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SERVOVISÃO BASEADA EM IMAGEM POR MÉTODO DE ADAPTAÇÃO

INDIRETO PARA SEGUIMENTO DE TRAJETÓRIA TRANSLACIONAL

Jonathan Fried

Agosto/2019

Orientador: Fernando Cesar Lizarralde

Programa: Engenharia Elétrica

No presente trabalho, consideramos o problema de servovisão no espaço da im-

agem de um manipulador robótico incerto observado por uma câmera monocular

fixa, com parâmetros incertos, para o propósito de rastrear trajetórias translacionais

de um alvo esférico. Para um caso inicial, onde apenas a cinemática do robô é consid-

erada, propomos um controlador adaptativo por método indireto, onde a estimação

de profundidade da câmera em relação ao alvo é realizada através de conhecimento

prévio de propriedades geométricas, porém com alguns parâmetros geométricos rela-

cionados sendo considerados incertos. Para aplicar métodos de adaptação indiretos

em servovisão, é parametrizado o Jacobiano de imagem do sistema, os parâmetros

estimados são continuamente atualizados, construindo uma estimativa do Jacobiano

em questão e fazendo uso da inversa dessa estimativa para o cálculo da lei de controle

do sistema. Em seguida, estende-se então, baseado em uma estrutura de controlador

em cascata, o controlador adaptativo por servovisão proposto para o caso mais geral

que considera tanto a cinemática quanto a dinâmica do manipulador robótico, com-

binando o controlador anterior com um controlador dinâmico adaptativo também

indireto. A análise da estabilidade do sistema é feita através do método de Lyapunov,

e simulações e experimentos apresentados ao final ilustram e realçam a performance

e viabilidade do controlador proposto.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

Jonathan Fried

August/2019

Advisor: Fernando Cesar Lizarralde

Department: Electrical Engineering

In this work, we consider an image based visual servoing control problem, for

uncertain robot manipulators. Visual feedback is provided by a fixed monocular

camera with uncertain parameters, for the purpose of tracking translational trajec-

tories of a spherical target. First, only the manipulator kinematic is considered,

we propose an indirect adaptive control, with depth measurement done by prior

knowledge of a few geometric properties, albeit with some uncertain geometric pa-

rameters. This method relies on parameterizing the image Jacobian, continuously

updating an estimate of the parameters, using these parameters to construct an esti-

mative image Jacobian matrix and using its inverse to calculate control laws. Based

on a cascade structure, the proposed adaptive visual servoing is combined with an

adaptive motion control strategy, extending the controller to a case that considers

not only the nonlinear kinematics but also the dynamics of the robot arm. The

stability and passivity properties are analyzed with Lyapunov method. Simulations

and experimental results illustrate and highlight performance and feasibility of the

controller proposed.
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Chapter 1

Introduction

The field of robotics has been developing very fast in the latest years, however there

is still an essential need to even faster and more precise robots, be it for the repet-

itive tasks that the industry requires, for activities in inhospitable or hazardous

environments, or even for tasks that might be detrimental for a human operator.

Aside from the industry, benefits from robotics development have been increasingly

spreading to further fields of science and service, with potential to spread into ev-

eryday activities. Robotics is the field studying machines that can replace human

beings in the execution and decision-making of a task (SICILIANO et al., 2011).

In this context, it is not surprising to see robotics advancing on a large variety

of fields, a few of which we can contextualize, for example,

• medicine, with minimally invasive surgery, increasing precision and length of

operation, lessening the burden on both patients and operators (LI et al., 2015)

(KARTHIKEYAN and NITHYA, 2017);

• deep sea exploration and mapping, using autonomous underwater vehicles,

useful in search operations. (LEE et al., 2017) (VIDAL et al., 2018);

• space operations, the feasibility of humanoid robots being used as astronauts,

removing human operators of such environments (TANAKA et al., 2017),

or the use and control of robots in free-floating environments (WANG

et al., 2017);

• agriculture, where it is possible to obtain normally time consuming soil mea-

surements with unmanned ground vehicles (TOKEKAR et al., 2016), and

automatic detection of certain crops for harvest (SA et al., 2017);

• entertainment, by introducing unmanned aerial vehicles to cinematography,

for target tracking, dynamic scenes that optimizes for visibility when under

occlusions (NÄGELI et al., 2017) (ZACHARIADIS et al., 2017).

1



Figure 1.1: Sharp Corp.’s humanoid robot, RoBoHon (The Japan Times, September
2018)

Figure 1.2: Amazon delivery robot, Scout (Amazon, January 2019)

• access to dangerous arousal, including but not restricted to bomb defusing,

tracking wildfires and under-rubble searching (PATIC et al., 2017) (PHAM

et al., 2017) (BOZKURT et al., 2016).

• maintenance of seabed pipelines, detecting and repairing defects caused by

the environment, such as corrosion and cracks, in order to prevent possible

hazardous environmental disasters (WANG and CHEN, 2018)

In Kyoto, Japan, from September 2018 until March 2019, a small humanoid robot

RoBoHon (Figure 1.1), built by Sharp Corp., accompanies tourists in taxis to pro-

vide service as sightseeing guides, in a joint project between the aforementioned

company, the taxi operator MK Co. and the travel agency JTB Corp. In January

2018, Amazon.com, Inc. experiments with its new delivery robots, Scout(Figure

1.2), initially accompanied by their employees for testing purposes. BattleBots is a

running competition of robot combat, for the sole purpose of entertainment, broad-

cast in over 150 countries (Figure 1.3). LuxAI, a company that spun-off from

2



Figure 1.3: Skorpios, Death Roll and Bucktooth Burl (Battlebots Season 2, 2016)

Figure 1.4: LuxAI’s QTrobot (LuxAI, 2017)

the University of Luxembourg, has develop the QTrobot (Figure 1.4), an expres-

sive humanoid social robot, to help therapists teach human interactions to children

with autism. The Waymo One, a commercial self-driving taxi service developed

by Waymo LLC, previously known Google self-driving car project, was launched in

Phoenix (Arizona, USA) in December 2018 (Figure 1.5). Robots are spreading far

and wide, with a wide range of fields finding use to them.

1.1 Motivation and Related Work

Vision is a useful robotic sensor, since it mimics human vision and allows for non-

contact measurement of the environment (HUTCHINSON et al., 1996). One of the

earliest works in the area, (SHIRAI and INOUE, 1973), describes how visual feed-

back can be used to correct the position of a robot and increase accuracy. Visual

servoing, closed loop position and rotation control of the end-effector of a manip-

ulator through vision, is a term first coined by 1979, (HILL and PARK, 1979), to

differentiate that in this case, visual information is used to control the pose of a

3



Figure 1.5: Self-driving Car Waymo One (Waymo LLC, 2018)

robot, with respect to a target, or set of target features. In this section, we follow

a bit of the development of visual servoing through the years, starting from 1985,

before presenting some of the newest developments in the field.

In (WEISS et al., 1985), a model reference adaptive controller is used to control

an image based visual servoing applicated to a manipulator with non-negligible,

coupled and non-linear dynamics. In image-space visual servoing, instead of using

the image features to obtain the robot pose, a desired task is planned in image space

and error is given as the comparison between measured and desired features. In

(WALLACE et al., 1986), an idea is proposed for mobile robots capable of operating

in unstructured environments, using a monocular TV camera on a six-wheeled robot

to apply a image-based visual servoing strategy, but assumes that the terrain is

locally planar. In (WEISS et al., 1987), an adaptive Image Based Visual Servoing

system is proposed, with performance analysis through simulation for systems with

up to three degrees-of-freedom.

In (KOIVO and HOUSHANGI, 1991), visual information obtained from a camera

is used in an adaptive control system to control a robotic manipulator to grasp a

moving object. At this time, however, image processing inputed a significant delay

to the system, and motion of the target was predicted in real time, for an on-line

planning of the manipulator trajectory, a self-tuner controlling the end-effector. A

Jacobian matrix estimator is proposed in (HOSODA and ASADA, 1994) to ensure

the convergence of the visual servoing system, using a feedforward term, for both

continuous and discrete-time domain.

Eye-to-hand Image Based Visual Servoing control of planar manipulators mod-

eled by Lagrangian dynamics is addressed in (KELLY, 1996),the proposed strategy

is robust to camera lens radial distortion, uncertainty in its orientation and other

camera parameters are considered to be unknown. In (CORKE and GOOD, 1996),

non-negligible dynamics are studied on a visual servoing context, along a number

of problems generated by hardware at the time, significant latency, low sample

4



rates and coarse quantization. A Cartesian position-based visual servoing control

is studied in (WILSON et al., 1996), for robots with a single eye-in-hand camera.

It requires a number of known features on the target object, and uses an extended

Kalman filter to obtain recursive solutions and eliminate redundancy from the multi-

ple measurements. Position-based visual servoing reconstructs the robot pose using

the features extracted from an image, and the task is planned in Cartesian space.

In (JAGERSAND et al., 1997), an evaluation of the visual servoing performance is

presented, adaptive and non-adaptive, and comparing it to traditional joint feedback

control. The main results there presented is that: the positioning of a 6 axis PUMA

762 arm is up to 5 times more precise under visual control, rather than joint control,

positioning of a UTAH/MIT dextrous hand (16 DoFs) visual control is better by a

factor of 2.

In (WHAITE and FERRIE, 1997), a theory is presented over autonomous explo-

ration, a robot to seek and collect information about its environment, using visual

data feedback to adapt to model uncertainty. By decoupling translation and ro-

tation, an optimal motion control is planned for image-based visual servoing, to

guide a eye-in-hand camera to a desired goal image (DEGUCHI, 1998). For pla-

nar objects, it proposes and makes use of the relation between current and goal

image through homography, and for general 3D objects, it uses epipolar conditions

to make the decoupling. An hybrid between position and image-based approaches

is proposed in (KELLY, 1999), with particular tasks defined in different workspace.

In (MA et al., 1999), image-based visual control for a nonholonomic mobile robot is

presented for tracking an arbitrarily shaped continuous ground curve. This problem

is formulated as controlling the shape of the ground curve in the image plane.

In (WINTERS et al., 2000) and (GASPAR et al., 2000), an omni-directional

camera is used in mobile robot navigation, both for position based control, requiring

knowledge of the robot global position, and vision based control, requiring only a

set of landmarks to be followed.

In (CORKE and HUTCHINSON, 2001), by decoupling of z-axis rotational

and translational components of the control, seemingly desirable trajectories in

the image-based approach also translates into a smooth trajectory in the Carte-

sian space, but still requires that the z-axis of the camera to be aligned with the

workspace. A model that guarantees an occlusion-free condition is proposed in

(COWAN et al., 2002), making a change of coordinates from image-space to this

proposed model-space.

An application of visual servoing is seen in (KRUPA et al., 2003), for 3D position-

ing of surgical instruments in robotized laparoscopic surgery (Figure 1.6). Several

laser pointers are projected in the endoscopic image, so the surgeon precisely knows

where instrument is located. Visual servoing is used both to bring the instrument
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Figure 1.6: Configuration of the surgical system (KRUPA et al., 2003)

to the center of the image as well as to regulate its position to any setpoint in the

image given by the surgeon. In (MALIS, 2004), an algorithm robust to changes in

intrinsic camera parameters is developed, meaning that the reference image for the

visual servoing goal could have been taken with any camera, not necessarily the one

being used in the task itself. Regulation of both position and orientation of a mo-

bile robot is done in (FANG et al., 2005), by exploiting homography-based control

strategies, comparing features of multiple landmarks from a reference image to the

currently captured one, image-based geometric relationships are used to construct

a homography matrix. A Model-Reference Adaptive control for use in MIMO cases

for plants with relative degree of two is seen in (HSU et al., 2006), with applications

to a visual servoing problem.

A review of the most common and known concepts and techniques related visual

servoing studied over the years is seen in (CHAUMETTE and HUTCHINSON, 2006)

and (CHAUMETTE and HUTCHINSON, 2007). Visual servoing control is directly

related to the development of both image capturing technology and computer vision

techniques, and interest in the field has been continuously growing during recent

years. IBVS for regulation of an unmanned aerial vehicle is developed in (GUE-

NARD et al., 2008), a set of stationary and disjoint landmarks in a plane, an eye-in-

hand setup, with an inertial measurement unit and an explicit complimentary filter

combined with visual data is used to estimate the translational velocity. Instead of

the classical geometric features, using luminance of image pixels for visual servoing

is proposed in (COLLEWET and MARCHAND, 2011), named photometric visual

servoing, to control the robot motion. A sliding-mode control law for mobile robots

in (BECERRA et al., 2011) avoids precise camera calibration and singularities, while

making use of three different views to attain depth regulation. In (CHEN, 2012), a
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review of many variations of the Kalman filter is presented, and its applications in

robot vision.

A 3D visual servoing technique is proposed in (SILVEIRA, 2014), with the goals

based on the intensity of pixels in the image, rather than relying on feature ex-

traction and matching. This approach shows to be effective even in the case of

incorrect camera parameters being used in the controller scheme, and three differ-

ent intensity-based 3D visual servoing algorithms are presented to illustrate it. A

position-based visual servoing controller scheme is proposed in (WANG et al., 2014),

for nonholonomic mobile robots. An adaptive algorithm for estimating position of

a robot using natural image features is developed, based on a nominal image error

linearly parameterized by the unknown position of the robot and features. In (PU-

TRA et al., 2017), a prototype for an autonomous line following robot is presented.

Visual information only is used to develop an image-based line follower.

In (KAUFMANN et al., 2018), in order to improve control for robust autonomous

flying, a new approach introduced estimative for maneuvering around waypoints, a

predefined set of landmarks subject to uncertainties, without a precise map or ex-

tensive data collection. The coarse set of waypoints information are incorporated

to the control through an extended Kalman filter, followed by the use of a model

predictive control. A system comprised of three parts, it takes an image from a

forward-facing eye-in-hand camera, estimating the relative pose of the next way-

point and an uncertainty related to it, then, using that information and the state

estimate of the UAV, filtered estimates are produced and finally the controller uses

those to generate feasible tracks using these landmarks and follow those trajectories

simultaneously.

A vision-based approach to achieve tracking for kinematic car-like mobile robots

is provided in (ZHOU et al., 2018), taking in consideration wheel skidding and

slippage. A visual-inertial estimator provides the main states of the robot, position,

velocity, skidding and slipping. These online estimations are then fed to a control

system based on backstepping, for an unknown and unstructured environment.

In (CUEVAS-VELASQUEZ et al., 2018), a case of an hybrid, eye-to-hand and

eye-in-hand approach is studied. The global, eye-to-hand, cameras are used in the

initial stages of the manipulator alignment, when the distance between it and desired

pose are above a certain setpoint, while the arm-mounted, eye-in-hand, camera is

used to fine tune the result when under said setpoint. If the target goes out of the

arm-mounted camera field of view, the system switches back to the global cameras.

The information provided by this is used in two forms, for target-tracking and for

position-based control of the manipulator.

In (LAMPARIELLO et al., 2018), visual servoing is used for grasping a partially

cooperative tumbling satellite with a free-floating robot. A reference trajectory is

7



Figure 1.7: Prototype of a continuum robot system for deformation of soft objects
(OUYANG et al., 2018)

tracked through position-based visual servoing for approach, and then a joint-space

controller for rigidization. Unexpecrted impacts with the target are answered with

an impedance control, while for the latter phase, the desired trajectory is adapted

online due to the uncertainties generated by the former. An extended Kalman filter

is used to obtain rough estimates of the target pose and velocity, and those are used

both for feedback and feedforward.

A study case for flexible continuum robots performing deformation control of a

soft object in the presence of obstacles is seen in (OUYANG et al., 2018), meaning

the robot shape varies with the contact force (Figure 1.7). Using a frame-fixed,

eye-to-hand, camera to obtain external data, a Geman-McClure estimator is used to

obtain an on-line estimation of the Jacobian matrix, which slowly changes over time,

following a linear approximation model mapping the actuation space of the robot

to the deformation space of the soft target object. A Geman-McClure estimator is

a non-convex type of M-estimator, the class of estimators to which the non-linear

least square estimator belongs, is used to eliminate the influence of disturbances and

model uncertainties from the estimated Jacobian. With this information, a model

predictive control is used to converge the soft object to a desired shape.

In (CHERUBINI et al., 2018), a visual servoing control is proposed for a dual-arm

robot to manipulate flexible cables on a 2D-plane. The shape of the flexible cable

is parameterized by a Fourier series, and a local deformation model of the cable is

estimated on-line with the shape parameters. This model is used to design a velocity

control law for the kinematic robot arms, with information regarding shape of the

cable being captured by a fixed camera, perpendicular to the workspace.

In (ZHENG et al., 2018), an image-based visual servoing control for a quadrotor

unmanned aerial vehicle is proposed. The novelty of this proposal is directly plan-
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Figure 1.8: System configuration for visual servoing control of a quadrotor (ZHANG
et al., 2019)

ning of the trajectory of image features, by combining a virtual camera approach

and the image moment features, and using said planning to make mild trajectories

that do not exponentially reduce the error to zero, but better account for visibility

and occlusion. In (YANG et al., 2019), an optimized image-based visual servoing

scheme is presented for similarly tracking a ground target, by using fixed-wing un-

manned aerial vehicles, instead of quadrotors. Using least squares, an optimized

control law is proposed without solving the pseudo-inverse of the image Jacobian,

its stability properties analyzed by Lyapunov method.

A nonlinear geometric hierarchical visual servoing approach to drive a quadrotor

is proposed in (ZHANG et al., 2019). It extends a position-based nonlinear hierar-

chical control to an image-based control, making use of the cascade properties of the

system to integrate the geometrical control with it (Figure 1.8). In (BECHLIOULIS

et al., 2019), a visual servoing scheme that imposes predefined performance speci-

fications is proposed. It satisfies visibility constraints from a camera limited field

of view in a image based scheme, and has the novelty of guaranteeing a predefined

transient error, in the presence of camera calibration and depth measurement errors.

In (FERRO et al., 2019), a reactive vision-based navigation scheme for omni-

directional robots is proposed, exploiting kinematic redundancy and keeping clear

of obstacles by moving in the direction of their camera gaze, with an image-based

visual servoing scheme. It has a restriction, in which the control assumes that the

robot actual velocity is fed back into the control loop. A position-based visual ser-

voing is developed in (YAHYA and ARSHAD, 2016), for docking of an autonomous

underwater vehicle, contrasting with the usual image-based approach for the task.
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1.2 Objective

In this work, we consider the translational trajectory tracking, for position and

depth, control problem for the positioning of a spherical objeted mounted on the

robot manipulator end-effector viewed by a fixed camera. The extracted image

feature for the task are the centroid coordinates and target area, with references

given in the camera image frame and considering uncertain camera and manipulator

parameters, both kinematic and dynamic.

A recent work (LEITE and LIZARRALDE, 2016) proposes a passivity-based

direct adaptive image based visual servoing with depth control, without camera

calibrations, for uncertain manipulators and free of image velocity measurement. To

perform 3D motions in the Cartesian space, at least three degrees of freedom have to

be controlled by the visual servoing system. To solve the depth tracking problem, a

standard model reference adaptive control is employed, while the SDU factorization

method (COSTA et al., 2003) is applied to the planar tracking problem, solving both

tasks for a Cartesian control. An indirect/direct adaptive control method is used

to solve the parametric uncertain problem of the robots kinematics and dynamics,

by means of a cascade control strategy seen in (GUENTHER and HSU, 1993).

By cascading the manipulator and camera passive subsystems, the stability of the

overall closed-loop system is demonstrated via Lyapunov method.

Remark 1. It is worth of note that the use of the SDU factorization only guarantees

stability of the visual servoing scheme as the sign of the leading minors of the camera

calibration matrix Kp is known, typically by assuming the camera misalignment angle

is known to be restricted in a
(
−π

2
, π
2

)
interval.(COSTA et al., 2003)

Remark 2. Four parameterizations are used in (LEITE and LIZARRALDE, 2016):

The robot manipulator dynamic and kinematic parameters use a hybrid di-

rect/indirect adaptation method, with a parameter vector for each kinematic and

dynamic subsystem. The camera calibration planar and depth parameters both use

direct methods of adaptation, with the former using the SDU factorization.

Remark 3. (LEITE and LIZARRALDE, 2016) To avoid measuring the image ve-

locity, a first-order low-pass filter is used, so the filtered velocity depends only on the

position and a suitable filter time-constant.

Another approach to a similar problem is presented in (WANG et al., 2018),

for the task of tracking a trajectory in the camera image space, with unmeasured

depth, a fixed uncertain camera, and uncertainties in the robot manipulator param-

eter. The controller proposed achieves separation of kinematic and dynamic loops,

with visual servoing applied on the kinematic loop. The visual servoing loop is
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solved by an inverse-Jacobian-like control with nonlinear feedback, while an indi-

rect adaptive method is used to solve estimate uncertain parameters in the image

Jacobian. Whereas the dynamic loop is solved by the Slotine-Li adaptive scheme

(SLOTINE et al., 1991).

Remark 4. The number of degrees of freedom of the manipulator and that of the

feature points are subjected to the constraint that n ≥ 2m and m ≤ 3, and in the

case m = 3, the three feature points are non-collinear.

Remark 5. Three parameterizations are used in (WANG et al., 2018): The depth-

independent parameters, the depth-dependent parameters and the manipulator dy-

namic parameters. However, six regressor matrices need to be calculated, as they

differ for the manipulator differential kinematics and the proposed observer.

Remark 6. Though an indirect adaptation scheme avoids the usual camera mis-

alignment angle constraint, it is necessary to guarantee that the estimated image

Jacobian is nonsingular due to its inversion in the control scheme. A common

approach to this problem is the use of projections on the adaptation update laws

(CHEAH et al., 2010).

Remark 7. To avoid measuring the image velocity, a passive nonlinear observer

is chosen, so the observed position and velocity are used in the control schemes

instead. The observer also guarantees the passivity property of the complete closed-

loop system.

Here, we propose an adaptive image-based visual servoing controller using of

indirect methods of adaptation. Through image processing, the visual system needs

to be able to pinpoint the centroid position and area of the target as seen in (LEITE

and LIZARRALDE, 2016), to track a position and depth trajectories. The controller

proposed should adapt through all the system uncertainties and guarantee a correct

tracking of a given trajectory in the image frame, with good performance. A pas-

sivity based controller scheme is proposed, separating the kinematic visual servoing

and dynamics loop, based on the cascade control strategy seen in (GUENTHER

and HSU, 1993). The visual servoing loop is solved with an inverse-Jacobian control

as in (WANG et al., 2018), extended to a case that considers depth control, with

parameterizations simplified to require calculation of less regression matrices. The

known Slotine-Li adaptive scheme is used to solve the dynamics loop. An observer

is adopted to avoid the use of centroid velocities, however, in this work, the area

variation is considered measurable. Furthermore, two projection algorithms are con-

sidered in the adaptive update laws, one to guarantee the inverse of the estimated

Jacobian matrix, and another to reduce the effects from parameter drift during the

transient response. These features are compared to previous controller schemes, in

Table 1.1.
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Table 1.1: Controller Scheme Features

(LEITE et al, 2016) (WANG et al., 2018) This work
VS scheme IBVS IBVS IBVS

Tracking Task Position and Depth Position Position and Depth
VS. Control MRAC/SDU Indirect Indirect

Dynamic Control Slotine-Li Slotine-Li Slotine-Li
Camera Misalignment (−π

2
, π
2
) Any Any

Projection Algorithm. 0 1 2
# of parameter vectors 4 3 3
# of regressor matrices 4 6 3

Remark 8. While the Slotine-Li adaptive scheme is used in this work, another pas-

sive strategy could be used to solve the dynamic loop due to the nature of the cascade

strategy employed. One such possibility is a robust control, as seen in (SLOTINE

et al., 1991), (ZACHI, 2007).

The overall performance of the proposed method is primarily illustrated by sim-

ulations and experimental results.

1.3 Methodology

In this work, the task of controlling a robotic manipulator end effector to track po-

sition and depth through a image-based trajectory, with information captured by a

fixed camera is considered. An adaptive visual servoing control strategy is proposed

for the task, in the presence of unknown intrinsic camera and manipulator parame-

ters. Depth measurement is made by prior knowledge of the target feature geometry,

but the parameters related to this are also unknown, making the depth measurement

also uncertain (LEITE and LIZARRALDE, 2016). While it is possible to control a

robot manipulator orientation using visual servoing, as seen in (SILVEIRA, 2014),

(YAHYA and ARSHAD, 2017) and (YAHYA and ARSHAD, 2016), by making use

of multiple target features or position based controllers for example, in this work

are only interested in controlling the position of the manipulator end-effector.

A controller is proposed for position and depth trajectory tracking, in the image

space, taking in consideration all the previously mentioned uncertainties. Param-

eterizing the image Jacobian, an indirect adaptive method is considered for this

problem, providing a control law that makes use of the inverse of a estimative image

Jacobian. Compared to the direct adaptive approach, the indirect method does not

need any prior knowledge over the direction which the camera is facing, assuming

that the target still is in its field of view. As a trade-off, care should be taken so
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the inverse of the estimative Jacobian exists, usually done by assuming a minimum

magnitude the unknown parameters can assume and projecting the parameter vector

out of this minimum, which is a reasonable assumption for physical systems.

Furthermore, through a cascade approach, we extend the aforementioned con-

troller from kinematics to a case with non-negligible dynamics, combining the ini-

tially proposed adaptive visual servoing to dynamic control strategies. This strategy,

however, would initially require the measurement of image velocity, which is known

to be noisy. To avoid using it, the control scheme makes use of an observer, taking

the observer velocity instead, as seen in (WANG et al., 2018).

The feasibility of the proposed indirect adaptive image based visual servoing

control method is verified through simulation, using Matlab and Simulink. A three

degrees-of-freedom manipulator, with revolute joints, is considered for the simula-

tion, for both the kinematic and dynamic cases.

1.4 Text Organization

This work is organized as follows:

• Chapter 2 - In this chapter, we present kinematic and dynamic models for

a robot manipulator, followed by control schemes for each model. Adaptive

control strategies are used for uncertainties in the kinematic and dynamic

parameters. Lastly, a control strategy is introduced to separate the kinematic

and dynamic control design.

• Chapter 3 - In this chapter, we introduce the concepts and models for visual

servoing schemes. Then, we develop an adaptive control scheme for a robot

manipulator with non negligible dynamics with a fixed camera setup, tracking

trajectories for position and depth. We develop equations and discuss use of a

cascade controller scheme, followed by a brief discussion on how to avoid using

image-plane velocity and the proposal of an observer. Lyapunov functions are

proposed to guarantee validity of the controller.

• Chapter 4 - Simulations are presented to show feasibility of the control laws

proposed in chapter 3, followed by initial simplified experimental setups for

the planar case.

• Chapter 5 - Summarizes the final conclusions about this work and proposal

for future works.
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Chapter 2

Robot Manipulator System

In this chapter, we consider the position control problem for a robot manipulator

with non-negligible dynamics. The kinematic and dynamic models of the manipula-

tor are introduced and the properties relevant to this work are analyzed. The ideas,

definitions and techniques presented here are based on the contents of (SICILIANO

et al., 2011), (MURRAY et al., 1994), (MAREELS and POLDERMAN, 2012) and

are restated here to make this work as self-contained as possible. The problem with

uncertainties on its kinematic and dynamic models is solved through an adaptive

control scheme, as seen in (SLOTINE et al., 1991), and a cascade controller strategy

as seen in (GUENTHER and HSU, 1993). Similarly, the relevant definitions and

techniques presented on those works are restated here for convenience.

2.1 Robot Manipulator

The mechanical structure of a serial robot manipulator consists of a sequence of

rigid bodies, links, interconnected by means of articulations, joints ; a manipulator is

characterized by an arm that ensures mobility, a wrist that confers dexterity and an

end-effector that performs the task required of the robot (SICILIANO et al., 2011).

Each joint moves a link, and the composition of those displacements cause the final

movement of the end-effector in the workspace. Figure 2.1 below illustrates such a

manipulator.

For the goal of motion control, an analysis of the robotic system is desired,

that means an analysis of its kinematics and dynamics. Kinematics refer to the

geometric relation between the robot movement in the joint space and its end-

effector movement in the Cartesian space. The dynamics describe a relation between

the generalized forces actuating on the robot manipulator and its resulting motion,

as dictated by the acceleration, velocities and positions of its joints (SICILIANO

et al., 2011).

14



Robot Base

θ1

θ2

θ3
θ4

θ5
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End-effector

Figure 2.1: A robot manipulator with six revolute joints

2.2 Kinematic Model

The kinematic analysis of a manipulator structure considers the description of robot

motion with respect to a fixed Cartesian coordinates system, neglecting forces and

moments that cause movements to. In this context, it is important to distinguish

between the robot kinematics and differential kinematics. The former describes the

analytical relation between position of manipulator joints and position and orienta-

tion of its end-effector. Differential kinematics, however, is the analytical description

of a relation between the joints and end-effector motions, as defined by their veloc-

ities, as given by the manipulator Jacobian (MURRAY et al., 1994).

The kinematics formulation allows a study of two fundamental problems in

robotics: the forward and inverse kinematics. The former refers to the determination

of a general and systematic method to describe position of a robot manipulator as a

function of the position of its joints, through linear algebra. The second refers to the

opposite problem, and its solution is important to transform the desired end-effector

motion, naturally given in Cartesian coordinates, into joint-space motion.

2.2.1 Forward Kinematics

The structure of a manipulator is characterized by a number of degrees of mobil-

ity which determine its unique configuration. Each degree of mobility is typically

associated with a joint articulation and composes a joint variable (angle or displace-

ment). The objective of forward kinematics is to compute pose of the end-effector as

a function of the manipulator joint variables with respect to a Cartesian coordinate

system. The inverse kinematics, likewise, consists of computing the joint variables

as a function of the end-effector pose.

Now, consider a robotic manipulator as a combination of n + 1 rigid bodies

connected by n joints, where, typically, the first link is chained to a base or fixed
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Figure 2.2: Manipulators with an open chain and a closed chain, respectively

frame, and the last one ends in the end-effector. The whole structure is what we

call a kinematic chain. The goal of a kinematics analysis is describing the movement

of the end-effector based on the joint variables of this chain, while disregarding the

forces and torques causing them.

A kinematic chain can be classified as open or closed chain. An open chain

contains one possible sequence of links between the base and an end-effector of the

manipulator. Likewise, a closed chain contains a loop on its links, therefore resulting

in more than one possible sequence of links between the base and end-effector (Figure

2.2).

For a simple manipulator, kinematics could be found by making an analysis

of its structure geometry, directly obtaining a function that maps from the base

frame to the end-effector as a function of its joints variables (angles if a revolute

joint, displacement if prismatic). As the complexity of the manipulator increases,

however, it becomes harder to directly infer this function through geometry alone.

As such, certain procedures were adopted to facilitate this computation like the

Denavit-Hartenberg convention (SICILIANO et al., 2011). Another approach to

this problem is the product of exponentials, which is, at most times, more intuitive

than the Denavit-Hartenberg convention, facilitating a geometrical approach, link

by link, by associating the motion of each joint as generated by a twist along the

joint axis (MURRAY et al., 1994).

Attaching a coordinate frame to each base, each of the links and end-effector, we

can say that the homogeneous transformation between the first and last link Tbe is

given by post-multiplications of the consecutive link-to-link homogeneous transfor-

mation T(i−1)i, so

Tbe(θ) = Tb0T01(θ1)T12(θ2).....T(n−1)i(θn)Tie (2.1)

where

Ti−1,i(θi) =

[

Ri−1,i (pi−1,i)i−1

01×3 1

]

, (2.2)
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θ = [θ1 θ2..... θn]
T is the vector containing each joint displacement, θi ∈ R, R(i−1)i ∈

SO(3) is the rotation matrix of frame i with respect to frame i− 1 and (p(i−1)i)i−1

is the distance between frames i− 1 and i, in frame i− 1 coordinates (SICILIANO

et al., 2011). For a revolute joint Ri−1,i is a function of θi and (pi−1,i)i−1 is constant,

while for a prismatic joint Ri−1,i is constant and (pi−1,i)i−1 is a function of θi.

Finally, we can say that the final homogeneous transformation base to end-

effector is

Tbe(θ) =

[

Rbe pbe

0 1

]

, (2.3)

where Rbe ∈ SO(3) represents the rotation matrix from the base frame to the end-

effector with respect to the base frame and pbe ∈ R
3 represents its position.

In this work, we are interested in controlling the end-effector position pbe, which

can also be obtained through directly mapping the forward kinematics as

pbe = k(θ) (2.4)

where k(·) is a function, generally non-linear, which calculates the position variables

in the Cartesian space by using the joint variables in the joint space.

2.2.2 Differential Kinematics

Similar to how forward kinematics establish the relation between end-effector posi-

tion and joints displacement, differential kinematics maps relation from joint veloci-

ties to the end-effector linear and angular velocities. This mapping is given by means

of a matrix, called Jacobian, a tool that has a vast number of applications, allowing

to analyze redundancy, finding kinematic singularities, link operational and joint

spaces, find its manipulability, map forces applied on the end effector to torque at

joints and to design controls in operational space as seen in (MURRAY et al., 1994)

and (SICILIANO et al., 2011).

In differential kinematics, it is desired to express and map the linear velocity ṗ as

a function of the joint velocities θ̇. First, consider the forward kinematics mapping,

given by

p = k(θ), (2.5)

where p ∈ R
3 is manipulator end-effector position in the Cartesian space. It is pos-

sible to differentiate this forward kinematics equation to obtain a Jacobian matrix.

As such, by calculating the time derivative ṗ
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ṗ =
∂k

∂θ
θ̇ = J(θ)θ̇ (2.6)

where J ∈ R
3×n is called the position Jacobian.

Remark 9. It is possible to find different Jacobian matrix, by different means. By

analyzing the geometry of the manipulator, it is possible to calculate the Geometric

Jacobian, dependent on its configuration. However, if it is possible to express the

end-effector pose in a minimal representation in the operational space, it is also pos-

sible to obtain another Jacobian matrix by differentiating this expression, resulting

in the so called Analytical Jacobian. Generally, these two different computations do

lead into different Jacobian matrices, particularly with respect to the manipulator

orientation. In this work, as we only take in consideration the position Jacobian,

there is no difference between the two.

A property of the Jacobian that is important to control design is given as follows:

• (P1) The product of the Jacobian J(θ) with any measurable vector φ(t) can

be linearly parameterized as

Yk(θ, φ)ak = J(θ)φ, (2.7)

where Yk(φ, θ) is the kinematic regressor matrix, which contains measurable

elements φ and θ, ak is a vector of constant kinematic parameters of the

Jacobian matrix. The lower and upper bound akmin
and akmax

, respectively,

are assumed known for the kinematics parameters and satisfy

||akmin
|| ≤ ||ak|| ≤ ||akmax

|| (2.8)

Example 1. Consider a 2R planar manipulator, as seen in Figure 2.3. The end-

effector position is mapped to joint variables as follows:

p =

[

l1 cos(θ1) + l2 cos(θ1 + θ2)

l1 sin(θ1) + l2 sin(θ1 + θ2)

]

(2.9)

where p is the position of the end effector, l1 and l2 are the lengths of links 1 and 2,

respectively, θ = [θ1 θ2]
T are the joint variables.

Then, the differential kinematics can be obtained by obtaining the time derivative

of p

ṗ =

[

−l1 sin(θ1)− l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

l1 cos(θ1) + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]

θ̇ = J(θ)θ̇ (2.10)
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θ1

l1

θ2
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Figure 2.3: A simple 2R planar manipulator

u = θ̇d
+

−

e
K Drive

τ
Robot

θ̇
J(θ)

ẋ ∫ xη

Figure 2.4: Block Diagram for a manipulator inner control loop

Furthermore, the linear parameterization of J(θ)θ̇

ṗ =

[

− sin(θ1)θ̇1 − sin(θ1 + θ2)(θ̇1 + θ̇2)

cos(θ1)θ̇1 cos(θ1 + θ2)(θ̇1 + θ̇2)

][

l1

l2

]

= Yk(θ, θ̇)ak (2.11)

where Yk(θ, θ̇) is the regressor matrix and ak is the kinematic parameter vector.

2.3 Kinematic Position Control

In this section, we consider the kinematic control problem for a robot manipulator.

Hereby, the following assumption is made:

• (A1) The effects of the robot manipulator dynamics are negligible.

This assumption is applicable to most industrial robots, with high reduction gear

ratio, or when the velocities involved in the task are relatively slow. In this context,

many of these industrial robot manipulators have an inner joint velocity control

loop. Figure 2.4 illustrates a velocity control loop scheme, where x represents the

position of a robot ẋ represents its velocity and τ is the torque vector applied to the

robots joints.

The Drive block gives the necessary power to activate the robot actuators with

a control signal η as input. The control signal η is generated with a proportional

controller with gain K that amplifies the error signal e between a reference sinal θ̇)d
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and the joint velocity θ̇. So, for a signal input u = θ̇d and a high gain control loop,

we have that e → 0 and, consequently u → θ̇.

2.3.1 Kinematic Control Strategy

Considering the kinematic control assumption, the robot manipulator motion can

be simply described by:

θ̇i = ui, i = 1, ..., n, (2.12)

where θi and θ̇i are the angular position and velocity of the joint i, respectively,

and ui is the velocity control signal applied to motor joint drive i. In this manner,

considering θ̇i as the input signal ui and the equation (2.6), we obtain the following

control system

ṗ = J(θ)u (2.13)

A Cartesian control signal v can be transformed as a joint-space control signal

by using the inverse of the Jacobian matrix

u = J−1(θ)v (2.14)

if v does not take the robot manipulator to singular configurations. This is an

important condition, still studied at large by the academic community. In this

work, we assume that the robot motions stay away from singular configurations.

Now, if pt(t) is a tracking goal in the Cartesian space,

ep = p− pt(t) → 0, t → ∞ (2.15)

where ep ∈ R
3 is the end-effector position error. Calculating the time derivative of

the error ep, we obtain:

ėp = ṗ− ṗt (2.16)

however, since that ṗ = J(θ)J−1(θ)v = v, and considering the following position-

based control law, with feedforward and proportional feedback.

v = ṗt −Kkep (2.17)

where Kk is a positive gain matrix. With simple algebraic formulation, the error

dynamic equation is given by

ėp +Kpep = 0 (2.18)
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Figure 2.5: (a) Manipulator trajectory in XY plane. (b)Trajectory error

which means the system is exponentially stable in closed-loop, and consequently

limt→∞ ep(t) = 0.

2.3.2 Adaptive Kinematic Control

An adaptive control system is able to tune its control parameters, in face of un-

known or changing operating conditions, to guarantee a satisfactory performance

(MAREELS and POLDERMAN, 2012). It is evident that presence of uncertainties

in the robotic kinematics and dynamics are a relevant issue, commonly addressed as

two separate problems. The following example illustrates the significance of adap-

tive control, by simulating the previous kinematic control strategy on a robot with

uncertainties on its kinematic parameters.

Example 2. Consider the 2R robot manipulator given in Example 1, with differ-

ential kinematic model given by (2.10) and control law given by (2.14) and (2.17).

Consider as well that l1 = l2 = 1m. However, assume that known values for this

manipulator kinematic parameters are l̂1 = l̂2 = 0.8m, which will be used in the

control law.

The tracking goal pt is given by

pt =

[

1.5 cos(0.5t)

1.5 sin(0.5t)

]

(2.19)

Considering the controller gain Kk = 2I2×2 and θ(0) = [−π
4

pi
4
]T , we obtain the

following results by simulation. As Figure 2.5 shows, in the presence of parame-

ter uncertainties, the tracking error does not go to zero with the inverse Jacobian

kinematic control.

In this section, we treat the uncertainties of a kinematic robot manipulator

and assume these to be limited to uncertain geometric and physical parameters.
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It is important to note that adaptation of these uncertain parameters needs to

happen on-line, while the system is running. The controller collects information in

real time, and uses those to achieve a better performance. In conventional model

reference adaptive control schemes, the adaptation laws extract information about

the parameters to be calculated from the output tracking error. Here, to illustrate

this strategy, we present an adaptive scheme as seen in (LEITE, 2011).

Tracking-error based adaptation

Considering the presence of uncertainties in the robot kinematics, the inverse Jaco-

bian control law (2.14), can be de rewritten as

u = Ĵ−1(θ)v (2.20)

where Ĵ(θ) ∈ R
3×n is an estimative of the Jacobian matrix and v ∈ R

3 is a position-

based control signal. Rewriting the kinematic control system in term of Ĵ and its

parameterization, one has:

ṗ = J(θ)u = Yk(θ, u)ak = Yk(θ, u)(âk − ãk) = Ĵ(θ)u− Yk(θ, u)ãk (2.21)

The error dynamic is given by

ėp = Ĵ(θ)u− Yk(θ, u)ãk − ṗt (2.22)

and by using the proposed control law (2.20), with position-based control signal v

given by (2.17)

ėp +Kkep = −Yk(θ, u)ãk (2.23)

which is similar to the error dynamic equation in the case with no uncertainties, ex-

cept for a term depending on the parameter error. Finally, to update the parameter

vector âk, we can choose a gradient-type adaptation law

âk = ΓkY
T
k ep (2.24)

where Γk is a positive gain matrix. The following theorem establishes the stability

analysis of the closed loop system.

Theorem 1. Consider the kinematic model given in equation (2.21), with control

law (2.20), (2.17) and kinematic adaptation law (2.24). Assume that Yk(θ, u) is

measured from system signals. Thus, the following properties hold:

• All signals of the closed loop system are uniformly bounded and

• limt→∞ e(t) = 0
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Proof. Consider the following Lyapunov function candidate

2V = eTp ep + ãTk Γ
−1
k ãk (2.25)

The derivative with respect to time of the candidate V is given by

V̇ = −eTp ėp + ãTk Γ
−1
k

˙̂ak (2.26)

By using the dynamic error equation given by (2.23) and the kinematic adapta-

tion law (2.24), we obtain

V̇ = −eTpKkep − eTp Yk(θ, u)ãk + ãTk Yk(θ, u)
Tep (2.27)

V̇ = −eTpKkep (2.28)

V̇ ≤ 0 (2.29)

This implies, by Lyapunov theory, that ep, ãk ∈ L∞
1 and thus, the equilibrium

state is uniformly stable. As ep and ãk are limited, the derivative with respect to

time V̈k = −2eTpKkėp is uniformly limited. So, by using the Barbalat’s Lemma, we

can conclude that limt→∞ep(t) → 0.

Estimation-error based adaptation

First, consider the presence of uncertainty in the robot kinematic model (2.13), and

the parameterization given by equation (2.13). The estimated end effector velocity,

denoted by ˆ̇p can be expressed as

˙̂p = Ĵ(θ)u = Yk(θ, u)âk (2.30)

where Ĵ(θ) ∈ R
3×n is the approximate Jacobian and âk ∈ R

k denotes a set of

k estimated kinematic parameters. Provided that ṗ and Yk are measurable, the

linearly parameterized model can be used for online estimation, as the kinematic

regressor matrix Yk depends only on joint position, assumed measurable, and the

control signal u. However, to avoid the need of measuring the end effector velocity

ṗ, it is possible to employ a differential equation, representing a first-order low-pass

filter, such as

1(KHALIL, 2002) The definition of L∞ stability is a bounded-input-bounded-output stability;
namely, if a system H is L∞ stable, then for every bounded input u(t), the output Hu(t) is
bounded.

23



ṗf + λfpf = λf ṗ, pf(0) = 0, (2.31)

where pf ∈ R
3 is the filtered output of the end effector velocity ṗ and λf > 0 is

the cutoff frequency in radians per second. From the combination of differential

kinematics and the differential equation for the low pass filter, we have

pf = λfp−
λ2
f

s+ λf
p = Ykfak (2.32)

with

Ykf(t) =
λf

s+ λf

Yk(θ, u). (2.33)

Notice that the filter output pf can be calculated by measuring only the end

effector position p and choosing a suitable filter time-constraint τf = (1/λf).

Now, consider ǫ ∈ R
3 to be the prediction error obtained from the difference

between the estimated and measured values of the filter output, that is

ǫ = p̂f − pf (2.34)

The prediction error can be related to the parameter estimation error ãk = âk−ak

as follows

ǫ = Ykf(t)âk − pf = Ykf(t)ãk. (2.35)

Note that pf and Ykf are required to be measured from system signals, thus the

only uncertain variable is the estimated parameter vector âk. From equations (2.32)

and (2.33), observe that the first term depends on p and the second depends on Yk

assumed to be measurable.

Consider an estimation algorithm based on gradient method to estimate the

robot kinematic parameters. The key idea is to update the estimated parameter

vector âk so that the prediction error ǫ can be minimized. Thus, the kinematic

adaptive law for updating ak is given by

˙̂ak = ΓkY
T
kfǫ, Γk = ΓT

k > 0, (2.36)

where Γk is an adaptive gain matrix for the kinematic parameters. The following

theorem can be stated:

Theorem 2. (LEITE and LIZARRALDE, 2016) Consider the linear parameteriza-

tion given in equation (2.32) with prediction error (2.35) and kinematic adaptation

law (2.36). Assume that p(θ) and Yk(θ, u) are measured from system signals. Thus,

the following properties hold:
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• All signals of the closed loop system are uniformly bounded and

• limt→∞ ǫ(t) = 0

Proof. Consider the following Lyapunov function candidate

Vk(ãk) = ãTk Γ
−1
k ãk (2.37)

The time derivative of Vk, along the solutions of equation (2.36) is given by

V̇k(ãk) = −ãTk Y
T
k Ykãk = −ǫT ǫ (2.38)

So, in result

V̇k(ãk) ≤ 0 (2.39)

Since Vk is positive definite with a non-positive time-derivative, we have that Vk ∈

L∞, which implies that âk ∈ L∞ and the equilibrium state is uniformly stable and

limt→∞ Vk(âk) = V∞ exists. From the time derivative of Vk, we have
∫
∞

0
−V̇k(t

′)dt′ =

V0 − V∞ ≥ 0, where V0 = V (âk(0)), implying that ǫ ∈ L2. Considering θ, u are

bounded, then Yk, Ykf are also bounded. Thus, equations (2.33) and (2.35) imply

that ǫ̇ ∈ L∞. Therefore, we can conclude that V̈k = −ǫǫ̇ is bounded, and from

Barbalat’s Lemma, because ǫ ∈ L2, ǫ̇ ∈ L∞ we can imply that limt→∞ ǫ(t) = 0,

demonstrating stability and convergence of the estimation algorithm.

2.4 Dynamic Model

In contexts where the robot manipulator joints may move at high speeds, the in-

trinsic dynamic properties of the manipulator cannot be disregarded, torques and

forces should be considered and the kinematics equations alone are not sufficient to

properly model the system. Here, we derive the equations of motions for a general

open-chain manipulator considering an Euler-Lagrange system, as shown in (MUR-

RAY et al., 1994) and (SICILIANO et al., 2011), determined by the following second

order model, in the absence of friction and external disturbances.

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ (2.40)

where M ∈ R
n×n is the inertia matrix, C ∈ R

n×n is the Coriolis matrix, G ∈ R
n is a

vector of gravitational torques and τ ∈ R
n is the joint torque vector. It is important

to note that the choice of C is not unique. A particular choice however, known as

Christoffel symbols, present useful algebraic qualities. This model, classified as an

Euler-Lagrange system, has the following properties (MURRAY et al., 1994):
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• (P1) M(θ) is symmetric, positive-definite, differentiable and limited for all θ,

exists c0, c1 so that c0 ≤ M(θ) ≤ c1 and M(θ) = M(θ)T > 0 .

• (P2) If C(θ, θ̇) is chosen using Christoffel symbols, then matrix Ṁ(θ)−2C(θ, θ̇)

is anti-symmetric, meaning:

ηT [Ṁ(θ)− 2C(θ, θ̇)]η = 0, ∀η ∈ R
n (2.41)

• (P3)The Euler-lagrangian model is linear with respect to a constant parameter

vector ad and a matrix of signals Y (θ, θ̇, θ̈), so that:

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Yd(θ, θ̇, θ̈)ad (2.42)

where Yd(θ, θ̇, θ̈) ∈ R
n×d is the dynamic regressor matrix, which contain mea-

surable elements in function of θ, θ̇, θ̈, ad ∈ R
d is the vector of d dynamic

parameters. The lower and upper bounds are given by admin, admax ∈ R
d,

respectively, are assumed known and satisfy

||admin
|| ≤ ||ad|| ≤ ||admax|| (2.43)

• (P4) The system is passive from τ → θ̇, that is,

∫ C

0

θ̇T τ dt ≥ −c3, ∀C (2.44)

for some c3 > 0.

Among the various dynamic control schemes developed in the joint-space, we can

mention: PD control with gravity compensation, computed torque, robust control

and adaptive control. In these schemes, it is assumed that the desired trajectory

is defined as acceleration, velocities and position of the joint angles, and as such,

the errors should be expressed in the joint-space. However, it is more intuitive to

express the desired trajectory in the Cartesian workspace, so inverse kinematics

could be used to transform the references from one workspace to another. This

process has a high computational load, since the inverse kinematics of both forward

and differential kinematics are necessary. For this reason, the current control system

of industrial robots calculate the joint angles through inverse kinematics and then

use a numerical differentiation to compute velocities and accelerations.

A different approach consists in considering control schemes directly in the Carte-

sian workspace, where tasks and restrictions imposed by the environment are more
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naturally described. If the robot motion is specified in the Cartesian space, the vari-

ables in the joint-space can be transformed directly into Cartesian space equivalents

through the following differential kinematics functions:

θ̇ = J−1(θ)ṗ, θ̈ = J̇−1(θ)ṗ+ J−1(θ)p̈. (2.45)

So, we can rewrite equation (2.40) expressed in Cartesian coordinates, as

Mc(θ)p̈+ Cc(θ, θ̇)ṗ+Gc(θ) = τc (2.46)

where Mc, Cc and Gc are defined as

Mc(θ) = J−T (θ)M(θ)J−1(θ) (2.47)

Cc(θ, θ̇) = J−T (θ)[C(θ, θ̇)J−1(θ) +M(θ)J̇−1(θ)] (2.48)

Gc(θ) = J−T (θ)G(θ) (2.49)

and τc = J−T (θ)τ . Note that the matrices Mc and Cc are similar to their joint-space

correspondents, and as such satisfy the same properties. However, it is important

to note that in the Cartesian space, it is necessary to avoid Jacobian singularities,

and the control strategies should be designed inside the robot workspace.

2.5 Adaptive Dynamic Control

Now, we consider parametric uncertainties in the robot dynamics described by equa-

tion (2.40). In this context, we present here the Slotine-Li adaptive scheme (SLO-

TINE et al., 1991), to solve the problem of following a desired trajectory θd(t), given

in the joint-space. First, assume that there exists a control law τ = F (θ, θ̇, θd, θ̇d, θ̈d)

which guarantees a goal is reached, i.e.,

e(t) = θ − θd → 0, t → ∞ (2.50)

where θd ∈ R
n denotes the desired trajectory, assigned to the joint space and as-

sumed uniformly bounded, and e is the joint position error vector. Now, consider

the following signals, similarly defined in the joint space as:

θ̇r = θ̇d − λde (2.51)

σ = θ̇ − θ̇r = ė+ λde (2.52)
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where θ̇r ∈ R
n is a velocity reference signal, σ ∈ R

n is a measure of tracking

accuracy and λd > 0 is a constant parameter. Now, consider the following linear

parameterization, assumed to exist due to the properties of an Euler-Lagrangian

model (2.42):

M(θ)η̇ + C(θ, θ̇)η +G(θ) = Yd(θ, θ̇, η, η̇)ad, (2.53)

where η ∈ R
n is an arbitrary vector, Yd(θ, θ̇, η, η̇) is the dynamics regressor matrix

and ad is a vector that has all constant parameters of model (2.40). Considering

that signals θ and θ̇ are measurable, that is, it is possible to calculate the regressor

matrix Yd, the adaptive controller proposed in (SLOTINE et al., 1991) can be used

in the system, given by:

τ = Yd(θ, θ̇, θ̇r, θ̈r)âd −KDσ + ω2, (2.54)

where Kd is positive definite gain matrix, ω2 ∈ R
n is a fictitious external input and

âd is a vector of estimated dynamic parameters, which are updated by the following

adaptation law

˙̂ad = −ΓdY
T
d σ, Γd = ΓT

d > 0 (2.55)

where Γd is a positive definite gain matrix.

Now, defining the parametrization error ãd = âd − ad, from the robot dynamic

model (2.53) and the dynamic control law (2.54), the closed-loop error dynamics

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Yd(θ, θ̇, θ̇r, θ̈r)ãd + Yd(θ, θ̇, θ̇r, θ̈r)ad −KDσ + ω2 (2.56)

can be re-written as

M(θ)σ̇ + (C(θ, θ̇) +KD)σ = Yd(θ, θ̇, θ̇r, θ̈r)ãd + ω2 (2.57)

We present the algorithm for the adaptive dynamic controller in Table (2.1), and

its block diagram in (Figure 2.6). The following theorem establishes the passivity

properties and stability analysis of the closed-loop system.

Remark 10. It is worth of note that

(i) Considering the vectors θ and θ̇ measurable, all signals necessary to compute the

regressor matrix Yd are available, and

(ii) the convergence of the estimated parameters âd to the real values depends on the

level of excitation of the regressor matrix Yd.
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Figure 2.6: Block Diagram for the Slotine-Li Adaptive Controller

Table 2.1: Algorithm for Adaptive Dynamic Control

Robot Dynamic Model M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ

Dynamic Control Law τ = Yd(θ, θ̇, θ̇r, θ̈r)âd −KDσ + ω2

Parameterization M(θ)η̇ + C(θ, θ̇)η +G(θ) = Yd(θ, θ̇, η, η̇)ad
Dynamic Adaptation Law ˙̂ad = −ΓdY

T
d σ

Model Errors σ = θ̇ − θ̇r = ė + λde ãd = âd − ad
e = θ − θd θ̇r = θ̇d − λde

Closed-loop Equation M(θ)σ̇ + (C(θ, θ̇) +KD)σ = Yd(θ, θ̇, θ̇r, θ̈r)ãd + ω2

Theorem 3. (LEITE and LIZARRALDE, 2016) Consider the uncertain robot ma-

nipulator dynamic model given by equation (2.40), the control law given by (2.54),

the parameterization given by (2.53) and the parameter adaptation law given by

(2.55). Assume that θ and θ̇ are measured system signals, so that regressor matrix

Yd can be calculated. Then, the map ω2 → σ is output strictly passive with positive

definite storage function

2Vd(σ, ãd) = σTM(θ)σ + ãTd Γ
−1
d ãd (2.58)

Moreover, for ω2 = 0, the following properties hold:

• (i) All system signals are uniformly bounded;

• (ii) limt→∞σ(t) = 0
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• (iii) limt→∞ė(t) = 0 and limt→∞e(t) = 0

6

Proof. The derivative with respect to time of the storage function Vd (2.58) is given

by:

V̇d(σ, ãd) = σTM(θ)σ̇ +
1

2
σTṀσ + ãTd Γ

−1
d

˙̃ad (2.59)

Using the closed-loop error dynamics given by equation (2.58), we obtain:

V̇d(σ, ãd) = σTYd(θ, θ̇, θ̇r, θ̈r)ãd+σTω2−σTC(θ, θ̇)σ−σTKDσ+
1

2
σTṀσ+ ãTd Γ

−1
d

˙̃ad

(2.60)

By using the anti-symmetry properties of Euler-Lagrangian systems (2.41)

V̇d(σ, ãd) = σTYd(θ, θ̇, θ̇r, θ̈r)ãd + σTω2 − σTKDσ + ãTd Γ
−1
d

˙̃ad (2.61)

Finally, using the adaptation law (2.55), we obtain the following result:

V̇d(σ, ãd) = +σTω2 − σTKDσ (2.62)

which defines an output strictly passive map2, from ω2 → σ. Thus, with ω2 = 0,

V̇d ≤ 0, which implies, by Lyapunov theory, that σ, ã ∈ L∞ and thus, the equilibrium

state is uniformly stable. Since Vd > 0 and V̇d ≤ 0, then limt→∞Vd(σ, ãd) = V∞ ≥ 0

exists. Therefore,
∫
∞

0
−V̇d(t

′)dt′ = V0 − V∞ ≥ 0 where V0 = Vd(σ(0), âd(0)), which

implies that σ ∈ L2. Since θd and its derivative are assumed uniformly bounded, we

can conclude that e, ė ∈ L∞, which implicates that θ, θ̇, θ̇r, θ̈r and Yd(θ, θ̇, θ̇r, θ̈r) ∈

L∞ as well. Therefore, ˙̂ad ∈ L∞ ∩ L2 and so σ̇ ∈ L∞. As σ and ã are limited, the

derivative with respect to time V̈d = −2σTKDσ̇ is uniformly limited. So, by applying

the Barbalat’s Lemma, we can conclude that limt→∞σ(t) → 0 and consequently

limt→∞ė(t) → 0, limt→∞e(t) → 0, proving the global stability of the closed loop

system.

2.6 Cascade Controller Strategy

A dynamic control scheme can be developed in the Cartesian workspace (2.46) or in

the joint workspace (2.40). It is known, that control schemes in the joint workspace is

more suitable for robot manipulators with no restrictions (SICILIANO et al., 2011).

2A system is output strictly passive if uT y ≥ V̇ +yTρ(y) for some function ρ where yTρ(y) > 0,
∀y 6= 0, where V (x) is a positive semi-definite function
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The Slotine-Li adaptive scheme previously proposed is general enough to solve most

problems dealing with uncertainties in the manipulator dynamics. However, if there

are uncertainties on the joint actuators torques τ (e.g. electric direct-drive motors,

visual servoing) it can’t be directly used. Taking the Cartesian workspace model as

an example:

Mc(θ)p̈+ Cc(θ, θ̇)ṗ+Gc(θ) = Yc(θ, θ̇, ṗ, p̈)ac = J−T τ (2.63)

In the case of an uncertain ac and J−T , the Slotine-Li adaptive scheme cannot

be directly applied, and this problem has been solved by adapting ad and J−T sepa-

rately, in a standard adaptive solution (IOANNOU and SUN, 1995). Here, however,

we propose a cascade control strategy as seen in (GUENTHER and HSU, 1993),

separating the problem into kinematic and dynamic schemes. To gain some intu-

ition on how this separation is done, Figure 2.7 illustrates this strategy which is

useful in the following chapters, where a adaptive visual servoing scheme will be

applied on the control loop and connected to the dynamic loop through this cascade

strategy.

The general strategy is proposed as follows. First, we assume that there exists a

control law τ = F (θ, θ̇, θd, θ̇d, θ̈d) which guarantees a goal θd is reached, i.e.,

e(t) = θ − θd → 0, t → ∞ (2.64)

where θd ∈ R
3 denotes the desired trajectory for the dynamic control, assigned to

the joint space and assumed uniformly bounded, and e is the joint position error

vector.

Now, let us suppose it is possible to define the following signals in joint space

θd and its time derivatives θ̇d and θ̈d in terms of a control signal v so that we have

ṗ → v except for a vanishing term, as follows.

ṗ = v + J(θ)L(s)e, (2.65)

where L(.) denotes a linear operator, possibly noncausal, with s being the differ-

ential operator. Therefore we can conclude that it is possible to project a control law

for the kinematic model given by equation (2.13), extend it to the dynamic model
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given by equation (2.40) and the stability property of the closed loop system still

remains.

To carry out a stability analysis for cascade strategy proposed, we make use of

the passivity property of the system. As seen in (LEITE and LIZARRALDE, 2016),

(ZACHI, 2007) and (LIZARRALDE et al., 2013) the visual servoing kinematic con-

trol approach has passivity properties, which allows us, in later chapters, to ensure

the closed-loop stability when it is connected in a cascade with a dynamic control

scene with similar passivity properties. For passive interconnected systems with

external disturbances, the following general result can be stated:

Theorem 4. (HSU et al., 2007) Consider the following interconnected systems,

where Σ1 is the driven system and Σ2 is the driving system, described by:

Σ1 : ẋ1 = η1(x, t) + ξ(x, t)y2 + ζ(x, t), y1 = φ1(x1), (2.66)

Σ2 : ẋ2 = η2(x, t) + ω2, y2 = φ1(x2), (2.67)

as seen in (Figure 2.8), where x = [x1 x2]
T , η1, η2 are piecewise continuous functions

in time t and locally Lipschitz in x for all t > 0;. x ∈ D, where D ⊂ Rn is a domain

that contains the origin x = 0; φ1, φ2, ξ are continuous functions, η is a vanishing

perturbation term and ω2 is an external input. Suppose that ||η(x, t)|| ≤ γ||x||,

∀t ≥ 0, ∀x ∈ D, where γ is a non-negative constant. Assume that ||ξ(x, t)|| ≤ c,

∀x, t and for some c > 0. If system Σ1 is output strictly passive from y2 → y1 with

positive definite storage function V1(x1) such that

V̇1 ≤ −λ1||y1||
2 + c1y

T
2 y1, λ1 > 0 (2.68)

and system Σ2 is output strictly passive from ω2 → y2 with positive definite storage

function V2(x2) such that

V̇2 ≤ −λ2||y2||
2 + c2ω

T
2 y2, λ2 > 0. (2.69)

Then, for ω2 = 0, the following properties hold:
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• (i) x1, x2 ∈ L∞;

• (ii) limt→∞y1(t) = 0, limt→∞t2(t) = 0.

Proof. Let V1(x1) and V2(x2) be the storage functions for the interconnected sub-

systems Σ1 and Σ2. Consider

V (x) = V2(x2) + αV1(x1) (2.70)

as the storage function for the feedback connection.

The derivative of V (x) with respect to time, along the trajectories of both sub-

systems, and considering ω2 = 0 is given by

V̇ ≤ −λ2||y2||
2 − αλ1||y1||

2 + αc1y
T
2 y1, α > 0 (2.71)

V̇ ≤
[

||y1|| ||y2||
]
[

−αλ1
1
2
αc1

1
2
αc1 −λ2

][

||y1||

||y2||

]

, (2.72)

a Schur’s complement property states that

[

S1 S2

ST
2 S3

]

< 0 ⇐⇒ S3 < 0, S1 − ST
2 S

−1
3 S2 < 0, (2.73)

then from equation (2.72), V̇ < 0 if

− λ2 < 0, −α

(

λ1 +
αc21
4λ2

)

, (2.74)

then for some sufficiently small α > 0, V̇ (x) is negative definite with respect to

outputs y1 and y2. Consequently, we have x1, x2 ∈ L∞ and ẋ1, ẋ2 ∈ L∞. The

inequality equation for V̇ (x) implies that y1, y2 ∈ L2∩L∞. From Barbalat’s lemma,

it results that limt→∞y1(t) = 0 and limt→∞y2(t) = 0, which demonstrates the global

asymptotic stability of closed-loop interconnected subsystems.

2.7 Conclusion

In this chapter, we present an overview of the kinematic and dynamic modeling of

robot manipulators, emphasizing important properties that are useful for analyz-

ing and projecting controller schemes. An inverse Jacobian scheme is introduced

to illustrate control for the kinematic model, expanded to an adaptive case when

considering uncertainties in the Jacobian.
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For the manipulator with non-negligible dynamics the Slotine-Li adaptive scheme

is presented. However, this control strategy cannot be used as is for Cartesian control

of a manipulator with uncertainties on both dynamic and kinematic parameters. For

this, we introduce a Cascade Control scheme, to achieve separation of the kinematic

and dynamic control loops. By making use of this strategy proposed in (GUEN-

THER and HSU, 1993), we can connect the adaptive inverse Jacobian control to

the Slotine-Li adaptive scheme, cascading into a stable closed-loop system.
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Chapter 3

Adaptive Visual Servoing of

Translational Motion

Visual servoing is a term coined to designate control based on feedback of visual

measurements. Control schemes using visual servoing can be divided into two cat-

egories: Pose-based visual servoing, that realize visual servoing in the operational

space; and image-based visual servoing, that realizes the same operation but in the

image space. These situations are illustrated by Figure 3.1 and Figure 3.2

As seen in (SICILIANO et al., 2011), in position-based visual servoing, measure-

ments are used to estimate (in real time) the homogeneous transformation matrix T

time, representing the relative pose of the object frame with respect to the camera

frame. From T , the vector of independent coordinates pi, containing the position

of the object with respect to the camera frame and its relative orientation, can be

obtained.

For the image-based visual servoing, the visual measurements are not processed

to Cartesian space, and instead, the task itself is planned in the image-space, the

pose of the manipulator in the inertial frame does not need to be known. In this

case, control schemes need to guarantee that the image space error tends to zero.

If multiple cameras are used, it is possible to retrieve depth information with

one image, a situation named stereo vision. However it is still possible to achieve

Reference
Trajectory

PBVS
Control

Feature
Extraction

Target Position
in Image

Image
Processing

Target Position
in Workspace

+

−

Figure 3.1: Schematics of a PBVS configuration

35



Reference
Image

IBVS
Control

Feature
Extraction

Target Position
in Image

+

−

Figure 3.2: Schematics of a IBVS configuration
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~z

~x

~zc

~yc

Figure 3.3: An eye-to-hand visual servoing setup.

3D vision with a single camera, as we shall use in this work, provided that a few

geometrical characteristics of the object are known or prepared in advance. Mono-

camera systems are easier to calibrate and set-up, even if they may present lower

accuracy.

A visual servoing system can be further classified into two other systems, de-

pending on where the camera is positioned:

An eye-to-hand system, where the camera is set up in a fixed pose, its field of

view unchanging in relation to the base frame Fb of the manipulator. In this setup,

the unchanging camera field of view makes the accuracy of image measurements, in

most cases, constant (Figure 3.3). This setup, susceptible to object occlusion, as

the manipulator itself may block the line of sight to the tracked objects (SICILIANO

et al., 2011).

An eye-in-hand system is a mobile camera setup, with the camera mounted on

the robot, generally on the end-effector. Differently from the previous case, the field

of view of this setup changes significantly during motion which may produce a high

variability in the accuracy of measurements. However, when the end-effector is close

to the target, the accuracy becomes almost constant and is usually higher than that

achievable with eye-to-hand setups (SICILIANO et al., 2011) (Figure 3.4).

Another point of note is that the camera itself has a series of intrinsic parameters

that has to be taken into account, usually acquired by means of a process called

camera calibration. In this work, we use an eye-to-hand mono-camera 3D image-
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Figure 3.4: An eye-in-hand visual servoing setup

based visual servoing setup with a depth feature, with uncertain parameters, by

making use of adaptive control schemes.

3.1 Visual Servoing System

Consider the visual tracking problem for an uncertain robot manipulator monitored

by a fixed, pinhole camera with uncertain parameters, as illustrated by Figure 3.3.

The control objective is tracking a reference trajectory along the x, y and z direc-

tions.

This task requires control of at least three degrees of freedom, and to accomplish

that, the visual servoing system will need to extract at least three image features

from a tracked target attached to the manipulator. In this work, a spherical target

is assumed to be the target, so its projection in the image plane is invariant in

response to rotations in the 3D environment and it is possible to partially decouple

the control of x and y from the depth z (ZACHI et al., 2006). The features to be

extracted from this target are the centroid of its projection in the image plane and

its area. The first feature is used to track a desired planar trajectory in the image

plane, while the second relates to depth tracking.

3.1.1 System Description

Let pc = [xc yc zc]
T ∈ R

3 be the position vector of the centroid of the tracked target

and its depth, expressed in the image frame Fc, and pb = [xb yb zb]
T ∈ R

3 be the

position vector of the centroid but expressed in base frame of the manipulator Fb.

From the frontal perspective projection model of a pinhole camera (ZACHI, 2007),

these two vectors are related by
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pc =






fαx

zc
0 0

0 fαy

zc
0

0 0 1




R(φx, φy, φz) pb + pi (3.1)

where f ∈ R
+ is the camera focal length in mm, αx, αy ∈ R

+ are the camera

scaling factors in pixel/mm, R ∈ SO(3) is the rotation matrix that represents the

misalignment between camera and base frame and pi = [xi yi zi]
T is the translational

vector between the origin of the two frames.

Remark 11. It is important to note that there is no requirement for the z-axis of the

camera-frame and the base-frame to be aligned in this work. The sole assumption,

regarding the pinhole camera, is that the target is always in the camera field of view.

Consider the constant matrices K⊥
p =

[

fαx 0 0

0 fαy 0

]

R and Kpz = [0 0 1] R,

so we can rewrite equation (3.1) in a compact notation

pc =

[
1
zc
K⊥

p

Kpz

]

pb + pi (3.2)

The differential kinematics that describes the behavior of this system is obtained

by directly calculating the derivative of equation (3.2) with respect to time:

ṗc =

[
1
zc
K⊥

p

Kpz

]

ṗb −
1

zc

[

pxy − pxyi

0

]

żc, (3.3)

where pxy = [xc yc]
T and pxyi = [xi yi]

T .

Yet, as żc = Kpzṗb,

ṗc =

[
1
zc
(K⊥

p − (pxy − pxyi)Kpz)

Kpz

]

ṗb (3.4)

3.1.2 Depth Tracking

Let us consider the Cartesian depth description zc and the spherical target of the

proposed formulation. Let ac ∈ R
+ be the projected area of the target object in

pixels2, expressed in the image frame Fc. If so, the expression between those two

measurements is given by:

(ac)
1

2 zc =
1

β
(3.5)

The following assumptions are considered hereafter:

(A1) The projected area of the target ac is bounded and greater than zero, for any

time t in the interval [0, ∞);

38



(A2) The camera is uncalibrated and β is uncertain. Hence a measurement of zc is

unavailable;

(A3) The sign of zc is assumed to be constant and known. Hence, without loss of

generality, we can assume that zc > 0, and β > 0;

(A4) The effects of radial distortion caused by the camera lens are considered neg-

ligible.

The differential kinematics of the depth-to-area transformation is given by di-

rectly deriving equation (3.5) with respect to time:

ȧc = −2β(ac)
3

2 żc (3.6)

3.1.3 Complete translational model with area information

Let pv = [xc yc ac]
T be the vector of image feature, expressed in terms of the centroid

coordinates and the area of target object. From equations (3.4) and (3.6), we can

rewrite the visual servoing system to have the following structure:

ṗv =

[

βa
1

2

c (K⊥

p − (pxy − pxyi)Kpz)

−2βa
3

2

c Kpz

]

ṗb (3.7)

Remark 12. In (WANG et al., 2018), multiple features can be tracked in the same

manipulator. The number of degrees of freedom of the manipulator (n) and that

of the feature points (m) are subjected to the constraint that n ≥ 2m and m ≤ 3,

and in the case m = 3, the three feature points are non-collinear. In this work,

such a consideration is possible as well, however since we are also tracking depth the

constraint is appropriately changed to n ≥ 3m.

Example 3. Consider tracking two features (n = 2) in a manipulator with six

degrees of freedom (m = 6). If the position of each feature is given by pv1 and pv2,

respectively, then the complete system can be described by:

[

ṗv1

ṗv2

]

= Ac

[

K⊥

p − PKz

]
[

ṗb1

ṗb2

]

(3.8)

where
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Ac =















β1a
1

2

c1 0 0 0 0 0

0 β1a
1

2

c1 0 0 0 0

0 0 −2β1a
3

2

c1 0 0 0

0 0 0 β2a
1

2

c2 0 0

0 0 0 0 β2a
1

2

c2 0

0 0 0 0 0 −2β2a
3

2

c2















(3.9)

K⊥

p =









K⊥

p 0

0 0

0 K⊥

p

0 0









(3.10)

P =









(pxy1 − pxyi1) 0

1 0

0 (pxy2 − pxyi2)

0 1









(3.11)

Kz =

[

Kz 0

0 Kz

]

(3.12)

�

As mentioned earlier in this chapter, we consider the camera and robot param-

eters to be uncertain. In (LEITE and LIZARRALDE, 2016), linear parameteriza-

tion of the depth and planar subsystems are done from this model for adaptation

of the camera parameters. In this work, similar to what is presented in (WANG

et al., 2018), while we also separate the system in planar and depth subsystems,

we parameterize the camera matrix Kp together with the Jacobian matrix J . How-

ever, since we already exemplified how parameterization is done in (LEITE and

LIZARRALDE, 2016) for the kinematic and dynamic systems in the previous chap-

ter, we also present how parameterization is done for the visual system here as well,

a form that is useful for direct adaptation.

Considering that, in (LEITE and LIZARRALDE, 2016), the z-axis of the camera

frame and robot frame are assumed to be aligned, the depth subsystem can be

simplified as

ȧc = −2β(ac)
3

2 żb (3.13)

So, the linear parameterization is given by

ȧc = Yz(ac, żb)az, az = β (3.14)

40



Similarly, the planar subsystem can also be simplified as

ṗxy =
[

βa
1

2

c (K⊥

p − (pxy − pxyi) [0 0 1])
]

ṗb

= a
1

2

c βK
⊥

p ṗb − βa
1

2

c (pxy − pxyi)żb

(3.15)

Then, according to (HSU et al., 2001), if K⊥
p has non-zero leading principal

minors, it is always possible to factorize K⊥

p = SDU , where S denotes a symmetric

and positive definite matrix, D is a diagonal matrix, and U is an upper triangular

matrix with unitary diagonal elements.

3.2 Adaptive Visual Servo Control

In this section, we employ an adaptive visual servoing strategy in order to tackle a

trajectory tracking problem, in the presence of an uncalibrated camera and paramet-

ric uncertainties in the robot manipulator. Here, the desired trajectory is decoupled

in planar and depth trajectories, the former given in terms of the target centroid,

the latter in terms of its projected area. Let pv ∈ R
3 be the vector of image feature

and pd(t) ∈ R
3 be the translational reference trajectory, both represented in the

image frame Fc. The control goal can be described as:

pv → pd(t), ev(t) = pv − pd(t) → 0 (3.16)

where ev(t) ∈ R
3 represents the image feature error. The following assumptions

are made to achieve this goal:

(A5) The translational reference trajectory pd(t) is planned so it remains visible,

within the robot workspace, and its first derivative, ṗd(t), is known and

bounded.

(A6) The robot motions are away from singular configurations.

(A7) The joint angle θ is measurable.

With these assumptions, we can consider that target occlusion problem does

not occur and that inverse of the analytical Jacobian matrix always exists. Notice

that as we use an indirect adaptive approach, to guarantee that the inverse of the

estimated Jacobian matrix exists, we also use a projection method to keep the

adaptive parameters bounded (HSU and COSTA, 1991).
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3.2.1 Problem Formulation

Consider a visual servoing system with uncertain camera parameters, and a robot

manipulator with three degrees-of-freedom, with non-negligible dynamics and simi-

larly uncertain kinematic and dynamics parameters. The differential kinematics for

a translational visual servoing system with depth feature is given by equation (3.7)

and those for the position of a robot manipulator by equation (2.6), both repeated

here for convenience:

ṗv =

[

βa
1

2

c (K⊥

p − (pxy − pxyi)Kpz)

−2βa
3

2

c Kpz

]

ṗb (3.17)

ṗb = J(θ)θ̇ (3.18)

where pv = [xc yc ac]
T , pb = [xb yb zb]

T , pxy = [xc yc]
T , pxyi = [xi yi]

T , K⊥

p and

Kpz are the planar and depth visual servoing system matrices respectively, β is

the depth-to-area transformation constant, J is the Jacobian of the manipulator

expressed in the base frame and θ are the configuration of its joints.

Substituting pb from equation (3.18) into equation (3.17), we obtain the differ-

ential kinematics for the complete system.

ṗv =

[

βa
1

2

c (K⊥

p − (pxy − pxyi)Kpz)

−2βa
3

2

c Kpz

]

Jθ̇ (3.19)

ṗv =

[

βa
1

2

c (J⊥ − (pxy − pxyi)Jz)

−2βa
3

2

c Jz

]

︸ ︷︷ ︸

J∗(θ,pv)

θ̇ (3.20)

where J∗(θ, pv) is called the feature Jacobian, J⊥ = K⊥

p J and Jz = KpzJ are

the image plane and depth Jacobian, respectively. These still maintain the linear

parameterization property of the Jacobian, as follows:

(P1) As an extension of the parameterization property of the Jacobian J(θ), the

product of the image plane Jacobian J⊥(θ) and the depth Jacobian Jz with

any measurable vector φ(t) can be linearly parameterized as

βJ⊥φ = Y ⊥(θ, φ)a⊥ (3.21)

βJzφ = Yz(θ, φ)az (3.22)

where Y ⊥(θ, φ) ∈ R
2×p and Yz(θ, η) ∈ R

1×q are, respectively, the planar and

depth kinematic regressor matrices, a⊥ ∈ R
p is a depth-independent paramet-

ric vector and az ∈ R
q is a constant depth parametric vector. The lower and
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upper bound a⊥min, a
⊥

max, azmin
and azmax

, respectively, are assumed known for

the camera and kinematic parameters and satisfy

||a⊥min|| ≤ ||a⊥|| ≤ ||a⊥max|| (3.23)

||azmin
|| ≤ ||az|| ≤ ||azmax

|| (3.24)

3.2.2 Kinematic Translational Controller

Consider the kinematic visual servoing problem given by equation (3.20), that rep-

resents the differential kinematics of a target centroid and area. The task, here,

is to have the robot manipulator end effector, effectively target centroid and area

pv measured in the camera, follow a desired trajectory pd(t), expressed in image

coordinates. For this particular problem, we consider that the joints velocity θ̇ can

be designed as a control signal u ∈ R
3 so that the system is given by

pv =

[

βa
1

2

c (J⊥ − (pxy − pxyi)Jz)

−2βa
3

2

c Jz

]

u+ ω1(t) = J∗u+ ω1(t) (3.25)

which can be rewritten with parameterizations (3.21) and (3.22) as

pv =

[

a
1

2

c Y ⊥(θ, u)

0

]

a⊥ −

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yz(θ, u)az + ω1 (3.26)

Assuming, θ is measurable, it is possible to calculate the regressor matrices Y ⊥

and Yz.

Finally, to reach the desired task goal, we propose the following control law u

u = Ĵ∗−1(ṗd −Kkev) (3.27)

where ev = pv − pd is the tracking error, Kk is a positive gain and Ĵ∗ is an

estimate of the image Jacobian J∗ using a parameter vectors estimates â⊥ and âz.

Those estimated parameter vectors are updated by the following laws:

˙̂a⊥ = Γ⊥

[

a
1

2

c Y ⊥

0

]T

ev (3.28)

˙̂az = −ΓzY
T
z

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]T

ev (3.29)
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Projection Algorithm

As mentioned in Chapter 1 and earlier in this chapter, to ensure that the inverse

of the estimated Jacobian exists in an indirect adaptation scheme, a projection

algorithm is needed to avoid the singularity at the origin of the parameter vector.

In this work, we introduce a projection to accomplish this, and another objective as

well:

• Avoid the singularity point at the origin;

• Avoid large parameter drifting during the transient phase.

Consider the following projection algorithm:

Λ(g, h) = h−
(hTg)h

hTh
(3.30)

Then, we can update the adaptation laws (3.28) and (3.29) as:

˙̂a⊥ =







Λ( ˙̂a⊥, â⊥), for ||â⊥|| >= ||a⊥||max, â⊥T ˙̂a⊥ > 0

Λ( ˙̂a⊥, â⊥), for ||â⊥|| <= ||a⊥||min, â⊥T ˙̂a⊥ < 0

˙̂a⊥, otherwise.

(3.31)

˙̂az =







Λ( ˙̂az, âz), for ||âz|| >= ||az||max, âTz
˙̂az > 0

Λ( ˙̂az, âz), for ||âz|| <= ||az||min, âTz
˙̂az < 0

˙̂az, otherwise.

(3.32)

It is necessary to know ||a⊥||max, ||a
⊥||min, ||az||max, ||az||min, upper and lower

bounds for parameter vectors a⊥ and az respectively.

Stability Analysis

Now, we proceed with the stability analysis of the proposed controller scheme. First,

we calculate the dynamic equation of the tracking error ėv = ṗv − ṗd so:

ėv = J∗u+ ω1 − ṗd (3.33)

Considering the parametric errors ã⊥ = â⊥−a⊥ and ãz = âz−az , we can rewrite

J∗u = Ĵ∗u− J̃∗u as:

J∗u = Ĵ∗u−

[

a
1

2

c Y ⊥(θ, u)

0

]

ã⊥ +

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yz(θ, u)ãz (3.34)
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pd ev+

−
Kk

ṗd

+

−

Γ⊥

[

a
1

2
c Y ⊥

0

]T

−ΓzY T
z





a
1

2
c (pxy − pxyi)

2a
3

2
c





T

˙̂a⊥

˙̂az

â⊥

âz

∫

∫

∫

Ĵ∗−1 u
J(θ) ṗb pb Kp

pv

Figure 3.5: Block Diagram for an Adaptive Kinematic Visual Servoing Scheme

Rewriting equation (3.33) with the algebraic manipulation from equation (3.34),

we obtain:

ėv = Ĵ∗u−

[

a
1

2

c Y ⊥

0

]

ã⊥ +

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz + ω1 − ṗd (3.35)

Using control law (3.27) into equation (3.35), results in the error dynamics equa-

tion:

ėv = Ĵ∗Ĵ∗−1(ṗd −Kkev)−

[

a
1

2

c Y ⊥

0

]

ã⊥ +

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz +ω1− ṗd (3.36)

ėv = −Kkev −

[

a
1

2

c Y ⊥

0

]

ã⊥ +

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz + ω1 (3.37)

Table 3.1 presents the algorithm for the kinematics controller, and Figure 3.5

shows its block diagram. The following theorem establishes passivity properties and

stability analysis of the closed-loop system.

Remark 13. In this work, we consider a non-redundant manipulator. However,

this could be expanded to a redundant manipulator by using the standard generalized

inverse of the Jacobian matrix, Ĵ∗† = Ĵ∗T (Ĵ∗Ĵ∗T )−1, in the control law u.

Theorem 5. Consider the uncertain visual servoing problem, modeled by equation

(3.25), the control law given by (3.27), the parameterizations given by (3.21) and

(3.22) , and the parameter adaptation laws given by (3.28) and (3.29). Assume that
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Table 3.1: Algorithm for Adaptive Image-based Visual Servoing with Position and
Depth Features

IBVS Kinematic Model ṗv = J∗u+ ω1(t)

Control Law u = Ĵ∗−1(ṗd −Kkev)
Parameterization βJ⊥u = Y ⊥(θ, u)a⊥ βJzu = Yz(θ, u)az

Kinematic Adaptation Law ˙̂a⊥ = Γ⊥

[

a
1

2

c Y ⊥

0

]T

ev ˙̂az = −ΓzY
T
z

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]T

ev

Model Errors ev = pv − pd ã⊥ = â⊥ − a⊥ ãz = âz − az

Closed-loop Equation ėv = −Kkev −

[

a
1

2

c Y ⊥

0

]

ã⊥ +

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz + ω1

θ is measured, so that regressor matrices Y ⊥ and Yz can be calculated. Then, the

map ω1 → ev is output strictly passive with positive definite storage function

2Vk(ev, ã
⊥, ãz) = eTv ev + ã⊥TΓ⊥−1ã⊥ + ãTz Γ

−1
z ãz (3.38)

Moreover, for ω1 = 0, the following properties hold:

• (i) All system signals are uniformly bounded;

• (ii) limt→∞ev(t) = 0

Proof. The derivative with respect to time of the storage function Vk (3.38) is given

by:

V̇k(ev, ã
⊥, ãz) = eTv ėv + ã⊥TΓ⊥−1 ˙̃a⊥ + ãTz Γ

−1
z

˙̃az (3.39)

Using the closed-loop error dynamics given by equation (3.37), we obtain:

V̇k(ev, ã
⊥, ãz) = −eTv Kkev − eTv

[

a
1

2

c Y ⊥

0

]

ã⊥ + eTv

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz + eTv ω1

+ ã⊥TΓ⊥−1 ˙̃a⊥ + ãTz Γ
−1
z

˙̃az (3.40)

With the adaptation laws (3.28) and (3.29), we obtain:

V̇k(ev, ã
⊥, ãz) = −eTv Kkev + eTv ω1 (3.41)

This defines an output strictly passive mapping from ω1 → ev. As such, with

ω1 = 0, V̇k ≤ 0. This implies, by Lyapunov theory, that ev, ã
⊥ and ãz ∈ L∞ and

thus, the equilibrium state is uniformly stable. As ev, ã
⊥ and ãz are limited, the
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derivative with respect to time V̈k = −2eTvKkėv is uniformly limited. So, by using

the Barbalat’s Lemma, we can conclude that limt→∞ev(t) → 0.

Next, we would like to extend the kinematic controller to a system with non-

negligible dynamics. Considering the passivity property of the Slotine-Li dynamic

adaptive scheme and the passivity property of the kinematic visual servoing control

proposed, we can use Theorem 4 to propose a stable cascade controller for the

complete system. However, the calculation of τ (2.54) in the Slotine-Li control

requires knowledge of u̇. As u → h(pv), as seen in equation (3.27), its derivative with

respect to time u̇ will be a function of the image velocity ṗv. Image-space velocity

obtained by standard numerical differentiation approach is a signal known to contain

much noise and as such it is desirable to avoid it. To circumvent this problem, we

first propose an observer for the kinematic system in the next subsection, so we can

design u in terms of signal po = [pTxyo ac]
T , where pxyo is the observer measure of

pxy. In this work, we will assume that a numerical differential approach is still used

for the variation of the target area ȧc.

3.2.3 Kinematic Controller with Observer

Consider the kinematic visual servoing problem presented in the previous section,

given by equation (3.25) and the parameterization given in equations (3.21) and

(3.22). The idea of using an observer to avoid explicitly using pxy in the expression

of u, and consequently ṗxy in u̇ when designing control for a system with non-

negligible dynamics was introduced in (WANG et al., 2018), where it is also used

to guarantee the passivity of the complete system. Here, we simplify the observer

proposed in (WANG et al., 2018) and guarantee that the kinematic subsystem with

the observer is still output strict passive.

We design a kinematic observer pxyo as follows, a copy of the system using the

Jacobian estimate and two terms related to the observation error and tracking error:

ṗxyo = [β̂a
1

2

c (Ĵ
⊥ − (pxy − pxyi + exy)Ĵz)]u−Koeo +Kk(pxy − pxyd) + ω1 (3.42)

or equivalently,

ṗxyo = Ĵxyou−Koeo +Kk(pxy − pxyd) + ω1 (3.43)

where eo = (pxyo − pxy) is the observation error, exy = (pxy − pxyd) is the target’s

centroid position error and Ko 6= Kk > 0 is a positive gain. Now, we rewrite the

control law u as follows:
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u =

[

β̂a
1

2

c (Ĵ⊥ − (pxyo − pxyi)Ĵz)

−2β̂a
3

2

c Ĵz

]−1

(ṗd −Kk(po − pd)) = Ĵ∗−1

o (ṗd −Kk(po − pd))

(3.44)

where the structure of Ĵ∗

o (θ, po) is very similar to hatJ∗(θ, pv), but uses pxyo, the

observed position, instead of pxy

Remark 14. For the estimated parameter updates, we consider the following adap-

tation laws and the projection algorithm given by equations (3.30), (3.31) and (3.32)

are applied here as well.

˙̂a⊥ = Γ⊥a
1

2

c Y
⊥T (exy − eo) (3.45)

˙̂az = ΓzY
T
z



a
1

2

c e
T
o exy + a

1

2

c (pxy − pxyi)
T eo −

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]T

ev



 (3.46)

Consider dynamic equation for the tracking error ev, and that pxy = pxyo − eo

ėv =

[

βa
1

2

c (J⊥ − (pxyo − pxyi − eo)Jz)

−2βa
3

2

c Jz

]

u+ ω1 − ṗd (3.47)

Using the control law (3.44) and the parameterizations (3.21) and (3.22), we

obtain:

ėv = −Kk(po−pd)+a
1

2

c β

[

eo

0

]

Jzu−

[

a
1

2

c Y ⊥

0

]

ã⊥+

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz+ω1

(3.48)

Finally, considering that pxyo = pxy+eo, we obtain the tracking error ev dynamic:

ėv = −Kk(ev)−Kk

[

eo

0

]

+ a
1

2

c β

[

eo

0

]

Jzu−

[

a
1

2

c Y ⊥

0

]

ã⊥

+

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz + ω1 (3.49)

For the observation error eo, its dynamic equation ėo = ṗxyo − ṗxy is given as

follows
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Figure 3.6: Block Diagram for an Adaptive Kinematic Scheme with Observer

ėo = ṗxyo = [β̂a
1

2

c (Ĵ
⊥ − (pxy − pxyi + exy)Ĵz)]u−Koeo +Kk(pxy − pxyd)

− [βa
1

2

c (J
⊥ − (pxy − pxyi)Jz)]u (3.50)

Considering the parameterization errors ã⊥ and ãz, equation (3.50) can be rewrit-

ten as:

ėo = −Koeo − exyβ̂a
1

2

c Ĵzu+Kk(pxy − pxyd) + a
1

2

c Y
⊥ã⊥ + a

1

2

c (pxy − pxyi)Yzãz (3.51)

Table 3.2 presents the updated algorithm for the kinematic problem with an ob-

server, and Figure 3.6 the complete kinematic model block diagram. The following

theorem shows results on passivity properties and stability analysis of the system.
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Table 3.2: Algorithm for Adaptive IBVS with Observer using position and depth
features

IBVS Kinematic Model ṗv = J∗u+ ω1(t)

Observer Model ṗxyo = [Ĵxyou+ ω1 −Koeo +Kk(pxy − pxyd)

Control Law u = Ĵ∗−1

o (ṗd −Kk(po − pd))
Parameterization βJ⊥u = Y ⊥(θ, u)a⊥ βJzu = Yz(θ, u)az

Kinematic Adaptation Law ˙̂a⊥ = Γ⊥a
1

2

c Y ⊥T (exy − eo)

˙̂az = ΓzY
T
z (eTo exy + a

1

2

c (pxy − pxyi)
T eo

-

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]T

ev)

Model Errors ev = pv − pd eo = pxyo − pxy ã⊥ = â⊥ − a⊥ ãz = âz − az

Closed-loop Equation ėv = −Kk(ev)−Kk

[
eo
0

]

+ a
1

2

c β

[
eo
0

]

Jzu+ ω1

−

[

a
1

2

c Y ⊥

0

]

ã⊥ +

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz

ėo = −Koeo − exyβ̂a
1

2

c Ĵzu+Kk(pxy − pxyd)

+a
1

2

c Y ⊥ã⊥ + a
1

2

c (pxy − pxyi)Yzãz

Theorem 6. Consider the uncertain visual servoing problem, modeled by equation

(3.25), the observer described in equation (3.42), the control law given by (3.44), the

parameterizations given by (3.21) and (3.22) , and the parameter adaptation laws

given by (3.45) and (3.46). Assume that θ is measured, so that regressor matrices

Y ⊥ and Yz can be calculated. Then, the map ω1 → ev is output strictly passive with

positive definite storage function

2Vko(ev, eo, ã
⊥, ãz) = eTv ev + eTo eo + ã⊥TΓ⊥−1ã⊥ + ãTz Γ

−1
z ãz (3.52)

Moreover, for ω1 = 0, the following properties hold:

(i) All system signals are uniformly bounded;

(ii) limt→∞ev(t) = 0

(ii) limt→∞eo(t) = 0

Proof. The derivative with respect to time of the storage function Vk (3.52) is given

by:

V̇ko(ev, eo, ã
⊥, ãz) = eTv ėv + eTo ėoã

⊥TΓ⊥−1 ˙̃a⊥ + ãTz Γ
−1
z

˙̃az (3.53)
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Using the closed-loop error dynamics given by equations (3.49) and (3.51), we

obtain:

V̇ko(ev, eo, ã
⊥, ãz) = −eTv Kkev−eTv

[

a
1

2

c Y ⊥

0

]

ã⊥+eTv

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz+eTv ω1

− eTo Koeo − a
1

2

c e
T
o exyYzãz + eTo a

1

2

c Y
⊥ã⊥ + eTo a

1

2

c (pxy − pxyi)Yzãz

+ ã⊥TΓ⊥−1 ˙̃a⊥ + ãTz Γ
−1
z

˙̃az (3.54)

With the adaptation laws (3.45) and (3.46), we obtain:

V̇ko(ev, eo, ã
⊥, ãz) = −eTv Kkev − eTo Koeo + eTv ω1 (3.55)

which defines an output strictly passive map, from ω1 → ev. Thus, ω1 = 0,

V̇ko ≤ 0 which implies, by Lyapunov theory, that ev, eo, ã⊥ and ãz ∈ L∞ and

thus, the equilibrium state is uniformly stable. As ev,eo, ã
⊥ and ãz are limited, the

derivative with respect to time V̈ko = −2eTv Kkėv − 2eTo Koėo is uniformly limited.

So, by using the Barbalat’s Lemma, we can conclude that limt→∞ev(t) → 0 and

limt→∞eo(t) → 0.

3.2.4 Cascade Control

Now, we finally extend the kinematic visual servoing controller to the case of a robot

manipulator with non-negligible dynamics. First, to illustrate the problem, consider

a case where the camera depth is fixed

pc = Kppb + pxyi (3.56)

If Kp is known, then it would be simple to obtain the desired trajectory pd

expressed in robot base coordinate frame, pdb, by

pdb = K−1
p (pd − pxyi) (3.57)

and apply an adaptive or robust control strategy for dynamic manipulators.

However, as we consider the case with an uncalibrated camera, i.e. Kp is un-

known, pdb cannot be calculated. Considering equation (3.56) and the manipulator

dynamic model expressed in Cartesian coordinates (2.46),

Mc(θ)p̈+ Cc(θ, θ̇)ṗ+Gc(θ) = τc (3.58)

we can write the dynamic model in camera frame coordinates as:
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Figure 3.7: Cascade Strategy for Visual Servoing system

M̄c(θ)p̈c + C̄c(θ, θ̇)ṗc + Ḡc(θ) = Ȳc(θ, θ̇, ṗc, p̈c)āc = K−T
p τc (3.59)

where M̄c = K−T
p McK

−1
p , C̄c = K−T

p CcKp−1 and Ḡc = K−T
p Gc. This situation is

similar to what was illustrated in the previous chapter. To use a standard adaptation

on this model, it is necessary to adapt both āc and K−1
p separately.

Remark 15. It is also important to note that while the robot is passive from

K−T
p τc → ṗc, it may not be from from τc → pc

We adopt the cascade control strategy previously presented in Section 2.6 and

choose a control τ which can guarantee a goal pv → pd is reached, as seen in the

kinematic loop. A block diagram of the complete closed-loop system is given by

Figure 3.7. The following assumptions are done, with respect to the complete

system:

(A5) The translational reference trajectory pd(t) is planned so it remains visible,

within the robot workspace, and its first and second derivatives, ṗd(t) and

p̈d(t) are known and bounded.

(A6) The robot motions are away from singular configurations.

(A7) The joint angles θ and joint velocities θ̇ are measurable.

Considering that θ̇ = θ̇r + σ, and the cascade strategy we have

ṗv = J∗θ̇r + J∗σ (3.60)

where σ is a vanishing term, as seen in Theorem 3. This is similar to the

kinematic system (3.25) as we make ω1 = J∗σ. Then, by taking the control law

presented in (3.44), the cascade control strategy can be implemented by setting:

θ̇d = θ̇r + λde (3.61)

θ̈d = θ̈r + λdė (3.62)
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with reference signal θ̇r as the cascade so

θ̇r = u = Ĵ∗−1

o (ṗd −Kk(po − pd)) (3.63)

And finally, we adopt the Slotine-Li adaptive scheme to solve the dynamic loop,

given by control law (2.54) and adaptation law (2.55), restated here for convenience.

The Table 3.3 illustrates the algorithm complete system.

τ = Yd(θ, θ̇, θ̇r, θ̈r)âd −KDσ + ω2, (3.64)

˙̂ad = −ΓdY
T
d σ, Γd = ΓT

d > 0 (3.65)

Remark 16. It is important to remind that while we use the Slotine-Li adaptive

scheme in this work any other passive control loop, like robust control, could also be

used for this cascade strategy.

Consider now the passivity properties of the adaptive dynamic control system,

stated by Theorem 3, and of adaptive visual servoing kinematic control system,

stated by Theorem 6. Thus, we can apply Theorem 4 to analyze the stability

properties of the overall closed-loop cascade system, where the driven system Σ1

and the driving system Σ2 are identified as follows:

Σ1 : x
T
1 = [eTv a⊥

T

aTz ], y1 = ev, (3.66)

Σ2 : x
T
2 = [eT ėT aTd ], y2 = σ, (3.67)

with storage functions V1(x1) = Vko and V2x2 = Vd as seen in equations (3.52) and

(2.58) respectively. Then, from Theorem 4, we can conclude that, for the complete

adaptive visual servoing system with non-negligible dynamics:

• (i) All signals of the interconnected system are bounded;

• (ii) limt→∞σ(t) = 0, limt→∞e(t) = 0, limt→∞ev(t) = 0, and limt→∞eo(t) = 0.

3.3 Conclusion

In this chapter, we proposed an adaptive visual servoing control approach for the

task of tracking a translational trajectory to control position and depth. First, we

introduced a few basic concepts about visual servoing, before presenting the camera

model equation.
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Table 3.3: Algorithm for Adaptive IBVS for manipulator with non-negligible dy-
namics using position and depth features.

IBVS Kinematic Model ṗv = J∗u+ ω1(t)

Observer Model ṗxyo = Ĵxyou+ ω1 −Koeo +Kk(pxy − pxyd)

Control Law u = Ĵ∗−1

o (ṗd −Kk(po − pd))
Parameterization βJ⊥u = Y ⊥(θ, u)a⊥ βJzu = Yz(θ, u)az

Kinematic Adaptation Law ˙̂a⊥ = Γ⊥a
1

2

c Y ⊥T (exy − eo)

˙̂az = ΓzY
T
z (eTo exy + a

1

2

c (pxy − pxyi)
T eo

-

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]T

ev)

Model Errors ev = pv − pd eo = pxyo − pxy ã⊥ = â⊥ − a⊥ ãz = âz − az

Closed-loop Equation ėv = −Kk(ev)−Kk

[
eo
0

]

+ a
1

2

c β

[
eo
0

]

Jzu+ ω1

−

[

a
1

2

c Y ⊥

0

]

ã⊥ +

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]

Yzãz

ėo = −Koeo − exyβ̂a
1

2

c Ĵzu+Kk(pxy − pxyd)

+a
1

2

c Y ⊥ã⊥ + a
1

2

c (pxy − pxyi)Yzãz
Cascade Strategy θ̇r = u

θ̈r = Ĵ∗−1

o (p̈d −Kk(ṗo − ṗd))− Ĵ∗−1

o
˙̂
JoĴ

∗−1

o (ṗd −Kk(po − pd))

θ̇d = θ̇r + λde θ̈d = θ̈r + λdė

Robot Dynamic Model M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ

Dynamic Control Law τ = Yd(θ, θ̇, θ̇r, θ̈r)âd −KDσ + ω2

Parameterization M(θ)η̇ + C(θ, θ̇)η +G(θ) = Yd(θ, θ̇, η, η̇)ad
Dynamic Adaptation Law ˙̂ad = −ΓdY

T
d σ

Model Errors σ = θ̇ − θ̇r = ė+ λde ãd = âd − ad
e = θ − θd θ̇r = θ̇d − λde

Closed-loop Equation M(θ)σ̇ + (C(θ, θ̇) +KD)σ = Yd(θ, θ̇, θ̇r, θ̈r)ãd + ω2
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Following, we formulate the visual servoing problem for a robot manipulator

with negligible dynamics, and propose an adaptive control scheme, with an indirect

adaptation method, that can following a desired goal in the camera image. We

introduce a projection algorithm to the parameter update laws, with two objectives:

avoid large parameter drifting during the transient state and avoid the estimate

Jacobian singularity at the origin.

An observer is designed to avoid use of image-space velocities when controlling

a robot with non-negligible dynamics. And finally, the cascade strategy introduced

in the previous chapter is used to extend the adaptive kinematic visual servoing

to a robot with non-negligible dynamics, cascading the proposed control and the

Slotine-Li adaptive scheme.
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Chapter 4

Simulation Results

In this chapter, several simulations and experiments are presented to illustrate the

adaptive visual servoing control adopted, both for a kinematic manipulator scheme

and for a manipulator with non-negligible dynamics, by means of a cascade strategy,

as presented in Chapter 3. Simulations are done with the Matlab/Simulink software,

for a 3R anthropomorphic arm. Experimental results are presented, using the Tetis,

a 4R manipulator, and a webcam.

4.1 Kinematic Anthropomorphic Arm

In this section, we present equations and nominal parameters for simulation of the

camera/arm setup. First, consider the following visual servoing system, as seen in

Figure 4.1:

• A 3R manipulator, an anthropomorphic arm, as seen in (SICILIANO

et al., 2011), where l1, l2, l3 ∈ R
+ are the robot dimensions, θ = [θ1 θ2 θ3]

T ∈ R
3

are its joint angles and pbe ∈ R
3 is the end-effector position, in robot base

frame;

• a pinhole camera, where f ∈ R
+ is its focal length, α ∈ R

+ is the camera

scaling factor. Consider that pc ∈ R
3 is the position of target centroid pv ∈ R

3

are coordinates after a depth-to-area transformation, where β ∈ R
+ is the

depth-to-area transformation constant. For simplicity, consider as well that

the image frame and robot base frame z-axis are aligned, however, misaligned

by a rotation R(φ) around the z-axis.

Now, consider the forward kinematics mapping for an anthropomorphic arm,

following the model given in equation (2.4)
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Figure 4.1: A camera and anthropomorphic robot arm setup

pbe =






c1(l2c2 + l3c23)

s1(l2c2 + l3c23)

l2s2 + l3s23




 (4.1)

where ci = cos(θi), si = sin(θi), cij = cos(θi + θj) and sij = sin(θi + θj).

The camera transformation mapping, from pbe to pc, is given according to model

(3.1)

pc =






1
zc
fαcφ

1
zc
fαsφ 0

1
zc
fαsφ − 1

zc
fαcφ 0

0 0 −1




RT (φ)pbe +






0

0

zi




 (4.2)

where zi is a displacement from the origin of camera frame to the base frame, along

the zc axis. Finally, we can describe the visual servoing differential kinematics, as

given by the model after depth-to-area transformation (3.20)

ṗv =

[

βa
1

2

c (J⊥ − (pxyJz)

−2βa
3

2

c Jz

]

u (4.3)
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where u ∈ R
3 is the control signal, the elements of matrix J⊥(θ)R2×3 are given by

J⊥

11 = −fαcφ(l2s1c2 + l3s1c23) + fαsφ(l2c1c2 + l3c1c23)

J⊥

12 = −fαcφ(l2c1s2 + l3c1s23)− fαsφ(l2s1s2 + l3s1s23)

J⊥

13 = −fαcφl3c1s23− fαsφl3s1s23

J⊥

21 = −fαcφ(l2c1c2 + l3c1c23)− fαsφ(l2s1c2 + l3s1c23)

J⊥

22 = +fαcφ(l2s1s2 + l3s1s23)− fαsφ(l2c1s2 + l3c1s23)

J⊥

23 = +fαcφl3s1s23)− fαsφl3c1s23)

and, similarly, Jz ∈ R
1×3 is given by

Jz =
[

0 −l2c2 − l3c23 −l3c23

]

(4.4)

Furthermore, following the parameterization models given in equations (3.21)

and (3.22)

βJ⊥(θ)u = Y ⊥(θ, u)a⊥ =

[

Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

]









βfαcφl2

βfαcφl3

βfαsφl2

βfαcφl3









(4.5)

where the elements of Y ⊥(θ, u) are given by

Y11 = −s1c2u1 − c1s2u2;

Y12 = −s1c23u1 − c1s23u2 − c1s23u3;

Y13 = c1c2u1 − s1s2u2;

Y14 = c1c23u1 − s1s23u2 − s1s23u3;

Y21 = −c1c2u1 + s1s2u2;

Y22 = −c1c23u1 + s1s23u2 + s1s23u3;

Y23 = −s1c2u1 − c1s2u2;

Y24 = −s1c23u1 − c1s23u2 − c1s23u3;

and

Jz(θ)u = Yz(θ, u)az =
[

−c2u2 −c23(u2 + u3)
]
[

βl2

βl3

]

(4.6)

The kinematic and camera nominal parameters are given in Table (4.1).
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Table 4.1: Nominal Parameters for the camera and kinematic manipulator

l2 0.26m
l3 0.26m
f 8mm
α 72727 pixel/m
φ 0 rad
zi 1m
β 0.1

Table 4.2: Simulation Look and move: Initial conditions

θ(0)
[
0 − π

4
π
2

]T

â⊥ [9.8207 7.5292 5.6700 4.3470]T

âz [0.0270 0.0207]T

pc(0) [213.93 0 100]T

4.1.1 Non-Adaptive Control

First, to illustrate the significance of adaptive schemes, we do a few simulations with

a non-adaptive approach, in the presence of kinematic uncertainties and a camera

with uncertain parameters. Consider the following tracking goal pd(t)

pd(t) =






210 + 30 sin(π
5
t) + 30 sin(1.5π

5
t)

−60 + 30 sin(π
5
t + 1.6) + 30 sin(1.5π

5
t+ 1.6)

95 + 3 sin(0.1t)




 (4.7)

The look and move control should minimize a tracking error ev = pc − pd → 0, and

can be expressed as

u = Ĵ∗−1

(ṗd −Kk(pbe − pd)) (4.8)

where Ĵ∗ is the image Jacobian with uncertainties on the kinematic and camera

parameters. Consider the following deviations for each parameter, from their nom-

inal values: l̂2 = 0.3m, l̂3 = 0.23m, f̂ = 6 mm, α̂ = 70000 pixel/m and β̂ = 0.09.

Given Kk = 7 as the control gain, we simulate the a non-adaptive kinematic control

scheme for φ̂ = π
6
.

Case - φ̂ = π
6

Here, we present simulation results for an estimated misalignment ˆphi = π
6
. The

system initial conditions are given in Table 4.2.

The simulation results are presented in Figures 4.2-4.4. The plane and area
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Figure 4.2: Simulation Look and move: Image plane Trajectory and Area
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Figure 4.3: Simulation Look and move: Tracking Error

trajectory tracking in image space are presented in Figure 4.2. The error for plane

and area trajectory tracking is illustrated in Figure 4.3 and is important to note the

error does not seem to tend towards zero over time. Figure 4.4 illustrates the joint

angles and the control signal during this task. These results are useful as comparison

to the performance of adaptive visual servoing in the next subsection.

4.1.2 Adaptive Visual Servoing Simulations

Now that we have seen the performance of control without adaptation for a visual

servoing system with parametric uncertainties, we present the performance of the

adaptive visual servoing with kinematic observer for translational trajectory track-

ing, developed in Chapter 3, for the task of tracking the same goal pd(t) (4.7). Let

us consider the same parameters used for the look and move scheme: l̂2 = 0.3m,

l̂3 = 0.23m, f̂ = 6 mm, α̂ = 70000 pixel/m and β̂ = 0.09. Consider the following

parametric updates, as given in (3.28) and (3.29), and the kinematic observer, as

given in (3.42)
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Figure 4.4: Simulation Look and move: Joint angles and control signals
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Figure 4.5: Simulation Adaptive Control Case π
6
: Image plane Trajectory

˙̂a⊥ = Γ⊥

[

a
1

2

c Y ⊥

0

]T

ev (4.9)

˙̂az = −ΓzY
T
z

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]T

ev (4.10)

For this adaptive controller scheme, we simulate for two estimated values of φ̂:

φ̂ = π
6
, as done before for the non-adaptive scheme, and φ̂ = 2π

3
, to highlight the

lack of the usual restriction on camera misalignment, as a significant advantage of

indirect adaptation schemes over direct adaptation counterparts, on a visual servoing

scenario.

Case 1 - φ̂ = π
4

Here, we present simulation results for an estimated misalignment φ̂ = π
6
. The

system initial conditions and control gains are given in Table 4.3.

Simulation results are presented in Figures 4.5-4.13. The planar trajectory track-
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Table 4.3: Simulation Adaptive Control- Case π
6
: Initial conditions

θ(0)
[
0 − π

4
π
2

]T

â⊥(0) [9.8207 7.5292 5.6700 4.3470]T

âz(0) [0.0270 0.0207]T

pc(0) [213.93 0 100]T

poxy(0) [210 0]T

Kk 7





1 0 0
0 1 0
0 0 1





Ko 6

[
1 0
0 1

]

Γ⊥ 8







3 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1







Γz 10−6

[
0.5 0
0 1

]

[||a⊥max|| ||a
⊥
min||] [28.28 2]

[||azmax || ||azmin||] [0.13 0.03]
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Figure 4.6: Simulation Adaptive Control Case π
6
: Area Tracking
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Figure 4.7: Simulation Adaptive Control Case π
6
: Image plane tracking error
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Figure 4.8: Simulation Adaptive Control Case π
6
: Area tracking error
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Figure 4.9: Simulation Adaptive Control Case π
6
: Observer error
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Figure 4.10: Simulation Adaptive Control Case π
6
: Depth-independent Parameters
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Figure 4.11: Simulation Adaptive Control Case π
6
: Depth-dependent Parameters
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Figure 4.12: Simulation Adaptive Control Case π
6
: Joint angles

ing in image space is presented in Figure 4.5, for the robot and observer, as the

area tracking is similarly presented in Figure 4.6. The error for plane and area tra-

jectory tracking are illustrated in Figure 4.7 and Figure 4.8. In around 1 second,

the tracking error has been significantly reduced, and it is important to note while

the error seems to tend towards zero over time, it is not an asymptotic decrease, as

expect from the stability analysis in Chapter 3. Figure 4.9 illustrates the observer

error. As previously mentioned, the observer is useful to avoid using image space

velocity in the controller for manipulators with non-negligible dynamics, which are

simulated in the next section. Figures 4.10 and 4.11 show the evolution of estimated

parameters â⊥ and âz over time. Observe that after as the parameter updates are

based on trajectory tracking error, there is a greater and faster variation at the

parameters on the first second of simulations, before slowly down as the norm of the

tracking error decreases. Figures 4.12 and 4.13 show the joint angles and control

signals respectively. Overall, a feasible control signal with a satisfying performance

was reached.
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Figure 4.13: Simulation Adaptive Control Case π
6
: Control signals
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Figure 4.14: Simulation Adaptive Control Case 2π
3
: Image plane Trajectory

Case 2 - φ̂ = 2π
3

Here, we present simulation results for an estimated misalignment φ̂ = 2π
3
. The

system initial conditions and control gains are given in Table 4.4.

Simulation results are presented in Figures 4.14-4.22. The planar trajectory

tracking in image space is presented in Figure 4.14, for the robot and observer,

as the area tracking is similarly presented in Figure 4.15. The increasing tracking

error for the initial assumption of φ̂ = 2π
3

is visible on the trajectory. Figures 4.19

and 4.20 show the evolution of estimated parameters â⊥ and âz over time. Observe

that it takes around 0.5 seconds for the estimated parameters â⊥ to change signals

from their initial estimation. The error for plane and area trajectory tracking are

illustrated in Figure 4.16 and Figure 4.17. Worthy of note that the error increases

until around the 0.5 second mark, where the parameters change signals, before

tending towards zero as in the previous case. Figure 4.18 illustrates the observer

error. Figures 4.21 and 4.22 show the joint angles and control signals respectively.

Overall, a feasible control signal with a satisfying performance was reached, even in

the presence of a misalignment angle greater than π
2
.
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Table 4.4: Simulation Adaptive Control- Case 2π
3
: Initial conditions

θ(0)
[
0 − π

4
π
2

]T

â⊥(0) [−5.67 − 4.347 9.8207 7.5292]T

âz(0) [0.0270 0.0207]T

pc(0) [213.93 0 100]T

poxy(0) [210 0]T

Kk 3





1 0 0
0 1 0
0 0 1





Ko 6

[
1 0
0 1

]

Γ⊥ 8× 10−2







3 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1







Γz 10−6

[
1 0
0 2

]

[||a⊥max|| ||a
⊥
min||] [28.28 2]

[||azmax || ||azmin ||] [0.13 0.03]
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Figure 4.15: Simulation Adaptive Control Case 2π
3
: Area Tracking
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Figure 4.16: Simulation Adaptive Control Case 2π
3
: Image plane tracking error
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Figure 4.17: Simulation Adaptive Control Case 2π
3
: Area tracking error
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Figure 4.18: Simulation Adaptive Control Case 2π
3
: Observer error
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Figure 4.19: Simulation Adaptive Control Case 2π
3
: Depth-independent Parameters
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Figure 4.20: Simulation Adaptive Control Case 2π
3
: Depth-dependent Parameters
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Figure 4.21: Simulation Adaptive Control Case 2π
3
: Joint angles
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Figure 4.22: Simulation Adaptive Control Case 2π
3
: Control signals
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4.2 Dynamic Anthropomorphic Arm

In this section, the anthropomorphic arm dynamics are non-negligible. Consider

the same visual servoing setup from the previous section, as seen in Figure 4.1.

The inertia Matrix M(θ), the Coriolis and centrifugal forces matrix C(θ, θ̇) and the

gravity vector g(θ) for an anthropomorphic arm are given as seen in (LEITE and

LIZARRALDE, 2016):

M(θ) =






a1 0 0

0 a2 + 2a3c3 a4 + a3c3

0 a4 + a3c3 a4




 (4.11)

C(θ, θ̇) =






0 0 0

0 −a3s3θ̇3 −a3s3(θ̇2 + θ̇3)

0 a3s3θ̇2 0




 (4.12)

g(θ) =






0

a5s2 + a6s23

a6s23




 (4.13)

where a1 = I1+m1l
2
c1, a2 = I2+m2l

2
c2+m3l

2
c3+m3l

2
2, a3 = m3l2lc3, a4 = I3+m3l

2
c3,

a5 = g(m2lc2 +m3l2) and a6 = gm3lc3. Ii, mi are the inertia and mass of link i, lci

is the center of mass of link i and g is the gravity acceleration.

Furthermore, by considering ad = [a1 a2 a3 a4 a5 a6]
T , we can parameterize the

dynamic model, as seen in equation (2.53) with

M(θ)θ̈r + C(θ, θ̇)θ̇r + g(θ) = Yd(θ, θ̇, θ̇r, θ̈)ad (4.14)
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Table 4.5: Nominal Parameters for the camera and dynamic manipulator

l1 0.26m
l2 0.26m
l3 0.26m
lc1 0.0983m
lc2 0.0983m
lc3 0.0223m
m1 6.5225kg
m2 6.5225kg
m3 2.0458kg
I1 0.1213 kg m2

I2 0.1213 kg m2

I3 0.0116 kg m2

g 9.81 m/s2

f 8mm
α 72727 pixel/m
φ 0 rad
zi 1m
β 0.1

where Yd ∈ R
3×6 has elements given by

Yd12 = Yd13 = Yd14 = Yd15 = Yd16 = Yd21 = Yd31 = Yd32 = Yd35 = 0

Yd11 = θ̈r1

Yd22 = θ̈r2

Yd23 = (2θ̈r2 + θ̈r3)c3 − (θ̇r3 θ̇2 + θ̇3θ̇r2 + θ̇3θ̇r3)s3

Yd24 = θ̈r3

Yd25 = s2

Yd26 = s23

Yd33 = θ̈r2c3 + θ̇2θ̇r2s3

Yd34 = θ̈r2 + θ̈r3

Yd36 = s23

The parameters for the camera and the manipulator with non-negligible dynam-

ics are given in Table 4.5.
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Figure 4.23: Simulation Dynamic Control Case π
6
: Image plane Trajectory and Area

Tracking

4.2.1 Adaptive Visual Servoing Simulations - Cascade

Strategy

Here, we present the performance of the adaptive visual servoing for a manipulator

with non-negligible dynamics and a kinematic observer for translational trajectory

tracking, as developed in Chapter 3, for the task of tracking the same goal pd(t) (4.7)

from the previous section. Consider as well the following control and parameter

update laws, as presented in Table 3.3 in the previous chapter.

τ = Yd(θ, θ̇, θ̇r, θ̈r)âd −KDσ (4.15)

θ̇r = Ĵ∗−1

o (ṗd −Kk(po − pd)) (4.16)

˙̂a⊥ = Γ⊥

[

a
1

2

c Y ⊥

0

]T

ev (4.17)

˙̂az = −ΓzY
T
z

[

a
1

2

c (pxy − pxyi)

2a
3

2

c

]T

ev (4.18)

˙̂ad = −ΓdY
T
d σ (4.19)

Similar to the the kinematic case, we present simulations for two estimated values

of φ̂: φ̂ = π
6
and φ̂ = 2π

3
.

Case 1 - φ̂ = π
6

Here, we present simulation results for an estimated misalignment φ̂ = π
6
. The

system initial conditions and control gains are given in Table 4.6.

Simulation results are presented in Figures 4.23-4.28. The planar trajectory

tracking in image space, for both manipulator and observer, and area tracking are
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Table 4.6: Simulation Adaptive Dynamic Control- Case π
6
: Initial conditions

θ(0)
[
0 − π

4
π
2

]T

θ̇(0) [0 0 0]T

â⊥(0) [9.8207 7.5292 5.6700 4.3470]T

âz(0) [0.0270 0.0207]T

âd(0) [0.1659 0.3018 0.0110 0.0114 10.3570; 0.4136]T

pc(0) [213.93 0 100]T

poxy(0) [210 0]T

Kk 7





1 0 0
0 1 0
0 0 1





Ko 8

[
1 0
0 1

]

Kd 2





1 0 0
0 1 0
0 0 1





Γ⊥ 0.2







3 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1







Γz 3× 10−6

[
1 0
0 2

]

Γd R
6×6 Identity matrix

[||a⊥max|| ||a
⊥

min||] [28.28 2]
[||azmax|| ||azmin ||] [0.13 0.03]
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Figure 4.24: Simulation Dynamic Control Case π
6
: Image plane and area tracking

error
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Figure 4.25: Simulation Dynamic Control Case π
6
: Observer error
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Figure 4.27: Simulation Dynamic Control Case π
6
: Joint angles and control signals
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Figure 4.28: Simulation Dynamic Control Case π
6
: Velocity tracking error and dy-

namic parameters

presented in Figure 4.23. The error for plane and area trajectory tracking are

illustrated in Figure 4.24. The area tracking error is already significantly reduced

in around 5 seconds, while the trajectory tracking error takes longer. Figure 4.25

illustrates the observer error. Figure 4.26 show the evolution of estimated parameters

â⊥ and âz over time. As the parameters take longer to converge in this case, we

can observe that error reduction is also slower. Figure 4.27 shows the joint angles

and control signals which are visibly bounded as expected. Figure 4.28 show the

velocity tracking error and the dynamic parameters over time. Overall, a feasible

control signal and performance were reached.

Case 2 - φ̂ = 2π
3

Here, we present simulation results for an estimated misalignment φ̂ = 2π
3
. The

system initial conditions and control gains are given in Table 4.7.

Simulation results are presented in Figures 4.29-4.34. The planar trajectory

tracking in image space, for both manipulator and observer, and area tracking are

presented in Figure 4.29. The error for plane and area trajectory tracking are

illustrated in Figure 4.30. An increasing tracking error is visible at the beginning
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Table 4.7: Adaptive Dynamic - Case 2π
3
: Initial conditions

θ(0)
[
0 − π

4
π
2

]T

θ̇(0) [0 0 0]T

â⊥(0) [−5.6700 − 4.3470 9.8207 7.5292]T

âz(0) [0.0270 0.0207]T

âd(0) [0.1659 0.3018 0.0110 0.0114 10.3570; 0.4136]T

pc(0) [213.93 0 100]T

poxy(0) [210 0]T

Kk 2





1 0 0
0 1 0
0 0 1





Ko 4

[
1 0
0 1

]

Kd 2





1 0 0
0 1 0
0 0 1





Γ⊥ 0.2







3 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1







Γz 3× 10−6

[
1 0
0 2

]

Γd R
6×6 Identity matrix

[||a⊥max|| ||a
⊥

min||] [28.28 2]
[||azmax|| ||azmin ||] [0.13 0.03]
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Figure 4.29: Simulation Dynamic Control Case 2π
3
: Image plane Trajectory and

Area Tracking
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Figure 4.30: Simulation Dynamic Control Case 2π
3
: Image plane and area tracking

error
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Figure 4.31: Simulation Dynamic Control Case 2π
3
: Observer error
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Figure 4.33: Simulation Dynamic Control Case 2π
3
: Joint angles and control signals
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Figure 4.34: Simulation Dynamic Control Case 2π
3
: Velocity tracking error and

dynamic parameters

as the robot starts moving in the opposite direction than it should, due to the

initial assumption of φ̂ = 2π
3
. Figure 4.31 illustrates the observer error. Figure

4.32 show the evolution of estimated parameters â⊥ and âz over time. Similarly to

the kinematic case, the parameters estimated with wrong sign quickly adapt at the

start, changing signs near the 1 second mark. Figure 4.33 shows the joint angles

and control signals which are visibly bounded as expected. Figure 4.34 show the

velocity tracking error and the dynamic parameters over time. Overall, a feasible

control signal and performance were reached.

4.3 Initial Experimental Results - Planar Case

In this section, experimental results are presented for the adaptive visual servoing

scheme, in an eye-to-hand setup. The manipulator used is the Tetis, a robot arm

with four revolute joints, along a fixed webcam for capturing images, with uncertain

parameters, as shown in Figure 4.35.

The Tetis has links made of carbon fiber tubes and its joints are 3D printed in

titanium alloy Ti64. The actuators are from the Harmonic Drive Ag Mini series,
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Figure 4.35: Experimental setup: Tetis Manipulator and Webcam

and drivers are the EPOS2 70/10 model from Maxon Motor. The software used

to operate the Tetis is based on the Robot Operating System (ROS) platform, and

allows for Cartesian velocities in the robot base frame to be given as commands to

move the end-effector. Thus, in the following experiments, the robot Jacobian is

considered known and solved in an inner control loop, only the camera parameters

are considered uncertain.

The webcam is also sending images through the ROS usb cam package. The

target to be tracked is a QR Code as seen in Figure 4.36. Image processing and

target detection are done with the ROS package visp auto tracker.

The position of the target centroid is received by the Matlab software, in which

control is calculated and then sent to the Tetis software. Control is transmitted at

a rate of 50 Hz and calculated in SI units. The Tetis software however, receives

velocity control in mm/s, so care with unit conversions should be taken during

the experiment. The kinematic observer proposed in this thesis is implemented in

Matlab to show its validity. The full experimental setup is illustrated in diagram

4.37.
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Figure 4.36: Experimental setup: QR Code target

Matlab
Script

Tetis
Software

Cartesian Control
Tetis
Manipulator

Target Movement

Webcam

Visual FeedbackROS
usb cam

VISP
auto tracker

Target
Information

Figure 4.37: Block diagram of the experimental setup

79



4.3.1 Planar Control

We present experimental results for a image planar configuration, with constant

depth. A constant depth zc can be considered an unknown parameter part of the

camera matrix Kp and taking in consideration that the Tetis is controlled with

Cartesian control, the system can be simplified as:

ṗ′c =

[
fα
zc

0

0 fα
zc

]

R(φ)ṗbe = Kp v (4.20)

Similarly, Cartesian control v is given by

v = K̂p
−1
(ṗd −Kk(pc − pd)) (4.21)

where K̂p is an estimative of the camera matrix. Parameterization is simplified to a

single vector of parameters, and is given by:

Kp v =

[

v(1) v(2)

v(2) −v(1)

][
f̂ α̂
ẑc

cos(φ̂)
f̂ α̂
ẑc

sin(φ̂)

]

(4.22)

Kp v = Y (v)â (4.23)

Finally, the kinematic observer is expressed by

ṗo = K̂p v −Ko(po − pc) +Kk(pc − pd) (4.24)

For this system, we show performance of the adaptive control with parameters

update.

Adaptive Controller

In this simplified planar configuration, estimated parameters are updated with the

following law:
˙̂a = Γ Y T (pc − pd) (4.25)

The desired trajectory is pd = [0.06 + 0.01 sin( 5
π
t) − 0.021 + 0.01 cos( 5

π
t)]T , as

measured in the camera frame. The controller gains are Kk = 1, Ko = 2 and Γ = 10.

The observer initial position is given by po = [0.5 0]T .

Experimental results are presented with Figures 4.38-4.41. Figure 4.38 shows

the target current and desired position as well as the observer state over the duration

of the experiment. Figure 4.41 show that the parameters were still in transient state

and adapting slowly, a higher Γ gain could have been used, or a longer experiment

run to see more effects in the adaptation of parameters. With small variation in the
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Figure 4.38: Adaptive Control experimental results: Target and Observer position
over time

parameters, the tracking and observer errors themselves have slow variation in their

overall magnitude, while still being bounded as expected.

Here, it is important to point out a few problems observed in this experimental

setup, especially over the choice for target data acquisition, QR code identification

through visp auto tracker, as it might not have been an optimal choice. First, as

quantity of binary information is high, processing its information can be slow for

the controller, rate at which the position of its centroid is acquired getting as low

as 10 Hz at times, as the ROS package calculates various parameters which are not

of interest to this problem, like orientation. For a similar reason, movement may

cause the package to lose track or wrongly locate the target. A third major problem

is the sensibility to variance in ambient lighting, which required saturation with an

external flashlight (as seen with the phone in Figure 4.36) to increase performance

in that sense. Even then, there were still noticeable errors in target localization in

the experiment and some less noticeable loss of tracking (if the package loses track

of the QRCode, it repeats the last known position until it finds the QRCode again).

A possible solution to the rate of target acquisition would be using a simpler

identification tag like an ArUco marker, however, it still requires further testing.

4.4 Conclusions

In this chapter, we presented simulations and experimental to illustrate the per-

formance of the controller scheme developed in this paper. First, we presented

performance for the Look-and-move algorithm, for a kinematic model and an as-

sumed camera misalignment of φ̂ = π
6
. Then, we presented the adaptive kinematic

controller scheme for the same case, followed of a case where the parameters are

assumed with a wrong sign φ̂ = 2pi
3
. We extend the problem to a problem with

non-negligible dynamics, showing the performance of the cascade controller scheme
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Figure 4.39: Adaptive Control experimental results: Planar Trajectory and Control
Signal
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Figure 4.40: Adaptive Control experimental results: Image and Observer errors

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

a
d

a
p

t

â1
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Figure 4.41: Adaptive Control experimental results: Estimated Parameters and
Estimated Parameters variation signal
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for previous two φ̂ cases. Finally, we present experimental results using the Tetis

manipulator, for planar control with constant depth.
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Chapter 5

Conclusions and Future Work

In this chapter, we present the conclusions and final considerations about the re-

search theme considered in this thesis, along with a brief summary over what has

been discussed in the previous chapters. Finally, we present some suggestions and

proposals to be developed in future work.

5.1 Conclusions

• In this work, we considered the problem of adaptive 3D image based visual

servoing for a manipulator with uncertain parameters and an uncalibrated

camera. The controller scheme is first developed for a kinematic problem

and then extended for the case with non-negligible dynamics. The idea is

to use indirect adaptive methods to estimate the unknown parameters and

then project control laws to allow for planar trajectory and depth tracking

simultaneously.

• First, we have considered a setup with an open-chain robot manipulator and

the frontal perspective model of a pinhole fixed camera. A target was chosen

ad the end-effector manipulator, with defining features to be extracted being

the target’s centroid and projected area, as the area is inversely proportional

to the square potency of camera depth. An assumption was made for an

spherical target, so that the target area is invariant to the orientation of the

robot manipulator.

• The task goal consists of tracking a reference trajectory and area variation,

in the camera image frame. No special considerations are made about the

alignment between the camera and robot, aside from the target staying inside

the camera field of view during the whole task, with no occlusions. A kinematic

adaptive controller is developed using the parameters estimated through an

indirect adaptive scheme, in a inverse-Jacobian control law. Parameterizations
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are presented, separating the depth-dependent from the depth-independent

image Jacobian.

• To avoid measuring image velocity, we introduce a kinematic observer to the

system, using the observer states in the control law instead. An stability

analysis is then done for the full visual servoing kinematic system with an

observer. The passivity property of the complete system is also analyzed.

• We then extended the controller to a case with non-negligible dynamics. The

cascade control strategy presented in (GUENTHER and HSU, 1993) is used,

which can connect a passive driving subsystem to a passive driven subsys-

tem. We use the theorem for interconnected passive subsystems with external

disturbances to cascade the developed adaptive kinematic control to the well-

known Slotine-Li adaptive scheme for dynamic manipulators, proved to have

passivity properties, while also remarking that any passive dynamic control

scheme could also be used.

• Lastly, we presented simulations done in the Matlab/Simulink software and

experimental results using a setup with Tetis manipulator and a webcam, to

illustrate the performance of the proposed control schemes. With simulation,

the performance of a Look-and-move scheme was first presented for compar-

ison, followed by the results of the adaptive kinematic control scheme, both

for a camera misalignment smaller and greater than π
2
to properly illustrate

the lack of a camera misalignment restriction for the proposed work. Similar

results are then presented for the case with non-negligible dynamics, cascading

with the Slotine-Li adaptive scheme. With the experimental setup, results are

presented for the adaptive controller for a simplified tracking problem with

constant depth and unknown camera parameters.

5.2 Future Work

Considering the problem of image-based indirect adaptive visual servoing for trans-

lational trajectories, the following topics can be investigated:

• Develop an adaptive visual servoing scheme using an observer for the tracked

area and provide stability analysis for it. In this work, as previously mentioned,

the observer was used to estimate only the image planar velocity and the area

variation was supposed to be measured.

• Develop an adaptive scheme for tracking moving targets using an eye-in-hand

camera system, without measuring image-space velocity, using the indirect

adaptive methods presented in this work.
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• Extend the problem from trajectory tracking to pose tracking, considering

camera occlusion and manipulator singularities.

• Relax the condition of area being invariant to camera angle, essentially ac-

cepting non-spherical targets for tracking. Similarly, use the depth-to-area

transformation to propose a goal directly as camera depth instead of target

area.

• Consider other image characteristics of features that could be used for tracking.

Only geometric features are used in this work, however literature presents

other approaches for target recognition, such as luminance of image pixels as

seen in (COLLEWET and MARCHAND, 2011) or intensity of image pixels

(SILVEIRA, 2014).

• Consider different camera models, like a fisheye camera, instead of the per-

spective model of a pinhole camera used in this work.
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