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necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: Fernando Cesar Lizarralde

Rio de Janeiro

Setembro de 2019





Alves, Jhomolos Gomes

Control Allocation Applied to Robots Subject to Input

Constraints/Jhomolos Gomes Alves. – Rio de Janeiro:

UFRJ/COPPE, 2019.

XIX, 156 p.: il.; 29, 7cm.

Orientador: Fernando Cesar Lizarralde

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.

Referências Bibliográficas: p. 127 – 132.
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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

ALOCAÇÃO DE CONTROLE APLICADA A ROBÔS SUJEITOS A

RESTRIÇÕES DE ENTRADA

Jhomolos Gomes Alves

Setembro/2019

Orientador: Fernando Cesar Lizarralde

Programa: Engenharia Elétrica

Em sistemas de controle com múltiplas entradas e múltiplas sáıdas (MIMO), o

sinal de controle de um dado grau de liberdade pode ser distribúıdo entre vários

atuadores através de uma estratégia denominada alocação de controle. Entretanto,

o problema de alocação pode não ser trivialmente resolvido, uma vez que no caso em

que os atuadores do sistema estão sujeitos a restrições (e.g. saturação), o comporta-

mento desejado pode não ser completamente satisfeito. Neste cenário, a alocação de

controle consiste em um problema de otimização, que busca a melhor distribuição

posśıvel dos controles ao mesmo tempo em que respeita estas restrições. As técnicas

de alocação de controle podem ter o objetivo primário de manter a direção do con-

trole ou de minimizar o erro, ou ainda, podem cumprir um objetivo secundário.

Para englobar todas estas situações, as técnicas Alocação de Controle Direta, Pro-

gramação Linear com Simplex, Mı́nimos Quadrados Ponderados com Conjunto Ativo

e Ponto Interior Primal-Dual serão aplicadas em um experimento com um robô móvel

do tipo diferencial e em simulações com um Véıculo Aéreo Não Tripulado (VANT)

do tipo quadrirrotor e com um Véıculo Submarino Operado Remotamente (ROV).

Uma segunda abordagem da alocação de controle tem por objetivo a distribuição de

cargas entre os agentes de uma tarefa cooperativa, que nesta dissertação será rep-

resentada por meio da simulação de um sistema composto por dois manipuladores

e um objeto. Todos estes sistemas serão submetidos a trajetórias com diferentes

exigências, suas dinâmicas analisadas e seus resultados comparados.
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September/2019

Advisor: Fernando Cesar Lizarralde

Department: Electrical Engineering

In control systems with multiple inputs and multiple outputs (MIMO), the con-

trol signal of a given degree of freedom can be distributed among several actuators

by means of a strategy called control allocation. Nonetheless, the control allocation

problem may not be trivially solved, since in the case that the system actuators

are subject to constraints (e.g. saturation), the desired behavior may not be com-

pletely satisfied. In this scenario, the control allocation consists of an optimization

problem which searches the best possible control distribution while it satisfies these

constraints. The control allocation techniques may have as a primary objective to

maintain the control direction or to minimize the error, or may even satisfy a sec-

ondary objective. To encompass all of these situations, the techniques Direct Control

Allocation, Linear Programming with Simplex, Weighted Least Squares with Active

Set and Primal-dual Interior Point are employed in an experiment with a differen-

tial drive mobile robot and in simulations of an Unmanned Aerial Vehicle (UAV),

such as a quadrotor, and also of a Remotely Operated Underwater Vehicle (ROV).

A second approach of the control allocation aims to distribute the load among the

agents in a cooperative task, which in this dissertation is represented by means of

the simulation of a system composed by two manipulators and an object. All these

systems are subject to trajectories with different requirements, their dynamics are

analyzed and their results compared.
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Chapter 1

Introduction

Physical phenomema present in the nature consist inherently of nonlinear systems,

which can be described as systems that do not follow the superposition and ho-

mogeneity properties (CHEN, 2009). Nonetheless, this behavior is also found in

every “motion generator” called actuators, that are mechanical devices responsible

for providing motion and also for controlling the system they belong. Their inputs

consist of an energy source and a control signal, and their outputs are force and

torque, which are delivered to effectors - devices designed for interacting with the

environment. Typical examples of actuators are motors and engines, and of effectors,

propellers, wheels and end effectors.

Concerning its constructive aspects and physical constraints, actuators present

nonlinearities, such as friction, hysteresis, dead-zone, backslash and saturation.

More details concerning non-linear systems can be found in SLOTINE et al. (1991).

In KALMAN (1955), an important work dated back to 1955, the author states

that

“(...) the engineer (...) wants to understand fully the effects on system

performance of the various inevitable physical limitations and imperfec-

tion of practical equipment. The most obvious limitation may be termed

‘saturation’. It is everywhere present.”

The limitations and imperfections mentioned by the author imply that there are

conditions where the superposition and homogeneity properties do not hold. In fact,

despite the actuators can operate at a linear region, their range is bounded by upper

and lower limits. Whenever the actuator reaches any of these limits, it is said to

be saturated, since any attempt to surpass them does not result in a corresponding

variation in the actual control input.

Whenever a control input signal u ∈ R is applied to an actuator, its actual

position δ is driven towards u, according to the actuator dynamics. However, δ is

constrained regardless of the value of u, such that
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δmin ≤ δ ≤ δmax (1.1)

where δmin and δmax are the lower and upper actuator position, respectively.

One can consider also the rate limits in the actuator dynamics. In practical

situations, the demand of a control input u cannot be instantaneously delivered due

to a dynamic constraint OPPENHEIMER et al. (2010), represented by the rate

limit δ̇.

Remark. In this dissertation, we assume that the actuators present a response fast

enough to be neglected, such that

u , δ

umin , δmin

umax , δmax

(1.2)

unless stated otherwise.

The diagram block in the figure 1.1 illustrates the saturation in actuators. When-

ever the control input u surpasses umax or reach values below umin, the output does

not respect the linearity property, rather it remains constrained to these limits.

Mathematically, saturation sat(u) can be described by the function

sat(u) =


umin, if u < umin

u, if umin ≤ u ≤ umax

umax, if u > umax

(1.3)

In a dynamic system with m independent actuators and control input u ∈ Rm,

the function sat(u) is represented by a vector in the form

sat(u) =
[

sat(u1) sat(u2) . . . sat(um)
]

(1.4)

This function allows to define the attainable set of control inputs U formed by

all the m actuators. In DURHAM (1993), the subset U is mathematically defined

as

U = {u ∈ Rm|ui,min ≤ ui ≤ ui,max} ⊂ Rm (1.5)

Geometrically, U represents a polytope in the space Rm, as depicted in figure

1.2. If the control input is located inside the polytope or at its border, it is said

to be attainable or feasible. Otherwise, if located outside U, it is unattainable or
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umax

umin

sat(u)

u

Saturation Block

usat

Figure 1.1: Saturation effect in dynamical systems.

u1

u2

u3

U

Figure 1.2: The operating range of the actuators define a polytope region in space
Rm.

unfeasible. However, this concept goes beyond saturation and can be expanded to

any input constraint.

Many controllers and model plants can be approximated by linear models or

linearized at the vicinity of an equilibrium point. However, external factors such

as disturbances or set point changes can cause dynamic systems to produce large

errors, to generate efforts beyond the capabilities of the actuators or even to prevent

them to recover themselves back to nominal operating conditions. In 2007, a tragical

accident involving two HAL Dhruv helicopters of the Indian Air Force was caused

due to a phenomenon called cyclic saturation. It occurs when the system does not

respond to cyclic inputs, then the lateral control for rolling moment runs out of limit

(DEFENCE, 2010).

Another common saturation issue is called “wind-up”, that occurs when the

control variable value reaches its limit at the presence of a PI/PID controller, be-

cause the actuator remains at its limit independently from the system output. Then

it is necessary to force the controller to actuate in the linear region, which can

be implemented with techniques such as back-calculation or conditional integration

(GARCIA and CASTELO, 2002). The wind-up is even worsened in the presence of

unstable eigenvalues in the compensator. Since wind-up is related to the dynamics

of a controller, it is often referred as controller wind-up. One anti wind-up scheme

employed is the observer technique (HIPPE, 2006), where the controller dynamics
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Strategies

Anti-windup Design
Optimal Control
Robust Control

Adaptive Control
Predictive Control

Domain of Attraction
Sliding-mode Control

Table 1.1: Common strategies for solving input saturation in dynamic systems.

does not influence input saturation anymore, rather influences the plant. The au-

thor implements additional dynamic elements, such as filtered setpoint or additional

dynamic network to prevent saturation.

In CHEN (2014), it was proposed a saturated controller combined with a dynamic

time-varying controller with slope restrictions, obtained by applying the finite-time

control strategy. In HUANG et al. (2018), a robust neural network-based control

scheme is utilized to perform stabilizing, tracking, and as consequence, to solve input

saturation in wheeled mobile robots. Another approach is presented in HUANG

et al. (2013), where the authors utilize two adaptive controllers, kinematic and

dynamic, respectively, whose design parameters are computed in advance in order

to prevent input saturation.

Shortly, the approaches mostly utilized for solving input saturation are chrono-

logically summarized in BERNSTEIN and MICHEL (1995), and thereafter, some

other approaches have been employed. They are briefly presented in the table 1.1.

However, these controls techniques have been utilized mostly as a single strategy

to deal with input saturation. Nonetheless, another approach is to combine them

with a technique called control allocation.

Definition 1.1. Control allocation consists of distributing control efforts among the

actuators that contribute to motion concerning one or more degrees of freedom of

interest for allocation purposes, so that the actuators can reproduce the moments

demanded.

A general control allocation problem can be stated as: given a set of desired

moments and forces νd, generally denoted as desired virtual control vector, to be

exerted on a system, distribute these efforts among every actuator, such that νd is

achieved. There may exist infinite solutions for this problem - for instance, consider

an object with mass M = 1 kg moving along a single coordinate axis, namely a

task with one degree of freedom (DoF). Consider now that there are two actuators

delivering forces u1 and u2 to the their respective effectors, responsible for providing

acceleration to the object. The system object-actuators is described by the dynamics
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{
ẋ = ν

ν = u1 + u2

(1.6)

where x is the object velocity. In this model, the dissipative forces are not considered.

The object may be demanded to travel at an acceleration νd = 2m/s2. Hence, there

are infinite combinations of forces u =
[
u1 u2

]T
that meet this requirement, such

as u =
[

1.1 0.9
]T

or u =
[

1.5 0.5
]T

.

Now, suppose that the actuators have equal characteristics and are able to exert

forces only between the limits umin = 0 and umax = 1.2. Forces such as u1 = 1.5

and u2 = 0.5 would not be an efficient solution, provided that due to saturation,

usat =
[

1.2 0.5
]T

, and as consequence, ν = 1.7 < νd. However, despite of

saturation, it is possible to find a control u that best satisfies the desired virtual

control input νd, for instance u =
[

1 1
]

or u =
[

1.1 0.9
]T

. Note that the

control was distributed wisely respecting the constraints of each actuator with the

objective of satisfying the desired moment νd. This is a typical example of a control

allocation problem, although these solutions may not be optimal.

While this example is quite simple, the problem gets more complex as the number

of actuators m and the number of DoF of the system n increase, as well as more

constraints are imposed. However, if there existed only one effector exerting a force

on the object, the solution would be unique and straightforward, and not to mention,

the control requirements could not be met at all and its overall performance would

consequently be decayed. It can be concluded that systems with more independent

actuators than the strictly necessary to perform a given task, that is m > n and

denoted overactuated, provide a wider range of options when allocating controls.

Thus, the level of redundancy of a system in the control allocation context allows

to classify them into three categories:

• Overactuated: systems with more actuators than those strictly needed for the

DoF of interest, i.e n > m;

• Fully actuated: systems where the amount of actuators is exactly the amount

of degrees of freedom of interest, i.e n = m;

• Underactuated: systems with less actuators than those necessary to control

the degrees of freedom of interest, i.e n < m.

It must be considered that the layout of actuators and their operating principles

exert influence on the level of redundancy. If we purely observe the total amount

of actuators and the amount of DoF to be controlled, the analysis may lead to
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wrong conclusions, provided that multiple actuators can contribute to motion with

respect to a unique or several DoF, whereas another DoF may be controlled by only

a single actuator. In the last case, the control allocation is not suitable, since it is

not possible to distribute the controls.

The development of overactuated systems has been necessary to provide reliabil-

ity and to make them more controllable, and as it went on, research has focused in

making better use of this potentiality. For instance, the controllability of the chosen

states and outputs may be achieved with less control inputs JOHANSEN and FOS-

SEN (2013). Moreover, the control allocation may bring the following advantages:

• to promote the control redistribution to actuators respecting input constraints;

• to provide fault tolerance and reconfiguration requirements: the actuators can

be rearranged to cancel the effects of an actuator that undergoes a fault, and

hence, the system can be recovered back to its operational conditions when

physically possible (OPPENHEIMER et al., 2010);

• multiple control input choices available can satisfy secondary control objec-

tives: one may prefer one actuator over another one, whether to reduce energy

consumption or to grant better stability. An actuator can also be demanded

to work at the neighborhood of a preferred position to minimize the control

or to avoid stress in its structure. From these possibilities, one can achieve

accuracy, better response, flexibility, ease of maintenance and power efficiency;

• enables the system to share actuators among different control systems (JO-

HANSEN and FOSSEN, 2013).

Nonetheless, when an actuator suffers failure and the system becomes fully ac-

tuated or underactuated , it implies that redundancy has been lost and the signal

distribution is limited to a best possible solution, and therefore, the system cannot

benefit from the most advantages aforementioned. Now the constraints in the actu-

ators play an even more important role - the systems gets more susceptible to the

constraints, provided that in order to deliver the desired moments, the actuators

become more demanded and are more likely to work near saturation levels.

It must be considered that control allocation does not apply only to control

motion, rather it can be utilized also to represent quantities like energy and mass

(JOHANSEN and FOSSEN, 2013). In OPPENHEIMER et al. (2010), the authors

summarize the objectives of control allocation so as to determine a unique solution

when multiple solutions exist, to obey physical constraints of the control effectors

and to determine the “best” configuration of control settings when no solution exists.

These objectives are concise but extensive - they cover every kind of system, from
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underactuated to overactuated, and shed light on how flexible control allocation can

be, enabling its application to deal with any input constraint.

1.1 Structure of Control Allocation

The project of control algorithms for control allocation may be basically split into

two levels, as shown in 1.3. In the first level, a High-level control is performed,

which consists of any standard control technique and uses the actual state χ and

the desired state χd to determine the desired virtual control input νd ∈ Rn. The

vector νd contains all the n demanded forces and moments to be applied on the

system for providing motion and such that the basic requirement of controllability

is met (JOHANSEN and FOSSEN, 2013). If the actuators are capable of imposing

a ν = νd to the system, then it is said that the control objective has been reached

in the first level.

In the literature, one can find control allocation schemes where the High-level

controller consists of PI Controller with Feedforward (BUFFINGTON and BUFF-

INGTON, 1997), Lyapunov (JOHANSEN, 2004), Sliding-mode Controller (CHEN

and WANG, 2011), Backstepping (MONTEIRO, 2015), among others.

In the second level, the control allocation maps the desired input vector νd into

individual forces and torques u ∈ U such that the sum of all forces and torques on

the effectors inflict the virtual control input ν = νd to the mechanical system in

every instant t.

Although not mandatory, there may exist also third level, which consists of a

low-level controller in each effector, responsible for assuring that actuators deliver

the desired force and moment (JOHANSEN and FOSSEN, 2013).

High-level

Controller

Control

Allocation

Effectors
and

Actuators
System

χ
χd

νd u
Sensors

ν

Figure 1.3: Typical control allocation structure applied to a mechanical system.

1.2 State of Art

The work published by DURHAM (1993) is a watershed concerning control allo-

cation, because prior to it, the term had never been defined, although it had been

implemented informally. Formerly it was common to control aircrafts by utilizing

single controls for each of its degree of freedom, namely roll, pitch and yaw. Rolling
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moments are controlled by ailerons, elevators control pitch, and yaw is controlled by

rudders. However, there existed a coupling between the rolling and yawing moments,

which was solved by means of a mechanical aileron-rudder interconnect (ARI). Later,

the rolling surface-rudder interconnect (RSRI) was adopted to solve coupling in the

F-18 aircraft. These devices were designed to generate a rolling moment without

yaw, and as a result, opposing control surfaces were set free.

In the history of control allocation, the NASA F-18 High Alpha Research Vehicle

(HARV), depicted in 1.4, plays an important role. It was utilized in the NASA’s

Dryden Flight Research Center in Edwards, CA and consists of a highly modified

version of the American McDonnell Douglas F/A-18 Hornet. The aircraft has been

extensively used in a three-phase investigation program, which aimed to study con-

trolled flight at elevated angle of attack (high-α) by using thrust vectoring, actuated

forebody strakes and modifications to its flight controls.

Every phase corresponded to a single aircraft configuration. In the first one, the

F-18 HARV performed precisely 101 research flights with angles of attack as high as

55 degree from April 1987 to 1989. It aimed to collect data concerning aerodynamic

measures and to develop the flight research techniques needed for these purposes.

The aircraft suffered no modification at all, except for extensive instrumentation.

The second phase was the thrust-vectoring phase, in which the vectored thrust was

examined in order to achieve greater maneuverability and control at these high-α.

Hardware and software modifications were carried out to provide pitch and yaw

forces to improve maneuverability. This phase started in July 1991 and completed

in January 1993, and as a result, the high-α was increased up to 70 degrees. Finally,

the third phase used a modified forebody with a deployable nose strakes (BOWERS

et al., 1996) to control yaw at high angles. At this situation, the rudders become

ineffective. The strakes are designed for controlling the aircraft at the presence of

large side forces generated by vortices. The project was concluded in September

1996.

The aircraft is composed by the many moment generators, such as horizontal

tail, right and left aileron, leading-edge flap, trailing-edge flap, left and right rudder,

left and right strakes, left and right stabilators, and yaw and pitch thrust-vectoring

moment generators. Thus, the control system is highly overactuated and the attitude

control of the aircraft becomes a complex task. Concerning control purposes, NASA

released a report (MORELLI, 1995) where parameter identification techniques were

applied for optimal input design validation at 5 degrees of angle of attack, individual

strake effectiveness at 40 and 50 degrees, and lateral dynamics and lateral control

effectiveness at these angles.

A large amount of data has been collected and used in simulations in many re-

searches concerning control allocation. In DURHAM (1993), the author presents
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Figure 1.4: The F-18 aircraft was widely studied at NASA for achieving an angle of
attack as high as 70 degrees1.

the Direct Control Allocation technique, which consists of finding the input signals

for each actuator, such that the control law demands are met and the control direc-

tion is maintained in overactuated systems. In the same work, the DCA technique

is then compared with Daisy Chaining, another control allocation stratety used for

splitting controls into two groups for controlling aerodynamic and thrust vectoring.

Finally, the author compared the DCA with the generalized pseudoinverses. The

aircraft model was also analyzed in BODSON and FROST (2011), where the au-

thors implemented three different control allocation algorithms for the roll command

and their resulting contributions from aileron and horizontal tail. In DURHAM and

BORDIGNON (1996), the authors addressed the control allocation problem to the

HARV, where the control effectiveness matrix and control position limits were based

on a F-18 aircraft flying at 10,000 feet, Mach 0.23 and 30 degrees angle of attack.

They analyzed how a control allocation algorithm can be chosen, if considering in-

dividual control effector rate demands. Traditional control allocation techniques are

revisited and a new allocation scheme is presented, called moment-rate allocation.

An airplane model commonly found in the literature is based on the C-17 mil-

itary transport airplane, as depicted in figure 1.5. Its name is Boeing C-17 Globe-

master III, developed by McDonnel Douglas at the 80es for the United States Air

Force. In PETERSEN and BODSON (2005), this model is revisited and the con-

trol allocation problem is solved by means of interior-point algorithms formulated

as linear programming problems. In BODSON (2002), the author utilizes the C-17

1Extracted from https://www.dfrc.nasa.gov/Gallery/Photo/F-18HARV/HTML/EC94-42645-
9.html
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Figure 1.5: Model of the military transport C-17 has been widely analyzed in control
allocation oriented studies2.

model with 8 actuators with five different control allocation strategies, which are

Pseudo-inverse, Quadratic Programming, Fixed-point Method, DCA and a mixed

optimization problem converted to linear programming solved with Simplex.

1.3 Applications of Control Allocation

Although the studies concerning control allocation have extensively focused in air-

planes and aircrafts, it has been extended to other areas as well. In JOHANSEN

and FOSSEN (2013), the authors make a detailed research covering this topic, which

is summarized as follows:

• in offshore vessels in low and high speed maneuvering and repositioning by

using different propellers types, which generate a desired yaw when combined,

and also in ship autopilots;

• maneuvering of underwater vehicles, usually overactuated, to prevent failure

and to counteract the mispositioning due to forces from the environment;

• in ground vehicles, by controlling yaw and providing stability to prevent acci-

dents due to slippery surfaces and high speeds, by combining individual tire

breaks to producing a desired yaw to counteract and correct the skidding;

• by means of electrical propulsion to coordinate individual combinations of

motors to optimize power efficiency;

• incorporating roll moment with yaw moment allocation, by using break and

steering actuators to prevent vehicle rollover;

2Extracted from https://www.af.mil/About-Us/Fact-Sheets/Display/Article/1529726/c-17-
globemaster-iii/
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• in off-road vehicles to distribute traction control;

• in strategies to wheeled and legged mobile robots with active suspension;

• in legged mobile robots, since they demand a periodic and coordinated move-

ment of each leg while distributing the force. It takes into account energy

consumption and friction between legs and ground.

The offshore vessel is a good example to explain how complex the modern con-

trol/mechanical systems have become. The control allocation has been used to

allocate efforts to thrusts for controlling its three degrees of freedom, namely surge,

sway and yaw, in a low-speed maneuvering, when the ship dynamically positions

itself during operations that demand a quasi static position. The thrust system is

composed by the main propellers, tunnel thrusters, azimuth thrusters and water jets,

used to control the longitudinal direction of the ship and its degrees of freedom as

well. Because of safety and operational concernings, these systems are overactuated,

so that a single failure will not interrupt a related oil extraction operation, which are

always expensive and long-lasting. The vessels are designed to withstand external

forces and disturbances, such as wind, waves and sea currents. The yaw control has

higher priority though, since it would imply in loss of heading, and hence, loss of

position due to bad weather and sea conditions.

Another scheme is presented in LAWITZKY et al. (2010), where the authors pro-

pose a load allocation scheme between human and robot. Based on a desired effort

to be applied on the manipulated object, sharing policies are established according

to the role of the agent in the task. In BAIS et al. (2015), the authors propose a

static and a dynamic load allocation scheme for cooperative tasks and analyze the

internal wrenches that may arise due to the load distribution.

In MONTEIRO et al. (2016a) and MONTEIRO et al. (2016b), control allocation

techniques are presented and implemented in a quadrotor to demonstrate how they

can solve actuator saturation can be solved, even though it is an underactuated sys-

tem. The addressed control allocation strategies eliminate the need of optimization

algorithms and reduce computational costs.

From all these examples, it can be observed that control allocation has been

applied to solve different issues in a large number of systems, mostly concerning

overactuated systems. As technology improves and new challenges arise, researchers

concentrate their efforts to find new applications for the control allocation techniques

and to improve them as well.
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1.4 Objectives

This work aims to present the control allocation applied to manage input constraints

in four different types of robots. The input constraints can stand for saturation in

an actuators level or for load sharing in a cooperative task.

Although the control allocation theory has been spread and is well established,

the literature still lacks of applications concerning the robots here addressed, such

as the differential drive robots and quadrotors, which are underactuated systems,

and the ROV LUMA, which consists of an overactuated system with respect to the

planar motion. Therefore this work aims to contribute with more applications of

the well-established control allocation algorithms.

Moreover, the specific objectives of this work are:

• to subject the robots to demanding desired trajectories in order to enforce one

or more actuators to work saturated;

• to propose control allocation algorithms to optimize the control distribution

among all the actuators and hence to manage saturation properly;

• to perform numerical simulations and experiments to verify the impact of each

control allocation algorithm on the dynamics of the robots;

• to compare the results obtained from the control allocation algorithms by

means of metrics designed to calculate the virtual control error and the direc-

tion error;

• to evaluate how another control allocation approach, called load allocation,

between two agents in a cooperative task can impact the internal forces and

the resulting trajectory in an impedance-admittance relationship among the

end effectors and an object;

• to compare the results obtained in the cooperative task for different trajec-

tories, which impose different control requirements to be satisfied by both

manipulators.

1.5 Methodology

This text addresses the control allocation to four different robots:

• Wheeled mobile robot;

• Remotely Operated Underwater Vehicle (ROV);
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• Quadrotor (Unmanned Aerial Vehicle)

• Cooperative manipulators.

The criteria adopted to choose these robots was to include the most common

and widely known types. They also contain some interesting characteristics, such

as a nonhonlonomic constraint in the wheeled mobile robot, the quadrotor is un-

deractuated and the ROV addressed is overactuated. These robots also consider

different working environments, such as the ground, the air, underwater and also in

a cooperative task.

To solve the input constraints to which they are subject, the control allocation

techniques employed along this dissertation are

• Direct Control Allocation (DCA);

• Weighted Least Squares with Active Set (WLSAS);

• Linear Programming with Simplex;

• Primal-dual Interior-point (PDIP);

• Static Load Allocation (SLA).

These algorithms encompass the most common control allocation objectives. The

DCA is concerned with maintaining the control direction, whereas the WLSAS, the

Linear Programming with Simplex and the PDIP have as a primary objective to

minimize the control error, although the WLSAS and the PDIP can also satisfy a

secondary objective. Finally, the SLA promotes a sharing policy among the agents in

a cooperative task. Then, the robots are required to follow trajectories or to perform

a given task in a closed-loop dynamics in order to satisfy any of these objectives.

1.6 Organization

The dissertation is organized as follows:

• Chapter 2: presents the formulations of the control allocation strategies

addressed, their main characteristics and their control objectives, along with

their mathematical formulations;

• Chapter 3: the robots utilized are presented, as well their kinematics and

dynamic equations, the High-level controller and also the control allocation

problem;

13



• Chapter 4: contains experiment results for a wheeled mobile robot and sim-

ulations for the ROV, quadrotor and cooperative manipulators;

• Chapter 5: some topics observed the development of this work and some

ideas for future studies are highlighted.

• Appendix A: presents additional information concerning the mechanics of

the rigid body.

• Appendix B: presents the proof of the Karush-Kuhn-Tucker theorem.
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Chapter 2

Control Allocation

This chapter presents the main aspects of control allocation, such as its concepts

and objectives, and presents the algorithms employed in this dissertation. In terms

of input constraints, the control allocation can be split into two groups: constrained

and unconstrained. If unconstrained, the control inputs are not subject to nonlin-

earities and thus they must match the virtual control input. An example is the

pseudoinverse, that is commmonly applied to the load allocation problem. On the

other hand, the constrained control allocation considers the system limitations and

tries to utilize all of its capabilities to deliver exactly the control requirements, or

when not possible, a control input that best approximates them, according to an

optimization problem and an allocation objective.

All the techniques addressed in this chapter belongs to this class, which are

the Direct Control Allocation (DCA), the Linear Programming with Simplex, the

Weighted Least Squares with Active Set (WLSSA) and the Primal-dual Interior

Point (PDIP). The load allocation strategy, called Static Load Allocation (SLA),

will be presented in the next chapter, because it is necessary to present some concepts

about cooperative tasks prior to presenting the strategy.

2.1 Control Allocation and the Saturation Effect

Consider a general nonlinear mechanical system with multiple input-multiple output

(MIMO), described by the following dynamic model:{
ẋ = f(x, t) + g(x, t)ν

y = l(x, t)
(2.1)

where x ∈ Rn is the vector of state variables, y ∈ Rm is the vector of outputs to be

controlled and the virtual control vector ν ∈ Rn corresponds to desired quantities,

such as forces and torques.
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A

B : U → A

U

Figure 2.1: The control effectiveness matrix B executes the mapping between the
attainable set of control inputs U and the attainable set of virtual controls A.

The term f(x, t) stands for the contribution of the actual states to the system

dynamics, whereas g(x, t)ν is the contribution due to the controls. Thus, to change

the dynamics of the system, it is needed to impose forces and torques to it according

to the high-level controller output, here denoted virtual control input vector νd.

However, ν is not an input directly applied to the system, rather the actuators exert

forces and moments, denoted control input vector u, which contribute to motion

respect the degrees of freedom of the system, and hence to ν, such that

ν = h(x, t, u) (2.2)

where h(x, t, u) is the static effector model (JOHANSEN and FOSSEN, 2013). How-

ever, the effectors models can be regarded as linear about u, which results in the

model

ν = B(x, t)u (2.3)

where B(x, t) is the control effectiveness matrix that maps the attainable controls

onto a n-dimensional attainable set of virtual control inputs A, also known as at-

tainable moment set. A general example of this mapping is presented in figure 2.1

and can be mathematically defined as

A = {ν ∈ Rn|Bu = ν, u ∈ U} ⊂ Rn (2.4)

In overactuated systems, a necessary condition is that B(x, t) is a ”large” matrix

and a necessary and sufficient condition is that the number of linearly independent

columns is greater than of rows (OPPENHEIMER et al., 2010). If B(x, t) is square

and invertible, the system is fully actuated and the control input vector u for the

system can be obtained by merely performing the inverse mapping of (2.3).

Remark. The control effectiveness matrix often presents constant elements. Thus,

from now on, it will be represented by B, unless stated otherwise.

Given a desired virtual control νd and that B is square and invertible, its inverse

mapping can be written as
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ud = B−1νd (2.5)

Nonetheless, constraints due to saturation have not been regarded while cal-

culating ud. If the virtual control νd does not lie in the attainable set of virtual

controls A, one or more actuators will be saturated, and its response is consequently

deteriorated, according to the function sat(u), such that

usat = sat(B−1νd) (2.6)

Finally, it results in the virtual control input

ν = B usat (2.7)

Of course, usat is not an optimal solution, since it corresponds to a ν < νd and

does not fulfill any optimization criteria. Therefore, the saturation effect cannot be

ignored, provided that it results in an undesired change in the controls direction and

in unplanned controls inputs, which may trigger instability. We can conclude that

a straightforward solution, such as the matrix inversion or the pseudoinverse, are

not suitable for allocating controls, since they do not take the saturation effect into

account.

2.2 Optimization Problem

Systems are frequently subject to nonlinearities, present constructive uncertainties

and other characteristics that may turn their modeling a difficult task. A good

approach is to consider the variables that best represent the problem in question to

obtain a solution as close as possible to the exact one. This modelling is regarded

as an important tool of conceptualization and analysis, rather than as a principle

yielding the philosophically correct solution (LUENBERGER and YE, 2008).

The optimization poses as an important tool for complex decision taking and

analysis. Therefore, it can be also expanded to control allocation problems, since

it establishes relation between related variables and delivers a solution that can be

quantified in terms of performance or any other quality parameter. The optimal

solution may be chosen so as to maximize or minimize a control objective.

A general optimization problem (NOCEDAL and WRIGHT, 1999) can be for-

mulated and brought to the context of control allocation, in the form
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minimize f(u)

subject to ci(u) = 0, i ∈ E
ci(u) ≥ 0, i ∈ G
u ∈ U

(2.8)

where E is the index set related to equality constraints, G is the index set related

to inequality constraints, f(u) is a objective function vector also denoted objective

or cost function and is subject to the equality constraints ci(u) = 0 and inequality

constraints c(i) ≥ 0. Both constraints form the attainable set of control inputs U,

as defined in equation 1.5. Not every optimization problem consists of both equality

and inequality constraints. Typically, inequality constraints are found in constrained

problems, such as those subject to saturation, whereas the equality ones are found

in the unconstrained type, although in both cases u ∈ U must hold.

Optimality Conditions

The optimality conditions are those that the a solution must fulfill and are often

referred as Karush-Kuhn-Tucker conditions. They consist of first derivative tests

and hence are also known as first-order conditions. Furthermore, they generalize

the method of Lagrange multipliers, which allows only equality constraints. The

Karush-Kuhn-Tucker (KKT) conditions pose as a theorem, as follows:

Theorem 2.1. The vector u∗ is a solution of (2.8) if and only if there exists vectors

u∗ ∈ Rp and λ∗ ∈ Rq for which the following conditions hold for (u, λ) = (u∗, λ∗):

∇xL(u∗, λ∗) = 0, (2.9a)

ci(u
∗) = 0, ∀ i ∈ E , (2.9b)

ci(u
∗) ≥ 0, ∀ i ∈ G, (2.9c)

λ∗i ≥ 0, ∀ i ∈ G, (2.9d)

λ∗i ci(u
∗) = 0, ∀ i ∈ E ∩ G. (2.9e)

Proof. It can be consulted on the Appendix B.

The vector λ is also known as the Lagrange multipliers for the constraints. Be-

sides containing the constraints from 2.8, the Lagrange multipliers must be non-

negative and in (2.21c), whether λ∗i or ci(u
∗) must be zero, so that (2.9e) is zero.

Therefore, it is called complementarity condition.
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P-norm

The norm adopted in the optimization problem plays an important role in control

allocation problems. The cost function f(u) is usually defined with l1 or l2-norm,

corresponding to a linear programming (LP) or a quadratic programming (QP)

problem, respectively.

Consider a cost function on the n-Euclidean space given by

f(u) =

∥∥∥∥∥∥∥∥∥∥
f1(u)

f2(u)
...

fn(u)

∥∥∥∥∥∥∥∥∥∥
p

(2.10)

whose p-norm is mathematically defined as

‖f(u)‖p =

(
n∑
i=1

|fi(u)|p
) 1

p

(2.11)

As p approaches infinity, it results in the l−∞ norm, defined as

lim
p→∞
‖f(u)‖ = ‖f(u)‖∞ = max |f(u)| (2.12)

Although control allocation problems often consist of linear constraints, the norm

of the objective function determines a surface in the space Rn and impacts the opti-

mal solution directly, as depicted in the figure 2.2, which illustrates two optimization

problems, one with l1-norm at the left and another with l2-norm at the right. The

cost functions are represented by dashed-line contours projected onto the feasible

region in gray and delimited by the constraint inequalities c(u) . Despite both plots

present the same feasible region, their optimal solutions u∗ are located in differ-

ent points - whereas in the linear programming problem it always coincides with

the vertices of the feasible region, in the quadratic programming it can be located

anywhere on an edge or even inside the feasible region.

Thus, the location of u∗ provides an important implication - solutions placed at

the vertices tend to demand more some actuators to the detriment of others, while

those located inside provided a more balanced distribution. Control balancing is

a desired characteristic in aircrafts BODSON and FROST (2011), since it allows a

homogeneous convergence of the control surfaces. In fact, the l2-norm has been more

extensively utilized to minimize errors in control allocation problems (JOHANSEN

and FOSSEN, 2013).

In BODSON and FROST (2011), the authors propose a control allocation prob-

lem formulated as an optimization problem with infinity norm and its conversion to
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Figure 2.2: According to the norm adopted for the cost function f(u), the optimiza-
tion problem admits different solutions. At the left, it is depicted the l1-norm, and
at the left, the l2. The cost function f(u) is represented by contours in dashed lines.

a linear program. The use of infinity norm to the detriment of the l1-norm is justified

based on the solution properties. The optimal solution obtained from the infinity

norm minimizes the deflection of the actuators and the maximum deflection will be

as small as possible, providing a better load distribution. On the other hand, from

the characteristics of the linear programming derived from the l1 norm, a control

input u may attain n values whether at the upper limit or in the lower. In another

words, if a virtual control νd cannot be achieved in any direction, n the actuators

will whether at one of their limits or at a preferred position. This property may be

questioned, since it may cause elevated deflection and the control surfaces cannot

converge simultaneously towards the desired moment.

2.3 Unconstrained Control Allocation

In the unconstrained control allocation problems, the saturation effects in the ac-

tuators are ignored and consists of finding a control input u such that νd = Bu.

The matrix inversion aforementioned belongs to this class of control allocation, for

instance.

In the general control allocation allied to saturation presented in (2.6), it was

considered only the situation where B is square and invertible. However, a problem

arises when the system is overactuated with a ”fat” control effectiveness matrix and

has full row rank. In this situation, a pseudoinverse solution can be applied to the

control allocation problem formulated as a l2-norm optimization problem, in the

form

min: f(u) = 1
2
(u+ of )

TWu(u+ of )

s.t. νd = Bu
(2.13)
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where Wu ∈ Rm×m is a positive definite weighting matrix and of ∈ Rm an offset

to represent an off-nominal condition with one or more control effectors (OPPEN-

HEIMER et al., 2010). The solution of the optimization problem is obtained by

calculating its Lagrangian, i.e by taking its derivatives with respect to u and its

Lagrange multipliers, and finally, setting it to zero, which yields

u = −of +B† [νd +Bof ] (2.14)

such that the pseudoinverse matrix B† is

B† = W−1
u BT

(
BW−1

u BT
)−1

(2.15)

If Wu = I and of = 0, the vector of control input is defined by the Moore-Penrose

pseudoinverse (JOHANSEN and FOSSEN, 2013), which results in

u = BT (BBT )−1νd (2.16)

Another unconstrained control allocation method is the Explicit Ganging (OP-

PENHEIMER et al., 2006) for combining effectors to reduce the number of effective

control devices. For instance, the position of the left and right ailerons in an airplane

can be linearly combined to produce a single effective roll control device, and thus,

to create a pseudo vector of control input and diminish the control space dimension

of the system. However, the Explicit Ganging can be utilized only if the contribu-

tion of the actuators to the control surface is known. Otherwise, the pseudoinverse

must undergo a Singular Value Decomposition, where the eigenvalues higher than a

preferred threshold value partitions the input and output unitary matrices to create

a new control effectiveness matrix in order to produce similar controls, with the ben-

efit of reducing the dimension of the problem, just as the Explicit Ganging. If the

errors due to the reduction cannot be neglected, a second submatrix with secondary

eigenvalues might be regarded.

Finally, the Daisy Chaining method can be utilized for setting a hierarchy among

the actuators, such that the desired control input is sequentially allocated. Given

a desired virtual control νd, the first actuator in the hierarchy is commanded to

actuate. However, if it saturates, the remaining control input required is allocated

to the next actuator hierarchically and so on.

2.4 Constrained Control Allocation

This section will cover methods for finding an optimal solution in problems where

input constraints are regarded and will presented more details concerning linear and
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quadratic programming, as well the main control allocation objectives and how they

can be converted into a standard linear programming problem.

Finally, the control allocation algorithms revisited in the texted are presented,

including their main characteristics and implementation details, which are

• Direct Control Allocation;

• Linear Programming with Simplex;

• Weighted Least Squares with Active Set;

• Quadratic Programming with Primal-dual Interior-point algorithm.

2.4.1 Linear Programming

The linear programming (LP) consists of a mathematical method to optimize a

linear objective function subject to linear constraints, represented by a set of m

linear equalities and inequalities, which define the feasible region U. If a candidate

solution u satisfies all the constraints, then it is called a feasible point. A standard

linear programming problem is, according to WRIGHT (1987), defined as

min: f(u) = cTu

s.t. Au = b

u ≥ 0

(2.17)

where c ∈ Rp is the coefficient vector, Aq×p, b ∈ Rq and x ∈ Rq is the searched

optimal solution that satisfies the constraints, while minimizing the cost function.

The Lagrange multipliers of (2.17) can be split into the vectors λ ∈ Rp and s ∈
Rn, where λ is related to the equality constraints and s to the inequality constraints,

respectively. Its Lagrangian is given by

L(u, λ, s) = cTu− λT (Au− b)− sTu (2.18)

Slack variables

Not rarely, the linear programs are not presented in the standard form and hence

cannot be directly solved by mostly algorithms available. It is necessary to imple-

ment some variable substitution for this purpose, called slack variables (WRIGHT,

1987), that when added to a inequality constraint, transforms it into an equality.

Consider that the linear program in (2.17) is formulated with an inequality con-

straint Au ≤ b instead. If a slack variable w ≤ 0 is added , the same expression can

be restated with equality and inequality constraints, which results in
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{
Au+ w = b

w ≤ 0
(2.19)

and can be solved by means of any LP solver.

Dual program

The standard optimization problem is associated with another similarly formulated

linear program, called dual, in the form

max: g(λ) = bTλ

s.t. ATλ+ s = c

s ≥ 0

(2.20)

where λ ∈ Rq is a vector of dual variables and denotes the Lagrange multipliers

for the equality constraints, and s ∈ Rp is the vector of dual slacks, namely the

Lagrange multipliers for the inequality constraints (WRIGHT, 1987). The linear

problem in equation 2.17 is often referred as primal, and both approaches are called

primal-dual pair.

Optimality Conditions

The vector u∗ is a solution of (2.17) if and only if there exists vectors s∗ ∈ Rp and

λ∗ ∈ Rq for which the following KKT conditions hold for (u, λ, s) = (u∗, s∗, λ∗):

ATλ+ s = c, (2.21a)

Au = b, (2.21b)

uisi = 0, i = 1, 2, . . . , p (2.21c)

u ≥ 0 (2.21d)

s ≥ 0. (2.21e)

Note that in (2.21c) whether ui or si must be zero for the equation to be zero,

and this condition is called complementarity condition. We can conclude as well that

the vector (u∗, s∗, λ∗) is a primal-dual solution if and only if u∗ solves the primal

problem (2.17) and (λ∗, s∗) solves the dual one (2.20).

2.4.2 Quadratic Programming

The quadratic programming (QP) stands for another type of optimization problem,

which consists of a quadratic objective function subject to linear constraints. Ac-
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cording to NOCEDAL and WRIGHT (1999), a standard quadratic program can be

stated as

min: f(u) = 1
2
uTQu+ cTu

s.t. Au ≥ b
(2.22)

where Q ∈ Rq×q is the Hessian matrix, that is the second partial derivative of the

quadratic problem.

Optimality Conditions

Similar to the LP problems, any optimal solution u∗ in QP problems must hold for

the first-order conditions presented in the KKT conditions 2.1.

The Lagrangian of equation 2.22 is given by

L(x, λ) =
1

2
uTQu+ cTu− λ(Au− b) (2.23)

From the KKT conditions, any solution u∗ must hold for

1

2
uTQu+ cTu− λ(Au− b) = 0,

Au∗ ≥ b,

λ∗i (a
T
i u
∗ − bi) = 0, i = 1, . . . ,m

λ∗ ≥ 0

(2.24)

A quadratic programming problem always admits solution, although the compu-

tational cost depends on the objective function and on the number of constraints.

If the Hessian Q is positive semidefinite, then the problem is called convex and can

be easily solved with a few iterations, demanding a computational cost similar to

the LP problems. Otherwise, if non-convex, the QP problem can present local so-

lutions and stationary points (NOCEDAL and WRIGHT, 1999), which hinders the

convergence to a global solution in the feasible region.

2.4.3 Common Objectives in Control Allocation

Common optimization problems are to minimize whether the error or the control

in the control allocation problem ν = Bu (BODSON, 2002). Generally, the most

common and primary objective in control allocation consists of minimizing the error

that a given optimal solution, namely control input, may inflict to the DoF of a

system. This objective calls error minimization and aims to find a control input u

that satisfies
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min: f(u) = ‖Bu− νd‖
s.t. umin ≤ u ≤ umax

(2.25)

On the other hand, when the error minimization problem results in a function

cost f(u) = 0 and the system is overactuated, the system has enough authority to

satisfy plainly the control requirements and hence the error minimization problem

may result in multiple optimal solutions. In this case, a secondary optimization

problem must be employed to choose among all solutions the one that best satisfies

a second criteria, called control minimization. In OPPENHEIMER et al. (2010),

the authors specify some situations where the control minimization is useful, such

as to minimize control deflection, wing loading, drag and actuator power in aircraft

applications. In minimum control deflection, the control effectors are driven towards

zero position, whereas in minimum wind loading the outboard aerodynamic surfaces

are likely to produce higher wing root bending moments when compared to the

inboard surfaces, then weights can be related to each effector so as to penalize the

outboard surfaces.

Thus, both objectives can be combined to produce a mixed optimization problem,

such that

min: f(u) = γ ‖Bu− νd‖+ ‖u− up‖
s.t. umin ≤ u ≤ umax

(2.26)

where γ > 0 is chosen to set priority on the error minimization over the control

minimization, and up is a preferred control with the preferred values for each effector

according to the issue found in each application, as mentioned.

When f(u) > 0, it means also that the control requirements are beyond the sys-

tem capabilities, which implies that the redundancy is not able of providing multiple

solutions. Therefore, γ may receive a high value, such that the error minimization

is not hindered.

The most commonly norms of the cost functions in formulations above are l1,

which can be transformed to the linear programming to be solved with any of the

available methods, such as Simplex and Interior-point (BODSON, 2002), and l2

norm, which results in a quadratic programming problem and can be solved through

the Weighted Least Squares with Active Set and the Sequential Least Squares

HÄRKEGÅRD (2002) and Iterative Fixed-point Method (JOHANSEN and FOS-

SEN, 2013).

Conversion to Linear Programming

Despite consisting of optimization problems, the control allocation problems are not

written as a standard LP problem. Then it is necessary to convert them properly,
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by formulating them with a cost function defined as a l1-norm. In OPPENHEIMER

et al. (2006), the authors present a conversion of the error minimization problem,

in the form

min: f(u) =
[

0 . . . 0 1 . . . 1
] [ u

w

]

s.t.


w

−u
u

−Bu+ w

Bu+ w

 ≥


0m

−umax
umin

−νd
νd


(2.27)

where 0m is a vector of zeros in Rm and w ∈ Rm is a vector of slack variables, which

represents how much control power demand exceeds supply in any given axis. In

case the function cost equals zero, the control is attainable. Otherwise, a weighting

vector Wv ∈ Rn×1 may be employed by formulating the cost function as

min: f(u) =
[

0 . . . 0 W T
v

] [ u

w

]
(2.28)

to correct the strictness of the problem and hence to penalize control power defi-

ciencies in some axes greater than others OPPENHEIMER et al. (2010), given the

control unbalance due to the location of the optimal solution in the LP problems.

2.5 Linear Programming with Simplex

Consider the error minimization problem converted to a linear programming formu-

lation, as detailed in the previous section, in the form

min: f(u) = cTx

s.t. Ax ≥ b
(2.29)

where

x =

[
u

w

]
(2.30)

and x ∈ Rp and the matrix A contains the vectors associated to x. The problem is

rewritten in the LP standard as
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min: f(x) = cTx

s.t. Ax− w = b

w ≤ 0

(2.31)

For solving it, the Simplex method was chosen, because it presents optimal

solution in finite time, a good performance and has already been utilized in control

algorithm works, like in BODSON (2002). In this work, the author utilizes the

Simplex method to allocate controls in some aircraft models, such as a complete

C-17 and a tailless model.

As a starting point, consider that A has full row rank and the problem has

already undergone a preprocessing phase for removing unnecessary variables and

redundancies in the constraints. Prior to solving the LP problem with the Simplex

method, it is important to introduce the concept of basic feasible solution, as defined

in NOCEDAL and WRIGHT (1999).

Consider that x is a feasible solution with at most p nonzero components,

in which it is possible to identify a subset B(x) originated from the index set

1, 2, 3, . . . , q, such that

• B(x) has exactly p indices;

• i 6∈ B(x) ⇒ xi = 0;

• a matrix AB ∈ Rp×p defined as

AB = [Ai]i∈B(x) (2.32)

is non-singular, and Ai is the i-th column of A. In case every condition here stated

holds, then x is a feasible basic solution.

Geometrically, Ax ≥ b represents a polytope in the space Rq. Algebraically, its

vertices coincide with the feasible basic solutions, what allows to state that every

feasible basic solution is a vertex of this polytope and vice-versa (NOCEDAL and

WRIGHT, 1999).

How Simplex works

The algorithm consists of two phases. In the first, the initial feasible basic solution

is found with of the Simplex algorithm itself in an auxiliary optimization problem.

In the second phase, successive new feasible basic solutions are searched with the

objective of lowering the function cost f(x), as shown in figure 2.3. This search

consists of moving from a vertex to another adjacent, permuting a variable which

is at its limit with another that is not. If it is not possible to reduce the cost
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Figure 2.3: At each iteration, the Simplex algorithm visits every adjacent vertex to
find the optimal feasible basic solution.

anymore, the optimal feasible basic solution x∗ has been found and the algorithm is

terminated.

The Simplex Algorithm

According to NOCEDAL and WRIGHT (1999), some considerations are needed

prior to solving the LP problem, which are

• let AB be a submatrix of A with all its linearly independent columns;

• xB stands for the basic variables associated to AB;

• let AN be the remaining columns of A;

• xN stands for the nonbasic variables associated to AN ;

• i = 1, 2, ..., q is the column index of A;

• B is an index set composed by indices related to AB;

• N is the complement of B related to AN ;

• The vectors s and c are also split into basic and non basic vectors, according

to the i indices of B, which gives sB, sN , cB and cN ;

• if x is a feasible solution, then xT s=0.

In order to find the optimal solution x∗, the constraint matrix A is rewritten

according to the definitions above, which results in

Ax = ABxB + ANxN = b (2.33)

By setting xN = 0, the primal variable is found by calculating

xB = A−1
B b (2.34)
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which satisfies the KKT conditions, since xB ≥ 0. To satisfy the complementar-

ity condition, we set sB = 0 and the remaining components of the algorithm are

calculated, as follows

λ = A−TB cB

sN = cN − ATNλ
(2.35)

If sN ≥ 0, the optimal feasible solution was found and the algorithm is termi-

nated.

Otherwise, a new index q ∈ N to enter B is elected, such that sq < 0. With this

choice, it is granted the decrease of the function cost f(x). Then, the equation

ABξ = Aq (2.36)

is solved for ξ. If ξ ≤ 0 the problem is unbounded and the algorithm is terminated.

Otherwise, calculate

xk+1
q = minj|ξj>0

(xB)j
ξj

(2.37)

and j is defined as the index of the basic variable for which the minimum is achieved.

Then, the basic and non-basic variables are updated by proceeding to the calculation

of

xk+1
B = xB − ξxk+1

q

xk+1
N =

[
0 . . . 0 xk+1

q 0 . . . 0
]T (2.38)

which forms a new feasible solution xk+1. Finally, q is added to B and j is removed.

At this point, an iteration is concluded and the next one starts at equation (2.33).

When the algorithm is terminated, i.e sN ≥ 0, then x∗ = xk+1 and the optimal

control input u is given by

u∗ =
[
x∗1 x∗2 . . . x∗m

]T
(2.39)

More information concerning Simplex can be found in NOCEDAL and WRIGHT

(1999) and WRIGHT (1987), although other linear programming solvers can be uti-

lized as desired, such as Dual-simplex or Interior Point (PETERSEN and BODSON,

2005).

Still concerning the Simplex algorithm, its efficiency is worth mentioning. De-

spite it has an exponential complexity, as observed in KLEE and MINTY (1972),

where the algorithm had to visit every 2n − 1 vertices to find the optimal feasible

basic solution, the majority of practical situations demands as many iterations as

two to three times the row rank of A.
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2.6 Direct Control Allocation

In DURHAM (1993), the author proposes a method for allocating overactuated

controls by projecting a desired virtual control νd onto the boundary of the attainable

set of virtual controls, denoted δA. First, the direction of νd is obtained, according

to the equation

ν̂d =
νd
‖νd‖2

(2.40)

Secondly, one determines the vertices and edges of δA, to which the desired

virtual control νd points to and their intersection ‖ν‖2 ν̂d, such that ‖ν‖ > 0. Oth-

erwise, the control u that generates the intersection ν is calculated, by rescaling νd

to lie on the boundary δA, such that

u∗ = αud, with α =
‖νd‖2

‖ν‖2

(2.41)

In the original work, Durham utilized a geometrical approach combined with the

addition of vectors to compound a linear system in order to find ν, as shown in

figure 2.4. However, in BODSON (2002), the author restated the problem as a LP

problem with equality constraints to determine α and u, in the form

max: f(α) = α

s.t. Bu = ανd

ανd ∈ A
(2.42)

which can be solved with any LP solver, such as Simplex.

Since νd has been rescaled, it results that the vector direction is maintained, and

provided that ν lies on δA, at least one actuator is required to work at its limit posi-

tion. The algorithm provides an attainable u with the maximum control utilization,

although it requires a umin ≤ 0 and umax ≥ 0, which makes the application difficult

(BODSON, 2002). The algorithm is also critized for not allowing to prioritize any

DoF.

2.7 Weighted Least Squares

The Weighted Least squares (WLS) belongs to the QP problem, provided that its

cost function is quadratic. The problem is algebraically formulated as

min: f(u) = ‖Wv(ν − νd)‖2

s.t. c(u) =

[
u− umin
umax − u

]
≥ 0

(2.43)
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Figure 2.4: The parallelogram represents A with vertices 1,2,3 and 4, and edges
connecting them. The virtual control ν is solution of the vector equation νν̂d+bν32 =
ν2.

where Wv ∈ Rn×n is a full-rank weighting diagonal matrix, useful for setting as-

signing weights to each DoF. In Wv, the diagonal elements may receive normalized

values for setting priorities to the moment generators in ν.

In MONTEIRO et al. (2016a), the authors propose a WLS solver which utilizes

the Lagrange multipliers of the cost function to derive an algebraic solution. The

solver constraints every effector at its lower and upper bounds to calculate a can-

didate solution u that minimizes the function cost f(u). Other solvers found in

the literature are the Weighting Least Squares with Active Set (WLSSA) and the

Primal-dual Interior Point (PDIP), which will be detailed next.

2.7.1 Weighted Least Squares with Active Set

The quadratic programming approach in equation (2.43) can be enhanced by adding

a control minimization term, which results in the equation

min : f(u) = ‖Wu(u− up)‖2 + γ ‖Wv(Bu− νd)‖2

s.t. : umin ≤ u ≤ umax
(2.44)

As proposed by HÄRKEGÅRD (2002), this mixed minimization problem can be

rewritten as

min: f(u) = ‖Au− b‖2

s.t. Cu ≤ U
(2.45)

where the matrices A, b, C and U stand for

A =

(
γWvB

Wu

)
, b =

(
γWvν

Wuup

)
, C =

(
I
−I

)
, U =

(
umin

−umax

)
(2.46)
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where I is an identity matrix and Wu ∈ Rm×m is a weighting diagonal matrix utilized

for setting priorities among the actuators.

The WLSAS was proposed in HÄRKEGÅRD (2002) to demonstrate that an

optimal solution u can be found in finite time, unlike other solvers, which converge

when iterations go to infinity. Thus, it can be utilized without restriction in practical

situations.

The active set algorithm splits the controls into a working setW for the saturated

controls and in a free set for the nonsaturated ones. An initial estimate of u0 ∈ U is

defined and at each iteration, an attainable control uk+1 is obtained at a successively

smaller cost f(u).

As the algorithm iterates, some inequality constraints are treated like equalities

and stand for the working set W , while the remaining ones are disregarded. The

working set at its optimal is known as active set.

In the algorithm, every actuator may be affected by an optimal perturbation

p ∈ Rm to be determined from

min: f(p) =
∥∥A(uk + p)− b

∥∥
2

s.t. Bp = 0,

pi = 0, i ∈ W

In case uk+p remains feasible, uk+1 receives the sum and the Lagrange multipliers

λ associated with the active constraints are calculated. Similar to other quadratic

programming algorithms, its Lagrange multipliers (λ, µ) are calculated from the

equation

AT (Au− b) =
(
BT CT

o

)( µ

λ

)
(2.47)

where µ are the Lagrange multipliers associated with ν = Bu and λ are those

associated with the active constraints Cu ≤ U , and CT
0 is composed by the rows of

C related to the constraints in the working set.

If all λ are nonnegative, uk+1 is the optimal solution and the algorithm is ter-

minated. Otherwise, the constraint related to the most negative λ is removed from

the working set.

Nevertheless, if uk + p is unfeasible, a step α must be determined, such that

uk+1 = uk + αp (2.48)

remains feasible. Afterwards, the primary bounding constraint is added to the

working set W and an iteration is complete. The algorithm goes back to equation

(2.7.1) and searches a new perturbation p. This process is repeated until every
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Figure 2.5: Interior-point algorithm travels through the feasible polytope towards
the optimal solution x∗.

λi ≥ 0 holds or a predefined maximal number of iterations has been reached.

This algorithm is more effective when a good estimate of the active working set

is available. Provided that a control input u calculated by the optimization problem

does not differ much between two sampling times, the last optimal solution may be

utilized as a good estimate u0 to reduce the amount of iterations.

2.7.2 Primal-dual Interior-Point

The Interior point methods are a class of algorithms which arise to compete with

Simplex, provided that the latter has presented little efficiency with complex prob-

lems with a large number of variables and demands large space for storing data.

The Interior point methods share a few characteristics that distinguish them from

Simplex, such as the computational cost - although each iteration of Interior point

has an elevated cost, they converge faster to the optimal solution. The algorithm

travels within a polytope, formed by the inequality constraints, towards their limit

borders, whereas the Simplex visits every adjacent vertex of the feasible polytope.

In NOCEDAL and WRIGHT (1999) and PETERSEN and BODSON (2005), the

authors present methods for linear and quadratic programming problems by using

Interior-point methods. However, in this dissertation the Primal-dual Interior Point

algorithm for QP is employed for control allocation purposes.

Now, we consider that the mixed optimization problem (2.26 is written in a

standard QP problem and undergoes a variable change, in the form{
x = u− umin, x0 = up − umin
xmax = umax − umin, ν0 = νd −Bumin

(2.49)

that results in the constraint set
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
x+ w = xmax

x ≥ 0

w ≥ 0

(2.50)

where w is a slack variable utilized to grant the upper constraint in x. An expansion

of the l2-norm of the mixed minimization objective over x is performed, which results

in the cost function

f(x) = (Bx− ν0)T (Bx− ν0) + γ(x− x0)T (x− x0)

= 1
2
xTQx+ cTx+ k

(2.51)

where H = 2(BTB + γI), cT = −2(ν0B + γx0
T ) and k = νT0 ν0 + γxT0 x0. Provided

that k is constant, it cannot influence on the optimal solution, and therefore can be

neglected. Thus, the optimization problem can be rewritten as

min: f(x) = 1
2
xTQx+ cTx

s.t. x+ w = xmax

x ≥ 0, w ≥ 0

(2.52)

The objective function in (2.52) is convex and the KKT conditions hold globally.

Therefore, a smooth barrier function log(x) is adopted to approximate the nonneg-

ative constraints x and w, which tend to −∞ when the analyzed variable tends to

0.

Now we proceed to the calculation of the Lagrangian of the equation (2.51),

which gives

L(x, λ) =
1

2
xTQx+ cTx+ λT (x+ w − xmax)− µ

n∑
i=1

log(xi)− µ
n∑
i=1

log(wi) (2.53)

where µ > 0 is a penalty parameter (PETERSEN and BODSON, 2005) and λ

a Lagrange multiplier for the dual variable. Then, the partial derivatives of the

Lagrangian with respect to x and λ are calculated in order to obtain the optimal

conditions of the problem. The derivatives result in the system of equations

Qx+ c+ λ− s = 0

x+ w − xmax = 0

Xs− µ1 = 0

Wλ+ µ1 = 0

x > 0, w > 0, λ > 0, s > 0

(2.54)

where the elements of the vectors x and w form the diagonals of X and W , re-
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spectively, and 1 is a vector in Rn. Provided x and λ cannot attain 0, it is needed

to impose equality constraints by performing the variables change s = µX−11 and

λ = µW−11. In order to satisfy the Karush-Kuhn-Tucker conditions, the equation

2.54 must be valid for µ = 0, and therefore, Xs = 0 and Wλ = 0 hold. On the other

hand, µ is the complementarity gap, since it guides the solution through a trajec-

tory named central path towards the optimal solution x∗. As the feasible solution

approximates x∗, µ tends to zero.

Algebraically, µ is defined as

µ = σγ, with γ =
xT s+ wTλ

2n
(2.55)

where 0 < σ < 1, and σ is an adjust parameter to set the convergence rate. Provided

that the intention of this method is to undertake an iterative search for the optimal

solution along the central path at successively lower µ, the candidate solution must

also be located at the neighborhood of the central path. Now by means of the

equation 2.54, the algorithm searches for the step direction, calculates the residuals

and the maximum step, whose implementation details can be consulted on BODSON

and FROST (2011). The optimal solution is found when all the residuals and the

complementarity gap are zero.

In PETERSEN and BODSON (2005), the authors revisit the problem for the case

with bilateral limits from the linear problem, which is then expanded. It is assumed

that a lower bound is zero, and for the upper, a second Lagrange multiplier λ is

added . Furthermore, the finite upper bound is manipulated through the use of a

slack variable w. Despite the adaptations result in equations similar to those in

2.54, structurally the formulation is still originated from the l1 norm.

2.8 Error Analysis

With the objective of validating and comparing the results obtained from the control

allocation techniques here addressed, it is important to define two suitable metrics

to deal with the main primary control allocation objectives. The first one is derived

from the error minimization objective, since it compares the error between the de-

sired and the effective virtual control vectors νd and ν. It is denoted Virtual Control

Error (VCE) and is calculated by

V CE = ‖νd −Bu‖2
(2.56)

and computed at each code iteration. This metrics was utilized in HÄRKEGÅRD

(2002) to compare some Weighted Least Squares algorithms, such as the Sequential

Least Squares, the Minimal Least Squares, the Redistributed Pseudoinverse and the
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Fixed-point Iteration.

To compare how the CA algorithms change the direction of νd and provided that

the DCA is also utilized to allocate controls in the simulations and experiments, we

propose a metrics to calculate it, called Direction Error (DE), given by

DE =

∥∥∥∥ νd
‖νd‖

− Bu

‖Bu‖

∥∥∥∥
2

(2.57)

and computed at each iteration and stored in a vector. The vectors are normalized

to allow a fair comparison of the directions. For both error analysis metrics, the

average and maximum values will be displayed and hence the CA algorithms will be

compared.

2.9 Conclusions

The main concepts of control allocation and the algorithms presented in this chapter

form the fundamentals of this dissertation, because they can be applied not only to

the systems to come, but also to any other robot desired, along with any desired

High-level controller.

The knowledge of the types of control allocation, such as constrained and un-

constrained, allow to comprehend how the allocation problem can be dealt with

and the respective optimization problem involved, besides providing the necessary

conditions for an optimal solution to exist. Next, the norm, the constraints and the

objectives allow to elect a strategy or an algorithm to address the control allocation

problem. Finally, the metrics to compare the experiments and simulations were

presented in order to provide a reliable tool to compare the results.
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Chapter 3

Robots: Modeling and Control

This chapter discusses the kinematics and the dynamics of the four robot types here

considered, presents the High-level controller adopted and provides also an overview

about how the control allocation can be applied to deal with the input constraints

to which they are subject.

3.1 Wheeled Mobile Robots

Among the mobile robots, the wheeled type is most common and presents simplified

constructive characteristics. They can adapt well to different terrain conditions and

can move not only in indoor environments, but also on general regular surfaces.

Their motion with respect to an inertial frame Fo can be provided whether by a

kinematic or a dynamic model. The kinematic model describes the configuration

of the robot as function of velocities, whereas the dynamic model describes its con-

figuration as function of the generalized forces delivered by the motors attached to

the wheels. Nonetheless, the kinematic model is the most adopted to describe their

motion (LAGES, 1998).

Consider a vector χ ∈ Re as the vector of generalized coordinates which describes

fully the robot configuration. A general kinematic model for a wheeled mobile robot

can be written as

χ̇ = G(χ)ν (3.1)

where G(χ) ∈ Re×n is composed by the input vector fields columns gi(χ) with

i = 1, . . . , n, the vector ν ∈ Rn corresponds to the virtual control input vector

composed by the generalized velocities of the vehicle with respect to the body frame

Fc and e is the number of DoF of the system SICILIANO et al. (2009).

Due to rolling and sliding constraints in the wheels, such systems have more DoF

e than the number n of virtual control inputs, and therefore, the matrix G(χ) has

less columns than rows.
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Figure 3.1: Posture of a two-wheeled-mobile robot with respect to the inertial frame
Fo.

This system also contains e−n nonholonomic constraints, which reduces the

maneuverability of the vehicle SIEGWART and NOURBAKHSH (2004) and can be

described by the equation below in the Pfaffian form

aTi (χ)χ̇ = 0, i = 1, . . . , e− n (3.2)

3.1.1 Differential Drive Robot

As an example, consider a wheeled mobile robot composed by two rigid differential

rear wheels and a front castor wheel to provide directional stability and to prevent

wandering, which does not contribute to the kinematic modeling. The wheels do

not suffer deformation and the vehicle moves on a horizontal flat plane.

The body frame Fc is located at half the distance from its wheels and it is used

as a reference with respect to an inertial frame Fo to describe the vehicle position

and orientation. It results that the robot travels in a 2D plane and can rotate

by a steering angle ψ about the Z axis, as depicted in 3.1. Thus, the generalized

coordinates χ of the robot are given by

χ =

[
p

η

]
(3.3)

where p ∈ R2, such that p =
[
x y

]T
, and η , ψ can be represented by the

rotation matrix

Rz(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.4)
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3.1.2 Nonholonomic Constraints

Although the full configuration of the robot is described by three DoF, the whole

configuration space can be accessed by means of the vector of generalized velocities

ν ∈ R2, since the differential drive robot is subject to 1 nonhonolonomic constraint,

which can be expressed in the Pfaffian form as

ẋ sinψ − ẏ cosψ =
[
sinψ − cosψ 0

]
χ̇ = 0 (3.5)

as described in equation 3.2. This constraint stands for a pure rolling constraint,

which means that in the absence of slipping, the velocity of the contact point has

zero component in the direction orthogonal to the sagittal plane (SICILIANO et al.,

2009), or in another words the wheel cannot move directly aside. Despite the non-

holonomic constraint, the vehicle can reach any desired posture in finite time.

3.1.3 Kinematics in Polar Coordinates

Consider that the virtual control inputs of a mobile robot are its linear velocity v

and angular velocity ω. Hence, the kinematic model SICILIANO et al. (2009) in

Cartesian coordinates is ẋẏ
ψ̇

 =

cosψ 0

sinψ 0

0 1

[v
ω

]
(3.6)

The vehicle must travel from a given posture (p1, φ) to a desired posture (p2, θ)
T ,

as depicted in the figure 3.2, which illustrates a parking maneuver task.

In order to implement the proposed control law, the system representation must

be converted from Cartesian to polar coordinates, as depicted in figure 3.2, where r

is the distance error between p1 and p2, θ denotes the desired orientation angle at

pose p2 with respect to the X axis, and α stands for the orientation error between

the θ and ψ. Algebraically, the coordinate system transformation is given by
r =

√
∆x2 + ∆y2

θ = atan2(∆y,∆x)

α = θ − ψ
(3.7)

with r > 0, α ∈ (−π, π] and θ ∈ (−π, π]. Then, the time derivative of the system of

equations in (3.7) is calculated to obtain the new kinematic model, which yields
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Figure 3.2: Conversion from Cartesian to polar coordinates.

 ṙα̇
θ̇

 =

− cosα 0
sinα
r

−1
sinα
r

0

[v
ω

]
(3.8)

It is important to mention that the equation presented in 3.8 is utilized only

for differential drive vehicles. Moreover, the case r = 0 must be avoided, since it

corresponds to a singularity and make α and φ become undefined. It implies that

the polar coordinate system cannot be related to the Cartesian coordinates.

It must be considered that commercial differential drive robots are not directly

controlled by the linear velocity v and angular velocity ω. In fact, these velocities

are converted into the wheel velocities, namely the left and right wheel velocities vl

and vr, respectively. These velocities are related by the mapping[
v

ω

]
=

1

2

[
1 1
1
rd
− 1
rd

][
vr

vl

]
(3.9)

where rd stands for half the distance between the rear wheels. In order to find the

corresponding individual velocities, the inverse mapping results in[
vr

vl

]
=

[
1 rd

1 −rd

][
v

ω

]
(3.10)

Odometry

The odometry is based on the concept that a wheel revolution can be converted

into a relative linear displacement. Its implementation is simple, since the required

sensors are commonly present in commercial mobile robots. The movement of the

robot is sensed whether by the wheel encoders or heading sensors, which are used

to compute the linear and angular velocities.
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Let βl be the encoder measurement from the left wheel rotation between two

measurement instants and βr the respective encoder measurement from the right

wheel, rw the wheel radius and cb is the number of transitions per wheel revolution.

The driven distance ∆d and the steering angle variation ∆ψ are obtained from the

formulas

∆d = πrw(βr+βl)
cb

, ∆ψ = πrw(βr−βl)
rdcb

(3.11)

which result in the linear velocity v and the angular velocity ω when integrated

SICILIANO et al. (2009).

In discrete time, given an actual pose χk, the next robot pose χk+1 with respect

to an inertial frame can be mathematically derived by using the Euler method

(SICILIANO et al., 2009), which yields

χk+1 = χk +

∆d cos ∆ψ

∆d sin ∆ψ

∆ψ

 (3.12)

One must consider that the sensor readings ∆d and ∆ψ are not taken with

respect to the inertial frame, but rather to the frame where the measurements were

last taken, which implies that errors are propagated to every future measurement.

Besides the measurement errors due to odometry, other systematic errors may also

be present, such as range, turn and drift errors, or may also be originated from

environmental factors (SIEGWART and NOURBAKHSH, 2004), such as:

• limited resolution during integration;

• misalignment of the wheels;

• uncertainty in the wheel diameter;

• variation in the contact point of the wheel;

• unequal floor contact;

• irregular floor surface;

• slipping during motion.

3.1.4 High-level Controller

According to the Brocket’s Theorem, a nonholonomic system cannot be asymptot-

ically stabilized by a time-invariant control law in the Lyapunov sense (BROCK-

ETT, 1983). Therefore, effective control laws have been extensively researched.
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The Lyapunov-based tracking control utilized in AICARDI et al. (1995) can be em-

ployed to control a wheeled mobile robot in polar coordinates and has been elected

as High-level controller for the control allocation scheme.

Without loss of generality, we consider that at every time instant, the condition

for the distance error r > 0 holds and the state variables (r, α, θ) can be directly

measured. We search a νd =
[
vd ωd

]T
that make the state variables converge

asymptotically to the limiting point
(

0 0 0
)T

, while r = 0 is avoided.

Consider the following candidate Lyapunov function:

V = V1 + V2

=
1

2
ζr2 +

1

2
(α2 + kθθ

2)
(3.13)

where ζ > 0 and kθ > 0 are parameters utilized for adjusting the controller output.

Provided that V is quadratic, the Lyapunov function is also a positive definite

function. Then, we proceed to the calculation of its time derivative, which yields

V̇ = V̇1 + V̇2

= ζrṙ + (αα̇ + kθθθ̇)

= −ζrv cosα + α

[
−ω + v

sinα

α

(α + kθθ)

r

] (3.14)

Now, the main challenge resides in finding input laws for generating the desired

virtual control inputs vd and ωd, such that V̇ ≤ 0. Then, the control laws suggested

in AICARDI et al. (1995) are

νd =

νd = krr cosα

ωd = kαα + kr cosα
sinα

α
(α + kθθ)

(3.15)

where kr > 0 and kα > 0 are controller design constants. Finally, V̇ results in

V̇ = −ζkrr2 cos2 α− kαα2 ≤ 0 (3.16)

As a result, V̇ is a negative semidefinite function as desired, and provided that V

is continuous, the closed loop stability of the system is granted. Hence, the following

observations can be made:

• V = 0 if and only if r = 0 and α = 0, i.e. the robot is exactly at p2 and at the

desired orientation θ;
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• V é bounded from below;

• V is not a increasing function due to (3.16);

• V is differentiable and V̇ é uniformly continuous. Hence, from the Barbalat’s

Lemma, V̇ tends to zero, and by analyzing (3.16), r e α also tends to zero.

By replacing (3.15) into (3.8), the following closed-loop system equations are

obtained to represent the system dynamics:
ṙ = −krr cos2 α,

α̇ = −kαα− krµθ cosα
sinα

α
,

θ̇ = kr sinα cosα.

(3.17)

The polar coordinates r and α tend to zero, thus ṙ and θ̇ will also tend to zero.

However, α̇ will converge to a constant value k1µθ. On the other hand, we already

know that α̇ is uniformly continuous and that α tends to zero, then we conclude

from the Barbalat’s Lemma that α̇ also tends to zero, which implies that θ = 0

(LAGES, 1998).

3.1.5 Control Allocation Problem

The differential drive vehicle consists of two independent wheels, used to control

three DoF, namely x, y and ψ, such that any desired posture χd can be reached by

means of the generalized velocities v and ω in finite time, and the linear and angular

velocities v and ω can be reproduced by a combination of the right wheel velocity

vr and left wheel velocity vl.

The control allocation problem for a wheeled mobile robot would typically be

concerned with the dynamics and would find the maximum and minimum torque

for the actuators. However, the control allocation range can be expanded also to

solve a kinematic problem, given that

ν =

[
v

ω

]
=

1

2

[
1 1
1
rd
− 1
rd

][
vr

vl

]
= Bu (3.18)

and B is an invertible control effectiveness matrix. If the High-level controller com-

putes a desired virtual control input vector νd that cannot be attained by the right

and left wheel velocities, the control allocation algorithms must find a “best” vector

of wheel velocities vr and vl .
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3.2 Remotely Operated Underwater Vehicle

Originally created to substitute divers, the Remotely Operated Underwater Vehi-

cles (ROV) are employed in deep-water works, such as scientific studies concerning

geology, deep-water fauna and flora and their ecosystems, rescue, inspection and

maintenance of undersea cables. Operations in such depth are executed in a harsh

environment under extreme pressure and cold temperatures, which impedes direct

human activities.

The ROVs play an important role in the oil and gas industry, as the demand

for oil worldwide increases and the onshore and shallow-water-offshore production

decreases, the search for fossil fuels is moving towards deep-water and ultra-deep-

water oil fields (SHUKLA and KARKI, 2016). The ROVs also perform human jobs

more effectively and are able to work uninterruptedly, what improves cost efficiency

and reduces the risk of environmental disasters, such as the oil spill in the Gulf

of Mexico in 2010. These facts have motivated improvements towards developing

more intelligent robotic technologies to improve safety during oil extraction related

procedures.

In this context, the Group of Simulation, Control and Automation in Robotics

(GSCAR), located at the UFRJ, has developed a ROV named LUMA, as shown in

figure (3.3). Formerly, the vehicle had been used for inspecting diversion tunnels

in dams. Later, it underwent modifications for resisting the adverse underwater

environment in the Admiralty Bay in Antarctica in order to gather high-quality

images from the seabed and from various forms of life found in waters up to 300

meters depth.

3.2.1 Kinematics

Given the inertial frame Fo and the ROV frame Fc, the position of the vehicle

can be described by the vector p =
[
x y z

]T
, as shown in figure 3.4. On the

other hand, its orientation can be described through the raw-pitch-yaw Euler angles

η =
[
φ θ ψ

]T
. Thus, its complete configuration is described by

χ =

[
p

η

]
, χ ∈ SE(3) (3.19)

where SE(3) is defined in equation A.27 and the Euler-angles derivatives are related

to the angular velocities as in equation A.17.

1Extracted from ANDRADE, Mariana R. Simulador para o ROV LUMA usando Gazebo. Poli
Monografias. UFRJ, 2017.
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Figure 3.3: View of the LUMA ROV1.

3.2.2 Static Model of Propellers

A ROV consists of a rigid structure with built-in propellers, whose layout does not

follow a strict pattern. There are many models released, which may vary the number

of propellers, their arrangement and constructive characteristics.

According to HSU et al. (2000), a general static model for a ROV with m pro-

pellers produces a thrust fi in the Pi direction and an axial moment τi, which are

related by the equation [
fc

τc

]
=

[ ∑n
i=1 fiPi∑n

i=1 [τiPi +Rpi × (fiPi)]

]
(3.20)

where Rpi is the thrust position of the i-th propeller with respect to the body frame

Fc, and force fc and torque τc are vectors in R3, in the form

fc =

fxfy
fz

 , τc =

τφτθ
τψ

 (3.21)

In HSU et al. (2000), the static model of the blades is described, such that the

forces fc and the angular velocity of the blades ωi presented in the model are related

by

fi = C∗T (σ)
ρ

8

[
v2
wi + (0.7πωiD

2)
]
πD2 (3.22)

where σ = arctan [vwi/(0.7πωiD)], vwi is the water speed that goes through the disk
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of the i-th blade, ρ is the water density and D is the blade diameter.

In order to calculate the thrust coefficient C∗T (σ), a linear interpolation utilizes

the angle σ and a table with values of σ and thrust coefficients collected experimen-

tally. In this experiment, the propeller actuators receive input currents in such a

way that the rotors rotate in both directions. The least squares method correlate

the measured thrusts generated by the i-th propeller at a rotation speed ωi. This

relation is not straightforward, but rather ωi is quadratic and is related to fi by a

factor α, such that

fi = α∗ω2
i ; α∗ =

{
α+, if ωi ≥ 0

α−, if ωi < 0
(3.23)

where α+ and α− are the thrust coefficients of the blade with respect to the direct

and reverse direction of rotation, respectively. These coefficients are utilized to

calculate the limit values C∗T (0◦) and C∗T (180◦) of the thrust coefficient, given by

the equations

C∗T (0◦) = 8α+/
(
ρ0.72π3D4

)
C∗T (180◦) = 8α−/

(
ρ0.72π3D4

) (3.24)

and utilized in a linear interpolation to compute C∗T (σ).

In this formulation, for simplification purposes, the cross coupling due to inter-

ference in the water flow from a propeller to another is neglected, and also, the

axial component of the velocity of the water which enters a propeller is equal the

component of the relative velocity of the ROV, parallel to the helix rotation axis

(HSU et al., 2000). Other dynamics neglected are the moments generated by each

propeller, since they are small when compared to the thrusts; the rotor dynamics,

since the motion of the ROV is too slow when compared to the rotor velocities; and

also the dead-zone in the actuators.

3.2.3 Dynamics

From the Newton-Lagrange Equations, the dynamics of the ROV can be written as{
(MCR +MA)χ̈+ C(χ̇)χ̇+D(χ) +G(χ) = ν

η̇ = R−1
r (η)ω

(3.25)

where MCR is the rigid body inertia matrix due to the rigid body dynamics, MA is

the inertia matrix due to additional mass, C is the centripetal and Coriolis forces,

D is the matrix due to friction, G represents the buoyant and gravitational forces

and ζ is the dynamics due to the umbilical cable.

For simplicity, hydrodynamic damping and the umbilical cable dynamics are
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neglected. Consider also that the ROV has symmetry with respect to the plane xz

and yz and Fc coincides with the center of mass. A more complete modeling of a

ROV can be consulted on HSU et al. (2000) and a model of LUMA can be consulted

on GOULART (2007).

The MCR matrix is composed by block submatrices, such as

MCR =

[
M11 0

0 M22

]
(3.26)

and its submatrices are given by

M21 =

 0 −MzG 0

MzG 0 0

0 0 0

 , M22 =

 Ixx 0 0

0 Iyy 0

0 0 Izz

 (3.27)

where M is the mass of the ROV. On the other hand, the additional inertia MA is

composed by the submatrices

MA =

[
AT ART

ATRT AR

]
(3.28)

whose elements are

AT = −

 A11 0 0

0 A12 0

0 0 A13

 , ART = −

 0 A21 0

A22 0 0

0 0 0

 (3.29)

AR = −

 A31 0 0

0 A32 0

0 0 A33

 (3.30)

and each element is the additional mass with respect to an axis for motion on it

or with respect to another axis, and pG ∈ R3 stands for the position of the gravity

center of the vehicle with respect to the body frame Fc and can be written as

pG =

xGyG
zG

 (3.31)

The Coriolis and Centripetal forces are calculated based on the rigid body dy-

namics C1 and also on the additional mass C2, which form the matrix

C(χ̇) =

[
03×3 C1

−CT
1 C2

]
(3.32)
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whose submatrices are given by

C1 =

 M (yGωy + zGωz) −M (xGωy − ż) −M (xGωz + ẏ)

−M (yGωx + ż) M (zGωz + xGωx) −M (yGωz − ẋ)

−M (zGωx − ẏ) −M (zGωy + ẋ) M (xGωx + yGωy)

 (3.33)

C2 =

 0 −Iyzωy − Ixzωx + Izzωz Iyzωz + Ixzω1 − Iyyωy
Iyzωy + Ixzωx − Izzωz 0 −Ixzωz − Ixyωy + Ixxωx

−Iyzωz − Ixzωx + Iyyωy Ixzωz + Ixyωy − Ixxωx 0


(3.34)

where ωc ∈ R3 stands for ωc =
[
ωx ωy ωz

]T
and corresponds to the angular

velocity with respect to the body frame Fc.
There exists a force that arises on immersed bodies called buoyancy force, which

pushes the body towards the surface. The buoyancy force can be intensified by means

of built-in floats to increase the displaced water volume. Another force common to

all rigid bodies is gravitational, which is exerted on the contrary direction. Thus,

the gravitational and buoyant forces are given by

G =

[
G1

G2

]
(3.35)

and the submatrices consist of

G1 = R−1
c

[
0 0 (Mg − ρg∇V )

]T
(3.36)

G2 =pG ×
(
R−1
c

[
0 0 Mg

]T)
−

pB ×
(
R−1
c

[
0 0 ρg∇V

]T) (3.37)

where Rc ∈ SO(3) is the rotation matrix relative to the ZYX-Euler angle described

in equation A.6, ρ is the water density, ∇V is the displaced water volume. The

parameter pB ∈ R3 is the position of the buoyancy center (HSU et al., 2000), given

by

pB =

xByB
zB

 (3.38)
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Figure 3.4: A submerse ROV connected by a umbilical cable to the inertial frame .

3.2.4 LUMA

LUMA has four propellers fixedly arranged at the bottom of its structure with

orientation Ri and placed at Pi with respect to the body frame Fc. These propellers

are responsible for producing thrusts on the axis X and Y , as depicted in 3.5.

The ROV LUMA also has one additional propeller, responsible for generating

thrust for controlling its depth with respect to the Z axis. However, since no control

allocation can be performed to control its depth, this propeller will be neglected.

However, the moments exerted by the propellers will be neglected since they are

to small when compared to the forces. Thus, the total forces and moments exerted

on LUMA due to the force generated by each propeller is given by

ν =

fxfy
τψ

 = Bu (3.39)

where u =
[
f1 f2 f3 f4

]T
and the mapping between forces and torques act-

ing on the body frame and those produced by each propeller is performed by the

uncoupling matrix B (GOULART, 2007), given by

B =

[
P1 P2 P3 P4

R1 × P1 R2 × P2 R3 × P3 R4 × P4

]
(3.40)

but without the rows corresponding to forces on the Z axis and torques τφ and τθ

about the X and Y axis, respectively, which yields a matrix B ∈ R3×4.

3.2.5 Reference Model

When planning a path, one may desire to drive the ROV from an initial pose to a

desired one. However, depending on the control law adopted, it is necessary to gen-

erate the desired dynamics of the trajectory between these poses in order to supply

the controller with information such as the desired velocity χ̇d and acceleration χ̈d.

This information can be obtained by means of a reference model, which is based
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on the filtering of the input signal and is utilized to obtain its first p time derivatives.

This filtering consists of implementing a p−th order filter MONTEIRO (2015).

For a second order filter, the corresponding transfer function is

H(s) =
kf1kf2

s2 + (kf1 + kf2)s+ kf1kf2

(3.41)

with kf1 > 0 and kf2 > 0 as design constants to determine the bandwidth. The

second order transfer function H(s) can be converted into an observable canonical

space state form, given by
χ̇in(t) =

[
− (kf1 + kf2) 1

−kf1kf2 0

]
χin(t) +

[
0

kf1kf2

]
χr(t)

χd(t) =
[

1 0
]
χin(t)

(3.42)

where χr(t) is the reference trajectory for a given DoF of the system and χin corre-

sponds to the internal states of the reference model. The state space representation

can be rewritten so as to generate the desired trajectory, velocity and acceleration

as output, which yields
χd(t) = χin,1(t)

χ̇d(t) = − (kf1 + kf2)χin,1(t) + χin,2(t)

χ̈d(t) = − (kf1 + kf2) χ̇d + kf1kf2 [χr(t)− χin,1(t)]

(3.43)

This model must be implemented for each DoF and hence it is possible to imple-

ment different dynamics by setting individual values for the design parameters kf1

and kf2.

3.2.6 High-level Controller

The High-level controller can be executed with a PD Controller, which is widely

used for control purposes and easy to implement. The proportional gain Kp ∈ Rn×n

corresponds to the response rate to an actual error signal, whereas the derivative

gain Kd ∈ Rn×n actuates as an error predictor.

Consider the pose error eχ = χd − χ, whose time derivatives yield the error

velocity ėχ = χ̇d − χ̇ and the acceleration error ëχ = χ̈d − χ̈. In order to correct the

acceleration, let χ̈ = ν̄ where ν̄ is given by

ν̄ = χ̈d +Kpeχ +Kdėχ (3.44)

Thus, the error dynamics becomes

ëχ +Kpeχ +Kdė = 0 (3.45)
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which is asymptotically stable for Kp > 0 and Kd > 0 according to the Routh-

Hurwitz criterion (OGATA, 2008).

In order to enhance the High-level controller, we include in the control law the

additional mass (3.26)), the Coriolis and Centripetal forces (3.32) and the effects

due to gravity and buoyancy (3.35) for compensation purposes, which yields the

following High-level controller:

νd = (MCR +MA)−1 [ν̄ − C(χ̇)−G(χ)] (3.46)

3.2.7 Control Allocation Problem

The ROV LUMA can move to any direction by means of a combination of forces

and torque, whose components are summed up to generate the desired forces and

torques with respect to the body frame Fc and hence to impose an acceleration to

the ROV, according to the Newton’s Second Law (A.63).

The nominal rotation direction of propellers is clockwise, although they can

also rotate counterclockwise. However, the maximum thrusts generated at both

directions is not symmetric - when clockwise, propellers may generate a maximum

force umax, and when counter-clockwise, umin, such that |umax| > |umin|. In fact,

a desired virtual control input, after processed by the uncoupling matrix B may

require the propellers to produce forces u, such that u 6∈ U.

If every propeller produces a force of equal intensity on its nominal direction, the

ROV will move forward because of the vector sum of the forces, which causes the

components with respect to X to cancel each other. However, an issue arises when

the forces required are not properly distributed among the propellers - there are

trajectories that require a propeller to rotate clockwise and hence can reach umax,

whereas another propeller is required to rotate reversely and hence can reach umin.

Some components of these forces may be supposed to cancel each other, but it is not

possible because of the asymmetries |umax| > |umin|. Due to saturation, undesired

residual thrusts arise as well, that deviates the robot from the desired path.

In the control allocation context, the uncoupling matrix B is the control effec-

tiveness matrix, the control input vector u is the forces produced by the propellers

and the desired virtual control input vector νd = fc,d stands for the desired forces

required by the High-level controller.

The High-level controller only computes the desired forces fc,d, since the moments

are much smaller than the forces. The fifth propeller is concerned only with the

depth control and therefore it does not contribute to the control allocation problem.
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Figure 3.6: Representation of a quadrotor along with the forces and torques gener-
ated by its propellers.

3.3 Quadrotors

A quadrotor, also known as quadrotor helicopter or quadcopter, is a type of heli-

copter with four propellers and rotors situated in an ordered position, laid out in a

cross equidistant configuration with respect to its center of mass rc, which contains

all the embedded electronics and control boards. The propellers consist of rotational

blades, responsible for generating forces and torques due to the Bernoulli’s principle

and the Newton’s Third Law, as depicted in the figure 3.6, and are controlled by

adjusting the angular velocities ωi of their rotors. Every pair of rotors rotate in op-

posite directions, clockwise and counterclockwise, and hence the need for tail rotors

is eliminated. Quadrotors have been employed in search and rescue, surveillance

and reconnaissance, and several other applications (BOUABDALLAH, 2007).
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3.3.1 Propellers, Forces and Torques

Let Fo be the inertial frame with the axis Zo pointing down and Fc the body frame,

whose origin in located in center of mass rc and the Z axis points down as well.

The rotation matrix Rc stands for the orientation of the frame Fc with respect to

Fo, such that Rc ∈ SO(3). The position of the quadrotor is defined as p and its

attitude in the XYZ-Euler angles as η, both with respect to the inertial frame Fo.
Therefore, the full configuration of the quadrotor is given by

χ =

[
p

η

]
(3.47)

The figure 3.6 illustrates the quadrotor and its four propellers. Each propeller

rotates at an angular velocity ωi, and as consequence, it generates a force fi upwards

and a torque τi about the rotor axis. Assuming that the propellers can rotate at

a unique direction, the forces and torques are related to their respective angular

velocities (BOUABDALLAH, 2007) according to

fi = κtω
2
i

τi = κdω
2
i

(3.48)

where κt > 0 is the rotor thrust coefficient and κd > 0 is the rotor drag coefficient.

It is important to notice that the robot has four control inputs, although its full

configuration is given by the generalized position vector χ ∈ R6. It implies that the

system is underactuated and it is not possible to control every DoF directly.

To control the altitude, a thrust Tz is produced on the Z axis by the sum of the

forces generated by each propeller, according to the equation

Tz = κt

4∑
i=1

ω2
i (3.49)

On the other hand, in order to control the attitude and to produce the torques

τφ, τθ and τψ about the axis X, Y and Z, respectively, the following formulas are

given  τφ

τθ

τψ

 =

 lκt (−ω2
2 + ω2

4)

lκt (−ω2
1 + ω2

3)∑4
i=1 τi

 (3.50)

where l represents the distance between the center of mass of the vehicle and any

propeller. Both equations for thrust and torques can be reunited in the matricial
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form 
Tz

τφ

τθ

τψ


︸ ︷︷ ︸

ν

=


κt κt κt κt

0 −lκt 0 lκt

lκt 0 −lκt 0

−κd κd −κd κd


︸ ︷︷ ︸

B


ω2

1

ω2
2

ω2
3

ω2
4


︸ ︷︷ ︸

u

(3.51)

which performs a transformation between the thrust and torques, here denoted as

the virtual control input ν, and the propeller velocities squared ω2
i , namely control

input u, in the context of control allocation.

3.3.2 Gyroscopic Effects

When a torque is applied perpendicularly to an axis of a rotating body and to its

angular momentum, the gyroscopic effect appears as a reaction against this torque,

which makes the rigid body rotate about an axis perpendicular to both torque and

momentum, according to the conservation of angular momentum. The faster the

body rotates, the stronger is this reaction.

Let ωR be the residual angular velocity of the rotors, such that

ωR = ω1 + ω3 − ω2 − ω4 (3.52)

In the quadrotor, the gyroscopic effect due to the rotation of propellers (BOUAB-

DALLAH, 2007) is given by {
τ ′φ = IrωyωR

τ ′θ = −IrωxωR
(3.53)

where Ir is the rotor inertia about its own axis. In the equation (A.63), it is rep-

resented by the Coriolis force. On the other hand, τ ′ψ is an induced torque due to

a variation in the rotation speed, also known as inertial counter torque (BOUAB-

DALLAH, 2007), which is

τ ′ψ = Irω̇R (3.54)

3.3.3 Rotor Dynamics

In the quadrotor, the propellers are actuated by brushless DC motors, which are

controlled by tension Vi and its output variable is the rotor velocity ωi. According to

MONTEIRO (2015), the relation output-input can be approximated by a first-order

differential equation, similar to the equation
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dωi
dt

= − 1

τm
ωi +

Km

τm
Ui −Qi (3.55)

with Km > 0 the DC gain of the motor, τm > 0 is the time constant, Ui ∈ R is the

input signal and Qi is the torque on the motor axis.

3.3.4 Newton-Euler Equations of a Quadrotor

Consider the Newton-Euler equation A.63 in the quadrotor context. The forces

that act on the vehicle are Fg due to the gravitational acceleration and thrust Tz,

as shown in figure 3.7. The Centrifugal and Coriolis forces disappear, since the

dynamic system is analyzed from the inertial frame. Therefore the dynamic model

results in 

Mẍ = (sinψ sinφ+ cosψ sin θ cosφ)Tz

Mÿ = (sinψ sin θ cosφ− cosψ sinφ)Tz

Mz̈ = Mg − (cosψ cosφ)Tz

Ixxω̇x = ωzωy (Iyy − Izz) + τ ′φ + τφ

Iyyω̇y = ωxωz (Izz − Ixx)− τ ′θ + τθ

Izzω̇z = ωyωx (Ixx − Iyy) + τ ′ψ + τψ

η̇ = R−1
r (η)ω

(3.56)

An aspect to consider is that Tz is coupled with respect to motion on the X, Y

and Z axis because of the pitch and roll angles. This coupling disappears only in the

quasi-stationary flight, where these angles become so small that can be neglected,

and therefore, Tz lies mostly on the Z direction. For motion with respect to the X

and Y axis, a pitching or rolling motion is required to change the direction of Tz and

produce thrust components on the X and Z axis, in response to a deviation in the xd

and yd references, respectively (BOUABDALLAH, 2007). The dynamic model can

be written in the control allocation context along with a small angle approximation,

which results in
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

Mẍ = (φ sinψ + θ cosψ)ν1

Mÿ = (θ sinψ − φ cosψ)ν1

Mz̈ = Mg − ν1

Ixxω̇x = ωzωy (Iyy − Izz) + τ ′φ + ν2

Iyyω̇y = ωxωz (Izz − Ixx)− τ ′θ + ν3

Izzω̇z = ωyωx (Ixx − Iyy) + τ ′ψ + ν4

η̇ = R−1
r (η)ω

(3.57)

Despite friction, hub forces, rolling moments and other aerodynamic effects ac-

tion were neglected in this dynamic model, it delivers a good approximation to

accomplish with the purpose of this dissertation. More detailed concerning this

model can be consulted on MONTEIRO (2015) and a more enhanced model can be

found in BOUABDALLAH (2007).

3.3.5 High-level Controller

Consider the mapping between the virtual control inputs and the propellers velocities

in the equation 3.51. The equations relate thrust and their components on the Z,

Y and X axis, and their respective torques τφ, τθ and τψ. Thus, the control can

be split into two steps in a cascaded approach, where the first is responsible for

generating the reference signals for the second step and for computing the thrust

Tz to control the altitude. In the second step, the reference signals calculated are

utilized to compute the torques τφ, τθ and τψ to control the attitude and the position

of the vehicle.

The altitude controller can be straightforwardly undertaken with a PD Con-

troller, which is widely used for this control purpose and easy to implement. The

proportional gain kp,z corresponds to the response rate to an actual error signal,

whereas the derivative gain kd,z actuates as an error predictor.

Consider the altitude error ez = zd− z, whose derivatives yield the error velocity

ėz = żd − ż and the acceleration error ëz = z̈d − z̈. Let z̈ = ν̄d,1 for implementing a

PD Controller in the form

ν̄d,1 = z̈d + kp,zez + kd,z ėz (3.58)

The PD Controller for the altitude control yields the error dynamics

ëz + kp,zez + kd,z ėz = 0 (3.59)

which is asymptotically stable for kp,z > 0 and kd,z > 0, according to the Routh-

Hurwitz criterion (OGATA, 2008). With the gravity compensation, the control law
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becomes

νd,1 = ν̄d,1 +Mg

= z̈d + kp,zez + kd,z ėz +Mg
(3.60)

On the other hand, the position control concerning the x and y coordinates is

not directly performed. From the rolling and pitching, the PD Controller proposed

in MONTEIRO et al. (2016a) calculates the desired values φd and θd for the inner

loop, implemented as[
φd

θd

]
= Kp

[
xd − x
yd − y

]
+Kd

[
ẋd − ẋ
ẏd − ẏ

]
+ g−1

[
ẍd

ÿd

]
(3.61)

where Kp = diag(kp,x, kp,y) and Kd = diag(kd,x, kd,y) are positive definite propor-

tional and derivative gain matrices, respectively. The desired values for pitch and

yaw are finally obtained by rotating the desired coordinates found in 3.61 in a small-

angle approximation, calculated according to{
φd = (φ sinψ + θ cosψ)φd

θd = (θ sinψ − φ cosψ)θd
(3.62)

For the attitude control, in BOUABDALLAH (2007) the author proposes an

inner loop control with a Integral Backstepping, whose approach is utilized to control

the dynamics of the angles θ, φ and ψ. Consider a roll error e1 = φd − φ and its

derivative ė1 = φ̇d − ωx. Now we assume that ωx can be a control input, whose

desired value is given by

ωx,d = φ̇d + k1e1 + k2ē1, with ē1 =

∫ t

t0

e1(σ)dσ (3.63)

for stabilizing the e1 dynamics, and k1 > 0 and k2 > 0 are proportional and integral

gains, respectively. Moreover, we compute the angular velocity error e2 = ωx,d − ωx
and its time derivative, given by

ė2 = ω̇x,d − ω̇x
= φ̈d + k1ė1 + k2e1 − ω̇x

(3.64)

Thus, the dynamics of e1 can be written as function of e2, which turns out to be

ė1 = e2 − k1e1 − k2ē1 (3.65)

This equation is substituted in equation 3.64 along with the dynamics of ωx from
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the equation 3.57, which yields

ė2 = φ̈d + k1(e2 − k1e1 − k2ē2) + k2e1 − ωyωz
(Iyy − Izz)

Ixx
−

τ ′φ
Ixx
− u2

Ixx
(3.66)

Now, the desired dynamics for the angular velocity error e2 is ė2 = −k3e2 − e1,

such that k3 > 0 is also a controller design constant. Thus, by equaling it with

(3.66), the control u2 results in

νd,2 = Ixx

[
e1(1− k2

1 + k2) + e2(k3 + k1)− k1k2ē1 + φ̈d

]
−ωxωy(Iyy−Izz)−τ ′φ (3.67)

Similarly, the steps for calculating the virtual control input νd,2 can be repeated

for νd,3 and νd,4, which yield the virtual control inputs

 νd,3 = Iyy

[
e3 (1− k2

4 + k5) + e4 (k6 + k4)− k4k5e3 + θ̈d

]
− ωbzωbx (Izz − Ixx) + τ ′θ

νd,4 = Izz

[
e5 (1− k2

7 + k8) + e6 (k9 + k7)− k7k8e5 + ψ̈d

]
− ωbxωby (Ixx − Iyy)− τ ′ψ

(3.68)

These control laws look similar to a PID control, although it compensates the

gyroscopic effects and the inertial counter torques in a feedback linearization strat-

egy.

3.3.6 Control Allocation Problem

The quadrotor is an underactuated system with 6 DoF and only 4 actuators. Pro-

vided that the system lacks two actuators to become fully actuated, the control of

a quadrotor tends to present a high sensibility when subject to an input constraint,

such as saturation.

The quadrotor is highly subject to saturation, specially in the initial instants

if it starts from a still position. Therefore, control allocation is necessary for set-

ting suitable controls for each rotor, so that it generates the best possible forces

and torques for tracking purposes, while presenting an acceptable performance and

respecting the constraints imposed by the minimal and maximal angular velocities

and hence the maximum and minimum forces and torques.

3.4 Robotic Manipulators

Manipulators are a fixed-base class of robot, which consists of joints and links se-

quentially interconnected. Their joints grant the manipulator the ability to perform
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a required task within its operational space and can be prismatic or revolute. The

prismatic joint creates a relative translational motion, whereas the revolute creates

a rotational one between two links.

A manipulator is chosen according to the required task. For instance, a planar

manipulator has 3 DoF and can perform a positioning task, while a 6-DoF manipu-

lator is demanded for both position and orientation in the three-dimensional space.

However, a 4-DoF planar manipulator for a positioning task has more additional

DoF available than the strictly needed. If more DoFs than task variables are avail-

able, the manipulator is called redundant (SICILIANO et al., 2009). At the end of

the sequence of joints and links there is an end effector, responsible for accessing

the environment inside the workspace.

3.4.1 Forward Kinematics

The configuration of an end effector can be described by

χ =

(
pe

ηe

)
∈ SE(3), (3.69)

where pe is the position of the end effector with respect to Fo, ηe is its orientation

and SE(3) is the 3-dimensional special Euclidean group, as defined in (A.27). Given

a manipulator with a total of n joints, let q ∈ Rn be with the position of the joints.

The mapping between q and the end effector configuration χ is denoted forward

kinematics and is represented by

χ = k(q) (3.70)

This relation can be obtained by fixing a coordinate frame at each link and

calculating its respective homogeneous transformation matrix (A.29) in order to

obtain its relative position and orientation. The transformation matrices sweeps all

the robot, from its inertial frame to the base, then passing by every joint sequentially

until the end effector, which results in a transformation matrix from the inertial

frame to the end effector, given by

χ = bT0
0Tn(q)nTe(q) (3.71)

For computing 0Tn, a common approach is the Denavit-Hartenberg convention,

which based on establishing a relative position and orientation of two consecutive

links (SICILIANO et al., 2009). In this convention, coordinate frames Xi and Yi are

fixed at the joint i and are related by the parameters ai for the link length, link twist

αi, link offset di and link angle θi, as illustrated in the figure 3.8. Thus, as defined in
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Figure 3.8: Denavit-Parameters at the zero position of the UR5.

CRAIG (2004), the transformation matrix obtained from the Denavit-Hartenberg

convention from the link i−1 to i is given by

i−1T i =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (3.72)

where cθi = cos θi, cαi−1 = cosαi−1, sθi = sin θi and sαi−1 = sinαi−1.

Thus, by defining a task, it is possible to plan it whether as function of q, also

called joint space, or as function of χ, namely operational space.

3.4.2 Diferential Kinematics

The linear and angular velocities of an end effector, ṗ and ω respectively, are related

to the generalized velocities q̇ by means of a matrix J(q) ∈ R6×n called geometrical

Jacobian. This matrix is very important, since it can be used to analyze singularities,

redundancies and determining the inverse kinematics (SICILIANO et al., 2009).

The Jacobian J can be split into two block matrices Jp and Jo, where Jp ∈ R3×n

is denoted position Jacobian and Jo ∈ R3×n is the orientation Jacobian. Thus, the

joint velocities q̇ and end effector velocities are related by[
ṗe

ωe

]
=

[
Jp(q)

Jo(q)

]
q̇ (3.73)

Consider a coordinate frame Fi placed at the joint i and consider also the end

effector frame Fe. The contribution of the joint i to the velocities of the end effector

is given by an adjoint transformation matrix (MURRAY et al., 1994), given by
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[
ṗe

ωe

]
=

[
I −ipe×
0 I

][
ṗi

ωi

]
(3.74)

Let ~hi be a unit vector corresponding to the axis of the joint i. Since there

are two different joint types, prismatic and revolute, the following relations can be

established:

[
ṗi

ωi

]
=



[
0
~hi

]
q̇i, if i is revolute

[
~hi

0

]
q̇i, if i is prismatic

(3.75)

By replacing (3.74) into (3.73), the adjoint matrix is adapted to consider the

possible motion of the prismatic and revolute joints, which results in

[
ṗe

ωe

]
=

[
Jip(q)

Jio(q)

]
q̇i =



[
~hi × ipe
~hi

]
q̇i, if i is revolute

[
~hi

0

]
q̇i, if i is prismatic

(3.76)

where Jip performs the mapping from the joint i to the linear velocity of the end

effector, and Jio, to the angular velocity.

The adapted revolute and prismatic adjoint matrices can be combined to consider

all the joints and their contributions to motion. In a manipulator with n joints, J(q)

is defined as [
ṗe

ωe

]
=

[
J1p J2p · · · Jnp

J1o J2o · · · Jno

]
q̇ (3.77)

An important issue about J(q) arises when it loses rank, i.e two or more columns

become linearly dependent. It implies that J(q) cannot be inverted and the ma-

nipulator has reached a singular condition. In another words, the correspondence

between the velocities q̇ and χ̇ is lost and the end effector cannot move to certain

directions.

As a matter of fact, the vicinity of a singular position must be avoided - as the

joint angles are driven to a singular configuration, the control over one of its DoF

is lost and the task to which it is designed cannot be fulfilled. When implementing

a control law, it is common also to perform a mapping from the joint space to the

end effector space, and vice-versa. For instance, when mapping from the task space
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to the joint space, the pseudo-inverse of J(q) leads to elevated joint velocities in

response to a minor motion of the end effector. It also affects the forces on the end

effector, since it is a result of the transposed Jacobian from the torques on the joints

(MURRAY et al., 1994).

3.4.3 Dynamics

From the Euler-Lagrange approach, the kinetic energy of a link is calculated based

on the position of its center of mass rci with respect to a link frame Fi. Let ṗci be

the linear velocity of the center of mass in link i. As defined in equation A.50 , the

total kinetic energy of a manipulator can be obtained from the summation of the

kinetic energy in its links, such that

T =
1

2

n∑
i=1

(mi ‖ṗci‖2 +
1

2
ωTi Iiωi) (3.78)

where ṗci and ωi are obtained from the partial geometric Jacobian (3.77), and there-

fore, they are function of q and q̇. The total kinetic energy T can be rewritten

as

T =
1

2
q̇TM(q)q̇ (3.79)

with M(q) as the inertia matrix of the manipulator (SICILIANO et al., 2009),

defined as

M(q) =

[
n∑
i=1

(miJ
T
pi
Jpi + JToiRiIiRiJoi)

]
(3.80)

On the other hand, the potential energy, defined in equation A.46, is calculated

according to

U = −
n∑
i=1

mig · orci(q)

= g(q)

(3.81)

Thus, the Lagrangian of the manipulator corresponds to the energy balance of

the system, which is given by

L(q, q̇) =
1

2
q̇TM(q)q̇ − g(q) (3.82)

By taking the partial derivatives according to equation A.57, it results in the

Lagrange equations
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M(q)q̈ + Ṁ(q, q̇)q̇ −


1
2
q̇TM1(q)q̇

...
1
2
q̇TMn(q)q̇

+G(q) = τ (3.83)

where τ is the generalized forces on the joints and G(q) is the vector of gravitational

forces. This equation corresponds to the manipulator dynamics and can be rewritten

in the standard form commonly found in literature

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (3.84)

where C(q, q̇) ∈ Rn represents the centripetal and Coriolis forces. Friction has

neglected in this dynamic model, although it is present in every mechanism and

increases the torque required to move the manipulator considerably in typical situ-

ations (CRAIG, 2004).

In this dynamic model, the contact forces hf may arise when the end effector

interacts with the environment and hence they can be regarded, resulting in

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ − JT (q)hf (3.85)

As mentioned, the manipulator can be controlled in the operational space. Thus,

its dynamics can be also written in the Cartesian space after some calculation using

the differential kinematics presented in the equation 3.77. Then, the dynamic model

in the operational space is

M̄(χ̈) + C̄(χ̇)χ̇+ Ḡ(χ) = F − hf (3.86)

such that 

M̄ = (JM−1JT )−1

C̄χ̇ = M̄JM−1Cq̇ − M̄J̇ q̇;

Ḡ = M̄JM−1G;

F = J−T τ

Contact Forces

In practical situations, end effectors are supposed to interact with the environment,

and as a result, the environment exerts forces and moments on them, called contact

forces. The contact forces play an important role in grasping tasks because it is

necessary to balance external wrenches on the payload by applying appropriate

wrenches at the contact points (MURRAY et al., 1994), otherwise the end effector

will not be able to hold the payload properly. In tasks which demand force control,
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Figure 3.9: Contact forces simulated as a spring-damper model.

such as manipulator-aided surgeries, the actuator must interact with precision on

skin and other body tissues. Therefore, contact forces must be measured by sensors

built at the tip of the robotic arm, such that the sensors undergo a deformation

according to the intensity of interaction.

For the estimation of the contact forces, consider the figure 3.9, which depicts

an interaction between an end effector and a rigid payload on the X axis. Between

them, there exists a compliant force sensor, which can be modeled as a spring-

damper model (EPPINGER and SEERING, 1987), according to the equation

hf = kpe(xe − xp) + kde(ẋe − ẋp) (3.87)

where kpe is the spring constant and kde is the damping constant. Typical values for

these constants are kpe = 10000 N/m and kde = 25 kg/s, which are values commonly

found in sensor materials (REN et al., 2016).

Nonetheless, a xe > xp implies in an interaction between the end effector and

the environment, whereas a xe < xp means that no contact forces arise since no

interaction occurs. This interaction details can be expressed as a penalty function

and can be written as

hf = max(0, kpe(xe − xp) + kde(ẋe − ẋp)) (3.88)

3.4.4 Cooperative Manipulators

Cooperative Manipulators are referred as two or more manipulators assigned to

carry out a certain task. They are used in tasks impossible to be executed by a

single manipulator, such as carrying heavy or large payloads. As they are employed

cooperatively, the control of interaction in such systems is particularly complex and
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has received attention of researchers since the early 1970’s.

Many strategies have been adopted for control purposes, such as master/slave

control, force/compliance control and task-space control (CACCAVALE et al., 2008).

In the task-space control, the control is concerned only with the kinematics, where

the cooperative system is described by the absolute and relative motions to the

detriment of the interaction forces.

Consider a cooperative system composed by N manipulators, such that each of

them contains ni joints. Let Fi be the end effector frame located at its tip, whose

pose is described by the position pi ∈ R3 and orientation Ri ∈ SO(3) with respect

to an inertial frame Fo. Consider also that the cooperative system manipulates

an object with an inner fixed reference point C, at which is located the object

frame Fc. The end effector frames are connected to Fc by means of virtual sticks ri.

These sticks simulate an extension of the manipulator, and therefore, they emulate a

manipulator link with length ri, as depicted in figure 3.10. Hence, each manipulator

now has a virtual end effector frame Fr,i, which coincides with the object frame Fc.
Its position and orientation are given by{

pr,i = pc

Ri = Rc

(3.89)

However, we must take into account that the virtual sticks assumption is valid

only if the grasp remains tight and presents no slipping during all the task, in such a

way that the displacements between the end effectors and the contact points can be

neglected. It implies that the equation 3.89 imposes a kinematic constraint between

every manipulator involved in the cooperative task and the object and therefore

they can be considered as a system of rigid bodies.

The kinematic constraint can be expanded to include also the positions, velocities

and the acceleration (CACCAVALE et al., 2008) of each end effector, which results

in 

pi = pc +Rcri

Ri = Rc

ṗi = ṗc − (Rcri)× ωc
ωi = ωc

p̈i = p̈c − ωc × (Rcri)× ωc − (Rcri)× ω̇c
ω̇ = ω̇c

(3.90)

Since a manipulator exerts a force on the object, the contact forces at the frame

Fi can be transformed into the object frame Fc through the adjoint transformation

matrix
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Figure 3.10: Superior and front view of a cooperative system, where the virtual
sticks ri connect the tips of end effectors to the object frame Fc.

r,iGi =

[
I3 03×3

ri× I3

]
(3.91)

The wrench ho exerted by the manipulators on the object, called external forces,

and the N forces exerted by each end effector at the contact point can be related

by combining their respective adjoint transformation matrices into a grasp matrix

G, such that

ho =
[
r,1G1 . . . r,NGN

]
hf,1

...

hf,N

 = Ghf (3.92)

The grasp matrix G is very important in cooperative tasks, since it relates the

individual contact forces with the wrench ho. However, a remainder of these forces

may arise and they do not cause motion at all, rather produce mechanical stresses

in the object, namely internal forces hI (CACCAVALE et al., 2008). These forces

belong to the null-space of the grasp matrix, namely ker(G), and can be mathemat-

ically written as

ker(G) = {hI |GhI = 0} (3.93)

and calculated by the equation

hI = ker(G) ker(G)†hf (3.94)

Topics concerning internal forces have been covered in many works, such as CAC-

CAVALE et al. (2008) and REN et al. (2016), where the authors limit the internal

stress on the object to avoid its damage. On the other hand, to some extent, internal

forces are also important for ensuring the grasping and no occurrence of slippage.

Therefore, they must be located inside a range in order to satisfy the kinematic

constraints and not to cause stresses on the object and on the manipulators.
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3.4.5 Impedance Control

In a task, manipulators can be required to interact with the environment. When

an end effector exerts a force on the environment, this force is a suitable quantity

to describe how the interaction is occurring. Conventional position controllers are

employed in simple tasks, like moving an object to a desired position, although they

are not suitable since they do not take the interaction forces into account. As a

result, elevated contact forces may arise, causing stress and damage to the object

and to the end effector (SICILIANO et al., 2009).

Proposed by HOGAN (1984), the impedance control is one of the existing force

control approaches and belongs to the category of indirect force control, since it

does not control force directly, but rather it utilizes the concept of impedance and

admittance. Similar to impedance in electrical systems, the motion of an end effector

can be related to a flow of electric charges and the applied force can be related to

the electric potential. Both physical systems can be divided into impedance and

admittance. In impedance, the motion of the end effector is regarded as an input,

or a flow of charges which produces a force or an electric potential as output. In

admittance, from a force or an electric potential as input, motion or flow of charges

are produced as an output.

From the side of mechanical system, with respect to any DoF, if the end ef-

fector acts like impedance, the environment must be an admittance and vice-versa

(HOGAN, 1984). However, since the end effector is the element to be controlled, it

must present the behavior of an impedance - if the force it exerts is not suitable,

the desired position will suffer deviation in a closed loop control system.

Thus, the impedance scheme produces a desired mechanical behavior between

the environment deviations and the forces due to interaction described by

Mdë+Ddė+Kde = henv (3.95)

where e = χ − χd represents the deviation of the end effector, Md stands for the

desired apparent inertia, Dd is the desired apparent damping and Kd represents the

desired environment stiffness, chosen so to achieve the desired compliant behavior

of the environment. Moreover, these matrices are positive definite and symmetric.

Concerning a manipulator, consider the dynamic model expressed by the equa-

tion 3.86 and a control law given by

τ = M(q)y + C(q, q̇) +G(q) + JT (q)hf (3.96)

The main idea behind this control law is to perform a global linearization in the

dynamic system. As contact forces arise, its dynamics becomes
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M(q)q̈ + C(q, q̇) +G(q) = M(q)y + C(q, q̇) +G(q) + JT (q)hf − J(q)Thf (3.97)

that after canceling out its terms, both sides of the equation are left-multiplied by

M−1(q), which results in

q̈ = y (3.98)

This equation reveals that any acceleration y can be imposed to the joints, pro-

vided that the contact forces can be measured and fedback into the torque-based

position controller. Thus, the control law

y = J−1(q)M−1
d

[
Mdχ̈+Ddėχ +Kdeχ −MdJ̇(q, q̇)q̇ − henv

]
(3.99)

will result in the dynamics described by the equation 3.95 in a closed loop dynamic

system. Nevertheless, it is important to emphasize that this implementation does

not perform a force control, but rather the impedance is controlled.

Given that henv cannot be directly measured, the equation 3.95 needs to be

transformed to include the object dynamics. Given that {χd, χ̇d, χ̈d} denotes the

desired object trajectory, the inverse dynamics of the object is given by

Moχ̈d +Doχ̇d +G(χd) = ho − henv (3.100)

where Mo is the object inertia matrix, Doχ̇ is the vector of the centrifugal and

Coriolis force and G(χ) is the force due to gravitation. This equation is solved for

henv and substituted in the equation 3.95, which results in

Mdë+Ddė+Kde = ho −Moχ̈d −Doχ̇d −G(χd) (3.101)

A remaining problem consists of obtaining an accurate object acceleration χ̈.

This issue may be solved by using the last acceleration χ̈ = χ̈l, or using the desired

acceleration χ̈d (SCHNEIDER and CANNON, 1992). In their work, both approaches

granted acceptable experimental results. With the last acceleration χ̈l, the equation

of the impedance controller results in

χ̈c = χ̈d +M−1
d [ho −Moχ̈l −Doχ̇−G(χ)−Ddėc −Kdec] (3.102)

where ec = χd − χc is the position error of the object.
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3.4.6 Kinematic Control

The kinematic control here presented computes a torque-based control in a manip-

ulator, such that its end effector tracks a desired position and orientation and the

error is driven to zero.

Remark. For simplicity of notation and provided that the control aims the end

effector level, the subscript i will be dropped from this moment on in this subsection.

Consider the differential kinematics equation

χ̇ = J(q)q̇ (3.103)

In order to establish a relationship between the joint and the task frames in

terms of acceleration, its time derivative yields

χ̈ = J(q)q̈ + J̇(q, q̇)q̇ (3.104)

For the reference trajectory {χr, χ̇r, χ̈r} for a given end effector , it is needed to

grant a perfect tracking of the Cartesian reference position and orientation. This

objective can be achieved by solving (3.104) for q̈ and by implementing a PD Con-

troller, such that the corresponding desired acceleration of the joints is given by

q̈d = J−1(q)
[
χ̈r +KDV ėχ +KPV eχ − J̇(q)q̇d

]
(3.105)

where eχ = χr − χ, KPV > 0 and KDV > 0. By substituting (3.105) into (3.104),

the error dynamics become

ëχ +KV Dėχ +KV P eχ = 0 (3.106)

which is a second-order exponentially stable and decoupled time-invariant error rep-

resentation.

However, provided that the manipulator is controlled by torque, the driving

torques τ are computed by using a computed torque controller (CACCAVALE et al.,

1997). Given the manipulator dynamics presented in equation 3.84, a control input

τ composed by two branches is employed in the form

τ = τFF + τPID (3.107)

where τFF is a feed-forward nonlinear control and τPI is a feedback linear control.

The control branch τFF is given by

τFF = M̂(q)q̈d + Ĉ(q, q̇) + Ĝ(q) (3.108)
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where M̂ , Ĉ and Ĝ are estimates for minimizing the effects of C and G and for

imposing the desired dynamics.

For the second branch, a standard PID control is proposed to grant perfect

tracking, in the form

τPID = KPCeq +KDC ėq +

∫ t

t0

KICe(σ)dσ (3.109)

where error eq = qd−q and q are the measured joint variables. The computed torque

τ in the manipulator dynamics results in the following closed loop dynamics

M(q)ë−KPCeq −
∫ t

t0

KICe(σ)dσ −KDC ėq = 0 (3.110)

With the assumption that M̂(q) = M(q), it turns out that the dynamics of the

error, given by the equation

ëq −KPCeq −KDC ėq −
∫ t

t0

KICe(σ)dσ = 0 (3.111)

is exponentially stable for KPC > 0, KIC > 0 and KDC > 0. This algorithm is known

as second-order closed loop inverse kinematics (CLIK) and provides accuracy, fast

tracking of reference trajectories and robustness against disturbances.

3.4.7 Static Load Allocation

As an application of control allocation in manipulators, the load distribution in

cooperative tasks is addressed in this text. When two or more agents are involved

in a cooperative task, the load can be shared among them efficiently. The motion of

every agent in the task has to be synchronized, while observing some aspects, such

as the possibility of arising elevated internal forces and the individual maximum

payload.

In BAIS et al. (2015), the authors propose two different load allocation strate-

gies, static and dynamic, which utilize weighting coefficients to set the load to each

agent. The strategies consider the influence of internal forces and different payload

capacities as well. According to the load allocated to the agents, a virtual center of

mass of the object other than the real one may arise. As a consequence, the desired

wrench is applied to the virtual center of mass, which results in undesired torques

exerted on the physical center of mass.

Consider N robots responsible for carrying or grasping a rigid object, where the

forces exerted by the end effectors h =
[
h1 . . . hN

]T
and the total force on the

object hc are related by
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hc = Gh (3.112)

The desired wrench hc is calculated by the inverse dynamics, which yields

hc = ho −Moχ̈d −Doχ̇d −G(χd) (3.113)

and must be shared to every manipulator involved in the cooperative task. The

impedance controller is implemented at the end effector level, such that the force hi

exerted by each of them contributes to the forces applied to Fc according to equation

3.112.

Consider now a desired object trajectory χd. The kinematic constraint will result

in a desired trajectory to be performed joint by all end effectors involved, which

results in the desired trajectory χd,i for the i-th end effector. Thus, the impedance

controller is given by

χ̈r,i = χ̈d,i +M−1
d (hi −Ddėi −Kdei) (3.114)

such that ei = χr,i − χd,i.
In order to find the forces hi to be exerted by the end effectors, the inverse

mapping of (3.112) can be written as

h = G†hc (3.115)

which is a typical pseudoinverse problem and can be formulated as an optimization

problem with equality constraints, in the form

min : f(h) = hTWuh

s.t. hc = Gh
(3.116)

where Wu is a weighting diagonal matrix for the task-space weights. A common solu-

tion for this constrained problem would be a weighted-pseudoinverse for computing

h, as presented in (SCHNEIDER and CANNON, 1992), but it is also possible to

pre-compute a new grasp matrix to allocate the loads promptly (BAIS et al., 2015)

, where the authors propose a parametrized grasp matrix G(Wu)
† that considers the

shift of the virtual center of mass. The authors define also a vector Wu ∈ RN with

normalized values to set priority for each agent, such that

N∑
i=1

Wu,i = 1 (3.117)

As a result, every agent will be in charge of employing a Wu,i percentage from

the total wrench hc to execute the task. By means of the Lagrange multipliers, the
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optimization problem is solved to obtain the grasp matrix directly, without the need

of calling the solver every time.

Let ∆ be a vector that points from the object physical center of mass to the

virtual one. The displacement vector ∆ is given by

∆ =
N∑
i=1

Wiri (3.118)

Thus, the individual force hi exerted by an end effector is an optimal unique

solution, given by

hi = βi

[
I3 − SK∆∆× SK∆

−K∆∆× K∆

]
hc (3.119)

where S = ∆×− ri×, K∆ = (I3 +M∆)−1, M∆ = It − (∆×)T∆× and

I t =
N∑
i=1

Wu,iri×(ri×)T (3.120)

The matrix M∆ represents the weighted inertia tensor of the system of end

effectors with respect to the virtual center of mass ∆ and Ic is the inertia tensor

with respect to the center of mass of the object. Thus, the undesired internal torques

derived from the displacement of the virtual center of mass are given by

hI = ∆× fd (3.121)

where fd is the desired force related to the translational motion. From this equation,

one can notice that the undesired torques disappear for ∆ = 0. Nonetheless, the

internal forces hI is regarded as a disturbance and limit the possible choices of Wu,

which must satisfy:

• if N = 2, there exists a unique solution if and only if the grasp sticks are

related by r1 = cr2, where c ∈ R+.

• if N = 3, there is only a unique solution and the grasp sticks ri span R;

• if N ≥ 3, there are multiple solutions.

The total wrench hc on the object and the individual manipulators forces h can

be related to the control allocation definitions, which yields

hc , νd, h , u (3.122)
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Figure 3.11: Block diagram of the control of cooperative manipulators.

3.4.8 Control Scheme of Cooperative Manipulators

The figure 3.11 illustrates how the control of cooperative manipulators is imple-

mented. In a task where N manipulators are involved, the figure illustrates how the

control is conceived for any i-th manipulator.

First, a reference trajectory χr for the object is generated, which forms the base

for computing the kinematic constraints to be respected by every end effector, as

presented in the equation 3.90. The kinematic constraints result in the desired

trajectory χd,i. The acceleration χ̈d of the trajectory generator is also utilized as

an estimate of the object acceleration and to compute the inverse dynamics of the

object, which is compensated by the external forces due to the contact forces. It

yields an estimate of the desired force νd , hc to be applied on the object, which is

distributed to the manipulators according to a predefined sharing policy.

Then, the impedance controller promotes an impedance-admittance relation be-

tween the end effector and the environment in order to generate the force hi at the

cost of provoking a deviation in the reference acceleration χ̈r,i. The acceleration

is integrated, which yields the velocity χ̇r,i and pose χr,i. However, this trajectory

must be converted into the joint space by means of the Closed Loop Inverse Kine-

matics (CLIK), which utilizes the values of the previous control loop q̇d,i and qd,i to

generate the new desired trajectory qd,i.

The Computed-torque controller receives the desired trajectory qd,i and qd,i, the

actual joint angles qi and the joint velocities q̇i for the PID Controller branch, which

is responsible for ensuring a good tracking and accuracy, and also for compensating

gravity and the centrifugal and Coriolis force. Thus, the Computed-torque controller

finally generates the torques τi to control the i-th manipulator.

Finally, the manipulator tracks the desired trajectory and provides new contact

forces, velocity q̇i and position qi of the joints to a new execution of the control

scheme. Similar approaches can found in REN et al. (2016) and CACCAVALE

et al. (2008). However, this approach differs from those because the authors have
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implemented an impedance control at the object level to find a desired trajectory

and to implement an internal impedance control at the manipulators level to impose

internal forces to the object. These algorithms also do not allow sharing policies,

such as to distribute a load percentage Wu,i to each agent.

3.5 Conclusions

The robotic systems addressed in this dissertation have been presented in this chap-

ter, along with their main aspects and the dynamic and kinematic equations. For

the wheeled mobile robots, the differential drive robt has been presented, along with

its nonholonomic constraint and a Lyapunov-based feedback controller. The ROV

LUMA is an overactuated system with respect to x, y and ψ and the PD controller is

responsible for the High-level Controller. The quadrotor is an underactuated system

and a Integral Backstepping controller has been elected to control it. Finally, the co-

operative task consists of manipulators, whose motion is provided by a impedance

controller along with a Closed-look Inverse Kinematics and torque-computed to

control the manipulators. Nonetheless, the suggested High-level controllers may be

exchanged for any other traditional control law.
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Chapter 4

Experiment Results and

Simulations

This chapter is concerned with experiment and simulation results, where the con-

trol strategy consists of a High-level controller and a control allocation algorithm,

as defined in the previous chapter, for each robot detailed. The experiment and

simulations were executed in MATLAB R© R2017a environment in a notebook with

processor Intel Core R©i7 2.70 GHz and 8 GB RAM memory.

4.1 Overview of the Algorithms

The control allocation algorithms detailed in this chapter are summarized in the

table 4.1 for better visualization, where their related optimization problems are

mathematically expressed along with their main characteristics.

4.2 Wheeled Mobile Robot

The control allocation algorithms are validated with the autonomous vacuum robot

Roomba R© 621 designed by iRobot, depicted in figure 4.1, with the Lyapunov-based

feedback controller. It is a differential drive robot composed by right and left wheels

with independent actuators. Under the faceplate indicated in the figure 4.2a, there

is a female connector designed for a serial cable with 7 pins, depicted in 4.2b. This

connector contains a RXD and a TXD pin for receiving and transmitting data,

which use serial communication TTL at 0-5 Volts levels. The iRobot has released

the iRobot Create USB cable, which converts from serial to USB and allows the

computer and Roomba to communicate at a 115,200 baud rate.

When connected to a computer, the USB cable turns its LEDs on and the com-

puter recognizes it automatically through any communication port COM available.
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Algorithm Optimization Problem
Cost

Function
Objective

DCA
max: f(α) = α
s.t.: Bu = ανd, ανd ∈ A Linear

Direction
maintenance

Simplex
min: f(x) = cTx
s.t.: Ax ≥ b

Linear
Error

minimization

PDIP
min: f(u) = ‖u− up‖2 +

γ ‖νd −Bu‖2

s.t.: umin ≤ u ≤ umax

Quadratic
Mixed

minimization

WLSSA
min: f(u) = ‖Wu(u− up)‖2 +

γ ‖Wv(νd −Bu)‖2

s.t.: umin ≤ u ≤ umax

Quadratic
Mixed

minimization

SLA
min: f(h) = hTG(β)h
s.t.: ho = Gh

Quadratic
Load

allocation

Table 4.1: The control allocation algorithms and their main characteristics.

Figure 4.1: The Roomba 621 manufactured by iRobot.
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(a) The anatomy of Roomba. 1 (b) The female connector located under the
faceplate of Roomba.

The robot has also four operating modes, denoted off, passive, safe and full, where

the last three modes are sorted in an increasing order of access. The safe mode

grants full control of the robot - it allows to send commands the wheels, to read

sensors, but the robot still detects cliffs or when it leaves the ground, wheel drop

and charger plugged in. When any of these situations is detected, the robot leaves

the safe mode. In order to prevent a misuse, all the experiments are executed in

safe mode.

The MATLAB Toolbox for the iRobot Create 2 (ESPOSITO, 2015) eases a lot

the communication between the computer and Roomba. This toolbox was developed

to run in MATLAB environment and contains a list of user-friendly commands.

Originally, for accessing Roomba it was necessary to write one-byte opcodes. The

toolbox translates these opcodes to intuitive commands, such that the user does not

need to worry about sequences of codes to send and read data. The robot contains

commands to read the distance traveled and the angle, which are based on the

encoder readings of the right and left wheel. The readings are then converted based

on the odometry equations in 3.11. The Roomba robot contains an encoder at each

wheel, with resolution equal 508.8 counts per revolution and each wheel can travel

at a maximum velocity of 0.5 m/s forward and reversely, although the odometry

presents huge errors at such rates. Therefore, for the experiment, the maximum and

minimum velocities were set at ±0.2 m/s.

The constructive parameters utilized for modeling the kinematics of Roomba and

to convert the encoder reading to distance and angle traveled are presented in the

table 4.2.

In the control allocation context, the desired virtual control input νd and the

control input vector u are respectively given by

1Figure extracted from www.irobotweb.com/-/media/Files/Support/Home/Roomba/600/Roomba-
600-Manual.pdf
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Parameter Description Unit Value

rd half the distance between wheels m 0.1175
rw wheel radius m 0.036

Table 4.2: Parameters of the Roomba robot.

νd =

[
vd

ωd

]
, u =

[
vr

vl

]
(4.1)

The virtual control input vector ν ∈ R2 and the control input u ∈ R2 are related

by the control effectiveness matrix, which for the robot Roomba is

B =

[
0.5 0.5

4.2553 −4.2553

]
(4.2)

with rank(B) = 2.

Then, the Roomba robot is required to navigate through waypoints, which form

a trajectory similar to a lane-change maneuver. Every waypoint is circumscribed

by a circumference of radius ε = 0.1 m utilized as a trigger to set the next desired

waypoint as the vehicle touches its limits, namely r ≤ ε. In order to impose different

control requirements and hence to apply the control allocation strategies at such

circumstances, it is necessary to impose different trajectories. Provided that the

Lyapunov-based feedback controller formula proposed by AICARDI et al. (1995)

does not contain desired velocities or accelerations, we can impose it by varying the

distance error r, since it is the polar coordinate that mostly interferes in the desired

virtual control vector νd. The further the desired waypoint is located, the higher

is the distance error r and also the linear velocity v, or depending on the sequence

of waypoints, for instance in a tricky trajectory with obstacles to be avoided, the

high-level controller may also require demanding trajectories in terms of the angular

velocity ω.

Thus, a solution for imposing higher control requirements is to increase the dis-

tance between the desired coordinates xd,i and xd,i+1, which results in the following

trajectories

• desired trajectory 1: xd =
[
−3 −2.5 −2 −1.5 . . . 3 3.5 4 4.5 5

]
• desired trajectory 2: xd =

[
−2.75 −2 −1.25 . . . 3.25 4 4.75 5.5

]
• desired trajectory 3: xd =

[
−2.5 −1.5 −0.5 0.5 1.5 2.5 3.5 4.5 5.5

]
To complete the desired waypoint coordinate, the corresponding yd,i is calculated

according to the function
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Parameter Unit Value

kr - 1
kα - 1
kθ - 0.5
ε m 0.1
Wu - I2

Wv - I2

γ - 106

ui,min m/s −0.2
ui,max m/s 0.2

Table 4.3: Parameters of the control allocation techniques.

yd,i =


−1, if xd,i < −1.25

sin(xd,i), if −1.25 ≤ xd,i < 1.5

1, if xd,i ≥ 1.5

(4.3)

Finally, the experiment starts with the vehicle at the posture χ(0) =
[
−4 −1 π/2

]T
in the Cartesian coordinates. The experiment lasts 50 seconds, regardless of whether

the trajectory or the control allocation algorithm utilized.

The figure 4.3 depicts the three trajectories assigned to Roomba when no control

allocation algorithm is applied and saturation remains unmanaged. The plots (a),

(b) and (c) represent the trajectories 1, 2 and 3, and (b), (d) and (f) their virtual

controls, respectively. When the vehicle enters the circumference defined by r ≤ ε

and the next desired waypoint is set, the desired virtual control input vector νd in the

following seconds corresponds to wheel velocities at the saturation values. It results

in a virtual control input ν that does not respect any optimization criteria and causes

a navigation towards undesired directions. As the control requirements increase,

performance becomes more deteriorated, as shown in the trajectories 1, 2 and 3. The

trajectories traveled are not the shortest path, although they still can reach some

desired waypoints. In the trajectory 3 between t = 25.6 and t = 28 s, the vehicle

is even required to travel backwards in order to correct its orientation and navigate

towards the desired waypoint xd,4. In order to circumvent the input constraints

imposed by the maximum and minimum wheel velocities and to grant smooth and

efficient travelling, the results for the control allocation techniques employed are

shown and discussed next.

Direct Control Allocation

The figure 4.4 illustrates the experimental results obtained with the Direct Control

Allocation. This algorithm provides motion towards the direction desired by the
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Figure 4.3: Results when saturation is umanaged. ( # initial position; × desired
waypoints; trajectory traveled; linear velocity v; angular velocity
ω; (a) trajectory 1; (b) linear and angular velocities for trajectory 1; (c) trajectory
2; (d) linear and angular velocities for trajectory 2; (e) trajectory 3; (f) linear and
angular velocities for trajectory 3.

High-level controller, but with lower performance. When experiment starts for the

three desired trajectories, the robot rotates clockwise, travels forth and back, and

forth again while rotates counterclockwise until it reaches a steering a orientation

error α low enough to travel linearly towards the first desired waypoint xd,1. From the

plots, one can notice also that the High-level is mainly concerned with prioritizing

the linear velocity, whereas the angular velocity ω presents minor values along the

rest of the experiment, which allows the robot to travel smoothly and to converge

the degrees of freedom simultaneously. We can observe a more constant angular

velocity as the distance between xd,i and xd,i+1 increase, provided that the robot

tends to travel in a straight line after correcting its orientation when a new xd,i is

set.

Linear Programming with Simplex

A simultaneous convergence of the degrees of freedom is not observed with Simplex,

as shown in figure 4.5. When experiment starts, the Simplex changes the desired

80



Figure 4.4: Results with the Direct Control Allocation.

dynamics to prioritize the orientation of the robot. Then, it rotates clockwise and

starts decreasing the angular velocity and increases the linear velocity, while travels

towards the first waypoint. Everytime the robot reaches the circumference r ≤ ε,

it first corrects the orientation, and then, travels to reduce the distance error r.

However, the oscillatory response observed in ω in (b), (d) and (f) shows that the

Simplex is always correcting the orientation to a lesser extent.

Despite the choice of the parameters kr, kα and kθ to provide a damped response

and simultaneous convergence of the degrees of freedom, as noticed with the DCA,

we can notice that the dynamic behavior of the angular velocity ω corresponds to

higher values of kα and kθ. Therefore we can conclude that the Simplex changes the

design parameters of the controller. The transient response observed is undesired

is most situations, although the vehicle still visits every desired waypoint, with

exception of the last one due to time restriction.

Weighted Least Squares with Active Set

Despite the WLSAS changes the control direction to minimize the error, the error

minimization term in the Roomba robot results in a unique solution, and therefore,

a secondary control objective cannot be satisfied. The figure 4.6 presents the ex-
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Figure 4.5: Results with the Simplex.

periment results for the WLSAS. Provided that the quadratic cost function allows

a simultaneous convergence of every DoF, it does not present transient responses

as intense as those observed in Simplex, although they cannot be visually observed,

except for the outlier peaks with the angular velocity ω > 0.1 rad/s, as observed

in plots (b), (d) and (f). As expected, the trajectory traveled becomes more stable

and smooth as the distance between the desired waypoints increase.

Primal-dual Interior Point

The last algorithm here considered is the PDIP, whose results are displayed in fig-

ure 4.7 and are similar to those observed with the WLSAS, although it presents a

smoother response, specially the angular velocity ω in the plot (f) for the trajectory

3. Just like the WLSAS, the algorithm only minimizes the error and provides a

unique solution, since the vehicle works with at least one wheel at the saturation

levels and the system is underactuated.

Considerations

In the figures 4.8 and 4.9 are depicted the control input signals for each wheel,

obtained from the control allocation algorithms, such that the figure 4.8 contains
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Figure 4.6: Results with the Weighted Least Squares with Active Set.

the optimal solutions obtained from DCA and Simplex, and in 4.9 are presented the

control inputs for the WLSAS and PDIP algorithms. In all the plots, the saturation

levels are respected and the control signals are constrained to these limits.

The control inputs for Simplex present an oscillatory behavior, as detailed pre-

viously, when compared with the DCA, which provokes a nonuniform trajectory of

Roomba. On the other hand, the algorithms, WLSAS and PDIP, also provided good

results and a smooth trajectory. Although the behavior presented by Simplex still

converges to the desired waypoints, it can be undesired in more sensible tasks, such

as for transporting dangerous materials or people.

For providing a more precise analysis of the results obtained with the algorithms,

the virtual control input error is displayed in the tables 4.4, 4.5 and 4.6. The tables

are composed by three columns, to register the maximum and average norm values,

calculated according to equation 2.56. The values were rounded to the nearest

second decimal.

In the Virtual Control Error (VCE), the DCA presents the highest errors among

all the control algorithms, not only the maximum errors but also the average ones.

Such values are expected since optimization problem is not concerned with the error

minimization, but focuses on only with the direction maintenance, although it still

able to reach the desired waypoints, as observed in the experiments. The maxi-
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Figure 4.7: Results with the Primal-dual Interior Point.

mum and average errors in Simplex, WLSAS and PDIP do not present meaningful

differences.

On the other hand, when analyzing the Direction Error (DE), we see that the

DCA presents error 0 for the maximum and average values found. The WLSAS and

PDIP present similar nonzero values, as expected, provided that both utilize QP

formulations. However, the Simplex algorithm presents the highest DE for all the

three trajectories and these discrepancy cannot be neglected. In fact, the Simplex

is a LP optimization problem, which finds solutions located only at the vertices and

hence the results confirm the theory.

Table 4.4: Virtual control errors (VCE) and Distance Error (DE) for the trajectory
1 in Roomba.

Algorithm
VCE DE

Maximum Average Maximum Average

DCA 3.42 0.22 0 0
Simplex 0.71 0.19 0.70 0.17
WLSAS 0.64 0.18 0.63 0.08
PDIP 0.65 0.19 0.63 0.10
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Figure 4.8: Wheel velocities in the DCA (plots a, b and c) and Simplex (d, e and
f). (Legend: right wheel velocity vr; left wheel velocity vl).

Table 4.5: VCE and DE for the trajectory 2 in Roomba.

Algorithm
VCE DE

Maximum Average Maximum Average

DCA 3.61 0.36 0 0
Simplex 0.97 0.33 0.81 0.27
WLSAS 0.97 0.32 0.74 0.12
PDIP 0.98 0.31 0.76 0.10

Table 4.6: VCE and DE for the trajectory 3 in Roomba.

Algorithm
VCE DE

Maximum Average Maximum Average

DCA 3.76 0.50 0 0
Simplex 1.31 0.47 0.92 0.24
WLSAS 1.29 0.45 0.82 0.11
PDIP 1.30 0.45 0.84 0.08
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Figure 4.9: Wheel velocities in the WLSAS (plots a, b and c) and PDIP (d, e and
f). (Legend: right wheel velocity vr; left wheel velocity vl).

4.3 Remotely Underwater Operated Vehicle

The simulation for the ROV LUMA is implemented on MATLAB R©. Due to the

propellers layout, the ROV cannot be directly controlled with respect to the roll

and pitch angles. In fact, the ROV present four propellers placed horizontally,

which control the robot with respect to x, y and ψ, and a fifth propeller to control

its depth (z). In face of these aspects, it is assumed that

1. The vehicle operates at the horizontal position, with φ ≈ 0 and θ ≈ 0;

2. The propellers do not contribute to motion with respect to φ and θ;

As the depth is controlled only by a single propeller, which does not contribute

to motion with respect to any other DoF because of the first assumption, its virtual

control can not be allocated to the other four propellers. Therefore, this propeller

and the dynamics of the depth z are not regarded for control allocation purposes.

It results in a control effectiveness matrix with more columns than rows and in an

overactuated system with respect to x, y and ψ. It allows the control allocation

algorithms WLAS and the PDIP algorithms to benefit from redundancy and to
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Parameter Unit Value

Rp1 m (0.2378,−0.2917, 0)
Rp2 m (0.2378, 0.22917, 0)
Rp3 m (−0.3667,−0.2128, 0)
Rp4 m (−0.3667, 0.2128, 0)
P1 - [cos(π/4), sin(π/4), 0]
P2 - [cos(3π/4), sin(3π/4), 0]
P3 - [cos(π/4), sin(π/4), 0]
P4 - [cos(3π/4), sin(3π/4), 0]

Table 4.7: Position (Rpi) and orientation (Pi) of the propellers.

satisfy secondary control objectives when the control requirements correspond to

u ∈ U.

The table 4.7 details the position and orientation of the propellers extracted from

DE ANDRADE (2017) to calculate the control effectiveness matrix B, according to

the equation (3.39), which results in

B =

0.7071 −0.7071 0.7071 −0.7071

0.7071 0.7071 0.7071 0.7071

0.3477 0.3744 0.4233 0.4233

 (4.4)

with rank(B) = 3.

Then, the configuration of LUMA for the simulation is described by

χ =

 x

y

ψ

 (4.5)

In terms of control allocation, the desired virtual control input vector νd and the

control input vector u are respectively given by

νd =

fx,dfy,d

τψ,d

 , u =


f1

f2

f3

f4

 (4.6)

The table 4.8 displays the physical parameters, such as the center of gravity (pG),

center of buoyancy (pB) and the LUMA volume (∆V ). Since only the motion with

respect to x, y and ψ regarded, the simplified inertia matrix becomes

MCR +MA =

46 0 0

0 61 0

0 0 30.5

 (4.7)
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Parameter Unit Value

pG m
[

0 0 0.2
]T

pB m
[

0 0 −0.3
]T

∇V m3 0.0396

vwi m/s
[

0 0 0
]T

ρ kg/m3 1025
C∗T (0◦) - 0.0293
C∗T (180◦) - 0.0179

α+ - 0.0395
α− - 0.0233

Table 4.8: Physical parameters of the ROV, for describing the undersea environment
and the dynamics of the propellers.

Parameter Unit Value

KP - diag(30, 30, 30)
KD - diag(60, 60, 95)
γ - 103

Wv - diag(1, 1, 1)
Wu - I4

up N 04×1

ui,max N 16
ui,min N −10

Table 4.9: Gains of the PD Controller and the parameters of the control allocation
algorithms.

Moreover, other important parameters are presented in the table 4.8 and consist

of the seawater density ρ and the velocity that the water goes through the propellers

vwi to simulate the undersea environment. Finally, the dynamics of the propellers are

characterized by the forward and reverse thrust coefficients (C∗T (0◦) and C∗T (180◦)),

the forward and reverse blade thrust coefficients (α+ and α−).

Finally, the proportional KP and derivative KD gains of the PD Controller and

the parameters of the control allocation algorithms utilized in the simulation are

presented in the table 4.9.

The gains of the High-level controller presented in the table 4.9 were chosen after

successive attempts with the intent to grant tracking, to provide a damped response

in all degrees of freedom under analysis and to impose a trajectory demanding

enough to bring the actuators to saturation.The simulation runs with parameters

k1 = 6 and k2 = 3 for the reference model for every DoF, except for the yaw angle

ψ, which runs with k1 = 1 and k2 = 0.5 for a slower dynamics.

The simulation runs during ts = 60 s with sampling time equal 0.05 s. The ROV

LUMA is initially placed at χ =
[

0 0 0
]T

and is required to follow a circular
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Figure 4.10: The desired trajectories for the simulation 1, 2 and 3 originated from
the reference trajectory. ( desired trajectory χd1, desired trajectory
χd2 , desired trajectory χd3).

trajectory generated by the reference trajectory

χr =


xr(t) = An cos(0.4t)

yr(t) = An sin(0.4t)

ψr(t) = 1

(4.8)

such that the amplitude An attains the following values

• An = 2.1 to generate the desired trajectory χd1 ;

• An = 2.5 to generate χd2;

• An = 2.8 to generate χd3.

With these reference trajectories, the reference model generates the desired tra-

jectories depicted in the figure 4.10, and also the first and second derivatives required

by the High-level controller to compute the desired virtual control input vector νd.

The desired dynamics of the yaw angle ψ are the same for every trajectory.

At this time, the simulation is executed for the three reference trajectories with-

out any control allocation algorithm. Therefore the vehicle is totally subject to the
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Figure 4.11: The dynamics of the ROV when subject to saturation.( results
for χd1, results for χd1, results for χd3).

saturation effects, as depicted in the figure 4.11. Although LUMA can follow the

desired trajectory for a while in the trajectories 2 (b) and 3 (c), the tracking error

increases as time elapses and leads the vehicle to instability.

The desired trajectory 1 is less demanding and hence LUMA can track it without

problems, despite being affected by saturation in the initial seconds of the simula-

tion. Then, the controls become less demanding and the robot can perform tracking

without taking its actuators into saturation region.

Direct Control Allocation

The first algorithm analyzed here is the Direct Control Allocation and its results

are depicted in the figure 4.12. The PD Controller allied with the DCA are able to

keep the system stable for the simulations 1 and 2. Along all the simulation time,

the ROV tracks the desired trajectory without presenting overshoot with respect to

x, y and ψ. By observing the virtual controls displayed in (d), (e) and (f), the more

the actuators are required to operate near saturation levels, the more the virtual

controls degrade and present distortion, when compared with the results obtained

for χd1.

The DCA scales the desired virtual control vector νd in order to find a feasible
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Figure 4.12: The dynamics of LUMA with the Direct Control Allocation algorithm.
( results for χd1 , results for χd2 , results for χd3).
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control input u that produces a virtual control ν with the same direction. As a result,

ν provides a convergence of the degrees of freedom similar to those observed with

ideal actuators, but with lower performance. The results for χd1 and χd2 confirm

it, provided that the three DoF considered, x, y and ψ, converge smoothly and

without overshooting. On the other hand, we can observe som degradation in the

virtual controls for χd2, although the trajectory performed is not deteriorated at all.

However, there is a limit where the DCA can properly manage saturation to fulfill

the control requirements, as demonstrated with the results for χd3. Although the

ROV can track the desired trajectory initially, the rotors of 3 and 4 are forced to

operate saturated at the minimum and maximum positions, as shown in figure 4.20.

As a result, the DCA is not capable of tracking the desired trajectory with respect

to x and y, although the yaw angle ψ is properly tracked.

Simplex

Unlike the DCA method, the Simplex algorithm concerns with the virtual control

error minimization and does not satisfy any secondary control objective. Provided

that its solutions are located on the vertices of the feasible region, it tends to pri-

oritize some control inputs to the detriment of the remaining ones. As a result,

some degrees of freedom may converge faster or even be prioritized. The figure 4.13

illustrates this situation, where the controls tend to prioritize the convergence of x

and y, specially in the results for χd3, where saturation is more present - in fact,

during the first seconds of the simulations, fx and fy reaches the highest values and

acceptable tracking is performed with respect to x and y to the detriment of ψ,

which registers intense deviation periodically to grant the tracking of x and y.

This prioritization can be noticed by analyzing the virtual controls in the plots

(d), (e) and (f). The signals fx and fy become nearly sinusoidal after about 20

seconds of simulation. The same cannot be verified in τψ, which periodically deviates

from the desired value in order to allow a good tracking of x and y.

Although the demanding trajectories degrade the system and the virtual controls,

all the simulations proposed lead to acceptable results and are able to perform

tracking, unlike the DCA.

Primal-dual Interior Point

The dynamics due to the Primal-dual Interior Point algorithm are displayed in the

figure 4.14, that shows that the input constraint imposed by saturation is successfully

managed for the three simulations considered.

Simulation 1 demands less efforts and hence, the virtual controls ν are mostly

located inside the feasible set of virtual controls A . Despite it deviates from the
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Figure 4.13: The resulting dynamics of LUMA obtained with the Simplex algorithm.
( results for χd1 , results for χd2 , results for χd3).
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Figure 4.14: Results for the Primal-dual Interior Point algorithm with γ = 1000
( results for χd1 , results for χd2 , results for χd3).

expected sinusoidal dynamics concerning fx and fy in the first time instants, ν soon

stabilizes in this sense. However, by observing the virtual control τψ, there is a small

periodical deviation from the desired value, occasioned by the optimization program

adopted, which in search of the minor error, modifies the virtual control directions

and degrades each DoF to some extent.

As the trajectory becomes faster and more demanding, the deviation in the

direction of the virtual controls become more remarkable, although they can still

converge. The results for χd2 show how the dynamics are impacted when compared

to the results obtained with χd1. This impact becomes even more intense in the

results originated from the desired trajectory χd3, especially the yaw angle, which

periodically deviates from the reference value ψr = 1 rad.

The weight of the error minimization over the control minimization term is worth

mentioning, since it has been set a γ = 103. According to the prioritization factor

γ, the control minimization exerts an important influence on the results. For better

visualization of the control minimization, the figure 4.15 depicts the same trajectory,

but with a weight γ = 10. There is no noticeable difference concerning the dynamics

of x and y, but the yaw angle ψ presents a more degraded convergence.

As we have set the preferred input vector up = 04, the optimal solution of the QP
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Figure 4.15: Results the Primal-dual Interior Point algorithm with γ = 10 (
results for χd1 , results for χd2 , results for χd3).
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Figure 4.16: Forces produced by each propeller with γ = 10 and γ = 103 in the
PDIP algorithm for the desired trajectory χd2 ( γ = 10 , γ = 103 ).

problem will result in decayed control inputs and hence less energy consumption,

as depicted in figure 4.16 for the desired trajectory χd2, where the forces delivered

by the actuator reduce when a lower prioritization factor γ = 10 is applied to the

PDIP. However, as the trajectory often demands the propellers to work at saturation

levels, the solution for the error minimization problem is also unique and a higher

priority for the control minimization will result in a poorer performance.

Weighted Least Squares with Active Set

The Weighted Least Squares with Active Set algorithm is executed with the following

virtual control weighting matrix

Wv =

10 0 0

0 10 0

0 0 25

 (4.9)

as an attempt to improve the yaw dynamics, provided that the Primal-dual Interior

Point does not allow to set weights among the degrees of freedom. In fact, better

dynamics can be achieved if there are suitable weights, otherwise the system may
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Figure 4.17: The dynamics of LUMA with the Weighted Least Squares with Active
Set algorithm. ( results for χd1 , results for χd2 , results for χd3).

become unstable. After some attempts to find a suitable weighting matrix Wv, the

results obtained with the Wv above are displayed in the figure 4.17, which present

better dynamics for the yaw angle ψ, when compared with the PDIP.

By analyzing the simulations 1, 2 and 3, one can notice that with a higher priority

set for the yaw angle and it was still possible to get an acceptable tracking for x and

y. Nonetheless, the virtual controls fx and fy became degraded in order to pursue

a better tracking of ψ, specially in the simulations with desired trajectories χd2 and

χd3. Even with the priority adjustment, the yaw angle still deviates from the desired

value at the cost of the better tracking of x and y.

The Control Inputs

Below in the figure 4.18, 4.19 and 4.20 are presented the control inputs registered for

the desired trajectories χd1, χd2 and χd3 and will help to getmore reliable information

concerning the control requirements and the control allocation algorithms.

As χd1 is less demanding, the rotors work saturated in the first seconds of sim-

ulation and also when the they rotate reversely at −10 N. However, the rotors do

not saturate when rotating forward.

However, in the control inputs for χd2, the propellers that provide the forces f3
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Figure 4.18: Control inputs for the desired trajectory χd1 with γ = 103 ( DCA,
Simplex, WLSSA, PDIP).
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Figure 4.19: Control inputs for the desired trajectory χd2 with γ = 103 ( DCA,
Simplex, WLSSA, PDIP).

and f4 present also saturation in the upper bound ui,max, besides presenting also the

saturation issues observed in χd1. In the first instants of the simulation, every control

allocation distributes the controls similarly, and their differences can be noticed only

close to the the upper limits umax,i. For instance, the Simplex algorithm stands out,

since it tends to saturate the propellers 1 and 3 in the upper limits, whereas the

remaining ones never reach such condition.

On the other hand, the DCA presents also a different pattern for the forces f1

and f4 - in the propeller 1, the maximum forces delivered by the DCA present some

delay, hitting values close to saturation levels while the other CA algorithms are

in a descending dynamics. In the propeller 4, the DCA allocates the higher forces

right after leaving the lower limit umin,i, while the other CA algorithms increase

the control inputs at a lower rate. Constructively, both propellers point to the same

direction, and therefore, there multiple control inputs that result in the same virtual

control with respect to x and y, although the dynamics of the yaw angle ψ may be

impacted.

The figure 4.20 displays even more demanding control inputs, specially for the

propellers 3 and 4, which are remain saturated along all the simulation for all CA

algorithms, whereas the propellers 1 and 2 remain capable of providing forces in the
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Figure 4.20: Control inputs for the desired trajectory χd3 with γ = 103 ( DCA,
Simplex, WLSSA, PDIP).

linear range. However, the control inputs for the DCA stands out and highlights

the instability of the vehicle - the dynamics of the propellers significantly differ from

the dynamics presented by the other CA algorithms, which indicates that the robot

is traveling towards an undesired direction.

Another point is that the optimal solutions of the CA algorithm differ among

themselves as the control requirements become more demanding. However, there

is a limit to which control allocation can handle saturation properly. The virtual

controls may become so degraded that the instability cannot be avoided, although

the sensibility changes according to the CA algorithm proposed.

Considerations

The performance of the control allocation algorithms are now mathematically an-

alyzed. For this purpose, we calculate the Virtual Control Error (VCE) and the

Direction Error (DE) according to the equation 2.56. The first 9 entries of νd and u

were excluded since they present outlier values when compared to the other entries

in the vector. The results are presented in the tables 4.10, 4.11 and 4.12. For the

PDIP, we have considered the data collected for γ = 103.

In the table 4.10, the errors are quite small, provided that the ROV travels mostly
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with propellers in the linear region. In general, the average DE is quite neglectable

for all the algorithms, although some considerations can be made concerning VCE,

which presents the highest maximum and average values for the PDIP, followed by

Simplex. The DCA and WLSAS present similar results. If the WLSAS had been run

with a identity matrix for Wv, their results would have been similar to those obtained

for the PDIP. Therefore, a weighting matrix adopted provided better results in this

situation.

Table 4.10: Virtual control errors (VCE) and Distance Error (DE) in the ROV
LUMA when χd,1 .

Algorithm
VCE DE

Maximum Average Maximum Average

DCA 1.37 0.09 0 0
Simplex 1.87 0.12 0.10 0.01
WLSAS 1.18 0.09 0.02 0.01
PDIP 2.16 0.26 0.10 0.01

On the other hand, the table 4.11 presents higher values for all the errors VCE

and DE. The trajectory is more demanding the the DCA presents the highest er-

rors among the CA algorithms. In fact, the performance deteriorates fast as the

trajectory becomes faster. In the table 4.12 confirms it by means of a huge er-

ror, corresponding to the stability that the ROV presents in the figure 4.12 for the

desired trajectory χd,3.

Table 4.11: VCE and DE of the CA algorithms in the ROV LUMA when χd,2.

Algorithm
VCE DE

Maximum Average Maximum Average

DCA 31.57 7.31 0 0
Simplex 18.39 3.19 0.72 0.13
WLSAS 17.57 3.38 0.23 0.04
PDIP 14.88 2.59 0.46 0.08

When comparing the QP solvers, i.e WLSAS and PDIP, we can notice that

apparently the WLSAS presents better dynamics mainly because of the response

observed in the yaw angle. However, the virtual controls fx and fy for the PDIP

presents less signal deterioration than the WLSAS and hence presents a lower VCE.

The same observation can be made between the Simplex and the WLSAS as well,

since the Simplex and PDIP algorithms delivered similar results, while the WLSAS

presents a higher VCE. However, among the three algorithms, the WLSAS presented
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the lowest DE, despite virtual controls present deterioration for the forces fx and

fy.

Table 4.12: VCE and DE of the CA algorithms in the ROV LUMA when χd,3.

Algorithm
VCE DE

Maximum Average Maximum Average

DCA 1.30e3 330.13 0 0
Simplex 35.46 7.96 0.90 0.20
WLSAS 41.86 14.03 0.40 0.09
PDIP 34.20 7.77 0.72 0.17

4.4 Quadrotor

Now we proceed to the simulation of the quadrotor detailed in Chapter 3 to demon-

strate how control allocation can handle saturation imposed by the demanding tra-

jectories. The parameters utilized for modeling the quadrotor are presented in the

table 4.13.

From these parameters allied to the equation 3.51, the resulting control effec-

tiveness matrix is

B =


0.8704 0.8704 0.8704 0.8704

0 −0.1323 0 0.1323

0.1323 0 −0.1323 0

−0.1399 0.1399 −0.1399 0.1399

 (4.10)

with rank(B)=4. In order to bring the control allocation problems the quadrotor

context, the desired virtual control vector νd and the control input vector u are

Description Parameter Unit Value

Vehicle body mass m kg 0.89
Inertia matrix I 10−3 kg·m2 diag(9.6, 1.86, 25.5)
Rotor inertia Ir 10−5 kg·m2 6.0
Arm length l m 0.152

Rotor thrust coefficient κt 10−5 N·s2 8.74
Rotor drag coefficient κd 10−7 N·s2 1.4

DC Gain Km - 1
Motor time constant τm s 0.02

Min. velocity of propellers ωmin rad/s 0
Max. velocity of propellers ωmax rad/s 230

Table 4.13: Parameters of the quadrotor.
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declared as

νd =


Tz,d

τφ,d

τθ,d

τψ,d

 , u =


ω2

1

ω2
2

ω2
3

ω2
4

 (4.11)

Provided that ui = ω2
i , the lower and upper control limits are given by umin,i = 0 and

umax,i = 52, 900 rad2/s2. Thus, from equation 3.48, the forces and torques produced

by the propellers are located in the range

0 ≤ fi ≤ 4.60 N,

0 ≤ τi ≤ 0.74 N ·m
(4.12)

The full configuration of the quadrotor in any time instant t is given by the

vector

χ =



x

y

z

φ

θ

ψ


, χ ∈ SE(3) (4.13)

for describing its position and orientation in the 3D Euclidean space.

Initially, the quadrotor is located at χ =
[

0 0 0 0 0 0
]T

and i is required

to follow a parabola-shaped trajectory, originated from the reference signal

χr(t) =


xr = sin(2π

3
t+ π

2
)

yr = sin(π
3
t)

zr = 1

ψr = 0

(4.14)

whose values at every instant t are input of the reference model presented in the

equation 3.2.5 to generated the desired trajectories as output. As previously men-

tioned, the reference values φr and θr are internally computed by the PD Controller

in a cascaded implementation and are input for the Integral Backstepping controller.

The reference model is used for generating the desired position, velocity and accel-

eration of every DoF of the system.

The simulation is executed for three different sets of filter poles kf1 and kf2

for the reference model, with the purpose of generating trajectories with different

control requirements. These parameters are
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Figure 4.21: The reference signal r(t) and the three desired trajectories for the
quadrotor. ( reference signal χr, desired trajectory χd,1, desired
trajectory χd,2 , desired trajectory χd,3 ).

• desired trajectory χd,1: kf1 = kf2 = 30 for φd and θd, and kf1 = kf2 = 3 for

ψd, zd, xd and yd ;

• desired trajectory χd,2: kf1 = kf2 = 40 for φd and θd, and kf1 = kf2 = 4 for

ψd, zd, xd and yd;

• desired trajectory χd,3: kf1 = kf2 = 50 for φd and θd and kf1 = kf2 = 5 for ψd,

zd, xd and yd;

The figure 4.21 displays the resulting desired trajectories χd,i and shows their dy-

namics in the simulation. The gains of the PD and Integral Backstepping controllers

used in the simulation are presented in the table 4.14. The simulation lasts ts = 10

seconds and the sampling time is 0.001 seconds. More information concerning this

quadrotor model can be consulted on MONTEIRO (2015).

The figure 4.22 illustrates the dynamics of the UAV for the three trajectories

considered when saturation is not managed by any control allocation technique.

As a result, the desired virtual controls νd produced by the High-level controller

correspond to a control input vector u beyond the operating range of the rotors. The

High-level controller then tries to recover the UAV back to the desired trajectory

104



IB Roll IB Pitch IB Yaw PD
Parameter Value Parameter Value Parameter Value Parameter Value

k1 20 k4 20 k7 5.5 kp 0.25
k2 0 k5 0 k8 0.1 kd 0.4
k3 20 k6 20 k9 4 - -

Table 4.14: Gains of the Integral Backstepping and Proportional-Derivative Con-
trollers.

at the cost of generating higher control inputs successively. Finally, every propeller

becomes saturated whether in the lower limit or in the upper, deviating the vehicle

from the desired trajectory and leading it to instability.

Direct Control Allocation

The figure 4.23 depicts the dynamics of the vehicle during all simulation time and

displays also the rotation speed of the propellers for every desired trajectory. The

DCA always maintains the direction of the virtual controls while keeps them inside

feasible set of virtual controls A. However, there are situations where direction

cannot be kept because of the quadratic characteristic of the forces and torques

(3.48). The inverse mapping from νd to ud can lead to negative control inputs and

hence its square roots cannot be computed. In this case, a feasible solution does

not exist because their square roots are not real numbers. If a control input ui

results in an angular velocity below ω = 0 and another control input demands an

angular velocity above the upper limit ω, the DCA cannot deliver a proper solution,

but rather a null vector. Thus, it is not possible to adjust both velocities and still

maintain the direction in such situation.

As time elapses, the reference model generates the desired trajectory, velocity and

acceleration for each DoF, until ud becomes nonnegative and the DCA can compute

the a valid control input vector u, such that motion is produced. If the initial pose

of the UAV is on the ground, the vehicle remains still for a while, whereas if it starts

in the air, it would undergo a free fall initially, as depicted in the plot (c), until the

desired trajectories χd,i result again in nonnegative control inputs. Therefore, the

UAV can accomplish the task in trajectory 1 and 2 with some reservations, since a

null control input implies in a quadrotor out of service only in the initial instants of

the simulation. Another trajectory could avoid this issue and the DCA would fully

work without any reservation.

As depicted in the figure 4.24, initially the propellers do not rotate since the

DCA finds only a scale factor α = 0, but soon the actual and the desired states

produce a valid control input and the propellers start rotating, while prioritize the

virtual controls Tz, τφ and τψ, in this sequence. Although the DCA can provide
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Figure 4.22: Dynamics of the quadrotor when saturation is not managed by any
control allocation technique. ( reference χr , trajectory traveled χ1,

trajectory traveled χ2 , trajectory traveled χ3 ).
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Figure 4.23: Results for the Direct Control Allocation ( reference χr ,
trajectory traveled χ1, trajectory traveled χ2 , trajectory traveled
χ3).

tracking in the initial instants of χ3, from the time t = 1.5 s on, the dynamics of

the quadrotor becomes instable and it is not able to fly back towards the desired

trajectory, since all propellers work at saturation levels and the High-level controller

produces a high thrust Tz in an attempt to correct the height and position with

respect to x and y.

Linear Programming with Simplex

The simulation for the linear programming with Simplex is depicted in figure 4.25.

The vehicle could track the desired trajectories properly, even for the trajectory 3,

where the DCA is not able to perform tracking. The Simplex algorithm is able to find

an optimal feasible solution during all simulation time and a demonstrates robustness

to manage input saturation. The figure also shows that the initial instants are the

most concerning in terms of saturation - the High-level controller is concerned at

stabilizing every DoF, and therefore, the propellers are taken to its upmost bounds

to fulfill the control requirements, as it can be observed for the plots (e), (f), (g)

and (h), where every propeller starts at a saturated position.

The more the altitude of the vehicle approximates the desired value, the less the
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Figure 4.24: Virtual controls for the DCA ( trajectory traveled χ1,
trajectory traveled χ2 , trajectory traveled χ3 ).
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Figure 4.25: Results for the linear programming with Simplex ( reference χr
, trajectory traveled χ1, trajectory traveled χ2 , trajectory
traveled χ3 ).
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Figure 4.26: Virtual controls for the linear programming with Simplex ( tra-
jectory traveled χ1, trajectory traveled χ2 , trajectory traveled χ3).

propellers are demanded and the priority to track xd and yd increases, as one can

observe in figure 4.24 in the plots for τθ, τφ and to a lesser extent the torque τψ.

From this moment on, the trajectory becomes less demanding and the propellers

can operate fully inside its operating range.

By analyzing the plots of the virtual inputs ν and propeller speeds ωi, one can

notice that the more demanding is the trajectory, the bigger is the range that the

signals oscillate. It is not present in every ωi, although it is quite intense the plots

of ν.

Weighted Least Squares

The PDIP and the WLAS algorithms were also employed to allocate controls with

the quadrotor. However, none of the algorithms were able to handle saturation,

even for less demanding trajectories. The simulation has been run for the desired

trajectory χd,1 and the results are displayed in the figure 4.27.

Several parameters were tried to make the system stable for both algorithms.

The figures display results for the WLSAS run with weighting matrices Wv =

diag(5, 2, 2, 2), Wv = diag(50, 10, 10, 10) and Wv = diag(1, 1, 1, 1), and for the PDIP

the simulation was run with prioritization factor γ = 104.
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Figure 4.27: Results for the WLSIP and PDIP ( desired trajectory χd,1 ,
WLSAS with Wv = diag(1, 1, 1, 1), WLSAS with Wv = diag(5, 2, 2, 2),
WLSAS with Wv = diag(50, 10, 10, 50), PDIP with γ = 104 ).
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Figure 4.28: Dynamics of the virtual controls for the WLSAS and PDIP (
desired trajectory χd,1 , WLSAS with Wv = diag(1, 1, 1, 1), WLSAS
with Wv = diag(5, 2, 2, 2), WLSAS with Wv = diag(50, 10, 10, 50),
PDIP with γ = 104 ).

The figure 4.28 presents the dynamics of the virtual controls for the simulations

with the WLSAS and PDIP. The weighting vector Wv = diag(1, 1, 1, 1) presents a

slow dynamics for both algorithms. Other attempts to accelerate it by means of

the other Wv matrices led the vehicle to unstable behavior either. For instance,

running the WLSAS with weighting matrix Wv = diag(50, 10, 10, 50) led the rotors

to saturation at t = 2.5 seconds and it remained so along all the simulation, whereas

forWv = diag(5, 2, 2, 2), the rotors became saturated only near the end of simulation.

Considerations

The UAV has presented instability for the WLSAS and PDIP, and therefore, it is not

possible to extract meaningful information concerning the algorithms and compare

them with the DCA and Simplex. Therefore, their errors are not displayed in the

tables 4.15, 4.16 and 4.17 to come.

Numerically, the Simplex has presented better results not only for the Virtual

Control Error (VCE), but also for the Direction Error (DE). The better results for

VCE were expected provided that Simplex is concerned with the error minimization
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in its cost function. However, since the DCA cannot find a solution that maintains

the direction of the virtual control input νd when the rotor is required to rotate

reversely and the unique possible control input u was a null vector, the normalized

resulting virtual control input vector ν is 0 ∈ R4. Initially the quadrotor is also

required to ascend vertically, which results in a normalized νd =
[

1 0 0 0
]T

.

This limitation in the DCA impacted the DE computed. Although the Simplex

algorithm tends to present DE at every control loop, the maximum and average

errors presented better overall results.

Table 4.15: VCE and DE of the CA algorithms with the desired trajectory χd,1 in
the quadrotor .

Algorithm
VCE DE

Maximum Average Maximum Average

DCA 42.66 4.73 1 1.6e-2
Simplex 7.52 3.19 0.38 7.5e-3

Table 4.16: VCE and DE of the CA algorithms with χd,2 in the quadrotor .

Algorithm
VCE DE

Maximum Average Maximum Average

DCA 50.18 6.88 1 1.2e-2
Simplex 15.15 3.19 0.48 8.4e-3

Table 4.17: VCE and DE of the CA algorithms with χd,3 in the quadrotor .

Algorithm
VCE DE

Maximum Average Maximum Average

DCA 8.2e3 2.5e3 1 5.0e-2
Simplex 26.19 0.13 0.54 7.5e-3

4.5 Cooperative Manipulators

The manipulator simulated in this work is the UR5 R©, a 6-DoF manipulator manu-

factured by Universal Robots, as shown in figure 4.29. It is a robot-arm like manipu-

lator, designed for cooperative tasks, highly customizable and weighs approximately
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Figure 4.29: The UR5 manipulator made by Universal Robots.

18 kg. It can be employed in overall industry activities and it admits a maximum

payload of 5kg.

To simulate properly the manipulator, the first step is to obtain its Denavit-

Hartenberg parameters, which were extracted from the manufacturer website and

are presented in the table 4.18.

Table 4.18: Denavit-Hartenberg Parameters of the UR5 manipulator.

Link θ [rad] a [m] d [m] α [rad] M(kg)

1 0 0 0.089159 π/2 3.7
2 0 -0.425 0 0 8.393
3 0 -0.39225 0 0 2.33
4 0 0 0.10915 π/2 1.219
5 0 0 0.09465 −π/2 1.219
6 0 0 0.0823 0 0.1879

For the cooperative task, the UR5 model of the Peter Corke’s Robotics Tool-

box version 10.2 is utilized and improved for simulating also the dynamics of the

robot and to allow it to be controlled by torque. The inertia matrices and their

perspectives centers of mass were obtained from the Model C presented in KUFI-

ETA (2014), where the author divided the UR5 links into cylinders, such that their

resulting centers of mass approximates those disclosed by the manufacturer. The

manipulators are denoted UR51 and UR52 and are located at
[
−0.4 0 0

]T
and[

0.4 0 0
]T

with respect to the inertial frame, as depicted in figure 4.30. The

manipulators are also not attached to any vehicle and hence cannot move their bases

with respect to the inertial frame Fo.
1Figure extracted from https://www.universal-robots.com/products/ur5-robot/
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Figure 4.30: Two UR5 manipulators in a cooperative task.

Parameter Description Unit Value

M Mass kg 7
Mo Inertia matrix kg.m2 diag(MI3, 0.03I3)

Go Gravity m/s2
[

0 0 mg 0 0 0
]T

l Length m 0.2

Table 4.19: Parameters of the object manipulated.

The task that the manipulators must carry out consist of transporting an cube-

shaped object with mass M = 7 kg, such that every edge has length l = 0.2m.

The inertia matrix Mo and the gravitational vector Go to describe the entire object

dynamics are presented in the table 4.19. The centrifugal and Coriolis force are

neglected here for simplicity.

From the length l and considering that the object body frame is placed ex-

actly at its center of mass r̄, the virtual sticks vectors are therefore given by

r1 =
[
−0.1 0 0

]T
and r2 =

[
0.1 0 0

]T
and are used for modeling the kine-

matic constraints, which result in the grasp matrix

G =

[
I3 03 I3 03

r1× I3 r2× I3

]
(4.15)
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Contact Forces Impedance Controller
Parameter Value Parameter Value

kpe 10000 Md diag(10I3, 0.1I3)
kde 25 Dd diag(50I3, 10I3)
- - Kd diag(500I3, 10I3)

Table 4.20: Parameters for modeling the contact forces and the desired object dy-
namics for the impedance controller.

Controller Parameter Gain Value

CLIK
KPV Proportional diag(500, 150, 150, 50, 50, 50)
KDV Derivative diag(50, 50, 50, 13.8, 13.8, 13.8)

PID
KPC Proportional diag(233, 233, 150, 25, 17, 0.4)
KIC Integral diag(1, 0.73, 0.18, 0.077, 0.11, 0.0027)
KDC Derivative diag(0.77, 1.55, 1, 0.33, 0.17, 0.06)

Table 4.21: Parameters adopted in the CLIK algorithm and PID Position Controller.

with rank(G)=6.

The task consists of holding the object and transporting it by following a trajec-

tory given by the equation

χd(t) =


0

0.3 cos(ωnt+ π/6)− 0.1

0.4 + 0.2 cos(ωnt+ π/8)

(4.16)

The simulation is run for different angular velocities ωn to impose different control

requirements to the cooperative task. The angular velocities ωn for the desired

trajectories are

• ωn = 2π/5 for the desired trajectory χd,1;

• ωn = 2π/4 for χd,2;

• ωn = 2π/3 for χd,3;

When simulation starts, the manipulators are already holding the object, which

is located at position χc(0) =
[

0 0.1566 0.4804
]T

. The simulation lasts ts = 10s

and the sampling time adopted for the simulation is 0.01 s.

The end effectors are demanded to act as an impedance against the object,

which is the environment in the task and treated as an admittance. Thus, the

desired parameters for the object, such as stiffness and damping, are detailed in

table 4.20. Finally, the parameters for the Closed-loop Inverse Kinematics (CLIK)

and Computed Torque with PID are presented in table 4.21.
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It is worth mentioning that the mass was chosen so that it satisfies the recom-

mendation of the manufacturer - a single manipulator admits a maximal payload of

5 kg. In order to grasp the object proposed, the cooperative task must consist of

at least 2 manipulators. Therefore, we have simulated the cooperative task with 2

manipulators to demonstrate how the control allocation can be used for load sharing

purposes.

For the control allocation purposes, the desired virtual control input vector νd

is given by the total load to be exerted on the object, which will be represented by

hc ∈ R6 and consists of

hc =



hx

hy

hz

hφ

hθ

hψ


(4.17)

and the control input vector u here is denoted h and consists of the forces to be

exerted by each the tip of both end effectors, which is

h =

[
h1

h2

]
, i = 1, 2 and hi =



hi,x

hi,y

hi,z

hi,φ

hi,θ

hi,ψ


(4.18)

Static Load Allocation

The load distribution to each manipulator is performed with the Static Load Alloca-

tion for tracking the desired trajectories, as presented in the figure 4.31. Although

the object and the end effectors are supposed to follow the desired trajectories,

the impedance controller exchanges the accelerations for the desired force in an

impedance-admittance relationship, and as a result, the trajectory undergoes a de-

viation.

The trajectories with respect to Y axis present no deviation, provided that no

external forces in this axis are exerted on the object along the simulation. However,

there are deviations present with respect to the X axis due to interaction between

the manipulators, and to the Z axis, due to the weight of the object. Thus, the

impedance controller promotes this deviation in order to deliver the required forces.

Another point that one can notice is the effects of the load sharing policy, which
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Figure 4.31: Trajectories of the object and of the manipulators UR51 and UR52 with
Static Load Allocation ( desired trajectory χd,1, desired trajectory χd,2
, desired trajectory χd,3, trajectory χ1 , trajectory χ2,
trajectory χ3 ).
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Figure 4.32: Forces acting on the object by the end effectors and the load allocation
according to the sharing policy from the Static Load Allocation ( trajectory
χ1 , trajectory χ2, trajectory χ3 ).

allocates 60% of the total load to the manipulator 1 and the remaining load to the

manipulator 2. As the manipulator 1 must exert a higher force along this direction

to compensate the gravity effects, its trajectory undergoes a deviation, reaching its

peak at a height z = 0.75 m, whereas the manipulator 2 reaches values close to

z = 0.70 m. On the other hand, the lowest heights performed by the end effector 1

reaches values as low as z = 0.24 m, whereas the end effector 2 reaches z = 0.19 m.

The figure 4.32 depicts all the forces involved in the interaction between the

manipulators and the object. The forces on the X axis are impacted by the contact

forces, which are depicted in 4.33. The contact forces result also in external forces,

that deviate the deviate the object from the desired trajectory due to the impedance-

admittance relation. We can also observe that the forces on the object with respect

to the X axis increase as the trajectory becomes faster. The same observation can

be made about the forces on the Y and Z axis, which also gain intensity because of

the relationship force-acceleration in the object dynamics.

In the plot (a) of the figure 4.33, one can observe that the object is squeezed

along all the simulation, except for the initial instants, when the end effectors are

stabilizing their contacts on the object to start the trajectory. For the record, we
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Figure 4.33: The internal force hI,x and the internal torques hI,φ , hI,θ hI,ψ. (
trajectory χ1 , trajectory χ2, trajectory χ3 ).
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repeat here for simplicity the equation 3.121, which is

hI = ∆× fd (4.19)

where ∆ is equal

∆ =
[
0.2 0 0

]
(4.20)

The task would not result in torques, only if the sharing policy and the position

of the end effectors with respect to the center of mass were balanced and hence it

would result in ∆ = 0. In another words, there is no displacement between the

virtual center of mass and the object center of mass, which is not the situation here

concerned. In fact we can observe torques hI,θ and hI,ψ in the plots (b) and (d), as

expected.

Considerations

Although we have covered other control allocations in this text, they are not suitable

for load allocation. They are all concerned with other control objectives, such as the

error minimization or the distance maintainence. For instance, in the vector sum

for the DCA, it is not possible to consider during implementation the grasp matrix

to calculate the wrenches in the center of mass of the object, since the force exerted

by the end effector on the surface of the object is not the same felt at the center of

mass of the object.

As proposed by BAIS et al. (2015) and SCHNEIDER and CANNON (1992), the

load allocation is performed by optimization problems with equality constraints.

Algorithms such as Simplex, PDIP and WLSAS are of the inequality type, and

therefore, result in virtual control errors. It would mean that the load allocated to

the end effectors could correspond to the total load required by the object.

4.6 Conclusions

In this chapter, experiment and simulations have been carried out for the systems

differential drive robot, ROV, quadrotor and cooperative manipulators, and their

results discussed and mathematically compared. Every experiment and simulation

have been run for three different demanding desired trajectories for each of the con-

trol allocation algorithms proposed. The results provided meaningful to compare

them with the theory addressed in the Chapter 2 and also, to analyze aspects of the

algorithms in terms of the impact of their norms, their constraints, the desired con-

trol objectives and the sensibility of each of the systems as the control requirements

increase.
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The results have also been compared by means of the Virtual Control Error

(VCE) and the Direction Error (DE) in order to provide a fair comparison of the

algorithms, since both errors regard the their main control objectives.

A cooperative task has been executed with two UR5 manipulators to transport

an object. Three demanding desired trajectories have also been assigned and it was

possible to analyze their impact to the internal forces and torques on the object and

also to see the impact of the impedance-admittance relationship in the interaction

between the agents and the object.
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Chapter 5

Discussion and Conclusions

Four types of robots are addressed in the context of control allocation to solve the

saturation issue and the load allocation in cooperative tasks. From the ground

to the air, from underwater to the industrial environment, these robots cover a

considerable range of environments and help to enrich the applications of control

allocation present in the literature.

In the beginning, the dissertation brings the definition of saturation and demon-

strates how matrix inversion or pseudoinverse cannot be utilized to deal with it,

even though they belong to the unconstrained class and the pseudoinverse can be

formulated as an optimization problem with equality constraints. However, this

dissertation addresses systems subject to input constraints and provides tools to

overcome the limitations of the unconstrained control allocation approaches. Then

optimization is then briefly defined, as well the main topics concerning control allo-

cation.

It is important to understand clearly what objectives are pursued when distribut-

ing controls. Although control allocation may provide many benefits, it is highly

dependent on the redundancy of the system and also how the allocation problem is

formulated. It can be set up to fulfill primary objectives such as the error minimiza-

tion or the direction maintenance. Some objectives can be combined to produce a

more refined formulation for the allocation problems, such as the mixed optimization

problem, composed by error and control minimization, which in this dissertation are

revisited by the Primal-Dual Interior Program and the Weighted Least Squares with

Active Set.

Every CA algorithm here proposed presents a different formulation, which highly

depends on the cost function and its norm. The function cost is defined according

to its norm, which exerts influence on the projection of the cost function onto the

feasible region and hence the location of the optimal solution. For instance, the

DCA can be formulated as a LP problem with equality constraints for maintaining

the control direction, whereas the Simplex is also formulated as a LP program with
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inequality constraints for minimizing the error. Despite being defined as linear pro-

grams, their optimal solution result in different dynamics. The l1-norm optimization

problems contain solutions at the vertices of the feasible region and tend not to con-

verge the DoF simultaneously, whereas the DCA demonstrated not to follow this

pattern, since the convergence is just like the one provided by the High-level con-

troller, although it delivers a poorer performance when subject to saturation. QP

algorithms interfere in the dynamics required by the High-level controller as well,

but to a much lesser extent when compared with the LP with Simplex.

The characteristics of each algorithm could be clearly visualized in the experi-

ment with Roomba. The DCA presented the best results, since it was able to reach

the waypoints smoothly by combining harmoniously both angular and linear veloci-

ties, according to the dynamics provided by a proper tuning of the Lyapunov-based

feedback controller. Nonetheless, the Simplex algorithm tends to alternate the pri-

oritization of the linear and angular velocities and hence the travel tends to present

undesired oscillations. Such irregular response must be avoided when transporting

fragile or dangerous objects, for instance. Moreover, it confirms that the LP with

Simplex delivers a response not according to the controller tuning, as if it were tuned

with different controller gains. The WLSAS and PDIP presented dynamics not so

irregular as Simplex, but close to those observed with the DCA.

The ROV LUMA is an overactuated system with respect to the DoF of interest,

although it has an additional propeller for controlling depth. However, despite this

redundancy, the desired trajectories required the vehicle to work near its limits,

with some of its propellers at saturation levels. Therefore, the system did not have

enough control authority to benefit from the mixed minimization algorithms, i.e

WLSAS and PDIP, and the algorithms could not satisfy a secondary objective,

since the attempt to use lower values of γ resulted in deteriorated dynamics.

On the other hand, the Simplex and DCA the only algorithms capable of allo-

cating controls in the quadrotor, while keeping it stable. However, between both

algorithms, the LP with Simplex demonstrated to be less sensitive to variations

in the desired trajectories. On the other hand, the DCA remained stable only for

the two less demanding desired trajectories, but it failed in the most demanding

one. The dynamics of the quadrotor was simulated with the WLSAS and PDIP

as well, but these algorithms were not capable of performing proper control alloca-

tion. Despite consisting of quadratic programs, the WLSAS provides more options

to prioritize some control inputs or virtual controls by means of weighting matrices,

whereas the Primal-dual presents a more strict structure in this sense and allows

only to prioritize the error minimization to the detriment of the control minimiza-

tion. Several simulations for different weighting matrices and prioritization factor γ

were performed, but none could manage saturation properly and failed at delivering
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suitable control inputs. As the system input is the square of the angular velocities

of the rotors, this quadratic characteristic along with the gyroscopic effects pose

as a challenge for CA purposes in the quadrotor. In BOUABDALLAH (2007), the

Integral Backstespping has shown to provide good results for quadrotors, although

this work is not concerned with dealing with saturation.

Among all the algorithms, Simplex was the unique that could allocate controls

properly while keeping stable every robotic system here addressed to all the desired

trajectories, although its resulting dynamics may no be the most suitable. The DCA

presented excellent results with a proper convergence of the DoF, but at the cost of

degenerating the dynamics of the systems at a faster pace.

In the cooperative task, the SLA provided good results for allocating loads be-

tween the two UR5 manipulators. The control scheme formed by the impedance

controller at the manipulator level according to the pre-established sharing policy,

the Closed Loop Inverse Kinematics and the PID Position Controller resulted in a

impedance-admittance relationship between the end effectors and the load, which

make the end effectors deviate from their desired trajectory in order to deliver the

desired forces, as demanded by the SLA. The success of a cooperative task is not

measured only by satisfying the kinematic constraints, but also by resulting in small

internal forces in the object, which was achieved in the simulation, despite it in-

creases as the trajectories become more demanding. In fact, the strategies adopted

kept the internal forces into a desirable range while the kinematic constraints were

satisfied.

5.1 Future works

A dissertation does not suffice to cover every aspect of control allocation and how

it can be utilized to deal with input constraints. In the cooperative manipulators,

for instance, it was considered the situation where the objective was purely to al-

locate loads while satisfying its maximum payload according to the manufacturer.

Hence, the main assumption is that since the maximum payload is respected, the

manipulators are able to perform the task without excessive torques at the joints

level. Hence, the control allocation could be extended to the joint level to manage

the impact of a demanding trajectory in a cooperative task.

As mentioned, the ROV LUMA is overactuated with respect to the motion in a

plane, and therefore, two important topics of interest are the control redistribution

when not subject to saturation in order to analyze how the system can benefit from

redundancy and the control reconfiguration in case of failure of a propeller.

The control allocation problems here addressed have adopted only the l1 and the

l2-norm. Optimization problems with the l∞-norm has been utilized in airplanes to
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provide a simultaneous convergence of the control surfaces, as described in BODSON

and FROST (2011), on the opposite direction of what was observed with Simplex.

Because of this feature, the l∞-norm is also a good topic of future research to apply

it to the robots here addressed.

Another topic to be futurely studied is to analyze the influence of the High-

level controller on the control allocation itself. The trajectory can be important

to create control requirements at different levels, but how a controller may impact

the sensibility of the system when combined to a given CA algorithm and why one

should choose a control law instead of other is certainly a good topic . The High-

level controllers influence directly on the optimal solution that the control allocation

algorithms finds and is also responsible for setting the dynamics of the DoF, although

a CA algorithm my change their directions.

Finally, the literature still lacks of stability analysis in systems when control

allocation is employed. It is clear that the CA algorithms changes the dynamics

imposed by the High-level controller and hence the stability analysis of the High-

level controller does not suffice to describe the local or global stability of the system

anymore. An evaluation of the CA algorithm and the characteristics of its optimal

solution, combined with a stability analysis of the High-level controller would be

important to fully understand the sensibility of the system as more demanding

trajectories are imposed, how the CA algorithm interferes on the desired dynamics,

its influence on the control direction and to determine the conditions in which the

system should remain stable.
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gresso Brasileiro de Automática - CBA2016, pp. 1071–1076, 2016b.

LUENBERGER, D. G., YE, Y. Linear and Nonlinear Programming (Interna-

tional Series in Operations Research & Management Science Book 116).

Springer, 2008. ISBN: 978-0-387-74503-9.

NOCEDAL, J., WRIGHT, S. J. Numerical Optimization. Springer, 1999.

129

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19960012190.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19960012190.pdf


OPPENHEIMER, M. W., DOMAN, D. B., BOLENDER, M. A. “Control Allo-

cation for Over-actuated Systems”. In: 2006 14th Mediterranean Confer-

ence on Control and Automation. IEEE, jun 2006. doi: 10.1109/med.

2006.328750.

WRIGHT, S. J. Primal-Dual Interior-Point Methods. Society for Industrial and

Applied Mathematics, 1987. ISBN: 978-0898713824.
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Appendix A

Mechanics of Rigid Body

The fundamentals of Robotics were built over physical fundamentals concerning

rigid bodies, and from there, the knowledge was expanded to develop every class of

robot nowadays, such as manipulators, airplanes, mobile robots and so on.

One of these fundamentals is the kinematics, which is a branch of mechanical

physics concerned with describing the motion of points, rigid bodies and sets of

bodies. Intrinsically bound to motion it can be mentioned position, orientation

and velocity. However, these characteristics are superficial, as it neglects inherent

characteristics of bodies, such as its geometry, the material the body is constituted,

its mass, friction, and other parameters related, which are covered by the dynamics.

In order to analyze completely the behavior of rigid bodies, these branches of

mechanical physics are addressed here.

A.1 Rigid Body Kinematics

Consider a particle moving in the 3D Euclidean space, whose location changes at

every time t relative to a reference frame Fa and is composed by three orthonormal

axis, which are (Xa, Ya, Za) ∈ R3.

Xa
Ya

Za

Xb

Yb

Zb

b

A

B

q

apb

Figure A.1: Representation of a rigid body with body frame Fb located at apb.
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Nevertheless, Robotics deals with a set of particles called rigid body. A rigid body

is said to be any object in a continuous movement of particles, whose distance among

them remains fixed at every time instant t and cannot be deformed even though it

moves or any force is exerted on it. The net movement of a rigid body from a location

to another via a rigid motion is called a rigid displacement (MURRAY et al., 1994).

In figure A.1, consider the point p and q ∈ R3 located inside the rigid body. A

mapping g : R3 → R3 is called a rigid body transformation (MURRAY et al., 1994)

if the following properties can be observed in the rigid body for both points:

• ‖g(p)− g(q)‖ = ‖p− q‖;

• g(v × w) = gv × gw,∀ vector v and w ∈ R3.

In fact, these properties grant that the body is rigid, and as consequence, it can

be fully tracked as long as any of its point is tracked, provided that the rigid body

has a Cartesian frame attached and there exists also a fixed relative frame to be

related to.

A.1.1 Position

We still consider the point p in the rigid body, in which is located the frame Fb,
composed by the coordinates (Xb, Yb, Zb). The position of p with respect to Fa is

given by

apb =


axb
ayb
az

 , apb ∈ R3 (A.1)

In fact, since the body frame and the inertial frame are defined and related, the

trajectory can be tracked at any time instant.

A.1.2 Orientation and Rotation Matrix

Now the translational motion is neglected and one considers that apb = 0, namely

Fa and Fb concide initially. The frame Fb is then rotated and the body frame Fb can

be related to Fa through the following equations, as defined in SICILIANO et al.

(2009), which yields

[
aXb

aY b
aZb

]
=

xb · xa yb · xa zb · xa
xb · ya yb · ya zb · ya
xb · za yb · za zb · za

 (A.2)

134



Xa

Ya

Za Z ′
a

A

Y ′
aX ′

a

p

py

px

p′x
p′y

p′z
pz

b

Figure A.2: Rotation of body frame Fb with respect to Fa.

where each inner product is a direction cosine. Hence, every related motion between

frames can be represented by a rotation matrix in the form

aRb =
[
aXb

aY b
aZb

]
∈ R3×3 (A.3)

As the columns of the rotation matrix are orthonormal and the axis of both

coordinate frames Fa and Fb are derived from the right hand rule, the following

properties hold

aRT
b = aR−1

b

det(aRb) = 1
(A.4)

In fact, rotation matrices belong to the special orthonormal group SO(3), because

it is necessary to use a set of three angles for a minimal representation (SICILIANO

et al., 2009). Orthonormal groups can be generalized for n dimensions, such as

SO(n) = {R ∈ R|RRT = det(R) = +1} (A.5)

When a point p undergoes a rotation, as depicted in A.2, its position in the

coordinate frame Fb with respect to Fa is given by

pa = aRbpb (A.6)

A sequence of rotations from a given frame Fa to Fc can be concatenated by

multiplying the rotation matrices from Fa to Fb and from Fb to Fc. It can be

algebraically declared as

aRc = aRb
bRc (A.7)

The same approach can be applied to any other desired coordinate frame.
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ω

p(0)b

p(t)
θ

A

b

Figure A.3: A point p rotating about the axis ω.

A.1.3 Rotation in Exponential Coordinates

A common motion found in Robotics is the rotation of a rigid body about an axis.

Consider a point p attached to a body rotating at a constant unit velocity θ around

the axis ω ∈ R3. The instant velocity ṗ can be expressed as

ṗ = ω × p(t) (A.8)

that after integrating, results in

p(t) = eω̂θp(0) (A.9)

It is equivalent to state that this point was rotated about the axis ω at unit

velocity for θ units of time (MURRAY et al., 1994). This rotation can be expressed

as

Rω(θ) = eω̂θ (A.10)

and ω̂ is a skew-symmetric matrix, which stands for

ω̂ =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (A.11)

The exponential at the right side of the equation A.10 can be efficiently computed

by the Rodrigues’ formula when ‖k‖ 6= 1, which is

eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ) (A.12)

The inverse problem can be solved by computing ω̂ and θ from the equation
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θ = arccos

(
tr(R)− 1

2

)
ω̂ =

1

2 sin θ

(
R−RT

) (A.13)

A.1.4 Euler Angles

Rotation matrices are characterized by nine elements which are not independent but

related by six constraints due to the orthogonality constraints (SICILIANO et al.,

2009). As a consequence, three parameters are sufficient to describe completely

the orientation of a rigid body and there are here two worth mentioning set of

Euler angles φ ∈ R3 among all possible, which are the ZYZ and the XYZ (also

known as Roll-Pitch-Yaw or Tait-Bryan angles). These nomenclatures correspond

to the sequence of basic rotations about the axis ZY Z or XY Z, in this sequence,

respectively.

The basic rotations are:

RX(φ) =

 1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (A.14)

RY (θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (A.15)

RZ(ψ) =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (A.16)

A.1.5 Angular Velocity Transformation

A rigid body that undergoes a rotation has its orientation written in terms of roll ,

pitch and raw angles with respect to a fixed reference frame Fa. On the other hand,

the angular velocity ω is the angular displacement rate of this rigid body about

its body frame Fb placed at its center of inertia and can be directly measured by

devices such as gyroscopes.

Thus, the Euler angles φ, θ and ψ can be related to ω by means of a transfor-

mation matrix (ALDERETE, 1997) in the form
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 ωx

ωy

ωz

 =

 1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ


 φ̇

θ̇

ψ̇


ω = Rr(η)η̇

(A.17)

A.1.6 Quaternions

In 3D rotations, quaternions are preferred over the Euler angles, because they give a

global parametrization of SO(3), at the cost of using four numbers, rather than three

(MURPHY, 2004). This results in less mathematical operations and no singularities.

Besides it, it eases the interpolation between two different quaternions, specially

useful in cooperative tasks for calculating relative (CACCAVALE et al., 2008).

Quaternions are considered a extension of complex numbers and are defined as

Q = a+ bi+ cj + dk, where i, j and k ∈ C are unit imaginary numbers and qi ∈ R,

with i = 0, 1..., 3. It is composed by a scalar component Qs = a and a vectorial one

Qv =
[
b c d

]T
. These components are be obtained by calculating[

Qs
Qv

]
=

[
cos θ

2

ω sin θ
2

]
(A.18)

Given two quaternions Q1 and Q2, their multiplication is defined as

Q1Q2 =

[
Q1sQ2s −QT1vQ1v

Q1sQ2v +Q2sQ1v + Q̂1vQ2v

]
(A.19)

Like vectors, quaternions can also be conjugated. The conjugate of a quaternion

Q is Q∗ =
[
Qs −Qv

]T
, and their product is given by

QQ∗ =


1

0

0

0

 (A.20)

In quaternions, a sequence of rotations can also be concatenated, just like the

rotation matrices. A rotation from a frame Fa to Fb and from Fb to Fc can be

resumed as

aQc = aQbbQc (A.21)

A quaternion can also be converted into a rotation matrix by proceeding to the

calculating of
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R = (2Q2
s − 1)I + 2(QvQTv +QsQ̂v) (A.22)

Unit Quaternion

Unit Quaternion, also known as versor and denoted here as QU , is a subset of all

Q ∈ Q such that ‖Q‖ = 1 (MURRAY et al., 1994). Given a quaternion Q, QU is

obtained by proceeding to the calculation of

QU =
Q
‖Q‖ (A.23)

which consists of a quaternion normalization. Such representatio is preferred over

general quaternions when dealing with orientation control, provided that the calcu-

lations lie on the same basis.

For controlling orientation, quaternions are often preferred, and thus, it is nec-

essary to calculate the orientation error. Consider two quaternions QU and QUd,
associated to the rotation matrices R and Rd, respectively. The quaternion QU is

the representation of the actual rigid body unit quaternion orientation and QUd is

the desired orientation. The orientation error is given by RdR
T , whose quaternion

representation is [
Qos

Qov

]
= QUQ∗Ud (A.24)

When QUd and QU are aligned, the error becomes

eo =
[
1 0 0 0

]
(A.25)

Thus, it suffices to define the orientation error as Qov, which stands for

eo = Q1sQ2v −Q2sQ1v − Q̂1vQ2v (A.26)

A.1.7 Homogeneous Transformation Matrix

Still considering the figure A.1 and with the definitions presented, it is possible to

bind position and orientation for analyzing completely the aspects concerning the

motion of a rigid body. Given that apb ∈ R3 and aRb ∈ SO(3), the full rigid body

configuration space is therefore defined as

SE(3) =
{

(apb,
aRb)|apb ∈ R3, aRb ∈ SO(3)

}
= R3 × SO(3) (A.27)

and is called 3-dimensional special euclidean group.
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The position of any point pa belonging to the rigid body with respect to Fa can

be expressed as

pa = apb + aRbpb (A.28)

This relation represents the coordinate transformation, i.e rotation and transla-

tion combined, of a bound vector between two frames (SICILIANO et al., 2009). It

can be rewritten in the matricial form as[
pa

1

]
=

[
aRb

apb

0 1

][
pb

1

]
(A.29)

and thus, the homogeneous transformation matrix is defined as

aTb =

[
aRb

apb

0 1

]
, aTb ∈ SO(3) (A.30)

where Tab ∈ SE(3). Like rotation matrices, it is also possible to concatenate sequen-

tial homogeneous transformations for relating position and orientation in chain, in

different coordinate frames, in the form

aTc = aTb
bTc (A.31)

A.1.8 Velocities of a Rigid Body

Prior to defining linear velocity, consider the following property of a rotation matrix

of the body frame Fb with respect to a given frame Fa at any instant t and calling
aRb = R for simplicity:

RRT = I (A.32)

By applying its time derivative by means of the chain rule, it yields

ṘRT +RṘT = 0 (A.33)

Then, S = ṘRT is set and hence S is skew-symmetric. Both sides of equation

A.33 are left-multiplied by R, which gives

Ṙ = SR

= ω ×R
(A.34)

and relates the angular velocity ω and the derivative of the rotation matrix. Now,
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apb
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bpc

Figure A.4: Two frames Fb and Fc in a rigid frame with respect to Fa.

considering full motion, from the derivative of (A.28), the velocity of a rigid body

with respect to Fa is given by

ṗa = aṗb + Ṙpb +Rṗb

= aṗb + ω ×Rpb +Rṗb
(A.35)

where ω denotes the angular velocity of frame R with respect to Fa. However,

provided that pb is constant, the equation can be simplified to

ṗa = aṗb + ω ×Rpb (A.36)

A.1.9 Quaternion Propagation

When quaternions are elected to represented the a rigid body orientation, it must

be observed that sensors usually deliver the angular velocity, rather than the time

derivative of the orientation error. Then, it must be considered a relationship be-

tween the angular velocity and quaternions (SICILIANO et al., 2009), given by
Q̇s = −1

2
QTv ω

Q̇v =
1

2
(QsI − Q̂v)ω

(A.37)

This relationship is also known as quaternion propagation.

A.1.10 Generalized Velocities Transformation

Now, we consider that two different frames Fb and Fc are located in the same rigid

body, as shown in A.4. Therefore, the following equality holds:

aωb = aωc (A.38)

With respect to position, both frames can be related as
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apc = apb + bpc (A.39)

Taking its derivative, it results in

aṗc = aṗb + ωb × cṗb (A.40)

By omitting the fixed reference frame for simplicity, the definitions above can be

put together in the matricial form as

hc =

[
ṗc

ωc

]
=

[
I − cpb×
0 I

][
ṗb

ωb

]
= cGT

b hb (A.41)

where cGb is called adjoint transformation matrix (MURRAY et al., 1994).

This relation is important for propagating generalized velocities along different

coordinate frames. For instance, each joint of a manipulator produces a velocity,

which contributes to the end effector velocity. Therefore, the joint velocity must be

propagated to the task frame (SICILIANO et al., 2009).

A.2 Rigid Body Dynamics

The dynamics of a rigid body are useful to study their motion under the action of

external forces. When only its kinematics is observed, many aspects which influences

motion are neglected, such as friction, material stiffness, inertia, etc. Hence, the

kinematic model may not be enough to describe a body motion properly.

There are two important formalisms to derive suitably the dynamics of a system,

which are:

• Lagrange

• Newton-Euler

However, prior to defining them, it is important to present some important

concepts concerning dynamics.

A.2.1 Center of Mass

Consider a rigid body which occupies a volume V ∈ R3 and with mass distribution

r ∈ V . The rigid body is made up of any material with mass density ρ(r) (MURRAY

et al., 1994). Its mass is given by

M =

∫
V

ρ(r)dV (A.42)
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and the center of mass r̄ is a hypothetical point where all the mass of a body

is concentrated and it behaves as if all the efforts were applied to this point. It

depends on the geometry and its mass distribution, which is related to mass density

of the material that the rigid body is constituted. Hence, r̄ is calculated by

r̄ =
1

M

∫
V

ρ(r)rdV (A.43)

When a rigid body is composed by the same material, the center of mass will

correspond to its centroid.

A.2.2 Kinetic Energy

Kinetic energy is the energy associated to the motion state once a rigid body is

in motion (HALLIDAY et al., 2013). The kinetic energy is also defined as the

work necessary to put a rigid motion into motion from the rest state. If friction is

neglected and provided that the rigid body is in motion, its acquired acceleration

is kept unless a force is exerted against its motion. The same work is necessary to

bring the body from motion to the state of rest.

Consider a force F exerted on a rigid body with mass M , which is moved by a

distance pa. From the Second Newton Law, the force applied is

F (pa) = Mp̈a (A.44)

Provided that work due to the kinetic energy is the integral of force and with

the definitions from the equation A.42, it results in the volume integral given by

T =
1

2

∫
V

ρ(r) ‖ṗa‖2 dV (A.45)

A.2.3 Potential Energy

The potential energy of a conservative field U is the energy associated to a rigid body

due to its position with respect to other bodies. This energy is stored according to

its situation in a force field or to the system configuration in which the rigid body

is inserted. It does not depend on the trajectory, but rather on the initial and final

state.

Concerning the gravitational field, the gravitational potential energy can be cal-

culated by

U = g

∫
V

ρ(r) azpdV (A.46)
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Figure A.5: System mass-spring under a force F , which provokes a deformation ∆x
in the spring and energy storage.

where azp is the height of a particle at position p with respect to frame Fa and that

occupies a volume dV .

Another important type of potential energy is the elastic potential energy, which

is the energy stored in a system due to a displacement axp caused by a elastic force

F in a spring with elastic constant k > 0, as depicted in the figure A.5. The elastic

force is defined by the Hooke’s Law, which is

F (pa) = −k axp (A.47)

When integrated, it results in the elastic potential energy given by

Ue =
1

2
k ax2

p (A.48)

The elastic potential energy does not apply in the definitions to come when

modeling the dynamics of a rigid body. However, the elastic force will be important

when dealing with manipulators, provided that contact forces can be modeled by a

mass-spring system (REN et al., 2016).

A.2.4 Inertia Matrix

The Inertia Matrix of a rigid body is close related to its motion. Its velocity can be

obtained by calculating the time derivative of equation A.28, which yields

ṗa = aṗb + aṘbr (A.49)

Consider a body volume V with a mass distribution ρ(r). Its kinetic energy

corresponds to the energy it possesses due to motion and is given by

T =
1

2

∫
V

ρ(r)
∥∥∥aṗb + aṘbr

∥∥∥2

dV (A.50)
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By evaluating the equation A.50, it can be split into translational and rotational

terms. Concerning the latter, the derivative of the rotation matrix is related to the

angular velocity by Ṙab = Rabω̂, where ω is the body angular velocity. The kinetic

energy due to rotation is given by

Tω =
1

2
ωT Iω (A.51)

where

I =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 = −
∫
V

ρ(r)r̂2dV (A.52)

where I is the inertia tensor expressed in the body frame (MURRAY et al., 1994)

and the matrix is also positive definite and symmetric. On the other hand, the

translational term of the kinetic energy is

Tp =
1

2
M ‖aṗb‖2 (A.53)

By adding both terms, Tω and Tp, and after some algebraic calculations, it results

in

T =
1

2
M ‖aṗb‖2 +

1

2
ωT Iω

=
1

2

[
aṗb

ω

]T [
MI 0

0 I

]
︸ ︷︷ ︸

M

[
aṗb

ω

]
(A.54)

whereM is the generalized inertia matrix with respect to Fb, such thatM > 0 and

MT =M, and ω is the angular velocity with respect to the body frame.

A.2.5 Lagrange Equations of Motion

It consists of a reformulation of the classical mechanics, in which the motion of a

system of particles can be described by a set of first-order differential equations,

obtained by its balance of energy.

A rigid body in motion is subject to constraints between the positions of its

particles and has limited DoF. From the Newton’s Second Law, a dynamic system

of n particles can be written as
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f =


M1I 0

. . .

0 MnI



r̈1

...

r̈n

+
k∑
j=1

Γjλj (A.55)

where ri is the particle position with respect to Fb, Mi is the mass, the vectors

Γj ∈ R3n where j = 1, . . . , k form a basis for the forces of constraint and λj are

the Lagrange multipliers. Given a system with generalized coordinates q ∈ Rn, the

Lagrangian of a mechanical system is defined as the difference between its total

kinetic and potential energy and can be represented by the equation

L(q, q̇) = T (q, q̇)− U(q) (A.56)

and the Lagrange equations are given by

d

dt

δL
δq̇i
− δL
δqi

= ξi, i = 1, . . . , n (A.57)

where ξi is the generalized force associated with qi. Thus, these equations repre-

sent the relation between generalized forces ξi applied to the body and its position,

velocity and acceleration (SICILIANO et al., 2009). Hence, it is a friendly way

to formulate the dynamics of a mechanical system, whereas it reduces the num-

ber of equations necessary to describe it to the number of generalized coordinates

(MURRAY et al., 1994).

A.2.6 Newton-Euler Equations

Another common way to formulate the dynamics of a system is by means of the

Newton-Euler equations. They are mostly used when the Lagrange equations cannot

be directly employed to determine the equations of motion, unless one chooses a local

parametrization for the configuration space (SICILIANO et al., 2009). Thus, the

Newton-Euler formalism allows to describe globally the dynamics of a rigid body

subject to forces and torques.

With the definitions explained so far, now it is possible to provide a general

dynamics equation of a rigid body according to the Newton’s Second Law. Let p

and R be the pose of the center of mass with respect to an inertial frame, consider a

force F applied to its center of mass and a torque τ which makes rigid body rotate.

The dynamics is given by:

f = M
d

dt
ṗ

τ =
d

dt
(Iaω)

(A.58)
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By defining Ia = RIRT and calculating the right side of the torque equation, it

results in

τ = Iaω̇ + ω × Ia (A.59)

which is called Euler equation (MURRAY et al., 1994). Nevertheless, the dynamics

of a rigid body is written as seen from the inertial frame. For further calculations, it

is necessary to convert it to the body frame, and to proceed so, the transformation

of these equations is carried out by doing vb = RT ṗ and setting the body force fb =

RTfb (MURRAY et al., 1994). Then, the equations present in A.58 are rewritten as

f =
d

dt
(Mṗ)

=
d

dt
(MRv̇b)

= RMv̇b + Ṙmvb

(A.60)

By left-multiplying both sides by RT , it turns out to be

fb = RTRMv̇b +RT ṘMvb

= Mv̇b + ω ×Mvb
(A.61)

On the other hand, similar calculations are done for the torques. By converting

torques, the inertia tensor I and the body angular velocity ω, it yields

τb = Iω̇b + ωb × Iωb (A.62)

which is also known as Euler equation. Both equations can be rewritten in a matricial

form as [
MI 0

0 I

][
v̇b

ω̇b

]
+

[
ωb ×Mvb

ωb × Iωb

]
=

[
fb

τb

]
(A.63)

and are known as the Newton-Euler equation.

A.2.7 Generalized Forces Transformation

Similarly to (A.41), generalized forces can also be propagated along frames. If a

force f and a torque τ are applied to a body, they are sensed at frames Fb and Fc
located inside the rigid body. From the power conservation, the relation between

these wrenches is given by
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Figure A.6: When there is a rotational motion ω, it appears Centrifugal and Coriolis
forces, which changes the body acceleration.

hc =

[
fc

τc

]
=

[
I 0

cpb× I

][
fb

τb

]
= cGbhc (A.64)

with respect to the inertial frame, where bGc is the adjoint transformation matrix,

defined in the equation A.41.

A.2.8 Coriolis and Centrifugal Forces

Coriolis and Centrifugal forces are inertial forces which arise in rigid bodies in motion

and whose reference frame rotates with respect to an inertial frame, as depicted in

the figure A.6a. As a result, these forces are seen by an observer on a rotating surface

but not by a stationary observer at the inertial frame (HAY, 2016) and therefore

they are also called ”fictitional forces”. In the equation A.63, they are present in

the term [
fcf

fco

]
=

[
ωb ×Mvb

ωb × Iωb

]
(A.65)

where the upper block matrix corresponds to the centrifugal fcf , and the lower, to

the Coriolis force fco. These forces are orthogonal to each other, as shown in the

equation A.6b, and they actuate on the applied force f by changing the direction of

f as time elapses. The equation A.65 proves that these fictional forces are always

present as long as the body presents a rotational motion. However, the centrifugal

force appears only when there exists a translational motion along.

A.2.9 Other Dynamic Effects

There are others dynamic effects which influence directly the body acceleration.

Depending on the application, they might be taken into account when modeling,

simulating and controlling a robotic system. These effects will be briefly explained
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next.

Gravity

Gravity, also defined as the Newton’s Law of Universal Gravitation, is a natural

law which states that every body attracts another in the Universe with a force that

is directly proportional to their masses and inversely proportional to the square of

the distance between their centers of mass. This statement can be mathematically

described by

fg = G
M1M2

d2
(A.66)

where G is the gravitational constant, Mi is the body mass and d is the distance

between them.

On Earth, one can consider that every rigid body has a mass negligible, and as

a consequence, the force fg ∈ R3 that the Earth attracts a rigid body is given by

fg =

 0

0

Mg

 (A.67)

where g is the gravity acceleration.

Friction

Friction is the resistance that a body, fluid or particle encounters when sliding on

another. There are two main types of friction:

• Static, which is the friction between two or more non-moving bodies relative

to each other. To put a body into motion, it is necessary to overcome the

static friction;

• Dynamic, when a body moves or tends to move relative to another and their

surfaces rub against each other. Then, it is the resistance against its motion.
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Appendix B

Proof of the KKT Conditions

Here is a proof of the KKT conditions presented in 2.21, according to NOCEDAL

and WRIGHT (1999). Consider an optimization problem, which concerns with

minimizing an objective function subject to equality and inequality constraints. A

general formulation is

min.: f(u)

s.t. ci(u) = 0, i ∈ E
ci(u) ≥ 0, i ∈ G.

(B.1)

where f is the objective function and ci ∈ Rn. G and E are set of indices, related to

equality and inequality constraints, respectively, which define all the points u where

the constraints hold, called feasible region.

S = {u|ci(u) = 0, i ∈ E ; ci(u) ≥ 0, i ∈ G} (B.2)

Prior to proving the KKT theorem, it is necessary to make some definitions,

which are:

Definition B.1. The active set W at any feasible u is the union of the set E with

the indices of the active inequality constraints, that is

W(u) = E ∪ {i ∈ G|ci(u) = 0}. (B.3)

Definition B.2 (LICQ). Given the point u∗ and the active set W, we say that

the linear constraint qualification (LICQ) holds if the active set constraint gradients

{∇ci(u∗), i ∈ W(u∗)} is linearly independent.

Theorem B.1 (First-Order Necessary Conditions). Suppose that u∗ is a local solu-

tion of (B.1) and that the LICQ holds at u∗. There is a Lagrange multiplier vector

λ∗, with components λi, i ∈ E ∪G, such that the following conditions are satisfied at

(u∗, λ∗):
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∇uL(u∗, λ∗) = 0, (B.4a)

ci(u
∗) = 0,∀i ∈ E , (B.4b)

ci(u
∗) ≥ 0,∀i ∈ G, (B.4c)

λ∗i ≥ 0,∀i ∈ G, (B.4d)

λ∗i ci(u
∗) = 0,∀i ∈ E ∩ G. (B.4e)

where L is the Lagrangian of the optimization problem. These conditions are also

known as the Karush-Kuhn-tucker conditions. From the complementarity condition,

the Lagrange multipliers related to the inactive inequality constraints are zero, then

B.4a can be rewritten as

0 = ∇uL(u∗, λ∗) = ∇f(u∗)−
∑
i∈W

(u∗)λ∗i∇ci(u∗) (B.5)

Before presenting a formal proof of the First-Order Necessary Conditions theo-

rem, it is necessary to establish a few more theorems and lemmas with their respec-

tive proofs.

Definition B.3 (Strict Complementarity). Given a local solution u∗ and a vector

λ∗ satisfying (B.4), if exactly one of λ∗i and ci(u
∗) is zero for each index i ∈ G, then

the strict complementarity condition holds.

Definition B.4. Suppose that the KKT conditions (B.4) hold for u∗. We say that

an inequality constraint ci is strongly active or binding if i ∈ W(u∗) and λ∗i > 0 for

a Lagrange multiplier that satisfies (B.4). If i ∈ W(u∗) and λi = 0 for all λ∗, then

ci is called weakly active.

Definition B.5 (Feasible Sequences). Given a feasible point u∗, a sequence {zk}∞k=0

with zk ∈ Rn is a feasible sequence if zk 6= u∗ for all k, limk→∞ zk = u∗ and zk is

feasible for all sufficiently large values of k. The set of all possible feasible sequences

approaching u∗ is denoted T (u∗).

Definition B.6 (Limiting Direction). Given Sd as some subsequence of {zk}∞k=0

towards a local solution u∗, the limiting directions of a feasible sequence are vectors

d such that

lim
zk∈Sd

zk − u∗
‖zk − u∗‖

→ d (B.6)

Theorem B.2. If u∗ is a local solution of B.1, then all feasible sequences {zk}in
T (u∗) must satisfy
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∇f(u∗)Td ≥ 0 (B.7)

Proof. Consider that there exists a {zk} with the property ∇f(u∗)Td < 0. From the

Taylor’s theorem, for any zk ∈ Sd, it results that

f(zk) < f(u∗) +
1

2
‖zk − u∗‖ dT∇f(u∗), for all k sufficiently large. (B.8)

where the superior order terms are ignored because of the property set. Hence, for

any neighborhood of u∗, a sufficiently large k can be chosen, such that zk lies within

this neighborhood and has a lower value of the objective function f . Therefore, u∗

is not a local solution.

Lemma B.1. The following two statements are true.

(i) If d ∈ Rn is a limiting direction of a feasible sequence, then

dT∇c∗i = 0, ∀ i ∈ E
dT∇c∗i ≥ 0 ∀ W(u∗) ∩ G

(B.9)

(ii) If (B.9) holds for ‖d‖ = 1 and the LICQ condition is satisfied, then d ∈ Rn is

a limiting direction of some feasible sequence.

Proof. Without loss of generality, assume that all constraints ci(.), with i = 1, 2, . . . ,m

are active. To prove (i), let {zk} ∈ T (u∗) be some feasible sequence and assume

that

lim
k→∞

zk − u∗
‖zk − u∗‖

= d (B.10)

which is rewritten as

zk = u∗ + ‖zk − u∗‖ d+ o(‖zk − u∗‖) (B.11)

From the Taylor’s theorem and with i ∈ E , it results in

0 =
1

‖zk − u∗‖
ci(zk)

=
1

‖zk − u∗‖
[
ci(u

∗) + ‖zk − u∗‖∇cTi d+ o(‖zk − u∗‖)
]

= ∇cTi d+
o ‖zk − u∗‖
‖zk − u∗‖

(B.12)
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When z →∞, the superior order term is negligible and ∇cTi d = 0, as desired to

prove. For the active inequality constraints, it similarly results in

0 ≥ ci +
o ‖zk − u∗‖
‖zk − u∗‖

(B.13)

which for k → ∞ results in ∇cTi d ≥ 0, as we wanted to prove. For proving (ii),

the LICQ condition holds and the matrix A ∈ Rm×n of active constraint gradients

has full row rank m. Let Z be a matrix whose columns are a basis for the null

space of A. Suppose also that {tk}∞k=0 is any sequence of positive scalars such that

limk→∞tk = 0. Define the parametrized system of equations R : Rn ×R → Rn by

R(z, t) =

[
c(z)− tAd

ZT (z − u∗ − td)

]
=

[
0

0

]
(B.14)

We need to prove that for each t = tk, the solutions z = zk for small t > 0 give

a feasible sequence towards u∗. For t = 0, the solution is z = u∗, and the Jacobian

of R is

∇R(u∗, 0) =

[
A

ZT

]
(B.15)

which is nonsingular. Hence, from the implicit function theorem, the system has

a unique solution zk for all values of tk sufficiently small. From (i) and (B.14), we

have that

i ∈ E ⇒ ci(zk) = tk∇cTi d = 0, (B.16a)

i ∈ W(u∗) ∩ G ⇒ ci(zk) = tk∇cTi d ≥ 0. (B.16b)

so zk is feasible. Moreover, given a t = t > 0, we cannot have z(t) = u∗, since

otherwise by replacing (z, t) = (u∗, (t)) into (B.14), it results in[
c(u∗)− tAd
−ZT (td)

]
=

[
0

0

]
(B.17)

Since c(u∗) = 0 and t > 0 and (B.15) has full rank, it results that d = 0, which

contradicts ‖d‖ = 1 and hence zk = z(tk) 6= u∗ for all k.

The second part of proof consists of showing that d is a limiting direction of

{zk}. As R(zk, tk) = 0 for all k with the Taylor’s theorem, we have that
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0 = R(zk, tk) =

[
c(zk)− tkAd

ZT (zk − u∗ − tkd)

]

=

[
A(zk − u∗) + o(‖zk − u∗‖)− tkAd

ZT (zk − u∗ − tkd)

]

=

[
A

ZT

]
(zk − u∗ − tkd) + o(‖zk − u∗‖)

(B.18)

By dividing this equation by ‖zk − u∗‖ and using non-singularity of the coefficient

matrix in the first term, it yields

lim
k→∞

dk −
tk

‖zk − u∗‖
d = 0, where dk =

zk − u∗
‖zk − u∗‖

(B.19)

Provided that ‖dk‖ = 1 for all k and since ‖d‖ = 1, it results in

lim
k→∞

tk
‖zk − u∗‖

= 1 (B.20)

Hence, from (B.19) it results in limk→∞ dk = d, as we wanted to prove.

Definition B.7. Given a point u∗ and the active constraint set W(u∗) , the set F1

is defined as

F1 =

{
αd|α > 0,

dT∇c∗i = 0, ∀ i ∈ E ;

dT∇c∗i ≥ 0, ∀ i ∈ W(u∗) ∩ G

}
(B.21)

Lemma B.2. There is no direction d ∈ F1 for which dT∇f ∗ < 0 if and only if there

exists a vector λ ∈ Rm with

∇f ∗ =
∑

i∈W(u∗)

λi∇c∗i = A(u∗)Tλ, λi ≥ 0 for i ∈ W(u∗) ∩ G (B.22)

Proof. Consider a cone N defined by

N =

s|s =
∑

i∈W(u∗)

λi∇c∗i , λi ≥ 0 for i ∈ W(u∗) ∩ G

 (B.23)

then B.22 is equivalent to ∇f ∗ ∈ N , such that N is closed. Suppose now that (B.22)

holds and d is chosen to satisfy (B.9). Then it turns out that

dT∇f ∗ =
∑
i∈E

λi(d
T∇c∗i ) +

∑
i∈W(u∗)∩G

λi(d
T∇c∗i ) (B.24)
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For i ∈ E , dT∇c∗i = 0 and the first summation results in zero, whereas the second

term is nonnegative because λi ≥ 0 and dT∇c∗i ≥ 0 for i ∈ W(u∗) ∩ G. Therefore,

dT∇f ∗ ≥ 0.

Reversely, we can demonstrate that if ∇f ∗ does not satisfy (B.22), then one can

proceed to search a vector d, such that it satisfies dT∇f ∗ < 0 and (B.9). Let ŝ ∈ N
be a vector close to ∇f ∗. Since N is closed, ŝ is well-defined and solves the following

constrained optimization problem

min: f(s) = ‖s−∇f ∗‖2
2

s.t.: s ∈ N
(B.25)

Since ŝ ∈ N , then tŝ ∈ N for all scalars t ≥ 0. Since ‖tŝ−∇f ∗‖2
2 is minimized

at t = 1, we have that

d

dt
‖tŝ−∇f ∗‖2

2

∣∣∣∣∣
t=1

= ŝT (ŝ−∇f ∗) = 0 (B.26)

Now let another vector s ∈ N . Since N is convex, from the minimizing property

of ŝ , we have that

‖ŝ+ θ(s− ŝ)−∇f ∗‖2
2 ≥ ‖ŝ−∇f ∗‖

2
2 ∀θ ∈ [0, 1( (B.27)

and hence

2θ(s− ŝ)T (ŝ−∇f ∗) + θ2 ‖s− ŝ‖2
2 ≥ 0. (B.28)

If this equation is divided by θ and by calculating its limit as θ → 0 because of

(B.26), it yields

sT (ŝ−∇f ∗) ≥ 0, ∀ s ∈ N. (B.29)

Now, we need to prove that the vector

d = ŝ−∇f ∗ (B.30)

is valid for (B.9) and dT∇f ∗ < 0. Note that d 6= 0 because ∇f ∗ does not belong to

cone N . We have from (B.26) that

dT∇f ∗ = dT (ŝ− d)

= (ŝ−∇f ∗)T ŝ− dTd
= −‖d‖2

2 < 0

(B.31)
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so that d satisfies the descent property. If one proceeds to a proper choice of λi,

with i = 1, 2, . . . ,m, we have that

i ∈ E ⇒ ∇c∗i ∈ N and −∇c∗i ∈ N ;

i ∈ W(u∗) ∩ G ⇒ ∇c∗i ∈ N.
(B.32)

Hence, from (B.29), we perform a substitution d = ŝ − ∇f ∗ and the particular

choices s = ∇c∗i and s = −∇c∗i , which results in

i ∈ E ⇒ dT∇c∗i ≥ 0 and − dT∇c∗i ≥ 0⇒ dT∇c∗i = 0

i ∈ W(u∗) ∩ G ⇒ dT∇c∗i ≥ 0.
(B.33)

which satisfies (B.9), so the reverse implication is proved.

Finally, the First-Order Conditions can be proved, as follows:

Proof. First, assume that u∗ ∈ Rn is a feasible point at which LICQ holds. The

theorem says that if u∗ is a local solution of (B.1), then there is a vector λ∗ that

satisfies the KKT conditions (B.4).

First, it is important to demonstrate that λi satisfies (B.22). The theorem B.2

states that dT∇f ∗ ≥ 0 is valid for every d of feasible sequences {zk}. From Lemma

B.1 the LICQ conditions hold and the set of all possible d matches the set of vectors

that satisfy conditions (B.9). From both statements, it implies that all limiting

directions d that satisfy (B.9) must have dT∇f ∗ ≥ 0. Hence, from Lemma B.2,

there must exist a vector λ for which (B.22) holds.

Consider a vector λ∗, such that

λ∗i =

{
λi, i ∈ W(u∗),

0, otherwise
(B.34)

which shows that λ∗ and u∗ satisfies the KKT conditions.

By checking the conditions, we have that the condition (B.4a) is achieved from

(B.22), from the Lagrangian function and from (B.34. The conditions (B.4b) and

(B.4c) are satisfied as well, provided that u∗ is feasible. From (B.22), λ∗i ≥ 0 for

i ∈ W(u∗) ∩ G, while from (B.34), λ∗i = 0 for i ∈ G \ W(u∗). Hence, λ∗i ≥ 0 for

i ∈ G, so that (B.4d) is satisfied. Finally, for i ∈ W(u∗) ∩ G, ci(u
∗) = 0, while for

i ∈ G \ W(u∗), we have λ∗i = 0. Thus, λ∗i ci(u
∗) = 0 for i ∈ G, so that (B.4e) holds,

which completes the proof.
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