
REACHABILITY-BASED DIAGNOSABILITY FOR HYBRID SYSTEMS

Jéssica dos Santos Vieira

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientadores: Eduardo Vieira Leão Nunes

Lilian Kawakami Carvalho

Rio de Janeiro

Junho de 2019

REACHABILITY-BASED DIAGNOSABILITY FOR HYBRID SYSTEMS

Jéssica dos Santos Vieira

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. Eduardo Vieira Leão Nunes, D.Sc.

Prof. João Carlos dos Santos Baśılio, Ph.D.

Prof. Antônio Eduardo Carrilho da Cunha, D.Eng

Prof. Marcelo Carvalho Minhoto Teixeira, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JUNHO DE 2019

Vieira, Jéssica dos Santos

Reachability-based diagnosability for hybrid

systems/Jéssica dos Santos Vieira. – Rio de Janeiro:

UFRJ/COPPE, 2019.

XII, 75 p.: il.; 29, 7cm.

Orientadores: Eduardo Vieira Leão Nunes

Lilian Kawakami Carvalho

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.

Referências Bibliográficas: p. 64 – 66.

1. Diagnosis. 2. Hybrid systems. 3. Reachability. I.

Nunes, Eduardo Vieira Leão et al. II. Universidade Federal

do Rio de Janeiro, COPPE, Programa de Engenharia

Elétrica. III. T́ıtulo.

iii

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

DIAGNOSE DE FALHAS DE SISTEMAS HÍBRIDOS BASEADA EM

ALCANÇABILIDADE

Jéssica dos Santos Vieira

Junho/2019

Orientadores: Eduardo Vieira Leão Nunes

Lilian Kawakami Carvalho

Programa: Engenharia Elétrica

Neste trabalho apresentam-se os principais conceitos relacionados aos sistemas

h́ıbridos, que são sistemas dinâmicos que combinam comportamentos discreto e

cont́ınuo. Esses sistemas podem ser modelados por autômatos h́ıbridos ou sistemas

de transição. Autômatos h́ıbridos permitem mais riqueza ao modelo, entretanto

nem sempre é posśıvel prever o seu comportamento. Dependendo do tipo de análise

do sistema, como a verificação de certas propriedades, é prefeŕıvel um maior ńıvel

de abstração sendo, assim, modelado por sistema de transição, os quais apresen-

tam ferramentas mais estruturadas para verificação de propriedades. Este trabalho

também apresenta uma nova definição de diagnosticabilidade que combina a diagnos-

ticabilidade de sistemas a eventos discretos (SEDs) com a análise de alcançabilidade

para comparação dos comportamentos cont́ınuos. Além disso, apresenta-se um es-

tudo de caso da análise da diagnosticabilidade de falhas de sistemas modelados

por autômatos h́ıbridos. Nesse exemplo demonstra-se a vantagem de se realizar a

análise da alcançabilidade dos estados associados à dinâmica a tempo cont́ınuo do

modelo h́ıbrido. Com essa abordagem, é posśıvel diagnosticar falhas que não seriam

posśıveis usando técnicas puramente de SEDs.

iv

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

REACHABILITY-BASED DIAGNOSABILITY FOR HYBRID SYSTEMS

Jéssica dos Santos Vieira

June/2019

Advisors: Eduardo Vieira Leão Nunes

Lilian Kawakami Carvalho

Department: Electrical Engineering

In this work, we present the main concepts related to hybrid systems, that are

dynamic systems that combine discrete and continuous behaviors. These systems

can be modeled by hybrid automata or transition systems. Hybrid automata allow

more wealth to the model, however, it is not always possible to predict its behavior.

Depending on the type of analysis of the system, such as the verification of certain

properties, a higher level of abstraction is preferred and, thus, modeled by a tran-

sition system, which presents more structured tools for checking properties. This

work also presents a new definition of diagnosability combining the discrete event

systems (DES) diagnosability with reachability analysis to compare continuous be-

haviors. Furthermore, we present a case study of fault diagnosability analysis of

systems modeled by hybrid automata. This example demonstrates the advantage of

performing the state reachability analysis associated with the continuous-time dy-

namics of the hybrid model. With this approach, it is possible to diagnose failures

that would not be possible by using purely DES techniques.

v

Contents

List of Figures viii

Lista de Śımbolos xi

1 Introduction 1

2 Discrete Event Systems 4

2.1 Language . 4

2.2 Automata . 6

2.2.1 Deterministic automata . 6

2.2.2 Nondeterministic automata 7

2.3 Automaton language . 7

2.4 Operations on automata . 9

2.4.1 Accessible part . 9

2.4.2 Coaccessible part . 11

2.4.3 Trim operation . 11

2.4.4 Product composition . 12

2.4.5 Parallel composition . 13

2.5 Observer automata . 14

2.6 DES diagnosability . 16

2.6.1 New necessary and sufficient condition for DES diagnosability 19

3 Hybrid systems 22

3.1 Hybrid automata . 22

3.1.1 Hybrid solution . 23

3.1.2 Reachable region . 26

3.2 Diagnosability of hybrid systems . 29

3.2.1 Diagnosability analysis of hybrid systems cast in a discrete-

event framework . 29

3.2.2 Verification of diagnosability of hybrid systems 34

3.3 Transition systems . 38

3.3.1 Linear temporal logic . 42

vi

3.3.2 Linear-time properties . 45

4 Reachability-based diagnosability for hybrid systems 51

4.1 Diagnosability concept for hybrid systems 52

4.2 Example . 54

4.3 Comparison example . 57

4.4 Final remarks . 60

5 Conclusion and future works 62

Bibliography 64

A SpaceEx 67

B Simulink - Chart 73

vii

List of Figures

2.1 State transition diagram of automaton G of Example 8. 7

2.2 State transition diagram of a nondeterministic automaton Gnd of Ex-

ample 9. 8

2.3 Automaton G of Example 12 . 10

2.4 Accessible part of automaton G of Example 12. 10

2.5 Coaccessible part of automaton G of Example 13. 11

2.6 Trim operation of automaton G of Example 14. 12

2.7 Automata G1 and G2 for Examples 15 and 16. 13

2.8 Product composition of G1 and G2 of Example 15. 13

2.9 Parallel composition of G1 and G2 of Example 16. 14

2.10 Automaton Gobs of Example 17 . 16

2.11 Labeler automaton Al . 17

2.12 Automata G (a); parallel composition G ‖ Al(b); diagnoser automa-

ton Gd = Obs(G ‖ Al) of Example 18. 18

2.13 Automaton G (a); parallel composition G ‖ Al(b); diagnoser automa-

ton Gd = Obs(G ‖ Al) of Example 19. 19

2.14 Automaton GSCC = Gd||G` of Example 20 20

2.15 Automaton GSCC = Gd||G` of Example 21 21

3.1 Hybrid automaton H1 of a thermostat of Example 22 24

3.2 Continuous and discrete (location) trajectories for the thermostat ex-

ample 22 . 25

3.3 Hybrid automaton H2 of a thermostat of Example 23 25

3.4 Continuous and location trajectories for the thermostat example 23 . 26

3.5 Hybrid automaton H of Example 24. 27

3.6 Example of the reachable region for the hybrid automaton of Example

24. 29

3.7 Underlying DES automaton G of Example 25 31

3.8 Behavior automaton BA for the automaton G of Example 25 33

3.9 Diagnoser automaton Diag(BA) for the behavior automaton BA of

Example 25 . 33

viii

3.10 Underlying DES automaton G of Example 26. Figure extracted from

[1] . 36

3.11 Verifier automaton GV H of Example 26. Figure extracted from [1] . . 37

3.12 Snack vending machine transition system of Example 27. 39

3.13 Example of LTL. 45

3.14 Transition system of Example 38. 46

3.15 Transition system TSmod of Example 39. 48

4.1 Illustration of the definition of hybrid systems diagnosability. 53

4.2 Example of the failure behavior represented by a hybrid automaton

of Section 4.2. 55

4.3 Reachability chart related to locations of HA subject to the same

initial conditions χ0 = 0 ≤ f ≤ 25/9 of the example in Section 4.2.

Subfigure (a) refers to the behavior of locations 1, 2, 4 − 10, 12 − 14

and 16. Subfigure (b) refers to the behavior of locations 3 and 11 and

subfigure (c) refers to the behavior of location 15. 56

4.4 Reachability chart related to the models of the HA subject to the

same initial condition χ0 = [0, 0.1, 0.1]T of the example in Section

4.3. Subfigures (a) - (e) refer to the behavior of the modelsM1,M2,

M3, M4 and M5, respectively . 58

4.5 Reachability chart related to the modelsM3 andM5 of the example

in Section 4.3. Figure (a) refers to the intersection of the reachable

regions from the two models. This Figure displays the reachable

region of model M3 when the region is the same as the reachable

region of model M5. Figure (b) refers to the relation of the models

M3 and M5 in the interval [0,1] . 59

4.6 Reachability chart related to the modelsM2 andM4 of the example

in Section 4.3. Figure (a) refers to the intersection of the reachable

regions from the two models. This Figure displays the reachable

region of model M2 when the region is the same as the reachable

region of model M4. Figure (b) refers to the relation of the models

M2 and M4 in the interval [0,1] . 60

A.1 Dynamics of model M2 of the example in Section 4.3. 67

A.2 Dynamics of the variable representing the time for the example in

Section 4.3. 68

A.3 SpaceEx web interface homepage. 69

A.4 SpaceEx model tab, (a). SpaceEx specification tab, (b). 70

A.5 SpaceEx options tab, (a). SpaceEx output tab, (b). 70

A.6 SpaceEx text format output. 71

ix

A.7 SpaceEx advanced tab. 72

B.1 Chart and scope objects within Simulink of the Example 22 in Section

3.1.1. 73

B.2 State elements representing locations within the Chart object. 74

B.3 Model Explorer - chart configuration. 74

B.4 Model Explorer - variables configuration. 75

x

Lista de Śımbolos

Al Labeler automaton, p. 16

Ac(G) Accessible part of automaton G, p. 10

CoAc(G) Coaccessible part of an automaton G, p. 11

G Deterministic automaton, p. 6

G1 ‖ G2 Parallel composition between automata G1 and G2, p. 14

G1 ×G2 Product composition between automata G1 and G2, p. 13

Gd Diagnoser automaton, p. 17

Gobs Observer automaton, p. 15

H Hybrid automaton, p. 23

L(G) Generated language by automaton G, p. 8

L/u Post-language of L after a trace u, p. 5

Lm(G) Marked language of automaton G, p. 8

P (L) Projection operator of a language L, p. 6

P−1(L) Inverse projection operator of a language L, p. 6

TS Transition system, p. 38

Trim(G) Trim operation of automaton G, p. 11

UR(x) Unobservable reach of a state x, p. 15

Σ∗ Kleene-closure of Σ, p. 5

Σo Set of observable events, p. 5

Σ Set of events, p. 4

xi

Σuo Set of unobservable events, p. 5

Φ LTL formula, p. 43

Ψ(Σf) Set of all sequences in L that end with event σf , p. 16

Σs 6∈ u None of the events of Σs appears in u, p. 5

|u| The length of a trace u, p. 4

RH(Qi, Xi) Reachable region for the set of discrete states Qi and the set

of continuous states Xi, p. 26

L Prefix-closure of L, p. 5

εR(x) ε− reach of state x, p. 9

ε Empty trace, p. 4

xii

Chapter 1

Introduction

The technological evolution has brought great advances in industry which led to the

concept of Industry 4.0. This new industrial revolution is based on cyber-physical

systems operating in real time, decentralized and using the concept of internet of

things. To meet this new industry requirements, the systems must run without

interruption and if the system fails, this problem must be solved efficiently without

causing major damage. Therefore, it is necessary that the fault diagnosis system be

able to diagnose the failure in time so as not to cause damage neither to production

nor to installation.

Fault diagnosis consists of determining whether the system is in its normal be-

havior or if any failure has occurred. One of the approaches to the fault diagnosis

problem is based on the knowledge of the system model and, within this context,

the works that use the so-called discrete event models [2, 3] stand out. However,

the evolution of discrete event systems (DES) is due to the asynchronous occurrence

of events and no information about the dynamic evolution of the system is used

while the system remains in a certain state. Hybrid Systems (HS), on the other

hand, are systems that have both continuous and discrete events based dynamics,

which interact with each other during their evolution [4, 5]. Many DES represent

an abstraction of HS, and depending on the level of that abstraction, information

may be lost.

One of the most cited and a pioneer work is presented in HENZINGER [4], where

it is proposed a formal definition for hybrid automata. A more continuous system

approach is presented in GOEBEL et al. [6] and in FREHSE et al. [7] an abstraction

refinement for hybrid systems is presented. Since HS theory is recent, there are not

many consolidated textbooks that address the theme.

Fault diagnosis of HS is an incipient area with few published works. One ap-

proach found in the literature fault detection in finite-time using the invalidation

model for affine switched systems is presented in HARIRCHI and OZAY [8] and

in HARIRCHI et al. [9]. In this context, several models are obtained from the

1

input/output observation of the system. These works are limited to continuous

switched systems with no discrete event dynamics. Other works consider the fault

diagnosis in HS as an extension of the fault diagnosis of DES by adding events

through the discretization of the system analysis of the continuous dynamics [10, 11].

In BAYOUDH and TRAVÉ-MASSUYÈS [10], the idea is to abstract the con-

tinuous dynamics using a concept defined as signature-events associated with mode

signatures and let the analysis be made in a DES structure. Each mode has its sig-

nature defined from the relation of its continuous dynamics with each of the other

modes of the hybrid system. The signature events are created whenever the mode

signature changes. The HS model is mapped into a DES infrastructure using mostly

the DES tools for fault diagnosability verification.

More recently, DIENE et al. [1] present a new definition of diagnosability for

hybrid systems, as well as a verification method based on the verifier automaton and

the distinction of modes based on continuous states models through residual analysis.

This work combines DES techniques with a classical approach to continuous systems,

residual calculation, to distinguish modes and identify the faults.

Modeling a system is a relevant task. The correct modeling facilitates the analysis

and verification of properties [12]. In this sense, model checking has many tools

and can be used on a large scale. Among the various techniques used for HS,

the reachability analysis stands out as one of the most relevant and with a direct

application in the model checking of HS [13–15]. Efficient computational tools, such

as SpaceEx [16, 17], are available for reachability analysis of HS subclasses.

In this work, we first present a bibliographic review of hybrid systems. In addi-

tion, we present a new definition of diagnosability combining the DES diagnosability

by SAMPATH et al. [2] with reachability analysis to compare continuous behaviors.

The reachability analysis is used to distinguish the different continuous behaviors of

the modes of the underlying discrete model. In this manner, the failure can be de-

tected in some systems. This may not be possible considering it as a purely discrete

event model. Furthermore, we present a case study of fault diagnosability analysis of

systems modeled by hybrid automaton inspired by a classic example of discrete event

systems diagnosis to demonstrate the advantage of performing the state reachability

analysis associated with the continuous-time dynamics of the hybrid model aiming

at making the fault diagnosable. In addition we apply the definition proposed in

this work to an existent HS diagnosability problem.

This work is structured as follows: In Chapter 2, we present some preliminary

concepts and notations of DES. In Chapter 3, we present some fundamentals on

HS, as well as some works in HS diagnosability field. In Chapter 4, we propose a

new HS diagnosability definition, a case study, a comparison example and some final

remarks. Most of the results presented in that Chapter 4 has been summarized in a

2

paper [18]. In Chapter 5, we summarize our contributions to this work and present

some possible future continuations.

3

Chapter 2

Discrete Event Systems

Discrete event systems are discrete event-based state systems, where the evolution

of each state depends only on the occurrence of discrete asynchronous events over

time. Event is an instant occurrence capable of causing a transition from one state

to another. The concatenation of all possible event sequences of a system forms its

language. These systems can be formally modeled by an automaton.

In this chapter, we present some preliminary concepts and notations related

to DES theory. This chapter is based on the notations of CASSANDRAS and

LAFORTUNE [19] and is structured into six sections: in Section 2.1 we introduce

the notion of system language and some operations with languages; in Section 2.2,

we present the formalism of the automaton, and the distinction among deterministic

and nondeterministic automaton; in Section 2.3, we present the automata language;

in Section 2.4 we present some operations performed on automata; in Section 2.5,

we present the concept of observer automata, and, in Section 2.6, we present the

concept of DES diagnosability.

2.1 Language

Let alphabet be a finite set of symbols Σ, usually associated with a set of physical

events. A trace is a sequence of events taken out of this alphabet. For a trace u, |u|
denotes its length in number of events. The empty trace ε is a trace where there is

no occurrence of events. Notice that the length of ε is zero.

Definition 1 (Language) [19]

A language L defined over a set of events Σ is a set of finite length traces formed

from events in Σ.

Example 1 Let Σ = {a, b, c}. Then, L1 = {ε, a, cb, aaa, bcba} and L2 =

{ε, c, bb, bbbca} are languages defined over the set of events Σ. The length of trace

cb is |cb| = 2 and the length of trace bbbca is |bbbca| = 5.

4

The Kleene-closure Σ∗ denotes the set of all finite-length traces formed by the

juxtaposition of symbols in a given alphabet Σ, including the empty trace, ε. Every

language L is a subset of Σ∗, i.e., L ⊆ Σ∗.

Example 2 Let Σ = {a, b}. Thus, its Kleene-closure is given by the set Σ∗ =

{ε, a, b, aa, ab, bb, aaa, aab, ...}.

The concatenation of two traces u, v ∈ Σ∗ is the combination of the trace u

followed by the trace v, represented as uv. The concatenation of any traces u, ε ∈ Σ∗

is u itself, for ε is the identity element. A trace s can always be partitioned as

s = tuv, where t is the prefix of s, and v is its suffix. It is important to notice that

ε is always a prefix and suffix of any trace.

The concatenation of two languages L1, L2 ⊆ Σ∗ is L1L2 := {u ∈ Σ∗ : (u = u1u2)

and (u1 ∈ L1) and (u2 ∈ L2)}.

Example 3 Let the languages L1 = {b, ac} and L2 = {ε, d, bb}. The concatenation

of L1 and L2 is given by L1L2 = {b, bd, bbb, ac, acd, acbb} and the concatenation of

L2 and L1 is given by L2L1 = {b, ac, db, dac, bbb, bbac}.

The prefix closure of a language L, denoted by L, consists of all prefixes of all

traces in L. Formally L = {u ∈ Σ∗ : (∃v ∈ Σ∗)[uv ∈ L]}. In general, L ⊆ L is said

to be prefix-closed if L = L.

Example 4 Let the language L = {a, bcba}. The prefix-closure of L is given by

L = {ε, a, b, bc, bcb, bcba}.

We define the post-language after a trace u in a language L ⊆ Σ∗, denoted by

L/u as the set formed by the continuation of all traces of L after the occurrence of

the trace u, i.e., L/u = {v ∈ Σ∗ : uv ∈ L}.

Example 5 Let the language L = {bcc, a, ac, bc, abc}. The post-language after a

trace u = bc is L/u = {c, ε}.

Let the trace u ∈ Σ∗ and the sub-alphabet Σs ⊆ Σ. The notation Σs 6∈ u implies

that there is no occurrence of the elements from Σs in u.

The set of events Σ can be partitioned in two disjoint subsets which are the

observable event set Σo, and the unobservable event set Σuo, i.e., Σ = Σo

.∪ Σuo.

Usually, observable events are associated to sensors.

Projection is an operation defined as P : Σ∗ → Σ∗o, where Σo ⊆ Σ. It is recur-

sively defined as P (ε) = ε; P (σ) = σ, if σ ∈ Σo, and P (σ) = ε, otherwise; and

P (uσ) = P (u)P (σ), for u ∈ Σ∗ and σ ∈ Σ. In a simplified way, the projection takes

a trace formed by the set of events Σ and removes the events that do not belong to

5

the set of events Σo. The inverse projection P−1 : Σ∗o → 2Σ∗ is defined over v ∈ Σ∗o as

P−1(v) = {u ∈ Σ∗ : P (u) = v}. Both projection and inverse projection operations

can be extended to languages by applying them to all sequences in the language [19],

P (L) = {t ∈ Σ?
o : (∃s ∈ L)[P (s) = t]} and P−1(L) = {s ∈ Σ? : (∃t ∈ L)[P (s) = t]}.

Example 6 (Projection) Let us consider language L1 = {a, c, bb, ac, bc, bcc, abc} de-

fined over Σ = {a, b, c} and the set of observable events Σo = {a, b} ⊆ Σ. The

projection P : Σ∗ → Σ∗o applied to language L1 is the projection of each sequence in

L, i.e., P (L1) = {a, ε, bb, b, ab}.

Example 7 (Inverse Projection) Let us consider language L2 = {ε, a, b, ab, bb} de-

fined over Σo = {a, b} ⊆ Σ, where Σ is defined as in example 6. The inverse

projection P−1 : Σ∗o → 2Σ∗ applied to language L2 is presented as P−1(L2) =

{c}∗ ∪ {c}∗{a}{c}∗ ∪ {c}∗{b}{c}∗ ∪ {c}∗{a}{c}∗{b}{c}∗ ∪ {c}∗{b}{c}∗{b}{c}∗.

One way to graphically represent discrete event systems is by automata, which

will be treated in Section 2.2.

2.2 Automata

An automaton is a device that is capable of representing a language according to

well-defined rules [19]. It can be represented as a directed graph or a state transition

diagram, where the vertices are the states and the edges represent the transitions

from one state to another. Automata are classified as deterministic or nondetermin-

istic.

2.2.1 Deterministic automata

A deterministic automaton is formally represented by a five-tuple G =

(X,Σ, f, x0, Xm), whereX is the state-space, Σ is the finite set of events, f : X×Σ→
X is the transition function, x0 ∈ X is the initial state of the system, and Xm ⊆ X

is the set of marked states, usually states which are important in the system. We

can also define Γ : X → 2Σ as the feasible event function in a state of G, where Γ(x)

is the set of all events σ for which f(x, σ) is defined.

Example 8 Let us consider a deterministic automaton G represented in Figure

2.1. For this automaton we can identify the following elements: the state-space

X = {x, y, z}, the set of events Σ = {a, b, c}, the transition function f given by

f(x, a) = f(x, b) = z, f(x, c) = y, f(y, b) = y and f(z, a) = y, the initial state

x0 = x and the set of marked states Xm = {y}. The states are represented by

6

x

y

z
a, b

c a

b

Figure 2.1: State transition diagram of automaton G of Example 8.

circles, the transitions are represented by an arrow that goes from the origin state

xi ∈ X to state f(xi, σ) labeled with event σ ∈ Σ. The marked state is represented

by a double circle, and the initial state is marked by an arrow pointing to it.

2.2.2 Nondeterministic automata

A nondeterministic automaton is formally represented by a five-tuple Gnd = (X,Σ∪
{ε}, fnd, X0, Xm). It differs from the deterministic automaton in two aspects: non-

deterministic transition function fnd : X×Σ∪{ε} → 2X , i.e., the transition function

can evolve to more than one state and the initial state X0 may be a subset of X,

X0 ⊆ X. Note that a transition may be labeled with empty trace ε in this automa-

ton.

Example 9 Let us consider a nondeterministic automaton Gnd represented in Fig-

ure 2.2. For this automaton we can identify the following elements: the state-space

X = {v, w, x, y, z}, the set of events Σ = {a, b, c}, the nondeterministic transition

function fnd, which is given by fnd(w, a) = {y}, fnd(w, c) = {v}, fnd(v, ε) = {z},
fnd(x, b) = {z}, fnd(x, c) = {y, z}, fnd(y, b) = {y} and fnd(z, a) = {y}, the set of

initial states X0 = {x,w}, and the set of marked states Xm = {y}.

2.3 Automaton language

The language of an automaton represents all sequences of events that the automa-

ton is able to generate. It can be obtained by following all of the directed paths

in the state transition diagram. Each automaton is related with two languages:

the generated language and the marked language. For the following definitions, is

7

x

y

z

w

v

c, b c

c

ε

a

a

b

Figure 2.2: State transition diagram of a nondeterministic automaton Gnd of Ex-
ample 9.

important to assume the extended transition function of deterministic automaton

f : X × Σ∗ → X as follows.

f(x, ε) := x,

f(x, sσ) := f [f(x, s), σ] for s ∈ Σ∗ and σ ∈ Σ.

Definition 2 The language generated by a deterministic automaton G =

(X,Σ, f, x0, Xm) is:

L(G) := {s ∈ Σ∗ : f(x0, s) is defined },

and the marked language of a deterministic automaton G is:

Lm(G) := {s ∈ Σ∗ : f(x0, s) ∈ Xm}.

Example 10 The generated and marked languages of automaton G, depicted

in Figure 2.1, are L(G) = {ε, a, b, c, aa, ba, cb, aab, bab, cbb, ...} and Lm(G) =

{c, aa, ba, cb, aab, bab, cbb, aabb, babb, cbbb, ...}, respectively.

Before defining the generated and marked language for the nondeterministic

automaton, we need to extend the nondeterministic transition function, denoted by

8

f extnd , to the domain X × Σ∗. Differently from the deterministic automaton, where

f(x, ε) = x, in a nondeterministic automaton, the ε event may lead to a different

state. For that purpose, we start defining the ε-reach of a state x, denoted by εR(x),

which is the set of all states, including x, that can be reached from x by following

transitions labeled with ε. This function may consider a set of states B ⊆ X, and

it is defined by εR(B) :=
⋃
x∈B εR(x).

The transition function for nondeterministic automata can be constructed recur-

sively as follows:

f extnd (x, ε) := εR(x),

and for u ∈ Σ∗, and σ ∈ Σ:

f extnd (x, uσ) := εR(z : z ∈ fnd(y, σ) for some state y ∈ f extnd (x, u)).

Definition 3 The language generated by a nondeterministic automaton Gnd =

(X,Σ ∪ {ε}, fnd, x0, Xm) is:

L(Gnd) := {s ∈ Σ∗ : f extnd (x0, s) is defined },

and the marked language of a nondeterministic automaton Gnd is given by:

Lm(Gnd) := {s ∈ Σ∗ : f extnd (x0, s) ∩Xm 6= ∅}.

Example 11 The generated and marked languages of automaton Gnd, shown in

Figure 2.2, are, respectively, L(Gnd) = {ε, a, b, c, ab, ba, ca, cb, abb, bab, cab, cbb, ...}
and Lm(Gnd) = {a, c, ab, ba, ca, cb, abb, bab, cab, cbb, abbb, babb, cabb, cbbb, ...}.

Remark 1 The generated language L for the deterministic and nondeterministic

automaton is prefix-closed, i.e., L.

2.4 Operations on automata

Automata can perform several operations that help to properly model a system.

Certain operations are performed in a single automaton, the unary operations, and

others are combination of two or more automata, the composition operations. Both

operations are covered in this subsection.

2.4.1 Accessible part

The accessible part of an automaton G with generated language L(G) and marked

language Lm(G) results in an automaton formed by all states that can be reached

9

0

1

2 3

4

a, b d

c

d

a

b

Figure 2.3: Automaton G of Example 12

0

1

2 3
a, b d

c a

b

Figure 2.4: Accessible part of automaton G of Example 12.

from the initial state x0. This operation is denoted as Ac(G), formally:

Ac(G) := (Xac,Σ, fac, x0, Xac,m),

where

Xac = {x ∈ X : (∃s ∈ Σ∗)[f(x0, s) = x]}
Xac,m = Xm ∩Xac

fac = f |Xac×Σ→Xac

where f |Xac×Σ→Xac denotes the transition function f restricted to domain Xac.

Example 12 Let us consider automaton G, represented in Figure 2.3. The state

transition diagram of the accessible part of automaton G is represented in Figure

2.4. There is no sequence from state 0 that leads to state 4; therefore, this state does

not belong to Ac(G).

Notice that the accessible part operation does not change the generated L(G)

and marked Lm(G) languages.

10

0

1

2

4

a, b

c

d

a

b

Figure 2.5: Coaccessible part of automaton G of Example 13.

2.4.2 Coaccessible part

The coaccessible part of an automaton G, with generated language L(G) and marked

language Lm(G), results in an automaton formed by all states from which a marked

state can be reached. This operation is denoted as CoAc(G). Formally:

CoAc(G) := (Xcoac,Σ, fcoac, x0coac, Xm),

where

Xcoac = {x ∈ X : (∃s ∈ Σ∗)[f(x, s) ∈ Xm]}

x0coac =

{
x0, if x0 ∈ Xcoac

undefined, otherwise

fcoac = f |Xcoac×Σ→Xcoac

Example 13 Let us consider the automaton G, represented in Figure 2.3. The

state transition diagram of the coaccessible part of automaton G is represented in

Figure 2.5. There is no sequence from 3 that leads to the marked state 1; therefore,

this state does not belong to CoAc(G).

2.4.3 Trim operation

The trim operation of an automaton G is obtained by taking both the accessible

part and the coaccessible part of G. This operation is denoted by Trim(G), i.e.,

Trim(G) = Ac(CoAc(G)) = CoAc(Ac(G)). An automaton G is called a trim

automaton if G = Trim(G).

11

0

1

2
a, b

c a

b

Figure 2.6: Trim operation of automaton G of Example 14.

Example 14 Let us consider the automaton G, represented in Figure 2.3. The state

transition diagram obtained by the trim operation over automaton G is represented

in Figure 2.6.

Remark 2 The operations of taking the accessible and the coaccessible part of an

automaton G = (X,Σ, f, x0, Xm) do not change the set of events Σ of the resulting

automaton.

Remark 3 The accessible and coaccessible part and the trim operation can be per-

formed similarly for nondeterministic automata.

There are two different composition operations on automata, the product and the

parallel composition. These operations model automata that operate concurrently.

2.4.4 Product composition

The product composition or completely synchronous composition is denoted by ×.

In the product composition, an event occurs if, and only if, it is active in both au-

tomaton states simultaneously. For two automata G1 and G2, G1 ×G2 denotes the

product composition between them. The intersection of two languages can be ob-

tained by performing the product of their automaton representations. The product

composition of automata G1 = (X1,Σ1, f1, x01, Xm1) and G2 = (X2,Σ2, f2, x02, Xm2)

is given by:

G1 ×G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f1×2, (x01, x02), Xm1 ×Xm2),where

f1×2((x1, x2), σ) :=

{
(f1(x1, σ), f2(x2, σ)), if σ ∈ Γ1(x1) ∩ Γ2(x2)

undefined, otherwise.

12

x y 0 1

23

b

c

a

b

a

b

(a) (b)

a b

Figure 2.7: Automata G1 and G2 for Examples 15 and 16.

(x, 0) (x, 1) (y, 2)
a b

Figure 2.8: Product composition of G1 and G2 of Example 15.

where Γ1 and Γ2 are the feasible event functions in a state of G1 and G2, respectively.

Example 15 Let us consider automata G1 and G2 represented in Figure 2.7 (a)

and (b), respectively, where Σ1 = {a, b, c} and Σ2 = {a, b}. The product composition

of G1 and G2 is shown in Figure 2.8.

2.4.5 Parallel composition

The parallel composition or synchronous composition is denoted by ‖. In the parallel

composition, a common event between two automata can only occur if it is active in

both automata simultaneously. An event that is not shared by the other automaton

is called private and it can occur whenever it is active in a state. The parallel

composition of automata G1 = (X1,Σ1, f1, x01, Xm1) and G2 = (X2,Σ2, f2, x02, Xm2)

is given by:

13

(x, 0)

(x, 1) (y, 2)

(x, 2)

(x, 3)(y, 0)

a

b

c

a

b

c

Figure 2.9: Parallel composition of G1 and G2 of Example 16.

G1 ‖ G2 := Ac(X1 ×X2,Σ1 ∪ Σ2, f1‖2, (x01, x02), Xm1 ×Xm2), where

f1‖2((x1, x2), σ) =


(f1(x1, σ), f2(x2, σ)) if, σ ∈ Γ1(x1) ∩ Γ2(x2)

(f1(x1, σ), x2) if, σ ∈ Γ1(x1)\Σ2

(x1, f2(x2, σ)) if, σ ∈ Γ2(x2)\Σ1

undefined, otherwise.

Example 16 Let us consider automata G1 and G2 represented in Figure 2.7 (a)

and (b), respectively, where Σ1 = {a, b, c} and Σ2 = {a, b}. The parallel composition

of G1 and G2 is shown in Figure 2.9.

Remark 4 The product operation involves only events in Σ1 ∩ Σ2 and the parallel

operation involves events in Σ1 ∪ Σ2. The resultant automaton of both operations

has Σ1 ∪ Σ2 as the set of events.

Remark 5 The product and parallel operations are associative. Consider automata

G1, G2 and G3, we define:

G1 ×G2 ×G3 := (G1 ×G2)×G3 = G1 × (G2 ×G3)

G1 ‖ G2 ‖ G3 := (G1 ‖ G2) ‖ G3 = G1 ‖ (G2 ‖ G3)

2.5 Observer automata

There may exist events whose occurrence are not detected by the system because

there are no sensors to register them. Such events are called unobservable events.

The events whose occurrence can be detected by a sensor, are called observable. Let

us consider that the set of events can be partitioned as Σ = Σo∪̇Σuo, where Σo and

14

Σuo are the sets of observable and unobservable events of the system, respectively.

The ε-transition is considered an unobservable event [19, 20]. In order to construct

the observer automaton, denoted as Gobs, it is important the notion of unobservable

reach of a state x ∈ X, which is a generalization of the notion of ε− reach.

Definition 4 (Unobservable reach) The unobservable reach of a state x ∈ X,

denoted by UR(x), is defined as:

UR(x) = {y ∈ X : (∃t ∈ Σ∗uo)[f(x, t) = y]}. (2.1)

The unobservable reach can also be extended to sets of states B ∈ 2X as:

UR(B) =
⋃
x∈B

UR(x). (2.2)

The computation of Gobs = (Xobs,Σo, fobs, x0,obs, Xm,obs) can be obtained by the

following algorithm [19, 20].

Algorithm 1 Observer automaton construction

Input: G = (X,Σ, f, x0, Xm).

Output: Observer automaton Gobs = (Xobs,Σo, fobs, x0,obs, Xm,obs).

Step 1: Define x0,obs = UR(x0). Set Xobs = {x0,obs} and X̃obs = Xobs.

Step 2: X̂obs = X̃obs, X̃obs = ∅.

Step 3: For each B ∈ X̂obs do

3.1: Γobs(B) =
(⋃

x∈B Γ(x)
)
∩ Σo.

3.2: For each σ ∈ Γobs(B),

fobs(B, σ) = UR({x ∈ X : (∃y ∈ B)[x = f(y, σ)]}).

3.3: X̃obs ← X̃obs ∪ fobs(B, σ).

Step 4: Xobs ← Xobs ∪ X̃obs.

Step 5: Repeat steps 2 to 4 until all accessible part of Gobs is constructed.

Step 6: Xm,obs = {B ∈ Xobs : B ∩Xm 6= ∅}

15

{0, 1, 2, 3}

{1}

{1, 2, 3}b

c b

b

Figure 2.10: Automaton Gobs of Example 17

Example 17 Let us consider automaton G depicted in Figure 2.4, with the set of

observable events Σo = {b, c} and initial state x0 = 0. The observer automaton Gobs

of automaton G is represented in Figure 2.10 and is constructed as in algorithm

1. The feasible event function Γ(0) = {a, b, c} contains the unobservable event a,

thus the system can transition to states 1 and 2 without being detected. Once in

state 2, it can transition to states 1 and 3 without being noticed, where Γ(2) =

{a, d} ∈ Σuo; therefore x0,obs = UR(x0) = {0, 1, 2, 3}. In state x0,obs can occur

events Γobs(x0,obs) = {b, c}, where f(0, b) = {2} and UR(2) = {1, 3}, f(1, b) = {1},
therefore fobs(x0,obs, b) = {1, 2, 3}; f(0, c) = 1, therefore fobs(x0,obs, c) = {1}; Γ(1) =

{b} and f(1, b) = 1; Γobs({1, 2, 3}) = {b}, f(1, b) = {1}, fobs({1, 2, 3}, b) = {1}.
Notice all sates in Gobs are marked, since the marked state 1 in G is present in all

states of Gobs.

2.6 DES diagnosability

A fault event σfi , i = 1, 2, . . . , n, is the event responsible for leading the system to

a fault state. Let Σf be the set of fault events. Therefore, Σf = {σf1 , σf2 , . . . , σfn}.
When Σf is a single element set, we note σfi as σf . We will consider all fault events

as unobservable events, i.e., Σf ⊆ Σuo, since an observable fault implies in trivial

identification. Consider sf as the last event of a sequence s, Ψ(Σf) as the set of

all sequences in L that end with event σf , i.e., Ψ(Σf) = {s ∈ L : sf ∈ Σf} and

L/s = {t ∈ Σ∗ : st ∈ L} as the continuation of language L after a sequence s. With

abuse of notation, we say that a sequence s ∈ L contains a fault event if Σf ∈ s[20].

The formal definition for DES diagnosability is provided by SAMPATH et al.

16

N Y
σf

σf

Figure 2.11: Labeler automaton Al

[2], as follows.

Definition 5 Let L be a language generated by an automaton G and assume that

L is live and prefix-closed. Then L is diagnosable with respect to the projection P

and Σf = {σf} if the following condition is verified [20]:

(∃n ∈ N)(∀s ∈ Ψ(Σf))(∀t ∈ L/s)(|t| ≥ n =⇒ D)

where D is the diagnosability condition

D = (∀ω ∈ P−1(P (st)) ∩ L)(Σf ∈ ω)

In words, the language L is diagnosable if there exists an arbitrarily long sequence

after the occurrence of a fault event whose projection is different from all normal

sequence projection.

One way of verifying diagnosability of the generated language of an automaton

G is with the diagnoser automaton Gd, which is a tool to perform the fault diagnosis

of a system, where the diagnoser automaton is represented by

Gd = {Xd,Σo, fd, x0,d}

The diagnoser automaton Gd is obtained by performing the parallel composition

with the labeler automaton Al, represented in Figure 2.11 and then calculating the

observable automaton from the previous operation,i.e., Gd = Obs(G ‖ Al).
We call uncertain states, states of Gd that contains at least one state of G labeled

with Y and at least one state of G labeled with N .

Definition 6 A set of uncertain sates {xd1 , xd2 , · · · , xdp} ⊂ Xd forms an indeter-

minate cycle if the following conditions are satisfied[20]:

(i) xd1 , xd2 , · · · , xdp forms a cycle in Gd;

(ii) ∃(xlkl , Y), (x̃rll , N) ∈ xdl , xlkl not necessarily distinct from x̃rll , l = 1, 2, · · · , p,

kl = 1, 2, · · · ,ml and rl = 1, 2, · · · , m̃l such that the sequences of states {xlkl}
and {x̃rll } can be rearranged to form cycles in G, whose correspondent sequences

s and s̃, formed with events that define the cycles evolution, have as projection

σ1σ2 · · ·σp defined as the item above.

17

Theorem 1 The generated language L of an automaton G is diagnosable with re-

spect to projection P and Σf = σf , if and only if , its diagnoser Gd does not contain

indeterminate cycles [20].

Example 18 Let us consider automaton G depicted in Figure 2.12(a), with the set

of observable events Σo = {a, b}. The only unobservable event is also the fault event

σf , in this example, Σf = {σf} and Σf = Σuo. Figures 2.12(b) and (c) represent

the parallel composition G ‖ Al and the diagnoser automaton Gd = Obs(G ‖ Al),

respectively. We can simplify the notation for the states of the diagnoser, as depicted

in Figure 2.12(c). Instead of (1, N) and (0, Y), we may note as {1N, 0Y }.

{0N}

{1N, 0Y }

{0Y, 1Y }

0 1 (0, N)

(1, N)

(0, Y)

(1, Y)

a

σf

a

σf

aσf

a

a

(a) (b) (c)

b

b

b

b

b

Figure 2.12: Automata G (a); parallel composition G ‖ Al(b); diagnoser automaton

Gd = Obs(G ‖ Al) of Example 18.

Notice, in Example 18, that there is an uncertain cycle {1N, 0Y }, however it is

possible to confirm that in G ‖ Al this cycle exists only in 1N . For this reason,

it is not an indeterminate cycle and, therefore, the language generated by G is

diagnosable.

18

Example 19 Let us consider automaton G depicted in Figure 2.13(a), with the set

of observable events Σo = {a, c} and the fault event σf , Σf = {σf} and Σf ⊆ Σuo.

Figures 2.13(b) and (c) depict the parallel composition G ‖ Al and the diagnoser

automaton Gd = Obs(G ‖ Al), respectively.

Notice, in Example 19, that there is an uncertain cycle formed by {2N, 2Y }.
Both cycles occur in G ‖ Al, i.e. both normal sN = abcc∗ and fault sF = σfacc

∗

sequences have the same projection, P (sN) = P (sF) = acc∗. For that reason, the

language generated by G is not diagnosable.

{0N, 1Y }

{2N, 3N, 2Y }

{2N, 2Y }

0 1

23

(0, N)

(3, N)

(2, N)

(1, Y)

(2, Y)

σf

aa

b

a σf

b a

a

c

(a) (b) (c)

c

c c
c

Figure 2.13: Automaton G (a); parallel composition G ‖ Al(b); diagnoser automaton

Gd = Obs(G ‖ Al) of Example 19.

2.6.1 New necessary and sufficient condition for DES diag-

nosability

The method proposed by SAMPATH et al. [2] has high computational cost with

respect to the search for cycles. A recent work [21] proposes a new method based

on the search for strongly connected components (SCCs), which is less costly. A set

of vertices VSCC of a direct graph D = (V,E) is a SCC of D if it is a maximal set

and all pairs of vertices u, v in VSCC are reached form each other, where V is the

19

({0N}, 0N)

({1N, 0Y }, 1N)

({0Y, 1Y }, 1N) ({1N, 0Y }, 0Y)

({0Y, 1Y }, 1Y)

a

b

a σf

σf ab

b

Figure 2.14: Automaton GSCC = Gd||G` of Example 20

set of vertices and E is the set of edges of D. A nontrivial SCC is a singleton set,

i.e., VSCC contains a single vertice, with a self-loop.

Consider automaton G` = G ‖ A` and the new diagnoser automaton GSCC =

Gd ‖ G`, a necessary and sufficient condition for language diagnosability is presented

in Lemma 1.

Lemma 1 The language L generated by automaton G is diagnosable with respect

to projection P : Σ∗ =⇒ Σ∗o and Σf = {σf} if, and only if, GSCC does not have

nontrivial SCCs formed with states (xd, x`), such that xd is uncertain and x` is a

Y -labeled state.

In words, a language is not diagnosable if, and only if, it contains a state with a

self-loop, where the state is composed by an uncertain state of Gd and a Y -labeled

state of G`.

Example 20 Consider automata Gd and G` of Example 18 depicted in Figure 2.12

(c) and (b), respectively. The diagnoser automaton GSCC = Gd||G` is depicted in

Figure 2.14. Notice that there are three nontrivial SCCs, states ({1N, 0Y }, 1N),

20

({0N, 1Y }, 0N)

({2N, 3N, 2Y }, 3N)

({2N, 3N, 2Y }, 2N)

({2N, 2Y }, 2N)

({0N, 1Y }, 1Y)

({2N, 3N, 2Y }, 2Y)

({2N, 2Y }, 2Y)

a

b

c

σf

a

c

c c

Figure 2.15: Automaton GSCC = Gd||G` of Example 21

({0Y, 1Y }, 1N) and ({0Y, 1Y }, 1Y). Only state ({0Y, 1Y }, 1Y) has a Y -labeled ele-

ment of G`, however, component ({0Y, 1Y } of Gd is not uncertain,i.e., contains el-

ements N-labeled and Y -labeled. Since there does not exist a nontrivial SCC formed

with states (xd, x`), such that xd is uncertain and x` is a Y -labeled state, the language

is diagnosable, as seen in Example 18.

Example 21 Consider automata Gd and G` of Example 19 depicted in Figure 2.13

(c) and (b), respectively. The new diagnoser automaton proposed GSCC = Gd||G`

is depicted in Figure 2.15. Notice that there are two nontrivial SCCs, states

({2N, 2Y }, 2N) and ({2N, 2Y }, 2Y). Only state ({2N, 2Y }, 2Y) has a Y -labeled

element of G`. Component ({2N, 2Y } of Gd is uncertain. Since there exists a non-

trivial SCC formed with states (xd, x`), such that xd is uncertain and x` is a Y -labeled

state, the language is not diagnosable, as seen in Example 19.

21

Chapter 3

Hybrid systems

Hybrid systems (HS) are dynamic systems that combine the continuous dynamics

with discrete event-based dynamics. Among many formalisms to describe a HS, such

as switched systems [22], condition-event systems [23] or labeled transition systems

[4], the hybrid automaton [4, 5, 24] stands out as one of the most relevant.

In this chapter we present some concepts on hybrid systems required for the

development of this work. This chapter is organized as follows: in Section 3.1, we

present a formal model for hybrid systems, called hybrid automata, denoted by H;

in Section 3.2, we briefly present two approaches for diagnosability of HS, and, in

Section 3.3, we present another formal modeling for HS, called transition systems,

denoted by TS.

3.1 Hybrid automata

Hybrid automaton (HA) is a formal model for representing hybrid systems. It

presents both event-driven discrete and continuous dynamics behavior. It is repre-

sented as a graph, where the vertices are the discrete states and the edges represent

the transitions from one discrete state to another. The continuous dynamics is

represented inside each vertice.

Definition 7 A hybrid automaton is formally defined by a ten-tuple [5, 10, 19]:

H = (Σ, Q,E,Q0, X, f, I, G,R,X0)

where:

• Σ is the set of symbols or events;

• Q is the set of discrete states;

• E ⊆ Q× Σ×Q is the transition relation;

22

• Q0 ⊆ Q is the set of initial discrete states;

• X ⊆ Rn is the continuous state space, where n ∈ N;

• f : Q×X → X is the vector field;

• I : Q→ 2X is the invariant;

• G : E → 2X is the guard;

• R : E ×X → X is the reset function;

• X0 ⊆ X is the set of initial continuous states.

The state of a HA is defined by the pair (q, x) ∈ Q×X, where q is the discrete

state, also called mode of operation or location, and x is the continuous state, both

discrete and continuous time dynamical systems state.

The symbols in Σ are associated with events and the transitions trigger corre-

spond to the occurrence of the events associated with them. For the location q ∈ Q,

the vector field defines that the first derivative of the continuous state behaves as

ẋ = f(q, x(t)) or x(t + 1) = f(q, x(t)), and the invariant determines a condition of

continuous state validity in the form x ∈ I(q).

For the transition e ∈ E, the guard defines a condition for enabling the transition

trigger from the continuous state in the form x ∈ G(e). The reset sets a new value,

x′, when entering a new continuous state after the transition trigger according to

x′ := R(e, x). To express that an event can occur independently of the condition in

the continuous state we will make G(e) = X, i.e., the guard condition is satisfied

for the entire continuous state space.

3.1.1 Hybrid solution

A solution to a HA is a pair of right-hand continuous signals x : [0,∞) → X and

q : [0,∞)→ Q, called trajectories, as studied in ALUR et al. [13]:

• x(t) is piecewise differentiable and q(t) is piecewise continuous;

• In any interval (t1, t2) where q(t) is constant and x(t) is continuous and defined

for all t ∈ [t1, t2) as:

x(t) = φ(q(t1), x(t1), t)

where φ(q, x(t0), t) is the solution of ẋ = f(q, x) for t ≥ t0 with initial condition

x(t0); and

23

x = 75

On

ẋ = −x + 100
70 ≤ x ≤ 80

Off

ẋ = −x
70 ≤ x ≤ 80

turn off

x = 80

turn on
x = 70

Figure 3.1: Hybrid automaton H1 of a thermostat of Example 22

• For any instant t ≥ 0, (q(t), x(t)) is such that there exists e = (q1, σ, q2) with

q(t−) = q1, q(t+) = q2, x(t−) ∈ G(e) and x(t+) := R(e, x(t−)).

In the following examples we will show the difference of continuous trajectories

for an automaton whose transition occurs as soon as the guard condition is satisfied

and when it occurs any time between the guard condition and the invariant limit.

Example 22 Let us consider the hybrid automaton H1 represented in Figure 3.1,

which models a thermostat. For this automaton we can identify the following el-

ements: the two locations Q = {On,Off}; the initial location Q0 = {On};
the set of events Σ = {turn on, turn off}; the transitions On

turn off−−−−→ Off and

Off
turn on−−−−→ On; the continuous state is a single element vector, x = [x]T , which

represents the temperature and the initial continuous state X0 = {75}. The contin-

uous dynamics is ẋ = −x+ 100 the location On and ẋ = −x the location Off . The

invariants are 70 ≤ x ≤ 80 for both locations. Note that the limits of the invariants

are exactly the guard conditions, i.e., the transition must occur as soon as the guard

is satisfied. Also note that omitting the restart condition of a transition means that

it corresponds to the identity, which is the case of the transitions in this example.

The continuous states enter the new location with the exact same value as they had

when the transition was triggered.

The locations in Figure 3.1 are drawn as circles with the location name on top

and all transitions are drawn as arcs connecting the source location q to q
σ→ labeled

by event σ.

Notice that, for the Example 22, we can obtain both continuous and discrete

(location) trajectories, as seen in Figure 3.2. The former is represented in the

Temperature× Time graph, whereas the latter is represented in the State× Time
graph, where locations On and Off are represented by the numbers 1 and 0, re-

spectively. We can note that the transitions always occur when the current location

is On and x = 80 and when the current location is Off and x = 70.

Example 23 Let us consider the hybrid automaton H2 represented in Figure 3.3,

which also models a thermostat. It has the same configuration as the previous HA H1

24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

65

70

75

80

85

T
em

pe
ra

tu
re

 (
°C

)

Thermostat

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0

0.5

1

S
ta

te
 (

q)

Figure 3.2: Continuous and discrete (location) trajectories for the thermostat ex-
ample 22

x = 75

On

ẋ = −x + 100
65 ≤ x ≤ 85

Off

ẋ = −x
65 ≤ x ≤ 85

turn off
x ≥ 80

turn on

x ≤ 70

Figure 3.3: Hybrid automaton H2 of a thermostat of Example 23

apart from the guards and invariants. For this HA, the invariants are 65 ≤ x ≤ 85

for both locations, i.e., it can transition any time between the guard condition is

satisfied and the limit of the invariant for the current location. If the current location

is On, it can transition when the continuous state assume any value in the interval

[80, 85]. And when Off is the current location, it can transition any time in the

interval [65, 70] for the continuous state values.

We can easily confirm it in Figure 3.4, where it shows the continuous and dis-

crete (location) trajectories for the example 23. The first one is represented in the

Temperature × Time graph and the last one is represented in the State × Time

graph, where locations On and Off are represented by the numbers 1 and 0, respec-

tively. Whenever the current state is On, the transitions occur when the continuous

state values are greater than 80 and less than 85. And whenever the current state

is Off , the transitions occur when the continuous state values are greater than 65

and less than 70.

In this work we will work with finite switching systems, where there is a time in-

terval between each switching. The calculation of the hybrid solution is fundamental

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

65

70

75

80

85

T
em

pe
ra

tu
re

 (
°C

) Thermostat

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0

0.5

1

S
ta

te
 (

q)

Figure 3.4: Continuous and location trajectories for the thermostat example 23

to obtain the reachable region of the system. The determination of the reachable

region for hybrid systems is a more challenging problem than for the continuous

systems due to the influence of the events in the continuous evolution.

3.1.2 Reachable region

The reachable region RH(Qi, Xi) is a set of reachable states. It is calculated by

an interactive algorithm which successively obtains the successor states sets of a

certain set of states by discrete transitions and by continuous evolution [13]. The

idea is to calculate the set of reachable states by a small neighborhood of a finite set

of trajectories to form the reachable region. For this purpose, computational tools

compute RH(Qi, Xi) employing symbolic states (q, Y), where q ∈ Q and Y ⊆ X is a

continuous set represented by a geometric entity, such as a polyhedron, an ellipsoid,

a zonotope, or a support function, among others kinds of approximations [14–16].

Example 24 details a deterministic hybrid automaton model. In the deterministic

HA, the transition function is unique for each location and guard, i.e., there is no

more than one transition from the same location reaching different locations subject

to the same guard.

Example 24 Let us consider the hybrid automaton H represented in Figure 3.5.

For this automaton we can identify the following elements: the two locations Q =

{q1, q2}; the set of events Σ = {a, b}; the transitions q1
a→ q2 and q2

b→ q1; the

continuous states, represented in a vector form, x = [x1 x2]T . The continuous

dynamics is ẋ1 = x2 and ẋ2 = −x1 − 3x2 in location q1 and ẋ1 = x2 and ẋ2 =

−x1 − 0.3x2 + 0.5 in location q2. The invariants are |x1| >= 0.9 ∨ |x2| >= 0.9

in location q1, which represents the exterior of a square of side 1.8 centered on the

26

q1

|x1| ≤ 1.1 ∧ |x2| ≤ 1.1

a

b

q2

ẋ1 = x2

ẋ2 = −x1 − 0.3x2 + 0.5
ẋ1 = x2

ẋ2 = −x1 − 3x2

|x1| ≥ 0.9 ∨ |x2| ≥ 0.9

|x1| ≤ 0.9 ∧ |x2| ≤ 0.9

|x1| ≥ 1.1 ∨ |x2| ≥ 1.1

(q0, X0)

Figure 3.5: Hybrid automaton H of Example 24.

origin of x1 × x2, and |x1| <= 1.1∧ |x2| <= 1.1 in location q2, which represents the

interior of a square of side 2.2, also centered at the origin of x1 × x2. Notice that

for the transition labeled by event a, the guard condition is that the state reaches the

perimeter of the square of side 1.8, while, for the transition labeled by event b, the

guard condition corresponds to the perimeter of the square of side 2.2. Also note

that omitting the restart condition of a transition means that it corresponds to the

identity, which is the case of the transitions in this example.

A proper set approximation is very important to reachability analysis. Set opera-

tions may lead to an enormous error accumulation and even an unsolvable situation.

For this purpose, set representation has been studied and improved, especially con-

vex set representations. In words, given any points x1, x2 belonging to a convex set

C, the line segment between them is contained in C [25]. The next subsections aim

to provide some basic definitions of the most common convex set representations.

Polyhedra

A polyhedron is an intersection of finitely many halfspaces. Polyhedra are convex

sets of the form P = {x|Ax ≤ b, Cx = d}. A polytope is a bounded polyhedron.

Template polyhedra

A template polyhedron is a polyhedron with faces whose normal vectors are given

a priori. Template polyhedra are sets of the form PD = {x ∈ Rn|∧`i∈D `i · x ≤ bi},
where D = {`1, · · · , `m} is the set of template directions `i ∈ Rn.

Ellipsoid

Ellipsoids ε can be represented as ε(c,Q) = {x : (x− c) ·Q−1(x− c) ≤ 1}, where c

is the center of the ellipsoid and Q its positive define shape matrix.

27

Zonotope

Zonotopes are a special type of polytopes, such that Z = {x ∈ Rn|x = c +∑p
i=1 αigi,−1 ≤ αi ≤ 1}, where c is the center and gi are called the generators

of Z, c, gi ∈ Rn.

Support functions

Support Function ρs of a set S is defined by

ρs : Rd → R ∪ {−∞,∞}
` 7→ sup

x∈S
x · `,

where ` is a direction vector and ρs is the solution to the maximization of x ·
` for x ∈ S. Support functions represent convex sets by a function instead of

a set of parameters as the previous representations. The ρs indicates where the

hyperplane orthogonal to ` must be placed. So for each vector ` we are able to

define a hyperplane orthogonal to ` which touches S at one point.

In general, we work with a conservative approximation R̃H(Qi, Xi) of a reach-

able region RH(Qi, Xi), in the sense that calculations guarantee that R̃H(Qi, Xi) ⊇
RH(Qi, Xi) [14].

Figure 3.6 shows the reachable region of the system describe in Example 24 for

the initial condition (q1, [[1.9, 2.1] 0]T). The graph was obtained with the help of

SpaceEx tool [16, 17]. In this specific case, we can observe that the reachable region

is approximated by support functions [15]. Briefly, support functions are a form of

representing any set S by a function which takes into consideration a direction `

and the maximum product x · `, x ∈ S in order to place a hyperplane orthogonal to

` touching S.

Hybrid systems have properties that will be properly discussed in Subsection

3.3.2, that frequently have to be verified in order to ensure the proper behavior of

the system. The verification of properties of hybrid systems employs the reachability

analysis to compare a given reachable region from a set of initial states, RH(Qi, Xi),

with a set F ⊆ Q×X which characterizes a desired property [14].

28

Figure 3.6: Example of the reachable region for the hybrid automaton of Example

24.

3.2 Diagnosability of hybrid systems

This section is a literature review of works [1, 10] where two methods for diagnos-

ablitity of hybrid systems are presented. In section 3.2.1, an event-driven diagnoser

automaton based on the abstraction of the continuous dynamics is proposed, and,

in section 3.2.2, an event-driven verifier automaton which implements the distin-

guishability of the continuous states is presented.

3.2.1 Diagnosability analysis of hybrid systems cast in a

discrete-event framework

This section is based on BAYOUDH and TRAVÉ-MASSUYÈS [10] work, where it

is adopted the concept of discretization of the continuous time-driven dynamics by

introducing a new concept of mode signature. A behavior automaton is constructed

29

by enriching the underlying DES with new events created from the detectability

of mode signature changes. DES fault diagnosis techniques are adopted on the

behavior automaton to determine diagnosability. Let a hybrid system be modeled

by the hybrid automaton H = (ξ,Q,Σ, φ, C, (q0, ξ0)), where Q and Σ are defined as

in Section 3.1, ξ is the set of continuous variables, as continuous state, input, output

and noise, φ ⊆ Q× Σ→ Q is the partial transition function, C is the set of system

constraints and (q0, ξ0) ∈ Q× ξ is the initial condition of the HS. Notice that some

notations have been modified from Section 3.1 for being slightly different or for not

being defined previously.

The system behavior captured through event-based dynamics is called under-

lying DES model represented by the automaton G = (Q,Σ, φ, q0) and the system

behavior captured through continuous time-driven dynamics is called multimode

system represented by Θ = (ξ,Q,C, ξ0).

Let the signature of a mode qi be denoted as Sig(qi) be Sig(qi) =

[STi/1, S
T
i/2, · · · , STi/i, · · · , STi/nr

], where nr is the number of modes of the behavior

automaton, STi/j is the vector of size ni, number of residuals, formed by booleans.

Whenever a residual of qi is consistent with a residual of qj, it is assumed a 0 value, 1

otherwise. The signature of a mode represents the expected behavior of a particular

mode with respect to all other modes.

Definition 8 Two modes qi and qj are diagnosable if Sig(qi) 6= Sig(qj). A multi-

mode system Θ is mode diagnosable if and only if all pairs of modes qi and qj, i 6= j,

are diagnosable.

Let ΣSig be a set of discrete events, called signature events, associated with mode

signature change detection. Whenever a mode qi transitions to a mode qj, i 6= j,

an event δij is created, where δij = ROij
is observable if Sig(qi) 6= Sig(qj) and

δij = RUOij
is unobservable, otherwise. Let Qt be the set of transient modes, which

are modes added to the underlying DES associated with mode signature change,

qij ∈ Qt is a transient mode placed between modes qi and qj.

The analytical redundancy relation used to calculate residual consistency in

BAYOUDH and TRAVÉ-MASSUYÈS [10] work is based on the parity space ap-

proach. It is assumed that the discrete dynamics is slower, in order of magnitude,

than the residual consistency.

Let the automaton generating language LA be the behavior automaton defined

by BA = (Q̄, Σ̄, φ̄, q0), where Q̄ = Q ∪ Qt, Σ̄ = Σ ∪ ΣSig, φ̄ = φ̄1 ∪ φ̄2. with

φ̄1 ⊆ (Q×Σ→ Qt) and φ̄2 ⊆ (Qt×ΣSig → Q), i.e., every transition of the underlying

DES is replaced by two transitions, the first from mode qi to the transient mode qij

with event from the underlying DES and then from transition mode qij to mode qj

with a signature event.

30

N

qF1

q′F1

qF2

q′F2

f1 f2

o1 o2 o1 o2

Figure 3.7: Underlying DES automaton G of Example 25

Definition 9 The hybrid system is diagnosable if ∀σf ∈ Σf , ∃n ∈ N such that

∀sF t ∈ LA, where sF is a trace ending with a fault event σf , and t ∈ LA is a

continuation of sF :

|t| ≥ n =⇒ (∀ω ∈ LA : PΣ̄o(ω) = PΣ̄o(sF t) =⇒ σf ∈ ω)

where PΣ̄o
is the projection operator on the set Σ̄o = Σo ∪ ΣSig

o .

In words, a hybrid system is diagnosable if for every sequence with the same

projection as a faulty sequence is necessarily a faulty sequence. The diagnoser au-

tomaton is constructed from the behavior automaton applying DES tools presented

in Section 2.6 and is the tool adopted to analyze diagnosability.

Example 25 Let G be the underlying DES extracted from BAYOUDH and

TRAVÉ-MASSUYÈS [10] represented in Figure 3.7 with the set of states Q =

{N, qF1, qF2, q′F1, q′F2}, where N is a normal mode and qF1 and qF2 are two

faulty modes reached after the occurrence of the fault events f1 and f2, respec-

tively. Let the set of observable events Σo = {o1, o2} and the set of fault events

Σf = {f1, f2} ⊆ Σuo. Consider the continuous dynamics of each mode given by the

state-space model below: {
ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t) +Diu(t)

where i = 1, 2, · · · , 5 corresponds to modes N , qF1, qF2, q′F1 and q′F2, respec-

31

tively.

A1 =

[
−1 1

0 −1

]
, A2 =

[
−2 1

0 −2

]
, A3 =

[
−8

3
4
3

−1
3
−4

3

]
,

A4 =

[
−3 1

0 −3

]
, A5 =

[
−4 1

0 −4

]

B1 =

[
1

1

]
, B2 =

[
1

0

]
, B3 =

[
2

1

]
, B4 =

[
0

1

]
, B5 =

[
2

2

]

C1 =
[
1 1

]
, C2 =

[
0 1

]
, C3 =

[
−1

3
2
3

]
, C4 =

[
1 0

]
, C5 =

[
2 2

]

D1 = D2 = D3 = D4 = D5 = 1

Modes qF1 and qF2 have the same input/output behavior, thus their residuals

are the same and taken one time in the mode signatures, Sig(qi) = [STi/N , S
T
i/qF1 =

STi/qF2, S
T
i/q′F1, S

T
i/q′F2]T ∈ R5. The signature vectors are represented as follows:

Sig(N) =


0

1

1

1

1

 , Sig(qF1) =


1

0

0

1

1

 , Sig(qF2) =


1

0

0

1

1

 ,

Sig(q′F1) =


1

1

1

0

1

 , Sig(q′F2) =


1

1

1

1

0


The abstraction of the underlying system G is given by the behavior automaton

BA represented in Figure 3.8. Notice that all of its signature-events are observ-

able since the mode signature of the source mode is different from the mode sig-

nature of the destination mode for all the modes. The extended set of events is

Σ̄ = {o1, o2, f1, f2, Ro12, Ro23, Ro24, Ro32, Ro42}

32

N

NqF1

qF1

NqF2

qF2

qq′F1

q′F1

q′qF1

qq′F2

q′F2

q′qF2

f1 f2

Ro12
o1Ro23

o2 Ro32

Ro12
o1 Ro24

o2Ro42

Figure 3.8: Behavior automaton BA for the automaton G of Example 25

N, {}

qF1, {F1}
qF2, {F2}

qq′F1, {F1}
qq′F2, {F2}

q′F1, {F1} q′F2, {F2}

q′qF1, {F1}

qF1, {F1}

qq′F1, {F1}

q′qF2, {F2}

qF2, {F2}

qq′F2, {F2}

Ro12

o1

Ro23o2Ro32

o1 Ro23

Ro24 o2 Ro42

o1Ro24

Figure 3.9: Diagnoser automaton Diag(BA) for the behavior automaton BA of Ex-

ample 25

33

The diagnoser automaton Diag(BA) of the behavior automaton is displayed in

Figure 3.9. It is constructed as in Section 2.6, where the label automaton distinguish

the fault types and gives an empty label when the state has not been reached by a

fault event. Since there are no cycles with a normal and a fault label and there are

no cycles with more than one fault label, the system is diagnosable.

3.2.2 Verification of diagnosability of hybrid systems

This section is based on DIENE et al. [1] work, where they introduce a new con-

cept of diagnosability called h-diagnosability and present a verification method

for this property based on the DES verifier automaton and the distinguishabil-

ity of continuous modes. Let the deterministic hybrid system denoted as H =

(Q,X, Y, Z,Σ, U, fu, g, φ,Γ, R, q0, x0), where Q, X, Σ and R are defined as in Sec-

tion 3.1, Y ⊆ Rp is the set of outputs, Z ⊆ Rr is the set of noises, U ⊆ Rm is the set

of controls, fu : Q×X×U×Z → X is the vector field, g : Q×X×U×Z → Y is the

output function, φ : Q×Σ→ Q is the discrete state transition function, Γ : Q→ 2Σ

is the feasible event function, q0 ∈ Q is the initial discrete state and x0 ∈ X is the

initial continuous state. Notice that some notations have been modified from [1] to

better fit to the nomenclature adopted in this work.

Without loss of generality, all transitions triggered by continuous dynamics are

modeled as events. The system behavior captured through event-based dynamics

is called underlying DES model represented by the deterministic automaton G =

(Q,Σ, φ,Γ, q0). The continuous dynamics are assumed as linear and time invariant.

Let the vector field fu(qi, x, u, ξ) and the output function g(qi, x, u, ξ) associated

with each mode qi be given by the continuous sate model denoted as Mi described

in the following: {
x(n+ 1) = Aix(n) +Biu(n) + Exiξ(n)

y(n) = Cix(n) +Diu(n) + Eyiξ(n)

where Ts is the sampling period, x(n), u(n), y(n) and ξ(n) are the state, input,

output and noise vectors at time nTs and Ai, Bi, Ci, Di, Exi and Eyi are constant

matrices.

Definition 10 Let qi and qj be different modes of H, whose associated continu-

ous state models are Mi and Mj, respectively. The modes qi and qj are dis-

tinguishable (qi � qj) with respect to a continuous state ψ and a tolerance µ, if

ψ(Mi,Mj, u, ξ, x
′
0) > µ, where u, ξ, and x′0 denote the input and the noise defined

over a time interval I, and the initial condition of both models, respectively. The

modes qi and qj are undistinguishable (qi ∼ qj), otherwise.

34

Let the unobservable reach of a mode qi ∈ Q with respect to the set of unobservable

events Σuo, denoted by UR(qi) be defined as

UR(qi) = {qj ∈ Q : (∃t ∈ Σ∗uo)[φ(qi, t) = qj]}

And can be extended to a subset of states Θ ⊆ Q

UR(Θ) =
⋃
qi∈Θ

UR(qi)

Let Reach(G, ν) be the estimate current states after the execution of a trace

s ∈ L, with projection Po(s) = vσo = ν ending with an observable event σo ∈ Σo

Reach(G, ε) = UR(q0)

Reach(G, vσo) = UR(4(Reach(G, v), σo))

where 4(Reach(G, v), σo) =
⋃k
i=1 δ(qi, σo), with qi ∈ Reach(G, v), k =

|Reach(G, v)|, and δ(qi, σo) = {φ(qi, σo)}, if φ(qi, σo) is defined and δ(qi, σo) = ∅,
otherwise.

In the distinguishability analysis between two continuous models Mi and Mj,

the input u and initial state x′0 are assumed to be the same for both models. The

distinguishability analysis adopted in DIENE et al. [1] work is the parity space

approach. It is assumed that no event can occur during this analysis.

Definition 11 Let L denote the language generated by the underlying DES model

G of an HS and LN ⊆ L be the normal language of G. The HS modeled by H is

said to be h-diagnosable if

(∃n ∈ N)(∀s ∈ L \ LN)(∀st ∈ L \ LN , |t| ≥ n) =⇒ D1 ∨D2

where D1:

(∀ω ∈ P−1
o (Po(st)) ∩ L, ω ∈ L \ LN)

and D2:

(∀sN ∈ LN , Po(sN) = Po(st) = ν)(∃ησo ∈ ν, qF � qN)

where qF ∈ 4(Reach(GPF
, η), σo) (resp. qN ∈ 4(Reach(GPN

, η), σo)) and GPF

(resp. GPN
) is the subautomaton of G formed with path PF (resp. PN) with corre-

sponding trace st (resp. sN).

In words, after the occurrence of a fault event, the HS H is diagnosable if at least

one of the two conditions are satisfied. One way is if the projections of a normal and

a faulty trace are different from each other (condition D1) and another way is the

distinguishability of the modes reached after the occurrence of an observable event.

35

Figure 3.10: Underlying DES automaton G of Example 26. Figure extracted from
[1]

The method proposed in DIENE et al. [1] consists of building two automata

GHT
N and GHT

F which represent the normal and fault behaviors of the underlying

DES model labeled with H for states reached after the occurrence of an observable

event and T for states reached after the occurrence of an unobservable event. The

unobservable events of GHT
N are renamed becoming private events of the new au-

tomaton GHT
NR

. Finally the verifier automaton GV H is computed by applying the

Paralleld function with GHT
NR

and GHT
F as its arguments, where it performs a mod-

ified parallel function. The distinguishability method is applied and whenever two

states labeled with H are reached and distinguished, the path is interrupted. The

HS is h-diagnosable if there is no cyclic path in the constructed automaton GV H

where a state in the cyclic has label Y obtained from automaton GHT
F and the event

that reaches this state is in the set of events of the automaton G.

Example 26 Let G be the underlying DES extracted from DIENE et al. [1] be the

model of a rudder of a ship depicted in Figure 3.10. Let the set of observable events

Σo = {ON,POON , POOFF , STON , STOFF , RAPON , RAPOFF , PO35◦ , ST35◦} and the

set of fault events Σf = {σf} ⊆ Σuo. The state variables x1(n), x2(n) and x3(n)

represent the angular position, speed and acceleration of the rudder. Let the sampling

36

Figure 3.11: Verifier automaton GV H of Example 26. Figure extracted from [1]

37

period Ts = 0.001s and the continuous model constant matrices given as follows:

A1 =

1 0 0

0 1 0

0 0 1

 , A2 = A3 =

 1 0.001 0

0 0.9997 0.0009

−0.0462 −0.596 0.7665

 ,

A4 = A5 =

 1 0.001 0

0 0.9996 0.0009

−0.0447 −0.7176 0.7176



B1 = 0, B2 =

 0

0.0017

3.2725

 , B3 = −B2, B4 =

 0

0.0026

4.9558

 , B5 = −B4

C1 = C2 = C3 = C4 = C5 =
[
1 0 0

]

D1 = D2 = D3 = D4 = D5 = 0

Modes 3 and 9 and modes 2 and 10 are distinguishable, i.e., 3 � 9 and 2 � 10.

The pair of modes 1 ∼ 8, 4 ∼ 12, 5 ∼ 11, 6 ∼ 14 and 7 ∼ 13 are undistinguishable.

The verificator automaton GV H is depicted on Figure 3.11. We can verify that there

is no cyclic path in GV H with both labels N and Y , therefore, the hybrid system is

h-diagnosable.

3.3 Transition systems

Transition systems (TS) are another form of representation of HSs behavior. They

are represented by graphs, where their vertices represent the states and the edges

model transitions, i.e., state changes. [4, 5, 26]. They are often used for checking

system properties, also known as model checking. This section is based on BAIER

and KATOEN [26] and CLARKE et al. [27].

Definition 12 A transition system can be described as a tuple

TS = (S,Act,→, I, AP, L)

where:

• S is the set of states;

• Act is the set of actions;

• →⊆ S × Act× S is the transition relation;

38

Init

Select

{paid}

Candy{selected}Chips {selected}

select chips select candy

insert coin

ττ

Figure 3.12: Snack vending machine transition system of Example 27.

• I ⊆ S is the set of initial states;

• AP is the set of atomic propositions; and

• L : S → 2AP is the labeling function.

A state carries information about the system at a given moment of its behavior

and the transitions determine how the system can evolve. When there is more than

one initial state, the start state is chosen in a nondeterministic way. Actions are

transition labels that can be used to describe communication mechanisms. The

states are labeled with atomic propositions related by the labeling function. The

atomic propositions can be understood as the expression of facts about the states.

We will represent the occurrence of a transition from a state s to s′ labeled with

action α by s
α→ s′. While in DES the focus is on the event sequences, in TS the

focus is in state sequences and their labeling function values.

Example 27 Let us consider the transition system TS represented in Figure 3.12

which models a snack vending machine. For this system we can identify the fol-

lowing elements: there are four states S = {Init, Select, Chips, Candy}; the set

of actions Act = {insert coin, select candy, select chip, τ}; the transitions →=

{Init insert coin−−−−−−→ Select, Select
select candy−−−−−−→ Candy, Select

select chips−−−−−−→ Chips, Candy
τ−→

Init, Chips
τ−→ Init}; the initial state I = {Init}; the atomic propositions AP =

{paid, selected} and the labeling functions L(Init) = ∅, L(Select) = paid and

L(Chips) = L(Candy) = selected.

39

At the initial state, when the user inserts a coin, the system goes to state Select.

The atomic proposition of this state means that the user has already paid for the

snack. The user’s next action is to choose a snack, and the next states have the

selected atomic proposition. In order to get back to its initial state, the system must

have received the money and have a snack selected. Note that the action τ does not

have any meaning, it could be compared to the ε event in DES. After the snack is

selected the system delivers the snack and goes back to its start state.

The direct successor operator (Post) and direct predecessor operator (Pre) re-

turn the set of direct successors and predecessors, respectively. They are used in

reachability analysis.

Definition 13 Let TS be a transition system s ∈ S and α ∈ Act, the set of direct

α− successors of s is expressed as:

Post(s, α) = {s′ ∈ S|s α→ s′}, Post(s) =
⋃
α∈Act

Post(s, α)

and the set of α− predecessors of s is expressed as:

Pre(s, α) = {s′ ∈ S|s′ α→ s}, P re(s) =
⋃
α∈Act

Pre(s, α)

We can extend this definition to a subset of S instead of a single state.

Definition 14 Let TS be a transition system C ⊆ S and α ∈ Act, let:

Post(C, α) =
⋃
s∈C

Post(s, α), Post(C) =
⋃
s∈C

Post(s)

and

Pre(C, α) =
⋃
s∈C

Pre(s, α), P re(C) =
⋃
s∈C

Pre(s)

Example 28 Let TS be the system in example 27. Some direct successors are

Post(Init, insert coin) = {Select} and Post(Select) = {Chips, Candy}. Some

direct predecessors are Pre(Candy, select candy) = {Select} and Pre(Init) =

{Chips, Candy}.

An execution fragment of a transition system is any alternating sequence of states

and actions beginning and ending with a state. An execution ρ of a TS is an initial,

maximal execution fragment. An initial fragment is a state/action sequence that

starts in a initial state, i.e., s0 ∈ I and a maximal execution fragment is whether a

40

finite execution that ends in a terminal state, i.e., s is a terminal state if and only

if Post(s) = ∅, or an infinite state/action sequence.

Example 29 An execution for the example 27 can be as follows, since it starts in

a initial state and has infinite length:

ρ = Init
insert coin−−−−−−→ Select

select candy−−−−−−→ Candy
τ−→ Init

insert coin−−−−−−→ Select
select chips−−−−−−→

select chips−−−−−−→ Chips
τ−→ Init

insert coin−−−−−−→ Select
select candy−−−−−−→ Candy

τ−→ Init · · ·

A finite (infinite) path fragment of a TS is a finite (infinite) state sequence

s0s1 . . . sn (s0s1s2 . . .), such that si ∈ Post(si−1) for all 0 < i ≤ n (i > 0). A

path π of a TS is an initial, maximal path fragment. A path fragment is called

initial if it stars in a initial state and is called maximal if it is either finite and ends

in a terminal state or infinite.

Example 30 A path fragment for the example 27 can be as follows, since it starts

in a initial state and has infinite length:

π = Init Select Candy Init Select Chips Init Select Candy Init · · ·

Definition 15 A state s in a TS is reachable if there exists an initial, finite execu-

tion fragment that ends in s.

Example 31 For the TS described in example 27, all states are reachable.

Select = Init
insert coin−−−−−−→ Select

Candy = Init
insert coin−−−−−−→ Select

select candy−−−−−−→ Candy

Chips = Init
insert coin−−−−−−→ Select

select chips−−−−−−→ Chips

A trace of a path fragment Trace(π) is obtained when applied the labeling

function to each state s ∈ S forming the path fragment. For a path fragment

π = sksk+1sk+2, Trace(π) = L(sk)L(sk+1)L(sk+2).

Example 32 Let us consider the TS represented in Figure 3.12. Let π be a path

fragment, as follows

π = Select Candy Init Select Chips

the trace for this path fragment is

Trace(π) = {paid} {selected} ∅ {paid} {selected}

41

Traces of a TS, Traces(TS), are sequences of the form L(s0)L(s1)L(s2) · · · ,
where si ∈ S, i ∈ Z and there is a path π of the form π = s0s1s2 · · · . They are

words formed when applying the labeling function to a path belonging to the TS on

the issue. For every path π in a TS, Trace(π) ⊆ Traces(TS)

Example 33 Let TS be the transition system described in example 27. Let us ana-

lyze all possible paths. The system always starts at initial state Init and then goes

to state Select. From this state, the system can go either to state Chips or Candy

and then it returns to Init. Notice that their labeling functions result the same eval-

uation, L(Chips) = L(Candy) = {selected}. So, no matter what state the system

reaches after Select, the trace for this TS is denoted by:

Traces(TS) = ∅ {paid} {selected} ∅ {paid} {selected} ∅ {paid} {selected} ∅ · · ·

Definition 16 (Satisfaction Relation) Let Φ be a propositional formula, then a

state s ∈ S satisfies Φ if L(s) makes the formula true.

s |= Φ iff L(s) |= Φ

In words, a state s satisfies a formula Φ if and only if the evaluation of L(s) satisfies

the formula Φ, i.e., makes it true, otherwise we say the state does not satisfy the

formula, s 6|= Φ.

Example 34 Let us consider the TS described in example 27. Let us consider the

formula Φ = {selected}. The only states which satisfy the formula are Candy

and Chips, for L(Candy) = L(Chips) = {selected}. So we say Candy |= Φ and

Chips |= Φ. The states Init and Select do not satisfy the formula Φ, so we say

Init 6|= Φ and Select 6|= Φ.

Many properties of a TS can be expressed as temporal logic formulae, which will

be explained in the following.

3.3.1 Linear temporal logic

One way to transcribe a property is by using the Linear Temporal Logic (LTL),

which is a formalism to describe the behavior of the system. In temporal logic,

time is not explicit as in hybrid systems, but the concept of time is related to the

order of occurrence of a determinate formula or its components. LTL formulae are

interpreted over paths, i.e., linear sequences of states [27, 28]. It is an extension of

propositional logic, therefore, we will introduce some basic concepts and syntax of

the propositional logic before entering the LTL concepts.

42

Definition 17 (Propositional Logic) Let AP be a set of atomic propositions.

The set of propositional logic formulae over AP is inductively defined by the fol-

lowing rules:

• true is a formula;

• Any atomic proposition a ∈ AP is a formula;

• If Φ1, Φ2 and Φ are formulae, then so are (¬Φ) and (Φ1 ∧ Φ2);

• Nothing else is a formula.

The constant “true” stands for a proposition which holds in any context, indepen-

dent of the interpretation of the atomic proposition. All other binary operators can

be derived from the previous ones.

Let Φ1, Φ2 be formulae, then the following equivalences are true:

Φ1 ∨ Φ2 ≡ ¬(¬Φ1 ∧ ¬Φ2) for disjunction

Φ1 → Φ2 ≡ ¬Φ1 ∨ Φ2 for implication

Φ1 ↔ Φ2 ≡ (¬Φ1 ∧ ¬Φ2) ∨ (Φ1 ∧ Φ2) for equivalence

Φ1 ⊗ Φ2 ≡ (¬Φ1 ∧ Φ2) ∨ (Φ1 ∧ ¬Φ2) for parity

The syntax for propositional logic can be written in a more relaxed way as follows:

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ

Saying a proposition holds means that an evaluation function, µ, assigns a truth

value to each atomic proposition, i.e., µ : AP → {0, 1}. We can represent each

evaluation µ by a set Aµ = {a ∈ AP |µ(a) = 1}. We say Aµ |= Φ if the evaluations

of each atomic proposition given by Aµ makes the formula Φ true.

Example 35 Let the set of atomic propositions AP = {a, b, c}, the evaluation func-

tion µ and µ(a) = µ(b) = 1 and µ(c) = 0, which means, Aµ = {a, b}. Let the

formulae Φ1 = (a ∨ b) ∧ ¬c and Φ2 = (¬a ∧ c) ∧ b. Then Aµ |= Φ1 and Aµ 6|= Φ2.

Definition 18 (Linear Temporal Logic) Let ϕ1 and ϕ2 be formulae and a ∈
AP , so a formula ϕ is defined as:

• true is a formula;

• Any atomic proposition a ∈ AP is a formula;

43

• If ϕ1, ϕ2 and ϕ are formulae, then so are (¬ϕ), (ϕ1∧ϕ2), (©ϕ) and (ϕ1Uϕ2);

The syntaxes ©ϕ and ϕ1Uϕ2 stand for a formula that holds for the next step

independently from the current interpretation of the atomic propositions and a for-

mula ϕ1 that holds until ϕ2 holds true for the first time, respectively. The syntax

for linear temporal logic can be written in a more relaxed way as follows:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2

Although time is not explicit in LTL, its concept is widely used in sentences that

express that a sequence or state will eventually, always or never be reached. In this

formalism are used atomic propositions, boolean connectives and special temporal

operators to create expressions representing properties [27].

The � operator is read as “Always” - something is satisfied now and forever in

the future - and the ♦ operator is read as “Eventually” - something will eventually

be satisfied.

As in propositional logic, we can obtain other connectives from the basic booleans

previously described and we can obtain the temporal operators from the until oper-

ator, as follows:

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) for disjunction

ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2 for implication

ϕ1 ↔ ϕ2 ≡ (¬ϕ1 ∧ ¬ϕ2) ∨ (ϕ1 ∧ ϕ2) for equivalence

ϕ1 ⊗ ϕ2 ≡ (¬ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ¬ϕ2) for parity

♦ ≡ trueUϕ for temporal operator eventually

�ϕ ≡ ¬♦¬ϕ for temporal operator always

Example 36 Let π be a path fragment, each circle representing a state and the set

of atomic propositions AP = {a, b, c}. In the first line represented in Figure 3.13,

for the formula ϕ = a the labeling function for the current step must be a. For the

second line, in order for the formula ϕ =©a to be true, the next step must satisfy

a regardless of the evaluation of the current step. In the third line, the formula

ϕ = aUb says that each step will evaluate a until it evaluates b. The fourth line,

ϕ = ♦a, affirms that a must happen at least once during the path fragment. And the

last line, ϕ = �a, assures that a must be true at every step. Note that when a state

has more than one active atomic proposition implies that all of them are satisfied in

that state, as in line 3, where both atomic propositions a and c are satisfied in that

state.

44

a · · ·

a ∅ {b, c} c a

©a · · ·
b a {b, c} ∅ c

aUb · · ·

a {a, c} b ∅ c

♦a · · ·
∅ {b, c} b a c

�a · · ·

a a a a a

Figure 3.13: Example of LTL.

The LTL operators can be combined. For a formula ϕ, �♦ϕ is read as “infinitely

often ϕ” and ♦� is read as “eventually forever ϕ”.

3.3.2 Linear-time properties

A system property can be understood as a specification of the system desired be-

havior. Some properties can be expressed as linear-time properties, which are a

language of infinite words over the alphabet 2AP .

Definition 19 (LT Property) A linear-time property (LT property) over the set

of atomic propositions AP is a subset of (2AP)ω.

The set (2AP)ω is the set obtained by the infinite concatenation of words in 2AP .

We will only consider systems without terminal states from this point. In order to

a LT property be satisfied, it must meet the following relation.

Definition 20 (Satisfaction Relation for LT Properties) Let P be an LT

property over AP and TS = (S,Act,→, I, AP, L) a transition system without termi-

nal states. TS satisfies P, TS |= P, iff Traces(TS) ⊆ P. A state s ∈ S satisfies P, s

|= P, whenever Traces(s) ⊆ P.

Example 37 Let us consider the TS described in example 27. Let us consider the

formula Φ in the following

Φ =“You must pay the snack before you select it”.

45

S0

S1

S2

S3

{red}

{green}

{yellow}

{green, red}

τ

τ

τ

τ

τ

τ

τ

τ

τ τ

Figure 3.14: Transition system of Example 38.

Every time you have the atomic proposition {selected} valid in a state it must

have an atomic proposition {paid} satisfied before it. For any path π of TS,

trace(π) = ∅{paid}{selected}∅{paid}{selected}∅{paid}{selected}∅ · · · we verify

the formula is satisfied. So Trace(π) satisfies the formula Φ, therefore TS |= P .

Example 38 Let us consider the transition system inspired in a traffic light depicted

in Figure 3.14 where AP = {green, red} is the set of atomic propositions and S =

{S0, S1, S2, S3} the set of states. Let the property P states:

“The traffic light is infinitely often green”.

The property P can be translated in the formula Φ = �♦green.

Then, among all possible traces, some of those which satisfy the property P are:

{red} {yellow} {green, red} {red} {yellow} {green, red} {red} · · ·
{red} {green} {green} {green} {green} {green} · · ·
{red} {green} {yellow} {green} {yellow} {yellow} · · ·

Notice, than in a finite computational time we may obtain a path πfin =

S0 S0 S0 · · · S0, where Trace(πfin) = {red}{red}{red} · · · {red}. However, in

an infinite computational time it is possible to obtain a new path πinf for

the continuation of πfin where Trace(πinf) |= Φ, for example, Trace(πinf) =

{red}{red}{red} · · · {red}{green} · · · {green} · · · . As we can observe, although a

46

finite trace gives the false impression of violating the property, there is nothing that

prevents this trace continuation to fulfill the property. Therefore, the system satisfies

the property [28].

It is reasonable to expect that two transition systems with same traces satisfy

the same LT properties. For this purpose, let us consider the following definition.

Theorem 2 (Trace Inclusion and LT Properties) Let TS and TS’ be transi-

tion systems without terminal states and with the same set of propositions AP. Then,

for any LT property P, the following is true:

Traces(TS) ⊆ Traces(TS ′) iff TS ′ |= P implies TS |= P

This proof can be found in [26].

Transition systems are said to be trace-equivalent if they have the same set of traces,

as follows.

Definition 21 Transition systems TS and TS’ are trace-equivalent with respect to

the set of propositions AP if TracesAP (TS) = TracesAP (TS ′).

Definition 21 directly implies in satisfaction relation.

Traces(TS) = Traces(TS ′) iff TS and TS’ satisfy the same LT properties

The properties of a system characterize the type of the system. In the following

we will distinguish some important LT properties.

Invariant property

An invariant property states that a condition Φ must hold for every reachable state.

Definition 22 (Invariant Properties) An LT property Pinv over AP is an in-

variant if there is a propositional logic formula Φ, called an invariant condition of

Pinv, over AP such that

Pinv = {A0A1A2 · · · ∈ (2AP)ω | ∀j ≥ 0. Aj |= Φ}

Note that

47

S0

S1

S2

S3

{red}

{green}

{yellow}

{red, green}

τ

τ

τ τ

Figure 3.15: Transition system TSmod of Example 39.

TS |= Pinv iff trace(π) ∈ Pinv for all paths π in TS
iff L(s) |= Φ for all states s that belong to a path of TS

iff L(s) |= Φ for all states s ∈ Reach(TS).

Example 39 Let us take into consideration the transition system TSmod depicted in

figure 3.15. Consider the following invariant properties: Let us consider the traffic

light example described in 39, .

Pinv1 = “The traffic light is always green”

Pinv2 = “The traffic light is never simultaneously green, red and yellow

With the respective formulas:

Φ1 = �green

Φ2 = ¬(green ∧ red ∧ yellow)

The first property is not satisfied by TSmod, since its initial state does not satisfy

the property, L(S0) = {red}, so the transition system does not satisfy the formula,

TSmod 6|= Φ1. The second property is satisfied by TSmod, since every reachable state

48

holds the formula Φ2, so TSmod |= Φ2.

Invariant properties are a particular kind of safety property and are also called state

properties, therefore, they must be verified in every reachable state. In the following,

we will explain the concept of safety property. Some safety properties require the

verification to be based on a finite path fragment instead of each state individually.

Safety property

Safety properties can in an informal way be translated as “nothing bad should

happen”. We call bad states, the ones which violate the safety property. In other

words, a safety property holds if a particular set of undesired or forbidden states is

not reached by the system [7, 29].

Let us consider the traces σ = σ0 σ1 · · · σi · · · and σ′ = σ′0 σ
′
1 · · · σ′i · · · for the

following definition.

Definition 23 (Safety Properties) An LT property Psafe is a safety property if

for every trace σ that violates Psafe, there exists an integer i, such that for every

trace σ′ that coincides with σ up to position i,i.e., ∀0 ≤ j ≤ i, σ′i = σi, σ
′ also

violates φ.[28]

In other words, in order to be a safety property, for all initial trace fragments

that violate the property, called bad prefixes, their continuations also violate the

property.

Let us consider Tracesfin(TS) a set that contains all the finite traces of a tran-

sition system TS and BadPref(Psafe) a set that contains all the initial trace frag-

ments which end in an element that violates the safety property. In that manner,

the satisfaction relation for safety properties for a transition system TS without

terminal states can be expressed as:

TS |= Psafe if and only if Tracesfin(TS) ∩BadPref(Psafe = ∅)

An example of safety property is formula Φ represented in example 37.

Liveness

Liveness properties can in an informal way be translated as “something good will

happen in the future”. Unlike safety properties which can be violated in a compu-

tational finite time, liveness properties need an infinite trace as counterexample.

Definition 24 (Liveness Properties) An LT property Plive is a liveness property

if for every prefix of a trace σ0 σ1 · · · σi there exists an infinite trace σ, that starts

with the same prefix σ0 σ1 · · · σi and σ |= φ.[28]

49

In other words even if the result obtained in a finite computation does not fulfill

the property, it is still possible to find a continuation that will satisfy it. An example

of safety property is formula Φ represented in example 38.

50

Chapter 4

Reachability-based diagnosability

for hybrid systems

The diagnosability of a system is the ability to identify the occurrence of a failure

by observing the behavior of the system after a finite time or a finite number of

occurrences of events. The fault diagnosis of hybrid systems is an open field and

we can identify that the usual approach is the combination of the purely discrete

diagnosis of L(H) with the distinction of the continuous dynamics for each location

[1, 10]. BAYOUDH and TRAVÉ-MASSUYÈS [10] study seeks to obtain discrete

information from the continuous dynamics using the DES diagnosis approach. The

HS model is mapped into a DES infrastructure using mostly the DES tools for fault

diagnosability verification. DIENE et al. [1] study uses DES techniques as well as

continuous information for diagnosability verification. The work uses an adapted

DES tool that is updated while the continuous information evolves.

In this work, we propose a new concept of diagnosability for hybrid systems

combining the discrete diagnosis with the distinction of the continuous dynamics for

each mode employing reachability analysis that is a suitable tool for Hybrid Sys-

tems. For this purpose some additional conditions are assumed on the elements of

the hybrid automaton: the transition relation of the hybrid automaton is determin-

istic, the vector fields are globally continuous Lipschitz functions to guarantee the

uniqueness of the solution of the differential equations that define the continuous

dynamics in each location [12], and the invariant, the guard and the reset are linear

functions on the components of the state.

This chapter is based on work [18], and is divided into two sections: in Section

4.1, we present a new HS diagnosability definition, and, in Section 4.2, we present a

case study of fault diagnosability analysis of systems modeled by hybrid automata.

51

4.1 Diagnosability concept for hybrid systems

Let χ0 ⊆ X be a set of initial conditions. In addition, we will consider the reachabil-

ity within the same location, considering that it does not have possible transitions.

We assume that all traces that do not contain the fault are called normal traces

sN and, equivalently, all traces that contain the fault are called faulty traces, sF .

All locations for which q0
sN→ qN are called normal locations and locations q0

sF→ qF

are called fault locations. Let Ψ(Σf) be the set of all sequences in L that end with

a fault event σf , as defined in Definition 5 in Section 2.6. Let RH(q0, X0) be the

set of reachable states with respect to the continuous evolution, where q0 ∈ Q and

the convex continuous set X0 ⊆ X. Let n be the total number of steps and Ω0 the

overapproximation by template polyhedron of the initial set X0.

In order to compute RH , we consider the affine continuous dynamics ẋ(t) =

Ax(t)+v(t), where v(t) ∈ Rn and can be expressed as v(t) = Bu(t), where B ∈ Rn×m
and u(t) ∈ Rm. Let Reachtk,tk+1

(Ωk−1) the reachable states starting from the set of

continuous states Ωk−1 in the interval [tk, tk+1] be denoted as:

Reachtk,tk+1
(Ωk−1) = {x(τ)|tk ≤ τ ≤ tk+1, x(0) ∈ Ωk−1}

where x(t) satisfies the equation ẋ(t) = Ax(t) + v(t). The set Ωk is an overap-

proximation of the reachable set of continuous states Reachtk,tk+1
(Ωk−1). Thus, Ωk

covers the reachable states in the time interval [tk, tk+1]. The algorithm proposed

in [16] calculates a sequence of continuous sets Ω0, · · · , Ωn, called flowpipe, that is

an overapproximation that covers all the calculated reachable states. In a simplified

way,

RH(q0, X0) =
⋃

k=0,··· ,n

Ωk

.

Definition 25 [Diagnosability] Let L be the language generated by the hybrid au-

tomaton H. The hybrid system modeled by H is diagnosable with respect to pro-

jection P , set of faults Σf and the set of initial conditions χ0 ⊆ X if conditions

DD ∨DC are satisfied, where

DD :(∃n ∈ N)(∀u ∈ Ψ(Σf))(∀v ∈ L/u)(‖v‖ ≥ n)

⇒ (@ω ∈ L)[(P (uv) = P (ω)) ∧ (Σf /∈ ω)]

DC :(∃ti ∈ R+)(∀u ∈ Ψ(Σf))

(∃v ∈ L/u ∧ v ∈ Ψ(Σo))

(P (uv) = P (ω) ∧ Σf /∈ ω)⇒
RH(Qω, χtiω) ∩RH(Quv, χtiuv) = ∅

52

quv
v

u

σf

χ

χtiuv

X(t)

qω
ti t

ω

χ0 χtiω

Figure 4.1: Illustration of the definition of hybrid systems diagnosability.

where Qs = UR(q0
s→) and χtis = φ(Qs, χ0, ti).

Definition 25 suggests that the system can be diagnosed either in a purely discrete

event way or based on the continuous behavior of the hybrid system adopting the

reachability approach. Condition DD proposed in SAMPATH et al. [2] expresses

that there must exist a trace of arbitrarily long length after the occurrence of the

fault that is not confused with any normal trace of the system. Condition DC

expresses that when the faulty trace uv and a normal trace ω are ambiguous,i.e.,

P (uv) = P (ω), there must exist at least one fault location that has its continuous

behavior different from a normal location.

In DIENE et al. [1] work, Condition DC for the continuous distinguishability of

modes is accomplished with mode residual computation. The residual computation

implements an observer of the continuous model, which is a continuous systems tool.

In this work, we use an existent hybrid systems tool applied in the diagnosability

context. This reachability tool is used in the continuous distinguishability of modes.

Instead of comparing the residuals of the model, we analyze the evolution of the

system based on the reachable regions sets. In order to be diagnosable, the system

reachable regions sets of the fault and the normal modes must be disjoint at some

finite time.

The reachability analysis is implemented using the tool called SpaceEx [16, 17].

This tool is a scalable reachability verification for hybrid systems. It uses the support

function and template polyhedra representations of the continuous space state sets

in order to compute an overapproximation of the reachable states.

Figure 4.1 illustrates the condition DC , for the case when the fault location quv

and normal location qω have different continuous evolutions with the same initial

condition χ0 from instant ti. This difference is translated into the reachable sets

53

RH(qω, χ
ti
ω) and RH(quv, χ

ti
uv) with initial conditions χtiω and χtiuv having an empty

intersection. Notice that the unobservable reach Qs = UR(q0
s→) in condition DC

represents the set of all locations Q, after the occurrence of s, which are reached

by unobservable events, and χtis = φ(Qs, χ0, ti) is a set of continuous states for

solution ẋ = f(q, x) in the interval (t0, ti) with initial condition χ0 for all q ∈ Qs.
It is worth mentioning that, implicit in condition DC , is the need for the system

to remain in the locations where this condition is being verified until condition

RH(Qω, χtiω) ∩ RH(Quv, χtiuv) = ∅ is satisfied. If a new observable event occurs,

conditions DD and DC must be checked again.

4.2 Example

In this section we will consider a hybrid system composed of a valve, a pump and

a controller [19]. Consider a recipient with a leak where the valve flow is greater

than the leak flow. The flow rate of the valve is subject to the pressure supplied

by the pump. For simplicity, we represent the concurrent behavior of the hybrid

automaton H = (Σ, Q,E,Q0, X, f, I, G,R,X0) subject to the control action from

the controller as highlighted in blue in Figure 4.2.

This HA represents the normal behavior of the system, where we can observe the

set of events Σo = {ov, cv, SaP, SoP}, where ov consists of the command to open the

valve, cv is the command to close the valve and SaP and SoP are the commands to

start and stop the pump, respectively; the locations Q = {1, 2, 3, 4}; the continuous

state f , representing the flow; the initial state (Q0, X0) = (1, 0). The continuous

dynamics at locations 1, 2 and 4 is ḟ = −9f and at location 3 is ḟ = −9f + 25.

The invariant is 0 ≤ f ≤ 25/9 for all locations. Location 1 consists of the pump

stopped and the valve closed. When event ov occurs, it transitions to location 2,

which consists of the valve opened and the pump stopped. In the occurrence of

SaP , the automaton goes to location 3, where the valve is open and the pump is

started. Analogously, when SoP occurs, the pump is stopped and the automaton

is in location 4. The cycle closes after the valve closing command cv, returning to

location 1.

Consider that this system is subject to the following failures associated with

the events: fully stuck closed valve sc, fully stuck open valve so100 and valve 50%

stuck from its total opening so50, i.e., set of fault events Σf = {sc, so100, so50}. By

hypothesis, faults are unobservable events Σf ⊆ Σuo, which can occur at any time.

So, the set of events is Σ = Σo ∪ Σf . Figure 4.2 represents the full behavior of the

system subject to the set of faults Σf , where the locations and transitions in blue

represent the normal behavior of the system.

Let us analyze the fault trace where the fault event sc occurs for a possible trace

54

f = 0

1

0 ≤ f ≤ 25/9

ḟ = −9f

2

0 ≤ f ≤ 25/9

ḟ = −9f

3

0 ≤ f ≤ 25/9

ḟ = −9f + 25

4

0 ≤ f ≤ 25/9

ḟ = −9f

5

0 ≤ f ≤ 25/9

ḟ = −9f

6

0 ≤ f ≤ 25/9

ḟ = −9f

7

0 ≤ f ≤ 25/9

ḟ = −9f

8

0 ≤ f ≤ 25/9

ḟ = −9f

9

0 ≤ f ≤ 25/9

ḟ = −9f

10

0 ≤ f ≤ 25/9

ḟ = −9f

11

0 ≤ f ≤ 25/9

ḟ = −9f + 25

12

0 ≤ f ≤ 25/9

ḟ = −9f

13

0 ≤ f ≤ 25/9

ḟ = −9f

14

0 ≤ f ≤ 25/9

ḟ = −9f

15

0 ≤ f ≤ 25/9

ḟ = −9f + 25/2

16

0 ≤ f ≤ 25/9

ḟ = −9f

ov SaP SoP

cv
sc sc sc sc

ov SaP SoP

cv

so100 so100 so100 so100

ov SaP SoP

cv

so50 so50 so50 so50

ov SaP SoP

cv

Figure 4.2: Example of the failure behavior represented by a hybrid automaton of
Section 4.2.

55

(a) (b) (c)

Figure 4.3: Reachability chart related to locations of HA subject to the same initial
conditions χ0 = 0 ≤ f ≤ 25/9 of the example in Section 4.2. Subfigure (a) refers
to the behavior of locations 1, 2, 4 − 10, 12 − 14 and 16. Subfigure (b) refers to the
behavior of locations 3 and 11 and subfigure (c) refers to the behavior of location
15.

of the fault cycle uv = {sc ov SaP SoP cv}∗ and the trace of the normal cycle ω =

{ov SaP SoP cv}∗. In this case, we see that the language projection P : Σ∗ → Σ∗o

of fault and normal traces are the same, i.e., P (uv) = {ov SaP SoP cv}∗ = P (ω).

By inspection, we can verify that all fault cycles have the same projection as the

normal cycle. Therefore, by Definition 25, the hybrid system modeled by H does not

satisfy Condition DD. To solve this problem, [19] proposes the use of sensor map.

In this work, we will analyze diagnosability condition DC that employs reachability

analysis.

Figure 4.3 represents the reachability graphs for each location of the HA, con-

sidering that the reachability is performed subject to the same initial conditions

χ0 : 0 ≤ f ≤ 25/9 at each location and it has no transitions. Time is limited by

2 seconds since all trajectories converge to a constant value within that period of

time. Briefly, Figure 4.3-(a) represents the reachable regions for locations 1, 2, 4, 5,

6, 7, 8, 9, 10, 12, 13, 14 and 16. Figure 4.3-(b) represents the reachable regions for

locations 3 and 11 and Figure 4.3-(c) represents the reachable regions for location

location 15.

Notice that from the first moment the fault event may have occurred, thus, by

definition 25 a fault trace terminated in a fault sequence u = sc and its possible

continuation v1 = ov have the same projection as a normal trace ω1, P (uv1) =

ov = P (ω1). We must, then, find at least one reachable region of the fault locations

that does not intersect the reachable region of normal locations from a time t ≥ ti.

Locations related to these traces are 1
uv1−→ 6 and 1

ω1−→ 2. The analysis is based

on Figure 4.3-(a) taking into consideration the reachable regions of these locations,

fault sc and normal behaviors, respectively. We can observe that @ti ∈ R+ that

56

ensures the non-intersection of reachable regions.

In this manner, the continuation v2 = ov SaP , whose projection P (uv2) =

ov SaP is the same as the projection of the normal trace ω2 = ov SaP , P (ω2) =

ov SaP . Locations related to these traces are 1
uv2−→ 7 and 1

ω2−→ 3. By means of the

graphs in Figures 4.3-(a) and (b) we verify that ∃ti ∈ R+ where the reachable re-

gions do not have intersection. By inspection, for example, ti = 0.2 already satisfies

condition DC . We thus obtain the same result as the sensor map.

In the case of fault so100, the sensor map is not able to differentiate between

normal and fault behaviors. Also, by Definition 25, it is not possible to diagnose

this fault since the reachable regions of normal and fault behaviors will always be

the same as depicted in Figures 4.3-(a) and (b).

Differently from the case discussed in [19], a new fault was introduced, so50 which

by the sensor map would not be distinguishable from the normal behavior of the

system. Analyzing by Definition 25, let u = so50 be a fault trace ended with fault

event and its possible continuation v1 = ov, projections P (uv1) = ov = P (ω1), where

ω1 = ov. The locations related to these traces are 1
uv1−→ 14 and 1

ω1−→ 2. We can

observe that @ti ∈ R+ that ensures non-intersection of the reachable regions. For

another continuation v2 = ov SaP , whose projection P (uv2) = ov SaP is the same

as the projection of the normal trace ω2 = ov SaP , P (ω2) = ov SaP its referents

locations are 1
uv2−→ 15 e 1

ω2−→ 3 represented in Figures 4.3-(c) and (b), respectively.

By inspection, ti = 0.2 already satisfies the condition DC . Thus, by employing the

reachability analysis we can diagnose fault so50.

4.3 Comparison example

As a comparison example, let us consider the underlying DES automaton G of

Example 26 depicted in Figure 3.10. This system does not satisfy conditionDD, since

for every faulty trace there is a normal trace with the same projection. We, thus, test

condition DC . Figures 4.4(a), (b), (c), (d) and (e) represent the reachability graphs

of the models M1, M2, M3, M4 and M5, respectively. The y-axis represents the

angular position of the rudder, denoted as x1, and the x-axis represents the time

limited by 1 second. In the example, the angular position is in the interval [0◦, 35◦].

All the locations are subject to the same initial condition χ0 = [0, 0.1, 0.1]T with no

transitions between locations.

Consider the automaton G of Example 26 depicted in Figure 3.10. Let us analyze

a faulty trace that ends with a fault event σf , u = ON STON σf . A possible contin-

uation v1 after the occurrence of the fault σf is ST35◦ POON which leads to location

9. The normal trace ω1 = ON STON ST35◦ POON , which leads to location 3, has the

same projection as the faulty trace uv1, P (uv1) = ON STON ST35◦ POON = P (ω1).

57

(a) (b) (c)

(d) (e)

Figure 4.4: Reachability chart related to the models of the HA subject to the same
initial condition χ0 = [0, 0.1, 0.1]T of the example in Section 4.3. Subfigures (a) -
(e) refer to the behavior of the models M1, M2, M3, M4 and M5, respectively

Locations 3 and 9 are modeled byM3 andM5, respectively. Their reachable regions

are presented in Figure 4.4(c) and (e), respectively. We use SpaceEx to calculate the

reachable region of the locations, see Appendix A for more information. In order

to be distinguishable, the reachable regions of this two locations must be different

from a time ti forward.

Not so clearly, we can observe that the regions are disjoint after 0.6 seconds, i.e.,

according to Theorem 1, there exists a time ti that satisfies Condition DC . After

ti = 0.6 seconds, there is no intersection of the reachable regions of the locations. In

that manner, modes 3 and 9 are distinguishable. The SpaceEx tool has a resource

called “forbidden states”, see Appendix A for more information. It is commonly

used to check the system’s safety. A system is safe if a given set of forbidden states

is not reached, i.e., not plotted. We use this resource to plot the regions where the

reachable regions of the comparing models are the same.

For a more clear analysis, we use the forbidden states concept in Figure 4.5(a),

that displays the reachable region of model M3 only when its region matches the

reachable region of model M5. SpaceEx does not allow one to plot three or more

variables in a same 2D graph, only two variables are allowed. In addition, it is not

trivial to export SapaceEx data to be processed in another software. Thus, we use

another approach to analyze the models behaviors depicted in Figure 4.5(b), where

58

(a) (b)

Figure 4.5: Reachability chart related to the models M3 and M5 of the example
in Section 4.3. Figure (a) refers to the intersection of the reachable regions from
the two models. This Figure displays the reachable region of model M3 when the
region is the same as the reachable region of model M5. Figure (b) refers to the
relation of the models M3 and M5 in the interval [0,1]

it displays the relation of the reachable regions between both models.

In a similar manner, the continuation v2 = RAPON RAPOFF STON leads to

location 10. The normal trace ω2 = ON STON RAPON RAPOFF STON , which

leads to location 2, has the same projection as the faulty trace uv2, P (uv2) =

ON STON RAPON RAPOFF STON = P (ω2). Locations 2 and 10 are modeled by

M2 and M4, respectively. The reachable regions displayed in Figure 4.4 (b) and

(d) are disjoint from 0.6 seconds forward. Thus, according to Theorem 1, exists a ti

that satisfies condition DC . In that manner, locations 2 and 10 are distinguishable.

For a more clear analysis, Figure 4.6(a) plots the reachable region of modelM2 only

when its region matches the reachable region of model M4. Figure 4.6(b) displays

the relation of the reachable regions between both models.

Notice that for all other continuations, the traces reach one of those distinguish-

able pairs. In that manner, we can ensure diagnosability for this system according

to Theorem 1, which is the same result found in [1].

Both methods follow normal and faulty discrete event paths that have same

projection. They also try to distinguish the reached locations using continuous

information. In order to accomplish this, they use different methods to distinguish

their continuous behaviors. While in DIENE et al. [1] they use residual computation,

in this work we use reachability analysis. One advantage of our approach is that

it allows us to handle with a set of continuous initial conditions instead of a single

one. In addition, in order to do the reachability analysis we use SpaceEx tool, that

59

(a) (b)

Figure 4.6: Reachability chart related to the models M2 and M4 of the example
in Section 4.3. Figure (a) refers to the intersection of the reachable regions from
the two models. This Figure displays the reachable region of model M2 when the
region is the same as the reachable region of model M4. Figure (b) refers to the
relation of the models M2 and M4 in the interval [0,1]

is a specific tool for hybrid systems, which may be a more natural approach to

addressing this type of problem.

4.4 Final remarks

Throughout the study of the reachability analysis, we found some interesting issues,

some positive and not so positive points. The SpaceEx and the reachability analysis

concept give a different approach to the HS diagnosability, where it uses a scalable

tool with few limitations regarding the number of modes. In addition, the SpaceEx

tool is designed for hybrid systems. The idea is to use an existent HS tool applied

to the HS diagnosability context.

In contrast, we found an issue regarding the region of the system stability. When

both normal and fault modes reach the same landing, the definition proposed in this

work consider them as undistinguishable modes. Even if the responses to a step input

have different speeds, i.e, there may exist disjoint reachable regions in a limited time

window, at infinite time they reach the same region.

A way to get around this issue is to implement a time window analysis. Our

current analysis proposes that there must exist a time ti, after which the reachable

regions of the normal and fault modes are disjoint in order to be distinguishable.

A time window analysis is a limited time band, an initial ti and final time tf .

There must exist ti and tf such that, from the initial time until the final time, the

60

reachable regions of the normal and fault modes are disjoint, despite reaching the

same reachable region in the future. A recent work [30] proposes a similar approach

for distinguishability analysis. The idea is the system input/output observation.

The normal and faulty modes are distinguishable if at some time their reachable

sets are disjoint.

Throughout the study of the reachability analysis we used the Simulink tool for

HS simulation, as in Example 23. This tool provides a Stateflow chart object that

represents a state machine with states, transitions, continuous dynamics, continu-

ous transitions, among others. Within each state, we can describe the continuous

dynamics associated with it. We can determine the continuous transitions, i.e.,

guards, and initial conditions. In addition, it is possible to simulate two or more

HA operating in parallel. However, it presents some issues. The tool does not take

into account the invariant concept. In addition, discrete events do not work prop-

erly and, although the input may be randomly generated from a interval, it does

not support a set of initial conditions. There does not yet exist a simulation tool

complete and sufficient for Hybrid Systems diagnosability.

61

Chapter 5

Conclusion and future works

In this work, we present the main concepts related to hybrid systems, their prop-

erties and usual formal models. We propose a new definition of HS diagnosability

combining DES diagnosability with reachability analysis to compare continuous be-

haviors. In addition, we present two definitions and methods in this research field

that allow us to compare the existing works related to HS diagnosability.

Furthermore, we present a case study of fault diagnosability analysis of systems

modeled by hybrid automata. This example demonstrates the advantage of perform-

ing the state reachability analysis associated with the continuous-time dynamics of

the hybrid model. With this approach, it is possible to diagnose failures that would

not be possible using only DES techniques.

In order to present the HS definition, we need some preliminary concepts of

Chapter 2, as the concept of DES diagnosability presented in Section 2.6. In addi-

tion, it is necessary the formalism of the hybrid automata in Section 3.1 to introduce

some existing methods described in Section 3.3. We formalize our definition in Sec-

tion 4.1 along with the case study of fault diagnosability analysis in Section 4.2, a

comparison example with an existent HS diagnosability method in Section 4.3 and

some final remarks in Section 4.4.

Notice that HS diagnosability is not a consolidated research field and there is not

a unique method. Reachability analysis may not be the ultimate method, however,

it is a different approach to this growing field.

Future Works

As a future work perspective, we suggest to deepen the use of reachability analysis

of hybrid systems in order to achieve diagnosability verification. In addition, the

construction of an online diagnoser using a prior analysis of the system reachability

to determine the normal regions.

Moreover, another way to improve the reachability analysis would be to propose

62

a less restrictive HS diagnosability definition taking into consideration the time

window approach.

63

Bibliography

[1] DIENE, O., MOREIRA, M. V., SILVA, E. A., et al. “Diagnosability of hybrid

systems”, IEEE Transactions on Control Systems Technology, , n. 99,

pp. 1–8, 2017.

[2] SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Diagnosability of

discrete-event systems”, IEEE Transactions on automatic control, v. 40,

n. 9, pp. 1555–1575, 1995.

[3] ZAYTOON, J., LAFORTUNE, S. “Overview of fault diagnosis methods for

discrete event systems”, Annual Reviews in Control, v. 37, n. 2, pp. 308–

320, 2013.

[4] HENZINGER, T. A. “The theory of hybrid automata”. In: Verification of Digital

and Hybrid Systems, n. 170, NATO ASI Series (Series F: Computer and

Systems Sciences), Springer-Berlin-Heidelberg, pp. 265–292, 2000.

[5] RASKIN, J.-F. “An introduction to hybrid automata”. In: Springer (Ed.), Hand-

book of Networked and Embedded Control Systems, pp. 491–517, 2005.

[6] GOEBEL, R., HESPANHA, J., TEEL, A. R., et al. “Hybrid systems: generalized

solutions and robust stability”, IFAC Proceedings Volumes, v. 37, n. 13,

pp. 1–12, 2004.

[7] FREHSE, G., KROGH, B. H., RUTENBAR, R. A. “Verifying analog oscillator

circuits using forward/backward abstraction refinement”. In: Proceedings

of the conference on Design, automation and test in Europe: Proceedings,

pp. 257–262. European Design and Automation Association, 2006.

[8] HARIRCHI, F., OZAY, N. “Model invalidation for switched affine systems with

applications to fault and anomaly detection”, IFAC-PapersOnLine, v. 48,

n. 27, pp. 260–266, 2015.

[9] HARIRCHI, F., LUO, Z., OZAY, N. “Model (in) validation and fault detection

for systems with polynomial state-space models”. In: American Control

Conference (ACC), 2016, pp. 1017–1023. IEEE, 2016.

64

[10] BAYOUDH, M., TRAVÉ-MASSUYÈS, L. “Diagnosability analysis of hybrid

systems cast in a discrete-event framework”, Discrete Event Dynamic Sys-

tems, v. 24, n. 3, pp. 309–338, 2014.

[11] DIENE, O., MOREIRA, M. V., ALVAREZ, V. R., et al. “Computational

methods for diagnosability verification of hybrid systems”. In: Control

Applications (CCA), 2015 IEEE Conference on, pp. 382–387. IEEE, 2015.

[12] TRIPAKIS, S., DANG, T. “Modeling, verification and testing using timed

and hybrid automata”, Model-Based Design for Embedded Systems, pp.

383–436, 2009.

[13] ALUR, R., COURCOUBETIS, C., HALBWACHS, N., et al. “The algorithmic

analysis of hybrid systems”, Theoretical computer science, v. 138, n. 1,

pp. 3–34, 1995.

[14] MALER, O. “Algorithmic verification of continuous and hybrid systems”. In:

Int. Workshop on Verification of Infnite-State System (Infnity), 2013.

[15] LE GUERNIC, C. Reachability analysis of hybrid systems with linear continu-

ous dynamics. Computer science, Université Joseph-Fourier - Grenoble I,

2009.

[16] GORAN, F., LE GUERNIC, C., DONZÉ, A., et al. “SpaceEx: Scalable Ver-

ification of Hybrid Systems”. In: Computer Aided Verification. CAV, v.

6806, Lecture Notes in Computer Science, pp. 379–395. Springer, Berlin,

Heidelberg, 2011.

[17] FREHSE, G. “An introduction to spaceex v0. 8”, December, 2010.

[18] S. VIEIRA, J., K. CARVALHO, L., V. L. NUNES, E., et al. “Diagnostica-

bilidade de sistemas h́ıbridos empregando anÃ¡lise de alcançabilidade”.

In: Proceedings of the XXII Congresso Brasileiro de Automática, João

Pessoa, p. xx, 2018.

[19] CASSANDRAS, C. G., LAFORTUNE, S. Introduction to discrete event sys-

tems. Springer Science & Business Media, 2009.

[20] BASILIO, J. C., CARVALHO, L. K., MOREIRA, M. V. “Diagnose de falhas

em sistemas a eventos discretos modelados por autômatos finitos”, Revista

Controle & Automaçao, v. 21, n. 5, pp. 510–533, 2010.

[21] VIANA, G. S., BASILIO, J. C. “Codiagnosability of discrete event systems

revisited: A new necessary and sufficient condition and its applications”,

Automatica, v. 101, pp. 354–364, 2019.

65

[22] LIBERZON, D. Switching in systems and control. Springer Science & Business

Media, 2003.

[23] CHUTINAN, A. “Hybrid system verification using discrete model approxi-

mations”, Ph. D. dissertation, Department of Electrical and Computer

Engineering, Carnegie Mellon University, 1999.

[24] VAN DER SCHAFT, A. J., SCHUMACHER, J. M. An introduction to hybrid

dynamical systems, v. 251. Springer London, 2000.

[25] BOYD, S., VANDENBERGHE, L. Convex optimization. Cambridge university

press, 2004.

[26] BAIER, C., KATOEN, J.-P. Principles of Model Checking. MIT Press, 2008.

[27] CLARKE, E. M., GRUMBERG, O., PELED, D. Model checking. MIT press,

1999.

[28] CLARKE, E. M., HENZINGER, T. A., VEITH, H., et al. Handbook of model

checking. Springer, 2018.

[29] HENZINGER, T. A., HO, P.-H., WONG-TOI, H. “HyTech: A model checker

for hybrid systems”, International Journal on Software Tools for Technol-

ogy Transfer, v. 1, n. 1-2, pp. 110–122, 1997.

[30] YANG, L., OZAY, N. “Combining LTL monitoring with model invalidation

for improved fault detectability analysis for hybrid systems”. In: Pro-

ceedings of the 22nd ACM International Conference on Hybrid Systems:

Computation and Control, pp. 278–279. ACM, 2019.

66

Appendix A

SpaceEx

In this chapter we illustrate the use of the Software SpaceEx[16, 17], as some codes

used in this work and the tool’s structure. The models are created with the model

editor and the graphs are generated with the web interface. As an example, let us

consider the example described in Section 4.3.

Figure A.1: Dynamics of model M2 of the example in Section 4.3.

In the model editor interface we declare the state variables and constants in an

element called base component, which corresponds to a hybrid automaton. Each

location has its own name, invariant and flow. For the example, we constructed

five files containing the five models, a model per file. Let us consider the modelM2

represented in Figure A.1. The other models have analogous construction. For the

simulation, we consider the reachable states inside one location, without transitions.

Model M2 location’s name is “loc2” and only the variables x1, x2 and x3 need to

be declared. All locations have the same invariant, which is 0 ≤ x1 ≤ 35, the

angular position constrain and each location has its own particular flow, given by

67

Figure A.2: Dynamics of the variable representing the time for the example in
Section 4.3.

the HA vector field. The model does not support the matrix/vector notation and

each variable derivative expression, vector field, is separated by the & character.

The derivative is represented by the prime behind the variable.

Each file contains another base component named clock that models time, see

Figure A.2. It is necessary two variables for a 2D graph in SpaceEx, thus the

time variable must be declared, in order to be plotted. This variable could be

inserted in the same location as the model location, but for organizational purpose,

we constructed two different base components that can run in parallel, when declared

in a network component. A network component is where is specified which base

components run in parallel, i.e., the parallel composition of the hybrid automata.

Figure A.3 displays the SpaceEx web interface. In the model tab we can select

the model created in the model editor and a configuration file, whether it exists.

The configuration file contains some parameters for the simulation and the initial

state values, we generate a file by saving the current parameter configuration. Let

us consider the simulation of the modelM2 of the example described in Section 4.3.

Figure A.4(a) displays the model tab, where we select the file corresponding to

the modelM2 and a configuration file. Figure A.4(b) displays the specification tab,

where we select which base or network component will be simulated. The initial

states field is the configuration of the initial values of the system, in this case,

x0 = [0, 0.1, 0.1]T and initial time t0 = 0. The forbidden states field is an expression

that dictates an unsafe region. The 2D graph will plot the intersection between the

forbidden states and the reachable region of the output variables, see Figure A.5(b).

Figure A.5(a) displays the options tab, where we can select the type of scenario,

i.e., the verification algorithm and its set representation. We use de LGG Support

Function that supports piecewise affine dynamics. The directions correspond to the

68

Figure A.3: SpaceEx web interface homepage.

overapproximation set representation, we use the uniform representations, which are

uniform directions. Clustering percentage and aggregating sets correspond to the

percentage and the form of aggregation. The sampling time chosen as TS = 0.001.

The local time horizon is the simulation time, we use 1 second. And last, the

maximum number of iterations, which represents the maximum number of discrete

transitions. There are no transitions in the reachability analysis, a negative value

gives no limitation for this parameter.

Figure A.5(b) displays the output tab, where we can select the output format:

2D graph, 3D graph, interval bounds and text. The 2D graph is the one used for

plotting the reachable region, it is a two variable plot. The 3D graph is a three

variable plot. Interval bounds gives the limits of the simulation for each variable,

the minimum and maximum values reached. The text format gives the b coefficient

and the template directions of the template polyhedra that overapproximates each

reachable set. As defined in Section 3.1.2, a template polyhedron is given by PD =

{x ∈ Rn|∧`i∈D `i ·x ≤ bi}, where D = {`1, · · · , `m} is the set of template directions.

For generating the text in Figure A.6, we substitute the local time horizon for

0.005, for a better understanding. The number of lines is the same as the number of

template directions, in this case, 36. Each line contains the set of coefficients for the

respective direction vector. The number of coefficients at each line is the number of

steps (“local time horizon” \ “sampling time”) of the simulation. For example, for

the first step, we use the first column of coefficients and the first set of inequalities

would be:

−x1 − 0.287033x2 + 0.738102x3 − 0.941383t ≤ 0.0465651

69

(a) (b)

Figure A.4: SpaceEx model tab, (a). SpaceEx specification tab, (b).

(a) (b)

Figure A.5: SpaceEx options tab, (a). SpaceEx output tab, (b).

70

Figure A.6: SpaceEx text format output.

first template direction and the first coefficient of the first line, until the last template

direction and the first coefficient of the last line:

x1 + 0.619712x2 + 0.700176x3 − 0.472803t ≤ 0.001

For the second step, we use the second column of coefficients and the second set

of inequalities would be:

−x1 − 0.287033x2 + 0.738102x3 − 0.941383t ≤ 0.0480251

first template direction and the second coefficient of the first line, until the last

template direction and the second coefficient of the last line.

x1 + 0.619712x2 + 0.700176x3 − 0.472803t ≤ 0.002

.

Figure A.7 displays the advanced tab, where it is configured the absolute and

relative error for floating point computations and absolute and relative error for

ODE solver.

71

Figure A.7: SpaceEx advanced tab.

72

Appendix B

Simulink - Chart

In this chapter we illustrate the use of Chart object in Software Simulink. The

models are created within the chart object and the graphs can be analyzed in the

scope object or being generated with a script. They can both be found in the Library

Browser. Let us consider Example 22 described in Section 3.1.1.

Figure B.1: Chart and scope objects within Simulink of the Example 22 in Section

3.1.1.

Within the chart object, we declare state variables in a state element which

corresponds to a hybrid automaton. We can name the locations, declare the initial

condition, vector fields, guards and reset functions. For the example, we constructed

two locations, On and Off . In the state element, the invariants are defined by the

guards from the origin location to the destination one. The model does not support

the matrix/vector notation. The derivative is represented by the variable plus suffix

“ dot” and the output is represented by the variable plus suffix “ out”. For this

example the continuous variable is x for the temperature and the discrete variable

is q for the location representation, 1 for location On and 0 for location Off .

73

Figure B.2: State elements representing locations within the Chart object.

When a continuous variable is created, automatically its derivation is created.

We create continuous variables and outputs in the Model Explorer by adding “Data”

in the menu bar. The thermostat model is a classic state machine with a continuous

update method that allows derivative declaration.

Figure B.3: Model Explorer - chart configuration.

The output variables and the discrete variable “q” are configured as discrete

update method and continuous variable “x” is configured as continuous update

method.

74

Figure B.4: Model Explorer - variables configuration.

One advantage of this tool is that data management in Matlab is resourceful.

We can plot multiple trajectories in one graph, which is an easy way to compare

data. This kind of comparison can not be done in SpaceEx, only two variables can

be plotted by graph. However, event implementation in this tool is not successful.

Transitions can only occur via guard enabling.

75

	List of Figures
	Lista de Símbolos
	Introduction
	Discrete Event Systems
	Language
	Automata
	Deterministic automata
	Nondeterministic automata

	Automaton language
	Operations on automata
	Accessible part
	Coaccessible part
	Trim operation
	Product composition
	Parallel composition

	Observer automata
	DES diagnosability
	New necessary and sufficient condition for DES diagnosability

	Hybrid systems
	Hybrid automata
	Hybrid solution
	Reachable region

	Diagnosability of hybrid systems
	Diagnosability analysis of hybrid systems cast in a discrete-event framework
	Verification of diagnosability of hybrid systems

	Transition systems
	Linear temporal logic
	Linear-time properties

	Reachability-based diagnosability for hybrid systems
	Diagnosability concept for hybrid systems
	Example
	Comparison example
	Final remarks

	Conclusion and future works
	Bibliography
	SpaceEx
	Simulink - Chart

