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Machado, José Guilherme de Souza

Development of Modal Analysis Tools for Systems With
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José Guilherme de Souza Machado

Dezembro/2019

Orientadores: Tatiana Mariano Lessa de Assis

Sergio Gomes Junior

Programa: Engenharia Elétrica

Este trabalho propõe avanços matemáticos e metodologias computacionais para

permitir uma análise modal abrangente usando uma representação precisa dos atra-

sos no transporte. Contemplando o desenvolvimento de ferramentas de análise

modal para sistemas com atrasos de transporte, que representam um avanço no

estado da arte da estabilidade e controle de sistemas de energia.

Tendo em vista o recente uso generalizado de sistemas de comunicação em redes

elétricas, a representação usual dos atrasos de transporte transformam o modelo

do sistema em um sistema com um número infinito de pólos. Como resultado, as

representações tradicionais, como espaço de estados e sistemas de descritores, se

tornam inviáveis.

As metodologias propostas são analisadas através de simulações em um sis-

tema tutorial e no Sistema Interligado Brasileiro. Os resultados obtidos com a

formulação proposta são comparados com a representação historicamente utilizada

e demonstram a importância da modelagem mais precisa dos atrasos de transporte

na avaliação de problemas de estabilidade eletromecânica.
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This thesis proposes mathematical advances and computational methodologies to

enable a comprehensive modal analysis using an accurate representation of transport

delays. Contemplating the development of modal analysis tools for transport delay

systems, which represent a breakthrough in the state of the art of stability and

control of power systems.

Given the recent widespread use of communication systems in power grids, the

usual representation of transport delays turns the system model into a system with

an infinite number of poles. As a result, traditional representations, such as state

space and descriptor systems, become unavailable.

The proposed methodologies are analyzed through simulations in a tutorial sys-

tem and in the Brazilian Interconnected System. The results obtained using the pro-

posed formulation are compared with the historical representation and demonstrate

the importance of more accurate modeling of transport delays in the evaluation of

electromechanical stability problems.
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Chapter 1

Introduction

This chapter describes the main subjects discussed in this work. It contains

the motivation, objectives and contributions of the presented research. The thesis

focuses on power system stability and control, small signal stability, linear analysis,

modal analysis and transport delay.

1.1 Context

Traditionally, power system stability control strategies mostly use local informa-

tion. The measuring delays associated to local information are usually very small

(less than 10 ms), so these delays are usually ignored in power system stability

analysis and controllers design.

The general configuration of a modern power system, with huge dimensions,

presents power sources and loads widely dispersed. Generators and loads may be

hundreds of miles apart. As a result, the number of bulk power exchanges over long

distances has increased. Usually, a distributed control scheme is adopted, which

includes power system stabilizers (PSSs) and automatic voltage regulators (AVRs).

The independent local design may result in an inappropriate coordination between

the local controllers, causing serious problems, such as inter-area oscillations.[1]

The rapid development of phase measurement units (PMUs) and wide area mea-

surement systems (WAMSs) has brought more attention to coordinated stability

control that uses remote sensing given by WAMS/PMU. The time delay in wide

area measurement can be significant and cannot be ignored. So it is very important

to evaluate the impact of those time delays on power system stability analysis and

controls.

In order to obtain accurate results in computational simulations, the time delay

related to remote sensing must be modelled. In the Laplace domain, the transport

1



delay can be expressed as e−s.τ 1. However, historically, it is represented by a rational

transfer functions as Bessel functions, Padé approximations, Laguerre polynomials,

hyperbolic functions, etc [2–4].

The Brazilian Interconnected Power System (BIPS), as other power systems

worldwide, is constantly subjected to a wide range of disturbances. Whether large

or small disturbances, the BIPS may be able to react to adverse conditions and

operate satisfactorily.

The optimal use of power resources presented in different areas all over the

country is relevant for an economic and reliable operation of the BIPS. In this

context, the interconnection of electrical subsystems plays an important role.

For an adequate, continuous and secure supply of electrical energy, it becomes

necessary improving power system analysis tools. The results provided by such tools

drive the planning and operation decisions and their accuracy helps to minimize the

risks of failure. The higher penetration of PMUs on the electrical systems and,

with the increasingly widespread WAMS of electrical systems, explicit the growth

of electrical operation complexity of energy systems and made clear why stability

studies should considerate remote signals in order to allow a correct actuation of

controls.

Modal analysis has a special contribution on small-signal studies because it car-

ries structural information about the electrical system, such as badly damped modes,

or the best location for installing a specific control.

1.2 Research Motivations

The main motivation of this research is the increasing development of commu-

nication structure in electrical systems all over the world. This development may

change the system operation and control paradigms, as it brings a range of new pos-

sibilities. Furthermore, there is a lack of methodologies and computational tools for

systems that use remote signals, especially focused on small-signal stability. In this

way, it is difficult to analyse alternative solutions based on remote sensing, including

the use of remote signals for damp local and inter-area oscillations.

1.3 Objectives and Contributions

The use of remote signals for stability control is not a practice currently adopted

by power system planners. However, with the growing development of communica-

tion structure, this is a promising future alternative. In order to obtain accurate

1Where: s is the complex frequency and τ is the time delay.

2



results, stability analysis and controller design methods must take into account time

delays and practical tools should be developed to study the dynamic behaviour of

time-delayed power systems.

This work presents the main concepts of small signal stability and proposes new

tools for modal analysis, considering the presence of transport delays in remote

control schemes. In addition, methods and corrective measures that can be used to

increase the damping factor of power system oscillations are evaluated, taking into

account the setting of controllers that use remote signals.

3



The mathematical development of modal analysis tools for systems with remote

signals is the main contribution of this thesis. The employed theory is based on

frequency modelling methods that allows a more precise representation of transport

delays and considers higher frequencies modes, historically ignored on electrome-

chanical stability studies [REF].

The development of modal analysis tools for systems with transport delays rep-

resent an advance in the state of art of power system stability and control. With the

proposed approach, it is possible to determine better settings to controllers based

on remote signals, improving the dynamic behaviour of power systems.

1.4 Thesis Outline

This thesis is divided in chapters as follow:

• Chapter 1 – Introduction: The main topics of this research are described,

including the motivations and contributions of this thesis;

• Chapter 2 – Modal Analysis Concepts: The basic concepts of power system

stability are reviewed, focusing on small-signal stability;

• Chapter 3 – Frequency Domain Modelling: The current state of art related

to the power system modelling is presented, including the full transport delay

modelling and modal analysis methodology for systems with remote signals;

• Chapter 4 – Tests and Results: Results obtained using the methods and com-

putational tools developed in this thesis are presented. Initially, a two-area

system is exploited in a tutorial and detailed analysis. After that, results for

the Brazilian Interconnected Power System are presented;

• Chapter 5 – Conclusion: Conclusions and proposals of future work are ad-

dressed.
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Chapter 2

Modal Analysis Concepts

The main goal of this chapter is to review the basic concepts related to power

system stability analyses, focusing on the rotor angle stability. Transient and small-

signal stability analyses are described.

2.1 Introduction

A system is a set of physical elements acting together and realizing a common

goal. Usually, mathematical models adopted to represent the behaviour of a system

do not contain a universal character, but rather reflect some characteristic phenom-

ena which are of interest [5].

A dynamic systems modelled by ordinary differential has equations of the form:

ẋ = F (x) (2.1)

ẋ = Ax (2.2)

Equation (2.1) describes a nonlinear system, while (2.2) describes a linear system.

F (x) is a vector of nonlinear functions and A is a square matrix and x is the state

vector and ẋ is the time derivative of x.

A curve x(t) in the state space containing system states values in consecutive

time instants is referred to as the system trajectory. A trivial one-point trajectory

is referred to as the equilibrium point if all partial derivatives are zero, i.e., ẋ = 0.

According to Equations (2.1) and (2.2), the equilibrium point, denoted by x̂, satisfies

the following equations [5]:

F (x̂) = 0 (2.3)

Ax̂ = 0 (2.4)

A nonlinear system may have more than one equilibrium point because nonlinear
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equations may have generally more than one solution. In the case of linear systems,

according to the Cramer theorem concerning linear equations, there exists only one

uniquely specified equilibrium point ẋ = 0 if and only if the matrix A is non-singular

(detA = 0) [5].

2.2 Transient Stability

According to [6], transient stability is the ability of the power system to maintain

synchronism when subjected to a severe transient disturbance such as a fault on

transmission lines, loss of generation, or loss of a large load. In order to analyse

the system stability, the dynamic behaviour of the rotor angles and rotor speed of

power plants are observed [6, 7].

In general, the stability of nonlinear systems depends on the size of the distur-

bance which the system is subjected to. A nonlinear system may be stable for a

small disturbance, but unstable for a large one. Critical disturbance is the name

given for the disturbance in which a nonlinear system is still stable [5].

Several factors may influence the transient stability of power systems, including

the generators loading, the fault-clearing time, the post fault system topology and

the system inertia [6].

2.2.1 Non-linear System Modelling

A nonlinear dynamic system can be generally described by the following set of

algebraic and differential equations:

ẋ = F (x, u) (2.5)

y = G(x, u) (2.6)

While a linear dynamic system model can be described by:

ẋ = Ax+Bu (2.7)

y = Cx+Du (2.8)

The most practical available method for transient stability analysis is the time-

domain simulation in which the nonlinear differential equations are solved using

numerical techniques [6, 8].

The differential equations to be solved in power system stability analysis are non-

linear ordinary differential equations (2.9), where the initial values of state variables

are known [6].
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ẋ = f(x, t) (2.9)

As previoslly said, x is the state vector of n dependent variables, and t is the

independent variable (time). The main goal of solving numeric equations for dy-

namics purposes is to solve x as a function of t, with the initial values of x and t

equal to x0 and t0, respectively [6, 9].

There are many numerical methods which solve the differential equations as

(2.9). As examples, it is possible to quote the Euler, Runge-Kutta and Trapezoidal

methods [6, 9].

2.2.1.1 Equal-Area Criterion

The current section briefly describes the well-known single machine against infi-

nite bus analysis in order to elucidate the transient stability problem.

Consider the system shown in the 2.1. This system is composed by a genera-

tor connected to an infinite bus through two transmission lines. For the sake of

simplicity, only the reactances are considered. The generator is represented by the

classical model and the speed governor is neglected. The infinite bus voltage angle

is considered as the angle reference.

Generator Transformer

Bus 1 Infinite
BusTransmission Line 1

Transmission Line 2

Figure 2.1: Single-line diagram of machine x infinite bus system.
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Figure 2.2 shows the equivalent circuit of the analysed system.

Bus 1 Infinite
Bus

�1

�2

Transmission Line 1

Transmission Line 2

���
′

�

∠��
′ ∠0�

∞

Figure 2.2: Equivalent Circuit - Single-line diagram of Machine Against Infinite Bus.

In Figure 2.2, E ′ is the internal generator voltage, X ′d is the generator transient

reactance, δ is the generator rotor angle, Xt is the transformer leakage reactance,

X1 and X2 are the transmission lines reactances and E∞ is the infinite bus voltage.

The active power transferred from the generator to the infinite bus is given by

(2.10).

Pe =
E ′E∞
Xeq

sin(δ) (2.10)

Where, the term Xeq is the equivalent reactance obtained through the series and

parallel associations of system reactances (X ′d, Xt, X1 and X2).

One should note that (2.10) is strictly non-linear and there is a power limit Pmax

which can flow through the transmission lines. Pmax is given by E′E∞
Xeq

. Analysing

the figure 2.3 it is possible to observe that for angles δ bigger than π
2

the system

becomes unstable.
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Figure 2.3: Equal Area Criterion.

Examining the circuit described in Figure 2.2, let’s suppose a three-phase fault

on transmission line 2. Because of the fault, the circuit 2 became out of service,

decreasing power transmission capacity, as shown in Figure 2.4. The fault is cleared

by a circuit breaker, after a short period of time. Thus, the effective transmission

system is unaltered except while the fault is on. The short circuit caused by the fault

is effectively at the transmission line 2, the electrical power output from generator

decreases, once Pmax due to increase of Xeq.

The generator is operating initially at synchronous speed where the input me-

chanical power Pm equals the output electrical power Pe. When the fault occurs, the

electrical power output is suddenly smaller than before of fault while the mechanical

power remains unaltered. The difference in power must be accounted by a rate of

change of stored kinetic energy in the rotor masses. Therefore, Pm > Pmax accom-

plishes an increase in speed, this area is called as acceleration area and represented

in Figure 2.4 by Area 1.

When the fault is cleared, the electrical power output abruptly increases. The

electrical power output exceeds the mechanical power input, as consequence the

rotor slows down. Thus, Pmax > Pm accomplishes an decrease in speed, this area is

called as deceleration area and is represented in Figure 2.4 by Area 2.

The equal area criterion establishes that if a Area 1 is equal to Area 2, the system

is capable to regain the synchronism. Therefore, the rotor angle will tour until find

the equilibrium point.
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Figure 2.4: Equal Area Criterium.

2.3 Small-Signal Stability

The stability of linear systems is entirely independent of the input. The state of

a stable system with zero input will always return to the origin of the state space

[6, 9].

In contrast, for nonlinear systems, the stability depends on the type, the mag-

nitude of the input and the initial state [6, 9].

Usually, the stability of a nonlinear system is classified into three major cat-

egories, depending on the region of state space in which the state vector ranges

[6]:

• Local stability;

• Finite stability;

• Global stability.

The system is said to be a local stable system if, when subjected to a small

perturbation, it remains into a small region surrounding the equilibrium point. If

the system returns to the original equilibrium point as t increases, the system is

called a asymptotically stable system. If the state of a system remains within a

finite region R, the system is said to be a Finite Stable. And, finally, the system is

called Global Stable if R includes the entire finite space [6].
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2.3.1 System Model Linearization

In order to investigate the small-signal stability of an general system, (2.3) and

(2.4) can be linearized around an equilibrium point (x0, u0) as given by (2.11)

[6, 8, 9].

ẋ0 = F (x0, u0) = 0 (2.11)

Considering a small perturbation on the initial state of the system:

x = x0 + ∆x (2.12)

u = u0 + ∆u (2.13)
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Therefore, according to Equation (2.3):

ẋ = ẋ0 + ∆ẋ = f [(x0 + ∆x), (u0 + ∆u)] (2.14)

Once the perturbation is assumed to be small, the nonlinear functions can be

expressed in terms of Taylor’s series expansion with terms involving second and

higher orders of ∆x and ∆u neglected. Then, for example, one arbitrary line of

(2.14) turns into:

ẋi = ẋi0 + ∆ẋi = fi[(x0 + ∆x), (u0 + ∆u)] =

fi(x0,u0) +
∂fi
∂x1

∆x1 + ...+
∂fi
∂xn

∆xn

+
∂fi
∂u1

∆u1 + ...+
∂fi
∂ur

∆ur

(2.15)

Since ẋi0 = fi(x0,u0), then:

∆ẋi =
∂fi
∂x1

∆x1 + ...+
∂fi
∂xn

∆xn +
∂fi
∂u1

∆u1 + ...+
∂fi
∂ur

∆ur (2.16)

With i = 1,2, ..., n. In the same way:

∆ẏi =
∂gi
∂x1

∆x1 + ...+
∂gi
∂xn

∆xn +
∂gi
∂u1

∆u1 + ...+
∂gi
∂ur

∆ur (2.17)

With i = 1,2, ..., m.
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Therefore, the linearized equations derived from (2.3) are:

∆ẋ = A∆x+B∆u (2.18)

∆y = C∆x+D∆u (2.19)

Where:

A =



∂f1
∂x1

... ∂f1
∂xn

... ... ...
∂fi
∂x1

... ∂fi
∂xn

... ... ...
∂fn
∂x1

... ∂fn
∂xn

 (2.20)

B =



∂f1
∂u1

... ∂f1
∂ur

... ... ...
∂fi
∂u1

... ∂fi
∂ur

... ... ...
∂fn
∂u1

... ∂fn
∂ur

 (2.21)

C =



∂g1
∂x1

... ∂g1
∂xn

... ... ...
∂gi
∂x1

... ∂gi
∂xn

... ... ...
∂gm
∂x1

... ∂gm
∂xn

 (2.22)

D =



∂g1
∂u1

... ∂g1
∂ur

... ... ...
∂gi
∂u1

... ∂gi
∂ur

... ... ...
∂gm
∂u1

... ∂gm
∂ur

 (2.23)

Once small-signal stability is being analysed, the partial derivatives are related

to the equilibrium point. For (2.18) and (2.19):

• ∆x is the state vector of dimension n;

• ∆y is the output vector of dimension m;

• ∆u is the input vector of dimension r ;
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• A is the state matrix of size n× n;

• B is the control or input matrix of size n× r;

• C is the output matrix of size m× n;

• D is the feedforward matrix. This Matrix defines the proportion of input

which appears directly in the output, size m× r;

2.3.2 Eigenvalues and Eigenvectors

Taking the Laplace transform of (2.18) and (2.19), it is possible to obtain the

state equations in the frequency domain:

s∆x(s)−∆x(0) = A∆x(s) +B∆u(s) (2.24)

∆y(s) = C∆x(s) +D∆u(s) (2.25)
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Which can be represented by the block diagram shown in Figure 2.5.

Figure 2.5: Block Diagram - state equations.

Since the representation is on the transfer function of the system, the initial

conditions ∆x(0) are assumed to be zero.

In order to obtain the system eigenvalues, (2.24) can be rearranged, resulting in:

s∆x(s)−A∆x(s) = B∆u(s) (2.26)

(sI −A)∆x(s) = B∆u(s) (2.27)

∆x(s) = (sI −A)−1B∆u(s) (2.28)

Using (2.28) in Equation (2.25) one can obtained (2.29) and (2.30):

∆y(s) = C(sI −A)−1B∆u(s) +D∆u(s) (2.29)

∆y(s) = (C(sI −A)−1B +D)∆u(s) (2.30)

The system poles are given by the roots of (2.31):

det(sI −A) = 0 (2.31)

Equation (2.31) is known as the characteristic equation of matrix A. The values

of s that satisfy (2.31) are known as the eigenvalues of matrix A.

The eigenvalues are the values of scalar parameter λ for which there exist non-

trivial solution to the (2.32):

Aφ = λφ (2.32)

15



Where:

• φ is an vector of size nx1 ;

The n solutions of Equation (2.31) gives the eigenvalues ofA (λ = λ1, λ2, ..., λn).

Any vector φi that satisfies (2.32) is called to be an right eigenvector of A

associated with the eigenvalue λi. Therefore, for an ordinary eigenvalue:

Aφi = λiφi i = 1, 2, ..., n (2.33)

The eigenvector φi has the form:

φi =


φ1i

φ2i

...

φni

 (2.34)

One should note that k.φi is also a solution.

Similarly, the n-row vector ψi which satisfies the (2.35) is known as the left

eigenvector associated to the eigenvalue λi.

ψiA = ψiλi i = 1, 2, ..., n (2.35)

The left and right eigenvectors corresponding to different eigenvalues are orthog-

onal, therefore:

ψjφi = 0 (2.36)

However, if the eigenvectors correspond to the same eigenvalue:

ψiφi = K (2.37)

Where, K is a non-zero constant.

It is usual to normalize the eigenvectors. Therefore, (2.37) takes the form shown

in Equation (2.38):

ψiφi = 1 (2.38)

The system modes obtained through the eigenvalues of matrix A, shown in

(2.31), provides the system dynamic behaviour in face of small disturbances.

These modes may represent characteristics of power system natural oscillations.

The oscillation modes related to electromechanical dynamics can be divided into 4

main categories:
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• intra-plant modes: represent oscillations between generation units into the

same power plant;

• local modes: represent oscillations of a power plant against all other system

machines;

• inter-area modes: represent oscillations between power plants that belong to

different areas;

• multi-machine modes: represent oscillations between several machines of sev-

eral areas.

2.3.3 Stability from Small-Signal Point of View

Equation (2.18) with zero input can be expressed as Equation (2.39), which is

referred as free motion equation:

∆ẋ = A∆x (2.39)

Equation (2.39) can be expressed in a decoupled form by using linear techniques.

First, consider a new state vector z related to the original state vector ∆x by (2.40):

∆x = φz (2.40)

Therefore:

φż = Aφz (2.41)

Then:

ż = φ−1Aφz (2.42)
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Using the new state vector (2.39) become:

ż = Λz (2.43)

Where Λ is a diagonal matrix. The main diagonal of matrix Λ contains the n

eigenvalues of system. Therefore:

żi = λizi i = 1, 2, ..., n (2.44)

Using the transformation given by (2.40), it’s possible to obtain the uncoupled

state equations given by (2.44).

Equation (2.44) is a simple first-order differential equation with the following

solution:

zi = zi(0)eλit (2.45)

The time dependent characteristic of a mode corresponding to an eigenvalue λi

is given by eλit. Therefore, the system stability is determined by the eigenvalues as

follows:

• Real eigenvalues correspond to non-oscillatory modes. A negative real eigen-

value represents a stable decaying mode, while a positive real eigenvalue means

an aperiodic instability. The bigger its magnitude, the faster its decay (stable)

or increase (unstable);

• Complex eigenvalues correspond to an oscillatory mode, with the real compo-

nent giving the damping and the imaginary component giving the frequency of

the oscillation. A negative real part corresponds to a damped oscillation. On

the other hand, a positive real part corresponds to an undamped oscillation;

Since a complex eigenvalue, λ, composed by a real part σ and a imaginary

part ω, is given by:

λ = σ + jω (2.46)

The damping ratio, ζ, is given by:

ζ =
−σ√
σ2 + ω2

(2.47)

The step responses for real and complex eigenvalues are illustrated in Figures

2.6 to 2.10.
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Figure 2.6: Complex eigenvalues with a positive damping ratio step response

Figure 2.7: Complex eigenvalues with a zero damping ratio step response
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Figure 2.8: Complex eigenvalues with a negative damping ratio step response

Figure 2.9: Real eigenvalue with a positive damping ratio step response
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Figure 2.10: Real eigenvalue with negative damping ratio step response
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2.3.4 Participation Factors and Mode Shapes

Defining the Modal Matrices as:

φ =
[
φ1 φ2 ... φn

]
(2.48)

ψ =
[
ψ1 ψ2 ... ψn

]
(2.49)

Λ =


λ1 0 ... 0

0 λ2 ... 0

... ... ... ...

0 0 ... λn

 (2.50)

Where each matrix in (2.48), (2.49), (2.50) has dimension n × n. Equations

(2.32) and (2.44) can be expanded as:

Aφ = φΛ (2.51)

ψφ = I ψ = φ−1 (2.52)

The Equation (2.40) shows the relationship between the state vectors ∆x and

z. Then:

∆x(t) = φz(t) =
[
φ1 φ2 ... φn

]
z(t) (2.53)
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And:

z(t) = ψ∆x(t) =
[
ψT

1 ψT
2 ... ψT

n

]T
∆x(t) (2.54)

The transformed state variables z are directly related to the system modes. On

the other hand, the original state variables ∆x gives the dynamic performance of

system [6].

Equation (2.53) shows that the right eigenvector gives the relative activity of

the “original state variables” when a particular mode is excited. Therefore, the

magnitudes of the elements φi gives the magnitudes of the eigenvalue i in the n

“original state variables”. These relative activity is called mode shape.

In other hand, the Equation (2.54) shows the ”participation” of each “original

state variable” in a eigenvalue i. The left eigenvector measures the relative partici-

pation of each “original state variable” in the ith mode.

In order to determine the sensitivity of eigenvalues to the elements of state matrix

A, one should examine (2.33) with respect to an ordinary eigenvalue λi as shown in

(2.55):

Aφi = λiφi (2.55)

Computing the derivative of (2.55) with respect to akj (kth row, j th column):

∂A

∂akj
φi + A

∂φi

∂akj
=

∂λi
∂akj

φi + λi
∂φi

∂akj
(2.56)

Multiplying (2.56) by ψi...

ψi
∂A

∂akj
φi =

∂λi
∂akj

(2.57)

One should note that all elements of ∂A
∂akj

are zero, except the element “k,j”.

Therefore:

ψiφi =
∂λi
∂akj

(2.58)

The matrix participation matrix (P ), which combines the right and left eigenvec-

tors,can be used to measure the association between the state variables and modes:

P =


p1

p2

...

pn

 (2.59)
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Then:

pi =


p1i

p2i

...

pni

 =


φ1iψi1

φ2iψi2

...

φniψin

 (2.60)

Where:

• φki = the element “k,i” of modal matrix φ

• ψik = the element “i,k” of modal matrix ψ

The element pki = φkiψik is called participation factor and measures the partici-

pation of kth state variable in the ith eigenvalue.

The sum of all participation factors of all state variables related to ith eigenvalue

equals 1.

2.3.5 Controllability, Observability and Residue

The concepts of controllability and observabillity play an important role in the

design of control systems in state space. The conditions of controllability and ob-

servability govern the existence of a complete solution to the control system design

problem [8].

It is possible the physical system being controllable and observable and the cor-

respondent mathematical model may not posses the property of controllability and

observability. Then, it’s necessary to know the conditions under which a mathemat-

ical model is controllable and observable [8].

Consider the system given by (2.61):

ẋ = Ax+Bu (2.61)

The system is completely state controllable if and only if the vectors

B,AB, ...,An−1B are linearly independent, or the n x nr matrix, given by (2.62),

is of rank n [8].

[
B | AB | ... | An−1B

]
(2.62)

The matrix given by (2.62) is known as controllability matrix.

The system is said to be completely observable if every state x(t0) can be de-

termined from the observation of y(t) over a finite time interval, t0 ≤ t ≤ tf . The

system is, therefore, completely observable if every transition of the state eventually

affects every element of the output vector [8].
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The concept of observability is very important because, in practice, some of

the state variables are not accessible for direct measurement. In those cases, it is

necessary to estimate these state variables in order to design controllers [8].

Consider the unforced system given by (2.63) and (2.64):

ẋ = Ax (2.63)

y = Cx (2.64)

The system is completely observable if the matrix n x nm given by (2.65) is of

rank n (n linearly independent column vectors). In this case, matrix (2.65) is called

observability matrix.

[
C∗ | A∗C∗ | ... | (A∗)n−1C∗

]
(2.65)

The decoupled (normal form) system modeling is given by (2.66) and (2.67),

which can be obtained using the modal matrices.

ż = Λz +B′∆u (2.66)

∆y = C′z +D∆u (2.67)

Where:

• B′ = φ−1B

• C′ = Cφ

Equations (2.66) and (2.67) show that if one row of matrix B′ is zero, then the

inputs have no effect on the mode related to these line. Then, in such case, this

mode is called uncontrollable [6]. On other hand, if a column of matrix C′ is zero,

the corresponding mode is unobservable, which means that the variable zi does not

contribute to the formation of the outputs. [6]

The nxr matrix B′ = φ−1B is called mode controllability matrix, and the mxn

matrix C′ = Cφ is called mode observability matrix.

By inspecting B′ and C′ it is possible to classify the modes into observable,

controllable, unobservable and uncontrollable.

Consider the system given by (2.68) and (2.69):

∆ẋ = A∆x+ b∆u (2.68)

∆y = c∆x (2.69)

The transfer function is:
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G(s) =
∆y(s)

∆u(s)
= c(sI −A)−1b (2.70)

Equation (2.70) can be expressed as:

G(s) =
R1

s− p1
+

R2

s− p2
+ ...+

Rn

s− pn
(2.71)

Where Ri is known as the residue of G(s) at pole pi. [10, 11]

It is possible to express the transfer function in terms of eigenvalues and eigen-

vectors by expressing the state variables ∆x in terms of transformed transformed

variables z:

G(s) =
∆y(s)

∆u(s)
= cφ(sI −Λ)−1ψb (2.72)

Since Λ is a diagonal matrix:

G(s) =
n∑
i=1

Ri

s− pi
(2.73)

Where

Ri = cφiψib (2.74)

2.4 Final Considerations

The basic concepts of angular stability of power systems has been described in

this chapter, including transient and small-signal stability analyses review. These

concepts are used in the next chapters of this thesis.

Modal analysis principles has been presented, including the concepts of eigenval-

ues, eigenvectors, participation factors, mode shapes, controllability, observability

and transfer functions residues.

26



Chapter 3

Frequency Domain Modeling

The main objective of this chapter is review basic concepts related to power

system modelling and discuss the representation of transport delays. Based on the

presented concepts, advances in techniques for small-signal stability analysis are

developed and the theoretical and mathematical aspects behind these advances are

described.

3.1 Basic Concepts

Chapter 2 has described the conventional small-signal state space modelling,

presenting the traditional and the decoupled equations form. Moreover, elementary

theory about the well-known modal sensibility analysis has been introduced.

However, for large scale power systems, the linear techniques for small-signal

stability analysis are usually based on the descriptor system representation (“Dif-

ferential and Algebraic Equations – DAE”), as follows:

T ẋ = Ax+Bu (3.1)

y = Cx+Du (3.2)
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Where:

• For the general case, T has constant elements and is not necessarily reversible.

One can see that the main difference between the state space representation

shown in (2.7) and (2.8) and the descriptor system representation shown in (3.1)

and (3.2) is the matrix T .

In the particular case where T has only unitary elements, it becomes the identity

matrix and the formulation results on the state space modelling.

Another particular case consists in a matrix T with only unitary and zero el-

ements. In this case, the differential equations and algebraic equations may be

separated and (3.1) and (3.2) can be written as:[
ẋ

0

]
=

[
A1 A2

A3 A4

]
.

[
x

r

]
+

[
Bx

Br

]
u (3.3)

y = Cxx+Crr +Du (3.4)

Where the vector r is the algebraic variable vector and the matrix T is given by

(3.5).

T =

[
I 0

0 0

]
(3.5)

Where I is the identity matrix with the dimension equal to the number of system

state variables.

Equations (3.3) and (3.4) can be transformed into a space state modelling by

the algebraic variables elimination as follows:

A3x+A4r +Bru = 0→ r = −A4
−1A3x−A4

−1Bru (3.6)
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Using (3.6) in (3.3) and (3.4):

ẋ = (A1 −A2A4
−1A3)x+ (Bx −A2A4

−1Br)u (3.7)

y = (Cx −CrA4
−1A3)x+ (D −CrA4

−1Br)u (3.8)

Equations (3.7) and (3.8) show the system modelled into a differential and alge-

braic equations and transformed into a space state modeling.

In order to include the transport delay representation, frequency modelling, here

called as Y(s)-formulation, is used. In fact, the formulation presented in (3.7) and

(3.8) has some constrains associated to delays modelling as will be shown in the

next section. The mathematical expressions of Y(s)-formulation are shown in (3.9)

and (3.10) and have been derived from [12]:

Y (s)∆x(s) = B∆u(s) (3.9)

∆y(s) = C∆x(s) +D∆u(s) (3.10)

Where:

• Y (s) is the system matrix;

• B is the input matrix;

• C is the output matrix;

• D is the matrix which direct links the input with the output;

• ∆x(s) is the state vector in frequency domain;

• ∆u is the input vector in frequency domain;

• ∆y is the output vector in frequency domain;
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The system matrix Y (s) in the s-domain is in general a non-linear function

of s. The descriptor system shown in (3.1) and (3.2) is a particular case where

Y (s) = (s.T −A), as shown below.

Applying the Laplace transformation in (3.1) and (3.2) and considering null

initial conditions, it is possible to obtain:

sTx(s) = Ax(s) +Bu(s) (3.11)

y(s) = Cx(s) +Du(s) (3.12)

Rewritten (3.11):

(sT −A)x(s) = Bu(s) (3.13)

y(s) = Cx(s) +Du(s) (3.14)

The Y (s)-formulation was used previously for electromagnetic and harmonic

analysis where the transmission system dynamics was fully represented by a nodal

admittance non-linear function of s. [13–15]
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3.2 The Transport Delay

The transport delay can be understood as the time between one action and the

sensitivity of its effects. [8]

The mathematical definition of a transport delay in time domain is:

xd(t) = x(t− τ) (3.15)

Where xd is a system variable delayed in relation to x by a time period τ .

In the complex frequency domain, the transfer function between variables xd and

x can be obtained by using the Laplace transform in both terms of (3.15). Therefore:

Xd(s) =

∫ ∞
0

e−st.x(t− τ).dt = X(s).e−sτ (3.16)

Here, the variable xd is called as a delayed variable in time domain and Xd is

called as a delayed variable in frequency domain.

The representation of transport delays as shown in (3.15) and (3.16) turns the

system model (3.1) and (3.2) into an infinite system, with an infinite number of poles.

Therefore, the traditional modelling cannot be used for an accurate representation

of the transport delay in linear analysis.

In order to include the transport delay more accurately in the traditional mod-

elling, a high order series in the Laplace domain, such as Padé approximations (3.17)

or Taylor expansions (3.18), using a rational transfer function, may be used. How-

ever, these representations are still approximated. Moreover, the system dimension

increases significantly and eventually spurious high frequency poles may appear in

the frequency range where the infinite series is truncated. In order to avoid such

problems, the transport delay has not been fully represented in power system studies.

In fact, just a first order approximation has been considered.
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e−sτ =
1− sτ

2.1!
+
s2τ 2

22.2!
− s3τ 3

23.3!
+ ...

1 +
sτ

2.1!
+
s2τ 2

22.2!
+
s3τ 3

23.3!
+ ...

(3.17)

e−sτ =
1

1 + sτ +
s2τ 2

2!
+
s3τ 3

3!
+ ...

(3.18)

This thesis proposes the use of non-conventional s-domain modelling (3.9) and

(3.10) for small-signal analysis of large power systems with multiple transport delays.

A particular approach is here proposed for dealing with power system dynam-

ics, considering the inclusion of multiple transport delays, yielding the following

formulation:

(M(s) + sT −A)∆x(s) = B∆u(s) (3.19)

∆y(s) = C∆x(s) +D∆u(s) (3.20)

The differences between (3.13) and (3.14) and (3.19) and (3.20) are the terms

∆ and M(s). While the former means that for each variable vector, there are

deviations in relation to the operation point, the latter is a diagonal matrix with

e−sτi at the positions with equations with transport delays and zeros at the other

positions.

Supposing a generic transport delay equation i, associated to the variable ∆xi,

which is delayed by τi in relation to variable ∆xj, the following relationship is

obtained, based on (3.16):

esτi .∆xi −∆xj = 0 (3.21)

Therefore, at line i, ai,j = 1, ai,k 6=j = 0, mi,i = esτi and mi,k 6=i = 0, where ai,j

and mi,j are elements of A and M , respectively.
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Computationally, the information of M and T are condensed in an column vector

with the same dimension of x where 0 indicates an algebraic equation, 1 a differential

equation and 2 a transport delay equation, as shown (3.22) [16].

V ector →



1

...

2

...

...

0

0



⇒

⇒

⇒
⇒

Differential

Delay

Algebraic

Algebraic

(3.22)

3.3 Modal Analysis Tools for Systems with Trans-

port Delays

This section presents mathematical advances and computational methodologies

to allow a comprehensive modal analysis using accurate representation of trans-

port de- lays. The proposed modelling and methodologies are implemented in the

production-grade software PacDyn [17], developed by the Electrical Energy Research

Centre (CEPEL).

3.3.1 Eigenvalues, Eigenvectors and Participation Factors

The main feature of modal analysis is the pole calculation that defines the natural

oscillation modes of the system. For large scale power systems, partial pole solutions

are used. There are methods based on proximity to the estimates, or, based on the

dominance of a transfer function. The last ones, called dominant pole methods, are

of more practical use, since it allows the analyst to define a transfer function at the

region of interest and the algorithm will converge to some dominant pole of that

region.

An algorithm for partial pole solution is proposed in [13] to calculate sequentially

the whole set of dominant poles of a certain transfer function for the general s-domain

formulation, shown in (3.23) and (3.24). The term D is supposed to be zero, but

there is no lack of generality.

Y (s)x(s) = Bu(s) (3.23)

y(s) = Ctx(s) (3.24)

The mathematical basis developed in [13] is reproduced bellow. Equation (3.25)

describes a transfer function and (3.26) gives a system pole λ:
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G(s) =
y(s)

u(s)
= ctY (s)−1b (3.25)

Y (λ)v = 0

v 6= 0
(3.26)

One should note that if λ is a system pole, there is a non-null vector v which

multiplied by Y (λ) gives the null vector. Therefore:

wtY (λ) = 0t

W t 6= 0t
(3.27)

F (λ) =
1

G(λ)
= 0 (3.28)

Using Newton method in (3.28):

1

G(λ(k))
− 1

G(λ(k))2
dG(λ(k))

ds
∆λ(k) = 0 (3.29)
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And:

dG(λ(k))

ds
∆λ(k) = G(λ(k)) (3.30)

Using (3.25) in (3.30):

ct
dY (λ(k))−1

ds
b∆λ(k) = ctY (λ(k))−1b (3.31)

And:

∆λ(k) =
ctY (λ(k))−1b

ct dY (λ(k))−1

ds
b

(3.32)

The inverse matrix of dY (λ(k))−1

ds
can be obtained using the following property:

Y Y −1 = I → d(Y Y −1)
ds

= d(I)
ds

= 0 (3.33)

Therefore:

d(Y Y −1)

ds
= Y

dY −1

ds
+
dY

ds
Y −1 = 0 (3.34)

And:

dY −1

ds
= −Y −1dY

ds
Y −1 (3.35)

Finally:

∆λ(k) = − ctY (λ(k))−1b

ctY (λ(k))−1 dY (λ(k))
ds

Y (λ(k))−1b
(3.36)

With the pole corrected by:

λ(k+1) = λ(k) + ∆λ(k) (3.37)

And, for the case with transport delays, assuming the particular case for the

Y (s):

Y (s) = (M (s) + s.T −A) (3.38)

Y (s) derivative in relation to s:

dY (s)

ds
= T +

dM (s)

ds
(3.39)

Where the diagonal elements of dM(s)
ds

for the lines with transport delays are

given in (3.40). The other elements are zero.
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dmi,i(s)

ds
= τie

sτi (3.40)

In the proposed Y (s)-formulation, the elements in vectors ∆x may be state, alge-

braic or delayed variables. The eigenvectors, when considering delayed vectors, are

not possible to compute, since the system with transport delays are infinite systems.

As a result, the eigenvectors, whose dynamics are embedded in the corresponding

delayed variables of ∆x, would have infinite dimensions.

As explained in Chapter 2, the participation factor pi,k is the sensitivity of the

eigenvalue λk to the diagonal element ai,i of the state matrix A. The participation

factor can also be interpreted as the contribution of state variables of the system on

a certain pole.

The participation factors cannot be calculated as a function of eigenvectors, since

the system with transport delays is an infinite system.
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As shown in [18], the participation factor of a certain state variable ∆xi is equal

to the residue of a transfer function whose input variable ∆uj is a signal applied to

the differential equation corresponding to ∆xi, and the output variable is the same

state variable ∆xi before the input application.

Therefore, to calculate participation factors as a function of the residues of a

certain transfer function Gi,i(s) for the Y (s)-formulation, for each state variable,

Gi,i(s) is defined by the column vector ci and line vector cti that are built with 1 at

the position of the state variable ∆xi and 0 at the other positions.

pi,k = Ri,i
k (3.41)

One should note that the participation factors are not calculated for algebraic

equations nor for the delayed equations. Theoretically, there would be an infinite

number of participation factors embedded into each delayed variable. However,

considering that the key purpose of participation factors calculation is to identify

the main state variable responsible for a certain pole, when a delayed variable has

a large participation for a certain pole, the other state variables in that control

loop also will present large participation. Consequently, the same information is

obtained.
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3.3.1.1 Computational Developments

The pole calculation for systems which contain transport delays were imple-

mented in software PacDyn [17]. The methods were based on the dominant pole

calculation [13]. The development will be described as follows.
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Figure 3.1: Dominant Pole Algorithm Diagram.
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3.3.2 Residue, Controlability and Observability

The transfer function residues can be calculated during the iterative procedure

using the dominant pole algorithm, described in previous subsection, but more ro-

bust methods can be used, as shown in [19]. The mathematical procedure for residue

calculation using the dominant pole algorithm will be described bellow.

The residue of an transfer function can be described as follows:

Ri = lim
s→λi

G(s)(s− λi) (3.42)

Where, numerically, s = λi−∆λi. (with ∆λi being a very small value, 10−8, for

example.)

Therefore:

Ri = −G(λi −∆λi)∆λi (3.43)

The value λi is the pole λk+1 and the value ∆λi is the last pole correction before

the convergence ∆λk. Therefore, the value λi −∆λi is the pole λk. Thus:

Ri = −G(λk+1 −∆λk)∆λk (3.44)

Finally:

Ri = −G(λk)∆λk (3.45)

The algorithm for computation of residues will be shown in the next subsection.
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After dominant poles calculation, the transfer function is analytically written as

the following summation:

Gi,j(s) =
∑
k

Rk
i,j

s− λk
(3.46)

Where λk are the dominant poles of the transfer function Gi,j(s) and Rk
i,j are

the associated residues. Transfer function residues can be interpreted as a measure

of the system pole influence in the selected output variable ∆yi when this pole is

excited by the selected input variable ∆uj [18].

In [18], it is shown that the residue also corresponds to the sensitivity of the

pole shift for an incremental gain feedback. Therefore, the residue can be used to

identify the most adequate transfer function to be used for feedback stabilization.

Equations (2.66) and (2.67), repeated below, show the decoupled form of a dy-

namic system:

ż = Λz +B′∆u (2.66 Revisited)

∆y = C′z +D∆u (2.67 Revisited)

Since Λ is diagonal, the system can be solved for each mode variable zk associated

to eigenvalue λk. For simplicity, a SISO transfer function Gi,j(s) (input ∆ui, output

∆yi) is considered. Therefore:

∆żk(t) = λk.∆zk(t) + b′k∆uj(t) (3.47)

Where the lower-case coefficients correspond to their respective matrix elements.

The s-domain solution for zk(s) is then obtained from (3.47):

∆zk(s) =
b′i,j

s− λk
∆uj(s) (3.48)

The output variable ∆yi can be obtained from line i of (2.67):

∆yi(s) = c′i∆zk(s) + di,j∆uj(s) (3.49)

Expanding the vector multiplication c′i∆zk(s) into a summation and substituting

Equation (3.47) into Equation (3.49):

Gi,j(s) =
∆yi(s)

∆uj(s)
=

∑
k

c′i,kb
′
k,j

s− λk
+ di,j (3.50)

Therefore, comparing (3.46) and (3.50), the residue of a pole λk can be given as

the product of the observability factor of that pole, associated to the output variable

∆yi, by the controllability factor of the same pole associated to the input variable
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∆uj:

Rk
i,j = c′i,kb

′
k,j (3.51)

The residue is a measure of the influence of a pole into a transfer function. Con-

sequently, the controllability factor measures the separated influence into the input

variables and the observability factor measures the pole influence into the output

variables. In other words, the controllability factor measures the capability of the

input variable to excite a modal component of a pole, in frequency or time domain.

Analogously, the observability factor measures how much of the pole appears at the

output variable.

The traditional method for stabilization uses the residues for the loop selection

for stabilization, once the control scheme is local. Indirectly, controllability and

observability are used to identify the best input and output variables for the control.

However, controllability and observability factors can be used to select separately

the most adequate input and output variables to be used for feedback stabilization.

In control systems with remote signals, those variables are not necessarily in the

same geographic location. In the Y (s)-formulation proposed here, the elements

in vectors ∆x may be state, algebraic or delayed variables. The residues can be

obtained using the dominant pole algorithm or other method as shown in [19],

but not the eigenvectors. When considering delayed vectors, it is not possible to

compute eigenvectors, since the system with transport delays are infinite systems.

As a result, the eigenvectors, whose dynamics are embedded in the corresponding

delayed variables of ∆x, would have infinite dimensions.

In order to overcome this issue, it is proposed to use the residues for obtaining

the observability and controllability factors. From Equation (3.51), one can see that

the residue is the product of them. So, fixing an input variable ∆uj, the residue

Ri,j
k may be calculated for several output variables ∆yi and the observability factor

would be given by the division of this residue by the controllability factor. This

controllability factor could not be calculated for infinite systems. However, assuming

an infinite norm for the observability factor, the observability factor associated to

output variable ∆ym with the largest residue may be considered as unitary (c′m,k =

1). Consequently, the other variables will have relative values of it, equal to the

residue of them divided by the largest residue:

c′i,k =
Ri,j
k

Rm,j
k

(3.52)

Similarly, the controllability factor, normalized for the input variable ∆un of

largest residue, is given by:
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c′k,j =
Ri,j
k

Ri,n
k

(3.53)

Then, the controllability and observability factors still can be used in the pro-

posed Y (s)-formulation for measuring pole influence into the input and output vari-

ables or for selection of stabilization control loops, including the use of remote sig-

nals.

3.3.3 Computational Developments

The computational developments implemented for systems which contains trans-

port delays will be described as follows.

3.3.3.1 Residue

The algorithm for residue computation will be shown in the current section. The

algorithm were based in Equations (3.42) to (3.45).
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Figure 3.2: Residue using Dominant Pole Algorithm Diagram.

3.3.3.2 Dominant Pole Algorithm with Deflation

After the development of residue algorithm it is possible to remove the contri-

butions of converged poles into a transfer function allowing to converge other poles

with lower dominance.
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Figure 3.3: Dominant Pole Algorithm with Deflation Diagram.

3.3.3.3 Observability Factor for Systems with Transport Delays Algo-

rithm

The observability factor for systems with transport delays algorithm is presented

in Figure 3.4.
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Figure 3.4: Observability Factor for Systems with Transport Delay Algorithm.

3.3.3.4 Controlability Factor for Systems with Transport Delays Algo-

rithm

The controlability factor for systems with transport delays algorithm is presented

in Figure 3.5.
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Figure 3.5: Controlability Factor for Systems with Transport Delay Algorithm.

3.4 Final Considerations

The concepts of frequency modelling, transport delay modelling and the lim-

itations associated to the traditional modal analysis have been described in this

chapter.
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In addition, the advances in sensibilities calculation for systems with transport

delays have been proposed in this chapter.

All theoretical formulations described in this chapter have been implemented in

PacDyn software [17].
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Chapter 4

Test and Results

This chapter presents tests and simulation results using the methods developed

in this thesis. The results are evaluated in order to highlight the benefits obtained

through applying these methods in power system analysis. Initially, a two-area

system is exploited in a tutorial and detailed analysis. After that, results for the

Brazilian Interconnected Power System are presented.

4.1 Two-Areas System

The modal analysis tools for systems with transport delays are tested in a two-

area system. This tutorial system has 11 buses and 4 machines [20].
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Figure 4.1: Single-line diagram of the two-area system.

Figure 4.1 presents the single-line diagram of the two-area system, showing in-

terconnections between Areas #1 and #2. Area #1 has power plants at Buses #1

and #2, while, Area 2 has power plants at Buses #3 and #4.

The system was presenting a base case with the following characteristics:

• Power plant dispatch and terminal voltage at bus 1 = 1100 MW and 1.05 pu;

• Power plant dispatch and terminal voltage at bus 2 = 700 MW and 1.02 pu;

• Power plant dispatch and terminal voltage at bus 3 = 755 MW and 1.03 pu;

• Power plant dispatch and terminal voltage at bus 4 = 300 MW and 1.01 pu;

• Load at bus 7 = 1167 MW;

• Load at bus 9 = 1567 MW.
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Using the QR method [21, 22], electromechanical poles can be identified by the

largest participation factors being speed or loading angle of generators [6, 8, 23].

These poles are shown in Table 4.1, together with the frequency in hertz and damping

ratio. The first pole has a negative damping ratio (-1.25%), responsible for the

system instability, the second pole has a moderate damping ratio of (7.41%) and

the third one is poorly damped (3.59%).

Table 4.1: Electromechanical system poles, without PSS.

Poles Frequency (Hz) Damping Ratio (%)

0.04912 + j 3.9397 0.6270 -1.2468

-0.5473 + j 7.3670 1.1725 7.4082

-0.2557 + j 7.1248 1.1339 3.5861

4.1.1 Solution Based on Local Signals

These system was primary used in [20] whose electromechanical modes were

analysed. The results obtained in [20] has been reproduced. Two local power system

stabilizers are used in order to improve damping ratio of the three poles shown in

Table 4.1. The parameter settings have been obtained using the Damped Nyquist

Plot (DNP) [24] aiming at a pole placement design of local power system stabilizers,

shown in Figure 4.2.
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Figure 4.2: Structure of simple PSS stabilizing loop.

In [20], the generator G3 proved to be adequate to improve damping ratio of

the first two poles, while G1 was adequate to improve the third pole. Table 4.2

shows the parameters of power system stabilizers connected to Machines 3 and 1,

respectively.

Table 4.2: Local Power System Stabilizers, connected to G3 and G1.

Generator n K Tw T α wc wmax

G3 2 8.1561 10 0.12480 3.9548 7.37 4.00

G1 1 10.255 3 0.30000 1.8903 7.12 2.397

The electromechanical system poles, with PSS connected at generator G3, are

shown in Table 4.3.

Table 4.3: Electromechanical system poles, with PSS at G3.

Poles Frequency (Hz) Damping Ratio (%)

-0.8907 + j 3.9227 0.6243 22.144

-0.8908 + j 7.3700 1.1730 12.000

-0.2486 + j 7.1091 1.1315 3.4948

The electromechanical system poles, with PSSs connected at generators G3 and

G1, are shown in Table 4.4.

Table 4.4: Electromechanical system poles, with PSS at G3 and G1.

Poles Frequency (Hz) Damping Ratio (%)

-0.7667 + j 3.9817 0.6337 18.908

-0.9006 + j 7.3675 1.1726 12.133

-1.0802 + j 7.1200 1.1332 15.000
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4.1.2 Solution Based on Remote Signals

Contrasting a local solution used in [20] and reproduced in Section 4.1.1, remote

signal solution is proposed in order to improve the damping ratio of electromechani-

cal oscillation modes, in order to illustrate the proposed methodology, the damping

ratio improvement is performed by designing a single centralized PSS, with two

channels containing remote signals as shown in Figure 4.3.
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Figure 4.3: Figure 3. Structure of a two-channel centralized PSS.

Table 4.5 shows the normalized observability factors of generators rotor speed

for all three poles shown in Table 4.1, aiming at to evaluate the best input variables

for a centralized power system stabilizer.

Table 4.5: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 Machine 2 Machine 3 Machine 4

0.04912 + j 3.9397 0.1035∠ 167 0.08706∠ -70 1.0∠ 178 0.8596∠ -180

-0.5473 + j 7.3670 0.07409∠ 75 0.1190∠ -89 0.2573∠ -178 1.0∠ -0.018

-0.2557 + j 7.1248 0.6230∠ -6.06 1.0∠ 173 0.1064∠ 20.73 0.1854∠ 165

Table 4.6 shows the normalized controllability factors of automatic voltage reg-

ulators for all three poles shown in Table 4.1, aiming at to evaluate the best output

variables for a centralized power system stabilizer.

Table 4.6: Normalized Controllability Factors, Electromechanical Poles.

Poles Machine 1 Machine 2 Machine 3 Machine 4

0.04912 + j 3.9397 1.0000 0.1090 0.5936 0.1119

-0.5473 + j 7.3670 0.4408 0.1010 1.0000 0.4594

-0.2557 + j 7.1248 1.0000 0.09724 0.05908 0.01176

Using the results shown in Table 4.6 the centralized PSS is selected to be installed

at G1, since its controllability factors are the largest for the two most critical poles.
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In same way, the generator speeds of G3 and G4 were chosen as remote signals,

since they have the largest observability factors for two most critical poles. These

signals are weighted approximately by the observability factors to yield a good ob-

server for the stabilizing loop input.

A PSS design using weighted signals from generators G4 and G3 rotor speed as

input and acting at voltage regulator of generator G1 is evaluated (PSS G43). The

transfer function using signals coming from rotor speed generators G4 and G3 and

acting at voltage regulator of generator G1 are shown in the following equation:

w4 − 0.25 ∗ w3

V REF
1

(4.1)

The inverse DNP of (4.1) for damp ξ = 20% is shown in Figure 4.4.

Figure 4.4: Uncompensated Nyquist Diagram for The First PSS Design.

Figure 4.4 shows the DNP for frequencies ranging from 1 rad/s to 20 rad/s. The

point with frequency 6.86 rad/s is used for the pole placement, following the steps

presented in [20]. The compensated Nyquist diagram (blue) is shown in Figure 4.5.
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Figure 4.5: Compensated and Uncompensated Nyquist Diagram for The First PSS

Design.

The PSS parameters are presented in the second row of Table 4.6.

Table 4.7: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.

Generator n K Tw T α wc wmax

G43 3 0.38545 10 0.09 11.888 6.86 3.1575

The poles with PSS G43 at G1 are presented in Table 4.8. The pole placement

is not performed exactly in the frequency of 6.86 rad/s and damping ratio of 20%

because of the lack of significant digits in the PSS design.

Table 4.8: Electromechanical system poles, with PSS G43 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-0.2060 + j 8.1885 1.3032 2.5152

-0.7499 + j 4.2581 0.6777 17.345

-1.4004 + j 6.8599 1.0918 20.002

Even though with a PSS installed, the system still has a poorly damped elec-

tromechanical pole. Therefore, it is necessary another PSS design.

Table 4.9 shows the normalized observability factor calculation of generators

rotor speed for poorly damped pole shown in Table 4.8, also aiming at to evaluate

the best input variables for a centralized power system stabilizer.
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Table 4.9: Normalized Observability Factors, Poorly Damped Pole.

Poles Machine 1 Machine 2 Machine 3 Machine 4

-0.2060 + j 8.1885 0.8609∠ 7.22 1.0∠ -172 0.04433∠ 109 0.1362∠ 158
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A PSS design using weighted signals from generators G2 and G1 rotor speed as

input and acting at voltage regulator of generator G1 at the same time is the first

PSS is proposed (PSS G21). The transfer function using signals coming from rotor

speed generators G2 and G1 and acting at voltage regulator of generator G1 are

shown in the following equation:

w2 − 0.86 ∗ w1

V REF
1

(4.2)

The inverse uncompensated DNP, for frequencies ranging from 1 rad/s to 20

rad/s, of transfer function shown 4.2 for ξ = 13% is shown in Figure 4.6.

Figure 4.6: Uncompensated Nyquist Diagram for The Second PSS Design.
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The point with frequency 8.43 rad/s is used for the pole placement. The com-

pensated Nyquist diagram (blue) is shown in Figure 4.7.

Figure 4.7: Compensated and Uncompensated Nyquist Diagram for The Second

PSS Design.

The PSS parameters are presented in Table 4.10.

Table 4.10: Second Power System Stabilizer, Signals From G2 and G1, Acting at

G1.
Generator n K Tw T α wc wmax

G21 3 0.27805 3 0.047509 6.1289 8.43 8.43

The poles with PSSs G43 and G21 at G1 are presented in Table 4.11. The pole

placement is exactly performed in the frequency of 8.43 rad/s and damping ratio of

13%, even though the lack of significant digits in the PSS design.

Table 4.11: Electromechanical system poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-1.1052 + j 8.4300 1.3417 13.000

-0.7222 + j 4.2588 0.6778 16.720

-1.5708 + j 8.4984 1.3526 18.175
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4.1.3 Solution Based on Remote Signals With The Inclusion

of Delays

The solution presented in Section 4.1.2 has been developed without accounting

any latency effects. Including a small delay (20 ms), which will primarily repre-

sented as a first order polynomial approximation, those effects in electromechanical

oscillation modes can be evaluated.

The effects at system electromechanical eigenvalues including approximated de-

lay on signals coming from generators G4, G3, and G2 are shown in Table 4.12.

Table 4.12: Electromechanical system poles with first order approximation - small

delay.

Poles Frequency (Hz) Damping Ratio (%)

-0.2401 + j 8.8299 1.4053 2.7182

-0.6829 + j 4.3487 0.6921 15.513

-1.2062 + j 7.6498 1.2175 15.576

Representing the small delay with the complete model, it is not feasible to

perform a QR decomposition. Therefore, the sequential dominant pole algorithm

[10, 13] is used, once it is a partial pole computation algorithm.

The effects at system electromechanical eigenvalues including the complete delay

model on signals coming from generators G4, G3, and G2 are shown in 4.13.

Table 4.13: Electromechanical system poles with complete - small delay.

Poles Frequency (Hz) Damping Ratio (%)

-0.2282 + j 8.8797 1.41 2.57

-0.6869 + j 4.3503 0.69 15.60

-1.1961 + j 7.6648 1.22 15.42

As expected, a small delay represented by the complete model has not impacted

the results significantly when compared to a first order approximation.
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In order to evaluate the impact of a bigger delay, a relevant time delay (100

ms) is considered. Initially, a first order polynomial approximation is used. After

that, the complete model is adopted to analyse the effects in the electromechanical

oscillation modes computation.

The approximated delay representation is included in the signals coming from

generators G4,G 3, and G2. The electromechanical poles are shown in Table 4.14.

Table 4.14: Electromechanical system poles with first order approximation - relevant

delay.

Poles Frequency (Hz) Damping Ratio (%)

0.3941 + j 8.0513 1.2814 -4.8894

-0.3967 + j 4.5110 0.7180 8.7604

-0.9357 + j 7.4584 1.1870 12.448

Using the sequential dominant pole algorithm [10, 13] in order to evaluate trans-

port delay with complete model, Table 4.15 shows the results.

Table 4.15: Electromechanical system poles with complete model - relevant delay.

Poles Frequency (Hz) Damping Ratio (%)

0.7270 + j 8.0520 1.28 -8.99

-0.4179 + j 4.5924 0.73 9.06

-0.9137 + j 7.5193 1.20 12.06

As expected, bigger is the time delay, bigger is its impact on the issues related to

the communication of remote control signals and the impact of delays on electrome-

chanical stability of power grid. A precise model of transport delays is important to

avoid totally incorrect results in the analysis, mainly for the cases with large values

of time constants and widespread remote measurements in control systems. [2–4]
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4.1.3.1 Remote Signal Solution Small Delay First Order Approximation

The result presented in Section 4.1.3 shows why it is important to account time

delays on small-signal analysis of powers systems. In this section, the controllers are

designed taking account a first order approximation time delay.

The results obtained in Section 4.1.2 are used to evaluate the best input variables

for a centralized power system stabilizer. The normalized observability factors of

machine electrical frequency, shown in Table 4.1, are repeated in 4.16.

Table 4.16: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 Machine 2 Machine 3 Machine 4

0.04912 + j 3.9397 0.1035∠ 167 0.08706∠ -70 1.0∠ 178 0.8596∠ -180

-0.5473 + j 7.3670 0.07409∠ 75 0.1190∠ -89 0.2573∠ -178 1.0∠ -0.018

-0.2557 + j 7.1248 0.6230∠ -6.06 1.0∠ 173 0.1064∠ 20.73 0.1854∠ 165

Again, the generator speeds of G3 and G4 were chosen as remote signals, since

they have the largest observability factors for two most critical poles. These signals

are weighted approximately by the observability factors to yield a good observer for

the stabilizing loop input.

A PSS design using weighted signals from generators G4 and G3 rotor speed as

input and acting at voltage regulator of generator G1 is evaluated (PSS G43). The

transfer function using signals coming from rotor speed generators G4 and G3 and

acting at voltage regulator of generator G1 are shown in the following equation:

w4 − 0.25 ∗ w3

V REF
1

(4.3)

The inverse DNP of (4.3) for damp ξ = 20% is shown in Figure 4.8.
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Figure 4.8: Uncompensated Nyquist Diagram for The First PSS Design.

The point with frequency 6.87 rad/s is used for the pole placement. The com-

pensated Nyquist diagram (blue) is shown in Figure 4.9.

Figure 4.9: Compensated and Uncompensated Nyquist Diagram for The First PSS

Design.
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The PSS parameters are presented in the second row of Table 4.17.

Table 4.17: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.

Generator n K Tw T α wc wmax

G43 3 0.11458 8 0.09 17.624 6.87 2.5932

The poles with PSS G43 at G1 are presented in Table 4.18. The pole placement

is not performed exactly in the frequency of 6.87 rad/s and damping ratio of 20%

because of the lack of significant digits in the PSS design.

Table 4.18: Electromechanical system poles, with PSS G43 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-0.1358 + j 8.1480 1.2968 1.6662

-0.7634 + j 4.0905 0.6510 18.347

-1.4025 + j 6.8699 1.0934 20.002

As in Section 4.1.2, even with a PSS installed, the system still has a poorly

damped electromechanical pole. Therefore, it is necessary another PSS design.

Table 4.19 shows the normalized observability factor calculation of generators

rotor speed for poorly damped pole shown in Table 4.18, also aiming at to evaluate

the best input variables for a centralized power system stabilizer.

Table 4.19: Normalized Observability Factors, Poorly Damped Pole.

Poles Machine 1 Machine 2 Machine 3 Machine 4

-0.1358 + j 8.1480 0.8522∠-156.5 1.0∠25 0.04682∠-57 0.1411∠-6.4

A PSS design using weighted signals from generators G2 and G1 rotor speed as

input and acting at voltage regulator of generator G1 at the same time is the first

PSS is proposed (PSS G21). However, differently from Section 4.1.2, the time delay

is taken into account using a first order approximation.

The transfer function using signals coming from rotor speed generators G2 and

G1 and acting at voltage regulator of generator G1 are shown in the following

equation:

w4 − 0.85 ∗ w3

V REF
1

(4.4)

The inverse DNP of (4.4) for damp ξ = 12.5% is shown in Figure 4.10.
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Figure 4.10: Uncompensated Nyquist Diagram for The Second PSS Design.

The point with frequency 8.44 rad/s was used for the pole placement. The

compensated Nyquist diagram (blue) is shown in Figure 4.11.

Figure 4.11: Compensated and Uncompensated Nyquist Diagram for The Second

PSS Design.

The PSS parameters are presented in the second row of Table 4.20.
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Table 4.20: Second Power System Stabilizer, Signals From G2 and G1, Acting at

G1.
Generator n K Tw T α wc wmax

G21 3 0.21792 3 0.042812 7.5397 8.44 8.44

The poles with PSS G43 and G21 at G1 are presented in Table 4.21.

Table 4.21: Electromechanical system poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-1.0636 + j 8.4399 1.3433 12.503

-1.2687 + j 8.4084 1.3382 14.920

-0.7430 + j 4.0991 0.6524 17.836
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4.1.3.2 Remote Signal Solution Small Delay Complete Model

In this section, the controllers are designed taking account the complete model

of transport delay. The results obtained in Section 4.1.2 are used to evaluate the

best input variables for a centralized power system stabilizer. The normalized ob-

servability factors of machine electrical frequency, shown in Table 4.1, are repeated

in 4.22.

Table 4.22: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 Machine 2 Machine 3 Machine 4

0.04912 + j 3.9397 0.1035∠ 167 0.08706∠ -70 1.0∠ 178 0.8596∠ -180

-0.5473 + j 7.3670 0.07409∠ 75 0.1190∠ -89 0.2573∠ -178 1.0∠ -0.018

-0.2557 + j 7.1248 0.6230∠ -6.06 1.0∠ 173 0.1064∠ 20.73 0.1854∠ 165

A PSS design using the complete model of time delay is performed. Initially,

remote signals from generators G4 and G3 rotor speed are used as input, acting at

voltage regulator of generator G1 (PSS G43). The transfer function using signals

coming from rotor speed generators G4 and G3 and acting at voltage regulator of

generator G1 are shown in the following equation:

w4 − 0.25 ∗ w3

V REF
1

(4.5)

The inverse DNP of (4.5) for damp ξ = 20% is shown in Figure 4.12.

Figure 4.12: Uncompensated Nyquist Diagram for The First PSS Design.
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The point with frequency 6.83 rad/s is used for the pole placement. The Com-

pensated Nyquist diagram (blue) is shown in Figure 4.13.

Figure 4.13: Compensated and Uncompensated Nyquist Diagram for The First PSS

Design.

The PSS parameters are presented in Table 4.23.

Table 4.23: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.

Generator n K Tw T α wc wmax

G43 3 0.094987 8 0.09 18.715 6.83 2.5165

The poles with PSS G43 at G1 are presented in Table 4.24.

Table 4.24: Electromechanical system poles, with PSS G43 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-0.1507 + j 8.1507 1.30 1.85

-0.7613 + j 4.0572 0.65 18.44

-1.3941 + j 6.8301 1.09 20.00

Similarly to the results shown in Section 4.1.3, even with a PSS installed in the

system, a poorly damped electromechanical pole still exists. Therefore, it will be

necessary other PSS design.
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Table 4.25 shows the normalized observability factor of generators rotor speed

for the poorly damped pole, aiming at to evaluate the best input variables for a

centralized power system stabilizer.

Table 4.25: Normalized Observability Factors, Poorly Damped Pole.

Poles Machine 1 Machine 2 Machine 3 Machine 4

-0.1507 + j 8.1507 0.8528∠1.26 1.0∠-177 0.04614∠100.6 0.1400∠151

A PSS design using weighted signals from generators G2 and G1 rotor speed

as input and acting at voltage regulator of generator G1 at the same time as the

first PSS is proposed. The transfer function using signals coming from rotor speed

generators G2 and G1 and acting at voltage regulator of generator G1 are shown in

the following equation:

w2 − 0.85 ∗ w1

V REF
1

(4.6)

The inverse uncompensated DNP, for frequencies ranging from 1 rad/s to 20

rad/s, of transfer function shown 4.6 for ξ = 12.5% is shown in Figure 4.14.

Figure 4.14: Uncompensated Nyquist Diagram for The Second PSS Design.

The point with frequency 8.38 rad/s is used for the pole placement. The Com-

pensated Nyquist diagram (blue) is shown in Figure 4.15.
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Figure 4.15: Compensated and Uncompensated Nyquist Diagram for The Second

PSS Design.

The PSS parameters are presented Table 4.26.

Table 4.26: Second Power System Stabilizer, Signals From G2 and G1, Acting at

G1.
Generator n K Tw T α wc wmax

G21 3 0.21415 3 0.04357 7.3841 8.38 8.38

The poles with PSS G43 and G21 at G1 are presented in Table 4.27.

Table 4.27: Electromechanical system poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-1.0558 + j 8.3798 1.33 12.50

-1.2903 + j 8.5393 1.36 14.94

-0.7427 + j 4.0658 0.65 17.97
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4.1.3.3 Remote Signal Solution Relevant Delay First Order Approxima-

tion

The results presented in Sections 4.1.3.1 and 4.1.3.2 have shown the impact of

modelling small time delays using a first order approximation and the developed

complete model. This section repeats the analysis for a relevant time delay.

The normalized observability factor of generators rotor speed, shown in Table

4.1 and repeated in Table 4.28, is used to evaluate the best input variables for a

centralized power system stabilizer.

Table 4.28: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 Machine 2 Machine 3 Machine 4

0.04912 + j 3.9397 0.1035∠ 167 0.08706∠ -70 1.0∠ 178 0.8596∠ -180

-0.5473 + j 7.3670 0.07409∠ 75 0.1190∠ -89 0.2573∠ -178 1.0∠ -0.018

-0.2557 + j 7.1248 0.6230∠ -6.06 1.0∠ 173 0.1064∠ 20.73 0.1854∠ 165

A PSS design using weighted delayed signals from generators G4 and G3 rotor

speed as input and acting at voltage regulator of generator G1 is first proposed (PSS

G43). Initially, the time delay is represented by a first order approximation.

The transfer function using signals coming from rotor speed generators G4 and

G3 and acting at voltage regulator of generator G1 are shown in the following

equation:

w4 − 0.25 ∗ w3

V REF
1

(4.7)

The inverse DNP of (4.7) for damp ξ = 18% is shown in Figure 4.16.
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Figure 4.16: Uncompensated Nyquist Diagram for The First PSS Design.

The point with frequency 6.99 rad/s was used for the pole placement. The

Compensated Nyquist (blue) diagram is shown in Figure 4.17.

Figure 4.17: Compensated and Uncompensated Nyquist Diagram for The First PSS

Design.

The PSS parameters are presented in Table 4.29.
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Table 4.29: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.

Generator n K Tw T α wc wmax

G43 3 0.31146 3 0.06 17.984 6.99 3.8659

The poles with PSS G43 at G1 are presented in Table 4.29. The pole placement

is not exactly performed with the frequency of 6.99 rad/s and damping ratio of 18%

because of the lack of significant digits in the PSS design.

Table 4.30: Electromechanical system poles, with PSS G43 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-0.05550 + j 8.0860 1.2869 0.6864

-0.6148 + j 4.1926 0.6673 14.508

-1.2790 + j 6.9900 1.1125 17.998

Even with a PSS installed in the system, a poorly damped electromechanical

pole still exists. Therefore, it will be necessary other PSS design.

Table 4.31 shows the normalized observability factor calculation of WW for

poorly damped pole shown in Table 4.30 also looking forward evaluate the best

input variables for a centralized power system stabilizer.

Table 4.31: Normalized Observability Factors, Poorly Damped Pole.

Poles Machine 1 Machine 2 Machine 3 Machine 4

-0.05550 + j 8.0860 0.8395∠-89.7 1.0∠93 0.05023∠5.34 0.1469∠60

A PSS design using weighted delayed signals modelled through first order aprox-

imation is performed. Rotor speed from generators G2 and G1 are used as input,

acting at voltage regulator of generator G1 at the same time as the first PSS is

proposed.
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The transfer function using signals coming from rotor speed generators G2 and

G1 and acting at voltage regulator of generator G1 are shown in the following

equation:

w2 − 0.84 ∗ w1

V REF
1

(4.8)

The inverse uncompensated DNP, for frequencies ranging from 1 rad/s to 20

rad/s, of transfer function shown 4.8 for ξ = 11% is shown in Figure 4.18.

Figure 4.18: Uncompensated Nyquist Diagram for The Second PSS Design.

The point with frequency 8.48 rad/s is used for the pole placement. The Com-

pensated Nyquist (blue) diagram is shown in Figure 4.19.
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Figure 4.19: Compensated and Uncompensated Nyquist Diagram for The Second

PSS Design.

The PSS parameters are presented in of Table 4.32.

Table 4.32: Second Power System Stabilizer, Signals From G2 and G1, Acting at

G1.
Generator n K Tw T α wc wmax

G21 3 0.18445 3 0.035844 10.693 8.48 8.48

The poles with PSS G43 and G21 at G1 are presented in Table 4.33.

Table 4.33: Electromechanical system poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-0.9386 + j 8.4800 1.3496 11.001

-0.5884 + j 4.1910 0.6670 13.903

-1.3866 + j 8.1511 1.2973 16.770
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4.1.3.4 Remote Signal Solution Relevant Delay Complete Model

In this section, the control is designed considering the complete model of trans-

port delay in the presence of a relevant time delay (100 ms).

The normalized observability factor of generators rotor speedfor the poorly

damped pole, shown in Table 4.1 and repeated in Table 4.34, is used in order to

evaluate the best input variables for a centralized power system stabilizer.

Table 4.34: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 Machine 2 Machine 3 Machine 4

0.04912 + j 3.9397 0.1035∠ 167 0.08706∠ -70 1.0∠ 178 0.8596∠ -180

-0.5473 + j 7.3670 0.07409∠ 75 0.1190∠ -89 0.2573∠ -178 1.0∠ -0.018

-0.2557 + j 7.1248 0.6230∠ -6.06 1.0∠ 173 0.1064∠ 20.73 0.1854∠ 165

A PSS design using the complete delay model delayed is performed. Initially,

rotor speed signals from generators G4 and G3 are used as input, acting at voltage

regulator of generator G1 (PSS G43).

The transfer function using signals coming from rotor speed generators G4 and

G3 and acting at voltage regulator of generator G1 are shown in the following

equation:

w4 − 0.25 ∗ w3

V REF
1

(4.9)

The inverse DNP of (4.9) for damp ξ = 18% is shown in Figure 4.20.

Figure 4.20: Uncompensated Nyquist Diagram for The First PSS Design.

The point with frequency 6.98 rad/s is used for the pole placement. The Com-

pensated Nyquist (blue) diagram is shown in Figure 4.21.
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Figure 4.21: Compensated and Uncompensated Nyquist Diagram for The First PSS

Design.

The PSS parameters are presented in Table 4.35.

Table 4.35: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.

Generator n K Tw T α wc wmax

G43 3 0.19275 3 0.06 19.475 6.98 3.715

The poles with PSS G43 at G1 are presented in Table 4.36.

Table 4.36: Electromechanical system poles, with PSS G43 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-0.05402 + j 8.0790 1.29 -0.67

-0.5034 + j 4.1162 0.66 12.14

-1.2773 + j 6.9800 1.11 18.00

Even with a PSS installed in the system, a poorly damped electromechanical

pole still exists. Therefore, will be necessary other PSS design.

As happened before, even a PSS was installed in the system still exist a poorly

damped electromechanical pole. Therefore, will be necessary other PSS design.
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Table 4.37 shows the normalized observability factors of generators rotor speed

for the poorly damped pole shown in Table 4.36, aiming at to evaluate the best

input variables for a centralized power system stabilizer.

Table 4.37: Normalized Observability Factors, Poorly Damped Pole.

Poles Machine 1 Machine 2 Machine 3 Machine 4

-0.05402 + j 8.0790 0.8389∠-13.6 1.0∠170.6 0.05642∠81.9 0.1531∠138

A PSS design using weighted delayed signals from generators G2 and G1 rotor

speed as input, acting at voltage regulator of generator G1 at the same time as the

first PSS is proposed (PSS G21).
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The transfer function using signals coming from rotor speed generators G2 and

G1 and acting at voltage regulator of generator G1 are shown in the following

equation:

w2 − 0.84 ∗ w1

V REF
1

(4.10)

The inverse uncompensated DNP, for frequencies ranging from 1 rad/s to 20

rad/s, of transfer function shown 4.8 for ξ = 10% is shown in Figure 4.22.

Figure 4.22: Uncompensated Nyquist Diagram for The Second PSS Design.

The point with frequency 8.36 rad/s is used for the pole placement. The Com-

pensated Nyquist diagram (blue) is shown in Figure 4.23.
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Figure 4.23: Compensated and Uncompensated Nyquist Diagram for The Second

PSS Design.

The PSS parameters are presented in the second row of Table 4.38.

Table 4.38: Second Power System Stabilizer, Signals From G2 and G1, Acting at

G1.
Generator n K Tw T α wc wmax

G21 3 0.17761 3 0.02 17.895 8.36 11.76

The poles with PSS G43 and G21 at G1 are presented in Table 4.39.

Table 4.39: Electromechanical system poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) Damping Ratio (%)

-0.8402 + j 8.3600 1.33 10.00

-0.4850 + j 4.1158 0.66 11.70

-1.9449 + j 6.8857 1.10 27.18
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4.1.4 Comparative Analysis with Small Time Delay

This section presents comparative results considering the step response with am-

plitude 0.01V at time (t = 1s) in the Automatic Voltage Regulator (AVR) connected

to generator G1 for the solutions proposed in 4.1.3.1.

The voltage deviation at each generator is compared in Figures 4.24, 4.25, 4.26

and 4.27, considering the first order approximation and the complete model as well.

Figure 4.24: Voltage at Bus 1 - Small Time Delay.

79



Figure 4.25: Voltage at Bus 2 - Small Time Delay.

Figure 4.26: Voltage at Bus 3 - Small Time Delay.
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Figure 4.27: Voltage at Bus 4 - Small Time Delay.

The frequency deviation at each generator is compared in Figures 4.28, 4.29,

4.30 and 4.31, considering the first order approximation and the complete model as

well.

Figure 4.28: Frequency at Generator 1 - Small Time Delay.
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Figure 4.29: Frequency at Generator 2 - Small Time Delay.

Figure 4.30: Frequency at Generator 3 - Small Time Delay.
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Figure 4.31: Frequency at Generator 4 - Small Time Delay.

As suggested in Section 4.1.3.2 and discussed in the literature [2–4, 25–30], a

small time delay can be represented using polynomial approximations.
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4.1.5 Comparative Analysis with Relevant Time Delay

This section compares the step response in the Automatic Voltage Regulator

(AVR) connected to generator G1 considering the solutions proposed in Section

4.1.3.3 using the complete modelling of transport delay as well as the first order

approximation.

The voltage deviation at each generator is compared in Figures 4.32, 4.33, 4.34

and 4.35, considering the complete modelling of transport delay as well as the first

order approximation.

Figure 4.32: Voltage at Bus 1 - Relevant Time Delay.
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Figure 4.33: Voltage at Bus 2 - Relevant Time Delay.

Figure 4.34: Voltage at Bus 3 - Relevant Time Delay.
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Figure 4.35: Voltage at Bus 4 - Relevant Time Delay.

The frequency deviation at each generator is compared in Figures 4.36, 4.37,

4.38 and 4.39, considering the complete modelling of transport delay as well as the

first order approximation.

Figure 4.36: Frequency at Generator 1 - Relevant Time Delay.
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Figure 4.37: Frequency at Generator 2 - Relevant Time Delay.

Figure 4.38: Frequency at Generator 3 - Relevant Time Delay.
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Figure 4.39: Frequency at Generator 4 - Relevant Time Delay.

The results shown that the first order approximation is not suitable for transport

delay modelling when a relevant time delay exists.
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4.2 Brazilian Interconnected Power System

The modal analysis tools for systems with transport delays is tested in Brazilian

Interconnected Power System (BIPS), illustrated in Figure 4.40. The studies are

developed using two different load-flow database cases as described in the following

sections.

Figure 4.40: Brazilian Interconnected Power System (BIPS).

4.2.1 Southeast System Exporter

In this section, the proposed modal analysis tool for systems with transport

delays is tested in the BIPS, considering its full database for a planning scenario

of 2020 with 6620 buses, 257 power plants and 6,824 state variables. The studies

are developed using a critical scenario where the Southeastern region (SE) exports
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power to the North Region (N). It presents a high power flow (6400 MW, SE ⇒ N)

through the HVDC line that connects substations Estreito (S) and Xingu (N). In this

scenario, there is a moderate damped electromechanical mode (7%) with frequency

3.2 rad/s. In order to increase this damping factor, a remote signal from Belo Monte

power plant (bus 6728), located close to the Xingu substation (17 km), is used. The

remote signal is the rotor speed deviation at Belo Monte and the PSS acts at the

rectifiers located at Estreito substation, through the converter modulation signals

(referred to as CMS).

This scenario was used in [31], where remote signals are used in order to increase

damping factor of electromechanical modes without take into account any transport

delay. As presented in [31], the electromechanical mode with frequency 3.2 rad/s is

allocated at (-0.6144+j3.010) in the complex plane with 20% of damping.

Including the time delay on the remote signals and varying the time constant

from 0 to 0.25 seconds, it is possible to account the impact of the delay omission

on the mode damping. The sequential dominant pole algorithm [10, 13] is used in

order to calculate the root locus varying time constant τ .

Figure 4.41: Root-Locus of time constant τ .

In Figure 4.41 it is possible to analyse the transport delay impact on the control

development. The bigger the time delay, the bigger its impact on damping control.

4.2.1.1 PSS Design Including Transport Delay

The PSS will be re-designed considering the time delay associated to the remote

signals. For research proposes, a big time delay (0.25 s) is used. For project proposes,

the complete model of transport delay developed in this thesis is considered.

In order to increase this damping factor, a remote signal from Belo Monte power

plant (bus #6728), located close to the Xingu substation (17 km), is used. The

remote signal is the rotor speed deviation at Belo Monte and the PSS acts at the
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rectifiers (converters #3201 and #3203) located at Estreito substation, through the

converter modulation signals (referred to as CMS).

CMS3201(s) + CMS3203(s)

ω6728(s)
(4.11)

The DNP of 4.11 for ξ = 20% is shown in Figure 4.42.

Figure 4.42: Uncompensated and Compensated Nyquist Diagram for The PSS Re-

Design.

The parameters for re-designed PSS are shown in Table 4.40.

Table 4.40: Re-designed PSS, for Southeast System Exporter of Electric Power.

Generator n K Tw T α wc wmax

CS-6728 1 -15.044 3 0.11036 8.6416 3.02 3.02
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Figure 4.43 shows the time response comparison for system without PSS (red),

system with PSS but no time delay accounting (blue) and system with PSS account-

ing time delay (green).

Figure 4.43: Time Response Comparison - Southeast System Exporter of Energy.

As expected, the system performance with PSS accounting time delay is superior

when compared to the one that does not considers the transport delay.

4.2.2 North System Exporter

The second case has an high power flow (7200 MW) on DC line from Belo Monte

hydroelectric plant North-Southeast direction. In order to increase the damping

factor of poorly damped electromechanical mode (10.58%) with frequency 2.41 rad/s,

converged using the Dominant Pole Algorithm [13], remote signals are used from

rotor speed deviation from machine located on Belo Monte hydroelectric plant and

act at the rectifier located at the HVDC that links Belo Monte hydroelectric plant

to the Southeast of Brazil. The control acts at the rectifier of the substation located

in Xingu-PA, located only 17 km away from the origin of input signals.

This scenario was also used in [31], where remote signals are used in order to

increase damping factor of electromechanical modes without take into account any

transport delay. As presented in [31], the electromechanical mode with frequency

2.41 rad/s is allocated at (0.4922 + j2.4111) in the complex plane with 20% of

damping.

The transport delay modelling is included considering the developed complete

model. The time delay on signals coming from Belo Monte machines is varied from

0 to 0.5 seconds. The sequential dominant pole algorithm [10, 13] is used in order

to calculate the root locus varying time constant τ .
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Figure 4.44: Root-Locus of time constant τ - North System Exporter of Energy.

In 4.44 it is possible to analyse the transport delay impact on control develop-

ment. The bigger the time delay, The bigger its impact on damping control.
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4.3 Final Considerations

In this chapter, a two-area system has been used to evaluate three aspects: first,

the importance of the advances in modal analysis tools for systems with transport

delay. Second, the comparison between solutions using local and remote sensing

aiming at the damping of electromechanical oscillations. Third, the impact of using

the first order approximation delay and the complete time delay model proposed in

this work in the PSSs design.

An analysis of the Brazilian Interconnected Power System has been conducted

to highlight the importance of time delay modelling in the controllers design. The

results have evidenced that the omission of time delay may cause lack of damping.

The results obtained in this chapter evidence benefits brought by the methods

developed in this thesis for power system analysis.
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Chapter 5

Conclusion

The development of modal analysis tools for systems with transport delays repre-

sents an advance in the state of art of power system stability and control area. With

the recent widespread usage of communication systems in electrical networks, it is

expected that stability analysis and control design methods must consider time de-

lays. In this way, practical tools should be developed to study the complex dynamic

behaviour of time-delayed power systems.

The main contributions of this work are the mathematical and computational

developments of modal analysis tools for systems that use remote signals in their

control structure. The developments, based on s-domain methods, are able to in-

clude more precise modellilng of transport delays. When modelling infinite sys-

tems by non-linear functions of s, as proposed in the beginning of this thesis, the

eigenvectors are not available. Therefore, the sensitivity tools of modal analysis

(mode-shapes, transfer function residues, participation, observability and controlla-

bility factors) must be calculated by different numerical algorithms, based on the

general complex variable theory, which is still valid for the proposed modelling form.

Moreover, such methods consider the impact of the infinite system on the system

dynamics, historically ignored in electromechanical stability studies.

Concluding, the methods and methodologies proposed in this work have been

implemented in software PacDyn and contribute greatly to small-signal analysis of

delayed power systems, enabling a better planning and operation processes.

5.1 Future Works

The following future works can be proposed:

• Expansion of theoretical developed in this work for system with other non-

linear system representation such as lines with distributed parameters;
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• Perform additional tests in other power systems worldwide with more signifi-

cant remote measurements.
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Eletromagnéticos e Desempenho Harmônico de Sistemas de Potência. Tese

de D.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 2002.

[11] VARRICCHIO, S. L., FREITAS, F. D., MARTINS, N., et al. “Computation of

dominant poles and residue matrices for multivariable transfer functions

of infinite power system models”, IEEE Transactions on Power Systems,

v. 30, n. 3, pp. 1131–1142, 2015.

[12] SEMLYEN, A. “S-domain methodology for assessing the small signal stability

of complex systems in nonsinusoidal steady state”, IEEE Transactions on

Power Systems, v. 14, n. 1, pp. 132–137, 1999.

[13] GOMES JR, S., MARTINS, N., PORTELA, C. “Sequential computation

of transfer function dominant poles of s-domain system models”, IEEE

Transactions on Power Systems, v. 24, n. 2, pp. 776–784, 2009.

[14] GOMES, S., MARTINS, N., VARRICCHIO, S. L., et al. “Modal analysis of

electromagnetic transients in ac networks having long transmission lines”,

IEEE transactions on power delivery, v. 20, n. 4, pp. 2623–2630, 2005.

[15] VARRICCHIO, S., GOMES JR, S. “Electrical network dynamic models with

application to modal analysis of harmonics”, Electric Power Systems Re-

search, v. 154, pp. 433–443, 2018.

[16] MACHADO, J. G. D. S., GOMES, S., PARREIRAS, T. J. M. A. “Linear anal-

ysis of systems containing transport delays”. In: 2018 Simposio Brasileiro

de Sistemas Eletricos (SBSE), pp. 1–6. IEEE, 2018.

[17] CEPEL. PacDyn - Program of Small Signal Stability Analysis and Control -

Version 9.7.1. User’s manual, Rio de Janeiro, RJ, Brasil, 2015.

[18] PAGOLA, F. L., PEREZ-ARRIAGA, I. J., VERGHESE, G. C. “On sensi-

tivities, residues and participations: applications to oscillatory stability

analysis and control”, IEEE Transactions on Power Systems, v. 4, n. 1,

pp. 278–285, 1989.

[19] VARRICCHIO, S. L., FREITAS, F. D., MARTINS, N., et al. “Computation of

dominant poles and residue matrices for multivariable transfer functions

of infinite power system models”, IEEE Transactions on Power Systems,

v. 30, n. 3, pp. 1131–1142, 2014.

98



[20] GUIMARAES, C. H. C., TARANTO, G. N., GOMES JUNIOR, S., et al. “Pro-

jeto de Estabilizadores de Sistemas de Potência por Posicionamento Par-
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