 Results: Semi-supervised Application

The loss function in (8.4) was used for training the SG-GRU and the LSTM-based
methods. For the STGCN, the interpolation of the target GS in (8.5) was replaced
by the 1-hop interpolation. Table 8.5 and Table 8.6 show the result of the SG-GRU
and the competing approaches on the SeattleLoop and GSOD datasets, respecti-
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Tabela 8.3: MAE and RMSE of supervised prediction applied to the GSOD dataset

M = 0.75N M = 0.50N M = 0.25N

Methods MAE RMSE MAE RMSE MAE RMSE

p=1

SG-GRU 1.66 2.21 1.73 2.28 1.74 2.31
LSTM 2.37 3.11 2.35 3.09 2.52 3.31
C1D-LSTM 2.32 3.02 2.40 3.15 2.66 3.49
SGC-LSTM 3.15 4.15 3.20 4.25 3.23 4.28
STGCN 2.20 2.98 2.44 3.29 2.40 3.22

Tabela 8.4: MAE and RMSE of supervised prediction applied to the SeattleLoop
dataset

M = 0.75N M = 0.50N M = 0.25N

Methods MAE RMSE MAE RMSE MAE RMSE

p=1

SGGRU 2.79 4.16 3.02 4.59 3.38 5.40
LSTM 3.15 4.79 3.64 5.59 4.45 7.03
C1D-LSTM 3.25 4.95 3.70 5.70 4.49 7.08
SGC-LSTM 3.59 5.57 3.97 6.14 4.60 7.26
TGC-LSTM 3.03 4.59 3.54 5.45 4.40 6.98
STGCN 2.79 4.32 3.11 4.82 3.65 6.10

vely. Figure 8.2b plots the outputs of the SG-GRU and LSTM methods, in the
second semester of 2013 over the ground-truth signal, for a weather station out of
the sampling set, highlighted in Figure 8.2a, considering a situation with 50% of
known nodes. The SG-GRU outperformed the competing methods in the GSOD
dataset. Since temperature GSs are highly smooth in the graph domain, the GSP
interpolation, which is based on the assumption that the GS is bandlimited, pro-
vides good reconstruction. The energy of SeattleLoop dataset, on the other hand,
is not as concentrated as the GSOD dataset, leading to a larger reconstruction er-
ror. Even with this limitation on the prior smoothness assumption, the SG-GRU
outperformed the STGCN combined with 1-hop interpolation and the TGC-LSTM
combined with GSP interpolation when the sampling set size is 25% or 50% of the
total number of nodes. It is worth mentioning that the STGCN and the TGC-LSTM
are learning models designed specifically for traffic forecasting. When the horizon
of prediction is 30 minutes, then the SG-GRU achieved the smallest errors among
all other methods. This could be due to simultaneous ST features extraction by the
SGRU module. Figure 8.3 depicts the predicted speed by SG-GRU, STGCN, and
TGC-LSTM for an unknown sensor with p = 1, M = 0.50N , and during the day
11/24/2015. As can be seen, the SG-GRU was able to better fit many points in the
speed curve. It is worth mentioning that, despite the STGCN having poorly fitted
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Tabela 8.5: MAE and RMSE of semi-supervised prediction applied to the GSOD
dataset

M = 0.75N M = 0.50N M = 0.25N

Methods MAE RMSE MAE RMSE MAE RMSE

p=1

SG-GRU 1.77 2.38 1.88 2.53 2.06 2.76
LSTM 2.35 3.03 2.41 3,16 2.72 3.54
C1D-LSTM 1.83 2.44 2.00 2.65 2.24 2.97
SGC-LSTM 2.75 3.66 2.84 3.76 3.01 3.97
STGCN 2.34 3.2 3.75 5.02 6.92 8.65

p=3

SG-GRU 2.84 3.76 2.90 3.85 2.99 3.94
LSTM 2.88 3.83 2.95 3.92 3.04 4.03
C1D-LSTM 2.88 3.84 2.96 3.92 3.05 4.03
SGC-LSTM 3.12 4.15 3.16 4.20 3.28 4.36
STGCN 3.33 4.40 4.28 5.53 6.95 8.48

the curve in Figure 8.3b, it actually achieved higher accuracy on the known samples.
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(a) US weather stations from GSOD dataset.

(b) Predicted temperature on a single sensor.

Figura 8.2: (a) Graph of sensors in the GSOD dataset. The known (50%) and
unknown (50%) nodes are colored by blue and gray, respectively. The red node,
which does belong to S, indicates the weather station whose temperature predictions
are shown in (b); and (b) output of the SG-GRU and the LSTM over the ground-
truth temperature in the 2nd semester of 2013 measured by the node highlighted in
red in (a).
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(a) SG-GRU and TGC-LSTM predictions.

(b) SG-GRU and STGCN predictions.

Figura 8.3: Predicted signal of the sensor i005es16920 using a subset with 50% of
the nodes for the SG-GRU, TGC-LSTM, and STGCN. The evaluated sensor was
absent in the sampling set S.

8.3.8 Results: Noise-corrupted Application

In many real situations, sensors’ measurements can be contaminated with noise,
which may worsen forecasting accuracy. Therefore, to deal with these situations, it
is important to develop robust algorithms. Consider a GSx with standard deviation
σx and a measurement Gaussian noise, uncorrelated across both time and graph-
domain, η with standard deviation ση. The noisy GS is x̃ = x + η if the whole
network is measured or x̃S = ΨSx + η, if only the subset S is measured.

To evaluate the robustness of the proposed learning scheme, both SeattleLoop
and GSOD datasets were corrupted by additive Gaussian noise with zero mean and
standard deviation (std) ση = 0.5σx and ση = 0.1σx, where σx is the std of the entire
dataset: 10oC for GSOD dataset and 12.74 miles/h for SeattleLoop dataset. In this
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Tabela 8.6: MAE and RMSE of semi-supervised approaches applied to the Seattle-
Loop dataset

M = 0.75N M = 0.50N M = 0.25N

Methods MAE RMSE MAE RMSE MAE RMSE

p=1

SG-GRU 2.98 4.60 3.53 5.55 4.50 7.28
LSTM 3.06 4.73 3.61 5.66 4.56 7.34
C1D-LSTM 3.09 4.77 3.67 5.74 4.61 7.4
SGC-LSTM 3.46 5.38 3.86 5.99 4.65 7.44
TGC-LSTM 3.01 4.61 3.64 5.55 4.82 7.75
STGCN 2.88 4.35 3.72 6.46 5.67 10.3

p=6

SG-GRU 3.87 6.18 4.18 6.61 4.88 7.77
LSTM 3.96 6.34 4.31 6.81 4.98 7.94
C1D-LSTM 3.96 6.37 4.3 6.83 5.02 7.97
SGC-LSTM 4.12 6.63 4.44 6.98 5.03 7.98
TGC-LSTM 4.91 7.89 5.17 8.23 8.29 12.5
STGCN 4.54 6.82 4.56 7.90 6.11 10.8

experiment, nodes were not sampled and only the capability of handling noisy input
was evaluated. Table 8.7 and Table 8.8 show MAE, RMSE, and MAPE6 of the
forecasting models respectively evaluated on 100 and 30 simulations of each of these
noisy scenarios.

In the GSOD dataset, the proposed model achieved reasonable error levels in
the presence of noisy measurements: for instance, MAE and RMSE increased 9%

and 7% in comparison with the supervised situation with M = 0.75N when the
additive noise has std ση = 0.1σx. Many GS denoising approaches are based on
attenuating high frequencies of the GS [187, 188]. The SGRUmodule of the proposed
model promotes the smoothness of the predicted GS similarly: it runs a predictive
algorithm over a restricted subset of the graph frequency content, F , and thereafter
computes the inverse GFT considering only this restricted subset,

In the SeattleLoop dataset, the MAE and RMSE evaluated on the proposed mo-
del increased 4% and 2%, respectively, in comparison with the supervised situation
with M = 0.75N when the additive noise has std ση = 0.1σx, This is a highly
acceptable result, even though the STGCN achieved lower errors.

6Temperatures in the GSOD dataset were converted to Fahrenheit before computing MAPE to
avoid division by zero.
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Tabela 8.7: MAE, RMSE and MAPE (%) of forecasting applied to the GSOD with
noise corruption

ση = 0.1σx ση = 0.5σx

Methods MAE RMSE MAPE MAE RMSE MAPE

p=1

SG-GRU 1.81 2.36 7.70 2.01 2.61 8.52

LSTM 1.98 2.59 8.55 2.11 2.75 9.70
C1D-LSTM 1.90 2.49 8.07 2.03 2.65 8.65
SGC-LSTM 2.94 3.89 13.9 2.95 3.91 13.9
STGCN 2.19 2.94 10.3 2.66 3.48 12.3

p=3

SG-GRU 2.85 3.79 13.41 2.89 3.83 13.5

LSTM 2.88 3.83 13.6 2.93 3.88 13.8
C1D-LSTM 2.86 3.8 13.4 2.91 3.85 13.6
SGC-LSTM 3.18 4.21 15.2 3.16 4.2 15.2
STGCN 3.17 4.23 15.6 3.21 4.25 15.7

Tabela 8.8: MAE, RMSE and MAPE (%) of forecasting applied to the SeattleLoop
with noise corruption

ση = 0.1σx ση = 0.5σx

Methods MAE RMSE MAPE MAE RMSE MAPE

p=1

SG-GRU 2.91 4.27 13.7 3.13 4.66 16.1
LSTM 3.21 4.85 18.2 3.45 5.20 19.4
C1D-LSTM 3.30 5.05 19.4 3.48 5.30 20.5
SGC-LSTM 3.96 6.28 28.3 4.07 6.44 29.9
TGC-LSTM 2.88 4.24 13.0 3.19 4.74 14.2
STGCN 2.63 3.85 11.3 3.08 4.39 12.9

p=6

SG-GRU 3.74 6.02 26.3 3.84 6.19 26.1
LSTM 3.99 6.35 28.6 4.07 6.47 27.1
C1D-LSTM 3.99 6.39 28.6 4.07 6.49 28.1
SGC-LSTM 4.56 7.27 34.6 4.58 7.29 34.7
TGC-LSTM 3.79 6.09 26.1 3.92 6.28 25.3
STGCN 3.77 6.18 26.4 4.00 6.33 26.0

8.3.9 Results: Missing-value Application

Another common problem in real time-series datasets are missing values, which
could occur due to sensor’s malfunctioning or failure in transmission. To evaluate
the performance of the SG-GRU in this situation, 10% of both SeattleLoop and
GSOD datasets were randomly set to NaN. Before applying the forecasting methods,
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each NaN value, xtn, was interpolated by the 1-hop interpolation in (8.9). Table 8.9
and Table 8.10 show the numerical results of this scenario considering two forecasting
horizons on the GSOD and SeattleLoop datasets, respectively. The forecasting
accuracy decreases when there are missing values, as expected. For instance, in
the GSOD dataset, MAE and RMSE increased 6% and 4% in comparison with the
supervised situation with M = 0.75N . In the SeattleLoop dataset, MAE increases
about 10% whereas the RMSE decreases about 8%. The GFT in the proposed model
(and also in combination with the LSTM-based models) tends to smooth the output
signal, reducing large deviations and consequently the RMSE. Nonetheless it can
slightly increase the forecasting error across many nodes, leading to the increase in
MAE.

Tabela 8.9: MAE, RMSE and MAPE (%) of forecasting applied to the GSOD
dataset with 10% of missing values

p = 1 p = 3

Methods MAE RMSE MAPE MAE RMSE MAPE

SG-GRU 1.75 2.3 7.53 2.87 3.77 13.1
LSTM 2.56 3.41 12.3 2.94 3.93 14.1
C1D-LSTM 2.53 3.36 11.9 2.92 3.9 13.9
SGC-LSTM 3.51 4.81 20.2 3.22 4.34 16.8
STGCN 2.10 2.87 9.97 3.22 4.31 15.2

Tabela 8.10: MAE, RMSE and MAPE (%) of forecasting applied to the SeattleLoop
dataset with 10% of missing values

p = 1 p = 6

Methods MAE RMSE MAPE MAE RMSE MAPE

SG-GRU 3.10 3.85 4.60 6.17 14.9 23.7
LSTM 3.37 4.07 5.08 6.49 19.6 27.3
C1D-LSTM 3.44 4.06 5.23 6.49 19.6 27.3
SGC-LSTM 4.01 4.58 6.34 7.31 16.3 35.1
TGC-LSTM 3.15 3.91 4.70 6.26 13.5 24.8
STGCN 2.60 3.91 3.95 6.26 11.8 24.9

8.3.10 Computational Cost and Efficiency

In the SeattleLoop Dataset, the epoch duration of SG-GRU was, on average, 8.5 s,
whereas the more complex approaches, TGC-LSTM and STGCN, took around 40 s
and 84 s per epoch, respectively. In the GSOD dataset, which is much shorter than
the SeattleLoop, the average epoch duration of SG-GRU, LSTM, and STGCN were

106



0.20 s, 0.25 s, and 2.5 s, respectively. Table 8.11 shows the average training time,
including pre-processing and data preparation, as well as test phases for the 3 semi-
supervised scenarios applied on the SeattleLoop and GSOD datasets, with p = 1.
The SG-GRU required more epochs to converge than STGCN, but it still trains
faster than the STGCN and also than the other competing approaches.

Tabela 8.11: Average computational time in seconds

SeattleLoop GSOD

Methods Training Test Training Test

SG-GRU 414.68 4.89 11.18 0.01

LSTM 1134.0 5.63 30.74 0.01

C1D-LSTM 1319.0 5.90 36.90 0.03

SGC-LSTM 2770.3 6.10 39.89 0.04

TGC-LSTM 1027.1 5.48 - -

STGCN 725.58 12.6 83.92 0.12

8.3.11 Final Remarks on the Results

The consistently better results obtained by the SG-GRU for the GSOD dataset steem
from the smoothness of the temperature GS with respect to the graph domain;
SG-GRU relies on the assumption of bandlimited GSs. Therefore, SG-GRU is a
promising approach to predict spatially smooth GSs. It is worth mentioning that
the choice of the adjacency matrix is fundamental for a good performance, since it
eventually defines the smoothness of the GSs. In the SeattleLoop dataset, which
is not really smooth, the SG-GRU outperformed both the STGCN and the LSTM-
based approaches when the sample size was small and the prediction time horizon
was 30 minutes, thus indicating that the SG-GRU can capture ST dependencies
by taking the network frequency content into account. Moreover, SG-GRU has
low computational cost and can be boosted with more recurrent or fully connected
layers, when sufficient computational resources are available.
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Capítulo 9

Conclusion and Future Works

9.1 Concluding Remarks

This thesis presented the fundamental topics of GSP such as GFT, VFA, and graph
sampling and tackled two different applications: VFA-based anomaly detection of
time-varying GS and joint forecasting and interpolation of time-varying GS.

Part I presented a detailed review on the theory and techniques of GSP that have
been developed in the last decade. In order to deal with graph-structured data,
GSP extends the concepts and tools of DSP by considering the graph Laplacian
or adjacency eigenvectors as the Fourier basis, thus the underlying structure of the
graph is taken into account in the analysis/processing of the GSs. This thesis focused
on VFA, analogous to the time-frequency analysis, which allows the spectral pattern
of the signal to be accessed locally in the vertex-domain and is useful to analyze non-
stationary GSs. Unlike classical DSP, the localization of VFA atoms varies across
different nodes depending on the magnitude of the respective columns in the GFT
matrix.

Other fundamental tools of signal processing addressed in this thesis are the
operations of downsampling and upsampling. Unlike DSP, it is not obvious how
to design these operators such that the downsampled GS is perfectly recovered.
The solution adopted by many authors in the literature assumes the GS to be
bandlimted, as in the Shannon-Nyquist sampling theorem. The original GS can be
perfectly reconstructed by least mean square provided condition (5.3) is satisfied.

9.1.1 VFA-based Anomaly Detection

VFA is a useful tool to analyze GS simultaneously in frequency and vertex domains.
In the anomaly detection experiment proposed in Chapter 7, the SGWT atoms
were used to extract features from data, so that very small drifts in temperature
measurements due to malfunctioning sensors could be detected with high accuracy
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by GPC, in a supervised experimental setup, and by unsupervised anomaly detection
algorithms, having a clear advantage over classifiers that consider only the time-
series structure of temperature measurements (like feeding GPC with raw data).
Moreover, the low-order polynomial approximations of the SGWT provided better
results then the high-order polynomial approximations by favoring localization in
the vertex domain. Thus, VFA-based framework from Section 7.1 can be useful to
the problem of detecting contextual anomalies, in which the context is represented
by the graph.

9.1.2 Joint Forecasting and interpolation of GS

Chapter 8 presented a deep learning model for jointly forecasting and interpolating
network signals represented by graph signals. The proposed scheme embeds GSP
tools in its basic learning-from-data unit (SG-GRU cell), thus merging model-based
and deep learning approaches in a successful manner. Indeed, the proposal is able
to capture spatiotemporal correlations when the input signal comprises just a small
sample of the entire network. Additionally, the technique allows reliable predictions
when input data is noisy or some values are missing by enforcing smoothness on the
output signals.

9.1.3 Future Works

There are three directions of interest for future works : (i) reducing the number of hy-
perparameters of the VFA-based framework proposed in Section 7.1; (ii) employing
VFA to a semi-supervised anomaly detection setup; (iii) and studying theoretical
arguments for the choice of the spectral set F in SG-GRU.

• Direction (i) is motivated by the fact that tuning hyperparameters is usually
impossible for unsupervised scenarios in which labeled data are rare. Nonethe-
less, performance of the proposed the VFA-based framework is highly sensitive
to the chosen wavelet mother kernel and wavelet level. Therefore, it would be
interesting to let the ML algorithm learn the wavelet level implicitly.

• The idea behind direction (ii) is that common anomaly detection approaches
relies on training a predictive model using only normal data, thus new data
points are classified as anomalies if their actual values deviate from the values
predicted by the model more than a given threshold. Therefore VFA coef-
ficients can be fed to the predictive model and nodes with VFA coefficients
differing from the output would be assigned as anomalies. Also, the proposed
SG-GRU can be used as the predictive model in the anomaly detector.
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• Theorem 5.2.4 shows that K = F , the size of the GS spectral support, should
be at mostM = |S|, the size of its vertex support. Nonetheless, using values of
K close toM accumulates errors throughout the learning model regarding the
actual bandwidth of the GS. Therefore, it would be interesting to substantiate
the selection of F and provide error bounds for the model based on prior
assumptions of the GS.
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Apêndice A

Proofs

A.1 Chapter 3

In order to prove Theorem 3.1.2. , we first introduce the following lemmas [101].

Lemma A.1.1. Let wQ(λ) =
Q∑
q=0

cqλ
q be a Q + 1-order polynomial kernel, then

dG(n,m) > Q implies that (t
wQ
n )m = 0.

Demonstração. Since dG(n,m) > Q, (Lq)nm = 0 ∀0 < q ≤ Q, by property 4 in
Section 2.1.2, then:

(twQ
n )m =

√
N

N∑

k=1

wQ(λ)UnkUmk =
√
N

N∑

k=1

Q∑

q=0

cqλ
qUnkUmk (A.1)

√
N

N∑

k=1

Q∑

q=0

cq(L
Q)nm = 0 (A.2)

Lemma A.1.2. ([189, Equation (4.6.10)]) If the function w(λ) : [0, λmax] → R is
(Q+ 1)-continuously differentiable, then

inf
wq∈PQ(R)

{‖w − wQ‖∞} ≤
(
λmax

2

)Q+1

(Q+ 1)!2Q
‖w(Q+1)‖∞, (A.3)

where PQ(R) is the space of Q-degree polynomials in R.

Lemma A.1.3. Let w : [0, λmax] → R be a spectral kernel and define Qnm =

dG(n,m)− 1, then

|(twn )m| ≤
√
N inf
PQnm (R)

{
sup

λ∈[0,λmax

|w(λ)− wQnm(λ)|
}

=
√
N inf

wQnm
{‖w − wQnm‖∞}

(A.4)
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Demonstração. By Lemma A.1.1, (t
wQnm
n )m = 0, then:

|(twQnmn )m| = inf
wQnm

| = inf
wQnm∈PQnm

|(twn )m − (twQnmn )m| (A.5)

= inf
wQnm∈PQnm

∣∣∣∣∣
√
N

N∑

k=1

(w(λ)− wQnm(λ))ūnkUmk

∣∣∣∣∣ (A.6)

≤ inf
wQnm∈PQnm

√
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|(w(λ)− wQnm(λ))ūnkUmk| (A.7)

≤ inf
wQnm∈PQnm
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|(w(λ)− wQnm(λ))i

]1/i [ N∑
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(ūnkUmk)
j
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,
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j
+
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i
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(A.8)

≤
√
N inf

wQnm∈PQnm
‖w − wQnm‖i
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k=1

(ūnkUmk)
j

]1/j

(A.9)

≤
√
N inf

wQnm∈PQnm
‖w − wQnm‖i

[
µ2(j−1)

N∑
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|ūnkUmk|
]1/j

(A.10)

≤
√
N inf

wQnm∈PQnm
‖w − wQnm‖i


µ2(j−1)

{
N∑
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|ūnk|2
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|Umk|2
}1/2


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(A.11)

=
√
Nµ

2(j−1)
i inf

wQnm∈PQnm
‖w − wQnm‖i,

1

j
+

1

i
= 1, (A.12)

where (A.7) follows from triangular inequality and (A.8) follows from Holder ine-
quality. Taking i = j = 2 leads to the result in (A.4).

Combining theses these lemmas, we prove Theorem 3.1.2.

Demonstração. Since w is dnm = dG(n,m) continuously differentiable, substituting
the result from LemmaA.1.2 in (A.8):

|(twn )m| ≤
√
Nµ

(
λmax

2

)dnm

dnm!2dnm−1
‖w(dnm)‖∞ (A.13)

≤ 2
√
N

dnm!

(
λmax

4

)dnm
‖w(dnm)‖∞, (A.14)

and ‖wdnm‖∞ = sup
λ∈[0,λmax]

|w(dnm)(λ)|. Using Lemma 3.1.1, if w(0) 6= 0:

|(twn )m|
‖twn ‖2

≤ 2
√
N

|w(0)|dnm!

(
λmax

4

)dnm
‖w(dnm)‖∞. (A.15)

130



A.2 Chapter 4

In order to prove Theorem 4.1.1, we first introduce two lemmas from [30].

Lemma A.2.1. let gn,r and g̃n,r be the SGWT atoms associated with mother wavelet
kernels g and g̃ respectively, then, if |g(αrλ)− g̃(αrλ)| ≤ M(αr) ∀λ ∈ [0, λmax], for
each n = 1, ..., N , |(gn,r)m − (g̃n,r)m| ≤M(αr) and ‖gn,r − g̃n,r‖2 ≤

√
NM(αr).

Demonstração.

|(gn,r)m − (g̃n,r)m| =
∣∣∣∣∣
N∑

k=1

g(αrλk)UnkUmk −
N∑

k=1

g̃(αrλk)UnkUmk

∣∣∣∣∣ . (A.16)

=

∣∣∣∣∣
N∑

k=1

(g(αrλk)− g̃(αrλk))UnkUmk

∣∣∣∣∣ (A.17)

≤
N∑

k=1

|g(αrλk)− g̃(αrλk)||UnkUmk| (A.18)

≤
N∑

k=1

M(αr)|UnkUmk| (A.19)

≤= M(αr)

√√√√(
N∑

k=1

|Unk|2)

√√√√(
N∑

k=1

|Umk|2) (A.20)

= M(αr), (A.21)

where (A.20) follows from Cauchy-Schwartz inequality. The second inequality in the
Lemma’s statements follows from:

‖gn,r − g̃n,r‖2
2 =

N∑

m=1

|(gn,r)m − (g̃n,r)m|2 ≤ NM(αr)
2. (A.22)

Lemma A.2.2. Let g be a Q+ 1 times continuous differentiable, satiafying g(0)=0,
g(q)(0) = 0 for all q < Q and gQ(0) = C 6= 0. Assuming that there is some t′ > 0

such that |g(Q+1)(λ)| ≤ B for all λ ∈ [0, t′λmax], then for g̃(tλ)Q:

M(t) = sup
λ∈[0,λmax

|g(αrλ)− g̃(αrλ)| ≤ tQ+1 λQ+1
max

(Q+ 1)!
B, (A.23)

for all t < t′.
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Demonstração. Since g(q)(0) = 0 for all q < Q, the Taylor’s expansion with remain-
der of g(tλ) can be expressed as:

g(tλ) = C
(tλ)Q

Q!
+ g(Q+1)(λ∗)

tλ)Q+1

(Q+ 1)!
, (A.24)

for some λ∗ ∈ [0, tλ]. If t < t′, then tλ < t′λmax for λ ∈ [0, λmax] and |g(Q+1)(λ∗)| ≤ B:

|g(αrλ)− g̃(αrλ)| =
∣∣∣∣g(Q+1)(λ∗)

(tλ)Q+1

(Q+ 1)!

∣∣∣∣ ≤ B
tλ)Q+1

(Q+ 1)!
. (A.25)

Since equation (A.25) holds for all λ ∈ [0, λmax], the result in (A.23) follows by
taking the sup over λ ∈ [0, λmax].

Demonstração. (Proof of Theorem 4.1.1) Define g̃(λ) = g(Q)(0)
Q!

λQ, then

(g̃n,r)m =
N∑
k=1

g(Q)(0)
Q!

(αrλk)
QUnkUmk =

N∑
k=1

g(Q)(0)
Q!

αQr L
Q
nm = 0, if dG(n,m) > Q. Then,

by Lemma A.2,

|(gn,r)m − (g̃n,r)m| = |(gn,r)m| ≤ αQ+1
r C ′, C ′ =

λQ+1
max

(Q+ 1)!
B. (A.26)

In order to bound the denominator of gn,rm
‖gn,r‖2 , note that gn,r = g̃n,r + (gn,r − g̃n,r),

and by triangular inequality,

‖gn,r‖2 ≥ ‖g̃n,r‖2 − ‖gn,r − g̃n,r‖2. (A.27)

Since ‖g̃n,r‖2 = ‖g(Q)(0)
Q!

αQr (LQ)δn‖2 and

‖gn,r − g̃n,r‖2 ≤
√
NαQ+1

r

λQ+1
max

(Q+ 1)!
B, (A.28)

by Lemma A.2.2, which implies that

‖gn,r‖2 ≥
√
NαQr

(
g(Q)(0)

Q!
‖LQδn‖2 − αr

λQ+1
max

(Q+ 1)!
B

)
, (A.29)

and combining with the previous result, it follows that

(gn,r)m
‖gn,r‖2

≤ αrC
′

a− αrb
, (A.30)

with a = g(Q)(0)
Q!
‖LQδn‖2 and b = αr

λQ+1
max

(Q+1)!
B. Defining r′′ = g(Q)(0)‖LQδn‖2(Q+1)

2
√
NλQ+1

max B
and

D = 2C′Q!
g(Q)(0)‖LQδn‖2

, and taking αr ≤ a
2b
, then, from the following computation follows
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the desired result.

αr ≤
a

2b
⇐⇒ a− bαr ≥

a

2
⇐⇒ αrC

′

a− αrb
≤ 2C ′

a
αr.
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Apêndice B

Random Sampling of Bandlimited
GS

A common concern in extending classical DSP methods to GSP is that, depending
on the application, graphs can become very large and the GFT, a fundamental
component of GSP, is computed globally, being not scalable. Therefore, the afore-
mentioned sampling method, that requires the computation of at least K Laplacian
eigenvectors, becomes prohibitive as the size of the graph increases. To deal with
this computational cost problem, inspired by compressed sensing, a different sam-
pling strategy based on random sampling was proposed in [117]. In Theorem 5.1.4,
the minimum acceptable sampling size is |F| = K, but in random sampling, slightly
more samples M > K are kept in-sample.

Remark B.0.1. Although [117] considers F = {1, 2, .., K}, where the Laplacian
eigenvectors are generally sorted in an ascending ordering of eigenvalues, most of
the results holds for arbitrary F . Because error bounding results for the interpolation
formula (B.8) require monotonicity of the graph polynomial h : [0, λmax] → R, this
section considers F = {m,m+ 1, ...,m+K − 1}, m < N −K (pass-band).

B.1 Sample Size Bounds

Definition B.1.1 describes a sampling operator similar to (5.2) but with random
entries given by a priori distribution instead. Thereafter, Theorem B.1.3 provides a
minimum number of samples M such that, with high probability, the original signal
can be recovered with a small error.

Definition B.1.1. (Random sampling operator) Let p ∈ RN be a vector containing
a probability distribution on V (

∑
n pn = 1, pn ≥ 0 ∀n) and S̃ = {Ω1, ...,ΩM} be a

subset of nodes drawn from V with replacement such that P{Ωm = n} = pn. The
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random sampling matrix Ψ̃S with respect to the distribution p is given by

(Ψ̃S)mn =

{
1, Ωm = n

0 elsewhere.
(B.1)

Definition B.1.2. (Graph weighted coherence)
Let p be a vector containing a probability distribution on V. The graph weighted

coherence νFp is defined as

νFp , max
n
{p−1/2

n ‖U:,Fδn‖2} (B.2)

Remember that the graph coherence µ introduced in Lemma 3.1.1 is the ma-
ximum absolute value in the GFT matrix µ = maxn,k Unk. The graph weighted
coherence (B.2) is equivalent to the graph coherence associated with the submatrix
UF with nodes weighted by the probability distribution p. The local coherence
‖U:,Fδn‖2 measures how much energy of GSs in BLF(U) is concentrated on node n.
Since the columns of U are unit norm, the local coherence is bounded by zero and 1.
If the local coherence is close to zero, then node n does not keep much information
of signals in BLF(U) and can be dropped. If the local coherence is close to 1, on
the other hand, node n is informative about BLF(U) and should be selected by the
sampling operator. The distribution p weights the importance of each node based
on prior information.

Theorem B.1.3. Let Ψ̃S be a random sampling operator as in (B.1.1) and P be
a diagonal matrix with [pΩ1 , . . . , pΩM ] in the diagonal. Given any δ, ε ∈ (0, 1), with
probability 1− ε

(1− δ)‖x‖2
2 ≤

1

M
‖Ψ̃SP−1/2x‖2

2 ≤ (1 + δ)‖x‖2
2 (B.3)

for all x ∈ BL:,F(U) provided

M ≥ 3

δ
(νFp )2log

(
K

ε

)
(B.4)

Theorem B.1.3 shows that 1
M

Ψ̃SP
−1/2 embeds the BLF(U) into RM . The main

difference between this result and compressive sensing [190] is the knowledge of the
GS support F in addition to the support size K. Note that

√
K is a lower bound

for νFp :

(νFp )2 = max
n
{p−1/2

n ‖U:,Fδn‖2} ≥
∑

n

‖U:,Fδn‖2

pn
pn =

∑

n

‖U:,Fδn‖2 ≥ K,
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then, for given ε and δ, the optimal distribution p∗n =
‖UT
Fδn‖

2
2

K
leads the smallest

lower bound (B.4) in Theorem B.1.3:

M ≥ 3

δ
Klog

(
K

ε

)
(B.5)

Note that p∗ depends on UF , which we wanted to avoid to compute, hence, an
approximation for p∗ is proposed in [117]. The goal of this section is to give a
brief overview of random sampling in GSP, further details and proofs can be found
in [117].

B.2 Recovery of Randomly Sampled GSs

Let y = Ψ̃Sx + η be a sampled GS with uncorrelated zero mean Gaussian noise
η, then the original signal x ∈ BLF(U) can be approximated by the following
optimization problem:

x̃ = min
z∈BLF (U)

∥∥∥P−1/2

S̃
(y − Ψ̃Sz)

∥∥∥
2
. (B.6)

Note that recovering x by (B.6) requires at least a basis for BLF(U). In order
to approximate the original GS x from the sampled GS y, consider the bandpass
polynomial filter h : [0, λmax]→ R with passband F :

x̃ = min
z∈RN

∥∥∥P−1/2

S̃
(y − Ψ̃Sz)

∥∥∥
2

2
+ γzT(IN − h(L))z, γ > 0, (B.7)

with explicit solution:

(
Ψ̃

T

SP
−1

S̃
Ψ̃S + γ(IN − h(L))

)
x̃ = Ψ̃

T

SP
−1

S̃
y (B.8)

Note that the regularization term zT(IN − h(L))z in (B.7) penalizes non-F -
bandlimited GS and is a relaxation of the set constraint in (B.6). Since [117]
considers F = {1, 2, .., K}, the polynomial h is required to be a high pass filter.
Nonetheless, as mentioned by Remark B.0.1, this section considers F as a pass-
band, thus the highpass polynomial filter in [117, Equation 9] is replaced by the
reject-band polynomial filter 1 − h(λ) in equation (B.7). It is worth mentioning
that, F = {1, 2, .., K} is a common assumption for GSs, since it is associated with
smoothness.

For F = {1, 2, .., K} and h a non-decreasing and non-negative polynomial with
h(λK+1) > 0, Theorem 7 in [117] provides upper bounds for

• ‖U:,FUT
:,F x̃− x‖2, the Euclidean distance between the original GS x and the
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GS recovered by (B.8) and projected to BLF(U);

• ‖(IN−U:,FUT
:,F)x̃‖2, the norm of the components of the solution x̃ orthogonal

to BLF(U).

In [117, Theorem 7], the graph polynomial h is requires to be non-decreasing
and non-negative highpass filter, this filter can be implemented by the Jackson-
Chebyshev approximation of an ideal high-pass filter.
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Apêndice C

Frames on Graphs

C.1 WGFT

In DSP, tight frames allow the interpretation of spectograms as an energy density
function, improve stability in recovering signals from noisy measurements, and also
provide faster computations [104]. A frame is a generalization of a basis from linear
algebra that allows linearly dependent elements. This characteristic provides redun-
dant representations which can allow sparse, simple, and/or robust representations
of a signal [191]. A redundant frame is also called overcomplete representation. Be-
fore introducing the frame analysis of the WGFT, we take a brief review on frame
theory.

Consider the finite1 N -dimensional vector space V, the set of vectors {vm}m∈N ∈
V is a frame if there exist positive constants, also called frame bounds, 0 < A ≤
B <∞ such that, ∀x ∈ V, the following inequalities hold:

A‖x‖2 ≤
∑

m∈N

|〈vm,x〉|2 ≤ B‖x‖2 . (C.1)

The inequalities in (C.1) can be seen as a generalization of Parseval’s identity
in (2.19). For instance, a basis is a frame which is not redundant, that is, removing
elements from {vn}n∈N impairs the spanning of the vector space V and an orthonor-
mal basis is a frame with constants A = B = 1.2 When A = B the frame is said to
be tight, moreover, an A-tight frame {vm}Mm=1, M > N for a finite N -dimensional
vector space VN satisfies

Ax =
M∑

m=1

〈x,vm〉vm. (C.2)

1Although frame theory is applicable to inner dot vector spaces, this text will limit to finite
vector spaces since we are only dealing with finite graphs

2The reverse is not true: a frame with frame bounds A = B = 1 is not necessarily a basis.
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Tight frames tend to provide stable representations, as shown in the following exam-
ple:

Example C.1.1. Consider the tight frame {v1,v2,v3} ⊂ R2, ‖vm‖2 = 1, and let
x ∈ R2 be a vector such that

x =
1

A

3∑

m=1

〈x,vm〉vm . (C.3)

The frame {v1,v2,v3} is redundant since removing one of its vector elements
may still span R2. Also, suppose that the frame coefficients are perturbed by

ε = [ε1, ε2, ε3]T, then the recovered x, x̃, is perturbed by 1
A

3∑
m=1

εmvm and the squared

error is bounded by the squared norm of the perturbation vector as follows:

‖x̃− x‖2
2 = ‖

3∑

m=1

εmvm‖2
2 (C.4)

≤ 1

A

3∑

m=1

ε2m‖vm‖2
2 =

1

A
‖ε‖2

2. (C.5)

Thus, a small perturbation of the of the frame coefficients leads to small errors.
It is worth pointing out that the dictionary of WGFT atoms {wn,k}Nn,k=1 rarely

defines a tight frame, only if µ = 1√
N
. The following theorem gives the frame bounds

for the frame composed by the WGFT atoms.

Theorem C.1.2 ([101], Theorem 3). If w(0) 6= 0, then {wn,k}Nn,k=1 is a frame with
constants A and B defined as

0 < |w(0)|2 ≤A , min
n
{‖twn‖2

2} ≤

B , max
n
{‖twn‖2

2} ≤ µ2‖w‖2
2

Demonstração.

N∑

n=1

N∑

k=1

|xTwn,k|2 =
N∑

n=1

N∑

k=1

|xT [(UWūn)� uk] |2

=
N∑

n=1

N∑

k=1

|xT � (UWūn)Tuk|2 (C.6)

=
N∑

n=1

N∑

k=1

̂(x�UWūn)
2

k =
N∑

n=1

N∑

m=1

(x�UWūn))2
m (C.7)

=
N∑

n=1

N∑

m=1

|xm|2|(UWūn)m|2 =
N∑

m=1

|xm|2‖(twm)n‖2
2 (C.8)
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where the property of inner product with kron product was used in (C.6), the
Parseval’s identity was used in (C.7), and the Laplacian symmetry, in (C.8).

Moreover, if w(0) 6= 0, then 0 < |w(0)|2 ≤∑N
n=1 |w(λk)|2|Unk|2 = ‖twn ‖2

2.

C.2 SGWT

Proof of Theorem 4.1.3 [30].

Demonstração. For each r ∈ {1, . . . , R}, we have that

∑

n

|xgn,r|2 =
N∑

n=1

(
N∑

k=1

gr(λk)x̂kUnk

N∑

`=1

gr(λ`)x̂kUn`

)
(C.9)

=
N∑

`=1

N∑

k=1

gr(λk)x̂kgr(λ`)x̂`

N∑

n=1

UnkUn` (C.10)

=
N∑

k=1

g2
r(λk)x̂

2
k (C.11)

Similarly
∑N

n=1 |xhn|2 =
∑N

k=1 h
2(λk)x̂

2
k. Thus

N∑

n=1

|xhn|2 +
R∑

r=1

∑

n

|xgn,r|2 =
N∑

k=1

h2(λk)x̂
2
k +

R∑

r=1

N∑

k=1

g2
r(λk)x̂

2
k

=
N∑

k=1

(
h2(λk) +

R∑

r=1

g2
r(λk)

)
x̂2
k

=
N∑

k=1

G(λ)x̂2
k ≤ max

λ∈[0,λmax]
G(λ)‖x‖2

2 (C.12)

where the inequality in (C.12) holds by Parseval’s identity. Similarly,
∑N

n=1 |xhn|2 +∑R
r=1

∑
n |xgn,r|2 ≥ maxλ∈[0,λmax] G(λ)‖x‖2

2
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