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Apresenta-se, nesta dissertação, um tutorial sobre modelos generativos pro-

fundos, especi�camente autocodi�cadores variacionais (Variational Autoeconders �

VAE) e redes neurais Bayesianas profundas. Apesar de disparatos à primeira vista,

ambos assuntos são próximamente interligados pela visão probabilística do apren-

dizado de máquina.

Dessa forma, descrevem-se métodos de inferência aproximada visto que técnicas

exatas são adequedas tão somente em condições muito restritas em que o tempo de

cálculo é viável. Extensões modernas de tais métodos, capazes de escalar adequada-

mente ao tamanho dos modelos, que contêm milhões de parâmetros, e às atuais

bases de dados com milhões de exemplos, são expostas e suas aplicações em redes

neurais profundas demonstradas ao longo dos capítulos junto de implementações

práticas que exempli�cam o uso de ditos modelos.
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A TUTORIAL ON VARIATIONAL METHODS FOR MACHINE LEARNING
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May/2019
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Department: Electrical Engineering

In this work, we present a tutorial on deep generative models, speci�cally Varia-

tional Autoencoders (VAE) and deep Bayesian Neural Networks (BNN). In spite of

being apparently distinct, both themes are intimately connected through the pro-

babilistic view of machine leaning.

Therefore, we describe approximate inference methods since exact approaches

are only adequate in very limited conditions in which the computation time remains

feasible. We discuss modern extensions to such methods, capable of adequately sca-

ling to models with millions of parameters and equally large data sets. Furthermore,

we illustrate their relevance in each chapter through applications using (deep) neural

networks.
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Chapter 1

Introduction

Over the last two decades, Bayesian methods have largely fallen out of favour in

the Machine Learning (ML) community. The culprit for such unpopularity are their

complicated theory, which makes it hard for practitioners to access and comprehend

them, and, specially, their heavy computational burden. Conversely, classical tech-

niques relying on bagging, boosting and point estimates o�er a cheap alternative to

measure uncertainty. Consequently, Bayesian methods remained con�ned mostly to

(Bayesian) statisticians and a handful of other researchers either working in related

areas or disposing of small amounts of data.

For instance, Markov Chain Monte Carlo (MCMC) methods are powerful

Bayesian tools. In a modelling problem they are able to converge to the true dis-

tribution of the model if given enough time. However, this frequently means more

time than one is willing to wait, and though many modern algorithms alleviate this

issue [1], the state of a�airs remains roughly the same. MCMC is asymptotically

exact and computationally expensive. This e�ect worsens with the dimensionality

of the problem. Conventional Bayesian methods do not scale well to large amounts

of data nor to high dimensions, situations which are becoming increasingly common

in the Age of Big Data [2].

One may think that the abundant amount of data should make up for the lack of

uncertainty and its estimation because in the limit of in�nite samples the Bayesian

estimation converges to the maximum likelihood point. The pinnacle of the discon-

nection from the probabilistic view is standard Deep Learning. It basically consists

on very large parametric models trained on, ideally but not often, large amounts

of data to �t an unknown function. Modern hardware and computational libraries

render the computation possible through parallel computing. Thanks to this new

representation learning technique, we have been achieving outstanding results in

the last 8 years, breaking plateaus in many areas of research, e.g., speech [3] and

vision [4]. As a consequence, the deep learning domain became a trending area,

attracting a lot of newcomers, media attention and industry investments.
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All this positive feedback reinforces the behaviour of overlooking probabilistic

modelling and reasoning. After all, it seems to be working. However, reliable con-

�dence estimates are essential to many domains such as healthcare and �nancial

markets, and standard deep learning cannot attend their demand. Recently, re-

searchers found that many ML models, including Deep Neural Networks (DNN)

with great test set performance are deceived by adversarial examples [5], which are

images apparently normal to humans but that are consistently misclassi�ed with

great con�dence. Moreover, the authors describe a method to create adversarial

examples [5]. On the other hand, methods that estimate uncertainty are capable of

detecting adversarial examples and, more generally, examples outside the domain in

which they were trained.

The current approach to ML requires large quantities of data and when not

available, the models are likely to over�t and have poor generalisation. Contrar-

ily, Bayesian methods perform well in data-poor regimes and are robust, though

not immune, to over�tting. As we discuss in Section 2.1.1, there is an important

fundamental di�erence between a large and a statistically large dataset. A mere

28 × 28 binary image has 784 dimensions and 2784 ≈ 10236 di�erent arrangements,

which is far more than the estimated number of atoms in the observable universe

(∼ 1080) [6]. Even in a simple case as this, statistically large means having a virtually

in�nite number of examples. Naturally, we frequently assume there is an underly-

ing low-dimensional structure that explains the observations. In Section 2.1.2, we

formalise this thought and in Section 4.3 we review an algorithm that incorporates

this assumption.

Probabilistic models further lend themselves to semi-supervised and unsuper-

vised learning, allowing us to leverage the performance from unlabelled samples,

and do active learning, in which the samples the system is most uncertain about are

put forward for the operator to label, maximising the information gain. In general,

the Bayesian framework o�ers a principled approach to constructing probabilistic

models, reasoning under uncertainty, making predictions, detecting surprising events

and simulating new data. It naturally provides mathematical tools for model �tting,

comparison and prediction, but more than that, it constitutes a systematic way of

approaching a problem.

Since Bayesian methods can be prohibitively expensive, we focus on approxi-

mate algorithms that on a sensible amount of time achieve reasonable performance.

Technically, MCMC is one such class of algorithm, but it is based on sampling and

has slow convergence rate. Here, we discuss variational methods, which instead rely

on deterministic approximations. They are much faster than sampling approaches,

which makes them well suited to large data sets and to quickly explore many mod-

els [7]. The toll for its speed is inferior performance, making it adequate to scenarios

2



where we dispose of a lot of data to compensate for that weakness and where it would

be otherwise impossible to employ MCMC.

Over the last 8 years, research on variational methods for Bayesian ML started

to reemerge [8] and slowly gain momentum. Since 2014, there has been an exponen-

tial growth in interest for this �eld [9�11], fuelled among others by the discovery of

critical failure modes for conventional Deep Learning. Nowadays, the �eld has work-

shop tracks in major ML conferences and lots of papers accepted to the main tracks,

venues geared towards statistics, Arti�cial Intelligence and uncertainty increasing in

importance, visibility and number of submissions.

1.1 Objectives and Contributions

While Bayesian ML and approximate inference are rather large topics spawning en-

tire books, the intent of this dissertation is to be a self-contained introduction to

modern variational methods for Bayesian Neural Networks (NN). Even within this

realm, research is (fortunately) sprouting at a rate di�cult to follow and many algo-

rithms are also being reinterpreted through Bayesian lenses. We focus on practical

BNN algorithms that are either (relatively) easy to understand or fast to train as

well as on one speci�c usage of a variational technique for generative modelling.

The target audience are those already familiar with ML and modern NN. Al-

though basic knowledge of calculus, linear algebra and probability theory are a must

to comprehend the concepts and derivations herein, they should also be enough. We

explicitly avoid matrix calculus since the material may be challenging by itself and

adding this di�culty does not really aid in the understanding and may actually

intimidate. Furthermore, we do not assume the reader to be familiar with statisti-

cal inference and thus explain the necessary information throughout the text when

needed.

Most introductory texts cover either modern NNs or general Bayesian methods

for ML, with little work dedicated to both simultaneously to this date. Information is

scattered around in research blog posts and introductions of published papers, with

the sole in-depth work being Neal's excellent Ph.D. thesis [12] from 1996, which does

not cover modern variational approximations. The current scenario makes the leap

from NNs to BNNs hard from a theoretical point of view: the reader needs either

to learn Bayesian methods �rst or to decide what matters and which algorithms

to learn; the former being cumbersome and the latter troublesome in a self-study

scenario.

The present dissertation has the mission of �lling this gap and helping others

cross from one to the other with not only a working knowledge, but also an un-

derstanding of the theoretical underpinnings of the Bayesian approach. Given the

3



importance of source codes in learning a computationally-oriented subject, we make

ours available1.

1.2 Organization of this Dissertation

Prior to applying variational approximations to NNs, we need to introduce and

explain what actually is approximate inference and what are some of the core varia-

tional techniques. Chapter 2 accomplishes this role and presents the reader with the

main concepts of the probabilistic view and model-based approach to ML. Chapter 2

is paramount to the rest of the dissertation and should be read with care, otherwise

the other chapters become just a bundle of senseless statements and formulas.

Disposing of the necessary tools learnt in Chapter 2, the reader enters Chapter 3

well-equipped to follow the detailed derivation of the BNN algorithms therein. It

consists of 4 di�erent methods to frame and attack the problem [13�16], each with

its own strength whether it be performance-wise or mere conceptual simplicity. The

chapter is long and requires patience to get through its many equations. A sensible

advice is to keep around pen and paper to help with the formulas.

Next, we focus on a di�erent aspect and use approximate inference to establish a

(deep) generative model [10]. Chapter 4 builds it from the ground up starting with a

simple modelling problem, presents some extensions and points out important �aws

of the method.

Finally, Chapter 5 starts by summarizing the core content of each chapter, which

gives the reader a chance to review the learned material. Afterwards, we point an

exciting and challenging future research axis that has so far been little explored and

set ambitious interdisciplinary long-term goals.

1.3 On the notation

The following mathematical elements attend the notation:

� scalar: a and σ

� vector: a and σ

� matrix: A and Σ

� set (of scalars, vector or matrices): A and Σ

We denote Probability Density Functions (PDF) and probability distributions

with lower-case notation p and use them interchangeably. Although technically

1https://github.com/lpcinelli/probabilistic-nn
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incorrect and being an abuse of language, we decide to simplify notation and make

it clear from the context whether the random variable is continuous or discrete.

Nevertheless, we already advert to the almost non-existence of discrete random

variables throughout the text, especially on Chapters 3 and 4, whose algorithms

rely on continuous functions and variables, the sole discrete distribution in there

being the Bernoulli distribution. Addtionally, we always denote the Cumulative

Distribution Function (CDF) in upper-case, such as F (X) = P (X 6 x).

We write parametric family of distributions p as p(· ; Ξ ) with Ξ the set of pa-

rameters that specify the member of the family. In the case of a Gaussian random

variable z, the pdf would be p(z ; µ, σ2) = N (z ; µ, σ2), where the parameters are

the mean µ and variance σ2. If the parameters are random variables, we can write

the conditional distribution as p(· |Ξ ), and since we deal with Bayesian analysis

these two notations get pretty similar although di�erent.

Whenever possible, the set of variational parameters will write Ψ and the set of

model parameters Θ , and if both refer to the same entity we opt for Θ . Similarly,

hidden units or more generally latent variables are Z.
Also, derivatives w.r.t. to a set is a shorthand for compactly representing

the derivative w.r.t. each element of the set. For example let f be a function

parametrised by Θ = {θ1, θ2}, we have according to this notation

∂f(Θ)

∂Θ
=


∂f(θ1,θ2)
∂θ1

∂f(θ1,θ2)
∂θ2

.

Although this example coincides with the gradient when Θ is a vector and its el-

ements scalars, it is not true when Θ is a set of matrices for example. One could

argue that sets of vectors might be arranged into matrices and those into multidi-

mensional tensors, thus the above notation being unnecessary. However, our aim is

to simplify the notation and exempt the reader from additional technical di�culties.
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Chapter 2

Probabilistic Thinking

This chapter introduces what the reader needs to go through the rest of the disser-

tation with �ying colours.

We discuss what is the model-based approach to machine learning and its main

enabling techniques: (approximate) Bayesian inference, graphical models, and, more

recently, probabilistic programming. We focus on distributional approximation

methods for approximate inference, and more speci�cally on Variational Bayes,

which is the algorithm most of the models on later sections rely on.

By the end of this Section, the reader should:

� Understand the various advantages of the model-based approach.

� Discern the bene�ts and issues of Bayesian inference.

� Be capable of deriving Variational Bayes and Expectation Propagation.

� Understand the mean-�eld approximation.

� Comprehend the relations between the variational methods.

� Know the modern landscape of stochastic and black-box inference methods.
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2.1 Model-Based Machine Learning

Initially, we pose ourselves a question about the very �rst word in this section's

title � model � and then what it means for a Machine Learning (ML) method to be

model-based.

A model can assume di�erent forms and complexities. Physicists have di�erent

models for understanding the universe: astronomers focus on General Relativity

and the interaction between celestial bodies, while particle physicists represent it

according to quantum mechanics; infants draw stick �gures of their families, houses

and alike; neuroscientists study the drosophila (�small fruit �ies�) as a model for

understanding the brain; drivers imagine what will change and how in order to

decide what to do next.

Although all these examples seem distinct and may serve diverse purposes, they

all are approximate representations of their equivalent real-world object/process.

Thus, a model is a description of the world (at a given level) and as such encodes

our beliefs and assumptions about it.

All models have parameters, which may be unknown a priori and must be learned

from the available data so that we are able to discover its latent causes or predict

possible outcomes. If our model does not match the observed data, we are capable

of refuting the proposition and search for one that can explain it.

As one might imagine, Model-Based Machine Learning (MBML) aims at pro-

viding a speci�c solution for each application. It explicitly encodes the set of as-

sumptions for a given application directly in the model, which we describe following

mathematical tools, the language of science. Consequently, we are able to create a

wide range of highly tailored models under a single development framework.

This clear distinction of what is the model, decouples the model per se from the

learning (inference) algorithm. This segregation gives transparency to its function-

ality since the model structure becomes apparent [17] and allows the application of

the same inference method to di�erent models and vice versa, generating a large

number of possible combinations. The uni�ed framework facilitates rapid prototyp-

ing and comparison, and allows the derivation of many traditional machine learning

techniques as special cases of certain model-inference con�gurations (examples in

Section 2.1.3).

Statistical inference refers to the general procedure by which we deduce any

desired probability distribution (possibly marginal or conditional) of our model or

parts of it given the observed data. The ML literature usually disassociates the terms

learning and inference, with the former referring to model parameter estimation and

the latter to reasoning about unknowns, i.e., the model output, given the already

estimated parameters. However, in statistics there is no such di�erence and both
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mean estimation. In the present text, they are used interchangeably though we tend

to say inference more often due to this term being readily associated with probability

distributions.

One might question why do we want to infer probability distributions or even

what are the advantages over something simpler such as point estimates, after all

they are single values and already give us answers. The problem in considering only

the most likely solution comes from losing information of the underlying variability

of the model. Let us consider a trivial example to illustrate the issue:

Example 2.1.1. An ambulance must take a dying person to the nearest hospital

and there are two possible routes A and B. A takes about 15 minutes, while B,
17. Which one should the driver choose? Now, the driver further considers that A
consists of regular urban streets with semaphores and possible tra�c jams and that

his predicted travel time may vary up to 8 minutes, whereas B is a express lane

for medical emergencies and the estimated time varies by no more than 1 minute.

Would the choice be the same?

The highlighted keywords above give us a sense of the intrinsic variability in our

problem and disregarding the knowledge they provide may be misleading. In the

above example, it is clear that the average time is not su�cient information and

that the uncertainty is critical for making a conscious decision. Probability theory

provides a principled framework for modelling uncertainty. As seen in our example,

probabilistic models allow us to reason and perform decision-making, anticipate the

future and plan accordingly, detect unexpected events, among others; all by learning

probability distributions of the data. Not only can we understand almost all ML

through probabilistic lenses, but also connect it through this perspective to every

other computational science [18, p. 2].

2.1.1 Bayesian Inference (Learning)

As promised, we start by going over the basic precepts of the Bayesian paradigm

and parameter estimation. Bayesian probability inherits its name from the Bayes

rule:

p(Z |X ) =
p(X |Z)p(Z)

p(X )
. (2.1)

Although such equation is valid for whatever events Z and X may represent, we

consider a common case of ours where Z is the set of unknown random variables of

our model and X the observed data corresponding to the real-world process.

In the above expression each term has a clear interpretation:
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� p(Z) is the prior � it encodes into the model any prior belief or domain knowl-

edge we might possess. In case one does not know anything about the problem

at hand then one might use non-informative priors;

� p(X |Z) is the likelihood � it is the density function of the probability with re-

spect to the parameters and not to the possible events. Intuitively, it measures

how likely is the observed data given the model.

� p(Z |X ) is the posterior � its name re�ects the fact that our knowledge about

the parameters has been updated after accounting for our (new) data, thus it

is the probability of Z conditioned on such evidence;

� p(X ) is the evidence � as hinted above, the term refers to the observed

data and this probability (density) works as a normalising factor equal to∫
Z∈Ω p(X |Z)p(Z) so that the posterior corresponds to a proper probability

distribution.

The above formula carries the main concepts of the Bayesian methodology. Besides

the obvious use of the formula itself to update the model, there is the prior prob-

ability distribution and the treatment of parameters not as �xed but as random

variables instead. Thus all unknown quantities are treated equally and indeed there

is no distinction among them. The Bayesian view is an interpretation of probability

itself and its meaning. While frequentists1 see it as the relative frequency of an

event, Bayesians see it as quanti�cation of a belief.

We can understand the role of the likelihood term p(D |W) more practically by

means of an example. Let f(·;w) be a regression model parameterised by w that

predicts a scalar value ŷ, such that ŷ = f(x). Our probabilistic model assumes

a given level of noise and we thus place an observation noise model on top of the

output, such that the observed output is corrupted by a known process g(·), say an

additive Gaussian noise with variance σ2. The log-likelihood then has the form

log p(y |x,w) = logN (y; f(x;w), σ2) (2.2)

= −1

2
log
(
2πσ2

)
− 1

2σ2
(y − f(x;w))2 . (2.3)

What we wish is that the observation y is as close as possible to the predicted output

f(x), such that our model agrees with the data. Note that the prediction and the

noise model could in principle be anything.

We now present the trinity of estimation methods that we extract from Equa-

tion (2.1) (but that do not necessarily follow the Bayesian framework) along with

1Frequentism is the classical approach to probability, for which the probability of an event is

only meaningful in the limiting case of in�nite measurements.
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Figure 2.1: Prior, likelihood and posterior of a model. The likelihood does not sum
to 1. The maximisers for the likelihood and the psoterior are di�erent. As more
data is gathered, the likelihood becomes expressive and the posterior shifts towards
it.

Figure 2.1.

Maximum Likelihood Estimation

As guessed by the name, Maximum Likelihood estimation relies on the maximization

of the likelihood function:

ZMLE = argmax
Z

p(X |Z)

= argmax
Z

∏
i

p(xi | Z)

= argmax
Z

∑
i

log p(xi | Z) . (2.4)

We assume the observed data is independent and identically distributed (iid) given

Z so p(X |Z) factorises. The last equality holds as the log is a monotonically

increasing function and therefore the optimisation problem is equivalent.

This method obtains a point estimate for the parameters (corresponding to the

maximum) and boasts parameter transformation invariance and ease of calculation.

On the other hand, it loses the variability information we previously discussed and

is prone to over�tting, though asymptotically optimal.

Maximum a Posteriori Estimation

Again, by simple deduction one may guess that Maximum a Posteriori (MAP) es-

timation performs the maximisation of the a posteriori function p(Z |X ) de�ned in
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Equation (2.1). From an optimisation perspective with respect to the parameters,

the evidence is �xed so we can ignore it:

ZMAP = argmax
Z

p(Z |X )

= argmax
Z

p(X |Z)p(Z)

p(X )

= argmax
Z

(p(X |Z)p(Z))

= argmax
Z

([∏
i

p(xi | Z)

]
p(Z)

)

= argmax
Z

log

([∏
i

p(xi | Z)

]
p(Z)

)

= argmax
Z

(∑
i

log p(xi | Z) + log p(Z)

)
. (2.5)

The MAP forcefully regards Z as a random variable since it also takes into consid-

eration the prior, which is a proper probability density of Z. The above formula

is a common utility function in ML algorithms, e.g., in neural networks the second

term is known as the regulariser and if we take the prior as a standard Gaussian

distribution the term reduces to `2 regularisation.

Even though this approach has a more Bayesian feeling to it, the MAP estimation

still is a point estimate and we may wish instead the whole probability distribution.

Furthermore, its results are not invariant to parameter transformations, which is

undesired because we would like to always arrive at the same point, the equivalent

solution.

Bayesian Estimation

A Bayesian treatment consists of computing the full posterior distribution p(Z |X )

instead of only point estimates, therefore the importance of the normalising con-

stant, the evidence
∫
Z p(x | Z)p(Z). Those are the two important quantities we

reason about. They allow us to produce point or interval estimates of the latent

variables and construct predictive densities for new data. For example, at test time

we compute the posterior predictive distribution over the new datum x′:

p(x′ | X ) =

∫
Z
p(x′ | Z)p(Z |X ) . (2.6)

Intuitively, we compute the probability of x′ for each setting of the random variable

Z taking into account the probability of Z itself as given by the learned posterior

p(Z |X ).
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µ θ X

Figure 2.2: Hierarchical Bayes model of 3 stages. X is an observed random vari-
able, θ is an unknown parameter governing its generation process, and µ a hyper-
parameter that determines the distribution of the random variable θ.

Bayesian models may be further decomposed into a sequence of conditional dis-

tributions spanning multiple levels following an hierarchical structure. Bayesian

hierarchical models then have multiple levels of hyper-parameters which set the

prior distribution of downstream stages and hyperpriors that de�ne the correspond-

ing distributions. In the example of Figure 2.2, µ is a hyperparamter since θ is

already a parameter that in�uences the distribution of the observations X. If we

de�ne a distribution for µ, we are de�ning a hyperprior, and if we want to take this

distribution into consideration in the inference process, by marginalising µ, we are

performing a fully Bayesian approach. On the other hand, if we de�ne a point value

for µ by maximising its likelihood determined by the observations, we are doing

empirical Bayes.

As one might already imagine, in Bayesian analysis integration is the central

operation. However, this frequently leads to intractable solutions, either due to

the high dimensionality that renders computation unfeasible in a viable time, or to

the nonexistence of a closed-form analytical solution. In Section 2.2 we go through

some approximate methods that deal with this issue and in Chapter 3 we discuss

algorithms for performing Bayesian regression in deep neural networks (a class of

parametric models).

We previously mentioned that the Maximum Likelihood estimator is asymptot-

ically optimal. Also note that under a statistically large data set the probability

distributions in a Bayesian model may become narrow and similar to the results

of point-based methods. One may then question what is the advantage of being

Bayesian if the results end up being similar. The catch here are the words �asymp-

totically� and �statistically large�. Bayesian modelling really shines when data is

limited and traditional methods are prone to over�tting, the uncertainty in the pa-

rameters is signi�cant in these cases [17]. The recent revolution in ML relies on very

large data sets. However, these data sets still are statistically small, e.g., although

the ImageNet data set [19] has more than 14 million images, there are virtually

in�nite possible con�gurations for all the object classes appearances in an image.

Therefore, the scienti�c community has been actively researching Bayesian inference

methods that scale well to large data sets.

12



2.1.2 Latent Variable Models

Given observed data X , how should we model the distribution p(X ) so that it re�ects

the true real-world population? This distribution may be arbitrarily complex and

to readily assume the data points Xi to be iid seems rather naive. After all, they

cannot be completely independent, there must be an underlying reason for them

to exist the way they do, even if unknown or latent. We represent this hidden

cause by the variable Z, thus obtaining the joint distribution p(X ,Z). Naturally,

by marginalising over Z we obtain

p(X ) =

∫
p(X ,Z)dZ =

∫
p(X |Z)p(Z)dZ. (2.7)

Instead of assuming independence, we resort to the in�nite exchangeability prop-

erty. A �nite sequence of random variables (X1,X2, . . . ,Xn) is said to be exchange-

able if any permutation of its elements have the same probability distribution [20].

Consequently, the order of the sequence is not relevant to determine the joint dis-

tribution nor any marginal. In particular, all marginal distributions are equal. An

in�nite sequence of random variables is in�nitely exchangeable if every �nite subse-

quence is exchangeable. Note that this is more general than the iid property.

De Finetti's representation theorem [20] states that if the sequence of random

variables is in�nitely exchangeable, then there exists p(Z) for which the joint dis-

tribution can be written as

p(X1,X2, . . . ) =

∫ ∏
i

p(Xi | Z)p(Z)dZ. (2.8)

We can thus see the joint distribution of an in�nitely exchangeable sequence of ran-

dom variables as representing a process in which a random parameter is drawn from

some (prior) distribution and then all observables in question are iid conditioned on

that parameter.

The representation theorem shows how statistical models emerge in a Bayesian

context: under the hypothesis of exchangeability of {X}∞i=1, a much weaker assump-

tion than iid, there exists a parameter such that, given its value, the observables

are conditionally iid. The theorem is a powerful motivation for Bayesian parametric

models even though it does not say anything about p(Z).

In practical problems, even if we deal with unordered data, the size is always

�nite. Therefore, the in�nite exchangeability assumption may be impractical or

wrong, but the result still holds approximately true for large n [21].

Note that we use latent variables and unknown model parameters interchange-

ably. For Bayesians, there is no fundamental di�erence between model parameters

and latent variables, they are all random variables whose values we wish to infer. For
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Figure 2.3: Examples of probabilistic graphical models.

example, if our observables Xi are Bernoulli random variables, then Z corresponds

to the probability of success p ∈ (0, 1).

2.1.3 Probabilistic Graphical Models

Full joint distributions are generally intractable so we resort to structured mod-

els [17], which associate probability distributions over a few variables to form larger,

more complex models. This approach provides considerable computational simpli�-

cations. One very �exible paradigm and also dominant one over the last two decades

is Probabilistic Graphical Models (PGM) [22].

PGMs use a diagrammatic representation for compactly encoding a complex dis-

tribution over a high-dimensional space [22]. Their structure captures our assump-

tions about the family of distributions our model may assume. Random variables

become nodes, which can be shaded if observed or empty otherwise, and edges de-

note their relations (Figure 2.3). Plates symbolize that the subgraph they enclose

repeats the number of times designed by their subscript (Figure 2.4).

For directed acyclic graphs (Figure 2.3a), each vertex i ∈ V together with its par-

ent set Πi de�ne a local probability distribution pi(xi |Πi), whose collection describes

the joint probability of the model

p(x1, x2, . . . , x|V|) =
∏
i∈V

pi(xi |Πi) . (2.9)

For undirected graphs (Figure 2.3b), since there is no ordering, we cannot de-

compose them into conditional probability distributions. Alternatively, the joint

distribution factorizes according to fully connected subsets of vertices, to which we

attribute potential functions [22].

As mentioned earlier, many traditional ML algorithms can be derived as special

cases of the graphical model framework combined with the appropriate inference

algorithms. For example, principal component analysis, factor analysis, logistic

regression, Gaussian mixtures, and similar models can all be represented by simple

graphical structures [17]. Moreover, they can be e�ortlessly combined. All this

happens organically within the model-based ML framework. Furthermore, PGMs
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Figure 2.4: Probabilistic graphical models of traditional machine learning algorithms

can be easily customised to a speci�c application or modi�ed if the requirements

of the application change. The computation of a single factor in a graphical model

amounts to the computation of the corresponding node(s) in the graph. Thus, an

algorithm can calculate the factor as the product between the local conditional

distribution of that node and the incoming messages of adjacent vertices, that is,

on whom they depends. Hence, computing the full joint probability reduces to

performing local operations involving messages between neighbouring nodes. Such

class of algorithms are called message-passing algorithms [23].

2.1.4 Probabilistic Programming

Probabilistic programming is a tool for statistical modelling. It borrows lessons from

computer science and common programming languages so as to construct languages

that allow the denotation and evaluation of inference problems [24]. Thus, it frees the

developer from complex low-level details of probabilistic inference, allowing him/her

to concentrate on issues more speci�c to the problem at hand, such as the model and

the choice of inference method. Similarly to high-level programming languages which

abstract away architecture-speci�c implementation details, it boosts performance

and productivity.

One of the cornerstones for the deep learning success was � besides the avail-

ability of computing power put forth by modern Graphical Processing Units (GPU)

and the obvious abundance of data in modern days � the development of specialised

libraries that automate di�erentiation and relieve the user from the need for manu-

ally deriving the gradients for optimisation, as well as facilitate model speci�cation.

This genre of software led to the widespread use of deep learning. Nowadays, there

is no need to actually understand the basics of neural networks or even calculus of

derivatives to try and run a model, which does not mean any constructed model

will be useful or meaningful. Probabilistic programming aims to achieve the same

for probabilistic ML [24]. Consequently, it allows rapid prototyping and testing of

ideas, allowing the �eld to �ourish and pushing industry adoption.
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Figure 2.5: An intuitive view of probabilistic programming and how it di�ers from
the common computer science paradigm. Shaded boxes indicate the information is
available. Instead of inputing the required parameters to run the program and obtain
the desired output, probabilistic programming tries to recover from the observations
generated by the program which were the parameters. This process is similar to
inference in statistics.

Modern probabilistic programming languages provide a more powerful frame-

work than PGM does. Computer programs accept recursion and control �ow state-

ments which are otherwise di�cult to represent [25]. There is a myriad of di�erent

languages, each with its own set os speci�c features: some are explicitly restrictive,

others specialise in a certain types of inference techniques, or yet are general-purpose.

A non-extensive list includes BUGS (from 1995) [26], WebPPL [27], Infer.NET [28],

Stan [29], PyMC3 [30], Pyro [31], and Edward [32].

2.2 Approximate Inference

As brie�y eluded in the previous section, for many models of practical interest it

is frequently unfeasible to compute the posterior distribution or expectations over

it. In the continuous case, there may not be a closed-form analytical solution and

the integrand may be too complex for numerical integration. The same happens

in the discrete case where summing over all possible con�gurations, though possi-

ble in principle, may be nonviable since the total number of combinations grows

exponentially with dimension.

In such cases we have two options: either to successively simplify the model

until exact inference is possible or to perform approximate inference in the original

model. On this matter John Tukey stated [33, p. 13]: "Far better an approximate

answer to the right question, which is often vague, than an exact answer to the

wrong question, which can always be made precise".

There are two broad classes of approximation schemes: deterministic and

stochastic. The latter relies on Monte-Carlo sampling to approximate expectations
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Figure 2.6: Illustration of optimisation process of VI given a family of distributions
q parameterised by ν that does not contain the true posterior distribution p(Z |X ).

over a given distribution. Given in�nite computational resources, they converge to

the exact result, but, in practice, sampling methods can be computationally expen-

sive. On the other hand, deterministic methods consist of analytical approximations

to the posterior and, as a consequence, cannot generate exact results. Hence, both

methods are complementary.

In this text we discuss variational methods, which are deterministic. We start

by its most prominent representative, Variational Inference (VI). Later, we present

an alternative variational framework known as Expectation Propagation (EP).

2.2.1 Variational Inference

Essentially, VI constructs a deterministic analytical approximation to the posterior

probability. Thus, it is suited to large data sets and to quickly test many models [7].

VI, Variational Bayes or Variational Bayesian Inference refer to exactly the same

algorithm, and as other Bayesian methods seek to describe all available information

about the variables through their probability distribution. Figure 2.6 depicts how

VI works, it is the process of �nding the best possible distribution q among the

speci�ed family distribution.

While standard calculus concentrates on computing derivative of functions, vari-

ational calculus focuses on derivative of functionals, which are mappings that take

functions as input and output values. Several problems can be cast as functional

optimisation and variational methods do exactly that for inference.

Let us suppose a model with joint distribution p(X ,Z) over the set X of observed

variables and the set Z of latent variables. As usual in a Bayesian setting, we wish

to compute its posterior distribution p(Z |X ), which we shall suppose intractable.

Then, we consider a family of approximate, tractable densities P over the latent

variables and try to �nd the member q∗(Z) that is the �closest� to the exact posterior
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in the Kullback-Leibler (KL) divergence sense:

q∗(Z) = argmin
q(Z)∈P

DKL (q(Z)‖p(Z |X )) , (2.10)

where

DKL (q‖p) =

∫
q(ε) log

q(ε)

p(ε)
dε. (2.11)

Directly minimising the KL is not possible because we would need the log of the

true posterior log p(Z |X ), and hence the log evidence log p(X ), which we assumed

intractable. Aiming to get rid of this term, we perform some algebraic manipulations

and arrive at

DKL(q(Z)‖p(Z |X )) =

∫
q(Z) log

(
q(Z)

p(Z |X )

)
dZ

= −
∫
q(Z) log

(
p(X ,Z)

p(X )q(Z)

)
dZ

= −
(∫

q(Z) log

(
p(X ,Z)

q(Z)

)
dZ −

∫
q(Z) log p(X )dZ

)
= −

∫
q(Z) log

(
p(X ,Z)

q(Z)

)
dZ + log p(X )

∫
q(Z)dZ

= −Eq
[
log

(
p(X ,Z)

q(Z)

)]
+ log p(X ). (2.12)

Reorganizing the last equation we obtain

log p(X ) = Eq
[
log

(
p(X ,Z)

q(Z)

)]
+DKL(q(Z)‖p(Z |X )). (2.13)

Observing that DKL(q‖p) > 0, it follows that the �rst term of the right hand-side

of (2.13) is a lower bound on log p(X ), named the Evidence Lower Bound (ELBO).

This remark leads to a very important result: maximising the ELBO is equivalent to

minimising DKL(q‖p), what is very convenient because the right-hand side of (2.13)

does not contain the log evidence. In the divergence above, the term log p(X ,Z)

decomposes into the log-likelihood log p(X |Z) and the log prior log p(Z), which we

are able to handle.

Alternatively, we could have obtained this bound straightforwardly by applying

Jensen's inequality for concave functions E [f(x)] 6 f(E [x]) to the log marginal

probability of X , that is

log p(X ) = log

∫
p(X ,Z)dZ
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Figure 2.7: The decomposition of the marginal log-probability p(X ) into the ELBO
and the DKL(q‖p) terms.

= log

∫
p(X ,Z)

q(Z)

q(Z)
dZ

= logEq
[
p(X ,Z)

q(Z)

]
> Eq

[
log

(
p(X ,Z)

q(Z)

)]
. (2.14)

By comparison with (2.13), the di�erence between the left- and right-hand sides of

Equation (2.14) is exactly the KL divergence term, as shown in Figure 2.7.

We can rearrange the ELBO into the more interpretable form

ELBO(q) = Eq [log p(X ,Z)]− Eq [log q(Z)]

= Eq [Eq [log p(X |Z)] + log p(Z)]− Eq [log q(Z)]

= Eq [log p(X |Z)]−DKL (q(Z)‖p(Z)) . (2.15)

The �rst term is the expected likelihood under the distribution q(Z) and the second

is the (negative) divergence between the q(Z) and the prior p(Z). While the former

drives the model towards best explaining the data, the latter acts as a regulariser

pushing it towards the prior p(Z).

The ELBO is also closely related to the variational free energy F̃ of statistical

physics, namely

ELBO(q) = Eq [log p(X ,Z)]− Eq [log q(Z)]

= Eq [log p(X ,Z)] +H[q] (2.16)

= −F̃

with −Eq [log p(X ,Z)] being the average of the energy function under the distribu-

tion q(Z) andH[q] the entropy of q(Z) [34, ch. 33]. Indeed, the use of the variational

free energy framework in statistical learning for approximating the posterior distri-

bution leads to the VI methodology.
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Analysing Equation (2.16) we note that the solution for the �rst term alone

is the MAP estimate of q, which maximises the log joint probability log p(X ,Z),

however the negative-entropy term favours disperse distributions. The solution is

then a compromise between these two terms.

Until now, we have imposed no restriction to the class of approximating distri-

butions D. Indeed, it could include the true posterior itself, and in cases where the

posterior is tractable and belongs to D, the method does converge to it. The class

D should be as �exible as possible so as to better approximate the true posterior,

the only restriction being its tractability. The richer the family of distributions, the

closer q∗(Z) will be to the p(Z |X ) in Figure 2.6.

There are two main ways to constrain the class of distributions. First, by spec-

ifying a parametric form for the distribution: q(Z;Ψ), with the set of variational

parameters being Ψ . The second, by assuming that q factorises over disjoint sets Si
of Z

q(Z) =
M∏
i=1

qi(ZSi), (2.17)

just as described by its graphical representation (Section 2.1.3).

When every latent dimension is independent of all others, this factorised form of

Equation (2.17) is re�ered to as Mean-Field Variational Inference (MFVI).

To �nd the optimal factors q∗i (ZSi) we could solve the Lagrangian composed by

the ELBO and the constraints that each factor sums to 1. However, we do not

dispose of the required tools from the calculus of variations. Instead, we take a

more laborious route by substituting (2.17) back into (2.16) and working out the

math (available in Appendix B.1) to get

log q∗j (ZSj) = E−j [log p(X ,Z)] + const (2.18)

q∗j (ZSj) ∝ exp{E−j [log p(X ,Z)]}, (2.19)

where E−j [·] indicates expectation over all sets Si of Z, ZSi , except Sj.
The mutual dependence between the equations for the optimal factors indicates

an iterative approach to optimise the objective function by replacing each factor by

a revised estimate while keeping the others �xed (2.19). This algorithm, known as

Coordinate Ascent VI (CAVI), raises the ELBO to a local optimum. An alternative

approach to optimisation is gradient-based, at each iteration it calculates and follows

the gradient of the objective.

So far, we consider all parameters, either local or global, either hidden units or

hyper-parameters, to be whitin Z. It is also possible to have (hyper)parameters Θ on

which we perform point estimation, i.e. p(Z |X ;Θ), though this would not represent
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Figure 2.8: Graphical representations of the di�erent levels of approximation to
the posterior distribution as undirected graphs. On the left, the nodes in the true
posterior are all dependent. At the center, z1 and z2 are conditionally independent,
the approximation still preserves their dependency on z3. On the right, all the
nodes are marginally independent. Each approximation renders the distribution
less expressive.

a fully Bayesian approach. In this case, we alternate between two distinct steps. One,

approximating the posterior at each iteration by computing the expectation over all

ZSi as in (2.19). The other, performing themaximisation of the ELBO w.r.t Θ under

the re�ned distribution qnew(Z) =
∏

i q
∗
i (ZSi). This is the Variational Expectation

Maximisation (EM) algorithm. Thus VI can be understood as a fully Bayesian

extension of Variational EM, in which instead of computing a point mass for the

posterior over the parameters Θ (MAP estimation of Section 2.1.1), it computes the

entire distribution over Θ and Z.
The mean-�eld approximation to the posterior relates to how we simplify the

corresponding factor graph of our model. It is very �exible, being able to capture

any marginal density of the latent variables, but incapable of modelling correlation

between them due to the independence assumption (Figure 2.8). This assumption

is a double-edged sword, helping with scalable optimisation while limiting express-

ibility [7] and underestimating marginal variance. Hence the need for other families

of approximations such as the already mentioned structured mean-�eld [35], richer

covariance models [36, 37], normalising �ow [38], etc.

Despite the widespread adoption of the VI framework, it still has some major

issues. As presented here, it remains restricted to the conditionally conjugate expo-

nential family for which we can compute the analytical form of the ELBO, otherwise

we cannot write down a formula to optimise. Section 2.2.5 brie�y presents methods

that try to address this problem. Furthermore, even though minimising the KL

divergence DKL (q(Z)‖p(Z |X )) and maximising the ELBO are equivalent optimi-

sation problems, the KL is bounded below by zero no matter what the distribution

p and q may be, while the ELBO has no bound whatsoever. Therefore, the KL

automatically informs us how good is the approximation and how close it is to the

true posterior. On the other hand, the ELBO has no absolute scale to compare with
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so we have no clue how far it is from the true distribution, though it asymptotically

converges to a given value that we can use for model selection.

2.2.2 Assumed Density Filtering

Assumed Density Filtering (ADF) has been independently proposed in the statistics,

arti�cial intelligence, and control domains [39]. Its central idea relies on the model's

joint probability decomposing into a product of independent factors. Instead of

trying to approximate all factors at once, we sequence through each factor, including

it into the current approximation. Suppose a joint distribution and its posterior

p(X ,Z) =
N∏
i=1

fi(Z) (2.20)

p(Z |X ) =
1

p(X )

N∏
i=1

fi(Z), (2.21)

where the dependency of the factors fi(·) on X is made implicit. Also consider an

approximation to the posterior (2.21) of the form

q(Z) = p0(Z)
N∏
i=1

1

K̃i

f̃i(Z), (2.22)

where p0(Z) is the prior, f̃i(Z) are the compatibility functions, and K̃i their nor-

malising constants. The prior of choice should have a nice form to work with since

ADF consists of projecting the distributions back to the family of the prior after

each update.

Let us further call

pi(Z |X ) =
1

p(X )

i∏
k=1

fk(Z) ∝
i∏

k=1

fk(Z), ∀ 1 ≤ i ≤ N . (2.23)

Basically, at iteration 1 ≤ i ≤ N , that is, until all factors are seen, we have to �nd

the best q(i)(Z) such that

q(i)(Z) = q(i−1)(Z)
1

K̃i

f̃i(Z) ≈ q(i−1)(Z)fi(Z) ∝∼ pi(Z |X ). (2.24)

At each step, the approximation gets �slightly� warped by the true factor fi(Z) so

we project it back to the desired approximating family. From this, we immediately

note that the product of all K̃i gives an estimate of the model evidence p(Z) and

that the �nal approximating posterior has the same form as the prior.

This projection consists in minimising the KL divergence between the two dis-
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p argminq DKL(p‖q) argminq DKL(q‖p)

Figure 2.9: Comparison of the two alternatives forms of the KL divergence in
di�erent scenarios. The blue curve is a mixture of two Gaussians, while in the
leftmost graph their mean intersect resulting in a single mode, for the two other
cases the distribution becomes bimodal. The green dashed curve corresponds to the
distribution q that best approximates p in the forward KL sense, whereas the red
dotted curve is the best approximation according to the reverse KL. As the modes of
p get farther apart, DKL(q‖p) seeks the most probable mode while DKL(p‖q) strives
for the global average.

tributions. However, di�erently from Section 2.2.1, we now employ the forward KL

divergence DKL(p‖q) for measuring the quality of the approximation (note the or-

dering of the arguments). This minor tweak is actually the reason why ADF (and

EP in Section 2.2.3) behave so di�erently from VI. Since KL is a divergence and

not a distance, the symmetry property does not hold. Hence exchanging their order

leads to a distinct functional with distinct properties and issues.

The reverse KL divergence DKL(q‖p) de�ned in (2.11) severely penalises the

approximating distribution q for placing mass in regions where p has low probability

DKL(q‖p) = Eq [log q(x)]− Eq [log p(x)] dx. (2.25)

The term log p(x) → −∞ for such regions. Conversely, by exchanging p and q in

Equations (2.11, 2.25) one gets

DKL(p‖q) = Ep [log p(x)]− Ep [log q(x)] dx. (2.26)

The forward KL has the opposite behaviour, that is, it favours spreading the mass of

q over the support of p. Even low probability regions of p must have mass attributed

to in q to avoid obtaining samples from p(x) that have log q(x)→ −∞. Figure 2.9

neatly illustrates this property for both KL forms.

In order to be e�ciently calculated, the posterior distribution must be simple to

handle. So we further constrain the factors f̃i, and hence the posterior, to belong to
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the exponential family

f̃i(Z) = h(Z)g(η) exp (ηTu(Z)), (2.27)

where h(Z) ≥ 0 is the carrier functon, η the natural parameters of the distribution,

g(η) the partition function, and u(Z) the su�cient statistics which contain all the

necessary information the samples can provide about the unknown parameters of

the distribution.

From this restriction, it stems that q, being a product of all f̃i sites, also belongs

to the exponential family and the forward KL divergence reduces to

DKL(p‖q) =

∫
p(Z) log p(Z)dZ −

∫
p(Z) log q(Z)dZ

=

∫
p(Z) log p(Z)dZ −

∫
p(Z) log

(
h(Z)g(η) exp (ηTu(Z))dZ

)
=

∫
p(Z) log p(Z)dZ −

(
Ep [h(Z)] + log g(η) + ηT Ep [u(Z)]

)
. (2.28)

In this scenario, we are interested in �nding the natural parameters η that specify,

among the imposed member of the exponential family, the element that minimises

the KL. Thus we set

∇η
∫
p(Z) log p(Z)dZ −

(
Ep [h(Z)] + log g(η) + ηT Ep [u(Z)]

)
= 0

−∇η log g(η)− Ep [u(Z)] = 0

∇η log g(η) = −Ep [u(Z)] . (2.29)

From the fact that any normalised distribution must sum to one, we arrive at a

general result of the exponential family by deriving w.r.t. η, such that

∇η
∫
h(Z)g(η) exp (ηTu(Z))dZ = ∇η1

∇ηg(η)

∫
h(Z) exp (ηTu(Z))dZ +

∫
u(Z)h(Z)g(η) exp (ηTu(Z))dZ = 0

∇ηg(η)
1

g(η)
+ Eq [u(Z)] = 0

∇η log g(η) = −Eq [u(Z)] . (2.30)

Substituting (2.29) in (2.30) we arrive at

Eq [u(Z)] = Ep [u(Z)] , (2.31)

which means that when approximating an arbitrary distribution with an exponential
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distribution, we should match their moments.

Thus in the ADF methods, it all comes down to matching the moments of the new

approximation with the moments of the previous approximation tilted by the newly

included true factor. If, for example, we consider a Gaussian posterior approximation

q(Z) = N (Z;µ,Σ), then we should select µi, Σi, and Ki for the distribution q(i)

such that

µi = Eq(i−1)f̃i
[Z] , (2.32)

Σi = Covq(i−1)f̃i
[Z], (2.33)∫

q(i)(Z)dZ =
1

K̃i

∫
q(i−1)(Z)f̃i(Z)dZ = 1. (2.34)

Even though this sequential approach is better than independently approximat-

ing each factor, it depends on the ordering of the factors. If the �rst factors lead

to a bad approximation, the ADF produces a poor �nal estimate of the posterior.

We would mitigate this issue at the expense of losing the online characteristic of

the method by revising the initial approximations after taking the later factors into

account, e�ectively cycling through them all,

We note that the assumption of factorisable distributions is still pretty general.

Indeed, we frequently assume the observed data is iid distributed given the param-

eters, consequently inducing the factorisation of (2.21) over the likelihood term. In

addition, if considering a graphical model, the distribution can be factored according

to its structure, so the factors in (2.21) could represent sets of nodes of the graph.

Examples of ADF are projecting a Gaussian mixture posterior onto a single Gaus-

sian [39] and projecting a Student's t-distribution onto a Gaussian (Section 3.4).

2.2.3 Expectation Propagation

As mentioned in the previous section, one of ADF's weakness is its sensitivity to the

order in which the factors are considered. In a batch setting, where all factors are

available at all times, it is unreasonable not to re�ne the previously approximated

compatibility functions after observing all true factors. However, directly cycling

through them n times would amount to including each factor n times as if there

were n times more factors, e.g., n times more observed data. In doing so, we would

continuously accumulate evidence, making the likelihood get sharper and sharper,

until the prior would become irrelevant and the posterior would eventually collapse

to a single point and we certainly do not want to arti�cially induce that.

The posterior would eventually collapse to a single point and we certainly do not

want that.

EP reinterprets ADF as �rst approximating each observation term fi with some
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f̃i and them combining these approximations analytically to obtain the posterior,

instead of approximating the posterior itself to include fi.

First, we initialise the compatibility functions f̃i, generally f̃i = 1, and compute

the posterior as their product. Then, iteratively until convergence, we choose a

compatibility function f̃i, and remove it from the current approximation to the

posterior, computing the unnormalised cavity distribution

q−i(Z) = qi(Z)/f̃i(Z), (2.35)

the tilted distribution qtilt and its normalisation constant Ki

qtilt =
q−i(Z)fi(Z)

Ki

, (2.36)

Ki =

∫
q−i(Z)fi(Z)dZ, (2.37)

such that

qnew(Z) = argmin
q

DKL

(
qtilt(Z)‖q(Z)

)
. (2.38)

Since the compatibility functions belong to the exponential family, dividing and

multiplying them amounts to subtracting and summing their natural parameters η

so these operations are computationally e�cient. Likewise, the KL minimisation

is done by matching the moments of the new distribution qnew(Z) with the tilted

distribution according to (2.31), as in Section 2.2.2.

From this point, evaluation of the new updated factor is also simple

f̃i(Z) = Ki
qnew(Z)

q\i(Z)
. (2.39)

Broadly speaking, each iteration consists of re�ning the approximation of the f̃i(Z)

by substituting its contribution by that of true factor fi(Z), and �nding the qnew

that minimises the KL. Even though EP approximates one factor at a time and the

resulting q is a valid probability distribution, partial products thereof not necessarily

represent a valid distribution.

Naturally, the enhancement provisioned by EP has costs. Besides being unsuited

to online learning, di�erently from ADF, it has to keep each compatibility function

stored in memory because it is needed to update the approximation. So, memory

consumption grows linearly with the number of factors of the distribution. This may

be inadequate if data sets are too large as it would be impractical or even impossible

to maintain all factor in memory during optimisation.

While each step in VI is guaranteed not to hamper the cost function, namely
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to decrease the ELBO, the described EP algorithm has no convergence guarantees

and iterations may indeed increase the associated energy function instead of de-

creasing it [40, p. 510]. Nonetheless, stable EP �xed points are local minima of the

optimisation problem [39].

Power EP

Not every distribution can be factored into simple terms and, hence, integrating such

factors is not a simple task either. Consequently, EP fails to be computationally

e�cient. Power EP [41] addresses this shortcoming by cleverly raising the factors fi
to a power which cancels complicating exponents present in the true factors, thus

making them easier to compute. The algorithm is essentially the same, except we

perform it on the �fractional factors�

f ′i(Z) = fi(Z)1/ni , (2.40)

f̃ ′i(Z) = f̃i(Z)1/ni . (2.41)

For ni > 1 this amounts to arti�cially splitting the factors in 1/ni distinct but equal

terms during the optimisation, making the contribution of each term to the posterior

weaker.

If we replace the divergence that the EP minimises, DKL (p‖q), by

Dα(p‖q) =
4

1− α2

(
1−

∫
p(x)(1+α)/2q(x)(1−α)/2

)
dx, (2.42)

where −∞ < α < ∞ is a continuous parameter, the resulting algorithm we obtain

will have the same �xed points as the Power EP. Therefore, we can think of Power

EP as minimising the α-divergence Dα with α corresponding to a particular choice

of 1/ni, namely α = 2(1/ni)− 1.

The forward and reverse KL divergences are members of the α-family in (2.42)

for which α → 1 and α → −1, respectively. Values α 6 −1 induce a zero-forcing

behaviour, setting q(x) = 0 for any values of x for which p(x) = 0. Conversely,

α > 1 is zero-avoiding, imposing q > 0 for regions where p > 0, and typically q

stretches to cover all p.

Actually, one way to understand many message-passing algorithms, including

those we discussed, is simply as the same variational framework but with the min-

imisation of di�erent energy functions corresponding to distinct choices for the value

of α in (2.42) [42].
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α = −∞ α = −1 α = 0 α = 1 α =∞

Figure 2.10: The α-divergence family. For α → −1 it becomes the reverse KL
DKL(q‖p), while for α→ 1 it is the forward KL DKL(p‖q).

2.2.4 Stochastic Variational Inference

As the name suggests, Stochastic Variational Inference (SVI) relies on stochastic

approximation [43], that is, it computes noisy estimates of the gradient (ordinarily

called as mini-batch statistics) to optimize the objective function. This approach is

ubiquitous on modern ML since it is much faster than assessing a massive data set,

which is commonplace nowadays. Thus, we shall stumble upon this idea on later

chapters.

The major requirements for the approximation to be valid are that the gradient

estimator should be unbiased and that the step size sequence {αi | i ∈ N} (also

known to Deep Learning practitioners as learning rate) that nudges the parameters

towards the optimal should be annealed so that

∞∑
i=0

αi =∞ ,
∞∑
i=0

α2
i <∞. (2.43)

Intuitively, the �rst condition relates to the exploration capacity so the algorithm

may �nd good solutions no matter where it is initialized, whereas the second guar-

antees its energy is bounded so that it can converge to the solution.

SVI is a stochastic optimisation algorithm for MFVI. Instead of computing the

expectation step in (2.19) for all N data points (at every iteration), we do it for a

uniformly sampled (with replacement) subset of size n, possibly a single data point.

From these new variational parameters, we compute the maximisation step (or the

expectation of the global variational parameters) as though we observed the data

points N/n times, and update the estimate as the weighted average of the previous

estimate and the subset optimal according to (2.43).

Theoretically, this process should go on forever with increasingly smaller step

sizes according to the constraints stated above, but in practice it ends when it

reaches a stopping criteria, which indicates the ELBO has converged.

In the original paper, the authors propose noisy estimates of the natural gradient

of the variational objective [44]. Essentially, the natural gradient is the inverse

of the Fisher information matrix multiplied by the standard gradient. For more
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information see Appendix A.2. There is actually much more to this work, but a

lengthy discussion is not our focus.

2.2.5 Further Practical Extensions

In this section, we brie�y mention some modern extensions of the approximate

inference algorithms we have seen so far. While the �rst two address computability

and tractability issues, the last aims at usability, making VI more accessible.

Black Box Variational Inference

SVI, Section 2.2.4, computes the distribution updates in closed form, which requires

model-speci�c knowledge and implementation, as well as the existence of closed-

form analytical formulae for the (natural) gradient of the ELBO and its actual

computation. Instead, Black Box Variational Inference (BBVI) [11] uses the score

function estimator of Section A.1 to compute the (regular) gradient of the ELBO.

This leads to

∇φL(φ) = Eq [(∇φ log q(z|φ))(log p(x, z)− log q(z|φ))] , (2.44)

that we approximate by Monte Carlo integration and employ to perform stochastic

optimisation.

The sole assumption of the gradient estimator in (2.44) about the model is the

feasibility of computing the log of the joint p(x, zs). The sampling method and the

gradient of the log both rely on the variational distribution q. Thus, we can derive

them only once for each approximating family q and reuse them for di�erent models

p(x, zs). Hence the name black box: we just specify the generative model p(x, zs)

and are already able to perform VI on it. Actually p(x, zs) needs not even to be

normalised since the log of the normalisation constant does not contribute to the

gradient in (2.44).

Nevertheless, as noted in Appendix A.1, the variance of the estimator may be too

high, forcing the step sizes to be too small for the algorithm to be practical. There-

fore, the authors in [11] further consider variance reduction methods that preserve

the black box character of BBVI. Though the framework applies for general varia-

tional families, they consider fully factorised posterior distributions when deriving

the variance reduction methods.
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Gradient estimators

In inference problems, as well as in other domains, we frequently encounter the com-

putation of ∇φ Eq(z;φ) [f(z; θ)]. Generally, we cannot compute this gradient directly

and need obtain appropriate practical estimators.

If q(z;φ) is a continuous function of φ, we can use the score-function estima-

tor [45]

∇φ Eq(z;φ) [f(z; θ)] = Eq(z;φ) [f(z; θ)∇φ log q(z;φ)] . (2.45)

Alternatively, if we can express the random variable z ∼ q(z, φ) as an invertible

deterministic transformation g(·;φ) of a base random variable ε ∼ p(ε), we may use

the pathwise derivative estimator [46]

∇φ Eq(z;φ) [f(z; θ)] = Ep(ε) [∇φf(g(ε;φ); θ)] . (2.46)

While both estimators yield unbiased estimates, the score function estimator

generally has higher variance.

Black Box α Minimisation

Black Box α Minimisation [47] (BB-α) optimises an approximation of the power

EP energy function [42, 48]. Instead of considering i di�erent local compatibility

functions f̃i, it ties them together so that f̃i = f̃ . It is as if we were using an

average factor approximation to approximate the average e�ect of the original fi [47].

Restricting these factors to belong to the exponential family, this simpli�cation

amounts to tying their natural parameters. As a consequence, BB-α no longer

needs to store an approximating site per likelihood factor, which leads to signi�cant

memory savings in large data sets. This results in �xed points that di�ers from

power EP, though they are equal in the limit of in�nite data.

BB-α dispenses with the need for double-loop algorithms to directly minimise

the energy and employs gradient-descent methods for this matter. This is in con-

trast with the iterative update scheme of Section 2.2.3. As other modern methods

designed for large scale learning, it employs stochastic optimisation to avoid cycling

through the whole data set. Besides, it estimates the expectation over the approxi-

mating distribution q present in the energy function by Monte Carlo sampling.

Di�erently from BBVI [11], seen in Section 2.2.5, this method uses the repa-

rameterisation trick to estimate the gradient of said expectation. Thus, it requires

in addition to the likelihood function, its gradients. Still, they can be readily ob-

tained with automatic di�erentiation if the likelihood is analytically de�ned and
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di�erentiable.

As observed in Section 2.2.3, the parameter α in (2.42) controls the divergence

function. Hence, the method is able to interpolate between VI (α → −1) and an

algorithm similar to the expectation propagation (EP) (α → 1). Interestingly, the

authors [47] claim to usually obtain the best results setting α = 0, halfway through

VI and EP. This value corresponds to the Hellinger distance, the sole member of the

α-family that is symmetric.

Automatic Di�erentiation Variational Inference

Automatic Di�erentiation Variational Inference (ADVI) o�ers a recipe for automat-

ing the computations involved in variational inference [49]. The user then only

provides the desired probabilistic model and the data set, the framework occupies

itself of all the remaining blocks of the pipeline. There is no need to derive the

objective function nor its derivatives for each speci�c combination of approximating

family and model.

First, it applies a transformation T : Z 7→ Ξ that maps the support of the

latent variables Z to all real coordinate space, such that the model's joint distri-

bution p(X ,Z) becomes p(X ,Ξ ). It then approximates p(X ,Ξ ) with a Gaussian

distribution, though other variational approximating families are possible. Even the

simple Gaussian case induces non-Gaussian distributions in the original latent space

Z = T−1(Ξ ). As usual, the ELBO (2.14) involves an intractable expectation and

ADVI resorts to the reparameterisation trick (Appendix A.1) to convert the vari-

ational distribution to a deterministic function of the standard Gaussian N (0, 1),

thus allowing automatic di�erentiation. Finally, it estimates the expectation over

the latent space by Monte Carlo integration, producing noisy unbiased gradients of

the ELBO and performing stochastic optimisation [43]. Since ADVI employs the

pathwise gradient estimator, it works only for di�erentiable models. Besides having

continuous latent variables, the derivative of the log joint probability ∇z log p(X ,Z)

must exist. On the other hand, BBVI [11] computes the derivative of the variational

approximation q and is, thus, more general, though it can su�er from high variance.

Although the performance of the resulting ADVI model may not be as good as if the

whole process were manually implemented, it works well for a large class of practical

models on modern data sets [49]. Therefore, it allows rapid prototyping of new ideas

and corrections of complex models.
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Chapter 3

(Scalable) Bayesian Neural Networks

This chapter presents the ideas, derivations, advantages, and issues of 4 di�erent

algorithms for BNNs:

� Bayes By Backpropagation [13];

� Probabilistic Backpropagation [14];

� MC-Dropout [15];

� Variation Adam (Vadam) [16].

Each method approaches the problem in a considerably di�erent manner. Still,

they all share one trait in common: they all consider unstructured approximations

to the posterior. With exception of MC-Dropout [15], which assumes dependency

among groups of weights, but in a rather non-well-de�ned manner as we shall verify,

all others rely on mean-�eld approximations.

By the end of this chapter, the reader should:

� Know the attributes a BNN should possess.

� Learn metrics to assess such characteristics.

� Discern the bene�ts and issues of each method.

� Understand the di�erences among them.

� Be capable of choosing the one that best suits oneself's needs.

� Know where to search if in need of structured BNNs.
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3.1 Why BNNs?

Recently, Bayesian Neural Networks (BNNs) have been object of renewed interest

within the research community. As one may imagine by now, BNNs are essentially

standard deterministic NNs enhanced with Bayesian methods. Instead of learning

the optimal weights W∗, they infer the posterior weight distribution p(W |D) given

the data set D, whose maximum correspond to the W∗ point in weight-space, i.e.,

Figure 3.1.

First introduced in [50], BNNs saw a great advance during the following years

(the 1990's) [12, 51�53]. However, due to its computational complexity, they ended

up relegated for a decade. Standard NNs had not had success for a long time, only

picking up momentum in 2006 [54] and e�ectively gaining attention in 2012 after

a deep learning method [4] won an important image classi�cation competition [55]

by a large margin. It certainly would not go di�erently for BNNs, which faced an

even more di�cult scenario. Over the last few years, new practical approaches to

BNNs [8, 56] allied to the security �ag raised by adversarial attacks [57] and the

cry for uncertainty measures quintessential for some practical applications sparked

interest in Bayesian methods for deep learning.

The main reason for the late acceptance of BNNs (which is still to come) is

that its computational complexity impedes scalability. Modern models and data

sets have, respectively, millions of parameters and instances, so nothing but very

simplistic algorithms can handle well such large-scale regime. A clear example is

the use of backpropagation and �rst-order optimisation methods (though that does

not mean they are not ingenious). Consequently, latest works in this �eld focus

on scalable and (most of the time) practical approaches that can meet the current

demand and are still comprehensible, or at least usable, by practitioners.

For those still not convinced about the bene�ts of being Bayesian, we quickly

review the state of a�airs for modern deep learning.

Even though backpropagation and maximum likelihood optimisation allow �t-

w∗1 w∗2

Figure 3.1: MaximiserW∗1 of posterior distribution and runner-upW∗2 corresponding
to the maximum of another mode
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ting large nonlinear models on massive amounts of data and �nd success on several

tasks, they are sensitive to over�tting, specially if we try such models on not so large

data sets. Employing common regularization techniques (as `1 and `2) is equivalent

to maximum a posteriori optimisation (with Laplace and Gaussian priors, respec-

tively), and in spite of alleviating over�tting, it is far from solving the problem.

What is more, it makes the solution parameterisation dependent, that is, di�erent

parameterisations may lead to di�erent optimal points. Then, one questions which

parameterisation leads to the best possible solution and how sensitive it is. Even

when resorting to invariant methods, we still have no measure of con�dence and

though bootstrapping alleviates the issue, it does not resolve the underlying prob-

lem. The Bayesian framework solves all this at once by allowing models to represent

not only single point estimates but complete distributions over all possible parame-

ters' values. It o�ers a uni�ed framework for model building, inference, prediction,

and decision-making. Moreover, it provides a straightforward way to score models

(through the model evidence) and select among them.

There is no free lunch, and as already hinted above, BNNs have challenging in-

ference. They rely on conditioning and marginalisation, so the main operation is

integration. Thus, high-dimensional and/or complex models impose a real barrier

to its deployment. We discuss approaches that mitigate this issue by employing

distributional approximations (Section 2.2) to render computations amenable. Par-

ticularly, we focus on those that do not explicitly impose structure on weights, and

instead assume them independent (mean-�eld approximation, Section 2.2.1).

For ease of notation, we shall use w as the random variable instead of z. This

change of notation is not only to keep similarity to the literature in BNNs, but

also to remind our readers that the distributions are over the model's weights (the

parameters) and not hidden units.

3.2 Do They Really Know How Much They Do Not

Know?

Bayesian and, more generally, probabilistic models output some measure of uncer-

tainty in which we trust to make decisions. Can we really believe in these models?

Do they re�ect, approximately at least, the reality? As an example of uselessness,

just imagine the case where the model predicts constant or random level of un-

certainty. Having a reliable measure of con�dence intuitively means the model is

correct about 80% of the time if it assigns an 80% probability of being correct or,

in a regression setting, the true value falling 80% of the time in an 80% credible

interval around the prediction. This property is what we call calibration [58].
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Figure 3.2: Example of calibration plot. The gray dashed line is the identity y = x
and the blue curve the calibration curve of an imaginary model. Ideally, we want the
blue and gray line to be superposed, indicating a perfectly well calibrated model.

A common diagnostic tool for calibration is the reliability (or calibration) plot,

shown in Figure 3.2. Ideally, the empirical and the predictive cumulative distribu-

tion functions should match, so plotting one against the other should give a graph as

close as possible to the identity y = x. Namely, for each credible interval correspond-

ing to a probability threshold pi, we plot the observed number of times (empirical

frequency) the prediction falls within the interval. We can measure the calibration

error numerically by computing the (mean) squared error between the predicted and

empirical frequencies for m di�erent con�dence intervals.

Of course calibration is not enough, forecasts also need to be sharp [58]. Intu-

itively, credible intervals should be as tight and probabilities as binary as possible in

regression and classi�cation, respectively. A model that always predicts the mean

value and adjusts its con�dence accordingly is calibrated by de�nition, but not use-

ful. There are various ways to measure spread, variance being one of them.

3.3 Bayes by Backprop

The �rst method we review has a quite long history preceding it. Bayes by Back-

prop [13], or BBB for short, continues the work of [8] on practical VI for NNs, who in

turn extends on [53]. Likewise, we separate them and build the section one method

at a time.
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3.3.1 Minimising the Description Length

In [53], Hinton et al. derive from an Information Theory perspective, using the Min-

imum Description Length principle, a diagonal Gaussian variational approximation

to the posterior weight distribution, i.e., no correlation among weights, so they can

be thought of as being independent univariate Gaussians. This was the �rst time VI

was proposed for neural networks. The method requires deriving analytical solutions

to the integrals over the variational posteriors, which are not only di�cult but gen-

erally unavailable for complex systems (in [53], the authors use a single hidden-layer

network with linear outputs).

3.3.2 Practical VI

Fast-forward 18 years to 2011 and Graves [8] drops the analytical solutions in favor of

approximations with numerical integration. The essence of the approach is choosing

a variational posterior q(W ;Ψ) from which probable samples can be drawn e�ciently

so it is amenable to numerical methods, namely Monte Carlo integration. Again

focusing on a diagonal Gaussian posterior, each network weight wi requires separate

mean µi and variance σ2
i , so that Ψi = {µi, σ2

i } and the set of all parameters is

Ψ = {µ,σ2}. We express the approximating variational posterior distribution by

q(W ;Ψ) =
∏
i

q(wi;Ψi) =
∏
i

N (wi;µi, σ
2
i ). (3.1)

Recall that the variational objective to minimise is the negative ELBO, already

de�ned in (2.15). We rewrite it here

L(q) = −ELBO(q)

= −Eq(W;Ψ) [log p(D |W)] +DKL (q(W ;Ψ)‖p(W)) (3.2)

= Ldata + Lprior,

and make explicit the presence of two cost functions of di�erent nature. The �rst,

Ldata, which we refer to as the likelihood cost, is data-dependent and quanti�es

the amount of error the model commits. The second, Lprior, is prior-dependent

and we call it the complexity cost. While the former drives the model towards

best explaining the data, the latter acts as a regulariser pushing towards the prior

p(W), as already explained in Section 2.2.1. For practicality, we also call LN =

− log p(D |W).

The diagonal Gaussian posterior (3.1) entails a non-closed form for Ldata and its

derivatives wrt µi and σi. Graves [8] resorts to MC integration, i.e., drawing di�erent

weights Wt from the posterior q(W ;Ψ), performing the desired computation for
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each sample and averaging the results. For ∇σiLdata, one further needs second-order
derivatives wrt the weights, ∇2

wi
Ldata, and following [8] we resort to yet another

approximation, as we show next.

In order to compute the derivatives, Graves [8] uses the fact that the expecta-

tions are over the Gaussian distribution [59] and employs the identities (proven in

Appendix B.2)

∂ Eq [f(W)]

∂µi
= Eq

[
∂f(W)

∂wi

]
(3.3)

∂ Eq [f(W)]

∂σ2
i

=
1

2
Eq
[
∂2f(W)

∂w2
i

]
. (3.4)

where f in this case is LN and its expected value Ldata.
These identities are useful because they allow for unbiased gradient estimates and

have low variance when doing Monte Carlo, but requires second order derivatives.

The mean-�eld assumption saves us from computing the full Hessian ∇2
WLdata, but

its diagonal is still necessary. Still, it is costly and we seek to approximate it.

Besides the MC sampling to estimate the expectations, we use the Gen-

eralised Gauss-Newton (GGN) approximation to the Hessian ∇2
Wf(W) ≈

∇Wf(W)∇Wf(W)T (further details in Appendix A.3) and end up with

∂ Eq [f(W)]

∂σ2
i

≈ 1

2
Eq

[(
∂f(W)

∂wi

)2
]
. (3.5)

This approximation spares us from second order derivatives, but introduces bias into

the estimation of the variance gradient, that is, its expected value no longer is the

true gradient.

Finally, Graves [8] considers a Gaussian prior N (W ;µp1, σ
2
pI) so that the

Kullback-Leibler divergence in Lprior has the closed-form solution

Lprior =
W∑
i

log
σp
σi

+
1

2σ2
p

[
(µi − µp)2 + σ2

i − σ2
p

]
, (3.6)

whose derivatives wrt σi and µi are trivial to calculate.

Putting everything together we have

∂L
∂µi
≈ µi − µp

σ2
p

+
∑
X∈D

1

T

T∑
k=1

∂ log p(X |W(k))

∂wi
(3.7)

∂L
∂σ2

i

≈ 1

2

(
1

σ2
p

− 1

σ2
i

)
+
∑
X∈D

1

T

T∑
k=1

[
∂ log p(X |W(k))

∂wi

]2
, (3.8)

37



Yn

Xn

σ2
n

wk

µkσ2
k

µp

σ2
p

|W| N

Figure 3.3: PGM representation of the model underlying the practical VI method.
The observed output Yn is a noisy observation of the model output for the input Xn
with the variance noise determined by the �xed parameter σ2

n. The constant values
{µp, σ2

p} govern the Gaussian prior distributions over the weights, while {µk, σ2
k}

their posteriors.

where {wi}Ti=0 are the MC samples, X are the data points, i.e., input, tar-

get pairs, and we optimise the objective (3.2) with a gradient descent method

Ψm+1 = Ψm−k ∂L
∂Ψm

. The Probabilistic Graphical Model (PGM) of the BNN under-

lying the method outlined is depicted in Figure 3.3.

Observing (3.8) we note that this parameterisation may cause σi to assume

negative values, what is nonsense given that variances can only be non-negative.

Thus, external constraints must be imposed to the optimisation.

When using mini-batch optimisation such that D = {Dj | 1 ≤ j ≤ M}, it is
important to scale the complexity cost Lprior in the objective accordingly. The

equation (3.6) accounts for the whole data set, so naively computing the loss Lj
in (3.2) M times, will lead to accounting M times for the complexity loss Lprior
instead of one. The Ljprior terms should then be weighted so that Lprior = BjLjprior .
Although, uniformly distributed weights Bj = 1/M seems a natural choice, there

are di�erent ways of distributing them as long as
∑M

j=1Bj = 1. In [13], the authors

propose Bj = 2M−j/(2M − 1). During the �rst iterations, the complexity cost

dominates, and at later mini-batches, after more data is seen, the data likelihood

cost Ljdata progressively gains more importance.

We summarize the resulting algorithm for optimising a BNN in Algorithm 1.

The case we illustrate is for a diagonal Gaussian variational posterior with param-

eters Ψ = {µ,σ2} and centred Gaussian prior with diagonal covariance matrix

σ2
pI, trained with a mini-batch of size 1 and uniformly distributed weighting of the

complexity term Lprior across the mini-batches.

3.3.3 Bayes by Backprop

The main contribution from [13] certainly is not the complexity cost weighting

scheme for the mini-batches. Actually, it is an alternative reparameterisation that

gives unbiased gradient estimators, and is not restricted to Gaussian distributions
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Algorithm 1: Practical VI
1: while not converged do
2: w← µ+ σ � ε, where ε ∼ N (0, I)
3: Randomly sample a data example Xi
4: g← −∇ log p(Xi|w)
5: ∆µ← (µ− µp1)/(Nσ2

p) + g

6: ∆σ2 ← (σ2 − σ2
p1)/

(
Nσ2

pσ
2
)

+ (g � g)
7: µ← µ− k∆µ
8: σ2 ← σ2 − k∆σ2

9: end while

nor needs to employ the GGN approximation to avoid second-order derivatives,

which was the reason behind the introduction of bias. Instead of using the identi-

ties (3.3,3.4), it relies on the reparameterisation trick (Section A.1) and considers

a the variational posterior q(w;Ψ) and a cost function h(w;Ψ) dependent on the

parameters Ψ (the KL term in the loss also directly on Ψ):

∇Ψ Eq(w;Ψ) [h(w;Ψ)] = Ep(ε)
[
∂h(w;Ψ)

∂w

∂w

∂Ψ
+
∂h(w;Ψ)

∂Ψ

]
, (3.9)

where, as before, w = g(ε;Ψ), with g(·;Ψ) an smooth invertible deterministic trans-

formation, and ε a base random variable. We recall once more that in our case

f = log p(D |W), Ψ = {µ,σ2} and q(w;Ψ) is the product of independent uni-

variate Gaussians (3.1), though this approach would still work for non-Gaussian

distributions that can be recast as a transformation g(ε; ·) of base distribution p(ε).
A convenient choice is g(ε;Ψ) = µ+Σε where ε ∼ N (0, I), which boils down to

µ+σ�ε for the uncorrelated Gaussian case, i.e., diagonal covariance matrix Σ. Also,

instead of imposing explicit constraints to avoid the σi assuming negative values,

the authors [13] suggest the simple pointwise parameterisation σi = log(1 + exp ρi),

known as softplus transform. Applying (3.9) to our choice of g(ε;Ψ) gives

∂L
∂µi

=
∂f(W ,Ψ)

∂wi
+
∂f(W ,Ψ)

∂µi
(3.10)

∂L
∂ρi

=
∂f(W ,Ψ)

∂wi

ε

1 + exp (−ρi)
+
∂f(W ,Ψ)

∂ρi
(3.11)

This apparently simple modi�cation allows the direct computation of the gra-

dients wrt W and Ψ in the computational graph just as any other deterministic

node, illustrated in Figure 3.4. Automatic di�erentiation tools available in common

frameworks handle this transparently, it constructs the graph from the de�nition of

the forward pass of the model and the backward pass is automatically con�gured

just as with deterministic networks. The only implementation di�erence being the
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= g(ε ; Ψ )
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ε ∼ N (ε ; 0, 1)
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∂w

∂Ψ

w

Ψ

Figure 3.4: Computational graph after the reparameterisation trick. The blue
round node is a random node, while the gray rhombus nodes are deterministic.
Black arrows represent the forward pass of the model and the red ones (part of) the
backpropagation path. The black dashed line indicates the path for the computation
of the the KL divergence, that takes the distribution parameters Ψ as input. Note
that thanks to the reparameterisation trick the node w is no longer random and so
we can compute its gradient as usual.

reparameterisation w = g(ε;Ψ) in the network de�nition and specifying Ψ = {µ,ρ}
as the learnable parameters.

Additionally, the authors [13] propose computing the KL numerically with the

samples drawn from the posterior, instead of analytically. The advantage of doing as

such is allowing many more combinations of prior and variational posterior families.

Even though we now have one more approximation in the system, more expressive

priors can be used, i.e., non-Gaussian, which potentially leads to better results. In

light of this change, we drop (3.6) so (3.2) actually writes

L ≈
T∑
i=1

− log p(D |W(i)) + log q(W(i);Ψ)− log p(W(i)), (3.12)

whereW(i) denotes the i-th out of T Monte Carlo samples drawn from the variational

posterior q(W ;Ψ).

The �nal graphical model for BBB is similar to Figure 3.3, the di�erence residing

in the set of constant parameters that determine the prior distribution. While in

Figure 3.3 it is {µp, σ2p}, which de�nes univariate Gaussian priors, BBB handles

other non-conjugate priors, such as a mixture of Gaussians. We summarize the

resulting algorithm for optimising a BNN in Algorithm 2. The case we illustrate is for

a diagonal Gaussian variational posterior with parameters Ψ = {µ,ρ}, trained with
a mini-batch of size 1 with non-uniformly distributed weighting of the complexity

term Lprior across the mini-batches.
Even though the gradient estimators are now unbiased, the MC predictive log-

likelihood estimator still is biased because a non-linear function, i.e., the log, warps
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Algorithm 2: Bayes by Backprop
1: while not converged do
2: w← µ+ log(1 + exp(ρ))� ε, where ε ∼ N (0, I)
3: Randomly sample a data example Xi
4: i← (i+ 1) mod N
5: πi ← 2N−i/2N−1

6: for s ∈ {w,µ,ρ} do
7: gs ← −∇s log p(Xi|w) + πi (∇s log q(w;Ψ)−∇s log p(w))
8: end for
9: ∆µ← gw + gµ

10: ∆ρ← gw � ε/(1 + exp(−ρ)) + gρ
11: µ← µ− k∆µ
12: ρ← ρ− k∆ρ
13: end while

the expected value. This will in general be true for all MC estimators and can be

lessened by increasing the number of samples.

3.4 Probabilistic Backprop

Probabilistic Backpropagation (PBP) [14] solves the same problem as BBB but in a

rather very di�erent manner. While the algorithm of the previous section relies on

optimising the ELBO for the VI equation, PBP employs Assumend Density Filter-

ing (ADF) and Expectation Propagation (EP), discussed in Sections 2.2.2 and 2.2.3,

respectively. The result is a parameter-free (not even learning rate) fully Bayesian

method that has forward and backward phases as in common backpropagation,

but instead of performing gradient descent in the parameter space, it incorporates

infomation about the new data points into the posterior approximation at each iter-

ation. Although, another EP-based method had been proposed before [9], it focused

on binary weights and its continuous extension performed poorly, not estimating the

posterior variance.

In the year following its publication, other researchers [60] developed a variant

for binary and multi-class classi�cation problems. In [36], the authors adopt the

PBP framework to propose an online algorithm that models the correlations within

the weights of the network with a matrix variate Gaussian distribution. However,

here we shall focus solely on its original formulation for regression tasks since this

already is enough work. PBP does not use the usual reverse mode automatic dif-

ferentiation and requires non-trivial custom implementations, which is its major

drawback and the reason why it has not seen widespread adoption. We start this

section anticipating the reader that this is the most technically di�cult section in

the dissertation.
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Figure 3.5: PGM representation of the PBP model. The observed output Yn is a
noisy observation of the model output ZnL for the input Xn. The hyper-parameter
λ govern the precision of the Gaussian prior distributions over the weights, while γ
the precision noise of Gaussian observation model.

Similar to the previous method, PBP assumes independence among the network

weights and the existence of additive Gaussian noise N (ε | 0, γ−1) with precision γ

corrupting the observations. Although, specifying the network architecture is not

necessary for the other methods in this chapter, since they correctly function with

any directed acyclic graph with no or almost none adaptations, the one at hand

specialises in fully-connected layers with Recti�ed Linear Units (ReLU) [61], that

is, max(0, x), as activation function. While modifying the model to conform to a

di�erent non-linearity is possible, it requires painstaking mathematical derivations

as we glance upon in this section.

The graphical model for PBP is illustrated in Figure 3.5 and its full posterior

distribution over the parameters is given by

p(W , γ, λ) =
p(Y |W ,X , γ)p(W |λ)p(λ)p(γ)

p(Y |X )
(3.13)

∝ p(Y |W ,X , γ)p(W |λ)p(λ)p(γ),

where p(Y |X ) is the model evidence, p(Y |W ,X , γ) the observation model de�ning

the likelihood factors, p(W |λ) the prior distribution over the weights composed of

univariate Gaussians with precision λ, that is,

p(W |λ) =
∏
w∈W

N (w | 0, λ−1), (3.14)

and p(λ) and p(γ) are hyper-prior distributions over the precision hyper-parameters

of the likelihood and weight prior respectively. We specify Gamma distributions

Ga(z |α, β), given by

p(z |α, β) =
βα

Γ(α)
zα−1 exp(−βz), (3.15)

for both hyper-priors. The Gamma is the conjugate prior for the Gaussian distri-
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bution with known mean and unknown precision parameter. Conjugate priors are

frequently used because they lead to closed-form posteriors, avoiding the possible

need to do numerical integration. Thus, it is a matter of mathematical convenience.

We now demonstrate this fact for this particular case:

p(W |λ, αλ,0, βλ,0) ∝ p(λ |αλ,0, βλ,0)
∏
w∈W

N (w | 0, λ−1)

∝
[
β
αλ,0
λ,0

Γ(αλ,0)
λαλ,0−1 exp (−βλ,0λ)

](
λ

2π

) |W|
2

exp

(
−λ

2

∑
w∈W

w2

)

∝ λ(αλ,0+ |W|2 )−1 exp

[
−λ
(
βλ,0 +

1

2

∑
w∈W

w2

)]

= Ga

(
λ

∣∣∣∣∣αλ,0 +
|W|

2
, βλ,0 +

1

2

∑
w∈W

w2

)
, (3.16)

where in the last equality we conclude it is a Gamma by noticing the same functional

form of (3.15) in the formula for the posterior.

From (3.16) we further gain insight on the in�uence of the parameters αλ,0 and

βλ,0 on the posterior. It is as if we had already collected 2αλ,0 observations with

sample variance βλ,0/αλ,0. We thus choose these parameters such that they impose

a weak prior, not a�ecting the posterior distribution. Exactly the same reasoning is

valid for the hyper-prior on γ.

Another distribution that we will shortly resort to arises from the following

posterior probability over a single weight variable

p(w | βλ,0, αλ,0) =

∫ ∞
0

p(w |λ)p(λ | βλ,0, αλ,0)dλ

=

∫ ∞
0

[
β
αλ,0
λ,0

Γ(αλ,0)
λαλ,0−1 exp (−λβλ,0)

][(
λ

2π

) 1
2

exp

(
−λw

2

2

)]
dλ

= (2π)−
1
2

β
αλ,0
λ,0

Γ(αλ,0)

∫ ∞
0

λ(αλ,0+
1
2
)−1 exp

[
−λ
(
βλ,0 +

w2

2

)]
dλ

= (2π)−
1
2

Γ
(
αλ,0 + 1

2

)
Γ(αλ,0)

β
αλ,0
λ,0

(
βλ,0 +

w2

2

)−(αλ,0+ 1
2)

×
∫ ∞
0

Ga
(
λ

∣∣∣∣αλ,0 +
1

2
, βλ,0 +

w2

2

)
dλ

= (2π)−
1
2

Γ (αλ,0 + 1/2)

Γ(αλ,0)
β
αλ,0
λ,0

(
βλ,0 +

w2

2

)−(αλ,0+ 1
2)

=
Γ (αλ,0 + 1/2)

Γ(αλ,0)
(2πβλ)

− 1
2

(
1 +

w2

2βλ,0

)−(αλ,0+ 1
2)
, (3.17)

and if we compare it to the location-scale family for the Student's t-distribution
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Figure 3.6: PDF of the standard Student's t-distribution Tν(x) for di�erent values
of the parameter ν. The higher the value of ν, the closer (in the KL divergence
sense) the distribution becomes to the Gaussian distribution. The standard family
member has the location µ and inverse scale λ parameters of (3.18) equal to 0 and
1, respectively.

(parameterised in terms of the inverse scaling parameter λ)

Tν(x |µ, λ) =
Γ
(
ν+1
2

)
Γ
(
ν
2

) ( λ

πν

) 1
2
(

1 +
λ(x− µ)2

ν

)− ν+1
2

, (3.18)

whose mean and variance are E [X] = µ, and Var(X) = 1
λ

ν
ν−2 , respectively. We con-

clude that p(w | βλ,0, αλ,0) is a Student's t-distribution with T2αλ,0(w | 0,
αλ,0
βλ,0

). whose

standard PDF is shown in Figure 3.6.

PBP uses EP and ADF (Sections 2.2.3 and 2.2.2 respectively) to update the

parameters W , αγ, βγ, αλ and βλ of the approximating distribution

q(W , λ, γ) =

 |W|∏
i=1

N (wi |µi, σ2
i )

Ga (λ |αλ, βλ)Ga (γ |αγ, βγ) , (3.19)

by cycling through the factors in (3.13) and including them one at a time. Thus,

the total number of factors is the number of data points plus the (hyper-)priors, i.e.,

|W| for the weights and 2 for the precisions.

Since EP requires storing the approximate factors to compute the cavity distribu-

tions, it does not scale well with data. Its memory consumption grows linearly with

the data set size. Thus, instead of performing EP updates for the likelihood factors,

PBP repeatedly employs ADF multiple times, that is, instead of going through each

data point only once, it incorporates the same factors N times. Although, computa-

tionally more e�cient, this approach has the risk of underestimating the parameter
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posterior variance. We are arti�cially observing more data, which in the limit of

in�nite data leads to the collapse of the posterior distribution onto the MLE as we

assume the data points are (conditionally) iid. However, this is clearly not the case

when repeating the observations. Thus, PBP should not run for many epochs. The

authors [14] advise fewer than 100 and in our case study (Section ??) we run it

for 40 epochs. Nevertheless, PBP is speci�cally designed for large data sets so this

restriction do not matter much in practice. Yet, it is important to keep it in mind.

The models we analyse here and those employed in the original work have rather

small sizes according to the current standards, i.e., 1 hidden layer with 50 units, so

running EP updates is still feasible. Indeed, it is what the authors [14] propose. In

modern networks, which commonly contain hundreds of thousands of parameters,

EP once again becomes a problem and ADF is the way to go.

The ADF update consists in including the true factor fi(W , λ, γ) into the current

approximation q(W , λ, γ), such that the updated approximation is K−1f(W , λ, γ)×
q(W , λ, γ), where K−1 is a normalisation constant that assures it remains a proper

probability distribution. This step usually causes the distribution to shift and

no longer belong to the desired functional form. Then, to maintain the approx-

imation manageable, we project it back to same the distribution class we had

before the inclusion of the true factor, namely we minimise the KL divergence

DKL (K−1f(W , λ, γ)q(W , λ, γ)‖qnew(W , λ, γ)) w.r.t. W , λ, γ, the parameters of the

new distribution qnew. As already shown in (2.31), this is equivalent to matching

the moments of both distributions, and each update consists of an iterative deter-

ministic procedure so there is no learning rate to modulate the step size as the other

methods we discuss.

At the beginning, we have no information, so unless we have prior domain knowl-

edge we initialise the parameters so that q is e�ectively uniform. This amounts to

setting αλ = αγ = 0, βλ = βγ = 1, and µ = 0, σ2 =∞ for every weight w.

The remainder of the section is split into di�erent subsections explaining how

each type of factor is included into the model.

3.4.1 Incorporating the hyper-priors

The �rst factors to incorporate into the approximation are the priors over γ and

λ. As shown in (3.16), the product of the prior precision Gamma and the Normal

distribution results in a distribution with the same functional form as Gamma. This

is exactly the case for (3.13).

qnew(W , λ, γ) ∝
[
λαλ−1 exp (−λβλ)

] [
λαλ,0−1 exp (−λβλ,0)

]
∝ λ(αλ+αλ,0−1)−1 exp (−λ (βλ,0 + βλ)) . (3.20)
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Thus, including the Gamma prior factors into q amounts to incrementing the values

of the parameters γ and λ by

αγ,new = αγ + αγ,0 − 1 = αγ,0 ,βγ,new = βγ + βγ,0 = βγ,0 , (3.21)

and since there is no approximation, and, hence no loss of information, they need

only to be included once.

3.4.2 Incorporating the priors on the weights

Next, we incorporate the priors over the weights w ∈ W . The unnormalized shifted

distribution after the inclusion of one such factor is q(W , γ, λ)N (wj | 0, λ−1), and
the normalisation constant is

K =

∫
q(W , γ, λ)N (wj | 0, λ−1)dWdγdλ (3.22)

=

∫  |W|∏
i=1

N (wi |µi, σ2
i )

Ga (λ |αλ, βλ)Ga (γ |αγ, βγ)N (wj | 0, λ−1)dWdγdλ

=

∫
N (wj |µj, σ2

j )

[∫
N (wj | 0, λ−1)Ga (λ |αλ, βλ) dλ

]
dwj

=

∫
N (wj |µj, σ2

j )T2αλ(wj | 0, βλ/αλ)dwj, (3.23)

where we have used the result demonstrated in (3.17), that the integral of the prod-

uct of a Gamma and a Gaussian distributions is the t-Student's distribution de�ned

in (3.18). We continue the computation of K by approximating T2αλ(wj | 0, βλ/αλ)
with a Gaussian with same mean and variance, what as we saw in Figure 3.6 is

within reason for high enough ν. Thus, continuing the calculation of K:

K ≈
∫
N (wj |µj, σ2

j )N (wj | 0, βλ/(αλ − 1))dwj

=

∫
N
(
µj

∣∣∣∣ 0, σ2
j +

βλ
αλ − 1

)
N
(
wj

∣∣∣∣ λ(αλ − 1)

βλ+ α− 1

µ

σ2
,
λ(αλ − 1)

βλ+ α− 1

)
dwj

= N
(
µj

∣∣∣∣ 0, σ2
j +

βλ
αλ − 1

)∫
N
(
wj

∣∣∣∣ λ(αλ − 1)

βλ+ α− 1

µ

σ2
,
λ(αλ − 1)

βλ+ α− 1

)
dwj

= N
(
µj

∣∣∣∣ 0, σ2
j +

βλ
αλ − 1

)
, (3.24)

where we resorted to the fact that the product of two Gaussians is also a Gaussian

and is given by

N (w |µ1, σ
2
1)N (w |µ2, σ

2
2) = N (µ1 |µ2, σ

2
1 + σ2

2)N (w |µ, σ2) (3.25)
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with σ2 =
(
σ−21 + σ−22

)−1
and µ = σ2 (µ1σ

2
1 + µ2σ

2
2).

Update equations for αλ and βλ

Updating the posterior approximation means matching its moments with those of

the shifted distribution s = K−1q(W , γ, λ)N (wj | 0, λ−1). However, the su�cient

statistics for λ does not have closed form so we revise its parameters βλ and αλ by

matching only its �rst and second moments, which still produces good results [39].

Let us now derive those update formulas. We start by noting that K in (3.24) is

a function of µj, σ2
j , βλ, and αλ, and make the dependency in the two latter terms

explicit by writing K(βλ, αλ). Additionally, for brevity we denote the integrand in

(3.22) as f(λ)Ga(λ |αλ, βλ) and compute

Eq [λ] =
1

K(βλ, αλ)

∫
λf(λ)Ga(λ |αλ, βλ)dλ

=
1

K(βλ, αλ)

∫
αλ
βλ
f(λ)Ga(λ |αλ + 1, βλ)dλ

=
1

K(βλ, αλ)

[
αλ
βλ
K(αλ + 1, βλ)

]
=
K(αλ + 1, βλ)αλ
K(αλ, βλ)βλ

. (3.26)

Similarly, we obtain for the second moment

Eq
[
λ2
]

=
K(αλ + 2, βλ)αλ (αλ + 1)

K(αλ, βλ)β2
λ

. (3.27)

Recalling the mean and variance formulas for the Gamma distribution (3.15), we

equate them to the above expressions to obtain

αλ,new
βλ,new

=
K(αλ + 1, βλ)αλ
K(βλ, αλ)βλ

(3.28)

αλ,new
β2
λ,new

=
K(αλ + 2, βλ)αλ(αλ + 1)

K(βλ, αλ)β2
−
[
K(αλ + 1, βλ)αλ
K(βλ, αλ)βλ

]2
. (3.29)

Solving the above equations for αλ,new and βλ,new, and abbreviating the normalizing

coe�cients K0
..= K(αλ, βλ), K1

..= K(αλ + 1, βλ), and K2
..= K(αλ + 2, βλ), we

�nally get

αλ,new =
[
K0K2K

−2
1 (αλ + 1)α−1λ − 1

]−1
(3.30)

βλ,new =
[
K2K

−1
1 (αλ + 1)β−1λ −K1K

−1
0 αλβ

−1
λ

]−1
, (3.31)

which are the update equations for the Gamma distribution over the precision pa-
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rameter λ.

Update equations for the µ and σ2

It remains to establish how the mean and variance parameters of a given random

weight change when we include its prior distribution into the posterior. The deriva-

tion in this section closely follows [62]

We �rst note that the shifted distribution can be conveniently written

as s ..= K−1f(wi)N (wi |µi, σ2
i ), where f(wi) comprises of all factors in

q(W , γ, λ)N (wi | 0, γ−1) except the N (wi |µi, σ2
i ), which we make explicit.

For µi, we start from the easily veri�able identity

∇µiN (wi |µi, σ2) = σ−2i (wi − µi)N (wi |µi, σ2), (3.32)

which we rearrange to

wiN (wi |µi, σ2) = µiN (wi |µi, σ2) + σ2∇µN (wi |µi, σ2).

Multiplying on both sides by K−1f(wi) and integrating over wi leads to∫
wiK

−1f(wi)N (wi |µi, σ2)dwi =

∫
µK−1f(wi)N (wi |µi, σ2)dwi

+

∫
σ2K−1f(wi)∇µN (wi |µi, σ2)dwi

Es [wi] = µ+ σ2K−1
[
∇µ

∫
f(wi)N (wi |µi, σ2)dwi

]
= µ+ σ2K−1∇µK

= µ+ σ2∇µ logK. (3.33)

Since the �rst moment for the to-be-updated distribution N (wi |µi, σ2) is µi, the

update formula is

µi,new = µ+ σ2∇µ logK. (3.34)

Through a similar identity for the derivative w.r.t σ2
i :

∇σ2
i
N (wi |µi, σ2) =

σ−2i
2

(
−1 + σ−2i (wi − µi)2

)
N (wi |µi, σ2), (3.35)

and following exactly the same procedure as before for µi, we arrive at Es [w2
i ] =

σ2
i + 2 (σ2

i )
2∇σ2

i
logK. Then, the variance of the shifted distribution is

Var(wi) = Es
[
w2
i

]
− (Es [wi])

2 = σ2
i −

(
σ2
i

)2 [
(∇µ logK)2 − 2∇σ2

i
logK

]
. (3.36)
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From this, we establish the update for the variance of the Normally distributed

weight as

σ2
i,new = σ2

i −
(
σ2
i

)2 [
(∇µ logK)2 − 2∇σ2

i
logK

]
. (3.37)

Although we derived rules for performing ADF, that is, only including the indi-

vidual true factors of the model, without ever removing the approximating factors

to be update, adapting them to EP is simple. The two key di�erences are:

1. Keep track of the parameters for each individual approximating factor;

2. Before the update, remove from the posterior the approximating factor cor-

responding to the true factor that will be incorporated (cavity distribution),

e�ectively this means subtracting their contributions from the parameters of

the posterior.

It remains only to determine which are the approximating factors for the prior

factors N (wi | 0, λ−1). The authors [14] take them to be N (wi | µ̃i, σ̃2
i )Ga(λ | α̃λ, β̃λ)

3.4.3 Incorporating the likelihood factors

In order to incorporate the information coming from a data point, we pass it for-

ward through the network. Assuming the model to be a fully-connected multi-layer

network, at each layer following the input, PBP approximates the distribution of

the resulting activations with a Gaussian distribution with same mean and vari-

ance, such that the input to the next layer is again Gaussian. At the last layer,

we obtain the distribution of the output Yi given Xi, to which we further apply

the observation model, i.e., additive Gaussian noise with precision γ, which gives

us p(Yi | Xi,W , γ) = N (Yi | f(Xi,W), γ−1). The likelihood factor is then included

into the posterior approximation as usual: we shift the posterior by multiplying it

by such factor, compute the �rst and second moments of the resulting distribution,

and update the parameters to obtain these moments.

Note that in the derivation of the update formulas (3.31, 3.30, 3.34, 3.37) we have

not assumed any speci�c format for the factors being included. The same equations

can be used once again for the likelihood factors, the sole change being what the

normalising constant K is. Consequently, in what follows we unveil the expression

for K in this case.

The normalising factor

We consider a network with L layers and Vl units on each layer l, taking in vector-

shaped inputs xi. Thus, the output zl of each layer can be arranged into a vector, and
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the weights between two consecutive layers into a weight matrix Wl with dimensions

Vl × (Vl−1 + 1), where the +1 stems from the inclusion of a bias term. The pre-

activation of a layer l is given by al = Wzl−1/
√
Vl−1 + 1, and for all except the last

layer, this gets transformed according to the non-linear mapping max(a, 0), known

as ReLU [61].

We make the simplifying assumption that the output zL of the network at the

last layer L is distributed as a Gaussian and proceed to compute the normalising

constant K of the associated shifted distribution as

K =

∫
q(W , γ, λ)N (yi | f(Xi,W), γ−1)dWdγdλ

≈
∫
q(W , γ, λ)N (yi | zL, γ−1)N (zL |µzL , σ

2
zL

)dWdzLdγdλ

=

∫
Ga (γ |αγ, βγ)N (yi | zL, γ−1)N (zL |µzL , σ

2
zL

)dzLdγ

=

∫
T2αγ (yi | , zL, βγ/αγ)N (zL |µzL , σ

2
zL

)dzLdγ

≈
∫
N (yi | , zL, βγ/(αγ − 1)N (zL |µzL , σ

2
zL

)dzLdγ

=

∫
N (yi | , zL, βγ/(αγ − 1)N (zL |µzL , σ

2
zL

)dzLdγ

= N (yi |µzL , βγ/(αγ − 1) + σ2
zL

), (3.38)

where we have followed the same steps and performed the same approximations as

in the derivation of (3.24).

Computing the mean µzL and variance σ2
zL

amounts to propagating the input

through the network until the last layer. If we assume that the layer l−1 has output

zL with a diagonal covariance Gaussian distribution with mean and variance µzl−1

and σ2
zl−1

, respectively, we can compute the mean and variance of the pre-activation

zl at the following layer according to

µal = E
[
Wlzl−1/

√
Vl−1 + 1

]
= Mlzl−1/

√
Vl−1 + 1 (3.39)

σ2
al

= Var
(
Wlzl−1/

√
Vl−1 + 1

)
=

1

Vl−1 + 1

[
(E [Wl])

2Var (zl−1) + Var (Wl) (E [zl−1])
2 + Var (Wl)Var (zl−1)

]
=

1

Vl−1 + 1

[
(Ml �Ml)σ

2
zl−1

+ Vl

(
µzl−1

� µzl−1

)
+ Vlσ

2
zl−1

]
, (3.40)

where Ml and Vl are the mean and variance matrices for the weights in Wl, whose

values are determined by the corresponding Gaussian factors of the model.

If the number Vl−1 of inputs to the layer l is large enough and we further assume

the entries of al are independent, we can invoke the Central Limit Theorem and claim
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Figure 3.7: PDF of the recti�ed Gaussian distribution NR(x; 0.5, 12).

the pre-activation al is Normally distributed with the above mean and variance [9].

We are now to consider the e�ect of the non-linear activation function on al.

The max(0, ai,l) causes all probability density spread over R− to concentrate at zero

as Figure 3.7 indicates. The resulting distribution is called recti�ed Gaussian and

has its PDF given by

NR
(
ai,l;µi,l, σ

2
i,l

)
= Φ

(
−µi,l
σi,l

)
δ(ai,l) +

1√
2πσ2

i,l

e
−

(ai,l−µi,l)
2

2σ2
i,l U(ai,l), (3.41)

where µ, σ2 are the mean and variance of the Gaussian prior to recti�cation, Φ(·)
is the CDF of the standard Gaussian at the speci�ed point, δ(·) is Dirac's impulse
function, and U(·) is the unit step function. Its mean and variance are

µzi,l = Φ

(
µai,l
σai,l

)
µai,l + σai,lφ

(
−µai,l
σai,l

)
(3.42)

σ2
ai,l

= m
(
µai,l + σai,lκ

)
Φ

(
−µai,l
σai,l

)
+ Φ

(
µai,l
σai,l

)
σ2
ai,l

(
1− κ

(
κ+

µai,l
σai,l

))
(3.43)

where κ = φ
(
−µai,l
σai,l

)/
Φ
(
µai,l
σai,l

)
, and φ(·) is the PDF of the standard Gaussian at

the speci�ed position.

The output distribution of the corresponding layer is then a Gaussian with entries

determined by the above formulas plus an extra element we append for the bias term,

which has mean 1 and variance 0. Then, �nding the values µzL and σ2
zL

consists in

iteratively computing the equations (3.39, 3.40, 3.42, 3.43) from the �rst until the

last layer for each data point (xi,yi).

We summarize PBP's steps in Algorithm 3, in which we perform ADF updates
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only and condense the forward pass responsible for computing the output distribu-

tion N (Yi | f(Xi,W), γ−1) into a single step.

Algorithm 3: Probabilistic Backprop

1: Initialise parameters αλ, αγ, βλ, βγ, {µj, σ2
j}|W|j=0

2: for s ∈ {λ, γ} do
3: αs ← αs + αs,0 − 1
4: βs ← βs + βs,0
5: end for
6: while not converged do
7: for j = 1 to |W| do
8: for s = 0 to 2 do
9: Ks ← N

(
µj
∣∣ 0, σ2

j + βλ/(αλ − 1 + s)
)

10: end for
11: αλ ←

[
K0K2K

−2
1 (αλ + 1)α−1λ − 1

]−1
12: βλ ←

[
K2K

−1
1 (αλ + 1)β−1λ −K1K

−1
0 αλβ

−1
λ

]−1
13: µj ← µj + σ2∇µ logK0

14: σ2
j ← σ2

j −
(
σ2
j

)2 [(∇µj logK0

)2 − 2∇σ2
j

logK0

]
15: end for
16: for j = 1 to N do
17: µzL , σ

2
zL
← f(Xj,W)

18: for s = 0 to 2 do
19: Ks ← N (yi |µzL , σ

2
zL

) + βγ/(αγ − 1 + s)
20: end for
21: αγ ←

[
K0K2K

−2
1 (αγ + 1)α−1γ − 1

]−1
22: βγ ←

[
K2K

−1
1 (αγ + 1)β−1γ −K1K

−1
0 αγβ

−1
γ

]−1
23: µj ← µj + σ2∇µ logK0

24: σ2
j ← σ2

j −
(
σ2
j

)2 [(∇µj logK0

)2 − 2∇σ2
j

logK0

]
25: end for
26: end while

It is important to note that the authors [14] assume the inputs are normalised,

i.e., zero mean and unit variance. Hence, we need to normalise the data points

before feeding them to the model and then to denormalise its outputs.

3.5 MC Dropout

The Monte Carlo Dropout [15], usually referred to as MC Droupout, stems from

reinterpreting Dropout [63] as doing approximate Bayesian inference. Consequently,

it su�ces to use Droupout both during training and testing to obtain the advantages

of Bayesian inference and model uncertainty measures.
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(a) Standard Neural Network (b) Neural Network after dropout

Figure 3.8: E�ect of dropout on the network.

3.5.1 Dropout

First, we review Dropout [63]. Succinctly, it is a stochastic regularisation technique

to avoid over�tting the data. The basic idea is to corrupt the model's units with

random multiplicative noise while training. Mathematically, it amounts to multi-

plying the input hl of layer l pointwise by a realisation of a random vector ε, such

that ĥl = hl � ε.
In the case of Bernoulli noise, the units are randomly dropped out with probability

1 − p, i.e. their values are set to zero, each iteration, as illustrated in Figure 3.8.

Dropping units causes di�erent subnetworks with considerable less parameters to be

used at each iteration (12 instead of 55 in Figure 3.8). When testing all units are

kept as if an ensemble with all subnetworks was being used for evaluation.

Other works propose other types of noise. For example, in [63, 64], the authors

study corrupting the activations with multiplicative Gaussian noise, and in [65],

independently injecting noise on each weight, instead of on the input. The latter

technique is called DropConnect.

3.5.2 A Bayesian View

Optimising a model with dropout and an approximate Bayesian inference model

leads to similar objective functions with similar stochastic gradient update steps.

So similar that under some conditions they are indeed equivalent [15]. Although we

shall only consider here the Bernoulli Dropout, a similar development is possible for

other types of noise.

Let ut �rst review the cost function of a standard deterministic neural network
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f(·;Θ) with deterministic parameters Θ :

L = Ldata (D, f(·;Θ)) + Lreg(Θ), (3.44)

where the �rst term is data-dependent and measures the model's prediction error,

and the second is a regularisation term to help against over�tting. Considering a

regression task with data points D = {(xi,yi) | 1 6 i 6 N}, a model with parameters
Θ = {Ml | 1 6 l 6 L}, and Lreg as the usual `2-norm with strength factors λM,

(3.44) becomes

L =
1

|D|
∑

(x,y)∈D

1

2
(y − f(x;Θ))2 +

∑
M∈Θ

λM‖M‖22 . (3.45)

If we reinterpret Dropout as instead of corrupting the layers' inputs, corrupt-

ing the corresponding weights, we get for an arbitrary intermediate layer l with

activation function gl(·), the expression

hl = gl

(
Mlĥl−1

)
(3.46)

= gl (Ml (εl � hl−1))

= gl (Ml (diag (εl) hl−1))

= gl ((Mldiag (εl)) hl−1)

= gl (Wlhl−1) , (3.47)

where Ml is the (deterministic) weight matrix, hl−1 the input, εl the random noise,

and Wl = Mldiag (εl).

We have demonstrated that multiplying the input is equivalent to multiplying

the columns of the upcoming weight matrix. Hence, dropout can be understood as

an operation that samples from a distribution over the weights just as BNNs do.

Figure 3.9 shows the resulting weight matrix after being transformed by realisations

of di�erent types of noise.

If we now rewrite (3.45) taking this into consideration and make the sampling

explicit, we get

L =
1

N

N∑
i=1

1

2

(
yi − f (i)(xi;Θ)

)2
+

L∑
l=1

λl‖Ml‖22, (3.48)

where the notation f (i)(·;Θ) indicates a sample of the random parameters drawn

for the data point (xi,yi). Since Θ now de�nes distribution parameters, we replace

it by Ψ in order to keep compliance with our notation of variational parameters and

ease the comparison with other methods.
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Figure 3.9: An illustration of the resulting sampled network weights using the dif-
ferent base variational distributions.

Substituting the �rst term of the above equation according to (2.3), we obtain

L = − 1

N

N∑
i=1

σ2
n log p(yi |xi,W(i)) +

L∑
l=1

λl‖Ml‖22 −
σ2
n

2
log
(
2πσ2

n

)
= − 1

N

N∑
i=1

σ2
n log p(yi |xi;W(i)) +

L∑
l=1

λl‖Ml‖22 + const , (3.49)

where σn is the observation noise, W is the set of random weights and W(i) is one

sample from the distribution. The term that only depends on σn is considered

a constant since this hyper-parameter is set by cross-validation and not gradient-

descent optimisation.

Equation (3.49) is pretty similar to a one-sample MC estimator of the VI cost

function L̂V I de�ned in (2.15), and (3.2), which after approximating with MC inte-

gration writes

L̂V I = − 1

T

T∑
k=1

log p(D |W(k)) +DKL

(
q(W(k);Ψ)‖p(W(k))

)
= − log p(D |W(1)) +DKL

(
q(W(1);Ψ)‖p(W(1))

)
= −

N∑
i=1

log p(yi |xi,W(1)) +DKL

(
q(W(1);Ψ)‖p(W(1))

)
. (3.50)

Taking the derivative of both (3.49) and (3.50) w.r.t. their parameters, we note

that they possess the same objective (up to a constant scale factor), as long we

assure that

∂

∂Ψ
DKL (q(W ;Ψ)‖p(W)) =

N

σ2
n

∂

∂Ψ

L∑
l=1

λl‖Ml‖22. (3.51)
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This condition is now the sole thing impeding us from using dropout (or any

other similar noise injection technique) as an approximate Bayesian model. For

(3.51) to hold, we have to choose the hyper-parameters σn and Λ = {λl|1 6 l 6 L}
such that it induces a sensible prior p(W) for the underlying variational distribution

q(W ;Ψ).

In Bernoulli Dropout, the input of each layer is independently sampled from a

Bernoulli distribution. The equivalent distribution over the model weights factorises

over the layers and the columns of the weight matrices as

q(W ;Ψ) =
∏
l,j

q(Wlj;Ψ)

=
∏
l,j

[(1− pl)δ(wj,l − 0) + plδ(wj,l −mj,l)] , (3.52)

where δ(·) is the Dirac function, 1−pl is the dropout probability for the l-th layer, and
wj,l and mj,l are the j-th column of the random and deterministic weight matrices

Wl and Ml, respectively.

Specifying the prior p(W) to have the same factorisation as q(W ;Ψ), the KL

divergence decomposes as the sum of separate KL terms, one for each factor, as

DKL (q(W ,Ψ)‖p(W)) =
∑
k,j

DKL (q(wj,l;Ψj,l‖p(wj,l)) . (3.53)

If we further de�ne these factors to be centred Gaussian distributions over the weight

vectors, that is, wij,l ∼ N (0, γ−1l ), and assume some conditions are attended [66,

Appendix], one of which being that the number of units per layer is large enough,

we can write the KL between p and q as∑
k,j

DKL (q(wj,l;Ψj,l)‖p(wj,l)) ≈
pl
2

mT
j,lmj,l + const , (3.54)

where the constant term represents all terms that do not include mj,l. Deriving it

w.r.t to mj,l we get

∂

∂mj,l

DKL (q(W ,Ψ)‖p(W)) =
∂

∂mj,l

DKL (q(wj,l;Ψj,l‖p(wj,l))

≈ plγl
2

∂

∂mj,l

mT
j,lmj,l

=
plγl
2

∂

∂mj,l

L∑
l=1

‖Ml‖22

=
N

σ2
n

∂

∂mj,l

L∑
l=1

λl‖Ml‖22, (3.55)
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Figure 3.10: PGM representation of the MC Dropout model. The observed output
Yn is a noisy observation of the model output of the model output for the input Xn
with the variance noise determined by the �xed parameter σ2

n. The weight vectors
ml, j get selected by Bernoulli random variables with success rate pl and wl, j have
centred Gaussian priors with �xed precision γl, whose value is readily determined
by the choice of the two previous hyper-parameters together with the regularisation
strength λl.

where λl = (plσ
2
n)/(2Nγl).

Let us stop here and digest this result. No speci�c assumption about the neural

network architecture was assumed other than having a Dropout layer before each

weight layer. This is the only restriction to obtain approximate Bayesian inference

with the model in Figure 3.10, the other being readily attended: to every choice of

dropout probability 1−pl, observation noise σ2
n (or, equivalently, noise precision τn)

and regularisation strength λl corresponds a prior precision γl (or, according to [15] a

prior length-scale ll), whether or not its value is reasonable for the problem at hand.

For other network architectures such as convolutional [66] and recurrent [67], few

additional considerations are required to achieve a similar result. If the employed

model does not have Dropout in-between every layer, as is usually the case in pre-

trained models with only the last fully-connected layers of the classi�er possessing

Dropout, we can think of them as having a deterministic feature extractor part and

a subsequent approximate Bayesian classi�er. Although not as powerful, this is still

a nice interpretation if we want to do inference and are bound to a given model.

Also, the posterior approximation for Bernoulli Dropout factorises over di�erent

layers and over connections going out of the same unit, but not over the connections

arriving at the same unit. As the same Bernoulli random variable acts on the same

weight matrix column, naturally they are not independent. The other methods of

this chapter use mean-�eld approximation to the posterior, completely missing any

codependency among the weights. In this sense, MC Dropout is less restrictive.

The predictive distribution computed as (2.6) is multi-modal and its variance can

in principle assume any positive real value. Despite the approximating posterior

essentially being composed of discrete Bernoulli random variables, the successive

sum thereof throughout the layers allow the construction of arbitrary functions and

thus arbitrary variances.
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However, the author [66] warns that to get well-calibrated uncertainty estimates

the dropout probability must be optimised as well. Since this is a variational param-

eter, it cannot be directly chosen by observing the ELBO objective [66, Appendix ].

The recommendation is then to set it by maximising the log-likelihood over a vali-

dation set.

In the derivation of the KL-condition that leads to (3.54), the author relaxes

the discrete Bernoulli distribution to a mixture of two Gaussians with small enough

variances. The smaller the variances σ, the larger the KL divergence becomes, and

hence the looser the ELBO becomes. When using the ELBO to compare models with

di�erent weight parameters, this does not represent a problem because the model

remains the same and so does the lower bound. Hence, we can use the ELBO for

model selection. For hyper-parameter optimisation, on the other hand, the model

does change and thus its evidence. Therefore, using the ELBO actually implies

comparing bounds to di�erent things. As the lower bounds for our models are not

tight, a higher ELBO do not necessarily imply a higher marginal probability.

Observing the behaviour of the dropout approximation for a Bayesian linear

regression problem where the analtyical solution is known, the author concludes

that the variational posterior induced by dropout collapse to the MAP solution in

the limit of in�nite data, speci�cally, the optimal value p∗ → 1 [66].

We summarize the resulting procedure in Algorithm 4, we illustrate the case for

the Bernoulli dropout trained with a mini-batch of size 1. However, as pointed

out at the beginning of this section, other stochastic regularisers can be recast

as performing approximate Bayesian inference by following a similar derivation.

For example, for DropConnect [65] the only di�erence is in using separate random

variables for each weight instead of each column, what might have been guessed

by observing Figure 3.9. If we consider an independent additive Gaussian noise for

each weight parameter as the regulariser, we recover the algorithm of Section 3.3.2.

Even though being a stochastic regulariser, interpreting the multiplicative Gaussian

Dropout [63] as doing Bayesian inference with a log-uniform prior [64] has several

issues as pointed out in [68].

Algorithm 4: MC Dropout
1: while not converged do
2: Randomly sample a data example {xi,yi}
3: for l = 1 to L do
4: Wl ←Mldiag (εl), where εl ∼ Bern(pl)
5: end for
6: g← 1

2
∇
(
yi − f(Xi; {Wl}Ll=0)

)2
+
∑L

l=1 λl∇‖Wldiag (εl)‖22
7: mj,l ←mj,l − kg
8: end while
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3.6 Fast Natural Gradient

The parameter space is in general Riemannian and not Euclidean, so learning meth-

ods should take the structure of the space into account [69]. Natural gradient meth-

ods do that by warping the gradient according to the information geometry encoded

into the Fisher information matrix (see Appendix A.2). As a consequence, they are

invariant (up to �rst order) to changes in the parameterisation of the problem, what

is in stark contrast to standard gradient descent, whose e�ciency and convergence

rate are sensitive to the parameterisation used.

Current frameworks focus on MLE and adapting them for VI requires modi�-

cations in the code, increasing development time, memory requirements, and com-

putation costs. For example, the algorithms of Sections 3.3 and 3.4 have twice the

number of parameters of a deterministic model with the same architecture, besides

the additional implementation e�ort. Adaptive optimisers further enlarge the costs

since each parameter has its own scaling variable that regulates the learning rate.

The authors [16] build upon previous work [70] on natural gradient for Gaussian

MFVI and propose a series of progressively more practical but less accurate opti-

misers. It is a lengthy read to grasp all the details, but certainly worth the e�ort.

Here, we review and rederive the core algorithm of [16], named Vadam.

3.6.1 Vadam

From all reviewed methods, Vadam [16] is the more recent and practical one. Sim-

ilar to the Adam optimiser [71] by construction, it is a natural gradient method

(see Appendix A.2) with momentum designed speci�cally for MFVI. Starting from

a parameter update equation proposal, the authors [16] embed several approxima-

tions de�ning di�erent algorithms until reaching the method they name Vadam, for

Variational Adam.

Gradient optimisers with momentum establish the update step as a linear com-

bination between the steepest descent direction and the last displacement [72], such

as

wt+1 = wt − ᾱt∇wf(wt) + γ̄t(wt −wt−1), (3.56)

where {ᾱt} and {ᾱt} form a sequence of scalars that determines the contribution of

each term and must obey the convergence conditions discussed in Section 2.2.4.

The latter term in (3.56) keeps the algorithm's movement along previous search

directions, and is thus named momentum. Reasoning about its dynamics since the

�rst iteration, each step can be understood as an exponentially decaying average

of past gradients, hence the tendency to accumulate contributions in directions of
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persistent descent, while directions that oscillate tend to cancel out, or at least

remain small [72].

Instead of (3.56), the authors [16] propose

ηt+1 = ηt − ᾱt∇̃ηf(ηt) + γ̄t(ηt − ηt−1), (3.57)

where ∇̃ is the natural gradient and the optimisation is on the natural parameter η of

an exponential family member. For this family the natural gradient assumes a simple

and e�cient form, requiring less memory and computations than gradient-based

methods. Besides, it improves the convergence rate by exploiting the information

geometry of posterior approximations.

Constraining the variational approximation to the exponential family allows the

use of the relation [73]

∇̃ηf(η) ..= I−1(η)∇ηf(η) = ∇mf(m), (3.58)

which states that the natural gradient w.r.t. the natural parameter is equal to

the gradient w.r.t. the mean parameter m when f(·) is parametrised according

to m = E [u(w)]. This identity frees us from computing the Fisher matrix and

its inverse, that is why it is so useful and a whole host of other practical natural

gradient algorithms resort to it [44, 70, 74].

By writing (3.57) as a constrained minimisation problem as done in Appendix A.2

and using (3.58), we arrive at

ηt+1 = ηt −
βt

1− αt
∇mL(mt) +

αt
1− αt

(ηt + ηt−1), (3.59)

where α and β are related to the Lagrange multipliers of the KL restrictions.

The mean parameterisation for a univariate Gaussian1 is

(1)m = E [x] = µ, (3.60)
(2)m = E

[
x2
]

= µ2 + σ2, (3.61)

and the natural parameterisation is

(1)η = µ/σ2, (3.62)
(2)η = −1/(2σ2). (3.63)

By using the chain rule we can express the gradient w.r.t. the mean parameters

1In the original paper, the authors consider a multivariate Gaussian with covariance structure

Σ, simplifying to the mean-�eld case only at the end. However, here we already start with the

independence assumption to avoid unnecessarily complicated equations.
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(3.61) in terms of the µ and σ2 such as

∂f

∂ (1)m
=
∂f

∂µ

∂µ

∂ (1)m
+

∂f

∂σ2

∂σ2

∂ (1)m
=
∂f

∂µ
− 2µ

∂f

∂σ2
, (3.64)

∂f

∂ (2)m
=
∂f

∂µ

∂µ

∂ (2)m
+

∂f

∂σ2

∂σ2

∂ (2)m
=

∂f

∂σ2
. (3.65)

Substituting these back into (3.59) and �nding the corresponding update equations

in terms of µ and σ2, whose relation to the natural parameters is given by (3.63), is

now a mere algebraic exercise that leads to

µt+1 = µt −
βt

1− αt
σ2
t+1∇µLt +

αt
1− αt

σ2
t+1σ

−2
t−1(µt − µt−1), (3.66)

σ−2t+1 =
1

1− αt
σ−2t −

αt
1− αt

σ−2t−1 +
2βt

1− αt
∇σ2Lt. (3.67)

These pair of update equations are the natural momentum extension of [70]. We

immediately note that the learning rate of µ gets scaled by the variance. Addition-

ally, as σ2 may assume negative values just like the methods in Section 3.3, one

needs external constraints to sidestep this issue.

No speci�c knowledge of the cost function L has been absorbed into the algo-

rithm so far. If we take into consideration the negative ELBO de�ned in (3.2), and

specify univariate Gaussian priors p(w) = N (w; 0, σ2
p) for the weights, recalling the

derivatives of the KL term already calculated in (3.6)-(3.8), we get

∇µL = ∇µ Eq [Nf(w)] +
µ− µp
σ2
p

, (3.68)

∇σ2L = ∇σ2 Eq [Nf(w)] +
1

2

(
1

σ2
p

− 1

σ2

)
, (3.69)

where we rewrite the data loss term as Ldata = Eq [Nf(w)] with the negative log-

likelihood f(w) = − 1
N

∑N
i=1 log(xi |w). Using the identities (3.3) and (3.4) to change

the order of the gradient and expectation operators, we get

∇µL = N Eq [∇wf(w)] +
µ

σ2
p

, (3.70)

∇σ2L =
N

2
Eq
[
∇2
wf(w)

]
+

1

2

(
1

σ2
p

− 1

σ2

)
, (3.71)

from where we can appreciate the advantage of having de�ned f(·): the magnitude
of its gradients does not depend on the data set size.

Now, after determining the prior and posterior distributions over the weights,

we have completely de�ned the underlying Vadam model, shown in Figure 3.11. It

has the same structure as the one used in Section 3.3 (Figure 3.3), the di�erence
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Figure 3.11: PGM representation of the Vadam model. It is the same as the one
in Section 3.3. The observed output Yn is a noisy observation of the model output
for the input Xn with the variance noise determined by the �xed parameter σ2

n. The
constant values {µp, σ2

p} govern the Gaussian prior distributions over the weights,
while {µk, σ2

k} their posteriors.

between both methods being the approximations included in Vadam to make it more

computationally e�cient.

If we use a one-sample MC estimator for the expectations (3.70) and (3.71), the

gradient formulas become

∇µL = N∇wf(wt) +
µ

σ2
p

, (3.72)

∇σ2L =
N

2
∇2
wf(wt) +

1

2

(
1

σ2
p

− 1

σ2

)
, (3.73)

and wt ∼ N (µt, σ
2
t ) is a realisation of the random variable de�ned by the parameters

from the t-th iteration. Then, if we plug these into (3.66), (3.67) and further relax

σ2
t−1 into σ

2
t in the update equation for µ, we get

µt+1 = µt −
βt

1− αt
σ2
t+1N

(
∇wf(wt) +

µt
Nσ2

p

)
+

αt
1− αt

σ2
t+1σ

−2
t (µt − µt+1) , (3.74)

σ−2t+1 = σ−2t +
βt

1− αt
N∇2

wf(wt)−
βt

1− αt
(σ−2t − σ−2p ). (3.75)

Now, let us de�ne the scaled prior precision λ̃ ..= σ−2p /N and the new parameter

st ..= (σ−2t − σ−2p )/N , as well as replace the gradients with their stochastic versions

∇̂w and ∇̂2
w. By doing so the above equations start to resemble the Adam update

in Algorithm 5:

µt+1 = µt −
βt

1− αt

[
1

st + λ̃

](
∇̂wf(wt) + µtλ̃

)
+

αt
1− αt

[
st + λ̃

st+1 + λ̃

]
(µt − µt+1) (3.76)

st+1 =

(
1− βt

1− αt

)
st +

βt
1− αt

∇̂2
wf(wt). (3.77)
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Note that the equation for st became a simple exponential moving average. How-

ever, second derivatives are computationally expensive, besides being able to lead

to negatives values for the parameter s. Resorting to the GGN approximation gives

st+1 =

(
1− βt

1− αt

)
st +

βt
1− αt

(
1

M

M∑
i=1

∇wf(wt;xi)
2

)
, (3.78)

where we make explicit the average over the mini-batch of data points.

Modern frameworks are not optimised to operate separately on each element of a

batch after computing its derivatives, thus the above equation cannot be perfomed

e�ciently. Alternatively, we may incorporate yet another approximation, namely

∇̃2
wf(wt) ≈

1

M

M∑
i=1

∇wf(wt;xi)
2 ≈

(
1

M

M∑
i=1

∇wf(wt;xi)

)2

. (3.79)

This last approximation, referred to as the gradient magnitude approximation and

employed by several usual optimisers [71, 75, 76], causes s to act as diagonal rescaling

that simply assures equal progress along each axis of µ rather than closely approxi-

mating the curvature [72] (disregarding the momentum term of the update equation

that counter-balances this e�ect by favouring historically good directions).

The gradient magnitude approximation biases the estimation even more than

GGN, its expectation is in-between that of GGN and the squared gradient of the

full-batch. The larger the mini-batch, the larger the bias gets: if the whole data

set is used to compute this approximation then all second-order information is lost,

while if computed if a single data point it is equal to the GGN. Hence, there is a

compromise between biasing estimations but converging quickly versus being �exact�

(GGN-wise) but slow.

At last, we apply square root on the scaling vector s in the µ update formula so

that the method gets more similar to Adam. Although this modi�cation does not

change the algorithm's �xed point solutions, it alters the dynamics [16]. At the end,

we arrive at

µt+1 = µt − ᾱt
[

1
√
st + λ̃

](
∇̂wf(wt) + µtλ̃

)
+ γ̄t

[ √
st + λ̃

√
st+1 + λ̃

]
(µt − µt+1) , (3.80)

st+1 = (1− ᾱt) st + ᾱt∇̂2
wf(wt), (3.81)

where we have de�ned the step sizes ᾱt ..= βt/(1− αt) and γ̄t ..= αt/(1− αt).
Unwinding these �nal update equations and using di�erent step sizes γ1 and γ2

for µ and s instead of ᾱt and (1− ᾱt), respectively, we get the Algorithm 6, just like

Adam 5. Remember that the scale factor s actually relates to σ2 by σ−2t = Nst+σ
−2
p
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and each weight sample wt is drawn for the distribution N (µt, σ
2
t ).

Algorithm 5: Adam
1: while not converged do
2: w← µ
3: Randomly sample a data example Xi
4: g← −∇ log p(Xi|w)
5: m← γ1 m + (1− γ1) g
6: s← γ2 s + (1− γ2) (g � g)
7: m̂←m/(1− γt1), ŝ← s/(1− γt2)
8: µ← µ− α m̂/(

√
ŝ + δ)

9: t← t+ 1
10: end while

Algorithm 6: Vadam
1: while not converged do
2: w← µ+ σ � ε where ε ∼ N (0, I), σ ← 1/

√
Ns + σ−2p

3: Randomly sample a data example Xi
4: g← −∇ log p(Xi|w)
5: m← γ1 m + (1− γ1) (g +σ−2p µ/N)
6: s← γ2 s + (1− γ2) (g � g)
7: m̂←m/(1− γt1), ŝ← s/(1− γt2)
8: µ← µ− α m̂/(

√
ŝ +σ−2p /N)

9: t← t+ 1
10: end while

Figure 3.12: Comparison between Adam [71] and Vadam [16]. The two algorithms
are almost identical, but Adam performs MLE/MAP while Vadam performs VI.

Throughout the development of the Vadam algorithm, we have considered that

the algorithm would already be running. Consequently, the exponential moving

average would actually encode information about the geometry of the space. During

the initial iterations, however, this estimation would be biased towards the starting

point [71]. In order to reduce this e�ect, the authors [16] introduce a bias-correcting

factor that decays exponentially as the optimisation runs.

The �nal method is indeed very similar to Adam [71], but has the advantage of

providing uncertainty estimates due to the implicit posterior inference it performs.

Apart from being fast, Vadam o�ers a plug-and-play manner of performing VI.

Di�erently from the previous methods of this chapter, the user has only to de�ne

the model as if it were deterministic and optimise it with Vadam. There is no silver

bullet and the price for such easiness and speed is inferior posterior estimates.
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3.7 Comparing the Methods

In the remainder of this section, we shall compare the performance of the 4 algo-

rithms we studied in-depth during this chapter.

3.7.1 UCI Data Sets

We benchmark the four studied algorithms in 8 di�erent data sets of the UCI Ma-

chine Learning Repository [77] for the regression task, a procedure which has already

become a staple in the related literature [14�16, 36, 37, 47, 78]. Below we give a

brief description of each.

Boston

This data set consists of 14 attributes collected by the U.S Census Service concern-

ing housing in the area of Boston Mass. The target variable is the median value

of owner-occupied homes, while the other 13 variables measure property and neigh-

bourhood characteristics such as average number of rooms per dwelling, nitric oxides

concentration, per capita crime rate, distances to employment centres, pupil-teacher

ratio, among others.

Concrete

The aim of this data set is to predict the compressive strength of concrete given

its age and 7 ingredients, such as cement, water, �ne and coarse aggregate, among

other component concentrations. The output variable is a highly nonlinear function

of the attributes.

Energy

This data set is composed of a collection of simulated buildings with di�erent shapes

and characteristics summarized by 8 attributes, among them: glazing, wall, roof and

surface areas, as well as other properties such as orientation. The task is to predict

the heating load requirements of the buildings as a function of the parameters.

Kin8nm

This data set consists of the angular positions of the joints of an 8-link all-revolute

robotic arm, which is known to be highly non-linear. Data was synthetically gener-

ated from a simulation of its forward kinematics. The aim is to predict the distance

of the end-e�ector from a given target.
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Naval

This data set comprises of 16 measurements of a numerical simulator of a naval vessel

with a gas turbine propulsion plant at steady state. From features such as ship speed,

fuel �ow, torques from turbine and propellers, temperatures and pressures coming

in and out of the compressor, which indirectly represent the state of the system

subject to performance decay, one should be able to predict the compressor decay

state coe�cient.

Powerplant

The aim of this data set is to predict the net hourly electrical energy output of a

power plant. The features collected from a real plant over 6 years, when the plant

was set to work with full load, consist of hourly averages of temperature, ambient

pressure, relative humidity, and exhaust vacuum.

Wine

This data set disposes of 11 physicochemical characteristics of di�erent brands of

the red variant of the Portuguese "Vinho Verde" wine. From these features, one

should predict the quality of the wine, a score between 0 and 10.

Yacht

In this data set, one should predict the hydrodynamic performance of sailing yachts,

represented by their residuary resistance, from hull geometry coe�cients, totalling

6 features.

3.7.2 Experimental setup

We evaluate training times, as well as the predictive (Gaussian) log-likelihood (2.3)

and the Root Mean Squared Error (RMSE) de�ned as

RMSE =

√∑N
i=1(yi − ŷi)2

N
. (3.82)

While the latter exclusively measures the prediction accuracy, thus assessing how

close to the target value the predictions are in absolute terms, the former takes

into account the prediction variance and thus incorporate into the evaluation the

prediction uncertainty. Intuitively, the lower the variance, the more reliable the

prediction should be and, hence, the higher the penalty for being wrong; but still

we want predictions to be reliable so large variances also receive higher penalties.
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Otherwise, constantly predicting uncertain values would amount to good scores,

even though the model would not be of much use.

We do not directly measure structural uncertainty, that is, the uncertainty stem-

ming from the model, which could be corrected with an in�nite amount of data.

However, highly uncertain weights, i.e., weights with large variances, lead to very

di�erent outputs for the same inputs each time we draw a di�erent set of weight val-

ues, consequently those outputs frequently fall far from the true value even if their

mean is correct. This causes the estimated predictive log-likelihood, that should be

ideally high, to be low. Hence, this metric give us a sense of the model uncertainty,

though indirectly.

We follow the setup proposed in [15]: for each data set we run the models on

20 random train-test splits after doing hyper-parameter search with 30 iterations of

Bayesian Optimisation (BO) [79] on each split.

Bayesian Optimisation (BO)

BO is an approach to optimizing objective functions that take a long time to eval-

uate, in our case that would be running the model for E epochs to verify whether

the chosen hyper-parameter con�guration is the best so far. BO builds a surrogate

for the objective and quanti�es the uncertainty in that surrogate through Gaussian

Process regression [80]. At each iteration we observe the objective at a new point,

that is, at a new (hyper-)parameter con�guration, use this information to update

the Bayesian posterior probability distribution that describes the potential values of

the objective at each point, and sample a new point whose values maximise a given

acquisition function, i.e., th expected improvement.

Thus, BO keeps track of all previous con�gurations tested and the score they

attain to decide what point in the hyper-parameter space to investigate next. By

relying on that additional information, instead of, for example, local gradients, this

technique can �nd good solutions for complex non-convex functions with consider-

ably fewer iterations. On the other hand, the decision where to evaluate next, makes

each iteration computationally expensive to run, imposing an overhead. Still, if the

model evaluation is costly, as generally is the case nowadays for machine learning

algorithms, and in our case means training the models for E epochs, this hyper-

parameter tuning approach is justi�able.

For each method, we use the same 20 splits2 to avoid �uctuations in the results

due to the reduced size of the data sets and the e�ect di�erent splits may have.
2Available at: https://github.com/yaringal/DropoutUncertaintyExps/tree/master/

UCI_Datasets
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For each split, we set the optimal hyper-parameter con�gurations of the precision

parameter λ (or equivalently the prior variance σ2
p), the observation noise precision

γ, and, in the MC Dropout case, the dropout probability p by running 30 iterations

of BO on the training set for 40 epochs. In order to reduce the noise stemming

from sampling, the performance of the hyper-parameter con�guration of one BO

iteration is averaged over a 5-fold Cross-Validation, thus for each setting we train

and evaluate the model 5 times. After �nding the best con�guration for a given

split, we �t the model to the whole training set (of that speci�c train-test split). All

this procedure follows from [15].

We observe that this structure escalates quickly, as for each data set and model

we have:

20 splits×
(

30 BO iters×
(

5× 4

5

)
CV iters + 1 full run

)
× 40 epochs = 96800,

(3.83)

plus the time BO takes to decide on the next point to test. Thus, to be able to

analyse them in a viable amount of time, we perform ablation studies with a single

hidden-layer network with 50 units.

The source codes for PBP3 and Vadam4 were borrowed from the authors' reposi-

tories. With exception of PBP which is implemented in Theano 1.0 [81], all remain-

ing algorithms and supporting code is in PyTorch 1.0 [82].

3.7.3 Training Con�guration

We maintain a training con�guration similar to [16]. We use a mini-batch of size

32 on the 4 smaller data sets (Boston, Concrete, Energy and Yacht), and 128 on

the other 4. During training, we employ respectively for BBB, Vadam, and MC

Dropout, 20, 10, and 10 MC samples for the 4 smaller data sets, and 10, 5, and 10

for the 4 larger ones. All algorithms use 100 MC samples for evaluation. Again,

PBP is the exception because it uses a mini-batch of size 1 in the original implemen-

tation [14], which we use, and has no MC approximation of the weights' posterior

since it propagates entire distributions through the layers.

BBB, MC Dropout and Vadam use gradient descent optimisers. Both BBB

and MC Dropout use the Adam optimiser [71], while Vadam is itsef a (variational)

optimiser and the experiment consists of using it in lieu of Adam. Following [16],

we con�gure the respective optimisers of all three methods to use a learning rate

k = 0.01, and moving-average parameters γ1 = 0.99 and γ2 = 0.9 (instead of the

usual γ1 = 0.9 and γ2 = 0.999) to encourage convergence within 40 epochs. The

3https://github.com/HIPS/Probabilistic-Backpropagation
4https://github.com/emtiyaz/vadam
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Table 3.1: Average amount of time in seconds each algorithm takes to complete
a whole training cycle, that is, from �nding the optimal hyper-parameters to �nd-
ing the �nal posterior approximation to the weights. In parenthesis, we ease the
comparison by writing the time ratio to Vadam.

Absolute Avg. Running Time (s)

Dataset Size Dim BBB MC Drop. PBP Vadam

Boston 506 13 5945 (2.45) 1934 (0.80) 21 (0.008) 2431 (1.0)
Concrete 1030 8 11611 (2.53) 4453 (0.97) 34 (0.007) 4597 (1.0)
Energy 768 8 7944 (2.31) 2598 (0.76) 52 (0.01) 3439 (1.0)
Kin8nm 8192 8 13279 (2.20) 7819 (1.29) 231 (0.03) 6043 (1.0)
Naval 11934 16 24085 (3.18) 7914 (1.04) 334 (0.04) 7582 (1.0)
Powerplant 9568 4 15487 (2.62) 5498 (0.93) 220 (0.03) 5917 (1.0)
Wine 1599 11 4126 (3.28) 1945 (1.54) 51 (0.04) 1259 (1.0)
Yacht 308 6 2804 (1.91) 1112 (0.76) 41 (0.02) 1468 (1.0)

initial precision for the the posterior approximation is set to 10 (attention, this is

not the prior precision) for BBB and Vadam.

3.7.4 Analysis

PBP automatically sets all its hyper-parameters by the Bayesian framework thanks

to the hyper-priors, thus dispensing with the BO. In this case, the number in (3.83)

reduces to 20, that is, 1 run per random split. Table 3.1 shows the required (wall-

clock) time each algorithm takes to complete the full training schedule (including

BO).

PBP outspeeds all others by being at least 25 times faster. This di�erence re-

sults from the absence of hyper-parameter tuning, which exempts the method from

running the equivalent of 30 × 4 = 120 times to �nd a good hyper-parameter con-

�guration prior to �nally �tting to the full training set. On top of that, there is

the overhead imposed by the Bayesian Optimisation inference. Instead of requir-

ing computer time, PBP requires human time to workout all its derivations and

approximations. However, if we were not take the hyper-parameter tuning into con-

sideration, PBP's advantage would fade away and it would actually be the slowest

method on average. There are actually di�erent factors contributing to this:

� PBP's current implementation uses a mini-batch size of 1, and increasing it to

32, the same size as the others, makes the method once again the fastest [83],

though not by that large of a margin as before;

� PBP uses the framework Theano, which is no longer o�cially supported, while

the other 3 methods build upon Pytorch [82], a more recent and rapidly grow-
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Table 3.2: The average RMSE (low values are better) over the 20 random resampled
splits of the UCI regression data sets. The ± value reported is the standard error
and not the standard deviation

Avg. Test RMSE

Dataset BBB MC Drop. PBP Vadam

Boston 3.630± 0.2262 3.700± 0.1806 2.965± 0.1704 3.852± 0.2689
Concrete 6.183± 0.1052 10.031± 0.1847 5.683± 0.1098 6.846± 0.0712
Energy 2.747± 0.0609 1.697± 0.0663 1.817± 0.0525 1.722± 0.1364
Kin8nm 0.096± 0.0005 0.163± 0.0001 0.092± 0.0000 0.106± 0.0012
Naval 0.004± 0.0002 0.011± 0.0001 0.006± 0.0000 0.002± 0.0001
Powerplant 4.258± 0.0352 7.041± 0.0380 4.132± 0.0327 4.290± 0.0303
Wine 0.660± 0.0084 0.654± 0.0080 0.635± 0.0078 0.653± 0.0085
Yacht 2.342± 0.0927 1.612± 0.0883 1.071± 0.0512 1.432± 0.1025

Table 3.3: The average log-likelihood (high values are better) over 20 the random re-
sampled splits of the UCI regression data sets. The ± value reported is the standard
error and not the standard deviation

Avg. Test Log-Likelihood

Dataset BBB MC Drop. PBP Vadam

Boston −2.751± 0.057 −2.747± 0.039 −2.558± 0.084 −2.840± 0.074
Concrete −3.242± 0.017 −3.729± 0.017 −3.164± 0.022 −3.408± 0.012
Energy −2.460± 0.023 −1.968± 0.040 −2.049± 0.022 −2.220± 0.078
Kin8nm 0.939± 0.007 0.379± 0.011 0.957± 0.000 0.737± 0.006
Naval 4.210± 0.048 3.050± 0.020 3.667± 0.005 5.131± 0.065
Powerplant −2.866± 0.009 −3.372± 0.006 −2.839± 0.008 −2.878± 0.008
Wine −1.053± 0.044 −0.998± 0.013 −0.968± 0.014 −1.042± 0.029
Yacht −2.482± 0.015 −1.952± 0.033 −1.645± 0.016 −1.738± 0.042

ing framework powered by Facebook Arti�cial Intelligence Research, hence the

mathematical operations are expected to be better optimised.

BBB is by far the slowest, taking on average 2.5 times what Vadam takes to

train. The latter does not have additional parameters for the variances of weights;

instead it directly computes them from the intermediate variable used to normalise

the directions of the parameter space, something the optimser Adam already does.

However, we need to remember that this di�erence is also caused in part by using

twice the number of MC samples; equating them would narrow down this gap to

≈ 1.4. Still, even with such advantage during training, BBB's test performance is

comparable or even slightly worse on the test set on both RMSE and log-likelihood,

according to Table 3.2 and Table 3.3, respectively.

We choose not to compare the best scoring method out of the 4 using a paired

t-test as in [16] for the the samples, i.e., the performances on each random split, are
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not independent. Indeed, the realisations consist of the 20 di�erent random draws

of 10% of the (same) data set, which, violates the assumptions of this statistical

test.

All in all, PBP is the best performing method out of the 4, followed by Vadam.

In addition, another strength PBP possesses inherited from EP is being naturally

well-suited to data-parallelisation across machines, and if using only ADF updates,

online learning.

MC Dropout does not achieve good results, and the values we �nd are remarkably

di�erent from the ones in [15]. Fixing the length-scale to 0.01 and only optimising

the dropout probability p and the noise precision λ per the original paper [15] does

not change the outlines of the results. The di�erence lies in the following: the

author [15] claims training the model for 10× more iterations (400 epochs in total)

after �nding the optimal hyper-parameter values because dropout takes longer to

converge. Nevertheless, further experiments are needed so that we can con�rm this

is the reason behind the discrepancy and under the same conditions what the results

of the other methods would be.

On a �nal note, we leave a general recommendation for those needing to develop

a custom solution for a certain task: use Vadam [16], it is fast, out-of-the-box

and has reasonable performance. It still needs hyper-parameter tuning, but at this

point, almost everything does. If the problem calls for better predictive accuracy or

uncertainty estimation, resort to PBP or other method not covered here, a few of

which are mentioned in Section 3.8.

3.8 Closing Remarks

In this chapter we have discussed BNNs, along with motivations for recurring to

the computationally heavier Bayesian approach instead of contenting ourselves with

traditional point estimates. Bayesian models o�er a large number of advantages such

as robustness to over�tting, principled model comparison and uncertainty estimation

not only in their outputs, but also in all of their parameters.

Additionally, we reviewed and experimentally compared 4 key variational al-

gorithms throughout the chapter. Namely, Bayes by Backprop [13], Probabilistic

Backprop [14], MC Dropout [15], and Vadam [16].

3.8.1 Practical Comparison of Studied Algorithms

To make future reference easier or even for those not interested in a lengthy analysis,

we build what we call the Practitioner's Table shown in Table 3.4. There is no

number nor formula, only plain simple adjectives to characterise what we believe to
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be the the 3 most important aspects of a BNN algorithm:

� The implementation e�ort to build a custom solution;

� The quality of the model predictions, both accuracy and uncertainty;

� The time it takes to train the model.

By carefully reading the previous sections, the reader will have no di�culty to

comprehend the content of Table 3.4.

3.8.2 Alternative directions

Even though we have only seen algorithms that do not (explicitly) model the cor-

relation structure amount the weights, this also is an active research subject with

many interesting works such as

� Matrix variate Gaussian prior [36] and posterior approximation [37];

� Structured covariance with noisy natural gradient [78];

� Low-rank covariance approximation with natural gradient [84].

Although the above methods relies either on VI, ADF or EP, by focusing on

modelling the structure between the parameters, they achieve better posteriors ap-

proximations and uncertainty estimations.

There is a whole other sort of methods that relies on Markov Chain MC approx-

imations to the posterior predictive density, which is not the focus of our discussion.

Still, we name a few so that the interested reader knows where to start:

� Hamiltonian MC [85];

� Stochastic gradient Langevin dynamics [56, 86];

� Posterior distribution distillation [87].

Table 3.4: Practitioner's Table: a rough comparison between the variational meth-
ods studied for BNNs. The MC Dropout quality is poor according to the results of
our simulation in which all algorithms ran in approximately similar conditions, but
in the original work [15], the authors obtain considerably better results by training
longer.

Method E�ort Quality Train

BPB Medium OK Slow
PBP Very hard Good Very fast
MC Dropout Very easy Poor* OK
Vadam None OK OK+

72



Chapter 4

(Deep) Generative Algorithms

This chapter will use the tools of MBML and VI with a very di�erent idea in mind.

Here, we are interested in modelling the process that causes the observed data. This

empowers us to simulate new data, create world models, grasp underlying generative

factors, learn with little to no supervision.

What to expect in the following sections:

� What a generative model is and what its bene�ts are;

� How to evaluate a generative model;

� Detailed explanation of the Variational Autoencoder (VAE);

� Developments that enhance the VAE's performance in di�erent aspects;

� Central problems of this breed of models;

� Examples and demonstrations of the discussed VAE models.

After the dense chapter on BNNs, the reader will �nd this one a bit simpler, as

the required tools were actually already introduced. By the end of this chapter, one

should:

� Be able to characterise generative models;

� Understand when they are useful;

� Know the challenges on assessing their quality;

� Possess breadth knowledge on VAE's core idea;

� Comprehend the ideas of its extensions and what e�ectively changes;

� Be motivated to seek more information on oneself's own.
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4.1 Motivations

Generative models are statistical models of data that (try to) capture the entire prob-

ability distribution from the observables, that is, to estimate p(X ) from D = {X}n.
It is a complete description of the probabilistic model that generates the observed

data. In possession of the full model we can extrapolate to unseen examples, gen-

erate new samples, infer relations and dependencies, perform prediction, and do all

else probability theory allows.

Di�erently from discriminative models which estimate the distribution on Y |X
and hence need the supervisory signal coming from the target Y , e.g., image labels,
generative models need not to be supervised. Thus this kind of model constitutes a

good basis for developing unsupervised and semi-supervised algorithms, at the same

time being capable of handling target variables by modelling the joint distribution

p(Y ,X ) and performing discriminative tasks such as classi�cation. The models in

Chapter 3 although probabilistic, do not estimate the joint p(Y ,X ), but instead the

conditional p(Y |X ), where Y in our examples is a real-valued scalar variable.

Knowledge of the complete probabilistic model means we can simulate how the

world evolves [88, 89], anticipate and plan for the future [90, 91], reason and make

decisions [91, 92], understand elements and their factors of variation [92, 93], among

other high-level abstract tasks. Exciting applications involve mainly image, such

as super-resolution [94], compression [95], denoising [96], and audio [97]. Other

examples outside the multimedia domain and arguably even more compelling are in

chemistry for e�cient exploration of new compounds [98], and biology for prediction

of the e�ects of mutations in proteins and RNAs [99].

A classical example of a generative model is Naive Bayes that constructs the

joint probability for classi�cation. Here, the focus are on modern methods that

use approximate inference and, though, many exist with di�erent combinations of

modelling assumptions, architectures and inference algorithms, we discuss VAEs.

The interested reader will �nd at the end of the chapter a two-paragraph presentation

on alternative modern methods and indications of good reads.

4.2 Evaluating Generative Networks

There is no universal metric for measuring the performance of a generative model,

thus assessing its quality is not straightforward and is often misleading if not done

with this care in mind. Of course when the KL divergence is zero, the model matches

the true posterior perfectly and the samples are indistinguishable from those drawn

from the true posterior.

While models trained for the same criteria do relate well across the di�erent axis
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of properties, and comparison among them being direct, i.e., training criteria itself

as metric, this does not hold true for di�erent objective functions. Then the question

arises on how to rate the models, or, even more fundamentally, on what exactly to

search for in a model: likely samples, high quality samples, compact representations,

useful representation, etc.

A model may have a high log-likelihood but have an average mode-matching

behaviour, causing it to assign probability mass to low-density regions. Then, gen-

erated samples are likely to be very distinct from samples from the true distribution

in spite of the approximation's good log-likelihood. On the other hand, for a model

with moment-matching behaviour the contrary may be true: realistic samples but

a poor log-likelihood if, for example, the true model is highly multi-modal, which

would mean that the approximation �ts well only one such mode and misses out on

a great deal of information. In this case, sample diversity would also be low. The

higher the dimension of space, the less correlated the metrics become [100].

Average log-likelihood has become the de facto standard measure of quality for

generative models, but depending on the type of the model under consideration, it

may even not be possible to compute it (at least in a viable amount of time). Fur-

thermore, as we explained above, average log-likelihood and sample quality measure

di�erent things, not being possible to deduce one from the other. Finally, there

is still the issue of diversity that connects the other two, that is, if samples seem

to come from the true distribution and, at the same time, have great diversity,

then probably overall the two densities match well, what implies good average log-

likelihood for the model. The diversity of the distribution relates to its spread or

entropy, and allows us to gauge over�tting.

In models for which a direct measure of the log-likelihood is not possible, it is

common to resort to Parzen window estimates, which consists on drawing sam-

ples from the model and constructing another model, a tractable one, through

non-parametric methods to emulate the intractable one [100]. Nevertheless, the

authors [100] strongly recommend against Parzen window. They experimentally

demonstrate its estimates not to correlate well with likelihood nor sample quality.

Model sample inspection is naturally the go-to metric when dealing with image

synthesis, besides it allows us to peek into the model in an intuitive manner, possibly

giving us insights about what is happening. Still, only in the speci�c case of image

or other sensory samples for which humans evolved to excel at is this approach

e�ective, for other types of data we would need in-depth analysis. Thus, samples

represent an interesting diagnostic tool but should not be used as a proxy for other

tasks [100].

In addition, perceptual quality metrics do not take into account generalisation

capacity. If the model simply outputs training examples without ever producing a
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new one, samples would seem real, and actually would indeed be. The usual Eu-

clidean distance nearest neighbours algorithm to counter this �aw and �nd similar

images in the training set is also problematic. It does not correlate well with per-

ception: perceptually similar images can have large distances, e.g., a one-pixel shift

of a texture-rich image. On top of that, over�t models do not necessarily reproduce

the images from the data set [100].

A di�erent approach for assessing the model's performance is to measure it di-

rectly on a surrogate task, what is specially useful if the aim is to learn good feature

representations. Although indirect, measuring the e�ect of the model in the intended

downstream application provides exactly what one searches, all other metrics being

secondary. For example, one could use a linear classi�er on the learned representa-

tions to test if they form well de�ned clusters, which would be indicated by a high

classi�cation accuracy.

The community has been devoting recent e�orts to propose principled scores

that embrace (some of) these aspects, and allow to objectively compare between

competing algorithms. For images, the Inception Score [101] and the Frechet In-

ception Distance [102] are two popular metrics, they use pretrained classi�cation

models to compare between a hold-out test set and a set of generated samples. The

former measures sharpness and diversity of samples through the distribution over

the classi�er's prediction, whereas the latter measures similarities in the feature

representation space. Both empirically correlate well with the perceived quality of

samples. However, using the Inception Score of a model pretrained on a dataset

di�erent from the one on which the generative model is evaluated can be misleading

when ranking models [103]. Speci�cally, the commonly used Imagenet-pretrained

Inception classi�er is only valid for evaluating generative models also trained on

ImageNet.

In summary, there is no universal metric and sample quality, classi�cation ac-

curacy, and log-likelihood are largely independent properties in high-dimensional

spaces. Thus, proper assessment of the model's performance depends on the appli-

cation: di�erent applications require di�erent metrics.

4.3 Variational Autoencoders

We begin this section by posing a modelling problem and steadily progressing to-

wards constructing the VAE. We start from latent variable models, whose value we

already discussed in Section 2.1.2. Thus we have p(D) =
∫
p(D,Z)dZ, where D is

the set of observations {X}Nn=1 we possess, Z is the unknown latent variables which

we assume are the hidden causes for the observed D, and p(D,Z) is the generative

model of Figure 4.1a.
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Figure 4.1: Graphical representations of the generative model p(D,Z). Figure 4.1a
is the initial model we formulate and Figure 4.1b the parametrised model with the
dashed line representing the posterior approximation q(Z |D;Ψ).

We can actually rewrite the integral over the joint distribution according to the

chain rule for conditional probability, what gives us p(D |Z)p(Z), where p(Z) is the

prior distribution over the latent space, and p(D |Z) the likelihood function. For

all but very simple models, the integral
∫
p(D |Z)p(Z) is intractable and cannot be

analytically calculated, thus we further approximate it by MC sampling, such as

p(D) =

∫
p(D,Z)dZ =

∫
p(D |Z)p(Z)dZ ≈ 1

T

T∑
i=1

p(D |Z(i)), (4.1)

with Z ∼ p(Z). However, the latent space may be high dimensional and �nding

samples of Z for which p(D |Z) is large is challenging: we need millions of draws

to obtain reasonable estimates for p(D). Then, how to choose p(Z) such that we

obtain plausible values of Z, for which p(D |Z) is high, with high probability?

Once more, we rewrite the problem as

p(D) =

∫
p(D |Z)p(Z)dZ

=

∫
p(D |Z)p(Z)

q(Z |D)

q(Z |D)
dZ

= Eq
[
p(D |Z)p(Z)

q(Z |D)

]
≈ 1

T

T∑
i=1

p(D |Z(i))p(Z(i))

q(Z(i) | D)
, (4.2)

with Z ∼ q(Z |D). Under this new perspective, the sampling process occurs ac-

cording to the new distribution q(Z |D) and to obtain the same result as before we

need to properly weight the values of p(D |Z) by p(Z)/q(Z |D).

This alternative approach corresponds to MC with Importance Sampling

(IS) [20]. This technique is generally applied to reduce the variance of the esti-

mator or when it is di�cult to simulate from the original density, the latter being
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the present case. Clearly, the optimal proposal distribution q∗(Z |D) is

q∗(Z |D) =
p(D |Z)p(Z)

p(D)
= p(Z |D), (4.3)

for which we obtain for the single-sample estimator p̂(D) the true distribution we

seek, that is,

p̂(D) =
p(D |Z(1))p(Z(1))

q(Z(1) | D)
=
p(D |Z(1))p(Z(1))
p(D |Z(1))p(Z(1))

p(D)

= p(D). (4.4)

Yet, the inability to compute p(D) =
∫
p(D |Z)p(Z)dZ was the very reason that

motivated us to search for other solutions. Let us parameterise the distributions as

p(D |Z;Θ) and q(Z |D;Ψ), and jointly optimise for Θ and Ψ . The corresponding

Probabilistic Graphical Model (PGM) is in Figure 4.1b. We immediately note that

the ideal value for Ψ is such that q(Z |D;Ψ) = p(Z |D;Θ), or at least as close to it

as possible. Thus we are learning both the posterior distribution and the likelihood

function of the data. While the �rst allows inferring latent distributions relating to

the observables, the second enables the generation of new samples when paired with

the prior, what e�ectively means sampling from the joint distribution.

Note that we have arrived at a familiar framework: we wish to maximise the

mode evidence p(D;Θ) and for this we do

argmax
Θ ,Ψ

p(D;Θ) = argmax
Θ ,Ψ

log p(D;Θ) = argmax
Θ ,Ψ

logEq
[
p(D |Z;Θ)p(Z)

q(Z |D;Ψ)

]
. (4.5)

Applying Jensen's inequality exactly as we did in Section 4.3 leads us once again to

the ELBO objective (2.14, 2.15) as we verify in

logEq
[
p(D |Z;Θ)p(Z)

q(Z |D;Ψ)

]
> Eq

[
log

p(D |Z;Θ)p(Z)

q(Z |D;Ψ)

]
= ELBO(Θ ,Ψ). (4.6)

Even though the �nal utility function borrows the same form as that of the

methods in Chapter 3, the model we describe now is fundamentally di�erent in

what it accomplishes. It performs MLE/MAP estimation of the model parameters

Θ , and VI only on Ψ . In Chapter 3, we performed VI on all model parameters,

which were global parameters, since they were the same for all data points, and

there were no local latent variables. Although possible to do VI on both Ψ and Θ ,

a Full Variational Bayes approach, here we focus on Ψ only, as is customary in the

related literature. A full treatment can be found in the appendix of [10].

Note that the target density p(D |Z;Θ) changes over the course of training, not

being static as the cases of Chapter 3. Hence, q(Z |D;Ψ) must track this evolution
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so that the approximation remains �close� to the true (modelled) distribution. We

obtain the posterior approximation through a recognition model whose outputs are

the parameters Φ that determine the member of the speci�ed parametric family, e.g.,

mean and variance for the Gaussian case. Each new data point x′ goes through a

function f(x′;Ψ) 7→ Φ. Instead of solving a di�erent optimisation problem for each

observable to �nd the corresponding latent posterior distribution, we solve only one:

obtaining the parameters that de�ne the mapping f(·;Ψ). This approach of sharing

the variational parameters across all data points gets the name of amortised inference

and is common in settings with large data sets because it e�ectively amortises the

inference cost.

From the complete model developed so far, shown in Figure 4.2, we observe that

the distribution over the latent space Z is in-between the recognition model and

the likelihood, creating an information bottleneck if dim(Z) < dim(D). Generally,

this is the case since we assume the data lives in a lower-dimensional manifold

than the space in which it is de�ned. Therefore, we may interpret the present

class of models as encoding D to a lower-dimensional space Z, thus throwing away
unnecessary information and preserving what is meaningful, which actually helps

the decoder to reconstruct the original input. Hence, p(D |Z;Θ) can be understood

as a probabilistic encoder and q(Z |D;Ψ) as a probabilistic decoder. Indeed, if we

write the ELBO in its most usual form, we have

ELBO(Θ ,Ψ) = Eq [log p(D |Z;Θ)]−DKL (q(Z |D;Ψ)‖p(Z))

=
N∑
n=1

Eq [log p(Xn | Zn;Θ)]−DKL (q(Zn | Xn;Ψ)‖p(Z)) . (4.7)

We note that the �rst term aims at maximising the reconstruction error, e.g., assum-

ing Gaussian additive noise this would become the squared distance between D and

D̂. The second term, on the other hand, works as a regularisation imposing structure
to the latent space. Without the KL term, the latent distribution would degenerate

to a point estimate, namely, the MLE solution that maximises the log-likelihood.

This would entail a conventional autoencoder that deterministically maps a data

point Di to Zi and deterministically reconstructs it. Consequently, nearby latent

points would not necessarily represent similar data points, just imagine for exam-

ple a lookup table. Thus, the latent space would not have any special structure

or meaning as we desire. The autoencoder with the KL regularisation term in the

latent space receives the name of Variational Autoencoder.

The fact of the latent distribution being sandwiched between the encoder and

decoder raises di�culty when trying to use gradient descent to optimise the model.

This is only natural since the objective function we optimise (4.7) has the same
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Xi X̂iẐEncoder Decoder
q(Z |Xi;Φ) p(X | Ẑ;Θ)

Figure 4.2: Schematic of the VAE model. The data point Di gets mapped to
a distribution over the latent variable Z, from which we sample a value Ẑ (one-
sample MC estimator) and obtain the distribution p(D |Zi; θ) whose most probably
values should be the Di that generated the latent sample Ẑ.

form as in previous chapters, and as before we resort to the pathwise gradient

estimator (Appendix A.1). The famous alternative name reparameterisation trick

comes exactly from the paper that introduced the VAE [10]. However, the authors

�rst stated it in the more general form

ÊLBO1(Θ ,Ψ) =
N∑
n=1

T∑
i=1

log p(Xn,Z(i)
n ;Θ)− log q(Z(i)

n | Xn;Ψ), (4.8)

where Z(i)
n = g(ε(i),Xn;Ψ) is a deterministic transformation and ε(i) a base random

variable ε(i) ∼ p(ε).

The above estimator is equivalent to (3.12) put forth in [13] for BNNs. Choos-

ing families of distributions for p(Z) and for q(Z |D;Ψ) for which there exists a

closed-form analytical formula for the KL in (4.7), there is no need to calculate it

numerically, and we rewrite the above estimator as

ÊLBO2(Θ ,Ψ) =
N∑
n=1

T∑
i=1

log p(Xn | Z(i)
n ;Θ)−DKL

(
q(Z(i)

n | Xn;Ψ)‖p(Z)
)
, (4.9)

which is the form we have used throughout Chapter 3. Figure 3.4 still is a valid

depiction of the reparameterisation trick, the sole di�erence being that here the

random variables are Z instead of W .

The main technical contribution of [10] is introducing for the �rst time (2013) in

the Deep Learnig community this reparameterisation trick to achieve a low-variance

gradient estimator, the vastly used VAE model is simply an use-case example of

this estimator the authors o�er midway through the paper [10]. For the generic

formulation of Figure 4.1a optimised with (4.8), the authors name the algorithm

Autoencoding Variational Bayes (AEVB). Here we consider the most common in-

stantiation of VAE: q(Z |X ;Ψ) and p(X |Z;Θ) both implemented with feedforward

NNs. Still, we could implement the same general model with other blocks, such as

autoregressive models.
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Suppose the a priori p(Z) to be a centred diagonal Gaussian distribution,N (0, I),

and the likelihood function p(X |Z;Θ) a distribution with parameters determined

by an NN, Gaussian for real-valued X and Bernoulli for binary. In addition, we ap-

proximate the posteriori with an approximately Gaussian distribution with diagonal

covariance matrix, even though there is no speci�c reason to believe the true den-

sity has this form since it is an in�nite mixture of Gaussians and can be arbitrarily

complex. These choices for the distributions are not at all due to restrictions in the

algorithm, but rather motivated by their simplicity. These settings lead us to an

objective function similar to (3.6) for the KL term, where σp = 1 and µp = 0. The

deterministic transformation g(ε;Xn,Ψ) is then

g(ε;X ,Ψ) = µ(f(X ;Ψ)) + σ(f(X ;Ψ))� ε, (4.10)

with ε ∼ N (0, I) and f(·;Ψ) the recognition model. Although we employ the same

transformation all the time, it does not mean it is the only possible one, it just

happens that location-scale transformations of the standard distribution of a given

family are simple and practical. Another viable option, for example, is the to specify

g as the inverse CDF of the desired distribution and ε ∼ U(0,1).

Experimentally, the authors [10] veri�ed that when using mini-batch optimisation

with size M , one sample from the approximate posterior Z(1) ∼ q(Z |X ;Θ) is

enough so as longM is large enough, e.g., 100. Nevertheless, it has become common

for practitioners to use L = 1 even when the mini-batch size is not large enough

because of the computational gains, what may cause longer training time, i.e., more

iterations.

Algorithm 7: VAE (or more generally, AEVB algorithm)
1: while not converged do
2: Randomly sample a data example Xi
3: Randomly sample ε from the base distribution p(ε)
4: Compute the gradients of the ELBO estimator w.r.t. Θ and Ψ
5: Update the parameters Θ and Ψ using the gradients
6: end while

4.3.1 Conditional VAE

The vanilla VAE model does not allow us to constrain the generated sample to have

a particular characteristic: one should relentlessly draw samples until obtaining the

desired feature; which restricts its usefulness in practical applications. For example,

an ordinary task would be automatically colouring a person's hair in a photograph

prior to dyeing it. The question then arises on how to capacitate the model to create
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Xi X̂iẐEncoder Decoder
q(Z |Xi,Yi;Φ) p(X | Ẑ,Yi;Θ)

Yi Yi

Figure 4.3: Schematic illustration of the CVAE model. Note that this is basically the
same as the VAE, the sole di�erence being the inclusion of additional conditioning
information Y to the input x and the sampled latent variable z. The former so that
the recognition model can infer the distribution corresponding to that condition,
and the latter so that the generation network also knows to which condition that
distribution refers.

targeted samples rather than completely random ones.

What we really wish is to condition the model output on some kind of informa-

tion Y , hence the name Conditional VAE (CVAE) [104]. Thus, the aim becomes

to maximise log p(Xi | Yi) for each observed variable Xi, which following the same

derivation as in (4.6) and (4.7) leads to

log p(Xi | Yi;Θ) > Eq(Z |Xi,Yi;Ψ) [p(Xi,Z |Yi;Θ)− q(Z |Xi,Yi;Ψ)]

= Eq(Z |Xi,Yi;Ψ) [log p(Xi | Z,Yi;Θ)]

−DKL (q(Z |Xi,Yi;Ψ)‖p(Z |Xi,Yi;Θ)) . (4.11)

Recalling that for the VAE, q(Zi | Xi;Ψ) is a model, i.e., a NN, with input Xi and
output Zi, it becomes evident that for its conditional counterpart q(Zi | Xi,Yi;Ψ)

we must just add Yi as input. Similar reasoning applies to the generator model.

Thus by just concatenating the condition Yi, e.g., the data label, to both the input

and latent space, while still maintaining all the other aspects of VAE unchanged,

we obtain a CVAE [104].

From an implementation perspective, we can encode category information as a

one-hot representation, indicating to the model which class is that input (or latent

code) about. Intuitively, the prior gets split into di�erent regions, each correspond-

ing to a speci�c label, which gives us the ability to choose among them. In addition,

by separating the samples into di�erent classes, the data points within the same cat-

egory become more similar, enhancing the modelling capacity and sample quality of

CVAEs.
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4.4 VAE Issues

VAEs are a great tool for generative modelling but they are not without shortcom-

ings. In what follows we succinctly present the main known problems so far.

4.4.1 Inexpressive Posterior

The independent Gaussian assumption for the posterior limits the expressiveness

of the model, which coupled with the mean-squared error from the log-likelihood

term in the objective function (4.7) causes the generated samples to be blurry.

More complex distributions help the model attain better marginal log-likelihood

and simulated samples. Normalising �ow transformations have been researched as

a way of improving variational inference [38, 105].

4.4.2 The Posterior Collapse

Excessively powerful generators models p often lead to a state commonly known as

�posterior collapse�, where the model is said to ignore the latent variables. In e�ect,

the distributions under optimisation degenerate to q(Z |X ;Ψ) = p(Z |X ,Θ) =

p(Z) ∀X , what means that the posterior carries no information on the sample X
and, in particular, no meaningful structure [106]. Apparently, the cause for this

problem is related to the learning dynamics at the beginning of training, which

may encourage the model to ignore the latent encoding. Thus a simple yet e�ective

modi�cation to the training procedure is proposed in [106].

4.4.3 Continuous Distributions

VAEs rely on the pathwise gradient estimator to enable the computation of gradients

through random nodes in computational graphs and the usage of automatic di�er-

entiation tools. However, this estimator assumes the distribution to be continuous

and cannot be used for the discrete case, which restraints our modelling capacity.

Categorical distributions for the latent space for example are outside VAEs can do.

Nevertheless, there are works on how to reparameterise discrete random variables

by relaxing them into continuous distributions [107, 108], and use the pathwise es-

timator to obtain low-variance biased gradient estimates of the objective function.

Still, the cost of these methods is the introduction of a new temperature parameter

that should be anealled during training.
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0− zero 1− one 2− two 3− three 4− four

5− five 6− six 7− seven 8− eight 9− nine

Figure 4.4: Mosaic of the 10 di�erent classes of the MNIST dataset

4.5 Experiments

Although VAEs can generate any kind of data in principle, we use it on images to

illustrate our points and keep the discussion attractive. This type of data has great

appeal, is intuitive, and has broad support on modern programming frameworks,

i.e., Pytorch [82].

4.5.1 Data Sets

We evaluate the VAE and CVAE algorithms on both MNIST [109], the classical

10-class handwritten digits, and Fashion-MNIST [110], a recently proposed data set

to supersede the former.

MNIST

The MNIST data set is composed of 60,000 training and 10,000 testing 28 × 28

grayscale images of handwritten digits. Each sample depicts a single digit out the

10 possibilities. Figure 4.4 presents a one example of each class.

Uniform Manifold Approximation and Projection (UMAP) [111] can be used

as an out-of-the-box visualisation tool similar to t-SNE [112], while being faster,

better scaling to high dimensions and better preserving aspects of global structure

of the data. Using this dimension reduction technique, we observe in Figure 4.5 the

structure of MNIST data set. It has well-de�ned clusters for all of its classes.

Fashion-MNIST

Fashion-MNIST possess the same general layout: 60,000 training and 10,000 test

samples, 28Ö28 grayscale images, and 10 possible exclusive classes. However, each
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Figure 4.5: UMAP 2D-projection of the raw pixel space of MNIST

class is associated with a di�erent piece of clothing as shown in Figure 4.6.

Standard ML algorithms obtain over 97% classi�cation accuracy, and deep learn-

ing models over 99%, so there is no space left for researchers to evaluate if observed

performance improvements are statistically relevant. Hence, MNIST cannot be used

any more for benchmarking, and is no longer representative of modern computer vi-

sion tasks. Still, it has been employed in recent years mainly as a toy data set

to do sanity checks and algorithm prototyping. Although easy, Fashion-MNIST is

not as easy (90% and 95% accuracy for standard ML methods and deep learning,

respectively) and still has margin for improvements.

Comparing the raw pixel structure of Fahion-MNIST data set, shown in in Fig-

ure 4.7 with that from MNIST in Figure 4.5, we note that the former has clusters

corresponding to garments for the same body region partially overlapping.

4.5.2 Experimental setup

We train both the VAE and CVAE with varying latent space sizes d. We implement

the encoder and generator of all models as fully-connected networks with ReLU

activations [61], and Gaussian distributions for the latent spaces. Since the MNIST

data set is simpler we use 1 hidden layer for both the encoder and the generator,

whereas for the FashionMNIST we use 2. Hence the constructed models have the

structure:

� MNIST: 784→ 200→ d→ 200→ 784;
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Sandal Shirt Sneaker Bag Ankle boot

Figure 4.6: Mosaic of the 10 di�erent classes of the Fashion-MNIST dataset
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Figure 4.7: UMAP 2D-projection of the raw pixel space of Fashion-MNIST
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� FashionMNIST: 784→ 400→ 200→ d→ 200→ 400→ 784.

Although the decoders are mirrored versions of the encoders, there is no special

reason other than personal taste.

We model the likelihood function as a Bernoulli random variable and thus use

binary cross entropy for the log-likelihood term of the objective. Additionally, we

use mini-batches of size 128, 1 MC sample of the latent space for each input example,

and train for 40 epochs with Adam [71] using a learning rate of 0.001.

4.5.3 Results

We observe from Figures 4.9 and ?? a similar behaviour across all models during

training.

Increasing the latent dimension brings expressive gains when the size is too low,

because we cannot properly represent the di�erent features of the data set. Fur-

thermore, increasing it more than necessary, that is, having an excessively large

latent space has almost no negative e�ect on performance: carefully inspecting all 4

graphics, allows us to see that the ELBO for the 200-dimensional models are slightly

lower than 20-dimensional model. Moreover, the train-test gap remains more or less

constant regardless of the latent dimension size. Thus, we conclude VAEs are robust

to over�tting, at least with respect to the size of the latent space.

The KL divergence remains stable throughout the whole training, varying very

little, as shown in Figure 4.10. The learned posterior distribution moves away from

the prior within the �rst epoch and stays at approximately the same �distance�

during the rest of the optimisation procedure. This is a consequence of the powerful

regularising e�ect the KL term has on the model. Although we only exhibit the

case of the CVAE trained on MNIST, this is a general behaviour observed in all

experiments.

FashionMNIST models have remarkably worse results, indeed we can con�rm it

visually by observing the generated samples from Figure 4.11. While the MNIST

samples are not very rich in details, this is not true for the FashionMNIST objects,

thus the VAE struggles to recover such �ne details. Even though CVAE does a

better job at generating new images, what we can immediately observe by comparing

Figures 4.11a and 4.11b, for the FashionMNIST data the sample quality of images in

Figure 4.11d are only marginally better than those of the VAE model, displayed at

Figure 4.11c. The quality of both models is overall poor if compared to the original

samples of Figure 4.6.

This is actually a general characteristic of VAEs, originating from the objective

that seeks to minimise the average log-likelihood of data and causes the recon-

structed (and generated) samples to be blurry. On average they may be good, but
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Figure 4.8: Training and evaluation ELBO for the MNIST data set for di�erent
sizes of the latent dimension space. The continuous curves represent the training
performance, while dashed ones the test.
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Figure 4.9: Training and evaluation ELBO for the FashionMNIST data set for
di�erent sizes of the latent dimension space. The continuous curves represent the
training performance, while dashed ones the test.
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Figure 4.10: Training and evaluation KL divergence curve of CVAE models with
di�erent latent dimension sizes in the MNIST data set.

individually they are not sharp. This e�ect is more pronounced in FashionMNIST

as clothes are more diverse and have more details than digits, which is also the

cause for the greater di�culty of FashionMNIST over MNIST, and precisely what

we observe in Figure 4.11. In order to achieve better log-likelihood and sample qual-

ity, we need to employ better generator and encoder models, plain fully-connected

networks have pretty much been replaced nowadays by convolutional architectures

in the image domain.

In both cases, MNIST and FashionMNIST, we note the latent space of the CVAE

model to be unstructured according to Figures 4.12b and 4.13b, respectively. How-

ever, this is not exactly true because it becomes segmented after conditioning. All

we see here is the latent representation of the di�erent labels superposed, but the

act of conditioning selects which distribution to observe, what gives the model lib-

erty to use the �full� latent space to model the speci�ed object class, that is why

the log-likelihood of the CVAE is invariably higher than its VAE counterpart for

the same latent size. We use quotation marks for full because when conditioning

by concatenating the one-hot representation of the chosen class, we are e�ectively

augmenting the latent space by 10 dimensions.

Interestingly, we note from Figure 4.13a that samples from the digits 4 and 9, as

well as 5 and 3 are generally overlapped, which indicates the model cannot properly

tell them apart. A classi�er built from the the latent feature space would have a

poor accuracy for samples from these classes. Similarly, and as already observed in
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(a) VAE model - MNIST

(b) CVAE model - MNIST

(c) VAE model - FashionMNIST

(d) CVAE model - FashionMNIST

Figure 4.11: Samples generated by the 20D-latent-space VAE and CVAE models.
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Figure ??, the pullover, coat, and shirt classes are mostly distributed on the same

region of the latent space, which intuitively makes sense since they are designed for

the same body part and, thus, have similar shapes. From this, we can conclude

the inference network was not capable of identifying the distinctive features of those

classes, in accordance with the previous discussion of our models not being powerful

enough.

4.6 Closing remarks

In this chapter we discussed vanilla and conditional VAEs, and how the models

arise by applying VI to the latent variable modelling. Moreover, we presented their

major drawbacks and some of the research work being developed to diminish those

issues. There exists several other types of generative algorithms, the most popular

being Generative Adversarial Networks [113], whose training dynamic can also be

interpreted as through probabilistic lenses.
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Figure 4.12: Visualisation of the 2D latent space for MNIST data set for varying
latent dimensionality.
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Figure 4.13: Training and evaluation ELBO for the FashionMNIST data set for
di�erent sizes of the latent dimension space. The continuous curves represent the
training performance, while dashed ones the test.
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Chapter 5

Conclusions and Future Work

Throughout the dissertation we have seen the value of the Bayesian approach to

probabilistic modelling and how it seamlessly allows us see to reason under uncer-

tainty, make predictions, and simulate new data, all through marginalisation and

conditioning. Moreover, model �tting and comparison naturally arises within the

framework and it constitutes a good contender better data-poor regimes, being more

robust to over�tting.

However, the calculation the method entails rarely have closed-formed solution

for complex models and requires computational methods to approximate it. We then

discussed variational methods, a class of deterministic approximations that elicits

reasonable performance on a viable amount of time, as opposed to stochastic meth-

ods that get prohibitively expensive in high dimensions. Speci�cally, we examined

VI, ADF, and EP, and brie�y mentioned other general purpose practical extensions

of these three techniques.

Empowered with these new concepts and motivations, we tackled the problem

of (approximate) posterior inference in BNNs. Instead of estimating a real-value

scalar for each weight in the network, we sought to establish entire PDFs over the

possible values of the parameters. As we saw, the additional computational cost

can be considerably minimised at the expense of performance, thus constituting an

important trade-o� one should consider when developing applications, as well as

analysing the complexity required to implementing custom solutions.

Next, instead of using approximate inference to estimate the posterior distribu-

tion over the weights as in BNNs, we used it to estimate the posterior over the latent

space of our observables. This led us to a generative model resembling an autoen-

coder, hence its name VAE, that could do both approximate inference given new

data and generate new samples through ancestral sampling. Furthermore, thanks

to the regularisation e�ect of the variational objective, the latent space of the model

has structure and allow us to interpolate and combine samples. Still, VAE has sev-

eral drawbacks, which the scienti�c community is currently studying and working
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to alleviate. Although brie�y, we presented most of these problems together with

references for the dedicated reader.

5.1 Future Research

5.1.1 Combining Generative Models and Uncertainty

Research on either generative models or BNN alone is virtually in�nite, and may

involve theoretical aspects or applications. However, presenting them both together

has an underlying motive, which is to develop algorithms for practical applications

using generative models that estimate the uncertainty of their predictions. More

speci�cally, the unsupervised task of future video frame prediction. This task re-

quires exceedingly good e�ciency since dealing with videos is computationally de-

manding by itself, further imposing posterior inference instead of MLE severely

complicates the issue. Additionally requiring the predictions to be near real time,

otherwise the future will have long happened, makes the challenge yet more remark-

able even with parallel computing in Graphical Processing Units made possible.

Furthermore, Bayesian prediction of future scenes has been largely unexplored

to this date, with only one work published so far [114].

5.1.2 Long-term Ambitions

The above application is itself a milestone of a much far-fetched objective, regarding

neuroscience and arti�cial intelligence. Uncertainty is a natural way of thinking

under the dubious interpretation of sensory informations, and indeed behavioural

studies support that humans perform nearly optimal Bayesian inference, e�ciently

integrating multi-sensory information while being energetically e�cient. Bayesian

approximate predictions of the future in videos is an instantiation of this question,

one of particular interest to researchers marvelled by the visual system.

Interaction between neuroscience and arti�cial intelligence is a two-way road

and both may bene�t from leaning and observing the other. For example, we can

question ourselves on how to bring stunning capacities of the brain such as few-shot

learning, energy-e�ciency, concept abstraction, continual learning, and causality to

an arti�cial system. On the other hand, we can port our insights from practical

issues and simulations to neuroscience and search for similarities on the brain. A

growing body of research investigates whether something similar to deep learning

happens inside our brains [115�117]
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Appendix A

Knowledge Goodies

A.1 Gradient estimators

In inference problems, as well as in other domains, we frequently encounter the com-

putation of ∇φ Eq(z;φ) [f(z; θ)]. This is the gradient w.r.t. φ of the expectation of

the function f(z; θ) under the distribution q(z;φ), with θ and φ being their param-

eters respectively. Generally, we cannot compute this gradient directly because the

expectation is intractable. Hence, we assume certain conditions so as to rewrite it

and obtain appropriate practical estimators, which we approximate by Monte Carlo

integration.

If q(z;φ) is known and it is a continuous function of φ, though not necessarily

of z, we derive the reinforce or score-function estimator [45] through

∇φ Eq(z;φ) [f(z; θ)] = ∇φ

[∫
q(z;φ)f(z; θ)dz

]
=

∫
∇φ [q(z;φ)] f(z; θ)dz

=

∫
q(z;φ)∇φ [log q(z;φ)] f(z; θ)dz

= Eq(z;φ) [f(z; θ)∇φ [log q(z;φ)]] . (A.1)

Note that third equality comes from the log derivative trick

∂ log g(ξ)

∂ξ
=

1

g(ξ)

∂g(ξ)

∂ξ
(A.2)

and that we made no assumptions about f(z; θ) and it may indeed be non-

di�erentiable or even discrete.

If we, instead, express the random variable z ∼ q(z;φ) as an invertible deter-

ministic transformation g(·;φ) of a base random variable ε ∼ p(ε), we arrive at the
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pathwise derivative estimator [46]

∇φ Eq(z;φ) [f(z; θ)] = ∇φ

[∫
p(ε)f(g(ε;φ); θ)dε

]
= ∇φ

[
Ep(ε) [f(g(ε;φ); θ)]

]
= Ep(ε) [∇φ [f(g(ε;φ); θ)]] . (A.3)

This approach requires not only the distribution q(z;φ) to be reparameterisable, but

also f(z; θ) to be known and a continuous function of θ for all values of z. It is also

known as reparameterisation trick and recently popularised by [10].

While both estimators yields unbiased estimates, the score function estimator

generally has higher variance due to the derivative of the log. This behaviour makes

sense if we think that it computes the derivative only on q and does not include

information about the function f(z; θ), which is the objective function.

A.2 Natural Gradient and the Fisher Information

Matrix

Here we shall motivate the natural gradient and explain how it appears in our

optimisation context. The derivation closely follows [118]. For the sake of brevity, we

use the notation pψ instead of the usual p(·;ψ) to indicate a family of distributions

p parametrised by ψ.

The update step in the gradient descent algorithm can vary abruptly at each

iteration. Neither clipping nor �xing its magnitude guarantees a clear limit on the

change induced in our model. Furthermore, the gradient depends on the coordi-

nate system, so constraining its norm amounts to di�erent restrictions in di�erent

coordinate systems. Logically, while for some distributions small changes in the pa-

rameters have large e�ects on the probability represented by the model, for others

it is the opposite. If we wish to move along the functional manifold with constant

speed, regardless of its curvature, we must impose a constraint on the probability

manifold, that is, on the output space of our model.

Suppose we want to minimise the loss function L (or maximise if dealing with

the ELBO) w.r.t. the distribution pψ parametrised by ψ. Hence, at each iteration

we wish to �nd the step

argmin
δψ

L(ψ + δψ) (A.4)

s.t. DKL(pψ‖pψ+δψ) = const.

113



The KL divergence constraint assures that the output space, which is what e�ectively

matters, will change by a constant value. Although not a proper metric, for small

enough δψ we can approximate it around ψ by its Taylor expansion up to the second

order

DKL(pψ‖pψ+δψ) ≈ DKL(pψ‖pψ) + δψ ∇ψ′DKL(pψ‖pψ′)
∣∣
ψ′=ψ

+
1

2
δψTH(ψ)δψ

(A.5)

where H(ψ) is the Hessian of the DKL computed at ψ. Since the divergence has

its minimum at δψ = 0, both the �rst and second right-hand terms in (A.5) vanish

and only the second-order one remains. The Hessian is given by

H(ψ) = −∇2
ψ E [log pψ] = E

[
−∇2

ψ log pψ
]

= Epψ

[
−∇ψ

[
1

pψ
∇ψpTψ

]]
= Epψ

[
1

p2ψ
∇ψpψ∇ψpTψ

]
− Epψ

[
1

pψ
∇2
ψpψ

]
= E

[
∇ψ log pψ∇ψ log pTψ

]
−
∫
∇2
ψpψdZ

= E
[
∇ψ log pψ∇ψ log pTψ

]
= E

[
∇ψ log pψ∇ψ log pTψ

]
− E [∇ψ log pψ]︸ ︷︷ ︸

=0

E
[
∇ψ log pTψ

]
= Cov(∇ψ log pψ,∇ψ log pψ)

= I(ψ), (A.6)

where I(ψ) is the Fisher information matrix and the last equality comes from the

de�nition.

The Fisher matrix measures the variance in the distribution caused by changes

in the parameter space. Intuitively, it carries the amount of information that the

observed data X has about the parameters ψ. From (A.6) we can appreciate that

the Fisher matrix is the negative of the expected value of the Hessian of the log

likelihood, thus I(ψ) encodes the curvature of the manifold.

From (A.5) and (A.6), we can write the Lagrangian form of (A.4) as

argmin
δψ

L(ψ + δψ) + λ

(
1

2
δψTI(ψ)δψ − const

)
, (A.7)

If we further assume the linearisation of L(ψ+δψ) around the vicinity of ψ is valid,
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we obtain

argmin
δψ

L(ψ) +∇ψL(ψ)T δψ + λ

(
1

2
δψTI(ψ)δψ − const

)
. (A.8)

Finally, setting the gradient w.r.t. δψ equal to zero in order to solve the problem,

we arrive at

0 = ∇ψL(ψ) + λI(ψ)δψ

λIδψ = −∇ψL(ψ)

δψ = −1

λ
I−1(ψ)∇ψL(ψ)

δψ = −k∇̃ψL(ψ), (A.9)

where we de�ne ∇̃ψL(ψ) ≡ I−1(ψ)∇ψL(ψ) as the natural gradient and k = 1/λ as

the step size (step factor would be the most appropriate name, however it is not a

popular one).

We have thus obtained an algorithm that not only is robust to reparameterisa-

tions (the Fisher matrix is invariant to one-to-one transformations), and move along

the manifold with constant speed, but also follows the steepest descent direction

[69].

A.3 Gauss-Newton Approximation

The Gauss-Newton method is a classical approach for non-linear least-squares that

approximates the Hessian of the (vectorial) function f(·) with its Jacobian Jf . When

the objective function is not a sum of squares, but rather an arbitrary (scalar)

function `(·), i.e., the negative logarithm, we do

∂2`(f(x))

∂xj∂xi
=

∂

∂xj

(
∂`(f(x))

∂xi

)
=

∂

∂xj

(
K∑
k=0

∂`

∂fk(x)

∂fk(x)

∂xi

)

=
K∑
k=0

∂

∂xj

(
∂`

∂fk(x)

)
∂fk(x)

∂xi
+

K∑
k=0

∂`

∂fk(x)

∂2fk(x)

∂xj∂xi

=
K∑
k=0

K∑
m=0

(
∂2`

∂fm(x)fk(x)

)
∂fm(x)

∂xj

∂fk(x)

∂xi
+

K∑
k=0

∂`

∂fk(x)

∂2fk(x)

∂xj∂xi
(A.10)

≈
K∑
k=0

K∑
m=0

(
∂2`

∂fm(x)fk(x)

)
∂fm(x)

∂xj

∂fk(x)

∂xi

= Gij (A.11)
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The �rst term in (A.10) is the component of the Hessian due to variations in

fk(x), whereas the second is due to variations in x. Around the minimum of the loss

function, the second term is inexpressive and we can neglect it. This approximation

is what we call the Generalised Gauss-Newton and is exact when the loss is zero,

since the term ∂`/∂fk(x) is zero, but gets increasingly worse for distant points.

Writing the GGN in matricial form gives

G = Jf (x)TH`(f(x))Jf (x), (A.12)

which is always positive semi-de�nite. In the particular case where `(f(x)) =

− log f(x), it becomes

G = Jf (x)T
1

f(x)2
Jf (x)

= ∇xf(x)∇xf(x)T (A.13)

The shortcoming of this approach is losing second order interaction between the

di�erent dimensions of the parameter space, which might mean a loss of curvature

information [72].
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Appendix B

Demonstrations of Properties and

Identities

B.1 Update formula for CAVI

Without resorting to variational calculus we derive the update equations for the

optimal factors of the approximating distribution q(Z) under the VI algorithm in

Section 2.2.1.

We rewrite here the formulas for the factorized approximating distribution 2.17

and the ELBO:

q(Z) =
M∏
i=1

qi(ZSi), (B.1)

ELBO(q) = Eq [log p(X ,Z)]− Eq [log q(Z)] . (B.2)

We substitute (B.1) into (B.2) and extract the dependence on one of the factors

qi(ZSi). Simplifying the notation from qi(ZSi) to qi we get

ELBO(q) =

∫ (∏
i

qi

)
log p(X ,Z)dZ −

∫ (∏
k

qk

)
log
∏
l

qldZ

=

∫
qj

[∫
log p(X ,Z)

∏
−j

(qidzi)

]
dzj −

∑
k

∫ ∏
l

ql log qkdZ

=

∫
qj E−j [log p(X ,Z)] dzj −

∑
k

∫
qk log qk

[∏
l 6=k

∫
qldzl

]
dzk

where the symbol E−j [·] in the �rst term denotes expectation with respect to the q

distribution over all variables ZSi for except i = j.

Since each ql in the second term is an independent factor, it is normalised and

sums to 1. In addition, we de�ne a new distribution p̃−j such that log p̃−j =
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E−j [log p(X ,Z)]+const, and the const term appears to compensate for the normal-

isation. Then,

ELBO(q) =

∫
qj log p̃−jdzj −

∑
i

∫
qk log qkdzk + const

=

∫
qj log p̃−jdzj −

∫
qj log qjdzj −

∑
k 6=j

∫
qk log qkdzk + const

=

∫
qj log

(
p̃−j
qj

)
dzj + const

= −DKL(qj‖p̃−j) + const (B.3)

We keep all q−j �xed and maximise the ELBO w.r.t. to qj. Since the maximum of

(B.3) happens when the KL term is zero, we �nd the optimal q∗ by setting it to be

equal to p̃−j

q∗j (ZSj) = p̃−j(X ,ZSj)
log q∗j (ZSj) = E−j [log p(X ,Z)] + const (B.4)

q∗j (ZSj) ∝ exp{E−j [log p(X ,Z)]}. (B.5)

The equations (B.5) for the latent variable sets Sj are coupled and solving them

requires an iterative approach to optimise the objective function by replacing each

factor by a revised estimate of (B.5) in coordinate manner.

B.2 Gaussian Gradient Identities

Here we review the derivations of Bonnet's and Price's theorems, equations 3.3

and 3.4 respectively, that were presented in Section 3.3. During those proofs, two

other results are useful, so we �rst derive them.

Given a multivariate Gaussian distribution N (ξ|µ,C), where dim(ξ) = d, the

gradient with respect to µi can be rewrite as:

∇µiN (ξ|µ,C) =
∂
(

(2π)−d/2|C|−1/2e− 1
2
(ξ−µ)TC−1(ξ−µ)

)
∂µi

= (2π)−d/2|C|−1/2e− 1
2
(ξ−µ)TC−1(ξ−µ)∂

(
−1

2
(ξ − µ)TC−1(ξ − µ)

)
∂µi

= N (ξ|µ,C)

(
d∑

k=1

(ξk − µk)lik
)
,

where li,i is the i-th element of the i-th column of C−1.
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Analogously, we have ∇ξiN (ξ|µ,C) = −N (ξ|µ,C)
(∑d

k=1(ξk − µk)lik
)
, so

∇µiN (ξ|µ,C) = −∇ξiN (ξ|µ,C). (B.6)

The last result we need before we proceed is about the derivative of the Gaussian

w.r.t. to its covariance matrix elements:

∇ci,jN (ξ|µ,C) =
∂
(

(2π)−d/2|C|−1/2e− 1
2
(ξ−µ)TC−1(ξ−µ)

)
∂ci,j

= (2π)−d/2|C|−1/2e− 1
2
(ξ−µ)TC−1(ξ−µ)∂

(
−1

2
(ξ − µ)TC−1(ξ − µ)

)
∂ci,j

+ (2π)−d/2e−
1
2
(ξ−µ)TC−1(ξ−µ)∂|C|−1/2

∂ci,j

= N (ξ|µ,C)

(
1

2
(ξ − µ)TC−1

∂C

∂ci,j
C−1(ξ − µ)

)
+ (2π)−d/2e−

1
2
(ξ−µ)TC−1(ξ−µ)

(
−1

2
|C|−3/2|C|tr

(
C−1

∂C

∂ci,j

))
= −1

2
N (ξ|µ,C)

(
−

d∑
k1=1

(
(ξk1 − µk1)li,k1

d∑
k2=1

(ξk2 − µk2)lj,k2

)
+ li,j

)
,

Now, taking the derivative of ∇ξiN (ξ|µ,C) w.r.t. to ξj we have:

∇ξi,ξjN (ξ|µ,C) = −∂N (ξ|µ,C)

∂ξj

(
d∑

k=1

(ξk − µk)li,k
)
−N (ξ|µ,C)li,j

= −N (ξ|µ,C)

(
li,j −

(
d∑

k=1

(ξk − µk)li,k
)(

d∑
k=1

(ξk − µk)lj,k
))

,

which implies on

∇ci,jN (ξ|µ,C) =
1

2
∇ξi,ξjN (ξ|µ,C). (B.7)

Theorem B.2.1 (Bonnet's theorem). Let f(ξ) : Rd 7→ R be a integrable and twice

di�erentiable function. The gradient of the expectation of f(ξ) under a Gaussian

distribution N (ξ|µ,C) with respect to the mean µ can be expressed as the expectation

of the gradient of f(ξ), i.e.:

∇µi EN (µ,C) [f(ξ)] = EN (µ,C) [∇ξif(ξ)] .
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Proof.

∇µi EN (µ,C) [f(ξ)] =

∫
∇µiN (ξ|µ,C)f(ξ)dξ

= −
∫
∇ξiN (ξ|µ,C)f(ξ)dξ

= −
∫
∇ξi (N (ξ|µ,C)f(ξ)) dξ

+

∫
N (ξ|µ,C)∇ξif(ξ)dξ

= −
∫
ξ1

· · ·
∫
ξn

∫
ξi

∇ξi (N (ξ|µ,C)f(ξ)) dξi

︸ ︷︷ ︸
=[N (ξ|µ,C)f(ξ)]

ξi=+∞
ξi=−∞

dξn · · · dξ1

+

∫
N (ξ|µ,C)∇ξif(ξ)dξ

=

[∫
N (ξ|µ,C)f(ξ)dξ¬i

]ξi=+∞

ξi=−∞
+ EN (µ,C) [∇ξif(ξ)]

= EN (µ,C) [∇ξif(ξ)] , (B.8)

where we have used the identity (B.6) in moving from step 1 to 2, and the product

rule for derivatives from step 2 to 3. We have rewritten the �rst term in moving from

step 3 to 4. At the last step we eliminated the �rst term, which equals zero.

Theorem B.2.2 (Price's theorem). Under the same conditions as before. The gra-

dient of the expectation of f(ξ) under a Gaussian distribution N (ξ|0,C) with respect

to the covariance C can be expressed in terms of the expectation of the Hessian of

f(ξ) as

∇Ci,j EN (0,C) [f(ξ)] =
1

2
EN (0,C)

[
∇ξi,ξjf(ξ)

]
Proof.

∇Ci,j E [N (0,C)] [f(ξ)] =

∫
∇Ci,jN (ξ|0,C)f(ξ)dξ

=
1

2

∫
∇ξi,ξjN (ξ|0,C)f(ξ)dξ

=
1

2

∫
N (ξ|0,C)∇ξi,ξjf(ξ)dξ

=
1

2
EN (0,C)

[
∇ξi,ξjf(ξ)

]
. (B.9)

In moving from steps 1 to 2, we have used the identity (B.7). From step 2 to 3 we

have used the product rule for integrals twice.
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