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UM ESTUDO DE ALGORITMOS BASEADOS EM LMS: EXPLORANDO
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Orientadores: Markus Vinícius Santos Lima
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Nas últimas décadas, os �ltros adaptativos foram empregados em diferente apli-

cações. O foco dessa dissertação é em uma aplicação em particular: identi�cação de

sistemas que apresentam algum esparsidade. Um sistema é esparso quando ele pode

ser representado por poucos coe�cientes em algum domínio. Este trabalho aborda

os seguintes tipos de esparsidade: a simples e a escondida. A simples é bastante

conhecida em �ltragem adaptativa e ocorre quando é possível observar a esparsidade

sem nenhuma manipulação matemática. Por conta da sua importância, duas famí-

lias de algoritmos foram criadas com o intuito de explorará-la. A ideia proporcional

tenta explorar a esparsidade ao atribuir tamanho de passo únicos para cada coe�ci-

ente. Enquanto a família dos algoritmos regularizados usam funções promotoras de

esparsidade. Considerando que os algoritmos proporcionais não modelam a espar-

sidade explicitamente, esse trabalho realiza um estudo aprofundado dessa família,

apresentando algumas propriedades ainda não documentadas. Para isso, resultados

numéricos foram apresentados, concluindo-se que os algoritmos proporcionais explo-

ram algo mais geral que a esparsidade. A esparsidade escondida é mais recente em

�ltragem adaptativa e requer manipulações matemáticas para revelar a esparsidade

do sistema. O algoritmo feature least-mean-square (F-LMS) resolve esse problema

ao introduzir a matriz de features. Entretanto, existem muitas aplicações que pos-

suem os dois tipos de esparsidade, e o algoritmo F-LMS não explora a simples. Com

isso, foi proposto o algoritmo simple sparsity-aware F-LMS (SSF-LMS), o qual ex-

plora ambos os tipos de esparsidade enquanto realiza menos operações aritméticas,

ao usar a função de discarte.
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Over the last decades, adaptive �lters have been used in many di�erent applica-

tions. This dissertation focuses on one in particular: the identi�cation of systems

presenting some kind of sparsity. A system is sparse when we represent it by only a

few coe�cients in some domain. This work addresses the following kinds of sparsity:

the plain and the hidden. The plain one is well-known in the adaptive �ltering �eld

and occurs when the sparsity is directly observed in the coe�cients space, without

any mathematical manipulation. There are two distinct families of algorithms that

were intended to tackle this problem. The proportionate family tries to exploit the

plain sparsity by assigning particular step sizes to each of the coe�cients. The se-

cond family is the regularized-type, which relies on sparsity promoting functions.

Since the proportionate family of algorithms does not model the sparsity explicitly,

this work performs a thorough study of this family, addressing some undocumented

properties. Therefore, we present several numerical results, concluding that they

exploit something more general than the plain sparsity. The hidden sparsity is a

more recent problem in the adaptive �ltering �eld, in which we reveal the system

sparsity through some mathematical manipulation. The feature least-mean-square

(F-LMS) algorithm addresses this problem introducing a feature matrix in the ob-

jective function of the LMS algorithm. However, several applications have both

types of sparsity, and the F-LMS can not exploit the plain one. Then, we propose

the simple sparsity-aware F-LMS (SSF-LMS), which exploits both of them while

requiring less arithmetic operations by using the discard function.
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Chapter 1

Introduction

A digital �lter is a structure that extracts the desired information about a prescribed

quantity of interest from a set of noisy data. In other words, it maps an input

signal, which contains the desired information, to an output signal that facilitates

the visualization of such information [1�4]. We can separate a �lter into two classes:

linear and nonlinear. When the output signal is a linear combination of the system

input, we have a linear �lter. Otherwise, it is nonlinear [1�4]. Many �lters are time-

invariant, meaning that their internal coe�cients are �xed, designed according to

prescribed speci�cations. However, sometimes, a time-invariant �lter cannot satisfy

the speci�cations, either because they are time-varying or unknown [1].

Adaptive filter

Adaptive filtering
algorithm

x(k)
y(k)

d(k)

e(k)

–

+

Figure 1.1: General representation of an adaptive �lter.

When a time-invariant �lter cannot satisfy the prescribed speci�cation, we can

use an adaptive �lter [1, 5, 6]. As they depend on the input signal, adaptive �lters

are nonlinear systems. Figure 1.1 depicts the general representation of an adaptive

�lter, where k is the iteration number, x(k) is the input signal, y(k) denotes the

output of the adaptive �lter, and d(k) speci�es the desired signal. The error signal

is e(k) = d(k) − y(k). We use it to form an objective function that determines

the appropriate updating of the �lter coe�cients for an adaptive �ltering algorithm.
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The minimization of the objective function indicates that the output and the desired

signal are matching in some sense [1].

The main goal of an adaptive �lter is to adjust its coe�cients in order to minimize

a given objective function [1]. Generally, this function F depends on the input,

desired and output signals [1, 3]. A widely used objective function is the mean-

square error (MSE) given by

F [e(k)] = E
[
|e(k)|2

]
, (1.1)

where E[.] denotes expected value.

The solution for the minimization of (1.1) is the well known Wiener �lter, which

is the optimum solution for linear �lters in terms of the MSE criterion [1, 7, 8].

However, this solution is only theoretical, since in order to design the Wiener �lter

we need an in�nite amount of information to calculate some statistical parameters

(mean and correlation) [9�11]. Instead of the MSE, one can use the instantaneous

square error (ISE) objective function given by

F [e(k)] = |e(k)|2 . (1.2)

The procedure that minimizes the objective function is the adaptive �ltering

algorithm, depicted in Figure 1.1. In particular, one of the most popular is the

least-mean-square (LMS) algorithm. Since its development [12], it constitutes a

benchmark among other adaptive �ltering algorithms [13]. Unlike the Wiener so-

lution, the LMS algorithm minimizes the ISE, instead of the MSE. By using this

objective function, the LMS algorithm does not require to compute the correla-

tion and cross-correlation matrices, which are necessary to calculate the Wiener

solution [1, 3]. The LMS algorithm relies on these simple approaches to save com-

putational resources. Despite its simplicity, it achieves satisfactory performance [3].

The normalized LMS (NLMS) algorithm is the natural upgrade of the LMS algo-

rithm [1, 3, 6]. It addresses some of the problems present in the LMS algorithm

by normalizing the input signal, allowing the NLMS algorithm to reach faster con-

vergence speed without using estimates of the input signal correlation matrix [1].

One can interpret the normalization of the input signal as a variable convergence

factor, 1 which is a trivial approach to improve the minimization of the instan-

taneous output error [1]. Thus, the NLMS algorithm is a faster and more stable

version of the LMS algorithm that usually outperforms it [1, 3, 6]. However, to

achieve all these improvements, the NLMS algorithm requires more computational

complexity. Although the focus of this work is on the system identi�cation, we can

1In this text, we use both convergence factor and step size with the same meaning.
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employ the LMS-based algorithms in several practical applications, such as channel

equalization [14�18], active noise control [19�22], continuous time-�lter tuning [23],

and system identi�cation [1, 24, 25], among others [26].

There are a plethora of practical systems that involve sparse impulse responses,

such as echo path channels [27], wireless channels [28], 5G wireless systems [29],

medical data [30], channel equalization [31], seismic data [32], preampli�ers [33],

among others [34�36]. The sparsity in a system ensues when just a few of its coe�-

cients are relevant, i.e., the impulse response has few nonzero coe�cients [27, 34, 37].

In the adaptive �ltering �eld, several research e�orts have been made to address the

plain sparsity problem, which appears when the impulse response has a sparse rep-

resentation without any mathematical manipulation, depicted in Figure 1.2. Many

algorithms have been developed with the purpose to exploit the plain sparsity in

the system. The proportionate NLMS (PNLMS) algorithm gives birth to an en-

tire family of algorithms that aims at the exploitation of the sparsity, the so-called

proportionate-type family [27]. These algorithms assign particular step sizes to each

coe�cient, proportional to their magnitude. Several important algorithms com-

pose this family, such as the PNLMS++ [38], improved PNLMS (IPNLMS) [39],

µ-law PNLMS (MPNLMS) [40], improved MPNLMS (IMPNLMS) [41], proportion-

ate a�ne-projection (PAP) [42], and improved PAP (IPAP) [43] algorithms, and

many others [44�47].

-1

-0.5

0

0.5

1

A
m

p
li

tu
d

e

0 20 40 60 80 100

Figure 1.2: Plain sparse impulse response.

Recently, the regularized family has emerged, which can exploit the system spar-

sity, explicitly. The algorithms of this family use penalty functions to promote

sparsity. We can best represent a sparse vector by its `0-�norm�, which counts the

3



number of nonzero entries present in the vector. 2 Thus, these algorithms impose a

penalization by the `0-norm in the adaptive �lter coe�cients, changing the objective

function that the algorithm minimizes. However, by using the `0-norm, we have a

combinatorial optimization problem, which is hard to solve and has high computa-

tional complexity [50]. Then, it is common to use an approximation of the `0-norm

or the `1-norm [50�52]. Several algorithms compose this family, as the `0-LMS [53],

zero-attracting LMS (ZA-LMS) [54], and reweighted ZA-LMS (RZA-LMS) [54] al-

gorithms.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

(a) In the coe�cients domain (current rep-

resentation).

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

(b) In the transformed domain.

Figure 1.3: Hidden sparse impulse response.

There is another type of sparsity besides the plain one. We refer to hidden

sparsity when some mathematical manipulation in the coe�cients is required to

reveal the system sparsity. In other words, we cannot observe the sparsity in the

current representation of the system. Figure 1.3 depicts an impulse response with

hidden sparsity and its equivalent in a transformed domain. In Figure 1.3a, one can

notice the impulse response in the coe�cients domain, which has the hidden sparsity.

By performing mathematical manipulations, we have the sparse impulse response in

a transformed domain, depicted in Figure 1.3b. Unfortunately, none of the former

adaptive �ltering algorithms can exploit this type of sparsity. However, the new

feature LMS (F-LMS) algorithm bene�ts from the hidden sparsity by incorporating

some features implicit to the unknown system to its objective function. These

features can refer to any characteristics of the system, such as the band of the

spectrum or decomposition of the impulse response [13, 55]. However, many systems

have both types of sparsity, and the F-LMS algorithm does not take advantage of

the plain one. Then, we propose a low computational complexity algorithm that
2We represent the `0-�norm� with the quotation marks because it is not a proper norm. The

`0 does not satisfy the property of homogeneity, i.e., it is a function that does not satisfy all the
conditions to be a norm [48]. Actually, the `0 is a quasi-norm [49]. However, for simplicity, we use
`0-norm (without the quotation marks).
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can exploit both sparsities, simultaneously. By also using the so-called discard

function [56], the simple sparsity-aware F-LMS (SSF-LMS) algorithm outperforms

the F-LMS algorithm when the system has plain and hidden sparsity, requiring fewer

arithmetics operations. It is worth mentioning that [57] proposes an alternative

approach to exploit both types of sparsity that uses the `0-norm, but in such work,

the number of arithmetic operations required by the proposed algorithm is much

larger in comparison with the SSF-LMS algorithm.

1.1 Main Contributions of this Work

This work investigates the properties of sparsity-aware algorithms, mainly LMS-

based ones. Throughout the text, we clarify some misunderstandings about the

proportionate-type family. We present several simulations to demonstrate that the

algorithms of this family do not exploit the system sparsity at all. In fact, they

take advantage of some other features, which usually exist in sparse systems. Thus,

we introduce some properties of these algorithms aiming at explaining the observed

behavior. It is worth pointing out that some of these properties have never been

published before and researchers are not aware of them (nor the limitations they

imply). We also explore the hidden sparsity problem by proposing a low compu-

tational complexity algorithm, which can exploit both types of sparsity, simulta-

neously. The proposed SSF-LMS algorithm can outperform the F-LMS algorithm

when the impulse response has both types of sparsity, doing fewer arithmetic op-

erations. Moreover, we show how one can choose an adequate feature matrix for

a couple of simple impulse responses, which is a requirement to exploit the hidden

sparsity.

1.2 Organization of the Text

In Chapter 2, we do a brief review of the LMS, NLMS, PNLMS, IPNLMS, `0-LMS,

and `0-NLMS algorithms, which we use throughout the experiments. We also present

their objective functions and summarize their operations, providing an easy way to

implement them. Chapter 3 addresses some properties of the proportionate-type

algorithms, showing several simulation results to validate them. Also, by further

analysis of these algorithms, we can conclude that they do not exploit the sparsity

in the system. In Chapter 4, we introduce the hidden sparsity problem, presenting an

algorithm that is capable of exploiting this feature. We also propose the SSF-LMS

algorithm, which is a low complexity option that exploits both types of sparsity,

simultaneously. Finally, we conclude this work in Chapter 5.
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1.3 Notation

Scalars are represented by lower-case letters. Vectors (matrices) are

denoted by lowercase (uppercase) boldface letters. For a given it-

eration k, the weight vector and the input vector are denoted by

w(k), x(k) = [x(k) x(k − 1) . . . x(k −N + 1)]T ∈ RN+1, respectively, where N is

the adaptive �lter order. The optimum system coe�cient is denoted by wo. The

error signal at the kth iteration is de�ned as e(k) , d(k) − wT(k)x(k), where

d(k) ∈ R is the desired signal. The `1-norm of a vector w ∈ RN+1 is given by

‖w‖1 =
∑N

i=0 |wi|. The maximum function of a vector w ∈ RN+1 is max{w} = wi

if wi ≥ wj ∀ i 6= j = 0, . . . ,N. The diagonal function of a vector w ∈ RN+1 is

Diag{w} ∈ R(N+1)×(N+1), i.e., a diagonal matrix with vector w in its diagonal.

1.4 Publications

This section lists the accepted works relative to most of Chapter 3 and Chapter 4,

respectively:

� CHAVES, G. S., LIMA, M. V. S., FERREIRA, T. N. �O Algoritmo PNLMS

Realmente Explora a Esparsidade dos Coe�cientes?� In: XXXVII Brazilian

Symposium on Telecommunications and Signal Processing, pp.1-5, Petrópolis,

Brazil, September 2019.

� CHAVES, G. S., LIMA, M. V. S., YAZDANPANAH, H., et al. �A Simple

Sparsity-aware Feature LMS Algorithm.� In: 27th European Signal Processing

Conference, pp.1-5, A Coruña, Spain, September 2019.

Also, we are preparing a journal paper containing the full contribution of Chap-

ter 3.
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Chapter 2

Some LMS-based Algorithms

In this chapter, we present a brief description of some algorithms that have been

considered in the next chapters. We overview important properties of the least-

mean-square (LMS), normalized LMS (NLMS), proportionate NLMS (PNLMS), im-

proved PNLMS (IPNLMS), `0-LMS, and `0-NLMS algorithms. For each algorithm,

we deduce its objective function and update equation. Moreover, we summarize the

algorithms steps in a friendly manner in order to facilitate their implementation.

2.1 The LMS Algorithm

The LMS adaptive algorithm �lter is based on the steepest descent method, also

referred to as the stochastic gradient method. This type of algorithm searches for

the minimum point of a given objective function by following the opposite direction

of the gradient vector. The steepest descent method requires a set of initial condi-

tions for the weights and, through iterative updates, the process will converge to a

minimum point if the changes in the weights reduce the objective function [5]. The

update equation for this method assumes the general form

w(k + 1) = w(k)− µgw(k) , (2.1)

where µ ∈ R+ is the step size and gw(k) is the gradient of the objective function

with response to w(k).

In the case of an adaptive process that tries to �nd an exact or approximate solu-

tion for the minimum MSE, the gradient vector is gw(k) =
∂E[e2(k)]

∂w
. However, this

method requires exponentially more arithmetical operations (mainly multiplications)

as the order of the system increases [3]. Also, computing gw(k) requires statistical

information about the involved signals, which are not usually available [1, 3, 5, 12].

Therefore, the LMS algorithm performs an estimate of the vector gw(k), resulting
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in ĝw(k) =
∂e2(k)

∂w
. By suppressing the expectation operator, only the instanta-

neous measures are required, making this a low computational complexity solution.

Several works have studied the convergence of the LMS algorithm [1, 3, 5, 12, 58].

In order to �nd the update equation of the LMS algorithm, we must minimize

the cost function

ξ(k) = e2(k) , (2.2)

where e(k) = d(k) − wT(k)x(k). By doing so, we obtain the gradient of the cost

function, resulting in the update equation of the LMS algorithm given by

w(k + 1) = w(k) + 2µe(k)x(k) , (2.3)

where µ ∈ R+ is a convergence factor or the step size, which should be chosen in

a range to guarantee convergence [1]. The Algorithm 1 summarizes the operations

required by the LMS algorithm.

Algorithm 1: The LMS algorithm
Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose a suitable µ

Do for k ≥ 0

e(k) = d(k)−wT(k)x(k)

w(k + 1) = w(k) + 2µx(k)e(k)

2.2 The NLMS Algorithm

Choosing an adequate step size for the LMS algorithm may be a challenging task [1,

3, 5, 12]. One natural solution for this problem is to normalize the input signal,

which one can interpret as the inclusion of a variable convergence factor, i.e., the

algorithm updates with a di�erent step size in each iteration. Then, in exchange

of increased computational complexity, the NLMS algorithm usually achieves faster

convergence rate than the LMS algorithm [1].

We have the following optimization problem

min ‖w(k + 1)−w(k)‖22 (2.4)

s.t. d(k)− xT(k)w(k + 1) = 0.

By solving (2.4), we have the following update equation

w(k + 1) = w(k) +
x(k)e(k)

xT(k)x(k) + δ
, (2.5)
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where δ ∈ R+ is the regularization factor, responsible to avoid numerical errors

when xT(k)x(k) becomes small, i.e., divisions by zero. The term xT(k)x(k) + δ at

the divisor on the right side of (2.5) represents the variable step size. However, we

introduce another step size µ to (2.5), aiming at more freedom in the convergence

speed of the algorithm. Then, the update equation of the NLMS algorithm is given

by

w(k + 1) = w(k) +
µx(k)e(k)

xT(k)x(k) + δ
, (2.6)

where µ ∈ (0, 1] is the step size. The complete operation of the NLMS algorithm is

given in Algorithm 2.

Algorithm 2: The NLMS algorithm
Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose µ in the range 0 < µ ≤ 1

δ = small constant

Do for k ≥ 0

e(k) = d(k)−wT(k)x(k)

w(k + 1) = w(k) +
µx(k)e(k)

xT(k)x(k) + δ

2.3 The PNLMS Algorithm

The plain sparsity is well known in the context of adaptive �lters and several research

e�orts have been done over the years to tackle this type of sparsity [27, 38�41, 53,

54, 59, 60]. An impulse response is said to be sparse (or plain sparse) when most

of its energy is concentrated in a few coe�cients, while the others have null or

almost null contribution, i.e., the majority of coe�cients are equal or close to zero

and the sparsity is directly observed in the impulse response, without requiring

any mathematical transformation [61]. A few decades ago, the PNLMS algorithm

was created with the purpose of exploiting this type of sparsity in echo cancellation

systems [27]. Generally, this algorithm reduces the overall convergence time in these

scenarios, reaching superior convergence speed than the NLMS algorithm [27, 40].

The proportionate-type family assigns variable step sizes for each coe�cient of

the adaptive �lter. These step sizes are proportional to the magnitude of the respec-

tive coe�cients. For example, large coe�cients receive large step sizes [27, 39, 40].

The PNLMS was the �rst and the simplest algorithm of this family, but it has all

the essence of a proportionate algorithm. In order to obtain the update equation of
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the PNLMS algorithm, �rst we need to solve the following optimization problem

min ‖w(k + 1)−w(k)‖2G−1(k) (2.7)

s.t. d(k)− xT(k)w(k + 1) = 0 ,

where ‖w(k + 1)−w(k)‖2G−1(k) = [w(k + 1)−w(k)]TG−1(k)[w(k + 1)−w(k)] is a

norm induced by the matrix G−1(k).

In (2.7), a norm induced by the matrix G−1(k) is introduced, di�erently

from (2.4). This matrix G(k), widely known as the proportionate matrix, is re-

sponsible for reweighting the step sizes given to each coe�cient. By solving (2.7), 1

the update equation of the PNLMS algorithm is given by

w(k + 1) = w(k) +
µG(k)x(k)e(k)

xT(k)G(k)x(k) + δ
, (2.8)

where µ and δ are the same as in (2.6), i.e., the convergence and regularization

factor, respectively. The matrix G(k) is diagonal with each element de�ned as

gi(k) ,
γi(k)

N∑
n=0

γn(k)

, ∀i = {0, . . . ,N} , (2.9)

where

γi(k) , max (ρ {max [δp, |w0(k)|, ..., |wN(k)|]} , |wi(k)|) , (2.10)

ρ ∈ (0, 1] is a constant to avoid erroneous results when any coe�cient goes to

zero and δp ∈ R+ is to avoid this same type of errors, when all coe�cients go to

zero 2. Typical values to ρ and δ are 5/N and 0.01, respectively [39]. It is worthy

mentioning that small values of ρ lead to a more proportional approach, where the

real magnitude of the low-magnitude coe�cients are used in (2.10).

The proportionate matrixG(k) is common to all algorithms in the proportionate-

type family. The main di�erence among the algorithms of this family is the de�nition

of the variables gi, i.e., each relation of proportionality de�nes an algorithm of

the proportionate-type family. Thus, the PNLMS algorithm is de�ned by (2.9)

1We introduce the step size µ to the solution of (2.7) for the same reasons as in Section 2.3.
2Both of these are common problems in the initialization period of the algorithm.
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and (2.10). The Algorithm 3 provides a brief description of the PNLMS algorithm.

Algorithm 3: The PNLMS algorithm
Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose µ in the range 0 < µ ≤ 1

choose ρ in the range 0 < ρ ≤ 1

δ = δp = small constant

Do for k ≥ 0

e(k) = d(k)−wT(k)x(k)

Do for i ≤ N

γi(k) = max {ρ max [δp, |w0(k)|, ..., |wN(k)|] , |wi(k)|}

gi(k) =
γi(k)

N∑
n=0

γn(k)

end for

Compute G = Diag{g0 . . . gN}

w(k + 1) = w(k) +
µG(k)x(k)e(k)

xT(k)G(k)x(k) + δ

2.4 The IPNLMS Algorithm

The robustness of an adaptive �lter is desirable, i.e., it needs to have a minimal

performance in any situation or scenario. Several research works have reported the

poor performance of the PNLMS algorithm when applied to dispersive unknown

impulse responses [38�40]. This can be a problem when information about the

unknown system is not known a priori or when the unknown system is time-varying.

Unlike sparse systems, dispersive impulse responses do not have the majority of

its coe�cients with magnitude equal to zero, nor large di�erences in its coe�cients

magnitudes. Due to this reason, the PNLMS algorithm can not assign proper step

sizes to the estimated �lter coe�cients. A reliable solution for this problem is the

IPNLMS algorithm, which introduces an NLMS term to (2.10). Apart from the

performance improvement in dispersive systems, the IPNLMS algorithm solves the

problem of the maximum function presented in (2.10). Therefore, the band-aid

parameters ρ and δp can be removed [39]. The optimization problem becomes the

same as for the PNLMS algorithm, but the entries of G(k) are calculated di�erently.

They are now de�ned as

gi(k) ,
γi(k)

‖γ(k)‖1
, ∀i = {0, . . . ,N} , (2.11)

11



where

γi(k) , (1− α)
‖w(k)‖1

N + 1
+ (1 + α)|wi(k)| (2.12)

and α ∈ [−1, 1). For α = −1, the IPNLMS and NLMS algorithms are identical;

and for α ≈ 1, the IPNLMS algorithm behaves like the PNLMS algorithm. In other

words, α controls how proportionate will the IPNLMS algorithm be. As we have

already explained, decreasing the degree of proportionality is interesting to obtain an

algorithm that is robust to dispersive impulsive responses. We can interpret (2.12)

as a sum of two terms: the �rst is an average of the adaptive coe�cients, which

balances the error introduced by the estimation (NLMS term); and the second is

the proportionate term [39]. The operation of the IPNLMS algorithm is depicted in

Algorithm 4.

Algorithm 4: The IPNLMS algorithm
Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose µ in the range 0 < µ ≤ 1

choose α in the range −1 ≤ α < 1

δ = small constant

Do for k ≥ 0

e(k) = d(k)−wT(k)x(k)

Do for i ≤ N

γi(k) = (1− α)
‖w(k)‖1

N + 1
+ (1 + α)|wi(k)|

gi(k) =
γi(k)

‖γ(k)‖1
end for

Compute G = Diag{g0 . . . gN}

w(k + 1) = w(k) +
µG(k)x(k)e(k)

xT(k)G(k)x(k) + δ

2.5 The `0-LMS Algorithm

In the last few years, a new family of algorithms that aims at exploit the sparsity of

systems has appeared [51, 53]. It is the so-called regularized family. Algorithms of

this type use a speci�c regularization function to promote sparsity on the adaptive

�lter coe�cients. In this way, the sparsity is explicitly modeled.

The `0-LMS algorithm incorporates an approximation of the `0-norm penalty

function in the cost function of the LMS algorithm [53, 54, 62]. Hence, with this

technique, the system sparsity is clearly exploited by the `0-LMS algorithm. There-
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fore, the new cost function is de�ned as

ξ(k) = e2(k) + γ‖w(k)‖0, (2.13)

where ‖·‖0 represents the `0-norm, which is basically a function that counts the

quantity of nonzero entries [51], and γ > 0 is a factor that weights the relevance of

the new penalty function.

In practice, the implementation of the `0-norm function is not trivial. Due to the

discontinuity of the `0-norm, it is common to use an approximation of the `0-norm

by a continuous function. An usual approximation function is given by [51, 53]

‖w(k)‖0 ≈ Fβ[w(k)] =
N∑
i=0

(
1− e−β|wi(k)|

)
, (2.14)

where both sides of (2.14) are strictly equal when β tends to in�nity [53].

Thus, (2.13) can be rewritten as

ξ(k) = e2(k) + γ
N∑
i=0

(
1− e−β|wi(k)|

)
. (2.15)

By solving (2.15), we have the update equation of the `0-LMS algorithm. Given

by

w(k + 1) = w(k) + µx(k)e(k) + κfβ [w(k)] , (2.16)

where κ = µγ and fβ [wi(k)] ,
∂Fβ
∂wi(k)

is written as follows

fβ [wi(k)] = βsign(wi(k))e−β|wi(k)| , (2.17)

where sign(.) is a component-wise sign function de�ned as

sgn(x) =


1, if x > 0 ,

0, if x = 0 ,

−1, if x < 0 .

(2.18)

We use the �rst order truncation of the Taylor series expansion of exponential

functions to reduce the computational complexity of (2.17) [53, 63]. Then, fβ(.) is
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simpli�ed as

fβ(x) =


β2x+ β,

−1

β
≤ x < 0 ;

β2x− β, 0 < x ≤ 1

β
;

0, otherwise.

(2.19)

The third term in the right side of (2.16) is the derivative of the Laplace func-

tion [51, 64], which can be interpreted as a zero-attractor. When a coe�cient is in

the range
[
−1

β
,

1

β

]
, this coe�cient is attracted to zero by the `0-LMS algorithm.

One can notice that this function is not convex, and the choice of β represents a

trade-o� between smoothness and quality of approximation [51]. A description of

the operation of the `0-LMS algorithm is given in Algorithm 5.

Algorithm 5: The `0-LMS algorithm
Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose a suitable µ

choose β

choose κ, 2× 10−3 is a good value

Do for k ≥ 0

e(k) = d(k)−wT(k)x(k)

Compute fβ [w(k)] as in (2.19)

w(k + 1) = w(k) + µx(k)e(k) + κfβ [w(k)]

2.6 The `0-NLMS Algorithm

Much like the LMS algorithm, the `0-LMS algorithm also has a normalized vari-

ation. For the same reasons and with analogous modi�cations, we can formulate

the `0-NLMS algorithm [65]. The complete description of the `0-NLMS algorithm

is depicted in Algorithm 6.

Algorithm 6: The `0-NLMS algorithm
Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose µ in the range 0 < µ ≤ 1

choose κ, 2× 10−3 is a good value

Do for k ≥ 0

e(k) = d(k)−wT(k)x(k)

Compute fβ [w(k)] as in (2.19)

w(k + 1) = w(k) +
µx(k)e(k)

xT(k)x(k) + δ
+ κfβ [w(k)]
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Chapter 3

Properties of the Proportionate-type

Algorithms

In this chapter, we address some properties of the proportionate-type algorithms.

We design several experiments to base our conclusions. By discussing the results, one

may notice that this family of algorithms cannot exploit the system sparsity, strictly

speaking. For the sake of clarity, we inform the parameters for the simulations

throughout the chapter, everytime a new experiment is described.

3.1 The Role of the Weighting Matrix

In Chapter 2, we presented some proportionate-type algorithms. Section 2.3 de-

scribed the PNLMS algorithm and introduced the concept of the weighting matrix

G(k), which is a diagonal matrix whose entries store some proportional relation

with their corresponding adaptive �lter coe�cients [27]. Moreover, the matrix G(k)

de�nes an algorithm of the proportionate-type family [27, 39�41]. Hence, (2.9)

and (2.10) de�ne the PNLMS algorithm, which is the most trivial manner to assign a

proportional update. However, the IPNLMS algorithm adopts a di�erent approach,

where it introduces an NLMS term in its weighting matrix, given by (2.12). This

new term addresses the problem of the poor performance of the PNLMS algorithm

in dispersive systems [38�40].

We must consider some aspects before further analysis of the weighting matrix

G(k). The initialization vector is not usually related to the system coe�cients,

then the behavior of G(k) can be unpredictable in the initialization process of the

algorithms. Thus, we assume that the algorithm is close to the steady-state MSE. In

other words, it has passed some iterations and the proportionate algorithm should

be close to the optimum coe�cients of the system. Besides that, we choose ρ and δp
aiming that the entries in the diagonal of G(k) are proportionate to its respective
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coe�cients.

For simplicity, we use the weighting matrix of the PNLMS algorithm as the ex-

ample for our analysis. By assuming an iteration close to the steady-state MSE,

one can notice from (2.10) that γi = |wi(k)|. Hence, (2.9) has the estimate of

the coe�cient in its dividend, and the `1-norm of the weight vector in the divisor,

which stabilizes the algorithm [27]. In other words, coe�cients with large magni-

tude receive larger values for gi(k), resulting in larger step sizes in comparison to

the coe�cients with small magnitude. Moreover, the high-magnitude coe�cients

can converge faster than the others. However, there is a trade-o� between the con-

vergence speed of high and low-magnitude coe�cients. The matrix G(k) also makes

small coe�cients to converge slower, as it assigns smaller step sizes to these coe�-

cients. Summarizing, as the relevant coe�cients converge quickly to their optimum

values, the low-magnitude coe�cients are slower, taking many iterations to reach

their optimum values.

These are some of the reasons why a proportionate-type algorithm can achieve

better performance than the NLMS algorithm in sparse scenarios. A sparse im-

pulse response has a few non-zero coe�cients, i.e., the total system energy concen-

trates in a small piece of the impulse response. Hence, the matrix G(k) gives large

equivalent step sizes to these coe�cients, making them converge very fast. Fur-

thermore, we usually initialize an adaptive �ltering algorithm with the null vector

w(0) = [0 0 . . . 0]T, which favors the low-magnitude coe�cients in sparse scenarios.

The slow convergence speed of these coe�cients is irrelevant when the initialization

vector is near to their optimum values. Therefore, a proportionate-type algorithm

does not take advantage of the number of zeroes present in a sparse impulse response.

A proportionate algorithm exploits the large di�erence between the high-and low-

magnitude coe�cients. This feature is not unique to sparse systems, as any impulse

responses can show large di�erences in the magnitude of its coe�cients.

We propose some simple examples to show the in�uence of the matrix G(k)

on the learning process of the PNLMS algorithm. We apply the NLMS, PNLMS,

IPNLMS, and `0-NLMS algorithms to identify several unknown impulse responses.

The `0-NLMS algorithm presents remarkable performance identifying sparse impulse

responses [51, 53], which is one of the subjects of this work. Moreover, it belongs to

the regularization family algorithms, then we can compare the performance of these

two families of algorithms.

For the simulations in this section, the order of all unknown systems is 1, i.e.,

they have 2 coe�cients. The input signal is a zero-mean binary phase-shift keying
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Figure 3.1: MSE learning curves and convergence path of the NLMS, PNLMS,
IPNLMS, and `0-NLMS algorithms considering w

(1)
o .

(BPSK), which has unit variance. 1 For the IPNLMS algorithm, we use α = −0.5.

For the `0-NLMS algorithm, we use the Laplacian form with �rst order truncation,

we set the weight given to the approximation of the `0-norm as κ = 2×10−3, and the

parameter that controls the quality of the `0-norm approximation is β = 5 [51, 53].

In all simulations, we set the step sizes µ = 0.4 for all algorithms. The MSE

1For the sake of clarity in the results, we choose a BPSK signal as the system input. One of the
simulations objectives is to evaluate the learning path of the adaptive coe�cients for each algorithm.
Thus, a BPSK input signal yields well-behaved learning paths, facilitating the visualization.
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learning curves of the algorithms are computed by averaging the outcomes of 1000

independent trials.

3.1.1 First Experiment: Basic scenario

Suppose we want to identify the unknown impulse response w
(1)
o = [0.99 0.01]T.

One can notice that w(1)
o is very simple, and it has only 2 coe�cients, in which the

�rst coe�cient is much larger than the second one. Thus, we expect the PNLMS

algorithm to converge faster to the optimum value of the larger coe�cient. As for

the smaller coe�cient, the PNLMS algorithm updates with small step sizes until it

reaches the vicinity of the low-magnitude coe�cient.

Figure 3.1 depicts the MSE learning curves and convergence path of the NLMS,

PNLMS, IPNLMS, and `0-NLMS algorithms considering w
(1)
o . In Figure 3.1a, one

can notice the MSE learning curves of the algorithms, in which we set the step sizes

of each algorithm to guarantee that they converge to the same steady-state MSE

level. As we expect, the PNLMS algorithm shows the best performance, reaching

the steady-state MSE faster than the other algorithms. Moreover, the IPNLMS

algorithm takes a few more iterations than the PNLMS algorithm. Furthermore,

the NLMS and `0-NLMS algorithms present the same and worst performance. This

is an expected behavior of the `0-NLMS algorithm, i.e., since the unknown system

is not sparse, the `0-NLMS algorithm behaves exactly as the NLMS algorithm.

Figure 3.1b presents the convergence path that the coe�cients of the algorithms

take to reach the coe�cients of the optimum system. As we expect, the PNLMS

algorithm quickly converges to the largest coe�cient w(1)
o 0 = 0.99, next it goes in

the w(1)
o 1 = 0.01 direction. One can notice that the PNLMS algorithm does not

achieve a good precision in the smaller coe�cient. 2 However, it achieves the best

performance among the other algorithms, concluding that the largest coe�cient

controls the majority of the MSE in this system. The NLMS, IPNLMS and `0-

NLMS algorithms do some combination between w(1)
0 (k) and w(1)

1 (k) to reach wo,

as expected [1, 3].

The role of the weighting matrix G(k) is changing the axes �size� of the system

coe�cients, shrinking the axis of the large coe�cient, while it enlarges the axis of

the small one. Figure 3.2 depicts the contours of the MSE surface for the impulse

response w
(1)
o without the in�uence of the matrix G(k), which the NLMS and `0-

NLMS algorithms try to minimize. It is worth mentioning that the axes of Figure 3.2

are ∆wi = wi −wo i. Thus, the minimum value of the MSE is at point the (0, 0) as

in [1].

2The PNLMS algorithm takes several iterations and, even so, it is far from the optimum value
of the low-magnitude coe�cient.
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Figure 3.2: Contours of the MSE surface for the NLMS and `0-NLMS algorithms
considering w

(1)
o .

The error surface contours presented in Figure 3.2 are intersections, in the MSE

surface, by planes parallel to the w plane, placed at superior levels to the minimum

error. The MSE can be expressed as a function of ∆w as follows

ξ = ξmin + ∆wTR∆w , (3.1)

where ξmin is the minimum error and R = E
[
x(k)x(k)T

]
is the autocorrelation

matrix of the input signal [1]. By setting �xed values to ξ in (3.1), we have the

contours of the MSE surface.
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(a) k = 1.
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(b) k = 2.

Figure 3.3: In�uence of the matrix G(k) on the contours of the MSE surface for the
PNLMS algorithm considering w

(1)
o , at the beginning of the learning process.

Figure 3.3 presents the contours of the MSE surface that the PNLMS algorithm

tries to minimize, at the beginning of the learning process. Figure 3.3a shows the
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contours of the MSE surface for k = 1. At this moment, the PNLMS algorithm does

not have any knowledge about w(1)
o . Then, the contours are almost the same as in

Figure 3.2. The only di�erence between the �gures is the error levels. In Figure 3.3a,

the level curves are presenting a blue pattern, instead of a multicolor pattern. Thus,

the MSE surface is smoother than the surface minimized by the NLMS and `0-NLMS

algorithms. Figure 3.3b depicts these same contours, however for k = 2. One can

notice that the contours completely change when the most relevant coe�cient feeds

the matrix G(k). The PNLMS algorithm shrinks the axis ∆w0, aiming to increase

the convergence rate in that direction. Hence, the minimum point becomes a line,

which is parallel to axis ∆w1 and across ∆w0 = 0. This explains why the PNLMS

algorithm was not able to converge to the second coe�cient of the unknown system

w
(1)
o .
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(a) k = 30.
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(b) k = 75.

Figure 3.4: In�uence of the matrix G(k) on the contours of the MSE surface for the
PNLMS algorithm considering w

(1)
o in the steady-state MSE.

Figure 3.4 shows the contours of the MSE surface of the PNLMS algorithm in

the steady-state. In Figure 3.4a, we evaluate contours for k = 30 and we can see

the same contours as in Figure 3.3b, which represents a parabolic cylinder [66].

Figure 3.4b depicts contours of the MSE surface for k = 75, and the result is the

same as before. Hence, after converging to w(1)
o 0, the PNLMS algorithm does not

change its MSE surface, yielding the slow convergence speed to w(1)
o 1. The matrix

G(k) enlarges the axis ∆w1 impairing the convergence speed in that direction.

3.1.2 Second Experiment: Increasing w
(1)
o 1

For the second example, we consider the unknown impulse response w
(2)
o =

[0.99 0.5]T. We decrease the di�erence between the coe�cients by keeping the large

coe�cient and increasing the small one. Thus, we can verify the in�uence of G(k)

when the di�erence of the coe�cients is not so high. Figure 3.5a illustrates the MSE
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learning curves of the algorithms for this system. One can notice that the PNLMS

algorithm has the worst performance with the decrease of the di�erence between the

coe�cients. It takes about 60 iterations to reach the steady-state MSE, whereas the

other algorithms, which have similar performance, take 20 iterations.
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(a) MSE learning curves.
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(b) Convergence path.

Figure 3.5: MSE learning curves and convergence path of the NLMS, PNLMS,
IPNLMS, and `0-NLMS algorithms considering w

(2)
o .

Figure 3.5b shows the convergence path that the algorithms take to reach w
(2)
o .

Unlike the result in Figure 3.1b, the PNLMS algorithm reaches values closer to the

small coe�cient w(2)
o 1 = 0.5, albeit, there is a trade-o�. The PNLMS algorithm can

achieve more precision converging to w(2)
o 1 by sacri�cing convergence speed in the

direction of the w(2)
o 0. As we expect, the PNLMS algorithm takes more iterations

to reach w(2)
o 0 = 0.99. As the di�erence between the coe�cients become small, the

equivalent step sizes thatG(k) assigns to the coe�cients are smaller than those in the
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�rst example. It is worth mentioning that the NLMS term present in the IPNLMS

algorithm maintains its convergence path more similar to the NLMS algorithm.
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Figure 3.6: Contours of the MSE surface for the NLMS and `0-NLMS algorithms
considering w

(2)
o .

Figure 3.6 presents the contours of the MSE surface for the unknown impulse

response w(2)
o , which both the NLMS and `0-NLMS algorithms minimize. The con-

tours of the MSE surface in Figure 3.6 are very similar to the contours in Figure 3.2.

As the weighting matrix G(k) does not in�uence the curves in Figure 3.6, we use

these level curves as the reference for this simulation.
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(d) k = 50.

Figure 3.7: In�uence of the matrix G(k) on the contours of the MSE surface for the
PNLMS algorithm considering w

(2)
o , before the steady-state MSE.
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Figure 3.7 depicts the contours MSE surface at di�erent iterations before the

PNLMS algorithm reaches the steady-state. In Figure 3.7a, we observe the level

curves at iteration k = 1. The PNLMS algorithm is in its initial state and does

not acknowledge the magnitude of the coe�cients. Then, Figure 3.7a only shows a

smoother version of the reference curves in Figure 3.6. Figure 3.7b shows contours

for k = 2. One can notice that as soon as the PNLMS algorithm acknowledges

the �rst coe�cient, it shrinks the axis ∆w0, making the algorithm converges fast

to w(2)
o 0, as presented in Figure 3.5b. The PNLMS algorithm starts changing its

level curves by shrinking the axis ∆w1, as one can notice in Figure 3.7c. Hence,

after the PNLMS algorithm converges to the vicinity of w(2)
o 0, it tries to increase its

convergence speed in the direction of the w(2)
o 2. Figure 3.7d shows contours of the

MSE surface for k = 50, where the PNLMS algorithm is reaching the steady-state

MSE. We can notice an ellipse, with its semi-minor axis almost parallel to ∆w0,

while its semi-major axis is almost parallel to ∆w1.
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Figure 3.8: In�uence of the matrix G(k) on the contours of the MSE surface for the
PNLMS algorithm considering w

(2)
o in the steady-state MSE.

One can notice in Figure 3.8 for k = 75 that the contours are the same as in

Figure 3.7d. Then, these contours form the resultant MSE surface that the PNLMS

algorithm minimizes, which are nothing like the Figure 3.6 that the NLMS and `0-

NLMS algorithms try to minimize. The PNLMS algorithm changes the orientation

of the axes aiming at a fast convergence in certain directions.

3.1.3 Third Experiment: Coe�cients much closer

Our next example consists of identifying the unknown impulse response w
(3)
o =

[0.99 0.8]T, whose both coe�cients are very close to each other. We evaluate the

matrix G(k) of the PNLMS algorithm when the system coe�cients are even closer

to each other. In Figure 3.9a, we present the MSE learning curves of the NLMS,
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PNLMS, IPNLMS, and `0-NLMS algorithms considering w
(3)
o = [0.99 0.8]T. As the

PNLMS algorithm does not have a high proportionate factor to properly operate,

it achieves the worst performance. The PNLMS algorithm take several iterations to

reach the steady-state MSE, similar to the second experiment. The other algorithms

have the same performance, all of them take about 20 iterations to reach the steady-

state MSE.
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(a) MSE learning curves.
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(b) Convergence path.

Figure 3.9: MSE learning curves and convergence path of the NLMS, PNLMS,
IPNLMS, and `0-NLMS algorithms considering w

(3)
o .

Figure 3.9b depicts the convergence path taking for each algorithm to converge

to the optimum value w
(3)
o . We can notice that the PNLMS algorithm presents its

conventional convergence path, converging to the large coe�cient, and then, going to
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the next one. However, the PNLMS algorithm converges with larger step sizes in the

direction of the second coe�cient w(3)
o 1 in comparison to the latter examples. Hence,

this increases the number of iterations that the PNLMS algorithm takes to reach

w
(3)
o 0. The di�erence between the coe�cients is so small that the PNLMS algorithms

almost update in each direction with the same step sizes, albeit, it identi�es one

coe�cient at a time.

Figure 3.10 shows the contours for the impulse responsew(3)
o without the presence

of the weighting matrixG(k). These contours are very similar to that in the previous

examples, in which all of them are ellipsoids. We use these level curves as a reference

to the next results.
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Figure 3.10: Contours of the MSE surface for the NLMS and `0-NLMS algorithms
considering w

(3)
o .

Figure 3.11 presents several contours of the MSE surface when the PNLMS

algorithm is identifying the impulse response. Figure 3.11a depicts the level curves

at the very beginning of the learning process, at iteration k = 1. At this point

of the process, the PNLMS algorithm does not sense the coe�cients to distinguish

their magnitude. Therefore, G(k) attenuates the adaptive coe�cients making a

smoother version of the MSE surface present in Figure 3.10. At the moment that

the �rst coe�cient feeds the PNLMS algorithm, G(k) shrinks ∆w0 and enlarges

∆w1, changing the MSE surface to a parabolic cylinder. This modi�cation in the

level curves favors the convergence speed in the direction of the w(3)
o 0. Figure 3.11b

presents the contours that forms this surface, which the PNLMS algorithm aims

at quickly identify the coe�cient w(3)
o 0. However, it takes a few iterations to the

PNLMS algorithm to change its MSE surface once more. One can notice that in

Figure 3.11c, the level curves start to shrink in the axis ∆w1. At iteration k = 15,
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Figure 3.11: In�uence of the matrix G(k) on the contours of the MSE surface for
the PNLMS algorithm considering w

(3)
o , before the steady-state MSE.

the PNLMS algorithm takes the direction to w(3)
o 1. Figure 3.11d shows the contours

for k = 30, in a few iteration before the PNLMS algorithms reaches the steady-

state MSE. As we expect, the contours are similar to a circle, considering that both

coe�cients are close to each other.

Figure 3.12 depicts the contours of the MSE surface at iteration k = 75. We

can notice that the MSE surface is very similar to that formed by the contours in

Figure 3.11d. The PNLMS algorithm ends minimizing the MSE surface formed by

the contours in Figure 3.12. By doing several changes in its error function, it tries

di�erent directions to achieve fast convergence speed for the adaptive coe�cients.

3.1.4 Section Remark

The weighting matrix G(k) introduces an equivalent step size that is proportional

to the absolute value of the coe�cients. In other words, high-magnitude coe�cients

receive larger step sizes, converging faster than the low-magnitude ones, which re-

ceive smaller step sizes. Thus, the PNLMS algorithm exploits the large di�erence
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Figure 3.12: In�uence of the matrix G(k) on the contours of the MSE surface for
the PNLMS algorithm considering w

(3)
o in the steady-state MSE.

between the magnitude of the system coe�cients. Therefore, it exploits something

more general than the sparsity in the system.

3.2 Initialization is Critical

As an adaptive �ltering algorithm minimizes a cost function, it needs a given point

to start the learning process, the so-called initialization vector. A proper choice

for the system initialization should be a vector close to the minimum value of the

objective function. However, that is not possible without any prior knowledge about

the cost function. Several research e�orts prove that the convergence of an adaptive

�lter is independent of the vector that initializes the algorithm [1, 3]. Then, we use

the vector w(0) = [0 0 . . . 0]T as the algorithm initialization when we do not have

any prior information about the problem. Indeed, in a system identi�cation problem

where the impulse response is sparse, i.e., most coe�cients of the impulse response

are zeroes, then w(0) = [0 0 . . . 0]T is a suitable choice as the initialization vector.

Thus, by starting the algorithm with w(0) = [0 0 . . . 0]T, it is already close to the

objective function minimum.

A proportionate-type algorithm takes advantage of this usual initialization. One

must remember that the proportionate idea relies on giving large step sizes to larger

adaptive coe�cients and small step sizes to the smaller ones [27, 39, 40, 62]. The

algorithms assign these steps by the di�erence between the high-and low-magnitude

coe�cients. However, as they initialize with the vector w(0) = [0 0 . . . 0]T, the

algorithms already start in the vicinity of most of the coe�cients, making small
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updates in each iteration. Moreover, as the dominant coe�cients receive larger

step sizes, the algorithms converge quickly to them. Hence, the PNLMS algorithm

usually presents better performance than the NLMS algorithm for identifying sparse

systems [27].

The slow convergence of the low-magnitude coe�cients can impair the perfor-

mance of the proportionate-type algorithms when these coe�cients are not zeroes,

or when we choose an initialization vector that is not close to them. In other words,

the initialization vector must be close to the low-magnitude coe�cients. When a

proportionate-type algorithm converges to the most relevant coe�cients, it assigns

really small equivalent step sizes to the low-magnitude ones. In case we initial-

ize with a bad vector, the proportionate-type algorithms converge slowly to these

coe�cients, which severely reduces their convergence speed. In cases like this, a

proportionate-type algorithm, like the PNLMS algorithm, can perform worse than

the NLMS algorithm.

We present several sparse impulse responses to validate this hypothesis. The

simulations compare the performance of the NLMS, PNLMS, IPNLMS, and `0-

NLMS algorithms when we initialize them with the usual vector w(0) = [0 0 . . . 0]T

and some other initialization vector that is far from zero. For the simulations in

this section, the order of all unknown systems is 63, i.e., they have 64 coe�cients.

The input signal is a zero-mean white Gaussian noise with unit variance. For the

IPNLMS algorithm, we use α = −0.5. As for the simulations in the previous

section, we use the Laplacian form with �rst order truncation for the `0-NLMS, we

set κ = 2× 10−3, and β = 5 [51, 53]. In all simulations, we set the step sizes for the

NLMS, PNLMS, IPNLMS, and `0-NLMS algorithms to 0.4, 0.3, 0.4, and 0.99. The

MSE learning curves of the algorithms are computed by averaging the outcomes of

1000 independent trials.

3.2.1 First Experiment: An ideal scenario

Suppose we want to identify the following sparse impulse response

w(4)
o (n) =

1, if n = 0 ,

0, if 1 ≤ n ≤ 63 .
(3.2)

The impulse response w
(4)
o is an ideal sparse system; where the �rst coe�cient

is one, and the others are zeroes [67, 68]. The impulse response in (3.2) represents

the perfect scenario for algorithms that exploit the sparsity of systems.

Figure 3.13 depicts the MSE learning curves of the NLMS, PNLMS, IPNLMS and

`0-NLMS algorithms considering w
(4)
o . In Figure 3.13a, we initialize the algorithms
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(a) w(0) = [0 . . . 0]T.
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(b) w(0) = [0.05 . . . 0.05]T.

Figure 3.13: MSE learning curves for di�erent initialization vectors of the NLMS,
PNLMS, IPNLMS, and `0-NLMS algorithms considering w

(4)
o .

with the vector w(0) = [0 . . . 0]T. As we expect, the proportionate-type and

regularization algorithms reach the steady-state MSE quickly, just taking a few

iterations to converge. One can notice that the remarkable fast initial convergence

of the PNLMS and IPNLMS algorithms makes them achieve the best performance

along the `0-NLMS algorithm. The NLMS algorithm shows the worst performance

taking several iterations to reach the steady-state MSE.

Figure 3.13b shows the MSE learning curves of the algorithms when we initialize

them with w(0) = [0.05 . . . 0.05]T. The results that the PNLMS and IPNLMS

algorithms reach are worse when comparing to the learning curves present in Fig-

ure 3.13a. In Figure 3.13b, one can notice that the IPNLMS algorithm matches its

performance with the NLMS algorithm. Moreover, the PNLMS algorithm reaches

the steady-state MSE slower than the NLMS algorithm. The initialization with the

vector w(0) = [0.05 . . . 0.05]T does not seem to a�ect the `0-NLMS algorithm, at

least nothing that one can notice by analyzing Figure 3.13.

3.2.2 Second Experiment: Increasing the number of relevant

coe�cients

The impulse response given by (3.2) is very simple. It concentrates the entire energy

in a single coe�cient, which does not represent common real systems. Usually, a

practical system has an impulse response with more than 1 non-zero coe�cient.

Hence, for the next simulation, we consider the following impulse response

w(5)
o (n) =

1, if 0 ≤ n ≤ 3 ,

0, if 4 ≤ n ≤ 63 .
(3.3)

29



Indeed, the impulse response w
(5)
o has only 4 non-zeroes coe�cients, not much

di�erent from the w
(4)
o . However, we want to keep a high sparsity degree for the

proportionate algorithms. Moreover, if we have a total of 64 coe�cients, 4 large

coe�cients are more than 5% of the total. Figure 3.14 presents the MSE learning

curves of the NLMS, PNLMS, IPNLMS, and `0-NLMS algorithms considering the

impulse response w(5)
o .
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(a) w(0) = [0 . . . 0]T.
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(b) w(0) = [0.05 . . . 0.05]T.

Figure 3.14: MSE learning curves for di�erent initialization vectors of the NLMS,
PNLMS, IPNLMS, and `0-NLMS algorithms considering w

(5)
o .

In Figure 3.14a, one can notice that the regularization and proportionate-type

algorithms reach the steady-state MSE in a few iterations. By initializing the al-

gorithms with w(0) = [0 . . . 0]T, the PNLMS algorithm achieves almost the same

performance as the `0-NLMS algorithm, as we expect for the fast initial conver-

gence of the PNLMS algorithm in a sparse system like w
(5)
o . Figure 3.14a depicts

the MSE learning curves of the algorithms when we initialize them with the vec-

tor w(0) = [0.05 . . . 0.05]T. The new initialization vector degrades the convergence

speed of the PNLMS and IPNLMS algorithms. The PNLMS algorithm takes several

iterations to converge to the steady-state MSE, performing worse than the NLMS

algorithm. The IPNLMS algorithm loses its fast initial convergence, which makes its

curve shape more similar to the MSE learning curve of the NLMS algorithm. Despite

the new initialization vector, the regularization algorithm keeps its performance, i.e.,

the �bad� initialization does not a�ect the `0-NLMS algorithm.

3.2.3 Third Experiment: Decreasing even more the sparsity

degree

We want to verify the in�uence of a bad initialization when the system has an

impulse response with even more relevant coe�cients. As we increase the number

of relevant coe�cients, the system becomes less sparse. Hence, we need to identify
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the following unknown impulse response

w(6)
o (n) =

1, if 0 ≤ n ≤ 7 ,

0, if 8 ≤ n ≤ 63 .
(3.4)

The impulse response w(6)
o has two times more relevant coe�cients in comparison

to w
(5)
o . In this experiment, 12.5% of the coe�cients are relevant, i.e., the impulse

response w(6)
o continues to have a considerable sparsity level. For example, impulse

responses with this number of relevant coe�cients represent echo-path channels [27,

41, 60]. Figure 3.15 shows the MSE learning curves of the NLMS, PNLMS, IPNLMS,

and `0-NLMS algorithms considering the unknown impulse response w
(6)
o .
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(a) w(0) = [0 . . . 0]T.
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(b) w(0) = [0.05 . . . 0.05]T.

Figure 3.15: MSE learning curves for di�erent initialization vectors of the NLMS,
PNLMS, IPNLMS, and `0-NLMS algorithms considering w

(6)
o .

Figure 3.15a depicts the MSE learning curves of the NLMS, PNLMS, IPNLMS,

and `0-NLMS algorithms by initializing with the vector w(0) = [0 . . . 0]T. As we

expect, all algorithms take a few iterations to converge to the steady-state MSE.

However, the `0-NLMS algorithm converges much faster than the other algorithms.

The performance of the IPNLMS, NLMS and PNLMS algorithms follows the `0-

NLMS algorithm, respectively. The PNLMS algorithm shows its fast initial conver-

gence speed, however, the convergence rate decreases, and it reaches the steady-state

MSE slightly slower than the NLMS algorithm.

In Figure 3.15b, we can notice that by initializing the algorithms with w(0) =

[0.05 . . . 0.05]T, the performance of the PNLMS and IPNLMS algorithms severely

degrade. We observe the same results as for the previous examples. The PNLMS

algorithm takes much more iterations to reach the steady-state MSE, performing

worse than the NLMS algorithm. The shape of the MSE learning curve of the

IPNLMS algorithm is closer to the shape of the NLMS curve, i.e., the bad initial-

ization also impairs the performance of the IPNLMS algorithm. The NLMS and
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`0-NLMS algorithms do not present any remarkable change by initializing with dif-

ferent vectors.

3.2.4 Section Remark

A proportionate-type algorithm requires an initialization vector that is close to the

optimum value of the low-magnitude coe�cients. A bad initialization vector makes

the algorithm to converge slowly to the steady-state.

3.3 The Time-shifting Problem

The shift of an impulse response can be a problem for the PNLMS algorithm, due

to the slow convergence rate of the low-magnitude coe�cients. We will brie�y re-

view some steps of the learning process of an adaptive �lter to understand how a

shifted system impairs the performance of the PNLMS algorithm. Typically, an

adaptive �lter is represented by the block diagram presented in Figure 3.16, for

system identi�cation applications.

x(k)

wo(k)

ŵ(k)

d′(k)

n(k)

y(k)

e(k)+

–

Figure 3.16: System identi�cation adaptive �lter.

Figure 3.16 depicts a classical way to describe the operation of an adaptive

�lter in a system identi�cation problem. One can notice that the input signal x(k)

is feeding the unknown impulse response wo(k) and the adaptive �lter ŵ(k); the

noiseless desired signal d′(k), the measurement noise n(k) and the �lter output y(k)

are producing the error signal e(k), which updates the �lter parameters. Figure 3.17

shows a closer view from the upper side of Figure 3.16. Figure 3.17 presents the

input signal and the coe�cients of the unknown impulse response. One can notice

a serial-to-parallel process, in which the serial input signal passes over a tapped

delay line to produce a parallel input that feeds the unknown system. This process
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requires some initial conditions to operate in the �rst iterations that we solve by

simply treating the input with negative indexes as zeroes, i.e, x(i) = 0, ∀ i < 0.

x(k)

wo,N(k)

wo,N–1(k)

wo,N–2(k)

wo,1(k)

wo,0(k)

d
′(k)

z
–1

z
–1

z
–1

Figure 3.17: Tapped delay line applied to an impulse response.

Suppose we have the following sparse unknown system

w(7)
o (n) =

0, if 0 ≤ n ≤ 59 ,

1, if 60 ≤ n ≤ 63 .
(3.5)

The impulse response in (3.5) is very similar to the system in (3.3). However,

in w
(7)
o , the last four coe�cients are the most relevant. In fact, one can interpret

the impulse response w(7)
o as w(5)

o with a shift of 59 time samples. From Figure 3.17,

one can notice that by using a tapped delay line as the input of the system w
(7)
o ,

d′(k) is zero until the input signal sensitizes one of the non-zero coe�cients of w(7)
o ,

which occurs at iteration k = 60, i.e, d′(k) is di�erent from zero when x(0) multiplies

w
(7)
o (60). Hence, the adaptive �lter can combine a relevant coe�cient of w(7)

o , then

starts to learn the unknown impulse response and stops to learn only noise, 3 i.e, until

the iteration k = 60, the algorithm updates only considering the noise, consequently,

3In Figure 3.16, one can notice that the desired signal is d(k) = d′(k) + n(k), if d′(k) = 0 then
d(k) = n(k), i.e., the desired signal is composed only by the measurement noise. Therefore, the
adaptive �lter output is only noise. One should remember that the adaptive �lter tries to minimize
e(k) = d(k)− y(t).
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updating the coe�cients to values far from the optimum, disturbing the initialization

vector.

This initialization period can be harmful to the PNLMS algorithm. This process

changes the former initialization vector, generating another one. This new �initial-

ization� vector is a combination of the measurement noise and the input signal.

Hence, we do not have any knowledge about the system. Normally, this randomness

on the vector promotes a bad initialization, which is critical for the PNLMS algo-

rithm. Furthermore, when the adaptive �lter updates the �rst relevant coe�cient,

locally, the other coe�cients update to values far from the optimum, depending on

the gradient of the function. In a sparse scenario, a few coe�cients accumulate

the majority of the system energy, as most of them are null. In our example, the

last of them concentrates most of the energy. Then, as soon as the �rst relevant

coe�cient weighs the input, the error signal drastically increases, which compels

the algorithm to abruptly alter the gradient path. After that, the coe�cients can

update to values far from the optimum, harming the proportionate behavior of the

proportionate-type algorithms, mainly the PNLMS algorithm.

We design some simulations aiming for the comparison between a bad initializa-

tion of the algorithms and a shift in time of the impulse response. For the simulations

in this section, the order of the systems is 63, i.e., they have 64 coe�cients. All the

parameters are the same as for the previous simulations. The MSE learning curves of

the algorithms are computed by averaging the outcomes of 1000 independent trials.

3.3.1 First Experiment: Revisiting w
(5)
o

Figure 3.18 depicts the MSE learning curves of the NLMS, PNLMS, IPNLMS, and

`0-NLMS algorithms considering the impulse response (3.3) and its shifted ver-

sion (3.5). One can notice that Figure 3.18a is the same as Figure 3.14a. As

expected, when we initialize the algorithms with the vector w(0) = [0 . . . 0]T, all

algorithms converge quickly to the steady-state MSE, the exception is the NLMS

algorithm. The `0-NLMS algorithm achieves the best performance, following by the

PNLMS, IPNLMS and NLMS algorithms, respectively.

Figure 3.18b presents the MSE learning curves of the algorithms by using the

initialization vector w(0) = [0.01 . . . 0.01]T. This new initialization is su�cient to

degrade the convergence speed of the PNLMS algorithm, as one can observe in

Figure 3.18b. The PNLMS algorithm converges to the steady-state MSE even slower

than the NLMS algorithm. It is worth mentioning that this minor misplacement is

not su�cient to impair the performance of the IPNLMS algorithm. As expected,

the NLMS and `0-NLMS algorithms are robust to this type of problem.

Figure 3.18c presents the MSE learning curves of the algorithms considering
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w(0) = [0.01 . . . 0.01]T.

0 500 1000 1500
-25

-20

-15

-10

-5

0

5

10

M
S

E
 (

in
 d

B
)

NLMS

PNLMS

IPNLMS

l
0
-NLMS

(c) Considering w
(7)
o with initialization vector

w(0) = [0 . . . 0]T.

Figure 3.18: MSE learning curves of the NLMS, PNLMS, IPNLMS, and `0-NLMS
algorithms considering w

(5)
o and its version shifted in time w

(7)
o .
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the time-shifted impulse response (3.5). One can notice the similarity with the

Figure 3.18b. Indeed, except for �rst iterations (the adaptive �lters are �lling the

tapped delay line), the performance of the PNLMS algorithm is very similar to the

case when we initialize with a bad vector. The PNLMS algorithm sustains its fast

convergence speed in the ��rst� iterations [39, 40], however, in the end, it converges

to steady-state MSE slower than the NLMS algorithm. The IPNLMS algorithm

loses its fast initial convergence approximating the shape of its MSE curve to the

NLMS algorithm, similarly to the results presented in Section 3.2. The NLMS and

`0-NLMS algorithms do not show any remarkable changes.

3.3.2 Second Experiment: A more sparse scenario

In the next simulations, we use a sparser impulse response, i.e, the system energy

concentrates on fewer coe�cients. Suppose we want to identify the following impulse

response

w(8)
o (n) =

1, if 0 ≤ n ≤ 2 ,

0, if 3 ≤ n ≤ 63 ,
(3.6)

and its version shifted by 60 time samples

w(9)
o (n) =

0, if 0 ≤ n ≤ 60 ,

1, if 61 ≤ n ≤ 63 .
(3.7)

As before, we aim at compare the di�erence between a bad algorithm initializa-

tion and a time-shift of the impulse response, considering a sparser system. Fig-

ure 3.19 depicts the MSE learning curves of the NLMS, PNLMS, IPNLMS, and `0-

NLMS algorithms considering w(8)
o and w

(9)
o . These are scenarios where the PNLMS

algorithm should perform better than the other algorithms, as the impulse response

is sparser than the previous example.

By initializing the algorithms with the vector w(0) = [0 . . . 0]T, the PNLMS,

IPNLMS and `0-NLMS algorithms converge quickly to the steady-state MSE. Fig-

ure 3.19a shows the performance of each algorithm when they initialize with this

vector. With this setup, the PNLMS algorithm converges as quick as the `0-NLMS

algorithm, and both are considerably faster than the IPNLMS algorithm. The NLMS

algorithm takes several iterations (about 700) to reach the steady-state MSE, as ex-

pected for an algorithm that does not take any advantage of the impulse response

shape.

In Figure 3.19b, one can notice the worsening of the PNLMS algorithm perfor-

mance as we change the initialization vector to w(0) = [0.01 . . . 0.01]T. The PNLMS

algorithm takes more iterations than the NLMS algorithm, even considering the
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o with initialization vector

w(0) = [0 . . . 0]T.

Figure 3.19: MSE learning curves of the NLMS, PNLMS, IPNLMS, and `0-NLMS
algorithms considering w

(8)
o and its version shifted in time w

(9)
o .
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sparser impulse response in (3.6). Same as in Figure 3.18b, the IPNLMS algorithm

seems more robust to this initialization. The NLMS and `0-NLMS algorithms do

not change their performance at all.

Figure 3.19c shows the MSE learning curves of the algorithms considering the

time-shift impulse response in (3.7). As in Figure 3.19b, the NLMS, and IPNLMS

algorithms slightly outperform the PNLMS algorithm. Once more, despite the iter-

ations that the algorithms take to �ll the tapped delay line, the performance of the

proportionate algorithms is very similar to the simulation that we initialize with a

bad vector. One can notice that the shape of the IPNLMS algorithm learning curve

is more similar to the result that the NLMS algorithm presents.

3.3.3 Section Remark

Shifting the relevant coe�cients of an impulse response can reduce the convergence

speed of the proportionate-type algorithms. In the beginning, the adaptive �lter

does unnecessary coe�cient updates caused by the noise present in the desired signal.

When d′(k) 6= 0, the adaptive �lter has w(k) 6= w(0). Thus, the new coe�cients are

probably far from zeroes, disturbing the good initialization of the low-magnitude

coe�cients.

3.4 The PNLMS Algorithm Beyond the Sparsity

So far, we present some properties of the PNLMS algorithm that di�er it from other

adaptive �ltering algorithms. One can interpret these properties as limitations of

the PNLMS algorithm. Besides the attention that one has to take by choosing

proper parameters when using the PNLMS algorithm, those same properties address

useful applicability of the algorithm. As previously discussed, a proportionate-type

algorithm does not rely on any tool to exploit the sparsity of an impulse response.

Therefore, the sparsity of a system should not limit the performance of the PNLMS

algorithm. Indeed, we can apply the PNLMS algorithm to a non-sparse system and

achieve a performance as good as the one of other algorithms, by choosing suitable

parameters.

In [27], the implementation of the proportionate idea does not take any advantage

of the number of zeroes in the impulse response. It is clear that the PNLMS algo-

rithm takes advantage of the large di�erence between the high-magnitude coe�cient

and the low-magnitude coe�cients, besides the usual manner that one initializes an

adaptive �lter. However, when the initialization vector is wisely chosen, it is su�-

cient to make the PNLMS algorithm quickly converge to the steady-state MSE and

achieving the same performance as the classical algorithms. It is worth mentioning

38



that, in practice, we need prior knowledge about the system impulse response for

this application.
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(a) Initialization vector w(0) = [0.9 . . . 0.9]T.
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(b) Initialization vector w(0) = [0.5 . . . 0.5]T.
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(c) Initialization vector w(0) = [0 . . . 0]T.

Figure 3.20: MSE learning curves of the NLMS, PNLMS, IPNLMS, and `0-NLMS
algorithms considering w

(10)
o for di�erent initialization vectors.
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3.4.1 First Experiment: A non-sparse impulse response with

small di�erence among the coe�cients

Suppose we want to identify the following impulse response

w(10)
o (n) =

1, if n = 0, 1 ,

0.9, if 2 ≤ n ≤ 31 .
(3.8)

One can notice that the impulse response w
(10)
o is very dispersive. The sys-

tem has 32 coe�cients, where their magnitudes are very close. Hence, w(10)
o rep-

resents a non-sparse impulse response. However, by properly choosing the initial

vector, the PNLMS algorithm can identify the system taking as many iterations as

the other algorithms that we used so far. We perform three di�erent simulations

with the impulse response w
(10)
o . In each simulation, we initialize the algorithms

with di�erent initialization vectors: w(0) = [0.9 . . . 0.9]T, w(0) = [0.5 . . . 0.5]T and

w(0) = [0 . . . 0]T. We utilize the NLMS, PNLMS, IPNLMS, and `0-NLMS algo-

rithms to show the importance of the initialization for the proportionate-type algo-

rithms, in non-sparse impulse responses.

The order of the system is 31, i.e., it has 32 coe�cients. All the parameters

are the same as for the previous simulations. We set the step sizes aiming at eval-

uating all algorithms on the same MSE threshold in the steady-state. The MSE

learning curves of the algorithms are computed by averaging the outcomes of 1000

independent trials.

In Figure 3.20, we can notice the learning curves for di�erent initialization vec-

tors. Figure 3.20b depicts the MSE learning curves of the algorithms when they

initialize with the vector w(0) = [0.9 . . . 0.9]T, we set the step size µ = 0.99 for all

algorithms. One can notice that the performance is the same for all algorithms.

Despite the sparsity of the system, the PNLMS algorithm achieves performance as

good as the NLMS, IPNLMS and `0-NLMS algorithms. As we alter the initialization

to a vector far from the optimum coe�cients, the PNLMS algorithm performance

decreases, as Figure 3.20b presents. In Figure 3.20b, we initialize with the vector

w(0) = [0.5 . . . 0.5]T and setting the step sizes for the NLMS, PNLMS, IPNLMS,

and `0-NLMS algorithms to 0.75, 0.7, 0.75, and 0.75, respectively. In Figure 3.20c,

we initialize with the usual vector and we set the step sizes for the NLMS, PNLMS,

IPNLMS, and `0-NLMS algorithms to 0.15, 0.15, 0.1, and 0.15, respectively. By

initializing the adaptive �ltering algorithms with the usual vector w(0) = [0 . . . 0]T,

the PNLMS algorithm takes several iterations to converge to the steady-state MSE.

In this case, the IPNLMS algorithm is slightly more robust to bad initialization than

the PNLMS algorithm. One must remind that the weighting matrix of the IPNLMS
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algorithm has an NLMS term, whose purpose is to increase the algorithm perfor-

mance in dispersive systems. As the system does not have a sparse impulse response,

the `0-NLMS algorithm has the same performance as the NLMS algorithm.
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(a) Initialization vector w(0) = [0.01 . . . 0.01]T.
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(b) Initialization vector w(0) = [0.3 . . . 0.3]T.
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(c) Initialization vector w(0) = [1 . . . 1]T.

Figure 3.21: MSE learning curves of the NLMS, PNLMS, IPNLMS, and `0-NLMS
algorithms considering w

(11)
o for di�erent initialization vectors.
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3.4.2 Second Experiment: A non-sparse impulse response

with large di�erence among the coe�cients

In this experiment, we are considering a non-sparse impulse response when the

magnitude of the coe�cients has a large di�erence. Suppose that the new unknown

impulse response is

w(11)
o (n) =

1, if n = 0, 1 ,

0.01, if 2 ≤ n ≤ 32 .
(3.9)

As in the previous experiment, we aim at evaluating the performance of the

proportionate idea when applied to dispersive scenarios. The impulse response w(11)
o

is dispersive, however, the di�erence among the magnitude of the most relevant

coe�cients and the other ones is larger than in the previous simulations.

The order of the system is 31, i.e., it has 32 coe�cients. All the parameters

are the same as for the previous simulations. We set the step sizes for the NLMS,

PNLMS, IPNLMS, and `0-NLMS algorithms to 0.65, 0.5, 0.65, and 0.99, respectively.

The MSE learning curves of the algorithms are computed by averaging the outcomes

of 1000 independent trials.

Figure 3.21 depicts the MSE learning curves of the algorithms for di�erent ini-

tialization vectors. One can notice in Figure 3.21a, by initializing the algorithms

with vectorw(0) = [0.01 . . . 0.01]T that the PNLMS and IPNLMS algorithms require

few iterations to converge to the steady-state MSE. In this simulation, the NLMS

algorithm has the worst performance. However, as we initialize the algorithms with

vector far from the optimum value of the low-magnitude coe�cients, the perfor-

mance of the proportionate algorithms are impaired, as presented in Figures 3.21b

and 3.21c. One can notice that this bad initialization make the PNLMS algorithm

to perform worse than the NLMS algorithm, even considering an impulse response

with a large di�erence among the magnitude of the coe�cients.

3.4.3 Section Remark

Independently of the system type, sparse or dispersive, proportionate-type algo-

rithms rely on good initialization to achieve better results. The initialization vector

should be close to the low-magnitude coe�cients. The choice of the initialization

vector is more critical to the PNLMS algorithm.
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Chapter 4

The Simple Sparsity-Aware Feature

LMS Algorithm

In the previous chapter, we address some properties of the proportionate algorithms,

concluding that they do not exploit sparsity, only taking advantage of some features

of the systems. Recently, it has been veri�ed that many systems have some type of

sparsity, be it plain or hidden. As said before, the plain sparsity occurs when most

coe�cients of the system has low magnitude, i.e., sparsity is directly observed in the

current representation of the system. On the other hand, when some mathematical

manipulation is required to reveal the system sparsity, we say that this system has

hidden sparsity. The LMS algorithm is usually a good option in several scenarios

for its simplicity and low complexity. Unfortunately, the LMS algorithm does not

take advantage of any type of sparsity.

The problem of plain sparsity was addressed for a while, and there exist many

algorithms that take advantage in some manner of it [27, 39, 40, 47, 54, 69�71].

Many works have veri�ed that plain sparsity can be best represented by the `0-

norm [51, 72, 73], and that is the main idea behind the `0-norm LMS algorithm [53].

In comparison to the proportionate algorithms, the `0-norm LMS algorithm presents

better performance in sparse scenarios, as discussed in Chapter 3. Di�erently from

these algorithms, the recently proposed feature LMS (F-LMS) algorithm [13] can

bene�t from the hidden sparsity by exploiting some features inherent to the unknown

system.1

Naturally, there are systems that have both plain and hidden sparsity. However,

the F-LMS and `0-norm LMS algorithms can not exploit both types of sparsity si-

multaneously. Hence, by imposing plain sparsity promoting functions to the cost

1While the F-LMS algorithm exploits features like lowpass or highpass spectrum through linear
combinations of coe�cients, there are other features that could not be exploited in the same man-
ner. For example, the tensor LMS algorithm exploits impulse responses that can be decomposed
as the Kronecker product of two lower-dimensional impulse responses [55].
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function of the F-LMS algorithm, we have a new algorithm that is able to improve its

performance by exploiting both plain and hidden sparsity at the same time. There-

fore, we propose to include a trivial penalty function on the adaptive coe�cients

in the cost function of the F-LMS algorithm. This penalty function relies on the

so-called discard function [56], then the simple sparsity-aware feature LMS (SSF-

LMS) algorithm reduces its number of arithmetic operations, thus saving important

computational resources, and being able to outperform the F-LMS algorithm when

the system has both types of sparsity.2

4.1 The F-LMS Algorithm using `1-norm

Several research e�orts have been made in the adaptive �ltering �eld that aims to

exploit some sparsity in the coe�cients by imposing any type of constraint in a cost

function [51, 56, 74�77]. However, these works refer only to the plain sparsity, by

allowing the attraction of some coe�cients to zero. A new family of algorithms was

proposed in [13], where the sparsity arises from the linear combination of adaptive

coe�cients of the �lter. The F-LMS family of algorithms induces some sparsity

properties hidden in the coe�cients. Thus, these algorithms require a feature matrix

F(k) that determines the feature we seek in the system [13]. The F-LMS algorithm

minimizes the following cost function

ξF-LMS(k) =
1

2
|e(k)|2 + αP (F(k)w(k)) , (4.1)

where α ∈ R+ is the weight given to the sparsity-promote penalty function P , and
F(k) is the feature matrix capable of exploiting the features inherent to the unknown

system. This matrix is responsible for revealing the hidden sparsity, i.e., by applying

F(k) to w(k) we perform a linear combination that intends to reveal a sparse vector

(meaning that the vector F(k)w(k) should have most of its entries equal or close to

zero). In practice, we should have some prior knowledge about the system before

we choose the feature matrix. However, for many real systems a suitable feature

is easy to identify, for example, many analog systems exhibit lowpass feature due

to the use of high sampling rates. The matrix F(k) can vary at each iteration,

representing a more general feature or to track a time-varying unknown system,

for simplicity we focus on simple algorithms, thus we assume the feature matrix as

time-invariant F(k) = F as in [13].

The penalty function P in (4.1) can be any almost everywhere di�erentiable

sparsity-promoting function to allow for gradient-based methods. Many functions

2Recently, an alternative approach based on the `0-norm has been proposed in [57], but the
paper proposes an algorithm that requires a larger number of arithmetic operations in comparison
with the SSF-LMS algorithm.
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satisfy this condition: vector norms [74, 77]; vector norms combined with shrinkage

strategies [56]; functions that approximate the `0-norm [51, 72]; and others [13]. We

choose the `1-norm as our penalty function P like in [13], thus the complexity of

the F-LMS algorithm is only slightly superior to the LMS algorithm complexity.

Therefore, the resulting objective function is

ξF-LMS(k) =
1

2
|e(k)|2 + α‖Fw(k)‖1 , (4.2)

and the general update equation is given by

w(k + 1) = w(k) + µe(k)x(k)− µαp(k) , (4.3)

where µ ∈ R+ is the step size, which should be small enough to ensure conver-

gence [1], and p(k) ∈ RN+1 is the gradient of function ‖Fw(k)‖1 with respect to the

adaptive coe�cients w(k).

The complete operation of the general F-LMS algorithm is given in Algorithm 7.

Algorithm 7: The F-LMS using `1-norm
Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose µ in the range 0 < µ� 1

choose α in the range 0 < α < 1

Do for k ≥ 0

e(k) = d(k)−wT (k)x(k)

Compute p(k), refer to (4.5) and (4.8) for example

w(k + 1) = w(k) + µe(k)x(k)− µαp(k)

In the following subsections, we describe two simple versions as examples of

the F-LMS algorithm exploiting the lowpass and highpass features of the unknown

systems. Remembering that the F-LMS algorithm exploits more complex features,

but we intend to present simple algorithms, also an easy and straightforward manner

to illustrate how a feature can be exploited.

4.1.1 The F-LMS algorithm for lowpass systems

Several systems concentrate most of their energy in low frequency components. The

main behavior of this type of systems is its lowpass narrowband spectrum, resulting

in a smooth impulse response. Therefore, if the system has lowpass narrowband

spectrum, then the magnitude of adjacent coe�cients are close to each other, i.e.,

the di�erence between adjacent coe�cients of the impulse response wo is small. By

properly choosing the feature matrix, we can impose a new condition to the cost

function and minimize the sum of two adjacent coe�cients. In this case, we set F
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as Fl, where Fl is an N× N + 1 matrix de�ned as

Fl =


1 −1 0 · · · 0

0 1 −1 · · · 0
...

. . . . . .

0 0 · · · 1 −1

 (4.4)

and ‖Flw(k)‖1 =
∑N−1

i=0 |wi(k)−wi+1(k)|. Therefore, the F-LMS algorithm for low-

pass systems is de�ned by the general update equation given in (4.3), but replacing

the vector p(k) with the gradient for lowpass systems pl(k) whose entries are given

by

pl,i(k) =


sgn(w0(k)− w1(k)), if i = 0 ,

−sgn(wi−1(k)− wi(k)) + sgn(wi(k)− wi+1(k)), if i = 1, · · · ,N− 1 ,

−sgn(wN−1(k)− wN(k)), if i = N .

(4.5)

where

sgn(x) =


1, if x > 0 ,

0, if x = 0 ,

−1, if x < 0 .

(4.6)

4.1.2 The F-LMS algorithm for highpass systems

The counterpart of the lowpass narrowband spectrum is the highpass narrowband

spectrum. Di�erently from the previous case, a system has highpass narrowband

spectrum when it is mainly de�ned by its high frequency components. Hence, ad-

jacent coe�cients of the impulse response of such system vary quickly, although

in some predictable manner, i.e., adjacent coe�cients have similar absolute values

with opposite signs if the system has highpass narrowband spectrum. Therefore,

we aim to minimize the sum of adjacent adaptive coe�cients w(k) since the sum of

two consecutive coe�cients is close to zero, exploiting the feature of the highpass

system. We can accomplish this by selecting F as Fh, where Fh is an N × N + 1

feature matrix de�ned as

Fh =


1 1 0 · · · 0

0 1 1 · · · 0
...

. . . . . .

0 0 · · · 1 1

 , (4.7)
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such that ‖Fhw(k)‖1 =
∑N−1

i=0 |wi(k)+wi+1(k)|. Similarly to the case of the lowpass
�lter, we can characterize the F-LMS algorithm for highpass systems by the general

update equation given in (4.3), but replacing p(k) with ph(k), whose entries are

given by

ph,i(k) =


sgn(w0(k) + w1(k)), if i = 0 ,

sgn(wi−1(k) + wi(k)) + sgn(wi(k) + wi+1(k)), if i = 1, · · · ,N− 1 ,

sgn(wN−1(k) + wN(k)), if i = N .

(4.8)

4.2 The SSF-LMS Algorithm

The F-LMS algorithms do some linear combination to exploit the hidden sparsity

in the parameters of the unknown system, i.e., the sparsity is revealed by applying

the feature matrix F to w(k). However, there are many cases in which there exists

plain sparsity in the parameters, i.e., wo already represents a sparse vector. Such

impulse response does not have a feature for the F-LMS algorithms to take advan-

tage. Thus, these algorithms can not exploit the plain sparsity. In this work, we

propose an algorithm that relies on another technique in addition to the features of

the system, then it can exploit both types of sparsity simultaneously. In combina-

tion to the feature matrix, we also impose a constraint on the adaptive coe�cients

aiming their attraction to zero. The SSF-LMS algorithm minimizes the following

objective function

ξ(k) =
1

2
|e(k)|2 + α‖F [fε (w(k))]‖1 , (4.9)

where fε(w(k)) = [fε(w0(k)) fε(w1(k)) . . . fε(wN(k))]T is the discard function, whose

ith element is de�ned as [56]

fε(wi(k)) =

wi(k), if |wi(k)| ≥ ε ,

0, if |wi(k)| < ε ,
(4.10)

the parameter ε ∈ R+ is a threshold chosen by the user, generally close to the

measurement noise [56]. In comparison to (4.2), the objective function in (4.9)

generates the following update equation

w(k + 1) = w(k) + µe(k)x(k)− µαp(k)Jfε(w(k)) , (4.11)
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where Jfε(w(k)) is a diagonal matrix whose diagonal elements are de�ned as

Jfε(w(k))i,i =

1, if |wi(k)| ≥ ε ,

0, if |wi(k)| < ε .
(4.12)

Therefore, matrix Jfε(w(k)) just selects the entries of vector p(k) which are rele-

vant and, as a consequence, one can implement (4.11) e�ciently by not computing

the entries of p(k) related to the coe�cients with small magnitude (plain sparsity)

detected by (4.12). Indeed, this technique can greatly reduces the number of arith-

metic operations saving even more computational resources.

Algorithm 8: The SSF-LMS algorithm
Initialization:
x(0) = w(0) = [0 0 . . . 0]T

choose µ in the range 0 < µ� 1
choose α in the range 0 < α < 1
choose ε small, close to measurement error

Do for k ≥ 0
e(k) = d(k)−wT (k)x(k)
p(k) = [0 0 . . . 0]T

Do for i = 0 to N
if |wi(k)| > ε
Compute pi(k)

w(k + 1) = w(k) + µe(k)x(k)− µαp(k)

The SSF-LMS algorithm is summarized in Algorithm 8. Vector p(k) in (4.11) is

the gradient of the penalty function and the feature matrix, i.e., the same as those

shown in Section 4.1, for lowpass and highpass systems. One can notice that the

new step introduced by the SSF-LMS algorithm (the if loop in Algorithm 8) reduces

the computation required for p(k), i.e., reduces the number of multiplication and

additions in each iteration.

4.3 Simulations and Experiments Description

In this section, we present some impulse responses that have both plain and hidden

sparsity, also a time-varying impulse response. The experiments aim at verifying the

potential bene�ts of exploiting both types of sparsity simultaneously, by applying

several LMS-based algorithms to identify some unknown sparse lowpass and sparse

highpass systems. The competing algorithms are: (i) the LMS algorithm; (ii) the

F-LMS algorithm, which can exploit only hidden sparsity; and (iii) the `0-LMS

algorithm, which is able to exploit only plain sparsity and achieves better results
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than most sparsity-aware LMS-based algorithms, then constituting a benchmark

among them [51, 53].
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Figure 4.1: Impulse response of the unknown systems.

The order of all unknown systems is 99, i.e., they have 100 coe�cients, among

which 30 to 40 are considered relevant (that is, their magnitudes are much greater
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than the magnitude of other coe�cients, as illustrated in Fig. 4.1). The input signal

is a zero-mean white Gaussian noise, which has unit variance. The signal-to-noise

ratio (SNR) is chosen as 20 dB. All algorithms have as initialization vector w(0) =

[0 · · · 0]T, moreover 3 α = 0.05, σ2
m = 10−5 and ε = 10−2. We use the Laplacian form

with �rst order truncation for the `0-LMS, as in Section 2.5, and we set the weight

given to the approximation of the `0-norm as κ = 2× 10−3 and the parameter that

controls the quality of the `0-norm approximation is β = 5 [51, 53]. For the sake

of clarity, the values of the step size µ are informed later for each simulation result.

The MSE learning curves of the presented algorithms are computed averaging the

outcomes of 500 independent trials.

In the �rst experiment, we seek to compare the performance of the aforemen-

tioned algorithms when the unknown systems stand still, i.e., do not change along

the iterations. For this experiment, we consider two impulse responses. The �rst

unknown system, wo,l, is a block sparse lowpass system whose �rst 20 coe�cients are

zero-mean white Gaussian with variance σ2
m (these coe�cients represent the plain

sparsity of this system), the next 30 coe�cients are constant and equal to 0.4 (these

coe�cients refer to the low frequency components) and the last 50 coe�cients are

also zero-mean white Gaussian with variance σ2
m (these coe�cients also represent

a block of plain sparsity). Fig. 4.1a depicts such impulse response. The second

unknown system, wo,h, is almost the same as the �rst one, but the non-white Gaus-

sian coe�cients (relevant coe�cients) with odd and even indexes are −0.4 and 0.4,

respectively. We illustrate this system impulse response in Fig. 4.1c, which is the

highpass �lter.

In the experiment experiment, we use a time-variant impulse response to test

the tracking capability of the SSF-LMS algorithm in comparison to the others algo-

rithms. The time-variant unknown system starts as the same block sparse lowpass

system wo,l used in the simulations of �rst experiment. However, after 2000 itera-

tions, the system coe�cients change to

w′o,l(n) =


0.1n

9
− 0.38, if 51 ≤ n < 61 ,

0.3, if 61 ≤ n < 71 ,

−0.1n

19
+ 0.65, if 71 ≤ n < 91 ,

where n is the coe�cient index. The other coe�cients (that represent the plain

sparse portion of the impulse response) are zero-mean white Gaussian with variance

σ2
m. All of the other parameters are the same as in the �rst experiment. Fig. 4.1e

depicts such system impulse response. One can notice that w′o,l continues to be

3The variance σ2
m refers to the noise inserted in the low-magnitude coe�cients of the unknown

systems. Therefore, it shows the robustness of the SSF-LMS algorithm in compressive scenarios.
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a lowpass impulse response, but now, such feature appears in blocks. Instead of

a single block where the coe�cients are the same, now we have blocks where the

magnitude of adjacent coe�cients slowly vary, i.e., adjacent coe�cients are similar

in determined regions of the impulse response w′o,l.

4.4 Discussion of Results

In this section, we present the MSE learning curves of the tested algorithms as

result for the simulations and experiments depicted in the previous section. We

also discuss this results by comparing the performance in the steady-state MSE

and convergence speed, of each algorithm. Additionally, we show the number of

arithmetic operations per iteration in the steady-state that each algorithm requires

to identify each impulse response.

Fig. 4.2 depicts the MSE learning curves of the LMS, F-LMS, `0-LMS, and SSF-

LMS algorithms using the block sparse lowpass impulse responsewo,l in two di�erent

simulations scenarios. In Fig. 4.2a, all algorithms use the same step size µ = 0.015,

therefore they show similar convergence speeds. This analysis compares the steady-

state MSE that each algorithm is able to reach, verifying their precision. We can

notice that the SSF-LMS algorithm achieves the lowest MSE, followed by the F-

LMS, `0-LMS and LMS algorithms, respectively. Although one can notice the MSE

results of the SSF-LMS algorithm are only slightly superior, in relation to the MSE

reached by the F-LMS algorithm, one must remind that the SSF-LMS algorithm is

a low complexity solution, which performs fewer arithmetic operations due to the

plain sparsity presented in wo,l.
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Figure 4.2: MSE learning curves of the LMS, F-LMS, `0-LMS, and SSF-LMS algo-
rithms considering wo,l.
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In Fig. 4.2b, we compare the algorithms convergence speed by letting �x the

steady-state MSE. Hence, we alter the step sizes for the LMS, F-LMS, `0-LMS, and

SSF-LMS algorithms to 0.003, 0.0055, 0.005, and 0.007, respectively. This analysis

provides a di�erent view about the capacity of the algorithms, mainly the proposed

SSF-LMS algorithm. One can notice that the SSF-LMS algorithm converges to the

steady-state MSE much faster than the others algorithms. It is worthy to mention

that the SSF-LMS algorithm reaches these results by performing fewer arithmetic

operations than its competitors, due to the existing plain sparsity of the lowpass

system. Hence, the SSF-LMS algorithm outperforms the F-LMS, `0-LMS and LMS

algorithms, for lowpass systems with plain and hidden sparsity simultaneously.

Table 4.1: Number of arithmetic operations per iteration during steady-state con-
sidering wo,l.

Algorithm # Multiplications # Additions
SSF-LMS 232 321
F-LMS 301 497
LMS 201 200
`0-LMS 341 340

Table 4.1 depicts the number of arithmetic operations that each algorithm does

during the steady-state considering the lowpass impulse response wo,l. We can

notice that, besides achieving better performance in both simulations, the SSF-LMS

algorithm also requires fewer arithmetic operations in comparison to the F-LMS and

`0-LMS algorithms. The LMS algorithm requires the fewest arithmetic operation,

however it has the worst performance among the algorithms and does not exploit any

type of sparsity. The reduction in computation occurs whenever there is observed

plain sparsity in the unknown impulse response, since in this case the SSF-LMS

algorithm does not compute every entry of vector p(k) (refer to Algorithm 2). The

algorithm computes only those entries that are relevant for the system, i.e., those

entries that are larger than the threshold forced by the discard function. Therefore,

we can analyze the limiting case where all coe�cients are relevant (there is no plain

sparsity in the impulse response), the SSF-LMS algorithm would perform exactly

the same number of arithmetic operations required by the F-LMS algorithm.

In Fig. 4.3, we show the MSE learning curves of the LMS, F-LMS, `0-LMS,

and SSF-LMS algorithms, which are the results of simulations for the block sparse

highpass system wo,h. Fig. 4.3 show the results when the algorithms have the same

convergence speed and same steady-state MSE as in Fig. 4.2. Fig. 4.3a depicts the

performance of the algorithms when all of them have the same step size (µ = 0.015),

comparing their steady-state MSE threshold. Once again, the SSF-LMS algorithm

reaches the lowest MSE but the di�erence between its performance and the F-LMS

algorithm is not remarkable. One can notice that the SSF-LMS algorithm reaches
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just few dBs less than the F-LMS algorithm. For the next simulation we set the

step sizes for the LMS, F-LMS, `0-LMS, and SSF-LMS algorithms to 0.003, 0.0055,

0.005, and 0.007, respectively. We can observe in Fig. 4.3b the comparison of the

convergence speed of each algorithm. As in the simulation considering wo,l, the

SSF-LMS algorithm achieves the best convergence rate.
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(a) All algorithms with the same step size:

µ = 0.015.
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Figure 4.3: MSE learning curves of the LMS, F-LMS, `0-LMS, and SSF-LMS algo-
rithms considering wo,h.

By considering that the impulse response wo,h has the same number of relevant

coe�cients as wo,l, the number of arithmetic operations of each algorithm during

steady-state is exactly the same as those depicted in Table 4.1. In spite of this, for

convenience, we rewrite this numbers in Table 4.2.

Table 4.2: Number of arithmetic operations per iteration during steady-state con-
sidering wo,h.

Algorithm # Multiplications # Additions
SSF-LMS 232 321
F-LMS 301 497
LMS 201 200
`0-LMS 341 340

The second experiment validates the tracking capability of the SSF-LMS algo-

rithm, where after several iterations the impulse response completely changes. How-

ever, the system keeps its lowpass feature, thus the feature matrix does not need to

be altered. For this experiment we �x the steady-state MSE of the algorithms, by

setting µ = 0.015. According to Fig. 4.4 we observe that the SSF-LMS algorithm

continues to reach the steady-state MSE �rst, despite the sudden variation in the

unknown impulse response.
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Figure 4.4: MSE learning curves of the LMS, F-LMS, `0-LMS, and SSF-LMS algo-
rithms considering that the unknown system is wo,l in the �rst 2000 iterations, and
suddenly changed to w′o,l. The step sizes for each algorithm are the same as those
used in Fig 4.2b.

Table 4.3: Number of arithmetic operations per iteration during steady-state con-
sidering w′o,l.

Algorithm # Multiplications # Additions
SSF-LMS 242 361
F-LMS 301 497
LMS 201 200
`0-LMS 321 320

Table 4.3 presents the number of arithmetic operations during steady-state con-

sidering only the new impulse response w′o,l. As expected the SSF-LMS algorithm

requires lower amount of operations (in total) than the F-LMS and the `0-LMS al-

gorithms, but, in this simulation, the SSF-LMS algorithm requires more additions

per iteration than the `0-LMS algorithm. However, this is a minor problem as the

SSF-LMS algorithm performs much fewer multiplications, which are operations that

demand more computational power than additions.
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Chapter 5

Conclusions

In this work, we did a profound study about the LMS-based algorithms, including

some that are sparsity-aware. We performed a brief review of the studied algorithms,

intending to expose some signi�cant individualities of each algorithm. We show the

di�erences between the proportionate and regularization families. We could not

see the way that a proportionate algorithm can exploit the system sparsity when

compared to the regularization algorithms.

We addressed some properties of the proportionate-type algorithms. We started

by studying the role of the weighting matrix G(k) in the PNLMS algorithm op-

eration. However, this analysis can be extended to some other algorithms of this

family. We saw that a proportionate algorithm relies on a large di�erence between

the estimated coe�cients. To a high-magnitude parameter converges faster, the low-

magnitude ones need to be slower. As a sparse impulse response has the most of its

energy concentrated in a short time range, and one usually initializes an adaptive

�lter with the vector w(0) = [0 0 . . . 0]T, the proportionate algorithms achieve

excellent performance, mainly the PNLMS algorithm. However, this creates de-

pendence in the initialization vector. The step sizes assigned to the low-magnitude

coe�cients are small enough to slow them to the point where it impairs the algorithm

performance, thus it relies on an initialization vector close to the low-magnitude co-

e�cients. Hence, strictly speaking, we conclude that the proportionate-type family

does not exploit the system sparsity.

From these two properties, we assigned others that fortify our hypothesis. The

time-shift degraded the performance of the algorithms, even in a sparse impulse

response. When there is a shift in time, an adaptive �lter updates its coe�cients

considering only the measurement noise. Until the relevant coe�cient does not feed

the adaptive �lter, the learning process corrupts the initialization vector, creating

a new one that we do not have any knowledge. However, besides all of this, we

presented that, with proper parameters set, the PNLMS algorithm can achieve sat-

isfactory performance in non-sparse systems.

55



We introduced a penalty function to the cost function of the F-LMS algorithm,

then both types of sparsity can be exploited. The discard function exploits the plain

sparsity, whereas the feature matrix unveils the hidden sparsity. We compared the

performance of the proposed SSF-LMS algorithm to other sparsity-aware algorithms,

in some sense. By elaborating some examples, which aimed at identifying impulse

responses that have both types of sparsity, we conclude that the SSF-LMS algorithm

presented the best performance in terms of the MSE, while also requiring fewer

arithmetic operations than the F-LMS algorithm.

In future works, we will explain strategies that facilitate the learning process of

the feature matrix. By calculating the feature online, we can eliminate the necessity

for prior information about the system.
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