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Um observador é utilizado em um sistema de controle por realimentação, para

compensar o fato de que nem todos os estados podem ser medidos. Esse trabalho

aborda sistemas que podem ser modelados por redes de Petri temporizadas, mais

precisamente, por Grafos de Eventos Temporizados Ponderados (WTEGs). A estru-

tura do WTEG permite a modelagem de problemas sem conflitos de recursos. No

contexto de sistemas de manufatura, os WTEGs são apropriados para reproduzir

linhas de montagem complexas, em que o comportamento dinâmico é descrito pelos

efeitos de sincronização e saturação. Neste trabalho é proposto o projeto de um

observador para WTEGs que consiste na construção: (i) do Observador Ótimo que

se baseia na conversão do WTEG para o Grafo de Evento Temporizado (TEG), o

qual possui uma representação linear na estrutura matemática dos dióides; (ii) do

Simulador, que é uma cópia do sistema sem os distúrbios; (iii) e da Interface que é

utilizada para conectar o WTEG ao Observador Ótimo e ao Simulador.
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Pâmela Graziele Lopes Siekmann

August/2019

Advisors: Lilian Kawakami Carvalho

Jörg Raisch

Department: Electrical Engineering

An observer is used in a feedback control system to compensate for the fact that

not all states can be measured. This work refers to systems that can be modeled

by timed Petri nets, more precisely, Weighted Timed Event Graphs (WTEGs). The

WTEG allows modeling of problems without conflicts of resources. In the context of

manufacturing systems, WTEGs are appropriate to design complex assembly lines,

where dynamic behavior is described by the synchronization and saturation effects.

We propose the design of an observer for WTEGs that, which consists of: (i) an

Optimal Observer that is based on the conversion of the WTEG to the Timed Event

Graph(TEG), which has a linear representation in the mathematical structure of the

dioids; (ii) a Simulator, which is a copy of the system without disturbances; (iii)

and an Interface that is used to connect the WTEG to the Optimal Observer and

to the Simulator.
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Chapter 1

Introduction

Dynamic systems in which the set of states is discrete and the state transitions are

observed uniquely at discrete points in time associated with the occurrence of events

are called Discrete Event Systems (DESs) [5]. An event is a natural occurrence that

leads the system to change its state, i.e., makes the system to transit from a state

to another. There are two basic modeling formalisms of DESs: automata and Petri

nets.

Petri nets were developed by Carl Adam Petri in 1962 and manipulate events

according to specific rules. In Petri nets there are several and explicit conditions

under which an event can be enabled, being the reason that they are more suit-

able to DES whose operation depends on complex control schemes [5]. The basic

components of a Petri net graph are transitions, places and arcs connecting them.

Events are associated with transitions and the information related to the conditions

for a transition to occur is contained in places. Petri net dynamics are defined by

moving tokens through the net. This tokens moving is given by the occurrence of

transitions. A transition is said to be enabled when it can occur or as commonly

used in the Petri net literature “firing”, i.e. it can fire. With a Petri net graph,

it is possible to describe the logical structure of the modeled system, but not its

time evolution. Time has been introduced into Petri nets when it is necessary the

temporal performance analysis.

Timed Petri nets are used when it is necessary to make an association with time.

This association can be done through transitions (representing transition delays) or

places (representing holding times). In this work, time information is associated with

places. In this approach, tokens in a place with holding time remain on this place a

specific time before they can contribute to the firing of a downstream transition.

Timed Event Graphs (TEGs) are a subclass of timed Petri nets in which ev-

ery place has a single input arc and a single output arc and all arcs have weight

equal to one. TEGs have a dynamic behavior that is characterized by synchroniza-

tion phenomena, making them suitable to model systems where synchronization
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is essential such as transportation networks [6], [7], communication networks [8],

and manufacturing assembly lines [9]. The equations describing the dynamics of

a TEG are non-linear in conventional algebra. These equations, however, have a

linear representation in particular mathematical structures called dioids. Modeling

through certain dioids allows adapting concepts of traditional control theory, such

as state-space representation and transfer functions, to TEGs, thus paving the way

for several control strategies to be introduced. One such strategy is based on state

estimation, in which an observer estimates the system’s state (e.g., which is not di-

rectly measurable) based on the output and feeds this information to the controller,

thereby providing insight into the internal behavior of the system. The scalar dioid

called max-plus algebra [10] and the dioid of formal power series called Max
in [[γ, δ]]

[4] are examples of dioids well established in the literature for modeling TEGs.

Weighted Timed Event Graphs (WTEGs) can be described as extended TEGs in

which the weights in arcs can take any value in the set of natural numbers, except

zero. The weights are more appropriate for expressing batch/division processes,

which makes WTEGs more representative when several occurrences of events are

demanded to induce the next event or when one event results in several successive

events. Cyclic production systems with batch scheduling, split processes, assembly

of products, and buffers of limited capacity are usual in manufacturing systems.

Therefore, WTEGs are considered appropriate to model complex assembly lines

[11, 12]. In contrast to TEGs, WTEGs have an event-variant behavior and cannot

be described by Max
in [[γ, δ]].

A state feedback controller requires that all states of the system be known. A

problem arises when it is not possible to have complete measurement of all the state

variables due to lack of sensors. To solve this problem, an observer that provides

an estimate of the internal states of a given system by using input/output mea-

surements is used to feed the controller. State estimation is particularly important

because it can also be used in fault detection, diagnosis, state-feedback control and

to reconstruct the markings of the graph for Petri net[13]. In TEGs, the state tra-

jectories represent the transition firings and their estimations allow the knowledge of

the internal properties of the system. A Max-plus Observer for TEG was introduced

in [14], in which the observer was used to compute an estimation of state by using

the input and output measurements. Recently, in [15], they address the problem

of estimating a linear function of the states for a given Max-Plus linear dynamical

system. To do so, they use the current and past inputs/outputs of the system to

construct a sequence that converges in a finite number of steps to the value given

by a linear function of the states, for all initial conditions of the system. They pro-

vide necessary and sufficient conditions to solve this general problem. However, it is

shown in [15] that the Luenberger approach is better at rejecting the perturbation.
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The main contribution of this work is to compute an Observer for WTEGs based

on the existing results for ordinary TEGs. There are no results in the literature for

observer design for WTEGs. As in [16], the observer in this work, is in analogy

with the classical Luenberger observer [17] for linear systems and the Observer

Matrix is used to provide information from the system output into the Simulator.

In contrast to the [16], the observer realization is obtained modeling the system and

the Simulator as a WTEG. The steps for obtaining the observer realization are as

follows: firstly, we model the system as a WTEG; secondly, we obtain the TEG

from the WTEG using an adaptation of the transformation algorithm to WTEGs

proposed in [18]; then, we compute the observer matrix based on TEG since the

equations become linear in Max
in [[γ, δ]]; finally, we size the interfaces.The interface

proposed in this work is a specific Petri net which is necessary for obtaining the

Observer for WTEGs realization. The inclusion of the interface must ensure that

some system properties are preserved. Therefore, the insertion of this structure does

not modify the original system.

Another contribution is an algorithm, which converts a WTEG into a TEG. This

algorithm is inspired by the algorithm proposed in [18] to convert a Synchronous

Dataflow graph (SDF) into a Homogeneous Synchronous Dataflow graph (HSDF).

The TEG obtained through the transformation and the original WTEG are equiv-

alent.

This work is organized as follows. In Chapter 2 some fundamentals on Timed

Petri nets are presented and an algorithm to convert WTEGs into TEGs is proposed.

In Chapter 3 a basic background over dioid theory is introduced. In Chapter 4 a

model of the Observer for TEGs is described and design of the Observer for WTEGs

is proposed. In Chapter 5 the contributions in this work are summarized and some

possibles future works are presented.

3



Chapter 2

Modeling preliminaries

In this chapter, the modeling preliminaries about Petri nets are presented. These

concepts are fundamental to introduce a transformation algorithm which is funda-

mental to develop this work. This chapter is organized as follows. In Section 2.1,

the theoretical background of Petri nets is presented; in Section 2.2, timed Petri nets

are introduced; and in Section 2.3, an algorithm to transform a consistent Weighted

Timed Event Graphs (WTEG) in Timed Event Graphs (TEGs) is developed.

2.1 Petri nets

Petri nets are a graphical and mathematical modeling tool that can describe behav-

iors which are characterized as being concurrent, asynchronous, distributed, parallel,

nondeterministic, and stochastic. Thus, Petri nets are convenient to model and an-

alyze a variety of discrete event systems [19]. In this section, Petri nets are briefly

introduced and the most important and necessary characteristics for this work are

described.

2.1.1 Petri net graphs

A Petri net is a particular kind of directed bipartite graph consisting of two kinds

of nodes called “places” and “transitions”, where arcs connect transitions to places

and places to transitions. Places are graphically represented as circles and contain

information related to the states and conditions of the system. Transitions are

represented as bars and are associated with the events. Arcs are represented by

oriented arrows that define the relations between transitions and places [19]. The

formal definition of a Petri net graph is as follows.

Definition 1 (Petri net graph) A Petri net graph is a directed bipartite graph

N = (P, T, w), where:

4



� P = {p1, p2, . . . , pn} is the finite set of places,

� T = {t1, t2, . . . , tm} is the finite set of transitions,

� w : (P × T ) ∪ (T × P )→ N0 is the weight function.

A := {(pi, tj)|w(pi, tj) > 0} ∪ {(tj, pi)|w(tj, pi) > 0} is the arc set. Weights are

graphically represented by numbers attached to arcs, and they are typically omitted

when equal to 1. Furthermore, the set of upstream and downstream transitions

(resp. places) are defined as follows:

�
•pi := {tj ∈ T |(tj, pi) ∈ A} is the set of upstream transitions of place pi,

� p•i := {tj ∈ T |(pi, tj) ∈ A} is the set of downstream transitions of place pi,

�
•tj := {pi ∈ P |(pi, tj) ∈ A} is the set of upstream places of transition tj,

� t•j := {pi ∈ P |(tj, pi) ∈ A} is the set of downstream places of transition tj.

Example 1 A simple example of a Petri net graph is shown in Figure 2.1. Its

structure is defined by P = {p1, p2, p3}, T = {t1, t2}, w(p1, t1) = 1, w(p2, t2) = 1,

w(t1, p2) = 2 and w(t2, p3) = 1. The sets of upstream and downstream transitions

are: •p1 = ∅, •p2 = {t1}, •p3 = {t2}, p•1 = {t1}, p•2 = {t2}, p•3 = ∅. The sets of

upstream and downstream places are: •t1 = {p1}, •t2 = {p2}, t•1 = {p2}, t•2 = {p3}.

p1 t1 p2 t2 p3

2

Figure 2.1: Petri net graph of Example 1.

Definition 2 (Path) A directed path ρ is a sequence of transitions {t1, t2, ..., ti+1}
and places {p1, p2, ..., pi}, such that ∀j ∈ {1, ..., i}, w(tj, pj) ∈ A and w(pj, tj+1) ∈ A.

2.1.2 Petri net dynamics

To each place in a Petri net, a nonnegative integer number of tokens is attached.

The marking of a place is determined by the number of tokens in this place. The

change in the distribution of tokens among the places reflects the dynamic behavior

of the Petri net.

Definition 3 (Petri net with initial marking) A Petri net with initial marking

is a pair (N , M0) where N = (P, T, w) is a Petri net graph and M0 ∈ Nn0 is the

initial marking, i.e., the initial distribution of tokens over places in N .

5



Example 2 A Petri net with initial marking M0 =
[

0 2 0
]T

is represented in

Figure 2.2.

p1 t1 p2 t2 p3

Figure 2.2: Petri net of Example 2 with initial marking M0 = [ 0 2 0 ]T .

In the sequel, we will refer to “firing” when a transition is said to be enabled

and it can occur, i.e. it can fire.

The marking of the Petri net is denoted by M ∈ Nn0 and changes according to

the following (firing) rules [1]:

1. a transition tj is said to be enabled if and only if every place pi ∈• tj contains at

least as many tokens as the weight of the arc from pi to tj, i.e., w(pi, tj) ≤Mi.

2. if a transition tj fires, the number of tokens in every place pi ∈• tj decreases

by the weight of the arc connecting pi to tj, and the number of tokens in

every place pi ∈ t•j increases by the weight of the arc connecting tj to pi, i.e.,

∀pi ∈ •tj,M′
i =Mi − w(pi, tj) and ∀pi ∈ t•j , M

′
i =Mi + w(tj, pi), where Mi

is the marking before the firing of tj andM′
i is the marking after the firing of

tj.

Figure 2.3 shows the distribution of tokens over places after the firing of t1 of

the Petri net of Example 2.

p1 t1 p2 t2 p3

Figure 2.3: Petri net of Example 2 with initial marking M1 = [ 0 1 1 ]T .

Example 3 In Figure 2.4 a Petri net with M0 = [ 2 0 ]T is shown. Let us consider

that transition t1 can occur and transition t2 cannot occur. Based on the first firing

rule: •t1 = {p1} contains 2 tokens and w(p1, t1) = 1, so w(p1, t1) ≤ M0
1, which

means that t1 is enabled. Besides that, •t2 = {p2} does not contain tokens and

w(p2, t2) = 1, so t2 is disabled. Since only t1 is enabled, considering the second

firing rule, M′
1 = 2 − 1 = 1 and M′

2 = 0 + 1 = 1. Therefore, the new marking of

this Petri net after t1 fires is M′
= [ 1 1 ]T . In other words, when t1 fires, p1 loses

one token and p2 gains one token. After the first firing of t1, p2 contains 1 token

and w(p2, t2) = 1, so w(p2, t2) ≤M′
2, which means that t2 is enabled.
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p1

t1

t2

p2

Figure 2.4: Petri net of Example 3 with t1 enabled and t2 disabled forM0 = [ 2 0 ]T .

2.1.3 Properties

Petri nets have behavioral properties which depend on the initial state or marking.

These properties are useful for analyzing modeled systems. Here only three of the

basic behavioral properties are discussed: reachability, boundedness and liveness.

Definition 4 (Reachability) A marking M is reachable from a marking M0 if

there exists a sequence of firings that leads from M0 to M. The set of all possible

markings reachable from M0 in a Petri net (N ,M0) is denoted by R(M0)[19].

Definition 5 (Boundedness) A Petri net (N ,M0) is said to be k-bounded or

simply bounded if the number of tokens in each place does not exceed a finite number

k for any marking reachable from M0, i.e., Mi ≤ k for every place pi and every

marking M∈ R(M0).

Two Petri nets are presented in Figure 2.5. In Figure 2.5(a), places p1 and p2

have at most 2 tokens at all reachable markings, therefore the Petri net is 2-bounded.

In Figure 2.5(b), place p3 receives one token every time t2 fires and, therefore, can

accumulate tokens indefinitely; thus, it is an unbounded Petri net.

t1 p1 t2

p2

(a) A 2-bounded Petri net.

t1 p1 t2

p2

p3

(b) An unbounded Petri net.

Figure 2.5: (a) a 2-bounded Petri net and (b) an unbounded Petri net.

Definition 6 (Liveness) A Petri net (N ,M0) is said to be live if, no matter what

marking has been reached from M0, it is possible to ultimately fire any transition of

the net by progressing through some further firing sequence.

This means that a live Petri net guarantees deadlock-free operation, no matter

what firing sequence is chosen. In Figure 2.6 a live Petri net is shown. It is live

because it is always possible to reach a state in which t1, t2 and t3 can fire.
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p1 t1 p2 t2 p3

t3

Figure 2.6: A live Petri net.

Definition 7 (Strong connectedness) A Petri net (P, T, w,M0) is strongly con-

nected, if there is a directed path from any transition ti in T to any other transition

tj in T .

Two Petri nets are shown in Figure 2.7. In Figure 2.7(a), the Petri net is not

strongly connected, because there is no directed path from t3 to the other transitions.

In Figure 2.7(b) a Petri net that is strongly connected, because there are directed

paths between all transitions.

p1 t1 p2 t2 p3

t4

t3

(a) A Petri net that is not strongly connected.

p1

t1 p2 t2 p3

t4

t3

(b) A strongly connected Petri net.

Figure 2.7: (a) a not strongly connected Petri net and (b) a strongly connected Petri

net.

2.1.4 Incidence matrix and state equation

An approach to represent Petri nets is through the state equations, which are used

to represent their dynamic behavior. The most important element in this procedure

is the incidence matrix.

The incidence matrix W ∈ Zn×m for a Petri net N is an n × m matrix of

integers where n represents the number of places and m represents the number of

transitions. The entries of incidence matrixW are given by ωij = w(tj, pi)−w(pi, tj)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, where w(tj, pi) and w(pi, tj) are the weights

on arcs.

Note that ωij > 0 represents the net gain in the number of tokens in place pi

when transitions tj fires and ωij < 0 represents the net loss in the number of tokens

in place pi when transitions tj fires.
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Definition 8 (Parikh vector) Let σ be a finite sequence of transitions in a Petri

net (P, T, w,M0). The Parikh vector of σ is ζσ ∈ Nm0 such that (ζσ)i corresponds to

the number of occurrences of ti in σ.

The new marking after firing the sequence σ is given by:

M′ =M+Wζσ. (2.1)

Given a Parikh vector ζσ, the markingM′ computed through (2.1), as a general

rule, is only potentially reachable because the sequence σ might not be fireable

starting from marking M.

Example 4 For the Petri net shown in Figure 2.8, the state equation 2.1 for a

trivial firing sequence σ consisting only of one firing of t3 and starting from M0 is

displayed as follows:

M′ =


2

0

1

2

+


−2 1 1

1 −1 0

1 0 −1

0 2 −2

×
 0

0

1

 =


3

0

0

0



p1

t1

p2

p3

t2

t3

p4

2

2

2

Figure 2.8: Petri net of Example 4.

Definition 9 (T-semiflow) A vector ξ ∈ Nm is called T-semiflow if Wξ = 0,

where 0 indicates the zero vector.

Note that all entries of a T-semiflow ξ are strictly positive integers.

Example 5 Let us consider a simple Petri net represented in Figure 2.9 where the

incidence matrix is:

W =

 2 −1 0

0 0 0

0 1 −1

 .
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t1 p1 t2

p2

p3 t3

2

Figure 2.9: Petri net of Example 5.

The element ω11 represents that place p1 gains two tokens when t1 fires. The

other elements of the first column are equal to zero because the firing of t1 does not

change the number of tokens in p2 and p3. In the second column, ω12 is equal to

-1 because place p1 loses one token when t2 fires. The element ω22 is zero because

w(t2, p2) = w(p2, t2), so the firing of t2 does not affect the number of tokens in p2,

and ω32 is 1 because p3 gains a token when t2 fires. In the third column, the first two

elements are equal to zero given that the firing of t3 does not change the number of

tokens in p1 and p2. The last element ω33 is equal to -1 since the firing of t3 results

in the loss of one token in p3.

Now, computing the T-semiflow gives:

Wξ = 0, 2 −1 0

0 0 0

0 1 −1

×
 ξ1

ξ2

ξ3

 =

 0

0

0

 ,
ξ =

[
1 2 2

]T
.

Note that the firing of the sequence t1t2t2t3t3 returns to the initial marking

M0 = [0 1 0]T .

2.2 Timed Petri nets

Petri nets can be used to model systems in which it is possible for some events to

occur currently, although this model may not be complete enough for the study

of system performance since no assumption is made on the duration of modeled

activities. There are systems for which it is necessary to add timing information for

their complete description. The timing information in the approach of Petri nets can

be incorporated into the model in two ways: making the association with transitions

(representing transition delays) or with places (representing holding times).
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2.2.1 Timed Petri net

As previously discussed, a Petri net (N ,M0) does not model the actual firing times,

but only the ordering of the firings of transitions. When it is necessary to make an

association with time, modeling should be done using timed Petri nets. In this work,

time is associated with places, as this is the approach most commonly adopted in

the literature when dealing with dioids, which play a central role in the results

hereby presented. In the association of time with places, tokens in a place pi with

“holding time” have to be held for a certain time before they contribute to the firing

of downstream transitions of pi. In this sense, one can then define timed Petri nets.

Definition 10 (Timed Petri net) A timed Petri net with holding times is a triple

(N ,M0, φ), where (N ,M0) is a Petri net and φ ∈ Nn0 represents the holding times of

the places, i.e., φi is the time a token has to remain in place pi before it contributes to

the firing of a transition in p•i . Holding times are graphically represented by numbers

attached to places.

Example 6 The timed Petri net is represented in Figure 2.10. The token in p1 has

to be held for 2 time units before enabling t2. The holding times are φ1 = 2 and

φ2 = 0.

t1 p1

2

t2 p2 t4

t3

Figure 2.10: Timed Petri net of Example 6.

2.2.2 Weighted Timed Event Graphs

There is a subclass of timed Petri nets called Weighted Timed Event Graphs

(WTEGs) which can be formally defined as follows.

Definition 11 (Weighted Timed Event Graphs) A timed Petri net

(N ,M0, φ) is called a Weighted Timed Event Graph (WTEG), if every place has

exactly one upstream and one downstream transition, i.e., ∀pi ∈ P : |p•i | = |•pi| = 1.

Example 7 Figure 2.11 represents a WTEG, where, |p•i | = |•pi| = 1, i = 1, 2, 3.

Note that, to contribute to the firing of t2, the token in p2 needs to be held for 2 time

instants.
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t1 p1 t2

p2

2

p3 t3

3 5

Figure 2.11: WTEG with initial marking M0 = [ 4 1 0 ]T .

If t2 fires, p1 loses 3 tokens and p3 gains 5 tokens. In Figure 2.12 the new

marking is shown.

t1 p1 t2

p2

2

p3 t3

3 5

Figure 2.12: WTEG after the firing of t2, with marking M1 = [ 1 1 5 ]T .

Definition 12 (Basic Path) A basic directed path, πi = ti → pi → tj of a WTEG

is such that ti ∈ •pi and tj ∈ p•i . As |p•i | = |•pi| = 1 ∀pi ∈ P, each place appears in

precisely one basic directed path.

In Figure 2.11 there are the following basic paths: π1 = t1 → p1 → t2, π2 = t2 →
p3 → t3 and π3 = t2 → p2 → t2.

Definition 13 (Gain of a basic path) The gain of πi is defined by

Γ(πi) = Γ(ti, pi, tj) = w(ti,pi)
w(pi,tj)

.

In Figure 2.11 the gain of the basics paths are: Γ(π1) = 1/3, Γ(π2) = 5 and

Γ(π3) = 1.

Definition 14 (Consistent Weighted Timed Event Graphs) A WTEG is

consistent if and only if it has a unique minimal T-semiflow.

A T-semifow is said to be minimal when the greatest common divisor of its

elements is one and when the set of nonzero components is not a proper superset

of any other [20]. In Figure 2.11, the WTEG is consistent, since it has a unique

minimal T-semiflow ξ = [3 1 5]T .
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2.2.3 Timed Event Graphs

Timed Event Graphs (TEGs) are directed bipartite graphs in which each place has

exactly one incoming arc and one outgoing arc and the weight of all arcs is one. A

TEG is formally defined as follows:

Definition 15 (Timed Event Graphs) An ordinary Timed Event Graph (TEG)

is a WTEG, where all arcs have weight 1, i.e., ∀(pi, tj), (tj, pi) ∈ A, w(pi, tj) =

w(tj, pi) = 1.

In a TEG, when all input places of a given transition received their k-th token

and their relative holding times have elapsed, the transition is able to fire for the

k-th time. Part of a general TEG with holding times is shown in Figure 2.13. When

tr fires, pi gets one token and it has to spend vi time units before being able to

contribute to the firing of transition tj [1].

tr

vi

pi tj

Figure 2.13: Part of a general TEG with holding times [1].

Example 8 Consider the TEG showed in Figure 2.14. Transitions t1 and t2 can fire

autonomously given that they do not have input places. Once t1 fires, p1 gains one

token and this token has to stay two time units in p1 before being able to contribute

to the firing of t3. Once t2 fires p2 gains one token and this token has to stay five

time units in p2 before being able to contribute to the firing of t3.

t1 p1

2
t2 p2

5

t3

Figure 2.14: TEG with holding times.

Denoting xi(k) as the earliest possible time instant of the k-th firing of transition

ti (i.e., of the k-th occurrence of event xi), in Figure 2.14 the time of the k-th firing

of transition t3 satisfies the inequality below:

x3(k) ≥ max(x1(k) + 2, x2(k) + 5). (2.2)
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Definition 16 (Earliest firing rule) The earliest firing rule of a TEG consists in

firing transitions as soon as they are enabled.

Remark 1 In Petri nets, even if the transition is enabled to fire, it might not actu-

ally do so. However, in this work, it is assumed that a transition fires as soon as it

is enabled, i.e., the earliest firing rule applies. This assumption is very weak since

by definition there are no conflicting transitions in TEGs. For example, inequality

(2.2) in Example 8 turns into equality supposing that the TEG operates according

to the earliest firing rule.

The equations used to determine the firing instants of transitions in a TEG are

clearly non-linear in conventional algebra. However, there is a mathematical struc-

ture in which these equations have a linear representation; in the so-called Max-plus

algebra, it is possible to model a TEG as a linear system, as will be discussed in

more detail in Section 3.5 [10].

2.3 Transformation Algorithm

The weights on the arcs in WTEGs allow the modeling of a larger class of DES, such

as when multiple occurrences of events are needed to induce the subsequent event or

when one event can result in multiple subsequent events. In other words, WTEGs

have an event-variant behavior, which for instance allows to model phenomena such

as group/ungroup processes in manufacturing lines. However, its analysis and con-

trol are complex. One method to analyze WTEGs is to model their time behavior

by TEGs because they can be modeled as a linear system. From this perspective,

an algorithm to convert consistent WTEGs into TEGs is introduced.

2.3.1 Algorithm to Convert WTEGs into TEGs

An “equivalent” TEG can be obtained by the transformation of a consistent WTEG,

where by “equivalent” we mean that this TEG obtained by the transformation

has an equivalent transition firing order to the WTEG. The equivalent TEG can

be computed by a strategy inspired on the algorithm to convert a Synchronous

Dataflow graph (SDF), which are an equivalent representation of WTEGs [21], into

a Homogeneous Synchronous Dataflow graph (HSDF) [18]. A similar algorithm for

strongly connected WTEGs was introduced in [22] and [18]. In the following, an

adaptation to WTEGs of the transformation algorithm proposed in [18] is presented.

Algorithm 1 Convert consistent WTEG to TEG [18]

Input: Consistent WTEG (P, T, w,M0, φ)
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Output: TEG (P
′
, T
′
, w
′
,M0′ , φ

′
)

1: Compute the T-semiflow vector ξ

2: Let ξ(tl) be the corresponding entry in ξ of transition tl in the WTEG

2.1: for each entry ξ(tl) in ξ:

add ξ(tl) transitions to the transition set T
′

of TEG using index

t1l , t
2
l ...t

ξ(tl)
l

end for

3: for each basic path tl → pm → tg in the WTEG:

3.1: for each i such that 1 ≤ i ≤ ξ(tl)

for each k such that 1 ≤ k ≤ w(tl, pm)

Let j =
⌊
(M0(pm)+(i−1)w(tl,pm)+k−1)mod(w(pm,tg)ξ(tg))

w(pm,tg)

⌋
+ 1

Add place p
′

li,gj
to place set P

′
of TEG

Set:

w
′
(t
′

li
, p
′

li,gj
) = 1

w
′
(p
′

li,gj
, t
′
gj

) = 1

M0′(p
′

li,gj
) =

⌊
(M0(pm)+(i−1)w(tl,pm)+k−1)

w(pm,tg)ξ(tg)

⌋
φ
′
(p
′

li,gj
) = φ(pm)

end for

end for

end for

4: for each entry ξ(tl)6=1 in ξ

4.1: for each i such that 1 ≤ i < ξ(tl)

Add place (p
′

li,li+1
) to place set P

′
of TEG

Set:

w
′
(t
′

li
, p
′

li,li+1
) = 1

w
′
(p
′

li,li+1
, t
′

li+1
) = 1

M0′(p
′

li,li+1
) = 0

φ
′
(p
′

li,li+1
) = 0

end for
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4.2: Add place (p
′

lξ(tl)l1
) to place set P

′
of TEG

Set:

w
′
(t
′

lξ(tl)
, p
′

lξ(tl),l1
) = 1

w
′
(p
′

lξ(tl),l1
, t
′

l1
) = 1

M0′(p
′

lξ(tl),l1
) = 1

φ
′
(p
′

lξ(tl),l1
) = 0

end for

5: All weights w
′

which were not explicitly defined in Step 3 and Step 4 are con-

sidered 0

Summarizing the steps of Algorithm 1, in the second step, each transition in the

consistent WTEG is duplicated by its corresponding entry in the T-semiflow. That

is, for each transition tl in WTEG, the TEG contains ξ(tl) copies (or instances) of

tl.

Then, in the third step, considering each basic path in the consistent WTEG,

the weights, the initial marking, the holding times and the places of the set P
′

to

be added on TEG are determined.

To enforce a firing order on the internal duplicated transitions without self-loops,

in the fourth step, a loop between them is defined. In Step 4.1, the downstream

arc for the first duplicated transition is connected to the upstream arc for the next

transition, and so on, up to the last duplicated transition. In Step 4.2, the down-

stream arc for the last duplicated transition is connected to the upstream arc for the

first duplicated transition. Moreover, in Steps 4.1 and 4.2, the weights, the initial

marking and the holding times that will be fixed in the loop are determined.

An example is given for an illustration of Algorithm 1,

Example 9 Consider the consistent WTEG shown in Figure 2.15.

t1 p1 t2

p2

2

p3 t3

2 2

Figure 2.15: Consistent WTEG.

Following Algorithm 1 steps, we have:
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Step 1: Computing the T-semiflow vector ξ:

Wξ = 0 1 −2 0

0 0 0

0 2 −1

×
 ξ1

ξ2

ξ3

 =

 0

0

0


ξ =

[
2 1 2

]T
Step 2: The transition set T

′
of TEG is: T

′
= {t11, t21, t12, t13, t23}.

Therefore, each transition in the WTEG is duplicated by its corresponding

entry in the T-semiflow.

Step 3: For each basic path in WTEG:

Basic Path 1 (t1, p1, t2):

1 ≤ i ≤ 2

1 ≤ k ≤ 1

for i = 1

j =
⌊
(0+(1−1)×1)+1−1)mod(2×1)

2

⌋
+ 1 = 1

Add place p
′
11,21

to place set P
′

of TEG.

Set:

w
′
(t
′
11
, p
′
11,21

) = 1

w
′
(p
′
11,21

, t
′
21

) = 1

M0′(p
′
11,21

) =
⌊
(0+(1−1)×1+1−1)

2×1

⌋
= 0

φ
′
(p
′
11,21

) = φ(p1) = 0

for i = 2

j =
⌊
(0+(2−1)×1)+1−1)mod(2×1)

2

⌋
+ 1 = 1

Add place p
′
12,21

to place set P
′

of TEG.

Set:

w
′
(t
′
12
, p
′
12,21

) = 1

w
′
(p
′
12,21

, t
′
21

) = 1

M0′(p
′
12,21

) =
⌊
(0+(2−1)×1+1−1)

2×1

⌋
= 0

φ
′
(p
′
12,21

) = φ(p1) = 0

Basic Path 2 (t2, p2, t2):

1 ≤ i ≤ 1
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1 ≤ k ≤ 1

j =
⌊
(1+(1−1)×1)+1−1)mod(1×1)

1

⌋
+ 1 = 1

Add place p
′
21,21

to place set P
′

of TEG.

Set:

w
′
(t
′
21
, p
′
21,21

) = 1

w
′
(p
′
21,21

, t
′
21

) = 1

M0′(p
′
21,21

) =
⌊
(1+(1−1)×1+1−1)

1×1

⌋
= 1

φ
′
(p
′
21,21

) = φ(p2) = 2

Basic Path 3 (t2, p3, t3):

1 ≤ i ≤ 1

1 ≤ k ≤ 2

for k = 1

j =
⌊
(0+(1−1)×2)+1−1)mod(1×2)

1

⌋
+ 1 = 1

Add place p
′
21,31

to place set P
′

of TEG.

Set:

w
′
(t
′
21
, p
′
21,31

) = 1

w
′
(p
′
21,31

, t
′
31

) = 1

M0′(p
′
21,31

) =
⌊
(0+(1−1)×2+1−1)

1×2

⌋
= 0

φ
′
(p
′
21,31

) = φ(p3) = 0

for k = 2

j =
⌊
(0+(1−1)×1)+2−1)mod(1×2)

1

⌋
+ 1 = 2

Add place p
′
21,32

to place set P
′

of TEG.

Set:

w
′
(t
′
21
, p
′
21,32

) = 1

w
′
(p
′
21,32

, t
′
32

) = 1

M0′(p
′
21,32

) =
⌊
(0+(1−1)×2+2−1)

1×2

⌋
= 0

φ
′
(p
′
21,32

) = φ(p3) = 0

Step 4: Loop between duplicated transitions:

for ξ(t1)

for 1 ≤ i < 2

Add place (p
′
11,12

) to place set P
′

of TEG

Set:
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

w
′
(t
′
11
, p
′
11,12

) = 1

w
′
(p
′
11,12

, t
′
12

) = 1

M0′(p
′
11,12

) = 0

φ
′
(p
′
11,12

) = 0

Add place (p
′
1211

) to place set P
′

of TEG

Set:

w
′
(t
′
12
, p
′
12,11

) = 1

w
′
(p
′
12,11

, t
′
11

) = 1

M0′(p
′
12,11

) = 1

φ
′
(p
′
12,11

) = 0

for ξ(t3)

for 1 ≤ i < 2

Add place (p
′
31,32

) to place set P
′

of TEG

Set:

w
′
(t
′
31
, p
′
31,32

) = 1

w
′
(p
′
31,32

, t
′
32

) = 1

M0′(p
′
31,32

) = 0

φ
′
(p
′
31,32

) = 0

Add place (p
′
3231

) to place set P
′

of TEG

Set:

w
′
(t
′
32
, p
′
32,31

) = 1

w
′
(p
′
32,31

, t
′
31

) = 1

M0′(p
′
32,31

) = 1

φ
′
(p
′
32,31

) = 0

Figure 2.16 shows the TEG corresponding to the consistent WTEG of Figure

2.15. Transition t1 in Figure 2.15 is duplicated twice. It corresponds to transitions

t11 and t21 of the corresponding TEG in Figure 2.16. Similarly, transition t2 corre-

sponds to transition t12 and transition t3 is also duplicated twice and corresponds to

transitions t13 and t23.
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t21

p
′
12,21

t12

p
′
21,21

2

p
′
21,32

t23

t11 p
′
11,21

p
′
21,31

t13

p
′
11,12

p
′
12,11

p
′
31,32

p
′
32,31

Figure 2.16: TEG corresponding to the consistent WTEG of Figure 2.15.

The associations of the number of firings with the firing times of each transition

for the consistent WTEG and for the “equivalent” TEG are shown in Table 2.1 and

Table 2.2, respectively. In both, it is assumed that they operate under the earliest

firing rule. The firing times of the internal and output transitions are therefore

uniquely determined based on the firing times of the input transitions. Here, the

firing times of t1 on Table 2.1 have been arbitrarily chosen for the purpose of illus-

tration, and those of t11 and t21 on Table 2.2, have then been determined accordingly.

Firing Times

Input
Internal

Transitions
Output

Firing

Count t1 t2 t3

1 0 1 1

2 1 3 1

3 2 — 3

4 3 — 3

Table 2.1: Firing Table for the consistent WTEG of Figure 2.15.

Firing Times

Input
Internal

Transitions
Output

Firing

Count t11 t21 t12 t13 t23

1 0 1 1 1 1

2 2 3 3 3 3

Table 2.2: Firing Table for the TEG of Figure 2.16.

Comparing the two tables, note that the firing times of t1 in the WTEG corre-

spond to the firing times of the input transitions in the TEG; the firing times of t3
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in the WTEG correspond to the firing times of the output transitions in the TEG,

and the firing times of t2 in the WTEG correspond to the firing times of t12 in the

TEG. Therefore, the firing of a duplicated transition in the TEG corresponds to the

firing of the original transition in the WTEG [23]. Moreover, note that, even though

two transitions may fire (or the same transition may fire twice) “simultaneously” in

terms of our digital time scale, the firings are logically sequenced. In our example,

from Table 2.1 one can see that t2 and t3 can both fire at time 1; however, from the

WTEG of Figure 2.15 it is clear that the firing of t2 must logically precede that of

t3. Similarly, although each firing of t13 and t23 in the TEG of Figure 2.16 corresponds

to a firing of t3 in the WTEG of Figure 2.15 and, as shown in Table 2.2, t13 and t23

may fire at the same time instant (which corresponds to two firings of t3 at the same

time instant), logically t13 and t23 fire alternately. So, for instance, the first firing of

t13 at time 1 (Table 2.2) corresponds to the first firing of t3 at time 1 (Table 2.1),

whereas the first firing of t23 at time 1 corresponds to the second firing of t3 at time

1.

An example is given now for illustrating the case in which internal transitions

are duplicated.

Example 10 Consider the consistent WTEG shown in Figure 2.17.

t1 p1 t2

p2

2

p3 t3

2 2

Figure 2.17: Consistent WTEG.

Following the algorithm steps.

Step 1: Computing the T-semiflow vector ξ:

Wξ = 0 2 −1 0

0 0 0

0 1 −2

×
 ξ1

ξ2

ξ3

 =

 0

0

0


ξ =

[
1 2 1

]T
Step 2: The transition set T

′
of TEG is: T

′
= {t11, t12, t22, t13}.
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Step 3: for each basic path in the WTEG:

Basic Path 1 (t1, p1, t2):

1 ≤ i ≤ 1

1 ≤ k ≤ 2

for k = 1

j =
⌊
(0+(1−1)×2)+1−1)mod(1×2)

1

⌋
+ 1 = 1

Add place p
′
11,21

to place set P
′

of TEG.

Set:

w
′
(t
′
11
, p
′
11,21

) = 1

w
′
(p
′
11,21

, t
′
21

) = 1

M0′(p
′
11,21

) =
⌊
(0+(1−1)×2+1−1)

1×2

⌋
= 0

φ
′
(p
′
11,21

) = φ(p1) = 0

for k = 2

j =
⌊
(0+(1−1)×2)+2−1)mod(1×2)

1

⌋
+ 1 = 2

Add place p
′
11,22

to place set P
′

of TEG.

Set:

w
′
(t
′
11
, p
′
11,22

) = 1

w
′
(p
′
11,22

, t
′
22

) = 1

M0′(p
′
11,22

) =
⌊
(0+(1−1)×2+2−1)

1×2

⌋
= 0

φ
′
(p
′
11,22

) = φ(p1) = 0

Basic Path 2 (t2, p2, t2):

1 ≤ i ≤ 2

1 ≤ k ≤ 1

for i = 1

j =
⌊
(1+(1−1)×1)+1−1)mod(1×2)

1

⌋
+ 1 = 2

Add place p
′
21,22

to place set P
′

of TEG.

Set:

w
′
(t
′
21
, p
′
21,22

) = 1

w
′
(p
′
21,22

, t
′
22

) = 1

M0′(p
′
21,22

) =
⌊
(1+(1−1)×1+1−1)

1×2

⌋
= 0

φ
′
(p
′
11,22

) = φ(p2) = 2

for i = 2
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j =
⌊
(1+(2−1)×1)+1−1)mod(1×2)

1

⌋
+ 1 = 1

Add place p
′
22,21

to place set P
′

of TEG.

Set:

w
′
(t
′
22
, p
′
22,21

) = 1

w
′
(p
′
22,21

, t
′
21

) = 1

M0′(p
′
22,21

) =
⌊
(1+(2−1)×1+1−1)

1×2

⌋
= 1

φ
′
(p
′
11,22

) = φ(p2) = 2

Basic Path 3 (t2, p3, t3):

1 ≤ i ≤ 2

1 ≤ k ≤ 1

for i = 1

j =
⌊
(0+(1−1)×1)+1−1)mod(2×1)

2

⌋
+ 1 = 1

Add place p
′
21,31

to place set P
′

of TEG.

Set:

w
′
(t
′
21
, p
′
21,31

) = 1

w
′
(p
′
21,31

, t
′
31

) = 1

M0′(p
′
21,31

) =
⌊
(0+(1−1)×1+1−1)

2×1

⌋
= 0

φ
′
(p
′
21,31

) = φ(p3) = 0

for i = 2

j =
⌊
(0+(2−1)×1)+1−1)mod(2×1)

2

⌋
+ 1 = 1

Add place p
′
22,31

to place set P
′

of TEG.

Set:

w
′
(t
′
22
, p
′
22,31

) = 1

w
′
(p
′
22,31

, t
′
31

) = 1

M0′(p
′
22,31

) =
⌊
(0+(2−1)×1+1−1)

2×1

⌋
= 0

φ
′
(p
′
21,32

) = φ(p3) = 0

In this Example step 4 is not necessary.

Figure 2.18 shows the TEG corresponding to the consistent WTEG of Figure

2.17.
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t11

p
′
11,22

p
′
11,21

t22

t12

p
′
22,31

p
′
21,31

t13

p
′
21,22

2 p
′
22,21

2

Figure 2.18: TEG corresponding to the consistent WTEG of Figure 2.17.

The firing tables of the consistent WTEG of Figure 2.15 and of the equivalent

TEG of Figure 2.18 are shown in Table 2.3 and Table 2.4, respectively. In both, it

is assumed that they operate under the earliest firing rule.

Firing Times

Input
Internal

Transitions
Output

Firing

Count t1 t2 t3

1 0 0 2

2 1 2 6

3 — 4 —

4 — 6 —

Table 2.3: Firing Table for the WTEG of Figure 2.17.

Firing Times

Input
Internal

Transitions
Output

Firing

Count t11 t12 t22 t13

1 0 0 2 2

2 1 4 6 6

Table 2.4: Firing Table for the TEG of Figure 2.18.

Comparing the two tables, note that the firing times of t1 in the WTEG cor-

respond to the firing times of t11 in the TEG; the firing times of t3 in the WTEG

correspond to the firing times of t13 in the TEG and the firing times of t2 in the

WTEG correspond to the firing times of t12 and t22 in the TEG.
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Additionally, in our example, from Table 2.3, one can see that t1 and t2 can both

fire at time 0; however, from the WTEG of Figure 2.17 it is clear that the firing of

t1 must logically precede that of t2. Similarly, each firing of t12 and t22 in the TEG of

Figure 2.18 corresponds to a firing of t2 in the WTEG of Figure 2.17 as shown in

Table 2.4. However, t12 and t22 may not fire at the same time instant (because there

are holding times in the loop). So, for instance, the first firing of t12 at time 0 (Table

2.4) corresponds to the first firing of t2 at time 0 (Table 2.3), whereas the first firing

of t22 at time 2 corresponds to the second firing of t2 at time 2.
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Chapter 3

Algebraic background

The computation of the earliest possible firing times for transitions in TEGs can be

done iteratively; however, to optimize this process, some algebraic concepts to obtain

a linear representation of the transitions’ firing instants are used. This chapter

summarizes these algebraic settings. In order to do so, it is divided into five sections:

in Section 3.1, the basics notions about dioids are presented; in Section 3.2, matrix

dioids are introduced; in Section 3.3, some concepts about mapping defined over

dioids are described; in Section 3.4, the residuation theory is presented; and in

Section 3.5, dioid models of TEGs are introduced.

3.1 Dioids

In the first place, a few basic notions from ordered sets are listed, with the main

purpose of clarifying some technical terms that are used in dioid theory. For a deeper

understanding of the subject, the interested reader may refer to [10].

Definition 17 (Order relation) A binary relation (denoted �) on a set C which

∀a, b, c ∈ C is:

� reflexive (a � a),

� antisymmetric ((a � b and b � a)⇒ a = b),

� transitive ((a � b and b � c)⇒ a � c).

Definition 18 (Ordered set) An ordered set, denoted by (C,�), is defined as a

set C endowed with an order relation �. If, for each pair of elements a, b ∈ C, the

order relation holds true either for a, b or for b, a, or otherwise established, if a and

b are comparable, the order is total. If not, (C,�) is said to be partially ordered.
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Example 11 Classical examples of totally ordered sets are real (R,≤) and integer

numbers (Z,≤) with respect to the classical “less or equal” order relation. In con-

trast, the ordered set (Z2×1,�), where v1 = [x1 x2]
T and v2 = [y1 y2]

T are ordered,

i.e., v1 � v2, if x1 ≤ y1 and x2 ≤ y2, is only partially ordered, because it is not

possible to compare all pairs of v1 and v2 with integer entries.

Definition 19 (Bounds on ordered set) An element c ∈ C, given a non-empty

subset B ⊆ C, is called an upper bound of B if ∀b ∈ B : b � c. In the same way,

an element a ∈ C is called a lower bound of B if ∀b ∈ B : a � b. If B has an upper

bound, its least upper bound (if it exists) is denoted
∨B. If B has a lower bound,

its greatest lower bound (if it exists) is denoted
∧B.

Definition 20 (Dioid) A dioid or idempotent semiring, denoted (D,⊕,⊗), is a

set D endowed with two binary operations ⊕ and ⊗, for which the following axioms

hold:

� Associativity of addition : ∀ a, b, c ∈ D,
(a⊕ b)⊕ c = a⊕ (b⊕ c) .

� Commutativity of addition: ∀ a, b ∈ D,
(a⊕ b) = (b⊕ a) .

� Associativity of multiplication: ∀ a, b, c ∈ D,
(a⊗ b)⊗ c = a⊗ (b⊗ c).

� Distributivity of multiplication with respect to addition: ∀ a, b, c ∈ D,
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c),
c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b) .

� Existence of a zero element: ∃ε ∈ D : ∀a ∈ D,
a⊕ ε = a .

� Absorbing zero element per multiplication: ∀a ∈ D,
a⊗ ε = ε⊗ a = ε .

� Existence of an identity element: ∃e ∈ D : ∀a ∈ D,
a⊗ e = e⊗ a = e .

� Idempotency of addition: ∀a ∈ D,
a⊕ a = a .

Remark 2 A dioid (D,⊕,⊗) is said to be commutative, if the operation ⊗ com-

mutes, i.e., ∀a, b ∈ D, ab = ba.
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Remark 3 The symbol ⊗ is usually omitted, as in conventional algebra.

Remark 4 Note that the symbol
⊕

refers to the sum in the corresponding dioid,

in direct analogy to the summation symbol Σ in conventional algebra. E.g.,

5⊕
i=1

ai = a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5.

Definition 21 (Canonical order relation) A canonical order in a dioid

(D,⊕,⊗) is naturally defined by the ⊕ operation, i.e., a � b⇔ a⊕ b = b.

Definition 22 (Complete dioid) A dioid is called complete if it is closed for in-

finite sums and if ⊗ distributes over infinite sums, i.e., if ∀c ∈ D and ∀χ ⊆ D:

c⊗ (
⊕
x∈χ

x) =
⊕
x∈χ

c⊗ x.

In a complete dioid (D,⊕,⊗), one can define the top element > as the sum of all

elements in the dioid, i.e., > =
⊕

x∈D x. > is absorbing for ⊕(∀a ∈ D,>⊕ a = >)

and we have >⊗ ε = ε⊗> = ε.

Definition 23 (Greatest lower bound) The greatest lower bound of a, b ∈ D,

where (D,⊕,⊗) is a complete dioid, is defined as

a ∧ b =
⊕

x�a,x�b

x,

where ∧ is associative, commutative and idempotent. Moreover, the following equiv-

alences hold:

a � b⇔ b = a⊕ b⇔ a = a ∧ b. (3.1)

Example 12 (Max-plus algebra) The Max-plus algebra is a complete dioid de-

noted (Z̄max,⊕,⊗). It is defined over the set Z̄max = Z ∪ {−∞,+∞} with the

following binary operations:

� addition: a⊕ b := max(a, b),∀a, b ∈ Z̄max,

� multiplication: a⊗ b := a+ b,∀a, b ∈ Z̄max.

The zero element is defined as ε = −∞, the unit element is e = 0, a∧ b = min(a, b)

and the top element is > = +∞. In Max-plus algebra the order relation � induced

by ⊕ corresponds to the natural order on Z. Hence, for two elements a = 6 and

b = 2, a⊕ b = 6⊕ 2 = 6, wich indicates that 6 � 2 in Z̄max.
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Example 13 The following numerical examples illustrates the binary operations in

Max-plus algebra:

3⊕ 5 = max(3, 5) = 5,

2⊗ 7 = 2 + 7 = 9,

3⊕ ε = max(3,−∞) = 3,

2⊗ ε = 2−∞ = −∞ = ε,

3⊕ e = max(3, 0) = 3,

5⊗−8⊕ 4⊗ 1 = −3⊕ 5 = 5.

To solve implicit inequalities and equations over a complete dioid (D,⊕,⊗), the

following theorem is presented:

Theorem 1 ([10] and [3]) The implicit equation x = ax ⊕ b and the implicit in-

equality x � ax ⊕ b, given a and b elements in a complete dioid (D,⊕,⊗), admit

x = a∗b as the least solution, where a∗ =
⊕

i≥0 a
i (Kleene star operator).

On a complete dioid, the Kleene star operator is defined by:

a∗ = e⊕ a⊕ a2⊕, ... =
⊕
i∈N0

ai.

Some properties of the Kleene star operator (∗) are summarized bellow. These

properties hold for any complete dioid. The following equalities are taken from [3]:

1. (a⊕ b)∗ = (a∗b)∗a∗ = (b∗a)∗b,

2. a∗a∗ = a∗,

3. (a∗)∗ = a∗,

4. a(ba)∗ = (ab)∗a,

5. (ab∗)∗ = e⊕ a(a⊕ b)∗,

6. a∗ � b∗ ⇔ a∗b∗ = b∗,

7. ax � x⇔ a∗x = x.
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3.2 Matrix dioids

In analogy to conventional algebra, addition and multiplication can be extended to

matrices (of correct dimensions) with entries in a dioid (D,⊕,⊗), that is:

(A⊕B)ij = aij ⊕ bij, A,B ∈ Dm×n, (3.2)

(C ⊗D)ik =
n⊕
j=1

(cij ⊗ djk), C ∈ Dm×n, D ∈ Dn×p. (3.3)

A (partial) order on the set of matrices with entries in D is induced by the

element-wise order � on D. This means that, for matrices A,B ∈ Dm×n, the

following equivalence holds:

A � B ⇔ aij � bij ∀i ∈ [1,m],∀j ∈ [1, n]. (3.4)

A (complete) dioid is formed by the set of square (n× n) matrices with entries

in a (complete) dioid D jointly with the operations ⊕ and ⊗ described above.

The identity matrix (one element) of Dn×n has entries equal to e on the diagonal

and ε elsewhere; it is denoted In. The zero matrix (zero element) of Dn×n has all

entries equal to ε and it is simply denoted ε. Moreover, the order defined in (3.4) is

consistent with Definition 21, i.e.:

A � B ⇔ A⊕B = B.

The Kleene star operation can be extended to square matrices with entries in a

complete dioid. Let A ∈ Dn×n be such a matrix, so:

A∗ =
⊕
i≥0

Ai

where A0 = In is equal to the identity matrix.

Lemma 1 ([24]) For a ∈ Dn×n partitioned into four blocks, that is to say:

a =

[
a11 a12

a21 a22

]
,

a∗ =

[
a∗11 ⊕ a∗11a12(a21a∗11a12 ⊕ a22)∗a21a∗11 a∗11a12(a21a

∗
11a12 ⊕ a22)∗

(a21a
∗
11a12 ⊕ a22)∗a21a∗11 (a21a

∗
11a12 ⊕ a22)∗

]
.

In [3], an algorithm for the computation of A∗, with A ∈ Dn×n and D being a

complete dioid, was developed, and it is a straightforward application of Lemma 1.
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3.3 Mappings

This section describes some concepts about mappings defined over dioids.

Definition 24 (Isotone, antitone, monotone) Let Π : D → C be a mapping

from a dioid (D,⊕,⊗) into another dioid (C,⊕,⊗):

� mapping Π is isotone if it is order preserving, i.e., ∀x, x′ ∈ D the following

implication holds: x � x′ ⇒ Π(x) � Π(x′),

� mapping Π is antitone if it is order reversing, i.e., ∀x, x′ ∈ D the following

implication holds: x � x′ ⇒ Π(x) � Π(x′),

� mapping Π is monotone if it is isotone or antitone.

Remark 5 If a mapping Π from a dioid (D,⊕,⊗) into another dioid (C,⊕,⊗) is

isotone, the following inequalities hold:

Π(x⊕ x)′ � Π(x)⊕ Π(x′) ∀x, x′ ∈ D,

Π(x ∧ x)′ � Π(x) ∧ Π(x′) ∀x, x′ ∈ D.

3.4 Residuation Theory

Generally, multiplication in dioids does not admit an inverse. However, residuation

theory provides a pseudo inversion for specific mappings defined over ordered sets.

For details about this theory, one can consult [25]. Using residuation theory, it is

possible to compute the greatest solution of inequalities of the form f(x) � b.

Definition 25 (Residuated mapping and Residual) Let f : D → C be an iso-

tone mapping, with D and C being complete dioids. If for all y ∈ C the inequality

f(x) � y has a greatest solution in D, f is a residuated mapping. This greatest

solution is denoted by f ](y).

The mapping f ] : C → D, y 7→⊕{x ∈ D|f(x) � y} is called the residual of f .

f ](y) provides the greatest solution of equality f(x) = y, if the equality is solv-

able.

For a residuated mapping f : D → C, the following equalities hold:

f ◦ f ] ◦ f = f,

f ] ◦ f ◦ f ] = f ].
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In Figure 3.1, an illustration of these properties taken from [2] is given :

Figure 3.1: Properties of residuated mapping f : D → C and the corresponding

residual mapping f ] : C → D [2].

3.4.1 Residual of right and left product

Two elementary mappings in a complete dioid (D,⊕,⊗), namely the left and right

multiplication by a constant, are residuated mappings, i.e.:

La : D → D

x 7→ a⊗ x

Ra : D → D

x 7→ x⊗ a

The corresponding residual mappings are denoted:

L]a(x) = a ◦\x

R]
a(x) = x◦/a

The greatest solution for a⊗ x � b is L]a(b) = a ◦\b =
⊕

x∈D{x|ax � b}.
The greatest solutions of matrix inequalities can also be obtained using resid-

uation theory. The order relation � is interpreted element-wise. Given matri-

ces A,D ∈ Dm×n, B ∈ Dm×p and C ∈ Dn×p, the greatest solution of inequality

A⊗X � B is given by C = A ◦\B and the greatest solution of inequality X⊗C � B

is given by D = B◦/C. The entries of C and D are determined as follows:
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Cij =
m∧
k=1

(Aki ◦\Bkj), ∀i ∈ [1, n],∀j ∈ [1, p],

Dij =

p∧
k=1

(Bik◦/Cjk), ∀i ∈ [1,m],∀j ∈ [1, n].

3.5 Dioid models of TEGs

The dynamics of a TEG can be modelled by linear equations in the Max-plus algebra.

For this, a dater function d : Z → Z̄max is associated to each transition such that

∀k ∈ Z, d(k) represents the time of the k-th firing of the related transition. By

convention, d(k) = −∞ for any k ≤ 0, and d(k) = +∞ if the k-th firing never takes

place. The set of dater functions is denoted by Σ. The set of transitions of a TEG

is partitioned into:

� internal transitions: a set of transitions xi, i = 1, ..., n, with both upstream

and downstream places;

� output transitions: a set of transitions yi, i = 1, ...,m, with only upstream

places;

� input transitions: a set of transitions with only downstream places that is

divided as:

– controllable input transitions: a set of input transitions ui, i = 1, ..., p,

with freely assignable firing times.

– uncontrollable input transitions: a set of input transitions wi, i = 1, ..., l,

with unknown firing times, that can be interpreted as disturbances.

A TEG operating under the earliest firing rule can be described by the following

Max-plus linear system:

x(k) =
Na⊕
j=0

Ajx(k − j)⊕
Nb⊕
j=0

Bju(k − j)⊕R0w(k), (3.5)

y(k) = C0x(k), (3.6)

where the vector function x : Z→ Z̄nmax are the internal dater functions; the vector

function u : Z→ Z̄pmax are the controllable input dater functions; the vector function

w : Z→ Z̄lmax are the uncontrollable input dater functions and the vector function

y : Z→ Z̄mmax are the output dater functions. The integer number Na (respectively
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Nb) is equal to the maximal number of tokens initially available in places between

internal transitions (respectively in places between controllable input transitions and

internal transitions). Matrices Aj ∈ Z̄n×nmax, Bj ∈ Z̄n×pmax, R0 ∈ Z̄n×lmax and C0 ∈ Z̄m×nmax ,

represent the structure of the TEG.

Remark 6 In this modeling, it is assumed, that each input transition and each

output transition are linked to only one internal transition, which results in that

each column of matrix Bj has one entry equal to e and the others equal to ε and

each row of matrix C0 has one entry equal to e and the others equal to ε.

Example 14 withdraws from [3] demonstrates how to model a TEG as a Max-plus

linear system.

Example 14 Figure 3.2 depicts a TEG with controllable input transition p = 1,

uncontrollable input transitions l = 2 and measurable output transition m = 1.

The maximal number of tokens initially in places between internal transitions is

Na = 2 and the maximal number of tokens initially in places between controllable

input transitions and internal transitions is Nb = 0.

w1

u1 1

x1

3

1

w2

x2

4

y1

Figure 3.2: TEG with one controllable input transition (u1), two uncontrollable

input transitions (w1, w2) and one measurable output transition (y1).

The system matrices of the TEG model by the Max-plus linear system in Equa-

tions (3.5) and (3.6) are:

A0 =

[
ε ε

1 ε

]
, A1 =

[
3 ε

ε 4

]
,

A2 =

[
ε e

ε ε

]
, B0 =

[
1

ε

]
,

C0 =
[
ε e

]
, R0 =

[
e ε

ε e

]
.
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The matrix Ai, i = 0, 1, 2 represents the holding times between the internal tran-

sitions x1 and x2, where i is the number of initial tokens contained in the places.

For instance, in matrix A1, we are considering all internal transitions which are

connected to places that contain one token. The entry (A1)11 = 3 represents the

connection of the internal transition x1 with itself which has a holding time of 3

time units. The entries (A1)12 = (A1)21 = ε, because there is no place with a single

token between x1 and x2 and between x2 and x1, respectively. The entry (A1)22 = 4

represents the connection of the internal transition x2 with itself which has a holding

time of 4 time units. Note that e in A2 represents that the place between x2 and x1

has two tokens and no holding time. The matrix B0 represents the holding times

between the input transition u1 and the internal transitions x1 and x2. The matrix

C0 represents the holding times between the output transition y1 and the internal

transitions x1 and x2. The matrix R0 represents the holding times between the dis-

turbances w1 and w2 and the internal transitions x1 and x2. Note that R0 is equal

to the identity matrix in Z̄max, thus the internal transitions x1 and x2 are affected

by the disturbances w1 and w2, respectively.

The specific dioid on formal power series called Max
in [[γ, δ]] is suitable to obtain

transfer functions for TEGs. For more details about the dioid Max
in [[γ, δ]] see Ap-

pendix A. In dioidMax
in [[γ, δ]] the variable γ is associated to the event-shift operator,

i.e., ∀x ∈ Σ: (γnx)(k) = x(k − n), and the variable δ is associated to the time-shift

operator, i.e., ∀x ∈ Σ:(δτx)(k) = x(k) + τ.

Figure 3.3 represents the model of a TEG in Max
in [[γ, δ]], where M0

1 is the initial

marking of p1 and φ1 is the holding time of p1. Then, the earliest firing rela-

tion, shown in Definition 16, between transitions t1 and t2 of the following path is

x2 = γM
0
1δφ1x1, where x1, x2 are dater functions associated to transitions t1 and

t2, γ is associated to initial marking and δ is associated to holding times, and both

form the dioid Max
in [[γ, δ]].

t1

M0
1

p1

φ1

t2

Figure 3.3: Model of a TEG in Max
in [[γ, δ]].

Complete TEGs can be modeled in the following form:

x = Ax⊕Bu⊕Rw (3.7)

y = Cx (3.8)
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where x ∈ Max
in [[γ, δ]]n is the state, u ∈ Max

in [[γ, δ]]p is the controllable input,

y ∈ Max
in [[γ, δ]]m is the output and w ∈ Max

in [[γ, δ]]l are the disturbances. A ∈
Max

in [[γ, δ]]n×n, B ∈ Max
in [[γ, δ]]n×p, C ∈ Max

in [[γ, δ]]m×n and R ∈ Max
in [[γ, δ]]n×l are ma-

trices which represent the influence of transitions on one another.

Example 15 The TEG showed in Figure 3.2 can be described in Max
in [[γ, δ]] using

the Equations (3.7) and (3.8). The system matrices are given as:

A =

[
δ3γ1 δ0γ2

δ1γ0 δ4γ1

]
, B =

[
δ1γ0

ε

]
,

C =
[
ε e

]
, R =

[
e ε

ε e

]
.

The entry a11 = δ3γ1 represents the place linking transition t1 to itself and in-

dicates that this place has a holding time of 3 time units and initially contains one

token.

Theorem 2 ([3]) Considering Theorem 1, under the earliest functioning rule, a

solution for (3.7) and (3.8) can be obtained and the state and output trajectories

can be rewritten as:

x = A∗Bu⊕ A∗Rw (3.9)

y = CA∗Bu⊕ CA∗Rw (3.10)

where CA∗B ∈Max
in [[γ, δ]]n×p is the input/output matrix and CA∗R ∈Max

in [[γ, δ]]m×l

is the disturbance/output matrix.

In other words, CA∗B and CA∗R are the transfer function matrices. They

represent the earliest behavior of the system. The uncontrollable input vector w is

only able to delay the firing times of internal and output transitions, i.e., to delay

the occurrence of the corresponding events.

Example 16 The input-output transfer function matrix of the system shown in

Figure 3.2 is equal to:

H = CA∗B =
[
ε e

]
A∗

[
δ1γ0

ε

]
= δ2γ0(δ4γ1)∗

where H is called the transfer function matrix of the TEG. H = δ2γ0(δ4γ1)∗ describes

the transfer relation between the controllable input u1 and the output y1 of the TEG

shown in Figure 3.2. The transfer relation represents the impulse response of a

system, as in control theory. Ultimately, if the TEG operates under the earliest
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firing rule and if the uncontrollable input does not slow down the system, given a

sequence of firing times of u, y = CA∗Bu ∈ Max
in [[γ, δ]] encodes the sequence of

firing times of y. In our example, applying an impulse at the input, i.e., u = δ0γ0,

y = CA∗B = δ2γ0(δ4γ1)∗. Thus, the impulse response represents the fastest system

behavior.

H is computed using the toolbox MinMaxGD, a C++ library developed in order

to handle periodic series (see [26, 27]). A∗ can be determined using the algorithm

developed in [3]:

A∗ =

[
e⊕ δ3γ1 ⊕ δ6γ2 ⊕ δ9γ3 ⊕ δ12γ4 ⊕ δ15γ5 ⊕ δ18γ6δ21γ7(δ4γ4)∗ δ0γ2(δ4γ1)∗

δ1γ0(δ4γ1)∗ (δ4γ1)∗

]
.

In this chapter, we resume the algebraic settings about dioids theory and its

application in the modeling of TEGs. In the following, we present observer design

for timed Petri nets. First, we introduce the Observer for TEGs. Then, it is shown

how to obtain the Observer for WTEGs. Finally, we show how to implement the

Observer for WTEGs in a final example.
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Chapter 4

Observer Design for Timed Petri

nets

Since the modeling preliminaries about Timed Petri nets were presented in Chapter

2 and the background theory about dioids was presented in Chapter 3, the observer

design for timed Petri nets can be determined. In this Chapter, the Observer for

TEGs is presented in Section 4.1. In Section 4.2, based on the algorithm to convert

WTEGs into TEGs introduced in Section 2.3, the Observer for WTEGs is proposed.

In Section 4.3, the implementation of the Observer for WTEGs following every step

of the presented method is described and to better illustrate this work an example

is shown.

4.1 Observer for TEGs

Let x be referred to as a state of the model in Equations (3.7) and (3.8) and x̂ be

referred to as a estimated state. As described in Section 3.5, x is the vector of dater

functions which are associated with the firing times of the internal transitions in

the TEG. Usually, the state is not measurable for two main reasons: (i) it can be

inaccessible, and (ii) the high cost required for measurement. For this reason, the

state estimation is an important problem for DES. A way to solve this problem is

an observer structure directly inspired by the Luenberger observer in classical linear

systems theory [17] that is considered in [14] and [28]. For instance, this structure

allows detecting a possible machine breakdown in the manufacturing line. Based

on a TEG model, on the measured firing times of the output transitions and on

the known controllable input transitions, the firing times of internal transitions are

estimated. The observer structure is illustrated in Figure 4.1 and is composed of

two parts:

1. simulator,
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2. observer matrix L.

Figure 4.1: The observer structure of Max-plus linear systems [3].

The Simulator S(P, T, w,M0, φ) is described by the system model by Equa-

tions (3.7) and (3.8), except for the disturbance term Rw, as disturbances are

uncontrollable and a priori unknown, the Simulator does not take them into ac-

count. It is characterized by the matrices A ∈Max
in [[γ, δ]]n×n, B ∈Max

in [[γ, δ]]n×p and

C ∈ Max
in [[γ, δ]]m×n. By assumption, the entries of matrix C ∈ Max

in [[γ, δ]]m×n are

in {ε, e} and precisely in each row, one entry is equal to e. Note that this repre-

sentation corresponds to the fastest behavior of the real system and, therefore, the

disturbances can only delay its behavior [16].

The Observer Matrix L ∈Max
in [[γ, δ]]n×m is used to provide information from the

measurable system output into the Simulator to take the action of the disturbances

w into account. To compute the Optimal Observer, the matrix L ∈Max
in [[γ, δ]]n×m is

chosen to be the greatest matrix, in the order ofMax
in [[γ, δ]], to achieve the constraint

x̂ � x. In other words, the estimated state x̂i gives an estimate for the firing times

of the internal transition ti, such that this estimate is as late as possible, but earlier

than or at the same time as the firing time of the internal transition ti.

Matrices A,B,C and R are assumed to be known, and they represent the system

model. The system trajectories are given by Equations (3.9) and (3.10). According

to Figure 4.1, the observer equations are given by:

x̂ = Ax̂⊕Bu⊕ L(ŷ ⊕ y)

= Ax̂⊕Bu⊕ LCx̂⊕ LCx
= (A⊕ LC)x̂⊕Bu⊕ LCx (4.1)
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Using Theorem 1 in Equation 4.1, we obtain:

x̂ = (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCx

= (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LC(A∗Bu⊕ A∗Rw)

By doing the algebraic manipulations described in [16] and [3], the observer

model may be written as follows:

x̂ = (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw (4.2)

The main objective is to compute the greatest observer matrix L, denoted as

Lopt, such that the estimated state vector is smaller than or equal to the state, i.e.,

x̂ � x, where x̂ is represented in Equation 4.2. Formally, finding the greatest L

satisfying the following inequality ∀u,w:

(A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw � A∗Bu⊕ A∗Rw (4.3)

Equivalently, the following two conditions are required:

(A⊕ LC)∗B � A∗B, and (4.4)

(A⊕ LC)∗LCA∗R � A∗R. (4.5)

Two Lemmas provide and produce conditions for the greatest observer matrices

such that the Equations (4.4) and (4.5) hold.

Lemma 2 ([3, 14]) The following equivalence hods:

(A⊕ LC)∗B = A∗B ⇔ L � L1 = (A∗B)◦/(CA∗B)

Lemma 3 ([3, 14]) The following equivalence holds:

(A⊕ LC)∗LCA∗R � A∗R⇔ L � L2 = (A∗R)◦/(CA∗R)

The mathematical proofs of the lemmas described above can be checked in [3].

A direct consequence of Lemmas 1 and 2 is that the greatest observer matrix L that

satisfies Equations (4.4) and (4.5) is L1∧L2. Hence, the following proposition holds.

Proposition 1 ([3, 14]) L1∧L2 is the greatest observer matrix L such that ∀(u,w):

x̂ = Ax̂⊕Bu⊕ Ly � x = Ax⊕Bu⊕Rw.

The following corollary is about the relation between the real output and its
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estimated.

Corollary 1 ([3, 14]) The greatest causal observer that allows y = ŷ is

Lopt+ = Pr+(Lopt), where Lopt = L1 ∧ L2.

In other words, the equality between the estimated output ŷ and the measured

output y is ensured, when the Optimal Observer Lopt+(Pl, Tl, wl,M0
l , φl) is consid-

ered, where Lopt+ is the causal projection presented in Appendix A in Theorem

3.

To illustrate the observer design process for TEGs, the Example 17 is presented.

This example is taken from [3].

Example 17 Let us consider the TEG shown in Figure 4.2. The structure is

defined by two controllable transitions u1, u2, one measurable output transition

y1, six uncontrollable transitions w1, w2, w3, w4, w5, w6 and six internal transitions

x1, x2, x3, x4, x5, x6. Besides that, it is assumed that all transitions fires as soon as

they are enabled.

u1

1

u2

2

y

w6

w2

w4

x1 2

x3 5

x2

w1

w3

w5

1

x4

3

x5
2 x6

Figure 4.2: TEG model [3].

The state space representation in Max
in [[γ, δ]] of the TEG is given as:

x = Ax⊕Bu⊕Rw,
y = Cx.
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A =



ε δ0γ1 ε ε ε ε

δ2γ0 ε ε ε ε ε

ε ε ε δ0γ1 ε ε

ε ε δ5γ0 ε ε ε

ε δ1γ0 ε δ3γ0 ε δ0γ3

ε ε ε ε δ2γ0 ε


, B =



δ1γ0 ε

ε ε

ε δ2γ0

ε ε

ε ε

ε ε


,

C =
[
ε ε ε ε ε e

]
, R =



e ε ε ε ε ε

ε e ε ε ε ε

ε ε e ε ε ε

ε ε ε e ε ε

ε ε ε ε e ε

ε ε ε ε ε e


Note that, (A)12 = δ0γ1 represents that there is a place between x2 and x1 with

one token and no delay of time and (B)32 = δ2γ0 demonstrates that there is a place

between x3 and u2 with no token and a delay of 2 time units. The entry e in the C

matrix represents that there is a place between x6 and y1 with no token and no delay

of time. The entries e in the R matrix correspond to the disturbances.

The transfer function H = CA∗B of this TEG is computed using the toolbox

MinMaxGD (see [26, 27]) and is given by:

H =
[
δ6γ0(δ2γ1)∗ δ12γ0(δ5γ1)∗

]
.

The observer matrix Lopt = L1 ∧ L2 = (A∗B)◦/(CA∗B) ∧ (A∗R)◦/(CA∗R) is com-

puted using the toolbox MinMaxGD:

Lopt =
[
ε ε ε ε δ0γ3(δ2γ3)∗ (δ2γ3)∗

]T
.

As Lopt is causal, so Lopt+ = Pr+(Lopt) = Lopt. To obtain the observer equations,

they can be rewrite as:

x̂ = Ax̂⊕Bu⊕ Lopt,
β = Loptl.
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Therefore

x̂ = Ax̂⊕Bu⊕ [ε ε ε ε β5 β6]
T
, (4.6)

β1

β2

β3

β4

β5

β6


=



ε

ε

ε

ε

δ0γ3(δ2γ3)∗

(δ2γ3)∗


l. (4.7)

The entry (Lopt)5 = δ0γ3(δ2γ3)∗, where (δ2γ3)∗ represents the cyclic component

in β5 with 3 tokens and a delay of 2 time units, and δ0γ3 represents a relation

between β5 and l1 with 3 tokens and no delay of time. The entry (Lopt)6 = (δ2γ3)∗,

where (δ2γ3)∗ represents the cyclic component in β6 with 3 tokens and a delay of 2

time units. The relation between β6 and l1 can be represented by e, because there is

0 tokens and no delay of time. Therefore, Equation 4.8 is a solution of Equation

4.7. The realization of Lopt+ is shown in Figure 4.3.

β1

β2

β3

β4

β5

β6


=



ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε δ2γ3 ε

ε ε ε ε ε δ2γ3





β1

β2

β3

β4

β5

β6


⊕



ε

ε

ε

ε

γ3

e


l. (4.8)

l1

p2

p1 β5

p3

2

β6

p4

2

Figure 4.3: The realization of Lopt+.

Note that, the relation between β5 and l1 is represented by the place p1 as described
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in Equation 4.8 by γ3. The relation between β6 and l1 is represented by the place p2

as described in Equation 4.8 by e. The observer can be written as the following set

of difference equations in the Max-plus algebra, considering that γ is the backward

shift operator.

β5(k) = 2β5(k − 3)⊕ y(k − 3),

β6(k) = 2β6(k − 3)⊕ y(k),

x̂1(k) = x̂2(k − 1)⊕ 1u1(k),

x̂2(k) = 2x̂1(k),

x̂3(k) = x̂4(k − 1)⊕ 2u2(k),

x̂4(k) = 5x̂3(k),

x̂5(k) = 1x̂2(k)⊕ 3x̂4(k)⊕ x̂6(k − 3)⊕ β5(k),

x̂6(k) = 2x̂5(k)⊕ β6(k).

The system, the Lopt+ realization and the Simulator represent the observer and

are shown in Figure 4.4. Note that, the Simulator is a replica of the system model,

unless for the disturbance terms w1, w2, w3, w4, w5, w6. The observer will compute

an estimation of the current state by using the input and the output measurements.

u1

1

u2

2

y

w6

w2

w4

x1 2

x3 5

x2

w1

w3

w5

1

x4

3

x5
2 x6

1

2

x̂1 2

x̂3 5

x̂2

1

x̂4

3

x̂5
2 x̂6

β5

2

β6

2
Lopt+

Simulator

Figure 4.4: The observer for TEG of Figure 4.2.

Remark 7 In order to calculate Lopt+ to design the Observer for WTEGs, it is
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required that the “equivalent” TEG has the following structure:

� the places between input or output transitions and internal transitions have no

holding times and have no initial marking,

� input or output transitions are connected only to internal transitions.

When these two conditions are not satisfied, it is necessary to add Artificial Transi-

tions to TEG. Each artificial transition inserted consist of a sequence of one tran-

sition and one place (or one place and one transition) in which γ0δ0, i.e., the place

do not have tokens and do not have holding times. For this reason, artificial tran-

sitions do not change the firing order of the input/output transitions. The artificial

transitions are inserted only with the purpose to calculate Lopt+. After to compute

it, they are removed.

In Example 17, it can be noted that the structure of the “equivalent” TEG

conforms to the requirements of the Remark 7, so it was not necessary to add

artificial transitions. Algorithm 2 summarized the steps in order to obtain Lopt+

realization.

Algorithm 2 Lopt+ realization

Input: “Equivalent” TEG (P
′
, T
′
, w
′
,M0

′
, φ
′
)

Output: Lopt+(Pl, Tl, wl,M0
l , φl)

1: Compute matrices A ∈ Max
in [[γ, δ]]n×n, B ∈ Max

in [[γ, δ]]n×p, C ∈ Max
in [[γ, δ]]m×n

and R ∈Max
in [[γ, δ]]n×l

2: Compute the matrix: Lopt = L1 ∧ L2 = (A∗B)◦/(CA∗B) ∧ (A∗R)◦/(CA∗R). .

using Toolbox MinMaxGD

3: Compute The Optimal Observer Lopt+: Lopt+ = Pr+(Lopt) = Lopt. . using

Toolbox MinMaxGD

4: Obtain Lopt+ realization

4.2 Observer for WTEGs

In the previous section, the Observer for TEGs introduced in [14] was presented.

In this section, the Observer for WTEGs Obs(WTEG)(Po, To, wo,M0
o, φo) is de-

signed through the connection between: (i) the original WTEG, (ii) the Observer
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Matrix Lopt+ and (iii) the Simulator. First of all, the Algorithm 1 to transform the

consistent WTEG into a TEG was developed in Section 2.3. Then, in order to esti-

mate the firing times of internal transitions of a WTEG, it is necessary to compute

the Observer Matrix using the “equivalent” TEG as presented in Section 4.1. The

Simulator is constructed based on the original system as shown in Section 4.1. To

build the Observer for WTEGs it is necessary to insert the Interface which is the

connections between (i), (ii) and (iii) and it is defined as follow.

4.2.1 Interface

The Interface is a specific Petri net and it is used to connect the WTEG to the

Observer Matrix and to the Simulator. For this, two types of interfaces are proposed:

Input Interface and Output Interface. The size n of the Interface, i.e., the number

of transitions of the Interface, is determined by entries in the T-semiflow. In Figure

4.5 the Interface insertion in Observer for WTEGs realization is depicted, where Ii
refers to the Input Interface and Oi to the Output Interface.

Lopt+

WTEG Ii

OiSimulator

Figure 4.5: Interface insertion in Observer for WTEGs realization.

The first connection is the Input Interface which is made between the output of

WTEG and the input of Lopt+ realization. The size of the Interface to be inserted

depends on the size of the entries of T-semiflow that corresponds to the WTEG

output transitions. For example, if the WTEG has only one output transition with

T-semiflow entry equal to 4, the size of the Interface will be n = 4. Input Interface

is defined as follows.

Definition 26 (Input Interface) The Input Interface of size n is a particular

Petri net Ii = (P, T, w,M0), where:

� P = {p1, . . . , pn} is the finite set of places,
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� T = {u0, . . . , un} is the finite set of transitions,

� w(u0, pi) = 1 and w(pi, ui) = n,∀i ∈ {1, . . . , n} are the weight function,

� M0(pi) = n− i, ∀i ∈ {1, . . . , n} is the initial marking.

When operating under the earliest firing rule, it can be observed that the firing of

transitions u1, . . . , un are ordered. This firing order is obtained through the weights

w(pi, ui) = n and the initial marking of the Input Interface. Thus, the order is given

by:

ui(k) ≤ ui+1(k) ≤ ui(k + 1),∀i = 1, . . . , n− 1,

where, the k-th firing of ui+1 is not earlier than the k-th firing of ui,∀i = 1, . . . , n− 1.

To illustrate the Input Interface, Example 18 is presented.

Example 18 Let us consider that the size of the Interface is n = 2, therefore, it

has two transitions u1 and u2. The Input Interface is depicted in Figure 4.6. In

this input Interface: P = {p1, p2}, T = {u0, u1, u2}, w(u0, p1) = w(u0, p2) = 1 and

w(p1, u1) = w(p2, u2) = 2. M0(p1) = 1 and M0(p2) = 0. Note that w(p1, u1) =

w(p2, u2) = 2 because the size of the Interface in n = 2. The firing order of the

Input Interface is based on the initial marking. For instance, as M0(p1) = 1 and

M0(p2) = 0, so u1(k) ≤ u2(k), i.e., the firing of transition u1 occurs before the firing

of u2.

u0

p1

p2

u1

u2

2

2

Figure 4.6: Input Interface for n = 2.

The second connection is the Output Interface which is made between the output

of Lopt+ realization and the Simulator. The size of the Interface to be inserted

depends on the size of the entries of the T-semiflow that corresponds to the WTEG

internal transitions. Output Interface is defined as follows.

Definition 27 (Output Interface) The Output Interface of size n is a particular

Petri net Oi = (P, T, w,M0), where:
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� P = {pn, . . . , p1} is the finite set of places,

� T = {yn, . . . , y0} is the finite set of transitions,

� w(yn, pi) = n and w(pi, y0) = 1, ∀i ∈ {n, . . . , 1} are the weight function,

� M0(pi) = n− i, ∀i ∈ {n, . . . , 1} is the initial marking.

With the purpose to demonstrate the Output Interface the Example 19 is pre-

sented:

Example 19 Let us consider that the size of the Interface is n = 3, therefore, there

are three transitions y1, y2 and y3. The Output Interface is depicted in Figure 4.7. In

this Output Interface: P = {p1, p2, p3}, T = {y0, y1, y2, y3}, w(y1, p1) = w(y2, p2) =

w(y3, p3) = 3 and w(p1, y0) = w(p2, y0) = w(p3, y0) = 1. M0(p1) = 0, M0(p2) = 1

and M0(p3) = 2. Note that w(y1, p1) = w(y2, p2) = w(y3, p3) = 3 because the size of

the Interface is n = 3. The firing of y1 leads to the first firing of y0, the firing of y2

leads to the second firing of y0 and, the firing of y3 leads to the third firing of y0.

y1

y2

y3

y0

p1

p2

p3

3

3

3

Figure 4.7: Output Interface for n = 3.

The Input Interface leads to an expansion in the number of transitions and the

Output Interface leads to a reduction in the number of transitions. The index i refers

to the number of Interfaces that will be inserted to allow the connection between

the systems. Algorithm 3 shown the procedure for obtaining Interfaces realization.

Algorithm 3 Interface

Input: Consistent WTEG (P, T, w,M0, φ)

Output: Input Interface Ii(P, T, w,M0, φ), Output Interface Oi(P, T, w,M0, φ)

1: Compute T-semiflow ξ
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2: for each entry ξ(ti) ∈ ξ

2.1: if ξ(ti) corresponds to the output transitions and ξ(ti) 6= 1:

2.1.1: Compute the size n of Input Interface Ii . WTEG → Lopt+

2.1.2: Obtain Input Interface Ii(P, T, w,M0, φ) . Definition 26

2.2: if ξ(ti) corresponds to the internal transitions and ξ(ti) 6= 1:

2.2.1: Compute the size n of Output Interface Oi . Lopt+ → Simulator

2.1.2: Obtain Ouput Interface Oi(P, T, w,M0, φ) . Definition 27

end for

4.2.2 Input/Output behavior

In this section, we propose an Optimal Observer built through the conversion al-

gorithm from WTEG to TEG. Thus, for the implementation of the Observer for

WTEGs, it is necessary to connect the output of the WTEG to the input of the

Optimal Observer and the output of the Optimal Observer to the Simulator. The

joining of all these structures is done through the insertion of the Interface. In the

following, we explain why the Optimal Observer designed as a TEG is a valid ob-

server for the plant model which is given by a WTEG based on previous works in

the literature.

1. [23] functional perspective: the total number of tokens consumed and pro-

duced by the firing transitions in TEG is equals the number of tokens consumed and

produced by the firing of corresponding transitions in WTEG.

As mentioned in Section 2.3, the transformation SDF into a HSDF is equivalent

to the transformation WTEG into a TEG. According to result 1, the firing order of

the duplicated transitions in TEG corresponds to the firing order in WTEG.

2. [18] Even the firing transition A produces all nA tokens onto place (A,B)

simultaneously according to the WTEG model, the nA generated tokens have a fixed

relative order in which they are generated on the place (A,B). This is because each

place (A,B) is essentially a first-in-first-out buffer.

This means that the order in which tokens are generated on their related places

in WTEG is also maintained for “equivalent” TEG.

3. [22] Assume that Σ = (N,m0) is a live and bounded WTEG. There exists a

live and bounded marking for a WTEG if and only if it is strongly connected and

consistent (i.e., ∃X > 0 such that CX = 0).

The result 3 is applied in the transformation algorithm, which requires that the

WTEG is consistent to ensure that there is a unique minimal T-semiflow.
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4. [22] The Petri net languages 1 of the WTEG and the TEG are the same when

all transitions tji in the TEG are considered as ti in the original WTEG.

In this work, all the duplicated transitions in “equivalent” TEG are considered as

a single transition in original WTEG. Thus, one can assume that the firing sequence

of WTEG and “equivalent” TEG are the same since tji in TEG are considered as ti

in original WTEG.

In order to illustrate the fact that the input/output behavior of WTEG and of

TEG with Interface are the same, the Example 20 is described:

Example 20 Let us consider consistent WTEG shown in Figure 4.8 and “equiv-

alent” TEG obtained using the Algorithm 1 shown in Figure 4.9. In Figure 4.8,

w(t1, p1) = w(t2, p2) = w(p2, t2) = w(p3, t3) = 1 and w(p1, t2) = w(t2, p3) = 2. In

Figure 4.9 all arcs have weight 1. Note that the token in p2 and in p
′
21,21

needs to be

held for 2 time instants to contribute to the firing of t2 and t12, respectively.

t1 p1 t2

p2

2

p3 t3

2 2

Figure 4.8: Consistent WTEG.

t21

p
′
12,21

t12

p
′
21,21

2

p
′
21,32

t23

t11 p
′
11,21

p
′
21,31

t13

p
′
11,12

p
′
12,11

p
′
31,32

p
′
32,31

Figure 4.9: “Equivalent” TEG corresponding to the WTEG of Figure 4.8.

In this example, two interfaces will be connected to the TEG, one in the input

and one in the output. ξ =
[

2 1 2
]T

as calculated in Example 9. To built the

1here, by “language” it is meant the set of all firing sequences from the initial marking.
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interfaces it is necessary to analyze the input transition t1 and the output transition

t3. The first and the last entries of the T-semiflow, that correspond to transitions

t1 and t3 in the WTEG, respectively, are equal to 2, so, the interface that will be

connected to the input and to the output have the same size, n = 2. In Figure 4.10(a)

and 4.10(b) the interfaces that will be connected to the input and to the output to

the TEG are depicted, respectively.

p1

p2

u0

u1

u2

2

2

(a) I1 size n = 2.

y2

y1 p1

p2

y0

2

2

(b) O1 size n = 2.

Figure 4.10: Interfaces that will be connected to the input and to the output of the

TEG.

After design the interfaces, they are connected to the input and output of the

TEG. The interfaces are shown in red in Figure 4.11.

t21

p
′
12,21

t12

p
′
21,21

2

p
′
21,32

t23

t11 p
′
11,21

p
′
21,31

t13

p
′
11,12

p
′
12,11

p
′
31,32

p
′
32,31

y0

2

2

u0

2

2

Figure 4.11: TEG with Input and Output Interface.

To demonstrate the performance of the input/output of the WTEG and of TEG

with the insertion of interfaces, let us consider the dater function as follows:
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d(k) =



−∞, for k < 1

0, if k = 1

1, if k = 2

2, if k = 3

3, if k = 4

+∞, else.

This dater functions can be interpreted as follows. There is no firing before time 0.

The first firing occurs at the time 0. The second firing occurs at time 1, the third

firing occurs at time 2 and the fourth firing occurs at time 3. After time 3, there is

no additional firing. Table 4.1 shows the firing times for WTEG operating under the

earliest firing rule, as shown in Definition 16, where ti denotes the dater associated

with transition ti, i = 1, 2, 3. Notice that the first firing of the input transition t1

is at t = 0, the second firing at t = 1, the third firing at t = 2 and the fourth

firing at t = 3, as seen in the second column of Table 4.1. The first firing of the

internal transition t2 is at t = 1, as shown in the third column of Table 4.1, because

w(p1, t2) = 2. The second firing of t2 is at t = 3, because the token remains in p2 2

time units before it can contribute to the next firing of t2. The first and the second

firing of the output transition t3 are at t = 1, because in the first fire of t2, p3 receives

2 tokens. The third and fourth firing are at t = 3, because in the second fire of t2,

p3 receives 2 tokens.

Firing Times

Input Internal Transitions OutputFiring

Count k t1(k) = d(k) t2(k) t3(k)

1 0 1 1

2 1 3 1

3 2 +∞ 3

4 3 +∞ 3

5 +∞ +∞ +∞

Table 4.1: Firing Table WTEG of Figure 4.8.

Table 4.2 shows the firing times for the TEG with Interface. Notice that the first

firing of the input transition u0 is at t = 0, the second firing at t = 1, the third firing

at t = 2 and the fourth firing at t = 3, as seen in the second column of Table 4.2.

Analyzing the firing of the internal transitions, note that the first firing of t11 and

of t21 occur at t = 0 and t = 1, respectively, and the second firing of them occur at

t = 2 and t = 3, respectively. Notice that the firing of t11 and t21 occur alternately as

shown in the third and fourth column of Table 4.2. The first firing of t12 occurs at
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t = 1, because it is necessary to wait the first firing of t11 and t21 to occur. The second

firing of t12 occurs at t = 3, because the token remains in p
′
21,21

2 time units before

it can contribute to the next firing of t12. The first firing of t13 and t23 occur at t = 1

after the first firing of t12. The second firing of them occur at t = 3 after the second

firing of t12. Finally, the first firing and the second firing of the output transition y0

occur at t = 1, after the first firing of t13 and t23. The third and the fourth firing of

y0 occur at t = 3, after the second firing of t13 and t23.

Firing Times

Input Internal Transitions OutputFiring

Count k u0(k) = d(k) t11(k) t21(k) t12(k) t13(k) t23(k) y0(k)

1 0 0 1 1 1 1 1

2 1 2 3 3 3 3 1

3 2 +∞ +∞ +∞ +∞ +∞ 3

4 3 +∞ +∞ +∞ +∞ +∞ 3

5 +∞ +∞ +∞ +∞ +∞ +∞ +∞

Table 4.2: Firing Table for TEG with Interface of Figure 4.11.

Comparing the information obtained with both tables 4.1 and 4.2, notice that

the firing times of t11 and t21 in the TEG with Interface merged are the same as the

firing times of t1 in WTEG. The firing times of t12 in the TEG + Interface are

the same as the firing times of t2 in WTEG. The firing times of t13 and of t23 in

the TEG with Interface merged are the same as the firing times of t3 in WTEG.

Therefore, it is concluded that the input/output behavior of the WTEG is the same

as the input/output behavior of the TEG with Interface. As required, the output of

the WTEG and the output of the TEG + Interface are equal, i.e., t3(k) = y0(k).

4.3 Implementation of Observer for WTEGs

In this section, an algorithm for the Observer for WTEGs design is proposed. In

order to implement Obs(WTEG), five main steps are required. First, compute the

“equivalent” TEG through consistent WTEG as showed in Algorithm 1. Second,

obtain the Lopt+ realization using Max-plus approach, which is based on algebraic

results related to dioid, as described in Algorithm 2. Third, get the Input and Out-

put Interface realization, as described in Algorithm 3. Fourth, obtain the Simulator

that is equal to the system model, excluding for the disturbance terms. Fifth, the

system’s parts are connected via Interfaces. Algorithm 4 summarized all these steps.

Algorithm 4 Observer for WTEGs
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Input: Consistent WTEG (P, T, w,M0, φ)

Output: Obs(WTEG)(Po, To, wo,M0
o, φo)

1: Call Algorithm 1 . Compute TEG (P
′
, T
′
, w
′
,M0

′
, φ
′
)

2: Call Algorithm 2 . Compute Lopt+(Pl, Tl, wl,M0
l , φl)

3: Call Algorithm 3 . Compute Ii(P, T, w,M0) and Oi(P, T, w,M0)

4: Built the Simulator . Compute S(P, T, w,M0, φ), see Section 4.1

5: Observer for WTEG realization Obs(WTEG)

5.1: Connect WTEG input → S input

5.2: Connect WTEG output → Lopt+ input using Ii
5.3: Connect Lopt+output→ S internal transitions using Oi

Figure 4.5 depicts the Observer for WTEGs realization Obs(WTEG). Follow-

ing, an example illustrating step by step the application of Algorithm 4 to obtain

Obs(WTEG) is presented.

Example 21 To illustrate this work, let us consider an example to obtain the Ob-

server for WTEGs. In order to do so, we will use the consistent WTEG shown in

Figure 4.12. This consistent WTEG is defined as follows:

� set of places: P = {p1, p2, p3, p4, p5, p6, p7};

� set of transitions: T = {t1, t2, t3, t4, t5, t6};

� weights: w(t1, p1) = w(p1, t3) = w(t3, p3) = w(t2, p2) = w(p2, t4) = w(p4, t3) =

w(p5, t5) = w(t5, p7) = w(p7, t6) = 1, w(t4, p5) = w(p6, t4) = 2 and w(p3, t5) =

w(t5, p4) = 3;

� holding times: φ3 = 4 and φ5 = 3;

� initial marking: M0 =
[

0 0 0 3 0 2 0
]T

;

� disturbances: w1, w2, w3.

This consistent WTEG can be transformed into an “equivalent” TEG, which is

obtained through the transformation Algorithm 1 described in Section 2.3.
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t1 p1

t2 p2

t3

w1

w2

w3

p3

4

p4

t4

p5

3

t5

p6

p7

t6

2

3
3

2

Figure 4.12: Consistent WTEG.

Remark 8 The steps of the algorithm do not take into account the disturbances. It

is enough, after obtaining the “equivalent” TEG, to duplicate the transitions related

to the disturbances and to connect them to the corresponding TEG transitions.

Let us present step by step Algorithm 4 to obtain Obs(WTEG).

Step 1

In Step 1 of Algorithm 4, that is convert consistent WTEG into “equivalent”

TEG, we have the following steps of Algorithm 1.

1: Computing T-semiflow vector ξ:

Wξ = 0

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 −3 0

0 0 −1 0 3 0

0 0 0 2 −1 0

0 0 0 −2 1 0

0 0 0 0 1 −1


×



ξ1

ξ2

ξ3

ξ4

ξ5

ξ6


=



0

0

0

0

0

0


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ξ =
[

6 1 6 1 2 2
]T

2: The transition set T
′

of TEG is:

T
′
= {t11, t21, t31, t41, t51, t61, t12, t13, t23, t33, t43, t53, t63, t14, t15, t25, t16, t26}.

3: For each basic path in WTEG:

Basic Path 1 (t1, p1, t3):

1) Add place p
′
11,31

to place set P
′

of TEG.

Set:

w
′
(t
′
11
, p
′
11,31

) = 1

w
′
(p
′
11,31

, t
′
31

) = 1

M0′(p
′
11,31

) = 0

φ
′
(p
′
11,31

) = φ(p1) = 0

2) Add place p
′
12,32

to place set P
′

of TEG.

Set:

w
′
(t
′
12
, p
′
12,32

) = 1

w
′
(p
′
12,32

, t
′
32

) = 1

M0′(p
′
12,32

) = 0

φ
′
(p
′
12,32

) = φ(p1) = 0

3) Add place p
′
13,33

to place set P
′

of TEG.

Set:

w
′
(t
′
13
, p
′
13,33

) = 1

w
′
(p
′
13,33

, t
′
33

) = 1

M0′(p
′
13,33

) = 0

φ
′
(p
′
13,33

) = φ(p1) = 0

4) Add place p
′
14,34

to place set P
′

of TEG.

Set:

w
′
(t
′
14
, p
′
14,34

) = 1

w
′
(p
′
14,34

, t
′
34

) = 1

M0′(p
′
14,34

) = 0

φ
′
(p
′
14,34

) = φ(p1) = 0

5) Add place p
′
15,35

to place set P
′

of TEG.

Set:
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

w
′
(t
′
15
, p
′
15,35

) = 1

w
′
(p
′
15,35

, t
′
35

) = 1

M0′(p
′
15,35

) = 0

φ
′
(p
′
15,35

) = φ(p1) = 0

6) Add place p
′
16,36

to place set P
′

of TEG.

Set:

w
′
(t
′
16
, p
′
16,36

) = 1

w
′
(p
′
16,36

, t
′
36

) = 1

M0′(p
′
16,36

) = 0

φ
′
(p
′
16,36

) = φ(p1) = 0

Basic Path 2 (t3, p3, t5):

1) Add place p
′
31,51

to place set P
′

of TEG.

Set:

w
′
(t
′
31
, p
′
31,51

) = 1

w
′
(p
′
31,51

, t
′
51

) = 1

M0′(p
′
31,51

) = 0

φ
′
(p
′
31,51

) = φ(p3) = 4

2) Add place p
′
31,51

to place set P
′

of TEG.

Set:

w
′
(t
′
32
, p
′
32,51

) = 1

w
′
(p
′
32,51

, t
′
51

) = 1

M0′(p
′
32,51

) = 0

φ
′
(p
′
32,51

) = φ(p3) = 4

3) Add place p
′
33,51

to place set P
′

of TEG.

Set:

w
′
(t
′
33
, p
′
33,51

) = 1

w
′
(p
′
33,51

, t
′
51

) = 1

M0′(p
′
33,51

) = 0

φ
′
(p
′
33,51

) = φ(p3) = 4

4) Add place p
′
34,52

to place set P
′

of TEG.

Set:

w
′
(t
′
34
, p
′
34,52

) = 1

w
′
(p
′
34,52

, t
′
52

) = 1

M0′(p
′
34,52

) = 0

φ
′
(p
′
34,52

) = φ(p3) = 4
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5) Add place p
′
35,52

to place set P
′

of TEG.

Set:

w
′
(t
′
35
, p
′
35,52

) = 1

w
′
(p
′
35,52

, t
′
52

) = 1

M0′(p
′
35,52

) = 0

φ
′
(p
′
35,52

) = φ(p3) = 4

6) Add place p
′
36,52

to place set P
′

of TEG.

Set:

w
′
(t
′
36
, p
′
36,52

) = 1

w
′
(p
′
36,52

, t
′
52

) = 1

M0′(p
′
36,52

) = 0

φ
′
(p
′
36,52

) = φ(p3) = 4

Basic Path 3 (t5, p4, t3):

1) Add place p
′
51,34

to place set P
′

of TEG.

Set:

w
′
(t
′
51
, p
′
51,34

) = 1

w
′
(p
′
51,34

, t
′
34

) = 1

M0′(p
′
51,34

) = 0

φ
′
(p
′
51,34

) = φ(p4) = 0

2) Add place p
′
51,35

to place set P
′

of TEG.

Set:

w
′
(t
′
51
, p
′
51,35

) = 1

w
′
(p
′
51,35

, t
′
35

) = 1

M0′(p
′
51,35

) = 0

φ
′
(p
′
51,35

) = φ(p4) = 0

3) Add place p
′
51,36

to place set P
′

of TEG.

Set:

w
′
(t
′
51
, p
′
51,36

) = 1

w
′
(p
′
51,36

, t
′
36

) = 1

M0′(p
′
51,36

) = 0

φ
′
(p
′
51,36

) = φ(p4) = 0

4) Add place p
′
52,31

to place set P
′

of TEG.

Set:
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

w
′
(t
′
52
, p
′
52,31

) = 1

w
′
(p
′
52,31

, t
′
31

) = 1

M0′(p
′
52,31

) = 1

φ
′
(p
′
52,31

) = φ(p4) = 0

5) Add place p
′
52,32

to place set P
′

of TEG.

Set:

w
′
(t
′
52
, p
′
52,32

) = 1

w
′
(p
′
52,32

, t
′
32

) = 1

M0′(p
′
52,32

) = 1

φ
′
(p
′
52,32

) = φ(p4) = 0

6) Add place p
′
52,33

to place set P
′

of TEG.

Set:

w
′
(t
′
52
, p
′
52,33

) = 1

w
′
(p
′
52,33

, t
′
33

) = 1

M0′(p
′
52,33

) = 1

φ
′
(p
′
52,33

) = φ(p4) = 0

Basic Path 4 (t2, p2, t4):

1) Add place p
′
21,41

to place set P
′

of TEG.

Set:

w
′
(t
′
21
, p
′
21,41

) = 1

w
′
(p
′
21,41

, t
′
41

) = 1

M0′(p
′
21,41

) = 0

φ
′
(p
′
21,41

) = φ(p2) = 0

Basic Path 5 (t4, p5, t5):

1) Add place p
′
41,51

to place set P
′

of TEG.

Set:

w
′
(t
′
41
, p
′
41,51

) = 1

w
′
(p
′
41,51

, t
′
51

) = 1

M0′(p
′
41,51

) = 0

φ
′
(p
′
41,51

) = φ(p5) = 3

2) Add place p
′
41,52

to place set P
′

of TEG.

Set:
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

w
′
(t
′
41
, p
′
41,52

) = 1

w
′
(p
′
41,52

, t
′
52

) = 1

M0′(p
′
41,52

) = 0

φ
′
(p
′
41,52

) = φ(p5) = 3

Basic Path 6 (t5, p6, t4):

1) Add place p
′
51,41

to place set P
′

of TEG.

Set:

w
′
(t
′
51
, p
′
51,41

) = 1

w
′
(p
′
51,41

, t
′
41

) = 1

M0′(p
′
51,41

) = 1

φ
′
(p
′
51,41

) = φ(p6) = 0

2) Add place p
′
52,41

to place set P
′

of TEG.

Set:

w
′
(t
′
52
, p
′
52,41

) = 1

w
′
(p
′
52,41

, t
′
41

) = 1

M0′(p
′
52,41

) = 1

φ
′
(p
′
52,41

) = φ(p6) = 0

Basic Path 7 (t5, p7, t6):

1) Add place p
′
51,61

to place set P
′

of TEG.

Set:

w
′
(t
′
51
, p
′
51,61

) = 1

w
′
(p
′
51,61

, t
′
61

) = 1

M0′(p
′
51,61

) = 0

φ
′
(p
′
51,61

) = φ(p7) = 0

2) Add place p
′
52,62

to place set P
′

of TEG.

Set:

w
′
(t
′
52
, p
′
52,62

) = 1

w
′
(p
′
52,62

, t
′
62

) = 1

M0′(p
′
52,62

) = 0

φ
′
(p
′
52,62

) = φ(p7) = 0

4: Loop between duplicated transitions:

ξ(t1) :
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1) Add places (p
′
11,12

, p
′
12,13

, p
′
13,14

, p
′
14,15

, p
′
15,16

) to place set P
′

of TEG

w
′
(t
′
11
, p
′
11,12

) = w
′
(t
′
12
, p
′
12,13

) = w
′
(t
′
13
, p
′
13,14

) = w
′
(t
′
14
, p
′
14,15

) =

= w
′
(t
′
15
, p
′
15,16

) = 1

w
′
(p
′
11,12

, t
′
12

) = w
′
(p
′
12,13

, t
′
13

) = w
′
(p
′
13,14

, t
′
14

) = w
′
(p
′
14,15

, t
′
15

) =

= w
′
(p
′
15,16

, t
′
16

) = 1

M0′(p
′
11,12

) =M0′(p
′
12,13

) =M0′(p
′
13,14

) =M0′(p
′
14,15

) =

=M0′(p
′
15,16

) = 0

φ
′
(p
′
11,12

) = φ
′
(p
′
12,13

) = φ
′
(p
′
13,14

) = φ
′
(p
′
14,15

) = φ
′
(p
′
15,16

) = 0

2) Add place (p
′
1611

) to place set P
′

of TEG

Set:

w
′
(t
′
16
, p
′
16,11

) = 1

w
′
(p
′
16,11

, t
′
11

) = 1

M0′(p
′
16,11

) = 1

φ
′
(p
′
16,11

) = 0

ξ(t3) :

1) Add places (p
′
31,32

, p
′
32,33

, p
′
33,34

, p
′
34,35

, p
′
35,36

) to place set P
′

of TEG

w
′
(t
′
31
, p
′
31,32

) = w
′
(t
′
32
, p
′
32,33

) = w
′
(t
′
33
, p
′
33,34

) = w
′
(t
′
34
, p
′
34,35

) =

= w
′
(t
′
35
, p
′
35,36

) = 1

w
′
(p
′
31,32

, t
′
32

) = w
′
(p
′
32,33

, t
′
33

) = w
′
(p
′
33,34

, t
′
34

) = w
′
(p
′
34,35

, t
′
35

) =

= w
′
(p
′
35,36

, t
′
36

) = 1

M0′(p
′
31,32

) =M0′(p
′
32,33

) =M0′(p
′
33,34

) =M0′(p
′
34,35

) =

=M0′(p
′
35,36

) = 0

φ
′
(p
′
31,32

) = φ
′
(p
′
32,33

) = φ
′
(p
′
33,34

) = φ
′
(p
′
34,35

) = φ
′
(p
′
35,36

) = 0

2) Add place (p
′
3631

) to place set P
′

of TEG

w
′
(t
′
36
, p
′
36,31

) = 1

w
′
(p
′
36,31

, t
′
31

) = 1

M0′(p
′
36,31

) = 1

φ
′
(p
′
36,31

) = 0

ξ(t5) :

1) Add place (p
′
51,52

) to place set P
′

of TEG
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

w
′
(t
′
51
, p
′
51,52

) = 1

w
′
(p
′
51,52

, t
′
52

) = 1

M0′(p
′
51,52

) = 0

φ
′
(p
′
51,52

) = 0

2) Add place (p
′
5251

) to place set P
′

of TEG

w
′
(t
′
52
, p
′
52,51

) = 1

w
′
(p
′
52,51

, t
′
51

) = 1

M0′(p
′
52,51

) = 1

φ
′
(p
′
52,51

) = 0

ξ(t6) :

1) Add place (p
′
61,62

) to place set P
′

of TEG

w
′
(t
′
61
, p
′
61,62

) = 1

w
′
(p
′
61,62

, t
′
62

) = 1

M0′(p
′
61,62

) = 0

φ
′
(p
′
61,62

) = 0

2) Add place (p
′
62,61

) to place set P
′

of TEG

w
′
(t
′
62
, p
′
62,61

) = 1

w
′
(p
′
62,61

, t
′
61

) = 1

M0′(p
′
62,61

) = 1

φ
′
(p
′
62,61

) = 0

Figure 4.13 shows the “equivalent” TEG corresponding to the consistent WTEG

of Figure 4.12. Transition t1 in Figure 4.12 is duplicated in t11, t
2
1, t

3
1, t

4
1, t

5
1, t

6
1 in

Figure 4.13. Transition t2 in Figure 4.12 is equivalent to transition t12 in Figure

4.13. Transition t3 in Figure 4.12 is duplicated in t13, t
2
3, t

3
3, t

4
3, t

5
3, t

6
3 in Figure 4.13.

Transition t4 in Figure 4.12 is equivalent to transition t14 in Figure 4.13. Transition

t5 in Figure 4.12 is duplicated in t15, t
2
5 in Figure 4.13. Transition t6 in Figure

4.12 is duplicated in t16, t
2
6 in Figure 4.13. The loop on the duplicated transitions

enforce a firing order. For example, the loop between t15, t
2
5 in Figure 4.13, ensures

that t15 fires strictly before that t25. The disturbance w1 in Figure 4.12 is duplicated in

w1
1, w

2
1, w

3
1, w

4
1, w

5
1, w

6
1 in Figure 4.13. The disturbance w2 in Figure 4.12 is equivalent

to w1
2 in Figure 4.13. The disturbance w3 in Figure 4.12 is duplicated in w1

3, w
2
3 in

Figure 4.13.
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t11 p
′
11,31

t11

p
′
12,32

t21

p
′
13,33

t31

p
′
14,34

t41

p
′
15,35

t51

p
′
16,36

t61

p
′
11,12

p
′
12,13

p
′
13,14

p
′
14,15

p
′
15,16

p
′
11,12

t12 p
′
21,41

p
′
31,51

4

t13

w1
1

p
′
32,51

4

t23

w2
1

p
′
33,51

4

t33

w3
1

p
′
34,52

4

t43

w4
1

p
′
35,52

4

t53

w5
1

p
′
36,52

4

p
′
52,31

p
′
52,32

p
′
52,33

p
′
51,34

p
′
51,35

p
′
51,36

t63

w6
1

t14

w1
2

p
′
31,32

p
′
32,33

p
′
33,34

p
′
34,35

p
′
35,36

p
′
36,31

p
′
41,51

3
p
′
41,52

3

p
′
52,41

p
′
51,41

t15

w1
3

p
′
51,61

t25w2
3

p
′
52,62

p
′
51,52

p
′
52,51

t16

t26

p
′
61,62

p
′
62,61

Figure 4.13: “Equivalent” TEG corresponding to the WTEG of Figure 4.12.
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Insertion of Artificial Transitions

As mentioned in Remark 7, it is necessary to verify in Figure 4.13, if both struc-

ture conditions for TEGs are satisfied to calculate Lopt+. In Figure 4.13 it can be

observed that the places between the input transitions t11, t
2
1, t

3
1, t

4
1, t

5
1, t

6
1, t

1
2 and the

internal transitions t13, t
2
3, t

3
3, t

4
3, t

5
3, t

6
3, t

1
4 have no holding times and have no initial

marking. The same occurs with the output transitions t16, t
2
6 and the internal transi-

tions t15, t
2
5. Therefore, the first requirement hold.

However, the input transition t11 is connected to t21, t
2
1 is connected to t31, t

3
1 is

connected to t41, t
4
1 is connected to t51, t

5
1 is connected to t61 and t61 is connected to t11.

Besides that, the output transition t16 is connected to t26 and t26 is also connected to

t16 through the loop. In other words, input and output transitions are not connected

only to internal transitions. Thus, it is necessary to insert Artificial Transitions to

calculate Lopt+.

Figure 4.14 shows the “equivalent” TEG with the artificial transitions

u1, u2, u3, u4, u5, u6, y1, y2 in blue. Without loss of generality, artificial transitions

are inserted in Figure 4.13, without changing the firing order, as γ0δ0, i.e., they do

not have tokens and do not have holding times.

The artificial transitions are considered for the purpose of the computation of

the Lopt+. After obtaining Lopt+, when the Interfaces are connected, the artificial

transitions are removed.
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u1

u2

u3

u4

u5

u6

t11 p
′
11,31

t11

p
′
12,32

t21

p
′
13,33

t31

p
′
14,34

t41

p
′
15,35

t51

p
′
16,36

t61

p
′
11,12

p
′
12,13

p
′
13,14

p
′
14,15

p
′
15,16

p
′
11,12

t12 p
′
21,41

p
′
31,51

4

t13

w1
1

p
′
32,51

4

t23

w2
1

p
′
33,51

4

t33

w3
1

p
′
34,52

4

t43

w4
1

p
′
35,52

4

t53

w5
1

p
′
36,52

4

p
′
52,31

p
′
52,32

p
′
52,33

p
′
51,34

p
′
51,35

p
′
51,36

t63

w6
1

t14

w1
2

p
′
31,32

p
′
32,33

p
′
33,34

p
′
34,35

p
′
35,36

p
′
36,31

p
′
41,51

3
p
′
41,52

3

p
′
52,41

p
′
51,41

t15

w1
3

p
′
51,61

t25w2
3

p
′
52,62

p
′
51,52

p
′
52,51

t16

t26

p
′
61,62

p
′
62,61

y1

y2

Figure 4.14: “Equivalent” TEG corresponding to the WTEG of Figure 4.12 with Artificial Transitions.
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Step 2

In Step 2 of Algorithm 4, that is compute Lopt+ realization, we have following

steps of Algorithm 2.

1: The state space representation in Max
in [[γ, δ]] of TEG of Figure 4.14 is given

by:

A =



ε ε ε ε ε δ0γ1 ε ε ε ε ε ε ε ε ε ε ε ε

e ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε e ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε e ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε e ε ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε e ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

e ε ε ε ε ε ε ε ε ε ε ε δ0γ1 ε ε δ0γ1 ε ε

ε e ε ε ε ε ε e ε ε ε ε ε ε ε δ0γ1 ε ε

ε ε e ε ε ε ε ε e ε ε ε ε ε ε δ0γ1 ε ε

ε ε ε e ε ε ε ε ε e ε ε ε ε e ε ε ε

ε ε ε ε e ε ε ε ε ε e ε ε ε e ε ε ε

ε ε ε ε ε e ε ε ε ε ε e ε ε e ε ε ε

ε ε ε ε ε ε e ε ε ε ε ε ε ε δ0γ1 δ0γ1 ε ε

ε ε ε ε ε ε ε δ4γ0 δ4γ0 δ4γ0 ε ε ε δ3γ0 ε δ0γ1 ε ε

ε ε ε ε ε ε ε ε ε ε δ4γ0 δ4γ0 δ4γ0 δ3γ0 e ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε e ε ε δ0γ1

ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε e e ε



,

B =



e ε ε ε ε ε ε

ε e ε ε ε ε ε

ε ε e ε ε ε ε

ε ε ε e ε ε ε

ε ε ε ε e ε ε

ε ε ε ε ε e ε

ε ε ε ε ε ε e

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε



,

C =

[
ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε e ε

ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε e

]
,
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R =



ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε

e ε ε ε ε ε ε ε ε

ε e ε ε ε ε ε ε ε

ε ε e ε ε ε ε ε ε

ε ε ε e ε ε ε ε ε

ε ε ε ε e ε ε ε ε

ε ε ε ε ε e ε ε ε

ε ε ε ε ε ε e ε ε

ε ε ε ε ε ε ε e ε

ε ε ε ε ε ε ε ε e

ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε



.

2: Compute Lopt using the toolbox MinMaxGD.

3: The Optimal Observer Lopt+ is computed using the toolbox MinMaxGD.

Lopt+ =



ε ε

ε ε

ε ε

ε ε

ε ε

ε ε

ε ε

δ4γ1(δ8γ1)∗ δ0γ1(δ8γ1)∗

δ4γ1(δ8γ1)∗ δ0γ1(δ8γ1)∗

δ4γ1(δ8γ1)∗ δ0γ1(δ8γ1)∗

δ0γ0(δ8γ1)∗ δ4γ1(δ8γ1)∗

δ0γ0(δ8γ1)∗ δ4γ1(δ8γ1)∗

δ0γ0(δ8γ1)∗ δ4γ1(δ8γ1)∗

δ4γ1(δ8γ1)∗ δ0γ1(δ8γ1)∗

δ0γ0(δ8γ1)∗ δ4γ1(δ8γ1)∗

δ4γ0(δ8γ1)∗ δ0γ0(δ8γ1)∗

δ0γ0(δ8γ1)∗ δ4γ1(δ8γ1)∗

δ4γ0(δ8γ1)∗ δ0γ0(δ8γ1)∗


4: Lopt+ realization is show in Figure 4.15:
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Figure 4.15: The Lopt+ realization corresponding to the TEG of Figure 4.12.
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Step 3

In Step 3 of Algorithm 4, that is Interfaces realization, we have following steps

of Algorithm 3.

1: T-semiflow of WTEG is ξ =
[

6 1 6 1 2 2
]T

, as showed in Step 1.

2: for ξ(ti), i = 1, 2, 3, 4, 5, 6

2.1: ξ(t6) The size of the Interfaces is determined by entries in T-semiflow.

The WTEG has one output transition t6 and the Lopt+ realization has

two input transitions l1 and l2. Thus it is necessary to insert an Input

Interface to connect them. This Input Interface leads to an expansion

in the number of transitions which allows the connection between WTEG

and Lopt+ realization. As ξ(t6) = 2, the size of the Input Interface is

n = 2. In Figure 4.16 the Input Interface is shown.

u0

p1

p2

u1

u2

2

2

Figure 4.16: I1 to connect WTEG→ Lopt+.

2.2: The entries of T-semiflow that correspond to the internal transitions are

ξ(t3) = 6 and ξ(t5) = 2. It is necessary to add two Output Interfaces,

which lead to a reduction in the number of transitions. The size of the

Output Interface for t3 is n = 6 and the size of the Output Interface for

t5 is n = 2.

To connect the realization of Lopt+ into the WTEG Simulator, it is nec-

essary to insert the Interfaces. The realization of Lopt+ has eleven output

transitions β8, β9, β10, β11, β12, β13, β14, β15, β16, β17 and β18.

With the insertion of these Interfaces, the connection between Lopt+ re-

alization and WTEG Simulator is possible. In Figure 4.17 the Output

Interfaces are shown.
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y0

p1y1

p2y2

p3y3

p4y4

p5y5

p6y6

6

6

6

6

6

6

(a) O1 to connect Lopt+ to t̂3 in Simulator.

y0

p1y1

p2y2

2

2

(b) O2 to connect Lopt+ to t̂5 in Simulator.

Figure 4.17: (a) O1 with size n = 6 and (b) O2 with size n = 2.

Step 4

Step 4 of Algorithm 4 is built Simulator S, which is a copy of the original system

without the disturbance terms. Figure 4.18 depicts S.

t̂1

t̂2

t̂3

4

t̂4

3

t̂5 t̂6

2

3
3

2

Figure 4.18: Simulator S to WTEG of Figure 4.12

.
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Step 5

In Step 5 of Algorithm 4, we build Obs(WTEG).

The system realization can be modeled by the connection of the WTEG to Lopt+

using the Input Interface, the connection of Lopt+ to WTEG Simulator using the

Output Interfaces and the connection WTEG to WTEG Simulator. The Interfaces

proposed to ensure the connections without changing the properties of the system.

5.1 Input transition t1 of WTEG is connected to internal transition t̂3 in Simula-

tor, and input transition t2 of WTEG is connected to internal transition t̂4 in

Simulator.

5.2 WTEG output has one output transition t6. To connect to the input transitions

of Lopt+ realization, it is necessary to add the Input Interface n = 2, to expand

the number of transitions. Thus, the input transitions of Lopt+ realization: l1

and l2, now they are called y1 and y2. The Lopt+ realization has eleven output

transitions: β8, β9, β10, β11, β12, β13, β14, β15, β16, β17 and β18. The Simulator

has three internal transitions t̂3, t̂4 and t̂5.

5.3 To connect the Lopt+ realization to the Simulator it is necessary to add two

Output Interfaces: one n = 6 and another n = 2, to reduce the number of

transitions.

Figure 4.19 depict the Observer for WTEGs realization. The WTEG is connected

through an Input Interface to the Lopt+ realization. The Lopt+ realization is connected

to the Simulator through an Output Interface.

After the connections, Lopt+y can be written in the event domain by considering

max-plus algebra as follows.
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β8(k) = 8β8(k − 1)⊕ 4y1(k − 1)⊕ y2(k − 1)

β9(k) = 8β9(k − 1)⊕ 4y1(k − 1)⊕ y2(k − 1)

β10(k) = 8β10(k − 1)⊕ 4y1(k − 1)⊕ y2(k − 1)

β11(k) = 8β11(k − 1)⊕ y1(k)⊕ 4y2(k − 1)

β12(k) = 8β12(k − 1)⊕ y1(k)⊕ 4y2(k − 1)

β13(k) = 8β13(k − 1)⊕ y1(k)⊕ 4y2(k − 1)

β14(k) = 8β14(k − 1)⊕ 4y1(k − 1)⊕ y2(k − 1)

β15(k) = 8β15(k − 1)⊕ y1(k)⊕ 4y2(k − 1)

β16(k) = 8β16(k − 1)⊕ 4y1(k − 1)⊕ y2(k)

β17(k) = 8β17(k − 1)⊕ y1(k)⊕ 4y2(k − 1)

β18(k) = 8β18(k − 1)⊕ 4y1(k − 1)⊕ y2(k)
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Figure 4.19: Obs(WTEG).
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Chapter 5

Conclusion and Future Works

In this work, we described the algebraic concepts to model TEGs using dioids theory,

because the dynamics of a TEG can be modeled by linear equations in the Max-plus

algebra and in Appendix A we defined dioidMax
in [[γ, δ]], to obtain transfer functions

for TEGs. We also introduced Observer for TEG, in order to compute Lopt+ and

to build the Simulator. We proposed Input and Output Interface, that is required

to connect WTEG to Lopt+ and Lopt+ to Simulator. The Interfaces are a specific

Petri net, which allows the connections without modifying the system’s features. An

example to illustrate the Observer for WTEGs realization is presented.

In summary, this work contributes with the literature by (i) presenting an Al-

gorithm to convert a consistent WTEG in an equivalent TEG using an adaptation

of the algorithm introduced in [18], (ii) proposing Input and Output Interface and

(iii) design an Observer for WTEGs.

Future Works

An approach as a future work would be to design a feedback controller, where

the estimated state would be used to compute the control action instead of the

unavailable true state. The question to construct the observer-based control for

WTEGs in a dioid structure is that WTEGs have an event-variant behavior and

can not be described by Max
in [[γ, δ]]. Therefore, it is necessary an investigation into

some dioids that have been proposed to deal with this performance.
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Appendix A

Dioid Max
in [[γ, δ]]

This section affords some algebraic preliminaries about dioid of formal series used in

this work. For a more complete presentation of this subject please refer to [2, 3, 10].

A.0.1 Dioid Max
in [[γ, δ]]

In order to obtain transfer functions for TEGs, a specific dioid on formal power

series calledMax
in [[γ, δ]] was introduced in [4]. In the following, some definitions and

basic results for computations in Max
in [[γ, δ]] are given.

Definition 28 (Formal power series) A formal power series in p (commuta-

tive1) variables with coefficients in a complete dioid D is a mapping s from Zp

into D : ∀k = (k1, . . . , kp) ∈ Zp, the coefficients of zk11 . . . z
kp
p are represented by s(k),

or equivalently:

s =
⊕
k∈Zp

s(k1, . . . , kp)z
k1
1 . . . zkpp .

The sum and product of formal power series are defined based on the corresponding

operations on D.

Definition 29 (Dioid of series) The set of formal power series with coefficients

in an dioid D endowed with the following sum and Cauchy product:

s⊕ s′ : (s⊕ s′)(k) = s(k)⊕ s′(k)

s⊗ s′ : (s⊗ s′)(k) =
⊕
i+j=k

s(i)⊗ s′(j),

is a dioid denoted DJz1, . . . , zpK. If D is complete, DJz1, . . . , zpK is complete. The

greatest lower bound of two series is given by

s ∧ s′ : (s ∧ s′)(k) = s(k) ∧ s′(k)

1z1z2 and z2z1 are considered to be the same object.
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.

A series having only a single term with coefficient different from ε is called a

monomial. Any series can be seen as a sum of monomials. Now, consider the set of

formal power series in two variables, γ and δ, with Boolean coefficients.

Definition 30 (Dioid BJγ, δK) The dioid of formal power series in two commuta-

tive variables γ and δ with Boolean coeffcients, i.e., B = {ε, e}, and exponents in Z
is denoted B[[γ, δ]]. A series s ∈ B[[γ, δ]] is represented by

s(γ, δ) =
⊕
k,t∈Z

s̄(k, t)γkδt,

with s̄(k, t) ∈ B. B[[γ, δ]] is a complete and commutative dioid. The zero and unit

element are ε(γ, δ) =
⊕

k,t∈Z εγ
kδt and e(γ, δ) = γ0δ0, respectively.

Every such series can be represented graphically on the Z2-plane, with the ex-

ponents of γ on the horizontal axis and those of δ on the vertical axis, by drawing

a dot for each element of the series with coefficient different from ε. An example is

shown in Figure A.1 for s = γ1δ1 ⊕ γ3δ4 ⊕ γ4δ3.

Figure A.1: s and its south-east cone (gray) [4].

The gray area represents the union of all “south-east cones” of all dots. It is

clear that different series may generate the same such area; for instance, the series

s
′
= γ1δ1 ⊕ γ3δ4 generates the exact same gray area as s (see Figure A.1).

We may then consider all series whose union of south-east cones covers the same

area on the Z2-plane as “equivalent”. From this perspective, for any set of south-east

cones, the series formed exactly by the terms given by the apexes of the cones is the

“minimal representative” of all its equivalent series, in the sense that it is the series
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with the smallest number of terms whose cones cover the corresponding area in the

graph. These minimal representatives constitute the (complete) dioid Max
in [[γ, δ]].

More formally, defining an order relation for monomials by:

γnδt � γn
′

δt
′

⇔ n ≥ n
′
and t ≤ t

′
,

and denoting γnδt ≤ γn
′
δt
′

when γnδt � γn
′
δt
′

and γnδt 6= γn
′
δt
′
. Max

in [[γ, δ]] is the

set of series in γ and δ with coefficients in B defined as:

{s =
⊕

(n,t)∈Z2

s(n, t)γnδt|∀(n, t), (n′ , t′) ∈ Z2, s(n, t) = s(n
′
, t
′
) = e⇒ γnδt � γn

′

δt
′

}.

Definition 31 (Congruence) In a dioid (D,⊕,⊗), a congruence relation is an

equivalence relation denoted ≡, which satisfies ∀a; b, c ∈ D:

a ≡ b⇒

a⊕ c ≡ b⊕ c
a⊗ c ≡ b⊗ c.

Definition 32 (Equivalence class) Given a dioid (D,⊕,⊗) equipped with an

equivalence relation ≡. The equivalence class represented by an element a ∈ D
is denoted [a]≡ and is defined as

[a]≡ = X ∈ D|X ≡ a

.

Thus, an equivalence class [a]≡ is the set of all elements which are equivalent to

a with respect to the equivalence relation ≡.

Lemma 4 (Quotient dioid) The quotient of a dioid (D,⊕,⊗) with respect to a

congruence relation ≡ is itself a dioid. It is called quotient dioid and is denoted D/≡.

For addition and multiplication the following properties hold [10]

[a]≡ ⊕ [b]≡ = [a⊕ b]≡

[a]≡ ⊗ [b]≡ = [a⊗ b]≡

Definition 33 (Dioid Max
in [[γ, δ]]) The quotient dioid of B[[γ, δ]] with respect to the

congruence relation in B[[γ, δ]]:

a ≡ b⇔ γ∗(δ−1)∗a = γ∗(δ−1)∗b,

is denoted Max
in [[γ, δ]], i.e., Max

in [[γ, δ]] = B[[γ, δ]]/γ∗(δ−1)∗, where ∗ refers to the Kleene

star. Max
in [[γ, δ]] constitutes a complete dioid and the zero and unit elements are

ε(γ, δ) =
⊕

k,t∈Z εγ
kδt and e(γ, δ) = γ0δ0, respectively.
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A.0.2 Causal Series in Max
in [[γ, δ]]

In this section, some definitions about causal series are presented.

Definition 34 (Causality) A series s ∈ Max
in [[γ, δ]] is causal if s = ε or if all

exponents of γ and δ are in N0.

The set of causal elements of Max
in [[γ, δ]] has a complete dioid structure and is

denoted Max+
in [[γ, δ]].

Remark 9 A matrix A with entries in Max
in [[γ, δ]] is causal, if all its entries are

causal.

Theorem 3 (see [3]) The canonical injection IdMax+
in [[γ,δ]] : Max+

in [[γ, δ]]→ Max
in [[γ, δ]],

s 7→ s, is residuated and its residual is denoted Pr+ :Max
in [[γ, δ]]→Max+

in [[γ, δ]].

Formally, the series Pr+(s) is the greatest causal series less than or equal to series

s ∈Max
in [[γ, δ]]. It can be computed by:

Pr+(s) = Pr+

( ⊕
(n,t)∈Z

s(n, t)γnδt

)
=
⊕

(n,t)∈Z

s+(n, t)γnδt (A.1)

where,

s+(n, t) =

s(n, t) if n ≥ 0, t ≥ 0 and s(n, t) = e,

ε otherwise.

Remark 10 Theorem 3 can also be applied to matrices.
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