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necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: Fernando Cesar Lizarralde

Rio de Janeiro

Março de 2020



REAL-TIME PATH-CONSTRAINED TRAJECTORY PLANNING FOR ROBOT

MANIPULATORS WITH ENERGY BUDGET OPTIMIZATION

Danilo Vannier Cunha
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DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.
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OTIMIZAÇÃO DE TRAJETÓRIAS DE MANIPULADORES ROBÓTICOS

COM CAMINHO FIXO E LIMITE DE ENERGIA

Danilo Vannier Cunha

Março/2020

Orientador: Fernando Cesar Lizarralde

Programa: Engenharia Elétrica

Otimização de trajetórias é um tema de grande relevância na comunidade de ro-

bótica. Várias aplicações industriais têm limitação de energia, como equipamentos

submarinos e véıculos elétricos. Essa dissertação considera o rastreamento de traje-

tórias de caminho fixo de manipuladores robóticos onde as trajetórias são otimizadas

para utilizar-se um limite pré-definido de energia.

A estratégia proposta é baseada na técnica de horizonte móvel do controle pre-

ditivo utilizando-se de uma parametrização do caminho que reduz a dimensão para

uma variável. A dinâmica da trajetória parametrizada é governada por um sistema

linear que pode ser considerado como um parâmetro de controle. Em seguida, uma

função de energia baseada no conceito de trabalho e uma função de custo são defi-

nidas. Com isso, o controle é feito associando-se controle preditivo com o método

de Newton minimizando-se então a função de custo em tempo real. Além disso, a

técnica de torque computado é empregada para linearizar o sistema.

A solução proposta é também formulada no espaço de trabalho do manipulador

permitindo-se o uso de controle cinemático, o que é fundamental considerando-se

que vários manipuladores industriais permitem apenas controle de velocidade.

A solução proposta nessa dissertação foi verificada por meio de simulações numé-

ricas. Resultados experimentais com um manipulador de quatro graus de liberdade

ilustram a aplicabilidade da solução proposta.
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requirements for the degree of Master of Science (M.Sc.)
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Trajectory optimization is of great relevance for the robotics community. Many

industry applications have energy limitations, such as subsea installed equipment or

electric vehicles. This dissertation considers the optimization of path-constrained

trajectory for robot manipulators with limited energy budget.

The proposed strategy is based on a Nonlinear Receding Horizon Predictive

Control (NRHPC) using a path parameterization of dimension one. The dynamic

of the parameterized trajectory is governed by a predefined linear system, then an

energy and a cost functions are defined and a NRHPC based on a Newton method

is used to minimize the cost function in real time. A computed torque linearization

scheme is considered to simplify the Newton method.

The solution is also formulated in the manipulator task space permitting to be

used with a kinematic control scheme, which is fundamental since many industrial

manipulators only allow velocity control.

The proposed solution is verified with several numerical simulations. Experimen-

tal results using a four degrees of freedom manipulator illustrate the applicability of

the proposed solution.
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Chapter 1

Introduction

Over the last decades the field of robotics has been evolving substantially. More

and more segments of the industry are using robots to automate tasks. In some

segments, such as the subsea oil and gas industry, robots are being used to reach

where human operators can not. Remotely Operated Underwater Vehicles (ROVs)

have been used for inspection, military operations, rescue missions, support for oil

and gas offshore activities and others.

Figure 1.1: ROV being deployed - source: www.technipfmc.com

In the subsea oil and gas industry, robotics is transforming the way manifolds

and christmas trees are operated. These equipments are installed on the seabed

at depths up to 3000 meters. Christmas tree is the equipment installed on top of

the oil (or gas) well to control and secure the production and manifolds are larger
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equipment that combines the flow from multiple trees in one line to the topside

platform. Traditionally, the valves on the manifolds and trees are either operated

by ROVs (manual valves) or by hydraulic actuators. Hydraulic technology has some

drawbacks such as size and weight of the actuators and the cost of the umbilical

lines. The umbilical is a supply line that carries hydraulic pressure and electric

cables. Besides that, there is a high cost of hydraulic fluid and maintenance of

topside equipment to pressurize the hydraulic line (Moe et al. [28]).

Electric equipment connected to a long umbilical line has limited amount of

power. The rationale for that is the ohmic losses in the electric cables and the fact

that the transmission voltage is limited by the connectors and equipment involved.

The fact that the power is limited implies that many of the subsea applications re-

quires the use of local batteries to store the energy from the umbilical. Furthermore,

due to limited installation capabilities, the size or the capacity of these batteries is

usually constrained by the total weight allowed for the subsea equipment. Hence,

there is limited amount of energy to operate subsea installed equipment.

Figure 1.2: TechnipFMC Umbilical Cross-Section - source: www.technipfmc.com

Over the last two decades an alternative to hydraulic actuators had been gradu-

ally introduced into the subsea oil and gas industry. Electric actuators with local bat-

teries began to replace the hydraulic actuators (Johansen et al. [19],Sten-Halvorsen

& Koren [45],Aadland & Petersen [1],Hasan et al. [17],Moe et al. [28]). Consequently,

reducing the size of the umbilical up to 30% (Moe et al. [28]). Besides, the electric

actuator has much more position accuracy than the hydraulic actuator (Johansen

et al. [19]). The advantage of the hydraulic system is that in case a shortage on

hydraulic power occurs, there is a spring that pushes the valve to a safe position

(fail safe functionality) (Moe et al. [28]). The electric solution requires a local energy

storage solution (usually a Li-Ion battery) to accomplish the fail safe functionality

(Sten-Halvorsen & Koren [45],Aadland & Petersen [1],Hasan et al. [17],Moe et al.

[28]).

2



Figure 1.3: Subsea Production Field Layout - source: www.technipfmc.com

Figure 1.4: TechnipFMC electric actuator with battery - source:
www.technipfmc.com.

Over the last years the subsea oil and gas industry evolved to shared actuation

systems where one actuator is shared between all the valves on a manifold. In

(Mair [27]) and (Moreira et al. [29]) the first system to present this type of solution

is described. More recently, in patent (Azevedo et al. [4]) a robotic manipulator is

used to operate subsea valves on production equipment. Later, in patent (Schilling &

Cohan [34]) is proposed a vehicle with an actuator that moves on top of a manifold to

operate valves. This vehicle would eventually dock to a charging station to recharge

3



the batteries with inductive coupling technology.

Figure 1.5: Shared actuation system - source: (Azevedo et al. [4]).

1.1 Motivation for Subsea Oil & Gas Application

In the context of electric actuators with local batteries used on the subsea oil and

gas industry, energy optimization is a matter of great relevance. Specially on shared

actuated systems, where the same battery could be shared.

Subsea installed equipments have size and weight restriction due to installation

constraints. Consequently, the battery bank capacity is limited.

In case there is an emergency in the topside platform, the subsea manifold valves

need to be actuated to their safe positions. This operation is called shutdown se-

quence. The shutdown sequence needs to be executed in a limited time. In the

hydraulic actuated valves there is a spring mechanism in each valve that push the

valve stem to the safe position. In the electric actuated valves the actuators move

the valves to its safe position using energy from the batteries.

This scenario poses a challenge to plan the task, e.g. the shutdown sequence,

based on the available energy on the batteries. It is desirable to execute the task

as fast as possible but the available energy needs to be sufficient to finish the entire

task.

In summary, a method to replan a task to use the entire energy storage of a

system while minimizing the task completion time is crucial for the subsea oil and

gas production industry.

1.2 Other Applications

There are other industry sectors that have similar energy problems and could share

the same solution. For example, challenging applications where there is limited

4



amount of energy supply such as satellites or autonomous electric vehicles where the

battery bank is size and weight limited.

Satellites and spacecraft are powered by solar panels, which leads to a limited

energy budget (Patel [30]), where the amount of energy is constrained by the area

of the solar panels, which is restricted to the size of the satellite.

Autonomous electric vehicles are too a similar application where on one hand

the stored energy needs to last before the end of the task and on the other hand

the task should be accomplished as fast as possible. There is always the constraint

on the battery bank size driven by weight and size. So it is beneficial to make

the most of the available energy. Examples of autonomous electric vehicles on the

industry include underwater autonomous vehicles (AUVs) which are mainly used for

surveillance, self driven autonomous electric cars, autonomous vacuum cleaners to

name a few.

1.3 Review of existing literature

Several solutions are proposed to the time-optimal problem over the years (Bobrow

et al. [5], Shiller [35], Shin & McKay [37]). The energy-optimal problem was also

well studied over the years (Kim & Shin [21], Shiller [36], Field & Stepanenko [13]

and Verscheure et al. [46]).

In robotics applications, motion planning is considered as a nonlinear multi-

dimensional problem, where often, the task is splited in two: path planning and

trajectory planning (Verscheure et al. [46]). The path planning stage deals with ge-

ometric matters such as obstacle avoidance and the trajectory planning stage deals

with dynamic of the motion and actuators’ limits for example.

The time-optimal solution presented by (Bobrow et al. [5]) and (Shin & McKay

[37]) and later improved by (Slotine & Yang [41]) uses an arc-length parameteriza-

tion, e.g. s(0) = 0 ≤ s(t) ≤ 1 = s(T ) where t is the time with t ∈ [0, T ] and T is the

time duration. And then building a position vs velocity, i.e., s(t)× ṡ(t), parameter-

ized phase plane with the boundaries of admissible region. Then, an algorithm is

used to find the acceleration (or deceleration) switching points through the contour

of the admissible region that leads to a trajectory with higher velocities.

In (Shin & McKay [37]), the torque limit velocity dependence is considered at

the worst scenario quadratic, and this assumption is the base for the proof that the

method converges in finite steps. In (Bobrow et al. [5]) a more general approach is

used where torque limit is any arbitrary function of position and velocity. However,

(Bobrow et al. [5]) only considers simply connected admissible region on the phase

plane. In Shin & McKay [37] the general case is admitted.

Reference (Kim & Shin [21]) deals with the trajectory optimization considering
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a time and fuel criteria. The following cost function is used:

J =

∫ tf

t0

λ+
n∑
i=1

|τi|dt (1.1)

where t0 and tf are the initial and final times, τ is the generalized force/torque

vector and λ is the trade-off factor between time and fuel. The optimization is

carried out with phase plane switching curves as in (Bobrow et al. [5]). Then, the

authors propose a method called average dynamics where nonlinear parameters are

continuously updated by their approximated averages. This simplification allows

their method to be implemented in real-time. The proposed method in (Kim &

Shin [21]) is verified only by numerical simulation.

Later in (Shin & McKay [38]) dynamic programming is used to find optimal

phase plane trajectory. The goal is to extend the optimization to a more general

case where the constraint on the actuator torque limits are dependent to each other.

In (Pfeiffer & Johanni [31]) a path coordinate is also used. The time-optimal

solution is achieved via geometric properties of the manipulator dynamics parame-

terized in path parameter. A constrained phase-space is used to determine the time

optimal trajectories on the boundaries of the constrains. And then a dynamic pro-

gramming algorithm is used to optimize the trajectory according to cost function

combining time, squared velocity (which is proportional to kinetic energy) and joint

torques.

In (Field & Stepanenko [13]) the energy of a manipulator is minimized by means

of an iterative dynamic programming algorithm in phase space (joint velocity vs joint

angle). However, instead of using the boundaries, polynomials (cubic B-splines) are

used to approximate angle and velocities vertices on grids. Several grids are created

for each joint trajectory during the iterations. The grids start coarse and get finer

along the iterations. The proposed algorithm in (Field & Stepanenko [13]) scales

linearly with the number of joints.

In (Shiller [36]) also uses a trajectory parameterization to reduce the order of

the optimization problem. The time-energy optimization problem with constrains

is carried out using Hamiltonian and solving the co-state equation. In contrast to

typical time optimal control (Bobrow et al. [5] and Shin & McKay [37]), the proposed

time-energy optimal control is smooth, which presents implementation advantages

avoiding jerks on the motors and requiring a simpler controller.

In (Verscheure et al. [46]) and (Verscheure et al. [47]) it is proposed a nonlinear

change of variables to transform the time-energy optimization problem in a convex
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problem. Furthermore, the cost function for the time optimal problem typically is

C =

∫ T

0

1dt =

∫ 1

0

1

ṡ
ds (1.2)

A nonlinear change of variable is proposed

a(s) = s̈

b(s) = ṡ2
(1.3)

with the following constraint

b′(s) = 2a(s) (1.4)

which follows from ḃ(s) = b′(s)ṡ and also ḃ(s) = d(ṡ2)
dt

= 2s̈ṡ = 2a(s)ṡ, where the dot

indicates time derivative and the apostrophe partial derivative. The cost function is

then reformulated

C =

∫ 1

0

1√
b(s)

ds (1.5)

with that change of variable the objective function is convex (Verscheure et al. [46],

Verscheure et al. [47]), and as long as the constraints are linear the optimization

problem is also convex (Verscheure et al. [46], Verscheure et al. [47]), which permits

the use of second order cone programming solver (SOCP) to execute the optimization

in an efficient manner. The drawback of this approach is that only a specific types of

cost functions (and constraints) are allowed. Another example of cost function that

is also convex is the thermal energy for joint i (Verscheure et al. [46], Verscheure et

al. [47])

C =

∫ T

0

τi(t)
2dt =

∫ 1

0

τi(s)
2

ṡ
ds =

∫ 1

0

τi(s)
2√

b(s)
ds (1.6)

A similar method is proposed more recently in (Reynoso-Mora et al. [32]) to

solve the time-optimal solution, where the full dynamic model of a manipulator

including friction is considered. Second order cone programming is also used, and to

formulate as a convex optimization problem, the velocity constraint is re-formulated.

Also in (Reynoso-Mora et al. [32]), the authors propose a penalization on the total

jerks on the actuators. Later, (Debrouwere et al. [11]) utilizes sequential convex

programming (SCP) and considers non-convex constraints by decomposing them as

a difference of two convex functions and linearizing the concave part of it. Examples

of non-convex constraints are (Debrouwere et al. [11]) torque bounds which depends

on speed, torque rate constraints and cutting forces at the end effector (milling

applications).

In (Xu et al. [50]) a global optimization method considering minimum time and

minimum energy criteria is proposed. The authors propose an algorithm entitled

7



Environment-Gene evolutionary Immune Clonal Algorithm (EGICA). The path is

given and the trajectory is planned based on minimization of a cost function with

weighted time and energy. The trajectories considered in (Xu et al. [50]) are re-

stricted by cubic polynomials in the joint space. The method is then verified in

simulation in the Stanford manipulator.

In (Lin et al. [24]) a method based on sequential quadratic programming (SQP)

is presented to re-plan a path constrained trajectory in order to maximize the service

life of a robot. This is achieved by reducing torque levels on the weakest joint. The

service life of a given joint of a robotic manipulator in (Lin et al. [24]) is given by

L =
λK∑K

k=1 |q̇k||τk|c
(1.7)

where the system is discretized in K intervals, |q̇k| and k, |τk| are the absolute values

of joint velocity and joint torque at instant k respectively, λ and c are constants.

The optimization problem is then defined to find the set of positions, velocities

and accelerations that maximizes the service life of the weakest joint, i.e. the joint

with smallest service life. The physical joint limits are considered as constraints.

Since the optimization problem is not convex, the authors in (Lin et al. [24]) choose

SQP, where the idea is to linearize the constrains around an operation point and

locally solve an approximate convex program (Lin et al. [24]). Also, (Lin et al.

[24]) proposes to invert the cost function in order to reformulate the problem as a

minimum problem instead of maximum problem. This reformulation leads to a more

efficient way to calculate the Hessian matrix.

In (Cunha & Lizarralde [10]) an iteration method associated with predictive

control is used to minimize the difference between available energy budget and the

expected trajectory energy. The proposed optimization method requires low com-

putational cost which allows it to be used online and it is verified experimentally.

Table 1.1 summarizes the references indicating the optimization goal and the

method used. Note that it is a novel optimization goal and the proposed strategy

applied to robot trajectory optimization is a novel contribution.
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Although the problem is similar to the classical time-energy optimization, the

goal here is to plan based on the available energy budget. The solution proposed

in this dissertation is based on (Cunha & Lizarralde [10]), and also relies on a

path parameterization to reduce the dimension of the system. The optimization

algorithm is based on a receding horizon predictive control associated with a Newton

method to find the zero of a given cost function (similar approach as done in (Cunha

& Lizarralde [10]) and (Lizarralde et al. [26]) for non-holonomic systems). The

proposed approach gives highly effective results with relatively low computational

cost.

A similar solution is presented in (Fernandes et al. [12]) to find near-optimal

non-holonomic motion planning. An optimal control approach is used to minimize a

cost function that depends on the control effort. A solution is proposed considering

the input represented in an infinite orthogonal base (e.g. Fourier serie). Further-

more, the input and the cost function is represented by the coefficients of the base.

Hence, the coefficients become the optimization variables of a non-linear optimiza-

tion problem. Ritz approximation theory is used to find the optimal solution by

solutions of finite dimension problems. The solutions of the finite dimension prob-

lems are near-optimum solutions. But these near-optimum solutions converge to the

optimum solution as the dimension of the problem grows. Finally, to solve the finite

dimension problem the authors propose a Newton method iteration approach. Simi-

lar solution is used in (Lizarralde et al. [26]) and (Lizarralde [25]) for non-holonomic

systems and (Sontag [43]) for systems without drift.

The solution used here fits the context of continuation methods, where the tra-

jectory corresponding to an initial condition of the control variable is deformed (or

iterative corrected) into the final trajectory that minimizes the error. Continuation

methods are used to solve nonlinear problems by deforming the problem in a family

of similar problems by changing a given parameter. For one value of this parameter

the resulting problem has a known solution and for another value its the original

problem. The parameter is then corrected by a iteration process starting on the

known solution and ending on the original problem. As presented in (Richter &

Decarlo [33]), for a given problem F (x) = 0, a homotopy (or deformation) is defined

where Ft(x) = 0 with t ∈ [0, 1] and F1(x) = 0 is the original problem and F0(x) = 0

a trivial solution. Then the continuation method comprises in iteratively calculating

the solutions for each Ft(x) = 0 starting with t = 0 and ending in t = 1. In (Kontny

& Stursberg [22]) and (Kontny & Stursberg [23]), continuation method is proposed

to perform online obstacle avoidance. Trajectories homotopic to the optimal uncon-

strained solution are pre-calculated offline. Then in case of an obstacle in the current

trajectory, the system is driven online to a homotopic trajectory free of collision.

In (Chaves & Lizarralde [6]) utilizes a combination of receding horizon with an
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iterative Newton method to control autonomous mobile robots. An error function

is defined being the difference between current and desired states. A non-singular

discrete control vector is predicted for a short time window. The control signal is

then refined by the Newton method. At each iteration the first element of the control

vector is applied to the system and the vector is then shifted.

1.4 Objectives

The goal of this dissertation is to establish a method to optimize trajectories of

robotic systems with a limited energy budget. This is a novel trajectory optimization

objective for robot systems. The idea is to perform the trajectory as fast as possible

with the available energy. Consequently, at the end of the trajectory there should

be no energy left.

Typically, the systems that can benefit from the proposed method, such as subsea

robots, autonomous vehicles and satellites, has low powered processing units. Thus,

the algorithm must be fast enough to run in such embedded systems.

It is also an objective to validate numerically and experimentally the proposed

method.

1.5 Methodology

In order to solve the energy budget optimization proposed in this dissertation, the

path is parameterized and the dynamics of the parameterized path is controlled by

a linear system in a similar approach as done in (Lin et al. [24]).

Then, a cost function comprising the difference of the available energy budget

and the open loop prediction of the energy required for the trajectory is defined.

Later, a linearized map is established between the linear system input and the error.

This map is used to correct the linear system input towards minimizing the error on

a Newton method iteration scheme.

Later, the linear map calculation is simplified by linearization of the system by

using a model based control to cancel the manipulator non-linearities.

In real systems, the measurement of available energy is a rather complicated mat-

ter. In order to accommodate for imperfections in the state-of-charge estimation and

for any unpredictable consumption on a system level, a receding horizon predictive

control scheme associated to the Newton iteration similar to (Chaves & Lizarralde

[6]) is used. The predictive control is formulated considering the discretized system.

It could be argued that a discretized system could be considered all along but the

robot manipulator is best described in continuous time.
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The effectiveness of the proposed method is verified numerically using a Matlab

simulation using a planar manipulator with two rotatory joints and experimentally

on Tetis manipulator. Tetis is a light weight manipulator part of the rail guided

vehicle Doris (Xaud [49]). Tetis has 4 rotatory joints and weights around 2.5Kg.

The experiment is done with Matlab running the proposed algorithm on a computer

and sending velocity set points to Tetis using the ROS (Robot Operating System)

framework. ROS is an open-source multi-computer collection of software tools and

services designed to integrate robotics related hardware, e.g. sensors, actuators,

cameras, etc. ROS provides hardware abstraction and a communication system

between the nodes that can be synchronous using services or asynchronous using

topics.

1.6 Organization

This dissertation is organized in the following manner:

• Chapter 2 First, the robot manipulator system is introduced. Followed by the

definitions of path and trajectory. After that, a parameterization of the path

is proposed. Also, a cost function based on the concept of work is defined.

Then, the control variable is lifted and a linear system is used to guide the

dynamics of the trajectory parameter. Finally, the optimization problem is

formulated.

• Chapter 3 In this chapter the trajectory planning process is detailed. A Newton

method is used as the basis of the optimization algorithm. And the non-

linearities are canceled using a model based cancellation scheme. Simulation

results are used in the end of the chapter to illustrate the method.

• Chapter 4 In this chapter the problem of trajectory stabilization is addressed.

In order to accommodate perturbations and any model uncertainty, a reced-

ing horizon predictive control is included in the process. Simulation results

exemplifying the proposed method are presented at the end of the chapter.

• Chapter 5 This chapter presents experimental results of the proposed method

implemented in a 4 degrees of freedom manipulator named Tetis (Xaud

[49],Silva [40]).

• Chapter 6 In this chapter, the conclusions and a discussion about next steps and

future works are presented.
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Chapter 2

Problem Formulation

The problem of planning a trajectory using the entire system available energy can

be formulated as an optimization problem where a cost function is defined as the

difference between the predicted energy for the given trajectory and the available

energy. Furthermore, the optimization problem can be stated in the following form:

given a path and an energy budget, calculate the trajectory such that minimizes the

cost function.

This chapter is organized as follows. First, there is an introduction on the con-

cepts of robot manipulator, joint space and task space. Also the control of robot

manipulators is introduced. After that, the concepts of path and trajectory are in-

troduced. Then, a parameterization of the path is presented where the dimension

of the problem is reduced. Following the path parameterization, an energy func-

tion associated to the work done by the manipulator is adopted. Finally, an error

function is presented and the problem is formulated in a lifted space.

Here, it is considered that robot position and velocity are measured, and that

the system available energy is being measured. Additionally, it is considered that

the dynamic model of the manipulator is known.

2.1 Robot Manipulator System

A robot manipulator consists in a structure with articulated N+1 links connected by

N joints (Siciliano et al. [39]). It is assumed that the links are rigid. The joints can

be prismatic or revolute, where the prismatic provides translational motion between

the links and the revolute provides rotational motion between the links (Siciliano

et al. [39]). The structure of links connected through joints is classified as open or

closed kinematic chain. Open when there is only one sequence of links connecting

the two extremes of the chain, and closed when the chain forms a loop (Siciliano

et al. [39]). We only consider robotic manipulators forming open kinematic chains.

Typically, in the end of the chain, i.e. the end-effector, is where the tools used by
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the manipulator are attached.

Consider a reference coordinate system OB located in the manipulator base and

a coordinate system OE located in the end-effector as represented in figure 2.1.

Figure 2.1: Manipulator with base and end-effector coordinate systems. This image
is modified from https://new.abb.com

A minimal representation of the pose of the end-effector in a D-dimensional

operational or task space is described with respect to the base frame as (Siciliano et

al. [39])

p =

[
ρ

φ

]
(2.1)

where ρ ∈ IR3 represents the position in the base reference and φ ∈ IRr is a repre-

sentation of the orientation of OE with respect to OB (Siciliano et al. [39]), and r is

the dimension of the parameterization of the orientation representation. Note that

the orientation of a rigid body is in SO(3) space, but it is represented with Euler

angles, roll-pitch-yaw or quaternion (Siciliano et al. [39]).

The end-effector pose can also be described in the joint space, i.e., in terms of
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its joints positions:

q =


q1

q2
...

qN

 (2.2)

where q∈ IRN and qi can be prismatic or revolute.

The kinematics maps the joint space representation to the task space represen-

tation (Siciliano et al. [39]), i.e.

p = k(q) (2.3)

where k(·) is a nonlinear IRN → IRD operator (Siciliano et al. [39]).

Consider the Euler-Lagrange dynamic model of a robot manipulator described

in the joint space given by

M(q) q̈ + C(q, q̇) q̇ +G(q) = τ (2.4)

where τ ∈ IRN is the joint torque, M ∈ IRN×N is the inertia matrix, C ∈ IRN×N is the

Coriolis and centripetal effects matrix and G ∈ IRN×1 is the gravity term (Siciliano

et al. [39]).

Equivalently, the dynamics of a robot manipulator in the task space is given by

M̄(p) p̈+ C̄(p, ṗ) ṗ + Ḡ(p) = F (2.5)

where F ∈ RD is the generalized force vector, which is equivalent to the forces and

torque on the end-effector that would be generated if τ was applied on the joints

(Siciliano et al. [39]).

Matrices M̄ , C̄ and Ḡ are obtained from the joint space model as (Siciliano et

al. [39]):

M̄ = (JM−1J T )−1

C̄ ṗ = M̄JM−1Cq̇ − M̄ ˙J q̇ (2.6)

Ḡ = M̄JM−1G

where J (q) is the analytic Jacobian, i.e.

ṗ = J (q)q̇ (2.7)
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2.1.1 Control of Robot Manipulators

The control of system (2.4) consists in finding τ(t) such that q(t) → qd(t), where

qd(t) is the desired configuration in the joint space over time (Hsu & Lizarralde

[18]). In the task space, the control of system (2.5) consists in finding F such that

p(t) → pd(t), where pd(t) is the desired configuration in the operational space over

time (Hsu & Lizarralde [18]).

2.1.2 Computed Torque Control

The computed torque control technique consists in using the model of the plant to

compensate the non-linearities (Spong et al. [44], Craig [9]). It is assumed that M ,

C and G in (2.4) are known and that q and q̇ are measured. The control law is given

by

τ = M̂(q) u+ Ĉ(q, q̇) q̇ + Ĝ(q) (2.8)

where u is an auxiliary control and hat indicates the model of the manipulator

dynamics. Applying this controller to the dynamic model (2.4) results in

M(q) q̈ + C(q, q̇) q̇ +G(q) = M̂(q) u+ Ĉ(q, q̇) q̇ + Ĝ(q) (2.9)

And if the models are accurate and we consider M̂ = M , Ĉ = C and Ĝ = G we

have

q̈ = u (2.10)

The equivalent system if the model compensates perfectly the non-linearities

would be a double integrator.

The same process can be used in the task space formulation and the model can

be used to cancel the non-linearities. So the control is given by

F = ˆ̄M ū+ ˆ̄C ṗ + ˆ̄G(p) (2.11)

where ū is an auxiliary control signal and hat indicates the model. And again, if the

model is considered ideal ( ˆ̄M = M̄ , ˆ̄C = C̄ and ˆ̄G = Ḡ) we have

p̈ = ū (2.12)

Since the models are usually imperfect, it is common to include in (2.12) and in

(2.10) terms of position and velocity feedback to improve path tracking performance,

i.e.,

u = q̈d +Kp (qd − q) +Kd (q̇d − q̇) (2.13)
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ū = p̈d +Kp (pd − p) +Kd (ṗd − ṗ) (2.14)

where Kp ∈ IRN×N and Kd ∈ IRN×N for joint space and Kp ∈ IRD×D and Kd ∈
IRD×D for task space.

By inserting equation (2.10) in (2.13) for joint space and equation (2.12) in (2.14)

for task space, the error dynamics is

ë+Kdė+Kpe = 0 (2.15)

where e = qd−q for joint space and e = pd−p for task space. Choosing positiveKp

and Kd gains ensures that the error decays exponentially and the control objective

is satisfied.

2.2 Robot Manipulator Path Parameterization

The path consists of a collection of points in the joint or in the task space (Siciliano

et al. [39]) regardless of the moment in time when the manipulator reaches these

points. The trajectory on the other hand, defines velocities and accelerations for

each point in the path (Siciliano et al. [39]).

The path is parameterized by a single variable s = {s ∈ [0, 1]} that represents

the normalized arc length along the path (Verscheure et al. [46], Verscheure et al.

[47], Lin et al. [24]). Moreover, the path starts in s(0) = 0 and ends in s(T ) = 1,

where T is the final time. Also, to guarantee the manipulator moves forward in time

ṡ(t) ≥ 0 ∀ t∈ [0, T ]. And it is considered that the robot manipulator has to follow

a pre-defined path in the joint space qd(s) or in the task space pd(s).

The path parameter determines the spatial configuration of the path, where the

trajectory time dependency follows from the relation s(t) (Verscheure et al. [47]).

2.2.1 Trajectory Characterization in Joint Space

A trajectory in the joint space qd connects the initial configuration qd(0) to the final

configuration qd(T ) and is defined as

qd = {qd(t)∈ IRN , t∈ [0, T ]} (2.16)

where T is the final time. Or it can be defined in terms of the path parameter s

qd = {qd(s)∈ IRN , s∈ [0, 1]} (2.17)
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The map of the path parameterization in the joint space is defined as

qd = fq(s)

q̇d = ∇fq(s) ṡ

q̈d = ∇2fq(s) ṡ
2 +∇fq(s) s̈

(2.18)

It is considered that the system starts in the path, i.e.

q(0) = qd(0)

q̇(0) = q̇d(0) (2.19)

q̈(0) = q̈d(0)

2.2.2 Trajectory Characterization in Task Space

The desired task space trajectory is defined as pd connecting the initial configuration

pd(0) to the final configuration pd(T ). And is defined as

pd = {pd(t) ∈ SE3, t ∈ [0, T ]} (2.20)

where again T is the final time. Or it can also be defined in terms of the path

parameter s

pd = {pd(s) ∈ SE3, s ∈ [0, 1]} (2.21)

The map of the path parameterization is given by

pd = fp(s)

ṗd = ∇fp(s) ṡ

p̈d = ∇2fp(s) ṡ
2 +∇fp(s) s̈

(2.22)

Also, consider s as being a trajectory of the parameterized path, where s connects

an initial configuration s(0) to a final configuration s(T ). The trajectory s, regardless

if the problem is defined in the task or joint space, is denoted by

s = {s(t) ∈ R, t ∈ [0, T ]} (2.23)

Figure 2.2 illustrates a parameterized path in the task space.

2.3 Energy Function

The energy function represents the work done by the manipulator (see appendix A

for more details about manipulator energy consumption and this particular choice
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Figure 2.2: Parameterized Path of a Manipulator - This image is modified from
https://new.abb.com

of energy function). Then

JT =

∫ T

0

|q̇|T |τ |dt

|q̇| =


|q̇1|

...

|q̇N |

 |τ | =


|τ1|

...

|τN |

 (2.24)

Note that since only absolute values of torque and joint speeds are considered,

this choice of energy function does not contemplate the case where the actuators

are generating energy. The actuators works as generators when the torque and the

angular speed has different direction, e.g. during decelerations or when the actuator

load decrease to a state with less potential energy. Not considering the regeneration

on the energy function could be consider a minor restriction because most industrial

manipulators dissipate the regenerated energy in shunt resistors.

The energy budget available on the system to perform the trajectory is denoted

here as JB.

Changing the integration variable, the energy function (2.24) can be expressed
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in terms of trajectory parameterization:

JT =

∫ 1

0

|q̇|T |τ | 1

ṡ
ds (2.25)

Equivalently, the energy function can be defined in the task space:

JT =

∫ 1

0

|ṗ|T |F | 1

ṡ
ds (2.26)

2.4 Optimization Problem Formulation

The problem is formulated as an optimization problem where the trajectory is re-

planed to consume the entire energy budget. Hence, the problem is formulated as

follows

For a given path and an initial energy budget JB, find the trajectory s such that

JT (s) = JB.

2.4.1 Methods used for Trajectory Optimization

Note that the problem proposed above can be tackled as a minimum time with energy

restriction. Although not a common restriction on a minimum time optimization

for manipulators, in (Shin & McKay [38]) and in (Pfeiffer & Johanni [31]) dynamic

programming was used to find optimal phase plane trajectory to solve the time-

optimal problem while minimizing a cost function such as energy. Also in (Field &

Stepanenko [13]), dynamic programming was used but to solve the minimum energy

optimization problem with trajectory completion time as a constraint. In (Shiller

[36]) the time-energy problem is solved using Hamiltonian and solving the co-state

equation. By adjusting a weight factor to favor time or energy on the cost function

the problem proposed here could be also addressed using the method in (Shiller

[36]). In (Verscheure et al. [46]), instead of dynamic programming the authors use

second-order cone programming. In (Xu et al. [50]) the authors use a evolutionary

type of algorithm to solve time-energy optimization. Also the method used in (Lin

et al. [24]) to optimize the service life of the actuators based on sequential quadratic

programming could be adapted to solve an energy optimization.

Many of these solutions could be directly or indirectly in some cases used here to

find the trajectory that consume a given energy budget. But none are fast enough

to be used in a real time application.

The methodology proposed in this dissertation consists in minimizing the error

iteratively in a lifted decision space. This approach allows the optimization to be

solved in real time by a simple Newton method. A linear system is introduced to
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control the dynamic of the parameterized trajectory. The input of this system is the

lifted decision variable.

2.4.2 The Lifted Decision Space

Similar to (Lin et al. [24]), the optimization problem is solved in a lifted decision

space. To that end, parameter s is governed by a control input v through a known

(controllable and stable) linear system, i.e.

ż = Az z +Bz v

y = s

z =

sṡ
s̈


(2.27)

with z(0) = 0 and constant input v = {v ∈ R | v > Kdc} guaranteeing that s(T ) = 1

with finite time T ; Az ∈ R3×3 and Bz ∈ R3. The system (2.27) can be considered

a design variable. Furthermore, Kdc is the DC gain of the transfer function corre-

sponding to (2.27).

The eigenvalues of Az dictate the speed of the system and the settling time should

have the same magnitude as the desired trajectory duration.

The trajectory is lifted to a decision space where the input v controls its speed.

The linear system maps the trajectory to the lifted space. So the error is not

minimized directly.

Figure 2.3: Lifted Decision Space - Modified from Wen [48]

With the lifted space the variable v controls the parameterized trajectory z,

which is used to calculate the energy JT .
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The block diagram in figure 2.4 shows the control scheme considering the path

parameterization and the lifted space in the joint space formulation. The desired

tracking values for joints position (qd), joints velocity (q̇d) and joints acceleration (q̈d)

are obtained from the trajectory predictor block through the path parameterization.

The parameterized trajectory is also used to calculate the energy based on the energy

model. The energy budget J̃B is obtained from the system.

Robot

Trajectory
Tracking
Controller

Parameterized
Trajectory 
Predictor

{ }, ,Az Bz Cz

(s)fq

∇ (s)fq ṡ

(s) + ∇ (s)∇2fq ṡ2 fq s̈

q̇

q

q̇ d

qd

q̈ d

Energy
Prediction

z–
JT

+

JB

-

Lifted Space
Map

e
∫

v̇ v

s ṡ s̈

τ

v(0)z(0)

Figure 2.4: Joint Space Control block diagram

The block diagram in figure 2.5 shows the control scheme considering the path

parameterization and the lifted space in the task space formulation. The desired

tracking values for position (pd), velocity (ṗd) and acceleration (p̈d) are obtained

from the trajectory predictor block through the path parameterization. The param-

eterized trajectory is also used to calculate the energy based on the energy model.

The energy budget J̃B is obtained from the system.

Remark 1 The system 2.27 dictates the dynamics of the trajectory. Therefore Az,

Bz and v(0) should be carefully selected considering not only the task duration but

its evolution along the path. Also, s(t) must be smooth of class C2 because otherwise

the parameterization 2.18 will not hold.

In (Lin et al. [24]), a system with three poles at zero is used, i.e.

Az =

0 1 0

0 0 1

0 0 0

 ;Bz =

 0

0

0.01

 (2.28)
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ṗ
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Figure 2.5: Task Space Control block diagram

And the step response for a step with amplitude of 10 is shown in figure 2.6. For

this particular example the path is executed in almost 4s.
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Figure 2.6: Lifted Decision Space - Triple Integrator - s(t) with v=10

Here, in order to get more rapid response in the beginning of the trajectory, a
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different approach is proposed. A system with three stable and real poles, i.e.

Az =

 0 1 0

0 0 1

−5 · 10−2 −1 −2

 ;Bz =

 0

0

5 · 10−2

 (2.29)

This system has poles in −0.06, −0.74 and −1.20. Note that one pole is dominant

and it can be used to scale the system desired path completion time for a given v.

Meaning that the overall speed of the system can be adjusted with the dominant pole.

The step response for a step with amplitude of 10 is on figure 2.7. For this particular

example the path is executed in almost 4s.
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Figure 2.7: Lifted Decision Space - Stable System - s(t) with v = 10

Both systems have a limitation in the initial rise period. In the first 1s in the

triple integrator and 0.5s in the proposed linear and stable system, the systems are

almost static. This fact is not a major problem. The only consequence is that the

trajectories, regardless of the available energy, starts slow. Figure 2.8 shows both

solutions during the first second. The proposed system mitigates the slow start issue.

This discussion is open for future developments.

Remark 2 The choice of a constant v limits the search space of the optimization

problem to 1 degree of freedom. If more degree of freedom are needed (e.g. to satisfy

an additional constraint) v could be represented as a power series.
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Figure 2.8: Lifted Decision Space - s(t) Rise Time Comparisson with v=10

2.5 Problem Formulation on the Lifted Space

The problem is formulated as an optimization problem where the difference between

JT and JB must be minimized.

Therefore, the problem can be formulated as follows:

Find the control signal v that drives the error

e = JT (v)− JB (2.30)

to zero, with s subject to:

ż = Az z +Bz v (2.31)

with z(0) = 0.

2.6 Conclusions

This chapter formulates the problem of trajectory optimization for a given energy

budget. First, the manipulator dynamic equation in the task and in the joint space

is presented followed by the concepts of path and trajectory. After that a trajectory

parameterization is introduced to reduce the dimension of the problem. Later, an

energy function representing the work performed by the actuators is presented. With

all that in place the problem is formulated. Following the formulation of the problem,
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a brief discussion showing how the optimization problem could be solved with the

available techniques on the scientific robotics community. Furthermore, the method

proposed in this dissertation consists in solving the optimization in a lifted decision

space. And to that end, a linear system is used as a control variable to govern the

trajectory dynamics. Finally, the optimization problem is reformulated considering

the lifted decision space approach. In the next chapter a gradient descent newton

method is used to drive the error 2.30 to zero by correcting the input v iteratively.
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Chapter 3

Trajectory Planning

Although the path or trajectory planning can be treated as an optimal control

problem (Bobrow et al. [5], Shin & McKay [37], Shiller [35]), here the problem is

optimized in a lifted decision space v. The control v is corrected iterativelly in order

to minimize the error using Newton method.

This chapter shows the tools used to plan the optimized trajectory: the iterative

Newton method and model based linearization. Section 3.1 presents the iterative

Newton method. It is the base to understand how control v is corrected to minimize

the error (2.30). Section 3.2 shows how the non-linearities are canceled. Finally,

on section 3.3 the problem is addressed with the tools presented in the first two

sections.

The proposed method for trajectory planning is demonstrated on numerical ex-

ample 1 where a system with one revolute joint is considered. Later in example 2

a condition that could lead to oscillations on the error due to large Newton step

is shown. Then, in example 3 this oscillation is dealt with the use of Armijo rule.

Finally, a simplification is proposed to consider the map between the error and the

control input v as always positive.

3.1 Iterative Newton Method

The method proposed here consists in transforming the optimization problem in a

root-finding problem of an algebraic function dependent on the input. And then

solving the optimization in a lifted decision space - the input function space. After

that, an iterative Newton method is used to find the zero by updating the input

v in the direction the error magnitude decreases (similar to (Lizarralde et al. [26])

for nonholonomic systems and (Sontag [43]) for systems without drift). Although in

chapter 2 v is considered constant, here in chapter 3 it is updated to minimize the

error, however v is constant in the sense that it does not change during a trajectory.
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Hence, the objective is to find an input v∈R such that the error

e = JT (v)− JB = 0 (3.1)

In a nutshell, the method consists in first choosing an initial guess v0 that leads

to error e1 = JT (v0)−JB. If the resulting error e1 is not small enough, the input v0 is

corrected by a small change ∆v, i.e., v1 = v0 + ∆v. Then the new error is calculated

e2 = JT (v1)− JB and if the error still not small enough the process continues.

In order to calculate ∆v, a continuous map from control v to error e has to be

established. This mapping correlates infinitesimal variations between v and e over

time.

Since budget JB is assumed to be constant, the differentiation of (3.1) with

respect to the iteration variable t leads to

de

dt
= ∇vJT (v)

dv

dt
(3.2)

where ∇vJT (v) is the derivative (Sontag [42]) of JT with respect to v. The map

from input v to energy function JT (v) can be calculated through linearization of the

system about v (see (Sontag [42])[section 2.8] where is established that the transition

map of linearization equals the linearization map of transition).

The condition is that the mapping from the input to the error shall be onto, which

is equivalent to the existence of an input that can drive the error to zero in finite

time. Hence, this condition implies global controllability (Sontag [43], Lizarralde et

al. [26], Sontag [42], Lizarralde [25]). Global controllability implies that the system

is globally controllable if and only if the map ∇vJT (.) is onto for every v (Lizarralde

[25]).

Thus, assuming that ∇vJT (v) is onto, the control variable v can be updated in

such a way that minimizes the error:

dv

dt
= −µ [∇vJT (v)]−1 e(t) (3.3)

where µ > 0 dictates the rate of convergence. Furthermore, the convergence of e to

zero can be verified by substituting (3.3) in (3.2):

de

dt
= −µ e(t) (3.4)

which implies the exponential convergence of e(t) to zero.

Remark 3 Continuation methods are used to solve non-linear problems by deform-

ing the problem in a family of similar problems by changing a given parameter. For
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one value of this parameter the resulting problem has a known solution and for an-

other value its the original problem. The parameter is then corrected by a iteration

process starting on the known solution and ending on the original problem.

Although the overall formulation is different, the solution used here fits the con-

text of continuation processes, where the trajectory corresponding to an initial condi-

tion v0 is deformed (or iterativelly corrected) until the final trajectory that minimizes

the error.

Remark 4 If necessary, the input v could be modified to add degrees of freedom to

the problem for considering torque and speed constraints. Furthermore, v could be

any function (e.g. v ∈ L2), or belong to a finite dimension class (Lizarralde [25])

(e.g power series or Fourier series). Here, the first M elements of a power series is

considered as a base, i.e.,

v(t) =
M∑
i=0

λi t
i ,∀t ∈ [ 0, T ] (3.5)

A homotopy Q can be established such as v = Q−1λ where λ is the vector with the

coefficients λ =
[
λ1 λ2 . . . λM

]
. Equation (3.2) is written in terms of λ

de

dt
= ∇λJT (λ)

dλ

dt
(3.6)

And to steer the error to zero λ have the following update rule

dλ

dt
= −µ [∇λJT (λ)]−† e(t) (3.7)

where [ ·] † is the pseudo-inverse of Moore-Penrose.

3.2 Model-Based Control

Here a model-based controller as described in section (2.1.1) is proposed to cancel

the dynamics and to feedback linearize the robot manipulator system. So for joint

space formulation, the system (2.4) is linearized with the following controller:

τ = M̂(q) u+ Ĉ(q, q̇) q̇ + Ĝ(q) (3.8)

And for task space formulation the system (2.5) is linearized with the following

controller:

F = ˆ̄M(p) u+ ˆ̄C(p, ṗ) ṗ + ˆ̄G(p) (3.9)
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The feedforward term u here is either u = q̈d if joint space formulation or u = p̈d

if task space formulation. A linear system is defined where u is the input and the

state is x =
[ q
q̇

]
or x =

[ p
ṗ

]
for joint space or task space respectively.

ẋ = A x+B u ; y = C x (3.10)

where

A =

[
0 I

0 0

]
B =

[
0

I

]
C = BT

where A ∈ R2N×2N , B ∈ R2N×N , 0 ∈ RN×N is a null matrix and I ∈ RN×N is the

identity matrix.

The energy function (2.25) is redefined for the linearized system as

J̃T =

∫ 1

0

|y(s)|T |u(s)|
(

1

ṡ

)
ds (3.11)

For the joint space for example we have that

y(s) = q̇(s) = q̇d(s) + rv(s) (3.12)

u(s) = q̈(s) = q̈d(s) + ra(s) (3.13)

where rv and ra are the residual tracking error for velocity and acceleration. Under

the assumption that the tracking errors can be neglected and from (2.18) we have

y(s) ≈ q̇d(s) (3.14)

y(s) ≈ ∇fq(s) ṡ (3.15)

u(s) ≈ q̈d(s) (3.16)

u(s) ≈ ∇2fq(s) ṡ
2 +∇fq(s) s̈ (3.17)

Equivalent conclusions can be drawn for the task space equations. In the remaining

of the chapter the residual tracking errors are considered zero. Furthermore, the

energy function (3.11) is

JT =

∫ 1

0

|∇f(s)ṡ|T |
(
∇2f(s)ṡ2 +∇f(s)s̈

)
|
(

1

ṡ

)
ds (3.18)

=

∫ 1

0

|∇f(s)|T |
(
∇2f(s)ṡ2 +∇f(s)s̈

)
| ds (3.19)

where f(s) = fq(s) if the system is defined in the joint space or f(s) = fp(s) if

defined in the task space. And zT = [s ṡ s̈] is governed by (2.31).
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By optimizing the energy of the linearized system one can also optimize the

energy of the actual manipulator. This assumption holds for the energy function

(2.25) where it is considered that the joint actuators cannot work as generators.

The linear system energy J̃T does not account for energy spent due to Coriolis

effects or gravity. From the joint space equations (2.24) and (2.4):

JT =

∫ T

0

|q̇|T |M(q) q̈ + C(q, q̇) q̇ +G(q)| dt (3.20)

While for the linear system the energy is

J̃T =

∫ T

0

|q̇|T |q̈| dt (3.21)

By considering the linearized system in the optimization the energy losses caused by

Coriolis and gravity are considered disturbances on the energy budget. Moreover,

comparing 3.20 and 3.21 we can see that J̃T is scaled from JT due to the fact that

the mass of the double integrators are normalized. So by optimizing the trajectory

for J̃T , the trajectory is also optimized for the real system energy. But on the other

hand, there is a scale factor to be found in order to obtain the linear system energy

budget from the real system energy budget.

Remark 5 In a real system the energy budget would typically be measured from an

energy reservoir, e.g. battery state of charge (SoC), fuel tank level, flywheel angular

speed, etc. Then, the following is performed to find J̃B:

1. At instant t = 0 and with the system’s reservoir at its full capacity, i.e., JB(0),

a trajectory that corresponds to a drop into the linear system energy of ∆J̃B

is executed.

2. Measure the system’s reservoir level after the trajectory. The decrease from

initial energy level JB(0) is ∆JB and corresponds to ∆J̃B.

Then the linear system energy level is calculated from the energy reservoir level with

J̃B(t) =
∆J̃B
∆JB

JB(t) (3.22)

3.3 Trajectory Planning using Newton Method

Now, considering the energy error function for the linearized system is given by

ẽ = J̃T (v)− J̃B (3.23)
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the optimization problem is reformulated considering the energy function of the

linearized system:

Find the control v that drives the error function (3.23) to zero, with s subject

to:

ż = Azz +Bzv (3.24)

with z(0) = 0.

Thus, the Newton method can be applied with update control law (3.3)

dv

dt
= −µ

[
∇vJ̃T (v)

]−1
ẽ(t) (3.25)

and the resulting v solution can be used to generate z = [s ṡ s̈] from (3.24). Then,

considering the feedforward term u in (3.8) as:

u = q̈d

with q̈d obtained from (2.18) the trajectory planning problem is solved considering

the energy budget J̃B.

Example 1 To illustrate the proposed planning method a simple example is pre-

sented. The trajectory of a single rotatory joint is re-planned to use a desired energy

budget.

The linearized system is given by

ẋ = A x+B u ; y = C x (3.26)

where

x =

[
q1

q̇1

]
A =

[
0 1

0 0

]
B =

[
0

1

]
C = BT

The z-dynamic system (2.31) is the stable and controllable system given by

Az =

 0 1 0

0 0 1

−3 · 10−4 −1 −2

 ;Bz =

 0

0

3 · 10−4


The path is connecting q(0) = 0 to q(T ) = qf and is described by the function

fq(s):

fq(s) = sqf

with derivatives given by:

∇fq(s) = qf
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∇2fq(s) = 0

From equation (3.19), the energy function for the linearized system is

J̃T (v) =

∫ 1

0

|qf | |qf s̈| ds

J̃T (v) = q2f

∫ 1

0

|s̈| ds

But, from (Chen [7]) we have that considering z(0) = 0 the solution to the linear

system is

z =

∫ t

0

eAz(t−θ) Bz v dθ

And since v is constant can be taken outside the integral sign:

s̈ = v
[
0 0 1

] ∫ t

0

eAz(t−θ) Bz dθ

s̈ = v α

where

α =
[
0 0 1

] ∫ t

0

eAz(t−θ) Bz dθ

And then we have

J̃T (v) = v q2f

∫ 1

0

|α| ds

In order to calculate the mapping ∇vJ̃T (v), a small perturbation ∆v is applied

in J̃T (v)

J̃T (v + ∆v) = (v + ∆v) q2f

∫ 1

0

|α| ds

J̃T (v) + J̃T (∆v) = v q2f

∫ 1

0

|α| ds+ ∆v q2f

∫ 1

0

|α| ds

J̃T (∆v) = ∆v q2f

∫ 1

0

|α| ds

We can see that a small change ∆v in the input v caused the small change in

the energy function J̃T (∆v). And the mapping is then

∇vJ̃T (v) =
J̃T (∆v)

∆v
= q2f

∫ 1

0

|α| ds

∇vJ̃T (v) =
q2f
v

∫ 1

0

|s̈| ds

Note that this mapping is always positive.
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The Newton method iterations were calculated in Matlab with µ = 1. The initial

condition is v = 1000 and the energy budget for the linearized system is J̃B = 1.3 105.

In figure 3.1 the planned energy J̃T starts in 2.6 105 and in 3 iterations converges

to the energy budget (blue line indicates the energy budget).

Figure 3.2 also shows that in 3 iterations the error converges to zero and v to

final value corresponding to the energy budget.

Since the energy level decreases, the control signal also decreases. This can be

observed in figure 3.3.

In figure 3.4 s(t) is plotted for the initial and the final Trajectories. It can be

noted that for a small energy level the trajectory takes longer to complete.
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Figure 3.1: Numerical Results 1 Joint - Total energy JT along the iterations
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Note that the size of the Newton step depends on the parameter µ. If the step

is too small, the convergence requires many iterations and is slow. But if the step

is too big the error can oscillate around zero. That can happen if the step is bigger

then the accepted error level. And instead of reducing the error it changes its signal.

Example 2 illustrates this oscillation.

Example 2 To illustrate the oscillation of the error due to big µ, the example 1

was modified so µ = 2, J̃B = 1.3 × 106 and v(0) = 104. Note that the energy level

and v(0) were increased to prevent the Newton step (which now is bigger) to change

v to a negative value. The other aspects of the numerical simulation remained the

same.

Figure 3.5 shows the error along the iterations. The error approximate zero and

start oscillating between 1.608 and −1.608.
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Figure 3.5: Numerical Results 1 Joint Oscillating - Example 2 - Error Oscillating

The Newton step size can be adjusted dynamically using the Armijo rule as

described in (Armijo [2]) with the name Modified Steepest Descent. In (Lizarralde

[25]) the Armijo rule is also used and its thoroughly described. In short, the Armijo

rule reduces the Newton step size if the absolute value of the error did not decrease

enough. Example 3 shows the use of Armijo rule.
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Example 3 In order to illustrate the Armijo rule, example 2 is revisited implement-

ing the steps described in (Lizarralde [25]). The test to decide if the descent was

steep enough is

|ẽ(t+ ∆t)| < (1− δµ) |ẽ(t)| (3.27)

where δ = 10−4. And if the error did not decrease enough µ is corrected with a factor

σ = 0.5:

µ = σ µ (3.28)

Initially, as in example 2, µ = 2. The error sequence along the iterations is

−6068, 384.5, −24.72 and − 1.6077. At this point the error would begin to os-

cillate and the next value would be 1.6077. But with the Armijo rule µ is decreased

to µ = 1. And the next error is −8.51× 10−7.

In figure 3.6 the error along the iterations is plotted.
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Figure 3.6: Numerical Results 1 Joint With Armijo Rule- Example 3 - Error vs
iterations

Remark 6 The system (2.31) is chosen so s always increase when v > 0, i.e. ṡ > 0.

Consequently, v is directly proportional to ṡ.

Furthermore, by the work-energy principle a change in the kinetic energy of a

body equals the net work performed on it.
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We can conclude that an increase in v will cause an increase in ṡ. And this

increase in ṡ corresponds to higher kinetic energy on the movement and consequently

the net work is higher as well. This logic could fail when a decrease in potential

energy could make the net work negative regardless of the velocity. But, the energy

function (3.19) corresponds to the absolute value of the net work. Hence, ∇vJT is

always positive. Thus a simplified update rule for v can be proposed:

dv

dt
= −µ e(t) (3.29)

3.4 Conclusions

In this chapter the method used to plan the optimal trajectory is presented. A

mapping between the control input v and the error e is used to correct the control

v in the direction that the error decreases. A Newton iterative method is used to

update the v.

Later, the non-linearities of the system are canceled using a model-based control.

The error function and the optimization problem are reformulated for the linearized

system.

The method is then verified with a numerical example considering a system with

1 rotatory joint. A second example is devised to show that a big Newton step can

lead to oscillations. After that, a third example uses the Armijo rule to reduce the

Newton step whenever the error descent is not satisfactory.

Finally, an assumption is made in order to simplify the update rule for the control

v. Since the proposed energy function does not consider the case where the actuators

are regenerating, the map from v to e is always positive.

In the next chapter, the trajectory tracking problem is approached by adapting

the method to be done in a closed loop fashion.
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Chapter 4

Trajectory Tracking

This chapter introduces the receding horizon predictive control that is used for tra-

jectory tracking in a closed loop fashion. This is done to accommodate imperfections

or disturbances in the process.

Section 4.1 is the introduction to this chapter, in section 4.2 a strategy for tra-

jectory tracking associating Receding Horizon Predictive Control with the Newton

Method is discussed. After that, the method is exemplified with numerical simu-

lations. In section 4.3 is presented an example of the method with a planar RR

manipulator and another example with a 4R light robot manipulator, named Tetis

(Xaud [49],Silva [40]).

4.1 Introduction

The optimization process described so far consists in calculating using Newton

method the optimized trajectory in open loop. The Newton method calculates the

control v that corresponds to the desired energy usage for the given task. Note that

if there are imprecisions on the model used on the computed torque or on the sys-

tem energy budget for example, this open loop strategy would fail. Furthermore, the

proposed method is adapted to be executed in closed loop. This strategy is based on

predictive control technique associated with the Newton method. The method used

here is based on (Lizarralde [25]) for non-holonomic systems. Later similar solution

was used in (Chaves & Lizarralde [6]) for autonomous navigation of mobile robots.

A popular way to deal with imprecisions or disturbances is to use a predictive

control. In a nut shell, an initial prediction is made for the entire trajectory. The

system follows the trajectory for a short period of time and based on the current state

update the prediction. And then this is performed over and over until completion

of the trajectory.

The Newton method is then merged with the predictive control. Meaning that

at every time the prediction is recalculated, the control input is corrected following
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the Newton method.

In section 4.2 the Receding Horizon Predictive Control method is detailed for

both the joint and task spaces. Next, in section 4.3 the method is demonstrated

with numerical examples.

4.2 Receding Horizon Predictive Control with

Newton Method

The main idea is to calculate the control and the energy for the entire trajectory

based on the current value of v. Then, two things are done: first, v is refined with one

Newton step. Second, the calculated control is executed until the next prediction.

In the following prediction, the process repeats with the new value of v and the

current state of the system. This iteration is repeated until the completion of the

trajectory. The predictions can occur at the same rate as the trajectory control or

at a lower rate. Since the Newton step guarantees that the predicted error is strictly

decreasing, it is possible to show the convergence to the desired value of energy J̃T .

The process is first detailed in the joint state and then in the task space.

4.2.1 Trajectory Tracking in the Joint State

To describe this procedure analytically, it is convenient to consider the system dis-

cretized in time. To this end, the robot manipulator system (2.4) is discretized with

ZOH (Zero-Order Hold) ([14]) assumption with sampling time ∆t:

M(qk) q̈k + C(qk, q̇k) q̇k +G(qk) = τk (4.1)

where qk := q(k∆t) for k = 0, 1, 2, ..., K where T = K∆t.

Then, at current time k, and for a given control vk, the total energy is calculated

until k + m, where m is the number of steps remaining to complete the trajectory,

i.e. the horizon length. The energy function (3.19) considering f(s) = fq(s) is

discretized as:

J̃T (vk) =
k+m∑
i=k

|∇fq(si)|T |
(
∇2fq(si)ṡ

2
i +∇fq(si)s̈i

)
| (4.2)

where zi = [si ṡi s̈i] is calculated from a discretized linear system (3.24).

The energy error at current time k is given by:

ẽk = J̃T (vk)− J̃Bk (4.3)
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where J̃Bk is the available energy budget at current time k. Then it is applied to

the system the computed torque τk with the feedforward term given by:

uk = q̈dk = ∇2fq(sk) ṡ
2
k +∇fq(sk) s̈k (4.4)

to drive the system to the next time interval.

The control variable v is updated using:

vk+1 = vk − µ ẽk (4.5)

The proposed receding horizon procedure is described in Algorithm 1.

Algorithm 1 RHPC Based on Newton Method

1: while s ≤ 1 do
2: Calculate zi = [si ṡi s̈i] for i = k, ..., k +m from (3.24)
3: Calculate J̃T (vk) from (4.2)
4: Calculate energy error ẽk = J̃T (vk)− J̃Bk
5: Calculate uk from (4.4)
6: Apply joint torques: τk=M(qk)uk + C(qk, q̇k)q̇k +G(qk)
7: Update control variable: vk+1 = vk − µ ẽk from (3.3)
8: Update the energy budget J̃Bk from the system.

9: End while

Remark 7 Note that the predictive control loop can be implemented at a slower

frequency then the control frequency. In that case, at every prediction the next w

torques are calculated: τk,w =
[
τk τk+1 · · · τk+w−1

]
, where w is the the number of

intervals between each prediction.

4.2.2 Trajectory Tracking in the Task Space

The system (2.5) is discretized with ZOH assumption with sampling time ∆t:

M̄(pk) p̈k + C̄(pk, ṗk) ṗk + Ḡ(pk) = Fk (4.6)

where pk := p(k∆t) and Fk := F (k∆t) for k = 0, 1, 2, ..., K where T = K∆t.

Then, following the same steps as in section (4.2.1), the energy function (3.19)

considering f(s) = fp(s) is discretized as:

˜̄JT (vk) =
k+m∑
i=k

|∇fp(si)|T |
(
∇2fp(si)ṡ

2
i +∇fp(si)s̈i

)
| (4.7)

where zi = [si ṡi s̈i] is calculated from a discretized linear system (3.24).
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The energy error at current time k is given by:

˜̄ek = ˜̄JT (vk)− J̃Bk (4.8)

where J̃Bk is the available energy budget at current time k. Then it is applied to

the system the control uk

uk = ṗdk +Kp(pdk − pk) (4.9)

to drive the system to the next time interval. Where Kp is the positive proportional

position gain.

The control variable v is updated using:

vk+1 = vk − µ ˜̄ek (4.10)

The proposed receding horizon procedure is described in Algorithm 2.

Algorithm 2 RHPC Based on Newton Method

1: while s ≤ 1 do
2: Calculate zi = [si ṡi s̈i] for i = k, ..., k +m from (3.24)

3: Calculate ˜̄JT (vk) from (4.7)

4: Calculate energy error ˜̄ek = ˜̄JT (vk)− J̃Bk
5: Apply the control uk from (4.9)
6: Update control variable: vk+1 = vk − µ ˜̄ek
7: Update the energy budget J̃Bk from the system.

8: End while

The block diagram in figure 4.1 summarizes the control scheme considering the

model-based linearization and the predictive control.

The robot is controlled with model based controller compensation (the hat in-

dicates the model of the robot parameters). The desired tracking values for joints

position (qd), joints velocity (q̇d) and joints acceleration (q̈d) are obtained from the

predictive controller through the path parameterization. The parameterized tra-

jectory is also used to calculate the energy prediction. The energy budget J̃B is

obtained from the system and accounts not only for the robot energy consumption

but for energy losses and other unmodelled consumption.
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Figure 4.1: Control scheme block diagram

4.3 Numerical Examples

4.3.1 RR Planar Manipulator

The proposed method is verified with a two link planar manipulator where the

manipulator parameters are the same as described in (Siciliano et al. [39]) example

7.2: a1 = a2 = 1m, l1 = l2 = 0.5m,ml1 = ml2 = 50kg, Il1 = Il2 = 10kgm2, kr1 =

kr2 = 1,mm1 = mm2 = 5kg, Im1 = Im2 = 0.01kgm2, where ai is the link length, li is

the distance of center of mass to joint axis, mli is the link mass, mmi is the mass of

the joint actuator, kri is the actuator gearbox reduction ratio, Imi is the moment of

inertia with respect to the the axis of the actuator and Ili is the moment of inertia

with respect to the center of mass of the link.

Description of the Path

The desired path is considered 10 turns around a circle with radius equal to 1 in

q1 − q2 plane which is given by the following map:

qd(s) = fq(s) =

[
sin(20πs)

cos(20πs)

]
s ∈ [0, 1]

Description of the Simulation with RR Planar Manipulator

The discretization time period is ∆t = 0.01s, and µ = 10−5. The predictions are

also calculated every 0.01s.
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Figure 4.2: Manipulator RR planar manipulator - Ref: (Siciliano et al. [39])

In order to guarantee path tracking performance, position and velocity feedback

terms were included in (3.8):

u = q̈d +Kp (qd − q) +Kd (q̇d − q̇) (4.11)

where Kp = 500, Kd = 200 and qd, q̇d, q̈d from (2.18).

The z-dynamic system (3.24) is given by

Az =

 0 1 0

0 0 1

−3 · 10−4 −1 −2

 ;Bz =

 0

0

3 · 10−4


Note that this system has DC gain equal to 1.

The energy budget for the linearized system is J̃B = 2 105. The system was

simulated with two different initial condition: v(0) = 200 and v(0) = 10.

In order to verify the controller robustness, the simulation considers an extra

10kg inertia and 12.2kgm2 moment of inertia on link 2. It also considers a disturb

on the energy budget. The disturb is a 20% drop on the budget on instant s = 0.3.

The algorithm (1) is implemented and robot dynamic (2.4) is integrated with a

∆t period using Matlab ode45 function.

RR Planar Manipulator Simulation Results

The evolution of the energy budget along the iterations is shown in Figures 4.3 and

4.4 together with the control variable v. The initial condition v(0) = 200 is higher

than the optimal value. And v(0) = 10 is lower than the optimal value.

For both initial conditions v(0) = 200 and v(0) = 10, the proposed algorithm
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converges in less than 200ms and then v stays at v = 42.48 until the disturb at

s = 0.3. The disturb is compensated in also less than 200ms and then v stays at

v = 33.8 during the remaining of the trajectory.
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Figure 4.3: Simulation Results Predictive Control with Newton Method - RR Planar
Manipulator: Budget J̃B(k) and control variable v with v(0) = 200

The joint position, position error and the joint torques are shown in figures 4.5

and 4.6.

Initially, the error is ±0.23deg for q1 and ±0.32deg for q2. Then, after the energy

drops at s = 0.3 the algorithm reduces the speed to adapt to the new budget and

consequently the error drops to ±0.18deg for q1 and ±0.24deg for q2. After the

disturb in the energy budget the torques also decrease. The simulations with both

initial condition shows the same performance.

4.3.2 Tetis Manipulator

A numerical simulation is carried out with a light weight 4R manipulator named

Tetis. A simplified dynamic model of the manipulator is considered with a payload

of 200g. This payload is not canceled with the computed torque.

In order to observe the optimization method proposed, two simulations were

performed with two different levels of energy budget.
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Figure 4.4: Simulation Results Predictive Control with Newton Method - RR Planar
Manipulator: Budget J̃B(k) and control variable v with v(0) = 10

Description of the Manipulator

Tetis is part of the mobile robot Doris. Doris is a rail guided robot used for offshore

inspections in oil and gas facilities (Galassi et al. [15]).

Since it is part of a mobile robot, Tetis is a light weight manipulator. Its links

are made of carbon fiber tubes and the joints made of 3-D printed Ti64 alloy (Xaud

[49]).

The actuators are from Harmonic Drive Ag Mini servo actuator line. And the

drivers are model EPOS2 70/10 from Maxon Motor. There is an embedded computer

running a ROS network. This embedded computer reads the sensors available on

Doris. And through a Controller Area Network (CAN), controls the motor drives.

See the hardware architecture diagram in figure 4.9.

Tetis weights 2.5Kg and has a payload of 0.3Kg. Link 1 is 52.5mm in length, link

2 is 320mm in length, link 3 is 225mm in length and link 4 is 167.25mm in length.

Figure 4.7 shows a picture of Tetis and figure 4.8 shows Tetis coordinate systems.

The dynamic model of Tetis used in these simulations is described in appendix

B.
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Figure 4.5: Simulation Result Predictive Control With Newton Method - RR Planar:
Positions q, Position Error q − qd and Torque τ with v(0) = 200

Description of the path

The path in the task space is described as two turns around a 50 mm radius circle in

X − Z plane. The circle is centered in position (x, yz) = (500, 57,−67). To obtain

the path in joint space, inverse kinematics is used. Since the path is fixed on X −Z
plane, θ1 is fixed. Then, the joint positions θ2, θ3 and θ4 are modeled with a Fourier

series:

θN(t) = a0 +
n∑
i=1

aicos(iωt) + bisin(iωt)

where N is the joint number, n is the number of terms in the Fourier expansion

and ω is the frequency. The Matlab Curve Fitting Tool Box is used to find the

coefficients and calculate the metrics. An expansion with n = 2 already yields a
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Figure 4.6: Simulation Result Predictive Control With Newton Method - RR Planar:
Positions q, Position Error q − qd and Torque τ with v(0) = 10

good result.

Table 4.1 shows the Fourier coefficients and table 4.2 shows the statistics metrics

of the model for each joint. RMSE is the root mean squared error and R-Square is

the coefficient of determination. The R-Square ranges from 0 to 1 where 1 means a

perfect fit.

Table 4.1: Curve Fitting of the Path used in Tetis Numerical Simulation - Model
Coefficient (with 95% confidence bounds)

N a0 a1 b1 a2 b2
2 −0.8746 0.1957 0.1441 0.003245 −0.02521
3 1.804 0.07579 −0.3625 −0.007746 −0.003591
4 −0.9298 −0.2717 0.2181 0.004388 0.02882
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Figure 4.7: Tetis 4R Light Manipulator

Figure 4.8: Tetis Reference System - Diagram extracted from (Silva [40])

Description of the Simulation with Tetis

In order to verify robustness of the control used in the simulation, a payload of 200g

is considered in Tetis end-effector.
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Figure 4.9: Tetis Hardware Architecture - Diagram extracted from (Xaud [49])

Table 4.2: Curve Fitting of the Path used in Tetis Numerical Simulation - Model
Fit Metrics

N R− Square RMSE
2 0.9998 0.002688
3 1 0.001796
4 0.9998 0.003622

The discretization time period used is also ∆t = 0.01s, and µ = 10−5. The

predictions are also calculated every 0.01s.

As in the previous simulation, position and velocity feedback terms are included

to guarantee path tracking performance in (3.8). And Kp = 5000, Kd = 2000 and

qd, q̇d, q̈d from (2.18).

The simulation is carried out with the following linear system:

Az =

 0 1 0

0 0 1

−3 · 10−2 −1 −2

 ;Bz =

 0

0

3 · 10−2


The algorithm (1) is implemented and robot dynamic (2.4) is integrated with a

∆t period using Matlab ode45 function.
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Figure 4.10: Curve Fitting of the Path used in Tetis Numerical Simulation - Joint
Positions Data and Model

To observe the behavior of the optimization, two simulations are performed. One

with J̃B = 2600 and the other with J̃B = 3200. The former is less energy then the

initial v = 5 requires and the latter is more energy.

Tetis Simulation Results

Figure 4.11 shows the case with less energy then required for the initial v. The

v is corrected in around 1s. The speed of convergence is ruled by µ. Higher µ

yields faster convergences. As expected, the energy is entirely consumed during the

trajectory.

Figure 4.12 shows the case with more energy then required for the initial v. The

v is corrected in less then 1s. Again, the energy finishes only at the end of the

trajectory.

Figures 4.13 and 4.14 show the joint positions, the joint positions error and the

torques during the trajectory. Joint 1 was omitted because it is not used for the

given path.

The position error is around 0.2deg in both cases. In the simulation with less

energy the position errors are slightly smaller. That is related to the fact that the

speeds are also slightly smaller. Note that the completion time is 12s for the system

with less energy and 9s for the system with more energy.
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Figure 4.11: Simulation Result Predictive Control With Newton Method - Tetis:
Budget J̃B(k) starting in 2600 and control variable v
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Figure 4.12: Simulation Result Predictive Control With Newton Method - Tetis:
Budget J̃B(k) starting in 3200 and control variable v
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Figure 4.13: Simulation Result Predictive Control With Newton Method - Tetis:
Positions q, Position Error q − qd and Torque τ for J̃B = 2600

4.3.3 Manipulator Tetis with Actuator Friction

On chapter 5 the method is verified experimentally using Tetis. Due to bandwidth

limitations, it is very difficult to control the manipulator with the method proposed

here so far by using computed torque and sending torque setpoints to each joint.

Besides the bandwidth limitations, in order to use a model based controller the joint

frictions would have to be mapped and added to the model. Moreover, Harmonic

drive gear boxes have high non-linear internal friction. If this friction is not mapped

on the model the path tracking performance is degraded.

A numerical example is done with Tetis considering friction in the actuators.

In each manipulator joint it is included a fixed friction loss equivalent to 30% of

the rated torque. Since this is not mapped in the model, position errors increase
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Figure 4.14: Simulation Result Predictive Control With Newton Method - Tetis:
Positions q, Position Error q − qd and Torque τ for J̃B = 3200

significantly. In figure 4.16 the position errors reach 3 degrees of amplitude. Also,

the torque levels on the joints increases significantly. Figure 4.17 shows the degraded

path on the X − Z plane.

The energy losses due to the friction on the joints are not accounted on the

predictions. But this is absorbed by the Newton steps and the predictive control. In

figure 4.18 the energy budget and the v is plotted. The optimization is not affected

by the joint frictions.

4.3.4 Tetis in Task Space with Kinematic Control

The reality of many industrial manipulators is that the individual joint control is

restricted to the internal controllers. And it is only possible to send position and
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Figure 4.15: Simulation Result Predictive Control With Newton Method - Tetis:
Position in the task space

velocity set points in the task space. The manipulator Tetis is an example where

direct access to the current loop control of the joints is limited by the bandwidth. So

this numerical example illustrates a kinematic control of Tetis with the optimization

defined in the task space.

A simulink model is used to represent the kinematic control of Tetis manipula-

tor and the task space formulation. It is worth mentioning that kinematic control

assumes perfect velocity tracking and neglect some of the dynamic effects. Also, the

dynamic effects are greatly minimized when the joints have high gear ratio, which

is the case in Tetis.

Kinematic control means the control input is u = q̇ in joint space and u = ṗ

in the task space. But here a position feedback term is included to guarantee path

tracking performance. The following control law then is used

u = ṗd +K (pd − p) (4.12)

where K is a positive gain.
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Figure 4.16: Simulation Result Predictive Control With Newton Method - Tetis
with unmodelled joint frictions: Positions q, Position Error q − qd and Torque τ

A Matlab Simulink model is used implementing the block diagram described in

figure 4.19

Description of the Path

The path is described by the function below:

fp(s) =


75 (sin(2π s) + sin(4π s)) + 500

57

75 (cos(2π s) + cos(4π s))− 67

0

 s ∈ [0, 1]

and in the workspace is represented in figure 4.20.
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Figure 4.17: Simulation Result Predictive Control With Newton Method - Tetis
with Unmodelled Joint Frictions: Task-Space X and Z position

Description of the simulation with Tetis Kinematic Control

The linear system used is

Az =

 0 1 0

0 0 1

−3 · 10−3 −1 −2

 ;Bz =

 0

0

3 · 10−3


The joints initial condition is

q(0) =


0.1073

−0.4427

1.806

−1.361


The predictive control loop runs at 5Hz and kinematic control loop at 50Hz.

The simulation is performed with the energy budget of J̃B = 2 × 108. And the

initial condition for v is v(0) = 10 and then the simulation is repeated for v(0) = 50.

And µ = 5× 10−8.
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Figure 4.19: Tetis kinematic Model Numerical Simulation

Tetis Kinematic Control Simulation Results

For both v(0) = 10 and v(0) = 50 the optimization method defined in the task space

corrected the control v for the energy level corresponding to the initial budget. In

both cases it takes around 150 iterations or 3s to converge. Figures 4.21 and 4.22

shows the control v and the budget level J̃B along the iterations. Note that J̃B is
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Figure 4.20: Simulation Results - Tetis in the Task Space: The Path

consumed at the kinematic control loop (at 50Hz) and v is corrected at the predictive

control loop (at 5Hz).

Figures 4.23 and 4.24 shows the joint positions and the position error in the task

space respectively. The error is small with around 0.5mm amplitude.

Figure 4.25 shows the velocity for each joint for the simulation with v(0) = 10.

The velocity for joints q3 and q4 have 1rad/s amplitude. Joint q2 have around

0.5rad/s amplitude and joint q1 around 0.05rad/s. Joint q1 has such a small velocity

because the path is limited to the plane X − Z.

In figure 4.26 the X − Z task space position is plotted. The reference path is

also plotted (in red).

4.4 Conclusions

This chapter shows a modification in the proposed method to render the optimization

in a closed loop manner. The technique of Receeding Horizon Predictive Control
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Figure 4.21: Simulation Results - Tetis in the Task Space: Budget J̃B(k) and control
variable v with v(0) = 10
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Figure 4.23: Simulation Results - Tetis in the Task Space: Joint Positions for v(0) =
10

is used to reach that objective. This results in robustness to disturbances in the

energy budget and losses not covered by the energy model.

The optimization method now is suitable to be used in real time application.

To illustrate the method, numerical examples are used. First, an example with RR

planar manipulator where a drop in the energy budget during the trajectory shows

the robustness of the method. Second, the manipulator Tetis is introduced and

used in two examples. In the second example with Tetis, the simulation considers

unmodelled friction in the joints, which results in large position error and shows

that the torque control would be a challenge experimentally. The last numerical

example considers the manipulator Tetis controlled with kinematic control in the

task space. It is also with kinematic control in the task space that in the next

chapter the method is verified experimentally in Tetis.
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Chapter 5

Experimental Results

So far the problem of energy budget optimization is illustrated with the use of

numerical simulations. In these simulations the use of Newton method associated

with predictive control in the optimization yield excellent results. This chapter

describes the use of the proposed method experimentally using the manipulator

Tetis. See section 4.3.2 for details about Tetis.

During the experiment, task space kinematic control is used. This strategy is

mainly justified because direct access to the drivers current control loop is imprac-

tical due to bandwidth limitation. Besides that, considering the high gear ratio of

Tetis actuators, neglecting the dynamics effects poses no compromise to the per-

formance. The numerical simulation described in 4.3.4 uses the same kinematic

controller used in the experiment.

In section 5.1 there are considerations about the energy budget estimation. In

short, the real energy consumption is estimated with the active current and velocities

of each actuator.

In subsection 5.1.1 there are details about the kinematic controller used.

5.1 System Description

In order to emulate the energy reservoir consumption, information from the actuators

are used to calculate the energy used in the trajectory. Considering that the motor

torque is proportional to the active current, the energy consumption is estimated

with the following relation

JEst =
K∑
k=1

|ik|T |q̇k| (5.1)

where ik ∈ R4 is the current vector at instant k. This energy estimation is then

compared with the energy calculated for the linearized system (4.7). A trajectories

of two turns around a circle as described in section 5.2 is used as a reference to
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measure the energy of the linearized system and the estimated energy (5.1). A

ratio of approximately 80 was found between estimated energy (in mA × mm/s)

and linearized system energy. Figure 5.1 shows the two energies along the reference

trajectory.

0 1 2 3 4 5 6 7 8 9 10

Time(s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
107 Energy

J
LinearSys

80 x J
Est

Figure 5.1: Estimated Energy Comparison With Linearized System Energy

For reference, figure 5.2 shows the currents when executing the experiment 5.3

case 1.

5.1.1 Description of the Controller

The Tetis manipulator software, as described in section 4.3.2, is based on ROS

Framework. And a dedicated ROS node allows the proposed control to be imple-

mented in a Laptop computer.

Here, as in many industrial manipulators, a kinematic control is implemented.

Hence, the control signal is (5.2), which is the same approach used in the numerical

simulation described in section 4.3.4

u = J (q)−1 (ṗd +Kp (pd − p)) (5.2)

where K is a positive constant gain, pd and ṗd are calculated according to equation
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Figure 5.2: Drive Currents Measured During Experiment 2

(2.22). Note that J (q)−1 is calculated on Tetis controller. Figure 5.3 summarizes

the control scheme.

K X Drives Motors

FKine

+-

Tetis Controller

Tetis

Figure 5.3: Kinematic Control Block Diagram

In the robot embedded system, the velocity commands are sent to the motor

driver as joint velocity setpoints.
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5.2 Experiment 1 - Circle Trajectory

The path is two turns on a 50 mm radius circle in X−Z plane. The path is described

by the function fp(s) below:

fp(s) =


50 sin(4π s) + 500

57

50 cos(4π s)− 67

0

 s ∈ [0, 1]

The predictive control loop runs at 5Hz and the kinematic control loop at 50Hz.

The dynamic system used to govern z is as stated below:

Az =

 0 1 0

0 0 1

−3 · 10−5 −1 −2

 ;Bz =

 0

0

3 · 10−5


This system has DC gain equal to 1 and is discretized with ZOH assumption

with ∆t = 0.02. The correction of v on the Newton method is done with µ = 10−4

and the initial value for v is v(0) = 2000. The control gain is Kp = 2.

The experiment is performed with two different energy budgets: J̃B = 2 × 107

and J̃B = 3× 107.

The position errors are plotted in figures 5.4 and 5.5. For J̃B = 2 × 107, the

error for x and for z have a peak of 5mm. For J̃B = 3 × 107, the error for x have

a peak of 13mm and for z a peak in 10mm. It is notable that the error increases

with the energy budget. That is expected because the control (and consequently

the velocities) have higher magnitudes with higher energy budget. Also, there is a

trade-off between the position error and the feedback gain K.

The control signals are plotted in figures 5.6 and 5.7. The control of x and z

are between ±100mm/s for J̃B = 2×107 and between ±150mm/s for J̃B = 3×107.

The X-Z plane trajectories are on figures 5.8 and 5.9. The manipulator starts

outside the path (starting point indicated by arrow). But the control law (5.2) steers

it back and keep it on the path. And the extra energy used to that end is handled

by the predictive control.

Figures 5.10 and 5.11 shows the evolution of v and J̃B for initial condition of

J̃B = 2× 107 and J̃B = 3× 107 respectively.

In both experiments the energy controller regulates v to use all the available

energy during the trajectory.
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Figure 5.4: Experimental Results - Traj. Circle: Position error xd−x for J̃B = 2×107
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Figure 5.5: Experimental Results - Traj. Circle: Position error xd−x for J̃B = 3×107

5.3 Experiment 2 - Star Trajectory

The path is a combination of sinusoidal functions on x and z plane forming a star.

The path is described by the function fp(s) below:
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Figure 5.6: Experimental Results - Traj. Circle: Control u for J̃B = 2× 107
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Figure 5.7: Experimental Results - Traj. Circle: Control u for J̃B = 3× 107

fp(s) =


7.2 · 1.5556 cos(18π s)− 7.2 cos(1.5556 · 18π s) + 500

57

7.2 · 1.5556 sin(18π s)− 7.2 sin(1.5556 · 18π s)− 67

0

 s ∈ [0, 1]
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Figure 5.9: Experimental Results - Traj. Circle: Trajectory in X-Z plane for J̃B =
3× 107

The predictive control loop runs at 5Hz and the kinematic control loop at 50Hz.

The dynamic system used to govern z is as stated below:
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Figure 5.11: Experimental Results - Traj. Circle: J̃B(k) and v for J̃B = 3× 107

Az =

 0 1 0

0 0 1

−3 · 10−3 −1 −2

 ;Bz =

 0

0

3 · 10−3


This system has DC gain equal to 1 and is discretized with ZOH assumption
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with ∆t = 0.02. The correction of v on the Newton method is done with µ = 10−7

and the initial value for JB is JB(0) = 2.6 · 107. The control gain is Kp = 4.

The experiment is performed with two different initial values for v: v(0) = 2 and

v(0) = 8.

5.3.1 Case 1: v(0) = 8

The position error is plotted in figure 5.12. For x the error is within ±1mm and for

z the error is within ±2mm. The control u, shown in figure 5.13, is for both x and

z within ±20 mm/s.

Figure 5.14 shows the JB being entirely consumed and the control variable v

corrections accordingly. The closed loop method using predictive control within the

Newton step presents satisfactory results.
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Figure 5.12: Experimental Results - Traj. Star: Position error xd − x for v(0) = 8

5.3.2 Case 2: v(0) = 2

The position error is plotted in figure 5.15. For x the error is within ±1mm and for

z the error is within ±2mm. The control u, shown in figure 5.16, is for both x and

z within ±20 mm/s.

Figure 5.17 shows the JB being entirely consumed and the control variable v

corrections accordingly. Again, the proposed methods presents satisfatory results.
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Figure 5.13: Experimental Results - Traj. Star: Input u for v(0) = 8
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Figure 5.14: Experimental Results - Traj. Star: J̃B(k) and v for v(0) = 8

5.4 Conclusions

This chapter presents the experimental results of the energy budget optimization

with Newton method and predictive control applied to a robot manipulator. Two

different trajectories are used to verify the method. For each trajectory, two different

initial conditions for v or for JB are considered. The consumption of the energy
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Figure 5.15: Experimental Results - Traj. Star: Position error xd − x for v(0) = 2
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Figure 5.16: Experimental Results - Traj. Star: Input u for v(0) = 2

budget is emulated with information from the drives. The active current and the

velocity are used to estimate the energy consumption and update the budget.

The positive results presented in this chapter confirms the numerical results

obtained in the previous chapters showing that the proposed solution is suitable for

online application on a real industrial system.
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Chapter 6

Conclusions

This work deals with the problem of optimization of robot manipulator trajectories.

Trajectory optimization has been widely studied over the years, but here a novel

optimization goal is addressed. The trajectories are optimized to consume a given

energy budget. This problem is present in many sectors of the industry where there

is energy restriction or a compromise between available energy and speed. The pro-

posed solution is based in a Newton iteration method where a cost function defined

as the difference between the available energy and the expected energy required for

the trajectory is minimized. The iteration variable is lifted and the iteration occurs

in the lifted space. This variable is corrected in a closed loop by merging the Newton

method in a predictive control scheme where the control is executed every iteration

step.

The main advantages of the proposed method is the fact that is robust to varia-

tions in the energy budget or unmodelled energy losses and the low computational

cost, which permits the method to be used online in a real time system.

The proposed method could be adapted to other systems such as electric vehi-

cles in applications where the path is known, such as autonomous vacuum cleaning

robots, drones with delivery tasks and Formula E race cars. Also, the method could

be adapted to be used in satellites.

Other optimization methods could be used with modifications to solve the pro-

posed optimization goal (Bobrow et al. [5], Verscheure et al. [47]), but the simplicity

and the possibility to be used online are notable advantages of the proposed method

in this dissertation.

The method is verified through numerical simulations of robotic manipulator

both in joint space and task space formulations. Furthermore, the proposed method

is verified experimentally using the 4 joint light manipulator Tetis. The energy con-

sumption is measured indirectly by using the actuator currents and actual velocities.

The success of the experiments and simulations shows that the method can be

used online in a robotic manipulator system.
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An additional contribution is the development of dynamic model for the Tetis

manipulator. As far as the author knows this is a novel contribution.

6.1 Future Work

Despite the good results obtained so far, there are points still open for further

development. Suggestions to continue the work started here are proposed:

• Include the use of restrictions in the formulation such as joint torque and

speed limits. This could be approached by adding a penalty factor in the cost

function. The control variable would have to be defined in a less restrictive

way then a constant, i.e., a power series.

• The linear system used to control the dynamics of the parameterized trajectory

could be changed into a different type of system. It is still not clear what could

be achieved by using different types of system but this is definitely an open

point for future discussions.

• The use of an energy function that takes into consideration the braking energy

generated by the motors.

• The extension of the method to be used in electric vehicles and mobile robots.

This is a natural step to be followed since energy budget optimization is

quite relevant in applications such as Formula E and the vacuum cleaning

autonomous robots.
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Appendix A

Energy of the Manipulator

The energy consumed by a manipulator can be calculated by the work performed

by its actuators. Work on a particle can be informally defined as the product of a

force with the displacement of the particle resulted by this force. Similarly, the work

performed by the motors is the product between torque and speed of its shaft. The

two basic conditions to have work is that the force needs at least a component parallel

to the displacement direction and that the displacement is not zero. If the work is

positive that means the force was in the same direction as the displacement and if

the work is negative then the force was in opposite direction as the displacement.

A.1 Mechanical Energy

The mechanical energy of a system is the sum of kinetic and potential energy of its

parts (Arnol’d [3],Kibble & Berkshire [20]).

The kinetic energy of a robotic manipulator is the net sum of the links and joints

kinetic energies (Siciliano et al. [39] section 7.1.1). Also, the potential energy of a

robotic manipulator is the net sum of the links and joints potential energy (Siciliano

et al. [39] section 7.1.2).

Furthermore, the change in the summed kinetic plus potential energy of a system

equals the rate of the work performed by external forces (Kibble & Berkshire [20]).

A.2 Work

The work of a force applied on a particle along a curve is the line integral of the prod-

uct between force and displacement along the curve (Goldstein et al. [16],Arnol’d

[3]).

Wp =

∫
C

F · dr (A.1)

where F is the force, r is the displacement and C is the curve.
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With a change of integration variable, equation A.1 is written in terms of power

Wp =

∫
C

F · dt
dt
dr

Wp =

∫ tf

t0

F · dr
dt
dt

Wp =

∫ tf

t0

F · v dt

(A.2)

where v is the velocity, t0 is the initial time and tf the final time.

Equivalently, work can be defined for angular velocity and torque:

Wp =

∫ tf

t0

τ · ω dt (A.3)

where τ is the torque and ω is the angular velocity.

A.3 The Energy Function

For a robotic manipulator, the energy used in a given task can be calculated by

the summed work done by each actuator. But, for simplicity, it is only considered

the case where the regenerated energy due to braking or external forces (this would

be negative work) is dissipated. Ergo, only the absolute values of torque and joint

speed are used. This simplification doesn’t restrict much the method presented here

because most industrial manipulators doesn’t store energy that comes back from the

electric motors. Typically, the regenerated energy is dissipated on a shunt resistor

by a chopper circuit.

It is worth mentioning that the work equals the variation of mechanical energy.

With all that said, we consider here that the energy used by the robot manipu-

lator is given by 1

JT =

∫ T

0

|q̇|T |τ |dt

|q̇| =


|q̇1|

...

|q̇N |

 |τ | =


|τ1|

...

|τN |

 (A.4)

1J will be used for the calculation of manipulator energy instead of W to avoid confusion with
the concept of work presented before.
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Appendix B

Dynamic Model of Tetis

Manipulator

Here the dynamic model (2.4) of Tetis is devised to be used in numerical simulations.

It is assumed that the links are rigid and the mass and inertia of the link (carbon

fiber tubes) and actuators are considered. The inertia and center of gravity of the

links are obtained from the 3D model using Solid Works (from Harmonic Drive Ag

website https://cad.harmonicdrive.de/).

The mass and inertia parameters are loaded in link objects in Robotics Toolbox

for Matlab (Corke [8]). The toolbox is used then to calculate the robot dynamic

equation based on this parameters.

The manipulator kinematic is defined in the robotics tool box using the De-

navit–Hartenberg parameters as described in (Siciliano et al. [39]). The parameters

for Tetis contained in Silva [40] are used here.

B.1 Kinematic Model: Denavit–Hartenberg Pa-

rameters

Reference frames O0 to O4 are positioned as shown in Figure B.1. The actuators 1

to 4 are located in the joints counting from the base to the end-effector.

The parameters devised in Silva [40] are presented in table B.1.

Table B.1: Tetis Denavit–Hartenberg Parameters

Link ai αi di θi
1 0.000 π/2 0 θ1
2 0.320 0 0 θ2
3 0.225 0 0 θ3
4 0.167 −π/2 −0.057 θ4
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Figure B.1: Tetis Coordinate Frames

B.2 Mass and Inertia Parameters

The inertia parameters are calculated using the SolidWorks model of each link. In

figure B.2 the lateral and top view of the manipulator is illustrated. The center of

mass of i-links is represented in Oi, and the inertia matrix Ici is calculated at center

the center of mass of the i-link aligned with frame Oi.

Figure B.2: Tetis SolidWorks Model: lateral view and top view, with coordinate
frame Oi and center of mass ri (red circle) of each link.

Link 1, which include motor 2, is presented in figure B.3 with center of mass, r1,

expressed in coordinate frame O1, the mass of link 1 m1 and the inertia matrix Ic1
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at the center of mass aligned with O1:

m1 =0.687 r1 =

 0

0

0.00534

 Ic1 = 10−9

444442.46 −493.15 38.88

−493.15 351453.26 16515.24

38.88 16515.24 480951.05


(B.1)

Figure B.3: Tetis Link 1 including actuator 2

Link 2, which include motor 3, has center of mass, r2, expressed in coordinate

frame O2, mass m2 and the inertia matrix Ic2 at the center of mass aligned with O2

given by:

m2 =0.5867 r2 =

−0.04776

0.0

−0.05023

 Ic2 = 10−9

193184.65 −201.05 −9038.46

−201.05 5776891.08 16.52

−9038.46 16.52 5779194.58


(B.2)

Link 3, which include motor 4, has center of mass, r3, expressed in coordinate

frame O3, mass m3 and the inertia matrix Ic3 at the center of mass aligned with O3

given by:

m3 =0.5565 r3 =

−0.02833

0.0

−0.005

 Ic3 = 10−9

 198271.88 −260.27 −187130.34

−260.27 2491276.83 10.21

−187130.34 10.21 2477820.78


(B.3)

Link 4, which include a webcam, has center of mass, r4, expressed in coordinate

frame O4, mass m4 and the inertia matrix Ic4 at the center of mass aligned with O4

given by:

m4 =0.257 r4 =

−0.06489

−0.002

0.03115

 Ic4 = 10−9

401293.05 51869.93 203652.40

51869.93 1010541.25 16459.43

203652.40 16459.43 745681.16


(B.4)
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B.3 Numerical Simulation using the Robotics

Toolbox

In this section the Matlab code used to instantiate the manipulator Tetis in the
Robotics Toolbox (Corke [8]) is presented. The manipulator model is presented in
the script mdl tetis.m:

% mdl_tetis Create model of Tetis planar manipulator

% Everything is in SI units (m, kg, m^3)

E3=0.320; E4=0.225; E5=0.16725; M5=0.057;

friction = 0;%0.0002;

clear L

% th d a alpha

L(1) = Link([ 0 0 0 pi/2 0], ’standard’);

L(2) = Link([ 0 0 E3 0 0], ’standard’);

L(3) = Link([ 0 0 E4 0 0], ’standard’);

L(4) = Link([ 0 -M5 E5 -pi/2 0], ’standard’);

% Originally in gr mm^2

L(1).I = [444442.46 -493.15 38.88; -493.15 351453.26 16515.24;

38.88 16515.24 480951.05]/1000/1000/1000;

L(1).r = [0; 0; 0.00534];

L(1).m = 0.687;

L(1).G = 100;

L(1).Jm = 0.067 * 0.0001;

L(1).B = friction;

L(2).I = [193184.65 -201.05 -9038.46; -201.05 5776891.08 16.52;

-9038.46 16.52 5779194.58]/1000/1000/1000;

L(2).r = [-0.04776; 0.0; -0.05023];

L(2).m = 0.58671;

L(2).G = 100;

L(2).Jm = 0.067 * 0.0001;

L(2).B = friction;

L(3).I = [198271.88 -260.27 -187130.34; -260.27 2491276.83 10.21;

-187130.34 10.21 2477820.78]/1000/1000/1000;

L(3).r = [-0.02833; 0.0; -0.005];

L(3).m = 0.55646;

L(3).G = 100;

L(3).Jm = 0.029 * 0.0001;

L(3).B = friction;
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L(4).I = [401293.05 51869.93 203652.40; 51869.93 1010541.25 16459.43;

203652.40 16459.43 745681.16]/1000/1000/1000;

L(4).r = [-0.06489; -0.002; 0.03115];

L(4).m = 0.25696;

L(4).G = 100;

L(4).Jm = 0.029 * 0.0001;

L(4).B = friction;

Tetis= SerialLink(L, ’name’, ’Tetis’, ’manufacturer’, ’GSCAR’, ’comment’, ’’);

To complete the example, the script to perform a numerical simulation is pre-

sented.

For example, a numerical simulation can be performed using ode45() matlab func-

tion, thus one can use [t, yT ] = ode45(@tetisdyn, [0 30], [0 −π/4 π/2 −π/4 0 0 0 0]);

and plot the response plot(t, yT (1 : 4)) using the following differential equation with

the robot dynamic model:

function [dx] = tetisdyn(t,x)

global Tetis;

a = 10*pi/180; w = pi/4;

kp= 2; kd= 1;

qd = a*sin(w*t)*ones(4,1) + [0; -pi/4; pi/2; -pi/3];

dqd = a*w*cos(w*t)*ones(4,1);

ddqd = -a*w*w*sin(w*t)*ones(4,1);

q = x(1:4);

dq = x(5:8);

% Euler-Lagrange Model

mHat = Tetis.inertia(q’);

cHat = Tetis.coriolis(q’, dq’);

gHat = Tetis.gravload(q’)’;

% Control law: Computed Torque + PD

uBar = ddqd + kp*( qd-q ) + kd*( dqd-dq );

tau = mHat*uBar + cHat*dq + gHat;

% For a more efficient computation use Recursive Newton-Euler method

% tau = Tetis.rne(q’, dq’, uBar’)’;

%ddq = -inv(mHat)*(cHat*dq + gHat - tau);

ddq = Tetis.accel(q’, dq’, tau’);

dx = [dq; ddq];
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Another option to perform a numerical simulation is to use SerialLink/fdyn to

Integrate forward dynamics. [T,Q,QD] = Tetis.fdyn(t, torqfun, q0, qd0) integrates

the dynamics of the robot over the time interval 0 to t and returns vectors of time

T , joint position Q and joint velocity QD. The initial joint position and velocity

are given by q0 and qd0.

The torque applied to the joints is computed by the user-supplied control func-

tion torqfun: tau = torqfun(t, q, qd), where q and qd are the manipulator joint

coordinate and velocity state respectively, and t is the current time.

For example, if the robot was controlled by a PD controller we can define a

function to compute the control

function tau = mytorqfun(t, q, qd, qstar, P, D)

tau = P*(qstar-q) + D*qd;
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