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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

A DECISION SUPPORT SYSTEM FOR LONG AND SHORT TERM

CONTRACTS FOR HYDROELECTRIC COMPANIES IN THE BRAZILIAN

ENERGY MARKET

Eduardo Silva Raguenet

Fevereiro/2020

Orientador: Oumar Diene

Programa: Engenharia Elétrica

Apresenta-se, nesta dissertação, um sistema de suporte a decisão destinado a

resolver o problema de otimização de carteira de uma companhia hidrelétrica, que

considera simultaneamente a alocação de energia no mercado spot, os contratos

bilaterais, e a sazonalização da garantia física. O objetivo é maximizar o valor

esperado sob restrições de risco, que é feito pelo Conditional Value at Risk (CVaR).

Finalmente, um estudo de sensibilidade do Generation Scaling Factor (GSF) é feito,

uma vez que, este ainda depende das decisões de sazonalização dos outros agentes.

O problema é formulado como um programa de otimização linear, e o algoritmo �nal

é implementado utilizando o software MatLab.
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Advisor: Oumar Diene

Department: Electrical Engineering

In this work, we propose a decision support system to solve the portfolio op-

timization problem of a hydroelectric company, considering simultaneously the en-

ergy allocation in the spot market, the bilateral contracts, and the seasonalization

of physical guarantee. The objective is to maximize the expected revenue under

a risk constraint, made by hedging the Condition Value at Risk (CVaR). Finally,

a sensibility study of the Generation Scaling Factor is made, since it also depends

on the decisions (seasonalization) of other agents. The problem is formulated as

a linear optimization program, and the �nal algorithm is implemented using the

software MatLab.

vii



Contents

List of Figures x

List of Tables xi

1 Introduction and Bibliographic Review 2

2 Brazilian Energy Market 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Main Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Liquidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Spot Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Physical Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Seasonalization . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Energy Reallocation Mechanism . . . . . . . . . . . . . . . . . . . . . 13

2.7 Penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Energy Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Linear Programming and Risk Measures 16

3.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Karush-Kuhn-Tucker conditions . . . . . . . . . . . . . . . . . 16

3.2 Risk Measures - Introduction . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Modern Portfolio Theory . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Informal De�nition . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Mathematical De�nition . . . . . . . . . . . . . . . . . . . . . 19

3.5 Conditional-Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.1 Informal de�nition . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Mathematical de�nition . . . . . . . . . . . . . . . . . . . . . 21

3.5.3 Independent CVaR Formulation . . . . . . . . . . . . . . . . . 22

3.6 CVaR as a constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6.1 Equivalent E�cient Frontiers . . . . . . . . . . . . . . . . . . 25

viii



3.6.2 Replacing the constraint φβ by Fβ . . . . . . . . . . . . . . . . 26

3.7 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Final Portfolio Problem Formulation . . . . . . . . . . . . . . . . . . 27

4 Problem Formulation 29

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Simple Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 General overview of the optimization tool . . . . . . . . . . . . . . . . 35

5 Case Study 37

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Case I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.2 Case II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.3 Case III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Scenarios Size Comparison . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusions, Contributions and Future Work 49

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 51

A ERM Details and Algorithm 55

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.4 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



List of Figures

1.1 Spot Prices history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 GSF history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 General Schema of the Brazilian energy market . . . . . . . . . . . . 10

2.2 Annual PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Example of Seasonalization . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 CDF of Revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Example - Three probability X Revenue �ctional points . . . . . . . . 22

4.1 Quantity of selling forwards varying with the risk aversion. . . . . . . 34

4.2 Expected Revenue varying with the risk aversion. . . . . . . . . . . . 34

4.3 Example of using the optimization tool during the year . . . . . . . . 35

4.4 Block diagram of optimization tool . . . . . . . . . . . . . . . . . . . 36

5.1 Case I - Seasonalized PG with GSF. . . . . . . . . . . . . . . . . . . . 39

5.2 Case I - Risk Neutral Portfolio. . . . . . . . . . . . . . . . . . . . . . 39

5.3 Case I - Risk Averse Portfolio. . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Case I - Pareto E�cient Frontier. . . . . . . . . . . . . . . . . . . . . 40

5.5 Case II - Risk Neutral Portfolio. . . . . . . . . . . . . . . . . . . . . . 41

5.6 Case II - Risk Averse Portfolio. . . . . . . . . . . . . . . . . . . . . . 41

5.7 Case II - Pareto E�cient Frontier. . . . . . . . . . . . . . . . . . . . . 42

5.8 GSF history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.9 Case III - Risk Neutral Portfolio. . . . . . . . . . . . . . . . . . . . . 43

5.10 Case III - Risk Averse Portfolio. . . . . . . . . . . . . . . . . . . . . . 44

5.11 Case III - Pareto E�cient Frontier. . . . . . . . . . . . . . . . . . . . 44

5.12 Scenarios Tree - Simpli�ed Scenarios Case . . . . . . . . . . . . . . . 45

5.13 Portfolio Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.14 Pareto Frontier Comparison . . . . . . . . . . . . . . . . . . . . . . . 48

x



List of Tables

3.1 Hydroelectric company spot price projection . . . . . . . . . . . . . . 18

4.1 Variables De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Forwards Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Spot Price Projection (e/MWh) . . . . . . . . . . . . . . . . . . . . . 38

5.3 Probability of Spot Price Projection . . . . . . . . . . . . . . . . . . . 38

5.4 Limits of forwards contracts (MWavg) . . . . . . . . . . . . . . . . . 38

xi



List of Abbreviations

• CVaR = Conditional Value at Risk;

• DSO = Distributing System Operator;

• ERM = Energy Reallocation Mechanism;

• FCA = Free Contractual Ambient;

• GSF = Generation Scaling Factor;

• PG = Physical Guarantee;

• RCA = Regulated Contractual Ambient;

• VaR = Value at Risk;

• SDDP = Stochastic Dual Dynamic Programming;

1



Chapter 1

Introduction and Bibliographic

Review

In the Brazilian electricity market, hydroelectric companies have generally two main

kinds of contracts for selling or buying with liquidity in the free market: bilateral

(also called forward contract) and short-term contracts (valued at the spot prices),

the balance between these contracts is an important decision for the agents, since it

has a direct impact on the company's revenue. Furthermore, the total energy from

the generation that can be sold is called physical guarantee (PG) [1]. The PG is

the amount of energy that can be produced by the company with some con�dence

level, this amount of energy is calculated by EPE (federal agency of research on

energy) and regulated by ANEEL (federal agency of electrical energy regulation).

This is an unique feature of the Brazilian electricity market, due to the nature of its

central operation dispatch, and dependence on cascade hydroelectric power plants.

Another unique feature of the Brazilian energy market, due to its characteristics, is

the existence of a mechanism to share the hydrological risk (in�ow risks) between

the hydroelectric companies, called the Energy Reallocation Mechanism (ERM) [2].

If a hydroelectric company is participating in this mechanism, at the end of each

year, it has the right, but not the obligation, to allocate its PG monthly (this process

is called seasonalization) during the next year [3]. The seasonalization decision is

made under great uncertainty due to price �uctuations and the decision of other

companies, that will change the generation scaling factor (GSF), that has a direct

in�uence on the hydroelectric generation companies revenue. The GSF is given by:

GSF =

∑
HG∑
PG

, (1.1)

where
∑
HG,

∑
PG are the total hydraulic generation, and seasonalized PG of

all companies participating in the ERM, respectively. As it can be noticed from

(1.1), the GSF will be a�ected by the total ERM generation, which is a decision of
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the national independent system operator (ONS), and the total physical guarantee

allocated each month by the other market players strategy.

The GSF is necessary to calculate the e�ective PG, de�ned as the actual energy

sold by companies participating in the ERM (in contrast to the PG, de�ned as the

energy planned to be sold by a company in a month) and is given by:

PGeff = PG×GSF. (1.2)

In practice, the seasonalization is made considering the experience and knowledge

of market agents. However, the spot prices and the GSF can be highly volatile, as

shown in Fig. 1.1 and Fig. 1.2. Using this methodology the decision is usually sub-

optimal, thus the revenue could still be improved. Furthermore, by not considering

extreme events, such as high spot prices relative to their expectation, the generation

company may be under risk of losing a very large amount of money, which eventually

could lead to bankruptcy. In order to avoid this sub-optimal revenue or huge losses,

it is possible to formulate this decision problem as an optimization problem with

risk constraints.
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In the matter of risk analysis, one of the �rst contributions is the Markowitz

mean-variance portfolio theory [4]. It is still used nowadays as a risk measure to the

energy market as in [5], where a risk management portfolio of a thermal power plant

company is presented. In [5], the risk is de�ned as the prices di�erences between

electrical nodes/regions, caused by congestion of electric transmission lines, additio-

nally to the spot prices volatility. Since the Markowitz theory, a signi�cant number

of risk measures and di�erent risk analysis have been developed. Among them, two

of great importance are the Value-at-Risk (VaR) [6], and the Conditional-Value-at-

Risk (CVaR) [7]. The risk measure utilized by Markowitz (minimal variance) is not

so adequate for the products in the Brazilian energy market. This is mainly due

to the fact that all �nancial contracts have a positive correlation, in�uenced by the

spot prices. Since the risk measures such as the VaR, and CVaR synthesize in one

number the e�ective capital in risk, they are more suitable to the problem. Studies

have been made to analyze VaR and CVaR measures, for instance, in [8], a bench-

mark in the state of art about the analysis methods for risk management in energy

markets is proposed. The risk is de�ned as the spot price volatility, and the risk

measures analyzed are the VaR and CVaR. In [9], the methodology proposed takes

place from the view point of an energy trading company. The authors compare th-

ree risk measures, VaR, CVaR, and medium variance. Finally, it suggests using the

three di�erent risk measures that can capture diverse views of the situation to aid

the decision maker. In [10], a methodology of multi objective optimization to �nd

the e�cient Pareto frontier is developed. The Pareto e�cient frontier is a graphical

display of the points, that maximize the expected revenue for a given value of risk,

the graph displays all the possible points from completely risk averse to risk neu-

tral. The Pareto frontier is utilized to visualize clearly the risk associated with each

4



expected revenue. The motivation of this frontier is to show the risk and return

trade-o� of every optimal portfolio solution.

There have been studies that try to incorporate the CVaR analysis in the sto-

chastic optimization problem, with the decomposition techniques, that can be for

example, the nested decomposition, or the Stochastic Dual Dynamic Programming

(SDDP). One of the �rst works in this area is [11], where the CVaR is presented along

with the SDDP method, and the SDDP method is extended to include a risk averse

formulation of multistage stochastic programs. In this work, the β CVaR constraint

is moved into the objective function, i.e., the authors consider the following equation

as the objective function:

fλ = (1− λ)E[x] + λCV aRβ[x], (1.3)

where λ is a tuning parameter based on the preferences of the agent, x are the

decision variables, e.g., the amount of buying or selling contracts, and E[x] is the

expected revenue based on that decision.

The objective function does not only consist of the expected return, but the risk

plays a direct role on the objective function. Additionally, the parameter λ ∈ [0, 1]

should be tuned for a compromise between the expected revenue and the risk. The

advantage of this formulation over the one considering the CVaR as constraint, is

that the latter can make the problem infeasible. However, on the other side, the

parameter λ is not very intuitive for the decision maker, since it would be much easier

for the agent, to quantify a monetary amount that could be lost, than to quantify

an abstract percentage value between expected return, and the CVaR. That is the

reason why, in this work, we choose to formulate the CVaR as a direct constraint

in the optimization problem. Finally, even if the CVaR constraints turns out the

problem infeasible, it is a useful piece of information for the decision agent.

Further development is made in [12] by modifying the use of CVaR in the pro-

blem, di�ering from the concept presented in [11], that made use of the so called

polyhedral formula. It replaces the risk measure computation at each stage, by an

expectation with an adjusted probability measure. The advantages of this construc-

tion (compared to the one presented in [11]), is to avoid the necessity to maintain

a VaR state variable at each stage, while the drawback is the expense of having to

compute the probability adjustment. However, this formulation is well suited for

the decomposition techniques. In [13] this approach is extended to any coherent

risk measure, speci�cally for an application in the Brazilian energy market. This

concept was explored in [14] to optimize the portfolio of a company, and to guide

the seasonalization process.

While the papers [11]-[14] explored the concepts of stochastic decomposition
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techniques, and di�erent other approaches to include the CVaR in the objective

function, in this work the problem is solved using a di�erent approach. We formulate

the problem as a linear optimization program, and solve it for all constraints and

scenarios. The reasons to justify this approach are that linear optimization solver

can be easily scalable to solve e�ciently even problems with millions of constraints

and variables, furthermore linear programming do not depends on the construction

of approximations, neither in the gap of convergence at each iteration or stage.

In the proposed formulation it is proven that even considering many uncertainty

scenarios, the algorithm is capable to �nd an optimal solution in a reasonable time.

Furthermore, as already stated, the CVaR is formulated as a direct constraint in

order to e�ectively control the risk, and not just to tune a parameter that is not

intuitive to the decision agent.

In many energy market studies the focus is to reduce the risk based on comple-

mentarity of hydroelectric with either thermal, wind, or solar power sources, instead

of analyzing the �nancial energy market. Generally the studies are rather interested

in the generation curves, from the view point of an investor. In this case, the Mar-

kowitz portfolio theory is suitable. In [15], in order to reduce the risks, an hedging

mechanism, that uses contracts with thermal power plants, is developed for a hydro

generation company. Although the paper analyzes the Brazilian energy market, its

reproducibility is not guaranteed since a proprietary model was used. Additionally,

the mathematical formulation is not presented. In [16] a portfolio, which takes ad-

vantage of the complementarity of a small hydro and biomass generation curves to

hedge against the exposition in the market is presented. In this case, the problem is

formulated as a linear optimization program, that aims at maximizing the expected

revenue of a small hydroelectric company, considering the CVaR as a constraint, but

it doesn't take into account the ERM. In [17] a portfolio composed by wind energy's

contracts, which is used to complement its hydroelectric generation is presented.

However, the formulation is rather incomplete in order to be easily reproducible. In

[18], it is shown that the source diversi�cation in [15], [16], and [17] might not always

be the best approach, instead, instruments of an energy �nancial markets may be

more e�cient to hedge risk than renewable investments. Therefore the instruments

to hedge risk considered in this thesis will only be �nancial instruments.

The portfolio optimization problem from the hydroelectric company's point of

view, in the Brazilian market is based on the assumptions that these companies are

allowed to buy/sell energy at pre�xed prices at the beginning of a period (one month

or more), or at the spot price at the end of each month. The total revenue of the

company is straightforwardly given by the di�erence between the total energy sold

at each price and the total energy bought at each price. The total energy available

to be sold by the company is given by its e�ective PG plus its total buying forwards

6



contracts. The available energy has to be sold in the market by establishing selling

forward contracts at a pre�xed price at the beginning of the period or at price at

the end of each month. This problem has been solved with respect to maximize

the revenue [19], [20], [21], and [22]. For instance, in [19], the author formulates

the portfolio problem, in order to optimize the decision between selling its PG in

forwards, or waiting to sell its PG at the spot price, and the risk is measured by

the CVaR. In another study [22], the authors maximize the revenue from di�erent

agents' points of view (generation, commercialization, and consumption), with risk

management instruments such as contractual clauses of �exibility, and swaps. On

the other hand, this problem has also been solved to allocate optimally the PG

[23]. Concerning the seasonalization, in [24], the author formulates the problem of

minimizing the risk of a hydroelectric company in the spot market, considering the

possibility of PG seasonalization, it de�nes the risk as the annual loss of the PG

distribution between the spot market and forwards contracts. In [25], the author

uses a stochastic decomposition method (SDDP), to solve the optimization problem

of seasonalization of a small hydroelectric plant, along with the decision of selling

long term forwards, in the latter there is no risk control, and the objective is only

to maximize the expected revenue of the company.

Numerical comparisons were not made with these other studies since the infor-

mation concerning spot prices, bilateral contracts, or other critical details were not

available in order to make a reliable comparison of them with our methodology.

The portfolio problem of a hydroelectric company however, has not yet been

solved with both criterion of optimizing the portfolio and seasonalization, while

taking into account the CVaR control. In this work, a decision support system is

proposed to solve the problem considering simultaneously the energy allocation in

the spot market, the bilateral contracts, and the seasonalization of PG. The risk

is de�ned as the spot prices volatility. The objective is to maximize the expected

revenue under a risk constraint, made by hedging the Condition Value at Risk

(CVaR), a coherent risk measure. Finally, a sensitivity study of the GSF is made,

since it also depends on the decisions (seasonalization) of other agents. The problem

is formulated as a linear optimization program, and all the mathematical proof,

including the formulation of equivalents optimization problems are made. The �nal

algorithm is implemented using the software MatLab.

This thesis is organized as follows: chapter 2 presents the general structure, and

all peculiarities of the Brazilian Energy Market that are relevant to a hydroelectric

company located there. Chapter 3 provides the necessary mathematical background

for understanding risk measures, and optimization tools used to solve the portfo-

lio problem, additionally a simple example is presented in order to illustrate the

concepts. Chapter 4 gives a detailed view of the portfolio problem's mathematical

7



formulation. Chapter 5 illustrates, and solves some study cases. Finally, chapter 6

discusses the �ndings from the previous chapter, and sums up the conclusions.
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Chapter 2

Brazilian Energy Market

2.1 Introduction

The aim of this chapter is to give a brief overview of the Brazilian energy market

structure and main agents, and to explain in details some key concepts of tools and

regulation that the hydroelectric company is subjected to.

2.2 General overview

The Brazilian energy market started its process of deregulation in the late nineties,

following three main objectives:

• Solve the �scal de�cit, by selling physical assets;

• Re-establish the investments �ow into a investment program;

• Increase the e�ciency of the energy companies.

The focus of the restructuring model is the de-verticalization of generation, trans-

mission and distribution companies, the introduction of competition in the genera-

tion and commercialization sectors, and the tari� regulation in the transmission and

distribution, which are considered natural monopolies [26].

The competition is introduced in this market by establishing the coexistence

of two separated markets structures, the Regulated Contractual Ambient (RCA),

and the Free Contractual Ambient (FCA). In the RCA, the Distribution System

Operators (DSOs) buy energy from auctions, which can be for long or short term,

depending on their growth demand projections (four to six years ahead for long

term, and one to two years ahead for short term). The DSOs assume the operati-

onal risk and are in charge of supplying energy to the �nal consumers (residential,

industrial and commercials consumers). On the other side, for energy consumers
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with a su�cient demand (over 500kW ), there is the possibility to migrate from the

RCA to the FCA, in this case, the energy provider will no longer be the DSOs,

but rather the electric generation companies. The consumers can establish bilateral

energy contracts, directly with the generators, or with the aid of a commercializa-

tion company. The consumers and generators in the free market are exposed to the

risks, and speci�cities of the FCA. A hydroelectric generation company in the FCA

will be studied in this work.

2.2.1 Main Agents

Fig. 2.1 describes a general overview of the main energy agents in the Brazilian

market.

MME (Ministry of Mines 
and Energy)

ANEEL (National Agency 
of Energy Regulation)

CCEE (Chamber of 
Commercialization of 

Electrical Energy)

EPE (Entreprise of 
Energy Research)

ONS (National operator of 
the system)

Figure 2.1: General Schema of the Brazilian energy market

The Ministry of Mines and energy (MME) is a government organ responsible for

energy policies implementation. Among its assignments, there are directives esta-

blishment for energy auctions, de�nition of concession contracts, acknowledgment

of authorization acts, and the PG de�nition.

The Enterprise of Energy Research (EPE) subordinated to the MME, has the

objective to provide studies, research and establish technical support to the energy

planning. Among its assignments, the EPE develops energy matrix evolution stu-

dies, plans the transmission and generation expansion. Moreover, the EPE plays

an important role, by following the MME directives, in order to provide technical

studies to establish the PG.

The National Agency of Electrical Energy (ANEEL) is the federal energy regu-

lator, subordinated to the MME. Among its assignments, the organ must regulate

and supervise the production, transmission, distribution, and commercialization of

electrical energy, following the MME policies and directives.
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The National System Operator (ONS, that is also the transmission system ope-

rator - TSO) is responsible for the optimal system operation, taking into account

the system as a whole, the dispatch decision of each power plant is de�ned by this

central operator.

The Chamber of Commercialization of Electrical Energy (CCEE) has the objec-

tive to enable the energy commercialization in the RCA and FCA. Furthermore, it

is responsible for accounting all energy contracts, and to monthly audit the quan-

tities of contracted energy versus the e�ective generation, or consumption by the

market agents, and to de�ne the weekly spot price. The CCEE also de�nes debits

and credits of these agents based upon the di�erences stated above, by the �nancial

liquidation of the operations. In order to valuate the di�erences it is used the spot

price, called Di�erence Liquidation Price (DLP, or PLD in Portuguese).

2.3 Liquidation

The CCEE has the important assignment, in a weekly basis, of measuring the energy

balance of each market agent. All the data from the Energy Reallocation Mechanism

(ERM), contracts and measurements are needed to establish the energy balance.

The di�erence between the veri�ed energy (generation and consumption) versus

the contracted energy (selling and buying contracts) results in a de�cit or surplus

for each agent, that is called the Balance. This balance is multiplied by the PLD,

and could either be a debit or a credit to the energy agent, in order to the �nal

net energy balance be zero. In this scenario, the CCEE will be the ultimate seller

(or ultimate buyer) of energy, which consists in the process called Liquidation. The

mathematical equation of the balance is given by:

Balance =
∑

Generation−
∑

Consumption+
∑

Csell−
∑

Cbuy+ERM (2.1)

while the liquidation is given:

Liquidation = PLD ×Balance (2.2)

This is the main step of determining the short term market liquidation. The

detailed commercialization rules may be found in [27].

2.4 Spot Price

The Di�erences Liquidation Price (DLP) is the spot price equivalent in this market.

The de�nition is rather di�erent from other markets, �rst of all, the spot prices
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in the Brazilian market are a result (dual variable) of an optimization problem of

the whole integrated electric system optimal operation. The prices are not de�-

ned from a competitive bid-based dispatch market, but rather from optimizing the

whole integrated system. This optimization is made by the CCEE (Commercializa-

tion Chamber of Electrical Energy), which receives the input (demand and in�ows

projections, transmission conditions, and other agents data) from the ONS. The

prices are weekly published, divided in three di�erent hourly bases, and separated

for each one of the four sub-markets.

Hence the projection of spot, or forward prices are made by using the same

optimization programs utilized by the ONS and CCEE in the system operation,

and spot price de�nition. Although the price projection won't be addressed in this

paper, it has been studied in the literature [28, 29].

2.5 Physical Guarantee

The concept of Physical Guarantee (PG) is important to the operation and planning

of the energetic system, as well as for the energy commercialization. For the opera-

tion and planning, the PG is de�ned as the energetic bene�t that the power plant

aggregates to the system. For the commercialization, it is de�ned as the energy

quantity that can be compromised in contracts. This value is de�ned by the MME,

is calculated by the EPE, and can be revised after a �ve years period. The metho-

dology to calculate the PG is de�ned in [30]. An example of PG of a hydroelectric

plant is depicted in Fig. 2.2.
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Figure 2.2: Annual PG
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2.5.1 Seasonalization

The Seasonalization process is the distribution of the annual PG along the months

of the year. If the hydroelectric power-plant is participating in ERM (Energy Re-

location Mechanism), it has the right to allocate its annual value of PG among the

months. It is an additional measure to aid the agent's strategy along the next year,

an example of this process is illustrated in Fig. 2.3. However, this process must

respect some regulatory limits [1], [3]:

• The annual average sum of the monthly PG seasonalized (PGm) cannot be

higher than the regulated PG (PGr).

• The monthly PG seasonalized cannot be higher than the hydroelectric power

(PHE).

• The hydroelectric company must have 100% contracted energy each month

(λm ≥ 0).
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Figure 2.3: Example of Seasonalization

2.6 Energy Reallocation Mechanism

The Energy Reallocation Mechanism (ERM) was conceived to share among the

participants, the �nancial risk associated to the energy commercialization of the

centralized dispatched hydroelectric plants. The motivation to create to ERM comes

from two main reasons, those are:

• The di�erence between e�ective energy generation, and the contractual obli-

gations;
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• The existence of hydro electrics plants in the same rivers cascade.

The �rst reason comes from the generation dispatch scheme adopted in the Bra-

zilian energy market, that is made by the tight pool scheme, i.e., the Brazilian ISO

(ONS) is responsible for each hydroelectric dispatch, aiming towards minimizing

the whole system operational cost, that means, ultimately it is the ONS and not

the companies, who decides the generation amount of the power plants. This ONS

policy towards optimizing the system as a whole, and disregarding the local optimal

decisions, may lead to some plants mismatching their contracts agreements, due

to the lack of control of their energy generation. The second reason, is that there

exists many hydroelectric plants along the same rivers cascade, hence the in�ows

are utilized by all the agents located in that area, and the owner of the plant the

most uphill would have a control of all generation from under it.

The ERM guarantees that all the plants receives their levels of PG, as long as, the

total ERM Generation is not under the total ERM PG, The ERM acts reducing this

exposition risk, sharing it among all the plants in the mechanism. If the generation

in the ERM is higher than the total PG, the participants have the right to receive an

energy surplus, called Secondary Energy, allocated among all the ERM participants,

proportionally to their PGs. On the other hand, if the total ERM generation is

lower than the total ERM PG, each powerplant PG will be readjusted to match the

total generation.

This mechanism is optional to the small hydroelectric plants, and compulsory to

the big hydroelectric plants. More details about this mechanism, and how all the

calculations behind it can be found in the Appendix.

2.7 Penalties

There are some penalties for the agents that sells more energy than its capability

of providing, which is called an under-contracted situation. The penalty applied to

the agent is valuated at the highest one among spot prices, and the annual reference

value (ARV)1, times the energy de�cit of the month lacking energy. The CCEE is

responsible for monitoring this energy gap.

2.8 Energy Contracts

In the Brazilian energy market, there are some di�erent types of contracts, and the

most common are the following:

• Quantity contracts;
1The ARV is calculated by ANEEL annually.
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• Availability contracts;

• Swap contracts.

The Quantity contracts, as the name states, are the agreement of selling (or

buying) a �xed amount (quantity) of energy between two parts, at a prede�ned

period in time. They are the most common kind of contract established in the

Brazilian energy market. The risk is assumed by the seller in this kind of contract.

The Availability contracts are based on the idea of renting the generation curve of

the power plant. They are usually established between energy agents with thermal

power plants. The risk is assumed to the buyer in this type of contract.

Finally, Swaps contracts, are not contracts in the strict sense of the word, but

rather an instrument to hedge risk. It is an exchange of contracts, that may be,

a temporal swap (exchange between energy maturity dates contracts), submarkets

swaps (exchange between di�erent Brazilian energy sub-regions), or sources swaps

(exchange between di�erent source generation power plants).
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Chapter 3

Linear Programming and Risk

Measures

3.1 Linear Programming

One of the goals of this work, is to translate the contracts and PG optimal allocation

into a linear optimization problem. So the �rst step of this task is to de�ne what

is this kind of problems. Essentially, it is a subset of optimization problems, that

can be fully described by linear relationships of the utility (or cost) function, and

constraints.

A linear optimization problem can be written in the following canonical form:

max
x∈<n

cTx

s.t Ax ≤ b

x ≥ 0

c ∈ <n, A ∈ <m×n, b ∈ <m

In order to solve such a class of optimization problems, there exist two main

algorithms capable of �nding the optimal solutions: the Simplex Method, and the

Interior Point Algorithm [31]. Both of these algorithms are capable of �nding solu-

tions that satis�es the Karush-Kuhn-Tucker conditions.

3.1.1 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions (KKT) are necessary and su�cient conditions

(for linear problems) to �nd an optimal point. Consider a general optimization
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problem as follows:
max
x∈<n

f(x)

s.t gi(x) ≤ 0, ∀ 1 ≤ i ≤ m

x ≥ 0

Theorem 1

The KKT conditions state that if f(x) is convex, and gi is an a�ne function (which

holds for linear optimization problems), then no other condition is needed to gua-

rantee the global optimality of x∗.

The KKT conditions of this problem are described as the following equations:

∇f(x∗) =
m∑
i=1

µi∇gi(x∗)

gi(x
∗) ≤ 0,∀i 1 ≤ i ≤ m

µigi(x
∗) = 0,∀i 1 ≤ i ≤ m

µi ≥ 0,∀i 1 ≤ i ≤ m,

where x∗ are the optimal values.

3.2 Risk Measures - Introduction

The portfolio problem takes into account many scenarios realization, in order to

make the best allocation decision, for this reason it is important to study and incor-

porate models that measures the associated risk, but before beginning to de�ne risk

measures, with the associated mathematical formulation, it is considered a simple

example of a contract allocation in the energy market:

A hydroelectric company has an amount of 10 MWh to sell in energy contracts.

It can be sold as a forward contract at price Ps = 240e/MWh today, or at the spot

price at the end of the month. However, the spot price is still unknown. In order to

quantify this price, the company's analysts have made the projection listed in table

3.1. They have also plotted the Cumulative Distribution Function of the revenue

in Fig.3.1, as if this energy would be entirely sold at the spot market, hence the

revenue of the company would be straightforwardly given by the amount of energy

sold times the spot price at the end of the month.
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Table 3.1: Hydroelectric company spot price projection

Spot Price (e/MWh) Probability Revenue (e)
40 5% 400
100 5% 1.000
150 16% 1.500
200 16% 2.000
250 16% 2.500
300 16% 3.000
350 16% 3.500
450 5% 4.500
500 5% 5.000

It can be seen from Fig. 3.1 that on one hand the revenue has a 5% probability

of being 5.000e, but on the other hand, it has 5% probability of being 400 e. In this

case, it is said that there is a 5% risk of gaining only 400 e. If the company chooses

to sell it entirely in a forward contract, the revenue of 2.400e is guaranteed. The

question that arises is how to maximize the revenue taking in account the risk, and

how to translate the concept of risk in a mathematical form.

3.3 Modern Portfolio Theory

In the matter of risk analysis, one of the �rst contributions is the markowitz mean-

variance portfolio theory [4]. In his analysis, the risk is perceived as the correlation

among di�erent assets, as a result, in order to reduce the risk one should create a

portfolio composed of negative correlated assets. Since the markowitz theory, an

expressive number of risk measures and di�erent risk analysis have been developed

[32]. Among them, two of great importance are the Value-at-Risk (VaR) [6], and

the Conditional-Value-at-Risk (CVaR) [7]. The risk measure utilized by markowitz

(minimal variance) is not so adequate for the �nancial products in the Brazilian
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energy market, this is mainly due to the fact that all �nancial contracts have a

positive correlation, in�uenced by the spot prices. Since the risk measures such as

the VaR, and CVaR synthesize in one number the e�ective capital in risk, they are

more suitable to the problem.

3.4 Value-at-Risk

The Value-at-Risk (VaR) summarizes the worst scenario over a target horizon that

will not be exceeded with a given level of con�dence [6]. It is a risk measure created

by �nancial agents, and became a benchmark of risk in the nineties, but that remains

highly used nowadays.

3.4.1 Informal De�nition

The VaR at a con�dence level (1-β)% is de�ned as the maximum revenue that

will not exceed that threshold of the worst (β%) scenarios. In order to illustrate

this concept, it is considered the same example from section 3.2. Analyzing the

graph of the revenue's Cumulative Distribution Function in Fig. 3.1, at for instance,

β = 10%, it is possible to conclude that, the VaR at con�dence level of 90% is 1.000

e, because at a 90% con�dence level, in other words, in 90% of the cases, the worst

possible revenue is 1.000e.

On the other way around, the VaR could be de�ned, by a similar (symmetrical)

approach, as the maximum gain possible amongst all the worst scenarios. In the

example, it is noted that for the 10% worst cases revenues, the best among them,

as seen on Fig. 3.1, is the VaR, i.e., 1000e.

3.4.2 Mathematical De�nition

In order to de�ne the VaR mathematically, �rst consider the de�nition of the cumu-

lative distribution function (Ψ), that is plotted in Fig. 3.1. The ordered ascending

revenue is plotted in the x axis, while in the y axis is depicted the cumulative

distribution function, which range goes from 0 to 100%, in mathematical terms:

Ψ(x, α) =

∫
f(x,y)≤α

p(y)dy, (3.1)

where x are the decision variables, p(y) is the probability associated with the event

y.

In order to clarify this function, some numerical evaluations of it, at the initial

point x0, that represents all the energy sold at the spot price are calculated as

follows:

19



• Ψ(x0, 400) = 5%.

• Ψ(x0, 1000) = 10%.

• Ψ(x0, 1500) = 26%.

After de�ning the cumulative distribution function, it is possible to de�ne the β

VaR:

V aRβ = αβ = max {α ∈ < : Ψ(x, α) ≤ β} (3.2)

In order to illustrate this concept, lets consider the example of section 3.2, where

the scenarios are illustrated in Fig.3.1 and Table.3.1, in this situation, considering

β equals 10%, the maximum revenue α that still satis�es Ψ(x, α) ≤ 10% is 1.000e ,

which implies in α10% = 1000e, on other words, the 10% VaR is 1000 e.

Even though the VaR has become a benchmark as a risk measure, it lacks the

capacity of considering extreme events, taking for instance our example, the VaR

would not take into account the possibility of a 400e revenue. Furthermore, it is

not a coherent risk measure [33], and it is not linear, and as we are building a linear

optimization problem, consequently it is still necessary to develop a more suitable

risk measure.

3.5 Conditional-Value-at-Risk

The Conditional-Value-At-Risk (CVaR) also known as Mean Excess Loss, Mean

Shortfall, or Tail Value-at-Risk, is de�ned as the weighted average of all values that

lies between the VaR, and the worst possible scenario. It is a more conservative risk

measure than the VaR [34].

In this work, the risk measure CVaR is chosen based on the following reasons:

1. It is linear [35].

2. It is a coherent risk measure. (ful�ll all 4 axioms of coherence) [33].

3. It takes in account the skew and kurtosis of the revenue's distribution [7].

3.5.1 Informal de�nition

In order to illustrate the CVaR de�nition, the introductory example illustrated in

Fig. 3.1 is considered, and the objective is to calculate the CVaR for a 90% con�-

dence level. The CVaR is the weighted average of all the possible revenues that lies

in between the 10% worst cases, which are directly read from table 3.1. In these
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10% worst cases there are two scenarios: a 5% probability revenue of 400e , and a

5% probability revenue of 1000e, thus the average revenue between these scenarios

is 700e:

CV aR10% =
400× 5% + 1000× 5%

5% + 5%
= 700 (3.3)

3.5.2 Mathematical de�nition

The above de�nition of the β CVaR for continuous time case is written mathemati-

cally as the following equation:

CV aR = φβ =
1

β

∫
f(x,y)≤αβ(x)

f(x, y)p(y)dy, (3.4)

where αβ is the β VaR, f(x, y) is the revenue function, depending on x as the decision

variable, and y is the unknown, de�ned in our case as the spot price(Sπ).

In the discrete case the β CVaR is de�ned as:

φβ =
1

β

∑
f(x,y)≤αβ

f [x, y] ∗ p[y] (3.5)

However, it is useful to rewrite (3.5) as the following equation:

φβ = αβ +
1

β

∑
(f [x, y]− αβ)− ∗ p[y], (3.6)

where (λ)− is the negative truncation operator, that is de�ned as:

λ− =

{
λ, if λ ≤ 0

0, if λ ≥ 0
(3.7)

In order to show that 3.6 is equivalent to 3.5, �rst three probability vs. revenue

points' are plotted in Fig. 3.2.
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Then lets de�ne:

V aRβ = αβ = xj (3.8)

From the �rst de�nition of the discrete CVaR 3.5], it is possible to write the

CVaR as:

φβ =
pixi + pjxj
pi + pj

(3.9)

For these two points, it is easy to show that:

φβ = xj +
(xi − xj)−pj + (xk − xj)−pk

pi + pj
=
pixi + pjxj
pi + pj

(3.10)

For n points, the formula is generalized:

φβ = αβ +
1

β

J∑
j=1

pj(xj − αβ)−, (3.11)

Therefore the two forms of writing the β CVaR are equivalent.

One key aspect of (3.4) (or 3.5) is that in order to compute the CVaR, a pre-

vious knowledge of the VaR is necessary to know the feasible region of the integral

(f(x, y) ≤ αβ(x)). However, it is possible to decouple the VaR from the CVaR,

in such a way that the computation of the CVaR is done independently from the

former. It will be shown how this can be done in the next section.

3.5.3 Independent CVaR Formulation

The aim of this section is to provide a way to compute the CVaR without the

necessity of pre-calculating the VaR.

First it is de�ned the function that is called the Fβ, which has an important role

in demonstrating how to compute the CVaR independently from the VaR:
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Fβ(x, α) = α +
1

β

∑
∀y

p[y] ∗ (f [x, y]− α)− (3.12)

The �rst statement to this proof, is that maximizing Fβ with respect to α, the

value obtained for α∗ = αβ, is the VaR, mathematically:

maxα{Fβ(x, α)}

α∗ = αβ
(3.13)

Then a second statement that will also be proved is that, if the objective function

is evaluated with this value of α∗, it would have the value of the CVaR, mathema-

tically:

φβ(x) = Fβ(x, αβ) (3.14)

The proof of these statements will be provided in two parts, one part for each

one of the statements.

First part

First lets take the derivative of Fβ with respect to α:

∂Fβ
∂α

= 1− 1

β

∑
α≤f(x,y)

py (3.15)

The KKT conditions for an optimal point of a maximization problem, without cons-

traints is simply given by:

∇f = 0 (3.16)

Writing the derivative of Fβ with respect to α and equaling to zero :

∂Fβ
∂α

= 1− 1

β

∑
α≤f(x,y)

py = 0 ⇐⇒
∑

α≤f(x,y)

py = β ⇐⇒ α∗ = αβ (3.17)

It has been proven that to satisfy the KKT conditions (and thus �nd an optimal

point), the sum of probabilities in the de�ned regions must be β (
∑
py = β), recalling

the de�nition of the VaR in 3.2, it is noticed that maximizing α turns the inequality

into a equality precisely where, α = αβ, otherwise speaking, the α that maximizes

the problem is the β VaR (αβ).
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Second part

Recall the de�nition of the function Fβ:

Fβ(x, α) = α +
1

β

Y∑
y=1

(f(x, y)− α)−py (3.18)

Plugging α = αβ into 3.18:

Fβ(x, αβ) = αβ(x) +
1

β

Y∑
y=1

(f(x, y)− αβ(x))−py (3.19)

The sum in 3.19 can be rearranged, eliminating the necessity of the negative

truncate operator, by changing the sum region:

Fβ(x, αβ) = αβ +
1

β

Y∑
y=1

(f(x, y)− αβ(x))−py = αβ +
1

β

∑
f(x,y)≤αβ(x)

(f(x, y)− αβ(x))py

(3.20)

Separating the two elements (f(x, y) and αβ(x))in the sum, αβ can be taken

outside the sum as it does not depend on y:

Fβ(x, αβ) = αβ +
1

β

∑
f(x,y)≤αβ(x)

(f(x, y)− αβ(x))py

Fβ(x, αβ) = αβ +
1

β

∑
f(x,y)≤αβ(x)

(f(x, y))py − αβ(x)×
∑

f(x,y)≤αβ(x)

(py)

(3.21)

Recall that αβ may be de�ned as the (maximum) ordered revenue from worst to

the best scenarios, in which the cumulative probability function will not exceed β,

that means, the sum of all the probabilities in the region f(x, y) ≤ αβ must be β by

de�nition, i.e.:

∑
f(x,y)≤αβ(x)

py = β (3.22)

Then, plugging 3.22 into equation 3.21:

Fβ(x, αβ) = αβ +
1

β

∑
f(x,y)≤αβ(x)

(f(x, y))py − αβ(x)× β (3.23)

Recalling the CVaR de�nition:

φβ =
1

β

∑
f(x,y)≤αβ(x)

(f(x, y))py (3.24)
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The CVaR de�nition can replace some of the terms in the equation:

Fβ(x, αβ) = αβ(x) +
1

β
(βφβ − αβ(x)β) = φβ(x) (3.25)

The proof of the formulation is concluded, and from now on it is possible to

compute the CVaR as the maximization of the Fβ(x, α).

3.6 CVaR as a constraint

3.6.1 Equivalent E�cient Frontiers

In the previous sections it has been demonstrated how to compute the CVaR as

an optimization problem, however, in this work we are interested in maximizing

the expected revenue of the company, while considering the risk as a constraint.

In this section it is demonstrated how to include the CVaR as a constraint to our

optimization problem.

Consider three di�erent optimization problems, i.e., P1, P2 and P3, de�ned as

the following:

P1: max {φβ(x) + λR(x), x ∈ X}

P2: max {φβ(x), R(x) ≥ ρ, x ∈ X}

P3: max {R(x), φβ(x) ≥ ω, x ∈ X},

(3.26)

where R(x) is the expected revenue function, φβ is the β CVaR, ρ is the minimum

revenue allowed, and ω is the minimum risk (CVaR) allowed.

It will be demonstrated that the maximization of these problems, generate the

same e�cient frontier. In order to show this statement, initially the KKT conditions

of the three problems above are written, i.e, KKT1, KKT2, and KKT3:

KKT1:

∇φβ(x∗) + λ∇R(x∗) = 0

KKT2:
∇φβ(x∗) + µ2∇R(x∗) = 0

ρ−R(x∗) ≤ 0

µ2(ρ−R(x∗)) = 0

KKT3:
∇R(x∗) + µ3∇φβ(x∗) = 0

ω − φβ(x∗) ≤ 0

µ3(ω − φβ(x∗)) = 0

Consider x∗ to be the solution of P1, then by de�nition it has to satisfy the
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KKT1. It should be noted that this solution (x∗) also satis�es the KKT2 with

ρ = R(x∗) and µ2 = λ. This is easily veri�ed by plugging these values in the KKT2,

then comparing KKT1 with KKT2, the conditions will be exactly the same, since

the last two expressions of KKT2 will be zero, and as µ2 = λ, the �rst expression

of the KKT2 will be equal to the KKT1.

Notice that x∗ satis�es the KKT3 by de�nition. Besides that, considering ω =

φβ(x∗), and µ3 = λ, these conditions will turn the last two expressions of KKT3 to

zero, and consequently KKT3 will be equivalent to KKT1.

Since all the solutions are satis�ed with x∗, moreover when ω = φβ and ρ =

R(x∗), the e�cient frontier of P1, P2 and P3 coincides. For that reason we conclude

that all the problems have the same e�cient frontier, when the optimal points are

exactly at the constraint equality point (ω = φβ, and ρ = R(x∗)), and there is only

one optimal solution to them.

3.6.2 Replacing the constraint φβ by Fβ

It was proved that the problems P1, P2, and P3 converge to the same optimal

outcome. However, the �nal formulation of the risk constraints will be written in

terms of Fβ and not φβ. Hence it must be shown that φβ can be replaced by Fβ
without loss of generality. That is done by recalling the results of the independent

CVaR formulation in 3.13:

φβ(x) = maxα{Fβ(x, α)}

α∗ = αβ,
(3.27)

which states that, as Fβ(x, α) is optimized, the optimal point results in with α∗ =

αβ and Fβ(x, αβ) = φβ. Since in this scenario, we are optimizing the (equivalent)

problem, consequently at the optimal points:

Fβ(x∗, α∗) = φβ(x∗)

α∗ = αβ
(3.28)

3.7 Linearization

The negative truncation operator, λ− (which is part of the Fβ function), yields the

maximum value between zero, and the value of the inputs. It is mathematically

de�ned by:

λ− =

{
λ, if λ ≤ 0

0, if λ ≥ 0
(3.29)
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The important thing to note is that is piecewise linear, and it would not be

possible to include this de�nition directly into a linear optimization problem form.

Nevertheless, it is possible to make use of a mathematical manipulation to re-write

it as a set of linear constraints.

The proof is made by �rst recalling the de�nition of Fβ:

Fβ = α +
1

β

∑
(f [x, y]− α)−p(y) (3.30)

Then the negative truncate operator may be replaced, by including a new vari-

able, and two new constraints, as the following:

Fβ = α +
1

β

∑
z(y)p(y)

z(y) ≤ 0

z(y) ≤ f [x, y]− α

(3.31)

In order to prove that these two alternative ways, 3.30 and 3.31, of writing Fβ
states the same outcome, it must be analyzed the two cases that may occur:

1. f [x, y]− α ≤ 0 =⇒ z ≤ f [x, y]− α

2. f [x, y]− α ≥ 0 =⇒ z ≤ 0

The z values are being maximized in the objective function, consequently, the search

for the maximum z turns the inequalities into equalities:

1. f [x, y]− α ≤ 0 =⇒ z = f [x, y]− α

2. f [x, y]− α ≥ 0 =⇒ z = 0

The outcomes of both equations are equivalent when maximizing Fβ, and e�ec-

tively it is possible to write the problem as linear optimization problem.

3.8 Final Portfolio Problem Formulation

Finally, all the formulations described previously in this section are grouped into

one single optimization problem:
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max R(x)

s.t

Fβ(x, α) = α +
1

β

NS∑
j=1

pj × zj ≥ ω0

zj + α ≤ f(x, yj), ∀j

zj ≤ 0,∀j

(3.32)
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Chapter 4

Problem Formulation

4.1 Introduction

In this chapter, all the decision options and constraints of the hydroelectric ge-

neration company are brought together in mathematical terms, in the form of an

optimization problem. All the concepts discussed, such as the revenue, risk, and

contracts are now variables of this problem.

4.2 Mathematical Formulation

All the variables of the problem are de�ned in Table 4.1. More details about these

variables will be presented in the following sections.

Table 4.1: Variables De�nition

Variable Description Units

Psm Selling price of forward at month m e/MWh

P bm Buying price of forward e/MWh

xsm Forward Selling Quantity MWh

xbm Forward Buying Quantity MWh

E[Sπ ]m Expected spot price e/MWh

GSFm Generation scaling factor �

α Value at Risk e

β Conditional Value at Risk tail e

NS Number of scenarios �

pj Probability of scenario j �

zj Auxiliary variable to compute the CVaR

associate with scenario j e

ω0 Minimum revenue at β% e

f(x, yj) Revenue as a function of

forward and spot prices e

hm Hours of month m h

PGr Regulated Physical Guarantee MWh

PGm Physical Guarantee at month m MWh

PHE Hydroelectric power MW

λm Monthly energy balance MWh

Xsm Maximum amount of selling forwards MWh

Xbm Maximum amount of buying forwards MWh

γm Penalty price at month m e/MWh

Hydroelectric generation companies are allowed to buy and sell energy at pre�-
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xed prices (buying price Pb and selling price Ps) at the beginning of a period (one

month or more), by making forward contracts, or at the spot price Sπ at the end of

each month (at the market clearing). The total revenue of the company is straight-

forwardly given by the di�erence between the total energy sold at each price and

the total energy bought at each price. The total energy available to be sold by the

company is given by its e�ective PG plus its total buying forwards contracts xb.

The available energy has to be sold in the market by establishing selling forward

contracts xs at a pre�xed price Ps at the beginning of the period, or at price Sπ at

the end of each month. The expected revenue is then given by

Rev = Ps × xs − Pb × xb + Sπ × (PG×GSF + xb − xs) (4.1)

Simultaneously the generation company would also like to control its risk at a

minimum tolerable level. This control will be formulated as a constraint of the

problem made by the CVaR β%. It can be interpreted as the average β% worst

cases net revenue. The formulation of the CVaR as a linear constraint is explained

in [35].

An important remark in this market is that there exists a penalty due to lack

of energy coverage, consequently if the monthly balance is negative, the company

will have to pay a penalty proportional to this amount (λ). This penalty is valued

at the highest one among the (expected) spot price and the annual reference value

(ARV)1. It is important to clarify, that the optimal decision may choose to pay the

penalty (and leverage the quantity of selling energy) in a time period, if the optimal

problem �nd it would bring a higher revenue than otherwise.

γ = max(E[Sπ], ARV ) (4.2)

Additionally, the company must respect some regulatory limits, given in [1] and

[3], these are:

• The annual average sum of the monthly PG seasonalized (PGm) can't be

bigger than the regulated PG (PGr).

• The monthly PG seasonalized can't be higher than the hydroelectric power

(PHE).

• The hydroelectric company must have 100% contracted energy each month

(λm ≥ 0).

From the above de�nitions and equations, the optimization problem is de�ned

as the following equations:
1The ARV is calculated by ANEEL annually
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max

12∑
m=1

P s
m × xsm − P b

m × xbm +

E[Sπ]m × (GSFm × PGm + xbm − xsm)− γmλm (4.3)

s.t

α +
1

β
×

NS∑
j=1

pjzj ≥ ω0 (4.4)

zj ≤ 0,∀j 1 ≤ j ≤ NS (4.5)

zj + α ≤ f(x, yj),∀j 1 ≤ j ≤ NS (4.6)

0 ≤ PGm ≤ PHE × hm,∀m 1 ≤ m ≤ 12 (4.7)

1

12

12∑
m=1

PGm = PGr (4.8)

λm ≥ xsm − xbm −GSF × PGm,∀m 1 ≤ m ≤ 12 (4.9)

λm ≥ 0,∀m 1 ≤ m ≤ 12 (4.10)

0 ≤ xbm ≤ Xb
m,∀m 1 ≤ m ≤ 12 (4.11)

0 ≤ xsm ≤ Xs
m,∀m 1 ≤ m ≤ 12 (4.12)

The objective is to maximize the annual expected revenue de�ned in (4.3). The

under-script m indicates that a variable is referenced to the month m. In (4.4), (4.5)

and (4.6) the linearized CVaR constraints are described. The minimum revenue ω0

should be de�ned by the company's risk aversion in the β% worst cases. In (4.7) it is

de�ned the maximum amount of PG that a generator may allocate in a month, which

is equal to the electric generator's power. In (4.8) it is de�ned another regulatory

restriction in the seasonalization process, i.e, the average of the annual PG must

respect the regulatory value (PGr) de�ned by EPE and ANEEL. In (4.9) and (4.10)

it is de�ned the regulatory coverage conditions, that are: the generator company

may not sell more than it will buy (and generate) in a whole month, thus that

the average monthly balance must be positive. In (4.11) and (4.12) it is de�ned

the maximum amount of energy that can be bought and sold on forward contracts

respectively, those limits may be chosen by the agent, or they can be a constraint

in terms of the market liquidity.

The problem of optimizing the company's revenue taking into account the risk

control, is written as a linear programming problem. In order to deal with this kind

of problems, it is possible to proceed by using linear solvers such as the simplex, or

the interior point algorithm to solve for the optimal contracts, and PG allocation.

In the next chapter this formulation will be used to solve some examples of optimal
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allocation during a year for a hydroelectric generation company.

4.3 Simple Application

In this section, example from chapter 3 is revisited as an optimization problem to

be solved mathematically. Recalling some assumptions of the example: it is a single

month problem, the hydroelectric company cannot buy forwards, it can only sell

forwards (up to 10MWh) at 240 e/MWh, furthermore this scenario has a �xed

GSF = 1, and PG = 10MWh, �nally there are no penalties due to lack of energy.

Lets consider �rst the case where ω0 = 1000 e, then the case where ω0 = 2000e,

for both cases β = 10%.

Writing these conditions in the form of an optimization problem:

max 240× xs +

254.5× (10− xs) (4.13)

s.t

α +
1

0.1
× (5%× z1 + 5%× z2 +

16%× z3 + 16%× z4 +

16%× z5 + 16%× z6 +

16%× z7 + 5%× z8 + 5%× z9) ≥ ω0 (4.14)

zj ≤ 0,∀j = 1...9 (4.15)

z1 + α ≤ 240× xs + 40× (10− xs) (4.16)

z2 + α ≤ 240× xs + 100× (10− xs) (4.17)

z3 + α ≤ 240× xs + 150× (10− xs) (4.18)

z4 + α ≤ 240× xs + 200× (10− xs) (4.19)

z5 + α ≤ 240× xs + 250× (10− xs) (4.20)

z6 + α ≤ 240× xs + 300× (10− xs) (4.21)

z7 + α ≤ 240× xs + 350× (10− xs) (4.22)

z8 + α ≤ 240× xs + 450× (10− xs) (4.23)

z9 + α ≤ 240× xs + 500× (10− xs) (4.24)

0 ≤ xs ≤ 10 (4.25)

In this example, the average spot price is 254.5e/MWh, as a result, selling all

the energy at the spot market would result in a bigger average revenue compared to
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selling all its energy in forwards (at 240e/MWh). For that reason the risk neutral

decision would be to stay completely in the spot market. On the other side, by

selling forwards the company has a good tool to hedge the risk of lower spot prices.

A complete hedge would sell all its energy in forwards, and guarantee a revenue

2400e.

First Case:

In the �rst case, the solutions yield an average revenue of < R >= 2519e,

while the selling forwards quantity are xs = 1.76MWh, that means the decision

is to sell the remaining energy (10 − 1.76 = 8.24MWh) at the spot price (market

clearing). However, these 8.24MWh includes an intrinsic risk, on the other hand,

the risk constraint established in this case has to guarantee a revenue (CVaR 10%)

of 1000e, in the average worst 10% cases, which are: Ps = 40e/MWh (with a 5%

associated probability) and Ps = 100e/MWh (with a 5% associated probability), as

both of these scenarios have equal probability of 5%, the average worst price would

be < Ps >= 70e/MWh , subsequently this worst CVaR price times the energy at the

spot market results in 70×8.24 = 578e, plus the forward revenue 1.76×240 = 422e,

�nally the sum of both these revenues guarantees the risk constraint of 1000e.

Second Case:

In the second case, the solutions yields an average revenue of < R >= 2434e, and

the selling forwards quantity are xs = 7.64MWh, that means the decision is to sell

the remaining energy 10− 7.64 = 2.36MWh at the market clearing. However, these

2.36MWh have a risk, and the constraint established in this case has to guarantee

a revenue of 2000e. The average worst 10% price is again < Ps >= 70e/MWh,

hence the worst CVaR price times the energy at the spot price 70 × 2.36 = 166e,

plus the selling forwards revenue 7.64× 240 = 1834e equals to 2000 e.

As the risk aversion goes up, the quantity of selling forwards also goes up as

illustrated in Fig. 4.1, in order to guarantee that hedge of minimum revenue by

selling the energy in forward contracts. On the other hand if the agent would like

to take more risk, the decision would be to stay in the spot market to increase its

average revenue, since the average spot price is higher then the current forward

prices as illustrated in Fig. 4.2.
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Figure 4.1: Quantity of selling forwards varying with the risk aversion.
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Figure 4.2: Expected Revenue varying with the risk aversion.
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4.4 General overview of the optimization tool

In this section, in order to clarify the use of the optimization tool, an example of

using the optimization tool during a year is depicted in Fig. 4.3. In December the

hydro company has to de�ne its PG of the next year, as well as the decision on

how to buy and sell the forwards contracts of the following year. However, in order

to e�ectively use the model at that time, the agents will have to provide the GSF

projection, spot prices projections (Sπ), and analyze the inputs from the market of

the current energy contracts prices to the following months (P s, P b). Then in a next

time step (the next month for instance, i.e., January), the decision will consist on

how to optimize only the contracts, by making some modi�cations, since the PG

is already de�ned and it cannot be modi�ed, however as the vision of the future

changes, i.e., spot prices projections and energy contracts prices vary, the portfolio

may have some adjustments in order to be at a new optimal point, more suitable to

the present date. This procedure may be repeated at any time in the future with

the updates of the necessary parameters.

• Sazonalization
• Portfolio 
Optimization

• Portfolio 
Optimization

• Portfolio 
Optimization

𝑆𝜋
𝐺𝑆𝐹
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𝑆𝜋
𝑆𝜋

Year of Planning & Operation Example

PG Allocation & 
Portfolio Planning

December January November

...

Portfolio 
Adjustments

𝑃𝑏, 𝑃𝑠 𝑃𝑏 , 𝑃𝑠

Portfolio 
Adjustments

Figure 4.3: Example of using the optimization tool during the year

Another way of using the optimization tool during the year, is to make adjust-

ments due to future evolution of premises according to a new market dynamic (which

updates the P s and P b), and also due to new premises on the spot prices projection

(Sπ), the last portfolio position (xs and xb) is hence updated by these new inputs.

This �ow of actions is depicted in a block diagram in Fig. 4.4.
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Chapter 5

Case Study

5.1 Introduction

In this section the portfolio of a 200MWavg1 physical guarantee hydroelectric com-

pany is optimized. The available forwards contracts (by end of December 2018)

are illustrated in table 5.1. Table 5.2 shows the projection of spot prices along

the next year, while table 5.3 shows the associated probability with the scenarios

(low, medium, and high). Finally in table 5.4 it is de�ned the maximum amount of

selling/buying forwards contracts available.

In each case studied, two di�erent approaches to the problem will be compared.

The �rst one, is the risk neutral, in which CVaR constraints are not taken in account,

put di�erently, the problem will be formulated without (4.4) to (4.6). In the second

approach the maximum risk constraint (CVaR 10%) possible is included(de�ned as

the maximum ω0 that allows the problem to be feasible). The results are compared,

and the pareto e�cient frontier is plotted, showing all the points between the two

approaches. The pareto e�cient frontier is plotted by creating a linear interpolation

of the optimal portfolio solutions that lies in between the risk neutral approach, and

the maximum risk averse approach. The motivation of this frontier is to show the

risk and return trade-o� of every optimal portfolio solution.

On Case I it is considered only the contracts' optimal allocation, while on Case

II it is considered the contracts and PG optimal allocation. Finally, on Case III,

it is considered the contracts, and PG allocation with a di�erent GSF (sensitivity

study).

1Average of the energy along the month (total MWh divided by the hours of month).
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Table 5.1: Forwards Prices

Date Buy(e/MWh) Sell(e/MWh)

January 38.1 38.2

February 52.3 52.5

Mars 52.7 54.5

2nd Trimester 53.8 54.5

2nd Semester 55.1 56.1

Table 5.2: Spot Price Projection (e/MWh)

Scenario January February Mars 2nd 2nd

Trimester Semester

Low 23.0 31.3 36.9 41.9 40.4

Medium 40.6 58.0 66.6 67.9 72.7

High 64.1 86.0 94.1 105.6 100.3

Table 5.3: Probability of Spot Price Projection

Scenario January February Mars 2nd 2nd

Trimester Semester

Low 25% 25% 25% 25% 25%

Medium 50% 50% 50% 50% 50%

High 25% 25% 25% 25% 25%

Table 5.4: Limits of forwards contracts (MWavg)

Type January February Mars 2nd 2nd

Trimester Semester

Buy 100 100 100 100 100

Sell 200 200 200 200 200

5.1.1 Case I

A decision of a �at physical guarantee is assumed along the year, thus only the

contracts' allocation is optimized. The physical guarantee is subject to the GSF of

the previous year (2018), and the e�ective PG (the PG multiplied by the GSF) is

illustrated in Fig. 5.1.

In the risk neutral approach (illustrated in Fig. 5.2.), the optimized decision is

to buy the maximum every month, while not selling anything as a forward contract.

The risk averse approach (illustrated in Fig. 5.3) decides to buy forwards mainly
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on the �rst semester, on the other hand, it decides only to sell a single forward

contract in January. The explanation is due to a high expected value of the spot

price, in order to, at the market clearing, the balance be positive an receive the

energy di�erence at the spot price.

We �nish this case by plotting the pareto e�cient frontier as illustrated in Fig.

5.4.
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Figure 5.1: Case I - Seasonalized PG with GSF.
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Figure 5.3: Case I - Risk Averse Portfolio.
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Figure 5.4: Case I - Pareto E�cient Frontier.

5.1.2 Case II

In this case the possibility to seasonalize is include, by considering the PG as a

decision variable.

In the risk neutral approach (illustrated in Fig. 5.5), the decision concerning the

forwards contracts would be the same from Case I, i.e., buying the maximum every

month, while not selling anything as a forward contract. The decision to seasonalize

the PG in this case, is to allocate the PG in almost all of the �rst semester, and in

the last three months.

In the risk averse approach (illustrated in Fig. 5.6), the decision di�ers from

Case I. It decides to buy forwards in the �rst trimester, and in the second semester,
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while selling a single forward in January. The PG allocation is now located mainly

in the �rst semester, and the last two months of the year.

It can be noticed that the return in this case, depicted in Fig. 5.7, is higher than

Case I, because it is viable to maximize the pro�t from PG allocation.
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Figure 5.5: Case II - Risk Neutral Portfolio.
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5.1.3 Case III

In this case the hydroelectric company's decision to allocate its PG is subject to the

GSF that happened in 2015 (completely opposite from 2018) as seen in Fig. 5.8.

This case has been made to measure of how robust is our decision from Case II.
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Figure 5.8: GSF history

In the risk neutral approach (illustrated in Fig. 5.9), the decision concerning the

forwards contract is the same from the cases above. The decision to seasonalize the

PG is to allocate part in the second semester and part in April, and May.

The risk averse approach (illustrated in Fig. 5.10) decides to buy forward con-

tracts in the �rst semester, while selling a single contract in January. The PG

allocation is divided along the �rst and second semester, with zero MWavg in Janu-

ary, July and August.

The di�erence from Case II is that, since the GSF in 2015 was higher in the second
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semester, the PG allocation is mostly located at the end of the year. The GSF is

indeed an important parameter to estimate, since it can shift the seasonalization

process.

Comparing the Return x Risk from Case II to Case III (illustrated in Figs. 5.7

and 5.11), the range of expected return doesn't change signi�cantly. However, the

minimum revenue in the latter is smaller, in the order of 10Me. This di�erence

is explained by the fact that high prices (above forwards contracts) are obtained

all over the year for the spot prices' projection, resulting on a risk neutral solution

buying the available forwards and not selling any forwards. In this case, the e�ective

risk is the occurrence of low spot prices at the end of each month, which are more

likely to happen in the �rst trimester, especially in January. Looking at the GSF

from Case II, that is signi�cantly higher in the �rst trimester, the conclusion is that

the risk is less intense than considering the GSF from case III, which does not su�er

high �uctuations. The expected revenue, on the other hand, does not experience the

same variation, since the average of the product E[Sπ]m × GSFm does not change

signi�cantly along the year.
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Figure 5.9: Case III - Risk Neutral Portfolio.
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Figure 5.10: Case III - Risk Averse Portfolio.
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Figure 5.11: Case III - Pareto E�cient Frontier.

5.2 Scenarios Size Comparison

In this section the di�erence between two di�erent approaches of realizations is

compared, both cases take into account the GSF of 2018, and the possibility to

seasonalize. The �rst one is as mentioned on the previous sections, to consider

three spot prices (πS) possibilities (High, Medium and Low) for January, February,

Mars, Second Trimester, and the Second Semester, and the total combination of

them, totalizing 35 = 243 scenarios, that will be called Simpli�ed Scenarios Case,

this is illustrated in Fig. 5.12. In the second case three scenarios each month are

considered, and the total combination of them totalize 312 = 531.441 scenarios for

the whole year, that will be called All Scenarios Case. The risk metrics utilized in
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this section, is the CVaR with β = 1%.
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Figure 5.12: Scenarios Tree - Simpli�ed Scenarios Case

The results are illustrated �rst in Fig. 5.13a, where the optimal portfolio of the

simpli�ed scenarios case is plotted, then in Fig. 5.13b the optimal portfolio of all

scenarios case is plotted. First of all, it is noticed that when a extreme of risk

aversion is chosen, there are some similarities among them, i.e., the existence of a

selling contract in January, as well as, the allocation of PG in January, even if the

quantities varies. Further analysis shows that the PG allocation in the �rst semester

remains almost identical, however, the buying contracts distribution along the year

is di�erent from one case to another.

In order to compare the Return vs. Risk for both cases, in Fig. 5.14a it is

plotted the Pareto e�cient frontier of the simpli�ed scenarios, and in Fig. 5.14b it

is shown the Pareto e�cient frontier of all scenarios case. Analyzing these frontiers,

it is noticed that the amplitude of the return and risk is reduced from the simpli�ed

scenarios case. It is e�ectively the consequence of taking into account the average of

(approximately) 5300 critical scenarios (1% of 312), as opposed to 3 scenarios (1%

of 35) for the simpli�ed case. The average of 5300 scenarios will be higher, and give

us less margin to operate the amplitude of risk.

Therefore the decision agent should keep in mind that the quantity of scenarios

has an signi�cantly in�uence over the β CVaR. A word of precaution is that β should

grow inversely proportionally to the number of scenarios.

Finally an important remark is that even considering the all scenarios case, the

linear optimization could be done in a reasonable amount of time, which con�rms

that the linear optimization is well suited even for large problems.

A �nal remark concerning the all scenarios case is that in practice, it is seldom

utilized due to the lack of good price projections for all the months along the year,

instead it is more usual, to group the months by quarters, after the analysis of
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up to three months ahead, since as further in time the projections are made, the

uncertainty increases sharply.
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Figure 5.13: Portfolio Comparison
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Chapter 6

Conclusions, Contributions and

Future Work

6.1 Conclusions

This work presented a formulation of the problem of maximizing the revenue of a

hydroelectric company in the Brazilian energy market, with CVaR constraints as a li-

near optimization problem, which proved to solve large scenarios case (over 500,000)

in low computational time. Furthermore a tool for helping the decision maker of the

PG seasonalization is presented. It has been shown that a GSF sensitivity scenario

can shift the allocation of PG as the decision of other players varies, proving that

the GSF is a crucial factor to estimate. It is worthy to notice the importance of

spot prices projections, since the accuracy of these projections will directly in�u-

ence the results. For active traders and generation companies, the proposed tool

can be used every time when the view of the future changes. It is a dynamic tool for

helping the energy market become a more strategic and competitive place. Finally,

the proposed tool can be easily adapted to other market realities. A �nal important

remark is that the data used on this study comes from a real life problem with some

adjustments, furthermore it is useful to know that a hydroelectric company is using

this tool to help achieve the optimal planning and operational decisions.

6.2 Contributions

The main contributions of this work, at the portfolio optimization of a hydroelectric

company, are enumerated as follows:

• The development of a whole integrate tool to solve simultaneously the contracts

optimization problem along with the PG allocation.
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• A new approach (linear optimization) to solve the problem taking advantage

of its formulation.

The results and contributions of this thesis achieved the publication of the following

conference paper:

• RAGUENET, E., DIENE, O. �Decision support system for a portfolio of a

hydroelectric company in the Brazilian market�. In: 2019 16th International

Conference on the European Energy Market (EEM), pp. 1-6. IEEE, 2019.

6.3 Future Work

Concerning the future work, it is proposed:

• The inclusion of di�erent �nancial instruments in the portfolio, such as, de-

rivatives contracts, e.g., put options, call options, collar contracts, and other

hedging strategies;

• The inclusion into the modeling of the GSF projection as a strategic game,

since it is a�ected by the decisions of other players, which can me accomplished

by making use of the Game Theory approach.
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Appendix A

ERM Details and Algorithm

A.1 Introduction

This section intends to explain and exemplify the calculations of the ERM. In order

to simplify the procedure of the ERM algorithm, without loss of generality it is

assumed some hypothesis:

• The existence of only one submarket;

• The Optimization Energy Tari� (OET) from Itaipu is equal the ERM OET;

• There are only two hydro power-plants operating in the market (our hydro

plant, hydroelectric A, versus a hydroelectric representing the market, hydro-

electric B );

• The market hydro physical guarantee is much higher than our hydro plant

physical guarantee(PGA � PGB).

In order to develop all the calculations of the mechanism, it will be illustrated by

four di�erent scenarios that may occur in this situation. The market will be called

the hydroelectric A, and our plant will be called hydroelectric B. For even further

details of the mechanism we suggest reading [36].

In the following examples the physical guarantee of the market equivalent hy-

droelectric (PGA) represents approximately 99.5% of all the PG of the ERM, while

the physical guarantee of our hydroelectric (PGB) represents approximately 5% o�

all the PG of the ERM.

A.1.1 Example 1

In this case it is considered the following conditions:

• PGA = 1000MWh;HGA = 1100MWh;
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• PGB = 5MWh; HGB = 6MWh,

where the PG stands for the physical guarantee of each power plant, and HG stands

for hydroelectric generation for each one of the power-plants.

In this scenario there is an excess of energy (HGA + HGB ≥ PGA + PGB),

therefore there will be secondary energy.

First as there is a surplus of energy, there is no need for readjustment of the PG.

Then there is no necessity to cover the PG of any of the hydroelectric, since both

generated above its PG. There is an excess of 100MWh and 1MWh respectively

(di�erence between generation and the physical guarantee), so the total excess of

the submarket is 101MWh. Each hydroelectric has a right to receive an amount of

the secondary energy proportionally to its PG. So the distribution of this secondary

energy will be as follows: SECA = 101 × 1000
1005

= 100.5MWh, and SECB = 101 ×
5

1005
= 0.5MWh, respectively. That means HEA will receive 0.5MWh from HEB.

This will be valuated at the EOT.

The calculations concerning the amount of contractual energy that will be in

plant B, is derived:

EB = PGB +
PGB

PGA + PGB

× ((HGA − PGA) + (HGB − PGB)) (A.1)

EB = PGB +
PGB

PGA + PGB

× ((HGA +HGB)− (PGA + PGB)) (A.2)

EB = PGB + PGB × ((GSF − 1) (A.3)

EB = PGB ×GSF (A.4)

It has been proved that the total contractual energy allocated in plant B will be

EB = PGB ×GSF .

A.1.2 Example 2

In this case it is considered the following conditions:

• PGA = 1000MWh;HGA = 1100MWh;

• PGB = 5MWh; HGB = 4MWh

In this scenario there is an excess of energy (HGA + HGB ≥ PGA + PGb),

therefore there will be secondary energy. First there is no need for readjustment of
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the PG. Then there is the necessity to cover the PG of hydroelectric B, since its

generation did not match its PG by 1MWh. There is an excess of 100MWh from

HEA, and a de�cit of 1MWh from HEB to cover, so the total excess is 99MWh,

and each hydroelectric has a right to receive an amount of the secondary energy

proportionally to its PG. Consequently the distribution of this secondary energy will

be as follows: SECA = 99× 1000
1005

= 98.5MWh, and SECB = 99× 5
1005

= 0.5MWh.

That means that HEB will receive 1.0MWh from hydroelectric A to cover its PG,

and additionally 0.5MWh from the excess of Secondary Energy. This ERM �ux will

be valuated at the EOT.

The demonstration of total contractual energy of HEB from example 1, still

holds in that case, i.e., EB = PGB ×GSF .

A.1.3 Example 3

In this case it is considered the following conditions:

• PGA = 1000MWh;HGA = 900MWh;

• PGB = 5MWh; HGB = 6MWh

In this scenario there is not an excess of energy (HGA +HGB ≤ PGA +PGB), but

rather of lack of energy, therefore there wont be secondary energy.

First there is a need for readjustment of the PG, because there is the necessity to

cover the PG of hydroelectric A, however, it will not be possible to cover it entirely.

Following the rules to adjust the PG, the new values will be PG∗A = 1000× 906
1005

=

901.5MWh and PG∗B = 5 × 906
1005

= 4.5MWh, respectively. There is an excess

of 1.5MWh of generation from HEB (di�erence between the generation and its

adjusted PG), so it will be used to cover (part of) the de�cit from HEA. This will

be valuated at the EOT.

The mathematical formulation to the new contractual energy of hydroelectric B

is straightforward in this case, given by:

EB = PGB ×GSF (A.5)

The �nal amount of each plant will still be PGB ×GSF .

A.1.4 Example 4

In this case it is considered the following conditions:

• PGA = 1000MWh;HGA = 900MWh;

• PGB = 5MWh; HGB = 4MWh
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In this scenario there is not an excess of energy (HGA +HGB ≤ PGA + PGB),

but rather a lack of energy, therefore there wont be secondary energy.

First there is a need for readjustment of the PG. Then there is the necessity to

cover the PG of both hydro, however, as the GSF ≤ 1, �rst the PG adjustment must

be calculated to notice, which de�cit should be covered. Recalculating the PG, we

obtain the following values: PG∗A = 1000× 904
1005

= 899.5MWh and PG∗B = 5× 904
1005

=

4.5MWh. There is an excess of 0.5MWh of generation from HEA (di�erence of its

generation from its adjusted PG),so it will be used to cover the de�cit from HEB.

This will be valuated at the EOT.

The �nal amount of each our hydro will still be EB = PGB ×GSF .

A.1.5 Conclusion

We conclude this section by restating that, after analyzing and exemplifying all cases

that may occur in the ERM, the amount of contractual energy in all cases will be

EB = PG × GSF . A word of caution is that the agents in the ERM will buy/sell

the ERM energy �ux, at the EOT, which is a low value compared to the spot prices

of 2018 (EOT2019 =R$12.41 ≈ 3e). In order to deal with the OEM valuation of this

energy di�erence transaction, it would be necessary to include generation projections

from both market, and our hydroelectric, then calculate the ERM algorithm, at each

time period, to determine, which one should be receiving or giving energy. Since

there will be �uctuations from both receiving, and giving energy at a very small

tari�, at each time period, in this work it has been decided to not consider this

EOT valuation, and keep only the �nal amount of energy to each hydroelectric.
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